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Preface

This monograph is intended for engineers, scientists, and mathematicians interested in linear
systems and control. It is concerned with the analysis and control of systems whose behavior
is governed by linear ordinary differential equations. Our approach is based mainly on state
space models. These models arise naturally in the description of physical systems. Many of
the classical results in linear systems, including the linear quadratic regulator problem, are
presented. An introduction to H°° analysis and control is also given. The major prerequisite
is a standard graduate-level course in linear algebra. However, on occasion we use some
elementary results from least squares optimization theory and operator theory. These results
are reviewed in the appendix. It is believed that an operator perspective provides a deep
understanding of certain aspects of linear systems, along with a set of tools which are useful
in system analysis and control design.

The monograph begins by presenting the basic state space model used in linear systems
and control. Some physical examples from mechanics are given to motivate the state space
model. Then we study both state space and input-output stability of linear systems. Lya-
punov techniques are developed to analyze state space stability. Finally, we use these results
to present some stability results for mechanical systems.

Next we study controllability and observability for state space systems. All the classical
results on controllability and observability are presented. Standard least squares optimiza-
tion techniques are used to solve a controllability optimization problem and an observability
optimization problem. This naturally leads to the controllability and observability Gramians.
The connections between stability and these Gramians are studied. The duality between con-
trollability and observability is given. Using invariant subspaces and matrix representations
of linear operators, we present the controllable and observable decomposition for a linear
system. The singular value decomposition provides an efficient algorithm for computing the
controllable and observable decomposition.

The backward shift operator plays a fundamental role in operator theory. Here we use
the backward shift operator to develop realization theory. The backward shift approach to
realization theory provides a natural geometric setting for realization theory and simplifies
some of the classical proofs. All the standard results in realization theory are given. For
example, we show that a realization is controllable and observable if and only if it is minimal.
Then we show that all minimal realizations of the same transfer function are similar. The
classical Kalman-Ho algorithm is presented.

Using standard linear algebra techniques, we present the classical solutions to the eigen-
value placement problem in state feedback control of controllable linear systems. First we
study the single input-single output case. Ackermann's formula is presented. Then we solve



the eigenvalue placement problem for multivariable systems.
State feedback results are used to develop state estimators for detectable systems. By

combining the stabilization results with the state estimators, we present the classical observer-
based output feedback controllers. Finally, we present a short chapter on the zeros of a state
space system.

The solution to the linear quadratic regulator problem plays a fundamental role in de-
signing feedback controllers. Here we present a solution to the linear quadratic regulator
problem by using standard least squares optimization techniques. For example, the adjoint
of a certain operator readily yields the corresponding two-point boundary value problem, the
feedback solution and a closed form solution for the Riccati differential equation. We also
provide a simple derivation of the solution to the tracking problem. Many of the classical
results associated with the quadratic regulator problem are also presented. For instance, we
obtain stabilizing controllers from the solution of the algebraic Riccati equation. A spectral
factorization of a certain positive operator is presented. Then this factorization is used to
develop the classical root locus interpretation of the feedback controllers obtained from the
solution of the linear quadratic regulator problem.

Motivated by the linear quadratic regulator problem, we present a separate chapter on
the Hamiltonian matrix and its role in computing the stabilizing solution to the algebraic
Riccati equation. The Hamiltonian matrix plays a fundamental role in linear system theory
and is also used in studying H°° analysis and control.

The last two chapters present an introduction to H°° analysis and control. First we
study the analysis problem. Our approach is based on an abstract optimization problem.
Then we introduce a rnax-min optimization problem to study the full state feedback H°°
control problem. This max-min optimization problem is essentially a combination of the
linear quadratic regular problem and the disturbance attenuation problem. The solutions
to these optimization problems are obtained by completing the squares of certain operators.
This yields the appropriate Riccati equation and the corresponding H°° controller. Finally,
we also present a controller which is a trade-off between the optimal H°° and H2 controller.

The authors are indebted to George Leitmarm and Bob Skelton for their encouragement
and inspiration.

Martin J. Corless
Arthur E. Frazho
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Chapter 1

Systems and Control

In this chapter we introduce the basic state space model used throughout this monograph.
Some elementary examples from mechanical systems are given to motivate this model. Then
we introduce the transfer function for a state space model. Some basic state space realization
results are presented.

1.1 Notation

In this section we introduce some notation used throughout this monograph. The reader can
choose to go directly to the next section and refer back to this section as the need arises.
The set of all complex numbers is denoted by C. Throughout, all linear spaces are complex
vector spaces unless stated otherwise. The inner product on a linear space is denoted by
( • , • ) . To be precise, the inner product on a linear space H is a complex valued function
mapping H. x "H into C with the following properties

(ii) (a

(iii) (M)>0 ;

(iv) (h, h)=0 if and only if h = 0.

Here /, g and h are arbitrary vectors in H while a and j3 are arbitrary complex numbers. The
inner product (-, •) is linear in the first variable and conjugate linear in the second variable.
An inner product space is simply a linear space with an inner product. If Ti. is an inner
product space, then the norm of the vector h is the non-negative real number defined by
\\h\\ = -^/(h,h). The Cauchy-Schwartz inequality states that \(f,h)\ < \\f\\ \\h\\ for all / and
h in T-L. Moreover, we have equality [(/, ti)\ = \\f\\ \\h\\ if and only if / and h are linearly
dependent. Finally, it is noted that if H is an inner product space, then we have the triangle
inequality, namely, ||/ + h\\ < \\f\\ + \\h\\ for all / and h in H.

Let "H be an inner product space. Then we say that a sequence {/ij}S° is a Cauchy
sequence in H if each hi is in Ti, and \\hi — hj\\ approaches zero as i and j tend to infinity.
An inner product space is complete if every Cauchy sequence converges to a vector in T~C,
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that is, if {hi}™ is any Cauchy sequence in H, then {^}o° converges to a vector hinH. A
Hilbert space is simply a complete inner product space. A Hilbert space is separable if it is
the closure of a countable set. Throughout we only consider separable Hilbert spaces. If 7i
is a (separable) Hilbert space, then there exists an orthonormal basis {fj}™ for 7i where ra
is possibly infinite. In fact, m is the dimension of 7i. In this case, every h in 7i admits a
Fourier series expansion of the form

_ ( h € H ) . (1.1)

Moreover, we also have Parseval's relation

(h,g)=} (h, (fj)(v?j , g) ( h , g £ T ~ { ) . (1-2)
.7=1

In particular, \\h\\2 = ^™ \(h,(fj) 2.
If JF is a subset of a linear space "H, then V 3~ denotes the linear span of J-', that is the

space of all linear combinations of elements of T. If H is a Hilbert space, then \/ .F is the
closed linear span of JF.

Throughout Cn is the Hilbert space determined by the set of all complex n-tuples of the
form [xi, x2, • • • , xn]

tr where xy is in C for all j ~ 1, 2, • • • , n and tr denotes the transpose.
The inner product on Cn is given by

where x = [xi,.x2, • • • ,xn}
tr and y = [yi,y2, • • • ,i/n] t r-

Furthermore, L2[a, b] is the Hilbert space formed by the set of all square integrable
Lebesgue measurable functions over the interval [a, 6], that is, / is in L2[a,6] if and only if
/ is Lebesgue measurable on [a, b] and

2

The inner product on L2[a, b] is given by

Now let U be a Hilbert space. Then L 2 ( [ a , b ] , U ) denotes the Hilbert space formed by the
set of all square integrable Lebesgue measurable functions on [a, 6] with values in U. The
inner product on L 2 ( [ a , b ] , l 4 ) is given by
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where (f(t),g(i))u is the inner product on U. For example, I/2([a, b], Cn) is the Hilbert space
formed by the set of n-tuples of the form / = [/l5 /2, • • • , fn]

tr where fj is a vector in I/2[a, b]
for all j = 1,2, • • • , n. The inner product on Z/2([a, b], C") is given by

where g = [gi,g^-- • ,gn]
tr is in L2([a,fc],Cn) .

We say that T is an operator if T is a linear map from a linear space 7i into a linear
space 1C. The kernel or null space of T is denoted by kerT, and the range of T is denoted
by ranT. Now let H. and K. be Hilbert spaces and T be an operator from 7i into /C. The
norm of T is denned by

||T|| : = sup{||T/i|| : h e U and \\h\\ < 1} .

We say that T is a bounded operator if ||T|| is finite. Throughout this monograph we deal
mainly with bounded operators. So, all of our operators acting between Hilbert spaces are
bounded unless stated otherwise. The set of all bounded operators from Ti. into K. is denoted
by L(H, /C). Notice that if T, R and S are operators acting between the appropriate Hilbert
spaces, then \\TR\\ < \\T\\ \\R\\ and \\T + S\\ < ||T + \\S\\.

As before, let T be a bounded operator mapping H into /C. Then the adjoint T* of T is
the linear operator from /C into H uniquely determined by (Th, k) — (h,T*k) for all hinH
and k in /C. It is well known that T and T* have the same norm, that is, ||T|| = T*||. If
7i is finite dimensional, then ||T||2 equals the largest eigenvalue of T*T. Finally, it is noted
that if T is a matrix from C" into Cm, then T* is the conjugate transpose of T, that is,
T* = Ttr. On several occasions we will use some elementary results from Hilbert spaces. For
some references on Hilbert spaces see Akhiezer-Glazman [2], Balakrishnan [8], Conway [30],
Gohberg-Goldberg [53], Halmos [59] and Taylor-Lay [117].

1.2 State space description

A common model for describing a dynamic system is given by the following state space
representation

x = Ax + Bu , .
y = Cx + Du ( J

where the state x(t) belongs to X while the input u(t) lives in U and the output y(t) lives
in ,y for all time t > 0. Unless otherwise noted, we always assume that the state space X,
the input space U. and the output space y are finite dimensional Hilbert spaces. The system
operator A acts on X and B maps U. into X, while C maps X into y and D maps U into
y. The state space system in (1.3) is denoted by {A,B,C, D}. In many applications A,
B, C and D are matrices acting between the appropriate Euclidean spaces. If an initial
condition XQ = x(0) is specified and the input u is given, then there is a unique solution to
the differential equation in (1.3). In this case, the output y is uniquely determined by the
initial state XQ and the input u.
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Example 1.2.1 The forced linear oscillator. Probably one of the simplest models in study-
ing mechanical systems is the forced linear oscillator shown in Figure 1.1. It consists of a
small body of mass m > 0, a linear spring with spring constant k > 0, and a linear dashpot
with damping coefficient c > 0. At each instant of time t, the body is subject to a force u(t).
Applying Newton's second law, we arrive at the following differential equation

my + cy + ky = u (1-4)

where y(t) is the displacement of the body from its equilibrium position. Now let x\ = y
and £2 — y- Using x\ = x-i and ±2 = y, it follows that (1.4) admits the state space form

y = [i

0 1
-k/m —c/m

01

0
1/ra

In this case the displacement y = x\ is the output. Notice that in this example D = 0.
However, if we choose the acceleration y of the mass as the output, then the corresponding
D matrix is nonzero.

u(t)

Figure 1.1: The forced linear oscillator

Example 1.2.2 By following the technique in the previous example, one can convert any
linear differential equation to a state space system of the form (1.3). To see this, consider
any scalar input-output system, with input u(i) and output y ( t ) , described by an n-th order
differential equation of the form

y(n] + a^iy(n-l} + • • • + a^y + a0y = u (1.5)

where y^ denotes the j-th derivative of y and a,- is a scalar for j = 0,1, • • • , n—l. To convert
this system to state space form, let Xi = y, x2 — y, • • • ,xn = y^n~l\ Then using Xj — Xj+i
for j = 1,2, • • • , n— 1 along with xn = ?/"), we obtain

" Xi '

X2

X

xn

' 0

0

0
_ -GO

1
0

0
-a-i

0
1

0
-az

u (1.6)

y = [ 1 0 0 o o

The initial state is given by x(Q) = [y(0), 1/^(0), • • • , y(n~l\Q)]tr where tr denotes the trans-
pose. Therefore, one can readily obtain a state space representation for any system described
by (1.5).



1.2. STATE SPACE DESCRIPTION

Example 1.2.3 Axisymmetric spacecraft.

3

1

Figure 1.2: The axisymmetric spacecraft

We consider here the rotational motion of an axisymmetric spacecraft which is subject to
two body-fixed input torques u\ and u-i about axes which are perpendicular to the symmetry
axis. This is illustrated in Figure 1.2. If we choose a body-fixed axes system with origin at
the center of mass, with axes corresponding to u\, u^ and whose 3-axis corresponds to the
axis of symmetry, the rotational motion of the axisymmetric spacecraft can be described by

/icJi = (J2 -

I2u>2 = (Is -
I3uj3 — 0

where uijU^,^ denote the components of the spacecraft angular velocity vector with respect
to the body-fixed axes; the positive scalars /i, /2, /3 are the principal moments of inertia of
the spacecraft with respect to the body-fixed axes and I\ — /2. From the third equation
above 0^3 is constant. If we introduce the constants a := (/i — J3)a;3//i and j3 := l//i, define
state variables x\ := u\ , x% := u>2 and output variables y\ := x\ , 3/2 '•— ^2> we obtain

xi — ax? + f3u\
x-2 = —axi + /3u-2

y\ = xi

This readily yields the state space form in (1.3) where

-a o ' ~ o ^ ' c=o i ' - Q o

Now let us return to the state space description (1.3). For a specified initial condition
x(0) = XQ the state x(t) at time t for the system in (1.3) is uniquely given by

rt
x(t) = eAtx0+ eA(t-T)Bu(r}dT. (1.7)

Jo
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The output y ( t ) of the state space system {A, B, C, D} in (1.3) is determined by

rt
y(t] = CeAtx0 + / CeA(t-r)Bu(r)dr + Du(i) (1.8)

Jo

where the initial state x0 = x(Q) is specified. Clearly,

ft
y(t) = CeAtx0+ G(t-r)u(r}dr (1.9)

Jo

where G is the operator valued function defined by

G(t) = CeAtB + 8(t)D. (1.10)

Here S(t} is the unit Dirac delta function. So, if the initial state XQ = 0, then (1.9) defines a
linear time invariant map of the form

y(t) = I G(t-r}u(r}dr . (1.11)
Jo

In particular, if u(i) = 8(t)uo for some constant UQ in U and x0 = 0, then y(t) — G(t}uQ.
Motivated by this, we call the function G in (1.10) the impulse response for {A,B,C, D}.
Clearly, if U — C1 and UQ = 1, then G(t] is precisely the output y(t) for u(i) — 5(t). Finally,
it is worth emphasizing that, under zero initial conditions, the input-output response of
{A, B, (7, -D} is completely determined by its impulse response via (1.11).

1.3 Transfer functions

In this section we introduce the notion of a transfer function for a linear system. Recall
that the Laplace transform of a measurable function / on [0, oo) with values in a finite
dimensional space £ is defined by

/

oo
e-stf(t)dt (1.12)

for appropriate values of s in C. (The set of all complex numbers is denoted by C.) The
Laplace transform of the function / is denoted by f and has values in 6 . Notice that a
boldface f is used to represent the Laplace transform of /. If / is exponentially bounded,
that is, if ||/(<) || < Me7* for some finite scalars M and 7, then f is an analytic function in
the region of C defined by 5R(s) > 7. Clearly, the Laplace transform operator £ is linear.
Finally, by convention, C(8) = I where 8 is the unit Dirac delta function.

Recall that £(/)(s) = sf(s) — /(O). By taking the Laplace transform of the state space
equations in (1.3), we obtain

sx(s) — XQ = Ax(s) + Bu(s)

y(s) =
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where x, y, u are the Laplace transforms of x, y, u, respectively and XQ — x(0). Solving these
equations for y in terms of XQ and u yields

y(s) = C(sl - A)-lx0 + [C(sl - A)~1B + D] u(s). (1.13)

The transfer function G for system {A, B, C, D} is denned by

G(s) = C(sI-A)-1B + D. (1.14)

Recall that the impulse response of system {A, B, C, D} given by

G(t) = CeAtB + 6(t)D.

Using the following Laplace transform result:

C(eM)(s) = (si - A)-1

we have G = £(G), that is, the transfer function G is the Laplace transform of the impulse
response G. Clearly, G is analytic everywhere except possibly at the eigenvalues of A.

When z(0) = 0, the relationship between the Laplace transform of the input u and the
Laplace transform of the output y is given by

y(*) = G(s)u(s). (1.15)

In other words, when the initial conditions are zero, the transfer function is the multiplication
operator which maps u into y. Recall that convolution in the time domain corresponds to
multiplication in the s-domain. Hence,

y(t)= I G(t-r)u(r)dr.
Jo

Obviously, G and G uniquely determine each other. So, for zero initial conditions, the
input-output response of the system {-4, B, C, D} is completely determined by its transfer
function.

1.3.1 Proper rational functions
A operator valued polynomial N is a function from C into some space C(U, y} of operators
which can be expressed as

N(s) = No + s/Vi + • • • + snNn

where NQ, ..., Nn are in £(U, y). It N is nonzero, then the degree of N (which we denote
by deg N} is the largest integer m for which Nm is non-zero. We say that an operator valued
function G of a complex variable is a proper rational function if G(s) = N ( s ) / d ( s ) where
N is an operator valued polynomial, d is a scalar valued polynomial and deg TV < degd. If
deg N < deg d, then we say that G is a strictly proper rational function. Notice that G is
a proper rational function with values in £(U, y) if and only if G admits a decomposition
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of the form G(s) = N(s)/d(s) + D where N is an operator valued polynomial, d is a scalar
valued polynomial satisfying degN < degd, and D is a constant in £(U,y). In other
words, G is a proper rational function if and only if G admits a decomposition of the form
G(s) = G0(s) + D where G0 is a strictly proper rational function and D is a constant.

We claim that the transfer function G of a finite dimensional system {A on X, B, C, D}
is a proper rational function. To see this, recall that (si— A)"1 can be expressed as

(sJ-A)-1 = adj (sI-A)/det[sI-A] (1.16)

where ad] (si — A) is the algebraic adjoint (or adjugate) of si — A and det[s/ — A] is the
characteristic polynomial of A. Since adj (si — A) is an operator valued polynomial whose
degree is strictly less than the degree of det[s/ — A], it follows that (si — A)"1 is a strictly
proper rational function. Hence, C(sl — A)~1B is also a strictly proper rational function.
Recalling from (1.14) that G(s) = C(sI-A)~lB + D, it follows that the transfer function G
is a proper rational function. Hence, G is a proper rational function of the form G = N/d
where d is the characteristic polynomial of A. Therefore, the poles of G are contained in
the eigenvalues of A. We say that A is stable if all the eigenvalues of A are contained in the
open left half plane {s : 2Rs < 0}. So, if A is stable, then G is also stable, that is, all the
poles of G are contained in the open left hand plane. Finally, it is noted that G is a strictly
proper rational function if and only if D equals zero.

Suppose G = N/d is a proper rational function. Then, we define the relative degree of G
to be deg d — deg N. If G is a transfer function for (A, B, C, D}, then G has relative degree
zero if and only if D is non-zero. When D is zero, the following result provides a state space
characterization of relative degree.

Lemma 1.3.1 Suppose G is a transfer function for a system {A, B,C, 0} and

CA]B = 0 for j = 0, l , - - - , r - 2 , (1.17a)

CAr~lB ^ 0. (1.17b)

Then

CAj(sI-A)-lB = sjG(s) for j = 0, 1, • • • ,r - 1 (1.18a)
CAr(sI - A)~1B = srG(s}-CAr-lB. (

Furthermore, G = N/d where d is the characteristic polynomial of A while N is a polynomial
of degree deg(d)—r and whose highest order coefficient is CAr~lB. In particular, G has rela-
tive degree r. Finally, ifr equals the dimension of the state space, then G(s) — CAr~lB/d(s).

PROOF. We first demonstrate (1.18a) by induction. Since,

G(s) = C(sI-A)~1B,

the equality in (1.18a) clearly holds for j = 0. Suppose now the equality (1.18a) holds for
some j — k < r — 2. Then for j = k + 1,

CAk+l(sI-AYlB = C(A-sI + sI)Ah(sI-A)-1B

= -CAkB + sCAk(sI-A)-1B
= sk+1G(s).
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Hence, (1.18a) holds for j = k + 1. So, by induction it holds for j = 0, 1, • • • ,r — 1. We also
obtain that

CAr(sI - A}~1B = -CAr~lB + sCAT~\sI - A}~1B = -CAr~lB + srG(s) ;

hence (1.18b) also holds.
Recall that G = N/d where d is the characteristic polynomial of A and N is a polynomial

of degree strictly less than the degree of d. Hence, CAT(sI — A)~1B = M(s)/d(s) where M
is a polynomial of degree strictly less that the degree of d. It now follows from (1.18b) that

d(s) d(s)

that is,
srN(s} = CAT~1Bd(s) + M(s} .

The properties of d and M imply that srN(s) is a polynomial of degree deg(cQ and whose
highest order coefficient is CAr~lB. Hence, TV" is a polynomial of degree deg(rf) — r and the
coefficient of its highest order term is CAr~1B.

1.3.2 Power series expansions
We now claim that if G is a proper rational function with values in C(U,y}, then for
sufficiently large s, the function G admits a power series expansion of the form

do

G(s) = ̂ s-iGi (1.19)
i=0

where each d is in £(Z//, y). To see this let G = N/d where N isa, polynomial with values in
C(U,y] and d is a scalar valued polynomial satisfying deg./V < degof. Considering s — I/A
and letting G(A) = G(1/A), we obtain

where n is the degree of d. Here N and d are the polynomials of degree at most n defined
by N(\) = AnA r(l/A) and d(\) = And(l/A), respectively. Since d(0) equals the coefficient of
sn in the polynomial d, it is nonzero. Hence, G is analytic at zero. So, for sufficiently small
A, the function G has a power series expansion of the form G(X) = Y^o" ^'^' wnere each Gi
is in £(U,y). Therefore, for s sufficiently large, G admits a power series expansion of the
form (1.19). Moreover, the infinite sequence {G*}o° and G uniquely determine each other.

Now assume that G is a proper rational function of the form G = N/d where d is a
scalar valued polynomial and ./V is an operator valued polynomial defined by

d(s) = d0 + sd1 + - - - + sr*-ld^l + sndn (dn^0) (1.20)
N(s) - NQ + sNl + - - - + sr*-lNT^1 + snNn. (1.21)
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N(s) = d(s}G(s) = (1.22)

where Gi is the coefficient of s l in the power series expansion of G. Equating the coefficients
of sj in (1.22) for j = n ,n —1, • • • ,0, yields

Nn = dnG0

4- dnGr,
(1-23)

dnG

These equations can be written in the following compact form:

Nn

=

dil d2I • • • rfn_i/ dnl 0
d2I d3I ••• dnl 0 0

dn_J dnl ••• 0 0 0
dnl 0 ... 0 0 0

G0

G2

Gn

(1.24)

(The block matrix in the above expression is a Hankel matrix.) Since N is a polynomial, the
coefficients of s~J in ]T^ d(s)s~"lGl are zero for all integers j > 1. For j = 1, we obtain

0 = dod + d!G2 ••• + d^Gn + dnGn+l .

In fact, for any integer k > 1, we have

Q = d0Gk + dlGk+l + ---+dn-lGk+n-i+dnGk+n

The above considerations lead to the following result.

(1.25)

(1.26)

Lemma 1.3.2 Let G = ]T °̂ s~lGl be the power series expansion for a proper rational func-
tion G and suppose d is a scalar valued polynomial of the form (1.20). Then G = N/d where
N is an operator valued polynomial if and only if (1.26) holds. Moreover, in this case, N is
given by (1.21) and (1.23).

When G = N/d and TV and d are known, the above results allow us to recursively compute
the operators in the sequence {Gi}™ directly from the polynomials N and d. Specifically,
(Gj}o can be recursively computed from (1.23) or (1.24), while {Gi}^+l is recursively com-
puted from

Gk = -
dn_\Gk-l + dn-l

(1.27)

The following result uses state space methods to compute the coefficients in the power
series expansion for a transfer function.
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Proposition 1.3.3 Let ]̂ ° s~lGi be the power series expansion for a proper rational func-
tion G. Then G is the transfer function for a system {A, B,C, D} if and only if

GQ = D and d = CAi'lB (for alii > I ). (1.28)

The proof of this result depends upon the following classical result.

Lemma 1.3.4 Let T be an operator on X satisfying \\T\\ < 1. Then I — T is invertible.
Moreover, in this case,

00

(I-T)-l = ̂ Tk. (1.29)

Finally, W-T)-^ <!/(!-\\T\\).

PROOF. Let Rn be the operator on X defined by Rn = Y^k=o Tk• We claim that Rn converges
to a bounded operator R = X^fclo-^ (m ^ne operator topology) as n tends to infinity. To
see this, let r = \\T\\. Obviously, ||Tfc|| < rk for all integers k > 0. If n and m are any two
positive integers satisfying n > m, then

n n oo _m+1

Up r? II II \ A T^II <-• \ ^ IIT1'CII <^ \ ^ ,\\fin~Hm\\-\\ > 1 \\ < > \\1 \\ < > '

k=m+l k=m+l fc=m+l

as m tends to infinity. The last equality follows from the geometric series ]T^ rk — 1/(1 — r).
So, Rn converges to the operator R — £)£° Tk as n approaches infinity. To verify that R is
a bounded operator simply notice that

00 00

^. - - i-r i - imr
To show that R is the inverse of I — T, observe that

(/ - T)Rn - (/ - T)(I + T + T2 + T3 + • • • + Tn) = I - Tn+l .

Because T"+1 converges to zero, the sequence {(/ — T)^n}o° converges to /. Since
converges to R, this implies that (I — T}R = I . Because Rn and I — T commute, we also
have R(I -T) = I. Therefore, / - T is invertible and ££° Tk is the inverse of / - T. •

PROOF OF PROPOSITION 1.3.3. By definition, G is the transfer function for a system
{A, B, C, D} if and only if G(s) = C(sl - A)~1B + D. Notice that

Whenever \s\ > \\A\\, it follows that ||^4/s|| < 1. According to Lemma 1.3.4, we have

°L Ai
(SI-A)-1 = ̂ T— (if |5|> || A||). (1.30)
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Therefore, G is the transfer function for a system {A, B, C, D} if and only if it has a power
series expansion of the form

oo ,-, Ai—\ D
c* ( <A — n -L \ ^ (~\ 31 "\Vjf \ <j I — LJ \~ 7 - . \ J- •t~J J- /V / / j „? ^ '

By matching like coefficients of l/s\ it follows that G(s) = ^^° Gi/sl is the transfer function
for a system {A, B, C, D} if and only if (1.28) hold. •

We say that {A, B, C, D} is a state space realization of G if G is the transfer function
for {A,B,C, D}. Consider any proper rational function G with a power series expansion
of the form ^^° Gi/s\ Then the above analysis shows that {^4, £?, C, D} is a realization of
G if and only if (1.28) holds. So, with out loss of generality we say that {A, B, C, D} is a
realization of a sequence of operators {Gi}™ if (1.28) holds.

Now suppose that {A, B, C, D} is a state space realization of G and d is a scalar valued
polynomial defined by (1.20). Then, according to Lemma 1.3.2 and Proposition 1.3.3, we
can express G as G = N/d where N is an operator valued polynomial if and only if

CAk-ld(A]B = 0 (fc > 1) (1.32)

where d(A) = dQI + diA + • • • dn_i/
condition is equivalent to

CAld(A}AjB = 0

Moreover, in this case, N is given by (1.21) and

Nn = dnD

+ dnA
n. Since A and d(A) commute, the above

( i , j > 0 ) . (1-33)

= djD + dj+lCB
(1.34)

N0 =

When D = 0, we obtain that Nn — 0 and

[ No JV: • • • 7Vn_! } = [CB CAB • • • CAn-lB } T

or
N0

= T

CB
CAB

CAn-lB
where T is the invertible Hankel matrix given by

(1.35)

(1.36)

d\I d%I • • • dn^I rfn_i/ dnl
dzl d3I ••• dn^I dnl 0
dj dj ••• dnl 0 0

dn_i/ dnl ••• 0 0 0
dnl 0 ... 0 0 0
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Summarizing, we have the following result.

Lemma 1.3.5 Let G be a transfer function for a state space system {A,B,C,D} and d a
scalar valued polynomial defined by (1.20). Then G = N/d where N is an operator valued
polynomial if and only if (1.33) holds. Moreover, in this case, N is given by (1.21) and
(1.34). When D = 0, the coefficients of N are also given by Nn = 0 and (1.35) or (1.36).

Remark 1.3.1 (Cayley-Hamilton Theorem) We have already seen that if G is the
transfer function for {A, B, C, D}, then it can be expressed as G = N/d where d is the char-
acteristic polynomial of A. Hence, the characteristic polynomial of A must satisfy (1.33). In
particular, if we consider B = C = I and i = j = 0, we obtain that d(A) = 0. This yields
the Cayley-Hamilton Theorem, namely if A is an operator on a finite dimensional space X,
then d(A) = 0 where d is the characteristic polynomial of A.

1.4 State space realizations of transfer functions

We say that {A on X', B, C, D} is a state space realization of G if G is the transfer function
for {A, B, C, D}, that is, (1.14) holds. The dimension of the state space X is the dimension
of the realization {A, B, C, D}. The analysis in the previous section shows that all transfer
functions are proper rational functions. This is part of the following basic result in system
theory.

Theorem 1.4.1 Let G be an operator valued function of a complex variable. Then G admits
a finite-dimensional state space realization if and only if G is a proper rational function.

PROOF. We only need to prove that a proper rational function G has a finite-dimensional
state space realization. Our proof is motivated by the form of the matrix A in equation
(1.6) of Example 1.2.2. Let G be a proper rational function with values in £(U,y). Then
G admits a decomposition of the form

G = N/d + D (1.37)

where N is a polynomial with values in C(U, y) and d is a scalar valued polynomial of the
form

Ti-l n-1

N(s) = J2 NkSk and d(s) = sn + ]T aks
k. (1.38)

k=0 k=0

Here D, NO, • • • , N^i are operators in £(U,y) while ao,---,^! are scalars. Now let
X = ©"W be the linear space formed by the set of all n-tuples of vectors from U, that is,
let X be the linear space consisting of all vectors of the form [MI, 7/2, • • • , un]

tr where Uj is a
vector in U for all integers j = 1,2, • • • , n. (Recall that tr denotes transpose.) Let A be the
block matrix on X and B the block matrix from U into X and C the block matrix from X
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into y defined by

A =

C = [ N0 7VX N2 ••• Nn_2 AU ]

Define V as the polynomial with values in C(U, X) given by

V(s}= [ I si s2! ••• sn~ll ]tr .

Here / is the identity on U. Then,

• o
0

0

/ 0
0 /

0 0
—ail —a2I

0
0

0

o •
0

, ̂

(sI-A)V(s) =

si -I 0 ••• 0
0 si -I ••• 0

0 0 0 • • • si -I
HQ! ciil a2I • • • an_2/

= B d ( s ) .

Hence, whenever s is not an eigenvalue of A,

(sI-Ar1B^

This along with the definition of (7, implies that

C(sl - A)~1B = [No N! •••

TD _ (1.39)

0
0

-/
an-i)I .

I
si

Sn~2I

. sn~ll .

' 0 "
0

0
. d(s)I _

V(s)/d(s) = N(s)/d(s)

The above equation and (1.37) yields G(s) = C(sl - A)-1B + D. Therefore, {A , B , C , D}
is a finite dimensional realization of G. •

Remark 1.4.1 Let G be a proper rational function with values in C(U, y} of the form (1.37)
where N and d are polynomials as defined in (1.38). Moreover, let A, B, C be the block
matrices defined in (1.39). Then the proof of the previous theorem shows that {^4, B, (7, D}
is a realization of G. In particular, any proper rational function of the form (1.37), (1.38)
admits a state space realization whose state dimension is at most n • dimU.

We now present another finite dimensional state space realization of a proper rational
function G with values in C(U,y}. Since G is proper and rational, it has a power series
expansion of the form G(s) = J^o5"1^ where each d is in £(U,y}. Also G can be
expressed as in (1.37) where N and d are polynomials as defined in (1.38). Now let X = ©"3^
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be the linear space formed by the set of all n-tuples of vectors from y. Let A be the block
matrix on X and B the block matrix from U into X and C the block matrix from X into y
defined by

A =

" 0
0

0
. -a0I

I
0

0
—a\I

0
1

0
-a

B =

' G,

(1.40)

0 0 0 0

It follows from (1.27) that — a0Gi — aiG^ — • • • — a^Cn — G™+I. This along with the shift
structure of A implies that AB = [G-z G3 • • • G^if7". By induction with (1.27), one can
readily show that, for any integer k > 0, we have AkB = [Gk+i Gk+z • • • Gh+n]tr- Using
the structure of C yields CAkB = G^+i for all k > 0. Recalling Proposition 1.3.3, we see
that G(s) = C(sl - A)~1B + D, that is, {A,B,C,D} is a realization of G. Thus, any
proper rational function of the form (1.37), (1.38) admits a state space realization whose
state dimension is at most n • dim y.

Remark 1.4.2 By combining Remark 1.4.1 with our previous analysis, we obtain the fol-
lowing result. Any proper rational function G of the form (1.37), (1.38) with values in
£(U, y) admits a state space realization whose state dimension is at most n • m where m is
the minimum dimension of the spaces U and y.

In many applications such as mechanical systems one encounters higher order vector
differential equations of the form

A0y = u . (1.41)

Here the input u and output y are functions with values in U and Aj are operators on U for
j = 0, 1, • • • , n — 1. By following Example 1.2.2, set Xj = y^1^ for j — 1, 2, • • • , n. Let X be
the space defined by X = ©™ZY. Then a state space realization for this system is given by

x = Ax + Bu and y = Cx

where A on X and B from U into X and C from X into U. are given by

(1.42)

A =

" 0
0

0

/

7
0

0

0

0
/

0
-A2

0

B = (1.43)
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By taking the Laplace transform of (1.41) with all the initial conditions set equal to zero,
we obtain 17(s)y(,s) = u(s) where 17 is the operator valued polynomial denned by

= A0 A2s
2 snl. (1.44)

It follows from Exercise 1 below that £l(s) l = C(sl — A)~~1B. In other words, fi 1 is the
transfer function for the system {A,B,C, 0} defined in (1.43).

A matrix of the form of A in (1.43) is called a companion matrix or a block companion
matrix when dim£Y > 1. Companion matrices play a fundamental role in systems and
control. If M is any operator on a finite dimensional space, then det[M] is the determinant
of any matrix representation of M. The following result provides a complete characterization
of the eigenvalues and eigenvectors for companion matrices.

Lemma 1.4.2 Let A be the (block) companion matrix on ®™U given in (1-43) and Q, the
corresponding operator valued, polynomial in (1.44)- Then A is an eigenvalue of A if and only
z/det[Q(A)] — 0. Furthermore, all eigenvectors v corresponding to a specified eigenvalue A
are given by

w
Xw

(1.45)

where w is a nonzero vector in the kernel o/f l(A).

PROOF. Recall that A is an eigenvalue of A if and only if Av = Xv where v is a nonzero
vector in X — ®r{U. Clearly, any such vector admits a decomposition of the form

W-2

where Wj is in U for all j. By using the structure of A, it follows that Av = Xv if and only if

These relationships are equivalent to

= X2wi, • • • , wn = Xn lwi and
+ ... + \Ai + A0)wl = 0 . (1.46)

By setting w = wi, the first n—l equations show that v admits a representation of the form
(1.45). In particular, v ^ 0 is equivalent to w ̂  0. Furthermore, the last expression in (1.46)
shows that A is an eigenvalue of A if and only if Q(X)wi = 0. Therefore, A is an eigenvalue
of A if and only if det[fi(A)] = 0. From the proceeding analysis it should be clear that all
the eigenvectors corresponding to a specified eigenvalue A are given by v in (1.45) where
n(A)u; = 0 and w ̂  0. •
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Scalar transfer functions. The scalar valued case plays an important role in many appli-
cations. Let g be any scalar valued proper rational function. Then g admits a decomposition
of the form

d + c2s + • • • + CnS1*-1

g(s) = : 1-7. (1-47)&v ' "-1 n

A = ' ' ' , B = ' (1.48)

' 0
0

0
. -oo

Cl

1
0

0
-ai

C2

0 •
1 •

0 •
-a2 •

C3 •

0
0

0
• -a^-2

0 "
0

1
-On-l .

'0 '
0

0
1 _

L Cn ] .C =

Then our previous analysis shows that {A, B , C, 7} is a realization of g. Moreover, A is an
eigenvalue for the companion matrix A in (1.48) if and only if A is a zero of the polynomial
GO 4- a\s + • • • + a^is"^1 + sn. In this case, all corresponding eigenvectors for A are scalar
multiples of [1, A, A2, • • • , A"^1]*7". Finally, it is noted that the poles of g are contained in the
eigenvalues of A.

Exercise 1 Suppose G = N£l~l where N and f2 are polynomials of the form
n-l n-1

]\r(c\ — \~^ T\J, ~k
 anri Ofs1) — <snT 4- V" /Lsfc Cl 49^J V \ ^ / — / -L*K^ dllU. u t r l O l — O J ( ^ ^ -Ti^O . I J..r±C/l

fe=0 fc=0

Here NQ, • • - , Nn-i are operators in £(U,y) while >lo, • • •, -<4n-i are operators in £(U,U).
Let Af be the space defined by Af = ©"ZY. Then show that a state space realization for this
system is given by

x = Ax + Bu and y = Cx
where A on X and B from U into X and C from X into ̂  are given by

0 / 0 • • • 0 0 ] T O
0 0 / ••• 0 0 0

(1.50)

A =

s~i

0 0
-AI -A-i

B = (1.51)

1.5 Notes

All the results in this section are classical. For further results on linear systems see Brockett
[21], Chen [26], DeCarlo [33], Delchamps [34], Fuhrmann [47], Kailath [68], Polderman-
Willems [98], Rugh [110], Skelton [114] and Sontag [116]. For some references on Hilbert
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spaces see Akhiezer-Glazman [2], Balakrishnan [8], Conway [30], Gohberg-Goldberg [53], Hal-
mos [59] and Taylor-Lay [117]. For an in-depth study of operator theory and its applications
see Gohberg-Goldberg-Kaashoek [54, 55].



Chapter 2

Stability

In this chapter we will present some classical results on state space stability and input-output
stability. We will also present some elementary stability results for mechanical systems.

Let us establish some terminology used in this chapter and throughout the monograph.
Let P be an operator on a Hilbert space H. Then we say that P is a positive operator if
(Ph, h) > 0 for all h in Ji. The notation P > 0 means that P is positive. If P is a positive
operator, then P is a self-adjoint operator. In general when we write P > Q we mean that P
and Q are two self-adjoint operators and P — Q is positive. (It is easy to construct examples
where P — Q is positive and P and Q are not self-adjoint.) If H is finite dimensional, then P
is positive if and only if P is a self-adjoint operator and all the eigenvalues of P are greater
than or equal to zero. Following Halmos [58], we say that P is a strictly positive operator
if there exists a constant 5 > 0 such that (Ph, h) > 6 \\h\\2 for all h in H. So, P is strictly
positive if and only if P is positive and invertible. If Ji is finite dimensional, then P is
strictly positive if and only if P is a self-adjoint operator and all the eigenvalues of P are
strictly greater than zero. Moreover, in the finite dimensional case, P is strictly positive
if and only if (P/i, h) > 0 for all nonzero h in H.. So, if H. is finite dimensional, then the
notation P > 0 means that P is strictly positive. Finally, it is noted that our terminology is
slightly different from the standard terminology used in linear algebra. If T~C = C", then our
strictly positive operator is usually referred to as a positive definite matrix, and our positive
operator is usually defined as a positive semi-definite matrix.

2.1 State space stability

This section is devoted to the stability of systems described by

x = Ax (2.1)

where A is an operator on a finite dimensional Hilbert space X and t > 0. We say that the
system x = Ax is stable if

lim x(t] = 0
t->00

for every solution x to (2.1). Recall that every solution x to (2.1) is given by x ( t ) — eAtxo
where x0 is a constant vector in X. Therefore, the system x = Ax is stable if and only if eAt

19
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converges to zero as t tends to infinity. The following basic result completely characterizes
the stability of x — Ax in terms of the eigenvalues of A.

Theorem 2.1.1 The system x = Ax in a finite dimensional space is stable if and only if
all the eigenvalues of A have nonzero negative real part, that is, all the eigenvalues of A are
in {s G C : 9ft(s) < 0}. In this case, there exists positive constants m and a > 0 such that
\\eAt\\ <me-atforallt>0.

PROOF. Recall the Laplace transform result: £(eAt) = (si -A)"1. If L is any operator on the
finite dimensional space X , then det[L] denotes the determinant of any matrix representation
of L. Because A is on a finite dimensional space, (si — A)~l = N(s)/d(s) where N is the
algebraic adjoint of A and d(s) = det[s/ — A] is the characteristic polynomial of A. The
roots of d are the eigenvalues of A. Moreover, N is a polynomial with values in £(X, X]
satisfying deg N < deg d. By computing the partial fraction expansion of N/d, we obtain
that

where AI , A2 . . . , \m are the distinct roots of d, or equivalently, the eigenvalues of A and
are operators on X for all j,k. Moreover, RJT] is nonzero for all j. Hence,

Therefore, eAt approaches zeros as t approaches infinity if and only if 3fJ(Aj) < 0 for all j.
Equation (2.3) implies that

for all t > 0. Now assume that A is stable. From this it readily follows that there exists
positive constants m and a > 0 such that \\eAt\\ < me~at for all t > 0. •

Notice that the previous proof provides a method to compute eAt. To be more specific,
compute the operators Rjk in the partial fraction expansion of (si — A)~l. Then eAt is given
by (2.3).

By a slight abuse of terminology we say that an operator A on a finite dimensional space
is stable if all its eigenvalues have nonzero negative real part. Finally, eAt is stable if A is
stable.

2.2 Mechanical systems
In this section we present a general class of mechanical systems and an elementary stability
result. We have already seen a one degree-of-freedom mechanical system in Chapter 1, that is,
mq + cq + kq = 0. Obviously, m, c and k are positive operators on C1. The following example
illustrates how positive operators naturally occur in a two degree-of-freedom mechanical
system.
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Example 2.2.1 Consider the simple structure illustrated in Figure 2.1. It consists of two

I m2

Figure 2.1: A simple structure

"floors" of masses mi > 0 and m2 > 0 connected by linear springs of spring constants ki > 0,
k?. > 0 and dashpots with damping coefficients c\ > 0, c2 > 0. The scalars yi, y2 are the
horizontal displacements of the floors from their equilibrium positions. An application of
Newton's Second Law to each floor yields:

+ + c2)y'i - c2y2 +
' + C2y2 -

+ - fc2y2 = 0
+ fc22 = 0.

Let q be the vector in C2 defined by q = [yi , y2]*
r where tr denotes the transpose. Then this

system can be described by the following second order vector differential equation:

Mq + Cq + Kq = 0

where the M, C, K are the operators given by

mi 0 I „ I ci + c2 -c2M = 0 m2 -c2

+

Since mi > 0 and m2 > 0, the operator M is strictly positive. Finally, in this example, C
and K are also strictly positive.

A general mechanical system with n degrees-of-freedom is described by

Mq + Cq + Kq = 0 (2.4)

where q lives in an n-dimensional vector space Q and M is a strictly positive operator on Q,
while C and K are operators on Q. The initial conditions for this differential equation are
given by g(0) and </(0). Here M is called the inertia operator, K is the stiffness operator,
and C is the damping operator. This differential equation can be used to model a large class
of linear mechanical systems; see Meirovitch [89]. We say that system (2.4) is stable if q(t)
approaches zero as t approaches infinity for every solution q.

To convert the mechanical system in (2.4) to state space form, let X = Q © Q be the
2n-dimensional linear space consisting of all vectors of the form [qi, <?2]

tr where q\ and g2
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are vectors in Q. If we set x = [<?,<?] t r , then the mechanical system (2.4) admits a state
description of the form x = Ax where A is the block matrix on X denned by

A -A ~ - -M-1C

We claim that the mechanical system (2.4) is stable if and only its state space representation
x = Ax is stable. Clearly, if x = Ax is stable, then q(t) approaches zero as t tends to infinity,
and thus, the corresponding mechanical system is stable. Now assume that the mechanical
system is stable. Let A be any nonzero eigenvalue of A. Because A is a block companion
matrix, the eigenvector corresponding to A is a vector of the form v = [w , Xw}tr where w is
a nonzero vector in Q; see Lemma 1.4.2. For the initial condition x(0) = v, the solution to
the differential equation x — Ax is given by x ( t ) = eAtv = [extw , Xextw}tr. Since q is the first
component of x, and the mechanical system is stable, we must have 9?(A) < 0. So, all the
eigenvalues of A have nonzero negative real part. Therefore, x = Ax is stable, which proves
our claim.

Theorem 2.2.1 Let Q be the second order operator valued polynomial defined by

tt(s) = s'2M + sC + K (2.6)

where M , C and K are all operators on Q with M mvertible. Then the corresponding
mechanical system in (2.4) is stable if and only if all the roots of the polynomial det[f2(s)]
have nonzero negative real part.

PROOF. We have just seen that the mechanical system in (2.4) is stable if and only if the
system x = Ax is stable where A is given by (2.5). According to Lemma 1.4.2, the eigenvalues
of A in (2.5) are given by the set of all complex numbers A such that det[O(A)] = 0. Hence,
x = Ax is stable if and only if all the roots of det[fi] have nonzero negative real part. This
completes the proof. •

We are now ready to state a basic stability result for mechanical systems.

Theorem 2.2.2 // M, C and K are all strictly positive operators on Q, then the corre-
sponding mechanical system in (2.4) is stable.

PROOF. Let fi be the operator valued polynomial defined in (2.6). From Theorem 2.2.1, the
mechanical system in (2.4) is stable if and only if all the roots of the polynomial det[f2] have
nonzero negative real part. If A is a root of det[fi], then £l(X)v = 0 for some nonzero vector
v in Q. Thus,

0 = (n(A)v, v) = A2 (Mv, v) + X (Cv, v) + (Kv, v) . (2.7)

It is well known (use the quadratic formula) that the roots of a second order polynomial
with nonzero positive real coefficients have nonzero negative real parts. Since M, (7, and K
are positive operators and v ^ 0, it follows from (2.7) that 9?(A) < 0. Therefore, all roots of
det[0] have nonzero negative real parts arid the mechanical system is stable. •

If K is positive and singular, then the mechanical system in (2.4) is not stable. To see
this, notice that ft(0) = K and thus det[Q(0)] = 0. Hence, it follows from Theorem 2.2.1
that the mechanical is not stable. However, the following result demonstrates that stability
is possible when C is positive and singular.
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Theorem 2.2.3 Assume that M and K are strictly positive operators on Q and C is a
positive operator on Q. Then the corresponding mechanical system in (2.4) is stable if and
only if the kernel of

[K^M\ (2.8)

is zero for all real numbers a > 0.

PROOF. If v is a nonzero vector in the kernel of [ K — aM C ] r for some a > 0, then
f2(A)t> = 0 for A = i\/a where fi(A) is defined in (2.6). According to Theorem 2.2.1, this
readily implies that the mechanical system is not stable.

On the other hand, if the mechanical system in (2.4) is unstable, then there exists a scalar
A and a nonzero vector v in Q such that 3R(A) > 0 and f2(A)u = 0. Thus (2.7) holds. We
claim that (Cv,v) = 0. Since C is positive, (Cv,v] > 0. If (Cv,v) > 0, then (0(A)u,t>) is a
quadratic polynomial with nonzero positive coefficients. Thus, 5R(A) < 0 which contradicts
that fact that 3fc(A) > 0; hence (Cv,v) = 0. So, \2(Mv,v] + (Kv,v] = 0 and hence,
A = ±i^/a where a — (Kv,v)/(Mv,v). Since (Cv,v) = 0, we have Cv = 0. (To see this,
simply notice that 0 = (Cv,v) — ||C1//2v||2 where C1/2 is the positive square root of C.
Therefore, C1/2v = 0 and Cv = Cl/2Cl/2v = 0.) We now obtain (-aM + K)v = fi(A)v = 0.
Thus v is in the kernel of [K — aM, C]tr. This completes the proof. •

Example 2.2.2 Recall the two story structure of Example 2.2.1. There we assumed that
both of the damping coefficients c\ and c<2 were nonzero and positive. However, an application
of the above theorem shows that for stability, one only needs one of the damping coefficients
to be nonzero and positive, and the other to be greater than or equal to zero.

2.3 Input-output stability

This section is concerned with input-output stability of linear systems. To begin, consider a
linear map T defined by

y(t] = (Tu)(t) = I G(t-r)u(r) dr (2.9)
Jo

where G is a Lebesgue measurable function with values in £(U, y) and the input u(t) has
values in U while the output y(t) has values in y. Throughout we always assume that both
U and y are finite dimensional Hilbert spaces. We say that the input-output map T defined
in (2.9) is stable, if T defines a bounded operator from L2 ([0, oo),lf) into L2([0, oo), }>)• We
say that G is in Ll(U,y} if G is a Lebesgue measurable function on [0, oo) with values in
£(U,y) and its L1 norm

/

oo
\\G(t)\\dt (2.10)

is finite. This sets the stage for the following useful result.

Proposition 2.3.1 IfG is in Ll(U, y), then the linear map T in (2.9) is a bounded operator
fromL2([0,oo),U) into L2 ([0,oo),y). Moreover, \\T\\ < \\G\\i.



24 CHAPTER 2. STABILITY

PROOF. If y = Tu, then an application of the Cauchy-Schwartz inequality yields

x 2
drX

\\G(t-r)\\^\\G(t-r)\nu(r)\\dr

< \\G\ 1 T \\G(t-r)
Jo

ur2dr

The Cauchy-Schwartz inequality was used to obtain the second inequality. By integrating
the previous inequality and changing the order of integration, we have

/

OO fOO ft

\\y(t}\\2dt < \G\J / |G(t-r)|| u(r)\\2 drdt
Jo Jo

/

OO fOO
/ \\G(t~r)\\dt\\u(r)\\2dr

Jr

- \\G\

Therefore, ||y | < ||G||i||w||. This completes the proof. •
The following result yields another useful bound for the operator T.

Corollary 2.3.2 Let G be a Lebesgue measurable function with values in £(C,y) satisfying

\\G(t)\\ <me-2at ( te [0 ,oo)) (2.11)

for some m > 0 and a > 0. Then G is in L1 (C, y). Furthermore, the linear map T in (2.9)
defines a bounded operator from L2[0,oo) into L2 ([0,oo),>') and

\\T\\ < ||G||i < \\eatG\yV2^ < m/2a (2.12)

where || • \% denotes the L2 ([Q,oo),y) norm.

PROOF. Using the Cauchy-Schwartz inequality, we have

2/ /-co \
2 = / \G(t)\\dt)

\Jo /
/ fOO

= / \\eatG(t)\\e-atdt
\Jo ;

< r \\eatG(t) \2dt- f e~2atdt
Jo Jo

= \\eatG\\2
2/2a < \\me-at\\2/2a = m2/4a2 .

This along with Proposition 2.3.1 readily yields the inequality in (2.12).
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Remark 2.3.1 Recall that we have equality in the Cauchy-Schwartz inequality if and only
if the corresponding vectors are linearly dependent. From the proof of the above inequality,
it should be clear that we have the equality ||G||i = ||eQ*G||2/\/2a in (2.12) if and only if
there is a scalar k such that HG^e"*)! = ke~at, or equivalently. ||G(t)| = ke~2at .

Now consider the linear system {^4, B, C, D} defined by

x = Ax + Bu and y = Cx + Du (2.13)

where A is on a finite dimensional state space X. As before, the input u(t) lives in U while
the output y(t) lives in y. If the initial condition is zero, then the input-output map R
corresponding to (2.13) is given by

rt
y(t) = (Ru)(t) = / CeA(t-^Bu(r)dT + Du(t). (2.14)

Jo

Motivated by this we say that {A,B,C, D} is input-output stable if R in (2.14) defines a
bounded operator from L2 ([0, oo),U) into L2 ([0, oo),y). Notice that if A is stable, that is,
if all the eigenvalues of A have nonzero negative real part, then G(t) = CeAtB is in I/1^, y).
Hence, the operator T in (2.9) corresponding to this G is bounded. Thus, R = T + D is
bounded. Therefore, if A is stable, then {A, B, C, D} is input-output stable. The converse
of this fact is not necessarily true. For example, choose A — I and B — C — D = 0. Then
clearly A is unstable while R = 0 obviously bounded. Summing up our previous analysis
yields the following result.

Proposition 2.3.3 // all the eigenvalues of A have nonzero negative real part, then the
system {A, B, C, D} is input-output stable.

2.4 The H°° norm

To compute the norm of the input-output operator T in (2.9), we need the Hardy space
H°°(U,y). Throughout H°°(U,y) is the Hardy space of all functions G which are analytic
for 3?(s) > 0, take values in £(U, y) and whose H°° norm

||G||00: = sup{||G(5)||:»(5)>0} (2.15)

is finite. Notice that a rational function G is in H°°(U, y) if and only if G is a proper rational
function whose poles are in the open left half plane of C, that is, {s G C : •R(s) < 0}. Now
we are ready to state the following classical result; see Chapter IX, Section I of Foias-Frazho
[39].

Theorem 2.4.1 Suppose G is a Lebesgue measurable function with values in jC(U,y) and
D is in C(U,y). Let R be the linear map defined by

y(t) = (Ru)(t) = / G(t-r)u(r) dr + Du(t] (2.16)
Jo

where u is in L2 ([0, oo),W). Then R defines a bounded operator from L2 ([0, oo),Lt) into
L2 ([0,oo), [V) if and only if the Laplace transform G of G is a function in H°°(U,y). In
this case \\R\\ = \\G + D]}^.
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The following result can be used to obtain a proof of Proposition 2.3.1.

Lemma 2.4.2 If G is in Ll(U,y), then its Laplace transform, G is in H°°(U,y). Moreover,

PROOF. Recall that the Laplace transform G of G is defined by

/

oo
e~stG(t] dt .

.

Now let us show that G analytic for §R(s) > 0. Consider any complex number s with
3fc(s) > 0. Since \e~st\ < 1, it follows that e-

siG(t}\\ = \e~si\\\G(t}\\ < \\G(t)\\. Moreover,
there is a finite number (3 such that \te~st\ < /3 for all t > 0; hence \\te-stG(t}\\ < P\\G(t)\ .
Since G is in Ll(U,y), it now follows that the functions on [0,oo) given by e~stG(t) and its
derivative with respect to s are both in Ll(U,y}. So we can interchange the integral and
the derivative to show that the derivative of G exists for all 3?(s) > 0. Hence, G is analytic
in 3ft(s) > 0. Moreover, we have

Therefore, ||G| oo < \\G\\i and G is a function in H°°(U,y} which proves our claim. •
Consider any G in Ll(U,y). By the previous lemma, G is in H°°(U,y) and \\G\\n <

\G i- Theorem 2.4.1 now implies that the operator T in (2.9) defines a bounded operator
with \\T\ = ||G| oo. Hence, \\T\ < \\G\\i. This readily proves Proposition 2.3.1.

The following result is an immediate consequence of Theorem 2.4.1

Theorem 2.4.3 Let G be the transfer function for a finite dimensional system {A , B , C , D}
and R be the input-output map defined by

rt
(2.17)

Then {A, B,C, D} is input-output stable if and only if G is in H°°(U,y}. Moreover, in this
case R is a bounded operator from L'2 ([0, oo) ,U] into I/2 ([0, oo), y} and \\R\\ = | G||oo. In
particular, if all the eigenvalues of A have nonzero negative real part, then G is in H°°(U,y)
and {A,B,C,D} is input-output stable.

If G is the transfer function for {A, B, C, D}, then we say that G is stable if all the poles
of G are in the open left half plane, or equivalently, G is in H°°(lt,y).

If P is any self-adjoint operator on X', then Amax(P) denotes the largest eigenvalue of P.
Now let G' be a Lebesgue measurable function with values in C(U,y}. Then d\(G] is the
scalar defined by

di(G) = sup{||Gu||i : u e W and ||u|| < 1} .

Note that d\(G] can be infinite. However, if G is in Ll(U, y], then d\(G] is finite and satisfies
di(G) < \\G\\!. IfU = C1, then d^G) =- \\G\\i. Finally, let N be an operator from U into
y, then the adjoint of N is denoted by TV*. Recall N* is the unique operator from y into U
defined by (Nu, y) = (u, N*y) for all u in U and y in 3^- This sets the stage for the following
result which is a generalization of Corollary 2.3.2.



2.5. NOTES 27

Theorem 2.4.4 Let G be a Lebesgue measurable function with values in £(U,y) where
U is finite dimensional. Suppose that there are positive scalars m and a > 0 satisfying
\\G(t)\\ < me-2at for all t > 0. Then the operator

/

oo
e2atG(t)*G(t)dt (2.18)

_

is a well defined positive operator on U. Moreover, the Laplace transform G of G is in
H^iti^y] and satisfies the following bounds:

\\G\\l <dl(G)2<Xmax(Il)/2a. (2.19)

PROOF. Consider any unit vector u in U. It follows from the hypotheses that Gu is in
Ll(C,y). Applying Lemma 2.4.2, we have \\Gu\\oo < \\Gu\\i < di(G). Thus,

||G||oo = sup{||Gu||00 : u£U and ||u|| < 1} < di(G).

This readily establishes the first inequality in (2.19). To show that II is a well defined
operator, let u and v be two arbitrary vectors in U. Then, using the exponential bound on
G(t), we obtain

/

o

e2at (G(t)*G(f)u, v)dt = I (eatGu, eatGv) \

< \\eatGu\\2\\e
atGv\\2< \\me~at\ 2 ||u|| ||v|| < m2||u||||7;||/2a . (2.20)

Hence, (Hw,f) is finite for all u and v. Thus, II is a well defined operator on U. In fact, by
choosing v = Uu in (2.20), yields ||I1|| < m2/2a. Since (Ilit.u) = He^GulH > 0, it follows
that II is a positive operator. To obtain the second inequality in (2.19), let u be a unit vector
in U. Then using the Cauchy-Schwartz inequality, we have

2
|2\\Gu\\l = / \\eatG(t)u\\e-at dt

\^o /

/

oo poo

\\eatG(t}u\\2 dt • / e-2atdt
Jo

- (nW,t/)/2a<Amax(n)/2a.

Therefore, d^G)2 < Amax(n)/2a. •

2.5 Notes

The results in this chapter are classical. For stability results on nonlinear differential equa-
tions see Khalil [74] and Vidyasagar [124]. A detailed study of mechanical systems is pre-
sented in Meirovitch [89]. For some further results on mechanical systems and feedback
control see Meirovitch [90] and Skelton [114]. For some classical results on H°° functions see
Garnett [50] and Hoffman [64].





Chapter 3

Lyapunov Theory

In this chapter we develop and use some special Lyapunov equations to study the stability of
linear systems. These Lyapunov equations naturally lead to some stability bounds for linear
systems. Finally, we use Lyapunov techniques to derive some fundamental stability results
for linear mechanical systems.

3.1 Basic Lyapunov theory
This section is devoted to basic Lyapunov stability results for state space systems described
by

x = Ax (3.1)

where A acts on a finite dimensional vector space X and t > 0. Recall that the operator
A, or equivalently, the system x = Ax is stable if and only if all the eigenvalues of A have
nonzero negative real part. Notice that the scalar system x = ax is stable if and only if
23ft(a) = a + a < 0. The generalization of a + a to system (3.1) is A + A* < 0. Motivated by
this, we say that A or system (3.1) is dissipative if A + A* < 0. Clearly, A is dissipative if
and only if 2$t(Ax, x} < 0 for all nonzero x. If A is dissipative, then A is stable. To see this,
consider any eigenvalue A of A and a corresponding unit eigenvector v, that is, Av = Xv and
\\v\\ = 1. Then 0 > 25R(Ai>,t>) = 25R(A). Since this holds for every eigenvalue, A is stable.
However, if A is stable, then A it is not necessarily dissipative. For example, consider the
operator

" -1 3
A~ ' 0 - 1

Clearly, A is stable. The eigenvalues for the operator A + A* are {—5,1}. So, A is not
dissipative.

Recall that an operator A is similar to another operator F on F if there exists an invertible
transformation T from X into J- such that F = TAT~l. Since similarity transformations
preserve eigenvalues, they also preserve stability. Later we will see that A is stable if and only
if A is similar to a dissipative operator. Assume that A is similar to a dissipative operator
F, that is, there exists a similarity transform T satisfying

TAT~l + T~*A*T* = F + F* < 0.

29
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The adjoint of the inverse of T is denoted by T~*. Let P be the strictly positive operator on
X defined by P : = T*T. (Because T is invertible, it follows that (Px,x) = \ Tx\\2 > 0 for
all nonzero x in X, and thus P is strictly positive.) Pre-multiplying and post-multiplying
the previous inequality by T* and T, respectively, yields

PA + A*P<Q. (3.2)

So, if A is similar to a dissipative operator, then A is stable and there exists a strictly positive
operator P satisfying (3.2). We now show that the existence of a strictly positive operator
P satisfying (3.2) guarantees stability.

Lemma 3.1.1 Let A be an operator on a finite-dimensional vector space and suppose that
there exists a strictly positive operator P satisfying (3.2). Then A is stable.

PROOF. Consider any eigenvalue A of A. Let v be an eigenvector corresponding to A, that
is, Av = \v where v / 0. Then

0 > ((PA + A*P)v, v) = (PAv, v) + (Pv, Av) = (A + A) (Pv, v) .

Hence, 23?(A) (Pv.v) < 0. Because P > 0, we must have !R(A) < 0. Since this holds for
every eigenvalue, A is stable. •

A strictly positive operator P which satisfies the inequality in (3.2) will be referred to as
a Lyapunov operator for (3.1) or A. If A is dissipative, then the Lyapunov operator for A is
simply the identity operator. Clearly, / is strictly positive. So, the above lemma also shows
that all dissipative systems are stable.

Remark 3.1.1 Let A be an operator on a finite-dimensional vector space satisfying

AQ + QA* < 0 (3.3)

where Q is strictly positive. Then from the above lemma, A* is stable, and hence, A is
stable.

So far we have shown that if (3.2) holds for some P, then A is stable. Is the converse
true? That is, if A is stable, does there exist an operator P such that (3.2) holds. Moreover,
if this is true how does one find such an operator P. To answer this question notice that
inequality (3.2) is equivalent to

PA + A*P + ft = Q (3.4)

where Q is a strictly positive operator. This linear operator equation is known as a Lyapunov
equation . So, one approach to looking for Lyapunov operators could be to choose a strictly
positive operator fi and determine whether the Lyapunov equation has a strictly positive
solution for P. The following result shows that if A is stable, then (3.4) has a solution P for
every Q.
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Lemma 3.1.2 Let A be stable operator on a finite dimensional vector space. Then for every
operator fi; the Lyapunov equation (3.4) has a unique solution P and this solution is given
by

/•oo

P= I e
AfttteAtdt. (3.5)

Jo
Moreover, if f2 is strictly positive (respectively positive), then P is strictly positive (respec-
tively positive).

PROOF. First, let us show that P given by (3.5) is a solution to the Lyapunov equation in
(3.4). Because A is stable, \\eAt\\ < me~at for some positive m and a > 0; see Theorem 2.1.1.
Therefore, the integral in (3.5) exists, and this P is a well defined operator. Recall that

ApAt ijpA**At 4 U-C A*J Ut.
eMA = — — and A*eA * = — — .

dt dt

Using this and (3.5), we obtain

eAfttteAtA + A*eAfttteAt dt
/

-nJo L dt dt

d (eA^

deA * t ,
1 —SleAt dt

I ' v ~ .:" ' dt
Jo

= lira (l

^ Jo

dt

dt
dt

Therefore, the operator P defined in (3.5) is a solution to Lyapunov equation (3.4).
To demonstrate that the solution to this Lyapunov equation is unique, consider any P

satisfying (3.4). Then for any t\ > 0, we have

f
Jo

_ r^ d (eAftPeAt]
~ J0 di

dt

Thus,
rti

tC)f>AtrH- — P — p-A**! Pf>Ati Cl fi"\i io UjL — ± c J o . \^O.\jJ/
Jo/o

By letting t\ approach infinity and using the fact that A is stable, we see that P is given by
(3.5). Hence P is unique.
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To complete the proof, assume that 17 is positive. Then for any x in X, we have

/ f°° \ T°°
(Px,x)=( eA't^ieAtdtx,x} = (tteAtx,eAtx) dt>0 . (3.7)

\Jo ) Jo

So, if fJ is positive, then P is positive. If Q is strictly positive, then there exists an e > 0
such that f2 > el. Using this in (3.7) along with x / 0, yields

/

OO /-00

(SleAtx, eAix] dt>e \\eAtx\\2 dt > 0 .
JO

In this case, P is strictly positive. This completes the proof. •

Using the above two lemmas, we can now state the main result of this section.

Theorem 3.1.3 Let A be an operator on a finite dimensional vector space. Then the fol-
lowing statements are equivalent.

(a) The system x — Ax is stable.

(b) There exist strictly positive operators P and £1 satisfying the Lyapunov equation (3.4)-

(c) For any strictly positive operator f7; the Lyapunov equation (3.4) has a strictly positive
solution P . In this case P is the only solution.

(d) The operator A is similar to a dissipative operator.

PROOF. The first lemma shows that (b) implies (a). The second lemma states that (a)
implies (c). Hence, (b) implies (c). To see that (c) implies (b), pick any strictly positive J7.
So, (b) holds and thus, (a), (b), (c) are equivalent.

To complete the proof, we have to prove the equivalence of (d). Recall that all dissipative
operators are stable. So, if A is similar to a dissipative operator, then A is stable. In other
words, (d) implies (a). On the other hand, if A is stable, then there is a strictly positive
operator P such that

PA + A*P + 7 = 0.

Since P is strictly positive, it admits a strictly positive square root denoted by P1/2. Multi-
plying both sides of the previous Lyapunov equation by P"1/2 yields

This shows that A is similar to the dissipative operator P1//2j4P~1//2. •
Since the stability of A is equivalent to the stability of A* , one can state the above

theorem by replacing P with Q and replacing (3.4) with

AQ + QA* + tt = Q. (3.8)

This readily yields the following result.
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Corollary 3.1.4 Let A be an operator on a finite dimensional vector space. Then the fol-
lowing statements are equivalent.

(a) The system x = Ax is stable.

(b) There exist strictly positive operators Q and £2 satisfying the Lyapunov equation (3.8).

(c) For any strictly positive operator £1, the Lyapunov equation (3.8) has a strictly positive
solution Q. In this case Q is the only solution.

(d) The operator A is similar to a dissipative operator.

Exercise 2 As before, let A be an operator on a finite dimensional vector space. Consider
the Lyapunov equation

PA + A*P + 2aP + ft - 0 (3.9)

where £2 is some strictly positive operator and a is a positive scalar. Then show that
this equation has a strictly positive solution if and only if all the eigenvalues for A are in
{s G C : 3£(s) < —a}. In this case, show that the solution to (3.9) is unique.

3.1.1 Lyapunov functions

Let us present a connection between Lyapunov functions and the Lyapunov equation given in
(3.4). To this end, consider the nonlinear system given by x = f(x] where / is a continuous
function mapping IR" into IRn. For simplicity of presentation in this section only, we assume
that X = H" is the real vector space consisting of all n tuples of the form [xi, ^2, • • • , xn]

tr

where Xj is in IR for j = 1, 2, • • • , n. Let V be a function from IR" into 1R. Recall that the
derivative of V at x is the linear operator from IRn into IR, defined by

e=ae

where e is a scalar. We say that V is a positive definite function if V is a continuously
differentiate function from IRn into IR satisfying the following three conditions: V(x) > 0
for all nonzero x in IR" while V(0) = 0 and V(x) approaches infinity as \\x\\ tends to infinity.
For example, if P is a strictly positive matrix on IR", then the quadratic function given by
V(x) — (Px, x) is a positive definite function. (By strictly positive on IR" we mean that P is
a real valued self-adjoint matrix on IR" and (Px, x) > 0 for all nonzero x in IR".) A function
V is a Lyapunov function for x = f ( x ) if V is a positive definite function and

D V ( x ) f ( x ) < 0 (for all x ^ 0) .

Notice that V(x(t)) = D V ( x ( t ) ) f ( x ( t } ) . So, if V is a Lyapunov function, then V(x(t)) < 0
for all nonzero x(t), that is, V(x(t)) is a decreasing function of t. Using this along with the
properties of Lyapunov functions, one can prove the following well known result; see Khalil
[74] and Vidyasagar [124].
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Theorem 3.1.5 Consider the system x = f(x) where f is a continuous function on IR".
Assume that there exists a Lyapunov function V for x — f ( x } . Then for every initial
condition the differential equation x = f(x] has a solution. Moreover, every solution x can
be extended to the interval [0, oo) and satisfies

lim x(t) = 0 .
t—>

Lyapunov functions play an important role in the stability analysis and control design
of nonlinear systems; see Khalil [74] and Vidyasagar [124]. In general it can be difficult to
construct a Lyapunov function for an arbitrary nonlinear system.

Constructing Lyapunov functions for a stable linear system x = Ax is quite simple. To
see this, assume that A is a stable operator on X. Let fl be any strictly positive matrix on
IRn and P the solution to the following Lyapunov equation

PA + A*P + Q = Q. (3.10)

Theorem 3.1.3 shows that P is strictly positive. Thus, V(x) = (Px,x) is a positive definite
function. We claim that this V(x) is a Lyapunov function for the differential equation
x = Ax. To verify this simply notice that DV(x)h = (Ph,x) + (Pxji) where h is in IRn.
So, using f(x] = Ax along with (3.10), we obtain

DV(x)Ax = (PAx,x) 4- (Px,Ax) = -(tix,x).

Clearly, — (£lx,x) < 0 for all nonzero x. Therefore, any stable linear system x = Ax has
a Lyapunov function of the form V(x) — (Px,x). Furthermore, the above analysis shows
that each strictly positive operator 17 uniquely determines a quadratic Lyapunov function
V(x~) = (Px,x] where P is this unique solution to the Lyapunov equation in (3.10).

Exercise 3 Show that V(x) = x2 is a Lyapunov function for x — —x3. Compute the
general solution to this nonlinear differential equation to verify that x(t) approaches 0 as t
approaches infinity for all initial conditions.

3.2 Lyapunov functions and related bounds

In this section we use the Lyapunov equation to establish some bounds on a linear system.

3.2.1 Bounds on eAt

In this section we will use the Lyapunov equation in (3.10) to compute some bounds on \\eM \
in terms of the operators P and fi. This analysis begins with the following fundamental
result.

Lemma 3.2.1 Let A be an operator on a finite dimensional space X satisfying

A + A*<-1aI (3.11)

where a > 0. Then \\eM\\ < e~at for all t > 0.
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PROOF. First assume that A is marginally dissipative, that is, A + A* < 0. Now let g
be the function defined by g(t) = \\eAtx\\'2 where x is in X. Then

g(t) = j(eAtx,eAtx) = (AeAtx,eAtx) + (eAtx,AeAtx] = m(AeAtx, eAtx) < 0.

Because g(t] < 0, it follows that g is nonincreasing and its maximum is obtained at zero.
Thus,

Hence, eAt is contractive for all t>0, that is, \\eAt\\ < 1 for all t>Q. So, if A is marginally
dissipative, then eAi is contractive for all t>0. However, if A + A* < —2al, then A + a I is
marginally dissipative. Therefore, ||e(A+a/)*|| < 1, or equivalently, \\eAt\\ < e~ai for all t > 0.
This completes the proof. •

If A is dissipative, then A + A* < —2al for some a > 0. In this case, the above lemma
shows that the solution to the differential equation x — Ax with x(Q) — XQ satisfies the
bound ||x(t)|| < e~at||:ro|| for all t > 0. This bound motivated the definition of dissipative.
If R is an operator on X, then Amoz(/2) is the largest real eigenvalue of R while Xmin(R)
is the smallest real eigenvalue of R. This sets the stage for the following result which is a
generalization of the previous lemma.

Theorem 3.2.2 Let A be a stable operator on a finite dimensional space X and f2 a strictly
positive operator on X. Let P be the unique solution for the Lyapunov equation (3.10).
Then all the eigenvalues of P~l£l are nonzero positive real numbers. Moreover, if a =
Amin(P-1^)/2; then

PROOF. By multiplying both sides of the Lyapunov equation (3.10) by P"1/2, we obtain

where la is the smallest eigenvalue of P~1/2np-1/2. So, if F = Pl/*AP~l/2, then F is
similar to A and F + F* < —2al. According to the previous lemma, we have \eFt\\ < e~at.
Thus,

-at||P1/2||e

Since ||P1/2||2 = Amax(P) and ||P"1/2||2 = l/Amin(P), we readily obtain the bound in (3.12).
To complete the proof it remains to show that 2a = Amin(P~1/2QP~1/'2) also equals

Am inP"1^. First notice that p-V2Qp-i/2 is similar to P-1^. This follows from

So, P-111 and P"1/2riP~1/2 have the same eigenvalues. In particular, all the eigenvalues of
P-1f2 are nonzero positive real numbers. Furthermore, \min(P~1^l) is the smallest eigenvalue
of P-1/2fiP~1/2. Hence, 2a = Amin(P~1Q). This completes the proof. •
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To obtain some additional insight into Lyapunov functions, let A be a stable operator on
X and fi a strictly positive operator on X. Let P be the solution to the Lyapunov equation
in (3.10). Recall that P is strictly positive. Now let Xp be the inner product space consisting
of all vectors in X and determined by the inner product (x,y)p = (Pa;, y) where x and y
are in X. Because P is strictly positive, it follows that Xp is a well defined Hilbert space.
Let U be the "identity" operator mapping X into Xp defined by Ux = x. Obviously, U is
invertible. We claim that

\\U\\2 = Amax(P) and llt/^l 2 = l/Amin(P) . (3.14)

The first equality follows from

lit/112 = sup{\Ux\\2
P: \\x\\ <!}

= sup{(Px, x) : \\x\\ < 1} = Amax(P) .

To verify the second equality notice that

lit/-1!)2 = sup{\\U-lx\\2: \\x\\p <l} = sup{(x,x) :(Px,x)<l}

= sup{(P-ly,y) : \\y\\2 < 1} = Xmax(P~l) = l/Amin(P) .

The third equality was obtained by replacing x by P-1/2y. This completes the proof of
(3.14).

Now let AQ be the operator on Xp defined by A$x — Ax. Clearly, A$U = UA and thus
AQ is similar to A. In particular, eAot — UeMU~1. Using the Lyapunov equation in (3.10),
we obtain

23&(Aoz, x)P = (PAx, x) + (Px, Ax) = -(fix, x) = -(P~lflx, x}P . (3.15)

Since (P^fio;, x}p = (fix, x) > 0 for all nonzero x, it follows that P-1fi is a strictly positive
operator on the space Xp. In particular, all the eigenvalues of P-1fi are nonzero and positive.
Using a = Amin(P~10)/2 in (3.15), we obtain

A0 + A S < - 2 a J . (3.16)

Therefore, AQ is dissipative. According to Lemma 3.2.1, we have ||eAot|| < e~at . By consult-
ing (3.14), we obtain

I p\ \ x/2

^\U\\ ||e |̂|

This yields another proof of Theorem 3.2.2. Finally, this analysis also shows that any stable
operator is similar to a dissipative operator.

3.2.2 Some system bounds
Let A be an operator on a finite dimensional space X and let rmax(y4) be the real number
defined by

rmax(A) = — max (3?(A) : A is an eigenvalue of A} .
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Now consider a < rmax(A). Then all the eigenvalues of A + al have nonzero negative real
part and thus A + al is stable. So, if £7 is any positive operator on X, then there exists a
unique positive solution P to the Lyapunov equation P(A + al) + (A + aI)*P + 17 = 0, or
equivalently,

PA + A*P + 2aP + Sl = Q. (3.17)
In fact, according to Lemma 3.1.2, the solution P is given by

- rL
In particular, if A is stable and a is chosen such that 0 < a < Tmax(A), then there is a
positive solution to the Lyapunov equation (3.17). This Lyapunov equation is used in the
following theorem. To present this theorem recall that if G is any function in Ll(U, y), then
d\(G] is defined by

di(G) := sup {\\Gu\\! : u € U and \\u\\ < 1} .

Throughout it is assumed that both U and y are finite dimensional spaces. (If U = C1,
then di(G) = \\G\\\.) Finally, recall that if G is the impulse response for a finite dimensional
stable linear system, then G is in Ll(U,y] and thus d\(G] is finite.

Theorem 3.2.3 Let G be the impulse response for a stable linear system {A, B, C, 0} and
G be its transfer function. Consider 0 < a < Tmax(A) and let P be the unique solution to
the Lyapunov equation

PA + A*P + 2aP+(2a)-1C*C = Q. (3.19)

Then we have the following bounds:

HGIU < di(G) < Amax(J5*PB)1/2 . (3.20)

In particular, ifU is one dimensional, then

PROOF. According to Theorem 2.4.4, we have HGJIoo < d\(G). This readily proves the first
inequality in (3.20). To obtain the second inequality, first notice that because A + al is
stable, P is uniquely determined by (3.18) where fi = (2a)~lC*C, that is,

p = J_

2a
Let u be any unit vector in U. Then using the previous expression for P along with G(t) =
CeAtB and the Cauchy-Schwartz inequality, we have

2

Uoo \

\\Ce{A+aI)tBu\\e-atdt)
)

/

oo p

\\Ce<A+aI*Bu\\*dt- \
Jo

dt

u, u) dt}

= (B*PBu,u) < \max(B*PB) .
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Therefore, d^G)2 < Amax (B*PB). This completes the proof. •
Notice that the above result can also be proven by applying Theorem 2.4.4 with II =

1aB*PB.

Exercise 4 Let A be an operator on a finite dimensional vector space X and fi a strictly
positive operator on X '. Consider the Lyapunov equation

tt = Q. (3.21)

Then show that

rmax(-4) — sup { a : there exists a P > 0 solving (3.21)} .

Exercise 5 Let G be the impulse response for a stable system {A on X , B , C , 0} and let
G be its transfer function. Suppose that fHs a strictly positive operator on X and P is the
unique solution to the Lyapunov equation (3.10). For a = \m-m(P~1£l)/2, show that

3.3 Lyapunov functions for mechanical systems

In this section we use Lyapunov techniques to obtain another proof of the stability result
for mechanical systems presented in Theorem 2.2.2. As before, we illustrate the results with
the simple model of a two story structure considered in Section 2.2. Recall that this system
is described by the following set of differential equations

- c2y\ +

As before, mi, m2, c\, c2, k\ and k2 are all nonzero positive scalars. Recall that if q = [y\ , y2]
tr ,

then this system can be described by the following second order vector differential equation:

Mq + Cq + Kq = 0 (3.22)

where the strictly positive operators M, C and K are given by

i K„ , aria A =
0 m-2 -c2 c2

The kinetic energy for this system is given by

2

and the potential energy is given by

• k2(y2
= (Kq,q)/2.
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Consider now a general mechanical system described by (3.22) where q(i) is a vector
which describes the configuration of the system. As before, assume that M, K, and C are
strictly positive. The kinetic energy of the system is given by (Mg, g)/2, and the potential
energy of the system is given by (Kq, q}/2 . The total system energy is

Recall that, if we define the state vector x = [ q , q ] t r i then the mechanical system in
(3.22) has a state space description of the form x = Ax where

A = [ -M'1K -M~1C

We now look for a Lyapunov operator P which guarantees the stability of A. For a candidate
consider the operator associated with the total energy, that is,

Clearly, P is strictly positive. Moreover, a simple calculation shows that

PA + A*P + tt = Q (3.25)

where

0 C
Since fi is positive and singular, we cannot infer that x = Ax is stable with our current
Lyapunov results. However, later Lyapunov results will show that this P is sufficient to
establish stability.

To obtain a stability result with our existing Lyapunov theory, consider the following
candidate Lyapunov operator

llK + eCeM'] I f K 0 1 £ T C M
2 [ eM M J ~ 2 [ 0 M J 2 [ M 0

For sufficiently small e > 0, this P is strictly positive. A simple calculation verifies that the
Lyapunov equation in (3.25) holds where f2 is now given by

eK 0
0 C-eM

For sufficiently small e > 0, the operator C — eM is strictly positive, and thus, fi is also
strictly positive. Hence, x = Ax is stable. So, if the operators M, C, and K are all strictly
positive, then the corresponding mechanical system is stable. This yields a Lyapunov based
proof of Theorem 2.2.2.

3.4 Notes

The results in this section are classical. For further results on Lyapunov functions and their
applications in control systems see Khalil [74] and Vidyasagar [124]. For some further results
on mechanical systems see Meirovitch [89, 90] and Skelton [114].





Chapter 4

Observability

In this chapter we study the concept of observability for linear systems. The classical tests
for observability are given. The connections between observability, stability and Lyapunov
equations are presented. Finally, some of the proofs in this chapter use the Projection
Theorem and classical least squares results from Hilbert space. These results are reviewed
in the appendix on least squares.

4.1 Observability
This section is devoted to observability of linear systems. Consider the linear system

x = Ax + Bu and y = Cx + Du (4.1)

where A is an operator on a finite dimensional space X and B maps U into X, while the
operator C maps X into y and D maps U into y. This system is said to be observable over
an interval [0,ti] (with ti > 0), if given the input u(t) and output y(t) over this interval,
one can uniquely determine the state trajectory x(t] on this interval. Clearly, the state x(t)
over [0, ti] and the initial state x(Q) uniquely determine each other. Therefore, the system
{A, B, C, D} is observable over [0, ii] if and only if given the input u(t) and the output y(t]
over [0, ti] one can uniquely determine the initial state x(0).

Recall that the solutions to the differential equation in (4.1) satisfy

rt
CeAtx(Q) = g(t) := y(t) - I CeA(t~T)Bu(r) dr - Du(t]. (4.2)

Jo

Since both u(t) and y(t) are known, equation (4.2) shows that the system {A, B, C, D} is
observable over [0, ti] if and only if given the function g(i) over [0, t\] one can uniquely
determine the initial state x(Q) from g(t) = CeAtx(0). Therefore, the observability of the
system {A,B,C, D} depends only on the pair {C,A} and is independent of the operators
B, D and the input u. Motivated by this, we say that the pair {C,A} is observable over
[0,<i] if the system x = Ax and y — Cx is observable over [0, ti], that is, given the output
y(t) = Cx(t) over the interval [0,£i] one can uniquely determine the initial state x(0).
Obviously, the system {^4,B, (7, D} is observable if and only if the pair {C, A} is observable.

41
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Let T be the operator from X into L2([(\ti],y} defined by

Notice that the pair {C, A} is observable over [0, ti] if and only if the operator T is one
to one, or equivalently, kerT = {()}. (The kernel or null space of an operator is denoted
by ker.) Throughout, we call Xd '•— kerT the unobservable subspace for the pair {(7,A}
or system (4.1). We claim that X5 is an invariant subspace for A, that is, AX5 C X5. To
see this, assume that x e X5, that is, Tx = 0. Then differentiating Ce/

0 = CeAtAx = (TAx)(t). Hence, Ax is also in X5 and thus Xd is invariant for A.
The observability matrix associated with {C, A} is the block matrix defined by

C
CA

(4.4)

CAn-

where n is the dimension of X. The following result shows that W0 and T have the same
kernel, and hence, the observability of {C, .4} is independent of the interval.

Lemma 4.1.1 Let T be the operator from a n-dimensional space X into I/2([0, ti], y) defined
by (4-3) where A is an operator on X and C maps X into y. Then

: k = 0, 1, 2, • • •} =kerW 0 . (4.5)

Moreover, X5 is an invariant subspace for A.

PROOF. Notice that x is in the kernel of T if and only if CeAtx — 0 for 0 < t < t\. By using
the power series expansion for eAt, we see that x is in the kernel of T if and only if

°° n Ak
). (4.6)

Because a power series is zero if and only if the coefficients of tk are all zero, it follows that
x is in the kernel of T if and only if CAkx = 0 for all k > 0. This proves the second equality
in (4.5). By the Cayley-Hamilton Theorem, Ak can be expressed as a linear combination of
{/, A, • • • , A(n~^} for each integer k > 0. In particular,

ker W0 = {x e X : CAkx = 0 for all k > 0} .

Hence, x is in the kernel of T if and only if x is in the kernel of the observability matrix W0.
Therefore, T and W0 have the same kernel. We have already shown that X& is an invariant
subspace for A. •

Clearly, the kernel of W0 is independent of the interval [0, t i } . According to the previous
lemma kerT = ker W0, and hence, kerT is also independent of the interval [0,t i j . Since the
pair {C, A} is observable over [0, ti] if and only if kerT = {0}, we see that observability is
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independent of the time interval [0, <i]. So, from now on we drop the interval [0, ii] when
referring to observability of the pair {C, A} or the system {A, B, C, D}.

Throughout X0 denotes the orthogonal complement of the unobservable subspace Xd,
that is, X0 = X © Xd. The subspace X0 is called the observable subspace associated with the
pair {C, A}. Since Xd = ker T = ker W0, we have

X0 = (ker T}L = (ker W0)
L = ran W*; (4.7)

see Lemma 16.2.1 in the Appendix. It follows that the pair {C, A} is observable if and
only if ran W* = X. Using the Cayley-Hamilton Theorem, we can also obtain the following
characterization of the observable subspace:

n—1 oo

;ro = ran W* = \J A*kC*y = \/A*kC*y. (4.8)
fe=0 fc=0

Recall that V denotes the linear span. Summing up this analysis yields the following classical
result.

Theorem 4.1.2 Suppose that A is an operator on a n-dimensional space X and C is an
operator mapping X into y. Let W0 be the observability matrix defined in (4-4)- Then the
following statements are equivalent.

(i) The pair {C, A} is observable.

(ii) The operator W0 is one to one, that is, ker W0 = {0}.

(Hi) The operator W* is onto, that is, ran W* = X.

(iv) The rank ofW0 is n.

Corollary 4.1.3 Let A be an operator on a n-dimensional space X and C an operator
mapping X into C1. Then the pair {C, A} is observable if and only if its observability matrix
W0 is nonsingular.

Example 4.1.1 Consider a mechanical system consisting of two small blocks of equal mass
m constrained to move without friction along a horizontal line and connected together by a
linear spring of coefficient k > 0; see Figure 4.1.1. Letting q\ and <?2 denote the displacements

1 1
1

m

1 ~

k
I
i

m

Figure 4.1: A mechanical system

of the blocks from an equilibrium configuration, an application of Newton's second law yields

i = %2 - 9i)
-i = -k(q-2 - qi).
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Consider the state variables x\ = q\, x% = 92, ^3 = <?i and £4 = 92- Then this system has the
state space description x = Ax where

A =

0 0 1 0
0 0 0 1

— k/m k/m 0 0
k/m —k/m 0 0

We will consider here two options for the measured output.
First consider y = \,(q\+ qz) which represents the displacement of the mass center from

its reference equilibrium position. Then y = Cx where

n — \ i i n n 1
0 - I 2 2 U U J '

A simple calculation reveals that rank W0 = 2. So, the pair {C, A} is not observable.
Physically this makes sense for the following reason. Since the sum of external forces in the
horizontal direction is zero, the acceleration of the mass center is always zero. Hence, if the
displacement and velocity of the mass center are initially zero, then the displacement of the
mass center is zero for all time. However, this does not mean that q\ and q^ are zero. The
two masses can oscillate about the mass center.

For a second choice of measured output consider y = q\. In this case

C=[l 0 0 0 ] .

A simple calculation reveals that rank W0 = 4. Hence, the pair {(7, A} is observable.

Exercise 6 Recall that the equation of motion for the damped linear oscillator is given by

mq + cq + kq — u

where the mass m > 0 while the damping c and spring constant k are non- negative. If x\ = q
and ±1 = g, then a state space description for this system is given by

X-2

Show that the following holds.

(a) Position measurement: If y = Xi , then we have observability.

(b) Velocity measurement: If y — xi, then we have observability if and only if k ^ 0.

(c) Acceleration measurement: If y = i2, then we have observability if and only if k ^ 0.



4.2. UNOBSERVABLE EIGENVALUES AND THE PBH TEST 45

4.2 Unobservable eigenvalues and the PBH test

As before, let A be an operator on a n-dimensional space X and C an operator from X to
y and W0 the observability matrix defined in (4.4). Recall that the unobservable subspace
X5 = kerWo is an invariant subspace for A, that is, AX5 C X5. We say that A is an
unobservable eigenvalue and v is an unobservable eigenvector for the pair {C, A} if v is
a nonzero vector in X5 and Av = Xv. So, the set of all unobservable eigenvalues and
eigenvectors is precisely the set of all eigenvalues and eigenvectors for the operator A5 on X5

defined by Adf = Af for / G XQ. Since {C, A} is observable if and only if Xd — {0}, it follows
that {C, A} is observable if and only if {C, A} has no unobservable eigenvalues. Notice that
if {v, A} is an unobservable eigenvector eigenvalue pair of {(7, A}, then CeAtv = Cextv — 0.
In particular, x(t) = extv is a solution of

x = Ax and y — Cx

where y(t) — 0 for all t. Clearly, one cannot distinguish this output y from the trivial
solution for y where the initial condition is x(0) = 0. The following result known as a
Popov-Belevitch-Hautus (PBH) Lemma provides a useful characterization of unobservable
eigenvalues.

Lemma 4.2.1 (PBH Observability Lemma.) A complex number A is an unobservable eigen-
value of the pair {C, A on X} with eigenvector v if and only if v is a nonzero vector in the
kernel of

~ A-XI
C

In particular, the pair {C,A} is observable if and only if kerF,\ = {0} for all complex
numbers A.

PROOF. Assume that v is & nonzero vector in the kernel of FA- Then

Av = Xv and Cv — 0.

Clearly, A is an eigenvalue of A with eigenvector v. It now follows that CAkv = XkCv = 0
for all positive integers k; hence, v is in ker W0. Therefore, A is an unobservable eigenvalue
of the pair {C,A} with eigenvector v.

Now assume that A is an unobservable eigenvalue of the pair {C, A} with eigenvector v.
Hence, Av = Xv and Cv = 0. From this it readily follows that v is a nonzero vector in the
kernel of FA- This completes the proof. •

Recall that {(7, A on X} is similar to another pair {C, A on X} if there exists an invert-
ible operator R from X onto X satisfying RA — AR and C = CR. Clearly, observability
is preserved under a similarity transformation. In many applications, the output y is scalar
and A is similar to a diagonal matrix A. In this case, the PBH lemma can be used to obtain
the following observability result.
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Proposition 4.2.2 Consider the pair of matrices

and C = [ c\ c-2

A! 0
0 A2

0 0 • • • Ar

(4.9)

where {Ai, A2 , • • • , An} and {GI, c2, • • • , cn} are scalars. Then {C, A} is observable if and only
lf {^i) ^2, • • • , An} are distinct and c, 7^ 0 for i = 1, 2, • • • , n.

PROOF. For any scalar A the matrix FA in the PBH Lemma is given by

-A 0
0 A 2 - A

0
c\

If Ci = 0 , then with A = A;, the z-th column of FA is zero. Hence, FA has a nontrivial kernel
and by the PBH Lemma. {C, A} is unobservable. If \i = Aj, then with A = Ai, the i-th and
j-th columns are linearly dependent. By the PBH Lemma, {C, A} is unobservable.

On the other hand, assume that {Aj}™ are distinct and Q / 0 for i = 1, 2, • • • , n. Clearly,
the columns of FA are linearly independent when A is not an eigenvalue of A. Now consider
A = Aj. Because q =^ 0, the 'i-th column of FA is linearly independent of the other n — I
linearly independent columns. So, the kernel of FA is zero for all A. According the PBH
Lemma, {C, A} is observable.

One can also prove the above result using the operator T from X into L2[0,£i] defined
in (4.3). Recall that the pair {C,A} is observable if and only if the kernel of T is zero.
Because X = Cn and A is a diagonal matrix, Ce wnere x\ixii "', x

are the components of x. Therefore, the kernel of T is zero if and only if the set {cjC ' :
i = 1, 2, • • • , n} is linearly independent in L2[0,£i]. Clearly, this set is linearly independent
if and only if {Aj}™ are distinct and c, 7^ 0 for i = 1, 2, • • - , n. •

Exercise 7 Let A and C be the matrices given in (4.9). Then show that the corresponding
observability matrix W0 admits a factorization of the form W0 = VtrA where V is the
Vandermonde matrix on Cn generated by {Aj}"; see (16.49), and A = diag (ci, c2, • • • , cn) is
a diagonal matrix on C™. Using this result give another proof of Proposition 4.2.2.

4.3 An observability least squares problem

In this section we will use some classical results on least squares optimization to solve an
observability optimization problem. These classical least squares optimization results are
reviewed in the Appendix. Recall that the basic observability problem associated with the
system {A, B, C, D} in (4.1) is given a function g over an interval [0, ti], find an initial state
x0 to satisfy g(t) = CeAtxQ. Clearly, this equation does not have a solution for an arbitrary
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function g. If g is given by (4.2), there is at least one solution for XQ. Furthermore, the
solution is unique if and only if {C, A} is observable. If the solution is not unique one may
search for a solution of minimum norm. Moreover, in many systems and control problems
the measured output g is corrupted by noise. Hence, one searches for an initial state XQ of
minimum norm such that CeAtXQ approximates g(t) as close as possible. One mathematical
formulation of this problem is the following observability least squares optimization problem:
Given an output g in I/2([0, ti],y), find an initial state XQ to solve the following optimization
problem

f*1

po|| = inf| |ar0 | | subject to \\g-CeAtx0\\l2 = inf { \\g(t)-CeAtx\\2dt : x G X} . (4.10)
Jo

The finite time observability Gramian defined by

ft
P(t)= I eA*aC*CeAada (4.11)

Jo

plays a fundamental role in solving this problem. The following lemma permits one to
compute P(t) by solving an ordinary differential equation.

Lemma 4.3.1 Let P(t) be the finite time observability Gramian given in (4-11). Then P(t]
is positive for all t > 0. Moreover, P(t) is the solution to the differential equation

A + C*C (4.12)

subject to the initial condition P(0) = 0.

PROOF. To verify that P(t) is positive, simply observe that for all x in X , we have

ft rt
(P(t)z,aO= / (eA*aC*CeAax,x)da= I \CeAax\\2 da > 0 .

Jo Jo

So, P(t) is positive. Notice that the definition of P(t) in (4.11) gives P = eA*tC*CeAt.
Moreover,

ft ft j
A*P + PA = (A*eA*°C*CeA° + eA*°C*CeAaA] da = — eA*aC*CeAa da

Jo Jo da

= eA'aC*CeA<T = eAftC*CeAt - C*C

This yields the differential equation in (4.12). Obviously, from (4.11) the initial condition is
P(0) = 0. •

Let T be a finite rank operator from T~C into /C. Then the restricted inverse T~r of T is
the unique operator from JC into Ti. defined by T~rz = h where h is the unique element in
(kerT)-1 such that Th = PRZ and P-R is the orthogonal projection onto the range of T; see
Section 16.2 in the Appendix. We are now ready to present the main result of this section.
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Theorem 4.3.2 Let A be an operator on a finite dimensional vector space X and C an
operator mapping X into y and g a specified vector in L2([Q, t \ ] , y). Let -P(ti) be the finite
time observability Gramian defined in (4-11) or (4-12). Then the following holds.

(i) The solution to the observability optimization problem in (4-10) is unique and is given
by

['eAttC*g(t)dt. (4.13)
Jo

(ii) The pair {C, A} is observable if and only if P(t\] is strictly positive.

(in) If the pair {C, A} is observable, then the observability optimization problem in (4-10)
reduces to the optimization problem

\g - CeAtx0 \2
L2 = inf{ / | g(t) - CeAtx\\2 dt : x €. X} , (4.14)

7o

and the corresponding optimal initial state is given by

rti
xQ = P(ti)-1 eAftC*g(t)dt. (4.15)

Jo

PROOF. As before, let T be the operator from X into Z/2([0, ti], 3^) defined by Tx0 = CeAtx0

for XQ e X . Let P-R be the orthogonal projection onto the range K of T; see Section 16.1
in the Appendix. By employing the Projection Theorem, the observability optimization
problem in (4.10) is equivalent to the following minimum norm optimization problem:

|fo|| = inf { |x0|| : x0 G X and Tx0 = P-^g} . (4.16)

According to Corollary 16.5.2 in Section 16.5, the solution to this optimization problem is
unique and is given by

x0 = (T*TrrT*g. (4.17)

We claim that T* is the operator mapping L 2 ( [ Q , t i ] , y ) into X given by

Tf= I*' eAftC*f(t}dt ( /eL 2 ( [0 ,* 1 ] ,3>)) . (4.18)
o

To verify (4.18), simply notice that for any x in X and / in L2([Q,t\],y), we have

(x,T*f)x = ( T x , f ) L 2 = [\CeAtxJ(t))ydt=(x, f ' e^^f^dt}* . (4.19)
Jo Jo

(The inner product on a Hilbert space H is denoted by (g, h}-n-) Therefore, the adjoint T* of
T is given by (4.18). Finally, by combining the definition of T with its adjoint in (4.18), we
see that T*T = P(t\) where P(t\) is the finite time observability Gramian given in (4.11).
Using T*T = P(ti) along with (4.17) and (4.18), we see that the solution to the observability
optimization problem in (4.10) is given by (4.13). This proves Part (i).
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Recall that the pair {C,A} is observable if and only if the operator T is one to one, or
equivalently, T*T is strictly positive. Since T*T = P(ti) it follows that the pair {C, A} is
observable if and only if P(ti) is strictly positive. Hence, Part (ii) holds.

Since the restricted inverse of P(ti) becomes the actual inverse when -P(ti) is strictly
positive, formula (4.15) follows when the pair {C, A} is observable. If {C, A} is observable,
T is one to one, and thus, the optimization problem in (4.16) reduces to \\g — TXQ\\ =
inf \\g — TX\\. So, when {C, A} is observable, the optimization problem in (4.10) reduces to
the optimization problem in (4.14). This completes the proof. •

Since T*T — P(t\), it follows that ||T||2 equals the maximum eigenvalue of P(t\}. The
singular values of T are the square root of the eigenvalues of P(t\).

Finally, it is noted that Theorem 4.3.2 can be used to solve the original observability
problem posed at the beginning of this chapter. To be specific, let {^4, J3, (7, D} be the linear
system described in (4.1) where the input u(t) and the output y(t) are known over [0,<i].
Then, the initial state XQ of smallest norm which corresponds to the above data is given by
(4.13) where g is computed according (4.2).

Remark 4.3.1 To see why the operator P(t) denned in (4.11) is called a Gramian, consider
the case when X = Cn. Let {e\, 62, • • • , en} be the standard orthonormal basis for C", that
is, the i-th element of e{ is one and all the other components of e; are zero. Let ̂  be the
vectors in L2([0,ti],y) given by ijji(t) = CeAt€i for i — 1,2, • • • ,n. Recall from equation
(16.35) in Section 16.3, that by definition the zj-th element of the Gram matrix associated
with the vectors {ipi, ip?, • • • , i/jn} is given by Gij = (ipj,tjji). Thus,

Hence, P(ti) = G. Let T be the operator defined in (4.3) and set x = [xi,X2,- • • ,xn]
tr.

Then Tx = £)" ^tV't- Clearly, T is one to one if and only if the vectors {^i}i are linearly
independent. Therefore, the pair {C, A} is observable if and only if the set {ipi}™ is linearly
independent. Recall that the Gram matrix G is strictly positive if and only if {^>;}" is
linearly independent. So, the Gram interpretation provides another way of showing that the
observability of {C, A} is equivalent to P(t\) being strictly positive.

Exercise 8 Consider the Sobolev space Tii consisting of the set of all differentiable functions
with values in y under the inner product

=
Jo

(4.20)

As before, let A be an operator on X, while C maps X into y. Consider the following
observability optimization problem: Given a specified function g in HI, find the optimal
initial state XQ in X satisfying

\\XQ\\ = inf U ^ o l l subject to \\g - CeAtx0\\-Hi — inf {\\g - CeAtx\\<Hl • x 6 X} .
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Show that the optimal solution XQ to this optimization problem is

A*P(tl}A)-r \ I l eA'*C*g(t) dt+ T A*eAftC*g(t) dt
Uo Jo

where P(ti) is the finite time observability Gramian given in (4.11). Moreover, let T be the
operator from X into H\ defined by TXQ — CeAiXQ. Then show that T*T equals P(t\) +
A*P(ti)A. So, the pair {C,A} is observable if and only if P(ti} + A*P(ti)A is strictly positive
for any ti > 0.

4.4 Stability and observability

This section is devoted to the observability of stable systems. Consider the pair {C,A}
where A is a stable operator on a finite dimensional vector space X and C maps X into y.
Let T be the operator from X into £2([0, oo),J^) defined by

( T x ) ( t ) = CeAtx (xeX). (4.21)

Because A is stable, Tx is in L2([0, oo),^V) for all x in X. So, T is a finite rank linear map
from X into I/2([0, oo), J>). Since any finite rank linear map acting between two Hilbert
spaces is bounded, T is bounded. Hence, T is a well defined operator. To directly verify that
T is bounded, recall that because A is stable, eAt\\ < me"™* for some positive m and a > 0.
Thus, Tx\\ < m\\C\\ \\e-at\\L2\x\\. This implies that ||T|| < m\\C\\/V2a. Clearly, the pair
{C, A} is observable if and only if the operator T is one to one, or equivalently, kerT = {0}.
Obviously, Lemma 4.1.1 holds with [0,ti] replaced with [0,oo), and thus, the unobservable
space Xo — ker T — ker W0.

Consider the linear system {A, B, C, D} described by (4.1) where A is a stable operator
on X. In this case, CeAtx(Q) is in L2([0, oo), y). So, the vector g = Tx(0) defined in (4.2) is
also in L2([0, oo), y). Recall that the observability problem is to determine an initial state XQ
given g, that is, solve the equation g = TXQ. Moreover, this equation has a unique solution
if and only if T is one to one, or equivalently, {C, A} is observable. If the measurement
of the output y is corrupted by noise, then g may not be in the range of T. In this case,
it makes sense to find a vector XQ with the smallest possible norm to minimize \\g — TX\\.
Therefore, when A is stable, this naturally leads the following infinite horizon observability
least squares optimization problem: Given a vector g in L2([0, oo), J^), find an initial state
XQ to solve the optimization problem

/

oo
\\g(t)-CeAtx\\2dt : x e X} . (4.22)

The observability Gramian for the pair {C, A} is the operator on X defined by

(4.23)

Notice that if P(i) is the finite time observability Gramian defined in (4.11), then P(t) —» P
as t approaches infinity. Moreover, because A is stable, P is a positive (bounded) operator
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on X. According to Lemma 3.1.2 this P is the unique solution to the following Lyapunov
equation:

A*P + PA + C*C = 0. (4.24)

The observability Gramian P plays a fundamental role in the following result.

Theorem 4.4.1 Let A be a stable operator on a finite dimensional vector space X and
C an operator mapping X into y and g a specified vector in L2([0, oo),y). Let P be the
observability Gramian for the pair {C, A}. Then the following holds.

(i) The solution to the observability optimization problem in (4-22) is unique and is given
by

/

oo
eAftC*g(t)dt. (4.25)

.

(ii) The pair {C, ^4} is observable if and only if P is strictly positive.

(Hi) If the pair {C, A} is observable, then the observability optimization problem reduces to

/

oo
\\g(t)-CeMx\\*dt:x€X}, (4.26)

and the corresponding optimal initial state is given by

/

oo
eAftC*g(t) dt. (4.27)

PROOF. Let P-R be the orthogonal projection onto the range 'R, of T. By employing the
Projection Theorem, the infinite horizon observability optimization problem equivalent to
the following minimum norm optimization problem

\\XQ\\ - inf {||:FO|| : x0 6 X and TxQ = Png} . (4.28)

According to Corollary 16.5.2 in Section 16.5, the solution to this problem is unique and is
given by

xQ = (T*T}-TT*g. (4.29)

By replacing ti with oo in (4.19), it follows that T* is the operator mapping L2([0, oo), y)
into X given by

/

oo
eAftC*g(t)dt (g e L2([0,oo),^)). (4.30)

_
Finally, by combining the definition of T with (4.30), we see that T*T — P. Using this along
with (4.29) and (4.30), we obtain that the solution to the observability optimization problem
(4.22) is given by (4.25). This proves Part (i).

Recall that the pair {C, A} is observable if and only if the operator T is one to one,
or equivalently, T*T is strictly positive. Since T*T = P it follows that the pair {C,A} is
observable if and only if P is strictly positive. This verifies Part (ii).

Because the restricted inverse of P becomes the actual inverse when P is strictly positive,
formula (4.27) follows when the pair {C, A} is observable. If {C, A} is observable, then T is
one to one, and thus, the optimization problem in (4.28) reduces to \\g—TXQ\\ = inf \\g—TX\\.
So, when {C, A} is observable, the optimization problem in (4.22) reduces to the optimization
problem in (4.26). •
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Remark 4.4.1 Let P be the observability Gramian for the pair {(7, A} where A is stable.
Let T be the operator from X into L2([0, oo), y) defined in (4.21). Then T| 2 is the largest
eigenvalue of P. Moreover, the singular values of T are the square root of the eigenvalues of
P. This follows from the fact that T*T = P.

The following result uses the observability Lyapunov equation in (4.24) to determine the
stability of an observable system.

Theorem 4.4.2 The following statements are equivalent for an observable pair {C,A}.

(a) The system x — Ax is stable.

(b) There exists a strictly positive operator P satisfying the Lyapunov equation

A*P + PA + C*C = Q. (4.31)

PROOF. Part (ii) of the previous theorem shows that (a) implies (b). Now assume that (b)
holds, that is, there exists a positive operator P satisfying the Lyapunov equation (4.31).
Consider any eigenvalue A of A. Let v ~£ Q be an eigenvector corresponding to A, that is,
Av = Xv. Then

-(C*Cv, v) = ((A*P + PA)v, v) = (Pv, Av) + (PAv, v) = (A + A) (Pv, v) .

Hence, -||Ct;|2 = 2K(A) (Pv, v). Since P > 0, we must have (Pv, v) > 0. This implies
that 3R(A) < 0. To prove stability, it remains to show that 3?(A) < 0. If !R(A) = 0, then
\\Cv\ 2 = 0, or equivalently, Cv = 0. It now follows that CAkv = \kCv — 0 for all integers
k > 0. Since {C, A} is observable, v = 0. This contradicts the fact that v is nonzero. So,
we have 5R(A) ^ 0. Therefore, A is stable. •

Exercise 9 Consider the mechanical system

Mq + Cq + Kq = 0 (4.32)

where M, C and K are all strictly positive operators on a finite dimensional space Q; see
Section 3.3. By using x = [q,q]tr, this mechanical system has a state space description of
the form x = Ax where

-M-IK -M~IC
Let P and £7 be the positive matrices defined by

K ° 1 A o [ ° °
0 M\ and " = [ o C

Recall that P corresponds to the total energy of the system. Clearly, P is strictly positive.
Moreover, a simple calculation shows that

Using this Lyapunov equation and Theorem 4.4.2 show that the mechanical system in (4.32)
is stable.
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4.5 Notes

All the results in this section are classical results in linear systems theory. The history of
observability and linear systems is well established in Kailath [68], Rugh [110] and elsewhere.
So, we will not develop a historical account of observability and linear control systems. For
further results on linear systems see Brockett [21], Chen [26], DeCarlo [33], Delchamps [34],
Kailath [68], Polderman-Willems [98], Rugh [110], Skelton [114] and Sontag [116]. Using
operator techniques to solve observability and controllability problems is also classical; see
Balakrishnan [8], Brockett [21], Fuhrmann [47], Naylor-Sell [93], Luenberger [85] and Porter
[100]. The PBH test was independently developed by Popov [99], Belevitch [14] and Hautus
[61].

For simplicity of presentation only we concentrated on time invariant systems. Many of
the results can be easily extended to the time varying case. To see this consider the time
varying system x = A(i)x and y(t) — C(t)x(t) where A is a continuous function with values
in C(X , X] and C is a continuous function with values in C(X ,y). Let T be the operator
from X into L2([t0,ti\,y) defined by (Tx0)(t) = C(t)$(t,t0)x0 where XQ is in X and $(t,r) is
the state transition operator for A. Then the time varying pair {C, A} is observable over the
interval [to, ti] if the operator T is one to one. The time varying pair {C, A} can be observable
over one interval and not observable over another interval. Obviously, the time varying pair
{C, A} is observable over the interval [to, t\] if and only if T* is onto, or equivalently, T*T is
strictly positive. The adjoint of T is the operator mapping L 2 ( [ t o , t i ] , y ) into X given by

Tf= $(t,toYC(t)*f(t)dt ( /eL2([ t0 , t i ] ,y)) . (4.33)
Jt0

So, the time varying pair {C, A} is observable over the interval [to,ii] if and only if
rt,

P(t0) := T*T = / $(t, to)*C(t)*C(t)$(t, t0) dt
Jto

is a strictly positive operator on X. Recall that d$(t,T)/dr = —$(t,T)A(r). Using this
along with Leibnitz's Rule, it follows that P(to) can be obtained by solving the following
differential equation backwards in time

P + A(t)*P + PA(t) + C(tyC(t) = Q ( p ( t 1 ) = Q). (4.34)

Therefore, the time varying pair {C, A} is observable over the interval [to, ti] if and only if
P(to) is strictly positive where P(t] is the solution to the differential equation in (4.34). The
observability optimization problem and its solution can also be extended to the time varying
setting. In this case, the observability optimization problem becomes: Let g be a specified
vector in L2([t0,ii],3;) and P-R. be the orthogonal projection onto the range of T, then find
an optimal initial state XQ in X such that

\\xo\\ = inf{||x0|| : Pn9 = Tx0} .

The solution to this optimization problem is unique and is given by

x0 = (TT)-rTg = P(t0r
r I ' *(*, t0yC(t)*g(t) dt .

Jto





Chapter 5

Controllability

This chapter is devoted to the controllability of linear systems. Operator techniques are used
to solve a controllability least squares optimization problem. Finally, some of the proofs in
this chapter use the Projection Theorem and classical least squares results from Hilbert
space. These results are reviewed in the Appendix.

5.1 Controllability
This section presents some basic controllability results. Consider the linear system

x = Ax + Bu (5.1)

where A is an operator on a finite dimensional space X and B maps U into X. We denote this
system by {A, B}. Roughly speaking, we say that this system is controllable over an interval
[to>ii] (with t\ > to) if its state can be "driven" from any initial state to any terminal state
over the interval by the appropriate choice of control input. To be more precise, {A, B}
is controllable over [io,^i] if for every pair of states XQ,XI in X, there is a control u in
L2([to,ti],U) such that the solution x of

x ( t ) = Ax(t) + Bu(t) with x(t0) = x0 (5.2)

satisfies x(t\) = x\. Since system (5.1) is time-invariant, it follows that an input u drives
the state from XQ to x\ over the interval [£0,^1] if and only if the corresponding "shifted"
input u, given by u(t) = u(t + to), drives the state from XQ to x\ over the interval [0 ,£ i— t o ] .
Hence, system (5.1) is controllable over [£0,^1] if and only if it is controllable over [0, £1 — to].
Therefore, without loss of generality, we consider to — 0.

Recall that, with t0 = 0, the solutions to the differential equation in (5.2) satisfy

rti
x(ti)-eMlx0 = / eA(tl~T)Bu(r) dr . (5.3)

Jo

Let T be the operator from L2([0,<i],W) into X defined by

rti
Tu = eA(tl~T^Bu(r] dr. (5.4)

Jo

55
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Notice that the pair {A, B} is controllable over [0, t\] if and only if for every pair of states
XQ,XI in X, there is a control u in L2([0, t i] ,W) such that x\ — eAtlxo = Tu. Since xi is an
arbitrary vector in X, it follows that {A, B} is controllable if and only if the operator T is
onto, or equivalently, ranT = X. (The range of an operator is denoted by ran.)

Throughout we call Xc := ranT the controllable subspace for the pair {A, B} or system
(5.1). The controllability matrix associated with {A,B} is the block matrix defined by

Wc = [ B AB ••• An~lB ] (5.5)

where n is the dimension of X. The following result shows that Wc and T have the same
range, and hence, controllability of {A, B} is independent of the interval.

Lemma 5.1.1 Let A be an operator on a n-dimensional space X and B an operator from
U. into X. Let T be the operator from L2([0,<i] ,W) into X defined in (5.4) and Wc the
controllability matrix for {A, B} in (5.5). Then

Xc := ranT = span{AkBU : k = 0,1,2, • • •} = ran Wc. (5.6)

Moreover, Xc is an invariant subspace for A.

PROOF. We claim that the adjoint T* of T is the operator from X into L2([0, ti],U) denned
by

(T*a;)(t) - B*eA*(t>~t)x (x e X ] . (5.7)

To verify this notice that for u in L2([0,t i] ,W) and x in X, we have

(u,T*z)L2 = (Tu,x)x = ( / l eA(tl~T)Bu(T)dr,x)x = [ '(eA(tl't]Bu(t),x}x dt
Jo Jo

ftl

Jo

Hence, T* is given by (5.7).
By using the formula for T* in (5.7) and (ranT)1 = kerT*, we see that x is in (ranT)1

if and only if B*eA'^-^x = 0 for all 0 < t < ^; see Lemma 16.2.1. By setting a = ti - t
and using the power series expansion for e A f r , the vector x is in (ranT)1 if and only if

00 B*A*kakT
0 = B*eA'ax = V (for all 0 < a < t^ ./—^ k\

Recall that a power series is zero if and only if all of its coefficients of ak are zero for all k > 0.
Thus, x is in (ranT)1 if and only if B*A*kx = 0 for all k > 0. Since the kernel of B*A*k is
the orthogonal complement of the range of AkB, it now follows that x is in (ranT)1 if and
only if x is orthogonal to AkBU for all k > 0. So, (ranT)1 is the orthogonal complement of
\/£° AkBU. In other words, we obtain

ranT = span{,4fc5W : k = 0,1,2, • • •} , (5.9)

that is, the second equality in (5.6) holds. This equation readily shows that Xc = ranT is
an invariant subspace for A. By the Cayley-Hamilton Theorem, Ak can be expressed as a
linear combination of {I, A, • • • ,A^n~1^} for each integer k > 0. Therefore, the range of T
equals span{Afc£W : k = 0,1, 2, • • • , n - 1} = ranWc. This yields (5.6). •
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Remark 5.1.1 If XQ and zi are any two vectors in the controllable subspace Xc, then there
always exists an input u which drives the state from XQ to x\ over the interval [0, ti]. To see
this, first notice that since Xc is an invariant subspace for A, the vector eAtxo is in Xc and
thus x\ — eAtlxo is also in Xc. Since Xc = ranT, there exists an input u in L2([0,ti],Z//) such
that xi — eAtlxo — Tu. According to (5.3) and (5.4), this input drives the state from x0 to
xi over the interval [0,^].

Clearly, the range of Wc is independent of the interval [0, tij. According to the previous
lemma, ranT — ran We, and hence, the range of T is also independent of the interval
[0,ti]. Since the pair {A,B} is controllable over [Q,ti] if and only if ranT = X, we see
that controllability is independent of the time interval [0, <i]. So, from now on we drop the
interval [0, t\] when referring to controllability of the pair {A, B}. Since Wc and T have the
same range, it also follows that the pair {A, B} is controllable if and only if ran Wc = X.

We let X5 denote the orthogonal complement of the controllable subspace Xc and we
call it the uncontrollable subspace associated with {A, B}. Obviously, the pair {A,B} is
controllable if and only if Xc is zero. Since Xc = ran T = ran Wc, we have

Xc = (ran T)^ = (ran W^ = ker W*. (5.10)

Hence, the pair {A, B} is controllable if and only if ker W* = {0}. Using Cay ley-Hamilton,
we can also obtain the following characterization of the uncontrollable subspace:

n—1 oo

X£ = ker W* = Q ker B*A*k = f] ker B*A*fc . (5.11)
k=Q k=0

Summing up this analysis yields the following classical result.

Theorem 5.1.2 Let A be an operator on a n-dimensional space X, while B is an operator
mapping U into X and Wc is the controllability matrix in (5.5) associated with {A, B}. Then
the following statements are equivalent.

(i) The pair {A, B} is controllable,

(ii) The operator Wc is onto, that is, ran Wc ~ X.

(Hi) The rank of Wc is n.

Corollary 5.1.3 Suppose that A is an operator on a finite dimensional space X and B is
an operator mapping C1 into X. Then the pair (A, B} is controllable if and only if its
controllability matrix Wc is nonsingular.

Duality. As before, let A be an operator on a n-dimensional space X, and C an operator
from X into y. Recall that the observability matrix for the pair {C, A} is the block matrix
defined by

C
CA

(5.12)

CAn'
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Moreover, the pair {C, A} is observable if and only if W0 is one to one. The unobservable
subspace Xd for the pair {(7, A} is the kernel of W0. The observable subspace X0 for {C,A}
is the orthogonal complement of X5. So, X0 equals the range of W*. By replacing {C, A}
with {B*,A*}, it follows that the controllability matrix for {A, B} is the adjoint of the
observability matrix for {B*,A*}. In particular, the controllable subspace for {A, B} is
the observable subspace for {jB*,A*}, and the uncontrollable subspace for {A,B} is the
unobservable subspace for {B*,A*}. Hence, the pair {A, B} is controllable if and only if
{B*,A*} is observable. Obviously, the pair {C, A} is observable if and only if {A*,(7*} is
controllable. Because of this, we say that controllability is the dual of observability.

5.2 Uncontrollable eigenvalues and the PBH test

In this section we present the PBH test for controllability. To this end, notice that if "H
is an invariant subspace for an operator M on 1C, then the orthogonal complement H.L of
Ji is an invariant subspace for M*. To see this, let h be in H and g be in Ti,^. Then
0 = (Mh,g} = (h, M * g ) . Hence, M*l-i^ is orthogonal to 7i. So, Ti1 is an invariant subspace
for M*.

As before, let A be an operator on a n dimensional space X and B an operator from U to
X and Wc the controllability matrix denned in (5.5). Recall that the controllable subspace
Xc — ran M4 is an invariant subspace for A, that is, AXC C Xc. So, the uncontrollable
subspace Xz is an invariant subspace for A*. We say that A is an uncontrollable eigenvalue
for the pair {A, B} if there is a nonzero vector v in Xc such that A*v — \v. In this case v
is called the uncontrollable eigenvector {or {A, B}. Thus, A is an uncontrollable eigenvalue
for the pair {A, B} if and only if A is an eigenvalue for the operator Ac on X5 denned by
A\x = A*x for x (E Xc- Obviously, (A, B} is controllable if and only if its uncontrollable
space Xc is zero. Therefore, {A, B} is controllable if and only if {A, B} has no uncontrollable
eigenvalues.

Now assume that A is an uncontrollable eigenvalue for the pair {A, B} and let v in Xc be
an eigenvector for A* corresponding to A. By computing the inner product of x = Ax + Bu
with v and using the fact that ran B C ran Wc = Xc , we obtain

dt

The solution to this differential equation is given by

(5.13)

So, if the initial state has a nonzero component in the direction of v, then (5.13) shows that
regardless of the input u, the resulting state trajectory has a component proportional to ext

in the direction of v. Since v is orthogonal to the range of T for any ti, one cannot drive an
initial state with a nonzero v component to an arbitrary vector x\ at time t\.

We now show that A is an uncontrollable eigenvalue for the pair {A, B} if and only if A
is an unobservable eigenvalue for the pair {B*, A*}. Recall that Xd = ker W* is precisely the
unobservable subspace for {B*, A*}. Since ker W* = (ran We)1 = Xf, it follows that A is an
unobservable eigenvalue for {£?*, A*} if and only if A is an uncontrollable eigenvalue for the
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pair {A, B}. By combining these observations with the PBH observability Lemma 4.2.1, we
readily obtain the following PBH controllability lemma.

Lemma 5.2.1 (PBH controllability lemma.) A complex number A is an uncontrollable
eigenvalue of the pair {A on X, B} if and only if

rank [ A- XI B ] < dim X .

In particular, the pair {A, B} is controllable if and only if rank [ A — XI B ] = dim A' for
all complex numbers X.

The following result readily follows from Proposition 4.2.2 along with the fact that {A, B}
is controllable if and only if {B*, A*} is observable.

Proposition 5.2.2 Consider the pair of matrices

" AI 0 •
0 A2

0 0 •

• 0
0

• A n _

B =

' &i '
bi

_ b n _

where {X\, • • • , Xn} and {bi, • • • , bn} are scalars. Then the pair {A, B} is controllable if and
only if {AI, • • • , An} are distinct and bi / 0 for i = 1, • • • , n.

For some further insight into this proposition, we present a proof which is based on the
Vandermonde matrix. For A and B with the above structure, one can readily show that the
corresponding controllability matrix Wc is given by

" 61 0 0 •

0 62 0 •

0 0 63

0 0 0 -

• 0 1

• 0

0

• bn \

A?

A3
2

1 An A?

xn-l
Al
\n—1
A2
Xn-l
Ao

A

Notice that the last matrix is precisely the square Vandermonde matrix generated by the
scalars {Aj}". According to Remark 16.4.1, this Vandermonde matrix is nonsingular if and
only if {Aj}" are distinct. It now follows that Wc is nonsingular if and only if {Aj}" are
distinct and bi ̂  0 for i = 1, • • • , n. This proves Proposition 5.2.2.

5.3 A controllability least squares problem
Recall that the basic controllability problem associated with the system {A, B} in (5.1) is
given two vectors x0 and x\ in X find an input u in £2([0, ti],M) such that for x(Q) = XQ we
have x(t\) — x\, or equivalently,

rti
= I

Jo
(5.14)
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If a solution for u exists, then it is not unique. To see this, let T be the operator from
L2([0,£i] ,W) into X defined in (5.4). Since T maps an infinite dimensional space into a
finite dimensional space, its kernel is infinite dimensional. In particular, this shows that if
there is an input u satisfying (5.14), that is, xi — eAilXo = Tit, then (5.14) admits infinitely
many solutions. Furthermore, a solution exists for every XQ and x\ if and only if {A, B} is
controllable.

If we cannot reach x\ exactly, then we would like to choose a input u such that x(t\)
comes as close as possible to the specified terminal state x\. A more interesting problem is
to find an input u with the smallest energy over the class of all inputs u which drive the
state x(ti) as close as possible to x\. One mathematical formulation of this problem is the
following controllability least squares optimization problem: Given the vectors x0 and x\ in
X, find an input u in L2([0, £ i ] ,ZY) , to solve the following optimization problem:

= inf
A(il~T

e
/o Jo

where x(ti) is the unique vector in X satisfying (5.15)

\\Xi — £ ( ^ i ) l l — infdki ~ x(ti) \ '• x = Ax + Bu and x(0) = XQ} .

If the pair {A, B} is controllable, then there exists an input u such that x(t\) = x\. In this
case, xi = x(ti) and the previous optimization problem reduces to finding an input u such
that

f rti rti ^
||u||2 = in fM \\u(t)\\2dt : xl =eAilx0+ / eA(tl~T] BU(T) dr \ . (5.16)

(Jo Jo )
The finite time controllability Gramian defined by

Q(t) = f eAaBB*eAt(r da (5.17)
Jo

plays a fundamental role in solving this problem. By replacing {C, A} in Lemma 4.3.1 with
{B*,A*}, we obtain the following result which permits one to compute Q(t) by solving an
ordinary differential equation.

Lemma 5.3.1 Let Q(t) be the finite time controllability Gramian given in (5.17). Then
Q(t) is positive. Moreover, Q(t) is the solution to the differential equation

subject to the initial condition Q(0) — 0.

We are now ready to present the main result of this section.

Theorem 5.3.2 Let A be an operator on a finite dimensional vector space X and B an
operator mapping U into X and XQ, x\ be specified vectors in X. Finally, let Q(t\) be the
finite time controllability Gramian defined in (5.17). Then the following holds.

(i) The solution to the controllability optimization problem in (5.15) is unique and given
by

u(i) = B*eA"(-tl~^Q(ti)~T(xi - eAtlxQ). (5.19)
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(ii) The pair {A,B} is controllable if and only if Q(t\] is strictly positive.

(Hi) If {A, B} is controllable, then the controllability optimization problem in (5.15) reduces
to the optimization problem in (5.16) and the corresponding optimal input is given by

u(t) = B*eA*^-^Q(tl)-
l(xl - eAtlx0) . (5.20)

PROOF. As before, let T be the operator from L2([0,ti],U) into X defined in (5.4). Let PK
be the orthogonal projection onto the range H of T. Notice that 7£ = Xc. By employing the
Projection Theorem, the controllability optimization problem in (5.15) is equivalent to the
following minimum norm optimization problem:

\\u\\ = inf{||u|| :w€L 2 ( [0 ,* i ] ,W) and Tu = Pn(Xl - eAtix0) } . (5.21)

According to Corollary 16.5.2 in Section 16.5, the solution to this problem is unique and
given by

M = T*(TT*)-r(o:i-eAtlxo). (5.22)

Recall that T* is the operator from X into L*([0,ti],W) given by (T*x)(t) = B*eA'^-^x;
see (5.7). By combining this with the definition of T, we see that

TT* = / ' eA(tl-T]BB*eA*^-^ dr = / ' eA°BB*eA'° do = Qfr) (5.23)
JQ Jo

where Q(t\) is the finite time controllability Gramian given in (5.17). Using TT* — Q(t\)
along with (5.22) and the expression for T*, we obtain that the solution to the controllability
optimization problem (5.15) is given by (5.19). This proves Part (i).

To verify Part (ii), recall that the pair {^4, B} is controllable if and only if the operator
T is onto, or equivalently, TT* is strictly positive. Since TT* = Q(t\), it follows that the
pair {A, B} is controllable if and only if Q(ti) is strictly positive. To prove Part (iii) simply
recall that the restricted inverse of Q(ti) becomes the actual inverse when Q(ti) is strictly
positive. So, formula (5.20) follows (5.19) when the pair {A,B} is controllable. •

Recall from Remark 5.1.1 that if XQ and x± are any two vectors in the controllable subspace
Xc, then there always exists an input u which drives the state from XQ to x\ over the interval
[0, ti]. In this case, x\ — eAtlxQ is in ranT. In fact, the input u of smallest possible norm
which drives the state from XQ to x\ is given by (5.19) in Theorem 5.3.2.

Since TT* — Q(ti), it follows that ||T||2 equals the largest eigenvalue of Q(t\). Moreover,
the singular values of T are the square root of the nonzero eigenvalues of Q(t\). Finally, it
is noted that by using the formula for u in (5.22), we obtain

r(xi ~ eAtlx0), x, - eAt^xQ} . (5.24)

5.4 Stability and controllability

This section is devoted to the controllability of stable systems. Consider the linear system
{^4, B} described by (5.1) where A is a stable operator on a finite dimensional vector space
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X. Consider any terminal time t\ and let T be the operator from L2((—00,^],^) into X
denned by

/•ti
Tu= eA(ii~T)Bu(r)dT (u e L2((-oo, t i ] ,W)). (5.25)

Because A is stable, T is bounded, and thus, T is a well defined linear operator. Since A is
stable, \\eM < me~at for some positive m and a > 0. An application of the Cauchy-Schwartz
inequality, yields

\\Tu\\ < ^ \\eA^-^\\\\Bu(r}\\dr<m\\B\\ r e-a^^\\u(r}\\dr
J —oo J —oo

B [r e-W^dr] \u\L2=m\\B\\

Therefore, ||T| < m\\B\\/y2a, and T is a well defined linear operator.
We say that the pair {A, B} is controllable over the interval (—00, ti] if T is onto. By

mimicking the calculation in (5.8), it follows that the adjoint T* of T is the operator from
X to L2((-oo,ti] ,W) given by

Using this one may readily show that Lemma 5.1.1 holds where [0,ti] is replaced with
(—oo,£ i ] , and thus, the controllable subspace Xc = ranT = ranWc. Hence, the controllabil-
ity of {^4, B} over ( — oo, t\\ is equivalent to our previous notion of controllability for {A, B}.
So, as before, we drop the interval when discussing controllability.

Because A is stable, we can define the following infinite horizon controllability least
squares optimization problem: Given a vector x\ G X, find an input u to solve the following
optimization problem

|2 = inf [ / ' \ \ u ( t ) \ \ 2 dt : x(t^ = f l eA(tl~T)Bu(r) dr\
\J-OO J—OO )

where x(ti) is the unique vector in X satisfying (5.27)
( rti

\\xi - x(ti)\ — inf <\\xi - x ( t i ) \ \ : x(ti) = I eA(tl~~T>Bu(r] dr and u e L2((-cx), t i ] ,U]
I J—00

The controllability Gramian for the pair {^4, B} is the operator on X defined by

eA<rBB*eA*ada. (5.28)

Notice that if Q(t) is the finite time controllability Gramian defined in (5.17), then Q(t] —> Q
as t approaches infinity. According to Lemma 3.1.2 this Q is the unique solution to the
following Lyapunov equation:

AQ + QA* + BB* = 0 . (5.29)

The controllability Gramian Q plays a fundamental role in the solution to the infinite horizon
controllability least squares optimization problem.
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Theorem 5.4.1 Let A be a stable operator on a finite dimensional vector space X while B is
an operator mapping U into X and x\ is a specified vector in X. Let Q be the controllability
Gramian for {A, B}. Then the following holds.

(i) The solution to the controllability optimization problem in (5.27) is unique and given
by

u(t) = B*eA'(t^Q~Txl. (5.30)

(ii) The pair {A, B} is controllable if and only if Q is strictly positive.

(Hi) If {A, B} is controllable, then the controllability optimization problem in (5.27) reduces
to

|2 = inf { j l \\u(t}\\2 dt:xl= I' eA(<1~T) Bu(r) dr\ (5.31)
V J — oo J — oo J

and the corresponding optimal input is given by

u(t) = B*eA*(tl't'}Q-lxl. (5.32)

PROOF. Let P-R. be the orthogonal projection onto the range 11 = Xc of T. By employing the
Projection Theorem, the infinite horizon controllability optimization problem is equivalent
to the following minimum norm optimization problem

||u|| =inf {|H| : u e L2((-oo,*i],W) and Tu = Puxi] . (5.33)

According to Corollary 16.5.2 in Section 16.5, the solution to this problem is unique and
given by

u = T*(TT*Yrxl. (5.34)

By combining the definition of T in (5.25) with its adjoint in (5.26), we obtain TT* — Q; see
(5.28). Using this along with (5.34) and (5.26), we see that the solution to the controllability
optimization problem in (5.27) is given by (5.30). This proves Part(i).

To verify Part (ii) recall that the pair {A, B} is controllable if and only if the operator
T is onto, or equivalently, TT* is strictly positive. Since TT* = Q, it follows that the pair
{A, B} is controllable if and only if Q is strictly positive. Hence, Part (ii) holds.

Because the restricted inverse of Q becomes the actual inverse when Q is strictly positive,
formula (5.32) follows when the pair {A, B} is controllable. Finally, if {A, B} is controllable,
T is onto, and thus, the optimization problem in (5.33) reduces to ||u|| = inf{||it|| : Tu = X i } .
So, the optimization problem in (5.27) reduces to the optimization problem in (5.31) when
{A, B} is controllable. •

Remark 5.4.1 Let A be a stable operator on a finite dimensional vector space X and B
an operator mapping U into X. Let Q be the controllability Gramian for {A, B}, and T the
operator from L2((—oo, ii],W) into X defined in (5.25). Then using TT* = Q, it follows that
||T||2 equals the largest eigenvalue of Q. Moreover, the singular values of T are the nonzero
eigenvalues of Q. Recall that the uncontrollable subspace Xd for the pair {A, B} is given by
X^ = (ranT)1 = kerT*. Since TT* = Q, the kernel of Q equals Xc. Finally, by using the
formula for u in (5.34) along with TT* = Q, we obtain ||w||2 = (Q~rxi, %i).
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Recall that {A,B} is controllable if and only if {B*,A*} is observable. By using this
duality in Theorem 4.4.2, we readily obtain the following result.

Theorem 5.4.2 Let {A,B} be a controllable pair. Then the following statements are equiv-
alent.

(a) The system x = Ax is stable.

(b) There exists a strictly positive operator Q satisfying the Lyapunov equation

AQ + QA* + BB* = 0. (5.35)

Exercise 10 Let {a,-}" be a set complex numbers in the open right half plane. Moreover,
let A be the diagonal matrix on Cn and B the column vector given by

A = — diag (0:1,0:2, • • • , <

Let Q be the n x n matrix defined by

and B = [bi, 62, • • • , bn]
tr .

(5.36)

A matrix of the form (5.36) is called a Pick matrix. Show that Q is the unique solution to
the Lyapunov equation AQ + QA* + BB* = 0. In particular, Q is positive. Moreover, show
that Q is strictly positive if and only if {a,-}" are distinct and bi ̂  0 for alii = 1, 2, • • • , n.

5.5 Notes

All the results in this section are classical results in linear systems theory. The history of
controllability and linear systems is well established in Kailath [68], Rugh [110] and elsewhere.
So, we will not present a historical account of linear systems. For further results on linear
systems see Brockett [21], Chen [26], DeCarlo [33], Delchamps [34], Kailath [68], Polderman-
Willems [98], Rugh [110], Skelton [114] and Sontag [116]. Using operator techniques to
solve controllability problems is also classical; see Balakrishnan [8], Brockett [21], Fuhrmann
[47], Naylor-Sell [93], Luenberger [85] and Porter [100]. The PBH test was independently
developed by Popov [99], Belevitch [14] and Hautus [61].

For simplicity of presentation only we concentrated on time invariant systems. Many
of these results can be easily extended to the time varying case. To see this consider the
time varying system x = A(t)x + B(t)u where A is a continuous function with values in



5.5. NOTES 65

X} and B is a continuous function with values in £(ZY, X}. Let T be the operator from
,ti] ,W) into X defined by

Tu= l ^(t^r}B(T}u(r)dr (u € L2([tQ, tj], W))

where $(£,T) is the state transition operator for A. Then the time varying pair {A,B} is
controllable over the interval [io,*i] if the operator T is onto. The time varying pair {A, B}
can be controllable over one interval and not controllable over another interval. Obviously,
the pair {A,B} is controllable over the interval [io,£i] if and only if T* is one to one, or
equivalently, TT* is strictly positive. The adjoint of T is the operator mapping X into

i],W) given by

)**(*i, t)*f ( / € * ) • (5-37)

So, the time varying pair {,4, B} is controllable over the interval [to, ti] if and only if

P(tl) := TT = r
Jt0

is a strictly positive operator on X. Notice that P(t) can be obtained by solving the following
differential equation

P = A(t)P + PA(ty + B(t)B(t)* (P(t0) = 0). (5.38)

Therefore, the time varying pair {A,B} is controllable over the interval [to,*i] if and only
if P(t\) is strictly positive where P(t) is the solution to the differential equation in (5.38).
The controllability optimization problem and its solution can also be extended to the time
varying setting. In this case, the controllability optimization problem becomes: Let x\ be a
specified vector in X and P-R be the orthogonal projection onto the range of T, then find an
optimal control u in L2([to,ii],W) such that

\\u\\ =inf{||u|| : P^ZI = Tu} .

The solution to this optimization problem is unique and is given by





Chapter 6

Controllable and Observable
Realizations

In this chapter we will use the controllable and observable subspaces, to obtain the control-
lable and observable decomposition for a linear system. Some connections to semi-invariant
subspaces for linear operators will also be given. Finally, it is shown that if G is the transfer
function of a controllable and observable system, then the polynomial formed by the poles
of G is the minimal polynomial for the corresponding state space system operator.

6.1 Invariant subspaces

This section is devoted to invariant subspaces and their matrix representations. Let M be
a linear operator mapping X into 3^ and let 7i be a subspace of X'. (In this section, the
vector spaces can be infinite dimensional.) The notation M\H. denotes the restriction of the
operator M to T~i, that is, M\H is the operator from H to y defined by (M\H}x = MX where
x is in 7i. Consider any operator TV whose range is contained in H.. Then TV = P-nN. (The
orthogonal projection onto a subspace H is denoted by PH-) Moreover, MTV = (M[H)N =
(M\Ti.)(PnN). Suppose the kernel of M contains Ti1 and TV is any operator whose range is in
X. Then, MTV = MP^TV and since the range of PHN is in H, we have MTV = (M\H)(PHN).
Finally, let M be an operator on X. Then we say that S is the compression of M to H. if
S is the operator on H defined by S = PnM\H. Clearly, ||5|| < | M||.

Let M be a linear operator mapping X into 3^ and suppose that X = X\ © Xi © • • • © Xn

is an orthogonal decomposition for X while y = y\ 0 J^ © • • • ® 34n is an orthogonal
decomposition for y where {<%}}" and {!Vi}™ are subspaces of X and y, respectively. We
say that

M1

Mmi Mm2

Mln

M2n

Mmn

Xl

y
is a matrix representation for M if M^- is the operator mapping Xj into y^ defined by
Mij = PytM\Xj. Recall that a unitary operator W is an isometry whose range is onto, or
equivalently, W* = W~l. (An isometry V is an operator from V into /C satisfying V*V = I.)

67
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Obviously, there exists unitary operators U\ and C/2 such that U \MU-2 equals its matrix
representation. So, we will not distinguish between M and its matrix representation, that
is, by a slight abuse of notation we will sometimes use the same symbol for the operator and
its matrix representation. Note that the matrix representation for the orthogonal projection
P-^i onto H is given by

~ / o i r H i r n
0 0 : H -L I —' I v± I - (6-1)

Now let A be an operator on X. Recall that H is an invariant subspace for A if H is
a subspace of X satisfying AH C 7i, or equivalently, APH — PuAPu- Since AH C H if
and only if (Pwj_)A|7i = 0, it follows that H is an invariant subspace for A if and only if A
admits a matrix representation of the form

An A12] \H 1 \H
0 ' - - ' (6'2)

Here An is the operator on H given by An = P~H.A\H = A\H, while A^ is the compression
of A to UL. Finally, notice that, for any integer k > 0, we have Ak

n = PHAk\H = Ak\H.
We have already seen that H is an invariant subspace for A if and only if its orthogonal

complement H^ is an invariant subspace for A*. We say that H is a co-invariant subspace
for A if H is an invariant subspace for A*, or equivalently, H~L is an invariant subspace for
A. Hence, H is a co-invariant subspace for A if and only if A admits a matrix representation
of the form

'An 0 1 \H 1 \H
A22 I • I <^± I • I ay-L I • (6'3)

Here A^ is the operator on H given by A^i = Pu±A\H = A\H while An is the compres-
sion of A to 7i. Finally, H is a co-invariant subspace for A if and only if P-H.A = P^AP^.
Notice also that, for any integer k > 0, we have A^ = P-^Ak\H.

We say that H is a reducing subspace for A if H is an invariant subspace for both A and
A*. Therefore, H is a reducing subspace if and only if H is both an invariant subspace and
a co-invariant subspace for A. Moreover, H is a reducing subspace for A if and only if H.1- is
a reducing subspace for A. Clearly, H is a reducing subspace for A if and only if A admits
a matrix representation of the form

An 0 1 \H 1 \H
Q A I • I OV-L I ' I 17 -L I ' ("•'*)

Notice that ft is a reducing subspace for A if and only if A commutes with the orthogonal
projection PH, that is, AP^ — P^A.

To complete this section, we introduce the notion of a dilation and a semi-invariant
subspace. Let A be an operator on X. Then we say that A is a dilation of an operator T on
H if T is the compression of A to H and

PHAk\H = Tk (for fc = 1,2,3, • • •) - (6.5)

In other words, A is a dilation of T if and only if Tk is the compression of Ak to 7i for all
integers k > 1. In this case, if q is a polynomial, then (6.5) implies that q(T) = P-nq(A) H.



6.2. THE CONTROLLABLE AND OBSERVABLE DECOMPOSITION 69

Moreover, using the expansion (sI-A)~l = Y^ Ak / sn+l for \s\ > \\A\\, we have (sI-T)'1 =
PU(S! — A)~l\H. Finally, it is noted that dilation theory plays a fundamental role in operator
theory; see Gohberg-Goldberg-Kaashoek [55], Foias-Frazho [39] and Sz.-Nagy-Foias [120].

As before, let A be an operator on X. Then Ji is a semi-invariant subspace for A if there
exists two invariant subspaces M. and M for A satisfying H = Af Q M where M C A/". In
other words, 7i is a semi-invariant subspace for A if and only if A/" = M. © H where M. and
A/" are two invariant subspaces for A. In this case, A/f ̂  and A/"1" are two invariant subspaces
for A* satisfying ML C M±. Using M®H© Af± = X, we see that H = M± 0 M^.
So, 7Y is also semi-invariant for A*. Therefore, Ji is semi-invariant for A if and only if "H
is semi-invariant for A*. It is easy to show that H. is semi-invariant for A if and only if A
admits a matrix representation of the form

A =
* * *
0 T *
0 0 *

M
n

M
U (6.6)

where T is the compression of A to 7i. If A is an upper triangular block matrix of the form
in (6.6), then T is the compression of A to T~C, and (6.5) holds, that is, A is a dilation of T.
This proves half of the following result due to Sarason [111].

Proposition 6.1.1 Let A be an operator on X and T the compression of A to T~i. Then Ji
is a semi-invariant subspace for A if and only if A is a dilation ofT.

PROOF. Assume that A is a dilation of T, that is, (6.5) holds. Let A/ be the following
"controllable " subspace generated by A and H

= AkH .
k=0

Here VStlo ̂ fc denotes the closed linear span of the subspaces Tijt for all integers k > 0.
Obviously, A/" is an invariant subspace for A. To complete the proof it is sufficient to show
that M. = A/" Q H is invariant for A. To this end, notice that (6.5) yields

PnAAkh = TTkh = TPHAkh (for all k > 0 and h & H } .

Hence, P^A|A/" = TP^|A/". Consider any m in M.. Then m is in A/" and P«m = 0. Hence,
Am is in A/" and

P-H(Am) = (PnA\fif}m = (TPHW}m - TPnm = 0 .

Since Am is in Af and P^Am) = 0, it follows that Am is in M.. Thus Ad is invariant for
A. Therefore, Ti. is a is semi-invariant subspace for A. •

6.2 The controllable and observable decomposition
In this section we present the controllable and observable decomposition of a linear system.
Consider the following continuous time system

x = Ax + Bu and y = Cx + Du (6.7)



70 CHAPTER 6. CONTROLLABLE AND OBSERVABLE REALIZATIONS

where A is an operator on a finite dimensional space X and B maps U into X while C maps
X into y and D maps U into y. Recall that the transfer function G for {A, B, C, D} is the
proper rational function defined by

G(s) = C(sI -A)-1B + D. (6.8)

Recall also that {A,B,C, D} is a realization for a proper rational function G if G is the
transfer function for {A,B,C, D}, that is, (6.8) holds. In this section, we will use certain
invariant subspaces to extract from {A, B, C, D} a controllable and observable realization
{Aco, Bco, Cco, Dco} of the same transfer function G, that is,

where {AC01BCO} is controllable and {CCO,ACO} is observable.

A controllable realization. First we present a specific controllable realization of G. To
this end, recall that the controllable subspace Xc for the pair {A, B} is given by

oo

XC=\J AkBU = \/{AkBU : 0 < k < dim X}. (6.9)
fc=0

We have seen that Xc is an invariant subspace for A. So, A admits a matrix representation
of the form:

AC * i r xc 1 r xc
'

.A= AA£

where X5 is the uncontrollable subspace defined by X£ = X © Xc . Here Ac is the operator on
Xc defined by Ac = A Xc and A5 is the compression of A to X^. Furthermore, the operators
B and C admit matrix representations of the form:

B=\B°]:U — J*cl and C = { Cc C~c } : [ *c 1 — » y , (6.11)
L u J L ̂  J L ̂  J

respectively. Since the range of B is contained in Xc, we obtain that Bc = PxcB = B. Also,
B5 = Px£B

 = 0, that is, the second entry in the matrix representation of B is zero.
We claim that {Ac, Bc, Cc, D} is a controllable realization of G. Because Xc is invariant

for A, we have Ak = Ak\Xc for all integers k > 0. Since the range of B is in Xc, it follows
that AkB = (Ak XC}B = Ak

cBc for all integers k > 0. Hence,

oo oo

Y AkBc U=\J AkB U = Xc .
k=Q fc=0

So, {A^BcU}^ spans Xc and {Ac, Bc] is controllable. For any integer k > 0, the range of
AkB is in Xc and AkB = AkBc. Hence, CAkB = (C\Xc}AkB = CcA

kBc. It now follows that
C(sl - A]-1B = Cc(sl - AC}-1BC. Thus,

G(s) = C(sl - A)~1B + D = Cc(sl - ACY1BC + D .
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Therefore, {Ac, Bc, Cc, D} is a controllable realization of G.
We claim that if {(7, A} is observable, then {CC,AC} is observable. To prove this it is

sufficient to first show that the unobservable subspace Xc5 for {CC,AC} is the intersection of
the controllable subspace Xc and the unobservable subspace Xd for {^4, -B, C, D}, that is,

XcB = X c f ] X i i . (6.12)

We call XCo the controllable/unobservable subspace for {A, B, C, D}. Indeed, if {C, A} is
observable, then X5 = {0}, and hence, Xc{*\Xd = {0}, or equivalently, {Cc, Ac} is observable.
According to Lemma 4.1.1, the subspace

Since Xc is invariant for A, we see that CcA
k = (C\Xc)A

k\Xc = CAk\Xc. This readily implies
that kerCU* = Xcf}kerCAk and

k=0

Obviously, Xc and X5 are invariant subspaces for A. Since the intersection of two invariant
subspaces is an invariant subspace, X^ is an invariant subspace for A. The above analysis
yields the following result.

Proposition 6.2.1 Suppose G is the transfer function for {A,B,C,D} and Xc is the con-
trollable subspace for {A, B}. Let Ac on Xc and Bc from U into Xc and Cc from Xc into y
be the operators defined by

Ac = A\XC and Bc = B and Cc = C\XC . (6.13)

Then {Ac , Bc, Cc, D} is a controllable realization of G whose unobservable subspace X^ is
the invariant subspace of A given by Xc(~]Xd. In particular, if {C,A} is observable, then
{Cc , AC} is observable.

An observable realization. We now obtain a specific observable realization of a transfer
function G. Let G be the transfer function for {A,B,C,D}, and let X5 be the unobservable
subspace for the pair {C, A}, that is,

00

X5 = pi ker CAk . (6.14)
fe=0

Clearly, X5 is a invariant subspace for A. So, A admits a matrix representation of the form:

(6.15)v '
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where X0 = X © Xd is the observable subspace for {C, A}. Notice that X0 is a co-invariant
subspace for A. In other words, X0 is an invariant subspace for A*. The operator A0 is the
compression of A to X0, that is, A0 is the operator on X0 defined by A0 — P0A\X0 where P0

is the orthogonal projection onto X0. The operator Ad on X5 is given by the restriction of A
to Xd. Furthermore, the operators B and C admit matrix representations of the form:

f y. 1 \ X-~\
i/ f*-o i t^< F rv /~~i 1 o -\i /£> i /?-\: U — > \ y \ and C = [ Q C0 \ : \ y \ — >y, (6.16)

respectively, where B0 = P0B and (70 = C\X0. Since ̂  is contained in the kernel of C, the
first entry of C is zero, that is, C5 = C Xd — 0. Because X0 is invariant for A*, it follows
that A"0 = A* X0.

We claim that {A0, BOJ C0, D} is an observable realization of G. Since X0 is a co-invariant
subspace for A and A0 = P0A\X0, it follows that Ak

0 = P0A
k\X0 for every integer k > 0.

Because C\X-0 = 0, we obtain that (CAk) X0 = (C\X0}(P0A
k\X0] = C0A

k. Hence, the
unobservable subspace associated with {C0,A0} is given by

fc=0

00 / 00 \

ker C0A
k
0 - p| ker(CAk X0) = f p| ker CAk \

k=0 \fc=0 /

Since the unobservable subspace of {C0,A0} is {0}, this pair is observable. For every non-
negative integer k, we have (CAk)\X5 = 0. Using (CAk}\X0 = C0A

k, we obtain CAkB =
(C^fc) ^P^ = C0A

kB0. It now follows that

G(s) = C(s/ - A)-1^ + JJ> - C0(5/ - Ao)-1^ + £> .

Hence, {A0, B0, C0, D} is a realization of G.
We now demonstrate that the uncontrollable subspace X0c for {A0, B0} is the intersection

of the observable subspace X0 and uncontrollable subspace X£ for {A, B, C, D}. Recall that

Since X0 is invariant for A* and B* = B*\X0, we see that B*0A*0
k = (B*\X0)A*k\X0 =

B*A*k\X0. Hence, ker B*A*0
k = X0f]ker B*A*k and

oo oo / oo \

X0-c = p) ker B*0A*0
k = f\(xof} ker BM*fc) = X0 p| p| ker B*A*k \=X0f]Xe,

fe=0 fc=0 \/c=0 /

that is, the uncontrollable subspace X0<. for {^40, B0} is the intersection of the observable
subspace X0 and uncontrollable subspace X^. for {A, B, C, D}. Since <Y0 and Xd are co-
invariant subspaces for A, it follows that their intersection Xo£ is also co-invariant for A. We
have just demonstrated the following result which is the dual of Proposition 6.2.1.
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Proposition 6.2.2 Suppose G is the transfer function for {A, B, C, D} and P0 is the or-
thogonal projection onto X0 the observable subspace for {C,A}. Let A0 on X0 and B0 from
U into X0 and C0 from X0 into y be the operators defined by

A0 = P0A\X0 and B0 = P0B and C0 = C\X0. (6.17)

Then {A0, B0, C0, D} is an observable realization of G whose uncontrollable subspace X0c is
the co-invariant subspace for A given by X0f]Xc- In particular, if {A, B} is controllable,
then {A0, B0} is controllable.

PROOF. One can also obtain a proof using duality. Notice that the transfer function for the
system {A*,C*, B*, D*} is given by G(s)* and by duality X0 is the controllable subspace
for {A*,C*}. Since X0 is an invariant subspace for A*, we have A* = A*\X0. Moreover,
C* = C* and B* = B*\X0. According to Proposition 6.2.1, the system {A*,C*,B*,D*}
is a controllable realization of G(s)*. By taking adjoints and employing duality, we see
that {A0, B0, C0, D} is an observable realization of G. By duality X0c is the unobservable
subspace for {B*, A*0} and Xc is the unobservable subspace for {B*,A*}. By applying the
previous proposition to the system {A*, C*,B*,D*}, yields Xod = X0f\ X5. •

A controllable and observable realization. Using Proposition 6.2.1, one can extract
a controllable realization of G and using Proposition 6.2.2, one can extract a observable
realization of G. Now let us combine these results to obtain a realization of G which is both
controllable and observable. To this end, let {Ac on XC,BC,CC,D} be the controllable real-
ization of G given by Proposition 6.2.1. Recall Xco, the unobservable subspace of {(7C,AC},
which we call the controllable/unobservable subspace of {A, B, C, D}. Let X^ be the observ-
able subspace for {CC,AC}, that is, Xco = Xc 0 X^. We call X^ the controllable/observable
subspace for {A, B, C, D}. Note that X^ is given by

oo

Xco = \l A*c
kC*cy = \/{A*c

kC*cy :Q<k< dimXc}. (6.18)
fc=0

Obviously, X^ is an invariant subspace for A*. Also, Xc = Xco © Xc5. This readily implies
that the operator Ac admits a matrix representation of the form:

Acd * 1 XCQ 1 Xco (C-\Q\
(6.19)

0 Aco J ' [ *<

The operator A^ on X^ is the compression of Ac to the controllable/observable subspace
XCQ. In this setting the matrix representations for Bc and Cc are given by

1 : U —> [ *" 1 and Cc = [ 0 £?«, ] : [ ?H —> 3> • (6.20)
I j Si'CO I I **'CO \

J U J L J

It follows from Proposition 6.2.2 that (v4co, Bco, Cco, D} is a controllable and observable
realization of G.
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By embedding the matrix representations for Ac, Bc and Cc in (6.19) and (6.20) into the
matrix representations for A, B and C in (6.10) and (6.11), we see that the operators A, B
and C admit matrix representations of the form

A =

B =

CO * *

0 Aco *
0 0 Ar

: U

Xco

Xc

Xc

Xco

xco
Xc

and C = [ 0 Cco Cc

(6.21)

XCo

Xco

X,
y.

=
ACO * * "

0 Aco *

0 0 Ac

j = [ 0 Cco Cc }

-

Xcd

Xco

3

z
- .

+

+ Du.

By using the matrix representations in (6.21), we see that the state space system in (6.7)
admits a decomposition of the form

(6.22a)

(6.22b)

The state space representation in (6.22) or (6.25) below is usually referred to as the control-
lable and observable decomposition of the state space. This decomposition decomposes the
state space X into its controllable and unobservable part Xcd, the controllable and observable
part Xco and finally its uncontrollable part Xc. Summing up the previous analysis we obtain
the following result which allows us to extract a controllable and observable realization from
any system {A, B, C, D}.

Theorem 6.2.3 Let G be the transfer function for {A, B, C, D} and Pco the orthogonal
projection onto Xco the controllable/observable subspace of{AJB,C,D}. Let Aco on Xco and
Bco mapping IA into Xco and Cco mapping Xco into y be the operators defined by

ACO = PCOA\XCO and Bco = PCOB and Cco = C\Xco. (6.23)

Then {Aco, Bco, Cco, D} is a controllable and observable realization ofG.

Since Xc and X0 are both invariant subspaces for A, it follows that Xco — XC{\X0 is also
an invariant subspace for A. Recall that Xco = XCQ Xco- Therefore, Xco is the semi-invariant
subspace for A given by

Xco = XcQ(Xcf\X5). (6.24)

One can even decompose the uncontrollable subspace Xc further into the unobservable
and observable subspaces associated with {CC,A5}. We call these subspaces the uncon-
trollable/unobservable subspace and the uncontrollable/observable subspace associated with
{A, B, C, D} and denote them by X-co and Xco respectively. To be more specific, let

= V
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and Xc = Xco © Xco. The operators AC , Bc and Cc admit matrix representations of the form

B-c = : U and C-c = 0
<*• CO

Notice that the first entry in Cc is zero because the range of Cc is contained in Xco. By
inserting these matrix representations into (6.22) we obtain the following controllable and
observable decomposition of the state space representation (6.7)

ACO * * *

0 ACO * *

0 0 ACS *

0 0 0 ACO

Ba

0
0

y = [ 0 Cco 0 C5o } •&CO + Du.

(6.25a)

(6.25b)

Notice that in this representation any one or even all of the spaces X^, Xco or Xco can be
zero. However, the controllable and observable space Xco is zero if and only if the transfer
function G = D is constant. Finally, it is noted that for A, the subspace Xc5 is invariant,
Xco is co-invariant, while X^ and Xco are both semi-invariant.

6.2.1 A minimal realization procedure
To complete this section, we demonstrate how one can use the singular value decomposition
to extract a controllable and observable realization from a finite dimensional system. Recall
that a system {A on X, £?, C, D} is unitarily equivalent to {A on X, B, C, D} if there exists
a unitary operator W mapping X onto X such that AW = WA, B — WB, CW = C, and
D — D. Clearly, unitary equivalence preserves stability, controllability, and observability.

Procedure. Let {A on X,B,C,D} be an n-dimensional realization of G. Let UCAV* be
a singular value decomposition of the corresponding controllability matrix Wc, that is,

Wc = [ B AB ••• An~lB } = UCKV* (6.26)

(A review of the singular value decomposition is given in Section 16.6 in the Appendix. In
our singular value decomposition UA.V* the operators U and V are isometries and A is an
invertible diagonal matrix consisting of the nonzero singular values.) Let nc be the rank of
Wc, or equivalently, assume that Wc has nc (nonzero) singular values. Then Uc is an isometry
from O into X. Let {Ac on O, Bc, Cc, D} be the system defined by

Ar = = U:B and Cr = CUr (6.27)
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Let UCOKCOV*0 be a singular value decomposition of the observability matrix associated
with the pair {CC,AC}, that is,

Wm =

Cc

CCAC
= UCOACOVC*0. (6.28)

Let nco be the number of (nonzero) singular values of Wco. Then Vco is an isometry from
Cnc° into C"c. Let {Aco on Cnc°,Bco, Cco, D} be the system defined by

Aco = V:0ACVCO ,

Using (6.27) it follows that

ACO = VC*0U*CAUCVCO,

and

CO = VC*0U*B and

Cco = CCVC

Cco = CUCVCO .

(6.29)

(6.30)

Then {Aco, Bco, Cco, D} is a controllable and observable realization of G and is unitarily
equivalent to the system {Aco, Bco, Cco, D} defined in Theorem 6.2.3.

We now verify that {Aco, BCO,CCO, D} is a controllable and observable realization of G.
Since the controllable subspace Xc equals the range of Wc, the orthogonal projection Pc onto
Xc is given by Pc = UCU*. (If U is any isometry, then UU* is the orthogonal projection onto
the range of C7; see Lemma 16.2.3.) Let {Ac on Xc, Bc, Cc, D} be the controllable realization
of G defined in Proposition 6.2.1. Let W be the unitary operator from C"c onto Xc defined
by Wx = Ucx. Then,

ACW = PCAUC = WU*AUC = WAC

Bc = PCB = WU*B = WBC

CCW = CUc = Cr.
(6.31)

Therefore, {Ac on C"c, BC,CC, D} is unitarily equivalent to {Ac, Bc, Cc, D} and must be a
controllable realization of G.

Let Xco be the observable subspace associated with {Cc, Ac}, that is, Xco = Vo° ^L*fc^'c^;-
Using WA* = A*W and W*C* = C*, we see that the controllable/observable subspace Xco

of the system {AC} Bc, Cc, D} is given by

xco - \J A*c
kc*cy = = ucxco .

So, the isometry Uc maps X^ onto the subspace Xco. Since Xco equals the range of W*0 and
W*0 = KoAcot/co is a singular value decomposition of W*0, it follows that Vco is an isometry
from Cn°° into Cn° whose range is Xco. Thus, UCVCO is an isometry from C"co into X whose
range is Xco. In particular, Pco = UCVCOV*0U* is the orthogonal projection onto Xco. Let Z
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be the unitary operator from CUc° onto A^ defined by Z — UcVco. Then using (6.30), we
obtain

GCO/O = Gcyci/co = Gco .

Hence, {Aco, Bco, Cco, D} is unitarily equivalent to {Aco, Bco, Cco, D}. Therefore, the system
{Aco on Cnco, Bco, Cco, D} is a controllable and observable realization of G.

6.3 The minimal polynomial and realizations

In this section we will show that if {A, B, C, D} is a controllable and observable realization
of G, then A is a pole of G if and only if A is an eigenvalue of A. Moreover, the roots
(multiplicities included) of the minimal polynomial of A are the poles of G.

To this end, let A be an operator on a finite dimensional space X. Recall that a polyno-
mial m is the minimal polynomial of A if m is the monic polynomial of the lowest degree
such that m(A) — 0. The minimal polynomial of A is unique and is denoted by m^. If p is
another minimal polynomial for A, then q = p — in A satisfies q(A) = 0. Since q has lower
degree than the minimal polynomial, it follows that q(s) = 0, and thus, p — m&. So, the
minimal polynomial is unique.

Moreover, if p is any nontrivial polynomial satisfying p(A) — 0, then m& divides p, that
is, p — THAT where r is a polynomial. Since degp > deg 771,4, the Euclidean algorithm shows
that p — q + rriAT where q and r are polynomials and deg q < deg m^- Using ra^A) = 0, we
have

0 = p(A) = q(A) + mA(A)r(A) = q(A) .

Hence, q(A) — 0. Because mA is the minimal polynomial of A and degg < degra^, it follows
that q(s) = 0. Thus, p = m^r and THA divides p.

As before, let A be an operator on a finite dimensional space X ' . We claim that A is an
eigenvalue of A if and only if A is a root of the minimal polynomial of A, that is, m^(A) = 0.
Recall from the Cayley Hamilton Theorem that p(A) = 0 where p(s) — det[sl — A] is the
characteristic polynomial of A. Hence, the minimal polynomial of A divides the characteristic
polynomial of A. From this it follows that all the roots of the minimal polynomial of A are
also roots of the characteristic polynomial for A. Hence, every root of the minimal polynomial
of A is an eigenvalue of A. We now show the converse, that is, if A is an eigenvalue for A,
then m/i(A) = 0. Consider any eigenvalue A of A and let v be any eigenvector corresponding.
Using Av = Xv we have 0 — mA(A)v = ra^A)?;. Because v is nonzero, m^(A) must be zero.
Hence, A is a root of THA-

Since the roots of the minimal polynomial THA of A correspond to the eigenvalues of A,

where {Ai, A2, • • • , A/} are the distinct eigenvalues of A and k{ is the multiplicity of Aj as
a root of mA- Finally, we see that if each root the characteristic polynomial is a simple
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root (that is, it has multiplicity one), then the minimal polynomial equals the characteristic
polynomial.

We say that a complex number A is a pole of order j of a rational transfer function G if
A is a pole of G and j is the smallest integer such that

(s - A)'G(s)

is analytic at s = A. Let m be the polynomial whose roots are the poles (multiplicity
included) of G, that is,

i
m(s} = JJ(S - A,)fc' (6.32)

1=1

where (Ai, A2 , • • • , A;} are the distinct poles of G and fcj is the order of A;. Obviously, mG is
analytic everywhere. Since a rational analytic function must be a polynomial, it follows that
G = M/m where M is an operator valued polynomial. Now assume that G is a rational
function of the form G = N/d where N is an operator valued polynomial and d is a scalar
valued polynomial. Then the poles (multiplicity included) of G must be contained in the
zeros of d. Hence, m divides rf, that is, d = mr where r is a polynomial. So, m is the unique
monic scalar valued polynomial of the lowest possible degree appearing in the denominator
of G. To be precise, m is the only monic scalar valued polynomial such that G = M/m
where M is an operator valued polynomial and deg m < deg d for any N/d = G where N is
an operator valued polynomial and d is a scalar valued polynomial. We now show that the
poles of G are precisely the eigenvalues of any controllable and observable realization of G.

Theorem 6.3.1 Let (A,B,C, D} be a controllable and observable finite dimensional real-
ization ofG. Then the following holds.

(i) The transfer function G admits a decomposition of the form G = N/d where. N is an
operator valued polynomial and d is a scalar valued polynomial if and only if d(A) = 0.

(ii) The minimal polynomial m for A is given by (6.32) where {Ai, AS, • • • , A/} are the
distinct poles of G and ki is the order of A;.

(Hi) A complex number X is a pole of G if and only if X is an eigenvalue of A.

(iv) The operator A is stable if and only if all the poles of G have nonzero negative real
parts.

PROOF. For the moment assume that Part (i) holds. Let mA be the minimal polynomial
of A and m the polynomial in (6.32) formed by the poles of G including their multiplicity.
Since G = N/m for some operator valued polynomial N, Part (i) shows that m(A) = 0.
Hence, rn/t divides m. Because rriA.(A) — 0, Part (i) also implies that G = M/rriA for some
operator valued polynomial M. Recall that if G = N/d where N is an operator valued
polynomial and d is a scalar valued polynomial, then m divides d. So, m must divide m^.
Therefore, m^ = m and Part(ii) holds. Parts (iii) and (iv) follow from the fact that A is a
root of the minimal polynomial of A if and only if A is an eigenvalue of A.
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To prove Part (i), we first suppose that G admits a decomposition of the form G = N/d
where N is an operator valued polynomial and d is a scalar valued polynomial. Without loss
of generality we can assume that d is a monic polynomial given by d(s] = ^=()diSl. Recall
from (1.26) in Chapter 1 that

d0Gk + + + k+n-i + Gk+n = 0 (k > 1) (6.33)

where G; is the coefficient of I/V in the power series expansion (1.19) of G. Since Gi =
CAl"lB for i > I condition (6.33) is equivalent to

CAk-ld(A)B = 0 (k > 1) .

Since A commutes with d(A), this implies that

CAid(A)AjB = 0

(6.34)

(6.35)

Consider any integer i > 0. Since CAld(A)AjB = 0 for all integers j > 0, it follows from
the controllability of {A, B} that CAid(A) = 0. Since CAid(A) = 0 for all integers i > 0, it
now follows from the observability of {C, A} that d(A) — 0.

Now consider any monic polynomial d for which d(A) = 0. Clearly, (6.34) and hence
(6.33) or (1.26) holds. Now let N(s) = S^A^ where the operators {Ni}% are computed
from (1.24). Since relationships (1.24) and (1.26) are equivalent to (1.22), we obtain N = dG.
Therefore, G = N/d which proves Part (i). •

If {A, B,C, D} is a controllable and observable realization of G, then Theorem 6.3.1
shows that A is a pole of G if and only if A is an eigenvalue of A. In particular, G is analytic
in 5R(s) > 0 if and only if A is stable.

Let {A, B, C, D} be a controllable and observable realization of a transfer G with values
in £(CJ, Cfc). As before, assume that G = N/d where N is an operator valued polynomial
and d is a scalar valued polynomial. Let dr be the greatest common divisor of all the entries
of N and d. Then according to Theorem 6.3.1, the minimal polynomial for A is given by
mA — d/dr.

Remark 6.3.1 (Minimal polynomial) Consider any operator A on Cn. Let dr be the
greatest common divisor of all the minors of order n — I of si — A. In other words, dr is
the greatest common divisor of all the entries of adj (si — A). Clearly, the polynomial dr is
also a divisor of the characteristic polynomial d of A. Obviously, {A, I, /, 0} is a controllable
and observable realization of (si — A)~l — adj (si — A)/d(s). It now follows from Theorem
6.3.1 that the minimal polynomial THA of A is given by rriA = d/dr . As a consequence of this
result, one can readily show that the minimal polynomial of a companion matrix of the form

A =
0 0

-a0 —a

0
1

0
-02

(6.36)
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is the same as the characteristic polynomial of the matrix. To see this, note that the minor
of

s -I 0 ••• 0
0 s -1 ••• 0

sI-A =
0 0 0 ••• -1

GO (L\ Gj ' ' ' $ ~\~ Q"n—l

corresponding to a0 is simply the determinant of a lower triangular matrix whose diagonal
elements are all equal to —1. Since this minor is ±1, it follows that the greatest common
divisor of all the minors of order n — 1 is a constant. Hence, the minimal polynomial of A is
the same as the characteristic polynomial of A which is given by

d(s) I
T"

J_T~ (6.37)

For another proof of this fact, let d be the previous polynomial in (6.37) and A the
corresponding companion matrix in (6.36). Let B be the column vector in C™ and C be the
I x n row vector in defined by

B=[0 0 • • • 0 1 ]tr and C=[l 0 • • • 0 0 ] .

Recall that {A, B, C, D} is a realization of 1/rf; see equations (1.47) and (1.48) in Section 1.4.
It is easy to verify that this system is controllable and observable. Therefore, {A, B, C, D} is
a controllable and observable realization of l/d. Obviously, the poles of l/d are precisely the
zeros of d. According to Theorem 6.3.1, the polynomial d must be the minimal polynomial
of A. Finally, because A is an n x n matrix and the degree of the minimal polynomial of A
is n, it follows that d is also the characteristic polynomial for A.

Exercise 11 Let A be the block companion matrix defined by

0 0
—a\I —a^

y
y

y
y

(6.38)

where 3^ is a fc-dimensional space. Show that the polynomial d in (6.37) is the minimal
polynomial for A. Moreover, show that dk is the characteristic polynomial for A.

6.4 The inverse of a transfer function

Now suppose that {A, B, C, D} is a realization of a proper rational function G with D
invertible. Then whenever 5 is not an eigenvalue of A — BD~1C', the operator G(s) is
invertible and

G(s)"1 = D-1 - D-lC(sI -A + BD'1C)-1BD-1. (6.39)
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In other words,
{A - BD~1C, BD~\ -D~1C, D^1} (6.40)

is a realization of G"1.
To see this, let $(s) = (sZ - A)~l. Using the identity (Z + T)"1 = / - ( / + T}~1T it

follows, except possibly for a finite number of values for s, that

= IT1 - D~\I

= D~l - D~1C(

= ZT1 - D~lC(sI - A + BD-lC}-lBD~l .

In achieving the fourth equality we used (7 + RQ)~1R = R(I + QR)~l. Therefore, (6.39)
holds and {A — BD~1C, BD~l, —D~1C, D~1} is a realization of G"1. In particular, this
shows that G"1 is proper rational function.

For a state space proof of this result recall that G is the transfer function of the system

x = Ax + Bu and y = Cx + Du . (6.41)

To be precise, when all the initial conditions are set equal to zero, then y = Gu. (Recall
that f denotes the Laplace transform /.) If D is invertible, then u = —D~lCx + D~ly.
Substituting this into (6.41), yields

x = (A- BD~lC}x + BD~ly and u = -D~lCx + D~ly . (6.42)

By taking the Laplace transform with all the initial conditions set equal to zero, we arrive
at

u = (ZT1 - D~lC(sI -A + BD~1C)-1BD-1) y .

Since y = Gu, this implies that the inverse of G exists and is given by (6.39). This analysis
proves Part (i) of the following result.

Proposition 6.4.1 Let E = {^4,S,C, D} be a realization for a proper rational function G
with D invertible. Then the following holds.

(i) The system EI = {A - BD~1C, BD'1, -D~1C, D~1} is a realization for G~l.

(U) The system S is controllable, respectively observable, if and only if EI is controllable,
respectively observable.

(in) If {A, B, C, D} is controllable and observable, then X is a pole of G"1 if and only if A
is an eigenvalue of A — BD~1C . In this case, A — BD~1C is stable if and only if G"1

is analytic in the closed right half plane.

PROOF. Part (ii) follows from Lemma 6.4.2 below. If E is a controllable and observable
realization, then EI is a controllable and observable realization of G"1. So, Part (iii) is a
consequence of Theorem 6.3.1. •.
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Lemma 6.4.2 Consider a system S = {^4 on X,B,C, D} where B maps U. into X and C
maps X into y. Let R be any operator from y into U. Then £ is controllable, respectively
observable, if and only if {A — BRC,B,C,D} is controllable, respectively observable.

PROOF. Recall that the PBH test shows that a pair {A, B} is controllable if and only if the
rank of [A — A/, B] equals the dimension of the state space for all complex numbers A; see
Lemma 5.2.1. Notice that

[A-XI B } and [ A - BRC - XI B }

have the same rank. Therefore, {A, B} is controllable if and only if {^4 — BRC, B} is
controllable. One can also prove this fact by noting that {AnBU}^ and {(A-BRC}nBU}^
span the same space. Because {C,A} is observable if and only if the pair {A*,C*} is
controllable, it follows that {(7, A} is observable if and only if the pair {C, A — BRC} is
observable. •

6.5 Notes

The controllable and observable decomposition is due to Gilbert [51] and Kalman [71]. This
decomposition is a classical result in linear systems. Obviously, the controllable and ob-
servable subspace Xco is a semi-invariant subspace for A. The concept of a semi-invariant
subspace is due to Sarason [111]. For more on minimal polynomials, invariant polynomials
and their relationship to companion matrices see Gantmacher [48].



Chapter 7

More Realization Theory

This chapter is devoted to realization theory, that is, finding state space models for proper
rational transfer functions. It is noted that only the results in Sections 7.1 and 7.2 are used
in the rest of the monograph. The remaining sections of this chapter are of independent
interest.

Consider the state space system of the form

x = Ax + Bu and y = Cx + Du (7.1)

where A is an operator on a finite dimensional space X and B is an operator mapping U
into X, while C maps X into y and D maps U into y. Throughout it is always assumed
that the input space U. and output space y are finite dimensional Hilbert spaces. Recall that
{A, B, C, D} is a realization of G if G is the transfer function for (7.1), that is,

G(s) = C(sI -A)~1B + D. (7.2)

The transfer function G for any finite dimensional system is a proper rational function.
Moreover, G is a strictly proper rational function if and only if D equals zero. This naturally
leads to the following realization problem which is the subject of this chapter: Given an
operator valued proper rational function G, find a finite dimensional realization for G. In
particular, we are interested in finding a minimal realization for G, that is, a realization of
the lowest possible state dimension.

In this chapter we use the shift operator to demonstrate that any proper rational function
admits a finite dimensional realization. Moreover, we show that all minimal realizations of
the same transfer function are similar. Furthermore, a realization is minimal if and only if it
is controllable and observable. Finally, we will also present the Kalman-Ho partial realization
algorithm.

7.1 The restricted backward shift realization
We say that a realization of a transfer function G is a minimal realization if the dimension of
its state space is less than or equal to the state space dimension of any other realization of G.
Clearly, all minimal realizations of G have the same state space dimension. The dimension of
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the state space for any minimal realization of G is called the McMillan degree of G. Using
block companion matrices, Section 1.4 demonstrates how to construct finite dimensional
realizations for any proper rational transfer function. However, these realizations may not
be minimal. This leads to the following basic realization problem. Given any proper rational
function G, find all minimal realizations for G.

Two systems £1 = {A\ on X\,B\,Ci,D\} and S2 = {A% on ^2, B2, C2, D2} are similar
if there exists an invertible operator T mapping X\ onto Xi satisfying

TAl = A2T , TBl = Cl = Dl = D2 (7.3)

In this case, we say that T intertwines £1 with £2. It is easy to show that similar realizations
have the same transfer function. However, two realizations of the same transfer function are
not necessarily similar. In fact, they may not even have the same state dimension. Clearly,
the similarity relationship is transitive, that is, if realization £j is similar to realization £2
and realization £2 is similar to realization £3, then realization £1 is similar to realization
£3.

Let G be a proper rational function with values in £(U,y). Then G admits a power
series expansion of the form G(s) = ^£° Gi/sl where d is in L(U,y] for all integers i > 0.
Proposition 1.3.3 shows that {A, B, C, D} is a realization for G if and only if

— D and = CA^B (for alH > 1 (7.4)

Obviously, the transfer function G and the sequence of operators {Gi}o° uniquely determine
each other. Our theoretical developments will require the notion of a realization whose state
space is infinite dimensional. So, without loss of generality we say that {A,B,C, D} is a
realization of a sequence of operators {Gj}g° if (7.4) holds.

We now show how one can readily construct a realization of {Gi}™ using the backward
shift operator. To begin, consider any proper rational function G whose values are linear
operators from Li into y. Let l+(y) be the linear space consisting of all infinite sequences
with values in y, that is, ^+(3^) consists of all vectors of the form

/i
h
h

(with for all i (7.5)

Obviously, l+(y) is an infinite dimensional linear space. We do not need a topological
structure or an inner product on l+(y). Now let S be the backward shift operator on l+(y)
defined by

S

" / l "
h
/3

/2

/3

/4

" 0 / 0 0
0 0 / 0 •••
0 0 0 / •••

/I
h
h (7.6)

Let E be the evaluation operator mapping l+(y) into y, picking out the first component of
the vector / in /+(3^)> that is, Ef = /i, or equivalently,

E = [ I 0 0 • • • 1 . (7.7)
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Finally, let L be the initialization operator mapping U into l+(y] defined by

L =

85

(7.8)

where {G;}o° are the coefficients obtained from the power series expansion G(s) = ^£° 5 lGi.
It is easy to verify that

d = ES^L (for all i > 1).

Therefore, {S on l+(y),L,E,Go} is a realization of G. However, this realization has an
infinite dimensional state space l+(y) and consequently is not minimal.

To obtain a minimal realization, let HG be the controllable subspace of l+(y) defined by

= span {5*1^:1 = 0,1,2, • • • } .

Clearly, HG is an invariant subspace for 5, that is,
be the system defined by

C T~ic- Let {Ac on

= L, CG = E\UG and DG = G0 ,

(7.9)

(7.10)

where BG maps W into KG and CG maps T^G into y. Using the fact that HG is an invariant
subspace for 5 and the range of L is contained in HG, it follows that

= ES^L = (for all i > 1) . (7.11)

Therefore, {Ac, BG, CG, DG} is a realization for G. We call this system the restricted back-
ward shift realization of G, because the operator AG is the backward shift 5 restricted to
the invariant subspace HG- This sets the stage for the following result.

Theorem 7.1.1 Let G be a proper rational transfer function. Then the restricted backward
shift realization ofG is a minimal realization. In particular, the McMillan degree ofG equals
the dimension ofHc- Moreover, all minimal realizations ofG are similar.

PROOF. Let {A, B, C, D} be any realization of G. Consider the observability operator W0

mapping X into l+(y] defined by

C
CA
CA2 (7.12)

It is easy to verify that SW0 — W0A. This implies that S1W0 = W0A
l for all integers i > 0.

Since {A,B,C,D} is a realization of G, we have G{ = CA{~1B for all i > 1; see (7.4). It
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now follows that L = W0B. Hence, &L = S1W0B = W0A
{B for all i > 0. This along with

the definition of HG, yields

HG = span {S1 LK : i = 0, 1 ,2 , - ••} = span

= W0 span {AiBl^:i = Q, 1 ,2 , - • • } .

:i = Q,1, 2 , - ••}
(7.13)

This readily implies that Tic C ranW0. Because W0 maps X into /+(3^), it follows that
dimTic < dim A'. Therefore, the restricted backward shift realization {AG, -Be, CG, As) is
a minimal realization of G. .

Now assume that {A on X,B,C, D} is also a minimal realization of G. Since G is
rational, X must be finite dimensional. In this case, dimJ-io = dimX. Since HG C ranWo,
the operator W0 must map X one to one and onto HG- Let T be the invertible operator
mapping X onto HG given by T = W0. By employing the definitions of AG-, BQ and CG, we
obtain

TA = - SW0 = AGT , C = EW0 = and BG = L = W0B = TB (7.14)

Therefore, any minimal realization {A,B,C,D} of G is similar to the restricted backward
shift realization of G. Since the similarity relationship is transitive, all minimal realizations
of G are similar. •

Let A be an operator on a finite dimensional space X, while B is an operator mapping U
into X and C an operator mapping X into y. Recall that the pair {A, B} is controllable if and
only if X = sp&n{AnBU : n = 0,1,2, • • •}, or equivalently, X = ran ([ B AB A2B ••• ]).
Notice that the pair {C, A} is observable if and only if the operator W0 defined in (7.12) is
one to one. We now show that the restricted backward shift realization is controllable and
observable. Controllability follows from the definition of HG, that is,

span {A1
GBGU : i = 0,1, 2, • • •} = span (S1LU : i = 0,1, 2, • • •} = HG . (7.15)

Observability follows from the fact that

CG

CGAG

E
ES
ES2 = I\HG • (7.16)

Obviously, I\Hc is one to one. Therefore, the restricted backward shift realization is control-
lable and observable. In fact, the restricted backward shift realization is the realization one
obtains by extracting the controllable part from the observable realization {S, L, E, GO); see
Proposition 6.2.1. So, the controllability and observability of the restricted backward shift
realization also follows from Proposition 6.2.1. We now are ready to show the equivalence
between minimality, controllability and observability.

Theorem 7.1.2 Let S = {A, B, C, D} be a realization of a proper rational transfer function
G. Then E is a minimal realization of G if and only z/S is both controllable and observable.
Moreover, all controllable and observable realizations of G are similar.
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PROOF. Suppose that E = {A,B,C, D} is a minimal realization of G. Then it follows
from Theorem 7.1.1 that E is similar to the restricted backward shift realization. Because
the restricted backward shift realization is controllable and observable, the system E is also
controllable and observable. So, minimality implies controllability and observability.

Now suppose that E is controllable and observable. By definition, the observability
condition implies that the operator W0 is one to one. Furthermore, using controllability
along with equation (7.13), we see that

UG = : i = 0, 1, 2, • • •} = W0X .

In other words, HG = ran W0. Therefore W0 maps X one to one and onto HG- In particular,
X and "Ha have the same finite dimension. Because the restricted backward shift realization
is minimal, E is minimal. Hence, a controllability and observability realization is minimal.
This completes the proof. •

Remark 7.1.1 Let G be a proper rational function with values in £(U,y). Then G =
N/d + D where D is an operator in £(U, y) and N is a polynomial with values in £(U, y)
while d is a scalar valued polynomial of the form

N(s) -

d(s) = + sr' (7.17)

Let X — ®™U be the Hilbert space formed by the set of all vectors of the form [1*1, ua, • • • , un]
tr

where it, is in U for alii — 1,2, • • • , n. Let {.4 on X, B, C, D} be the system consisting of
the block matrices defined by

A =

C =

0
0

0
-aQI

N0

I
0

0
—ail

0
I

0

N2

and B =

(7.18)

Obviously, the pair {A, B} is controllable. So, by consulting Section 1.4 it follows that
{A, B, C, D} is a controllable realization of G = N/d+ D. So, one can construct a minimal
realization for G by simply extracting the observable part {A0 on X0, B0, C0, D} from the
system {A,B,C,D} in (7.18); see Proposition 6.2.2.

The scalar valued rational case plays an important role in many applications. We say
that two polynomials p and d are co-prime if p and d have no common zeros. If / is a
rational function of the form / = p/d where p and d are two co-prime polynomials, then the
poles of / are precisely the zeros of d including their multiplicity.

Proposition 7.1.3 Let g = p/d be a scalar valued proper rational function where p and
d are two co-prime polynomials. Then the McMillan degree of g equals the degree of d.
Moreover, if{A,B,C,D} is a minimal realization of g, then d equals both the characteristic
and minimal polynomial for A up to a constant, that is, 'jd(s) — m^(s) = detfs/ — A] where
7 is a constant.
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PROOF. Remark 7.1.1 shows that there exists a realization of g whose state dimension equals
the degree of d. Let {A on X , B , C , D} be a minimal realization of g. Then dim X < deg d.
Using (1.16), it follows that g(s) = C(sl — A)~1B + D = a(s)/b(s) where a is a polynomial
and b(s) = det[s/ — A] is the characteristic polynomial for A. Furthermore, a/b = p/d. Now
assume that dim X < deg d. Since deg b — dim X and a/b = p/d, it follows that p and d
must have at least one common zero. This contradicts the hypothesis that p and d have
no common zeros. Hence, dim X = deg d. Therefore, the McMillan degree of g equals the
degree of d.

Because p and d are co-prime, the poles of g are the zeros of d including their multiplicity.
According to Theorem 6.3.1, the polynomial d is the minimal polynomial for A up to a
constant. This completes the proof. •

Remark 7.1.2 Let G = p/d + 6 be a scalar valued proper rational function where p and d
are two co-prime polynomials of the form

(7.19)

and 8 is a scalar. Let {A on Cn, B, C, 5} be the system defined by

A =

C =

0 0
—ao —a

CQ Ci

and B =

Cn-l (7.20)

By combining Remark 7.1.1 with Proposition 7.1.3, it follows that {A, B, C, 6} in (7.20) is a
minimal realization of G.

Exercise 12 As before, let A be an operator on a finite dimensional vector space X. A
vector b in X is cyclic for A if the span of {Ajb}^ equals X'. If A admits a cyclic vector,
then show that the minimal polynomial for A equals the characteristic polynomial for A.

Clearly, b — [0, 0, • • • , 0, l]tr is a cyclic vector for the companion matrix A in (6.36).
So, this result also shows that the minimal polynomial for a companion matrix equals its
characteristic polynomial.

Exercise 13 Consider any matrix A on Cn. Recall that a complex number A is an eigenvalue
for A if and only if A is an eigenvalue for A*, the conjugate transpose of A. In general, this is
not true for an operator on an infinite dimensional space. To see this consider the backward
shift operator S on l+(y] where y = C1. Show that every complex number A is an eigenvalue
for S. What are the corresponding eigenvectors? Show also that the conjugate transpose S*
of the shift has no eigenvalues.
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7.2 System Hankel operators
In this section we show that the McMillan degree of a transfer function G equals the rank of
a certain Hankel matrix associated with G. Recall that a Hankel matrix is a matrix whose
entries {a^} satisfy aitj = ai+j for all i and j. To this end, let G = J^ s~ld be the power
series expansion for G. Then the Hankel matrix H associated with G is the block Hankel
matrix defined by

G\

H = (7.21)

Now let lc+(U) be the subspace of l+(U) consisting of the vectors in l+(U] with compact
support, that is, the set of all vectors / = [/i, /2, /a, • • • ]tr in l+(U) where fj is nonzero for
only a finite number of indices j. Because every vector in lc+(U] has compact support, H is
a well defined linear operator from lc+(U) into l+(y). Notice that H can also be expressed
as

H - [ L SL 52L (7.22)

where S is the backward shift operator on l+(y) and L is the initialization operator from
U into l+(y) defined in (7.8). This along with the definition of the state space HG for the
restricted backward shift realization, yields

= ran ([ L SL S2L • • • ] ) = ran tf. (7.23)

Therefore, the range of the Hankel operator H is precisely the state space for the restricted
backward shift realization for G. Because the restricted backward shift realization is minimal,
the state dimension of any minimal realization of G equals the rank of the Hankel operator
H. This readily yields the following result.

Theorem 7.2.1 Let H be the Hankel matrix in (7.21) generated by the proper rational
function G. Then the McMillan degree of G equals the rank of H.

Consider any realization {^4 on X,B,C,D} for G and let Wc be the controllability op-
erator from lc+(U} into X defined by

WC=[B AB (7.24)

Using d = CA1 1B for all integers i > 1, it follows that the Hankel matrix H in (7.21)
admits a factorization of the form

H = = W0WC, (7.25)

where W0 is the operator from X into l+(y) into defined by (7.12). Letting n be the
dimension of A', it follows from the Cayley-Hamilton Theorem that every column of H is
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a linear combination of the first n columns of H. Similarly, every row of H is a linear
combination of the first n rows of H. Hence, the rank of H equals the rank of the following
n x n block matrix:

• • • CAn-lB
• • • CAnB
••• CAn+lB

CAn~lB CAnB CAn+lB ••• CA2n~2

In other words, the rank of the Hankel operator H equals the rank of the n x n block matrix
Hn contained in the upper left hand corner of H.

Remark 7.2.1 Recall that a transfer function G admits a finite dimensional realization if
and only if G is proper and rational. Since the rank of the Hankel operator H in (7.21)
corresponding to G equals the McMillan degree of G, it follows that H has finite rank if and
only if G is rational. Let us establish this result directly. Clearly, if H has finite rank, then
the restricted backward shift realization of G is finite dimensional, and thus, G is rational.

If G is a proper rational function, then G = N/d where N is an operator valued poly-
nomial and d is a scalar valued polynomial of the form (1.21). According to the equations
in (1.27) any column of H, after the first n = degrf columns, is a linear combination of the
preceding n columns, and hence, every column of H is a linear combination of the first n
columns of H. Therefore, the rank of H is less that or equal to ndimU where G has values
in £(U,y}. Hence. H has finite rank. Equation (1.27) also shows that any row of H, after
the first n rows, is a linear combination of the preceding n rows, and thus, every row of H
is a linear combination of the first n rows of H. Therefore,

rank// < degc?rniri{dimW, dim3^} •

The above analysis also shows that the rank of H equals the rank of //„ where

"~1 f~] S~v

7.26)

7.27)

Thus, the McMillan degree of G equals the rank of Hn which is bounded above by the right
hand side of (7.26). Finally, it is noted that if G is a scalar valued rational function, then
(7.26) also shows that McMillan degree of G is less than or equal to the degree of d.

Bounded Hankel operator. Let H be the Hankel operator determined by the transfer
function (s + 2)"1. Notice that H is an unbounded operator from l+(U) into /+(^), even
though the minimal realization {—2.1,1,0} for (s + 2)"1 is a stable. Recall that l'+(J-) is
the Hilbert space formed by the set of all square summable unilateral infinite tuples of the
form / = [/i,/2,/3, • • -]tr with values in J-~, that is, fj is in F for all integers j > I and
||/||2 = Y^T \\fj\\2 is finite. The following result provides necessary and sufficient conditions
for a Hankel operator to be a bounded operator.
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Proposition 7.2.2 Let H be the Hankel operator determined by a proper rational function
G with values in £(U,y}. Then H is a bounded operator from l^.(U) into /+(!V) if and only
if all the poles of G are inside the open unit disc {s : \s\ < 1}.

PROOF. Assume that H is a bounded operator. Then HG is a subspace of /+(3^)- If / is in
^+(3^)) then Snf approaches zero in the i^_(y) topology as n tends to infinity. To see this,
let / = [/i, /2, /s, • • -]tT. Then using the fact that | /| 2 = Y^T \\fj\\2 is finite, we have

00

\\snf\\2 = £ \\fi 2 - o

as n tends to infinity. Hence, the sequence {Snf}^ approaches zero. Because H is bounded,
Ti-c is an invariant subspace for S contained in l^_(y). So, for all h in Tic, we see that
A^h = Snh approaches zero in the l^.(y) topology as n tends to infinity. This implies that
all the eigenvalues of AG are in the open unit disc. Since the restricted backward shift
realization {Ac, BG, CG, GO} is a minimal realization of G, all the poles of G must also be
in the open unit disc; see Theorem 6.3.1.

Assume that all the poles of G are in the open unit disc. Let {A on X ', B, C, GO} be a
minimal realization of G. Then H admits a factorization of the form H = W0WC where W0

is defined in (7.12) while Wc is defined in (7.24). Because all the poles of G are in the open
unit disc, all the eigenvalues of A are in the open unit disc. This implies that ||^4fc|| < mrk

for all integers k > 0 where m is a positive scalar and 0 < r < 1. By using the geometric
series, with x in X, we obtain

\\W0x\\2 = ^\\CAkx\\2<
fe=0

= m2||C||
fc=0

Hence, \\W0
 2 < m2||C'||2/(l —r 2 ) , and thus, W0 is a bounded operator. A similar calculation

shows that \\W* 2 < m2|5||2/(l — r2). So, Wc is also a bounded operator. Therefore,
H = W0WC is a bounded operator. •

7.3 Realizations and factoring Hankel matrices
In this section we present a method to compute the minimal realization for a transfer function
by factoring a certain Hankel matrix. To this end, consider any pair r, m of positive integers
and any sequence {d : 1 < i < r+m— 1} of operators in £(U,y). Let Hr<m be the Hankel
operator generated by this sequence, that is,

G

Gr Gr+i • • • Gr+m-].

(7.28)

Notice that if the sequence {Gi : 1 < i < r + m— 1} is a subsequence of an infinite sequence
{Gj}o°, then HT}m is the r x m block Hankel operator contained in the upper left hand corner
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of the infinite block Hankel operator H generated by the infinite sequence and defined in
(7.21). We will also use the notation Hr = Hr^T which is consistent with our previous
notation. Our first observation is that if H is the infinite block Hankel operator generated
by a sequence {Gt}o°, and r and m are any integers for which rank//r)7n = rank//, then
rank Hj}k = rank HT,m for all integers j > r and k > m. This follows from the fact that the
rank of any submatrix of a matrix is less than or equal to the rank of the original matrix.
Finally, recall that if {GJg0 is the coefficient sequence for the power series expansion of a
proper rational function N/d where N and d are polynomials with d scalar, then rank //„,„ =
rank// where n = degrf; see Section 7.2.

If {A, B, C, D} is any realization of {Gi}g°, then using G0 = D and d = CAl~lB for all
integers i > 0, we obtain

HT,m =

C
CA

CAT~

[ B AB ••• Am~lB (7.29)

for all positive integers r and m. This shows that the operator HTirn admits a factorization
of the form HT>m — WorWcm where

' ' nr

C
CA

CAT~

and Wm = [ B AB

Consider now a minimal realization {A on C", J5, (7, D} of {Gi}S°- Then rank H = n and the
observability operator Won is one to one with domain C" while the controllability operator
W^ is onto Cn. Let r be the smallest integer for which Wor is one to one and let m be the
smallest integer for which Wcm is onto. Then for j• > r and fc > m, (7.29) shows that the
operator H^k admits a factorization of the form //^ = W0jWck where the W0j is one to one
with domain Cn while Wck is onto C". Hence, rank//^ = n — rank// whenever j > r and
k > m.

Note that rank//fc+1 = rank//A: for some integer k, does not necessarily imply that
rank///e is the dimension of the minimal realization for G. To see this consider the transfer
function

Then HI = 1 and
I I
I I

Hence, H\ and HI both have rank one. However, every minimal realization of G is of order
three. Finally, it is noted that the rank of //a is three.

As before, let G(s) = X^o° s~^» ^e ^e Power series expansion for a proper rational
function G with values in C(U,y}. To obtain a minimal realization for the sequence {C?i}o°,
let H be the Hankel operator generated by {Gi}o°- Assume that the rank of H is n, or
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equivalently, n is the McMillan degree of G. Let WV = H be any factorization of H where
the operator W from C™ into l+(y) is one to one, while the linear map V is onto Cn. Since G
has a controllable and observable realization with state space Cn, it follows from equations
(7.12),(7.24), (7.25) and Gi = CAl~1B for all integers i > 0 that such a factorization always
exists. In fact, H = W0WC. Now let {AG,BG,CG,GQ} be the restricted backward shift
realization of G introduced in Section 7.1. Here AG = S\Hc where S is the shift operator on
the sequence space l+(y) denned in (7.6). The state space HG is precisely the range of the
Hankel operator H. Since W is one to one and V is onto, the range of W is HG- Hence, W
defines a similarity transformation from Cn onto HG- So, the system {A on C", B,C, GQ},
defined by

SW = WA and BG = L = WB and C = EW = CGW, (7.30)
is similar to the restricted backward realization, and thus, it is also a minimal realization of
the transfer function G. The operators E and L are defined in (7.7) and (7.8), respectively.
Finally, it is noted that W and V admit matrix representations of the form

W = and V = [ V1 V2 V3 ••• ] (7.31)

where Wi maps Cn into 3^ and VJ maps W into Cn for all integers i > 0.
Recall that for any positive integer k and any vector space T, the notation ®\J- refers

to the linear space formed by the set of fc-tuples with components in J-, that is, the set of
all vectors of the form [/i, /2, • • • , fk]tr where /_,- is in F for all j = 1,2, • • • , k. Let Pk be
the operator mapping l+(y} onto ®*y which selects the first k components of a vector / in
l+(y), that is,

A
h
h

/i
h

fk

Let $fe be the operator embedding Qf[U into the linear space lc+(U), that is,

MI
U2

Uk

—

:
Uk

0
0

For any positive integers j > 1 and k > 1, we have

W2

wj

and V$fc = [ K V2 • - . 14 ] and tf,-ifc = (7.32)
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Since L = H$i, we have WB = L = WV$i. Because W is one to one, B = V$i = Vi, that
is, B is the first block of V. Also, C = EW = P1W = Wi, that is, C is the first block of W.

Consider now any positive integers j and k such that rank//J)fc = n = rank//. Since
//7,fc = /•jWV^fc and /^-W has domain C" it follows that the operator PjW is one to one.
By applying Pj to the first equation in (7.30), we obtain PjSW — PjWA. Hence,

A = (PjW}-TPjSW = ((PjW)* Pj * PjSW.

Here (PjW)~r is the restricted inverse of PjW. The last equality follows because PjW is one
to one. Since

W,.

a minimal realization {,4, B, C, GO} for G is given by

-i

A = W*Wi and = Vl and C = Wl (7.33)

Finally, it is noted that this minimal realization can be computed from the operators Pj+iW
and V$k appearing in the factorization //j+^/t = Pj+iWVQk-

Consider any positive integers j and k for which rank//^ = rank// = n. Let yX =
//j+i,fe be any factorization of //j+i,fc where y is a one to one operator whose domain is Cn

and X is onto C". Then Y and X admit a block matrix representation of the form

Yl

and X = [ Xl X2 ••• Xk (7.34)

L -?+1 J

where each Yi maps Cn into y and each Xi maps U. into C". We now claim that the system
{A, £?, C, GO} defined by

V^+i) and B = Xl and C = KIA = (7.35)

is a minimal realization of {Gl}^>.
To verify this it is sufficient to show that there exists a factorization H = WV of H where

W is one to one with domain Cn and V is onto C" with Pj+\W = Y and V$k — X. In this
case, the formulas for A,B and C in (7.33) and (7.35) are equivalent. Hence, {A,B,C, GQ}
in (7.35) is a minimal realization of G. To establish these facts, consider any factorization
H = W0WC where W0 maps C" one to one into l+(y) and Wc is onto C". The operators
Wc and W0 can be constructed from any minimal realization of G whose state space is C";
see (7.12), (7.24) and (7.25). Then YX = Hj+1<k = Pj+1W0Wc$k. Because Hj+iik has rank
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n it follows that Pj+iW0 is one to one and Wc$k is onto. Notice that if RT = MN where
R and M are one to one, and T and N are onto, then R = MQ and T = £1~1N where 0
is an invertible transformation. Hence, there exists is an invertible transformation f2 such
that y = Pj+iW0£l and X = Q-lWc^k. Letting W = W0tt and V = ^~1WC, we see that
W is one to one with domain C™ and V is onto Cn. Also, H = WV while Y = Pj+iW and
X = V$k. This verifies our claim, that is, the system {A, B,C, GQ} defined in (7.35) is a
minimal realization of G.

Finally, it is noted that

Hi

G\ G-2

(7.36)

Thus, the formation of Hj+i^ requires only the first j + k elements of the sequence {Gi}^°.
Summing up the previous analysis yields the following result.

Theorem 7.3.1 Let G = ^^°s~'Gi be the power series expansion for any proper rational
function, and assume that the McMillan degree of G is n. Let j and k any positive integers
such that rankHjtk = n. Let YX = -f/j+i.fc be any factorization of Hj+itk where Y is one to
one with domain C™ and X is onto C™. Then {A, B, C, GQ} given by (7.35) is a minimal
realization of G. In particular, if G = N/d where N is an operator valued polynomial and d
is a scalar valued polynomial, then one can choose j and k to be the degree of d.

Remark 7.3.1 Assume that G is a proper rational function of the form G = N/d where N is
an operator valued polynomial arid d is a scalar valued polynomial. Then one can use Lemma
1.3.2 to compute the coefficients {GiY0

+ in the power series expansion G(s) = Y^ s~lGi.
Using {Gi}JQ+ , the above theorem provides an algorithm to compute a minimal realization
forG.

Remark 7.3.2 The singular value decomposition provides an efficient method to compute
a factorization Hj+itk — YX where Y is one to one and X is onto. To see this, let UAV* be
a singular value decomposition of #,•+!,& where U and V are isometries and A is a strictly
positive diagonal matrix; see Section 16.6 in the Appendix. Then setting Y = U and
X = AV* yields the desired factorization of Hj+i^- Finally, it is noted that in applications
of Theorem 7.3.1 to experimentally obtained data, one does not have to choose the shortest
sequence {Gi}™ for which rank//^ = n and j + k = m. In practice one may want to choose
the integers j and k so that j + k > m and {Gj}j+fc includes all the data available from the
experiments. This takes advantage of the singular value decomposition of Hj+\^ and helps
reduce the effects of any noise associated with the experimental data; see Damen-Van den
Hof-Hajdasinski [32].

As before, let H be the Hankel matrix determined by a proper rational function G with
values in £(U,y). The application of Theorem 7.3.1 appears to works well when the rank
of H is small and j + k is not too "large", or when H is a bounded operator from /+(W)
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into l+(y). If H is not a bounded operator, then the norm of Hj+itk approaches infinity as j
and k become large. In this case, Hj+\^ can become ill conditioned for large j and fc, which
leads to numerical problems when implementing Theorem 7.3.1. However, if H is a bounded
operator, then the norm of Hj+\^ is bounded for all j and fc, and one can use Theorem 7.3.1
to compute a minimal realization for G even when the rank of H is "large". Proposition
7.2.2 shows that H is a bounded operator if and only if all the poles of G are inside the open
unit disc {s : \s\ < 1}. In other words, if {A,B,C,D} is a minimal realization of G, then
H is a bounded operator if and only if all the eigenvalues of A are in the open unit disc;
see Theorem 6.3.1. If all the eigenvalues of A are in the open unit disc, then A is discrete
time stable. So, Theorem 7.3.1 is useful for computing minimal realizations for discrete time
stable systems. Finally, it is noted that when all the poles of G are inside the open unit disc,
then one can use the fast Fourier transform to calculate the coefficients {d} in the power
series expansion of G.

7.4 Partial realizations and the Kalman-Ho Algorithm

In this section we present the Kalman-Ho Algorithm to construct a realization from a finite
set of data. As before, let G = ]T^ s~lGi be the power series expansion for a proper
rational function G with values in £(U,y). A state space system {A,B,C, D} is called a
partial realization of order m for a transfer function G or a sequence {Gi}™ if

Go = D and Gl = CAl'lB (for 1 < i < m). (7.37)

When (7.37) holds, we also say that {A,J3,C, D} is a partial realization of {Gi}™. The
system {A, B, C, D} is a minimal partial realization of {Gi}™ if it is a partial realization of
{Gi}™ of the lowest state dimension. Obviously, a minimal partial realization is controllable
and observable. However, not all minimal partial realizations of the same sequence {Gi}™
are similar. For example, {0,1,1,0} and {1,1,1,0} are both minimal partial realizations
of the sequence {0,1} and they are not similar. For another example, the minimal partial
realizations

of the sequence {0,0,1} are not similar.

Remark 7.4.1 Let Ej = {A,- on X j , B j , C j , D j } } for j = 1,2, be two partial realizations of
the sequence {d : 0 < i < 2r}. Moreover, assume that r > dimXj for j = 1,2. Then EI
and E2 have the same transfer function G, that is, G(s) = Cj(sl — Aj}~lBj + Dj for j — 1, 2.

To see this, let {A on X\ © X2, B, C, 0} be the state space system defined by

i /~i r /-f /-? "] /1-1 oo\and G = [ GI — G2 J . (7.38)

Because both EI and E2 are partial realizations of {Gi : 0 < i < 2r}, it follows that
CA'B = 0 for 0 < i < 2r — 1. However, the degree of the characteristic polynomial for A
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must be less than or equal to 2r. By the Cayley-Hamilton Theorem, this readily implies that
CA{B = 0 for all integers i > 0. Hence, CiA\Bi = C^A^B-i for all integers i > 0. Obviously,
D\ — GQ = D-2- Therefore, EI and ^2 have the same transfer function.

As before, let {Gi}™ be a sequence of operators in C(U,y). Then we say that {Fi}^1 is
an extension of {Gi}™ if {-Pi}o° is a sequence of operators in C(U,y} satisfying Fi = Gi for
i = 0, 1, • • • , m. Suppose that {Gi}™ has an extension {Gi}™ whose McMillan degree equals
the rank of Hjtk where m = j + k. (The Hankel matrix Hjtk is defined in (7.28).) In other
words, assume that the rank of the Hankel matrix H associated with {(?t}o° equals the rank
of Hjtk- Then this is the only extension of {Gi}3

Q
+k whose McMillan degree equals the rank of

Hjtk- Using only the finite sequence {Gi}3
0

+k, Theorem 7.3.1 provides an explicit realization
for any infinite sequence extending {GiY0

+k with McMillan degree equal to the rank of Hjtk-
Hence, this infinite sequence extending {Gi}3

0
+k is unique. Moreover, if {A, B,C, GQ} is a

minimal realization of this unique extension {Gi}™, then (A, B, C, GQ} is a minimal partial
realization of {GiY0

+k. To prove that this partial realization is minimal, let H be the block
Hankel matrix generated by any partial realization of {Gi}3

0
+k. Then H contains Hjtk in its

upper left hand corner. Hence, the rank of H is greater than or equal to that of Hj^ which is
precisely the state space dimension of {A, B, C, GQ}. Since the rank of the Hankel operator
H equals the state dimension of its minimal realization, the partial realization {A, B, C, GO}
is minimal. Furthermore, since all minimal realizations of the same transfer function are
similar and {Gi}J

0
+ has a unique extension, it follows that all minimal partial realizations

of {GiY0
+k are similar. Finally, because H and Hjtk have the same rank, the block Hankel

matrices Hjtk, Hj+\,k and Hj^+\ all have the same rank. The following lemma uses this rank
condition to establish the existence of a unique extension for a partial sequence.

Lemma 7.4.1 Let {Gi : 0 < i < j + k} be a sequence of operators mapping U into y.
Assume that the block Hankel matrices Hjtk, Hj+i,k &nd Hj,k+i formed by this sequence
have the same rank. Then there exists a unique extension {Gi}™ of the sequence {GiY0

+k

whose McMillan degree equals the rank of Hjtk- In particular, if {A, B, C, GO} is a minimal
realization of this unique extension {Gi}™, then {A, B, C, GO} is a minimal partial realization
of {Gi}3Q+ . Finally, all minimal partial realizations of {Gi}^~ are similar.

PROOF. To complete the proof it remains to show that there exists an extension {Gj}§° of
the sequence {GiY0

+k whose McMillan degree equals the rank of Hjtk- Since Hj^ and Hjtk+i
have the same rank, it follows that there exists operators {A}i on W such that

Gk A

Now let Gj+jt+i be the operator in £(U, y) defined by

Gj+ifii + Gj+zfa H ----- h Gj+kflk •

Then the range of the last column of HJ+I^+I is contained in the range of the preceding
columns of Hj+itk+\ which is precisely the range of #,+1;fc. Hence, Hj+itk+i and Hj+iik have



CHAPTER 7. MORE REALIZATION THEORY

the same rank, which equals the rank of HJ^+I- Since HJ^+I corresponds to the first j rows
of Hj+i^+i and these two matrices have the same rank, it follows that there exist operators
{oti}{ on y satisfying

G,-

This yields

G
G2 Gk+2

Gi+k

. (7.39)

G
+ • • • + ct,-
+ • • • + ot

Now we simply recursively define the operators {G, : i > j + k + 1} by

G, = aj.Gi.-j + azGi-j +1 H h a, G<_i (for i > j + k + 1).

(7.40)

(7.41)

Let H be the Hankel operator formed by the infinite sequence {G;}°^0. Then it follows from
(7.40) and (7.41) that Hj^+i and HOO^+I have the same rank which equals the rank of Hj^.
Since Hj^ is contained in upper left corner of both -fiToo.fc and H^^+i^ it follows that #00, fc
and //oo.jt+i have the same rank. This implies that the range of the k + 1-th column of H is
contained in the range of the H^^- Notice that the i-th column of H is simply Sl~lL where
S is the backward shift on l+(y) arid L is H^^, that is, the first block column of H. Hence,

SkLU C ran H^k = span{SlLU : i = 0, 1, • • • , k - 1} .

According to Lemma 7.6.1, it now follows that S*LU C for all integers i > 0.
Therefore, H and have the same rank which equals the rank of

Remark 7.4.2 Notice that for scalar sequences, #?+ij is the transpose of Hjj+i, and hence,
these two matrices have the same rank. So, when implementing Lemma 7.4.1 in the scalar
case with j = k, one only has to check that the rank of HJJ equals the rank of HJ+IJ or
HJJ+I. The following example shows that this may not be true for non-scalar sequences.
Consider the transfer function

i r 1
o

i r o

Then the matrices = [ I 0 ] r and

#2,1 =
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both have rank one. However,

#1,2 — G2 1 =
1 0
0 1

has rank two. If j j^ k, then even for scalar sequences one has to check the rank of all three
matrices Hj^, #j+i,fc and Hj:k+i- For example, consider the transfer function G(s) = 1/s2.
Then G\ = 0, G-2 = 1 and GS = 0. Considering j = 2 and k — 1,

#2,1 = and while #2,2 = K 0 •

Although #2,1 and #3,1 both have rank one, the rank of #2,2 equals two.

Let us now present a state space proof of Lemma 7.4.1. Since Hjtk corresponds to the
first j rows of Hj+ik and these two matrices have the same rank, it follows that there exist
operators {o!i}j on y such that

Gk

Gj+2 • • • Gj+k ] = [ ai oi-2

(Let us note that, in contrast to the previous proof, we do not have to first generate
Let A, B and C be the block matrices defined by

A =

C = [ I 0 0 ••• 0 0

(7.42)

0
0

0

/
0

0

0 •
/ •

0 •

• 0 "
• 0

• 7

r<

and B —

1

2

A
(7.43)

Notice that A is a block companion matrix on @{y. Using the shift structure of A along
with (7.42), we obtain

GI GI Gk

G
/o

3 ^4

GJ+I Gj+2

(7.44)

Notice that B is the first column of the Hankel matrix on the left of the equal sign, and thus,
AB is the first column of the matrix on the right of the equal sign. The operator AB also
appears as the second column of the Hankel matrix on the left of the equal sign, and hence,
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A2B is the second column of the matrix on the right of the equal sign. Continuing in this
fashion shows that

B AB ••• AkB 1 =
G-2 GS . . . Gfc+2

= Hjjt+l. (7.45)

It immediately follows from (7.45) that CAi~1B = G{ for i = 1,2, • • • , k + 1. Consider
k+l<i<j + k and notice that AkB is the last column of Hj^+\- Using the structure of
C and the shift structure of A, we have that CAi~lB = CAl~k~lAkB = G;. It now follows
that {A, B, C, GQ} is a partial realization of {G2 : 0 < i < j + k}. So, if G, = CAl~lB for
all integers i > 0, then {A,B,C, GQ} is a realization of the sequence {Gi}g° which extends
{Gi}t>+h.

We now claim that rank Hjtk = rank H where H is the infinite Hankel matrix generated
by {G,}o°. According to equation (7.45),

[ B, AB ••• Ak~lB } = H j i k . (7.46)

Since Hj^ and Hj^+i have the same rank they also have the same range. So, if Xc is the
range of Hjtk, then equation (7.45) also shows that AkBU C Xc. By consulting Lemma 7.6.1,
we obtain

Xc = span^tfW : i = 0,1, 2, • • •} .

In other words, Xc is the controllable subspace for the pair {A, B}. Let {Ac on Xc, Bc, Cc, GO}
be the system defined by

AC = A\XC, BC = B and CC = C\XC. (7.47)

Here Ac is on Xc and Bc map U into Xc while Gc maps Xc into 3>. Proposition 6.2.1 shows
that {AC,BC,CC,GQ} is a controllable realization of {GJo0. Because the McMillan degree
of {Gj}g° equals the rank of H, we obtain rank//j)fc < rank// < dimA'c = rank/fj^. So,
we have equality. In particular, the block matrices Hj^ and H have the same rank. Since
dim Xc — rank H, the system {Ac, 5C, Gc, GO} is a minimal realization. For another proof of
this fact, simply notice that pair (G, A} is observable. By consulting Proposition 6.2.1, it
also follows that {Ac, Bc, Cc, Go} is a minimal realization for {G;}^- Moreover, the McMillan
degree of {Gi}^ equals the rank of Hjtk. Therefore, {Ac, Bc, Gc,Go} is a minimal partial
realization of {G;}0

+/c.
The above analysis shows that the system {Ac, Bc, Gc, GO} in (7.47) is a minimal partial

realization of {Gi}0
+ . Clearly this system is controllable and observable. Moreover, one

can easily compute {Ac, Bc,Cc,Go} by extracting the controllable part from the companion
partial realization {A,B,C,Go} of {G,}^+fc in (7.43). Furthermore, this realization proce-
dure provides another method of obtaining a minimal realization of an infinite sequence
{Gj}^ whose associated Hankel matrix H has finite rank. To see this, simple choose any
finite subsequence {Gj}^+ such that Hj k and H have the same rank. Then the realization
{Ac, Bc, Cc, GO} constructed in (7.47) is a minimal realization of {Gi}o°.

Now assume that j = k and the sequence {G,} is scalar valued. Then equations (7.43)
and (7.44) along with the above analysis yield the following result.
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Proposition 7.4.2 Let {Gi : 0 < i < In} be a sequence of scalars satisfying rankHn —
rankHn+i — n. Let M be the matrix on C" defined by

M =

Gn

(7.48)

Then a minimal partial realization {A, B, C, GO} of {Gi : 0 < i < In} is given by

A = MH~l and B = [ d G2 ••• Gn }tr and C = [ I 0 ••• 0 ] . (7.49)

In this case, A is a companion matrix of the form

A =

0 1 0
0 0 1

0 0 0

(7.50)

Let G = Y^o* s lGi be the power series expansion for a scalar valued proper rational
function whose McMillan degree equals n. Then the system {A, B, C, GO} in (7.49) is a
minimal realization of G. In particular, one can obtain a minimal realization of G from the
first 2n + 1 terms {Gi}o™ in its power series expansion. Let us present an elementary proof
of this fact. Consider any minimal realization {Ai on Xi,B\,C\, D} of G. Let Won and Wcn

be the observability and controllability matrices associated with this system, that is, Won
and Wen are the matrices defined by

W —'" on. — and Wcn = [ Bl

Because the pair {C\,Ai} is observable, Won is an invertible operator from X\ onto Cn.
Let {A on C", B,C,D} be the minimal realization of G which is similar to {A\,Bi,C\,D}
through Won, that is,

AWm = WmAl and B = WonBl and CWon = d. (7.51)

Using CiA\~lBi = Gi, it follows that Hn — Won Wcn and M — WonAiW^. Since AW^ =
WonAi, we have

AHn = ylWonW = W^ A\ W^ = Af

Thus, A#n = M. Because the pair {Ai,Bi} is controllable, W^ is invertible. So, Hn =
WonWcn is invertible, and we obtain A = MH~l. Using C\A\~lBi = Gi once again, we have

= WonBl=
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Finally, since CWon = C\ we see that C — [ 1 0 • • • 0 ].
To complete the proof it remains to show that A is a companion matrix, that is, a matrix

of the form (7.50). To this end, let En_\ be the operator from Cn onto C""1 which picks
out the first n — l components of each element of C", that is, £n-i[ EI • • • %n-\ xn }tr —
[ xi ••• £n_i }tr. Then using A = MH~l, we obtain En^iAHn = En_iM = En-\ZHn

where Z is a companion matrix on C". Since Hn is invertible, En_iA = En^\Z . So, the first
n — l rows of A and Z are identical. Therefore, A is a companion matrix.

7.4.1 The Kalman-Ho Algorithm
Consider any positive integers j, k and any finite sequence of operators {G;}o+ mapping U
into y. Assume that the block Hankel matrices Hj^, Hj+i^ and H^k+i formed by this se-
quence have the same rank. Then we can compute a minimal partial realization {A, B, C, D}
of {Gi}o+ by the following procedure.

Kalman-Ho Algorithm. Letting n be the rank of Hj^t compute a factorization for Hj+^k
of the form Hj+\^ = YX where Y maps C" one to one into +1 1

C". Decompose Y and X as follows

Y =
Y2

and X = [ Xl X2 • • • Xk ] (7.52)

where each Yi maps Cn into y and X% maps U into Cn. Then a minimal partial realization
{A, B, C, G0} of {GiY0

+k is given by

3 -

A = Y*Yi Y?Y^ and £ = Xl and C = Yl. (7.53)

PROOF. According to Lemma 7.4.1, there exists a unique extension {Gi}^ of (C;}o+ whose
McMillan degree equals the rank of H^. By Theorem 7.3.1, the system {A,B,C,Go} in
(7.53) is a minimal realization of the infinite sequence. Therefore, this system is a minimal
partial realization of {Gi}o+ . •.

7.5 Matrix representation of operators

In the next section we use matrix representations to extract a minimal realization in matrix
form directly from the restricted backward shift realization. To this end, let us review how
to obtain matrix representations for finite dimensional linear operators. Let A be a linear
operator on a finite dimensional vector space X. We say that M is a matrix representation
of A if there exists an invertible operator P mapping C" onto X satisfying

AP = PM.
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In other words, a matrix representation of A is an operator on Cn which is similar to A.
Hence, all matrix representations of A are similar.

We now show that every finite dimensional operator admits a matrix representation. To
this end, let {0i, <fo, • • • , 0n} be any basis for X and P be the operator mapping Cn onto X
defined by

P = ( 0i 02 • • • 0n ] - (7.54)

Clearly, P is one to one and onto. It should be clear that

M = P~1AP (7.55)

is a matrix representation for A. In this case we say that M is a matrix representation for
A with respect to the basis {0i}i- Let {ei}™ be the standard orthonormal basis for Cn, that
is, e» is the vector whose i-th component is one and all other components are zero. Then we
can identify M with the matrix

TT121 TT122 ' ' ' f^2n

mni mn2 • • • mnn

where the entries m^ are uniquely given by

.ijd (for j = 1,2, •• • ,n ) . (7.56)

Using AP = PM, we obtain

i=l t=l t=l

It now follows that the entries m,j for the matrix M are given by

(7.57)

Since {0i}" is a basis, the entries m^ of are uniquely determined by (7.57). In this case,
we say that we have identified the basis {0i}" for X with the standard basis {e^}" for C".
Comparing (7.56) and (7.57), we see that the action of M on the standard basis is exactly the
same as the action of A on the basis {0i}". Finally, it is noted that the matrix representation
of a linear operator is not unique. It depends upon the chosen basis. Since there is an infinite
number of bases, there is an infinite number of matrix representations for A.

Example 7.5.1 Let A be a linear operator on a vector space X of finite dimension n. Sup-
pose that A has n distinct eigenvalues, {Ai, A2, • • • , An} with corresponding eigenvectors,
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{0i,02, • • • , 0n}- It is well known that the eigenvectors corresponding to distinct eigenval-
ues are linearly independent; see for example Halmos [58] and Horn-Johnson [65]. Hence,
{0i,02, • • • , 0n} is a basis for X. Since

A(j>j = Aj0j (for j = 1, 2, • • - , n),

it follows from (7.57) that the matrix representation M of A with respect to the above basis
of eigenvectors is given by the following diagonal matrix:

M =

AI 0
0 A2

0 0

Example 7.5.2 Let X be the vector space consisting of the set of all polynomials p(x) of
degree less than or equal to 4. Let A be the differentiation operator on X, that is, Ap = -~p.
Clearly, A is a linear operator. Let us obtain a matrix representation of A with respect to the
basis {0i,02, • • • ,0s} given by 0i(x) = 1, 02(x) = x, 0a(x) = x2, 04(x) = x3 and 0s(x) = x4.
Since

.40! = 0

.402 = 1 = 101

.403 = 2x = 202

.404 = 3x2 = 303

.405 = 4x3 = 404 ,

it follows from (7.57) that the matrix representation M of the differential operator A with
respect to the above basis is given by

M =

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

The operator P mapping C5 into X is given by P = [ 1 x x2

AP = — P = \ 0 1 2x 3x2 4x3 ]
ax

and thus,

= PM.

Therefore, as expected, AP = PM.

Example 7.5.3 Let A be an operator on a n dimensional linear space X and b an operator
mapping C into X. Suppose further that the pair [A, b} is controllable and define the vectors
{0i}i1 by 0i = b, 02 = Ab, 03 = A26, • • •, 0n = J4

n~16. Since {A, 6} is controllable, it follows
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that {0i}" is a basis for X. Let us find a matrix representation M for the operator A with
respect to this basis. To this end, notice that

A(f>i = Ab = </>2

A<>2 = A2b = <fo

A(j)n = Anb.

Hence, for j = 1, 2, • • • , n — 1, we obtain A$j = 0j+i. This yields the identification Mej =
6j+i for j — 1, 2, • • • , n — 1. Now, by the Cayley-Hamilton Theorem,

An + an^An~l + - - - + aiA + a0I = Q,

where A" + an-.i\
n~l + • • • + aiA + a0 = det[A/ — A] is the characteristic polynomial for A.

Therefore,
n-l

A(f>n = Anb = -

This shows, by identification, that Men — — Y^i=o aiei+i- Therefore, the matrix representa-
tion M for the operator A with respect to the basis {<&}" is given by

M = [ Mei Me2 • • • Men ] =

0 0 0 ••• -OQ
1 0 0 ••• -a!
0 1 0 ••• -02

0 0 0

Finally, if P is the invertible operator mapping Cn into X defined by P — [ <j>\ fa • • • <j)n },
then AP = PM.

Exercise 14 Let X be the vector space consisting of the set of all polynomials p(x) of degree
less than or equal to four. Let A = -^ be the differentiation operator on X. Consider the
basis {</>i}i for X given by <f>i(x) = x4, fo(x) = x3, 0s(x) = x2, ^(x) = x and 0s(x) — 1.
Find the matrix representation for A with respect to this basis.

Exercise 15 Let X be the vector space consisting of the set of all polynomials p(x} of
degree less than or equal to k. Let A = ^ be the differentiation operator on X. If 0 is any
polynomial in X, then the Taylor series expansion shows that

= — — -x
n=0

Recall that eAt = ̂  Antn/n\. Since A</) = g, it follows that (eAt<fy(x] = 0(x + t). In
particular, the solution to the differential equation / = Af subject to the initial condition
/(O) = 0 is given by /(i)(x) = eAtf(0) = <fi(x + t). In fact, / = Af can be viewed as a
partial differential equation ^ — gf • Find the matrix representation M for A with respect
to the basis {1, x, x2, • • • , xfc}.



106 CHAPTER 7. MORE REALIZATION THEORY

7.6 Shift realizations for proper rational functions

In this section, we show how one can obtain a minimal state space realization for a proper
rational transfer function G, by simply finding a matrix representation for the restricted
backward shift realization. As before, G takes values in £(U,y) where U and y are finite
dimensional vector spaces. To begin, let Tl+(y} be the linear space consisting of the set of
all strictly proper rational functions with values in y. If / is in 'R.+ ( y ) , then / admits a
power series expansion of the form

CO

/(s) = £>-'£ ( / i €3>) . (7.58)
1=1

In this setting, the backward shift operator S on 7£+(!V) is defined by

(7.59)

where (sf(s))00 — lims_^00s/(s) = f i . To compute ( s f ( s } ) 0 0 , let / = p/d where p is a
polynomial with values in y and d is a scalar valued polynomial satisfying degp < deg d = n.
Then (sf(s}}00 — f\ — pn-i/dn where dn is the coefficient of sn for d and pn-i is the coefficient
of sn-1 for p. Notice that if f ( s ) = ̂  s^/., then Sf = £)f s^/i+i- So> the backward shift
S on T^+(y) acts on the coefficients {/i}f° in exactly the same way as the backward shift
operator defined in equation (7.6). By a slight abuse of notation, we will use the symbol S to
represent both the backward shift operator on the sequence space l+(y] and the backward
shift operator defined on the space of strictly proper rational functions *R,+ ( y } . It will be
clear from the context which backward shift operator we are using.

We can move the definition of the evaluation operator E (see equation (7.7)) and the
initialization operator L (recall equation (7.8)) to the Ti+(y) space. In this setting, the
evaluation operator E is now the operator mapping Tt+(y) into y defined by

Ef = (s/(s))oo = /i (fOT / e ^+0>)) • (7'6°)

Let G = Y^ s^^Gj be a proper rational function with values in C(U,y}. Then the initial-
ization operator L mapping U into 7i+(y) is given by

00 „

(Lu)(s) = G(5)w-(G(s)u)0 0 = V-^ ( f o r w e W ) . (7.61)

Finally, the direct transmission term D(G] is given by D(G) — (G(s))oo — GQ. Obviously,
Gi = ESl~lL for all integers i > 1. Therefore, {S on 7t+(y), L, E, GO} is a realization of G.

To obtain the restricted backward shift realization in this context, consider the control-
lable subspace H(G) of K+(y} defined by

H(G) - span{5fcLW : k = 0, 1, 2, • • •} = span{Sfc(G - G0)U : k = 0, 1, 2, • • -} .

Clearly, T~i(G) is an invariant subspace for S. In this setting, the restricted backward shift
realization of G is now given by {A(G} on H(G},B(G},C(G},D(G)} where

= S\H(G], B(G) = L} C(G} = E\H(G] and D(G) = GQ. (7.62)
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Obviously, {A(G),B(G),C(G), GQ} is similar to the restricted backward shift realization
{AG on HG,BG,CG,GO} of G defined in (7.10). In fact, if T is the operator from H(G)
into HO defined by Tf = [/i, /2, /a, • • -]tr where / = ^^° s~lfi, then T is a similarity trans-
formation which intertwines these two systems. Finally, it is noted that the notation AG
is reserved for the restricted shift on the subspace HG of infinite tuples, while A(G) is the
restricted shift on the subspace T~L(G} of strictly proper rational functions. By obtaining a
matrix representation for the restricted backward shift realization, one can readily obtain a
minimal realization of G whose state space is Cn. Perhaps the best way to explain this is
through an illustrative example.

Example 7.6.1 Let us find a minimal realization for the following proper rational function

where d is the denominator of G. Since G is a strictly proper rational function (G(s))oo = 0.
Because the input space U = C1, the invariant subspace T~i(G) for S is given by H.(G) =
span{SkG : k = 0, 1, • • •}. Our first step is to find the dimension n of T~i(G] and a basis
{0}?=i for H(G). To this end, let fa = S*-1G for i = 1,2, • • • ,n. Thus, fa = G. To obtain
fa, we apply the backward shift operator to G

p p

fa(s] = (SG)(s) = sG(8) - (sG(s))00 = S- - .
) a(s)

Since fa is not a linear combination of fa, we have n > 2. In a similar manner, fa is
computed by

fa(s) = (52G)(5) = (Sfa)(s) = sfa(s] - (8^(3)) * 2

— d(s) •

Since fa is not a linear combination of fa and fa, we have n > 3. We now notice that

fa(s) = (S3G)(s) = Sfa(s] = sfa(s) - (s&Cs))*, = -̂TTT- - *
d(s)

_ -3 - 55 - 6s2 - 4s3

d5)
= -403(s)-202(s)-30i(s),

that is, fa is a linear combination of fa, fa and fa. In particular, <S3G is contained in the
space spanned by {S^G}2,. Therefore, {fa, fa, fa} is a basis for li.(G}; see Lemma 7.6.1
below. Hence, the dimension of H(G} is three. In other words, the McMillan degree of G is
three.

To find a matrix representation for the restricted backward shift realization, the basis
{fa, fa, fa} is identified with the standard orthonormal basis (ei,62,63} for C3. Let P be
the operator mapping C3 onto 'H(G) defined by

P = [ f a f a f a } .
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Since {fa, fa, fa} is a basis, P is invertible. Moreover, the matrix representation {A, JB, C, D}
for the restricted backward shift realization is given by

PA = A(G)P, B(G) = PB and C(G}P = C .

To compute a matrix representation A on C3 for A(G) = S\'H(G}, notice that the previous
derivation yields

A(G)fa = fa, A(G)fa = fa and A(G}fa = -3fa - 2fa - 4fa .

Therefore, Ae\ — e^ and Ae-2 = 63 while Ae^ = — 3ei — le-z — 4ea. Consequently, the matrix
representation for the operator A(G] = S\H(G] with respect to P is given by

A =
0 0 - 3
1 0 -2
0 1 -4

Recall that PBu = B(G)u = Lu = fan = Peiu for all u in U = C1. Therefore,
PB — Pe\, and thus, B = ei = [ 1 0 0 ] * . The matrix C is computed as follows:

C = C(G)P = EP = E [ 0i fa fa } = [ 0 0 1 ] .

One may check that {A, B,C] is in fact a realization for G, that is,

G(s} = C(sI-A)-lB.

Notice that the dimension of the minimal realization is three, even though the original
description of the function G has a fourth order polynomial in the denominator. One can
easily check that there is a "pole-zero cancellation" in G. So, the backward shift realization
automatically obtained the "pole-zero cancellation" .

Lemma 7.6.1 Let R be an operator on a vector space 71 and V a subset ofR,. If Rk+lV is
contained in the linear span of {R'V}^, then

span{R3V : j = 0 , 1 , 2 , - ••} = span{RjV : j = 0, 1, 2, - - - , k} . (7.64)

PROOF. Since Rk+lV is contained in the linear span of {R^V}^, we have

Hence, Rk+2V is contained in the linear span of {RJV}Q. By continuing in this fashion,
it follows that Rk+mV is contained in the linear span of {R'V}^ for any integer m > 0.
Therefore, equation (7.64) holds. •

Consider any strictly proper rational function / in *R,+(y) of the form f(s) — p(s)/d(s)
where p is a polynomial with values in y and d is a scalar valued polynomial of the form

p(s) -

d(s) = d0 + hs + . . . + dn^sn-1 + sn . (7.65)
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Notice that Sf is also a rational function and is given by

sp(s) - d(s)pn_i
(Sf)(S) = Sf(s)-(8f(s))00 =

-dopn-1 + (PO ~ dipn-i)s -\ h (pn-2 ~ ^n-lPn-l)-?" * ,_ „ ,
(7.66)

d(s)

where {qj}^"1 are vectors in y. So, by applying Sn to a strictly proper rational function,
we obtain a strictly proper rational function with the same denominator d. Recall that
a transfer function G is a proper rational function of the form N/d, where d is a scalar
valued polynomial of degree n and N is an operator valued polynomial of degree at most n.
Therefore, L = G — (G(s))oo is a strictly proper rational function of the form M/rf, where
M is an operator valued polynomial of degree at most n — 1. Thus,

H(G) = span{SkLU : k = 0,1,2, • • •} C span{sjy/d(s] : j = 0,1, • • • , n - 1} . (7.67)

In other words, W(G) is contained in the subspace of H+(y) consisting of all rational func-
tions of the form q/d where q is a polynomial with values in y of degree at most n—1. This is
another demonstration of the fact that the McMillan degree of G is always less than or equal
to n x dim(y), where n is the degree of d. In particular, this also shows any rational function
G admits a finite dimensional realization. On the other hand, since the transfer function of
any finite dimensional system {A, B, C, D} is a proper rational function, we obtain another
proof of the fact that a transfer function G admits a finite dimensional realization if and
only if G is a proper rational function.

Example 7.6.2 Let us use the restricted backward shift realization to find a minimal real-
ization of the form {A on Cfc, B, C, D} for

GM-(}~ d(s)

where d(s) = (s + l)2(s + 2)2 = s4 + 6s3 + 13s2 + 12s + 4. This transfer function G(s)
was taken from page 444 in Kailath [68]. First notice that G is strictly proper, and thus,
D — (G)oo = 0. Recall that iip/d is a strictly proper rational function, then S(p/d] is also
a strictly proper rational function of the form q/d; see (7.66). Therefore, *H(G} C Hd where
T-id is the eight dimensional subspace of 72.+(C2) consisting of all strictly proper rational
functions </> of the form

, , s _ 1 f a3s
3 + a2s

2 + ais + a0
< f > ( S ) ~ d(s) [ b^ + b2s

2 + blS + bQ

where z — [0,3, 02, ai, ao, bs, 62, &i, ^o]tr is an arbitrary vector in C8. Clearly 0 and z
uniquely determine each other. So, we say that this z is the vector in C8 associated with 0 in
T-Cd- In fact, the mapping $0 = z defines a similarity transform from Hd onto C8. (Moreover,
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one can turn Tij into a Hilbert space by using the inner product (0, if)) = (z, g) where g is
the vector in C8 associated with ifj in H-d-} Hence, T~t(G) C "Hd corresponds to a subspace of
C8.

To obtain a matrix representation for the restricted backward shift realization, first let
ei = [l,0]tr and e2 = [0, l]tr. To find a basis {0.J? for H(G), set

^-V J t '1-^)[-s3-2s2-s

and let z\ be the vector in C8 associated with fa, that is,

zi = [0, 0, 1, 0, -1, -2, -1, 0]ir .

A simple calculation shows that (one can use deconv in Matlab); see [60].

i f s2 1
8(1)1 = d(7) [ 4s3 + 12s2 + 12s+ 4 j :=02

z2 = [0, 1, 0, 0, 4, 12, 12, 4]tr

where z2 is the vector C8 associated with 02- Now we use the fact that $ is a similarity
transform. Since z\ and z2 are linearly independent in C8, the vectors fa and 02 are linearly
independent in 7i(G). Applying S to fa yields

Sfa = -77-

where z?, is the vector in C8 associated with fa. Because {zi, z2, z^} are linearly independent
in C8, the vectors {fa, fa, fa} are linearly independent in T-t(G). Applying S to 0s gives

-6s3 - 13s2 - 12s - 4
~ d(s) [32s3 + 112s2 + 128s + 4

z4 = [-6, - 13, - 12, - 4, 32, 112, 128, 48]tr

where £4 is the vector in C8 associated with 04. Since {zi, z2. z3, 24} are linearly indepen-
dent, {0i, 02, 03, 04} are linearly independent in Ti.(G). Finally,

1 [ 23s3 + 66s2 + 68s + 24
~ d(s) [ -80s3 - 288s2 - 336s - 128

where z is the vector in C8 associated with 5*04. In this case, z is in the span of {z\, z%, z%,
z^}. In fact, z — —4^1 — 12^2 — 13-^3 — 624. Hence,

Sfa = -40i - 1209 - 1303 - 604 .

Therefore, {fa, fa, fa, fa} is a basis for span{,SnGei : n = 0, 1, 2, ...} ; see Lemma 7.6.1.
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Now let us continue on to the Ge2 component and set

1
d(s]

s3 + 2s2 + s
-s3 - 2s2 - s

z$ = [1, 2, 1, 0, - 1, - 2, - 1, 0]tr

where z5 is the vector in C8 associated with 05. Since {zi, z%, z$, z4, z5} are linearly
independent in C8, the vectors (0i, 02, 0s, 04, 0s} are linearly independent in Ji(G}.
Applying S to 0s yields

1 f -4s3 - 12s2 - 12s - 4
4s3 + 12s2 + 12s + 4505 =

d(S) I "*•> T J-^-5 -T i^» T *± j

g = [-4, -12, -12, -4, 4, 12, 12, 4]tr

where g is the vector in C8 associated with 505. Finally, g is in the span of
g = 22i + 5^2 + 4^3 + z4 - 2z5. Thus,

S05 = 20! + 502 + 403 + 04 - 205 .

In fact,

According to Lemma 7.6.1, the vectors {0j}f form a basis for 7~((G) — span{5fcGC2 : k > 0}.
Therefore, the state dimension of the minimal realization for G is five.

To find a matrix representation {A on C5, £?, C, 0} for the restricted backward shift
realization {A(G), B(G), C(G), 0} of G, let P be the similarity transformation from C5 onto
H(G] defined by

P = [01, 02, 03, 04, 05J •

Let A = P-1A(G}P and B(G) = PB and C - EP. Then {A,B,C,Q} is a minimal
realization of G. Because A(G) = S\H(G), we have

,4(600! = 02, 2 = 3,

= -40! - 1202 - 1303 - 604

= 201 + 502 + 403 + 04 - 205 .

Using PA = A(G)P it follows that

A =

The matrix for B is computed from G = PB along with Gei = 0i and Qe? — 0s, that is,
PB = G = [0i, 05]. So, B must be given by the above matrix. Finally, using the equation
C = EP = [E0i, £02, £03, £04, £0s], we obtain

" 0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

-4
-12
-13
-6

0

2 "
5
4
1

_2

and B =

" 1 0 "
0 0
0 0
0 0
0 1

c = 0 0 1 - 6 1
-1 4 -12 32 -1

Therefore, {A, B, C, 0} is a minimal realization of G.
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By mimicking the procedure in the previous example, one can readily compute a min-
imal realization {^4, B, C, D} for any proper rational function G = N/d with values in
£(Cm, C*) where A and B are upper triangular matrices of the form

A =

B =

' A1

0

0
0

*
0
0

0
0

* * .

A2 * .

0 0 .
0 0 .

bi * *
0 0 62

0 0 0

0 0 0
0 0 0

*
*

0

0
0

* *

* *

An-, *

0 An

'

* . . . * * *
* . . . * * *

T ,

0 . . . * * *
0 . . . 0 bn *

(7.69)

Here A* for j = 1,2, • • • , n are all companion matrices and the minimal polynomial rrij for
AJ divides d, that is, m^ = d for some polynomial QJ. (This follows from the fact that the
minimal polynomial for A divides d.} Moreover, the pair {Aj,bj} is controllable for all j.
Later we will show how one can use the upper triangular structure of A and B, to compute
a gain K to arbitrarily place the eigenvalues of A — BK at r locations in the complex place,
where r is the dimension of the state space for A.

Exercise 16 Find a minimal realization for the transfer function

G( . = s2 + 3s + 2
(S) s5 + 5s4 + 10s3 + 10s2 + 5s + 2 '

Exercise 17 Find a minimal realization for the 2 x 3 transfer function

G(s) =
1 1 2(s

s2 + 3s + 2 I 1 2(s + 1) 2

(7.70)

(7.71)

Exercise 18 Using the properties of the backward shift operator given in equation (7.66),
write a computer program to compute a minimal realization for any proper rational function
with values in £(Cfc,Cm).

Exercise 19 Let S be the backward shift operator on Tl+(y}. Then show that any complex
number A is an eigenvalue for S. Moreover, show that A is an eigenvalue with eigenvector /
for S if and only if

/(s) = (s - \}~ly
where y is a nonzero vector in
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7.7 Jordan form realizations

113

In this section we will obtain a minimal realization in Jordan form for a scalar valued transfer
function. To this end, let G be a proper rational scalar function given by the following partial
fraction expansion

7l , 72 7nG(s) - D +
S — Xo s — Xr

(7.72)

where {A.,}" are distinct scalars. Furthermore, we assume that 7i / 0 for all i. Notice that
this is equivalent to G(s) = p(s)/d(s), where p and d are two polynomials with no common
roots and d = n™(5 ~~ Aj). According to Proposition 7.1.3, the McMillan degree of G is n.
To obtain a minimal realization for G, let A be the diagonal matrix on C" and B the n x 1
column matrix and C the I x n row matrix defined by

A =

C =

A! 0
0 A2

0 0

1 1

and B =

7i
72

7n

(7.73)

Then it is easy to verify that {A, B, C, D} is a minimal realization of G. Clearly, {A, B, C, D}
is a realization of G, that is, G = C(sl — A)~1B + D. Because the McMillan degree of G
is n, this realization is minimal. The controllability and observability of {A, B, C, D} also
follows from the PBH test; see Proposition 5.2.2 and Proposition 4.2.2.

Jordan Models. In this section, we will use the partial fraction expansion to obtain a
minimal realization in Jordan form for a scalar valued transfer function with repeated roots.
Because computing repeated roots is numerically sensitive, the results in this section are
mainly of academic interest. To begin, let G be the scalar valued transfer function defined
by

71 , 72 7rG(s} =
s - A (s-A) '

(7.74)

with 7r ^ 0. To obtain a minimal realization for this transfer function, let J be the Jordan
matrix on Cr and B the r x 1 column matrix and C the 1 x r row matrix defined by

J =

C =

" A 1
0 A

0 0
. o o
1 0

0 .
1 .

0 .
0 .

0 • •

.. 0

.. 0

.. A

.. 0

• 0

0 '
0

1
A

o ]

and B —

7i
72

7r-l

7r

(7.75)
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We claim that {«/, B, C, 0} is a minimal realization of G. To see this, let
j = 1, 2, • • • , r. Then the inverse of si — J is given by

= (s — A) J for

0 0 0
0 0 0 0

(7.76)

To verify this simply notice that (si — J)M(s] — I where M(s) is the matrix on the right
hand side of (7.76). Using (7.76), it readily follows that {J, J5,C, 0} is a realization of G,
that is, G = C(sl — J}~1B. Since 7r is nonzero, Proposition 7.1.3 shows that r is the
McMillan degree of G. and thus, {J, B,C, 0} is a minimal realization of G. Now let us
directly verify that this realization is controllable and observable. Because 7r is nonzero the
rank of [ J — ///, B] equals r for all complex numbers JJL. By the PBH controllability test the
pair {J, B} is controllable. Notice that the kernel of

J - f j . 1
C

is zero for all complex numbers /i. By the PBH observability test the pair {C,,/} is observable.
Therefore, {J, B, (7, 0} is a minimal realization of G.

Let G be a scalar valued proper rational function of the form

where {A;}™ are distinct complex numbers and 7^ ^ 0 for i = 1, 2, • • • , m. This implies
that G = p/d where p and d are co-prime polynomials and

(7.78)

Proposition 7.1.3 shows that the McMillan degree of G equals n = ^Ci"7"*- We claim that a
minimal realization for G in Jordan form is given by {A on Cn, B, C, D} where

A = d i a g ( J i , . / 2 , - - - , . / m ) , (7.79)

Ji is the Ti x 7"j block Jordan matrix corresponding to A;. The matrix B is the n x 1 column
vector given by

5 = [ 7U • • • 7i,ri 72,1 • • • 72,r2

The matrix C is the I x n row matrix given by

£7 = 51 5o • • • 5m _ 1 5-

(7.80)

(7.81)
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where 8j — [1,0,0, • • • , 0] is the 1 x TJ row vector defined by placing one in the first position
and zeros everywhere else. Using (7.76), one can readily verify that

G(s) = C(sI-A)~lB + D.

Therefore, {A, B, C, D} is a realization of G whose state dimension equals n. Because the
n is also the McMillan degree of G, we immediately see that {A, B, C, D} is a minimal
realization of G. In particular, {A, B, C, D} is controllable and observable. One can also
use the PBH tests to show that this system is controllable and observable. Since 7,̂  ^ 0
for i = 1,2, • • • , m, the rank of [A — A/, B] equals n for all complex numbers A. By the PBH
controllability test the pair {A, B} is controllable. Notice that the kernel of

A -XI
C

is zero for all complex numbers A. By the PBH observability test the pair {C,A} is observ-
able.

Exercise 20 Let G be a proper rational function with values in C(U,y) given by the
following partial fraction expansion

(7.82)

where {A;}™ are distinct scalars and {Fj}" is a sequence of operators with values in L(U, y).
Furthermore, assume that F, 7^ 0 for all i. Let F; = CiB-i be any factorization of Fj where
the operator Bi mapping U into Xi is onto and the operator d mapping Xi into y is one
to one. In fact, one can use the singular value decomposition to compute this factorization.
Let A be the block diagonal matrix on ®"^ and B the block column matrix from U into
®"Xi and C the block row vector from ©"A'j into y defined by

A =

" A!/!
0

0
r \ C1
C - 1 Ci

0 • •
A2/2 • •

0 • •

C2 • •

• 0
• 0

' \Jn

• Cn ]

and B =

Bn

(7.83)

(The identity on Xi is denoted by /,.) Then show that {A, B, C, D} is a minimal realization
forG.

Exercise 21 Consider the following transfer function

~, . 3 5 -2
+v ' s-I (s + 2)2 ' s + 2

Find a minimal realization for G in Jordan form.

+ \3 ' (7.84)
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7.8 Notes

The shift operator plays a fundamental role in operator theory; see Gohberg-Goldberg-
Kaashoek [55], Nikolskii [94] and Sz.-Nagy-Foias [120]. The shift operator also plays a basic
role in interpolation theory; see Foias-Frazho [39], Foias-Frazho-Gohberg-Kaashoek [41] and
Rosenblum-Rovnyak [104]. The restricted backward shift realization presented in Section 7.1
was taken from Fuhrmann [47] and Helton [62]. The shift operator and the backward shift
realization is also used to solve infinite dimensional realization problems in Hilbert space;
see Fuhrmann [47] for a history of this subject area and further results. Shift operators
can also be used to solve a bilinear realization problem; see Frazho [45], Wong [128] and
Rugh [110]. For a more classical approach to realization theory see Chen [26], Kailath [68],
Rugh [110] and Skelton [114]. Bart-Gohberg-Kaashoek [12] uses realization theory to solve
some factorization problems in operator theory. Finally, our approach to the Kalman-Ho
algorithm was taken form Damen-Van den Hof-Hajdasinski [32] and Kalman-Falb-Arbib [73].
A special type of realization introduced by Moore [91], and called balanced realizations, are
used to solve model reduction problems. For some results on model reduction and balanced
realizations see Zhou-Doyle-Glover [131].

Model reduction plays an important role in applications. A stable realization {A, B, C, D}
is balanced if it has the same controllability and observability Gramian A where A is a diagonal
matrix consisting of decreasing entries, that is,

AA + AA* + BB* = 0 and A" A + AA + C*C = 0

where A is a diagonal matrix of the form A = diag {<jj} and a\ > a^ > • • • > crn. Any stable
minimal realization can be converted to a balanced realization by a similarity transformation.

For a simple model reduction procedure based on a balanced realization, consider the
transfer function G determined by the minimal stable state space system {A on X, B, C, D}
whose state dimension is n. To convert this system to a balanced realization, let P be the
observability Gramian for the pair {C,A}. Recall that P is determined by the Lyapunov
equation

A*P + PA + C*C = Q. (7.85)

Because A is stable and the pair {C, A} is observable, P is strictly positive. Let P1/2 be the
positive square root of P. Multiplying both sides of equation (7.85) by P""1/2, we obtain

/2) + p-1/2c-*cp-1/2 = 0.

Now let {Ai, BI.CI, D} be the realization determined by

Al = pV*AP-1/2, B! = P1/2B, and C, = CP~1/2 .

Since {Ai, B\,C\,D} is similar to {A, B, C, D}, the system {Ai,Bi,C\, D} is also a minimal
realization for G. Moreover, by construction the identity operator / is the observability
Gramian for {C\,Ai}, that is, A\ + A\ + C\C\ = 0.

Let Q be the controllability Gramian for the pair {Ai, P>i}, that is,

A1Q + QA\ + B1BI = Q. (7.86)
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Because A\ is stable and the pair {A±,Bi} is controllable, Q is strictly positive. Let Q =
C/*A2C/ be the spectral decomposition for Q where U is a unitary operator from Cn onto X
and A2 = diag{cr2}™ is a diagonal matrix on C" satisfying a\ > a2 > • • • > crn. Notice that
{cr2}™ are the eigenvalues of Q. By employing this decomposition in (7.86), we arrive at

(UAiU*}^ + A2(£MitT)* + UBiBlU* = 0.

Now let {A?, B2,C2, D} be the realization determined by

A2 = UAiU*, B2 = UBi, and C2 = CiU*.

Since {A2,B2,C2,D} is similar to {Ai,Bi,C\,D}, the system {A2,B2,C2,D} is a minimal
realization for G. Moreover, by construction the operator A2 is the controllability Gramian
for {A2,B2}, that is, A2A2 + A2A2 + B2B2 — 0, and / is the observability Gramian for
{C2, A2}, that is, A2 + A2 + C2C2 = 0. To obtain the final similarity transformation observe
that

(A-1/2A2A1/2)A
(A-1/2A2A1/2)*A +

Now let {As, .83,63, D} be the minimal realization determined by

A3 = A~1/2^2A1/2, 53 = A-1/2
JB2, and C3 = C.A1/2.

Then {^3, Bs,Cs, D} is a balanced minimal stable realization for G. Moreover, A is the
controllability and observability Gramian for {A3, B3,Cs,D}, that is,

^3A + AA*3 + BzBl = 0 and A^A + AA3 + C£C3 = 0.

Finally, it is noted that {^3, B3, C3, D} is similar to {A,B,C,D}.
To complete this model reduction procedure, let r be an integer in [l,n]. Consider the

following matrix decompositions of A3, B3 and C3

AU i r cr i D r 5
4 on <T^-r ' ^3= o21 ^22 ML ±J2

03 = [ Or L/i2 J

Then {Ar, Br, Cr, D} is a reduced order model of dimension r for the system {^4, B, C, D}.
Finally, let Gr be the r dimensional realization corresponding to {Ar,Br,Cr, D}. Then
Gr can be used as a r dimensional reduced order model for the transfer function G. This
reduced order model is fairly accurate when ar is much larger than <JT+\ ; see Glover [52] and
Zhou-Doyle-Glover [131] for further results on model reduction.





Chapter 8

State Feedback and Stabilizability

This chapter is devoted to state feedback and stabilization of linear systems. Lyapunov
techniques are used to show that a state space system is stabilizable if and only if all of its
uncontrollable eigenvalues are stable. Then state feedback is used, on a controllable system,
to place the eigenvalues of the corresponding closed loop system at a set of specified locations
in the complex plane.

8.1 State feedback and stabilizability

In this section we introduce the concept of state feedback. To this end, consider the system

x = Ax + Bu. (8.1)

As before, A is an operator on X while B maps U into X'. The spaces X and U are finite
dimensional. Suppose that the open loop system x = Ax is unstable. A natural question
is the following: Can one choose a controller generating the control input u such that the
resulting system is stable, that is, x(t) approaches zero as t tends towards infinity. As will be
seen later in the chapter, we do not have to consider controllers that are nonlinear functions
of the state to solve this problem. A first natural choice for a controller is simply given by
u(t) = —Kx(t] where K is an operator from X into U. In this case, u(t) is a linear function
of the state x(t) at each instance of time £, and thus, u(t) = —Kx(i) is called a static (or,
memoryless) state feedback controller. The operator K is called the gain and the minus sign
is a convention. This leads to the following question. Can we find an operator K such that
A — BK is stable? Motivated by this we say that the system in (8.1) is stabilizable if there
exists an operator K from X into U such that A — BK is stable. Finally, we say that the
pair {A, B} is stabilizable if the system in (8.1) is stabilizable.

A related question is, under what conditions is the pair {A, B} stabilizable? In Section 8.2
we will use Lyapunov techniques to show that if (A, B} is controllable, then it is stabilizable.
In subsequent sections, for a controllable pair {A, B}, we will develop a procedure to compute
a gain K which places the eigenvalues of A — BK at any n specified locations in the complex
plane, where n is the dimension of the state space. This will provide us with a computational
method for stabilization and solve a classical eigenvalue placement problem.

119
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Notice that controllability is not necessary for stabilizability, that is, it is possible for a
system to be stabilizable but not controllable. To see this, consider a system with A stable
and B equal to zero. For a system which is neither controllable nor stabilizable, consider
A = I and B = 0. The following example illustrates how certain eigenvalues of A play a role
in stabilizability.

Example 8.1.1 Consider the system x = Ax + Bu where

0 1 , „ [ 0
oj and B=[i

Clearly, this system is uncontrollable. For any gain K = [k± A;2], the matrix

a 0
A - BK = ,

— K\ —

has eigenvalues a and — /c2- Notice that regardless of the gain K, the eigenvalue a of A is also
an eigenvalue of A — BK. So, if a > 0, then the pair {A, B} is not stabilizable. However,
if a < 0, then A — BK is stable for k^ > 0. In this case, the pair {A, B} is stabilizable.

8.2 Simple stabilizing controllers

In this section we use Lyapunov techniques to obtain simple stabilizing controllers for control-
lable systems. Throughout this section (yl, B} is a controllable pair where A is an operator
on X and B is an operator from U into X . To begin, consider any positive t\ > 0 and let

o /-ti
eMBB*eA't dt = e'^BB^-^1 dt . (8.2)

The above operator can be regarded as the finite time controllability Gramian over the
interval [0,ti] associated with {—A, B}. Since {.4, B} is controllable, Q is strictly positive;
see Theorem 5.3.2. We now show that the state feedback gain K — B*Q~~l yields a stable
closed loop operator A — BK, that is, this gain results in a stabilizing controller. Using the
fact that the derivative of eAt is AeAt, we obtain

f °
AQ + QA* = / [AeMBB*eA't + eAtBB*eA"tA*] dt

J-ti

° d(eMBB*eAft] A. ...
-^ - - - >-dt = BB* -e~MlBB*e-Atl .

-tl dt

This yields the following Lyapunov equation

AQ + QA* - BB* = -e~AtlBB*e-A'tl .

By combing this equation with A — BK — A — BB*Q~l, we have

(A - BB*Q~l}Q + Q(A - BB*Q~1}* = AQ + QA* - 2BB* =
-BB* - e-

MlBB*e-A'tl = -BB*
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where B = [B e~AtlB}. Hence, we obtain the Lyapunov equation,

(A - BB*Q~l}Q + Q(A - BB*Q~1)* + BB* = Q.

Because {A, B} is controllable, Lemma 6.4.2 shows that the pair {^4 — BB*Q~l, B} is also
controllable. This readily implies that {A — BB*Q~1, B} is controllable. Since Q is strictly
positive, the previous Lyapunov equation, shows that A — BK is stable; see Theorem 5.4.2.
By summing up this analysis we arrive at the following result.

Proposition 8.2.1 If {A, B} is a controllable pair, then {A, B} is stabilizable. In this case,
if Q is the strictly positive operator defined in (8.2) and K = B*Q~l, then K is a stabilizing
gain, that is, A — BK is stable.

Remark 8.2.1 Consider any a > 0 and any finite t\ > 0. Let
ft

=
Jo

dt.

First notice that the controllability of {A , B} along with the PBH controllability test readily
shows that the pair {A + al, B} is controllable. Repeating the above analysis with A + al
replacing A shows that Qa is positive and invertible. Moreover, the gain K = B*Q~l

results in A + al — BK being stable. Hence, all the eigenvalues of the closed loop operator
A — BB*Q~l have real parts strictly less than —a < 0. In particular, A — BB*Q~1 is stable.
Notice that by using this control algorithm, one can place the eigenvalues of the closed loop
system to the left of any vertical line in the complex plane.

To complete this section, let us use Lyapunov techniques to present another method to
construct a stabilizing controller. To this end, consider now any a > 0 such that all the
eigenvalues of —A — al have nonzero negative real parts, that is, —A — al is stable. For
example, choosing a > \\A\\ will suffice. (This follows because the norm of any operator
is greater than or equal to the magnitude of its eigenvalues.) Then Qa is well defined for
t\ = oo and is given by

?«= n = /
Jo

dt.
o

Since Qa is strictly positive for all finite t\ and is a non-decreasing function of t\, it follows
that fi is positive and invertible. Because —A — al is stable, f2 is the unique solution to the
Lyapunov equation

(-A-aI)tt + tt(-A-aI)* + BB* = 0. (8.3)

As expected, the state feedback gain K = B*^1 yields a stable closed loop state operator
A — BK. To see this, notice that

(A - BB*Sl~l + a/)n + Sl(A - BB*Sl~l + al)* + BB* = 0.

Since the pair {—A — al, B} is controllable, it follows that {A — BB*ft~l + al, B} is also
controllable. The above Lyapunov equation and the strict positivity of fi imply that the
operator A — BB*£l~l + al is stable. Hence, all the eigenvalues of the closed loop operator
A — BB*Q~l have real parts strictly less than —a < 0. In particular, A — BB*£l~l is stable.
Finally, notice that the state feedback controller with gain K = B*^'1 can be readily
computed by solving the Lyapunov equation in (8.3).
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8.3 Stabilizability and uncontrollable eigenvalues

As before, let A be an operator on a finite dimensional space X and B an operator from a
space U to X. Recall that the controllable subspace Xc for {A, B} is the invariant subspace
for A defined by

Xc = span{AkBU: k = 0,1,2, • • • } . (8.4)

The uncontrollable subspace X5 for {^4, J5} is the orthogonal complement of the controllable
subspace Xc. So, the uncontrollable subspace Xd is an invariant subspace for A*. Recall also
that A is an uncontrollable eigenvalue for the pair {A, B} if there is a nonzero vector v in Xc

such that A*v = Xv. Thus, A is an uncontrollable eigenvalue for the pair {A, B} if and only
if A is an eigenvalue for the operator Ac on Xc defined by A*x = A*x for x G Xc. We say that
an eigenvalue A for A is stable if 5ft(A) < 0. Notice that a is an uncontrollable eigenvalue
of the pair {A, B} in Example 8.1.1, and a is also an eigenvalue of the matrix A — BK for
every gain K. Motivated by this example, we present the following result.

Lemma 8.3.1 / /A is an uncontrollable eigenvalue for {A, B}, then A is an eigenvalue of
A — BK for every gain operator K.

PROOF. To see this, recall that if A is an uncontrollable eigenvalue of {A, B}, then there
exists a nonzero vector v in Xc such that A*v = Xv. Since Xc is orthogonal to the range of
B, we must have B*v = 0. So, for any gain matrix K, we obtain

(A - BK)*v = Xv

that is, A is an eigenvalue of (A — BK)*. Hence, A is an eigenvalue of A — BK. So, regardless
of the state feedback gain, A is always an eigenvalue of A — BK. Therefore, we cannot alter
this eigenvalue by feedback. •

If A is an uncontrollable, unstable eigenvalue for the pair {A, B}, then Lemma 8.3.1
shows that {A, B} is not stabilizable. In other words, if {A, B} is stabilizable, then all of
its uncontrollable eigenvalues are stable. This proves part of the following result.

Theorem 8.3.2 A pair {A, B} is stabilizable if and only if all of its uncontrollable eigen-
values are stable.

PROOF. We present a proof of this fact based on the decomposition of the state space X
into the controllable subspace Xc and the uncontrollable subspace Xc. To this end, recall
that A admits a matrix representation of the form (see Section 6.2)

AC * i . r xc ] r xc ]
n 4 ' ;v —' \ y \ ' \ >u AC \ [_ KC \ i *c \

Here Ac is the operator on Xc defined by Ac = A\XC and Ac is the compression of A to Xc.
Clearly, the uncontrollable eigenvalues for the pair {A, B} are precisely the eigenvalues of
AC. Furthermore, the operator B admits a matrix representation of the form

• (8.6)
A.7.
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Recall that the pair {Ac, Bc} is controllable. If K is any gain operator, then it has a matrix
representation of the form

[Kc Ks]: — > W . (8.7)
I A-c \

Hence, A — BK has the following matrix representation

(8.8)

From this representation, we see that the eigenvalues of A — BK are the union of the
eigenvalues of Ac — BCKC and Ac. Hence, regardless of K, the eigenvalues of AC are always
contained in the eigenvalues of A — BK.

Furthermore, since the pair {Ac, Bc} is controllable, there exists a state feedback Kc such
that Ac — BCKC is stable; see Proposition 8.2.1. Hence, except for the eigenvalues of Ac, all
eigenvalues of A — BK can be placed somewhere in the open left half plane. In particular,
if all the eigenvalues of AC are stable, then K can be chosen so that all the eigenvalues of
A — BK are also stable. This completes the proof. •

Using Lemma 5.2.1, we obtain the following useful result.

Corollary 1 (PBH stabilizability result.) The pair {A on X , B} is stabilizable if and only

^f
rank [ A - A7 B ] = dim X

for every complex number A in the closed right half plane.

8.4 Eigenvalue placement

Recall that a system x = Ax + Bu or the pair {A, B} is a single input system if its input
space U is one dimensional. The system x = Ax + Bu or the pair {A, B} is scalar input if
U = C1. Obviously, any single input system can be identified with a scalar input system. In
this section, for single input systems, we use controllability of the pair {A, B} to develop a
procedure to compute a gain K, which places the eigenvalues of A — BK at any n specified
locations in the complex plane where n = dim X. This will provide us with a computational
method for stabilization and solve a classical pole placement problem.

8.4.1 An eigenvalue placement procedure

Consider first any pair {^4, B} where A is on X while B maps U into X. The spaces X and
U are finite dimensional and of arbitrary dimension. If K is any operator from X into U, we
claim that

det[s7 -A + BK]= det[s/ - A] det[7 + K(sl - A)~1B] (8.9)

where det denotes determinant. To verify this recall that if M and N are two finite dimen-
sional operators acting between the appropriate spaces, then det[7 + MA7] = det[7 + JVM].
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Using this, we obtain

det[sI-A + BK] = det[(sl - A) (I + (si - A)~1BK]
= det[sI-A]det[I + (sI- A}~1BK}
= det[sI-A]det[I

Therefore, (8.9) holds.
Finally, it is noted that if the input space U is one dimensional, then (8.9) reduces to

det[s/ - A + BK] = det[sl - K(sl - (8.10)

Equation (8.15) shows that, for a single input pair {A, B}, the coefficients of the character-
istic polynomial for A — BK are affine in K.

Let {A, B} be a controllable single input system where n is the dimension of the state
space X. To complete this section we will develop a method to compute a gain K which
places the eigenvalues of A — BK at any n specified location in the complex plane. In
particular, this shows that any single input controllable pair is stabilizable.

Theorem 8.4.1 Let {A, B} be a single input controllable pair where n is the dimension of
the state. Let d be any monic polynomial of degree n. Then there exists a state gain K such
that d is the characteristic polynomial for A — BK. In particular, there exists a gain K
which places the eigenvalues A — BK at any specified n locations in the complex plane.

PROOF. If d is any monic polynomial of degree n, we need to show that there exists a gain
K such that d is the characteristic polynomial for A — BK, that is,

d(s) = det[s/ - A + BK].

Recalling (8.10) we need to show that there exists a gain K such that

d(s) - d(s)
K(sl - A)~1B =

d(s)
(8.11)

where rf(s) = det[s/ — A] is the characteristic polynomial of A. Let

rf(s) = 0,0 + ais + • • • + an_isn~~ + s"

rf(s) = GO + GIS + • • • + an_isn~ + 5n .

It now follows from Lemma 1.3.5 that (8.11) holds if and only if

[ KB KAB • • • KAn~lB ] T = [ a0 - a0 ai - ai • • • a.

where T is the invertible Hankel matrix given by

T =

a\ a-2 •
&<2 QS

0.3 0.4

0-n-l 1

1 0 .

• Qn-2

• an_i
1

• 0
. 0

On-l

1

0

0
0

1 "
0
0

0
0
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Without loss of generality we can assume that U = C1. Let W be the controllability operator
from Cn into X defined by

W=[B AB ••• An~lB ] . (8.14)

Then condition (8.12) on K reduces to

KWY — [ a0 - aQ 0,1-0,1 • • • an_! - an_i ] .

Because the pair {A, B} is controllable, W is invertible. This readily implies that the gain
K is uniquely given by

K = [ a0 - OQ ai — ai ••• an_i - an_i ] T^VK"1. (8.15)

Notice that the gain K is uniquely determined by the coefficients {flijo"1 of the desired
characteristic polynomial for A — BK. So, if d is any monic polynomial of the form d(s) =
CQ + ais + • —h an-is

n~1 + sn, and the gain K is given by (8.15), then d is the characteristic
polynomial for A — BK. •

As before, let {A, B} be a single input controllable pair with state space dimension n. Let
{ AJ}™ be any n specified numbers in the complex plane and d — a® + ais4- • • • + an^isn~l + sn

be the polynomial uniquely determined by d(s) = YYi(s ~ -M- ^ K IS the gain computed in
(8.15), then d is the characteristic polynomial for A — BK and {A;}" are the eigenvalues for
A-BK.

8.4.2 Ackermann's Formula
The following lemma provides another method for computing a state feedback gain K to
assign prescribed eigenvalues to A — BK.

Lemma 8.4.2 (Ackermann's Formula [1]) Suppose {A,B} is a scalar input controllable
pair with state dimension n and d is any monic polynomial of degree n. Let K be the gain
matrix defined by

K=[0 0 • • • 0 1 ]W~ld(A). (8.16)

where W is the controllability matrix defined in (8.14). Then d is the characteristic polyno-
mial for A — BK.

PROOF. Let v = [ 0 0 • • • 0 1 ] W~l. Then vW = [ 0 0 • • • 0 1 ], that is,

vA>B = 0 for j = 0,1, • • • , n - 2
vAn~lB = 1.

It now follows from Lemma 1.3.1 that v(sl — A)~1B = l / d ( s ) where d is the characteristic
polynomial for A and

vAj(sI - A)~1B = s j / d ( s ) for j = 0,1, • • • , n - 1 (8.17a)
vAn(sI - A)'1B = sn/d(s}-l. (8.17b)
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Letting d(s) = ao + ai« + - • • + an_isn~1 + sn and noting that K = vd(A), relationships (8.17)
imply that

K(sI~A)~lB = vd(A)(sI-A)~lB

= V a;vAj(sI - A]~1B + vAn(sI - AY^B
/ ^r J \ ' v '

J=0

n-l

~~ / CijS ICi^Sj ~\~ S ICl\^SJ 1

j=0

- d(s)/d(s)-l

that is, (8.11) holds. By the proof of Theorem 8.4.1, this is equivalent to det[s/ — A + BK] =
d ( s ) , that is, d is the characteristic polynomial for A — BK. •

Exercise 22 Consider the system described by

Xi = X-2 + U

Xo = x^ + u .

(a) Is this system stabilizable?

(b) Does there exist a state feedback controller K which results in closed loop eigenvalues
{-l,-2}? If so find one.

(c) Does there exist a linear state feedback controller which results in closed loop eigen-
values {—2, —3}? If so find one.

8.5 Controllable canonical form
This section is devoted to the controllable canonical form for scalar input systems. We say
that the pair {A, B} or the system x = Ax + Bu is in controllable canonical form if A and
B are matrices with the following structure:

A =

' 0
0

0
— a0

1
0

0
-ai

0 •
1 •

0 •
-a2 •

0
0

0
• -an_2

0 '
0

1

-fln-1 .

and B —

' 0 "
0

0
L i .

(8.18)

In particular, if the pair {^4, B} is in controllable canonical form, then A is a companion
matrix. We previously encountered the controllable canonical form when we constructed
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state space realizations for scalar valued transfer functions; see (1.48). Finally, recall that
the characteristic polynomial for A is given by

det[s/ — A] = ao + an_1s (8.19)

So, given any monic polynomial d(s) — ao + dis + • • • + an_is" l + sn there exists a unique
controllable canonical pair {A, B} such that d is the characteristic polynomial for A. In this
case we say that {A, B} is the controllable canonical pair determined by d. Obviously, there
is a one to one correspondence between the set of all controllable canonical pairs and the set
of all monic polynomials.

We claim that any pair {A, B} in controllable canonical form is controllable. To see this,
notice that the controllability operator for the pair {A, B} in controllable canonical form is
given by

W=[B AB ••• An-lB ] =

0 0
0 0

0 1
1 *

0 1
1 *

* *
* *
* *

(8.20)

where the * entries are unspecified. Since this matrix has rank n, the pair {A, B} is control-
lable.

Recall that, for a controllable single input pair {A,B}, one can arbitrarily assign the
eigenvalues of A — BK by appropriate choice of the gain matrix K. We now show that this
can easily be demonstrated when {.A, B} is in controllable canonical form. This will play a
major role in developing another algorithm to arbitrarily assign the eigenvalues of A — BK
for any controllable single input pair.

Let {A on Cn, B} be in controllable canonical form, and consider any n specified complex
numbers {Aj}™. Now consider the problem of finding a gain matrix K from Cn into C1 such
that {Aj}™ are the eigenvalues of A — BK. To solve this eigenvalue placement problem, let

d(s) = sn -t- • • • + ais + a0 = JJ(s — AJ) (8.21)

be the unique monic polynomial whose roots are the desired closed loop eigenvalues {A.,}".
Introducing the 1 x n gain matrix

K =• [ ao — ao ai — ai • • • an_i — an_i

where ao, a\, • • • , an-i are given by the last row of A, we obtain

• o
0

0
. -a0

1
0

0
-ai

0 •
1 •

0 •

-02 •

0
0

0
• • -an-2

0 "
0

1
-an-i .

(8.22)

(8.23)
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Because A — BK is a companion matrix, d is the characteristic polynomial for A — BK.
Hence, {Aj}" are the eigenvalues for the closed loop system matrix A — BK. By this method,
we can arbitrarily assign the eigenvalues of A — BK.

8.5.1 Transformation to controllable canonical form
In the last section, we saw that if a scalar input pair (A, B} is in controllable canonical form,
then one can easily place the eigenvalues of A — BK by appropriate choice of a gain matrix
K. Now consider any single input pair {A on X, B} which is controllable and let n be the
dimension of X. We will show that {A, B} is similar to a pair {A on C™, B} in controllable
canonical form, that is, there is an invertible operator T from C" onto X satisfying

AT = TA and B = TB. (8.24)

In this case, we say that T intertwines {A,B} with {A, B}. From this we will obtain an
alternative proof of the fact that, for any single input controllable pair {A,B}, one can
arbitrarily place the eigenvalues of A — BK by the appropriate choice of a gain matrix K.

First consider any single input pair {A, B} with the property that it is similar to a pair
{A, B} which is in controllable canonical form, that is, (8.24) is satisfied with some invertible
operator T. Using the first equation in (8.24) one can readily show that, for all integers k > 0,
one has AkT = TAk, and hence, AkB = AkTB = TAkB. This implies that

W = TW (8.25)

where W and W are the controllability matrices associated with {^4, B} and {A, B}, respec-
tively, that is,

W = [ B AB ••• An~lB ] and W = [ B AB ••• An~lB } . (8.26)

Since {A, B} is controllable, the operator W is invertible. The equation W = TW also
shows that W is invertible, and thus, the pair {A, B} is controllable. Furthermore, this
equation also shows that

T=WW~l (8.27)

is the only operator which intertwines {A, B} with {A, B}. Finally, since A and A are
similar, they have the same the same characteristic polynomial.

Now consider any single input controllable pair {A on X, B} whose state dimension is
n. Let {A on C", B} be the unique pair in controllable canonical form such that A has
the same characteristic polynomial as A. Since, {A, B} and {A, B} are controllable, their
respective controllability operators W and W are invertible. So, the equation W = TW
uniquely defines an invertible operator T. We now show that T intertwines {A, B} with
{A,B}} that is, (8.24) holds. First notice that W = TW and the structure of W and W
imply that B — TB and

AkB = TAkB (for fc = 0 , l , - - - , n - l ) .

Since A and A have the same characteristic polynomial, it follows from the Cayley-Hamilton
Theorem that AnB = TAnB; hence AW = TAW. Recalling the definition of T, we now
obtain that ATW = AW = TAW. Since W is invertible, we have that AT = TA. Therefore,
{A, B} and {A, B} are similar. Actually, we have just proven the following result.
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Theorem 8.5.1 Let {A,B} be a scalar input controllable pair with state dimension n and
let

det[sJ - A] = sn + an_isn~l H h ais + a0 (8.28)

be the characteristic polynomial of A. Suppose {A, B} is the unique pair in controllable
canonical form determined by the characteristic polynomial of A. Then {A, B} is similar
to {A, B}. Furthermore, the similarity transformation T intertwining {A, B} with {A,B}
is uniquely given by T — WW~l where W and W are the controllability matrices in (8.26)
associated with {A,B} and {A,B}, respectively.

A recursive algorithm. As before, suppose that {A on X, B} is a scalar input control-
lable pair with state dimension n. Let (A, B} be the unique pair in controllable canonical
form which is similar to {A, B}, that is

A =

• o
0

0

1
0

0

0 •
1 •

0 •

0
0

0

0 "
0

1

and B = (8.29)

where d(s) = sn + an_isn l + • • • + ais + ao is the characteristic polynomial of A. Due to
the structure of {A, B} one can obtain a simple recursive algorithm to compute the state
transformation T : Cn —> X which intertwines {A, B} with {A, B}.

To this end, consider the following decomposition:

rri (8.30)

where {</>;}" are vectors in X. Let {ej}" be the standard basis for Cn, that is, the i-th
component of 6j is one while all the other components are zero; then 0f = Te, for i = 1, • • • , n.

Using B 1 = en and TB = B, we have (j)n = Ten = TB 1 = B I . Hence, 0n = b where
b = Bl. By employing the companion structure of A, we obtain that Aen = en_i — an_ien.
Since AT = TA, it follows that

A(f>n = ATen = TAen = Ten_i - an_iTen = 0n_i - an_i</>n .

Therefore, 0n_i = A0n + an_i6. In a similar fashion, we have

A0n_i = ATen_i = TAen_i = Ten_2 - an_2Ten = 0n_2 - an_20n •

Thus, 0n_2 = A(f)n-\ + an-2 b- An inductive argument shows that

4- ai_x (for i = n, n — 1, • • • , 2).
(8,31)

Therefore, the invertible operator T intertwining {A, B} with {A, B} is given by (8.30) where
the "columns" are recursively computed by (8.31).
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8.5.2 Eigenvalue placement by state feedback
We are now in a position to use the controllable canonical form to develop an algorithm which
arbitrarily places the eigenvalues of A — BK for a scalar input controllable pair [A on X , B}.
To this end, n be the dimension of X and let {Ai}" be n specified complex numbers. As
before, let

n

d(s) = sn + an~isn-1 + • • • + ais + a0 = JJ(s - A,) (8.32)
t=i

be the unique monic polynomial whose roots are the desired closed loop eigenvalues {Aj".
Let T = WW~l be the invertible operator specified in Theorem 8.5.1 which intertwines
{A, B} with {A, B}. Finally, consider the 1 x n real gain matrix

ao ai — ai • • • an_i — an_i ] T"1 (8.33)

where the characteristic polynomial for A is given in (8.28). Notice that K = KT~l where
K is the gain matrix which guarantees that d is the characteristic polynomial for A — BK.
Using K = KT~l , we have (A - BK}T = T(A - BK}. Hence, the operators A - BK and
A — BK are similar, and thus, have the same characteristic polynomial d. In other words,
{Ai}" are the eigenvalues of A — BK. We have just presented another proof of the result
that one can arbitrarily place the eigenvalues of A — BK for a scalar input controllable
pair {A, B}. Summing up this analysis readily yields the following eigenvalue placement
algorithm for scalar input controllable systems.

Theorem 8.5.2 Let {A on X, B} be a scalar input controllable pair with state dimension
n. Let T be the similarity transformation intertwining the controllable canonical pair {A, B}
with {A, B} computed according to Theorem 8.5.1. Let {Ai}" be a specified set of complex
numbers and K the operator from X into C1 determined by (8.28), (8.32) and (8.33). Then
{A,}™ are the eigenvalues of A — BK.

8.6 Mult [variable eigenvalue placement
This section uses an upper triangular matrix representation to place the eigenvalues of a
finite dimensional controllable system at a specified location in the complex plane. We begin
with the following multi-input version of Theorem 8.5.2.

Theorem 8.6.1 (Eigenvalue placement theorem.) Assume that {A on X, B} is a control-
lable pair with state dimension n. Let {Aj}™ be a set of n complex numbers. Then there
exists a gain K such that

n

det[s/ -A + BK] = JJ(s - A,) . (8.34)

In this case, {A,,-}" are the eigenvalues of A — BK. In particular, if d is any monic polynomial
of degree n, then there exists a gain K such that d is the characteristic polynomial for A — BK .
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It follows from the above theorem that controllability implies stabilizability.
We also claim that if one can use state feedback to place all the eigenvalues of A — BK

at any dim X points in the complex plane, then the pair {A, B} is controllable. To see this
simply recall that if {A, B} is not controllable, then the uncontrollable eigenvalues of {A, B}
are not changed by state feedback. In this case, state feedback cannot be used to arbitrarily
place all the eigenvalues of A — BK, which proves our claim. Combining this with Theorem
8.6.1, yields the following result.

Theorem 8.6.2 Consider the pair {A, B} with state dimension n. Then {A, B} is control-
lable if and only if for every set {Xj}i of n complex numbers there exists a state feedback K
such that the eigenvalues of A — BK are {Aj}"

PROOF OF THEOREM 8.6.1. Let U be the input space for the controllable pair {A , B}. Let
HI be any vector in U such that bi = Bu\ is nonzero. Let X\ be the subspace spanned by
{Akbi}^. Clearly, X\ is an invariant subspace for A. Let X\ be the orthogonal complement
of X\. Then A admits a matrix representation of the form:

Here A\ is the operator on X\ denned by A\ — A\X\. The operator A\ is the compression
of A to Xi, that is, A\ — P\A\X\ where P\ is the orthogonal projection onto X\. Let U\ be
the one dimensional space spanned by u\. Let B\ be the operator from IA\ into X\ defined
by BI — B\U\. Since Bu\ is cyclic for A\, it follows that the pair {A\,B\} is controllable.
(Recall that a vector b is cyclic for an operator T on X if {Tkb}^ spans all of X.) According
to this decomposition the operator B admits a matrix representation of the form:

0 BI

where U\ —UQU\. Since {A , B} is controllable and

^=[T
for all integers k > 0, it follows that the range of BI is cyclic for A\. (As expected, a subspace
B is cyclic for an operator T on X if {Tfc#}o° spans all of X.) Therefore, the pair {Ai, BI}
is also controllable.

Now assume that X\ is nonzero. If X\ is zero, then {A, BI} is a single input controllable
pair. In this case, Theorems 8.4.1 and 8.5.2 show that there exists a state feedback gain K
from X into U\ which places the eigenvalues of A — B\K at any n specified locations in the
complex plane. Since BI = B\li\, it follows that this feedback K can also be used to place
the eigenvalues of A — BK at the same n locations in the complex plane. Hence, Theorem
8.6.1 follows from Theorem 8.5.2 when X\ equals zero. So, assume that X\ is nonzero. Then
we can apply the previous procedure to decompose the controllable pair {A\, BI} into upper
triangular block matrices. To this end, let u^ be a vector in U.\ such that 62 — B\u^ is
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nonzero. Let X2 be the subspace of X\ generated by the span of {A^}^. Let A2 be the
operator on X2 defined by A2 = A\X2. Then AI admits a matrix representation of the form:

A2 *
„ 70 A2

on

Here X2 = X\ 0 X2 and A2 is the compression of A\ to X2. Let U2 be the one dimensional
space spanned by u2, and U2 be the orthogonal complement of U2 in U\. According to this
decomposition the operator BI admits a matrix representation of the form:

B! = I" Bti * ] • \ U~2 ] —+ \ *2

L ^ j L ^ J L ^

Notice that B2 is the operator from U2 into X2 defined by B2 — Bi\U2, or equivalently,
B2 = P2B\U2 where P2 is the orthogonal projection onto X2. Since b2 is cyclic for AI,
the pair {A2 ,B2} is controllable. Because {Ai ,Bi} is controllable, it follows that the pair
{A2 ,B2} is also controllable.

By substituting the matrix representations for {A\, BI} into our previous matrix repre-
sentations for {A, B}, we arrive at the following matrix representation for A:

*
A2

0

*
*

A2

The corresponding matrix representation for B is

Hi
U20 B2

0 0 U-2

X,

By construction {Ai , BI} and {A2 , 52} are two single input controllable pairs. If X2 is not
equal to zero, then we can apply the above procedure to the controllable pair {̂  , B2}. By
using the fact that the state space is finite dimensional, a repeated application of the above
procedure shows that A admits an upper triangular matrix representation of the form:

A =
0

0 0

on (8.35)

Here m is the first integer such that Xm is zero. In this setting U = ©^L^j- © Um where Uj
is the one dimensional space spanned by the corresponding input vector Uj. The vector Uj
is chosen such that bj is nonzero where bj is the orthogonal projection of BUJ onto Xj. The
vectors {u,j}™ are orthogonal, and bj is cyclic for Aj. In this case, B has an upper triangular
matrix representation of the form:

BI * * *
0 B2 * • • • *

0 0 • • • Bm *
u
u X

(8.36)
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By construction the pair {A, on Aj, Bj} is a controllable single input system whose input
space is lij for j — 1,2, • • • , m. Obviously, m is less than or equal to the dimension of U.

Recall that n is the dimension of X. We are now ready to show that there exists a state
feedback gain K which places the eigenvalues of A — BK at any n specified locations in the
complex plane, that is, (8.34) holds. To see this, without loss of generality, we can assume
that the controllable pair {A, B} is given by its matrix representation in equations (8.35) and
(8.36). Recall that for every j = 1,2, • • • , m the pair {A,-, Bj} is a single input controllable
system whose input space is Uj. So, if HJ is the dimension of Xj, then the dimension of the
state X is n = Y^ni- According to Theorems 8.4.1 and 8.5.2, there exists a state feedback
operator Kj from Xj into Uj which places the eigenvalues of A,- — BjKj at any n, specified
locations in the complex plane. Now let K be the block diagonal matrix from X = @™Xj
into U = @^Uj ®Um defined by

K =

0

0

(8.37)

Then substituting this K into the upper triangular matrix representation for {A, B} in
(8.35) and (8.36), we have the following matrix representation:

A-BK =

* *

A2 — B2 K2 *

0 ' • • Am J3m J V im *->m±*-m

(8.38)

Because A — BK is an upper triangular block matrix whose diagonal entries are Aj — BjKj,
the eigenvalues of A — BK is the union of the eigenvalues of {Aj — BjKj} for j — 1, • • • , m.
Since we can place the eigenvalues of Aj — BjKj at any HJ locations, it follows that we
can choose K to place the poles of A — BK at n specified locations in the complex plane.
Therefore, (8.34) holds. •

Remark 8.6.1 Consider the controllable decomposition for the pair {A on X,B} given in
(8.5) and (8.6) where X = Xc@Xc- Since the pair {Ac on Xc, Bc} is controllable, one can use
state feedback to place the eigenvalues of Ac — BCKC at any dim Xc specified locations in the
complex plane. However, state feedback does not change the uncontrollable eigenvalues of A.
So, by consulting the matrix representation for A — BK in (8.7) and (8.8), it readily follows
that one can use state feedback to place the eigenvalues of A — BK at any dim Xc specified
locations in the complex plane, while the remaining dimA'c uncontrollable eigenvalues are
unchanged.

Finally, it is noted that one can use the proof of Theorem 8.6.1 to construct an algorithm
to compute a gain K to place the eigenvalues of A — BK at n specified location in the
complex plane. Let us complete this section with the following classical result in Wonham
[129].
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Proposition 8.6.3 Let {A onX,B} be a controllable system and consider any nonzero
vector b in the range of B. Let BQ the operator from C1 into X defined by BO a = ab Then
there exists an operator K such that the scalar input system {A — BK, BQ} is controllable.

PROOF. Without loss of generality we can assume that A and B are the upper triangular
block matrices given by (8.35) and (8.36), respectively, and b = bi. Recall that { A j , B j } is
a single input controllable pair for j = 1, 2, • • • , m. As before, let HJ be the dimension of Xj
and bj = BjUj where it,- is any nonzero vector in Uj. Then {Afy : k = 0,1, • • • , n}• — 1} forms
a basis for Xj. For j = 1, 2, • • • , m — 1, let $, be the operator from Xj into UJ+\ defined by

= Uj+i and 0 (for k = 0, 1, -2). (8.39)

Let K be the block matrix from X = @™Xj into U = @™Uj © Um obtained by placing the
operators — $1, • • • , — &m-i immediately below the main diagonal and zeros elsewhere, that
is,

K =

0 C
-$i C

0 -<

0 C
0 C

0 0
— $m-l 0

0 0

(8.40)

We claim that {A — BK, BI} is a controllable pair. To verify this it is sufficient to show that
X = Xc where Xc is the controllable subspace spanned by {(A — £?/C)fc6i}o°.

The upper triangular form of A and the structure of K along with (8.39), yields

(A - BK)bi =

when n\ > 2. If n\ > 3, then we obtain

(A - ! = AA& + B^A^ = A\bv .

By continuing in this fashion we arrive at (A — BK}kb\ = A\b\ for k = 0, 1, • • • , n\ — 1. Since
61 is cyclic for A]_, it follows that X\ is a subspace of Xc. Using (8.39), we see that

(A - = xl

where x\ is a vector in X\. Because X\ is a subspace of Xc, it follows that 62 is also in Xc.
The upper triangular form of A and the structure of K along with (8.39) implies that

(A — BK}kb<2 = x± © Afoz where x\ is some vector in X\ for k = 0, 1, • • • , n2 — 1. Since X\ is
a subspace of Xc all the vectors {^l^^jo2"1 are contained in Xc. Therefore, X\ 0 A"2 is also a
subspace of Xc. By consulting (8.39) the vector (A — BK)n2b2 is of the form xi © x% © B^UZ
where x\ © x<± is some vector in X\ © X^. Hence, 63 = 3̂113 is also a vector in Xc. By
continuing in this fashion, it follows that ®™Xj is a subspace of Xc. Therefore, Xc equals X
and {A — BK, B\} is a single input controllable pair. •.

Finally, it is noted that Theorem 8.6.1 also follows from Proposition 8.6.3 and Theorem
8.4.1.
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8.7 Two canonical forms

135

In this section, we refine the previous matrix representations to present some classical canoni-
cal forms for a controllable pair. The results in this section are self contained. The observable
companion matrix M generated by the scalars OQ, QI, • • • , an-i is the n x n matrix defined by

(8.41)

Notice that the transpose of M is the companion matrix A in (8.29). So, the characteristic
polynomial for M is given by det[s/ — M] = a0 + ais + • • • + an-is

n~l + sn. Let {A, B} be a
controllable scalar input pair with n-dimensional state space X. Because the pair {A, B} is
controllable, the vector b = B\ is cyclic for A. Moreover, {Akb}^~1 is a basis for X. Hence,

" 0 0 -
1 0 •
0 1 •

0 0 •

• 0 -a0

• 0 -ai
• 0 — a2

' 1 -fln-l

P = [ b Ab A2b ••• An~lb ] (8.42)

is a similarity transform from Cn onto X. By consulting Example 7.5.3 or performing a
direct calculation, it follows that PM = AP where M is the observable companion matrix
generated by the characteristic polynomial for A. Let 6 be the vector in C" defined by
b = [I 0 0 • • • 0]tr, that is, the first component of b is one and all the other components
are zero. Then Pb = b. Therefore, any controllable single input pair {A , B} is similar to
a pair of the form {M , b} where M is the observable companion matrix determined by the
characteristic polynomial for A. According to Theorem 8.5.1 the pair {A , B} is also similar
to the controllable canonical pair {A, B} in (8.29). In this section we will generalize both
of these canonical forms to the multivariable setting.

Now assume that {A , B} is a controllable pair where the state space X is finite di-
mensional and the input space U — Cp. Throughout {e^ is the standard orthonormal
basis for Cp. Let r± be the first integer such that Beri is nonzero, that is, Bej = 0 for
j — 1, 2, • • • , 7~i — 1 and BeTl

largest integer such that
0. In most applications r\ = \. Let b\ = Beri and n\ be the

is a linearly independent set. Let M.\ be the space spanned by this set. With <f>j = A>~lb\
for j = 1, 2, • • • ,ni the set {(^j}"1 is a basis for MI. Notice that n\ is the smallest integer
such that Anibi is contained in the linear span of {Akbi}Q1~1. According to Lemma 7.6.1,
the space M.\ equals the span of {Akbi}^. In particular, M.\ is an invariant subspace for
A. Furthermore,

A<f>ni =
j=o

where aij for j = 0, 1, • • • , ni—1, are uniquely determined scalars. Now let PI be the similarity
transformation from C"1 onto M\ defined by

PI - [ 0i 02 • • • < £ „ , ] .
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Then using A$j = 4>j+i for j = 1, 2, • • • , n\ — 1 along with our previous calculation of A<fini , we
see that (A .Mi) PI — P\A\ where A\ is the n\ x n-\_ observable companion matrix generated
by ai j for j = 0, 1, • • • , m - 1. Finally, it is noted that Pi[l 0 0 • • • 0]tr = 61 = Beri .

Now let r2 be the first integer such that Ber2 is not contained in M\, that is, Bet 6 M\
for 1 < i < r2 and J5er2 is not in Aii. Set 62 = BeT2. Let n2 be the largest integer such that

is a linearly independent set, and let M.I be the subspace spanned by this set of vectors.
Set 0ni+i = 62,0n1+2 = A 6 2 , - - - , 0 n i + n 2 = An2~lb2. Then {̂  : j = 1,2, • • • ,rai + n2} is
a basis for .M2- Moreover, because «2 is the largest integer which makes this set linearly
independent, the space M.% is given by

00 00

M2= \/{Akbi : i = l ,2}= \J{AkBe, : i = 1, 2, - • • ,r2} .
fc=0

In particular, M.% is an invariant subspace for A. Furthermore,

j=l j=0

where $2j- for j = 1, 2, • • • , n\ and a2j for j = 0,1, • • • , n2 — 1 are uniquely determined scalars.
Let P2 be the similarity transformation from C™1+™2 onto the subspace A42 defined by

Let C2 be the 1 x n2 row vector defined by (72 = [0 0 • • • 01] , that is, all the entries of
C2 are zero except the last entry which is one. Let /i2 be the vector in Cm defined by
/12 = [$21 $22 • • • /32m}tr- Then using Afij = <j)j+i for j = HI + 1, • • • , HI + n2 — 1 along with
our previous calculation of A<pni+n2 and PI = P2|Cni, we see that

A\ fizC-z
, 0 A2

Here A% is the n2 x n2 observable companion matrix generated by a2j for j = 0,1, • • • , n2 — 1.
Let bi be the vector in Cni defined by 61 = [1 0 0 • • • 0]tr, that is, the first entry of 61

is one and all the other entries of bi are zero. Observe that P2(£>i © 0) = 61 = Beri. Let
62 be the vector in C"2 defined by 62 = [1 0 0 • • • 0]tr, that is, the first entry of 62 is one
and all the other entries are zero. Then P2(0 © b) = 62 = BeT2. Recall that Bei e M\ for
1 < i < r2. Hence, for 1 < i < r2, we have Be, = P2(^i © 0) for some Vj in C"1. Therefore,
the first r2 columns of B can be factored into an upper triangular matrix times P2, that is,

0 bi * • • • * 0
0 0 0 - . . 0 62

Notice that the first column in the matrix on the right is a block column of zeros, and this
column is not present if Be\ is nonzero. Obviously, { A j , b j } is a controllable scalar input
pair for j = 1,2.
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Continuing in this fashion, let r$ be the first integer such that Bers is not contained in
A^2, that is, Bd £ M^ for 1 < i < r$ and BeT3 is not in M^. Set 63 — Bers. Let n$ be the
largest integer such that

is a linearly independent set, and let M$ be the subspace spanned by this set of vectors. Set
0ni+n2+i = 63, • • • , 0m+n2+n3 = An*~lb3. Then {fa : j = 1, 2, - - - , m + n2 + n3} is a basis for
.Ms. Moreover, Ai3 is the invariant subspace for A given by

00 00

M3 = V {^&i : i = 1,2,3} = V {AkB* : i = 1,2, • • • , r3} .
fc=0 it=0

Furthermore,

where /33j for j = 1,2, • • • , ni + ra2 and a^j for j — 0,1, • • • , n3 — 1 are uniquely determined
scalars. Let P3 be the similarity transformation from C"1+"2+n3 onto the subspace MS defined
by PZ = [<p\ <f>2 • • • 0ni+n2+n3]- Let 63 be the 1 x 77,3 row vector defined by 63 — [0 0 • • • 01].
Let /i3 be the vector in C"1 and /23 be the vector in C"2 defined by

/23 — [ Ani+1 ftn

Then using Afy = 0j+1 for j = ni + ri2 + 1 ,
calculation of A(j)ni+n2+n3, we see that

, HI + 712 + n3 — 1 along with our previous

(A\M3)P3 = P3

0

— 1.where A$ is the n^ x 713 observable companion matrix generated by a^j for j = 0, 1, •
Since PI is an invertible transformation from Cni+"2 onto MI, the equation P^

Bei has a unique solution bu © b2i in C"1 © C"2 for r2 + 1 < i < r3. Let 63 be the vector in
C"3 defined by 63 = [1 0 0 • • • 0]tr, that is, the first entry is one and all the other entries are
zero. Then P3(0 © 0 © 63) = BeT3. Notice that P2 = PsKC"1 0 Cn2). Therefore, the first r3

columns of B admit a factorization of the form

B
0 61 * • • • * 0 * • • • * 0

0 0 0 - - - 0 6 2 * - - . * 0

0 0 0 - - - 0 0 0 - - - 0 6 3

Notice that the first column in the matrix on the right is a block column of zeros, and this
column is not present if Be\ is nonzero. Clearly, {Aj,bj} is a controllable scalar input pair
for; - 1,2,3.
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By continuing in this fashion, we obtain a set of integers {n,-}™ and {rj}™ such that

is a linearly independent set for the space

00

Mm= \/{Akbi : i = l , 2 , - - -

Moreover, bm = BeTrn where rm is the first integer such that BeTm is not in M.m-\. Be-
cause the state space is finite dimensional and the pair {A, B} is controllable, this recursive
procedure must eventually end with A4m = X for some integer m. So, the dimension of
X is given by n = Y^T ni • The integers {nj}™ are uniquely determined and are called the
controllability indices for the pair {A, B}. The operator Pm defined by

Pm=\bl Ab (8.43)

is a similarity transform from C" onto X — M.m- Let Cj be the 1 x rij row vector defined by
Cj = [Q Q • • • 0 1] for j = 2, 3, • • • , m. Then APm — PmA0 where A0 on ©"l C"J' is an upper
triangular block matrix of the form:

A —^ in

/2m

0 0

3.44)

The block diagonal matrices {Aj}f are all observable companion matrices. Finally, PmB0 =
B where B0 is the upper triangular block matrix mapping Cp into ®™ C"J' of the form:

O & i * 0 * 0 * • • • 0 *
0 0 0 6 2 * 0 * - - - 0 *
0 0 0 0 0 6 3 * - - - o *
0 0 0 0 0 0 0 • - • 0 *

0 0 0 0 0 0 0 ••• 6m *

(8.45)

Here 6, = [1 0 0 • • • 0]tr is the vector in Cnj with one in the first entry and all the other
entries are zero. Obviously, {A,, bj} is a controllable scalar input pair for j = I , 2, • • • , m.
As before, the first column is a block column of zeros, and this column is not present if Be\
is nonzero. Finally, it is noted that m < p where the input space is U = Cp. Summing up
this analysis we obtain the following result.

Proposition 8.7.1 Let {A , B} be a controllable pair where the input space U = Cp. Then
{A , B} is similar to the pair {A0 , B0} whose canonical form is given in (8.44) ana (8.45).
In fact, APm = PmA0 and PmB0 = B where Pm is the similarity transform defined in (8.43).
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Recall that the companion matrix A generated by {oj}0 is the k x k matrix denned by

A =

0
0

0
-GO

1
0

0
-a

0
0

1
—o-k-i

(8.46)

Recall also that ao + dis + • • • + ak-\sk l + sk is the characteristic polynomial for A. Let B
be the vector in Cfc defined by B = [0 0 • • • 0 l]*r, that is, all the components of B are zero
except the last one which is one. Let Q be the similarity transform defined by (8.42) with
A replacing A and B replacing 6, that is,

= B AB A2B Ak~lB on C* (8.47)

Then QM — AQ where M is the observable companion matrix generated by {O,J}Q ; see
(8.41) with k = n. Notice that in this case Q is a matrix with one on the off diagonal and
zeros above the off diagonal,that is, Q is a matrix of the form:

0 0
0 0

0 1
1 *

0 1
1 *

* *
* *

Using this it follows that Qb = B where b = [1 0 • • • 0 0]fr. So, the similarity transform Q
intertwines {M, b} with the controllable canonical pair {A , B}. The pair {A , B} is precisely
the one used for state feedback. Moreover, the inverse of Q has ones on the off diagonal and
zeros below the off diagonal, that is, the inverse of Q is a matrix of the form:

* *
* *

* 1
1 0

* 1
1 0

0 0
0 0

Due to the triangular structure one can recursively compute the inverse of Q. Finally, it is
noted that the inverse of Q can also be computed by using the recursive algorithm presented
in the paragraph following Theorem 8.5.1, that is, Q~l = T where T in (8.30) is the operator
intertwining {A , B} with {M, b}.

Now let us return to the canonical form {A0 , B0} in (8.44) and (8.45) computed from the
controllable pair {A , B}. Let Aj be the transpose of A, for j = 1,2, • • • , ra. Obviously, Aj
and AJ have the same characteristic polynomial. Let BJT. be the vector in C"J whose last
component is one and all the other components are zero. Finally, let Qj be the similarity
transform on Cn> denned by replacing A by Aj and B by BjTj in (8.47). Then Qj intertwines
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the pair { A j , b j r j } with {Aj,BJT.}. Moreover, let Rj be the 1 x n,- row vector whose first
component is one and all the other components are zero. Using the special form of the
inverse of Qj, we see that CjQ~l = Rj. Now let Qc be the similarity transform on ©"C™3

defined by the block diagonal matrix

Qc = diag [Q! Q2 • • • Qm\. (8.48)

Then Ac — QCA0Q~1 is the upper triangular matrix given by

QlflmRmAl QifllR-2

0 Ao

0 0 A

(8.49)

The block diagonal matrices {A/}™ are all companion matrices. Finally, QCB0 — Bc where
Bc is the upper triangular block matrix mapping Cp into ©™ C"J of the form:

Br =

0 Blri * 0 * 0 * ••• 0 *
0 0 0 52r2 * 0 * • • • 0 *
0 0 0 0 0 B3r3 * • • • 0 *
0 0 0 0 0 0 0 • • • 0 *

0 0 0 0 0 0 0 ••• Bmrm *

(8.50)

By construction the pairs {Aj , BjTj }™ are in controllable canonical form. As before, the first
column in Bc is a block column of zeros and this column is not present if Be\ is nonzero.
Clearly the pair {A, B} is similar to the pair {AC,BC}. This readily proves the following
result.

Proposition 8.7.2 Let {A,B} be a controllable pair where the input space U = Cp. Then
{A , B} is similar to the pair {Ac , Bc} whose controllable canonical form is given in (8.49)
and (8.50). In fact, PrnQ~l is the similarity transformation intertwining {AC,BC} with
{A , B} where Qc is defined in (8.48) while Pm is defined in (8-43).

One can use the canonical form {Ac, Bc} for (A, B} to develop an algorithm to place the
eigenvalues of A — BK at any n specified locations in the complex plane. Since { A,- , .R, r> }
is in controllable conical form, it is easy to construct a state feedback gain Kj from C"J into
C1 to place the eigenvalues of A,- — BjrjKj at any HJ locations in the complex plane; see
(8.21), (8.22) and (8.23) in Section 8.5. Now let K be the block matrix from 0f <O' into Cp

whose block entries K^ from C"fc into C1 are defined by

— j ) K j (for i = 1, 2, • • • , p and j, k = 1, 2, , m

Here S ( i , k) is the Kronecker delta, that is, 5(i, k) — 1 if i = k — 0, otherwise 6(i, k) = 0. In
this case, AC — BCK is an upper triangular block matrix with {Aj — BjTjKj}™ for its diagonal
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entries. So, the eigenvalues of Ac — BCK is the union of the eigenvalues of {Aj — B j r j K j } . In
particular, since n = ^nj, we can compute a state feedback K to place the eigenvalues of
Ac — BCK any n specified locations in the complex plane. Now let K be the operator form X
into Cp defined by K = KQCP^. Then A - BK is similar to Ac - BCK. In particular, they
have the same eigenvalues. Therefore, the canonical form {Ac, Bc} can be used to compute
a gain K to place the eigenvalues of A — BK any n specified locations in the complex plane.

Finally, it is noted that one can obtain the canonical form {Ac, Bc} for {A, B} without
first computing the canonical form {A0, B0}. To accomplish this one simply uses the vectors
constructed in the section following Theorem 8.5.1 as basis for the subspaces M.J. The
details are left as an exercise.

8.8 Transfer functions and feedback
To complete this chapter, let us show how state feedback affects the transfer function for
certain feedback control systems. To this end, consider the open loop system {A,B,C, D}
given by

x = Ax + Bu and y = Cx + Du. (8.51)

As before, A is an operator on X and B maps U into X, while C maps X into y and D
maps U into y. Now consider a state feedback controller of the form

u=-Kx + w (8.52)

where the gain K is an operator from X into U and if is a function with values in U. The
function w is referred to as the reference input for the above controller. Substituting (8.52)
into (8.51) results in

x = (A- BK)x + Bw and y = (C - DK}x + Dw . (8.53)

In this setting the transfer function F from reference input w to the output y is given by

F(s) = D+(C- DK}(sI -A + BK}~1B. (8.54)

In other words, {A—BK, B, C—DK, D} is a realization of F. The system in (8.53) is called
the closed loop system corresponding to controller (8.52) and F in (8.54) is the corresponding
closed loop transfer function. Obviously, if A is a pole of F, then A is an eigenvalue of A—BK.
In particular, if A — BK is stable, then the closed loop transfer function F is also stable.

Lemma 6.4.2 shows that the open loop system {A, B, (7, D} is controllable if and only if
the closed loop system in (8.53) is controllable. However, the closed loop system may not be
observable even if the open loop system is observable. For example, the open loop system
{1,1,1,1} is controllable and observable. If u = —x + w, then the corresponding closed loop
system (0,1,0,1} is not observable.

Let {A, B, C, D} be a realization of a transfer function G. Then we claim that the closed
loop transfer function F in (8.54) is also given by

F(s) = [D + C(sl - A)-1B][I + K(sl - A)~1B}-1. (8.55)
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So, if H is the transfer function for the system {A, B, K, /}, then the closed loop transfer
function F is given by

F =

To verify that (8.55) holds, let 3>(s) = (si — A)"1. Using the operator identity

we obtain

F(s) = D + (C-DK)(sI-A

= D+(C-

- DK)$(s)B][I

This yields (8.55).
Recalling (8.9) we see that

det[H(s)] = det[s7 - A + BK]/det[sI - A] . (8.56)

When the input space Li is one dimensional, we obtain

H(s) = det[s7 - A + BK}/ det[sl - A] . (8.57)

In this case, Proposition 7.1.3 shows that {A, B, K, 1} is a minimal realization if and only if
the characteristic polynomials for A and A — BK have no common zeros.

Now let {A on X, B, C, D} be a realization for a scalar valued transfer function G. Then
G admits a decomposition of the form G = p/d where d is the characteristic polynomial
for A and p is a polynomial satisfying degp < degd. Moreover, {A, J3, C, D} is a minimal
realization if and only if the polynomials p and d have no common zeros; see Proposition
7.1.3. In the scalar case, the closed loop transfer function F in (8.55) reduces to

Recalling (8.9), we obtain that

1 + K(sl - A}~1B = det[sl -A + BK}/ det[sl - A] = q(s)/d(s)

where q is the characteristic polynomial for A — BK. Using D + C(sl — A)~1B = p(s)/d(s)
yields F = p/q, that is,

F(s)= , . T
P('"] „„, where G(s} = , ^ ,, . (8.59)v ! det[s/ - A + BK} v ' det[s/ -A]

This relationship implies that the zeros of the closed loop transfer function F are contained
in the zeros of the open loop transfer function G. Thus state feedback does not introduce
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new zeros. However, p and q can have common roots. So, the closed loop transfer function
F can have fewer zeros than the open loop transfer function G. This pole-zero cancellation
also explains why the open loop realization can be minimal while the closed loop realization
{A - BK, B,C - DK, D} for F may only be controllable. If {A, B, C, D} is minimal, then p
and d have no common zeros and the McMillan degree of G equals the degree of d. If there
is a pole-zero cancellation in F = p/q, then the McMillan degree of F is strictly less then
the dimension of X, and thus, the realization £ = {A — BK, B, C — DK, D} of F is not
minimal; see Proposition 7.1.3. So, the realization S of F = p/q is minimal if and only if p
and q have no common zeros. In other words, the realization E is minimal if and only if the
state feedback K does not place any eigenvalues of A — BK at the zeros of p. In particular,
if p(s) = 7 where 7 is a constant, then E is a minimal realization for all state feedback gain
operators K.

For the moment assume that the pair {.A, B} is controllable, and recall that {A, B, K, 1}
is a realization for H = q/d. The characteristic polynomials q and d may have some common
zeros. According to Proposition 7.1.3, the polynomials q and d have no common zeros if and
only if {A, B, K, 1} is observable. If {A, B, K, 1} is observable, then q and H have the same
zeros.

8.9 Notes

All the results in this chapter are classical; see Kailath [68] and Rugh [110] for a history of
this subject area. Corollary 8.4.2 is due to Ackermann [1]. For some further results on state
variable feedback see Brockett [21], Chen [26], Kailath [68], Rugh [110] and Wonham [129].





Chapter 9

State Estimators and Detectability

This chapter is devoted to asymptotic state estimation. First we introduce the concept of
detectability. It is shown that detectability is the dual of stabilizability. Then we construct
asymptotic state estimators for detectable systems.

9.1 Detectability

Consider a state space system of the form:

x — Ax + Bu , .
y = Cx + Du ( '

where A is an operator on X and B maps U into X while C maps X into 3^ and D maps U
into y. As before, all spaces are finite dimensional. The system in (9.1) will be referred to
as the plant. Suppose that at each instant of time t we can measure the output y(t) and the
input u(t) and we wish to estimate the state x(t}. Recall that this system is observable if
given the input u(t) and output y(t) over an interval [0, ti] (with t\ > 0), one can uniquely
determine the state x(i) on this interval. In many applications, it suffices to obtain an
asymptotic estimate of x(t] as t tends to infinity. With this in mind, we say that x is an
asymptotic estimate of x if

lim x(t}-x(t] = 0. (9.2)
t-

Since we wish to obtain an asymptotic estimate of x using only information on the plant
input and output, we define an asymptotic state estimator to be any system with input
{u,y}, output x and which has the following property: If {u, y} is any input-output pair
for plant (9.1), then the corresponding output x of the estimator is an asymptotic estimate
of the corresponding plant state x. Thus, for any initial plant state, an asymptotic state
estimator, using only knowledge of plant input and output, produces an asymptotic estimate
x of the plant state, that is, (9.2) holds. We say that the system {A, B,C, D} in (9.1) is
detectable if there exists an asymptotic state estimator for the system. If system (9.1) is
observable, then one can find an estimator such that x(t) = x(t) for all t > 0. So, if the pair
{(7, A} is observable, then {A, B, C, D} is detectable.
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As expected, detectability of the system {A, B, C, D} depends only on the pair {C, A}.
To see this, recall that all solutions to the differential equation in (9.1) satisfy

rt
x(t) = eAtx(0) + \ eA(i~T]Bu(r] dr

Jo

Since u is known, estimating x is equivalent to estimating eAtx(0). Because u and y are
known,

ft
g(t) = CeAtx(Q) = y(t] - / CeA^-^Bu(r} dr - Du(t)

Jo
is known. Thus, the system in (9.1) is detectable if and only if given the function g(t) =
CeAtx(Q) over [0,oo) one can determine an asymptotic estimate £(£) of eAtx(0) from g.
Therefore, detectability of system (9.1) depends only on the pair {C,A} and is independent
of the operators B and D. Hence, we say that the pair {C, A} is detectable if system (9.1)
is detectable.

Recall that the unobservable subspace for the pair {C, A} is the invariant subspace for
A defined by

Xd = { x : CAkx = 0 for k = 0,1, 2, • • •} . (9.3)

Recall also that a complex number A is an unobservable eigenvalue for the pair {C, A} if
there is a nonzero vector v in the unobservable subspace Xd satisfying Av = \v. In this case,
we say that v is an unobservable eigenvector corresponding to A. Notice A is an unobservable
eigenvalue if and only if A is an eigenvalue of the operator A5 on Xd defined by Ad — A\Xd. In
other words, the unobservable eigenvalues for the pair {C, A} are precisely the eigenvalues
of A5. An unobservable eigenvalue A is stable if 3J(A) < 0. If {A,i>} is an unobservable
eigenvalue eigenvector pair for {C,A}, then CeAtv — eXtCv = 0. In particular, x(t] = extv
is a solution of

x — Ax and y — Cx

with y(i] = 0. Hence, one cannot distinguish the solution x(t) = extv from the zero solution
x(t] = 0. If A is not stable, then extv does not asymptotically approach zero. Since extv
and the zero solution produce the same output (that is, zero) and their difference does not
asymptotically converge to zero, one cannot construct an asymptotic state estimator for a
system with an unobservable eigenvalue which is not stable. So, if A is not stable, then the
pair {C, A} is not detectable. Therefore, the detectability of {C, A} implies that all the
unobservable eigenvalues of {C, A} are stable. This proves part of the following result.

Theorem 9.1.1 A pair {C, A} is detectable if and only if all of its unobservable eigenvalues
are stable.

PROOF. To complete the proof it remains to show that if all the unobservable eigenvalues of
{C, A} are stable, then {C, A} is detectable. Let X be the state space for the pair {(7, A},
and X0 = X^~ be the corresponding observable subspace. Recall that X0 is an invariant
subspace for A* and A admits a matrix representation of the form:

A_\AB A*] \ X S ] \ X 5 ] ,
A-\ 0 AJ ' \ X 0 \ ̂  Xn ' (9'4)
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see (6.15) and (6.16) in Section 6.2. The operator A0 is the compression of A to X0, that is,
A0 is the operator on X0 defined by A0 — P0A\X0 where P0 is the orthogonal projection onto
X0. The operator Ad on X& is given by the restriction of A to X5. Furthermore, the operator
C admits a matrix representation of the form

C = [ 0 C 7 e ] : [**1 — »;», (9.5)
L A-° \

where C0 = C\X0. Since the kernel of C contains Xd, the first entry of C is zero, that
is, Co = C\X0 = 0. Recall also that the pair {C0, A0} is observable. Let x5 © x0 be the
decomposition of the state x with respect to X = Xd © X0. Thus,

Since the pair {C0, A0} is observable, one can uniquely determine x0(t) for all t > 0 from
the knowledge of y(t) on [0,oo). It follows from the first differential equation above that

xd(t) = !
Jo

Now assume that all the unobservable eigenvalues of {C, A} are stable. Then Ad is stable.
Considering the known function x5 given by xd(t) = J0 eA°^~TMo0x0(r) dr, it follows that
as t approaches infinity, xd(t) — x5(t) = eA5tXo(0) approaches zero. Therefore, x5 0 x0 is an
asymptotic estimate of a:. •

Obviously, if A is stable, then {C, A} is detectable regardless of C. By consulting the
PBH characterization of unobservable eigenvalues in Lemma 4.2.1, we obtain the following
corollary.

Lemma 9.1.2 (PBH detectability lemma.) The pair {C, A on X} is detectable if and only
if the kernel of

A - XI

is zero for every complex number A in the closed right half plane.

Since the kernel of F\ is zero when A is not an eigenvalue of A, one only has to check the
kernel of T\ when A is an eigenvalue of A which is not stable. The following result presents
some duality between stabilizability and detectability.

Theorem 9.1.3 Consider a pair {C, A} where A is on X and C maps X into y. Then the
following statements are equivalent.

(i) The pair {C, A} is detectable.

(ii) The pair {A*,C*} is stabilizable.
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(Hi) There exists an operator L from y into X such that A — LC is stable.

PROOF. Recall that a complex number A is an unobservable eigenvalue for {C, A} if and only
if A is an uncontrollable eigenvalue for the pair {A*, C*}; see Section 5.2. Since {A*, C*} is
stabilizable if and only if all its uncontrollable eigenvalues are stable, Theorem 9.1.1 shows
that {C, A} is detectable if and only if {^4*, C*} is stabilizable. So, Parts (i) and (ii) are
equivalent. By definition, the pair {A*, C*} is stabilizable if there is an operator K such
that A* — C*K is stable. Now let L = K*. Obviously, A* — C*K is stable if and only if
its adjoint A — LC is stable. Therefore, {A*, C*} is stabilizable if and only if there is an
operator L such that A — LC is stable. Hence, Parts (ii) and (iii) are equivalent. •

Example 9.1.1 Consider the following system corresponding to an unattached mass with
velocity measurement, that is, mx\ — 0 and y = x\ where x\ is the inertial displacement of
the mass along its line of motion. A state space representation for this system is given by

0 1 ,
and y =

where x^ — x\ and x = x\ © x-i. In this case, the operator FA in Lemma 9.1.2 becomes

-A 1
0 -A
0 1

Obviously, the kernel of FA is nonzero for A = 0. Hence, A = 0 is an unobservable eigenvalue
and this system in not detectable. Note that for any 2 x 1 matrix L = [ a b ] r, we have

0 1-a
0 -b

In this case, the characteristic polynomial for A — LC is given by

det[s/- A

So, regardless of the choice of L, zero is an eigenvalue of A — LC. This happens in general,
that is, the unobservable eigenvalues of {C, A} are contained in the eigenvalues of A — LC.

9.2 State estimators

In this section we will present an asymptotic state estimator (sometimes called an observer)
for the system {A, B, C, D} in (9.1). To obtain this observer assume that the pair {C, A} is
detectable. Motivated by Theorem 9.1.3, we propose the following simple state estimator by
adding a "correction term" to a copy of the original system whose state is to be estimated,
that is,

x - Ax + Bu + L(y - y} ,q „,
y = Cx + Du ( '
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where the vector x(t] in X is the estimated state. The operator L, called the observer gain,
is chosen so that A — LC is stable. The initial state x(0) for the observer is arbitrary. In
practice, one chooses x(Q) to be the best available estimate of x(0). Substituting y = Cx+Du
into the first equation in (9.7), yields the following description of the observer

'x = (A - LC)x + (B - LD}u + Ly. (9.8)

It should be clear that we can regard the observer as a linear system whose input is u © y
and whose output is X. Finally, it is noted that substituting y = Cx + Du into equation
(9.8), gives

x = (A- LC)x + LCx + Bu. (9.9)

We now introduce the state estimation error

x ( t ) = x ( t ) - x(t).

Subtracting the differential equation in (9.9) from x = Ax + Bu, we see that the evolution
of the estimation error is governed by

x=(A-LC)x. (9.10)

Since, by construction, the operator A — LC is stable, x(t) approaches zero as t tends towards
infinity, that is, (9.2) holds. In other words the estimation error goes to zero as t goes to
infinity. So, the dynamical system in (9.7) yields an asymptotic state estimate x for x.
Finally, it is noted that if the initial observer state x(0) = x(0), then x(t) — 0 for all t, and
thus, the estimate x(t) = x(t) for all t. Summing up this analysis yields the following result.

Proposition 9.2.1 Let {A,B,C,D} in (9.1) be detectable and let L be any observer gain
such that A — LC is stable. Then the state space system in (9.8) yields an asymptotic state
estimate x of x, that is, x(t) — x(t) approaches zero as t tends to infinity.

If A is stable, {C, A} is detectable regardless of C and one can choose L to be zero. In
practice, L = 0 may not result in satisfactory behavior or performance of the error dynam-
ics. In addition to stability, one usually wants to meet additional behavior or performance
criteria. The problem of choosing a operator L so that A — LC is stable is equivalent to
the stabilizability problem of choosing K so that A* — C*K is stable. If one solves the
stabilizability problem for K, then L — K* solves the original state estimation problem.

9.3 Eigenvalue placement for estimation error
In the previous section, we saw that if the pair {C, A} is detectable, then one can asymp-
totically estimate the state of system {A, B,C, D}. To accomplish this one needs to find
an operator L such that A — LC is stable. Then the dynamical system in (9.7) yields a
asymptotic state estimate x of x. In this section we will use duality results to show how one
can construct an observer gain L such that A — LC is stable.

If the pair {C, A} is observable, then one can use the Lyapunov techniques in Section
8.2 to compute an observer gain such that A — LC is stable. To see this simply notice that
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the pair {A*,C*} is controllable. Then the Lyapunov techniques in Section 8.2 provide a
computational method to construct a controller gain K such that A* — C*K is stable. So, if
L — K*, then A — LC is also stable.

Now assume that the pair {C, A} is observable with state dimension n. Then the results
in Sections 8.4, 8.5 and 8.6 can also be used to construct an observer gain which places the
eigenvalues of A — LC at any n specified locations {A^}™ in the complex plane. Since {^4*, C*}
is controllable, there exists a controller gain K which places the eigenvalues of A* — C*K at
{A,-}"; see Theorem 8.6.1. (Sections 8.4, 8.5 and 8.6 provide some algorithms to compute the
gain K.} So, if L = K* , then {A,,}" are the eigenvalues of A — LC. This yields the following
result.

Theorem 9.3.1 Let {C, A} be an observable pair with state dimension n. Let {A^}" be a
set of specified complex numbers. Then there exists an observer gain L such that

n

det[s/ - A + LC} = ̂ [(s - \) .
j=i

In particular, if p is any monic polynomial of degree n, then there exists an observer gain L
such that p is the characteristic polynomial of A — LC.

By using the fact that {C,A} is observable if and only if {A*, C*} is controllable along
with Theorem 8.6.2 we obtain the following result.

Theorem 9.3.2 Consider the pair {C, A} with state dimension n. Then {C, A} is observ-
able if and only if there exists an observer gain L which places the eigenvalues of A — LC at
any n points in the complex plane.

As before, let X = X3 © X0 be the observable decomposition for the pair {C, A on X}
where X5 is the unobservable subspace defined in (9.3). The corresponding matrix represen-
tations for A and C are given in (9.4) and (9.5). So, if L from y into X is any observer gain,
then L admits a matrix representation of the form

L= L* : ^ — • (9.11)

Using these decompositions we see that A — LC admits a matrix representation of the form

A-LC=\A* , \ n 1 : [ *j\ — [ **\ . (9-12)[ 0 A0- L0C0 \ [ X0 J [ X0 \ v '

Notice that if A is an eigenvalue of Ad, then A is also an eigenvalue of A — LC. In other
words, the unobservable eigenvalues of A are contained in the eigenvalues of A — LC. Hence,
the observer gain does not alter the unobservable eigenvalues.

Recall that the pair {C, A} is detectable if and only if all of its unobservable eigenvalues
are stable. Now assume that {C, A} is detectable. Then all the eigenvalues of Ag are stable.
Since the pair {C0,A0} is observable, there exists an observer gain L0 from y into X0 such
that A0 — L0C0 is stable. In fact, one can choose L0 to place the eigenvalues of A0 — L0C0 at
any dim X0 specified locations in the complex plane. In this case (9.12) shows that A — LC
is stable. So, if {(7, A} is detectable, then one can use the decompositions in (9.4), (9.5) and
(9.11) to compute an observer gain such that A — LC is stable.
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9.4 Notes

The Kalman filter [69] is an optimal stochastic observer or state estimator. The notation of
a deterministic observer is due to Luenberger [84]. Our presentation of observers is standard.
For some further results in this direction see Kailath [68] and Rugh [110].





Chapter 10

Output Feedback Controllers

In this chapter we consider the problem of obtaining stabilizing output feedback controllers.

10.1 Static output feedback
To implement a state feedback controller one requires knowledge of the state. In many
practical problems, it is not feasible to access the complete state. However, one can usually
obtain a portion of the state which we call the measured output. Here we investigate the
problem of designing stabilizing controllers which are based only on a measured output. To
this end, consider the state space system described by

x — Ax + Bu

y = Cx (10.1)

with state x(t) 6 X, control input u(t) € U, and measured output y(t) € y. As before, all
spaces are finite dimensional. To eliminate some minor technical problems we have assumed
that the direct transmission term D = 0. We will refer to {A,B,C, 0} in (10.1) as the
plant. In Section 10.3 we obtain a controller based on the measured output y to stabilize a
stabilizable and detectable plant.

The simplest type of controller is a memoryless or static linear output feedback controller
of the form

u(t) = -Zy(t) (10.2)

where the gain Z is an operator from y to U. At each instant of time the current control
input u(t) is a linear function of the current output y(t). Because the gain Z acts on the
output y, the controller u(t) — —Zy(t) is called an output feedback controller. Applying this
controller to the plant in (10.1) yields the following closed loop system:

x = (A-BZC}x. (10.3)

If the open loop system x — Ax is not stable, a natural question is whether one can choose Z
so that the closed loop system is stable. For full state feedback (C = /), we have seen that
it is possible to do this if {A, B} is controllable, or less restrictively, if {A, B} is stabilizable.
If {C, A} is observable or detectable, we might expect to be able to stabilize the plant with
static output feedback. This is not the case as the following example illustrates.
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Example 10.1.1 Consider the rectilinear motion of a unit mass which is subject to a single
input force u, that is, y = u. We assume that one can measure y, the inertia! displacement
of the mass along its line of motion. If we set x = y ® y, then this system is described by

o J ] * + [ ! ] « and y = [ i o ] z . (io.4)

Clearly, this system is both controllable and observable. In this case, all linear static output
feedback controllers are given by u = —zy where z is a scalar. This controller yields the
following the closed loop system

Notice that the eigenvalues of the above 2 x 2 state matrix are ±\/—z. So, regardless of z,
the system in (10.5) is not stable. Finally, it is noted that if the plant has some damping in
it, that is,

' 0 1 I . 1 0
0 -d

\ x + \ \u and y = [ I 0 ] x

where d > 0, then the closed loop system is given by

In this case, the closed loop system is stable if and only if z < 0.

10.1.1 Transfer function considerations

Recall that a transfer function is stable if all of its poles are in the open left half part of the
complex plane, {s & C : 5R(s) < 0}. Let G be the transfer function for the plant {A, B, C, 0}
in (10.1). Then with all the initial conditions set equal to zero, y = Gu where u is the
control input and y is the output. (Recall that f denotes the Laplace transform of a function
/.) Consider the static output feedback controller

u(t) =-Zy(t)+w(t) (10.6)

where Z is an operator from y into U and w is a function with values in U. The function w
is referred to as the reference signal Obviously, u = — Zy + w is the Laplace transform of u.
Substituting this into y = Gu, yields y + GZy = Gw. Hence, y = (/ + GZ)~1Gw. Recall
that the transfer function from w to y is the function F defined by y = Fw. Therefore, the
transfer function from w to y is given by

F = (/ + GZ)-1G. (10.7)

The function F is called the transfer function for the closed loop system with the controller
(10.6). So, a classical problem in control systems is to determine a gain Z such that the
closed loop system is stable, that is, find a gain Z such that all the poles of F = (/ —GZ)~1G
live in the open left half plane.
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Substitution of (10.6) into (10.1) yields the following state space description of the closed
loop system:

x = (A- BZC)x + Bw and y = Cx. (10.8)

Hence, {^4 - BZC, B,C, 0} is a realization for F. Now suppose that [A,B,C, 0} is a con-
trollable and observable realization of G. Theorem 6.3.1 shows that the transfer function
G is stable if and only if A is stable. According to Lemma 6.4.2, the closed loop system
{A — BZC,B,C,0} is also controllable and observable. By Theorem 6.3.1, we see that A
is a pole of (/ + GZ)"1G if and only if A is an eigenvalue of A — BZC. In particular, the
feedback transfer function F is stable if and only if A — BZC is stable. So, the problem of
finding a gain Z such that all the poles of the feedback transfer function (/ + GZ)~1G are in
the open left half plane is equivalent to finding an operator Z such that A — BZC is stable.
Summing up this analysis readily yields the following result.

Proposition 10.1.1 Let {A,B,C, 0} be a realization of the transfer function G. Let Z be
an operator from y into U. Then {A — BZC,B,C,0} is a realization for the closed loop
transfer function (I + GZ)~1G. Moreover, {A,B,C,Q} is controllable and observable if
and only if {A — BZC, B, C, 0} is controllable and observable. In this case, X is a pole of
(I + GZ)-1G if and only if A is an eigenvalue of A — BZC.

Example 10.1.1 shows that it is not always possible to stabilize a transfer function by
static output feedback. In this example the open loop transfer function for the state space
system in (10.4) is given by G(s) = 1/s2. Since zero is a pole for G, it follows that this
transfer function is unstable. In this case, the feedback transfer function is given by

F=
Gz s2 + z

where z is a scalar. Clearly, the closed loop transfer function F is unstable for all scalars z.
If {A, B, C, 0} is any minimal realization of G = 1/s2, then {A — BZC, B, C, 0} is a minimal
realization of the closed loop transfer function l/(s2+z). So, according to Proposition 10.1.1,
the operator A — BZC is unstable for any operator Z on C1.

To see why static output feedback is not sufficient to stabilize a transfer function, let
G = p/d be any scalar valued proper rational transfer function where p and d are polynomials
with no common zeros. Then the closed loop transfer function is given by

G P (109)( 'l + Gz d + zp

where z is a scalar. Because p and d have no common zeros, the polynomials p and d + zp
have no common zeros. So, F is stable if and only if all the zeros of d + zp lie in the open left
half plane. Since d + zp has deg d roots, it is not always possible vary the single parameter z
to guarantee that all the deg d roots of d + zp lie in the open left half plane. In other words,
varying one parameter z is not enough to guarantee that all the poles of the closed loop
system lie in the open left half plane. In the scalar case, the classical root locus provides a
graphical method to determine the roots of d + zp as z varies in (—00,00). So, using root
locus techniques one can design output feedback controllers to stabilize certain scalar valued
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transfer functions. Finally, it is noted that equation (10.9) also shows that output feedback
does not change the zeros of the transfer function. In other words, G = p/d and F have the
same zeros. In this case, the roots of p are precisely the zeros of both G and F.

For multivariable systems there are currently are no easily verifiable necessary and suffi-
cient conditions for the existence of a stabilizing static output feedback controller. This leads
us to consider dynamic output feedback controllers, that is, controllers which are dynamic
systems whose input is the measurement y and whose output is the control u.

Exercise 23 Let G be the transfer function for the state space system

x = Ax + Bu and y = Cx + Du . (10.10)

Consider the static output feedback controller u(t) = —Zy(t) + w(t) where Z is an operator
from y into U and w is the reference signal. Then the closed loop transfer function from the
reference signal w to y is given by F = (/ — GZ)~1G. Assume that —1 is not an eigenvalue
o f Z D .

(i) Show that the control u is given by

u = -(I + ZD}~lZCx + (! + ZD}~lw . (10.11)

(ii) Show that a state space realization for the closed loop transfer function F is given by

Dw. (10.12)

(iii) Show that {A, B, C, D} is controllable, respectively observable if and only if the system
in (10.12) is controllable, respectively observable.

(iv) If {A, B, C, D} is minimal, then show that A is a pole of F if and only if A is an
eigenvalue of A — B(I + ZD}~1ZC. In particular, the closed loop transfer function F
is stable if and only if A - B(I + ZD}~1ZC is stable.

10.2 Dynamic output feedback

In this section we discuss dynamic output feedback controllers for state space systems of the
form

x = Ax + Bu

y = Cx. (10.13)

As before, A is an operator on X and B maps U into X while C maps X into y. In general,
a linear dynamic output feedback controller is described by a state space system of the form

/ = Acf + Bcy
u = -Ccf - Dcy
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where the controller state f ( t ) lies in some finite dimensional space F. The dimension of the
controller state space T is called the order of the controller. In particular, if {Ac, Bc, Cc, Dc}
is controllable and observable, then the order of the controller equals the McMillan degree
of {AC,BC,CC,DC}. This controller is a linear time invariant system whose input is the
measured output y of the plant in (10.13), and whose output u is the control input to the
plant. If Cc is zero then the controller in (10.14) is precisely a static feedback controller as
discussed in Section 10.1.

Applying the controller (10.14) to the plant in (10.13) results in the following closed loop
system

" x 1 \ A - BDCC -BCC MX]
f \ ~ |_ BCC Ac

This is a linear time invariant system whose state is x © / and state space matrix is given
by

A - BDrC -BCr 1 f XA •'* ±->J-sc^ •'-'»--'c '*• / - in -i £-"\
1/4 = 73 r 4 °n F • (10'16)

L -DCL/ -^c J L J

So, the system in (10.15) has state dimension n + nc where n the dimension of the plant state
and nc is the dimension of the controller state. Finally, we say that the plant {A,B,C,Q}
is stabilizable by a linear dynamic output feedback controller if there exists a controller
{Ac, Bc, Cc, DC} such that the state operator A in (10.16) is stable.

In classical control of scalar input scalar output systems, a widely used controller is the
PI (proportional integral) controller described by

u(t) = -ay(t] - (3 f y(r] dr (10.17)
Jo

where a and P are scalars. Let / be the function defined by / = y. Then it is easy to verify
that this PI controller can be represented by the following first order dynamical system

f = y „, (10.18)u = -Pf -ay.

We will show that stabilizability of {A, B} and detectability of {C, A} are necessary and
sufficient conditions to stabilize the plant {A, B,C,Q} by a linear output feedback controller.
The following lemma states the necessity of stabilizability and detectability. In the next
section, we show that these conditions are sufficient for output feedback stabilizability, by
constructing specific stabilizing controllers.

Lemma 10.2.1 // the plant {A, B:C,Q} is stabilizable by a linear dynamic output feedback
controller, then {A, B} is stabilizable and {C, A} is detectable.

PROOF. Consider the plant in (10.13) subject to any controller of the form (10.14) and let A
be the state matrix of the resulting closed loop system given in (10.16). We first show that if
A is an unobservable eigenvalue of {C, A}, then A is an eigenvalue of A. To see this, suppose
that {X,v} is an unobservable eigenvalue eigenvector pair for {C, A}. Then Av = \v and
Cv — 0. Using this, it should be clear that

A< 0 I ""I 0
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Since v is nonzero, it follows that A is an eigenvalue of A. So, all the unobservable eigenvalues
of {C, A} are contained in the eigenvalues of A. If the plant is stabilizable by dynamic
output feedback, then there exists a controller such that all the eigenvalues of A are stable.
In particular, all the unobservable eigenvalues of {C, A} must also be stable. Therefore,
if the plant is stabilizable by a linear dynamic output feedback controller, then {C, A} is
detectable.

We now claim that if A is an uncontrollable eigenvalue of {A, B}, then A is an eigenvalue
of A. Suppose that A is an uncontrollable eigenvalue of {A, B}. Then A*v = Xv and B*v = 0
for some nonzero vector v. Using the structure of A, it readily follows that A is an eigenvalue
of .4* with eigenvector [f,0] i r. Hence, A is an eigenvalue of A. So, all the uncontrollable
eigenvalues of {A , B} are contained in the eigenvalues of A. Therefore, if the plant is
stabilizable by a linear dynamic output feedback controller, then {^4,-B} is stabilizable. •

Exercise 24 Show that the unattached mass with position feedback in Example 10.1.1
can be stabilized with a first order dynamic output feedback controller. What controller
parameters place all the eigenvalues of the closed loop system at —1?

10.3 Observer based controllers

As before, consider the plant in (10.13). Recall that if {A, B, C, 0} is stabilizable by dynamic
output feedback, then {A, B} is stabilizable and {C, A} is detectable. We now demonstrate
that if these conditions are satisfied, then closed loop stability can be achieved with a con-
troller of order no more than the state dimension of the plant. To achieve this, we combine
our previous results on asymptotic state estimation and stabilization via state feedback. We
consider controllers which obtain an asymptotic estimate of the plant state and then use this
estimate for the state in a stabilizing state feedback controller. These controllers are called
observer based controllers and have the following structure:

x = Ax + Bu + L(y - Cx) (1019)
u — —Kx .

Notice that this controller is completely determined by specifying the state feedback gain K
and the observer gain L. Moreover, using u = —Kx this controller can be written as

x = (A-BK-LC)x + Ly (1Q 2Q)

u = -Kx.

This is a dynamic output feedback controller with controller state / = x, the state estimate of
x; see (10.14). Hence, nc = n, that is, the controller and the plant have the same dimension.
In this setting, Ac = A - BK - LC and Bc = L. Moreover, Cc = K and Dc — 0.

Combining the plant in (10.13) with the controller description (10.20), yields the closed
loop system (see (10.15)) described by

A ~ (1021)
LC A-BK-LC • ( U >
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This is a linear time invariant system with state x © x and state matrix given by

Let x be the estimation error, that is x = x — x. Then subtracting x from x in (10.21)
shows that x © x satisfies the following state space equation

x] \A-BK BK
x\~[ 0 A-LC

This system has state x ®x and state matrix

A-BK BK

Now consider the invertible operator T on X © X defined by

(10.25)

Then it is easy to show that AT = TA. Hence, A is similar to A. In particular, A and
A have the same eigenvalues including their multiplicity. Since A is upper triangular, it
follows that the set of eigenvalues of A are simply the union of the eigenvalues of A — BK
and A — LC. One way to see this is to notice that

det[sl -A] = det[sl -A + BK] det[sJ -A + LC}.

In other words, the characteristic polynomial of A is the product of the characteristic poly-
nomials of A — BK and A — LC. Since the eigenvalues of any finite dimensional operator
are the roots of its characteristic polynomial, the set of eigenvalues of A, or equivalently A,
are the union of the eigenvalues of A — BK and A — LC.

It now follows that if both A — BK and A — LC are stable, then the closed loop system
(10.21) is stable. If {A, B} is stabilizable, one can choose a controller gain K so that A — BK
is stable. If {C, A} is detectable, one can choose an observer gain L such that A — LC is
stable. Combining these observations with Lemma 10.2.1 leads to the following result.

Theorem 10.3.1 Consider the plant {A, B, C, 0}. Then the following statements are equiv-
alent.

(a) The pair {A,B} is stabilizable and {C,A} is detectable.

(b) The plant {A, B, C, 0} is stabilizable by a linear dynamic output feedback controller.

(c) The plant {A,B,C, 0} is stabilizable by a linear dynamic output feedback controller
whose order is less than or equal to the state dimension of the plant.
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Remark 10.3.1 The above analysis provides a method for constructing a stabilizing dy-
namic controller for a stabilizable and detectable plant of the form (10.13). To accomplish
this, simply use any method to compute the gains K and L which ensure that both A — BK
and A — LC are stable. Then a stabilizing controller is given by (10.19). In particular, if the
plant is controllable and observable, then one can choose K and L to arbitrarily place the
eigenvalues of A — BK and A — LC, respectively. In this case, one can arbitrarily place the
eigenvalues of the closed system in (10.21) by the appropriate choice of K and L.

Example 10.3.1 Let us use the above results to construct a stabilizing dynamic controller
for the simple mechanical system presented in Example 10.1.1, that is,

0 1
0 0

and 0

Clearly, this system is controllable and observable. For this system, the observer based
controllers in (10.19) are given by

o

where K =[ k\ and L =

X2

0 1
0 0
h 0
12 0 -

tr. The closed loop system in (10.21) is described by

0 0

-/i 1
(10.26)

Let A be the 4 x 4 matrix given in the previous equation. In this case, the state estimation
error Xj = Xj — Xj for j — 1,2. The state estimation error equation in (10.23) is now given
by

" ±1 "
£2 =

0 1 0 0 ]
— /Ci — A/2 /C]_ /C2

0 0 -/i 1
0 0 -/2 0 J

Let A be the 4 x 4 matrix given in the previous equation. Recall that A is similar to A. It
is easy to show that the characteristic polynomial for A is given by

det[s/ -A] = (s2 + k<zs + ki)(s2 + hs + 12).

Clearly, one can arbitrarily assign the roots of this polynomial by choice of the appropriate
choice of the scalar gains {k\, k2, l i , l z } . In particular, the closed loop systems is stable if
and only if all the these scalar gains are positive.

Exercise 25 Let {A, B, C, D} be the state space system given by

x = Ax + Bu and y — Cx + Du . (10.27)
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Consider the dynamic output feedback controller

1 = rcf
f
 + ncV (10'28)u = -Ccf - Dcy

where the controller state / lies in some finite dimensional space J-. Assume that —1 is not
an eigenvalue of DCD.

(i) Show that the control u and output y are given by

y = (I + DDc}-lCx-(I + DDc}-lDCcf . (10.29)

(ii) Show that a state space realization for the closed loop system is given by

BC(I + DDC)-IC AC - BC(I
Let Ac be the 2 x 2 block matrix on X © F in (10.30). Notice that the block matrices
Ac and A in (10.16) are closely related. By replacing B by B(I + DCD}~1 and Bc by
BC(I + DDC}~1 and Ac by Ac - BC(I + DDC}~1DCC in A, we obtain Ac .

(iii) The system {A, B, C, D} in (10.27) is stabilizable by dynamic output feedback if there
exists a controller of the form (10.28) such that Ac is stable. Show that {A,B,C, D}
is stabilizable by dynamic output feedback if and only if the pair {A, B} is stabilizable
and {C, A} is detectable.

(iv) Consider the observer based controller

x = Ax + Bu + L(y + (DK - C)x) (1031)
u = -Kx.

For this controller show that the closed loop system in (10.30) is given by

A -BK
LC A-BK-LC

(10.32)

(v) Let x = x — x be the state estimation error. Then shows that x © x satisfies the
following state space equation

x 1 I" A - BK BK 1 [ x
x \ ~ [ 0 A - LC J [ x

Let A be the block matrix in (10.32) and A the block matrix in (10.33). Then TA = AT
where T is the similarity transformation defined in (10.25). So, A is similar to A. In
particular, if {A, B, C, D} is stabilizable and detectable, then one can compute operator
gains K and L such that A — BK and A — LC are stable. In this case, the state space
system in (10.28) is a dynamic output stabilizing controller for the plant in (10.27).
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10.4 Notes

The results in this chapter are classical. For some further results on feedback controllers see
Kailath [68] and Rugh [110].



Chapter 11

Zeros of Transfer Functions

This chapter is devoted to a state space interpretation of the zeros of a transfer function.

11.1 Zeros
This section introduces the concept of a zero for a rational transfer function. To begin,
consider a scalar proper rational function g. We say that a complex number A is a zero of
g if g(A) = 0. So, A is a zero of g if and only if the rational function given by g(s)/(s — A)
is analytic at A. We now obtain a state space interpretation of zeros. The dimension of
the state space for any minimal realization of a proper transfer function G is called the
McMillan degree of G and is denoted by mdegG. If a proper rational function g equals
n/d where n and d are two scalar polynomials with no common zeros, then the zeros of g
are precisely the zeros of n. Furthermore, the McMillan degree of g is simply the degree of
d, that is, mdegg = degrf. From this it readily follows that if A is not a zero of g, then
mdeg (g/(s — A)) = mdeg (g) + 1. However, mdeg (g/(s — A)) = mdeg (g) when A is a zero
of g.

Consider any rational function F. Then the normal rank of F, denoted by nrankF, is
defined by

nrankF = sup{rankF(s) : s is not a pole of F} . (H-l)

If P is an operator valued polynomial acting between two finite dimensional vector spaces,
then the rank of P(A) equals the normal rank of P except at a finite number of points.
To see this, assume, without loss of generality, that P is matrix valued. Then the rank of
P(A) is the largest of the orders of the nonzero minors of P(X). Since each minor of P is a
scalar-valued polynomial, it is either identically zero or has a finite number of zeros. Because
P has a finite number of minors, there is only a finite number of points for which the rank
of .P(A) is below that of the normal rank of P. If F is an operator valued rational function
acting between two finite dimensional vector spaces, then F — P/d where P is a operator
valued polynomial and d is a scalar valued polynomial. Therefore, the rank of F(\) equals
the normal rank of F except at a finite number of points.

If a complex number A is not a pole of F, we say that it is a zero of F if the rank of
F(A) is strictly less than the normal rank of F. Motivated by the following lemma, we will
generalize the definition of a zero to include the possibility of pole being a zero.

163
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Lemma 11.1.1 If a complex number A is not a pole of a proper rational transfer function
G, then

mdeg(G/(s — A)) = mdegG + rankG(X).

PROOF. First notice that

G(s) = G(s) - G(A) | G(A)

5 — A s — X s — A
(11.2)

Let {A on X,B,C,D} be a minimal realization of G. Then G(s) = C(sl - A)~1B + D.
Since A is not a pole of G and the realization is minimal, A is not an eigenvalue of A. Hence,
XI — A is invertible and

(si- A)-1 - (XI - A)~l = (sI-A)-l[XI-A-(sI-A}}(XI-A)-1

We now have that

5 - A
Since (A — A/)"1 is invertible and commutes with A, it follows from the controllability of
{A,B} that X is spanned by A\A - \I}~1BU for i = 0 , 1 , 2 , - - - where U is the input
space. Hence, {A on X, (A — XI}~1B, C, 0} is a controllable and observable realization of
the transfer function (G(s) - G(A))/(s - A). Therefore mdeg ((G(s) - G(A))/(s - A)) is the
dimension of X which is the same as mdegG.

To obtain a realization of G(A)/(s — A), let X-i be the range of G(A) and A^ the operator
on Xi defined by A^x^ = Xx%. A simple calculation shows that {A^, G(A), C%, 0}, with
C*2 = I\X<2, is a minimal realization of G(A)/(s — A). Hence, rndegG/(s — A) is the dimension
of X-2 which is the rank of G(A).

Since the transfer functions (G(s) — G(A))/(s — A) and G(X)/(s — A) have no common
poles, it follows from equation (11.2) that

mdeg ( ^fj- \ = mdeg ( v ' _ ̂  ' \ + mdeg ( ^f^ 1 = mdegG + rankG(A).

The second equality follows from Exercise 26 below. •
If A is not a pole of a proper rational function G, then the above lemma shows that

mdeg (G/(s - A)) < mdeg G + nrank G . (11.3)

Moreover, A is a zero of G if and only if

mdeg(G/(s-A)) < mdeg G + nrank G . (11.4)

Later we will see that, as expected, the inequality (11.3) also holds when A is a pole of G.
Motivated by this discussion, we say that a complex number A is a zero of G if the inequality
(11.4) holds. For example, the normal rank of the transfer function

fr 0
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is two. The McMillan degree of G is two. Clearly, if A is not a pole of G, that is, A ̂  —1, —2,
then G(A) has rank two, and thus, the normal rank of G is two. So, if A ̂  — 1, —2, then A
is not a zero of G. Since the McMillan degree of G/(s + 2) is four, it follows that —2 is not
a zero. However, the McMillan degree of G/(s + 1) is three; hence G has a zero at — 1.

Exercise 26 Let EI = {Ai on Xit 5i,Ci, DI} and E2 = {A^on X^B^.C^D^} be re-
spectively realizations for GI and 62, where GI and G2 have values in £(U,y). Let
E = {A on X, B, C, D} be the state space system determined by

, D
n A and B = D0 A2 \ [B2

C = [d C2 } and £> = £>! + £>2

where the state X — X\ 0 X^.

(i) Show that E is a realization for GI -I- G<2.

(ii) Now assume that EI and E2 are both minimal realizations. Moreover, assume that A\
and A<2 have no common eigenvalues. Then show that E is a minimal realization for
GI + G2. In particular, the McMillan degree of GI + G2 equals dim X\ + dim <Y2.

(iii) If GI and G2 are two transfer functions with no common poles, then show that
G2) = mdegGx + mdegG2.

11.2 The system matrix

In this section we introduce and study the system matrix for a linear system. A simple
calculation readily proves the following useful result.

Lemma 11.2.1 Let T be an operator mapping X © U into X © y defined by

T \ X I \ f - l -I C\

= U/ 7 ' (1L5)w z\- J

// X is invertible, then T admits a factorization of the form

0 1 \X 0 ]\I
i o z-wx-^ o

As before, assume T is given by (11.5) with X is invertible. The operator Z — WX~1Y is
called the Schur complement of T. The above factorization of T shows that T is invertible if
and only if its Schur complement is invertible. Moreover, the rank of T equals the dimension
of X plus the rank of its Schur complement.

Let {^4 on X, B, C, D} be a realization for a transfer function G. Then, for any complex
number A, let T\ be the system matrix from X © U into X © 3^ given by

A-XI Bl
C D ' l '
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If A is not an eigenvalue of A, then XI — A is invertible, and the Schur complement of T\ is
G(A). Moreover, the rank of TA equals the dimension of X plus the rank of G(A), that is,

rankTA = dim X + rankG(A). (11.8)

Since T(s) := Ts defines a polynomial and G is a rational function, they achieve their normal
rank everywhere except at a finite number of points. Therefore,

nrank T — dim X + nrankG . (11.9)

In particular, if {^4 on X, B, C, D} is a minimal realization of G and A is not a pole of
G, then A is not an eigenvalue of A and the dimension of X is the McMillan degree of G.
Hence, rankT\ = mdegG + rankG(A). Using Lemma 11.1.1, we obtain that the rank of T\
is the McMillan degree of G ( s ) / ( s — A). The following theorem, whose proof is independent
of the previous analysis, states that this result also holds when A is a pole of G.

Theorem 11.2.2 Let {A, B, C, D} be a minimal realization of a transfer function G.
Then, the rank of the operator T\ given in (11.7) equals the McMillan degree of the transfer
function G(s}/(s — A).

PROOF. First, consider the case A = 0. Let G(s) = ^^° Gi/sl be the power series expansion
for G. The power series expansion for G/s is given by G(s}/s — ]Co° ^V5*4"1- ^ follows
that the McMillan degree of G/s is the rank of the Hankel matrix

H =

GQ (?2

G*4

Since {A, B, C, D} is a realization of G, we have GO = D and d = CA1 1B for all integers
i > 1. Hence,

H =

D CB CAB •••
CB CAB CA2B •••

CAB CA2B CA3B •••
D CWC

W0B W0AWC

where W0 and Wc are the observability and controllability operators defined by

C
CA
CA2 and WC=[B AB A2B • • • ] ,

respectively. Therefore, H admits a factorization of the form

I 0
0 Wn

D C
B A

/ 0
0 Wc
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Since the realization {A, J3, C, D} is minimal, the pair {C, A} is observable, and thus, the
matrix corresponding to the operator / 0 W0 is one-to-one. Likewise, the pair {A, B} is
controllable and thus, the matrix corresponding to the operator / © Wc is onto. Therefore,
the rank of H is precisely the rank of

A B
C D

This proves the theorem when A is zero.
Consider now any complex number A. Let {A, B, C', D} be a minimal realization of a

transfer function F. Then, {A —XI, B, C, D} is realization of the transfer function F(s + A).
A simple application of the PBH tests for controllability and observability shows that this
realization is minimal. Therefore F and its translation F(s + A) have the same McMillan
degree, that is, mdegF = mdegF(s + A). Now notice that G(s + X)/s is a translation of
G(s)/(s — A); thus, these two transfer functions have the same McMillan degree. Also, since
{A, B, C, D} is minimal realization of G, the realization {A — A/, B, C, D} is minimal for
G(s + A). By our previous analysis, the McMillan degree of G(s + \)/s is the rank of 7\;
hence the McMillan degree of G(s)/(s — A) is the rank of T\. •

If {A on X, J5, C, D} is minimal realization of a rational transfer function G, then
dim X = mdegG. It now follows from (11.8) that

nrank T = mdeg G + nrankG . (11.10)

By employing Theorem 11.2.2, we now see that inequality (11.3) holds for all A. Also, a
complex number A is a zero of G if and only if rank T\ < nrank T. This yields the following
result.

Corollary 11.2.3 Let T\ be the system matrix in (11. If) associated with a minimal realiza-
tion {A, B, C, D} of a transfer function G. Then, a complex number A is a zero of G if
and only if

rank T\ < nrank T.

In particular, every transfer function has at most a finite number of zeros.

Since the normal rank of a nonzero scalar transfer function is one, the previous corollary
readily yields the following result.

Corollary 11.2.4 Let T\ be the system matrix in (11.7) associated with a minimal realiza-
tion {A on X, B, C, D} of a nonzero scalar transfer function G. Then, a complex number
A is a zero of G if and only if rank T\ < dim X .

Corollary 11.2.5 Let T\ be the system matrix in (11.7) corresponding to the realization
{A, B, C, D} of a transfer function G. If

rank Tx < nrank T, (H-H)

then X is a zero of G or X is an uncontrollable eigenvalue of {A, B} or A is an unobservable
eigenvalue of {C, A}. On the other hand, if X is a zero ofG, then (11.11) holds.
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PROOF. Let X — Xco © Xco © Xc be the controllable/observable decomposition of the state
space X for the system {A, B ,C,D}. Here Xc5 is the controllable/unobservable subspace
while Xco is the controllable/observable subspace and Xc is the uncontrollable subspace.
With respect to this decomposition, A, B and C have the following matrix representations:

A =
Acd *
0 Ac

0 0
and D _ Bc

0
and C = [ 0 Cco C-c] .

Using this decomposition, TA is given by

Aco - A/
0
0
0

* * Bcd

O XI * -t>co

0 Ac - XI 0
Crn C-r D

(11.12)

If A is neither an uncontrollable eigenvalue of {A, B} nor an unobservable eigenvalue of
{C, A}, then both Aco — XI and A5 — XI are invertible. It now follows from the location of
the zeros in the structure of TA that the rank of T\ equals the dimension of Xco ® Xc plus
the rank of the matrix

rfi Aco ~ XI Bco

TA = [ C c o D
L

Because an operator valued polynomial achieves its normal rank everywhere except at a
finite number of points, the normal rank of T equals the dimension of Xco © Xc plus the
normal rank of T.

If the rank of T\ is less than the normal rank of T, and A is neither an uncontrollable or
unobservable eigenvalue, then the rank of TA is less than the normal rank of T. Since T\ is
the system matrix associated with the minimal realization {Aco , Bco , Cco D} of G, it follows
from the above corollary that A is a zero of G.

Suppose, on the other hand, that A is a zero of G. From the structure of TA it should be
clear that

Aco - A/ * Bco

0 Ac - XI 0
r< r1 r>L-Vr> l^c LJ

rank TA < dim Xco + rank

Since the rank of the matrix on the right hand side of the above inequality is less than or
equal to dim Xc plus the rank of TA, we obtain that

rankTA < dim (Xco rankfA

Since A is a zero of G and TA is the system matrix associated with a minimal realization of
G, it follows from the above theorem that rankTx < nrankT. Hence,

rankTA < dim (Xco

Therefore (11.11) holds.

5) + nrankT = nrankT .



11.2. THE SYSTEM MATRIX 169

To see that an uncontrollable or unobservable eigenvalue A does not necessarily result
in rankT\ < nrankT, consider the system with A = 0 on C2, with B = I on C2 while
C = [ 0 1 ] and D = 0 on C. The corresponding system matrix

- A 0 1 0
0 -A 0 1
0 1 0 0

has rank three for all A. Clearly A = 0 is an unobservable eigenvalue while the rank of TO
equals the normal rank of T.

Remark 11.2.1 (Zeros and static state feedback) Recall that for a scalar system, static
state feedback does not create new zeros. It can eliminate a zero, however to do so it must
create an unobservable eigenvalue at the same location. This is sometimes referred to as
pole/zero cancellation by state feedback.

We now demonstrate that this holds in general. To see this, consider the controllable
and observable system given by

x = Ax + Bu , „,,
y — Cx + Du.

We say that A is a zero of {^4, B, (7, D} if A is a zero of its transfer function. Suppose that
u •=• Kx + v where K is a state feedback operator. Then, the resulting closed-loop system is
described by

x = (A + BK}x + Bv / i t - t A \
y = (C + DK}x + Dv. <1L14)

Recall, that a simple application of a PBH test shows that the closed-loop system is control-
lable. Notice that for all A the two system matrices

A - XI B 1 , [ A + BK - XI B
C D\ and [ C + DK D

have the same rank. Hence, they have the same normal rank. If the closed loop system
(11.14) is observable, then it is minimal, and by Corollary 11.2.3, the two systems (11.13)
and (11.14) have the same zeros.

Every zero of the closed loop system is a zero of the open loop system. To see this, let
A be a zero of the closed loop system. By the previous corollary, the rank of the system
matrix for the closed loop system is less than its normal rank. Hence, the rank of the system
matrix for the open loop system is less than its normal rank. Since the open loop system is
minimal, A is a zero of the open loop system.

Every zero of the open loop system is either a zero or an unobservable eigenvalue of the
closed loop system. To see this, let A be a zero of the open loop system. By the previous
corollary, the rank of the system matrix for the open loop system is less than its normal
rank. Hence, the rank of the system matrix for the closed loop system is less than its normal
rank. Since the closed loop system is controllable, it follows from the previous corollary that
A is either a zero or an unobservable eigenvalue of the closed loop system.
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Remark 11.2.2 (A dynamical interpretation of zeroes.) Suppose that

x = Ax + Bu
y = Cx + Du

is a minimal realization of a transfer function G. Assume that the normal rank of G is the
same as the dimension of the input space U. Then A is a zero of G if and only if there exists
a nonzero input u(t] = w0eA* with UQ (E U and an initial condition x(0) = XQ so that y(t) = 0
for all t.

To see this, first notice that the normal rank of the system matrix T corresponding to
{A, B, C, D} equals the dimension of the state space X plus the dimension of U, that is,
nrankT = dim X + dimU. So, if A is a zero of G, then there exists a nonzero vector XQ © UQ
in the kernel of T\, that is,

(A - \!}XQ + Bu0 = 0
Cxo + Duo = 0. (11.15)

Now consider the initial condition x(0) = XQ and input u(t] = UQ6Xt. It readily follows from
the above two equations that x(t] = xoext is the unique solution to x = Ax + Bu and y(t) — 0
for all t. Notice that UQ must be nonzero. If UQ is zero, then 0 = y(t) = CeAtx0 for all t.
By observability of the system, we have XQ = 0. This contradicts the fact that XQ © MO is
nonzero.

Suppose, on the other hand, that the output y of the system under consideration is zero
for some initial condition x(0) = XQ and nonzero input u(t) = UQ€Xt. Then,

y(t) = Cx(t) + Du0e
xt = 0 (11.16)

for all t, and in particular,
Cx0 + Duo = 0. (11-17)

Differentiating (11.16) and setting Du0e
xt = — Cx(t], yields

y(t) = C(A - \I}x(t] + CBuQeXt = 0.

By differentiating the above expression and using induction, one may show that
jk
—^(t) = CAk~l(A - \I}x(t] + CAk-lBu0e

xt = 0
dtk

for all integers k > 1. In particular,

CAk~l[(A - \I)xQ + Bu0] = 0 (for k = 1,2, • • • ) .

Since {C, A} is observable, the above implies that (A — \I}x0 + Bu0 = 0. Combining this
with (11.17) results in (11.15), that is, the non-zero vector XQ © UQ is in the kernel of T\.
This means the rank of T\ is less than the normal rank of T. Hence, A is a zero of G.

11.3 Notes

The results in this chapter are standard; see Kailath [68] and Rugh [110]. For a Smith-
McMillan interpretation of the zeros of a transfer function see Kailath [68].



Chapter 12

Linear Quadratic Regulators

This chapter uses least squares optimization techniques to solve the linear quadratic regular
problem. Two different methods are presented to solve a linear quadratic tracking problem.
A special outer factorization is used to develop a connection between the classical root locus
and the linear quadratic regular problem for single input single output systems.

12.1 The finite horizon problem
There has been considerable research on linear quadratic optimal control. For simplicity of
presentation, we will not attempt to develop the general theory. Instead we will demonstrate
how operator techniques can be used to solve a simple linear quadratic regulator problem.
Throughout this chapter, A is an operator on X and B maps U into X, while C is an operator
mapping X into y. The spaces U, X and y are all finite dimensional. In this section we
will solve the following classical linear quadratic regulator problem.

For each initial state XQ in X, find the optimal cost E(XQ) in the optimization problem:

e(x0) = inf ( / \\\y(a)\\2 + \\u(a)\\2) da : u G L2([tQ, ^],U]
kJto

subject to x = Ax + Bu and y = Cx and x(t0) — XQ . (12-1)

In addition, when a minimum exists, find an optimal input u which achieves this minimum,
that is,

ftl

C(XQ) = I (||y(cr)|| + l l '^( c r ) l l } do~ (12.2)
Jt0

where the optimal state x and output y are given by x — Ax+Bu and y — Cx with x(to) = XQ.

It turns out that the minimum exists for each initial state XQ. Moreover, for each initial
state XQ , there exists a unique optimal input u in L2([to, ti],U) which achieves the minimum.
We demonstrate these facts and obtain the optimal cost and input by using the following
Riccati differential equation:

P=-A*P-PA-C*C + PBB*P (P(*!) = 0). (12.3)

171
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Later we shall see that P(i] is a well defined self-adjoint operator on X for t < t\. By
completion of squares, it is easy to verify that the optimal solution to the linear quadratic
regulator problem in (12.1) is given by u(t) = —B*P(t)x(t). To see this, notice that the
Riccati differential equation for P in (12.3) along with x — Ax + Bu gives

= (Px, x) + (PAx, x) + (PBu, x) + (Px, Ax) + (Px, Bu)
= ((P + PA + A*P)x, x) + (u, B*Px) + (B*Px, u)
= ||B*P:r||2- \\Cx\\2+ (u,B*Px) + (B*Px,u)

= - |y | |2-NI2 + \B*Px + u\\2. (12.4)

By integrating from t0 to t\ and using the fact that P(t\) — 0 and XQ — x(t0), we have

(P(t0)xQ,x0)

This readily implies that

(\\y(a)\\2 + \\u(a)\\2) da. (12.5)

for every input u. Moreover, we have equality if and only if u(t) — —B*P(t)x(t). Hence,
the optimal solution u to the linear quadratic regulator problem in (12.1) is given by the
feedback law u(t) = —B*Px(t). Since x = Ax + Bu, the optimal state trajectory satisfies
x = (A — BB*P)x with the initial condition x(to) = XQ. Furthermore, the optimal cost is
given by e(x0) = (P(t0)xo,x0). In particular, the optimal cost is a quadratic function of
the initial state. So, obtaining the optimal solution is rather easy once we have the Riccati
differential equation. In the next section we will use some operator techniques to derive the
Riccati differential equation, and thus, the optimal feedback law u = —B*Px.

We now show that the Riccati differential equation in (12.3) has a unique solution P
defined on the interval [£0,^1] and this solution is positive (> 0). Clearly, this Riccati
differential equation is locally Lipschitz in P. Hence, this differential equation has a unique
solution over some interval (£2,^1] f°r ^2 sufficiently close to t\. To verify that this solution
can be extended over the interval (— oo,ti], it is sufficient to show that over any interval
( t 2 , t i ] on which P is defined, there is a bound M such that \\P(t}\\ < M for t2 < t < ti.
Considering x(t) = x0 and replacing to with t in (12.5), yields

(P(t)x0,x0 = - r
Jt

da.

By setting u = —B*Px, we see that (P(t)x0,xo) > 0. Since this holds for all XQ in X, the
operator P(t) is positive. On the other hand, considering u = 0, results in

(P(t)xQ,xQ}< \\y(a)\\2da= da < M\\xQ\
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where M is the norm of /Q1"*2 eA'°C*CeA° da. Since P(t) is positive, we have established
that ||P(t)|| < M over any interval (£2,^1]- Therefore, the solution to the Riccati equation
can be extended over [tojii], In fact, this solution can be extended over (—oo,ti]. Summing
up this analysis yields the following fundamental result in linear quadratic optimal control.

Theorem 12.1.1 Consider the linear quadratic regulator problem in (12.1). Then the cor-
responding Riccati differential equation in (12.3) has a unique solution P defined on the
interval [to;^i] and this solution is positive. For any initial state XQ in X, the optimal cost
in (12.1) is given by

e(x0) = (P(t0)x0,x0). (12.6)

Moreover, this cost is uniquely attained by the optimal input

u(t) = -B*P(t)x(t) (12.7) ,

where the optimal state trajectory x is uniquely determined by

x = (A- BB*P(t)}x and x(tQ) = x0. (12.8)

Remark 12.1.1 It is emphasized that one must integrate the Riccati differential equation
in (12.3) backwards in time to find P(t). However, one can easily convert this equation to a
Riccati differential equation moving forward in time. To see this let fi(r) = P(t\ — r}. Then
(12.3) gives

n = A*tt + O4 + C*C - ttBB*(l (with fi(0) = 0). (12.9)

Therefore, one can obtain P by solving forward for £7 in the Riccati differential equation
(12.9). ThenP(t) = n(*!-t).

Let fi be the solution to the Riccati differential equation in (12.9). Then {^(T)} forms
an increasing sequence of positive operators, that is, if 0 < r\ < T^, then fi(ri) < Qfa)
where 17(0) = 0. To see this first notice that, due to the time invariant nature of the system
under consideration, it follows from (12.1) and (12.6) that

= inf

Uo
subject to x = Ax + Bu and y = Cx and z(0) = XQ .

Hence,

(n(T)x0,aro) = inf ( [(\\y(v}\? + |Na)||2) da : u € L2(Mi],W)
Uo

subject to x — Ax + Bu and y = Cx and x(0) = XQ . (12.10)

If TI < T2, then obviously

Tdly^ll2 + IK^II2)^ < r\\\y(v)\\2 + ||«(a)||2) da.
Jo Jo

By taking the infimum, this readily implies that Q(TI) < fifa). Hence, {^(r)} is an increas-
ing sequence of positive operators.
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Remark 12.1.2 If the pair {C, A} is observable, then £l(r) is strictly positive for r > 0.
We have already seen that fi(r) is positive. Now consider any r > 0 and suppose that
(f7(r)xo,xo) = 0 for some initial state x0. We have shown that

where w is the optimal input and y is the optimal output for the initial state XQ. Since
($I(T}XQ,XQ) = 0, it follows that both u and y are zero. Thus, y(a] = CeAaXQ is zero for all
a in [0, r]. The observability of {C1, A} now implies that x0 is zero. Hence, 0(r) is strictly
positive. In particular, if the pair {C, A} is observable, then P(i) is strictly positive for
t < ti.

12.1.1 Problems with control weights
In many control applications one considers linear quadratic regular problems of the form:

( I l 2 / ( < r ) l | 2 + (Ru(v),u(a))da : u e L2([*0,*i],
j

subject to x — Ax + Bu and y = Cx and x(to) = XQ . (12.11)

Here R is a strictly positive operator on U. As expected, the minimum exists and there
exists a unique optimal input u in L 2 ( [ t o , t i ] , U ) which achieves this minimum. To obtain
the optimal input u, let P be the solution, over the interval [to , ti], to the following Riccati
differential equation,

p = -A*P - PA - C*C + PBR~1B*P (P(ti) = 0). (12.12)

The solution P to this Riccati equation is well denned. Furthermore, for any initial state x0

in X, the optimal cost in (12.11) is given by E(XQ) — (P(to)xo,xo). Moreover, this cost is
uniquely attained by the optimal input

u(t) = -R-lB*P(t)x(t) , (12.13)

where the optimal state trajectory x is uniquely determined by

'x = (A - BR-lB*P(t}}x (x(t0) = x0). (12.14)

To prove this, we simply convert the weighted linear quadratic regular problem in (12.11)
to the linear quadratic regular problem considered in (12.1). To this end, introduce a new
input v = Rl/2u, where R1/2 is the positive square root of R. Let B be the operator from
U into X defined by B = BR~1^. Then the linear quadratic regular problem in (12.11) is
equivalent to the linear quadratic regular problem in (12.1) with u and B replaced with v
and B, respectively. Substituting B into our previous Riccati differential equation (12.3), we
obtain the Riccati differential equation in (12.12). In particular, this shows that the solution
P to this Riccati differential equation is well defined and positive over the interval [ to , ^ i ] -
Recall that v = —B*Px is the optimal input which uniquely solves the linear quadratic
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regular problem in (12.1) with u and B replaced with v and B, respectively. Therefore,
u = R~l/2v = —R~lB*Px is the solution to the linear quadratic regular problem in (12.11).
Finally, since both linear quadratic regular problems (12.1) and (12.11) have the same cost,
it follows that E(XQ) = (P(to)xo,xo). This proves our claim.

Exercise 27 Let PI be a positive operator on X. Obviously, Theorem 12.1.1 can be ex-
tended to the time varying case. Consider the following linear quadratic regular problem:

( rti ^1
E(XO) = inf I (Piz(*i),z(*i)) + / (||y(<r)||2 + (R(a)u(a), u(a}} da : u e L2([i0,*i],^) }

I Jt0 )

subject to x = A(t)x + B(t)u and y = C(i)x and x(to) = XQ . (12.15)

Here A is a continuous function with values in £(X, X) and B is a continuous function with
values in £(U, X) while C is a continuous function with values in £(X,y). Let R be a
continuous function with values in £(U,U) satisfying R(t) > el for some e > 0. The Riccati
differential equation associated with this linear quadratic optimization problem is given by

P = -A*P - PA - C*C + PBR~1B*P (P(t!) = Pi). (12.16)

Show that this Riccati differential equation has a unique solution over any finite interval.
Moreover, show that there exists a unique optimal input u in L2([tQ,t\\,U) which achieves
the minimum in (12.15) and E(XQ) = (P(to)xo,xo). Finally, show that u = —R~lB*Px
where the optimal state trajectory x satisfies x = (A — BR~lB*P)x with x(t0) = XQ.

12.2 An operator approach
In this section, we use operator techniques to gain further insight into the linear quadratic
regulator problem and the role of the Riccati equation in its solution.

12.2.1 An operator based solution

To solve the linear quadratic regulator problem via operator methods, let T~C be the Hilbert
space defined by H — L2([to,ti],U © y}, that is, [/ g]tr is in H if and only if / is in
L2([to, ti],U) and g is in I/2([io, ^i],^)- (Recall that tr denotes transpose.) The inner
product on Ti. is defined by

=
Jtoto

Using this inner product, the linear quadratic regular problem in (12.1) is equivalent to

£(XQ) = inf : x = Ax + Bu and y = Cx with x(to) = x0 > . (12.17)
H

To solve this problem, let F be the input output operator mapping L2([io,*i],W) into
([*o,*i], y) defined by

rt
(Fu)(t)= / CeA(t-r)Bu(r}dr (w € L2([t0, t i ] ,W)) . (12.18)

Jt0
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Let C0 be the observability operator from X into L2([£o, *i],3^) defined by

(C0x)(t) = Ce^^x (x e X ] . (12.19)

Clearly, y — C0x0 + Fu. This readily implies that

y
Now let T be the linear operator from

u
Fu

0
C0XQ

u
Fu

into H defined by

(12.20)

Then the linear quadratic regulator problem in (12.1) is equivalent to the following least
squares optimization problem:

e(x0) = inf
0

C0x0
-Tu (12.21)

Notice that T* = -[/ F*], and thus, T*T = / + F*F. Since T*T = 7 + F*F > /, it
follows that T*T is invertible. So, according to the solution of the least squares optimization
problem in Theorem 16.2.4 in the Appendix, the optimal input u solving the linear quadratic
regular problem in (12.1) or (12.21) is given by

Thus, the optimal input u solving the quadratic regular problem is unique and is given by

u = -(I + F*F)-lF*C0x0. (12.22)

The corresponding optimal output trajectory y is given by y = C0xo+Fu. Since (I+F*F)u —
—F*C0xo, it follows that

(12.23)

We now show that for any XQ in X, the optimal cost is given by

£(XQ) = (C*(I + FF*) C0XQ, XQ) -

In particular, the optimal cost is a quadratic function of the initial state. Since y = C0Xo+Fu
and u = —F*y, it follows that y — (I + FF*)~lC0xo . Hence,

- ((/ + FF*)y, y) = (C0xQ, (I + FF*}-lC0x0)

Therefore, (12.23) holds. Summarizing the above results, we obtain the following operator
based solution to the linear quadratic problem.
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Theorem 12.2.1 Consider the linear quadratic regulator problem in (12.1). Let F be the
input output operator defined in (12.18) and C0 the observability operator in (12.19). Then
for any initial state XQ in X , the optimal cost in (12.1) is given by

e(x0) = (C*(I + FF*)-lC0xQ, x0) . (12.24)

This cost is uniquely attained by the optimal input

u = -(I + F*F}-lF*C0xQ . (12.25)

Moreover, if y is the optimal output trajectory associated with u, that is, y = COXQ + Fu,
then

u=-F*y. (12.26)

Finally, it is noted that the elementary operator equation u = —F*y plays a fundamental
role in our approach to solving the linear quadratic regular problem.

12.2.2 The adjoint system

Here we use the above operator based results to obtain another characterization of the solu-
tion to the linear quadratic problem in (12.1). From this characterization, we will naturally
arrive at the Riccati equation. This characterization utilizes the adjoint system associated
with a linear system {A,B,C, 0}. First we need an explicit expression for the adjoint of
an input output operator denned by (12.18). To achieve this, consider any operator F from
L2([*o,*i],W) into L2([£0,ti],y) defined by

2(IYi)(t) = G(t- r}h(r}dr (h e L2([t0,*i],W)) (12-27)
Jt0

where G is a continuous function with values in C(U,y}. We claim that the adjoint F* of F
is the linear operator from L2([to,*i],3/?) m^° L2([to,ti],U) defined by

(I~g)(t) = G*(r - t}g(r}dr (g G L2(Mi],:V)) - (12-28)
Jt

To prove this, notice that for g and h in the appropriate I/2 spaces, we have

(Th,g) = I' (f G(t- r)h(r) dr, g(t)} dt = [ * [* (G(t - r)ft(r), g(t)) drdt
JtQ \Jto / Jto Jto

= r I (h(r], G*(t - r}g(t}) drdt = T T (h(r), G*(t - r)g(t)} dtdr
Jto Jto Jto JT

- f1 (h(r), I'1 G*(t - r}g(t) dt] dr = (h, T*g) .
Jt0 \ JT /

Therefore, the adjoint F* of F is given by (12.28).
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As before, let F be the input output operator given by (12.18). Then with G(t) = CeAtB,
the adjoint F* of F is given by

B*eA*(r-^C*g(T}dT. (12.29)

To obtain a state space realization of the adjoint map F*, let A be the function defined by

/•*!

X(i}= eA'(T-VC*g(r)dT. (12.30)
Jt

Recall Leibnitz's rule for any differentiable function

d f0(t) _ • . f13® d

*(t) ' ' Ja(t)

d f t • r d
- / C(*. r) dr = C(*, PWP - C(*. <*(*))* + / ^ C(*. 0 ̂  • (12-31)
Ut Ja(t) Ja(f) Ot

Using Leibnitz's rule in (12.30), we obtain A — —A*\ — C*g which yields the following state
space representation of h — F*g

A = -A*\ - C*g with \(ti) = 0
h = B*X. (12.32)

To obtain h for a specified g, one must integrate the above differential equation backward
in time from t ^ . To see that (12.32) is a realization of F*, notice that

From this we see that h — F*g can be viewed as a linear input output system (running
backward in time) with impulse response given by — B*e~A"iC*. This impulse response has
state space realization {—A*, —C**,B*,0}. So, by a slight abuse of notation, we call (12.32)
a state space representation of F*. Motivated by this, we call A the adjoint state.

Now let us use the adjoint system to obtain a solution to the linear quadratic regulator
problem in (12.1). Recall from Theorem 12.2.1 that this problem has a unique optimal input
u and u = —F*y where y is the corresponding optimal output trajectory, that is, y is given
by

(12.33)

and x is the optimal state trajectory. Using the above state space realization of F*, we now
see that u is given by

A = -A*\ - C*y with A(*i) = 0

u = -B*\.
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Combining these equations with (12.33), the optimal input is given by u = —B*X where
[x X]tr solves the following two point boundary problem

x = Ax — BB*X with x(to} = XQ

A = -C*Cx-A*X withA(*i) = 0. (12.34)

Since we have shown that the optimization problem (12.1) must have a solution, it follows
that the two point value problem in (12.34) must have a solution. Moreover, if [x X]tr is any
solution to (12.34), then B*X = F*Cx = F*(F(-B*\] + C0x0} where C0 is the observability
defined in (12.19). Hence, B*\ = (I + F*F)~lF*C0x0, that is, -B*X is the optimal input.
We now claim that (12.34) has only one solution. To see this, we first note that, for any XQ,
the two point boundary problem (12.34) has a unique solution if and only if [x A]ir = [0 0]
is the only solution of (12.34) when XQ = 0. With x0 = 0, one can readily see from the
problem statement (12.1) that the optimal input is u — 0. Hence —B*\ = 0, from which it
follows that the only solution to (12.34) with XQ = 0 is the zero solution.

We now claim that, if [x X]tr is the solution to (12.34), then the optimal cost in (12.1) is
given by e(xo) = (X(to),xo). To this end, we note that

^ ' ' — ( \ - £ ' \ _ l _ / ' \ £\ — ( f* f~*£. A* \ ^r\ -L- I\ A^r R R* ̂— I /\, U/ ( 1 ^ I /\, Ju ] I \~J \J Ju -Ti /\, ti> j 1̂  I /\, -TiU^ Lj JLJ /\ j

= -||^A||2-||C*x||2 = -(||^||2 + ||y||2).

Integrating from to to ti and using the boundary conditions in (12.34), we obtain that

Hence, e(xo) = (A(£o),xo). We have just demonstrated the following result.

Theorem 12.2.2 Consider the linear quadratic regulator problem in (12.1). Then the cor-
responding two point boundary value problem in (12.34) has a unique solution for [x A]lr on
the interval [to,ti\. The optimal cost in (12.1) is given by

,a;o) (12-35)

and this cost is uniquely attained by the optimal input

u(t) = -B*X(t). (12.36)

12.2.3 The Riccati equation

Here we use the results of the previous section to arrive at the Riccati equation. More
explicitly, we show that A = Px where P is the solution of the Riccati differential equation
in (12.3). To this end, we introduce the so called Hamiltonian matrix associated with the
linear quadratic regulator problem in (12.1):

RR*

-A*
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The Hamiltonian matrix is simply the state space matrix for the two point boundary value
problem in (12.34).

We have seen that for each t0 < ti and x0 in X the two point boundary value problem in
(12.34) has a solution for [x X]tr on the interval [£o,*i]- Hence, using Lemma 13.6.1 in the
next chapter, it follows that the Riccati differential equation in (12.3) has a solution P for
all t <t\. Moreover, it follows from Remark 13.6.1 that

\(t) = P(t)x(t) and P(t) = $2i(* - *i)$n(* - ^i)'1 (12.38)

where $n and $21 are obtained from the following matrix partition of em:

on

So, one can obtain P by using either P(t) = $21 (£ — ti)3>n(t — ̂ i)"1 or solving the Riccati
differential equation in (12.3).

Equation (12.38) along with u = —B*X, shows that the optimal input u = —B*Px where
x is the optimal state trajectory. This yields another proof of Theorem 12.1.1.

Remark 12.2.1 Recall that fi(^-t) = P(t). By combining Theorems 12.1.1 and 12.2.1,
we readily arrive at the following operator formula for P(to)

fi(ti-to) - P(tQ) = G:(! + FF*)~1C0. (12.40)

Recall that the pair {C, A} is observable if and only if the operator C0 is one to one. Hence,
equation (12.40) shows that the pair {C, A} is observable if and only if P(t) is strictly positive
for any t < ti, or equivalently, Q(i) is strictly positive for any t > 0. In particular, P(t) is
strictly positive for any t < ti if and only if P(t) is strictly positive for all t < t\. Likewise

is strictly positive for any t > 0 if and only if Q(£) is strictly positive for all t > 0.

12.3 An operator quadratic regulator problem

In this section, we present an operator version of the linear quadratic regulator problem.
To this end, let F be an operator from J- into Q and g a vector in Q ' . Then the following
optimization problem is an operator generalization of the linear quadratic regulator problem:

p(g) = mt{\\g + Fu\\2 + \\u\\2 : u e T} . (12.41)

If g = COXQ and F is the operator from L2([ t0 ,^i] ,W) into L 2 ( [ t o , t i ] , y ) defined in (12.18),
then this optimization problem reduces to the linear quadratic regulator problem in (12.1)
with p(g) = E(XO).

Lemma 12.3.1 Let F be an operator from T into Q and g a vector in Q. Then

((I + FFT19, 9) = inf{||3 + Fu\\2 + \\u\\2 : u e f} . (12.42)

Moreover, the optimal u in F solving this minimization problem is unique and given by

u = -(I + F*F)~lF*g = -F*(7 + FF^g . (12.43)
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PROOF. To obtain an optimal u we simply convert (12.41) to a least squares optimization
problem. To this end, let h be the vector in J7 © Q and T the operator from J- into T © Q
defined

g -F

respectively. Then the optimization problem in (12.41) is equivalent to the following least
squares optimization problem:

Because T*T — I + F*F is invertible, the solution u to this least squares problem is unique
and is given by (see Theorem 16.2.4)

u = (T*T}~lT*h = -(I + F*F)~lF*g .

Hence, the first equality in (12.43) holds. The second equality in (12.43) follows from the
identity (/ + MN}~1M — M(I + NM)^1 where M and N are operators acting between the
appropriate spaces.

The Projection Theorem yields

p(9) = \\h\\* -\\PKh\\*,

where PU = T(T*T}~1T* is the orthogonal projection onto the range 'R. of T; see the
Appendix for a review of the Projection Theorem. Since | h\\2 = ||<7||2 and

\\Pzh\\2 = (Pnh,h) = ((T*T)-lT*h,T*h))

we obtain that

P(9} = IMI2 - ((/ + FF*}-lFF*g,g} .

Using the identity / - (/ + FF^FF* = (I + FF*)~l in the last equation, we arrive at
p(g) = ((/ + FF*)~1g,g) which completes the proof. •

Remark 12.3.1 As before, let F be an operator mapping f into Q. Let y = g + Fu where
g is a specified vector in Q. Then the abstract linear quadratic regulator problem in (12.41)
is equivalent to

H2:ue.F}. (12.44)

Hence, p(g) = ((I+FF*)~lg, g). The optimal output y = g+Fu where u = -(I+F*F}~lF*g
is the optimal input. This readily implies that (/ + F*F}u = —F*g, or equivalently, u =
—F*(g + Fu). Therefore, the optimal input u is given by u = —F*y where y is the optimal
output.
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12.4 A linear quadratic tracking problem

In this section, we solve a linear quadratic tracking problem. To this end, let r be any
function in L2([to,ti],y). For each initial state x0 in X, find the optimal input u which
solves the following linear quadratic tracking problem:

e(x0) = mf ( A y(cr) - r(a)||2 + ||«(a)||2)da : u € L2([io,*i],W))
I Jto )

subject to x = Ax + Bu and y = Cx and x(to) = x0 . (12.45)

The following result uses the Riccati equation to compute an optimal input which solves this
tracking problem.

Theorem 12.4.1 Consider the linear quadratic tracking problem in (12-45). Then the min-
imum exists, and there is a unique optimal input u in L 2 ( [ t o , t i ] , U ) which achieves this
minimum. To compute u, let P be the unique solution on the interval [to,£i] to the Riccati
differential equation in (12.3). Let <p be the solution to the following differential equation
moving backwards in time:

(p = -(A*-P(t)BB*)(f> + C*r(t) (V?(t1) = 0). (12.46)

Then the optimal input u is given by

u(t) = -B*P(t)x(t] - B*(p(i) (12.47)

where the optimal state trajectory x is uniquely determined by

x = (A- BB*P(t)}x - BB*(p(t] with x(tQ) = x0. (12.48)

PROOF. The proof is a minor modification of the operator proof of Theorem 12.1.1. As
before, let F be the input output operator from L 2 ( [ t o , t i ] , U ) into L2([to,ti],y) defined
in (12.18), and C0 the observability operator from X into L2([t0,ti],y) defined in (12.19).
Clearly, y — C0xo + Fu. So, the optimization problem in (12.45) is equivalent to the following
optimization problem

e(x0) = inf{||Oo - r + Fu\\2 + \\u\\2 : u & L2([t0, t&U}} .

By consulting Lemma 12.3.1 with g = COXQ — r, we see that the unique optimal input u
solving the quadratic tracking problem is given by

u = -(I + F*F}-lF*(C0xQ - r). (12.49)

Notice that this is precisely the solution to the linear quadratic regulator problem with C0x0

replaced by COXQ — r. The corresponding optimal output is y = C0xQ + Fu. In other words,
y is given by

x — Ax + Bu with x(to) = XQ

y = Cx (12.50)
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and x is the optimal state trajectory. Since (/ + F*F)u = —F*(C0xo — r), it follows that

u = -F*(C0x0 + Fu-r} = -F*(y - r} . (12.51)

Recall that the adjoint F* of F is given by (12.29). Recall also the following state space
representation of h = F*g

A = -A*\-C*g with A(*i) = 0
h = B*\.

Using u — —F*(y — r) in the above realization with g = y — r and u = —h, we see that the
optimal input u is given by

A = -A*\ - C*Cx + C*r with A(*i) = 0
u = -B*X. (12.52)

Combining this with the state equation in (12.50) readily yields the following two point
boundary value problem:

[ A -BB*] \x] \ 0
[ -C*C -A* \ [ A J + [ C"

where x(to) = XQ and \(ti) = 0.
As before, let H be Hamiltonian matrix given in (12.37). Then,

f *(*) 1 _ eH(t-U \ *(*l) 1 + f eH(t-r) \ 0
[ A ( t ) J - e [ 0 \+Jti

e [c7*r(r)

Using the matrix partition in (12.39) of em on A7 © A", yields

\(t) = $21(t-t1)x(t1)

Recall that $n(i — ti) is invertible and P(t) = $21 (* — *i)^n(* — ̂ i)"1 satisfies the Riccati
differential equation in (12.3). Eliminating x(ti) in the previous equations, shows that \(t) —
P(t)x(f) + (p(t) where

(p(t) = f e(i,r)C*r(r)rfr with 0(t,r) = $22(t-r) - P(i)$12(t-r) . (12.55)
•/ti

Recall that the optimal input u = —B*\. So, to complete the proof it remains to show that
9? is the solution to the initial value problem specified in (12.46). Clearly, </?(ti) = 0. Notice
that

$22 ~C*C -A* $21 $
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By employing the Riccati equation in (12.3), we have

(t,r) = $22(t-r)

+ PBB*3>22

- -(A*-PBB*)Q(t,T).

Using this with Leibnitz's rule in (12.55), we arrive at the differential equation for (p in
(12.46). Finally, A - Px + (p and u = -B*\ yields u = -B*Px - B*tp. •

12.5 A spectral factorization
In this section we will follow some of the ideas in Porter [101] and use the Riccati differential
equation in (12.3) to compute a special factorization for / + P*P where F is the causal
operator defined in (12.18). Then we will use these results to solve a general tracking problem.
To establish some terminology, let H be any invertible positive operator on L2([t0,ti},U).
Then we say that 6 is a spectral factor of EE, if EE = 6*6 where 6 a causal operator on
L2([to, t i ] , U } . Because EE is invertible and EE = 6*6, it follows that 6 is bounded below, that
is, ||6/|| > 6\\f\\ for all / in L2([t0j ti],U} and some scalar 5 > 0. In particular, 6 is one to
one. We say that 6 is a finite time outer spectral factor of EE, if 6 is an invertible spectral
factor of EE and its inverse 6"1 is causal.

Let L be the linear operator on L2([t0, ti], X] defined by

(Lf}(t} = I e A ( t ~ T ) f ( r ) d r (f e L2([t0 , t i] , X ) ) . (12.56)
Jt0

Notice that g = Lf for some / in L2([toi t i ] , X] if and only if g is the unique solution to the
following differential equation

g = Ag + f with 0(*o) = 0. (12.57)

It should also be clear that the operator F = CLB.

Lemma 12.5.1 Let F be the causal operator from I /2([^o,^i] ,U} into I/2([to, £1], 30 defined
in (12.18), and P the solution to the Riccati differential equation in (12.3). Then

9 = I + B*PLB (12.58)

is a finite time outer spectral factor for I + F*F.

PROOF. The adjoint L* of L is the operator on L2([t0, ti], X) defined by

/•*i
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By applying Leibnitz's rule to (12.59), it follows that £ = L*(j) for some 0 in L2([t0,ti], X)
if and only if £ is the unique solution to the following differential equation

£ = -A*£-(j) with £(ii) = 0. (12.60)

Let g be any differentiable function in Z/2([to, t^X}. Using the Riccati differential equa-
tion in (12.3), we have

£. (Pg) = Pg + Pg = Pg- A*P9 - PAg - C*Cg + PBB*P9 .

In other words,

jt (Pg) = -A*(Pg) - C*Cg + PBB*Pg + P(g - Ag).

Since P(ti)g(ti) — 0, it now follows from the characterization of £ = L*0 in (12.60) that

Pg = L*(C*Cg - PBB*Pg -Pg + PAg).

This yields the following relationship:

(P + L*PBB*P - L*C*C)g - -L*P(g - Ag} (12.61)

for any differentiable function g in L2([t0,ti], X). Now let g — Lj where / is any function in
L 2 ( [ t o , t i ] , X ) . Then using g = Ag + f in (12.61), we arrive at the following algebraic Riccati
equation

L*P + PL + L*PBB*PL - L*C*CL = 0. (12.62)

By applying B* to the left and B on the right, rearranging terms and using F — CLB,
we obtain

I + F*F = I + B*L*C*CLB

= 1 + B*L*PB + B*PLB + B*L*PBB*PLB

So, if 0 = / + B*PLB, then clearly 6*6 = / + F*F.
Obviously 6 is causal. In fact, 6 can be viewed as the input output map for a state

space system. To be precise, if h = Qv for some v in L2([io,ii],W), then we claim that h is
the output of the following linear system

q = Aq + Bvandh = B"Pq + v (q(t0) = 0). (12.63)

To verify that h — Qv, simply notice that because q(to) — 0, the state q = LBv. Hence,
h = B*PLBv + v = Qv, which verifies our claim. By setting B = B and C = B*P with
D = I in Lemma 12.5.2 below, it follows that 6 is an invertible causal operator. Therefore,
0 is a finite time outer spectral factor for / + F*F. •
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Lemma 12.5.2 Let T be the operator from L 2([ t 0 ,^ i ] ,W) into L2({t0, ti],y) defined by

(Tv)(t} = I C(t)eA(t^B(r}v(r}dr + Dv(t} (v e L2([t0, t^U)) (12.64)
Jto

where B and C are continuous functions with values in £(U,X} and £(X,y], respectively.
Moreover, assume that D is an invertible operator from U into y . Then Y is invertible and

)B(r)D-ly(r}dT + D-ly(t) (y € L2([t0 ,ti],y))
t0

(12.65)
where fy(t,r) is the state transition matrix for A — BD~1C.

PROOF. Notice that T is the input output map for the following state space system

and y = Cq + Dv (q(t0) = 0) . (12.66)

In other words, y = TV if and only if v is the input and y is the output for the state space
system in (12.66). Substituting v = D~ly — D~lCq into the first equation in (12.66), gives

q=(A-BD-lC}q + BD-ly and v = -D~lCq + D~ly (q(t0) = 0) . (12.67)

This is the state space system for the operator A from L2([t0, ii], y) into L2([t0, t\],U] defined
by

(Ay)(t) = -D-1 f C(t)9(t, r}B(r}D-ly(r} dr + D^y(t) (y e L2([t0, t&y) .
Jt0

In particular, equation (12.67) shows that if y = TV, then v = A.y = ATv. Since this holds
for all v in L2([t0, t i ] ,W), we obtain AT = /. On the other hand, if v — Ay for any y in
L 2 ( [ t o , t i ] , y ) , then substituting y = Cq + Dv into the first equation in (12.67), yields the
state space system in (12.66), that is, y = TV. Hence, y — TV = TAy. This readily implies
that TA — I. Therefore, A is the inverse of T and (12.65) holds. •

12.5.1 A general tracking problem

In this section we will use some operator techniques to solve a generalization of the previous
tracking problem. To this end, let W be a finite dimensional space. Let E be an operator
from W into X and D an operator from W into y. Consider the system

x = Ax + Bu + Ew

y = Cx + Dw. (12.68)

Here w is some signal or a disturbance in L([to, ti], W). This leads to the following linear
quadratic optimization problem

||y(a)||2 + \\u(a) \2}da : u e L2([t0, *i], U]
t0

subject to the system in (12.68) and x(to) — XQ . (12.69)
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If E is zero, D — — 7 and w — r, then this optimization problem reduces to the linear
quadratic tracking problem (12.45) discussed in Section 12.4. The following presents a solu-
tion to this optimization problem.

Theorem 12.5.3 Consider the linear quadratic tracking problem in (12.69). Then the min-
imum exists and there exists a unique optimal input u in L2([to,ti],U) which achieves this
minimum. To compute u, let P be the unique solution on the interval [to,ti] to the Riccati
differential equation in (12.3). Let tp be the solution to the following differential equation
moving backwards in time:

p = -(A-BB*P(t))*<p-(PE + C*D)w(t) with y ? (* i )=0 . (12.70)

Then the optimal input u is given by

u(t) = -B*P(t)x(t) - B*(f(t) (12.71)

where the optimal state trajectory x is uniquely determined by

x = (A- BB*P(t))x - BB*y(t] + Ew(t) (x(t0) = x0) . (12.72)

PROOF. One can obtain a proof of this result by following the techniques in the proof
of Theorem 12.4.1. Now let us use the finite time outer spectral factor 0 to obtain an
alternative proof. Recall that the input output operator F in (12.18) is given by F = CLB.
Moreover, if we set G = CLE + D, then the output y in (12.68) is given by

y = C0x0 + GW + FU. (12.73)

So, the optimization problem in (12.69) is equivalent to the following optimization problem

e(XQ) = inf{||C0zo + Gw + Fuf + \\u\\2 : u e L2([t0, t

By consulting Lemma 12.3.1 with g = COXQ + Gw, we see that the unique optimal input u
solving the quadratic optimization problem in (12.69) is given by

u = -(I + F*F)-lF*(C0x0 + Gw). (12.74)

Notice that this is precisely the solution to the linear quadratic regular problem with C0x0

replaced by COXQ + Gw. Moreover, u + F*Fu = — F*(C0xo + Gw). By employing (12.73),
the optimal output y corresponding to the optimal input u is given by y = COXQ + Gw + Fu.
Recalling the expression for u, we now obtain u = —F*(C0xQ + Gw + Fu) = —F*y. As
expected, the optimal control input satisfies u = —F*y, see Remark 12.3.1. Finally, it is
noted that the optimal state x is given by

x = Ax + Bu + Ew. (12.75)

Using g = x in equation (12.61) along with (12.75), we obtain

(P + L*PBB*P - L*C*C}x = -L*P(Bu + Ew) .
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Recall that G* = / 4- B*L* PB. Multiplying the above equation by B* on the left and
rearranging terms, we obtain

-B*L*C*Cx + B*L*PBu = -(I + B*L*PB)B*Px~B*L*PEw
= -e*B*Px- B*L*PEw.

By employing the optimal output y — Cx + Dw and the optimal input u = —F*y =
— B*L*C*y in the previous equation, yields

According to Lemma 12.5.1, the operator 0* = / + B*L*PB is invertible. This along with
the identity (/ + JVM)-1 AT = N(I + MN)~l

} yields

= -B*Px - B*(I + L*PBB*}~1L*(PE + C*D)w

= -B*Px-B*(p

where < p : = ( I + L* P B* B}~1 L* (P E + C*D}w. Using (/ + L*PB*B)p = L*(PE + C*D}w,
we obtain

V = L* (-PB*BV + (PE + C*D)W) .
Recall that if £ = L*(f>, then £ satisfies the differential equation in (12.60). Hence,

(p = -(A - BB*P)*<p - (PE + C*D}w (<p(ti) = 0).

This is precisely the differential equation in (12.70). Since u = —B*Px — B*p, equation
(12.71) holds. Substituting this into (12.75), yields (12.72). •

Problems with control weights. Now consider the following linear quadratic tracking
problem associated with the linear quadratic regular problem discussed in Section 12.1.1:

U h ^(l |y( c r)H2 + (Ru(a),u(a))da : u e L2([t0,ti],W) >
j )

subject to the system in (12.68) and x(to) = XQ . (12.76)

As before, R is a strictly positive operator on U. The minimum exists and there exists a
uniqiie optimal input u in I/2([to, t i ] , U ) which achieves the minimum. To obtain the optimal
input, let P be the solution to the following Riccati differential equation

Q). (12.77)

Let (p be the solution to the following differential equation moving backwards in time:

= 0) . (12.78)



12.6. THE INFINITE HORIZON PROBLEM 189

Then for any initial state XQ in X , the optimal input

where the optimal state trajectory x is uniquely determined by

x = (A-BR-lB*P)x-BR-1B*p + Ew and x(t0} = xQ. (12.79)

Finally, it is noted that this tracking result also holds in the time varying case, that is, when
{A(t),B(i),C(t),D(t),E(i),R(t)} are continuous function with values in the appropriate
£(•, •) space and R(t) > el for some e > 0 and all t. Because the proof of this result is
almost identical to the proof in Section 12.1.1, the details are left as an exercise.

12.6 The infinite horizon problem
This section is concerned with the following infinite horizon linear quadratic regulator prob-
lem. For each initial state XQ in X, find the optimal cost £(XQ) and an optimal input u which
solves the optimization problem:

/o
subject to x = Ax + Bu and y — Cx and z(0) = XQ . (12.80)

As before, A is an operator on X and B maps U into X while C is an operator mapping X
into y. The spaces X', 3^ and £Y are finite dimensional.

Throughout this section it is assumed that the pair {A, B} is stabilizable. If {A, B} is
not stabilizable, then for some initial states ZQ, the cost in (12.80) is infinite for every input;
hence the infimum is infinite and the optimization problem is trivial. For example, consider
the system,

0 Q U + L U and y = [ 1 0

which is not stabilizable. Here y(t) = etx\Q where XIG is the first component of XQ. So, for a
nonzero X\Q and any input, we have

/

oo />o

(||y(a)||2 + | |ti(a)| |2)dt7> /
Jo

Therefore, the infimum in (12.80) is infinite for all nonzero X\Q, and the optimization is trivial.
On the other hand, if {A, B} is stabilizable, then there exists a feedback gain K from X
into U such that A — BK is stable. In other words, if u — —Kx, then all solutions of the
resulting closed loop system decays exponentially to zero. Specifically, there are constants a
and /3 for the closed loop system such that ||x(i)|| < /?||o;o||e~at for all t > 0. Since y — Cx
and u = —Kx, it follows that

/Jo
(12.81)

for some finite scalar M. So, in this case the linear quadratic optimization problem in (12.80)
is non-trivial.
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12.7 The algebraic Riccati equation
Solving an infinite horizon problem involves the algebraic Riccati equation associated with
the Riccati differential equation in (12.3). In this section, we establish some properties of
this algebraic Riccati equation.

As in Remark 12.1.1, let S7(£) = P(ti—t) where P is the solution to the Riccati differential
equation in (12.3). Remark 12.1.1 states that (fi(i)} is an increasing sequence of positive
operators which satisfy the following Riccati differential equation

fl = A*tt + 04 + C*C - ttBB*tt (0(0) = 0). (12.82)

Moreover,

o
subject to x = Ax + Bu and y = Cx and x(0) = x0 . (12.83)

Now assume that the pair {A, B} is stabilizable. Then there is a finite scalar M such
that for any initial state XQ, there is an input u such that (12.81) holds. Hence, for any t > 0,

(12.84)

Since 0(t) > 0, this shows that £l(t) is uniformly bounded for all t, that is, ||fi(£)| < M
where M is a finite positive scalar. Recall that a sequence of positive increasing uniformly
bounded operators converges strongly to a positive operator; see Halmos [59]. Therefore,
fi(t) converges to a positive operator Q as t — > oo, that is,

Q = lim fl(t) . (12.85)
t^>00

Equations (12.84) and (12.85) show that, for any initial state XQ, the scalar (QXQ,XQ] is a
lower bound on the optimal cost, that is,

/

oo
(||y(a)||2 + IKcr ) | | 2 )d<7- (12.86)

Later we will show that, when {C, A} is detectable, (QXQ,XQ) = £(XQ) where E(XQ) is the
optimal cost for the infinite time horizon optimization problem in (12.80).

Since £l(t) approaches a constant Q as t tends to infinity, our intuition tells us that Q is a
constant solution to the Riccati differential equation (12.82). In other words, Q is a solution
of the following algebraic Riccati equation:

A*Q + QA + C*C-QBB*Q = Q. (12.87)

Our intuitive result can be rigorously justified by using Lemma 12.7 A at the end of this
section. If the pair {C, A} is observable, then Q is strictly positive. In this case, Remark
12.1.2 or 12.2.1 shows that fi(t) is strictly positive for all t > 0. Because {fJ(£)} is increasing
and converge to Q, it follows that Q is strictly positive. This proves the following result.
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Lemma 12.7.1 Let {A,B} be a stabilizable pair. Then the Riccati differential equation in
(12.82) has a unique solution f2 for all t > 0. Moreover, f2(t) converges to a positive operator
Q as t tends to infinity and Q satisfies the algebraic Riccati equation in (12.87). In addition,
if the pair {C1, A} is observable, then Q is a strictly positive solution to (12.87).

We say that Q is a stabilizing solution to the algebraic Riccati equation in (12.87) if Q
is a self-adjoint operator satisfying (12.87) and the operator A — BB*Q is stable. If the
algebraic Riccati equation in (12.87) admits a stabilizing solution Q, then it is unique. To
see this let Z be another stabilizing solution, that is, assume that

A*Z + ZA + C*C-ZBB*Z = Q (12.88)

and Ai = A- BB*Z is stable. Let Ac = A - BB*Q and set A = Q - Z. Using (12.87) and
(12.88), we obtain

= A*Q + QA- QBB*Q + QBB*Z - A*Z -ZA + ZBB*Z - QBB*Z

- 0. (12.89)

Therefore, A*A + AAi = 0. Since Ac and A\ are both stable, the only solution to this
Lyapunov equation is A = 0. To demonstrate this simply notice that

/

oo roo

e^Qe^dt^ / e^*(^A + AAi)eAltd<
Jo

= r d (e^AgAlt) dt = e^Ae^|o°° = _A . (12.go)

Thus, A equals zero and Q = Z. In other words, Q is the only stabilizing solution to the
algebraic Riccati equation in (12.87).

Recall that a pair {C, A} is detectable if all the unobservable eigenvalues for {C, A} are
stable, that is, if Af = Xf and Cf = 0 for some eigenvector / with eigenvalue A, then
3? (A) < 0. The following result shows that if {C, A} is detectable, then the algebraic Riccati
equation has a unique stabilizing solution and f2(£) converges to this solution.

Lemma 12.7.2 Let {A,B,C} be a stabilizable and detectable system. Let Q = lim^
where f2 is the solution to the Riccati differential equation in (12.82). Then Q is positive
and is a stabilizing solution to the algebraic Riccati equation in (12.87). Moreover, Q is the
only positive solution and the only stabilizing solution to this algebraic Riccati equation.

PROOF. According to Lemma 12.7.1, the operator Q — lim^^ J7(t) is positive and satisfies
the algebraic Riccati equation in (12.87). Now let us show that A — BB*Q is stable and Q
is the only positive solution to this algebraic Riccati equation. To this end, notice that the
algebraic Riccati equation in (12.87) is equivalent to

= 0 -
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If we set C = [C B*Q]tr and Ac = A — BB*Q, then it follows that the positive Q satisfies
the Lyapunov equation

AIQ + QAC + c*c = o.
To show that Ac is stable it is sufficient to verify that the pair {C, Ac} is detectable; see
Lemma 12.7.3 at the end of this section. We now claim that the kernel of

J(A) =
A - XI ^ A~ BB*Q ~ XI

C
C

B*Q
(12.91)

is zero for all complex numbers A in the closed right half plane. Then by the PBH test {C, Ac}
is detectable; see Lemma 9.1.2. If / is any vector in the kernel of J(A), then B*Qf = 0.
Thus, (A - A/)/ = 0 and Cf = 0. Since {C , A} is detectable and 9fc(A) > 0, the PBH test
guarantees that the kernel of [A — XI C]tr is zero. In other words, / must be zero which
proves our claim. Therefore, Ac is stable.

We now demonstrate that Q is the only positive solution to the algebraic Riccati equation
in (12.87). Let Z be any positive solution to this algebraic Riccati equation, that is, assume
that (12.88) holds. Then by replacing Q by Z in our previous analysis, we see that A\ =
A — BB*Z is stable. Because the stabilizing solution to this algebraic Riccati equation is
unique, we must have Z = Q = lim^^ £l(t). •

If {A,B,C} is stabilizable and detectable, then Lemma 12.7.2 shows that the algebraic
Riccati in (12.87) admits a unique positive solution Q. Moreover, this solution is also the
unique stabilizing solution. Let us complete this section with the following lemmas which
were used above.

Lemma 12.7.3 Assume that the pair {C, A} is a detectable pair and the Lyapunov equation

A*E + EA + C*C = Q (12.92)

has a positive solution for E. Then A is stable.

PROOF. Consider any eigenvalue A of A and let / be a corresponding eigenvector. We need
to show that A is stable, that is, 5J(A) < 0. Using Af = Xf in (12.92) gives

- \\Cf\\2 = (A*Ef, f) + (EAf, f) = (Ef, Af) + X(Ef, f) = 2»(A)(S/, /) .

Hence, 2K(A)(E/,/) - -\\Cf\\2. Since E is positive, we have (Ef,f) > 0. If either ( E f J )
or 5R(A) is zero, then \\Cf\\ = 0, and thus, Cf = 0. Since {C, A} is detectable, we must
have K(A) < 0. Now suppose that ( E f J ) > 0 and $ft(A) ^ 0. Then, \\Cf\\ ^ 0 and

Lemma 12.7.4 Consider the differential equation x = f ( x ) where f is a continuous function
on a finite dimensional space X . Suppose that x is any solution of this differential equation
uhich converges to a constant vector xe in X as t tends to infinity. Then f ( x e ) = 0.
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PROOF. For any t > 0, we have

rt+l

/

t+ rt+

f ( x ( a } } da = \ (f(x(a)} - f ( x e ) ) da + f(xe] . (12.93)
Jt

By the hypothesis, x(t) approaches xe as t tends towards infinity. This also implies that
x(t + 1) approaches xe as t tends towards infinity. Hence, x(t + 1) - x(t] converges to zero
as t approaches infinity. Since the function / is continuous, f(x(a}} — f(xe] also converges
to zero as a tends towards infinity. This readily implies that

/

t+i
( f ( x ( a ) ) - f ( x * ) ) d a = 0.

By taking limits as t approaches infinity in equation (12.93), we obtain f ( x e ) = 0. •

12.8 Solution to the infinite horizon problem
In this section we use the stabilizing solution to the algebraic Riccati equation to obtain a
state feedback solution to the infinite horizon linear quadratic regulator problem.

Theorem 12.8.1 Consider the infinite horizon linear quadratic regulator problem in (12.80)
where {A,B,C} is a stabilizable and detectable system. Then the algebraic Riccati equation
in (12.87) has a unique positive solution Q and for any initial state XQ in X , the optimal
cost in (12.80) is given by

0). (12.94)

Moreover, this cost is uniquely attained by the optimal input

u(t) = -B*Qx(t) (12.95)

where the optimal state trajectory x is uniquely determined by

x = (A - BB*Q}x and x(0) = XQ . (12.96)

PROOF. Recall from (12.86) that, for any initial state XQ, the scalar (Qxo,xo) is a lower
bound on the optimal cost, that is, (QXQ,XQ) < e(x0). We show that the input given by
u = —B*Qx achieves this lower bound, and hence, is optimal. To see this, notice that the
algebraic Riccati equation for Q in (12.87) along with x = Ax + Bu and y = Cx gives

— (Qx,x] = (Qx,x) + (Qx,x)
at

= (QAx, x) + (QBu, x) + (Qx, Ax] + (Qx, Bu)

= (QAx,x) + (A*Qx,x) + (u,B*Qx) + (B*Qx,u) (12.97)

- -\\Cx\\2 + ||£*Qx||2 + (u,B*Qx) + (B*Qx,u)

*
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By integrating from 0 to t with x0 = x(0), we obtain

/•*
/ (\\y(^}\\2 + |K<r)|| }da = (Qx0lxQ)-(Qx(t),x(t))

Jo
ft

+ I \\B*Qx(a)+u(o}\\2da. (12.98)
Jo

Considering u = u = —B*Qx and y = y yields
ft
\ (\\y(a)\\2 + \\u(v)\\2) da = (Qx0,x0) - ( Q x ( t ) , x ( t ) ) .

Jo

Since x = (A — BB*Q}x and A — BB*Q is stable, it follows that x(t) approaches zero as t
tends towards infinity. Letting t approach infinity, we now obtain

/

CO
(\\y(<r)\\*+ \\u(0)\f)der = (Qx0,x0)

Therefore, u = —B*Qx is an optimal input and the cost e(xo) = (Qxo,xo).
To complete the proof, it remains to show that u = —B*Qx is the unique optimal

input. To this end, assume that v is another function in L2([0, oo),£Y) which achieves the
cost (QXQ,XQ). The output z corresponding to v is given by z = Cf where / = Af + Bv
and /(O) = XQ. Since v achieves the optimal cost £(XQ), the optimal output z must be in
L2([0,oo),3^). According to Lemma 12.8.2 given at the end of this section, the state / is in
I/2([0, oo), X*). Lemma 12.8.3 presented below, shows that f(t) approaches zero, as t tends
to infinity. So, by letting t approach infinity in (12.98), we obtain

/

oo r-oo

(\\z(a)\\2 + \\v(a)\\2)da = (Qx0,x0) + \ \\B*Qj(a}
Jo

da .

This readily implies that \\B*Qf + v\\^ = 0. Hence, v = —B*Qf. Substituting this into
/ = Af + Bv, yields / - (A-BB*Q)f where /(O) = XQ. Thus, / = x and v = -B*Qf = u.
Therefore, the optimal input u is unique. •

Remark 12.8.1 Now consider the possibly unstable system x = Ax + Bu. Recall that an
operator K mapping X into U is a stabilizing gain if the state feedback operator A — BK is
stable. The algebraic Riccati equation in (12.87) can be used to compute a stabilizing gain
K for any stabilizable pair {A, B}. To see this simply choose any operator C such that the
pair {C, A} is detectable. For example, choose C = I . Let Q be the unique positive solution
to the algebraic Riccati equation in (12.87). Then Lemma 12.7.2 shows that K = B*Q is a
stabilizing gain for {A,B}.

Remark 12.8.2 Consider any stable system {A, B, C} and let F be the operator from
L2([0,oo),Z/) into L2([0,oo),^) defined by

rt
(Fu}(t}= I CeA(t~T)Bu(r}dr (u £ L2([0, oo),W)) . (12.99)

Jo

Let C0 be the operator from X into L2([0, co),3^) defined by (C0xo)(t} = CeAtxQ where XQ
is in X. Suppose Q is the unique stabilizing solution to the algebraic Riccati equation in
(12.87). By combining Lemma 12.3.1 and Theorem 12.8.1, we see that Q = C^(I+FF*)-1C0.



12.8. SOLUTION TO THE INFINITE HORIZON PROBLEM 195

Lemma 12.8.2 Consider the detectable system

u andy = Cx + Du. (12.100)

If the input u is in £2([0, oo), W) and the output y is in I/2([0, oo), y), then the state trajectory
x is in L2([0, oo), X } .

PROOF. Since the pair {C, A} is detectable, there exists an operator L from y into X such
that the operator A — LC is stable; see Theorem 9.1.3. So, we can rewrite the system in
(12.100) as

x = (A- LC)x + Ly + (B - LD)u .

This readily implies that

x(t) = e(A-LC)tx(0} + I e(A~LC^-T)(Ly(r) + (B - LD)u(r)} dr .
Jo

Because both (B — LD}u and Ly are in £2([0, oo), X] and A — LC is stable, it follows that
z isin L2([0,oo),;t). •

Lemma 12.8.3 Consider the system x = Ax + Bu where A is an operator on X and B
maps U into X. If the input u is in L2([0, oo),ZY) and the state x is in I/2([0, oc),X), then
x(t) approaches zero as t tends to infinity.

PROOF. Since x = Ax + Bu and u and x are in the appropriate L2 spaces, it follows that x
is in I/2([0, oo), A"). We now observe that

/

OO ft

(x(r),x(r))dr= lim (x(r},x(r))dr (12.101)
*-°°./o

and

IkOOf - ll*(0)||2 - jf ̂  ( x ( r ) , x ( r ) ) dr = J\X(T},X(T}} dr + j\x(r},x(r}}dr .

(12.102)
Considering limits as t approaches infinity, it follows from (12.101) and (12.102) that

Thus ||z(t)||2 converges a limit as t tends to infinity. Because x is in I/2([0, oo), X ) , this limit
must be zero. Hence, x(£) approaches zero as t tends to infinity. •

12.8.1 Problems with control weights
In many control applications one considers linear quadratic regular problems of the form:

subject to x = Ax + Bu and y — Cx and o;(0) = XQ . (12.103)
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Here R is a strictly positive operator on U. By following the procedure used in Section
12.1.1, introducing a new input v = Rl/2u and setting B = BR~1/^, we readily obtain the
following solution to the infinite horizon linear quadratic optimization problem in (12.103).

If {A, B} is stabilizable and {C, A} is detectable, then the algebraic Riccati equation

A*Q + QA + C*C-QBR~1B*Q = Q, (12.104)

has a unique positive solution for Q. For any initial state XQ in X ', the optimal cost in (12.103)
is given by E(XQ) = (Qxo,xo). Moreover, this cost is uniquely attained by the optimal input
u = — R~lB*Qx , where the optimal state trajectory x is uniquely determined by

x=(A- BR~1B*Q}x (£(0) = x0) . (12.105)

Finally, the operator A — BR~1B*Q is stable. In this setting, we say that Q is a stabilizing
solution to the algebraic Riccati equation in (12.104), if Q is a self-adjoint operator satisfying
(12.104) and A — BR~1B*Q is stable. So, if {A, B, C} is a stabilizable and detectable system,
then the algebraic Riccati equation in (12.104) admits a unique stabilizing solution and this
solution is the only positive solution. In Chapter 13 we present a computational method
based on the Hamiltonian matrix in (12.37) to compute the unique stabilizing solution.

12.9 An outer spectral factorization

Let {A,B,C, 0} be a realization for a transfer function G. In this section, we utilize the
algebraic Riccati equation in (12.104) to obtain a special factorization of R + G(—s)*G(s).
We begin with the following result which is useful in the inversion of transfer functions.

Lemma 12.9.1 Let {A, B, C. D} be a state space realization of a transfer function H and
assume that D is invertible. Then the inverse o/H exists and is the proper rational function
given by

H(s)"1 = D-1 - D~lC(sI -A + BD-lC}-lBD~l . (12.106)

In other words, {A — BD'1C, BD~l , —D~1C, D~1} is a state space realization of H""1.
Furthermore, ifH has values m C(U,U}, then

det[HW]

PROOF. Proposition 6.4.1 shows that the inverse of H is given by (12.106). To complete the
proof it remains to establish (12.107). Recall that if M and N are two finite dimensional
operators acting between the appropriate spaces, then det[/ 4- MN] = det[/ + NM\. Using
this we obtain

det[H(s)] = det[D

= det[D] det[/ + (si - A)-1BD~~1C]
= det[D] det[(s/ - A)~l] det[sl -A + BD~1C]
- det[D] det[s/ -A + BD~1C}/ det[s/ - A] .
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Therefore, (12.107) holds. •
If {A, B, C, D} is a realization of a scalar valued transfer function H and D is nonzero,

then (12.107) reduces to

^ ' det[sI-A]

Let J be any rational function with values in £(U,y). Then J" is the rational function
with values in £(y,U) defined by (J")(s) = J(—s)*. The following result uses the algebraic
Riccati equation to compute a spectral factorization. This factorization will play a funda-
mental role in connecting the classical root locus to the solution of the infinite horizon linear
quadratic regular problem.

Theorem 12.9.2 Suppose (A, B, C, 0} is a stabilizable and detectable realization of a trans-
fer function G. Let Q be any self-adjoint solution to the algebraic Riccati equation (12.104)
where R is a self-adjoint invertible operator. Finally, let 0 be the transfer function defined
by

®(s) = I + K(sI-A)-1B where K = R~1B*Q. (12.109)

Then ®$R® is a factorization of R + G"G; that is,

(12.110)

Moreover, the inverse of 0 is given by

B. (12.111)

// R is strictly positive and Q is the unique stabilizing solution to the algebraic Riccati
equation in (12.104), then 0"1 is stable.

PROOF. Using K — R~1B*Q in the algebraic Riccati equation (12.104) yields

C*C = K*RK - A*Q - QA .

For any complex number s this implies that

C*C = K*RK + (-si - A*)Q + Q(sl - A) .

Now let 3>(s) be the inverse of si — A. Multiplying by 5*$" on the left and by $B on the
right, we obtain

Using G = C$B and 0 = 7 + K$B, we arrive at

R + G8G = (7
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The expression for the inverse of 0 follows from Lemma 12.9.1. If R is strictly positive and
Q is the stabilizing solution, then obviously A — BK is stable, and thus, 0"1 is stable. •

A rational function ty with values in £(U,y) is called an invertible outer function if
W is a stable proper rational function, its inverse $?~l exists and is also a stable proper
rational function. If {^4, B, C, D} is a stable realization for a transfer function H where D
is invertible and A — BD~1C is stable, then Lemma 12.9.1 shows that H is an invertible
outer function. If E is a rational function with values in C(U,U], then we say that ^ is
an invertible outer spectral factor of E! if ^ is an invertible outer function and vpflvl / = E.
If E admits an invertible outer spectral factor, then H" = E. Obviously, not every rational
function admits an invertible outer spectral factor. If {A , B , C , 0} is a stable realization of
G and R > 0 and Q is the stabilizing solution to the algebraic Riccati equation in (12.104),
then 7?1//20 is an invertible outer spectral factor for R+ G"G.

12.10 The root locus and the quadratic regulator

In this section we use the factorization in Theorem 12.9.2 to obtain a root locus interpretation
for the parameter R in the weighted single input single output infinite horizon regulator
problem in (12.103). To this end, let {A on X , B , C , 0} be a stabilizable and detectable
realization of a scalar valued transfer function G, that is, G(s) = C(sl — A)~1B where
U = y = C1. Let r > 0 be a scalar, and Q the unique stabilizing solution to the algebraic
Riccati equation

A*Q + QA + C*C-r~lQBB*Q = Q. (12.112)

Recall that the optimal input u to the weighted infinite time horizon linear quadratic regula-
tor problem in (12.103), is given by u = —r~lB*Qx where x is the optimal state trajectory.
In this case, x = Acx where Ac is the stable closed loop state operator Ac — A — r~lBB*Q.

Let {A, B:C, D} be a realization for a scalar valued transfer function G. Then using
(si — A)~~l = adj(s7 — A)/ det[sl — A], it follows that G — p/d where p is a polynomial
and d(s) = det[s/ — A] is the characteristic polynomial for A. If {^4, 7?, C, D} is a minimal
realization of G — p/d where p and d are co-prime polynomials, then Proposition 7.1.3
shows that d equals the characteristic polynomial of A up to a nonzero constant, that is,
d — 7det[s7 — A] where 7 is a constant. Realizations where the characteristic polynomial of
A equals the denominator polynomial d are used in the following result.

Lemma 12.10.1 Let {A,B,C,Q} be a realization of a scalar valued transfer function G =
p/d where p is a polynomial and d is the characteristic polynomial for A. Let Q be any
self-adjoint solution to the algebraic Riccati equation in (12.112) where r is a nonzero scalar
and let A be the characteristic polynomial for A — BK , that is,

A(s) = det[s7 - A + BK} where K = r~lB*Q. (12.113)

Then we have the following factorization:

^d + r-yP. (12.114)
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PROOF. From Theorem 12.9.2, we have 0^0 = r + G*G where 0(s) = I + K(sI - A)~1B.
Applying relationship (12.107) of Lemma 12.9.1 with H = 0, we obtain

det[0(s)] - det[s/ - A + BK]/ det[sl - A] .

This readily implies that

det[s/ - A + BK] = det[sl - A] det[0(s)] .

Since 0(s) is a scalar, det[0(s)] = 0(s), and hence, A(s) = d(s)0(s). If we rewrite

Applying 0 = A/d, we obtain the factorization in (12.114). •
Now assume that {A, B, C, 0} is stabilizable and detectable. Let Q be the stabilizing

solution to the weighted algebraic Riccati equation in (12.112) where r > 0. Clearly, the
operator A — BK is stable where K = r~1B*Q. Hence, all the roots of A are in the open left
half complex plane. Notice that A is a root of a polynomial q if and only if —A is a root of
the polynomial g". Therefore, all the roots of A" are contained in the open right half plane.
In particular, A and A" have no common roots and their product A "A has no roots on the
imaginary axis. It now follows from (12.114) that the roots of A are the left half plane roots
of d"d + r~lp^p. This immediately yields the following result.

Theorem 12.10.2 Suppose that {A,B,C, 0} is a stabilizable and detectable realization of a
scalar valued transfer function G = p/d where p is a polynomial and d(s) — det[s/ — A]. Let
K = r~lB*Q where Q is the stabilizing solution to the algebraic Riccati equation in (12.112)
with r > 0. Then the roots of the characteristic polynomial of A — BK are precisely the left
half plane roots of the polynomial d^d + r~lp^p .

To complete this section, we use root locus techniques to see how the weight r affects
the eigenvalues of the closed loop state space operator A — BK. First let us recall some
classical root locus results; for further details see Ogata [95]. Consider a parameter dependent
polynomial of the form q + kr] where 77 and q are two polynomials with real coefficients and
real parameter k > 0. Furthermore, it is assumed that the degree of 77 is less than or equal
to the degree of q. Recall that the root locus for q + kr/ is the graph of the zeros of q + kr]
as k varies from zero to infinity. Moreover, for k = 0 the degq branches of the root locus
of q + krj start at the zeros of q. As A; tends to infinity, deg 77 branches of the root locus
approach the zeros of 77. If 5 — deg q — deg 77 > 0, then the remaining 8 branches tend to
infinity as k approaches infinity. Each of these S branches asymptotically approach one of
the asymptotes of the root locus. Assuming q is monic and a is the coefficient of the highest
order term of 77, these asymptotes are half lines whose angles are given by

H±M for j = 0,1, 2 , - - - , 5 - 1 if a>Q

—?- for j = 0 ,1 ,2 , - - - , 5 - 1 if a<0.
o
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Recall that a monic polynomial is a polynomial of the form sj + a^-is-*"1 + • • • ais + a0.
Throughout the rest of this section, we assume that {A , B , C , 0} is a stabilizable and

detectable realization for a scalar valued transfer function G = p/d where A, B , C are real
matrices and p, d are polynomials whose coefficients are real while d is the characteristic
polynomial for A. Moreover, Q is the unique stabilizing solution of the algebraic Riccati
equation in (12.112) where r > 0 is a scalar. In particular, this implies that d"(s) = d(—s)
and p*(s} = p(-s). Using (12.114), it follows that

A(-s)A(s) = d(-s)d(s) + r-lp(-s)p(s)

where A is the characteristic polynomial for A—BK. So, if we let k — 1/r, then the root locus
of d(—s)d(s)+kp(—s)p(s) is a graph of the eigenvalues of A—BK and —(A—BK)* as r varies
from infinity to zero. In particular, the left half plane root locus of d(—s)d(s) + r~lp(—s)p(s)
is precisely the eigenvalues of A — BK as r varies from infinity to zero. Notice that for any
polynomial q with real coefficients, the zeros of q(—s)q(s) are symmetric about the real
and imaginary axis. Hence, the root locus of d(—s)d(s) + kp(—s)p(s) = A(—s)A(s) is also
symmetric about the real and imaginary axis.

As k = 1/r varies from zero to infinity, the branches of the root locus of the polynomial
d(—s)d(s) + kp(—s)p(s) move from the zeros of d( — s)d(s) to the zeros of p(—s)p(s) and
the appropriate asymptotes. The asymptotes of d(—s)d(s) + kp(—s)p(s) are determined by
m = degd — degp. To be precise, if m is even, then d(—s)d(s) + kp(—s)p(s) = 0 can be
expressed as b(s) + kaa(s) = 0 where a > 0 and a and b are monic polynomials. Since a is
the coefficient of the highest order term of cm, the angles 0ej for the asymptotes are given
by

^ = 7r + 27rj for j = 0 , l , 2 , - - - , 2 m - l . (12.115)

However, if m is odd, then d(—s)d(s) + kp(—s)p(s) = 0 can be expressed as b(s) + kaa(s) = 0
where a < 0 and a and b are monic polynomials. In this case, the angles <J>0j for the
asymptotes are given by

0 . = ̂  for j = 0 , 1 , 2 , . . - , 2m- 1. (12.116)
m

Moreover, because d(—s)d(s) + kp(—s)p(s) is symmetric about the real and imaginary axis,
the origin of these asymptotes is zero. Notice that none of these asymptotes lie on the
imaginary axis. Therefore, as r = l/k varies from infinity to zero the eigenvalues of A — BK
start at the zeros of d(—s)d(s) in the open left half plane and move towards the zeros of
p(—s)p(s) in the open left half plane and the appropriate asymptotes in the open left half
plane. For m even, the asymptote angles <pej are given by (12.115). For m odd, the asymptote
angles </>OJ are given by (12.116).

Recall that d is the characteristic polynomial of A. Hence, the eigenvalues of A are the
zeros of d including their multiplicity. Let (Ax , A2, • • • , A^} be the eigenvalues of A including
their multiplicity in the closed left half plane, and let {A^+i, A^+2, • • • , An} be the remaining
eigenvalues of A including multiplicity. Obviously,

A = {A!, A2 , • • • , A M ) -A^!, -A^+2, • - - , -Xn} (12.117)
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are the zeros of d(—s)d(s) in the closed left half plane. Moreover, —A |J A are all the zeros of
d(— s)d(s) including their multiplicity. Let (zi, z^, • • • , zv} be the zeros of p in the closed left
half plane including their multiplicity, and let {zv+\, ^+2, • • • , zm} be the remaining zeros of
p including multiplicity. Clearly,

2 = {zi, zz, • • • , zv, -zv+i, -zv+2, ••• , -zm} (12.118)

are the closed left half plane zeros of p(— s)p(s). Furthermore, —Z\JZ are all the zeros of
p(—s)p(s) including their multiplicity. Therefore, as r = l/k varies from infinity to zero the
eigenvalues of A — BK start at the roots A given in (12.117) and then follow the branches of
the root locus for d(—s)d(s] + kp(—s)p(s) and move towards the roots Z given in (12.118)
and the corresponding asymptotes with angles (j)ej or <j>0j in the open left half plane.

In the scalar case, the cost in the weighted linear quadratic regulator problem is given by

U
oo ^

( \ \ y ( a ) \ \ 2 + r\\u(a)\\2)da:u£L2[Q,oc)\ . (12.119)
J

If r = l/k is large, then the term r||«(t)||2 is heavily weighted in computing the cost, and
hence, any input effort used to move poles is "expensive". Moreover, in this case the root
locus shows that the eigenvalues of A — BK are in a neighborhood of the roots A given in
(12.117). If any one of the roots A in (12.117) lie on the imaginary axis, then a large r will
place an eigenvalue of A — BK in the open left half plane in some neighborhood of that
root. In other words, for large r, the optimal input u — —r~lB*Qx barely moves the stable
eigenvalues of A, moves the eigenvalues of A on the imaginary axis slightly into the open
left half plane, and moves the unstable eigenvalues of A close to {— AM+i, — AM+2, • • • , — An}.
Because a large r penalizes the input, the result is that the optimal input only moves the
eigenvalues of A necessary to stabilize the closed loop state operator A — BK.

On the other hand, if r is small, then the term r||u(t)||2 is barely weighted in computing
the cost e(xQ,r), and thus, input effort is "cheap". In other words, a large input effort has
little effect on the cost. In this case the root locus shows that m of eigenvalues of A — BK are
in a neighborhood of the points Z, and the remaining eigenvalues of A — BK move towards
infinity along the asymptotes in the open left half plane corresponding to the angles <j>ej in
(12.115) for even m, respectively 4>0j in (12.116) for odd m. So, if r is small, then the optimal
controller moves m of the eigenvalues of A to Z and the places remaining eigenvalues of A
as far as possible in the left half plane.

Example 12.10.1 To complete this section we demonstrate the above results with a simple
example. To this end, let {^4 , B , C, 0} be any minimal realization of

Clearly, the McMillan degree of G is four and A is unstable. The root locus for d(—s)d(s) +
kp(—s)p(s) is given in Figure 1. In this case, m — 3. According to (12.116) the angles for
the asymptotes for the root locus are given by

7T 2?T 4?T 5?T

' 3 ' T > 7 r ' T 'T"
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1 0 1
Real Axis

Figure 12.1: A root locus for design

In particular, the asymptotes for the root locus in the left half plane occur at the angles
27T/3 . TT , 47T/3. So, as r = l/k moves from infinity to zero the eigenvalues of A — BK move
from the points — 1 , — 2 , — 2 + z , — 2 — z along the branches of the root locus in the open left
half plane to the points

-3 , oce27"/3 , ooe7™ , oce47n/3 . (12.120)

In particular, if r is large the eigenvalues of A — BK are in some neighborhood of the points
— 1, —2, —2 + z, — 2 — z. So, for large r the optimal control barely moved the stable eigenvalues
— 1, — 2 + z, — 2 — z for A and shifted the unstable eigenvalue 2 of A to —2. On the other
hand, if r is small, then the optimal control moved the eigenvalues of A to (12.120), which
is as far as they can possible go in the left half plane.

12.10.1 Some comments on the outer spectral factor
In this section we present some comments concerning the minimality of the realization
{A,B,K,I} of the spectral factor 0 defined in (12.109). Let {A, B,C,Q} be a control-
lable and observable realization of a transfer function G. Assume that R is strictly positive
and let Q be the stabilizing solution to the weighted algebraic Riccati equation (12.104).
Finally, let 0 be the transfer function denned by

0(s) = / + K(sl - A)~1B where K = R~1B*Q. (12.121)

Theorem 12.9.2 shows that ©».R0 is a factorization of R + G^G, that is, (12.110) holds.
Moreover, {A — BK, B, —K,I} is a stable realization of 0"1. In particular, if A is stable,



12.10. THE ROOT LOCUS AND THE QUADRATIC REGULATOR 203

then 0 is an invertible outer function, that is, both 0 and 0"1 are stable transfer functions.
Obviously, {A, B, K, 1} is a controllable realization of 0. However, this realization is

not necessarily observable. For an example, let {^4, B, C, 0} be any minimal realization of
G(s) = (2 - s ) / ( s + l)(s + 2), and set R = 1. Then we claim that {A,B,B*Q,I} is not
observable. To verify this recall that 0 is an outer spectral factor of / + G*G. Thus,

0tt(s)0(s) = (2 - 5
2)/(l - s2) , (12.122)

where all the poles and zeros of 0(s) are in the open left half plane. Hence, all the poles
and zeros of 0" are in the open right half plane. Using this along with the factorization
in (12.122), it follows that 0(s) = (s + V^)/(s + 1). However, {A,B,B*Q,I} is a two
dimensional controllable realization of 0. Obviously, the state dimension of the minimal
realization of (s + \/2)/(s + 1) is one. So, the system {A, B, B*Q, 1} is not observable. Since
{A— BK, B, —B*Q,I} is a two dimensional controllable realization of 0"1 = (s+l)/(s+\/2),
it also follows that {A — BK, B, —B*Q, 1} is not observable.

Throughout the rest of this section, we assume that {A , B , C , 0} is a minimal realization
for a scalar valued strictly proper rational transfer function G = p/d, where p and d are
two polynomials with real coefficients and no common zeros. Because the coefficients of
p and d are real, we have p"(s) = p(—s) and d*(s) = d(—s). Moreover, we also assume
that p(— s)p(s) and d(— s)d(s) have no common zeros, Q is the stabilizing solution to the
algebraic Riccati equation in (12.104) and R = r > 0. Then we claim that {A, B, K, 1} is
a minimal realization of 0. Because 0 and 0~* have the same McMillan degree, it follows
that {A — BK,B,—K,I} is a minimal realization of 0"1. In particular, the eigenvalues
of A — BK are precisely the zeros of 0, including their multiplicity; see Proposition 7.1.3.
Furthermore, the McMillan degree of 1/0 equals the degree of the polynomial d. Hence,
there are degd zeros of 0, all of which are in the open left half plane.

To prove that {A on X,B,K,I} is a minimal realization, notice that because R = r is
scalar valued, the factorization in (12.110) reduces to

.
r rd(-s)d(s)

Since p(— s)p(s) and d(—s)d(s) have no common zeros, the polynomials rd(—s)d(s) and
rd(—s)d(s) + p(—s)p(s) have no common zeros. Now let us proceed by contradiction. If
{A, B, K, 1} is not observable, then 0 = a/6 where a and b are polynomials and deg 6 <
deg d = dim X . Substituting this into (12.123) shows that we must have cancellation between
the zeros of rd(— s)d(s) and rd(— s)d(s)+p(— s)p(s). This contradicts the fact that p(—s)p(s)
and d(—s)d(s) have no common zeros. Therefore, {A, B,K,I} is controllable and observable.
Since 0 and 1/0 have the same McMillan degree, it also follows that {A — BK , B , —K , /}
is a controllable and observable realization of 1/0.

As before, assume that p(—s)p(s) and d(—s)d(s) are co-prime. Then 1 + G(— s)G(s)/r
and rd(— s)d(s) +p(—s)p(s) have the same zeros. Moreover, these zeros are symmetric about
the imaginary axis. Because rd(—s)d(s) +p(—s)p(s) is a polynomial of degree 2 deg d, we see
that 1 + G(— s)G(s)/r has 2 degd zeros and these zeros are symmetric about the imaginary
axis. Therefore, the zeros of 1 + G(— s)G(s)/r in the open left half plane are precisely the
eigenvalues of A — BK.
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12.11 Notes
All the results in this section are classical and date back to Kalman [70]. The linear quadratic
regulator problem plays a fundamental role in systems and control. For some further results
on linear quadratic methods and control theory see Anderson-Moore [4, 6], Kwakernaak-
Sivan [77], and Dorato-Abdallah-Cerone [36]. The linear quadratic regulator problem is an
important problem in optimal control theory; see Athans-Falb [7], Berkovitz [15], Bryson-
Ho [22], and Lee-Markus [80]. For some results on game theory and optimal control see
Basar-Bernhard [13]. There are many different ways to derive the two point boundary value
problem in (12.34). For example one can use the calculus of variations or the maximum
principle in optimal control theory; see, for example, Leitmann [81]. Here operator methods
were used to derive the two point boundary value problem. Operator techniques have been
widely used to solve the linear quadratic regulator problem and many other problems in
control theory; see Balakrishnan [8], Fuhrmann [47], Naylor-Sell [93], Luenberger [85] and
Porter [100]. Finally, it is noted that linear quadratic methods also play a basic role in H°°
control theory; see Green-Limebeer [57], Mustafa-Glover [92] and Zhou-Doyle-Glover [131].
For some numerical procedures to solve the algebraic Riccati equation see Arnold-Laub [3]
and Van Dooren [121].



Chapter 13

The Hamiltonian Matrix and Riccati
Equations

Associated with any Riccati equation is a matrix called the Hamiltonian matrix. In this
chapter we present elementary properties of Hamiltonian matrices. We show how one can
compute the stabilizing solution to an algebraic Riccati equation by using the Hamiltonian
matrix associated with that equation. We also show how one can compute a solution to a
Riccati differential equation from the state transition matrix of the associated Hamiltonian
matrix. To this end, consider the algebraic Riccati equation

A*Q + QA + QRQ + S = Q (13.1)

where A, R and 5" are operators on a finite dimensional space X with S and R self- adjoint.
When S = C*C and R = —BB*, this equation is the same as the algebraic Riccati equation
(12.87) encountered in the linear quadratic regulator problem. We are considering a more
general Riccati equation here because the results of this chapter are also useful in the later
chapters on H°° analysis and control. The Hamiltonian matrix associated with the algebraic
Riccati equation in (13.1) is given by

„ A R 1 X
H=

13.1 The Hamiltonian matrix and stabilizing solutions
We say that Q is a stabilizing solution to the algebraic Riccati equation in (13.1) if Q is
an operator on X satisfying (13.1) and A + RQ is stable. As expected, if there exists a
stabilizing solution Q, then it is self- adjoint and is the only stabilizing solution. To see that
a stabilizing solution Q is self-adjoint, use the Riccati equation to obtain

(Q*-Q)(A + RQ) = Q*A + Q*RQ -QA- QRQ = Q*A + Q*RQ + A*Q + S .

Since the operator on right-hand-side of the second equality is self-adjoint, it follows that
QAC is self-adjoint where Q — Q*-Q and Ac = A + RQ; thus QAC = A*Q*. Since Q* = -Q,
we obtain the Lyapunov equation QAC + A*CQ = 0. Because Ac is stable, the Lyapunov
equation has only one solution, namely Q — 0; hence Q* = Q.

205
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To see that the stabilizing solution is unique, consider any two stabilizing solutions Q\
and Q2 and now let Q = Q2 - Qi. With AI = A + RQi and A2 = A + RQ2 , we obtain

Because AI and A2 are both stable, Q = 0, that is, Q2 = Qi and the stabilizing solution is
unique.

Recall that the Hamiltonian matrix associated with the algebraic Riccati equation in
(13.1) is given by (13.2). If we rearrange the Riccati equation (13.1) as

-S - A*Q = Q(A + RQ)

and let Ac = A + RQ, then the Riccati equation is equivalent to

A + RQ = Ac

-S-A*Q = QAC

(13.3)

Thus Q is a stabilizing solution of the Riccati equation (13.1) if and only if [/ Q]tr satisfies
(13.3) where Ac is stable. In this case, Ac = A + RQ. Since the operator [/ Q]tr is one to
one, our new equivalent condition for a stabilizing Q is equivalent to the requirement that
the range 7£ of [/ Q]ir is invariant for H and the restriction of H to this subspace is stable.
In particular, the restriction of H to 'R, is similar to A + RQ.

Consider now any invertible operator X which maps onto X. Then, postmultiplying
(13.3) by X, we obtain

HT = TA (13.4)

where T = [X Y]tr with Y = QX and A is the stable operator given by A = X~1ACX.
Thus, we can say that if the Riccati equation has a stabilizing solution, then there exists an
operator F = [X Y]tr mapping into X @ X with X invertible such that (13.4) holds for some
stable operator A. To demonstrate the converse, suppose there is an operator F = [X Y]tr

mapping into X'@X with X invertible such that (13.4) holds with A stable. Postmultiplying
(13.4) by A"-1, we see that (13.3) holds with Q = YX~l and Ac = XkX~l. Thus Q is a
stabilizing solution to the Riccati equation (13.1) and A + RQ = XA.X~l. So A + RQ and
A are similar and have the same characteristic polynomial. We have just demonstrated the
following result.

Lemma 13.1.1 The algebraic Riccati equation (13.1) has a stabilizing solution if and only if
there exists an operator F = [X Y]tr mapping into X @ X with X invertible such that (13.4)
holds for some stable operator A. In this case, the stabilizing solution is uniquely given by

Q = YX~l (13.5)

and A + RQ is similar to A.



13.1. THE HAMILTONIAN MATRIX AND STABILIZING SOL UTIONS 207

Note that when (13.3) holds and F = [X Y]tr with X invertible, then F is one to one
with rank n where n — dim[A']. Our next step is to characterize all the one to one operators
of rank n which satisfy (13.4) for some stable A. Before carrying out this step we make some
observations.

Suppose that Q is any self-adjoint solution to the algebraic Riccati equation in (13.1)
and let W be the invertible block matrix defined by

., , r / o 1 r x
[Q i\ on U

Notice that the inverse of W is given by replacing Q by — Q in the definition of W. A simple
calculation shows that

+ R R

Recall that if F is any operator valued rational function, then (F^)(s) = F(—s)*. We now
note that, if p is the characteristic polynomial of an operator M on a space of finite dimension
n, then (—l)np^ is the characteristic polynomial of — M*. This can be shown as follows:

det[sJ + M*] = (-l)ndet[-s/ - M]* = (-l)>(-s)* = (-1) V(s) .

It now follows from (13.7) that

det[s/ -H] = (-l)nA(s)A»(s) (13.8)

where A is the characteristic polynomial of A + RQ.
From (13.8), we see that if the algebraic Riccati equation admits a stabilizing solution,

then the corresponding Hamiltonian matrix does not have any eigenvalues on the imaginary
axis. However, the converse is not necessarily true. For example, if A = 1, S = 2 and R = 0,
then one and minus one are the eigenvalues of H. In this case, the only solution to the
algebraic Riccati equation is Q = — 1. Obviously, 1 — A + RQ is not stable.

It now follows from Lemma 13.1.1 that if there exists an operator F = [X Y]tr with X in-
vertible such that (13.4) holds for some stable operator A, then det[sI-H} = (-l)nA(s)A "(s)
where A is the characteristic polynomial of A; hence H has no imaginary eigenvalues. Shortly,
we will see that if H has no imaginary eigenvalues, then there is a one to one operator F =
[X Y]tr such that (13.4) holds for some stable operator A and det[sI-H] = (-l)nA(s)A t t(s)
where A(s) = det[s/ — A]. However X may not be invertible.

Consider now any Hamiltonian matrix H of the form (13.2) where R and S are self-adjoint
and let J be the invertible operator defined by

J - [ ° ^
[ I 0

Notice that J"1 = J* — —J. A simple calculation shows that

TU i S A*
JH = ' A R
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is self-adjoint; hence, JH = H*J* = —H*J. Thus, the operators —H* and H are similar
and have the same characteristic polynomial; hence the characteristic polynomial A# of H
must satisfy

A£ = AH . (13.10)
This implies that a scalar A is a zero of A// with multiplicity m if and only if —A is a zero of
A// with multiplicity ra. Thus, A is an eigenvalue of H, if and only if —A is also an eigenvalue
of H.

Now assume that the Hamiltonian matrix does not have any eigenvalues on the imaginary
axis, that is, A// has no imaginary zeros. Let A be the unique monic polynomial whose zeros
(multiplicities included) are the stable (negative real part) zeros of A//. Then A must be of
degree n and A// = ( — 1)"AA" where n is the dimension of X. Consider now the invariant
subspace 7£ = ker A(/f) for H . We call this the stable subspace associated with H. We claim
that it has dimension n. To see this, we use the relationship JH = —H*J to obtain

It now follows that ker A(ff) and ker A "(//") have the same dimension. Since the polynomials
A and A11 have no common zeros and A(#)A(#)8 = (-l)nA#(#) = 0, it follows from
Lemma 13.1.6 at the end of this section that dim[ker A(//")] = n. We have just demonstrated
the following result.

Lemma 13.1.2 Let H be the Hamiltonian matrix in (13.2) where R and S are self-adjoint
operators on a finite dimensional space X of dimension n and assume that H has no imag-
inary eigenvalues. Then,

det[s!-H] = (-l)nA(s)A*(s) (13.11)

where A is a stable monic polynomial of degree n. Moreover the dimension of ker A(H) is
n.

The above result allows us to characterize all the one to one maps of rank n which satisfy
(13.4) with A stable. To see this, suppose H is a Hamiltonian matrix with no imaginary
eigenvalues. Let F be any one to one map whose range equals the kernel of A (/if ) where A
is the monic polynomial whose zeros (multiplicities included) are the stable (negative real
part) zeros of A//. Then, according to the above lemma, the rank of F is n. Since ker A(/f)
is invariant for H, there is an operator A such that HT = FA. (In fact, A = (F*F)~1r*.HT.)
It now follows that A(# )F = FA(A). Because the range of F equals the kernel of A(#), we
obtain that FA(A) = 0. Since F is one to one, we must have A(A) = 0. Recalling that A is
a stable polynomial we conclude that A is stable.

Now suppose that F is any one to one map of rank n which satisfies (13.4) for some stable
A. Then the range of F is an invariant subspace for H and the restriction of H to the range
of F is similar to A. Thus H is similar to a matrix of the form

A *
0 A2

Hence A// (s) = det[s/ — H] = d(s)d<2(s) where d and d2 are the characteristic polynomials
of A and A2 respectively. Recall that if A is a zero of multiplicity m of A//, then — A is
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also a zero of multiplicity m of A//. Since d divides A// and d is a monic polynomial whose
roots have negative real parts, it follows that (—l)nd" (the monic polynomial whose roots
are precisely the negative of the roots of d} also divides A//. Since d and $ are monic
polynomials of order n which divide A// and A// is a monic polynomial of order 2n, we
must have A# = (-l)ndd*. Thus det[s/ - H] = (-l)nd(s)d*(s). Hence H has no imaginary
eigenvalues. Since d(H)T — Td(A) = 0 and dim[kerd(H)} — n, the range of F equals the
kernel of d(H). The above analysis leads to the following result.

Lemma 13.1.3 Let H be the Hamiltonian matrix in (13.2) where R and S are self-adjoint
operators on a space X of finite dimension n. Then there exists a one to one operator F of
rank n satisfying HY = FA for some stable A if and only if H has no imaginary eigenvalues.
In this case, let A be the unique monic polynomial whose zeros are the stable (negative real
part) zeros (including multiplicity) of the characteristic polynomial of H. Then F is a one
to one operator of rank n satisfying (13-4) for some stable A if and only ifT is a one to one
operator whose range equals the kernel of A(/f). Moreover, det[s/ — A] = A(s).

Note that if F and F2 are any two operators which are one to one and have the same
range, then there is an invertible operator M such that F2 = FM; in fact, M = (FT)"1!1* .̂
Hence, we have the following corollary.

Corollary 13.1.4 Let H be the Hamiltonian matrix in (13.2) where R and S are self-adjoint
operators on a space X of finite dimension n. Then there exists a one to one operator F of
rank n satisfying (13.4) for some stable A if and only if H has no imaginary eigenvalues.
Moreover, F is unique up to a similarity transformation on the right, that is, if /fF2 = F2A2

where F2 is one to one with rank n and A2 is stable, then there exists an invertible operator
M such that F2 = FM and A2 = M~1KM.

By combining the preceding results of this section, we arrive at the following result.

Theorem 13.1.5 Let R and S be self-adjoint operators on a space X of finite dimension n.
Then the algebraic Riccati equation in (13.1) admits a stabilizing solution if and only if the
following two conditions hold.

(i) The corresponding Hamiltonian matrix H has no imaginary eigenvalues,

(ii) If F = [X Y]tr is any one to one operator of rank n satisfying

HT = FA (13.12)

where A. is a stable operator, then X is invertible.

In this case, the unique stabilizing solution to the algebraic Riccati equation in (13.1) is given
by

Q = YX~1. (13.13)

Moreover A + RQ is similar to A and the characteristic polynomial A of A + RQ satisfies

AA» = (-l)nA# (13.14)

where A// is the characteristic polynomial of H.
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PROOF. Suppose the algebraic Riccati equation admits a stabilizing solution Q. We have
already shown that the corresponding Hamiltonian matrix H has no imaginary eigenvalues
and F = [7 Q]tr satisfies (13.12) with A = A + RQ. Clearly F is a one to one operator of
rank n. Because the one to one operators F of rank n which satisfy (13.12) for a stable A are
unique up to a similarity transformation on the right, Part (ii) holds; see Corollary 13.1.4.

On the other hand, suppose the conditions in (i) and (U) hold. It follows from Lemma
13.1.3 that there exists a one to one operator F = [Xy]tr of rank n which satisfies (13.12).
Since X is invertible it follows from Lemma 13.1.1 that Q = YX~l is a stabilizing solution
to the algebraic Riccati equation; also A + RQ is similar to A. •

13.1.1 Computation of the stabilizing solution

The Schur decomposition provides a numerically efficient method to compute a one to one
operator F of rank n satisfying TiT — FA where A is a stable operator. Suppose that the
Hamiltonian matrix H has no eigenvalues on the imaginary axis. Then, detjs/ — H] =
( — l)A(s)A!i(s) where A is a stable monic polynomial of order n. According to the Schur
decomposition, H is unitarily equivalent to an upper triangular matrix of the form

A *
0 A2

where det[s7 — A] = A(s) and det[s7 — A2] = ( —l)nA"(s). Thus, A is a stable operator and

x u i r x u i r A
A

22

TT \ -^ U \ \ S L U \ \ 1 \ * \ / 1 0 1 C N
H I Y V\ = \Y V \ \ 0 A,- I ' (13'15)

All these matrices are block matrices on X © X. The 2 x 2 block matrix N consisting of the
operators X,Y, U, V is unitary, that is, N*N = I. Hence, [Xy]ir is one to one and of rank
n. Finally, if X is invertible, then YX~l is the unique stabilizing solution to the algebraic
Riccati equation.

For completeness let us note that one can also use the generalized eigenvectors corre-
sponding to the stable eigenvalues of H to compute F. In this case, F is the operator from
Cn into X © X consisting of the eigenvectors and generalized eigenvectors for the stable
eigenvalues of H and A is simply the corresponding Jordan matrix. If the eigenvalues of
H are distinct, then F is the operator from C" into X ® X consisting of the eigenvectors
corresponding the stable eigenvalues of H and A is the diagonal matrix on Cn consisting of
the stable eigenvalues of H.

Lemma 13.1.6 Suppose H is an operator on a finite dimensional space X and a and b are
two polynomials with no common zeros which satisfy

a(H)b(H) = 0.

Then every vector x m X can be uniquely expressed as x = u + v where u is in ker a(H) and
v is in ker b(H).
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PROOF. First we show that kera(H) and kerb(H) are invariant for H. To see this,
consider any vector v in kexa(H). Then a(H)Hv = Ha(H)v = 0; hence Hv is in keia(H).
It now follows that kera(//) is an invariant subspace for H. Similarly for kexb(H). Thus,
the intersection of keia(H) and kerb(H) is an invariant subspace for H.

We now claim that the intersection of ker a(H) and ker b(H) contain only the zero vector.
Suppose, on the contrary, that the above intersection contains a nonzero vector. Since this
intersection is invariant for H, it contains an eigenvector v for H. Thus, v ^ 0 and Hv = Xv
for some eigenvalue A of H; also a(H)v — 0 and b(H)v — 0. Since v is an eigenvector of H
corresponding to eigenvalue A, we have a(X)v = a(H)v = 0 and b(\)v — b(H)v — 0. Since
v is nonzero, it follows that A is a zero of both the polynomials a and b. This contradicts
the hypothesis that a and b have no common zeros. Hence, the intersection of kera(ff) and
kerb(H) contains only the zero vector.

Since a(H)b(H) = 0, it follows that ranb(/f) is contained in keia(H). Hence,

dim[kera(#)] > dim[ran&(ff)] =n- dim[ker&(#)]

where n is the dimension of X. This yields dim[ker a(H)] +dim[ker b(H)] > n. Since ker a(H)
and keib(H) are subspaces of X which only intersect at zero, it follows that dim[ker a(H)] +
dim[ker b(H)] < n. Hence, dim[kera(7f)] + dimfker b(H)] = n. It now follows that every
vector x is X can be uniquely expressed as x — u + v where u is in ker a(H) and v is in
kerb(tf). •

13.2 Characteristic polynomial of the Hamiltonian ma-
trix

The following result presents an expression for the characteristic polynomial of the Hamil-
tonian matrix H in (13.2).

Theorem 13.2.1 Let R and S be self-adjoint operators on a space X of finite dimension n.
Then the characteristic polynomial A# for the Hamiltonian matrix in (13.2) is given by

(13.16)

where d is the characteristic polynomial for A and $(s) = (si — A)~l.

PROOF. If Mij for i,j = 1,2 are all operators on X and M22 is invertible, then a simple
calculation shows that

f Mn Mi2 1 [ / M12M^ 1 I" MII - Mi2M2-2
1M2i 0 1 [" / 0 1

[ M2i M22 J [ 0 / J [ 0 M22 J [ M22
1M2i / J '

(13.17)
Recall that MH — Mi2M^xM2i is a Schur complement for M. In particular, this shows that

det[M] = det[M22] det[Mn - Mi2M22
1M2i]. (13.18)

Since
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we obtain

det[sI-H] = det[sI + A * ] d e t [ s I - A + R(sI + A*}-1S}
= det[s7 - A] det[s/ + A*] det[7 + (s7 - A)-17?(s7 + A*)-1^] .

Since $(s) = (s7 - ^l)"1 and d(s) = det[s7- A] it follows that (s7 + A*)-1 = -$*(s) and
det[s7 + A*} = (-l)nd*(s). This yields (13.16). •

The expression for the characteristic polynomial for H in (13.16) also shows that A# =
A^ where A// is the characteristic polynomial for H. Equations (13.8) and (13.16) readily
yield the following result.

Corollary 13.2.2 Let R and S be self-adjoint operators on a space X of finite dimension
n. Suppose that Q is any self-adjoint solution to the algebraic Riccati equation in (13.1) and
A is the characteristic polynomial for A + RQ. Then

(13.20)

where d is the characteristic polynomial for A and <&(s) = (s7 — A)'1 .

13.3 Some special cases
We have seen that if the Riccati equation has a stabilizing solution, then the pair {A, R} is
stabilizable and the corresponding Hamiltonian matrix has no imaginary eigenvalues. The
next result states that the converse is also true when 7? is positive (R > 0) or negative
(R<0).

Theorem 13.3.1 Let R and S be self-adjoint operators on a space X of finite dimension
with R positive or negative. Then the algebraic Riccati equation in (13.1) admits a stabilizing
solution if and only if the pair {A, R} is stabilizable and the corresponding Hamiltonian
matrix H in (13.2) has no imaginary eigenvalues.

PROOF. Suppose that the Riccati equation in (13.1) has a stabilizing solution Q. By
definition of a stabilizing solution, A 4- RQ is stable; hence {A, R} is a stabilizable pair. We
have already seen that the Hamiltonian matrix H has no imaginary eigenvalues when the
Riccati equation has a stabilizing solution.

To complete the proof, assume that the pair {A, R} is stabilizable and 77 has no imaginary
eigenvalues. It now follows from Lemma 13.1.3 that there is a one to one operator F = [X Y]tr

of rank n such that 77F = FA for some stable operator A where n is the dimension of X.
Thus, X and Y satisfy

AX + RY = X\ (13.21a)

-SX-A*Y = YA (13.21b)

where A is a stable operator. We first demonstrate that the operator Y*X is self-adjoint.
To see this, premultiply equations (13.21a) and (13.21b) by Y* and —X*, respectively, and
add the resulting equations to obtain

Y*AX + X*A*Y + Y*RY + X*SX = (Y*X -
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Since the left hand side of this equation defines a self-adjoint operator it follows that (Y*X —
X*Y)A is a self-adjoint operator. If we set Z — Y*X - X*Y, then A*Z* = ZA. Since
Z* = —Z, we obtain the Lyapunov equation ZA + A*Z = 0. Because A is stable, Z — 0 is
the only solution to this Lyapunov equation. Thus, Y*X = X*Y and Y*X is a self-adjoint
operator. As a consequence, we also obtain that X and Y satisfy

Y*AX + X*A*Y + Y*RY + X*SX = Q. (13.22)

Now let us show that X is invertible. Because X is finite dimensional, it is sufficient
to show that X is one to one. So, suppose that Xv = 0 for some vector v. By consulting
(13.22) we see that

X*A*Yv + Y*RYv = 0.

This implies that (RYv,Yv) = (Y*RYv,v) = -(X*A*Yv,v) = -(A*Yv,Xv) = 0. Because
R is either positive or negative, RYv = 0. It now follows from (13.21a) that XAv = 0.
In other words, the kernel of X is an invariant subspace for A. Suppose, on the contrary,
that the kernel of X is nonzero. Then there is an eigenvector v for A in the kernel of
X with eigenvalue A, that is, Av = Xv and Xv — 0. By employing (13.21), we obtain
RYv = XXv = 0 and -A*Yv = XYv. Hence, (-XI - A*)Yv = 0 and RYv = 0. Since A
is a stable eigenvalue of A and by hypothesis, the pair {R, A*} is detectable it follows that
— A is not an unobservable eigenvalue of the pair {R, A*}. Using the PBH observability test
we must have Yv = 0. Because Xv is zero and [X Y]tr is one to one, v equals zero. This
contradicts v being an eigenvector, and hence, nonzero. Therefore, X is one to one and
invertible. Since X is invertible, it now follows from Lemma 13.1.1 that Q = YX~l is a
stabilizing solution to the algebraic Riccati equation in (13.1). •

Lemma 13.3.2 Let R and S be operators on a space X of finite dimension with R negative
and S positive. Then an imaginary number A is an eigenvalue of the Hamiltonian matrix in
(13.2) if and only if X is either an uncontrollable eigenvalue of {A,R} or an unobservable
eigenvalue of {S,A}. Hence, H has no imaginary eigenvalues if and only if the system
{A, R, S1, 0} has no uncontrollable or unobservable eigenvalues on the imaginary axis.

PROOF. If A is an unobservable eigenvalue of the pair {S, A}, then there is a nonzero vector
x in X such that (A—XI)v = 0 and Sv = 0. Letting v — x©0, we obtain Hv = Xv; thus A is
an eigenvalue of H. Hence, if A is an imaginary unobservable eigenvalue of the pair {S, A},
then A is an imaginary eigenvalue of the Hamiltonian matrix H.

If A is an uncontrollable eigenvalue of the pair {A, .R}, then there is a nonzero vector y
in X such that (A* — XI}y — 0 and Ry = 0. Letting v = 0 © y, we obtain Hv — —Xv; hence
—A is an eigenvalue of H. Since H has the property that —A is an eigenvalue of H if and
only if A is an eigenvalue of H, we obtain that A is also an eigenvalue of H. Hence, if A is an
imaginary uncontrollable eigenvalue of the pair {^4, /?}, then A is an imaginary eigenvalue of
the Hamiltonian matrix H.

Now suppose that H has an imaginary eigenvalue A. Then there is a nonzero vector
eigenvector v = x@yvn.X®X such that Hv = Xv, that is,

(-A + XI)x = Ry (13.23a)
(-A*-XI)y = Sx. (13.23b)
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By taking the appropriate inner products, we obtain

and
( S x , x ) = ( x , S x ) = (x, (-A*-\I)y) = ((-A - XI)x, y) .

Since A is imaginary, we have —A = A, and hence, (/?y,y) = (Sx,x). Because R is negative
and S is positive, we must have (Ry, y) = 0 and (Sx, x) — 0; hence Ry = 0 and Sx — 0. By
consulting (13.23a), we see that (A — \I)x = 0 and Sx = 0. If x is nonzero, then according
to the PBH test for unobservable eigenvalues, A is an unobservable eigenvalue of {S, A}. If
x is zero, then y must be nonzero and (13.23b) implies that (A* + A/)y = 0 and Ry = 0.
By the PBH test for uncontrollable eigenvalues, we obtain that A = — A is an uncontrollable
eigenvalue of {A, R}. So we can conclude that, if A is an imaginary eigenvalue of H, then A
is either an uncontrollable eigenvalue of {A, R} or an unobservable eigenvalue of {S1, A}. •

If R is negative, S is positive and the algebraic Riccati equation in (13.1) admits a
stabilizing solution Q, then Q is positive. To see this simply rearrange the Riccati equation
to obtain

(A + RQ)*Q + Q(A + RQ) + S- QRQ = 0 .

Because Ac = A + RQ is stable, we have

<ada. (13.24)

Since S — QRQ is positive, this implies that Q is positive. Furthermore, if the pair {S, A}
is observable, then this shows that Q is strictly positive. If R is positive and there exists
a stabilizing solution Q, then Q is not necessarily positive. For example, if A = 3, R = I
and 5 = 8, then Q = —4 is the stabilizing solution to the corresponding algebraic Riccati
equation.

13.4 The linear quadratic regulator

Recall now the algebraic Riccati equation associated with the linear quadratic regulator
problem, namely

A*Q + QA - QBB*Q + C*C = 0 . (13.25)

Here the self-adjoint operators R and S are given by R = —BB* and S = C*C where B
maps U into X while C maps X into y . Hence the corresponding Hamiltonian matrix is
given by

Assume that the pair {A,B} is stabilizable. Since the pairs {A,B} and {A,R} have
the same uncontrollable eigenvalues, it follows that {A, R} is stabilizable and has no un-
controllable imaginary eigenvalues. Since R is negative, it follows from Lemma 13.3.1 that
the above algebraic Riccati equation has a stabilizing solution Q if and only if H has no
imaginary eigenvalues.
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Since the pairs {C, A} and {S, A} have the same unobservable eigenvalues and R is neg-
ative while S is positive, it follows from Lemma 13.3.2 that H has no imaginary eigenvalues
if and only if the pair {C, A} has no unobservable eigenvalues on the imaginary axis. With
these observations, the comments at the end of the last section and Theorem 13.1.5 we can
deduce the following result.

Theorem 13.4.1 Consider a system {A on X ', B, C, 0} and assume that the pair {A, B} is
stabilizable. Then the following statements are equivalent.

(i) The pair {C, A} has no imaginary unobservable eigenvalues.

(ii) The Hamiltonian matrix H in (13.26) has no imaginary eigenvalues.

(Hi) There exists a unique stabilizing solution Q to the algebraic Riccati equation (13.25).

In this case, the unique stabilizing solution to the algebraic Riccati equation in (13.1) is given
by

Q = YX~l (13.27)

where T = [X Y]tr is any one to one operator of rank n = dim X satisfying

HY = TA (13.28)

with A a stable operator. Moreover, the stabilizing solution Q is positive. Finally, if the pair
{C, A} is observable, then Q is strictly positive.

The above result is stronger than our previous result. Previously we showed that if the
pair {A,B} is stabilizable and the pair {C,A} is detectable, then there exists a unique
stabilizing solution to the algebraic Riccati equation in (13.25); see Lemma 12.7.2.

Let A// be the characteristic polynomial for the Hamiltonian matrix H given in (13.26).
We now demonstrate that

(13.29)

where n is the dimension of X while d is the characteristic polynomial for A and F is the
transfer function for the system {A, B, C, 0}. To see this, apply the results of Theorem 13.2.1
with R = -BB* and S = C*C to obtain

The second equality follows from the fact that det[7 + MN] = det[7 + NM\. Furthermore,
when the algebraic Riccati equation has a stabilizing solution Q, it now follows from (13.14)
that, the characteristic polynomial A for A + RQ satisfies

(13.30)
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If the transfer function F is scalar valued, then the expressions in (13.29) and (13.30)
reduce to

&H = (-l)nddt(l + FF*) (13.31)

and
FF t t) , (13.32)

respectively. In particular, if F = p/d where p is a polynomial, then (13.31) and (13.32)
respectively yield

pp*). (13.33)

and
(13.34)

It is noted that (13.34) is precisely the formula for AA* in (12.114) when we replace p with
p/^/r. Also, if A is an imaginary number, then (13.33) implies that

A* (A) = (-l)B(d(A)d(-A)*) + p(A)p(-A)') = (-1)" (|d(A)|2 + |p(A)|2) .

Hence A is an eigenvalue for H if and only if A is a common zero for d and p. This is
another demonstration of the fact that A is an imaginary eigenvalue of H if and only if A is
an uncontrollable or unobservable eigenvalue of the system {A, B, C, 0}.

13.5 H°° analysis and control

In H°° system analysis and control design, the following Riccati equation plays a major role:

A*Q + QA-QBB*Q + QE*EQ + C*C = 0 (13.35)

where E is an operator from W into X and B is an operator from U into X while C is
an operator from X into y. This is a special case of the general Riccati equation (13.1)
where the self-adjoint operators R and S are given by R = EE* — BB* and S = C*C,
respectively. In this case Q is a stabilizing solution if Q is an operator satisfying (13.35) and
A + EE*Q — BB*Q is stable. Here, the Hamiltonian matrix in (13.2) becomes

„ [ A EE*-BB* X
H=[-C*C -A*

The following result yields an expression for the characteristic polynomial of this Hamiltonian
matrix.

Theorem 13.5.1 Let F be the transfer function for the system {A on X, B, C, 0} and T be
the transfer function for {A, E, C, 0}. Let d be the characteristic polynomial for A and n be
the dimension of X. Then the characteristic polynomial A// for the Hamiltonian matrix in
(13.36) is given by

A,, - (-l}ndd* det[J + FFtt - TT8] . (13.37)
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PROOF. By applying Theorem 13.2.1 with R = -BB* + EE* and S = C*C, we obtain that

A,, = (-l)ndd* det[7

where $(s) = (si - A)~l. Using the relationship, det[7 + MN] — det[7 + MN] where M
and N are operators acting between the appropriate spaces, we obtain

= (-l)nddltdet[7 + FF l l-TT l t].

This yields (13.37). •
The expression for the characteristic polynomial for H in (13.37) readily shows that A is

an eigenvalue for H if and only if —A is an value for H . Equations (13.8) and (13.37) readily
yield the following result.

Corollary 13.5.2 Let F be the transfer function for {A, B,C, 0} and T be the transfer
function for {A, E, C, 0}. Let d be the characteristic polynomial for A. Suppose that Q is a
self-adjoint solution to the algebraic Riccati equation in (13.35) and let A be the characteristic
polynomial for A + EE*Q - BB*Q. Then

AA» = ddttdet[7 + FF t t-TT*]. (13.38)

If the transfer functions T and F are scalar valued, then the expression for the charac-
teristic polynomial for H in (13.37) reduces to

Aj/ = (-l)ndd t l(H-FF l l-TT l t). (13.39)

In particular, if T = pi/d and F = p-z/d where p\ and p-2 are polynomials, then (13.39) yields

(13-40)

Furthermore, if Q is a self-adjoint solution to the algebraic Riccati equation in (13.35), then
(13.38) shows that

A A" = dd* - pip} + p2pl (13.41)

where A is the characteristic polynomial for A + EE*Q — BB*Q.

Theorem 13.5.3 Let A be an operator on X with no eigenvalues on the imaginary axis. Let
T be the transfer function for {A, E, C, 0} and F be the transfer function for {A, B, C, 0}.
Then the Hamiltonian matrix H in (13.36) has no eigenvalues on the imaginary axis if and
only if there exists a scalar e > 0 such that

I + F(iu}F(iuY - T(iu)T(iu)* > el (for all - oo < u < oo) . (13.42)
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PROOF. As before, let d be the characteristic polynomial for A and n the dimension of X.
Using (F^)(iij) = F(iu)* along with the corresponding results for T and d in (13.37), we
arrive at

AHM = (-l)n|dM|2 det[7 + F(zw)F(zw)* - T(iu)T(iu)*}. (13.43)

Let S(zw) = / + F(iu)F(iuY - T(iu)T(iu). If E(iu) > el for some e > 0 and all u, then
(13.43) shows that the Hamiltonian matrix H has no eigenvalues on the imaginary axis.

Now assume that H has no eigenvalues on the imaginary axis. Because d has no zeros on
the imaginary axis, equation (13.43) implies that E(zo>) is a self-adjoint invertible operator
for all u. Since F and T are strictly proper rational functions, E(iu) converges to the
identity operator as u tends to ±00. Notice that the smallest eigenvalue Amin(u;) of E(iu)
is a continuous function of u. Moreover, \min(^} converges to one as u> tends to ±00. We
claim that E(iu) > el for some e > 0 and all u. If E(iu>i) < 0 for some frequency 0^1, then
Amm(co>i) < 0 and Amjn(u;0) must be zero for some frequency u)0. In other words, E(iu0)
is not invertible. This contradicts the fact that det[E(za>)] is nonzero for all u. Therefore,
E(iu) > 0 and Amin(a>) > 0 for all u. Since Amin is a nonzero positive continuous function
which converges to one as u tends to ±00, it follows that Amin(u;) > e for some e > 0. •

H°° analysis. In H°° analysis, B — 0. In this case, the Hamiltonian matrix in (13.36)
reduces to

A EE*] \X] ,,„...on . (13.44)H ~ -C*C -A* \ "" [ X

The corresponding algebraic Riccati equation is given by

A*Q + QA + QEE*Q + C*C = 0 . (13.45)

In this case Q is a stabilizing solution if Q is a solution to (13.45) and A+EE*Q is stable. Now
assume that A is stable. Then obviously, the pair {A, EE*} is stabilizable. By combining
Theorem 13.3.1 with Theorem 13.5.3, we obtain the equivalence of Parts (i), (ii) and (m)
in the following result.

Corollary 13.5.4 Let T be the transfer function for the stable system {A,E,C,Q}. Then
the following statements are equivalent.

(i) The algebraic Riccati equation in (13.45) admits a stabilizing solution Q.

(ii) The Hamiltonian matrix H in (13.44) has no eigenvalues on the imaginary axis.

(m) The H°° norm \\T\\00<1.

In this case, the unique stabilizing solution Q is positive.

PROOF. To complete the proof it remains to show that the stabilizing solution Q is positive.
In fact, any self-adjoint solution to this algebraic Riccati equation is positive. Because A is
stable, the Lyapunov form of (13.45) implies that

(13.46)

This readily implies that Q is positive.
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13.6 The Riccati differential equation
In this section, we present some useful properties of the Riccati differential equation as-
sociated with the algebraic Riccati equation in (13.1). This differential equation is given
by

P + A*P + PA + PRP + S = Q (13.47)

where P(i) is an operator on X ' .

13.6.1 A two point boundary value problem
Here we show that the solution of Riccati differential equation (13.47) with terminal condition
P(ti) = 0 is related to the solutions of two point boundary problems associated with the
Hamiltonian differential equation

where x and A are in X and H is the Hamiltonian matrix associated with (13.47) as given
by „ r A R i r x i ,1 0 .n ,

H=[-S -A-\ °n [ X \ - (13'49)

Specifically, we demonstrate the following result.

Lemma 13.6.1 The Riccati differential equation (13-47) with terminal condition P(ti) — 0
has a solution for P on an interval [to,ti] if and only if for each t' in [t0,ti) and each XQ in
X , the Hamiltonian differential equation in (13.48) has a solution [x \}tr with

x(t'} = xQ and A(*i) = 0. (13.50)

In this case,
X(t) = P(t)x(t) . (13.51)

PROOF. Suppose first that the Riccati differential equation in (13.47) has a solution on an
interval [toj*i] with P(ti) = 0. Consider any XQ in X and any t' in \tQ,t\). Let x be the
solution to the initial value problem

x = (A + RP(t)}x and x(t') = x0

and let X(t) = P(t)x(t}. Then A(*i) = 0 and x = Ax + RX. Using the Riccati differential
equation (13.47), we obtain

A = Px + Px = Px + PAx + PRPx = -A*Px - Sx = -Sx - A*X .

Thus, we have shown that

x = Ax + RX
A = -Sx-A*X



220 CHAPTER 13. THE HAMILTON/AN MATRIX AND RICCATI EQUATIONS

which is equivalent to the Hamiltonian differential equation (13.48). Also, the boundary
conditions in (13.50) are satisfied.

Now suppose that for each t' in [to, ti), and for each XQ in X, the Hamiltonian differential
equation in (13.48) has a solution for [x X]tr which satisfies the boundary conditions in (13.50).
Consider the following matrix partition of em

X

Consider any t' in [<o,*i) i and any x0 in X and let [x \}tr be a solution of the Hamiltonian
differential equation in (13.48) which satisfies the boundary conditions in (13.50). Then,

= $2i(t-ti)x(ti) . (13.53)

In particular, XQ = $n(t' — ti}x(ti). Since XQ can be any vector in X, it follows that the
operator $n(£' — £1) is onto A'. Because A' is finite dimensional, $n(£' — £1) is invertible.
Noting that $n(ti — ti) = /, we have shown that the operator $n(t' — t i ) is invertible for all
t' in [£0,ti]. Eliminating x(ti] from equations (13.53) yields \(t) = P(t]x(t) where

for to < t < ti. We claim that P satisfies the Riccati differential equation in (13.47) with
P(ti) = 0. Since $2i(*i-*i) = 0, it follows that P(ti) = 0. Because P satisfies

we can differentiate with respect to t to obtain

P(t)$n(r) + P(t)$n(r) - 421(r) - 0 (13.54)

where r = t — t-\_. Obviously,

In particular,

$12 1 = [ -4

$22 J L "^ ~A*

$n = A$u 4- R$2i

$21 = -5$n - A*$2i -

Substituting this into (13.54), it now follows that

P(t)$n(r) + P(t)A$n(r) + P(t)R$2i(r) + 5$n(r) + A*$2i(r) = 0 .

Multiplying this equation by $n(r)~1 on the right and recalling that P(t] =
yields

P + PA + A*P + PRP + S = 0.

This is precisely the Riccati differential equation in (13.47).
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Remark 13.6.1 The above proof shows that one can obtain a solution P to the Riccati
differential equation (13.47) by computing em where H is the Hamiltonian matrix corre-
sponding to (13.47) and setting

P(t) = ^(t-tOfciiCt-ti)-1 (13-55)

where $n and $21 are as defined in the matrix partition of em in (13.52). Also, a solution
[x \]tr to the two point boundary value problem denned by (13.48) and (13.50) is given by

x(t) = $n(*-ti)$ii(t/-ti)-1a;o

This solution is also given by

x = (A + RP)x and x(t') = x0

A = Px.

13.6.2 Some properties
We now establish some fundamental properties for the solution P of the Riccati differential
equation with terminal condition P(t\) = 0. To this end, suppose that P is an operator
valued function denned on an interval [to,*i] where .P(t) is a self-adjoint operator on X.
We say the P is a decreasing function or is increasing backwards in time if P(t') > P(t")
whenever to < t' < t" < t\. We have now the following result.

Lemma 13.6.2 Consider the Riccati differential equation (13.47) where R and S are op-
erators on a finite dimensional space with R self-adjoint and S positive. Suppose P is a
solution on [to,ti] to this differential equation with terminal condition P(ti) — 0. Then P(i)
is positive for each t in [io,^i] and P is a decreasing function. Moreover, if S = C*C and
{(7, A} is observable, then P(t) is strictly positive for each t in [to,ti\.

PROOF. To see that P(t) is self-adjoint, take the adjoint of each term in the Riccati
differential equation (13.47) to obtain

P* + A*P* + P*A + P*flP* + 5 = 0.

Thus P* satisfies the Riccati differential equation (13.47) and P(£i)* = 0. Since the Riccati
differential equation is locally Lipschitz in P, the solution corresponding to P(t\) = 0 is
unique. Hence, P(t)* — P(t) and P(t) is self-adjoint.

To show that P is decreasing and P(t) is positive, rewrite the Riccati differential in
(13.47) as

P(t) + A(t)*P(t} + P(t)A(t) + S = 0, (13.56)

where A(t) — A + ^RP(t). Let !>(£, a] be the state transition operator for A. Multiplying
the above Riccati equation on the left by l>(t, ti)* and on the right by l>(Mi) yields

, t,)
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that is,

*i) = o .

Integrating from i' to ^ and using the terminal condition P(t\} = 0 results in

Multiply the above equation on the right and left by &(ti,t') and $(t1;t')* and use the
relationships $(i, ti)$(£i, t') = $(*,*') and $(*',*') = I to obtain that

/•*' -

P(t')= $(t,t')*S$(t,t')dt. (13.57)
Jf

Since 5" is positive, this clearly shows that P(i') is positive.
To show that P is decreasing, differentiate the Riccati differential equation (13.47) to

obtain
P + (A + RP)*P + P(A + RP) = 0 .

It also follows from Riccati equation (13.47) and P(t\) = 0 that P(t\] — — S. From this one
can readily show that

where $(t, a] is now the state transition operator for A + RP. Hence P(t) is negative for
to < t < ti. It now follows that P is decreasing.

Suppose that S = C*C and the pair {(7, ^4} is observable. We will show that P(t') is
strictly positive for each t' in [to,ti]. To this end, consider any t' in the interval [ioj^i] and
suppose v is any vector in the kernel of P(t'), that is, P(t')v — 0. It now follows from (13.57)
that

Q = (P(t')v,v)= f\$(t,t')*C*C<S>(t,t')v,v)dt= I' \\C$(t,t'}v 2dt
Jf Jt1

where $(t,a) is the state transition operator for A + ^RP(t). Hence, C$(t,t')v — 0 for all
t in [t',ti\. In particular Cv = C&(t',t')v — 0. Recalling the Riccati differential equation in
(13.47) with S — C*C ', we now obtain that

P(t)Av = Q. (13.58)

Hence,
(P(t'}v,v) = -(P(t'}Av,v] = -(Av,P(t'}v) = 0.

Since P(t') is negative, we must have P(t')v = 0. It now follows from (13.58) that P(t'}Av =
0. Thus Av is in the kernel of P(t'). Since Av is in the kernel of P(tf), it follows from the
above analysis that CAv = 0. By induction we can show that CAkv = 0 for all integers
k > 0. This means that v is in the unobservable subspace for {C, A}. Since {C, A} is
observable, v must be zero. Hence the kernel of P(t'} is zero. Because P(t') is positive and
its kernel is zero, P(i') must be strictly positive. •
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Remark 13.6.2 Suppose P is a solution on [to, ti] to the Riccati differential equation (13.47)
with terminal condition P(t\) — 0 and let Sl(r} = P(ti—r) and TI = t i—to- Then, fi(0) = 0
and fHs a solution on [0, TI] to the following Riccati differential equation

£l = A*£l + SIA + SIIKI + S. (13.59)

Moreover, it follows from the preceding lemma that Q(T) is positive for each T. Also, £) is an
increasing function, that is, Sl(r') < £l(r") whenever 0 < r' < r" < r\. Finally, if S = C*C
and {C, A} is observable, then fi(r) is strictly positive for each T in [O,TI].

We have now the following result.

Lemma 13.6.3 Suppose A, R and S are operators on a finite dimensional space X with R
self-adjoint and S positive. Then the following statements are equivalent.

(a) The algebraic Riccati equation (13.1) has a positive solution Q.

(b) The Riccati differential equation (13.59) has a uniformly bounded solution Q on the
interval [0, oo) with £1(0) = 0.

In this case, the solution $1 converges to a limit Sl^, that is,

fi^ = lim fl(r). (13.60)
T—>OO

Moreover, the limit f^ is the minimal positive solution to the algebraic Riccati equation
(13.1), that is, if Q is any other positive solution to (13.1), then

^oo<Q. (13-61)

Finally, if S = C*C and {C, A} is observable, then f^ is strictly positive.

PROOF. First suppose that the algebraic Riccati equation (13.1) has a positive solution Q.
We will demonstrate that the Riccati differential equation (13.59) has a uniformly bounded
solution fi on the interval [0, oo) with Q(0) = 0. Clearly, this Riccati differential equation
is locally Lipschitz in SI. Hence, this differential equation has a unique solution over some
interval [0, TI) for TI sufficiently close to 0. To verify that this solution can be extended over
the interval [0, oo), it is sufficient to show that over any interval [0, TI) on which f£ is defined,
there is a bound TO such that ||fl(T)|| < TO for 0 < T < TI. So, suppose Q is a solution to the
Riccati differential equation (13.59) on some interval [0, TI) and f2(0) = 0. It follows from
Remark 13.6.2 that Sl(r) is positive. Consider any T' in [0,Ti) and any x\ in X and let x be
the solution on [0, T'] to

dx
— = -(A + R(Q + fy/'2)x and z(r') = zi. (13.62)
dr

Then

- • ((Q - ftyc, x) = (-Six, x) + ((Q - 0)i, x) + ((Q - Sl)x, x) = (Mx, x)
dr
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where

M = -n + (n
= -0 + SIA + A*ft -QA- A*Q + (0 - Q)R(Q + 0)/2 + (Q + 0)#(0 - Q)/2
= -ttRtt-S + QRQ + S + ttRtt-QRQ
_ n

Hence

-!J-((Q-n)x,x) = 0.
dr

By integrating from 0 to r', it follows that

((Q - O(T'))*(T'), x(r')) = ((Q - 0(0))*(0), *(0)) .

Since Q is positive and 0(0) = 0 while x(r') = xi, we obtain that

((Q - n(r'))zi, x,) = (Qx(0), x(0)) > 0 .

Because the above holds for any x\ in X, we must have O(r') < Q. Since O(r') > 0, it now
follows that there is a constant m such that ||O(r')| < m. The bound m is independent of
r'. This implies that the solution can be continued on the interval [0, oo). Moreover, the
solution is uniformly bounded.

Now suppose that the Riccati differential equation (13.59) has a uniformly bounded solu-
tion 0 on the interval [0, oo) with 0(0) = 0. We will demonstrate that the algebraic Riccati
equation (13.1) has a positive solution. As a consequence of Remark 13.6.2, the solution 0
is an increasing function and O(r) is positive. Recall that a uniformly bounded increasing
sequence of positive operators converges strongly to a positive operator; see Halmos [59].
Therefore, 0(r) converges to a positive operator Ooo as r — •> oo, that is, lim.,--^ 0(r) = O^.
Since O(r) approaches a constant O^ as r tends to infinity, our intuition tells us that 0^ is
a constant solution to the Riccati differential equation (13.59). In other words, the positive
operator O^ is a solution to the algebraic Riccati equation (13.1). Our intuitive result can
be rigorously justified by using Lemma 12.7.4. Consider now any other positive solution Q
to the algebraic Riccati equation (13.1). It follows from our analysis in the first part of the
proof that O(r) < Q for all r > 0. Hence, 0^ < Q. So, 0^ is the minimal positive solution
to (13.1).

Suppose now that (C, A} is observable. Then, Remark 13.6.2 implies that O(r) is strictly
positive for all r > 0. Since 0 is an increasing function, 0(r) < 0^ for all r > 0. Hence,
OQO is strictly positive. •.

13.7 Notes

The presentation in this chapter concerning the Hamiltonian matrix and the algebraic Riccati
equation is standard; see Francis [44], Kailath [68] and Zhou-Doyle-Glover [131]. The idea
of using the Schur decomposition on the Hamiltonian matrix to solve the algebraic Riccati
equation is due to Laub [79]. For some numerical procedures to solve the algebraic Riccati
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equation see Arnold-Laub [3] and Van Dooren [121]. The derivation of the Riccati differential
equation from the state transition matrix for the Hamiltonian is classical; see Kalman [70]
and Kwakernaak-Sivan [77].





Chapter 14

H°° Analysis

In this chapter we use an optimization problem to determine whether or not the norm of an
input output operator T is bounded by a specified constant 7. As in the linear quadratic
regulator problem, this optimization problem leads to a Riccati differential equation. It is
shown that ||T|| < 7 if and only if there exists a solution to a certain Riccati differential
equation.

14.1 A disturbance attenuation problem
Consider the state space system,

x — Ax + Ew and z = Cx , (14.1)

where A is an operator on X, while E maps W into X and C is an operator mapping
X into Z. The spaces X, W, and Z are finite dimensional. In this setting, w is viewed
as a disturbance input acting on the system while z is an output which reflects the system
performance. In this section, we consider the disturbance attenuation properties of the above
system over some time interval [to, *i] with to <ti. To this end, consider the system in (14.1)
with zero initial state, that is, x(tQ) = 0. Given a specified scalar 7, we wish to determine
whether or not

(14.2)r\\z(o}\\*da<^ r
Jto Jto

for every disturbance input w. Roughly speaking, the scalar 7 is a measure of the ability of
the system to mitigate the effect of the disturbance w on the output z.

For an operator interpretation of the above condition, let T be the input output operator
from L2([t0,ti],W) into L2([t0,ti], 2) defined by

(Tw)(t)= I CeA^-r)Ew(r)dr. (14.3)
Jt0

Then z = Tw. Since (14.2) can be restated as ||z||2 < 72|H|2, it follows that (14.2) holds if
and only if the norm of T is less than or equal to 7. In general, computing the norm of an
infinite rank operator is not computationally tractable. In Section 14.2 we will demonstrate
how to use Riccati differential equations to determine the norm of T.

227
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Our approach to the above disturbance attenuation problem is based on the following
quadratic optimization problem:

For each initial state XQ in X, find the optimal cost S(XQ) in the optimization problem:

6(x0) = sup j jfl (||^a)||2 - 72H<r)2||) da : w 6 L2 ([to, t:], W) j

subject to x = Ax + Ew and z — Cx and x(to) = XQ . (14-4)

In addition, when a maximum exists, find an optimal input w which achieves this maximum,
that is,

where the optimal state x and output z are given by x = Ax+Ew and z = Cx with £(£Q) — xo-

In general the supremum S(XQ) in this optimization problem may be infinite. However,
when ||T|| < 7, we show that the supremum is finite and the solution to this optimization
problem is similar to the solution of the linear quadratic regular problem.

So, suppose that ||T|| < 7. Consider the system in (14.1) with initial condition x(to) = XQ
and let C0 be the observability operator from X into L2([t0, ti], Z) defined by

(C0x)(t) = CeA(t~to]x (x^X and t0 < t < tj . (14.6)

Recall that C0 is one to one if and only if the pair {C, A} is observable. Then the output z
is given by

z = C0xQ + Tw. (14.7)

We now show that for each initial state XQ, there exists a finite scalar a(x0) such that for
every disturbance input w,

/

ti rti

||2(a)||2 da < 72 / \w(a}\\2 da + a ( x o ) , (14-8)
0 Jto

or, equivalently, ||z||2 < 72||w||2 + a(x0). To see this, first observe that

z\\2 = \Tw\\2

< \\Tw\\2 + 2117^11110^011 + \\C0x0\\
2.

Now recall that for any real numbers a and b, one has 2ab < a2 + b2. So. for any scalar e > 0,
we obtain 2||Tiu |||C0x0| < t\\Tw |2 + t~l\\C0xQ\\^ . Hence,

Choosing t = 72/||T||2 - 1, yields

!k|2<72 | |^||2 + 72||ax0||2/(72-|^l|2). (14-9)

Therefore, the desired result in (14.8) holds with a(xQ) = 72||C0x0||
2/(72 - ||T||2).
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Now consider the problem of finding the smallest a(xo) for which (14.8) holds for all w.
Notice that (14.8) holds for every input w if and only if

Jto

holds for every w in L2([£0,£i], W). Hence, it follows that the smallest a(z0) is given by the
solution to the quadratic optimization problem in (14.4).

Remark 14.1.1 Let T be the operator from L2([t0,ii], W) into L2([t0,ti],2:) defined in
(14.3) and set z = C0xQ + Tw where C0 is the observability operator defined in (14.6). If
| |T 1 1 < 7, then the above discussion shows that

S(x0) = sup T (||z(a)||2 - 72|m<r)||2) da < 72||a*o||2/(72 - I|T||2) - (14.10)
w£L2 Jt0

In particular, if ||T|| < 7, then 6(xo) is finite for all initial states x0 in X and the optimization
problem in (14.4) has a finite supremum.

14.2 A Riccati equation

Following our approach to the linear quadratic regulator problem, we seek a solution to
the optimization problem in (14.4) using a Riccati differential equation. Notice that the
integrand in this optimization problem is of the form ||z||2 + (Rw,w) with R — — 72/. By
setting R = — 72/ and B = E in the Riccati differential equation (12.12) used to solve the
weighted linear quadratic regulator problem, we obtain

P + A*P + PA + 7~2PEE*P + C*C = 0 (with P(*i) = 0) . (14.11)

Our first result states that the optimization problem in (14.4) has a finite supremum for
every initial state XQ if and only if the associated Riccati differential equation in (14.11) has
a solution for P on the interval [io,^i]- In this case, there exists a unique optimal input w
in L?([to,ti], W) which achieves the supremum, that is,

8W= Ap(^)||2-7-2||^)||2)^ (14-12)
Jt0

where the optimal output is given by z — Cx while the optimal state x satisfies x = Ax + Ew
with x(to) — XQ. Before obtaining this result we need the following observations.

Remark 14.2.1 For any time interval [a, b] and any initial state XQ, let p(xo,a,b) be the
optimal cost given by

p(x0,a,b) = sup / (\\z(a)\\2 - 7
2||w(a)2||) da : w e L2(Mi],

subject to x — Ax + Ew and z = Cx and a; (to) = ^o • (14.13)



230 CHAPTER 14. H°° ANALYSIS

Obviously, 6(xo) = p(x0, £1 ,£2 ) - We first claim that if a < b < c, then p(x0, a, b) < P(XQ, a, c).
To see this, consider any w e L2([a, b}, W) and let w e L2([a, c], W) be defined by

„, N f w(t) for a < t < b
w(t) — { \ , , ~ , ~w | 0 for 6 < t < c.

Then,

fb f-C

- 7 \\w(a)2\\) do~ < I (\\z(o-}\\2 — 72||w((7) |) da < P(XQ, a, c).

Since the above holds for any w e £2([a, 6], W), it follows that p(xo, a, b) < P(XQ, a, c).
We now claim that if a < b < c, then p(x0,b,c) < p(xo,a,c). First note that due to the

time invariant nature of the optimization problem, it should be clear that P(XQ, b + d, c + d) —
P(XQ, fe, c) for any real number d. The desired result now follows from

P(XQ, 6, c) = p(x0, a, c + a — 6) < P(XQ, a, c) .

Theorem 14.2.1 The optimal cost S(XQ) for the optimization problem in (14-4) i-s finite for
every initial state XQ in X if and only if the Riccati differential equation in (14-11) has a
solution P on the interval [£0,^1] • In this case, In this case, the optimal cost is given by

Q,x0} (14.14)

and is uniquely attained by the optimal input

w(t) = -f-2E*P(t)x(t) (14.15)

where the optimal state trajectory x is uniquely determined by

x = (A + ~f~2EE*P(t))x with x(t0) = x0 . (14.16)

PROOF. Assume that the Riccati differential equation in (14.11) has a solution P over
the interval [ io ,^i]- Then we claim that the supremum in the optimization problem (14.4)
is attained and is given by S(XQ) — (P(to)xQ,xo). Moreover, this supremum is uniquely
determined by the optimal disturbance w = ̂ ~2E*Px where the optimal state x is given in
(14.16). To see this we first note that P(t) is positive; see Lemma 13.6.2. This lemma also
states that P is increasing backwards in time, that is, if t' < t" then P(t'} > P(t"). We now
apply the completion of squares technique and use the Riccati differential equation. Using
(14.11) along with x = Ax + Ew, we obtain

-r(Px, x} = (Px, x) + (Pi, x) + (Px, x)

= (Px, x) + (PAx, x) + (PEw, x) + (Px, Ax) + (Px, Ew)
= ((P + PA + A*P)x, x) + (w, E*Px) + (E*Px, w)
= -\\Cx\\'2 - ^-2\\E*Px\\2 + (w, E*Px) + (E*Px,w)

*Px-7w||2. (14.17)
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By integrating from to to t\ and using the facts that P(t\) — 0, and x(to) = XQ, we have

(*)H2 -72H^)||2) AT = (P(*o)*o,*o) - T h^P^M*) - ~fw
Jt0

*) - ~fw(o} da .
t0 Jt0

(14.18)
This readily implies that

/Jto
-72|Kcr)||2) da < (P(to)xQ,x0) (14.19)

for every input w. Moreover, we have equality if and only if the integrand of the second inte-
gral in (14.18) is identically zero, that is, w(t) = ^f~2E*P(t)x(t). Therefore, w = j~2E*Px is
the unique optimal input where the optimal state x is denned by (14.16). Hence, a maximum
exists in the optimization problem (14.4) and is given by S(XQ) = (P(to)xo,XQ).

On the other hand, if 8(x0) is finite for every initial state XQ in X, then we claim that the
Riccati differential equation in (14.11) has a unique solution P defined on the interval [to, t^].
To verify this, first notice that this Riccati equation is locally Lipschitz in P. Hence, this
differential equation has a unique solution over some interval (^2,^1] for t% sufficiently close
to ti. To verify that this solution can be extended over the interval [£0,^1], it is sufficient
to show that over any interval ( £ 2 > £ i ] on which P is defined and to < t%, there is a bound
M such that \\P(t}\\ < M for £2 < * < *i- Consider any t in the interval (t2,ti\. Then P is
defined on the interval [t, ti]. Recalling the analysis in the first part of the proof and Remark
14.2.1, it follows that P(i) is positive and for each z0 in X,

(P(t)x0, x0) = p(xQ, t, ti) < p(xQ, t0, ti) = 5 ( x 0 ) . (14.20)

Let {V'j}" be an orthonormal basis for the state space X. Since P(t) is positive,

n n

\\P(t)\\ < traceP(t) = Y^(p(WiM < E5^) = M < °°'
3 = 1 j = l

So, there exists a bound M such that ||P(i)| < M for £2 < t < ti. Therefore, the Riccati
differential equation in (14.11) has a unique solution P defined on the interval [io,^i] • •

Using Theorem 14.2.1 we can now obtain the following result.

Theorem 14.2.2 Let {A,E,C} be the linear system in (14-1) and T the corresponding
input output operator from L 2 ( [ t o , t i ] , W) into L2([to,ti], Z) defined in (14-3). Let 8(xo) be
the optimal cost for the optimization problem in (14-4)- Then the following statements are
equivalent.

(i) The norm \ T\\ < 7.

(ii) The Riccati differential equation in (14-11) has a solution P on the interval [£o,*i]-

(Hi) The optimal cost 8(xo) is finite for all initial states x0 in X.

In this case, the supremum is attained and is given by 5(xo) = (P(to)xo,Xo).
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PROOF. According to Theorem 14.2.1, Parts (ii) and (Hi) are equivalent. If \\T\\ < 7, then
equation (14.10) in Remark 14.1.1 shows that 5(xo) is finite for all XQ in X . Hence, Part (i)
implies Parts (ii) and (Hi).

Now we show that (ii) implies (i). Recall that if a differential equation q — f(q,r/) has
a solution on an interval [to, t\] where / is a continuous function and 77 is a parameter, then
9 = /(OS7? — e) also has a solution on the interval [to,ti] for all e sufficiently small; see [28].
Now assume that the Riccati differential equation in (14.11) has a solution on [£Q,£I ] - Then
this Riccati differential equation also has a solution on the interval [to, ti] when 7 is replaced
by 7 — 6 for some e > Q. Theorem 14.2.1 now shows that the supremum O(XQ) in (14.4) is
finite when 7 is replaced by 7 — e; using z = COXQ + Tw we obtain

sup [\\C0x0 + Tw\\2 - (7 - e)2 HI2) = S(x0) < oo .
w£L2

Considering XQ = 0 results in

hence, for all w, we have ||TIK;||2 < (7 — e)2 w |2 + 6(0) . Consider any integer n and replace
w by nw in the above expression to obtain

I Tw |2 < (7 - e)2\\w |2 + <5(0)/n2 . (14.21)

Since (14.21) holds for every integer n, we must have ||Tiy||2 < (7 — e)2||w||. Because this
holds for all w we obtain that ||T|| < 7 — e < 7.

•
The following consequence of the previous theorem provides a method to compute the

norm of the infinite dimensional operator T.

Corollary 14.2.3 Let T be the operator from L2([t0, t i ] , W) into L2([t0,ti],Z) defined in
(14-3). Then \\T\\ is the infimum of the set of all positive numbers 7 such that the Riccati
differential equation m (14-11) has a solution on the interval [ ioi^i]-

Example 14.2.1 (Simple integrator) Consider the classical problem of computing the
norm of the integrator operator T on Z/2[0, 1] defined by

/"
(Tw)(t) = I w(r)dr;

Jo

see Problem 188 in Halmos [59]. This operator is the input output operator associated with
the system x = w and z = x where to = 0 and ti = 1. Let us use Corollary 14.2.3 to compute
the norm of T. For any 7 > 0, the corresponding Riccati differential equation is given by

With the terminal condition P(t\) = 0, the solution to this differential equation is given by
P(t) = 7tan(7~1(l — t)) for 1 — 771-7 2 < t < 1. Note that this solution cannot be continued
beyond t < I — 7vr/2. Hence, in order for the solution to be denned on the interval [0, 1],
it is necessary and sufficient that 7 > 2/?r. According to Corollary 14.2.3, the norm of the
operator T is 2/7T.
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Remark 14.2.2 Assume that the supremum S(XQ] in (14.4) is finite for all XQ in X ', or
equivalently, the Riccati differential equation in (14.11) has a solution on the interval [to,^i]-
If the pair {C, A} is observable, then P(t] is strictly positive for all t0 < t < t\. This follows
from Lemma 13.6.2. We can also demonstrate this as follows. Consider any t in the interval
[£0 ,£i) and let x(t) — XQ and w = 0. Then z(a) = CeA^~^XQ and replacing to with t in
(14.18), we obtain that

(P(t)x0,x0)>
t

Because {C,A} is observable, f t
l \\CeA(a~^xo\\2 da > 0 for all nonzero XQ. Therefore, the

operator P(£) is strictly positive.

Remark 14.2.3 It is emphasized that one must integrate the Riccati differential equation
in (14.11) backwards in time to find P(t}. However, one can easily convert this equation to a
Riccati differential equation moving forward in time. To see this let fi(r) = P(ti—r). Then
equation (14.11) gives

S - A*£l + flA + 7~2£lE£*n + C*C (fi(0) = 0) . (14.22)

Therefore, one can obtain P by solving forward in time for £7 in the Riccati differential
equation (14.22). Then P(t) = fl(*i-i).

Notice that, due to the time invariant nature of the system under consideration, it follows
from (14.20) and (14.13) that

o) = sup (||*(a)||2 -72 |K<r)||2)d(r : w e L2([0, *!-*],
wo

subject to x = Ax + Ew and z = Cx and x(0) = XQ .

Hence,

(r2(r)x0,x0) = sup { f (||z(a)||2 - -?\\w(a)\?) to : w € L2([0, ̂ -i], W)
wo

subject to i = Ax + Ew and z = Cx and x(0) = x0 . (14.23)

Notice that one can also express the solution 17 to the Riccati differential equation in
(14.22) as the solution to the following integral equation

fi(r) = / e
A'(T-a) (C*C + 7-2n((j)EE*n(a)) eA(r~^ da .

Jo
(14.24)

An application of Leibnitz's rule shows that fJ in (14.24) is indeed a solution to the Riccati
differential equation in (14.22). If the pair {C, A} is observable, then £2(r) is strictly positive
for all r > 0 where fi(r) is defined. Equation (14.24) shows that

The last equality follows because the pair {C, A} is observable. Therefore, fi(r) is strictly
positive. Since P(t] = f2(ti—t), this also shows that P(t) is strictly positive for all to < t < t\
when {C, A} is observable.
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14.3 An abstract optimization problem

In this section we introduce an optimization problem which plays a fundamental role in an
operator development of the Riccati differential equation in (14.11). To this end, let J be
a self-adjoint operator on a Hilbert space /C while h and £ are fixed vectors in 1C. Consider
the following optimization problem:

/^ = sup{|H|2 + 2K(<M)- (^^ ) :<pe£} . (14.25)

If J is not positive, then (3^ is infinite. To see this, suppose that J is not positive. Then
there exists a vector (p in 1C such that (Jtp, <£>) < 0. Considering any integer n > 0, we obtain

Since (J(p,(p) < 0, it follows that ||/i||2 + 2n3ft(<£>, £) — n2(Jip,(p) approaches infinity as n tends
to infinity. Hence, /?/,£ = oo. The following result yields a solution to the above optimization
problem when J is strictly positive.

Lemma 14.3.1 Let J be a strictly positive operator on a Hilbert space 1C while h and I; are
fixed vectors in 1C. Then the optimization problem in (14-25) has a finite supremum

13*= \\h\\* + (J-1S,$ (14.26)

and this supremum is uniquely attained by the optimal vector (p = J~~v£, .

PROOF. The proof is based on the following completion of squares:

J-l^^-J-^). (14.27)

Since J is strictly positive, it follows that (J(y> — J~l^}} y? — J~l£,} > 0- Moreover, this term
is zero if and only if (p — J~l£, = 0, or equivalently, </? — J-1£. Therefore, (14.27) shows that
the supremum in (14.25) is finitely given by ||/i||2 + («/~1£,£) and it is uniquely attained by
the optimal vector <p = J^1^. •

For completeness we include the following result when J is positive. However, this result
is not used to solve any control problems in this monograph and can be proven using the
Riesz Representation Theorem.

Theorem 14.3.2 Let J be a positive operator on K, and let h and £ be fixed vectors in 1C.
Let M be any operator from 1C into M. satisfying J = M*M . Then the supremum /3h£ defined
in (14.25) is finite if and only if ^ is in the range of M* . In this case,

fa = \\h\\'2 + \\v 2 (f = M*v and v £ (kerM*)x) (14.28)

where v is the unique vector in the closure of the range of M satisfying £ = M*v.
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14.4 An operator disturbance attenuation problem

In this section, we present and solve an operator version of the optimization problem in
(14.4). To this end, let T be an operator mapping a Hilbert space K, into a Hilbert space "H
and h a vector in "H. The following optimization problem is a generalization of (14.4). For
a specified 7 > 0, find (3(ti) such that

(3(h) = sup{\\h + Tw\\2 - 72|H|2 : ™ e £} - (14-29)

An optimal vector w is a vector in K. such that (3(ti) = \\h + Tw\\2 - 72||w)||2. Clearly,
(3(h) > 0. Equation (14.7), along with h = C0x and /C = L2([i0,ii],>V), readily shows that
(14.4) is a special case of the optimization problem in (14.29).

We say that the norm of T is bounded by 7 if ||T|| < 7. The norm of T is strictly bounded
by 7 if \\T\\ < 7. Clearly, the norm of T is bounded by 7 if and only if 72/ — T*T is positive.
Moreover, the norm of T is strictly bounded by 7 if and only if 72/ — T*T is strictly positive,
or equivalently, 72/ — T*T is positive and invertible.

For any w in fC, we obtain

h) + \\Tw\\2 -72HI2

= |H|2 + 2K(to,T*/i)-((72/-T*7>,w;). (14.30)

Thus, the optimization problem in (14.29) is equivalent to the following optimization problem

(3(h) = sup{||/i||2 + 2Sft(w, T*/i) - ((72/ - T*T)w, w) : w € £} . (14.31)

This is precisely the optimization problem in (14.25) where £ = T*h and J = 72/ — T*T.
Recall that (3^ = oo when J is not positive. Obviously, 72/ — T*T is not positive if and only
if \\T\\ > 7. So, if ||T|| > 7, then (3(h] — oo. The following result solves the optimization
problem in (14.29) when the norm of T is strictly bounded by 7.

Theorem 14.4.1 Let T be an operator mapping K, into Ti. whose norm is strictly bounded
by 7 and let h be a vector in T~L. Then the supremum in (14-29) is attained and is given by

p(h) = 72 ((7
2/ - TT*)-1/*, h) . (14.32)

Furthermore, optimal vector w in K, which attains this supremum is unique and is given by

w = (7
2/ - T*T}~lT*h = T*(72/ - TT*}~lh. (14.33)

PROOF. Since the norm of T is strictly bounded by 7, the operator J = 72/ — T*T is strictly
positive. Because the optimization problems in (14.29) and (14.31) are equivalent, Lemma
14.3.1 with £ = T*h, shows that

(3(h) = fa = \\h\\2 + ((7
2/ - rrr'T^r-/!) . (14.34)

Using R("Y2I — NR)~l = ('j2! — RN)~1R where R and N are operators acting between the
appropriate spaces, we obtain

= 7V/-TT



236 CHAPTER 14. H°° ANALYSIS

Employing this identity in (14.34), yields the expression for (3(h] in (14.32). Finally, Lemma
14.3.1 with J = 72/ — T*T, shows that the supremum in (14.29) is uniquely attained by the
vector w = J~l£ = (^1 - T*T}~lT*h. Therefore, (14.33) holds. •

The following result is a generalization of the bound (14.10) in Remark 14.1.1.

Corollary 14.4.2 Let T be an operator mapping K, into Ti. whose norm is strictly bounded
by 7 and let h be in Ji. Then the supremum in (14-29) satisfies f3(h) < 72|

PROOF. Clearly, (72 - ||T||2)/ < 72/ - TT*. If N and R are two strictly positive operators
satisfying N < R, then R"1 < TV"1; see Lemma 14.4.3 below. Hence,

The corollary now follows from (14.32). •
If T is the operator from L2([t0,^i], W) into L2([£0,ii], 2} defined in (14.3) and h = C0x,

then Corollary 14.4.2 readily yields the bound in (14.10).

Remark 14.4.1 Let T be an operator mapping JC into Ti. whose norm is strictly bounded by
7 and let h be a vector in H. Consider the affine map from /C into H denned by z — h + Tw .
Here z can be viewed as an output. Then the optimization problem in (14.29) is equivalent
to

/W = sup{| |z | |2-72H|2 :™e/C}. (14.35)

If w is the optimal input, then the corresponding optimal output z — h + Tw depends only
on h in 7i. In this case the optimal input w is given by the "feedback" formula w = ^~2T*z .
To see this, notice that (14.33) readily gives (72/ - T*T)w = T*h. This implies that
72w = T*(h + Tw) . Using z = h + Tw, we obtain 72w = T*£, which proves our claim.

Lemma 14.4.3 Let N and R be two strictly positive operators on 1i. If N < R, then
R-1 < N'1.

PROOF. For all / in H, we have

) < (RfJ) <

By replacing / with R~l/2g, we see that Nl^R~1^ is a contraction. (Recall that an operator
M is a contraction if ||M|| < 1.) So, its adjoint R~l/2N1/2 is also contractive. Thus,
11^-1/2^1/2^ < iij^ Now replacing f by N-i/2hj we see that ||/j-i/2^||2 < \\N-Wh\\*.

This implies that R~l < N'1 and completes the proof. •

14.5 The disturbance attenuation problem revisited

Now let us return to the original optimization problem posed in (14.4). Recall that we
obtained a solution to this problem using the Riccati differential equation in (14.11). In
this section we use operator techniques to provide some further insight into the origins of
this Riccati differential equation. As in the linear quadratic regulator problem, operator
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techniques naturally yield a two point boundary value problem which in turn leads to the
Riccati differential equation. To be more specific, recall that

x = Ax + Ew and z = Cx (14.36)

where A is an operator on A", while E maps W into X and C is an operator mapping X into
Z. The spaces X,W, and Z are all finite dimensional. In this setting T is the input output
map from L2([t0,*i], W) into L2([t0,*i],Z) defined by

/•*
(Tu;)(t)= CeA(t-T)Ew(r)dr (w e L2([t0, *i], W)) . (14.37)

Recall that C70 is the observability operator from X into L2([to,^i],-2) defined by

(C0x)(t) = Ce^-^rr ( x € X ) . (14.38)

Clearly, the optimization problem in (14.4) is a special case of the general problem in (14.29)
with h = COXQ. By consulting Theorem 14.4.1 and Remark 14.4.1, we readily obtain the
following result.

Theorem 14.5.1 Consider the optimization problem in (14-4)- Let T be the input output
operator defined in (14-37) and let C0 be the observability operator defined in (14-38). If
\\T\\ < 7, then the supremum is attained in (14-4) and is given by

6(xo) = 72 ((72/ - TT*rlCoX0, C0x0] . (14.39)

Moreover, the optimal input which attains this supremum is unique and is given by

w = (72/ - TT^TCoXo • (14.40)

Finally, the optimal input w must satisfy

w = ̂ -2T*z (14.41)

where the corresponding optimal output z is given by z = COXQ + Tw, that is,

x = Ax + Ew with x(to) = XQ
z = Cx (14.42)

and x is the optimal state trajectory.

14.5.1 The adjoint system

Now let us use Theorem 14.5.1 to obtain the two point boundary value problem associated
with the optimization problem in (14.4). Our approach involves the adjoint system corre-
sponding to the system {A, E, C}. As before, let T be the operator from L2([to, ti], W) into
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L 2 ( [ t o , t i ] , Z ) defined in (14.37). Then a simple calculation shows that its adjoint T* is the
operator from L 2 ( [ t 0 , t i ] , Z ) into L2([t0, t i] ,W) defined by

(T*g)(t) = I ' E*e-A'(t-T)C*g(r)dT (g € L2([ t0 , t i ] ,Z) . (14.43)
Jt

In fact, this formula for T* follows from (12.27) and (12.28) with G(t) = CeAtE. To obtain
a state space realization of the adjoint map T*, let A be the function defined by

Using Leibnitz's rule, we obtain A = —A*A — C*g which yields the following state space
representation of v — T*g:

X = -A*A - C*g with A(^) = 0

v = E*X. (14.44)

To obtain v for a specified g, one must integrate the above differential equation backward in
time from t\. Finally, we call A the adjoint state.

Now let us use the adjoint system to characterize the solution of the optimization problem
in (14.4). Suppose that \\T\\ < 7. Then the supremum is attained in (14.4) for every initial
state XQ in X. According to Theorem 14.5.1, the optimal input w which achieves this
supremum must satisfy w = 7~2T*z where z is the corresponding optimal output trajectory;
see (14.42). Since (14.44) is the state space realization for v = T*g, the state space realization
for the optimal input w — 7~"2T*z is given by

A = -A* A - C*z with A(*i) = 0
ID ^— 'V p^ \

Combining these equations with (14.42), we see that the optimal input is given by

-2E*X (14.45)

where [x X]tr solves the following two point boundary value problem:

= Ax + 7~2EE*\ with x (t0) = x0

= -C*Cx-A*\ with A(ti) = 0. (14.46)

Summing up the previous analysis we obtain the following result. If \\T\\ < 7, then the
corresponding two point boundary value problem in (14.46) has a solution for every XQ in X.
Furthermore, the supremum is obtained in the optimization problem (14.4) for every initial
state XQ and the optimal input w which achieves this supremum is given by w — j~2E*X.

We now claim that, if | T|| < 7, then for every XQ in X and for every t' in the interval
[£o ,^ i ) , the two point boundary value problem:

x = Ax + ~/~2EE*\ with x ( t ' ) — XQ

A = -C*Cx - A*A with A(*i) = 0 (14.47)
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has a solution [x \}tr . To see this, let T' be the operator from L2([t', ti], W) into L 2 ( [ t ' , t i ] , Z )
defined by

(T'w)(t)= f CeA(t-T}Ew(r}dr. (w € L2([t',ti], W) . (14.48)
Jt'

We claim that \\T'\\ < \\T\\, and thus, \\T'\\ < 7. To see this consider any input w in
L2([t', ti], W) and extend it to an input w in I/2([i0, <i], W) by setting w(£) = 0 for t0 < * < *'•
Then

This implies that ||T'|| < ||T|| < 7. By using ||T"|| < 7 in our previous analysis with t'
and T' replacing to and T, respectively, we see that the two point boundary value problem
(14.47) has a solution for every XQ in X and for every t' in the interval [io,*i)-

14.5.2 The Riccati equation

As before, assume that the norm of the operator T from L 2 ( [ t 0 , t i ] , W) into L2([£0,£i],-£)
defined in (14.37) is strictly bounded by 7. Theorem 14.2.2 shows that the Riccati equation
in (14.11) has a solution P on the interval [i0, *i]- Here we provide an independent derivation
of this result. We will see that the Riccati differential equation arises naturally in the solution
of the two point boundary value problem in (14.46). In particular, the solution [x \}tr to
this two point boundary value problem satisfies A(t) = P ( t ) x ( t ) . We also obtain an explicit
formula for P in terms of the elements of the state transition matrix associated with this
two point boundary problem.

To this end, we introduce the Hamiltonian matrix associated with the optimization prob-
lem in (14.4):

„ I" A -y~2EE*] \X] ,,...,.
H=\ r.r 4. on \ x \ • (14-49)[ -C C -A J I x \

Notice that H is simply the state space matrix for the system in (14.46). Since ||T|| < 7, it
follows from the previous section that the two point boundary value problem in (14.47) has a
solution [x X]tr for every XQ in X and t' in [to, t\). Hence, using Lemma 13.6.1, it follows that
the Riccati differential equation in (14.11) has a solution P on the interval [t0, *i]- Moreover,
it follows from Remark 13.6.1 that

= P(t)x(t) and P(t) = $2i(*-*i)$n(*-*i) (14.50)

where $n and $21 are obtained from the following matrix partition of em:

X

So, one can obtain P by using either P(£) = $2i(£ — ii)^>n(^ — ̂ i)"1 °r solving the Riccati
differential equation in (14.11).

Combining the results in this section with Theorem 14.2.2 gives the following result.

Theorem 14.5.2 Let T be the operator from L2([£0,£i], W) into L 2 ( [ t o , t i ] , Z ) defined in
(14-37). Let 8(xo) be the supremum for the optimization problem in (14-4)- Then the fol-
lowing statements are equivalent.
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(i) The supremum 8(xo] is finite for every XQ £ X .

(ii) The supremum S(x0) is uniquely attained for every XQ G X .

(Hi) The Riccati differential equation in (14-11) has a solution on the interval [ to i^ i ] -

(iv) The two point boundary value problem in (14.47) has a solution for every XQ in X and
t' in the interval [ io ,£] ) -

(v) The norm of the operator T is strictly bounded by 7.

Remark 14.5.1 As before, let T be the operator from L2([t0,*i], W) into L ? ( [ t Q , t i ] , Z )
defined in (14.37) and assume that ||T|| < 7. Then Theorems 14.2.1 and 14.5.1 give

P(t0) = 72C<:(72/ - TT }~1C0 . (14.52)

Recall that the pair {(7, A} is observable if and only if the operator C0 is one to one. Hence,
equation (14.52) shows that the pair {C, A} is observable if and only if P(to) is strictly
positive. Recall that if T' is the operator from L 2 ( [ t ' , t i ] , W ) into L2([£' ,£i], Z) defined in
(14.48) where t0 < t' < ti, then ||T'|| < ||T|| < 7. So, by replacing T with T' and t0 by
t', we see that P(t') is strictly positive for any t0 < t' < t\ if and only if the pair {C, A}
is observable. In particular, P(t} is strictly positive for any to < t < t\ if and only if P(i)
is strictly positive for all t0 < t < t\. Likewise fl(r) = P(ti — r} is strictly positive for any
0 < T < ti — t0 if and only if f2(r) is strictly positive for all 0 < r < t i — to-

Remark 14.5.2 One might conjecture that the optimization problem in (14.4) has a solu-
tion for every XQ if the two point boundary value problem in (14.46) has a solution for every
XQ on the interval [£0,^1]- However, this is false as the following example illustrates. Recall
the simple integrator system (x — w and z = x) in Example 14.2.1 defined on the interval
[0,1]. As expected, t0 = 0 and ti — 1. We have already shown that the corresponding
optimization problem has a solution for every XQ if and only if 7 > 2/yr. The Hamiltonian
matrix associated with this system is given by

- 1 0

It is easy to verify that

l t ) cos(7 li)

By consulting (13.53), it follows that [x \}tr is a solution of the corresponding two point
boundary value problem over the interval [0,1] if and only if

x ( t ) = cos(7~1(t - !))£(!) and \(t) = -7sin(7~1(t - l))x(l) (14.53)

and x(Q) = XQ. So, this two point boundary value problem has a solution if and only if there
exists a scalar x(l) such that XQ = cos(7-1)x(l). In other words, for this two point boundary
value problem to have a solution for every XQ, it is necessary and sufficient that cos(7~1) be
nonzero. In this case, the solution is uniquely given by (14.53) with x ( l ) = cos(7~1)"1a;o.
So, if 7 = 1/27T, then cos(7~1) is nonzero and this two point boundary value problem has
a solution for every XQ. Since \\T\\ = 2/n, it follows that the corresponding optimization
problem with 7 > l/2?r does not have a solution.
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14.6 A spectral factorization
In this section we obtain a finite time outer spectral factor for the operator 72I — T*T. Recall
that G is a finite time outer spectral factor for a strictly positive operator H if H = 6*0
where 0 is a causal invertible operator with a causal inverse. Let T be the causal operator
from L2([£0,£i], W) into L2([to,^i], 2) defined in (14.3). Assume that the Riccati differential
equation in (14.11) has a solution on the interval [to,£i], or equivalently, ||T|| < 7. In this
case, we will obtain a finite time outer spectral factor 0 for 72/ — T*T. To begin, let L be
the linear operator on L2([io,^i], X] defined by

(Lf)(t) = f
•/to

Notice that g = L/, for some / in L 2 ( [ t o , t i ] , X ) , if and only if g satisfies the following
differential equation

g = Ag + / with g(to) = 0 . (14.55)

It should also be clear that T = CLE.

Theorem 14.6.1 Let T be the causal operator from L2([to, *i], W) into Z/2([to, t i ] , Z ) defined
in (14-3) and assume that the Riccati differential equation in (14-11) has a solution on the
interval [to,ti]. Let 0 be the causal operator on L?([to,t-\], W) defined by

6 = 7/ - ^~1E*PLE . (14.56)

Then 0 has a causal inverse and 72I — T*T = 0*0. In particular, ||T|| < 7.

PROOF. The adjoint L* of L is the operator on L2([to,ii], X) defined by

=
Jt

(14-57)

By applying Leibnitz's rule to (14.57), it follows that £ = L*<p for some <p in L2([to,^i], X)
if and only if £ is the unique solution to the following differential equation

£ = -A*£ - 0 with £(£i) = 0 . (14.58)

Consider now any differentiable function g in L2([£o, *i]> «^')- Using the Riccati differential
equation in (14.11), we have

jt (Pg) = -A*(Pg] - C*Cg - ^2PEE*Pg + Pg - PAg .

Since P(t\)g(t\) = 0, it now follows from the characterization of £ = L*0 in (14.58) that

Pg = L*(C*Cg + ̂ PEE+Pg - Pg + PAg) .

This yields the following relationship:

(P - L*C*C - -j-2L*PEE*P)g = -L*P(g - Ag) (14.59)
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for any differentiable function g in L2([£o, £1], X\ Consider any / in L2([£o,£i], X) and let
g = L f . Then g - Ag = f. Substituting this into (14.59) yields

(P - L*C*C - ~/-L*PEE*P)Lf = -L*Pf .

Since / is arbitrary, we obtain the following operator algebraic Riccati equation

L*P + PL - L*C*CL - -f~
2L*PEE*PL = 0 . (14.60)

By applying E* to the left and E on the right, rearranging terms and using T = CLE,
yields

72/ _T*T = 7
2/ - E*L*C*CLE

= 72/ - E*L*PE - E*PLE

= (7! -^

Hence, 72/ - T*T = 9*9 where 9 = 7! - -y~lE*PLE.
Obviously, 9 is causal. In fact, 9 can be viewed as the input output map for a state

space system. To be precise, if h = Qw for some w in L2([t0,t\},W)1 then we claim that h
is the output of the following linear system

q = Aq + Ew and h = --y~lE*Pq + jw , (14.61)

with the initial condition q(to) = 0. To verify that h = ®w, simply observe that q = Aq + Ew
with q(to) = 0, yields q = LEw. Hence, h = —^~lE*PLEw + 'yw = Qw, which verifies our
claim.

Lemma 12.5.2 shows that 9 is an invertible operator and its inverse is causal. In fact, by
setting C — —ry~lE*P with B — E and D = 7! in Lemma 12.5.2. the inverse of 9 is given
by

where ^(t,r) is the state transition matrix for A +
Since 9 has a bounded inverse and 72/ — T*T — 9*9, it follows that ||T|| < 7. To see

this observe that 9*9 > e2/ for some e > 0. In fact, one can choose e = HO"1]!"1. Hence,
7a/ _ T*T > £2/} or equivalently, T*T < (7

2 - e2)/. Therefore, ||T|| < 7. •

14.6.1 A general disturbance attenuation problem

The results in this section are of independent interest and are not used in our later devel-
opments. In this section we use the finite time outer spectral factor 9 in Theorem 14.6.1
to solve a generalization of the disturbance attenuation problem presented in Section 14.1.
Recall that A is an operator on X while E is an operator from W into X and C is an
operator from X into Z. Let B be an operator from U into X and D an operator from U
into Z. Consider the system

x = Ax + Ew + Bu
z = Cx + Du. (14.62)
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Here w is a signal or vector in L([to, ti],U). This leads to the following optimization problem

S(x0) = sup ( r(\\z(o-)\\2 - 7
2 \w(o-)\\2)do- : w € L2([tQ, t^ W}\

\Jto )

subject to the system in (14.62) and x(to] = XQ . (14.63)

This problem can be viewed as the dual of the linear quadratic tracking problem discussed
in Section 12.5.1. The following result presents a solution to this optimization problem.

Theorem 14.6.2 Consider the optimization problem in (14-63). Assume that there exists
a solution P to the Riccati differential equation in (14-11) on the interval [ io>ii]- Then the
maximum exists, and there exists a unique optimal input w in I/2([io,^i], VV) which achieves
this maximum. To compute w, let £ be the solution over [to,ti] to the following differential
equation:

C*D)u (C(*i) = 0). (14.64)

Then the optimal input w is given by

w(t) = ^-2E*(P(t)x(t) + C(0) (14-65)

where the optimal state trajectory x is uniquely determined by

x = (A + ̂ -2EE*P)x + 'j-2EE*(; + Bu (x(t0) = XQ) . (14.66)

PROOF. We use the notation and results in Section 14.6 to prove this theorem. As before, let
L be the operator on L2([to, ti], X] defined in (14.54). Recall that the input output operator
T in (14.3) is given by T = CLE. Moreover, the output z for the state space system in
(14.62) can be expressed as

z = C0x0 + CLBu + Du + Tw, (14.67)

where C0 is the observability operator defined in (14.6). So, if we set h = C0xo + CLBu + Du,
then the optimization problem in (14.63) is a special case of the optimization problem in
(14.29). Because the Riccati differential equation has a solution over the interval [to,£i],
Theorem 14.2.2 shows that the norm of T is strictly bounded by 7. According to Theorem
14.4.1 the supremum in (14.63) is obtained. Moreover, according to Remark 14.4.1, the
unique optimal input w which attains this supremum is given by w = 7~2T*z where the
optimal output z is given by

z = h + Tw = C0xQ + CLBu + Du + Tw.

Finally, it is noted that the optimal state trajectory x is given by

x = Ax + Ew + Bu (x(tQ) = x0). (14.68)

Using g = x in equation (14.59) along with (14.68), we obtain

(L*C*C + i~2L*PEE*P - P)x = L*P(Ew + Bu).
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Recall that 6* = 7! — ̂ ~1E*L*PE\ see (14.56). Multiplying the above equation by E* on
the left and rearranging terms, we obtain

E*L*C*Cx-E*L*PEw = 7~1(7/ - 7~1E*L*PE}E*Px + E*L*PBu

= ~f-l&*E*Px + E*L*PBu.

Employing z — Cx + Du and w = "f~2T*z = ry'~2E*L*C*z in the previous equation yields,

+ Du) - ^-l

- E*L*PEw)

According to Theorem 14.6.1, the operator O* = 7! — j~lE*L*PE is invertible. This along
with the identity (/ - NM)^N = N(I - MTV)"1, yields

C*D}u

where (, := (I — 7~2 L* P E* E)~l L* (P B + C*D)u. By removing the inverse, we obtain
(/ - -f-2L*PE*EK = L*(PB + C*D)u. Thus,

^ = L* (~f-2PE*E( + (PB + C*D)u) .

Recall that if £ = L*(f>, then ^ satisfies the differential equation £ = —A*^ — <p where £,(t\) — 0;
see (14.58). Hence, (" satisfies the differential equation in (14.64). Since w = fj'2E*(Px + <^),
equation (14.65) holds. Substituting this into (14.68) yields (14.66). •

Finally, it is noted that Theorem 14.6.2 also holds in the time varying case, that is, when
A, B, C, D, E are continuous functions on [to, *i] with values in the appropriate £(-, •) spaces.
Because the proof of this result is almost identical to the proof of Theorem 14.6.2, the details
are left as an exercise.

14.7 The infinite horizon problem

This section is concerned with the following infinite horizon optimization problem. For each
initial state x0 in X, find the supremum 6(xQ) and an optimal input w which solves the
optimization problem:

Uoo ^

(\\z(a)\\2 -72 |K^)H2) da: we L2([0,oo), W)
J

subject to x — Ax + Ew and z — Cx and x(0) = XQ . (14.69)

As before, A is an operator on X and E maps W into X while C is an operator mapping X
into Z.
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As in Remark 14.2.3, let O(r) = P(t\—r) where P is the solution to the Riccati differential
equation in (14.11). Remark 14.2.3 shows that 0 is an increasing function which satisfies
the following Riccati differential equation

ft = A*0 + O4 + 7-2O££*0 + C*C (0(0) = 0). (14.70)

Moreover, recalling (14.23), we have

(n(r)zo,zo) = sup (\\z(a)\\2 - ^\\w(a)2\\] da : w G L2 ([0, oo), W) - (14.71)
Uo J

Proceeding as in Remark 14.2.1, one can readily show that

/

oo
(\\z(o-)\f~^\\w(an}do- = 5(x0). (14.72)

Hence,
(14.73)

for all r. The following result shows that 5(xo) is the limit of (Q(T)XQ,XQ) as r approaches
infinity. To this end, recall that fHs a uniformly bounded solution to the Riccati differential
equation in (14.70) if 0 is a solution to (14.70) for all r > 0 and ||0(r)|| < ml for some finite
scalar m. If 0 is a uniformly bounded solution to this Riccati differential equation, then
Lemma 13.6.3 tells us that O converges to a limit f^ as r approaches infinity. In addition,
Q = OOQ is the minimal positive solution to the following algebraic Riccati equation

A*Q + QA + ~f~2QEE*Q + C*C = 0 . (14.74)

This sets the stage for the following result.

Lemma 14.7.1 Let 5(xo) be the optimal cost for the infinite horizon optimization problem
in (14-69). Then the following statements are equivalent.

(i) The optimal cost 5(xo) is finite for all XQ in X .

(ii) There exists a uniformly bounded solution f2 to the Riccati differential equation in
(14-70).

(Hi) There exists a positive solution Q to the algebraic Riccati equation in (14-74)-

In this case, the solution 0 converges to a limit O^, that is,

Ooo = lim 0(r) . (14.75)
T — >OO

and the optimal cost is given by

(14.76)

In addition, the limit OQO is the minimal positive solution to the algebraic Riccati equation
(14.74).
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PROOF. We first demonstrate that (i) implies (ii). So, suppose that the optimal cost
S(XQ) is finite for all x0 in X. Let f] be the solution to the Riccati differential equation in
(14.70) which is defined on some interval [0, £1). We claim that Q can be extended to a
uniformly bounded solution on [0,oo). To see this it is sufficient to show that ||fi(r)|| < m
for 0 < r < ti where m is a specified scalar independent of t\. We first note that Lemma
13.6.2 implies that fi(r) is positive for all r. Let {<£>j}™ be any orthonormal basis for X.
Then using (0(r)<^, (p) < S((p) for any (p in X, we obtain

n n

\\fl(r)\\ < trace fi(r) - (f2(r)^,^-) < Sfa) < oo .

So, if m = 'Y^_8((pj), then ||fi(r)|| < m for any 0 < r < t\. Therefore, there exists a
uniformly bounded solution Q to the Riccati differential equation in (14.70) and Part (ii)
holds.

The equivalence of Parts (ii) and (Hi) follows from Lemma 13.6.3. This lemma also
states that the solution 0 converges to a limit ^i^. Moreover, the limit f2oo is the minimal
positive solution to the algebraic Riccati equation (14.74). Because (Q(T)XQ,XQ) < S(XQ) for
all T > 0, we have (f^^o^o) < $(XQ)-

We now demonstrate that (Hi) implies ( i ) . So, suppose that the algebraic Riccati equation
in (14.74) admits a positive solution Q. We claim that 8(xo) < (QxQ,x0). In particular,
5(xo) is finite for all XQ in X. Using the algebraic Riccati equation in (14.74), along with
x = Ax + Ew and z = Cx, we obtain

— (Qx, x) = (Qx, x) + (Qx, x)

= (QAx, x) + (QEw, x) + (Qx, Ax) + (Qx, Ew)
= ((QA + A*Q)x, x) + (w, E*Qx) + (E*Qx,w)
= -\\Cx\\2 - 7-

2||£*Qz||2 + (w, E*Qx) + (E*Qx, w)
= -\\z\\2 + >y2\\w\\2-\\>v-iE*Qx-'rw\\2. (14.77)

By integrating from 0 to t with XQ = x(0), we have

= (Qx 0 ,Xo)-(Qx(t) ,x( t ) ) - / \\-y~1 E"Qx(a)--yw((r)f da. (14.78)
Jo

This readily implies that

f (II^)U2-72 |H^)I|2) da<(QXo,x0). (14.79)
Jo

By letting t approach infinity and then taking the supremum over all w in L2([0, oo), W), it
follows that 8(xo) < (Qxo,xo). In particular, S(XQ) is finite for all XQ in X, and thus, Part
(i) holds. Therefore, Parts (i),(H) and (Hi) are equivalent.

Recall that O^ is also a positive solution to the algebraic Riccati equation in (14.74). So,
we obtain S(XQ) < (CiocXo.xo). Combining this with S(XQ) > (^00X0,0:0), yields the equality
S(X0) = ( f icoXOjXo)- •
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Remark 14.7.1 Suppose A is stable. If Q is a self-adjoint solution to the algebraic Riccati
equation in (14.74), then

/

Because the integrand is a positive operator, Q is positive. In other words, if Q is a self-
adjoint solution to the algebraic Riccati equation in (14.74), then Q is positive.

14.7.1 Stabilizing solutions to the algebraic Riccati equation

Throughout the remainder of this chapter it is assumed that the operator A is stable. Let
T be the operator from I/2([0,oo), W) into L2([0,oo),Z) defined by

rt
(Tw)(t)= I CeA(t-^Ew(r)dr. (14.80)

Jo

Let G(s) = C(sl - A)~1E be the transfer function for {A,E,C,0}. Recall that the H°°
norm of G equals the norm of T, that is,

||T|| = HGI loo : = sup{ IIGMII : -oo < u < 00} . (14.81)

As before, let C0 be the observability operator from X into L2([0, oo), Z] defined by COXQ =
CeAtxQ where XQ is in X. Since A is stable, both T and C0 are bounded linear operators.
Furthermore, the optimization problem in (14.69) is equivalent to the following problem

6(x0)=sup{\\C0xQ + Tw\\2-j2\\w\\2 :w£L2([0,oo),W)} . (14.82)

If the norm of T is strictly bounded by 7, then the supremums in (14.69) and (14.82) are
finite; see Theorem 14.4.1 with h = C0x0. Moreover, 6(xQ) = 72(C'*(72/ - TT*)~1C70a;o,xo).
On the other hand, if ||T|| > 7, then S(XQ) is infinite. Finally, it is noted that even if A
is stable, we can have ||T|| > 7. So, stability of A is not sufficient to guarantee a finite
supremum in the optimization problem (14.69), or equivalently, (14.82).

We say that Q is a stabilizing solution to the algebraic Riccati equation in (14.74) if Q
is a solution to (14.74) and A + ^~2EE*Q is stable. By consulting the results in Chapter
13, it follows that if there exists a stabilizing solution, then it is self-adjoint and unique,
that is, there is only one stabilizing solution. Since A is stable, any self-adjoint solution
is positive. Thus, the stabilizing solution is positive. According to Corollary 13.5.4 with
7-1G = T, there exists a stabilizing solution to the algebraic Riccati equation in (14.74) if
and only if the Hamiltonian matrix H in (14.49) has no eigenvalues on the imaginary axis, or
equivalently, |G||oo < 7- In this case, one can use the Hamiltonian techniques in Section 13
to compute the unique stabilizing solution. This discussion proves the equivalence of Parts
(i), (ii) and (Hi) in the following result.

Theorem 14.7.2 Let T be the operator from L2([0,oo), W) into L2([0,oo),Z) defined in
(14-80) where {A,E,C} is a stable system. Then the following statements are equivalent.

(i) There exists a stabilizing solution Q to the algebraic Riccati equation in (14-74)-
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(ii) The Hamiltonian matrix H in (14-49) has no eigenvalues on the imaginary axis.

(in) The norm of T is strictly bounded by 7.

(iv) The optimal cost S(XQ) is attained for every XQ in X.

(v) The Riccati differential equation in (14-70) admits a uniformly bounded solution Q and
A + 7~2£'E'*f200 is stable where fioo = limT_oo f2(r).

In this case, the unique stabilizing solution Q to the algebraic Riccati equation in (14-74) is
given by Q = (^ and fi^ = 72Q(72/ - TT*}~1C0.

PROOF. Assume that Part (Hi) holds, that is, the norm of T is strictly bounded by 7. Then
Theorem 14.4.1 with h = C0x0 shows that the optimal cost S(XQ) is uniquely attained for
all XQ in X , that is, Part (iv} holds. If Part (iv) holds, then <5(xo) is finite for all XQ in
X. According to Lemma 14.7.1, there exists a uniformly bounded solution 17 to the Riccati
differential equation in (14.70). Moreover, fioo-= linir^oo fi(r) is a solution to the algebraic
Riccati equation in (14.74) and (f^rro^o) = S ( x 0 ) . Now let us show that A + 72£'£1*Q00

is stable. Let w in L2([0, oo), W) be the optimal disturbance which attains the optimal cost
S(XQ). In other words, (^looXo,xo) = S(XQ) — \\z\\2 — 72 u?||2 where

x — Ax + Ew and z = Cx .

Because A is stable, x is in L2([0,oo), X } . Lemma 12.8.3 shows that x(t) approaches zero as
t tends to infinity. By setting Q = f^ and w — w in (14.78) and letting t approach infinity,
we arrive at

(noo:ro,a;o) = r (\\z(a)\\2 - 7
2\\w(a)\\2) da (14.83)

Jo
oo

\\^lE*^iocx(a) - -fw(a) |2 da .

So, \\7~lE*£l00x — 7w\\'2 = 0, and thus, w = 7~2£'*f700x. Substituting this into x = Ax + Ew,
we obtain x — (A + /y~'2EE*£l00)x where x(0) = XQ. Because x(t) converges to zero as t
tends to infinity and XQ can be any vector in X0, the operator A + j~2EE*Q00 is stable. In
particular, Part (v) holds. If Part (v) holds, then obviously £1^ is a stabilizing solution to
the algebraic Riccati equation in (14.74), that is, Part (i) holds. •

If ||T|| < 70, then clearly, T|| < 7 for all 7 > ~f0. This observation and Theorem 14.7.2
readily show that if the algebraic Riccati equation in (14.74) admits a stabilizing solution
for some 7 = 70 > 0, then this algebraic Riccati equation admits a stabilizing solution for all
7 > 70. In other words, if the Hamiltonian matrix H has eigenvalues on the imaginary axis
for some 7 = 70, then the Hamiltonian matrix has eigenvalues on the imaginary axis for all
0 < 7 < j0. Finally, it is noted that Theorem 14.7.2 also yields the following result.

Corollary 14.7.3 Let G be the transfer function for the stable system {A,E,C, 0} and let
T be the corresponding input output operator from L2([0,oo), W) into L2([0, oo), JE>) defined
in (14-80). Then T\\ = G\\oo and the norm ofT is given by

\\T\\ = inf{7 : the algebraic Riccati equation in (14-74) admits a stabilizing solution^} .
(14.84)
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As before, let {A, E, C} be a stable system and assume that the algebraic Riccati equation
in (14.74) admits a stabilizing solution Q. Then Theorems 14.7.2 and 14.4.1 show that the
optimization problem in (14.69) has a unique solution w which attains the supremum and
5(0:0) = (Qxo,xo). Moreover, by consulting the proof of Theorem 14.7.2, we obtain the
following result.

Theorem 14.7A Let {A, E, C} be a stable system and assume that the algebraic Riccati
equation in (14-74) admits a stabilizing solution Q where 7 > 0. Then the infinite horizon
optimization problem in problem in (14-69) has a unique w which attains the supremum
and S(XQ) — (QXQ,XQ). Moreover, this optimal cost is attained by the optimal disturbance
w = "Y~2E*Qx where the optimal state trajectory x is uniquely determined by

x = (A + 7-2EE*Q)x (x(0} = x0). (14.85)

Example 14.7.1 Consider the system x = —x + w and z = x. Obviously, the transfer
function for this system is given by G(s) = l/(s + 1). Moreover, ||G||oo — 1- Therefore, the
corresponding optimal cost in (14.69) is infinite (S(xo) = oo) when 0 < 7 < 1. The algebraic
Riccati equation corresponding to this system is given by #2/72 — 2^ + 1 = 0 where q = Q.
According to the quadratic formula, the roots to this equation are given by

If 7 > 1, then this algebraic Riccati equation has two strictly positive roots. In this case
q — 72 — 7(72 — I)1/2 is the unique stabilizing solution. If 7 = 1, then fi(r) = T/(T + 1) is the
unique solution to the Riccati differential equation fi = fi2 — 2fi -I- 1 with Q(0) = 0. Clearly,
Q is a uniformly bounded solution and limr^00fi(r) = 1. So, if 7 = 1, then &(XQ) = ||:ro||2-
However, A + 7~2

JE'£'*O00 = 0 is not stable and the supremum is not attained.

14.7.2 An outer spectral factor

Recall that an operator valued rational function W is an invertible outer or minimum phase
function if ̂  is a stable proper rational function, its inverse exists and is also a stable proper
rational function. If E is an operator valued rational function, then we say that ^ is an
invertible outer spectral factor of El if \& is an invertible outer function and tyty = H.

Let Q be any self-adjoint solution to the algebraic Riccati equation in (14.74). Recall that
if F is any operator valued rational function, then (F")(s) = F(—s)*. If s is any complex
number, then the algebraic Riccati equation in (14.74) gives

-C*C = ~f-2QEE*Q - (-si - A)*Q - Q(sl - A) . (14.86)

Now let $(s) be the inverse of si — A. Multiplying by £"*$" on the left and by <&E on the
right, we obtain

- E*Q3>E . (14.87)

Letting G = C$E and 0 = 7 1 - ^1E*Q^E, we arrive at

72/ - G *G = (77 - 7~1£*Q$£) "(77 - ^~1E*Q^E} = 0 80 . (14.88)
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Since (G")(?u;) = G(zo;)*, it follows that ||G |oo < 7. By consulting Lemma 12.9.1, we obtain
the following expression for the inverse of 0

0-1 = 7"1/ + j~3E*Q(sI -A- i-*EE*Q}-^E . (14.89)

If Q is the stabilizing solution, then A + j~2EE*Q is stable. In this case 0-1 is stable,
and thus, 0 is an invertible outer function. Finally, it is noted that if the algebraic Riccati
equation admits a stabilizing solution, then the factorization 72/ - G^G = 0^0 readily
shows that |G| oo < 7. Summing up gives the following result.

Proposition 14.7.5 Let G be the transfer function for the stable system {A,E, C, 0}. As-
sume the algebraic Riccati equation in (14-74) admits a self-adjoint solution Q for some
7 > 0 and let 0 be the transfer function for {A, E, —ry~1E*Q, 7/}. Then

7 2 / -G 8 G = 0*0 (14.90)

and ||G||oo < 7. Moreover, if Q is a stabilizing solution for this algebraic Riccati equation,
then 0 is an invertible outer spectral factor for 72/ — G"G and HG^ < 7.

Exercise 28 Let {A, E, C} be a stable system. Assume that Q is a positive solution to the
algebraic Riccati equation in (14.74). Then show that

-OO

da

for all w in L2([0,oc), W) and x0 in X.

Exercise 29 Let {A. E, C} be a stable system and assume that there exists a stabiliz-
ing solution Q to the algebraic Riccati equation in (14.74). Let T be the operator from
L2([0,oo),W) into L2([0, oo),Z) defined in (14.80) and L be the operator on L2([0, oo), X]
defined by

/•*
(L/)(t) = / eA(t^f(r}dr ( /e L2([0, oc), *)).

Jo
Let 6 be the operator on L2([0, oo), W) defined by 9 = 7! - ^~1E*QLE. Then show that
0"1 is a bounded causal operator and 72/ — T*T = B*0.

14.8 The root locus and the H°° norm

In this section we will use the outer spectral factorization in Proposition 14.7.5 to obtain a
root locus interpretation for the parameter 7 in the single input single output infinite horizon
optimization problem in (14.69). To this end, let {A on X , E , C , 0} be a stable realization
for a scalar valued transfer function G, that is, G(s) = C(sl — A}~1E where U — Z — C.
Moreover, assume that 7 > HGH^. Then there exists a unique solution w to the optimization
problem in (14.69). Furthermore, there exists a unique stabilizing solution Q to the algebraic
Riccati equation in (14.74). The optimal disturbance w is given by w = ^~2E*Qx where x
is the optimal state trajectory. Finally, the state operator Ac = A + /y~2EE*Q is stable.
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Lemma 14.8.1 Let {A,E, C, 0} be a realization for a scalar valued transfer function G —
p/d where p is a polynomial and d(s) = det[s7 — A] is the characteristic polynomial for
A. Assume that Q is a self-adjoint solution to the algebraic Riccati equation in (14-74)
and let A be the characteristic polynomial for A + ^~2EE*Q. Then we obtain the following
factorization

A l tA = d l ld-7-yp. (14.91)

PROOF. From Proposition 14.7.5, we have 0"© = 72 — G"G where

0(5) = 7/ - ^-lE*Q(s! - A)'1E .

Applying Lemma 12.9.1 with 0 = det[0], we obtain

0(s) - 7 det[s7 - A - ^EE*Q}/ det[s/ - A] .

This readily implies that 7A(s) = d(s)0(s). Using G = p/d, we arrive at

Using 0 = 7A/d, we obtain the factorization in (14.91). Finally, it is noted that equation
(14.91) also follows from Corollary 13.5.2; see (13.41) with pi = 7~V and Pi — 0. •

Now assume that {A, E, C, 0} is stable realization for a scalar valued transfer function
G and 7 > H G H ^ . Let Q be the stabilizing solution to the algebraic Riccati equation in
(14.74). Then the operator A + ~f~2EE*Q is stable. Hence, all the roots of A are in the
open left half complex plane. Notice that A is a root of a polynomial q if and only if —A is
a root of the polynomial g". Therefore, all the roots of A" live in the open right half plane.
In particular, A and A" have no common roots and their product A "A has no roots on the
imaginary axis. It now follows from (14.91) that the roots of A are the left half plane roots
of d"d — 7~2p|)p. This immediately yields the following result.

Theorem 14.8.2 Suppose that {A, E, C, 0} is a stable realization of a scalar valued transfer
function G — p/d where p is a polynomial and d(s) = det[s7 — A]. Assume that 7 > HGJIoo
and let Q be the stabilizing solution to the algebraic Riccati equation in (14.74)- Then the
roots of the characteristic polynomial of A + ^~2EE*Q are precisely the left half plane roots
of the polynomial d^d — 7~2p"p.

To complete this section, we will use root locus techniques to see how the parameter 7
affects the eigenvalues of the closed loop state space operator A + 7~2EE*Q. To this end,
assume that {A , E , C, 0} is a stable realization for the scalar valued transfer function G =
p/d satisfying the hypothesis of Theorem 14.8.2. To simplify some of the notation, let us also
assume that {A , E , C] are real matrices, p and d are polynomials whose coefficients are real
and d is the characteristic polynomial for A. In particular, this implies that d"(s) = d(— s)
and p«(s) = p(-s). Using (14.91), it follows that

A(-s)A(s) = d(-s)d(s) - 7~2p(-s)p(s)

where A is the characteristic polynomial for A + 'j~'2EE*Q. So, if we let A; = — 7~2, then
the root locus of d(—s)d(s) + kp(—s}p(s) is a graph of the eigenvalues of A + ̂ ~2EE*Q and



252 CHAPTER 14. H°° ANALYSIS

— (A + 7~2EE*Q)* as 7 varies from infinity to ||G||oo. In particular, the left half plane root
locus of d(—s)d(s] — 7"~ 2 p(—s )p (s ) corresponds precisely to the eigenvalues of A + rj~2EE*Q
as 7 varies from infinity to H G H ^ . Notice that for any polynomial q with real coefficients,
the zeros of q( — s}q(s) are symmetric about the real and imaginary axis. Hence, the root
locus of d( — s)d(s) — 7~2p( — s)p(s) = A(—s)A(s) is symmetric about the real and imaginary
axis.

Since G is a strictly proper stable transfer function, G(iu] is continuous for —oo < ui < oo
and |G(icj)| approaches zero as cj approaches ±00. Hence, there exists a frequency u>0 such
that \G(iuj0)\ = \\G joo. So, if 7 = G||oo, then iu0 is a zero of 1 - 7~2G(-s)G(s). Notice
that the zeros of 1 - 7~2G( —s)G(s) are contained in the zeros of d(—s)d(s) — 7~2p(—s)p(s).
Thus, iu0 is a zero of d( — s ) d ( s ) — 7~2p(—s)p(s) when 7 = H G H ^ . In particular, iu0 is
contained in the root locus of d(—s)d(s] — 7~2p(—s)p(s). In other words, as 7 varies from
infinity to H G H o o the root locus of d(—s}d(s) — 7~2p( —-s)p(s) ends up with some points on
the imaginary axis.

As 7 varies from infinity to zero, the branches of the root locus of the polynomial
d(—s)d(s) — 7~2p(—s)p(s) move from the zeros of d(—s}d(s) to the zeros of p(—s)p(s) and
the appropriate asymptotes. The asymptotes of d( — s)d(s) — 7~2p( — s)p(s) are determined
by m — deg d — degp. To be precise, if m is odd, then d(—s)d(s) — 7~2p(—s)p(s) — 0 can be
expressed as b(s) + 7~2cm(s) = 0 where a > 0 and a and b are monic polynomials. Since a
is the coefficient of the highest order term of cm, the angles 0OJ- for the asymptotes are given
by

7M-__7rj for 7 = 0 , 1 , 2 , - - - , 2 m - 1 . (14.92)
2m

If ?Ti is even, then d(—s)d(s) — 7~ 2 p(— s )p ( s ) = 0 can be expressed as b(s) + 7~2cm(s) = 0
where a < 0 and a and b are monic polynomials. In this case, the angles </>ej for the
asymptotes are given by

<j>ei = — for j = 0,1,2, • - - , 2m - 1. (14.93)
m

Moreover, because d( — s)d(s)— 7~ 2 p (— s )p ( s ) is symmetric about the real and imaginary axis,
the origin of these asymptotes is zero. Notice that in either case two of these asymptotes
lie on the imaginary axis. Therefore, as 7 varies from infinity to U G H o o the eigenvalues of
A + ^~2EE*Q start at the eigenvalues of A (the left half plane zeros of d(—s)d(s)) follow
the root locus and move towards the left half plane zeros of d(—s)d(s) — ||G| ^p(—s)p(s)
and the appropriate asymptotes in the open left half plane. For m odd, the asymptote
angles 4>0j are given by (14.92). For m even, the asymptote angles 0ej- are given by (14.93).
Moreover, the H°° norm of G corresponds to the largest value of 7 where the root locus of
d( — s}d(s) — 7~2p(—s)p(s) hits the imaginary axis. In fact, the imaginary axis is contained
in the root locus of d(—s)d(s) — 7~ 2 p(— s )p ( s ) as 7 varies from ||G||oo to zero. To see this
simply notice that G$(iu)G(zu) = \G(iu)\2 is real for all —oo < u < oo. Since G is a
stable strictly proper transfer function, G(?,u;)|2 is a continuous function whose maximum is
IGII 2 ^ and infimum is zero. So, for any frequency u there is a gain 7 such that 7 = |G(zu>)|

with 0 < 7 < ||G |oo. In this case 72 — |G(za;)|2 = 0, and thus, lu is on the root locus of
d(—s)d(s) — 7 ~ 2 p ( — s ) p ( s ) . Therefore, the root locus of d( — s ) d ( s ) — 7~2p( — s)p(s) contains
the imaginary axis for 0 < 7 <
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Example 14.8.1 To complete this section we will demonstrate how the above analysis works
on a simple example. To this end, let {A , E, (7,0} be any minimal realization of

G(s) = 10(5 + 3)
(S + 2)(S + 4)(S 2i)(s + 1 -

The McMillan degree of G is four and A is stable. Let p be the numerator and d be the
denominator of G. The root locus for d(—s)d(s) — 7~2p(— s)p(s) is given in Figure 1. In this
case, m = 3. According to (14.92) the angles for the asymptotes for the root locus are given
by

4>odd — ±7r/6 , ±7r/2 , and ± 5?r/6 .

As expected, two of the asymptotes ±?r/2 lie on the imaginary axis. Moreover, the asymp-
totes for this root locus in the left half plane occur at the angles ±57r/6. The H°° norm
of G equals .7743 and this occurs at u = ±1.3, that is, |G(±1.3z)| w ||G||oo- So, as
7 moves from infinity to ||G||oo the eigenvalues of A + *y~2EE*Q move from the points
—2, —4, — 1 + 2z, — 1 — 2i along the branches of the root locus in the open left half plane to
the left half plane roots of d(— s)d(s) — \\G\\^p(— s)p(s). These roots are marked by a box
in Figure 1. Finally, the root locus contains the imaginary axis as 7 varies from U G H ^ to
zero.

Exercise 30 Let {A, E, C, 0} be a minimal realization for
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Assume that 7 > ||G| oo and let Q be the corresponding stabilizing solution to the alge-
braic Riccati equation in (14.74). Recall that {-4, E, — 7~1E'*Q,7/} is a realization for the
outer spectral factor 0 of j2 — G"G. Show that {A, E, —j~lE*Q^I} controllable and not
observable.

Exercise 31 Let {A,E,C,Q\ be a minimal realization for a scalar valued stable transfer
function G(s) = p/d where p and d are polynomials. Moreover, assume that p^p and d^d are
co-prime. Assume that 7 > H G H ^ and let Q be the stabilizing solution to the corresponding
algebraic Riccati equation in (14.74). Then show that {A, E, — -y~lE*Q,'jI} is a minimal
realization for the outer spectral factor 0 of 72 — G^G.

14.9 Notes

The optimization problem in (14.4) can be viewed as a linear quadratic regulator problem
with an indefinite weight, and thus, the derivation of the corresponding Riccati differential
equation is classical. In other words, the optimization problem in (14.4) is essentially the dual
of the linear quadratic regulator problem. Hence, the derivation of the Riccati differential
equation in Section 14.5.2 is almost identical to the corresponding derivation of the Riccati
differential equation for the linear quadratic regulator problem. The only thing that changes
is some technical issues and the sign of the PBB*P term. For some further results on the
two point boundary problem and its role in H°° control theory see Green-Limebeer [57] and
Limebeer-Anderson-Khargonekar-Green [83]. Corollary 14.2.3 and many of the results in
this section are now considered standard results in H°° control theory see Green-Limebeer
[57], Mustafa-Glover [92] and Zhou-Doyle-Glover [131]. For some nice results on least squares
optimal control problems and the algebraic Riccati equation see Willems [125].

The optimization problem in (14.25) is a basic optimization problem arising in control
theory; see Porter [101]. The operator optimization problem in (14.29) plays a fundamental
role in operator theory; see de Branges [17, 18] and de Branges-Rovnyak [19]. For a recent
account of some of the de Branges-Rovnyak work see Sarason [113].

Many of the results in Sections 14.1 to 14.6 hold in the time varying case, that is, when
A, E and C are continuous functions of time. In particular, Theorem 14.2.2 holds. Minor
modifications of the techniques in this chapter show that Parts (i} and (ii} in Theorem 14.2.2
are equivalent in the time varying case. Moreover, if ||T|| < 7, then Part (Hi} holds; see
Remark 14.1.1. If (Hi) holds, then clearly, \\T\\ < 7. To verify that ||T| < 7, one can use
Theorem 14.3.2, to show that the cost 6(xo) = (Qx0, x0) for some positive operator Q on X.
In particular, 8(xo} is continuous in XQ. Then this fact can be used to prove that Part (ii}
holds. The details are left to the reader. Finally, it is noted that Theorem 14.5.2 holds in
the time varying case.



Chapter 15

H°° Control

This chapter concentrates on a H°° type control problem. By combining the linear quadratic
regulator problem with our previous H°° analysis, we present and solve a max-min optimiza-
tion problem. The solution to this problem, yields a feedback controller which guarantees
that the norm of the resulting closed loop system is bounded by a specified constant. More-
over, it is shown that this controller provides a tradeoff between an optimal L2 and optimal
H°° controller.

15.1 A H°° control problem
In this section, we consider systems which contain a control input in addition to a disturbance
input. We examine the problem of choosing the control input to mitigate the effect of the
disturbance on a specified system performance output. The systems under consideration are
described by

x = Ax + Ew + Bu and z = Cx + Du (15-1)

which we denote by (A,B,C, D, E}. Here A is an operator on X and B maps U into X
while C maps X into Z and E maps W into X. Throughout this chapter, D is an isometry
mapping U into Z whose range is orthogonal to the range of C, that is, D*D = I and
D*C = 0. The spaces X, U, W, and Z are all finite dimensional. In this setting u(t) is the
control input, the disturbance input is w(t) while z(t) is an output which reflects the system
performance. Finally, we define the function <p by z = <f>(xo, w, u) where z is the performance
output due to the initial state XQ, the disturbance input w and the control input u.

Consider the system in (15.1) whose initial state at some initial time to is given by
x(to) — XQ. In Section 14.1, we saw that one can quantify the effect of a disturbance w on
the performance output z by examining the cost

J(x0,w,u) - I'' (\\z(a}\\2 -7
2|K^||2) da (15.2)

Jto

for a fixed positive scalar 7. Note that

(a}f + \\u(a}f-^\\w(a}f] da. (15.3)

255
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The equality follows because D*D — I and D*C = 0. For a fixed disturbance input w in
L2([toi ii], W), the best cost £(:TO,UI) that can be achieved by the control input is given by

£(x0,w) = m f { J ( x 0 , u , w ) : u € L2([t0 ,*i],W)} . (15.4)

We say u is optimal for to if u is a vector in L2([to,ti],U) which attains the cost £(XQ,W),
that is, £(XQ,W] = J(XQ,W,U). Now let d(x0) be the optimal cost that one obtains by taking
the supremum over w, that is,

We denote this by
/•«!

d(zo) = supinf / ( \z(a)f - -f\\w(a) |2) da (15.5)
«' u Jt0

where it is understood that the infimum is taken over all u in Z/2([io, t\]M] while the supre-
mum is taken over all w in L'2([to, t^, W). The significance of d(xo) is that for each distur-
bance input w in L2([to,ii], W) and any e > 0, there exists a control input w in L2([to, t\], U)
such that

where z — (J)(XQ,W,U). Whenever the infimum is attained in (15.4), then there is a control
input which results in

For a specified initial state x0, we say that {w, u} is an optimal pair for the optimization
problem in (15.5) if w is in L2([t0, ii], W) while u is in L2([to,ti],U) and

J(XQ,W,U) = £(x0,w) = d(xQ} (15.6)

where the optimal performance output z and optimal state x are determined by

x = Ax + Ew + Bu with x(to) = x0 and z = Cx + Du . (15-7)

In other words, u is optimal for w and w maximizes the cost £(XQ, •). Finally, it is noted that
if {w,u} is any pair satisfying J(XQ,W,U) = d(xo), then {w,u} is not necessarily an optimal
pair.

15.1.1 Problem solution

As expected, the solution of the optimization problem in (15.5) involves a Riccati differential
equation. Specifically,

P + A*P + PA + ̂ 2PEE*P-PBB*P + C*C = Q (P(tj) = 0) . (15.8)

Notice that, if E = 0, then the optimization problem in (15.5) reduces to a linear quadratic
regulator problem and this Riccati differential equation becomes the corresponding linear
quadratic Riccati differential equation. On the other hand, if B — 0, then the optimization
problem in (15.5) reduces to the optimization problem in (14.4) and the Riccati differential
equation in (15.8) is simply the Riccati differential equation in (14.11). Before presenting
the main result of this section, we make the following observations.
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Remark 15.1.1 For any time interval [a, 6] and any initial state XQ, let p(xo,a,b} be the
optimal cost given by

where the infimum is taken over all u in L2([a, 6],W) while the supremum is taken over all
w in L2([a, b],W) and x(a) = XQ. Obviously, d(xo) = p(xo,<i , i2)- We first claim that if
a < 6 < c, then p(#o, a, &) < P(£O, a> c). To see this, let w be any vector in L2([a, c], W) such
that w(t) = 0 for all b < t < c. Then

All^)H2-72 |k(a)| |2)dcr< fC(\\z(a)\\2-^\\w(a)\\^da.
J a J a

By taking the infimum over all u in L2([a, b],U), we obtain

inf A||^)I|2-72|K^)I|2)^< All^)H2-T2 |K^)l|2)^.
u Ja Ja

By taking the infimum over all u in Z/2([a, c], U} in the right hand side and then taking the
supremum over all w in L2([a, c], W) in the right hand side, we have

inf
"

By taking the supremum over all w in L2([a, 6], W), we arrive at p(x0, a, 6) < /O(XQ, a, c).
We now claim that if a < b < c, then P(XO, b, c) < P(XQ, a, c). First note that due to the

time invariant nature of the optimization problem, it should be clear that p(xq, b + d,c+d) =
p(xQ, b, c) for any real number d. The desired result now follows from

p(x0,b,c] = p(x0,a,c + a-b) < p(xQ,a,c}.

Theorem 15.1.1 The optimal cost d(x0) for the optimization problem in (15.5) is finite for
every initial state XQ in X if and only if the Riccati differential equation in (15.8) has a
solution P on the interval [to,*i]- In this case, the optimal cost is given by

0,xQ) (15.10)

and is uniquely attained by the optimal disturbance/ control input pair

w(t) = -y-2E*P(t}x(t) and u(t) = -B*P(t)x(i) (15.11)

where the optimal state trajectory x is uniquely determined by

£ = (A + 7~2££*P - BB*P}x with x(t0) = x0 . (15.12)



258 CHAPTER 15. H°° CONTROL

PROOF. Assume that the Riccati differential equation in (15.8) has a solution P over the
interval [t0,ti]. Then we claim that, for each initial state x0 in X, the optimal cost d(xo) is
finite and is given by d(xo) = (P(to)xo, XQ). Moreover, this optimal cost is determined by the
disturbance/control input pair w = ry~2E*Px and u = — B*Px where the state trajectory x
is uniquely determined by (15.12). To see this, we first note that as a consequence of Lemma
13.6.2, the operator P(t) is self-adjoint for each t. Using x = Ax + Ew + Bu, we obtain

— ( P x , x ) = (Px,x) + 2'R(Px,x)

= (Px,x) + 2ft(PAx,x) + 23l(PEw,x) + 29l(PBu,x) (15.13)

= ((P + PA + A*P)x, x) + m(w, E*Px) + 2K(u, B*Px).

Recall that z = Cx + Du. Using D*D = / and D*C = 0, we have | z\\2 = \\Cx\\2 + \\u\\2.
The Riccati differential equation in (15.8) yields

= -i-2\\E*Px\\*+\\B*Px\\z- \\Cx\\*
= -7-

2\\E*Px\\2 + \\B*Pxf + \\u\\2 ~\\z

By substituting this into (15.13) and completing the appropriate squares, we now obtain

^-(Px,x) = -\\z\\2 + i*\\w\\2-\\'Y-lE*Px->YU}\\2 + \\B*Px + u\\2. (15.14)
at

Recall that x(to) — XQ. By integrating from to to ti, rearranging terms and using the fact
that P(ti) = 0, we have

cr)\\2-~f2\\w(a)\\2}da = (P(t0)x0,x0) - /"' \\^lE*P(a)x(a) - 7^(a)||2 da
Jto

ftl
+ I \\B*P(a)x(<j} + u(a)fda. (15.15)

JtQ

It now immediately follows that for w = w and u = u, where w and u are given by (15.11)
and (15.12), the corresponding cost satisfies

We now demonstrate that the optimal cost d(xo) < (P(tQ)xQ, XQ}, Consider any distur-
bance w in L 2 ( [ t 0 , t i ] , W ) and let u(t) = -B*P(t)x(t). In this case,

x=(A- BB*P(t}}x + Ew with x(t0) = x0 .

Then for this input u relationship (15.15) implies that

J(x0, w, u) = (P(to)xo, x0) - \\i~lE*Px ~ ^w\\2 .

Hence, the infimal cost £(XQ, w) defined in (15.4) satisfies £(XQ, w) < (P(to)xo, XQ). By taking
the supremum over all w in L 2 ( [ io ,£i] ,VV), we see that d(xo) < (P(t0)x0,xo).
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We now claim that u is the vector which attains the cost £(XQ,W) in the optimization
problem (15.4) with w = w, that is, J(XQ,W,U) = £(XQ,W}. From this fact it readily follows
that (P(t0)xo,xo) = \\z\\2 — 72||u>||2 < d(x0). Hence, d(xo) = (P(to)xo,Xo) and the pair
{w,u} is optimal. To achieve our objective, notice that for the disturbance w = ^~2E*Px,
we obtain

x = Ax + ̂ ~2EE*Px + Bu with x(t0) = x0.

Now let us introduce the new state x = x — x and set u = u + B*Px. Then subtracting the
differential equation in (15.12) from the previous state equation, yields

x = (A- BB*P(t))x + Bu with x(t0) = 0 . (15.17)

Using w = ~f~2E*Px in (15.15) with x = x — x, gives

Jt0t0

tl da .\\j-lE*P(a)x(a)\\2da + P \\u(a
t0 Jt0

Hence, the cost ^(XQ,W) defined in (15.4) is given by

e(x0,w) = (P(to)x0,x0) -sup f1 (\\-y-1 E*P(a)x(v)\\* - \\u(a)\\2) da. (15.18)
ueL2 Jt0

We claim that the supremum above is attained with u = 0. To see this notice that the
Riccati differential equation in (15.8) can be rewritten as in

P + (A- BB*P)*P + P(A - BB*P) + PBB*P + i'2PEE*P + C*C = 0 (15.19)

with P(ti) = 0. This is precisely the Riccati differential equation one obtains by replacing C
with [(7, ̂ ~lE*P\tr and ^~1E with B in Theorem 14.2.1. Considering any u and computing
the rate of change of (Px , x} and completing the appropriate square as in the proof of
Theorem 14.2.1, we obtain that

(\\^E*P(a}x(a}\\2 - \\u(a}\\2) da = - T (||<7x((r)||2 + \\B*P(a)x (a) - u(a)\\2) da.
to Jt0

Here we also used the facts that P(ti) = 0 and x(to) = 0. Hence, the supremum in (15.18)
is zero and this is supremum is uniquely achieved with u = 0, or equivalently, with u = u =
-B*Px. Thus,

d(xQ) < (P(t0)xQ,XQ) = £,(X0,W) < SUp £(XQ,W) = d(xQ) .
w£L2

Therefore, d(xo) = (P(to)xo,Xo). In particular, the optimal cost d(xo) is finite for all XQ in
X.

Now let us show that there is only one optimal pair which attains the optimal cost d(xo).
To this end, consider any pair {w0,u0} which attains d(xo). Then
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where z0 = <{)(XQ,WO,UO) is the output corresponding to the pair {w0,u0} and u0 is optimal
for w0. Now consider the input u = —B*Px where x is the solution to

x = (A- BB*P(i)}x + Ew0 with x(t0) = x0. (15.20)

Since u0 is optimal for w0, it follows from (15.15) that

(P(t0)xQ, XQ) = J(X0, W0, U0) < (P(t0)x0, X0) - \\^~lE*Px - 7W0||
2 .

Thus, \\^~lE*Px — 7W0 |
2 — 0, or equivalently, w0 = ^~2E*Px. Substituting this in (15.20),

it now follows that x = x, and hence, w0 — w. Recall that u — 0 is the only function
in L 2 ( [ t o , t i ] , U ) which achieves the minimal optimal cost £(xo,w) in (15.18). Since u =
u 4- B*Px, there is only one input u which achieves the minimal cost £(XQ,W) and this
u — u — —B*Px. Therefore, u0 — u and the optimal pair {w,u} is unique.

To complete the proof it remains to show that if d(xo) is finite for every initial state XQ
in X, then the Riccati differential equation in (15.8) has a unique solution P defined on the
interval [tQ,ti]. To verify this, first notice that this Riccati differential equation is locally
Lipschitz in P. Hence, this differential equation has a unique solution over some interval
(t2 , t i] for tz sufficiently close to t\. To verify that this solution can be extended over the
interval [ £ o > ^ i ] ) it is sufficient to show that over any interval (£2,^1] on which P is defined,
there is a bound m independent of t such that ||P(£)|| < m for t% < t < t\.

Recall now the definition of the optimal cost p(x0, a,b) in (15.9). By replacing to with t
in our previous analysis it follows that p(xQ,t,ti) = (F(t)xo,xo). Since to < t < ti, it follows
from Remark 15.1.1 that p(x0, t,ti) < p(xo,to,ti). Hence, (P(t)xo,xo) < p(xo,to,ti) = d(xo).
In other words, (P(t}xo, XQ) < d(xo] < oo for every x0 in X and all t in (t^, t i ] . Also, Lemma
13.6.2 states that P(t) is positive. Let { ĵ}" be an orthonormal basis for the state space X.
Then

n n

\\P(t}\\ < traceP(i) = (P(t)^,^) < d(^) = m < oo.

So, there exists a bound m such that ||-P(t)|| < m for t% < t < t\. Therefore, the Riccati
differential equation (15.8) has a unique solution P defined on the interval [^0,^1] • •

Remark 15.1.2 Assume that d(xo) is finite for all XQ in X, or equivalently, the Riccati
differential equation in (15.8) has a solution on the interval [£Q,£I]- If the pair {C, A} is
observable, then P(t] is strictly positive for all t$ < t < t\. This follows from Lemma 13.6.2.
We can also demonstrate this as follows. By replacing £Q with t in (15.15) and rearranging
terms, we obtain

Jt Jt

/

*!

'

If we let w(a] = 0 and it(cr) = — B*P(cr)x(a) for t < a < ti, then

(P(t)x0,xQ)= f l (\\Cx(a}\\2 + \\u(a)\\2) da + [ ' \\~(-lE*P(a)x(a}\\2 da > 0 . (15.22)
Jt Jt
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Since (P(t)x0,x0) > 0 for all x0 in X, this also shows that the operator P(t) is positive.
If (P(t)xo, XQ) — 0 for some initial state XQ, then u(a] = 0 for alH < a < t\. In this case,

z(a] > CeA^-^x0. Hence,

0 - (P(t)x0,xQ) > t l \\CeA(°-t}x0\\
2d(T.

Because {C, A} is observable, x0 is zero. Therefore, the operator P(t) is strictly positive.

Remark 15.1.3 It is emphasized that one must integrate the Riccati differential equation
in (15.8) backwards in time to find P(t). However, one can easily convert this equation to a
Riccati differential equation moving forward in time. To see this let ri(r) = P(t\ — T}. Then
equation (15.8) yields

£1 = A*Sl + tlA + -y-2ttEE*tt - ttBB*tt + C*C (Q(0) = 0) . (15.23)

Therefore, P(t) — $l(t\—£) where £1 can be computed by solving the Riccati differential
equation (15.23) forward in time. By replacing to with t\ — r in Theorem 15.1.1, we readily
obtain that

(^,(T)XO,XO) = (P(ti-r)x0,x0) = p(x0,ti-r,ti) = p(x0,0,T).

Hence,

(f2(r)x0)xo) = supinf f (\\z(a)\\2 - 72|K^)2||) da. (15.24)
w u JQ

Here the infimum is taken over all u in L2([Q, r], U) while the supremum is taken over all w
in L2([0, r],W). Obviously, fi(r) is well defined if and only if the optimal cost p(xo,0,r) is
finite for all initial states x0 in X.

If the pair {C, A} is observable, then f2(r) is strictly positive for all 0 < r where f2(r) is
defined. This follows from the fact that P(ti—t) is strictly positive when {C, A} is observable.

Exercise 32 Consider the system {A, B,C, D,E} and assume that the Riccati differential
equation in (15.8) has a solution over the interval [io,*i]- Consider the feedback controller
u = —B*Px and let w be a vector in L2([to,ti],W) and z be the corresponding output
for this feedback system described in (15.25). Then u is not necessarily the optimal input
which obtains the minimum cost £(XQ,W), that is, for some disturbance w one can have
£(XQ,W) < \\z\\2 — 72||u;||2. For a counter example, consider the system x = w + u on the
interval [0, 1] with XQ = 1, and set 7 = 1. Then show that for w = 1, the feedback controller
u = —Px does not obtain the minimal cost £(XQ,W).

15.1.2 The central controller
Assume that the Riccati differential equation in (15.8) has a solution P on the interval
[£o,*i]- The control u = —B*Px presented in Theorem 15.1.1 is an open loop control which
achieves the optimal cost d(x0) for the worst case disturbance input w. For disturbances
other than the worst case disturbance, there is no guaranteed performance. However, the
feedback controller u = —B*Px is useful in applications.
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Definition 1 Consider the system {A, £?, C, D, E} in (15.1). Assume that the Riccati dif-
ferential equation in (15.8) has a solution over the interval [io,^i] for some specified 7 > 0.
The feedback controller u = —B*Px is called the central controller corresponding to the
tolerance 7.

The closed loop system corresponding to the central controller u = —B*Px is described
by

x = (A - BB*P}x + Ew

z = (C-DB*P}x. (15.25)

Now let T7 be the operator from L2([t0, *i], VV) into L 2 ( [ t 0 , ti], Z} defined by

rt
(7»(i) = \ (C-DB*P(t))3>(tJT)Ew(r)dT (w € L2([*i,*2], W)) (15.26)

Jt0

where \P is the state transition operator for A — BB*P. Obviously, the output z for the
system in (15.25) is given by

z(t) = (C- DB*P(t))V(t, t0)xQ + (T»(i). (15.27)

In particular, if x(to) = 0, then z = T-yW. In other words, T7 is simply the input output
operator from the disturbance w to the output z determined by the central controller.

A fundamental problem in control design is given a system {A, B, C, D, E} along with a
specified tolerance 7 > 0, find a linear controller u such that ||</>(0, w, w)| | < 7||w|| for all w
in L 2 ( [ t 0 , t i ] , W). The following result uses the central controller to solve this problem.

Corollary 15.1.2 Consider the system {A,B,C,D,E} and assume that the Riccati differ-
ential equation in (15.8) has a solution over the interval [to,*i]- Let T7 from L2([to,ii], W)
into L2([to1 ii], Z} be the input output operator for the closed loop system corresponding to
the central controller

u = -B*Px. (15.28)

Then ||T7|| < 7. Moreover, for any initial state x(to) = XQ, the closed loop system in (15.25)
satisfies \\z |2 < 72|H|2 + d ( x 0 ) .

PROOF. Using D*D = I and D*C - 0, we obtain

(C - DB*P)*(C - DB*P] = PBB*P + C*C.

Substituting this into the Riccati differential equation in (15.19), it follows that the Riccati
differential equation in (15.8) can be written as

P+(A-BB*P*yP + P(A-BB*P) + j-2PEE*P + (C-DB*P)*(C-DB*P} = 0 (15.29)

subject to the final condition P(ti) = 0. This is precisely the Riccati differential equation
one obtains by replacing C and A with respectively C — DB*P and A — BB*P in Theorem
14.2.1. By using the completion of squares approach in the first part of the proof of Theorem
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14.2.1, one can readily show that for any disturbance input w in L2([£0,£i], W) and for any
initial state XQ, the closed loop system satisfies

/
Jt0

da < (P(t0)x0, Xo) = d(x0) - (15.30)

Moreover, by following the proof of Theorem 14.2.2, one can show that the norm of T7 is
strictly bounded by 7. •

15.2 Some abstract max-min problems

In this section, we develop and solve some operator max-min problems. In the next section
we will apply some of these results to a standard feedback control problem. Let us begin by
recalling Lemma 12.3.1 in Section 12.3 restated here for convenience.

Lemma 15.2.1 Let F be an operator from J- into H and h a vector in 'H. Then

((I + FF*)~lh, h) = inf{||/i + Fu\\2 + \\u\\2 : u <= T} . (15.31)

Moreover, the optimal u in F solving this minimization problem is unique and given by

u = -(I + F*F)-*F*h = -F*(/ + FF*ylh . (15.32)

Remark 15.2.1 As before, let F be an operator mapping T into 7i. Let y = h + Fu where
h is a specified vector in H. Then the abstract linear quadratic regulator problem in (15.31)
is equivalent to

e(h) = inf{ |y||2 + H2 : u € f} . (15.33)

Obviously, e(h] — ((/ -t- FF*)~lh,h). Moreover, the optimal u which attains the optimal
cost e(h) is given by u — —F*y where y = h + Fu is the optimal output; see Remark 12.3.1.

Now let T be an operator mapping K. into H and C0 be an operator from X into Ji. Let
D be an isometry from f into Ti. whose range is orthogonal to the range of C0, T and F,
that is D*C0 = 0, D*T = 0 and D*F = 0. Let z be the output vector in H given by

, u) = C0x0 + Tw + Fu + Du (15.34)

where (the initial state) XQ is specified. In our abstract control problem the vector u is viewed
as the control and w is the disturbance. The idea is to design a control u to minimize the effect
of the unknown disturbance w on the output z. This leads to the following minimization
problem

inf{||0(x0, w, u)\\2 : u € F} = mt{\\C0x0 + Tw + Fu\\2 + \\u\\2 : u 6 F} . (15.35)

According to Lemma 15.2.1 with h = COXQ + Tw, the optimal solution to this problem
is uniquely given by u = —(I + F* F)~l F* (C0x0 + Tw). To simplify some notation it is
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convenient to let R* be the positive square root of (/ + FF*)~l. Then the optimal cost in
the optimization problem (15.35) is given by

\R*(C0x0 + Tw}\\2 = mf{\\C0x0 + Tw + Fu \2 + \\u\\2 : u € -F} = inf{| c/>(z0, w, u}\\2} . (15.36)

For the moment assume that the initial state XQ = 0. In this case, the optimal choice for the
control u gives rise to the operator R*T from the disturbance space 1C to the output space
1-L. Notice that

= sup inf{|0(0,u;,u (15.37)

In particular, this shows that if u is any vector in F , then

and (15.38)

This leads to the following design problem: Given a specified 7 > H-R+TJI find a controller
u such that ||0(0, w, u)\\ < 7 whenever \\w\\ < 1. Of course, the closer 7 comes to ||-R*T||
the closer one comes to constructing a controller to minimize the operator norm from the
disturbance space 1C to the output Ji.

Notice that R*T is bounded by 7 if and only if j2I~TT* + j2FF* is positive. This follows
because ||/2»T|| < 7 if and only if 72/ - R*TT*R* is positive, or equivalently, -y2R~2 - TT* =
72/ — TT* + 72FF* is positive. A similar argument shows that the norm of R*T is strictly
bounded by 7 if and only if 72/ — TT* + ^2FF* is strictly positive.

Let T be an operator from 1C into "H. Let us recall the following optimization problem
discussed in Section 14.4. For a specified 7 > 0 , find the optimal cost /3(h) defined by

/3(h) = sup{ \h - 72| w\\2 (15.39)

Recall that if ||T|| > 7, then (3(ti) is infinite and this optimization problem is undefined. If
/3(h] is finite, then ||T|| < 7. For convenience let us restate Theorem 14.4.1 to obtain the
optimal solution when ||T| < 7.

Lemma 15.2.2 Let T be an operator mapping 1C into H. whose norm is strictly bounded by
7 and let h be a vector in T~t. Then the supremum in (15.39) is attained and is given by

P(h) = 72 ((7
2/ - TT*)-1/!, h) . (15.40)

Furthermore, the optimal w in 1C which attains this supremum is unique and is given by

w = (7
2/ - T*T)-iT*^ = x*(72/ - TT*)"1/*. (15.41)

Recall that z — COXQ + Tw + Fu + Du. By choosing h = COXQ we can combine the
optimization problems in (15.36) and (15.39) to arrive at the following max-min problem

d(x0) = supinf{||C0x0 + Tw + Fu\\ - 72 w\\2} (15.42)
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where the infimum is taken over all u in f and the supremum is taken over all w in 1C.
Finally, let £(XQ,W) be the cost of the infimum, that is,

£(x0,w) = inf{||0(z0,™,«)||2-72H|2} = inf{\\C0xQ+Tw+Fu\\2+\\u\\2-j2\\w\\2}. (15.43)
u u

Obviously, d(xo) = supw£(xo, w). In this setting, we say that the vector v is optimal for w
if v attains the cost £(x 0>w), that is, £(XQ,W) = \\(f)(xQ,w,v) \2 — ~f2\\w\\2. The pair {w,u} is
optimal for (15.42) if u is a vector in F and w is a vector in K, satisfying

d(x0) = £(x0,w) = \\(f>(xo,w,u)\\2-'y2\\w\\2. (15.44)

By employing (15.36) in (15.43), it follows that for fixed w in K.

t(x0,w) = \\R.(C0xQ + T™)||2-72H|2. (15.45)

Moreover, Lemma 15.2.1 shows that the cost £(XQ,W) is uniquely attained by the vector

(15.46)

Furthermore, the optimal v can be obtained from the "feedback controller" v = —F*(f)(xo, w, v}
To see this simply observe that (15.46) gives (I+F*F)v — —F*(C0x0+Tw). This readily im-
plies that v = -F*(C0x0+Tw+Fv). Using F*D = 0 with 0(x0, w, v] = C0x0+Tw+Fv+Dv,
yields v = —F*(j)(xQ,w,v). This proves part of the following result.

Theorem 15.2.3 Let C0 be an operator from X into H. while T is an operator from K. into
Ji and F is an operator from T into *H. Let d(xo) be the optimal cost in the optimization
problem (15.42) and assume that 72/ — TT* + j^FF* is strictly positive. Then

d(x0) = 72((7
2/ - TT* + 72FF*)-1C0^o, C0x0) . (15.47)

The optimal control v which uniquely attains the cost £(XQ, w) is given by v = —F*<p(xo, w, v).
Furthermore, the optimal disturbance pair {w, u} which attains the optimal cost d(xo) is
unique and is given by u = —F*z and w = j~2T*z where z = COXQ + Tw + Fu + Du, or
equivalently, u — —F*g and w = /y~2T*g where g = COXQ + Tw + Fu.

PROOF. Assume that 72/ — TT* + 72FF* is strictly positive, or equivalently, the norm of
R*T is strictly bounded by 7. By taking the supremum in (15.45) and employing Lemma
15.2.2 with T = #*T and h = R*C0x0, we obtain

d(xQ} = sup{\\R*C0x0 + R*Tw\\2 - i2\\w\\2}
w

= 72((72/-fl*TT*#*)-1^C0;ro,#*C'0:co) (15.48)

Notice that if 72/ - TT* + 72FF* is not positive, then ||.R,T|| > 7. In this case, d(x0) is
infinite. So, ||.R*T|| is the infimum over the set of all 7 > 0 such that the optimal cost d(xo)
is finite.
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To complete the proof it remains to compute the optimal pair {w, u} which achieves the
optimal cost d(xo). As before, let v be the optimal input which achieves the cost £(xo, w) in
(15.43). Applying Lemma 15.2.2 with T = R*T to (15.45), shows that the optimal input w
which attains the optimal cost d(xo] = supw£(xo,w) is given by

w = T*^(72/ - R*TT*R*)-lR*C0x0 (15.49)

Moreover, Lemma 15.2.2 shows that this w is the only disturbance which attains the optimal
cost d(xo). By setting u = i' and w = w in (15.46), we arrive at an optimal pair {w, u}
which achieves the optimal cost d(xo). Moreover, we claim that

u = -72F*(7
2/ - TT* + 72FF*)~1C'0:ro . (15.50)

Using (15.49) in (15.46) with u = v, we obtain

= -F*(7 + FF*)"1 (/ + TT*(7
2/ - TT* + 7

2FF*)~1) C0x0

= -F*(/ + FF*)~X (72/ - TT* + 72FF* + TT*) (72/ - TT* + 72FF*)~1C'0xo

= -72^(72/-TT*+72FF*)-1CU-0. (15.51)

This yields (15.50). We claim that the optimal output z = C0x0 + Fu + Tw + Du is given

by
z = 7

2(72/ - TT* + 72FF*)-1C0x0 + Du . (15.52)

Let g = C0x0 + Fu + Tw. Using (15.50) and (15.49), we obtain

g = C0x0 4- Tw + Fu

= C0xQ + (TT* — 72FF*)(72/ — TT* + 72FF*)~1C0o;o

( 2 T rrirri* , 2 7""1 T"'* f ri~irr-\* 2 7~i 7~t* \ / 2 T T-I/T-I* , 2 7~i 7~~i* \ — 1 flj l — II + ̂  r k +11 — 7 FF J (7 / — TT + 7 r F ) 60x0

Since z = g + Du, equation (15.52) holds. Because F*D = 0, equations (15.52) and (15.50)
show that u = —F*g = —F*z. Equations (15.52) and (15.49) imply that w = ^/~2T*g =
7~2T*z. Finally, it is noted that {w,u} in (15.49) and (15.50) is the only pair which attains
the optimal cost d(xo). If {woj u0} is another pair which attains the optimal cost d(xo), then
w0 must be the unique vector which attains the optimal cost d(xo) = sup^ ^(XQ, w). Hence,
w0 = w is given by (15.49). Because there is only one vector which attains the cost £(XQ, w),
the calculation in (15.51) shows that u0 — u is given by (15.50). Therefore, the optimal pair
{w, u} which attains d(xo) is unique. •

The proof of the previous theorem readily yields the following result.

Corollary 15.2.4 Let C0 be an operator from X into Ti. while T is an operator from /C into
Ji and F is an operator from T to 7i. Let d(xo) be the optimal cost in the optimization
problem (15.42). Then

||(/ + FF*)-1/2T = inf{7 : d(x0) < 00} . (15.53)
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Corollary 15.2.5 Assume that^I — T*T+72FF* is strictly positive. Then the pair {w, u}
which uniquely attains the optimal cost d(xo) in the optimization problem (15.42) is given
by solving the following block matrix system of equations

I + F*F F*T 1 I" u 1 [ -F*C0x0

-T*F 72/ - T*T J [ w) J [ T*C0x0

Moreover, the 2 x 2 Wocfc matrix in (15.54) ^s an invertible operator on F @ 1C.

PROOF. According to Theorem 15.2.3, the optimal pair {w,u} which achieves the optimal
cost d(xo) is uniquely given by u = —F*g and w = 7~2T*<7 where g = COXQ + Tw + Fu.
Hence,

(/ + F*F)w = -F*Tw - F*C0xQ and (72/ - T*T}w = T*Fu + T*C0x0 .

By rearranging these equations, we arrive at the system of equations in (15.54). Let X be
an invertible operator on T. Then recall that the block matrix

x Y 1 \r
w z\ on [ic

is invertible if and only if the Schur complement Z — WX~1Y is invertible. The Schur
complement for the 2 x 2 block matrix in (15.54) is given by

y/ _ T*T + T*F(I + F*F)-1F*T = 72/ - T* (/-(/ + FF*)-1FF*) T

= 72/ - T*(I + FF*)-1 (/ + FF* - FF*) T = 72/ - T*(I + FF*)-1T

Because 72/ — T*T + ^2FF* is strictly positive, the norm of R*T is strictly bounded by 7.
So, the Schur complement 72/ — (R*T}*RtT is invertible. Therefore, the 2 x 2 block matrix
in (15.54) is invertible. •

A connection to game theory. Let us conclude this section by making a simple connec-
tion with game theory. To this end, let q(w, u] be a real valued function of u in f and w in
1C. Then,

supinf q(w,u) < inf supq(w, u) (15.55)
w u u w

where the infimum is taken over all u in JF and the supremum is taken over all w in /C.
We say that q defines a game if we have equality in (15.55). To motivate this terminology
consider a contest with two players a and b. Player a is trying to maximize the cost function
q by choosing a strategy from w in /C, while player b is trying to minimize the cost function
q by choosing a strategy from u in J-. If q defines a game, then it does not matter which
player a or b goes first. We conclude this section with the following result.

Theorem 15.2.6 Let T be an operator from K. into H while F is an operator from f into
H and C0 is an operator from X into H. Assume that \\T\\ < 7 and let q be the function
defined by

q(w,u) = \\C0xQ + Tw + Fu\\2 + IHI2 -72|H!2- (15-56)
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Then q defines a game and the optimal cost is given by

mfsupq(w,u) = supinf q(w, u) = ̂ (C*(^I - TT* + ~f2FF*)-lC0xQ,x0) . (15.57)
" w w u

Moreover, the optimal pair {ui, u} which attains this optimal cost is uniquely given by w —
7~2T*<? and u = —F*g where g = C0x + Tw + Fu.

PROOF. Let D* be the positive square root of (72/ — TT*)-1. By combining Lemma 15.2.2
with Lemma 15.2.1, we have

mfsupq(w,u) = inf sup{||C0x0 + Tw + Fu\\2 - ^2\\w\ 2 + \\u\\2}
u w u w

= mi{~f2\\D*C0x + D*Fu\\2 + \\u\\2}
u

= ((I + ̂ DtFF'D^jDtCcXo, 7D,C0z0)
= ^(tfl-TT* + ^FF*)-lC0x0,C0x0).

On the other hand, Theorem 15.2.3 shows that

supinf q(w, u) = d(x0) = 7
2((7

2/ - TT* + 7
2FF*)-1C0x0) C0x0) .

w u

Therefore, (15.57) holds and q defines a game. •

Exercise 33 Let 0 be the function defined in (15.34). Consider the feedback controller
u = v = —F*z. Then show that ||0(xo, w,^)!! = \\R*(C0Xo + Tw)\\. In particular, this
implies that ||0(0,tu,t))| | < ||/2*T||||u;||.

Exercise 34 Consider the system {A, B, C, D, E} in (15.1). Assume that the Riccati dif-
ferential equation

R + A*R + RA + ~f~2REE*R + C*C = 0 (Rfa) = 0)

has a solution on the interval [£o,^i] for some 7 > 0. Then show that

supinf (\\z\\2 - 72||w I 2 ) = inf sup (\\z

The supremum is taken over all w in Z/2([£o, ^ i] , VV) while the infimum is taken over all u in

15.3 The Riccati differential equation and norms

Now let us return to the system {A,B,C,D,E} in (15.1). Recall that D is an isometry
satisfying D*C = 0. In this section, we will show that the Riccati differential equation
in (15.8) has a solution over the interval [£0,^1] if and only if a certain operator is strictly
positive. To this end, let T be the operator from K. = L2([i0, £1], W) into H = L 2 ( [ t 0 , t i ] , Z )
and F the operator from F = L2([t0, t i ] ,W) into Z/2([£o, £1], 2) defined by

/

t rt
CeA(t'T)Ew(r}dT and (Fu)(t) = CeA(t-T)Bu(r) dr . (15.58)

o Jto
In this setting C0 is the observability operator from X into L2([tQ, t±], Z] defined by (C0xo)(t) =

^xo where XQ is in X.
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Theorem 15.3.1 Consider the system in (15.1) and let T be the operator fromL2([to, ii], W)
into L 2 ( [ t o , t i ] , Z ) andF the operator from L2 ([to, ti],U) into L 2 ( [ t o , t i ] , Z ) defined in (15.58).
Then the following statements are equivalent.

(i) The norm \\(I + FF*)~l/2T\\ < 7.

(ii) The operator 72/ — TT* + 72FF* is strictly positive.

(Hi) The Riccati differential equation in (15.8) has a solution P on the interval [to,ii].

(iv) The optimal cost d(xo) defined in (15.5) is finite for all initial states XQ in X.

In this case, d(xo) is uniquely attained and given by d(xo) = (P(to)xo,Xo).

PROOF. Recall that Parts (i) and (ii) are equivalent. According to Theorem 15.1.1, Parts
(Hi) and (iv) are equivalent. Obviously, the optimization problem in (15.5) is a special
case of the optimization problem in (15.42). So, if Part (ii) holds, then equation (15.47) in
Theorem 15.2.3 shows that d(x0) is finite for all x0 in X. Hence, Part (ii) implies Parts (Hi)
and (iv).

Now assume that the Riccati differential equation in (15.8) has a solution P on the interval
[to,£i], that is, Part (Hi) holds. Recall that if a nonlinear differential equation q — f(q,rj)
has a solution on the interval [io,*i] where / is a continuous function and 77 is a parameter,
then q = f ( q , rj — e) also has a solution on the interval [to, ti] for all e in some neighborhood
of the origin; see [28]. Hence, the Riccati differential equation in (15.8) also has a solution
on the interval [to, ti] when 7 is replaced by 7 — e for some e > Q. Theorem 15.1.1 shows that
for this 7 — e the corresponding optimal cost d(xo) is finite. Corollary 15.2.4 implies that
\\R*T\\ < 7 - e where R* = (I + FF*)"1/2. Therefore, \\R*T\\ < 7 and Part (Hi) implies
Part (i). •

The following consequence of the previous theorem provides a method to compute the
norm of the infinite dimensional operator (7 + FF*)~1/2T.

Corollary 15.3.2 Let T be the operator from L2([t0, ti],>V) into L 2 ( [ t Q , t i ] , Z ) andF be the
operator from L2([t0,ti],W) into L2([t0, t i ] , Z ) defined in (15.58). Then \\(I + FF*)-V2T\\
is the infimum of the set of all positive numbers 7 such that the Riccati differential equation
in (15.8) has a solution on the interval [to,^i]-

Remark 15.3.1 Let T be the operator from L2([i0,ti], W) into L2([t0,ti],.Z) and F be the
operator from L2([to,ti],U) into L 2 ( [ t o , t i ] , Z ) defined in (15.58). Assume that the Riccati
differential equation in (15.8) has a solution over the interval [to, ti]. Then 72/—TT*+72FF*
is strictly positive. By combining Theorems 15.1.1 and 15.2.3, we obtain

P(t0) = 72C;*(72/ - TT* + -?FF*Y1C0. (15.59)

Recall that the pair {C, A} is observable if and only if the operator C0 is one to one. Hence,
equation (15.59) shows that the pair {C, A) is observable if and only if P(to) is strictly
positive. Obviously, this Riccati differential equation has a solution over the interval [t',ti]
for any to < t' < t\. So, by replacing £0 by t in (15.59), we see that P(t) is strictly positive
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for any to < t < t\ if and only if the pair {(7, A} is observable. In particular, P(t) is strictly
positive for any t0 < t < ti if and only if P(t) is strictly positive for all to < t < t±. Likewise
f2(r) = P(ti — r) is strictly positive for any 0 < r < t\ — t0 if and only if f2(r) is strictly
positive for all 0 < r < ti — t0-

15.4 The infimal achievable gain

As before, consider the system {A, B, C, D, E} in (15.1). The output z of this system is
given by

z = C0x0 + Tw + (F + D)u .

Here we consider the problem of finding a feedback controller to minimize the effect of the
disturbance w on the output z. In general, a linear feedback controller is described by

u = K(x@w] (15.60)

where K is an operator mapping L2([to, t^}, X] © L2([i0 ,^i], VV) into L 2 ( [ t o , t i ] , U ) . Assume
that the initial state x0 = 0. Then, the closed loop system corresponding to the feedback
controller (15.60) applied to system (15.1) satisfies

LBK(x@w] and z = Tw + (F + D)K(x ® w) (15.61)

where L is the operator on Z/2([t0, ii], X] denned by

We say that the feedback map K is admissible, if for each w in £2([0, ti], W), there is a unique
element x of L 2 ( [ t o , t i ] , X) which satisfies the first equation in (15.61). If K is admissible,
then with x0 = 0, there is an operator Z from L2([t0, ti], W) into L2([t0, ti],U) such that the
feedback controller in (15.60) can be described by

u = Zw. (15.62)

Thus, the closed loop system (with XQ — 0) satisfies

z - Tzw (15.63)

where Tz is the operator from L2([t0, ti], W) into L2([t0, ti], Z) given by Tz = T+(F + D)Z.
We refer to TZ as the input output map for the closed loop system.

Consider now the problem of finding an admissible controller to minimize the effect of the
disturbance w on the output z. One can approach this problem by considering the problem
of finding an operator Z to minimize the norm of TZ- We refer to \\Tz\ as the gain of the
closed loop system. This leads to the following optimization problem:

do^infHTz . (15.64)

We say that d^ is the infimal closed loop gain achievable by an admissible linear controller.
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Consider any operator Z. By consulting (15.37) and noting that TZW — 0(0, u>, Zw), we
see that

\\R*T\\ = sup inf ||</)(0, w,u) ||
IMI<i "

< sup \\(f>(Q,w,Zw)\ = sup ||Tziu||2

IMI<i IMI<i
= \\TZ\\

where R* = (I + FF*)-1/2. Hence,

PCTII < inf | | 73 | |<doo .
Zi

We claim that ||-R*T|| = d^. In other words, one can find an admissible controller such that
||rz||«||R,T|.

If 7 > ||/2*T||, then Theorem 15.3.1 shows that the Riccati differential equation in (15.8)
has a solution over the interval [to, t-\\. Now consider the corresponding central controller as
given by u = —B*Px. This is an admissible controller and the input output operator T7

from Z/2([ti, ^2], W) into L2([t\,t2\,Z) corresponding to this controller is given by (15.26).
In other words, if the initial condition x(to) — 0, then z = T7w. Corollary 15.1.2, shows
that the norm of T7 is strictly bounded by 7. So, letting 7 approach ||^?*T||, we see that
^oo = \\R*T \. In other words, d^ is the infimum of the set all 7 > 0 such that the Riccati
differential equation in (15.8) has a solution on the interval [tQ, t i ] . Summing up the previous
analysis yields the following result.

Theorem 15.4.1 Consider the system in (15.1) andletT be the operator from L2([tQ,ti},W)
into L?([tQ,ti},Z) and F be the operator from L2([£o,£i],W) into L2([to,ti],Z) defined in
(15.58). Then, the infimal closed loop gain d^ achievable by an admissible linear controller
is given by

Moreover, d^ equals the infimum of the set all 7 > 0 such that the Riccati differential
equation in (15.8) has a solution on the interval [ to>*i]- In particular, if ^ > d^, then the
central controller u = —B*Px yields a closed loop system whose gain ||T7|| is strictly less
than 7.

15.5 A two point boundary value problem
In this section we derive a two point boundary value problem associated with the optimization
problem in (15.5). This will provide us with a natural derivation of the Riccati differential
equation in (15.8). As before, let T be the operator from L2([t0, *i], W) into L2([tQ,ti],Z)
and F be the operator from L 2 ( [ t o , t i ] , U ) into L2([to,ti],Z) defined in (15.58). Moreover,
assume that 72/— TT*+^2FF* is strictly positive. According to Theorem 15.2.3, the optimal
cost d(xo) in the optimization problem (15.5) is uniquely attained by the pair {w,u} where
u = —F*z and w — 7~2T*£. The optimal output z is given by

x — Ax + Ew + Bu and z = Cx + Du (15.65)
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where x(to) = XQ- Since T*D and F*D are both zero, the optimal pair {w,u} is given by
u = -F*Cx and w = ~f~2T*Cx.

To compute the optimal pair we need the adjoints of T and F. A simple calculation
shows that T* is the operator from L 2 ( [ t Q , t i ] , Z ) into L2([to, t i ] , W) and F* is the operator
from L 2 ( [ t Q , t i ] , Z ) into L ? ( [ t 0 , t i ] , U ) defined by

(T*g)(t)= I' E*e-A~(t-^C*g(T}dT and (F*g)(t) = f * B*e-A*(t-T}C*g(r) dr (15.66)
Jt Jt

where g is in L2([t0, t i] , 2). Let A be the function defined by

rti
X(t) = e-A*{t-^C*g(r}dT. (15.67)

Obviously, E*\ = T*g and B*\ — F*g. Using Leibnitz's rule, we obtain following state
space representation of A

A = -A*X-C*g with A(ti) = 0. (15.68)

To compute A for a specified g, one must integrate the previous differential equation backward
in time from t\. Finally, we call A the adjoint state.

Recall that the optimal pair is given by w = j~2T*Cx and u = —F*Cx. So, by using
g = Cx in (15.68), we obtain A = — A*X — C*Cx. Moreover, w = /y~2E*X and u = —B*X.
Combining these equations with x = Ax + Ew + Bu, we see that x © A solves the following
two point boundary value problem

A 7-
2EE* - BB* } \ x 1 I" x(t0) 1 \ x0 }„*„ .,, \ with . ;, ; = „ . (15.69)

-C*C -A* J [ A J [ A(ti) J [ 0 J v '

Summing up the previous analysis we obtain the following result. If 72/ — TT* + j*FF*
is strictly positive, then the corresponding two point boundary value problem in (15.69) has
a solution for every x0 in X. Furthermore, the optimal cost d(xo) in (15.5) is attained for
every initial state XQ. Moreover, the optimal pair which achieves this optimal cost is given
by w = 7~2.E*A and u = —B*\.

We now claim that, if 72/ — TT* + ̂ 2FF* is strictly positive, then for every x0 in X and
for every t' in the interval [io,^i), the two point boundary value problem

x ] \ A -f~2EE* - BB* ] \ x 1 f x(t') ] \ x0 1 f .
; = r*r A* \\ \\ wlth \ \(t \ \ = n (15.70)A J [ -G G -A J I A J [ X(ti) J [ U J

has a solution x ® A on [t1 , ti].
To see this, let T' be the operator from L2([t ' ,^],W) into L 2 ( [ t ' , t i ] , Z ) and F' the

operator from L 2 ( [ t ' , t i ] , U ) into L 2 ( [ t ' , t i ] , Z ) defined by

(T'w)(t)= f CeA(t-T)Ew(r)dT and ( F ' u ) ( t ) = f CeA(t-T)Bu(r) dr . (15.71)
Jt' Jt'
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If el < 72/ - TT* + 72FF* for some e > 0, then we claim that el < 72/ - T'T'*
To see this let B be the set of all unit vectors g in L2([to,t]]}Z) satisfying g(a) = 0 for
to + ti — t' < a < t\. Using this notation, we obtain

f. < inf{72||g||2 — ||T*g||2 + 72||F*gf||2 : g e L 2 ( [ t 0 , t i ] , Z ) and \\g\\ = 1}
-ti-t'

||2 - ||T'*2||2 + 72||F'*^||2 : g G L2([t', *i], Z) and ||̂ || = 1} .

Hence, 72/ — T'T1* + ^F'F'* is strictly positive. By using this fact, in our previous
analysis with t' and T1 and F' replacing to and T and F respectively, we see that the two
point boundary value problem (15.70) has a solution for every XQ in X and for every t' in
the interval [to, ii).

15.5.1 The Riccati differential equation

As before, let T and F be the operators defined in (15.58) acting between the appropriate
L2([to,ti], •) spaces. Assume that 72/ — TT* + ^2FF* is strictly positive. Theorem 15.3.1
states that the Riccati differential equation in (15.8) has a solution P on the interval [io,*i]-
Here we use the two point boundary value problem in (15.69) to derive the Riccati differential
equation in (15.8). In particular, we show that the solution x © A to this two point boundary
value problem satisfies \(t) = P(t)x(t). As in the linear quadratic regulator problem, we
will also obtain an explicit formula for P in terms of the elements of the state transition
matrix for the corresponding Hamiltonian matrix. In this setting the Hamiltonian matrix
associated with the optimization problem in (15.5) is given by

TT - / i r^H = _c*c _A. . (15.73)

Notice that H is simply the state space matrix for the system in (15.69).
Since 72/ — TT* + 72FF* is strictly positive, the two point boundary value problem in

(15.70) has a solution x © A for every XQ in X and t' in [to,*i)- Hence, using Lemma 13.6.1,
this is equivalent to the existence of a solution P to the Riccati differential equation in (15.8)
on the interval [io,^i]- Moreover, it follows from Remark 13.6.1 that A(i) = P(t)x(t) and

t < ti) (15.74)

where $n and $21 are obtained from the following matrix partition of em:

(15.75)

So, one can obtain P by either using (15.74) or solving the Riccati differential equation
backwards in time with -P(ti) = 0.

Combining the results in this section with Theorem 15.3.1 yields the following result.
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Theorem 15.5.1 let T be the operator from L2([tQ, t i ] , W) into L2([t0, t i ] , Z) and F be the
operator from L2([ t0 , t i ] ,W) into L2([to, t\],Z} defined in (15.58). Let d(x0) be the optimal
cost for the optimization problem in (15.5). Then the following statements are equivalent.

(i) The optimal cost d(xo) is finite for every XQ (E X .

(ii) The optimal cost d(xo) is uniquely attained for every XQ € X.

(m) The Riccati differential equation in (15.8) has a solution on the interval [ to ,^ i ] -

(iv) The two point boundary value problem in (15.70) has a solution for every XQ in X and
t' in the interval \tQ,t\).

(v) The operator 72/ — TT* + ^FF* is strictly positive.

15.6 The infinite horizon problem

As before, consider the system {A, B, C, D, E} where D is an isometry satisfying D*C = 0.
This section is concerned with the following infinite horizon version of the optimization
problem in (15.5). For each initial state XQ in X , find the optimal cost d(xo) and an optimal
disturbance pair {w,u} which solves the optimization problem:

da

The infimum is taken over all u in £2([0, oo),£Y) while the supremum is taken over all w in
L2([0, oo), W). To be more explicit, let £(XQ, w) be the infimal cost defined by

/

oo

(Ma) | 2 -7 2 |K*)H 2 )do- (15-77)

where the infimum is taken over all u in L2([Q, oo},U). Then d(x0} — supw £(XQ, w).
As in Remark 15.1.3, let O(r) = P(t\-r] where P is the solution to the Riccati differential

equation in (15.8). Remark 15.1.3 shows that fi satisfies the Riccati differential equation in
(15.23). Recalling (15.24), we have

do-. (15.78)

Proceeding as in Remark 15.1.1, one can readily show that

p(xo,0,r) <supinf / ( \ z ( a ) f - 72||^)2||) da = d(xQ] . (15.79)
w u Jo

Hence,
(15.80)
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for all T. Recall that f2 is a uniformly bounded solution to the Riccati differential equation
in (15.23) if Q is a solution to (15.23) for all r > 0 and ||fi(r)|| < m for some finite scalar m.
If f) is a uniformly bounded solution to this Riccati differential equation, then according to
Lemma 13.6.3, the solution f2 converges to a limit fioo as r approaches infinity. In addition,
Q = f^oo is the minimal positive solution to the following algebraic Riccati equation

A*Q + QA + ~f~2QEE*Q - QBB*Q + C*C = 0 . (15.81)

This sets the stage for the following result.

Lemma 15.6.1 Let d(xo) be the optimal cost for the infinite horizon optimization problem
in (15.76). Then the following statements are equivalent.

(i) The optimal cost d(xo) is finite for all x0 in X.

(ii) There exists a uniformly bounded solution 0 to the Riccati differential equation in
(15.23).

(Hi) There exists a positive solution Q to the algebraic Riccati equation in (15.81).

In this case, the solution Q converges to a limit £1^, that is,

ftoo - lim fl(r) . (15.82)
r— >oo

and the optimal cost is given by

(tt00x0,x0). (15.83)

In addition, the limit ^i^ is the minimal positive solution to the algebraic Riccati equation
(15.81). Finally, if {C, A} is observable, then Q is strictly positive.

PROOF. The proof is similar to the proof of Lemma 14.7.1. We first demonstrate that (i)
implies (ii). So, suppose that the optimal cost d(xo) is finite for all XQ in X. Let fi be
the solution to the Riccati differential equation in (15.23) which is defined on some interval
[0,ii). Lemma 13.6.2 implies that 0(r) is self-adjoint. It now follows from (15.80) that

||n(r)|| < trace fi(r) < ^d(^) < oo

where {ipj} is any orthonormal basis for X. Therefore, f2 can be extended to a uniformly
bounded solution of (15.23) and Part (ii) holds.

The equivalence of Parts (ii) and (Hi) follow from Lemma 13.6.3. This lemma also states
that the solution fJ converges to a limit fi^. Moreover, the limit f^ is the minimal positive
solution to the algebraic Riccati equation (15.81).

We now demonstrate that (in) implies (i). So, suppose that the algebraic Riccati equation
in (15.81) admits a positive solution Q. Using the algebraic Riccati equation in (15.81), along
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with x = Ax + Ew + Bu and z = Cx + Du, we obtain

d
dt

(Qx,x) =

:»(iu, E*Qx) + 2SR(w, B*Qx)
||2 + \\B*Qx |2 + 2$(w, E*Qx) +

Integrating from 0 to t and using x(0) = XQ results in

/ (\z(a)\\2 - "f2\\w(a)\\2} do- = (Qx0,x0) - (Qx(t),x(i)) + \\u(cr) + B*(^
Jo Jo

ft
— I \\^~lE*Qx(a] — 7w(cr)|[2 da .

Jo

Letting t approach infinity and using the fact that Q is positive, we obtain

/

oo
\\u(a) + B*Qx(a) 2 da .

i,B*Qx)

(15.84)

If we let u = —B*Qx, then

(a)\2--f2\\w(a)\2) da<(QxQ,xQ)

(15.85)

(15.86)

(15.87)

Since w is in L2([0, oo), W), it follows that z is in L2([0,oo),Z). Recalling that ||,z||2 =
\\Cx |2 + \\u\\2, we obtain that u is in Z/2([0, oo), U}. Inequality (15.87) now implies that
£(XQ,W) < (Qxo,x0). Hence,

d(x0) <

and Part (i) holds.
Recall that fioo is also a positive solution to the algebraic Riccati equation in (15.81). So,

we obtain d(xo) < (^00X0,2:0). Combining this with d(xo) > (^00X0,2:0), yields the equality
d(x0) - (^oo^O, XQ). •

Remark 15.6.1 It follows from the previous lemma that, whenever the algebraic Riccati
equation in (15.81) admits a positive solution, then is has an minimal positive solution f^,
that is, QOO is a positive solution and £1^ < Q for any other positive solution Q. Moreover
fioo is the limit of the corresponding Riccati differential equation and the optimal cost in
(15.76) is finite and given by d(xo] = (Ci^Xo^Xo).

Remark 15.6.2 Suppose that Q is a positive solution of the algebraic Riccati equation in
(15.81) and consider the feedback controller

(15.88)
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In the proof of the previous lemma, it is shown that, for any initial state XQ in X and for
any disturbance input in L2([0, oo), W), we must have

/

oo
(\\z(a)\\2-^\\w(a)\\2)da<(QxQ,x0).

.

In particular, if Q — fioo, then

fJo'0

The closed loop system corresponding to the above feedback controller is given by

x = (A - BB*Q)x + Ew and z = (C - DB*Q)x. (15.89)

We now claim that, if the pair {C, A} is detectable and Q is a positive solution to the
algebraic Riccati equation in (15.81), then A — BB*Q is stable. To see this, notice that by
rearranging terms in (15.81), we obtain

(A - BB*Q)*Q + Q(A - BB*Q] + QBB*Q + ̂ ~2QEE*Q + C*C = 0. (15.90)

Let Ac = A - BB*Q and C = [C_ B*Q ^~lE*Q]tT. Then the pair {C,AC} satisfies the
Lyapunov equation A*Q + QAC + C*C = 0. To show that Ac is stable it is sufficient to verify
that the pair {C, Ac} is detectable; see Lemma 12.7.3. We now claim that the kernel of

(15.91)

is zero for all complex numbers A in the closed right half plane. Then by the PBH test
{C, Ac} is detectable; see Lemma 9.1.2. If / is any vector in the kernel of ./(A), then C = 0.
In particular, B*Qf = 0 and Cf = 0. Thus, (A - A/)/ = Aef = 0. Since {C, A} is
detectable and 3£A > 0, the PBH test guarantees that the kernel of [A — A/ C]tT is zero. In
other words, / must be zero which proves our claim. Therefore, Ac is stable.

15.6.1 The stabilizing solution

We say that Q is a stabilizing solution to the algebraic Riccati equation in (15.81) if Q is
a solution to (15.81) and A + ~f~2EE*Q — BB*Q is stable. The algebraic Riccati equation
in (15.81) can have many different solutions. However, if there exists a stabilizing solution
Q, then Q is self-adjoint and is the only stabilizing solution; see Chapter 13. One can use
the Hamiltonian techniques in Chapter 13 to determine if there exists a stabilizing solution.
Suppose that the Hamiltonian matrix H in (15.73) has no eigenvalues on the imaginary axis.
Then, according to Lemma 13.1.3, there exists operators X and Y on X satisfying

rr\ X] \ A 7-
2£E* - BB* 1 [ X 1 [ X 1 . „ _ ._.

H [ Y \ = [ -C*C -A* J [ Y \ = [ Y \ A <15'92)

where A is a stable operator on X, and the operator [X*, Y*]* from X into X © X is one to
one. Then the algebraic Riccati equation in (15.81) admits a stabilizing solution if and only
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if X is invertible. In this case, the unique stabilizing solution is given by Q — YX~l; see
Theorem 13.1.5. In our control problem, we are interested in positive stabilizing solutions.
So, there exists a positive stabilizing solution to the algebraic Riccati equation in (15.81) if
and only if the Hamiltonian matrix H has no eigenvalues on the imaginary axis and X is
invertible with YX~l positive. This readily yields the following result.

Theorem 15.6.2 Let H be the Hamiltonian matrix in (15.73) determined by the operators
A, B,C and E acting between the appropriate spaces. Then the algebraic Riccati equation
in (15.81) admits a positive stabilizing solution if and only if the following three conditions
hold.

(i) The Hamiltonian matrix H has no eigenvalues on the imaginary axis.

(ii) If [X*, Y*]* from X into X © X is any one to one operator satisfying (15.92) where A
on X is stable, then X is invertible.

(Hi) The operator YX~l is positive.

In this case, YX~l is the unique positive stabilizing solution to the algebraic Riccati equation.

Example 15.6.1 If the Hamiltonian matrix has no eigenvalues on the imaginary axis, then
it does not necessarily follow that the stabilizing solution is positive. For example, consider
the system {1,1,1.1,1} in (15.1). Then the eigenvalues for the Hamiltonian H corresponding
to this system are given by ±\/2 — 1/72. In this case, H has no eigenvalues on the imaginary
axis if and only if 7 > l/\/2. Now assume that 7 > l/\/2. Then A = — \/2 — 1/72 is
the stable eigenvalue with eigenvector [A + 1 ,— l]tr. The stabilizing solution is given by
Q — —1/(A + 1) when 7 ^ 1. Hence, the algebraic Riccati equation admits a positive
stabilizing solution if and only if 7 > 1. In other words, if l/v/2 < 7 < 1, then the
stabilizing solution is not positive. If 7 = 1, then there is no stabilizing solution.

Theorem 15.6.3 Let d(xo) be the optimal cost for the infinite horizon optimization problem
in (15.76) and suppose that {^4, B} is stabilizable and {C, A} is detectable. Then the following
statements are equivalent.

(i) There exists a positive stabilizing solution Q to the algebraic Riccati equation in (15.81).

(ii) The Riccati differential equation in (15.23) admits a uniformly bounded solution fi and
A + 7~2£r£^00 — BB*^^ is stable where f^ = limT_^oo f2(r).

(Hi) For every XQ in X, there exists an optimal pair {w,u} which attains the optimal cost
d(x0).

(iv) For the Hamiltonian matrix H in (15.73), conditions (i),(ii) and (Hi) in Theorem
15.6.2 hold.

In this case, the unique stabilizing solution to the algebraic Riccati equation in (15.81) is
given by Q = ^l^ = YX~l.
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PROOF. Assume that Q is a positive stabilizing solution to the algebraic Riccati equation
in (15.81). According to Lemma 15.6.1, there exists a uniformly bounded solution f2 to
the Riccati differential equation in (15.23). Moreover, fioo = limT_,.00 fi(r) exists, d(xo) =
(f^ooXojXo) and fico < Q- Hence, d(xo) < (QXQ,XQ). We claim that the optimal cost
d(xo) = (QXQ,XQ), that is, f^ = Q. Moreover, an optimal pair {w,u} which attains this
cost is given by w = "Y~2E*Qx and u = —B*Qx where the optimal state x and output z are
determined by

x = (A + i-2EE*Q-BB*Q)x (x(0) = x0)
z = (C-DB*Q)x. (15.93)

Because Q is a stabilizing solution, x is in L2([0, oo), X) and lim^oo x(t) = 0. Hence, w and
u are in the appropriate L2 spaces. By letting t approach infinity and setting u = u and
w = w in (15.85), it follows that (Qxo,xo) = \\z\ 2 — 72||u>||2.

To show that (Qxo,xo) = d(xo) it remains to show that u is the optimal input which
attains the cost £(XQ,W). The proof is similar to the proof of Theorem 15.1.1. To achieve
our objective, notice that for the disturbance w = /y~2E*Qx, we obtain

x = Ax + Ew + Bu.

Now let us introduce the new state x — x — x and set u = u + B*Qx. Then subtracting the
differential equation in (15.93) from the previous state equation, yields

x = (A- BB*Q)x + Bu with x(0) = 0. (15.94)

Using w = /y~2E*Qx in (15.85) with x = x — x, gives

\\z(a)\\2 - J2\\w(a)\\2) da = (Qx0,x0) - (Qx(t),x(t)) - /* \\~i~1 E* Qx(a}\\2 da
Jo

+ t \\u(a)\\2da. (15.95)
Jo

At this point there are several technical issues to consider. Obviously, ^(XQ,W) < d(xo)
is finite. Let J7 be the subset of I/2([0, oc),U) consisting of the set of all inputs u such that
Cx is in L2([0,oo),Z). Then

, w) = inf { \\Cxf + \\u\\2 - 72 2 2w

If Cx is in I/2([0, oo), Z), then as a consequence of the detectability of {C,A}, the state
trajectory x is in L2([0, oo), X)\ see Lemma 12.8.2. So, if u is in J7, then u = u + B*Qx is in
L2([0, oo),W). On the other hand, if u is in L2([0, oo),W), then the stability of A-BB*Q and
equation (15.94) implies that x is in I/2([0, oo), X). Obviously, x is in L2([0,oo), X). Thus,
x = x + x is in I/2([0, oo), X). This readily implies that u = u — B*Qx is in J7. In other
words, f equals the set of all functions of the form u — B*Qx where u is in L2([0, oo), U). So,
if u is in L2([Q, oo), W), then x is in I/2([0, oo), X). Lemma 12.8.3 shows that x(t) approaches
zero as t tends to infinity. Using this in (15.95) yields

/•oo poo

/ ( \ \ z ( a ) \ \ 2 - ~ f 2 \ \ w ( a ) \ 2 ) d a = (Qx0,x0}- \ ̂ E*Qx(a)\\2 da
Jo Jo

/•oo

/ \\u(ff)\\* dff . (15.96)
Jo

+
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Hence, the cost £,(XQ,W} in (15.77) is given by

/

oo
( \ i~ l E*Qx(a} |2 - \\u((r}\\2} da. (15.97)

The algebraic Riccati equation in (15.81) can be rewritten as (15.90). Notice that this is
precisely the algebraic Riccati equation one obtains by replacing C with [C j~lE*Q]tr and
E with B in Theorem 14.7A. So, by employing Theorem 14.7.4 and (15.94), it follows that

/

oo
(i Cx(a}\ 2 + \\i-lE*Qx(a)\\2 - \\u(a}\ 2) da = 0

_

and this supremum is uniquely attained with u — 0. Noting that, for any u,

/

OO />OO

(\\>Y-lE*Qx(a}\\2 - «(a)f ) da < / (\\C~x(a}\\2 + \\-y~* E*Qx(a)f - \\u(a)\\2) da
Jo

it follows that the supremum in (15.97) is zero and this is uniquely achieved with u equal to
zero. In this case, (15.94) implies that x = 0, that is, x = x. Thus, u = —B*Qx = —B*Qx.
This readily implies that £(x0,w} = (Qxo,xQ). Therefore, (QXQ,XQ) = d(xo). Since d(xo) —
(Ooo^o, XQ), we must have Q — £1^. In other words, Parts (ii} and (Hi] hold.

Obviously, Part (ii} implies Part (i}. We now demonstrate that Part (Hi} implies Part
(ii}. So assume that {w0,u0} is an optimal pair which attains the optimal cost d(xo}. In
particular, d(xo} is finite and there exists a uniformly bounded solution fi to the Riccati
differential equation in (15.23). Furthermore, QOO — limr^oon(r) is a positive solution to
the algebraic Riccati equation in (15.81) and d(xo} = (fiooXo, ^o)- Because the pair {C, A}
is detectable, A — BB*^^ is stable. If we set u = —B*^iocx, then the state trajectory
x corresponding to the pair {«;„, u} is given by x = (A — BB*Q00}x + Ew0. The output
z = (C — DB*£l00}x. Since w0 is in L2([0, oo), W), the state x is in £2([0, oo), X\ and thus,
u is in L2([0,oo),ZY). Moreover, x ( t } converges to zero as t tends to infinity; see Lemma
12.8.3. So, by letting t approach infinity in (15.85) with Q = £1^, we obtain

/

oo
(|2(a)||2 -72||w;0(a) |2) da

/

oo
\-f-

1E^00x(a}--fw0(a}\2da. (15.98)

This readily implies that w0 — iy~2E*£locx and the infimum ^(XQ,WO} is achieved with u.
Hence, {w0,u} is an optimal pair which attains the optimal cost d(xo}. Combining this with
u = —B*^l00x, we see that the optimal state x is given by x = x where x is the solution to
the following differential equation

x = (A + 7~2£JE;*ft00 - BB^^x (x(0} = x0}.

Since x(t} converges to zero, A + 'j"2EE*Q,00 — BB*^^ is stable. In other words, £1^ is
the positive stabilizing solution to the algebraic Riccati equation in (15.81), that is, Part (i}
holds.
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Notice that w0 = w — ^~2E*Qx where w is our previous optimal disturbance defined
in (15.93) with ft^ = Q. Since d(xo) — £(XQ,W) and we have shown that £(XQ,W) is
uniquely attained with u = 0, it follows that the optimal cost d(xo) is uniquely achieved
with u0 — u = —B*£looX and w0 = w = ~f~2E*Qx. •

The previous proof readily yields the following result.

Theorem 15.6.4 Consider the system {A, B, C, D, E} where {A, B} is stabilizable and
{C, A} is detectable. Assume that the algebraic Riccati equation in (15.81) has a positive
stabilizing solution Q. Then the optimal cost d(xo) = (QXQ,XQ). Moreover, this optimal cost
is uniquely achieved by the disturbance/control input pair w = ^~2E*Qx and u = —B*Qx
where the optimal state trajectory x is determined by

x = (A + 7~2EE*Q - BB*Q)x with x(0) = x0 . (15.99)

15.6.2 The scalar valued case
Consider the system {A on X, B, C, D, E} where {A, B} is stabilizable, {C, A} is detectable
and n is the dimension of X. Let F be the transfer function for {A, B, C, 0} and G be the
transfer function for {A,E,C,Q}. Let d be the characteristic polynomial for A and H the
Hamiltonian matrix in (15.73). By replacing T by 7~1G in Theorem 13.5.1, we see that the
characteristic polynomial for H is given by

det[s!-H] = (-l)ndd»det[/-7-2GG» + FF t t]. (15.100)

Now assume that {A, B, C, D, E} is a single input single output system consisting of
matrices with real entries. Moreover, assume that G = p\/d and F = p-2/d where p\ and pi
are polynomials. Then (15.100) reduces to

l)ndet[s/ -H}= d*d + ppz - 7~2pfpi . (15.101)

So, the eigenvalues of H are precisely the zeros of d^d + p^pz — 7~2pfpi- Notice that one can
apply the root locus techniques in Section 14.8 to the polynomial in (15.101). (To do this
simply replace d^d with d^d + "pypi and p with pi in Section 14.8.) In other words, we can
graph the zeros of d^d+p^pz — 7~2PiPi as 7 varies from infinity to zero. Then the eigenvalues
of H are contained in this root locus. Recall that the root locus of d*d + p|p2 — 7~2PiPi
always has an asymptote on the imaginary axis. Let 70 be the largest value of 7 such that
d^d + plp-2 — 7~2pipi has roots on the imaginary axis. Then the root locus has a branch
on the imaginary axis for 0 < 7 < 70, or equivalently, the Hamiltonian matrix H has an
eigenvalue on the imaginary axis for all 0 < 7 < 70. Hence, the algebraic Riccati equation
in (15.81) does not have a stabilizing solution for all 0 < 7 < 70. In other words, if the
algebraic Riccati equation admits a stabilizing solution, then 7 > 70.

Assume that Q is a stabilizing solution for the algebraic Riccati equation for some 7 > 0.
Obviously, 7 > 70. Let A be the characteristic polynomial for A + ~/~2EE*Q — BB*Q. By
replacing T by 7-1G in Corollary 13.5.2, we obtain

(15.102)



282 CHAPTER 15. H°° CONTROL

Since Q is a stabilizing solution, all the roots of A are in the open left half complex plane.
Therefore, all the roots of A1* live in the open right half plane. In particular, A and A" have
no common roots and their product A "A has no roots on the imaginary axis. According to
(15.102) the roots of A are the left half plane roots of d^d + p^p^ — 7~2pfpi- In other words,
the roots of A are contained in the left half plane root locus of d^d + p^p? — 7~2piVi- Finally,
it is noted that if 7 > 70, then it does necessarily follow that there exists a stabilizing solution
or that the stabilizing solution is positive; see Example 15.6.1. However, if there exists a
positive solution to the algebraic Riccati equation for some 7 = 71, then the algebraic Riccati
has a positive stabilizing solution for all 7 > 71; see Section 15.8.

Exercise 35 Assume that the Hamiltonian H in (15.73) has eigenvalues on the imaginary
axis for some 7 = ~f0 > 0. Then show that H has eigenvalues on the imaginary axis for all
0 < 7 < 7o-

Exercise 36 Consider the system [A,B,C,D,E] where {A,B} is stabilizable and {C, A}
is detectable. Assume that Q is a positive solution to the algebraic Riccati equation in
(15.81). Assume that z = (f)(x0,u,w) is in L2([0, oo), Z} where u is in L2([0, oo),ZY) and
w is in L2([0,oo), W). Then show that the corresponding state x is in £2([0, oo), X) and
lim^oo x(t] = 0. Moreover,

/>oo /*oo

/ (\\z(a)\\2 - 72|Ka)||2) da = (Qx0,x0)+ \\u(a) + B*Qx(a)f da
Jo Jo

/"OO

- / H7"1 E*Qx(a}-iw(a}fda. (15.103)
Jo

15.7 The central controller

In this section we present the central solution for the infinite horizon problem. As before,
consider the system {A, B, C, D, E} where {A,B} is stabilizable and {C, A} is detectable.
Assume that the algebraic Riccati equation in (15.81) has a positive stabilizing solution Q for
some specified 7 > 0. Then the feedback controller u — —B*Qx is called the central infinite
horizon controller corresponding to the weight 7. The closed loop system corresponding to
this feedback controller is described by

x = (A - BB*Q)x + Ew
z = (C-DB*Q)x. (15.104)

Because the pair {C, A} is detectable, A — BB*Q is stable; see Remark 15.6.2. The transfer
function

G7(s) = (C- DB*Q}(sI - A + BB*Q)~1E (15.105)

is referred to as the central transfer function for 7. Obviously, G7 is stable. Now let W^ be
the operator from L2([0, oo), W) into L2([0,oo), Z} defined by

(W»(*) = / (C - DB*Q)e(A-BB*Q)(t-T)Ew(r) dr (w £ L2([0, oo), W)). (15.106)
Jo
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Obviously, W^ is the input output operator for the system in (15.104). Moreover, £(W^w) =
G7£(u;) where L denotes the Laplace transform. Finally, ||W"7|| = HG-yHoo.

The following transfer function plays a fundamental role in studying the central solution

07(s) := 7/ - 7-1£*Q(sJ - A + BB*Q}~1E . (15.107)

According to Proposition 6.4.1, the inverse of ©7 is given by

e^s)-1 = 7"1/ + ^-3E*Q(sI -A- >y-2EE*Q + BB*Q}~1E . (15.108)

Since Q is a positive stabilizing solution both 07 and its inverse are stable transfer functions,
that is, 07 is an invertible outer function. The following result uses 07 to show that the
H°° norm of G7 is strictly bounded by 7.

Proposition 15.7.1 Consider the system {A,B,C,D,E} where {A,B} is stabilizable and
{C, A} is detectable. Assume that the algebraic Riccati equation in (15.81) has a positive
stabilizing solution Q for some specified 7 > 0. Then

72/ - G^G7 = 0^07 . (15.109)

In particular, ||G7||00 < 7. Finally, for any initial state x(0) = XQ, the closed loop system in
(15.104) satisfies \\z\\2 < 72||w||2 + (QXQ,XQ).

PROOF. Using D*D = I and D*C — 0, we obtain

(C - DB*Q)*(C - DB*Q] = QBB*Q + C*C .

Substituting this into the algebraic Riccati equation in (15.90), it follows that this Riccati
equation can be written as

(A-BB*Q*)*Q + Q(A-BB*Q)+7-2QEE*Q + (C-DB*Q}*(C-DB*Q) = 0. (15.110)

This is precisely the algebraic Riccati equation one obtains by replacing C and A with respec-
tively C — DB*Q and A — BB*Q in Proposition 14.7.5. So, by employing Proposition 14.7.5
with G = G7 , we obtain (15.109). Since 07 is an invertible outer function, it follows that
HG-yl loo < 7. If u = —B*Qx, then equation (15.85) shows that ||z||2 — 72||it;||2 < (QXQ,XQ)
for any initial state XQ. •

Exercise 37 Assume that the algebraic Riccati equation in (15.81) has an invertible self-
adjoint solution Q, and set R = Q~l. Show that R satisfies the following algebraic Riccati
equation

RA* + AR+ RC*CR + ̂ EE* - BB* = 0 . (15.111)

Let F be the transfer function for {A, B, C, 0} and G be the transfer function for {A, E, C, 0}.
Let A be the transfer function for {A, RC*, — 76", 7/}. Then show that the following factor-
ization holds

= AA«. (15.112)
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15.8 An operator perspective

In this section we provide an operator perspective on the infinite horizon optimization prob-
lem in (15.76). As before, let {A, B, C, D,E] be the system in (15.1) where the pair {C,A}
is detectable and {^4, B} is stabilizable. Because the pair {A, B} is stabilizable, there exists
an operator K from X into U such that A — BK is stable. Now let v be the input defined
by v = u + Kx. Then the system in (15.1) can be rewritten as

x=(A-BK)x + Ew + Bv and z = Cx + D(v - Kx) . (15.113)

Using this notation we see that for all w in L2([0, oo), W)

J(x0,w,u) = \\z 2-72 | iy| |2 = \\Cx\\2 + \\v- A-z||2-72|H|2.

We claim that J(x0, w, u) is finite if and only if u = v — Kx where v is in L2([0, oo), Li}.
In this case, x is in L2([0, oo), X } . If v is in L2([0, oc), W), then the stability of A — BK
along with (15.113) shows that the state x is in L2([0, oo), X } . Hence, u = v — Kx is in
£2([0, oo), U\ and thus, J(XQ,W,U) is finite. On the other hand, if J(XQ,W,U) is finite for
some specified u in L2([0, oo),ZY), then Cx must be in L2([0,oo), Z). Because the pair {C, A}
is detectable, Lemma 12.8.2 along the state space representation in (15.1), shows that the
state x is in £2([0, oo), X } . So, v — u + Kx is in L2([0, oo), U}. Therefore, u = v + Kx where
v is in L2([0, oo), U), which proves our claim.

Clearly, the cost £(XQ,W) is obtained by taking the infimum over the set of all u such
that J(XQ,W,U} is finite. In other words,

£(x0,w) = inf{ \Cxf + \\v-Kx 2-7
2 |H|2: v 6 L2([0, oo), W)}

= ml {\\C x + D(v - K x)^ - 72 \\w\\2 : v e L2([0,oc},U)} . (15.114)

To turn this into a least squares optimization problem, let L be the operator on L2([0, oo), X]
defined by

(£/)(*)= /V-BA')(t-T)/(r)dr ( /eL 2 ( [0 ,oo) ,A ' ) ) . (15.115)
Jo

Now let $0 be the operator from X into L2([0, oo), A') defined by $QXO = e^'^^xo where
XQ is in A*. Obviously, the state x in (15.113) is given by x = $0^0 + LBv + LEw. Moreover,
u — v — Kx = (I — KLB}v — KLEiu — K&QXQ. Now let F be the operator defined by

o),W) 1 / i K 1 1 « x
j o )

;
)Z5 J • (15-116)

Let $ be the operator from X into L2([0, oo), W) 0 £2([0, oo), Z) defined by $x0 = -^$0^0 ©
C^o^o- Finally, let PF be the operator defined by

... \KLE r 2
147 = : L

Because A — BK is stable, the operators F , $ and W are all bounded linear operators. Notice
that Cx = C$0^o + CLEw + CLBv. Using these operators we see that the optimization
problem in (15.114) is equivalent to the following optimization problem

+ Ww- TV \2-*f\\w\f : weL 2 ( [0 ,oo) ,W)} . (15.118)
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We claim that the operator F is bounded below, that is, ||Fi>|| > e\\v\\ for all v in
L2([0, oo),U) and some scalar e > 0. Once this is established, then the optimization problem
in (15.114) reduces to a simple least squares optimization problem. According to Theorem
16.2.4 in the Appendix, the cost ^(XQ,W) is uniquely obtained by the control input

v = (r*r)-lF($x0 + Ww). (15.119)

To show that F is bounded below, notice that if Ft> = g © y, then g © y is the output for
the following state space system

x = (A-BK)x + Bv (z(0) = 0)
g = -Kx + v and y = -Cx . (15.120)

Now assume that {vn} is a sequence of unit vectors such that gn®yn = Tvn approaches zero as
n tends to infinity. Let xn be the state corresponding to v n, that is, xn = (A — BK}xn + Bvn.
Then gn = —Kxn + vn and yn — —Cxn both converge to zero as n tends to infinity. This
readily implies that xn = Axn + Bgn. Because the pair {C, A} is detectable, there exists an
operator K0 from Z into X such that A + K0C is stable. Thus,

xn = (A + K0C}xn - K0Cxn + Bgn = (A + K0C}xn + K0yn + Bgn .

Because A + K0C is stable and gn © yn converges to zero, it follows that xn converges to zero
in the £2([0, oo), X] topology. Thus, v n = gn + Kxn also converges to zero. This contradicts
the fact that vn is a unit vector for all n. Therefore, F is bounded below.

Because F is bounded below the range of F is closed. Hence, the orthogonal projection
onto the range of F is given by F(F*r)""1F*. So, if 7i = (ranF)-1, then the orthogonal
projection onto Ti. is computed by Py_ = I — r(F*F)~1r*. This readily implies that the
optimal cost is given by

Therefore, the optimal cost d(xo) in the infinite horizon optimization problem (15.76) can
be expressed as

d(x0) = sup {\\PH$XQ + PHWw |2 - 72||w||2 : w <E £2([0, oo),

This is precisely the optimization problem in (15.39) with h = PH&XQ and T = P^W. So,
if d(xo) is finite, then the norm of P-^W is bounded by 7. On the other hand, if the norm
of PftW is strictly bounded by 7, then d(xo) is finite and there exists a unique optimal dis-
turbance w which attains the optimal cost d(xo). In fact, w = (72/ — W* P^W}~1W* PU^XQ
and

d(x0) = 72((72/ - PHWW^H^PH^XO, PH3>xQ) ; (15.121)

see Lemma 15.2.2. Because there exists a unique optimal v which attains the cost £(XQ,W),
the pair {w, v} uniquely attains the optimal cost d(xo). In particular, ||P^W|| is the infimum
over the set of all 7 such that d(xo) is finite. This also shows that the norm of PftW is
independent of the choice of the stabilizing feedback gain K.
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Recall that d(xo) is finite if and only if the algebraic Riccati equation in (15.81) admits
a positive solution; see Lemma 15.6.1. Therefore, ||P^W|| equals the infimum over the set
of all 7 such that the algebraic Riccati equation admits a positive solution. If the norm
of P^W is strictly bounded by 7, then the optimal cost d(xo) is uniquely obtained by an
optimal pair {W,M}, and thus, there exists a positive stabilizing solution Q to the algebraic
Riccati equation in (15.81); see Theorem 15.6.3. In other words, if the algebraic Riccati
equation in (15.81) admits a positive solution for some specified 7 = 71, then this algebraic
Riccati equation admits a positive stabilizing solution for all 7 > 71. Hence, |PftW|| equals
the infimum over the set of all 7 such that the algebraic Riccati equation admits a positive
stabilizing solution. On the other hand, if the algebraic Riccati equation does not admit a
positive stabilizing solution for some 7 = 7i, then there is no positive stabilizing solution for
all 0 < 7 < 7i. This proves part of the following result.

Proposition 15.8.1 Consider the system {A,B,C,D,E} where {A, B} is stabilizable and
{C, A} is detectable. Let K be an operator from X into U such that A — BK is stable. Let
F be the operator defined in (15.116) and PH the orthogonal projection onto (ranF)-1. Then
the following statements are equivalent.

(i) The norm of P-^W is strictly bounded by 7.

(ii) The algebraic Riccati equation in (15.81) admits a positive stabilizing solution Q.

(Hi) For the Harmltonian matrix H in (15.73), the conditions (i),(ii) and ftii) in Theorem
15.6.2 hold.

In this case, the optimal cost d(x$) = (Qxo,x0) is uniquely achieved and

Q = YX~l = 72$*PW(72/ - PUWW*\H}-1 Pu$ • (15.122)

PROOF. To complete the proof it remains to show that Part (ii) implies Part (i). If the
algebraic Riccati equation in (15.81) admits a positive stabilizing solution Q, then we claim
that the norm of P-^W is strictly bounded by 7. Recall that if Q is a positive stabilizing
solution to the algebraic Riccati equation, then A — BB*Q is stable. Because ||P^W^|| is the
infimum over the set of all 7 such that d(xo) is finite, the norm of P-^W is in independent
of the choice of K. So, without loss of generality we can choose K = B*Q. Notice that the
algebraic Riccati equation can be rewritten as

(A ~ BB*Q)*Q + Q(A - BB*Q) + ~f~2QEE*Q + C*C

where C — [B*Q C]tr. By replacing C by C in Proposition 14.7.5, we see that the H°° norm
of

™ - I" B*Q(sI ~A + BB*Q)~1E

is strictly bounded by 7. Notice that W is the Laplace transform of W with K = B*Q,
that is, C(Ww) = W£(w). Thus, the operator norm of W equals the H°° norm of W. This
readily implies that the norm of W is strictly bounded by 7. In particular, the norm of
P-xW is strictly bounded by 7. Therefore, the algebraic Riccati equation in (15.81) admits
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a positive stabilizing solution if and only if the norm of P-^W is strictly bounded by 7.
The formula in (15.122) follows from (15.121) along with d(xo) = (Qxo,x0) when Q is the
stabilizing solution. •

Now consider the system {A, B,C, D,E} where A is stable. Let T from L2([0,oo), W)
into L2([0,oo),Z) and F from L2([0,oo),W) into L2([0,oo),Z) be the operators defined by

rt ft
(Tw)(t)= CeA(t-T}Ew(T)dr and (Fu)(t) = CeA(t-r}Bu(r) dr. (15.123)

Jo Jo

Let C0 be the operator from X into L2([0,oo),Z) defined by COXQ = CeAtxo where XQ is in
X. Because A is stable T, F and C0 are all bounded linear operators. In this case, we can
set K to be zero. Then the operators F and W in (15.116) and (15.117) reduce to

p j and W = ̂  J . (15.124)

The orthogonal projection onto H — (ranF)-1 is given by PH = I - F(r*r)"1r*. Let R* be
the positive square root of (7 + FF*)-1. Then for h in 7,2([0, oo), W), we have

\\pnwh\\2 = \\wh\f -
= \\Th\\* - (rcrr)-1!1*^ e T/I), (o e T/I))
= \\Thf - (F(I + F*F}~lF*Th, Th)

= \\Th\\2- ((I + FF*)~lFF*Th,Th)

Hence, ||PwVWi|| = \\R*Th\\ for all h in L2([0, oo), W). This readily implies that \\PUW\\ < 7
if and only if 72/ — TT* + ̂ 2FF* is strictly positive. In particular, Proposition 15.8.1 shows
that the algebraic Riccati equation in (15.81) admits a stabilizing solution if and only if
72/ — TT* + 72FF* is strictly positive. If Q is the stabilizing solution, then Theorem 15.2.3
and Proposition 15.8.1 yield

(Qx0, XQ) = d(xo) = ̂ (Cltfl - TT* + ̂ FF*)~lC0x0, XQ) .

This readily implies that Q - 72C*(72/ - TT* + 72FF*)-1C0. Summing up this analysis
proves the following result.

Corollary 15.8.2 Consider the stable system {A, B, C, D, E}. Let T and F be the operators
defined in (15.123) acting between the appropriate L2([0,oo), •) spaces. Then the following
statements are equivalent.

(i) The the operator 72/ — TT* + ^2FF* is strictly positive.

(ii) The algebraic Riccati equation in (15.81) admits a positive stabilizing solution Q.

In this case, Q = 72C*(72/ - TT* + 72FF*)-1C0 .



288 CHAPTER 15. H°° CONTROL

Let p(x0,7) be the optimal cost in the infinite horizon optimization problem in (15.76).
Notice that the cost function q(w,u,'j) = \\z\\2 — 72||w||2 is decreasing in 7, that is, if
0 < 71 < 72, then q(w,u,^\) > <?(«;,«, 72). Hence, p(x0,

rj) is also decreasing. So, if Q7

denotes the stabilizing solution to the algebraic Riccati equation for the parameter 7, then
Q~f is a decreasing set of positive operators, that is, <57l > Q-y2 when 0 < 71 < 72- Now let
7oPi = H-P^W |. Then ^opt is the infimum over the set of all 7 such that the algebraic Riccati
equation admits a positive stabilizing solution. One can use Theorem 15.6.3 to compute ^opt.
If 7 > 7opi and 7 converges to 7opt, then the positive stabilizing solution Q7 increases with
decreasing 7. Moreover, if 7 < ^opt. then at least one of the three conditions in Theorem
15.6.2 will fail. Typically what happens is that for 7 = 7opt, the operator X in condition (ii)
is singular. Let 70 > 0 be the largest scalar such that the Hamiltonian matrix has eigenvalues
on the imaginary axis. Then for 70 < 7 < 7opt the stabilizing solution may exist, however
it is not positive. Finally, for 0 < 7 < 70 the Hamiltonian matrix has eigenvalues on the
imaginary axis.

Exercise 38 Consider the stable system {A, B, C, D, E}. If the algebraic Riccati equation
in (15.81) admits a positive stabilizing solution, then the Hamiltonian matrix H in (15.73)
has no eigenvalues on the imaginary axis. However, even for a stable system the converse
is not necessarily true. In other words, if the Hamiltonian H has no eigenvalues on the
imaginary axis and A is stable, then it does not necessarily follow that algebraic Riccati
equation admits a positive stabilizing solution. For a counter example, let {A, [B,E},C,Q}
be any minimal realization of

[ 3( l - s ) / ( s+l ) 2 3/(s + 1) ] = C(sl - A}'1 [ B E } .

Here B and E can be viewed as column vectors in C2. Then compute the stabilizing solution
Q for the corresponding algebraic Riccati equation and show that this Q is not positive.

15.9 A tradeoff between norms

In this section, we derive a bound to demonstrate a tradeoff between minimizing the operator
norm and the Z/2 norm of a closed loop input output system.

15.9.1 The L2 norm of an operator

Let M be an operator on a finite dimensional space W. The trace of M is defined by

trace(M) = ]T(M0i, <fc) (15.125)
i=i

where {</>;}" 'IS an orthonormal basis for W. The trace of M is independent of the orthonormal
basis chosen for W. To see this, let {ipi}™ be another orthonormal basis for W. So, if / and
g are vectors in W, then we have (/, g) = E(f,ijjj)(ipj,g). This fact readily implies that

1=1 j=l j=l 1=1
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3=1 j=l

Therefore, the trace of M is independent of the choice of the orthonormal basis.
Now let M be an operator mapping W into Z where W and Z are finite dimensional

spaces. Let AT be a linear operator mapping Z into W. Then it is an easy exercise to
verify that trace(NM) — trace(MJV). Using the trace, one defines the Hilbert-Schmidt
inner product on the set of all linear operators mapping W into Z by

(M, R)HS = trace(M/T) - trace(/TM) - (M0i, R&) (15.126)
t=i

where M and R are linear operators mapping W into Z and {</>i}" is an orthonormal basis
for W. The Hilbert-Schmidt inner product is independent of the choice of the orthonormal
basis. The Hilbert-Schmidt norm of M is defined by

n

\\M\\]jS = (M, M)HS = trace(MM*) = trace(M*M) = ̂  I Wif (15.127)
i=l

where {0i}" is an orthonormal basis for W. The Hilbert-Schmidt norm, denoted by || • \\jjs,
is independent of the choice of the orthonormal basis. It should be clear from (15.127) that
||-W||#s = ||M*||//S. Obviously, the set of all linear operators mapping W into Z is a Hilbert
space under the Hilbert-Schmidt inner product. We denote this Hilbert space by W(W, -H).
One can define Hilbert-Schmidt norms on infinite dimensional spaces; see [59]. However, the
infinite dimensional setting is not needed in our work.

Now consider the Hilbert space L2([0,£i] ,H(W,Z)} under the inner product

(M, R e L2([0,ti],W(W,Z))) . (15.128)
rti

(M,R)2= \
Jo

The norm induced by the above inner product is called an L2 norm. For a given operator
M in the above Hilbert space, the I/2 norm of M is denoted by ||M||2 and is given by

\\M\\l = f trace(M(a)M(<7)*)d<7= / ' trace(M(<r)*M(a)) da . (15.129)
Jo Jo

15.9.2 The L2 norm of a system

In this section we introduce the I/2 norm of a linear system. Consider the linear system

x = Ax + Ew and z- Cx (15.130)

where A is an operator on X while E maps W into X and C maps X into Z. As before, the
spaces W, X and Z are all finite dimensional. This is precisely the system in (15.1) with
B and D equal to zero. Let us consider the behavior of this system over some time interval
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[0,£i] where t\ > 0. Consider any initial state XQ in X and any input w in L2([0, ti], W).
Then with initial condition x(Q] = x0, the output z is in L2([0, t i ] , Z ) and is given by

z = C0x0 + Tw (15.131)

where G0 is the observability operator from X into L ' 2 ( [ Q , t i ] , Z ) defined by

(C0x0)(t) = CeAtx0 (x0 € A1). (15.132)

The linear operator T maps L 2 ( [0 , t i ] , W) into L 2 ( [ Q , t i ] , Z ) and is defined by

ft
(Tw)(t)= I G(t-T}w(r)dr (w € L2([0, i:], W)) (15.133)

7o

where
G(t) = CeAtE. (15.134)

Assume that the initial state x0 equals zero. Then z = Tw and the behavior of system
(15.130) is completely described by T. We refer to T as the input output map for system
(15.130).

Let 0 be any vector in W. Then the impulse response corresponding to (f) for T is the
output z — Tw obtained by choosing the input w(t) = 5(t)<f> where 5 is the delta function.
Recall that if / is any continuous function, then Ja 5(a}f(a] da — /(O) when a < 0 < b.
This readily implies that the impulse response corresponding to (f) is given by

T(6<t>}(t] = G(t)<t>. (15.135)

So, G is simply referred to as the impulse response for T or the impulse response for system
(15.1). Recalling the definition of the observability operator C0, we see that

T(5<i>) = C0E<I>, (15.136)

that is, the zero initial state response of system (15.130) to input w — 6(/> is the same as the
response of the system to w = 0 and initial state XQ = E<p.

By a slight abuse of notation we define the L2 norm of T or the L2 norm of system
(15.130) by

\\T\\l = f l trace(G(<r)(?(ff)*) da = f ' trace(G(a)*G(a)) da . (15.137)
Jo Jo

Recalling the definition of G, we obtain that

\\T\ 1= I' toac.e(Ce.A<rEE*eA*aC*}da = / ' trace(EV4VG*GeACT£)rf<7 . (15.138)
Jo Jo

Notice that the L2 norm of T is precisely the L2 norm of the impulse response for T. In
other words, the L2 norm of T is simply the L2([0, ̂ ], ft(W, Z ) } norm of G where G is the
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impulse response for the system in (15.130) with a:(0) = 0. Consider any orthonormal basis
{&}" for W. Then

\\T\\l = f l tmce(G((rYG(a)) dcr = I V
Jo Jo i=1

that is,

i 2 - (15-139)
Remark 15.9.1 Let T be the input output operator from L2([0, ii],W) into L2([0, t i ] , Z ]
defined in (15.133). By combining (15.138) with Lemmas 4.3.1 and 5.3.1, we see that the L2

norm of T is given by

||T||2 = trace(CX(*i)C*) = trace(E*y(t1)JB) . (15.140)

Here X and Y are the solutions to the Lyapunov differential equations

X = AX + XA* + EE* and Y = A*Y + YA + C*C (15.141)

subject to the initial conditions X ( 0 ) = 0 and Y(Q) = 0.
Moreover, if t\ — oo, and A is stable, then the I/2 norm of T is given by \\T\\2 —

tra,ce(CXC*) — trace(E*YE), where X and Y are the solutions to the Lyapunov equations

AX + XA* + EE* = 0 and A*Y + YA + C*C = 0 . (15.142)

15.9.3 The L2 optimal cost
Now let us return to the linear system in (15.1), that is,

u and z = Cx + Du (15.143)

where D is an isometry satisfying D*C = 0. Recall that w is the disturbance input, and u
is the control input. We wish to design a feedback controller for u which the minimizes the
effect of the disturbance w on the output z. Recall that T is the operator from I/2([0, ti], W)
into £2([0, ti],Z~) defined in (15.133) and C0 is the observability operator mapping X into
L2([0,ti],2:) defined in (15.132). Finally, let F be the operator mapping L2([0,ti],W) into
L2([0,ti],Z) defined by

rt
(Fu)(t)= \ CeA(i^Bu(r}dr (u € L2([0,ti],W)) . (15.144)

Jo
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Then, with initial condition rr(0) = XQ, we have

z = COXQ + TW + FU + DU. (15.145)

Consider now zero initial state, that is, XQ = 0. Then, recalling Section 15.4, any admis-
sible linear feedback controller can described by

u = Zw (15.146)

where Z is an operator from L2([t0, ti], W) into I/2([t0, ti], W). The closed loop system (with
XQ — 0) corresponding to the feedback controller (15.146) applied to system (15.143) satisfies

z = Tzw (15.147)

where Tz is the operator from L2([t0,*i], W) into L2([t0,ti],Z) given by Tz =
We refer to TZ as the input output map for the closed loop system. This leads to the design
problem of finding an operator Z to minimize the effect of the disturbance w on the output
z. So, the idea is to compute an operator Z to minimize the norm of TZ- However, this
minimization problem clearly depends upon which norm of TZ we use. In this section we
concentrate on minimizing the L'2 norm of TZ defined by

n\\TZ\\I =Y.\\TZ(^\*1=1
where {4>i}n is an orthonormal basis for W. This leads to the following optimization problem:
Find an operator Z to solve the minimization problem

d2 = inf \\TZ\\2. (15.148)
£i

We refer to d^ as the optimal L2 norm associated with the original system (15.143).
To obtain a solution to this Z/2 optimization problem, consider any feedback operator

Z. Choose any vector 0 in W and let w = 50. Using (15.145) and (15.136), the output
z — Tz(8(j)) is given by

Fu + Du = C0E(f> + Fu + Du

where u = Zw. Using the fact that D is an isometry and D*C = 0, we obtain that

IMP = \\CoE4 + Fuf + \\u\\2 . (15.149)

Hence, ||Tz(<50)||2 is the cost in the linear quadratic regulator problem discussed in Section
12.1 with XQ — E(f). Recalling Theorem 12.1.1, we have

) (15.150)

where P2 is the solution to the Riccati differential equation

P2 + A*P2 + P2A - P2BB*P2 + C*C - 0 (P2(ti) = 0) . (15.151)
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Moreover, equality is achieved if and only if u(t) = u2(t) = —B*P2(t)x2(t) where the optimal
state trajectory x2 is given by x2 = (A — BB*P2)x2 with £2(0) = E(f>. Recall that this
Riccati differential equation does not have a finite escape time. Also, Remark 12.2.1 shows
that P2(0) = C*(I + FF*}~1C0. Noticing that x2 = x where

x = Ax + Bu2 + E(6(f)) with z(0) = 0 ,

we see that x2 is the state response of system (15.143) when u = u, w — £0 and XQ = 0.
Thus, u2 = Z2w where the feedback operator Z2 corresponds to the admissible controller
given by

u(t) = -B*P2(t)x(t). (15.152)

Thus, for any vector 0 in W, we have

(£*P2(0)E0, 0) = ||7y<50)||2 < ||TZ(<50)||2.

Consider now any orthonormal basis {0i}" in W. Then, for any operator Z, we have

n n

\\Tz\\l = E \\Tz(84>i)\\* > ^(£^2(0)^,00 - trace(£*P2(0)£) ,
t=l i=l

while
n n

\\Tz2\\l = E \\Tz2(^}\\2 = ̂ (^^(0)^,00 = trace^'/MO)*;) .
t=i t=i

Thus,
tiace(E*Pi(Q)E) = \\T23\\*< \\Tz\\*

and the optimal solution to the I/2 optimization problem in (15.148) is given by Z2 and the
optimal L2 cost is given by

dl = trace(£*P2(0)£) - trace(E*C^(/ + FF*ylC0E} . (15.153)

Summing up this analysis yields the following result.

Theorem 15.9.1 Consider the system {A,B,C,D,E} and let P2 be the solution to the
Riccati differential equation in (15.151). Then the optimal cost d2 for the L2 optimization
problem in (15.148) is given by d^ = trace(E*P2(Q)E). Moreover, this optimal cost is obtained
by the optimal controller u = —B*P2(t)x.

15.9.4 A tradeoff between doo and di

Consider system (15.143) with x(0) = 0 and subject to an admissible linear controller. Then,
the controller can be described by u = Zw where Z is an operator from L2([0, £1], VV) into
L2([0, £i] ,W). Then, as before, the resulting closed loop system satisfies z = TZW where TZ
is the operator from L2([0, «i], W) into L2([0, ti], Z) defined by Tz = T + FZ + DZ. Recall
from Section 15.3 that the problem of finding an admissible controller for u to minimize the
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operator norm from the disturbance input w to the output z, leads to the following operator
optimization problem:

doo = inf Tz\ . (15.154)
Zi

Here d^ is the optimal cost with respect to the operator norm. According to Theorem 15.4.1,
the optimal cost d^ — \\(I + FF*}"l^T\\. Moreover, d^ is the infimum over the set of all
7 > 0 such that the Riccati differential equation in (15.8) has a solution over the interval
[O.ti].

Now let Q be any scalar satisfying g > I . Let P be the solution to the Riccati differential
equation in (15.8) with 7 = gd^. Let u = —B*Px be the central controller corresponding
to the weight 7 = Qd^. The state x and output z corresponding to this central controller is
given by

x = (A - BB*P}x + Ew and z=(C-DB*P}x. (15.155)

Furthermore, the input output operator T7 from L2([0, ii], W) into L2([0, ti], Z) associated
with the central controller is given by

/•*
(T^w)(t}= I (C-DB*P(t}}^(t,r}Ew(r}dr («; 6 L2([0,<i], W)) (15.156)

Jo

where ^ is the state transition matrix for A — BB*P. According to Theorem 15.4.1, the
norm of T7 is strictly bounded by 7 = Qd^. The following result provides a bound on the
L2 norm of T7.

Theorem 15.9.2 Let Q be a scalar satisfying Q > 1 and set 7 = gd^. Let P be the solution
to the Riccati differential equation in (15.8) on the interval [0,£i]. Let u = —B*Px be the
central controller for {A, B, C. D, E]. Then

|f7||2 < _ L = . (15.157)

In particular, if Q = V2, then

and ||T7 2 < Vld2 . (15.158)

PROOF. Corollary 15.1.2 guarantees that \\T-y\\ < gd^. To obtain an upper bound on the
L2 norm of T7, notice that for u = —B*Px and (f> in W we have

u\\2 - 72||0|2 < d(E<t>]

= 72(£*C0*(7
2/ - TT* + ~f2FF*rlC0E<f), 0).

The inequality follows from the last statement in Corollary 15.1.2 with x0 = E(f>. The last
equality is a consequence of (15.47) in Theorem 15.2.3. This readily implies that

- TT* + ^FF*ylC0E]. (15.159)
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We claim that
n2( T i C1 Z?*^-!

7
2(7

2/ - TT* + 7'FF*)-1 < Q ( / } . (15.160)
£2 - 1

Notice that if (15.160) holds, then (15.159) and (15.153) imply that ||f7||jj < @2d2,/(g2 - 1)
which finishes the proof. So, to complete the proof let us verify that (15.160) holds when
7 = gdoo. To this end, recall that d^ equals the norm of N = (I + FF*}~l/2T. Using NN* <
d^I we readily see that d^I - TT* + d^FF* is positive. Hence, -d^(I + FF*) < -TT*.
By adding Q2dlc(I + FF*) to both sides, we obtain

(e
2 - !)<&(/ + FF*) < (fdll - TT* + £2<4FF*).

Recall that if M and R are two strictly positive operators on Ji satisfying M < R, then
R'1 < M^1; see Lemma 14.4.3. Using this and 7 = gd^ in the previous expression, yields

I T | C1 C1*^—1
2 * 2 * - 1 ( + }

Multiplying both sided by g2djx gives (15.160). •
Finally, it is noted that Theorem 15.9.2 also shows that the central solution converges to

the optimal I/2 solution of the optimization problem in (15.148) as Q tends to infinity.

Remark 15.9.2 Let Q be a scalar satisfying g > I and set 7 = Qd^. Let P be the solution
to the Riccati differential equation in (15.8) on the interval [0,ii]. Let P2 be the solution
to the linear quadratic Riccati differential equation in (15.151). By employing Equation
(15.160) along with F2(0) - C*(I + FF*)~1C0 and F(0) = 72Q(72/ - TT* + 72FF*)~1C'0,
we obtain

P(0)<22F2(0)/V-1). (15.161)

15.10 A tradeoff between the H2 and H°° norms.

In this section, we present an infinite horizon version of Theorem 15.9.2. Consider system
(15.143) where {A, B} is stabilizable and {C,A} is detectable. Suppose x(0) — 0. Then an
admissible linear controller can be described by u = Zw. As before, the resulting closed loop
system satisfies z — TZW where TZ is the linear map defined by TZW — 0(0, w, Zw). The L2

norm of TZ is defined by

n n ,,00

dt

where {0i}n is an orthonormal basis for W. The optimal norms p2 and p^ are defined by

P2 = inf ||TZ||2 and Poo = inf ||TZ||. (15.162)

Let V be a stable strictly proper rational transfer function with values in £(W, Z). Then
the L2 norm of V is defined by |V||2 = \V |2 where V is the inverse Laplace transform of
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V and \\V\\2 is the L2([0, OQ),H(W,Z}) norm of V. Notice that if J is the operator from
L2([0,oo), W) into L2([Q,oc),2) denned by

(J/)(t) = f V(t- T)U(T) dr (u e L2([0, oo), W)) ,
7o

then || J||2 = ||V||2. This sets the stage for the following result.

Theorem 15.10.1 Consider the system {A,B,C,D,E} where {A,B} is stabilizable and
{C,A} is detectable. Let g be a scalar satisfying g > 1 and set 7 = Qp<x- -(/"G7 is the central
feedback transfer function, then

IIGJoo < ppoo and ||G7 2 <-/==• (15.163)

In particular, if g — \/2, then

| G7||00 < V2Poo and |G7||2 < v/2p2 - (15.164)

PROOF. The inequality ||G7||oo < 7 follows Proposition 15.7.1. Let 0 be any vector in W
and consider the following optimization problem

p2(0)2 = inf {||<7z||2 + H|2 : a; = Ax + Bu and x(0) = £0} . (15.165)

Notice that this is precisely the infinite horizon linear quadratic regulator problem solved
in Theorem 12.8.1 with XQ = E(f>. The optimal cost p2(</>)2 = (Q2E(f>,E(/)) where Q2 is the
unique positive solution to the algebraic Riccati equation

A*Q2 + Q2A-Q2BB*Q2 + C*C = Q. (15.166)

Notice that for any Z, we have ||Cx||2+ ||w||2 = |0(0, 50, ZSfi) \\ where 5 is the delta function
and u = ZS4>. This implies that p2 = Y^\ pK^j) where {4>j}i is an orthonormal basis for W.
Therefore, p2 = trace E*Q2E.

Now let doo(*i) = doo be the optimal norm defined in (15.64) where Z is an operator
from L2([0,ti], W) into Z/2([0, ii], U}. It is easy to show that doo(ti) is increasing, that is,
if t < a, then d^t) < ^(a). In particular, doo(t) < p^ for all t. Recall that doo(^i)
equals the infimum over the set of all 7 such that the Riccati differential equation in (15.8)
has a solution over the interval [0,ii]. In particular, p^ is greater than or equal to the
infimum over the set of all 7 such that there exists a uniformly bounded solution to the
Riccati differential equation in (15.8). However, if there exists a uniformly bounded solution
to this Riccati differential equation for some specified 7, then the central controller provides
a causal feedback operator satisfying p^ < ||G7||oo < 7. Therefore, p^ equals the infimum
over the set of all 7 such that the Riccati differential equation in (15.8) admits a uniformly
bounded solution. Moreover, doo(ti) converges to p^ as t± tends to infinity.

Assume that the algebraic Riccati equation in (15.81) admits a positive stabilizing so-
lution Q, and let u = —B*Qx be the central controller. Let C = C — DB*Q and Ac =
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A — BB*Q. Because Ac is stable, the form of the algebraic Riccati equation in (15.110)
along with (15.104) yields

/

°°
E*eA«

/

oo .

E*eA*«° (^-2QEE*Q + C*C) eA*°Edo = trace E*QE .

The equality is a consequence of (15.167) in Exercise 39. Hence, ||G7||2 < trace E*QE.
Recall that 7 = gp^ where Q> 1. Notice that P2(0) = JM*i) in (15.151) and P(0) = fi(ti)
in (15.8) both depend upon the final time t\. Moreover, by letting t\ approach infinity, it
follows that ^2(^1) approaches Qi and fi(ri) approaches Q as t\ tends to infinity. Recall that
d<x>(ti) approaches p^ as t\ tends to infinity. So, by passing limits in (15.161), we arrive at

HGJ2, < trace E*QE < £2trace£*Q2£/(£2 - 1) = tfpiKtf - 1) .

This proves the second inequality in (15.163). •

Exercise 39 Assume that Q is a self- adjoint solution to the algebraic Riccati equation in
(15.81) and Ac = A - BB*Q is stable. Then show that

/•oo

Q= / eA'"(^QEE*Q + C*C + QBB*Q}eA<ada. (15.167)
Jo

15.11 Notes
This chapter concentrates on the full information H°° control problem, and is only a brief in-
troduction to H°° control theory. The main purpose was to show how elementary techniques
from operator theory can be used to gain some further insight into a fundamental H°° control
problem. There are many different ways to solve the finite horizon optimization problem in
(15.5) and derive the corresponding two point boundary value problem. For example one can
use the calculus of variations and game theory; see Green-Limebeer [57], Limebeer-Anderson-
Khargonekar-Green [83] and Basar-Bernhard [13]. The derivation of the Riccati differential
equation from the two point boundary value problem is classical. The papers of Peterson [96]
and Khargonekar-Peterson-Rotea [76] initiated the study of the full information H°° control
problem. The full information control problem in the infinite horizon case and many other
H°° control problems were solved in Doyle-Glover-Khargonekar- Francis [38]. For a histori-
cal account of the full information H°° control problem see Section 6.4 in Green-Limebeer
[57]. The H°° filtering problem is the dual of the full information H°° control problem.
By combining the full information control and filtering problems, one can solve a general
H°° control problem. This and many other results in H°° control theory are presented in
Green-Limebeer [57] and Zhou-Doyle-Glover [131]. For some further results in H°° control
theory see Basar-Bernhard [13], Burl [23], Chui-Chen [27], Doyle- Francis-Tannenbaurn [37],
Helton [63], Francis [44] and Mustafa-Glover [92].

The central solution presented in Sections 15.1 and 15.7 is a causal controller whose
norm is bounded by 7. One can show that the set of all causal controllers whose norm is
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bounded by 7 is parameterized by the unit ball in some Banach space; see Green-Limebeer
[57] and Zhou-Doyle-Glover [131]. The central solution is simply the solution corresponding
to zero in the parameterization of all solutions. The central solution is also the maximal
entropy solution studied in Mustafa-Glover [92]. The trade off between d? and d^ presented
in Section 15.9 was taken from Rotea-Frazho [107]. This result is a special case of the fact
that the central solution in the commutant lifting theorem satisfies a similar bound; see
Foias-Frazho-Gohberg-Kaashoek [41]. Kaftal-Larson-Weiss [66] were the first to show that
the central solution in the Nehari interpolation problem satisfies the corresponding bound
in (15.157) between the H'2 and H°° norm. This result was extended to the general setting
of the commutant lifting theorem in Foias-Frazho [40] and Foias-Frazho-Li [42]. Finally, it
is noted that the set of all solutions in the commutant lifting theorem can be parameterized
by the closed unit ball in some H00^,^) space; see Foias-Frazho-Gohberg-Kaashoek [41].
This is a operator theoretic generalization of the parameterization of all controllers in H°°
theory.

Glover [52] was the first to use state space techniques to solve the rational Nehari inter-
polation problem. For a nice reference on how state space techniques can be used to solve a
large number of interpolation problems for rational functions with applications to H°° con-
trol theory see Ball-Gohberg-Rodman [10]. Sarason [112] used operator techniques to solve
some H°° interpolation problems. Using dilation theory Sz.-Nagy-Foias [119] developed an
operator interpolation result known as the Sz.-Nagy-Foias commutant lifting theorem. The
commutant lifting theorem can be used to solve many H°° interpolations problems. For
further results on the commutant lifting theorem and its applications see Foias-Frazho [39],
Foias-Frazho-Gohberg-Kaashoek [41] and Rosenblum-Rovnyak [104].



Chapter 16

Appendix: Least Squares

In this chapter we introduce and use the Projection Theorem to solve some basic least squares
optimization problems. This naturally leads to the pseudo inverse of an operator. Then we
will develop the singular value decomposition for finite rank operators. Some examples from
linear systems will be given.

16.1 The Projection Theorem

To establish some notation, let H be a Hilbert space. Then two vectors / and g in "H are
orthogonal, denoted by / _L g , if (/, g) = 0. We say that a vector / is orthogonal to a subset
A4 of 7i, denoted by / _L M., if / is orthogonal to every vector g in M.. Two subsets M. and
A/" of T~L are orthogonal, denoted by M _L A/", if every vector / in M. is orthogonal to every
vector g in A/". We say that .M is a subspace of Ti. if M. is a closed linear space contained in
H.. (A subset of Ti. is closed if it contains all its limit points.) The subspace M. can be zero
{0} or the whole space H.. Finally, if A4 is any subset of 7i, then the orthogonal complement
of M is the subspace of H defined by ML : = {/ € H : f JL M}.

Let h be a vector in H and M a subspace of H. A basic least squares optimization
problem is to find an element h in M., which is closer to h than any other element of M.
This naturally leads to the following optimization problem:

d(h,M): = nA{\\h-g\\:g£M}. (16.1)

The distance from h to the subspace M. is defined as d(h, M}. By a slight abuse of termi-
nology we sometimes abbreviate the above optimization problem as d(h, M.} — inf \\h — M.\\.
Because M. is closed, it follows that the distance from h to M. is zero if and only if h is a
vector in M.. The following theorem, known as the Projection Theorem, states that there
is a unique vector h in M. which achieves the minimum, that is, d(h,M) = \\h — h\\. The
Projection Theorem plays a fundamental role in operator theory.

Theorem 16.1.1 (Projection Theorem.) Let M. be a subspace of a Hilbert space H..
Then for every h in Ji, there exists a unique vector h in M. solving the following optimization
problem:

\\h-h\\=u£{\\h-g\\:g€M}. (16.2)

299
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Moreover, h is the only vector in M. such that h — h is orthogonal to Ad, that is, if f ^s any
vector in M. and h — f _L M., then f = h is the unique solution to the optimization problem
in (16.2). Finally, i f h = h — h, then the distance d(h,M] = \\h\\ is given by

h\f (16.3)

If h is the unique solution to the optimization problem in (16.2), then we say that h is
the orthogonal projection of h onto the subspace M.. The orthogonal projection onto M. is
denoted by PM.I that is, h = Pj^h. In other words, Pj^h is the unique vector in M. which
comes closest to h. Obviously, h is in M. if and only if h = Pj^h- Finally, it is noted that
the range of PM equals M..

We will not present a proof of the Projection Theorem. However, we will establish a few
important facts concerning this theorem. In many applications, one computes the orthogonal
projection h = PM/I by finding the unique vector h in A4 such that h — h is orthogonal to
M.. So, let us directly show that if h is in M. and h — h is orthogonal to A1, then h is the
unique solution to the optimization problem in (16.2), and thus h = PM/I. To see this, recall
that if x and y are any vectors in 7i, then

Let g be any vector in M.. Then, using x = h — h and y — h — g, we have

\\h-g\\2 = \\h-h + h-g\2 = \\h-h\\2+ 2ft(h-h,h-g) + h - g\\2

= \\h-h\*+\\h-g\\2. (16.4)

Notice that (h— h,h — g) = Q because h — g is in the linear space M. and h — h is orthogonal
to M. Equation (16.4), yields

(16.5)

This readily implies that

- h\\2 < mf{\\h - g\\ d(h,M)2

Because h is in .M, it follows that we have equality, that is, \\h — h\\ = d(h,M.}. Equation
(16.5) also shows that h is the only solution to the optimization problem in (16.2). If g is
another solution to this optimization problem, then \\h — g\\ — \\h-h\\. By consulting (16.5),
this implies that ||/i — g\\2 = 0. Hence, h = g which proves our claim.

To establish (16.3), recall that h — h is orthogonal to M.. Since h is in Ai, it follows that
(h — h, h) is zero. Using this we have,

i2 = \\h-h + h\\2 = \\h-h\\2

h-h\\2 + \h\\2.
\\h

Hence, \\h - h\\2 = \\h\\2 - \\h\\2. This result and h : = h - h yields (16.3).
As before, let h be the orthogonal projection of h onto the subspace M.. Observe that

h = h + h where h = h — h. According to the Projection Theorem h is orthogonal to M.,
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that is, h is a vector in M^~. Therefore, every vector h in H admits a unique orthogonal
decomposition of the form h = h + h where h is in A4 and h is in M.L. In fact, h is
the orthogonal projection of h onto M and h is the orthogonal projection of h onto M^.
Moreover, |/i||2 = \\h\\2 + ||^||2- Motivated by this decomposition, we introduce the notation
H = J\A © M. This means that M and A/" are two orthogonal spaces which span H, that
is, every vector h in Ti. admits a unique orthogonal decomposition of the form h = h + h
where h is in M., while h is in A/" and the subspace M. is orthogonal to A/". If H — M. © A/",
then obviously A/* = A/l-1. If 7i = ©"A^lj, then A/fi, ̂ 2, • • • > A/In are n pairwise orthogonal
subspaces which span H. If A/1 and 72. are two subspaces satisfying M. C 72., then 72. © A/f
denotes the orthogonal complement of M. in 72., that is, 72. © A/1 = {# £ 72. : g JL M.}.
Obviously, ML = HQM.

Recall that PM is the orthogonal projection onto the subspace M, that is, h = PM/I
where h is the unique solution to the optimization problem in (16.2). We claim that PM is
a positive operator on 7i satisfying PM = PM = PM- Moreover, the range of PM equals M.
and 0 < PM < I. To verify this, first notice that PM is a mapping from H. into 7i whose
range equals M.. If h is in A/I, then obviously, PX/I = /i . Hence, PM = PM- Now let
us show that PM is a linear map, that is, PM(«/ + /5/i) = aPM/ -t- /3P.M/1. f°r a-H vectors
/,/i in 7i and scalars a,/?. To this end, let / = PM/ and h = PMh. Clearly, the vector
ah + (3f is in the subspace A4. Because both / — / and h — h are orthogonal to A/1, it
follows that a/ + /3/j. — (af + (3h) is also orthogonal to A4. By the Projection Theorem
ah + fif must be the orthogonal projection of ah + f3f onto the subspace M.. Therefore,
PM(oih + /?/) = aPMh + /3PM/- In other words, P^ is a linear map. Recall that any vector
h in 7i admits an orthogonal decomposition of the form h = h + h where h — P^h and h is
in M.-1. Using this, we obtain

\\PMh\\2 = \\h\\* < \\h\\* + \\h\\* = \\h\f.
So, ||PM|| < 1- Therefore, the orthogonal projection is a bounded operator. Finally, notice
that for any h in 7i, we have

(PMh, h) = (h,h + h) = (h, h) < (h, h ) .

This readily implies that 0 < PM < I- In particular, PM is a self-adjoint operator. Therefore,
the orthogonal projection is an operator satisfying PM — PM = PM-

An operator P on 7i is an orthogonal projection if P = PM where PM is an orthogonal
projection onto some subspace M.. For example, if PM is an orthogonal projection onto
M., then it is easy to verify that I — PM is the orthogonal projection onto A/I1, that is,
/ — PM = PM-L- We claim that an operator P on 7i is an orthogonal projection if and
only if P = P2 = P*. In this case, P = PM where M = ranP : = PH. (The range of an
operator is denoted by ran.) To prove this fact it remains to show that if P = P2 = P*,
then the range of P is closed and P = PM where M. — ran P. Notice that for any h in 7i,
we have \\Phf = (P*Ph,h) = (Ph,h) < \\Ph\\ \\h\\. This implies that \\Ph\\ < \\h\\. Thus,
P is a contraction, that is, ||P|| < 1. To show that the range of P is closed, let {hn}^° be
any convergent sequence of vectors in the range of P with limit h. We need to show that h
is in the range of P. Since P is a bounded operator, it follows that the sequence {Phn}^
converges to Ph. Because P2 = P and hn is in the range of P, it follows that Phn — hn for
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all n. Hence the sequence {P/in}0° converges to h and therefore, Ph — h. This implies that
h is in the range of P. Finally, using P — P2 = P * , a simple calculation shows that h — Ph
is orthogonal to PJi. By the Projection Theorem, h = Ph is the orthogonal projection onto
the range of P, that is, P = PM where M. = ran P. This completes the proof.

16.2 A general least squares optimization problem

This section presents some elementary methods to compute the orthogonal projection. Then
these results are used to solve a least squares optimization problem. Some of these results
play a fundamental role in the theory of controllability and observability for linear systems.
Throughout the rest of this chapter all operator are bounded operators.

First, let us establish some terminology. Consider any Hilbert spaces U and y and let
T be an operator from U into 3^ Recall that the kernel (or null space) of T is denoted by
kerT, that is,

kerT= {u£U:Tu = 0} . (16.6)

Notice that the kernel of T is closed. The Projection Theorem shows that U. admits an
orthogonal decomposition of the form

ZY = kerT0(kerT)-L . (16.7)

The closure of a set At in a Hilbert space, denoted by M., is the smallest closed subset of
H. which contains M.. It consists of all the elements of M. along with all the limit points of
M. It should be clear that (M ) = A41. Recall that the range of an operator T mapping
U into y is denoted by ran T, that is,

TW = {Tu : u^U] . (16.8)

Since (ranT)1 = (ranT)1, the Projection Theorem shows that y admits an orthogonal
decomposition of the form

3^ = ranT® (ranT)1. (16.9)

We are now ready to present the following fundamental result for operators.

Lemma 16.2.1 Let T be an operator mapping IA into y. Then

(kerT)1 = ranT* and kerT = (ranT*)1 (IG.lOa)

(kerT*)1 = ranT and kerT* - (ranT)1. (IG.lOb)

In particular, T maps (kerT)1 into (kerT*)1, andT* maps (kerT*)1 into (kerT)1.

PROOF. We first show that the second equation in (IG.lOa) holds, that is, kerT = (ranT*)1.
Let u be in kerT. Then for all y in 3^, we have 0 = (Tu,y) = (u,T*y}. Thus, u is orthogonal
to T*y for all y in 3^- This shows that u is in (ranT*)1. Therefore, kerT C (ranT*)1.
On the other hand, if u is in (ranT*)1, then 0 = (u,T*y) = (Tu,y) for all y in 3^- By
setting y = Tu, we obtain 0 = (Tu,Tu). So, Tu = 0 and u is in kerT. In other words,
(ranT*)1 C kerT. Combining this with kerT C (ranT*)1 yields kerT = (ranT*)1.
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Notice that XLjL — X for any linear space X. By taking the orthogonal complement of
kerT = (ranT*)1, we obtain the first equation in (16.10a). The equations in (16.10b) follow
by substituting T* for T in the first two equations and using T** = T. •

We say that an operator T has closed range if ranT is closed, that is, ranT = ranT.
In many of our applications the rank of T is finite. If the rank of T is finite, then its
range is closed. For example, if T is a matrix from Cm to Cn, then its range is closed. If
T is an operator from Cm to any space y, its range is closed. The range of an operator
from any space U to Cn is closed. In general, the range of an operator on an infinite
dimensional space is not closed. For example, let T be the diagonal operator on I2 defined
by T = diag (1, 1/2, 1/3, • • •). Recall that I2 is the Hilbert space consisting of all square
summable vectors of the form [#i, £2,2:3, ' ' ' ] * r > that is, Xj is in C for all integers jf > 1
and Y^T \xj 2 ig finite. In this case, the closure of the range of T equals I2. Notice that
y = [1, 1/2, 1/3, • • • }tr is not in the range of T. If y = Tu, then u is given by u = [1, 1, 1, • • • }tr .
However, this vector u is not in I2. Therefore, the range of T is not closed.

Recall that an operator T is one to one if Tu — 0 implies that u = 0. Clearly, T is one to
one if and only if the kernel of T is zero. Moreover, T is onto a linear space H if ranT = Ji.
If T maps U into y, then T is onto if the range of T equals the whole space y, that is,
ranT = y. An operator T from IA into y is invertible, if there exists an operator S from
y into U satisfying ST — I and TS = I. In this case, 5 is called the inverse of T and is
denoted by S = T"1. If T is invertible, then T is one to one and onto. Moreover, if T is
bounded, one to one and onto, then T is invertible and the inverse of T is also a bounded
operator. If T is one to one and onto, then it is easy to show that there exists a unique
linear map 5 from y into U satisfying ST = I and TS = /. However, it is not obvious that
S is bounded. Fortunately, the open mapping theorem in operator theory shows that T has
a bounded inverse if and only if T is one to one and onto; see Conway [30], Halmos [59] and
Taylor-Lay [117]. Finally, it is noted that an operator T is invertible if and only if its adjoint
T* is invertible. In this case, (T*)-1 = (T"1)*.

As before, let T be an operator mapping U into y. (All operators in this chapter are
bounded.) According to (16.7) and (16.9), the operator T admits a matrix representation of
the form:

0 1 . T (kerT)1 1 f rlrTT
0 0 ' kerT (ranT)1

Here TU is the operator from (kerT)1 into ranT defined by Tu = Tl(kerT)1. (The notation
|V means restricted to the subspace V.) Notice that T and TU have the same range. In
particular, the range of T is closed if and only if the range of TU is closed. Obviously, TU is
one to one and onto ranT. So, the range of TU is closed if and only if TU is one to one and
onto ranT, or equivalently, TU is invertible. In other words, the range of T is closed if and
only if TH is invertible. By consulting (16.10) and (16.11), we see that the adjoint T* of T
is given by

F T * n 1 f (\f(^rT*\-L 1 f ranT* 1
T *_ Mil u . (ker-i > _J ran-/ (1612}

~ [ 0 0 J • [ kerT* J |_ (ranT*)1 J ' ( }

Here T^ is the operator from (kerT*)1 into ranT* defined by T^ = T*|(kerT*)1. Since
T^ is one to one, it follows that the range of T* is closed if and only if T:* is invertible.
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However, T^ is invertible if and only if Tn is invertible. Therefore, the range of T is closed
if and only if the range of T* is closed. This proves part of the following result.

Lemma 16.2.2 Let T be an operator mapping U into y. Then the range of T is closed if
and only if the range ofT* is closed. In this case, T*T maps (kerT)1 one to one and onto
(kerT)1, and TT* maps ranT one to one and onto ranT. Moreover, when the range of T
is closed, T*T|(kerT)1 is an invertible operator on (kerT)1, andTT*|ranT is an invertible
operator on ran T.

PROOF. By consulting (16.11) and (16.12), we see that T*T and TT* admit matrix repre-
sentations of the form

(kerT)1

kerT
_j

(16.13)

on
0 0 °n kerT*

This readily implies that T*T|(kerT)1 = T^Tn is an operator on the subspace (kerT)-1-,
while TT^kerT*)1 = TnT^ is an operator on (kerT*)-1-. Now assume that the range
of T is closed. Then TH is invertible. So, T*±Tn and TnT*: are both invertible operators.
Hence, T*T (kerT)-1 is an invertible operator on (kerT)1, and TT*|(kerT*)J- is an invertible
operator on (kerT*)-1. Finally, using ranT = (kerT*)1 completes the proof. •

As before, let T be an operator mapping U into y. Recall that T is invertible if and only
if kerT = {0} and ranT = y. If T is invertible, then T is bounded below, that is, there
exists a scalar 8 > 0 such that ||Tu|| > 5\\u for all u in U. To verify this, let 5 be the
inverse of T. Then ||M|| = \\STu\\ < ||5| \\Tu\\. So, if 5 = 1/||5||, then ||Tu|| > <J||u|| for all
u in U, and thus, T is bounded below.

If T is bounded below, then the kernel of T is zero and the range of T is closed. If T
is bounded below, then obviously, the kernel of T is zero. To show that the range of T is
closed, assume that {Tun}^° is a sequence of vectors which converge to some vector y in y.
Then

S\\un - um\\ < \\Tun - Tum|| < \\Tun - y\\ + \\y - Tum\\ -> 0

as n and m tend to infinity. So, \\un — um\\ approaches zero as n and m tend to infinity.
In other words, {un}f is a Cauchy sequence in the Hilbert space U. Hence, the sequence
{wn}r converges to some vector u. This readily implies that

\\Tu - y\\ < \\Tu - Tun\\ + \\Tun - y\\ < \\T\ \\u -un\ + \\Tun - y\\ -+ 0

as n tends to infinity. Thus, \Tu — y\\ = 0, or equivalently, y — Tu is in the range of T.
Therefore, the range of T is closed when T is bounded below.

Let T be an operator mapping U into y. Then T is invertible if and only if T is bounded
below and the range of T is dense in 3^, that is, ran T = y. If T is invertible, then we have
all ready shown that T is bounded below. Obviously, the range of T is dense in y when T
is invertible. In fact, in this case, ranT — y. Now assume that T is bounded below and the
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range of T is dense in y. Since T is bounded below, the kernel of T is zero. Because T is
bounded below, the range of T is closed. Thus, y = ranT = ranT. Therefore, T is one to
one and onto. So, T is invertible.

As before, let Tn be the operator mapping (kerT)-1 into ranT defined by TH = T|(ker T)1-.
Obviously, T\\ is one to one and the range of TU is dense in ran T. So, T\\ is invertible if and
only if the range of Tn is closed, or equivalently, TH is bounded below. Equation (16.11)
shows that T and TU have the same range. Thus, the range of T is closed if and only if
TU is invertible, or equivalently, Tl(kerT)1 is bounded below. Therefore, the range of T is
closed if and only if there exists a scalar 8 > 0 such that \\Tu\\ > S\\u\\ for all u in (kerT)-1-.

Recall that T*T is positive. To see this simply observe that (T*Tu,u) = \\Tu\\2 > 0 for
all u in U. This equation also shows that T is bounded below if and only if T*T is strictly
positive. In particular, if the kernel of T is zero, then the range of T is closed if and only if
T*T is strictly positive. Moreover, if the range of T is closed, then the kernel of T is zero
if and only if T*T is invertible. Clearly, T*T maps (kerT)-1 into (kerT)1. So, the operator
TTKkerT)1- on (kerT)-1 is strictly positive if and only if Tl(kerT)-1 is bounded below, or
equivalently, the range of T is closed. Summing up this analysis, we obtain the following
useful result.

Remark 16.2.1 Let T be any operator mapping U into y. Then T*T is positive. Moreover,
if T has finite rank or the range of T is closed, then the following statements are equivalent:

(i) The operator T*T is invertible.

(ii) kerT = {0}, or equivalently, ran T* = U.

(iii) The operator T*T is strictly positive.

By replacing T with T* we see that TT* is positive, and the following statements are
equivalent when the range of T is closed:

(i) The operator TT* is invertible.

(ii) kerT* = {0}, or equivalently, ranT = y.

(iii) The operator TT* is strictly positive.

16.2.1 Computation of orthogonal projections

Let T be an operator mapping U into y. Let y be a vector in y. The equation y — Tu has
a solution if and only if y is in the range of T. If y = Tu does not have a solution, then it
makes sense to look for a vector u in U such that Tu is closer to y than any other element in
TU, that is, find a vector u in U which makes \\y — Tu\\ as small as possible. This naturally
leads to the optimization problem inf \\y — TU \\. To solve this problem, let 7i be the closure
of the range of T and note that the distance from y to K is given by

d(y,n] = int{\\y - Tu\\ :u£U}. (16.14)
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Let P-R be the orthogonal projection onto 'R, and set y = P-ny. Then, according to the
Projection theorem, d(y.TV) = \\y — y ; hence

|jy - y|| = inf (||y - Tu\ :u£U}. (16.15)

In general y may not be in the range of T, that is, y = Tu may not have a solution. However,
if the range of T is closed, then y is in the range of T and there exists a vector u'mU such
that y = Tu. In this case, d(y,Ti) = ||y — Tu\\ and Tu is the unique vector in TU which
is closer to y than any other element in TU. Furthermore, the vector y = Tu achieves the
minimum in the optimization problems (16.14) and (16.15). If the range of T is not closed,
then the minimum may not be achieved. In this section, we will develop several techniques
to compute the orthogonal projection P-JI and solve these optimization problems when the
range of T is closed.

Let T be an operator from U into y with closed range Ti. Let y be a vector in 3^ and set
y = P-ny- Then there exists a unique vector u in (kerT)1 satisfying Tu — y. Because the
range of T is closed, y is in the range of T and thus, the equation Tu = y has a solution. Let
u = u 4- u be the orthogonal decomposition of any u solution where u is in (kerT)1 and u is
in kerT. Then using Tu = 0. we obtain Tu — y. Moreover, u is the only vector in (kerT)1

satisfying Tu — y. If TV = y where v is in (kerT)1, then T(u — v) = y — y = 0. So, u — v
is in the kernel of T. Since (kerT)1 is a linear space, u — v is also in (kerT)1. Because
kerT D (kerT)1 = {0}, the vector it, — v — 0. or equivalently, u = v. Therefore, there is a
unique vector u in (kerT)1 solving the equation Tu = y = Pn'SJ-

The restricted inverse T~r of T is the operator from y to U denned by T~ry = u where
u is the unique element in (kerT)1 such that Tu — y = Pny. Obviously, if T is invertible,
then T~r = T"1. If u = T~ry, then y = Tu is the solution to the optimization problems
in (16.14) and (16.15). So, computing the restricted inverse plays a fundamental role in
solving the optimization problems in (16.14) and (16.15). Recall that T admits a matrix
representation of the form (16.11) where TH is the operator from (kerT)1 onto ranT denned
by TU = Tl(kerT)1. (Because the range of T is closed rariT = ranT.) Recall that the range
of T is closed if and only if TU is invertible. Therefore, the operator T~r admits a matrix
representation of the form:

7/ 0 1 . [ ranT ] , [ (kerT)1

0 0 J ' [ (ranT)1 J ' [ kerT J ' (16'16)

In particular, T~r = T^P-n. In other words, T~T admits a matrix representation of the form

Notice that TT~ry = Tu = Pny. Since this holds for all y in y, we have TT~r = PU- This
also follows from the fact that

o i r T^ o i r / orprp-r

~ ' 0 O J [ 0 O J ~ " [ 0 0

A similar calculation also shows that T~rT is the orthogonal projection onto (kerT)1
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Notice that T*T and TT* are positive operators. Shortly, we will demonstrate how to
obtain P-R and T~T by computing the restricted inverse of T*T or TT*. In particular, if U or
3^ equals Cn, then T*T or TT*, respectively, admits a matrix representation. In this case,
one can use standard matrix computational techniques to compute the restricted inverse
of T*T or TT*, respectively, and thus, readily obtain PK or T~r. Let us begin with the
computation of PK-

Lemma 16.2.3 Let T be an operator from U into y with closed range 7£. Then the orthog-
onal projection onto 72. is given by

-rTT* _ (16.17)

Moreover, the distance from any vector y in y to ft is given by

d(y, ft)2 = Hy - Pny\\2 = ||y||2 - ((T*TrT*y, T*y) . (16.18)

In particular, ifT is one to one, then T*T is invertible and

)-iT* (16.19)
\\y~Pny\\2 = \\y\\2 -((T*T)-iT*y:T*y}. (16.20)

PROOF. Consider any y in y and let y = PnV- By the Projection Theorem, the vector y — y
is orthogonal to TU. Thus,

0 = ( y - y , T u ) = (T*y-T*y,u) (for all u € U ) . (16.21)

So, T*y — T*y is orthogonal to the entire space U. Hence,

T*y = T*y. (16.22)

Because the range of T is closed, y = P-j^y is in the range of T. So, there exists a unique
vector u in (kerT)-1- such that y = Tu. Also, as a result of (16.22), this vector satisfies

T*Tu = T*y. (16.23)

Recall that T*T maps (kerT)-1 one to one and onto (kerT)-1 = ranT*; see Lemma
16.2.2. So, the unique vector u in (kerT)-1 satisfying (16.23) is given by u = (T*T)~rT*y.
Therefore, the restricted inverse of T is given by

T~r = (T*T)-rT*. (16.24)

This implies that y = Pny = Tu = T(T*T)~rT*y. Since this holds for all y in y, we obtain
the first equality in (16.17).

Equation (16.18) follows from equation (16.3) in the Projection Theorem, that is,

\\y - y\\2 - l l y l l 2 - (/>*y,y) = IM!2 - ( (T*T)-rT*y, T*y) . (16.25)

To prove the second equality in (16.17), let y = y + y be the orthogonal decomposition of
y where y = P-j^y and y = (I — Pn)y is the orthogonal projection of y onto (ranT)-1 = Ti±.
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Because kerTT* = (ranT)-1, we have (TT*)~ry — 0. By employing the definition of the
pseudoinverse, TT*(TT*)~ry = TT*(TT*}~ry = y = Pny. Since this holds for all y, we
obtain ^j^TT*)"7" — pn_ A similar argument yields the last equality in (16.17). Finally,
it is noted that equation (16.17) also follows from (16.13) along with the fact that TU is
invertible. •

The previous lemma readily proves part of the following result.

Theorem 16.2.4 Let T be an operator from U to y with closed range. Then the following
holds.

(i) The restricted inverse T~r of T is given by

T~r = (T*T)-rT* = T*(TT*)-r. (16.26)

(ii) IfT is one to one, then T~r - (T*T}~1T*.

(m) IfT is onto, then T~r = T*(TT*)~1.

(iv) If y is a specified vector in y, then u = T~ry, is a solution to the least squares opti-
mization in (16.14), that is,

\\y-Tu\\=int{\y-Tu\\ : u € U} = d(y, TU). (16.27)

(v) IfT is one to one, then there is a unique solution to the optimization problem in (16.27)
and this solution is given by u = (T*T)~lT*y.

PROOF. The first equality in (16.26) follows from (16.24). To show that the second equality
in (16.26) holds, let y be a vector in y. According to the previous lemma, u\ = (T*T)~rT*y
and u<i — T*(TT*}~ry are two vectors satisfying P-j^y = Tu\ = Tu%. Clearly, u\ is in
(kerT)-1-. Since ranT* = (kerT)-1, it follows that u2 is also in (kerT)-1. In particular,
u\ — u<i is in (kerT)1. Because T(u\ — u%) — 0, the vector u\ — U2 is also in the kernel of T.
Hence, u-\_ — u% = 0, or equivalently, u\ = u^. Therefore, (16.26) holds. Part (ii) follows from
the fact that T*T is invertible if and only if T is one to one. To prove part (iii) simply notice
that TT* is invertible if and only if T is onto. Equation (16.27) in Part (iv) follows from
the Projection Theorem and the fact that Tu = Pny- To verify that Part (v) holds, recall
that y — Pny is the only vector in 3^ satisfying \\y — y\\ = d(y,TU}. Since T is one to one,
the equation Tu = P-j^y has a unique solution. So, there is only one vector umlA satisfying
\y — Tu\ = d(y,TU} and this u is the unique solution to Tu = Pny- Hence, there exists a

unique solution to the optimization problem in (16.27). Because T is one to one, the vector
u = (T*T}~lT*y is well defined and satisfies Tu = P-ny. Therefore, u is the unique solution
to this optimization problem. Finally, it is noted that Part (i) also follows from the matrix
representations in (16.13) and (16.16). •
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16.3 The Gram matrix
In this section, we use the previous least squares optimization theory to solve a classical
optimization problem via the Gram matrix. Suppose that {fa, fa, • • • , f a } is a finite set of
vectors in a Hilbert space y and 72. is the space spanned by these vectors. A classical least
squares optimization problem is to compute the orthogonal projection y = P-^y for some
fixed y in y. In other words, find an element y of 72. to solve the following optimization
problem

\\y - 6 C

To solve this problem, let T be the operator mapping Cn into y defined by

To: =

(16.28)

(16.29)

where a — [ai,a2, • • • ,c*n]
ir is in Cn and tr denotes transpose. Clearly, T is a finite rank

operator whose range is 72. Moreover, the optimization problem in (16.28) is a special case
of the optimization problem in (16.15), that is, ||y — y|| = inf{||y — TCn||}. Notice that the
vectors {fa}™ are linearly independent if and only if T is one to one, or equivalently, T*T
is strictly positive. Since the range of T is 72, the solution to the least squares problem in
(16.28) is given by (16.17), that is,

We can also express this as y = To: where a = T ry, that is,

n

y = Pny = '^2ai^i where [ di &2 ••• dtn }tr - a :- (T*T}~TT*y. (16.30)
i=l

To obtain d, we need to compute the adjoint T* of T. To this end, let / be any vector
in y, then for each a in Cn, we have

/ rr-i * r\ (Tf-v f\ /X ^ / r\ X ^

i=l i=l

Therefore, the adjoint T* of T is given by

(16.31)

T*/ =
(f,fa

We now define 7 to be the "cross covariance" vector in Cn given by

*7- (y,fa (y,fa)

(16.32)

(16.33)
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We now compute T*T. Clearly, T*T maps Cn into Cn. Thus, T*T has a matrix represen-
tation. To compute the matrix representation for T*T, let {e\, 62, • • • , en} be the standard
orthonormal basis for Cn, that is, the i-ih component of e; is one, while all the other com-
ponents are zero. Notice that the ij-ih entry (T*T),j of T*T is given by

(T*T)t} = (T'Te^eO = (Te,,TeO = (^) • (16.34)

Therefore, the matrix representation for T*T is precisely the Gram matrix G given by

G =

The matrix G in (16.35) is referred to as the Gram matrix generated by
It now follows from (16.30) and (16.33) that

(16.35)

(16.36)

Combining (16.30) and (16.36), the optimal solution y to the least squares optimization
problem (16.28) is given by

y = where an }tr = G r-j . (16.37)

Finally, notice that y can also be expressed as

y = Pny = [ 0i 02 • • • ^n ] G~T [ (y, (y, (16.38)

Remark 16.3.1 Let G be the Gram matrix in (16.35) generated by any set of vectors {ipi}™
in a Hilbert space 3^- Then G is positive. Moreover, G is strictly positive if and only if the
set of vectors { î}" are linearly independent. To see this, let T be the operator from C" to
y defined in (16.29). Since G = T*T, it follows that G is positive. The kernel of T is zero if
and only if {V^}" is linearly independent. Therefore, the Gram matrix G is strictly positive
if and only if the set of vectors {V'i}" are linearly independent. Finally, in this case, the
optimal solution y to the least squares optimization problem in (16.28) is given by (16.37)
where G~l replaces G~r, or equivalently,

y = (16.39)

Remark 16.3.2 Suppose that {V'l, V^i • • • , ipn} forms an orthonormal set in a Hilbert space
3^, that is, (ipi.ipj) — 0 if i ^ j and |̂| = 1. Then, clearly, G = I and {^1,^2, • • • i^n] is
linearly independent. Moreover, if 7£ is the space spanned by {^i, "02) • • • , 0n}, then formulas
(16.33) and (16.37) show that for y e 3;,

and \\Pny |2 = (16.40)
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The last equality follows from

n n

\\P*y\\2 = (P^y.y] = (£> Wi,y) = £ l (y ,Vi) l 2 -
t=l i=l

This is the classical Fourier representation for the orthogonal projection in terms of an
orthonormal basis. In particular, if y is in 7£, then P-j^y = y and (16.40) reduces to

and (if y e (16.41)

Example 16.3.1 Consider the problem of approximating the exponential function, y(t) =
e4, by a polynomial of degree at most two in the L2[0,1] norm. To be precise, we wish to
find the optimal polynomial y = «o + ait + a^t"2 to solve the optimization problem

U i ^i
|e* - a0 - out - a2t

2\2dt : at € C > .
J

(16.42)

To obtain a solution to this problem, let ^i = 1, V>2 = t and ^3 = i2. Clearly, 1^1, fa and
^3 are linearly independent. Therefore, the Gram matrix G corresponding to these vectors
is strictly positive. Moreover, the optimal polynomial y is given by (16.39). In this case, the
entries of the Gram matrix are of the form

So, the Gram matrix G is given by

G =
I 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

(16.43)

Furthermore, the cross covariance vector 7 is given by

(eM) e1-!
(16.44)

So, by combining (16.43) and (16.44), we see that the optimal polynomial y of degree at
most 2 approximating el in the L2[0,1] norm is

1-013 (16.45)

Finally, notice that the optimal polynomial y in (16.45) does not equal 1 + £/!! + £2/2! which
comes from the Taylor series expansion of e*.
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16.4 An application to curve fitting

In this section, we will use the Vandermonde matrix to solve a classical least squares poly-
nomial fit problem. To this end, let degp denote the degree of a polynomial p. Now let
{At, AS, • • • , Am} be a set of distinct complex numbers and {yi, y?,- • • , ym} be a set of com-
plex numbers. Our problem is to find a polynomial p of a complex variable A of degree at
most n — 1 to solve the following classical polynomial curve fitting problem:

: p is a polynomial and degp <n — I (16.46)

Here d is the error for the polynomial fit. Moreover, we say that
fitting problem if p is a polynomial of degree at most n — I and

is a solution to this curve

(16.47)

Without loss of generality, we assume that n < m. If n > m, then we can find a
polynomial p of degree at most m — I < n— I such that p(\i) = y, for alH = 1, 2, • • • , m. In
fact, one such polynomial is obtained by the classical Lagrange interpolation formula

where (16.48)

(Notice that p,(Aj) = 1 and pi(Xj) = 0 for j ^ i.) Moreover, this is the only polynomial of
degree at most m—l satisfying the interpolation conditions Pi(\i) = yi for i = 1,2, • • • , ra. To
see this, assume that q is another polynomial of degree of at most m — l satisfying <&(At) = yi
for i = 1, 2, • • • , m. Then p — q is a polynomial of degree at most m — 1 with m roots. Hence,
p — q must be zero and this proves our claim.

Recall that a Vandermonde matrix is a matrix of the form:

V =

I
A2

A3

A?

A,,

(16.49)

where {Ai, A2, • • • , Am} are complex numbers. Notice that, if p is a polynomial of the form
XA) = Y^i=o QiXl, then V can be used to evaluate p at the points {Ai, A2 , • • • , Am} in the
following fashion:

V (16.50)
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We claim that if the {\i}™ are distinct and n < rn, then V is one to one. If Va = 0 for some
a in Cn, then (16.50) shows that p(\j) — 0 for j = 1,2, • • • , m. However, p is a polynomial
of degree at most n — 1, with m roots. Since n — 1 < m, it follows that p(X) — 0 for all A
and thus a — 0. Hence, V is one to one when n < m.

If the {Aj}™ are distinct and n — m, then the Vandermonde matrix is invertible. In
this case, (16.50) shows that the unique polynomial of degree at most m — I satisfying the
interpolation conditions pi(Aj) = y; for i = 1,2, • • • , m is given by

p(X) = [ 1 A • • • A™"1 ] V~l [ y i y-2 ••• ym]r .

This is precisely the polynomial obtained by the Lagrange interpolation formula (16.48).
As before, consider the polynomial interpolation problem in (16.46) where n < m. Using

(16.49) and (16.50), it follows that this interpolation problem is equivalent to the following
least squares optimization problem:

\\y - Va\\ =d:= inf{||y - Va\\ : a G Cn} (16.51)

where y = [ yi yi • • • ym ] and || • || is the standard norm on C7™. If a is the solution
to this optimization problem, then the corresponding optimal polynomial given by

n-l

p(X) — 2__.^iXl where o; — [ O.Q a\ • • • an-i ]

is the solution to the least squares optimization in (16.51). According to Part (v) of Theorem
16.2.4, the optimal solution a is unique and is given by a = (V*V)~1V*y. Therefore, the
polynomial p which solves the least squares problem in (16.46) is given by

i=0

The error d is computed by

d2 = \\y\f -((V*VrlV*y,V*y}.

Moreover, d — d(y, ran V), where d(y, ran V) is the distance from y to the range of V.

Remark 16.4.1 The above analysis shows that a square Vandermonde matrix generated
by the scalars {Ai}?1 is nonsingular if and only if {Aj}^1 are distinct.

16.5 Minimum norm problems

This section is devoted to minimum norm problems. As before, let T be an operator from
U to y with finite rank or closed range. Recall that the restricted inverse T~r of T is the
operator mapping 3^ into U defined by u = T~ry where u is the unique vector in (kerT)1-
satisfying Tu — Pay and PR is the orthogonal projection onto the range 7£ of T. This sets
the stage for the following minimum norm optimization problem :
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Given a specified vector y in y, find an optimal u in U such that

||w|| = inf{| |M|| :u&U8nidTu = Pny}. (16.52)

In other words, given a specified vector y in y find an optimal u in U satisfying

u = mf {\\u\\ :u£U and \\y-Tu\\ =d(y,n)} . (16.53)

Here d(y, TV) is the distance from y to the range of T in the y norm.

Theorem 16.5.1 Let T be an operator from U to y with closed range U, and let y be in y.
Then there exists a unique solution u inU to the minimum norm problem (16.52). Moreover,
this solution is given by u = T~Ty. In other words, the optimal u is the unique element in
(kerT)-1- satisfying Tu = PnlJ-

PROOF. Since y = P-j^y is in ranT, it follows that there exists an element umlA satisfying
y — Tu. By the Projection Theorem u admits a unique decomposition of the form u = u + u
where u is in (kerT)-1- and u is in kerT. We claim that u is unique, that is, there is only one
u in (kerT)-1- satisfying y — Tu. To see this, assume that y = Tu = TV where both u and v
are in (kerT)1-. Then T(u — v) = y — y = 0. Thus, u — v is in kerT. However, (kerT)-1 is a
linear space. So, u — v is also in (kerT)-1. This implies that u — v e (kerT)1 D kerT = {0}.
Hence, u — v = 0, or equivalently, u = v. So, there is only one u in (kerT)-1 satisfying
Tu = y.

The previous analysis shows that the set of all solutions u to Tu = y (or equivalently
y — Tu = d(y1TU}) is given by u = u + u where u is the unique vector in (kerT)1 satisfying

Tu = y and u is any vector in kerT. Since kerT is orthogonal to (kerT)1

Notice that we have equality j |?/ | |2 = \\u 2 if and only if \\u\\ = 0, or equivalently, u = u.
Therefore, the solution u to the minimum norm optimization problem in (16.52) is unique
and given by the unique element u in (kerT)1 satisfying Tu = y — Pny- •

The following two special cases of the minimum norm problem plays a fundamental role
in many applications.

Case 1. If the kernel of T is zero, then the infimum in (16.52) and (16.53) is not needed.
In this case, there is only one solution to the equation Tu = Pny, and thus, the optimal u
is the only vector in U satisfying Tu = P-j^y. In other words, if T is one to one, then the
optimization problems in (16.52) and (16.53) reduce to

||y - Tu|| = inf{||y - Tu\\ : u £ U} . (16.54)

Case 2. On the other hand, if T is onto y, then the optimization problems in (16.52) and
(16.53) are equivalent to finding the optimal u in U. satisfying

|H| = inf{ |H| : u e U and Tu = y } . (16.55)

By combining Theorems 16.2.4 and 16.5.1, we obtain the following result which is useful
in the computation of the optimal u.
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Corollary 16.5.2 Let T be an operator from U into y with closed range ~R and let y be a
vector in y. Then the following holds.

(i) The unique solution u to the minimum norm optimization problem (16.52) is given by

u = (T*T)~rT*y = T*(TT*YTy and \\u\\2 = ((TT*yry,y]. (16.56)

(ii) IfT is one to one, then T*T is invertible and u = (T*T}~lT*y. Moreover, this u is
the unique solution to the optimization problem (16.54) ^n Case 1.

(Hi) IfT is onto, then TT* is invertible and u = T*(TT*)~1y. Furthermore, this u is the
unique solution to the optimization problem (16.55) in Case 2.

PROOF. It remains to verify the last equation in (16.56). This follows from

\ \ u 2 = («,«) = (T*(TT*)-ry,T*(TT*rry)
= (TT*(TT*)-ry,(TT*)-ry) = ((TT*)-ry,y)

which completes the proof. •

Example 16.5.1 Let T be the column matrix from C1 to C3 denned by

T = and V =

Then find the scalar u to solve the minimum norm optimization problem in (16.52). Because
kerT = {0}, this optimization problem corresponds to Case 1 above.

SOLUTION. Part (ii) of the previous theorem shows that the optimal u = (T*T}~lT*y.
Clearly, T*T = 3 and T*y = 3. Hence, u = (T*T}~lT*y = I is the optimal solution. Notice
that the second formula u = T*(TT*)~ry in (16.56) is much harder to use. It requires the
computation of the restricted inverse of the nonsingular 3 x 3 matrix TT*.

Example 16.5.2 Let T be the operator from C3 to C1 defined by

T = [ 1 1 1 ] and y = 2.

Then find the optimal u to solve the following minimum norm optimization problem:

\\u\\ = inf { \\u\\ : u G C3 and Tu = 2 } .

Notice that in this case the range of T is C1. This corresponds to Case 2 above.

SOLUTION. According to Part (iii) of the previous theorem, the optimal solution is given by
u = T*(TT*Yly. Since TT* = 3, it follows that

Notice that the first formula u = (T*T) TT*y in (16.56) is much harder to use. It requires
the computation of the restricted inverse of the nonsingular 3 x 3 matrix T*T.
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Example 16.5.3 Find a function u in L2[0, 1] such that

fl fl

| |u| |2^inf / u(t)\2dt subject to / etu(t)dt = 2.
Jo Jo

SOLUTION. Let T be the operator mapping L2[0, 1] into C1 denned by

/•i
Tu= \ e'u^dt (weL 2 [0 , 1]).

Clearly, T is onto and this corresponds to Case 2 above. So, y = 2 is in the range of T and
this optimization problem makes sense. We claim that the adjoint T * of T is the operator
mapping C1 to Z/2[0, 1] defined by

To see this notice that

/•i /-i
= / e t u ( t ) d t * f =

Jo Jo

(Here (f,g)n denotes the inner product on the Hilbert space 7i.) Therefore, (T*^)(t) = 6*7.
By equation (16.56) in Corollary 16.5.2, the optimal solution u = T*(TT*}-11. To find u
notice that the operator TT* on C1 is given by

- 1
TT* =

Hence, the optimal solution

Finally, recall that the optimal solution is also given by u — (T*T)~rT*y. To use this
formula one would have to compute the restricted inverse of the operator T*T on L2[0, 1].
This is obviously much harder to do.

Example 16.5.4 Find the optimal function u = [ HI u^ ] r in I/2([0, 1],C2) to solve the
following optimization problem:

ri ri
\\u\\2 = inf / ( \ U l ( t ) \ 2 + \u2(t)\

2) dt subject to / (ui(t) + tu2(t)) dt = 4 .
Jo Jo

SOLUTION. Let T be the operator from Z/2([0, 1], C2) into C1 defined by

/•i
T[Ul u2]

tr= \ ( U l ( t ) + tu2(t)) dt .
Jo
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Clearly, T is onto and this corresponds to Case 2 above. A simple computation shows that
T* is the operator from C1 to L2([0,1] ,C2) given by

J I 7 (7 e C1).

Because T is onto, the optimal u — T*(TT*}~ly where y = 4. Observe that

4
'= A

7o

So, the optimal function u is given by

= 3

Exercise 40 Find the optimal function u = \_u\ u^ ] r to solve

||u||2 = inf / (|ui(t)|2 + \u2(t)\
2)dt subject to / ? J ,2 M* = »

7o 7o L u z J L U2vt-' J L z J

HINT. Let T be the operator from L2([0,1], C2) into C2 defined by

T"1 I" 2t 1 1 [ ui(t)- y0 [ o 2 j [ U2(t)T i «i

Show that T is onto and the adjoint T* of T is the operator from C2 into L2([0,1], C2) given
by

0

16.6 The singular value decomposition

This section, presents a brief description of the singular value decomposition for finite rank
operators and its relationship to the restricted inverse. First, we introduce the polar decom-
position of an operator.

Polar decomposition. Recall that an isometry U is a linear operator mapping Li into y
satisfying U*U = /, or equivalently, \\Uu\\ = \\u\\ for all u in U. If Q is a positive operator
on a Hilbert space H, then Q has a positive root, that is, there exists a unique positive
operator S on H satisfying S2 = Q. In this case, S is denoted by Q1/2. In fact, there exists
a sequence of polynomials {pn}i° such that {pn(Q}h}^° converges to Ql^h for every h in H;
see Halmos [59]. Now let T be any operator mapping U into y. The decomposition

T = WR (16.57)

where R is a positive operator and W is an isometry from the closure of the range of R
into y, is known as the polar decomposition of T. Notice that the polar decomposition of
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an operator generalizes the result that any complex number 7 has a polar representation of
the form 7 = elujr where r = \j\ and u is in [0, 2yr). We claim that any operator T admits a
polar decomposition. To demonstrate this, let u be in U. Then

\\Tu\\2 = (T*Tu,u) = \\(T*T)V2u\\2 = \\Ru |2 (16.58)

where R is the positive square root of T*T. We now show that as a consequence of (16.58),
we can define a linear map W from ran R to y by WRu = Tu where u is in Li. Clearly,
WRu — Tu defines a relation W from ran R to y. This relation is a function if and only if Wv
has only one value for every v in ran R, or equivalently, if WRu\ = Tu\ and WRu2 = Tu2

and Rui — Ru%, then Tu\ = Tu2. If Ru\ — Ru2, then (16.58) shows that

\\TUl - Tu2\\ = \\T(Ul - u2)\\ = \\R(Ul - u2)\\ = \\RUl - flu2|| = 0 .

Hence, Tu\ = Tu2 and W is a well denned function from ran R into y. The linearity of VF
follows from the linearity of R and T. Utilizing (16.58) we obtain V^jRuU = \\Tu\\ = \\Ru\\.
This shows that W is an isometry. Finally, the isometry W has a unique extension by
continuity to the closure of ran R and we also denote this isometry by W. Hence, T = WR
is the polar decomposition of T.

Singular value decomposition. Let T be an operator of finite rank n mapping U into
y. Then a singular value decomposition of T is a factorization of the form

T = UA.V* (16.59)

where U is an isometry mapping C™ into y and V is an isometry from C™ into U. while A
is a diagonal matrix with nonzero positive diagonal elements arranged in decreasing order,
that is,

A = diag (<7i, <T2, • • • , &n) with a\ > o~2 > • • • > crn > 0 . (16.60)

The numbers {ai, <T2, • • • , crn}, are referred to as the singular values of T. In this presentation,
we do not consider zero a singular value for T.

To obtain a singular value decomposition of T, let T = WR be the polar decomposition
of T where R is the positive square root of T*T and W is an isometry. Since R is a positive
operator of finite rank n, it admits a spectral decomposition of the form R = VAV*, where
V is an isometry from Cn into U and A is given by (16.60) where a\ > 02 > • • • > on > 0 are
the nonzero eigenvalues of R. Substituting R = VAV* into the polar decomposition of T,
we arrive at T — WVi\V*. By letting U — WV, we obtain the singular value decomposition
T = UAV*.

Let UAV* be a singular value decomposition of T. Because U is an isometry, T*T =
VA2V*; this is precisely a spectral decomposition of T*T. Hence, the squares of the nonzero
singular values {a\,a\, • • • ,a^} of T are precisely the nonzero eigenvalues of T*T. Since
T* = VAU* is the singular value decomposition of T*, it follows that T and T* have the
same nonzero singular values. Moreover, using the fact that V is an isometry, TT* — UA^U*
is the spectral decomposition of TT*. In particular, T*T and TT* have the same nonzero
eigenvalues which are the squares of the nonzero singular values of T, or equivalently, T*.
We are now ready to prove the following result.
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Theorem 16.6.1 Let T be a finite rank operator with singular value decomposition T =
UAV *. Then the following statements hold.

(i) The orthogonal projection onto the range of T is UU *

(ii) The orthogonal projection onto (ranT)1 = kerT* = I — UU*

(Hi) The orthogonal projection onto (kerT)-1 is VV*

(iv) The orthogonal projection onto kerT = (ranT*)1 = / — VV *

(v) The restricted inverse T~r of T is given by T~r = VA.~1U*.

PROOF. Because V is an isometry, it has zero kernel, and hence, V* is onto. Since A is
invertible, it now follows that T and U have the same range which we denote by 7£. By
applying Lemma 16.2.3 with U replacing T, we have Pn = U(U*U}~1U* = UU*. So, UU*
is the orthogonal projection onto rant/ = ranT. This proves (i).

Part (ii) follows from the fact that P is the orthogonal projection onto any subspace Ti.
if and only if / — P is the orthogonal projection onto W1.

Statements (iii) and (iv) follow from Parts (i) and (ii) by observing that V*AU is the
singular value decomposition of T *.

To complete the proof it remains to verify Part (v). To this end, recall that the restricted
inverse of T is defined by T~ry = ii, where u is the unique element of (kerT)1 satisfying
Tu = PnV- By using the singular value decomposition of T and Part (i), we see that

UAV*u = Tu = Pny = UU*y. (16.61)

Since U*U = /, it follows that AV*u = U*y, or equivalently, V*u = A~lU*y. Multiplying
by V gives VV*u = VA~lU*y. However, VV* is the orthogonal projection onto (kerT)-1.
Therefore, VV*u = u and T~r = VA.~1U*. •

When T is a matrix, there are fast and efficient algorithms to compute its singular value
decomposition. In this case, the restricted inverse T~r = VA~1U* is particularly easy to
compute. In many of our applications we will have to compute the restricted inverse of T*T.
In this case, T*T is a positive operator and its singular value decomposition is precisely
the spectral decomposition of T*T, that is, T*T = VA2V * where V is an isometry. Hence,
(T*T}'r = VA~2V*.

16.7 Schmidt pairs

A classical way of obtaining a singular value decomposition for a finite rank operator is
through Schmidt pairs. To see this, consider a finite rank operator T from U into 3^- Let
{«;}" be an orthonormal basis of eigenvectors corresponding to the nonzero eigenvalues
o\ > a\ > ••• > o-l > 0 of T*T, that is, T*Tut = a?u» where (ui,Uj) = <Jy. (Recall
that 6ij = 1 if i = j and zero otherwise.) The sequence {MJ}" forms an orthonormal
basis for (kerT*T)^ = (kerT)1. Now let {y^ be the vectors defined by Tu{ = aiyi, for
i = 1,2, • • • ,n. The pair {ttj, j/j} is known as a Schmidt pair for T corresponding to the
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singular value <7j. By multiplying by T* we see that oftij = T*Tui = TVjj/i. Therefore,
T*yi = OiUi for i = 1,2, • • • ,n. In particular, {w^y;} is a Schmidt pair for T corresponding
to &i if and only if

We claim that {
follows from

«;} is a Schmidt pair for T* corresponding to <7j.
forms an orthonormal basis for (ker T*)1 = ranT. The orthogonality

(T*TUi,Uj}
-

/ i c e o - N(16.62)

Since {uj}" is a basis for (kerT)± and Tui = c^yi, it now follows that {yi}™ is an orthonormal
basis for ranT = (kerT*)1 = (kerTT*)1. Because T*y{ = aUi we also see that TT*y, =
of y;. So, T*T and TT* have the same nonzero eigenvalues {of, o\, • • • , a^ }. Summing up
the previous analysis, we see that the Schmidt pairs {u;,yi}™ corresponding to the singular
values {<7i}", satisfy the following relationship

and T*yi = (16.63)

Moreover, {w^}" are orthonormal eigenvectors for T*T corresponding to the nonzero eigen-
values a\ > a\ > • • • > cr^ of T*T, while the vectors {y^}" are orthonormal eigenvectors for
TT* corresponding to the nonzero eigenvalues of > a\ > • • - , > a^ of TT*.

Since {MI}" is a basis for (kerT)-1, Remark 16.3.2 shows that the orthogonal projection
PU onto Ti. = (kerT)1 is given by

€ U] . (16.64)

Using this expression for PK along with Tu; = cr^yi, we have

Tu - TPHu = yn 1 A (16.65)

where A = diag (<TI, <72, • • • , an}.
To obtain a singular value decomposition, let V be the isometry mapping Cn into U

defined by
n

Va = \ u\ u? • • • un ] a = y ^ otiUi (16.66)
L J / _^j x '

i=l

where a = [o^, a^, • • • , an]
tr is a vector in C". Notice that V is an isometry because {«;}" is

an orthonormal set. Recall that V*f = [(/,«i), • • • , ( f , u n ) ] t r ; see (16.29) and (16.32) with
T replaced by V. Let U be the isometry mapping C" into y defined by

Ua=[yi y2 (16.67)

Now the singular value decomposition T = UAV* follows from (16.65). In other words,
one can obtain the singular value decomposition T = UAV* by computing the orthonor-
mal eigenvectors {«;}" for the nonzero eigenvalues a\ > a\ > • • • > &„ > 0 of T*T, that
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is T*Tui = 0fitj. Then the scalars <7i,cr2, • • • ,an are the singular values of T. Next com-
pute the orthonormal eigenvectors (y*}i for TT* by Tui — aiyi. Then the singular value
decomposition of T is

n

where U and V are the isometries in (16.66) and (16.67) formed by the Schmidt pairs {«*}"
and {2/1}", respectively. It is noted that in some applications it may be easier to compute the
orthonormal eigenvectors t/j for TT* first. For example, if T is a matrix with more columns
than rows. Then compute the vectors HI = T*y,/<7i in the Schmidt pair {ui,yi}. Finally, it
is noted that the restricted inverse T~T of T is given by

n i \
T~ry = VA~1U*y = ]T ̂ il v* (y € y). (16.69)

t=i Oi

The last equality follows from the fact that U*y equals [ (y, yi) (y, y2) • • • (y,yn) }tr-

Remark 16.7.1 Let T be any finite rank operator mapping U into y. We can also use the
singular value decomposition of T to obtain another proof of equation (16.26) in Theorem
16.2.4, that is,

T'r = (T*T}~TT* = T*(TT*}~T. (16.70)
To verify this result, let T = UAV* be the singular value decomposition of T. Since U is
an isometry, the singular value decomposition of T*T is VA.2V*. Therefore, the restricted
inverse of T*T is VA~2V*. Using this and T* = VMJ* we have

T~r = VK~1U* = VA.~2AU* = VA~2V*VAU* = (T*T}~TT*.

To obtain the second equality in (16.70), notice that the singular value decomposition of
TT* is C7A2[7*. So, using (TT*)~r = UA~2U* we have

T~r = VK~1U* = ^AA-2t7* - VMJ*U^U* = T*(TT*}~T .

This completes the proof of (16.70).

Now, let T be a finite rank operator and T = UAV* be a singular value decomposition
of T. Because U and V are isometries, it follows that \\T\\ = ||A||. Therefore, ||T|| = a^
the largest singular value of T, or equivalently, ||T||2 = o\ where o\ is the largest eigenvalue
of T*T. We say that u attains the norm of T if u is a nonzero vector in U satisfying
||Tit|| = ||T||||w||. Obviously, the vector u\ corresponding to the largest singular value of
T attains the norm of T. In other words, the norm of T is attained by the eigenvectors
corresponding to the largest eigenvalue of T*T. In many applications, it is easier to compute
the orthogonal eigenvectors {y,}" for TT* rather than the orthogonal eigenvectors {tii}" for
T*T. In this case, the vector u\ = T*yi/a\ attains the norm of T, where y\ is an eigenvector
corresponding to the largest eigenvalue o\ of TT*.

Consider the following classical problem in linear algebra: Given a finite rank operator
T and a positive integer k, construct an operator T^ of rank less than or equal to k which
comes closest to T in the operator norm. The following classical result uses the singular
value decomposition to solve this problem.
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Theorem 16.7.1 Let T mapping U into y be a finite rank operator and T = UAV* be its
singular value decomposition where o^ > 02 > • • • > o"n > 0 are the singular values of T and
A = diag (<7i, cr2, • • • , an). // k < n, then

<7fc+i = inf{||T- Z\\ : Z 6 C(U,y] and rank Z < k} . (16.71)

Moreover, an operator Tk of rank k which solves the optimization problem in (16.71) is given
by

Tk = Udiag (o\, <72, • • • , o^, 0, • • • , 0) V*, (16.72)

that is, \\T — Tfc || — cr/t+i-

PROOF. Let {ui,yj}" be a Schmidt pair for T, that is, {«;}" and {y^}™ are orthonormal
sets satisfying Tui = a^i for all i. Let Z be any operator whose rank is less than or equal
to k < n and let Ti. be the k + 1 dimensional space spanned by {MI,1/2 > • • • ,Uk+\}. Since
dimker (Z)± < k < dim 7i, it follows that there exists a unit vector u in (kerZ) n T~t. (If
M. is any subspace of U where dimAi < k, then there exists a unit vector u in 7i which is
orthogonal to M. To see this, let PU be the orthogonal projection onto Ti. and Q the operator
from M into H defined by Qf = Puf- Clearly, Q is not onto, and thus, there exists a unit
vector u in Ti. orthogonal to the range of Q. Hence, 0 = (u, Puf} — (PHU, /) = (u> /) f°r a^
/ £ M. Therefore, u is orthogonal to M.} According to Remark 16.3.2, for u in H we have

fc+i
u = Pft'u = N (w, Ui)ui. (16.73)

1=1

Using the fact that {?/,}" is orthonormal with (16.73) and Bessel's equality (|| ̂ «i0z||
2 =

1 for any orthonormal set {0j} and scalars {a,}), we arrive at

k+l fe+1

\\T-Z\2 > \\(T-Z)u\\2= \\Tu\\'2 = \\TY^(^^} ~
i=\

k+l k+l

The equality ||w||2 = ^f^1 | (M,w z ) | 2 follows from (16.41) in Remark 16.3.2. Thus,

CTfc+i < inf{||T - Z\\ : Z € £(W,y) and rankZ < fc) .

To obtain equality, notice that the rank of the operator T^ in (16.72) is precisely k. Because
U and V are isometrics, it follows that the norm of T — Tk equals the norm of the diagonal
operator, diag (0, 0, - • • , 0, ak+l, • • • , an). Therefore, ||T - Tfc|| = afc+i. •

Remark 16.7.2 Let T be any finite rank operator mapping U. into y. Let {ui,yl}^ be the
Schmidt pairs corresponding to the singular values o\ > cr2 > • • • > on > 0 of T. Then the
operator Tk of rank k in (16.72) satisfying ||T — 71- 1| = cfk+i can also be written as

TkU = 2_^ &i(u, Ui)yi (u G U) .
i=l

This follows from (16.68) along with the definition of the isometrics U and V in (16.66) and
(16.67).
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16.8 A control example

In this section we obtain a singular value decomposition for a certain operator T which arises
in the analysis of control systems. Suppose G is a continuous function on [0, t-\\ with values
in £(U,y) where U and y are finite dimensional Hilbert spaces and t\ is positive. Consider
the operator T mapping L2([0, ti], U] into y defined by the convolution integral:

rh
Tu= I G(ti - T)U(T) dr (u e L2([0,ti], U)).

Jo
(16.74)

We shall obtain expressions for a singular value decomposition of T and the norm of T. To
this end, notice that the adjoint T* of T is the linear operator mapping y into L2([0, ti], U)
defined by

G(tl-tyg (g^y). (16.75)

To verify this notice that for any u in £2([0, £j], IA] and g in y, we have

(Tu,g)y = ( f 1 G(tl-r}u(T)dr,g)y= f\G(tl-r)u(r),g}ydr
Jo Jo

= f \u(r], G(*i - rYg}udr = (u,T*g)L* .
Jo

(Here (/,#)« denotes the inner product on the Hilbert space H..) Hence, (16.75) holds.
Combining equations (16.74) and (16.75), we see that TT* is the positive operator on y
given by

TT* = G( t i - r )G( t i - r )*dr= G(a)G(a)*da . (16.76)
Jo Jo

Let {yi, j/2, • • • , Vn} be an orthonormal set of eigenvectors corresponding to the nonzero
eigenvalues a\ > a\ > • • • > cr2 > 0 of TT*, that is,

TT*yi = o?yi (for * = 1,2,- • • ,n) . (16.77)

Notice that one can readily compute the eigenvectors yi and the eigenvalues of because
in general 3^ = Cp and thus TT* is a positive matrix. Now let {«i,ii2, • • • ,un} be the
orthonormal set defined by

m^T'yi/ai ( for i = l , 2 , - - - , n ) . (16.78)

Then using the formula for T* in (16.75), we see that

ui(t) = G(tl-t}*yi/ai ( for« = l , 2 , - - - , n ) . (16.79)

Moreover, {MJ,^}" forms the Schmidt pairs for the operator T, that is, {«»}" and {y,}" are
orthonormal sets satisfying

TUJ = Oiyi and T*y^ = a^i (for i — 1, 2, • • • , n) (16.80)
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where cri > <J2 > • • • > an > 0 are the (nonzero) singular values of T. So, according to
(16.68), a singular value decomposition of T is given by

Tu = ^(7i(u,ui)yl (weL 2 ( [0 , t ! ] ,^ ) ) . (16.81)

An operator Tk of rank k < n which comes closest to T in the operator norm, over the
class of all operators mapping I/2([0, ti], U) into y whose rank is less than or equal to k is
given by (see Theorem 16.7.1)

k

Finally, the norm of T is given by

||T|| = al = A^TT*)1/2 (16.83)

where Amax(.R) denotes the maximum eigenvalue of a self-adjoint operator R. Furthermore,
a vector u\ in L2([0, t j ] ,ZY) which attains the norm of T is given by u\ = T*y\ja\^ that is,

ui(t) = G(ti — t)*yi/&i (16.84)

where y\ is an eigenvector corresponding to the maximum eigenvalue a\ of TT*, or equiv-
alently, {u\,y\\ is the Schmidt pair corresponding to the largest singular value a\ of T. In
many cases y = Cp, so (16.83) and (16.84) give us a simple procedure to compute the norm
of T and a vector HI which attains the norm of T.

16.8.1 State space

Consider the state space system

x — Ax + Bu and y = Cx (16.85)

where the initial state x(0) is zero, A is an operator on a finite dimensional space X, while
B maps U into X and C maps X into y. Here both U and y are finite dimensional spaces.
For any positive ti, the output y ( t i ) of system (16.85) is given by y ( t i ) = Tu where T is
defined by the convolution integral in (16.74) with G(t) = CeAtB. In this case, equation
(16.76) reduces to

TT" = CQ(t!)C* (16.86)

where Q(ti) is the positive operator on X defined by

Q(tl)= I' eAaBB*eA*ada= I * eA(tl-r)SB*eA*(tl-T) dr . (16.87)
Jo Jo

Notice that Q(ti) is the unique solution at t-\_ to the following differential equation:

Q = AQ + QA* + BB* with Q(0) = 0. (16.88)
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This follows by applying Leibnitz's rule,

to Q(i) = /„*/(*, r)dr where f ( t , r ) = e^-^BS*^*^. It now follows from (16.86) and
(16.83) that

\\T\\ = [WCQMC*)]172 - (16-89)

Also, a vector u\ in L2([0, ti],W) which attains the norm of T is given by

ui(t) = B *eA*(tl-t)C*yi/ai (16.90)

where y\ is an eigenvector corresponding to the maximum eigenvalue a\ of CQ(t\)C* . So,
the norm of T and the singular value decomposition of T can readily be computed by
solving a linear matrix differential equation in (16.88). Then ||T||2 is the largest eigenvalue

A minimum control norm problem. Consider now the following optimization problem
associated with the state space system in (16.85). Given a vector y in y, find an input
u G L2([0, ti], U}} with the smallest possible norm which drives the output y(t\) — Tu at
time t\ as close as possible to y. In mathematical terminology this is equivalent to finding a
control u to solve the following minimum norm optimization problem:

||u|| =inf{||u|| :Tu = Pny and w e L2([0,ii], U))} (16.91)

where PK is the orthogonal projection onto the range of T. So, according to Theorem 16.5.1,
the solution u to this minimum norm control problem is unique and given is by u = T~ry.
By using the singular value decomposition to compute T~r, we see that the unique optimal
control solving (16.91) is

u(t) = T~ry = ̂  ̂ ^ Ui(t) . (16.92)
i=i Oi

By consulting Corollary 16.5.2, the optimal control u is also given by u — T*(TT*)~ry.
Since T* is given by (16.75) with G(t) = CeAtB and TT* = CQ(ti)C*, the optimal u can
be computed by

u(t) = 5*eA*(tl-*)C'*(C'(5(t1)C*)-ry . (16.93)

These optimization problems play a role in controllability of linear systems.

16.8.2 The L2-L°° gain

Let L°°([0,oo), 3^) denote the set of all Lebesgue measurable functions over [0, oo) with
values in y such that

Halloo = esssup{||y(t)|| : t > 0} < oo . (16.94)
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As before, U and y are finite dimensional vector spaces. Moreover, assume that G is a
continuous (or Lebesgue measurable) function on [0, oo) with values in C(U,y] such that

/

oo
G(a)G(a}*da (16.95)

is a bounded operator on y. Obviously, Wx is positive. For example, if G is a continuous
function satisfying j|G(t)|| < me~at for some positive m and a > 0, then the operator W^ is
positive and bounded. Now let M be the linear map from I/2([0,oo), U] into L°°([0,oo), y)
defined by

ft
(Mu)(t}= I G(t-r)u(r)dr (u 6 L2([0, oo), U} .

Jo
In this setting, the norm of M is defined by

||M|| := supdJMwHoo : u G L2([0, oo), U) and ||u|| < 1} . (16.96)

We claim that ||M||2 = Amax(VF00).
If y = Mu, then for any t\ > 0, we have y(t\) = Tu where T is the operator from

L 2 ( [ 0 , t i ] , U ) into y defined in (16.74). Using (16.76), we obtain

f t l

TT* = W^) := \ G(a)G(a) * da < W^ .
Jo

So, using |y(£i)| | = | Tu\\, we have

l |y(ti) | |2 < ||T||2 r\\u(t)\\2dt<\a
Jo

Since the above holds for all ti > 0, it follows that \\y ^ < Amax(H/
00)||w||2. Therefore,

It remains to show that ||M||2 = Amax(W00). To this end, consider any t\ and let HI be
the unit vector in (16.84) which attains the norm of T in (16.74), that is, ||«i|| = 1 and
\\Tui\\ = \\T\\ = [AmaxCW^))]1/2. Now let u be the unit vector in L2([0,oo), U} defined by

Ul(t) if t<tj.
0 if t>tl.

Setting y = Mu, we have y(t\) — Tu\ and

M

Because this holds for all t\ > 0 and W(ti) approaches W^ as t\ approaches infinity, we
obtain \M\\ > [Amax(W/r

00)]1/2. Since we have also shown that this inequality holds in the
other direction, we must have equality, that is, | M\\ = [Amax(W/

00)]1/'2.
Consider now the finite dimensional system (16.85) where A is stable. In this setting,

G(t) = CeAiB for all t>Q, and thus, W^ is a well defined bounded operator on y. In this
case, H^ = CQC* where Q is the positive operator on X defined by

X3

eA°BB*eA'ada.
o
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By consulting Lemma 3.1.2, we see that W^ — CQC* where Q is the unique solution to the
Lyapunov equation

AQ + QA* + BB* =0. (16.97)

So, if G is the impulse response for a stable system {A , B , C , 0}, then ||M||2 = Amax(CQC*).

Exercise 41 Let A be a stable operator on a finite dimensional space X and C an operator
mapping X into y. Let T be the operator mapping X into I/2([0, oo), ^) defined by

Tx = CeAtz (z € #) •

Show that T*T = P where P is the solution to the Lyapunov equation

Let {xj}" be the orthogonal eigenvectors corresponding to the nonzero eigenvalues a\ >
a\ > • • • > &„ > 0 of P. Then show that the singular value decomposition of T is given by

n

Tx = ^al(x,xl)yi(t) (x 6 X)
1=1

where cr^t) = CeAtXi for i = 1, • • • ,n. Show that ||T |2 = Amax(P).

16.9 Notes

The results in Sections 16.2 to 16.5 are classical results in Hilbert space; see Akhiezer-
Glazman [2], Balakrishnan [8], Conway [30], Gohberg-Goldberg [53], Halmos [59], Luen-
berger [85], and Taylor-Lay [117]. For a solution to the least square polynomial fit problem
based on the Gram matrix see Gohberg-Goldberg [53]. Our approach to the singular value
decomposition is standard. For a nice presentation of the singular value decomposition for
compact operators see Chapter VI in Gohberg-Goldberg-Kaashoek [54]. The results in the
I/2-L°° gain section were taken from Wilson [126] and Zhu-Corless-Skelton [31].
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Ackermann's Formula, 125
asymptotic estimate, 145

backward shift operator, 84, 106
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boundary problem

two point, 179

Cauchy sequence, 1
Cauchy-Schwartz, 1

Cayley-Hamilton Theorem, 13
central controller, 262

infinite horizon, 282
closed range, 303
co-prime polynomials, 87
companion matrix, 16
compression, 67
controllable, 55

canonical form, 126
Gramian, 62
Gramian finite time, 60
PBH test, 59
subspace, 56
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dilation, 68
dissipative, 29

eigenvalue
stable, 122

estimation error
state, 149

estimator
state, 145

evaluation operator, 84, 106

feedback
dynamic output, 156

gain, 119
game theory, 267
Gram matrix, 310

H-infinity analysis problem, 228
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Hilbert-Schmidt norm, 289
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increasing
backwards in time, 221

infinite horizon
H°° analysis, 244
H°° control, 274
central controller, 282
linear quadratic, 189

initialization operator, 85, 106
input space, 3
intertwines, 84
invertible, 303

Kalman-Ho, 102
kernel, 302

Laplace transform, 6
linear quadratic regulator, 171
Lyapunov

equation, 30
function, 33
operator. 30

matrix representation, 67, 102
McMillan degree, 84
minimal polynomial, 77
minimal realization, 83

norm
bounded by 7, 235
strictly bounded by 7, 235

normal rank, 163

observable, 41
companion matrix, 135
Gramian. 50
Gramian finite time, 47
pair, 41
PBH test, 45
subspace, 43
unobservable subspace, 42

one to one, 303
onto, 303
operator, 3

adjoint, 3
backward shift, 84, 106
bounded, 3

bounded below, 304
evaluation, 84, 106
initialization, 85, 106
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strictly positive, 19

orthogonal complement, 299
orthogonal projection, 300

operator, 301
outer factor, 198

finite time, 184
outer function, 198
output space, 3

Parseval's relation, 2
PBH test, 45

detectable, 147
polar decomposition, 317
pole of order j, 78
polynomial

minimal, 77
polynomials

co-prime, 87
positive definite function, 33
Projection Theorem, 299

range, 302
rank

normal, 163
rational

proper, 7
strictly proper, 7

realization, 12, 13, 70
minimal, 83
of a sequence, 12, 84
partial minimal, 96
partial order of, 96
restricted backward shift, 85, 106

relative degree, 8
restricted inverse, 306
Riccati

algebraic equation, 190, 205
differential equation, 171
uniformly bounded solution, 245, 275

scalar input, 123
Schmidt pair, 319
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single input, 123
singular value decomposition, 318
singular values, 318
spectral factor, 184
stabilizable, 119
stabilizing solution, 191, 205
stable

eigenvalue, 122
input output, 23
mechanical system, 21
operator, 20
system, 19
transfer function, 26, 154

state, 3
adjoint, 178

state estimator, 145
state space, 3
subspace, 299

co-invariant, 68
controllable/observable, 73
controllable/unobservable, 71
invariant, 68
reducing, 68
semi-invariant, 69
uncontrollable/observable, 74
uncontrollable/unobservable, 74

system
closed loop, 141
open loop, 119

trace, 288
tracking

linear quadratic, 182, 186
transfer function, 7

central, 282
zero of, 163, 164

uncontrollable
eigenvalue, 58
eigenvector, 58
subspace, 57

unobservable
eigenvalue, 45

eigenvector, 45
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Vandermonde matrix, 312


