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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new design
philosophies, new challenges. Much of this development work resides in industrial
reports, feasibility study papers, and the reports of advanced collaborative projects.
The series offers an opportunity for researchers to present an extended exposition of
such new work in all aspects of industrial control for wider and rapid dissemination.

Road transportation has experienced significant control research and develop-
ment over the last few decades. The introduction into vehicles and traffic-flow
systems of reliable computing and information technologies along with robust
sensor devices has produced a considerable change in the driving experience. Now
prototype driverless vehicles are even appearing in the transport system. Creating a
top-down view this control research in road transportation provides a useful
framework for understanding the ongoing developments.

There are four major aspects to control research in road transport:

i. the classes of vehicles;
ii. the road transport infrastructure;
iii. the environmental conditions; and
iv. the issues arising from “human-in-the-loop” control.

These aspects then give rise to various interactions depending on the
vehicle/traffic/environment situation being investigated. The “classes of vehicles”
include: motor cycles, automobiles, light goods vehicles, heavy goods vehicles, and
specialized vehicles (fire engines,and refuse-collection vehicles, for example). Each
of these vehicle classes will have different travel objectives and quite different
dynamics. However as more and more autonomy is introduced into vehicle control,
the inclusion of the “human-in-the-loop” adds an addition level of complexity to
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vehicle control. Road transport “infrastructure” includes urban road networks, rural
road networks and then freeways, autobahns, or motorways. The quality of road
surfaces, the density of traffic, the amount of roadside instrumentation, and the
purpose of all these transport networks will differ considerably. Driving conditions
as provided by the environment will depend on such factors as the weather, and the
road topology. This type of overview can easily be transcribed into an interesting
hierarchical diagram. Such an overview is useful to Series Editors as it enables them
to place the many strands of road transport control research into a framework and
allows them to identify new potential contributions for developing a well-balanced
and up to date group of titles in the series.

One of the very few monographs in the Advances in Industrial Control series to
deal with the characteristics of “human-in-the-loop” issues is the 1998 monograph
Modelling and Simulation of Human Behaviour in System Control by Pietro C.
Cacciabue (ISBN 978-3-540-76233-1, 1998). The practical issues of the balance
between autonomy and human control intervention (from a driver, pilot, or oper-
ator) will undoubtedly receive more research input in future years across many
different control application fields.

In the hierarchy of road transport, “infrastructure” is an important classifier with
different types of network exhibiting different control requirements. The Advances
in Industrial Control series has two monographs reporting developments in this
growing field. The monograph Feedback Control Theory for Dynamic Traffic
Assignment by Pushkin Kachroo and Kaan Özbay (ISBN 978-1-85233-059-0,
1998) is a seminal contribution (a second edition is currently in preparation) and the
monograph Hybrid Predictive Control for Dynamic Transport Problems by Alfredo
Núñez, Doris Sáez and Cristián E. Cortés (ISBN 978-1-4471-4350-5, 2012) reports
some recent research on bus transport in urban road networks.

As evidenced by the frequent sessions at the IEEE control conferences, the
exploitation of advanced control ideas for the automobile class of vehicles has
received far more research input and the Advances in Industrial Control monograph
series has several contributions:

• Dry Clutch Control for Automotive Applications by Pietro J. Dolcini, Carlos
Canudas de Wit and Hubert Béchart (ISBN 978-1-84996-067-0, 2010);

• Active Braking Control Systems Design for Vehicles by Sergio M. Savaresi and
Mara Tanelli (ISBN 978-1-84996-349-7, 2010); and

• Optimal Control of Hybrid Vehicles by Bram de Jager, Thijs van Keulen and
John Kessels (ISBN 978-1-4471-5988-9, 2015).

In this same group of topics falls this monograph Robust Control Design for
Active Driver Assistance Systems: An LPV Approach by Péter Gáspár, Zoltán
Szabó, József Bokor and Balázs Németh. This particular monograph not only
reports on control designs for driver-assist systems but is virtually a tutorial and
case-study work on how to use the linear-parameter-variable method. This makes
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the volume doubly welcome in the Advances in Industrial Control monograph
series being both applications- and technique-oriented. The readership for this
monograph will not only encompass the specialist engineer in automotive engi-
neering but will undoubtedly include the broader control engineering community.

Michael J. Grimble
Michael A. Johnson

Industrial Control Centre
University of Strathclyde
Glasgow Scotland, UK
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Chapter 1
Introduction

Driver Assistance Systems

Active driver assistance systems are able to assist the driver in enhancing passenger
comfort, road holding, the efficiency and safety of transport, etc. At the same time
the responsibility remains with the driver, since the driver is able to override the
assistance. The demand for vehicle control methodologies that include the driver,
the vehicle and the road arises at several research centers and automotive suppliers.

The book focuses on active driver assistance systems, which influence the dynam-
ics of the vehicle. On the level of the individual vehicle components the control prob-
lem is formulated and solved by a unified modeling and design method provided by
the linear parameter varying (LPV) framework. The requested global behavior is
achieved by a judicious interplay between the individual components guaranteed by
an integrated control mechanism. The integrated control problem is also formalized
and solved in the LPV framework.

The main contributions of the book include

• application of the LPV paradigm in the modeling and control design methodology,
• application of the robust LPV design as a unified framework for setting control
tasks related to active driver assistance,

• formulation and solution proposals for the integrated vehicle control problem,
• proposal for a reconfigurable and fault-tolerant control architecture.

Design Tools

Modeling and control ofmechanical systems forman important class of nonlinear and
linear systems, which have widespread application in science and industry. There are
three approaches to describe the equation of motion for mechanical systems: New-
tonian, Lagrangian, and Hamiltonian mechanics. Newtonian mechanics is used for
simple mechanical systems because it is an intuitive and non-systematic method. By
contrast, Lagrangian and Hamiltonian mechanics are used for complex multi-body
mechanical systems because they are systematic approaches. A mechanical system

© Springer International Publishing Switzerland 2017
P. Gáspár et al., Robust Control Design for Active Driver Assistance Systems,
Advances in Industrial Control, DOI 10.1007/978-3-319-46126-7_1
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2 1 Introduction

is usually nonlinear in nature. Since the problem formulation of the output-feedback
nonlinear control problemusually results in highly nonlinear partial differential equa-
tions and in a large number of theoretical and practical difficulties, it is difficult to
solve in practice.

In modern control design, the approximation of nonlinear models with linear
models is often based on a quasi LPV (qLPV) description. This approach is based
on the possibility of rewriting the plant in a form in which nonlinear terms can
be hidden by using suitably defined scheduling variables. For a successful analysis
and design, it is crucial to obtain a model that captures the essential behaviors of
the system under consideration. An advantage of qLPV models is that in the entire
operational interval nonlinear systems can be defined while a well-developed linear
system theory to analyze and design nonlinear control system can be used.

The purpose of modeling is control design, thus the model of the systems must be
augmented with performance specifications and model uncertainties. Performance
signals show the quantitative behavior of the controlled system, i.e., control systems
are designed to maintain the system outputs at a desired value. In control systems
usually a great number of predefined performance specifications must be formal-
ized, e.g., passenger comfort, road holding, suspension deflection, tire load variation,
energy consumption. The purpose of the control system is to guarantee the perfor-
mance specifications. However, one of the properties might only be improved to the
detriment of other properties, i.e., if one of the performance properties is enhanced
at the same time another performance is usually degraded or hurt. For example, the
performance demands of improving passenger comfort and road holding are in con-
flict. The conflict between different performance demands must be resolved in such
a way that a balance between performances is achieved.

Uncertainties of themodel are caused by neglected components, unknownor little-
known parameters. The uncertainties are modeled by both unmodeled dynamics and
parametric uncertainties. In the vehicle model there are unknown parameters which
vary in normal operation both in a short time period, e.g., mass, and in a long time
period, abrasion. The estimation of the uncertain interval around its nominal value
is important in the control design. If the uncertain interval is selected too large, the
designed controller will be conservative. In this case the controller is designed in
such a way that it will guarantee performances even in extreme conditions that do
not occur. The unmodeled dynamics must be reduced by using a more appropriate
estimation of the difference between the model and the actual plant. If parametric
uncertainties of mechanical components are known, the uncertainties for unmodeled
dynamics can also be reduced.

Weighting functions are applied to the performance signals to meet performance
specifications and guarantee a trade-off between performances. The uncertainties are
modeled by both unmodeled dynamics and parametric uncertainties. As a result of
this construction, a linear fractional transformation (LFT) interconnection structure,
which is the basis of control design, is achieved.

In model-based controller synthesis, a model describing the physical system is
used to determine the controller such that the specifications on the closed-loop sys-
tem are satisfied. However, the model used in the controller synthesis is just an



1 Introduction 3

approximation of the dynamics of the real physical system. In addition, there is
always a presence of disturbances and measurement noises, which enter the system
in an unpredictable way. The purpose of robust control methods is to design con-
trollers with model uncertainties and disturbances, and at the same time they must
satisfy the closed-loop system specifications.

Several control design methods have been proposed for linear or linearized mod-
els. In practice, the control design problem usually requires several control design
methods, and the selection of the appropriate controller is carried out in the imple-
mentation phase. The robust control design methods which are usually applied fit in
the so-called H∞ and the H∞/µ framework.

It is apparent that there is a great amount of analogy between classical adaptive
schemes and the qLPV design philosophy. The parameters that are estimated during
operational time and which are used to tune the actual controller in an adaptive
scheme play the same role as the scheduling variables in the qLPV context. From
this latter perspective the difference is in the acquisition of the scheduling variable,
i.e., in the adaptive case the values of the scheduling variable are not directly available
by measurement and need to be obtained by a specific estimation process based on
the directly available data. This observation leads us to propose a unified view of
both control design strategies cast in the qLPV design framework by extending the
set of scheduling variables with parameters that might not be directly measured but
estimated using a suitably designed procedure.

One of the advantages of the proposed general qLPV framework, i.e., a robust
adaptive control scheme using dynamic output feedback based on an LPV method-
ology, is that besides the introduction of the (parametric) model uncertainties in the
design the LPV method also makes it possible to consider the unknown parame-
ter variation rate, providing a framework to answer the long-standing question of
whether or not the adaptation is limited fundamentally to slowly varying systems.

The solution to the LPV control synthesis problem is formulated as a parameter
dependent linear matrix inequality (LMI) optimization problem, i.e., a convex prob-
lem for which efficient optimization techniques are available. This control structure
is applicable whenever the value of the parameter is available in real-time. The result-
ing controller is time varying and smoothly scheduled by the values of the scheduling
variables. Therefore qLPV models with LMIs, as the main design tool, seem to be
the most efficient approach to achieve robust and non-conservative results. The LMI
constraint set for qLPV problems is convex, however, it is usually not easily dealt
with, since it represents an infinite number of conditions. One way to overcome this
difficulty is to approximate the exact set by a tractable one. By choosing appropriate
inner/outer approximations one may develop computable lower/upper bounds for
certain performances, e.g., stability margins.

This basic setting for the controller synthesis can be varied depending on the
problem at hand and the actual demands. The information on the change rate of the
measured scheduling variables can also be introduced in the design.

A practically relevant control design task contains nonlinear components, e.g.,
the dynamics of the dampers and springs and nonlinear actuator dynamics. In order
to handle the high complexity of the problem the design of a two-level controller is
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proposed in the integrated control framework. The required control force is computed
by applying a high-level controller, which is designed using a LPV method. For the
control design, the model is augmented with weighting functions specified by the
performance demands and the uncertainty assumptions. The actuator generating the
necessary control force is modeled as a nonlinear system for which a low-level force-
tracking controller is designed. The proposed separation layers describe the intuitive
structure of the different subsystems, i.e., the chassis and the actuators while keeping
the complexity of the resulting control problems within reasonable bounds.

Each of the individual models is formulated in the LPV framework and contains
the performance specifications and typical uncertainties. Thus, the primary models
are augmented with the corresponding—preferably LPV—weights, which leads to
the unified generalized plant structure, which is the starting point of the robust control
design.

Integration of Vehicle Systems

Two different actuators might be able to influence the same vehicle dynamics. Thus,
the role of the integrated vehicle control is to coordinate the local components and
handle the interactions between them. Since the performance specifications of local
controllers are often in conflict, they must also guarantee a balance or trade-off
between them. This trade-off is formulated on the level of local controllers as a
result of engineering knowledge. However, when an event occurs, the preferences,
i.e., the trade-off levels, are subject to change.

The term configuration refers to a well-defined sensor and actuator set that is
associated with a given functionality. Control reconfiguration is motivated by the
following requirements: the achieved control performance in certain scenarios must
be improved and increased reliability in the presence of sensor or actuator faults
must be achieved. The term event is related to the occurrence of such a scenario. In
a normal situation a baseline configuration is formed by a single local component,
e.g., steering, otherwise it is composed of several local components that can cause
the same functional behavior, e.g., steering and brake for generating yaw moment.
The hierarchy of the configurations and corresponding scheduling variables ensure
that the additional actuator(s) considered improve the stability properties of the given
functionality.

The specification of the configuration sets and that of the corresponding recon-
figuration policy are cornerstones of the proposed method and it may be a highly
nontrivial task requiring considerable engineering knowledge. However, the analy-
sis of the configurations, events, and possible reconfigurations is necessary for any
reconfiguring control strategy.

The control solutions create a balance between driving (or road holding) and
comfort and guarantee safety all the time. This balance often leads to compromises
between vehicle functions, which may not be suitable for all the drivers. For example
a driver who wants to minimize the length of the trajectory in the bend selects the
curvature radius as small as possible, while the driver who requires comfort selects a
larger curvature radius.At the same time, however, the selection of different curvature
radiuses also corresponds to the possible speed selection, e.g., the larger radius allows
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the driver to select larger speed. The control solutions in practice are based on the
drivers’ behavior, which is learnt by the system during the journey. The driver input
is not only a function of the planned trajectory but it also affects the dynamics of the
vehicle.

Consequently, a driver model must be combined with the vehicle model in order
that the driver behaviors and requirements are incorporated in the design of the
control system. In the driver assistance system the interaction between the vehicle
and the driver is taken into consideration.

The main chapter of this part offers a detailed presentation of the integrated con-
trol framework. An integrated control system is designed in such a way that the
effects of a control system on other control functions are taken into consideration in
the design process by selecting the various performance specifications. In order to
impose performance requirements, a tight coupling among the elements of the inte-
grated structure is needed, which is realized through a set of well-defined additional
monitoring signals.

The plant can be considered as a core system which communicates with the
environment through different peripheral components, while the controller is a pro-
gram that executes a given task on the core system function of the available set of
peripheries. In this respect, there is an analogy between a modern computer with
its operating system and application programs and which is equipped with a set of
peripheries. An important point here is that the actual peripheral subsystem plugged
into this architecture can fulfill its intended task and the applications can use it quite
flexiblywithout previous knowledge of the operation systemabout the internal details
of the specific subsystem. The only constraint is that the information flow between
these components should respect some well-defined protocols. This plug-and-play
paradigm has been proven to be very fruitful in computer science and is considered
to be a model that can be applied to the design of control systems as well.

In the context of control systems a plug-and-play control architecture provides the
possibility to use sensors and actuators supplied by different vendors interchangeably
on a system by guaranteeing a performance level and leaving the global controller
intact. If a new control component is added, an old control is replaced by a new one,
or an old component is removed, the structure of the system (or the control) changes.
In these cases, the conventional control should be redesigned, which is expensive
and takes a long time. In the integrated concept the control logic must be modified
on the highest level.

Once the local controllers have been designed it is possible to perform an analysis
step in the robust control on a global level to prove both global stability and perfor-
mance. The presence of competing multiobjective criteria makes the applicability of
the global approach difficult. It is a great challenge for research since the proof of
global performance leads to a highly computation-intensive procedure. Although the
analysis of global stability is an intensively researched area there are only few theo-
retical results. Moreover, although the analysis is fundamental in terms of distributed
control, it is a fully open research field.

The advantage of the integrated control is to provide reconfigurable and fault-
tolerant structures. If a performance degradation or fault occurs in the system and it
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has been detected, the role of the degraded controller may be substituted by another
controller. The fault-tolerant local controllers also require components formonitoring
fault information. Faults in the operation of an actuator can be usually detected by
using a built-in self-diagnostic method. In this case, fault information is sent by the
actuator itself to the supervisor. Any reconfiguration scheme relies on a suitable fault
detection and isolation (FDI) component.

The basic objective of a fault detection methodology applied to dynamic systems
is to provide techniques for the detection and isolation of failed components. Using a
mathematical model of the system it is possible to exploit the principle of analytical
redundancy, which allows to check discrepancies between the real behavior of the
system and its idealized mathematical description or model. Model-based FDI relies
on analytical redundancy to generate fault indicators, called residuals.

There are many analytical redundancy methods for linear and nonlinear systems
available in the literature.While recent nonlinear approaches are useful for the analy-
sis, and partly in the design of detection filters, they are largely incapable of solving
synthesis problems because of the computational burden they usually pose to the
implementation.

As a high-level approach, the FDI filter design problem can often be cast in the
model matching framework. To achieve robustness in the presence of disturbances
and uncertainty, multiobjective optimization-based FDI schemes can be proposed
where an appropriately selected performance index must be chosen to enhance sen-
sitivity to the faults and to simultaneously attenuate disturbances.

This is a typical worst-case filtering problem and the corresponding design crite-
ria can be formulated as a convex optimization problem by using LMIs. The main
problem here is that the sensitivity and robustness conditions are in conflict. In the
linear time invariant (LTI) framework, it means that sensitivity to faults and insensi-
tivity to unknown inputs cannot be achieved simultaneously at the same frequencies.
Faults having similar frequency characteristics to those of disturbances might go
undetected. While the design problem is nonconvex, in general, a scheme that can
handle the problem by using LMI techniques is presented.

Structure of the Book

Thebook includes three parts and appendix.Thefirst part focuses on themodeling and
control of LPV systems. InChap.2, the construction of the LPVmodel of the physical
system and the linearization methods are presented. Two examples are presented,
i.e., the LPV modeling of the vertical dynamics and that of the yaw–roll dynamics.
Since the parameters of the LPV models usually are not necessarily known, a gray-
box identification method is applied. In Chap.3 the model is augmented with the
performance specifications and uncertainties in order to form a control-oriented LPV
model. Both constant Lyapunov function and parameter varying Lyapunov functions
are applied for stability and L2 performance. Finally, they are extended to LPV
systems when the measured varying parameters do not exactly fit the real one. The
theoretical part is extended by several important components in the Appendix.

In the second part of the book, the control methods for both vertical and longitudi-
nal vehicle dynamics are presented. In Chap.4 both the linearH∞ methods and LPV

http://dx.doi.org/10.1007/978-3-319-46126-7_2
http://dx.doi.org/10.1007/978-3-319-46126-7_3
http://dx.doi.org/10.1007/978-3-319-46126-7_4
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methods are applied for the control design. This chapter also presents the hierarchical
structure of the control design. The high-level control focuses on the performance
specifications and calculates a required control signal. The required signal is tracked
by a low-level controller by setting the actuator dynamics. In Chap. 5, active anti-roll
bars are applied for preventing the rolling over. It is combined with the active brake
in order to improve the efficiency of the LPV control design method. Moreover, this
combination guarantees the fault-tolerant operation of the control system. In Chap. 6,
a classical control problem is presented, i.e., the adaptive cruise control in the lon-
gitudinal dynamics. In the robust control design both the driving and the braking
systems are combined. The control algorithm is implemented in a SIL environment.
An extension of the adaptive cruise control is the speed design in which several road
and traffic conditions must be taken into consideration in order to reduce the control
energy and keep the time requirement.

In the third part of the book, the control systems focus on the lateral dynamics.
Since the control systemsmayaffect the samevehicle dynamics, their operationsmust
be integrated. An integrated control system is designed in such a way that the effects
of a control system on other vehicle functions are taken into consideration in the
design process by selecting the various performance specifications. The principles
of the design methods are presented in Chap.7. In this chapter, the operation of
the integrated control is presented through trajectory tracking as a driver assistance
system. In the integrated control three control components are applied simultaneously
such as the brake, the steering and the suspension systems. Concerning the lateral
vehicle dynamics the variable-geometry suspension system plays an important role.
In Chap.8, the modeling and control of the variable-geometry suspension system
is presented. Moreover, the integration of the construction and the control design is
also presented. In Chap.9, the control design of the in-wheel motors for a trajectory
tracking problem is presented. It leads also a hierarchical control, in which the retired
longitudinal force and the yaw moment are calculated in the high-level while the
torques of the in-wheel motors are designed in the low level. In Chap.10, the drivers’
behavior is analyzed. In the control design a simplified driver model is combined
with the control-oriented vehicle model.

In the Appendix, further components of the modeling and robust control of LPV
systems are included. The modeling part presents the basic terms of the analysis,
the identifiability, the adaptive observers and the geometric approach of the FDI
design. The robust control presents the structured uncertainty, the components of the
nonlinear H∞ methods and the LFT-based qLPV design.

http://dx.doi.org/10.1007/978-3-319-46126-7_5
http://dx.doi.org/10.1007/978-3-319-46126-7_6
http://dx.doi.org/10.1007/978-3-319-46126-7_7
http://dx.doi.org/10.1007/978-3-319-46126-7_8
http://dx.doi.org/10.1007/978-3-319-46126-7_9
http://dx.doi.org/10.1007/978-3-319-46126-7_10
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Chapter 2
Modeling of LPV Systems

Introduction

In general terms, control theory can be described as the study of how to design the
process of influencing the behavior of a physical system to achieve a desired goal.
An open-loop control is one in which the control input is not affected in any way
by the actual (measured) outputs. If the system changes during the operational time
then the control performance can be severely reduced. In a closed-loop system the
control input is affected by the measured outputs, i.e., a feedback is being applied
to that system. Very often a reference input is given, which is directly related to the
desired value of system outputs, and the purpose of the controller will be to minimize
the error between the actual system output and the desired (reference input) value.

There are two main features in the analysis of a control system: system modeling,
which means expressing the physical system under examination in terms of a model
(or models) which can be readily dealt with and understood, and the design stage, in
which a suitable control strategy is both selected and implemented in order to achieve
a desired system performance. Forming a mathematical model which represents the
characteristics of a physical system is crucially important as far as the further analysis
of that system is concerned.

Traditionally controllability and observability are the main issues in the analysis
of a system before deciding the best control strategy to be applied, or whether it is
possible to control or stabilize the system. Controllability is related to the possibility
of forcing the system into a particular state by applying an appropriate control signal
while observability is related to the possibility of reconstructing, through output
measurements, the state of a system.

The model should not be over simple so that important properties of the system
are not included, something that would lead to an incorrect analysis or an inadequate
controller design. In some cases the nonlinear characteristics are so important that
they must be dealt with directly, and this can be quite a complex procedure.

© Springer International Publishing Switzerland 2017
P. Gáspár et al., Robust Control Design for Active Driver Assistance Systems,
Advances in Industrial Control, DOI 10.1007/978-3-319-46126-7_2
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Gain-scheduling is a technique widely used to control such systems in a variety
of engineering applications. In the classical gain scheduling approach, having strong
roots in flight control applications, the controller synthesis is based on local descrip-
tions of the nonlinear system, that can most often be approximated by linear system
properties. The gains of the gain-scheduled controllers are typically chosen using
linear control design techniques and is a two step process. First, several operating
points are selected to cover the range of system dynamics. At each of these points,
the designer makes an LTI approximation to the plant and then, designs a linear com-
pensator for each linearized plant. This process gives a set of linear feedback control
laws that perform satisfactorily when the closed-loop system is operated near the
respective operating points. A global nonlinear controller for the nonlinear system
is then obtained by interpolating, or scheduling, the gains from the local operating
point designs.

Since the synthesized controllers are guaranteed to satisfy specifications only
locally, the designer typically cannot assess a priori the stability, robustness, and
performance properties of gain-scheduled controller designs. While the local con-
troller synthesis can be performed using the well established techniques of the linear
system theory, it remains a non-trivial procedure to map the linear controllers such
that non-local specifications of the closed loop system are kept.

The LPV paradigm provides a remedy to this problem, Shamma and Athans
(1990), Shamma (1992). Initiated in Shamma and Athans (1991) LPV modeling
techniques have gained a lot of interest, especially those related to vehicle and
aerospace control, Becker and Packard (1994), Balas et al. (1997), Marcos and Balas
(2001), Szászi et al. (2005). LPV systems have recently become popular as they pro-
vide a systematic means of computing gain-scheduled controllers. In this framework
the system dynamics are written as a linear state-space model with the coefficient
matrices functions of external scheduling variables. Assuming that these scheduling
variables remain in some given range then analytical results can guarantee the level
of closed loop performance and robustness. The parameters are not uncertain and
can often be measured in real-time during system operation. However, it is gener-
ally assumed that the parameters vary slowly in comparison to the dynamics of the
system. LPV based gain-scheduling approaches are replacing ad-hoc techniques and
are becoming widely used in control design.

Many of the control system design techniques using LPV models can be cast or
recast as convex problems that involve LMIs. Significant progress has been made
recently in the use of LMI and H∞ optimization in gain-scheduled control. One
such control design technique, described by Apkarian et al. (1995), is the Lyapunov
function/quadratic H∞ approach wherein a single Lyapunov function is sought to
bound the performance of the LPV system. Such a framework generally has a strong
form of robust stability with respect to time-varying parameters. However, due to the
continuous variation of scheduling parameters,such a synthesis approach is generally
associated with a convex feasibility problem with infinite constraints imposed on the
LMI formulation. This problem can be addressed by using affine LPV modeling that
reduces the infinite constraints imposed on the LMI formation to a finite number.
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Such a modeling approach has been used to solve design problems by Becker (1992),
Sun and Postlethwaite (1998).

The above pure LPV model is not quite matched to the control problems where
the scheduling variables are in fact system states (e.g., vehicle speed), rather than
bounded external variables. An approach to this problem is to generate so-called
quasi-LPV models, which are applicable when the scheduling variables are measured
states, the dynamics are linear in the inputs and other states, and there exist inputs to
regulate the scheduling variables to arbitrary equilibrium values.

These methods concentrate on robust performance, hence, robust stability of the
controlled system. In this more general context such robust control problems—both
analysis and synthesis—can be formulated using a generalized plant technique based
on an LFT description of the uncertain LPV system, see, e.g., Iwasaki and Hara
(1998), Iwasaki and Shibata (2001), Wu (2001). The controller synthesis leads to
bilinear matrix inequalities (BMI) but often it is possible to reduce the problem to
the solution of a finite set of LMIs, for details see, e.g., Scherer et al. (1997), Scherer
(2001), Wu (2001).

2.1 LPV Model Structures

The mathematical model of a dynamic evolution of a nonlinear, non-autonomous
physical system is usually formulated as a state space representation in terms of the
input u(t) ∈ R

m , output y(t) ∈ R
p and state signals x(t) ∈ R

n related by a first-order
differential equation:

ẋ = f (x, u, w), (2.1)

y = h(x, u, w), (2.2)

subject to the initial condition x(t0) = x0. Usually the model also describes the effect
of the outer disturbances, which are modeled through the signal w(t) ∈ R

d . In what
follows for the sake of simplicity we concentrate on the undisturbed system, i.e., w

will be suppressed from the model.
According to the LPV paradigm, parameter-dependent systems are linear systems,

whose state-space descriptions are known functions of time-varying parameters.
While the time variation of each of the parameters is not known in advance, it is
assumed to be measurable in real time. Thus, in the LPV controller synthesis step
the parameters are regarded as freely varying parameters taking arbitrary values in
the region Ω and, hence, the LPV description will differ from the nonlinear system.
The larger this difference, the more conservatism is introduced in the LPV controller
synthesis step. LPV descriptions of nonlinear systems are not unique: it is desirable
to have an LPV description that in some sense is close to the nonlinear system for
all parameter values.
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Thus, the aim of the LPV modeling procedure is to find an LPV description of
the nonlinear model on the form

ẋ = A(ρ)x + B(ρ)u � f (x, u), ρ ∈ Ω (2.3)

y = C(ρ)x + D(ρ)u � h(x, u), (2.4)

where ρ is the, possibly state dependent, parameter vector varying within a region
Ω , such that the known relation ρ = σ(y, r) depends only on the measured signals
y and exogenous signals r whose values are known in operational time.

This guarantees that the parameter values are available to the controller and that
an explicit nonlinear feedback controller can be obtained from the designed LPV
controller. In order to ensure that trajectories of the original nonlinear system are
equal or at least closed to the trajectories of the LPV description, (2.3) should be as
close to the nonlinear system as possible for all parameter values in the region Ω .

Hence, an LPV model is defined as a linear model whose state-space matrices
depend on a vector ρ of time-varying parameters of the form

ẋ = A(ρ)x + B(ρ)u, (2.5)

y = C(ρ)x + D(ρ)u, (2.6)

where it is often suppose that the parameter dependency has an explicit structure:
namely either affine, polynomial, polytopic or an LFT dependency. Accordingly, if

S(ρ) =
n∑

i=0

∑

| j |=i

ρ j Si, j , (2.7)

where ρ j = ρ
j1
1 ρ

j2
2 · · · ρ jk

k with ρl are the components of the parameter vector ρ,
| j | = ∑k

l=1 ik and

S ∼
(
A B
C D

)
, Si, j ∼

(
Ai, j Bi, j

Ci, j Di, j

)
,

then n = 1 corresponds to the affine models. Affine models are mostly involved in
applications where geometric techniques are to be used.

For polytopic LPV models the system matrix S(ρ) varies within a fixed polytope
of matrices: it is a convex combination S(ρ) ∈ convex{ S1, S2, . . . , Sk } of the system
matrices (vertex systems), i.e.,

S(ρ) =
k∑

i=1

ρi Si , ρi ≥ 0,

k∑

i=1

ρi = 1. (2.8)
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Fig. 2.1 Lower and upper
LFT representations

Since polytopic models are well suited for Lyapunov-based analysis and design, they
are very popular model candidates in the LPV framework.

A more general representation is the LFT, see Fig. 2.1. LFT is a representation of
a system using a feedback interconnection between two operators, a known causal
system

M =
(
M11 M12

M21 M22

)

and a causal bounded system Δ of proper dimension:

FL(M,Δ) =M11 + M12Δ(I − ΔM22)
−1M21 (2.9)

FU (M,Δ) =M22 + M21Δ(I − ΔM11)
−1M12 (2.10)

Δ is typically norm-bounded, ||Δ||∞ ≤ 1, but otherwise unrestricted in form
(structured/un-structured) or type (nonlinear/time-varying/constant). If some of the
components in the Δ operator are scheduling parameters an LPV system is obtained.
This form is obtained by extracting a varying parameter from a system and placing it
into a feedback loop, such that the remaining system, M , is time-invariant. Models
with affine or polynomial parameter dependencies can be transformed exactly to a
LFT. An important property of LFT systems is that their interconnection (e.g., sum,
concatenation) and also the inversion, if it exists, always results in another LFT.

We emphasize that an LPV plant can be viewed either as an LTI plant subject to a
time-varying parametric uncertainty ρ(t), see, e.g., the LFT LPV structure or as a set
of models of linear time-varying (LTV) plants, where each LTV system corresponds
to a specific parameter trajectory. In the analysis and design process we chose the
most convenient interpretation that fit the actual technique that we might use.

2.2 Linearization Through LPV Modeling

Practically, concerning the structure of the models, prior to the design and analysis
phase there is no significant difference between LPV models and those used for gain
scheduling. All of them can be obtained by using different, application specific,
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methods. The direct linearization schemes applied to nonlinear systems can be
roughly classified into the following types: linearization about an equilibrium, lin-
earization about a parametrized state trajectory and global linearization. In the first
case the system is represented as an LTI system locally around an equilibrium condi-
tion, while in the second approach the nonlinear system is to follow some prescribed
trajectory around that it can be approximated by a family of parametrized lineariza-
tions. In the third case the original nonlinear system is approximated by a set of
trajectories of a linear differential inclusion (LDI) which can represent it in the entire
operation range. However, in this case there might be trajectories of the LPV model
that are not actual trajectories of the original system. This might lead to a conservative
analysis or design.

In what follows some of the most common techniques, e.g., classical, fuzzy and
the off-equilibrium approaches, see, e.g., Leith and Leithead (2000), will be sketched.

2.2.1 Jacobian Linearization

Often in industrial settings, a finite collection of linear models is used to describe
the behavior of a system throughout an operating envelope. The linearized models
describe the small signal behavior of the system at a specific operating point and the
collection is parametrized by one or more physical variables whose values represent
this specific point. If the state variables have physical meaning, then it makes sense to
develop polynomial least squares fits of the state-space matrices to get a continuous
parameterization of the operating envelope.

The classical approach, using Jacobian linearization of the nonlinear model about
a manifold of constant equilibria, constant operating points or set-points, is called
linearization-based scheduling. When a corresponding scheduling variable ρ is cho-
sen appropriately to parameterize the set of linear models, a parameterized family of
linearized models representing the original nonlinear model results.

Considering the nonlinear plant dynamics an equilibrium or constant operating
point (xe, ue) is defined by the equilibrium condition f (xe, ue) = 0. Assuming f is
continuously differentiable at the equilibrium point, the nonlinear model is approx-
imated by

δ ẋ = Aδx + Bδu (2.11)

δy = Cδx + Dδu, (2.12)

where

δu = u − ũ, δy = y − ỹ, δx = x − x̃,

and

A = ∂x f (xe, ue), B = ∂u f (xe, ue), C = ∂xh(xe, ue), D = ∂uh(xe, ue).
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By considering an entire equilibrium family (xe, ue) ∈ Ωe yields to a linear
parameter-dependent linearization family S(ρe), locally describing the nonlinear
model:

δ ẋ = A(ρe)δx + B(ρe)δu

δy = C(ρe)δx + D(ρe)δu.

To obtain an LPV description for a nonlinear model, an interpolation of the sta-
tionary linearizations can be applied: e.g., by using a linear interpolation then system
can be written as

δ ẋ(t) = A(ρ)δx(t) + B(ρ)δu(t)

with

A(ρ) =
p∑

i=1

Aiρi , B(ρ) =
p∑

i=1

Biρi ,C(ρ) =
p∑

i=1

Ciρi , D(ρ) =
p∑

i=1

Diρi ,

(2.13)

where

k∑

i=1

ρi = 1, ρi ≥ 0, δx = x − xe(ρ) , δu = u − ue(ρ)

the points (xie, u
i
e) ∈ Ωe being stationary. The procedure, however, may give an LPV

system that does not include the original nonlinear system. But if the stationary points
can be chosen such that

{(∂ f x (x, u), ∂ f u(x, u))} ⊂ convex{(∂ f x (xie, uie), ∂ f u(xie, uie))}

then the LPV description (2.13) will include the nonlinear system.
A typical choice for Ωe is to take a a specific trajectory (x̃, ũ, ỹ), i.e., to perform

the linearization of the nonlinear system (2.2) around a trajectory:

δ ẋ = ∂x f (x̃, ũ)δx + ∂u f (x̃, ũ)δu,

δy = ∂xh(x̃, ũ)δx + ∂uh(x̃, ũ)δu,

where

δu = u − ũ, δy = y − ỹ, δx = x − x̃ .
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By taking the parameters of the specific trajectory (flight envelop) as measurable
scheduling variables, the desired LPV model will be of the form

ξ̇ = A(ρ)ξ + B(ρ)δu

δy = C(ρ)ξ + D(ρ)δu.

A parameterized family of linearized models resulting from linearization-based
scheduling or a number of black-box point-designs are only locally valid. In case an
LPV model is based on such a set of linearized models, the accuracy of the resulting
linear parameter-dependent model with respect to the original nonlinear model or
plant is unknown. Classical gain scheduling is mainly restricted to local controller
synthesis in stationary points. Even though nonlinear systems can be linearized along
a trajectory, no gain scheduling approaches available in the literature that extends
the stability region using a family of linearizations along different trajectories.

2.2.2 Off-Equilibrium Linearization

A disadvantage of classical linearization-based scheduling is the restriction to
equilibrium-point modeling. Using the so-called velocity-based or off-equilibrium
linearizations it is possible to enable linearization at every operating point: consid-
ering the nonlinear system

ẋ = f (x, u), y = h(x, u),

the velocity linearization at a point (x0, u0) reads as

ẋ = ζ

ζ̇ = ∂ f x |(x0,u0)ζ + ∂ f u |(x0,u0)u̇

ẏ = ∂hx |(x0,u0)ζ + ∂hu |(x0,u0)u̇.

In this way there is a velocity-based linearization associated with every operating
point of the original nonlinear system and the solutions may be pieced together.
Thus, the resulting velocity-based linearization family, parameterized by ρ, globally
approximates the trajectories of the nonlinear model to an arbitrary degree of accu-
racy. The velocity linearization is not limited to equilibrium points: as no restriction
to equilibrium operating points is present, linear approximation of transient dynamics
and operating points far from equilibrium operating points is also enabled.

Interpolation of linear controller based on velocity linearizations can be performed
in a similar way to classical gain scheduling. However, since the velocity linearization
is not an approximation in the same sense as a standard linearization scheme, it is
easier to interpolate linearizations in a way such that the nonlinear system is included
in the LPV description.
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2.2.3 Fuzzy Linearization

One approach to gain scheduling, and thus, to LPV modeling, uses ideas from fuzzy
systems, see Takagi and Sugeno (1985) to describe the nonlinear system: the plant
dynamics is formulated as a blended multiple model representation such as a Takagi-
Sugeno model or local model network of the form

ẋ =
∑

i

fi (x, u)μi (φ),

y =
∑

i

hi (x, u)μi (φ)

where the function φ(x, u) is the scheduling variable and the scalar blending weights
μi ≥ 0 often are normalized to

∑
i μi = 1.

After a linearization and blending of the individual components the typical form
of the LPV model will be of the form:

(
ẋ
y

)
= S(ρ)

(
x
u

)
, (2.14)

with

S(ρ) = S0 +
∑

i∈I
ρi Si , (2.15)

where ρi will be the scheduling variables of the model.

2.2.4 qLPV Linearization

Quasi-LPV scheduling tries to overcome the general shortcomings of classical lin-
earization schemes regarding local validity of the resulting model: the idea is to trans-
form the nonlinear model to an LPV form hiding the nonlinear terms by including
them in the scheduling variable. Since this process involves a transformation rather
than a linearization, the resulting LPV model exactly equals the original nonlinear
model.

A qLPV model may arise by considering state transformations on a class of
nonlinear systems of the form:

ẋ1 = f1(x1) + A11(x1)x1 + A12(x1)x2 + B1(x1)u,

ẋ2 = f2(x1) + A21(x1)x1 + A22(x1)x2 + B2(x1)u,

y = x1.
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Assuming that there exist differentiable functions xeq2 and ueq such that for every x1

0 = f1(x1) + A11(x1)x1 + A12(x1)x
eq
2 + B1(x1)u

eq ,

0 = f2(x1) + A21(x1)x1 + A22(x1)x
eq
2 + B2(x1)u

eq

is satisfied, then by applying the following state and input transformation:

ξ1 = x1, ξ2 = x2 − xeq2 ν = u − ueq ,

Ã22(ξ1) = A22(ξ1) − dxeq2

dx1
|ξ1 A12(ξ1) B̃2(ξ1) = B2(ξ1) − dxeq2

dx1
|ξ1 B1(ξ1)

one obtains the qLPV system

ξ̇1 = Ã12(ξ1)ξ2 + B̃1(ξ1)ν, (2.16)

ξ̇2 = Ã22(ξ1)ξ2 + B̃2(ξ1)ν, (2.17)

y = ξ1. (2.18)

While the system representation in (2.16)–(2.18) has a linearized appearance, it
is not equivalent to a Jacobian linearization about an operating point still exactly
represents the original nonlinear system. The representation is called qLPV since the
exogenous parameter ξ1 is actually a state.

If the system also depends on an exogenous parameter p, the final qLPV system
will be of the form

ξ̇1 = Ã12(ξ1, p)ξ2 + B̃1(ξ1, p)ν, (2.19)

ξ̇2 = Ã22(ξ1, p)ξ2 + B̃2(ξ1, p)ν + E2(ξ1, p) ṗ, (2.20)

y = ξ1, (2.21)

where E2(ξ1, p) = − dxeq2
dp |ξ1 . If no reliable measurement is available for the signal

ṗ, then it can be treated as a disturbance signal which must be rejected.
In many cases it is possible to find a qLPV description of a nonlinear system

more directly by hiding the nonlinearity in the parameter. As a trivial example let the
nonlinear system be ẋ = − sin(x) + u. This system can be represented by the qLPV
system ẋ = −ρx with ρ = sin(x)/x . Moreover, the resulting qLPV system exactly
matches the original nonlinear system globally, provided the state x is measured.
The same idea can be applied to obtain local models: e.g., take the nonlinear system
ẋ = −x3 + u, that can be described by the qLPV system ẋ = −ρx + u, with the
parameter satisfying 0 ≤ ρ ≤ M . Clearly, the qLPV model become equal to the
original one when ρ = x2. In practice it is more likely to obtain local models, as in
the combination of these cases: consider the nonlinear plant
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ẋ1 = sin x1 + x2,

ẋ2 = x2
1 x2 + u,

y = x1.

Using ρ1 = sin x1/x1 and ρ2 = x2
1 the qLPV representation of the system is

ẋ = A(ρ)x + Bu,

y = Cx + Du,

with D = 0, C = (
1 0

)
and

A(ρ) =
[
ρ1 1
0 ρ2

]
=

[
0 1
0 0

]
+ ρ1

[
1 0
0 0

]
+ ρ2

[
0 0
0 1

]
, B =

(
0
1

)
.

Concerning the vehicle dynamics models involved in this book in most of the
cases first principle models of the form

J (ρ)ẍ + b(ρ)ẋ + k(ρ)x = T (ρ)u (2.22)

are available, where ρ depends only on measured signals, thus they are natural
candidates to be choses as scheduling variables of a qLPV model. The advantage
of these models are that they are global or they are valid at least on a domain on
which the original first principle model was. A disadvantage might be the possible
conservativity caused by the size of the domain Ω which ρ is supposed to belong
when it turns to use the model for analysis or design.

We conclude this section by presenting a source of the LPV/qLPV models that is
also of central importance concerning the topic of this book and it is related to the
parameter varying choice of different weighting filters that enter in the formulation
of the control problems.

2.2.5 Non-uniqueness of the LPV Models

An LPV description of a nonlinear system is not unique: as an example consider the
nonlinear plant

ẋ1 = sin x1 + x2,

ẋ2 = x1x2 + u,

y = x .

Using ρ1 = sin x1/x1 and ρ2 = x1 the qLPV representation of the system is described
by the system matrix
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A(ρ) =
[
ρ1 1
0 ρ2

]
=

[
0 1
0 0

]
+ ρ1

[
1 0
0 0

]
+ ρ2

[
0 0
0 1

]
,

while the choice ρ1 = sin x1/x1 and ρ2 = x1 leads to

A(ρ) =
[
ρ1 1
ρ2 0

]
=

[
0 1
0 0

]
+ ρ1

[
1 0
0 0

]
+ ρ2

[
0 0
1 0

]
,

Different LPV descriptions of same nonlinear system may affect essential prop-
erties, such as controllability, observability and hence stabilizability of the system,
i.e., we have different stability properties when the parameter varies freely without
the connection to the state.

The nonlinear system

ẋ1 = −x1 − x3
1 ,

ẋ2 = −x2 − x2
1 x2

can be either represented by the LPV system

ẋ =
(−1 − ρ 0

0 −1 − ρ

)
x, (2.23)

with ρ = x2
1 , or

ẋ =
(−1 − ρ2

1 + ρ2 −ρ1

ρ2 −1 − ρ2
1 − ρ1

)
x, (2.24)

with ρ1 = x1 and ρ2 = x2. In the first case it is assumed that the parameter ρ is
bounded by 0 ≤ ρ(t) ≤ M , where M is any fixed positive scalar; thus the nonlin-
ear system is included in the domain {x ∈ R

2| − √
M ≤ x1 ≤ √

M}. In the second
case the parameter can be bounded by −M ≤ ρi ≤ M ; thus the nonlinear system is
included in the system in the domain {x ∈ R

2 | − M ≤ xi ≤ M, i = 1, 2}.
These LPV models have different properties: system (2.23) is LTI stable for all

parameter values while the LPV system (2.24) is LTI unstable if ρ1 = 0 and ρ2 > 1.
This fact out-rules constant matrix Lyapunov techniques to analyze stability of the
system.

At this point it is time to recall the main goal of the LPV modeling, namely to
obtain a control oriented model that facilitates the analysis and design process in
the context of the available tools. At the time being these tools premises convexity,
i.e., the convexity of the model set defined by the parameters Ω . Thus, the inherent
non-uniqueness of the LPV modeling can be exploited in order to select those models
that have this property. Moreover, in order to decrease the possible conservativeness
of the design, we prefer the most compact representations.
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Even the parameter set Ω is convex, it is usually not easily dealt with, since rep-
resents an infinity number of conditions. One way to overcome this difficulty is to
approximate the exact set by a tractable one. By choosing appropriate inner/outer
approximations one may develop computable lower/upper bounds for certain perfor-
mances, e.g., stability margins.

As a possible solution, a uniformly and automatically executable tensor product
(TP) model transformation method based based on the recently developed higher
order singular value decomposition (HOSVD) concept has been proposed, see Zabó
et al. (2008, 2010). The so called TP model transformation offers uniform, tractable
and readily executable numerical ways and creative manipulations to generate convex
(polytopic) representations of LPV models upon which LMI-based design techniques
are immediately executable. The result of the TP model transformation is a model that
belongs to the class of polytopic models, where the parameter-dependent weightings
of the vertex systems are one-dimensional functions of the elements of the parameter
vector.

This form offers a relatively simple way to describe various convex hull genera-
tions in terms of matrix operations. The obtained structures are not unique, however
the framework provides an efficient background to introduce a set of rules, heuristics
and algorithms that provide us with a set of candidate model structures on which
further analysis and final model selection can be carried out.

After applying one of the modeling steps sketched in the previous sections one
ends up with a parameter-varying state-space model of the form

(
ẋ(t)
y(t)

)
= S(ρ(t))

(
x(t)
u(t)

)
(2.25)

with the parameter-varying system matrix

S(ρ(t)) =
(
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

)
. (2.26)

The time varying N -dimensional parameter vector ρ(t) ∈ Ω is an element of the
closed hypercube Ω = [a1, b1] × [a2, b2] × · · · × [aN , bN ] ⊂ R

N .
For practical reasons a finite element TP modeling is applied which uses a tensor

defined by the values of S(ρ(t)) on a suitable discretization of Ω (usually a grid),
i.e., a piecewise linear approximation of the multivariate map S(ρ(t)). Based on this
data TP model transformation generates the HOSVD-based canonical form of LPV
models, i.e., (

x(t)
y(t)

)
= (

S ⊗N
n=1 wn(qn(t))

)(x(t)
u(t)

)
. (2.27)

⊗i denotes the i-mode tensor product as defined in Baranyi (2004), Baranyi et al.
(2003).

One of the advantages of this model transformation is that it can be executed uni-
formly (irrespective of whether the model is given in the form of analytical equations
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resulting from physical considerations, or as an outcome of soft computing based
identification techniques such as neural networks or fuzzy logic based methods, or
as a result of a black-box identification), without analytical interaction, within a rea-
sonable amount of time. The obtained structure can be directly used for an LFT type
modeling without any further preprocessing step.

According to defined by the ordering (i1, . . . , iN ) → r in the multi base num-
ber system defined by (I1, I2, . . . , IN ) the weighting functions are denoted by
wr (ρ(t)) = ∏

k wk,ik (ρk(t)) ∈ [0, 1], where wk, j (ρk(t)) ∈ [0, 1] is the j-th one vari-
able weighting function defined on the k-th dimension of Ω , while the corresponding
vertex systems are Sr = Si1,i2,...,iN . Using this index transformation one can write the
model in the typical polytopic form:

S(ρ(t)) =
R∑

r=1

wr (ρ(t))Sr . (2.28)

The convex hull of S(ρ) might not be polytopic, however for design purposes
a finite, polytopic (outer) approximation is needed. Convexity is ensured by the
following conditions:

∀n ∈ [1, N ], i, ρn(t) : wn,i (ρn(t)) ∈ [0, 1]; (2.29)

∀n ∈ [1, N ], ρn(t) :
In∑

i=1

wn,i (ρn(t)) = 1. (2.30)

There are many ways to define the vertex systems and the type of the convex
hull determined by the vertex system can be defined by the weighting functions. The
applications of TP models specifies special requirements for the weighting functions.

Fig. 2.2 Different convex
approximations
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For illustration purposes consider S(ρ) = [ρ − ρ2 2ρ] where ρ ∈ [−3, 3]. In
Fig. 2.2 one can see the system S(ρ) (in blue) while the dotted red lines depicts the
directions given by the HOSVD while in green is depicted the smallest box that
contains the convex hull S̃ of S(ρ). Another convex hull is depicted in magenta, that
corresponds to a TP model.

Often it is a non-trivial task to chose between the different model candidates.
Then an important selection criteria is the solvability property of the design problems
associated to the control tasks at hand.

2.3 Linearization by LFT Techniques

An LFT based model set is widely considered to be the most general representation
adopted in robust controller design. From an analysis point of view the scheduling
variables play the same role as the uncertainties and this fact can be reflected in the
model structure. Both the Jacobian linearization and the LPV approximations lead to a
parameter-dependent family of linear systems. Thus, the parameter dependence in the
LPV system can be represented as an LFT. This representation provides a particular
structure to the LPV system, also known as a P − Θ configuration, whereby the
parameter-varying, uncertain or nonlinear terms are located in the Θ operator and
the LTI part is described by the operator P .

Consider a feedback system, in which both the plant and the controller have a linear
fractional dependence on Θ , see in the left-hand side of Fig. 2.3. In this representation
P and K are known LTI models. The dependence of the plant and the controller are
represented by the blocks Θ with input/output signals eδ, dδ and ẽδ, d̃δ . The block
diagonal time-varying operator specifying the plant dynamics is denoted by

Θ = diag(ρ1 Ir1, ..., ρk Irk), where ri > 1

whenever the parameter ρi is repeated and r = ∑k
i=1 ri .

An LPV plant with a linear fractional dependence on Θ can be represented by the
upper LFT interconnection:

[
z
y

]
= Fu(P,Θ)

[
d
u

]
. (2.31)

The inputs and outputs of the augmented plant P is the following:

⎡

⎣
eδ

z
y

⎤

⎦ =
⎡

⎣
PΘΘ PΘ1 PΘ2

P1Θ P11 P12

P2Θ P21 P22

⎤

⎦

⎡

⎣
dδ

d
u

⎤

⎦ (2.32)
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Fig. 2.3 The LPV control
structure and its transformed
form

Using the relation between dδ and eδ (eδ = Θdδ) the upper LFT interconnection
structure is the following:

Fu(P,Θ) =
[
P1Θ

P2Θ

]
Θ(I − PΘΘΘ)−1

[
PΘ1 PΘ2

] +
[
P11 P12

P21 P22

]
. (2.33)

The feedback relation between u and y is

u = F
(K ,Θ)y. (2.34)

Note that while in most of the cases we use the same block Θ to schedule the plant
and the controller, in general one may use blocks with a different structure. This fact
is reflected in the notation of the Fig. 2.3. For the sake of simplicity in the formulas
we use identical blocks.

The structure of the controller has the following relation:

[
u
ẽδ

]
=

[
K11 K1Θ

KΘ1 KΘΘ

][
y
d̃δ

]
. (2.35)

where the relation between dδ and eδ is eδ = Θdδ . The lower LFT interconnection
structure is the following: F
(K ,Θ) = K1ΘΘ(I − KΘΘΘ)−1KΘ1 + K11.

The closed-loop operator from disturbance d to controlled output z is given by

T (P, K ,Θ) = F
(Fu(P,Θ), F
(K ,Θ)). (2.36)

The LFT structure can be transformed into a modified structure in which all
parameter-dependent components are gathered into a single uncertainty block, see
in the right-hand side of Fig. 2.3. Then the augmented plant is formalized in the
following way:
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⎡

⎢⎢⎢⎢⎣

ẽδ

eδ

z
y
ỹ

⎤

⎥⎥⎥⎥⎦
=

⎡

⎣
0 0 Ir
0 P 0
Ir 0 0

⎤

⎦

⎡

⎢⎢⎢⎢⎣

d̃δ

dδ

d
u
ũ

⎤

⎥⎥⎥⎥⎦
(2.37)

since ỹ = d̃δ and ũ = ẽδ . Here P is formalized using Eq. (2.32).
The closed-loop mapping from exogenous input d to controlled output z is

expressed as

T (P, K ,Θ) = Fu

(
F
(Pa, K ),

[
Θ 0
0 Θ

])
, (2.38)

where Pa is formalized using Eq. (2.37). The original LPV problem can be viewed
as a more classical robust performance problem in the face of the block-repeated
uncertainty structure diag(Θ,Θ). This repeated structure is denoted by Δ ⊕ Δ.

The approximation of the nonlinear system based on LFT structure is also found
in Packard and Wu (1993), Packard (1994), Apkarian and Gahinet (1995).

2.4 Performance-Driven LPV Modeling

In a control design problem a control law has to be designed for a given system
to reach the required performance specifications. The classical approach consists
in building a mathematical model of the plant and this model is augmented with
additional elements that reflect the different performance specifications. In most of
the cases a given performance is modelled by the norm of a suitably selected set
of signals. These signals—the performance signals—are related to the signals of
the core model through some filtering. These filters are referred to as performance
weights.

Recall the basic robust control paradigm: the design starts from a typical intercon-
nection structure shown in Fig. 2.4. The Δm block contains the uncertainties of the
system, such as unmodelled dynamics and parameter uncertainty. In this augmented
plant unmodelled dynamics is represented by a weighting function Wr and a block
Δm . The purpose of the weighting functions Ww and Wn is to reflect the disturbance
and sensor noises.

In this framework performance requirements are imposed to signals z through a
suitable choice of the weighting functions Wp. In contrast to the weights associated to
control inputs and uncertainties, the role of these filters is not only to scale the signals
but also to ensure a desired frequency separation between competing requirements,
see, e.g., tracking and robustness. Thus, the performance weights are usually some
dynamical systems, in a pure LTI setting transfer functions. In what follows we first
list some of the typical control goals and the associated signals that are encountered
in design problems.
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Fig. 2.4 The closed-loop interconnection structure

Yaw stability can be achieved by limiting the effects of the lateral load transfers.
Then, the purpose of the control design is to minimize the lateral acceleration za = ay ,
which can be chosen as a performance signal. Another control task is road tracking,
i.e., to follow the road geometry. The purpose of the control is to minimize the
difference between the yaw rate and the reference yaw rate: ze = |ψact − ψre f |.

Roll stability is achieved by limiting the lateral load transfers on both axles to
below the levels for wheel lift-off during various vehicle maneuvers. The lateral
load transfer is ΔFzi = ktφti , where φti is the monitored roll angle of the unsprung
mass at the front and the rear. The normalized lateral load transfer is introduced as
ρR = ΔFzy/(mg) and the aim of the control design is to reduce the maximum value
of the normalized lateral load transfer if it exceeds a predefined critical value.

The pitch angle of the sprung mass may increase significantly during a sudden
and hard braking. Thus a pitch stability requirement can be introduced which is
achieved by limiting the longitudinal load transfers to below a predefined level. The
normalized longitudinal load transfer is the normalized value of the pitch angle:
ρP = θ/θmax where θ is the monitored pitch angle and θmax is the maximal value of
the pitch angle. The aim of the control design during braking is to reduce the pitching
dynamics if the normalized longitudinal load transfer exceeds a critical value.

Finally, the control problem can be formulated in the general P-K-Δ structure,
where P is the generalized plant and Δ contains both the uncertainties and the
scheduling variables. In the design of local controllers the quadratic LPV perfor-
mance problem is to choose the parameter-varying controller in such a way that the
resulting closed-loop system is quadratically stable and the induced L2 norm from
the disturbance and the performances is less than the value γ . The minimization task
is the following (Fig. 2.5):

inf
K

sup
Δ

sup
‖w‖2 �=0,w∈L2

‖z‖2

‖w‖2
. (2.39)
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Fig. 2.5 The P − K − Δ

structure

Nowadays there is a growing demand for vehicles with ever better driving char-
acteristics in which efficiency, safety, and performance are ensured. In line with the
requirements of the vehicle industry several performance specifications are in the
focus of research, e.g., improving road holding, passenger comfort, roll and pitch
stability, guaranteeing the reliability of vehicle components, reducing fuel consump-
tion and proposing fault-tolerant solutions. An integrated control system is designed
in such a way that the effects of a control system on other vehicle functions are
taken into consideration in the design process by selecting the various performance
specifications.

In a multi-layer supervisory architecture for integrated control systems the super-
visor has information about the various vehicle maneuvers and the different fault
operations by monitoring components and FDI filters. Thus, it is able to make deci-
sions about the necessary interventions into the vehicle components and guarantee
the reconfigurable and fault-tolerant operation of the vehicle. The role of the super-
visor is to meet performance specifications and avoid the interference and conflict
between components.

The advantage of the architecture for integrated vehicle control is that the com-
plexity of the vehicle model is divided into several parts. In the formalism of the
control-oriented model the messages of the supervisor must be taken into consider-
ation. Consequently, the signals of monitoring components and FDI filters are built
in the performance specifications of the controller by using parameter-dependent
weighting. In this way the operation of a local controller can be extended to recon-
figurable and fault-tolerant functions.

In the supervisory decentralized control the role of LPV methods is fundamen-
tal. In the formalism of the control oriented model, the selection of monitoring
components and building them into signals, which are related to the performance
requirements, are crucial points in the modeling. The proposed approach realizes the
reconfiguration of the performance objectives by an appropriate scheduling of the
corresponding weighting functions.
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To illustrate the idea: consider a suspension system design where the performance
weighting functions for heave acceleration and suspension deflections are selected as

Wp,az = φazW0,az,

Wp,sd = φsdW0,sd ,

where φaz and φsd are parameter varying gains. A large gain φaz and a small gain
φsd correspond to a design that emphasizes passenger comfort while choosing φaz

small and φsd large corresponds to a design that focuses on suspension deflection.
A possible modeling choice is to select the suspension deflection as the parameter ρ

that schedules these gains.
In order to sketch a possible choice for these scheduling variables two parameters

are defined: c1 and c2. When the suspension deflection d is below c1, the gain φa is
selected to be constant and the gain φd is zero. When the deflection is between c1 and
c2 the gains change linearly. When the value of the suspension deflection is greater
than c2, the gain φd is constant and the gain φa is zero, see Fig. 2.6.

We emphasize that in this way we obtain an LPV model and place the design into
the LPV framework, even the original plant was modeled as an LTI system.

Since fault-tolerant control requires fault information in order to guarantee per-
formances and modify its operation the presence of suitably designed FDI filters are
needed. Then, the fault information provided by the FDI filter can be quantified as
ρD = fact/ fmax , where fact is an estimation of the failure (output of the FDI filter),
that means the rate of the performance degradation of an active component, and fmax

is an estimation of the maximum value of the potential failure (fatal error). Thus, the
value of a possible fault is normalized into the interval ρD = [0, 1].

Fig. 2.6 Gains of the
performance weights: φa and
φd
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The actuator reconfiguration is based on the fact that two actuators are able to
influence the same vehicle dynamics. Thus, the fault-free actuator it is able to sub-
stitute for the operation of another actuator which has been affected by a failure or
its performance has degraded. The control design is based on two factors: the failure
or performance degradation have already been detected and the fault information ρD

and the necessary intervention possibilities are built into its control design. This goal
is achieved by a suitable scheduling of the corresponding Wp performance and Wa

actuator weights.
As an example consider the design of the brake system the command signal is the

difference in brake forces while the performance signal is the lateral acceleration:
zb = [

ay, ur
]
T . The weighting function of the lateral acceleration is selected as:

Wpa = φaW0,pa,

where φa is a gain, which reflects the relative importance of the lateral acceleration
and it is chosen to be parameter-dependent, e.g., the function of the normalized lateral
load transfer ρR . When the vehicle is not in an emergency ρR is small (|ρR| < Rb),
i.e., φa is small, indicating that the LPV control should not focus on minimizing
acceleration. On the other hand, when ρR approaches the critical value, i.e., when
|ρR| � Rb, φa is large, it indicates that the control should focus on preventing the
rollover.

Here the fixed parameter Rb defines the critical status when the vehicle is close
to the rollover situation, i.e., all wheels are on the ground but the lateral tire force
of the inner wheels tends to zero. Moreover, a parameter Ra can also be introduced
to reflect how fast the control should focus on minimizing the lateral acceleration.
These parameters guarantee the smooth transient of the signals, e.g., for the following
choice:

φa =
⎧
⎨

⎩

1 if |ρR| > Rb
|ρR |−Ra

Rb−Ra
if Ra ≤ |ρR| ≤ Rb

0 if |ρR| < Ra

Moreover, in the presence of an anti-roll bar system, if a fault is detected in
the operation of the anti-roll bars the brake system will be activated at a smaller
critical value than in a fault-free case, i.e., when |ρDa| > 0. Consequently, the brake
is activated in a modified way and the brake moment is able to assume the role of
the anti-roll bars or the suspension actuator in which the fault has occurred. The
modified critical value is

Ra,new = Ra − α · ρDa,

where α is a predefined constant factor.
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2.5 LPV Modeling of Two Subsystems

2.5.1 Modeling of the Vertical Dynamics

The full-car vehicle model, which is shown in Fig. 2.7, comprises five parts: the
sprung mass and four unsprung masses. Let the sprung and unsprung masses be
denoted by ms,mu f , and mur , respectively. All suspensions consist of a spring, a
damper and an actuator, which generates a pushing force between the body and the
axle. The front and rear suspension stiffnesses, the front and rear tire stiffnesses
are denoted by ks f , ksr , and kt f , ktr , respectively. The front and rear suspension
dampings are denoted by bs f , bsr , respectively. Let the front and rear displacement
of the sprung mass on the left and right side be denoted by x1 f l , x1rl and x1 f r , x1rr ,
respectively. Let the front and rear displacement of the unsprung mass on the left and
right side be denoted by x2 f l , x2rl , x2 f r , and x2rr , respectively. In the full-car model,
the disturbances, w f l, wrl , w f r , wrr are caused by road irregularities. The control
forces, Fz f l, Fzrl , Fz f r , Fzrr are generated by the actuators.

The full-car model is based on a seven degrees of freedom system. The sprung
mass is assumed to be a rigid body and has freedoms of motion in the vertical,
pitch and roll directions. Accordingly: x1 is the vertical displacement at the center of
gravity, θ is the pitch angle and φ is the roll angle of the sprung mass. The following
linear approximations are applied to the front and rear displacements of the sprung
mass on the left and right side:

x1 f l = x1 + 
 f θ + t f φ,

x1 f r = x1 + 
 f θ − t f φ,

x1rl = x1 − 
rθ + trφ,

x1rr = x1 − 
rθ − trφ.

In the following the first principle based motion equations are formalized using
the Lagrangian mechanics. Since in the model there exist seven degrees of freedom,
define the generalized coordinates as

q = [
x1 θ φ x2 f l x2 f r x2rl x2rr

]
T . (2.40)

When the kinetic energy for a moving rigid body is calculated from both the
oscillation of the vehicle body and the vertical displacements of unsprung compo-
nents are taken into consideration. Since the yaw motion compared to the steering
movement is ignored and the roll angle is assumed to be small, the angular velocities
are approximated in the following way:
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Fig. 2.7 The vertical dynamics of a full-car model

Ωx = θ̇sinφ ≈ 0,

Ωy = θ̇cosφ ≈ θ̇ ,

Ωz = φ̇.

Thus, the kinetic energies contributed from the vehicle body and the unsprung
components:

TB = 1

2
Ms ẋ

2
1 + 1

2
Iθ θ̇

2 + 1

2
Iφφ̇2, (2.41)

TU = 1

2
mu f (ẋ

2
2 f l + ẋ2

2 f r ) + 1

2
mur (ẋ

2
2rl + ẋ2

2rr ) (2.42)

and the total kinetic energy is T = TB + TU .

The potential energy includes the deformations of springs and tires of the vehicle
during vibrations. The deformations of the tires and that of the suspension compo-
nents are:

d2 f l = x2 f l − w f l, d2 f r = x2 f r − w f r , d2rl = x2rl − wrl , d2rr = x2rr − wrr ,

and

d1 f l = x1 f l − x2 f l , d1 f r = x1 f r − x2 f r , d1rl = x1rl − x2rl , d1rr = x1rr − x2rr ,

respectively. The potential energy is the sum of two components: U = US +UT ,
whereUS contains the potential energy stored in suspension systems andUT contains
the potential energy stored in tires:
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US = 1

2
ks f (d

2
1 f l + d2

1 f r ) + 1

2
ksr (d

2
1rl + d2

1rr ), (2.43)

UT = 1

2
kt f (d

2
2 f l + d2

2 f r ) + 1

2
ktr (d

2
2rl + d2

2rr ). (2.44)

The dissipation energy accounts for the effect of shock absorbers. Assuming that
the forces produced by dampers vary linearly with the rates of change of deforma-
tions, the dissipation function is obtained as

D = 1

2
bs f (ḋ

2
1 f l + ḋ2

1 f r ) + 1

2
bsr (ḋ

2
1rl + ḋ2

1rr ). (2.45)

The external forces are formalized for all generalized coordinates:

f1 = −Fz f l − Fz f r − Fzrl − Fzrr , f2 = −l f Fz f l − l f Fz f r + lr Fzrl + lr Fzrr , f4 = Fz f l ,

f3 = −t f Fz f l + t f Fz f r − tr Fzrl + tr Fzrr , f5 = Fz f r , f6 = Fzrl and f7 = Fzrr .

Then the Lagrangian equations of the full-car model are formalized as follows.

Msq̈ = LBs(ẋu − ẋs) + LKs(xu − xs) − L f, (2.46)

Muẍu = Bs(ẋs − ẋu) + Ks(xs − xu) + Kt (w − xu) + f, (2.47)

where q = [
x1 θ φ

]
T , xs = [

x1 f l x1 f r x1rl x1rr
]
T , xu = [

x2 f l x2 f r x2rl x2rr
]
T ,

w = [
w f l w f r wrl wrr

]
T , and f = [

Fz f l Fz f r Fzrl Fzrr
]
T . The sprung mass (Ms),

the unsprung mass (Mu), the suspension stiffness (Ks), the tire stiffness (Kt ), sus-
pension damping (Bs), geometry (L) matrices can be formulated as follows:

Ms =
⎡

⎣
ms 0 0
0 Iθ 0
0 0 Iφ

⎤

⎦, Mu =

⎡

⎢⎢⎣

mu f 0 0 0
0 mu f 0 0
0 0 mur 0
0 0 0 mur

⎤

⎥⎥⎦, Bs =

⎡

⎢⎢⎣

bs f 0 0 0
0 bs f 0 0
0 0 bsr 0
0 0 0 bsr

⎤

⎥⎥⎦,

Ks =

⎡

⎢⎢⎣

ks f 0 0 0
0 ks f 0 0
0 0 ksr 0
0 0 0 ksr

⎤

⎥⎥⎦, Kt =

⎡

⎢⎢⎣

kt f 0 0 0
0 kt f 0 0
0 0 ktr 0
0 0 0 ktr

⎤

⎥⎥⎦, L =
⎡

⎣
1 1 1 1
l f l f −lr −lr
t f −t f tr −tr

⎤

⎦.

The nominal parameters of the full-car model are in Table 2.1.
Using the kinematic relationship between xs and q:

xs = LT q (2.48)

and by substituting Eq. (2.48) for Eq. (2.46), the following differential equation is
formalized:
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Table 2.1 Parameters of the full-car model

Parameters (symbols) Value Unit

Sprung mass (ms ) 1400 kg

Pitch moment inertia (Iθ ) 2100 kg m2

Roll moment inertia (Iφ) 460 kg m2

Unsprung masses (mu f ,mur ) 40, 40 kg

Suspension stiffness (ks f , ksr ) 23500, 25500 N/m

Front tire stiffness (kt f , ktr ) 190000, 190000 N/m

Suspension damping (bs f , bsr ) 1000, 1100 N/m/s

Actuator parameters (α, β, γ ), 4.515 · 1013, 1, 4.969 · 1012

Area of piston (AP ) 3.35 · 10−4 m2

Supply pressure (Ps ) 10342500 Pa

Time constant (τ ) 1
30 s

Mz̈ + Bż + Kz = Krw + La f, (2.49)

where z = [
qT xTu

]
T , and the matrices are as follows:

M =
[
Ms 0
0 Mu

]
, B =

[
LBs LT −LBs

−BsLT Bs

]
,

K =
[
LKsLT −LKs

−KsLT Ks + Kt

]
, Kr =

[
0
Kt

]
, La =

[−L
I

]
.

Equation (2.49) can be represented as a state space form:

ẋ = Ax + B1w + B2u, (2.50)

where x = [
zT żT

]
T , u = f and

A =
[

0 I
−M−1K −M−1B

]
, B1 =

[
0

M−1Kr

]
, B2 =

[
0

M−1La

]
.

The nominal parameters of the full-car model are in Table 2.1. From disturbances
to performance signals the open-loop frequency responses of the full-car model,
i.e., the heave, pitch, roll accelerations and suspension deflections, are illustrated in
Fig. 2.8.
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Fig. 2.8 Frequency responses of the full-car model to disturbances

2.5.2 Nonlinear Components of the Vertical Dynamics

In the full-char model presented in the previous section it was not explicitly expressed
the nonlinearity of the suspension stiffness (Ks), the tire stiffness (Kt ) and that of the
suspension damping (Bs). Moreover the nonlinearity of the actuator was completely
ignored. In what follows, we concentrate on these nonlinearities by developing the
model of a relevant subsystem, the quarter-car.

The quarter-car vehicle model, which is shown in Fig. 2.9, is a two-degree-of-
freedom model. x1 = q1 and x2 = q2 denote the vertical displacement of the sprung
mass and the unsprung mass, respectively. In the modelling of suspension systems the
nonlinear behavior of suspension components and the actuator dynamics are taken
into consideration. The vertical dynamics of the suspension system is formalized in
the following way:



2.5 LPV Modeling of Two Subsystems 37

ms ẍ1 = Fks + Fbs − Faz, (2.51)

muẍ2 = −Fks − Fbs − kt (x2 − w) + Faz, (2.52)

where Fbs is the suspension damping force, Fks is the suspension spring force and
Faz is the force of the actuator.

The force equation of the suspension stiffness is

Fks = kls(x2 − x1) + knls (x2 − x1)
3, (2.53)

where parts of the nonlinear suspension stiffness (ks) are a linear coefficient kls and
a nonlinear coefficient knls . The force equation of the suspension damping is

Fbs = bls(ẋ2 − ẋ1) − bsyms (ẋ2 − ẋ1)sgn(ẋ2 − ẋ1) + bnls
√|ẋ2 − ẋ1|sgn(ẋ2 − ẋ1),

(2.54)

where ẋ1 and ẋ2 denote the vertical velocity of the sprung mass and the unsprung
mass, respectively. Here, the nonlinear suspension damping bs consists of a linear
coefficient bls and two nonlinear coefficients bnls and bsyms . bnls shows the nonlinear
impact on the damping characteristics while bsyms describes its asymmetric behavior.
Note that in the modelling of the suspension system a linearized model is often
used instead of a nonlinear one. In the linearized version of the suspension system
Fks = kls(x2 − x1) and Fbs = bls(ẋ2 − ẋ1) are applied.

The hydraulic actuator operates nonlinearly, thus its force should be formalized
in the following way, see Merritt (1967). The hydraulic actuator is controlled by
electro-hydraulic servo-valves and is mounted parallel to the passive suspension
system. Consider a four-way valve-piston system in which the force balance at the
piston gives:

Faz = AP PL , (2.55)

Fig. 2.9 Vertical dynamics
of a quarter-car model
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where AP is the area of the piston and PL is the pressure drop across the piston with
respect to the front and rear suspensions. The derivative of PL is given by

ṖL = −βPL + αAP(ẋ2 − ẋ1) + αQ, (2.56)

in which α = 4βe

Vt
, beta = αCtp and

Q = sgn[Ps − sgn(xv)PL ]Cd Sxv

√
1

ρ̄
|Ps − sgn(xv)PL |, (2.57)

and Vt is the total actuator volume, βe is the effective bulk modulus of system, Q is
the hydraulic load flow, Ctp is the total leakage coefficient of the piston, Cd is the
discharge coefficient, S is the spool valve area gradient, xv is the displacement of the
spool valve, ρ̄ is the hydraulic fluid density, Ps is the supply pressure. The cylinder
velocity acts as a coupling from the position output of the cylinder to the pressure
differential across the piston. It is considered a feedback term, which has been ana-
lyzed by Alleyne and Hedrick (1992), Alleyne and Liu (2000). The displacement of
the spool valve xv is controlled by the input to the servo-valve u:

ẋv = 1

τ
(−xv + u). (2.58)

The state space representation of the nonlinear model is:

ẋ = f (x) + gu + hw, (2.59)

in which the state vector x is as follows:

x = [
x1 x2 x3 x4 xP xv

]
T . (2.60)

The components of the state vector are the vertical displacement of the sprung mass
x1, the vertical displacement of the unsprung mass x2, their derivatives x3 = ẋ1,
x4 = ẋ2, the pressure drop xP(= PL), and the servo valve displacement xv . The
components of the Eq. (2.59) are

f (x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

x3

x4
1
ms

(
Fks + Fbs − APxP

)
1
mu

(−Fks − Fbs − kt x2 + APxP
)

−βxP + αAP(x4 − x3) + αQ
− 1

τ
xv

⎤

⎥⎥⎥⎥⎥⎥⎦
, g =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
τ

⎤

⎥⎥⎥⎥⎥⎥⎦
, h =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
kt
mu

0
0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

In the following, an LPV model is constructed by selecting three scheduling
variables, i.e., the square of the relative displacement, the signum of the relative
velocity and a signal linked to the load pressure of the actuator.
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ρks = (x2 − x1)
2, (2.61)

ρb = sgn(x4 − x3), (2.62)

ρQ = sgn[Ps − sgn(xv)PL ]Cd S

√
1

ρ̄
|Ps − sgn(xv)PL |. (2.63)

Substituting ρQ into equation of the actuator (2.56), the differential equation is:

ẋP(ρQ) = −βxP + αAP(x4 − x3) + αρQxv. (2.64)

The parameter dependence of the load pressure differential equation is affine in
ρQ . As a consequence of affine parameter dependence, quadratic stability and control
performance are guaranteed in the whole parameter region, solving an optimization
problem only at extreme points in the parameter region over the LMI constraints.

The nonlinear spring force is reformulated in the following way:

Fks(ρks) = kls(x2 − x1) + knls ρks(x2 − x1). (2.65)

This force is expressed by a linear combination of states allowing the force to have
nonlinear ρks dependence. The nonlinear damping force is partitioned in the follow-
ing way:

Fbs(ρb) = bls(x4 − x3) − bsyms ρb(x4 − x3) + bnls ρb

√
ρb(x4 − x3), (2.66)

where the first and the second terms are the linear parts and the third term is the
nonlinear part of the damping force. The linear parts of the damping force can be
expressed as a linear combination of the states, however, the the nonlinear part cannot.
Thus, a fictitious signal u f ict must be introduced, and the nonlinear parts must be
incorporated into the disturbance matrix when the LPV model is formalized.

In the LPV model of the active suspension system three parameters are selected.
In practice, the relative displacement is a measured signal. The relative velocity is then
determined by numerical differentiation from the measured relative displacement.
The scheduling variable ρQ is linked to the load pressure of the actuator, which is
assumed to be calculated directly from Eq. (2.57).

The state space representation of the LPV model is as follows:

ẋ = A(ρ)x + gu + h̃w̃, (2.67)

whereρ = [ρ1 ρ2 ρ3]T withρ1 = ρks ,ρ2 = ρb,ρ3 = ρQ and w̃ = [w u f ict ]T includes
both the disturbance and the fictitious signals. The matrix A is expressed in the fol-
lowing form
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Table 2.2 Parameters of the quarter-car model

Parameters (symbols) Value Unit

Sprung mass (ms ) 290 kg

Unsprung mass (mu) 40 kg

Suspension stiffness (kls , k
nl
s ) 235 · 102, 235 · 104 N/m

Tire stiffness (kt ) 190 · 103 N/m

Damping (bls , b
nl
s , bsyms ) 700, 400, 400 N/m/s

Time constant (τ ) 1
30 s

A(ρ) = A0 + ρ1A1 + ρ2A2 + ρ3A3

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0

− kls
ms

kls
ms

− bls
ms

bls
ms

− AP
ms

0
kls
mu

− kls
mu

− kt
mu

bls
mu

− bls
mu

AP
mu

0
0 0 −αAP αAP −β 0
0 0 0 0 0 − 1

τ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ ρ1

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0

− knls
ms

knls
ms

0 0 0 0
knls
mu

− knls
mu

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ ρ2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 bsyms

ms
− bsyms

ms
0 0

0 0 − bsyms
mu

bsyms
mu

0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ ρ3

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 αρQ

0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

and components g and h̃ are the following:

g =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
τ

⎤

⎥⎥⎥⎥⎥⎥⎦
, h̃ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 1

ms
bnls ρb

√
ρb(x4 − x3)

kt
mu

− 1
mu
bnls ρb

√
ρb(x4 − x3)

0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The nominal parameters are in Table 2.2.
The performance signals of the suspension system, i.e., the heave acceleration of

the sprung mass, suspension deflection, wheel displacement and the control force,
are tested in two examples. The excitation signals are a bump on the road surface
and a square wave input.

Firstly, the performance signals of the suspension system are tested by using a
bump. The performance signals are illustrated in Fig. 2.10. The overshoots of the
heave acceleration are larger about 10 % in the nonlinear case than in the linear one,
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Fig. 2.10 Time responses of the vehicle to a bump

however, the transient duration of the nonlinear case is shorter than in the linear one.
At the same time the values of suspension deflections are smaller in the nonlinear
case than in the linear one. These properties are caused by the nonlinear damping
characteristics, which are significantly different from the linear characteristics around
the equilibrium point.

2.5.3 LPV Modeling of the Yaw–Roll Dynamics

The motion differential equations, i.e., the lateral dynamics, the yaw moment, the
roll moment of the sprung mass, the roll moment of the front and the rear unsprung
masses are the following. These equations were also formulated in Sampson and
Cebon (2003), Gáspár et al. (2005c).

Figure 2.11 illustrates the combined yaw–roll dynamics of a vehicle, which is
modelled by a three-body system, in which ms is the sprung mass, mu, f is the
unsprung mass at the front including the front wheels and axle, mu,r is the unsprung
mass at the rear with the rear wheels and axle, and m is the total vehicle mass.

Ixx , Ixz, Izz are the roll moments of the inertia of the sprung mass, the yaw–roll
product, and the yaw moment of inertia, respectively. h is the height of CG of sprung
mass and hu, f , hu,r are the height of CG of unsprung masses and r is the height of
the roll axis from ground. The total axle loads are Fzl and Fzr , respectively.

The roll motion of the sprung mass is damped by suspensions with damping
coefficients bs f , bsr and stiffness coefficients ks f , ksr . The tire stiffnesses are denoted
by kt f and ktr . The signals are the forward velocity v,the lateral acceleration ay , the
side slip angle of the sprung mass β, the heading angle ψ , the yaw rate ψ̇ , the roll
angle φ, the roll rate φ̇, the roll angle of the unsprung mass at the front axle φt, f and
at the rear axle φt,r .
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Fig. 2.11 Illustration of the vehicle model

δ f is the front wheel steering angle and ΔFb are the braking forces on the left and
right hand side wheels. It is assumed that the difference between the brake forces
ΔFb provided by the compensator is applied to the rear axle. This assumption does
not restrict the implementation of the compensator because it is possible that the
control action be distributed at the front and the rear wheels at either of the two sides.

In vehicle modelling the motion differential equations of the combined yaw and
roll dynamics of the single unit vehicle are formalized. The vehicle can translate
longitudinally and laterally and it can also yaw. The sprung mass can rotate around a
horizontal axis. The unsprung masses can also roll, permitting the vertical compliance
of the tires. The motion is described using a coordinate system fixed in the vehicle:
the roll axis is replaced by an x axis parallel to the ground, and the z axis passes
downward through the center of mass of the vehicle. The suspension springs, dampers
and active anti-roll bars generate moments between the sprung and unsprung masses
in response to roll motions. The active roll control systems at each axle consist of
a pair of actuators and a series of mechanical linkages in addition to the existing
passive springs and dampers. The tires produce lateral forces that vary linearly with
the side slip angles.
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mv(β̇ + ψ̇) − mshφ̈ = Fy f + Fyr , (2.68)

−Ixzφ̈ + Izzψ̈ = Fy f l f − Fyr lr + lwΔFb, (2.69)

(Ixx + msh
2)φ̈ − Ixzψ̈ = msghφ + msvh(β̇ + ψ̇)−

−k f (r)(φ − φt, f ) − b f (r)(φ̇ − φ̇t, f ) − kr(r)(φ − φt,r ) − br(r)(φ̇ − φ̇t,r ), (2.70)

−r Fy f = mu f v(r − hu f )(β̇ + ψ̇) + mu f ghu f φt, f −
−kt, f (r)φt, f + k f (r)(φ − φt, f ) + b f (r)(φ̇ − φ̇t, f ), (2.71)

−r Fyr = murv(r − hur )(β̇ + ψ̇) − mur ghurφt,r−
−kt,r(r)φt,r + kr(r)(φ − φt,r ) + br(r)(φ̇ − φ̇t,r ). (2.72)

The lateral tire forces Fy f and Fyr in the direction of the wheel ground contact
are approximated linearly to the tire slide slip angles α f and αr , respectively:

Fy f = μC f α f , Fyr = μCrαr , (2.73)

where μ is the side force coefficient (it is also called friction or cohesion co-efficient)
and C f and Cr are tire side slip constants. μ is also called friction or cohesion
coefficient and by definition it is the ratio of the frictional force acting in the wheel
plane and the wheel ground contact force.

The chassis and the wheels have identical velocities at the wheel ground contact
points. The velocity equations for the front and rear wheels in the lateral and in the
longitudinal directions are as follows:

vw, f sin(δ f − α f ) = l f · ψ̇ + v sin β (2.74)

vw, f cos(δ f − α f ) = v cos β (2.75)

vw,r sin αr = lr · ψ̇ − v sin β (2.76)

vw,r cos αr = v cos β. (2.77)

In stable driving conditions, the tire side slip angle αi is normally not larger than 5◦
and the above equation can be simplified by substituting sin x ≈ x and cos x ≈ 1.
Thus, the classical equations for the tire side slip angles are then given as

α f = −β + δ f − l f · ψ̇

v
, αr = −β + lr · ψ̇

v
. (2.78)

By choosing the system states are the side slip angle of the sprung mass β, the
yaw rate ψ̇ , the roll angle φ, the roll rate φ̇, the roll angle of the unsprung mass at
the front axle φt, f and at the rear axle φt,r , i.e.,

x = (
β ψ̇ φ φ̇ φt, f φt,r

)
T , (2.79)
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the differential algebraic model can be transformed into the following state space
representation form:

E(v)ẋ = A0(v)x + B0δ f + B1ΔFb (2.80)

where E(v) is an invertible matrix which also contains masses and inertias.
The system matrices are the following:

E(v) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

mv 0 0 −msh 0 0
0 Izz 0 −Ixz 0 0

−msvh −Ixz 0 Ixx + msh2 −b f (r) −br(r)
−mu f v

(
r − hu f

)
0 0 0 +b f (r) 0

−mur v(r − hur ) 0 0 0 0 +br(r)
0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

A0(v) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(
C f + Cr

)
μ

(
−l f C f +lr Cr

)
μ

v − mv 0 0 0 0

(−C f l f + Cr lr
)
μ −

(
l2f C f +l2r Cr

)
μ

v 0 0 0 0
0 msvh ms gh − k f (r) − kr(r) −b f (r) − br(r) k f (r) kr(r)

−rC f μ mu f v
(
r − hu f

) − l f rC f μ

v k f (r) b f (r) A0(4,5) 0

−rCrμ mur v(r + hur ) + lr rCrμ
v kr(r) br(r) 0 A0(5,6)

0 0 0 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B10 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

C f μ

l f C f μ

0
rC f μ

0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, B20 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 lw
1 1 0
1 0 0
0 1 0
0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

using the notations A0(4,5) = −kt, f (r) − k f (r) + mu f ghu f and A0(5,6) = −kt,r(r) − kr(r) − mur ghur .

By multiplying the left and right-hand sides of this equation by the E−1(v), the
state space representation is yielded:

ẋ = A(v)x + B(v)δ (2.81)

where δT = [
δ f ΔFb

]
. If an active anti-roll bar system is also present, then one can

introduce an additional control input uc = [
u f ur

]
for the roll moments between the

sprung and unsprung masses generated by the active anti-roll bars, i.e.,

ẋ = A(v)x + B(v)δ + Brb(v)uc. (2.82)

For the measured signals one can chose, e.g., the lateral acceleration, the yaw rate
and the roll rate

y = [
ay ψ̇ φ̇

]
T , (2.83)

where the lateral acceleration is ay = vβ̇ + vψ̇ − hφ̈.
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Table 2.3 Parameters of the
yaw–roll model

Params Value

ms 12,487 kg

mu f ,mur 706, 1000 kg

m 14,193 kg

h 1.15 m

hu f hur 0.53, 0.53 m

r 0.83 m

C f ,Cr 582 · 103 kN/rad, 783 · 103 kN/rad

k f , kr 380 · 103 kNm/rad, 684 · 103 kNm/rad

b f , br 100 · 103 kN/rad, 100 · 103 kN/rad

kt, f , kt, f 2060 · 103 kNm/rad, 3337 · 103 kNm/rad

Ixx 24,201 kg m2

Ixz 4200 kg m2

Izz 34,917 kg m2

l f , lr 1.95, 1.54 m

lw 0.93 m

μ 1

In the linear yaw–roll models the forward velocity is considered a constant para-
meter. However, the forward velocity is an important stability parameter, so that it
is considered to be a variable of the motion. Thus, the modelling of combined yaw
and roll dynamics of road vehicles leads to a nonlinear model, since the Eq. (2.81)
the the system matrices depend on the forward velocity of the vehicle and the side
force coefficient nonlinearly.

The forward velocity is approximately equivalent to the velocity in the longitudinal
direction while the side slip angle β is small. It can be assumed that the side slip angle
is small under stable driving conditions. Hence the driving throttle is constant during
a lateral manoeuvre and the forward velocity only depends on the brake forces. The
forward velocity is assumed to be measured, however, the side force coefficient is
usually not directly measured.

If v and μ are selected as scheduling variables, the differential equations of the
combined yaw and roll motion are linear in the state variables:

ẋ = A(ρ)x + B1(ρ)δ f + B2(ρ)ΔFb (2.84)

where

A(ρ) = A0 + ρ1A1 + ρ2A2 + ρ3A3 + ρ4A4 + ρ5A5,

B1(ρ) = B10 + ρ2B11 + ρ3B12,

B2(ρ) = B20 + ρ1B21.
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where ρ = [ρ1 ρ2 ρ3 ρ4 ρ5] with ρ1 = 1
v
, ρ2 = μ, ρ3 = μ/v, ρ4 = μ/v2, ρ5 = v.

Possible parameters for a nominal model that corresponds to a heavy-vehicle are
included in Table 2.3.

2.6 Grey-Box Identification and Parameter Estimation

LPV models that are obtained by using first principle considerations are full with
parameters whose values are not necessarily known a priori. Thus, a method is
necessary in order to estimate these unknown parameters of the nominal model.
In what follows we consider the (q)LPV systems, as a subclass of the input-affine
nonlinear systems, that can be cast as:

ẋ = A(p, ρ(t))x + Bu(p, ρ(t))u + Bϕ(p)ϕ(ρ(t)),

y = C(p, ρ(t))x, (2.85)

where p is a parameter vector, ρ(t) is a known vector of time-varying scheduling
parameters that eventually depends on measured outputs, i.e., ρ(t) = ρ(y), and ϕ is
a known, possibly nonlinear, function of its arguments.

The objective of our investigations is to compute the unknown parameter p for
system (2.85) from input-output measurements, in other words, to solve a grey-box
identification problem. A widely used idea to solve such an identification problem is
to set a quadratic output error identification criterion, i.e., to minimize the problem
as a function of the unknown parameter.

The objective function of this nonlinear least squares problem is usually given by

J (p) = 1

2
‖y − y(p)‖2, (2.86)

where y(p) is the solution of (2.85) corresponding to input u and a suitable initial
condition x0. For practical reasons a norm induced by a discrete scalar product is
used, e.g.,

‖v‖2 := 1

N

N−1∑

i=0

|v(ti )|2, (2.87)

v(ti ) being the samples of the signal v at the time instances ti . In a practical
identification experiment the sampling is uniform, the sampling time being τ , i.e.,
ti = t0 + (i − 1)τ. Usually, some additional box constrains

pi,l ≤ pi ≤ pi,u, i = 1, · · · , np (2.88)
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on the parameter range are also available, permitting to set a constrained nonlinear
least squares problem.

In a discrete-time setting there are several methods dedicated to the solution of
this problem, see, e.g., Bamieh and Giarre (2002), Hori et al. (1992), Lee and Poola
(1996, 1999), Ljung (2001), Verdult and Verhaegen (2002). In these approaches the
optimization scheme in general is based on a Newton or quasi Newton type iteration
process. Other methods, which are often termed as “adaptive” or “recursive”, e.g.,
the Extended Kalman Filter (EKF) method, can be considered mainly as a recursive
variant of these types of algorithms, where the main benefit, from an algorithmic
point of view, is expected to be the low number of simulations needed. The general
convergence properties of these type of methods, even in a theoretical setting, are
little known.

In the continuous-time setting one can also apply these type of methods, all of
them involving the integration of a system of type (2.85). This integration poses some
problems that are new or are more stringent than the difficulties encountered in the
discrete-time case.

The first problem is caused by the fact that the initial condition x0 is often unknown
in a practical setting. Besides the general theoretical question of identifiability one
has to cope with the problem that in order to evaluate the functional (2.86), one has
to integrate the system that contains the parameter p starting from the same initial
condition as the original one. In a discrete time setting, at least in the case when
sufficiently long data record is available, this problem can be solved by starting the
simulation from a shifted initial time and by using the previous data as an initial con-
dition. In order to overcome this difficulty we propose to set a modified identification
problem. We propose to design a so called Luenberger type observer first, and then
to perform the identification process for the observer system.

The simulation process, i.e., the method that computes y(p, ti ), consists of a
numerical algorithm, which performs an implicit discretization of the system. For a
certain class of differential equations, i.e., stiff equations, these numerical methods
are quite involved, containing implicit schemes with variable step length iterations.
A closer analysis of this fact implies one of the inherent difficulties in the continuous-
time parameter identification process.

To highlight the problem, note that in order to compute the solution with accept-
able accuracy, the integration scheme needs the evaluation of the right hand of the
differential equation in an intermediate time instance t , i.e., at ti ≤ t ≤ ti+1. The
problem is, that values ρ(t), u(t) and y(t), are not available during the simulation
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process and they have to be replaced somehow, e.g., by interpolation or by a zero
order hold strategy. Thus the quantization of the input u and of the scheduling vari-
ables ρ results in a modified differential equation. The solution of this equation might
differ considerably from that of the original one.

2.6.1 Observer-Based Identification

If the system (2.85) is started from different initial states x̂0, the corresponding
solution ŷ will differ, in general, from the solution y. Moreover, for a nonlinear
system this error is not an additive term with exponentially decay. It follows, that the
objective functional will not vanish for the solution of the system determined by the
nominal parameter p. Thus the applied optimization algorithms will fail to provide
the correct parameter value.

If the initial condition x0 is unknown, one has to extend the states of the original
system with the unknown parameters, and add ṗ = 0 to the set of state equations.
Observability of this extended system guarantees the uniqueness of the solution
function corresponding to the pair (p, x0(p)). However, the extended system is usu-
ally a full nonlinear system whose observability is hard to be tested in practice. In
what follows it is assumed that identifiability under the condition of unknown initial
condition holds.

In order to cope with the problem of unknown initial conditions, we propose to
design a Luenberger type observer for the system, and then to perform the identifi-
cation process for the observer system. The form of the observer is the following:

η̇ =(A + KC)(ρ, p)η + (Bu + K D)(ρ, p)u + Bϕ(ρ, p)ϕ − K (ρ, p)y

ε = − C(ρ, p)η + y. (2.89)

By construction, for p = p0 system (2.89) is an observer, i.e., for the nominal
value of the parameters one has limt→∞ ε(t) = 0. That means that in practice the
objective function (2.86) can be replaced by the function

J̃ (p) = 1

2
〈ε, ε〉o, 〈ε, ε〉o := 1

N − L

N−1∑

i=L

|ε(ti )|2, (2.90)

with a properly chosen thread L . The choice of the thread depends on the convergence
properties (time constants), of the observer, i.e., from the choice of observer gain K .

Concerning the question of stability, let us recall, that an LPV system is said to
be quadratically stable if there exist a matrix P = PT > 0 such that

A(ρ)T P + PA(ρ) < 0 (2.91)
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for all the parameters ρ ∈ P . A necessary and sufficient condition for a system to
be quadratically stable is that the condition in Eq. (2.91) holds for all the corner
points of the parameter space, i.e., one can obtain a finite system of LMI’s that has
to be fulfilled for A(ρ) with a suitable positive definite matrix P , see Gahinet and
Apkarian (1996), Fen et al. (1996).

In order to obtain a quadratically stable observer the LMI:

(A(ρ) + K (ρ)C)T P + P(A(ρ) + K (ρ)C) < 0 (2.92)

must hold for suitable K (ρ) and P = PT > 0. By introducing the auxiliary variable
G(ρ) = PK (ρ), one has to solve the following set of LMIs on the corner points of
the parameter space:

A(ρ)T P + PA(ρ) + CTG(ρ)T + G(ρ)C < 0 (2.93)

By solving these LMIs one can obtain a suitable observer gain for a fixed, but arbitrary
value of p.

2.6.2 Adaptive Observer-Based Approach

Adaptive observers are used mainly for fault detection and isolation and adaptive
control purposes and they are meant to work on-line. In our identification setting the
observer works off-line and it has to converge to acceptable values of the estimated
parameters in the time given by the length of the measurements.

Our approach starts from the ideas from the general nonlinear theory, see Besancon
(2000). It is assumed the existence of symmetric and positive definite matrix P , a
gain matrix K (t), a matrix M and μ > 0 such that

PAo(t) + AT
o (t)P ≤ −μI, PBp = CT M, (2.94)

where Ao(t) = A(t) + K (t)C hold and that the signals ϕ are persistently exciting.
Then, the adaptive observer used for identification can be defined as:

˙̂x = A(t)x̂ + Bu(t)u + Bpϕ(t) p̂ + K (t)(y − Cx̂)

˙̂p = −γ ϕT (t)MT (y − Cx̂),

where M is assumed to meet conditions (2.94).
In an off-line identification setting the persistency condition

∫ t+T

t
ϕT (τ )BT

p Bpϕ(τ)dτ ≥ α I (2.95)
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is meant to be fulfilled in a finite time window determined by the measurement
length and the value of T . The adaptive observer setting guarantees the exponential
convergence rate. Knowing an estimation for this time constant one can determine
the required measurement length in order to be able to estimate the parameters with
sufficiently accuracy. Therefore an identification experiment is designed by consid-
ering these two factors, the persistency requirement and the desired convergence
properties.

The performance properties of the observer depends heavily on the choice of the
gain K (t) and the parameter γ. By choosing γ properly, one can improve the conver-
gence rate of the parameters. Further research is done in order to give a theoretically
justified design procedure for these parameters.

Finding the unknown parameters requires the solution of certain differential equa-
tions, for an overview see Polak (1997). Although we embed the system in the class
of (q)LPV systems, in general, we cannot exploit the linear structure in the solution
process, and we have to use a general differential equation solver. For the observer
design of the LT I system the effect of quantization is shown, e.g., in Sur and Paden
(1998).

2.7 Parameter Estimation: Case Studies

2.7.1 Identification of a Suspension System

Model based suspension design relies on the knowledge of the physical parameters
of the vehicle. For a given vehicle, however, these parameters are usually not known.
Moreover the system is nonlinear and contains uncertain and time-varying compo-
nents. Therefore the usual linear techniques are not suitable to handle this estimation
problem. In what follows a nonlinear, quasi LPV (qLPV) model structure is used
as a starting point for the identification. It is assumed that the accelerations of the
sprung and unsprung masses and the relative displacement can be measured directly.
For the complete identification of the model the knowledge of the road signal is
indispensable.

Having found the identified model a method is presented for the reconstruction of
the road disturbance. Due to the nonlinear nature of the model the unmeasured—but
computable—relative velocity signal is also needed.

After the reconstruction of the road roughness signal one has a freedom in the
choice of the post-processing method, which can be on-line or off-line and which
aims to classify roads by their roughness. In the literature there are many papers with
different approaches on the estimation of road roughness. The road surface can be
examined as a stochastic process which can be estimated from a white noise source
by using an appropriate transfer function Hac (1987), Sayers (1986).
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The state space representation of the nonlinear model of a quarter car is written as:

⎡

⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− kls
ms

kls
ms

bls
ms

bls
ms

kls
mu

− kls
mu

− kt
mu

bls
mu

bls
mu

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎦+

⎡

⎢⎢⎢⎣

0 0 0
0 0 0
knls
ms

− bsyms
ms

bnls
ms

− knls
mu

bsyms
mu

− bnls
mu

⎤

⎥⎥⎥⎦

⎡

⎣
ρ3
k|ρb|√|ρb| sgn(ρb)

⎤

⎦ +

⎡

⎢⎢⎣

0
0
0
kt
mu

⎤

⎥⎥⎦w (2.96)

where ẋ1 = x3 and ẋ2 = x4.

It is assumed that the accelerations y1 = ẍ1 and y2 = ẍ2 and the relative displace-
ment ρk = x2 − x1 can be measured directly, and the relative velocity, i.e., x4 − x3

is then calculated with numerical integration from the measured signals. It is also
assumed that the values for ms and mu are also known. Thus, in our case the relative
velocity and the relative displacement can be selected as scheduling parameters:

ρb = x4 − x3 ρk = x2 − x1 (2.97)

Let us denote the column vector by φ(ρk, ρb)

φ(ρk, ρb) = [
ρ3
k |ρb| √|ρb| sgn(ρb)

]
T . (2.98)

If one considers φ(ρk, ρb) as a fictitious input, then, the state space representation
of the qLPV model is:

ẋ =

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

−p11 p11 −p12 p12

p21 −p21 − pt p22 −p22

⎤

⎥⎥⎦x +

⎡

⎢⎢⎣

0 0 0
0 0 0
p13 −p14 p15

−p23 p24 −p25

⎤

⎥⎥⎦φ(ρk, ρb) +

⎡

⎢⎢⎣

0
0
0
pt

⎤

⎥⎥⎦w

(2.99)

where

[
p11 p12 p13 p14 p15

p21 p22 p23 p24 p25

]
=

[
kls
ms

bls
ms

knls
ms

bsyms
ms

bnls
ms

kls
mu

bls
mu

knls
mu

bsyms
mu

bnls
mu

]
(2.100)

pt = kt
mu

(2.101)
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Let us use the following formulae: ν(x2, w) = pt (x2 − w), γ = mu/ms . From
Eq. (2.99) follows, that

γ y1 + y2 = −ν(x2, w), (2.102)

where

y1 = p11ρk + p12ρb + [p13 − p14 p15]φ(ρk, ρb).

If one can determine ρb then the values of the parameters can be determined from
Eq. (2.99) by using a least squares (LS) estimation. The values of ρb are estimated
by using a second order scheme,

ẏ(t) = y(t + Δ) − y(t)

Δ
− Δ

2
ÿ(t),

i.e.,

ρb(t) = ρk(t + Δ) − ρk(t)

Δ
− Δ

2
(y2(t) − y1(t)), (2.103)

where Δ is the sampling time. To determine the value of pt from Eq. (2.102), the value
of the unsprung mass displacement x2 is needed. Combining (2.99) and (2.102) after
a simulation step x2 can be obtained and then a value for pt is yielded by carrying
out an LS estimation. The signal x2 can also be determined from the equation

ẍ2 = −p21ρk − p22ρb + [−p23, p24,−p25]φ(ρk, ρb) − γ y1 − y2, (2.104)

by using two consecutive integration steps.
If there are no on board excitations the signal representing the effect of the road

surface on the suspension system can be detected by using Eq. (2.102) as:

w = γ y1 + y2

pt
+ x2. (2.105)

If the value of pt for the qLPV model of the quarter car suspension system is known
and the unsprung mass displacement x2 can be determined, then the road signal w

can be determined. The value of x2 is computed by integrating the system (2.104).
Due to the effect of the unknown initial value in the reconstructed road signal ŵ there
is a systematic error present in the form of a linear trend.

In order to classify different roads Hac (1987) has proposed a parameter based
method. In this paper a slight modification of this model is used where the road signal
is given by the following continuous time model:

...
w + (a1 + a3)ẅ + (a0 + a1a3)ẇ + a0a1w = ξ (2.106)
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where ξ is a white noise process and parameters a1, a2, a3 depend on the forward
velocity and the road type, given as follows:

a0 = (α2
2 + β2)2v2 + 4α2

2β
2v4, a1 = α1v,

a2 = 2(α2
2 − β2)v2, a3 = (a2 + 2a0)

1/2.

For example for a paved road the values of these parameters are defined by α1 =
0.5, α2 = 0.2 and β = 2.0.

In an identification setting the continuous time modelling is not suitable, hence
the road characteristics should be given in terms of the parameters of a discrete time
model set:

ωt + δ1ωt−1 + δ2ωt−2 + δ3ωt−3 = ξt (2.107)

These parameters also depend on the velocity and the road type. In Fig. 2.12a this
dependence is depicted in case of an asphalt road for the parameters δ1, δ2 and δ3,
respectively. Figure 2.12b also shows parameter δ1 in the function of the velocity.
Using these type of figures the task of the classification of the road can be performed
by estimating coefficients δi if the value of the velocity is known.

The approach presented above gives a global characterization of roads by using
a basic statistical identification process. In this case the aim of the road parameter
estimation is to give a classification of a longer road segment. If local information
about road quality is needed other methods should be used, e.g., wavelet based
techniques, for details see Gáspár et al. (2003a).

In the first example the accelerations y1 = ẍ1, y2 = ẍ2, the relative displacement
ρk = x2 − x1 and the road signal w are given from the simulated model described
by the nominal parameters:
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Fig. 2.12 Values of parameters for different road conditions
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Table 2.4 Reconstructed values of p
p 57.97 2.41 0.68 0.34 810.34 284.94 11.86 3.38 1.69 3983.1

p0.001 57.97 2.41 0.68 0.34 810.65 284.95 11.85 3.38 1.70 3984.6

r0.001 0 0 0 0 0.04 0 0.08 0 0.59 0.04

p0.005 58.11 2.37 0.69 0.37 797.03 285.62 11.69 3.43 1.82 3917.6

r0.005 0.24 1.66 1.47 8.82 1.64 0.24 1.43 1.48 7.69 1.64

p0.01 58.39 2.38 0.70 0.36 755.6933 287.02 11.70 3.44 1.79 3714.4

r0.01 0.72 1.24 2.94 5.88 6.74 0.73 1.35 1.78 5.92 6.75

Table 2.5 Reconstructed values of pt
pt pt,0.001 pt,0.005 pt,0.01

3220.3 3284.3 3363.1 2723.3

rt 1.98 4.43 15.43

p =
(

57.97 2.41 0.68 0.34 810.34
284.94 11.86 3.38 1.69 3983.1

)
.

The values for the masses are mu = 59 kg and ms = 290 kg. Different sampling
times Δ are used in the simulation. The results of the identification are given in pΔ

and pt,Δ and are summarized in Table 2.4 and Table 2.5, where rΔ denotes the relative
error.

The relative error of the estimation of p1 . . . p5 is below 7 % and the estimation
of pt is below 16 % when the sampling time is selected Δ = 0.01 sec. If we select
smaller sampling time (Δ = 0.005 s) the relative error is below 5 %. If the sampling
time is Δ = 0.001 s the relative error is below 2 %. The appropriate selection of
the sampling time is significant in the sufficient estimation, however, the practice
influences this selection.

As far as the road signal reconstruction is concerned the value of the estimate of pt
is decisive. The results show the importance of the choice of the sampling time. An
estimation for the sampling time needed can be carried out by the Shannon theorem,
which is only applied to the linear part of the model used in the identification process,
i.e.,

⎡

⎢⎢⎣

0 0 1 0
0 0 0 1

−p11 p11 −p12 p12

p21 −p21 p22 −p22

⎤

⎥⎥⎦.

Figure 2.13 shows the effect of the sampling time on the reconstruction of the
unsprung mass displacement x2, which also plays a central role in the reconstruction
of the road signal.
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Fig. 2.13 Absolute errors
for x2 corresponding to
different sampling times
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Table 2.6 Identification results

v Parameter δ1 δ2 δ3

40 Nominal −0.988 −0.007151 0.00213

Identified −0.9878 0.007174 0.001743

60 Nominal −0.9882 −0.006968 0.00618

Identified −0.9881 −0.006993 0.005798

80 Nominal −0.9858 −0.007205 0.008486

Identified −0.9878 −0.007242 0.009956

In the second demonstration example three situations, which corresponds to an
asphalt road and to different travelling velocities were simulated. The sampling time
was set at 0.001 s. After reconstructing the road signal, the parameters δi of the
discrete model (2.107) were estimated. The results are shown in Table 2.6.

2.7.2 Identification of the Yaw–Roll System

In rollover prevention methods in which the control design is based on the modelling
of yaw–roll dynamics, the estimation of the CG is very important. In this section
an estimation procedure for the position and height of the center of gravity (CG) is
illustrated through a demonstration example. The real problem is that the physical
model is of nonlinear continuous-time and the unknown parameter must be estimated
by using a grey-box identification method. As a consequence of nonlinearity, the other
difficulty is that the selection or estimation of the initial conditions is critical.
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Figure 2.11 illustrates the combined yaw–roll dynamics of a vehicle. Recall that
the qLPV model can be transformed into a state space representation form

ẋ = A(v)x + B(v)δ, x = [
β ψ̇ φ φ̇ φt, f φt,r

]
T , δT = [

δ f δb
]

with A(v) = E−1A0(v), Bv = E−1
[
B0 B1

]
, where

E(v) =

⎡

⎢⎢⎢⎢⎢⎢⎣

mv 0 0 −msh 0 0
0 Izz 0 −Ixz 0 0

−msvh −Ixz 0 Ixx + msh2 −b f −br
m f v(r − h f ) 0 0 0 −b f 0
mrv(r − hr ) 0 0 0 0 −br

0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

A0(v) =

⎡

⎢⎢⎢⎢⎢⎢⎣

Yβ YΨ̇ − mv 0 0 0 0
Nβ NΨ̇ 0 0 0 0
0 mshv a33 −b f − br k f kr

−rYβ rY f − m f vh f −k f −b f kt f 0
−rYβ −rYr − mrvhr −kr −br 0 ktr

0 0 0 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

B0 = [
Yδ Nδ 0 rYδ 0 0

]
T ,

B1 =

⎡

⎢⎢⎣

−δ f −d1 − d2δ f 0 0 0 0
−δ f d1 − d2δ f 0 0 0 0

0 − lw
2 0 0 0 0

0 lw
2 0 0 0 0

⎤

⎥⎥⎦
T .

The measured signals are the lateral acceleration, the yaw rate and the roll rate,
i.e.,

y = [
ay ψ̇ φ̇

]
T , (2.108)

where the lateral acceleration is ay = vβ̇ + vψ̇ − hφ̈. In the identification context
the measuring of the roll rate seems to be obvious, since the parameter CG affects
the roll dynamics rather than other dynamics: y = φ̇. The unknown parameters are
the sprung mass ms and the height h of CG. The real values of these parameters used
in the simulation are ms = 12.48 and h = 1.15.

The system does not depend affinely from the unknown parameters. Therefore it
was necessary to manipulate the original system equations in order to obtain systems
that might be useful from an identification point of view. Introducing the new variable
ζ = Izzψ̇ − Ixzφ̇ and considering the unknown parameter ν = 1/(m − ms) one can
obtain the system

ẋ1 = As,1(ν, v)x1 + Bs,1(ν, v)w (2.109)
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where x1 = [
β ζ

]
T and w = [

δ f δb,r ψ̇ φ̇ ay
]
T . The matrices in (2.109) are the

following:

As,1(ν, v) =
[
ν
Yβ

v
0

Nβ
Nψ̇

Izz

]

Bs,1(ν, v) =
[
ν Yδ

v
0 ν

Yψ̇

v
− 1 0 −ν m

v
+ 1

v

Nδ − lw
2 0 Ixz

Nψ̇

Izz
0

]

Considering the unknown parameter α = msh one can write the equations

ẋ = As,2(v)x + Bs,2(v)δ + αBa,2(v)ω (2.110)

where As,2 = E−1
2 A2, Bs,2 = E−1

2 Bs and Ba,2 = E−1
2 Ba with

E2(v) =

⎡

⎢⎢⎢⎢⎢⎢⎣

mv 0 0 0 0 0
0 Izz 0 −Ixz 0 0
0 −Ixz 0 Ixx −b f −br

m f v(r − h f ) 0 0 0 −b f 0
mrv(r − hr ) 0 0 0 0 −br

0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

A2(v) =

⎡

⎢⎢⎢⎢⎢⎢⎣

Yβ YΨ̇ − mv 0 0 0 0
Nβ NΨ̇ 0 0 0 0
0 0 −k f − kr −b f − br k f kr

−rYβ rY f − m f vh f −k f −b f kt f 0
−rYβ −rYr − mrvhr −kr −br 0 ktr

0 0 0 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

Ba =
⎡

⎣
0 0 g 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

⎤

⎦T , Bs = [
B0 B1

]
T ,

and ω = [
φ φ̈ ay

]
T .

Thus we obtain two qLPV systems that depend affinely on the unknown parame-
ters, however, the expressions that corresponds to ϕ in (2.85) also contain unmeasured
signals. It is difficult and yet unsolved problem to construct an adaptive observer in
this general case. Therefore an estimation for the unmeasured signals β, φ and φ̈ is
needed. The signal φ is obtained by integrating the measured signal φ̇. The unknown
integration constant φ(0) is introduced as an additional parameter that must be deter-
mined. For simplicity in our simulation example this value is set to zero.

The signal β is estimated from the equation

ζ̇ = Nψ̇

Izz
ζ + Nββ +

[
Nδ − lw

2 0 Ixz
Nψ̇

Izz
0
]
w, (2.111)
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where ζ̇ is estimated from ζ from a finite difference scheme. The signal φ̈ is also
estimated from φ̇ with another finite difference scheme.

The accuracy of the estimation of β is improved by using an unknown input
estimation algorithm starting from (2.111):

˙̂
ζ = Nψ̇

Izz
ζ̂ + Nββ̂ +

[
Nδ − lw

2 0 Ixz
Nψ̇

Izz
0
]
w − k(ζ̂ − ζ ), (2.112)

β̂ = β0 − δ(ζ̂ − ζ ), (2.113)

where β0 is our initial estimate, for details. In our example the values δ = 500 and
k = 700 are used.

In order to fulfil the condition about persistent excitedness, the identification
method is based on signals collected during in a cornering manoeuvre. The cornering
manoeuvre starts at 1 s The steering angle applied in the simulation is a ramp signal.
It reaches the maximum value in 0.5 s and filtered at 4 rad/s to represent the finite
bandwidth of the driver. In the simulation experiment the forward velocity of the
heavy vehicle varies between 40 and 65 km h due to a braking force. Two sampling
times are applied, i.e.,Ts1 = 0.01 s, andTs2 = 0.001 s. The input and measured output
signals are depicted in Fig. 2.14. The results of the identification are summarized in
Table 2.7.

Figure 2.15 shows the convergence of the estimated parameters in our experiment
for the given sampling times. As it is expected the convergence is smoother and
quicker when the sampling time is smaller. However in practical applications the
highest value of the sampling time, i.e., Ts = 0.01 s is used and the results show that
this value is still acceptable in order to maintain a required accuracy of the estimated
parameters.

In what follows we will use the notations of Sect. 2.5.3 and those of Fig. 2.11.
Recall that the model equations can be expressed in a state space representation by
considering the state vector:

x = [
β ψ̇ φ φ̇ φt, f φt,r

]
T (2.114)

as

ẋ = A(ρ)x + B(ρ)u, (2.115)

with

A(ρ) = A0 + ρ1A1 + ρ2A2 + ρ3A3, B(ρ) = B0 + ρ1B1 + ρ2B2 + ρ4B4,
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Fig. 2.14 Signals in the simulation example

where the components of the scheduling vector ρ are

ρ1 = μ, ρ2 = μ

v
, ρ3 = μ

v2
, ρ4 = 1

v
.
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Table 2.7 Results of the identification

Ts α̂ ν̂ m̂s ĥ

0.01 0.5807 14.3601 12.4709 1.1515

0.001 0.5822 14.3601 12.4754 1.1511

The real values: ms = 12.487 and h = 1.15
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Fig. 2.15 Estimated parameters

The components of the state matrices are the following:

A0 =
[

0 −1
0 0

]
, A1 =

[
0 0

(C f +Cr )Ixz
(ms−m)hIzz

Cr l2
r −C f l2

f

Izz

]
,

A2 =
[

C f +Cr

ms−m 0
Cr lr−C f l f

Izz

(Cr lr−C f l f )Ixz
(m−ms )hIzz

]
, A3 =

[
0 Cr lr−C f l f

m−ms

0 0

]
,
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B0 =
[

0 0 0
ms Ixz

(ms−m)hIzz
0 lw

Izz

]
, B1 =

[
0 0 0
0 C f

(m−ms )h
Ixz
Izz

+ C f l f
Izz

0

]
,

B2 =
[

0 C f

m−ms
0

0 0 0

]
, B4 =

[ m
m−ms

0 0
0 0 0

]
.

The measured signals are the lateral acceleration ay = vβ̇ + vψ̇ − hφ̈, the roll
rate and the yaw rate while the control input signals are the steering angle and the
difference in the brake forces. Later the lateral acceleration is also selected as a
fictitious input. It is also assumed that the forward velocity is available.

The estimation of the unknown parameters in the model is based on the equations
of the lateral and the yaw dynamics of the vehicle, see Eqs. (2.68) and (2.69). Since
β and β̇ are unknown and not measured, a direct estimation algorithm cannot be
applied. Thus, it is necessary to manipulate the original system equations in order to
obtain systems that might be useful from an estimation point of view.

Observe first, that the lateral acceleration is a measured signal, which has direct
relation to β̇. By eliminating both β and β̇ we get

a1φ̈ + a2ψ̈ = μ(a3ψ̇ + a4δ f ) + (a5ay + a6ΔFb), (2.116)

where

a1 = (m − ms)h(lrCr − l f C f ) − Ixz(C f + Cr ),

a2 = Izz(C f + Cr ),

a3 = −1

v
C f Crl

2,

a4 = C f Crl,

a5 = −m(lrCr − l f C f )

a6 = lw(C f + Cr ).

Equation (2.116) is transformed in the following form:

ν̇ = μu1 + u2, (2.117)

where

ν = a1φ̇ + a2ψ̇,

u1 = a3ψ̇ + a4δ f ,

u2 = a5ay + a6ΔFb.

Assuming that the signals ψ̇, φ̇, ay, δ f , ΔFb, v are measured or calculated, the
values of ν, u1, u2 can be computed. Since the values ν̇ are not available, the least
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squares (LS) method cannot be applied directly in this problem. Next, a possible
method is proposed for the estimation of the parameter μ from the Eq. (2.117) where
ν, u1, and u2 are known.

Both sides of (2.117) are multiplied by eαt and then an partial integration is
performed. Using the partial integral form ν(t) can be expressed in the following
way:

ν(t) =e−αtν(0) + αe−αt
∫ t

0
eατ ν(τ )dτ+

+ μe−αt
∫ t

0
eατu1(τ )dτ + e−αt

∫ t

0
eατu2(τ )dτ. (2.118)

It is known that the solution of the system

ẇ(t) = −αw(t) + v(t) (2.119)

is w(t) = e−αtw(0) + e−αt
∫ t

0 e
ατ v(τ )dτ. Selecting w = 0 the filtered output of the

system (2.119) is v f (t) = e−αt
∫ t

0 e
ατ v(τ )dτ . Then the following relation is formu-

lated:

μu f
1 (t) = ν(t) − e−αtν(0) − αν f (t) − u f

2 (t), (2.120)

whereν f , u f
1 , u f

2 are the filtered outputs of the systems with inputs ν, u1, u2, respec-
tively. Based on Eq. (2.120) one can construct different practical algorithms for the
estimation of μ. Note that the choice α = 0 corresponds to the case of the simple
integration.

The equation, which is the basis of the identification, is the following:

ψ̈ = α1φ̈ + α2u f + α3ay + α4ΔFb, (2.121)

where the fictitious signal is u f = δ f − l
v
ψ̇ and α1 = − a1

a2
, α2 = μ a4

a2
, α3 = a5

a2
,

α4 = a6
a2

.
Note, that the model which is applied both for the parameter estimation and the

control design does not contain the adhesion coefficient, however it contains the
multiplication of the tire side slip constant and the adhesion coefficient, C̃ f = μC f

and C̃r = μCr . Thus, instead of the adhesion coefficient, this multiplication will
be estimated. Applying an identification method to (2.121), the coefficients αi are
estimated. These coefficients are related to the unknown parameters Izz, Ixz, C̃ f and
C̃r , thus they can be expressed from the estimated values:

Izz = lw
α̂4

, (2.122)
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Ixz = Izz

(
α̂1 − m − ms

m
hα̂3

)
, (2.123)

C̃ f = Izzα̂2m

l f m + Izzα̂3

, (2.124)

C̃r = Izzα̂2m

lrm − α̂3 Izz
. (2.125)

In what follows, for the sake of simplicity, it is assumed that the value for Ixx
is known. Based on the method outlined in this section it is possible to estimate its
value, too.

The model used in the estimation of the side slip angle contains the adhesion
coefficient, which is a time varying signal. These signals cannot be estimated simul-
taneously since the observer-based method assumes that the parameters in the LPV
model are known and the scheduling variables are available in the estimation of
the side slip angle. Thus, a three-step estimation procedure which is illustrated in
Fig. 2.16 might be needed. In the initialization step the unknown parameters are esti-
mated from Eqs. (2.122) and (2.124). In practice it is usually enough to calculate
them only when the vehicle has started and already covered a certain distance. The
estimated values of the adhesion coefficient is the initialization of the adaptive algo-
rithm C̃ f 0 and C̃r0. The other parameters, i.e., the inertias can be considered constant
in a long time period. Thus, the model initialization is rarely performed, e.g., after a
maintenance or periodically depending on the distance traveled.

In the second step an adaptive identification method is carried out for the estima-
tion of the changes of the adhesion coefficient in C̃ f and C̃r by an adaptive observer
scheme designed using (2.117). The procedure requires the vehicle to perform a
manoeuvre, e.g., there must be a nonzero steering angle or a nonzero yaw rate so
that the signal u1 is not identically zero. In the third step an adaptive observer-based
method is carried out for the estimation of the side slip angle. The method also gives
an estimation of the roll angles of the unsprung masses, which are important in the
monitoring of the pitching dynamics.

Fig. 2.16 The three-step
estimation procedure
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Fig. 2.17 Input and output signals in the identification step

Table 2.8 Result of the identification

Value α1 α2 α3 α4

Actual 0.1174 26.6950 −0.0211 0.0266

Estimated 0.1116 26.6090 −0.0210 0.0266

Relative error 0.0491 0.0032 0.0048 0.0020

Value Izz Ixz μC f μCr

Actual 34.9170 4.2 465.6 626.4

Estimated 34.9867 4.0062 465.0597 625.5661

Relative error 0.0020 0.0461 0.0012 0.0013

In what follows the three-step procedure is demonstrated through a simulation
example. The preliminary estimation of the unknown parameters in the vehicle model
is carried out in a vehicle manoeuvre in which the vehicle has started and already
covered a certain distance. It is assumed that the manoeuvre has a short duration
and the adhesion coefficient is constant. Using the measured signals the unknown
parameters of the vehicle model are estimated. Obviously, when the model parameters
are known, this step need not be performed.

Figure 2.17 presents the input and output signals of the simulation procedure, i.e.,
the steering angle, the lateral acceleration, the yaw rate and the difference between
the brake forces. In the simulation example noise signals are added to the measured
signals, which cause 2–3 % relative error. In the identification method it is assumed
that the difference between the brake forces is available. Using the LS method four
parameters are identified according to Eqs. (2.122) and (2.124) then the physical
parameters are calculated. Table 2.8 shows the estimated values with their relative
errors. In practice the difference between the brake forces is not always available.
It is assumed, however, that if the brake forces are generated in a symmetrical way
ΔFb is approximately zero. In this case one of the estimated parameters must be
known, e.g., the parameter Izz .
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Fig. 2.18 Input and output signals in the estimation algorithm

Then the estimation of the side slip angle and the adhesion coefficient are carried
out. The signals in the simulation procedure are illustrated in Fig. 2.18. The measured
signals are the steering angle, the yaw rate, the roll rate, the difference in the braking
forces and the lateral acceleration. In Fig. 2.18 the side slip angle and the adhesion
coefficient are also illustrated. These signals, however, are used for validation pur-
poses, and they are assumed not to be available in the identification procedure. The
identification procedure is performed in an on-line way, i.e., the identification of
both the adhesion coefficient and the side slip angle is performed during the vehicle
manoeuvres.

Then two identification steps are carried out: first, the adaptive method using a
partial integration method for the adhesion coefficient, second, the adaptive observer-
based method for the side slip angle. The result of the estimation of the side force
coefficient approximates the vary of the real side force coefficient below an acceptable
limit. In order to filter out the noises from the estimated signal a filtering procedure
is also performed, which is illustrated together with its relative error in Fig. 2.19a.
The result of the estimation of the side slip angle is illustrated in Fig. 2.19b. The
estimation of the side force coefficient tends to the actual side force coefficient
within a predefined acceptable limit.

2.7.3 Fault Estimation in LPV Systems

Any reconfiguration scheme rely on a suitable FDI component. There are a lot of
approaches to design a detection filter, see, e.g., Chen and Patton (1999). The LPV
setting, however, narrows the available tools.

In contrast to the LTI case in the LPV framework stability cannot be guaranteed in
algebraic terms, e.g., by requiring that the “frozen” LTI systems are stable. Besides
the technical difficulties of the potential design process this fact implies that algebraic
methods of the classical LTI FDI filter design, see, e.g., Gertler (1998), Varga (2008),
are not suitable for the LPV setting. In the LPV framework the only practical solution
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Fig. 2.19 Estimated signals through simulation

Fig. 2.20 Norm based
detector design problem

is to require quadratic stability which can be cast as a set of LMI feasibility problems.
The so called geometric approach of the FDI meets these requirements and often leads
to successful detection filter design, for details see Balas et al. (2003), Bokor and
Balas (2004), Edelmayer et al. (2004).

As a high level approach, the FDI filter design problem often can be cast in the
model matching framework depicted on Fig. 2.20. The LPV paradigm permits to
cast a nonlinear system as a linear time-varying (LTV) one, i.e., the residual can be
expressed as

r = Truu + Trdd + Trνν. (2.126)

Hence, to achieve robustness in the presence of disturbances and uncertainty, multi
objective optimization-based FDI schemes can be proposed where an appropriately
selected performance index has to be chosen to enhance sensitivity to the faults and
simultaneously attenuate disturbances: the robust disturbance rejection condition is
formulated as

‖Trd‖∞ = sup
‖ν‖2=1,ρ∈P

‖r‖2, (2.127)

is to be minimized.
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Fig. 2.21 Open loop interconnection structure for FDI filter design

This is a usual worst-case filtering problem and the corresponding design crite-
ria can be formulated as a convex optimization problem by using LMIs. The main
problem here is that the sensitivity and robustness conditions are conflicting. In the
LTI framework it means that both sensitivity to faults and insensitivity to unknown
inputs cannot be achieved at the same frequencies. Faults having similar frequency
characteristics as those of disturbances might go undetected. While the design prob-
lem is non-convex, in general, Henry and Zolghadri (2004) proposes a scheme that
can handle the problem by using LMI techniques.

A specific structure that fits the norm based approach, containing the weighted
open-loop system, which includes the yaw–roll model G(ρ) and the parameter-
dependent FDI filter F(ρ), and elements associated with performance objectives is
depicted on Fig. 2.21. In the diagram, u is the control input, δ f and Fb represent the
disturbance signals, while y is the measured output. The FDI filter takes the measured
outputs and the control inputs, thus, the effect of the control input is attenuated on
residual outputs. In the figure, fa is the actuator fault and fs is the sensor fault. The
ea and es represents the weighted fault estimation errors associated with failures.

The weight Wp f is the fault detection performance weight, which reflects the
relative importance of the different frequency domains. The weighting function Wp f

chosen for fault estimation errors can be considered as penalty function, i.e., the
weight should be large in the frequency range in which small errors are desired and
small in which larger errors can be tolerated. The size of the frequency response
of weight Wp f should be large at low frequency to achieve the integral action for
fault estimation. The weight W fa represents the size of possible fault in the actuator
channel. The weight W fs takes sensor failure into consideration in the FDI filter
design.

The augmented plant of the filtering problem has w = [
δ f Fb fa fs u

]
T as the

disturbance input and e = [
ea es

]
T the performance output which are used to evaluate

the estimation quality. The design requirement for H∞ residual generation is to
maximize the effect of the fault on the residual and simultaneously minimize the



68 2 Modeling of LPV Systems

effect of exogenous signals (δ f , Fb, u) on the residual. Further details on the design
can be found in Grenaille et al. (2008).

For illustrative purposes let us consider an FDI design for a suspension system,
where possible faults of the actuators (loss of effectiveness) can be detected by recon-
structing the actual suspension forces. Having measured the signals y1 = ẋ3, y2 = ẋ4

and y3 = x2 − x1 an inversion based detection filter is designed.
Recall that the state space representation of the quarter-car model can be formal-

ized with the state vector x = [
x1 x2 x3 x4

]
T , where x1 and x2 denote the vertical

displacement of the sprung mass and the unsprung mass, respectively, and x3, x4

denote their derivatives.

ẋ3 = 1

ms
(rk(x2 − x1) + rb(x4 − x3) + bnls ρb

√
ρb(x4 − x3) − F), (2.128)

ẋ4 = 1

mu
(−rk(x2 − x1) − rb(x4 − x3) − kt (x2 − d)−

− bnls ρb

√
ρb(x4 − x3) + F), (2.129)

where rb = bls − bsyms ρb and rk = kls + knls ρk , while the chosen scheduling variables
are ρb = sgn(x4 − x3) and ρk = (x2 − x1)

2, respectively.
In the construction of the filter the first step is to express F from (2.128) and in

these expression we plug in the known values yi :

F = |z| + bnls ρb

√|z| + rk y3 − ms y1. (2.130)

In this expression the value of the relative velocity z is not measured. The road
disturbance is an unknown input signal but from the Eqs. (2.128) and (2.129) one has

ms ẋ3 + mu ẋ4 = −kt (x2 − d). (2.131)

By plugging back the obtained expressions in the original equations one has the
system ẋ3 = rk

ms
(x2 − x1) − rk

ms
y3 + y1 and ẋ4 = − rk

mu
(x2 − x1) + rk

mu
y3 + y2, where

the relative velocity is not measured. The resulting LPV system

ż = −rkmez + rkmey3 + y2 − y1, (2.132)

with me = mu+ms
mums

will be observable.
For a semi-active actuator one can compare the value of the reconstructed force

with the nominal value of the damper force given for the specific value of the damper
velocity by the characteristics. If these two values differ considerably, a fault event
must be signaled. For active actuators however, since the real actuators might present
a saturation effect, it is necessary to check in addition, if the actual forces are lower
then those corresponding to the saturation level of the actuators, i.e., it is not enough
to compare the reconstructed forces with the force demands provided by the robust
LPV controllers.
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To obtain the final fault detection filter the equations of the actuator dynamics are
used as:

˙̃x5 = −β x̃5 + αAP ẑ + γ Q0,nom(F̂)x̃6, (2.133)

˙̃x6 = − 1

τnom
x̃6 + 1

τnom
ua, (2.134)

where ẑ and F̂ are the estimated damper velocity and damper force values, respec-
tively. A possible actuator fault affects the terms Q0 through a modified value of Ps
and the time constant τ , respectively. The nominal values of these parameters (i.e.,
for the fault free case) are denoted by the subscript nom.

For the fault free case one should have e5 = x5 − x̃5 ≈ 0 and e6 = x6 − x̃6 ≈ 0,
respectively. If e = ‖e5‖2 + ‖e6‖2 is greater than a given threshold, then a fault must
be present in the system and a fault signal is emitted to the higher level controller,
used in the controller reconfiguration process. Since the initial conditions are not
known, an (LPV) observer need to be constructed for (2.132) and (2.133), (2.134)
respectively. For a LPV system that depends affinely on the scheduling variables
an LPV observer can be designed using LMI techniques: let us recall that an LPV
system is said to be quadratically stable if there exist a matrix P = PT > 0 such that
A(ρ)T P + PA(ρ) < 0 for all the parameters ρ. A necessary and sufficient condition
for a system to be quadratically stable is that this condition holds for all the corner
points of the parameter space, i.e., one can obtain a finite system of linear matrix
inequalities (LM I s) that have to be fulfilled for A(ρ) with a suitable positive definite
matrix P .

In order to obtain a quadratically stable observer the LM I

AT
o (ρ)P + PAo(ρ) < 0 (2.135)

must hold for suitable K (ρ) and P = PT > 0, with Ao = A + KC . By introducing
the auxiliary variable L(ρ) = PK (ρ), one has to solve the following set of LMIs on
the corner points of the parameter space:

A(ρ)T P + PA(ρ) − CT L(ρ)T − L(ρ)C < 0. (2.136)

By solving these LMIs a suitable observer gain is obtained:

K (ρ) = P−1L(ρ). (2.137)

In the simulation example result the reconstructed force is illustrated by the solid
blue line in the upper part of Fig. 2.22.

The force is compared with the force produced by a fault free suspension system
(dashed line). The FDI filter gives the signals depicted in blue in the bottom part
of Fig. 2.22, while the red signal is the chosen threshold level expressed in a given
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Fig. 2.22 The result of the FDI procedure

percent of the desired force. Since the obtained error level will be greater than this
threshold, a fault signal is emitted indicating a faulty actuator.

The threshold level influences the fault-detection delay, i.e., high threshold level
corresponds to increased delay. However, due to disturbances, sensor noises and the
modeling uncertainties this level cannot be arbitrarily small and it is determined
using engineering knowledge.



Chapter 3
Robust Control of LPV Systems

Introduction

LPV control synthesis is a controller design approach based on either LPV or LPV
LFT which yields parameter-dependent controllers with a priori guaranteed stability
and performance properties. The available real-time information of the parameter
variation is used in the control synthesis method. Thus, in contrast to classical gain-
scheduling methods the time-varying nature of the corresponding LPV dynamics is
incorporated in the LPV control structure. The a priori stability and performance
guarantees eliminate the need for validation of stability and performance character-
istics afterwards by means of extensive simulations.

One of themain advantages of LPVcontrol synthesis is that there exists a solid the-
oretical foundation guaranteeing a priori stability and performance for all parameters
from a corresponding range and rate of variation. Moreover the corresponding con-
troller design is global with respect to the parameterized operating envelope while,
as opposed to the gain-scheduling approaches, the controller is synthesized directly,
rather than its construction from a family of local linear controllers. While LPV
control synthesis focuses on an linear model rather than a nonlinear model of the
plant, but the resulting controller is a nonlinear one. Since LPV synthesis employs the
inducedL2-norm as a performance measure, the control synthesis is directly related
to linear H∞-techniques. As a disadvantage, the controller synthesis is much more
involved and, generally, conservatism has to be introduced to arrive at a feasible and
convex problem.

3.1 The Modeling of Performances

Control systems are designed to maintain the system outputs at a desired value.
The outputs are linear combinations of the plant states and inputs that are important
in terms of system performance. A number of factors influence the ability of the
control system to maintain the desired output, e.g., initial conditions or external
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Fig. 3.1 The general P-K
structure for control design P

K

z

u
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disturbance inputs. Quantitative performance criteria are required to evaluate control
systems and to compare the merits of competing control system designs. The criteria
can include closed-loop system parameters, the response of the closed-loop system
subject to specific test conditions or the gain of the closed-loop system. The closed-
loop interconnection structure, which includes the feedback structure of the model
P and controller K , is shown in Fig. 3.1. In the diagram, d, u, y, and z are the
disturbance, the control input, the measured output, and the performance output,
respectively.

The main performance demands can be formulated easily. The sensitivity func-
tion S = (I + PK )−1 must be small so that system disturbances and model errors
have little influence on the output. The complementary sensitivity function T =
PK (I + PK )−1 must be small so that measurement noises have little influence on
the output. However, there are several limitations and conflicts in the specifications.
Example, both S and T cannot be small at the same frequency. Some of the per-
formance limitations are: limitation of control effort, non-minimum phase plant,
sensitivity versus complementary sensitivity. Weighting functions can be added to
select frequency bounds of interest and the select times of interest. Input weight-
ing functions are typically selected equal to the amplitude spectrum of disturbance
inputs. Output weighting functions are typically selected equal to the inverse of the
specifications on the outputs.

A standard weighting strategy is illustrated in Fig. 3.2. In the diagram u is the
control input, y is the measured output, z p is the performance output, zu , and zy are
performances at the input and the output, w is the disturbance, n is the measurement
noise. The aim of the weighting function Wp is to define the performance specifi-
cations. They can be considered as penalty functions, i.e., weights should be large
in a frequency range where small signals are desired and small where large perfor-
mance outputs can be tolerated. Wu and Wy may be used to reflect some restrictions
on the actuator and on the output signals. The purpose of the weighting functions

Fig. 3.2 The standard
feedback configuration with
weights
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Ww and Wn is to reflect the disturbance and sensor noises. The disturbance and the
performances in the general P-K structure are d = [

w n
]T

and z = [
zu zy z p

]T
.

Next, the mixed sensitivity problem is formalized. The open-loop system P is
given as

[
z
y

]
=

[
P11 P12
P21 P22

] [
d
u

]
(3.1)

Using the feedback relation between u and y, i.e., (u = −Ky), the closed-loop rela-
tionship taken from d to z can be derived as

Tzd = P11 − P12(I + K P22)
−1K P21 (3.2)

Using the weighting functions the transfer function Tzd can be obtained in the fol-
lowing form:

⎡

⎣
z p
zu
y

⎤

⎦ =
⎡

⎣
0 WpG
0 Wu

I G

⎤

⎦
[
d
u

]
(3.3)

Using Eq. (3.2) Tzd is as follows:

Tzd =
∥∥∥∥

[
WpT

υWuK S

]∥∥∥∥
2

(3.4)

Using (3.4) the H2 and H∞ performances are formulated. The H2 criterion
minimizes the expected energy of the performance z p due to the disturbance d and
the energy of the control signal zu

‖z p‖22 + υ2‖zu‖22 =
∥∥∥∥

[
WpT

υWuK S

]∥∥∥∥
2

(3.5)

with the appropriate choice of weighting functions and scalar υ. The purpose of
the first term is to make penalty functions for the performances, and the purpose of
the second term is to avoid the saturation of the actuators. The parameter υ defines the
trade-off between performance outputs and control effort. Using theH2 criterion the
effect of disturbances on the performances isminimized, i.e., it solves the disturbance
rejection problem.Themain limitation of theH2 performance is the lackof the formal
treatment of uncertainties of the plant.

The H∞ criterion is to find a stabilizing controller that minimizes ‖Tzd‖∞, i.e.,
minimizes the sup‖d‖2≤1 ‖z p‖2 subject to some restrictions on the control energy
sup‖d‖2≤1 ‖zu‖2. The mixed criterion with a parameter υ is the following:
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sup
‖d‖2≤1

{‖z p‖22 + υ2‖zu‖22} =
∥∥∥∥

[
WpT

υWuK S

]∥∥∥∥∞
. (3.6)

If there is a bound on the H∞ norm such that ‖Tzd‖∞ < γ thens

∥∥∥∥

[
WpT

υWuK S

]∥∥∥∥∞
< γ, (3.7)

with a positive γ .
Hence the frequency-dependent weightsWp andWu can be chosen to give bounds

on the terms T and K S required to achieve the high and low frequency gains. In fact
Wu must be a low pass filter while Wp needs to be a high pass filter. After selecting
weighting functions to bound T and K S, the plant is augmented with these weights.
The controller synthesis is carried out on this augmented plant while the H∞ norm
is minimized. The smaller γ is indicating a more robust design.

One of themain advantages of theH∞ performance is that it guaranteesmaximum
robustness against destabilizing uncertainties. In general, a slightly suboptimalH∞
controller is preferred to an optimal one.

The mixed H2/H∞ control synthesis treats the H2 and the H∞ problems in
a unified state space framework. This method provides a compensator that com-
bines theH2 quadratic performance criterion for disturbance rejection with theH∞
performance criterion for maximum robustness against destabilizing uncertainties.

The freedom of choice of suboptimalH∞ controllers can be used to minimize the
H2 performance index. Thus, the controller which minimizes the H2 performance
index is selected from the suitable suboptimalH∞ controllers. The performance z p∞
is associated with theH∞ constraint, and the performance z p2 is associated with the
H2 criterion.

A standard weighting strategy, which includes the feedback structure of themodel
G and controller K , is illustrated in Fig. 3.3. The weighting function Wp2 is applied
to the performance z p2 andWp∞ is applied to the performance z p∞. The disturbance

and the performances in the general P-K structure in Fig. 3.1 are d = [
w n

]T
and

z = [
z p2 z p∞ zy zu

]T
.

Fig. 3.3 The feedback
configuration with mixed
performances and weights
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3.2 The Modeling of Uncertain Components

Usually, two types of uncertainty structure are applied in the control design, i.e.,
unstructured and structured uncertainties. An unstructured uncertainty is modeled
by connecting an unknown but bounded perturbation to the plant. This type of uncer-
tainty structure requires little information, i.e., only the bound and the type of con-
nection. The perturbation is a bounded transfer function, where the bound is defined
in terms of the system∞-norm. An unstructured perturbation can be connected to the
plant in numerous ways, e.g., in additive, output multiplicative, input multiplicative,
coprime factor uncertainty way, etc.

The control design is based on the closed-loop interconnection structure, which
is illustrated in Fig. 3.4. In this structure uncertainties of the unmodelled dynam-
ics are represented by a block Δm and a weighting function Wr . It is assumed that
the transfer function Wr is known, and it reflects the uncertainty in the model. The
transfer function Δm is assumed to be stable and unknown with the norm condition,
‖Δm‖∞ < 1. Wp, Ww, and Wn are weighting functions for performance specifica-
tions, disturbances, and sensor noises, respectively.

Stability robustness can be evaluated when the perturbations in the models are
bounded: σ̄ (Δ( jω)) ≤ Δmax ( jω), where σ̄ is the maximum singular value and Δ

can be any of the perturbations. The bound given for the perturbation is in general
frequency-dependent allowing the specification of plant uncertainties to vary over
frequency. For example, in practice the plant model is accurate at low frequencies but
less accurate at high frequencies. The standard form of the unstructured uncertainty
structure is shown in Fig. 3.5. The small gain theorem provides a test for robust
stability with respect to bounded perturbations.

Theorem 3.1 (Small gain theorem) Suppose MΔ general feedback system is a real
rational subspace ofH∞ and γ > 0. Then MΔ is well-posed and internally stable for
all possible perturbations inH∞, where the perturbation is bounded ‖Δ‖∞ ≤ 1/γ
if and only if

Wr

Wp

Δm

Wn

z

Wd

ny

dm
G(ρ)

K(ρ)

em

d

u

ρ

Fig. 3.4 The standard feedback configuration with performances and uncertainties
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Fig. 3.5 The general P-K-Δ
structure for control design

‖MΔ(s)‖∞ < γ. (3.8)

See Zhou et al. (1996).

The small gain theorem implies that the smaller the∞-norm of the stable transfer
matrix MΔ(s), the larger the ∞-norm of the smallest stable perturbation Δ that
destabilizes the interconnected system (M,Δ). If the system model is described
by a set of additive perturbations (i.e., G = Gnom + Wr2ΔWr1), the closed-loop
system is robustly stable for all ‖Δ‖∞ ≤ 1/γ if ‖Wr2K SWr1‖∞ < γ. If the system
model is described by a set of output multiplicative perturbations (i.e., G = (I +
Wr2ΔWr1)Gnom), the closed-loop system is robustly stable if ‖Wr2TWr1‖∞ < γ.

These results can all be derived by the use of the small gain theorem.

3.3 Control Design Based on LPV Methods

In the LPV control design framework the basic setting is the following: it is assumed
that the state space representations of the plant is:

ẋ = A(ρ)x + B1(ρ)w + B2(ρ)u, (3.9)

z = C1(ρ)x + D11(ρ)w + D12(ρ)u, (3.10)

y = C2(ρ)x + D21(ρ)w, (3.11)

while the controller is searched as

ẋc = Ac(ρ)xc + Bc(ρ)y (3.12)

u = Cc(ρ)xc + Dc(ρ)y. (3.13)

In the L2 LPV controller synthesis the objective is to find an LPV controller such
that the L2 gain of the closed-loop system is minimized. This corresponds to the
robust H∞ control formulation known from the LTI framework.

The LPV system is regarded as a linear differential inclusion (LDI), and the rela-
tion between the state, or output, and the parameter is ignored in the LPV controller
synthesis step. Thus, even the scheduling variable is known in operational time, in
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the analysis/design stage basically it behaves as a mere uncertainty. Its knowledge
at the implementation phase is exploited as a linearizing condition in the design: in
contrast to the uncertain case, the full order LPV design can be cast as a convex
problem.

In the basic setting, the gain in the LPV case is interpreted in terms of all possible
trajectories allowed by the parameters within the set ρ ∈ Ω (usually bounding box
conditions). This approach corresponds to the choice of a single Lyapunov function
(SLF), in which the variation of the scheduling variables can be arbitrarily fast.

In later applications a parameter-dependent Lyapunov functions (PDLF) are
applied. The motivation reason for that is that when the bandwidth of the actuators
or the signals are disregarded it leads to an infinite rate bound on ρ in an impractical
way. If the rate bound on ρ is assumed a less conservative result for the class of
systems is yielded. Moreover, several examples show that a LPV system cannot be
stabilized by applying any controller if the system is defined in an SLF way.

The tool used in the LPV synthesis is the robust extension to the bounded real
lemma, see, e.g., Fen et al. (1996). In this formulation also the parameter derivative
ρ̇ enters in the consideration. Hence, it is necessary to have information about the
rate of change of the parameter, i.e., the parameter derivative must be bounded by
ρ̇ ∈ Ω̄ .

3.3.1 Formulation of a Nonlinear Controller

When a LPV controller has been designed, the relation between the state, or output,
and the parameterρ = ρ(x) is used in theLPVcontroller, such that finally a nonlinear
controller is obtained and implemented

ẋc = Ac(ρ(x))xc + Bc(ρ(x))y (3.14)

u = Cc(ρ(x))xc + Dc(ρ(x))y (3.15)

Observe that it is an important assumption that ρ(x) is measured or depends only on
measured signals. According to the properties of the modeling assumptions the LPV
system is equal to, or at least approximateswell, the nonlinearmodel for all parameter
and parameter derivative values in the bounding boxes, i.e., ρ ∈ Ω and ρ̇ ∈ Ω̃ . In
contrast to the gain-scheduling approach the LPV control framework guarantees to
meet closed-loop system specifications in the validity domain even under transients.

Intuitively this indicates that the closed-loop LPV specifications also hold for the
nonlinear closed-loop system with the nonlinear controller and the nonlinear model.
Due to the underlying robustness paradigm, however, the design is conservative, in
general. This is caused by the fact that Ω , and Ω̄ , respectively, is much larger than
the set spanned by the actual parameter trajectories.
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3.3.2 Control Design Based on SLF Methods

Starting froma constant Lyapunov function the formulation of the analysis conditions
for stability and L2 performance are rather straightforward based on the Lyapunov
and dissipativity theory.

Concerning the question of stability, let us recall, that an LPV system is said to
be quadratically stable if there exist a matrix X = XT > 0 such that

A(ρ)T X + X A(ρ) < 0 (3.16)

for all the parameters ρ ∈ P . Based on this concept an adaptation of the bounded
real lemma leads to: if there is a matrix X = XT > 0 such that

⎡

⎣
A(ρ)T X + X A(ρ) XB(ρ) CT (ρ)

BT (ρ)X −γ I DT (ρ)

CT (ρ) D(ρ) −γ I

⎤

⎦ < 0, ρ ∈ P (3.17)

is satisfied, then the L2 gain of the system described by

ẋ = A(ρ)x + B(ρ)w

z = C(ρ)x + D(ρ)w

is less than γ , i.e., for zero initial conditions x(0) = 0 it guaranteed that

sup
ρ∈P

sup
‖w‖2 �=0,w∈L2

‖z‖2
‖w‖2 < γ < ∞. (3.18)

3.3.3 Polytopic Approach

Let us consider an LPV plant S(ρ) given in a polytopic form, i.e.,

S(ρ) =
p∑

i=1

ρi Si , ρi ≥ 0,
p∑

i=1

ρi = 1. (3.19)

with

S ∼
(
A B
C D

)
, and vertex systems Si ∼

(
Ai Bi

Ci Di

)
.
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Let us suppose that a controller K (ρ) of the form

[
AK (ρ) BK (ρ)

CK (ρ) DK (ρ)

]
=

p∑

i=1

ρi

[
AKi BKi

CKi DKi

]
,

is designed that leads to the closed-loop system

ẋ = Acl(ρ)x + Bcl(ρ)w,

z = Ccl(ρ)x + Dcl(ρ)w.

Considering a polytopic LPV model a necessary and sufficient condition for a
system to be quadratically stable is that the condition in Eq. (3.16) holds for all the
corner points of the parameter space, i.e., one can obtain a finite system of LMI’s that
has to be fulfilled for A(ρ) with a suitable positive definite matrix P , see Gahinet
and Apkarian (1996), Fen et al. (1996).

We apply this idea for a state feedback design first. In order to obtain a quadrati-
cally stable state feedback the LMI

(A(ρ) + B(ρ)K (ρ))T X + X (A(ρ) + B(ρ)K (ρ)) < 0, (3.20)

or equivalently

Y (A(ρ) + B(ρ)K (ρ))T + (A(ρ) + B(ρ)K (ρ))Y < 0, (3.21)

must hold for suitable K (ρ) and X = Y−1 > 0. By introducing the auxiliary variable
M(ρ) = K (ρ)Y , one has to solve the following set of LMIs on the corner points of
the parameter space:

Y AT (ρ) + A(ρ)Y + MT (ρ)BT (ρ) + B(ρ)M(ρ) < 0 (3.22)

If B is parameter independent, than one has the following design conditions for
the vertex points of the parameter space:

Y AT
i + AiY + MT

i BT + BMi < 0, i = 1, . . . , p. (3.23)

By solving theseLMIs one can obtain a suitable observer gain for a fixed, but arbitrary
value of p. The controller is given by

K (ρ) =
p∑

i=1

ρi MiY
−1.
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Observe that if B is not parameter independent, then condition (3.22) is not linear
in ρ. Thus, in order to linearize it, one need a reparametrization, which, in general,
introduces a certain amount of conservativeness in the design.

Concerning the performance problem with dynamic output feedback, the starting
point is the polytopic reformulation of the Bounded Real Lemma, i.e.,

Theorem 3.2 (Polytopic Bounded Real Lemma) Suppose that there is a matrix
Xcl = XT

cl > 0 such that on each vertex the LMI

⎡

⎣
Acl(ρi )

T Xcl + Xcl Acl(ρi ) Xcl Bcl(ρi ) CT
cl (ρi )

BT
cl (ρi )Xcl −γ I DT

cl(ρi )

CT
cl (ρi ) Dcl(ρi ) −γ I

⎤

⎦ < 0, i = 1, . . . , p (3.24)

is satisfied.
Then the quadratic Lyapunov function V (xcl) = xTcl Xcl xcl guarantees the stability

of the closed-loop system. Moreover, the performance level set by γ , i.e., ‖z‖2 <

γ ‖w‖2, holds.
As in the state feedback case, in order to directly obtain a finite set of LMIs

it is needed to assume that the matrices B2, C2, D12, and D21 are constant, i.e.,
parameter independent, see the notations of (3.9)–(3.11). If this condition holds,
then the controller can be designed based on the following result, see Apkarian and
Gahinet (1995):

Theorem 3.3 (Polytopic H∞ conditions) Let us denote by NX and NY the ortho-
normal bases of the null spaces (BT

2 , DT
12) and (C2, D21, ), respectively. The poly-

topic H∞ control problem is solvable if and only if there exist pairs of symmetric
matrices X,Y satisfying the following system of LM Is in each of the vertex points
i = 1, . . . , p

NT
X

⎡

⎣
Ai X + X AT

i XCT
1i B1i

C1i X −γ I D11i

BT
1i DT

11i −γ I

⎤

⎦ NX < 0, (3.25)

NT
Y

⎡

⎣
AT
i Y + Y Ai Y B1i CT

1i
BT
1i Y −γ I DT

11i
C1i D11i −γ I

⎤

⎦ NY < 0, (3.26)

[
X I
I Y

]
< 0. (3.27)

Moreover, the problem is solvable with a k-th order LPV controller if and only if

rank(I − XY ) ≤ k.

The controller can be synthesized using standard H∞ techniques, see, e.g.,
Apkarian and Gahinet (1995) and Scherer and Weiland (2000).
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3.3.4 An LFT-Based Design

An LPV system P mapping exogenous input d and control input u to controlled
output z and measured output y are given. The state space representation of the plant
P is the following:

ẋ = Ax + B1d + B2u, (3.28)

z = C1x + D12u, (3.29)

y = C2x + D21d. (3.30)

The assumptions of the control design are the same as it was in the classicalH∞
control design. The problem is to find anLPVcontrol structure K such that the closed-
loop system is internally stable for all parameter trajectories with γ 2ΘTΘ ≤ 1 and
the induced L2-norm of the operator T (P, K ,Θ), see in Eq. (2.36), satisfies

max‖Θ‖∞≤1/γ
‖T (P, K ,Θ)‖∞ < γ (3.31)

where γ is a prescribed performance level. The LPV problem can be interpreted as
a robust performance problem for the nominal linear time invariant (LTI) plant Pa in
the face of the norm-bounded uncertainty Δ ⊕ Δ.

The structure of the uncertainty is the following: Δ = diag(ρ1 Ir1, . . . , ρk Irk),
where ri > 1 whenever the parameter θi is repeated. Consider the set of positive
definite similarity scalings associated with Δ:

LΔ = {L > 0 : LΘ = ΘL ,∀Θ ∈ Δ}. (3.32)

Given LΔ the set of scalings commuting with the repeated structureΔ ⊕ Δ is readily
deduced as

LΔ⊕Δ =
{[

L1 L2

LT
2 L3

]
> 0 : L1, L3 ∈ LΔ, L2Θ = ΘL2,∀Θ ∈ Δ

}
. (3.33)

From small gain theory, a sufficient condition for robust performance in the face of
the uncertaintyΔ ⊕ Δ, or equivalently for the existence of gain-scheduled controllers
is as follows:

Theorem 3.4 (γ -suboptimal LPV H∞ controller) Consider an uncertainty struc-
ture Δ and the associated set of similarity scalings LΔ⊕Δ defined in (3.33). If there
exists a scaling matrix L ∈ LΔ⊕Δ and an LTI control structure K such that the nom-
inal closed-loop system F�(Pa, K ) is internally stable and satisfies the following
inequality:

∥∥∥∥

[
L1/2 0
0 I

]
F�(Pa, K )

[
L−1/2 0
0 I

]∥∥∥∥∞
< γ, (3.34)

http://dx.doi.org/10.1007/978-3-319-46126-7_2
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then F�(K ,Θ) is a γ -suboptimal gain-scheduledH∞ controller. See Apkarian and
Gahinet (1995).

The LMI approach applied for gain-scheduled H∞ controller is based on the
Scaled Bounded Real Lemma, which is formalized in the following:

Theorem 3.5 (Scaled Bounded Real Lemma) Consider a parameter structure Δ,
the associated scaling set LΔ defined in (3.32) and closed-loop system. The following
statements are equivalent.

• A is stable and there exists L ∈ LΔ such that

∥∥L1/2(D + C(s I − A)−1B)L−1/2
∥∥∞ < γ (3.35)

• There exist positive definite solutions P and L ∈ LΔ to the matrix inequality

⎡

⎣
AT P + PA PB CT

BT P −γ L DT

C D −γ L−1

⎤

⎦ < 0. (3.36)

See Apkarian and Gahinet (1995).

Using Theorem 3.4 the solution of the scaledH∞ controller problem is presented.
In the next theorem, the scaledH∞ problem is considered as LTI plantswith arbitrary
uncertainty structuresΔ. The general statement of scaledH∞ problems is as follows.
Given are γ > 0, an uncertainty structure Δ and the associated scaling set LΔ. Find
L ∈ LΔ and an LTI controller K such that the closed-loop system is internally stable
and

∥∥L1/2F�(G, K )L−1/2
∥∥∞ < γ. (3.37)

Theorem 3.6 Consider a plant G with uncertainty structures Δ and an associ-
ated scaling set LΔ. Let NX and NY denote orthonormal bases of the null spaces
(BT

2 , DT
12, 0) and (C2, D21, 0), respectively. The suboptimal scaled H∞ problem is

solvable, if and only if there exist pairs of symmetric matrices X,Y ∈ Rn×n and
L , J ∈ Rr×r with L ∈ LΔ, J ∈ JΔ satisfying the following system of LM Is:

NT
X

⎡

⎣
AX + X AT XCT

1 B1

C1X −γ J 0
BT
1 0 −γ L

⎤

⎦ NX < 0, (3.38)

NT
Y

⎡

⎣
ATY + Y A Y B1 CT

1
BT
1 Y −γ L 0
C1 0 −γ J

⎤

⎦ NY < 0, (3.39)

[
X I
I Y

]
≥ 0, (3.40)

L J = I. (3.41)
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See Apkarian and Gahinet (1995).

Inequalities (3.38)–(3.40) are LMIs in R, S, L , J and the structure constraints
L ∈ LΔ and J ∈ JΔ are convex constraints. However, constraint (3.41) is strongly
nonconvex and thus its numerical tractability is unclear. Fortunately, in the gain-
scheduled H∞ control problem the nonconvex constraint L J = I disappears. As
a result, a sufficient condition can be obtained that is pure LMI and is therefore
tractable. The theorem, which is used in the gain-scheduled control design, is the
following.

Theorem 3.7 (Solution of the scaled H∞ controller problem) Consider an LPV
plant givenby the LFT interconnection structure inwhich P is aproperLTI plant and
Θ is the parameter operator. LetΔdenotes the structure set associatedwithΘ and LΔ

denote the corresponding set of scalingmatrices. Let NX and NY denote orthonormal
bases of the null spaces (BT

2 , DT
θ2, D

T
12, 0), and (C2, D2θ , D21, 0), respectively. The

gain-scheduled H∞ control problem is solvable if and only if there exist pairs of
symmetric matrices X,Y ∈ Rn×n and L , J ∈ Rr×r with L ∈ LΔ, J ∈ JΔ satisfying
the following system of LM Is:

NT
X

⎡

⎢⎢⎢⎢⎣

AX + X AT
[
XCθ XC1

] [
Bθ B1

]
[
Cθ X
C1X

]
−γ

[
J 0
0 I

] [
0 0
0 0

]

[
Bθ

B1

] [
0 0
0 0

]
−γ

[
L 0
0 I

]

⎤

⎥⎥⎥⎥⎦
NX < 0, (3.42)

NT
Y

⎡

⎢⎢⎢⎢⎣

ATY + Y A
[
Y Bθ Y B1

] [
Cθ C1

]
[
BθY
B1Y

]
−γ

[
L 0
0 I

] [
0 0
0 0

]

[
Cθ

C1

] [
0 0
0 0

]
−γ

[
J 0
0 I

]

⎤

⎥⎥⎥⎥⎦
NY < 0, (3.43)

[
X I
I Y

]
≥ 0, (3.44)

[
L I
I J

]
≥ I. (3.45)

See Apkarian and Gahinet (1995).

Theorem 3.7 provides sufficient conditions for the existence of gain-scheduled
H∞ controllers. An algorithm for the computation of the components of the con-
troller is proposed by Apkarian and Gahinet (1995). The design of gain-scheduled
H∞ controllers is also found in Apkarian et al. (1995), Gahinet andApkarian (1996),
Apkarian and Adams (1998), Apkarian and Tuan (2000). Pairs (X,Y ) are called fea-
sible for the LMI system and computing feasible pairs is a convex optimization
problem. Efficient polynomial-time algorithms are available to solve this LMI fea-
sibility problem, see Nesterov and Nemirovsky (1993), Nemirovsky and Gahinet
(1994).
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3.4 Control Design Based on PDLF Methods

3.4.1 The Analysis of LPV Systems

In what follows, we would like to apply parameter varying Lyapunov functions.
Thus, the parameter variation rate will also be involved and it is appropriate to
introduce the following parameter ν-variation sets: let a compact set P ⊂ RS and
finite non-negative numbers {νi }si=1 with ν = [ν1, . . . , νs]T are given. The parameter
ν-variation setF ν

P denotes the following:

F ν
P = {ρ ∈ C1(R, Rs) : ρ(t) ∈ P, |ρ̇i | ≤ νi , i = 1, . . . , s}, (3.46)

where C1 stands for the class of piecewise continuously differentiable functions.
Accordingly, we consider an nth order LPV system G(ρ) system with bounded

parameter variation rates. i.e., a system

[
ẋ(t)
z(t)

]
=

[
A(ρ(t), ρ̇(t)) B(ρ(t), ρ̇(t))
C(ρ(t), ρ̇(t)) D(ρ(t), ρ̇(t))

] [
x(t)
d(t)

]
, (3.47)

where ρ ∈ F ν
P , ρ̇ ∈ F̄ , x ∈ Rn , d ∈ Rnd and z ∈ Rnz , while A : RS → Rn×n , B :

RS → Rn×nu , C : RS → Rny×n , D : RS → Rny×nu are given continuous func-
tions.

First parameter-dependent stability, which is the generalization of quadratic sta-
bility, is defined.

Definition 3.1 (Parameter-dependent stability)Given a compact setP ⊂ RS , finite
non-negative numbers {νi }si=1 and a function A : RS × RS → Rn×n , the function A
is parametrically dependent stable overP if there exists a continuously differentiable
function P : RS → S n×n such that P(ρ) > 0 and

AT (ρ, β)P(ρ) + P(ρ)A(ρ, β) +
s∑

i=1

(
βi

∂P

∂ρi

)
< 0, (3.48)

for all ρ ∈ P and |βi | ≤ νi , i = 1, 2, . . . , s.

If there are no bounds for parameter variations, i.e., νi → ∞, i = 1, . . . , s by
restrictingP to be a constant matrix, the notation for parameter-dependent stability
goes back to quadratic stability. In Eq. (3.48) the left-hand side of the inequality is
strictly less than zero.

Theorem 3.8 Given a compact setP , and the LPV system

ẋ(t) = A(ρ(t), ρ̇(t))x(t), (3.49)
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where ρ ∈ F ν
P . If a function A is parametrically dependent stable over P , then

there exists some δ > 0, such that

AT (ρ, ρ̇)P(ρ) + P(ρ)A(ρ, ρ̇) + dP

dt
< −δ In, (3.50)

for all trajectory ρ ∈ F ν
P .

For an LPV system, if function A is parametrically dependent stable, then the
system is a parametrically dependent stable LPV system.

In what follows, the inducedL2-norm performance will be analyzed. For a para-
metrically dependent stable LPV system with zero initial conditions x(0) = 0 the
induced L2-norm is defined as

‖GFP‖i,2 = sup
ρ∈FP

sup
‖d‖2 �=0,d∈L2

‖z‖2
‖d‖2 . (3.51)

TheL2-norm level for an LPV system represents the largest ratio of disturbance
norm to performance norm over the set of all causal linear operators described by the
LPV system. The following theorem formulates a sufficient condition to test whether
the induced L2-norm of an LPV system is less than a prescribed performance level
γ > 0.

Theorem 3.9 Given a compact set P ⊂ RS, finite non-negative numbers {νi }si=1
and the LPV system. If there exists a function P : RS → Rn×n such that P(ρ) > 0
and

⎡

⎢⎢⎣

AT (ρ, β)P(ρ) + P(ρ)A(ρ, β) +
s∑

i=1

(
βi

∂P
∂ρi

)
P(ρ)B(ρ, β) γ −1CT (ρ, β)

BT (ρ, β)P(ρ) −Ind γ −1DT (ρ, β)

γ −1C(ρ, β) γ −1D(ρ, β) −Inc

⎤

⎥⎥⎦ < 0,

(3.52)

for all ρ ∈ P and |βi | ≤ νi , i = 1, 2, . . . , s, then the function A is parametrically
dependent stable over P and there exists a scalar δ with 0 ≤ δ < γ such that
‖GF ν

P
‖i,2 ≤ δ

This theorem is the generalization of the Scaled Bounded Real Lemma. When
constantmatrix P is restricted, this theorem recovers the result ofBecker et al. (1993),
which is an analysis test for LPV systems with arbitrarily fast varying parameters.
The theorem given by Wu (1995) is less conservative because of its exploitation of
parameter variation rates information.
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The condition of Theorem 3.9 is an infinite dimensional convex problem. By
approximating the function space with finite basis functions, we can simplify the
condition to a finite dimensional convex problem and solve the analysis problem
using efficient convex optimization techniques. The following test includes 2s LMIs
of some positive definite functions, and only requires the gridding of parameter space
thus it is computationally less expensive than the previous theorem.

Theorem 3.10 Given is the LPV system without state space data dependence on
parameter derivative. If there exists a function P : RS → S n×n such that P(ρ) > 0
and

⎡

⎢⎢⎣
AT (ρ)P(ρ) + P(ρ)A(ρ) +

s∑
i=1

±
(

νi
∂P
∂ρi

)
P(ρ)B(ρ) γ −1CT (ρ)

BT (ρ)P(ρ) −Ind γ −1DT (ρ)

γ −1C(ρ) γ −1D(ρ) −Inz

⎤

⎥⎥⎦ < 0,

(3.53)

for all ρ ∈ P , then the function A is parametrically dependent stable over P and
there exists a scalar δ with 0 ≤ δ < γ such that ‖GF ν

P
‖i,2 ≤ δ

It is noted that the notation
∑s

i=1 ±(·) in (3.53) indicates every combination of
+(·) and −(·) should be included in the inequality.

3.4.2 The Control of LPV Systems With InducedL2-Norm
Performance

In this section, the parameter-dependent output-feedback control problem for LPV
systems with bounded parameter variation rates is studied. This problem determines
the existence of a parameter-dependent controller which parametrically dependent
stabilizes the closed-loop LPV system and guarantees that the induced L2-norm of
the closed-loop system less than γ . The derivative of parameter is assumed to be
achievable (or measurable) in real-time to construct such a controller.

For a given compact set P ⊂ RS let us consider the open-loop LPV system in
the following way:

ẋ = A(ρ)x + B1(ρ)d + B2(ρ)u, (3.54)

z = C1(ρ)x + D11(ρ)d + D12(ρ)u, (3.55)

y = C2(ρ)x + D21(ρ)d + D22(ρ)u, (3.56)

where ρ ∈ F ν
P , x ∈ Rn , d ∈ Rnd , z ∈ Rnz , u ∈ Rnu , y ∈ Rny .
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Then the parametrically dependent m-dimensional linear feedback controller
with the continuous functions Ak : RS → Rm×m , Bk : RS → Rm×ny ,C : RS →
Rnu×m , D : RS → Rnu×ny are given. The controller depends on the parameter and
its derivative according to the following equation:

ẋk = Ak(ρ, ρ̇)xk + Bk(ρ, ρ̇)y, (3.57)

uk = Ck(ρ, ρ̇)xk + Dk(ρ, ρ̇)y, (3.58)

where ρ ∈ F ν
P , xk is the m-dimensional controller states.

The following assumptions for the generalized plant are made:

• D22(ρ) = 0. This assumption can be relaxed by including a feed through term to
the controller for the modified plant.

• D12(ρ) is full column rank for all ρ ∈ P and D21(ρ) is full row rank for all
ρ ∈ P . The relaxation of these assumptions leads to singular H∞ problem.

In the following, the parameter-dependent output-feedback controller synthesis
is presented. In order to achieve simple formulas, D11 = 0 is assumed. However, the
results can be generalized to D11 �= 0 case. The following simplifications are also
made: D12 = [

0 Inz2
]
and D21 = [

Ind2 0
]

The open-loop system is modified in the following form:

⎡

⎢⎢⎣

ẋ(t)
z1(t)
z2(t)
y(t)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

A(ρ(t)) B11 B12 B2

C11 0 0 0
C12 0 0 Inz2
C2 0 Ind2 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x(t)
d1(t)
d2(t)
uc(t)

⎤

⎥⎥⎦ , (3.59)

where ρ ∈ F ν
P , d1 ∈ Rnd1 , d2 ∈ Rnd2 , z1 ∈ Rne1 , z2 ∈ Rne2 .

The closed-loop system with ẋ Tc (t) = [
xT (t) xTk (t)

]
, zT (t) = [

zT1 (t) zT2 (t)
]
,

dT (t) = [
dT
1 (t) dT

2 (t)
]
is given by

ẋc = Ac(ρ, ρ̇)xc + Bc(ρ, ρ̇)d, (3.60)

z = Cc(ρ, ρ̇)xc + Dc(ρ, ρ̇)d, (3.61)

where

Ac(ρ, ρ̇) =
[
A(ρ) + B2(ρ)DK (ρ, ρ̇)C2(ρ) B2(ρ)CK (ρ, ρ̇)

BK (ρ, ρ̇)C2(ρ) AK (ρ, ρ̇)

]
, (3.62)

Bc(ρ, ρ̇) =
[
B11(ρ) B12(ρ) + B2(ρ)DK (ρ, ρ̇)

0 BK (ρ, ρ̇)

]
, (3.63)

Cc(ρ, ρ̇) =
[

C11(ρ) 0
C12(ρ) + DK (ρ, ρ̇)C2(ρ) CK (ρ, ρ̇)

]
, (3.64)

Dc(ρ, ρ̇) =
[
0 0
0 DK (ρ, ρ̇)

]
. (3.65)



88 3 Robust Control of LPV Systems

For a given performance level γ > 0 the parameter-dependent γ performance
problem is solvable if there exists an integer m ≥ 0, a function P : RS →
S(n+m)×(m+n) and continuous matrix functions Ak : RS → Rm×m , Bk : RS →
Rm×ny , Ck : RS → Rnu×m , Dk : RS → Rnu×ny such that P(ρ) > 0 and

⎡

⎢⎢⎣
AT
c (ρ, β)P(ρ) + P(ρ)Ac(ρ, β) +

s∑
i=1

βi
∂P
∂ρi

P(ρ)Bc(ρ, β) γ −1CT
c (ρ, β)

BT
c (ρ, β)P(ρ) −Ind γ −1DT

c (ρ, β)

γ −1CT
c (ρ, β) γ −1DT

c (ρ, β) −Inz

⎤

⎥⎥⎦ < 0,

(3.66)

for all ρ ∈ P and |βi | ≤ νi , i = 1, 2, . . . , s. The closed-loop matrices are defined
in (3.62).

This problem is a generalization of the standard suboptimalH∞ control problem.
The output-feedback controller synthesis is based on the following theorem:

Theorem 3.11 A compact setP , the performance level γ > 0 and the LPV system
are given. The parameter-dependent γ -performance problem is solvable if and only
if there exist matrix functions X : RS → Rn×n, and Y : RS → Rn×n, such that for
all ρ ∈ P , X (ρ) > 0, Y (ρ) > 0 and

⎡

⎣
Ric(X, ρ, ρ̇) X (ρ)CT

11(ρ) γ −1B1(ρ)

C11(ρ)X (ρ) −Inz1 0
γ −1BT

1 (ρ) 0 −Ind

⎤

⎦ < 0, (3.67)

⎡

⎣
Ric(Y, ρ, ρ̇) Y (ρ)B11(ρ) γ −1CT

1 (ρ)

BT
11(ρ)Y (ρ) −Ind1 0
γ −1C1(ρ) 0 −Inz

⎤

⎦ < 0, (3.68)

[
X (ρ) γ −1 In
γ −1 In Y (ρ)

]
≥ 0. (3.69)

where

Ric(X, ρ, ρ̇) = X (ρ) ÂT (ρ) + Â(ρ)X (ρ) −
s∑

i=1

±
(

νi
∂X

∂ρi

)
− B2(ρ)BT

2 (ρ),

(3.70)

Ric(Y, ρ, ρ̇) = ÃT (ρ)Y (ρ) + Y (ρ) Ã(ρ) +
s∑

i=1

±
(

νi
∂Y

∂ρi

)
− CT

2 (ρ)C2(ρ),

(3.71)

and

Â(ρ) = A(ρ) − B2(ρ)C12(ρ), (3.72)

Ã(ρ) = A(ρ) − B12(ρ)C2(ρ). (3.73)
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If the conditions are satisfied, it is possible—by continuity and compactness—to
perturb X (ρ) such that the two LMIs (3.67) and (3.68) still hold and Q(ρ) = Y (ρ) −
γ −2X−1(ρ) > 0 uniformly onP . Define now the following variables

F(ρ) = −[B2(ρ)X−1(ρ) + DT
12C1(ρ)], (3.74)

L(ρ) = −[Y−1(ρ)CT
2 (ρ) + B1(ρ)DT

21], (3.75)

H(ρ, ρ̇) = −[X−1(ρ)AF (ρ) + AT
F (ρ)X−1(ρ) +

s∑

i=1

(
ρ̇

∂X−1

∂ρi

)
+

+ CT
F (ρ)CF (ρ) + γ −2X−1(ρ)B1(ρ)BT

1 (ρ)X−1(ρ)], (3.76)

with

AF (ρ) = A(ρ) + B2(ρ)F(ρ), (3.77)

CF (ρ) = C1(ρ) + D12(ρ)F(ρ). (3.78)

Furthermore,

M(ρ, ρ̇) = H(ρ, ρ̇) + γ 2Q(ρ)[−Q−1(ρ)Y (ρ)L(ρ)D21 − B1(ρ)]BT
1 (ρ)X−1(ρ).

(3.79)

The strictly proper controller that solves the feedback problem is given by

Ak(ρ, ρ̇) = A(ρ) + B2(ρ)F(ρ) + Q−1(ρ)Y (ρ)L(ρ)C2(ρ) − γ −2Q−1(ρ)M(ρ, ρ̇),

(3.80)

Bk(ρ) = −Q−1Y (ρ)L(ρ), (3.81)

Ck(ρ) = F(ρ), (3.82)

Dk(ρ) = 0. (3.83)

The proof of this theorem and the discussion of the general case D11(ρ) �= 0 are
also in Wu (1995). Equation (3.67) is for the state feedback, (3.68) is for the output
estimation, and (3.69) is the coupling condition. The LMIs in Theorem 3.11 lead to
an infinite dimensional convex feasibility problem.

Note that the controller dynamics matrix Ak(ρ, ρ̇) depends explicitly on ρ̇. In
order to construct a parameter-dependent controller, both ρ and ρ̇ must be measured
or available. In case of a single scheduling variable, i.e., when ρ̇ is not measured, it
is possible to perform a ρ-dependent change of variables to remove ρ̇ dependence
as follows.

In the scalar parameter case, the controller dynamics from Theorem 3.11 take the
form

ẋk = A1(ρ)xk + ρ̇A2(ρ)xk + Bk(ρ). (3.84)
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Now consider the change of variables

xk,new = T (ρ)xk + ρ̇A2(ρ)xk + Bk(ρ), (3.85)

where T (ρ) is invertible. It is easy to show that if T (ρ) satisfies the linear matrix
differential equation

dT (ρ)

dρ
= −T (ρ)A2(ρ), (3.86)

then the resulting controller dynamics in the new coordinates xk,new will be indepen-
dent of ρ̇. In case of multiple scheduling variables, a similar method can be applied.
However, the analytical solvability is more difficult. For more details, see Balas et
al. (1997).

An alternative solution is to simply restrict the choice X to be independent of ρ̇

in Eq. (3.76). However, this approach may be conservative, since the rate of change
of the parameters is not bounded. Another possible solution is to apply a suitable
extrapolation algorithm in order to achieve an estimation of the parameter ρ̇. The
disadvantage of this approach is that the sources of the scheduling variables are not
independent.

In the following, the infinite convex feasibility conditions in Theorem 3.11 will
be converted to finite-dimensional LMIs. In the solution a finite number of basis
functions are selected to parameterize infinite-dimensional function space.

Theorem 3.12 Given a finite number of scalar, continuously differentiable functions
{ fi }Ni=1 and {gi }Ni=1 with the parametrization

X (ρ) =
N∑

i=1

fi (ρ)Xi , (3.87)

Y (ρ) =
N∑

i=1

gi (ρ)Yi . (3.88)

The parameter-dependent γ -performance problem is solvable if there exist matri-
ces {Xi }Ni=1, Xi ∈ S n×n and {Yi }Ni=1, Yi ∈ S n×n such that for all ρ ∈ P , X (ρ) > 0,
Y (ρ) > 0 and

⎡

⎢⎢⎢⎢⎣

Ric(X (ρ))
N∑
i=1

fi (ρ)XiCT
11(ρ) γ −1B1(ρ)

C11(ρ)
N∑
i=1

fi (ρ)Xi −Inz1 0

γ −1BT
1 (ρ) 0 −Ind

⎤

⎥⎥⎥⎥⎦
< 0, (3.89)
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⎡

⎢⎢⎢⎢⎣

Ric(Y (ρ))
N∑
i=1

gi (ρ)Yi B11(ρ) γ −1CT
1 (ρ)

BT
11(ρ)

N∑
i=1

gi (ρ)Yi −Ind1 0

γ −1C1(ρ) 0 −Inz

⎤

⎥⎥⎥⎥⎦
< 0, (3.90)

⎡

⎢⎢⎣

N∑
i=1

fi (ρ)Xi γ −1 In

γ −1 In
N∑
i=1

gi (ρ)Yi

⎤

⎥⎥⎦ ≥ 0. (3.91)

where

Ric(X (ρ)) =
N∑

i=1

fi (ρ)
(
Xi Â

T (ρ) + Â(ρ)Xi

)
−

s∑

j=1

±
(

ν j

N∑

i=1

∂ fi
∂ρi

Xi

)
− B2(ρ)BT

2 (ρ) (3.92)

Ric(Y (ρ)) =
N∑

i=1

gi (ρ)
(
ÃT (ρ)Yi + Yi Ã(ρ)

)
+

s∑

j=1

±
(

ν j

N∑

i=1

∂gi
∂ρi

Yi

)
− CT

2 (ρ)C2(ρ), (3.93)

and the matrices Â(ρ) and Ã(ρ) are defined in Eq. (3.72).

The other problem is that the inequalities must hold for all ρ ∈ P , which entails
that an infinite number of constraints must be checked. In order to solve this infinite
constraints convex problem, the compact set P must be gridded. For example, if
a hyper rectangle P ⊂ RS is gridded with L points in each dimension, then the
convex problem to determine appropriate {Xi }Ni=1 and {Yi }Ni=1 includes approximately
Ls(2s+1 + 1) LMIs. Another problem is the complete lack of guidance provided by
the theory to pick the basis functions, namely fi and gi . Thus, usually intuitive
solutions for basis functions are applied.

3.4.3 Inexact LPV Control Design

We conclude this chapter with a design example for a polytopic LPV system when
the measured varying parameters do not exactly fit the real ones, see Daafouz et al.
(2008). In this example the plant and the desired controller are considered in the form

ẋ = A(ρ)x + B1w + B2u, (3.94)

z = C1x + D12u, (3.95)

y = C2x + D21w, (3.96)
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having

A(ρ) =
p∑

i=1

ρi Ai , ρi ≥ 0,
p∑

i=1

ρi = 1,

and

ẋc = Ac(ρ̂)x + Bcy, Ac(ρ̂) =
p∑

i=1

ρ̂i Aci , (3.97)

u = Ccx, (3.98)

respectively. We assume that ρ̂ ∈ Ω(ρ) with

Ω(ρ) = { ρ̂ | |ρi − ρ̂i | ≤ θρi }, (3.99)

where θ ≥ 0 is a given scalar.

Theorem 3.13 Let us introduce the following LMIs:

⎡

⎣
W BT

1 BT
1 X + DT

21F
T

B1 Y I
X B1 + FD21 I X

⎤

⎦ > 0, (3.100)

⎡

⎣
LT
i + Li + θRi Ai + Mi YCT

1 + LT DT
12

AT
i + MT

i HT
i + Hi + θQi CT

1
C1Y + D12L C1 −I

⎤

⎦ < 0, (3.101)

⎡

⎣
−Ri Mi Y AT

i
MT

i −Qi −X
AiY −X −I

⎤

⎦ < 0, (3.102)

where

Li = AiY + B2L , Hi = X Ai + FC2.

Then, the controller

Aci = U−1(MT
i − X AiY − XB2L − FC2Y )V−1, (3.103)

Bc = U−1F, Cc = LV−1 (3.104)

guarantees the performance index γ < tr(W ) for all ρ̂ ∈ Ω(ρ),
where XY +UV = I .
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Chapter 4
Suspension Systems in Vertical Dynamics

Introduction

This section is concerned with designing the dynamic properties of vehicle suspen-
sion systems to improve the dynamic properties of vehicles. The performance of
suspension systems can be assessed quantitatively in terms of four parameters: pas-
senger comfort, suspension deflection, tire load variation, and energy consumption,
see Gillespie (1992), Cole (2001). Vehicle vibrations excited by road irregularities
might lead to the fatigue of the driver and passengers, as well as damage to the vehicle
and the payload. It is widely accepted that there is a correlation between passenger
comfort (or ride comfort) and the heave, pitch, and roll accelerations of the sprung
mass. The suspension working space, which is defined as the relative displacement
between the sprung and unsprung masses and also called suspension deflection, may
affect directional stability because of particular suspension geometries. It is required
that suspension deflection be minimized. The suspension system must guarantee that
the vehicle remains on the track in all maneuvers. The wheel load is made up of a
static component due to gravity and a dynamic component due to road unevenness. In
order to reduce variations of the side force during a vehicle maneuver, it is necessary
that the dynamic tire load component be kept as small as possible. The control force
limitation is incorporated into the design procedure in order to avoid large control
forces.

In order to improve passenger comfort, it is important to keep the effect of the
road disturbance w on the heave acceleration zaz as well as on the pitch zθ and roll
zφ accelerations small. Structural features of the vehicle place a hard limit on the
amount of suspension deflection available for reducing the vertical, pitch, and roll
accelerations of the car body. Hence it is also important to keep the effect of the
disturbance on the suspension deflection zs sufficiently small. In order to reduce the
dynamic tire load deflection, the effect of the disturbance on tire deflection zt should
also be kept small.

One of the difficulties in the control design is that the different control goals are
usually in conflict and a trade-off must be achieved between them. The variance
of body acceleration decreases when the variance of suspension or tire deflections

© Springer International Publishing Switzerland 2017
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increases, thus its minimization implies maximal admissible deflections. The result
also indicates that generally the constraints imposed on the suspension deflection
limit the tire deflection simultaneously and vice versa, see Hac (1987).

4.1 Modeling of Performances in the Vertical Dynamics

4.1.1 Performance Specifications

It is well known that the vertical, pitch, and roll acceleration transfer functions have
an invariant point at the tirehop frequency ω1i = √

kti/mui, i = f , r. From the control
design point of view this means that the transfer function from disturbance to heave
acceleration has a zero at ω1i. Similarly, the suspension deflection transfer function
has an invariant point at the frequency ω2i = √

kti/(mui + ms). This means that the
transfer function from disturbance to suspension deflections has a zero at ω2i. Fre-
quency responses to the control force, i.e., the heave, pitch, roll accelerations, and
suspension deflection, are illustrated in Fig. 4.1. The necessity of a trade-off between
passenger comfort and suspension deflection is due to the fact that is not possible
to simultaneously keep both the above transfer function small around the tirehop
frequency and in the low frequency range. The small reduction in vertical, pitch, and
roll accelerations at low frequency and in the vicinity of the tirehop frequency results
in a large increase in suspension deflection at these frequencies and vice versa.

4.1.2 Weighting Functions in the Control Design

The weighting function for performances Wp contains weights for several perfor-
mance components. The purpose of weighting functions Wp,az, Wp,θ , and Wp,φ is
to keep heave, pitch, and roll accelerations small over the desired frequency range.
The purpose of weighting functions Wp,sd and Wp,td is to keep suspension and tire
deflections small. At the same time, the magnitude of the control force is limited by
the weighting function Wp,us. The weighting function for heave acceleration of the
body can be set as follows:

Wp,az = 0.5
s

350 + 1
s

10 + 1
. (4.1)

In the design, the same weights are selected for the heave, pitch, and roll accelerations
Wp,az = Wp,θ = Wp,φ . The weighting functions for suspension deflection and tire
deflection are as follows:
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Fig. 4.1 Frequency responses of the full-car model to the control forces

Wp,sd =
s

350 + 1
s

10 + 1
, (4.2)

Wp,td = 1. (4.3)

The same performance weights are used for both the front and rear suspensions. It is
assumed that in the low frequency domain disturbances at the heave, pitch, and roll
accelerations of the body should be rejected by a factor of 0.5 and at the suspension
and tire deflections by a factor of 1. These weighting functions are illustrated in
Fig. 4.2. The weighting function for the control force is selected Wp,us = 4 × 10−3.
The weight for disturbance is selected Ww = 0.1 to scale the magnitude of the road
disturbance, i.e., the maximum road disturbance is assumed to be 10 cm. The weight
for the sensor noise is selected Wn = 0.001, thus essentially it is assumed that the
sensor noise is 0.001 m/s2 at the front and rear body accelerations on the left and
right-hand sides as well in the whole frequency domain.
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Fig. 4.2 Weighting
functions for performance
specifications
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In order to guarantee a trade-off between passenger comfort and suspension deflec-
tion, the possibility of the LPV constructions is exploited. Two gains, φaz and φsd ,
which reflect the relative importance of the acceleration and suspension deflection,
respectively, are applied in the weighting functions.

Wp,az(ρk) = φaz(ρk) · 0.5
s

350 + 1
s

10 + 1
, (4.4)

Wp,sd(ρk) = φsd(ρk) ·
s

350 + 1
s

10 + 1
. (4.5)

A large gain φaz and a small gain φsd correspond to a design that emphasizes pas-
senger comfort. On the other hand, choosing φaz small and φsd large corresponds
to a design that focuses on suspension deflection. In the LPV controller ρk is the
relative displacement between the sprung and the unsprung masses: ρk = x1 − x2.
ρk is used to focus on minimizing either the vertical acceleration or the suspension
deflection response, depending on the magnitude of the vertical suspension deflec-
tion. In order to achieve the shift in focus from vertical acceleration to suspension
deflection the weights associated with these signals, i.e., φaz and φsd , are chosen to
be parameter-dependent, i.e., the function of ρk .

The parameter-dependent gains φaz and φsd capture the relative importance of
the acceleration and deflection responses. When ρk is small, i.e., when suspension
deflection is well away from its limits, φaz(ρk) is large and φsd(ρk) is small, indicat-
ing that the LPV controller should focus on minimizing acceleration regardless of
suspension deflection. On the other hand, when ρk is approaching the limit, φsd(ρk)

is large and φaz(ρk) is small, indicating that the controller should focus on preventing
the suspension deflection from reaching its limit. The parameter dependence of the
gains is characterized by the constants ρ1 and ρ2. The parameter dependent gains
φaz(ρk) and φsd(ρk) in contrast to the constant φaz and φsd in Eq. (4.4) are selected
in the following way:
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Fig. 4.3 Parameter-dependent gains in the performance specification

φaz(ρk) =
⎧
⎨

⎩

1 if |ρk| < ρ1
1

ρ1−ρ2
(|ρk| − ρ2) if ρ1 ≤ |ρk| ≤ ρ2

0 otherwise
, (4.6)

φsd(ρk) =
⎧
⎨

⎩

0 if |ρk| < ρ1
1

ρ2−ρ1
(|ρk| − ρ1) if ρ1 ≤ |ρk| ≤ ρ2

1 otherwise
. (4.7)

In these gains, a scheduling variable relating to the relative displacement is used
to guarantee a trade-off between passenger comfort and suspension deflection. The
illustration of the parameter-dependent weights is in Fig. 4.3. Here, ρ1 and ρ2 are
selected as 0.05 and 0.07, respectively. This corresponds to an LPV controller that
minimizes only the vertical acceleration when the suspension travel is less than 5 cm,
and which gradually begins focusing on the suspension deflection when the travel is
greater than 5 cm. Over 7 cm, it minimizes only the suspension deflection.

4.2 Modeling of Vertical Dynamics by Using Uncertainties

4.2.1 Parameter Uncertainties

In this section, the modeling of uncertain components of vertical dynamics is con-
sidered. The parameters are assumed to be uncertain, with a nominal value and a
range of possible variations ms = m̄s(1 + dmsδms), ki = k̄i(1 + dkiδki), bj = b̄j(1 +
dbjδbj), with dms, dki, dbj scalars, and −1 ≤ δms, δki, δbj ≤ 1, i ∈ (sf , sr, tf , tr) and
j ∈ (sf , sr). The scalar d indicates the percentage of variation that is allowed for a
given parameter around its nominal value. The changing of the δ parameters in the
interval

[−1 1
]

determines the actual parameter deviation. All uncertainties can be
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written in the lower Linear Fractional Transformation (LFT) form. The ms parameter
occurs in the denominator of the differential equation of the suspension dynamics.
The other uncertainties, such as ki and bi, occur in the numerator. Their LFT repre-
sentations are as follows:

1

ms
= 1

m̄s
− dms

m̄s
δms(1 + dmsδms)

−1 = Fl

([ 1
m̄s

− dms
m̄s

1 −dms

]
, δms

)
= Fl(Mms, δms),

(4.8)

ki = k̄i + k̄idkiδki = Fl

([
k̄i 1

dkik̄i 0

]
, δki

)
= Fl(Mki, δki), i ∈ (sf , sr, tf , tr),

(4.9)

bj = b̄j + b̄jdbjδbj = Fl

([
b̄j 1

dbj b̄j 0

]
, δbj

)
= Fl(Mbj , δbj ), j ∈ (sf , sr). (4.10)

The δ uncertainty blocks must be pulled out of the motion equations. Thus, let
the input and output of δms be yms and ums, δki be yki and uki, and δbj be ybj and ubj ,
respectively. The LFT structures of uncertain parameters are shown in Fig. 4.4. The
outputs of Mms, Mki and Mbi are expressed in the following forms: ỹms = 1

m̄s
(ũms −

dmsums), ỹki = k̄iũki + uki, ỹbj = b̄j ũbj + ubj, respectively.
In the differential equations, the suspension stiffness and tire stiffness occur in

several places, and in these cases the uncertain parameters can be represented by
repeated scalar blocks. It means that different uncertain parameters must be handled
by the same uncertain coefficients (d, δ). The inputs and the outputs of these scalar
blocks are distinguished by using upper indexes. Let ykki and ukki be the output and
input of δki, and let ykbj and ukbj be the output and input of δbi. From equations of
uncertain components follow that some expressions can be given in full-car motion
equations as

1

ms
α = 1

m̄s
(α − dmsums), (4.11)

kki (−x1i + x2i) = k̄ki (−x1i + x2i) + ukki, (4.12)

bkj (−ẋ1j + ẋ2j) = b̄kj (−ẋ1j + ẋ2j) + ukbj. (4.13)

δms

ums
yms

Mms

δki

uki
yki

Mki

ỹms
ũms

ỹki
ũki

Mbi

ũbj ỹbj

δbj

ubj ybj

Fig. 4.4 The LFT structures of uncertain parameters
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with i ∈ (sf , sr, tf , tr), j ∈ (sf , sr), k ∈ 1, 2 and

α =
[
ksf

(−x1fl − x1fr + x2fl + x2fr
) + ksr (−x1rl − x1rr + x2rl + x2rr)

+ bsf
(−ẋ1fl − ẋ1fr + ẋ2fl + ẋ2fr

) + bsr (−ẋ1rl − ẋ1rr + ẋ2rl + ẋ2rr)−
− ffl − ffr − frl − frr

]
.

The motion equations of the full-car model changes since the parametric uncertainties
are taken into consideration. The modified motion equations can be formalized as
follows:

Msq̈ = LBs(ẋu − ẋs) + LKs(xu − xs) − Lf + F1uδ, (4.14)

Muẍu = Bs(ẋs − ẋu) + Ks(xs − xu) + Kt(w − xu) + f + F2uδ, (4.15)

where we have uδ = [
ums uks ukt

]T
, uks = [

u1
ksf u

2
ksf u

1
ksr u

2
ksr u

1
bsr

u2
bsr

]T
,

ukt = [
u1
ktf u

2
ktf u

1
ktr u

2
ktr

]T
and F1 =

⎡

⎣

⎡

⎣
−dms

0
0

⎤

⎦ L 0

⎤

⎦, F2 = [
0 I I

]
, respectively.

Using z = [
qT xTu

]T
, the motion equation is the following:

Mz̈ + Bż + Kz = Fuδ + Krw + Laf , (4.16)

with F = [
F1 F2

]T
. The state-space representation of the uncertain full-car model is

ẋ = Ax + B1w̃ + B2u, (4.17)

where w̃ = [
uTδ wT

]
, u = f and

A =
[

0 I
−M−1K −M−1B

]
, B1 =

[
0 0

M−1F M−1Kr

]
, B2 =

[
0

M−1La

]
.

4.2.2 Weighting Functions

In the control design, it is assumed that there is 20 % uncertainty in ms, 15 % uncer-
tainty in ksf , ksr , bsf and bsr , and 25 % uncertainty in ktf and ktr . In preparation for
the control design, the uncertainty weighting function Wr must be selected. In the
complex μ synthesis uncertainties are modeled as a complex full block with mul-
tiplicative uncertainty at the plant input. The weighting function of the unmodelled
dynamics is selected
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Fig. 4.5 Weighting
functions for unstructured
model uncertainties
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Wr,comp = 0.35
s

40 + 1
s

200 + 1
, (4.18)

which is illustrated in Fig. 4.5. It means that in the low-frequency domain, uncer-
tainties are about 35 % and, in the upper frequency domain they are up to 100 %.
In the mixed μ synthesis, in which mixed uncertainty is applied, information about
the model uncertainties between the model and the plant must be used in the con-
trol design, and the magnitude of the unmodeled dynamics must be reduced. The
uncertainty structure contains a full complex uncertainty block, which represents
the ignored actuator dynamics and real uncertainty blocks, which come from the
variations of nominal parameters. Thus, it is possible to select weighting function
significantly smaller than in the previous case. It means that in the low frequency
domain, the modeling error is about 5 % and in the upper frequency domain it is up to
100 %.

Wr,mix = 0.05
s

50 + 1
s

200 + 1
(4.19)

If parametric uncertainties of mechanical components are known, it is possible to
reduce the uncertainties for unmodeled dynamics. The magnitude of the unmodeled
dynamics between the model and the plant is reduced and the weighting function for
uncertainties is also reduced. In the case of mixed μ synthesis, information about the
real parametric uncertainties can be used in the control design. This method yields a
less conservative compensator than other robust control design methods.

4.3 Active Suspension Design Based on H∞ Control

Active suspension design for linear models is based on the H∞ method. The per-
formance specifications are the sprung mass acceleration, the roll and pitch angle
accelerations, suspension deflections, tire deflections, and control forces (Fig. 4.6):
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Fig. 4.6 The closed-loop interconnection structure in the H∞ method

z = [
az aθ aφ zsd ztd us

]T
. (4.20)

The purpose of the weighting functions is to keep the heave, pitch and roll accel-
erations, suspension deflection, and tire deflection small over the desired frequency
range and minimize the control input to avoid actuator saturation. Since there is a
trade-off between performance specifications, weighting functions are selected in
the frequency domain. The weighting functions for performance specifications, i.e.,
for accelerations, suspension deflections and tire deflections, are the following:

Wp,az = Wp,θ = Wp,φ = 0.5
s

350 + 1
s

10 + 1
, (4.21)

Wp,sd =
s

350 + 1
s

10 + 1
, (4.22)

Wp,td = 1. (4.23)

The weighting functions for performances are illustrated in Fig. 4.2. The other
weighting functions for the control force Wp,us = 4 × 10−3, for the road disturbance
Ww = 0.1, and for the sensor noise Wn = 0.001 are selected in Sect. 4.1. In the con-
trol design it is assumed that there are 20 % uncertainty in ms, 15 % uncertainty
in ksf , ksr , bsf , bsr , and 25 % uncertainty in ktf and ktr . The weighting function for
unmodeled dynamics is selected

Wr,mix = 0.05
s

50 + 1
s

200 + 1
, (4.24)

which is illustrated in Fig. 4.5. The modelling of uncertainties is presented in Sect. 4.2.
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Table 4.1 Summary of the D-K iteration

Iteration #1 #2 #3

Controller order 29 37 77

D-scale order 0 8 48

Gamma achieved 13.281 2.443 0.996

Peak μ value 3.935 1.039 0.842

Table 4.2 Summary of the D, G-K iteration

Iteration #1 #2 #3

Controller order 29 109 123

D-scale order 0 80 74

G-scale order 0 0 20

Gamma achieved 7661.89 3.929 1.233

Peak μ value 9.788 1.248 0.979

In the complex μ case, the weighting function for unmodeled dynamics is selected

Wr,comp = 0.35
s

40 + 1
s

200 + 1
. (4.25)

In the case of complex μ synthesis, in which the model uncertainties are treated with
full or scalar complex blocks, the magnitude of uncertainties must be assumed larger
than in the mixed μ synthesis because of the worst case principle, or the designed
compensator may not be robust against uncertainties.

The nominal parameters, which are used in the design procedure, are in Table 2.1.
In the case of the complex μ synthesis, the control design is performed by using
the D-K iteration. The important values of the steps of the iteration are shown in
Table 4.1. As a result of Step 3, the compensator order is selected 77, and all the
nominal performance, robust stability, and robust performance are achieved. In the
case of the mixed μ synthesis, control design is performed by using the D, G-K
iteration method. The values of the steps of iteration are shown in Table 4.2.

Because of Step 3, the compensator order is selected 123, and all nominal per-
formance, robust stability, and robust performance are achieved. The price of the
mixed H∞ synthesis is usually a controller of a larger order. It is possible to reduce
the order of the controller effectively by using a model reduction method, which
usually causes deterioration in the performance of the control system. The Hankel
model reduction method has been applied to the controller, see Anderson and Liu
(1989). The order of the controller is selected 30. The result of the μ test in Fig. 4.7
shows that robust performance properties are achieved. Thus, the controller ensures
both robust stability and robust performance while the controller takes the parametric
uncertainties into account.

http://dx.doi.org/10.1007/978-3-319-46126-7_2
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Fig. 4.8 Frequency responses of the controlled system based on the H∞ method
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The frequency responses of the sprung mass accelerations and suspension deflec-
tions are illustrated in Fig. 4.8. The solid line corresponds to the mixed μ synthesis,
the dashed line to the complex μ synthesis, the dashed-dotted line to the passive sys-
tem. We can observe the reduction in vertical, pitch and roll acceleration in the low
frequency range. The first amplitude peak, which corresponds to the eigen-frequency
of the body mass, is larger in the case of the complex μ design, and it practically
disappears in the mixed μ design. The acceleration responses are close to the passive
responses in the vicinity of the tirehop frequency. This is due to the fact that the
tirehop frequency is an invariant point and hence the magnitude of the responses at
this point cannot be reduced by feedback.

The effects of the disturbance on accelerations, suspension deflections, and the
control forces are illustrated in the time domain in Fig. 4.9. In the example, the input
signal is simulated as a 5 cm high bump. The effects of the disturbance on the sprung
mass acceleration are seen as large oscillations with long duration in the case of
the complex μ control. The mixed μ control shows better properties in terms of
both the value and the duration of the oscillation. The effects of the disturbance on
suspension deflection are larger in the controlled case than in passive case due to the
trade-off between passenger comfort and suspension deflection. In the mixed μ case,
suspension deflection achieves its steady state value within a short time. With respect
to the control force the mixed μ control requires the largest input force, however it
achieves its steady state value without any oscillation.

4.4 Active Suspension Design Based on LPV Control

In this section, the design of an active suspension is based on a nonlinear model, i.e.,
the model contains suspension components with nonlinear behavior and actuator
dynamics. The aim is to design an active suspension system based on the LPV
method. In the LPV model, three parameters are selected, which are linked to the
relative displacement, the relative velocity, and the load pressure of the actuator:
ρ = [

ρks ρb ρQ
]T

.
The control design is based on a closed-loop interconnection structure. The mea-

sured signal is the suspension deflection. The performances are the sprung mass
acceleration, suspension deflection, tire deflection, and the control force

z = [
az zsd ztd us

]T
. (4.26)

The augmented plant includes the parameter-dependent vehicle dynamics and the
weighting functions, which are defined in the following form:

[
z̃
y

]
= P(ρ)

[
w̃

u

]
, (4.27)
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where w̃ = [
dm w n

]T
, z̃ = [

em z
]T

. In the LPV model ρ denotes the scheduling
variable.

The closed-loop system Mr(ρ) is given by a lower LFT structure:

M(ρ) = F�(P(ρ),K(ρ)), (4.28)

where K(ρ) also depends on the scheduling variable ρ. The goal of the control
design is to minimize the induced L2 norm of an LPV system M(ρ), with zero
initial conditions, which is given by

‖M(ρ)‖∞ = sup
ρ∈FP

sup
‖w̃‖2 �=0,w̃∈L2

‖z̃‖2

‖w̃‖2
. (4.29)

The weighting functions for performance specifications are the following:

Wp,az = φaz(ρk) · 0.5( s
350 + 1)
s

10 + 1
, (4.30)

Wp,sd = φsd(ρk) ·
s

350 + 1
s

10 + 1
, (4.31)

Wp,td = 1, (4.32)

where ρk = x2 − x1 is the relative displacement between the sprung and the unsprung
masses. Here, the gains φaz(ρk) and φsd(ρk) are selected in a parameter-dependent
way. The selection of these gains is presented in Sect. 4.1 and illustrated in Fig. 4.3.

φaz(ρk) =
⎧
⎨

⎩

1 if |ρk| < ρ1
1

ρ1−ρ2
(|ρk| − ρ2) if ρ1 ≤ |ρk| ≤ ρ2

0 otherwise
, (4.33)

φsd(ρk) =
⎧
⎨

⎩

0 if |ρk| < ρ1
1

ρ2−ρ1
(|ρk| − ρ1) if ρ1 ≤ |ρk| ≤ ρ2

1 otherwise
. (4.34)

The purpose of the suspension controller is to emphasize different performance
objectives depending on the magnitude of suspension deflection. When suspension
deflection is small, the controller should focus on passenger comfort. As the deflection
limit is approached, the controller should focus on preventing suspension deflection
from exceeding this limit. The other weighting functions selected for the control force
Wp,us = 4 × 10−3, for the road disturbance Ww = 0.1, and for the sensor noise Wn =
0.001 are selected in Sect. 4.1. In control design model, uncertainties are also taken
into consideration as unmodeled dynamics. The weighting function for unmodeled
dynamics is selected
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Wr = 0.35
s

40 + 1
s

200 + 1
(4.35)

In the design of the LPV control, three signals are used to calculate the para-
meters in the scheduling vector ρ = [

ρk ρks ρb ρQ
]T

. Parameter ρk is equal to the
relative displacement, then its square ρks is calculated. Parameter ρb depends on the
signum of the relative velocity. In practice, the relative displacement is a measured
signal. The relative velocity is usually determined by numerical differentiation from
the measured relative displacement. Parameter ρQ is linked to the load pressure of
the actuator, which is assumed to be calculated directly from Eq. (2.57). For the
interconnection structure, an LPV controller is synthesized for six values of each
scheduling variable. Weighting functions for both the performance and robustness
specifications are defined in all of the grid points. With respect to the robustness
requirement, the same frequency weighting functions are applied in the whole para-
meter space and the effect of the scheduling variable is neglected. It is a reasonable
engineering assumption, since unmodeled dynamics does not depend on the forward
velocity. Note that although weighting functions are formalized in the frequency
domain, their state-space representation forms are applied in the weighting strategy
and in the control design.

The nominal parameters of the quarter-car model are in Table 2.3. In the first
demonstration example the LPV controller, in which a balance between the mini-
mization of the heave acceleration and suspension deflection are taken into consid-
eration, is analyzed. The controlled systems are tested by using bumps of different
heights, i.e., 3, 5, 8, and 10 cm. The time responses of the heave acceleration, sus-
pension deflection, tire deflection, and the control force are illustrated in Fig. 4.10.

In the second example, the LPV synthesis is performed in three different
approaches. They differ in the weighting strategy applied. In the first case, the focus
of the control design is passenger comfort, i.e., Φaz = 1 is constant. In the second
case, the focus is the suspension deflection, i.e., Φsd = 1 is constant. Finally, in the
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Fig. 4.10 Time responses of the controlled system using an LPV controller to different bumps

http://dx.doi.org/10.1007/978-3-319-46126-7_2
http://dx.doi.org/10.1007/978-3-319-46126-7_2
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Fig. 4.11 Time responses of the controlled system using LPV controllers to a bump

third case both Φaz and Φsd are scheduled, i.e., if either of them decreases the other
increases and vice versa. In this way, the third solution guarantees a trade-off between
passenger comfort and suspension deflection.

The controlled systems are tested by using an 8 cm high bump. The time responses
of the heave accelerations, suspension deflections, tire deflections and the control
forces are illustrated in Fig. 4.11. The solid line corresponds to the LPV synthesis in
which a balance between the minimization of the vertical acceleration and suspension
deflection are taken into consideration. The dashed line illustrates the result of the
synthesis, in which the control design focuses only on the minimization of the vertical
acceleration, while the dashed-dotted line illustrates the case when only suspension
deflection is minimized.

In the case of the LPV -based controlled system, in which a balance between the
different optimization criteria is taken into consideration, the effects of the distur-
bance both on the sprung mass acceleration and suspension deflection are seen as
relatively small oscillations with short duration. The control system minimizes only
the vertical acceleration when suspension deflection is less than 5 cm. It gradually
begins focusing on suspension deflection when it is greater than 5 cm. Over 8 cm
it minimizes only suspension deflection. In the case of the LPV control which only
takes the body mass acceleration into consideration, the effects of the disturbance on
suspension deflection generate larger values than the physical limit of the working
space. In the case of the LPV control which minimizes only suspension deflection,
the effects of the disturbance on the sprung mass acceleration are seen as large oscil-
lations with long duration.

Note that in practice semi-active suspension systems are applied. An important
book was published in the analysis and control of semi-active suspension control,
see Savaresi et al. (2010), Poussot-Vassal et al. (2008, 2011).
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4.5 Design of a Hierarchical Controller for an Active
Suspension System

In the suspension designs, the highly nonlinear actuator can be considered in an
additional step by imposing a tracking problem of the nonlinear dynamics for the
given suspension force, see Alleyne and Hedrick (1995), Alleyne and Liu (2000),
Zhang and Alleyne (2002). In these schemes, the additional delay introduced in the
control loop might yield a serious performance degradation. A robust state feedback
solution for this problem was proposed in Du and Zhang (2007) and an output
feedback solution in Briat et al. (2009).

A different approach was proposed in Fialho and Balas (2002) where the sepa-
rating layer was moved into the actuator by adding a linear equation for the pressure
through the hydraulic piston to the quarter-car model. The remaining part from the
actuator, i.e., the dynamic equations for the valve is related to this system through a
fictitious input that contains all the nonlinearities of the actuator as a static expres-
sion. While both models are LTI by introducing scheduled performance weights the
overall design is an LPV one. In contrast to these two-level approaches in Gáspár et
al. (2003b) a joint scheme was proposed for a LPV quarter-car model and a hydraulic
actuator where all the nonlinearities were handled using certain scheduling variables
in a single LPV model.

Global vehicle control is now an important issue in the future of vehicle control
technology. The aim of the integrated control methodologies is to combine and
supervise all controllable subsystems affecting vehicle dynamic responses in order
to ensure the management of resources. The solution might be the integration of the
control logic of subsystems which assumes a more complex modeling technique,
i.e., a full-car model.

The approach followed in Gáspár et al. (2003b) cannot be applied directly for
a full-car model due to the increased complexity of the resulting control problem.
In this paper, the design of a two-level controller is proposed for integrated active
suspension systems which contain nonlinear suspension components and actuator
dynamics. LPV design presented in the paper is proposed for active suspensions.

In the design of a high-level controller a full-car LPV model containing the sus-
pension dynamics is considered where passenger comfort, road holding, and tire
deflection are taken into consideration as performance outputs and the control input
designed is the control force. In this step, the uncertainties of the model are also
considered. A weighting strategy is applied to meet performance specifications, i.e.,
passenger comfort and road holding, guarantee a trade-off between performances
that are in conflict with each other and consider the model uncertainties.

The designed control force is a required force, which must be created by the
hydraulic actuator. The required force is tracked by a low-level controller by setting
the valve of the actuator. The backstepping-based nonlinear method is presented for
the design of the low-level controller. This approach explores the possibilities of the
application of classical nonlinear control techniques for the output tracking control
of an actuator subsystem used in active suspensions.
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The advantage of the two-level method proposed in this paper is that the actuator
dynamics and the suspension dynamics are handled in two independent control design
steps. The proposed separation layers met the intuitive structure of the different
subsystems, i.e., chassis and actuators while keeping the complexity of resulting
control problems between reasonable bounds. In contrast to Fialho and Balas (2002)
this approach allows a modular design—changes in the actuator do not affect the
upper level design.

4.5.1 Modeling of the Actuator Dynamics

The required force designed by the high-level controller must be tracked by a low-
level controller by setting the valve of the actuator. In order to provide a formal test of
the achieved control configuration at a global level, one has to formulate the problem
globally. Once the local controllers are designed, it is possible, in principle, to perform
an analysis step in the same robust control framework at a global level, for details
see Langbort et al. (2004). This might be an unreliable and highly computational-
intensive procedure. Therefore in practice this step is omitted and the quality of the
overall control scheme is assessed through simulation experiments.

The control forces designed by the high-level control are the required forces
in the front and the rear at the right and the left-hand sides of the vehicle. These
required forces must be tracked by the low-level controllers by setting the valve of
the corresponding actuators. The hydraulic actuator which generates the necessary
force for the suspension system is a four-way valve-piston system. In this paper, a
nonlinear model of an electrical hydraulic actuator is used, e.g., Alleyne and Hedrick
(1995), Fialho and Balas (2002), Merritt (1967).

The force of the actuator is expressed in the following way:

fij = APPLij, (4.36)

where AP is the area of the piston and PLij (i ∈ f , r, j ∈ l, r) is the pressure drop
across the piston, Merritt (1967). The derivative of PLij is given by

ṖLij = −βPLij + αAPzij + γQij, (4.37)

in which Qij is the hydraulic load flow, zij = ẋ2ij − ẋ1ij is the damper velocity and α,
β, γ are constants. The hydraulic load flow can be expressed using (2.57).

The displacement of the spool valve is controlled by the input to the servo-valve uij

ẋvij = 1

τij

(−xvij + uij
)
. (4.38)

where τij is a time constant.

http://dx.doi.org/10.1007/978-3-319-46126-7_2
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Each of the four actuator models are formalized separately based on the generic
model which is used for the design of the low-level control as

ξ̇1 = −βξ1 + γQ0(ξ1, ξ2)ξ2 + αAPz, (4.39)

ξ̇2 = − 1

τ
ξ2 + 1

τ
u. (4.40)

for the ijth actuator with ξ1 and ξ2 denote PLij and xvij, respectively, while Q0 = Q0ij

z = zij and τ = τij.
It is assumed that the reference for the force demand (which is a linear function of

ξ1) is given by the LPV controller. The goal is to asymptotically track this reference
with the actuator dynamics. Since the actuator subsystem and the suspension subsys-
tem form a cascade of a nonlinear and a LPV system, the backstepping methodology,
or an approach based on the exact linearization of the actuator dynamics, is an appro-
priate choice for our control goal. In what follows for the sake of completeness both
methods will be presented.

Remark 4.1 Note that the control design in the actuator level can also be performed
by using LPV methods. In order to reduce the complexity of the control design
the actuator dynamics is built into the quarter-car model, illustrated in Fig. 2.9. The
equations of the quarter-car model are

msẍ1 = Fkf + Fbf − ff (4.41)

muẍ2 = −Fkf − Fbf − Ftf + ff (4.42)

ṖL = −βPL + αAP(ẋ2 − ẋ1) + γQ (4.43)

ẋv = − 1

τ
xv + 1

τ
u. (4.44)

where ff = APPL, Q = sgn(PS − sgn(xv)PL)Q0xv .
The state-space representation of vertical dynamics

ẋ = A(ρ)x + B(ρ)u, (4.45)

The components of the state vector are the vertical displacement of the sprung mass
x1, the vertical displacement of the unsprung mass x2, their derivatives x3 = ẋ1,
x4 = ẋ2, the pressure drop x5(= PL), and the servo-valve displacement x6(= xv).
The input signal is the input to the servo-valve. Scheduling vector is selected as
ρs = [

ρQ ρb ρk
]

where the scheduling variables are assumed to be available

ρQ = sgn(PS − sgn(xv)PL)Q0,

ρb = ẋ2 − ẋ1,

ρk = x2 − x1.

http://dx.doi.org/10.1007/978-3-319-46126-7_2
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The advantages of this approach are that in the control-oriented model the nonlinear
behavior of suspension components, the actuator dynamics and the performance
specifications are taken into consideration. Moreover, the control design is based
on LPV methods. However, the disadvantage is that the solution does not provide
modularity in the design. The details can be seen in Gáspár et al. (2003b).

4.5.2 Tracking Control Based on Backstepping Design

The LPV system augmented by four times the dynamics of (4.39) and (4.40) is a
cascaded system

ζ̇ = A(ζ )ζ + B(ζ )[ξ ij
1 ], (4.46)

ξ̇
ij
1 = a1(ζ, ξ

ij
1 ) + b1(ξ

ij
1 , ξ

ij
2 )ξ

ij
2 , (4.47)

ξ̇
ij
2 = a2(ξ

ij
2 ) + b2u, (4.48)

that can be put in the strict feedback form, see Chap. 6. of Sepulchre et al. (1997),

ζ̇ = A(ζ )ζ + B(ζ )[ξ ij
1 ], (4.49)

ξ̇
ij
1 = a1(ζ, ξ

ij
1 ) + ξ̃

ij
2 , (4.50)

˙̃
ξ
ij
2 = ã2(ξ

ij
1 , ξ̃

ij
2 ) + b̃2(ξ

ij
1 , ξ̃

ij
2 )u, (4.51)

by using the state transform ξ̃
ij
2 = b1(ξ

ij
1 , ξ

ij
2 )ξ

ij
2 . For the resulting system a standard

recursive backstepping method can be applied according to Sepulchre et al. (1997),
van der Schaft (2000). Since the nominal system (4.49) is globally asymptotically
stable by construction the resulting closed-loop system containing the tracking con-
trollers will be stable, see e.g., Chap. 5 in van der Schaft (2000).

In what follows, the main steps that lead to the tracking control on each of the
actuators will be presented. In order to show the principle of the method, the notations
of van der Schaft (2000) are used. The pressure demand PL,dem required by the high-
level control and given by the feedback K(ζ ) will be denoted by ξ1,dem while ξ2,dem

denotes the demand of the spool valve displacement xv,dem. The state transform that
leads to the strict feedback form is needed only to relate the original system to
the already developed passivity-based framework of cascaded systems. The actual
computations can be done on the original system.

The backstepping design for the actuator subsystem can be performed in two
steps. In the first step, let us consider ξ2,dem as a virtual input and y1 = ξ1 − K(ζ )

as a virtual output. Since ξ1 is not a manipulable input, we would like to construct
a feedback that guarantees the tracking of K(ζ ) with ξ1. It is reasonable therefore
to define the tracking error to be linear and stable, i.e., ẏ1 = −k1y1, k1 > 0. Using
(4.46) and (4.47) the desired time-function for ξ2,dem can be computed as a nonlinear
feedback of the form
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ξ2,dem = 1

b1(ξ1, ξ2,dem)
[−a1(ζ, ξ1) + K̇(ζ )−

− k1(ξ1 − K(ζ ))]. (4.52)

In the second step, the desired input is u while the (virtual) output is defined as
y2 = ξ2 − ξ2,dem. For the tracking error, a stable linear dynamics is prescribed: ẏ2 =
−k2y2, k2 > 0. Using (4.46)–(4.48), we can now express the physically manipulable
actuator input u as a function of ζ , ξ1, and ξ2 in the following form:

u = 1

b2
[−a2(ξ2) + ξ̇2,dem]. (4.53)

By applying the above design, the closed-loop system will be asymptotically sta-
ble with Lyapunov function S(ζ, y1, y2) = V (ζ ) + 1

2y
2
1 + 1

2y
2
2 (see Sepulchre et al.

1997), where V (ζ ) is the Lyapunov function resulting from the high-level LPV
design.

Since a1(ζ, ξ1) = −βξ1 + αAPz and b1(ξ1, ξ2) = γQ0(ξ1, ξ2) one has

ξ2,dem = −βξ1 + αAPz + ξ̇1,dem − k1(ξ1 − ξ1,dem)

γQ0(ξ1, ξ2,dem)
.

The tracking error dynamics for ξ2,dem is written as

ξ̇2 − ξ̇2,dem = −k2(ξ2 − ξ2,dem). (4.54)

with a chosen positive constant parameter k2. This gives

− 1

τ
ξ2 + 1

τ
u − ξ̇2,dem = −k2(ξ2 − ξ2,dem), (4.55)

from which the following expression for the physical input uij is deduced:

u = ξ2 + τ ξ̇2,dem − τk2(ξ2 − ξ2,dem). (4.56)

In this method, the controller parameters k1 and k2 determine the convergence
speed of the virtual outputs y1 and y2, respectively. As a conclusion in the backstep-
ping method two parameters, k1 and k2, are chosen to handle the dynamics of the
tracking. By selecting suitable parameters the accuracy of tracking can be improved
but the physical limits of the actuator must be taken into consideration. Failing to
do so may result in discrepancy between the planned and the realized forces, i.e.,
tracking error.

The algorithm uses both ξ̇1,dem and ξ̇2,dem, which are not measured. In order to
practically implement the control law, we need to compute the time derivatives of
ξ1,dem and ξ2,dem, which can be done in a number of ways depending on the measure-
ment noise conditions and the required precision. Possible strategies for numerical
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differentiation are contained in Diop et al. (2000), Levant (2003), Vasiljevic and
Khalil (2006).

We conclude this section by showing that the choice of σ in the regularization of
the sign function does not influence the practical implementation. In the second step
of the backstepping algorithm, one has to compute the derivative of ξ2,dem, i.e.,

d

dt
(Ψ ) = d

dt

(
ξ2,demγQ0(ξ1, ξ2,dem)

) =

= d

dt

(−βξ1 + αAPz + +ξ̇1,dem − k1(ξ1 − ξ1,dem)
)
. (4.57)

By performing the computations one has

ξ̇2,dem

(
1 + γ

2Q2
0

ξ2,dem/σ

cosh2(ξ2,dem/σ)

)
= 1

Q0

(
Ψ̇ − ξ2,demγ

ξ̇1 tanh(ξ2,dem/σ)

2Q0

)

(4.58)

Since the function max{‖ x/σ
cosh2(x/σ)

‖} → 0 very fast as σ → 0 one has that for suffi-
ciently small σ

ξ̇2,dem = 1

Q0

(
Ψ̇ − ξ2,demγ

ξ̇1sign(ξ2,dem)

2Q0

)
, (4.59)

i.e., ξ̇2,dem can be computed as if the non-smoothness of the sign function were
ignored.

The algorithm of the backstepping method is illustrated in Fig. 4.12. The measured
signals required by the algorithm are ξ = PL, x2 = xv and z. The implementation of
the backstepping method requires the computation of the time derivatives of ξ̇1 = ṖL,
ξ̈1 = P̈L, ξ1,dem = PL,dem and ż which can be done in a number of ways depending
on the measurement noise conditions and the required precision. In this method, the

Fig. 4.12 Illustration of the
backstepping method Comp.
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Fig. 4.13 Analysis of the tracking properties using the nonlinear control design methods (solid
backstepping method, dashed feedback-linearization method)

controller parameters k1 and k2 determine the convergence speed of the tracking errors
e1 and e2, respectively. As a conclusion in the backstepping method two parameters,
k1 and k2 are chosen to handle the dynamics of the tracking. By selecting suitable
parameters the accuracy of tracking can be improved but the physical limits of the
actuator must be taken into consideration. Failing to do so may result in discrepancy
between the planned and the realized forces, i.e., tracking error. Possible strategies
for numerical differentiation are contained in Levant (2003), Vasiljevic and Khalil
(2006).

4.5.3 Simulation Examples

The operation of the low-level force-tracking controllers is illustrated in Fig. 4.13.
In the control design the parameters are selected as ki = 20 for the backstepping
method. In the simulation example the sampling time of the measured signals is
selected Ts = 0.01 s, which corresponds to practice. The illustrated signals are the
pressure drop across the piston, the displacement of the spool valve, the control input,
the achieved force and the RMS of the force error. In both cases, the achieved force
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Fig. 4.14 The effect of the actuator parameter τ in the backstepping method (solid τ = 1/30 s,
dashed τ = 1/27 s)

generated by the actuator follows the required force with high precision. However, the
simulations indicate that the backstepping method performs slightly better. The hairy
plot for the generated input of the feedback design is due to the repeated numerical
differentiation.

The tracking properties of the backstepping scheme are also tested in an uncer-
tain case. The low-level controller is based on a nominal nonlinear system, hence
its robustness against uncertainties—in contrast to the high-level controller—is not
guaranteed by the design procedure. Here, the uncertainty of the parameter τ is
taken into consideration. τ defines the dynamics between the control input and the
displacement of the spool valve according to the Eq. (4.40). In the analysis besides
the nominal value of τnom = 1/30 s the uncertain τact = 1/27 s is considered. The
control input, the RMS of the control error, the achieved force and the RMS of the
force are illustrated in Fig. 4.14. The results show robustness of the control scheme
against this parametric uncertainty.

The nominal parameters which are used in the design procedure are listed
in Table 2.1. The controllers are designed and implemented by using the
MATLAB�/Simulink� software. The verification of the designed controller is per-
formed by using the CarSim simulation software, in which the vehicle is represented
with high accuracy.

http://dx.doi.org/10.1007/978-3-319-46126-7_2


Chapter 5
Anti-roll Bars for Rollover Prevention

Introduction

The aim of rollover prevention is to provide the vehicle with an ability to resist
overturning moments generated during cornering. The problem with heavy vehicles
in terms of roll stability is a relatively high mass center and narrow track width.
When the vehicle is changing lanes or trying to go round obstacles, the vehicle
body rolls out of the bend and the center of mass shifts out of the centerline, and a
destabilizing moment is created. The lateral load transfer ratio has an important role
in the prediction of the rollover Larish et al. (2013). In the literature there are several
papers on the active control of heavy vehicles with different approaches to reducing
rollover risk. Three main schemes concerned with the possible active intervention
into the vehicle dynamics have been proposed: active anti-roll bars, active steering,
and an active brake.

One of themethods proposed in the literature employs active anti-roll bars by using
a pair of hydraulic actuators in order to improve the roll stability of heavy vehicles,
Németh et al. (2015b). The lateral acceleration makes vehicles with conventional
passive suspensions tilt out of the bend. The center of the sprung mass shifts out
of the vehicle centerline and this creates a destabilizing moment that reduces roll
stability. The lateral load response is reduced by active anti-roll bars, which generate
a stabilizingmoment to balance the overturningmoment in such away that the control
torque leans the vehicle into the bend, see Lin et al. (1996), Sampson and Cebon
(1998), Sampson (2000), Sampson andCebon (2003). The ride and roll performances
for an active anti-roll bar system are analyzed in Zulkarnain et al. (2012). In another
case, the combined roll moment of the front and rear suspensions is designed to
reduce body roll and distribute the roll moment, see Abe (1994), Hwang and Park
(1995), Kim and Park (2004).

In the second method, an enhanced roll stability control system focusing on
rollover prevention by active steering is presented. An actuator sets a small aux-
iliary front wheel steering angle in addition to the steering angle commanded by the
driver. The aim is to reduce the rollover risk due to the transient roll overshoot of the
vehicle when changing lanes or going round obstacles. The advantage of the active
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steering control is that it affects the lateral acceleration directly, see Mammar and
Koenig (2002). However the active steering control has an effect on not only the roll
dynamics of the vehicle, but it also modifies the desired path of the vehicle, so it
affects the yaw motion. In this control, a proportional feedback of both the roll rate
and the roll acceleration is used, see Ackermann and Bünte (1998). One extension
of this method is the gain scheduling method, which takes into account the change
in velocity of the vehicle and the height of the center of gravity, see Ackermann
and Odenthal (1999). This control concept is also extended by a nonlinear steering
control loop to prevent rollovers, see Ackermann et al. (1995), Odenthal et al. (1999).

In the third method, an electronic brake mechanism which enhances rollover
stability is proposed. In thismethod a small brake force is applied to eachof thewheels
and the slip response is monitored. In this way, it is possible to establish whether
a given wheel is lightly loaded and the lift-off is imminent. When an emergency is
detected, unilateral brake forces are activated to reduce the lateral tire forces acting on
outsidewheels, see Palkovics et al. (1999), Frank et al. (2000), Chen and Peng (2001),
Gáspár et al. (1998), Alberding et al. (2014). The brake system directly reduces the
lateral tire force, which is responsible for the rollover. Additional reasons for using
the brake system of a vehicle are the use of the most appropriate actuator and the
low cost of the solution.

It should be noted that the disadvantage of the active anti-roll bars is that the max-
imum stabilizing moment is limited physically by the relative roll angle between
the body and the axle. The active anti-roll bars do not effect the yaw motion of the
vehicle directly, while the steering control and the brake control do. Both with active
steering and an active brake control the only physical limit is the saturation of the
actuator. These compensators, however, have effects not only on the roll dynamics
of the vehicle but they also modify the desired path of the vehicle, so they affect the
yawmotion. Thus, the different control structures should be combined in one control
mechanism. In Odenthal et al. (1999) the linear steering control is extended by non-
linear emergency steering and braking control. As far as autonomous vehicle control
is concerned, a combination of the brake and throttle are proposed, see Hedrick et
al. (1997), Hedrick and Uchanski (2001).

Several solutions have been proposed to prevent the rollover of heavy vehicles by
using the LPV method. Active anti-roll bars, an active brake, an active steering, and
an active suspension system have been proposed in Gáspár et al. (2003c, e, 2004a,
b, 2006), Gáspár and Bokor (2005). A combination of the active brake and active
anti-roll bars has been proposed in Gáspár et al. (2003d). A combination of an active
brake and an active suspension has been proposed in Gáspár et al. (2004a). A fault-
tolerant control structure with active control mechanisms, i.e., an active suspension,
active anti-roll bars and an active brake mechanism, has been proposed in Gáspár
and Bokor (2006), Gáspár et al. (2005a). The purpose of this control structure is to
improve rollover prevention and passenger comfort and guarantee the suspension
working space. The benefits of the integration of anti- roll bars and the lateral control
are presented in Yim et al. (2012). Further methods, such as self-tuning fuzzy and
switching LQ-type anti-roll bar controllers are proposed in Muniandy et al. (2015),
Varga et al. (2015).
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Several researchers have focused on the integration of control systems. Kiencke
(1995) focused on the combined use of brakes and rear-steer to augment the driver’s
front-steer input in controlling the yaw dynamics. Hirano et al. (1993) proposed
a four-wheel steer and four-wheel drive (4WS/4WD) controller via feedforward
and feedback compensators. Nagai et al. (1998) designed an integrated control sys-
tem with RWS and integrated yaw moment control. Trachtler (2004a) constructed
an integrated vehicle control of active chassis systems, see also Trachtler (2004b).
Mastinu et al. (1994) created an integrated control by using steering and suspension
systems. Zin et al. (2005) proposed a global chassis control involving an active sus-
pension and ABS to improve road holding and passenger comfort. Several control
solutions have also been suggested as a result of the PATH project, see Maciuca
(1996), Hedrick et al. (1997), Prohaska and Devlin (1997), Hedrick and Uchanski
(2001). Rajamani and Piyabongkarn (2013) focuses on an integrated control wherein
the objectives of yaw stability and rollover prevention are addressed simultaneously.
Thus, a tradeoff between yaw stability, speed, and rollover prevention performance
through steer-by-wire is achieved.

5.1 Modelling of Performances in the Yaw–Roll Dynamics

5.1.1 Rollover Threshold

The objective of the roll control system is to enhance the roll stability of the vehicle.
The rollover of the vehicle starts when, in a bend, the tire contact force on the inner
wheels has become zero. The rollover is caused by the high lateral inertial force
generated by lateral acceleration. If the position of the center of gravity (CG) is high
or the forward velocity of the vehicle is larger than allowed at a given steering angle,
the resulting lateral acceleration is also large and might cause a rollover.

Definition 5.1 (Rollover threshold) Sampson (2000) The rollover threshold is the
limit of steady-state lateral acceleration that a vehicle can sustain without losing roll
stability

The lateral tire forces generated at the ground during cornering produce a steady-state
lateral acceleration of the vehicle, see Fig. 5.1. Three moments act on the vehicle:
the overturning moment arising from the lateral acceleration (mayh), the restoring
moment arising from the lateral load transfer from the inside tires to the outside
tires (ΔFz�w), and the lateral displacement moment arising from the roll motion
which displaces the center of mass laterally from the nominal center line (mghφ).
Here, it is assumed that the cross-slope angles are normally quite small, thus small
angle approximations are used. A steady-state moment balance yields the following
equation:

mayh = ΔFz�w − mghφ. (5.1)
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Fig. 5.1 A vehicle model
for rollovers
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Roll stability is achieved by limiting the lateral load transfers for both axles,ΔFz,l

andΔFz,r , to below the levels forwheel lift-off. The lateral load transfer is calculated:

ΔFz,i = kt,iφt,i

lw
, (5.2)

where kt,i is the stiffness of tires at the front and rear axles, φt,i is the roll angle of
the unsprung mass and lw is the vehicle’s width, and i = f, r denotes the front and
rear of the vehicle. While attempting to minimize load transfers, it is also necessary
to constrain the roll angles between the sprung and the unsprung masses (φ − φt )
to be within the limits of the travel of the suspensions. A maximum suspension roll
angle of 6−7◦ is typical.

The tire contact force is guaranteed if mg
2 ± ΔFz > 0 for both sides of the vehicle.

This requirement leads to the definition of the normalized lateral load transfer, which
is the ratio of the lateral load transfers at the front and rear axles

Ri = ΔFz,i

mi g
. (5.3)

The normalized lateral load transfer Ri value corresponds to the largest possible
lateral load transfer. If Ri takes on the value ±1 then the inner wheels in the bend
lift off. The limit of cornering is reduced when the load on the inside wheels has
become zero and all the load has been transferred to the outside wheels. The lateral
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acceleration at which rollover begins is the rollover threshold. Using Ri = 1 and
assuming mi = m

2 on the state moment balance (5.3), the rollover threshold is

a∗
y = �wg

2h
− φ∗g, (5.4)

where φ∗ is the critical roll angle at the wheel lift-off.
Note that vehicles in real life often experience rollovers even with lateral acceler-

ation much lower than the value of (5.4). The value is a result of a static analysis and
does not take the dynamics of factors such as suspension compliance or tire defor-
mation into account. Most rollover accidents occur when the driver reacts to sudden,
unforeseen circumstances such as an obstacle on the road or unexpected behavior of
other vehicles or pedestrians with abrupt steering.

In the calculation of the normalized lateral load transfer, the roll angles of the
unsprung masses both at the front and rear axles must be applied. This performance
has been applied in Sampson (2000), Gáspár et al. (2003c, d). The method requires
the measurement of the roll angle of the unsprung masses. However, this is not
a cheap measurement to make. It would therefore be more useful if roll rate or
roll acceleration could be measured and fed back into the controller. The roll rate
could be measured using a rate gyro, and roll acceleration by accelerometers. These
measurements would be cheaper and simpler, see Dorling (1996). In this dissertation,
a newmethod is proposed for the estimation of the roll angles of the unsprungmasses.

Note that there are other solutions to monitor the rollover coefficient, which is the
basis of the stability problem. Odenthal et al. (1999) proposed a method for calcu-
lating the rollover coefficient, see also Ackermann and Odenthal (1999). However,
it ignores the roll angle of the unsprung masses, and it assumes that all the wheels
have road contact. Takano and Nagai (2001) analyzed the critical threshold value for
the lateral acceleration. Palkovics et al. (1999) proposed a heuristic method in which
a small effect was generated by the brake or throttle system, see also Frank et al.
(2000).

5.1.2 Design of Weighting Functions

The roll stability of the vehicle can be improved by twomeans. By varying the control
torques between the sprung and unsprung masses the active roll control system can
manipulate the axle load transfers and the body roll angles. Using the brake system
of the vehicle a yaw moment can be generated by unilateral brake forces, which can
reduce the lateral acceleration directly.

In the control design in terms of rollover risk, Wp represents weighting functions
for the lateral acceleration, lateral load transfers and control inputs of active anti-roll
bars and an active brake, Wp,ay , Wp,Fz , Wp,ua , Wp,uF , respectively. The purpose of
the weighting functions is to keep the lateral acceleration, lateral load transfers and
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control inputs small over the desired frequency range. The weighting functionWp,ay

is selected as:

Wp,ay = φay

s
2000 + 1
s
12 + 1

. (5.5)

Here, it is assumed that in the low frequency domain the steering angle at the lateral
accelerations of the body should be rejected by a factor ofφay . Theweighting function
for lateral load transfers is

Wp,Fz = diag(1/102, 1/103), (5.6)

which means that the weight is 102 for the front axle and 103 for the rear axle. The
weighting functions for control inputs correspond to the front and rear control torques
Wp,ua = 1/20, and to the brake forceWp,uF = 1/10. The input scaling weightWw =
Wδ normalizes the steering angle to the maximum expected command. It is selected
5π/180, which corresponds to a 5 deg steering angle command. Wn is selected as a
diagonal matrix, which accounts for sensor noise models in the control design. For
example, the noise weights are chosen 0.01 m/s2 for the lateral acceleration and 0.01
deg/sec for the derivative of roll angle φ̇.

The goal is to design a controller that is only activated when the vehicle comes
close to rolling over, i.e., the normalized load transfer has reached the critical value.
In a normal driving situation the controller should not be activated. Consequently,
when the situation is not critical the weighting function should be small and when
the acceleration has reached the critical value the weight should be large to avoid
the rollover. φay is a gain, which reflects the relative importance of the normalized
lateral load transfer in the LPV controller design. A large gain φay corresponds to
a design that reduces rollover risk. When the vehicle is in a normal cruising φay is
small and the minimization of lateral acceleration is not needed. In order to take
into consideration a nonlinear function of the controller with respect to the operating
domain a parameter-dependent weighting function must be used.

The weight should be scheduled by the normalized lateral load transfer at the rear
side R, which can be deduced from the rollover situation. The rollover of a vehicle
is affected by the suspension stiffness to load ratio, which is greater at the rear axle
than at the front one. Thus, in case of emergency, the rear wheels lift off first. In this
dissertation R denotes the normalized lateral load transfer at the rear axle Rr . When
R is small, i.e., when the vehicle is not in an emergency, φay(R) is small, indicating
that the LPV controller should not focus on minimizing acceleration. On the other
hand, when R is approaching the critical value, φay(R) is large, indicating that the
controller should focus on preventing the rollover. The parameter dependence of
the gain is characterized by the constants R1 and R2. The parameter-dependent gain
φay(R) in Equation (5.5) is as follows:
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Fig. 5.2 Parameter-
dependent gain �a(R) in the
performance specification
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Thus, the normalized lateral load transfer is defined to monitor the rolling over of the
vehicle, thus it is applied as a scheduling variable. R1 defines the critical status when
the vehicle is close to rolling over, i.e., all wheels are on the ground but the lateral
tire force of the inner wheels is approaching zero or the suspension has reached
its physical limit and the active anti-roll bars are not capable of generating more
stabilizing moment. The closer R1 is to 1 the later the control will be activated.
Parameter R2 shows how fast the control should focus on minimizing the lateral
acceleration. The smaller the difference between R1 and R2 is the more quickly
the performance weight punishes the lateral acceleration. In the control design, the
constants are selected as R1 = 0.85 and R2 = 0.95. The functionφay(R) is illustrated
in Fig. 5.2.

Since the brake is activated only in emergencies, the control structure can be con-
sidered a switching system. In practice, when such switching is used, chattering may
occur. Chattering causes small amplitude oscillations with high frequency around
the switching point, which may degrade the performance properties of the vehicle.
In our case the switching point is the critical normalized lateral load transfer defined
as R1, and the brake system is switched on and off at this value. In order to eliminate
chattering, a hysteresis characteristic is applied with respect to the critical value of
the normalized lateral load transfer R1. It means that the value of R1 must be larger
when the brake system is switched on than when it is switched off. Such a normalized
lateral load transfer hysteresis is defined as

R1 = R1n + sgn(Ṙ)

wh
, (5.8)
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Fig. 5.3 Time responses to cornering with and without chattering elimination

where R1n is a nominal value of the switching point and wh is the parameter with
the width of hysteresis window. In Equation (5.8), it is assumed that the signum of
the derivative of the normalized lateral load transfer, which is denoted by sgn(Ṙ)

is also computed in real time. sgn(Ṙ) is used to deduce the direction of the load
transfer change. If it is positive the load transfer is increasing and the brake system
is switched on above R1n . However, when it is negative, i.e., the normalized lateral
load transfer is decreasing, the brake system is switched off at a smaller value than
its nominal value. sgn(Ṙ) is used as an additional scheduling variable in the control
design and its possible values are selected {−1, 0, 1}.

In the LPV model of the combined yaw and roll motion three parameters are
selected: the forward velocity v, the normalized lateral load transfer at the rear side
R, and the signum of its derivative sgn(Ṙ). The value v is measured directly, the
parameter R can be calculated by using the measured (or estimated) roll angle of the
unsprung mass φt,r , while sgn(Ṙ) is also a calculated signal.

In this example, the effect of the chattering phenomenon is illustrated. Time
responses to cornering when chattering elimination is not included in the control
design are illustrated by solid line in Fig. 5.3. Note that chattering in the brake force
occurs while the vehicle is being decelerated. This small oscillation causes the brake
system to be switched on and off around the critical value R1, and this degrades the
roll stability of the vehicle. The chattering is eliminated by applying a hysteresis
characteristic with respect to the critical value of the normalized lateral load transfer.
Due to the hysteresis characteristic the oscillation of the brake force ceases. It is
illustrated by dashed line in Fig. 5.3.
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5.2 LPV Control Methods for Rollover Prevention Systems

In this section, a method using a combination of active anti-roll bars and an active
brake mechanism is proposed to prevent the rollover of heavy vehicles. In the LPV
model, the forward velocity is used to calculate the parameters in the scheduling
vector, see in Eq. (2.84). The measured signals are the lateral acceleration and the
roll rate of the sprung mass.

The combined controller uses active anti-roll bars all the time to prevent rollovers.
The brake mechanism is only activated when the vehicle comes close to rolling over.
In normal cruising the brake part of the control should not be activated. However,
if the normalized lateral load transfer reaches a critical value the brake system must
minimize the lateral acceleration to prevent the rollover. The critical value of the
normalized lateral load transfer is determined when the lateral load transfer of one
of the curve-inner wheels has reached zero. The advantage of this solution is that the
controller guarantees performance specifications with smaller control energy.

The control design is based on a closed-loop interconnection structure, which is
illustrated in Fig. 5.4. The control input is the difference between the brake forces
ΔFb, which generates a yaw moment, which affects the lateral tire forces directly.
The active anti-roll bars generate a stabilizing roll moment between the sprung and
unsprung masses ua f and uar .

The performance outputs in the control design are the lateral acceleration, lateral
load transfers and control inputs:

zr = [
ay ΔFz f ΔFzr uT

r

]T
, (5.9)

where ur = [
ua f uar ΔFb

]T
. In the design of the LPV control two signals are used

to calculate the parameters in the scheduling vector, i.e., the forward velocity and the
normalized lateral load transfer. The scheduling vector is ρ = [

1
v

1
v2 v R sgn(Ṙ)

]T
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Fig. 5.4 The closed-loop interconnection structure for the design of a combined control
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In this section, the operation of the combined control mechanism, which is based
on the LPV control is illustrated. The results of the combined control are compared
with the controlled systemswhich only use active anti-roll bars andwhich only use an
active brake mechanism. The values of the vehicle parameters are found in Table2.4.

In the example a double lane change maneuver is performed. The maneuver has
a 2 m path deviation over 100 m. The size of the path deviation is chosen to model
a real obstacle evasion in an emergency on a road. The velocity of the vehicle is 75
kph. The steering angle input is generated in such a way that the vehicle with no roll
control will come close to rolling over during themaneuver and its normalized lateral
load transfers are above the value ±1. The steering angle applied in the simulation is
a ramp signal. The forward velocity is not constant during the maneuver because in
the case of brake and combined control the brake force provided by the compensator
decelerates the vehicle. In simulation, the driver does not push down on the brake
pedal, hence the only change in forward velocity is caused by the compensator.
Figure5.5 shows the time responses in cases when active anti-roll bars (dash-dot), an
active brake mechanism (dash) and a combined roll control system (solid) are used.

In the case of the combined control, the lateral acceleration is similar to that when
using active anti-roll bars. The reason is that only the active anti-roll bars reduce
the acceleration and the brake control will not work until the normalized lateral
load transfer has reached the critical value R1. Hence, the combined control can be
considered as simple active anti-roll bars when the normalized lateral load transfer
is less than R1. However, the required control action with respect to the brake force
is less than in the case of the active brake control. In the case of the combined
roll control, only the active anti-roll bars work and generate a stabilizing lateral
displacement moment when the normalized lateral load transfer does not reach the
critical value and the brake system is not activated. Hence, the brake force required
to prevent the rollover of the vehicle is less than when using only the brake system.
When the combined control and the brake mechanism are applied the roll angle of
the sprungmass is in the same phase as in the uncontrolled case and the physical limit
of the suspension travel is not exceeded. It can be observed that the critical value
of the lateral acceleration is the second peak from the rollover point of view. The
engineering interpretation of this phenomenon is that the vehicle generates larger
lateral acceleration when it starts returning into the lane because the driver must set
a double steering angle with −180 phase shifting to steer back the vehicle into its
original position. As far as all of the three control structures are concerned, the roll
angles of the unsprung masses at the front and rear axle are slightly different due to
the different suspension parameters and the stiffness to load ratio.

The path of the vehicle for all controls can be seen in Fig. 5.5. In case of the active
anti-roll bars the vehicle keeps the desired path. In the case of the brake control, the
real path is significantly different from the desired path due to the brake moment,
which affects the yaw motion. The only limit to using the active brake mechanism is
the saturation of the brake actuators. This means that the minimization of the lateral
acceleration is restricted by the physical limit of the actuator. However, the only
problem is that if too much unilateral brake force is applied the stability of the yaw
motion is degraded. In order to avoid the degradation of yaw dynamics the combined

http://dx.doi.org/10.1007/978-3-319-46126-7_2
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Fig. 5.5 Time responses to a double lane change steering input when the combined control is
compared with other controllers

control is used, in which case the real path is only slightly different from the desired
path because the brake force is less than in the case of the active brake control. In
the case of braking control or in the case of combined control, the deviation in path
can be corrected by changing the steering angle. In the case of combined control, the
deviation between the real and the desired path can be corrected by a small change in
the steering angle. It is noted that changing the steering angle has negative effects on
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the roll movement. The greater the difference between the desired path and the real
path is, the larger steering angle is needed, which in turn increases the overturning
moment. As in the case of combined control mechanism the real path is only slightly
different from the desired path and a small correction is needed. Thus, the effect of
the steering angle does not result in overturning.

5.3 Design of a Fault-Tolerant Rollover Prevention System

In practice, three fault scenarios are considered for a hydraulic actuator. First is a lock
failure, in which case the piston of the hydraulic actuator remains locked in a partic-
ular position. In this case, the hydraulic actuator does not work after the fault and the
actuator resists the motion of the vehicle in the roll plane. The physical characteristic
of this phenomenon is that the piston of the hydraulic actuator is clutched and it is not
moving any longer. Second is a floating failure, in which case the relative displace-
ment of the hydraulic actuator changes the suspension travel instantaneously. This
means that the active anti-roll bars cannot generate lateral displacement moment to
balance an overturning moment and the piston of the hydraulic actuator can move
freely in the cylinder. This situation may arise when the power supply is cut off
and sufficient oil pressure is not maintained. The third type of failure is the loss in
effectiveness. This means that the effectiveness of the actuator is reduced. When this
failure occurs the actuator goes on working but with reduced power. This is the case
for example when the leakage coefficient of the piston is too high, hence the actuator
cannot generate the torque required by the control valve.

Falult information provided by a fault detection filter is given by ρ f = f̂
fmax

, where
fmax is an estimation of the maximum value of the potential failure (fatal error).
Fault information ρ f is used as a scheduling variable. Using this parameter the
controller is adjusted when different types of actuator failures occur. Note that ρ f is
normalized fault informationwhose value is taken from interval

[
0 1

]
. The zero value

of normalized fault information means a fault-free actuator and value 1 is the total
fault of the active anti-roll bars. In other words in case of value 1 the actuator is not
able to generate control torque. This situation is classified as a float failure because
the anti-roll bars have broken down but the actuators do not resist the displacement
of the suspension. In this case, the only control input which can prevent the rollover
of vehicle is the brake system. If ρ f takes the value between 0 and 1 there is a loss in
effectiveness, i.e., the active anti-roll bars can be used to generate stabilizingmoment
but with reduced power.

Fault information is taken into consideration in the performance weighting for
lateral acceleration, since an active brake affects this signal directly. The weighting
function for lateral accelerationWp,ay(R) is selected, where gain φay(R) depends on
the normalized lateral load transfer R. Here, R1 defines the critical status when the
vehicle is close to rolling over.

On the event of a fault the range of operation of the brake systemmust be extended
in such a way that critical value of the normalized lateral load transfer which starts
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the activation of the brake mechanism is smaller than in the fault-free case. A small
value of R1 corresponds to activating the brake system early and gradually, whereas
a large value of R1 corresponds to activating the brake system rapidly. Thus, the
design parameter R1 is chosen to be scheduled on fault information ρ f .

R1 = R1 − ρ f

10
. (5.10)

If a fault occurs, the critical value R1 is reduced, which causes the brake mechanism
to be activated even at a smaller value of R.

In the design of the LPV control, three signals are used to calculate the parameters
in the scheduling vector, i.e., the forward velocity v, the normalized lateral load
transfer R and the parameter of the normalized fault information ρ f : The scheduling

vector is ρ = [
1
v

1
v2 v R sgn(Ṙ) ρ f )

]T
. Here v is measured directly, ρ f is provided

by the FDI filter, while parameter R is calculated by using the measured roll angle
of the unsprung mass φt,r .

Based on the fictitious control inputs, the actual control forces at the front and
rear, on both sides, generated in the suspension points can be calculated in simple
matrix manipulations. The implementation of the reconfigurable control strategy is
illustrated in Fig. 5.6.

The FDI filter is tested during a cornering maneuver. Figure5.7 shows the time
responses of the controlled system which uses active anti-roll bars. The steering
angle applied in the simulation is a ramp signal. The forward velocity is not constant
during the corneringmaneuver. Braking input is used to decelerate the vehicle during
the maneuver. This example illustrates that the FDI filter works reliably in the entire
velocity region. The initial forward velocity is 80 kph and the vehicle is decelerated
to approximately 68 kph.

The fault scenario used in the closed-loop simulations is a 10 kNm anti-roll bar
failure starting from 2 s and 0.1 rad/sec sensor failure occurring at 5 s. In our case, the
step failure represents a loss in effectiveness. The step sensor failure means that the
φ̇ sensor measures a signal with a constant additive failure. Figure5.7 also shows the

ρf

G

u = [uaf , uar,ΔFb]T

y = [ay, φ̇]T

�

δf

K

�

�

� = [1/v, 1/v2, v, R, sgn(Ṙ)]T

�

�
FDI

Fig. 5.6 The implementation of a fault-tolerant control strategy
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Fig. 5.7 Time responses to a cornering when an actuator fault is detected by an FDI filter

lateral acceleration and the roll angle of the sprung mass. The controller is not able to
reduce the lateral acceleration, with the help of the anti roll bars, i.e., it does not have
a direct effect on changing the acceleration. In the case of the anti-roll control, the
vehicle rolls into the bend. Hence, this motion of the vehicle generates a stabilizing
lateral displacement moment, which balances the destabilizing overturning moment
caused by lateral acceleration. The roll angle of the unsprung masses is slightly
different due to the different suspension parameters and the stiffness to load ratio.
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Fig. 5.8 Time responses to a double lane change steering input in different failures

The control torque is approximately −70 kNm at the front axle and −140 kNm at
the rear axle. As the lateral acceleration is increasing, the normalized lateral load
transfer lifts up the rear axle faster than the front one since the ratio of effective roll
stiffness to axle load is greater at the driven axle. The simulation results of the FDI
filter in a closed-loop are seen in Fig. 5.7. The first residual shows the actuator fault
r1 and the second one the sensor fault r2. The effects of the two failures are decoupled



134 5 Anti-roll Bars for Rollover Prevention

and the residuals give a close estimation of faults in the active anti-roll bars and the
sensor fault, the time of their occurrence and their values.

The operation of the fault-tolerant combined control structure is demonstrated
in a double lane change maneuver. In the first scenario, ρ f is set at the constant
value 0.7. In this case, actuator effectiveness is reduced by 70%. The second fault
scenario is when the ρ f is a ramp signal with unity slope starting from 1.5 to 2.5 s.
Here, the fault is that actuator effectiveness gradually drops to zero. Using different
fault scenarios the responses of yaw roll dynamics are compared. Figure5.8 shows
the responses in case of a float type failure (dash-dot), loss in effectiveness failure
(solid) and the fault-free situation (dashed). The velocity of the vehicle is 70 kph.

The lateral acceleration in each case is slightly different. The reason for this fact is
that where the normalized lateral load transfers do not reach the critical value R1 only
the active anti-roll bars are activated and the brake system is not used. However, the
active anti-roll bars are not able to reduce the lateral acceleration because they do not
have a direct effect on changing acceleration. So, the effect of a fault in the actuator
does not appear in the lateral acceleration. It can be observed that, when faults occur,
the roll angle increases due to the reduced power of the actuators. In the absence of a
fault the actuator can generate higher control torque than when a fault is present, so
it can balance the primary overturning moment more effectively. It can be seen that
the control torque is smaller in the case of loss failure than in a fault-free situation. In
the case of a float type failure its effectiveness decreases gradually and becomes zero
when the normalized fault information has reached value 1. The required brake force
is the largest in the case of a float failure. This is because the active anti-roll bars are
not able to generate control torque over 2.5 s, so the reconfigured controller structure
is identical to the controller in which only the brake system is used to prevent the
rollover of the vehicle. In the fault-free case the active anti-roll system is working and
generates stabilizing lateral displacement moment. Hence, the brake force required
to prevent the rollover of the vehicle is less than in the faulty cases.



Chapter 6
Adaptive Cruise Control in Longitudinal
Dynamics

6.1 Adaptive Cruise Control

In the last decade, the longitudinal vehicle control based on the look-ahead approach
has been in the focus of the automotive research centers. It is widespread in the cruise
control, which is able to guarantee an energy-efficient driving, see Sciarretta et al.
(2015). Since adaptive cruise control (ACC) allows to maintain a desired travel speed
set by the driver by acting on the throttle and brakes, the combination of look-ahead
control and ACC is a novel trend in the vehicle control design.

Several methods in the topic of cruise control systems have been proposed. Model
Predictive Control (MPC) algorithm is largely employed for cruise control purposes.
In Borrelli et al. (2001), a vehicle model with an affine approximation of the frictional
torque is proposed. In the robust MPC problem, the constraints on the torque, on its
variation, and on the slip are considered. Li et al. (2011) presented a two-level MPC
architecture, in which the nonlinearities in the vehicle dynamics and the minimum
tracking error, fuel consumption, and the car-following requirements are incorporated
in different layers. Using nonlinear MPC methods further results can be achieved. In
Sakai et al. (2010), nonlinear MPC method is used for torque tracking control for the
desired torque, which attains velocity tracking control by calculating desired torque
from desired car speed.

Sliding-mode and adaptive controls are widely used techniques in the longitudinal
control. The aim of the sliding-mode control is generally the computation of the
desired vehicle motion, such as acceleration, speed, see Gerdes and Hedrick (1997),
Lu and Hedrick (2005). These signals in another layer are converted to the input
of engine, transmissions, retarders, and brakes. Xu and Ioannu (1994) presents an
adaptive control-based design method for the throttle input, in which the adaptation
to the parameter variations is handled. The uncertainties of the tire-road contact
based on adaptive control law is considered in Chen and Wang (2011). In the paper,
a complex vehicle formulation using the LuGre tire model is applied.

Martinez and Canudas-de-Wit (2007) focuses on stop-and-go scenario using a
combined feedforward and feedback PD controller. The reference model is non-
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linear and provides dynamic solutions consistent with safety constraints and com-
fort specifications. A composite Lyapunov function-based vehicle following control
using Bilinear Matrix Inequalities optimization is found in Enache et al. (2009) Kol-
manovsky and Filev (2010) focuses on the longitudinal control in such a way as
to achieve optimal trade-off between expected average fuel economy and expected
average travel speed using Bellman’s principle.

Robust control technics are also used in the longitudinal control design. A com-
bined H∞ feedback and feedforward control is employed to damp out longitudinal
oscillations using μ analysis in Lefebvre et al. (2003). The robustH∞ method is com-
pared to the Linear Quadratic Regulator design in Junaid et al. (2005). In the paper a
third-order linear system is applied, which describes the dynamics of the vehicle and
the power-train. The controlled system is robust against exogenous disturbances and
the parameter uncertainty of power-train time is constant. A LPV control design has
been presented in Németh and Gáspár (2013b), in which the differences of driving
and braking dynamics are considered in the velocity tracking problem. The designed
system is robust against longitudinal disturbances, such as rolling resistances, road
inclinations, and aerodynamic forces.

In some papers, the longitudinal control is a part of an integrated framework, see,
e.g., Katriniok et al. (2013). Recently, a cruise control strategy using a nonlinear
Lyapunov control method is designed in Attia et al. (2014b). The control strategy is
based on a cascade control architecture where an outer-loop ensures the reference
speed tracking and computes the torque to be applied on the wheels. An inner-loop
provides the throttle opening and the brake pressure to generate the required control
torque.

Several publications and patents deal with the topics of driveline control imple-
mentation and look-ahead strategies. Hellström et al. (2009) present the design and
the implementation of a predictive speed controller. The intervention of the look-
ahead control is connected to the reference signal of the PID-based speed controller,
which modifies the fuel injection of the engine. Kiencke and Nielsen (2000) uses
a dynamic longitudinal model for the design of the speed controller. It influences
the engine torque based on the engine rpm and the fuel injection, which are control
inputs in the architecture.

A test platform for the implementation of look-ahead control is introduced in
Gustafsson (2006). The platform contains the user interface, the controller struc-
ture together with the look-ahead optimization, CAN softwares, and interfaces. The
proposed device is in connection with the CAN bus of the vehicle. The look-ahead
method of the platform considers the engine torque, the gear position, and road
geometry information. The implementation of an optimal ACC for passenger cars is
presented in Li et al. (2013), Németh et al. (2015a). The system uses radar and accel-
eration sensor measurements, from which the acceleration of the preceding vehicle
are derived. The optimization algorithm yields a reference acceleration signal, which
is the input of the vehicle dynamic controller together with the estimated preceding
vehicle acceleration.
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Further automotive industrial patents on the predictive speed control algorithms
are presented in Lattemann et al. (2004). The method of Eriksson and Steén (2003)
is based on the forthcoming terrain characteristics to select gear position, according
to the required driver’s performance (fuel consumption, emission, traveling time).
Takahashi et al. (1998) introduce an algorithm which computes the optimal driveline
torque considering the road inclinations.

6.2 Model-Based Robust Control Design

6.2.1 Modeling Longitudinal Dynamics

First, the modeling of longitudinal dynamics is presented. Since the cruise control
method must be easily adaptable to a vehicle, a small number of vehicle parameters
are involved. Thus, the longitudinal dynamics is described in the approach by the
following simplified model:

mξ̈0 = Fl1 − Fd1 (6.1)

where m is the mass of the vehicle, ξ0 is the vehicle position, Fl1 is the realized
longitudinal force on the wheels. Fd1 includes the longitudinal disturbances, such as
the aerodynamic forces, rolling resistance and road slope

Fd1 = Ca ξ̇
2
0 + Crgm cos ϑ + mg sin ϑ (6.2)

where ϑ is road slope and Ca , Cr are vehicle parameters related to aerodynamic and
resistances forces.

In the following, the transformation of the vehicle model has two focuses. First,
the mass of the vehicle is an uncertain parameter of the vehicle. The mass has a
nominal value m0, which is known, but the variation of the mass mv is unknown.
However, the variation is assumed to be a bounded parameter, e.g.,mv/m0 = ±15 %.
Second, the road inclination is assumed to be known. In practice, the slope of the
road can be obtained in two ways: either a contour map which contains the level
lines is used or an estimation method is applied. In the former case, a map used in
other navigation tasks can be extended with slope information. Several methods have
been proposed for slope estimation. Cameras, laser/inertial profilometers, differential
GPS, or a GPS/INS systems are used, for example, see Bae et al. (2001), Labayrade
et al. (2002), Hahn et al. (2004). An estimation method based on a vehicle model
and Kalman filters has been proposed by Lingman and Schmidtbauer (2002).

Since the handling of vehicle mass uncertainty is a requirement for the control
system, it is necessary to define the actual mass m of the vehicle such as

m = m0 + mv. (6.3)
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Substituting (6.3) in (6.1), the longitudinal motion equation is reformulated in the
following way:

(m0 + mv)ξ̈0 = Fl1 − Fd1 (6.4)

m0ξ̈0 = Fl1 − Fd1 − mvξ̈0 (6.5)

Considering that ξ̈0, the actual longitudinal acceleration, is a measurable and bounded
signal of the vehicle, mvξ̈0 is handled as a disturbance of the vehicle. Combining it
with Fd , the next expression is yielded:

Fd1 + mvξ̈0 = Ca ξ̇
2
0 + Crg(m0 + mv) cos ϑ

+ (m0 + mv)g sin ϑ + mvξ̈0

= (
Ca ξ̇

2
0 + Crgm0 cos ϑ + m0g sin ϑ

)

+ mv
(
Crg cos ϑ + g sin ϑ + ξ̈0

)

= Fd1,1 + mv fd,2 (6.6)

Note that the expression (6.6) contains two different elements. Fd1,1 and fd,2

incorporate measurable signals, such as velocity, road slope, and longitudinal accel-
eration. Thus, Fd1,1 is handled in this approach as a measured disturbance. Since
there is no information about the mass variation mv, the term mv fd,2 is considered as
an unknown disturbance—where actually fd,2 is a measurable part of the disturbance
expression.

6.2.2 Robust Control Strategy

In the following section, the control design for the longitudinal velocity tracking
control problem is proposed. The controlled system must guarantee precise tracking,
robustness against mass variation, road slope, and further disturbances. The conser-
vativeness of the control algorithm can be reduced through the consideration of the
measurements on disturbances. In the proposed control scheme, Fd1,1 is considered
as a measured disturbance. Thus, it is recommended to derive a feedforward term in
the control strategy for the direct elimination of Fd1. In the following, a robust control
design method is presented, which combines the advantages of the feedforward and
feedback control design.

The realized total longitudinal control force on the wheels Fl1 is divided into two
elements

Fl1 = Fl1,0 + Fl1,1 (6.7)

where the purpose of Fl1,1 is to compensate for the measured disturbance Fd1,1, while
Fl1,0 guarantees the unknown disturbance rejection and the performances.
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If Fd1,1 is fully compensated for, then the feedforward control input is

Fl1,1 = Fd1,1 = Ca ξ̇
2
0 + Crgm0 cos ϑ + m0g sin ϑ (6.8)

where ξ̇0, ϑ are measured and estimated parameters, see Vahidi et al. (2005). Thus,
the efficiency of the feedforward disturbance compensation is based on the accuracy
of ξ̇0, ϑ . Since the measurement of the speed and the estimation of the road slope are
inaccurate, the feedforward compensation has an error Fd,11. The longitudinal motion
of the vehicle is formed using (6.4), (6.6), (6.7) and (6.8), which is described as

m0ξ̈0 = Fl1,0 + Fl1,1 − Fd1,1 − Fd1,11 − fd,2mv (6.9)

= Fl1,0 − Fd1,11 − fd,2mv (6.10)

In the next step a feedback control input Fl1,0 is designed, which is able to handle
the disturbances Fd1,11, fd,2mv in (6.9).

6.2.3 Modeling Actuator Dynamics

In the real intervention of the driveline/brake system, the physical construction of the
actuator has an important role. Generally, the actuators delay the controlled action
and provide additional dynamic motion. Therefore, it is necessary to consider the
dynamics of the actuator in the design of the controller to improve the tracking
capability of the Advanced Driver Assistance System. In the following, a simplified
formulation of the actuator dynamics which generates the longitudinal force Fl1, is
considered as

Ḟl1 = − 1

τ
Fl1 + 1

τ
u (6.11)

where u is the control input computed by the control algorithm. The robust control
design is based on the relation (6.11) between u0 and Fl1,0. The considered actuator
dynamics (6.11) for the feedback design can be reformulated as a transfer function

G(s) = 1

τ s + 1
= 1 − τ s

τ s + 1
(6.12)

The reformulation of the actuator dynamics can be handled as an input multiplicative
uncertainty of the system, where Wu = −τ s/(τ s + 1) is the uncertainty of the sys-
tem. In this case, the robustness of the system requires the consideration of the highest
bound of Wu in the control design. The Bode amplitude diagram of Wu depends on
τ . Since the maximum bound Wu is defined by the highest τ value, the robust control
must be designed with it. The maximum τ value is related to the slowest actuation of
the driveline/braking systems. This τ value must be considered in the robust control
design.
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6.2.4 Design of Feedback Controller

The feedback control input Fl1,0 has three main goals in the control strategy: the
rejection of unknown disturbances (Fd1,11, fd,2mv), the handling of the unmodelled
actuator dynamics and the guarantee of the performance. The state-space represen-
tation of the system is the following:

[
ξ̈0

] = [
0
] [

ξ̇0
] + [− 1

m0
− 1

m0

] [
Fd1,11

Fd1,2

]
+ [ 1

m0

]
Fl,0 (6.13)

where the disturbances are compressed to a vector Fd, f b = [
Fd1,11 Fd1,2

]T
, where

Fd1,2 = fd,2mv. The measured output of the system is the velocity ξ̇0, which is also
the state in the formulation.

The performance of the system is expressed by the tracking of the reference
velocity λ and the minimization of the control input u0. Note that the influence on
the control input is necessary to avoid the extremely high actuation of the longitudinal
control. The performance signals are

|z1| = |λ − ξ̇0| → min (6.14)

|z2| = |u0| → min (6.15)

The state-space representation of the system for the control design, which incor-
porates the performance and the measurement, is the following:

ẋ = Ax + B1Fd, f b + B2u0 (6.16)

z = C1x + D1,2(ρ)u0 (6.17)

y = C2x (6.18)

The weighting functions for the performance considering z1 and z2, are parameter-
dependent, formulated as follows:

Wp,1 = 1

1 − ρ
Gp,1 (6.19)

Wp,2 = 1

ρ
Gp,2 (6.20)

where the transfer functions Gp,1 and Gp,2 are employed to introduce some per-
formance in the control design. Fd,s is a sensor noise on the velocity measurement
and (Fd,11 an unknown disturbances. The augmented plant for the LPV design is
illustrated in Fig. 6.1. In the example, the following weighting functions are applied
for the performance signals, control input, and the disturbances:
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Fig. 6.1 Closed-loop
interconnection
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The aim of parameter dependency is to guarantee the limitation of the control
input. In this way, the saturation of the actuator can be avoided. The defined schedul-
ing variable ρ is computed based on the rule illustrated in Fig. 6.2. Note that in this
rule the feedforward control input u1 must also be considered. The transfer function
Gp,1 in (6.19) has an additional role in the control design. Since the overshoot of the
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velocity must be minimized as much as possible, this criterion is considered in the
appropriate selection of Gp,1 characteristics.

Finally, a parameter-dependent K (ρ) controller is yielded. The feedback control
input is formally computed as u0 = K (ρ) · (vre f − v). As a result of the combined
feedforward-feedback strategy, the control law of the system, using (6.8), is yielded as

u = K (ρ)(vre f − v) + Cav
2 + Crgm0 cos θ + m0g sin θ

u = u0 + u1 (6.21)

Thus, the control input u is given by the sum of two different components u0 and u1.
The goal ofu1, i.e., the feedforward control, is to compensate for the resistance of road
slope (slope is considered as a measured signal). The other component u0, i.e., the
feedback control, is computed by the LPV controller. Its role is to guarantee accurate
velocity tracking and robustness against further disturbances (velocity sensor noise,
feedforward imprecision, actuator time lag) and mass variation.

6.3 Speed Design Based on Multiobjective Optimization

In the previous sections, the control design of the longitudinal dynamics is presented.
Although the tracking control is an important element of an advanced intelligent
cruise control, the computation of the reference speed trajectory is also a crucial
point of the cruise control system. In the following, a multiobjective optimization-
based look-ahead speed design method is presented.

6.3.1 Motivation of the Speed Design

The purpose of energy-efficient control strategy is to design the speed of road vehi-
cles, in which several factors are taken into consideration such as energy require-
ment, fuel consumption, road slopes, speed limits, emissions, and traveling time. The
multiobjective optimization criteria are handled by the so-called look-ahead control
methods. In the paper traffic, information such as the speed of the current traffic
flow and the speeds of vehicles in the lanes is also considered. Consequently, the
look-ahead control can be considered as an extension of the adaptive cruise control
with road and traffic information.

The optimization problem of the energy-efficient look-ahead control was formed
using the receding (sliding) horizon control in Hellström et al. (2010), Passenberg
et al. (2009) and evaluated in real experiments in Hellström et al. (2009). The look-
ahead control based on road inclinations, speed limits, a preceding vehicle in the
lane and traveling time was proposed by Németh and Gáspár (2013b). The opti-
mization criterion between journey time and fuel consumption was converted into a
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constrained fuel optimization task in Saerens et al. (2013). A predictive cruise control
with upcoming traffic signal information to improve fuel economy was proposed by
Asadi and Vahidi (2011). In hybrid electric vehicles road prediction is important to
optimize battery recovery. The predictive reference signal generator method to max-
imize recuperated energy using the topographic profile of the future road segments
was proposed by Ambuhl and Guzzella (2009). The shape of the speed profile at a
road segment was estimated in a nonlinear constrained optimization process in van
Keulen et al. (2010). The look-ahead control is also motivated by the design of a pla-
toon control system. A cooperative control strategy based on preview information,
which initiates the change in speed for all vehicles in the platoon, was proposed by
Alam et al. (2013). The method of the look-ahead control was extended to the design
of the common speed of the vehicles in the platoon in Németh and Gáspár (2014).

In the optimization methods proposed by the publications environmental condi-
tions such as topographic data and speed limits along the road are exploited. However,
in the methods less emphasis is placed on traffic information such as speed of the
current traffic flow and speeds of the vehicles in the lanes. This is a critical point in
speed design. For example, a vehicle using the look-ahead control is able to create a
balance between energy/fuel saving and journey time according to its own priorities.
However, other vehicles on the road have different priorities, which can lead to con-
flict, e.g., fast vehicles are held up by vehicles traveling in a fuel efficient fashion,
see e.g., Gáspár and Németh (2015).

6.3.2 Design of Speed Profile

It is assumed that the energy-efficient optimal speed vopt is calculated by using
a multi-criterion optimization method in the look-ahead control. In the design, the
control energy, traveling time and, moreover, environmental conditions such as topo-
graphic data and speed limits along the road are exploited. However, the vehicle
preferring energy saving travels in traffic. Since the vehicle may catch up with a
preceding vehicle, it is necessary to consider its speed, which is denoted by vlead .
Moreover, since the vehicle may be in conflict with other vehicles preferring cruising
at the speed limit vlim .

The purpose is that the look-ahead control will be applied both as a part of driver
assistance systems or in the autonomous vehicle control. Consequently, the control
is extended by traffic information. However, traffic modifies the result of the multi-
criterion optimization and results in a less energy efficient speed. The combination of
the look-ahead concept and the congestion problem leads to a complex multi-criterion
optimization task. The paper focuses on the development of this task.

The structure of the proposed computation algorithm is illustrated in Fig. 6.3. The
road inclinations α and speed limits vlim data ahead of the vehicle are established
using the current position and a navigation map. Moreover, the vehicle receives
information about the motion of preceding and follower vehicles through V2V com-
munication.
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Fig. 6.3 Communication and information flow

A survey of the future communication possibilities in automotive and traffic con-
trol was provided by Ebnre and Hermann (2001). In order to detect potentially haz-
ardous situations a computer vision-based approach to tracking surrounding vehicles
and estimating their trajectories was presented by Nuevo et al. (2010). An extension
of adaptive cruise control with traffic information considering vehicle-to-roadside
and vehicle-to-vehicle communication was proposed in Kesting et al. (2007). In
order to prevent emergencies and accidents vehicle-to-vehicle communication and
vehicle-to-roadside sensor communication were combined by Festag et al. (2008).

6.3.3 Principles of the Optimization of the Look-Ahead
Control

In the following section, the principles of the look-ahead control are presented briefly.
The road ahead of the vehicle is divided into several sections, which may be of
different lengths consistently with the topography of the road. The rates of the slopes
of the road and the speed limits are assumed to be known at the endpoint of each
section. There are n number of segments and n + 1 number of points as Fig. 6.4
shows. Then reference speeds at the section points are defined using road information:
vre f,0, vre f,1, . . . , vre f,n . It is assumed that the acceleration of the vehicle may change
in the different intervals, but within a single interval it is approximately constant.
The aim is to calculate the speed of the vehicle at which the reference speeds at the
section points can be reached while both energy reduction and traveling time are
considered.



6.3 Speed Design Based on Multiobjective Optimization 145

0 4321 5 6 n

vref0 vref1

original reference velocities:
vref2 vref3 vref4 vref5 vref6 vrefn

modified reference velocity:

ξ̇0

α1

α1

α4

Fl1

s1 s2

s3

Fig. 6.4 Division of road

The speed of the vehicle at point i ∈ (1, n) is written as:

ξ̇ 2
i = ξ̇ 2

0 + 2

m

i∑

j=1

s j
(
Fl j − Fdj

)
, i ∈ {1, 2, . . . , n}, (6.22)

where ξ̇0 is the speed of the vehicle at the initial point, ξ̇i is the speed of vehicle at
the i th point and s j is the distance of the interval [ j − 1, j]. Fl j is the longitudinal
force. At the calculation of the control force, it is assumed that the current control
force Fl1 affects the vehicle, however, the effects of the additional longitudinal forces
are not considered, i.e., Fli = 0, i > 1. Thus, in the method the current longitudinal
drive force acting on the vehicle in the first road section is calculated. Fdj is the
disturbance force resulting from the road slopes, rolling resistance, aerodynamic
forces, etc. The disturbance force originating from the road slopes and aerodynamic
forces is estimated in every section

Fdj,r = mg sin α j + 1

2
cwρAξ̇ 2

j , j ∈ [1, n], (6.23)

wherem is the vehicle mass, α j is the angle of the road slope, cw is the drag coefficient,
ρ is the density of the air, A is the contact surface size of the vehicle front, K is the road
surface resistance. The rest of the disturbances Fd1,o can be considered unknown.

The aim of the control design is that at every section point the speed ξ̇i of the
vehicle must reach the predefined reference speed ξ̇ 2

i → v2
re f,i . This defined con-

dition is rearranged using the kinematic relationship and the form of disturbance.
Consequently, the equations of the vehicle speeds at the section points are calculated
in the following way:

ξ̇ 2
i = ξ̇ 2

0 + 2

m
s1Fl1 − 2

m
s1Fd1,o − 2

m

i∑

j=1

s j Fd j,r . (6.24)
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In the next step, prediction weights Q, γ1, γ2, . . . , γn are applied to the section
points. They represent the priority of the i th condition. The weights must sum up to
one, i.e.,

γ1 + γ2 + · · · + γn + Q = 1. (6.25)

While the prediction weights γi represent the rate of the road conditions, weight Q
has a crucial role: it determines the tracking requirement of the current reference
speed vre f,0. By increasing Q the momentary speed becomes more important while
road conditions become less important. For example when Q = 1 the control task is
simplified to a cruise control problem.

Applying the weights in (6.24) the following formula is yielded:

ξ̇ 2
0 + 2

m
s1(1 − Q)Fl1 − 2

m
s1(1 − Q)Fd1,o = ϑ (6.26)

where value ϑ depends on the road slopes, the reference speeds and the weights

ϑ = Qv2
re f,0 +

n∑

i=1

γi v
2
re f,i + 2

m

n∑

i=1

si Fdi,r

n∑

j=i

γ j . (6.27)

In order to take the road information (road slopes, speed limits) into consider-
ation in the speed design, Eq. (6.26) is applied. The momentary acceleration of
the vehicle is expressed in the following way: ξ̈0 = (Fl − Fd1,o − Fd1,r )/m where
Fd1,r = mg sin α. It yields the predicted speed, which is considered as a reference
signal in the control design

ξ̇0 → λ (6.28)

where parameter λ is calculated in the following way based on the designed ϑ :

λ =
√

ϑ − 2s1(1 − Q)(ξ̈0 + gsinα). (6.29)

Equation (6.26) shows that the predicted speed ξ̇0 depends on the weights (Q and
γi ). A detailed description of the speed profile design is found in Németh and Gáspár
(2013b).

6.4 Optimization of the Vehicle Cruise Control

The design of the vehicle speed poses two optimization problems: the longitudinal
force must be minimized and the deviation from the reference velocity must be
minimized. The minimization of the longitudinal control force F2

l1 → min leads
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to the first quadratic optimization problem (Optimization 1), which is solved by
selecting the weights using (6.26)

F̄2
l1 = (β0(Q̄) + β1(Q̄)γ̄1 + . . . + βn(Q̄)γ̄n)

2 → min (6.30)

with the following constrains 0 ≤ Q̄, γ̄i ≤ 1 and Q̄ + ∑
γ̄i = 1. The minimization

of the difference between the current velocity and the reference velocity leads to the
second optimization problem (Optimization 2)

|vre f,0 − ξ̇0| → min (6.31)

leads to the optimal solution, which is achieved by selecting the weights: Q̆ = 1 and
γ̆i = 0, i ∈ [1, n], since in this case the vehicle tracks the predefined speed.

The two optimization criteria lead to different optimal solutions and a balance
between the performances must be achieved. Thus, two performance weights are
introduced. Performance weight R1 is related to the importance of (6.30) in the
first optimization while performance weight R2 is related to (6.31) in the second
optimization. There is a constraint on the performance weights: R1 + R2 = 1, in
which 0 ≤ R1 ≤ 1 and 0 ≤ R2 ≤ 1. Thus a balance between the optimizations tasks
can be achieved by selecting the following performance weights:

Q = R1 Q̄ + R2 Q̆ = 1 − R1(1 − Q̄) (6.32a)

γi = R1γ̄i + R2γ̆i = R1γ̄i , i ∈ {1, . . . , n} (6.32b)

The equations show that the prediction weights depend on R1. Normally drivers set
weight R1 based on their goals and requirements, thus they create a balance between
energy saving and traveling time. The optimal momentary speed of the vehicle is
approximated by

vopt = λ̄, (6.33)

in which

λ̄ =
√

ϑ̄ − 2s1R1(1 − Q̄)(ξ̈0 + gsinα), (6.34)

and

ϑ̄ = v2
re f,0 − R1(1 − Q̄)v2

re f,0 + R1

n∑

i=1

γ̄i v
2
re f,i + R1

2

m

n∑

i=1

si Fdi,r

n∑

j=i

γ̄ j . (6.35)
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6.4.1 Handling the Preceding Vehicle in the Speed Design

Since the vehicle may catch up with a preceding vehicle, it is necessary to consider
the speed of the latter vlead . This task is handled by the performance weight R1 since
the control must focus on speed rather than energy saving in order to avoid a collision,
thus it leads to a conventional cruise control solution.

The safe stopping distance between the vehicles is calculated according to the
91/422/EEC, 71/320/EEC UN and EU directives (the velocity in km/h): dsa f e =
0.1ξ̇ + ξ̇ 2/150, in which ξ̇ is the current speed. When the distance between vehicles
is below dsa f e, the current speed must be vlead . In order to avoid the abrupt braking the
speed reduction starts at a longer distance (1 + c) · dsa f e with constant 0 < c < 1.
Considering dsa f e weight R1,p is selected in the following structure:

R1,p =
⎧
⎨

⎩

0 if d < dsa f e
R1

d−dsa f e
(1+c)dsa f e

if dsa f e � d � (1 + c) · dsa f e
R1 if d > (1 + c) · dsa f e

(6.36)

Moreover, vre f,0 = vlead if d < (1 + c) · dsa f e.
The optimal speed of the vehicle during the journey is calculated by applying

R1 = R1,p in the expression (6.33). Note when R1,p = 0 and vre f,0 = vlead the look-
ahead control is a conventional cruise control and only the tracking of the preceding
vehicle will be carried out. If a preceding vehicle does not disturb the motion of the
vehicle using a look-ahead control, the weight is set R1,p = 1.

6.4.2 Motion of the Follower Vehicle in the Speed Design

The vehicle controlled by an energy-efficient method overtakes slower preceding
vehicles on the highway. At the same time, another vehicle accelerates to reach the
speed limit and also begins an overtaking maneuver. Since the vehicle preferring
energy saving travels in traffic, it may be in conflict with other vehicles preferring
cruising at the speed limit. Preferring the weight R1 leads to a nonoptimal motion
for the traffic. A balance between the energy-efficient speed and the flow of the
local traffic is proposed by the modification of the value R1. The motion of follower
vehicles is considered in a three-step procedure. In the first step, the speed and the
motion of the vehicle using the look-ahead control is predicted (Step 1). In the second
step, the motion of the follower vehicle is predicted (Step 2). In the third step, the
safe distance is calculated, which is the basis of the R1 selection Step 3.

Step 1: The optimal speed of the vehicle using the look-ahead control is based on
(6.33). Based on (6.35) the expression of ϑ̄ can be rewritten as
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ϑ̄ = v2
re f,0 − R1v

2
re f,0 + R1 Q̄v2

re f,0+

+ R1

n∑

i=1

γ̄i v
2
re f,i + R1

2

m

n∑

i=1

si Fdi,r

n∑

j=i

γ̄ j =

= v2
re f,0 (1 − R1) + R1ϑ̃ (6.37)

where ϑ̃ contains the expression of ϑ according to Eq. (6.27), in which energy-
efficient prediction weights Q̄, γ̄i are used.

From (6.34) the optimal speed λ̄ is calculated based on the predicted road infor-
mation. Through prediction weights Q̄, γ̄i the optimal speed is calculated in the
following form:

λ̄2 = v2
re f,0 (1 − R1) + R1ϑ̃ − 2s1R1(1 − Q̄)(ξ̈0 + g sin α)

= v2
re f,0 (1 − R1) + R1λ̃

2 (6.38)

where λ̃ contains the expression ofλ according to Eq. (6.29), in which energy-efficient
prediction weights Q̄, γ̄i are used.

From (6.24) and (6.38) the predicted estimated speed of the vehicle at section
point n is

ξ̇ 2
n = v2

re f,0(1 − R1) + R1λ̃
2

+ 2

m
s1Fl1 − 2

m
s1Fd1,o − 2

m

n∑

i=1

si Fdi,r =

= R1N1 + N2 (6.39)

According to (6.39) the predicted speed ξ̇n at point n is based on the momentary
speed, the longitudinal force, and the disturbances. Consequently, the predicted speed
at point n is independent of vre f,n . However, it may be misleading, since when R1 = 0
the predicted speed at point n must be vre f,n . In order to meet this requirement, the
predicted speed must be modified using the reference speed and the weighting factor
in the following way:

ξ̇ 2
n = (R1N1 + N2)R1 + (1 − R1)v

2
re f,n (6.40)

The advantage of this equation is that the reference speed is built into the predicted
speed, thus the numerical procedure is more reliable.

Step 2: In the second step, the motion of the follower vehicle is predicted. It is
assumed that the controlled vehicle has information about the speed and acceleration
of the follower vehicle (η̇0, η̈0) and the momentary distance between the vehicles
e0. It is also assumed that the follower vehicle accelerates evenly until it reaches
the speed limit, i.e., i < j . Then it does not accelerate further, thus in the oncoming
sections the predicted speeds of the vehicle are vre f, j , . . . , vre f,n , i.e., i � j .
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Based on the information (η̇0, η̈0, e0) the motion of the vehicle must be calculated
in every section in which the traveling time is Δti , i = {1 . . . n}. During acceleration
the displacements of the follower vehicle are

ηk = η̈0

2

(
k∑

i=1

Δti

)2

+ η̇0

k∑

i=1

(Δti ), k ∈ [1, j − 1] (6.41)

in which traveling time in a section is Δti . When the follower vehicle reaches the
speed limit, it does not accelerate further. Moreover, its speeds do not exceed the
predefined reference speeds vre f, j , . . . , vre f,n . The displacements of the vehicle are

ηl = η j−1 +
l∑

i= j

(vre f,iΔti ), l ∈ [ j, n] (6.42)

Step 3: Finally, in the third step, the safe distance is calculated. Now the safe
distance between the controlled vehicle and the follower one must be guaranteed.
The safe distance dsa f e is assumed to be predefined.

The controlled vehicle intends to use the energy-efficient predicted cruise control,
while the follower vehicle aims to keep the speed limit. Thus, the look-ahead control
strategy is modified in such a way that the motion of the follower vehicle is taken into
consideration. A possible method is to modify performance weight R1 during the
journey and create a balance between the designed speed and the required speed of
the follower vehicle. The aim of this section is to develop a method for the redesign
of weight R1, f .

The criterion of the safe distance is based on the motion of the vehicles. During the
journey in every section the distance between the two vehicles must be guaranteed
by the following inequalities:

ξi + e0 − ηi ≥ dsa f e, i ∈ {1, 2, . . . , n} (6.43)

where ξi is the predicted displacement of the controlled vehicle, e0 is the momentary
distance between the vehicles (t = 0) and ηi is the predicted displacement of the
follower vehicle. It is necessary to find the maximum of performance weight R1,
which satisfies the inequality constraints (6.43). Note that an increase in R1 induces
longer journey time. Therefore R1 can be limited by the driver using a predefined
bound R1,max .

The optimization criterion for safe cruising is formulated as follows:

R1, f = max
[0;R1,max ]

R1 (6.44)

such that the following conditions are satisfied:
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j∑

i=1

ξi + e0 − η j − dsa f e ≥ 0, j ∈ {1, . . . , n} (6.45)

The result of the optimization R1, f is used in the calculation of the prediction
weights Q and γi . Based on the prediction weights the reference speed of the con-
trolled vehicle λ is computed. The optimization procedure (6.44) is performed in
each step, thus performance weight R1, f is rewritten continuously according to the
current local traffic information. If a follower vehicle does not disturb the motion of
the vehicle using a look-ahead control, the weight is set R1, f = 0.

In practice the solution of the optimization procedure (6.44) requires a great
deal of computation effort. However, in solution (6.44) the result of the previous
computation step R1,old can be applied as initial value. If the new solution R1,new is
searched for in the interval

[max(R1,old − α, 0), min(R1,old + α, R1,max )]

with for example n = 10 points and α = 0.1, the computation time is reduced sig-
nificantly. Note that R1,max is set by the driver within the interval R1,max = [0; 1].

6.4.3 A Decision Method of the Lane Change

In this section, the decision algorithm of the lane change is proposed. During the
lane change safe operation must be guaranteed and the conflicts between vehicles
and tailbacks must be prevented. First of all, the safe distance from both the preceding
vehicle and the follower one in the new lane must be ensured. Consequently, the safe
distance must be examined before the lane change is carried out. Second, conflicts
between the vehicle preferring energy saving and the following vehicle preferring
cruising at the speed limit must be avoided. Thus, handling the preceding vehicle
and considering the motion of the follower vehicle must be incorporated into the
decision method.

Essentially, the lane change is preferred if the vehicle using energy-efficient speed
control is not able to keep the designed speed in the current lane and at the same time
the designed speed can be ensured and the maneuver is safe in the adjacent lane.
The speed profile is influenced by two weighting factors in the look-ahead control.
Weight R1, f is used to consider the follower vehicle while weight R1,p is used to
handle the preceding vehicle. Besides the calculation of the optimal speed, during the
journey the acceptable speed is computed for both the current lane and the adjacent
lane. Since the weighting factors R1, f and R1,p influence the acceptable speed, they
are also computed and considered. In the decision method of the lane change, these
two factors must be analyzed.

Scenario 1: The controlled vehicle catches up with a preceding vehicle.
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In this scenario R1,p tends to zero and the vehicle adapts to the velocity of the
preceding vehicle. Since the preceding vehicle is traveling slower, the current speed
may differ significantly from the designed velocity, thus the lane change must be
analyzed. Ra

1,p must be computed for the adjacent lane.
Scenario 2: The follower vehicle catches up with the controlled vehicle.
Since R1, f is reduced, the vehicle adapts to the velocity of the follower vehicle.

Since the follower vehicle is traveling faster, the current speed may differ significantly
from the designed velocity, thus the lane change must be analyzed. Ra

1, f must be
computed for the adjacent lane.

Two basic inequalities must be checked. Ra
1,p and Ra

1, f are computed for the
adjacent lane and they are compared to the current R1,p and R1, f . The lane change
must be carried out if the following two inequalities persist. Ra

1,p is significantly
greater than R1,p, which means that in the adjacent lane there is not a preceding
vehicle and at the same time Ra

1, f is larger than R1, f , which means that the follower
vehicles are not hindered and the energy-efficient velocity can be ensured. Moreover,
the safe distances from the preceding vehicle and the follower one in the new lane
can also be guaranteed. dp and d f are the distances from the preceding vehicle and
the follower one in the new lane, respectively.

Summarizing the above thoughts, the following logic-based decision method can
be formed:

If Ra
1,p − R1,p > εp and Ra

1, f − R1, f > ε f , (6.46)

and, moreover,

if dp ≥ dsa f e and d f ≥ dsa f e, (6.47)

where εp and ε f are predefined values, then the lane change should be performed.
In this case, the lane-change maneuver should be realized in an autonomous

system or this suggestion should be made to the driver in a driver assistance system.

6.5 Implementation of the Method in the Driving/Braking
Systems

The command variable of the robust control design is the longitudinal force input
u = Fl1. However, the real physical system has two inputs, such as driveline and
brake inputs. In the following section, the transformation of Fl1 to the real physical
inputs is presented.

In the conventional engine-powered driveline system, the gear positioning and
the throttle are the intervention possibilities. The proposed method considers an
automatic transmission, where the positioning of the gear is determined by the engine
speed and the throttle ε ∈ [0 . . . 1]. Thus, it is necessary to find an appropriate ε,
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Fig. 6.5 Typical engine
characteristics

ω

ε

which guarantees the realization of Fl1. Since the driveline dynamics (6.11) is faster
than the longitudinal dynamics, the transients of the driveline are ignored in the
computations. The conversion between Fl1 and α is based on static relations.

The required torque of the engine is computed with the following expression as:

Meng = Fl1Rw

k0kg
(6.48)

where Rw is wheel radius, k0 and kg are the ratio of the driven axle and the transmis-
sion. The value of kg depends on the current gear position. The conversion between
Meng and ε is performed through the engine characteristics, see, e.g., Fig. 6.5. This
computation requires the measurement of the engine speed ω, and the inversion of
the characteristics based on Meng and ω.

The braking system in the paper is a conventional hydraulic construction. The
dynamics of the braking hydraulics τ is faster than the longitudinal motion, there-
fore the relationship between Fl and brake cylinder pressures is described by static
equations. First, the longitudinal force is divided between the front and the rear axles,
using the following expression, see Zomotor (1991):

Fr = −Ff r − mg l2
2h

+
√

Ff r (l1 + l2) mg

h
+

(
mg l2

2h

)2

(6.49)

where Fr and Ff r are the wheel forces at the rear and at the front, respectively. h
represents the height of the center of gravity height, l1, l2 are the distances between
the axles and the center of gravity. Ff r and Fr are divided equally between the left and
the right sides. Second, the wheel longitudinal forces are converted into the cylinder
braking pressures, such as

pi = Fi Rw

CpM,i
(6.50)
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Fig. 6.6 Architecture of the
cruise control Look-ahead method

Robust cruise controller

Low-level control

road infomation

ξ̇0

Fl1

ε,pi

measurements

where Fi is the longitudinal force of the wheel, and CpM,i is the constant, which
depends on the wheel brake construction.

The decision between the actuation of the driveline and the braking system
depends on the control force Fl1. If Fl1 > 0 then throttle is activated, otherwise
the braking pressures of the cylinders are increased.

6.5.1 SIL Implementation of the Controller

In the following section, the implementation of the proposed system in a SIL envi-
ronment is presented. The control algorithm has three layers, which are illustrated
in Fig. 6.6.

• The high layer contains the look-ahead control strategy, which generates the ref-
erence velocity signal of the cruise control. It is based on the information about
the forthcoming road intersections, e.g., the road slopes. It guarantees the fuel-
efficiency of the vehicle cruising.

• The middle layer is the feedforward-feedback H∞ controller. It guarantees the
velocity tracking and the robustness against mass variation and longitudinal dis-
turbances. The output of the controller is the Fl1 signal.

• The low layer incorporates the transformation of the control force Fl1 to the engine
throttle ε. Moreover, it realizes the distribution of the driving and braking forces
on the wheels of the vehicle.



6.5 Implementation of the Method in the Driving/Braking Systems 155

Fig. 6.7 Software-in-the-loop simulation

The scheme of the SIL environment is illustrated in Fig. 6.7. The SIL consists
of a workstation with the CarSim vehicle simulator, the dSPACE environment, in
which the controller is implemented. In the workstation, the CarSim works together
with MATLAB�/Simulink�. The CarSim simulator with the MATLAB/Simulink
software, which are standard industrial tools, simulate the vehicle dynamics with high
accuracy. The communication between the workstation and the dSPACE is realized
through the CAN bus. Before the SIL simulation, the designed control system is
set on the real-time equipment. The control signal is computed in dSPACE by the
discrete-time solver of the differential equations with 0.01s sampling time.

6.5.2 Simulation Examples

In the simulation a transportational route with real data is analyzed. The terrain
characteristics and geographical information are those of a French highway between
Mulhouse and Belfort in a 35 km-long section. In the simulation, a conventional
compact SUV passenger car is used. The regulated maximal velocity is 130 km/h,
but the road section contains other speed limits, and the road section also contains
hilly parts. The data of the highway (altitude, speed limitations) from up-to-date
geographical/navigational databases, such as Google Earth and Google Maps are
reached.
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Fig. 6.8 Simulation of the cruise control

The goals of the simulations are to demonstrate the efficiencies of the combined
feedforward-feedback cruise control and the look-ahead strategy. Thus, in the sim-
ulations two scenarios are shown, such as with or without look-ahead control. In
the look-ahead simulation, the information about the upcoming terrain characteris-
tics and speed regulations are considered, which influences the speed profile of the
vehicle.

Figure 6.8a shows the altitude of the highway, which contains several uphill and
downhill sections. During the road several speed limitations (80, 90, 110 km/h) are
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Fig. 6.9 Actuation in the cruise control

found, as can be seen in Fig. 6.8b. The results show that the designed feedforward-
feedback controller is able to track the change of the limitations. In case of the look-
ahead cruise control the desired speed is significantly varied to consider the effects
of the hills and speed limits. For example, between the section points 12 . . . 14 km
there is a valley in the highway. Thus, the traction force of the vehicle is reduced in
front of the valley (see Fig. 6.8c), which results in the reduction of the vehicle speed.
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Fig. 6.10 Data of the fuel consumptions

However, the vehicle in the downhill section of the valley is accelerated, which leads
to energy sparing.

The actuation of the longitudinal control elements are found in Fig. 6.9. Figure 6.9a
shows that the rev of the engine on the cruising is generally reduced. It is resulted by
the smaller actuation of the throttle angle, see Fig. 6.9b. It leads to the sparing of the
fuel consumption due to the less engine actuation. The brake pressures are illustrated
through the example of the front wheels, see Fig. 6.9c.

Finally, the fuel consumption of the cruise controls are presented in Fig. 6.10. The
proposed look-ahead method requires less fuel consumption than the cruise control
method without look-ahead control. The saving of the total fuel is 3 %, which is
resulted by the adaptation to the actual terrain characteristics and speed limitations.
Since in the look-ahead method, the speed of the vehicle may be below the permitted
maximum for the given section and accelerations/decelerations are carried out more
slowly and gradually than in the conventional method, the duration of the journey is
expected to be longer. However, the difference in the traveling time is only 2 minutes.



Part III
Lateral and Integrated Control



Chapter 7
Design of Integrated Vehicle Control

7.1 Motivation of the Integrated Vehicle Control

Conventionally, the control systems of vehicle functions to be controlled are designed
separately by the suppliers and the vehicle companies. One of the problems of inde-
pendent design is that the performance demands, which are met by independent
controllers, are sometimes in conflict with each other in terms of the full vehicle.
The braking action affects the longitudinal dynamics of the vehicle, the velocity,
and the pitch angle. However, due to the geometry of the vehicle, the braking action
causes changes in both the yaw and roll dynamics, see Fig. 7.1. Similarly, the steering
angle also modifies the yaw angle of the vehicle. Since the center of gravity is high
the consequence of the steering maneuver is that the roll angle and the pitch angle
of the sprung mass will also change, see Fig. 7.2. Moreover, the second problem in
the independent control design is that control hardware can be grouped into discrete
subsets with sensor information and control demands operating in parallel processes
and these solutions can lead to unnecessary hardware redundancy.

The purpose of the integrated vehicle control is to combine and supervise all con-
trollable subsystems affecting vehicle dynamic responses. In more details it means
that multiple-objective performance from available actuators must be improved, sen-
sors must be used in several control tasks, the number of independent control systems
must be reduced, at the same time the flexibility of control systemsmust be enhanced.
An integrated control system is designed in such a way that the effects of a control
system on other vehicle functions are taken into consideration in the design process
by selecting the various performance specifications. In line with the requirements
of the vehicle industry several performance specifications are in the focus of the
research, e.g., improving road holding, enhancing passenger comfort and improv-
ing roll and pitch stability, proposing fault-tolerant solutions, see e.g., Gordon et al.
(2003), Yu et al. (2008).

The demand for vehicle control methodologies including several control com-
ponents arises at several research centers and automotive suppliers. Here are a few
examples for illustration. A vehicle control with four-wheel-distributed steering and
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Fig. 7.1 The effect of braking on vehicle dynamics

four-wheel-distributed traction/braking systems is proposed by Ono et al. (2006). A
process to design the control strategy for a vehicle with throttle control and auto-
matic transmission is proposed by Kim et al. (2007). A yaw stability control system
in which an active torque distribution and differential braking systems are used is
proposed by Zhang et al. (2009). An integrated control that involves both four-wheel
steering and yaw moment control is proposed by Jianyong et al. (2007), Wang and
Nagai (1996). An integrated control that involves both steering and differential brak-
ing is proposed by Bardawil et al. (2014). The integration of differential braking
and the steering angle using model predictive control based on the piecewise affine
approximation of the tire force characteristic is proposed by Cairano et al. (2013).
Active steering and suspension controllers are also integrated to improve yaw and roll
stability Mastinu et al. (1994). A global chassis control involving an active suspen-
sion and ABS is proposed by Poussot-Vassal et al. (2008), Zin et al. (2008), Fergani
et al. (2015). The driveline system and the brake are integrated in Rajamani et al.
(2000). An important solution to the roll stability control is based on the ESC brake
control, see Lu et al. (2007), Palkovics and Fries (2001). A possible integration of the
brake, steering and suspension system is presented by Burgio and Zegelaar (2006),
Gásprár et al. (2010), Trachtler (2004a). An LPV-based integrated control design, in
which the performances are guaranteed through the optimal selection of the schedul-
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Fig. 7.2 The effect of steering on vehicle dynamics

ing variables is proposed in Gáspár and Németh (2016). In Doumiati et al. (2013)
a gain scheduled LPV-based method for the coordination of steering and braking is
presented. In Song et al. (2015) a hierarchical method for the design of integrated
chassis controller is adopted for a full drive-by-wire vehicle. Automated guidance
system design using nonlinear model predictive control based steering coupled with
the longitudinal control is presented in Attia et al. (2014a).

A centralized controller has several advantages: the designed controller guarantees
performance specifications and robustness against uncertainties; the solution reduces
the number of necessary sensors; it improves the flexibility of the actuators and avoids
unnecessary duplications. The high-complexity control problem, however, is often
difficult to handle, i.e., the more complex the vehicle model is the more numerical
problems must be handled. Moreover, this centralized approach is not suitable for
the partial design tasks carried out by vehicle component suppliers. Furthermore,
if a new component is added to the system the entire system must be redesigned
(Fig. 7.3).

Thus, decentralized controllers which operate simultaneously are applied for the
vehicle. The advantage of this architecture is that the complexity of the vehicle
model can be divided into several parts. In this decentralized control structure there
is a logical relationship between the supervisor and the local control components.
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Fig. 7.3 The architecture of integrated vehicle control

The communication within local controls is performed by using the CAN bus. The
role of the supervisor is to meet performance specifications, create a cooperation
between components, and prevent the interference and conflict between them. The
supervisor has information about the current operational mode of the vehicle, i.e., the
various vehicle maneuvers or the different fault operations gathered frommonitoring
components and fault detection and identification (FDI) filters. The supervisor is able
to make decisions about the necessary interventions into the vehicle components
and guarantee the reconfigurable and fault-tolerant operation of the vehicle. These
decisions are propagated to the lower layers through predefined interfaces encoded
as suitable scheduling signals. As some examples for the topic of fault detection
methods in industrial mechatronic products, see Muenchhof et al. (2009).

7.2 LPV-Based Concept of the Integrated Control

The objective of the control design is to track a predefined path, guarantee road
holding and increase yaw, roll, and pitch stability. Several control components are
applied in the system: the active brake, steering, and the suspension system, see
Fig. 7.4. The tracking problem is solved by using active steering. In this system the
control input is the steering angle: ud = δ f . Road holding and passenger comfort
are improved by applying an active suspension system. The suspension system is
also able to improve pitch and roll stability by generating pitch moment during
abrupt braking and roll moments during emergency maneuver. The control inputs
are generated by the suspension actuators: us = [

f f l, f f r , frl , frr
]T

. In the control
system the brake is able to modify the yaw angle of the vehicle during a cornering



7.2 LPV-Based Concept of the Integrated Control 165

Fig. 7.4 Integrated system with three control components

Fig. 7.5 Closed-loop structure of the integrated control

and reduce the effect of lateral acceleration. When a rollover is imminent and this
emergency persists the brake system is activated to reduce the rollover risk. It is also
able to generate unilateral brake forces at the front and the rear wheels at either of
the two sides ub = ΔFb.
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The structure of the supervisory control, in which three active control systems are
integrated is shown in Fig. 7.5. In the following parts of the chapter the principle of
the integrated control is presented.

7.3 Design of the Local and Reconfigurable Control
Systems

The local controllers are designed based on vehiclemodels with different complexity.
Their design is based on state space representation form

ẋ = A(ρ)x + B1(ρ)w + B2(ρ)u, (7.1)

where x , w and u are the state, disturbance and input, respectively, vector ρ includes
the scheduling variables and A(ρ) = A0 + ∑n

i=1 ρi Ai , B1(ρ) = B10 + ∑n
i=1 ρi B1i ,

B2(ρ) = B20 + ∑n
i=1 ρi B2i , in which n is the number of the scheduling variables ρi .

First the state equation is defined and then the performances and measured output
are selected considering the control tasks.

The nonlinear effects of the forward velocity v, the adhesion coefficient of the
vehicle in the lateral direction μ, or the nonlinear characteristics in the suspension
damper components ρbi j are taken into consideration ρ = [v, μ, ρbi j ]T in the design.
For example the adhesion coefficients depend on the type of road surface. It is dif-
ficult to accurately quantify and measure the effect of all of the external factors
on μ, which is a nonlinear and time-varying function. An adaptive observer-based
gray-box identification method has been proposed for its estimation, Gáspár et al.
(2005b). It is assumed that with suitably selected scheduling variables ρ these non-
linear components can be transformed into affine parameter-dependent forms. Then
the nonlinear models are transformed into LPV models in which nonlinear terms are
hidden with suitably selected scheduling variables.

The local components also include units for monitoring vehicle operations. These
components are able to detect emergency vehicle operations, various fault opera-
tions, or performance degradations in controllers. They also send messages to the
supervisor. In the reconfigurable and fault-tolerant control of the local controller sev-
eral signals must be monitored and scheduling variables are added to the scheduling
vector in order to improve the safety of the vehicle, e.g., variables are needed to
encode the rollover risk, represent the harmful effects of abrupt braking and take a
detected failure of an active component into consideration.

The efficient operation of the supervisor and the local controllers require reliable
and highly accurate signals from the system. To meet this requirement redundant
sensors, diverse calculations, and fault detection filters are needed. To achieve the
efficient and optimal intervention the detections of faulty sensors are important since
they must be substituted in operations based on these sensors. Low-cost solutions are
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preferred in the vehicle industry, thus simple sensors and software-based redundancy
must be applied.

The closed-loop system applied in the design of a local control includes the feed-
back structure of the model G(ρ), the compensator and elements associated with the
performance objectives:

z = C(ρ)x + D1(ρ)w + D2(ρ)u, (7.2)

where w = [d n]T includes both the external disturbances and the sensor noise.
In the interconnection structure performance requirements z are imposed by a

suitable choice of the weighting functions Wp. Usually, the purpose of weighting
functionsWp is to define penalty functions, i.e., weights should be large where small
signals are desired and small where large performance outputs can be tolerated.
The proposed approach realizes the reconfiguration of the performance objectives
by an appropriate scheduling of these weighting functions. Δm block contains the
uncertainties of the system, such as unmodelled dynamics and parameter uncertainty.
In this augmented plant unmodelled dynamics is represented by a weighting function
Wr and a block Δm . The purpose of the weighting functions Wd and Wn is to reflect
the disturbance and sensor noises.

In the proposed solution the design of local control components is based on
LPV methods. LPV methods are well elaborated and successfully applied to various
industrial problems. The LPV approaches allow us to take into consideration the
highly nonlinear effects in the state space description. Themain point of the approach
is that in the control design of the local components scheduling variables received
from the supervisor are used as a key of integration. In this way the operation of a
local controller can be extended to reconfigurable and fault-tolerant functions.

If parameter-dependent Lyapunov functions are used, the designed controller
depends explicitly on �̇. Thus, in order to construct a parameter-dependent con-
troller, both � and �̇ must be measured or available. When �̇ is not measured in
practice, a suitable extrapolation algorithm must be used to achieve an estimation of
the parameter �̇. To remove �̇ dependence a �-dependent change of variables was
proposed in Balas et al. (1997).

The quadratic LPV performance problem is to choose the parameter-varying con-
troller K (�) in such away that the resultant closed-loop systemM(�) is quadratically
stable and the induced L2 norm from w to z is less than γ , i.e.,

‖M(ρ)‖∞ = inf
K

sup
Δ

sup
‖w‖2 �=0,w∈L2

‖z‖2
‖w‖2 . (7.3)

By assuming an unstructured uncertainty and by applying a weighted small gain
approach the existence of a controller that solves the quadratic LPV γ -performance
problem can be expressed as the feasibility of a set of LMIs, which can be solved
numerically, see Wu (2001).

The existence of a controller that solves the quadratic LPV γ -performance prob-
lem can be expressed as the feasibility of a set of Linear Matrix Inequalities (LMIs),
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which can be solved numerically. Stability and performance are guaranteed by the
design procedure, see Balas et al. (1997), Wu et al. (1996). When the LPV controller
has been synthesized, the relation between the state, or output, and the parameter
ρ = σ(x) is used in the LPV controller, such that a nonlinear controller is obtained.

7.3.1 Design of the Brake System

Roll stability is achieved by limiting the lateral load transfers on both axles to below
the levels forwheel liftoff duringvarious vehiclemaneuvers. The lateral load transfers
are calculated at both axles: ΔFz,i = Ciφt,i . The tire contact force is guaranteed if
mg
2 ± ΔFz > 0 for both sides of the vehicle. The normalized values of the lateral
load transfers are the ratio of ΔFz,i and the masses of the vehicle on the axles:
ρR = ΔFz,i/mig. The aim of the control design is to reduce the maximum value of
the normalized lateral load transfer if it exceeds a predefined critical value (Fig. 7.6).

In the design of the brake system the command signal is the difference in brake
forces while the performance signal is the lateral acceleration: zb = [

ay, ur
]T

. The
weighting function of the lateral acceleration is selected as:

Wp,ay = γa
Tb1s + 1

Tb2s + 1
. (7.4)

where Tbi are time constants. Here γa is a gain, which reflects the relative importance
of the lateral acceleration and it is chosen to be parameter-dependent, i.e., the function
of ρR .

γa =
⎧
⎨

⎩

1 if |ρR| > Rb
|ρR |−Ra

Rb−Ra
if Ra ≤ |ρR| ≤ Rb

0 if |ρR| < Ra
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Fig. 7.6 Parameter-dependent gain in the brake control
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When ρR is small (|ρR| < Rb), i.e., when the vehicle is not in an emergency, γa is
small, indicating that the LPV control should not focus on minimizing acceleration.
When ρR is approaching the critical value, i.e., when |ρR| � Rb, γa is large, it
indicates that the control should focus on preventing the rollover. Here Rb defines
the critical status when the vehicle is close to the rollover. Note that the weights used
in the chapter are proportional–differential components. Their time constants and
gains reflect the required steady state and transient behavior of the different signals
that describe the performance specifications.

Remark 7.1 If a fault concerning roll stability is detected in the suspension system
its role is substituted by the brake system. The brake system is activated at a smaller
critical value than in a fault-free case, i.e., when |ρDa| > 0. Consequently, the brake
is activated in a modified way and the brake moment is able to assume the role of the
suspension actuator in which the fault has occurred. The modified critical value is

Ra,new = Ra − α · ρDa, (7.5)

where α is a predefined constant factor.

7.3.2 Design of the Steering System

Yaw stability is achieved by limiting the effects of the lateral load transfers. The
purpose of the control design is to minimize the lateral acceleration, which is mon-
itored by a performance signal: za = ay . Unilateral braking is one of the solutions,
in which brake forces are generated in order to achieve a stabilizing yaw moment. In
the second solution additional steering angle is generated in order to reduce the effect
of the lateral loads. These solutions, however, require active driver intervention into
the motion of the vehicle to keep the vehicle on the road.

Another control task is to follow a road by using a predefined yaw rate (angle).
In this case the current yaw rate must be monitored and the difference between the
reference and the current yaw rate is calculated. The purpose of the control is to
minimize the tracking error: zψ̇ = ψ̇cmd − ψ̇re f .

In order to solve the yaw rate tracking problem in the design of the steering system,
the command signal must be fed forward to the controller (ψ̇cmd). The command sig-
nal is a predefined reference displacement and the performance signal is the tracking
error: zψ̇ = eψ̇ , which is the difference between the actual yaw rate and the yaw rate
command. The weighting function of the tracking error is selected as:

Wpe = γe
Td1s + 1

Td2s + 1
, (7.6)

where Tdi are time constants. Here, it is required that the steady state value of the
tracking error should be below 1/γe in steady state.
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Remark 7.2 If a fault is detected in the steering system (|ρDs | > 0), the brake must
focus on yaw dynamics in order to reduce the tracking error. Thus, in the control
design of the brake the performance specification concerning the steering system is
also built in:

Wpe = γbe
Tb3s + 1

Tb4s + 1
, (7.7)

where γbe depends on |ρDs |

γbe =
⎧
⎨

⎩

1 if |ρDs | > ρcri t
|ρR |−ρtol

ρcri t−ρtol
if ρtol ≤ |ρDs | ≤ ρcri t

0 if |ρDs | < ρtol

In this weighting the critical value of the brake intervention is used together with a
tolerance value.

Remark 7.3 When there is a performance degradation in the operation of the brake
system, it is not able to create sufficient yaw moment to improve roll stability. In this
sense the brake system is substituted by the steering system. The steering system
receives the fault message from the supervisor and it modifies its operation in such a
way that the effects of the lateral loads are also reduced. The difficulty in this solution
is that a performance degradation concerning the tracking task also occurs, since the
steering system must create a balance between tracking and roll stability.

7.3.3 Design of the Suspension System

Road holding is achieved by reducing the normalized suspension deflections ρk

between the sprung and unsprung masses at the four corner points of the vehicle.
Since increasing road holding reduces the passenger comfort in the design of the
suspension system its desired level is subject to a design decision.

The performance signals in the suspension design are: zs = [
az sd td us

]T
. The

goals are to keep the heave accelerations az = q̈ , suspension deflections sd =
x1i j − x2i j , wheel travels td = x2i j − wi j , and control inputs small over the desired
operation range. The performance weighting functions for heave acceleration, sus-
pension deflections, and tire deflections are selected as

Wp,az = γaz
Ts1s + 1

Ts2s + 1
, (7.8)

Wp,sd = γsd
Ts3s + 1

Ts4s + 1
, (7.9)

Wp,td = γtd
Ts5s + 1

Ts6s + 1
, (7.10)



7.3 Design of the Local and Reconfigurable Control Systems 171

where Tsi are time constants while γtd are parameter-dependent gains, which depend
on the suspension deflection ρki j .

In normal cruising the suspension system focuses on the conventional perfor-
mances based on the parameter-dependent gain, which is a function of the suspension
deflection ρki j . The trade-off between passenger comfort and suspension deflection
is due to the fact that it is not possible to guarantee them together simultaneously. A
large gain γaz and a small gain γsd correspond to a design that emphasizes passenger
comfort while choosing γaz small and γsd large corresponds to a design that focuses
on suspension deflection. The parameter dependence of the gains, which is illustrated
in Fig. 7.7, is characterized by the constants ρ1 and ρ2 in the following way:

γaz =
⎧
⎨

⎩

1 if |ρki j | < ρ1,
|ρki j |−ρ2

ρ1−ρ2
if ρ1 ≤ |ρki j | ≤ ρ2,

0 if R ≥ Rs or |ρki j | > ρ2.

γsd =
⎧
⎨

⎩

0 if |ρki j | < ρ1,
|ρki j |−ρ1

ρ2−ρ1
if ρ1 ≤ |ρki j | ≤ ρ2,

1 if R ≥ Rs or |ρki j | > ρ2.

Remark 7.4 The idea of the reconfigurable suspension system is based on the fact
that active suspension systems are used not only to eliminate the effects of road
irregularities but also to generate roll moments to improve roll stability or generate
pitch moment to improve pitch stability.

Wp,θ = γP
Ts7s + 1

Ts8s + 1
,

Wp,γ = γR
Ts9s + 1

Ts2s + 10
.
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Fig. 7.7 Parameter-dependent gains in the suspension control
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For a reconfigurable suspension system the parameter-dependent gains are selected
as functions of the normalized lateral load transfer ρR and the normalized value of
the pitch angle ρP . If ρP exceeds a predefined critical value, i.e., when |ρP | � RP ,
the controller must focus on pitch stability. In an emergency, however, i.e., when
|ρR| ≥ Rs, the suspension system must reduce the rollover risk and guaranteeing
passenger comfort (and pitch angle) is no longer a priority.

7.3.4 Actuator Selection Procedure

In this section the selection of the weighting functions applied to the control design
is based on the effects of the actuators on vehicle dynamics.

The maximal control input of the steering is determined by its physical construc-
tion limits, while in the case of the braking system the constraints are the tire road
adhesion conditions.

In the control design the distribution of the wheel forces must also be taken
into consideration. In a front-wheel-driven vehicle the traction force is distributed
between the front wheels by using a differential gear. The steering angle is limited
by construction (δcri t ), therefore when the maximal steering angle is reached the
desired lateral dynamics of the vehicle must be achieved by the brake moment.
During braking the load of wheels is modified due to the pitch dynamics of the
vehicle. The braking of the front wheels must be stronger while the braking of the
rear wheels must be reduced. It is necessary to avoid the skidding of tires, thus in such
a case the generation of differential braking must be reduced. The skidding of tires
can be monitored by the estimation of the longitudinal slips of the tires κ; a possible
method is found in Gustafsson (1997), de Wit et al. (2003). These constraints must
also be taken into consideration in the control design and must be guaranteed by the
supervisor.

Moreover, the activation of the different components have an energy requirement.
By using differential braking the velocity of the vehicle is reduced, which must
be compensated for by the driveline with additional energy. Therefore the use of
differential braking must be avoided during acceleration and front-wheel steering
is preferred. During deceleration the brake is already being used, thus the lateral
dynamics is handled by the braking for practical reasons. Thus differential braking
is preferred, but close to the limit of skidding, front-wheel steering must also be
generated. The actuation of differential braking causes increased strain on the tires.
When the vehiclemoves in the lateral direction the position of each tire is longitudinal
and they are not rotating. This also shows that using front-wheel steering is more
efficient.

The bandwidth of the different actuators must also be taken into consideration in
theweighting functions. In the case of front-wheel steering and the variable-geometry
suspension, the inertia of the systems effects a slower operation of the actuators
than the bandwidth of differential braking. In the following, the bandwidths of the
actuation are compared.
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The dynamics of steering is determined by the moment which rotates the wheels
Mst = 2ϑst δ̈ + Mres,st , where ϑst is the inertia of the wheel on the axle of steering,
δ is the steering angle. Mst is controlled by a servo power system according to
the rack, where Mres,st = Mgy,st + Mch,st is the sum of the steering resistances.
In order to the steer the rotating wheels it is necessary to generate energy against
the gyroscopic effect. It is formulated by using the following assumption: Mgy,st =
2Jwvδ̇/rw, where Jw is the inertia of the wheel on the axle of rotation and rw is the
wheel radius. During steering the positions of wheels aremodified. Since the axle of a
steered wheel is skew the vertical position of the entire chassis also moves. Thus, it is
necessary to generate energy to improve the lateral dynamics of the chassis:Mch,st =
Bπssusp(sin n) δ, where B is the wheel track, ssusp is the suspension stiffness and n
is the angle between the road and the axis of wheel steering. The transfer function
of the steering system between the steering angle δ and the moment Mst is

Gst = (ϑst s
2 + 2Jwv

rw
s + Bπssusp sin n)−1

The bandwidth of the actuation rate is analyzed as a function of velocity.
Figure7.11 shows that the bandwidth values change significantly with the change of
velocity (Fig. 7.8).

The maximal longitudinal force of the wheels (Fi,max ) is calculated and compared
to themomentary longitudinalwheel forces (Fi ).Note that themaximum longitudinal
force depends on the maximum adhesion coefficient and the static and dynamic
components of the vertical force at the wheel, i.e., the lateral and pitch dynamics.

Fi,max = μmax {Fz,stat ± mayh/2/L ± mψ̇vh/b}.

Fig. 7.8 Bandwidth values
of actuators
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This calculationmust be performed at allwheels and the highest rate of ν = Fi/Fi,max

is selected. If a skidding incident is imminent the actuation of the brakemoment must
be reduced and it is replaced by the actuation of front-wheel steering. The variable
ν = max{Fi/Fi,max } is the maximal value between the force ratios considering all
the wheels and νcri t is a design parameter.

According to the inertia of steering, the bandwidths of steering and suspension are
lower at each velocity than the bandwidth of differential braking. The fast operation
of actuators is an important feature mainly at high velocities. At higher velocities it
is recommended to use differential braking, while at lower velocities steering actu-
ation is preferred for practical reasons. The weighting functions for the front-wheel
steering, brake yaw moment and suspension moment are selected in the following
form:

Wact,δ = ρδ/δmax (7.11)

Wact,Mbr = ρbr/Mbrmax (7.12)

respectively, where δmax and γmax are determined by the constructional maximum
of the steering and the camber angle, while Mbrmax is the maximum of the brake
yaw moment. Weighting factors ρst , ρbr are chosen to influence the priority of the
actuators. Figure7.9 shows the characteristics of the weighting factors.

Fig. 7.9 Selection of
parameters ρst and ρbr
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When the vehicle is being driven the front-wheel steering is actuated, which is
determined by factor ρst , see Fig. 7.9a. The value is reduced between δ1 and δ2, which
represents the constructional criterion of the steering system. In this interval differ-
ential braking is preferred for practical reasons. The values of ρst also depend on the
velocity of the vehicle. The effect of velocity on the weighting factors is the conse-
quence of the difference between the bandwidth values of the actuators. According
to the inertia of steering, the bandwidth of steering is lower at each frequency than
the bandwidth of differential braking. At higher velocities it is recommended to use
differential braking, while at lower velocities the steering actuation is preferred for
practical reasons. Consequently, two additional design parameters (v1 and v2) are
also introduced. In the case of braking the tire longitudinal slip angle κ affects ρbr ,
see Fig. 7.9b. It requires an interval to reduce tire skidding (κ1, κ2) and it also requires
an interval to prevent chattering between steering and differential braking (κ3, κ4).

7.3.5 Fault Information in the Decentralized Control

The fault-tolerant local controllers also require components for monitoring fault
information. Here the normalized fault information provided by an FDI filter is
given by

ρD = fact
fmax

, (7.13)

where fact is an estimation of the failure (output of the FDI filter) and fmax is an
estimation of the maximum value of the potential failure (fatal error). The estimated
value fact means themeasure of the performance degradation of an active component.

The interconnection structure includes the vehicle model G(ρ), the FDI filter
F(ρ), and elements associatedwith performance objectives, seeFig. 7.10.Theweight
Wp f reflects the relative importance of the fault signal. This weight should be large
when small errors are desired and small when large errors can be tolerated. The

Fig. 7.10 Design of an FDI
filter
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weight W fa defines the size of the possible fault in the actuator channel. The weight
W fs defines the size of the possible fault in the sensor channel.

The design requirement for H∞ residual generation is to maximize the effect of
the fault ( f ) on the residual and simultaneously minimize the effect of exogenous
signals (d, u) on the residual.

||Trd ||∞ = sup
|| f ||2=1,ρ∈P

||r ||2, (7.14)

where the residual can be expressed as r = Truu + Trdd + Tr f f. The FDI filter
designed in the open-loop system can be implemented in the closed-loop system.
The filter receives the measured outputs, the control inputs and the filter provides the
fault residuals. For more details on the main steps of the FDI filter design see Gáspár
et al. (2005c).

The fault-tolerant control requires fault information in order to guarantee perfor-
mances andmodify its operation. Thus, FDI filters are also designed for the operation
of the actuators. As an example the fault information provided by a fault detection
filter is given by ρD = fact/ fmax , where fact is an estimation of the failure (output of
the FDI filter) and fmax is an estimation of themaximum value of the potential failure
(fatal error). The value of a possible fault is normalized into the interval ρD = [0, 1].
The estimated value fact means the rate of the performance degradation of an active
component.

The detection of a sensor failure as accurately as possible is crucial since the con-
troller may generate fault actuator intervention as a result of fault sensor information.
Sensor failures may also prevent certain actuators from being used; then handling the
sensor failure leads to an actuator reconfiguration problem. Thus complex vehicle
systems require various FDI filters both for actuator and sensor failures.

7.4 Control Design of Trajectory Tracking

7.4.1 Modeling of Trajectory Tracking

The control system of the lateral vehicle dynamics assists the driver in tracking road
geometry. It has advantages in critical situations, in which the driver is not able
to ensure vehicle stability. In trajectory tracking the vehicle is moving in the road
and both the longitudinal and the lateral dynamics must be taken into consideration.
In the design of trajectory tracking assistance systems it is necessary to guarantee
that the vehicle must perform the desired lateral motion of the driver. The nonlinear
dynamics of the tire and the velocity of the vehicle influence the sideslip angles on
the front and rear axles of the vehicle. The balance of these two angles determines the
steering motion of the vehicle, which changes depending on velocity. Unfortunately
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the driver does not have information about this motion during the journey, which
may cause emergencies.

Three actuators are used in the system, i.e., the front-wheel steering angle δ, the
differential brake torque Mbr , and the wheel camber angle γ . In the vehicle system
a variable-geometry suspension system which changes the camber angle of the rear
wheels is applied. Various solutions for the variable-geometry suspension system
have already been proposed, see Watanabe and Sharp (1999), Evers et al. (2008).
A rear suspension active toe control to enhance driving stability is proposed by Lee
et al. (2008), Goodarzia et al. (2010).

The lateral force of the tire Fy via the tire sideslip α is approximated as Fy =
Cα + Cγ γ, where C is cornering stiffness, α is the tire sideslip angle, Cγ is a
coefficient, which represents the degree of offset and γ is the camber angle of the
rear wheels. Here, the linearized tire model in the direction of the wheel-ground
contact velocity is extended with the effect of the wheel camber. Using this equation
the lateral dynamics of the vehicle is formulated as:

J ψ̈ = C1l1α f − C2l2αr + Mbr − C2,γ l2γ (7.15)

mv(ψ̇ + β̇) = C1α f + C2αr + C2,γ γ (7.16)

where m is the mass, J is the yaw inertia of the vehicle, l1 and l2 are geometric
parameters,C1,C2 andC2,γ are cornering stiffnesses, ψ̇ is the yaw rate of the vehicle,
β is the sideslip angle. Moreover, α f = −β + δ − l1 · ψ̇/v and αr = −β + l2 · ψ̇/v

are the tire sideslip angles at the front and rear, respectively.
The lateral assistance controller must estimate the steering intention of the driver.

For this estimation it is required tomeasure the velocity of the vehicle and the steering
wheel angle. The reference yaw rate of the controller, which is desired by the driver,
is calculated using the following expression:

Gψ̇re f ,δd
= v

l1 + l2 + ηv2/g
· 1

τ s + 1
(7.17)

with an understeer gradientη and the time constant τ , see Pacejka (2004). In trajectory
tracking both the longitudinal and lateral dynamics must be taken into consideration,
i.e., the vehicle must track two reference signals. It is required to measure the yaw
rate signal of the vehicle, and the driver assistance controller must perform the next
minimization criterion:

|ψ̇re f − ψ̇ | → 0. (7.18)

Moreover, the difference between the lateral position of the vehicle and the reference
lateral position must be minimized:

|yv,re f − yv| → 0. (7.19)
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which is the deviation of the vehicle from the lateral position of the reference road
geometry in the coordinate system of the vehicle.

The designs of the three control systems are based on the state space representation
form of the vehicle:

ẋ = A(ρ)x + B(ρ)u (7.20)

where the state vector of the system x = [
ψ̇ β

]T
contains the yaw rate and the

sideslip angle of the vehicle. In the case of the brake control the input of the system
is u = Mbr , in the steering control the input is u = δ, while in the variable-geometry
suspension the control input is u = γ . Using a scheduling variable ρ = v the vehicle
model is transformed into an LPV model. The measured output of the system is the
yaw rate y = ψ̇ .

7.4.2 Weighting Functions in the Control Design

In this section the selection of the weighting functions applied to the control design
is based on the effects of the actuators on vehicle dynamics.

The maximal control input of the steering and variable-geometry suspension sys-
tems are determined by their physical construction limits, while in the case of the
braking system the constraints are the tire road adhesion conditions. It is necessary to
avoid the skidding of tires, thus in such a case the generation of differential braking
must be reduced. The skidding of tires can be monitored by the estimation of the
longitudinal slips of the tires κ; a possible method is found in Gustafsson (1997).
These constraints must also be taken into consideration in the control design and
must be guaranteed by the supervisor.

Moreover, the activation of the different components have an energy requirement.
By using differential braking the velocity of the vehicle is reduced, which must be
compensated by the driveline with additional energy. Therefore the use of differential
braking must be avoided during acceleration and front-wheel steering is preferred.
During deceleration the brake is already being used, thus the lateral dynamics is
handled by the braking for practical reasons. Thus differential braking is preferred,
but close to the limit of skidding, front-wheel steering must also be generated. The
actuation of differential braking causes increased strain on the tires.When the vehicle
moves in the lateral direction the position of each tire is longitudinal and they are
not rotating. This also shows that using front-wheel steering is more efficient.

The bandwidth of the different actuators must also be taken into consideration in
theweighting functions. In the case of front-wheel steering and the variable-geometry
suspension, the inertia of the systems effects a slower operation of the actuators
than the bandwidth of differential braking. In the following, the bandwidths of the
actuation are compared.
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The dynamics of steering is determined by the moment which rotates the wheels
Mst = 2ϑst δ̈ + Mres,st , where ϑst is the inertia of the wheel on the axle of steering,
δ is the steering angle. Mst is controlled by a servo power system according to
the rack, where Mres,st = Mgy,st + Mch,st is the sum of the steering resistances.
In order to the steer the rotating wheels it is necessary to generate energy against
the gyroscopic effect. It is formulated by using the following assumption: Mgy,st =
2Jwvδ̇/rw, where Jw is the inertia of the wheel on the axle of rotation and rw is the
wheel radius. During steering the positions of wheels aremodified. Since the axle of a
steered wheel is skew the vertical position of the entire chassis also moves. Thus, it is
necessary to generate energy to improve the lateral dynamics of the chassis:Mch,st =
Bπssusp(sin n) δ, where B is the wheel track, ssusp is the suspension stiffness and n
is the angle between the road and the axis of wheel steering. The transfer function
of the steering system between the steering angle δ and the moment Mst is

Gst = (ϑst s
2 + 2Jwv

rw
s + Bπssusp sin n)−1

The moment of the suspension system is controlled by a hydraulic system.
Msusp = ϑsuspγ̈ + Mres,susp, where ϑsusp is the inertia of the wheel on the axle of
wheel camber rotation and Mres,susp = Mgy,susp + Mch,susp. The gyroscopic torque
component is similar to the steeringmoment:Mgy,susp = Jwvγ̇ /rw. During themod-
ification of the wheel camber angle, the position of the chassis also changes. The
moment, which must be compensated for by the actuator of the variable-geometry
suspension, is approximated as: Mch,susp = Bssusprw(1 − γ ). The transfer function
of the suspension system between thewheel camber angle γ and themomentMsusp is

Gsusp = (ϑsusps
2 + Jwv

rw
s − Bssusprw)−1

In the case of differential braking the input of the model is the brake yawmoment,
the output is the yaw rate. In the case of steering system it is necessary to combine
the bicycle model with the second-order steering model in order to transform the
steering angle into a steering moment. Similarly, in the case of suspension system
it is necessary to combine the bicycle model with the suspension model. Then the
three models can be compared. The bandwidth of the actuation rate is analyzed as a
function of velocity. Figure7.11 shows that the bandwidth values change significantly
with the change of velocity.

According to the inertia of steering, the bandwidths of steering and suspension are
lower at each velocity than the bandwidth of differential braking. The fast operation
of actuators is an important feature mainly at high velocities. At higher velocities it
is recommended to use differential braking, while at lower velocities steering actu-
ation is preferred for practical reasons. The weighting functions for the front-wheel
steering, brake yaw moment, and suspension moment are selected in the following
form:
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Fig. 7.11 Bandwidth values
of actuators
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Wact,δ = ρδ/δmax (7.21)

Wact,Mbr = ρbr/Mbrmax (7.22)

Wact,susp = ρsusp/γmax (7.23)

respectively, where δmax and γmax are determined by the constructional maximum of
the steering and the camber angle, while Mbrmax is the maximum of the brake yaw
moment. Weighting factors ρst , ρbr , ρsusp are chosen to influence the priority of the
actuators. Figure 7.9 shows the characteristics of the weighting factors.

When the vehicle is being driven the front-wheel steering is actuated, which is
determined by factor ρst , see Fig. 7.9a. The value is reduced between δ1 and δ2, which
represents the constructional criterion of the steering system. When the brakes are
being applied the tire longitudinal slip angle affects factor ρbr , see Fig. 7.9b. In this
interval differential braking is preferred for practical reasons. It requires an interval
to reduce tire skidding and it also requires an interval to prevent chattering between
steering and differential braking. Therefore four parameters are designed: κ1 and
κ2 are used to prevent chattering between steering and braking and κ3 and κ4 are
applied to prevent the skidding of tires. The weights also depend on the velocity of
the vehicle. The effect of the velocity on the weighting factors is the consequence of
the interaction between the bandwidth values of the actuators.

Note that at the construction or adhesion limits the actuations of the steering
and the brake are reduced. In this case it is necessary to compensate for the actu-
ator reduction by another actuator. It means that if

∑
ρ(= ρbr + ρst ) < 1 then the

variable-geometry suspension system is activated ρsusp = 1 − (ρbr + ρst ).
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7.4.3 Design of the Integrated Control

In the design of the control system the advantages of the LPVmethods are exploited.
These methods allow us to take into consideration the highly nonlinear effects in
the state space description in such a way that the model structure is nonlinear in the
parameters, but linear in the states. The designed controller meets robust stability and
performance demands in the entire operational region, see Bokor and Balas (2005),
Balas et al. (1997), Wu et al. (1996). The control design is based on a weighting
strategy, which is formulated through a closed-loop interconnection structure. In the
supervisory integrated control scheme each controlled subsystem has its own LPV
controller, and the scheduling variables of these LPV controllers are selected by a
supervisory logic. The selection of input and output weighting functions is typically
based on the specifications of disturbances and the performances.

In the trajectory tracking problem two reference signals are introduced in order
to guarantee the tracking of the road geometry. They are the reference velocity and
the reference lateral displacement R = [vre f yv,re f ]T . Performances of the control
system are the minimization of the tracking error of the yaw rate tracking error and
the minimization of the deviation from the reference lateral position

z1 = [ψ̇re f − ψ̇; yv,re f − yv]T → min! (7.24)

The weighting function for performance specification is selected as a second-order
proportional form: Wp where ε1, ε2, T1, T2 are designed parameters. The purpose of
the weighting functions Ww and Wn is to reflect the disturbance and sensor noises,
respectively, and they are selected in a first-order proportional form. The magnitude
of the neglected dynamics is handled by a weighting Wu . The role of Wact is to
guarantee the desired actuation of controlled systems. Three weighting functions
are applied according to (7.21). Since these weighting functions must be built into
the performance of the actuators, ρst , ρbr , ρsusp are selected as scheduling variables
of the controlled systems in the LPV design. Therefore another performance of the
system is formulated as

z2 = |u| → min! (7.25)

In the design of local controllers the quadratic LPV performance problem is to
choose the parameter-varying controller in such a way that the resulting closed-loop
system is quadratically stable and the induced L2 norm from w to z is less than γ .
The existence of a controller that solves the quadratic LPV γ -performance problem
can be expressed as the feasibility of a set of LMIs.

The architecture of the controlled supervisory system is shown in Fig. 7.12. The
stability of the individual LPV controllers is guaranteed by the quadratic stability
of the integrated system. When several controllers are used simultaneously it is
necessary to guarantee the stability of the global closed-loop system. The global
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Fig. 7.12 Architecture of
the supervisory system

controller

measured
signals

Wheel force
distribution

Mbr

δ

Fi

Supervisory

Steer
controller

Brake
controller

Suspension
controller

ρst ρbr ρsusp

γ

VEHICLE

control system contains three controllers, such as the brake, the steering, and the
suspension.

Since each LPV controller contains one scheduling variable, the global system
uses three additional scheduling variables [ρbr , ρst , ρsusp]. Consider that the convex
polytopic set depends on the scheduling variables. A common Lyapunov function
for the polytopic set of closed-loop systems must exist. The next polytopic set of
closed-loop systems is given

ẋ(t) = A x(t); A ∈ Co{A1, . . . An} (7.26)

For the stability of the LTI system it is necessary to guarantee that all trajectories of
system A converge to zero as t → ∞. A sufficient condition for this is the existence
of a quadratic function V (ξ) = ξ T Pξ , P > 0, which decreases along every nonzero
trajectory of (7.26). If there exists such a P , then (7.26) is said to be quadratically
stable and V is called a quadratic Lyapunov function. The necessary and sufficient
condition for quadratic stability of system (7.26) for all of Ai is

AT
cl,i P + PAcl,i < 0; P > 0; i = 1, . . . n (7.27)

Therefore it is necessary to find a V common Ljapunov function for the closed-loop
systems, which can guarantee the global stability of the systems in every scheduling
variable. The aim is to find a solution P > 0. To analyze the global stability of the
LTI systems, Co{A1, . . . An} is covered by the convex hull of finitely many matrices
Acl,i Scherer (2000). For the analysis of global stability this convex hull can be used.
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7.4.4 Simulation Results

In the example the efficiency of the integrated control is compared to the individual
actuated control systems. In the analysis of the individual actuator controllers and
in the analysis of the supervisory case, the same brake, steering and suspension
controllers are used. The vehicle is traveling along a predefined road, while the
suspension system supports the driver to guarantee trajectory tracking. A typical
E-Class automobile is applied in the simulation. The mass of the 6-gear car is 2023
kg, its engine power is 300 kW (402 hp), and independent McPherson suspensions
are applied. The width of the track is 1605 mm and the wheel base is 3165 mm.

In the simulation example the vehicle is traveling along a section of Waterford
Michigan Race Track, which is shown in Fig. 7.13a. In Fig. 7.13 the vehicle using
a supervisory control (dashed line) is compared to the vehicle without any control
(solid line). The aim is to track the centerline of the road. The velocity of the vehicle
changes along its route as Fig. 7.13b shows. The course has two dangerous curves.
Figure7.13c, d show that the uncontrolled vehicle is not able to track the trajectory,
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i.e., the driver is not able to keep the vehicle on the track without a driver assistance
system.

In the figure the supervisory control is compared to systems which use only
one controller. When a steering system is used only, it is not able to guarantee
trajectory tracking in the first critical curve. The individual steering actuator is not
able to prevent the skidding of the vehicle on the road. In this curve the supervisory
integration of the steering and the brake ensures trajectory trackingwith an acceptable
threshold.When a brake system is used only, it generates increased braking pressures
to keep the vehicle in the centerline. However, during braking the slip of the rear
tires increases, which leads to loss of stability. In the supervisory integrated system
the brake control is able to consider the slips of tires and avoid the saturation of the
differential braking.

The lateral errors of the trajectories are shown in Fig. 7.14a. This figure illustrates
that at the beginning of the coursewhen a steering control is used only the lateral error
is the highest, while in the last section during the traveling the lateral error increases
significantly when a brake is used only. The supervisory integrated control gives
the smallest lateral error during the operation. In Fig. 7.14b the yaw rate tracking of
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the supervisory integrated control is shown. Thus, the integrated control provides an
acceptable z1 performance. Figure7.14c illustrates the angle of steeringwheel turned
by the driver.When a steering system is used only, the driver needs to turn the steering
wheel in the entire steering range, which is uncomfortable and dangerous. When a
brake system is used only, the driver turns the steering wheel relatively smoothly. In
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the supervisory integrated control case the driver must increase the steering angle
slightly compared to the pure braking.

Figure7.14d shows the difference between the front-wheel steering angles at the
steering only and the integrated case. When a steering system is used only, the
steering angle is significantly larger than the integrated system, since the turning of
the steeringwheel affects the front steering angles.When a brake system is used only,
the differential braking torque is larger than the integrated system. Note that from
2080 m the torque Mbr sharply increased due to the skidding effect, see Fig. 7.15a.
This characteristic is shown in the longitudinal slip, see Fig. 7.15c. When a brake
system is used only the longitudinal slip of rear right wheel exceeds −1, which leads
to skidding. In the integrated case the longitudinal slip does not exceed −1, see
Fig. 7.15d. It is also shown at the end of the course, where the increased longitudinal
slips cause the loss of stability in case of brake actuation only.

In Fig. 7.15e the camber angle of the variable-geometry suspension is shown.
This figure illustrates that the rear wheel camber angle is increased at the critical
situations. In the second critical curve the brake torque Mbr must be reduced in
the integrated supervisory system in order to avoid skidding. From that point the
variable-geometry suspension system must generate the required control input. The
interaction between the steering and the brake is shown in Fig. 7.15f. The figure
shows that according to the example, ρst is reduced when the front-wheel steering
angle reaches its construction limit. The value of ρbr depends on the maximum value
of longitudinal slip of tires. It is critical when control input Mbr is high, which
may cause skidding. Consequently, ρbr is reduced and ρsusp is increased, while the
variable-geometry suspension system compensates for the differential brake torque.



Chapter 8
Control of the Variable-Geometry Suspension

8.1 Lateral Dynamics of the Vehicle Model

A variable-geometry suspension system is applied as a driver assistance system
in vehicles. While the driver performs a maneuver using the steering wheel, an
autonomous control system modifies the camber angle of the front wheels in order
to improve road stability. Since various safety and economy properties of the vehicle
are determined by the suspension geometry it has significant influence on the control
design. The advantages of the variable-geometry system are the simple structure, low
energy consumption, and low cost compared to other mechatronic solutions, such as
an active front wheel steering, see Evers et al. (2008).

The height of the roll center has an important role in the roll dynamics of the
vehicle. A possible way to minimize the chassis roll angle is the minimization of
the height of the roll center. The roll center depends on the camber angle of the
front wheels, which can be modified by the variable-geometry suspension system.
The lateral movement of the contact point of the variable-geometry system is also
relevant from the aspect of tire wear, when the suspension moves up and down while
the vehicle moves forward, see Gough and Shearer (1956). Using an appropriately
designed variable-geometry control, these unnecessary movements can be elimi-
nated. In summary, in normal cruising maneuvers the steering system focuses on
trajectory tracking and the variable-geometry suspension system guarantees various
performances which are related to the chassis roll angle and half-track change.

Moreover, by changing the camber angles of the front wheels, the yaw rate of
the vehicle is modified, which can be used to reduce the tracking error from the
reference yaw rate. Thus, with the reconfiguration of the camber angles, the variable-
geometry system is able to focus on trajectory tracking and assist the driver to carry
out various vehicle maneuvers. Thus, in an emergency such as a sharp cornering the
variable-geometry system focuses on trajectory tracking instead of the conventional
performances. In this way, the variable-geometry system can also be used as a driver
assistance system. However, one of the properties might only be improved to the
detriment of other properties. For example, if the tracking ability is enhanced at the
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same time, the performances in terms of roll dynamics and half-track change are
degraded. The conflict between different performance demands must be resolved
in such a way that a balance between the performances is achieved. In the control
design a parameter-dependent weighting strategy is applied.

Several papers for various kinematic models of suspension systems have been
published. A review of the first variable-geometry suspensions was presented by
Sharp (1998). The selection of the suspension components and the influence of the
distribution of vertical forces were analyzed in Braghin et al. (2008b). A nonlin-
ear model of the McPherson strut suspension system was published by Fallah et al.
(2009), Németh and Gáspár (2012). Using this model the kinematic parameters such
as camber, caster, and king-pin angles were examined. The kinematic design of
a double-wishbone suspension system was examined by Sancibrian et al. (2010).
The vehicle-handling characteristics based on a variable roll center suspension was
proposed by Lee et al. (2008). A rear-suspension active toe control for the enhance-
ment of driving stability was proposed by Goodarzia et al. (2010). Another field
of variable-geometry suspension is the steering of narrow vehicles. These vehicles
require the design of an innovative active wheel tilt and steer control strategies in
order to perform steering as if for a car on straight roads and leaning in the bends as
a motorcycle, see Daniel and Cabrera (2010). The active tilt control system, which
assists the driver in balancing the vehicle and performs tilting in the bend, is an essen-
tial part of a narrow vehicle system, see Piyabongkarn et al. (2004). In Németh and
Gáspár (2011, 2013a) the simultaneous design of robust control and the construction
of a variable-geometry suspension system for the enhancement of vehicle stability
was analyzed.

The bicycle model illustrated in Fig. 8.1 is used in the control design. Although
the Magic form gives a highly accurate description of the lateral tire force, see e.g.,
Pacejka (2004), a simplified form is constructed for numerical reasons. The lateral
tire forces in the direction of the wheel ground contact are approximated linearly to
the tire side-slip angles α f , αr and the wheel camber angle γ .

Fy f = C1α f + Cγ γ, (8.1)

Fyr = C2αr , (8.2)

Fig. 8.1 Lateral model of
the vehicle
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whereC1,C2 are cornering stiffnesses,Cγ is a coefficientwhich represents the degree
of offset.

Using the bicycle model the lateral dynamics of the vehicle is formalized. The
first equation considers forces for the lateral dynamics, while the second one is the
torque balance equation for yaw moments.

mv(ψ̇ + β̇) = Fy f + Fyr = C1α f + C2αr + C1,γ γ, (8.3)

J ψ̈ = Fy f l1 − Fyr l2 = C1l1α f − C2l2αr + C1,γ l1γ, (8.4)

where J is the yaw inertia of the vehicle, l1 and l2 are geometric parameters, ψ

is the yaw of the vehicle, β is the side-slip angle of the vehicle. Moreover, α f =
−β + δ − l1 · ψ̇/v and αr = −β + l2 · ψ̇/v are the tire side-slip angles at the front
and rear, respectively, in which v denotes the longitudinal velocity. In the design of
trajectory tracking control it is necessary to guarantee that the lateral position of the
vehicle tracks the geometry of the road.

The required lateral motion is controlled by the difference between the actual yaw
rate of the vehicle and the yaw rate desired by the driver. The desired yaw rate, which
is the reference signal of the system, can be computed using the following formula
Rajamani (2005):

ψ̇re f = v

l1 + l2
δ (8.5)

where δ is the steering angle actuated by the driver. The side-slip angles of the tires
influence the actual yaw rate, which differs from the reference yaw rate. Thus, the
cornering maneuver might lead to understeering or oversteering. The control goal is
to compensate for the effects of side-slip angles on the vehicle.

8.2 Modeling of a Variable-Geometry Suspension System

The kinematic model of the variable-geometry mechanism is presented using the
double-wishbone suspension system (see Fig. 8.2). The kinematic model contains
the geometry of the actuator and shows the suspension displacements.

The suspension system is analyzed in a local coordinate system, whose center
point is C . Point A in the variable-geometry suspension system is able to move only
in a horizontal direction. In the variable-geometry system the change of point A in the
direction y is the real input of the mechanism, which is denoted by ay . Two further
points B and D are marked on the tire, which move both in directions y and z. Their
movements are denoted by by, bz, dy, dz . T is the road-wheel contact point, which
moves as a function of the road irregularities, i.e., ty, tz . The aim is to formalize the
relationship between the input ay and the wheel camber output γ . In the following
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Fig. 8.2 Kinematic model
of the suspension system
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only the main results are summarized. More details are found in Németh and Gáspár
(2011, 2013a).

Let us introduce the following vector of variables: η = [
by bz dy dz ty

]T
. The

relationship between η and ay is formalized in the following form:

Aη(η) η = K (tz) + Bη(ay) ay (8.6)

where tz can be considered as the disturbance. In the equation η is unknown, the
variables Aη and K (tz) change as a function of η and tz , and Bη depends on ay . The
vector η is expressed from (8.6)

η = Aη(η)−1[K (tz) + Bη(ay)ay] (8.7)

where Aη(η) is invertible. The output of the system is the camber of the wheel
γ = arccos{(Bz − Dz)/LBD}. Thus, the output equation is expressed Cηη = Dη,

where Cη = [
0 1 0 −1 0

]T
and Dη = LBD cos(γ ) + Dz − Bz . Consequently, the

input of the mechanism ay is expressed in the following form:

ay = [CηAη(η)−1Bη(ay)]−1[Dη − CηAη(η)−1K (tz)] (8.8)

Equation (8.8) gives the relationship between γ and ay . It is a parameter-varying
expression, which depends on η, tz and ay (Fig. 8.3).

The relationship between ay and γ as a function of tz based on the numerical solu-
tion of (8.8) is shown in Fig. 8.4a. An analysis shows that it is possible to approximate
it with linear functions in the following form:

γ = κ + ξ1tz + ε1ay (8.9)

The static components of the lateral forces are approximately equal, thus in the next
computations constant κ is omitted from (8.9).

In normal cruising maneuvers, the steering control assists the driver in following
the trajectory, while the variable-geometry suspension control focuses on two per-
formances. It minimizes the chassis roll angle by modifying the roll center of the
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Fig. 8.4 Properties of the variable-geometry suspension system

vehicle. Moreover, the half-track change can also be minimized using the variable-
geometry suspension system. In the driver assistance system an additional perfor-
mance requirement is also applied. The variable-geometry system is able to focus on
trajectory tracking and assist the driver in carrying out various vehicle maneuvers.
Thus, in an emergency, the variable-geometry suspension control also focuses on
trajectory tracking. Consequently, the performance requirements are related to the
yaw-rate tracking, the roll angle and the half-track change.

In the trajectory tracking control the vehicle must follow the reference yaw rate,
which is approximated by (8.5). The difference between the yaw rate of the vehicle
and the reference yaw rate must be minimized

z1 = |ψ̇re f − ψ̇ | (8.10)
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It has been shown that the roll center depends on both ay and tz . The height of the
roll center has an important role in the roll dynamics of the vehicle Rajamani (2005):

(Ixx + mΔh2)φ̈ =mgΔhφ + mvΔh(β̇ + ψ̇)−
− Bi

∑
Fsusp,i (8.11)

where Δh is the difference between the height of the center of gravity and the height
of the roll center (Δh = hCG − hM ), φ is the chassis roll angle, Ixx is the inertia of
the chassis, Bi is the half track and Fsusp,i are the vertical forces of suspension.

In order tominimize the chassis roll angle, the dynamic displacement of the height
of the roll center based on (8.13) must be minimized

z2 = |ΔhM | (8.12)

The construction of suspension determines the height of the roll center of the
chassis, hM . The intersection of the arms (A, B) and (C, D) is marked by K . The
intersection of the line (T, K ) and the vertical centerline of the chassis is the roll
center itself. The relationship between ay and hM as a function of tz based on the
numerical solution of (8.8) is shown in Fig. 8.4b. The height of the roll center can
be divided into static and dynamic components as follows: hM = hM,st + ΔhM .
Component hM,st represents the height of the roll center of a stationary vehicle, while
ΔhM represents the change of height during traveling. The dynamic component is
expressed in the following linear form:

ΔhM = ξ2tz + ε2ay (8.13)

Thus, the performance criterion is formalized in the following form: z2 = |ζ2tz +
ε2ay | → min.

The fulfillment of this performance can be reached by increasing actuation ay .
However, in practiceΔhM has a physical limit since actuation ay also has a limitation.
Therefore, a signal hre f (< hCG − hM,ST ) is introduced instead of ΔhM and applied
as a reference signal for the tracking task.

An additional important economy parameter is the half-track change. Using a
linear approximation and based on (8.15) the performance criterion is formalized in
the following form:

z3 = |ΔB| (8.14)

During traveling the half-track change ΔB is also an important economical dynamic
parameter of the suspension system, since it is related to tire wear. The relationship
between ay and ΔB as a function of tz based on the numerical solution of (8.8) is
shown in Fig. 8.4c. The figure shows that the relationship between ay and ΔB can
be expressed linearly in the following form:
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ΔB = ξ3tz + ε3ay (8.15)

Thus, the performance criterion is formalized in the following form: z3 = |ξ2tz +
ε3ay | → min.

Note that the performance requirements are in conflict, thus a balance must be
achieved between them. The aim of the control design is to achieve a balance between
performances.

8.3 Robust Control of the Variable-Geometry Suspension
System

The control design of the variable-geometry suspension system is based on the
control-oriented bicycle model

ẋ = Ax + B1w + B2u (8.16)

z = C1(ρ)x + D11(ρ)w + D12(ρ)u (8.17)

y = C2x (8.18)

where the state vector of the system contains the yaw rate and the side-slip angle
x = [

ψ̇, β
]T
. The control input of the system is u = ay , the disturbances are w =

[
δ, tz

]T
, while the performances are z = [

z1, z2, z3
]T
.

The control design is formalized through a closed-loop interconnection structure,
see Fig. 8.5. Input and output weighting functions are selected to the specifications
of disturbances, inputs, and outputs.

The crucial point of the control design is the selection of the weighting functions
for performances. In the control design parameter-dependent weighting functions

Fig. 8.5 Closed-loop
interconnection structure
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are applied to the performances, i.e., the yaw-rate tracking, the roll angle and the
half-track change:

Wz1 = ρ

eψ̇max

(8.19)

Wz2 = 1 − ρ

φmax
(8.20)

Wz3 = 1 − ρ

ΔBmax
(8.21)

where ρ ∈ [0; 1] is a scheduling variable, eψ̇max
is the possible maximum of the yaw-

rate error, φmax is the maximum of the chassis roll angle and ΔBmax is a maximum
of the half-track change.

The role of parameter ρ in the weighting functions is to create a balance between
the different performances. For example, in the case of ρ = 1 the control system
prefers the yaw-rate tracking, while in the case of ρ = 0 the control system focuses
on both the roll angle and half-track change. Note that the reference height of the
roll moment hre f is also used in the control design.

In normal cruising maneuvers, the control of the variable-geometry suspension
system guarantees two performances which are related to the chassis roll angle and
the half-track change. In an emergency, the variable-geometry system must focus on
trajectory tracking and assist the driver in carrying out various vehicle maneuvers.
Thus the control design must be extended with a reconfigurable structure.

Figure8.6 illustrates the architecture of the reconfigurable control system. It con-
tains several components besides the vehicle model and the driver model, such as the

Fig. 8.6 Architecture of
control systems
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suspension control K (ρ), the generator of the reference yaw-rate signal (RSG), and
the block of the reconfiguration logic. The role of the variable-geometry suspension
control K (ρ) is to minimize the chassis roll angle and the half-track change and,
in an emergency, to reduce the yaw-rate error. Since these performances are in con-
flict, a reconfiguration logic is applied. The variable-geometry suspension control is
activated using two signals, ρ and hre f .

In the following various vehicle scenarios are distinguished:

• Half-track change minimization: In normal cruising, the goal of the variable-
geometry suspension control is to minimize half-track change ΔB. This configu-
ration is achieved by the selection ρ = 0, hre f = hM .

• Roll angle minimization: When the roll angle φ increases significantly, the
variable-geometry suspension control must minimize the roll angle. This con-
figuration is achieved by the selection ρ = 0, hre f = hre f,max .

• Balance between half-track change and roll angle minimization It is possible to
achieve vehicle maneuvers in which there is a balance between the two perfor-
mances, i.e., the reductionof the half-track change and that of the roll angle. In these
configurations ρ = 0 and hre f is selected in an interval hM < hre f < hre f,max .

• Yaw-rate tracking: When the suspension system must focus on trajectory tracking
the scheduling variable ρ is selected greater than 0.

• In an emergency maneuver, when there has been an extreme increase in the yaw-
rate error, the suspension systemmust focus on the tracking error eψ̇ instead of the
conventional two performances. This configuration is achieved by the selection
ρ = 1 and hre f = hM .

In the simulation examples, the vehicle is traveling along a predefined road, while
the variable-geometry suspension system assists the driver in carrying out maneu-
vers. The control design is performed using the MATLAB�/Simulink� while the
verification of the designed controller is performed using the CarSim simulation
software. The efficiency of the proposed driver assistance system is illustrated using
the CarSim simulation software.

In thefirst simulation example, the interaction betweenperformance specifications
is presented. The solid line illustrates the case ρ = 1, dashed: ρ = 0, hre f = hM ,
while the dashed-dotted line illustrate the case ρ = 0, hre f = hre f,max . The vehicle
is traveling along a course, which is depicted in Fig. 8.7a.

Figure8.7b shows the tracking of the yaw-rate error of the control systems with
different configurations and without any control. In the uncontrolled vehicle the
driver is not able to compensate for either the understeering or the oversteering
motion, therefore the tracking error of the yaw rate significantly increases. In the
controlled vehicles the tracking of the reference yaw ratewith an acceptable threshold
is guaranteed.

When the suspension system focuses on the tracking task, i.e., ρ = 1, the yaw-rate
error is significantly reduced, which is shown in Fig. 8.7c. In the default case, when
the suspension system focuses on the half-track change, i.e., ρ = 0, hre f = hM , the
half-track change is minimized, see Fig. 8.7c. However, in this case the roll angle
increases. When the suspension system focuses on the roll angle minimization, i.e.,
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Fig. 8.7 Performances in the driver assistance system

ρ = 0, hre f = hre f,max , the half-track change significantly increases since lifting up
the height of the roll center requires significant control input ay , see Fig. 8.7d, f.
Figure8.7d, e illustrate the relationship between the increased roll center and the
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Fig. 8.8 Operation of the driver assistance system
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reduced roll angle. Figure8.7f shows the control inputs of the variable-geometry
suspension ay .

In the second example, the efficiency of the driver assistance system during the
same cornering maneuver is presented. Figure8.8a, b show scheduling variable ρ

and reference signal hre f , respectively. The reconfigurable control of the variable-
geometry suspension system is based on these variables.

In Fig. 8.8c the yaw-rate error of the vehicle is shown. The scheduling variable ρ

shows the relationship between the variable ρ and the yaw-rate error. When the con-
trol focuses on the half-track change and it decreases, the control action requires
significant control input and at the same time the yaw-rate error increases, see
Fig. 8.8d, g. Figure8.8e, f show the height of roll center and roll angle of the chassis.
The change of hre f , which is also shown in Fig. 8.8b, induces the modification of
hM . The change of the reference height modifies the roll angle of the chassis φ, thus
the roll dynamics.



Chapter 9
Control Design of In-Wheel Motors

Introduction

The growing need of economical and environmentally sound road vehicles enhances
the attention of researchers and car makers towards electric vehicles. Within this seg-
ment of alternative transportation tools in-wheel electric vehicles using hub motors
integrated inside the wheels have several advantages compared to conventional elec-
tric vehicles.

The lack of heavy and space-consuming powertrain components enables engi-
neers to create roomy cabins for small size city vehicles, while at the same time
the total mass of the vehicle can be reduced. Although the increased mass of the
wheel may affect the ride and stability of the vehicle adversely, using semi-active
or active suspension can address these effects, see Wang et al. (2014b). From vehi-
cle dynamic control perspective-independent maneuverability of each wheels along
with the fast and accurate torque generation of the hub motors are the most attractive
features, making possible to design highly effective stabilizing and anti-slip control
systems, see Castro et al. (2012), Ringdorfer and Horn (2011). Additionally, with
the independent electric motors of each wheels efficiency of regenerative braking
can be improved, as proposed by Wang et al. (2014a). Most of the recent researches
concentrate on utilizing the specific advantages of the in-wheel motors. Methods
have been designed to avoid rollover of the vehicle (see Kawashima et al. (2009)),
while several authors focus on lateral trajectory control of in-wheel vehicles, see Wu
et al. (2013), Katsuyama (2013), Xiong et al. (2012), Shuai et al. (2013).

Although fault-tolerant and reconfigurable control strategies for road vehicles
have been studied broadly by authors (see Németh and Gáspár (2012)), relatively
few research address the issues related to in-wheel vehicles. The fault or performance
degradation of an in-wheel hub motors due to overheating, mechanical failures, or
motor control faults may lead to dangerous vehicle instability, thus there is and out-
standing demand of fault-tolerant control design for such vehicles. Adequate handling
of a faulty in-wheel motor after a failure have been studied by Ifedi et al. (2013),
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while Wang and Wang (2012) proposed a fault-tolerant method for reallocating wheel
torques among the healthy hub motors after a fault event. The vehicle control system
must also address steering system failure or performance degradation.

9.1 Design of In-Wheel Motor Vehicle Control

In this section, the aim of the trajectory tracking control design is to perform both
velocity tracking and path following even under a fault event. Thus, longitudinal and
lateral dynamics must be considered for the in-wheel vehicle, for which the well-
known two-wheeled bicycle model is applied, see Fig. 9.1. The motion equations of
the in-wheel vehicle considering the planar plane are formulated as follows:

Jψ̈ = c1l1α1 − c2l2α2 + Mz (9.1)

mξ̇ (ψ̇ + β̇) = c1α1 + c2α2 (9.2)

mξ̈ = Fl − Fd (9.3)

where m is the mass total mass of the vehicle, J is the yaw inertia, l1 and l2 are
geometric parameters, c1 and c2 are cornering stiffness of the front and rear tires,
while α1 = δ − β − ψ̇ l1/ξ̇ , α2 = −β + ψ̇ l2/ξ̇ are the front and rear side-slip angles.
The yaw rate and side-slip angle of the in-wheel vehicle is noted with ψ̇ and β, while
ξ is the longitudinal displacement. Note, that the nonlinearity of the vehicle model
is caused by the velocity ξ̇ . The high-level inputs of the proposed model are the
longitudinal force Fl, the yaw moment Mz and the front steer angle δ.

The longitudinal disturbance force Fd contains the following components: The
disturbance originating from the road slope: Fd1 = mgsinαs, where αs is the angle
of the road slope. The aerodynamic drag disturbance Fd2 = cwηAξ̇ 2/2, where cw is
the drag coefficient, η is the density of the air, A is the frontal area of the in-wheel

Fig. 9.1 Two-wheeled
bicycle model
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vehicle. Here, the rolling resistance Fd3 = mgf cos αs is assumed to be a function of
the vehicle mass m, the slope angle αs and the road friction coefficient f . The sum
of the above-described disturbances is the total disturbance force Fd .

Finally, the motion equations of the in-wheel vehicle detailed in (9.1) are trans-
formed into state-space form as follows:

ẋ = A(ρ1)x + B1w + B2(ρ2)u (9.4)

where the state vector is x = [
ξ̇ ξ ψ̇ β

]T
, the control inputs are the drive/brake force

Fl, the steer angle δ and the generated yaw moment Mz. These are also put in an
input vector u = [

Fl δ Mz
]T

. The measurements used in the control system are the

velocity and the yaw rate of the vehicle, formulated in the output vector y = [
ξ̇ ψ̇

]T
.

Note, that the above defined disturbances are formalized with w = [
Fd

]T
, while ρ1

and ρ2 are scheduling variables of the vehicle system.

9.2 High-Level Control Design of the LPV Controller

The aim of the control design is to realize yaw rate and velocity tracking of the in-
wheel vehicle, which has already been investigated by several authors, see Shibahata
et al. (1993), Anwar (2005). Hence, in order for the in-wheel vehicle to achieve the
required control goals, reference signals must be defined. Here, both the reference
velocity and the yaw rate are set by the driver. Note, that the latter reference is given
by the steering manipulation δd of the vehicle driver as follows Rajamani (2005):
ψ̇ref = v/d · e− t

τ · δd , where τ is a time constant and d parameter depends on the
geometry and velocity of the in-wheel vehicle. Thus, the given references induced
by the driver are put in a refernce vector R = [ξ̇ref ψ̇ref ]T .

Hence, the control goal is to track both reference signals given in vector R. For
this purpose, both velocity error zξ = |ξ̇ref − ξ̇ | and yaw rate error zψ̇ = |ψ̇ref − ψ̇ |
must be minimized. Thus, optimization criterion zξ̇ → 0 and zψ̇ → 0 are defined

and put in the performance vector z1 = [
zξ zψ̇

]T
. Also, constraints of the control

inputs related to the in-wheel electric motors and the electric steering system must
also be considered in the design. These are formulated in another performance vector
z2 = [

Fl δ Mz
]T

.
Since the system matrix A in (9.4) depends on vehicle velocity ξ̇ nonlinearly, a

gain scheduling LPV controller must be realized in order to gain a global solution.
Hence, utilizing a scheduling variable ρ1 = ξ̇ the originally given nonlinear vehicle
model is transformed into a LPV model.

The fault-tolerant design of the in-wheel vehicle is realized with high-level con-
trol reconfiguration, in order to handle critical driving situations or faulty actuators.
For this reason, a second scheduling variable ρ2 ∈ [0.01, 1] is introduced, which
corresponds to the allocation of steering and yaw moment generation.
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Fig. 9.2 Closed-loop interconnection structure

The proposed control system is based on a weighting strategy, realized with the
closed-loop interconnection architecture depicted in Fig. 9.2.

Here, the role of weighting functionWp is to guarantee an optimal balance between
the control performances formulated in vector z1. Since they serve as penalty func-
tions, large weights should be applied where small signals are expected and contrari-
wise. The aim of weighting functions Ww and Wn are to account the disturbances
and sensor noises, while system uncertainties (unmodelled dynamics and uncertain
parameters of the vehicle) handled by the Δ block are represented by the weighting
function Wu The uncertainties of the system are handled by the Δ block, whereas the
neglected dynamics are interpreted by weighting function Wu. These above detailed
weighting functions are given in a second-order proportional form as follows:

Wp = ϑ
κ2s2 + κs + 1

T1s2 + T2s + 1
(9.5)

where ϑ , κ1,2 and T1,2 are designed parameters.
In case of a fault event, control reconfiguration is handled with the weighting

function Wa, which represents two different weighting functions. It is divided into
the weighting function of the steering Waδ = (δmaxχ1)/(ρ2) and the yaw moment
WaMz = (ρ2)/(Mzmaxχ2), where δmax and Mzmax stands for the maximal value of
steering angle and yaw moment, χ1 and χ2 are parameters adjusted to obtain a
convenient control allocation. Thus, a small value of ρ2 induces a big amount of
yaw moment and small amount of steering angle, while the increasing value of ρ2

generates more and more steering and less yaw moment for the in-wheel vehicle.
The fault-tolerant consideration is realized by further defining parameters ρ

Mz
2 and

ρδ
2, which have the following relation with the scheduling variable ρ2:



9.2 High-Level Control Design of the LPV Controller 203

• In case of no steering fault detection by the FDI filter, ρ2 = ρ
Mz
2 is applied for the

above described weighting functions noted with Wa.
• In case of steering fault detection, ρδ

2 = 0 is set and ρ2 = ρδ
2 is applied.

The calculation of ρ
Mz

2 corresponding with a hub motor fault or wheel slip have
already been introduced in Gáspár et al. (2015), thus here only a brief summary is
given. Using the special ability of the in-wheel motors for fast and accurate torque
generation, the transmitted wheel forces can be estimated precisely, see Hu and Yin
(2011). Thus, the total amount of transmitted yaw moment can be expressed as

Mtrans
z =

(−Ttrans
fL + Ttrans

fR

Reff

)
bf
2

+
(−Ttrans

rL + Ttrans
rR

Reff

)
br
2

(9.6)

where bf and br are the front and rear track of the in-wheel vehicle, Ttrans
ij i ∈ [f =

front, r = rear], j ∈ [L = left,R = right] are the transmitted wheel torques. Thus,
ρ
Mz
2 is calculated as

ρ2 =
∣∣∣∣∣

∣∣Mz − Mtrans
z

∣∣
Mz

∣∣∣∣∣ (9.7)

where Mz is the yaw moment given by the high-level controller. Equation (9.7)
indicates that if the prescribed high-level yaw moment cannot be realized because
of an electric in-wheel motor fault or performance degradation, the value of ρ

Mz

2
increases and the high-level LPV controller prescribes bigger steering angle and less
yaw moment for the vehicle.

The design of the high-level controller is based on LPV framework. The design
method is founded on applying parameter-dependent Lyapunov functions as
described in Bokor and Balas (2005), Fen et al. (1996). The LPV performance prob-
lem is to find a parameter-varying controller such that the quadratic stability of the
consequent closed-loop system is guaranteed, while the induced L2 norm from the
disturbance to the performances is smaller than γ . Hence, the minimization problem
can be written as

inf
K

sup
�∈FP

sup
‖w‖2 �=0,w∈L2

‖z‖2

‖w‖2
≤ γ. (9.8)

where w is the disturbance of the system, Δ is the unmodelled dynamic of the in-
wheel vehicle. The quadratic LPV γ -performance problem is solved using LMIs,
calculating a feedback gain for every vertex. The LPV control K(�) is built in a
manner that the global gain is a convex combination of the local gains.
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9.3 Control Implementation

The fault-tolerant control system considering actuator reconfiguration is constructed
in a multi-layer, hierarchical structure as depicted in Fig. 9.3.

The first layer consists the high-level LPV controller, with the aim to calculate the
control inputs listed in Sect. 9.2 based on the driver reference signals, the measured
velocity and yaw rate of the in-wheel vehicle and the value of the derived scheduling
variable ρ2.

The goal of the second layer is to distribute the resulting inputs of the first layer
between the vehicle actuators, i.e., the longitudinal force Fl, the yaw moment Mz

and the steering angle δ. The latter is limited by δmin ≤ δ ≤ δmax and sent directly to
the third layer. Hence, the main task of the second layer is to calculate the in-wheel
motor torques for the third layer. In this process, the high-level control signals of
the first layer (longitudinal force and yaw moment) is distributed with the consider-
ation of vehicle dynamics. Here, a dynamic allocation procedure is applied unifying
methods listed in Zhao et al. (2014), Shuai et al. (2013). Measuring the longitudinal
acceleration of the in-wheel vehicle using accelerometers, the pitch dynamics can
be considered in the allocation process. Hence, the axle loads of the vehicle can be
formulated as follows:

Fzf = mgl2 − maxh

(l1 + l2)
,Fzr = mgl1 + maxh

(l1 + l2)
, (9.9)

where h is the center of gravity height, ax is the longitudinal acceleration. Rearranging
the previous equation the load distribution is given as

Fzf

Fzr
= mgl2 − maxh

mgl1 + maxh
= κ (9.10)
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Fig. 9.3 Multi-layer reconfigurable control system
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With a small angle assumption for δ, the longitudinal force Fl should fulfill the
following equation:

Fl = FfL + FfR + FrL + FrR (9.11)

where Fij i ∈ [f = front, r = rear], j ∈ [L = left,R = right] are the longitudinal
forces of each wheel. Moreover, the generated yaw moment Mz can be expressed as
follows:

ΔMz = (−FfL + FfR) · bf
2

+ (−FrL + FrR) · br
2

(9.12)

Since Fi = μFzi, the following relationship holds: Ff /Fr = κ. Hence, the longi-
tudinal force and yaw moment can be given as follows:

Fl = (FfL + FfR)

(
1 + 1

κ

)
(9.13)

Mz = (−FfL + FfR)

(
1 + 1

κ

)
b

2
(9.14)

Finally, by rearranging above equations each wheel forces can be expressed as:

FfL = Fl

2
(
1 + 1

κ

) − Mz

b
(
1 + 1

κ

) , FrL =
(

1

κ

)
FfL, (9.15)

FfR = Fl

2
(
1 + 1

κ

) + Mz

b(
(
1 + 1

κ

) , FrR =
(

1

κ

)
FfR (9.16)

Note that the desired in-wheel motor torques sent to the third layer are given with
Tij = Reff Fij.

Finally, the third layer contains the low-level controllers responsible for generating
the actual physical inputs for the steer-by-wire steering system and the in-wheel
motors. The current control of the electric motors are not detailed here, but it has
been studied broadly, see Wu et al. (2013), Yang and Lo (2008). For this purpose, a
simple first order model is used to relate the torque signal of the second layer with
the actually generated torque of the in-wheel hub motor, written as follows:

Tmotor(s) = 1

1 + (Lm/Rm)s
T (9.17)

where Tmotor is the actual motor torque, T is the reference torque given by the second
layer, while Lm and Rm are motor parameters related to inductance and resistance.
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9.4 Simulation Results

Simulation has been performed in CarSim with a small 4WIA vehicle equipped with
four in-wheel motors and a steer-by-wire steering system. The physical parameters
of the electric hub motors based on specifications given by Watts et al. (2010) are
shown in Table 9.1.

Other physical parameters of the 4WIA vehicle including mass, aerodynamic
coefficient, suspension geometry, and wheel cornering stiffness are those of a con-
ventional A-Class vehicle, see Table 9.2.

In the two simulation cases, the in-wheel vehicle is driven by a driver who must
follow the trajectory of an S-turn, as shown in Fig. 9.4a. The vehicle velocity is set
to a constant 54 km/h (see Fig. 9.4b), while the reference yaw rate for the vehicle to
follow shown in Fig. 9.4c is generated by the driver operating the steering wheel.

It is assumed that the yaw rate, longitudinal, and lateral accelerations of the 4WIA
vehicle can be measured with low-cost inertial sensors and accelerometers, as well

Table 9.1 Electric motor specifications

Parameter Value Unit

Total motor mass 34 kg

Peak output power 75 kW

Continuous output power 54 kW

Peak output torque 1000 Nm

Continuous output torque 650 Nm

Table 9.2 Parameters of the 4WIA vehicle

Parameter Value Unit

Vehicle mass (m) 830 kg

Yaw moment of inertia (J) 1110.9 kgm2

Distance from C.G to front
axle (l1)

1.103 m

Distance from C.G to rear axle
(l2)

1.244 m

Tread front (bf ) 1.416 m

Tread rear (br) 1.375 m

Height of COG (hCOG ) 0.54 m

Cornering stiffness front (c1) 22 kN/rad

Cornering stiffness rear (c2) 85 kN/rad

Aerodynamic drag coefficient
(cw)

0.343 −

Front contact surface (A) 1.6 m2
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Fig. 9.4 Reference signals

as wheel speeds. Note that these measurements are essential to evaluate the recon-
figuration control strategy described in the paper.

9.4.1 In-Wheel Motor Fault

In the first simulation case, the effect of an in-wheel motor fault is analyzed by
comparing the results without any fault event. Here, the front left in-wheel motor is
generated before the second corner.

The prescribed high-level control signals of the LPV controller for both cases are
shown in Fig. 9.5. The operation of the high-level reconfiguration strategy is well
demonstrated by observing Fig. 9.5b, c. In the first bend, an effective combination
of steering and yaw moment generation is shown. During the second corner due to
the faulty in-wheel motor and the increased value of ρ2, the LPV controller of the
4WIA vehicle prescribed much bigger steering angle and reduced yaw moment for
the vehicle compared to the normal case without a fault event.
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Fig. 9.5 High-level control signals

As a result of the dynamic wheel-torque allocation method presented in Sect. 9.3,
the in-wheel motors generate differential torque considering the vehicle pitch, as
shown in Fig. 9.6. It is well-demonstrated by observing Fig. 9.6a, that without a fault
event the left and right side motors generate the same amount of differential torque in
both corners. Meanwhile, when the front left in-wheel motor fails before the second
corner producing no torque as shown in Fig. 9.6, the differential torque generation of
the healthy in-wheel motors are also reduced due to the high-level control reallocation
represented by ρ2.

The performances of the proposed method are shown in Fig. 9.7. The velocity
error of the 4WIA vehicle does not exceed 1 km/h even under the fault event of the
front left electric motor (see Fig. 9.7a), while the yaw rate error depicted in Fig. 9.7b
also remains acceptably small due to the control reconfiguration. Although the lateral
error from the lane center increases in case of an in-wheel motor failure as depicted
in Fig. 9.7c, the vehicle is able to evaluate the cornering maneuver successfully.
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Fig. 9.6 Hub motor torques
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Fig. 9.7 Performances of different methods
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9.4.2 Steering System Fault

In the second simulation case, the steer-by-wire steering system is assumed to develop
a serious failure before the second corner. Thus, the fault-tolerant reconfiguration
method detailed in Sect. 9.2 sets ρ2 to be equal with ρδ

2 = 0 when the fault event
occurs.

Hence, after the fault in the steer-by-wire steering system is detected, the high-
level control signals are reconfigured in such way that the vehicle evaluates the
cornering solely by yaw moment generation, as shown in Fig. 9.8b, c. It is well-
demonstrated by comparing with the faultless case that the effect of the steering is
substituted with prescribing significantly more yaw moment.

As a result of the high-level control reconfiguration and the prescribed extra
yaw moment, the differential in-wheel hub motor torques are more pronounced in
the second corner compared to the normal case, as demonstrated by comparing
Fig. 9.9a, b.
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Fig. 9.9 Hub motor torques
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Fig. 9.10 Performances of different methods

The performances of the control system in case of a steering system failure are
shown in Fig. 9.10. The velocity and yaw rate errors shown in Fig. 9.10a, b remain
small due to the effective reconfiguration. The lateral error of the vehicle shown in
Fig. 9.10c is similar to that without a fault event.



Chapter 10
Driver Models in the Control Systems

Introduction

The integrated control proposed in this paper is based on a supervisory integrated
structure in which the control components are designed independently. The role of the
supervisor is to guarantee coordination between components and meet performance
specifications. The supervisor has information about the current operational mode
of the vehicle, i.e., the various vehicle maneuvers or the different fault operations
gathered from monitoring components. Then it is able to make decisions about the
necessary interventions into the vehicle components.

In integrated control systems the characteristics of the drivers’ behavior should
be taken into consideration in the control. The control solutions create a balance
between driving (or road holding) and comfort and guarantee safety all the time.
This balance often leads to compromises between vehicle functions, which may not
be suitable for all the drivers. For example, a driver who wants to minimize the length
of the trajectory in the bend selects the curvature radius as small as possible, while
the driver who requires comfort selects a larger curvature radius. At the same time,
however, the selection of different curvature radiuses is also related to the possible
speed selection, e.g., the larger radius allows the driver to select larger speed. The
control solutions in practice are based on the drivers’ behavior, which is learnt by
the system during traveling.

The driver input is not only a function of the planned trajectory but it also affects
the vehicle dynamics. Thus, a driver model must be combined with the vehicle model.
In this paper, the supervisory control is combined with a driver model in order that
the driver behaviors and requirements are incorporated in the design of the control
system. Consequently, in the driver assistance system the interaction between the
vehicle and driver is taken into consideration. The control solutions in practice are
based on the drivers’ behavior, which is learnt by the system during traveling. In other
solutions, the vehicle has a manual mode switch that ensures the vehicle dynamics
according to the driver requirement. For example, the driver can make the suspension
stiffen to achieve the sport mode or can make the suspension soft to improve the ride
in outstanding comfort.

© Springer International Publishing Switzerland 2017
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In the specifications of the performance criteria, the driver behavior must be
taken into consideration through various driver models. In the following, a brief
survey is given before the driver model, which is used for control-oriented purposes,
is presented. Kiencke et al. (1999) developed a hybrid driver model, in which the
discrete event system theory is combined with the classical control theory. In the
driver model, visual perception was divided into two classes, i.e., the traffic-relevant
and the vehicle-relevant factors. The model handled both the lateral and longitudinal
motions of the vehicle, see also Kiencke and Nielsen (2000). Based on the physical
limitations, the prediction and adaptation capabilities of drivers Macadam (2003)
set up driver models both in the longitudinal and the lateral directions. A method
for the detection of driver lane changes is developed by Salvucci et al. (2007). The
driver behavior in the context of the intelligent transportation system within the
PATH project was analyzed by Delorme and Song (2001). Multiple driver models
were constructed for the driver assistance systems by Fujiwara et al. (2004). Based
on the inverse of the bicycle model and the proposed voting and switching rule the
necessary steering operation was calculated. Neural network model, fuzzy logic,
and genetic algorithm approaches of the driver models were also widely used, see
e.g., Kageyama et al. (2000). Game theory-based approaches and noncooperative
model predictive control are used for developing the driver steering control model in
Na and Cole (2013). A learning-based driver model, by which it is able to identify
manoeuvres on the highway and predict the future driver inputs is found in Lefevre
et al. (2015).

A detailed analysis of a mathematical model for the driver steering control was
formulated in Sharp et al. (2000). The driver model was linked to a nonlinear vehicle
dynamics model so that the vehicle followed a prescribed path. In the longitudinal
and lateral position of the center of gravity of vehicle approach, the vehicle yaw
angle and the vehicle longitudinal velocity were taken into consideration. Various
control scenarios were analyzed, such as steering control, speed control, and path
following control. A driver model of the steering control operating in the closed-loop
system was constructed by Hess and Modjtahedzadesh (1990). The driver model was
divided into high- and low-frequency compensation elements. The high-frequency
compensation refers to frequencies around the crossover frequency of the overall sys-
tem. An analysis on the parameter dependency of driver steering model is presented
in Pauwelussen (2012). In Rossa et al. (2014), a bifurcation analysis is adopted for
analyzing the steady-state cornering and straight ahead motion of the interconnected
car-driver model.

Menhour et al. (2009) constructed a two-level driver model for steering control.
The goal of the anticipatory part, which was based on the lateral dynamics, was to
generate the reference curvature of the road and the preview position. The compen-
satory part, which was based on a set of PID controllers, corrected both the yaw
angle and the lateral displacement. The selection of the appropriate PID controller
was based on a switching mechanism. On the basis of the two-level approach, the
driver’s steering model was extended to higher lateral accelerations by Edelmann et
al. (2007). Ungoren and Peng (2005) focused on an adaptive lateral preview driver
model. Although the template of the driver model had only a few parameters, they
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were adjusted in such a way that they are tended to the steering actions of an aver-
age human driver as well as drivers with different driving styles. Different methods
were proposed for a preview driver model, in which the future path information was
directly concerned in the space-horizon model, see e.g., Jiang et al. (2011). Braghin
et al. (2008a) developed a race driver model, in which the focus was the trajectory
planning, since the goal of the race car driver is to obtain the lowest lap time. Thus,
either the length of the course had to be minimized or the speed of the car had to be
maximized. The consideration of the driver’s neuromuscular dynamics is found in
Cole (2012), Mehrabi et al. (2015).

A framework of controlling a system with multiple interactive control loops
including a continuously activated primary loop and discretely activated secondary
loops was proposed by Lu and Filev (2009). The primary loop included the driver
while the secondary loops included electronic devices.

Weather conditions were also considered in the modeling of the driver, see
Hoogendoorn (2010). Parameters of a driver model is estimated by using driving sim-
ulator experiences and measurements. An identification method for a human driving
model based on measured car-following data was presented in Lee and Peng (2004).
Here, a Gipps model was implemented in the simulator for verification purposes,
and the proposed method was used for collision warning and avoidance systems.
Finally, an evaluation of the different driver models under different critical situations
is proposed in Markkula et al. (2014).

10.1 Driver Model for Control Design Purposes

10.1.1 Control-Oriented Driver Model

The driver models proposed by previous papers are suitable for human drivers and
provide a complex description of driver behavior. In this section, a driver model
is applied to control-oriented purposes. Since the driver operates in a closed-loop
system together with the active components such as the active steering and the brake,
the design of the driver assistance system requires the model of the driver. The model
should be selected in such a way that the accuracy of the combined driver/vehicle
model will be acceptable and the model can be easily used in the control design. The
control-oriented driver model was selected as a work of Hess and Modjtahedzadesh
(1990).

The input of the driver model is the difference between the lateral position of the
vehicle realized by the driver yv and the reference lateral position of the road yv,re f :

ey = yv,re f − yv. (10.1)

The output is the steering wheel angle of the driver δd .



216 10 Driver Models in the Control Systems

Fig. 10.1 Driver model for control design purposes

The driver model has been divided into high- and low-frequency compensation
elements as Fig. 10.1 illustrates. The high-frequency driver compensation describes a
decade range around the crossover frequency of the overall driver/vehicle open-loop
return ratio. It is defined by three components with loops. The driver model GNM is
a second order transfer function of the neuromuscular system of the driver’s arms:
GNM = KN/(TN1s2 + TN2s + 1), where TN1, TN2 are time constants. GP1 and GP2

represent feedback of variables derived from the motion of human limbs and muscle
tissue. Their forms are GP1 = K1s/(T1s + 1) and GP2 = K2/(T2s + 1).

The low-frequency driver compensation is defined by two components with a
delay. Inherent human signal processing delay is represented by a time delay GL . The
time delay is approximated with a first order transfer function: GL = 1/(TLs + 1).
The low-frequency compensation of the driver model is represented by GC , which
is formalized as GC = KC(TCs + 1).

The driver model between the lateral error ey and the steering output δd is for-
malized as follows:

Gd = (I + GNMGP2GP1 + GNMGP1)
−1GNMGLGC (10.2)

Theoretically, the driver model can be approximated by a four-order proportional
transfer function. Using (10.1), the driver model is transformed into a state-space
representation form:

ẋdr = Adr xdr − Bdr yv + Bdr yv,re f (10.3)

δd = Cdr xdr . (10.4)

The differences between the various drivers depend on the pole configuration of
the different transfer functions. In the following section, a preliminary identification
is carried out to analyze driver behaviors.

10.2 Control-Oriented Model for Lateral Dynamics

The basic dynamics of the vehicle shown in Fig. 9.1 is determined by the driver, while
lateral dynamics is assisted by the control systems. They have advantages mainly in
crucial situations, when the driver himself is not able to guarantee trajectory tracking.

http://dx.doi.org/10.1007/978-3-319-46126-7_9
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The vehicle lateral dynamics is based on the bicycle model, see e.g., Rajamani
(2005). The lateral tyre forces are approximated linearly to the tire side-slip angles:
Fy f = C f α f and Fyr = Crαr , where C f and Cr are cornering stiffnesses of the
linearized tire model. The tire side-slip angles are expressed as α f = −β + δ − l1 ·
ψ̇/v, αr = −β + l2 · ψ̇/v, where β is the side-slip angle, δ is the front-wheel steering
angle, ψ̇ is the yaw rate of the vehicle, l1 and l2 are geometric parameters, and v is
longitudinal velocity.

The actuators in the system are the front-wheel steering angle δc and the brake yaw
moment Mbr . During maneuvers, the difference between the lateral direction of the
vehicle and the reference lateral direction is minimized by the driver. He generates
the steering angle δd by using the steering wheel. If it is necessary, this angle is
corrected by the automatic steering system by using additional steering angle δc.
Thus, the steering angle is divided into two components: δ = δc + δd . The equations
of the bicycle model are the following:

J ψ̈ = C1l1α f − C2l2αr + Mbr (10.5)

mv(ψ̇ + β̇) = C1α f + C2αr (10.6)

ÿv = v(ψ̇ + β̇) (10.7)

where m is the mass, J is the yaw inertia of the vehicle, and ÿv is lateral acceleration
of the vehicle. The motion equation of the vehicle is transformed into a state-space
representation form:

ẋveh = Avehxveh + Bveh,1δd + Bveh,2uveh (10.8)

zveh = Cveh,2xveh (10.9)

yveh = Cveh,1xveh (10.10)

where the state vector of the vehicle xveh = [
ψ̇ β ẏv yv

]T
contains the yaw rate,

the side-slip angle, and the lateral velocity and position. The control input and the
disturbance are uveh = [

δc Mbr
]T

and δd , respectively. The performance signal is
the lateral position of the vehicle zveh = yv and the measured signal is the yaw rate
of the vehicle yveh = ψ̇.

10.3 Interconnection of the Driver-Vehicle System

The interconnection structure between the driver and the vehicle models in the archi-
tecture of the driver assistance system is illustrated in Fig. 10.2. The input of the
driver model is the lateral position error ey , while its output is the steering angle of
the driver δd . The control inputs of the vehicle model are the brake yaw moment Mbr

and the front steering angle δc, while its outputs are the lateral position of the vehicle
yv and the yaw rate ψ̇. The purpose of the system is to improve road holding and
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Fig. 10.2 Architecture of
the driver assistance system

guarantee the balance between road stability and passenger comfort during vehicle
maneuvers. Two control systems are used in the interconnection system, i.e., the
steering system Kst , and the braking system Kbr . Their operations are based on the
yaw rate error, in which the reference yaw rate is generated by the steering angle of
the driver δd .

In practice, the maneuvering requirements of the driver must be estimated from
the steering wheel angle δd , in which the velocity v must be taken into consideration.
This is formed by the reference yaw rate ψ̇re f , which must be tracked by the integrated
control system. Based on δd , the reference yaw rate ψ̇re f is calculated using a first
order proportional transfer function, see Pacejka (2004).

Gψ̇re f ,δd
(s) = v

l1 + l2 + η
g v

2
· 1

τs + 1
(10.11)

with an understeer gradient η and the time constant τ . The block of the reference
signal generator is inserted into the architecture of the driver assistance system. The
state-space representation form of the signal generator is

ẋSG = ASGxSG + BSGδd (10.12)

ψ̇re f = CSGxSG (10.13)

Finally, the state-space representation of the entire complex systemGsys is formed
by using the vehicle, the driver and the signal generator blocks (10.3), (10.8), and
(10.12), respectively. The augmented state vector is introduced in the following



10.3 Interconnection of the Driver-Vehicle System 219

form: xaug = [
xveh xdr xSG

]T
. Since δd and yv are expressed by (10.4) and (10.9),

respectively, the state-space representation of the augmented system is the following:

ẋaug =
⎡

⎣
Aveh Bveh,1Cdr 0

−BdrCveh,2 Adr 0
0 BSGCdr ASG

⎤

⎦ xaug+ (10.14)

+
⎡

⎣
Bveh,2

0
0

⎤

⎦ uveh +
⎡

⎣
0
Bdr

0

⎤

⎦ yv,re f

y = [−Cveh,1 0 CSG
]
xaug (10.15)

in which the output of the augmented system is the yaw rate error y = eψ̇ , which is
used in the controllers.

Remark 10.1 Note that in the closed-loop interconnection structure ψ̇re f is used
instead of δd , which is compared to the measured yaw rate ψ̇. Thus, from the control
design aspect the signal δd is not a disturbance as in Eq. (10.8).

Remark 10.2 The actuator selection depends on several factors. They are the con-
struction limit, the energy requirements, and the dynamics of the actuators. For
example, to avoid the skidding of tires brake yaw moment must be reduced and,
simultaneously, the yaw motion must be controlled by front-wheel steering. Simi-
larly, to avoid reaching the steering limit differential braking must be increased. The
actuator selection strategy is not within the scope of the paper.

10.4 Performance Specifications of the Driver Assistance
System

Based on the interconnection structure of the driver assistance system both the
vehicle-oriented and the driver-oriented performances are defined.

10.4.1 Formulation of Performances

In order to guarantee lane keeping during maneuvers, the lateral position of the
vehicle yv from the centerline of the lane yv,re f must be minimized. The lateral
position is defined by the driver in its maneuvers. The role of the controllers is to
assist the driver in reducing the lateral error. The trajectory tracking performance of
the control system is the following:

z1 = yre f − yv; |z1| → min! (10.16)
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Simultaneously, during control actuation actuator saturations must be avoided.
The maximum values of the actuators during driving and braking are determined
by their physical construction limits and the maneuvers, e.g., the tyre-road adhesion
conditions. Thus, the control inputs are also formulated as performance criteria as
given below:

z2 = [
δc Mbr

]T ; |z2| → min! (10.17)

The human driver performance of the system is the actuation of the driver. The
driver’s steering wheel angle δd has two aspects: the magnitude and the rate of the
angle, which must be influenced by the control design.

• Magnitude of δd : During a vehicle maneuver the steering wheel must be rotated by
the driver. Although usually the steering wheel is rotated with two hands, the angle
of rotation should be as small as possible. Otherwise, steering is uncomfortable
and might be dangerous. The goal is to limit the magnitude of δd to reduce the
angle of rotation as given below:

z3,1 = δd; |z3,1| → min! (10.18)

• Rate of δd : Besides the magnitude of the steering wheel angle, the speed of the
rotation is also a significant factor. The high speed requires concentration and it
might also be dangerous. Therefore, the goal is to limit the rate of δd as given
below:

z3,2 = δ̇d; |z3,2| → min! (10.19)

10.4.2 Weighting Strategy of Performances

In the control design, several performances must be taken into consideration. Since
they are in conflict a balance must be achieved between them. In the following,
weighting functions are introduced into the transfer functions with their magnitudes
and frequencies for the performance specifications.

The weighting function of the lateral tracking error is selected in such a way that
its steady state should be below a predefined value:

Wz1 = ey,max
Tz1s + 1

Tz2s + 1
, (10.20)

where ey,max is the design parameter and Tz1 , Tz2 are time constants.
The performance z2 has an important role in the supervisory control design. The

steering and braking controllers are designed independently in the distributed control
system. Their integration is guaranteed by actuator selection parameters ρst and
ρbr . Thus, weighting function for z2 is formulated for the steering and the braking
separately by the following transfer functions.
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The weighting function of the steering angle is selected as follows:

Wz2,1 = (1 − ρst )
Td1s + 1

Td2s + 1
, (10.21)

where Tdi is time constant and the parameter-dependent gain ρst focuses on the rel-
ative importance of the steering actuation. It depends on the steering angle δ and
the velocity v. The weighting function of the differential brake torque is selected as
follows:

Wz2,2 = (1 − ρbr )
Tb1s + 1

Tb2s + 1
, (10.22)

where Tbi is time constant and the parameter-dependent gain ρbr focuses on the
relative importance of the braking actuation. It depends on the longitudinal slips of
the tires κ.

The human driver performances have importance in different frequency ranges,
thus the following performance weight is selected as the following:

Wz3,1 = δd,max
(εdr,1s + 1)(εdr,2s + 1)2

(Tdr,1s + 1)(Tdr,2s + 1)2
, (10.23)

where δd,max is related to the maximum permitted driver steering wheel angle. The
role of this part is to guarantee the limitation of δd according to performance z3,1.
εdr,1, εdr,2 Tdr,1, and Tdr,2 are design parameters, which have a role in the limitation
of the steering wheel angle, see Fig. 10.3. The selection of the weighting function of
δ̇d is the following:

Wz3,2 = δ̇d,max

Tdr,3s + 1
, (10.24)

Frequency (rad/s)

Magnitude (dB)

20log|Wdr|

operation range of human steering

εdr,1

Tdr,1 Tdr,2εdr,2

20log|δd,max|

Fig. 10.3 Weighting of δd
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10.5 Integrated Control Design of the Driver Assistance
System

The closed-loop interconnection structure, which includes the feedback relationship
of the augmented model Gsys and controller K , is shown in Fig. 10.4. This scheme is
applied to the design of both the steering and the brake control. The external signals
of the controllers are the reference of the lateral position yv,re f , the sensor noise wn ,
and the another control signal, which can be considered as disturbance uext while ρ
is the scheduling variable used in the actuator selection.

The control design is based on a weighting strategy in the closed-loop intercon-
nection structure. The purpose of weighting functions Wzi, j , i ∈ {1, 2, 3}, j ∈ {1, 2}
is to define the performance specifications, see Sect. 10.4. The purpose of the weight-
ing functions Wref is to generate the reference of the lateral position, Wn reflects the
sensor noise, while Wext represents the external signals.

The control design leads to a quadratic LPV performance problem. The advantage
of these methods is that the controller meets stability and performance demands by
using affinely parametrized Lyapunov functions in the entire operational interval,
since the controller is able to adapt to the current operational conditions, see Bokor
and Balas (2005), Wu et al. (1996).

The quadratic LPV performance problem is to find a parameter-varying controller
in such a way that the resulting closed-loop system is quadratically stable, and the
induced L2 norm from the disturbance w and the performances z is less than a
predefined value γ as follows:

inf
K

sup
ρ∈FP

sup
‖w‖2 �=0,w∈L2

‖z‖2

‖w‖2
< γ (10.25)

Fig. 10.4 Closed-loop interconnection structure
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Fig. 10.5 Course of vehicles

The solution of an LPV problem is governed by the set of infinite dimensional LMIs
being satisfied for all ρ ∈ FP , thus it is a convex problem. In practice, this problem
is set up by gridding the parameter space and solving the set of LMIs that hold
on the subset of FP . The control design is based on the LPV method that uses
parameter-dependent Lyapunov functions.

10.5.1 Simulation Results

In the final section, the operation of the proposed control design is illustrated through
a simulation example. The purpose of the driver is to travel along the course of the
Waterford Michigan Race Track, see Fig. 10.5. The road trajectory contains sev-
eral difficult and sharp bends. The data of the vehicle and the driver are found in
Table 10.1.

In the simulation two scenarios are compared: in the uncontrolled case there is
no driver assistance system in the vehicle, while in the controlled case the proposed
integrated driver assistance system assists the driver.

Table 10.1 Data of vehicle and driver

m 1833 kg KC 10

J 2765 kgm2 TC 2

l1 1.402 m KN 1

l2 1.646 m TN1 0.01

C1 70000 N/rad TN2 0.1414

C2 105000 N/rad

K1 5 T1 5

K2 8 T2 4
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The driver changes the velocity along the road. The sharp bends of the track result
in an increase of the lateral error of the vehicle ey = yre f − yv. The driver without
an assistance system is not able to follow the track, leaves the lane and the lateral
error increases significantly. The proposed integrated control system is able to assist
the driver in its operation and reduce the lateral error. The difference between the
errors in the two cases |ey,uncontrolled | − |ey,controlled | is illustrated in Fig. 10.6a. The
proposed driver assistance system reduces the lateral trajectory error, significantly.
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Fig. 10.6 Interactions between the driver and the control
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Figure 10.6b shows that not only ey is reduced by the driver assistance system but also
the steering wheel angle δd . The appropriately designed weighting functions Wz3,1

and Wz3,2 make steering more comfortable. Their parameters are selected εdr,1 = 20,
εdr,2 = 0.2, Tdr,1 = 10, Tdr,2 = 0.1, Tdr,3 = 10, δd,max = 3.18, and δ̇d,max = 0.16.

However, it should be noted that there is a trade-off between the reduction of δd
and the actuation of the inputs δc and Mbr . Since δd is the source of the calculation
ψ̇re f , see (10.11), it also affects the control inputs. The reduction of δd and ψ̇re f

requires larger and more frequent control interventions. The control inputs δc and
Mbr required by the maneuvers are illustrated in Fig. 10.6c, d, respectively. The
interventions of actuators are controlled by the selection weights ρst and ρbr , see
Fig. 10.6e, f. The appropriate selection of ρst and ρbr guarantees the priority between
controllers in the driver assistance system. The simulation example shows that the
proposed integrated driver assistance system is able to improve the maneuverability
of the vehicle, while both the lateral error and the steering wheel angle are reduced.
It results in safer and more comfortable maneuvers for the driver.

10.5.2 Simulation Environment of the Driver Model

Based on the analysis of the theoretical driver models, a system identification method
is performed by using a real car. The internal signals of the model structure related to
the neuromuscular system or the motion of human limbs illustrated in Fig. 10.1 are
not measured; the identification leads to black-box identification between the input
and output signals. In this section the identification results are presented.

The identification procedure is performed by using a real car in a simulation
environment. The hardware-in-the-loop simulation environment is built in such a
way that the simulator tends to the real vehicle functions as much as possible.

The challenge is to keep the original vehicle functions intact while implementing
simulation functions. For this reason, the control of the vehicle’s communication
network has been taken over by the simulator unit, implementing full simulation
for the instrument cluster in simulation mode. Although the vehicle is stationary
during the simulations and only the wheels rotate on a bogie, the driver has a driving
sensation similar to the real experience. The stationary vehicle can be driven exactly
the same way as on a test track: there is engine sound and screech while skidding; the
instrument panel displays the current speed and revolution and one can shift gears
just like in real life.

The simulation environment contains several important components such as a
HMI (human–machine interface): a high-accuracy validated simulation software
operated on a PC and a visual system with real-time graphics. The specific sig-
nals (the positions of the accelerator and the brake pedal, and the steering angle)
are read through the CAN network by using a standard communication interface. As
vehicle simulations are carried out with the engine switched off, the missing internal
signals are also generated in the vehicle to ensure the basic functions.
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The driver can induce various vehicle maneuvers by using the steering wheel and
the accelerator/brake pedals of the car. Based on the excitations, the validated sim-
ulation software generates the signals of the vehicle during simulation. The driving
simulator of the CarSim shows the vehicle maneuvers by real-time graphics projected
in front of the vehicle, and it provides the signals during the journey. While the car
is traveling along a path, the driver reduces both the lateral position error and the
heading error.

The driver experiences with a standing car and a projected path is shown in
Fig. 10.7. Various journey scenarios can be generated by the simulation system. The
advantage of the system is that besides measuring various signals, i.e., the steering
angle, the positions of the accelerator, and the brake pedal or the gear level, in
principle any signals can be monitored during the simulations. In this way, signals
which are not measurable in practice can be achieved for identification purposes. In
the later stage of the project, real measurements will also be carried out to enhance
and validate the identification results.

In the identification procedure the ARX model structure, in which AR refers to
the autoregressive part and X to the extra input (exogenous) part, is used. In the
ARX structure, the relationship between input u(t) and output y(t) is obtained by
describing it as a linear difference equation as follows:

y(t) = B(q)

A(q)
u(t) + e(t) (10.26)

Fig. 10.7 Illustration of the driver experience
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where A(q) = 1 + a1q−1 + ... + anq−n , B(q) = b1q−1 + ... + bmq−m , q is the
delay operator, and e(t) is the noise term. The orders of the operators n and m
are related to the orders of the preliminary driver models. Since the identified model
(10.26) is in discrete time, a discrete to continuous conversion is also applied to
achieve the driver models.

Several drivers with different behaviors and abilities are traveling along a prede-
fined road. The trajectory with the measured signals are illustrated in Fig. 10.8.

An identification procedure consists of the following main steps: structure estima-
tion, parameter estimation, model validation, and model analysis. The structure, i.e.,
the orders of the operators, is determined by the preliminary theoretical approach.
This structure has also been examined by using various criteria such as AIC (Akaike
information criterion) and FPE (final prediction error), Khorshidi and Karim (2009).
Then, the identification method is performed to identify the model Ĝd . The result of
an identification procedure is illustrated in Fig. 10.9.
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Fig. 10.10 Driver in-the-loop simulation

Fig. 10.11 CarSim/CAN simulation and visualization
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Based on the identified models, the pole configurations of the driver behavior are
analyzed. The test drivers who are traveling with different velocities are compared.
Based on a detailed analysis, the activities of the different drivers can be classified
and the typical drivers can be modeled, e.g., moderate, aggressive, calm.

The result can be applied in the driver-in-the-loop simulations, see Fig. 10.10.
The scheme of the CarSim-based simulation and visualization environment is

illustrated in Fig. 10.11.



Appendix A
Modeling of LPV Systems

A.1 Controllability, Observability, Stabilizability

One of the main questions of system theory is to determine whether the system is
controllable and/or is observable. Let us consider the state dynamic s of a controlled
linear time-varying (LTV) system:

ẋ(t) = A(t)x(t) + B(t)u(t), (A.1)

where x(t) ∈ X ⊂ R
n is the state vector, u(t) ∈ R

m is the control input while the
initial condition is x0 = x(t0). The measured signals are obtained by a linear readout
map y(t) = C(t)x(t), with y ∈ R

p.
A state x0 is said to be controllable at time t0 if there exists a control function u(t)

that steers the system into the origin in finite time; a state x f is said to be reachable if
the system can be steered from the origin into x f in finite time. If the property holds
for every state x and every t0 then the system will be called controllable (reachable).
The system (A.1) is called observable on a finite interval [t0, T ] if any initial state
x0 at t0 can be determined from knowledge of the system output y(t) and input u(t)
over the given interval.

The controllability subspace is denoted by C , while the reachability subspace by
R, respectively. For linear systems (complete) controllability and reachability are
equivalent, i.e., the system is completely controllable if and only if C = R = X .

Analogously U (O) denotes the unobservability (observability) subspace; U is
the set of all initial states that cannot be recognized from the output function. The
system is observable if and only if U = 0, i.e., O = X .

Our interest in such models is motivated by the fact that nonlinear dynamics can
be often cast as an LTV system

ẋ(t) = A(ρ(y))x(t) + B(ρ(y))u(t) (A.2)
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by choosing a suitable set of scheduling functions ρ that depend only on measured
variables y, i.e., its values are available in operational time (qLPV systems).

A special case is when the dependence from the scheduling variables is affine,
i.e.,

A(ρ(t)) = A0 + ρ1(t)A1 + · · · + ρN (t)AN , (A.3)

B(ρ(t)) = B0 + ρ1(t)B1 + · · · + ρN (t)BN .

For the sake of notational simplicity, in what follows, the time dependency of the
matrices will be dropped (A(ρ) := A(ρ(t))) where it is possible.

Properties of some hybrid dynamics can also be analyzed in this framework: e.g.,
the class of linear switched systems

ẋ(t) = A(σ (t))x(t) + B(σ (t))u(t) (A.4)

where σ : R+ → N is a piecewise constant switching function, i.e., the matrices
A(σ ) and B(σ ) are piecewise constant.

A convenient way to study all solutions of a linear equation on the interval [σ, τ ],
for all possible initial values simultaneously, is to introduce the corresponding tran-
sition matrix Φ(τ, σ )

x(τ ) = Φ(τ, σ )x(σ ) +
∫ τ

σ

Φ(τ, t)B(t)u(t)dt =

= Φ(τ, σ )(x0 +
∫ τ

σ

Φ(σ, t)B(t)u(t)dt).

Recall that Φ(t, t0) is nonsingular and Φ(t, t0) = X (t)X−1(t0) with

Ẋ(t) = A(t)X (t), X (t0) = I, X (t) ∈ R
n×n .

Applying the time-varying coordinate change z = Φ(σ, t)x in the state space,
the dynamic equation transforms into ż = Φ(σ, t)B(t)u(t). Thus in this new coor-
dinate system controllability reduces to the solvability study of the equation z0 =
− ∫ τ

σ
Φ(σ, t)B(t)u(t)dt for a suitable finite τ . If we denote by Cτ the set of states

controllable at τ then Cτ is a (closed) subspace, moreover Cτ1 ⊂ Cτ2 for τ1 < τ2.
Since the image space of the corresponding integral operator is finite dimensional,
if the system is controllable there must be a finite τ̄ > 0 such that Cτ̄ = R

n .
Hence, the controllability problem of an LTV system has been reduced to the

question wether the finite rank operator L : L2([σ, τ̄ ],Rm) → R
n defined as

Lu =
∫ τ̄

σ

Φ(σ, t)B(t)u(t)dt
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is onto. These types of linear operators have a nice theory: it is immediate that the
adjoint operator L∗ : Rn → L ∗

2 ([σ, τ̄ ],Rm) can be identified with L∗x = B∗(t)Φ∗
(σ, t)x and that L is onto if and only if LL∗ > 0. So, the fundamental result Kalman
(1960) concerning controllability of the LTV system (A.1) can be stated as the equiv-
alence of the following statements:

Theorem A.1 (Kalman) There exist a τ > 0 such that

• the controllability Grammian W (σ, τ ) = ∫ τ

σ
Φ(σ, s)B(s)B∗(s)Φ∗(σ, s)ds is pos-

itive definite;
• there is no nonzero vector p ∈ R

n such that 〈p, Φ(σ, t)bi (t)〉 = 0, for t ∈ [σ, τ ],
and i = 1, . . . ,m.

It is a standard result Silverman and Meadows (1967) that one can derive a rank
condition that guarantees controllability while it does not involve integration and it
can be obtained directly from the initial data matrices (A(t), B(t)):

Theorem A.2 If (A.1) is analytic on an interval J and t is an arbitrary fixed element
of J , then the system is completely controllable on every nontrivial subinterval of J
if and only if

rank
[
B0(t) B1(t) · · · Bk(t)

] = n, (A.5)

for some integer k, where

B0(t) := B(t), Bi+1(t) := A(t)Bi (t) − d

dt
Bi (t). (A.6)

If the analyticity condition is dropped, then the rank condition is only sufficient.

The problem is that it is hard to compute the rank of a time-varying matrix, and
we have no information about how to compute the controllability decomposition
of the system. In the framework of LTI theory the question of controllability can
be decided by consulting the dimension of the reachability subspace, that can be
computed easily from the initial data (A, B) of the problem, i.e.,

R =
n−1∑
k=0

Im Ak B. (A.7)

Practically, the dimension of R is equal to the rank of the matrix whose columns
are selected properly from those of the matrices Ak B, where k = 1, . . . , n − 1. This
condition is called Kalman rank condition.

Kalman’s controllability result also reveals a structural property of linear systems:
namely, by applying a suitable—in general time-varying—state transformation these
systems decompose into a controllable an a purely uncontrollable part. To see this,
let us suppose that there are at most r vectors pi ∈ X , 〈pi , Φ(σ, s)B(s)〉 = 0, s ∈
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[σ, τ ]. Chose them such that Π∗Π = ir , where Π = [ X∗(σ )pi ]. Consider n − r
vectors λi ∈ X orthogonal on pi , such that Λ∗Λ = in−r , where Λ = [ X∗(σ )λi ].
Then, the time-varying matrix

z = T x with T (t) =
[
Π∗
Λ∗

]
X−1(t)

transforms system (A.1) into the controllability decomposition form:

ż1(t) =0 (A.8)

ż2(t) =Λ∗X−1(t)B(t)u. (A.9)

with the uncontrollable mode z1(t) = Π∗X−1(t)x(t) and with the completely con-
trollable mode z2(t) = Λ∗X−1(t)x(t). In other words, the reachable set is invariant
to the action of the controlled dynamics. The notion of invariance met in this context
plays a central role in the investigations of geometric systems theory and it has been
proven very useful in solving a series of control problems.

For LTI systems the reachability set is a subspace and knowing this subspace one
can decompose the system in a controllable and an uncontrollable part by using a state
transformation that does not depend on t . Moreover, for LTI systems the different
stabilizability properties are strictly related to controllability.

Controllability of Linear Affine Systems

For affine time dependency A(t) = ∑N
i=1 ρi (t)Ai the fundamental matrix can be

given, at least locally, in terms of the solutions of theWei–Norman equation, seeWei
and Norman (1964):

ġ(t) = (

K∑
i=1

eΓ1g1 · · · eΓi−1gi−1Eii )
−1ρ(t), g(0) = 0. (A.10)

Here ρ(t) = [ρ1(t), . . . , ρN (t)]T and { Â1, . . . , ÂK } is a basis of the Lie algebra
L (A1, . . . , AN ), the structure matrices Γi = [γ l

i, j ]l, j=1,··· ,K of the algebra are given

by [ Âi , Â j ] = ∑K
l=1 γ l

i, j Âl and Eii is the matrix with a single nonzero unitary entry
at the i th diagonal element.

Locally, the fundamental matrix is given by the expression:

Φ(t) = eg1(t) Â1eg2(t) Â2 · · · egn(t) Ân , (A.11)
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and generally it is not available in closed form. However, by exploiting the affine
structure and using the Peano–Baker formula for the transition matrix one can prove
the following result:

Lemma A.1 For affine linear systems the points attainable from the origin are those
from the subspace R(A ,B) given by:

R(A ,B) = span{
J∏

j=1

A
i j
l j
Bk | J ≥ 0, l j , k ∈ {0, . . . , N }, i j ∈ {0, . . . , n − 1}},

(A.12)

i.e.,R ⊂ R(A ,B).
Moreover, if one consider the finitely generated Lie algebra L (A0, . . . , AN )

which contains the matrices A0, . . . , AN , and a basis Â1, . . . , ÂK of this algebra,
then

R(A ,B) =
N∑
l=0

n−1∑
n1=0

. . .

n−1∑
nK=0

Im( Ân1
1 . . . ÂnK

K Bl).

Adirect consequence of this fact is that if the inclusionRA ,B ⊂ R
n is strict, i.e., if

RA ,B is a proper subspace, then the system (A.1) cannot be completely controllable.
The main question is that under which condition is the reachability set equal to

the Lie algebra, i.e., when we have R = RA ,B. In what follows, if this property
holds, then the system will be called c-excited. Characterization of this property by
using only the initial data seems to be difficult:

Theorem A.3 A system is c-exciting if and only if the following implication holds:
there exist a nonzero ξ ∈ R

n such that B(t)∗Φ∗(t0, t)ξ = 0 for all t ∈ [t0, T ] implies
that R∗

A ,BΦ∗(t0, t)ξ = 0 for all t ∈ [t0, T ].
It is clear, that for c-excited systems controllability is guaranteed if the relation

RA ,B = R
n , i.e., the multivaraiable Kalman rank condition, holds. Moreover, if the

rank condition does not hold, for this class of systems one can construct the control-
lability decomposition by using a time independent state transformation matrix that
depends only on the matrix Lie algebra.

In Szigeti (1992) a sufficient condition for a system to be c-excited is given by
the following property:

Theorem A.4 (Szigeti) The system ẋ = A(t)x + Bu with affine time dependency
is c-persistently excited on [t0, T ] if from the equalities

B∗A∗
i1 · · · A∗

il A(t)∗Φ∗(t0, t)p = 0 (A.13)
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follows

B∗A∗
i1 · · · A∗

il A
∗
jΦ

∗(t0, t)p = 0, j = 0, . . . , N , (A.14)

where p is a no nonzero vector in Rn.

Stabilizability of Completely Controllable Linear Switched
Systems

The concept of stabilizability is related to the property that there exists a state-
dependent control law (closed-loop) which, starting from any initial state, asymptot-
ically drives the system into the equilibrium (the origin). This concept expresses the
requirements imposed by practical applications to an automatic control solution and
it is a cornerstone of every control design algorithm.

For controlled LTI and LTV systems controllability is intimately related to stabi-
lizability in that the former implies the later, moreover stabilizability can be achieved
by applying a linear state feedback.

For general nonlinear systems, however, there is no such result. Controllability
ensures that from every initial state the system can be driven to the origin in finite
time by using a suitable control. It is not known, in general, whether among these
controls there exists at least onewhich is uniformly bounded by the norm of the initial
condition. If this property holds, the system is called asymptotically controllable. It
turns out that asymptotic controllability is not only equivalent to stabilizability but
also guarantees—under fairly mild conditions—the existence of a not too patholog-
ical feedback and control Lyapunov function, see Kellett and Teel (2004), Rifford
(2002).

The zero solution of the differential inclusion ẋ ∈ Ac(x) is called asymptotically
weakly stable if there exists a solution x(t) such that for any ε > 0 there is a δ > 0 and
Δ > 0 such that if ||x(0)|| < δ then ||x(t)|| < ε holds for all t ≥ 0 and if ||x(0)|| < Δ

then limt→∞ x(t) = 0 holds.

Lemma A.2 A completely controllable linear switching system is globally asymp-
totically controllable.

It follows that a completely controllable linear switching system is globally
asymptotically controllable, see Szabó (2009), i.e.,

Theorem A.5 The completely controllable linear switching system is closed-loop
stabilizable.
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Connection to the General Nonlinear Theory

Time-varying systems can be viewed as input affine nonlinear systems, by augment-
ing the statewith the time variable as ξ := [t, xt ]T and rewriting the systemequations
as:

ξ̇ = g0(ξ) +
m∑
i=1

gi (ξ)ui ,

with g0(ξ) =
[

1
A(t)x

]
, gi (ξ) =

[
0

Bi (t)

]
, and Bi is the i th column of B.

A distribution Δ will be invariant on an open set U under the vector fields gi
if and only if [gi , η j ] = ∂η j

∂ξ
gi − ∂gi

∂ξ
η j ∈ Δ(ξ), for all η j ∈ Δ and ξ ∈ U, where

η j , j = 1, . . . dim(Δ) are vector fields locally spanning Δ, see Isidori (1995).
Controllability depends on the rank of the smallest distribution that contains g

and is invariant under the vector field f , given by the following algorithm: Δ0 =
g, Δi+1 = Δi + [ f,Δi ] as the limiting distribution of Δ∗ = limi→∞ Δi .

For the linear affine system the distribution Δi is spanned exactly by the vectors
Bi (t) given by the Silverman–Meadows algorithm.

If Δ∗ is involutive, by the Frobenius theorem, one can determine the transforma-
tion that decomposes system equations in the controllability form. To do this, it is
necessary to solve partial differential equations of the form (∂xλ)δ j = 0, where { δ j }
span the distribution Δ∗, for details see Isidori (1995).

Geometry of LTI Systems

For the details concerning the notions and propositions used in this section the inter-
ested reader is sent to Basile and Marro (2002) and Wonham (1985).

Let us consider the LTI control system

ẋ = Ax + Bu

with the output

y = Cx .

It is assumed that columns of the matrix B ∈ R
n×m and the rows of the matrix C are

linearly independent.
The set of points that lies on the same trajectory with the origin is called the

reachability (controllability) subspace. Let us denote the controllability subspace of
the pair (A, B) by R(A, B).

In the absence of control action a subspace of the state space X is a locus of
trajectories if and only if it is an A-invariant set. The extension of this property to
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the case in which the control is present and suitably used to steer the state along a
convenient trajectory leads to the concept of (A, B)-controlled invariant subspace
V defined as:

AV ⊂ V + B, B = Im B.

The dual of a controlled invariant subspace is an (A,C)−conditioned invariant
subspace S , which is defined as:

A(S ∩ C ) ⊂ S , C = Ker C.

The set of all (A, B)-controlled invariants VE contained in a given subspace E
is an upper semilattice that admits a supremum, the maximal (A, B)−controlled
invariant contained inE , whichwill be denoted byV ∗

E = maxV (A, B,E ). Similarly
the set of all (A,C)-conditioned invariants SD containing a given subspace D is a
lower semilattice that admits an infimum, theminimal (A,C)−conditioned invariant
containing D , which will be denoted by S ∗

D = min S(A,C,D). These subspaces
can be determined by efficient algorithms in finite steps.

A trajectory of the pair (A, B) can be controlled on E if and only if its initial
state belongs to a controlled invariant contained in E , hence in VE . In general, for
any initial state belonging to a controlled invariant VE , it is possible not only to
continuously maintain the state on VE by means of a suitable control action, but also
to leave VE with a trajectory on E and to pass to some other controlled invariant
contained in E . On the other hand, there exist controlled invariants that are closed
with respect to the control, i.e., that cannot be excited by means of any trajectory
on E : these will be called self-bounded with respect to E . An (A, B)-controlled
invariant V contained in a subspace E is said to be self-bounded with respect to E
if V ∗

E ∩ B ⊂ V .
The duals of the self-bounded controlled invariants are the self-hidden conditioned

invariants: an (A,C)-conditioned invariantS containing a subspaceD is said to be
self-hidden with respect to D ifS ⊂ S ∗

D + C .
In general, however, it is not possible to reach any point of a controlled invari-

ant from any other point (in particular, from the origin) by a trajectory completely
belonging to it. In other words, given a subspace E , by leaving the origin with tra-
jectories belonging to E , hence to VE , (the maximal (A, B)-controlled invariant
contained in E ), it is not possible to reach any point of VE , but only a subspace of
it, which is called the reachable set on E and denoted by RE . It can be proved that
RE = V ∗

E ∩ S withS = minS (A,E ,B).
Let us denote by V ∗ = maxV (A, B,C ) the maximal (A, B)-controlled invari-

ant subspace contained in C and by S∗ = minS (A,C,B) the minimal (A,C)-
conditioned invariant subspace containing B.

Theorem A.6 (Four Map Theorem) Let us consider the state transformation

ξ = T−1x, defined by T = [
T1 T2 T3 T4

]
,
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with Im T1 = V ∗ ∩ S∗ and Im [ T1 T2 ] = V ∗, Im [ T1 T3 ] = S∗. Then

T−1AT =

⎡
⎢⎢⎣
A11 A12 A13 A14

0 A22 A23 A24

A31 A32 A33 A34

0 0 A43 A44

⎤
⎥⎥⎦ T−1B =

⎡
⎢⎢⎣
B1

0
B3

0

⎤
⎥⎥⎦ CT = [

0 0 C3 C4
]
,

where A23 = Ā23C3 and A43 = Ā43C3. Moreover by a suitable feedback A31 and
A32 can be zeroed out.

When (A,C) is not observable (reconstructable), the initial or final state can be
determined modulo the subspace Ker Ψ(A,B,C) = Q, where Q denotes the maxi-
mal A−invariant subspace contained in C , which is called unobservability subspace
(unreconstructability subspace). This means that the state canonical projection on
X /Q can be determined from the output function.Q is the locus of the free motions
corresponding to the output function identically zero. A dynamical system is com-
pletely unknown-input state observable by means of differentiators if it is possible
to determine its state x when an arbitrary short output segment y is given.

The subspace of unknown input state observability by means of differentiators is

minS (AT ,Ker BT , Im CT ) = maxV ⊥(A, B,C)

and the subspaceof functional input observability is BT minS (AT ,Ker BT , ImCT ).
The orthogonal projection of the state on the subspace V ∗,⊥ can be deduced from
the output and from its derivatives, moreover this is the greatest subspace where the
orthogonal projection of the state can be recognized solely from the output. If the state
is known the orthogonal projection of the input can be determined on BTV ∗,⊥ and
it cannot be recognized a greater subspace (it can be determined modulo B−1,TV ∗).

The term system invertibility denotes the possibility of reconstructing the input
from the output function. Assume that B has maximal rank. The system (A, B,C)

with x(0) = 0 is said to be invertible (left-invertible) if, given any output function
y(t) defined on [0, t1], t1 > 0 belonging to Im Φ0

(A,B,C), there exists a unique input
function u(t) such that Φ0

(A,B,C)u(t) = y(t) holds, i.e., Ker T 0
(A,B,C) = 0.

The triple (A, B,C), with B having maximal rank, is unknown-state (zero-state)
invertible if and only if it is unknown-state, unknown-input (zero-state, unknown-
input) completely reconstructable.

A dynamic system exists which, connected to the system output and with initial
state suitably set as a linear function of the system state (which is assumed to be
known), provides tracking of the system state moduloS∗. This system is not neces-
sarily stable. The observer equations, expressed in the basis that corresponds to the
transformation T = [T1 T2], with Im T1 = S∗, can be written as:

[
η̇1
η̇2

]
=

[
A11 A12

0 A22

] [
η1
η2

]
+

[
B1

0

]
u +

[
G1
G2

]
y,
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whereG is such that (A + GC)S∗ ⊂ S∗. If the observer initial state is set according
to η(0) = T−1x(0) a state estimate modulo S∗ is derived.

An algebraic reconstructor with differentiators provides as output a state estimate
z1 modulo V ∗ and works if neither the initial state nor the input function is known,
while the dynamic tracking device provides as z2 a state estimate modulo S∗, but
requires the initial state to be known. A state estimate modulo V ∗ ∩ S∗ is obtained
as a linear function of the outputs of both devices, i.e., z = Mz1 + Nz2. This state
reconstructor provides the maximal information on the system state when the input
function is unknown and the initial state known, by observing the output in any
nonzero time interval.

The term functional controllability (right invertibility) denotes the possibility of
imposing any sufficiently smooth (piecewise differentiable at least n times) output
function by a suitable input function, starting at the zero state.

For multi input single output (MISO) systems a formal definition can be given as:

Definition A.1 Assume that C has maximal rank. The system (A, B,C) is said to
be functionally controllable (right-invertible) if there exists an integer ρ ≥ 1 such
that, given any output function y with ρth derivative piecewise continuous and such
that y(0) = 0, · · · y(ρ)(0) = 0, there exists at least one input function u such that
Φ0

(A,B,C)u = y holds. The minimum value of ρ satisfying the above statement is
called the relative degree of the system.

In order to define the relative degree for MIMO systems in geometric terms the
following extension of functional output controllability is introduced:

Definition A.2 (Constrained Functional Output Controllability) A subspace Y (h)

is said to be a functional output controllability subspace with respect to the hth
derivative if the output of the triple (A, B,C) can be driven along any trajectory y
such that y ∈ Y (h) with the hth derivative piecewise continuous.

This is possible exactly when there exist an (A, B)-controlled invariant subspace
V such that Y (h) = CV . Let us consider E = C−1Y (h) and V (h)

E , the maximal
(A, B)-controlled invariant subspace contained in E such that the output can be
driven on CV (h)

E along any trajectory y with piecewise continuous hth derivative for
all the initial states x(0) ∈ V (h)

E .
The multivariable relative degree ρi of output yi is defined as ρi = h (if exists),

where Y (h) = CV (h)

E assuming that Y (h) = {y | yk = 0, k �= i}.
The functional controller is realizable in exactly the same way as the (left) inverse

system, i.e., by a state reconstructor completed with a further differentiator stage
and an algebraic part. Its dynamic part is asymptotically stable if and only if all the
invariant zeros of (A, B,C) are stable. In this case, however, the input u correspond-
ing to the desired output is not unique, in general. The difference between any two
admissible input corresponds to a zero-state motion on RV ∗ = V ∗ ∩ S∗ which does
not affect the output, so that the functional controller can be realized to provide any
one of the admissible inputs, for instance by setting to zero input components which,
expressed in a suitable basis, correspond to forcing actions belonging to V ∗ ∩ ImB.
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Left and right invertibility can be characterized in geometric terms as follows:

Theorem A.7 Triple ( A, B,C ) is left-invertible if and only if

V ∗ ∩ B = 0.

Condition of left-invertibility is equivalent to V ∗ ∩ S∗ = 0.

Theorem A.8 Let C := Ker C. Triple ( A, B,C ) is right-invertible if and only if

S∗ + C = X.

Condition of right-invertibility is equivalent to V ∗ + S∗ = X .

A.2 Parameter-Varying Invariant Subspaces

For LTI systems the concept of certain invariant subspaces and the corresponding
global decompositions of the state equations induced by these invariant subspaces
was one of themain thrusts for the development of geometricmethods for the solution
of a series of relevant problems, see Wonham (1985). Nonlinear systems can be
studied using tools from differential geometry, when the central role is played by the
concept of invariant distributions. From the geometric viewpoint results of classical
linear control can be seen as special cases ofmore general nonlinear results, for details
see Isidori (1995) and Nijmeijer and van der Schaft (1991). Due to the computational
complexity involved, these general nonlinear methods have limited applicability in
practice.

In order to extend the classical geometric tools used to describe detection filters
for LTI systems, consider first the following linear time-varying (LTV) system:

ẋ(t) = A(t)x(t) + B(t)ν(t) (A.15)

y(t) = Cx(t), (A.16)

where x(t) ∈ X ⊂ R
n, x0 = x(t0), u(t) ∈ R

m and y(t) ∈ R
p. Special instances of

LTV systems are LPV, when the state space matrices depend on time-varying para-
meters, e.g., A(t) = A(ρ(t)). Considering constant C does not restrict generality
since by a suitable state transform one can always obtain the desired form.

Restricting the investigations to linear subspaces, as special instances of distrib-
utions, then a subspace V of Rn will be an invariant distribution for system (A.15)
if and only if A(ρ(t))V ⊂ V for all t ∈ I , where I is an interval on which the
solutions are defined.

This fact motivates the introduction of the following notion for LPV systems:
a subspace V is called parameter-varying invariant subspace for the family of the
linear maps A(ρ) (or shortly A -invariant subspace) if
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A(ρ)V ⊂ V for all ρ ∈ P, i.e., for all t ∈ I . (A.17)

Analogously, let B(ρ) denote Im B(ρ). Then a subspace V is called a parameter-
varying (A,B)-invariant subspace (or shortly (A ,B)-invariant subspace) if for all
ρ ∈ P either of the following equivalent conditions holds:

A(ρ)V ⊂ V + B(ρ); (A.18)

there exists a mapping F ◦ ρ : [0, T ] → R
m×n such that:

(A(ρ) + B(ρ)F(ρ))V ⊂ V . (A.19)

The dual notion is the following: let C (ρ) denote KerC(ρ). Then a subspace W
is called a parameter-varying (C,A)-invariant subspace (or shortly (C ,A )-invariant
subspace) if for all ρ ∈ P either of the following equivalent conditions holds:

A(ρ)(W ∩ C (ρ)) ⊂ W ; (A.20)

there exists a mapping G ◦ ρ : [0, T ] → R
n×p such that:

(A(ρ) + G(ρ)C(ρ))W ⊂ W . (A.21)

These definitions are suitable for qLPV systems, too.
Let us denote themaximalA -invariant subspace contained in a constant subspace

K by 〈K |A(ρ)〉.
For the LPV case (with constant B matrix) one can get the following definition for

the controllability subspace: a subspaceR is called parameter-varying controllability
subspace if there exists a constant matrix K and a parameter-varying matrix F :
[0, T ] → R

m×n such that

R = 〈A + BF |Im BK 〉, (A.22)

where A + BF denotes the system A(ρ) + BF(ρ).
As in the classical case, it can be seen that the family of controllability subspaces

contained in a given subspaceK is closed under subspace addition. Hence this fam-
ily has a maximal elementR∗. The dual notion of parameter-varying controllability
subspace is the following: a subspaceS is called an unobservability subspace asso-
ciated to an LPV system if there exists a constant matrix H and a parameter-varying
matrix G : P → R

n×p such that

S = 〈Ker HC |A(ρ) + G(ρ)C〉. (A.23)

The family of unobservability subspaces associated to an LPV system containing
a given subspaceL is closed under subspace intersection. This family has a minimal
element denoted byS ∗.
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From a practical point of view it is an important question to characterize these
subspaces associated to an LPV system by a finite number of conditions. A series of
efficient algorithms were derived for the computation of these subspaces, for detail
see Balas et al. (2003).

If certain conditions are fulfilled, e.g., if the parameter functions are differen-
tial algebraically independent, then the parameter-invariant subspaces defined above
coincide with the corresponding invariant distribution or codistribution, respectively.
However, to give sufficient conditions for the solution of certain state feedback and
observer filter design problems it is enough that some decompositions of the state
equations could be performed. The parameter-varying versions of these invariant
spaces are suitable objects to define the required decompositions, therefore they can
play the same role in the solution of the fundamental problems, such as disturbance
decoupling, unknown input observer design, fault detection (FPRG), as their coun-
terparts in the time-invariant context.

Computational Algorithms

Let Δ be a distribution defined on an open set U . We are interested in finding the
smallest distribution, which is invariant under given vector fields (τ1, . . . , τq ) and
which is denoted by the symbol 〈τ1, . . . , τq | Δ〉. Given a distribution Δ and a set
τ1, . . . , τq of vector fields we define the nondecreasing sequence of distributions:

Δ0 = Δ, Δk = Δk−1 +
q∑

i=1

[τi ,Δk−1], (A.24)

i.e., for all k one has that Δk ⊂ 〈τ1, . . . , τk | Δ〉. If there exists an integer k∗ such that
Δk∗ = Δk∗+1 then Δk∗ = 〈τ1, . . . , τk | Δ〉.

Let Ω be a codistribution defined on an open set U and we are interested in
finding the smallest codistribution, which is invariant under the given vector fields
(τ1, . . . , τq ) and which is denoted by the symbol 〈τ1, . . . , τq | Ω〉. Given a codistrib-
ution Ω and a set τ1, . . . , τq of vector fields we define the dual version, i.e.,

Ω0 = Ω, Ωk = Ωk−1 +
q∑

i=1

Lτi Ωk−1. (A.25)

Then for all k one has Ωk ⊂ 〈τ1, . . . , τk | Ω〉 while Ωk∗ = 〈τ1, . . . , τk | Ω〉 provided
that there exists an integer k∗ such that Ωk∗ = Ωk∗+1.

In the special case of LTI systems the algorithm (A.24) ends up with the well-
known controllable subspace of the system:

Δn−1(x) = Im [B AB . . . An−1B], x ∈ R
n
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Considering the dual case letΩ0 be the codistribution spanned by the row vectors
c1, . . . , cp of C , the algorithm (A.25) ends up with the subspace:

Ωn−1(x) = Im (CT ATCT . . . (AT )n−1CT ).

By duality Ω⊥
n−1(x) is the largest distribution invariant under the vector field f A and

contained in the distribution Ω⊥
0 (x). Moreover, by construction, at each x ∈ R

n ,

Ω⊥
0 (x) = Ker C, Ω⊥

n−1(x) = Ker

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ .

As far as affine LPV systems are concerned, denoting by τi (x) = Ai x, i =
0, 1, . . . ,m one can get

Δk = Δk−1 +
m∑
i=0

AiΔk−1

yielding

Δn−1 =
n−1∑
l=0

∑
ji∈{0,...,m}, i=1,...,l

A j1 . . . A jlΔ

where the algorithm was initialized at a constant distribution Δ.
Starting from the constant codistribution Ω0 = ˜Im C = Im CT , one has

Ωk = Ωk−1 +
m∑
i=0

Ωk−1Ai .

Let p1(x), . . . , pd(x) be a set of smooth vector fields defined on an open set U ,
set P = span{p1, . . . , pd} and consider the nondecreasing sequence of distributions
defined as follows:

S0 = P, Sk = Sk−1 +
m∑
i=0

[gi , Sk−1 ∩ Ker dh}],

where S denotes the involutive closure of S.
Suppose there exists an integer k∗ such that Sk∗+1 = Sk∗ and set Σ P∗ = Sk∗ . Then

Σ P∗ is the minimal conditioned invariant and involutive distribution containing P .
This algorithm is called termed as conditioned invariant distribution algorithm.

By setting

g0(x) = Ax, g1(x) = B, h(x) = Cx
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one has

[g0, Sk−1 ∩ Ker C](x) = A(Sk−1 ∩ Ker C),

thus one can obtain the well-known (C, A)-invariant subspace algorithm for LTI
systems:

S0 = P, Sk = Sk−1 + A(Sk−1 ∩ Ker C).

For affine LPV systems, i.e., gi (x) = Ai x it follows that:

S0 = P, Sk = Sk−1 +
m∑
i=0

Ai (Sk−1 ∩ Ker C).

Using the augmented state space ξ = [t, x]T one can obtain the algorithm

S0(ξ) = P, Sk(ξ) = Sk−1(ξ) +
(

∂

∂t
− A(π(t))

)
(Sk−1(ξ) ∩ Ker C),

for a linear time-varying dynamics, a readout map with constant C matrix and a
constant distribution P .

The dual is the controlled invariant distribution algorithm which is defined via
codistributions:

Ω0 = spandh, Ωk = Ωk−1 +
m∑
i=0

Lgi (Ωk−1 ∩ G⊥). (A.26)

Suppose there exists an integer k∗ such that Ωk∗+1 = Ωk∗ . Then Ωk = Ωk∗ , for all
k > k∗ and if Ωk∗ ∩ G⊥ and Ω⊥

k∗ are smooth, then Ω⊥
k∗ is the maximal controlled

invariant smooth distribution contained in Ker dh.
Considering LTI systems, the algorithm

Ω0 = ˜Im C = Im CT , Ωk = Ωk−1 + (Ωk−1 ∩ Ker BT )A,

ends up in the minimal (BT , AT )-invariant subspace over Im CT so its dual is the
maximal (A, B)-invariant subspace in Ker C .

The derivation of the time-dependent form (in the augmented state space) of the
controlled invariant distribution algorithm (A.26) will end up in

Ω̃k+1(ξ) = span{dh} + (Ω̃k ∩ B⊥)A(ρ),

provided that there exists k∗ such that Ωk∗+1 = Ωk∗. Then Ω̃⊥
k∗ will be the maximal

controlled invariant distribution in Ker {dh} which contains G = span{g1, . . . , gm}.
Considering constant codistributions in each step we get
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Ω̃k+1 = span{dh} +
N∑
i=0

(Ω̃k ∩ B⊥)Ai .

Let Θ be a fixed codistribution and define the nondecreasing sequence of codis-
tributions as:

Q0 = Θ ∩ spandh, Qk+1 = Θ ∩
(

m∑
i=0

Lgi Qk + spandh

)
. (A.27)

Suppose that all the codistributions of this sequence are nonsingular, i.e., there exists
an integer k∗ ≤ n − 1 such that Qk = Qk∗ for all k > k∗, set Ω∗ = Qk∗ and use the
notation Ω∗ = o.c.a.(Θ) where o.c.a. stands for observability codistribution algo-
rithm. Then

Q0 = Ω∗ ∩ spandh}, Qk+1 = Ω∗ ∩
(

m∑
i=0

Lgi Qk + spandh

)
.

provided that all the codistributions generated by the observability codistribution
algorithm are nonsingular. As a consequence o.c.a.(Ω∗) = Ω∗ and if Θ is condi-
tioned invariant, so is the codistribution Ω∗.

Ω is said to be a observability codistribution if fulfills the relations:

Lgi Ω ⊂ Ω + spandh, i = 0, 1 . . .m, o.c.a.(Ω) = Ω.

The distribution Δ is called unobservability distribution if its annihilator Ω = Δ⊥ is
an observability codistribution. If the algorithm (A.27) is initialized at (Σ P∗ )⊥, then
o.c.a.((Σ P∗ )⊥) is an observability codistribution contained inP⊥. Moreover, it is the
largest codistribution having this property.

Let us consider the nonlinear system

ẋ = A0x +
m∑
i=1

ui Ai x + l(x)m +
d∑

i=1

pi (x)wi , y = Cx

with the assumption that P = span {p1, . . . , pd} is independent of x . Then the
observability codistribution algorithm will be read as:

Q0 = Θ ∩ ˜Im C, Qk+1 = Θ ∩
(

m∑
i=0

Qk Ai + ˜Im C

)
. (A.28)
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A.3 Identifiability

Identifiability is a fundamental prerequisite for model identification and it concerns
the uniqueness of the model parameters determined from input–output data, under
ideal conditions of noise-free measurements and error-free model structure. Identifi-
ability analysis requires one to solve systems of highly nonlinear algebraic equations,
the analysis tool being mainly differential algebraic. For details about identifiability,
see, e.g., Ljung and Glad (1994); Saccomani et al. (2003) and the references cited
therein.

From a practical point of view we can state that a necessary condition for iden-
tifiability is that the system representation should be minimal, i.e., (algebraically)
observable and controllable. For the decisive role of controllability, see Saccomani
et al. (2003).

Let y = Φx0(u, p) be the input–output map of the nonlinear input affine system
depending on a vector parameter p:

ẋ = f (x, p) + g(x, p)u

y = h(u, x, p) (A.29)

started from the initial state x(0) = x0. Then, the parameter p∗ is said to be a priori
globally identifiable from input–output data if there exists at least one input function
u in such a way that the equation Φx0(u, p) = Φx0(u, p∗) has only one solution, i.e.,
p = p∗, for all initial states x0. A weaker notion is that of the local identifiability,
when uniqueness holds only in a neighborhood of p∗.

The solution of the system, i.e., the map Φ usually is not available. However,
in some cases, an implicit input–output map, i.e., a relation Ψ (y, u, p) = 0 can be
determined from the system equations. Sincewe examine identification in the context
of (q)LPV systems, in what follows, the main steps of the identifiability test will be
sketched.

Let us consider an LTV system

ẋ = A(t)x + B(t)u

y = C(t)x, (A.30)

and let us denote it by ỹ := [ y . . . y(n−1) ]T . Then, one has the equation

ỹ = Ω(t)x + Γ (t)Ũ (A.31)

where ΩT (t) = [CT
0 (t) · · ·CT

n−1(t) ] with

C0(t) := C(t),

Ci+1(t) := Ci (t)A(t) + d

dt
Ci (t). (A.32)
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Let us denote it by γ k the row vector defined as:

γ k+1
0 = γ k

0 + Ck,

γ k+1
j = γ k

j + γ̇ k
j−1, j = k, . . . , 1 (A.33)

γ k
j = 0, j ≥ k.

Then Γ (t) has as rows the vectors γk, k = 0, . . . n − 1. Let us denote by U (t) =
B(t)u and by Ũ := [U · · · U (n−1) ]T .

If system (A.30) is analytic on an interval I and t is an arbitrary fixed element
of I , then (A.30) is completely observable on every nontrivial subinterval of I if
and only if rankΩ(t) = n, i.e., one can solve Eq. (A.31) for the state x . It follows
that

y(n) − Cn(p)Ω
#(p)ỹ = (γ n(p) − Cn(p)Ω

#(p)Γ (p))Ũ (p), (A.34)

where Ω#(p) is a generalized inverse of Ω(p). This equation gives us the implicit
map Ψ (y, u, p) = 0, with initial conditions given by

ỹ(0) = Ω(0)x(0) + Γ (0)Ũ (0). (A.35)

Equations (A.34) and (A.35) are usually highly nonlinear in the parameters p,
however, they can be re-parametrized using as new parameters the functions Π :=
[πl(p, x0)]. In terms of the new parameters one has a linear equation of the form:

Ψ1(u, y) + Π(p, x0)Ψ2(u, y) = 0. (A.36)

If the map (p, x0) → Π(p, x0) is injective, i.e., can be solved uniquely for (p, x0),
then the system is identifiable.

In Ljung and Glad in relation (A.36) the map Π is the identity map. In the
identification context that involves mechanical problems the parameter dependence
of the state matrices is usually nonlinear, so, in general a simple form for this map
cannot be expected.

The input output pairs for which (A.36) can be solved, i.e., such that Ψ2(u, y)
is of full rank, can be called as “persistently exciting” pairs, see Stoica (1989). If
the initial condition x0 is known, then the map Π(p) is required to be injective
for identifiability. In the setting of discrete time system identification, some of the
authors consider systems given already in the discrete variant of (A.34), for details
see Bamieh and Giarre (2000, 2002); Bokor and Keviczky (1987) for the continuous-
time case see e.g., Kowalczuk and Kozlowski (2000); Soderstrom et al. (1997).
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A.4 The Role of the Sampling Time

Finding the unknown parameters usually involves the application of an optimization
process that contains some iterations, requiring the solution of certain differential
equations, for an overview see Polak (1997). Although we embed the system in the
class of (q)LPV systems, in general, we cannot exploit the linear structure in the solu-
tion process, and we have to use a general differential equation solver. Recall, that the
method that solves a differential equation is a numerical algorithm, which performs
an implicit discretization of the system. Sometimes they are implicit schemes with
variable step length.

Moreover, since the values of ρ(t), u(t) and y(t) are only available at discrete
time instances determined by the sampling period, the original (q)LPV system is
embedded in the class of (q)LPV systems that operate on the set of piecewise constant
functions. In order to assure that this class is sufficiently close to the original system,
one has to impose conditions on the sampling time τ , i.e., it must be sufficiently
small. What “sufficiently” means in this context, depends heavily on the differential
equation that has to be solved in the identification process.

It is known from the literature that for a certain class of differential equations, i.e.,
for stiff equations, this condition might be quite stringent, leading to unacceptable
small values of the sampling time. The numerical methods designed for this class
are quite involved, see Hairer and Wanner (1996), and usually uses a variable step
length. This fact causes inherent difficulties in the parameter identification process,
i.e., for stiff differential equations the error committed might make impossible the
solution of the problem for a given, practically reliable, sampling time.

In the context of optimal control the same problem arises. A feedback law which
globally stabilizes a given system in the absence of quantization will in general fail
to provide global asymptotic stability of the closed loop system that arises in the
presence of state quantization, for details see, e.g., Liberzon (2003). For the observer
design of the LTI system the effect of quantization is shown e.g., in Sur and Paden
(1998).

Example: Quarter Car, Sprung Mass Estimation

The aim of this demonstration example is to illustrate the identification of the sprung
mass ms of a vehicle by using a quarter car suspension model. At first glance its
identification, even from input–output data, seems to be almost trivial. However, due
to the inherent nonlinearity of the system, the problem can be really hard from an
implementation point of view.

The state space representation of the nonlinear model is:
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⎛
⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞
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⎜⎜⎜⎝
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0 0 0 1
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kls
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bls
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kls
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− kls
mu
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bls
mu

⎞
⎟⎟⎟⎠

⎛
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⎛
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− bsyms
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⎞
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⎛
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⎞
⎠ +

⎛
⎜⎜⎝

0
0
0
kt
mu

⎞
⎟⎟⎠w,

see Fig. 2.9 and Sect. 2.5.
The measured outputs are

y1 = x2 − x1, y2 = x4 − x3

and they can be also selected as scheduling parameters, i.e., ρb = y2 and ρk = y1.
Let us denote by φ(ρk, ρb) the column vector

φ(ρk, ρb) = [
ρ3
k |ρb| √|ρb| sgn(ρb)

]T
.

If one considers φ(ρk, ρb) as a fictitious input and denotes by μ = mu/ms , the state
space equations of the qLPV model can be written as:

ẋ =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−μπ1 μπ1 −μπ2 μπ2

π1 −π1 − πt π2 −π2

⎞
⎟⎟⎠ x+

+

⎛
⎜⎜⎝

0 0 0
0 0 0

μπ3 −μπ4 μπ5

−π3 π4 −π5

⎞
⎟⎟⎠φ(ρk, ρb) +

⎛
⎜⎜⎝
0
0
0
πt

⎞
⎟⎟⎠w

where

π := [π1 π2 π3 π4 π5] = [ k
l
s

mu

bls
mu

knls
mu

bsyms

mu

bnls
mu

],

and πt = kt
mu

are known parameters. Since the value of ms may vary, the parameter
μ is considered to be unknown.

Let us denote by

Λ(y) = π1y1 + π2y2 + [π3 − π4 π5]φ(y).

http://dx.doi.org/10.1007/978-3-319-46126-7_2
http://dx.doi.org/10.1007/978-3-319-46126-7_2


Appendix A: Modeling of LPV systems 251

Then the identifiability analysis leads to the following input–output map that corre-
sponds to relation (A.34):

y(3)
2 + (1 + μ)Λ(2)(y) + πt y

(2)
2 + μπtΛ(y) − πtw

(2) = 0.

Equation (A.36) can be obtained by successive derivation of this relation, obtaining

Ψ1(u, y) =
⎛
⎝y(3)

2

y(3)
2

y(3)
2

⎞
⎠ , Π =

⎛
⎝ πt

μπt

1 + μ

⎞
⎠ ,

and

Ψ2(u, y) =
⎛
⎝y(2)

2 − w(2) Λ(y) Λ(2)(y)
y(3)
2 − w(3) Λ̇(y) Λ(3)(y)
y(4)
2 − w(4) Λ(2)(y) Λ(4)(y)

⎞
⎠ .

It follows, that ifΛ(y) is not identically zero, and the input is persistently exciting,
then the parameter μ is identifiable. Accidentally, it can be seen, that if πt were be
unknown, then it also could be identified. Since for practical reasons for a true system
condition Λ(y) = 0 cannot hold, we can conclude that the parameter μ is, at least
theoretically, identifiable.

As a side remark: if one considers the extension of the system with μ̇ = 0, and
studies the observability of the extended system, then the same results would be
obtained.

The model that we have used in the simulations was described by the following
parameters:

π = (
398.30 20.33 3.38 −1.69 0.16

)
,

μ0 = 0.2034, πt = 3220.3.

It was assumed that the value of μ may vary between −0.15μ0 and 0.1μ0 around its
nominal value μ0. The true value of μ = (1 + α)μ0 was set for α = 0.05.

In the simulation experiment we have used three sampling times τs , namely
0.01, 0.001 and 0.0001. As an optimization tool the MATLAB�’s lsqnonlin rou-
tine was applied and for the solution of the differential equation the lsim routine
was used. Using LMI techniques an observer gain K was computed such that the
observer must be stable for all possible values of the parameter. The computed gain
was:

KT =
(

3.6 −0.9 2.1 1116.6
326.0 1121.7 214.9 226.7

)
.

In the first situation the initial condition was assumed to be known. Parameter
estimation was performed based on the original system structure and then on the
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Table A.1 Results for α, with known x0
τs 0.01 0.001 0.0001

α, K = 0 0.049 0.0501 0.0501

α, K -0.15 0.0434 0.0545

1 2 3 4 5
−2

−1

−2

0

1
x 10

−4
x 10

−4

1 2 3 4 5
−6

−3

0

3

6

Fig. A.1 Simulation error for the original system (a) and for the observer (o)

observer system structure using measurements that correspond to different values
of the sampling time. Values for the computed parameter α are shown in TableA.1.
One can observe that in this situation the identification based on the original sys-
tem structure seems to slightly outperform the results obtained in the case when an
observer is to be identified. However, these differences are not significant and can
be explained by numerical reasons.

The observer cannot be used for identification for the lowest sampling time.
FigureA.1a shows the simulation error of the original system for the nominal value
of the parameter, i.e., for α = 0.05. The simulation error of the observer is shown
in Fig.A.1o. One can observe the loss of stability of this system, which explains the
failure of the optimization algorithm in this case.

In the second case, the initial condition was assumed to be unknown and an
observer was used for identification purposes. In simulations

x0 = (−0.0024 −0.0026 −0.0200 0.0408
)

was set while in the identification process x0 = 0 was used. The computed values
for α are shown in TableA.2.

One can observe that the identification scheme based on the original system gives
unsatisfactory results, i.e., the computed parameter value is far from the nominal one
α = 0.005. The observer based scheme performs quite well, given almost the same
results as in the situation with known x0. FigureA.2a shows the simulation error of
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Table A.2 Results for α, with unknown x0
τs 0.01 0.001 0.0001

α, K = 0 0.0254 0.0260 0.0260

α, K -0.15 0.0478 0.0474

2 3 4 5
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[sec]
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Fig. A.2 Error for the original system (a) and for the observer (o) (unknown x0)

the original system for the nominal value of the parameter α. Comparing it with the
simulation error of the observer system, shown in Fig.A.2o, one can see an increase
in the magnitude of the errors.

A.5 Adaptive Observers for (q)LPV Systems

The class of systems considered in this section will be the following:

ẋ = A(ρ(t))x + Bu(ρ(t))u + Bpϕ(ρ(t), y)p (A.37)

y = Cx (A.38)

where p is a parameter vector, ρ(t) is a known vector of time-varying scheduling
parameters, which basically depends on measured outputs, i.e., ρ(t) = ρ(y), and
ϕ(ρ(t), y) is a known, possibly nonlinear, function of its arguments. The objective
of our investigations is to compute the unknown parameter p for system (A.38)
from input–output measurements, in other words, to solve a grey-box identification
problem.

The approach presented in Zhang and Alleyne (2002) proposes the following
globally exponentially convergent adaptive observer scheme for the estimation of
the parameter p:
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˙̂x = A(t)x̂ + Bu(t)u + Bpϕ(t) p̂ + (K (t) + Ω(t)G(t))(y − Cx̂) (A.39)

Ω̇(t) = (A(t) − K (t)C)Ω(t) + Bpϕ(t), (A.40)

with ˙̂p = G(t)(y − Cx̂) andG(t) = Γ (t)ΩT (t)CTΣ(t).Here , the gainmatrix K (t)
should be chosen such that the system defined by A(t) − K (t)C is exponentially
stable and it is assumed that the so-called persistency condition holds, i.e., there are
positive constants α, β, T and there is a bounded positive definite matrix such that

α I ≤
∫ t+T

t
ΩT (τ )CTΣ(τ)CΩ(τ)dτ ≤ β I, (A.41)

for all t .
Typically Γ (t) is chosen as a positive diagonal matrix.
Unfortunately currently there are no results available for an optimal design and the

algorithm should be tuned through trials. In our identification oriented applications
we find that it is hard to tune the algorithm properly, i.e., to find suitable matrices
Σ(t) and Γ (t) in order to achieve acceptable performances.

Convergence

In our applications we often consider systems that can be cast in the form:

ẋ = A(t)x + Bu(t)u + Bpϕ(y)p (A.42)

y = Cx (A.43)

where p is a parameter vector and ϕ(y) is a known, possibly nonlinear. Assuming
that there exists a symmetric and positive definite matrix P, a gain matrix K (t), a
matrix M and μ > 0 such that

PAo(t) + AT
o (t)P ≤ −μI, PBp = CT M, (A.44)

where Ao(t) = A(t) − K (t)C holds, and that the signals ϕ are persistently exciting.
Then, the adaptive observer is defined as:

˙̂x = A(t)x̂ + Bu(t)u + Bpϕ(t) p̂ + K (t)(y − Cx̂) (A.45)

˙̂p = −ϕT (t)P(y − Cx̂). (A.46)

In what follows, we highlight the main ideas of the proof for the global conver-
gence of the scheme. Let us denote by e = x̂ − x and by ep = p̂ − p. Then, the error
system will be:

ė = Ao(t)e + Bpϕ(t)ep ėp = −ϕT (t)MTCe. (A.47)
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Let us consider the candidate Lyapunov function

V (e, ep) = eT Pe + eTp ep. (A.48)

It follows that

V̇ (e, ep) = eT (PAo(t) + AT
o (t)P)e ≤ μeT e. (A.49)

This implies that ||e|| and ||ep|| are bounded, hence ‖ė‖ is also bounded. From Bar-
balat’s lemma follows limt→∞ ‖e‖ = 0. Furthermore, sinceϕ is persistently exciting,
then it also follows that limt→∞ ‖ep‖ = 0.

In applications the measurements are corrupted by noise or bounded disturbance,
i.e., ȳ = y + w, where ‖w‖ < cw.

Let us use the form ϕ̄(t) = ϕ(ȳ) = ϕ(t) + Δϕ , then the error equation will be:

ė = Ao(t)e + Bpϕ̄(t)ep + ζ(t) (A.50)

ėp = −ϕ̄T (t)MTCe − ΔT
ϕ M

Tw, (A.51)

where ζ(t) = K (t)w + BpΔϕ p. It is reasonable to suppose a Lipschitz property for
ϕ, i.e., |‖Δϕ|‖ ≤ c‖w‖.

It follows that

V̇ (e, ep) = −μeT e + eT Pζ − wT MΔϕep, (A.52)

i.e., there are suitable positive numbers μ1, μ2, μ3 such that

V̇ (e, ep) ≤ −μ1‖e‖2 + μ2‖ζ‖2 + μ3‖ζ‖‖ep‖, (A.53)

provided that μ ≥ μ1 + λmax (P)

μ2
.

Applying the extended persistency of excitation lemma, see Marino and Santosu-
osso (1999), it follows that the error system is Input to State Stable and the origin is
its globally exponentially stable equilibrium point, when ζ = 0, provided that ϕ(ȳ)
satisfy the persistency excitation condition of type (A.41).

A.6 Geometric Approach for qLPV FDI Design

Let us consider the class of linear parameter-varying (LPV) systems of m inputs and
p outputs that can be described as:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))ν(t) (A.54)

y(t) = Cx(t) (A.55)
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where

A(ρ(t)) = A0 + ρ1(t)A1 + · · · + ρN (t)AN , (A.56)

B(ρ(t)) = B0 + ρ1(t)B1 + · · · + ρN (t)BN , (A.57)

and the dimension of the state space is supposed to be n.

It is assumed that each parameter ρi ranges between known extremal values
ρi (t) ∈ [ρ

i
, ρi ] and the parameter set that contains all (ρ1(t), · · · , ρN (t)), where

t ∈ [0, T ] will be denoted by P . For the sake of notational simplicity the time
dependency of the matrices will be omitted (A(ρ) := A(ρ(t))) where it is possible.

Inversion of qLPV Systems

It is not hard to figure out that if some technical conditions for the parameter functions
(persistency) are fulfilled, then Tx Z∗ = V ∗, where V ∗ is the maximal (A ,B)-
invariant subspace contained in KerC . The invertability conditions reduce to

dimIm B = m, V ∗ ∩ Im B = 0.

Let us observe, that if these conditions are fulfilled, one can always choose a
coordinate transform of the form

z = T x, where T =
[
V ∗⊥
Λ

]
, Λ ⊂ (Im B)⊥.

Accordingly, the system will be decomposed to:

ξ̇ = A11(t)ξ + A12(t)η + Bν (A.59)

η̇ = A21(t)ξ + A22(t)η (A.60)

y = C1ξ. (A.61)

It follows that applying a suitable feedback

ν = F2(ρ(t))η + v, (A.62)

such that V ∗ is (A + BF,B) invariant, one can obtain the system:

ξ̇ = A11(t)ξ + Bv (A.63)

y = C1ξ. (A.64)
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By the maximality of V ∗ follows that both ξ and v can be expressed as functions of
y and its derivatives.

With ỹ = Sξ , where

ỹ =
[
y1, · · · , y(γ1)

1 , · · · , yp, · · · , y
(γp)
p

]T

one has

v = B−1S−1( ˙̃y − ṠS−1 ỹ − S Ā11S
−1 ỹ),

i.e.,

η̇ = A22η + A21ξ

ν = F2η + B̄−1S−1( ˙̃y − (ṠS−1 + SA11S
−1)ỹ).

For details, see Szabó et al. (2003).

Detection Filter Design for qLPV Systems

Let us consider to the following LPV system:

ẋ(t) = A(ρ)x(t) + B(ρ)u(t) + L1(ρ)m1(t) + L2(ρ)m2(t)

y(t) = Cx(t). (A.65)

The task of designing a residual generator that is sensitive to the fault associated
with the L1 direction and insensitive to the fault associated with the L2 direction
is called the fundamental problem of residual generation (FPRG). More precisely,
one has to design a residual generator, let us denote its output by r1, such that if
ν1 �= 0 then r1 �= 0 and if ν1 = 0 then limt→∞ ‖r1(t)‖ = 0, i.e., a stability condition
requirement on the residual generator.

It turns out that the fundamental problem of residual generation has a solution if
and only ifS ∗ ∩ L1 = 0, moreover, if the problem has a solution, the dynamics of
the residual generator can be assigned arbitrary.

For LPV systems given in Eq. (A.65) one can design a—not necessarily stable—
residual generator of type

ẇ(t) = N (ρ)w(t) − G(ρ)y(t) + F(ρ)u(t) (A.66)

r(t) = Mw(t) − Hy(t), (A.67)

if for the smallest unobservability subspace ( associated to an LPV system ) S ∗
containing L2 one has S ∗ ∩ L1 = 0, where Li = ∑N

j=0 Im Li, j , i = 1, 2.
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One can compute an acceptable Ĝ(ρ) as follows: let us consider a splitting of
A(ρ) and C according to the projection P : X → X /S ∗ and P⊥, respectively,
and let us consider A12(ρ) := PA(ρ)P⊥ and C12 := CP⊥. Then one has

Ĝ(ρ) =
[−A12(ρ)C (−1)

12
0

]
,

where C (−1)
12 is a pseudoinverse.

In order to achieve that the conditionS ∗ ∩ L1 = 0 become necessary and suffi-
cient the subspaceS ∗ has to be the minimal unobservability codistribution contain-
ingL2. If the components of the parameter function ρ are differential algebraically
independent then this property holds.

The Question of Stability

Recall, that an affine LPV system is said to be quadratically stable if there exists a
matrix P = PT > 0 such that

A(ρ)T P + PA(ρ) < 0 (A.68)

for all the parameters ρ ∈ P.A necessary and sufficient condition for a system to be
quadratically stable is that the condition in Eq. (A.68) holds for all the corner points
of the parameter space, i.e., one can obtain a finite system of LMI’s that has to be
fulfilled for A(ρ) with a suitable positive definite matrix P .

In order to obtain a quadratically stable residual generator one can set Nstable(ρ) =
N (ρ) + G(ρ)M in Eq. (A.66),where N (ρ) = (A(ρ) + Ĝ(ρ)C)|X /S ∗ , andG(ρ) =
G0 + ρ1G1 + · · · ρNGN is determined such that the LMI defined in Eq. (2.91), i.e.,

(N (ρ) + G(ρ)M)T P + P(N (ρ) + G(ρ)M) < 0

holds for suitable G(ρ) and P = PT > 0. By introducing the auxiliary variable
K (ρ) = G(ρ)P, one has to solve the following set of LMIs on the corner points of
the parameter space:

N (ρ)T P + PN (ρ) + MT K (ρ)T + K (ρ)M < 0.

In certain cases one can find KerC ⊂ S ∗. Then one can choose G(ρ) such that
the matrix N (ρ) becomes constant, since the equation G(ρ)CU = UT − A(ρ)U
has a solution for arbitrary T, where U is the insertion map of X /S ∗. The matrix
T is a design parameter that contains the information about the desired poles.

http://dx.doi.org/10.1007/978-3-319-46126-7_2
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Robustness Issues

A fundamental problem ofmodel-based designs is that themodel is not a fidel copy of
reality, hence there are uncertainties that an efficient fault detection has to cope with.
The problem is more accentuated for nonlinear models when the design algorithms
usually contain operations that depend in a highly nonlinear way on the uncertainties,
e.g., the maps that define certain diffeomorphisms in order to realize desired variable
changes.

To achieve robustness in the presence of disturbances and uncertainty,
optimization-basedFDI schemeshavebeenproposedwhere an appropriately selected
performance index is chosen to enhance sensitivity to the faults and simultaneously
attenuate disturbances. The methods that try to enhance the robustness of the detec-
tion filters against perturbations and model uncertainties via eigenstructure assign-
ment applied in the linear context, e.g., for parity space methods (Patton and Chen
1996) or observer-basedmethods (Douglas andSpeyer 1996;Chen andSpeyer 2002),
are not applicable in the general nonlinear setting. In the LPV setting, however, the
robustness issue can be handled in certain circumstances usingH∞ theory, see, e.g.,
Ganguli et al. (2002); Grenaille et al. (2008).

Applying an inversion based design if additional outputs are available such that
the system with “eliminated" unknown inputs is observable (i.e., by eliminating the
inputs through the algebraic relation A(x)ν = B(x)) and it is possible to construct
an observer then one has an inverse (not reduced). In such situations derivatives of
the output are still needed but the stability of the zero dynamics does not play any
role. For this class robustness issues can be handled Edelmayer et al. (2004, 2009).

If the design criteria are met the LPV/FPRG method can be used to obtain fault
detection filters that are robust against parametric variations and noise, see e.g.,
Szászi et al. (2005).

Often the FDI filter design has been considered as a separate task from the design
of feedback controllers. Optimal integrated design is equal to the optimal separate
design of the controller and detection filter if there is no model uncertainty. When
there is uncertainty an integrated approach ismore favorable for the trade-off between
performance and robustness, for the linear case see, e.g., Stoustrup and Grimble
(1996), Stoustrup and Niemann (2002) and Weng et al. (2008) for the LPV case,
respectively.
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B.1 Structured Uncertainty

Structured uncertainties arise when the plant is subject to multiple perturbations.
Multiple perturbations occur when the plant contains a number of uncertain parame-
ters or when the plant contains multiple unstructured uncertainties. In practice many
systems involve parametric uncertainties that are real. In this case real parametric and
complex uncertainties should be divided, see Fig.B.1. The mixed real and complex
μ involve three types of blocks: repeated real scalar, repeated complex scalar and
full blocks. Sr represents the number of repeated real scalar blocks, Sc the number
of repeated complex scalar blocks and F the number of full blocks. They satisfy the
following:

∑Sr
i=1 ki + ∑Sc

j=1 r j + ∑F
k=1 mk = n. The i th repeated real scalar block

is ki × ki , the j th repeated complex scalar block is r j × r j and the kth full block is
mk × mk . The admissible set of uncertainties Δ ⊂ C

nxn is defined as

∇ = {diag (Φ1 Ik1 , . . . , ΦSr IkSr , δ1 Ir1 , . . . , δSc IrSc ,Δ1, . . . , ΔF
) :

Φi ∈ R, δ j ∈ C, δk ∈ C
mk×mk }. (B.1)

Definition B.1 (The definition of μ) For a matrix M ∈ C
n×n the μΔ̃ function is then

defined as:

μ∇(M) := 1

min {σ̄ (Δ) : Δ ∈ ∇, det(I − MΔ) = 0} (B.2)

unless no Δ ∈ ∇ makes I − MΔ singular, in which case μ∇(M) = 0, see Doyle
(1985).

Thus 1/μ∇(M) is the “size” of the smallest perturbationΔ, measured by its max-
imum singular value, which makes det(I − MΔ) = 0. Directly from the definition
of μ we can state that the lower and the upper bounds of μ are the following:

© Springer International Publishing Switzerland 2017
P. Gáspár et al., Robust Control Design for Active Driver Assistance Systems,
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Fig. B.1 The feedback configuration with parametric and unstructured uncertainties

ρ(M) ≤ μ∇(M) ≤ σ̄ (M). (B.3)

However, these bounds are not sufficient for control design, because the gap between
ρ and σ̄ can be arbitrarily large. They are refined by considering transformations on
M that do not affect μ∇(M), but do affect ρ and σ̄ . To do this, define the following
three subsets:

Q = {
Δ ∈ Δ : Φi ∈ [−1 1

]
, |δi | = 1,ΔiΔ

∗
i = Imi

}
, (B.4)

D =
{

diag
[
D̃1, . . . , D̃sr , D1, . . . , Dsc, d1 Im1, . . . , dF−1 ImF−1, ImF

]
:

D̃i ∈ C
ki×ki , D̃i = D̃∗

i > 0, Di ∈ C
ri×ri , Di D∗

i > 0, d j ∈ R, d j > 0

}
,

(B.5)

G =
{
diag

[
G̃1, . . . , G̃sr , 0, . . . , 0, 0

]
: Gi = G∗

i ∈ C
ki×ki

}
. (B.6)

Unfortunately, the lower bound can havemultiple localmaxima that are not global.
Thus local search cannot guarantee to obtainμ. The upper bound can be reformulated
as a convex optimization problem, so the global minimum can be found. Unfortu-
nately, the upper bound is not always equal to μ:

μΔ(M) ≤ inf
D∈D

σ̄ (DMD−1). (B.7)

A better upper bound can be obtained for the mixed μ by exploiting the phase
information of the real parameters in the following way.

Theorem B.1 Let M ∈ C
n×n and Δ ∈ Δ. Then

μΔ(M) ≤ inf
D∈D,G∈G

min
β

diag
[
β : M∗DM + j (GM − M∗G) − β2D ≤ 0

]
. (B.8)
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See Fan et al. (1991); Young and Doyle (1996).

The scaling G allows one to exploit the phase information about the real parame-
ters so that a better upper bound can be obtained. An alternative characterization of
the upper bound that uses a different scaling strategy (D − G − K scheme) is given
in the following result.

Theorem B.2 Given β > 0, there exist D ∈ D and G ∈ G such that

M∗DM + j (GM − M∗G) − β2D ≤ 0

if and only if there are D1 ∈ D and G1 ∈ G such that

σ̄

[
(
D1MD−1

1

β
− jG1)(I + G2

1)
− 1

2 ≤ 1

]
. (B.9)

See Zhou et al. (1996).

Theorem B.3 (Robust stability) The loop is well posed and internally stable for all
Δ(.) ∈ ∇ with ‖Δ‖∞ < 1

β
and β > 0 if and only if

sup
ω∈�

μ∇(M( jω)) ≤ β. (B.10)

Hence the peak value on the μ plot of the frequency response determines the size of
perturbations. Consequently, the loop is robustly stable. See Zhou et al. (1996).

The robust performance problem can be converted into an equivalent robust sta-
bility problem by appending an uncertainty block to the system. This block connects
the performance output with the disturbance input as shown in Fig.B.2. The system
in Fig.B.1 meets the performance robustness objectives if and only if the system in
Fig.B.2 is robustly stable. The system is stable for all perturbations of the following
kind: Δp(s) = diag [Δ(s),Δo(s)] such that ‖Δp(s)‖∞ ≤ 1.

Theorem B.4 (Robust performance, see Zhou et al. (1996)) The loop is well posed
and internally stable and ‖Fu(GP ,Δ)‖∞ ≤ β for allΔ(s) ∈ M(Δ)with ‖Δ‖∞ < 1

β

and β > 1 if and only if

Fig. B.2 Structured
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sup
ω∈�

μΔP(MP( jω)) ≤ β. (B.11)

Supposewehave a stabilizing controller K , which is absorbed in the feedback loop
to achieve the closed-loop system, F�(P, K ). The generalized closed-loop system is
a 2 × 2 block-structured transfer functionmatrixMP between

[
dδp d

]T
and

[
eδp z

]T
,

see on the right-hand side of Fig.B.2:

[
eδp

z

]
=

[
MP11 MP12

MP21 MP22

] [
dδp

d

]
(B.12)

From the above results a nonconservative, necessary and sufficient condition for
robust performance is derived by Doyle (1984).

Theorem B.5 (General analysis theorem)

1. Nominal performance is satisfied if and only if σ̄ (MP22( jω) < 1, ∀ω.
2. Stability is robust if and only if σ̄ (MP11( jω) < 1, ∀ω.
3. Performance is robust if and only if μ(MP( jω)) < 1, ∀ω.

B.2 Control Design Based on NonlinearH∞ Methods

The Problem of the NonlinearH∞ Control

The nonlinearH∞ control is the extension of theH∞ methods to nonlinear systems.
In the nonlinearH∞ synthesis, the objective is to find a possible nonlinear controller
such that theL2 gain of the closed-loop system from the disturbance input w to the
performance output z is minimized and the closed-loop is internally stable. An upper
bound on theL2 gain from w to z can only be found by using a positive number γ .
The bounded real lemma has a corresponding nonlinear version, too.

Lemma B.1 (Bounded real lemma) Consider the time-invariant nonlinear system:

ẋ = f (x) + g(x)w, x(0) = 0, (B.13)

z = h(x), (B.14)

where f (x) is locally Lipschitz and g(x), h(x) are continuous overRn. The functions
f and h vanish at the origin, i.e., f (0) = 0 and h(0) = 0. Let γ be a positive number
and suppose there is a continuously differentiable and positive semidefinite function
V (x) that satisfies the following partial differential inequality:

H (V, f, g, h, γ ) = ∂V

∂x
f (x) + 1

2γ 2

∂V

∂x
g(x)gT (x)(

∂V

∂x
)T + 1

2
hT (x)h(x) ≤ 0

(B.15)
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for all x ∈ Rn. Then, for each x0 ∈ Rn the L2 gain of the system is less than or
equal to γ . See Khalil (2000).

Inequality (B.15) is known as the Hamilton–Jacobi inequality (H J I ), or the
Hamilton–Jacobi equation (H J E) when (≤) is replaced by (=). The search for
a function V (x) that satisfies (B.15) essentially requires the solution of a partial
differential equation, which might be difficult to solve. Much of the research in
nonlinear H∞ controller synthesis is focused on how to solve inequality (B.15).
This is a nontrivial task, and the problem increases dramatically with the state space
dimension.

The analogy with theH∞ synthesis for LTI systems becomes obvious comparing
(B.15) with the real algebraic Riccati equation: consider a linear time invariant sys-
tem ẋ = Ax + Bw and z = Cx and suppose there is a positive semidefinite solution
P to the Riccati equation PA + APT + 1

γ 2 PBBT P + CTC = 0 for some γ > 0.

Taking V (x) = 1
2 x

T Px and using the expression ∂V
∂x = xT P , it can be seen that

V (x) satisfies the H J E : H (V, Ax, B,Cx, γ ) = xT P Ax + 1
2γ 2 xT PBT BPx +

1
2 x

TCTCx = 0. Hence, the system is finite-gain L2 gain stable and its L2 gain
is less than or equal to γ .

In this chapter the nonlinear H∞ control problem in state space for a class of
nonlinear systems is examined following the results of Lu and Doyle, see Lu and
Doyle, see Lu and Doyle (1993, 1994, 1995, 1996, 1997, 2002).

Consider the nonlinear plant P with two sets of inputs: the exogenous disturbance
input d and the control input u, and two sets of outputs: the measured output y and
the regulated output z (Fig. 3.1). K is the controller to be designed. Both P and K
are time-invariant and can be realized as affine state space equations.

The state space representation (SSR) of the plant is as follows:

ẋ = f (x) + g1(x)d + g2(x)u, (B.16)

z = h1(x) + k11(x)d + k12(x)u, (B.17)

y = h2(x) + k21(x)d + k22(x)u, (B.18)

where f, gi , hi , ki j ∈ C 2, h1(0) = 0, h2(0) = 0.
The SSR of the controller is as follows:

ẋk = a(xk) + b(xk)y, (B.19)

u = c(xk) + d(xk)y, (B.20)

with a, b, c, d ∈ C 2 and a(0) = 0, c(0) = 0. The initial states for both plant and con-
troller are x(0) = 0 and xk(0) = 0. The closed-loop system is denoted as nonlinear
operator Ω(P, K ) which represents the input/output relation z = Ω(P, K )d.

Problem B.1 (The nonlinearH∞ control problem) The problem setup of the design
of aH∞ controller is the following. Let us denote Ω(P, K ) the fraction representa-
tion of operator G on operator K . Find an output feedback controller K for system

http://dx.doi.org/10.1007/978-3-319-46126-7_3
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P , if any exist, such that the closed-loop system Ω(P, K ) is asymptotically stable
with w = 0 and has L2-gain ≤ 1, that is

T∫

0

(‖d(t)‖2 − ‖z(t)‖2)dt ≥ 0, (B.21)

for all T ∈ R
+.

The following assumptions are made:

1.
[
h1(x), f (x)

]
and

[
h2(x), f (x)

]
are zero-detectable.

2. kT12(x)
[
h1(x) k12(x)

] = [
0 I

]
.

3.

[
g1(x)
k21(x)

]
kT21(x) =

[
0
I

]
.

4. k11(x) = 0, k22(x) = 0.

It is known that a large class of nonlinear systems can be simplified to satisfy the
above assumption when the H∞ control problem is considered, see Safonov and
Limebeer (1988).

The Solution of the NonlinearH∞ Control

The solvability of the output feedbackH∞ control problem is basedon twoquantities,
which are linked to the full information (FI) and the full control (FC) problems by
using the similar idea to the linear case.

In the full information (FI) problem the plant has the following form:

ẋ = f (x) + g1(x)d + g2(x)u, (B.22)

z = h1(x) + k12(x)u, (B.23)

y =
[
x
0

]
+

[
0
I

]
d (B.24)

and the controller is provided with information from the state and the disturbance,
i.e., y = [

x d
]T
. The FIH∞ control problem was first explicitly introduced by Van

der Schaft Van der Schaft der Schaft (1993). The solution to the FI H∞ control
problem is related to the following HJI:

HF I (V, x) = ∂V

∂x
(x) f (x) + 1

4

∂V

∂x
(x)(g1(x)g

T
1 (x)−

−g2(x)g
T
2 (x))

∂V T

∂x
(x) + hT

1 (x)h1(x) ≤ 0 (B.25)
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Theorem B.6 (The solvability of the FI problem)HF I (V, x) ≤ 0 has a C3 solution
V (x) with V (0) = 0 if and only if there is F(x) such that

∂V

∂x
(x)( f (x) + g2(x)F(x)) + 1

4

∂V

∂x
(x)(g1(x)g

T
1 (x)

∂V T

∂x
(x)+

(h1(x) + k12(x)F(x))T (h1(x) + k12(x)F(x)) ≤ 0 (B.26)

Moreover, if V (x) satisfies HF I (V, x) ≤ 0 with V (0) = 0, then F(x) can be taken
as F0(x) = − 1

2g
T
2

∂V T

∂x (x). See der Schaft (1993); Lu and Doyle (1995).

Theorem B.7 (The solution of the FI problem) Suppose there exists C3 positive
definite function V (x) ≥ 0 such that HF I (V, x) ≤ 0 with V (0) = 0. Then the H∞
control problem for FI is solvable. Moreover, such state feedback FIH∞ controller
is given by u = − 1

2g
T
2

∂V T

∂x (x).

In the full control (FC) problem the plant has the following form:

ẋ = f (x) + g1(x)d + [
I 0

]
u, (B.27)

z = h1(x) + [
0 I

]
u, (B.28)

y = h2(x) + k21(x)d (B.29)

The solution to the FCH∞ control problem is related to the following HJI:

HFC(U, x) = ∂U

∂x
(x) f (x) + 1

4

∂U

∂x
(x)(g1(x)g

T
1 (x))

∂UT

∂x
(x)+

+hT
1 (x)h1(x) − hT

2 (x)h2(x) ≤ 0 (B.30)

Theorem B.8 (The solvability of the FC problem) HFC(U, x) ≤ 0 has a C3 solu-
tion U (x) with U (0) = 0 if and only if there is L(x) such that

∂U

∂x
(x)( f (x) + L(x)h2(x)) + hT

1 (x)h1(x)+
1

4

∂U

∂x
(x)(g1(x) + L(x)k21(x))(g1(x) + L(x)k21(x))

T ∂UT

∂x
(x) ≤ 0

(B.31)

Moreover, if U (x) satisfies HFC(U, x) ≤ 0 with U (0) = 0, then L(x) can be taken
as ∂U

∂x (x)L0(x) = −2hT
2 (x). See Lu and Doyle (1995).

Theorem B.9 (The solution of the FC problem) Suppose there exists C3 positive
definite function U (x) ≥ 0 such that HFC(U, x) ≤ 0 with U (0) = 0. If

∂U

∂x
(x)L0(x) = −2hT

2 (x)
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holds for some L0(x), then the H∞ control problem for FC is solvable. Moreover,

such a controller is given by output injection u =
[
L0(x)
0

]
y. See Lu and Doyle

(1994).

Next, the output feedback H∞ control problem is considered.

Theorem B.10 (The solvability of the nonlinearH∞ problem) Consider G in form
(B.16) and the quantities for the FI and the FC problems in forms (B.25) and (B.30).
If there is some ψ(x) ≥ 0 with ψ(0) = 0 such that

• There exists a positive definite V (x) which solves the H J E of the F I problem:

HF I (V, x) + ψ(x) = 0 (B.32)

with V (0) = 0.
• There exists a positive definite U (x) which solves the H J I of the FC problem:

HFC(U, x) + ψ(x) ≤ 0 (B.33)

with U (0) = 0, moreover,HFC(U, x) + ψ(x) has nonsingular Hessian matrix at
0.

• U (x) − V (x) ≥ 0 is positive definite.

Moreover, the following equation has a solution L0(x):

(
∂U

∂x
(x) − ∂V

∂x
(x)

)
L0(x) = −2hT

2 (x). (B.34)

Then the output feedbackH∞ control problem is (locally) solvable. The form of the
controller is the following:

ẋk = fK (xk) + L0(xk)h2(xk) − L0(xk)y, (B.35)

u = F0(xk), (B.36)

where

fK (xk) = f (xk) + g1(xk)F1(xk) + g2(xk)F0(xk), (B.37)

F0(x) = −1

2
gT2 (x)

∂V T

∂x
(x), (B.38)

F1(x) = 1

2
gT1 (x)

∂V T

∂x
(x). (B.39)

See Lu and Doyle (1993).
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Theorem B.11 (Solution of the nonlinearH∞ problem) Consider P satisfying the
condition in Theorem B.10. If an addition L1(x) satisfies

(
∂U

∂x
(x) − ∂V

∂x

)
L1(x) = −2hT

1 (x), (B.40)

then the controller u = Ω(M, Q)y with M given by

ẋk = fK (xk) − L0(xk)y + (g2(xk) + L1(xk)u0, (B.41)

u = F0(xk) + u0, (B.42)

y0 = h2(xk) − y, (B.43)

for all Q also (locally) solves the output feedbackH∞ control problem. See Lu and
Doyle (1994).

An equivalent version of the nonlinear H∞ problem was obtained by Isidori
(1992). Note thatH∞ controllers have separation structures. The separation principle
for the H∞ performance in nonlinear systems was confirmed by Ball et al. (1993).
A more complete treatment of the nonlinear extensions of the H∞ synthesis can be
found in Helton and James (1999).

From Nonlinear H∞ to Gain Scheduling

Since the solution of Hamilton–Jacobi inequality (HJI) (B.25) leads to highly non-
linear partial differential equations in ∂V

∂x , it is almost impossible to solve in practice.
Moreover, it would be desirable to have a solution in closed form in order to imple-
ment the controller. Thus, it would be convenient to obtain conditions that lead to
suboptimally satisfactory but computationally reliable solutions.

The first important step to obtain a desired controller synthesis methodology is to
convert HJI into a form which is linear and convex in ∂V

∂x . Using a Schur complement
argument the following inequality is equivalent with (B.15):

[
∂V
∂x f (x) + hT (x)h(x) 1

2
∂V
∂x g(x)

1
2g

T (x) ∂V T

∂x −γ 2 I

]
≤ 0, (B.44)

Inspired by the success of quadratic type functions in the linear context, it seems
to be reasonable to consider the quasi-linear model structure. Write the nonlinear
system as:

ẋ = A(x)x + B(x)w, x(0) = 0, (B.45)

z = C(x)x,
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where A(x), B(x) and C(x) are reminiscents of the LTI system matrices. Note that
this form is not unique since using E(x) = M(x)(xT x I − xxT ) one has A(x)x =
(A(x) + E(x))x .

If there is a storage function V (x) > 0 such that ∂V
∂x = 2x P(x) for some positive

definite matrix function P(x) then the HJI (B.25) can be written as

[
AT (x)P(x) + P(x)A(x) P(x)B(x)

BT (x)P(x) −γ I

]
≤ 0. (B.46)

It is similar to the LMI conditions of the LTI setting. It cannot be ensured that the
storage function is positive. The other problem is that since the optimal state is not
known in advance one cannot obtain a closed form solution. This method is closely
related to the state-dependent Riccati equation (SDRE) method, see Cloutier (1997);
Shamma and Cloutier (2003). In order to achieve a closed form solution one must
impose additional restrictions on the model set and the form of the storage function.

Next, the quasi-linear model class (B.45) is selected in such a way that the state
matrices depend on the measured quantities, e.g., A(x) = A(y). In this structure the
form of the storage function is selected as ∂V

∂x = xT P(t)x . This selection leads to the
gain scheduling and the LPV methods.

The Gain Scheduling Strategy

In this chapter, we introduce gain scheduling, a method that can extend the validity
of the linearization approach to a range of operating points. Usually the change of the
system dynamics between operating points is known. It might be possible to model
the system in such a way that the operating points are parameterized by one or more
variables, i.e., by scheduling variables. Thus, the nonlinear system dynamics can be
approximated by a family of linearized model at several equilibrium points. Then
controllers are designed at each point, and finally the family of linear controllers are
implemented as a single controller. The scheduling variables are monitored in order
that the controller is able to adapt to the current operating conditions. This means
that the controller must be able to determine the controller parameters via the gain
schedule from the command signal and the measured output.

The classical approach to gain scheduling consists of the following steps:

1. The nonlinear system is approximated using standard linearization locally in a set
of operating (equilibrium) points, thus a family of linear models is constructed.

2. A controller synthesis is performed for the local models to achieve the speci-
fied performance such that a family of linear controllers are obtained. This step
involves standard linear system controller synthesis where the closed-loop spec-
ifications are expressed in the same way as in the standard controller synthesis
for linear systems.
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3. The nonlinear controller is formulated. The closed-loop system under the gain-
scheduled controller has the same equilibrium point as the closed-loop system
under the fixed gain controller. The controller parameters are interpolated at inter-
mediate operating points. In this step the local controllers are mapped together to
obtain a nonlinear controller such that the entire operating range is covered. This
interpolation process is usually ad hoc in nature and relies on physical insight.

LPV technique provides a superset of the gain scheduling approach in adding stability
guarantee of the design by a suitable application of the linear robust control design
paradigm.

B.3 An LFT Based qLPV Controller Design

In what follows the control design problem is set in the framework presented in
Scherer (2001), that strongly exploits the available LMI techniques. As opposed to
the gain scheduling technique these approaches provide a design algorithm that starts
from an analysis equation that guarantees a certain (quadratic) performance level
and the designed controller is supposed to fulfill the robust stability and performance
requirements.

Amain characteristic of theLPVframework is that the design is performed in time-
domain based on a dissipativity approach applied to a P − K − Δ structure, where P
and K are the LTI part of the (generalized) plant and of the controller, respectively,
while Δ = Δc ⊕ Δu . The scheduling variables of the plant and (possibly) of the
controller are contained in Δc while the uncertainties are placed in Δu .

The open loop generalized plant is defined as:

⎛
⎜⎜⎝

ẋ(t)
zu(t)
z p(t)
y(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A Bu Bp B
Cu Duu Dup Eu

Cp Dpu Dpp Ep

C Fu Fp 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x(t)
wu(t)
wp(t)
u(t)

⎞
⎟⎟⎠

(
wu(t)
zu(t)

)
∈ S (Δ(t)) ⊂ R

mu+ku (B.47)

with the time-varying parameters satisfying Δ(t) ∈ ∇. It is assumed that S (Δ)

admits the explicit descriptionS (Δ) = Im(S(Δ))with a continuousmatrix function
S(Δ) of full column rank. Furthermore, we suppose that (B.47) is well posed, and

that there exists a nominal value Δ0 ∈ ∇ for which Im

(
0
Iku

)
∈ S (Δ0), see Scherer

(2001).
An output-feedback LPV controller for (B.47) is described as
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⎛
⎝ẋc(t)
u(t)
zc(t)

⎞
⎠ =

⎛
⎝ Ac Bc1 Bc2

Cc1 Dc11 Dc12

Cc2 Dc21 Dc22

⎞
⎠

⎛
⎝ xc(t)

y(t)
wc(t)

⎞
⎠

(
wc(t)
zc(t)

)
∈Sc(Δ(t)) ⊂ R

mc+kc (B.48)

and consists of an LTI system in which the online measured parameter Δ(t) enters
via an implicit constraint imposed bySc(Δ). HereSc(Δ) is a subspace that depends

continuously on Δ ∈ ∇ and that satisfies Im

(
0
Ikc

)
∈ Sc(Δ0).

The controller should fulfill the quadratic performance index:

∫ ∞

0

[
w

z

]T [
Qp Sp

STp Rp

] [
w

z

]
≤ −ε‖w‖2, (B.49)

e.g., for an L2–gain specification one has Qp = −γ 2 I, Sp = 0 and Rp = I . For
these problems the performance indexγ is an indicator on the quality of the controller.

Theorem B.12 (LPV analysis) There exist a controller (B.48) such that closed-
loop system is well-posed and stable if and only if there exist X,Y , multipliers

P =
(
Q S
ST R

)
and P̃ =

(
Q̃ S̃
S̃T R̃

)
with P > 0 onS (Δ) and P̃ < 0 onS (Δ)⊥ for

all Δ ∈ ∇ that satisfy the matrix inequalities

(
X I
I Y

)
≥ 0, (B.50)

Ψ T

⎛
⎜⎜⎜⎜⎜⎜⎝

∗
∗
∗
∗
∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎜⎝

0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q S 0 0
0 0 ST R 0 0
0 0 0 0 Qp Sp

0 0 0 0 STp Rp

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0
A Bu Bp

0 I 0
Cu Duu Dup

0 0 I
Cp Dpu Dpp

⎞
⎟⎟⎟⎟⎟⎟⎠

Ψ < 0, (B.51)

ΦT

⎛
⎜⎜⎜⎜⎜⎜⎝

∗
∗
∗
∗
∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎠

T
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 Y 0 0 0 0
Y 0 0 0 0 0
0 0 Q̃ S̃ 0 0
0 0 S̃T R̃ 0 0
0 0 0 0 Q̃ p S̃p

0 0 0 0 S̃p
T
R̃p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

−AT −CT
u −CT

p

I 0 0
−BT

u −DT
uu −DT

pu

0 I 0
−BT

p −DT
up −DT

pp

0 0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

Φ > 0, (B.52)

where Φ = Ker
(
BT ET

u ET
p

)
and Ψ = Ker

(
C Fu Fp

)
.

According to our experiences the design can be facilitated considerably by adding
to the analysis LMIs (B.50), (B.51), (B.52) conditions X < κx I and Y > κy I , where
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κx , κy > 0 are tunable parameters. In the H∞ setting the value of γ can be influenced
by these parameters.

Controller synthesis starts with the solution of the analysis LMIs of TheoremB.12
which usually involves a relaxation step.

Relaxation

LMI conditions on the scaling matrices P and P̃ must hold on an infinite set. In
order to make the problem tractable a so-called relaxation technique, i.e., sufficient
conditions that must hold on a finite set, is needed. This might lead, however, to a
conservative design, hence in general we want to reduce the relaxation “gap”.

In this paper a convex relaxation is used in which the relevant LMIs are imposed
at the vertices of the polytope defined by the scheduling variables. The price of this
relaxation is that restriction of the multipliers P and P̃ of Theorem B.12 to those
that have the blocks Q < 0 and R̃ > 0 is needed.

The choice of a proper relaxation scheme is the cornerstone of a successful control
design. For the role of the choice of the convex-hull and other related relaxations
schemes that can also be applied, see Szabó et al. (2010).

Extension

Using the results of the analysis stage one can obtain from X and Y the Lyapunov
matrix Xe of the closed-loop system:

Xe =
(
X Z
Z∗ [Z∗(X − Y−1)Z ]−1

)
, (B.53)

where ImZ = Im(X − Y−1).
In general, the multiplier P , corresponding to the scheduling variables, can be

obtained from P and P̃ as follows:

Pe :=
(

P UT
(UT )T T T [UT (P − P̃−1)U ]−1T

)
.

U is an orthogonal matrix such that ImU = ImP − P̃−1 and T is a suitable nonsin-
gular matrix.

For the convex relaxation chosen in this paper one has

Pe :=
(

P T
T T T T NT

)
, (B.54)
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with N = (P − P̃−1)−1 and T = (T1 T2) having the blocks T1 = TW, T2 = T W̃ ,

where W =
(
I
0

)
, W̃ =

(
0
I

)
. These blocks are chosen to fulfill the conditions

T T
1 (N − WQ−1WT )T1 < 0, T T

2 (N − W̃ R−1W̃ T )T2 > 0, (B.55)

see Scherer (2000).

The LTI Part of the Controller

The LTI part of the LPV controller can be obtained by solving the quadratic matrix
inequality:

(
Im

C + AX B

)T

M

(
Im

C + AX B

)
< 0, (B.56)

where C ∈ R
n×m , A ∈ R

n×k , B ∈ R
l×m are matrices that depend on the system

matrices of the generalized plant M . The unknown is X =
(
Ac Bc

Cc Dc

)
∈ R

k×l con-

tains the state matrices of the controller. The multiplier M contains Xe, Pe and the

performance multiplier Pp =
(−γ I 0

0 I

)
, for details see, e.g., Scherer (2001).

In order to obtain the controller one has to solve the synthesis equation (B.56).
It turns out that finding an X that satisfies (B.56) boils down to obtain a maximal
negative graph subspace of a symmetric matrixMs , i.e., find a Z such that

(
Iq
Z

)∗
Ms

(
Iq
Z

)
< 0, (B.57)

where Ms ∈ F
(q+p)×(q+p) with inertia in(Ps) = (q, 0, p).

The existence of a solution for (B.57) has been proved by a regularization argu-
ment and involves the inverse of a perturbed nonsingular matrix.While this approach
is satisfactory for the theory, in practice it is not reliable for numerical computa-
tions. A numerically reliable algorithm and a parametrization of the solutions of this
inequality were given by the authors in Szabó et al. (2012):

Proposition B.1 Let Ms be a symmetric matrix such that there is a nonsingular
matrix M for whichMs = M−T JM−1, where J = diag(−Im, In). Then all solutions
of (B.57) are given by

Z = TM(K ) (B.58)

for K is an arbitrary contraction (‖K‖ < 1) in dom(TM).
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For a matrix M partitioned as

M =
(
M11 M12

M21 M22

)
(B.59)

the Möbius transformation TM is defined by the equation

TM(L) = (M21 + M22L)(M11 + M12L)−1 (B.60)

for L ∈ dom(TM) = {
L : ∃(M11 + M12L)−1

}
.

Thus, the parametrization relies on describing dom(TM).
This can be done by using the generalized singular value decomposition (GSVD),

of M11 and M12, i.e.,

M11 = QΣ1U
T , M12 = QΣ2V

T ,

where Σ1 and Σ2 has the form:

Σ1 = C, Σ2 = (
S 0

)
, if n > m;

Σ1 = C, Σ2 = S, if n = m;
Σ1 =

(
C 0
0 I

)
, Σ2 =

(
S
0

)
, if n < m,

where the matrices Σ1 and Σ2 have the following form

C =
⎛
⎝I 0 0
0 C̄ 0
0 0 0

⎞
⎠ , S =

⎛
⎝0 0 0
0 S̄ 0
0 0 I

⎞
⎠ .

Partition X̄ = V ∗XU as

X̄ =
(
X̃
X̂

)
, (n > m); X̄ = X̃ , (n = m); X̄ = (

X̃ X̂
)
, (n < m).

With these notations one has:

Proposition B.2 The set XM11,M12 = {X | M11 + M12X nonsingular } is given by

XM11,M12 = {X | V X̄UT } (B.61)

such that

(
X̃22 X̃23

X̃32 X̃33

)
= N −

(
C̄ S̄−1 0
0 0

)
, N nonsingular. (B.62)
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XM11,M12 has elements with arbitrarily small, and also elements with arbitrarily
big norm, i.e., dom(TM) �= ∅.

Observe that considering X̂ = 0 if necessary, for sufficiently small κ the matrix
X̄(κ), hence X (κ), is a contraction. This choice is robust in the sense that it provides
a solution independently of the actual values of Σ1 and Σ2.

The matrices T1, T2 that fulfill (B.55) can also be chosen by using the result of
Proposition B.2.

Choice of the Scheduling Variables

The procedure to construct the scheduling variables in the general case is described
in Scherer (2001). Under the conditions adopted in this paper there is a much simpler
construction that are more favorable for implementation.

By permuting the blocks of Pe one has the partitioning

(
Qe Se
STe Re

)
with Qe < 0

and Re > 0. The scheduling block Δc of the controller can be obtained from the
condition

⎛
⎜⎜⎝

U11 U12 (W11 + Δ)T WT
21

U21 U22 WT
12 (W22 + Δc)

T

W11 + Δ W12 V11 V12

W21 W22 + Δc V21 V22

⎞
⎟⎟⎠ > 0,

where

U = Re − STe Q
−1
e Se, V = −Q−1

e , W = Q−1
e Se,

as

Δc = −W22 + (
W21 V12

) ( U11 WT
11 + ΔT

W11 + Δ V11

)−1 (
U12

W12

)
,

for additional details see Scherer (2000).
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