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PREFACE

This textbook is intended for use in an advanced undergraduate or first-
year graduate-level course that introduces state-space methods for the
analysis and design of linear control systems. It is also intended to serve
practicing engineers and researchers seeking either an introduction to or
a reference source for this material. This book grew out of separate lec-
ture notes for courses in mechanical and electrical engineering at Ohio
University. The only assumed prerequisites are undergraduate courses in
linear signals and systems and control systems. Beyond the traditional
undergraduate mathematics preparation, including calculus, differential
equations, and basic matrix computations, a prior or concurrent course
in linear algebra is beneficial but not essential.

This book strives to provide both a rigorously established foundation
to prepare students for advanced study in systems and control theory and
a comprehensive overview, with an emphasis on practical aspects, for
graduate students specializing in other areas. The reader will find rigor-
ous mathematical treatment of the fundamental concepts and theoretical
results that are illustrated through an ample supply of academic examples.
In addition, to reflect the complexity of real-world applications, a major
theme of this book is the inclusion of continuing examples and exercises.
Here, practical problems are introduced in the first chapter and revisited in
subsequent chapters. The hope is that the student will find it easier to apply
new concepts to familiar systems. To support the nontrivial computations
associated with these problems, the book provides a chapter-by-chapter

ix



x PREFACE

tutorial on the use of the popular software package MATLAB and the associ-
ated Control Systems Toolbox for computer-aided control system analysis
and design. The salient features of MATLAB are illustrated in each chapter
through a continuing MATLAB example and a pair of continuing examples.

This textbook consists of nine chapters and three appendices organized
as follows. Chapter 1 introduces the state-space representation for lin-
ear time-invariant systems. Chapter 2 is concerned primarily with the
state equation solution and connections with fundamental linear systems
concepts along with several other basic results to be used in subsequent
chapters. Chapters 3 and 4 present thorough introductions to the impor-
tant topics of controllability and observability, which reveal the power of
state-space methods: The complex behavior of dynamic systems can be
characterized by algebraic relationships derived from the state-space sys-
tem description. Chapter 5 addresses the concept of minimality associated
with state-space realizations of linear time-invariant systems. Chapter 6
deals with system stability from both internal and external (input-output)
viewpoints and relationships between them. Chapter 7 presents strate-
gies for dynamic response shaping and introduces state feedback control
laws. Chapter 8 presents asymptotic observers and dynamic observer-
based compensators. Chapter 9 gives an introduction to optimal control,
focusing on the linear quadratic regulator. Appendix A provides a sum-
mary of basic matrix computations. Appendix B provides an overview of
basic concepts from linear algebra used throughout the book. Appendix
C provides the complete MATLAB program for the Continuing MATLAB

Example.
Each chapter concludes with a set of exercises intended to aid

the student in his or her quest for mastery of the subject matter.
Exercises will be grouped into four categories: Numerical Exercises,
Analytical Exercises, Continuing MATLAB Exercises, and Continuing
Exercises. Numerical Exercises are intended to be straightforward
problems involving numeric data that reinforce important computations.
Solutions should be based on hand calculations, although students are
strongly encouraged to use MATLAB to check their results. Analytical
Exercises are intended to require nontrivial derivations or proofs of facts
either asserted without proof in the chapter or extensions thereof. These
exercises are by nature more challenging than the Numerical Exercises.
Continuing MATLAB Exercises will revisit the state equations introduced
in Chapter 1. Students will be called on to develop MATLAB m-files
incrementally for each exercise that implement computations associated
with topics in each chapter. Continuing Exercises are also cumulative
and are patterned after the Continuing Examples introduced in Chapter
1. These exercises are based on physical systems, so the initial task will
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be to derive linear state equation representations from the given physical
descriptions. The use of MATLAB also will be required over the course of
working these exercises, and the experience gained from the Continuing
MATLAB Exercises will come in handy .



1

INTRODUCTION

This chapter introduces the state-space representation for linear time-
invariant systems. We begin with a brief overview of the origins of
state-space methods to provide a context for the focus of this book. Fol-
lowing that, we define the state equation format and provide examples to
show how state equations can be derived from physical system descrip-
tions and from transfer-function representations. In addition, we show
how linear state equations arise from the linearization of a nonlinear state
equation about a nominal trajectory or equilibrium condition.

This chapter also initiates our use of the MATLAB software package
for computer-aided analysis and design of linear state-space control sys-
tems. Beginning here and continuing throughout the book, features of
MATLAB and the accompanying Control Systems Toolbox that support each
chapter’s subject matter will be presented and illustrated using a Continu-
ing MATLAB Example. In addition, we introduce two Continuing Examples
that we also will revisit in subsequent chapters.

1.1 HISTORICAL PERSPECTIVE AND SCOPE

Any scholarly account of the history of control engineering would have
to span several millennia because there are many examples throughout
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2 INTRODUCTION

ancient history, the industrial revolution, and into the early twentieth
century of ingeniously designed systems that employed feedback mech-
anisms in various forms. Ancient water clocks, south-pointing chariots,
Watt’s flyball governor for steam engine speed regulation, and mecha-
nisms for ship steering, gun pointing, and vacuum tube amplifier stabiliza-
tion are but a few. Here we are content to survey important developments
in the theory and practice of control engineering since the mid-1900s in
order to provide some perspective for the material that is the focus of this
book in relation to topics covered in most undergraduate controls courses
and in more advanced graduate-level courses.

In the so-called classical control era of the 1940s and 1950s, systems
were represented in the frequency domain by transfer functions. In addi-
tion, performance and robustness specifications were either cast directly in
or translated into the frequency domain. For example, transient response
specifications were converted into desired closed-loop pole locations or
desired open-loop and/or closed-loop frequency-response characteristics.
Analysis techniques involving Evans root locus plots, Bode plots, Nyquist
plots, and Nichol’s charts were limited primarily to single-input, single-
output systems, and compensation schemes were fairly simple, e.g., a
single feedback loop with cascade compensation. Moreover, the design
process was iterative, involving an initial design based on various sim-
plifying assumptions followed by parameter tuning on a trial-and-error
basis. Ultimately, the final design was not guaranteed to be optimal in
any sense.

The 1960s and 1970s witnessed a fundamental paradigm shift from the
frequency domain to the time domain. Systems were represented in the
time domain by a type of differential equation called a state equation.
Performance and robustness specifications also were specified in the time
domain, often in the form of a quadratic performance index. Key advan-
tages of the state-space approach were that a time-domain formulation
exploited the advances in digital computer technology and the analysis
and design methods were well-suited to multiple-input, multiple-output
systems. Moreover, feedback control laws were calculated using analytical
formulas, often directly optimizing a particular performance index.

The 1980’s and 1990’s were characterized by a merging of frequency-
domain and time-domain viewpoints. Specifically, frequency-domain per-
formance and robustness specifications once again were favored, coupled
with important theoretical breakthroughs that yielded tools for handling
multiple-input, multiple-output systems in the frequency domain. Further
advances yielded state-space time-domain techniques for controller syn-
thesis. In the end, the best features of the preceding decades were merged
into a powerful, unified framework.
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The chronological development summarized in the preceding para-
graphs correlates with traditional controls textbooks and academic curric-
ula as follows. Classical control typically is the focus at the undergraduate
level, perhaps along with an introduction to state-space methods. An in-
depth exposure to the state-space approach then follows at the advanced
undergraduate/first-year graduate level and is the focus of this book. This,
in turn, serves as the foundation for more advanced treatments reflecting
recent developments in control theory, including those alluded to in the
preceding paragraph, as well as extensions to time-varying and nonlinear
systems.

We assume that the reader is familiar with the traditional undergrad-
uate treatment of linear systems that introduces basic system properties
such as system dimension, causality, linearity, and time invariance. This
book is concerned with the analysis, simulation, and control of finite-
dimensional, causal, linear, time-invariant, continuous-time dynamic sys-
tems using state-space techniques. From now on, we will refer to members
of this system class as linear time-invariant systems.

The techniques developed in this book are applicable to various types of
engineering (even nonengineering) systems, such as aerospace, mechani-
cal, electrical, electromechanical, fluid, thermal, biological, and economic
systems. This is so because such systems can be modeled mathematically
by the same types of governing equations. We do not formally address
the modeling issue in this book, and the point of departure is a linear
time-invariant state-equation model of the physical system under study.
With mathematics as the unifying language, the fundamental results and
methods presented here are amenable to translation into the application
domain of interest.

1.2 STATE EQUATIONS

A state-space representation for a linear time-invariant system has the
general form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
x(t0) = x0 (1.1)

in which x(t) is the n-dimensional state vector

x(t) =




x1(t)

x2(t)
...

xn(t)
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whose n scalar components are called state variables. Similarly, the
m-dimensional input vector and p-dimensional output vector are given,
respectively, as

u(t) =




u1(t)

u2(t)
...

um(t)


 y(t) =




y1(t)

y2(t)
...

yp(t)




Since differentiation with respect to time of a time-varying vector quan-
tity is performed component-wise, the time-derivative on the left-hand side
of Equation (1.1) represents

ẋ(t) =




ẋ1(t)

ẋ2(t)
...

ẋn(t)




Finally, for a specified initial time t0, the initial state x(t0) = x0 is a
specified, constant n-dimensional vector.

The state vector x(t) is composed of a minimum set of system variables
that uniquely describes the future response of the system given the current
state, the input, and the dynamic equations. The input vector u(t) contains
variables used to actuate the system, the output vector y(t) contains the
measurable quantities, and the state vector x(t) contains internal system
variables.

Using the notational convention M = [mij ] to represent the matrix
whose element in the ith row and j th column is mij , the coefficient
matrices in Equation (1.1) can be specified via

A = [aij ] B = [bij ] C = [cij ]
D = [dij ]

having dimensions n × n, n × m, p × n, and p × m, respectively. With
these definitions in place, we see that the state equation (1.1) is a compact
representation of n scalar first-order ordinary differential equations, that is,

ẋi(t) = ai1x1(t) + ai2x2(t) + · · · + ainxn(t)

+ bi1u1(t) + bi2u2(t) + · · · + bimum(t)

for i = 1, 2, . . . , n, together with p scalar linear algebraic equations

yj (t) = cj1x1(t) + cj2x2(t) + · · · + cjnxn(t)

+ dj1u1(t) + dj2u2(t) + · · · + djmum(t)
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+

++ +

A

CB

D

u(t) y(t)x(t) x(t)

x0

∫

FIGURE 1.1 State-equation block diagram.

for j = 1, 2, . . . , p. From this point on the vector notation (1.1) will
be preferred over these scalar decompositions. The state-space descrip-
tion consists of the state differential equation ẋ(t) = Ax(t) + Bu(t) and
the algebraic output equation y(t) = Cx(t) + Du(t) from Equation (1.1).
Figure 1.1 shows the block diagram for the state-space representation of
general multiple-input, multiple-output linear time-invariant systems.

One motivation for the state-space formulation is to convert a cou-
pled system of higher-order ordinary differential equations, for example,
those representing the dynamics of a mechanical system, to a coupled
set of first-order differential equations. In the single-input, single-output
case, the state-space representation converts a single nth-order differen-
tial equation into a system of n coupled first-order differential equations.
In the multiple-input, multiple-output case, in which all equations are of
the same order n, one can convert the system of k nth-order differential
equations into a system of kn coupled first-order differential equations.

1.3 EXAMPLES

In this section we present a series of examples that illustrate the construc-
tion of linear state equations. The first four examples begin with first-
principles modeling of physical systems. In each case we adopt the strat-
egy of associating state variables with the energy storage elements in the
system. This facilitates derivation of the required differential and algebraic
equations in the state-equation format. The last two examples begin with
transfer-function descriptions, hence establishing a link between transfer
functions and state equations that will be pursued in greater detail in later
chapters.

Example 1.1 Given the linear single-input, single-output, mass-spring-
damper translational mechanical system of Figure 1.2, we now derive the
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y(t)

f(t)

k

c m

FIGURE 1.2 Translational mechanical system.

ky(t)

cy(t)

f (t)m

FIGURE 1.3 Free-body diagram.

system model and then convert it to a state-space description. For this
system, the input is force f (t) and the output is displacement y(t).

Using Newton’s second law, the dynamic force balance for the free-
body diagram of Figure 1.3 yields the following second-order ordinary
differential equation

mÿ(t) + cẏ(t) + ky(t) = f (t)

that models the system behavior. Because this is a single second-order
differential equation, we need to select a 2 × 1 state vector. In general,
energy storage is a good criterion for choosing the state variables. The
total system energy at any time is composed of potential spring energy
ky(t)2/2 plus kinetic energy mẏ(t)2/2 associated with the mass displace-
ment and velocity. We then choose to define the state variables as the
mass displacement and velocity:

x(t) =
[

x1(t)

x2(t)

]
x1(t) = y(t)

x2(t) = ẏ(t) = ẋ1(t)

Therefore,

ẏ(t) = x2(t)

ÿ(t) = ẋ2(t)

Substituting these two state definitions into the original system equation
gives

mẋ2(t) + cx2(t) + kx1(t) = f (t)



EXAMPLES 7

The original single second-order differential equation can be written as
a coupled system of two first-order differential equations, that is,

ẋ1(t) = x2(t)

ẋ2(t) = − c

m
x2(t) − k

m
x1(t) + 1

m
f (t)

The output is the mass displacement

y(t) = x1(t)

The generic variable name for input vectors is u(t), so we define:

u(t) = f (t)

We now write the preceding equations in matrix-vector form to get a
valid state-space description. The general state-space description consists
of the state differential equation and the algebraic output equation. For
Example 1.1, these are

State Differential Equation

ẋ(t) = Ax(t) + Bu(t)

[
ẋ1(t)

ẋ2(t)

]
=


 0 1

− k

m
− c

m


[

x1(t)

x2(t)

]
+


 0

1

m


u(t)

Algebraic Output Equation

y(t) = Cx(t) + Du(t)

y(t) = [ 1 0 ]

[
x1(t)

x2(t)

]
+ [0]u(t)

The two-dimensional single-input, single-output system matrices in this
example are (with m = p = 1 and n = 2):

A =

 0 1

− k

m
− c

m


 B =


 0

1

m


 C = [ 1 0 ]

D = 0

In this example, the state vector is composed of the position and
velocity of the mass m. Two states are required because we started with
one second-order differential equation. Note that D = 0 in this example
because no part of the input force is directly coupled to the output. �
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Example 1.2 Consider the parallel electrical circuit shown in
Figure 1.4. We take the input to be the current produced by the
independent current source u(t) = i(t) and the output to be the capacitor
voltage y(t) = v(t).

It is often convenient to associate state variables with the energy
storage elements in the network, namely, the capacitors and inductors.
Specifically, capacitor voltages and inductor currents, while not only
directly characterizing the energy stored in the associated circuit element,
also facilitate the derivation of the required differential equations. In this
example, the capacitor voltage coincides with the voltage across each
circuit element as a result of the parallel configuration.

This leads to the choice of state variables, that is,

x1(t) = iL(t)

x2(t) = v(t)

In terms of these state variables, the inductor’s voltage-current relationship
is given by

x2(t) = Lẋ1(t)

Next, Kirchhoff’s current law applied to the top node produces

1

R
x2(t) + x1(t) + Cẋ2(t) = u(t)

These relationships can be rearranged so as to isolate state-variable
time derivatives as follows:

ẋ1(t) = 1

L
x2(t)

ẋ2(t) = − 1

C
x1(t) − 1

RC
x2(t) + 1

C
u(t)

i(t) R L C v(t)

+

−

iL(t)

FIGURE 1.4 Parallel electrical circuit.
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This pair of coupled first-order differential equations, along with the
output definition y(t) = x2(t), yields the following state-space description
for this electrical circuit:

State Differential Equation

[
ẋ1(t)

ẋ2(t)

]
=


 0

1

L

− 1

C
− 1

RC




[
x1(t)

x2(t)

]
+


 0

1

C


u(t)

Algebraic Output Equation

y(t) = [ 0 1 ]

[
x1(t)

x2(t)

]
+ [0]u(t)

from which the coefficient matrices A, B, C, and D are found by inspec-
tion, that is,

A =

 0

1

L

− 1

C
− 1

RC


 B =


 0

1

C


 C = [ 0 1 ]

D = 0

Note that D = 0 in this example because there is no direct coupling
between the current source and the capacitor voltage. �

Example 1.3 Consider the translational mechanical system shown in
Figure 1.5, in which y1(t) and y2(t) denote the displacement of the asso-
ciated mass from its static equilibrium position, and f (t) represents a
force applied to the first mass m1. The parameters are masses m1 and
m2, viscous damping coefficient c, and spring stiffnesses k1 and k2. The
input is the applied force u(t) = f (t), and the outputs are taken as the
mass displacements. We now derive a mathematical system model and
then determine a valid state-space representation.

Newton’s second law applied to each mass yields the coupled second-
order differential equations, that is,

m1ÿ1(t) + k1y1(t) − k2[y2(t) − y1(t)] = f (t)

m2ÿ2(t) + cẏ2(t) + k2[y2(t) − y1(t)] = 0

Here, the energy-storage elements are the two springs and the two masses.
Defining state variables in terms of mass displacements and velocities
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y1(t)

f(t)

y2(t)

m1 m2

k1 k2 c

FIGURE 1.5 Translational mechanical system.

yields

x1(t) = y1(t)

x2(t) = y2(t) − y1(t)

x3(t) = ẏ1(t)

x4(t) = ẏ2(t)

Straightforward algebra yields the following state equation representa-
tion:

State Differential Equation




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


 =




0 0 1 0
0 0 −1 1

− k1

m1

k2

m1
0 0

0
−k2

m2
0 − c

m2







x1(t)

x2(t)

x3(t)

x4(t)


 +




0
0
1

m1
0


u(t)

Algebraic Output Equation

[
y1(t)

y2(t)

]
=

[
1 0 0 0
1 1 0 0

] 


x1(t)

x2(t)

x3(t)

x4(t)


 +

[
0
0

]
u(t)

from which the coefficient matrices A, B,C, and D can be identified.
Note that D = [ 0 0 ]T because there is no direct feedthrough from the
input to the output.

Now, it was convenient earlier to define the second state variable as
the difference in mass displacements, x2(t) = y2(t) − y1(t), because this
relative displacement is the amount the second spring is stretched. Instead
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we could have defined the second state variable based on the absolute
mass displacement, that is x2(t) = y2(t), and derived an equally valid
state-space representation. Making this one change in our state variable
definitions, that is,

x1(t) = y1(t)

x2(t) = y2(t)

x3(t) = ẏ1(t)

x4(t) = ẏ2(t)

yields the new A and C matrices

A =




0 0 1 0
0 0 0 1

−(k1 + k2)

m1

k2

m1
0 0

k2

m2

−k2

m2
0 − c

m2




C =
[

1 0 0 0
0 1 0 0

]

The B and D matrices are unchanged. �

Example 1.4 Consider the electrical network shown in Figure 1.6. We
now derive the mathematical model and then determine a valid state-space
representation. The two inputs are the independent voltage and current
sources vin(t) and iin(t), and the single output is the inductor voltage vL(t).

In terms of clockwise circulating mesh currents i1(t), i2(t), and i3(t),
Kirchhoff’s voltage law applied around the leftmost two meshes yields

R1i1(t) + vC1(t) + L
d

dt
[i1(t) − i2(t)] = vin(t)

L
d

dt
[i2(t) − i1(t)] + vC2(t) + R2[i2(t) − i3(t)] = 0

and Kirchhoff’s current law applied to the rightmost mesh yields

i3(t) = −iin(t)

In addition, Kirchoff’s current law applied at the top node of the induc-
tor gives

iL(t) = i1(t) − i2(t)
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+ −

+
−

R1

vin(t) iin(t)R2

C1 C2

L iL(t)

vC1
(t) vC2

(t)+ −

i1(t) i2(t) i3(t)

FIGURE 1.6 Electrical circuit.

As in Example 1.2, it is again convenient to associate state variables
with the capacitor and inductor energy-storage elements in the network.
Here, we select

x1(t) = vC1(t)

x2(t) = vC2(t)

x3(t) = iL(t)

We also associate inputs with the independent sources via

u1(t) = vin(t)

u2(t) = iin(t)

and designate the inductor voltage vL(t) as the output so that

y(t) = vL(t) = Lẋ3(t)

Using the relationships

C1ẋ1(t) = i1(t)

C2ẋ2(t) = i2(t)

x3(t) = C1ẋ1(t) − C2ẋ2(t)

the preceding circuit analysis now can be recast as

R1C1ẋ1(t) + Lẋ3(t) = −x1(t) + u1(t)

R2C2ẋ2(t) − Lẋ3(t) = −x2(t) − R2u2(t)

C1ẋ1(t) − C2ẋ2(t) = x3(t)
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Packaging these equations in matrix form and isolating the state-variable
time derivatives gives


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 R1C1 0 L

0 R2C2 −L

C1 −C2 0




−1





 −1 0 0

0 −1 0
0 0 0





 x1(t)

x2(t)

x3(t)


 +


 1 0

0 −R2

0 0




[
u1(t)

u2(t)

]


Calculating and multiplying through by the inverse and yields the state
differential equation, that is,


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




1

(R1 + R2)C1

−1

(R1 + R2)C1

R2

(R1 + R2)C1

−1

(R1 + R2)C2

−1

(R1 + R2)C2

−R1

(R1 + R2)C2

−R2

(R1 + R2)L

R1

(R1 + R2)L

−R1R2

(R1 + R2)L





 x1(t)

x2(t)

x3(t)




+




1

(R1 + R2)C1

−R2

(R1 + R2)C1

1

(R1 + R2)C2

−R2

(R1 + R2)C2

R2

(R1 + R2)L

R1R2

(R1 + R2)L




[
u1(t)

u2(t)

]

which is in the required format from which coefficient matrices A and B

can be identified. In addition, the associated output equation y(t) = Lẋ3(t)

can be expanded to the algebraic output equation as follows

y(t) =
[ −R2

(R1 + R2)

R1

(R1 + R2)

−R1R2

(R1 + R2)

] 
 x1(t)

x2(t)

x3(t)




+
[

R2

(R1 + R2)

R1R2

(R1 + R2)

] [
u1(t)

u2(t)

]

from which coefficient matrices C and D can be identified.
Note that in this example, there is direct coupling between the indepen-

dent voltage and current source inputs vin(t) and iin(t) and the inductor
voltage output vL(t), and hence the coefficient matrix D is nonzero. �
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Example 1.5 This example derives a valid state-space description for
a general third-order differential equation of the form

¨̇y(t) + a2ÿ(t) + a1ẏ(t) + a0y(t) = b0u(t)

The associated transfer function definition is

H(s) = b0

s3 + a2s2 + a1s + a0

Define the following state variables:

x(t) =

 x1(t)

x2(t)

x3(t)


 x1(t) = y(t)

x2(t) = ẏ(t) = ẋ1(t)

x3(t) = ÿ(t) = ẍ1(t) = ẋ2(t)

Substituting these state-variable definitions into the original differential
equation yields the following:

ẋ3(t) = −a0x1(t) − a1x2(t) − a2x3(t) + b0u(t)

The state differential and algebraic output equations are then

State Differential Equation


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 0 1 0

0 0 1
−a0 −a1 −a2





 x1(t)

x2(t)

x3(t)


 +


 0

0
b0


u(t)

Algebraic Output Equation

y(t) = [ 1 0 0 ]


 x1(t)

x2(t)

x3(t)


 + [0]u(t)

from which the coefficient matrices A, B,C, and D can be identified.
D = 0 in this example because there is no direct coupling between the
input and output.

This example may be generalized easily to the nth-order ordinary dif-
ferential equation

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · · + a2

d2y(t)

dt2
+ a1

dy(t)

dt
+ a0y(t) = b0u(t)

(1.2)
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For this case, the coefficient matrices A, B, C, and D are

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1


 B =




0
0
...

0
b0




C = [ 1 0 0 · · · 0 ] D = [0] (1.3) �

Example 1.6 Consider a single-input, single-output system represented
by the third-order transfer function with second-order numerator polyno-
mial

H(s) = b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

If we attempted to proceed as in the preceding example in defining state
variables in terms of the output y(t) and its derivatives, we eventually
would arrive at the relationship

ẋ3(t) = −a0x1(t) − a1x2(t) − a2x3(t) + b2ü(t) + b1u̇(t) + b0u(t)

This is not consistent with the state-equation format because of the pres-
ence of time derivatives of the input, so we are forced to pursue an
alternate state-variable definition. We begin by factoring the transfer func-
tion according to H(s) = H2(s)H1(s) with

H1(s) = 1

s3 + a2s2 + a1s + a0
H2(s) = b2s

2 + b1s + b0

and introducing an intermediate signal w(t) with Laplace transform W(s)

so that

W(s) = H1(s)U(s)

= 1

s3 + a2s2 + a1s + a0
U(s)

Y (s) = H2(s)W(s)

= (b2s
2 + b1s + b0)W(s)

A block-diagram interpretation of this step is shown in Figure 1.7. In
the time domain, this corresponds to

¨̇w(t) + a2ẅ(t) + a1ẇ(t) + a0w(t) = u(t)

y(t) = b2ẅ(t) + b1ẇ(t) + b0w(t)
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U(s) W(s) Y(s)
H1(s) H2(s)

FIGURE 1.7 Cascade block diagram.

Now, the key observation is that a state equation describing the rela-
tionship between input u(t) and output w(t) can be written down using
the approach of the preceding example. That is, in terms of state variables

x1(t) = w(t)

x2(t) = ẇ(t) = ẋ1(t)

x3(t) = ẅ(t) = ẍ1(t) = ẋ2(t)

we have
 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 0 1 0

0 0 1
−a0 −a1 −a2





 x1(t)

x2(t)

x3(t)


 +


 0

0
1


u(t)

w(t) = [ 1 0 0 ]


 x1(t)

x2(t)

x3(t)


 + [0]u(t)

As the final step, we recognize that an equation relating the true system
output y(t) and our chosen state variables follows from

y(t) = b0w(t) + b1ẇ(t) + b2ẅ(t)

= b0x1(t) + b1x2(t) + b2x3(t)

which gives the desired state equations:
State Differential Equation


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 0 1 0

0 0 1
−a0 −a1 −a2





 x1(t)

x2(t)

x3(t)


 +


 0

0
1


u(t)

Algebraic Output Equation

y(t) = [ b0 b1 b2 ]


 x1(t)

x2(t)

x3(t)


 + [0]u(t)
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At this point, it should be clear how to extend this approach to systems
of arbitrary dimension n beginning with a transfer function of the form

H(s) = bn−1s
n−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

Notice that the numerator polynomial in H(s) has degree strictly less
than the denominator polynomial degree, so H(s) is referred to as a strictly
proper rational function (ratio of polynomials in the complex variable
s). The preceding state-equation construction can be extended further to
handle proper transfer functions

H(s) = bns
n + bn−1s

n−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

in which the numerator and denominator polynomial degrees are equal.
The procedure involves first using polynomial division to write H(s) as
a strictly proper part plus a constant

H(s) = b̂n−1s
n−1 + · · · + b̂1s + b̂0

sn + an−1sn−1 + · · · + a1s + a0
+ bn

in which the reader may verify that b̂i = bi − bnai , for i = 0, 1, . . . , n −
1. Next, the coefficient matrices A, B, and C are found from the numerator
and denominator polynomial coefficients of the strictly proper component
and, in addition, D = bn. �

In general, we say that a state equation is a state-space realization of a
given system’s input-output behavior if it corresponds to the relationship
Y(s) = H(s)U(s) in the Laplace domain or to the associated differential
equation relating y(t) and u(t) in the time domain (for zero initial con-
ditions). The exact meaning of corresponds to will be made precise in
the next chapter. The preceding example serves to illustrate that a state-
space realization of a single-input, single-output system can be written
down by inspection simply by plugging the numerator and denomina-
tor coefficients into the correct locations in the coefficient matrices C

and A, respectively. Owing to its special structure, this state equation is
referred to as the phase-variable canonical form realization as well as the
controller canonical form realization.

1.4 LINEARIZATION OF NONLINEAR SYSTEMS

Linear state equations also arise in the course of linearizing nonlinear
state equations about nominal trajectories. We begin with a more general
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nonlinear, time-varying state equation

ẋ(t) = f [x(t), u(t), t]
y(t) = h[x(t), u(t), t]

x(t0) = x0 (1.4)

where x(t), u(t), and y(t) retain their default vector dimensions and
f (·, ·, ·) and h(·, ·, ·) are continuously differentiable functions of their
(n + m + 1)-dimensional arguments. Linearization is performed about a
nominal trajectory defined as follows.

Definition 1.1 For a nominal input signal, ũ(t), the nominal state tra-
jectory x̃(t) satisfies ˙̃x(t) = f [x̃(t), ũ(t), t]

and the nominal output trajectory ỹ(t) satisfies

ỹ(t) = h[x̃(t), ũ(t), t]

If ũ(t) = ũ, a constant vector, a special case is an equilibrium state x̃

that satisfies
0 = f (x̃, ũ, t)

for all t. �

Deviations of the state, input, and output from their nominal trajectories
are denoted by δ subscripts via

xδ(t) = x(t) − x̃(t)

uδ(t) = u(t) − ũ(t)

yδ(t) = y(t) − ỹ(t)

Using the compact notation

∂f

∂x
(x, u, t) =

[
∂fi

∂xj

(x, u, t)

]
(n × n)

∂f

∂u
(x, u, t) =

[
∂fi

∂uj

(x, u, t)

]
(n × m)

∂h

∂x
(x, u, t) =

[
∂hi

∂xj

(x, u, t)

]
(p × n)

∂h

∂u
(x, u, t) =

[
∂hi

∂uj

(x, u, t)

]
(p × m)
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and expanding the nonlinear maps in Equation (1.4) in a multivariate
Taylor series about [x̃(t), ũ(t), t] we obtain

ẋ(t) = f [x(t), u(t), t]

= f [x̃(t), ũ(t), t] + ∂f

∂x
[x̃(t), ũ(t), t][x(t) − x̃(t)]

+ ∂f

∂u
[x̃(t), ũ(t), t][u(t) − ũ(t)] + higher-order terms

y(t) = h[x(t), u(t), t]

= h[x̃(t), ũ(t), t] + ∂h

∂x
[x̃(t), ũ(t), t][x(t) − x̃(t)]

+ ∂h

∂u
[x̃(t), ũ(t), t][u(t) − ũ(t)] + higher-order terms

On defining coefficient matrices

A(t) = ∂f

∂x
(x̃(t), ũ(t), t)

B(t) = ∂f

∂u
(x̃(t), ũ(t), t)

C(t) = ∂h

∂x
(x̃(t), ũ(t), t)

D(t) = ∂h

∂u
(x̃(t), ũ(t), t)

rearranging slightly, and substituting deviation variables [recognizing that
ẋδ(t) = ẋ(t) − ˙̃x(t)] we have

ẋδ(t) = A(t)xδ(t) + B(t)uδ(t) + higher-order terms

yδ(t) = C(t)xδ(t) + D(t)uδ(t) + higher-order terms

Under the assumption that the state, input, and output remain close to
their respective nominal trajectories, the high-order terms can be neglected,
yielding the linear state equation

ẋδ(t) = A(t)xδ(t) + B(t)uδ(t)

yδ(t) = C(t)xδ(t) + D(t)uδ(t) (1.5)

which constitutes the linearization of the nonlinear state equation (1.4)
about the specified nominal trajectory. The linearized state equation
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approximates the behavior of the nonlinear state equation provided that the
deviation variables remain small in norm so that omitting the higher-order
terms is justified.

If the nonlinear maps in Equation (1.4) do not explicitly depend on t ,
and the nominal trajectory is an equilibrium condition for a constant nom-
inal input, then the coefficient matrices in the linearized state equation are
constant; i.e., the linearization yields a time-invariant linear state equation.

Example 1.7 A ball rolling along a slotted rotating beam, depicted in
Figure 1.8, is governed by the equations of motion given below. In this
example we will linearize this nonlinear model about a given desired
trajectory for this system.

[
Jb

r2
+ m

]
p̈(t) + mg sin θ(t) − mp(t)θ̇(t)2 = 0

[mp(t)2 + J + Jb]θ̈ (t) + 2 mp(t)ṗ(t)θ̇(t) + mgp(t) cos θ(t) = τ(t)

in which p(t) is the ball position, θ(t) is the beam angle, and τ(t) is the
applied torque. In addition, g is the gravitational acceleration constant, J

is the mass moment of inertia of the beam, and m, r , and Jb are the mass,
radius, and mass moment of inertia of the ball, respectively. We define
state variables according to

x1(t) = p(t)

x2(t) = ṗ(t)

x3(t) = θ(t)

x4(t) = θ̇ (t)

p(t)

q(t)

t(t)

FIGURE 1.8 Ball and beam apparatus.
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In addition, we take the input to be the applied torque τ(t) and the
output to be the ball position p(t), so

u(t) = τ(t)

y(t) = p(t)

The resulting nonlinear state equation plus the output equation then are

ẋ1(t) = x2(t)

ẋ2(t) = b[x1(t)x4(t)
2 − g sin x3(t)]

ẋ3(t) = x4(t)

ẋ4(t) = −2mx1(t)x2(t)x4(t) − mgx1(t) cos x3(t) + u(t)

mx1(t)2 + J + Jb

y(t) = x1(t)

in which b = m/[(Jb/r2) + m].
We consider nominal trajectories corresponding to a steady and level

beam and constant-velocity ball position responses. In terms of an initial
ball position p0 at the initial time t0 and a constant ball velocity v0, we take

x̃1(t) = p̃(t) = v0(t − t0) + p0

x̃2(t) = ˙̃p(t) = v0

x̃3(t) = θ̃ (t) = 0

x̃4(t) = ˙̃
θ(t) = 0

ũ(t) = τ̃ (t) = mgx̃1(t)

for which it remains to verify that Definition 1.1 is satisfied. Comparing

˙̃x1(t) = v0

˙̃x2(t) = 0

˙̃x3(t) = 0

˙̃x4(t) = 0

with
x̃2(t) = v0

b(x̃1(t)x̃4(t)
2 − g sin x̃3(t)) = b(0 − g sin(0)) = 0

x̃4(t) = 0
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−2mx̃1(t)x̃2(t)x̃4(t)−
mgx̃1(t) cos x̃3(t) + ũ(t)

mx̃1(t)2 + J + Jb
= 0 − mgx̃1(t) cos(0) + mgx̃1(t)

mx̃1(t)2 + J + Jb
= 0

we see that x̃(t) is a valid nominal state trajectory for the nominal input
ũ(t). As an immediate consequence, the nominal output is ỹ(t) = x̃1(t) =
p̃(t). It follows directly that deviation variables are specified by

xδ(t) =




p(t) − p̃(t)

ṗ(t) − ˙̃p(t)

θ(t) − 0
θ̇ (t) − 0




uδ(t) = τ(t) − mgp̃(t)

yδ(t) = p(t) − p̃(t)

With

f (x, u) =



f1(x1, x2, x3, x4, u)

f2(x1, x2, x3, x4, u)

f3(x1, x2, x3, x4, u)

f4(x1, x2, x3, x4, u)


 =




x2

b(x1x4
2 − g sin x3)

x4
−2mx1x2x4 − mgx1 cos x3 + u

mx1
2 + J + Jb




partial differentiation yields

∂f

∂x
(x, u) =




0 1 0 0
bx4

2 0 −bg cos x3 2bx1x4

0 0 0 1
∂f4

∂x1

−2mx1x4

mx1
2 + J + Jb

mgx1 sin x3

mx1
2 + J + Jb

−2mx1x2

mx1
2 + J + Jb




where

∂f4

∂x1
=

[(−2mx2x4 − mg cos x3)(mx1
2 + J + Jb)]−

[(−2mx1x2x4 − mgx1 cos x3 + u)(2mx1)]

(mx1
2 + J + Jb)2

∂f

∂u
(x, u) =




0
0
0
1

mx1
2 + J + Jb
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∂h

∂x
(x, u) = [ 1 0 0 0 ]

∂h

∂u
(x, u) = 0

Evaluating at the nominal trajectory gives

A(t) = ∂f

∂x
[x̃(t), ũ(t)]

=




0 1 0 0
0 0 −bg 0
0 0 0 1

−mg

mp̃(t)2 + J + Jb
0 0

−2mp̃(t)v0

mp̃(t)2 + J + Jb




B(t) = ∂f

∂u
[x̃(t), ũ(t)] =




0
0
0
1

mp̃(t)2 + J + Jb




C(t) = ∂h

∂x
[x̃(t), ũ(t)] = [ 1 0 0 0 ]

D(t) = ∂h

∂u
[x̃(t), ũ(t)] = 0 (1.6)

which, together with the deviation variables defined previously, specifies
the linearized time-varying state equation for the ball and beam system.

A special case of the nominal trajectory considered thus far in this
example corresponds to zero ball velocity v0 = 0 and, consequently, con-
stant ball position p̃(t) = p0. The beam must remain steady and level, so
the nominal state trajectory and input reduce to

x̃1(t) = p̃(t) = p0

x̃1(t) = ˙̃p(t) = 0

x̃1(t) = θ̃ (t) = 0

x̃1(t) = ˙̃
θ(t) = 0

ũ(t) = τ̃ (t) = mg p0

with an accompanying impact on the deviation variables. Given that the
nonlinear ball and beam dynamics are time invariant and that now the
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nominal state trajectory and input are constant and characterize an equi-
librium condition for these dynamics, the linearization process yields a
time-invariant linear state equation. The associated coefficient matrices
are obtained by making the appropriate substitutions in Equation (1.6)
to obtain

A = ∂f

∂x
(x̃, ũ) =




0 1 0 0
0 0 −bg 0
0 0 0 1

−mg

m p2
0 + J + Jb

0 0 0




B = ∂f

∂u
(x̃, ũ) =




0
0
0
1

m p2
0 + J + Jb




C = ∂h

∂x
(x̃, ũ) = [ 1 0 0 0 ]

D = ∂h

∂u
(x̃, ũ) = 0 �

1.5 CONTROL SYSTEM ANALYSIS AND DESIGN USING MATLAB

In each chapter we include a section to identify and explain the use
of MATLAB software and MATLAB functions for state-space analysis and
design methods. We use a continuing example to demonstrate the use of
MATLAB throughout; this is a single-input, single-output two–dimensional
rotational mechanical system that will allow the student to perform all
operations by hand to compare with MATLAB results. We assume that the
Control Systems Toolbox is installed with MATLAB.

MATLAB: General, Data Entry, and Display

In this section we present general MATLAB commands, and we start the
Continuing MATLAB Example. We highly recommend the use of MATLAB

m-files, which are scripts and functions containing MATLAB commands
that can be created and modified in the MATLAB Editor and then executed.
Throughout the MATLAB examples, bold Courier New font indicates MAT-

LAB function names, user inputs, and variable names; this is given for
emphasis only. Some useful MATLAB statements are listed below to help
the novice get started.
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General MATLAB Commands:

help Provides a list of topics for which you can
get online help.

help fname Provides online help for MATLAB function
fname .

% The % symbol at any point in the code
indicates a comment; text beyond the % is
ignored by MATLAB and is highlighted in
green .

; The semicolon used at the end of a line
suppresses display of the line’s result to
the MATLAB workspace.

clear This command clears the MATLAB

workspace, i.e., erases any previous
user-defined variables.

clc Clears the cursor.
figure(n) Creates an empty figure window (numbered

n) for graphics.
who Displays a list of all user-created variable

names.
whos Same as who but additionally gives the

dimension of each variable.
size(name) Responds with the dimension of the matrix

name .
length(name) Responds with the length of the vector

name .
eye(n) Creates an n × n identity matrix In.
zeros(m,n) Creates a m × n array of zeros.
ones(m,n) Creates a m × n array of ones.
t = t0:dt:tf Creates an evenly spaced time array starting

from initial time t0 and ending at final
time tf , with steps of dt .

disp(‘string’) Print the text string to the screen.
name = input(‘string’) The input command displays a text

string to the user, prompting for input;
the entered data then are written to the
variable name .

In the MATLAB Editor (not in this book), comments appear in green,
text strings appear in red, and logical operators and other reserved pro-
gramming words appear in blue.
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MATLAB for State-Space Description

MATLAB uses a data-structure format to describe linear time-invariant sys-
tems. There are three primary ways to describe a linear time-invariant
system in MATLAB: (1) state-space realizations specified by coefficient
matrices A, B, C, and D (ss); (2) transfer functions with (num, den),
where num is the array of polynomial coefficients for the transfer-function
numerator and den is the array of polynomial coefficients for the transfer-
function denominator (tf); and (3) transfer functions with (z, p, k), where
z is the array of numerator polynomial roots (the zeros), p is the array
of denominator polynomial roots (the poles), and k is the system gain.
There is a fourth method, frequency response data (frd), which will not
be considered in this book. The three methods to define a continuous-time
linear time-invariant system in MATLAB are summarized below:

SysName = ss(A,B,C,D);
SysName = tf(num,den);
SysName = zpk(z,p,k);

In the first statement (ss), a scalar 0 in the D argument position will
be interpreted as a zero matrix D of appropriate dimensions. Each of
these three statements (ss, tf, zpk) may be used to define a system
as above or to convert between state-space, transfer-function, and zero-
pole-gain descriptions of an existing system. Alternatively, once the linear
time-invariant system SysName is defined, the parameters for each system
description may be extracted using the following statements:

[num,den] = tfdata(SysName);
[z,p,k] = zpkdata(SysName);
[A,B,C,D] = ssdata(SysName);

In the first two statements above, if we have a single-input, single-
output system, we can use the switch 'v': tfdata(SysName,'v') and
zpkdata(SysName,'v'). There are three methods to access data from
the defined linear time-invariant SysName: set

/
get commands, direct

structure referencing, and data-retrieval commands. The latter approach is
given above; the first two are:

set(SysName,PropName,PropValue);
PropValue = get(SysName,PropName);
SysName.PropName = PropValue;
% equivalent to ‘set’ command
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PropValue = SysName.PropName;
% equivalent to ‘get’ command

In the preceding, SysName is set by the user as the desired name for
the defined linear time-invariant system. PropName (property name) rep-
resents the valid properties the user can modify, which include A, B, C, D
for ss, num, den, variable (the default is ‘s ’ for a continuous system
Laplace variable) for tf, and z, p, k, variable (again, the default is
‘s ’) for zpk. The command set(SysName) displays the list of proper-
ties for each data type. The command get(SysName) displays the value
currently stored for each property. PropValue (property value) indicates
the value that the user assigns to the property at hand. In previous MATLAB

versions, many functions required the linear time-invariant system input
data (A, B, C, D for state space, num, den for transfer function, and z, p,
k for zero-pole-gain notation); although these still should work, MATLAB’s
preferred mode of operation is to pass functions the SysName linear time-
invariant data structure. For more information, type help ltimodels and
help ltiprops at the MATLAB command prompt.

Continuing MATLAB Example

Modeling A single-input, single-output rotational mechanical system is
shown in Figure 1.9. The single input is an externally applied torque τ(t),
and the output is the angular displacement θ(t). The constant parameters
are motor shaft polar inertia J , rotational viscous damping coefficient
b, and torsional spring constant kR (provided by the flexible shaft). This
example will be used in every chapter to demonstrate the current topics via
MATLAB for a model that will become familiar. To derive the system model,
MATLAB does not help (unless the Symbolic Math Toolbox capabilities of
MATLAB are used).

In the free-body diagram of Figure 1.10, the torque resulting from
the rotational viscous damping opposes the instantaneous direction of
the angular velocity and the torque produced by the restoring spring

J

b

kR

q(t) t(t)

FIGURE 1.9 Continuing MATLAB Example system.
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kRq(t)b q(t)

t(t)

FIGURE 1.10 Continuing MATLAB Example free-body diagram.

opposes the instantaneous direction of the angular displacement. We apply
Euler’s rotational law (the rotational equivalent of Newton’s Second Law),
to derive the system model. Euler’s rotational law may be stated as∑

M = Jα, where
∑

M is the sum of moments, J is the polar moment
of inertia, and α is the shaft angular acceleration.

∑
M = J θ̈(t) = τ(t) − bθ̇(t) − kRθ(t)

This system can be represented by the single second-order linear time-
invariant ordinary differential equation

J θ̈(t) + bθ̇(t) + kRθ(t) = τ(t)

This equation is the rotational equivalent of a translational mechanical
mass-spring-damper system with torque τ(t) as the input and angular
displacement θ(t) as the output.

State-Space Description Now we derive a valid state-space descrip-
tion for the Continuing MATLAB Example. That is, we specify the state
variables and derive the coefficient matrices A, B, C, and D. We start with
the second-order differential equation above for which we must define two
state variables xi(t), i = 1, 2. Again, energy-storage elements guide our
choice of states:

x1(t) = θ(t)

x2(t) = θ̇ (t) = ẋ1(t)

We will have two first-order differential equations, derived from the
original second-order differential equation, and ẋ1(t) = x2(t) from above.
The state differential equation is

[
ẋ1(t)

ẋ2(t)

]
=


 0 1

−kR

J

−b

J




[
x1(t)

x2(t)

]
+


 0

1

J


 τ(t)
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TABLE 1.1 Numerical Parameters for the Continuing MATLAB Example

Parameter Value Units Name

J 1 kg-m2 motor shaft polar inertia
b 4 N-m-s motor shaft damping constant
kR 40 N-m/rad torsional spring constant

The algebraic output equation is:

y(t) = [ 1 0 ]

[
x1(t)

x2(t)

]
+ [0]τ(t)

The coefficient matrices A, B,C, D for this Continuing MATLAB

Example are thus:

A =

 0 1

−kR

J
− b

J


 B =


 0

1

J


 C = [ 1 0 ]

D = 0

This specifies a two–dimensional single-input, single-output system
with m = 1 input, p = 1 output, and n = 2 states. Let us assume the con-
stant parameters listed in Table 1.1 for the continuing MATLAB example.

Then the numerical coefficient matrices are

A =
[

0 1
−40 −4

]
B =

[
0
1

]
C = [ 1 0 ] D = 0

Chapter by chapter we will present MATLAB code and results dealing
with the topics at hand for the Continuing MATLAB Example. These code
segments will be complete only if taken together over all chapters (i.e.,
ensuing code portions may require previously defined variables in earlier
chapters to execute properly). Appendix C presents this complete program
for all chapters. To get started, we need to define the coefficient matrices
A, B, C, and D in MATLAB. Then we can find the system transfer function
and zero-pole-gain descriptions.

%-------------------------------------------------
% Chapter 1. State-Space Description
%-------------------------------------------------

J = 1;
b = 4;
kR = 40;
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A = [0 1;-kR/J -b/J]; % Define the
% state-space
% realization

B = [0;1/J];
C = [1 0];
D = [0];

JbkR = ss(A,B,C,D); % Define model from
% state-space

JbkRtf = tf(JbkR); % Convert to
% transfer function

JbkRzpk = zpk(JbkR); % Convert to
% zero-pole
% description

[num,den] = tfdata(JbkR,'v'); % Extract transfer
% function
% description

[z,p,k] = zpkdata(JbkR,'v'); % Extract zero-pole
% description

JbkRss = ss(JbkRtf) % Convert to
% state-space
% description

The ss command yields

a =
x1 x2

x1 0 1
x2 -40 -4

b =
u1

x1 0
x2 1

c =
x1 x2

y1 1 0
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d =
u1

y1 0
Continuous-time model.

The tf and zpk commands yield

Transfer function:
1

--------------
s^2 + 4 s + 40

Zero/pole/gain:
1

---------------
(s^2 + 4s + 40)

The tfdata and zpkdata commands yield

num =
0 0 1

den =
1.0000 4.0000 40.0000

z =
Empty matrix: 0-by-1

p =
-2.0000 + 6.0000i
-2.0000 - 6.0000i

k =
1

Finally, the second ss command yields

a =
x1 x2

x1 -4 -5
x2 8 0
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b =
u1

x1 0.25
x2 0

c =
x1 x2

y1 0 0.5

d =
u1

y1 0

Note that when MATLAB converted from the tf to the ss description
above, it returned a different state-space realization than the one originally
defined. The validity of this outcome will be explained in Chapter 2.

1.6 CONTINUING EXAMPLES

Continuing Example 1: Two-Mass Translational Mechanical
System

This multiple-input, multiple-output example will continue throughout
each chapter of this book, building chapter by chapter to demonstrate
the important topics at hand.

Modeling A mechanical system is represented by the two degree-of-
freedom linear time-invariant system shown in Figure 1.11. There are
two force inputs ui(t) and two displacement outputs yi(t), i = 1, 2. The
constant parameters are masses mi , damping coefficients ci , and spring
coefficients ki, i = 1, 2. We now derive the mathematical model for this
system; i.e., we draw the free-body diagrams and then write the correct
number of independent ordinary differential equations. All motion is con-
strained to be horizontal, as shown in Figure 1.11. Outputs yi(t) are each
measured from the neutral spring equilibrium location of each mass mi .
Figure 1.12 shows the two free-body diagrams.

Now we apply Newton’s second law twice, once for each mass, to
derive the two second-order dynamic equations of motion:∑

F1 = m1ÿ1(t) = k2[y2(t) − y1(t)] + c2[ẏ2(t) − ẏ1(t)]

− k1y1(t) − c1ẏ1(t) + u1(t)∑
F2 = m2ÿ2(t) = −k2[y2(t) − y1(t)] − c2[ẏ2(t) − ẏ1(t)] + u2(t)
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m2

y1(t) y2(t)

u1(t) u2(t)

m1 c2c1

k2k1

FIGURE 1.11 Continuing Example 1 system.

m1 m2

u1(t) u2(t)

k1y1(t)

c1y1(t)

k2(y2(t) − y1(t))

c2(y2(t) − y1(t))

FIGURE 1.12 Continuing Example 1 free-body diagrams.

We rewrite these equations so that the output-related terms yi(t) appear
on the left side along with their derivatives and the input forces ui(t)

appear on the right. Also, yi(t) terms are combined.

m1ÿ1(t) + (c1 + c2)ẏ1(t) + (k1 + k2)y1(t) − c2ẏ2(t) − k2y2(t) = u1(t)

m2ÿ2(t) + c2ẏ2(t) + k2y2(t) − c2ẏ1(t) − k2y1(t) = u2(t)

These equations are two linear, coupled, second-order ordinary differ-
ential equations. In this type of vibrational system, it is always possible to
structure the equations such that the coefficients of ÿi(t), ẏi(t), and yi(t)

are positive in the ith equation, and the coefficients of any ẏj (t) and yj (t)

terms that appear in the ith equation are negative for j �= i.
Example 1 is a multiple-input, multiple output system with two inputs

ui(t) and two outputs yi(t). We can express the two preceding second-
order differential equations in standard second-order matrix-vector form,
Mÿ(t) + Cẏ(t) + Ky(t) = u(t), that is,[

m1 0
0 m2

] [
ÿ1(t)

ÿ2(t)

]
+

[
c1 + c2 −c2

−c2 c2

] [
ẏ1(t)

ẏ2(t)

]

+
[

k1 + k2 −k2

−k2 k2

] [
y1(t)

y2(t)

]
=

[
u1(t)

u2(t)

]

State-Space Description Next, we must derive a valid state-space
description for this system. That is, we specify the state variables and then
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derive the coefficient matrices A, B, C, and D. We present two distinct
cases:

a. Multiple-input, multiple-output: Both inputs and both outputs

b. Single-input, single-output: One input u2(t) and one output y1(t)

We start with the form of the two coupled second-order differential
equations above in which the highest-order derivatives ÿi(t), i = 1, 2, are
isolated. For both cases, the choice of state variables and the resulting
system dynamics matrix A will be identical. This always will be true,
i.e., A is fundamental to the system dynamics and does not change with
different choices of inputs and outputs. For case a, we use both inputs
ui(t); for case b, we must set u1(t) = 0.

Case a: Multiple-Input, Multiple-Output Since we have two second-
order differential equations, the state-space dimension is n = 4, and thus
we need to define four state variables xi(t), i = 1, 2, 3, 4. Again, energy-
storage elements guide our choice of states:

x1(t) = y1(t)

x2(t) = ẏ1(t) = ẋ1(t)

x3(t) = y2(t)

x4(t) = ẏ2(t) = ẋ3(t)

We will have four first-order ordinary differential equations derived
from the original two second-order differential equations. Two are ẋi(t) =
xi+1(t) from the state variable definitions above, for i = 1, 3. The
remaining two come from the original second-order differential equations,
rewritten by isolating accelerations and substituting the state variable
definitions in place of the outputs and their derivatives. Also, we must
divide by mi to normalize each equation.

ẋ1(t) = x2(t)

ẋ2(t) = −(k1 + k2)x1(t) − (c1 + c2)x2(t) + k2x3 + c2x4(t) + u1(t)

m1

ẋ3(t) = x4(t)

ẋ4(t) = k2x1(t) + c2x2(t) − k2x3(t) − c2x4(t) + u2(t)

m2
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The state differential equation is




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


 =




0 1 0 0
−(k1 + k2)

m1

−(c1 + c2)

m1

k2

m1

c2

m1
0 0 0 1
k2

m2

c2

m2

−k2

m2

−c2

m2







x1(t)

x2(t)

x3(t)

x4(t)




+




0 0
1

m1
0

0 0

0
1

m2




[
u1(t)

u2(t)

]

from which we identify coefficient matrices A and B:

A =




0 1 0 0
−(k1 + k2)

m1

−(c1 + c2)

m1

k2

m1

c2

m1
0 0 0 1
k2

m2

c2

m2

−k2

m2

−c2

m2




B =




0 0
1

m1
0

0 0

0
1

m2




The algebraic output equation is

[
y1(t)

y2(t)

]
=

[
1 0 0 0
0 0 1 0

] 


x1(t)

x2(t)

x3(t)

x4(t)


 +

[
0 0
0 0

] [
u1(t)

u2(t)

]

from which we identify coefficient matrices C and D:

C =
[

1 0 0 0
0 0 1 0

]
D =

[
0 0
0 0

]

This is a four-dimensional multiple-input, multiple-output system with
m = 2 inputs, p = 2 outputs, and n = 4 states.

Case b: Single-Input, Single-Output: One Input u2, One Output y1.
Remember, system dynamics matrix A does not change when considering
different system inputs and outputs. For the single-input, single-output
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case b, only coefficient matrices B,C, and D change. The state differential
equation now is:




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


 =




0 1 0 0
−(k1 + k2)

m1

−(c1 + c2)

m1

k2

m1

c2

m1
0 0 0 1
k2

m2

c2

m2

−k2

m2

−c2

m2







x1(t)

x2(t)

x3(t)

x4(t)




+




0
0
0
1

m2


 u2(t)

A is the same as that given previously, and the new input matrix is

B =




0
0
0
1

m2




The algebraic output equation now is:

y1(t) = [ 1 0 0 0 ]




x1(t)

x2(t)

x3(t)

x4(t)


 + [0]u2(t)

so that
C = [ 1 0 0 0 ] D = 0

This is still a four-dimensional system, now with m = 1 input and p = 1
output.

Continuing Example 2: Rotational Electromechanical System

This example also will continue throughout each chapter of this book,
building chapter by chapter to demonstrate the important topics.

Modeling A simplified dc servomotor model is shown in Figure 1.13.
The input is the armature voltage v(t) and the output is the motor shaft
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J

i(t)

L R

b
v(t)

+

−

t(t) w(t), q(t)

FIGURE 1.13 Continuing Example 2 system.

angular displacement θ(t). The constant parameters are armature cir-
cuit inductance and resistance L and R, respectively, and motor shaft
polar inertia and rotational viscous damping coefficient J and b, respec-
tively. The intermediate variables are armature current i(t), motor torque
τ(t), and motor shaft angular velocity ω(t) = θ̇ (t). In this Continuing
Example 2, we have simplified the model; we ignore back emf voltage,
and there is no gear ratio or load inertia included. For improvements on
each of these issues, see Continuing Exercise 3.

We can derive the dynamic model of this system in three steps: circuit
model, electromechanical coupling, and rotational mechanical model. For
the circuit model, Kirchhoff’s voltage law yields a first-order differential
equation relating the armature current to the armature voltage, that is,

L
di(t)

dt
+ Ri(t) = v(t)

Motor torque is modeled as being proportional to the armature current, so
the electromechanical coupling equation is

τ(t) = kTi(t)

where kT is the motor torque constant. For the rotational mechanical
model, Euler’s rotational law results in the following second-order dif-
ferential equation relating the motor shaft angle θ(t) to the input torque
τ(t):

J θ̈(t) + bθ̇(t) = τ(t)

To derive the overall system model, we need to relate the designated
system output θ(t) to the designated system input v(t). The intermediate
variables i(t) and τ(t) must be eliminated. It is convenient to use Laplace
transforms and transfer functions for this purpose rather than manipulat-
ing the differential equations. Here, we are applying a method similar to
Examples 1.5 and 1.6, wherein we use a transfer-function description to
derive the state equations. We have

I (s)

V (s)
= 1

Ls + R

T (s)

I (s)
= kT

�(s)

T (s)
= 1

J s2 + bs
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Multiplying these transfer functions together, we eliminate the intermedi-
ate variables to generate the overall transfer function:

�(s)

V (s)
= kT

(Ls + R)(J s2 + bs)

Simplifying, cross-multiplying, and taking the inverse Laplace transform
yields the following third-order linear time-invariant ordinary differential
equation:

LJ ¨̇θ(t) + (Lb + RJ)θ̈(t) + Rbθ̇(t) = kTv(t)

This equation is the mathematical model for the system of Figure 1.13.
Note that there is no rotational mechanical spring term in this equation,
i.e., the coefficient of the θ(t) term is zero.

State-Space Description Now we derive a valid state-space descrip-
tion for Continuing Example 2. That is, we specify the state variables
and derive the coefficient matrices A, B, C, and D. The results then are
written in matrix-vector form. Since we have a third-order differential
equation, the state-space dimension is n = 3, and thus we need to define
three state variables xi(t), i = 1, 2, 3. We choose

x1(t) = θ(t)

x2(t) = θ̇ (t) = ẋ1(t)

x3(t) = θ̈ (t) = ẋ2(t)

We will have three first-order differential equations, derived from the
original third-order differential equation. Two are ẋi(t) = xi+1(t) from the
state variable definitions above, for i = 1, 2. The remaining first-order dif-
ferential equation comes from the original third-order differential equation,
rewritten by isolating the highest derivative ¨̇θ(t) and substituting the state-
variable definitions in place of output θ(t) and its derivatives. Also, we
divide the third equation by LJ :

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −(Lb + RJ)

LJ
x3(t) − Rb

LJ
x2(t) + kT

LJ
v(t)
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The state differential equation is


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 1 0
0 0 1

0
−Rb

LJ

−(Lb + RJ)

LJ





 x1(t)

x2(t)

x3(t)


 +




0
0
kT

LJ


 v(t)

from which we identify coefficient matrices A and B:

A =



0 1 0
0 0 1

0
−Rb

LJ

−(Lb + RJ)

LJ


 B =




0
0
kT

LJ




The algebraic output equation is

y(t) = [ 1 0 0 ]


 x1(t)

x2(t)

x3(t)


 + [0]v(t)

from which we identify coefficient matrices C and D:

C = [ 1 0 0 ] D = 0

This is a three-dimensional single-input, single-output system with m = 1
input, p = 1 output, and n = 3 states.

1.7 HOMEWORK EXERCISES

We refer the reader to the Preface for a description of the four classes of
exercises that will conclude each chapter: Numerical Exercises, Analytical
Exercises, Continuing MATLAB Exercises, and Continuing Exercises.

Numerical Exercises

NE1.1 For the following systems described by the given transfer func-
tions, derive valid state-space realizations (define the state vari-
ables and derive the coefficient matrices A, B, C, and D).

a. G(s) = Y(s)

U(s)
= 1

s2 + 2s + 6

b. G(s) = Y(s)

U(s)
= s + 3

s2 + 2s + 6
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c. G(s) = Y(s)

U(s)
= 10

s3 + 4s2 + 8s + 6

d. G(s) = Y(s)

U(s)
= s2 + 4s + 6

s4 + 10s3 + 11s2 + 44s + 66

NE1.2 Given the following differential equations (or systems of differ-
ential equations), derive valid state-space realizations (define the
state variables and derive the coefficient matrices A, B,C, and D).
a. ẏ(t) + 2y(t) = u(t)

b. ÿ(t) + 3ẏ(t) + 10y(t) = u(t)

c. ¨̇y(t) + 2ÿ(t) + 3ẏ(t) + 5y(t) = u(t)

d. ÿ1(t) + 5y1(t) − 10[y2(t) − y1(t)] = u1(t)

2ÿ2(t) + ẏ2(t) + 10[y2(t) − y1(t)] = u2(t)

Analytical Exercises

AE1.1 Suppose that A is n × m and H is p × q. Specify dimensions for
the remaining matrices so that the following expression is valid.

[
A B

C D

] [
E F

G H

]
=

[
AE + BG AF + BH

CE + DG CF + DH

]

AE1.2 Suppose that A and B are square matrices, not necessarily of the
same dimension. Show that∣∣∣∣A 0

0 B

∣∣∣∣ = |A| · |B|

AE1.3 Continuing AE1.2, show that

∣∣∣∣ A 0
C B

∣∣∣∣ = |A| · |B|
AE1.4 Continuing AE1.3, show that if A is nonsingular,

∣∣∣∣ A D

C B

∣∣∣∣ = |A| · |B − CA−1D|

AE1.5 Suppose that X is n × m and Y is m × n. With Ik denoting the
k × k identity matrix for any integer k > 0, show that

|In − XY | = |Im − YX|
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Explain the significance of this result when m = 1. Hint: Apply
AE1.4 to [

Im Y

X In

]
and

[
In X

Y Im

]

AE1.6 Show that the determinant of a square upper triangular matrix
(zeros everywhere below the main diagonal) equals the product
if its diagonal entries.

AE1.7 Suppose that A and C are nonsingular n × n and m × m matrices,
respectively. Verify that

[A + BCD]−1 = A−1 − A−1B[C−1 + DA−1B]−1DA−1

What does this formula reduce to when m = 1 and C = 1?

AE1.8 Suppose that X is n × m and Y is m × n. With Ik denoting the
k × k identity matrix for any integer k > 0, show that

(In − XY)−1X = X(Im − YX)−1

when the indicated inverses exist.

AE1.9 Suppose that A and B are nonsingular matrices, not necessarily
of the same dimension. Show that[

A 0
0 B

]−1

=
[

A−1 0
0 B−1

]

AE1.10 Continuing AE1.8, derive expressions for
[

A 0
C B

]−1

and

[
A D

0 B

]−1

AE1.11 Suppose that A is nonsingular and show that
[

A D

C B

]−1

=
[

A−1 + E�−1F −E�−1

−�−1F �−1

]

in which � = B − CA−1D, E = A−1D, and F = CA−1.

AE1.12 Compute the inverse of the k × k Jordan block matrix

Jk(λ) =




λ 1 0 · · · 0
0 λ 1 · · · 0

0 0 λ
. . . 0

...
...

...
. . . 1

0 0 0 · · · λ
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AE1.13 Suppose that A : R
n → R

m is a linear transformation and S is a
subspace of R

m. Verify that the set

A−1
S = {x ∈ R

n|Ax ∈ S}
is a subspace of R

n. This subspace is referred to as the inverse
image of the subspace S under the linear transformation A.

AE1.14 Show that for conformably dimensioned matrices A and B, any
induced matrix norm satisfies

||AB|| ≤ ||A||||B||
AE1.15 Show that for A nonsingular, any induced matrix norm satisfies

||A−1|| ≥ 1

||A||
AE1.16 Show that for any square matrix A, any induced matrix norm

satisfies
||A|| ≥ ρ(A)

where ρ(A) � maxλi∈σ(A) |λi | is the spectral radius of A.

Continuing MATLAB Exercises

CME1.1 Given the following open-loop single-input, single-output
two–dimensional linear time-invariant state equations, namely,[

ẋ1(t)

ẋ2(t)

]
=

[ −1 0
0 −2

] [
x1(t)

x2(t)

]
+

[
1√
2

]
u(t)

y(t) = [ 1 −√
2/2 ]

[
x1(t)

x2(t)

]
+ [0]u(t)

find the associated open-loop transfer function H(s).

CME1.2 Given the following open-loop single-input, single-output
three–dimensional linear time-invariant state equations, namely

 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 0 1 0

0 0 1
−52 −30 −4





 x1(t)

x2(t)

x3(t)


 +


 0

0
1


u(t)

y(t) = [ 20 1 0 ]


 x1(t)

x2(t)

x3(t)


 + [0]u(t)

find the associated open-loop transfer function H(s).
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CME1.3 Given the following open-loop single-input, single-output
fourth–order linear time-invariant state equations, namely,




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


 =




0 1 0 0
0 0 1 0
0 0 0 1

−962 −126 −67 −4







x1(t)

x2(t)

x3(t)

x4(t)


 +




0
0
0
1


u(t)

y(t) = [300 0 0 0 ]




x1(t)

x2(t)

x3(t)

x4(t)


 + [0]u(t)

find the associated open-loop transfer function H(s).

CME1.4 Given the following open-loop single-input, single-output
four–dimensional linear time-invariant state equations, namely,




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)


 =




0 1 0 0
0 0 1 0
0 0 0 1

−680 −176 −86 −6







x1(t)

x2(t)

x3(t)

x4(t)


 +




0
0
0
1


u(t)

y(t) = [ 100 20 10 0 ]




x1(t)

x2(t)

x3(t)

x4(t)


 + [0]u(t)

find the associated open-loop transfer function H(s).

Continuing Exercises

CE1.1a A mechanical system is represented by the three degree-of-
freedom linear time-invariant system shown in Figure 1.14.
There are three input forces ui(t) and three output displacements
yi(t), i = 1, 2, 3. The constant parameters are the masses mi, i =
1, 2, 3, the spring coefficients kj , and the damping coefficients
cj , j = 1, 2, 3, 4. Derive the mathematical model for this system,
i.e., draw the free-body diagrams and write the correct number
of independent ordinary differential equations. All motion is
constrained to be horizontal. Outputs yi(t) are each measured
from the neutral spring equilibrium location of each mass mi .
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y1(t)

m1 m2 m3

k1 k2 k3

c1 c2 c3

k4

c4

y2(t) y3(t)

u1(t) u2(t) u3(t)

FIGURE 1.14 Diagram for Continuing Exercise 1.

Also express the results in matrix-vector form Mÿ(t) + Cẏ(t) +
Ky(t) = u(t).

CE1.1b Derive a valid state-space realization for the CE1.1a system. That
is, specify the state variables and derive the coefficient matrices
A, B, C, and D. Write out your results in matrix-vector form.
Give the system order and matrix/vector dimensions of your
result. Consider three distinct cases:

i. Multiple-input, multiple-output: three inputs, three displace-
ment outputs.

ii. Multiple-input, multiple-output: two inputs [u1(t) and u3(t)

only], all three displacement outputs.
iii. Single-input, single-output: input u2(t) and output y3(t).

CE1.2a The nonlinear, inherently unstable inverted pendulum is shown in
Figure 1.15. The goal is to maintain the pendulum angle θ(t) = 0
by using a feedback controller with a sensor (encoder or poten-
tiometer) for θ(t) and an actuator to produce an input force f (t).
The cart mass is m1, the pendulum point mass is m2, and we
assume that the pendulum rod is massless. There are two possi-
ble outputs, the pendulum angle θ(t) and the cart displacement
w(t). The classical inverted pendulum has only one input, the
force f (t). We will consider a second case, using a motor to
provide a second input τ(t) (not shown) at the rotary joint of
Figure 1.15. For both cases (they will be very similar), derive the
nonlinear model for this system, i.e., draw the free-body diagrams
and write the correct number of independent ordinary differential
equations. Alternately, you may use the Lagrangian dynamics
approach that does not require free-body diagrams. Apply the
steps outlined in Section 1.4 to derive a linearized model about
the unstable equilibrium condition corresponding to zero angular
displacement.
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Y

f (t)
X

g
L

m1

w(t)

m2

q(t)

FIGURE 1.15 Diagram for Continuing Exercise 2.

CE1.2b Derive a valid state-space description for the system of
Figure 1.15. That is, specify the state variables and derive the
coefficient matrices A, B, C, and D. Write out your results in
matrix-vector form. Give the system order and matrix-vector
dimensions of your result. Consider three distinct cases:

i. Single-input, single-output: input f (t) and output θ(t).
ii. Single-input, multiple-output: one input f (t) and two outputs

w(t) and θ(t).
iii. Multiple-input, multiple-output: two inputs f (t) and τ(t)

(add a motor to the inverted pendulum rotary joint, traveling
with the cart) and two outputs w(t) and θ(t).

CE1.3a Figure 1.16 shows a single robot joint/link driven through a gear
ratio n by an armature-controlled dc servomotor. The input is
the dc armature voltage vA(t) and the output is the load-shaft
angle θL(t). Derive the mathematical model for this system;
i.e., develop the circuit differential equation, the electromechan-
ical coupling equations, and the rotational mechanical differen-
tial equation. Eliminate intermediate variables and simplify; it
will be convenient to use a transfer-function approach. Assume
the mass-moment of inertia of all outboard links plus any load
JL(t) is a constant (a reasonable assumption when the gear ratio
n = ωM/ωL is much greater than 1, as it is in the case of industrial
robots). The parameters in Figure 1.16 are summarized below.

CE1.3b Derive a valid state-space description for the system of
Figure 1.16. That is, specify the state variables and derive the
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L R n
JL(t)

bL

vA(t) JM

bM+

−
vB(t)

+

−
iA(t)

qM(t)

wM(t)

tM(t) qL(t)

wL(t)

tL(t)

FIGURE 1.16 Diagram for Continuing Exercise 3.

vA(t) armature voltage L armature inductance R armature resistance
iA(t) armature current vB(t) back emf voltage kB back emf constant
JM motor inertia bM motor viscous damping τM(t) motor torque
kT torque constant ωM(t) motor shaft velocity θM(t) motor shaft angle
n gear ratio JL(t) load inertia bL load viscous damping
τL(t) load shaft torque ωL(t) load shaft velocity θL(t) load shaft angle

coefficient matrices A, B, C, and D. Write out your results in
matrix-vector form. Give the system order and matrix-vector
dimensions of your result. Consider two distinct cases:
i. Single-input, single-output: armature voltage vA(t) as the

input and robot load shaft angle θL(t) as the output.
ii. Single-input, single-output: armature voltage vA(t) as the

input and robot load shaft angular velocity ωL(t) as the output.

CE1.4 The nonlinear ball and beam apparatus was introduced in
Section 1.4, Example 1.7. This system will form the basis for
Continuing Exercise 4. Figure 1.8 shows the ball and beam
system geometry, where the goal is to control the position of the
ball on the slotted rotating beam by applying a torque τ(t) to the
beam. CE1.4a and CE1.4b are already completed for you; i.e., the
nonlinear equations of motion have been presented, and a valid
state-space realization has been derived and linearized about the
given nominal trajectory. Thus the assignment here is to rederive
these steps for Continuing Exercise 4. As in Example 1.7, use
the single-input, single-output model with input torque τ(t) and
output ball position p(t).
For all ensuing Continuing Exercise 4 assignments, use a special
case of the time-varying linear state equation (1.6) to obtain a lin-
ear time-invariant state-space realization of the nonlinear model;
use zero velocity v0 = 0 and constant nominal ball position
p̃(t) = p0. Derive the linear time-invariant coefficient matrices
A, B, C, and D for this special case.
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m

J

k

M

e

f (t)

q(t)

n(t)

q(t)

FIGURE 1.17 Diagram for Continuing Exercise 5 (top view).

CE1.5a A nonlinear proof-mass actuator system is shown in Figure 1.17.
This system has been proposed as a nonlinear controls bench-
mark problem (Bupp et al., 1998). However, in this book, the
system will be linearized about a nominal trajectory, and the lin-
earization then will be used in all ensuing chapters as Continuing
Exercise 5.
This is a vibration-suppression system wherein the control goal
is to reject an unknown, unwanted disturbance force f (t) by
using the control torque n(t) to drive the unbalanced rotating
pendulum (proof mass) to counter these disturbances. The block
of mass M is connected to the wall via a spring with spring
constant k and is constrained to translate as shown; q(t) is the
block displacement. The rotating pendulum has a point mass m

at the tip, and the pendulum has mass moment of inertia J . The
pendulum length is e and the pendulum angle θ(t) is measured
as shown. Assume that the system is operating in the horizontal
plane, so gravity need not be considered. Derive the nonlinear
model for this system.

CE1.5b For nominal equilibria corresponding to zero control torque, lin-
earize the nonlinear model from CE1.5a and derive a valid state-
space description. That is, follow the procedure of Section 1.4
and derive the linearized coefficient matrices A, B,C, and D.
Write out your results in matrix-vector form. Give the system
order and matrix-vector dimensions of your result. Consider only
the single-input, single-output case with input torque n(t) and
output displacement q(t). In ensuing problems, the control objec-
tive will be to regulate nonequilibrium initial conditions.
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STATE-SPACE
FUNDAMENTALS

Chapter 1 presented the state-space description for linear time-invariant
systems. This chapter establishes several fundamental results that follow
from this representation, beginning with a derivation of the state equation
solution. In the course of this analysis we encounter the matrix exponen-
tial, so named because of many similarities with the scalar exponential
function. In terms of the state-equation solution, we revisit several famil-
iar topics from linear systems analysis, including decomposition of the
complete response into zero-input and zero-state response components,
characterizing the system impulse response that permits the zero-state
response to be cast as the convolution of the impulse response with the
input signal, and the utility of the Laplace transform in computing the
state-equation solution and defining the system transfer function.

The chapter continues with a more formal treatment of the state-space
realization issue and an introduction to the important topic of state coor-
dinate transformations. As we will see, a linear transformation of the state
vector yields a different state equation that also realizes the system’s input-
output behavior represented by either the associated impulse response or
transfer function. This has the interesting consequence that state-space
realizations are not unique; beginning with one state-space realization,
other realizations of the same system may be derived via a state coor-
dinate transformation. We will see that many topics in the remainder of
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this book are facilitated by the flexibility afforded by this nonuniqueness.
For instance, in this chapter we introduce the so-called diagonal canon-
ical form that specifies a set of decoupled, scalar, first-order ordinary
differential equations that may be solved independently.

This chapter also illustrates the use of MATLAB in supporting the compu-
tations encountered earlier. As in all chapters, these demonstrations will
revisit the MATLAB Continuing Example along with Continuing Examples 1
and 2.

2.1 STATE EQUATION SOLUTION

From Chapter 1, our basic mathematical model for a linear time-invariant
system consists of the state differential equation and the algebraic output
equation:

ẋ(t) = Ax(t) + Bu(t) x(t0) = x0

y(t) = Cx(t) + Du(t) (2.1)

where we assume that the n × n system dynamics matrix A, the n × m

input matrix B, the p × n output matrix C, and the p × m direct transmis-
sion matrix D are known constant matrices. The first equation compactly
represents a set of n coupled first-order differential equations that must be
solved for the state vector x(t) given the initial state x(t0) = x0 and input
vector u(t). The second equation characterizes a static or instantaneous
dependence of the output on the state and input. As we shall see, the real
work lies in deriving a solution expression for the state vector. With that
in hand, a direct substitution into the second equation yields an expression
for the output.

Prior to deriving a closed-form solution of Equation (2.1) for the n–di-
mensional case as outlined above, we first review the solution of scalar
first-order differential equations.

Solution of Scalar First-Order Differential Equations

Consider the one–dimensional system represented by the scalar differen-
tial equation

ẋ(t) = ax(t) + bu(t) x(t0) = x0 (2.2)

in which a and b are scalar constants, and u(t) is a given scalar input
signal. A traditional approach for deriving a solution formula for the scalar
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state x(t) is to multiply both sides of the differential equation by the
integrating factor e−a(t−t0) to yield

d

d t
(e−a(t−t0)x(t)) = e−a(t−t0)ẋ(t) − e−a(t−t0)ax(t)

= e−a(t−t0)bu(t)

We next integrate from t0 to t and invoke the fundamental theorem of
calculus to obtain

e−a(t−t0)x(t) − e−a(t−t0)x(t0) =
∫ t

t0

d

d t
(e−a(τ−t0)x(τ )) dτ

=
∫ t

t0

e−a(τ−t0)bu(τ) dτ.

After multiplying through by ea(t−t0) and some manipulation, we get

x(t) = ea(t−t0)x0 +
∫ t

t0

ea(t−τ )bu(τ) dτ (2.3)

which expresses the state response x(t) as a sum of terms, the first owing
to the given initial state x(t0) = x0 and the second owing to the specified
input signal u(t). Notice that the first component characterizes the state
response when the input signal is identically zero. We therefore refer to
the first term as the zero-input response component. Similarly, the sec-
ond component characterizes the state response for zero initial state. We
therefore refer to the second term as the zero-state response component.

The Laplace transform furnishes an alternate solution strategy. For this,
we assume without loss of generality that t0 = 0 and transform the differ-
ential equation, using linearity and time-differentiation properties of the
Laplace transform, into

sX(s) − x0 = aX(s) + bU(s)

in which X(s) and U(s) are the Laplace transforms of x(t) and u(t),
respectively. Straightforward algebra yields

X(s) = 1

s − a
x0 + b

s − a
U(s)
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From the convolution property of the Laplace transform, we obtain

x(t) = eatx0 + eat ∗ bu(t)

= eatx0 +
∫ t

0
ea(t−τ )bu(τ) dτ

which agrees with the solution (2.3) derived earlier for t0 = 0.
If our first-order system had an associated scalar output signal y(t)

defined by the algebraic relationship

y(t) = cx(t) + d u(t) (2.4)

then by simply substituting the state response we obtain

y(t) = ceatx0 +
∫ t

0
cea(t−τ )bu(τ) dτ + du(t)

which also admits a decomposition into zero-input and zero-state response
components. In the Laplace domain, we also have

Y(s) = c

s − a
x0 + cb

s − a
U(s)

We recall that the impulse response of a linear time-invariant system is
the system’s response to an impulsive input u(t) = δ(t) when the system
is initially at rest, which in this setting corresponds to zero initial state
x0 = 0. By interpreting the initial time as t0 = 0−, just prior to when
the impulse occurs, the zero-state response component of y(t) yields the
system’s impulse response, that is,

h(t) =
∫ t

0−
cea(t−τ )bδ(τ ) dτ + dδ(t)

= ceatb + dδ(t)

(2.5)

where we have used the sifting property of the impulse to evaluate the inte-
gral. Now, for any input signal u(t), the zero-input response component
of y(t) can be expressed as

∫ t

0−
cea(t−τ )bu(τ) dτ + du(t) =

∫ t

0−
[cea(t−τ )b + dδ(t − τ)]u(τ) dτ

=
∫ t

0−
h(t − τ)u(τ) dτ

= h(t) ∗ u(t)
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which should look familiar to the reader. Alternatively, in the Laplace
domain, the system’s transfer function H(s) is, by definition,

H(s) = Y(s)

U(s)

∣∣∣∣
zero initial state

=
(

cb

s − a
+ d

)

and so the impulse response h(t) and transfer function H(s) form a
Laplace transform pair, as we should expect.

Our approach to deriving state-equation solution formulas for the n-
dimensional case and discussing various systems-related implications in
both the time and Laplace domains is patterned after the preceding devel-
opment, but greater care is necessary to tackle the underlying matrix-
vector computations correctly. Before proceeding, the reader is encouraged
to ponder, however briefly, the matrix-vector extensions of the preceding
computations.

State Equation Solution

In this subsection we derive a closed-form solution to the n-dimensional
linear time invariant state equation (2.1) given a specified initial state
x(t0) = x0 and input vector u(t).

Homogeneous Case We begin with a related homogeneous matrix
differential equation

Ẋ(t) = AX(t) X(t0) = I (2.6)

where I is the n × n identity matrix. We assume an infinite power series
form for the solution

X(t) =
∞∑

k=0

Xk(t − t0)
k (2.7)

Each term in the sum involves an n × n matrix Xk to be determined and
depends only on the elapsed time t − t0, reflecting the time-invariance of
the state equation. The initial condition for Equation (2.6) yields X(t0) =
X0 = I . Substituting Equation (2.7) into Equation (2.6), formally differ-
entiating term by term with respect to time, and shifting the summation
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index gives

∞∑
k=0

(k + 1)Xk+1(t − t0)
k = A

( ∞∑
k=0

Xk(t − t0)
k

)

=
∞∑

k=0

A Xk(t − t0)
k

By equating like powers of t − t0, we obtain the recursive relationship

Xk+1 = 1

k + 1
AXk k ≥ 0

which, when initialized with X0 = I , leads to

Xk = 1

k!
Ak k ≥ 0

Substituting this result into the power series (2.7) yields

X(t) =
∞∑

k=0

1

k!
Ak(t − t0)

k

We note here that the infinite power series (2.7) has the requisite con-
vergence properties so that the infinite power series resulting from term-
by-term differentiation converges to Ẋ(t), and Equation (2.6) is satisfied.

Recall that the scalar exponential function is defined by the following
infinite power series

eat = 1 + at + 1
2a2t2 + 1

6a
3t3 + · · ·

=
∞∑

k=0

1

k!
aktk

Motivated by this, we define the so-called matrix exponential via

eAt = I + At + 1
2A2t2 + 1

6A
3t3 + · · ·

=
∞∑

k=0

1

k!
Aktk

(2.8)
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from which the solution to the homogeneous matrix differential
equation (2.6) can be expressed compactly as

X(t) = eA(t−t0)

It is important to point out that eAt is merely notation used to represent
the power series in Equation (2.8). Beyond the scalar case, the matrix
exponential never equals the matrix of scalar exponentials corresponding
to the individual elements in the matrix A. That is,

eAt �= [eaij t ]

Properties that are satisfied by the matrix exponential are collected in
the following proposition.

Proposition 2.1 For any real n × n matrix A, the matrix exponential eAt

has the following properties:

1. eAt is the unique matrix satisfying

d

d t
eAt = AeAt eAt

∣∣
t=0

= In

2. For any t1 and t2 , eA(t1 +t2 ) = eAt1 eAt2 . As a direct consequence, for
any t

I = eA(0 ) = eA(t−t) = eAte−At

Thus eAt is invertible (nonsingular) for all t with inverse

[
eAt

]−1 = e−At

3. A and eAt commute with respect to matrix multiplication, that is,
AeAt = eAtA for all t .

4. [eAt ]T = eAT t for all t.
5. For any real n × n matrix B, e(A+B)t = eAteBt for all t if and only
if AB = BA, that is, A and B commute with respect to matrix multipli-
cation. �

The first property asserts the uniqueness of X(t) = eA(t−t0) as a solution
to Equation (2.6). This property is useful in situations where we must ver-
ify whether a given time–dependent matrix X(t) is the matrix exponential
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for an associated matrix A. To resolve this issue, it is not necessary com-
pute eAt from scratch via some means. Rather, it suffices to check whether
Ẋ(t) = AX(t) and X(0) = I . If a candidate for the matrix exponential is
not provided, then it must be computed directly. The defining power series
is, except in special cases, not especially useful in this regard. However,
there are special cases in which closed-form solutions can be deduced, as
shown in the following two examples.

Example 2.1 Consider the 4 × 4 matrix with ones above the main diag-
onal and zeros elsewhere:

A =



0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




As called for by the power series (2.8), we compute powers of A:

A2 =



0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 A3 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




A4 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




from which it follows that Ak = 0, for k ≥ 4, and consequently, the power
series (2.8) contains only a finite number of nonzero terms:

eAt = I + At + 1
2A

2t2 + 1
6A3t3

=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 +




0 t 0 0
0 0 t 0
0 0 0 t

0 0 0 0


 +




0 0 1
2 t

2 0
0 0 0 1

2 t2

0 0 0 0
0 0 0 0




+




0 0 0 1
6 t

3

0 0 0 0
0 0 0 0
0 0 0 0


 =




1 t 1
2 t

2 1
6 t

3

0 1 t 1
2 t

2

0 0 1 t

0 0 0 1
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Inspired by this result, we claim the following outcome for the n–di-
mensional case:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


 ⇒ eAt =




1 t
1

2
t2 · · · 1

(n − 1)!
tn−1

0 1 t · · · 1

(n − 2)!
tn−2

...
...

...
. . .

...

0 0 0 · · · t

0 0 0 · · · 1




the veracity of which can be verified by checking that the first property
of Proposition 2.1 is satisfied, an exercise left for the reader. �

Example 2.2 Consider the diagonal n × n matrix:

A =




λ1 0 · · · 0 0
0 λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · λn−1 0
0 0 · · · 0 λn




Here, the power series (2.8) will contain an infinite number of terms when
at least one λ1 �= 0, but since diagonal matrices satisfy

Ak =




λk
1 0 · · · 0 0

0 λk
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · λk
n−1 0

0 0 · · · 0 λk
n




each term in the series is a diagonal matrix, and

eAt =
∞∑

k=0

1

k!




λk
1 0 · · · 0 0

0 λk
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · λk
n−1 0

0 0 · · · 0 λk
n




t k
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=




∞∑
k=0

1
k!λ

k
1t

k 0 · · · 0 0

0
∞∑

k=0

1
k!λ

k
2t

k · · · 0 0

...
...

. . .
...

...

0 0 · · ·
∞∑

k=0

1
k!λ

k
n−1t

k 0

0 0 · · · 0
∞∑

k=0

1
k!λ

k
nt

k




On observing that each diagonal entry specifies a power series converging
to a scalar exponential function, we have




eλ1t 0 · · · 0 0
0 eλ2t · · · 0 0
...

...
. . .

...
...

0 0 · · · eλn−1t 0
0 0 · · · 0 eλnt




�

Another useful property of the matrix exponential is that the infinite
power series definition (2.8) can be reduced to a finite power series

eAt =
n−1∑
k=0

αk(t)A
k (2.9)

involving scalar analytic functions α0(t), α1(t), . . . , αn−1(t). As shown
in Rugh (1996), the existence of the requisite functions can be verified by
equating

d

d t
eAt = d

d t

[
n−1∑
k=0

αk(t)A
k

]
=

n−1∑
k=0

α̇k(t)A
k

and

A

[
n−1∑
k=0

αk(t)A
k

]
=

n−1∑
k=0

αk(t)A
k+1

We invoke the Cayley-Hamilton theorem (see Appendix B, Section 8)
which, in terms of the characteristic polynomial |λI − A| = λn
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+ an−1λ
n−1 + · · · + a1λ + a0, allows us to write

An = −a0I − a1A − · · · − an−1A
n−1

Substituting this identity into the preceding summation yields

n−1∑
k=0

αk(t)A
k+1 =

n−2∑
k=0

αk(t)A
k+1 + αn−1(t)A

n

=
n−2∑
k=0

αk(t)A
k+1 −

n−1∑
k=0

akαn−1(t)A
k

= −a0αn−1(t)I +
n−1∑
k=1

[αk−1(t) − akαn−1(t)]A
k

By equating the coefficients of each power of A in the finite series
representation for (d/dt)eAt and the preceding expression for AeAt , we
obtain

α̇0(t) = −a0αn−1(t)

α̇1(t) = α0(t) − a1αn−1(t)

α̇2(t) = α1(t) − a2αn−1(t)

...

α̇n−1(t) = αn−2(t) − an−1αn−1(t)

This coupled set of first-order ordinary differential equations can be writ-
ten in matrix-vector form to yield the homogenous linear state equation




α̇0(t)

α̇1(t)

α̇2(t)
...

α̇n−1(t)


 =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1







α0(t)

α1(t)

α2(t)
...

αn−1(t)




Using the matrix exponential property eA·0 = I , we are led to the initial
values α0(0) = 1 and α1(0) = α2(0) = · · · = αn−1(0) = 0 which form the
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initial state vector 


α0(0)

α1(0)

α2(0)
...

αn−1(0)


 =




1
0
0
...

0




We have thus characterized coefficient functions that establish the finite
power series representation of the matrix exponential in Equation (2.9) as
the solution to this homogeneous linear state equation with the specified
initial state.

Several technical arguments in the coming chapters are greatly facil-
itated merely by the existence of the finite power series representation
in Equation (2.9) without requiring explicit knowledge of the functions
α0(t), α1(t), . . . , αn−1(t). In order to use Equation (2.9) for computational
purposes, the preceding discussion is of limited value because it indirectly
characterizes these coefficient functions as the solution to a homoge-
neous linear state equation that, in turn, involves another matrix expo-
nential. Fortunately, a more explicit characterization is available which
we now discuss for the case in which the matrix A has distinct eigen-
values λ1, λ2, . . . , λn. A scalar version of the preceding argument allows
us to conclude that the coefficient functions α0(t), α1(t), . . . , αn−1(t) also
provide a finite series expansion for the scalar exponential functions eλit ,
that is,

eλit =
n−1∑
k=0

αk(t)λ
k
i , i = 1, . . . , n

which yields the following system of equations




1 λ1 λ2
1 · · · λn−1

1

1 λ2 λ2
2 · · · λn−1

2
...

...
...

. . .
...

1 λn λ2
n · · · λn−1

n







α0(t)

α1(t)

α2(t)
...

αn−1(t)


 =




eλ1t

eλ2t

...

eλnt




The n × n coefficient matrix is called a Vandermonde matrix that is non-
singular when and only when the eigenvalues λ1, λ2, . . . , λn are distinct.
In this case, this system of equations can be solved to uniquely determine
the coefficient functions α0(t), α1(t), . . . , αn−1(t).
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Example 2.3 Consider the upper-triangular 3 × 3 matrix

A =
[ 0 −2 1

0 −1 −1
0 0 −2

]

with distinct eigenvalues extracted from the main diagonal: λ1 = 0, λ2 =
−1, and λ3 = −2. The associated Vandermonde matrix is




1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3


 =


 1 0 0

1 −1 1
1 −2 4




which has a determinant of −2 is therefore nonsingular. This yields the
coefficient functions


α0(t)

α1(t)

α2(t)


 =


 1 0 0

1 −1 1
1 −2 4




−1 
 eλ1t

eλ1t

eλ1t


 =




1 0 0
3
2 −2 1

2
1
2 −1 1

2





 1

e−t

e−2t




=



1
3
2 − 2e−t + 1

2e
−2t

1
2 − e−t + 1

2e
−2t




The matrix exponential is then

eAt = α0(t)I + α1(t)A + α2(t)A
2

= (1)


 1 0 0

0 1 0
0 0 1


 + (

3
2 − 2e−t + 1

2e
−2t

)
 0 −2 1

0 −1 −1
0 0 −2




+ (
1
2 − e−t + 1

2e
−2t

)
 0 2 0

0 1 3
0 0 4




=

 1 −2 + 2e−t 3

2 − 2e−t + 1
2e−2t

0 e−t −e−t + e−2t

0 0 e−2t


 �

The interested reader is referred to Reid (1983) for modifications to this
procedure to facilitate the treatment of complex conjugate eigenvalues and
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to cope with the case of repeated eigenvalues. Henceforth, we will rely
mainly on the Laplace transform for computational purposes, and this will
pursued later in this chapter.

The linear time-invariant state equation (2.1) in the unforced case [u(t)

≡ 0] reduces to the homogeneous state equation

ẋ(t) = Ax(t) x(t0) = x0 (2.10)

For the specified initial state, the unique solution is given by

x(t) = eA(t−t0)x0 (2.11)

which is easily verified using the first two properties of the matrix expo-
nential asserted in Proposition 2.1.

A useful interpretation of this expression is that the matrix exponential
eA(t−t0) characterizes the transition from the initial state x0 to the state x(t)

at any time t ≥ t0. As such, the matrix exponential eA(t−t0) is often referred
to as the state-transition matrix for the state equation and is denoted by
�(t, t0). The component φij (t, t0) of the state-transition matrix is the time
response of the ith state variable resulting from an initial condition of 1 on
the j th state variable with zero initial conditions on all other state variables
(think of the definitions of linear superposition and matrix multiplication).

General Case Returning to the general forced case, we derive a solu-
tion formula for the state equation (2.1). For this, we define

z(t) = e−A(t−t0)x(t)

from which z(t0) = e−A(t0−t0)x(t0) = x0 and

ż(t) = d

d t
[e−A(t−t0)]x(t) + e−A(t−t0)ẋ(t)

= (−A)e−A(t−t0)x(t) + e−A(t−t0)[Ax(t) + Bu(t)]

= e−A(t−t0)Bu(t)

Since the right-hand side above does not involve z(t), we may solve for
z(t) by applying the fundamental theorem of calculus

z(t) = z(t0) +
∫ t

t0

ż(τ )dτ

= z(t0) +
∫ t

t0

e−A(τ−t0)Bu(τ)dτ
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From our original definition, we can recover x(t) = eA(t−t0)z(t) and
x(t0) = z(t0) so that

x(t) = eA(t−t0)

[
z(t0) +

∫ t

t0

e−A(τ−t0)Bu(τ) dτ

]

= eA(t−t0)x(t0) +
∫ t

t0

eA(t−t0)e−A(τ−t0)Bu(τ) dτ

= eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ )Bu(τ) dτ

(2.12)

This constitutes a closed-form expression (the so-called variation-of-
constants formula) for the complete solution to the linear time-invariant
state equation that we observe is decomposed into two terms. The first
term is due to the initial state x(t0) = x0 and determines the solution in
the case where the input is identically zero. As such, we refer to it as the
zero-input response xzi(t) and often write

xzi(t) = eA(t−t0)x(t0) (2.13)

The second term is due to the input signal and determines the solution in
the case where the initial state is the zero vector. Accordingly, we refer
to it as the zero-state response xzs(t) and denote

xzs(t) =
∫ t

t0

eA(t−τ )Bu(τ) dτ (2.14)

so that by the principle of linear superposition, the complete response
is given by x(t) = xzi(t) + xzs(t). Having characterized the complete
state response, a straightforward substitution yields the complete output
response

y(t) = CeA(t−t0)x(t0) +
∫ t

t0

CeA(t−τ )Bu(τ) dτ + Du(t) (2.15)

which likewise can be decomposed into zero-input and zero-state response
components, namely,

yzi(t) = CeA(t−t0)x(t0) yzs(t) =
∫ t

t0

CeA(t−τ )Bu(τ) dτ + Du(t) (2.16)
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2.2 IMPULSE RESPONSE

We assume without loss of generality that t0 = 0 and set the initial state
x(0) = 0 to focus on the zero-state response, that is,

yzs(t) =
∫ t

0−
CeA(t−τ )Bu(τ) dτ + Du(t)

=
∫ t

0−
[CeA(t−τ )B + Dδ(t − τ)]u(τ) dτ

Also, we partition coefficient matrices B and D column-wise

B = [
b1 b2 · · · bm

]
D = [

d1 d2 · · · dm

]

With {e1, . . . , em} denoting the standard basis for R
m, an impulsive input

on the ith input u(t) = eiδ(t), i = 1, . . . , m, yields the response

∫ t

0
CeA(t−τ )Bei δ(τ ) dτ + Deiδ(t) = CeAtbiδ(t) + diδ(t) t ≥ 0

This forms the ith column of the p × m impulse response matrix

h(t) = CeAtB + Dδ(t) t ≥ 0 (2.17)

in terms of which the zero-state response component has the familiar
characterization

yzs(t) =
∫ t

0
h(t − τ)u(τ) dτ (2.18)

2.3 LAPLACE DOMAIN REPRESENTATION

Taking Laplace transforms of the state equation (2.1) with t0 = 0, using
linearity and time-differentiation properties, yields

sX(s) − x0 = AX(s) + BU(s)

Grouping X(s) terms on the left gives

(sI − A)X(s) = x0 + BU(s)
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Now, from basic linear algebra, the determinant |sI − A| is a degree-n
monic polynomial (i.e., the coefficient of sn is 1), and so it is not the
zero polynomial. Also, the adjoint of (sI − A) is an n × n matrix of
polynomials having degree at most n − 1. Consequently,

(sI − A)−1 = adj(sI − A)

|sI − A|

is an n × n matrix of rational functions in the complex variable s. More-
over, each element of (sI − A)−1 has numerator degree that is guaranteed
to be strictly less than its denominator degree and therefore is a strictly
proper rational function.

The preceding equation now can be solved for X(s) to obtain

X(s) = (sI − A)−1x0 + (sI − A)−1BU(s) (2.19)

As in the time domain, we can decompose X(s) into zero-input and
zero-state response components X(s) = Xzi(s) + Xzs(s) in which

Xzi(s) = (sI − A)−1x0 Xzs(s) = (sI − A)−1BU(s) (2.20)

Denoting a Laplace transform pair by f (t) ↔ F(s), we see that since

xzi(t) = eAtx0 ↔ Xzi(s) = (sI − A)−1x0

holds for any initial state, we can conclude that

eAt ↔ (sI − A)−1 (2.21)

This relationship suggests an approach for computing the matrix exponen-
tial by first forming the matrix inverse (sI − A)−1, whose elements are
guaranteed to be rational functions in the complex variable s, and then
applying partial fraction expansion element by element to determine the
inverse Laplace transform that yields eAt .

Taking Laplace transforms through the output equation and substituting
for X(s) yields

Y(s) = CX(s) + DU(s)

= C(sI − A)−1x0 + [C(sI − A)−1B + D]U(s)
(2.22)
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from which zero-input and zero-state response components are identified
as follows:

Yzi(s) = C(sI − A)−1x0 Yzs(s) = [C(sI − A)−1B + D]U(s) (2.23)

Focusing on the zero-state response component, the convolution property
of the Laplace transform indicates that

yzs(t) =
∫ t

0
h(t − τ)u(τ) dτ ↔ Yzs(s) = [C(sI − A)−1B + D]U(s)

(2.24)

yielding the familiar relationship between the impulse response and trans-
fer function

h(t) = CeAtB + Dδ(t) ↔ H(s) = C(sI − A)−1B + D (2.25)

where, in the multiple-input, multiple-output case, the transfer function is
a p × m matrix of rational functions in s.

Example 2.4 In this example we solve the linear second-order ordinary
differential equation ÿ(t) + 7ẏ(t) + 12y(t) = u(t), given that the input
u(t) is a step input of magnitude 3 and the initial conditions are y(0) =
0.10 and ẏ(0) = 0.05. The system characteristic polynomial is s2 + 7s +
12 = (s + 3)(s + 4), and the system eigenvalues are s1,2 = −3, −4. These
eigenvalues are distinct, negative real roots, so the system is overdamped.
Using standard solution techniques, we find the solution is

y(t) = 0.25 − 0.55e−3t + 0.40e−4t t ≥ 0

We now derive this same solution using the techniques of this chapter.
First, we must derive a valid state-space description. We define the state
vector as

x(t) =
[

x1(t)

x2(t)

]
=

[
y(t)

ẏ(t)

]

Then the state differential equation is

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−12 −7

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t)
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We are given that u(t) is a step input of magnitude 3, and the initial
state is x(0) = [y(0), ẏ(0)]T = [0.10, 0.05]T. We can solve this problem
in the Laplace domain, by first writing

X(s) = (sI − A)−1X(0) + (sI − A)−1BU(s)

(sI − A) =
[

s −1
12 s + 7

]

(sI − A)−1 = 1

s2 + 7s + 12

[
s + 7 1
−12 s

]

where the denominator s2 + 7s + 12 = (s + 3)(s + 4) is |sI − A|, the
characteristic polynomial. Substituting these results into the preceding
expression we obtain:

X(s) = 1

s2 + 7s + 12

[
s + 7 1
−12 s

] [
0.10
0.05

]

+ 1

s2 + 7s + 12

[
s + 7 1
−12 s

] [
0
1

]
3

s

where the Laplace transform of the unit step function is
1

s
. Simplifying,

we find the state solution in the Laplace domain:

X(s) =
[

X1(s)

X2(s)

]
= 1

(s + 3)(s + 4)


 0.10s + 0.75 + 3

s

0.05s + 1.80




=




0.10s2 + 0.75s + 3

s(s + 3)(s + 4)

0.05s + 1.80

(s + 3)(s + 4)




A partial fraction expansion of the first state variable yields the residues

C1 = 0.25

C2 = −0.55

C3 = 0.40
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The output y(t) equals the first state variable x1(t), found by the inverse
Laplace transform:

y(t) = x1(t) = L−1{X1(s)}

= L−1

{
0.25

s
− 0.55

s + 3
+ 0.40

s + 4

}

= 0.25 − 0.55e−3t + 0.40e−4t t ≥ 0

which agrees with the stated solution. Now we find the solution for the sec-
ond state variable x2(t) in a similar manner. A partial fraction expansion
of the second state variable yields the residues:

C1 = 1.65

C2 = −1.60

Then the second state variable x2(t) is found from the inverse Laplace
transform:

x2(t) = L−1{X2(s)}

= L−1

{
1.65

s + 3
− 1.60

s + 4

}

= 1.65e−3t − 1.60e−4t t ≥ 0

We can check this result by verifying that x2(t) = ẋ1(t):

ẋ1(t) = −(−3)0.55e−3t + (−4)0.40e−4t = 1.65e−3t − 1.60e−4t

which agrees with the x2(t) solution. Figure 2.1 shows the state response
versus time for this example.

We can see that the initial state x(0) = [0.10, 0.05]T is satisfied and
that the steady state values are 0.25 for x1(t) and 0 for x2(t). �

Example 2.5 Consider the two-dimensional state equation

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−2 −3

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t) x(0) = x0 =

[ −1
1

]

y(t) = [
1 1

] [
x1(t)

x2(t)

]
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FIGURE 2.1 Second-order state responses for Example 2.4.

From

sI − A =
[

s 0
0 s

]
−

[
0 1

−2 −3

]
=

[
s −1
2 s + 3

]

we find, by computing the matrix inverse and performing partial fraction
expansion on each element,

(sI − A)−1 = adj(sI − A)

|sI − A| =

[
s + 3 1
−2 s

]

s2 + 3s + 2

=




s + 3

(s + 1)(s + 2)

1

(s + 1)(s + 2)

−2

(s + 1)(s + 2)

s

(s + 1)(s + 2)




=




2

s + 1
+ −1

s + 2

1

s + 1
+ −1

s + 2
−2

s + 1
+ 2

s + 2

−1

s + 1
+ 2

s + 2




It follows directly that

eAt = L−1[(sI − A)−1]

=
[

2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

]
t ≥ 0
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For the specified initial state, the zero-input response component of the
state and output are

xzi(t) = eAtx0 =
[ −e−t

e−t

]
yzi(t) = CeAtx0 = Cxzi(t) = 0 t ≥ 0

For a unit-step input signal, the Laplace domain representation of the
zero-state components of the state and output response are

Xzs(s) = (sI − A)−1BU(s)

=

[
s + 3 1
−2 s

]

s2 + 3s + 2

[
0
1

]
1

s

=




1

(s + 1)(s + 2)

s

(s + 1)(s + 2)


 1

s

=




1

s(s + 1)(s + 2)

1

(s + 1)(s + 2)




=




1/2

s
− 1

s + 1
+ 1/2

s + 2
1

s + 1
− 1

s + 2




Yzs(s) = CXzs(s) + DU(s)

= [
1 1

]



1/2

s
− 1

s + 1
+ 1/2

s + 2
1

s + 1
− 1

s + 2


 + [0]

1

s

= 1/2

s
− 1/2

s + 2

from which

xzs(t) =
[

1/2 − e−t + 1/2e−2t

e−t − e−2t

]
yzs(t) = 1

2
(1 − e−2t ) t ≥ 0
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and complete state and output responses then are

x(t) =
[

1/2 − 2e−t + 1/2e−2t

2e−t − e−2t

]
y(t) = 1

2
(1 − e−2t ) t ≥ 0

Finally, the transfer function is given as

H(s) = C(sI − A)−1B + D

= [
1 1

]
[

s + 3 1
−2 s

]

s2 + 3s + 2

[
0
1

]
+ 0

= s + 1

s2 + 3s + 2
= s + 1

(s + 1)(s + 2)
= 1

s + 2

with associated impulse response

h(t) = e−2t t ≥ 0 �

2.4 STATE-SPACE REALIZATIONS REVISITED

Recall that at the conclusion of Section 1.3 we called a state equation a
state-space realization of a linear time-invariant system’s input-output
behavior if, loosely speaking, it corresponds to the Laplace domain
relationship Y(s) = H(s)U(s) involving the system’s transfer function.
Since this pertains to the zero-state response component, we see that
Equation (2.25) implies that a state-space realization is required to satisfy

C(sI − A)−1B + D = H(s)

or, equivalently, in terms of the impulse response in the time domain,

CeAtB + Dδ(t) = h(t)

Example 2.6 Here we extend to arbitrary dimensions the state-space
realization analysis conducted for the three–dimensional system of
Example 1.6. Namely, we show that the single-input, single-output
n–dimensional strictly proper transfer function

H(s) = b(s)

a(s)
= bn−1s

n−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
(2.26)
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has a state-space realization specified by coefficient matrices

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1




B =




0
0
...

0
0
1




C = [ b0 b1 b2 · · · bn−2 bn−1 ] D = 0

(2.27)

Moreover, by judiciously ordering the calculations, we avoid the
unpleasant prospect of symbolically rendering (sI − A)−1, which is
seemingly at the heart of the identity we must verify. First, observe that

(sI − A)




1
s

s2

...

sn−2

sn−1




=




s −1 0 · · · 0 0
0 s −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · s −1
a0 a1 a2 · · · an−2 s + an−1







1
s

s2

...

sn−2

sn−1




=




s · 1 + (−1) · s

s · s + (−1) · s2

...

s · sn−3 + (−1) · sn−2

s · sn−2 + (−1) · sn−1

a0 · 1 + a1 · s + a2 · s2 + · · · + an−2 · sn−2 + (s + an−1)s
n−1




=




0
0
...
0
0

sn + an−1s
n−1 + · · · + a1s + a0




= Ba(s)
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Rearranging to solve for (sI − A)−1B and substituting into
C(sI − A)−1B + D yields

C(sI − A)−1B + D = [
b0 b1 b2 · · · bn−2 bn−1

]




1
s

s2

...

sn−2

sn−1




a(s)
+ 0

= b0 · 1 + b1 · s + b2 · s2 + · · · + bn−2 · sn−2 + bn−1s
n−1

a(s)

= b(s)

a(s)
= H(s)

as required. �

2.5 COORDINATE TRANSFORMATIONS

Here we introduce the concept of a state coordinate transformation and
study the impact that such a transformation has on the state equation itself,
as well as various derived quantities. Especially noteworthy is what does not
change with the application of a state coordinate transformation. The reader
is referred to Appendix B (Sections B.4 and B.6) for an overview of linear
algebra topics (change of basis and linear transformations) that underpin our
development here. Once having discussed state coordinate transformations
in general terms, we consider a particular application: transforming a given
state equation into the so-called diagonal canonical form.

General Coordinate Transformations

For the n-dimensional linear time-invariant state equation (2.1), any non-
singular n × n matrix T defines a coordinate transformation via

x(t) = T z(t) z(t) = T −1x(t) (2.28)

Associated with the transformed state vector z(t) is the transformed state
equation

ż(t) = T −1ẋ(t)

= T −1[Ax(t) + Bu(t)]

= T −1AT z(t) + T −1Bu(t)

y(t) = CT z(t) + Du(t)
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That is, the coefficient matrices are transformed according to

Â = T −1AT B̂ = T −1B Ĉ = CT D̂ = D (2.29)

and we henceforth write

ż(t) = Âz(t) + B̂u(t)

y(t) = Ĉz(t) + D̂u(t)
z(t0) = z0 (2.30)

where, in addition, the initial state is transformed via z(t0) = T −1x(t0) .
For the system dynamics matrix, the coordinate transformation yields

Â = T −1AT . This is called a similarity transformation, so the new system
dynamics matrix Â has the same characteristic polynomial and eigenval-
ues as A. However, the eigenvectors are different but are linked by the
coordinate transformation.

The impact that state coordinate transformations have on various quan-
tities associated with linear time-invariant state equations is summarized
in the following proposition.

Proposition 2.2 For the linear time-invariant state equation (2.1) and
coordinate transformation (2.28):

1. |sI − Â| = |sI − A|
2. (sI − Â)−1 = T −1(sI − A)−1 T

3. eÂt = T −1eAtT

4. Ĉ(sI − Â)−1B̂ + D̂ = C(sI − A)−1B + D

5. ĈeÂt B̂ + D̂δ(t) = CeAtB + Dδ(t) �

Item 1 states that the system characteristic polynomial and thus the sys-
tem eigenvalues are invariant under the coordinate transformation (2.28).
This proposition is proved using determinant properties as follows:

|sI − Â| = |sI − T −1AT |
= |sT −1T − T −1AT |
= |T −1(sI − A)T |
= |T −1||sI − A||T |
= |T −1||T ||sI − A|
= |sI − A|
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where the last step follows from |T −1||T | = |T −1T | = |I | = 1. Therefore,
since a nonsingular matrix and its inverse have reciprocal determinants,
Â and A have the same characteristic polynomial and eigenvalues.

Items 4 and 5 indicate that the transfer function and impulse response
are unaffected by (or invariant with respect to) any state coordinate trans-
formation. Consequently, given one state-space realization of a transfer
function or impulse response, there are infinitely many others (of the
same dimension) because there are infinitely many ways to specify a state
coordinate transformation.

Diagonal Canonical Form

There are some special realizations that can be obtained by applying the
state coordinate transformation (2.28) to a given linear state equation. In
this subsection we present the diagonal canonical form for the single-input,
single-output case.

Diagonal canonical form is also called modal form because it yields
a decoupled set of n first-order ordinary differential equations. This is
clearly convenient because in this form, n scalar first-order differential
equation solutions may be formulated independently, instead of using cou-
pled system solution methods. Any state-space realization with a diagonal-
izable A matrix can be transformed to diagonal canonical form (DCF) by

x(t) = TDCF z(t)

where the diagonal canonical form coordinate transformation matrix TDCF

= [ v1 v2 · · · vn ] consists of eigenvectors vi of A arranged column-
wise (see Appendix B, Section B.8 for an overview of eigenvalues and
eigenvectors). Because A is assumed to be diagonalizable, the n eigenvec-
tors are linearly independent, yielding a nonsingular TDCF. The diagonal
canonical form is characterized by a diagonal A matrix with eigenvalues
appearing on the diagonal, where eigenvalue λi is associated with the
eigenvector vi, i = 1, 2, . . . , n:

ADCF = T −1
DCFATDCF =




λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 0 λn


 (2.31)

BDCF = T −1
DCFB,CDCF = CTDCF, and DDCF = D have no particular form.
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Example 2.7 We now compute the diagonal canonical form via a state
coordinate transformation for the linear time-invariant state equation in
Example 2.5. For this example, the state coordinate transformation (2.28)
given by

TDCF =
[

1 −1
−1 2

]
T −1

DCF =
[

2 1
1 1

]

yields transformed coefficient matrices

ADCF = T −1
DCFATDCF

=
[

2 1
1 1

] [
0 1

−2 −3

] [
1 −1

−1 2

]

=
[ −1 0

0 −2

]

BDCF = T −1
DCFB

=
[

2 1
1 1

] [
0
1

]

=
[

1
1

]

CDCF = CTDCF

= [
1 1

] [
1 −1

−1 2

]

= [
0 1

]
DDCF

DDCF = D = 0

Note that this yields a diagonal ADCF matrix so that the diagonal canonical
form represents two decoupled first-order ordinary differential equations,
that is,

ż1(t) = −z1(t) + u(t) ż2(t) = −2z2(t) + u(t)

which therefore can be solved independently to yield complete solutions

z1(t) = e−t z1(0) +
∫ t

0
e−(t−τ )u(τ ) dτ

z2(t) = e−t z2(0) +
∫ t

0
e−2(t−τ )u(τ ) dτ

We also must transform the initial state given in Example 2.5 using z(0) =
T −1

DCFx(0): [
z1(0)

z2(0)

]
=

[
2 1
1 1

] [ −1
1

]
=

[ −1
0

]
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which together with a unit step input yields

z1(t) = 1 − 2e−t z2(t) = 1
2(1 − e−2t ) t ≥ 0

The complete solution in the original coordinates then can be recovered
from the relationship x(t) = TDCF z(t):

[
x1(t)

x2(t)

]
=

[
1 −1

−1 2

] [
1 − 2e−t

1
2(1 − e−2t )

]
=

[ 1
2 − 2e−t + 1

2e
−2t

2e−t − e−2t

]

which agrees with the result in Example 2.5. Note also from CDCF that
y(t) = z2(t), which directly gives

yzs(t) =
∫ t

0
e−2(t−τ )u(τ ) dτ

from which we identify the impulse response and corresponding transfer
function as

h(t) = e−2t t ≥ 0 ↔ H(s) = 1

s + 2

This agrees with the outcome observed in Example 2.5, in which a pole-
zero cancellation resulted in the first-order transfer function above. Here,
a first-order transfer function arises because the transformed state equation
is decomposed into two decoupled first-order subsystems, each associated
with one of the state variables z1(t) and z2(t). Of these two subsystems, the
first is disconnected from the output y(t) so that the system’s input-output
behavior is directly governed by the z2 subsystem alone.

The previously calculated zero-state output responses in both Laplace
and time domains are verified easily. It is interesting to note that the
preceding pole-zero cancellation results in a first-order transfer function
having the one–dimensional state space realization

ż2(t) = −2z2(t) + u(t)

y(t) = z2(t)

We can conclude that not only do there exist different state-space real-
izations of the same dimension for a given transfer function, but there
also may exist realizations of different and possibly lower dimension (this
will be discussed in Chapter 5). �
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Example 2.8 Given the three–dimensional single-input, single-output
linear time-invariant state equation specified below, we calculate the diag-
onal canonical form.

A =
[ 8 −5 10

0 −1 1
−8 5 −9

]
B =

[−1
0
1

]
C = [

1 −2 4
]

D = 0

The characteristic polynomial is s3 + 2s2 + 4s + 8; the eigenvalues of
A are the roots of this characteristic polynomial, ±2i, −2. The diago-
nal canonical form transformation matrix TDCF is constructed from three
eigenvectors vi arranged column-wise.

TDCF = [
v1 v2 v3

]

=

 5 5 −3

2i −2i −2
−4 + 2i −4 − 2i 4




The resulting diagonal canonical form state-space realization is

ADCF = T −1
DCFATDCF

=

 2i 0 0

0 −2i 0
0 0 −2




BDCF = T −1
DCFB

=

 −0.0625 − 0.0625i

−0.0625 + 0.0625i

0.125




CDCF = CTDCF

= [ −11 + 4i −11 − 4i 9
] DDCF = D

= 0

If one were to start with a valid diagonal canonical form realization,
TDCF = In because the eigenvectors can be taken to be the standard basis
vectors. �

As seen in Example 2.8, when A has complex eigenvalues occurring
in a conjugate pair, the associated eigenvectors can be chosen to form a
conjugate pair. The coordinate transformation matrix TDCF formed from
linearly independent eigenvectors of A will consequently contain complex
elements. Clearly, the diagonal matrix ADCF will also contain complex
elements, namely, the complex eigenvalues. In addition, the matrices
BDCF and CDCF computed from TDCF will also have complex entries
in general. To avoid a state-space realization with complex coefficient
matrices, we can modify the construction of the coordinate transforma-
tion matrix TDCF as follows. We assume for simplicity that λ1 = σ + jω

and λ2 = σ − jω are the only complex eigenvalues of A with associated
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eigenvectors v1 = u + jw and v2 = u − jw. It is not difficult to show that
linear independence of the complex eigenvectors v1 and v2 is equivalent to
linear independence of the real vectors u = Re(v1) and w = Im(v1). Let-
ting λ3, . . . , λn denote the remaining real eigenvalues of A with associated
real eigenvectors v3, . . . , vn, the matrix

TDCF = [
u w v3 · · · vn

]

is real and nonsingular. Using this to define a state coordinate transfor-
mation, we obtain

ADCF = T −1
DCFATDCF =




σ ω 0 · · · 0
−ω σ 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 0 λn




which is a real matrix but no longer diagonal. However, ADCF is a block
diagonal matrix that contains a 2 × 2 block displaying the real and imag-
inary parts of the complex conjugate eigenvalues λ1, λ2. Also, because
TDCF now is a real matrix, BDCF = T −1

DCFB and CDCF = CTDCF are guaran-
teed to be real yielding a state-space realization with purely real coefficient
matrices. This process can be generalized to handle a system dynamics
matrix A with any combination of real and complex-conjugate eigenval-
ues. The real ADCF matrix that results will have a block diagonal structure
with each real eigenvalue appearing directly on the main diagonal and a
2 × 2 matrix displaying the real and imaginary part of each complex con-
jugate pair. The reader is invited to revisit Example 2.8 and instead apply
the state coordinate transformation specified by

TDCF =
[ 5 0 −3

0 2 −2
−4 2 2

]

2.6 MATLAB FOR SIMULATION AND COORDINATE
TRANSFORMATIONS

MATLAB and the accompanying Control Systems Toolbox provide many
useful functions for the analysis, simulation, and coordinate transforma-
tions of linear time-invariant systems described by state equations. A
subset of these MATLAB functions is discussed in this section.
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MATLAB for Simulation of State-Space Systems

Some MATLAB functions that are useful for analysis and simulation of
state-space systems are

eig(A) Find the eigenvalues of A.
poly(A) Find the system characteristic polynomial coef-

ficients from A.
roots(den) Find the roots of the characteristic polynomial.
damp(A) Calculate the second-order system damping

ratio and undamped natural frequency (for
each mode if n > 2) from the system dynam-
ics matrix A.

damp(den) Calculate the second-order system damping
ratio and undamped natural frequency (for
each mode if n > 2) from the coefficients den
of the system characteristic polynomial.

impulse(SysName) Determine the unit impulse response for a sys-
tem numerically.

step(SysName) Determine the unit step response for a system
numerically.

lsim(SysName,u,t,x0) General linear simulation; calculate the output
y(t) and state x(t) numerically given the sys-
tem data structure.

expm(A*t) Evaluate the state transition matrix at time
t seconds.

plot(x,y) Plot dependent variable y versus independent
variable x.

One way to invoke the MATLAB function lsim with left-hand side argu-
ments is

[y,t,x] = lsim(SysName,u,t,x0)

The lsim function inputs are the state-space data structure SysName,
the input matrix u [length(t) rows by number of inputs m columns], an
evenly spaced time vector t supplied by the user, and the n × 1 initial
state vector x0. No plot is generated, but the lsim function yields the
system output solution y [a matrix of length(t) rows by number of outputs
p columns], the same time vector t, and the system state solution x [a
matrix of length(t) rows by number of states n columns]. The matrices y,
x, and u all have time increasing along rows, with one column for each
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component, in order. The user then can plot the desired output and state
components versus time after the lsim command has been executed.

MATLAB for Coordinate Transformations and Diagonal
Canonical Form

Some MATLAB functions that are useful for coordinate transformations and
the diagonal canonical form realization are

canon MATLAB function for canonical forms (use the modal switch for
diagonal canonical form)

ss2ss Coordinate transformation of one state-space realization to
another.

The canon function with the modal switch handles complex conjugate
eigenvalues using the approach described following Example 2.8 and
returns a states-space realization with purely real coefficient matrices.

Continuing MATLAB Example

State-Space Simulation For the Continuing MATLAB Example [single-
input, single-output rotational mechanical system with input torque τ (t)
and output angular displacement θ (t)], we now simulate the open-loop
system response given zero input torque τ (t) and initial state x(0) =
[0.4, 0.2]T. We invoke the lsim command which numerically solves for
the state vector x(t) from ẋ(t) = Ax(t) + Bu(t) given the zero input u(t)

and the initial state x(0). Then lsim also yields the output y(t) from y(t) =
Cx(t) + Du(t). The following MATLAB code, in combination with that in
Chapter 1, performs the open-loop system simulation for this example.
Appendix C summarizes the entire Continuing MATLAB Example m-file.

%-----------------------------------------------
% Chapter 2. Simulation of State-Space Systems
%-----------------------------------------------
t = [0:.01:4]; % Define array of time

% values
U = [zeros(size(t))]; % Zero single input of

% proper size to go with t
x0 = [0.4; 0.2]; % Define initial state

% vector [x10; x20]

CharPoly = poly(A) % Find characteristic
% polynomial from A
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Poles = roots(CharPoly) % Find the system poles

EigsO = eig(A); % Calculate open-loop
% system eigenvalues

damp(A); % Calculate eigenvalues,
% zeta, and wn from ABCD

[Yo,t,Xo] = lsim(JbkR,U,t,x0);% Open-loop response
% (zero input, given ICs)

Xo(101,:); % State vector value at
% t=1 sec

X1 = expm(A*1)*X0; % Compare with state
% transition matrix
% method

figure; % Open-loop State Plots
subplot(211), plot(t,Xo(:,1)); grid;

axis([0 4 -0.2 0.5]);
set(gca,'FontSize',18);
ylabel('{\itx}−1 (\itrad)')
subplot(212), plot(t,Xo(:,2)); grid; axis([0 4 -2 1]);
set(gca,'FontSize',18);
xlabel('\ittime (sec)'); ylabel('{\itx}−2 (\itrad/s)');

This m-file, combined with the m-file from Chapter 1, generates the
following results for the open-loop characteristic polynomial, poles, eigen-
values, damping ratio ξ and undamped natural frequency ωn, and the value
of the state vector at 1 second. The eigenvalues of A agree with those from
the damp command, and also with roots applied to the characteristic
polynomial.

CharPoly =
1.0000 4.0000 40.0000

Poles =
-2.0000 + 6.0000i
-2.0000 - 6.0000i

EigsO =
-2.0000 + 6.0000i
-2.0000 - 6.0000i
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FIGURE 2.2 Open-loop state responses for the Continuing MATLAB Example.

Eigenvalue Damping Freq. (rad/s)
-2.00e + 000 + 6.00e + 000i 3.16e - 001 6.32e + 000
-2.00e + 000 - 6.00e + 000i 3.16e - 001 6.32e + 000

X1 =
0.0457
0.1293

The m-file also generates the open-loop state response of Figure 2.2.

Coordinate Transformations and Diagonal Canonical Form For
the Continuing MATLAB Example, we now compute the diagonal canonical
form state-space realization for the given open-loop system. The following
MATLAB code, along with the MATLAB code from Chapter 1, which also
appears in Appendix C, performs this computation.

%----------------------------------------------------
% Chapter 2. Coordinate Transformations and Diagonal
% Canonical Form
%----------------------------------------------------

[Tdcf,E] = eig(A); % Transform to DCF
% via formula

Adcf = inv(Tdcf)*A*Tdcf;
Bdcf = inv(Tdcf)*B;
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Cdcf = C*Tdcf;
Ddcf = D;

[JbkRm,Tm] = canon(JbkR,'modal'); % Calculate DCF
% using MATLAB canon

Am = JbkRm.a
Bm = JbkRm.b
Cm = JbkRm.c
Dm = JbkRm.d

This m-file, combined with the Chapter 1 m-file, produces the diagonal
canonical form realization for the Continuing MATLAB Example:

Tdcf =
-0.0494 - 0.1482i -0.0494 + 0.1482i
0.9877 0.9877

Adcf =
-2.0000 + 6.0000i 0 - 0.0000i
0.0000 - 0.0000i -2.0000 - 6.0000i

Bdcf =
0.5062 + 0.1687i
0.5062 - 0.1687i

Cdcf =
-0.0494 - 0.1482i -0.0494 + 0.1482i

Ddcf =
0

Tm =
0 1.0124
-6.7495 -0.3375

Am =
-2.0000 6.0000
-6.0000 -2.0000

Bm =
1.0124
-0.3375
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Cm =
-0.0494 -0.1482

Dm =
0

We observe that Am is a real 2 × 2 matrix that displays the real and
imaginary parts of the complex conjugate eigenvalues −2 ± 6i. The MAT-

LAB modal transformation matrix Tm above is actually the inverse of our
coordinate transformation matrix given in Equation (2.28). Therefore, the
inverse of this matrix, for use in our coordinate transformation, is

inv(Tm) =
-0.0494 -0.1482
0.9877 0

The first column of inv(Tm) is the real part of the first column of Tdcf,
which is an eigenvector corresponding to the eigenvalue −2 + 6i. The
second column of inv(Tm) is the imaginary part of this eigenvector.

2.7 CONTINUING EXAMPLES FOR SIMULATION
AND COORDINATE TRANSFORMATIONS

Continuing Example 1: Two-Mass Translational Mechanical
System

Simulation The constant parameters in Table 2.1 are given for Contin-
uing Example 1 (two-mass translational mechanical system):

For case a, we simulate the open-loop system response given zero
initial state and step inputs of magnitudes 20 and 10 N, respectively, for
u1(t) and u2(t).

For case b, we simulate the open-loop system response given zero input
u2(t) and initial state x(0) = [0.1, 0, 0.2, 0]T [initial displacements of
y1(0) = 0.1 and y2(0) = 0.2 m, with zero initial velocities].

TABLE 2.1 Numerical Parameters for Continuing
Example 1

i mi (kg) ci (Ns/m) ki (N/m)

1 40 20 400
2 20 10 200
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Case a. For case a, we invoke lsim to numerically solve for the state
vector x(t) given the inputs u(t) and the zero initial state x(0); lsim also
yields the output y(t). The state-space coefficient matrices, with parameter
values from Table 2.1 above, are

A =



0 1 0 0
−15 −0.75 5 0.25

0 0 0 1
10 0.5 −10 −0.5


 B =




0 0
0.025 0

0 0
0 0.05




C =
[

1 0 0 0
0 0 1 0

]
D =

[
0 0
0 0

]

The plots of outputs y1(t) and y2(t) versus time are given in Figure 2.3.
We see from Figure 2.3 that this system is lightly damped; there is sig-
nificant overshoot, and the masses are still vibrating at 40 seconds. The
vibratory motion is an underdamped second-order transient response, set-
tling to final nonzero steady-state values resulting from the step inputs.
The four open-loop system eigenvalues of A are s1,2 = −0.5 ± 4.44i

and s3,4 = −0.125 ± 2.23i. The fourth-order system characteristic poly-
nomial is

s4 + 1.25s3 + 25.25s2 + 10s + 100

This characteristic polynomial was found using the MATLAB function
poly(A); the roots of this polynomial are identical to the system

0 10 20 30 40
0

0.05

0.1

0 10 20 30 40
0

0.05

0.1

0.15
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time (sec)

y 2
(m

)
y 1

(m
)

FIGURE 2.3 Open-loop output response for Continuing Example 1, case a.
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eigenvalues. There are two modes of vibration in this two-degrees-
of-freedom system; both are underdamped with ξ1 = 0.112 and ωn1 =
4.48 rad/s for s1,2 and ξ2 = 0.056 and ωn2 = 2.24 rad/s for s3,4. Note
that each mode contributes to both y1(t) and y2(t) in Figure 2.3. The
steady-state values are found by setting ẋ(t) = 0 in ẋ(t) = Ax(t) + Bu(t)

to yield xss = −A−1Bu. As a result of the step inputs, the output
displacement components do not return to zero in steady-state, as the
velocities do: xss = [0.075, 0, 0.125, 0]T.
Although we focus on state-space techniques, for completeness, the matrix
of transfer functions H(s) [Y(s) = H(s)U(s)] is given below for Contin-
uing Example 1, Case a (found from the MATLAB function tf):

H(s) =


0.025s2 + 0.0125s + 0.25

s4 + 1.25s3 + 25.25s2 + 10s + 100

0.0125s + 0.25

s4 + 1.25s3 + 25.25s2 + 10s + 100

0.0125s + 0.25

s4 + 1.25s3 + 25.25s2 + 10s + 100

0.05s2 + 0.0375s + 0.75

s4 + 1.25s3 + 25.25s2 + 10s + 100




Note that the denominator polynomial in every element of H(s) is the
same and agrees with the system characteristic polynomial derived from
the A matrix and presented earlier. Consequently, the roots of the system
characteristic polynomial are identical to the eigenvalues of A.

Case b. For Case b, we again use lsim to solve for the state vector x(t)

given the zero input u2(t) and the initial state x(0). The state-space coeffi-
cient matrices, with specific parameters from above, are (A is unchanged
from Case a):

B =



0
0
0

0.05


 C = [ 1 0 0 0 ] D = 0

The plots for states x1(t) through x4(t) versus time are given in Figure 2.4.
We again see from Figure 2.4 that this system is lightly damped. The
vibratory motion is again an underdamped second-order transient response
to the initial conditions, settling to zero steady-state values for zero
input u2(t). The open-loop system characteristic polynomial, eigenvalues,
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FIGURE 2.4 Open-loop state response for Continuing Example 1, case b.

damping ratios, and undamped natural frequencies are all identical to the
Case a results.
In Figure 2.4, we see that states x1(t) and x3(t) start from the given initial
displacement values of 0.1 and 0.2, respectively. The given initial veloci-
ties are both zero. Note that in this Case b example, the final values are all
zero because after the transient response has died out, each spring returns
to its equilibrium position referenced as zero displacement.
When focusing on the zero-input response, we can calculate the state
vector at any desired time by using the state transition matrix �(t, t0) =
eA(t−t0). For instance, at time t = 20 sec:

x(20) = �(20, 0)x(0)

= eA(20)x(0)

=




0.0067

−0.0114

0.0134

−0.0228
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These values, although difficult to see on the scale of Figure 2.4, agree
with the MATLAB data used in Figure 2.4 at t = 20 seconds.
Although we focus on state-space techniques, for completeness the transfer
function is given below for Continuing Example 1, case b (found from
the MATLAB function tf):

H(s) = Y1(s)

U2(s)
= 0.0125s + 0.25

s4 + 1.25s3 + 25.25s2 + 10s + 100

where the system characteristic polynomial is again the same as that given
in case a above. Note that this scalar transfer function relating output y1(t)

to input u2(t) is identical to the (1,2) element of the transfer function
matrix presented for the multiple-input, multiple-output system in case a.
This makes sense because the (1,2) element in the multiple-input, multiple-
output case captures the dependence of output y1(t) on input u2(t) with
u1(t) set to zero.

Coordinate Transformations and Diagonal Canonical Form
We now calculate the diagonal canonical form for Continuing Example 1,
case b. If we allow complex numbers in our realization, the transforma-
tion matrix to diagonal canonical form is composed of eigenvectors of A
arranged column-wise:

TDCF =




0.017 + 0.155i 0.017 − 0.155i −0.010 − 0.182i −0.010 + 0.182i

−0.690 −0.690 0.408 0.408

−0.017 − 0.155i −0.017 + 0.155i −0.020 − 0.365i −0.020 + 0.365i

0.690 0.690 0.817 0.817




Applying this coordinate transformation, we obtain the diagonal canonical
form:

ADCF = T −1
DCFATDCF

=




−0.50 + 4.44i 0 0 0

0 −0.50 − 4.44i 0 0

0 0 −0.125 + 2.23i 0

0 0 0 −0.125 − 2.23i




BDCF = T −1
DCF B =




0.0121 + 0.0014i

0.0121 − 0.0014i

0.0204 + 0.0011i

0.0204 − 0.0011i
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CDCF = CTDCF = [
0.017 + 0.155i 0.017 − 0.155i −0.010 − 0.182i

− 0.010 + 0.182i]

DDCF = D = 0

Note that, as expected, the eigenvalues of the system appear on the diag-
onal of ADCF.

The MATLAB canon function with the switch modal yields

Am =




−0.50 4.44 0 0

−4.44 −0.50 0 0

0 0 −0.125 2.23

0 0 −2.23 −0.125




Bm =




0.024

−0.003

0.041

−0.002




Cm = [
0.017 0.155 −0.010 −0.182

]
Dm = D = 0

which is consistent with our preceding discussions.

Continuing Example 2: Rotational Electromechanical System

Simulation The constant parameters in Table 2.2 are given for Contin-
uing Example 2 [single-input, single-output rotational electromechanical
system with input voltage v(t) and output angular displacement θ (t)].

We now simulate the open-loop system response given zero initial state
and unit step voltage input. We use the lsim function to solve for the state

TABLE 2.2 Numerical Parameters for Continuing Example 2

Parameter Value Units Name

L 1 H Circuit inductance
R 2 � Circuit resistance
J 1 kg-m2 Motor shaft polar inertia
b 1 N-m-s Motor shaft damping constant
kT 2 N-m/A Torque constant
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vector x(t) given the unit step input u(t) and zero initial state x(0); y(t)

also results from the lsim function. The state-space coefficient matrices,
with parameter values from Table 2.2 above, are

A =



0 1 0

0 0 1

0 −2 −3


 B =




0

0

2


 C = [ 1 0 0 ] D = 0

Plots for the three state variables versus time are given in Figure 2.5.
We see from Figure 2.5 (top) that the motor shaft angle θ (t) = x1(t)

increases linearly in the steady state, after the transient response has died
out. This is to be expected: If a constant voltage is applied, the motor
angular displacement should continue to increase linearly because there is
no torsional spring. Then a constant steady-state current and torque result.
The steady-state linear slope of x1(t) in Figure 2.5 is the steady-state value
of θ̇ (t) = x2(t), namely, 1 rad/s. This x2(t) response is an overdamped
second-order response. The third state response, θ̈ (t) = x3(t), rapidly rises
from its zero initial condition value to a maximum of 0.5 rad/s2; in steady
state, θ̈ (t) is zero owing to the constant angular velocity θ̇ (t) of the motor
shaft. The three open-loop system eigenvalues of A are s1,2,3 = 0, −1, −2.
The third-order system characteristic polynomial is

s3 + 3s2 + 2s = s(s2 + 3s + 2)

= s(s + 1)(s + 2)

0 1 2 3 4 5 6 7
0

5

0 1 2 3 4 5 6 7
0

0.5

1
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0.5
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x 3
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FIGURE 2.5 Open-loop response for Continuing Example 2.
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This was found using the MATLAB function poly(A); the roots of this poly-
nomial are identical to the system eigenvalues. The zero eigenvalue cor-
responds to the rigid-body rotation of the motor shaft; the remaining two
eigenvalues −1, −2 led to the conclusion that the shaft angular velocity
θ̇ (t) = ω(t) response is overdamped. Note that we cannot calculate steady
state values from xss = −A−1Bu as in Continuing Example 1 because the
system dynamics matrix A is singular because of the zero eigenvalue.

For completeness the scalar transfer function is given below for this
example (found via the MATLAB function tf):

H(s) = θ(s)

V (s)
= 2

s3 + 3s2 + 2s
= 2

s(s + 1)(s + 2)

Note the same characteristic polynomial results as reported earlier. The
roots of the denominator polynomial are the same as the eigenvalues of
A. The preceding transfer function H(s) relates output motor angular
displacement θ (t) to the applied voltage v(t). If we wish to consider the
motor shaft angular velocity ω(t) as the output instead, we must differenti-
ate θ (t), which is equivalent to multiplying by s, yielding the overdamped
second-order system discussed previously:

H2(s) = ω(s)

V (s)
= 2

(s + 1)(s + 2)

We could develop an associated two–dimensional state-space realiza-
tion if we wished to control ω(t) rather than θ (t) as the output:

x1(t) = ω(t)

x2(t) = ω̇(t) = ẋ1(t)

[
ẋ1(t)

ẋ2(t)

]
=


 0 1

−Rb

LJ

−(Lb + RJ)

LJ


[

x1(t)

x2(t)

]
+


 0

kT

LJ


 v(t)

=
[

0 1

−2 −3

] [
x1(t)

x2(t)

]
+

[
0

2

]
v(t)

ω(t) = [
1 0

] [
x1(t)

x2(t)

]
+ [0]v(t)

Coordinate Transformations and Diagonal Canonical Form

We now present the diagonal canonical form for Continuing Example 2.
The coordinate transformation matrix for diagonal canonical form is
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composed of eigenvectors of A arranged column-wise:

TDCF =



1 −0.577 0.218

0 0.577 −0.436

0 −0.577 0.873




Applying this coordinate transformation, we obtain the diagonal canonical
form:

ADCF = T −1
DCFATDCF =




0 0 0

0 −1 0

0 0 −2




BDCF = T −1
DCFB =




1

3.464

4.583




CDCF = CTDCF = [
1 −0.577 0.218

]
DDCF = D = 0

Note that the system eigenvalues appear on the main diagonal of diagonal
matrix ADCF, as expected.

The MATLAB canon function with the modal switch yields identical
results because the system eigenvalues are real.

2.8 HOMEWORK EXERCISES

Numerical Exercises

NE2.1 Solve 2ẋ(t) + 5x(t) = u(t) for x(t), given that u(t) is the unit
step function and initial state x(0) = 0. Calculate the time con-
stant and plot your x(t) result versus time.

NE2.2 For the following systems described by the given state equations,
derive the associated transfer functions.
a. [

ẋ1(t)

ẋ2(t)

]
=

[ −3 0

0 −4

] [
x1(t)

x2(t)

]
+

[
1

1

]
u(t)

y(t) = [ 1 1 ]

[
x1(t)

x2(t)

]
+ [0]u(t)
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b. [
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−3 −2

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t)

y(t) = [ 1 0 ]

[
x1(t)

x2(t)

]
+ [0]u(t)

c. [
ẋ1(t)

ẋ2(t)

]
=

[
0 −2
1 −12

] [
x1(t)

x2(t)

]
+

[
1
0

]
u(t)

y(t) = [
0 1

] [
x1(t)

x2(t)

]
+ [0]u(t)

d. [
ẋ1(t)

ẋ2(t)

]
=

[
1 2
3 4

] [
x1(t)

x2(t)

]
+

[
5
6

]
u(t)

y(t) = [
7 8

] [
x1(t)

x2(t)

]
+ [9]u(t)

NE2.3 Determine the characteristic polynomial and eigenvalues for the
systems represented by the following system dynamics matrices.

a. A =
[ −1 0

0 −2

]

b. A =
[

0 1
−10 −20

]

c. A =
[

0 1
−10 0

]

d. A =
[

0 1
0 −20

]

NE2.4 For the given homogeneous system below, subject only to the
initial state x(0) = [2, 1]T, calculate the matrix exponential and
the state vector at time t = 4 seconds.

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−6 −12

] [
x1(t)

x2(t)

]

NE2.5 Solve the two-dimensional state equation below for the state vec-
tor x(t), given that the input u(t) is a unit step input and zero
initial state. Plot both state components versus time.

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−8 −6

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t)
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NE2.6 Solve the two-dimensional state equation

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−2 −2

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t)

[
x1(0)

x2(0)

]
=

[
1

−1

]

for a unit step u(t).

NE2.7 Solve the two-dimensional state equation

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−5 −2

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t)

[
x1(0)

x2(0)

]
=

[
1

−1

]

for a unit step u(t).

NE2.8 Solve the two-dimensional state equation

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−1 −2

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t)

[
x1(0)

x2(0)

]
=

[
1

−2

]

y(t) = [
2 1

] [
x1(t)

x2(t)

]

for u(t) = e−2t , t � 0.

NE2.9 Calculate the complete response y(t) for the state equation

[
ẋ1(t)

ẋ2(t)

]
=

[ −2 0

0 −3

] [
x1(t)

x2(t)

]
+

[
1
1

]
u(t)

x(0) =
[

2
3
1
2

]

y(t) = [ −3 4 ]

[
x1(t)

x2(t)

]
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for the input signal u(t) = 2et , t � 0. Identify zero-input and
zero-state response components.

NE2.10 Diagonalize the following system dynamics matrices A using
coordinate transformations.

a. A =
[

0 1

−8 −10

]

b. A =
[

0 1

10 6

]

c. A =
[

0 −10

1 −1

]

d. A =
[

0 10
1 0

]

Analytical Exercises

AE2.1 If A and B are n × n matrices, show that

e(A+B)t = eAt +
∫ t

o

eA(t−τ )Be(A+B)τ dτ

You may wish to use the Leibniz rule for differentiating an inte-
gral:

d

d t

∫ b(t)

a(t)

X(t, τ ) dτ = X[t, b(t)]ḃ(t)

− X[t, a(t)]ȧ(t) +
∫ b(t)

a(t)

∂X(t, τ )

∂t
dτ

AE2.2 Show that for any n × n matrix A and any scalar γ

e(γ I+A)t = eγ t eAt

AE2.3 A real n × n matrix A is called skew symmetric if AT = −A. A
real n × n matrix R is called orthogonal if R−1 = RT . Given a
skew symmetric n × n matrix A, show that the matrix exponen-
tial eAt is an orthogonal matrix for every t .
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AE2.4 Show that the upper block triangular matrix

A =
[

A11 A12

0 A22

]

has the matrix exponential

eAt =
[

eA11t
∫ t

0 eA11(t−τ )A12e
A22τ dτ

0 eA22t

]

AE2.5 Show that the matrix exponential satisfies

eAt = I + A

∫ t

0
eAτ dτ

Use this to derive an expression for
t∫

0
eAτ dτ in the case where

A is nonsingular.

AE2.7 For n × n matrices A and Q, show that the matrix differential
equation

Ẇ (t, t0) = A W(t, t0) + W(t, t0)A
T + Q W(t0, t0) = 0

has the solution

W(t, t0) =
∫ t

t0

eA(t−τ ) Q eAT (t−τ ) dτ

AE2.8 Verify that the three–dimensional state equation

ẋ(t) = Ax(t) + Bu(t)

specified by

A =

 0 1 0

0 0 1
−a0 −a1 −a2


 B =


 1 0 0

a2 1 0
a1 a2 1




−1 
 b2

b1

b0




C = [
1 0 0

]
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is a state-space realization of the transfer function

H(s) = b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

AE2.9 Verify that the three–dimensional state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

specified by

A =

 0 0 −a0

1 0 −a1

0 1 −a2


 B =


 1

0
0




C = [
b2 b1 b0

] 
 1 a2 a1

0 1 a2

0 0 1




−1

is a state-space realization of the transfer function

H(s) = b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

AE2.10 Show that if the multiple-input, multiple-output state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

is a state-space realization of the transfer function matrix H(s),
then the so-called dual state equation

ż(t) = −ATz(t) − CTv(t)

w(t) = BTz(t) + DTv(t)

is a state-space realization of H T(−s).

AE2.11 Let the single-input, single-output state equation

ẋ(t) = Ax(t) + Bu(t) x(0) = x0

y(t) = Cx(t) + Du(t)
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be a state-space realization of the transfer function H(s). Suppose
that is z0 ∈ C not an eigenvalue of A for which

[
z0I − A −B

C D

]

is singular. Show that z0 is a zero of the transfer function H(s).
Furthermore, show that there exist nontrivial x0 ∈ C

n and u. ∈ C

such that x(0) = x0 and u(t) = u0 ez0t yield y(t) = 0 for all t � 0.

AE2.12 For the single-input, single-output state equation

ẋ(t) = Ax(t) + Bu(t) x(0) = x0

y(t) = Cx(t) + Du(t)

with D �= 0, show that the related state equation

ż(t) = (A − BD−1C)z(t) + BD−1v(t) z(0) = z0

w(t) = −D−1Cz(t) + D−1v(t)

has the property that if z0 = x0 and v(t) = y(t), then
w(t) = u(t).

AE2.13 For the m-input, m-output state equation

ẋ(t) = Ax(t) + Bu(t) x(0) = x0

y(t) = Cx(t)

with the m × m matrix CB nonsingular, show that the related
state equation

ż(t) = (A − B(CB)−1CA)z(t) + B(CB)−1v(t) z(0) = z0

w(t) = −(CB)−1CAz(t) + (CB)−1v(t)

has the property that if z0 = x0 and v(t) = ẏ(t), then
w(t) = u(t).

Continuing MATLAB Exercises

CME2.1 For the system given in CME1.1:
a. Determine and plot the impulse response.
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b. Determine and plot the unit step response for zero initial
state.

c. Determine and plot the zero input response given x0 =
[1, −1]T.

d. Calculate the diagonal canonical form.

CME2.2 For the system given in CME1.2:

a. Determine and plot the impulse response.

b. Determine and plot the unit step response for zero initial
state.

c. Determine and plot the zero input response given x0 =
[1, 2, 3]T.

d. Calculate the diagonal canonical form.

CME2.3 For the system given in CME1.3:

a. Determine and plot the impulse response.

b. Determine and plot the unit step response for zero initial
state.

c. Determine and plot the zero input response given x0 =
[4, 3, 2, 1]T.

d. Calculate the diagonal canonical form.

CME2.4 For the system given in CME1.4:

a. Determine and plot the impulse response.

b. Determine and plot the unit step response for zero initial
state.

c. Determine and plot the zero input response given x0 =
[1, 2, 3, 4]T.

d. Calculate the diagonal canonical form.

Continuing Exercises

CE2.1a Use the numerical parameters in Table 2.3 for this and all ensu-
ing CE1 assignments (see Figure 1.14).
Simulate and plot the resulting open-loop output displacements
for three cases (for this problem, use the state-space realizations
of CE1.1b):

i. Multiple-input, multiple-output: three inputs ui(t) and three
outputs yi(t), i = 1, 2, 3.
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TABLE 2.3 Numerical Parameters for CE1
System

i mi (kg) ci (Ns/m) ki (N/m)

1 1 0.4 10
2 2 0.8 20
3 3 1.2 30
4 1.6 40

(a) Step inputs of magnitudes u1(t) = 3, u2(t) = 2, and
u3(t) = 1 (N). Assume zero initial state.

(b) Zero inputs u(t). Assume initial displacements y1(0) =
0.005, y2(0) = 0.010, and y3(0) = 0.015 (m); Assume
zero initial velocities. Plot all six state components.

ii. Multiple-input, multiple-output: two unit step inputs u1(t)

and u3(t), three displacement outputs yi(t), i = 1, 2, 3.
Assume zero initial state.

iii. Single-input, single-output: unit step input u2(t) and output
y3(t). Assume zero initial state. Plot all six state compo-
nents.

For each case, simulate long enough to demonstrate the steady-
state behavior. For all plots, use the MATLAB subplot function
to plot each variable on separate axes, aligned vertically with
the same time range. What are the system eigenvalues? These
define the nature of the system transient response. For case i(b)
only, check your state vector results at t = 10 seconds using the
matrix exponential.

Since this book does not focus on modeling, the solution for
CE1.1a is given below:

m1ÿ1(t) + (c1 + c2)ẏ1(t) + (k1 + k2)y1(t)

− c2ẏ2(t) − k2y2(t) = u1(t)

m2ÿ2(t) + (c2 + c3)ẏ2(t) + (k2 + k3)y2(t) − c2ẏ1(t) − k2y1(t)

− c3ẏ3(t) − k3y3(t) = u2(t)

m3ÿ3(t) + (c3 + c4)ẏ3(t) + (k3 + k4)y3(t)

− c3ẏ2(t) − k3y2(t) = u3(t)

One possible solution for CE1.1b (system dynamics matrix
A only) is given below. This A matrix is the same for all
input-output cases, while B, C, and D will be different for each
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case. First, the state variables associated with this realization are

x1(t) = y1(t)

x2(t) = ẏ1(t) = ẋ1(t)

x3(t) = y2(t)

x4(t) = ẏ2(t) = ẋ3(t)

x5(t) = y3(t)

x6(t) = ẏ3(t) = ẋ5(t)

A =




0 1 0 0 0 0

− (k1 + k2)

m1
− (c1 + c2)

m1

k2

m1

c2

m1
0 0

0 0 0 1 0 0

k2

m2

c2

m2
− (k2 + k3)

m2
− (c2 + c3)

m2

k3

m2

c3

m2

0 0 0 0 0 1

0 0
k3

m3

c3

m3
− (k3 + k4)

m3
− (c3 + c4)

m3




CE2.1b Calculate the diagonal canonical form realization for the case iii
CE1 system. Comment on the structure of the results.

CE2.2a Use the numerical parameters in Table 2.4 for this and all ensu-
ing CE2 assignments (see Figure 1.15).
Simulate and plot the open-loop state variable responses for
three cases (for this problem use the state-space realizations of
CE1.2b); assume zero initial state for all cases [except Case i(b)
below]:

i. Single-input, single-output: input f (t) and output θ (t).
(a) unit impulse input f (t) and zero initial state.
(b) zero input f (t) and an initial condition of θ(0) = 0.1 rad

(zero initial conditions on all other state variables).
ii. Single-input, multiple-output: impulse input f (t) and two

outputs w(t) and θ (t).
iii. Multiple-input, multiple-output: two unit step inputs f (t)

and τ (t) and two outputs w(t) and θ (t).
Simulate long enough to demonstrate the steady-state behavior.
What are the system eigenvalues? Based on these eigenvalues
and the physical system, explain the system responses.

TABLE 2.4 Numerical Parameters for CE2
System

Parameter Value Units Name

m1 2 kg cart mass
m2 1 kg pendulum mass
L 0.75 m pendulum length
g 9.81 m/s2 gravitational acceleration
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Since this book does not focus on modeling, the solution for
CE1.2a is given below:

Coupled Nonlinear Differential Equations

(m1 + m2)ẅ(t) − m2L cos θ(t)θ̈(t) + m2L sin θ(t)θ̇(t)2 = f (t)

m2L
2θ̈ (t) − m2L cos θ(t)ẅ(t) − m2gL sin θ(t) = 0

Coupled Linearized Differential Equations

(m1 + m2)ẅ(t) − m2Lθ̈(t) = f (t)

−m2ẅ(t) + m2Lθ̈(t) − m2gθ(t) = 0

Coupled Linearized Differential Equations with Torque Motor
Included

(m1 + m2)ẅ(t) − m2Lθ̈(t) = f (t)

−m2Lẅ(t) + m2L
2θ̈ (t) − m2gLθ(t) = τ(t)

Note that the coupled nonlinear differential equations could have
been converted first to state-space form and then linearized
about a nominal trajectory, as described in Section 1.4; a natu-
ral choice for the nominal trajectory is zero pendulum angle and
rate, plus zero cart position (center of travel) and rate. Consider
this as an alternate solution to CE1.2b—you will get the same
A, B, C, and D matrices.

One possible solution for CE1.2b (system dynamics matrix
A only) is given below. This A matrix is the same for all input-
output cases, whereas B, C, and D will be different for each
case. First, the state variables associated with this realization are

x1(t) = w(t) x3(t) = θ(t)

x2(t) = ẇ(t) = ẋ1(t) x4(t) = θ̇ (t) = ẋ3(t)

A =




0 1 0 0

0 0
m2g

m1
0

0 0 0 1

0 0
(m1 + m2)g

m1L
0
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TABLE 2.5 Numerical Parameters for CE3 System

Parameter Value Units Name

L 0.0006 H armature inductance
R 1.40 � armature resistance
kB 0.00867 V/deg/s motor back emf constant
JM 0.00844 lbf-in-s2 motor shaft polar inertia
bM 0.00013 lbf-in/deg/s motor shaft damping constant
kT 4.375 lbf-in/A torque constant
n 200 unitless gear ratio
JL 1 lbf-in-s2 load shaft polar inertia
bL 0.5 lbf-in/deg/s load shaft damping constant

CE2.2b For the case i CE2 system, try to calculate the diagonal
canonical form realization (diagonal canonical form cannot be
found—why?).

CE2.3a Use the numerical parameters in Table 2.5 for this and all ensu-
ing CE3 assignments (see Figure 1.16).
Simulate and plot the open-loop state variable responses for
two cases (for this problem, use the state-space realizations of
CE1.3b):
i. Single-input, single-output: input armature voltage vA(t) and

output robot load shaft angle θL(t).
(a) Unit step input armature voltage vA(t); plot all three state

variables given zero initial state.
(b) Zero input armature voltage vA(t); plot all three state

variables given initial state θL(0) = 0, θ̇L(0) = 1, and
θ̈L(0) = 0.

ii. Single-input, single-output: unit step input armature voltage
vA(t) and output robot load shaft angular velocity ωL(t); plot
both state variables. For this case, assume zero initial state.

Simulate long enough to demonstrate the steady-state behavior.
What are the system eigenvalues? Based on these eigenvalues
and the physical system, explain the system responses.

Since this book does not focus on modeling, the solution for
CE1.3a is given below; the overall transfer function is

G(s) = �L(s)

VA(s)
= kT/n

LJs3 + (Lb + RJ)s2 + (Rb + kTkB)s

where J = JM + JL

n2
and b = bM + bL

n2
are the effective polar

inertia and viscous damping coefficient reflected to the motor
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shaft. The associated single-input, single-output ordinary differ-
ential equation is

LJ ¨̇θL(t) + (Lb + RJ)θ̈L(t) + (Rb + kTkB)θ̇L(t) = kT

n
vA(t)

One possible solution for CE1.3b (case i) is given below. The
state variables and output associated with the solution below are:

x1(t) = θL(t)

x2(t) = θ̇L(t) = ẋ1(t)

x3(t) = θ̈L(t) = ẍ1(t) = ẋ2(t)

y(t) = θL(t) = x1(t)

The state differential and algebraic output equations are




ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 1 0

0 0 1

0 −(Rb + kTkB)

LJ
−(Lb + RJ)

LJ







x1(t)

x2(t)

x3(t)




+




0

0
kT

LJn


 vA(t)

y(t) = [
1 0 0

]



x1(t)

x2(t)

x3(t)


 + [0]vA(t)

The solution for case ii is similar, but of reduced (second) order:

x1(t) = ωL(t)

x2(t) = ω̇L(t) = ẋ1(t)
y(t) = ωL(t) = x1(t)

[
ẋ1(t)

ẋ2(t)

]
=


 0 1

−(Rb + kTkB)

LJ
−(Lb + RJ)

LJ




[
x1(t)

x2(t)

]

+

 0

kT

LJn


 vA(t)
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y(t) = [
1 0

] [
x1(t)

x2(t)

]
+ [0]vA(t)

CE2.3b Calculate the diagonal canonical form realization for the case i
CE3 system. Comment on the structure of the results.

CE2.4a Use the numerical parameters in Table 2.6 for this and all ensu-
ing CE4 assignments (see Figure 1.8).
Simulate and plot the open-loop state variables in response to
an impulse torque input τ(t) = δ(t) Nm and p(0) = 0.25 m
with zero initial conditions on all other state variables. Simulate
long enough to demonstrate the steady-state behavior. What are
the system eigenvalues? Based on these eigenvalues and the
physical system, explain the system response to these initial
conditions.

A valid state-space realization for this system is given in
Example 1.7, linearized about the nominal trajectory discussed
there. This linearization was performed for a horizontal beam
with a ball trajectory consisting of an initial ball position and
constant ball translational velocity. However, the realization in
Example 1.7 is time varying because it depends on the nominal
ball position p̃(t). Therefore, for CE4, place a further constraint
on this system linearization to obtain a linear time-invariant
system: Set the constant ball velocity to zero (v0 = 0) and set
p̃(t) = p0 = 0.25 m. Discuss the likely real-world impact of
this linearization and constraint.

CE2.4b Calculate the diagonal canonical form realization for the CE4
system.

CE2.5a Use the numerical parameters in Table 2.7 (Bupp et al., 1998)
for this and all ensuing CE5 assignments (see Figure 1.17).

TABLE 2.6 Numerical Parameters for CE4 System

Parameter Value Units Name

L 1 m beam length (rotates about center)
J 0.0676 kg-m2 beam mass moment of inertia
m 0.9048 kg ball mass
r 0.03 m ball radius
Jb 0.000326 kg-m2 ball mass moment of inertia
g 9.81 m/s2 gravitational acceleration
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TABLE 2.7 Numerical Parameters for CE5
System

Parameter Value Units Name

M 1.3608 kg cart mass
k 186.3 N/m spring stiffness constant
m 0.096 kg pendulum-end point

mass
J 0.0002175 kg-m2 pendulum mass moment

of inertia
e 0.0592 m pendulum length

Simulate and plot the open-loop state variables in response to
the initial conditions q(0) = 0.05 m, q̇(0) = 0, θ(0) = π/4 rad,
and θ̇ (0) = 0 rad/s. Simulate long enough to demonstrate the
steady-state behavior. What are the system eigenvalues? Based
on these eigenvalues and the physical system, explain the system
response to these initial conditions.

Since this book does not focus on modeling, the solution for
CE1.5a is given below:

(M + m)q̈(t) + kq(t) + me(θ̈(t) cos θ(t) − θ̇2(t) sin θ(t)) = 0

(J + me2)θ̈(t) + meq̈(t) cos θ(t) = n(t)

A valid state-space realization for this system is given below:

x1(t) = q(t)

x2(t) = q̇(t) = ẋ1(t)

x3(t) = θ(t)

x4(t) = θ̇ (t) = ẋ3(t)

A =




0 1 0 0

−k(J + me2)

d(θ̃ )
0 0 0

0 0 0 1

kme cos(θ̃)

d(θ̃ )
0 0 0




B =




0

−me cos(θ̃ )

d(θ̃ )

0
M + m

d(θ̃ )




C = [
1 0 0 0

]
D = 0

where d(θ̃) = (M + m)(J + me2) − (me cos(θ̃ ))2. Note that
this linearized state-space realization depends on the zero-torque
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equilibrium for which the linearization was performed. For CE5,
place a further constraint on this system linearization to obtain
a linear time-invariant system: Set the nominal pendulum angle
to θ̃ = π/4. Discuss the likely impact of this linearization and
constraint.

Note: The original system of CE1.5 is nonlinear (because
the pendulum can rotate without limit); in order to control it
properly, one must use nonlinear techniques that are beyond
the scope of this book. Please see Bernstein (1998) a special
nonlinear control journal issue with seven articles that survey
different nonlinear control approaches applied to this benchmark
problem.

CE2.5b Calculate the diagonal canonical form realization for the CE5
system.



3

CONTROLLABILITY

In this chapter we explore the input-to-state interaction of the n-dimen-
sional linear time-invariant state equation, seeking to characterize the
extent to which state trajectories can be controlled by the input signal.
Specifically, we derive conditions under which, starting anywhere in the
state space, the state trajectory can be driven to the origin by piecewise
continuous input signals over a finite time interval. More generally, it
turns out that if it is possible to do this, then it is also possible to steer the
state trajectory to any final state in finite time via a suitable input signal.

While the controllability analysis presented in this chapter has a decid-
edly open-loop flavor involving input signals that have a prescribed effect
on the state trajectory without any mention of feedback, there is also an
important connection between controllability and the design of feedback-
control laws that will be pursued in Chapter 7.

This chapter initiates a strategy that will recur throughout the remainder
of this book. Specifically, our aim is to characterize important properties
of dynamic systems described by our state-space model via analysis of the
state-equation data, namely the coefficient matrices A, B, C, and D. Fun-
damental questions pertaining to the complex interaction of input, state,
and output can be answered using the tools of linear algebra. Much of what
we present in what follows either originated with or was inspired by the
pioneering work of R. E. Kalman, unquestionably the father of state-space
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methods in linear systems and control theory. In our investigation of
controllability, we identify connections between input-to-state behavior,
as characterized by the state-equation solution derived in Chapter 2, and
linear algebraic properties of the state equation’s coefficient matrices.

Once the basic notion of controllability is defined, analyzed, and illus-
trated with several examples, we study the relationship between controlla-
bility and state coordinate transformations and present additional algebraic
characterizations of controllability that are of utility not only in the anal-
ysis of particular systems but also in establishing further general results.
We also illustrate the use of MATLAB for controllability analysis and once
again return to the MATLAB Continuing Example along with Continuing
Examples 1 and 2.

3.1 FUNDAMENTAL RESULTS

We consider the linear time-invariant state differential equation

ẋ(t) = Ax(t) + Bu(t) x(t0) = x0 (3.1)

in which the algebraic output equation has been omitted because it will
play no role in the ensuing analysis. Our point of departure is the following
definition.

Definition 3.1 A state x ∈ R
n is controllable to the origin if for a given

initial time t0 there exists a finite final time tf > t0 and a piecewise con-
tinuous input signal u(·) defined on [t0, tf ] such that with initial state
x(t0) = x, the final state satisfies

x(tf ) = eA(tf −t0)x +
∫ tf

t0

eA(tf −τ )Bu(τ)dτ

= 0 ∈ R
n

The state equation (3.1) is controllable if every state x ∈ R
n is controllable

to the origin.
Based on this definition alone, determining whether or not a particular
state equation is controllable appears to be a daunting task because it is
not immediately clear how to characterize input signals that have the pre-
scribed effect on the state trajectory. Our immediate goal is to overcome
this difficulty by translating this controllability property of state equations
into an equivalent linear algebraic property of the state equation’s coeffi-
cient matrices A and B.
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Theorem 3.2 The linear state equation (3.1) is controllable if and
only if

rank[ B AB A2B · · · An−1B ] = n

We refer to this matrix as the controllability matrix and often denote it
by P to save considerable writing. We note that this controllability matrix
is constructed directly from the state equation’s coefficient matrices A and
B. The theorem asserts that controllability of the state equation (3.1) is
equivalent to P having full-row rank, thereby yielding a linear algebraic
test for controllability. This equivalence affords us a measure of pithiness
because we will henceforth take controllability of a matrix pair (A, B) to
mean controllability of the linear state equation with coefficient matrices
A and B.

For the general multiple-input case, we see that P consists of n matrix
blocks B, AB, A2B, . . . , An−1B, each with dimension n × m, stacked side
by side. Thus P has dimension n × (n m) and therefore has more columns
than rows in the multiple-input case. Furthermore, the rank condition in
the theorem requires that the n rows of P are linearly independent when
viewed as row vectors of dimension 1 × (nm). Consequently, P satisfying
the preceding rank condition is frequently referred to as having full-row
rank. An alternative interpretation of the rank condition is that of the n m

columns of P written out as

P = [ b1 b2 · · · bm | Ab1 Ab2 · · · Abm |
· · · |An−1b1 An−1b2 · · · An−1bm ]

there must be at least one way to select n linearly independent columns.
For the single-input case, B consists of a single column, as do AB, A2B,

. . . , An−1B, yielding a square n × n controllability matrix P . Therefore,
a single-input linear state equation is controllable if and only if the
associated controllability matrix is nonsingular. We can check that P is
nonsingular by verifying that P has a nonzero determinant.

In order to prove Theorem 3.2, we introduce the so-called controllabil-
ity Gramian, defined as follows for any initial time t0 and any finite final
time tf > t0:

W(t0, tf ) =
∫ tf

t0

eA(t0−τ )BBTeAT(t0−τ )dτ

The controllability Gramian is a square n × n matrix. Also, it is
straightforward to check that it is a symmetric matrix, that is, W(t0, tf ) =
WT (t0, tf ). Finally, it is a positive semidefinite matrix because the
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associated real-valued quadratic form xT W(t0, tf )x satisfies the following
for all vectors x ∈ R

n

xT W(t0, tf )x = xT

∫ tf

t0

eA(t0−τ )BBTeAT(t0−τ )dτ x

=
∫ tf

t0

∣∣∣∣BT eAT (t0−τ )x
∣∣∣∣2

dτ

≥ 0

The asserted inequality follows from the fact that integrating a nonnegative
integral forward in time from t0 to tf must produce a nonnegative result.

�
Lemma 3.3

rank[ B AB A2B · · · An−1B ] = n

if and only if for any initial time t0 and any finite final time tf > t0, the
controllability Gramian W(t0, tf ) is nonsingular.

Proof. The lemma involves two implications:
If rank P = n, then W(t0, tf ) is nonsingular for any t0 and any finite

tf > t0.
If W(t0, tf ) is nonsingular for any t0 and any finite tf > t0, then rank

P = n.
We begin with a proof of the contrapositive of the first implication:

If W(t0, tf ) is singular for some t0 and finite tf > t0, then rank P < n.
Assuming that W(t0, tf ) is singular for some t0 and tf > t0, there

exists a nonzero vector x ∈ R
n for which W(t0, tf )x = 0 ∈ R

n and there-
fore xT W(t0, tf )x = 0 ∈ R. Using the controllability Gramian definition,
we have

0 = xT

∫ tf

t0

eA(t0−τ )BBTeAT(t0−τ )dτ x

=
∫ tf

t0

∣∣∣∣BT eAT (t0−τ )x
∣∣∣∣2

dτ

The integrand in this expression involves the Euclidean norm of the
m × 1 vector quantity BT eAT (t0−τ )x which we view as an analytic func-
tion of the integration variable τ ∈ [t0, tf ]. Since this integrand can never
be negative, the only way the integral over a positive time interval can
evaluate to zero is if the integrand is identically zero for all τ ∈ [t0, tf ].
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Because only the zero vector has a zero Euclidean norm, we must have

BT eAT (t0−τ )x = 0 ∈ R
m for all τ ∈ [t0, tf ]

This means that the derivative of this expression of any order with
respect to τ also must be the zero vector for all τ ∈ [t0, tf ] and in particular
at τ = t0. Going one step further, the same must hold for the transpose
of this expression. In other words,

0 = dk

dτ k
xT eA(t0−τ )B

∣∣∣∣
τ=t0

= (−1)kxT AkeA(t0−τ )B|τ=t0

= (−1)kxT AkB for all k ≥ 0

The alternating sign does not interfere with the conclusion that

[ 0 0 0 · · · 0 ] = [ xT B xT AB xT A2B · · · xT An−1B ]

= xT [ B AB A2B · · · An−1B ]

The components of the vector x ∈ R
n specify a linear combination of the

rows of the controllability matrix P that yields a 1 × (nm) zero vector.
Since we initially assumed that x is not the zero vector, at least one of its
components is nonzero. Thus we conclude that the controllability matrix
P has linearly dependent rows and, consequently, less than full-row rank.
In other words, rank P < n.

Next, we prove the contrapositive of the second implication:
If rank P < n, then W(t0, tf ) is singular for some t0 and finite tf > t0.
Assuming that P has less than full-row rank, there exists a nonzero

vector x ∈ R
n whose components specify a linear combination of the rows

of P that yield a 1 × (n m) zero vector. In other words,

xT [ B AB A2B · · · An−1B ]

= [ xT B xT AB xT A2B · · · xT An−1B ]

= [ 0 0 0 · · · 0 ]

and this shows that xT AkB = 0, for k = 0, 1, . . . , n − 1. We next use
the fact that there exist scalar analytic functions α0(t), α1(t), . . . , αn−1(t)

yielding the finite series representation for the matrix exponential

eAt =
n−1∑
k=0

αk(t)A
k
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This allows us to write

xT eAtB = xT

(
n−1∑
k=0

αk(t)A
k

)
B =

n−1∑
k=0

αk(t)x
T AkB = 0 for all t

in which the zero vector has dimension 1 × m. The transpose of this
identity yields BT eAT tx = 0 for all t . This enables us to show that for
any t0 and tf > t0,

W(t0, tf )x =
∫ tf

t0

eA(t0−τ )BBT eAT (t0−τ )dτ x

=
∫ tf

t0

eA(t0−τ )B(BT eAT (t0−τ )x)dτ

= 0

We conclude that W(t0, tf ) has a null space of dimension at least
one. Consequently, by Sylvester’s law, rank W(t0, tf ) < n, and therefore,
W(t0, tf ) is singular. �

The preceding lemma is instrumental in showing that the rank condition
of Theorem 3.2 implies controllability of the linear state equation (3.1) in
the sense of Definition 3.1. In particular, Lemma 3.3 allows us to easily
specify input signals that steer the state trajectory from any initial state to
the origin in finite time.

Proof of Theorem 3.2. The theorem involves the implications
If the state equation (3.1) is controllable, then rank P = n.
If rank P = n, then the linear state equation (3.1) is controllable.

For the first implication, we assume that the linear state equation (3.1) is
controllable so that, by definition, every initial state is controllable to the
origin. That is, for any x ∈ R

n, there exists a finite tf > t0 and a piecewise
continuous input signal u(·) defined on [t0, tf ] such that with x(t0) = x,

0 = eA(tf −t0)x +
∫ tf

t0

eA(tf −τ )Bu(τ)dτ.

This expression can be rearranged as follows, again using the finite
series expansion of the matrix exponential:

x = −e−A(t0−tf )

∫ tf

t0

eA(tf −τ )Bu(τ)dτ
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= −
∫ tf

t0

eA(t0−τ )Bu(τ)dτ

= −
∫ tf

t0

(
n−1∑
k=0

αk(t0 − τ)Ak

)
Bu(τ)dτ

= −
n−1∑
k=0

AkB

∫ tf

t0

αk(t0 − τ)u(τ)dτ

We observe that the definite integral appearing in each term of the sum
indexed by k evaluates to a constant m×1 vector that we denote by uk.
This allows us to write

x = −
n−1∑
k=0

AkBuk

= −[ B AB A2B · · · An−1B ]




u0

u1

u2
...

un−1




This expresses x ∈ R
n as a linear combination of the columns of the con-

trollability matrix. Under the assumption that the linear state equation (3.1)
is controllable, such a relationship must hold for any x ∈ R

n. This implies
that the image or range space of the controllability matrix must be all of
R

n. It follows directly that rank P = n.
To prove the second implication, we assume that rank P = n, which

by Lemma 3.3 implies that for any t0 and finite tf > t0 the controllability
Gramian W(t0, tf ) is nonsingular. We must show that every state x ∈ R

n

is controllable to the origin in the sense of Definition 3.1. With x ∈ R
n

fixed but arbitrary, consider the input signal defined on [t0, tf ] via

u(t) = −BT eAT (t0−t)W−1(t0, tf )x

The resulting state trajectory initialized with x(t0) = x satisfies

x(tf ) = eA(tf −t0)x +
∫ tf

t0

eA(tf −τ )Bu(τ)dτ

= eA(tf −t0)

[
x +

∫ tf

t0

eA(t0−τ )B(−BT eAT (t0−τ )W−1(t0, tf )x)dτ

]
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= eA(tf −t0)

[
x −

∫ tf

t0

eA(t0−τ )BBT eAT (t0−τ )dτ W−1(t0, tf )x

]

= eA(tf −t0)
[
x − W(t0, tf )W−1(t0, tf )x

]
= 0

thereby verifying that the arbitrarily selected state is controllable to the
origin, which concludes the proof. �

Returning to the claim made at the beginning of this section, given a
controllable state equation, a straightforward calculation left to the reader
shows that the input signal defined by

u(t) = BT eAT (t0−t)W−1(t0, tf )(eA(t0−tf )xf − x0) for t0 ≤ t ≤ tf

steers the state trajectory from the initial state x(t0) = x0 to the final state
x(tf ) = xf , with x0 and xf lying anywhere in the state space. For the
special case in which x(t0) = 0 ∈ R

n, the final state x(tf ) = xf is often
referred to as reachable from the origin. Consequently, a controllable state
equation is also sometimes referred to as a reachable state equation.

3.2 CONTROLLABILITY EXAMPLES

Example 3.1 Given the following single-input two–dimensional linear
state equation, we now assess its controllability.[

ẋ1(t)

ẋ2(t)

]
=

[
1 5
8 4

][
x1(t)

x2(t)

]
+

[ −2
2

]
u(t)

The controllability matrix P is found as follows:

B =
[ −2

2

]
AB =

[
8

−8

]
P =

[ −2 8
2 −8

]

Clearly, |P | = 0, so the state equation is not controllable. To see why this
is true, consider a different state definition[

z1(t)

z2(t)

]
=

[
x1(t)

x1(t) + x2(t)

]

The associated coordinate transformation (see Section 2.5) is

x(t) = T z(t)[
x1(t)

x2(t)

]
=

[
1 0

−1 1

] [
z1(t)

z2(t)

]
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Applying this coordinate transformation yields the transformed state
equation [

ż1(t)

ż2(t)

]
=

[ −4 5
0 9

] [
z1(t)

z2(t)

]
+

[ −2
0

]
u(t)

We see that ż2(t) does not depend on the input u(t), so this state variable
is not controllable. �

Example 3.2 Given the following three-dimensional single-input state
equation, that is,


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =

[ 0 1 0
0 0 1

−6 −11 −6

]
 x1(t)

x2(t)

x3(t)


 +

[ 0
1

−3

]
u(t)

we construct the controllability matrix P using

B =
[ 0

1
−3

]

AB =
[ 0 1 0

0 0 1
−6 −11 −6

][ 0
1

−3

]
=

[ 1
−3

7

]

A2B = A(AB) =
[ 0 1 0

0 0 1
−6 −11 −6

][ 1
−3

7

]
=

[ −3
7

−15

]

This yields

P = [
B AB A2B

]

=
[ 0 1 −3

1 −3 7
−3 7 −15

]

To check controllability, we calculate

|P | = | B AB A2B |

=
∣∣∣∣∣

0 1 −3
1 −3 7

−3 7 −15

∣∣∣∣∣
= [0 + (−21) + (−21)] − [(−27) + 0 + (−15)]
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= −42 − (−42)

= 0

and thus rank P < 3. This indicates that the state equation is not control-
lable. The upper left 2 × 2 submatrix

[
0 1
1 −3

]

has nonzero determinant, indicating that rankP = 2. �

Example 3.3 We investigate the controllability of the three–dimen-
sional state equation




ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 1 0

0 0 1

−a0 −a1 −a2







x1(t)

x2(t)

x3(t)


 +




0

0

1


u(t)

y(t) = [
b0 b1 b2

]



x1(t)

x2(t)

x3(t)




which the reader will recall is a state-space realization of the transfer
function

H(s) = b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

The controllability matrix P is found as follows:

B =

 0

0
1


 AB =


 0

1
−a2




A2B =

 1

−a2

a2
2 − a1




P = [
B AB A2B

]

=

 0 0 1

0 1 −a2

1 −a2 a2
2 − a1
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The controllability matrix P is independent of the transfer function
numerator coefficients b0, b1, and b2. The determinant of the controllabil-
ity matrix is |P | = −1 �= 0, so the state equation is controllable. Note that
this result, i.e. the determinant of P , is independent of the characteristic
polynomial coefficients a0, a1, and a2, so a state-space realization in this
form is always controllable. This is also true for any system order n, a
claim that we will verify shortly. �

Example 3.4 Given the five-dimensional, two-input state equation




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

ẋ5(t)




=




0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0







x1(t)

x2(t)

x3(t)

x4(t)

x5(t)




+




0 0

1 0

0 0

0 0

0 1




[
u1(t)

u2(t)

]

the controllability matrix is

P = [
b1 b2 | Ab1 Ab2 | A2b1 A2b2 | A3b1 A3b2 |A4b1 A4b2

]

=




0 0

1 0

0 0

0 0

0 1

∣∣∣∣∣∣∣∣∣∣∣

1 0

0 0

0 0

0 1

0 0

∣∣∣∣∣∣∣∣∣∣∣

0 0

0 0

0 1

0 0

0 0

∣∣∣∣∣∣∣∣∣∣∣

0 0

0 0

0 0

0 0

0 0

∣∣∣∣∣∣∣∣∣∣∣

0 0

0 0

0 0

0 0

0 0




This state equation is controllable because P has full-row rank, as can
be seen from the pattern of ones and zeros. Also, columns 1, 2, 3, 4,
and 6 form a linearly independent set. Since the remaining columns are
each zero vectors, this turns out to be the only way to select five linearly
independent columns from P . �

Example 3.5 Now consider the following five-dimensional, two-input
state equation




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

ẋ5(t)




=




0 1 0 0 0

1 0 −1 0 1

0 0 0 1 0

0 0 0 0 1

0 −1 0 −1 0







x1(t)

x2(t)

x3(t)

x4(t)

x5(t)




+




0 0

1 −1

0 0

0 0

1 1




[
u1(t)

u2(t)

]
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This equation differs from the preceding example only in the second and
fifth rows of both A and B. These adjustments yield the more interesting
controllability matrix

P = [
b1 b2 | Ab1 Ab2 | A2b1 A2b2 | A3b1 A3b2 |A4b1 A4b2

]

=




0 0

1 −1

0 0

0 0

1 1

∣∣∣∣∣∣∣∣∣∣∣

1 −1

1 1

0 0

1 1

−1 1

∣∣∣∣∣∣∣∣∣∣∣

1 1

0 0

1 1

−1 1

−2 −2

∣∣∣∣∣∣∣∣∣∣∣

0 0

−2 −2

−1 1

−2 −2

1 −1

∣∣∣∣∣∣∣∣∣∣∣

−2 −2

2 −2

−2 −2

1 −1

4 4




which also has rank equal to 5. If we search from left to right for five
linearly independent columns, we find that the first five qualify. However,
there are many more ways to select five linearly independent columns
from this controllability matrix, as the reader may verify with the aid of
MATLAB. �

3.3 COORDINATE TRANSFORMATIONS
AND CONTROLLABILITY

The linear time-invariant state equation (3.1) together with the state
coordinate transformation x(t) = T z(t) (see Section 2.5) yields the
transformed state equation

ż(t) = Âz(t) + B̂u(t) z(t0) = z0 (3.2)

in which
Â = T −1AT B̂ = T −1B z0 = T −1x0

Proceeding directly from Definition 3.1, we see that if a state x is
controllable to the origin for the original state equation (3.1), then the
state z = T −1x is controllable to the origin for the transformed state
equation (3.2) over the same time interval using the same control signal,
for if

0 = eA(tf −t0)x +
∫ tf

t0

eA(tf −τ )Bu(τ)dτ

then with z(t0) = z,

z(tf ) = eÂ(tf −t0)z +
∫ tf

t0

eÂ(tf −τ )B̂u(τ)dτ

= (T −1eA(tf −t0)T )(T −1x) +
∫ tf

t0

(T −1eA(tf −τ )T )(T −1B)u(τ)dτ
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= T −1

[
eA(tf −t0)x +

∫ tf

t0

eA(tf −τ )Bu(τ)dτ

]

= 0

Conversely, if a state z is controllable to the origin for the state
equation (3.2), then the state x = T z is controllable to the origin for the
state equation (3.1). We immediately conclude that the transformed state
equation (3.2) is controllable if and only if the original state equation (3.1)
is controllable. In short, we say that controllability is invariant with respect
to state coordinate transformations.

Any equivalent characterization of controllability must reflect this out-
come. For instance, we expect that the rank test for controllability provided
by Theorem 3.2 should yield consistent results across all state equations
related by a coordinate transformation. To see this, we relate the control-
lability matrix for the state equation (3.2) to the controllability matrix for
the state equation (3.1). Using the fact that Âk = T −1AkT for any positive
integer k, we have

P̂ = [
B̂ ÂB̂ · · · Ân−1B̂

]
= [

T −1B|(T −1AT )(T −1B)| · · · |(T −1An−1T )(T −1B)
]

= [
T −1B |T −1AB| · · · |T −1An−1B

]
= T −1

[
B AB · · · An−1B

]
= T −1P

Since either pre- or post-multiplication by a square nonsingular matrix
does not affect matrix rank, we see that

rank P̂ = rank P

In addition, the n × n controllability Gramians for Equations (3.2) and
(3.1) are related according to

Ŵ (t0, tf ) =
∫ tf

t0

eÂ(t0−τ )B̂B̂TeÂT(t0−τ )dτ

=
∫ tf

t0

(T −1eA(t0−τ )T )(T −1B)(T −1B)T(T −1eA(t0−τ )T )Tdτ

= T −1
∫ tf

t0

eA(t0−τ )BBTeA(t0−τ )dτT −T

= T −1W(t0, tf )T −T
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where T −T is shorthand notation for (T −1)T = (T T)−1. We conclude that
Ŵ (t0, tf ) is nonsingular for some initial time t0 and finite final time tf > t0
if and only if W(t0, tf ) is nonsingular for the same t0 and tf .

Various system properties are often revealed by a judiciously chosen
state-space realization. Here we examine the role that the diagonal canon-
ical form plays in controllability analysis. To do so, we assume that
the state equation (3.1) has a single input and a diagonalizable system
dynamics matrix A. As discussed in Chapter 2, this ensures that the state
equation (3.1) can be transformed into diagonal canonical form. Using the
identity:

Ak
DCFBDCF =




λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

. . .
...

0 0 · · · λk
n







b1

b2

...

bn


 =




λk
1b1

λk
2b2

...

λk
nbn




for any integer k ≥ 0, we see that the controllability matrix for the diag-
onal canonical form is given by

PDCF =




b1 λ1b1 λ2
1b1 · · · λn−1

1 b1

b2 λ2b2 λ2
2b2 · · · λn−1

2 b2

...
...

...
. . .

...

bn λnbn λ2
nbn · · · λn−1

n bn




=




b1 0 · · · 0

0 b2 · · · 0
...

...
. . .

...

0 0 · · · bn







1 λ1 λ2
1 · · · λn−1

1

1 λ2 λ2
2 · · · λn−1

2

...
...

...
. . .

...

1 λn λ2
n · · · λn−1

n




which is nonsingular if and only if each factor on the right-hand is nonsin-
gular. The diagonal left factor is nonsingular if and only if every element
of BDCF is nonzero. The right factor is the Vandermonde matrix encoun-
tered in Chapter 2, which is nonsingular if and only if the eigenvalues
λ1, λ2, . . . , λn are distinct. Since controllability is invariant with respect
to state coordinate transformations, we conclude that controllability of a
single-input state equation can be assessed by inspection of its diagonal
canonical form (when it exists). Specifically, a necessary and sufficient
condition for controllability is that the eigenvalues of A displayed on the
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diagonal of ADCF must be distinct and every element of BDCF must be
nonzero.

The condition on BDCF is relatively easy to interpret; because of the
decoupled nature of the diagonal canonical form, if any component of
BDCF is zero, the corresponding state variable is disconnected from the
input signal, and therefore cannot be steered between prescribed initial
and final values. The eigenvalue condition is a bit more subtle. Suppose
that A has a repeated eigenvalue, say, λi = λj = λ. Given zero initial
conditions on the corresponding state variables xi(t) and xj (t), and any
input signal u(t), we have

bjxi(t) = bj

[∫ t

0
eλ(t−τ )biu(τ)dτ

]
=

∫ t

0
eλ(t−τ )(bjbi)u(τ)dτ

= bi

[∫ t

0
eλ(t−τ )bju(τ)dτ

]
= bixj (t)

for all t ≥ 0. That these state variable responses are constrained to satisfy
this relationship regardless of the input signal indicates that not every
state can be reached from the origin in finite time. Hence when A has a
repeated eigenvalue, the state equation in diagonal canonical form is not
controllable, implying the same for the original state equation.

This section concludes with three results that, in different ways, relate
coordinate transformations and controllability. The first two apply only
to the single-input, single-output case. The third holds in the general
multiple-input, multiple-output case.

Controllable Realizations of the Same Transfer Function

Consider two single-input, single-output state equations

ẋ1(t) = A1x1(t) + B1u(t) ẋ2(t) = A2x2(t) + B2u(t)

y(t) = C1x1(t) + D1u(t) y(t) = C2x2(t) + D2u(t) (3.3)

that are both n-dimensional realizations of the same transfer function. We
show that when both realizations are controllable, they are related by a
uniquely and explicitly defined coordinate transformation.

Lemma 3.4 Two controllable n-dimensional single-input, single-output
realizations (3.3) of the same transfer function are related by the unique
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state coordinate transformation x1(t) = T x2(t), where

T = [
B1 A1B1 · · · An−1

1 B1

] [
B2 A2B2 · · · An−1

2 B2

]−1

= P1P
−1
2

Proof. We must verify the identities

A2 = T −1A1T B2 = T −1B1 C2 = C1T

The first identity can be recast as

[
B2 A2B2 · · · An−1

2 B2

]−1
A2

[
B2 A2B2 · · · An−1

2 B2

]
= [

B1 A1B1 · · · An−1
1 B1

]−1
A1

[
B1 A1B1 · · · An−1

1 B1

]
(3.4)

Now, for any matrix pair (A, B) describing a controllable state equation
with |sI − A| = sn + an−1s

n−1 + · · · + a1s + a0, the Cayley-Hamilton
theorem gives

[
B AB · · · An−1B

]−1
A

[
B AB · · · An−1B

]

= [
B AB · · · An−1B

]−1 [
AB A2B · · · AnB

]

= [
B AB · · · An−1B

]−1

× [
AB A2B · · · (−a0B − a1AB − · · · − an−1A

n−1B)
]

=




0 0 · · · 0 0 −a0

1 0 · · · 0 0 −a1

0 1 · · · 0 0 −a2

...
...

. . .
...

...
...

0 0 · · · 1 0 −an−2

0 0 · · · 0 1 −an−1




Since the state equations (3.3) are each n-dimensional realizations of the
same transfer function H(s) = b(s)/a(s) with deg a(s) = n, we nec-
essarily have |sI − A1| = |sI − A2|. Thus both matrix pairs (A1, B1)

and (A2, B2) satisfy an identity analogous to the preceding one, with
an identical outcome in each case. Hence Equation (3.4) holds, yielding
A2 = T −1A1T .
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Next, it is straightforward to check that

[
B2 A2B2 · · · An−1

2 B2

]−1
B2 =




1

0

0
...

0

0




= [
B1 A1B1 · · · An−1

1 B1

]−1
B1

which can be repackaged to give B2 = T −1B1.
Finally, since the state equations (3.3) are each n-dimensional realiza-

tions of the same impulse response and D2 = D1, it follows that

C2e
A2tB2 = C1e

A1tB1 t ≥ 0

Repeatedly differentiating this identity and evaluating at t = 0 gives

C2A
k
2B2 = C1A

k
1B1 k = 0, 1, . . . , n − 1

which implies that

C2
[
B2 A2B2 · · · An−1

2 B2

] = C1
[
B1 A1B1 · · · An−1

1 B1

]

which can be rearranged to yield the third identity C2 = C1T .
Uniqueness is a consequence of the fact that any state coordinate

transformation x1(t) = T x2(t) linking the state equations (3.3) necessarily
must satisfy

[
B1 A1B1 · · · An−1

1 B1

] = T
[
B2 A2B2 · · · An−1

2 B2

]

along with the nonsingularity of each controllability matrix. �

Controller Canonical Form

As noted earlier, state coordinate transformations permit the construc-
tion of special state-space realizations that facilitate a particular type of
analysis. For instance, the diagonal canonical form realization describes
decoupled first-order scalar equations that are easier to solve than a general
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coupled state equation and controllability can be determined by inspection.
We have previously encountered another highly structured realization of
the scalar transfer function

H(s) = b(s)

a(s)
= bn−1s

n−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

that was determined by inspection from the coefficients of the numerator
and denominator polynomials and was referred to as either the phase-
variable canonical form or the controller canonical form (CCF). Here we
justify the latter terminology by introducing the following notation for
this realization:

ẋCCF = ACCF xCCF(t) + BCCF u(t)

y(t) = CCCF xCCF(t)

in which

ACCF =




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1




BCCF =




0

0
...

0

0

1




CCCF = [
b0 b1 b2 · · · bn−2 bn−1

]
Not surprisingly, the controller canonical form defines a controllable state
equation (see Example 3.3). This can be verified by deriving an explicit
representation for the associated controllability matrix.

Lemma 3.5 The n-dimensional Controller Canonical Form has the con-
trollability matrix

PCCF = [
BCCF ACCFBCCF A2

CCFBCCF · · · An−1
CCFBCCF

]

=




a1 a2 · · · an−1 1

a2 a3 · · · 1 0
...

...
. . .

...
...

an−1 1 · · · 0 0

1 0 · · · 0 0




−1

(3.5)
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Proof. It suffices to check that PCCFP
−1
CCF = I , that is,

[
BCCF ACCFBCCF A2

CCFBCCF · · · An−1
CCFBCCF

]

×




a1 a2 · · · an−1 1

a2 a3 · · · 1 0
...

...
. . .

...
...

an−1 1 · · · 0 0

1 0 · · · 0 0




= I

Proceeding column-wise through this identity from last to first, we have
by definition BCCF = en (see above), and using the structure of the right
factor, we must show in addition that

A
n−j

CCFBCCF +
n−j∑
k=1

an−kA
n−j−k

CCF BCCF = ej j = 1, 2, . . . , n − 1 (3.6)

We establish Equation (3.6) by induction on j in reverse order, starting
with j = n − 1. The structure of ACCF allows us to write

ACCFej = ej−1 − aj−1en, j = 2, . . . , n − 1

For j = n − 1, Equation (3.6) reduces to

ACCFBCCF + an−1BCCF = en−1

which holds by virtue of the preceding relationship BCCF = en. Next, sup-
pose that Equation (3.6) holds for arbitrary j ≤ n − 1. Then, for j − 1,
we have

A
n−(j−1)

CCF BCCF +
n−(j−1)∑

k=1

an−kA
n−(j−1)−k

CCF BCCF

= ACCF

(
A

n−j

CCFBCCF +
n−j∑
k=1

an−kA
n−j−k

CCF BCCF

)
+ aj−1BCCF

= ACCFej + aj−1en

= ej−1

which concludes the proof. �



COORDINATE TRANSFORMATIONS AND CONTROLLABILITY 127

We note that PCCF depends explicitly on the characteristic polyno-
mial coefficients a1, . . . , an−1 (excluding a0). We further observe that
the inverse of the controller canonical form controllability matrix PCCF,
namely,

P −1
CCF =




a1 a2 · · · an−1 1

a2 a3 · · · 1 0

...
...

. . .
...

...

an−1 1 · · · 0 0

1 0 · · · 0 0




is symmetric. The reader should check that because matrix inversion and
matrix transposition are interchangeable operations, PCCF is symmetric
as well.

It follows from Lemma 3.5 that beginning with an arbitrary control-
lable realization of a given transfer function with state vector x(t), the
associated controller canonical form is obtained by applying the coor-
dinate transformation x(t) = TCCFz(t), where TCCF = P P −1

CCF, or more
explicitly,

TCCF = [
B AB A2B · · · An−1B

]




a1 a2 · · · an−1 1

a2 a3 · · · 1 0

...
...

. . .
...

...

an−1 1 · · · 0 0

1 0 · · · 0 0




(3.7)

Based on our earlier discussion regarding controllability of the diag-
onal canonical form, we see that the controller canonical form can be
transformed to diagonal canonical form when and only when ACCF has
distinct eigenvalues. The eigenvalue condition is in general sufficient for
diagonalizability as noted in Appendix B, Section 8. Conversely, if the
controller canonical form can be transformed to diagonal canonical form,
then the latter is necessarily controllable, which implies that the eigenval-
ues of ACCF must be distinct as noted earlier. Alternatively, the necessity
of the eigenvalue condition can be argued using the eigenstructure results
for ACCF established in AE3.1. It also follows from AE3.1, that when
ACCF has distinct eigenvalues, a coordinate transformation from controller
canonical form to diagonal canonical form is given by the transposed
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Vandermonde matrix

TDCF =




1 1 1 · · · 1

λ1 λ2 λ3 · · · λn

λ2
1 λ2

2 λ2
3 · · · λ2

n

...
...

...
. . .

...

λn−1
1 λn−1

2 λn−1
3 · · · λn−1

n




(3.8)

which is nonsingular.

Example 3.6 Given the three-dimensional single-input, single-output
state equation specified by the coefficient matrices given below, we now
compute the controller canonical form. This is the same system given in
Example 2.8, for which the diagonal canonical form was computed.

A =
[ 8 −5 10

0 −1 1
−8 5 −9

]
B =

[−1
0
1

]
C = [ 1 −2 4 ]

D = 0

The system characteristic polynomial is again |sI − A| = s3 + 2s2 + 4s +
8, and the eigenvalues are ±2i,−2. The controller canonical form trans-
formation matrix TCCF = P P −1

CCF is computed as follows.

TCCF = [
B AB A2B

] 
 a1 a2 1

a2 1 0
1 0 0




=
[−1 2 1

0 1 −2
1 −1 −2

][ 4 2 1
2 1 0
1 0 0

]

=
[ 1 0 −1

0 1 0
0 1 1

]

The resulting controller canonical form state-space realization is given by

ACCF = T −1
CCFATCCF BCCF = T −1

CCFB

=
[ 0 1 0

0 0 1
−8 −4 −2

]
=


 0

0
1
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CCCF = CTCCF DCCF = D

= [
1 2 3

] = 0

Because ACCF also has the distinct eigenvalues ±2i, −2, the matrix

TDCF =



1 1 1

2i −2i −2

−4 −4 4




is nonsingular and yields the diagonal canonical form obtained in
Example 2.8

ADCF = T −1
DCFACCFTDCF BDCF = T −1

DCFBCCF

=



2i 0 0

0 −2i 0

0 0 −2


 =




−0.06 − 0.06i

−0.06 + 0.06i

0.13




CDCF = CCCFTDCF DDCF = D

= [ −11 + 4i −11 − 4i 9 ] = 0

Here ADCF displays the distinct eigenvalues, and all components of BDCF

are nonzero, as we expect. �

Uncontrollable State Equations

The following result provides a useful characterization of state equations
that are not controllable. We refer to this as the standard form for uncon-
trollable state equations.

Theorem 3.6 Suppose that

rank
[
B AB A2B · · · An−1B

] = q < n

Then there exists a state coordinate transformation x(t) = T z(t) such
that the transformed state equation has

Â = T −1AT B̂ = T −1B

=
[

A11 A12

0 A22

]
=

[
B1

0

]
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where the pair (A11, B1) defines a controllable q-dimensional state
equation.

Proof. First select q linearly independent columns labeled t1, t2, . . . , tq
from the n m columns of the controllability matrix P . Then let tq+1,

tq+2, . . . , tn be additional n × 1 vectors such that {t1, t2, . . . , tq, tq+1,

tq+2, . . . , tn} is a basis for R
n, equivalently,

T = [
t1 t2 · · · tq | tq+1 tq+2 · · · tn

]

is nonsingular. To show first that B̂ = T −1B, consider the identity B =
T B̂. Since the j th column of B satisfies

bj ∈ Im
[
B AB · · · An−1B

] = span{t1, t2, . . . , tq}

and the j th column of B̂, b̂j , contains the n coefficients of the unique
linear combination

bj = b̂1j t1 + b̂2j t2 + · · · + b̂qj tq + b̂q+1j tq+1 + b̂q+2j tq+2 + · · · + b̂nj tn

it follows that b̂q+1j = b̂q+2j = · · · = b̂nj = 0. That is,

b̂j =




b̂1j

b̂2j

...

b̂qj

0

0
...

0




Applying this argument to every column of B, it follows that every
column of B̂ has zeros in the last n − q components and therefore that B̂

has the required form.
To show that Â has the required upper block triangular form, recall

that, denoting the characteristic polynomial of A by

|λI − A| = λn + an−1λ
n−1 + · · · + a1λ + a0
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the Cayley-Hamilton theorem leads to the identity

An = −a0I − a1A − · · · − an−1A
n−1

and consequently, for each j = 1, 2, . . . , m,

Anbj ∈ span {bj , Abj , . . . , A
n−1bj } ⊂ span {t1, t2, . . . , tq} (3.9)

Now, for each i = 1, 2, . . . , q, ti = Akbj for some j = 1, 2, . . . , m and
k = 0, 1, 2, . . . , n − 1.

There are two cases to consider:

1. k < n − 1 so that directly

Ati = Ak+1bj ∈ span {bj , Abj , . . . , A
n−1bj } ⊂ span {t1, t2, . . . , tq}

2. k = n − 1 so that by Equation (3.9)

Ati = Anbj ∈ span {bj , Abj , . . . , A
n−1bj } ⊂ span {t1, t2, . . . , tq}

Thus, in either case, Ati ∈ span {t1, t2, . . . , tq}, for i = 1, 2, . . . , q. Using
similar reasoning as above,

A
[
t1 t2 · · · tq

] = [
At1 At2 · · · Atq

]

= [
t1 t2 · · · tq | tq+1 tq+2 · · · tn

] [
A11

0

]

where the ith column of A11 contains the q coefficients that uniquely
characterize Ati as a linear combination of {t1, t2, . . . , tq}. Also, since
Ati ∈ span {t1, t2, . . . , tq, tq+1, tq+2, . . . , tn} for i = q + 1, . . . , n, we have

A
[
tq+1 tq+2 · · · tn

] = [
Atq+1 Atq+2 · · · Atn

]

= [
t1 t2 · · · tq | tq+1 tq+2 · · · tn

] [
A12

A22

]
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Putting everything together,

A
[
t1 t2 · · · tq | tq+1 tq+2 · · · tn

]

= [
t1 t2 · · · tq | tq+1 tq+2 · · · tn

] [
A11 A12

0 A22

]

Thus

AT = T

[
A11 A12

0 A22

] Â = T −1AT

=
[

A11 A12

0 A22

]

as required. Since

T −1
[
B AB · · · An−1B

] = [
B̂ ÂB̂ · · · Ân−1B̂

]

=
[

B1 A11B1 · · · An−1
11 B1

0 0 · · · 0

]

and multiplication by a nonsingular matrix does not affect matrix rank,
we conclude that

rank
[
B1 A11B1 · · · A

q−1
11 B1 |Aq

11B1 · · · An−1
11 B1

] = q

Finally, an argument involving the Cayley-Hamilton theorem applied to
the q × q submatrix A11 shows that

rank
[
B1 A11B1 · · · A

q−1
11 B1

] = q

so that the pair (A11, B1) defines a controllable q-dimensional state
equation. �

Example 3.7 Recall that the uncontrollable state equation from
Example 3.2, namely,




ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 1 0

0 0 1

−6 −11 −6







x1(t)

x2(t)

x3(t)


 +




0

1

−3


u(t)

has the rank 2 controllability matrix

[
B AB A2B

] =



0 1 −3

1 −3 7

−3 7 −15
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in which the first two columns are linearly independent. Appending to
these column vectors the third standard basis vector gives

T =
[ 0 1 0

1 −3 0
−3 7 1

]

which is nonsingular, as can be verified with a straightforward determinant
computation. A direct calculation shows that

Â = T −1AT B̂ = T −1B

=



0 −2 | 1|
1 −3 | 0||
0 0 | −3


 =




1
0

0




which is in the standard form for an uncontrollable state equation because
the q = two-dimensional state equation specified by

A11 =
[

0 −2
1 −3

]
B1 =

[
1
0

]

is easily seen to be controllable. �

3.4 POPOV-BELEVITCH-HAUTUS TESTS FOR
CONTROLLABILITY

Checking the rank of the controllability matrix provides an algebraic test
for controllability. Here we present two others, referred to as the Popov-
Belevitch-Hautus eigenvector and rank tests, respectively.

Theorem 3.7 (Popov-Belevitch-Hautus Eigenvector Test for Controlla-
bility). The state equation specified by the pair (A, B) is controllable if
and only if there exists no left eigenvector of A orthogonal to the columns
of B.

Proof. We must prove two implications:
If the state equation specified by the pair (A, B) is controllable, then

there exists no left eigenvector of A orthogonal to the columns of B.
If there exists no left eigenvector of A orthogonal to the columns of

B, then the state equation specified by the pair (A, B) is controllable.
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For necessity, we prove the contrapositive statement: If there does exist
a left eigenvector of A orthogonal to the columns of B, then the state
equation specified by the pair (A, B) is not controllable. To proceed,
suppose that for w ∈ C

n is a left eigenvector of A associated with λ ∈
σ(A) that is orthogonal to the columns of B. Then

w �= 0 w∗A = λw∗ w∗B = 0.

A straightforward induction argument shows that

w∗AkB = λk(w∗B) = 0 for all k ≥ 0

so that
w∗ [

B AB A2B · · · An−1B
] = [

0 0 0 · · · 0
]

Since w �= 0, the preceding identity indicates that there is a nontrivial
linear combination of the rows of the controllability matrix that yields
the 1 × (nm) zero vector, so, by definition, the controllability matrix has
linearly dependent rows. In other words,

rank
[
B AB A2B · · · An−1B

]
< n

from which it follows that the state equation specified by the pair (A, B)

is not controllable.
For sufficiency, we again prove the contrapositive statement: If the state

equation specified by the pair (A, B) is not controllable, then there does
exist a left eigenvector of A orthogonal to the columns of B. For this,
suppose that the state equation is not controllable, so

q = rank
[
B AB A2B · · · An−1B

]
< n

By Theorem 3.6, there exists a state coordinate transformation x(t) =
T z(t) such that the transformed state equation has

Â = T −1AT B̂ = T −1B

=
[

A11 A12

0 A22

]
=

[
B1

0

]

Let λ be any eigenvalue of the submatrix A22 and w2 ∈ C
n−q be an asso-

ciated left eigenvector. Define

w = T −T

[
0
w2

]
�= 0
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which satisfies

w∗A = [
0 w∗

2

]
T −1

(
T

[
A11 A12

0 A22

]
T −1

)

= [
0 w∗

2A22
]
T −1

= [
0 λw∗

2

]
T −1

= λ
[

0 w∗
2

]
T −1

= λw∗

along with

w∗B = [
0 w∗

2

]
T −1

(
T

[
B1

0

])

= [
0 w∗

2

] [
B1

0

]

= 0

Thus we have constructed a left eigenvector w of A orthogonal to the
columns of B. �

Example 3.8 We again return to the uncontrollable state equation from
Examples 3.2 and 3.7:


ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 1 0

0 0 1

−6 −11 −6







x1(t)

x2(t)

x3(t)


 +


 0

1
−3


u(t)

The eigenvalues of A are found to be λ1 = −1, λ2 = −2, and λ3 = −3,
with associated left eigenvectors

w1 =



6

5

1


 w2 =




3

4

1


 w3 =




2

3

1




Of these, wT
3 B = 0, which again confirms that this state equation is not

controllable. Furthermore, as expected from the proof of Theorem 3.7,

wT
3

[
B AB A2B

] = [ 2 3 1 ]

[ 0 1 −3
1 −3 7

−3 7 −15

]

= [
0 0 0

]
�
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Theorem 3.8 (Popov-Belevitch-Hautus Rank Test for Controllability).
The state equation specified by the pair (A, B) is controllable if and only
if

rank
[
λI − A B

] = n f or all λ ∈ C

Proof. First, observe that by definition

rank(λI − A) < n equivalently |λI − A| = 0

when and only when λ ∈ C is an eigenvalue of A. Thus,

rank(λI − A) = n

for all λ ∈ C except at the eigenvalues of A, and consequently,

rank
[
λI − A B

] = n for all λ ∈ C − σ(A)

Thus it remains to show that this rank condition also holds for λ ∈ σ(A)

when and only when the state equation is controllable.
First, suppose that

rank
[
λI − A B

]
< n

for some λ ∈ σ(A) so that the n × (n + m) matrix

[
λI − A B

]

has linearly dependent rows. Consequently, there is a nonzero vector
w ∈ C

n such that
w∗ [

λI − A B
] = [

0 0
]

In other words,
w∗(λI − A) = 0 w∗B = 0

so that w is necessarily a left eigenvector of A orthogonal to the columns
of B. By the Popov-Belevitch-Hautus eigenvector test, the state equation
is not controllable.

Conversely, suppose that the state equation is not controllable so that
again by the Popov-Belevitch-Hautus eigenvector test corresponding to
an eigenvalue λ of A there is a left eigenvector w that is orthogonal to
the columns of B. Reversing the preceding steps, we find

w∗ [
λI − A B

] = [
0 0

]
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Thus we have identified a λ ∈ σ(A) ⊂ C for which

[
λI − A B

]

has linearly dependent rows so that

rank
[
λI − A B

]
< n �

As an application of the Popov-Belevitch-Hautus tests, consider the
linear time-invariant state equation (3.1) together with the state coordinate
transformation x(t) = T z(t) and the state feedback law

u(t) = −Kx(t) + Gr(t)

where r(t) is a new external input signal, and G is an input gain matrix.
Note that this can be viewed as a combined state and input transformation,
that is, [

x(t)

u(t)

]
=

[
T 0

−KT G

] [
z(t)

r(t)

]
(3.10)

This relationship can be inverted provided that both T and G are nonsin-
gular because

[
z(t)

r(t)

]
=

[
T 0

−KT G

]−1 [
x(t)

u(t)

]

=
[

T −1 0

G−1K G−1

][
x(t)

u(t)

]

In this case necessarily, G is m × m, and r(t) is m × 1. The transformed
state equation is easily found to be

ż(t) = T −1(A − BK)T z(t) + T −1BG r(t) (3.11)

We have already seen that controllability is invariant with respect to state
coordinate transformations. That the same is true for this larger class of
state and input transformations is a direct consequence of the Popov-
Belevitch-Hautus rank test.

Theorem 3.9 For any invertible state and input transformation (3.10),
the state equation (3.11) is controllable if and only if the state
equation (3.1) is controllable.
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Proof. We first observe that

[
λI − T −1(A − BK)T T −1BG

] = [
T −1(λI − (A − BK))T |T −1BG

]
= T −1 [(λI − (A − BK))T |BG]

= T −1
[
λI − A B

] [
T 0

KT G

]

Since the rightmost factor is nonsingular and matrix rank is unaffected by
pre- and postmultiplication by nonsingular matrices, we conclude that

rank
[
λI − T −1(A − BK)T T −1BG

] = rank
[
λI − A B

]
for all λ ∈ C

The desired conclusion follows immediately from the Popov-Belevitch-
Hautus rank test. �

3.5 MATLAB FOR CONTROLLABILITY AND CONTROLLER
CANONICAL FORM

MATLAB for Controllability

Some MATLAB functions that are useful for controllability analysis and
decomposition are

P = ctrb(JbkR) Calculate the controllability matrix associated with
the linear time-invariant system JbkR; only matri-
ces A and B are used in the calculation.

rank(P) Calculate the rank of matrix P.
det(P) Calculate the determinant of square matrix P.
size(A,1) Determine the system order n.
ctrbf Decomposition into controllable/uncontrollable sub-

systems (if not controllable).

MATLAB for Controller Canonical Form

The MATLAB functions that are useful for coordinate transformations and
the controller canonical form realization have been given in previous MAT-

LAB sections in Chapters 1–2. There is no controller canonical form switch
for the canon function.
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Continuing MATLAB Example

Controllability We now assess the controllability of the open-loop sys-
tem for the Continuing MATLAB Example (rotational mechanical system).
The following MATLAB code performs this determination for the Continuing
MATLAB Example.

%------------------------------------------------------
% Chapter 3. Controllability
%------------------------------------------------------

P = ctrb(JbkR); % Calculate
% controllability
% matrix P

if (rank(P) == size(A,1)) % Logic to assess
% controllability

disp('System is controllable.');
else

disp('System is NOT controllable.');
end

P1 = [B A*B]; % Check P via the
% formula

This m-file, combined with the m-files from previous chapters, performs
the controllability check for the Continuing MATLAB Example:

P =
0 1
1 -4

System is controllable.

Coordinate Transformations and Controller Canonical Form For
the Continuing MATLAB Example, we now calculate the controller canon-
ical form state-space realization. The following MATLAB code, along with
the code from previous chapters, performs this computation:

%------------------------------------------------------
% Chapter 3. Coordinate Transformations and
% Controller Canonical Form
%------------------------------------------------------
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CharPoly = poly(A); % Determine the system
% characteristic polynomial

a1 = CharPoly(2); % Extract a1

Pccfi = [a1 1;1 0]; % Calculate the inverse of
% matrix Pccf

Tccf = P*Pccfi; % Calculate the CCF
% transformation matrix

Accf = inv(Tccf)*A*Tccf; % Transform to CCF via
% formula

Bccf = inv(Tccf)*B;
Cccf = C*Tccf;
Dccf = D;

The following output is produced:

CharPoly =
1.0000 4.0000 40.0000

Tccf =
1.0000 0

−0.0000 1.0000

Accf =
−0.0000 1.0000

−40.0000 −4.0000

Bccf =
0
1

Cccf =
1 0

Dccf =
0

Note that the coordinate transformation matrix Tccf in this example
is a 2 × 2 identity matrix, which means that our original state-space real-
ization was already in controller canonical form. The resulting state-space
coefficient matrices are identical to those originally derived and entered
into the linear time-invariant system data structure JbkR in Chapter 1.
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3.6 CONTINUING EXAMPLES FOR CONTROLLABILITY
AND CONTROLLER CANONICAL FORM

Continuing Example 1: Two-Mass Translational Mechanical
System

Controllability We now assess controllability of Continuing Example 1
(two-mass translational mechanical system), for both case a (multiple-
input, multiple-output) and case b [input u2(t) and output y1(t)].

Case a. The 4 × 8 controllability matrix P is

P = [
B AB A2B A3B

]

=




0 0 0.03 0 −0.02 0.01 −0.36 0.23

0.03 0 −0.02 0.01 −0.36 0.23 0.67 −0.61

0 0 0 0.05 0.01 −0.03 0.23 −0.48

0 0.05 0.01 −0.03 0.23 −0.48 −0.61 0.73




This controllability matrix is of full rank, i.e. rank(P ) = 4, which matches
the system order n = 4. Therefore, the state equation is controllable.

Case b. In case b, the system dynamics matrix A is identical to case a;
however, since B is different owing to the single input u2(t), we must
again check for controllability. The 4 × 4 controllability matrix P is

P = [
B AB A2B A3B

]

=




0 0 0.01 0.23

0 0.01 0.23 −0.61

0 0.05 −0.03 −0.48

0.05 −0.03 −0.48 0.73




This controllability matrix is of full rank, i.e. rank(P ) = 4, which matches
the system order n = 4. Also, the determinant of this square matrix P is
nonzero, |P | = 1.5625e − 004, confirming that P is nonsingular. There-
fore, the state equation is controllable.

Now let us return to the diagonal canonical form of Section 2.7. Since
the system eigenvalues are distinct and BDCF is fully populated (no zero
elements), this means that the state equation is controllable, which agrees
with our conclusion above.
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Coordinate Transformations and Controller Canonical Form We
now construct the controller canonical form for Continuing Example 1, for
case b (single-input u2(t) and single-output y1(t)). The coordinate trans-
formation matrix for controller canonical form is TCCF = PP −1

CCF, where
the controllability matrix P was given earlier and the inverse of the con-
troller canonical form controllability matrix PCCF, is given below.

P −1
CCF =




10 25.25 1.25 1

25.25 1.25 1 0

1.25 1 0 0

1 0 0 0




This produces
TCCF = PP −1

CCF

=




0.25 0.0125 0 0

0 0.25 0.0125 0

0.75 0.0375 0.05 0

0 0.75 0.0375 0.05




Using this coordinate transformation, we find the controller canonical
form:

ACCF = T −1
CCFATCCF BCCF = T −1

CCFB

=




0 1 0 0

0 0 1 0

0 0 0 1

−100 −10 −25.25 −1.25


 =




0

0

0

1




CCCF = CTCCF DCCF = D

= [
0.25 0.0125 0 0

] = 0

Note that controller canonical form is as expected; i.e., the placement
of ones and zeros is correct in the first three rows of ACCF, and the
fourth row displays the coefficients of the system characteristic polynomial
(except for the coefficient 1 of s4) in ascending order left to right, with
negative signs. Furthermore the form of BCCF is correct, with zeros in
rows 1 through 3 and a one in the fourth row. Also note that CCCF is
composed of coefficients of the numerator of the single-input, single-
output transfer function presented for case b in Chapter 2, 0.0125s + 0.25,
again in ascending powers of s.
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Continuing Example 2: Rotational Electromechanical System

Controllability Here we assess controllability for Continuing Ex-
ample 2 (rotational electromechanical system). The 3 × 3 controllability
matrix P is

P = [
B AB A2B

]

=



0 0 2

0 2 −6

2 −6 14




This controllability matrix is of full rank, i.e., rank(P ) = 3, which matches
the system order n = 3. Therefore, the state equation is controllable. Also
|P | = −8 �= 0, leading to the same conclusion.

Again, since the system eigenvalues are distinct and BDCF is fully pop-
ulated (no zero elements) in the diagonal canonical form from Chapter 2,
this means that the state equation is controllable, which agrees with our
conclusion above.

Coordinate Transformations and Controller Canonical Form
Now we calculate the controller canonical form for Continuing Example 2.
The original realization is nearly in controller canonical form already;
the 2 in B need only be scaled to a 1. Therefore, the coordinate
transformation matrix for controller canonical form is simple (given
below). The controllability matrix P was given earlier, and the inverse of
the controller canonical form controllability matrix PCCF, is given below:

P −1
CCF =


 2 3 1

3 1 0
1 0 0




This gives
TCCF = PP −1

CCF

=



2 0 0

0 2 0

0 0 2




Using this coordinate transformation, we find the controller canonical
form:

ACCF = T −1
CCFATCCF BCCF = T −1

CCFB

=



0 1 0

0 0 1

0 −2 −3


 =




0

0

1
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CCCF = CTCCF DCCF = D

= [
2 0 0

] = 0
Note that controller canonical form is as expected; i.e., the placement of
ones and zeros is correct in the first two rows of ACCF, and the third row
displays the coefficients of the system characteristic polynomial (except
for the unity coefficient 1 of s3) in ascending order left to right, with
negative signs. Furthermore, the form of BCCF is correct, with zeros in
rows 1 and 2 and a one in the third row. Again, CCCF is composed of the
coefficients of the numerator polynomial in ascending powers of s of the
single-input, single-output transfer function presented for this example in
Chapter (simply a constant 2).

3.7 HOMEWORK EXERCISES

Numerical Exercises

NE3.1 Assess the controllability of the following systems, represented by
the matrix pair (A, B).

a. A =
[ −4 0

0 −5

]
B =

[
1
1

]

b. A =
[ −4 0

0 −5

]
B =

[
1
0

]

c. A =
[

0 −10
1 −2

]
B =

[
1
2

]

d. A =
[

0 1
−10 −2

]
B =

[
0
1

]

e. A =
[

2 0
−1 1

]
B =

[
1

−1

]

NE3.2 Compute the controller canonical form of the following systems
(D = 0 for all cases).

a. A =
[ −4 0

0 −5

]
B =

[
1
1

]
C = [

1 1
]

b. A =
[ −4 0

0 −5

]
B =

[
1
0

]
C = [

1 0
]

c. A =
[

0 −10
1 −2

]
B =

[
1
2

]
C = [

0 1
]
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d. A =
[

0 1
−10 −2

]
B =

[
0
1

]
C = [

1 2
]

e. A =
[

2 0
−1 1

]
B =

[
1

−1

]
C = [

1 1
]

NE3.3 Repeat NE 3.1 using the Popov-Belevitch-Hautus tests for con-
trollability.

Analytical Exercises

AE 3.1 For the n × n matrix

A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1




a. Use mathematical induction on n to show that the character-
istic polynomial of A is

λn + an−1λ
n−1 + an−2λ

n−2 + · · · + a2λ
2 + a1λ + a0

b. If λi is an eigenvalue of A, show that a corresponding eigen-
vector is given by

vi =




1
λi

λ2
i
...

λn−1
i




c. Show that the geometric multiplicity of each distinct eigen-
value is one.

AE3.2 Show that the controllability Gramian satisfies the matrix differ-
ential equation

d

dt
W(t, tf ) − AW(t, tf ) − W(t, tf )AT + BBT = 0

W(tf , tf ) = 0
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AE3.3 Show that the matrix exponential for[
A BBT

0 −AT

]

is given by [
eAt eAtW(0, t)

0 e−AT t

]

AE 3.4 Consider the reachability Gramian, defined as follows for any
initial time t0 and any finite final time tf > t0:

WR(t0, tf ) =
∫ tf

t0

eA(tf −τ )BBT eAT (tf −τ )dτ

Show that WR(t0, tf ) is nonsingular for any t0 and tf > t0 if and
only if the pair (A, B) is controllable. Assuming that (A, B)

is controllable, use the reachability Gramian to construct, for
any xf ∈ R

n, an input signal on [t0, tf ] such that x(t0) = 0 and
x(tf ) = xf .

AE 3.5 Suppose that a single-input n-dimensional state equation has

q � rank
[
B AB A2B · · · An−1B

] ≤ n

Show that the first q columns {B, AB, A2B, . . . , Aq−1B} are lin-
early independent.

AE 3.6 Show that the single-input state equation characterized by

A =




µ 1 0 · · · 0
0 µ 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · µ


 B =




b1

b2
...

bn−1

bn




is controllable if and only if bn �= 0.

AE 3.7 For the controllable system with two separate scalar outputs

ẋ(t) = Ax(t) + Bu(t)

y1(t) = C1x(t)

y2(t) = C2x(t)

show that the related impulse responses h1(t) and h2(t) are iden-
tical if and only if C1 = C2.
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AE3.8 Suppose that H1(s) and H2(s) are two strictly proper single-
input, single-output transfer functions with controllable state-
space realizations (A1, B1, C1) and (A2, B2, C2), respectively.
Construct a state-space realization for the parallel interconnection
H1(s) + H2(s), and use the Popov-Belevitch-Hautus eigenvector
test to show that the parallel realization is controllable if and
only if A1 and A2 have no common eigenvalues.

AE3.9 Suppose that H1(s) and H2(s) are two strictly proper single-input,
single-output transfer functions with controllable state-space real-
izations (A1, B1, C1) and (A2, B2, C2), respectively. Construct a
state-space realization for the series interconnection H1(s)H2(s),
and show that this realization is controllable if and only if no
eigenvalue of A2 is a zero of H1(s).

AE3.10 Show that the pair (A, B) is controllable if and only if the only
square matrix X that satisfies

AX = XA XB = 0

is X = 0.

Continuing MATLAB Exercises

CME3.1 For the CME1.1 system:
a. Assess the system controllability.
b. Compute the controller canonical form.

CME3.2 For the CME1.2 system:
a. Assess the system controllability.
b. Compute the controller canonical form.

CME3.3 For the CME1.3 system:
a. Assess the system controllability.
b. Compute the controller canonical form.

CME3.4 For the CME1.4 system:
a. Assess the system controllability.
b. Compute the controller canonical form.

Continuing Exercises

CE3.1a Determine if the CE1 system is controllable for all three cases
(cases from CE1.1b and numeric parameters from CE2.1a). Give
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the mathematical details to justify your answers; explain your
results in all cases by looking at the physical problem.

CE3.1b Compute the controller canonical form for the CE1 system, case
iii only. Comment on the structure of your results. Determine the
system controllability by looking at the diagonal canonical form
realization of CE 2.1b; compare to your controllability results
from CE3.1a.

CE3.2a Determine if the CE2 system is controllable for all three cases
(cases from CE1.2b and numeric parameters from CE2.2a). Give
the mathematical details to justify your answers; explain your
results in all cases by looking at the physical problem.

CE3.2b Compute the controller canonical form for the CE2 system, Case
i only. Comment on the structure of your results.

CE3.3a Determine if the CE3 system is controllable for both cases (cases
from CE1.3b and numeric parameters from CE2.3a). Give the
mathematical details to justify your answers; explain your results
in all cases by looking at the physical problem.

CE3.3b Compute the controller canonical form for the CE3 system for
both cases. Comment on the structure of your results. Determine
the system controllability by looking at the diagonal canonical
form realization from CE 2.3b for case i; compare to your results
from CE3.3a.

CE3.4a Determine if the CE4 system is controllable (for the CE1.4b
single-input, single-output case with the numeric parameters from
CE2.4a). Give the mathematical details to justify your answers;
explain your results by looking at the physical problem.

CE3.4b Compute the controller canonical form for the CE4 system. Com-
ment on the structure of your results. Determine the system
controllability by looking at the diagonal canonical form real-
ization from CE 2.4b; compare with your results from CE3.4a.

CE3.5a Determine if the CE5 system is controllable (for the CE1.5b
single-input, single-output case with the numeric parameters from
CE2.5a). Give the mathematical details to justify your answers;
explain your results by looking at the physical problem.

CE3.5b Compute the controller canonical form for the CE5 system. Com-
ment on the structure of your results. Determine the system
controllability by looking at the diagonal canonical form real-
ization from CE 2.5b; compare with your results from CE3.5a.
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OBSERVABILITY

In our state-space description of linear time-invariant systems, the state
vector constitutes an internal quantity that is influenced by the input sig-
nal and, in turn, affects the output signal. We have seen in our examples
and it is generally true in practice that the dimension of the state vector,
equivalently the dimension of the system modeled by the state equation,
is greater than the number of input signals or output signals. This reflects
the fact that the complexity of real-world systems precludes the abil-
ity to directly actuate or sense each state variable. Nevertheless, we are
often interested in somehow estimating the state vector because it char-
acterizes the system’s complex inner workings and, as we shall see in
Chapters 7 and 8, figures prominently in state-space methods of control
system design.

The fundamental question we address in this chapter is whether or not
measurements of the input and output signals of our linear state equation
over a finite time interval can be processed in order to uniquely deter-
mine the initial state. If so, knowledge of the initial state and the input
signal allows the entire state trajectory to be reconstructed according to
the state equation solution formula. This, in essence, characterizes the
system property of observability. As with our treatment of controllability
in Chapter 3, our aim is to establish algebraic criteria for observability
expressed in terms of the state-equation coefficient matrices.
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We begin the chapter with an analysis of observability patterned after
our introduction to controllability. This suggests a duality that exists
between controllability and observability that we develop in detail. This
pays immediate dividends in that various observability-related results can
be established with modest effort by referring to the corresponding result
for controllability and invoking duality. In particular, we investigate rela-
tionships between observability and state coordinate transformations as
well as formulate Popov-Belevich-Hautus tests for observability. We con-
clude the chapter by illustrating the use of MATLAB for observability
analysis and revisit the MATLAB Continuing Example as well as Continuing
Examples 1 and 2.

4.1 FUNDAMENTAL RESULTS

For the n–dimensional linear time-invariant state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
x(t0) = x0 (4.1)

we assume that the input signal u(t) and the output signal y(t) can be
measured over a finite time interval and seek to deduce the initial state
x(t0) = x0 by processing this information in some way. As noted ear-
lier, if the initial state can be uniquely determined, then this, along with
knowledge of the input signal, yields the entire state trajectory via

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−τ )Bu(τ) dτ for t ≥ t0

Since u(t) is assumed to be known, the zero-state response can be
extracted from the complete response y(t), also known, in order to isolate
the zero-input response component via

y(t) −
[∫ t

t0

CeA(t−τ )Bu(τ)dτ + Du(t)

]
= CeA(t−t0)x0

which depends directly on the unknown initial state. Consequently, we can
assume without loss of generality that u(t) ≡ 0 for all t ≥ t0 and instead
consider the homogeneous state equation

ẋ(t) = Ax(t)

y(t) = Cx(t)
x(t0) = x0 (4.2)

which directly produces the zero-input response component of Equ-
ation (4.1).
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Definition 4.1 A state x0 ∈ R
n is unobservable if the zero-input response

of the linear state equation (4.1) with initial state x(t0) = x0 is y(t) ≡ 0
for all t ≥ t0. The state equation (4.1) is observable if the zero vector
0 ∈ R

n is the only unobservable state. �

Note that, by definition, 0 ∈ R
n is an unobservable state because

x(t0) = 0 yields y(t) ≡ 0 for all t ≥ t0 for the zero-input response
of Equation (4.1) and, equivalently, the complete response of the
homogeneous state equation (4.2). Therefore, a nonzero unobservable
state is sometimes called indistinguishable from 0 ∈ R

n. The existence
of nonzero unobservable states clearly hinders our ability to uniquely
ascertain the initial state from measurements of the input and output, so
we are interested in characterizing observable state equations in the sense
of Definition 4.1. As in Chapter 3, we first seek an equivalent algebraic
characterization for observability. Again noting that the underlying
definition involves the response of the homogeneous state equation (4.2)
characterized by the A and C coefficient matrices, we should not be
surprised that our first algebraic characterization is cast in terms of these
matrices.

Theorem 4.2 The linear state equation (4.1) is observable if and only if

rank




C

CA

CA2

...

CAn−1




= n

We refer to this matrix as the observability matrix and henceforth denote it
as Q. Since the algebraic test for observability established in the theorem
involves only the coefficient matrices A and C, we will have occasion for
reasons of brevity to refer to observability of the matrix pair (A, C) with
an obvious connection to either the state equation (4.1) or the homoge-
neous state equation (4.2).

For the general multiple-output case, we see that Q consists of n matrix
blocks, C, CA, CA2, . . ., CAn−1, each with dimension p × n, stacked one
on top of another. Hence Q has dimension (np) × n and therefore has
more rows than columns in the multiple-output case. The rank condition
in the theorem requires that the n columns of Q are linearly independent
when viewed as column vectors of dimension (np) × 1. Consequently, Q

satisfying the preceding rank condition is said to have full-column rank.
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Alternatively, this rank condition means that out of the np rows of Q

written as 


c1

c1

...

cp

c1A

c2A

...

cpA

...

c1A
n−1

c2A
n−1

...

cpAn−1




there must be at least one way to select n linearly independent rows.
For the single-output case, C consists of a single row, and Q is a square

n × n matrix. Hence a single-output linear state equation is observable if
and only if the observability matrix is nonsingular. We can check that Q

is nonsingular by verifying that it has a nonzero determinant.

Proof of Theorem 4.2. The theorem involves two implications:
If the state equation (4.1) is observable, then rankQ = n.
If rankQ = n, then the state equation (4.1) is observable.

We begin by proving the contrapositive of the first implication: If rank
Q < n, then the state equation (4.1) is not observable. Assuming rank
Q < n, Q has linearly dependent columns, so there exists a nontrivial
linear combination of the columns of Q that yields an (np) × 1 zero
vector. Stacking the coefficients of this linear combination into a nonzero
n × 1 vector x0, we have



C

CA

CA2

...

CAn−1




x0 =




0
0
0
...

0
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Another way to arrive at this is to observe that rankQ < n implies, by
Sylvester’s law of nullity, that nullityQ ≥ 1. The vector x0 just introduced
is a nonzero n × 1 vector lying in the null space of Q. In any case, the
preceding identity can be divided up into

Cx0 = CAx0 = CA2x0 = · · · = CAn−1x0 = 0 ∈ R
p

Using the finite series expansion

eAt =
n−1∑
k=0

αk(t)A
k

for scalar functions α0(t), α1(t), . . . , αn−1(t), we see that the response of
the homogeneous system (4.2) with initial state x(t0) = x0 satisfies

y(t) = CeA(t−t0)x0

= C

[
n−1∑
k=0

αk(t − t0)A
k

]
x0

=
n−1∑
k=0

αk(t − t0)(CAkx0)

≡ 0 for all t ≥ t0

Thus x0 is an unobservable state. Since x0 was taken initially to be a
nonzero vector, we have, as a consequence of Definition 4.1, that the
linear state equation (4.1) is not observable.

We next prove the contrapositive of the second implication: If the linear
state equation (4.1) is not observable, then rankQ < n. Assuming that the
linear state equation (4.1) is not observable, there exists by Definition 4.1
a nonzero unobservable state. That is, there exists a nonzero n × 1 vector
x0 for which CeA(t−t0)x0 ≡ 0 for all t ≥ t0. We can repeatedly differentiate
this identity with respect to t and evaluate at t = t0 to obtain

0 = dk

dtk
(CeA(t−t0)x0)

∣∣∣∣
t=t0

= CAkeA(t−t0)x0

∣∣∣∣
t=t0

= CAkx0 for k = 0, 1, . . . , n − 1
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These identities can be repackaged into




0

0

0
...

0




=




Cx0

CAx0

CA2x0

...

CAn−1x0




=




C

CA

CA2

...

CAn−1




x0

which indicates that the unobservable state x0 lies in the null space of Q.
In terms of the components of x0, the preceding identity specifies a linear
combination of the columns of Q that yields the zero vector. Since x0 was
taken initially to be a nonzero vector, we conclude that Q has linearly
dependent columns and hence less than full column rank n. Alternatively,
we have that nullity Q ≥ 1, so an appeal to Sylvester’s law of nullity
yields rank Q < n. �

We conclude this section by answering the fundamental question posed
at the outset: It is possible to uniquely determine the initial state by pro-
cessing measurements of the input and output signals over a finite time
interval if and only if the linear state equation (4.1) is observable. To argue
the necessity of observability, suppose that x(t0) = x0 is a nonzero unob-
servable initial state that yields, by definition, yzi(t) = CeA(t−t0)x0 ≡ 0
for all t ≥ t0. Thus x(t0) = x0 is indistinguishable from the zero initial
state, and it is not possible to resolve this ambiguity by processing the
zero-input response. To show that observability is sufficient to uniquely
recover the initial state from the input and output signals as above, we
first show that observability also be can characterized by an observability
Gramian defined as follows for any initial time t0 and any finite final time
tf > t0:

M(t0, tf ) =
∫ tf

t0

eAT(τ−t0)CTCeA(τ−t0) dτ

As with the controllability Gramian introduced in Chapter 3, the
observability Gramian is a square n × n symmetric matrix that is also
positive semidefinite because the associated real-valued quadratic form
xT M(t0, tf )x satisfies the following for all vectors x ∈ R

n

xT M(t0, tf )x = xT

∫ tf

t0

eAT(τ−t0)CTCeA(τ−t0) dτ x
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=
∫ tf

t0

||CeA(τ−t0)x||2 dτ

≥ 0

Lemma 4.3

rank




C

CA

CA2

...

CAn−1




= n

if and only if for any initial time t0 and any finite final time tf > t0 the
observability Gramian M(t0, tf ) is nonsingular.

Proof. This proof is very similar to the proof of Lemma 3.3 from the
previous chapter, and so the reader is encouraged to independently adapt
that proof to the case at hand and then compare the result with what
follows.

Lemma 4.3 involves two implications:

If rank Q = n, then M(t0, tf ) is nonsingular for any t0 and any finite
tf > t0.
If M(t0, tf ) is nonsingular for any t0 and any finite tf > t0, then rank
Q = n.

To begin, we prove the contrapositive of the first implication: If M(t0, tf )

is singular for some t0 and finite tf > t0, then rankQ < n. If we assume
that M(t0, tf ) is singular for some t0 and finite tf > t0, then there exists
a nonzero vector x0 ∈ R

n for which M(t0, tf )x0 = 0 ∈ R
n and conse-

quently xT
0 M(t0, tf )x0 = 0 ∈ R. Using the observability Gramian defini-

tion, we have

0 = xT
0 M(t0, tf )x0

= xT
0

∫ tf

t0

eAT(τ−t0)CTCeA(τ−t0)dτ x0

=
∫ tf

t0

||CeA(τ−t0)x0||2 dτ
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The integrand in this expression involves the Euclidean norm of the p × 1
vector quantity CeA(τ−t0)x0, which we view as an analytic function of the
integration variable τ ∈ [t0, tf ]. Since this integrand never can be negative,
the only way the integral over a positive time interval can evaluate to zero
is if the integrand is identically zero for all τ ∈ [t0, tf ]. Because only the
zero vector has zero Euclidean norm, we must have

CeA(τ−t0)x0 = 0 ∈ R
p for all τ ∈ [t0, tf ]

This means that the derivative of this expression of any order with respect
to τ also must be the zero vector for all τ ∈ [t0, tf ] and in particular at
τ = t0. That is,

0 = dk

dtk
CeA(τ−t0)x0

∣∣∣∣
τ=t0

= CAkeA(τ−t0)x0

∣∣∣∣
τ=t0

= CAkx0 for all k ≥ 0

We conclude that




C

CA

CA2

...

CAn−1




x0 =




Cx0

CAx0

CA2x0

...

CAn−1x0




=




0

0

0
...

0




which implies, since x0 ∈ R
n is a nonzero vector, that Q has less than

full-column rank, or rankQ < n.
We next prove the contrapositive of the second implication: If rankQ <

n, then M(t0, tf ) is singular for some t0 and finite tf > t0. Assuming that
Q has less than full column rank, there exists a nonzero vector x0 ∈ R

n

whose components specify a linear combination of the columns of Q that
yield an (np) × 1 zero vector. That is,




C

CA

CA2

...

CAn−1




x0 =




Cx0

CAx0

CA2x0

...

CAn−1x0




=




0

0

0
...

0
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which shows that CAkx0 = 0 for k = 0, 1, . . . , n − 1. The finite series
expansion

eAt =
n−1∑
k=0

αk(t)A
k

for scalar functions α0(t), α1(t), . . . , αn−1(t) now gives

CeAtx0 = C

[
n−1∑
k=0

αk(t)A
k

]
x0 =

n−1∑
k=0

αk(t)(CAkx0) = 0 for all t

It follows from this that for any t0 and finite tf > t0,

M(t0, tf )x0 =
∫ tf

t0

eAT(τ−t0)CTCeA(τ−t0) dτ x0

=
∫ tf

t0

eAT(τ−t0)CT(CeA(τ−t0)x0) dτ

= 0

which implies, since x0 ∈ R
n is a nonzero vector, that M(t0, tf ) is singular.

�
As a consequence of Lemma 4.3, an observable state equation has, for

any initial time t0 and finite final time tf > t0, a nonsingular observability
Gramian. This can be used to process input and output measurements
u(t), y(t) on the interval [t0, tf ] to yield the initial state x(t0) = x0 as
follows: We first form the zero-input response component

yzi(t) = y(t) −
[∫ t

t0

CeA(t−τ )Bu(τ) dτ + Du(t)

]

= CeA(t−t0)x0

Then we process the zero-input response according to

M−1(t0, tf )

∫ tf

t0

eAT(τ−t0)CTyzi(τ ) dτ

= M−1(t0, tf )

∫ tf

0
eAT(τ−t0)CTCeA(τ−t0)x0 dσ

= M−1(t0, tf )

∫ tf

0
eAT(τ−t0)CTCeA(τ−t0)dτ x0
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= M−1(t0, tf )M(t0, tf ) x0

= x0

which uniquely recovers the initial state.

4.2 OBSERVABILITY EXAMPLES

Example 4.1 Consider the two–dimensional single-output state equation

[
ẋ1(t)

ẋ2(t)

]
=

[
1 5
8 4

] [
x1(t)

x2(t)

]
+

[ −2
2

]
u(t)

y(t) = [ 2 2 ]

[
x1(t)

x2(t)

]
+ [0]u(t)

for which the associated (A, B) pair is the same as in Example 3.1. The
observability matrix Q is found as follows:

C = [ 2 2 ]

CA = [ 18 18 ]
so

Q =
[

2 2
18 18

]

Clearly |Q| = 0 so the state equation is not observable. Because rank
Q < 2 but Q is not the 2 × 2 zero matrix, we have rankQ = 1 and
nullityQ = 1.

To see why this state equation is not observable, we again use the state
coordinate transformation given by:

[
z1(t)

z2(t)

]
=

[
x1(t)

x1(t) + x2(t)

]
=

[
1 0
1 1

] [
x1(t)

x2(t)

]

which yields the transformed state equation

[
ż1(t)

ż2(t)

]
=

[ −4 5

0 9

] [
z1(t)

z2(t)

]
+

[ −2

0

]
u(t)

y(t) = [ 0 2 ]

[
z1(t)

z2(t)

]
+ [0]u(t)
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Here both the state variable z2(t) and the output y(t) are decoupled from
z1(t). Thus, z1(0) cannot be determined from measurements of the zero-
input response yzi(t) = 2e9t z2(0). This is why the given state equation is
not observable.

Also, note that x0 = [1, −1]T satisfies Qx0 = [0, 0]T and we conclude
from the proof of Theorem 4.2 that x0 is a nonzero unobservable state. �

Example 4.2 Given the following three-dimensional single-output
homogeneous state equation, that is,


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 0 0 −6

1 0 −11
0 1 −6





 x1(t)

x2(t)

x3(t)




y(t) = [ 0 1 −3 ]


 x1(t)

x2(t)

x3(t)




we construct the observability matrix as follows:

C = [ 0 1 −3 ]

CA = [ 0 1 −3 ]


 0 0 −6

1 0 −11
0 1 −6


 = [ 1 −3 7 ]

CA2 = (CA)A = [ 1 −3 7 ]


 0 0 −6

1 0 −11
0 1 −6


 = [ −3 7 −15 ]

yielding

Q =



C

CA

CA2


 =


 0 0 −6

1 −3 7
−3 7 −15




To check observability, we calculate

|Q| =

∣∣∣∣∣∣∣
C

CA

CA2

∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣
0 1 −3

1 −3 7

−3 7 −15

∣∣∣∣∣∣∣
= [0 + (−21) + (−21)] − [(−27) + 0 + (−15)]

= −42 − (−42)

= 0

and thus rank Q < 3. This indicates that the state equation is not observ-
able, so there exist nonzero unobservable states for this state equation.
The upper left 2 × 2 submatrix

[
0 1

1 −3

]

has nonzero determinant, indicating that rankQ = 2 and nullityQ = 3 −
2 = 1 (by Sylvester’s law of nullity). Consequently, any nonzero solution
to the homogeneous equation

Qx0 = 0

will yield a nonzero unobservable state. Applying elementary row opera-
tions to the observability matrix Q yields the row-reduced echelon form

QR =



1 0 −2

0 1 −3

0 0 0




from which an easily identified solution to

QRx0 = 0

is

x0 =



2

3

1




Moreover, any nonzero scalar multiple of this solution also yields a
nonzero unobservable state. �
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Example 4.3 We investigate the observability of the three-dimensional
state equation


 ẋ1(t)

ẋ2(t)

ẋ2(t)


 =


 0 0 −a0

1 0 −a1

0 1 −a2





 x1(t)

x2(t)

x2(t)


 +


 b0

b1

b2


 u(t)

y(t) = [ 0 0 1 ]


 x1(t)

x2(t)

x2(t)




which the reader will recall is a state-space realization of the transfer
function

H(s) = b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

The observability matrix Q is found as follows:

Q =

 C

CA

CA2




=

 0 0 1

0 1 −a2

1 −a2 a2
2 − a1




This observability matrix is identical to the controllability matrix P from
Example 3.3. The observability matrix Q is independent of the transfer
function-numerator coefficients b0, b1, and b2. The determinant of the
observability matrix is |Q| = −1 �= 0, so the state equation is observable.
Note that this outcome is independent of the characteristic polynomial
coefficients a0, a1, and a2, so a state-space realization in this form is
always observable. This is also true for any system order n, as we will
demonstrate shortly. �

Example 4.4 Consider the five-dimensional, two-output homogeneous
state equation




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

ẋ5(t)


 =




0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0







x1(t)

x2(t)

x3(t)

x4(t)

x5(t)
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[
y1(t)

y2(t)

]
=

[
0 1 0 0 0
0 0 0 0 1

]



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)




The observability matrix is constructed as follows

Q =




C

CA

CA2

CA3

CA4




=




0 1 0 0 0
0 0 0 0 1

1 0 0 0 0
0 0 0 1 0

0 0 0 0 0
0 0 1 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0




Q has full-column rank 5 because of the pattern of ones and zeros. There-
fore, the state equation is observable. Furthermore, rows 1, 2, 3, 4, and 6
form a linearly independent set of 1 × 5 row vectors. Since the remaining
rows are each 1 × 5 zero vectors, there is only one way to select five
linearly independent rows from Q. �

Example 4.5 Consider now the five-dimensional, two-output homoge-
neous state equation




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

ẋ5(t)


 =




0 1 0 0 0
1 0 0 0 −1
0 −1 0 0 0
0 0 1 0 −1
0 1 0 1 0







x1(t)

x2(t)

x3(t)

x4(t)

x5(t)




[
y1(t)

y2(t)

]
=

[
0 1 0 0 1
0 −1 0 0 1

]



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)
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differing from the preceding example only in the second and fifth columns
of both A and C. These modifications lead to the observability matrix

Q =




C

CA

CA2

CA3

CA4




=




0 1 0 0 1
0 −1 0 0 1

1 1 0 1 −1
−1 1 0 1 1

1 0 1 −1 −2
1 0 1 1 −2

0 −2 −1 −2 1
0 −2 1 −2 −1

−2 2 −2 1 4
−2 −2 −2 −1 4




This observability matrix also has rank equal to 5, indicating that the state
equation is observable. In contrast to the preceding example, however,
there are many ways to select five linearly independent rows from this
observability matrix, as the reader may verify with the aid of MATLAB.

�

4.3 DUALITY

In this section we establish an interesting connection between controllabil-
ity and observability known as duality. To begin, consider the following
state equation related to Equation (4.1)

ż(t) = ATz(t) + CTv(t)

w(t) = BTz(t) + DTv(t)
z(0) = z0 (4.3)

having n-dimensional state vector z(t), p-dimensional input vector v(t),
and m-dimensional output vector w(t) (note that input and output dimen-
sions have swapped roles here; in the original state equation (4.1) p is the
dimension of the output vector and m is the dimension of the input vec-
tor). Although differing slightly from standard convention, we will refer to
Equation (4.3) as the dual state equation for Equation (4.1). An immediate
relationship exists between the transfer-function matrix of Equation (4.1)
and that of its dual, that is,

[C(sI − A)−1B + D]T = BT(sI − AT)−1CT + DT

further reinforcing the fact that the input and output dimensions for
Equation (4.3) are reversed in comparison with those of Equation (4.1).
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In the single-input, single output case, we have

C(sI − A)−1B + D = [C(sI − A)−1B + D]T

= BT(sI − AT)−1CT + DT

indicating that the original state equation and its dual are both realizations
of the same scalar transfer function.

For the original state equation (4.1), we have previously introduced the
following matrices associated with controllability and observability:

P(A,B) = [ B AB A2B · · · An−1B ] Q(A,C) =




C

CA

CA2

...

CAn−1



(4.4)

and for the dual state equation (4.3), we analogously have

P(AT ,CT ) = [ CT ATCT (AT)2CT · · · (AT)n−1CT ]

Q(AT ,BT ) =




BT

BTAT

BT(AT)2

...

BT(AT)n−1




(4.5)

Since

[ CT ATCT (AT)2CT · · · (AT)n−1CT ] =




C

CA

CA2

...

CAn−1




T

and 


BT

BTAT

BT(AT)2

...

BT(AT)n−1




= [ B AB A2B · · · An−1B ]T
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it follows from the fact that matrix rank is unaffected by the matrix trans-
pose operation that

rank P(AT ,CT ) = rank Q(A,C) and rank Q(AT ,BT ) = rank P(A,B)

(4.6)

These relationships have the following implications:

• The dual state equation (4.3) is controllable if and only if the original
state equation (4.1) is observable.

• The dual state equation (4.3) is observable if and only if the original
state equation (4.1) is controllable.

The reader is invited to check that Examples 4.3, 4.4, and 4.5 are linked
via duality to Examples 3.3, 3.4, and 3.5, respectively.

4.4 COORDINATE TRANSFORMATIONS AND OBSERVABILITY

The linear time-invariant state equation (4.1), together with the state coor-
dinate transformation x(t) = T z(t) (see Section 2.5), yields the trans-
formed state equation

ż(t) = Âz(t) + B̂u(t)

y(t) = Ĉz(t) + D̂u(t)
z(t0) = z0 (4.7)

in which

Â = T −1AT B̂ = T −1B Ĉ = CT D̂ = D

z0 = T −1x0

We see directly from Definition 4.1 that if is x0 is an unobservable state
for the state equation (4.1) so that CeA(t−t0)x0 ≡ 0 for all t ≥ t0, then
z0 = T −1x0 satisfies

ĈeÂ(t−t0)z0 = (CT )(T −1eA(t−t0)T )(T −1x0)

= CeA(t−t0)x0

≡ 0 for all t ≥ t0

from which we conclude that z0 is an unobservable state for the trans-
formed state equation (4.7). Since z0 is a nonzero vector if and only if x0

is a nonzero vector, we conclude that the transformed state equation (4.7)
is observable if and only if the original state equation (4.1) is observable.
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We therefore say that observability is invariant with respect to coordinate
transformations, as is controllability.

Any equivalent characterization of observability must preserve this
invariance with respect to coordinate transformations. For example, we
expect that the rank test for observability established in Theorem 4.2
should yield consistent results across all state equations related by a
coordinate transformation. To confirm this, a derivation analogous to that
in Section 3.4 shows that the observability matrix for Equation (4.7) is
related to the observability matrix for Equation (4.1) via

Q̂ =




Ĉ

ĈÂ

ĈÂ2

...

ĈÂn−1




=




C

CA

CA2

...

CAn−1




T = QT.

Again, since either pre- or postmultiplication by a square nonsingular
matrix does not affect matrix rank, we see that

rank Q̂ = rank Q

In addition, the observability Gramians for Equations (4.7) and (4.1)
are related according to

M̂(t0, tf ) =
∫ tf

t0

eÂT(τ−t0)ĈTĈeÂ(τ−t0) dτ

= T T M(t0, tf )T

from which we conclude that that M̂(t0, tf ) is nonsingular for some initial
time t0 and finite final time tf > t0 if and only if M(t0, tf ) is nonsingular
for the same t0 and tf .

This section concludes with three results relating coordinate transfor-
mations and observability that are the counterparts of the controllability
results presented in Chapter 3. Various technical claims are easily proven
by referring to the corresponding fact for controllability and invoking
duality.
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Observable Realizations of the Same Transfer Function

Consider two single-input, single-output state equations

ẋ1(t) = A1x1(t) + B1u(t) ẋ2(t) = A2x2(t) + B2u(t)

y(t) = C1x1(t) + D1u(t) y(t) = C2x2(t) + D2u(t)
(4.8)

that are both n-dimensional realizations of the same transfer function.
When both realizations are observable, they are related by a uniquely and
explicitly defined coordinate transformation.

Lemma 4.4 Two observable n-dimensional single-input, single-output
realizations (4.8) of the same transfer function are related by the unique
state coordinate transformation x1(t) = T x2(t), where

T =




C1

C1A1

...

C1A
n−1
1




−1 


C2

C2A2

...

C2A
n−1
2




= Q−1
1 Q2

Proof. With this coordinate transformation matrix T , we must verify the
identities

A2 = T −1A1T B2 = T −1B1 C2 = C1T

To do so, we associate with the pair of state equations in Equation (4.8)
the pair of dual state equations

ż1(t) = AT
1 z1(t) + CT

1 v(t) ż2(t) = AT
2 z2(t) + CT

2 v(t)

w(t) = BT
1 z1(t) + DT

1 v(t) w(t) = BT
2 z2(t) + DT

2 v(t)

Since each state equation in Equation (4.1) is a realization of the same
transfer function H(s), each dual state equation is a realization of HT (s)

and in the single-input, single-output case, HT (s) = H(s). By duality,
each dual state equation is a controllable n-dimensional realization of the
same transfer function, so we may apply the results of Lemma 3.4 to
obtain

AT
2 =

(
P(AT

1 ,CT
1 )P

−1
(AT

2 ,CT
2 )

)−1
AT

1

(
P(AT

1 ,CT
1 )P

−1
(AT

2 ,CT
2 )

)
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Taking transposes through this identity yields

A2 =
(
P(AT

1 ,CT
1 )P

−1
(AT

2 ,CT
2 )

)T

A1

(
P(AT

1 ,CT
1 )P

−1
(AT

2 ,CT
2 )

)−T

=
(
P −T

(AT
1 ,CT

1 )
P T

(AT
2 ,CT

2 )

)−1
A1

(
P −T

(AT
1 ,CT

1 )
P T

(AT
2 ,CT

2 )

)

=
(
Q−1

(A1,C1)
Q(A2,C2)

)−1
A1

(
Q−1

(A1,C1)
Q(A2,C2)

)

= T −1A1T

in which we used the alternate notation Q(A1,C1) = Q1 and Q(A2,C2) = Q2

to emphasize the duality relationships that we exploited. The remaining
two identities are verified in a similar fashion, and the details are left to
the reader. �

Observer Canonical Form
Given the scalar transfer function

H(s) = b(s)

a(s)
= bn−1s

n−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

we define the observer canonical form (OCF) realization to be the dual
of the controller canonical form (CCF) realization given by

ẋOCF = AOCF xOCF(t) + BOCF u(t)

y(t) = COCF xOCF(t)

in which

AOCF = AT
CCF BOCF = CT

CCF

=




0 0 · · · 0 0 −a0

1 0 · · · 0 0 −a1

0 1 · · · 0 0 −a2
...

...
. . .

...
...

...

0 0 · · · 1 0 −an−2

0 0 · · · 0 1 −an−1




=




b0

b1

b2
...

bn−2

bn−1




COCF = BT
CCF

= [ 0 0 · · · 0 0 1 ]

Again, since a scalar transfer function satisfies H(s) = H T(s), it follows
that the observer canonical form is also a realization of H(s). Having
previously established controllability of the controller canonical form (in
Section 3.4), duality further ensures that the observer canonical form
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defines an observable state equation with an explicitly defined observ-
ability matrix.

The system of Example 4.3 was given in observer canonical form.

Lemma 4.5 The n-dimensional observer canonical form has the observ-
ability matrix

QOCF =




COCF

COCFAOCF

COCFA
2
OCF

...

COCFA
n−1
OCF




=




a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

...
. . .

...
...

an−1 1 · · · 0 0
1 0 · · · 0 0




−1
(4.9)

Proof. By duality, QOCF = P T
CCF. However, we observed in Chapter 3

that PCCF is symmetric and by Lemma 3.5 is also given by Equation (4.9).
Thus QOCF = P T

CCF = PCCF and is given by Equation (4.9). �
It follows from Lemma 4.5 that beginning with an arbitrary observ-

able realization of a given transfer function with state x(t), the associated
observer canonical form is obtained by applying the coordinate trans-
formation x(t) = TOCFz(t), where TOCF = Q−1QOCF = (Q−1

OCFQ)−1, or,
more explicitly,

TOCF =




C

CA

CA2

...

CAn−1




−1 


a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

...
. . .

...
...

an−1 1 · · · 0 0
1 0 · · · 0 0




−1

=







a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

...
. . .

...
...

an−1 1 · · · 0 0
1 0 · · · 0 0







C

CA

CA2

...

CAn−1







−1

(4.10)
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Example 4.6 We return to the three-dimensional single-input, single-
output state equation considered previously in Section 2.5 in connection
with the diagonal canonical form and in Section 3.4 in connection with
the controller canonical form with coefficient matrices given below. We
now transform this state equation to observer canonical form.

A =

 8 −5 10

0 −1 1
−8 5 −9


 B =


−1

0
1


 C = [ 1 −2 4 ] D = 0

As before, the system characteristic polynomial is |sI − A| = s3 + 2s2 +
4s + 8, and the eigenvalues are ±2i,−2. The observer canonical form
transformation matrix TOCF = Q−1QOCF = (Q−1

OCFQ)−1 is computed as
follows.

TOCF =




 a1 a2 1

a2 1 0
1 0 0







C

CA

CA2







−1

=




 4 2 1

2 1 0
1 0 0





 1 −2 4

−24 17 −28
32 −37 29







−1

=

 −12 −11 −11

−22 13 −20
1 −2 4




−1

=

 −0.0097 −0.0535 −0.2944

−0.0552 0.0300 −0.0016
−0.0251 0.0284 0.3228




The resulting observer canonical form realization is

AOCF = T −1
OCFATOCF BOCF = T −1

OCFB

=

 0 0 −8

1 0 −4
0 1 −2


 =


 1

2
3




COCF = CTOCF DOCF = D

= [ 0 0 1 ] = 0
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As we should expect, the observer canonical form realization is the dual
of the controller canonical form realization computed in Example 3.6 for
the same state equation.

Conclusions regarding the system’s observability can be drawn directly
by inspection of the diagonal canonical form (DCF) realization presented
in Section 2.5. In particular, for a single-input, single-output system
expressed in diagonal canonical form with no repeated eigenvalues, if all
CDCF elements are nonzero, then the state equation is observable. Further,
any zero elements of CDCF correspond to the nonobservable state variables.
The diagonal canonical form realization presented earlier for this example
(Sections 2.5 and 3.4) has distinct eigenvalues and nonzero components
in CDCF. Therefore, this state equation is observable. This fact is further
verified by noting that in this example |Q| = 1233 �= 0, and the rank of
Q is 3. �

Unobservable State Equations

It is possible to transform an unobservable state equation into a so-called
standard form for unobservable state equations that displays an observable
subsystem.

Theorem 4.6 Suppose that

rank




C

CA

CA2

...

CAn−1




= q < n

Then there exists a state coordinate transformation x(t) = T z(t) such that
the transformed state equation has

Â = T −1AT Ĉ = CT

=
[

A11 0
A21 A22

]
= [ C1 0 ]

where the pair (A11, C1) defines an observable homogeneous
q-dimensional state equation.

Proof. By duality, the pair (AT , CT ) is not controllable, and rank
P(AT ,CT ) = q. We let T̃ denote the nonsingular matrix that, by Theorem 3.6
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with a slight change in notation to avoid confusion, satisfies

T̃ −1AT T̃ =
[

Ã11 Ã12

0 Ã22

]
T̃ −1CT =

[
B̃1

0

]

where the pair (Ã11, B̃1) defines a controllable q-dimensional state
equation. By taking transposes through these identities, we obtain

T̃ T AT̃ −T =
[

ÃT
11 0

ÃT
12 ÃT

22

]
CT̃ −T = [ B̃T

1 0 ]

We complete the proof by making the following associations T =
T̃ −T , A11 = ÃT

11, A21 = ÃT
12, A22 = ÃT

22, C1 = B̃T
1 and noting that, again

by duality, (A11, C1) = (ÃT
11, B̃

T
1 ) defines an observable homogeneous q-

dimensional state equation. �

Example 4.7 We return to the unobservable homogeneous state equa-
tion that was introduced in Example 4.2, that is,


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 0 0 −6

1 0 −11
0 1 −6





 x1(t)

x2(t)

x3(t)




y(t) = [ 0 1 −3 ]


 x1(t)

x2(t)

x3(t)




We observe that this state equation is related by duality to the uncontrol-
lable state equation of Example 3.7, for which

T̃ =

 0 1 0

1 −3 0
−3 7 1




specifies a coordinate transformation yielding the standard form for an
uncontrollable state equation. We take

T = T̃ −T =

 0 1 −3

1 −3 7
0 0 1




−1

=

 3 1 2

1 0 3
0 0 1
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which gives
Â = T −1AT

=



0 1 | 0|−2 −3 | 0||
1 0 | 0


 Ĉ = CT

= [ 1 0| 0 ]

which is in the standard form for an unobservable state equation because
the two–dimensional homogeneous state equation specified by

A11 =
[

0 1
−2 −3

]
C1 = [ 1 0 ]

is seen easily to be observable. �

4.5 POPOV-BELEVITCH-HAUTUS TESTS FOR OBSERVABILITY

Checking the rank of the observability matrix provides an algebraic test
for observability. The Popov-Belevitch-Hautus eigenvector and rank tests
for observability provide useful alternatives.

Theorem 4.7 (Popov-Belevitch-Hautus Eigenvector Test for Observ-
ability). The state equation specified by the pair (A, C) is observable if and
only if there exists no right eigenvector of A orthogonal to the rows of C.

Proof. By duality, the pair (A, C) is observable if and only if the pair
(AT , CT ) is controllable. By the Popov-Belevitch-Hautus eigenvector test
for controllability, the pair (AT , CT ) is controllable if and only if there
exists no left eigenvector of AT orthogonal to the columns of CT , and
equivalently, there exists no right eigenvector of A orthogonal to the
rows of C. �

Example 4.8 We again revisit the unobservable homogeneous state
equation that was introduced in Example 4.2, that is,


 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 0 −6

1 0 −11

0 1 −6







x1(t)

x2(t)

x3(t)




y(t) = [ 0 1 −3 ]




x1(t)

x2(t)

x3(t)
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The eigenvalues of A are λ1 = −1, λ2 = −2, and λ3 = −3, with associ-
ated right eigenvectors

v1 =

 6

5
1


 v2 =


 3

4
1


 v3 =


 2

3
1




Of these, Cv3 = 0, which confirms that the state equation is not observ-
able. �

Theorem 4.8 (Popov-Belevitch-Hautus Rank Test for Observability). The
state equation specified by the pair (A, C) is observable if and only if

rank

[
C

λI − A

]
= n for all λ ∈ C

Proof. By duality, the pair (A, C)is observable if and only if the pair
(AT , CT ) is controllable. By the Popov-Belevitch-Hautus rank test for
controllability, the pair (AT ,CT ) is controllable if and only if

rank[ λI − AT CT ] = n for all λ ∈ C

The desired conclusion follows from the fact that

rank

[
C

λI − A

]
= rank

[
C

λI − A

]T

= rank [ CT λI − AT ]

= rank [ λI − AT CT ] �

4.6 MATLAB FOR OBSERVABILITY AND OBSERVER
CANONICAL FORM

MATLAB for Observability

The MATLAB function that is useful for observability analysis is

Q = obsv(JbkR) Calculate the observability matrix associated with the
state equation data structure JbkR; only matrices A
and C are used in the calculation.

MATLAB for Observer Canonical Form

A MATLAB function that is potentially useful for coordinate transformations
and the observer canonical form realization is
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canon MATLAB function for canonical forms (use the
companion switch for observer canonical form)

MATLAB help tells us that the companion observer canonical form com-
putation is mathematically ill-conditioned and should be avoided if pos-
sible. We can manually compute the observer canonical form realiza-
tion by using the coordinate transformation formula method derived in
Section 4.3. We also can obtain the observer canonical form by apply-
ing the duality properties (see Section 4.3), if we start with the controller
canonical form realization.

We also urge caution in the use of this function. We have found that
AOCF has the correct structure but that BOCF and COCF do not always
result in the required form for the observer canonical form defined in this
chapter.

Continuing MATLAB Example

Observability We now assess the observability for the Continuing MAT-

LAB Example (rotational mechanical system). The following MATLAB code,
along with code from previous chapters, performs this assessment for the
Continuing MATLAB Example.

%---------------------------------------------------
% Chapter 4. Observability
%---------------------------------------------------

Q = obsv(JbkR); % Calculate observability
% matrix Q

if (rank(Q) == size(A,1)) % Logic to assess
% observability

disp(’System is observable.’);
else

disp(’System is NOT observable.’);
end

Q1 = [C; C*A]; % Check Q via the formula

The result is

Q =
1 0
0 1

System is observable.
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Coordinate Transformations and Observer Canonical Form For
the Continuing MATLAB Example, we compute the observer canonical form
state-space realization for the given open-loop system. The following MAT-

LAB code segment, along with code from previous chapters, performs this
computation:

%----------------------------------------------------
% Chapter 4. Coordinate Transformations and Observer

% Canonical Form
%----------------------------------------------------

Qocf = inv(Pccfi);
Tocf = inv(Q)*Qocf; % Calculate OCF

% transformation
matrix

Aocf = inv(Tocf)*A*Tocf; % Transform to OCF
% via formula

Bocf = inv(Tocf)*B;
Cocf = C*Tocf;
Docf = D;

[JbkROCF,TOCF] = canon(JbkR,’companion’); % Compute OCF
% using canon

AOCF = JbkROCF.a
BOCF = JbkROCF.b
COCF = JbkROCF.c
DOCF = JbkROCF.d

The following results are produced:

Tocf =
0 1.0000

1.0000 -4.0000

Aocf =
-0.0000 -40.0000
1.0000 -4.0000

Bocf =
1
0
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Cocf =
0 1

Docf = 0AOCF =

0 -40
1 -4

BOCF =
1
0

COCF =
0 1

DOCF =
0

In this case, the canon function yields the correct observer canoni-
cal form. Also, the observer canonical form obeys the correct duality
properties with the controller canonical form as given in Chapter 3.

4.7 CONTINUING EXAMPLES FOR OBSERVABILITY AND
OBSERVER CANONICAL FORM

Continuing Example 1: Two-Mass Translational Mechanical
System

Observability Here we assess the observability for Continuing
Example 1 (two-mass translational mechanical system), for both case a

(multiple-input, multiple-output) and case b [input u2(t) and output y1(t)].

Case a. The 8 × 4 observability matrix Q is

Q =




C

CA

CA2

CA3
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=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

−15 −0.75 5 0.25
10 0.5 −10 −0.5

13.75 −14.31 −6.25 4.69
−12.5 9.38 7.50 −9.63




This observability matrix is of full rank, that is, rank(Q) = 4, which
matches the system order n = 4. Therefore, the state equation is observ-
able.

Case b. In case b, the system dynamics matrix A is identical to case
a; however, since C is different due to the single output y1(t), we must
again check for observability. The 4 × 4 observability matrix Q is

Q =




C

CA

CA2

CA3




=



1 0 0 0
0 1 0 0

−15 −0.75 5 0.25
13.75 −14.31 −6.25 4.69




This observability matrix is of full rank, that is, rank(Q) = 4, which
matches the system order n = 4. Also, the determinant of this square
matrix Q is 25, confirming that Q is nonsingular. Therefore, the state
equation is observable.

Now, let us return to the diagonal canonical form of Section 2.7. Since
the system eigenvalues are distinct and CDCF is fully populated (no zero
elements), this means that the state equation is observable, which agrees
with our conclusion above.

Coordinate Transformations and Observer Canonical Form Now
we calculate the observer canonical form for case b. The observer canon-
ical form coordinate transformation matrix is

TOCF = Q−1QOCF
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=



0 0 0 1
0 0 1 −1.25

−0.01 0.2 0 −2
0.2 0 −2 1.5




in which Q was given above, and QOCF = P T
CCF, where P −1

CCF was given
in Section 3.6. Using the coordinate transformations, we find the observer
canonical form:

AOCF = T −1
OCFATOCF BOCF = T −1

OCFB

=



0 0 0 −100
1 0 0 −10
0 1 0 −25.25
0 0 1 −1.25


 =




0.25
0.0125

0
0




COCF = CTOCF DOCF = D

= [ 0 0 0 1 ] = 0

Again, this observer canonical form is the dual of the controller canonical
form computed in Chapter 3, that is, AOCF = AT

CCF, BOCF = CT
CCF, COCF =

BT
CCF, and DOCF = DCCF. The reader is asked to identify in this observer

canonical form the numerator and denominator polynomial coefficients
from the single-input, single-output transfer function presented for case b

in Chapter 2.

Continuing Example 2: Rotational Electromechanical System

Observability This example assesses the observability for Continuing
Example 2 (rotational electromechanical system). The 3 × 3 observability
matrix Q

Q =

 C

CA

CA2


 =


 1 0 0

0 1 0
0 0 1




Clearly rank(Q) = 3 = n; also |Q| = 1 �= 0. Therefore, this state equation
is observable.

Again, since the system eigenvalues are distinct and CDCF is fully pop-
ulated (no zero elements) in the diagonal canonical form of Section 2.7,
this confirms that the state equation is observable.
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Coordinate Transformations and Observer Canonical Form

Here we calculate the observer canonical form for Continuing Example 2.
The observer canonical form transformation matrix is

TOCF = Q−1QOCF

=

 0 0 1

0 1 −3
1 −3 7




in which Q was given above, and QOCF = P T
CCF, where P −1

CCF was given
in Section 3.6. Using this coordinate transformation, we find the observer
canonical form:

AOCF = T −1
OCFATOCF BOCF = T −1

OCFB

=

 0 0 0

1 0 −2
0 1 −3


 =


 2

0
0




COCF = CTOCF DOCF = D

= [ 0 0 1 ] = 0

Again, this observer canonical form is the dual of the controller canonical
form computed in Chapter 3 for Continuing Example 2. The reader is
again asked to identify in this observer canonical form the numerator and
denominator polynomial coefficients from the single-input, single-output
transfer function presented for this example in Chapter 2.

4.8 HOMEWORK EXERCISES

Numerical Exercises

NE4.1 Assess the observability of the following systems, represented by
the matrix pair (A, C).

a. A =
[ −4 0

0 −5

]
C = [ 1 1 ]

b. A =
[ −4 0

0 −5

]
C = [ 1 0 ]
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c. A =
[

0 −10
1 −2

]
C = [ 0 1 ]

d. A =
[

0 1
−10 −2

]
C = [ 1 2 ]

e. A =
[

2 0
−1 1

]
C = [ 1 1 ]

NE4.2 Compute the observer canonical form of the following systems
(D = 0 for all cases).

a. A =
[ −4 0

0 −5

]
B =

[
1
1

]
C = [ 1 1 ]

b. A =
[ −4 0

0 −5

]
B =

[
1
0

]
C = [ 1 0 ]

c. A =
[

0 −10
1 −2

]
B =

[
1
2

]
C = [ 0 1 ]

d. A =
[

0 1
−10 −2

]
B =

[
0
1

]
C = [ 1 2 ]

e. A =
[

2 0
−1 1

]
B =

[
1

−1

]
C = [ 1 1 ]

NE4.3 Repeat NE 4.1 using the Popov-Belevitch-Hautus tests for observ-
ability.

ANALYTICAL EXERCISES

AE4.1 Show that the n-dimensional controller canonical form realization
of the transfer function

H(s) = bn−1s
n−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

is observable if and only if H(s) has no pole-zero cancellations.

AE4.2 Show that the observability Gramian satisfies the matrix differen-
tial equation

d

dt
M(t, tf ) + AT M(t, tf ) + M(t, tf )A + CT C = 0

M(tf , tf ) = 0
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AE4.3 Show that the matrix exponential for[
A 0

−CT C −AT

]

is given by [
eAt 0

−e−AT tM(0, t) e−AT t

]

AE4.4 Show that the homogeneous single-output state equation charac-
terized by

A =




µ 1 0 · · · 0
0 µ 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · µ


 C = [ c1 c2 · · · cn−1 cn ]

is observable if and only if c1 �= 0.

AE4.5 Show that the pair (A, C) is observable if and only if the only
square matrix X that satisfies

AX = XA CX = 0
is X = 0.

AE4.6 Show that the pair (A, C) is observable if and only if the pair
(A − LC, HC) is observable for any n × p matrix L and any
nonsingular p × p matrix H .

AE4.7 Show that the homogeneous multiple-output system[
ẋ1(t)

ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)

x2(t)

]

y(t) = [
C1 0

] [
x1(t)

x2(t)

]

with C1 nonsingular is observable if and only if the homogeneous
system

ẋ2(t) = A22x2(t)

y2(t) = A12x2(t)

is observable.
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Continuing MATLAB Exercises

CME4.1 For the CME1.1 system:
a. Assess the system observability.
b. Compute the observer canonical form. Compare with the

controller canonical form from CME3.1b.

CME4.2 For the CME1.2 system:
a. Assess the system observability.
b. Compute the observer canonical form. Compare with the

controller canonical form from CME3.2b.

CME4.3 For the CME1.3 system:
a. Assess the system observability.
b. Compute the observer canonical form. Compare with the

controller canonical form from CME3.3b.

CME4.4 For the CME1.4 system:
a. Assess the system observability.
b. Compute the observer canonical form. Compare with the

controller canonical form from CME3.4b.

Continuing Exercises

CE4.1a Determine if the CE1 system is observable for all three cases
(cases from CE1.1b and numeric parameters from CE2.1a).

CE4.1b Calculate the observer canonical form realization numerically for
the CE1 system, case iii only. Demonstrate the duality relation-
ship between controller canonical form (CE3.1b) and observer
canonical form. Assess the system observability by looking at
the diagonal canonical form realization of CE2.1b; compare with
your results from CE4.1a.

CE4.2a Determine if the CE2 system is observable for all three cases
(cases from CE1.2b and numeric parameters from CE2.2a).

CE4.2b Calculate the observer canonical form realization numerically for
the CE2 system, case i only. Demonstrate the duality relation-
ship between controller canonical form (CE3.2b) and observer
canonical form.

CE4.3a Determine if the CE3 system is observable for both cases (cases
from CE1.3b and numeric parameters from CE2.3a).
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CE4.3b Calculate the observer canonical form realization numerically for
the CE3 system for both cases. Demonstrate the duality relation-
ship between controller canonical form (CE3.3b) and observer
canonical form. Assess the system observability by looking at
the diagonal canonical form realization of CE2.3b; compare with
your results from CE4.3a.

CE4.4a Determine if the CE4 system is observable (for the CE1.4b
single-input, single-output case and with the numeric parameters
from CE2.4a).

CE4.4b Calculate the observer canonical form realization numerically for
the CE4 system. Assess the system observability by looking at
the diagonal canonical form realization from CE 2.4b; compare
with your results from CE4.4a.

CE4.5a Determine if the CE5 system is observable (for the CE1.5b
single-input, single-output case and with the numeric parameters
from CE2.5a).

CE4.5b Calculate the observer canonical form realization numerically for
the CE5 system. Assess the system observability by looking at
the diagonal canonical form realization from CE2.5b; compare
with your results from CE4.5a.



5

MINIMAL REALIZATIONS

We have observed that a specified transfer function has more than one
state-space realization because, starting with a particular realization, any
valid coordinate transformation yields another state-space realization with
the same dimension. Moreover, we have seen in a previous example that
a given transfer function may have realizations of different dimension.
This motivates the notion of a minimal realization of a particular trans-
fer function, namely, a realization of least dimension out of all possible
realizations.

It is clearly impractical to assess the minimality of a particular realiza-
tion by comparing its dimension against that of all others. We therefore
are interested in verifiable conditions for minimality. In this chapter we
develop such conditions, first for single-input, single-output state equations
having scalar transfer functions. In this case, there is an immediate link
between minimality of a realization and possible pole-zero cancellations
in the associated transfer function. Aided by this fact, along with the
ability to write down state-space realizations by inspection of the trans-
fer function, we strike an interesting connection between minimality of a
state-space realization and its controllability and observability properties.

This analysis cannot be extended readily to multiple-input, multiple-
output state equations because of several complications arising from the
fact that the associated transfer functions are matrices of rational functions.
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First, it is not immediately clear how to extend the notions of poles
and zeros to the multiple-input, multiple-output case. Another reason is
that the process of constructing a state-space realization from a transfer-
function matrix is not nearly as straightforward as in the single-input,
single-output case. Nevertheless, we derive the same result obtained in the
single-input, single-output case for multiple-input, multiple-output state
equations, albeit by different means.

Often in real-world problems, systems are modeled in the least possible
size, and there are no pole/zero cancellations. Therefore, most of our
continuing examples and exercises are already in minimal form, and hence
there is nothing to present for these in this chapter. We present a MATLAB

section to demonstrate the computation of minimal realizations.

5.1 MINIMALITY OF SINGLE-INPUT, SINGLE OUTPUT
REALIZATIONS

Recall that the linear time-invariant state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (5.1)

is a state-space realization of a linear time-invariant system’s input-output
behavior if, given the associated transfer function H(s), the coefficient
matrices satisfy

C(sI − A)−1B + D = H(s)

We consider a single-input, single-output system with scalar transfer
function

H(s) = b(s)

a(s)
= bn−1s

n−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
(5.2)

in which n defines the degree of the denominator polynomial a(s) and
hence the order of the transfer function. Also note that we have specified
a strictly proper transfer function. This is essentially for convenience and
does not affect any of the conclusions drawn in this section (as the reader
may check). We call H(s) irreducible if it has no pole-zero cancellations,
and equivalently, its numerator and denominator polynomials have no
common roots/factors.

Suppose that we have an n–dimensional realization of H(s). Now it
is clear that if the nth-order transfer function has one or more pole-zero
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cancellations, then, on canceling the corresponding factors in a(s) and
b(s), we can write

H(s) = b̃(s)

ã(s)

with ñ = degree ã(s) < n. It is clear that there is a state-space realiza-
tion of H(s) with dimension ñ [say either controller canonical form
or observer canonical form written down by inspection from the coef-
ficients of ã(s) and b̃(s)], so the original n–dimensional realization is not
minimal.

Conversely, suppose that we have an n–dimensional realization of the
nth–order transfer function H(s) that is not minimal, so there exists
another realization of strictly lower dimension. Let (Ã, B̃, C̃) denote the
coefficient matrices for this realization and ñ denote its dimension. Since,
by definition of the matrix adjoint, adj(sI − Ã) is an ñ × ñ matrix of
polynomials of degree strictly less than ñ, it follows that

b̃(s) = C̃ adj(sI − Ã)B̃

is a scalar polynomial of degree strictly less than ñ. This along with

ã(s) = |sI − Ã|
allows us to write

H(s) = C̃(sI − Ã)−1B̃

= C̃ adj(sI − Ã)B̃

|sI − Ã|

= b̃(s)

ã(s)

We then conclude from the fact that degree ã(s) = ñ < n that a(s) and
b(s) must have at least one common factor and that H(s) is therefore not
irreducible. The preceding argument can be summarized as follows.

Theorem 5.1 Given the transfer function H(s) in Equation (5.2) with
n = degree a(s), an n–dimensional realization of H(s) is minimal if and
only if H(s) is irreducible.

Toward relating minimality of a realization to its controllability and
observability properties, we consider the following example.
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Example 5.1 For the third-order transfer function

H(s) = b(s)

a(s)
= s2 + 2s + 1

s3 + 6s2 + 11s + 6

the three–dimensional controller canonical form realization is specified
by the coefficient matrices

ACCF =

 0 1 0

0 0 1
−6 −11 −6


 BCCF =


 0

0
1




CCCF = [ 1 2 1 ]

We know that this realization is automatically controllable. To check
observability, we construct


 CCCF

CCCFACCF

CCCFA
2
CCF


 =


 1 2 1

−6 −10 −4
24 38 14




A direct calculation shows that the determinant of this observability matrix
is zero, so the controller canonical form realization of this transfer function
is not observable.

Alternatively, the three–dimensional observer canonical form realiza-
tion is specified by the coefficient matrices

AOCF =

 0 0 −6

1 0 −11
0 1 −6


 BOCF =


 1

2
1




COCF = [ 0 0 1 ]

and we know that this realization is automatically observable. Also, since
the controller canonical form is not observable, we have by duality that
the observer canonical form is not controllable.

Using results from previous chapters, we can conclude that

• All controllable three–dimensional realizations of H(s) are not ob-
servable because every such realization can be related to the controller
canonical form via a uniquely defined coordinate transformation and
observability is unaffected by coordinate transformations.

• All observable three–dimensional realizations of H(s) are not con-
trollable because every such realization can be related to the observer
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canonical form via a uniquely defined coordinate transformation and
controllability is unaffected by coordinate transformations.

Thus we conclude that there are no three–dimensional realizations of
H(s) that are both controllable and observable. Next, we observe that

H(s) = (s + 1)2

(s + 1)(s + 2)(s + 3)
= s + 1

(s + 2)(s + 3)

which, on invoking Theorem 5.1, indicates that any three–dimensional
realization of H(s) is not minimal because H(s) is not irreducible. In
addition, since

H(s) = s + 1

(s + 2)(s + 3)
= s + 1

s2 + 5s + 6

cannot be reduced further, we conclude that all two–dimensional real-
izations of H(s) are minimal. The two–dimensional controller canon-
ical form realization corresponding to the reduced transfer function is
given by

ACCF =
[

0 1
−6 −5

]
BCCF =

[
0
1

]
CCCF = [ 1 1 ]

which is automatically controllable. From

[
CCCF

CCCFACCF

]
=

[
1 1

−6 −4

]

which is clearly nonsingular, we conclude that the two–dimensional con-
troller canonical form realization is also observable. It follows by duality
that the two–dimensional observer canonical form realization is control-
lable as well as observable.

We conclude from this analysis that

• All controllable two–dimensional realizations of the reduced H(s)

are also observable.
• All observable two–dimensional realizations of the reduced H(s) are

also controllable. �

This example suggests a link between minimality of a realization and
joint controllability and observability. Toward establishing a concrete
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connection, we will make use of the following intermediate mathematical
results:

Lemma 5.2 Given H(s) in Equation (5.2) with n = degree a(s), the
n–dimensional controller canonical form realization is observable if and
only if H(s) is irreducible.

Proof. The alert reader may recognize the connection between Lemma
5.2 and AE4.1. To prove this result, it suffices to verify that if H(s) has a
pole-zero cancellation, then the controller canonical form realization is not
observable, and conversely, if the controller canonical form realization is
not observable, then H(s) has a pole-zero cancellation. For either impli-
cation, the explicit characterization of the eigenstructure of the companion
matrix ACCF suggests the use of the Popov-Belevich-Hautus eigenvector
test for observability. This, together with the explicit connection between
the controller canonical form and the numerator and denominator poly-
nomials of H(s), makes for quick work. �

With Lemma 5.2 in hand, we have by duality:

Lemma 5.3 Given H(s) in Equation (5.2) with n = degree a(s), the
n–dimensional observer canonical form realization is controllable if and
only if H(s) is irreducible.

We require one last mathematical result:

Lemma 5.4 If there is one n–dimensional realization of H(s) that is
both controllable and observable, then all n–dimensional realizations of
H(s) are both controllable and observable.

Proof. Let (A, B, C) represent an n–dimensional realization of H(s)

that is both controllable and observable, and let (Â, B̂, Ĉ) represent an-
other n–dimensional realization. In the time domain, we therefore have

CeAtB = h(t) = ĈeÂt B̂ for all t ≥ 0

Repeated differentiation and subsequent evaluation at t = 0 yields

CAkB = ĈÂkB̂ for all k ≥ 0

which can be packaged into the following n × n matrix identity:


CB CAB · · · CAn−1B

CAB CA2B · · · CAn−2B
...

...
. . .

...

CAn−1B CAnB · · · CA2n−2B
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=




ĈB̂ ĈÂB̂ · · · ĈÂn−1B̂

ĈÂB̂ ĈÂ2B̂ · · · ĈÂnB̂
...

...
. . .

...

ĈÂn−1B̂ ĈÂnB̂ · · · ĈÂ2n−2B̂




Each side can be factored as



C

CA
...

CAn−1



[
B AB · · · An−1B

] =




Ĉ

ĈÂ
...

ĈÂn−1




[
B̂ ÂB̂ · · · Ân−1B̂

]

in which each factor on both left and right sides is an n × n matrix.
By assumption, the realization (A, B, C) is controllable and observable,
so each factor on the left hand side is nonsingular. Consequently, the
product on the left-hand side is nonsingular and so the same is true
for the product on the right-hand side. This, in turn, implies that each
factor on the right-hand side is nonsingular, so (Â, B̂, Ĉ) also must spec-
ify a controllable and observable n–dimensional realization. Since the
second realization (Â, B̂, Ĉ) was selected arbitrarily, we conclude that
all n–dimensional realizations of H(s) must be both controllable and
observable. �

We now can formally establish a link between minimality of a realization
and joint controllability and observability.

Theorem 5.5 An n–dimensional realization of the transfer function H(s)

in Equation (5.2) with n = degree a(s) is minimal if and only if it is both
controllable and observable.

Proof. If the n–dimensional realization is minimal, then H(s)

is irreducible by Theorem 5.1. Following Lemma 5.2, this implies
that the n–dimensional controller canonical form realization is both
controllable and observable. Consequently, by Lemma 5.4, our minimal
n–dimensional realization also must be both controllable and observable.
Conversely, if we start with an n–dimensional realization of H(s) that
is both controllable and observable, then the same must be true for
the n–dimensional controller canonical form realization. This implies
that H(s) is irreducible, which, in turn, implies that the n–dimensional
realization is minimal. �
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5.2 MINIMALITY OF MULTIPLE-INPUT, MULTIPLE OUTPUT
REALIZATIONS

Our goal in this section is to show that Theorem 5.5 can be extended to
the multiple-input, multiple-output case.

Theorem 5.6 Suppose that the linear state equation (5.1) is a realization
of the p × m transfer function H(s). Then it is a minimal realization if and
only if it is both controllable and observable.

Proof. We first show that joint controllability/observability implies min-
imality. Suppose that the linear state equation (5.1) is an n–dimensional
realization of H(s) that is not minimal. Then there is a realization

˙̃x(t) = Ãx̃(t) + B̃u(t)

y(t) = C̃x̃(t) + D̃u(t)

of dimension ñ < n. Since both are realizations of H(s), we equate the
impulse responses in the time domain, that is,

CeAtB + Dδ(t) = C̃eÃt B̃ + D̃δ(t) for all t ≥ 0

which implies that D = D̃ and C̃eÃt B̃ = CeAtB, for all t ≥ 0. Repeated
differentiation of the latter identity and evaluation at t = 0 gives

CAkB = C̃ÃkB̃ for all k ≥ 0

Arranging these data for k = 0, 1, . . . , 2n − 2 into matrix form yields




CB CAB · · · CAn−1B

CAB CA2B · · · CAnB
...

...
. . .

...

CAn−1B CAnB · · · CA2n−2B




=




C̃B̃ C̃ÃB̃ · · · C̃Ãn−1B̃

C̃ÃB̃ C̃Ã2B̃ · · · C̃ÃnB̃
...

...
. . .

...

C̃Ãn−1B̃ C̃ÃnB̃ · · · C̃Ã2n−2B̃
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Each side can be factored to yield




C

CA
...

CAn−1




[
B AB · · · An−1B

] =




C̃

C̃Ã
...

C̃Ãn−1




[
B̃ ÃB̃ · · · Ãn−1B̃

]

The right-hand side is the product of a pn × ñ matrix and an ñ × mn

matrix, each of which has rank no greater than ñ (because pn > ñ and
mn > ñ). Consequently, the rank of each product is upper bounded by
ñ < n. Applying a general matrix rank relationship to the left-hand side
product, written compactly as QP , we obtain

rank(QP ) = rankP − dim(Ker Q ∩ ImP)

≤ ñ

< n

We claim that this implies that the linear state equation (5.1) cannot be
both controllable and observable because

• If the pair (A, B) is controllable (rank P = n), then necessarily
dim(Ker Q ∩ ImP) ≥ 1, implying that dim(Ker Q) ≥ 1, so the pair
(A, C) is not observable.

• If the pair (A, C) is observable (rank Q = n, equivalently nullity
Q = 0), then necessarily, dim(Ker Q ∩ ImP) = 0, implying that rank
P < n so that the pair (A, B) is not controllable.

We therefore have shown that joint controllability and observability
implies minimality.

We next show that minimality implies joint controllability and observ-
ability. Suppose that the linear state equation (5.1) is an n–dimensional
realization of H(s) that is not controllable, so

rank[ B AB · · · An−1B ] = q < n

From Section 3.4, we know that there exists a nonsingular n × n matrix
T such that

Â = T −1AT B̂ = T −1B

=
[

A11 A12

0 A22

]
=

[
B1

0

]
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in which the pair (A11, B1) specifies a controllable q –dimensional
state equation. In addition, we partition Ĉ = CT conformably as Ĉ =
[ C1 C2 ]. This, along with D̂ = D, yields

H(s) = C(sI − A)−1B + D

= Ĉ(sI − Â)−1B̂ + D̂

= [
C1 C2

] [
sI − A11 −A12

0 sI − A22

]−1 [
B1

0

]
+ D

= [
C1 C2

] [
(sI − A11)

−1 (sI − A11)
−1A12(sI − A22)

−1

0 (sI − A22)
−1

]

×
[

B1

0

]
+ D

= C1(sI − A11)
−1B1 + D

It follows that

ż1(t) = A11z1(t) + B1u(t)

y(t) = C1z1(t) + Du(t)

is a q –dimensional state-space realization of H(s). Since q < n, we con-
clude that the original n–dimensional realization (5.1) is not minimal.

A similar argument can be made assuming initially that the linear
state equation (5.1) is not observable using the discussion in Section 4.4
regarding the standard form for unobservable state equations. We therefore
conclude that a realization that is either not controllable or not observable
(or both) is not minimal. �

5.3 MATLAB FOR MINIMAL REALIZATIONS

The following command is useful for computing minimal realizations via
pole/zero cancellations using MATLAB.

MinSysName = minreal(SysName)

Given the linear time-invariant system data structure SysName, the min-
real function produces a linear time-invariant system data structure Min-
SysName in which all possible pole/zero cancellations are made. For
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state-space models, this function produces a minimal realization MinSys-
Name of SysName by removing all uncontrollable or unobservable modes.

The Continuing MATLAB Example (rotational mechanical system) is
already a minimal realization as developed in Chapters 1 and 2, so there
is nothing to do for that example in this chapter. Therefore, we instead
employ MATLAB to compute a minimal realization of the system given
in Example 5.1. The following MATLAB code performs this computation.
Again, it is not related to the Continuing MATLAB Example, and hence this
code stands alone and does not appear in the complete Continuing MATLAB

Example m-file in Appendix C.

%------------------------------------------------------
% Chapter 5. Minimal Realizations
%------------------------------------------------------

Accf = [0 1 0; 0 0 1; -6 -11 -6]; % Define CCF system
% for Example 5.1

Bccf = [0; 0; 1];
Cccf = [1 2 1];
Dccf = 0;

CCF = ss(Accf,Bccf,Cccf,Dccf);

minCCF = minreal(CCF) % Compute the
% minimal
% realization

This m-file yields the following output, a two–dimensional minimal real-
ization for the given three–dimensional controller canonical form system
from Example 5.1:

1 state removed.

a =
x1 x2

x1 -2.789 -10.98
x2 -0.01517 -2.211

b =
u1

x1 0.7887
x2 0.2113
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c =
x1 x2

y1 0.634 2.366

d =
u1

y1 0

Continuous-time model.

MATLAB tells us that one state was removed corresponding to the can-
cellation of the common factor (s + 1) in both the numerator and denom-
inator of the transfer function H(s). The resulting two–dimensional state-
space realization has no discernible structure, but it is minimal. That is,
it is both controllable and observable, and there are no further possible
pole/zero cancellations in the reduced second-order transfer function.

5.4 HOMEWORK EXERCISES

Numerical Exercises

NE5.1 Compute a minimal realization for each of the following state
equations.

a. A =
[

0 1
−2 −3

]
B =

[
0
1

]
C = [ 1 1 ]

b. A =

 0 1 0

0 0 1
−15 −17 −7


 B =


 0

0
1


 C = [ 5 4 1 ]

c. A =

 0 1 0

0 0 1
−15 −17 −7


 B =


 0

0
1


 C = [ 3 1 0 ]

d. A =



0 1 0 0
0 0 1 0
0 0 0 1

−250 −255 −91 −15


 B =




0
0
0
1




C = [ 25 8 1 0 ]
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e. A =



0 0 0 −250
1 0 0 −255
0 1 0 −91
0 0 1 −15


 B =




24
9
2
0




C = [ 0 0 0 1 ]

Analytical Exercises

AE 5.1 Show that the state equation represented by the triple (A, B, C) is
a minimal realization if and only if the state equation represented
by the triple (A − BKC , B, C) is a minimal realization for any
m × p gain matrix K . In other words, minimality is invariant
with respect to output feedback u(t) = −Ky(t).

AE 5.2 Show that the single-input, single-output state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

is minimal if and only if A and[
A B

C D

]

have no eigenvalue in common.

AE 5.3 Consider a single-input, single-output n—dimensional state-space
realization represented by (A, B, C), and assume that n ≥ 2.
Show that if (A, B,C) is a minimal realization, then A and the
product BC do not commute with respect to matrix multiplication.

Continuing MATLAB Exercises

CME5.3 For the system given in CME1.3, compute a minimal state-space
realization.

CME5.4 For the system given in CME1.4, compute a minimal state-space
realization.

Continuing Exercises

CE5.5 You should have found in CE 3.5 and CE 4.5 that the system
given in CE1.5 is controllable but not observable. Therefore, the
original state-space realization is not minimal. Compute a minimal
state-space realization for this system.
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STABILITY

For the linear time-invariant state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
x(0) = x0 (6.1)

we consider two types of stability in this chapter. The first is an internal
notion of stability and involves the qualitative behavior of the zero-input
state response, i.e., the response of a related homogeneous state equation
that depends solely on the initial state. We introduce the fundamental
concepts in a more general setting involving homogeneous nonlinear state
equations but specialize to the linear case for which explicit stability
criteria are available that involve the eigenvalues of the system dynamics
matrix A. We also present an energy-based stability analysis that has its
origins in the work of the Russian mathematician A. M. Lyapunov more
than a century ago. The power of Lyapunov stability theory lies in its
applicability to nonlinear systems; however, we focus on its specialization
to linear systems.

The second type of stability we study in this chapter focuses on external,
or input-output, behavior. In particular, we characterize state equations
for which the zero-state output response is a bounded signal for every
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bounded input signal. This is referred to, not surprisingly, as bounded-
input, bounded-output stability. Although these internal and external sta-
bility properties are fundamentally different in character, as they pertain
to different response components, they are related, as we will show. This
chapter concludes with an overview of stability analysis using MATLAB
featuring our Continuing MATLAB Example and Continuing Examples 1
and 2.

6.1 INTERNAL STABILITY

In this section we focus on the stability of equilibrium states for homo-
geneous state equations. We begin our analysis with the nonlinear state
equation

ẋ(t) = f [x(t)] x(0) = x0 (6.2)

for which equilibrium states are constant n × 1 vectors x̃ that satisfy
f (x̃) = 0. Stability of an equilibrium state refers to the qualitative behav-
ior of trajectories that start in the vicinity of the equilibrium state. A
nonlinear state equation can have multiple isolated equilibrium states each
with different stability properties. This is why we refer to stability of
a particular equilibrium state rather than the state equation itself. The
stability-related notions we consider are illustrated in Figure 6.1. Point
a represents an unstable equilibrium. A ball perfectly balanced atop the
curved surface on the left will remain at rest if undisturbed. However,
the slightest perturbation will cause the ball to roll away from that rest
position. Point b illustrates a stable equilibrium in the sense that the ball
will move only a small distance from a rest position on the flat surface
when experiencing a perturbation that is suitably small. Finally, point c

depicts an asymptotically stable equilibrium. Suppose that the ball is ini-
tially at rest nestled in the curved surface on the right. For a reasonably
small perturbation, the ball will not stray too far from the rest position
and, in addition, eventually will return to the rest position.

cba

FIGURE 6.1 Equilibrium states.
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Armed with this intuition, we now give precise stability definitions of
an equilibrium state. Because a nonzero equilibrium state can be translated
to the origin by change of variables with an accompanying modification
to the state equation, we can assume without loss of generality that the
equilibrium state under scrutiny is at the origin, that is, x̃ = 0 ∈ R

n.

Definition 6.1 The equilibrium state x̃ = 0 of Equation (6.2) is

• Stable if, given any ε > 0 there corresponds a δ > 0 such that ||x0||
< δ implies that ||x(t)|| < ε for all t ≥ 0.
• Unstable if it is not stable.
• Asymptotically stable if it is stable and it is possible to choose δ > 0
such that ||x0|| < δ implies that limt→∞ ||x(t)|| = 0. Specifically, given
any ε > 0, there exists T > 0 for which the corresponding trajectory
satisfies ||x(t)|| ≤ ε for all t ≥ T .
• Globally asymptotically stable if it is stable and limt→∞ ||x(t)|| = 0
for any initial state. Specifically, given any M > 0 and ε > 0, there
exists T > 0 such that ||x0|| < M implies that the corresponding tra-
jectory satisfies ||x(t)|| ≤ ε for all t ≥ T .
• Exponentially stable if there exist positive constants δ, k, and λ such
that ||x0|| < δ implies that ||x(t)|| < ke−λt ||x0|| for all t ≥ 0.
• Globally exponentially stable if there exist positive constants k and
λ such that ||x(t)|| ≤ ke−λt ||x0|| for all t ≥ 0 for all initial states.

The wording in these definitions is a bit subtle, but the basic ideas are
conveyed in Figure 6.2. An equilibrium state is stable if the state trajec-
tory can be made to remain as close as desired to the equilibrium state for
all time by restricting the initial state to be sufficiently close to the equi-
librium state. An unstable equilibrium state does not necessarily involve
trajectories that diverge arbitrarily far from the equilibrium; rather only
that there is some bound on ||x(t)|| that cannot be achieved for all t ≥ 0
by at least one trajectory no matter how small the initial deviation ||x0||.
Asymptotic stability requires, in addition to stability, that trajectories con-
verge to the equilibrium state over time with no further constraint on the
rate of convergence. By comparison, exponential stability is a stronger
stability property. As an illustration, consider the one-dimensional state
equation

ẋ(t) = −x3(t)

which, for any initial state, has the solution x(t) = x0/

√
1 + 2x2

0 t that
asymptotically converges to the equilibrium x̃ = 0 over time. However,
the rate of convergence is slower than any decaying exponential bound.
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FIGURE 6.2 Stability of an equilibrium state.

Our ultimate focus is on the homogeneous linear time-invariant state
equation

ẋ(t) = Ax(t) x(0) = x0 (6.3)

for which x̃ = 0 ∈ R
n is seen easily to be an equilibrium state. It is pos-

sible to show by exploiting the linearity of the solution to (6.3) in the
initial state that the preceding stability definitions can be reformulated as
follows:

Definition 6.2 The equilibrium state x̃ = 0 of Equation (6.3) is

• Stable if there exists a finite positive constant γ such that for any
initial state x0 the corresponding trajectory satisfies ||x(t)|| ≤ γ ||x0||
for all t ≥ 0.

• Unstable if it is not stable.
• (Globally) asymptotically stable if given any µ > 0 there exists

T > 0 such that for any initial state x0 the corresponding trajectory
satisfies ||x(t)|| ≤ µ||x0|| for all t ≥ T .

• (Globally) exponentially stable if there exist positive constants k and
λ such that that for any initial state x0 the corresponding trajectory
satisfies ||x(t)|| ≤ ke−λt ||x0|| for all t ≥ 0.

Since the trajectory of Equation (6.3) is given by x(t) = eAtx0, we
see from the choice x0 = ei , the ith standard basis vector, that a stable
equilibrium state implies that the ith column of the matrix exponential is
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bounded for all t ≥ 0 and that an asymptotically stable equilibrium state
implies that the ith column of the matrix exponential tends to the zero
vector as t tends to infinity. Thus each element of the ith column of the
matrix exponential must either be bounded for all t ≥ 0 for a stable equi-
librium state or tend to the zero as t tends to infinity for an asymptotically
stable equilibrium state. Since this must hold for each column, these con-
clusions apply to every element of the matrix exponential. Conversely, if
each element of the matrix exponential is bounded for all t ≥ 0, then it
is possible to derive the bound ||x(t)|| ≤ µ||x0|| for all t ≥ 0, from which
we conclude that x̃ = 0 is a stable equilibrium state. Similarly, if each
element of the matrix exponential tends to the zero as t tends to infinity,
then we can conclude that x̃ = 0 is an asymptotically stable equilibrium
state in the sense of Definition 6.2.

We further investigate the behavior of elements of the matrix exponen-
tial using the Jordan canonical form of A. As summarized in Appendix
B, for any square matrix A there exists a nonsingular matrix T yielding

J = T −1AT

for which J is block diagonal, and each block has the form

Jk(λ) =




λ 1 0 · · · 0
0 λ 1 · · · 0

0 0 λ
. . . 0

...
...

...
. . . 1

0 0 0 · · · λ




(k × k)

representing one of the Jordan blocks associated with the eigenvalue λ.
Since we can write A = T J T −1, we then have eAt = T eJ tT −1. Conse-
quently, boundedness or asymptotic properties of elements of eAt can be
inferred from corresponding properties of the elements of eJ t . Since J

is block diagonal, so is eJ t . Specifically, for each submatrix of the form
Jk(λ) on the block diagonal of J, eJ t will contain the diagonal block

eJk(λ)t = eλt




1 t
1

2
t2 · · · 1

(k − 1)!
t k−1

0 1 t · · · 1

(k − 2)!
t k−2

0 0 1
. . .

...
...

...
...

. . . t

0 0 0 · · · 1




(k × k)
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We also point out that all the Jordan blocks associated with a particular
eigenvalue are scalar if and only if the associated geometric and algebraic
multiplicities of that eigenvalue are equal. Furthermore, when J1(λ) = λ,
we have eJ1(λ)t = eλt . With this preliminary analysis in place, we are
prepared to establish the following result:

Theorem 6.3 The equilibrium state x̃ = 0 of Equation (6.3) is:

• Stable if and only if all eigenvalues of A have a nonpositive real part
and the geometric multiplicity of any eigenvalue with zero real part
equals the associated algebraic multiplicity.
• (Globally) asymptotically stable if and only if every eigenvalue of A

has strictly negative real part.

Proof (stability.) We see that each Jordan block has a matrix exponen-
tial containing bounded terms provided that Re(λ) < 0, in which case
terms of the form t j eλt are bounded for all t ≥ 0 for any power of
t (and in fact decay to zero as t tends to infinity), or that whenever
Re(λ) = 0, the size of any corresponding Jordan block is 1 × 1 so that
|eJ1(λ)t | = |eλt | = eRe(λ)t ≡ 1. As noted earlier, each Jordan block associ-
ated with an eigenvalue λ has size 1 when and only when the geometric
and algebraic multiplicities are equal. Conversely, if there exists an eigen-
value with Re(λ) > 0, the matrix exponential of each associated Jordan
block contains unbounded terms, or if there exists an eigenvalue with
Re(λ) = 0 and a Jordan block of size 2 or greater, the associated matrix
exponential will contain terms of the form t j eλt with j ≥ 1 having mag-
nitude |t j eλt | = t j eRe(λ)t = t j that also grow without bound despite the
fact that |eλt | = eRe(λ)t ≡ 1.
(Asymptotic stability.) Each Jordan block has a matrix exponential con-
taining elements that are either zero or asymptotically tend to zero as t

tends to infinity provided that Re(λ) < 0. Conversely, in addition to the
preceding discussion, even if there exists an eigenvalue with Re(λ) = 0
having scalar Jordan blocks, |eJ1(λ)| = |eλt | = eRe(λ)t ≡ 1, which does not
tend asymptotically to zero as t tends to infinity. �

We note that if A has strictly negative real-part eigenvalues, then it must
be nonsingular. Consequently, x̃ = 0 is the only equilibrium state for the
homogeneous linear state equation (6.3) because it is the only solution
to the homogeneous linear equation Ax = 0. It is therefore customary to
refer to Equation (6.3) as an asymptotically stable system in this case. The
eigenvalue criteria provided by Theorem 6.3 are illustrated in Figure 6.3.
Case 1 depicts strictly negative real-part eigenvalues corresponding to an
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FIGURE 6.3 Eigenvalue locations in the complex plane.

asymptotically stable system. Case 2 indicates nonrepeated eigenvalues on
the imaginary axis that, since the geometric and algebraic multiplicities
are each 1 in this case, indicates a stable system. Finally, case 3 shows
one or more eigenvalues with positive real-part that corresponds to an
unstable system.

We remark that stability in the sense of Definition 6.2 and Theorem 6.3
is commonly referred to as marginal stability. We will adopt this practice
in situations where we wish to emphasize the distinction between stability
and asymptotic stability.

Energy-Based Analysis

Here we establish intuitive connections between the types of stability
defined earlier and energy-related considerations. Consider a physical sys-
tem for which total energy can be defined as a function of the system state.
If an equilibrium state corresponds to a (local) minimum of this energy
function, and if the energy does not increase along any trajectory that starts
in the vicinity of the equilibrium state, it is reasonable to conclude that the
trajectory remains close to the equilibrium state, thus indicating a stable
equilibrium state. If the system dissipates energy along any trajectory that
starts near the equilibrium state so that the system energy converges to the
local minimum, we expect this to correspond to asymptotic convergence
of the trajectory to the equilibrium, thereby indicating an asymptotically
stable equilibrium. We observe that conclusions regarding the stability of
an equilibrium state have been inferred from the time rate of change of
the system energy along trajectories. The following example presents a
quantitative illustration of these ideas.
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Example 6.1 We consider the second-order linear translational mechan-
ical system that was introduced in Example 1.1, which for zero external
applied force is governed by

m ÿ(t) + cẏ(t) + ky(t) = 0

in which y(t) represents the displacement of both the mass and spring
from rest. The state variables were chosen previously as the mass/spring
displacement x1(t) = y(t) and the mass velocity x2(t) = ẏ(t), yielding
the homogeneous state equation

[
ẋ1(t)

ẋ2(t)

]
=


 0 1

− k

m
− c

m


[

x1(t)

x2(t)

]

We recall that these state variables are related to energy stored in this
system. The spring displacement characterizes the potential energy stored
in the spring, and the mass velocity characterizes the kinetic energy stored
in the mass. We therefore can express the total energy stored in the system
by the function

E(x1, x2) = 1

2
kx2

1 + 1

2
mx2

2

We observe that the system energy is positive whenever [x1, x2]T �=
[0, 0]T and attains the minimum value of zero at the equilibrium state
[x̃1, x̃2]T = [0, 0]T .

On evaluating the energy function along a system trajectory, we can
compute the time derivative

d

dt
E[x1(t), x2(t)] = d

dt

[
1

2
kx2

1(t) + 1

2
mx2

2(t)

]

= kx1(t)ẋ1(t) + mx2(t)ẋ2(t)

= kx1(t)

[
x2(t)

]
+ mx2(t)

[
− k

m
x1(t) − c

m
x2(t)

]

= −cx2
2(t)

where we have invoked the chain rule and have used the state equation
to substitute for the state-variable derivatives.

For zero damping (c = 0) we have dE/dt ≡ 0, so the total system
energy is constant along any trajectory. This corresponds to a perpetual
exchange between the potential energy stored in the spring and the kinetic
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energy stored in the mass. This also indicates that [x̃1, x̃2]T = [0, 0]T is a
stable equilibrium in the sense of Definition 6.2. Specifically, since

1

2
min{k, m}[x2

1(t) + x2
2(t)]

≤ 1

2
kx2

1(t) + 1

2
mx2

2(t)

= 1

2
kx2

1(0) + 1

2
mx2

2(0) ≤ 1

2
max{k, m}[x2

1(0) + x2
2(0)]

we have the norm bound on the state trajectory x(t) = [x1(t), x2(t)]T ,
that is,

||x(t)|| ≤
√

max{k, m}
min{k, m} ||x(0)|| for all t ≥ 0

which suggests an obvious choice for the positive constant γ in Defini-
tion 6.2.

For positive damping (c > 0), we have dE/dt < 0 along any trajectory
for which the mass velocity is not identically zero. A trajectory for which
x2(t) = ẏ(t) is identically zero corresponds to identically zero accelera-
tion and a constant displacement. Since such a trajectory also must satisfy
the equations of motion we see, on substituting ẋ2(t) = ÿ(t) ≡ 0, ẋ1(t) =
x2(t) = ẏ(t) ≡ 0, and x1(t) = y(t) ≡ y0 (constant), that ky0 = 0. Conse-
quently, the only trajectory for which the mass velocity is identically zero
corresponds to the equilibrium state x(t) ≡ x̃ = [0, 0]T . We conclude that
the total energy in the system is strictly decreasing along all other tra-
jectories and converges to zero as time tends to infinity. We expect that
this should correspond to asymptotic convergence of the trajectory to the
equilibrium state [x̃1, x̃2]T = [0, 0]T as time tends to infinity. To see this,
convergence of the total energy to zero implies that given any µ > 0,
there is a T > 0 for which

E[x1(t), x2(t)] ≤ µ2 min{k, m}
max{k, m}E[x1(0), x2(0)] for all t ≥ T

Using this and a previous bound, we have

||x(t)|| ≤
√

2E[x1(t), x2(t)]

min{k, m}

≤ µ

√
2E[x1(0), x2(0)]

max{k, m} ≤ µ||x(0)|| for all t ≥ T
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thereby verifying that x(t) ≡ x̃ = [0, 0]T is an asymptotically stable equi-
librium state.

For negative damping (c < 0), we have dE/dt > 0 along any trajectory
for which the mass velocity is not identically zero. The same reasoning
applied earlier indicates that the total energy in the system is strictly
increasing along any trajectory other than x(t) ≡ x̃ = [0, 0]T . It can be
argued that any initial state other than the equilibrium state yields a tra-
jectory that diverges infinitely far away from the origin as time tends to
infinity.

Simulation results and eigenvalue computations bear out these
conclusions. For m = 1 kg, k = 10 N/m, and c = 0 N-s/m along with
the initial state x(0) = x0 = [1, 2]T , the state-variable time responses are
shown in Figure 6.4a, the phase portrait [x2(t) = ẋ1(t) plotted versus
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FIGURE 6.4 (a) State-variable responses; (b) phase portrait; (c) energy response
for a marginally-stable equilibrium.
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x1(t) parameterized by time t] is shown in Figure 6.4b, and the time
response of the total system energy is shown in Figure 6.4c. In this
case, we see oscillatory state-variable time responses, an elliptical phase
portrait, and constant total energy. The system eigenvalues are λ1.2 =
±j3.16, purely imaginary (zero real part). Since they are distinct, the
geometric multiplicity equals the algebraic multiplicity for each.

With c = 1 N-s/m and all other parameters unchanged, the state-variable
time responses are shown in Figure 6.5a, the phase portrait is shown in
Figure 6.5b, and the time response of the total system energy is shown in
Figure 6.5c. In this case, each state-variable time response decays to zero
as time tends to infinity, as does the total energy response. The phase por-
trait depicts a state trajectory that spirals in toward the equilibrium state at
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FIGURE 6.5 (a) State-variable responses; (b) phase portrait; (c) energy response
for an asymptotically-stable equilibrium.
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FIGURE 6.6 (a) State-variable responses; (b) phase portrait; (c) energy response
for an unstable equilibrium.

the origin. The system eigenvalues are λ1,2 = −0.50 ± j3.12, each with
negative real part.

Finally, with the damping coefficient changed to c = −1 N-s/m, the
state-variable time responses are shown in Figure 6.6a, the phase portrait
is shown in Figure 6.6b, and the time response of the total system energy
is shown in Figure 6.6c. Here each state variable time response grows
in amplitude and the total energy increases with time. The phase portrait
depicts a state trajectory that spirals away from the equilibrium state at
the origin. The system eigenvalues are λ1,2 = +0.50 ± j3.12, each with
positive real part.

An extremely appealing feature of the preceding energy-based analysis
is that stability of the equilibrium state can be determined directly from
the time derivative of the total energy function along trajectories of the
system. Computation of this time derivative can be interpreted as first
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computing the following function of the state variables

Ė(x1, x2) � ∂E

∂x1
(x1, x2)ẋ1 + ∂E

∂x2
(x1, x2)ẋ2

= (kx1)ẋ1 + (mx2)ẋ2

= (kx1)(x2) + (mx2)

(
− k

m
x1 − c

m
x2

)

= −cx2
2

followed by evaluating along a system trajectory x(t) = [x1(t), x2(t)]T to
obtain

Ė[x1(t), x2(t)] = −cx2
2(t) = d

dt
E[x1(t), x2(t)]

In addition, properties of the total energy time derivative along all sys-
tem trajectories and accompanying stability implications can be deduced
from properties of the function Ė(x1, x2) over the entire state space. An
important consequence is that explicit knowledge of the trajectories them-
selves is not required.

Lyapunov Stability Analysis

The Russian mathematician A. M. Lyapunov (1857–1918) observed
that conclusions regarding stability of an equilibrium state can be
drawn from a more general class of energy-like functions. For the
nonlinear state equation (6.2), we consider real-valued functions V (x) =
V (x1, x2, . . . , xn) with continuous partial derivatives in each state variable
that are positive definite, meaning that V (0) = 0 and V (x) > 0 for all
x �= 0 at least in a neighborhood of the origin. This generalizes the
property that the total energy function has a local minimum at the
equilibrium. To analyze the time derivative of the function V (x) along
trajectories of Equation (6.2), we define

V̇ (x) = ∂V

∂x1
(x)ẋ1 + ∂V

∂x2
(x)ẋ2 + · · · + ∂V

∂xn

(x)ẋn

=
[

∂V

∂x1
(x)

∂V

∂x2
(x) · · · ∂V

∂x2
(x)

] 


ẋ1

ẋ2
...

ẋn




= ∂V

∂x
(x)f (x)
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Thus V̇ (x) is formed from the inner product of the gradient of V (x) and
the nonlinear map f (x) that defines the system dynamics. The fundamen-
tal discovery of Lyapunov is that the equilibrium x̃ = 0 is

• Stable if V̇ (x) is negative semidefinite; that is, V̇ (x) ≤ 0 for all x in
a neighborhood of the origin.

• Asymptotically stable if V̇ (x) is negative definite; that is, V̇ (x) < 0
for all x �= 0 in a neighborhood of the origin.

A positive-definite function V (x) for which V̇ (x) is at least negative
semidefinite is called a Lyapunov function. The preceding result is
extremely powerful because stability of an equilibrium can be determined
directly from the system dynamics without explicit knowledge of system
trajectories. Consequently, this approach is referred to as Lyapunov’s
direct method. This is extremely important in the context of nonlinear
systems because system trajectories, i.e., solutions to the nonlinear state
equation (6.2), in general are not available in closed form.

We observe that Lyapunov’s direct method only provides a sufficient
condition for (asymptotic) stability of an equilibrium in terms of an
unspecified Lyapunov function for which, in general, there are no system-
atic ways to construct. As a consequence, if a particular positive-definite
function V (x) fails to have V̇ (x) negative semidefinite, we cannot con-
clude immediately that the origin is unstable. Similarly, if, for a Lyapunov
function V (x), V̇ (x) fails to be negative definite, we cannot rule out
asymptotic stability of the origin. On the other hand, a so-called converse
theorem exists for asymptotic stability that, under additional hypotheses,
guarantees the existence of a Lyapunov function with a negative-definite
V̇ (x). For a thorough treatment of Lyapunov stability analysis, we refer
the interested reader to Khalil (2002).

For the linear state equation (6.3), Lyapunov stability analysis can be
made much more explicit. First, we can focus on energy-like functions
that are quadratic forms given by

V (x) = xT Px =
n∑

i,j=1

pijxixj (6.4)

in which the associated matrix P = [pij ] is symmetric without loss of
generality so that its elements satisfy pij = pji . We note here that P

does not refer to the controllability matrix introduced in Chapter 3. A
quadratic form is a positive-definite function over all of R

n if and only if
P is a positive-definite symmetric matrix. A symmetric n × n matrix P is
positive definite if and only if every eigenvalue of P is real and positive.
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Consequently, the eigenvalues of a symmetric positive-definite matrix can
be ordered via

0 < λmin(P ) = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax(P )

and the associated quadratic form satisfies the so-called Rayleigh-Ritz
inequality

λmin(P )xT x ≤ xT Px ≤ λmax(P )xT x for all x ∈ R
n

Another useful characterization of positive definiteness of a symmetric
n × n matrix P = [pij ] is that its n leading principal minors defined as
the submatrix determinants

p11

∣∣∣∣ p11 p12

p12 p22

∣∣∣∣
∣∣∣∣∣∣
p11 p12 p13

p12 p22 p23

p13 p23 p33

∣∣∣∣∣∣ · · ·

∣∣∣∣∣∣∣∣

p11 p12 · · · p1n

p12 p22 · · · p2n

...
...

. . .
...

p1n p2n · · · pnn

∣∣∣∣∣∣∣∣
are all positive. This is referred to as Sylvester’s criterion. It follows
directly that a quadratic form xT Px and associated symmetric matrix P

are negative definite if and only if −P is a positive-definite matrix.
The gradient of the quadratic form V (x) = xT Px is (∂V/∂x)(x) =

2xT P , as can be verified from the summation in Equation (6.4). Using
this and the linear dynamics in Equation (6.3), we can compute V̇ (x)

according to

V̇ (x) = ∂V

∂x
(x)f (x)

= (2xT P )(Ax)

= xT AT Px + xT PAx

= xT [AT P + PA]x

in which we also have used the fact that xT AT Px = xT PAx because
these are scalar quantities related by the transpose operation. We observe
that V̇ (x) is also a quadratic form expressed in terms of the symmet-
ric matrix AT P + PA. Therefore, a sufficient condition for asymptotic
stability of the equilibrium state x̃ = 0 is the existence of a symmetric
positive-definite matrix P for which AT P + PA is negative definite. The
following result links the existence of such a matrix to the eigenvalue
condition for asymptotic stability established in Theorem 6.3.
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Theorem 6.4 For any symmetric positive definite matrix Q, the Lya-
punov matrix equation

AT P + PA = −Q (6.5)

has a unique symmetric positive definite solution P if and only if every
eigenvalue of A has strictly negative real part.

Proof. For necessity, suppose that, given a symmetric positive-definite
matrix Q, there exists a unique symmetric positive-definite solution P to
the Lyapunov matrix equation (6.5). Let λ be any eigenvalue of A and v ∈
R

n be a corresponding (right) eigenvector. Premultiplying Equation (6.5)
by v∗ and postmultiplying by v yields

−v∗Qv = v∗[AT P + PA]v

= v∗AT Pv + v∗PAv

= λv∗Pv + λv∗Pv

= (λ + λ)v∗Pv

= 2 Re(λ)v∗Pv

Since v �= 0 (because it is an eigenvector) and P and Q are positive
definite matrices, these quadratic forms satisfy v∗Pv > 0 and v∗Qv > 0.
This gives

Re(λ) = −1

2

v∗Qv

v∗Pv
< 0

from which we conclude that every eigenvalue of A necessarily has a
strictly negative real part.

For sufficiency, suppose that every eigenvalue of A has a strictly nega-
tive real part and consider, for any symmetric positive definite matrix Q,

P =
∫ ∞

0
eAT t

QeAtdt

Since elements of eAt are sums of terms of the form M tk−1eRe(λ)t cos(Im
(λ)t + θ) that decay to zero exponentially fast, this improper integral
converges to a finite limit, so P is well defined. Also, P is symmetric by
inspection. Next, for any x ∈ R

n,

xT P x =
∫ ∞

0
(eAtx)T Q(eAtx)dt ≥ 0

because the integrand is nonnegative for all t ≥ 0. Moreover, equality
holds when and only when the integrand is identically zero which, by
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positive definiteness of Q implies that eAtx ≡ 0. Since eAt is nonsingular
for all t , it follows that equality holds if and only if x = 0, which implies
that P is positive definite.

Next, P satisfies the Lyapunov matrix equation because

AT P + PA =
∫ ∞

0
[AT eAT t

QeAt + eAT t

QeAtA]dt

=
∫ ∞

0

d

dt
[eAT t

QeAt ]dt

= eAT t

QeAt
∣∣∞
0

= 0 − Q

= −Q

Finally, to show that P is the only solution to the Lyapunov matrix
equation, suppose that P is another solution. Subtracting the Lyapunov
matrix equations satisfied by each solution gives

AT (P − P) + (P − P)A = 0

Premultiplying by eAT t

and postmultiplying by eAt yields

0 = eAT t

[AT (P − P) + (P − P)A]eAt

= d

dt
[eATt

(P − P)eAt ]

for all t ≥ 0. Integrating this result from 0 to ∞ produces

0 =
∫ ∞

0

d

dt
[eATt

(P − P)eAt ]dt

= eATt

(P − P)eAt
∣∣∞
0

= −(P − P)

Thus P = P , so P is the only, hence unique, solution to the Lyapunov
matrix equation (6.5). �

Example 6.2 We investigate the solution to the Lyapunov matrix equa-
tion for the system dynamics matrix

A =
[

0 1
−2 −3

]
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In general, the Lyapunov matrix equation effectively represents (n2 +
n)/2 equations in as many unknowns because P, Q, and AT P + PA

are each symmetric. We take Q = I for simplicity (obviously a symmet-
ric positive-definite matrix) and proceed to solve the Lyapunov matrix
equation for

P =
[

p11 p12

p12 p22

]
= P T

We then assess whether or not it is positive definite. Direct substitu-
tions give

[
0 −2
1 −3

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 1

−2 −3

]

=
[ −2p12 −2p22

p11 − 3p12 p12 − 3p22

]
+

[ −2p12 p11 − 3p12

−2p22 p12 − 3p22

]

=
[ −4p12 p11 − 3p12 − 2p22

p11 − 3p12 − 2p22 2p12 − 6p22

]

=
[ −1 0

0 −1

]

The (1,2) and (2,1) elements of either side yield the same equation which is
why for n = 2 we extract (n2 + n)/2 = 3 equations in the three unknowns
p11, p12, and p22 and repackage as


 0 −4 0

1 −3 −2
0 2 −6





p11

p12

p22


 =


 −1

0
−1




The 3 × 3 coefficient on the left is nonsingular, so


p11

p12

p22


 =


 0 −4 0

1 −3 −2
0 2 −6




−1 
−1

0
−1


 =


 1.25

0.25
0.25


 and

P =
[

p11 p12

p12 p22

]

=
[

1.25 0.25
0.25 0.25

]
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Now we employ Sylvester’s criterion to test for the positive definiteness
of P : We must check the leading two principal minors

|p11| = +1.25 and

∣∣∣∣ p11 p12

p12 p22

∣∣∣∣ = + 0.25

each of which is positive, so P is positive definite. Hence A must have
negative real-part eigenvalues and, by Theorem 6.4, define an asymptoti-
cally stable homogeneous linear state equation.

The characteristic polynomial A is λ2 + 3λ + 2 = (λ + 1)(λ + 2) from
which the eigenvalues are λ1,2 = −1, −2 each of which is real and neg-
ative. �

Exponential Stability

We have demonstrated previously that a nonlinear state equation can have
an asymptotically stable equilibrium state that is not exponentially stable.
In contrast, asymptotic stability and exponential stability are equivalent
for the linear time-invariant case. This fact is not terribly surprising given
that when the matrix A has negative real-part eigenvalues, elements of the
matrix exponential tend to zero with an exponential rate of decay. Here we
apply the preceding Lyapunov analysis to derive an explicit exponential
bound on the norm of the state trajectory in Definition 6.2.

Suppose that A has negative real-part eigenvalues so that with Q = I ,
the Lyapunov matrix equation

ATP + PA = −Q

has a unique symmetric positive-definite solution P . With V (x) = xT Px

we have
V̇ (x) = xT (AT P + PA)x = −xT x

For any initial state x(0) = x0, the time derivative of V [x(t)] = xT (t)

P x(t) along the resulting trajectory is

d

dt
V [x(t)] = V̇ [x(t)]

= −x(t)Tx(t)

≤ − 1

λmax(P )
x(t)TPx(t)

= − 1

λmax(P )
V [x(t)]
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where we have used the Rayliegh-Ritz inequality. This differential inequal-
ity can be used to bound V [x(t)] as follows: Define

w(t) = d

dt
V [x(t)] + 1

λmax(P )
V [x(t)]

from which it follows that w(t) ≤ 0 for all t ≥ 0. The scalar linear ordi-
nary differential equation

d

dt
V [x(t)] = − 1

λmax(P )
V [x(t)] + w(t)

has the unique solution

V [x(t)] = e
−

1

λmax(P )
t

V (x0) +
∫ t

0
e
−

1

λmax(P )
(t−τ )

w(τ)dτ

For any t ≥ 0, the integral term is nonpositive because the exponential
term in the integrand is strictly positive and w(τ) ≤ 0. Thus

V [x(t)] ≤ e
−

1

λmax(P )
t

V (x0) for all t ≥ 0

This, together with another application of the Rayliegh-Ritz inequality,
yields

λmin(P )xT (t)x(t) ≤ V [x(t)] ≤ e
−

1

λmax(P )
t

V (x0)

≤ λmax(P )e
−

1

λmax(P )
t

xT
0 x0

Dividing through by λmin(P ) > 0 and taking square roots gives, using
||x|| = √

xT x,

||x(t)|| ≤
√

λmax(P )

λmin(P )
e
−

1

2λmax(P )
t

||x0|| for all t ≥ 0

This exponentially decaying bound is of the form given in Definition 6.2
with

k =
√

λmax(P )

λmin(P )
and λ = 1

2λmax(P )
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6.2 BOUNDED-INPUT, BOUNDED-OUTPUT STABILITY

Thus far in this chapter, we have been concerned with internal stabil-
ity. This section discusses a type of external stability called bounded-
input, bounded-output stability. As mentioned at the outset, bounded-input,
bounded-output stability pertains to the zero-state output response. In this
section we study bounded-input, bounded-output stability, and in the next
section we relate asymptotic and bounded-input, bounded-output stability.

A vector-valued signal u(t) is bounded if there is a finite, positive
constant ν for which

||u(t)|| ≤ ν for all t ≥ 0

If such an upper bound exits, we denote the least upper bound, or supre-
mum, by

supt≥0||u(t)||
When ||u(t)|| cannot be bounded above in this way, we write

supt≥0||u(t)|| = ∞
The supremum of ||u(t)|| over the infinite interval [0, ∞) is in general
different from a maximum value because the latter must be achieved at
some t ∈ [0, ∞) and therefore may not exist. For example, consider the
bounded scalar signal u(t) = 1 − e−t , for which

supt≥0||u(t)|| = supt≥0(1 − e−t ) = 1

but a maximum value for ||u(t)|| is never attained on t ∈ [0, ∞).

Definition 6.5 The linear state equation (6.1) is called bounded-input,
bounded-output stable if there exists a finite constant η such that for any
input u(t) the zero-state output response satisfies

supt≥0||y(t)|| ≤ η supt≥0||u(t)||

This definition is not terribly useful as a test for bounded-input,
bounded-output stability because it requires an exhaustive search over
all bounded input signals, which is, of course, impossible. The next result
is of interest because it establishes a necessary and sufficient test for
bounded-input, bounded-output stability involving the system’s impulse
response that in principle requires a single computation. The theorem is
cast in the multiple-input, multiple-output context and, as such, involves
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a choice of vector norm for both the input space R
m and the output space

R
p and a corresponding induced matrix norm on the set of p × m matrices

(see Appendix B, Section 9).

Theorem 6.6 The linear state equation (6.1) is bounded-input, bounded-
output stable if and only if the impulse response matrix H(t) = CeAtB+
Dδ(t) satisfies ∫ ∞

0
||H(τ)||dτ < ∞

Proof. To show sufficiency, suppose that this integral is finite, and set

η =
∫ ∞

0
||H(τ)||dτ

Then, for all t ≥ 0, the zero-state output response satisfies

||y(t)|| = ||
∫ t

0
H(τ)u(t − τ)dτ ||

≤
∫ t

0
||H(τ)u(t − τ)||dτ

≤
∫ t

0
||H(τ)||||u(t − τ)||dτ

≤
∫ t

0
||H(τ)||dτ sup0≤σ≤t ||u(σ)||

≤
∫ ∞

0
||H(τ)||dτ supt≥0||u(t)||

= ηsupt≥0||u(t)||
from which the bound in Definition 6.5 follows from the definition of
supremum. Since the input signal was arbitrary, we conclude that the
system (6.1) is bounded-input, bounded-output stable.

To show that bounded-input, bounded-output stability implies
∫ ∞

0
||H(τ)||dτ < ∞

we prove the contrapositive. Assume that for any finite η > 0 there exists
a T > 0 such that ∫ T

0
||H(τ)||dτ > η
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It follows that there exists an element Hij (τ ) of H(τ) and a Tij > 0 such
that ∫ Tij

0

∣∣Hij (τ )
∣∣ dτ > η

Consider the bounded input defined by u(t) ≡ 0 ∈ R
� for all t > Tij , and

on the interval [0, Tij ] every component of u(t) is zero except for uj (t),
which is set to

uj (t) =




−1 Hij (Tij − t) > 0

0 Hij (Tij − t) = 0

1 Hij (Tij − t) < 0

Then ||u(t)|| ≤ 1 for all t ≥ 0, but the ith component of the zero-state
output response satisfies

yi(Tij ) =
∫ Tij

0
Hij (Tij − σ)uj (σ )dσ

=
∫ Tij

0
|Hij (Tij − σ)|dσ

=
∫ Tij

0
|Hij (τ )|dτ

> η

≥ ηsupt≥0||u(t)||

Since ||y(Tij )|| ≥ |yi(Tij )| and η was arbitrary, we conclude that the sys-
tem (6.1) is not bounded-input, bounded-output stable. �

6.3 BOUNDED-INPUT, BOUNDED-OUTPUT STABILITY
VERSUS ASYMPTOTIC STABILITY

It is reasonable to expect, since elements of the impulse-response matrix
involve linear combinations of elements of the matrix exponential via
premultiplication by C and postmultiplication by B, that asymptotic sta-
bility implies bounded-input, bounded-output stability. This indeed is true.
However, the converse in general is not true as illustrated by the following
example.
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Example 6.3 Consider the following two-dimensional state equation:[
ẋ1(t)

ẋ2(t)

]
=

[
0 1
1 0

][
x1(t)

x2(t)

]
+

[ −1
1

]
u(t)

y(t) = [ 0 1 ]

[
x1(t)

x2(t)

]

The characteristic polynomial is

|sI − A| =
∣∣∣∣ s −1
−1 s

∣∣∣∣
= s2 − 1

= (s + 1)(s − 1)

indicating that the eigenvalues of A are λ1,2 = −1, +1 and according to
Theorem 6.3, the state equation is not asymptotically stable as a result.
This can be seen by inspection of the matrix exponential

eAt =



1

2
(et + e−t )

1

2
(et − e−t )

1

2
(et − e−t )

1

2
(et + e−t )




The growing exponential term et associated with the positive eigenvalue
causes every element of eAt to diverge as t increases. The transfer func-
tion is

H(s) = C(sI − A)−1B

= [ 0 1 ]

[
s −1

−1 s

]−1 [ −1
1

]

= [ 0 1 ]

[
s 1
1 s

]

s2 − 1

[ −1
1

]

= s − 1

(s + 1)(s − 1)

= 1

(s + 1)

from which the impulse response h(t) = e−t , t ≥ 0, satisfies∫ ∞

0
|h(τ)|dτ = 1
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so, by Theorem 6.6, the system is bounded-input, bounded-output
stable.

In this example, we observe that the state equation is not minimal
(it is observable but not controllable). Thus the transfer function H(s)

necessarily must have a pole-zero cancellation. In this case, the unsta-
ble pole at s = 1 is canceled by a zero at the same location, yielding
a first-order transfer function with a stable pole at s = −1. In the time
domain, the unstable exponential term et that appears in the matrix expo-
nential is missing from the impulse response. This unstable pole-zero
cancellation therefore leads to a bounded-input, bounded-output-stable
state equation that is not asymptotically stable. If we are concerned only
with input-output behavior, we might be tempted to think that bounded-
input, bounded-output stability is good enough. The problem lies in the
fact that bounded-input, bounded-output stability characterizes only the
zero-state response, and it may happen that an initial state yields a zero-
input response component resulting in a complete output response that
does not remain bounded. For this example, the initial state x(0) = [1, 1]T

yields the zero-input response component yzi(t) = et , so for, say, a unit
step input, the complete response is

y(t) = yzi(t) + yzs(t)

= et + (1 − e−t )
t ≥ 0

that, despite the bounded zero-state response component, diverges with
increasing t . �

In the single-input, single-output case, we see that the situation encoun-
tered in the preceding example can be avoided by disallowing pole-zero
cancellations of any type, i.e., by requiring an irreducible transfer func-
tion associated with the given state equation. This, as we have seen,
is equivalent to minimality of the realization. It turns out that while
the transfer-function interpretation is difficult to extend to the multiple-
input, multiple-output case, the minimality condition remains sufficient
for bounded-input, bounded-output stability to imply asymptotic stability.

Theorem 6.7 For the linear state equation (6.1):

1. Asymptotic stability always implies bounded-input, bounded-output
stability.
2. If Equation (6.1) is minimal, then bounded-input, bounded-output

stability implies asymptotic stability.

Proof. As argued previously, asymptotic stability is equivalent to expo-
nential stability. Thus there exist finite positive constants k and λ such
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that
||eAtx(0)|| ≤ ke−λt ||x(0)|| for all x(0) ∈ R

n

Thus, for any x(0) �= 0,
||eAtx(0)||
||x(0)|| ≤ ke−λt

thereby establishing an upper bound on the left-hand-side ratio for each
t ≥ 0. By definition of supremum, the induced matrix norm therefore has
the bound

||eAt || = supx(0) �=0
||eAtx(0)||
||x(0)|| ≤ ke−λt for all t ≥ 0

Using this, familiar bounding arguments give

∫ ∞

0
||H(τ)||dτ ≤

∫ ∞

0

[||CeAτB|| + ||Dδ(t)||] dτ

≤ ||C||||B||
∫ ∞

0
ke−λτdτ + ||D||

= k||C||||B||
λ

+ ||D||
≤ ∞

and so state equation (6.1) is bounded-input, bounded-output stable by
Theorem 6.6.

Next, we show via a contradiction argument that under the minimality
hypothesis, bounded-input, bounded-output stability implies asymptotic
stability. Suppose that Equation (6.1) is bounded-input, bounded-output
stable and yet there is an eigenvalue λi of A with Re(λi) ≥ 0. Let mi

denote the associated algebraic multiplicity so that, based on the partial
fraction expansion of (sI − A)−1, we see that eAt will contain terms of
the form

Ri1e
λit + Ri2te

λit + · · · + Rimi

tmi−1

(mi − 1)!
eλit

in which Rimi
�= 0 because of the assumed algebraic multiplicity, along

with similar terms associated with the other distinct eigenvalues of A.
Bounded-input, bounded-output stability implies, via Theorem 6.6, that

lim
t→∞ CeAtB = 0 ∈ R

p×m
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and since exponential time functions associated with distinct eigenvalues
are linearly independent, the only way the nondecaying terms in eAt will
be absent in CeAtB is if

CRijB = 0 j = 1, 2, . . . , mi

In particular,
0 = CRimi

B

= C[(s − λi)
mi (sI − A)−1]|s=λi

B

= [(s − λi)
miC(sI − A)−1B]|s=λi

This allows us to conclude that
[

C

λiI − A

]
Rimi

[ B λiI − A ]

=
[

C

sI − A

]
[(s − λi)

mi (sI − A)−1][ B sI − A ]

∣∣∣∣
s=λi

=
[

(s − λi)
m
i C(sI − A)−1B (s − λi)

miC

(s − λi)
miB (s − λi)

mi (sI − A)

]∣∣∣∣
s=λi

=
[

0 0
0 0

]

Now, minimality of the linear state equation (6.1) implies that the leftmost
factor has full-column rank n by virtue of the Popov-Belevich-Hautus
rank rest for observability. Consequently, it is possible to select n lin-
early independent rows from the leftmost factor to give a nonsingular
matrix MO . Similarly, that the rightmost factor has full-row rank n by the
Popov-Belevich-Hautus rank rest for controllability, and it is possible to
select n linearly independent columns from the rightmost factor to yield
a nonsingular matrix MC . This corresponds to selecting n rows and n

columns from the left-hand-side product. An identical selection from the
right hand side yields the identity

MORimi
MC = 0

which, because of the nonsingularity of MO and MC , implies that Rimi
=

0. This contradicts Rimi
�= 0, which enables us to conclude that under the

minimality hypothesis, bounded-input, bounded-output stability implies
asymptotic stability. �
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6.4 MATLAB FOR STABILITY ANALYSIS

The following MATLAB function is useful for Lyapunov stability analysis:
lyap(A',Q) Solve A'P+PA=-Q for matrix P, given a positive-definite

matrix Q.
Note that the MATLAB function lyap directly solves the problem
AP+PA'=-Q, so we must give the transpose of matrix A (that is, A') as an
input to this function.

We now assess the stability of the Continuing MATLAB Example (rota-
tional mechanical system) via Lyapunov stability analysis. The following
MATLAB code segment performs this computation and logic:

%------------------------------------------------------
% Chapter 6. Lyapunov Stability Analysis
%------------------------------------------------------

if (real(Poles(1))==0 | real(Poles(2))==0) % lyap
% will fail

if (real(Poles(1)) < =0 | real(Poles(2)) < =0)
disp('System is marginally stable.');
else
disp('System is unstable.');
end

else % lyap will succeed
Q = eye(2); % Given positive definite

% matrix
P = lyap(A',Q); % Solve for P
pm1 = det(P(1,1)); % Sylvester's method to see

% if P is positive definite
pm2 = det(P(1:2,1:2));
if (pm1>0 & pm2>0) % Logic to assess stability

% condition
disp('System is asymptotically stable.');
else
disp('System is unstable.');
end

end

figure; % Plot phase portraits to
% enforce stability analysis

plot(Xo(:,1),Xo(:,2),'k'); grid; axis('square');
axis([-1.5 1.5 -2 1]);
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set(gca,'FontSize',18);
xlabel('\itx 1 (rad)'); ylabel('\itx 2 (rad/s)');

This code segment yields the following output plus the phase-portrait plot
of Figure 6.7:

R =
5.1750 0.0125
0.0125 0.1281

pm1 = 5.1750
pm2 = 0.6628

System is asymptotically stable.

Figure 6.7 plots velocity x2(t) versus displacement x1(t). Since this
is an asymptotically stable system, the phase portrait spirals in from the
given initial state x(0) = [0.4, 0.2]T to the system equilibrium state x̃ =
[0, 0]T. This is another view of the state variable responses shown in
Figure 2.3.

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5
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x 2
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ec
)

FIGURE 6.7 Phase-portrait for the Continuing MATLAB Example.
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6.5 CONTINUING EXAMPLES: STABILITY ANALYSIS

Continuing Example 1: Two-Mass Translational Mechanical
System

Here we assess stability properties of the system of Continuing Example 1
(two-mass translational mechanical system). Asymptotic stability is a fun-
damental property of a system; it is only dependent on the system dynam-
ics matrix A and not on matrices B,C, or D. Asymptotic is therefore
independent of the various possible combinations of input and output
choices. Therefore, in this section there is only one stability analysis; it is
the same for case a (multiple-input, multiple-output), case b [single input
u2(t) and single output y1(t)], and all other possible input-output combi-
nations. However, we will employ two methods to get the same result,
eigenvalue analysis and Lyapunov stability analysis.

Eigenvalue Analysis The four open-loop system eigenvalues for Con-
tinuing Example 1, found from the eigenvalues of A, are s1,2 = −0.5 ±
4.44i and s3,4 = −0.125 ± 2.23i. Thus this open-loop system is
asymptotically stable because the real parts of the four eigenvalues are
strictly negative.

Lyapunov Analysis The Lyapunov matrix equation is given in
Equation (6.5). The stability analysis procedure is as follows: For a
given-positive definite matrix Q (I4 is a good choice), solve for P in
this equation. If P turns out to be positive definite, then the system is
asymptotically stable. The solution for P is

P =



15.76 0.29 1.93 0.38
0.29 1.78 −0.19 1.09
1.93 −0.19 9.16 −0.04
0.38 1.09 −0.04 1.46




Now we must check the positive definiteness of P using Sylvester’s cri-
terion. The four principal minors of P are the following four submatrix
determinants:

|15.76|
∣∣∣∣ 15.76 0.29

0.29 1.78

∣∣∣∣
∣∣∣∣∣∣
15.76 0.29 1.93

0.29 1.78 −0.19
1.93 −0.19 9.16

∣∣∣∣∣∣

∣∣∣∣∣∣∣
15.76 0.29 1.93 0.38
0.29 1.78 −0.19 1.09
1.93 −0.19 9.16 −0.04
0.38 1.09 −0.04 1.46

∣∣∣∣∣∣∣
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FIGURE 6.8 Phase portraits for Continuing Example 1, case a.

These determinants evaluate to 15.76, 27.96, 248.58, and 194.88,
respectively. All four principal minors are positive, and therefore, P

is positive definite. Therefore, this system is asymptotically stable, and
consequently, bounded-input, bounded-output stable.

To reinforce these stability results, Figure 6.8 presents the phase por-
traits for Continuing Example 1, case a, with two step inputs of 20 and
10 N, respectively, and zero initial conditions.

Figure 6.8 plots velocity x2(t) versus displacement x1(t) on the left
and velocity x4(t) versus displacement x3(t) on the right. Since this is an
asymptotically stable system, the phase portraits both spiral in from zero
initial conditions on all state variables to the steady-state state vector xss =
[0.075, 0, 0.125, 0]T . Since each plot in Figure 6.8 is both plotted on the
same scale, we see that mass 2 undergoes higher amplitude displacement
and velocity motions than mass 1.

To further reinforce the stability results, Figure 6.9 presents the phase
portraits for Continuing Example 1, case b, with initial conditions x(0) =
[0.1, 0, 0.2, 0]T and zero input.

Figure 6.9 again plots velocity x2(t) versus displacement x1(t) on the
left and velocity x4(t) versus displacement x3(t) on the right. Since this is
an asymptotically stable system, the phase portraits both spiral in from the
given nonzero initial displacements (initial velocities are zero) to the zero
equilibrium values for all state variables. Since its initial displacement is
double that of mass 1, we see that mass 2 undergoes higher amplitude
displacement and velocity motions than mass 1.

Continuing Example 2: Rotational Electromechanical System

Now we assess stability properties of the system of Continuing Example 2
(rotational electromechanical system). We will attempt to employ two
methods, eigenvalue analysis and Lyapunov stability analysis.
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FIGURE 6.9 Phase Portraits for Continuing Example 1, case b.

Eigenvalue Analysis If all real parts of all system eigenvalues are
strictly negative, the system is stable. If just one real part of an eigenvalue
is zero (and the real parts of the remaining system eigenvalues are zero
or strictly negative), the system is marginally stable. If just one real part
of an eigenvalue is positive (regardless of the real parts of the remaining
system eigenvalues), the system is unstable.

From Chapter 2, the three open-loop system eigenvalues for Continuing
Example 2, found from the eigenvalues of A, are s1,2,3 = 0, −1, −2. Thus
this open-loop system is marginally stable, i.e., stable but not asymptoti-
cally stable, because there is a nonrepeated zero eigenvalue, and the rest
are real and negative. This system is not bounded-input, bounded-output
stable because when a constant voltage is applied, the output shaft angle
will increase linearly without bound in steady-state motion. This does not
pose a problem as this is how a DC servomotor is supposed to behave.

Lyapunov Analysis MATLAB cannot solve the Lyapunov matrix equation
(the MATLAB error is: Solution does not exist or is not unique) because
of the zero eigenvalue in the system dynamics matrix A. This indicates
that the system is not asymptotically stable.

These marginal-stability results can be further demonstrated by the
phase portrait plots of Figure 6.10. Figures 6.10 plot motor shaft angular
velocity x2(t) versus angular displacement x1(t) on the left and angular
acceleration x3(t) versus angular velocity x2(t) on the right. The angular
displacement x1(t) grows linearly without bound as the angular velocity
x2(t) approaches a constant steady-state value of 1 rad/s, so the phase
portrait on the left diverges from the origin parallel to the horizontal axis.
In addition, the angular acceleration x3(t) approaches a constant steady-
state value of 0 rad/s2, so the phase portrait on the right converges to the
point [1, 0]T .
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FIGURE 6.10 Phase portraits for Continuing Example 2.

6.6 HOMEWORK EXERCISES

Numerical Exercises

NE6.1 Assess the stability properties of the following systems, repre-
sented by the given system dynamics matrices A. Use the eigen-
value test for stability.

a. A =
[

0 1
−14 −4

]

b. A =
[

0 1
−14 4

]

c. A =
[

0 1
0 −4

]

d. A =
[

0 1
−14 0

]

NE6.2 Repeat NE6.1 using an energy-based approach with phase por-
traits.

NE6.3 Repeat NE6.1 using Lyapunov stability analysis. Will the calcula-
tions work in each case? Why or why not?

NE6.4 For the single-input, single output system with transfer function

H(s) = s2 − s − 2

s3 + 2s2 − 4s − 8
a. Is the system bounded-input, bounded-output stable?
b. Obtain a realization in controller canonical form. Is this real-

ization observable? Is this realization asymptotically stable?
c. Find a minimal realization of H(s).
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NE6.5 For the single-input, single output system with transfer function

H(s) = s2 + s − 2

s3 + 2s2 − 4s − 8
a. Is the system bounded-input, bounded-output stable?
b. Obtain a realization in observer canonical form. Is this realiza-

tion controllable? Is this realization asymptotically stable?
c. Find a minimal realization of H(s).

Analytical Exercises

AE6.1 If A = −AT , show that the homogeneous linear state equation

ẋ(t) = Ax(t)

is stable but not asymptotically stable.

AE6.2 Given matrices A and Q, let P satisfy the Lyapunov matrix
equation

ATP + PA = −Q

Show that for all t ≥ 0,

P = eAT t

QeAt +
∫ t

0
eAT τ

QeAτdτ

AE6.3 Show that the eigenvalues of A have real part less than −µ if and
only if for every symmetric positive-definite matrix Q there exists
a unique symmetric positive-definite solution to

AT P + PA + 2µP = −Q

AE6.4 Suppose that A has negative real-part eigenvalues, and let P

denote the unique symmetric-positive definite solution to the Lya-
punov matrix equation

AT P + PA = −I

Show that the perturbed homogeneous linear state equation

ẋ(t) = (A + �A)x(t)

is asymptotically stable if the perturbation matrix satisfies the spec-
tral norm bound

||�A|| <
1

2λmax(P )
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AE6.5 Suppose that the pair (A, B) is controllable and that A has negative
real-part eigenvalues. Show that the Lyapunov matrix equation

AW + WA = −BBT

has a symmetric positive definite solution W .

AE6.6 Suppose that the pair (A, B) is controllable and that the Lyapunov
matrix equation

AW + WA = −BBT

has a symmetric positive-definite solution W . Show that A has
negative real-part eigenvalues.

AE6.7 Consider a bounded-input, bounded-output stable single-input,
single-output state equation with transfer function H(s). For
positive constants λ and µ, show that the zero-state response y(t)

to the input u(t) = e−λt , t ≥ 0 satisfies

∫ ∞

0
y(t)e−µtdt = 1

λ + µ
H(µ)

Under what conditions can this relationship hold if the state
equation is not bounded-input, bounded-output stable?

Continuing MATLAB Exercises

CME6.1 For the system given in CME1.1:
a. Assess system stability using Lyapunov analysis. Compare

this result with eigenvalue analysis.
b. Plot phase portraits to reinforce your stability results.

CME6.2 For the system given in CME1.2:
a. Assess system stability using Lyapunov analysis. Compare

this result with eigenvalue analysis.
b. Plot phase portraits to reinforce your stability results.

CME6.3 For the system given in CME1.3:
a. Assess system stability condition using Lyapunov analysis.

Compare this result with eigenvalue analysis.
b. Plot phase portraits to reinforce your stability results.

CME6.4 For the system given in CME1.4:
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a. Assess system stability condition using Lyapunov analysis.
Compare this result with eigenvalue analysis.

b. Plot phase portraits to reinforce your stability results.

Continuing Exercises

CE6.1 Using Lyapunov analysis, assess the stability properties of the
CE1 system; any case will do—since the A matrix is identical
for all input/output cases, the stability condition does not change.
Check your results via eigenvalue analysis. Plot phase portraits to
reinforce your results.

CE6.2 Using Lyapunov analysis, assess the stability properties of the
CE2 system; any case will do—because the A matrix is identical
for all input-output cases, stability does not change. Lyapunov
stability analysis will not succeed (why?); therefore, assess system
stability via eigenvalue analysis. Plot phase portraits to reinforce
your results.

CE6.3 Using Lyapunov analysis, assess the stability properties of the
CE3 system; either case will do—since the A matrix is identical
for all input-output cases, stability does not change. Lyapunov
stability analysis will not succeed (why?); therefore, assess system
stability via eigenvalue analysis. Plot phase portraits to reinforce
your results.

CE6.4 Using Lyapunov analysis, assess the stability properties of the CE4
system. Lyapunov stability analysis will not succeed (why?); there-
fore, assess system stability via eigenvalue analysis. Plot phase
portraits to reinforce your results.

CE6.5 Using Lyapunov analysis, assess the stability properties of the CE5
system. Lyapunov stability analysis will not succeed (why?); there-
fore, assess system stability via eigenvalue analysis. Plot phase
portraits to reinforce your results.
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DESIGN OF LINEAR STATE
FEEDBACK CONTROL LAWS

Previous chapters, by introducing fundamental state-space concepts and
analysis tools, have now set the stage for our initial foray into state-
space methods for control system design. In this chapter, our focus is
on the design of state feedback control laws that yield desirable closed-
loop performance in terms of both transient and steady-state response
characteristics. The fundamental result that underpins much of this chapter
is that controllability of the open-loop state equation is both necessary and
sufficient to achieve arbitrary closed-loop eigenvalue placement via state
feedback. Furthermore, explicit feedback gain formulas for eigenvalue
placement are available in the single-input case. To support the design of
state feedback control laws, we discuss important relationship between the
eigenvalue locations of a linear state equation and its dynamic response
characteristics.

For state equations that are not controllable and so arbitrary eigen-
value placement via state feedback is not possible, we investigate whether
state feedback can be used to at least stabilize the closed-loop state
equation. This leads to the concept of stabilizability. Following that, we
discuss techniques for improving steady-state performance first by intro-
ducing an additional gain parameter in the state feedback law, followed by
the incorporation of integral-error compensation into our state feedback
structure.
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The chapter concludes by illustrating the use of MATLAB for shaping
the dynamic response and state feedback control law design in the context
of our Continuing MATLAB Example and Continuing Examples 1 and 2.

7.1 STATE FEEDBACK CONTROL LAW

We begin this section with the linear time-invariant state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (7.1)

which represents the open-loop system or plant to be controlled. Our
focus is on the application of state feedback control laws of the form

u(t) = −Kx(t) + r(t) (7.2)

with the goal of achieving desired performance characteristics for the
closed-loop state equation

ẋ(t) = (A − BK )x(t) + Br(t)

y(t) = Cx(t) (7.3)

The effect of state feedback on the open-loop block diagram of Figure 1.1
is shown in Figure 7.1.

The state feedback control law (7.2) features a constant state feedback
gain matrix K of dimension m × n and a new external reference input r(t)

necessarily having the same dimension m × 1 as the open-loop input u(t),
as well as the same physical units. Later in this chapter we will modify

+ + + +

+−

A

CB

D

K

r(t) u(t) x(t) x(t) y(t)

x0

•

FIGURE 7.1 Closed-loop system block diagram.
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the state feedback control law to include a gain matrix multiplying the
reference input. The state feedback control law can be written in terms of
scalar components as




u1(t)

u2(t)
...

um(t)


 = −




k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

. . .
...

km1 km2 · · · kmn







x1(t)

x2(t)
...

xn(t)


 +




r1(t)

r2(t)
...

rm(t)




For the single-input, single-output case, the feedback gain K is a 1 ×
n row vector, the reference input r(t) is a scalar signal, and the state
feedback control law has the form

u(t) = − [
k1 k2 · · · kn

]



x1(t)

x2(t)
...

x2(t)


 + r(t)

= −k1x1(t) − k2x2(t) − · · · − knxn(t) + r(t)

If the external reference input is absent, the state feedback control law is
called a regulator that is designed to deliver desirable transient response
for nonzero initial conditions and/or attenuate disturbances to maintain
the equilibrium state x̃ = 0.

7.2 SHAPING THE DYNAMIC RESPONSE

In addition to closed-loop asymptotic stability (see Chapter 6), which
requires that the closed-loop system dynamics matrix A − BK have
strictly negative real-part eigenvalues, we are often interested in other
characteristics of the closed-loop transient response, such as rise time,
peak time, percent overshoot, and settling time of the step response. Before
we investigate the extent to which state feedback can influence the closed-
loop eigenvalues, we first review topics associated with transient response
performance of feedback control systems that are typically introduced
in an undergraduate course emphasizing classical control theory. In
our state-space context, we seek to translate desired transient response
characteristics into specifications on system eigenvalues, which are closely
related to transfer function poles. Specifying desired closed-loop system
behavior via eigenvalue selection is called shaping the dynamic response.
Control system engineers often use dominant first- and second-order
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subsystems as approximations in the design process, along with criteria
that justify such approximations for higher-order systems. Our discussion
follows this approach.

Eigenvalue Selection for First-Order Systems

Figure 7.2 shows unit step responses of typical of first- through fourth-
order systems.

For a first-order system, we can achieve desired transient behavior via
specifying a single eigenvalue. Figure 7.2 (top left) shows a standard first-
order system step response. All stable first-order systems driven by unit
step inputs behave this way, with transient response governed by a single
decaying exponential involving the time constant τ . After three time con-
stants, the first-order unit step response is within 95 percent of its steady-
state value. A smaller time constant responds more quickly, whereas a
larger time constant responds more slowly. On specifying a desired time
constant, the associated characteristic polynomial and eigenvalue are

λ + 1

τ
and λ1 = −1

τ

0 5 10
0

0.5

1

time (sec)

time (sec) time (sec)

time (sec)

y 1 y 2
y 4y 3

0 5 10
0

0.5

1

1.5

2

0 5 10
0

0. 5

1

0 5 10
−1

0

1

2

3

FIGURE 7.2 First- through fourth-order system unit step responses.
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Eigenvalue Selection for Second-Order Systems

For a second-order system, we can achieve desired transient behavior
via specifying a pair of eigenvalues. To illustrate, we consider the lin-
ear translational mechanical system of Example 1.1 (see Figure 1.2) with
applied force f (t) as the input and mass displacement y(t) as the out-
put. We identify this with a standard second-order system by redefin-
ing the input via u(t) = f (t)/k. The new input u(t) can be interpreted
as a commanded displacement. This will normalize steady-state value
of the unit step response to 1.0. With this change, the state equation
becomes

[
ẋ1(t)

x2(t)

]
=


 0 1

− k

m
− c

m




[
x1(t)

x2(t)

]
+


 0

k

m


u(t)

y(t) = [
1 0

] [
x1(t)

x2(t)

]

with associated transfer function

H(s) =
k
m

s2 + c
m
s + k

m

We compare this with the standard second-order transfer function, namely,

ω2
n

s2 + 2ξωn + ω2
n

in which ξ is the unitless damping ratio, and ωn is the undamped natural
frequency in radians per second. This leads to the relationships

ξ = c

2
√

km
and ωn =

√
k

m

The characteristic polynomial is

λ2 + c

m
λ + k

m
= λ2 + 2ξωnλ + ω2

n

from which the eigenvalues are

λ1,2 = −ξωn ± ωn

√
ξ 2 − 1
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TABLE 7.1 Damping Ratio versus Step Response Characteristics

Case Damping Ratio Eigenvalues Unit Step Response

Overdamped ξ > 1 Real and distinct Slowest transient
response

Critically damped ξ = 1 Real and equal Fastest transient response
without overshoot

Underdamped 0 < ξ < 1 Complex conjugate
pair

Faster transient response
but with overshoot
and oscillation

Undamped ξ = 0 Imaginary pair Undamped oscillation
Unstable ξ < 0 At least one with

positive real part
Unbounded response

To study the relationship between these eigenvalues and system transient
response, we identify five distinct cases in Table 7.1, determined by
the dimensionless damping ratio ξ for a fixed undamped natural
frequency ωn.

We next relate step response characteristics to the system eigenvalues
for the most interesting of these cases: the underdamped case character-
ized by 0 < ξ < 1. In this case, the complex conjugate eigenvalues are
given by

λ1,2 = −ξωn ± jωd

in which ωd = ωn

√
1 − ξ 2 is the damped natural frequency in radians per

second. The unit step response for a standard second-order system in the
underdamped case is

y(t) = 1 − e−ξωnt√
1 − ξ 2

sin(ωdt + θ)

in which the phase angle is given by θ = cos−1(ξ) and therefore is referred
to as the damping angle. This response features a sinusoidal component
governed by the damped natural frequency and damping angle that is
damped by a decaying exponential envelope related to the negative real
part of the eigenvalues. A response of this type is plotted in Figure 7.3.

For the underdamped case, there are four primary performance char-
acteristics (see Figure 7.3) associated with the unit step response that
either directly or approximately can be related to the damping ratio and
undamped natural frequency. The performance characteristics definitions
and formulas are found in Dorf and Bishop (2005). Rise time tR is defined
as the elapsed time between when the response first reaches 10 percent of
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Step Response
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FIGURE 7.3 Unit step response for Example 7.1.

the steady-state value to when the response first reaches 90 percent of the
steady-state value. For a damping ratio in the range 0.3 < ξ < 0.8, rise
time can be approximated by

tR ∼= 2.16ξ + 0.60

ωn

Peak time tP is the time at which the peak response value is reached and
is given exactly by

tP = π

ωn

√
1 − ξ 2

= π

ωd

Percent overshoot PO characterizes the relationship between the peak
value and steady-state value according to

PO = peak value − steady-state value

steady-state value
× 100%

and can be computed exactly using

PO = 100e−ξπ/
√

1−ξ 2
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Settling time tS is typically defined to be the time at which the response
enters and remains within a ±2 percent band about the steady-state value
and can be approximated by

tS ∼= 4

ξωn

The swiftness of the response is related to the rise time and peak time;
the deviation between the response and its steady-state value is related to
the percent overshoot and settling time.

Example 7.1 We return to the linear translational mechanical system
for the parameter values m = 1 kg, c = 1 N-s/m, and k = 10 N/m. The
undamped natural frequency and dimensionless damping ratio are

ωn =
√

k

m
=

√
10

1
= 3.16 rad/s

ξ = c

2
√

km
= 1

2
√

10(1)
= 0.158

and the damped natural frequency is

ωd = ωn

√
1 − ξ 2 = 3.12 rad/s

The characteristic polynomial is

λ2 + 2ξωnλ + ω2
n = λ2 + λ + 10

yielding the complex conjugate eigenvalues

λ1,2 = −0.5 ± 3.12i

The unit step response is given by

y(t) = 1 − 1.01e−0.5t sin(3.12t + 80.9◦
)

We calculate directly from ξ and ωn the step response characteristics:
tR = 0.30 s (because ξ < 0.3 this estimate may be somewhat inaccurate),
tP = 1.01 s, PO = 60.5 percent, and tS = 8 s.

A plot of the unit step response is given is Figure 7.3, with rise time,
peak time, percent overshoot, and settling time displayed. This plot was
obtained from MATLAB using the step command and right-clicking in the
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resulting figure window to add the performance specifications (Charac-
teristics → choose Peak Response, Settling Time, Rise Time, and Steady
State in turn. MATLAB will mark the response with a dot, which the user
may click to display the numerical values). We see that with the exception
of rise time (0.30 s estimated versus 0.37 s from the plot), the formula
values agree well with the MATLAB results values labeled on Figure 7.3
(settling time is also inaccurate, 8 s from the equation versus 7.32 s as
measured from the MATLAB generated response). �

Example 7.2 The unit step response in Figure 7.3 is typical of lightly
damped systems such as large-scale space structures. We consider the
application of a proportional-derivative (PD) control law given by

u(t) = −kPy(t) − kDẏ(t) + Gr(t)

= − [
kP kD

] [
x1(t)

x2(t)

]
+ Gr(t)

which, as shown, also has the form of a state feedback control law. The
closed-loop system that results is given by

[
ẋ1(t)

x2(t)

]
=


 0 1

−
(

k

m
+ kP

)
−

( c

m
+ kD

)

[

x1(t)

x2(t)

]
+


 0

k

m


Gr(t)

y(t) = [
1 0

] [
x1(t)

x2(t)

]

Our objective is to improve the step response characteristics by reducing
the percent overshoot and settling time via adjusting the proportional and
derivative gains kP and kD. In particular, we specify a desired percent
overshoot of 4 percent and a settling time of 2 s. The gain G will be
chosen so that the closed-loop unit step response will have the same
steady-state value as the open-loop unit step response.

In terms of these performance specifications, we calculate the
desired closed-loop damping ratio ξ ′ from the percent-overshoot formula
according to

ξ ′ =

∣∣∣∣ln
(

PO

100

)∣∣∣∣√
π2 +

[
ln

(
PO

100

)]2
=

∣∣∣∣ln
(

4

100

)∣∣∣∣√
π2 +

[
ln

(
4

100

)]2
= 0.716
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Using this, we calculate the desired closed-loop undamped natural
frequency from the settling-time formula via

ω′
n = 4

ξ ′tS
= 2.79 rad/s

The desired closed-loop damped natural frequency is

ω′
d = ω′

n

√
1 − (ξ ′)2 = 1.95 rad/s

The proportional and derivative gains then can be determined by com-
paring the closed-loop characteristic polynomial of the closed-loop state
equation with the desired closed-loop characteristic polynomial:

λ2 + (2ξωn + kD)λ + (ω2
n + kP) = λ2 + 2ξ ′ω′

nλ + ω′
n

2 = λ2 + 4λ + 7.81

which leads to

kP = ω′
n

2 − ω2
n = −2.20 kD = 2ξ ′ω′

n − 2ξωn = 3.00

The input gain G is determined from the relationship

G = ω′
n

2

ω2
n

= 0.781

which yields the closed-loop transfer function

k
m
G

s2 + ( c
m

+ kD)s + ( k
m

+ kP)
= ω2

nG

s2 + (2ξωn + kD)s + (ω2
n + kP)

= ω′
n

2

s2 + 2ξ ′ω′
ns + ω

′2
n

= 7.81

s2 + 4s + 7.81

The closed-loop eigenvalues then are:

λ1,2 = −2 ± j1.95

and the closed-loop unit step response is

y(t) = 1 − 1.43e−2t sin(1.95t + 44.3◦
)

The MATLAB step command gives us the four performance specifica-
tions: tR = 0.78 s, tP = 1.60 s, PO = 4 percent, and tS = 2.12 s. The
actual settling time differs slightly from the desired settling time because
of the approximation in the settling-time formula. Figure 7.4 shows a
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FIGURE 7.4 Closed-loop versus open-loop system unit step responses for
Example 7.2.

comparison of the unit step response for the improved closed-loop system
with the unit step response of the open-loop system from Figure 7.3.

In Figure 7.4 and Table 7.2 we see that the step response of the closed-
loop system has a slower rise and peak time compared with the open-loop
system, but the percent overshoot and settling time are much improved.
Values given below for rise time and settling time are from MATLAB-
generated step responses rather than the approximate formulas. �

Inequality Constraints When specifying desired transient response
behavior, the control system engineer typically specifies bounds on the
step response characteristics rather than exact values. For first-order sys-
tems, this usually involves an upper bound on the time required for the
step response to reach steady state, which yields an upper bound for the
desired time constant. For second-order systems, this typically involves

TABLE 7.2 Comparison of Open-Loop and
Closed-Loop Step Response Characteristics

Open-Loop Closed-Loop
Specification Response Response

tR (sec) 0.37 0.78
tP (sec) 1.02 1.60
PO (%) 60.4 4
tS (sec) 7.32 2.12
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any combination of upper bounds the on rise time, peak time, percent
overshoot, and settling time of the step response. This yields bounds on
the desired damping ratio and undamped natural frequency that, in turn,
can be translated into regions in the complex plane that specify desired
eigenvalue locations. This more general viewpoint will be demonstrated
in the following example for the second-order case.

Example 7.3 In this example we characterize acceptable eigenvalue
locations in the complex plane so that the following second-order per-
formance specifications are satisfied:

PO ≤ 4% tS ≤ 2 s tP ≤ 0.5 s

The formula for percent overshoot indicates that percent overshoot
decreases as damping ratio increases. Therefore, an upper bound on
percent overshoot PO ≤ POmax corresponds to a lower bound on damping
ratio ξ ≥ ξmin. From Example 7.2, we know that a damping ratio of
ξmin = 0.716 will yield a percent overshoot equal to POmax = 4 percent.
Therefore, in order to achieve a percent overshoot less than 4 percent,
we require a damping ratio greater than 0.716. We previously defined the
damping angle θ = cos−1(ξ), which appeared in the expression for the unit
step response of the standard underdamped second-order system. From this
relationship, we see that a lower bound on the damping ratio corresponds
to an upper bound on the damping angle θ ≤ θmax = cos−1(ξmin). To relate
this to allowable eigenvalue locations, we see from basic trigonometry that

tan(θ) =
√

1 − ξ 2

ξ
= ωn

√
1 − ξ 2

ξωn

= ωd

ξωn

Recalling that eigenvalues of an underdamped second-order system are
λ1,2 = −ξωn ± jωd , in which ωd = ωn

√
1 − ξ 2 is the damped natural

frequency, we therefore interpret the damping angle θ as the angle made
by the radial line from the origin in the complex plane passing through
the eigenvalue λ1 = −ξωn + jωd measured with respect to the negative
real axis. By symmetry, −θ is the angle made by the radial line from
the origin in the complex plane passing through the conjugate eigenvalue
λ2 = −ξωn − jωd , also measured with respect to the negative real axis.
An upper bound on the damping angle characterizes a sector in the left half
of the complex plane bounded by the pair of radial lines corresponding
to the maximum allowable damping angle. In this example, a minimum
allowable damping ratio of 0.716 corresponds to a maximum allowable
damping angle of cos−1(0.716) = 44.3◦. The associated sector specifying
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acceptable eigenvalue locations is bounded by the radial lines making
angles of ±44.3◦ with respect to the negative real axis.

The formula that approximates settling time shows that settling time is
inversely proportional to the product ξωn that is directly related to the real
part of the complex-conjugate eigenvalues. Therefore, an upper bound on
settling time tS ≤ tS, max corresponds to eigenvalues that lie to the left of a
vertical line passing through the point −4/tS, max on the negative real axis.
With a specified upper bound on settling time of 2 s, eigenvalues must lie
to the left of the vertical line passing through the point −4/2 = −2 on
the negative real axis.

The formula for peak time shows that peak time is inversely propor-
tional to the damped natural frequency ωd that characterizes the imaginary
part of the complex-conjugate eigenvalues. Thus an upper bound on peak
time tP ≤ tP, max yields a lower bound on ωd . This corresponds to an eigen-
value that lies above the horizontal line passing through j (π/tP, max) on
the positive imaginary axis and a conjugate eigenvalue that lies below the
horizontal line passing through −j (π/tP, max) on the negative imaginary
axis. With a specified upper bound on peak time of 0.5 s, these horizontal
lines pass through ±j (π/0.5) = ±j2π .

The region in the complex plane characterizing allowable eigenvalue
locations with respect to all three constraints is given by the intersection of
the individual regions. The shaded region in Figure 7.5 shows allowable
eigenvalue locations for this example along with the bounding lines for
the individual regions.
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FIGURE 7.5 Allowable eigenvalue locations for Example 7.3.
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In this example we see that only the percent-overshoot and peak-time
constraints are active. That is, the settling time will be less than 2 s for
all eigenvalues satisfying the other two constraints. �

Higher-Order Systems

We typically encounter systems of order or dimension greater than
two. When we approximate higher-order systems by a dominant first-
or second-order model and specify the associated dominant eigenvalue
locations that meet various transient response specifications, we eventually
need to specify locations for the remaining eigenvalues. The general rule
of thumb we adopt is to augment the dominant eigenvalues with the
requisite number of additional eigenvalues that are 10 times further to the
left than the dominant eigenvalues in the complex plane. In so doing, we
expect that the higher-order system response will be dominated by that of
the first- or second-order approximate model.

Figure 7.6 shows the effect of augmenting a dominant first-order system
eigenvalue (λ1 = −0.5) with additional real negative eigenvalues at least
10 times higher, for second- through fourth-order systems. The eigenval-
ues associated with each case are given in Table 7.3. The second- through
fourth-order step responses are similar to the desired dominant first-order
step response. The settling time increases slightly as the system order
increases.
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FIGURE 7.6 Dominant first-order system versus second- through fourth-order
systems.
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TABLE 7.3 Eigenvalues for Figure 7.6

System Order Eigenvalues

First λ1 = −0.5
Second λ1,2 = −0.5,−5
Third λ1,2,3 = −0.5,−5,−6
Fourth λ1,2,3,4 = −0.5,−5,−6,−7

Figure 7.7 shows the effect of augmenting dominant second-order sys-
tem eigenvalues (s1,2 = −2 ± 1.95i from Example 7.2) with additional
real negative eigenvalues at least 10 times further to the left in the com-
plex plane for third- and sixth-order systems. The eigenvalues associated
with each case are given in Table 7.4. The third- and sixth-order step
responses are similar to the desired dominant second-order step response.
The rise time increases slightly as the system order increases.
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3 4
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3r d
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FIGURE 7.7 Dominant second-order system versus third- and sixth-order systems.

TABLE 7.4 Eigenvalues for Figure 7.7

System
Order Eigenvalues

Second λ1,2 = −2 ± 1.95i

Third λ1,2,3 = −2 ± 1.95i,−20
Sixth λ1,2,3,4,5,6 = −2 ± 1.95i,−20,−21,−22,−23
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ITAE Method for Shaping the Dynamic Response

The ITAE (integral of time multiplying the absolute value of error),
method attempts to accomplish dynamic shaping by penalizing the error,
in our case the deviation between the unit step response and the steady-
state value that yields the transient response component, more heavily
later in the response as time increases (Graham and Lathrop, 1953). The
ITAE objective function is

ITAE =
∫ ∞

0
t |e(t)|dt

Minimizing the ITAE objective function yields a step response with rela-
tively small overshoot and relatively little oscillation. The ITAE is just one
possible objective function; others have been proposed and used in prac-
tice. For first- through sixth-order systems, the characteristic polynomials
given in Table 7.5 correspond to systems that minimize the ITAE crite-
rion (Dorf and Bishop, 2005). In each case, one must specify the desired
natural frequency ωn (higher values correspond to faster response). Then
the desired eigenvalues are obtained by finding the roots of the appropriate
characteristic polynomial for the particular system order.

Figure 7.8 shows the unit step responses for the ITAE first- through
sixth-order systems described by transfer functions of the form

Hk(s) = ωk
n

dk(s)

in which the index k denotes the system order, and the denominator poly-
nomial is taken from Table 7.5. The independent axis in Figure 7.8 is
the normalized time ωnt , which is unitless. Note that beyond the first-
order case, some overshoot is involved in optimizing the ITAE objective
function.

This section has presented several approaches to translate transient
response specifications into desired eigenvalue locations. These methods

TABLE 7.5 ITAE Characteristic Polynomials

System Order Characteristic Polynomial

First s + ωn

Second s2 + 1.4 ωns + ω2
n

Third s3 + 1.75 ωns
2 + 2.15 ω2

ns + ω3
n

Fourth s4 + 2.1 ωns
3 + 3.4 ω2

ns
2 + 2.7 ω3

ns + ω4
n

Fifth s5 + 2.8 ωns
4 + 5.0 ω2

ns
3 + 5.5 ω3

ns
2 + 3.4 ω4

ns + ω5
n

Sixth s6 + 3.25 ωns
5 + 6.6 ω2

ns
4 + 8.6 ω3

ns
3 + 7.45 ω4

ns
2 + 3.95 ω5

ns + ω6
n
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FIGURE 7.8 ITAE unit step responses.

have focused on so-called all-pole system models. It is well known from
classical control that the presence of zeros (roots of the transfer func-
tion numerator polynomial) will change the system’s transient behavior.
One approach to remedy this is to use a prefilter to reduce the effect of
these zeros.

7.3 CLOSED-LOOP EIGENVALUE PLACEMENT VIA STATE
FEEDBACK

The following result establishes a connection between the ability to arbi-
trarily place the closed-loop eigenvalues by proper choice of the state
feedback gain matrix K and controllability of the open-loop state equation,
i.e., the pair (A, B).

Theorem 7.1 For any symmetric set of n complex numbers {µ1 , µ2 , . . . ,

µn}, there exists a state feedback gain matrix K such that σ(A − BK ) =
{µ1 , µ2 , . . . , µn} if and only if the pair (A, B) is controllable.

Proof. Here we prove that controllability of the pair (A, B) is necessary
for arbitrary eigenvalue placement via state feedback. That controllabil-
ity of the pair (A, B) is sufficient for arbitrary eigenvalue placement via
state feedback will be established constructively in the single-input case
by deriving formulas for the requisite state feedback gain vector. The
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multiple-input case is considerably more complicated, and we will be con-
tent to refer the interested reader to treatments available in the literature.

For necessity, we prove the contrapositive. Suppose the pair (A, B) is
not controllable so that

rank
[
B AB A2B · · · An−1B

] = q < n

and there exists a nonsingular n × n matrix T for which

Â = T −1AT B̂ = T −1B

=
[

A11 A12

0 A22

]
=

[
B1

0

]

where A11 is of dimension q × q and B1 is q × m. For any state feedback
gain matrix K , let

K̂ = KT

= [
K1 K2

]

where K1 is of dimension m × q and K2 is m × (n − q). Then

Â − B̂K̂ =
[

A11 A12

0 A22

]
−

[
B1

0

] [
K1 K2

]

=
[

A11 − B1K1 A12 − B1K2

0 A22

]

in which we note that the bottom-block row is unaffected by the state
feedback. The characteristic polynomial is

∣∣∣sI − (Â − B̂K̂)

∣∣∣ =
∣∣∣∣ sI − (A11 − B1K1) −(A12 − B1K2)

0 sI − A22

∣∣∣∣
= |sI − (A11 − B1K1)| · |sI − A22|

Thus the n eigenvalues of Â − B̂K̂ are the q eigenvalues of A11 − B1K1

along with the n − q eigenvalues of A22, which represents the uncontrol-
lable subsystem. Since

Â − B̂K̂ = T −1AT − T −1BKT

= T −1(A − BK )T
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the same conclusion holds for the eigenvalues of A − BK . Since for any
feedback gain matrix K the eigenvalues of A22 are always among the
closed-loop eigenvalues, we conclude that arbitrary eigenvalue placement
is not possible. Equivalently, if arbitrary eigenvalue placement is possible
by state feedback, then the pair (A, B) necessarily must be controllable.

�
Feedback Gain Formula for Controller Canonical Form

We know from Chapter 3 that the controller canonical form specifies a
controllable single-input state equation. The construction of a feedback
gain vector that achieves arbitrary eigenvalue placement proceeds as fol-
lows: The coefficient matrices for controller canonical form are given
below:

ACCF =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1


 BCCF =




0
0
...

0
1




and we recall that since ACCF is a companion matrix, its characteristic
polynomial is written down by inspection:

|sI − ACCF| = sn + an−1s
n−1 + · · · + a2s

2 + a1s + a0

We denote a feedback gain vector by

KCCF = [
δ0 δ1 δ2 · · · δn−1

]
which yields the closed-loop system dynamics matrix

ACCF − BCCFKCCF

=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 − δ0 −a1 − δ1 −a2 − δ2 · · · −an−1 − δn−1




We see that ACCF − BCCFKCCF is also in companion form, so its charac-
teristic polynomial can be written down by inspection of the bottom row:

|sI − ACCF + BCCFKCCF| = sn + (an−1 + δn−1)s
n−1 + · · · + (a2 + δ2)s

2

+ (a1 + δ1)s + (a0 + δ0)
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Beginning with an arbitrary symmetric set of complex numbers {µ1, µ2,

. . . , µn} that represents the desired closed-loop eigenvalues, we define the
associated closed-loop characteristic polynomial

α(s) = (s − µ1)(s − µ2) · · · (s − µn)

= sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

It is important to note that because the roots of a polynomial uniquely
determine and are uniquely determined by the polynomial coefficients,
specifying n desired closed-loop eigenvalues is equivalent to specifying
the n coefficients α0, α1, α2, . . . , αn−1. In terms of these parameters, the
crux of the problem is to determine KCCF so that the characteristic polyno-
mial of ACCF − BCCFKCCF matches the desired closed-loop characteristic
polynomial α(s). Equating

|sI − ACCF + BCCFKCCF| = sn + (an−1 + δn−1)s
n−2 + · · · + (a2 + δ2)s

2

+ (a1 + δ1)s + (a0 + δ0)

= sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

yields, on comparing coefficients of like powers of s, the relationships

a0 + δ0 = α0 a1 + δ1 = α1 a2 + δ2 = α2 · · · an−1 + δn−1 = αn−1

so that

δ0 = α0 − a0 δ1 = α1 − a1 δ2 = α2 − a2 · · · δn−1 = αn−1 − an−1

and the state feedback gain vector is then given by

KCCF = [
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

]

Example 7.4 We consider the following three-dimensional state
equation given in controller canonical form specified by the coefficient
matrices

ACCF =

 0 1 0

0 0 1
−18 −15 −2


 BCCF =


 0

0
1


 CCCF = [

1 0 0
]

The open-loop characteristic polynomial, is by inspection,

a(s) = s3 + a2s
2 + a1s + a0 = s3 + 2s2 + 15s + 18
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which yields the open-loop eigenvalues λ1,2,3 = −1.28, −0.36 ± j3.73.
This open-loop system exhibits a typical third-order lightly damped step
response, as shown in Figure 7.9 below.

This open-loop system is already asymptotically stable, but we are inter-
ested in designing a state feedback control law to improve the transient
response performance. We first specify a pair of dominant eigenvalues
to yield a percent overshoot of 6 percent and a settling time of 3 s. The
associated damping ratio and undamped natural frequency are ξ = 0.67
and ωn = 2.00 rad/s. The resulting dominant second-order eigenvalues are
λ1,2 = −1.33 ± j1.49. The open-loop system is third-order, so we need
to specify a third desired eigenvalue, which we choose to be negative,
real, and 10 further to the left of the dominant second-order eigenval-
ues in the complex plane: λ3 = −13.33. Thus the desired characteristic
polynomial is

α(s) = s3 + α2s
2 + α1s + α0 = s3 + 16s2 + 39.55s + 53.26

This leads immediately to the state feedback gain vector

KCCF = [
(α0 − a0) (α1 − a1) (α2 − a2)

]
= [

(53.26 − 18) (39.55 − 15) (16 − 2)
]

= [
35.26 24.55 14.00

]

The state feedback control law

u(t) = −KCCF xCCF(t) + r(t)

yields the closed-loop state equation specified by the coefficient matrices

ACCF − BCCFKCCF =

 0 1 0

0 0 1
−53.26 −39.55 −16


 BCCF =


 0

0
1




CCCF = [
1 0 0

]

which is also in controller canonical form. Figure 7.9 shows a comparison
of the open-loop and closed-loop output responses to a unit step input.
The closed-loop transient response is greatly improved, and the achieved
percent overshoot (5.9 percent) and settling time (3.09 s) are in close
agreement with the design specifications. Note, however, that neither unit
step response achieves a steady-state value of 1.0. For the closed-loop sys-
tem, this means that the steady-state output does not match the reference



CLOSED-LOOP EIGENVALUE PLACEMENT VIA STATE FEEDBACK 255

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Open-loop
Closed-loop

y
(m

)

time (sec)

FIGURE 7.9 Open-loop versus closed-loop unit step responses for Example 7.4.

input, yielding, in this case, substantial steady-state error. Methods to
correct this will be addressed later in this chapter. �

Bass-Gura Formula

We generalize the preceding feedback gain construction for the controller
canonical form to the case of an arbitrary controllable single-input state
equation. Our plan of attack is to use the explicitly defined state coor-
dinate transformation linking a controllable single-input state equation to
its associated controller canonical form.

As before, we let {µ1, µ2, . . . , µn} be a symmetric set of n complex
numbers representing the desired closed-loop eigenvalues, which uniquely
determines the desire closed-loop characteristic polynomial

α(s) = (s − µ1)(s − µ2) · · · (s − µn)

= sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

For the controllable pair (A, B), Section 3.4 indicates that the state coor-
dinate transformation x(t) = TCCF xCCF(t) with

TCCF = PP −1
CCF

transforms the original state equation to its controller canonical form.
Since the system dynamics matrices A and ACCF are related by a similarity
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transformation, their characteristic polynomials are the same, that is,

|sI − A| = |sI − ACCF| = sn + an−1s
n−2 + · · · + a2s

2 + a1s + a0

With

KCCF = [
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

]
achieving the desired eigenvalue placement for ACCF − BCCFKCCF, we set
K = KCCFT

−1
CCF, from which KCCF = KTCCF and

ACCF − BCCFKCCF = T −1
CCFATCCF − T −1

CCFB(KTCCF)

= T −1
CCF(A − BK )TCCF

Thus

|sI − A + BK | = |sI − ACCF + BCCFKCCF|
= sn + αn−1s

n−1 + · · · + α2s
2 + α1s + α0

so that K = KCCFT
−1

CCF achieves the desired eigenvalue placement for the
closed-loop state equation in the original coordinates.

Putting everything together yields the Bass-Gura formula, namely,

K = KCCFT
−1

CCF

= [
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

] [
PP −1

CCF

]−1

= [
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

]

×


P




a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

... . ..
...

...

an−1 1 · · · 0 0
1 0 · · · 0 0







−1

(7.4)

which depends only on the controllable open-loop pair (A, B), the open-
loop characteristic polynomial, and the desired closed-loop characteristic
polynomial, as determined by the desired closed-loop eigenvalues. We
observe that nonsingularity of the controllability matrix P is required
to implement this formula. Finally, we note that by providing a for-
mula for the state feedback gain vector that achieves arbitrary eigenvalue
placement for a controllable single-input state equation, we have proved
the sufficiency part of Theorem 7.1, at least in the single-input case.
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Example 7.5 We demonstrate application of the Bass-Gura formula for
the three-dimensional single-input state equation with coefficient matrices

A =

 0 0 0

0 1 0
0 0 2


 B =


 1

1
1




We take the desired closed-loop eigenvalues to be {µ1, µ2, µ3} = {−1,

−1, −1}. We break the feedback gain vector computation into several
steps.

We first check the controllability of the pair (A, B) by computing

P = [
B AB A2B

]

=

 1 0 0

1 1 1
1 2 4




which has |P | = 2 	= 0, so this state equation is controllable. We note that
the same conclusion follows by inspection because the state equation is in
diagonal canonical form, in which the eigenvalues of A are distinct and
the elements of B are all nonzero.

Next, we form the open-loop and desired closed-loop characteristic
polynomials. Here, A is a diagonal matrix with its eigenvalues displayed
on the main diagonal λ1,2,3 = 0, 1, 2. The open-loop characteristic
polynomial and associated coefficients are

a(s) = (s − 0)(s − 1)(s − 2)

= s3 − 3s2 + 2s + 0
a2 = −3, a1 = 2, a0 = 0

The open-loop system is unstable because there are two positive
real eigenvalues. The closed-loop desired characteristic polynomial and
associated coefficients are

α(s) = (s + 1)3

= s3 + 3s2 + 3s + 1
α2 = 3, α1 = 3, α0 = 1

From this we can directly compute

KCCF = [
(α0 − a0) (α1 − a1) (α2 − a2)

]
= [

(1 − 0) (3 − 2) (3 − (−3))
]

= [
1 1 6

]
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We next calculate TCCF and T −1
CCF:

TCCF = PP −1
CCF

=

 1 0 0

1 1 1
1 2 4





 2 −3 1

−3 1 0
1 0 0


 T −1

CCF =



1
2 −1 1

2

0 −1 1

0 −1 2




=

 2 −3 1

0 −2 1
0 −1 1




Finally, we calculate the state feedback gain vector

K = KCCFT
−1

CCF

= [
1 1 6

]



1
2 −1 1

2

0 −1 1

0 −1 2




= [
1
2 −8 27

2

]
As a final check, we see that

A − BK =



− 1
2 8 − 27

2

− 1
2 9 − 27

2

− 1
2 8 − 23

2




has eigenvalues {−1, −1, −1} as desired.
Figure 7.10 compares the MATLAB generated state variable step

responses for open and closed-loop state equations each for zero initial
state. Because the open-loop state equation is in diagonal canonical form,
we can easily compute

x1(t) = t x2(t) = et − 1 x3(t) = 1
2(e2t − 1)

which grow without bound as time increases. The stabilizing effect of the
state feedback law is evident from the closed-loop responses. �

Ackermann’s Formula

Here we present Ackermann’s formula for computing the state feedback
gain vector. In terms of the desired closed-loop characteristic polynomial
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FIGURE 7.10 Open-loop versus closed-loop step response for Example 7.5.

α(s), the state feedback gain vector is given by

K = [
0 0 · · · 0 1

]
P −1α(A)

Here P = [
B AB A2B · · · An−1B

]
is the controllability matrix

for the controllable pair (A, B) with inverse P −1 and α(A) re-
presents

α(A) = An + αn−1A
n−1 + · · · + α2A

2 + α1A + α0I

which yields an n × n matrix. To verify Ackermann’s formula, it is again
convenient to begin with a controllable pair in controller canonical form,
for which we must check that

KCCF = [
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

]

= [
0 0 · · · 0 1

]
P −1

CCFα(ACCF)
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We first observe that the special structure of P −1
CCF leads to

[
0 0 · · · 0 1

]
P −1

CCF = [
0 0 · · · 0 1

]



a1 a2 · · · an−1 1
a2 a3 · · · 1 0
...

... . ..
...

...

an−1 1 · · · 0 0
1 0 · · · 0 0




= [
1 0 · · · 0 0

]

Now, with a(s) denoting the characteristic polynomial of ACCF, the
Cayley-Hamilton theorem gives

a(ACCF) = An
CCF + an−1A

n−1
CCF + · · · + a2A

2
CCF + a1ACCF + a0I

= 0 (n × n)

which allows us to write

α(ACCF) = α(ACCF) − a(ACCF)

= (An
CCF + αn−1A

n−1
CCF + · · · + α2A

2
CCF + α1ACCF + α0I )

− (An
CCF + an−1A

n−1
CCF + · · · + a2A

2
CCF + a1ACCF + a0I )

= (αn−1 − an−1)A
n−1
CCF + · · · + (α2 − a2)A

2
CCF

+ (α1 − a1)ACCF + (α0 − a0)I

Next, the special structure of ACCF yields

[
1 0 0 · · · 0 0

]
I = [

1 0 0 · · · 0 0
]

[
1 0 0 · · · 0 0

]
ACCF = [

0 1 0 · · · 0 0
]

[
1 0 0 · · · 0 0

]
A2

CCF = [
0 1 0 · · · 0 0

]
ACCF

= [
0 0 1 · · · 0 0

]
...[

1 0 0 · · · 0 0
]
An−1

CCF = [
0 0 0 · · · 1 0

]
An−2

CCF

= [
0 0 0 · · · 0 1

]
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By combining these intermediate results, we see that

[
0 0 · · · 0 1

]
P −1

CCFα(ACCF)

= [
1 0 · · · 0 0

] [
(αn−1 − an−1)A

n−1
CCF + · · · + (α2 − a2)A

2
CCF

+ (α1 − a1)ACCF + (α0 − a0)I ]

= (α0 − a0)
[

1 0 · · · 0 0
]
I

+ (α1 − a1)
[

1 0 · · · 0 0
]
ACCF

+ (α2 − a2)
[

1 0 · · · 0 0
]
A2

CCF

+
...

+ (αn−1 − an−1)
[

1 0 · · · 0 0
]
An−1

CCF

= [
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

]
= KCCF

as required. Now, to address the general case, we let (A, B) denote
a controllable pair for which TCCF = PP −1

CCF is such that ACCF =
T −1

CCFATCCF. It is straightforward to verify that for any integer k ≥ 0,
Ak

CCF = (T −1
CCFATCCF)

k = T −1
CCFA

kTCCF, which allows us to write

α(ACCF) = An
CCF + αn−1A

n−1
CCF + · · · + α2A

2
CCF + α1ACCF + α0I

= (T −1
CCFA

nTCCF) + αn−1(T
−1

CCFA
n−1TCCF)

+ · · · + α2(T
−1

CCFA
2TCCF) + α1(T

−1
CCFATCCF) + α0(T

−1
CCFTCCF)

= T −1
CCF(A

n + αn−1A
n−1 + · · · + α2A

2 + α1A + α0I )TCCF

= T −1
CCFα(A)TCCF

We then have

K = KCCFT
−1

CCF

= [
0 0 · · · 0 1

]
P −1

CCFα(ACCF)T
−1

CCF

= [
0 0 · · · 0 1

]
P −1

CCF(T
−1

CCFα(A)TCCF)T
−1

CCF

= [
0 0 · · · 0 1

]
P −1

CCFT
−1

CCFα(A)
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= [
0 0 · · · 0 1

]
P −1

CCF(PP −1
CCF)

−1α(A)

= [
0 0 · · · 0 1

]
P −1α(A)

as desired.

Example 7.6 To demonstrate the use of Ackermann’s formula, we now
repeat the feedback gain computation first considered in Example 7.4 for
the state equation in controller canonical form specified by

ACCF =

 0 1 0

0 0 1
−18 −15 −2


 BCCF =


 0

0
1




for which, by inspection,

P −1
CCF =


 15 2 1

2 1 0
1 0 0




For the desired closed-loop characteristic polynomial

α(s) = s3 + α2s
2 + α1s + α0 = s3 + 16s2 + 39.55s + 53.26

we compute, with the aid of MATLAB,

α(ACCF) = A3
CCF + 16A3

CCF + 39.55ACCF + 53.26I

=

 35.26 24.55 14.00

−252.00 −174.74 −3.45
62.10 −200.25 −167.84




Ackermann’s formula then gives

K = [
0 0 1

]
P −1

CCFα(ACCF)

= [
1 0 0

]

 35.26 24.55 14.00

−252.00 −174.74 −3.45
62.10 −200.25 −167.84




= [
35.26 24.55 14.00

]
This result agrees with KCCF as computed in Example 7.4. This is so
because for controllable single-input state equations, the feedback gain
vector is uniquely determined by the desired closed-loop eigenvalues. �
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Multiple-Input, Multiple-Output Eigenvalue Placement

One approach to addressing eigenvalue placement for controllable
multiple-input state equations is to first derive a multiple-input version
of our controller canonical form. This is considerably more complicated
in the multiple-input case, but once this has been accomplished, the
subsequent construction of a state feedback gain matrix that achieves
desired closed-loop eigenvalues follows in a straightforward fashion. We
do not pursue the details here and instead refer the interested reader
to Chapters 13 and 14 in Rugh (1996) and Chapters 6 and 7 in Kailath
(1980). We are reassured by the fact that for computational purposes, the
MATLAB place function can accommodate multiple-input state equations
(see Section 7.6).

7.4 STABILIZABILITY

We have seen that for a controllable state equation, arbitrary closed-loop
eigenvalue placement can be achieved using state feedback. Since the
freedom to assign closed-loop eigenvalues implies that we can asymp-
totically stabilize the closed-loop system via state feedback, we can say
that controllability is a sufficient condition for asymptotic stabilization via
state feedback. In situations where the plant is not controllable, it is natu-
ral to ask whether or not asymptotic stabilization via state feedback is still
possible. We answer this question by introducing the concept of stabiliz-
ability. It turns out that we have already developed the key ingredients
for the requisite analysis in our previous investigations of controllability
and state feedback. To motivate the ensuing discussion, we consider the
following example. The state equation

ẋ(t) =



1 0 0

1 −1 1

0 0 −2


 x(t) +




1

1

0


 u(t)

y(t) = [
1 0 0

]
x(t)

is already in the standard form for an uncontrollable state equation, as can
be seen from the partitioning

[
A11 A12

0 A22

]
=




1 0 | 0|
1 −1 | 1||
0 0 | −2




[
B1

0

]
=


 1

1

0
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in which the pair (A11, B1) specifies a controllable two-dimensional sub-
system. In terms of a state feedback gain vector K = [

k1 k2 k3
]
, we

have

A − BK =

1 0 0

1 −1 1
0 0 −2


 −


 1

1
0


 [ k1 k2 | k3 ]

=



[
1 0
1 −1

]
−

[
1
1

] [
k1 k2

] [
0
1

]
−

[
1
1

]
k3

0 0 −2




The gains k1 and k2 can be chosen to arbitrarily locate the eigenval-
ues of the controllable subsystem. Because of the upper block triangular
structure, the three eigenvalues of A − BK are the two freely assigned
by proper choice of k1 and k2 together with the third at −2 contributed
by the uncontrollable subsystem. Thus we conclude that even though the
state equation is not controllable, and hence arbitrary eigenvalue place-
ment via state feedback is not achievable, it is still possible to construct a
state feedback gain vector such that A − BK specifies an asymptotically
stable closed-loop state equation. This is a direct result of the fact that the
uncontrollable subsystem, which cannot be influenced by state feedback,
is itself asymptotically stable. We also see that the gain k3 has no influ-
ence on the eigenvalues of A − BK . We now formalize this notion in the
following definition.

Definition 7.2 The linear state equation (7.1) [or the pair (A, B), for
short] is stabilizable if there exists a state feedback gain matrix K for
which all eigenvalues of A − BK have strictly negative real part.

Note that as a consequence of this definition and our prior eigenvalue
placement results, we see that controllability implies stabilizability. On
the other hand, the preceding example indicates that the converse does
not hold. A state equation can be stabilizable but not controllable. We
therefore regard stabilizability as a weaker condition than controllability.

The preceding example provides hints for general characterizations of
stabilizability. If the pair (A, B) is controllable, then it is stabilizable as
noted above and so we consider the case in which the pair (A, B) is
not controllable. We know that there exists a coordinate transformation
x(t) = T z(t) such that the transformed state equation has

Â =
[

A11 A12

0 A22

]
B̂ =

[
B1

0

]



STABILIZABILITY 265

in which (A11, B1) is a controllable pair. With K̂ = [
K1 K2

]
a con-

formably partitioned state feedback gain matrix, we have

Â − B̂K̂ =
[

A11 − B1K1 A12 − B1K2

0 A22

]

whose eigenvalues are those of A11 − B1K1, along with those of the A22.
Because (A11, B1) is a controllable pair, K1 can be chosen such that the
eigenvalues of A11 − B1K1 have negative real part. However, the uncon-
trollable subsystem associated with A22 is uninfluenced by state feedback,
and the eigenvalues of A22 will be among the eigenvalues of Â − B̂K̂ for
any K̂ . Consequently, in order for every eigenvalue of Â − B̂K̂ to have
negative real parts, the eigenvalues of A22 must have negative real parts
to begin with. We therefore see that in the case where the pair (A, B) is
not controllable, stabilizability requires that the uncontrollable subsystem
be asymptotically stable. We also observe that K2 plays no role in this
analysis. Our next step is to adapt our previously derived Popov-Belevitch-
Hautus tests for controllability in order to provide algebraic criteria for
stabilizability that do not require a particular coordinate transformation.

Theorem 7.3 The following statements are equivalent:

1. The pair (A, B) is stabilizable.
2. There exists no left eigenvector of A associated with an eigenvalue

having nonnegative real part that is orthogonal to the columns of B;
3. The matrix

[
λI − A B

]
has full row-rank for all complex λ with

nonnegative real part.

Proof. To establish the equivalence of these statements, it is enough to
prove the chain of implications: 1 implies 2, 2 implies 3, and 3 implies 1.

For the first implication, we prove the contrapositive: If there does
exists a left eigenvector of A associated with an eigenvalue having non-
negative real part that is orthogonal to the columns of B, then the pair
(A, B) is not stabilizable. Suppose that for λ ∈ σ(A) with Re(λ) ≥ 0 there
exists w ∈ Cn that satisfies

w 	= 0 w∗A = λw∗ w∗B = 0

Then, for any state feedback gain matrix K , we have

w∗(A − BK ) = w∗A − (w∗B)K

= λw∗
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which indicates that λ is also an eigenvalue of A − BK with non-negative
real part. Thus, by definition, the pair (A, B) is not stabilizable.

We next prove the contrapositive of the second implication: If[
λI − A B

]
has less than full-row rank for some complex λ with

nonnegative real part, then there does exists a left eigenvector of A

associated with an eigenvalue having nonnegative real part that is
orthogonal to the columns of B. Suppose that λ ∈ C with Re(λ) ≥ 0
is such that the matrix

[
λI − A B

]
has linearly dependent rows.

Consequently, there exists a nontrivial linear combination of the rows
of

[
λI − A B

]
yielding a 1 × (n + m) zero vector. This is equivalent

to the existence of a nonzero vector w ∈ C
n that satisfies

w∗ [
λI − A B

] = [
0 0

]
which can be reorganized as

w∗A = λw∗ w∗B = 0

Thus λ with Re(λ) ≥ 0 is an eigenvalue of A with associated left eigen-
vector w that is orthogonal to the columns of B.

Finally, we prove the contrapositive of the third implication: If the
pair (A, B) is not stabilizable, then there exists λ ∈ C with Re(λ) ≥ 0
for which the matrix

[
λI − A B

]
has less than full-row rank. If the

pair (A, B) is not stabilizable, then it is not controllable, and a change of
coordinates yields the transformed state equation with

Â =
[

A11 A12

0 A22

]
B̂ =

[
B1

0

]

in which the pair (A11, B1) is controllable. If it is not possible to find a
stabilizing feedback gain matrix, then it must be the case that A22 has an
eigenvalue λ ∈ C with Re(λ) ≥ 0. By definition, λI − A22 is singular and
therefore has linearly dependent rows, implying the same for

[
λI − Â B̂

] =
[

λI − A11 −A12 B1

0 λI − A22 0

]

Finally, the identity

[
λI − A B

] = T
[
λI − Â B̂

] [
T −1 0

0 I

]

together with the fact that matrix rank is unaffected by pre- and postmul-
tiplication by nonsingular matrices, implies that

[
λI − A B

]
has less

than full row rank for this λ ∈ C with Re(λ) ≥ 0. �
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Example 7.7 Recall the uncontrollable state equation introduced in
Example 3.3 and revisited in Examples 3.5 and 3.6:


ẋ1(t)

ẋ2(t)

ẋ3(t)


 =


 0 1 0

0 0 1
−6 −11 −6







x1(t)

x2(t)

x3(t)


 +


 0

1
−3


u(t)

We saw in Example 3.5 that the coordinate transformation x(t) = T z(t)

with

T =

 0 1 0

1 −3 0
−3 7 1




yields the transformed state equation with coefficient matrices

Â = T −1AT B̂ = T −1B

=

0 −2 1

1 −3 0
0 0 −3


 =


 1

0

0




which is in the standard form for an uncontrollable state equation. More-
over, the uncontrollable subsystem is one-dimensional with A22 = −3.
Hence this state equation is stabilizable. Arbitrarily choosing two closed-
loop eigenvalues to be −2 + j2 and −2 − j2, the Bass-Gura formula
applied to the controllable pair (A11, B1) extracted from the pair (Â, B̂)

yields
K1 = [

1 3
]

for which

A11 − B1K1 =
[

0 −2
1 −3

]
−

[
1
0

] [
1 3

] =
[ −1 −5

1 −3

]

has these specified eigenvalues. Therefore

K̂ = [
1 3 0

]

is such that Â − B̂K̂ has the three eigenvalues −2 + j2, −2 − j2, and
−3. Finally, the feedback gain vector

K = K̂T −1 = [
1 3 0

]

 3 1 0

1 0 0
2 3 1


 = [

6 1 0
]
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yields A − BK also having closed-loop eigenvalues −2 + j2, −2 − j2,
and −3.

We also saw in Example 3.6 that w3 = [
2 3 1

]T
is a left eigenvec-

tor of A associated with the eigenvalue λ3 = −3 < 0 for which wT
3 B = 0.

We can make the stronger assertion that the only left eigenvectors of A

orthogonal to B are nonzero scalar multiples of w3 and therefore are also
associated with λ3. We conclude from Theorem 7.3 that since there exists
no left eigenvector of A associated with an eigenvalue having nonneg-
ative real part that is orthogonal to B, the state equation is stabilizable.
We also see that λ3 = −3 is the only value of λ for which

[
λI − A B

]
has less than rank 3, so

[
λI − A B

]
has full-row rank 3 for all λ with

nonnegative real part, and again, stabilizability follows from Theorem 7.3.
�

7.5 STEADY-STATE TRACKING

We have studied in detail the extent to which state feedback control
laws can influence the transient response characteristics by virtue of our
complete freedom to specify closed-loop eigenvalues for a controllable
state equation and our understanding of how eigenvalue locations affect
the transient response. In this section we address a steady-state track-
ing requirement for step reference inputs. The first approach we consider
involves a modification of our state feedback control law to include a
gain that multiplies the reference input. This idea has been implemented
already, albeit informally, in Example 7.2. Our second approach revisits
in our state-space framework a familiar concept from classical control:
Zero steady-state tracking error for step reference inputs can be achieved
for so-called type 1 systems that include integral action on the tracking
error. We refer to such control systems as servomechanisms.

Input Gain

As noted earlier, we now consider state feedback control laws of the form

u(t) = −Kx(t) + Gr(t)

in which the reference input is now multiplied by a gain G to be chosen
so that for a step reference input r(t) = R, t ≥ 0, the output of the closed-
loop state equation

ẋ(t) = (A − BK )x(t) + BGr(t)

y(t) = Cx(t)
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satisfies
yss � lim

t→∞ y(t) = R

We note at the outset that this steady-state tracking requirement makes
sense only when the output y(t) and the reference input r(t) have the
same dimension p in the multiple-input, multiple-output case. This, in
turn, dictates that the gain matrix G has dimension m × p. In the single-
input, single-output case, y(t), r(t), and u(t) are scalar signals, and G is
a scalar gain. The ensuing analysis is cast in the multi-input, multi-output
case for which we will encounter the restriction m ≥ p; i.e., the open-
loop state equation has at least as many inputs as outputs. Clearly, the
single-input, single-output case meets this requirement. We also assume
from this point on that the feedback gain K has been chosen to yield an
asymptotically stable closed-loop state equation.

From a frequency-domain viewpoint, the steady-state tracking objective
requires that the closed-loop transfer function

HCL(s) = C(sI − A + BK)−1BG

have what we refer to as identity dc gain; that is, HCL(0) = I (p × p). For
then, with R(s) = R(1/s) we may apply the final-value theorem (because
the closed-loop state equation is asymptotically stable) to obtain

yss = lim
t→∞ y(t) = lim

s→0
sY (s) = lim

s→0
sHCL(s)R

1

s
= HCL(0)R

and so yss = R for any constant vector R ∈ R
p. The closed-loop dc gain

is given by
HCL(0) = −C(A − BK )−1BG

in which A − BK is guaranteed to be nonsingular because it is assumed to
have strictly negative real-part eigenvalues. The question now is whether
the gain matrix G can be chosen to yield HCL(0) = I . We first consider
the case m = p; i.e., the open-loop state equation has as many inputs
as outputs. In this case, the dc gain is the product of the p × p matrix
−C(A − BK )−1B and the p × p input gain matrix G. If the first factor
is nonsingular, we can achieve identity dc gain by setting

G = −[C(A − BK )−1B]−1

If −C(A − BK)−1B is singular, the closed-loop state equation is said to
have a transmission zero at s = 0. In the single-input, single-output case,
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−C(A − BK)−1B is a scalar quantity and is therefore singular when and
only when it is zero, meaning that the scalar transfer function C(sI −
A + BK)−1B has a zero at s = 0 in the familiar sense.

For the case m ≥ p, the factor −C(A − BK)−1B has dimension p × m

and therefore has more columns than rows. If this matrix has full-row
rank p then we can take the m × p input gain matrix G to be the Moore-
Penrose pseudoinverse given by

G = −[C(A − BK)−1B]T
[
C(A − BK)−1B[C(A − BK)−1B]T

]−1

which the reader should verify yields HCL(0) = I .
We can arrive at the same conclusion from a time-domain viewpoint.

For the constant reference input r(t) = R, t ≥ 0, steady state corresponds
to an equilibrium condition for the closed-loop state equation involving
an equilibrium state denoted by xss that satisfies

0 = (A − BK)xss + BG R

which can be solved to give xss = −(A − BK)−1BG R. The steady-state
output then is obtained from

yss = Cxss = −C(A − BK)−1BG R = HCL(0)R

from which the same formula for the input gain results.
The preceding analysis can be generalized to address other steady-state

objectives involving a closed-loop dc gain other than an identity matrix.
For the m = p case, let Kdc denote the desired closed-loop dc gain. We
need only adjust the input gain formula according to

G = −[C(A − BK)−1B]−1Kdc

to achieve the desired result.

Example 7.8 We modify the state feedback control law computed for
the state equation of Example 7.4 to include an input gain chosen so that
the open-loop and closed-loop unit step responses reach the same steady-
state value. The open-loop state equation is specified by the following
coefficient matrices which although are in controller canonical form, we
omit the corresponding subscripts

A =

 0 1 0

0 0 1
−18 −15 −2


 B =


 0

0
1


 C = [

1 0 0
]
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The open-loop transfer function is, by inspection,

H(s) = 1

s3 + 2s2 + 15s + 18

from which the open-loop DC gain is H(0) = 1/18 = 0.056.
In Example 7.4, the state feedback gain was computed to be

K = [
35.26 24.55 14.00

]
to yield closed-loop eigenvalues at λ1,2 = −1.33 ± j1.49, −13.33 in order
to achieve a percent overshoot of 6 percent and a settling time of 3 s for
the closed-loop unit step response. Without an input gain correction, the
closed-loop transfer function is

C(sI − A + BK)−1B = 1

s3 + 16s2 + 39.55s + 53.26

which again is determined by inspection from the closed-loop state
equation, which is also in controller canonical form. From this we
compute −C(A − BK)−1B = 1/53.26 = 0.0188. Clearly, unity closed-
loop dc gain is achieved for G = 53.26, and the closed-loop dc gain will
match the open-loop dc gain for

G = (53.26)
1

18
= 2.96

This input gain is used to produce the closed-loop unit step response
plotted in of Figure 7.11. The closed-loop unit step response exhibits the
improved transient response for which the feedback gain vector K was
constructed, as well as a steady-state value that matches the open-loop
unit step response by virtue of our input gain selection. �

Servomechanism Design

Using an input gain to influence closed-loop steady-state performance
requires accurate knowledge of the open-loop state equation’s coefficient
matrices in order to invert −C(A − BK)−1B. In practice, model uncer-
tainty, parameter variations, or intentional approximations can result in
deviations between the nominal coefficient matrices used for the input
gain computation and the actual system description. This has the potential
to significantly alter the actual steady-state behavior.

Here we present a servomechanism design methodology (Ogata, 2002)
that combines the classical approach of adding an integral-error term to
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FIGURE 7.11 Open-loop versus closed-loop unit step response for Example 7.8.

obtain a type I system that yields zero steady-state tracking error for
step reference inputs with our methods for state feedback design that
deliver closed-loop stability and desirable transient response characteris-
tics. This approach is robust with respect to uncertainty in the open-loop
state equation in that the steady-state tracking performance is preserved
as long as closed-loop stability is maintained. In this section we focus on
the single-input, single-output case and impose the following additional
assumptions:

Assumptions
1. The open-loop state equation, i.e., the pair (A, B), is controllable.
2. The open-loop state equation has no pole/eigenvalue at s = 0.
3. The open-loop state equation has no zero at s = 0.

Our control law will be of the form

ξ̇ (t) = r(t) − y(t)

u(t) = −Kx(t) + kIξ(t)

in which r(t) is the step reference input to be tracked by the output
y(t). By setting the time derivative ξ̇ (t) to equal the tracking error r(t) −
y(t), we see that ξ(t) represents the integral of the tracking error. Taking
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Laplace transforms for zero initial condition ξ(0−) = 0 gives

sξ(s) = R(s) − Y(s) = E(s)

ξ(s) = E(s)

s

which indicates that the integral error term introduces an open-loop pole
at s = 0. Assumption 2 is in place so that the transfer function associated
with the open-loop state equation does not itself contribute a pole at s = 0,
in which case the new state variable ξ(t) is not required. Assumption
3 prevents the pole at s = 0 introduced by the control law from being
canceled by a zero at s = 0. We thus are guaranteed that the integral
error term in the control law yields a type I system. The remainder of the
control law can be written as

u(t) = − [
K −kI

] [
x(t)

ξ(t)

]

which we interpret as a state feedback law involving the augmented (n +
1)-dimensional state vector consisting of the open-loop state vector x(t)

together with the integrator state variable ξ(t). The associated closed-loop
system block diagram is shown in Figure 7.12, where “A, B Plant” refers
to the open-loop state differential equation in Equation (7.1).

The interconnection of the feedback control law and the open-loop plant
yields the (n + 1)-dimensional closed-loop state equation:

[
ẋ(t)

ξ̇ (t)

]
=

[
A − BK BkI

−C 0

] [
x(t)

ξ(t)

]
+

[
0
1

]
r(t)

y(t) = [
C 0

] [
x(t)

ξ(t)

]

Closed-loop stability and transient response performance are governed
by the (n + 1) eigenvalues of the (n + 1) × (n + 1) closed-loop system

+
•

−
k1

K

r(t) +

−

u(t) x(t) y(t)
A,B Plant

x(t) x(t)
C

FIGURE 7.12 Closed-loop system block diagram.
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dynamics matrix[
A − BK BkI

−C 0

]
=

[
A 0

−C 0

]
−

[
B

0

] [
K −kI

]

In order to arbitrarily place these closed-loop eigenvalues we require([
A 0

−C 0

]
,

[
B

0

])

to be a controllable pair, which we have not yet explicitly assumed. By
assumption 2, the open-loop system dynamics matrix A is nonsingular,
and hence |A| 	= 0 because a zero eigenvalue has been disallowed. Next,
assumption 3 implies that

H(0) = C(sI − A)−1B|s=0 = −CA−1B 	= 0

For nonsingular A, the block determinant formula∣∣∣∣ A B

−C 0

∣∣∣∣ = ∣∣CA−1B
∣∣ |A|

= CA−1B|A|
shows that as a consequence of assumptions 2 and 3,[

A B

−C 0

]

is a nonsingular (n + 1) × (n + 1) matrix. Analytical Exercise 7.1 asserts
that controllability of the open-loop pair (A, B) as per assumption 1,
along with nonsingularity of the preceding matrix, are necessary and suf-
ficient for ([

A 0
−C 0

]
,

[
B

0

])

to be a controllable pair. Consequently, under assumptions 1, 2, and 3, the
(n + 1) closed-loop eigenvalues can be placed arbitrarily by appropriate
choice of the augmented feedback gain vector

[
K −kI

]
For instance, we can apply either the Bass-Gura formula or Ackermann’s
formula, as well as the MATLAB place function. Assuming from this
point on that the gains have been chosen to yield an asymptotically stable
closed-loop state equation, we must show next that for step reference input
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r(t) = R, t ≥ 0, we have

yss = lim
t→∞ y(t) = R

This involves checking that the closed-loop state equation has an
equilibrium condition involving constant xss, ξss, uss, along with yss = R.
Using the relationship uss = −Kxss + kI ξss leads to

[
0
0

]
=

[
A − BK BkI

−C 0

] [
xss

ξss

]
+

[
0
1

]
R

=
[

A 0
−C 0

] [
xss

ξss

]
+

[
B

0

]
uss +

[
0
1

]
R

=
[

A B

−C 0

] [
xss

uss

]
+

[
0
1

]
R

With A nonsingular and H(0) = −CA−1B 	= 0, a block matrix inverse
formula gives

[
A B

−C 0

]−1

=
[
A−1 − A−1B(CA−1B)−1CA−1 −A−1B(CA−1B)−1

(CA−1B)−1CA−1 (CA−1B)−1

]

which allows us to solve for [xT
ss, uss]T to obtain

[
xss

uss

]
= −

[
A B

−C 0

]−1 [
0
R

]

=
[

A−1B(CA−1B)−1R

−(CA−1B)−1R

]

in which, from before, −(CA−1B)−1 = H−1(0), the inverse of the open-
loop dc gain. We may now solve for ξss, that is,

ξss = 1

kI
[uss + Kxss]

= 1

kI

[
1 − KA−1B

]
H−1(0)R

We observe that kI 	= 0, for otherwise we would have a closed-loop eigen-
value at λ = 0.
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Finally,
yss = Cxss

= C[A−1B(CA−1B)−1R]

= (CA−1B)(CA−1B)−1R

= R

We therefore have achieved the desired steady-state tracking objective.
All that is required is that the augmented feedback gain vector

[
K −kI

]
stabilize the closed-loop state equation, thereby ensuring an asymptotically
stable equilibrium for any constant reference input. This does not require
perfect knowledge of the open-loop state equation. At this equilibrium,
ξ(t) = ξss implies that 0 = ξ̇ (t) = R − yss, so yss = R is assured.

Example 7.9 We design a type I servomechanism for the state equation
of Example 7.4 so that closed-loop unit step response reaches a steady-
state value of 1 corresponding to zero steady-state error between the
reference input r(t) and the system output y(t). We begin by checking
that the three assumptions are satisfied. The state equation is in controller
canonical form and is therefore controllable. We see from the associated
transfer function given in Example 7.8 that there is neither a pole nor a
zero at s = 0.

We may then proceed with the construction of a state feedback gain
vector for the controllable pair

[
A 0

−C 0

]
=




0 1 0 0
0 0 1 0

−18 −15 −2 0
−1 0 0 0




[
B

0

]
=




0
0
1

0




We select eigenvalues based on the ITAE criterion presented in Section 7.2
using an undamped natural frequency of ωn = 2 rad/s. This yields the
desired fourth-order characteristic polynomial

s4 + 2.1 ωns
3 + 3.4 ω2

ns
2 + 2.7 ω3

ns + ω4
n

= s4 + 4.2s3 + 13.6s2 + 21.6s + 16

and associated eigenvalues

λ1,2 = −0.848 ± j2.53 λ3,4 = −1.25 ± j0.828

We observe that, although we started with a state equation in controller
canonical form, the four-dimensional controllable pair is not in controller
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canonical form, so we must use our general purpose formulas to
compute the state feedback gain vector. Either the Bass-Gura formula
or Ackermann’s formula yields

[
K −kI

] = [
3.6 −1.4 2.2 −16

]
and the associated control law is given by

ξ̇ (t) = r(t) − y(t)

u(t) = − [
3.6 −1.4 2.2

]



x1(t)

x2(t)

x3(t)


 + 16ξ(t)

The resulting closed-loop state equation is




ẋ1(t)

ẋ2(t)

ẋ3(t)

ξ̇ (t)


 =




0 1 0 0
0 0 1 0

−21.6 −13.6 −4.2 16
−1 0 0 0







x1(t)

x2(t)

x3(t)

ξ(t)


 +




0
0
0

1


 r(t)

y(t) = [
1 0 0 | 0

]



x1(t)

x2(t)

x3(t)

ξ(t)




To illustrate the robustness properties of type 1 servomechanisms, we
consider a perturbation to the original system dynamics matrix that yields

Ã =

 0 1 0

0 0 1
−16 −16 −1




having eigenvalues −1, ±j4, indicating a marginally stable system. Using
the same control law designed based on the nominal system dynamics
matrix now yields the closed-loop system dynamics matrix

[
Ã − BK BkI

−C 0

]
=




0 1 0 0
0 0 1 0

−19.6 −14.6 −3.2 16
−1 0 0 0
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with eigenvalues

λ1,2 = −0.782 ± j3.15 λ3,4 = −0.818 ± j0.922

Thus, despite the perturbation, the closed-loop system remains asymptoti-
cally stable. The closed-loop unit step responses for both the nominal and
perturbed cases are shown in Figure 7.13. We see that the perturbation has
an effect on the transient response but, because closed-loop asymptotic
stability has been maintained, zero steady-state error is still achieved as
forced by the integral-error term in the control law.
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FIGURE 7.13 Nominal and perturbed closed-loop unit step responses for
Example 7.9.

7.6 MATLAB FOR STATE FEEDBACK CONTROL LAW DESIGN

MATLAB for Shaping the Dynamic Response

The MATLAB functions that are useful for dynamic shaping are discussed
in the MATLAB sections of Chapters 1 and 2. With either dynamic shaping
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method (dominant/augmented eigenvalues or ITAE eigenvalues), a useful
MATLAB capability is provided in conjunction with the step function:

figure;
DesSys = tf(numDes,denDes);
step(DesSys);

where denDes contains the n + 1 coefficients of the nth-order desired
closed-loop characteristic polynomial (found based on dominant-plus-
augmented eigenvalues or ITAE eigenvalues), and numDes is the constant
desired behavior numerator, chosen to normalize the steady-state unit
step response value to 1.0. After executing the step function with the
desired system, one can right-click in the figure window, as described
earlier, to display the performance measures on the plot (rise time, peak
time, percent overshoot, and settling time). MATLAB calculates these values
numerically from the response data by applying the definition for each per-
formance measure; i.e, they should be accurate even for non-second-order
systems.

MATLAB for Control Law Design and Evaluation

The following MATLAB functions are useful for design of linear state feed-
back control laws:

K=place(A,B,DesEig) Solve for state feedback gain matrix K to place
the desired eigenvalues DesEig of the closed-
loop system dynamics matrix A−BK .

K=acker(A,B,DesEig) Solve for state feedback gain matrix K to place
the desired eigenvalues DesEig of the closed-
loop system dynamics matrix A − BK using
Ackermann’s formula (for single-input, single-
output systems only).

conv Multiply polynomial factors to obtain a poly-
nomial product.

Continuing MATLAB Example

Shaping the Dynamic Response For the Continuing MATLAB

Example (rotational mechanical system), we compute two desired
eigenvalues for control law design to improve the performance relative
to the open-loop responses of Figure 2.2. We use a desired percent
overshoot and settling time of 3 percent and 0.7 s, respectively, to find the



280 DESIGN OF LINEAR STATE FEEDBACK CONTROL LAWS

desired second-order control law eigenvalues. The following MATLAB code
performs the dynamic shaping calculations for the Continuing MATLAB
Example:

%------------------------------------------------------
% Chapter 7. Dynamic Shaping
%------------------------------------------------------

PO = 3; ts = 0.7; % Specify percent
% overshoot and settling
% time

term = pi^2 + log(PO/100)^2;
zeta = log(PO/100)/sqrt(term) % Damping ratio from PO
wn = 4/(zeta*ts) % Natural frequency from

% settling time and zeta
num2 = wn^2; % Generic desired

% second-order system
den2 = [1 2*zeta*wn wn^2]
DesEig2 = roots(den2) % Desired control law

% eigenvalues
Des2 = tf(num2,den2); % Create desired system

% from num2 and den2

figure;
td = [0:0.01:1.5];
step(Des2,td); % Right-click to get

% performance measures

This m-file generates the following results. It also generates the desired
closed-loop response shown in Figure 7.14, with the performance speci-
fications displayed via right-clicking. We see that the 3 percent overshoot
is achieved exactly as in theory, whereas the settling time is close to the
desired 0.7 s value.

zeta =
0.7448

wn =
7.6722

den2 =
1.0000 11.4286 58.8627
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FIGURE 7.14 Desired second-order closed-loop response.

DesEig2 =
-5.7143 + 5.1195i
-5.7143 - 5.1195i

Control Law Design and Evaluation Next, we design a state feed-
back control law for the Continuing MATLAB Example. That is, we calculate
the control law gain matrix K given A, B, and the desired control law
eigenvalues developed in the previous subsection. The following MAT-

LAB code segment performs this control law design for the continuing
example:

%------------------------------------------------------
% Chapter 7. Design of Linear State Feedback Control
% Laws
%------------------------------------------------------
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K = place(A,B,DesEig2) % Compute state
% feedback gain matrix
% K

Kack = acker(A,B, DesEig2); % Check K via
% Ackermann’s formula

Ac = A-B*K; Bc = B; % Compute closed-loop
% state feedback system

Cc = C; Dc = D;
JbkRc = ss(Ac,Bc,Cc,Dc); % Create the

% closed-loop
% state-space system

[Yc,t,Xc] = lsim(JbkRc,U,t,X0); % Compare open-loop and
% closed-loop responses

figure;
subplot(211), plot(t,Xo(:,1),’r’,t,Xc(:,1),’g’); grid;
axis([0 4 -0.2 0.5]);
set(gca,’FontSize’,18);
legend(’Open-loop’,’Closed-loop’);
ylabel(’ \itx 1’)
subplot(212), plot(t,Xo(:,2),’r’,t,Xc(:,2),’g’); grid;
axis([0 4 -2 1]);
set(gca,’FontSize’,18);
xlabel(’\ittime (sec)’); ylabel(’\itx 2’);

This m-file, combined with the previous chapter m-files, yields the
following output, plus the comparison of open- versus closed-loop state
responses shown in Figure 7.15.

K =
18.86 7.43

Figure 7.15 shows that the simulated closed-loop system performs bet-
ter than the open-loop system in terms of reduced overshoot and faster rise
and settling times. There is less vibration with the closed-loop responses,
and the steady-state zero values are obtained sooner than in the open-
loop case.

Closed-loop system simulation also can be performed using MATLAB’s
Simulink. Again, a detailed treatment of Simulink is beyond the scope of
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FIGURE 7.15 Open- versus closed-loop state responses for the Continuing MAT-

LAB Example.

this book. The reader is encouraged to explore this powerful MATLAB
toolbox on her or his own.

7.7 CONTINUING EXAMPLES: SHAPING DYNAMIC RESPONSE
AND CONTROL LAW DESIGN

Continuing Example 1: Two-Mass Translational Mechanical
System

Shaping the Dynamic Response For control law design, we need
to specify desired eigenvalues that would improve the open-loop system
performance. There are infinite possibilities; in this example we will use
the two methods discussed in Section 7.2 to be applied later in control
law design for Continuing Example 1.

We will use a dominant second-order system for desired eigenvalues to
achieve a 5 percent overshoot and a 2 s settling time. These two eigenval-
ues must be augmented with two additional nondominant eigenvalues (we
need 4 desired eigenvalues for our fourth-order system): real, negative,
and at least 10 times farther to the left in the complex plane. We will
use this specification of eigenvalues for multiple-input, multiple-output
case a.

We also will use a fourth-order ITAE approach for desired eigenval-
ues, with the same undamped natural frequency ωn as case a for easy
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comparison. We will use this specification of eigenvalues for single-input,
single-output case b.

Case a Percent overshoot is only a function of ξ ; substituting the desired
5 percent overshoot yields the dimensionless damping ratio ξ = 0.69.
With this value, plus the desired 2 s settling time specification, we then find
the undamped natural frequency ωn = 2.90 rad/s. This yields the desired
dominant second-order transfer function, namely,

H(s) = ω2
n

s2 + 2ξωns + ω2
n

= 8.40

s2 + 4s + 8.40

whose dominant, complex conjugate poles are s1,2 = −2 ± 2.10i. The
response of this desired dominant second-order system is shown in
Figure 7.16 with the second-order performance measures. This figure
was produced using the MATLAB step function with the preceding desired
second-order numerator and denominator and then right-clicking to add
the performance measures. As seen in Figure 7.16, we have obtained the
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FIGURE 7.16 Dominant second-order response with performance characteristics.
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desired 5 percent overshoot (at a peak time of 1.5 s) and a settling time
of 2.07 s (2 s was specified). The 10 to 90 percent rise time is 0.723 s.
We augment the dominant second-order eigenvalues to fit our fourth-order
system as follows:

λ1,2 = −2 ± 2.10i λ3,4 = −20, −21

Note that we do not specify repeated eigenvalues for λ3,4 to avoid any
numerical issues with repeated roots. The transfer function for the fourth-
order desired behavior that mimics second-order behavior is (normalized
for a steady-state value of 1)

H4(s) = 3528

s4 + 45s3 + 592s2 + 2024s + 3528

We will wait to plot the step response of this augmented fourth-order
transfer function until the following subsection, where we compare all
responses on one graph.

Case b. For a fourth-order system, the optimal ITAE characteristic poly-
nomial is

αITAE4(s) = s4 + 2.1 ωns
3 + 3.4 ω2

ns
2 + 2.7 ω3

ns + ω4
n

In this example we will use the same natural frequency from above, that
is, ωn = 2.90 rad/s yielding

αITAE4(s) = s4 + 6.09s3 + 28.56s2 + 65.72s + 70.54

For this fourth-order desired characteristic polynomial, the four desired
eigenvalues are

λ1,2 = −1.23 ± 3.66i λ3,4 = −1.81 ± 1.20i

Figure 7.17 plots the fourth-order ITAE desired response, along with
the dominant second-order and augmented fourth-order desired responses
from case a. All are normalized to a steady-state value of 1.0 for easy
comparison.
From Figure 7.17 we see that the augmented fourth-order response
(solid) mimics the dominant second-order response (dashed) closely, as
desired. The augmented fourth-order response lags the dominant second-
order response, but it matches the required 5 percent overshoot and 2
s settling time well. The fourth-order ITAE response (dotted) did not
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FIGURE 7.17 Dynamic shaping example results.

involve a percent overshoot or settling time specification, but we used
the same natural frequency as in the dominant second-order response
for comparison purposes. The ITAE response lags even further and
demonstrates a fourth-order wiggle not present in the augmented fourth-
order response.

Control Law Design and Evaluation For both cases of Continuing
Example 1, we calculate a state feedback gain matrix K to move the
closed-loop system eigenvalues as desired and hence achieve the con-
trol objectives. In both cases, we simulate the closed-loop behavior and
compare the open-loop system responses with those of the closed-loop
system.

For case a (multiple-input, multiple-output), we design the control law
based on the desired eigenvalues developed earlier and we simulate the
closed-loop system response given the same conditions as the open-loop
simulation of Chapter 2: zero initial state and step inputs of magnitudes
20 and 10 N , respectively, for u1(t) and u2(t).

For case b [input u2(t) and output y1(t)], we design the control law
based on the desired eigenvalues developed earlier and we simulate the
closed-loop system response given the same conditions as the open-
loop simulation of Chapter 2: zero input u2(t) and initial state x(0) =
[0.1, 0, 0.2, 0]T.

Case a. The four desired eigenvalues corresponding to a desired 5%
overshoot and 2 sec settling time were given earlier for case a : λ1,2 =
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−2 ± 2.10i and λ3,4 = −20, −21. By using the MATLAB function place
we find the following 2 × 4 state feedback gain matrix K:

K =
[

606 858 637 47
−3616 −166 759 446

]

On checking, the eigenvalues of A − BK are indeed those specified in
the place command. The reference input r(t) we take to be the same
as the open-loop input u(t), i.e., step inputs of magnitudes 20 and 10
N, respectively, for r1(t) and r2(t). Simulating the closed-loop system
response and comparing it with the open-loop system response yields
Figure 7.18.
The first thing evident in Figure 7.18 is that the closed-loop control law
attenuates the output (see Section 7.4). This is so because the control law
in effect adds “virtual” springs in addition to the “real” springs in the
system model; a stiffer set of springs will cause the output attenuation
seen in Figure 7.18. Before we can discuss the performance of the
control law, we must ensure that the steady-state closed-loop response
match that of the open-loop system. This can be done in two ways:
First, the output attenuation correction factors (simple term-by-term input
gains) are 14.3 and 3.99 for outputs y1(t) and y2(t), respectively. The
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FIGURE 7.18 Open- versus closed-loop responses for case a, with output
attenuation.
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FIGURE 7.19 Open- versus closed-loop responses for case a corrected via scalar
input gains.

corrected closed-loop responses following this approach are shown in
Figure 7.19. Second, using the modified control law with attenuation
matrix G and reference input equal to the open-loop steady state values
(R = [0.075, 0.125]T), results in the corrected closed-loop responses of
Figure 7.20. The input gain matrix G is

G =
[

1206 437
−3816 959

]

Now we see in both Figure 7.19 and Figure 7.20 that the designed control
law has improved the performance of the open-loop system significantly.
The settling time of 2 s has been achieved, so the closed-loop system
responses approach their steady-state values much sooner than those of
the open-loop system. However, in the top plot of Figure 7.19 we see that
the percent overshoot is much greater than the specified 5 percent. This
was not visible in the top plot of Figure 7.18 because of the vertical axis
scaling. This is a well-known problem from classical controls—there are
zeros (numerator roots) present in this system. The dominant second-order
eigenvalue specification method does not account for any zeros; thus the
results are skewed in the presence of zeros. In classical controls, a way
to handle this is preshaping the input via filters.
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FIGURE 7.20 Open- versus closed-loop responses for case a corrected via input
gain matrix.

Note that this overshoot problem is less severe when using the more
general G-method as shown in Figure 7.20. However, for the output
y2(t), there is a noticeable undershoot before it attains the desired value
of 0.125.

Case b. The four desired closed-loop eigenvalues derived from the
fourth-order ITAE characteristic polynomial are λ1,2 = −1.23 ± 3.66i and
λ3,4 = −1.81 ± 1.20i. Again using the MATLAB function place , we find
the following 1 × 4 state feedback gain vector K:

K = [ −145 −61 9 97
]

Since case b is a single-input, single-output situation, we can check this
result using Ackermann’s formula (MATLAB function acker ); the results
are identical. A quick check confirms that the eigenvalues of A − BK are
indeed those specified at the outset. For zero reference input and initial
state x(0) = [0.1, 0, 0.2, 0]T , the closed-loop state variable responses are
compared with the open-loop state variable responses in Figure 7.21.
Since the closed-loop state variables all tend to zero in steady state as
the open-loop states do, there is no output attenuation issue. We see in
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FIGURE 7.21 Open- versus closed-loop responses for case b.

Figure 7.21 that the designed control law has improved the performance
of the open-loop system significantly. The closed-loop system responses
meet their zero steady-state values much sooner than those of the open-
loop system. The displacements do not overshoot significantly, and the
velocity responses are both better than their open-loop counterparts.

Continuing Example 2: Rotational Electromechanical System

Shaping the Dynamic Response For control law design, we must
specify desired eigenvalues to improve the open-loop system performance.
In this example we will use a desired dominant first-order system, to be
applied later in control law design for Continuing Example 2. We will
use a dominant first-order system with time constant τ = 1

4 sec. We then
augment the dominant eigenvalue associated with this time constant with
two additional nondominant eigenvalues (we need three desired eigenval-
ues for our third-order system): real, negative, and larger amplitude so
that their effect does not change the dominant behavior very much.

The relationship between the desired dominant eigenvalue a and first-
order time constant τ is eat = e−t/τ ; therefore, a = −1/τ = −4. This
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yields the desired dominant first-order transfer function:

H(s) = −a

s − a
= 4

s + 4

Let us augment the dominant first-order eigenvalue to fit our third-order
system desired eigenvalues requirement as follows: We choose additional
eigenvalues approximately three times farther to the left to yield

λ1,2,3 = −4, −12, −13

Note that we do not specify repeated eigenvalues for λ2,3 to avoid any
numerical issues with repeated roots. The transfer function for the third-
order desired behavior that mimics first-order behavior is (normalizing for
a steady-state value of 1):

H3(s) = 624

s3 + 29s2 + 256s + 624

Figure 7.22 plots the augmented third-order desired response, along
with the dominant first-order system from which it was derived. Both
are normalized to a steady-state value of 1.0 for easy comparison. From
Figure 7.22 we see that the augmented third-order response (solid) mimics
the dominant first-order response (dashed) fairly closely. We see in the
dashed curve that after three time constants (at t = 0.75 s), the dominant
first-order response has achieved 95 percent of the steady-state value of
1.0. The augmented third-order response lags the dominant first-order
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FIGURE 7.22 Dynamic shaping for Continuing Example 2.
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response; we can make this arbitrarily close to the dashed curve by moving
the augmented eigenvalues even farther to the left. However, this may
lead to large numerical values for control gains, which is generally to be
avoided. This could potentially require large actuator amplitudes, perhaps
exceeding physical limits.

Control Law Design and Evaluation

For Continuing Example 2, we compute a state feedback gain matrix K to
move the closed-loop system eigenvalues where desired and hence achieve
the control objectives. Then we simulate the closed-loop behavior and
compare the open-loop system responses with those of the closed-loop
system.

We design the control law based on the desired eigenvalues devel-
oped in the preceding subsection, and we simulate the closed-loop sys-
tem response given the same conditions as the open-loop simulation of
Chapter 2 [zero initial state and a unit step input in voltage v(t)].

The three desired eigenvalues for this case, λ1,2,3 = −4, −12, −13,
were specified by a dominant first-order eigenvalue augmented by two
more real, negative eigenvalues farther to the left by a factor of three. By
using MATLAB functions place or acker we find the following 1 × 3
state feedback gain matrix K:

K = [
312 127 13

]
The eigenvalues of A − BK are indeed those that were specified, as the
reader may verify. Simulating the closed-loop system response for zero
initial state and unit step reference input and comparing with the open-loop
unit step response yields Figure 7.23.

There is no output attenuation issue because the open-loop response
increases linearly after the transient response has died out; this is as
expected because there is no torsional spring in the system model. How-
ever, we could use the input gain matrix method to achieve any desired
steady-state angular displacement for the closed-loop system.

The closed-loop angular displacement x1(t) in Figure 7.23 (top plot)
was artificially scaled to achieve a steady-state value of 0.5 rad. Com-
paring the open- and closed-loop angular displacement, we see that the
state feedback control law has effectively added a virtual spring whereby
we can servo to commanded angles rather than having the shaft angle
increase linearly without bound as in the open-loop case. In Figure 7.23,
the closed-loop angular velocity and acceleration both experience a tran-
sient and then tend to zero steady-state values. The open-loop values are
the same as those plotted in Figure 2.5.
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FIGURE 7.23 Open- versus closed-loop responses for Continuing Example 2.

For this example, the closed-loop system dynamics matrix is

A − BK =

 0 1 0

0 0 1
−624 −256 −29




Now the (3,1) element of A − BK is no longer 0 as it was for the open-
loop A matrix; this nonzero term represents the virtual spring provided by
the control law, allowing constant commanded shaft angles to be achieved.

The coefficients of the closed-loop characteristic polynomial can be
seen in the third row of A − BK , in ascending order of powers of s, with
negative signs. The closed-loop system is asymptotically stable, changed
from the marginally stable open-loop system because all three eigenvalues
are now negative real numbers.

7.8 HOMEWORK EXERCISES

Numerical Exercises

NE7.1 For the following cases, determine acceptable closed-loop system
eigenvalues to achieve the required behavior. In each case, plot
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the unit step response to demonstrate that the desired behavior is
approximately satisfied.
a. Determine acceptable eigenvalues for a second-, third-, and

fourth-order system to approximate a first-order system with a
time constant of 0.5 s.

b. Determine acceptable eigenvalues for a second-, third-, and
fourth- order system to approximate a second-order system with
a percent overshoot of 6 percent and a settling time of 4 s.

c. Co-plot the desired ITAE responses for second-, third-, and
fourth- order systems assuming ωn = 5 rad/s. Discuss your
results.

NE7.2 For each (A, B) pair below, use the Bass-Gura formula to calculate
the state feedback gain vector K to place the given eigenvalues
of the closed-loop system dynamics matrix A − BK . Check your
results.

a. A =
[ −1 0

0 −4

]
B =

[
1

1

]
λ1,2 = −2 ± 3i

b. A =
[

0 1

−6 −8

]
B =

[
0

1

]
λ1,2 = −4, −5

c. A =
[

0 1

−6 0

]
B =

[
0

1

]
λ1,2 = −4, −5

d. A =
[

0 8

1 10

]
B =

[
1

0

]
λ1,2 = −1 ± i

NE7.3 Repeat NE 7.2 using Ackermann’s Formula.

Analytical Exercises

AE7.1 Show that the (n + 1)-dimensional single-input, single-output state
equation

[
ẋ(t)

ξ̇ (t)

]
=

[
A 0

C 0

] [
x(t)

ξ(t)

]
+

[
B

0

]
u(t)

with output ξ(t) is controllable if and only if the n-dimensional
single-input, single-output state equation represented by (A, B,C)

is controllable and the (n + 1) × (n + 1) matrix
[

A B

C 0

]
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is nonsingular. What is the interpretation of the state variable ξ(t)?

AE7.2 Suppose that the pair (A, B) is controllable, and for any finite tf >

0, consider the state feedback gain matrix K = −BT W−1(0, tf ).
Show that the closed-loop state equation

ẋ(t) = (A − BK)x(t)

is asymptotically stable. Hint: Recall AE6.5.

AE7.3 Suppose that given the symmetric positive definite matrix Q, the
Riccati matrix equation

AT P + PA − PBBT P + Q = 0

has a symmetric positive-definite solution P . Show that the state
feedback law u(t) = −K x(t) with K = −BT P yields the closed-
loop state equation

ẋ(t) = (A − BK)x(t)

that is asymptotically stable, thereby implying that the pair (A, B)

is stabilizable.

AE7.4 For the linear state equation (7.1) and state feedback law (7.4), show
that the open- and closed-loop transfer functions are related by

HCL(s) = H(s)[I + K(sI − A)−1B]−1G

This indicates that the same closed-loop input-output behavior can
be achieved using a dynamic precompensator instead of state feed-
back. Hint: Use AE1.8.

Continuing MATLAB Exercises

CME7.1 For the system given in CME1.1:
a. Determine the desired eigenvalues for a generic second-order

system to obtain 1 percent overshoot and a 1-s settling time.
Plot the unit step response for this desired behavior and dis-
cuss your results.

b. Design a state feedback control law to achieve the eigen-
value placement of part a. Compare open- and closed-loop
responses to a unit step input, assuming zero initial condi-
tions. Normalize the closed-loop output level to match that of
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the open-loop system for easy comparison. Were your control
law design goals met?

c. Design a state feedback servomechanism to achieve the
eigenvalue placement of part a and a steady-state output
value of 1. Compare open- and closed-loop responses to a
unit step input. In this case, normalize the open-loop output
level to 1 for easy comparison. Were your control law design
goals met?

CME7.2 For the system given in CME1.2:

a. Determine the desired eigenvalues for a first-order system
with a time constant of 1 s, augmented by two additional
real, negative eigenvalues (the first exactly 10 times the dom-
inant eigenvalue, the third one less than the second). Plot the
unit step response for this desired behavior, and discuss your
results.

b. Design a state feedback control law to achieve the eigen-
value placement of part a. Compare open- and closed-loop
responses to a unit step input. Normalize the closed-loop
output level to match that of the open-loop system for easy
comparison. Were your control law design goals met?

c. Design a state feedback servomechanism to achieve the
eigenvalue placement of part a and a steady-state output
value of 1. Compare open- and closed-loop responses to a
unit step input. In this case, normalize the open-loop output
level to 1 for easy comparison. Were your control law design
goals met?

CME7.3 For the system given in CME1.3:

a. Determine the desired eigenvalues for a fourth–order ITAE
system with ωn = 2 rad/s. Plot the unit step response for this
desired behavior, and discuss your results.

b. Design a state feedback control law to achieve the eigen-
value placement of part a. Compare open- and closed-loop
responses to a unit step input. Normalize the closed-loop
output level to match that of the open-loop system for easy
comparison. Were your control law design goals met?

c. Design a state feedback servomechanism to achieve the
eigenvalue placement of part a and a steady-state output
value of 1. Compare open- and closed-loop responses to a
unit step input. In this case normalize, the open-loop output
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level to 1 for easy comparison. Were your control law design
goals met?

CME7.4 For the system given in CME1.4:
a) Determine the desired eigenvalues for a generic second-order

system to obtain 2 percent overshoot and a 2-s settling time.
Plot the unit step response for this desired behavior and dis-
cuss your results.

b) Design a state feedback control law to achieve the eigen-
value placement of part a. Compare open- and closed-loop
responses to a unit step input. Normalize the closed-loop
output level to match that of the open-loop system for easy
comparison. Were your control law design goals met?

c) Design a state feedback servomechanism to achieve the
eigenvalue placement of part a and a steady-state output
value of 1. Compare open- and closed-loop responses to a
unit step input. In this case, normalize the open-loop output
level to 1 for easy comparison. Were your control law design
goals met?

Continuing Exercises

CE7.1a Given control law design criteria of 3 percent overshoot and a
3-s settling time: (i) Calculate the undamped natural frequency
and damping ratio required for a standard generic second-order
system to achieve this (assuming a unit step input). What are the
associated system eigenvalues? Plot the unit step response for the
result and demonstrate how well the design criteria are met (nor-
malize your output to ensure the final value is 1.0). Display the
resulting rise time, peak time, settling time, and percent over-
shoot on your graph. (ii) Augment these desired second-order
system eigenvalues for control law design in CE1; since this
is a sixth-order system you, will need four additional eigenval-
ues (real, negative, approximately 10 times farther to the left).
Choose the first additional eigenvalue to be exactly ten times
the real part of the dominant second-order system eigenvalues.
For the remaining three, successively subtract one from the first
additional eigenvalue (to avoid repeated eigenvalues). (iii) Also
compute the optimal ITAE sixth-order coefficients and eigenval-
ues using an undamped natural frequency twice that from the
dominant second-order approach. Plot both the sixth-order ITAE
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and the augmented sixth-order desired step responses with the
dominant second-order step response of part (i) (normalize to
ensure steady-state values of 1.0); compare and discuss.

CE7.1b For the desired closed-loop eigenvalues from CE7.1a, design
state feedback control laws (i.e., calculate K) for all three cases
from CE2.1. For cases (i) and (ii), use the augmented sixth-order
eigenvalues based on dominant second-order behavior; for case
(iii), use the sixth-order ITAE eigenvalues. In each case, evaluate
your results: Plot and compare the simulated open- versus closed-
loop output responses for the same input cases as in CE2.1a; use
output attenuation correction so that the closed-loop steady-state
values match the open-loop steady-state values for easy compar-
isons.

CE7.2a Since this is a fourth-order system, we will need four desired
eigenvalues for future control law design in CE2. Use a fourth-
order ITAE approach with undamped natural frequency ωn =
3 rad/s to generate the four desired eigenvalues. Plot the desired
system impulse response.

CE7.2b For the desired closed-loop eigenvalues from CE7.2a, design
state feedback control laws (i.e., calculate K) for all three cases
from CE2.2. In each case, evaluate your results: Plot and com-
pare the simulated open- versus closed-loop output responses for
the same input cases as in CE2.2a. Be sure to scale the vertical
axes so that the closed-loop responses are clearly visible.

CE7.3a Use a dominant first-order system with time constant τ = 0.5 s.
What is the associated desired eigenvalue? Augment this desired
first-order eigenvalue for future control law design in CE3; since
this is a third-order system, you will need two additional eigen-
values (real, negative, approximately 10 times farther to the left).
Choose the first additional eigenvalue to be exactly 10 times
the dominant first-order eigenvalue. For the remaining eigen-
value, subtract one from the first additional eigenvalue (to avoid
repeated eigenvalues). Plot this augmented third-order desired
step response versus the dominant first-order step response (nor-
malize to ensure steady-state values of 1.0); compare and discuss.

CE7.3b For the desired closed-loop eigenvalues from CE7.3a, design
state feedback control laws (i.e., calculate K) for both cases from
CE2.3. In each case, evaluate your results: Plot and compare the
simulated open- versus closed-loop output responses for the same
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input cases as in CE2.3a [for case (ii), use output attenuation
correction so that the closed-loop steady-state values match the
open-loop steady-state values for easy comparison].

CE7.4a Based on your knowledge of the CE4 system and the methods of
this chapter, calculate a good set of desired closed-loop eigenval-
ues to be used as input to the control law design problem. Plot
the responses using appropriate input signals, and discuss your
results.

CE7.4b For your desired closed-loop eigenvalues from CE7.4a, design
a state feedback control law (i.e., calculate K). Evaluate your
results: Plot and compare the simulated open- versus closed-loop
output responses for a unit impulse input and zero initial condi-
tions as in CE2.4a.

CE7.5 In Chapter 5 we found that the CE1.5 system was not minimal.
However, since the open-loop system is controllable, for this
problem, use the fourth-order system for control law design, i.e.,
do not use the minimal second-order system. In this way you can
preserve the physical interpretation of the four state variables.

CE7.5a Based on your knowledge of the CE5 system and the methods of
this chapter, compute a good set of desired closed-loop eigenval-
ues to be used as input to the control law design problem. Plot
the responses using appropriate input signals, and discuss your
results.

CE7.5b For your desired closed-loop eigenvalues from CE7.5a, design
a state feedback control law (i.e., calculate K). Evaluate your
results: Plot and compare the simulated open- versus closed-loop
output responses for the initial conditions given in CE2.5a.



8
OBSERVERS AND

OBSERVER-BASED
COMPENSATORS

For the linear time-invariant state equation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
x(0) = x0 (8.1)

we know from Chapter 7 that if the pair (A, B) is controllable then, a
state feedback control law can be constructed to arbitrarily locate the
closed-loop eigenvalues. While this is an extremely powerful result, there
is one serious drawback. As we noted in Chapter 4, it is unreasonable to
expect in real-world applications that every state variable is measurable,
which jeopardizes are ability to implement a state feedback control law.
This fact motivated our pursuit of an estimate of the state vector derived
from measurements of the input and output and led us to the concept of
observability. In particular, we established the fundamental result that the
initial state can be uniquely determined (and therefore, the state trajectory
can be reconstructed) from input and output measurements when and
only when the state equation is observable. Unfortunately, the scheme
proposed for computing the initial state is not directly amenable to real-
time control.

In this chapter we present the linear state observer, also known as the
Luenberger observer, named after D. G. Luenberger, who did much of the
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groundbreaking work on state observation in the 1960s. As we will see, an
observer is itself a dynamic system that for an observable state equation
can be designed to provide an asymptotically convergent estimate of the
state. We then pursue related topics, including the system property of
detectability, which is related to observability in the same way that stabi-
lizability is related to controllability, and the construction of observers of
reduced dimension. Following this, we resolve the dilemma raised earlier
by showing that state feedback control laws can be implemented using the
observer-generated state estimate in place of the actual state. The result is
an observer-based compensator that has very special properties. Finally,
we conclude the chapter with MATLAB demonstrations of these concepts
using our Continuing MATLAB Example and Continuing Examples 1
and 2.

8.1 OBSERVERS

For the n-dimensional linear state equation (8.1), we define a linear state
observer to also be an n-dimensional linear state equation that accepts
u(t) and y(t) as inputs and whose state represents the estimate of x(t).
The observer assumes the form

˙̂x(t) = Ax̂(t) + Bu(t) + L[y(t) − ŷ(t)]
ŷ(t) = Cx̂(t)

x̂(0) = x̂0 (8.2)

which looks like a copy of the state equation (8.1) driven by an error
term y(t) − ŷ(t) that enters the dynamics through an n × p observer gain
matrix L. This error term is intended to drive the state estimate x̂(t) to
the actual state x(t) over time. To further explore this key convergence
issue, we define the estimation error x̃(t) = x(t) − x̂(t) in terms of which
we derive the error dynamics

˙̃x(t) = ẋ(t) − ˙̂x(t)

= [Ax(t) + Bu(t)] − {Ax̂(t) + Bu(t) + L(y(t) − ŷ(t))}
= Ax(t) − Ax̂(t) − L[Cx(t) − Cx̂(t)]

= Ax̃(t) − LCx̃(t)

= (A − LC)x̃(t) (8.3)

for which the initial state is given by x̃(0) = x(0) − x̂(0) = x0 − x̂0.
Note that since the error dynamics specify a homogeneous linear state
equation, if we could initialize the observer by x̂(0) = x̂0 = x0 to yield
zero initial error x̃(0) = 0, then x̃(t) ≡ 0 and thus x̂(t) = x(t) for all
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u(t)

y(t)

x(t)^

Plant x(t)

Observer

FIGURE 8.1 High-level observer block diagram.

t ≥ 0. However, since the initial state of Equation (8.1), x(0) = x0, is
presumably unknown, we cannot achieve perfect estimation, so we set
our sights on generating an asymptotically convergent estimate starting
with any initial error. This corresponds to the requirement that the error
dynamics (8.3) be asymptotically stable. We know from Chapter 6 that
the error dynamics will be asymptotically stable if and only if the matrix
A − LC that governs the error dynamics has strictly negative real-part
eigenvalues. Clearly, this eigenvalue condition depends on the observer
gain vector L.

A high-level observer diagram is shown in Figure 8.1. The true state
x(t) of the Plant is not known in general. The observer inputs are system
input u(t) and output (via sensors) y(t), and the observer output is the state
estimate x̂(t). The observer state equation (8.2) is shown graphically in the
block diagram of Figure 8.2. This figure provides details for Figure 8.1.

ŷ(t)

+

+−

+

+

Plant x(t)
u(t) y(t)

L

A

B C
x(t)^x̂(t)

x0
^

x(t)^

FIGURE 8.2 Detailed observer block diagram.
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Observer Error Eigenvalue Placement

Since A − LC and (A − LC )T = AT − CT LT have identical eigenvalues,
we see that on making the following associations

A ↔ AT B ↔ CT

K ↔ LT

the problem of choosing the observer gain vector L to place the eigen-
values of A − LC at desirable locations is equivalent to the fundamen-
tal problem considered in Chapter 6: choosing the “state feedback gain
matrix” LT to locate the eigenvalues of AT − CT LT . Not surprisingly, the
duality between these problems allows us to leverage the heavy lifting of
Chapter 6 to yield a streamlined treatment of the problem at hand.

Theorem 8.1 For any symmetric set of n complex numbers {µ1, µ2, . . . ,

µn}, there exists an observer gain matrix L such that σ(A − LC ) =
{µ1, µ2, . . . , µn} if and only if the pair (A, C) is observable.

Proof. By duality, the pair (A, C) is observable if and only if the pair
(AT , CT ) is controllable. By Theorem 7.1, there exists an LT such that
σ(AT − CT LT ) = {µ1, µ2, . . . , µn} if and only if the pair (AT , CT ) is
controllable. These relationships are illustrated in the following diagram,
in which the double arrows represent the equivalences reflected by our
“if and only if” statements and the eigenvalue relationship σ(A − LC) =
σ(AT − CT LT ).

(A, C) is observable ⇔ (AT , CT ) is controllable
�

Arbitrary eigenvalue
placement for
A − LC

⇔ Arbitrary eigenvalue
placement for
AT − CT LT

Consequently, we conclude that there exists an observer gain matrix L

such that σ(A − LC ) = {µ1, µ2, . . . , µn} if and only if the pair (A, C) is
observable. �

We also may exploit the duality between these two eigenvalue place-
ment problems to derive observer gain formulas for the single-output case
by appropriately modifying the feedback gain formulas from Chapter 6.
We again refer the interested reader to Rugh (1996) and Kailath (1980) for
observer gain constructions in the multiple-output case. The Chapter 6 dis-
cussion relating transient response characteristics to eigenvalue locations
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also applies to the problem of shaping the estimation error response.
We note here that it is generally desirable to have an observer error
response that is much faster (typically an order of magnitude) than the
desired closed-loop transient response. We will elaborate on this point in
Section 8.4.

Observer Gain Formula for Observer Canonical Form

The observer canonical form involves the observable pair (AOCF, COCF)

specified by

AOCF =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −an−1




COCF = [ 0 0 · · · 0 1 ]

We know that the characteristic polynomial of AOCF is also written down,
by inspection, as

|sI − AOCF| = sn + an−1s
n−2 + · · · + a2s

2 + a1s + a0

and as in Chapter 6, we represent our desired eigenvalues {µ1, µ2, . . . , µn}
by the associated characteristic polynomial

α(s) = (s − µ1)(s − µ2) · · · (s − µn)

= sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

Thus, on setting

LOCF =




α0 − a0

α1 − a1

α2 − a2

...

αn−1 − an−1




we obtain

AOCF − LOCFCOCF =




0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −an−1
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−




α0 − a0

α1 − a1

α2 − a2

...

αn−1 − an−1




[ 0 0 · · · 0 1 ]

=




0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2

...
...

. . .
...

...

0 0 · · · 1 −αn−1




having the characteristic polynomial

|sI − AOCF + LOCFCOCF| = sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

as desired.

Bass-Gura Formula

Given the observable pair (A, C), we know from Chapter 6 that corre-
sponding to the controllable pair (AT, CT),

LT = [
(α0 − a0) (α1 − a1) (α2 − a2) · · · (αn−1 − an−1)

]

×




P(AT ,CT )




a1 a2 · · · an−1 1

a2 a3 · · · 1 0
...

...
. . .

...
...

an−1 1 · · · 0 0

1 0 · · · 0 0







−1

is such that

|sI − (AT − CTLT)| = sn + αn−1s
n−1 + · · · + α2s

2 + α1s + α0

Thus, by simply taking the transpose of this expression and using

Q(A,C) = P T
(AT,CT)
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along with the fact that

Q−1
OCF =




a1 a2 · · · an−1 1

a2 a3 · · · 1 0
...

... . ..
...

...

an−1 1 · · · 0 0

1 0 · · · 0 0




= P −1
CCF

is symmetric, we obtain the Bass-Gura formula for the observer gain
vector, that is,

L =







a1 a2 · · · an−1 1

a2 a3 · · · 1 0
...

... . ..
...

...

an−1 1 · · · 0 0

1 0 · · · 0 0




Q(A,C)




−1 


α0 − a0

α1 − a1

α2 − a2

...

αn−1 − an−1




Example 8.1 We construct an asymptotic state observer for the three-
dimensional state equation




ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 1 0

0 0 1

−4 −4 −1







x1(t)

x2(t)

x3(t)


 +




0

0

1


 u(t)

y(t) = [ 1 0 0 ]




x1(t)

x2(t)

x3(t)




Since this state equation is in controller canonical form, we obtain the
open-loop characteristic polynomial by inspection, from which we deter-
mine the polynomial coefficients and eigenvalues as follows:

a(s) = s3 + s2 + 4s + 4
= (s + 1)(s − j2)(s + j2)

λ1,2,3 = −1, ±j2
a2 = 1 a1 = 4 a0 = 4

We choose the following eigenvalues for the observer error dynamics:

{µ1, µ2, µ3} = {−1, −2, −3}
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so that the desired characteristic polynomial and associated polynomial
coefficients are

α(s) = (s + 1)(s + 2)(s + 3)

= s3 + 6s2 + 11s + 6
α2 = 6 α1 = 11 α0 = 6

We check observability of the pair (A, C) using the observability matrix

Q =



C

CA

CA2


 =




1 0 0

0 1 0

0 0 1




which is clearly nonsingular, so this state equation is observable. We
next proceed directly to the observer gain vector computation using the
Bass-Gura formula:

L =






4 1 1

1 1 0

1 0 0







1 0 0

0 1 0

0 0 1







−1 


6 − 4

11 − 4

6 − 1




=



0 0 1

0 1 −1

1 −1 −3







2

7

5




=



5

2

−20




With the aid of MATLAB, we see that

A − LC =



−5 1 0

−2 0 1

16 −4 −1




has eigenvalues {−1, −2, −3} and characteristic polynomial α(s) = s3 +
6s2 + 11s + 6, so the desired result has been achieved. The asymptotic
state observer is given by




˙̂x1(t)

˙̂x2(t)

˙̂x3(t)


 =




−5 1 0

−2 0 1

16 −4 −1







x̂1(t)

x̂2(t)

x̂3(t)


 +




0

0

1


u(t) +




5

2

−20


 y(t)
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We investigate the observer performance for the following initial con-
ditions and input signal:

x0 =
[ 1

−1
1

]
x̂0 =


 0

0
0


 u(t) = sin(t) t ≥ 0

Since in practice the initial state x0 is unknown, the initial state for the
observer typically is set to x̂0 = 0 because in a probabilistic sense this rep-
resents the expected value of an initial state that is a zero mean random
variable. Figure 8.3 compares the state response x(t) with the observer
response x̂(t). Even though the original state equation is not asymptoti-
cally stable and is driven by a sinusoidal input signal, x̂(t) asymptotically
converges to x(t), as dictated by the asymptotically stable observer error
dynamics. �

x 1
(u

ni
t)

x 2
(u

ni
t/s

ec
)

x 3
(u

ni
t/s

ec
2 )

time (sec)
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Open-Loop
Observer

0 5 10 15
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−2

−1

0

1

FIGURE 8.3 Open-loop state response and observer estimates for Example 8.1.
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Example 8.2 In this example we design an observer for the state equa-
tion appearing in Example 7.4, which we repeat here for convenience.
Thus 


ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 1 0

0 0 1

−18 −15 −2







x1(t)

x2(t)

x3(t)


 +




0

0

1


u(t)

y(t) = [ 1 0 0 ]




x1(t)

x2(t)

x3(t)




which, as we recall, is in controller canonical form. Therefore, we see
by inspection that the characteristic polynomial and polynomial coeffi-
cients are

a(s) = s3 + 2s2 + 15s + 18 a2 = 2 a1 = 15 a0 = 18

In Example 7.4 we specified desired closed-loop eigenvalues to be
µ1,2,3 = −1.33 ± j1.49, −13.3 to achieve a percent overshoot of 6
percent and a settling time of 3 s for the closed-loop step response. We
select eigenvalues for the observer error dynamics by scaling the preceding
eigenvalues by 10 to give µ1,2,3 = −13.3 ± j14.9, −133.3. The desired
characteristic polynomial for the observer error dynamics then becomes

α(s) = s3 + 160s2 + 3955s + 53260

α2 = 160 α1 = 3955 α0 = 53260

Note that when comparing this characteristic polynomial for the ob-
server error dynamics with s3 + 16s2 + 39.55s + 53.26 associated with
the eigenvalues achieved by state feedback in Example 7.4, we see that
160/16 = 10, 3955/39.55 = 100, and 53260/53.26 = 1000 as a result of
the factor of 10 relating the respective eigenvalues.

We next check observability of the pair (A, C) via

Q =



C

CA

CA2


 =




1 0 0

0 1 0

0 0 1




which is obviously nonsingular, so the state equation is observable. We
then proceed to compute the observer gain vector using the Bass-Gura
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formula, that is,

L =






15 2 1

2 1 0

1 0 0







1 0 0

0 1 0

0 0 1







−1 


(53260 − 18)

(3955 − 15)

(160 − 2)




=



0 0 1

0 1 −2

1 −2 −11







53242

3940

158




=



158

3624

43624




We conclude the example by verifying that

A − LC =

 0 1 0

0 0 1

−18 −15 −2


 −




158

3624

43624


 [ 1 0 0 ]

=



−158 1 0

−3624 0 1

−43642 −15 −2




has eigenvalues λ1,2,3 = −13.3 ± j14.9, −133.3 as required. We observe
that the “fast” observer eigenvalues we specified resulted in large observer
gains that may be impractical. Therefore, we may need to trade off the
rapid convergence of the observer error with practical limitations on
achievable observer gains. �

Ackermann’s Formula

Given the observable pair (A, C), again, our strategy is to first apply our
Chapter 6 result to the controllable pair (AT, CT) to write

LT = [ 0 0 · · · 0 1 ]P −1
(AT ,CT )

α(AT )

Using

α(AT ) = (AT )n + αn−1(A
T )n−1 + · · · + α2(A

T )2 + α1A
T + α0I

= (An)T + αn−1(A
n−1)T + · · · + α2(A

2)T + α1A
T + α0I

= [α(A)]T
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we obtain [α(AT )]T = α(A), which along with

[P −1
(AT ,CT )

]T = [P T
(AT ,CT )]

−1 = Q−1
(A,C)

gives

L = α(A)Q−1
(A,C)




0

0
...

0

1




Example 8.3 We demonstrate the use of Ackermann’s formula for the
state equation given in Example 8.1. We have previously computed

Q =



C

CA

CA2


 =




1 0 0

0 1 0

0 0 1




In terms of the desired characteristic polynomial α(s) = s3 + 6s2 + 11s +
6, we construct

α(A) = A3 + 6A2 + 11A + 6I

=



−4 −4 −1

4 0 −3

12 16 3


 + 6




0 0 1

−4 −4 −1

4 0 −2




+ 11




0 1 0

0 0 1

−4 −4 −1


 + 6




1 0 0

0 1 0

0 0 1




=



2 7 5

−20 −18 2

−8 −28 −20




so that

L =



2 7 5

−20 −18 2

−8 −28 −20







1 0 0

0 1 0

0 0 1




−1 


0

0

1


 =




5

2

−20




which agrees with the previously-derived result. �
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8.2 DETECTABILITY

We have seen that for an observable state equation, a state observer can
be constructed for which the observer error dynamics have arbitrarily
assignable eigenvalues by proper choice of the observer gain matrix. Since
the freedom to assign these eigenvalues implies that we can asymptoti-
cally stabilize the observer error dynamics, we can say that observability
is a sufficient condition for asymptotic stabilization of the observer error
dynamics via the observer gain matrix. In situations where the state
equation is not observable, we investigate whether or not asymptotic sta-
bilization of the observer error dynamics is still possible. To do so, we
introduce the concept of detectability. We will see that a duality rela-
tionship exists between detectability and stabilizability that is similar to
the duality relationship between observability and controllability that we
established in Chapter 4. To get started, we return to the example that we
considered in Section 7.4 to introduce stabilizability. The state equation

ẋ(t) =



1 0 0

1 −1 1

0 0 −2


 x(t) +




1

1

0


 u(t)

y(t) = [ 1 0 0 ]x(t)

is already in the standard form for an unobservable state equation, as can
be seen from the partitioning

[
A11 0
A21 A22

]
=




1 | 0 0||
1 |−1 1|
0 | 0 −2


 [ C1 0 ] = [ 1| 0 0 ]

in which the pair (A11, C1) specifies an observable one-dimensional sub-
system. In terms of an observer gain vector L = [ l1 l2 l3 ]T we have

A − LC =



1 | 0 0||
1 |−1 1|
0 | 0 −2


 −


 l1

l2
l3


 [ 1| 0 0 ]

=



1 + l1 | 0 0|||[
1
0

]
−

[
l2
l3

]
(1) | −1 1

0 −2|
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in which the observer gain l1 can be chosen easily to place the lone eigen-
value of the observable subsystem. Because of the lower block triangular
structure, the three eigenvalues of A − LC are 1 + l1, along with those
of the unobservable subsystem, located at −1 and −2. Thus we conclude
that even though the state equation is not observable, it is still possible
to construct an observer gain vector specifying an observer that yields
asymptotically stable observer error dynamics governed by the eigenval-
ues of A − LC . We emphasize that asymptotically stable observer error
dynamics are achievable directly because the unobservable subsystem,
which cannot be influenced by the observer gain vector, is asymptotically
stable to begin with. We also see that the observer gains l2 and l3 have no
influence on the eigenvalues of A − LC . We now formalize these notions
in the following definition:

Definition 8.2 The linear state equation (8.1) [or the pair (A, C), for
short] is detectable if there exists an observer gain matrix L for which all
eigenvalues of A − LC have strictly negative real part.

We see from this definition and our prior eigenvalue placement results
that observability implies detectability. On the other hand, the preceding
example indicates that the converse does not hold. A state equation can
be detectable but not observable. We therefore regard detectability as a
weaker condition than observability, just as stabilizability is a weaker
condition than controllability.

The analysis in the preceding example can be generalized as follows:
If the pair (A, C) is observable, then it is detectable, as we have already
noted, so we consider the case in which the pair (A, C) is not observable.
We know that there exists a coordinate transformation x(t) = Tz (t) such
that the transformed state equation has

Â =
[

A11 0
A21 A22

]
Ĉ = [ C1 0 ]

in which the pair (A11, C1) is observable. With L̂ = [ LT
1 LT

2 ]T a con-
formably partitioned observer gain matrix, we have

Â − L̂Ĉ =
[

A11 − L1C1 0
A21 − L2C1 A22

]

whose eigenvalues are those of A11 − L1C1, along with those of the A22.
Because (A11, C1) is an observable pair, L1 can be chosen such that
the eigenvalues of A11 − L1C1 have strictly negative real part. However,
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the unobservable subsystem associated with A22 is uninfluenced by the
observer gain matrix, and the eigenvalues of A22 will be among the eigen-
values of Â − L̂Ĉ for any L̂. Consequently, in order for every eigenvalue
of Â − L̂Ĉ to have a strictly negative real part, the eigenvalues of A22

must have strictly negative real parts. We therefore see that in the case
where the pair (A, C) is not observable, detectability requires that the
unobservable subsystem be asymptotically stable. We also note that L2

plays no role in this analysis.
With the aim of deriving Popov-Belevitch-Hautus tests that provide

algebraic criteria for detectability comparable with those presented previ-
ously for stabilizability, we first establish that a formal duality relationship
exists between stabilizability and detectability analogous to that relating
controllability and observability. Specifically, we can make the following
statements:

The pair (A, B) is stabilizable if and only if the pair (AT , BT ) is
detectable.

The pair (A, C) is detectable if and only if the pair (AT , CT ) is stabi-
lizable.

For the first statement, if the pair (A, B) is stabilizable, then, by defini-
tion, there exists a state feedback gain matrix K for which all eigenvalues
of A − BK have strictly negative real parts. Since the matrix transpose
operation does not affect eigenvalues, it follows that all eigenvalues of
(A − BK )T = AT − KT BT also have strictly negative real parts. By inter-
preting KT as an observer gain matrix, we conclude that the pair (AT ,BT )

is detectable. The converse can be established by reversing the preceding
steps, and the second statement can be argued in an analogous fashion.
The Popov-Belevitch-Hautus tests for stabilizability now can be dualized
to yield the following result for detectability:

Theorem 8.3 The following statements are equivalent:

1. The pair (A, C) is detectable.
2. There exists no right eigenvector of A associated with an eigenvalue
having nonnegative real part that is orthogonal to the rows of C.

3. The matrix

[
C

λI − A

]
has full-column rank for all complex λ with

nonnegative real parts.

Proof. A proof of the theorem can be assembled from the following
relationships:
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• The pair (A, C) is detectable if and only if the pair (AT , CT ) is
stabilizable.

• There exists a right eigenvector of A associated with an eigenvalue
having nonnegative real part that is orthogonal to the rows of C

if and only if there exists a left eigenvector of AT associated with
an eigenvalue having nonnegative real part that is orthogonal to the
columns of CT ,

• rank

[
C

λI − A

]
= rank [ λI − AT CT ] for all complex λ.

The details are left to the reader. �

Example 8.4 Recall the unobservable state equation introduced in Ex-
ample 4.3 and revisited in Examples 4.7 and 4.8, that is,

 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =

[ 0 0 −6
1 0 −11
0 1 −6

]
 x1(t)

x2(t)

x3(t)




y(t) = [ 0 1 −3 ]


 x1(t)

x2(t)

x3(t)




It is straightforward to check that the coordinate transformation x(t) =
T z(t) with

T =

 3 1 2

1 0 3
0 0 1




yields the transformed state equation given by coefficient matrices

Â = T −1AT

=

 0 1 1

−2 −3 0
1 0 −3


 Ĉ = CT

= [ 1 0 | 0 ]

which, based on the preceding partitioning, is in the standard form for
an unobservable state equation. Moreover, the unobservable subsystem is
one-dimensional with A22 = −3. Hence this state equation is detectable.
Arbitrarily choosing two eigenvalues of the observer error dynamics to be
−2 + j2, −2 − j2, the Bass-Gura formula applied to the observable pair
(A11, C1) identified earlier yields

L1 =
[

1
3

]
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for which

A11 − L1C1 =
[

0 1
−2 −3

]
−

[
1
3

]
[ 1 0 ] =

[ −1 1
−5 −3

]

has these specified eigenvalues. Therefore,

L̂ =

 1

3
0




is such that Â − ˆLC has the three eigenvalues −2 + j2, −2 − j2, and
−3. Finally, the observer gain vector

L = T L̂ =

 3 1 2

1 0 3
0 0 1





 1

3
0


 =


 6

1
0




yields A − LC also having eigenvalues −2 + j2, −2 − j2, and −3.
We also saw in Example 4.7 that v3 = [ 2 3 1 ]T is a right eigenvec-

tor of A associated with the eigenvalue λ3 = −3 < 0, for which Cv3 = 0.
We can make the stronger assertion that the only right eigenvectors of A

orthogonal to C are nonzero scalar multiples of v3 and therefore are also
associated with λ3. We conclude from Theorem 8.3 that since there exists
no right eigenvector of A associated with an eigenvalue having nonneg-
ative real part that is orthogonal to the rows of C, the state equation is
detectable. We also see that λ3 = −3 is the only value of λ for which

rank

[
C

λI − A

]
has less than rank 3, so rank

[
C

λI − A

]
has full-column

rank 3 for all λ with nonnegative real parts, and again detectability follows
from Theorem 8.3. �

8.3 REDUCED-ORDER OBSERVERS

The observer design presented in Section 8.1 has dimension equal to
that of the original state equation (8.1) and therefore is referred to as
a full-order observer. We now show that having access to p independent
output measurements provides information about the state vector that can
be used in the estimation process to allow a reduction in the observer
dimension. The development in this subsection follows the presentation
in Friedland (1986).



REDUCED-ORDER OBSERVERS 317

We first suppose that the state vector can be decomposed into

x(t) =
[

x1(t)

x2(t)

]

in terms of which the output is y(t) = x1(t). This reflects the real-world
situation in which a subset of the system’s state variables is sensed directly
and therefore need not be estimated. We partition the state equation
accordingly to yield[

ẋ1(t)

ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)

x2(t)

]
+

[
B1

B2

]
u(t)

y(t) = [ I 0 ]

[
x1(t)

x2(t)

]

That x1(t) is determined directly from y(t) suggests the perfect estimate
x̂1(t) = y(t) = x1(t), and it remains to produce an estimate of x2(t). For
this, we consider an estimate of the form

x̂2(t) = Ly(t) + w(t)

in which w(t) is generated by the following (n − p)-dimensional state
equation having y(t) and u(t) as inputs, that is,

ẇ(t) = Jw(t) + Ny(t) + Mu(t)

As in the full-order observer case, we consider the estimation error

x̃(t) =
[

x̃1(t)

x̃2(t)

]
=

[
x1(t) − x̂1(t)

x2(t) − x̂2(t)

]

Since x̂1(t) ≡ x1(t), we have x̃1(t) ≡ 0, and we need only consider the
dynamics governing x̃2(t), that is,

˙̃x2(t) = ẋ2(t) − ˙̂x2(t)

= [A21x1(t) + A22x2(t) + B2u(t)] − [Lẏ(t) + ẇ(t)]

= [A21x1(t) + A22x2(t) + B2u(t)] − [L(A11x1(t) + A12x2(t)

+ B1u(t)) + Jw(t) + Ny(t) + Mu(t)]

By substituting

w(t) = x̂2(t) − Lx1(t)

= x2(t) − x̃2(t) − Lx1(t)
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we obtain after some algebra

˙̃x2(t) = J x̃2(t) + (A21 + JL − N − LA11)x1(t)

+ (A22 − J − LA12)x2(t)

+ (B2 − M − LB1)u(t)

To obtain homogeneous error dynamics, we set

J = A22 − LA12

N = A21 + JL − LA11

M = B2 − LB1

to cancel the x2(t), x1(t), and u(t) terms, respectively, which results in

˙̃x2(t) = J x̃2(t) x̃2(0) = x2(0) − x̂2(0)

To ensure that x̃2(t) tends to zero as time tends to infinity for all x̃2(0),
we require that

J = A22 − LA12

has strictly negative real-part eigenvalues. The following result is of inter-
est in this regard:

Proposition 8.4 The pair (A22, A12) is observable if and only if the pair([
A11 A12

A21 A22

]
, [ I 0 ]

)

is observable.

The proof is left as an analytical exercise for the reader. We offer the hint
that the Popov-Belevitch-Hautus rank test for observability makes for an
economical development.

To summarize the preceding discussion, for the case in which y(t) =
x1(t), a reduced-order observer of dimension n − p is specified by

ẇ(t) = (A22 − LA12)w(t) + (A21 + JL − LA11)y(t)

+ (B2 − LB1)u(t)[
x̂1(t)

x̂2(t)

]
=

[
y(t)

Ly(t) + w(t)

]

in which the (n − p) × p observer gain matrix L is constructed so that
the n − p eigenvalues of J = A22 − LA12 have strictly negative real parts.
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We now proceed to the general case beginning with the state equa-
tion (8.1), which we assume to be observable; in addition, we also assume
that C has full row rank. The latter assumption guarantees that the out-
put y(t) provides p independent measurements of the state vector. This
assumption comes with no real loss of generality because measurements
corresponding to certain rows in C that are linearly dependent on the
remaining rows can be discarded. As a consequence of this rank assump-
tion, it is possible to find an (n − p) × n matrix E such that[

C

E

]

is n × n and nonsingular. Setting

T −1 =
[

C

E

]
, T = [ P Q ]

we apply the coordinate transformation

z(t) =
[

z1(t)

z2(t)

]
= T −1x(t) =

[
Cx(t)

Ex(t)

]

which yields z1(t) = y(t). Letting

T −1AT =
[

C

E

]
A[ P Q ] =

[
CAP CAQ
EAP EAQ

]

=
[

A11 A12

A21 A22

]

T −1B =
[

C

E

]
B

=
[

B1

B2

]

CT = C[ P Q ] = [ CP CQ ]

= [ I 0 ]

yields the transformed state equation that corresponds to the special case
we first considered:[

ż1(t)

ż2(t)

]
=

[
A11 A12

A21 A22

] [
z1(t)

z2(t)

]
+

[
B1

B2

]
u(t)

y(t) = [ I 0 ]

[
z1(t)

z2(t)

]
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Since coordinate transformations do not affect observability, by virtue
of Proposition 8.4, the following statements are equivalent:

• The pair (A, C) is observable.

• The pair

([
A11 A12

A21 A22

]
, [ I 0 ]

)
is observable.

• The pair (A22, A12) is observable.

All that is left for us to do is to relate the previously derived reduced-
order observer description to the original state equation. As before, we
choose the observer gain matrix L to locate the n − p eigenvalues of J =
A22 − LA12 at desired locations. This is possible under the assumption
that the pair (A, C) is observable because this, as indicated earlier, is
equivalent to observability of the pair (A22, A12). Following this, we set

J = A22 − LA12

= (EAQ) − L(CAQ)

= (E − LC)AQ

N = A21 + JL − LA11

= (EAP) + ((E − LC)AQ)L − L(CAP)

= (E − LC)A(P + QL)

M = B2 − LB1

= (E − LC)B

With these modified definitions, the reduced-order observer dynamics
again are given by

ẇ(t) = Jw(t) + Ny(t) + Mu(t)

from which we construct the estimate

x̂(t) = T ẑ(t)

= [ P Q ]

[
ẑ1(t)

ẑ2(t)

]

= [ P Q ]

[
y(t)

Ly(t) + w(t)

]

= Qw(t) + (P + QL)y(t)
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w(t)+
E-LC

AQ

u(t)
Q

y(t)

x(t)^

B

AP

w(t)

L

z2 (t)^+

+
+

+

P

+

+

FIGURE 8.4 Reduced-order observer block diagram.

On rearranging these relationships slightly to yield

ẇ(t) = (E − LC)[AQẑ2(t) + APy(t) + Bu(t)]

ẑ2(t) = Ly(t) + w(t)

x̂(t) = Py(t) + Qẑ2(t)

we see that the reduced-order observer can be represented by the block
diagram of Figure 8.4.

Example 8.5 We design a reduced-order observer for the state equation
of Example 8.1. The output equation already has the required form, so
a state coordinate transformation is not required and we partition the
remaining state equation coefficient matrices as

[
A11 A12

A21 A22

]
=


 0 1 0

0 0 1
−4 −4 −1


 [

B1

B2

]
=


 0

0
1




The observable pair (A22, A12) has the observability matrix

Q2 =
[

A12

A12A22

]
=

[
1 0
0 1

]

Upon selecting desired eigenvalues {−5, −5} yielding the desired char-
acteristic polynomial α(s) = s2 + 10s + 25, Ackermann’s formula gives
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the observer gain vector

L = α(A22)Q
−1
2

[
0
1

]

=
([

0 1
−4 −1

]2

+ 10 ·
[

0 1
−4 −1

]
+ 25 ·

[
1 0
0 1

]) [
1 0
0 1

]−1 [
0
1

]

=
[

9
12

]

With

J = A22 − LA12

=
[

0 1
−4 −1

]
−

[
9

12

]
[ 1 0 ] =

[ −9 1
−16 −1

]

N = A21 + JL − LA11

=
[

0
−4

]
+

[ −9 1
−16 −1

] [
9

12

]
−

[
9

12

]
(0) =

[ −69
−160

]

M = B2 − LB1 =
[

0
1

]
−

[
9

12

]
(0) =

[
0
1

]

we construct the two-dimensional reduced-order observer

[
ẇ1(t)

ẇ2(t)

]
=

[ −9 1
−16 −1

] [
w1(t)

w2(t)

]
+

[ −69
−160

]
y(t) +

[
0
1

]
u(t)


 x̂1(t)

x̂2(t)

x̂3(t)


 =


 y(t)

9y(t) + w1(t)

12y(t) + w2(t)




The combined open-loop system and reduced-order observer is given by
the five-dimensional state equation




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẇ1(t)

ẇ2(t)


 =




0 1 0 0 0
0 0 1 0 0

−4 −4 −1 0 0
−69 0 0 −9 1

−160 0 0 −16 −1







x1(t)

x2(t)

x3(t)

w1(t)

w2(t)


 +




0
0
1
0
1


u(t)
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 x̂1(t)

x̂2(t)

x̂3(t)


 =


 1 0 0

9 0 0
12 0 0

∣∣∣∣∣∣
0 0
1 0
0 1







x1(t)

x2(t)

x3(t)

w1(t)

w2(t)




We investigate the reduced-order observer performance for the follow-
ing initial conditions and input signal:

x0 =
[ 1

−1
1

]
w0 =

[ −9
−12

]
u(t) = sin(t) t ≥ 0

This corresponds to the same open-loop initial state and input signal
as in Example 8.1. The reduced-order observer’s initial state was cho-
sen to yield x̂2(0) = 9y(0) + w1(0) = 0 and x̂3(0) = 12y(0) + w2(0) =
0. Figure 8.5 compares the state response x(t) with the reduced-order
observer estimate x̂(t). We observe that x̂1(t) exactly matches x1(t) be-
cause we have direct access to y(t) = x1(t). For the remaining two state
variables, we see that x̂2(t) and x̂3(t) asymptotically converge to x2(t)

and x3(t), respectively, with a rate of convergence that is faster than that
exhibited in Example 8.1. This is because the two eigenvalues that gov-
ern this convergence were chosen to be farther to the left in the complex
plane compared with the three eigenvalues selected in Example 8.1.

8.4 OBSERVER-BASED COMPENSATORS AND THE
SEPARATION PROPERTY

For the linear state equation (8.1), we know that

• Controllability of the pair (A, B) is necessary and sufficient for arbi-
trary eigenvalue placement by state feedback

u(t) = −Kx(t) + r(t)

• Observability of the pair (A, C) is necessary and sufficient for state
estimation via

˙̂x(t) = Ax̂(t) + Bu(t) + L[y(t) − Cx̂(t)]

to yield observer error dynamics with arbitrarily placed eigenvalues.
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FIGURE 8.5 Open-loop state response and reduced-order observer estimates for
Example 8.5.

We now investigate what happens if we combine these results by replac-
ing the true state vector x(t) in the state feedback control law with the
state estimate x̂(t) produced by the observer to yield

u(t) = −Kx̂(t) + r(t)
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K
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FIGURE 8.6 High-level observer-based compensator block diagram.
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x0
^

FIGURE 8.7 Detailed observer-based compensator block diagram.

This interconnection of a state feedback control law and a state observer
results in a dynamic observer-based compensator given by the state
equation

˙̂x(t) = Ax̂(t) + Bu(t) + L[y(t) − Cx̂(t)]

u(t) = −Kx̂(t) + r(t)

or

˙̂x(t) = (A − BK − LC)x̂(t) + Ly(t) + Br(t)

u(t) = −Kx̂(t) + r(t) (8.4)

which is a particular type of dynamic output feedback compensator.
A high-level observer-based compensator block diagram is shown in
Figure 8.6; details are shown in Figure 8.7.

The feedback interconnection of the open-loop state equation (8.1) and
the observer-based compensator (8.4) yields the 2n-dimensional closed-
loop state equation[

ẋ(t)
˙̂x(t)

]
=

[
A −BK

LC A − BK − LC

] [
x(t)

x̂(t)

]
+

[
B

B

]
r(t)
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[
x(0)

x̂(0)

]
=

[
x0

x̂0

]

y(t) = [ C 0 ]

[
x(t)

x̂(t)

]
(8.5)

Although the gain matrices K and L can be chosen to solve their
respective eigenvalue placement problems, it is not yet clear how this
relates to closed-loop stability, which involves the 2n eigenvalues of[

A −BK
LC A − BK − LC

]

To investigate further, we consider the coordinate transformation[
x(t)

x̃(t)

]
=

[
I 0
I −I

] [
x(t)

x̂(t)

] [
x(t)

x̂(t)

]
=

[
I 0
I −I

] [
x(t)

x̃(t)

]

which has the effect of replacing the observer state x̂(t) with the observer
error x̃(t) as part of the 2n-dimensional closed-loop state vector. Note
that interestingly enough, this transformation satisfies T −1 = T . Direct
calculations give

ẋ(t) = Ax(t) − BK x̂(t) + Br(t)

= Ax(t) − BK [x(t) − x̃(t)] + Br(t)

= (A − BK )x(t) − BK x̃(t) + Br(t)

and

˙̃x(t) = ẋ(t) − ˙̂x(t)

= [Ax (t) − BK x̂(t) + Br(t)] − [(A − BK − LC )x̂(t) + LCx(t)

+ Br(t)]

= A[x(t) − x̂(t)] − LC [x(t) − x̂(t)]

= (A − LC )x̃(t)

so the closed-loop state equation becomes in the new coordinates
[

ẋ(t)
˙̃x(t)

]
=

[
A − BK BK

0 A − LC

] [
x(t)

x̃(t)

]
+

[
B

0

]
r(t)

y(t) = [ C 0 ]

[
x(t)

x̃(t)

]
(8.6)
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Because of the block triangular structure of the transformed closed-loop
system dynamics matrix, we see that the 2n closed-loop eigenvalues are
given by

σ

([
A − BK BK

0 A − LC

])
= σ(A − BK ) ∪ σ(A − LC )

Because state coordinate transformations do not affect eigenvalues, we
conclude that

σ

([
A −BK

LC A − BK − LC

])
= σ(A − BK ) ∪ σ(A − LC )

This indicates that the 2n closed-loop eigenvalues can be placed by sep-
arately and independently locating eigenvalues of A − BK and A − LC
via choice of the gain matrices K and L, respectively. We refer to this as
the separation property of observer-based compensators.

We generally require the observer error to converge faster than the
desired closed-loop transient response dynamics. Therefore, we choose
the eigenvalues of A − LC to be about 10 times farther to the left in the
complex plane than the (dominant) eigenvalues of A − BK .

Example 8.6 We return to the open-loop state equation in Example 8.1.
The open-loop characteristic polynomial is a(s) = s3 + s3 + 4s + 4. The
open-loop the eigenvalues λ1,2,3 = −1, ±j2 indicate that this is a
marginally stable state equation because of the nonrepeated zero-real-part
eigenvalues. This state equation is not bounded-input, bounded output
stable since the bounded input u(t) = sin(2t) creates a resonance with
the imaginary eigenvalues and an unbounded zero-state response results.
We therefore seek to design an observer-based compensator by combining
the observer designed previously with a state feedback control law.

Given the following eigenvalues to be placed by state feedback, namely,

µ1,2,3 = − 1
2 ± j

√
3

2 , −1

the desired characteristic polynomial is α(s) = s3 + 2s2 + 2s + 1. Since
the open-loop state equation is in controller canonical form we easily
compute state feedback gain vector to be

K = KCCF

= [( α0 − a0) (α1 − a1) (α2 − a2) ]

= [ (1 − 4) (2 − 4) (2 − 1) ]

= [ −3 −2 1 ]
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On inspection of

A − BK =
[ 0 1 0

0 0 1
−1 −2 −2

]

we see from the companion form that the desired characteristic polynomial
has been achieved. The previously specified observer (from Example 8.1),
together with the state feedback gain vector computed independently ear-
lier yields the observer-based compensator (8.4) [with r(t) = 0], that is,


˙̂x1(t)
˙̂x2(t)
˙̂x3(t)


 =

[−5 1 0
−2 0 1
19 −2 −2

]
 x̂1(t)

x̂2(t)

x̂3(t)


 +

[ 5
2

−20

]
y(t)

u(t) = [ 3 2 −1 ]


 x̂1(t)

x̂2(t)

x̂3(t)




yielding the six-dimensional homogeneous closed-loop state equation


ẋ1(t)

ẋ2(t)

ẋ3(t)

˙̂x1(t)
˙̂x2(t)
˙̂x3(t)




=




0 1 0 0 0 0
0 0 1 0 0 0

−4 −4 −1 3 2 −1
5 0 0 −5 1 0
2 0 0 −2 0 1

−20 0 0 19 −2 −2







x1(t)

x2(t)

x3(t)

x̂1(t)

x̂2(t)

x̂3(t)




y(t) = [ 1 0 0 | 0 0 0 ]




x1(t)

x2(t)

x3(t)

x̂1(t)

x̂2(t)

x̂3(t)




We investigate the closed-loop performance for the following initial
conditions and zero reference input:

x0 =
[ 1

−1
1

]
x̂0 =


 0

0
0


 r(t) = 0 t ≥ 0

These are the same initial conditions as in Example 8.1, for which
the zero-input response of the closed-loop state equation is shown in
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FIGURE 8.8 Closed-loop state response for Example 8.6.

Figure 8.8. Each state variable is plotted along with its estimate, and the
responses show that the estimates converge to the actual state variables
and that all six closed-loop state variables asymptotically tend to zero as
time tends to infinity, as expected. �

Example 8.7 We return to the open-loop state equation
 ẋ1(t)

ẋ2(t)

ẋ3(t)


 =

[ 0 1 0
0 0 1

−18 −15 −2

]
 x1(t)

x2(t)

x3(t)


 +


 0

0
1


u(t)

y(t) = [ 1 0 0 ]


 x1(t)

x2(t)

x3(t)




for which the state feedback gain vector

K = [ 35.26 24.55 14.00 ]
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was constructed in Example 7.4 to yield σ(A − BK ) = {−1.33 ± j1.49,

−13.33}, and the observer gain vector

L =
[ 158

3624
43624

]

was computed in Example 8.2 to give σ(A − LC ) = {−13.3 ± j14.9,

−133.3}.
Here we combine these results to construct the six-dimensional closed-

loop state equation and compare the closed-loop state response with that
of the open-loop state equation and the closed-loop state equation resulting
from state feedback. For this example, the closed-loop state equation of
the form (8.6) with state [xT (t), x̃T (t)]T is given by




ẋ1(t)

ẋ2(t)

ẋ3(t)

˙̃x1(t)
˙̃x2(t)
˙̃x3(t)




=




0 1 0 0 0 0
0 0 1 0 0 0

−53.26 −39.55 −16 35.26 24.55 14
0 0 0 −158 1 0
0 0 0 −3624 0 1
0 0 0 −43642 −15 −2




×




x1(t)

x2(t)

x3(t)

x̃1(t)

x̃2(t)

x̃3(t)




y(t) = [ 1 0 0 | 0 0 0 ]




x1(t)

x2(t)

x3(t)

x̃1(t)

x̃2(t)

x̃3(t)




The unit step response plots for this example are presented in Figure 8.9
(for all three states). Shown are the open-loop response, plus the closed-
loop responses for state feedback and observer-based compensation, all
plotted together for each state variable. Note that we assumed an initial
observer error of 0.0005 on the first state and zero initial observer error on
the other two state variables. In simulation we cannot assume that the true
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FIGURE 8.9 Open-loop, closed-loop with state feedback, and closed-loop with
observer responses for Example 8.7.

initial state x0 is known; otherwise the simulated closed-loop responses
for state feedback and observer-based compensation will be identical, and
we can not evaluate the observer performance.

In Figure 8.9, we see that the closed-loop responses for observer-based
compensation converge rapidly to the closed-loop responses for the state
feedback case. The reader should test the closed-loop observer-based state
equation over a range of different initial errors. �

Reduced-Order Observer-Based Compensators

We again consider the strategy of replacing the state x(t) appearing in the
state feedback control law with an estimate x̂(t), that is,

u(t) = −Kx̂(t) + r(t)

except that now x̂(t) is generated by a reduced-order observer. We show
that the separation property also holds when the compensator is based
on a reduced-order observer. Such a compensator of dimension n − p is
given by

ẇ(t) = Jw(t) + Ny(t) + Mu(t)
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u(t) = −Kx̂(t) + r(t)

= −K[Py(t) + Qẑ2(t)] + r(t)

= −K{Py(t) + Q[Ly(t) + w(t)]} + r(t)

= −KQw(t) − K(P + QL)y(t) + r(t)

so that

ẇ(t) = (J − MKQ)w(t) + [−MK (P + QL) + N ]y(t) + Mr(t)

u(t) = −KQw(t) − K(P + QL)y(t) + r(t)

and now the closed-loop state equation is
[

ẋ(t)

ẇ(t)

]
=

[
A − BK (P + QL)C −BKQ

−MK (P + QL)C + NC J − MKQ

] [
x(t)

w(t)

]
+

[
B

M

]
r(t)

y(t) = [ C 0 ]

[
x(t)

w(t)

]

We use the following closed-loop coordinate transformation:
[

x(t)

z̃2(t)

]
=

[
I 0

E − LC −I

] [
x(t)

w(t)

]

[
x(t)

w(t)

]
=

[
I 0

E − LC −I

] [
x(t)

z̃2(t)

]

where, once again, the coordinate transformation matrix equals its inverse.
Then the similarity transformation

[
I 0

E − LC −I

] [
A − BK (P + QL)C −BKQ

−MK (P + QL)C + NC J − MKQ

]

×
[

I 0
E − LC −I

]

along with the identities

J = (E − LC )AQ

N = (E − LC )A(P + QL)

M = (E − LC )B
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yields

[
I 0

E − LC −I

]

×
[

A − BK (P + QL)C −BKQ
(E − LC )(A − BK )(P + QL)C (E − LC )(A − BK )Q

]

[
I 0

E − LC −I

]

=
[

A − BK (P + QL)C −BKQ
(E − LC )A(I − PC − QLC ) −(E − LC )AQ

] [
I 0

E − LC −I

]

=
[

A − BK (P + QL)C − BKQ(E − LC ) BKQ
(E − LC )A(I − PC − QLC ) − (E − LC )AQ(E − LC ) (E − LC )AQ

]

Using

[ P Q ]

[
C

E

]
= PC + QE = I

the upper left block simplifies to

A − BK (P + QL)C − BKQ(E − LC )

= A − BK [(P + QL)C + Q(E − LC )]

= A − BK [PC + QLC + QE − QLC ]

= A − BK [PC + QE ]

= A − BK

and the lower left block becomes

(E − LC )A(I − PC − QLC ) − (E − LC )AQ(E − LC )

= (E − LC )[A(QE − QLC ) − A(QE − QLC )]

= (E + LC )[0]

= 0

In addition, recalling that M = (E − LC)B, we have

[
I 0

E − LC −I

] [
B

M

]
=

[
B

(E − LC)B − M

]
=

[
B

0

]
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This, along with J = (E − LC )AQ , allows us to write the transformed
closed-loop state equation as[

ẋ(t)
˙̃z2(t)

]
=

[
A − BK BKQ

0 J

] [
x(t)

z̃2(t)

]
+

[
B

0

]
r(t)

so we have

σ

([
A − BK BKQ

0 J

])
= σ(A − BK) ∪ σ(J )

which indicates that the 2n − p closed-loop eigenvalues are the n eigen-
values of A − BK , which can be located arbitrarily by the feedback gain
matrix K for (A, B) controllable, together with the n − p eigenvalues of
J = (E − LC)AQ = A22 − LA12, which can be placed arbitrarily by the
reduced-order observer gain matrix L for (A, C) observable.

Example 8.8 Here we design a compensator for the state equation in
Example 8.1 that incorporates the reduced-order observer constructed in
Example 8.5. We will make direct use of the previously-computed coef-
ficient matrices:

J =
[ −9 1

−16 −1

]
N =

[ −69
−160

]
M =

[
0
1

]

In addition, we take

E =
[

0 1 0
0 0 1

]

to give [
C

E

]
=


1 0 0

0 1 0
0 0 1




from which it follows that

P =

 1

0
0


 Q =


 0 0

1 0
0 1




trivially satisfies

[ P Q ]−1 =
[

C

E

]

We also directly incorporate the feedback gain vector

K = [ −3 −2 1 ]
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computed in Example 8.6 to locate the eigenvalues of A − BK at − 1
2 ±

j
√

3
2 , −1. Everything is now in place to compute the coefficient matrices

of the reduced-order observer-based compensator:

J − MKQ

=
[ −9 1

−16 −1

]
−

[
0
1

]
[ −3 −2 1 ]


 0 0

1 0
0 1


 =

[ −9 1
−14 −2

]

− MK(P + QL) + N

= −
[

0
1

]
[ −3 −2 1 ]

[ 1
9

12

]
+

[ −69
−160

]
=

[ −69
−151

]

− KQ = −[ −3 −2 1 ]

[ 0 0
1 0
0 1

]
= [ 2 −1 ]

− K(P + QL) = −[ −3 −2 1 ]


 1

9
12


 = 9

which yields the compensator state equation

[
ẇ1(t)

ẇ2(t)

]
=

[ −9 1
−14 −2

] [
w1(t)

w2(t)

]
+

[ −69
−151

]
y(t) +

[
0
1

]
r(t)

u(t) = [ 2 −1 ]

[
w1(t)

w2(t)

]
+ 9y(t) + r(t)

The resulting five-dimensional closed-loop state equation is given by




ẋ1(t)

ẋ2(t)

ẋ3(t)

ẇ1(t)

ẇ2(t)


 =




0 1 0 0 0
0 0 1 0 0
5 −4 −1 2 −1

−69 0 0 −9 1
−151 0 0 −14 −2







x1(t)

x2(t)

x3(t)

w1(t)

w2(t)


 +




0
0
1
0
1


 r(t)

y(t) = [ 1 0 0 | 0 0 ]




x1(t)

x2(t)

x3(t)

w1(t)

w2(t)
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FIGURE 8.10 Closed-loop state responses for full-order and reduced-order
observer-based compensators for Example 8.8.

The reader should verify that the closed-loop eigenvalues are indeed

σ(A − BK) ∪ σ(J ) = {− 1
2 ± j

√
3

2 , −1} ∪ {−5, −5}
We investigate the closed-loop performance for the following initial

conditions and zero reference input signal:

x0 =
[ 1

−1
1

]
w0 =

[ −9
−12

]
r(t) = 0 t ≥ 0
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Figure 8.10 compares the closed-loop state response x(t) for the full-order
observer-based compensator constructed in Example 8.6 with the closed-
loop state response x(t) for the reduced-order observer-based compensator
constructed here. The difference between theses responses again can be
attributed to the different eigenvalue specifications for the observer error
dynamics for the full-order and reduced-order cases.

8.5 STEADY-STATE TRACKING WITH OBSERVER-BASED
COMPENSATORS

Input Gain with Observers

We begin by observing that the structure of the closed-loop state equation
(8.6) with state [xT (t), x̃T (t)] easily allows us to compute the closed-loop
transfer function

HCL(s) = [ C 0 ]

[
sI − A + BK −BK

0 sI − A + LC

]−1 [
B

0

]

= [ C 0 ]

×
[

(sI − A + BK)−1 (sI − A + BK)−1BK(sI − A + LC)−1

0 (sI − A + LC)−1

]

×
[

B

0

]

= C(sI − A + BK)−1B

which is exactly the same closed-loop transfer function that results from a
direct application of state feedback. Of course, the same conclusion holds
for the closed-loop state equation (8.5) with state [xT (t), x̂T (t)] because
the two state equations are related by a state coordinate transformation that
does not affect the transfer function. One interpretation of this outcome
is the following: Transfer functions in general characterize input-output
behavior for zero initial state. Initializing [xT (0), x̃T (0)] = [0, 0] neces-
sarily yields x̃(t) ≡ 0 for all t ≥ 0, so the observer produces a perfect
estimate of x(t), and thus we should expect the closed-loop input-output
behavior with an observer-based compensator to exactly match closed-
loop input-output behavior with state feedback.

As a consequence, the input gain required to achieve identity closed-
loop dc gain is identical to that derived in Chapter 7:

G = −[C(A − BK)−1B]−1
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Observer-Based Servomechanism Design

In Section 7.5 we presented a servomechanism design methodology fea-
turing integral error compensation together with state feedback that yielded
asymptotic tracking of reference step inputs. This design was robust in the
sense that accurate knowledge of the open-loop state equation coefficient
matrices was not required to achieve zero steady-state error. This section
extends that work by incorporating an observer to provide an estimate of
the state feedback for direct substitution into the state feedback portion
of the compensator. As with the servomechanism design based on state
feedback presented in Section 7.5, this section follows the development
in Ogata (2002).

For the open-loop state equation (8.1), we have the same objectives as
in Section 7.5; i.e., we must achieve asymptotic stability for the closed-
loop state equation and asymptotic tracking of step reference inputs with
zero steady-state error. We adopt essentially the same assumptions as in
Section 7.5 but also add observability of the open-loop state equation to
assumption 1.

Assumptions

1. The open-loop state equation (8.1) is controllable and observable.
2. The open-loop state equation has no pole/eigenvalue at s = 0.
3. The open-loop state equation has no zero at s = 0.

Our observer-based compensator is of the form

ξ̇ (t) = r(t) − y(t)

˙̂x(t) = (A − LC)x̂(t) + Bu(t) + Ly(t)

u(t) = −Kx̂(t) + kIξ(t)

which we can repackage as the (n + 1)-dimensional state equation[
ξ̇ (t)
˙̂x(t)

]
=

[
0 0

BkI A − BK − LC

][
ξ(t)

x̂(t)

]
+

[
1
0

]
r(t) +

[ −1
L

]
y(t)

u(t) = [ kI −K ]

[
ξ(t)

x̂(t)

]

This, along with the open-loop state equation (8.1), yields the (2n + 1)-
dimensional closed-loop state equation

 ẋ(t)

ξ̇ (t)
˙̂x(t)


 =


 A BkI −BK

−C 0 0
LC BkI A − BK − LC





 x(t)

ξ(t)

x̂(t)


 +


 0

1
0


 r(t)
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y(t) = [ C 0 0 ]


 x(t)

ξ(t)

x̂(t)




Our first design objective is to achieve closed-loop asymptotic stability,
for which we require that the (2n + 1) eigenvalues of the (2n + 1) ×
(2n + 1) closed-loop system dynamics matrix have strictly negative real
parts. It is not obvious how to proceed with the closed-loop state equation
as written above, so we once again replace the observer state x̂(t) with the
observer error x̃(t) = x(t) − x̂(t). As always, the observer error dynamics
are given by

˙̃x(t) = (A − LC)x̃(t)

and this leads to


 ẋ(t)

ξ̇ (t)
˙̃x(t)


 =


A − BK Bk I BK

−C 0 0
0 0 A − LC





 x(t)

ξ(t)

x̃(t)


 +


 0

1
0


 r(t)

y(t) = [ C 0 0 ]


 x(t)

ξ(t)

x̃(t)




Again, the block triangular structure of this closed-loop system dynamics
matrix indicates that the (2n + 1) closed-loop eigenvalues are the (n + 1)

eigenvalues of [
A − BK BkI

−C 0

]

which we know from Chapter 7 that under our assumptions can be freely
assigned by proper choice of the augmented state feedback gain vector
[K − kI] together with n eigenvalues of (A − LC), which, by virtue of our
added observability assumption, can be arbitrarily located by the observer
gain vector L.

To check that the steady-state tracking requirement has been met, we
characterize the closed-loop equilibrium condition resulting from the con-
stant reference input r(t) = R, t ≥ 0. Using the relationship

uss = −K(xss − x̃ss) + kIξss

= −K xss + Kx̃ss + kIξss
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we see that
 0

0
0


 =


A − BK BkI BK

−C 0 0
0 0 A − LC





 xss

ξss

x̃ss


 +


 0

1
0


R

=

 A B 0

−C 0 0
0 0 A − LC





 xss

uss

x̃ss


 +


 0

1
0


R

which corresponds to the decoupled equations

(A − LC)x̃ss = 0

[
0
0

]
=

[
A B

−C 0

] [
xss

uss

]
+

[
0
1

]
R

the first of which, since A − LC is necessarily nonsingular, forces x̃ss = 0.
The second equation we observe is exactly has encountered in Chapter 7
from which we conclude that

[
xss

uss

]
= −

[
A B

−C 0

]−1 [
0
R

]

=
[

A−1B(CA−1B)−1R

−(CA−1B)−1R

]

ξss = 1

kI
[uss + Kxss]

= 1

kI
[1 − KA−1B]H−1(0)R

and

yss = Cxss

= C(A−1B(CA−1B)−1R)

= (CA−1B)(CA−1B)−1R

= R

as desired.
The observer-based servomechanism block diagram is shown in

Figure 8.11. Note that this block diagram is very similar to Figure 7.12,
except that rather than directly applying the state feedback gain to the
state x(t), the state estimate x̂(t) produced by the Observer block is used



STEADY-STATE TRACKING WITH OBSERVER-BASED COMPENSATORS 341

+
−

kI A,B Plant

K

r(t) ξ(t)ξ(t) u(t)+
−

x(t)
C

y(t)

Observer
x(t)^

.

FIGURE 8.11 Observer-based servomechanism block diagram.

instead. The Observer block represents

˙̂x(t) = (A − LC)x̂(t) + Bu(t) + Ly(t)

which, as shown in the block diagram, has u(t) and y(t) as inputs.

Example 8.9 We construct an observer-based type I servomechanism
for the state equation of Example 8.2 by incorporating the observer de-
signed in Example 8.2 into the state-feedback-based type 1 servomech-
anism designed in Example 7.9. In addition to the assumptions veri-
fied in Example 7.9, the state equation is observable as demonstrated
in Example 8.2. We recall from Example 7.9 that the augmented state
feedback gain vector

[ K −kI ] = [ 3.6 −1.4 2.2| −16 ]

yields

[
A − BK BkI

−C 0

]
=




0 1 0 0
0 0 1 0

−21.6 −13.6 −4.216
−1 0 0 0




having eigenvalues at −0.848 ± j2.53 and −1.25 ± j0.828. In addition,
the observer gain vector

L =

 158

3624
43624




locates the eigenvalues of A − LC at −13.3 ± j14.9, −133.3, which are
much farther to the left in the complex plane. Everything is in place to
specify the four-dimensional observer-based compensator:


ξ̇ (t)

˙̂x1(t)
˙̂x2(t)
˙̂x3(t)


 =




0 0 0 0
0 −158 1 0
0 −3624 0 1
16 −43645.6 −13.6 −4.2







ξ̇ (t)

x̂1(t)

x̂2(t)

x̂3(t)
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+



1
0
0
0


 r(t) +




−1
158

3624
43624


 y(t)

u(t) = [ 16 | − 3.6 1.4 −2.2 ]




ξ̇ (t)

x̂1(t)

x̂2(t)

x̂3(t)




The resulting seven-dimensional closed-loop state equation is:




ẋ1(t)

ẋ2(t)

ẋ3(t)

ξ̇ (t)

˙̂x1(t)
˙̂x2(t)
˙̂x3(t)




=




0 1 0 0 0 0 0
0 0 1 0 0 0 0

−18 −15 −2 16 −3.6 1.4 −2.2
−1 0 0 0 0 0 0
158 0 0 0 −158 1 0
3624 0 0 0 −3624 0 1

43624 0 0 16 −43645.6 −13.6 −4.2




×




x1(t)

x2(t)

x3(t)

ξ(t)

x̂1(t)

x̂2(t)

x̂3(t)




+




0
0
0
1
0
0
0




r(t)

y(t) = [ 1 0 0 |0| 0 0 0 ]




x1(t)

x2(t)

x3(t)

ξ(t)

x̂1(t)

x̂2(t)

x̂3(t)




The closed-loop unit step response for zero initial conditions is shown
in Figure 8.12. Note that because in this case x̂0 = x0 = 0, the observer
state x̂(t) response exactly matches x(t), so the output response exactly
matches the nominal output response shown in Figure 7.13 for the state-
feedback-based type 1 servomechanism design of Example 7.9. To see the
effect of the observer, the closed-loop response for the following initial
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FIGURE 8.12 Closed-loop unit step response for Example 8.9.

conditions and zero reference input

x0 =

 0.1

0
0


 x̂0 =


 0

0
0


 r(t) = 0 t ≥ 0

is plotted in Figure 8.13. The initial error x̃1(0) = x1(0) − x̂1(0) = 0.1
yields an error response for all three state variables that rapidly decays to
zero (note the different time scale compared with Figure 8.12).

8.6 MATLAB FOR OBSERVER DESIGN

The following MATLAB functions are useful for observer design:

L=place(A',C',ObsEig)' Solve for the observer gain matrix L to
place the desired eigenvalues ObsEig of
the observer error dynamics matrix A −
LC.



344 OBSERVERS AND OBSERVER-BASED COMPENSATORS

L=acker(A’,C’,ObsEig)’ Solve for the observer gain matrix L to
place the desired eigenvalues ObsEig
of the observer error dynamics matrix
A − LC, using Ackermann’s
formula, for single-input,
single-output systems only.
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FIGURE 8.13 Observer error performance for Example 8.9.
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For the Continuing MATLAB Example (rotational mechanical system),
we now design an observer, i.e., calculate the observer gain matrix L

given A, C, and reasonable observer eigenvalues to accompany the closed-
loop eigenvalues of the Chapter 7 Continuing MATLAB Example. The fol-
lowing MATLAB code performs this observer design for the continuing
example:

%------------------------------------------------------
% Chapter 8. Design and Simulation of Linear
% Observers for State Feedback
%------------------------------------------------------

% Select desired observer eigenvalues; ten times
% control law eigenvalues
ObsEig2 = 10*DesEig2;

L = place(A',C', ObsEig2)'; % Compute observer gain
% matrix L

Lack = acker(A',C', ObsEig2)'; % Check L via
% Ackermann’s formula

Ahat = A-L*C; % Compute the closed-loop observer
% estimation error matrix

eig(Ahat); % Check to ensure desired
eigenvalues are in there

% Compute and simulate closed-loop system with control
% law and observer
Xr0 = [0.4;0.2;0.10;0]; % Define vector of

% initial conditions
Ar = [(A-B*K) B*K;zeros(size(A)) (A-L*C)];
Br = [B;zeros(size(B))];
Cr = [C zeros(size(C))];
Dr = D;
JbkRr = ss(Ar,Br,Cr,Dr); % Create the closed-loop

% system with observer
r = [zeros(size(t))]; % Define zero reference

% input to go with t
[Yr,t,Xr] = lsim(JbkRr,r,t,Xr0);

% Compare Open, Closed, and Control Law/Observer
% responses
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figure;
plot(t,Yo,'r',t,Yc,'g',t,Yr,'b'); grid;
axis([0 4 -0.2 0.5]);
set(gca,'FontSize',18);
legend('Open-loop','Closed-loop','w/ Observer');
xlabel('\ittime (sec)'); ylabel('\ity');

figure; % Plot observer errors
plot(t,Xr(:,3),'r',t,Xr(:,4),'g'); grid;
axis([0 0.2 -3.5 0.2]);
set(gca,'FontSize',18);
legend('Obs error 1','Obs error 2');
xlabel('\ittime (sec)'); ylabel(’\ite’);

This m-file, combined with the previous chapter m-files, yields the
following output, plus the output response plot of Figure 8.14 and the
observer error plot of Figure 8.15:

ObsEig2 =
-57.1429 +51.1954i
-57.1429 -51.1954i

L =
110.29

5405.13

Ahat =
-110.3 1.0
-5445.1 -4.0

ans =
-57.1429 +51.1954i
-57.1429 -51.1954i

In Figure 8.15 we use e to represent the observer error e(t) = x̃(t) =
x(t) − x̂(t). In the simulation, we started the observer with an error of
0.1 rad in the shaft angle θ estimate (and zero error in θ̇ estimate). In
Figure 8.15 we see that the observer error for the shaft angle starts from
the prescribed initial value and quickly goes to zero (the time scale of
Figure 8.15 is greatly expanded compared with that of Figure 8.14). The
observer velocity error goes to zero soon after, but with a large initial nega-
tive peak, even though the initial error was zero. However, this effect is not
seen in Figure 8.14, where the closed-loop system response with observer
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FIGURE 8.14 Open-loop, closed-loop with state feedback, and closed-loop with
observer output response for the Continuing MATLAB Example.
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FIGURE 8.15 Observer error state responses for the Continuing MATLAB Example.

(solid) slightly lags the closed-loop system response with state feedback
(dashed) but then quickly matches (around 1 s). Since the observer error
eigenvalues were chosen to be 10 times greater than the closed-loop eigen-
values placed via state feedback, the observer error transient response
goes to zero much faster than the closed-loop system with state feedback.
The dashed and dotted responses in Figure 8.14 are identical to those of
Figure 7.14 (top).
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8.7 CONTINUING EXAMPLES: DESIGN OF STATE OBSERVERS

Continuing Example 1: Two-Mass Translational Mechanical
System

For both cases a and b of Continuing Example 1 (two-mass transla-
tional mechanical system), we now compute an observer gain matrix L to
construct an observer that estimates the states for state feedback control.

Case a. A − LC is the observer error dynamics matrix whose eigenval-
ues we assign via L. Since the observer error dynamics must be faster than
the closed-loop state feedback dynamics, we choose four desired observer
eigenvalues to be 10 times greater than the four control law eigenvalues:

λ1,2 = −20 ± 21i λ3,4 = −200, −210

The characteristic polynomial associated with these desired observer
eigenvalues is

αOBS(s) = s4 + 450s3 + 5.924 × 104s2 + 2.0244 × 106s

+ 3.5276 × 107

Note that this polynomial is similar to the desired characteristic polyno-
mial α(s) of the Chapter 7 Continuing Example 1, but the coefficients
of the descending s powers are multiplied by 100, 101, 102, 103, and 104,
respectively, because the eigenvalues were each multiplied by 10. There-
fore, numerical problems may arise as a result of the orders-of-magnitude
differences in coefficients. Hence one should not scale the observer error
eigenvalues by a factor greater than the rule-of-thumb of 10.

Taking advantage of the duality between state feedback and observer
gain design, and using MATLAB function place, we computed the 4 × 2
observer gain matrix L to be

L =



195 1073
−978 213836

2 254
−101 11863




Because of the numerical issue pointed out earlier, the elements of L vary
greatly in magnitude. The output response plots for the observer-based
closed-loop system are shown in Figure 8.16 for case a.
We initialized the observer with an error of 0.5 and 1 mm for y1(t)

and y2(t), respectively (and zero error for both velocity estimates). In
Figure 8.16 we see that the response of the closed-loop system with
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FIGURE 8.16 Open-loop, closed-loop with state feedback, and closed-loop with
observer output response for Continuing Example 1, case a.

observer-based compensator (solid) initially overshoots that of the closed-
loop system with state feedback (dashed) but then quickly matches (around
3 s). Since the observer error eigenvalues were chosen to be those placed
by state feedback scaled by 10, the observer error transient response goes
to zero faster than the transient response of the closed-loop system with
state feedback. The open-loop and closed-loop responses in Figure 8.16
are identical to those of Figure 7.19.

Case b. The observer eigenvalues are chosen to be 10 times greater than
the desired closed-loop eigenvalues used in Chapter 7, that is,

λ1,2 = −12.3 ± 36.6i λ3,4 = −18.1 ± 12.0i

Taking advantage of the duality between state feedback and observer gain
design, and using MATLAB function place, we found the 4 × 1 observer
gain matrix L to be

L =



60
2756
5970

135495




Again, we see that the terms of L vary greatly in magnitude as a
result of the fact that the desired observer eigenvalues are ten times
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FIGURE 8.17 Open-loop, closed-loop with state feedback, and closed-loop with
observer plant state variable responses for Continuing Example 1, case b.

greater than those placed by state feedback in Chapter 7. The plant state
variable responses for the observer-based closed-loop system are shown
in Figure 8.17 for case b.
We again initialized the observer with an error of 0.5 and 1 mm for y1(t)

and y2(t), respectively (and zero error for both velocity estimates). In
Figure 8.17 we see that in case b the observer-based closed-loop system
(solid) matches the response of the closed-loop system with state feedback
(dashed) very well on this time scale. There are observer errors, but they
approach zero before 1 s. Because of the eigenvalue scaling, the observer
error transient response goes to zero faster than that of the closed-loop
system with state feedback. The dotted and dashed (the dashed curves are
almost perfectly masked by the solid curves) responses in Figure 8.17 are
identical to those of Figure 7.21.

Continuing Example 2: Rotational Electromechanical System

For Continuing Example 2 (rotational electromechanical system), we cal-
culate an observer gain vector L and construct an observer to estimate the
states for feedback.
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The observer error dynamics matrix is A − LC. Since the observer
error dynamics should be faster than the closed-loop dynamics achieved
by state feedback, we choose three desired observer error eigenvalues to
be the three control law eigenvalues scaled by 10, namely,

λ1,2,3 = {−40, −120, −130}
The characteristic polynomial associated with these desired eigenvalues

is
αOBS(s) = s3 + 290s2 + 25600s + 624000

Note that this polynomial is similar to the desired characteristic poly-
nomial α(s) achieved by state feedback in the Chapter 7 Continuing
Example 2, but the coefficients of the descending s powers are multiplied
by 100, 101, 102, and 103, respectively, because the eigenvalues were each
multiplied by 10.

Taking advantage of the duality between state feedback and observer
gain design and performing the observer gain vector computation by hand,
or using MATLAB functions place or acker, we find the 3 × 1 observer
gain matrix L to be

L =

 287

24737
549215




The three plant state variable responses for the observer-based closed-
loop system are shown in Figure 8.18 for Continuing Example 2. We
initialized the observer with an error of 0.001 rad in the shaft angle θ(t)

estimate [and zero error in θ̇ (t) and θ̈ (t) estimates]. In Figure 8.18, the
output response of the closed-loop system with observer (solid) slightly
lags that of the closed-loop system with state feedback (dashed); also, there
is significant overshoot in the θ̇ (t) and θ̈ (t) responses for observer-based
closed-loop system. Observer error convergence is obtained in approx-
imately 1.5 s. Since the observer error eigenvalues were obtained by
scaling the state feedback eigenvalues by a factor of 10, the observer error
transient response goes to zero faster than that of the closed-loop system
with state feedback. The dashed and dotted responses in Figure 8.18 are
identical to those of Figure 7.22.

8.8 HOMEWORK EXERCISES

Numerical Exercises

NE8.1 For your NE 7.1 results (all cases) determine acceptable observer
error eigenvalues by simply multiplying your NE 7.1 eigenvalues
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FIGURE 8.18 Open-loop, closed-loop with state feedback, and closed-loop with
observer plant state variable responses for Continuing Example 2.

by 10. For each case, co-plot the unit step responses of the generic
all-pole transfer functions associated with each set of eigenvalues.

NE8.2 For each (A, C) pair below, use the Bass-Gura formula to calculate
the observer gain vector L to place the given eigenvalues for the
observer error dynamics matrix A − LC. Check your results.

a. A =
[ −1 0

0 −4

]
C = [ 1 1 ] s1,2 = −20 ± 30i

b. A =
[

0 1
−6 −8

]
C = [ 1 0 ] s1,2 = −40, −50

c. A =
[

0 1
−6 0

]
C = [ 1 0 ] s1,2 = −40, −50

d. A =
[

0 8
1 10

]
C = [ 0 1 ] s1,2 = −10 ± 10i

NE8.3 Repeat NE 8.2 using Ackermann’s Formula.
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Analytical Exercises

AE8.1 Show that observability is not invariant with respect to state feed-
back.

AE8.2 Show that the closed-loop state equation (8.5) is not controllable.

AE8.3 Suppose that the linear state equation

[
ẋ1(t)

ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
x1(t)

x2(t)

]
+

[
I

0

]
u(t)

y(t) = [ C1 C2 ]

[
x1(t)

x2(t)

]

is controllable and observable. Dualize the reduced-order observer-
based compensator construction to derive a stabilizing compen-
sator of dimension n − m.

AE8.4 Suppose the linear state equation (8.1) is controllable and observ-
able. Given an (n − m) × (n − m) matrix F and an n × p matrix
L, consider the feedback compensator defined by

ż(t) = Fz(t) + Gv(t)

v(t) = y(t) + CHz(t)

u(t) = Mz(t) + Nv(t)

in which the matrices G, H, M , and N satisfy

AH − BM = HF

HG + BN = −L

Use the closed-loop state coordinate transformation

[
w(t)

z(t)

]
=

[
I H

0 I

] [
x(t)

z(t)

]

to show that the 2n − m closed-loop eigenvalues are those of F

and those of A − LC.
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AE 8.5 Suppose that H1(s) and H2(s) are two strictly proper transfer
functions with observable state-space realizations (A1, B1, C1) and
(A2, B2, C2), respectively. Show that

[
ẋ1(t)

ẋ2(t)

]
=

[
A1 0
0 A2

] [
x1(t)

x2(t)

]
+

[
B1

B2

]
u(t)

y(t) = [ C1 C2 ]

[
x1(t)

x2(t)

]

is a state-space realization of the parallel interconnection H1(s) +
H2(s) and that this realization is observable if and only if A1 and
A2 have no common eigenvalues.

Continuing MATLAB Exercises

CME8.1 For the system given in CME1.1:
a. Design an observer-based compensator using the control law

of CME7.1b. Use observer error eigenvalues that are the
desired state feedback eigenvalues of CME7.1a scaled by
10. Compare open-loop, closed-loop with state feedback,
and closed-loop with observer responses to a unit step input.
Introduce an initial observer error, otherwise, the closed-loop
with state feedback and closed-loop with observer responses
will be identical.

b. Design and evaluate in simulation an observer for the ser-
vomechanism of CME7.1c.

CME8.2 For the system given in CME1.2:
a. Design an observer-based compensator using the control law

of CME7.2b. Use observer error eigenvalues that are the
desired state feedback eigenvalues of CME7.2a scaled by
10. Compare open-loop, closed-loop with state feedback,
and closed-loop with observer responses to a unit step input.
Introduce an initial observer error, otherwise, the closed-loop
with state feedback and closed-loop with observer responses
will be identical.

b. Design and evaluate in simulation an observer for the ser-
vomechanism of CME7.2c.

CME8.3 For the system given in CME1.3:
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a. Design an observer-based compensator using the control law
of CME7.3b. Use observer error eigenvalues that are the
desired control law eigenvalues of CME7.3a scaled by 10.
Compare open-loop, closed-loop with state feedback, and
closed-loop with observer responses to a unit step input.
Introduce an initial observer error, otherwise, the closed-loop
with state feedback and closed-loop with observer responses
will be identical.

b. Design and evaluate in simulation an observer for the ser-
vomechanism of CME7.3c.

CME8.4 For the system given in CME1.4:
a. Design an observer-based compensator using the control law

of CME7.4b. Use observer error eigenvalues that are the
desired state feedback eigenvalues of CME7.4a scaled by
10. Compare open-loop, closed-loop with state feedback,
and closed-loop with observer responses to a unit step input.
Introduce an initial observer error, otherwise, the closed-loop
with state feedback and closed-loop with observer responses
will be identical.

b. Design and evaluate in simulation an observer for the ser-
vomechanism of CME7.4c.

Continuing Exercises

CE8.1 For the control laws designed in CE7.1b, design observer-based
compensators for all three cases. Use observer error eigenvalues
that are the desired state feedback eigenvalues scaled by 10 (for
case iii, a factor of 2 works better because of numerical condi-
tioning). In each case, evaluate your results: Plot and compare the
simulated open-loop, closed-loop with state feedback, and closed-
loop with observer output responses for the same cases as in
CE2.1; use the same correction factors from CE7.1b. Introduce an
initial observer error, otherwise, the closed-loop with state feed-
back and closed-loop with observer responses will be identical.

CE8.2 For the control laws designed in CE7.2b, design observer-based
compensators for all three cases (this is possible only for the
observable cases). Use observer error eigenvalues that are the
desired state feedback eigenvalues scaled by 10. In each case,
evaluate your results: Plot and compare the simulated open-loop,
closed-loop with state feedback, and closed-loop with observer
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output responses for the same cases as in CE2.2; use the same cor-
rection factors from CE7.2b. Introduce an initial observer error,
otherwise, the closed-loop with state feedback and closed-loop
with observer responses will be identical.

CE8.3 For the control laws designed in CE7.3b, design observer-based
compensators for both cases. Use observer error eigenvalues that
are the desired state feedback eigenvalues scaled by 10. In each
case, evaluate your results: Plot and compare the simulated open-
loop, closed-loop with state feedback, and closed-loop with ob-
server output responses for the same cases as in CE2.3 (for case
ii, use the same correction factor from CE7.3b). Introduce an initial
observer error, otherwise, the closed-loop with state feedback and
closed-loop with observer responses will be identical.

CE8.4 Design an observer-based compensator for the control law de-
signed in CE7.4b. Use observer error eigenvalues that are
your desired state feedback eigenvalues scaled by 10. Evaluate
your results: Plot and compare the simulated open-loop, closed-
loop with state feedback, and closed-loop with observer output
responses for the same case (impulse input, zero initial conditions)
as in CE2.4. Introduce an initial observer error, otherwise, the
closed-loop with state feedback and closed-loop with observer
responses will be identical.

CE8.5 CE4.5 results should indicate that the original system is not observ-
able. Therefore, add a second output: Make θ(t) an output in
addition to q(t); check observability again and proceed. For the
control law designed in CE7.5b, design an observer-based com-
pensator for this modified system with two outputs. Use observer
error eigenvalues that are your desired state feedback eigenvalues
scaled by 10. Evaluate your results: Plot and compare the simu-
lated open-loop, closed-loop with state feedback, and closed-loop
with observer output responses for the same case (given initial
conditions) as in CE2.5. Introduce an initial observer error; oth-
erwise, the closed-loop with state feedback and closed-loop with
observer responses will be identical.
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INTRODUCTION TO
OPTIMAL CONTROL

As we noted in Chapter 1, the ability to formulate and solve optimal
control problems was the primary catalyst in the emergence of state-space
methods in the late 1950s and early 1960s. It is therefore fitting that we
conclude this text with an introduction to the fundamental discoveries of
this era that have shaped the theory and practice of control engineering
over the past five decades.

We begin by formulating the linear quadratic regulator problem, which
is the optimal control problem that is the central focus of this chapter.
This is followed by a tutorial on the key mathematical tool that we will
employ to solve this problem: the calculus of variations, or variational
calculus. Variational calculus can be thought of as a generalization of
certain results from multivariable calculus, so we include a brief review
of the latter for motivation. We first apply variational calculus to solve
the so-called minimum energy control problem before proceeding to the
solution of the linear quadratic regulator problem. Since all but the most
trivial examples are best solved with the aid of a computer, we next
turn our attention to MATLAB functionality that supports the solution to
the linear quadratic regulator problem. These tools are applied to the
Continuing MATLAB Example and Continuing Example 1.

We must emphasize that this chapter merely scratches the surface of
a vast body of basic and applied research on optimal control. For more
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in depth study, we refer the interested reader to the many excellent texts
on the subject including but by no means limited to Anderson and Moore
(1971), Bryson and Ho (1975), Dorato, et al. (1995), Kwakernaak and
Sivan (1972), Lewis (1992), and Zhou (1995).

9.1 OPTIMAL CONTROL PROBLEMS

We begin with a somewhat general optimal control problem formulation
in order to provide a broader context for the special cases we consider in
this chapter. We consider the nonlinear state equation

ẋ(t) = f [x(t), u(t), t] x(t0) = x0

and introduce the performance index, cost function, or objective function
to be minimized:

J =
∫ tf

t0

L[x(t), u(t), t]dt + ϕ[x(tf ), tf ]

Here L(x, u, t) is called the loss function that assigns a penalty to the
state and input in a possibly t-dependent way, and the function ϕ(x, t)

characterizes the terminal cost on the state. The optimization problem at
hand is to determine an optimal state trajectory and input signal denoted
by [x∗(t), u∗(t)] that minimizes the performance index subject to the con-
straints imposed by the state equation and the specified initial state. This
is, by nature, a regulation problem because the goal is to maintain the
state trajectory “close” to the equilibrium at the origin while expending
“moderate” control effort. For a particular problem, the performance index
quantifies these qualitative notions and further serves to capture the fun-
damental design tradeoff between the conflicting objectives of regulation
performance and control effort.

Additional constraints might be imposed on the state trajectory and
input signal of the form

C[x(t), u(t), t] = 0 or C[x(t), u(t), t] ≤ 0 for all t ∈ (t0, tf )

In addition, the problem formulation might involve explicit constraints on
the terminal state instead of or in addition to the terminal cost term in the
performance index.

Necessary conditions in the form of optimality equations that must be
satisfied by the optimal solution [x∗(t), u∗(t)] have been derived using the
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tools of variational calculus and dynamic programming. However, these
equations in general are difficult to solve. Furthermore, by only satisfying
a necessary condition for optimality, there is no guarantee that a solution
to these equations is in fact optimal. Verifying this may require further
nontrivial analysis.

In this chapter we consider the linear time-invariant state equation

ẋ(t) = Ax(t) + Bu(t) x(t0) = x0 (9.1)

and seek to minimize the quadratic performance index

J = 1
2

∫ tf

t0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt + 1

2xT (tf )Sx(tf ) (9.2)

in which the loss function

L(x, u) = 1
2(x

T Qx + uT Ru)

= 1
2

[
xT uT

] [
Q 0
0 R

][
x

u

]

and terminal cost function ϕ(x) = 1
2x

T Sx are quadratic forms. We assume
that the weighting matrices Q, R, and S are each symmetric, with Q and
S positive semidefinite and R positive definite. Regulator design for a
linear time-invariant state equation with the goal of minimizing a quadratic
performance index naturally is referred to as the linear quadratic regulator
(LQR) problem. In contrast to the challenges that arise in the general
nonlinear optimal control problem, the linear quadratic regulator problem
admits an analytical solution that we will derive in the sequel.

Here we explicitly see the manner in which the quadratic performance
index captures a tradeoff between regulation performance and control
effort. In particular, if the quadratic terms involving the state are “large”
compared with the quadratic term involving the input, then the optimal
state trajectory will exhibit “good” regulation performance in that the
response to a nonzero initial state will return rapidly to the equilibrium
state at the origin, but this may come at the expense of “large” control
energy. Conversely, if the input is penalized more heavily than the state,
then the optimal control signal may not require a great deal of energy, but
the regulation performance may not be acceptable. In essence, the under-
lying design problem is to translate given performance specifications into
choices for the weighting matrices in such a way that the optimal solu-
tion meets these specifications. This issue has received a great deal of
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attention since the linear quadratic regulator problem was introduced in
the late 1950s and yet remains something of an art.

9.2 AN OVERVIEW OF VARIATIONAL CALCULUS

We first consider optimization problems on the d-dimensional Euclidean
space R

d . As noted earlier, this material should come as a review to the
reader and is included here to motivate the elements of variational calculus
that we require to solve the optimal control problems posed in this chapter.
We consider real-valued functions f : R

d → R and seek to minimize f (z)

over all z ∈ R
d . We avoid many mathematical technicalities by assuming

throughout this chapter that all functions defined on Euclidean spaces have
continuous partial derivatives in all arguments over the entire domain.
Furthermore, we will only consider optimization problems that have global
solutions.

We first derive a necessary condition for z∗ ∈ R
d to minimize f (z).

If z∗ minimizes f (z), then f (z∗ + v) > f (z∗) for any nonzero vector
v ∈ R

d . This implies that the directional derivative of f (z) at z∗ in the
direction v, written in terms of the gradient ∇f (z) as ∇f (z∗) · v, must be
zero. To see this, for any ε > 0 we also must have f (z∗ ± εv) > f (z∗)
from which

∇f (z∗) · v = lim
ε→0+

f (z∗+εv)−f (z∗)
ε

≥ 0

∇f (z∗) · (−v) = lim
ε→0+

f (z∗−εv)−f (z∗)
ε

≥ 0

Since ∇f (z∗) · (−v) = −∇f (z∗) · v, the only way both these inequalities
can hold is if ∇f (z∗) · v = 0 as claimed. Since the directional derivative
must vanish at z∗ for any direction v ∈ R

d , we conclude that the gradient
of f (z) at z∗ must be the zero vector. In this case we call z∗ a critical point
of f (z), and we have argued that if z∗ minimizes f (z), then necessarily,
z∗ is a critical point of f (z).

The converse statement does not hold in general. Namely, a critical
point of f (z) is not necessarily a minimum. For example, on R

2,
f (z) = − 1

2(z
2
1 + z2

2) has ∇f (z) = −[z1, z2], for which the critical point
z∗ = (0, 0) corresponds to the maximum of f (z). Also, f (z) = 1

2(z2
1 − z2

2)

has ∇f (z) = [z1, −z2], for which the critical point z∗ = (0, 0) is a saddle
point. Often, second-derivative information is used to classify critical
points as being a minimum, maximum, or saddle point. Here we consider
an approach that is better suited to the objectives of this chapter.
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A real-valued function f : R
d → R is convex if

f (z + v) − f (z) ≥ ∇f (z) · v for all z, v ∈ R
d

and strictly convex if equality holds above when and only when v = 0 ∈
R

d . It is easy to see that a critical point of a strictly convex function is a
minimum point. For if z∗ satisfies ∇f (z∗) = 0, then

f (z∗ + v) − f (z∗) > ∇f (z∗) · v = 0 for all v �= 0 ∈ R
d

from which f (z∗ + v) > f (z∗) for all nonzero v ∈ R
d .

We next turn our attention to the problem of minimizing a real-valued
function f (z) over all z ∈ R

d that satisfy equality constraints of the form

gi(z) = 0 i = 1, . . . , n

or in vector form

G(z) =




g1(z)

g2(z)
...

gn(z)


 =




0
0
...

0




We assume that there are fewer constraints n than the Euclidean space
dimension d so as not to over constrain the problem. We attack this
problem using the method of Lagrange multipliers. The first step is to
adjoin the constraints to the original function f (z) using the n × 1 vector
of Lagrange multipliers

λ =




λ1

λ2
...

λn




to form the real-valued function

f̃ (z) = f (z) + λ1g1(z) + λ2g2(z) + · · · + λngn(z)

= f (z) + λT G(z)

We observe that if z∗ minimizes the augmented function f̃ (z) over R
d

so that
f̃ (z) > f̃ (z∗) for all z �= z∗
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then, in particular, for any z �= z∗ that satisfies G(z) = G(z∗), we have
for any Lagrange multiplier vector λ ∈ R

n

f (z) − f (z∗) = f (z) − f (z∗) + λT [G(z) − G(z∗)]

= [f (z) + λT G(z)] − [f (z∗) + λT G(z∗)]

= f̃ (z) − f̃ (z∗)

> 0

We conclude that z∗ minimizes the original function f (z) over all z ∈ R
d

that satisfy G(z) = G(z∗). Now, if f̃ (z) is strictly convex (and this in
general depends on λ ∈ R

n), then the minimum of f̃ (z) is characterized
by ∇f̃ (z∗) = 0. This, along with the constraint equation G(z∗) = 0, yields
d + n equations that, in principle, can be solved for the d + n unknowns
given by the components of z∗ and λ.

Note that once z∗ and λ have been determined, we must verify that f̃ (z)

is strictly convex for this λ in order to conclude that the critical point z∗
minimizes f̃ (z) and, in turn, minimizes f (z) over all z ∈ R

d that satisfy
G(z) = G(z∗) = 0 as desired. One situation in which the strict convexity
of f̃ (z) is assured for any Lagrange multiplier vector is when the original
function f (z) is strictly convex and the equality constraint is given by the
linear equation Cz = d so that

G(z) = Cz − d

To see this, we use

∇f̃ (z) = ∇f (z) + λT ∂G
∂z

(z)

= ∇f (z) + λT C

together with the strict convexity of f (z) to write

f̃ (z + v) − f̃ (z) ={f (z + v) + λT [C(z + v) − d]}−[f (z) + λT (Cz − d)]

= [f (z + v) − f (z)] + λT Cv

≥ ∇f (z) · v + λT Cv

= [∇f (z) + λT C] · v

= ∇f̃ (z) · v

for all z, v ∈ R
d with equality when and only when v = 0, thereby char-

acterizing strict convexity of f̃ (z).
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To illustrate these ideas, we consider the problem of minimizing the
quadratic form

f (z) = 1
2z

T Qz

subject to the equality constraint Cz = d. We assume that the d × d matrix
Q is symmetric and positive definite and that the n × d matrix C has full-
row rank n. We can easily check that f (z) is strictly convex. Using the
gradient ∇f (z) = zT Q, we have for all z, v ∈ R

d

f (z + v) − f (z) = 1
2(z + v)T Q(z + v) − 1

2zT Qz

= zT Qv + 1
2vT Qv

= ∇f (z) · v + 1
2v

T Qv

≥ ∇f (z) · v

with equality when and only when v = 0 because of the assumed positive
definiteness of Q. From the preceding discussion, we conclude that

f̃ (z) = 1
2z

T Qz + λT (Cz − d)

is strictly convex as well. We therefore minimize f̃ (z) and, in turn, min-
imize f (z) over all z ∈ R

d that satisfy Cz = d by solving

∇f̃ (z) = zT Q + λT C = 0 and Cz = d

for z = z∗ ∈ R
d and λ ∈ R

n. This leads to the system of equations

[
C 0
Q CT

] [
z

λ

]
=

[
d

0

]

Since Q is positive definite, it is nonsingular, which gives
z∗ = −Q−1CT λ. On substituting into the constraint equation, we find
−CQ−1CT λ = d. Since, in addition, C is assumed to have full-row rank
n, the symmetric n × n matrix CQ−1CT can be shown to be positive
definite and hence nonsingular. This ultimately yields the optimal solution

λ = −(CQ−1CT )−1d and z∗ = Q−1CT (CQ−1CT )−1d

We now generalize the preceding discussion for optimization on the
Euclidean space R

d to optimization on the space of d-dimensional vector-
valued functions z(t) defined on the interval [t0, tf ] having a continuous
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derivative ż(t). We denote this space of functions by C1[t0, tf ], in which
the dimension of z(t), i.e. the number of component functions of z(t), is
left as understood from the context. We remark that C1[t0, tf ] satisfies the
definition of a linear vector space given in Appendix B for vector addition
and scalar multiplication of (vector-valued) functions defined pointwise
in t .

Our discussion will focus on the minimization of real-valued integral
functions of the form

F(z) =
∫ tf

t0

f [t, z(t), ż(t)] dt

over elements of C1[t0, tf ] that, in addition, are assumed to satisfy one of
the following possible boundary conditions:

• z(t0) = z0 is specified.
• z(tf ) = zf is specified.
• both z(t0) = z0 and z(tf ) = zf are specified.

We note that other boundary conditions are possible involving specific
components of z(t) at t = t0 and t = tf .

To generalize the previous analysis on R
d , we first need to generalize

the notion of a directional derivative that will enable us to establish a
necessary condition for minimizing the integral function F(z) and further
characterize the requisite convexity property under which the necessary
condition becomes sufficient as well. This leads us to consider the Gâteaux
variation of the integral function F(z) at z(t) in the direction v(t) ∈
C1[t0, tf ], defined as

δF (z; v) = lim
ε→0

F(z + εv) − F(z)

ε

If we assume that the integrand function f (t, z, ż) has continuous partial
derivatives with respect to the second and third d-dimensional arguments
on the entire domain R × R

d × R
d , we can then compute the Gâteaux

variation using the chain rule as follows:

δF (z; v) = ∂

∂ε
F (z + εv)|ε=0

=
∫ tf

t0

∂

∂ε
f [t, z(t) + εv(t), ż(t) + εv̇(t)] dt

∣∣∣∣
ε=0
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=
∫ tf

t0

[
∂f

∂z
[t, z + εv(t), ż(t) + εv̇(t)]v(t)

+ ∂f

∂ż
[t, z(t) + εv(t), ż(t) + εv̇(t)]v̇(t)

]
dt

∣∣∣∣
ε=0

=
∫ tf

t0

{
∂f

∂z
[t, z(t), ż(t)]v(t) + ∂f

∂ż
[t, z(t), ż(t)]v̇(t)

}
dt (9.3)

Example 9.1 We consider the integral function F(z) for scalar z(t)

with integrand function f (t, z, ż) = tz + 1
2 ż

2. The partial derivatives

∂f

∂z
(t, z, ż) = t

∂f

∂ż
(t, z, ż) = ż

yield the Gâteaux variation

δF (z; v) =
∫ tf

t0

[tv(t) + ż(t)v̇(t)] dt �

Next, we derive a necessary condition for z∗(t) ∈ C1[t0, tf ] to minimize
F(z) over all z(t) ∈ C1[t0, tf ] that satisfy one of the three boundary
conditions. If z∗(t) is such a minimizer, then F(z∗ + v) ≥ F(z∗) for all
v(t) ∈ C1[t0, tf ] such that z∗(t) + v(t) also satisfies the specified bound-
ary condition. This requirement characterizes the so-called admissible
directions:

• If z(t0) = z0 is specified, then v(t0) = 0 ∈ R
d .

• If z(tf ) = zf is specified, then v(tf ) = 0 ∈ R
d .

• If both z(t0) = z0 and z(tf ) = zf are specified, then v(t0) = v(tf ) =
0 ∈ R

d .

Now, if F(z∗ + v) ≥ F(z∗) for all admissible directions, we see that for
any ε > 0, F(z∗ ± εv) ≥ F(z∗) for all admissible directions, from which
we obtain

δF (z∗; v) = lim
ε→0+

F(z∗ + εv) − F(z∗)
ε

≥ 0,

δF (z∗; −v) = lim
ε→0+

F(z∗ − εv) − F(z∗)
ε

≥ 0

Moreover since, as with the directional derivative on R
d , the Gâteaux

variation satisfies δF (z, −v) = −δF (z; v), we see that the only way both
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inequalities can be satisfied is if δF (z∗; v) = 0 for all admissible direc-
tions. Thus, having δF (z∗; v) = 0 for all admissible directions is a nec-
essary condition for z∗(t) to minimize F(z).

For the integral function F(z), one way to guarantee that the Gâteaux
variation (9.3) satisfies δF (z; v) = 0 for all admissible directions is to first
require

d

dt

∂f

∂ż
[t, z(t), ż(t)] = ∂f

∂z
[t, z(t), ż(t)] for all t ∈ (t0, tf ) (9.4)

This is the well-known Euler-Lagrange equation whose solutions are
called stationary functions. Evaluating the Gâteaux variation at a station-
ary function yields

δF (z; v) =
∫ tf

t0

{
∂f

∂z
[t, z(t), ż(t)]v(t) + ∂f

∂ż
[t, z(t), ż(t)]v̇(t)

}
dt

=
∫ tf

t0

({
d

dt

∂f

∂ż
[t, z(t), ż(t)]

}
v(t) + ∂f

∂ż
[t, z(t), ż(t)]v̇(t)

)
dt

=
∫ tf

t0

d

dt

{
∂f

∂ż
[t, z(t), ż(t)]v(t)

}
dt

= ∂f

∂ż
[tf , z(tf ), ż(tf )]v(tf ) − ∂f

∂ż
[t0, z(t0), ż(t0)]v(t0)

Now, we see that the manner in which to achieve δF (z; v) = 0 for all
admissible directions depends on the originally specified boundary condi-
tions. If z(t0) = z0 is specified but z(tf ) is free, then v(t) is only required
to satisfy v(t0) = 0, and in order to achieve δF (z; v) = 0 for all such
directions, we must further impose the natural boundary condition

∂f

∂ż
[tf , z(tf ), ż(tf )] = 0

Similarly, if z(tf ) = zf is specified but z(t0) is free, then v(t) is only
required to satisfy v(tf ) = 0, which leads to the natural boundary condi-
tion

∂f

∂ż
[t0, z(t0), ż(t0)] = 0

Finally, if both z(t0) = z0 and z(tf ) = zf are specified, then admissible
directions must satisfy v(t0) = v(tf ) = 0, from which we obtain
δF (z; v) = 0 without imposing any further conditions. Now we have
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argued that satisfying the Euler-Lagrange equation together with the
appropriate combination of original and natural boundary conditions is
one way to achieve δF (z; v) = 0 for all admissible directions. It can be
shown using standard calculus results that this is the only way. �

Example 9.2 For the integral function of Example 9.1, the Euler-
Lagrange equation on the interval [0, 1] is

d

dt
[ż(t)] = z̈(t) = t for all t ∈ (0, 1)

Integrating twice yields z(t) = 1
6 t

3 + c1t + c0, where the coefficients c0

and c1 are determined by the boundary conditions. If we specify z(0) = 0
but leave z(1) free, the associated natural boundary condition is ż(1) = 0,
which yields c0 = 0 and c1 = − 1

2 . If we specify z(1) = 0 but leave z(0)

free, the associated natural boundary condition is ż(0) = 0, which yields
c0 = − 1

6 and c1 = 0. Finally, if we specify z(0) = z(1) = 0, we obtain
c0 = 0 and c1 = − 1

6 . �
We next extend the notion of convexity to integral functions defined

on the space C1[t0, tf ] using the Gâteaux variation as a generalization of
the directional derivative on Euclidean space. The integral function F(z)

is convex if

F(z + v) − F(z) ≥ δF (z; v) for all z ∈ C1[t0, tf ] and admissible

v ∈ C1[t0, tf ]

and strictly convex if equality holds above when and only when the
only admissible direction is v(t) ≡ 0 on [t0, tf ]. It is easy to see that
if δF (z∗; v) = 0 for all admissible directions, i.e., z∗(t) is a stationary
function that satisfies the appropriate combination of original and natu-
ral boundary conditions, then z∗(t) minimizes the strictly convex integral
function F(z).

Example 9.3 For the integral function in the preceding examples, a
direct calculation gives

F(z + v) − F(z) =
∫ 1

0

{
t[z(t) + v(t)] + 1

2 [ż(t) + v̇(t)]2
}

dt

−
∫ 1

0
[tz(t) + 1

2 ż
2(t)] dt

=
∫ 1

0
[tv(t) + ż(t)v̇(t)] dt +

∫ 1

0

1
2 v̇2(t) dt
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= δF (z; v) +
∫ 1

0

1
2 v̇

2(t) dt

≥ δF (z; v)

for all z ∈ C1[0, 1] and admissible v ∈ C1[0, 1] with respect to each of
the possible boundary conditions we have considered. We conclude that
F(z) is convex. We also see that equality holds when and only when
v̇(t) ≡ 0, so v(t) is constant on the interval [0, 1]. For any one of the
three boundary conditions, we have either v(1) = 0, v(0) = 0, or both.
We conclude, because a constant function on [0, 1] that vanishes at a
single point is identically zero on [0, 1], that F(z) is strictly convex and
that z∗(t) = 1

6 t
3 + c1t + c0 minimizes F(z) for the coefficients determined

in Example 9.2 for the particular boundary condition. �
We conclude our overview of variational calculus by incorporating into

the problem constraints of the form

gi[t, z(t), ż(t)] = 0 for all t ∈ [t0, tf ] i = 1, 2, . . . , n

or in vector form

G[t, z(t), ż(t)] =




g1[t, z(t), ż(t)]
g2[t, z(t), ż(t)]

...

gn[t, z(t), ż(t)]


 =




0
0
...

0




Following our discussion on constrained minimization on Euclidean space,
we introduce a Lagrange multiplier vector that, because the constraints
here are imposed pointwise in t , we allow to be a function of t of the
form

λ(t) =




λ1(t)

λ2(t)
...

λn(t)




where, for simplicity, we assume that the Lagrange multiplier functions
are also continuously differentiable on the interval [t0, tf ]. From this, we
define

f̃ (t, z, ż) = f (t, z, ż) + λ1(t)g1(t, z, ż) + λ2(t)g2(t, z, ż) + · · ·
+ λn(t)gn(t, z, ż)

= f (t, z, ż) + λT (t)G(t, z, ż)
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Now suppose that z∗(t) minimizes the augmented integral function

F̃ (z) =
∫ tf

t0

f̃ [t, z(t), ż(t)] dt

over all z(t) ∈ C1[t0, tf ] that satisfy the specified boundary conditions so
that

F̃ (z) > F̃ (z∗)

for all such z(t) �= z∗(t). In particular, if z(t) in addition satisfies
G[t, z(t), ż(t)] = G[t, z∗(t), ż∗(t)] for all t ∈ [t0, tf ], then for any
Lagrange multiplier vector λ(t),

F(z) − F(z∗) = F(z) − F(z∗)

+
∫ tf

t0

λT (t)
{
G[t, z(t), ż(t)] − G[t, z∗(t), ż∗(t)]

}
dt

=
{
F(z) +

∫ tf

t0

λT (t)G[t, z(t), ż(t)] dt

}

−
{
F(z∗) +

∫ tf

t0

λT (t)G[t, z∗(t), ż∗(t)] dt

}

= F̃ (z) − F̃ (z∗)

> 0

We conclude that z∗(t) minimizes F(z) over all z(t) ∈ C1[t0, tf ]
that satisfy the specified boundary conditions and G[t, z(t), ż(t)] =
G[t, z∗(t), ż∗(t)] for all t ∈ [t0, tf ]. If F̃ (z) is strictly convex [which in
general depends on λ(t)], then the minimum of F̃ (z) is characterized by
δF̃ (z∗; v) = 0 for all admissible directions as determined by the boundary
conditions. We can then characterize z∗(t) as the solution to the Euler-
Lagrange equation

d

dt

∂f̃

∂ż
[t, z(t), ż(t)] = ∂f̃

∂z
[t, z(t), ż(t)] for all t ∈ (t0, tf ) (9.5)

with the accompanying combination of originally specified boundary con-
ditions and natural boundary conditions that now involve (∂f̃ /∂ż)[t, z(t),
ż(t)] at t = t0 and/or t = tf .

Our hope is that this, along with the constraint equation G[t, z(t), ż(t)]
= 0, enables us to determine z∗(t) and λ(t) and, furthermore, for λ(t) so
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obtained that F̃ (z) is strictly convex. We then can conclude that z∗(t) min-
imizes F(z) over all z(t) ∈ C1[t0, tf ] that satisfy the specified boundary
conditions and the constraint G[t, z(t), ż(t)] = 0 for all t ∈ [t0, tf ].

One situation in which strict convexity of F̃ (z) is assured for any
Lagrange multiplier vector is when F(z) is strictly convex and z(t) is
constrained to satisfy the linear ordinary differential equation

E(t)ż(t) = C(t)z(t) + d(t)

This leads to a constraint equation of the form

G(t, z(t), ż(t)) = C(t)z(t) + d(t) − E(t)ż(t) = 0

In this case, we have

∂f̃

∂z
(t, z, ż) = ∂f

∂z
(t, z, ż) + λT (t)

∂G

∂z
(t, z, ż) = ∂f

∂z
(t, z, ż) + λT (t)C(t)

∂f̃

∂ż
(t, z, ż) = ∂f

∂ż
(t, z, ż) + λT (t)

∂G

∂ż
(t, z, ż) = ∂f

∂ż
(t, z, ż) − λT (t)E(t)

which gives

δF̃ (z; v) =
∫ tf

t0

{
∂f̃

∂z
[t, z(t), ż(t)]v(t) + ∂f̃

∂ż
[t, z(t), ż(t)]v̇(t)

}
dt

=
∫ tf

t0

({
∂f

∂z
[t, z(t), ż(t)] + λT (t)C(t)

}
v(t)

+
{

∂f

∂ż
[t, z(t), ż(t)] − λT (t)E(t)

}
v̇(t)

)
dt

= δF (z; v) +
∫ tf

t0

λT (t)[C(t)v(t) − E(t)v̇(t)] dt

This allows us to conclude that for any λ(t),

F̃ (z + v) − F̃ (z) =
(

F(z + v) +
∫ tf

t0

λT (t){C(t)[z(t) + v(t)] + d(t)

− E(t)[ż(t) + v̇(t)]} dt

)

−
{
F(z) +

∫ tf

t0

λT (t)[C(t)z(t) + d(t) − E(t)ż(t)] dt

}
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= F(z + v) − F(z) +
∫ tf

t0

λT (t)[C(t)v(t) − E(t)v̇(t)] dt

≥ δF (z; v) +
∫ tf

t0

λT (t)[C(t)v(t) − E(t)v̇(t)] dt

= δF̃ (z; v)

for all admissible directions with equality when and only when the only
admissible direction is v(t) ≡ 0 on [t0, tf ]. Thus, for this class of con-
straints, (strict) convexity of F(z) implies (strict) convexity of F̃ (z) for
any Lagrange multiplier vector λ(t).

It is important to note that strict convexity of F̃ (z) is sufficient but
not necessary for this process to yield the minimizer of F(z) subject to
the specified boundary conditions and equality constraints. We will see
that for the optimal control problems of this chapter, strict convexity fails
to hold, and yet direct problem-specific arguments allow us to reach the
desired conclusions nonetheless.

9.3 MINIMUM ENERGY CONTROL

Before attacking the linear quadratic regulator problem, we first investi-
gate a related optimal control problem that involves computing the input
signal of minimum energy among those that transfer the state trajectory
from a specified initial state to a specified final state. This has practical
significance in vehicle trajectory planning problems, such as launch vehi-
cle ascent or satellite orbit transfer, in which minimizing control energy
can be related to minimizing fuel consumption.

We begin under the assumption that the state equation (9.1) is control-
lable. The objective is to minimize the control “energy”

J = 1
2

∫ tf

t0

||u(t)||2dt (9.6)

over all control signals u(t) on the time interval [t0, tf ] that meet the
following boundary conditions:

x(t0) = x0 x(tf ) = xf (9.7)

for specified initial state x0 and final state xf . We observe that even
though the objective function (9.6) does not directly involve the state, a
solution to this problem consists of the minimum energy control signal
and the associated state trajectory because the two are linked by the state
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equation (9.1). In other words, we seek to minimize Equation (9.6) over
all z(t) = [xT (t), uT (t)]T that satisfy the boundary conditions (9.7) and
the equality constraint

G[t, z(t), ż(t)] = Ax(t) + Bu(t) − ẋ(t)

= [
A B

] [
x(t)

u(t)

]
− [

I 0
] [

ẋ(t)

u̇(t)

]

= 0 (9.8)

Adapting the methodology of Section 9.2 to the problem at hand, we
first characterize admissible directions associated with the boundary condi-
tion (9.7) as v(t) = [ξT (t), µT (t)]T with ξ(t0) = ξ(tf ) = 0, and because
u(t0) and u(tf ) are unconstrained, µ(t0) and µ(tf ) are free. We adjoin
the constraint (9.8) to the original objective function using the vector of
Lagrange multipliers

λ(t) =




λ1(t)

λ2(t)
...

λn(t)




to form the augmented objective function

J̃ (z) =
∫ tf

t0

{
1
2 ||u(t)||2 + λT (t)[Ax(t) + Bu(t) − ẋ(t)]

}
dt

We directly check the convexity of the augmented objective function.
On identifying

f̃ (t, z, ż) = 1
2 ||u||2 + λT (t)(Ax + Bu − ẋ)

we have

∂f̃

∂z
(t, z, ż) =

[
∂f̃

∂x
(t, z, ż)

∂f̃

∂u
(t, z, ż)

]

= [
λT (t)A uT + λT (t)B

]
and

∂f̃

∂ż
(t, z, ż) =

[
∂f̃

∂ẋ
(t, z, ż)

∂f̃

∂u̇
(t, z, ż)

]

= [−λT (t) 0
]
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which yields the Gâteaux variation

δJ̃ (z; v) =
∫ tf

t0

{[
λT (t)A uT (t) + λT (t)B

] [
ξ(t)

µ(t)

]

+ [−λT (t) 0
] [

ξ̇ (t)

µ̇(t)

]}
dt

=
∫ tf

t0

{
[uT (t) + λT (t)B]µ(t) + λT (t)[Aξ(t) − ξ̇ (t)]

}
dt

In terms of this, we find

J̃ (z + v) − J̃ (z)

=
(∫ tf

t0

1
2 ||u(t) + µ(t)||2 + λT (t) {A[x(t) + ξ(t)]

+ B[u(t) + µ(t)] − [ẋ(t) + ξ̇ (t)]
}
dt

)

−
{∫ tf

t0

1
2 ||u(t)||2 + λT (t)[A(t)x(t) + Bu(t) − ẋ(t)]dt

}

= δJ̃ (z; v) +
∫ tf

t0

1
2 ||µ(t)||2dt

≥ δJ̃ (z; v)

from which we conclude that J̃ (z) is convex. Unfortunately, we can-
not conclude that J̃ (z) is strictly convex because equality holds for any
admissible direction of the form v(t) = [ξT (t), 0]T . However, we can
argue directly that if equality holds above for z(t) and v(t) = [ξT (t), 0]T

in which ξ(t0) = ξ(tf ) = 0, and if both z(t) and z(t) + v(t) satisfy the
constraint (9.8), equivalently, the linear state equation (9.1), we must then
have ξ(t) ≡ 0. For if z(t) = [xT (t), uT (t)]T satisfies

ẋ(t) = Ax(t) + Bu(t)

and z(t) + v(t) = [
(x(t) + ξ(t))T , uT (t)

]T
satisfies

ẋ(t) + ξ̇ (t) = A[x(t) + ξ(t)] + Bu(t)

then subtracting these identities yields the homogeneous linear state
equation

ξ̇ (t) = Aξ(t)
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from which either the initial condition ξ(t0) = 0 or the final condition
ξ(tf ) = 0 is enough to force ξ(t) ≡ 0 on [t0, tf ] as claimed. We therefore
conclude that if z∗(t) satisfies δJ̃ (z; v) = 0 for all admissible directions
along with the constraint (9.8), then z∗(t) minimizes J (z) over all z(t)

that satisfy the boundary conditions (9.7) and the constraint (9.8), thereby
determining the minimum energy control signal and corresponding state
trajectory.

We now turn our attention to the Euler-Lagrange equation (9.5), which
takes the form

d

dt

[ −λT (t) 0
] = [

λT (t)A uT (t) + λT (t)B
]

and can be reformulated as

λ̇(t) = −AT λ(t)

u(t) = −BT λ(t) (9.9)

We note that the natural boundary conditions associated with
Equation (9.7) are

∂f̃

∂u̇
(t, z(t0), ż(t0)) = 0 and

∂f̃

∂u̇
(t, z(tf ), ż(tf )) = 0

which are automatically satisfied because f̃ (t, z, ż) is independent of u̇.
The homogeneous linear state equation in Equation (9.9) implies

that for any ta ∈ [t0, tf ], on specifying λ(ta) = λa, λ(t) = e−AT (t−ta)λa

is uniquely determined. Here we choose ta = t0, which, in terms of
λ(t0) = λ0, yields

λ(t) = e−AT (t−t0)λ0 = eAT (t0−t)λ0 and u(t) = −BT eAT (t0−t)λ0

This input signal uniquely determines the state trajectory x(t) given the
specified initial state x(t0) = x0, and it remains to choose λ0 so that

x(tf ) = eA(tf −t0)x0 +
∫ tf

t0

eA(tf −τ )Bu(τ)dτ

= x0 −
∫ tf

t0

eA(tf −τ )BBT eAT (t0−τ )dτλ0

= eA(tf −t0)

[
x0 −

∫ tf

t0

eA(t0−τ )BBT eAT (t0−τ )dτλ0

]

= xf
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We recall from Chapter 3 that the controllability Gramian

W(t0, tf ) =
∫ tf

t0

eA(t0−τ )BBT eAT (t0−τ )dτ

is nonsingular for any tf > t0 because the state equation (9.1) is assumed
to be controllable. We then can solve for λ0 to obtain

λ0 = W−1(t0, tf )
(
x0 − eA(t0−tf )xf

)

which, in turn, now completely specifies the minimum energy control
signal

u∗(t) = −BT eAT (t0−t)W−1(t0, tf )
(
x0 − eA(t0−tf )xf

)
(9.10)

We observe that this is precisely the input signal used in Chapter 3 to
demonstrate that the trajectory of a controllable state equation can be
steered between any initial and final states over a finite time interval.
Also, the reader is invited to verify that the minimum energy control signal
also can be expressed in terms of the reachability Gramian introduced in
AE3.4, that is,

WR(t0, tf ) =
∫ tf

t0

eA(tf −τ )BBT eAT (tf −τ )dτ

as
u∗(t) = BT eAT (tf −t)W−1

R (t0, tf )
(
xf − eA(tf −t0)x0

)

We can compute the minimum energy value achieved by this control
signal via

J ∗ = 1
2

∫ tf

t0

||u∗(t)||2dt

= 1
2

∫ tf

t0

[
−BT eAT (t0−t)W−1(t0, tf )

(
x0 − eA(t0−tf )xf

)]T

×
[
−BT eAT (t0−t)W−1(t0, tf )

(
x0 − eA(t0−tf )xf

)]
dt

= 1
2

(
x0 − eA(t0−tf )xf

)T
W−1(t0, tf )

(∫ tf

t0

eA(t0−t)BBT eAT (t0−t)dt

)

× W−1(t0, tf )
(
x0 − eA(t0−tf )xf

)
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= 1
2

(
x0 − eA(t0−tf )xf

)T
W−1(t0, tf )W(t0, tf )

× W−1(t0, tf )
(
x0 − eA(t0−tf )xf

)
= 1

2

(
x0 − eA(t0−tf )xf

)T
W−1(t0, tf )

(
x0 − eA(t0−tf )xf

)

Alternatively, the minimum energy can be represented in terms of the
reachability Gramian as

J ∗ = 1
2

(
xf − eA(tf −t0)x0

)T
W−1

R (t0, tf )
(
xf − eA(tf −t0)x0

)

Example 9.4 In this example we solve the minimum energy control
problem for the controllable state equation

[
ẋ1(t)

ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)

x2(t)

]
+

[
0
1

]
u(t)

that describes a double integrator. The associated matrix exponential is

eAt =
[

1 t

0 1

]

in terms of which we compute the controllability Gramian

W(t0, tf ) =
∫ tf

t0

[
1 t0 − τ

0 1

] [
0
1

] [
0 1

] [
1 0

t0 − τ 1

]
dτ

=
[

1
3(tf − t0)

3 − 1
2(tf − t0)

2

− 1
2(tf − t0)

2 (tf − t0)

]

as well as the reachability gramian

WR(t0, tf ) =
∫ tf

t0

[
1 tf − τ

0 1

] [
0
1

] [
0 1

] [
1 0

tf − τ 1

]
dτ

=
[

1
3(tf − t0)

3 1
2(tf − t0)

2

1
2(tf − t0)

2 (tf − t0)

]

For t0 = 0, tf = 1, and

x0 =
[

0
0

]
xf =

[
1
1

]
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the minimum energy control signal given by Equation (9.10) is

u∗(t) = − [
0 1

] [
1 0
−t 1

] [ 1
3 − 1

2
− 1

2 1

]−1 ([
0
0

]
−

[
1 −1
0 1

] [
1
1

])

= [
t −1

] [
12 6
6 4

] [
0

−1

]

= 4 − 6t

The reader is invited to check that the alternate formula in terms of the
reachability Gramian yields the same result. The associated state trajectory
is given by

x∗(t) =
∫ t

0
eA(t−τ )Bu∗(τ )dτ

=
∫ t

0

[
1 t − τ

0 1

] [
0
1

]
(4 − 6τ)dτ

=
[ −t3 + 2t2

−3t2 + 4t

]

Note that x∗
2 (t) = ∫ t

0 u∗(τ )dτ and x∗
1 (t) = ∫ t

0 x∗
2 (τ )dτ as required for

this double integrator system. The minimum achievable control energy,
expressed in terms of the reachability Gramian, is

J ∗ = 1
2

([
1
1

]
−

[
1 1
0 1

] [
0
0

])T [ 1
3

1
2

1
2 1

]−1 ([
1
1

]
−

[
1 1
0 1

] [
0
0

])

= 1
2

[
1 1

] [
12 −6
−6 4

] [
1
1

]

= 2

The minimum control input u∗(t) is plotted versus time in Figure 9.1,
and the state trajectory is plotted versus time in Figure 9.2. In addition,
the phase portrait [x2(t) versus x1(t)] is shown in Figure 9.3. �

9.4 THE LINEAR QUADRATIC REGULATOR

We now return to the linear quadratic regulator problem formulated at the
beginning of the chapter. As with the minimum energy control problem
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FIGURE 9.3 Phase portrait for Example 9.4.

of the preceding section, the state equation and specified initial state in
Equation (9.1) serve as an equality constraint and boundary condition,
respectively, as we seek to minimize the performance index (9.2). Note
that in contrast to treating the final state as a boundary condition, as we
did in the minimum energy control problem, here the final state is free but
is penalized via the quadratic form representing the terminal cost term in
Equation (9.2). We will see the impact of this as we apply the techniques
of Section 9.2 to this problem. First, in terms of z(t) = [xT (t), uT (t)]T ,
the admissible directions v(t) = [ξT (t), µT (t)]T now must just satisfy
ξ(t0) = 0, with ξ(tf ), µ(t0), and µ(tf ) free.

Next, we adjoin the same equality constraint (9.8) to the original per-
formance index via the Lagrange multiplier vector λ(t) to yield the aug-
mented performance index

J̃ (z) =
∫ tf

t0

{
1
2

[
xT (t)Qx(t) + uT (t)Ru(t)

]

+ λT (t)[Ax(t) + Bu(t) − ẋ(t)]
}
dt + 1

2xT (tf )S x(tf )
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We identify the augmented integrand function written as

f̃ (t, z, ż) = h(t, x, u) − λT (t)ẋ

in which h(t, x, u) is the Hamiltonian function given by

h(t, x, u) = 1
2(x

T Qx + uT Ru) + λT (t)(Ax + Bu)

In order to check convexity of the augmented performance index, we use

∂f̃

∂z
(t, z, ż) =

[
∂h

∂x
(t, x, u)

∂h

∂u
(t, x, u)

]

= [
xT Q + λT (t)A uT R + λT (t)B

]
∂f̃

∂ż
(t, z, ż) =

[
∂f̃

∂ẋ
(t, z, ż)

∂f̃

∂u̇
(t, z, ż)

]

= [ −λT (t) 0
]

along with the directional derivative of the terminal cost term in the direc-
tion v(tf ) = [ξT (tf ), µT (tf )]T expressed as

∂

∂z(tf )

[
1
2x

T (tf )S x(tf )
] · v(tf ) = [

xT (tf )S 0
] [

ξ(tf )

µ(tf )

]

= xT (tf )Sξ(tf )

to obtain the Gâteaux variation

δJ̃ (z; v) =
∫ tf

t0

[[
xT (t)Q + λT (t)A uT (t)R + λT (t)B

] [
ξ(t)

µ(t)

]

+ [−λT (t) 0
] [

ξ̇ (t)

µ̇(t)

]]
dt + xT (tf )Sξ(tf )

=
∫ tf

t0

[(
uT (t)R + λT (t)B

)
µ(t)

+ (
xT (t)Q + λT (t)A

)
ξ(t) − λT (t)ξ̇ (t)

]
dt + xT (tf )Sξ(tf )

In terms of this, we see that

J̃ (z + v) − J̃ (z)

=
(∫ tf

t0

1
2

{
[x(t) + ξ(t)]T Q[x(t) + ξ(t)]
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+ [u(t) + µ(t)]T R[u(t) + µ(t)]
}

+ λT (t)
{
A[x(t) + ξ(t)] + B[u(t) + µ(t)] − [ẋ(t) + ξ̇ (t)]

}
dt

+ 1
2

[
x(tf ) + ξ(tf )

]T
S

[
x(tf ) + ξ(tf )

])

−
(∫ tf

t0

1
2

[
xT (t)Qx(t) + uT (t)Ru(t)

]

+ λT (t)[A(t)x(t) + Bu(t) − ẋ(t)]dt

)
+ 1

2x
T (tf )S x(tf )

)

= δJ̃ (z; v) +
∫ tf

t0

1
2

[
ξT (t)Qξ(t) + µT (t)Rµ(t)

]
dt + 1

2ξ
T (tf )Sξ(tf )

≥ δJ̃ (z; v)

from which we conclude that J̃ (z) is convex, and equality holds when
and only when the quadratic forms each satisfy

ξT (t)Qξ(t) ≡ 0, µT (t)Rµ(t) ≡ 0 for all t ∈ [t0, tf ] and

ξT (tf )Sξ(tf ) = 0

Now, under the assumption that R is positive definite, the second
equality holds if and only if µ(t) ≡ 0 for all t ∈ [t0, tf ]. However, hav-
ing only assumed that Q and S are positive semidefinite, the first and
third identities may hold for nonzero ξ(t). We therefore cannot con-
clude that J̃ (z) is strictly convex because equality holds above for any
admissible direction of the form v(t) = [ξT (t), 0]T with ξT (t)Qξ(t) ≡ 0
and ξT (tf )Sξ(tf ) = 0. Undaunted, we employ the same argument used
in the preceding section to conclude that if equality holds above for
z(t) and v(t) = [ξT (t), 0]T in which ξ(t0) = 0, and if both z(t) and
z(t) + v(t) satisfy the equality constraint derived from the linear state
equation (9.1), then we must have ξ(t) ≡ 0. We then conclude that if
z∗(t) satisfies δJ̃ (z; v) = 0 for all admissible directions along with the
constraint (9.8), then z∗(t) minimizes the performance index (9.2) over all
z(t) that satisfy the initial condition x(t0) = x0 and the constraint (9.8),
thereby determining the optimal control signal and corresponding state
trajectory.

We now turn our attention to the Euler-Lagrange equation (9.5), which
here takes the form

d

dt

[ −λT (t) 0
] = [

xT (t)Q + λT (t)A uT (t)R + λT (t)B
]
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and can be repackaged as

λ̇(t) = −AT λ(t) − Qx(t)

u(t) = −R−1BT λ(t)
(9.11)

in which we have used the fact that R is nonsingular because it is assumed
to be positive definite. In order to achieve δJ̃ (z; v) = 0 for all admissible
directions, we use the Euler-Lagrange equation to write

δJ̃ (z; v) =
∫ tf

t0

{[ −λ̇T (t) 0
] [

ξ(t)

µ(t)

]
+ [−λT (t) 0

] [
ξ̇ (t)

µ̇(t)

]}
dt

+ xT (tf )Sξ(tf )

= −
∫ tf

t0

d

dt

[
λT (t)ξ(t)

]
dt + xT (tf )Sξ(tf )

= − λT (tf )ξ(tf ) + λT (t0)ξ(t0) + xT (tf )Sξ(tf )

As noted earlier, admissible directions v(t) = [ξT (t), µT (t)]T must sat-
isfy ξ(t0) = 0, but ξ(tf ) is free. This leads to

δJ̃ (z; v) = [−λT (tf ) + xT (tf )S
]
ξ(tf )

which holds for any ξ(tf ) if and only if λ(tf ) = Sx(tf ).
We now have everything in place to characterize the solution to the

linear quadratic regulator problem. The optimal state trajectory and control
signal, along with the Lagrange multiplier vector, are governed by the
homogeneous 2n-dimensional state equation[

ẋ(t)

λ̇(t)

]
=

[
A −BR−1BT

−Q −AT

] [
x(t)

λ(t)

]

u(t) = −R−1BT λ(t)

(9.12)

with mixed boundary condition

x(t0) = x0 λ(tf ) = S x(tf ) (9.13)

so named because x(t) is specified at the initial time, and λ(t) is specified
at the final time. Consequently, this is referred to as a two-point boundary
value problem that, at first glance, appears to pose a severe computational
dilemma; for if we pick a value for λ(t0), then the state equation in
Equation (9.12) can be solved forward in time to yield x(t) and λ(t) for
all t ∈ [t0, tf ], but there is no guarantee that x(tf ) and λ(tf ) will satisfy
the second relationship in Equation (9.13). Alternatively, if we pick x(tf )

and set λ(tf ) = S x(tf ), then the state equation in Equation (9.12) can
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be solved backward in time to yield x(t) and λ(t) for all t ∈ [t0, tf ], but
there is no guarantee that x(t) will achieve the specifed initial value.

Fortunately, this apparent predicament can be resolved using the so-
called sweep method. For this we assume that x(t) and λ(t) are linearly
related according to

λ(t) = P(t) x(t) (9.14)

The second identity in Equation (9.13) is satisfied by setting P(tf ) = S,
and our task is specify the t –dependent n × n matrix P(t) on the interval
[t0, tf ] that, in effect, sweeps this terminal condition backward in time
to yield the correct initial condition λ(t0) that together with x(t0) = x0

would allow the state equation (9.12) to be solved forward in time. Even
better, once P(t) is determined, the linear relationship (9.14) allows the
optimal control signal to be realized as the state feedback law

u(t) = −K(t)x(t) (9.15)

in which the time-varying feedback gain matrix is given by

K(t) = −R−1BT P (t) (9.16)

On differentiating Equation (9.14) and substituting previous identities,
we find

λ̇(t) = Ṗ (t)x(t) + P(t)ẋ(t)

= Ṗ (t)x(t) + P(t)[Ax(t) − BR−1BT λ(t)]

= [
Ṗ (t) + P(t)A − P(t)BR−1BT P (t)

]
x(t)

to which we equate

λ̇(t) = −AT λ(t) − Qx(t)

= [−AT P (t) − Q
]
x(t)

Since equality must hold for any state trajectory x(t), we therefore require
that P(t) satisfy the matrix differential equation

−Ṗ (t) = AT P (t) + P(t)A − P(t)BR−1BT P (t) + Q (9.17)

with boundary condition P(tf ) = S. This is the celebrated differential
Riccati equation named in honor of the Italian mathematician Count
J. F. Riccati (1676–1754). We note that a solution to Equation (9.17)
with boundary condition specified by a symmetric matrix is necessarily a
symmetric matrix at each t ∈ [t0, tf ].

At this point we have completely specified the solution to the linear
quadratic regulator problem. The differential Riccati equation solution
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yields the optimal control signal, as determined by the state feedback
law (9.15) with time-varying gain matrix (9.16). The optimal state trajec-
tory then is generated by the closed-loop state equation

ẋ(t) = [
A − BR−1BT P (t)

]
x(t) x(t0) = x0

We then can compute the optimal value of the performance index by
substituting Equations (9.15) and (9.16) into Equation (9.2) to yield

J ∗ = 1
2

∫ tf

t0

xT (t)
[
Q + P(t)BR−1BT P (t)

]
x(t)dt + 1

2x
T (tf )S x(tf )

= − 1
2

∫ tf

t0

xT (t)
[
Ṗ (t) + AT P (t) + P(t)A − 2P(t)BR−1BT P (t)

]

× x(t)dt + 1
2x

T (tf )S x(tf )

= − 1
2

∫ tf

t0

xT (t)
{
Ṗ (t) + [

A − BR−1BT P (t)
]T

P (t)

+P(t)
[
A − BR−1BT P (t)

]}
x(t)dt + 1

2x
T (tf )S x(tf )

= − 1
2

∫ tf

t0

d

dt

[
xT (t)P (t)x(t)

]
dt + 1

2x
T (tf )S x(tf )

= − 1
2x

T (tf )P (tf )x(tf ) + 1
2x

T (t0)P (t0)x(t0) + 1
2x

T (tf )S x(tf )

= 1
2x

T (t0)P (t0)x(t0)

which, remarkably enough, is given by a quadratic form involving the
initial state and the differential Riccati equation solution evaluated at the
initial time.

Riccati Equation Solution

The differential Riccati equation is a nonlinear matrix differential equation
as a result of the quadratic term P(t)BR−1BT P (t). Solving this equation
to yield the optimal control law therefore may pose a sizable challenge.
It turns out, however, that the differential Riccati equation solution can
be obtained from the solution to the 2n-dimensional homogeneous linear
matrix differential equation

[
Ẋ(t)

�̇(t)

]
=

[
A −BR−1BT

−Q −AT

][
X(t)

�(t)

]
(9.18)
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in which X(t) and �(t) are each n × n matrices that satisfy the boundary
condition [

X(tf )

�(tf )

]
=

[
I

S

]
(9.19)

The 2n × 2n matrix appearing above and in Equation (9.12), namely,

H =
[

A −BR−1BT

−Q −AT

]
(9.20)

is called the Hamiltonian matrix. We claim that if X(t) is nonsingu-
lar at each t ∈ [t0, tf ], the differential Riccati equation solution can be
expressed as

P(t) = �(t)X−1(t)

It is clear that the boundary condition (9.19) implies P(tf ) = S, and we
show next that �(t)X−1(t) satisfies Equation (9.17). First, the product
rule for differentiating matrix-valued functions yields

d

dt

[
�(t)X−1(t)

] = d�(t)

dt
X−1(t) + �(t)

dX−1(t)

dt

Also, differentiating the identity X(t)X−1(t) = I gives

dX−1(t)

dt
= −X−1(t)

dX(t)

dt
X−1(t)

Using these relationships, along with expressions for the derivatives of
X(t) and �(t) extracted from Equation (9.18), we see that

− d

dt

[
�(t)X−1(t)

] = − [−QX(t) − AT �(t)
]
X−1(t) + �(t)X−1(t)

× [
AX(t) − BR−1BT �(t)

]
X−1(t)

= Q + AT
[
�(t)X−1(t)

] + [
�(t)X−1(t)

]
A

− [
�(t)X−1(t)

]
BR−1BT

[
�(t)X−1(t)

]
so that �(t)X−1(t) satisfies Equation (9.17) as claimed.

Example 9.5 We solve the linear quadratic regulator problem for the
one-dimensional state equation

ẋ(t) = u(t) x(0) = x0

describing a single integrator and the performance index

J = 1
2

∫ 1

0

[
x2(t) + u2(t)

]
dt + 1

2σx2(1)
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We see by inspection that the parameters for this example are A =
0, B = 1, Q = 1, R = 1, S = σ, t0 = 0, and tf = 1. The Hamiltonian
matrix (9.20) is given by

H =
[

0 −1
−1 0

]

from which we compute the matrix exponential

eHt =
[

1
2(e

−t + et ) 1
2(e−t − et )

1
2(e

−t − et ) 1
2(e−t + et )

]

This yields the solution to Equation (9.18) for the boundary
condition (9.19)

[
X(t)

�(t)

]
=

[
1
2(e−(t−1) + e(t−1)) 1

2(e−(t−1) − e(t−1))

1
2(e−(t−1) − e(t−1)) 1

2(e−(t−1) + e(t−1))

][
1

σ

]

=
[

1
2

[
(1 + σ)e−(t−1) + (1 − σ)e(t−1)

]
1
2

[
(1 + σ)e−(t−1) − (1 − σ)e(t−1)

]
]

from which we construct

P(t) = �(t)

X(t)
= (1 + σ)e−(t−1) − (1 − σ)e(t−1)

(1 + σ)e−(t−1) + (1 − σ)e(t−1)

= (1 + σ) − (1 − σ)e2(t−1)

(1 + σ) + (1 − σ)e2(t−1)

The reader is invited to check that the same solution is obtained from the
scalar differential Riccatti equation

−Ṗ (t) = 1 − P 2(t) P (1) = σ

The associated feedback gain is K(t) = −P(t), yielding the time-varying
closed-loop state equation

ẋ(t) = −P(t)x(t) x(0) = x0

The closed-loop state equation was simulated with the initial state
x(0) = 1 to yield the optimal state trajectory for the following values
of the terminal cost weighting parameter σ = 0, 1, and 10. We see from
Figure 9.4 that as the penalty on the terminal state increases, the regulation
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FIGURE 9.4 Closed-loop state response for Example 9.5.

performance improves in the sense that the state trajectory is closer to zero
at the final time. �

The Hamiltonian matrix (9.20) has special eigenstructure properties that
allow us to be even more explicit in representing the solution to the
differential Riccati equation (9.17). We observe that the 2n × 2n matrix

J =
[

0 I

−I 0

]

is nonsingular with inverse J−1 = −J . A direct computation reveals that

J−1HJ = −JHJ

= −
[

0 I

−I 0

] [
A −BR−1BT

−Q −AT

][
0 I

−I 0

]

= −
[

AT −Q

−BR−1BT −A

]

= −HT
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which implies that H and −HT have the same eigenvalues. Furthermore,
since eigenvalues are unaffected by matrix transposition, we conclude that
H and −H have the same eigenvalues. We conclude that if λ ∈ C is an
eigenvalue of H , then so is −λ. In addition, since H is a real matrix,
λ is also an eigenvalue, from which −λ must be as well. We see that
the eigenvalue locations of H have quadrantal symmetry in the complex
plane, as illustrated by a quick sketch of

λ = σ + jω, −λ = −σ − jω, λ = σ − jω, −λ = −σ + jω

Now, under the assumption that H has no eigenvalues on the imaginary
axis, the 2n eigenvalues can be separated into a group of n eigenvalues
with strictly negative real parts and a group of n eigenvalues with strictly
positve real parts. We let T denote a similarity transformation matrix that
transforms H to Jordan canonical form given by

T −1H T =
[

J− 0

0 J+

]

in which J− specifies the collection of Jordan block matrices associ-
ated with the negative real-part eigenvalues of H , and J+ analogously
corresponds to the positive real-part eigenvalues of H .

We use the similarity transformation T partitioned conformably with
H into four n × n blocks as

T =
[

T11 T12

T21 T22

]

to transform Equation (9.18) via

[
X(t)

�(t)

]
=

[
T11 T12

T21 T22

] [
X̂(t)

�̂(t)

]

into 
 ˙̂

X(t)

˙̂
�(t)


 =

[
J− 0

0 J+

][
X̂(t)

�̂(t)

]

The boundary condition (9.19) transforms according to

[
I

S

]
=

[
T11 T12

T21 T22

] [
X̂(tf )

�̂(tf )

]
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Although this uniquely determines both X̂(tf ) and �̂(tf ), for our purposes,
it will suffice to express �̂(tf ) = M X̂(tf ), in which

M = −[T22 − S T12]−1[T21 − S T11]

For then we have[
X̂(t)

�̂(t)

]
=

[
eJ−(t−tf )

eJ+(t−tf )M

]
X̂(tf )

=
[

I

eJ+(t−tf )Me−J−(t−tf )

]
eJ−(t−tf )X̂(tf )

which leads to

[
X(t)

�(t)

]
=

[
T11 + T12e

J+(t−tf )Me−J−(t−tf )

T21 + T22e
J+(t−tf )Me−J−(t−tf )

]
eJ−(t−tf )X̂(tf )

Finally, we can combine these identities into the desired end result

P(t) = �(t)X−1(t) =
(
T21 + T22e

J+(t−tf )Me−J−(t−tf )
)

×
(
T11 + T12e

J+(t−tf )Me−J−(t−tf )
)−1

(9.21)

Example 9.6 For the setup in Example 9.5, the similarity transforma-
tion matrix

T =
[

1 1

1 −1

]

yields

T −1HT = 1
2

[
1 1

1 −1

] [
0 −1

−1 0

] [
1 1

1 −1

]

=
[ −1 0

0 1

]

from which we identify J− = −1 and J+ = 1. Recalling that S = σ , we
have

M = − 1 − σ

−1 − σ
= 1 − σ

1 + σ
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from which we compute

P(t) =
1 − 1 − σ

1 + σ
e2(t−1)

1 + 1 − σ

1 + σ
e2(t−1)

= (1 + σ) − (1 − σ)e2(t−1)

(1 + σ) + (1 − σ)e2(t−1)

which agrees with the result obtained in Example 9.5. �

Steady-State Linear Quadratic Regulator Problem

We now turn our attention to the steady-state linear quadratic regulator
problem, in which the performance index becomes

J = 1
2

∫ ∞

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (9.22)

We interpret this as arising from the original performance index (9.2) by
setting t0 = 0 and S = 0 and letting tf tend to infinity. To treat this as a
limiting case of the preceding analysis, we use the fact that both matrix
exponentials

e−J−(t−tf ) = eJ−(tf −t) and eJ+(t−tf ) = e−J+(tf −t)

tend to n × n zero matrices as tf tends to infinity because J− and −J+
have negative real-part eigenvalues. This allows us to conclude from
Equation (9.21) that

lim
tf →∞ P(t) = T21T

−1
11 � P

That is, as the final time tf tends to infinity, the differential Riccati
equation solution tends to a constant steady-state value P . We therefore
expect that P characterizes an equilibrium solution to Equation (9.17),
that is,

AT P + PA − PBR−1P + Q = 0 (9.23)

This is naturally referred to as the algebraic Riccati equation. We can
directly verify that P = T21T

−1
11 satisfies Equation (9.23) as follows. First,

the similarity transformation matrix T yielding the Jordan canonical form
of the Hamiltonian matrix H satisfies[

A −BR−1BT

−Q −AT

][
T11

T21

]
=

[
T11

T21

]
J− (9.24)
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FIGURE 9.5 Linear quadratic regulator closed-loop block diagram.

This can be further manipulated to yield

[
P −I

] [
A −BR−1BT

−Q −AT

] [
I

P

]
= [

P −I
] [

I

P

]
T11J

−T −1
11

= 0

On expanding the left hand side, we recover Equation (9.23).
We conclude that the steady-state linear quadratic regulator problem can

be solved if the differential Riccati equation has a well-defined constant
steady-state solution P that satisfies the algebraic Riccati equation. In this
case, the optimal control feedback law is time-invariant, given by

u(t) = −KLQRx(t) with KLQR = R−1BT P (9.25)

This yields the optimal time-invariant closed-loop state equation

ẋ(t) = (A − BR−1BT P )x(t) x(0) = x0 (9.26)

depicted by the block diagram of Figure 9.5.
The existence of P , in turn, relies on the previous assumption that H has

no eigenvalues on the imaginary axis and that the similarity transformation
matrix yielding the Jordan canonical form of H can be chosen so that T11 is
nonsingular. We therefore desire explicit conditions expressed in terms of
the linear state equation (9.1) and the performance index (9.22) that ensure
that the steady-state linear quadratic regulator problem has a solution. As
a preliminary step toward deriving such conditions, we note that when
Q is only positive semidefinite or, in other words, q � rank Q < n, a
basic fact from linear algebra gives that Q can be factored as Q = CT C

in which the q × n matrix C has full-row rank. We note that with this
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factorization, by defining y(t) = Cx(t) the first term in the integral (9.22)
can be written as

xT (t)Qx(t) = xT (t)CT C x(t) = ||y(t)||2

so the performance index (9.22) captures a tradeoff between control energy
and regulation of this newly defined output y(t).

We are now prepared to strike a somewhat remarkable connection
between the ability to solve the steady-state linear quadratic regulator
problem and controllability of the pair (A, B) together with observability
of the pair (A, C). The following theorem and proof largely follow the
development in Zhou (1995).

Theorem 9.1 If the pair (A, B) is controllable and the pair (A, C)

is observable, then the algebraic Riccati equation (9.23) has a
unique symmetric positive-definite solution, and the closed-loop state-
equation (9.26) is asymptotically stable.

Proof. We divide the proof into several steps:

1. Show that joint controllability of (A, B) and observability of (A, C)

imply that the Hamiltonian matrix H has no eigenvalues on the
imaginary axis.

2. Show that T11 and T21 in Equation (9.24) are such that T ∗
21T11 is

symmetric and T11 is nonsingular.
3. Show that the closed-loop state equation (9.26) is asymptotically

stable and that P = T21T
−1

11 is the unique symmetric positive definite
solution to Equation (9.23).

For the first step, we assume that H has an imaginary eigenvalue jω and
let [

v

w

]
∈ C

2n

denote a corresponding eigenvector. We note that v, w ∈ C
n cannot both

be zero vectors. From[
A −BR−1BT

−CT C −AT

][
v

w

]
= jω

[
v

w

]

we obtain, after some algebra,

(jωI − A)v = −BR−1BT w

(jωI − A)∗w = CT C v
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Multiplying the first identity on the left by w∗ and the second identity on
the left by v∗ gives

w∗(jωI − A)v = −w∗BR−1BT w

v∗(jωI − A)∗w = v∗CT C v

Now each right-hand side is a quadratic form involving a real symmetric
matrix and therefore is a real quantity. The left-hand sides are conjugates
of each other and therefore are equal. This allows us to write

−w∗BR−1BT w = v∗CT C v

Since the quadratic forms w∗BR−1BT w and v∗CT C v are each non-
negative, they both must be zero. This, in turn, implies BT w = 0 and
Cv = 0 so

(jωI − A)v = 0

(jωI − A)∗w = 0

These results can be reorganized to yield

w∗ [
jωI − A B

] = [
0 0

]
and

[
C

jωI − A

]
v =

[
0

0

]

We conclude that since v and w cannot both be zero vectors, the Popov-
Belevitch-Hautus rank tests for controllability and observability imply that
we cannot simultaneously have (A, B) controllable and (A, C) observable.
This completes the first step of the proof.

Proceeding to the second step, we first show that T ∗
21T11 is symmetric.

Multiplying Equation (9.24) on the left by
[
T ∗

11 T ∗
21

]
J gives

[
T ∗

11 T ∗
21

]
JH

[
T11

T21

]
= [

T ∗
11 T ∗

21

]
J

[
T11

T21

]
J−

Now, since the product JH is real and symmetric, the left-hand side is
Hermitian and so must the right-hand side be. Expanding the right-hand
side and equating the result to its conjugate transpose, we find

(−T ∗
21T11 + T ∗

11T21)J
− = [(−T ∗

21T11 + T ∗
11T21

)
J−]∗

= (
J−)∗ (−T ∗

21T11 + T ∗
11T21

)∗

= (
J−)∗ (−T ∗

11T21 + T ∗
21T11

)
= − (

J−)∗ (−T ∗
21T11 + T ∗

11T21
)

This can be rearranged into the Lyapunov matrix equation

(−T ∗
21T11 + T ∗

11T21)J
− + (J−)∗(−T ∗

21T11 + T ∗
11T21) = 0
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which, since J− has negative real-part eigenvalues, has the unique solution

−T ∗
21T11 + T ∗

11T21 = 0

It follows that T ∗
21T11 = T ∗

11T21, so T ∗
21T11 is symmetric.

We next show that T11 in Equation (9.24) is nonsingular. Suppose that
T11 is singular, and let x ∈ C

n be any nonzero vector lying in Ker T11.
Premultiplying the first block row Equation in (9.24) by x∗T ∗

21 and post-
multiplying by x gives

x∗T ∗
21A(T11x) − x∗T ∗

21BR−1BT T21x = x∗T ∗
21T11J

−x

= x∗T ∗
11T21J

−x

= (T11x)∗T21J
−x

= 0

This implies that x∗T ∗
21BR−1BT T21x = 0, from which BT T21x = 0. Now,

by simply postmultiplying the first-block row in Equation (9.24) by x, we
find

0 = A(T11x) − BR−1(BT T21x) = T11J
−x

Thus J−x ∈ Ker T11 for any x ∈ Ker T11. We let d denote the dimension
of the subspace Ker T11 and let X = [

x1 x2 · · · xd

]
denote an n × d

matrix whose columns form a basis for Ker T11. It follows that there exists
a d × d matrix J11 satisfying

J−X = X J11

We let µ denote an eigenvalue of J11 and α ∈ C
d an associated right

eigenvector. We see by construction that

Xα = [
x1 x2 · · · xd

]



α1

α2

...

αd




= α1x1 + α2x2 + · · · + αdxd

∈ Ker T11

Also, x � Xα �= 0 because α �= 0 (it is an eigenvector) and X has
full column rank. Thus postmultiplying the second block identity in
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Equation (9.24) by x gives

−Q(T11x) − AT (T21x) = T21J
−(Xα)

= T21X J11α

= µT21Xα

= µT21x

Using T11x = 0, we see that if T21x �= 0 then T21x is a right eigenvector
of AT with associated eigenvalue −µ. Furthermore, x ∈ Ker T11 implies
that BT T21x = 0, which by the Popov-Belevitch-Hautus eigenvector test
implies that the pair (AT , BT ) is not observable; equivalently, the pair
(A, B) is not controllable. This contradiction implies that T21x = 0, which
together with T11x = 0 gives

[
T11

T21

]
x =

[
0

0

]

This, in turn, implies that the first n columns of T are linearly dependent,
which contradicts the nonsingularity of T . We therefore conclude that
Ker T11 = 0; equivalently, T11 is nonsingular, which completes the second
step of the proof.

For the last step, we first use the fact that T ∗
21T11 = T ∗

11T21, along with
the identity

P = T21T
−1

11 = (T −1
11 )∗(T ∗

11T21)T
−1

11

to conclude that P is symmetric. Next, Equation (9.24) and the nonsin-
gularity of T11 allow us to write[

A −BR−1BT

−Q −AT

] [
I

P

]
=

[
I

P

]
T11J

−T −1
11

from which the first-block row yields

A − BR−1BT P = T11J
−T −1

11

and we therefore conclude that the eigenvalues of A − BR−1BT P coin-
cide with the eigenvalues of J−, which have negative real parts. This
implies that the closed-loop state equation (9.26) is asymptotically stable.

We next rewrite the algebraic Riccati equation (9.23) as the following
Lyapunov matrix equation:

(A − BR−1BT P )T P + P(A − BR−1BT P ) = −(CT C + PBR−1BT P )
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from which P can be represented as

P =
∫ ∞

0
e(A−BR−1BT P )T t (CT C + PBR−1BT P )e(A−BR−1BT P )tdt

This indicates that P is positive semidefinite because CT C + PBR−1P

is positive semidefinite. To argue that P is in fact positive definite, we
take any x0 ∈ Ker P and write

xT
0 Px0 = xT

0

∫ ∞

0
e(A−BR−1BT P )T t (CT C + PBR−1BT P )e(A−BR−1BT P )tdt x0

= xT
0

∫ ∞

0
e(A−BR−1BT P )T tCT Ce(A−BR−1BT P )tdt x0

+ xT
0

∫ ∞

0
e(A−BR−1BT P )T tPBR−1BT Pe(A−BR−1BT P )tdt x0

= 0

Since each term is nonnegative, both must vanish. From the second term,
we conclude that

R−1BT Pe(A−BR−1BT P )t ≡ 0 for all t ≥ 0

which, using a matrix exponential identity, allows us to write

e(A−BR−1BT P )tx0 = eAtx0 −
∫ t

0
eA(t−τ )BR−1BT Pe(A−BR−1BT P )τ x0dτ

= eAtx0

From the first term, we see that

CeAtx0 = Ce(A−BR−1BT P )tx0 ≡ 0 for all t ≥ 0

Now, by definition, if x0 �= 0, then (A, C) is an unobservable pair. Thus
the only x0 ∈ Ker P is x0 = 0, from which P is nonsingular and hence
positive definite. Finally, uniqueness can be argued by showing that P =
T21T

−1
11 is the only solution to the algebraic Riccati equation from which

a stabilizing state feedback gain matrix (9.25) can be constructed. This is
pursued in AE9.1. �

Example 9.7 We again return to the scalar state equation of
Example 9.5, now with the performance index

J = 1
2

∫ ∞

0

[
x2(t) + u2(t)

]
dt
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The solution of the differential Riccati equation for arbitrary final time tf
and terminal cost weight σ is easily adapted from previous computations:

P(t) =
1 − 1 − σ

1 + σ
e2(t−tf )

1 + 1 − σ

1 + σ
e2(t−tf )

= (1 + σ) − (1 − σ)e2(t−tf )

(1 + σ) + (1 − σ)e2(t−tf )

Since e2(t−tf ) = e−2(tf −t) tends to zero as tf tends to infinity, P(t)

approaches the steady-state value

P = 1 + σ

1 + σ
= 1

which is independent of σ .
With A = 0 and B = 1, the pair (A, B) is controllable, and for C =√
Q = 1, the pair (A, C) is observable. The algebraic Riccati equation

1 − P 2 = 0

has two solutions, P = ±1. Of these, only P = 1 is positive (definite) for
which the state feedback gain KLQR = 1 yields the asymptotically stable
closed-loop state equation

ẋ(t) = −x(t) �

9.5 MATLAB FOR OPTIMAL CONTROL

MATLAB Functions for Linear Quadratic Regulator Design

The following MATLAB functions are useful for design of state feedback
control laws that solve the linear quadratic regulator problem:

Pbar = are(A,BB,Q) Returns the positive definite (stabilizing) solution
to the algebraic Riccati equation, given the sys-
tem dynamics matrix A, the coefficient matrix
of the quadratic term BB = B*inv(R)*B’, and
weighting matrix Q.

Klqr = lqr(A,B,Q,R) Directly calculates the optimal linear quadratic
regulator gain matrix Klqr, given the system
dynamics matrix A, the input matrix B, and the
weighting matrices Q and R.
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Continuing MATLAB Example

For the Continuing MATLAB Example (rotational mechanical system), we
now design an optimal linear quadratic regulator state feedback control
law by determining the gain matrix KLQR. Here we choose the weights

Q =
[

20 0

0 20

]
and R = 1

The following MATLAB code, in combination with the m-files from previous
chapters, performs the required computations:

%------------------------------------------------------
% Chapter 9. Linear Quadratic Regulator Design
%------------------------------------------------------

Q = 20*eye(2); % Weighting matrix for
% state error

R = [1]; % Weighting matrix for
% input effort

BB = B*inv(R)*B’;

Pbar = are(A,BB,Q); % Solve algebraic Riccati
% equation

KLQR = inv(R)*B’*Pbar; % Computer state feedback
gain

ALQR = A-B*KLQR; % Compute closed-loop
% system dynamics matrix

JbkRLQR = ss(ALQR,B,C,D); % Create LQR closed-loop
% state equation

% Compare open and closed-loop zero-input responses
[YLQR,t,XLQR] = initial(JbkRLQR,X0,t);

figure;
subplot(211)
plot(t,Xo(:,1),'--',t,Xc(:,1),'-.',t,XLQR(:,1));
grid; axis([0 4 -0.2 0.5]);
set(gca,'FontSize',18);
legend('Open-loop','Closed-loop','LQR');
ylabel('\itx 1 (rad)')
subplot(212)
plot(t,Xo(:,2),'--',t,Xc(:,2),'-.',t,XLQR(:,2));
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grid; axis([0 4 -2 1]);
set(gca,'FontSize',18);
xlabel('\ittime (sec)'); ylabel('\itx 2 (rad/sec)');

% Calculate and plot to compare closed-loop and LQR
% input efforts required
Uc = -K*Xc'; % Chapter 7 input effort
ULQR = -inv(R)*B'*Pbar*XLQR'; % LQR input effort

figure;
plot(t,Uc,'--',t,ULQR); grid; axis([0 4 -10 6]);
set(gca,'FontSize',18);
legend('Closed-loop','LQR');
xlabel('\ittime (sec)'); ylabel('\itU (Nm)');

The solution to the algebraic Riccati equation is computed to be:

Pbar =
83.16 0.25
0.25 2.04

The associated state feedback gain is

KLQR =

0.2492 2.0414

The closed-loop eigenvalues are located at −3.0207 ± j5.5789.
We see in Figure 9.6 that the linear quadratic regulator design

exhibits improved regulation performance as compared with the open-
loop response and the closed-loop response resulting from the eigenvalue
placement design presented in Chapter 7. The zero-input response for the
linear quadratic regulator design decays to zero faster with less oscillation.

Figure 9.7 compares the control signals produced by the linear quadratic
regulator design and eigenvalue placement design. Interestingly enough,
the control signal for the linear quadratic regulator design has a smaller
amplitude than that for the eigenvalue placement design. These com-
parisons indicate that the linear quadratic regulator optimal controller is
superior in terms of both regulation performance and control effort.

9.6 CONTINUING EXAMPLE 1: LINEAR QUADRATIC
REGULATOR

For Continuing Example 1 (two-mass translational mechanical system),
we now design and evaluate a linear quadratic regulator state feedback
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FIGURE 9.6 State responses for the Continuing MATLAB Example: Open-loop, eigen-
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FIGURE 9.7 Control signal responses for the Continuing MATLAB Example: eigen-
value placement Design versus linear quadratic regulator design.

control law for case b [for zero input u2(t), initial state x(0) =
[0.1, 0, 0.2, 0]T, and output y1(t)].

Case b. To account for the relative scaling of the state variables and
input signals, the weighting matrices for the linear quadratic regulator
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performance index were chosen to be:

Q = 300I4 R = 1

We use the MATLAB function are to solve the algebraic Riccati equation,
yielding

P =




3618 51 −345 62

51 326 −21 130

−345 −21 1712 4

62 130 4 235




The corresponding state feedback control law (9.26) yields the closed-loop
system dynamics matrix

A − BR−1BTP =




0 1 0 0

−15 −0.75 5 0.25

0 0 0 1

9.85 0.17 −10.01 −1.09




We see in Figure 9.8 that the linear quadratic regulator design exhibits
improved regulation performance as compared with the underdamped
open-loop response. However, the linear quadratic regulator-based
response is more oscillatory as compared with the response achieved
by the eigenvalue placement design described in Chapter 7, which
decays faster with less oscillation. Thus, based on regulation performance
alone, it appears that the optimal response does not outperform the
Chapter 7 design.
However, the regulation performance of the Chapter 7 design does not
come without a price. Large control signal amplitude is required to achieve
the fast, well-damped transient response for this design. In contrast, the
control signal amplitude for the linear quadratic regulator is significantly
smaller, as shown in Figure 9.9. We observe that the linear quadratic
regulator formulation provides a convenient mechanism for assessing the
tradeoff between regulation performance and control signal amplitude. In
this example, regulation performance can be improved by increasing the
scale factor appearing in the weighting matrix Q (currently set to 300)
while keeping R fixed. This will result in an accompanying increase in
control signal amplitude as the interested reader is invited to explore.
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value placement design, and linear quadratic regulator design.
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value placement design versus linear quadratic regulator design.
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9.7 HOMEWORK EXERCISES

Numerical Exercises

NE9.1 For each matrix pair (A, B) below, calculate the algebraic Riccati
equation solution P and the linear quadratic regulator gain matrix
KLQR given Q = I and R = 1.

a. A =
[ −1 0

0 −4

]
B =

[
1

1

]

b. A =
[

0 1

−6 −8

]
B =

[
0
1

]

c. A =
[

0 1

−6 0

]
B =

[
0
1

]

d. A =
[

0 8

1 10

]
B =

[
1
0

]

NE9.2 Repeat NE 9.1 using: (i) Q = I and R = 0.5, and (ii) Q = I and
R = 2. Compare and discuss your results.

NE9.3 Repeat the analysis conducted in Examples 9.5 though 9.7 for
fixed σ = 1 and variable R = ρ2.

Analytical Exercises

AE9.1 Suppose that P 1 and P 2 are two symmetric positive definite solu-
tions to the algebraic Riccati equation. Show that P 1 and P 2

satisfy
(A − BR−1BT P 2)

T (P 1 − P 2)

+ (P 1 − P 2)(A − BR−1BT P 1) = 0

and argue that P 1 = P 2, thereby verifying the uniqueness claim
of Theorem 9.1.

AE9.2 Suppose that the pair (A, B) is controllable. Show that the con-
trollability Gramian satisfies

− d

dt
W−1(t, tf ) = AT W−1(t, tf ) + W−1(t, tf )A

− W−1(t, tf )BBT W−1(t, tf )

Use this to relate the solutions of the minimum energy control
problem and the linear quadratic regulator problem with Q = 0
and R = I and with the terminal cost term replaced by the con-
straint x(tf ) = xf .
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AE9.3 Suppose that the algebraic Riccati equation has a unique symmet-
ric positive-definite solution P . Determine the n × n matrix X for
which

T =
[

I 0

P I

]

satisfies

T −1H T =
[

A − BR−1BT P X

0 −(A − BR−1BT P )T

]

Use this to relate the eigenvalues of H to the eigenvalues of the
closed-loop state equation (9.26).

AE9.4 Derive a solution to the optimal control problem involving the
weighted performance index

Jα = 1
2

∫ ∞

0
[xT (t)Qx(t) + uT (t)Ru(t)]e2αtdt

and show that the associated closed-loop eigenvalues have real
parts less than −α.

AE9.5 For the single-input, single-output case, show that

|1 + KLQR(jω − A)−1B| ≥ 1 for all − ∞ < ω < ∞
As a result, show that the Nyquist plot of KLQR(sI − A)−1B never
enters the circle of radius one centered at −1 + j0 in the complex
plane. Argue that the linear quadratic regulator achieves infinite
gain margin and a phase margin of at least 60◦.

Continuing MATLAB Exercises

CME9.1 For the CME1.1 system, design and evaluate an optimal linear
quadratic regulator with equal weighting for the state and input.
Plot the output response to a unit step input, and compare on the
same graph the open-loop and closed-loop responses obtained in
CME7.1b and the linear quadratic regulator responses (assuming
zero initial conditions). Also plot the associated control sig-
nals for the CME7.1b design and the linear quadratic regulator
design.

CME9.2 For the CME1.2 system, design and evaluate an optimal linear
quadratic regulator with the state weighting ten times greater
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than the input weighting. Plot the output response to a unit step
input, and compare on the same graph the open-loop and closed-
loop responses obtained in CME7.2b and the linear quadratic
regulator responses (assuming zero initial conditions). Also plot
the associated control signals for the CME7.2b design and the
linear quadratic regulator design.

CME9.3 For the CME1.3 system, design and evaluate an optimal linear
quadratic regulator with the state weighting 300 times greater
than the input weighting. Plot the output response to a unit
step input and compare on the same graph the open-loop and
the closed-loop response obtained in CME7.3b and the linear
quadratic regulator responses (assuming zero initial conditions).
Also plot the associated control signals for the CME7.3b design
and the linear quadratic regulator design.

CME9.4 For the CME1.4 system, design and evaluate an optimal linear
quadratic regulator with the state weighting 100 times greater
than the input weighting. Plot the output response to a unit
step input and compare on the same graph the open-loop and
the closed-loop response obtained in CME7.4b and the linear
quadratic regulator responses (assuming zero initial conditions).
Also plot the associated control signals for the CME7.4b design
and the linear quadratic regulator design.

Continuing Exercises

CE9.1 Design and evaluate a linear quadratic regulator for the CE2.1.i.b
system. Use equal weighting on the state and input. In addition to
plotting the open-loop and closed-loop linear quadratic regulator
state responses, separately plot the input signals. Compare with
the CE7.1 results.

CE9.2 Design and evaluate a linear quadratic regulator for the CE2.2.i.b
system. Use equal weighting on the state and input. In addition to
plotting the open-loop and closed-loop linear quadratic regulator
state responses, separately plot the input signals. Compare with
the CE7.2 results.

CE9.3 Design and evaluate a linear quadratic regulator for the CE2.3.i.b
system. Use equal weighting on the state and input. In addition to
plotting the open-loop and closed-loop linear quadratic regulator
state responses, separately plot the input signals. Compare with
the CE7.3 results.
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CE9.4 Design and evaluate a linear quadratic regulator for the CE2.4
system. Weight the state twice as much as the input. In addition to
plotting the open-loop and closed-loop linear quadratic regulator
state responses, separately plot the input signals. Compare with
the CE7.4 results.



APPENDIX A
MATRIX INTRODUCTION

This appendix presents a matrix introduction to support the material of
the textbook. Topics covered are matrix basics, matrix arithmetic, matrix
determinants, and matrix inversion.

A.1 BASICS

A matrix is a two-dimensional array of real or complex numbers. Here a
few examples:

[
2 0 −1

1 5 3

]



−1 + j2 3

0 −j

2 − j 1

1 + j3 0




[−3 1
2 −4

]
[ 0 2 4 ]




−1
0

−2
7




The number of rows and columns specify the dimension of the matrix.
That is, a matrix with m rows and n columns is said to have dimension
m × n or is referred to as an m × n matrix. The preceding matrices have
dimension 2 × 3, 4 × 2, 2 × 2, 1 × 3, and 4 × 1, respectively. Note that a
row vector can be regarded as a matrix with a single row, and a column
vector can be regarded a matrix with a single column. Matrices with the
same number of rows and columns are called square.
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An m × n matrix will be represented generically as

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




or, using the shorthand notation, A = [aij ], where aij denotes the element
in the ith row and j th column. Hence the first subscript indexes the row
in which the element lies, and the second subscript indexes the column
in which the element lies.

The n × n identity matrix, denoted by In (or simply I when the dimen-
sion is clear from the context), is the square matrix with ones along the
main diagonal and zeros elsewhere. For example,

I3 =

 1 0 0

0 1 0
0 0 1




The m × n matrix with a zero in every element is called a zero matrix
and will be denoted either by 0m×n or just 0, again when the dimension
is clear from the context.

The transpose of an m × n matrix A = [aij ] is the n × m matrix given
by AT = [aji]. That is, the transpose is obtained by interchanging rows
and columns. The conjugate transpose of an m × n matrix A = [aij ] is
the n × m matrix given by A∗ = [aji]. Hence the conjugate transpose
is obtained by combining matrix transposition with element-wise con-
jugation. The conjugate transpose is also referred to as the Hermitian
transpose.

Example A.1 For

A =




−1 + j2 3

0 −j

2 − j 1

1 + j3 0




we obtain

AT =
[ −1 + j2 0 2 − j 1 + j3

3 −j 1 0

]
and

A∗ =
[ −1 − j2 0 2 + j 1 − j3

3 j 1 0

]
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If A is a real matrix, meaning that all elements are real numbers, then
A∗ = AT. �

A.2 MATRIX ARITHMETIC

Matrix addition and subtraction operations are performed on an element-
by-element basis and therefore are defined only for matrices of the
same dimension. For m × n matrices A = [aij ] and B = [bij ], their sum
C = A + B is specified by

[cij ] = [aij + bij ]

and their difference D = A − B is specified by

[dij ] = [aij − bij ]

Multiplication of a matrix A of any dimension by a real or complex scalar
α is specified by

αA = [αaij ]

that is, every element of A is multiplied by α to produce αA. Note that
matrix subtraction can be represented as A − B = A + (−1)B.

Example A.2 For

A =




−1 + j2 3

0 −j

2 − j 1

1 + j3 0


 and B =




0 1 + j

1 2

j −1

5 −1 − j4




we obtain

A + B =




−1 + j2 4 + j

1 2 − j

2 0

6 + j3 −1 − j4


 and

A − B =




−1 + j2 2 − j

−1 −2 − j

2 − j2 2

−4 + j3 1 + j4
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Also,

2A =




−2 + j4 6

0 −j2

4 − j2 2

2 + j6 0


 and − jB =




0 1 − j

−j −j2

1 j

−j5 −4 + j




�

Based on the definitions, it is clear that matrix addition and scalar mul-
tiplication have general properties very similar to their counterparts for
real and complex numbers: For any m × n matrices A, B, and C and any
pair of scalars α and β,

1. Commutativity
A + B = B + A

2. Associativity
a. (A + B) + C = A + (B + C)

b. (αβ)A = α(βA)

3. Distributivity
a. α(A + B) = αA + αB

b. (α + β)A = αA + βA

4. Identity elements
a. The zero matrix 0 satisfies A + 0 = A

b. 0A = 0m×n and 1A = A

The matrix product C = AB of an m × n matrix A and a p × q matrix
B can be defined only when n = p; i.e., the number of columns of the
left factor A matches the number of rows of the right factor B. When this
holds, the matrices A and B are said to be conformable, and the matrix
product is the m × q matrix given by

C = [cij ] cij =
n∑

k=1

aikbkj

It is often helpful to visualize the computation of cij as the inner or dot
product of the ith row of A and the j th column of B, which are vectors
of equal length because of conformability.
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Example A.3 Given

A =




−1 + j2 3

0 −j

2 − j 1

1 + j3 0


 and B =

[ −3 1
2 −4

]

we obtain

AB =




(−1 + j2)(−3) + (3)(2) (−1 + j2)(1) + (3)(−4)

0(−3) + (−j)(2) 0(1) + (−j)(−4)

(2 − j)(−3) + (1)(2) (2 − j)(1) + (1)(−4)

(1 + j3)(−3) + (0)(2) (1 + j3)(1) + (0)(−4)




=




9 − j6 −13 + j2
−j2 j4

−4 + j3 −2 − j

−3 − j9 1 + j3




In this example, it is not possible to define the product BA because the
number of columns of B does not match the number of rows of A. �

It is important to note that matrix multiplication is not commutative.
Even when both products AB and BA can be formed and have the same
dimension (which happens when A and B are square matrices of the same
size), in general, AB �= BA. Consequently, the order of the factors is very
important. Matrix multiplication does satisfy other properties reminiscent
of the scalar case. For matrices A, B, and C with dimensions such that
every matrix product below is defined:

1. Associativity
(AB)C = A(BC)

2. Distributivity
a. A(B + C) = AB + AC

b. (B + C)A = BA + CA

Finally, matrix multiplication and matrix transposition are related as
follows:

(AB)T = BTAT
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and this can be extended to any number of factors. In words, the transpose
of a product is the product of the transposes with the factors arranged in
reverse order. An analogous result holds for conjugate transposition.

A.3 DETERMINANTS

Determinants are only defined for square matrices. The determinant of
an n × n matrix A is denoted by |A|. For dimensions n = 1, 2, 3, the
determinant is computed according to

n = 1 : |A| = a11

n = 2 : |A| = a11a22 − a12a21

n = 3 : |A| = a11a22a33 + a12a23a31 + a13a32a21 − a31a22a13

− a32a23a11 − a33a12a21

For n > 3, the determinant is computed via the Laplace expansion spec-
ified as follows: First, the cofactor Cij of the matrix element aij is
defined as

Cij = (−1)i+jMij

in which Mij is the minor of the matrix element aij , which, in turn,
is defined as the determinant of the (n − 1) × (n − 1) submatrix of A

obtained by deleting the ith row and j th column. In terms of these defi-
nitions, the determinant is given by the formula(s):

|A| =
n∑

j=1

aijCij for fixed 1 ≤ i ≤ n

|A| =
n∑

i=1

aijCij for fixed 1 ≤ j ≤ n

A few remarks are in order. First, there are multiple ways to com-
pute the determinant. In the first summation, the row index i is fixed,
and the sum ranges over the column index j . This is referred to as
expanding the determinant along the ith row, and there is freedom to
expand the determinant along any row in the matrix. Alternatively, the
second summation has the column index j fixed, and the sum ranges
over the row index i. This is referred to as expanding the determinant
along the jth column, and there is freedom to expand the determinant
along any column in the matrix. Second, the Laplace expansion specifies
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a recursive computation in that the determinant of an n × n matrix A

involves determinants of (n − 1) × (n − 1) matrices, namely, the minors
of A, which, in turn, involve determinants of (n − 2) × (n − 2) matri-
ces, and so on. The recursion terminates when one of the cases above
is reached (n = 1, 2, 3) for which a closed-form expression is available.
Third, observe that whenever aij = 0, computation of the cofactor Cij is
not necessary. It therefore makes sense to expand the determinant along
the row or column containing the greatest number of zero elements to
simplify the calculation as much as possible.

Example A.4 For the 4 × 4 matrix

A =



1 0 0 −3
0 5 2 1

−1 0 0 −1
3 1 0 0




there are several choices for a row or column with two zero elements
but only one choice, namely, the third column, for which there are three
zero elements. Expanding the determinant about the third column (j = 3)

gives

|A| =
4∑

i=1

ai3Ci3

= (0)C13 + (2)C23 + (0)C33 + (0)C43

= (2)C23

so the only cofactor required is C23 = (−1)2+3M23. The associated minor
is the determinant of the 3 × 3 submatrix of A obtained by deleting row
2 and column 3:

M23 =
∣∣∣∣∣∣

1 0 −3
−1 0 −1

3 1 0

∣∣∣∣∣∣
= (1)(0)(0) + (0)(−1)(3) + (−3)(1)(−1) − (3)(0)(−3)

− (1)(−1)(1) − (0)(0)(−1)

= 4

so C23 = (−1)2+3(4) = −4. Finally,

|A| = 2C23

= −8 �
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Several useful properties of determinants are collected below:

1. |A| = |AT|
2. |AB| = |A||B| = |BA|
3. |αA| = αn|A|
4. If any row or column of A is multiplied by a scalar α to form B,

then |B| = α|A|.
5. If any two rows or columns of A are interchanged to form B, then

|B| = −|A|.
6. If a scalar multiple of any row (respectively, column) of A is

added to another row (respectively, column) of A to form B, then
|B| = |A|.

A.4 MATRIX INVERSION

An n × n matrix A is called invertible or nonsingular if there is another
n × n matrix B that satisfies the relationship

AB = BA = In

In such cases, B is called the inverse of A and is instead written as A−1.
If A has an inverse, the inverse is unique. If A has no inverse, then A is
called singular. The following basic fact provides a test for invertibility
(nonsingularity).

Proposition A.1 A is invertible (nonsingular) if and only if |A| �= 0. �

The inverse of an invertible matrix is specified by the formula

A−1 = adj(A)

|A|
in which adj(A) is the adjugate or adjoint of A and is given by

adj(A) = [Cij ]T

where Cij is the cofactor of the (i, j )th element of A. That is, the adjugate
of A is the transpose of the matrix of cofactors. The fraction appearing in
the preceding formula for the inverse should be interpreted as multiplica-
tion of the matrix adj(A) by the scalar 1/|A|.
Example A.5 The 4 × 4 matrix A from Example A.4 is invertible
(nonsingular) because |A| = −8 �= 0. Construction of the 4 × 4 adjugate
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matrix requires the calculation of a total of 16 3 × 3 determinants. From
a previous calculation, C23 = −4, and as another sample calculation

M11 =
∣∣∣∣∣
5 2 1
0 0 −1
1 0 0

∣∣∣∣∣
= (5)(0)(0) + (2)(−1)(1) + (1)(0)(0) − (1)(0)(1)

− (0)(−1)(5) − (0)(2)(0)

= −2

from which C23 = (−1)1+1M11 = −2. After 14 more such calculations,

adj(A) =



−2 6 −16 2
0 0 −4 0
6 −18 44 2
0 −8 20 0




T

=



−2 0 6 0
6 0 −18 −8

−16 −4 44 20
2 0 2 0




which leads to

A−1 = 1

−8




−2 0 6 0
6 0 −18 −8

−16 −4 44 20
2 0 2 0




=




1

4
0

−3

4
0

−3

4
0

9

4
1

2
1

2

−11

2

−5

2
−1

4
0

−1

4
0




The correctness of an inverse calculation can always be verified by check-
ing that AA−1 = A−1A = I . This is left as an exercise for the reader.

�
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The transpose of a matrix is invertible if and only if the matrix itself
is invertible. This follows from Proposition A.1 and the first determinant
property listed in Section A.3. When A is invertible,

(AT)−1 = (A−1)T

In general, an asserted expression for the inverse of a matrix can be veri-
fied by checking that the product of the matrix and the asserted inverse (in
either order) yields the identity matrix. Here, this check goes as follows:

AT(AT)−1 = AT(A−1)T

= (A−1A)T

= (I )T

= I

This result shows that matrix transposition and matrix inversion can be
interchanged, and this permits the unambiguous notation A−T.

Also, the product of two n × n matrices is invertible if and only if
each factor is invertible. This follows from Proposition A.1 and the second
determinant property listed in Section A.3. When the product is invertible,
the inverse is easily verified to be

(AB)−1 = B−1A−1

That is, the inverse of a product is the product of the inverses with the
factors arranged in reverse order.



APPENDIX B
LINEAR ALGEBRA

This appendix presents an overview of selected topics from linear algebra
that support state-space methods for linear control systems.

B.1 VECTOR SPACES

Definition B.1 A linear vector space X over a field of scalars F is a
set of elements (called vectors) that is closed under two operations: vector
addition and scalar multiplication. That is,

x1 + x2 ∈ X for all x1, x2 ∈ X

and
αx ∈ X for all x ∈ X and for all α ∈ F

In addition, the following axioms are satisfied for all x, x1, x2, x3 ∈ X and
for all α, α1, α2 ∈ F:

1. Commutativity
x1 + x2 = x2 + x1

2. Associativity
a. (x1 + x2) + x3 = x1 + (x2 + x3)

b. (α1α2)x = α1(α2x)

3. Distributivity
a. α(x1 + x2) = αx1 + αx2

b. (α1 + α2)x = α1x + α2x
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4. Identity elements
a. There is a zero vector 0 ∈ X such that x + 0 = x

b. For additive and multiplicative identity elements in F, denoted 0
and 1, respectively,

0x = 0 and 1x = x �

Example B.1

F
n = {x = (x1, x2, . . . , xn), xi ∈ F, i = 1, . . . , n}

i.e., the set of all n-tuples with elements in F. When F is either the real field
R or the complex field C, R

n and C
n denote real and complex Euclidean

space, respectively. �

Example B.2

F
m×n = {A = [aij ], aij ∈ F, i = 1, . . . , m, j = 1, . . . , n}

i.e., the set of all m × n matrices with elements in F. Again, typically
F is either R or C, yielding the set of real or complex m × n matrices,
respectively. That C

m×n is a vector space over C is a direct consequence
of the discussion in Section A.2. Note that by stacking columns of an
m × n matrix on top of one another to form a vector, we can identify
F

m×n with F
mn. �

Example B.3 C[a, b], the set of continuous functions f : [a, b] → F,
with vector addition and scalar multiplication defined in a pointwise sense
as follows:

(f + g)(x) := f (x) + g(x) (αf )(x) := αf (x) for all x ∈ [a, b]

for all f, g ∈ C[a, b] and α ∈ F. �

Definition B.2 Let x1, x2, . . . , xk be vectors in X. Their span is
defined as

span{x1, x2, . . . , xk} := {x = α1x1 + α2x2 + · · · + αkxk, αi ∈ F}

i.e., the set of all linear combinations of x1, x2, . . . , xk . �
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Definition B.3 A set of vectors {x1, x2, . . . , xk} is linearly independent
if the relation

α1x1 + α2x2 + · · · + αkxk = 0

implies that α1 = α2 = · · · = αk = 0. �

Lemma B.4 If {x1, x2, . . . , xk} is a linearly independent set of vectors
and x ∈ span{x1, x2, . . . , xk}, then the relation

x = α1x1 + α2x2 + · · · + αkxk

is unique.

Proof. Suppose that x = β1x1 + β2x2 + · · · + βkxk is another represen-
tation with βi �= αi for at least one i ∈ {1, . . . , k}. Then

0 = x − x

= (α1x1 + α2x2 + · · · + αkxk) − (β1x1 + β2x2 + · · · + βkxk)

= (α1 − β1)x1 + (α2 − β2)x2 + · · · + (αk − βk)xk

By assumption, αi − βi �= 0 for some i, which contradicts the linear inde-
pendence hypothesis. �

B.2 SUBSPACES

Definition B.5 A linear subspace S of a linear vector space X is a
subset of X that is itself a linear vector space under the vector addition
and scalar multiplication defined on X. �

Definition B.6 A basis for a linear subspace S is a linearly independent
set of vectors {x1, x2, . . . , xk} such that

S = span{x1, x2, . . . , xk} �

A basis for S is not unique; however, all bases for S have the same
number of elements, which defines the dimension of the linear subspace
S. Since a linear vector space X can be viewed as a subspace of itself, the
concepts of basis and dimension apply to X as well.
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On R
3:

1. {0} is a zero-dimensional subspace called the zero subspace.
2. Any line through the origin is a one-dimensional subspace, and any

nonzero vector on the line is a valid basis.
3. Any plane through the origin is a two-dimensional subspace, and

any two noncollinear vectors in the plane form a valid basis.
4. R

3 is a three-dimensional subspace of itself, and any three noncopla-
nar vectors form a valid basis.

Example B.4 The set of all 2 × 2 real matrices R
2×2 is a four-

dimensional vector space, and a valid basis is

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}

because

A =
[

a11 a12

a21 a22

]

= a11

[
1 0
0 0

]
+ a12

[
0 1
0 0

]
+ a21

[
0 0
1 0

]
+ a22

[
0 0
0 1

]

The subset of all upper triangular matrices

A =
[

a11 a12

0 a22

]

is a three-dimensional subspace, and a valid basis is obtained by omitting

[
0 0
1 0

]

in the basis for R
2×2 given above.

The subset of symmetric matrices A = AT (so that a12 = a21) is a
three-dimensional subspace, and a valid basis is

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
�
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Example B.5 The set of all degree-k polynomials is a (k + 1)-
dimensional subspace of the infinite dimensional vector space C[a, b],
and a valid basis for this subspace is:

{1, x, x2, . . . , xk} �

B.3 STANDARD BASIS

As we have already noted, a basis for a linear subspace or vector space is
not unique. On R

n or C
n, the standard basis {e1, e2, . . . , en} is defined by

ei =




0
...

0
1
0
...

0




← i th position i = 1, . . . , n

Equivalently, [ e1 e2 · · · en ] forms the n × n identity matrix I .
On R

3 or C
3,

e1 =

 1

0
0


 e2 =


 0

1
0


 e3 =


 0

0
1




For any x ∈ R
3, we have the unique representation in terms of {e1, e2, e3}:

x = x1e1 + x2e2 + x3e3

= x1


 1

0
0


 + x2


 0

1
0


 + x3


 0

0
1




=

 x1

x2

x3
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B.4 CHANGE OF BASIS

Let {x1, x2, . . . , xn} and {y1, y2, . . . , yn} be bases for an n-dimensional
linear vector space X over F. Each basis vector yj can be uniquely repre-
sented in terms of the basis {x1, x2, . . . , xn} as

yj = t1j x1 + t2j x2 + · · · + tnjxn

=
n∑

i=1

tij xi

tij ∈ F for i, j = 1, · · · , n
Next, let x ∈ X be an arbitrary element with unique representation in

each basis

x = α1x1 + α2x2 + · · · + αnxn

= β1y1 + β2y2 + · · · + βnyn

The n-tuple (α1, α2, . . . , αn) defines the coordinates of the vector x in
the basis {x1, x2, . . . , xn}, and analogously, the n-tuple (β1, β2, . . . , βn)

defines the coordinates of the vector x in the other basis {y1, y2, . . . , yn}.
We establish a connection between these two coordinate representations
by writing

x = β1

(
n∑

i=1

ti1xi

)
+ β2

(
n∑

i=1

ti2xi

)
+ · · · + βn

(
n∑

i=1

tinxi

)

=
n∑

j=1

βj

(
n∑

i=1

tij xi

)

=
n∑

i=1


 n∑

j=1

tijβj


 xi

=
n∑

i=1

αixi

from which it follows that

αi =
n∑

j=1

tijβj i = 1, · · · , n
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In matrix form,




α1

α2
...

αn


 =




t11 t12 · · · t1n

t21 t22 · · · t2n

...
...

. . .
...

tn1 tn2 · · · tnn







β1

β2
...

βn




or, more compactly,
α = Tβ

The matrix T must be invertible (nonsingular), so this relationship can
be reversed to obtain

β = T −1α

That is, the matrix T allows us to transform the coordinate representa-
tion of any vector x ∈ X in the basis {y1, y2, . . . , yn} into an equivalent
coordinate representation in the basis {x1, x2, . . . , xn}. This transforma-
tion was defined originally in terms of the unique representation of each
basis vector in {y1, y2, . . . , yn} in the basis {x1, x2, . . . , xn}. Conversely,
the matrix T −1 allows us to go from a coordinate representation in the
basis {x1, x2, . . . , xn} into an equivalent coordinate representation in the
basis {y1, y2, . . . , yn}.
Example B.6 Consider the standard basis for R

3, {e1, e2, e3}, and a
second basis {y1, y2, y3} defined via

y1 = (1)e1 + (−1)e2 + (0)e3

y2 = (1)e1 + (0)e2 + (−1)e3

y3 = (0)e1 + (1)e2 + (0)e3.

It is customary to instead write

y1 =

 1

−1
0


 y2 =


 1

0
−1


 y3 =


 0

1
0




These relationships allow us to specify the transformation matrix relat-
ing these two bases as

T =

 1 1 0

−1 0 1
0 −1 0
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We now seek to find the coordinate representation of the vector

x = (2)e1 + (3)e2 + (8)e3

=

 2

3
8




=

α1

α2

α3




in the basis {y1, y2, y3}. In our setup we need to solve α = Tβ for β.
That is,


β1

β2

β3


 =


 1 1 0

−1 0 1
0 −1 0




−1 
 2

3
8




=

 1 0 1

0 0 −1
1 1 1





 2

3
8




=

 10

−8
13




so that
x = (10)y1 + (−8)y2 + (13)y3 �

B.5 ORTHOGONALITY AND ORTHOGONAL COMPLEMENTS

We focus on the linear vector space C
n with obvious specialization to R

n.

Definition B.7 For vectors x = (x1, x2, . . . , xn) and y = (y1, y2,

. . . , yn)

1. The inner product of x and y is defined as

〈x, y〉 := x∗y =
n∑

i=1

xiyi
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where the ∗-superscript denotes conjugate transpose. Note that

〈y, x〉 = y∗x = (x∗y)∗ = 〈x, y〉∗. For x, y ∈ R
n, 〈x, y〉 := xT y

= yT x = 〈y, x〉.

2. Vectors x, y ∈ C
n are orthogonal if 〈x, y〉 = 0.

3. The Euclidian norm of x ∈ C
n is given by

||x|| = 〈x, x〉 1
2 =

(
n∑

i=1

|xi |2
) 1

2

4. A set of vectors {x1, x2, . . . , xk} is orthogonal if 〈xi, xj 〉 = 0 for
i �= j and orthonormal if, in addition, ||xi || = 1, i = 1, . . . , k.

For a subspace S ⊂ C
n

1. A set of vectors {x1, x2, · · · , xk} is called an orthonormal basis for
S if it is an orthonormal set and is a basis for S.

2. The orthogonal complement of S is defined as

S
⊥ = {y ∈ C

n|〈y, x〉 = 0 ∀x ∈ S} �

It follows from the definition that S
⊥ is also a subspace of C

n. Moreover,
if {x1, x2, . . . , xk} is a basis for S, then an equivalent though simpler
characterization of S

⊥ is

S
⊥ = {y ∈ C

n|〈y, xi〉 = 0; i = 1, . . . , k}

It also can be shown that dim(S⊥) = dim(Cn) − dim(S) = n − k and

S
⊥ = span{y1, y2, . . . , yn−k}

for any linearly independent set of vectors {y1, y2, . . . , yn−k} that satisfy

〈yj , xi〉 = 0 i = 1, . . . , k j = 1, . . . , n − k



426 LINEAR ALGEBRA

Example B.7 On R
3,

1. Suppose that S = span{x1} with

x1 =

 1

0
−1




Then S
⊥ = span{y1, y2} with

y1 =

 1

0
1


 y2 =


 0

1
0




2. Suppose that S = span{x1, x2} with

x1 =

 1

1
1


 x2 =


 0

1
1




Then S
⊥ = span{y1} with

y1 =

 0

−1
1


 �

B.6 LINEAR TRANSFORMATIONS

Definition B.8 Let X and Y be linear vector spaces over the same field
F. A transformation A : X → Y is linear if

A(α1x1 + α2x2) = α1Ax1 + α2Ax2 f or all x1, x2 ∈ X

and for all α1, α2 ∈ F �

Suppose that X = C
n and Y ∈ C

m. A linear transformation A : C
n → C

m

is specified in terms of its action on a basis for C
n, represented in terms

of a basis for C
m.

Let {x1, x2, . . . , xn} be a basis for C
n and {y1, y2, . . . , ym} be a basis

for C
m. Then Axj ∈ C

m, j = 1, . . . , n, has the unique representation

Axj = a1j y1 + a2j y2 + · · · + amjym
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As we have seen previously, the m-tuple (a1j , a2j , . . . , amj ) defines the
coordinates of Axj in the basis {y1, y2, . . . , ym}.

Next, for every x ∈ C
n and y := Ax, we have the unique representation

in the appropriate basis

x = α1x1 + α2x2 + · · · + αnxn

y = β1y1 + β2y2 + · · · + βmym

Again, the n-tuple (α1, α2, . . . , αn) defines the coordinates of the vector x

in the basis {x1, x2, . . . , xn} and the m-tuple (β1, β2, . . . , βm) defines the
coordinates of the vector y in the basis {y1, y2, . . . , ym}.
Putting everything together and using linearity of the transformation A,
leads to

y = Ax

= A


 n∑

j=1

αjxj




=
n∑

j=1

αjAxj

=
n∑

j=1

αj

(
m∑

i=1

aijyi

)

=
m∑

i=1


 n∑

j=1

aijαj


 yi

Comparing this with the unique representation for y = Ax given previ-
ously, we therefore require

βi =
n∑

j=1

aijαj i = 1, · · · , m

or more compactly, in matrix notation,




β1

β2
...

βm


 =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn







α1

α2
...

αn
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Thus, with respect to the basis {x1, x2, . . . , xn} for C
n and the basis

{y1, y2, . . . , ym} for C
m, the linear transformation A : C

n → C
m has the

m × n matrix representation

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


 .

If different bases are used for C
n and/or C

m, the same linear transformation
will have a different matrix representation. Often a matrix is used to
represent a linear transformation with the implicit understanding that the
standard bases for C

n and C
m are being used.

Example B.8 Let A : R
3 → R

2 be the linear transformation having the
matrix representation with respect to the standard bases for R

3 and R
2

given by

A =
[

1 2 3
4 5 6

]

That is,

A


 1

0
0


 =

[
1
4

]
= (1)

[
1
0

]
+ (4)

[
0
1

]

A


 0

1
0


 =

[
2
5

]
= (2)

[
1
0

]
+ (5)

[
0
1

]

A


 0

0
1


 =

[
3
6

]
= (3)

[
1
0

]
+ (6)

[
0
1

]
.

Suppose instead that we consider the following basis for R
3:


x1 =


 1

1
1


 , x2 =


 0

2
2


 , x3 =


 0

0
3
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The linear transformation acts on the new basis vectors according to

Ax1 = A


(1)


 1

0
0


 + (1)


 0

1
0


 + (1)


 0

0
1







= (1)A


 1

0
0


 + (1)A


 0

1
0


 + (1)A


 0

0
1




= (1)

[
1
4

]
+ (1)

[
2
5

]
+ (1)

[
3
6

]

=
[

6
15

]

Ax2 = A


(0)


 1

0
0


 + (2)


 0

1
0


 + (2)


 0

0
1







= (0)A


 1

0
0


 + (2)A


 0

1
0


 + (2)A


 0

0
1




= (0)

[
1
4

]
+ (2)

[
2
5

]
+ (2)

[
3
6

]

=
[

10
22

]

Ax3 = A


(0)


 1

0
0


 + (0)


 0

1
0


 + (3)


 0

0
1







= (0)A


 1

0
0


 + (0)A


 0

1
0


 + (3)A


 0

0
1




= (0)

[
1
4

]
+ (0)

[
2
5

]
+ (3)

[
3
6

]

=
[

9
18

]
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Thus, with a different basis for R
3, the same linear transformation now

has the matrix representation

A =
[

6 10 9
15 22 18

]
.

The preceding calculations can be cast in matrix terms as

[
6 10 9

15 22 18

]
=

[
1 2 3
4 5 6

] 
 1 0 0

1 2 0
1 2 3




which illustrates that the matrix representation for the linear transforma-
tion with respect to the new {x1, x2, x3} basis for R

3 and the standard basis
for R

2 is given by the matrix representation for the linear transformation
with respect to the original standard basis for R

3 and the standard basis
for R

2 multiplied on the right by a 3 × 3 matrix characterizing the change
of basis on R

3 from the {x1, x2, x3} basis to the standard basis {e1, e2, e3}
as described in Section B.4. If, in addition, we had considered a change
of basis on R

2, the original matrix representation for the linear transfor-
mation would have been multiplied on the left by a 2 × 2 matrix relating
the two bases for R

2 to yield the new matrix representation with respect
to the different bases for both R

2 and R
3. �

B.7 RANGE AND NULL SPACE

Definition B.9 For the linear transformation A : C
n → C

m

1. The range space or image of A is defined by

R(A) = Im A = {y ∈ C
m|∃x ∈ C

n such that y = Ax}.

2. The null space or kernel of A is defined by

N(A) = Ker A = {x ∈ C
n|Ax = 0}. �

It is a direct consequence of the definitions and linearity of A that Im A

is a subspace of C
m and that Ker A is a subspace of C

n. For instance,
it is clear that the zero vector of C

m is an element of Im A and the
zero vector of C

n is an element of Ker A. Further, letting {a1, a2, . . . , an}
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denote the columns of a matrix representation for A, it also follows from
the definition that

R(A) = Im A = span{a1, a2, · · · , an}

We next let rank(A) denote the dimension of Im A and nullity(A) denote
the dimension of Ker A. The rank of a linear transformation leads to the
notion of matrix rank, for which the following proposition collects several
equivalent characterizations:

Proposition B.10 The rank of an m × n matrix A is characterized by
any one of the following:

1. The maximal number of linearly independent columns in A
2. The maximal number of linearly independent rows in A
3. The size of the largest nonsingular submatrix that can be extracted

from A �

The last characterization of A needs to be interpreted carefully: rank(A) =
r if and only if there is at least one nonsingular r × r submatrix of A

and every larger square submatrix of A is singular. Also of interest is the
following relationship between rank and nullity:

Proposition B.11 (Sylvester’s Law of Nullity)
For the linear transformation A : C

n → C
m

rank(A) + nullity(A) = n �

The following numerical example illustrates how these important sub-
spaces associated with a linear transformation can be characterized.

Example B.9 Let A : R
4 → R

3 be the linear transformation having the
matrix representation with respect to the standard bases for R

4 and R
3

given by

A =

 0 −2 −4 6

0 1 1 −1
0 −2 −5 8




We seek to find the rank and nullity of A along with bases for Im A and
Ker A. A key computational tool is the application of elementary row
operations:
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1. Multiply any row by a nonzero scalar,
2. Interchange any two rows, and
3. Add a scalar multiple of any row to another row.

to yield the so-called row-reduced echelon form of the matrix A, denoted
AR. For this example, the steps proceed as follows:

Step 1: 
 0 −2 −4 6

0 1 1 −1
0 −2 −5 8


 row 1 ← (− 1

2) × row 1

⇒

 0 1 2 −3

0 1 1 −1
0 −2 −5 8




Step 2: 
 0 1 2 −3

0 1 1 −1
0 −2 −5 8


 row 2 ← (−1) × row 1 + row 2

row 3 ← (2) × row 1 + row 3

⇒

 0 1 2 −3

0 0 −1 2
0 0 −1 2




Step 3: 
 0 1 2 −3

0 0 −1 2
0 0 −1 2


 row 2 ← (−1) × row 2

⇒

 0 1 2 −3

0 0 1 −2
0 0 −1 2




Step 4: 
 0 1 2 −3

0 0 1 −2
0 0 −1 2


 row 1 ← (−2) × row 2 + row 1

row 3 ← (1) × row 2 + row 3

⇒

 0 1 0 1

0 0 1 −2
0 0 0 0


 = AR
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We then have

rank(A) = the number of linearly independent columns in A or AR

= the number of linearly independent rows in A or AR

= the number of nonzero rows in AR

= 2

By Sylvester’s law of nullity:

nullity(A) = n − rank(A)

= 4 − 2

= 2

A basis for Im A can be formed by any rank(A) = 2 linearly inde-
pendent columns of A. (AR cannot be used here because elementary row
operations affect the image.) Possible choices are





−2

1
−2


 ,


−4

1
−5











 −2

1
−2


 ,


 6

−1
8





 ,





−4

1
−5


 ,


 6

−1
8







Linear independence of each vector pair can be verified by checking that
the associated 3 × 2 matrix has a nonsingular 2 × 2 submatrix.

A basis for Ker A can be formed by any nullity(A) = 2 linearly inde-
pendent solutions to the homogeneous matrix equation Ax = 0. Since
the solution space in not affected by elementary row operations, instead
we may seek to characterize linearly independent solutions to ARx = 0.
Writing


 0 1 0 1

0 0 1 −2
0 0 0 0







x1

x2

x3

x4


 =


 x2 + x4

x3 − 2x4

0


 =


 0

0
0




we must satisfy x2 = −x4 and x3 = 2x4, with x1 and x4 treated as free
parameters. The combination x1 = 1, x4 = 0 yields x2 = x3 = 0, and we
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readily see that 


1
0
0
0


 ∈ Ker A

The combination x1 = 0, x4 = 1 yields x2 = −1, x3 = 2 which gives




0
−1
2
1


 ∈ Ker A

The set 





1
0
0
0


 ,




0
−1
2
1







is clearly linearly independent by virtue of our choices for x1 and x4

because the associated 4 × 2 matrix has the 2 × 2 identity matrix as the
submatrix obtained by extracting the first and fourth rows. This set there-
fore qualifies as a basis for Ker A. �

Lemma B.12 For the linear transformation A : C
n → C

m

1. [Im A]⊥ = Ker A∗

2. [Ker A]⊥ = Im A∗ �

It is a worthwhile exercise to prove the first part of Lemma B.12, which
asserts the equality of two subspaces. In general, the equality of two
subspaces S = T can be verified by demonstrating the pair of containments
S ⊂ T and T ⊂ S. To show a containment relationship, say, S ⊂ T, it is
enough to show that an arbitrary element of S is also an element of T.

We first show that [Im A]⊥ ⊂ Ker A∗. Let y be an arbitrary element of
[Im A]⊥ so that, by definition, 〈y, z〉 = 0 for all z ∈ Im A. Consequently
〈y, Ax〉 = 0 for all x ∈ C

n, from which we conclude that

〈A∗y, x〉 = (A∗y)∗x = y∗Ax = 〈y, Ax〉 = 0

Since the only vector orthogonal to every x ∈ C
n is the zero vector,

we must have A∗y = 0, that is, y ∈ Ker A∗. The desired containment
[Im A]⊥ ⊂ Ker A∗ follows because y ∈ [Im A]⊥ was arbitrary.
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We next show that Ker A∗ ⊂ [Im A]⊥. Let y be an arbitrary element
of Ker A∗ so that A∗y = 0. Since the zero vector is orthogonal to every
vector in C

n, 〈A∗y, x〉 = 0, for all x ∈ C
n, from which we conclude that

〈y, Ax〉 = y∗Ax = (A∗y)∗x = 〈A∗y, x〉 = 0

Since for every z ∈ Im A, there must exist some x ∈ C
n such that z = Ax,

it follows that 〈y, z〉 = 0, that is, y ∈ [Im A]⊥. The desired containment
Ker A∗ ⊂ [Im A]⊥ follows because y ∈ Ker A∗ was arbitrary. Having
established the required subspace containments, we may conclude that
[Im A]⊥ = Ker A∗. �

Note that since the orthogonal complements satisfy S = T if and only if
S

⊥ = T
⊥ and (S⊥)⊥ = S, the second subspace identity in Proposition B.4

is equivalent to [ImA∗]⊥ = Ker A. This, in turn, follows by applying
the first subspace identity in Proposition B.4 to the linear transformation
A∗ : C

m → C
n.

B.8 EIGENVALUES, EIGENVECTORS, AND RELATED TOPICS

Eigenvalues and Eigenvectors

Definition B.13 For a matrix A ∈ C
n×n

1. The characteristic polynomial of A is defined as

|λI − A| = λn + an−1λ
n−1 + · · · + a1λ + a0

2. The eigenvalues of A are the n roots1 of the characteristic equation

|λI − A| = 0

3. The spectrum of A is its set of eigenvalues, denoted

σ(A) = {λ1, λ2, . . . , λn}
4. For each λi ∈ σ(A), any nonzero vector v ∈ C

n that satisfies

(λiI − A)v = 0 equivalently Av = λiv

is called a right eigenvector of A associated with the eigenvalue λi .

1As indicated, the characteristic polynomial of an n × n matrix is guaranteed to be a
monic degree-n polynomial that, by the fundamental theorem of algebra, must have n

roots. If A is real, the roots still may be complex but must occur in conjugate pairs.
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5. For each λi ∈ σ(A), any nonzero vector w ∈ C
n that satisfies

w∗(λiI − A) = 0 equivalently w∗A = λiw
∗

is called a left eigenvector of A associated with the eigenvalue λi .

For each eigenvalue λi of A, by definition, |λiI − A| = 0, so that λiI −
A is a singular matrix and therefore has a nontrivial null space. Right
eigenvectors, viewed as nontrivial solutions to the homogeneous equation
(λiI − A)v = 0 are therefore nonzero vectors lying in Ker(λiI − A). As
such, if v is an eigenvector of A associated the eigenvalue λi , then so is
any nonzero scalar multiple of v.

By taking the conjugate transpose of either identity defining a left
eigenvector w associated with the eigenvalue λi , we see that w can be
interpreted as a right eigenvector of A∗ associated with the conjugate
eigenvalue λi .

Example B.10 For

A =

 1 0 0

2 3 −1
2 2 1




1. The characteristic polynomial of A can be obtained by expanding
|λI − A| about the first row to yield

|λI − A| =

 λ − 1 0 0

−2 λ − 3 1
−2 −2 λ − 1




= (λ − 1)[(λ − 3)(λ − 1) − (−2)(1)]

= (λ − 1)[λ2 − 4λ + 5]

= λ3 − 5λ2 + 9λ − 5

2. Factoring the characteristic polynomial

|λI − A| = (λ − 1)(λ − 2 − j)(λ − 2 + j)

indicates that the eigenvalues of A are λ1 = 1, λ2 = 2 + j , and λ3 =
2 − j . Note that λ2 and λ3 are complex but form a conjugate pair.

3. The spectrum of A is simply

σ(A) = {λ1, λ2, λ3} = {1, 2 + j, 2 − j}
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4. For the eigenvalue λ1 = 1,

(λ1I − A) =

 0 0 0

−2 −2 1
−2 −2 0




which, by applying elementary row operations, yields the row
reduced echelon form

(λ1I − A)R =

 1 1 0

0 0 1
0 0 0




from which we see that

v1 =

 1

−1
0




is a nonzero vector lying in Ker(λ1I − A) and therefore is a right
eigenvector corresponding to λ1 = 1. For the eigenvalue λ2 = 2 + j ,

(λ2I − A) =

 1 + j 0 0

−2 −1 + j 1
−2 −2 1 + j




which has row reduced echelon form

(λ2I − A)R =



1 0 0

0 1 −1

2
− j

1

2
0 0 0




and therefore,

v2 =



0
1

2
+ j

1

2
1




is a right eigenvector corresponding to λ2 = 2 + j . Finally, since
λ3 = λ2 = 2 − j , we can take as a corresponding eigenvector

v3 = v2 =



0
1

2
− j

1

2
1
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5. Proceeding in an analogous fashion for AT and, λ1 = λ1, λ2 = λ3,
and λ3 = λ2, we see that associated left eigenvectors are given by

w1 =

 1

0
0


 w2 =


 1

1
− 1

2 − j 1
2




w3 = w2 =

 1

1
− 1

2 + j 1
2


 �

Interesting situations arise in the search for eigenvectors when the
matrix A has nondistinct or repeated eigenvalues. To explore further, we
first require

Definition B.14 Let d ≤ n denote the number of distinct eigenvalues of
A, denoted {λ1, λ2, . . . , λd}. Upon factoring the characteristic polynomial
of A accordingly,

det(λiI − A) = (λ − λ1)
m1(λ − λ2)

m2 · · · (λ − λd)
md

mi denotes the algebraic multiplicity of the eigenvalue λi for i = 1, . . . , d.
The geometric multiplicity of the eigenvalue λi is defined as

ni = nullity(λiI − A) = dim Ker(λiI − A)

for i = 1, . . . , d. �
As a consequence, for each distinct eigenvalue λi , i = 1, . . . , d, there are
ni linearly independent solutions to the homogeneous equation (λiI −
A)v = 0, which we denote by {vi

1, v
i
2, . . . , v

i
ni
}. This set of vectors, in turn,

forms a so-called eigenbasis for the eigenspace Ker(λiI − A) associated
with the eigenvalue λi .

The following facts establish some useful relationships.

Proposition B.15 For i = 1, . . . , d, 1 ≤ ni ≤ mi �

Proposition B.16 Eigenbases associated with different eigenvalues are
linearly independent. �
We conclude this subsection with an illustrative example.
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Example B.11 Consider the following four 3 × 3 matrices:

A1 =

µ 1 0

0 µ 1
0 0 µ


 A2 =


 µ 0 0

0 µ 1
0 0 µ




A3 =

µ 1 0

0 µ 0
0 0 µ


 A4 =


 µ 0 0

0 µ 0
0 0 µ




in which µ ∈ C is a parameter. Each matrix has the characteristic polyno-
mial (λ − µ)3, which indicates that each matrix has one distinct eigenvalue
λ1 = µ with associated algebraic multiplicity m1 = 3. Next, with

µI − A1 =

 0 −1 0

0 0 −1
0 0 0


 µI − A2 =


 0 0 0

0 0 −1
0 0 0




µI − A3 =

 0 −1 0

0 0 0
0 0 0


 µI − A4 =


 0 0 0

0 0 0
0 0 0




we see that the eigenvalue λ1 = µ has geometric multiplicity n1 = 1 for
A1, n1 = 2 for A2, n1 = 2 for A3, and n1 = 3 for A4. Moreover, for each
matrix, the eigenvalue λ1 = µ has an eigenbasis defined in terms of the
standard basis for R

3

{e1} {e1, e2} {e1, e3} {e1, e2, e3}

for A1, A2, A3, and A4, respectively. This example indicates that the geo-
metric multiplicity can cover the entire range from 1 through the algebraic
multiplicity. In addition, we see by comparing A2 and A3 that although the
geometric multiplicity is 2 in each case, the structural difference between
the matrices leads to a different eigenspace. �

Similarity Transformations and Diagonalization

Definition B.17 Matrices A, B ∈ C
n×n are said to be similar if there is

a nonsingular matrix T ∈ C
n×n for which

B = T −1AT equivalently A = TBT −1 �
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In this case, T is called a similarity transformation. A fundamental rela-
tionship between similar matrices is the following.

Proposition B.18 If A and B are similar matrices, then they have the
same eigenvalues. �
This result is proven by using determinant properties to show that similar
matrices have identical characteristic polynomials.

A diagonal matrix necessarily displays its eigenvalues on the main
diagonal. For a general matrix A, diagonalization refers to the process of
constructing a similarity transformation yielding a diagonal matrix that,
by virtue of the preceding proposition, displays the eigenvalues of A. The
ability to diagonalize the matrix A via similarity transformation is closely
connected to its underlying eigenstructure.

To investigate further, note that, by definition, the distinct eigenvalues
of A ∈ C

n×n have associated algebraic multiplicities that satisfy

m1 + m2 + · · · + md = n

because the characteristic polynomial of A has degree n. On the other
hand, the geometric multiplicities indicate that we can find a total of
n1 + n2 + · · · + nd eigenvectors associated with the distinct eigenvalues
{λ1, λ2, . . . , λd}, written

{v1
1, v

1
2, . . . , v

1
n1

, v2
1, v

2
2, . . . , v

2
n2

, · · · , vd
1 , vd

2 , . . . , vd
nd

}

By Proposition B.16, this is a linearly independent set. The relationships
Av

j

i = λiv
j

i , for i = 1, . . . , d and j = 1, . . . , ni , can be packaged into

AT = T �

in which T is the n × (n1 + n2 + · · · + nd) matrix whose columns are the
complete set of eigenvectors, and � is a diagonal (n1 + n2 + · · · + nd) ×
(n1 + n2 + · · · + nd) matrix given by

� = diag


λ1, · · · , λ1︸ ︷︷ ︸

n1times

, λ2, · · · , λ2︸ ︷︷ ︸
n2times

, · · · λd, · · · , λd︸ ︷︷ ︸
nd times




In the event that

n1 + n2 + · · · + nd = m1 + m2 + · · · + md = n
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which is possible when and only when ni = mi, i = 1, . . . , d, the matrices
T and � are both n × n, and again by Proposition B.16, T is nonsingu-
lar because it is square and has linearly independent columns. As an
immediate consequence, we have

� = T −1AT

so the matrix T we have constructed serves as a similarity transformation
that diagonalizes A. We have argued that the existence of a total of n lin-
early independent eigenvectors is sufficient to diagonalize A, and we have
explicitly constructed a suitable similarity transformation. This condition
turns out to be necessary as well as sufficient.

Theorem B.19 A matrix A ∈ C
n×n is diagonalizable via similarity trans-

formation if and only if A has a total of n linearly independent eigenvectors,
equivalently, the geometric multiplicity equals the algebraic multiplicity
for each distinct eigenvalue. �
Based on this, the following corollary provides an easily verified sufficient
condition for diagonalizability:

Corollary B.20 A matrix A ∈ C
n×n is diagonalizable via similarity

transformation if it has n distinct eigenvalues. �
If A has n distinct eigenvalues, then d = n and mi = ni = 1 for
i = 1, . . . , n. This guarantees the existence of n linearly independent
eigenvectors from which a diagonalizing similarity transformation is
explicitly constructed.

Jordan Canonical Form

Whereas not every square matrix can be diagonalized via a similarity
transformation, every square matrix can be transformed to its Jordan
canonical form defined as follows: We begin by defining a Jordan block
matrix of size k × k:

Jk(λ) =




λ 1 0 · · · 0
0 λ 1 · · · 0

0 0 λ
. . . 0

...
...

...
. . . 1

0 0 0 · · · λ
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displaying the parameter λ on the main diagonal and 1s on the first super-
diagonal. An n × n Jordan matrix is a block diagonal matrix constructed
from Jordan block matrices:

J =




Jk1(λ1) 0 · · · 0
0 Jk2(λ2) · · · 0
...

...
. . .

0 0 · · · Jkr
(λr)


 with k1 + k2 + · · · + kr = n

Note that if each ki = 1 and r = n, then J is a diagonal matrix.

Proposition B.21 Let A ∈ C
n×n have d distinct eigenvalues λ1, λ2, . . . ,

λd with associated algebraic and geometric multiplicities m1, m2, . . .,
md and n1, n2, . . . , nd , respectively. There exists a similarity trans-
formation T yielding a Jordan matrix

J = T −1AT

in which there are ni Jordan blocks associated with the eigenvalue λi , and
the sum of the sizes of these blocks equals the algebraic multiplicity mi ,
for i = 1, . . . , d. The matrix J is unique up to a reordering of the Jordan
blocks and defines the Jordan canonical form of A. �
Note that the algebraic and geometric multiplicities alone do not
completely determine the Jordan canonical form. For example, the Jordan
matrices

J1 =




λ 1 0
0 λ 1
0 0 λ

0 0 0
0 0 0

∣∣∣∣∣∣∣∣∣∣

0 0
0 0
0 0

λ 1
0 λ


 J2 =




λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

0 0 0 0

∣∣∣∣∣∣∣∣∣∣

0
0
0
0

λ




each could represent the Jordan canonical form of a matrix having a
single distinct eigenvalue λ with algebraic multiplicity 5 and geometric
multiplicity 2. An interesting special case occurs when the geometric
multiplicity equals the algebraic multiplicity for a particular eigenvalue.
In this case, each of the Jordan blocks associated with this eigenvalue is
scalar. Conversely, if each of the Jordan blocks associated with a particular
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eigenvalue is scalar, then the geometric and algebraic multiplicities for this
eigenvalue must be equal. If the geometric multiplicity equals the algebraic
multiplicity for each distinct eigenvalue, then the Jordan canonical form
is diagonal. This is consistent with Theorem B.19.

Cayley-Hamilton Theorem

Theorem B.22 For any matrix A ∈ C
n×n with characteristic polynomial

|λI − A| = λn + an−1λ
n−1 + · · · + a1λ + a0

there holds

An + an−1A
n−1 + · · · + a1A + a0I = 0 (n × n) �

By definition, eigenvalues of A are roots of the associated (scalar) charac-
teristic equation. Loosely speaking, the Cayley-Hamilton theorem asserts
that the matrix A is itself a root of a matrix version of its characteristic
equation. This is not difficult to verify when A is diagonalizable, although
the result still holds for nondiagonalizable matrices.

Example B.12 For the matrix A studied in Example B.10, the charac-
teristic polynomial was found to be

λ3 − 5λ2 + 9λ − 5

Then

A3 − 5A2 + 9A − 5I =

 1 0 0

12 13 −11
22 22 −9


 − 5 ·


 1 0 0

6 7 −4
8 8 −1




+ 9 ·

 1 0 0

2 3 −1
2 2 1


 − 5 ·


 1 0 0

0 1 0
0 0 1




=

 0 0 0

0 0 0
0 0 0


 �
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B.9 NORMS FOR VECTORS AND MATRICES

Definition B.23 A vector norm on C
n is any real-valued function || · ||

that satisfies

Positive Definiteness: ||x|| ≥ 0 for all x ∈ C
n and ||x|| = 0 if and

only if x = 0 ∈ C
n

Triangle Inequality: ||x + y|| ≤ ||x|| + ||y|| for all x, y ∈ C
n

Homogeneity: ||αx|| = |α|||x|| for all x ∈ C
n and α ∈ C

�

A special class of norms, called p− norms, is defined by

||x||p = (|x1|p + |x2|p + · · · + |xn|p)
1
p for all p ∈ [1, ∞)

||x||∞ = max
1≤i≤n

|xi |

Most common of these are || · ||1, || · ||∞, and

||x||2 = (|x1|2 + |x2|2 + · · · + |xn|2)
1
2

= (x∗x)
1
2

which is the familiar Euclidean norm. These p− norms satisfy the so-
called Hölder inequality

|x∗y| ≤ ||x||p||y||q for all x, y ∈ C
n and for all p, q

such that
1

p
+ 1

q
= 1

The special case p = q = 2 yields the familiar Cauchy-Schwarz
inequality:

|x∗y| ≤ ||x||2||y||2 for all x, y ∈ C
n

For a linear transformation A : C
n → C

m represented by a matrix A ∈
C

m×n, we define:
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Definition B.24 A matrix norm on C
n×m is any real-valued function || · ||

that satisfies

Positive Definiteness: ||A|| ≥ 0 for all A ∈ C
m×n and ||A|| = 0 if

and only if A = 0 ∈ C
m×n

Triangle Inequality: ||A + B|| ≤ ||A|| + ||B|| for all A, B ∈ C
m×n

Homogeneity: ||αA|| = |α|||A|| for all A ∈ C
m×n and α ∈ C

�

Corresponding to any pair of vector norms on C
n and C

m, respectively,
we define an associated induced matrix norm according to

||A|| = sup
x �=0

||Ax||
||x||

in which sup stands for supremum, or least upper bound, here taken over
all nonzero vectors in C

n. It can be shown that this definition is equiva-
lent to

||A|| = max
||x||=1

||Ax||

As a direct consequence of the definition, any induced matrix norm sat-
isfies

||Ax|| ≤ ||A||||x|| for all x ∈ C
n

The class of p− norms for vectors define a class of induced p− norms
for matrices via the preceding definition. For p = 1, 2, ∞, the induced
matrix norms can be computed using

||A||1 = max
1≤j≤n

m∑
i=1

|aij |

||A||2 = (λmax(A
T A))

1
2

||A||∞ = max
1≤i≤m

n∑
j=1

|aij |

The induced matrix 2− norm is often referred to as the spectral norm.
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Not every matrix norm is induced by a vector norm. An example is the
so-called Frobenius norm defined by

||A||F =

 m∑

i=1

n∑
j=1

|aij |2



1
2

This can be seen to correspond to the Euclidean vector norm of the (nm) ×
1-dimensional vector obtained by stacking the columns of A on top of
one another.



APPENDIX C
CONTINUING MATLAB

EXAMPLE M-FILE

Chapter 1 introduced the Continuing MATLAB Example, based on the
single-input, single-output rotational mechanical system of Figure 1.9. The
input is torque τ(t), and the output is the angular displacement θ(t). This
example was revisited each chapter, illustrating the important topics in
the context of one familiar example for which most computations can be
done by hand to check the MATLAB results. MATLAB code segments
were presented in each chapter to demonstrate important calculations; in
general, each chapter’s code did not stand alone but required MATLAB
code from previous chapters to execute properly.

This appendix presents the entire m-file for the Continuing MATLAB
Example, from Chapter 1 through Chapter 9. No new code is given; rather,
the complete code is listed here for the convenience of the student.

%------------------------------------------------------
% Continuing MATLAB Example m-file
% Chapter 1 through Chapter 9
% Dr. Bob Williams

%------------------------------------------------------
% Chapter 1. State-Space Description
%------------------------------------------------------

J = 1;
b = 4;
kR = 40;

447

Linear State-Space Control Systems. Robert L. Williams II and Douglas A. Lawrence
Copyright  2007 John Wiley & Sons, Inc. ISBN: 978-0-471-73555-7
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A = [0 1;-kR/J -b/J]; % Define the state-space
% realization

B = [0;1/J];
C = [1 0];
D = [0];

JbkR = ss(A,B,C,D); % Define model from state-space

JbkRtf = tf(JbkR); % Convert to transfer function
JbkRzpk = zpk(JbkR); % Convert to zero-pole

% description

[num,den] = tfdata(JbkR,'v');
% Extract transfer function
% description

[z,p,k] = zpkdata(JbkR,'v');
% Extract zero-pole description

JbkRss = ss(JbkRtf) % Convert to state-space
% description

%------------------------------------------------------
% Chapter 2. Simulation of State-Space Systems
%------------------------------------------------------

t = [0:.01:4]; % Define array of time
% values

U = [zeros(size(t))]; % Zero single input of
% proper size to go with

x0 = [0.4; 0.2]; % t Define initial state
% vector [x10; x20]

CharPoly = poly(A) % Find characteristic
% polynomial from A

Poles = roots(CharPoly) % Find the system poles

EigsO = eig(A); % Calculate open-loop
% system eigenvalues

damp(A); % Calculate eigenvalues,
% zeta, and wn from ABCD

[Yo,t,Xo] = lsim(JbkR,U,t,x0);% Open-loop response
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% (zero input, given ICs)
Xo(101,:); % State vector value at

% t=1 sec
X1 = expm(A*1)*X0; % Compare with state

% transition matrix
% method

figure; % Open-loop State Plots
subplot(211), plot(t,Xo(:,1)); grid;
axis([0 4 -0.2 0.5]);
set(gca,'FontSize',18);
ylabel('{\itx} 1 (\itrad)')
subplot(212), plot(t,Xo(:,2)); grid; axis([0 4 -2 1]);
set(gca,'FontSize',18);
xlabel('\ittime (sec)'); ylabel('{\itx} 2 (\itrad/s)');

%------------------------------------------------------
% Chapter 2. Coordinate Transformations and Diagonal
% Canonical Form
%------------------------------------------------------

[Tdcf,E] = eig(A); % Transform to DCF via
% formula

Adcf = inv(Tdcf)*A*Tdcf;
Bdcf = inv(Tdcf)*B;
Cdcf = C*Tdcf;
Ddcf = D;

[JbkRm,Tm] = canon(JbkR,'modal');
% Calculate DCF using
% MATLAB canon

Am = JbkRm.a
Bm = JbkRm.b
Cm = JbkRm.c
Dm = JbkRm.d

%------------------------------------------------------
% Chapter 3. Controllability
%------------------------------------------------------

P = ctrb(JbkR); % Calculate controllability
% matrix P
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if (rank(P) == size(A,1)) % Logic to assess
% controllability

disp('System is controllable.');
else

disp('System is NOT controllable.');
end

P1 = [B A*B]; % Check P via the formula

%------------------------------------------------------
% Chapter 3. Coordinate Transformations and
% Controller Canonical Form
%------------------------------------------------------

CharPoly = poly(A); % Determine the system
% characteristic polynomial

a1 = CharPoly(2); % Extract a1

Pccfi = [a1 1;1 0]; % Calculate the inverse of
% matrix Pccf

Tccf = P*Pccfi; % Calculate the CCF
% transformation matrix

Accf = inv(Tccf)*A*Tccf;% Transform to CCF via
% formula

Bccf = inv(Tccf)*B;
Cccf = C*Tccf;
Dccf = D;

%------------------------------------------------------
% Chapter 4. Observability
%------------------------------------------------------

Q = obsv(JbkR); % Calculate observability
% matrix Q

if (rank(Q) == size(A,1))% Logic to assess
% observability

disp('System is observable.');
else

disp('System is NOT observable.');
end
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Q1 = [C; C*A]; % Check Q via the formula

%------------------------------------------------------
% Chapter 4. Coordinate Transformations and Observer
% Canonical Form
%------------------------------------------------------

Qocf = inv(Pccfi);
Tocf = inv(Q)*Qocf; % Calculate OCF transformation

% matrix
Aocf = inv(Tocf)*A*Tocf; % Transform to OCF via formula
Bocf = inv(Tocf)*B;
Cocf = C*Tocf;
Docf = D;

[JbkROCF,TOCF] = canon(JbkR,'companion');
% Compute OCF using canon

AOCF = JbkROCF.a
BOCF = JbkROCF.b
COCF = JbkROCF.c
DOCF = JbkROCF.d

%------------------------------------------------------
% Chapter 5. Minimal Realizations
% The Continuing Matlab Example is already minimal;
% hence, there is nothing to do here. The student
% may verify this with MATLAB function minreal.
%------------------------------------------------------

%------------------------------------------------------
% Chapter 6. Lyapunov Stability Analysis
%------------------------------------------------------

if (real(Poles(1))==0 | real(Poles(2))==0) % lyap will
fail
if (real(Poles(1))<=0 | real(Poles(2))<=0)

disp('System is marginally stable.');
else

disp('System is unstable.');
end

else % lyap will
% succeed
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Q = eye(2); % Given positive definite
% matrix

P = lyap(A',Q); % Solve for P
pm1 = det(P(1,1)); % Sylvester's method to see if

P is positive definite
pm2 = det(P(1:2,1:2));
if (pm1>0 & pm2>0) % Logic to assess stability

% condition
disp('System is asymptotically stable.');

else
disp('System is unstable.');

end
end

figure; % Plot phase portraits to enforce
% stability analysis

plot(Xo(:,1),Xo(:,2),'k'); grid; axis('square');
axis([-1.5 1.5 -2 1]);

set(gca,'FontSize',18);
xlabel('{\itx} 1 (rad)'); ylabel('{\itx} 2 (rad/s)');

%------------------------------------------------------
% Chapter 7. Dynamic Shaping
%------------------------------------------------------

PO = 3; ts = 0.7; % Specify percent
% overshoot and settling
% time

term = pi2̂ + log(PO/100)2̂;
zeta = log(PO/100)/sqrt(term) % Damping ratio from PO
wn = 4/(zeta*ts) % Natural frequency from

% settling time and zeta
num2 = wn2̂; % Generic desired

% second-order system
den2 = [1 2*zeta*wn wn2̂]
DesEig2 = roots(den2) % Desired control law

% eigenvalues
Des2 = tf(num2,den2); % Create desired system

% from num2 and den2

figure;
td = [0:0.01:1.5];
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step(Des2,td); % Right-click to get
% performance measures

%------------------------------------------------------
% Chapter 7. Design of Linear State Feedback Control
% Laws
%------------------------------------------------------

K = place(A,B,DesEig2) % Compute state
% feedback gain matrix
% K

Kack = acker(A,B, DesEig2); % Check K via
% Ackerman's formula

Ac = A-B*K; Bc = B; % Compute closed-loop
% state feedback system

Cc = C; Dc = D;
JbkRc = ss(Ac,Bc,Cc,Dc); % Create the

% closed-loop
% state-space system

[Yc,t,Xc] = lsim(JbkRc,U,t,X0); % Compare open-loop and
% closed-loop responses

figure;
subplot(211), plot(t,Xo(:,1),'r',t,Xc(:,1),'g'); grid;
axis([0 4 -0.2 0.5]);
set(gca,'FontSize',18);
legend('Open-loop','Closed-loop');
ylabel('{\itx} 1')
subplot(212), plot(t,Xo(:,2),'r',t,Xc(:,2),'g'); grid;
axis([0 4 -2 1]);
set(gca,'FontSize',18);
xlabel('\ittime (sec)'); ylabel('{\itx} 2');

%------------------------------------------------------
% Chapter 8. Design and Simulation of Linear
% Observers for State Feedback
%------------------------------------------------------

% Select desired observer eigenvalues; ten times
control law eigenvalues
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ObsEig2 = 10*DesEig2;

L = place(A',C', ObsEig2)';% Compute observer gain
% matrix L

Lack = acker(A',C', ObsEig2)';% Check L via Ackerman's
% formula

Ahat = A-L*C; % Compute the closed-loop observer
% estimation error matrix

eig(Ahat); % Check to ensure desired eigenvalues
% are in Ahat

% Compute and simulate closed-loop system with control
% law and observer
Xr0 = [0.4;0.2;0.10;0]; % Define vector of

% initial conditions
Ar = [(A-B*K) B*K;zeros(size(A)) (A-L*C)];
Br = [B;zeros(size(B))];
Cr = [C zeros(size(C))];
Dr = D;
JbkRr = ss(Ar,Br,Cr,Dr); % Create the closed-loop

% system with observer
r = [zeros(size(t))]; % Define zero reference

% input to go with t
[Yr,t,Xr] = lsim(JbkRr,r,t,Xr0);

% Compare Open, Closed, and Control Law/Observer
% responses
figure;
plot(t,Yo,'r',t,Yc,'g',t,Yr,'b'); grid;
axis([0 4 -0.2 0.5]);
set(gca,'FontSize',18);
legend('Open-loop','Closed-loop','w/ Observer');
xlabel('\ittime (sec)'); ylabel('\ity');

figure; % Plot observer errors
plot(t,Xr(:,3),'r',t,Xr(:,4),'g'); grid;
axis([0 0.2 -3.5 0.2]);
set(gca,'FontSize',18);
legend('Obs error 1','Obs error 2');
xlabel('\ittime (sec)'); ylabel('\ite');
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%------------------------------------------------------
% Chapter 9. Linear Quadratic Regulator Design
%------------------------------------------------------
Q = 20*eye(2); % Weighting matrix for

% state error
R = [1]; % Weighting matrix for

% input effort
BB = B*inv(R)*B';

KLQR = are(A,BB,Q); % Solve algebraic Ricatti
% equation

ALQR = A-B*inv(R)*B'*KLQR; % Compute the closed-loop
% state feedback system

JbkRLQR = ss(ALQR,Bc,Cc,Dc); % Create LQR closed-loop
% state-space system

% Compare open- and closed-loop step responses
[YLQR,t,XLQR] = lsim(JbkRLQR,U,t,X0);

figure;
subplot(211),
plot(t,Xo(:,1),'r',t,Xc(:,1),'g',t,XLQR(:,1),'b');
grid; axis([0 4 -0.2 0.5]);
set(gca,'FontSize',18);
legend('Open-loop','Closed-loop','LQR');
ylabel('{\itx} 1')
subplot(212),
plot(t,Xo(:,2),'r',t,Xc(:,2),'g',t,XLQR(:,2),'b');
grid; axis([0 4 -2 1]);
set(gca,'FontSize',18);
xlabel('\ittime (sec)'); ylabel('{\itx} 2');

% Calculate and plot to compare closed-loop and LQR
% input efforts required
Uc = -K*Xc'; % Chapter 7 input effort
ULQR = -inv(R)*B'*KLQR*XLQR'; % LQR input effort

figure;
plot(t,Uc,'g',t,ULQR,'b'); grid; axis([0 4 -10 6]);
set(gca,'FontSize',18);
legend('Closed-loop','LQR');
xlabel('\ittime (sec)'); ylabel('\itU');
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Algebraic output equation, 5, 7, 9–10,
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Algebraic Riccati equation, 390–392,
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Asymptotic Stability, 200, 203–204,
211–212, 216, 220, 222–224, 227,
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Asymptotic stabilization, 263, 312
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216, 276

error dynamics, 302, 308, 313
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269, 274, 295, 392, 395, 397
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265, 278, 293, 314

Ball and beam system, 20–24, 46, 105,
148, 183, 233, 298, 355, 405

Basis, 130, 394, 419–430, 433–434
change of, see Change of basis

orthonormal, see Orthonormal basis
standard, see Standard basis

Bass-Gura formula, 255–257, 267, 274,
277, 294, 305–310, 315, 352

Bounded-input, bounded-output stability,
198, 218–224, 228–231

Canonical form
controller, see Controller canonical

form
diagonal, see Diagonal canonical form
observer, see Observer canonical form
phase-variable, see Phase-variable

canonical form
Cauchy-Schwarz inequality, 445
Cayley-Hamilton theorem, 57, 123,

131–132, 260, 443
Change of basis, 72, 422, 430
Characteristic

equation, 436, 443
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Closed-loop
eigenvalue(s), 236, 243, 250, 252–253,

255–257, 262–263, 267–268, 271,
274–275, 289, 292–293, 298–299,
309, 327, 334, 336, 339, 345, 347,
349, 353, 399, 404

state equation, 234–235, 254, 256, 264,
268–270, 273–277, 295, 325–326,
328, 330, 332, 334–335, 337–339,
342, 353, 384, 386, 391–392, 395,
397, 404

system, 236, 242–244, 254, 263, 273,
278, 282, 286–288, 292–293,
347–351

stability, 236, 272–273, 278, 326,
339

transfer function, 243, 269, 271, 295,
337

Cofactor, 412–414
Conjugate transpose, 393, 408, 425, 436
Control law, 234, 287
Controllability, 108–109, 119–120, 133,

138, 141, 149–150, 163, 166, 168,
185, 187–193, 234, 250, 263–264,
274, 301, 312–314, 323, 392

Gramian, 110–111, 114, 120, 145, 154,
375–376, 403

matrix, 110, 112, 114–121, 125, 130,
132–134, 138, 141–143, 161, 211,
256, 259

rank condition, 110, 113
Controllable

pair, 110, 123, 130, 133, 136, 146–147,
193, 232, 250–252, 255–256, 259,
261, 264–265, 267, 272, 274, 295,
300, 392, 397, 403

state, 109
realization, 122, 127, 147, 188–192
state equation, 109, 115, 123, 125, 263,

268, 375–376
Controller canonical form, 17, 124–125,

127–128, 138–144, 147–148, 168,
170–171, 175, 179, 181, 183–184,
187–191, 195, 230, 252–255, 259,
262–263, 270–271, 276–277, 306,
309, 327

Coordinate transformation, 72–75, 77–78,
80, 82, 88, 91, 109, 119–124, 127,
129, 134, 137–140, 142–143, 150,
165–172, 174, 176, 178–180, 185,
188, 255, 264–265, 267, 313, 315,
319–320, 326–327, 332, 337,
353

Cost function, 358

dc gain, 269–271, 275, 337
Damping ratio, 79, 81, 87, 238–242, 245,

254, 284, 297
Detectability, 301, 312–316
Determinant, 41, 60, 64, 73, 110,

117–118, 138, 152, 160–161, 178,
188, 212, 227, 274, 407, 412–414,
416, 440

Diagonalization, 440
Diagonal canonical form, 49, 72, 74–75,

77, 80, 82–83, 88, 91–92, 99, 101,
103, 105, 107, 121–122, 127, 129,
141, 143, 170–171, 178–179,
183–184, 257–258

Differential Riccati equation, 383–385,
387, 390–391, 397

Dimension, 3, 17, 25, 34, 38, 74, 76, 110,
113, 149, 151, 163, 185, 187, 192,
247, 269–270, 301, 316, 318, 331,
353, 361, 407–409, 411, 419, 431

Direct transmission matrix, 49
Dual state equation, 163–165, 167
Duality, 150, 163, 165–169, 171–175,

183–184, 188–189, 190, 303, 312,
314, 348–349, 351

Eigenbasis, 439–440
Eigenstructure, 127, 190, 387, 440
Eigenvalue, 59–61, 65, 73–74, 77–82,

84–87, 89–92, 121–122, 127–129,
134–136, 141, 143, 145, 147,
170–171, 174, 178–179, 197, 198,
202–205, 208–209, 211–213, 216,
221, 223–224, 227–229, 231–232,
236, 243, 250, 252–257, 262–263,
267–268, 271, 274–275, 289,
292–293, 298–299, 309, 327, 334,
336, 339, 345, 347, 349, 353, 399,
404, 435–443

Eigenvalue placement, 234, 250–252,
256, 263–264, 303, 313, 323, 326,
399, 401

Eigenvector, 73–74, 77–78, 84, 88, 92,
145, 213, 392, 441–442

left, 133–136, 173, 265–266, 268, 315,
436, 438

right, 173–174, 213, 314–316,
394–395, 436–438

Elementary row operations, 160,
431–434, 437

Energy, 5–6, 8–9, 12, 28, 34, 198,
204–211, 359, 392

Equilibrium condition, 1, 20, 24, 44, 270,
275, 339
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Equilibrium state, 18, 199–201, 236
asymptotically stable, see

Asymptotically stable equilibrium
exponentially stable, 200–201, 216
stable, 199–201
unstable, see Unstable equilibrium

Error dynamics, 301–302, 306, 308–309,
312–313, 315, 318, 323, 337, 339,
343–344, 348, 351–352

Estimation error, 301, 304, 317
Euclidean norm, 111–112, 156, 425,

445–446
Euclidean space, 360–361, 363, 367–368,

418
Euler-Lagrange equation, 366–367, 369,

374, 381
Exponential stability, 200–201, 216, 222

Feedback,
state, see State feedback
output, see Output feedback

Frobenius norm, 446

Gâteaux variation, 364–367, 373, 380
Gramian

controllability, see Controllability
gramian

observability, see Observability gramian
reachability, see Reachability gramian

Hamiltonian
function, 380
matrix, 385–387, 390, 392

Hölder inequality, 445
Homogeneous state equation, 52, 59, 61,

150–151, 153, 159, 161–162,
171–173, 182, 198–199, 201, 203,
205, 231, 301, 318, 328, 373–374,
382, 384

Identity matrix, 25, 40–41, 52, 140, 270,
408, 416, 421, 434

Image, 42, 114, 430, 433
Impulse response, 48, 51–52, 63, 65, 70,

74, 76, 79, 98–99, 124, 146, 192,
218–222, 298–299

Inner product, 211, 424
Input

gain, 137, 243, 268–271, 288, 292, 337
matrix, 4, 36, 49, 397
vector, 4, 7, 49, 52, 163

Input-output behavior, 17, 48, 70, 76, 186,
198, 222, 295, 337

Internal stability, 198–199, 218
Inverted pendulum, 44–45, 101–103, 148,

183, 233, 298, 355, 404–405
ITAE criteria, 249–250, 276, 279, 283,

285–286, 289, 294, 296–298

Jordan canonical form, 202, 388,
390–391, 442–443

Jordan block matrix, 41, 202–203, 388,
442–443

Kalman, R. E., 108
Kernel, 430

Lagrange multiplier, 361–362, 368–372,
379, 382

Laplace domain, 17, 51–52, 63, 66,
69–70

Laplace transform, 15, 37, 48, 50–52, 61,
63–67, 273

Linear dependence, 112, 134, 136–137,
152, 154, 266, 319, 395

Linear independence, 74, 77, 110,
118–119, 130, 133, 146, 151–152,
162–163, 224, 419, 425, 431,
433–434, 439, 441–442

Linear quadratic regulator, 357, 359–360,
377, 382–383, 385, 403

steady-state, 390–392, 404–406
MATLAB, 397–402

Linear time-invariant
state equation, 20, 24, 42–43, 61–62,

72–73, 75, 77, 119, 137, 150, 165,
270, 198, 201, 235, 300, 359

system, 1, 3, 5, 26–27, 32, 48–49, 51,
70, 78, 105, 107, 149, 186

Linear transformation, 41, 48, 72, 426,
428–431, 434–435, 445

Linearization, 1, 17–20, 44, 46–47, 102,
105–107

Luenberger, D. G., 300
Lyapunov, A. M., 198, 210–211
Lyapunov

function, 211
matrix equation, 213–216, 227, 229,

231–232, 393, 395

Marginal stability, 204, 229, 277, 293, 327
MATLAB,

controllability, 138
controller canonical form, 138
diagonal canonical form, 80
introduction, 24
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MATLAB, (continued )
m-files for Continuing MATLAB

Example, 447
minimal realizations, 194
observability, 174
observer canonical form, 174
observer design, 343
optimal control, 397
shaping the dynamic response, 278
stability analysis, 225
simulation, 79
state feedback control law design, 279
state-space description, 26

Matrix arithmetic, 409–412
Matrix exponential, 48, 53–55, 57–61,

64, 93, 95–96, 100, 113, 146, 182,
201–203, 216, 220–222, 376, 386,
390, 396

Matrix inverse, 13, 41, 54, 64, 68, 74, 84,
127, 142–143, 259, 275, 332, 387,
414–416

Matrix norm, 42, 219, 223, 231, 445–446
Minor, 412–413
Minimal realization, 185–187, 189,

191–197, 222, 230–231, 299
Minimum energy control, 357, 371,

374–377, 379, 403

Natural frequency
damped, 239, 241, 243, 245–246
undamped, 79, 81, 238–239, 241, 243,

245, 249, 254, 276, 283–286,
297–298

Negative (semi)definite, 211–212
Nominal trajectory, 1, 17–24, 46–47, 102,

105
Nonlinear state equation, 1, 18–21, 44,

46–47, 102
Null space, 113, 153–154, 430, 436
Nullity, 153–154, 158, 160, 193, 431,

433, 439

Objective function, 249, 358, 371–372
Observability, 149–151, 154, 159, 161,

163–166, 171, 173, 175, 177,
179–180, 183–184, 185, 187–189,
191–193, 300–301, 307, 309,
312–314, 320, 323, 338–339, 353,
356, 392

Gramian, 154–157, 166, 181
matrix, 151–152, 158–163, 166, 169,

174, 177–179, 188, 307, 321
rank condition, 151–152

Observable
pair, 151, 171, 173–174, 182, 193,

303–305, 310, 312–313, 318,
320–321, 323, 392, 397

realization, 167, 169, 188–190, 354
state equation, 151, 157, 169, 301, 312

Observer, 300–302, 306–309, 312–313,
324–325, 327–328, 338,
341–343,345–346, 348, 350

reduced-order, 316, 318, 320–323, 331,
334

Observer-based
compensator, 301, 323, 325, 327–328,

330–331, 335, 337–338, 341, 349,
353–356

servomechanism, 338, 340–341,
354–355

Observer canonical form, 168–171,
174–181, 183–184, 187–190, 231,
304

Observer error, 310, 326–327, 330, 339,
346, 354–356

dynamics, 301–302, 306, 308–309,
312–313, 315, 318, 323, 337, 339,
343–344, 348, 351–352

Observer gain, 301–304, 306–307, 310,
312–314, 316, 318, 322, 330, 334,
339, 341, 343, 345, 348–351, 352

Optimal control, 357–360, 371, 397, 404
Orthogonal

matrix, 95
complement, 425, 435
vectors, 133–136, 173, 265–266, 268,

314–316, 425, 435
Orthonormal basis, 425
Output

feedback, 197, 325
matrix, 49
vector, 4, 163

Peak time, 236, 240–241, 244–247, 279,
284, 297

Percent overshoot, 236, 240–242, 244,
247, 254, 271, 279–280, 283–286,
288, 294–297, 309

Performance index, 2, 358–359, 379–381,
384–385, 390–392, 396, 401, 404

Phase portrait, 207–209, 226, 229, 337
Phase-variable canonical form, 17, 125
Pole, 2, 26, 29, 76, 181, 185–186, 190,

194, 196, 222, 234, 272–273, 276,
338

Popov-Belevitch-Hautus
eigenvector test for controllability, 133,

136, 145, 147, 173, 265
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eigenvector test for detectability, 314
eigenvector test for observability, 150,

173, 181, 190, 395
eigenvector test for stabilizability, 265,

314
rank test for controllability, 136,

137–138, 145, 174, 224, 265, 393
rank test for detectability, 314
rank test for observability, 150, 174,

181, 224, 318, 393
rank test for stabilizability, 265, 314

Positive definite, 210–216, 225, 227–228,
231–232, 295, 359, 363, 381–382,
392, 396–397, 403–404

Positive semidefinite, 110, 154, 359, 391,
396

Proof-mass actuator system, 47, 105, 148,
184, 197, 233, 299, 356

Quadratic form, 111, 154, 211–213, 359,
363, 379, 381, 384, 393

Range space, 114, 430
Rank, 431, 433
Reachability Gramian, 146, 375–377
Reachable

state, 115
state equation, 115

Reduced-order observer, 316, 318,
320–323, 331, 334

Reference input, 137, 235–236, 255,
268–270, 272, 274, 276, 287–289,
292, 328, 336, 338–339, 343

Riccati, J. F., 383
Riccati matrix equation, 295
Rise time, 236, 239–245, 248, 279, 285,

297
Robot joint/link, 46, 103, 148, 183, 233,

298, 356, 405
Rotational mechanical system, 27, 80,

139, 175, 225, 279, 345, 398
Rotational electromechanical system, 36,

89, 143, 179, 228, 290, 350
Row-reduced echelon form, 160, 432,

437–438

Separation property, 327, 331
Servomechanism,

observer-based, 338, 340–341,
354–355

state feedback, 271, 276, 296–297
Settling time, 236, 241–247, 254, 271,

279–280, 282–286, 288, 294–295,
297, 309

Similarity transformation, 73, 255, 332,
388–391, 440–442

Span, 130–131, 418–419, 426, 431
Spectral norm, 231, 446
Spectral radius, 42
Spectrum, 436–437
Stability,

asymptotic, see Asymptotic stability
bounded-input, bounded-output, see

Bounded-input, bounded-output
stability

closed-loop, see Closed-loop stability
exponential, see Exponential stability
internal, see Internal stability
marginal, see Marginal stability

Stabilizability, 234, 263–265, 295, 301,
312–315

Standard basis, 63, 77, 133, 201, 421, 423,
428, 430, 440

State
differential equation, 5, 7, 9–10,

13–14, 16, 28, 35–36, 39, 49, 65,
104, 109, 273

equation solution, 48–49, 52, 61–62,
109, 149, 201

estimate, 300–302, 317, 320, 323–324,
331, 338, 34

feedback (control law), 137, 234–236,
242, 250–252, 254, 263–265, 268,
270, 272–273, 279, 281, 292,
295–299, 300–301, 309, 323–325,
327, 330–331, 337–338, 341,
347–351, 353–356, 383–384, 391,
397–399, 401

feedback gain matrix/vector, 234–236,
250–259, 262–267, 269, 271, 274,
276–277, 279, 281, 287, 289, 292,
294–295, 303, 314, 327–329, 334,
339–341, 383, 386, 391, 396–397,
399

feedback-based servomechanism, 271,
276, 296–297, 338, 341–342

variables, 4–6, 8–10, 12, 14, 16, 20,
28, 34, 38–40, 44–46, 61, 66–67,
76, 90, 101–102, 104, 116, 122,
149, 159, 171, 205, 210, 273, 295,
300, 317

vector, 3–4, 6–7, 48–49, 65, 72, 127,
149, 163, 273, 300, 317, 324, 326

transition matrix, 61, 79, 87
State-space realization, 17, 26, 32, 39–40,

44–46, 48, 70–71, 74, 76–78, 80, 91,
96–98, 117–118, 122–124, 127, 147,
161, 164, 167, 169, 186, 354
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State-space realization, (continued )
minimal, see Minimal realization

Stationary function, 366–367
Steady-state tracking, 268–269, 272, 276,

337, 339–340
Subspace, 41–42, 394, 419–421, 425,

430–431, 435
Supremum, 218–219, 223, 445
Symmetric matrix, 110, 127, 154, 169,

211–213, 215–216, 231–232, 295,
306, 359, 363, 383, 392–395,
403–404, 420

System dynamics matrix, 34, 49, 73,
78–79, 91, 93, 95, 100, 102, 121,
198, 214, 227, 229–230, 236, 252,
255, 273–274, 277, 279, 293–294,
327, 339, 397, 401

Taylor series, 19
Time constant, 92, 237, 244, 290–291,

294, 296, 298
Transfer function, 2, 5, 14–15, 17, 26–27,

29, 37–39, 42–43, 45, 48, 52, 65, 70,
74, 76, 86, 88, 91, 92, 96–98, 103,
117, 122–123, 125, 127, 142, 144,
147, 161, 163–164, 167–169,
179–181, 185–190, 192, 196,
221–222, 230–232, 238, 249,
284–285, 291, 352, 354

closed-loop, 243, 269, 271, 295, 337
open-loop, 271, 273, 276, 295

Transpose, 112–113, 165, 168, 172, 212,
225, 305, 314, 408, 411, 414, 416

conjugate (Hermitian), 393, 408, 425,
436

Two-mass translational mechanical system,
32, 84, 141, 177, 227, 283, 348, 399

Two-point boundary value problem, 382
Three-mass translational mechanical

system, 44, 99, 147, 183, 233, 297,
355, 405

Uncontrollable state equation, 129, 132,
135, 172, 263, 267, 193

Unobservable state, 151, 153–154, 159,
160, 165

Unobservable state equation, 171–172,
194, 312, 315

Unstable
equilibrium, 44, 199–201, 209, 211
system, 204, 239, 257

Vandermonde matrix, 59–60, 121, 128
Variational calculus, 357, 359–360, 368
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