D o c u M E N T ANALYZING AND DESIGNING

O DOCUMENTS FOR BUSINESS

E N G I N E E RI N G INFORMATICS AND WEB SERVICES

ROBERT J. GLUSHKO
AND TIM MCGRA.I-II!'EAM LinG

DOCUMENT ENGINEERING

DOCUMENT ENGINEERING

ANALYZING AND DESIGNING
DOCUMENTS FOR BUSINESS
INFORMATICS & WEB SERVICES

Robert J. Glushko and Tim McGrath

The MIT Press
Cambridge, Massachusetts
London, England

© 2005 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any elec-
tronic or mechanical means (including photocopying, recording, or information stor-

age and retrieval) without permission in writing from the publisher.

This book was set in Bauer Bodoni and Eurostile by Andrea R. Nelson.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Glushko, Robert J.
Document engineering: analyzing and designing documents for business
informatics and Web services / Robert J. Glushko and Tim McGrath.
p. cm.
Includes bibliographical references and index.
ISBNO-262-07261-0 (alk. paper)
1. Text processing (Computer science). 2. Electronic data interchange.

3. Gommercial documents—Data processing. . McGrath, Tim. 1. Title.

QA76.9.T48 G54 2005 2001030659
005—dc22

CONTENTS I
Vv

CONTENTS

PREFACE XV
FOREWORD XXi
PART | INTRODUCTION
CHAPTER ONE INTRODUCTION TO DOCUMENT ENGINEERING
1.0 INTRODUCTION 4
1.1 A SIMPLE BUSINESS TRANSACTION? 6
1.2 THE EXTENDED OR VIRTUAL ENTERPRISE 8
1.3 IT'S ALL ABOUT EXCHANGING DOCUMENTS 9
1.3.1 THE DOCUMENT TYPE SPECTRUM 10

1.3.2 DOCUMENT EXCHANGE AS A BUILDING BLOCK
IN BUSINESS MODEL PATTERNS 11
1.3.3 DOCUMENT EXCHANGE AS LOOSE COUPLING 13
1.4 UNDERSTANDING THE MEANING OF DOCUMENTS 14
1.4.1 INCOMPATIBLE INFORMATION MODELS 16
1.4.2 STANDARD INFORMATION MODELS 17
1.5 XML AS AN ENABLING TECHNOLOGY 17
1.6 USING XML-ENCODED MODELS TO DESIGN AND DRIVE APPLICATIONS 18
1.6.1 DOCUMENT MODELS AS INTERFACES 20
1.6.2 MODELS OF BUSINESS PROCESSES e
1.6.3 WEB SERVICES AND SERVICE ORIENTED ARCHITECTURES 23

1.7 DOCUMENT SPECIFICATIONS

AND DOCUMENT ENGINEERING 26
1.8 DOCUMENT ENGINEERING—A NEW AND SYNTHETIC DISCIPLINE 27
1.8.1 BUSINESS PROCESS ANALYSIS 28
1.8.2 TASK ANALYSIS 29
1.8.3 DOCUMENT ANALYSIS 29
1.8.4 DATA ANALYSIS 30
1.8.5 UNIFICATION IN DOCUMENT ENGINEERING 31
1.9 THE DOCUMENT ENGINEERING APPROACH 32

1.10 KEY POINTS IN CHAPTER ONE 37

Vi I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

PART II FOUNDATIONS
CHAPTER TWO XML FOUNDATIONS
2.0 INTRODUCTION 42
2.1 FROM HTML TO XML 43
2.1.1 THE BROWSER WAR 46
2.1.2 FROM THE WEB FOR EYES TO THE WEB FOR COMPUTERS 47
2.2 XMLS BIG IDEAS 48
2.3 CREATION OF NEW SETS OF TAGS FOR
DOMAIN-SPECIFIC CONTENT 49
2.4 SEPARATION OF CONTENT AND PRESENTATION 51
2.5 DEFINITION OF DOCUMENT TYPES 53
2.5.1 DOCUMENTS AS IMPLEMENTATION MODELS 54
2.5.2 XML SCHEMAS 55
2.56.3. SCHEMA LANGUAGES 56
2.5.4 RULES THAT SCHEMA LANGUAGES CAN'T REPRESENT 61
2.6 VALIDATION 62
2.7 CONVERSION AND TRANSFORMATION 64
2.7.1 CONVERSION TO XML 64
2.7.2 TRANSFORMATION FROM XML 67
2.7.3 WHERE TO TRANSFORM 69
2.8 KEY POINTS IN CHAPTER TWO 72
CHAPTER THREE MODELS, PATTERNS, AND REUSE
3.0 INTRODUCTION 74
3.1 MODELS 75
3.2 ADAPTING THE CLASSIC MODELING 76

APPROACH TO DOCUMENTS
3.2.1 EXTERNAL VIEWS: INSTANCES OF DOCUMENT IMPLEMENTATIONS 78
3.2.2 PHYSICAL VIEWS: DOCUMENT IMPLEMENTATION

MODELS (OR SCHEMAS) 79

3.2.3 CONCEPTUAL VIEWS: DOCUMENT COMPONENT
AND ASSEMBLY MODELS 81
3.3 THE MODEL MATRIX 86
3.3.1 METADATA AND METAMODELS 88

3.3.2 METAMODELS FOR PROCESSES 89

CONTENTS .
Vil

3.4 PATTERNS 90
3.4.1 PATTERNS IN BUSINESS 91
3.4.2 WHY BUSINESSES FOLLOW PATTERNS 92
3.4.3 FINDING PATTERNS IN THE MODEL MATRIX 94
3.4.4 USING THE MODEL MATRIX AS A FRAMEWORK 96
3.4.5 PROCESS AND DOCUMENTS: YIN AND YANG 97

3.5 KEY POINTS IN CHAPTER THREE 99

CHAPTER FOUR DESCRIBING WHAT BUSINESSES DO

AND HOW THEY DO IT

4.0 INTRODUCTION 102

4.1 VIEWS OF BUSINESS ORGANIZATION 104
4.1.1 PHYSICAL VIEWS OF BUSINESS ORGANIZATION 104
4.1.2 CONCEPTUAL VIEWS OF BUSINESS ORGANIZATION 108
4.1.3 CONCEPTUAL VIEWS OF BUSINESS RELATIONSHIPS 111

4.2 VIEWS OF BUSINESS PROCESSES 1189
4.2.1 PHYSICAL VIEWS OF BUSINESS PROCESSES 119
4.2.2 CONCEPTUAL VIEWS OF BUSINESS PROCESSES 120

4.3 VIEWS OF BUSINESS INFORMATION 128
4.3.1 PHYSICAL VIEWS OF BUSINESS INFORMATION 128
4.3.2 CONCEPTUAL VIEWS OF BUSINESS INFORMATION 132

4.4 VIEWS OF BUSINESS ARCHITECTURE 134
4.4.1 PHYSICAL VIEWS OF BUSINESS ARCHITECTURE 135
4.4.2 CONCEPTUAL VIEWS OF BUSINESS ARCHITECTURE 138

4.5 KEY POINTS IN CHAPTER FOUR 145

CHAPTER FIVE HOW MODELS AND PATTERNS EVOLVE

5.0 INTRODUCTION 150

5.1 THE COEVOLUTION OF TECHNOLOGY AND BUSINESS MODELS 151

5.2 FROM HIERARCHICAL TO NETWORK MODELS 152

5.3 INFORMATION ABOUT GOODS BECOMES A GOOD 156

5.4 NEW BUSINESS MODELS FOR INFORMATION GOODS 158

5.5 FROM FORECAST OR SCHEDULE-DRIVEN TO DEMAND 159

OR EVENT-DRIVEN MODELS
5.6 FROM TIGHTLY COUPLED TO LOOSELY COUPLED MODELS 161

viii I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

5.7 FROM PROPRIETARY TO STANDARD MODELS 163
5.8 TOWARD MODELS WITH REUSABLE COMPONENTS 164
5.9 KEY POINTS IN CHAPTER FIVE 168
CHAPTER SIX WHEN MODELS DON'T MATCH:
THE INTEROPERABILITY CHALLENGE

6.0 INTRODUCTION 172
6.1 THE INTEROPERABILITY CHALLENGE 175
6.1.1 THE INTEROPERABILITY TARGET 176
6.1.2 RECOGNIZING EQUIVALENCE 180

6.2 CONTENT CONFLICTS 181
6.3 ENCODING CONFLICTS 184
6.3.1 LANGUAGE CONFLICTS 184
6.3.2 GRAMMATICAL CONFLICTS 186

6.4 STRUCTURAL CONFLICTS 187
6.4.1 DOCUMENT ASSEMBLY CONFLICTS 188
6.4.2 COMPONENT ASSEMBLY CONFLICTS 189
6.4.3 COMPONENT GRANULARITY CONFLICTS 191

6.5 SEMANTIC CONFLICTS 183
6.5.1 FUNCTIONAL DEPENDENCY CONFLICTS 184
6.5.2 VOCABULARY CONFLICTS 185
6.5.3 CONTEXTUAL CONFLICTS 198

6.6 MOTIVATING THE DOCUMENT ENGINEERING APPROACH 200
6.7 KEY POINTS IN CHAPTER SIX 203

PART Il THE DOCUMENT ENGINEERING APPROACH
CHAPTER SEVEN THE DOCUMENT ENGINEERING APPROACH

7.0 INTRODUCTION 208
7.1 AN APPROACH, NOT A METHODOLOGY 208
7.1.1 MODELING METHODOLOGIES 210
7.2 THE DOCUMENT ENGINEERING APPROACH 211
7.2.1 UNIFIED APPROACH TO MODELING 212
7.2.2 ARTIFACT-FOCUSED VIEW OF MODELING 214
7.2.3 THE MODELING PHASES, TASKS, AND ARTIFACTS 215

7.2.4 IMPLEMENTING MODELS IN APPLICATIONS 218

7.3

7.4
7.5
7.6

7.7

7.8

7.9

ANALYZING THE CONTEXT OF USE

7.3.1 REQUIREMENTS

7.3.2 PATTERNS OF CONTEXT

7.3.3 SCOPE OF CONTEXT

ANALYZING BUSINESS PROCESSES

DESIGNING BUSINESS PROCESSES

ANALYZING DOCUMENTS

7.6.1 CREATE THE DOCUMENT INVENTORY
7.6.2 SAMPLE THE DOCUMENT INVENTORY
ANALYZING DOCUMENT COMPONENTS

7.7.1 HARVEST THE COMPONENTS

7.7.2 NAME THE CONTENT COMPONENTS
7.7.3 CONSOLIDATE THE CANDIDATE COMPONENTS
ASSEMBLING DOCUMENT COMPONENTS

7.8.1 FORMALIZE THE COMPONENT MODEL
7.8.2 ASSOCIATIONS BETWEEN STRUCTURES
7.8.3 REFINE THE COMPONENT NAMES
ASSEMBLING DOCUMENT MODELS

7.10 IMPLEMENTING MODELS

7.10.1 ENCODING DOCUMENT IMPLEMENTATION MODELS
7.10.2 ENCODING BUSINESS PROCESS IMPLEMENTATION MODELS

7.11 SUMMARY OF MODELING PHASES AND ARTIFACTS
7.12 KEY POINTS IN CHAPTER SEVEN

CHAPTER EIGHT

8.0

8.1 UNDERSTANDING DOCUMENT AND PROCESS REQUIREMENTS

8.2
8.3

INTRODUCTION

8.1.1 STRATEGIC AND TACTICAL REQUIREMENTS
8.1.2 SOURCES OF REQUIREMENTS

8.1.3 GENERIC REQUIREMENTS

CONTEXT AND REQUIREMENTS

EXPRESSING REQUIREMENTS AS RULES

8.3.1 USAGE REQUIREMENTS

8.3.2 STRUCTURAL REQUIREMENTS

8.3.3 SEMANTIC REQUIREMENTS

8.3.4 PRESENTATION REQUIREMENTS

CONTENTS I .

221

221

223
224
224
226
226
227
228
228
229
231

232
232
233
234
234
235
236
237
238
239
241

ANALYZING THE CONTEXT OF USE

244
247
248
250
252
254
259
261
262
263
264

IX

X I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

8.3.5 SYNTACTIC REQUIREMENTS 265
8.3.6 PROCESS REQUIREMENTS 266
8.3.7 INSTANCE REQUIREMENTS 266
8.4 RULE TYPES AND CONTEXT DIMENSIONS 268
8.5 KEY POINTS IN CHAPTER EIGHT 271
CHAPTER NINE ANALYZING BUSINESS PROCESSES
9.0 INTRODUCTION 274
9.1 THE LEVELS OF ABSTRACTION CHALLENGE 276
9.2 ANALYZING BUSINESS ORGANIZATION 277
9.3 ANALYZING BUSINESS PROCESSES 280
9.3.1 BUSINESS PROCESSES, COLLABORATIONS, AND TRANSACTIONS 281
9.3.2 BUSINESS REFERENCE MODELS 284
9.3.3 BUSINESS PROCESS MODELING ARTIFACTS 286
9.4 ANALYZING BUSINESS TRANSACTIONS 292
9.4.1 DESCRIBING TRANSACTIONS 293
9.4.2 DOCUMENTS IN TRANSACTIONS 295
9.5 BUSINESS SIGNALS: RECEIPTS AND CONFIRMATIONS 298
9.6 TRANSACTION PATTERNS 301
9.6.1 OFFER AND ACCEPTANCE 301
9.6.2 REQUEST AND RESPONSE 302
9.6.3 REQUEST AND CONFIRM 303
9.6.4 QUERY AND RESPONSE 304
9.6.5 NOTIFICATION 305
9.6.6 INFORMATION DISTRIBUTION 306
9.7 ANALYZING BUSINESS COLLABORATIONS 307
9.8 COLLABORATION PATTERNS 310
9.8.1 CONTRACT FORMATION 311
9.8.2 SOURCING 312
9.8.3 ESCALATING COMMITMENT 312
9.8.4 MATERIALS MANAGEMENT IN DISTRIBUTION AND FULFILLMENT 312
9.8.5 RECONCILIATION 313
9.8.6 INCREMENTAL INFORMATION TRAIL 313

9.9 KEY POINTS IN CHAPTER NINE 315

CONTENTS I

CHAPTER TEN DESIGNING BUSINESS PROCESSES
WITH PATTERNS
10.0 INTRODUCTION 318
10.1 WHY WE USE PATTERNS IN PROCESS MODELS 318
10.2 HOW WE USE PATTERNS IN PROCESS MODELS 320
10.3 PATTERNS AND THE MODEL MATRIX 321
10.4 IDENTIFYING CANDIDATE DESIGN PATTERNS 324
10.4.1 GENERALIZING PATTERNS 327
10.4.2 VARYING THE GRANULARITY OF PATTERNS 329
10.4.3 COMBINING PATTERNS 332
10.4.4 USING IMPLEMENTATIONS AS PATTERNS 334
10.5 CHOGOSING APPROPRIATE PATTERNS 337
10.5.1 VALIDATING REQUIREMENTS VS. DISCOVERING THEM 337
10.5.2 REINFORCING CONTEXTS WITH PATTERNS 338
10.5.3 APPLYING PATTERNS TO ACHIEVE INSIGHT 340
10.6 ADAPTING PATTERNS 341
10.7 INSTANTIATING PATTERNS TO CREATE NEW MODELS 343
10.7.1 INSTANTIATING ROLES 343
10.7.2 CONFIGURING COLLABORATION AND TRANSACTION PROPERTIES 344
10.8 USING PATTERNS TO SUGGEST INFORMATION
COMPONENTS AND DOCUMENTS 347
10.8.1 KEY INFORMATION COMPONENTS 347
10.8.2 THE DOCUMENT CHECKLIST 349
10.9 KEY POINTS IN CHAPTER TEN 351
CHAPTER ELEVEN ANALYZING DOCUMENTS
11.0 INTRODUCTION 354
11.1 WHAT ARE DOCUMENTS? 355
11.2 CREATING THE INVENTORY 356
11.2.1 DOCUMENT ARCHAEOLOGY AND ANTHROPOLOGY 357
11.2.2 UNDERSTANDING THE ORGANIZATION 359
11.2.3 GENERIC INVENTORY PROCEDURES AND QUESTIONS 360
11.3 SAMPLING THE INVENTORY 364
11.3.1 SAMPLING BASED ON DOCUMENT CHARACTERISTICS 364
11.3.2 SAMPLING BASED ON OTHER CONSIDERATIONS 369
11.4 KEY POINTS IN CHAPTER ELEVEN 371

Xi

xii I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

CHAPTER TWELVE ANALYZING DOCUMENT COMPONENTS
12.0 INTRODUCTION 374
12.1 HARVESTING COMPONENTS 374
12.1.1 FINDING COMPONENTS IN TRANSACTIONAL DOCUMENTS 376
12.1.2 FINDING COMPONENTS IN NARRATIVE DOCUMENTS 378
12.1.3 FINDING STRUCTURES FOR COMPONENTS 380
12.1.4 FINDING SEMANTIC CONTENT IN PRESENTATION COMPONENTS 380
12.1.5 FINDING MEANINGFUL CONTENT IN STRUCTURAL COMPONENTS 386
12.1.6 THE TROUBLE WITH TABLES 389
12.1.7 PRESERVING PRESENTATION COMPONENTS 393
12.1.8 ANALYZING SETS OF POSSIBLE VALUES 383
12.1.8 CODE SETS 399
12.1.10 IDENTIFIERS 402
12.1.11 NAMING COMPONENTS 402
12.2 CONSOLIDATING COMPONENTS 406
12.2.1 CREATING A CONSOLIDATED TABLE OF CONTENT COMPONENTS 406
12.2.2 ENSURING SEMANTIC UNIGUENESS 412
12.3 KEY POINTS IN CHAPTER TWELVE 416

CHAPTER THIRTEEN ASSEMBLING DOCUMENT COMIPONENTS

13.0 INTRODUCTION 420
13.1 ASSOCIATIONS BETWEEN COMPONENTS 421
13.2 DOCUMENT COMPONENT MODELS 422
13.2.1 RULES IN NARRATIVE DOCUMENT CONTEXTS 423
13.2.2 RULES IN TRANSACTIONAL CONTEXTS 426
13.3 METHODS FOR AGGREGATING COMPONENTS 427
13.3.1 THE CLASSICAL DOCUMENT ANALYSIS APPROACH 427
13.3.2 THE CLASSICAL DATA ANALYSIS APPROACH 429
13.4 APPLYING NORMALIZATION TO DOCUMENT ENGINEERING 429
13.4.1 FUNCTIONAL DEPENDENCY 430
13.4.2 ESSENTIALITY 431
13.4.3 THE NORMAL FORMS 434
13.4.4 IDENTIFYING PRIMARY KEYS 434
13.4.5 RECURSIVE ASSOCIATIONS 441

13.4.6 MULTIVALUE DEPENDENCIES 443

Xiii

CONTENTS I

13.5 REFINING THE DOCUMENT COMPONENT MODEL 446
13.5.1 REUSING COMPONENT PATTERNS 447
13.5.2 IDENTIFYING COMPONENT PATTERNS 448
13.5.3 APPLYING COMPONENT PATTERNS 451
13.5.4 REFINING THE NAMES FOR COMPONENTS 454

13.6 CHECKING THE QUALITY OF ANALYSIS 457

13.7 KEY POINTS IN CHAPTER THIRTEEN 459

CHAPTER FOURTEEN ASSEMBLING DOCUMENT MODELS

14.0 INTRODUCTION 462

14.1 DOCUMENT AND DATABASE MODELS 462

14.2 DOCUMENT ASSEMBLY MODELS 463

14.3 REFERENCE MODELS FOR DOCUMENT ASSEMBLY 467

14.4 DESIGNING A DOCUMENT ASSEMBLY MODEL 469
14.4.1 USING BUSINESS RULES TO GUIDE ASSEMBLY 469
14.4.2 ASSEMBLING ASSOCIATIONS 471
14.4.3 CHOOSING THE ENTRY POINT 472
14.4.4 FOLLOWING THE PATHWAY 474
14.4.5 DESIGNING FOR IMPLEMENTATION 478

14.5 DESIGNING FOR REUSE 479
14.5.1 THE CHALLENGE OF CUSTOMIZATION 480
14.5.2 CORE PLUS CONTEXTUALIZATION 482

14.6 DOCUMENTING THE MODEL 485

14.7 KEY POINTS IN CHAPTER FOURTEEN 489

CHAPTER FIFTEEN IMPLEMENTING MODELS

IN APPLICATIONS

15.0 INTRODUCTION 492

15.1 ENCODING MODELS IN XML 493
15.1.1 DOCUMENT MODELS 494
15.1.2 PROCESS MODELS 501

15.2 MODEL BASED APPLICATIONS 505
15.2.1 HOW MODEL BASED APPLICATIONS WORK 505
15.2.2 WHEN APPLICATIONS AREN'T BASED ON MODELS 508

15.2.3 MODEL BASED APPLICATIONS AS A GOAL 509

Xiv I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

15.3 MODEL BASED APPLICATIONS IN DOCUMENT ENGINEERING 510
15.3.1 E-FORM APPLICATIONS 511
15.3.2 E-BOOK APPLICATIONS 521
15.3.3 SINGLE SOURCE PUBLISHING AND PORTAL APPLICATIONS 522
15.3.4 BUSINESS-TO-BUSINESS DOCUMENT EXCHANGES 525
15.3.5 APPLICATIONS WITH INTERMEDIARY PLATFORMS 528
15.3.6 COMPOSITE SERVICES 531
156.3.7 SEMANTIC WEB AND SEMANTIC WEB SERVICE APPLICATIONS 532

15.4 IMPLEMENTING MODELS IN APPLICATIONS: THE FUTURE 535

15.5 KEY POINTS IN CHAPTER FIFTEEN 536

CHAPTER SIXTEEN MANAGEMENT AND STRATEGY

16.0 INTRODUCTION 540

16.1 ORGANIZATIONAL MATURITY 542
16.1.1 MOTIVATING CAPABILITY ASSESSMENT 543
16.1.2 THE CAPABILITY MATURITY MODEL 543
16.1.3 THE DOCUMENT ENGINEERING CAPABILITY MATURITY MODEL 545
16.1.4 CONDUCTING A CAPABILITY ASSESSMENT 550

16.2 BUSINESS OBJECTIVES 554
16.2.1 MAKING A BUSINESS CASE 555
16.2.2 A SAMPLE OF PROJECT JUSTIFICATIONS 558
16.2.3 A SAMPLE OF PROJECT RISKS 566

16.3 KEY POINTS IN CHAPTER SIXTEEN 571

PART IV THE END OF THE BEGINNING

CHAPTER SEVENTEEN EPILOGUE

17.0 INTRODUCTION 576

17.1 WHEN DISCIPLINES COLLIDE 576

17.2 THE BUSINESS OF DOCUMENT ENGINEERING 577

17.3 THE SUCCESSFUL DOCUMENT ENGINEER 578

NOTES 578

GLOSSARY 621

INDEX 647

Preface

XVi I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

For nearly three thousand years information has been organized in the purposeful
and self-contained package that we call a document. The technology for encoding
and exchanging documents has profoundly changed, but the concept of a document
has remained surprisingly stable. Documents formalize the interactions between
enterprises and their customers or clients, and it natural and intuitive to view docu-
ments as the input requirements and as the output results from many kinds of
processes. These document exchanges follow common patterns. Models of business
organization like supply chains, business-to-business marketplaces, and auctions can

bC COIIlpOSCd fI‘OIIl SiIIlplCl‘ two-party pattcrns Of dOClHIlCIl[cxchangcs.

The Internet and its supporting technologies like XML and web services give us great
efficiencies and flexibility in how we create, manage and share information to con-
duct business and collaborate with others. But taking full advantage of these new
technologies requires that we continue to think of documents in an abstract and tech-
nology-neutral way. When a seller asks, “What will you order from my catalog?” or
the buyer asks, “Will you take this check as payment?” they are focusing on what
they want to accomplish through their interactions, not on how to do it. Similarly,
enterprise applications that automate business processes involving document
exchanges should expose their interfaces as abstract document models so they can

operate in heterogeneous technology environments.

Document Engineering helps us specify, design, and implement these documents and
the processes that create and consume them. It synthesizes complementary ideas
from information and systems analysis, electronic publishing, business process
analysis, and business informatics to ensure that the documents and processes make
sense to the people and applications that need them. A document-centric philoso-
phy unifies these different analysis and modeling perspectives. Using patterns for
document exchanges and document components ensures we can build applications
and services that are robust but adaptable when technology or business conditions

change (as they inevitably will).

About the Authors

Bob Glushko spent many years in industrial research and development, technology
transfer, and consulting with a focus that evolved from human factors in computing
systems, to electronic publishing, and then to Internet commerce. He founded or co-
founded three companies, the last of which was Veo Systems in 1997, which pio-

neered the use of XML for electronic commerce before its 1999 acquisition by

PREFACE .
I XVl

Commerce One. From 1999-2002 he headed Commerce One's XML architecture and
technical standards activities and was named an "Engineering Fellow" in 2000. In
2002 he became an Adjunct Professor in the School of Information Management and
Systems at the University of California, Berkeley where he is the Director of the

Center for Document Engineering.

Tim McGrath has a background in information systems design, specifically in the
area of trade and transport systems. In 1990 he co-founded Transport EDI Services
(TEDIS), which grew to be a leader in innovative Internet services for EDI in
Australia. Apart from spending the past three years writing this book he has been

the chair of the Universal Business Language Library Content subcommittee.

Bob and Tim met in 2000 as members of the Quality Review Committee in the
ebXML standards initiative. This committee exercised broad technical oversight
over the entire suite of ebXML standards, including information and process models,

methodologies, and technical architecture for Internet business applications.

Bob’s work in Silicon Valley in the “new economy” of moving bits around the
Internet was perfectly complemented by Tim’s expertise in the “old economy” of
moving real stuff around in the physical world. Bob’s efforts with SGML and XML
for document analysis were matched by Tim’s with EDI and data modeling. It
seemed natural to work together to create a coherent and comprehensive approach
for Document Engineering that builds on their unique combination of perspectives

and expertise.

Acknowledgments

Many people have contributed to this book. Lecture notes for the Document
Engineering course at UC Berkeley became the outline for the first draft, and stu-
dents in that and other courses read versions of many chapters. This final version of
the book barely resembles those lecture notes and early drafts, which means that we
received much useful feedback, but it also means that early generations of Berkeley
students suffered at our hands and for that we apologize. In particular, we thank
Patrick Garvey, Calvin Smith, Bill French, and Carolyn Cracraft for serving as the
teaching assistants in Document Engineering courses. Students Kate Ahern, Alison
Billings, Aaron Brick, Peter Charles, Bob Daly, Lisa de Larios-Heiman, Marc

Gratacos, Denise Green, Kristine Gual, Ryan Huebsch, Sonia Klemperer-Johnson,

xViii I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

John Leon, Justin Makeig, Vam Makam, and Amy Todenhagen also contributed to

improving the book.

We are grateful to Allison Bloodworth, Adam Blum, Ron Bourret, David Burdett,
Hank Chesbrough, Larry Downes, Robert M. Glushko, Brian Hayes, Mary Loomis,
Scott McMullan, Alex Milowski, Hari Reddy, Pamela Samuelson, Anno Saxenian,
and Hal Varian for their careful reviews of draft chapters. Our book is much better

because of their insichts and frankness.
g

We thank Allison Bloodworth (again), Nadine Fiebrich, Myra Liu, and Zhanna
Shamis for allowing us to use their Berkeley Event Calendar Network project as an

extended case study.

The concepts and methods in this book partly evolved from our work in the eb XML
and Universal Business Language initiatives. There are far too many individuals
who have contributed to our ideas through these projects to name them all; we hope
they will feel acknowledged when they see their collective insights in the text. But
we would like to specifically recognize Joe Baran, Jon Bosak, Toufic Boubez, Bill
Burcham, Stuart Campbell, Dave Carlson, Chin Chee-Kai, Klaus-Dieter Naujok,
Stephen Green, Arofan Gregory, Eduardo Gutentag, Eve Maler, Duane Nickull, Sue
Probert, Dick Raman, Mike Rawlins, Karsten Riemer, Marion Royal, Gunther
Stuhec, David Webber, and last but by no means least, the late Mike Adcock.

Our work intersects with research at the University of Hong Kong and we would like
to thank David Cheung and Thomas Lee from the Center for E-Commerce

Infrastructure Development (CECID) for their valuable feedback and support.

We also thank Jon Conhaim, Paul Gray, Patrick McGrath, Helen Norris, JR Schulden
and Shel Waggener of the University of California, Berkeley for their organizational
and financial contributions to our work and especially for allowing us to use the e-

Berkeley program and campus IT projects as a testbed for many of our ideas.

IBMers Sharon Adler, David Cohn, Rob Guttman, Paul Maglio, Bob Schloss, and
especially Jim Spohrer inspired us by their own work in web services, business infor-

matics, and services science to try to pull it all together here.

PREFACE .
| I XIX

We couldn’t have written this book without the indirect help of many colleagues with
or from whom we learned much of what it is in it. These include Terry Allen, Liora
Alschuler, Mike Bianchi, Peter Brown, Brian Caporlette, lan Crawford, Matthew
Fuchs, Clive Gregory, Sue Helper, Kevin Hughes, Russ Hunt, Ken Kershner, Eliot
Kimber, Mary Laplante, Michael Leventhal, Tom Malone, John Mashey, John May,
Bart Meltzer, Murray Maloney, Jeff Suttor, Bill Rouse, Marty Tenenbaum, Marcy

Thompson, Ben Wolin and Vincent Vuong.

Loralee Windsor copyedited the book and Andrea Nelson designed its look and feel.
Carolyn Cracraft created the index and glossary of terms. Naturally, any errors in

content, structure or pl"esentation are ours.
Doug Sery and MIT Press have been remarkably patient.

And finally, we want to thank Pamela Samuelson (again) and Isabelle, Hannah and
Duncan McGrath for their self-sacrifice and inestimable encouragement to us while
we wrote this book. Perhaps they knew better than we did what it would take, but

never lCt on.

How This Book is Organized
This book is organized in four parts.

[“INTRODUCTION" is just that.

[T “FOUNDATIONS” consists of five chapters that discuss XML, modeling, business
patterns, and XML vocabularies to establish an intellectual baseline for the rest of
the book. Some of this material will be familiar to practitioners but has proven

essential for students, so we’ve separated it so that each can attend to it as needed.

11 “THE DOCUMENT ENGINEERING APPROACH” begins with Chapter 7, which
summarizes the end-to-end phases of Document Engineering. Each phase is treated
in depth in a separate chapter. Chapter 16, “Management and Strategy,” discusses
considerations that span all of Document Engineering but which would be more dif-

ficult to explain if this chapter appeared earlier.

IV “THE END OF THE BEGINNING” contains a short epilogue, notes, glossary, and

index.

XX I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

We wrote this book for consultants, practitioners and advanced university students
in information systems, industrial engineering, business informatics or related pro-
fessional disciplines. The book strives to present enough theory and concepts to
frame issues but is aggressively practical where the material allows us to be. The bal-
ance between theory and reality also shows in our notes, which are more extensive
than in most business or trade books but which make no attempt to be as rigorous
as those in academic literature. We also mix in archival and academic sources with
web citations when the latter are likely to be more current or accessible. These notes
appear in a separate section near the end of the book rather than at the bottom of
each page or the end of each chapter so that readers are not confronted by them if

they choose not to read them.

Applications, technologies, and issues for Document Engineering frequently appear
in news stories and technical journals — but are not yet categorized that way. The
companion web site for this book that collects and organizes them. and provides

teaching materials and other useful resources is www.docengineering.com.

Bob Glushko (San Francisco, California)

Tim McGrath (Fremantle, Western Australia)

Foreword
David L. Cohn

XXii I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

In its early days, information technology focused on the capture, processing, storage
and transfer of data. For each step, structures and standards were established and
served as the foundation for subsequent phases. IBM’s universal punched cards cap-
tured data in volume, preparing it for processing. Electronics and programming lan-
guages established mechanisms and disciplines for that processing. Databases and
query languages formalized data storage, and communication protocols led to wide-

ly accepted data communication.

Classical information technology has focused on processing data. Indeed, when I was
young (which some are not sure was ever the case), the field was called Data
Processing. It has primarily dealt with the applications that did the processing
(defined by Glushko and McGrath as “software artifacts that present, collect, and
manipulate information”). We have a vast literature on modeling,
ing, testing and describing these processes. They are important because, without

creating, defin-
them, nothing would happen.

However, as we move comfortably into the 21st century, information technology is
evolving into Business Informatics. This term recalls the dramatic transformation
information technology brought to biology through bioinformatics. We’ll likely see

similar impact on business.

With Business Informatics, we deal directly with the very concepts of data: what it
means, how it is represented and which elements are related. These meanings, rep-

resentations and relationships are present when data is structured into documents.

Documents have long been important, but HIML and the World Wide Web dramat-
ically increase their value. They’ve accelerated document exchange and emphasized
the need for structures and discipline. These structures and disciplines are what
Document Engineering is about, and the document-centric view is where this book

is leading us.

Applications are to information technology as verbs (the action words) are to human
language. But human language would be useless without nouns (the actor words).
In fact, nouns play a larger role in language than verbs. According to Princeton
University’s Cognitive Science Laboratory, the English language has 114,648 distinct
nouns but only 11,306 verbs (see wordnet.princeton.edu for a neat online lexical ref-

erence system). However, language depends on both and on their close relationship.

FOREWORD
0 0 I XX

Glushko and McGrath understand the dualism of information technology’s nouns
and verbs. They note, “it is undeniable that documents and processes have an insep-
arable and complementary relationship.” However, the evolution of information
technology has not supported this duality. If it had, we would have the tools to
model, create, define, test and describe documents, just as we do for processes.

Where are they?
They are in Document Engineering.

Unfortunately, the problem of creating these tools is hard. Just as there ten times as
many nouns in English as verbs, we seem to have ten times as many ways of repre-
senting information as of processing it. Glushko and McGrath have laid down an
organized approach to identify the key documents, canonize their representations
and leverage these to solve the larger problem. They have begun to develop the

structure that will lead us to the needed tool set.
And there is good news along the way.

The document view of Business Informatics may be more natural than the process
view. Documents are concrete entities, and people are comfortable agreeing on their
description and meaning; processes are abstract, and consensus is difficult. In the
work described in this book, and in related efforts covered elsewhere, document-
based analysis is proving to be a powerful technique for designing, building and

managing information systems.

The journey is, indeed, the proverbial thousand miles; this book has begun it with
well more than the usual single step. Fortunately, we don’t have to reach the final

destination to reap substantial rewards.

David L. Cohn

Director, Business Informatics
IBM Research

Yorktown Heights, New York

- INTRODUCTION

1.0
1.1
1.2
1.3
1.4
1.5
1.6

Introduction to

Document Engineering

INTRODUCTION
A SIMPLE BUSINESS TRANSACTION?
THE EXTENDED OR VIRTUAL ENTERPRISE
IT'S ALL ABOUT EXCHANGING DOCUMENTS
UNDERSTANDING THE MEANING OF DOCUMENTS
XML AS AN ENABLING TECHNOLOGY
USING XML-ENCODED MQODELS TO DESIGN
AND DRIVE APPLICATIONS
DOCUMENT SPECIFICATIONS
AND DOCUMENT ENGINEERING
DOCUMENT ENGINEERING—A NEW AND
SYNTHETIC DISCIPLINE
THE DOCUMENT ENGINEERING APPROACH
KEY POINTS IN CHAPTER ONE

N M O 0 O b

_

18

26

27

32
37

i I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

INTRODUCTION

Twenty-four hundred years ago, a Middle Eastern farmer named Halfat paid his

taxes by giving barley and wheat to King Artaxerces. The receipt that documented

this transaction was recorded on a fragment of pottery.!

We don’t use pottery, papyrus, and parchment anymore, and although paper hasn’t
gone away, electronic documents have replaced much of it. A corresponding evolu-
tion has taken place in the nature of document exchanges and the business process-
es they enable. Every major advance in transportation, communications, manufac-
turing, or financial technology has brought a need for different kinds of information
flow. People have met these needs by developing specialized types of documents con-
taining the required information. Letters of credit, bills of lading, paper currency,
promissory notes, checks, and other new types of documents came into being in

response to a business opportunity made I)OSSiblC bV some advance in tCChIlOlOgY.

In the 19th century the telegraph and telephone made it possible to exchange infor-
mation electronically and coordinate business activities at a scale vastly larger than
before, leading to the rise of the modern corporation. The late 20th and early 21st
centuries have witnessed the equally profound impact of the Internet (and related
technologies such as the World Wide Web, electronic mail, and XML) on how busi-
nesses work. Now the web-based virtual enterprise can be open for business 24 hours
a day, 7 days a week, with a global presence enabled by distributing people and

resources wherever they are needed in either physical space or cyberspace.

Clearly, companies can’t reliably achieve new business value by facing inward and
focusing on efficiency. But they can’t succeed in the dynamic 21st century global
economy just by getting on the web either—they need to fundamentally rethink what
they do and how they do it. Then they can begin to exploit their own strengths and
start to rely on those of other organizations that may be halfway around the world
but because of abundant bandwidth seem to be next door. When they face outward
to create richer relationships with suppliers, customers, and business service
providers and integrate their internal business processes with those of their business

partners, they create value they could not produce on their own.

INTRODUCTION TO DOCUMENT ENGINEERING I 5

And behind this flexible, adaptive business architecture remains the very simple and
natural idea of document exchange. Documents organize business interactions and
package the information needed to carry out transactions. The notion of documents
as the inputs and outputs of business processes wherever they reside in the network
is a technology-independent abstraction perfectly suited for the heterogeneous tech-

nology environment of the Internet.

We don’t need to understand the technical nuts and bolts of XML and web services
to appreciate the revolutionary power of this approach. Any business service that is
invoked with an XML document and sends an XML document as its response can be
a component in a service oriented business architecture. That business component

can then be plugged into a new business model that may never have existed before.

But although the web services standards tell us how to package information into doc-
uments and where and how to route them, they don’t tell us what any of the docu-
ments mean. We need Document Engineering to help us specify, design, and imple-

ment the documents that are the inputs and outputs of business services.

Document Engineering synthesizes complementary ideas from information and sys-
tems analysis, electronic publishing, business process analysis, and business infor-
matics. Its unifying document-centric perspective helps us conceive and understand
the new network-based business models made possible by the Internet and support-

ing technologies.

The essence of Document Engineering is the analysis and design methods that yield:

® Precise specifications or models for the information that business processes

require.

e Rules by which related processes are coordinated, whether between different
firms to create composite services or virtual enterprises or within a firm to streamline

information flow between organizations.

Document Engineering provides the concepts and methods needed to align business
strategy and information technology, to bridge the gap between what we want to do
and how to do it. Describing business processes in terms of the more abstract notion
of document exchanges makes it easier to understand the constraints imposed by

legacy systems and technologies and to recognize the opportunities created by new

6 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

ones if we focus on conceptual models of the exchanges rather than on how they are
implemented. The expressiveness of XML for implementation models bridges the

traditional gap between business strategy and its technology realization.

1.1
A SIMPLE BUSINESS TRANSACTION?

Imagine that you go into your local bookstore and notice a new book with an intrigu-
ing title, “Document Engineering” by Glushko & McGrath. You hand the clerk your
credit card, and a few moments later you leave the store with your copy of the book.
To describe what just took place, you might say that you purchased a book, using the
single word purchased because the experience seemed like a single economic event or

transaction taking place between you and the bookstore.

Now imagine that you are browsing the website at an Internet bookstore,
GlushkoMeGrathBooks.com (from now on we’ll just call it GMBooks.com). You nav-
igate a few screens to select that new book with the intriguing title, “Document
Engineering” by Glushko & McGrath. You add your credit card information and
shipping address to the shopping cart form, and a few days later the book arrives by

delivery service.

How would you describe what took place at GMBooks.com? At first glance the online
experience seems equivalent to the bookstore experience, so you might describe it as
“buying a book online.” But if you analyze the online experience more closely, you
can see that it is composite service in which at least three separate transactions or

exchanges of information occurred:

1. Your interaction with the GMBooks.com catalog to select the book you want to

order.

2. A document exchange between GMBooks.com and a credit authority (a bank or
authorization network like VISA or MasterCard) to verify your creditworthiness and

P
charge _VOIH“ account.

3. A document exchange between GMBooks.com and the delivery service with the

instructions for picking up and delivering your book.

INTRODUCTION TO DOCUMENT ENGINEERING I 7

So what looked at first like a single event, “buying a book,” turns out to be at least
three separate events that have been combined in a particular sequence to create a

composite business process (see Figure 1-1.)

This pattern is typical of many Internet retailers and completely invisible to you as
the customer. But there may be even more involved here. The retailer taking your
order doesn’t have its own inventory of the books it offers in its catalog. Instead it
maintains a virtual inventory, which consists of the books it can reliably obtain from
distributors when a customer selects them from the online catalog. So other transac-

tions that might take place are:

4. An exchange between GMBooks.com and the distributor to confirm that the book
you selected is available so that GMBooks.com can sell it to you and promise a deliv-

ery date.

5. The order sent by GMBooks.com to the distributor to obtain the book on your

behalf.

6. The request for delivery (or forwarding instructions) sent from the distributor to
the delivery service with the instructions for delivering your book. This document
exchange takes place instead of Exchange 3 because the order taker never has your

book!

This simple example, contrasting a “bricks and mortar” bookstore and an online
bookstore, illustrates the disruptive force of the Internet on traditional business mod-
els. A virtual company created by using services provided by separate businesses can

be created more rapidly, more flexibly, and at a lower cost than a traditional store can.’®

The new business model of the virtual store changes both the business processes of
the traditional model and the document exchanges required to carry them out.
Redesigning and realigning these into a new business model requires the concepts

and methods of Document Engineering.

A virtual company can be created rapidly, flexibly,
and at low cost

8 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

1.2
THE EXTENDED OR VIRTUAL ENTERPRISE

Before we go any further, we must point out that when we say things like enterprise

or business model, we don’t mean to rule out governments, educational institutions,
or nonprofit institutions. Business is shorthand for “purposeful, systematized activi-
ty to create and exchange value” and can apply as well to government, educational,

and nonproﬁt entities.

Unlike the physical bookstore, which might exist as a single entity in a fixed location,
the online bookstore, GMBooks.com, functions as an extended or virtual enterprise.
It emerges from the coordination of the activities of numerous independent business-
es that collaborate to achieve their interlocking goals, as illustrated in Figure 1-1.
This coordination takes place by the exchange of information between the retailer
and book distributors, shippers, and credit authorities. The retailer doesn’t need its

own books and delivery trucks—it can replace inventory and equipment with infor-

mation.
The Virtual Enterprise
i Dl SrACE 8 Ve "|
D e s e X Banken comvs Vs of Sourcreg 8 Baok af Shisgpuia s Bssk

Shiz ook

Balacl Bk Ol Eoab 1 s :
ekl iy Pk iu_l Cabrret Cre ..._| | | S nOwIEe Iretcaons
| Check Awailaning | m Recshae Snoks |

- J :
X

| A A AR Ll

M unege DimThakrs

W mdain Aocmaris | r-_..u::.-r: EorT e Chelkar :li.ld'u-]
Sl Bravk Track Fullinsni :
foirrreinian Cvoers | L= | [Eech Smn | | Hoary ot SEana
| T Wekiy 01 S J \ r
L,
I rl:\ldl.ﬁ.lll-:ll'n Wiar off P il

FPaymranm

el Bookes cl:-'n.k;-' v of Sefling 2 Back

g Salect Snok Srler Book Vilteta Marchal
L [Ftins caaug] |l Acsmumiog ovow | - :
Ca b cine O wlaba e
= 3 e || AcinoslEdpe Payment |

| Muirtsn Azceants

!

-
Eale] Book [Sircer Aok
B el Calwp Pace (e
Py 1r G
Eusaran's Yiaw of Beyirg » Bank
-

Figure 1-1.The GMBooks.com Virtual Enterprise

INTRODUCTION TO DOCUMENT ENGINEERING I g

The business model used by GMBooks.com is a drop shipment pattern, where a
retailer without inventory offers products from an aggregated catalog and routes cus-
tomer orders to distributors or other firms who fulfill the orders from their own
inventories.* While this coordination is usually invisible from the customer’s perspec-
tive, it requires a complex and carefully managed series of document exchanges (often

called a document choreography) over a period that may range from hours to weeks.

Independent business processes are coordinated
by the exchange of information

Many dot-coms failed because their flashy websites could take orders from customers
but did not implement the “back end” information exchanges with warehouses and
shippers required to make reliable delivery promises to customers. Dissatisfied cus-

tomers whose orders arrived late never ordered another product.

IT'S ALL ABOUT

EXCHANGING DOCUMENTS

The exchange of information between GMBooks.com and the other businesses that
provide services to it takes place in the form of electronic messages or documents. In
the book purchase scenario it is easy to identify the information that must be
exchanged to carry out the desired business processes: an identifier for the book (per-
haps an ISBN), a credit card number and purchase amount, and a customer’s name

and shipping address.

Some people might object to classifying these relatively small pieces of information
as documents. They may want to distinguish between fine-grained, structured “data”
and coarse-grained, unstructured “documents” or use the latter term only where they

can imagine something printed.

A chain of related documents will reuse
common components

But more and more business processes involve both these ideas of “documents” and
“data.” A catalog might contain a mixture of description about products (text,

graphics, photographs, and so on) and detailed data about their technical specifica-

10 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

tions. GMBooks.com depends on narrative documents like catalogs and book reviews
as well as on transactional documents like orders, shipping notes, and payments to
carry out its drop shipment business pattern. For information to flow efficiently from
one type of document to another in this chain of related documents, there must be

common content components that are reused. It isn’t helpful to impose some arbi-

trary boundary between data and documents—what matters is the information com-

ponents they convey.

THE DOCUMENT TYPE SPECTRUM

We view both documents and data on a continuum we call the Document Type
Spectrum (see Figure 1-2) by analogy with the continuous rainbow formed by the
visible light spectrum. It is easy to contrast highly narrative style documents from
those that are highly transactionally oriented, just as it is easy to distinguish red from

blue. But it can be difficult to distinguish different shades of a single color.

W'y e
oL

Narrative
|EUONIESLIES |

Figure 1-2.The Document Type Spectrum

These difficult distinctions arise in the middle of the Document Type Spectrum
where documents contain both narrative and transactional features. This is where we

find hybrid documents like catalogs, encyclopedias, and requests for quotes.

The point is that this is a continuum. We don’t see a magical point in the scale of
information exchange from a short string of bits to complete purchase orders where

data end and documents take over.

INTRODUCTION TO DOCUMENT ENGINEERING I 11

A document is a purposeful and self-contained
collection of information

Nor do we see a sharp boundary between structured sets of data designed for use by
computer applications and unstructured information designed for people. Defining
document in a technology-neutral way as a purposeful and self-contained collection

of information seems to cover both ends of the continuum.

(EN2] DOCUMENT EXCHANGE AS A BUILDING
BLOCK IN BUSINESS MODEL PATTERNS

Doing business by document exchange is natural and intuitive. Businesses use docu-
ments to organize their interactions with each other and to package the information
needed to carry out a transaction or other meaningful unit of business. The seller
may ask, “What do you want to order from my catalog?” and the buyer might ask,
“Will you accept my purchase order?” The buyer and seller (or their lawyers) may
negotiate a detailed contract with the precise terms and conditions of their business
relationship. This contract often specifies the content and timing of other documents
that the parties are to exchange in the course of conducting their business with each

other.

The exchanges of documents that take place to carry out business models follow
common patterns. For example, the drop shipment pattern illustrated in Figure 1-1
is just one example of how a firm uses document exchanges with other firms to carry
out its business model. Supply chains, business-to-business marketplaces, auctions,
information brokers or aggregators, and content syndication networks are other
examples of business processes that use document exchanges to combine or intercon-

nect products or services from multiple businesses.

The document exchanges an organization uses to carry out its internal business
processes also follow patterns. For example, the order management cycle can be
described as ten steps that begin with order planning and end with post sales serv-
ice. The complete cycle involves numerous documents that flow between sales, engi-
neering, finance, logistics, customer service, and other divisions within the organiza-
tion. The specific documents and divisions vary in different contexts, but the gener-

al pattern is ubiquitous.

12 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

There is no necessary relationship between these business process patterns and their
organization within an business’s management structure or their support in technol-
ogy and systems. For example, the fact that a business conducts procurement
processes to obtain goods and services does not imply that it has a procurement

department or that it has an automated procurement system.

Of course, the business model may determine or at least constrain many decisions
about how the enterprise is organized and what information technology it uses. The
fit between what a business does and how it does it can be more easily assessed if the
business model is defined in an abstract manner independently of its organizational
and technological implementation. The foundation of the U.S. government’s Federal
Enterprise Architecture’ effort is such a business reference model (BRM). Their goal
is to support cross-agency collaboration, transformation, and government-wide
improvement by requiring that organizational structures and technology investments

be aligned with the business model.

The alignment of business models and technology is easier to achieve when an organ-
ization systematically structures its business capabilities as self-contained resources
or processes so they can efficiently interact and recombine to meet changing business
requirements. Using standard documents as the interfaces for business processes is a
natural outcome of organizing business functions as more discrete and flexible com-

ponents.

GMBooks.com is a simple example of combining component business services to cre-
ate a composite application. Real-world components like the Amazon.com caralog./o
the UPS delivery and tracking functions, and Visa payment processing are all avail-

able as document-based web services for easy integration into other business systems.

In Chapter 4, “Describing What Businesses Do and How They Do It,” we compare
and contrast the organizational, business model, system architecture, business
process, and information architecture perspectives from which one can analyze and
describe models of document exchanges. This provides a repertoire of patterns of dif-

ferent granularity that can be reused to devise new business solutions.

INTRODUCTION TO DOCUMENT ENGINEERING I 13

- RCRC!
DOCUMENT EXCHANGE AS LOOSE COUPLING

Document exchange as a mechanism for conducting business lets the participants
focus on what they want to accomplish rather than how they must do it. The seller
asks, “What do you want to order from my catalog?” and hopes not to have to ask,
“What kind of software do you use to arrange and send electronic orders?” A rela-
tionship is called loosely coupled when the parties avoid dependencies, so that

changes by one party have no impact on the other.

It is nonsensical to imagine a business relationship that depends on the color of the
file cabinets in which documents are stored, the brand of accounting software used
to calculate invoices, a database or directory structure, or anything else about the
technology choices involving information or documents to be exchanged. A relation-
ship with these kinds of constraints would be too tightly coupled to cope with the
ordinary evolution of business practices. But historically many approaches for inte-
grating applications depend on screen layout, record or table structures, fine-grained
application program interfaces (APIs), or other implementation details and are more

tightly coupled than might be desirable.
Loose coupling is an old and familiar idea

Loose coupling is an old and familiar idea. Telephones and fax machines enable busi-
nesses anywhere in the world to exchange information with each other even if they

have no existing relationship.

All they need to know is the other’s phone or fax numbers, which they might find in
a business directory. They don’t need to know anything about the other’s choice of
telephone or fax equipment, and either business could buy a new phone system or
fax machine and the other one wouldn’t need to know and wouldn’t care. Technical
standards for how these devices connect to the phone network make them all look

the same to the other side.

Of course, the problem with telephone messages and fax machines is that they don’t
make it easy for the recipient to extract the important information about the busi-

ness activity in an automated way. That’s why businesses (or different divisions with-

14 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

in an organization) prefer to send computer-processable documents to each other—
to improve accuracy and allow the information they exchange to grow in volume or
frequency. And as with telephones and fax machines, standardization of these docu-

ments can be essential in maintaining a loosely coupled relationship.

What this all leads to is that two business organizations must agree on what the doc-
uments mean and on the business processes they expect each other to carry out with
them, but they don’t need to agree on or even know anything about the technology

they use to create and process the documents.
Organizations must agree on what their documents mean

For example, suppose a customer sends a purchase order to GMBooks.com; if
GMBooks.com can fulfill it, they respond with a purchase order acknowledgment, or
perhaps with an invoice and a shipping note. As long as the customer and
GMBooks.com understand each other’s documents and can produce and respond
with the documents appropriate for each other’s business processes, they don’t need
to reveal how they produce the documents they send or how they process the docu-
ments they receive. The documents are the only visible interfaces to their respective

business processes.

UNDERSTANDING THE
MEANING OF DOCUMENTS

For most people understanding something they read in their native language is so
immediate that they don’t think much about it. The meaning seems to leap directly
from the words on the page into their consciousness in a natural and automatic way.
This is why we may feel surprised or confused if we later realize that other meanings

or interpretations of the words were possible.

And we're not just talking about poetry or philosophy, where the author’s intent or
the inherent abstractness of the subject matter challenges readers to make sense of
the words. Even in catalogs, forms, contracts, and other ordinary business docu-
ments, the relationship between words and meaning can be complex and subtle. For
example, the same meaning can be described with different words (Address in one

document might mean the same as Location in another one), or different concepts

INTRODUCTION TO DOCUMENT ENGINEERING I 15

can be described with the same words (Address might mean the buyer’s address in
one document and the seller’s address in another). The meaning of some words can

change significantly in different business situations or contexts; consider that Next

Day Delivery might mean delivery tomorrow but not if today is a weekend day or

holiday because Day in Next Day Delivery means business day.

Situations like these can obviously cause misinterpretations, but people have a
remarkable ability to refine or repair their understanding. However, computers and
software have no such ability. We have all experienced system crashes and unexpect-
ed behavior when some bit of data was misinterpreted by application logic because
it didn’t mean to the program what we thought it did (an infamous example occurred
in 1999 when an interplanetary mission to Mars failed because one engineering team

. . . 7
used metric units and another one didn’t)."

So we need to be diligent and precise when we define the meaning (or semantics) of
any information content produced and consumed by business applications. But this

is easier said than done, and there is a great range in how diligent and precise we can

be in doing so.

\We need to be diligent and precise when
we define semantics

At the very least we can try to define words to create a dictionary. At the other
extreme our definitions are expressed in a formal language using a controlled set of

terms and relationship types between them.

In the ideal world we end up with a complete view of how information is defined and

what is often called the information model—a

used in different business contexts
formal representation of the structure and semantics of information. Of course, peo-
ple often aren’t as careful or conscientious as they should be in creating information
models. They may fail to recognize the seriousness of the semantic ambiguity prob-
lem, or they may have insufficient time, expertise, resources, or incentives to attack
it. In either case, there can be substantial differences in the meaning and presenta-
tion of information within a single enterprise. And this is invariably reflected in any

documents they create.

16 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

INCOMPATIBLE INFOBRMATION MODELS

In large organizations it is easy to find numerous varieties of timesheets, expense

reports, purchase orders, catalogs, calendars, and other types of documents. These
are likely to contain incompatible information models that prevent time, expenses,

and purchases from being aggregated or compared.

In Chapter 6, “When Models Don’t Match: The Interoperability Challenge” we fur-
ther describe the problem of multiple interpretations or formats for what is supposed

to be the same information.

Even if each enterprise in a business relationship were disciplined in its own
approach to modeling and describing the information it uses internally, that would-
n’t be sufficient. There are at least two sides to every document exchange, and all

parties need to ensure that they understand the documents in the same way.

One way to do this would be for every enterprise to adopt a common data model and
use exactly the same definitions for the document components of their applications.
But that’s inconceivable; enterprises, applications, and people just don’t stand still
long enough to make it possible. It is more conceivable that two parties might each
create conceptual information models to help them translate or transform the docu-
ments they receive so their applications can understand them. The Data and
Information Reference Model being created as part of the U.S. government’s Federal

Enterprise Architecture is an exemplary and ambitious step in this direction.

L Starting in Chapter 8, we'll present a case study about the develop-
ment of a standard model of an event calendar to replace dozens of
incompatible ones used at the University of California, Berkeley.

INTRODUCTION TO DOCUMENT ENGINEERING I 17

STANDARD INFORMATION MODELS

Both the common data model and conceptual information model approaches for
ensuring that parties understand each other’s documents are facilitated when the
syntax, structure or semantics conform to common patterns or standards. Many of
these have been developed for specific vertical industries by trade associations,
industry consortia, or formal standards bodies.? Standards efforts are often the most
successful where the stakes are the highest, and it isn’t surprising that standards
compliance is highest for business processes like payment initiation, reconciliation,

funds transfers, and statutory reporting.

Standards for information components needed in all businesses are a more recent
development. For example, descriptions of organizations and individuals, basic item
details, measurements, date and time, location, country codes, currencies, business
classification codes, and similar reusable patterns of information components are

found in a wide variety of documents.

Standards for syntax, structure, and semantics
facilitate document understanding

Standard reusable patterns are especially important when designing the set of docu-
ments needed to carry out a composite business process because they encourage the
assembly of documents from building blocks that are reused as information flows
from one document into the next. In this regard, the Universal Business Language

(UBL) effort, released in mid-2004 promises to be an extremely important standard.’

To exchange documents, computers or business applications require a precise and

XML AS AN ENABLING TECHNGOLOGY

unambiguous language for describing information models. Since its emergence in the
late 1990s, XML—the Extensible Markup Language—has rapidly become the pre-
ferred format for representing information in documents both on and off the

Internet.

18 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

People who work in web publishing view XML as an improvement on HTML, that

enables greater automation and consistency in formatting.

Programmers see XML as an Internet-friendly, easy-to-parse, and nonproprietary
data format that they can use instead of ad hoc languages for application configura-

tion and interprocess communication.

Electronic data interchange (EDI) developers see XML as a more expressive, main-

tainable, and therefore lower cost syntax for creating business messages.

XML’s broad impact in publishing, programming, and EDI has made it a unifying
technology for implementing applications that use Internet protocols, especially for

those that span enterprise boundaries, such as web services.

XML has become the preferred language for representing
information in documents

Expressing information content and processing logic in a computer-friendly XML
vocabulary enables robust applications to be deployed efficiently and at a reasonable
cost. XML content can be taken from documents, databases, and enterprise applica-
tions, combined and treated as a single source, and delivered to multiple users,

devices, or applications.

In Chapter 2, “XML Foundations,” we introduce XML from the perspective of mod-
eling and document exchange. We emphasize the conceptual innovations in XML
and don’t dwell on XML syntax or schema languages. There are plenty of excellent

books about the latter, and these aren’t what is most important about XML anyway.

USING XML-ENCODED MODELS
TO DESIGN AND DRIVE APPLICATIONS

The expressiveness and flexibility with which XML encodes models makes it a pow-
erful technology for improving software engineering. Applications that are built
using models to bridge the traditional gap between design and implementation are
often called model based applications or model driven applica‘rions.10 They share

information and can be integrated with others more readily. And they are vastly eas-

INTRODUCTION TO DOCUMENT ENGINEERING I 19

ier to deploy and maintain than those developed without explicit models or for which

the models were left behind when coding began.

Some developers still ignore the well-known benefits of a disciplined software devel-
opment methodology with controlled iteration of analysis, design, implementation,
and user feedback and still employ labor intensive and ad hoc techniques that do not
predictably yield quality software. The reasons (or excuses) for not following a soft-
ware engineering approach are well-known: unrelenting user demands for new or
revised functionality, competitive pressure for rapid application deployment and
modification, or simply the difficulty of obtaining correct requirements without cod-
ing something and testing it. Unfortunately, the results are also well-known: little
reuse of information or processes across applications, applications that are coupled
in unpredictable ways by shared data, and business rules and workflow specifications

embedded into application logic.

It doesn’t have to be this way. Data dictionaries, programming language classes,
database schemas, UML models, spreadsheet templates, and XML schemas can rep-
resent the rules and semantics for the documents and processes needed by software
applications. These different ways of expressing models are designed for different
purposes, but what is important is that each of these representations can be used in
a rigorous and formal way to define models that can then be used as specifications

for generating code or conhgurmg apphcathIlS.

In this book we emphasize the use of XML-encoded implementation models to design
and drive applications. But, there is certainly nothing about models of documents or

processes that requires them to be represented in XML.

Nevertheless, using XML to encode implementation models yields an overall rigor,
reusability, and programmability unmatched by other representations. Furthermore,
XML facility for document encoding is an excellent match for the document
exchange architecture of the Internet. For those who prefer other representations of
data models, programming paradigms are emerging in which XML schemas, pro-
gramming language objects, database schemas, and UML models can be treated as
equivalent because XML schemas can be used to generate any of the other formats

if required. n

20 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

In Chapter 15, “Implementing Models in Applications,” we discuss the use of XML
for document and process implementation models as explicit representations of

apphcatlon rcquu‘cmcnts.

1.6.1
DOCUMENT MODELS AS INTERFACES

The simplest case of model based applications is also the most common. For count-
less information-based activities that have moved to the web, the application is little
more than a document displayed in a browser that users interact with in ways that

are determined by the document’s model.

On the narrative end of the Document Type Spectrum are E-books or other struc-
tured publications in which user interface features like tables of contents, hypertext
links. and navigation aids are generated from the names or attributes of the infor-
mation components in the document. On the transactional end of the Document Type
Spectrum are E-forms in which applications collect the information specified in the
document’s model to automate processes that previously have relied on printed
forms. We can readily imagine applications where information moves within and
between companies—filling out purchase orders, submitting a budget or timesheet,
seeking reimbursement for expenses, applying for a grant or job, registering for class-

es or events, filing income taxes, making insurance claims—the list is endless.

In our online bookstore example, a customer’s order from an online catalog might be
captured using a web-based E-form. Some pieces of this information, such as the
customer’s name and address or the title of the book being purchased may be
required in other applications, such as those dealing with supply, delivery, or billing,

as illustrated in Figure 1-3.

INTRODUCTION TO DOCUMENT ENGINEERING I 21

The Virtual Enterprise

= l Delivary Servica |

] Cutomen Refemee | usorian

| Addrem | yew Dedin] Mlexr ldmd S

|_h Distributor J .

B el Ovdar Credit Authcrity |

o
Brra ey T 1y Gshin & Mot Transaction Advice
Cuanity Fegarerd M =
.~ -
Sripging Adims | Wi it Fn s loard UG,] L
: = ¥

Biing Ao Fiarms, W sdur b usiais
Ciemnnif T 104 1%

er Reference)
agirws naru, Clathien 2 hnFaalty
Frce) I
Fostage and Handing [€30 |
Shiaping Addness e Fwvtrer, Rbadw beirad_ 1154
Fayrrmnl Mathad i 1
[wirg Adress Framan|ke_Wetsin Autraiy |
Grand Toral W51 |

Cusiomar's View of Buying a Book

Figure 1-3.Overlapping Content Models in the Virtual Enterprise

These shared pieces of information form the glue that binds the different services to
create the virtual enterprise that the customer sees as GMBooks.com. The benefits of
a common model for these shared pieces of information are obvious: no data reentry
and no omissions or misinterpretations. And this is a trivial example. Consider the
benefits of reuse in the average cross-border trading process, which can involve up to

40 documents and 200 data elements, 30 of which are occur in at least 30 documents.

While many applications begin as user interactions with a form, the business process-
es that follow might be carried out by computer programs with no human involve-
ment. But it makes sense for us to look at both kinds of model based interactions in
the same way, generalizing the idea of documents as interfaces for people to the idea

that documents are interfaces to business services or business processes.

Documents describe the interfaces to business processes

[a]s) I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

In both cases the document conveys or captures information in an exchange with
another party or process without necessarily revealing anything about how the infor-

mation is consumed or created by each participant in the exchange.

MODELS OF BUSINESS PROCESSES

Figure 1-3 illustrates the reuse of information between numerous documents that
together carry out a business process. But the mere reuse of information from one
document to another isn’t sufficient to make the business process work. It is also
essential for all parties in a document exchange to agree on the purpose or context of
a document, which means understanding the business process in which the document

exchange is taking place.

Suppose GMBooks.com sends a list of books to another business. This same list of
books might appear in an order, an order response, an order change, a price and

inventory check, a shipment notice, a bill of lading, an invoice, and so on.

All parties in a document exchange must agree
on the context of use

But nothing in the list of books itself communicates anything about the purpose,
intent, or business context with which the list should be interpreted by the organiza-

tion that receives it.

If GMBooks.com sends a purchase order to a book distributor and expects a purchase
order acknowledgment in return, what happens if the book distributor’s normal busi-
ness practice (when it can fulfill an order) is to only send an invoice and a shipping

notice?

If GMBooks.com’s applications are incapable of handling such an electronic response

from the book distributor, the process breaks down.

In such situations, it is unlikely to be trivial for GMBooks.com to modify its order
management system to dispense with its acknowledgment and accept the document

that the book distributor sends. Nor could we expect the book distributor to modify

INTRODUCTION TO DOCUMENT ENGINEERING I o3

its systems to produce what GMBooks.com wants. But one or the other must do this

to enable an automated business exchange.

Clearly, the rules of the business process that control the pattern of document
exchanges or, more generally, define the agreement or mutual understanding of the

parties to the exchange, should be expressed in an explicit model.

For example, GMBooks.com could accompany the order with a business process
model that defines both the documents it expects to exchange when it sends orders
and the sequence of their document exchanges. This model can be defined as anoth-
er document that is used to configure the software on the distributor’s side, or it
might even be executable and used at run time to ensure that the appropriate docu-

ments are exchanged and processed in the specified sequence.

We may not be quite there yet but many initiatives are working diligently to get us
closer by developing standards for specifying processes, their composition, and their
coordination. Furthermore, many software vendors are developing middleware for

using the specifications to control or verify document exchanges.

How these problems of business process integration are resolved depends on what
causes them. Technology mismatches are a significant factor. Also significant are the
existence of industry standards or reference models, the relative power in the busi-
ness relationship, the technological and process maturity of each firm, and the extent
to which the firms have complementary long-term business strategies. In Chapter 106,
“Management and Strategy in Document Engineering” we look at broader factors
that determine the success or failure of efforts to exchange information within and

between enterprises.

WEB SERVICES AND

SERVICE ORIENTED ARCHITECTURES

Using documents as interfaces and thereby hiding implementation details underlies
the idea of service oriented architectures (SOAs) as a way to create new applications

or systems such as web services by integrating or combining components of other ones.

A technical definition of a web service is “an interface that describes a collection of

operations that are network accessible through standardized XML messaging.”H This

24 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

means that any self-contained application functionality or information resource is
turned into a service by packaging it so that it exposes only input and output XML

documents. Typically, these are transported over the Internet.

But this definition, though entirely comprehensive, doesn’t explain why there is so
much hype about web services and SOAs. One of the most common senses of service
contrasts it with products to mean some kind of activity performed by a person so if
you aren’t a programmer you might not realize from the definition that almost any-
thing can be turned into a service. Because of the abstraction level introduced by

document exchange. a service can be:

L4 Anything that can send or receive a document.

® Anything that can accept a document, process it and return a result.
® Anything that can accept a document and allow the user to act on it.

® Anything that can accept a document and forward it to some other application

or destination.

L4 Anything that can generate a document as a result of user interaction, process-

. . 5
ing a received document, or some other event.”

So a service can be anything and do anything, as long as the information needed to
request it and the work or results that it produces can be effectively described using
XML. Note also that the way we’ve defined services allows them to be provided by
people as well as by software or other automated means, and the document interface

by itself provides no hints.'°

Anything that takes requests and describes its results
using XML can be a web service

No small set of examples can convey the range of possible services, but here are some
anyway: stock quotes, tax rates, inventory levels, order tracking, payment process-
ing, restaurant reservations, traffic conditions, sports statistics, credit ratings, alge-

. . . . 7
braic expression evaluation, and language translation.!”

INTRODUCTION TO DOCUMENT ENGINEERING I o5

While a service can carry out some useful business activities on its own, if its docu-
ment interfaces are described in standard ways, it can combine with other services to
create a composite application that provides additional value because of the combi-
nation and is more efficient in invocation. For example, consider how a travel infor-
mation service could be created by combining separate services that provide person-
alized information about local news, weather, cultural events, traffic conditions,
hotels, restaurants, and so on. You could request all of this interrelated information
with little more than the name of the destination city, and it would be assembled

invisibly by the composite service.

Adopting a flexible SOA benefits a firm in many ways. The core idea that applica-
tions should be built by assembling service components rather than repeatedly cod-
ing them, promises lower cost and a more general approach for integrating or reusing
separate systems or resources within an enterprise. Duplicated functions can be con-
solidated; for example, in a large enterprise a single service for processing payments

might replace dozens of existing applications.

SOAs also enable web services to expose inward-facing legacy systems and data
repositories to external businesses or customers and thereby add value to business
relationships. For example, a web service that looks up customer details in a cus-
tomer database can be combined with one that knows about orders in a ERP system,

creating a composite service that locates the current orders when a customer calls in.

Because web services are loosely coupled and hide implementations, document inter-
faces allow firms to maintain a clean and stable relationship to partners and cus-
tomers. Even if an organization subsequently migrates its internal processes and data

from legacy systems, users of the web service shouldn’t notice.

Document interfaces maintain clean and stable relationships
between business partners

By using independent components, web services also make it easier and cheaper to
adopt new technologies incrementally without affecting any existing business func-
tionality. Implementation transparency supports more objective “build vs. buy” deci-
sions about business services and permits comparisons among alternative providers.
Because document interfaces can be implemented in any technology, platform com-

patibility concerns are lessened. And since businesses can have nonessential process-

2B I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

es performed by another firm without being locked into a relationship with that
provider, traditional arguments for running business applications internally might
now lose to those for outsourcing. But as we shall see in Chapter 4 “Describing What

Businesses Do and How They Do It,” such decisions may not be that simple.

Finally, as more third-party service providers adopt document interfaces for hosted
services, enterprises can more quickly react to changes in business conditions and
customer demand by treating software resources like utilities, using only as much as
needed. The flexibility, extensibility, and responsiveness made possible by web serv-
ices and service oriented business architectures are becoming central to the market-

ing and branding of platform vendors, consultants, and professional services firms.'8

However, this is not a book about web services, and while we will discuss them briefly
in Section 4.4, “Views of Business Architecture,” we will not go into any more detail
about web services specifications or technologies. Once again, there are many excel-
lent sources that do that.'” Instead we focus on how to understand the business con-
text for web services and on the conceptual tasks of analyzing and designing the doc-
uments and processes that might ultimately be implemented in service oriented

architectures.

DOCUMENT SPECIFICATIONS
AND DOCUMENT ENGINEERING

Where do the specifications for the documents needed by the new business models
come from? We propose that they should come from Document Engineering—a new
discipline for specifying, designing, and implementing the documents that serve as

the interfaces to business processes.

We do not mean to imply that every document or process model needs to be created
from scratch—far from it. Just as with every other engineering discipline. Document
Engineering emphasizes the reuse of existing specifications, standards, or patterns
that work, reducing costs and risks while increasing reliability and interoperability.
Useful patterns for Document Engineering include those encoded at the implemen-
tation level in the form of XML schema libraries or EDI message standards. Others
are at more conceptual levels, in the form of industry reference models for common

business processes, or even in more abstract patterns for the organization of activi-

INTRODUCTION TO DOCUMENT ENGINEERING I o7

ties between businesses such as supply chains, marketplaces, or straight-through

processimg.

Of course, no existing pattern is likely to be totally suited to the required context of
use. So a business must follow an engineering approach that develops models that
meet these requirements. And even then it is essential to design and implement the
models in a manner that enables its subsequent modification and reuse. In Chapter
7, “The Document Engineering Approach,” we introduce Document Engineering as
an artifact-focused view of the classical requirements-analyze-design-refine-imple-

ment methodology.

e] DOCUMENT ENGINEERING—
A NEW AND SYNTHETIC DISCIPLINE

T

The analysis and design methods of Document Engineering have their roots in other
I'l I d desig thods of D t Eng gl th t th

fields, primarily information and systems analysis, electronic publishing, business
process analysis and business informatics, and user-centered design. Each of these
disciplines looks at documents and processes differently, and while each of them is
highly effective in some areas, they all have blind spots where their methods and

techniques do not work well.

Many people have contrasted narrative types of documents that mostly contain text
with transactional types that mostly contain data, but they typically conclude that
documents and data cannot be understood with the same terminology, techniques,
and tools. For example, with narrative documents, such as those that are tradition-
ally called publications and intended for use by people, analysis and modeling tech-

niques are usually described as document analysis.

In contrast, transactional documents are optimized for use by business applications
and differ in other substantial ways from traditional user-oriented publications. The
analysis and design methods used for transactional documents are often described as

data analysis or object analysis.

Task analysis and related techniques for user-centered design overlap with document
and data analysis to identify the intent and information requirements for the tasks

people perform.

og I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Finally, while business process analysis can be conducted in domains that involve
either or both narrative and transactional document types to set the context for doc-
ument or data analysis, analyzing the content of the documents required is not its

primary goal.

Document Enginccring synthcsizcs the complcmcntary ideas from these separate
fields, emphasizing what they have in common and applying it with a unified focus

to a broad range of documents and processes.

Document Engineering synthesizes complementary ideas
from separate disciplines

This synthesis is essential because narrative and transactional documents are often
closely related, either by structural transformation or by business processes.
Consider, for example, the close relationship between tax forms and the instructions

for filling them out, or between product brochures and purchase orders.

BUSINESS PROCESS ANALYSIS

When an organization wants to improve its effectiveness and efficiency, it often con-
ducts a business process analysis (or reengineering) to acquire a better understand-
ing of what it does and how it does it. Often the goal is to assess business capabili-
ties or competencies and identify processes that enable strategic opportunities or pose

strategic risks for the organization.

Business analysis is also required when two organizations consider joint ventures,
partnerships, or other strategic relationships that involve doing strategic business
with each other. This analysis can determine the compatibility of business processes,
customer and supplier relationships, accounting practices, and the day-to-day

processes that define the corporate culture of each organization.

Whether within an organization or between them, business analysis usually begins
with an abstract or broadly defined perspective on business activities and works from
the top down through a hierarchy of business reference models, business processes,

collaborations, and transactions. Because the usual goal is increased understanding

INTRODUCTION TO DOCUMENT ENGINEERING I og

of how things work from a business perspective, the process analysis often stops at
the transactional level where document exchanges are visible. Often no one pays any
attention to the design of the documents, their implementation, or the technical
capabilities they require to design, develop, and deploy. The analysts may assume
that the technology exists or will be created to implement the business decisions that

emerge from the high-level process analysis. In any case, it’s someone else’s problem.

TASK ANALYSIS

Task analysis (or user analysis) is the observation of users performing the tasks or
use cases when the application or system must support people and not just other
applications. Task analysis identifies the specific steps and information that users
need to carry out a task. Task analysis is especially important when few documents

or information sources exist because user problems or errors carmn sug est that iIllpOI‘-

o
o

tant information is missing.

DOCUMENT ANALYSIS

In contrast to the top-down approach of business and task analysis, document analy-
sis is inherently a more bottom-up activity. This is especially true when the motiva-
tion for analyzing documents is the narrow goal of transforming existing printed doc-
uments or business forms into electronic versions, a process known as document
automation. Indeed, when the business driver is a mandate to automate the exchange
of documents with a dominant business partner, as Wal-Mart has done with its major
suppliersvzo the paramount goal may be to take an existing manual process and
encode it in documents according to process specifications imposed by the partner.
Any process or task analysis in this one-sided situation can be viewed as needing lit-

tle attention or, in the extreme case, as being irrelevant.

A more typical business motivation for document analysis is an enterprise’s desire to
become more efficient and effective at managing and distributing its documents. A
common goal is single-source publishing in which content is managed as reusable

information components and assembled as needed in different types of documents or

30 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

output formats. For example, the same content might appear in product catalogs,
printed installation and repair manuals, a CD-ROM E-book, and web pages. Process
analysis is important in this situation but still secondary to the need to analyze the

existing and potential documents very carefully.

Document analysis emphasizes the study of narrative style documents as artifacts
because of the complex ways in which they merge presentation with structural and
content components. Making sense of this complexity requires a wide range of doc-
ument analysis techniques developed by publishing, text processing, information
architecture, and graphic design experts. Document analysis is typically carried out
with the goal of separating a specification of a document’s content and structure from
its presentational characteristics such as fonts, type sizes, and formatting used to rep-

resent or highlight various structural or content distinctions.

Once this separation is accomplished, a model of the document is created, usually
called a schema. The optimal prescriptive schema for a set of documents is one that
best satisfies the requirements of current and prospective users for carrying out spe-

cific tasks with new instances.

Finally, one or more stylesheets can be used to assign formatting or rendering char-

acteristics in a consistent manner to any document that conforms to this schema.

DATA ANALYSIS

Data analysis has its roots in philosophy and linguistics, but in its current incarna-
tion is a set of techniques used for designing database systems. It is primarily devot-
ed to understanding and describing the properties and relationships between infor-
mation components or 0bjccts.21 The typical goal of the data analyst is to define con-
ceptual models that organize these components efficiently to support a broad range
of contexts or applications. Because their information is often stored as large struc-

tured sets of data in databases, data analysis is a key step in database design.

Data analysis methods, like those of document analysis, are bottom-up in the sense
that they are applied to existing artifacts. But in contrast to the heterogeneous nar-

rative artifacts for which document analysis techniques are best suited, the more

INTRODUCTION TO DOCUMENT ENGINEERING I 31

transactional artifacts to which data analysis methods apply best are homogeneous.
Transactional documents usually exist as a limitless number of almost identical
instances, often produced mechanically to represent some state of an activity or busi-
ness process. Such documents are extremely regular in their structures and have
strongly defined content components, but provide minimal or arbitrary presentation

features.

The regularity of transactional information has enabled the development of more
formal techniques for modeling its use in information systems. These techniques pro-
gressively refine and abstract information models by identifying repeating or recur-
ring structures, removing redundancies and technology constraints, and otherwise

CI'C‘d[illg a more concise and reusable I'CpI'CSCIltatiOl’l of the information COIIlp()IlCIItS.

- .8.9
UNIFICATION IN DOCUMENT ENGINEERING

We acknowledge that document analysis, data analysis, task analysis, and business
analysis come from different intellectual traditions. In addition, the practitioners of
these approaches often come from different educational backgrounds, may have lit-
tle professional communication with each other, and can fail to recognize the over-
lap in their goals and methods. We cannot, however, just shrug our shoulders and

treat documents, data, processes, and user interfaces as separate universes.

For example, the services in a service oriented architecture involve both documents
and processes, and their information invariably flows between narrative documents
and transactional ones. To make these services work, the businesses or business units
involved must implicitly or explicitly reach a common understanding about how
their processes should be designed, how they can be deconstructed into service com-
ponents, the documents and information they exchange, the timing of the exchanges,
and the people, organizations, or roles involved. This common understanding must
be represented in models of the required documents and processes that are compa-
rable in abstraction and satisfy the requirements for their context of use. This can
happen only if document, data, task, and business process analyses can be brought

together in a unified approach.

32 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

To achieve this common understanding Document Engineering proposes a docu-
ment-centric reformulation of traditional data analysis. But we recast its formal and
specialized methods to apply equally to narrative style documents. At the same time
it takes the best practices of document analysis and applies them to understanding
information components. Finally it adapts task and business process analysis tech-

niques to identify the requirements and business rules of their context of use.

This synthesis achieves the composite goal
of all four analysis methods

This synthesis achieves the composite goal of all four analysis methods—creating for-
mal specifications of information components and classes of documents that contain
them, satisfying both the business processes in which they participate and the peo-

ple who create and use them.

Viewing narrative and transactional types of documents as different points on a con-
tinuous Document Type Spectrum (see Figure 1-2) is a fundamental part of the new
Document Engineering approach. Likewise, it is essential to make the top-down
activities of business process and task analysis meet in the middle with the bottom-

up efforts of document and data analysis.

W] THE DOCUMENT
ENGINEERING APPROACH

Commercial firms, governments, universities, and other types of organizations have
different goals and conduct different kinds of Document Engineering projects. But
before they undertake any project, each must make a business case that identifies its
objectives and the likely return on investment. These management and strategy deci-
sions shape the project’s goals and permeate most of its activities, and we could prop-
erly view them as the first phase of Document Engineering. But it is difficult to dis-
cuss the overarching perspectives of what to do and whether to do it before explain-
ing how to do it. so we'll defer these concerns until Chapter 16, “Management and
Strategy in Document Engineering” and not treat making these decisions as a sepa-

rate phase.

INTRODUCTION TO DOCUMENT ENGINEERING I 33

Document Engineering organizes its modeling approach into eight phases as shown
in Figure 1-4. The figure shows a path winding its way through the phases of
Document Engineering and suggests each phase is equally important. But in practice
different phases may get more or less emphasis, depending on the management and
strategy decisions that shape the project. Top-down or strategic efforts to align busi-
ness organization and technology make the activities at the beginning of the path
more essential. In contrast, bottom-up and more document-driven projects empha-

size the phases near the end of the path.

We briefly outline the approach here and will explain it in detail starting in Chapter 7.

Granularity

Analyze the

- _ Document
Compoiets Compenants

CONCEPTLAL
MODELS PHYSICAL MODELS IMPLEMENTATIONS

Abstraction

Figure 1-4.The Document Engineering Approach

In the first phase, Analyzing the Context of Use, business and task analysis tech-
niques establish the context for a Document Engineering effort by identifying the
requirements and rules that must be satisfied to provide an acceptable solution.
Chapter 8, “Analyzing the Context of Use,” explains this phase in detail.

34 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

In the next two phases—Analyzing Business Processes and Apply Patterns— we
apply business process analysis to identify the requirements for the document
exchange patterns needed to carry out the desired processes, collaborations, and
transactions in the context of use. These patterns identify documents that are need-
ed, but only generally as the payload of the transactions. The complete requirements
for the documents can’t be determined without analyzing existing documents and
other information sources. Chapters 9, “Analyzing Business Processes” and Chapter

10, “Designing Business Processes with Patterns” describe this phase.

The next phase—Document Analysis—involves identifying a representative set of
documents or information sources (including people) and analyze them to harvest all
the meaningful information components and business rules. Chapter 11, “Analyzing
Documents,” and Chapter 12, “Analyzing Document Components,” present the

activities in this phase.

In the Component Assembly phase we develop a document component model that
represents structures and their associations and content that define the common rules
for the possible contexts of use. Chapter 13, “Assembling Document Components”

presents the steps of this phase.

We then move from analysis tasks to designing new document models. In the
Document Assembly phase, we use the document component model to create docu-
ment assembly models for each type of document required. If possible we reuse com-
mon or standard patterns to make the documents more general and robust. Chapter

14, “Assembling Document Models™ presents this phase.

The new conceptual models we have created for processes and documents can be
viewed as specifications for interfaces, for generating code, or configuring an appli-
cation that creates or exchanges new documents. These models represent substantial
investments in understanding a context and capturing its requirements in a rigorous
way. Using these models to implement a solution in an automated or semiautomat-
ed manner exploits those investments to bridge the gap between knowing what to do

and actually doing it.

In the Implementation phase these conceptual models are first encoded using a suit-

able language to support their physical implementation. This is most likely to be

INTRODUCTION TO DOCUMENT ENGINEERING I 35

XML, but because of the technology-neutrality of our approach, the models can be
implemented in languages such as UN/EDIFACT or ASN.1 if required.

Chapter 15, “ Implementing Models in Applications,” begins with a discussion of
encoding document and process models and then reviews the issues that arise when

applications are based on these models.
Why We Call It Document Engineering

Document engineering may seem a novel formulation, but we couldn't think of a
more appropriate combination of terms to describe what this book is about. We
want to highlight the creation of tangible end products with economic or social
value (that is, documents), and we believe that process is more strongly implied by
engineering than any other word.

The closest existing discipline to what we are defining is probably business infor-
matics, which seeks to “combine the modern theory, methods and techniques of
business (i.e. organization science) and informatics (i.e. information and comput-
ing science) into one integrative programme.”** This definition certainly covers
many of our goals, but it doesn’t emphasize the need for conceptual modeling of
the documents and processes at a granularity that is implementable, which we

believe is fundamental.

In addition, while business informatics seems to have a foothold in Europe and
Australia, the phrase is almost invisible in the United States (somewhat surprising
given the relative familiarity there of “bioinformatics” and “medical informatics” as
names for disciplines and academic departments). An exception is the Business
Informatics organization at IBM's Watson Research Center headed by Dr. David
Cohn, who wrote the foreword to this book.

A lawyer might say, “I'm a document engineer. | create the documents that govern
business relationships, ensuring that the document handles my client’s needs while
getting agreement from the other side so that there are no surprises later.”

36 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

A technical writer or information architect might say, “I'm a document engineer. |
design documents so that they contain the information my intended audience
needs. | follow company and industry practices for content, structure, and presen-
tation to convey the information in an optimal way.”

A programmer might say “I'm a software engineer, and in addition to designing
programs | design the data structures, objects, or messages that convey or
exchange information from one process or program to another. So I'm a document
engineer, too.”

Our definition of document engineering is mostly consistent with those of the
lawyer and the technical writer, with some modest differences. Unlike the docu-
ments they create, the documents we want to engineer are likely to be used more
often by an application or web service than by a person. And until relatively
recently, most programmers were vastly more familiar with fine-grained and tight-
ly coupled application program interfaces than with the coarse-grained, loosely-
coupled document exchanges.

But all of us share the goals of conveying the right information in a mutually intel-
ligible and standardized fashion, and we follow a disciplined approach to ensure
that the documents are useful and reliable.

Nevertheless, the combination of “document” and “engineering” remains surpris-
ingly novel. If you google the separate words “software” and “document,” they
have roughly the same number of results, but the results when you search for “soft-
ware engineering” are orders of magnitude higher than those for “document engi-
neering.” That's good. We have a nearly blank slate on which to write, and we're
confident that over time our new phrase will start to catch up.

INTRODUCTION TO DOCUMENT ENGINEERING I 37

1.10
KEY POINTS IN CHAPTER ONE

Doing business by document exchange is natural and intuitive.

We define document in a technology-neutral way as a purposeful and
self-contained collection of information.

We generalize the idea of documents as interfaces for people, to the
idea that documents are interfaces to business processes.

A virtual company created by using services provided by separate
businesses can be created more rapidly, more flexibly, and at a lower
cost than a traditional one can.

When businesses exchange documents, they must agree on what the
documents mean and on the business processes they expect each other
to carry out with them, but they don’t need to agree on the technology
they use.

We need to be diligent and precise when we define the meaning of any
information produced and consumed by business applications.

We emphasize XML because it has become the preferred format for
representing information in documents but many other representations
can be used to define models.

Document Engineering synthesizes complementary ideas from the
separate fields of business process analysis, task analysis, document
analysis and data analysis.

The essence of Document Engineering is analysis and design methods
that yield precise specifications for the information and rules that
business processes require.

m FOUNDATIONS

2.0
2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8

XML Foundations

INTRODUCTION

FROM HTML TO XML

XMLS BIG IDEAS

CREATION OF NEW SETS OF TAGS FOR
DOMAIN-SPECIFIC CONTENT

SEPARATION OF CONTENT AND PRESENTATION

DEFINITION OF DOCUMENT TYPES

VALIDATION

CONVERSION AND TRANSFORMATION

KEY POINTS IN CHAPTER TWO

42
43
48

49
51
53
B2
64
72

42 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

INTRODUCTION

The essence of Document Engineering is the analysis and design methods that yield

precise models describing the information required by business processes and the
rules by which related processes are coordinated and combined. Neither the methods
nor the models have anything inherently to do with XML or any other syntax.
Nevertheless, XML has rapidly become the preferred format for representing the
physical models used to exchange information, so some familiarity with XML is

essential.
Document Engineering has nothing inherently to do with XML

If you have a web publishing or programming background you undoubtedly have
some experience with XML. But if your expertise is in systems analysis or business,
you are probably new to this material. Furthermore, even though XML is an essen-
tial technology for Document Engineering, just knowing XML doesn’t make you a

document engineer because of the interdisciplinary nature of this new field.

The web publishing perspective on XML is incomplete in some respects compared to
the perspective we take in Document Engineering. If you work in web publishing,
you might view XML as an improvement on HTML that enables greater automation
and consistency in formatting. This is true, but just thinking of XML as a smarter
HTML misses its central ideas of document types and validation." If you came to web
publishing from working in technical documentation with the Standard Generalized
Markup Language (SGML), of which XML is a subset, you certainly understand
these key ideas. But your experience is likely to be with text-oriented or narrative
types of documents, not with the transactional varieties used in applications that

exchange documents.

Many programmers see XML as an Internet-friendly, easy-to-parse, and nonpropri-
etary data format to use instead of ad hoc syntaxes for application configuration and
inter-process communication. So if you have come to XML as a programmer, you
appreciate the need for structured information and strong data typing and valida-
tion. But unless you've worked with applications that exchange documents, you

probably build software designed for tight coupling with fine-grained APls. You need

XML FOUNDATIONS I 43

to learn to use XML as a format for describing document models that represent entire
business events, not just tiny messages. Using coarse-grained documents as interfaces

is the key idea behind web services and service oriented architectures.
The syntax isn't what is most important about XML

So this chapter will introduce XML from the perspective of realizing document mod-
els and model-based applications. We will emphasize the big ideas of XML and not
dwell on XML syntax and schema languages, because there are plenty of excellent
books about them that cover them in more depth than this book allows.” If you have
a business strategy interest in Document Engineering, this chapter will introduce all
the XML you need to know. If you want to learn more about XML, this chapter will
make it much easier for you to learn it. If you already know XML, this chapter will
help you apply that knowledge in new ways.

2.1
FROM HTML TO XML

HTML, the language for publishing web pages, will go down in history as one of the

most important inventions of our time. It is surely as significant to the creation and
dissemination of information as the printing press. HITML and the web browser
transformed the Internet, which had been around for two decades but was used pri-
marily by scientists and engineers, into a ubiquitous publishing platform used by

everyone from grade-school children to their grandmothers.

HTML took off because it was nonproprietary and because of the conceptual and
technical simplicity of publishing with it. Authors used an ordinary text editor to
“mark up” a document by surrounding bits of text with “pointy brackets” and tags
whose name suggested their structural role or formatting, and the browser did the
rest. These two ideas—using tags to enclose or surround content with labels, and
relating the labels to the desired presentation of the content
even for schoolchildren (see SIDEBAR).

are easy to understand,

A very simple example of an HIML document and how it appears in a browser is

shown in Figure 2-1a and 2-1b.

44 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

<html>
<body>

<h1>Center for Document Engineering</h1>
<h2>Calendar of Events: January 2004</h2>

<p>“Delivering on the Promise of XML"</p>

Lecture by Eve Maler, Sun Microsystems
Monday, January 12 4:00-5:00 PM
South Hall 202
<ful>

<p>Eve Maler will introduce the Universal Business Language
(UBL) and the Security Assertion Markup Language (SAML)
and discuss their XML design features that maximize the sharing of semantics and pro-
cessing even when the core vocabularies are customized.</p>

<p>“Adobe’s XML Architecture”</p>

Workshop by Charles Myers, Adobe Systems
Thursday, January 22 1:00-3:00 PM
South Hall 110

<p>Adobe’s XML architecture combines the Portable Document Format

(PDF) with XML to combine user data and its visual presentation and data into
a common framework.

</p>

</body>
</html>

Figure 2-1a. A Calendar Event in HTML

XML FOUNDATIONS
I 45

Center for Document Engineering

Calendur of Events: January 2004
» "Digliverirg om the Promise of XML

Lecture by Eve Waker, Sun Micrasysiems
Mondey, January 12 4 002300 M
Sonaih Hall 3707

Eve Maler will introdoce the Universal Business Lamgoage (U ELY and the Security Assention
Blarkup Langusge (SAMLY Both from OASIS, and disosss ther XML design features tha
nasimiee the shsring of ssuran ey s pooesssd g even when e co s vocaludaies are coslon sl

® "Adohe's XML Archiiechoe®

Warkshop by Charles Myvers, Adobe Sysisms
Thursday, laraiary 22 1G5 PW
Sowath Hall 110

Adaobe's XML archeieciure combines the Pertable Docament Format | FOFp with XL &
oombine wer data ond iis visml wmtion and dam into @ coevmon framework. This combination

fivees i it an estpemely Mesibe wietlol fon cimling and sxisnding busiess pricesses lal

fficienrhy inherrate o an ansmizatios. et st

Figure 2-1b A Calendar Event in HTML viewed with a Browser

A Primer On Markup Syntax

Markup is the repertoire of characters that takes a flat or undifferentiated stream of
text and turns it into a set of elements, which consist of paired text labels and the
content they surround or contain. The paired text labels, called the open (or start)
tag and close (or end) tag, are distinguished from the text being marked up because
they are enclosed by delimiters, the most common of which are the “pointy brackets.”
In the open tag, the “<” bracket is immediately followed by the element’s name, per-
haps one or more element properties or attributes, and the “>" bracket, which indi-
cates the end of the tag. In attribute-value pairs the value must be surrounded by
quotes. The order of attributes is not significant.

After the open tag, the element can contain ordinary text content or other elements
in an order that is significant, so if the order in which information appears must be
preserved, that must be conveyed by using elements.

For example, consider the element: <Event type="Lecture”> in Figure 2-2.

<Event> is the open tag, type is an attribute, and Lecture is the attribute value.
The corresponding close tag </Event> follows after the element’s content, which
consists of elements for <Title>, <Description>, <Speaker>, <DateTime>, and
<location>. These are called the element’s children.

46 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

An element can also contain other paired delimiters that mark up some enclosed
text to be treated in some special way. The special delimiter sequences can:

* allow for embedded comments (<!- this example is Figure 2-2 in the
Document Engineering book ->),

e suppress the interpretation of markup characters (<I[CDATA <Event
type="Lecture”>]]>) so that delimiters can be treated as text content, or

® pass processing instructions to an application (<2xml-stylesheet
type="text/xs|” href="calendar.xsl” 2>).

The close tag that follows all the element’s children consists of the “<” bracket and
a slash (/) followed by the element’s name and the “>" bracket. If an element has
no children, it is known as empty and the close tag can be omitted if a special syn-
tax is used for the open tag (e.g. <Title/>).

The top-level element in a document is called the document element or root element;
it contains or encloses all the other elements, which can be nested as deep as nec-
essary to represent a semantic or structural hierarchy.

The earliest versions of HI'ML had about a dozen tags, mostly structural ones for
describing parts of a document, and most of the earliest browsers had fixed or hard-
wired display rules that determined the arrangement of the text, font, size, and

everything else.

THE BROWSER WAR

Unfortunately HTML didn’t stay this simple for very long. After the Mosaic browser
introduced the Web to the masses in 1993, people wanted more control over the
appearance and behavior of web pages. This led to the browser wars of the mid-
1990s as Netscape and Microsoft added proprietary tags and scripting languages to
HTML that worked only in their browsers.” The elegant and easily understood idea
of fixed mapping between a limited markup vocabulary and display couldn’t survive

this transformation of the Web into a competitive battlefield.

XML FOUNDATIONS I 47

The idea of a standard and simple HTIML vocabulary
didn't survive the browser wars

Simple browser displays with default formatting wouldn’t enable businesses to cre-
ate websites whose appearance could differentiate themselves and their products. But
until the creation of the World Wide Web Consortium (W3C) in 1995, there was no
control over the evolution of HI'ML and other technical standards for the Web.
Browser vendors complied with customer demand and devised tags that enabled rich
graphical sites with precise control of text display, blinking text, and spinning corpo-

rate logos.”

In 1997, the first W3C version of the Cascading Style Sheet® (CSS) recommenda-
tion emerged, which deprecated the formatting excesses of the proprietary HTML
dialects and encouraged more systematic and reusable formatting by using rules that

assigned sets of formatting properties to HIML element types.

FROM THE WEB FOR EYES TO THE WEB FOR
COMPUTERS

A more fundamental problem with HTML emerged as the Web was transformed into
a platform for commerce. Doing business on the Web requires more than just a high-
ly branded website with attractive product catalogs. Businesses need to have both the
“Web for eyes” that draws customers to their sites and a “Web for computers” that
can encode product information, orders, invoices, payments, and other business doc-
uments in ways that can be processed by business applications. For this latter task

HTML was fundamentally inappropriate.

Some of HTML’s limitations for business applications were inevitable given a tag set
heavy on headings, lists, and links. There were no tags for marking up information
as product names, item numbers, prices, quantities, and so on to give it a business

meaning.

HTML has no tags for marking up business meaning

48 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Clever programmers tried to work around this limited markup vocabulary with code
that used whatever markup was available to extract the business information from
web pages. For example, a program might rely on the fact that in some web catalog
the first item in a list was a product name, the second its item number, and the third
the retail price. But programs like these are tedious to write and difficult to main-
tain; if the layout of the catalog changed, for example, what the program thought

was the price of a pair of shoes might actually be the item number.

But the problem for business posed by HTML isn’t just how to work around an inad-
equate set of element types. Using the Web as a business platform radically changes
the problem to be solved by the markup language from presentational formatting to
semantic modeling, that is, describing business entities and processes in ways that
can be understood by business applications. No single vocabulary—HTML or other-
wise—can ever be complete enough to describe information with enough semantic

precision for all such applications.

No single vocabulary can have enough semantic
precision for all applications

2.2
XMLS BIG IDEAS

What the world needed was a new approach to using tags to mark up documents.
Instead of a fixed set of element types, we needed way to define whatever set of ele-
ment types was required for the business application that would use them. We need-

ed an extensible markup language.
There are five big ideas relating to XML that we’ll introduce in the following sections:

e XML is extensible: it enables the creation of new sets of tags for domain-specific
content.

® XML encodes content as well as presentation formatting; content and its presen-
tation are kcpt separate.

e XML schemas define models of document types.

e XML schemas enable XML document instances to be validated.

XML FOUNDATIONS
I 49

* XML is often produced by converting non-XML information; and XML docu-

ments are often transformed to meet the requirements of specific implementations.

ale] CREATION OF NEW SETS OF TAGS
“=% FOR DOMAIN-SPECIFIC CONTENT

Figure 2-2 shows a simple XML document in which the text content is nearly iden-
tical to that of the HTML document in Figure 2-1.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xs|” href="calendar.xsl” 7>
<Calendar>
<0rganization>Center for Document Engineering</QOrganization>
<TimePeriod>January 2004</TimePeriod>
<Events>
<Event type="Lecture”>
<Title>Delivering on the Promise of XML</Title>
<Description>Eve Maler will introduce the <Keyword>Universal Business
Language (UBL)</Keyword> and the <Keyword>Security Assertion Markup Language
(SAML)</Keyword> and discuss their XML design features that maximize the sharing of
semantics and processing even when the core vocabularies are
customized.</Description>
<Speaker>
<Name>Eve Maler</Name>
<Affiliation>Sun Microsystems</Affiliation>
</Speaker>
<DateTime>Monday, January 12 4:00-5:00 PM</DateTime>
<Location>South Hall 202</Location>
</Event>
<Event type="Workshop">
<Title>Adobe’s XML Architecture</Title>
<Description>Adobe’s XML architecture combines the <Keyword>Portable
Document Format (PDF)</Keyword> with XML to combine user data and its
visual presentation and data into a common framework.
</Description>

50 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

<Speaker>
<Name>Charles Myers</Name>
<Affiliation>Adobe Systems</Affiliation>
</Speaker>
<DateTime>Thursday, January 22 1:00-3:00 PM</DateTime>
<Location>South Hall 110</Location>
</Event>
</Events>
</Calendar>

Figure 2-2 Simple XML Document

At first glance, this XML document doesn’t look that different from the HTML one.
Both XML and HTML use the same markup syntax, except for the declaration at the
start of the XML document that announces that it should be treated as XML and the

processing instruction that specifies a stylesheet.

The XML specification is more precise about syntax than HTML is, but most of the
differences between HI'ML and XML enforce the best practices in HI'ML anyway,
such as case-sensitive names and including close tags even when they can be inferred
by the presence of the next open tag (HTML allows them to be omitted; see the
items in Figure 2-1a). So it isn't syntax that distinguishes HTML and XML.

What matters is that a document that starts with an <html> tag has a fixed set of
tags that it might contain. In contrast, XML is extensible: there is essentially no limit
to the element types an XML document can contain, and the elements are often
named to suggest the meaning of the content. In Figure 2-2 the first open tag is
<Calendar>, and in the container formed by this tag and its associated close tag of
</Calendar> we can see elements for <Organization>, <TimePeriod>, and <Event>.
Inside each event element we see the specific types of content that define an event.
Software that displays calendars or searches for events can easily extract the infor-

mation it needs.

But the difference between HTML and XML isn't just that the former has a fixed set
of presentational structure and formatting tags while the latter allows an unlimited
set of content-oriented ones. The difference is that HTML is a specific language, a
fixed set of element types plus the grammar or rules that govern where in a docu-

ment each type of element can occur.

XML FOUNDATIONS I 51

XML defines the rules by which specific markup
languages are created

XML, on the other hand, is a metalanguage. It defines the rules by which specific
XML markup languages are created but says nothing about what element types they
use. These specific XML languages are also called XML vocabularies or XML appli-
cations.® For example, XHTML is an XML vocabulary that recasts HTML in XML
syntax to make it more modular and to more rigorously separate content and pres-
entation. And UBL, the Universal Business Language, is an XML vocabulary for

business documents.

So while the XML document in Figure 2-2 might be an instance of an XML-defined
markup language for describing event calendars, other types of documents like a
Shakespeare play or a purchase order would be encoded using completely different
sets of elements. Some element types, of course, like <Title>, <Name>, and

<Location> are useful in many different types of documents, not just in event calendars.

This last observation has two crucial implications. If common elements are reused,
then XML documents can contain element types from more than one XML vocabu-
lary. But a tag name like <Title> might be part of a vocabulary for books, a deed of
ownership, or honorifics for a person, so we need some syntactic mechanism for dis-
tinguishing vocabularies from each other. We'll defer this problem until Section 2.5.4

when we discuss XML schemas.

a4y SEPARATION OF CONTENT
AND PRESENTATION

Every document—whether it is an event calendar, purchase order, Shakespearean
play, chemistry text, or tax form—contains a variety of types of meaningful informa-
tion. When we use XML tags to encode this meaning, we can label parts of the doc-
ument to distinguish different types of content: <Speaker>, <Name>, <Address>,
<Personae>, <Scene>, <Speech>, <Molecule>, <Income>, and so forth. These are
purely conceptual distinctions, and these bits of content don’t have any inherent for-

matting or presentation associated with them.

52 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

It is only when XML documents are printed, displayed, spoken, or otherwise ren-
dered to communicate with people that formatting or presentational information,
such as page numbers, type fonts and sizes, color, indentation, column organization,
underlining, pitch, and intonation, needs to be added. These presentational devices
can assist in understanding the content but generally don’t carry much content-spe-

cific meaning.

Of course there are important conventions and correlations between presentation and
meaning: large type implies more importance than small type, red may signal a
warning, line breaks in poems support meter, and so on. We celebrate graphic
designers, artists, and book designers when they exploit or violate these conventions
in clever ways. But most presentational decisions are more arbitrary. For example,
the typeface in which this book is printed has little or no effect on its meaning. We
will discuss these issues in more detail in Chapter 12, “Analyzing Document

Components.”

Sometimes content and presentation are bound together or confounded, often implic-
itly, as with HTML or with word processors that use style sheets or formatting tem-
plates to apply formatting to otherwise unlabeled information components.
Cascading style sheets have reduced the implicitness and ad hoc-ery of HITML for-
1Ilatti11g,, but thcy weren’t dcsigncd to separate content and prcscntation. Thcy were
just a way to regain some of the core simplicity of HTML by delegating more sophis-

. . . 7
ticated format control to a separate style processor in the browser.

In XML the separation of content and presentation
is inherent and desirable

In XML the separation of content and presentation is inherent and desirable. If an
XML document can contain any type of element it needs to describe its content, there
is no way that a browser can know in advance what it means or how to display it.
Most web browsers render an XML document with indentation that corresponds to
the hierarchical structure created by its tags, but this display might not be optimal
or even appropriate for the semantics embodied in the content. It is almost always
necessary to apply to the XML document a transformation or stylesheet that creates
HTML or some other presentation-oriented vocabulary to the XML information.
Sometimes a stylesheet is then also applied to the transformed HTML to optimize its

presentation.

XML FOUNDATIONS I 53

The extra step needed to display an XML document isn’t a bug, but a feature. It
makes a requirement out of what should be a good habit to practice in any case, that
of paying explicit attention to the relationship between content and presentation. It
emphasizes the idea that XML elements should be used to encode conceptual distinc-
tions in a presentation-independent manner to enable the reuse and repurposing of

information for different contexts or implementations.

Even if an XML document contains elements with the same name as HI'ML ones
that browsers readily display, like <h1> or <p> or , they don’t get displayed
because no presentation is ever assigned by default. XML elements contain content,
pure and simple. So it is misleading and pointless to use element names that assume

otherwise.
XMLs separation of content and presentation also reinforces and rewards specializa-
tion in skills between information modeling and user interface or graphic design.

User interface and graphic design skills are useful in Document Engineering, but

good information modeling skills are essential.

Documents are ubiquitous. All documents share the idea that they are purposeful

DEFINITION OF DOCUMENT TYPES

representations and organizations of information, but they exhibit great variety. On
any given day we encounter dozens of different types of documents.® We might start
the day with a morning newspaper, go on to deal with reports, emails, catalogs, ref-
erence books, calendars, or lectures, and end up with a restaurant menu, murder

mystery, TV program guide, or MP3 playlist.

It is easy to distinguish a dictionary from an invoice, a newspaper from a novel, or a
restaurant menu from a collection of poems, because each document follows a char-
acteristic structural pattern to arrange types of content unlikely to be found in the
other. Because these types of document are so different, even a simple list of the vari-
eties of content in each document would accurately classify any given instance of the

document.

54 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

This intuitive notion of models of different types of documents is very useful. It
explains why we have had standard business forms for centuries, style guides for
authors, national and international standards for electronic business messages, tem-
plates in word processors and spreadsheets, and various other ways of describing

expectations about content and its arrangement in documents.

DOCUMENTS AS
IMPLEMENTATION MODELS

In the domain of Document Engineering, we need to define models of different types
of documents in a rigorous and unambiguous way so that we can automate their
process or exchange within or between applications. We also want to use their formal
definitions to generate and drive some of the software needed to process the docu-
ments. Implementations or instances of these document models enable software to locate
and extract the information needed to connect related document exchanges that com-

bine to form supply chains, auctions, marketplaces, and other business patterns.

XML was designed to give the intuitive idea of a document model a more physical,
formal foundation.” XML gives us syntactic mechanisms that capture the semantic
distinctions between documents in terms of the sets of elements and attributes used
to encode their content and the rules that govern their occurrence and organization.
Two semantically related document models like purchase order and invoice may
share elements from a common library or subset, but they are distinguished by ele-
ments that occur only in one of them or that have different possible values in each.
So we use different vocabularies to mark up the content of purchase orders and of

invoices.

XML can realize document models suitable for
implementation in applications

XMLs ease of use, its expressive power, and its processability have made it attractive
for Document Engineering because it can realize document models suitable for
implementation in applications. 10 But what really matters is the quality of the analy-
sis and design that gets represented in conceptual models before we encode them in
XML vocabularies. XML is a convenient syntax for encoding the models, but XML

per se doesn’t help us create good models, and many people have found it a conven-

XML FOUNDATIONS I 55

ient syntax for creating poor ones. We’ll return to this problem of the quality of doc-
ument models in Chapter 6, and starting in Chapter 7 we’ll introduce the methods

and technologies of Document Engineering to explain how to create good ones.

XML SCHEMAS

The formal description of a document model in XML goes by various names, but it
is most useful for our introduction here to call it the XML schema. Simply put, an
XML schema defines the possible types of content in a document and the rules that

govern the structure and values of that content.

Every XML schema contains definitions of element types. But as we’ve pointed out,
because many types of elements occur in more than one type of document (<Title>,
<Name>, <Date>, and so on), a list of legal element types is often not sufficient to
distinguish different types of documents. Furthermore, even though the name of an
element type can suggest what it means, it is not self-describing.!'" An XML schema
also specifies the attributes that can be associated with elements, but they’re not self-
describing either. So if the full meaning of an element isn’t conveyed by its name,

where is it conveyed?

The meaning of elements is represented in an XML schema through the constraints
or rules that govern the structural arrangement of elements and the values that ele-

ments and attributes can have. We call these constraints business rules.

The term, business rule, like model and pattern and other fundamental concepts of
Document Engineering, has numerous incompatible or overloaded definitions.'?
Everyone agrees that a business rule expresses a constraint about some aspect of the
data or processes used by a business. Furthermore, everyone agrees that it is desir-
able to represent rules independently from the generic aspects of applications instead
of scattering them into multiple layers of application software. But there is little
agreement about how to classify business rules and how to translate them from
expressions of requirements into implemented systems. We'll present a classification
scheme for business rules in Chapter 8, and we’ll stress the roles they play in devel-

oping an adequate conceptual model of the documents and process in some specified

56 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

business context. For now we’ll focus on the kinds of business rules that can be rep-

resented in XML schemas.

The kinds of rules expressed in XML element definitions include containment rela-
tionships (“a dictionary entry consists of a word, a pronunciation, and a definition”);
sequence and cardinality relationships (“the abstract must be followed by one or
more chapters and possibly one or more appendixes”), choices (“the location must
be a street address or a pair of latitude and longitude coordinates”), and recursion
(“the bill of materials is a list of parts, each of which may consist of a list of parts”).
Of course, these kinds of rules are not mutually exclusive; we can represent a con-
tainment rule that defines a legal sequence of elements, each of which consists of a

choice, one option of which is recursive.

There is often a gap between the conceptual model
and what can be described in XML

The document model of a purchase order might include business rules like “the
quantity ordered must be an integer less than 1,000,” “the unit price must be
expressed as a number with two decimal digits,” or the “the country code must be
one of those contained in 1ISO 3166.” It would be highly desirable to encode these
rules in the XML schema that implements the model of a purchase order as con-
straints on the values of elements or attributes. But as we’ll see in the next section,
there is often a gap between the conceptual document model and what can be

described in XML.

SCHEMA LANGUAGES

There are currently several XML schema languages that differ substantially in how
completely they can express the business rules that underlie a document’s model.
Which schema language to use is influenced by where the document lies on the
Document Type Spectrum (see Figure 1-3), because that determines what aspects of

the model are most important to express (see SIDEBAR).

XML FOUNDATIONS
I 57

Understanding XML Schemas by Analogy

To explain XML schemas it may help to make the analogy to relational database
schemas, which describe the database content in terms of possible field values,
relationships between fields in tables, and constraints between tables. An XML
schema could describe the semantics of a class of documents so that different types
of content can be identified and extracted as if they were in a document database.
An XML schema can ensure that information exported from a database or other
application is assembled as a valid document.

Likewise, we can make an analogy between XML schemas and class definitions in
a modern programming language. A class is a template that specifies the mean-
ing of the variables used by an object in terms of their data types or possible val-
ves, and classes can be related to each other by association, specialization or
generalization. An XML schema might specify the required data types for docu-
ment content, and might also express relationships between types of document con-
tent. This equivalence enables XML schemas to be treated just like classes to guide
the creation of objects, a process usually called data binding. This view of XML
schemas is appropriate for transactional documents and also very useful when
describing web forms and other information-intensive user interfaces.

Finally, we can say that an XML schema defines a vocabulary for a document
model expressed with a formal grammar. A grammar for any language is a sys-
tem consisting of a finite set of tokens and a finite set of rewrite rules that generate
all the valid sequences or sentences of those tokens. For an XML schema the tokens
are the elements and attributes and the sentences are the document instances. This
linguistic perspective on XML schemas fits very well for narrative documents and
less well for transactional ones.

The first XML schema language was Document Type Definition (DTD), a legacy of
XML’s SGML heritage. Because of SGML’s origins in technical publishing, DTDs
were designed to represent the structural properties of documents, but they treat

most data as just text and can’t represent meaningful information models.

DTDs have a very simple and compact syntax, but this syntax is not itself XML.

DTDs are sufficient for describing models of narrative document types like newspa-

58 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

pers, dictionaries, and reports, whose content is primarily text and intended for use
by people. DTDs can also easily express mixed content models in which character
data can contain “in-line” elements, a very common requirement in narrative docu-
ments. For example, a product description is text that can contain glossary terms,
company names, or URLs, all of which would be tagged as elements mixed in with

the text of the product description.

But as we move on the Document Type Spectrum toward the transactional or data-
centric document types that are primarily used by business applications, structural
description alone captures fewer of the most important aspects of the document’s

content. For example, constraints on data values are crucial.

For transactional document types the most useful schema language is the one recom-
mended by the W3C called XSD or XML Schema (with a capital S). XML Schema
was developed to meet a much broader and more computer-oriented set of require-
ments than DTDs were. XML Schema documents are encoded using XML syntax and
overcome most of the limitations of DTDs. The XML Schema language includes all
the basic data types common in programming languages and databases (string,
Boolean, integer, floating point, and so on), as well as mechanisms for deriving new
data types. For example, an XML Schema schema can define a Student as a special-
ization of a Person type with additional required elements, or an alphanumeric

PartNumber as a string whose values are restricted using regular expressions.

An extremely important facility in XML Schema is its support for namespaces, a
mechanism for distinguishing XML vocabularies so that a schema can reuse defini-
tions while avoiding conflicts between elements with the same name that mean dif-
ferent things (as we suggested at the end of Section 2.3, <Title> might be part of a
vocabulary for books, legal documents, or honorifics for a person). A prefix associat-
ed with each namespace can be attached to elements in document instances, so that
<book:Title>, <legal:Title>, and <honorific:Title> aren’t confused. Using a name-
space to identily the additional elements needed to customize a standard vocabulary

maintains the integrity of the base vocabulary.

Needless to say, the greater expressiveness and extensibility of XSD comes with sub-
stantially more complexity, as we can see in Figures 2-3a and 2-3b, which compare
a DTD and XSD for the same document model, that of a simple calendar like the

example in Figure 2-2.

XML FOUNDATIONS I 59

<?xml version="1.0" encoding="UTF-8"7>
<1-- DTD for simple calendar -->
<l-- calendar metadata -->

<IELEMENT Calendar (Organization, TimePeriod, Events)>
<IELEMENT Organization (#PCDATA)>
<|ELEMENT TimePeriod (#PCDATA)>

<l-- a calendar is a list of events -->
<IELEMENT Events (Event+)>

<!-- definition of each event, optional Event Type attribute -->
<IELEMENT Event (Title, Description?, Speaker?, DateTime, Location)>
<IATTLIST Event

type (Lecture | Workshop) #IMPLIED>

<IELEMENT Title (#PCDATA)>

<!-- mixed content definition to allow for keywords in Description -->
<!ELEMENT Description (#PCDATA | Keyword)*>

<IELEMENT Keyword (#PCDATA)>
<IELEMENT Speaker (Name, Affiliation)>
<!ELEMENT Name (#PCDATA)>
<IELEMENT Affiliation (#PCDATA)>
<IELEMENT DateTime (#PCDATA)>
<IELEMENT Location (#PCDATA)>

Figure 2-3a.DTD for a Simple Calendar

The DTD for a simple calendar is very compact because of the use of of +, 7, and *
to represent occurrence constraints. Commas separate the members of a sequence,
and the vertical bar distinguishes choices. Every element has a declared data type of
“PCDATA” (parsed character data), which means a string of text in DTD.

60 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

In contrast, the XSD for the simple calendar in Figure 2-3b is much more verbose
than the DTD. Occurrence constraints, sequences, and choices are all expressed

explicitly. It is easy to get lost in embedded definitions." But the syntax is XML.

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified”>
<1-- XSD Schema for Calendar -->
<xs:element name="Calendar”>
<xs:complexType>
<xs:sequence>
<xs:element name="0rganization” type="xs:string"/>
<xs:element name="TimePeriod” type="xs:string"/>
<1-- Definition of Event as Sequence of Other Elements -->
<xs:element name="Events”>
<xs:complexType>
<xs:sequence>
<xs:element name="Event” maxOccurs="unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name="Title” type="xs:string"/>
<xs:element name="Description” minOccurs="0">
<xs:complexType mixed="true">
<xs:choice minOccurs="0" <MaxOccurs="unbounded”>
<xs:element name="Keyword" type="xs:string"/>
</xs:choice>
</xs:complexType>
</xs:element>
<xs:element name="Speaker” minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element name="Name” type="xs:string"/>
<xs:element name="Affiliation” type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="DateTime"” type="xs:string"/>

XML FOUNDATIONS I 61

<xs:element name="Location” type="xs:string”/>
</xs:sequence>
<xs:attribute name="type”>
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="Lecture"/>
<xs:enumeration value="Workshop”/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 2-3b. XML Schema for a Simple Calendar

RULES THAT SCHEMA
LANGUAGES CAN'T REPRESENT

Every XML schema language makes tradeoffs that determine the range of document
models it can realize, the ease with it defines them, and how readily it can reuse a
model or parts of models in more than one schema. For example, even though XML
Schema is a powerful schema language, it isn’t capable of expressing dependency con-
straints on element content (“the start time for a calendar event must be earlier than
the end time” or “if the total is greater than $1,000 the purchase order requires an

authorization code”), even though these may be important rules for the context of use.

@ Every XML schema language makes tradeoffs

62 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Rules that concern multiple values in a document are easy to express using XML con-
straint based languages such as Schematron.” This uses the XPath language for
describing parts of XML documents to make Boolean assertions based on their con-
tent. But the tradeoff here is that this approach makes Schematron incapable of rep-

resenting structural rules except in very tedious ways.

Another grammar based schema language called RELAX N G'Ois widely regarded by
experts as more elegant and simpler than XML Schema, but with about the same
expressive power. However, because it wasn’t developed by the W3C, RELAX NG
isn’t as widely supported by vendors of XML software.

Obviously no schema language is perfect at encoding all models in XML. But that’s

probably a good thing, because it reinforces our message that analysis and modeling

skills are more fundamental to Document Engineering than XML is.

An XML schema communicates the model of a document type to people or applica-

VALIDATION

tions that need to create or receive document instances. In this sense the XML
schema is a contract that defines the rules that any documents must follow.
Validation is the process of testing whether an XML document follows the rules
defined in an associated schema. A document that follows or satisfies the schema is
said to be valid.

For XML documents described by simple DTDs the schema can be carried along
with the document content in its prolog, but it is far more common for an XML doc-
ument to refer to an external schema. This indirect binding is more efficient and flex-
ible than including the schema in the document, because it allows a single schema
definition to be reused by all documents of the same type. And of course, if two par-
ties in an ongoing business relationship are exchanging documents with each other,
they’ve already come to terms about the schemas that define what they send and
receive. Once the business process is established, there is no need to send schemas

with the documents.

XML FOUNDATIONS I 683

A person who understands XML schemas and syntax can examine an XML instance
document and validate by eye. But validation is most often carried out by a validat-
ing parser embedded in an XML-aware text editor, application server, integration
tool, or other software that processes XML. In an XML-aware text editor, an XML
schema can speed the creation of documents by inserting required tags and by
dynamically controlling the structure of menus or selectors to ensure that only valid

documents are created.

A much weaker criterion of quality checking for XML documents is called well-
formedness and requires that the XML document meets some minimal syntactic con-
straints, such as having exactly one root element and having matching start and end
tags that don’t overlap. An XML document that isn’t even well-formed will be reject-

ed by an XML parser and not passed on for further processing.

Even an XML document that is well-formed but that fails some constraint defined in
its associated schema might still be acceptable. For example, it would be a good busi-
ness practice to try to process a purchase order from a potential customer even if it

omitted the required postal code in the shipping address.
A document without a schema is just a bag of tags

On the other hand, a well-formed but schema-less document is little more than a bag
of tags whose meanings are undefined. It makes little business sense to invent a set
of tags and not bother to formally define them with a schema, and it would be risky
to attempt to process such documents. Suppose a document from a potential cus-
tomer begins with a <PurchaseOrder> tag, but other tags inside it contain instruc-
tions to empty out a firm’s bank account or crash its systems. If that document
claimed to conform to the firm’s schema for purchase orders we’d be able to tell that
it didn’t.

Nevertheless, because of the unavoidable limitations in every XML schema language.
it is impossible to capture every rule and requirement of a conceptual document
model. So even a strong claim that a document is valid should always be understood
to mean “with respect to the class of constraints that the schema language being used
is capable of encoding.” Knowing that a piece of data is in its expected location and

of the required data type doesn’t mean that it is correct.

64 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Ultimately how much validation is necessary in any situation is a separate question
from how much validation power is inherent in the schema language. What matters
the most is having a common intention between the producer and consumer of an
XML document. Imagine an XML document used by a single software program for
the sole purpose of saving its private data. If the file is saved correctly, the informa-
tion will be valid when that software next uses it. Validation is hardly necessary. At
the other extreme, suppose an XML document arrives from a company halfway
around the world with which a firm has no prior business relationship. Validation
against its assigned schema is irrelevant. The firm would be wise to validate the doc-
ument against expected data requirements before letting it enter their business appli-
cation. This is especially important in situations where accepting the document cre-

ates a legally-binding commitment between the sender and recipient of the document.

XML is often produced by converting non-XML information, and XML documents

CONVERSION AND TRANSFORMATION

are often transformed to meet the requirements of other contexts or implementations.
Conversion to XML and transformation from XML might seem like two views of the
same activity, but while related they differ in many respects so we’ll discuss them
separately. The issues and problems that arise in conversion and transformation are
also shaped by where the source and target documents lie on the Document Type
Spectrum (see Figure 1-3); the greater semantic precision in transactional documents

makes them easier to convert to or transform, regardless of the source or target syntax.

CONVERSION TO XML

A common reason for converting information to XML is to facilitate a single-source
publishing strategy in which content is created once and then reused many times.
Reuse can involve the same content included in all the instances of a document, as
might be the case for a copyright notice, standard terms and conditions, or similar
boilerplate text. A variant of single-source publishing is syndication, in which a sin-

gle source of content is simultaneously published or distributed for reuse in other

XML FOUNDATIONS I 685

contexts. Many websites and web publishers convert syndicated news, blogs, or other

time-sensitive content to an XML vocabulary called the RDF Site Summary (RSS).

A different perspective on reuse involves extracting or formatting the same piece of
content in many different ways to create different documents. This form of reuse is
often called repurposing. An example would be using some of the same information

in a system’s product documentation, a troubleshooting guide, and training materials.

Another important reason for converting information to XML is to extract informa-
tion from a database, ERP system, or legacy application primarily used inside an
enterprise to enable Internet-based transactions with customers or business partners.
A similar type of conversion takes place in many EDI implementations, where busi-
ness-to-business document exchanges in supply chains move to XML to make the

. 7
content easier to process.l'

The conversion of information to XML can be completely automated if the informa-
tion source is well structured with explicit semantics and the structure and semantics
are rigorously described with a schema. This description fits databases and some of
the file formats used by ERP systems and other enterprise applications. This doesn’t
mean that mapping between the non-XML format and the target XML document
type is automatic. ()nly that once it is in placc,, we can create software that converts

one into the other.

The benefits of converting to XML are more compelling when information is encod-
ed in less structured or semantically expressive formats such as ASCII, RTFE,
UN/EDIFACT, ANSI ASC X12, or HTML that don’t embody XML’ big ideas. But
it’s a lot of work to design an appropriate XML vocabulary and then apply markup

correctly to the content.

If authors follow structure and style standards when they create office documents or
web pages, some of the conversion effort can be automated by exploiting the implic-
it relationships between formatting styles or HIML tags and the target XML vocab-
ulary. But few authors have this much discipline, so conversion usually requires
expensive and tedious work by people who understand the content to supply the

missing meaning.

66 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

The process of adding value to information by converting it to XML is often called
up translation to express the work it takes to give XML the informational equivalent
of potential energy. Once information is in XML syntax its greater potential energy
makes it easy and straightforward to create any other format, so naturally the trans-
formation from XML to a non-XML format is often called down translation. These
relationships between XML and other formats are illustrated in Iigure 2-4.

Database talxle
- == — - o= HTML document

e ST oy, T [HH R
[romim of e plcomie (15480020 P
=

S s S s N
Lip Transtation

“Rvant typaerLancurats
“Titla’Dslivsring on ths Promiss of XML/ Titlak

“Epmakace

MM T M le < B XML document
“RfEilintion>Sun Micooayrtann</REFL11aEians

“f Spambare

“DardTimerHonday. Januacy 12 4005200

B It Tima>

CLocation*South Hall 2020/ iccstionk

o Evamtsr

Devan Translation

:

T = L= A pmier fur Lsramsn | Caginesrieg.
Ao s, By WS,
o= gt - . il S N Tt pl——
o e S ——— E, & e

g T Cady Tecey Boms@iw
oot ST TR T T

Dutakase table Print document

TTATML document

Figure 2-4. Up- and Down-Translation with XML

A corollary here is that if we anticipate that information we are about to create will
someday need to be represented in XML, it is more cost-effective to create and man-
age it as XML and then down-translate to whatever other formats we need in the

short term.

XML FOUNDATIONS I 687

TRANSFORMATION FROM XML

XML schemas and documents are often transformed to meet the requirements of

other contexts or implementations. Transforming an XML document involves select-
ing, reordering, or restructuring its content. Transforming an XML document so that
it conforms to a different XML schema is often followed by down-translation to a

non-XML format, for example by EDI gateway applications.

Transformation reuses or amortizes the investment made to encode information in
XML in the first place. Put another way, when we create XML schemas and docu-
ments, we should design them expecting to transform them to preserve and extend

their value.

As we said earlier, with XML the separation of content and presentation is both
inherent and desirable. Thus it is often necessary to transform or down-translate
XML to HTML so that it can be viewed in a web browser. The process of applying a
presentation to an XML document is sometimes called styling but it is more useful to
conceive of applying a stylc as two separate processes of transformation and format-
ting. This way of thinking lines up conceptually with two complementary W3C
Recommendations: XSLT, the Extensible Stylesheet Language for Transformation,
and XSL FO, the Extensible Stylesheet Language Formatting Objects.

XSLT is an XML-aware functional programming language that operates on logical
“node sets” derived from the element and attribute structure of XML documents.
XSLT has the usual constructs for logical flow of control like conditional, loops, and
switches. What makes it most useful for transforming XML are its XPath facilities

for expressing and matching patterns in the logical XML structures so that arbitrary

o
o
trees or subtrees can be selected and rearranged. This is the approach used by the

Schematron schema language.

XSL FO, often a target vocabulary of an XSLT transform, is designed for typeset-
ting-quality control of printed XML output. An XSLT transform from XML to
HTML can be as simple as a set of rules that assign an HTML tag to each XML ele-
ment type, defaulting all presentation control to the browser. An XSLT transforma-

tion like this can be used to enforce presentation standards for all instances of a doc-

68 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

ument. Figure 2-5 shows a simple XSLT program that transforms the XML calendar
instance in Figure 2-2 to HTML to reproduce the appearance of the HTML calendar
shown in Figure 2-1b. The processing instruction in the second line of the Figure 2-

2 instance associates the XSLT program (calling it “calendar.xsl”) with the instance.

<?xml version="1.0"7>
<xsl:stylesheet version="1.0" xmIns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="Calendar”>
<html>
<head>
<title><xsl:value-of select="/Calendar/Organization”/><xsl:text>
</xsl:text><xsl:value-of select="/Calendar/TimePeriod"/><xsl:text>
</xsl:text>Calendar</title>
</head>
<body>
<h1><xsl:value-of select="/Calendar/Organization”/></h1>
<h2>Calendar of Events: <xsl:value-of select="/Calendar/TimePeriod"/></h2>
<xsl:apply-templates select="Events"/>
</body>
</html>
</xsl:template>
<xsl:template match="Events">
<xsl:for-each select="Event”>

"<xsl:value-of select="Title"/>"

<xsl:value-of select="@type"/> by <xsl:value-of
select="Speaker/Name"/>, <xsl:value-of select="Speaker/Affiliation”/>
<xsl:value-of select="DateTime"/>
<xsl:value-of select="Location"/>

<xsl:apply-templates select="Description”/>

</xsl:for-each>
</xsl:template>

XML FOUNDATIONS I 69

<xsl:template match="Description”>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="Keyword”>
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Figure 2-5. XSLT Transformation Program

Transforming XML to HTML can be a highly sophisticated process. For example, a
set of XML transforms can create a website of highly interlinked HTML files and by
making multiple passes through the input documents can extract titles and headings
to create tables of contents and navigation aids. These ancillary structures can be
regenerated automatically whenever the XML content changes, and cascading style

sheets can be switched in and out for precise control of site appearance.

Transforming XML to HTML is often just a small part of a single-source publishing
strategy in which XML content is transformed for a variety of output devices or
channels such as PDAs, wireless phones, text-to-speech synthesizers, Braille devices,
and of course, printers. This form of transformation for reuse in different devices or
media is often called repackaging. In this case a given XML document instance may

have different XSLT transforms applied to it in different implementations.

XML may also be transformed to send information back into a database, ERP sys-
tem, legacy application, or EDI exchange. Chapter 6 discusses how transforming
XML documents from one schema to another, or extracting and combining informa-
tion from one or more documents to create an instance that conforms to another

schema, are essential techniques for making information interoperable.

WHERE TO TRANSFORM

XML is now used everywhere in distributed computing architectures. It can be the
native format in an XML database or created by conversion from a non-XML data-
base, ERP application, legacy system, or EDI data source. XML can be sent any-

70 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

where inside or outside the enterprise to expose information or functionality or to
create an extended enterprise like the virtual drop shipment bookstore hypothesized
in Chapter 1. Since many web browsers contain XML parsers and support XSLT,
XML can go all the way to the end user’s client. Figure 2-6 illustrates this “XML

everywhere” phenomenon.

| Database . ERP |
¥ML transformations 5;1;:5_“_ | - - — i

o expose legacy iNfemalion N8 Trapnsforms to/from XML
partable Tomm,

XML transformations can create
ha required format for any user or WEh SEWET
application interface. l

Internet

XML HTML.EDI,
etc..

User or
Application
Interfaces

Figure 2-6. XML Everywhere in a Generic System Architecture

XML is now everywhere in distributed
@ computing architectures
But XML is often not sent all the way through a distributed application. Instead it is
sometimes transformed to HTML or to non-XML formats before it gets to the brows-
er or the legacy application. But, given XML flexibility, portability, and processabil-
ity, why would anyone down-translate to a less expressive and computable format?
Sometimes decisions about where to transform are based on technical capabilities. It
might be easier, in terms of the tools and people available to do it, to transform XML

to another format on one side of a document exchange rather than another.

XML FOUNDATIONS I 71

Or the decision might be based on efficiency considerations. A business may imple-
ment all the transformations needed to support its supply chain or trading partners
at a single gateway or hub. This consolidates all of the know-how, required technol-
ogy, and support personnel in one place and allows all the external enterprises to con-
tinue using their legacy technology to produce and consume the documents they
exchange with the hub enterprise. Documents are also likely to be smaller when they

are optimized for a specific device or application.
The decision about where to transform is a business one

Ultimately the decision about where to transform is a business one. Exchanging an
XML document and the schema that governs it reveals a great deal of information
about how an enterprise organizes its information and conducts its business process-
es. The information model in a schema might include principles of product classifi-
cation, manufacturing tolerances, schedule flexibility, pricing algorithms, capacity

allocation, and other valuable proprietary information.

We may want to exchange this information with a trusted business partner for mutu-
al benefit, or we may choose to send a substantially down-translated instance that
conveys a much simpler view of the business. We might even create customized
transformations of our information whose richness depends on how much someone

is willing to pay for it.

70 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

KEY POINTS IN CHAPTER TWO

Using the Web as a business platform changes the problem from
presentational formatting to semantic modeling.

HTML has limited use for business applications because it has no tags
for marking up information to give it business meaning.

XML has rapidly become the preferred format for representing physical
models of documents and business processes.

XML is a metalanguage for markup, and markup languages can be
created for very specific document models.

With XML, the separation of content and presentation is inherent and
desirable.

XML schemas define the rules that govern the arrangement and values
of a document’s content.

An XML document without a schema is little more than a bag of tags
whose meanings are undefined.

There is often a gap between the conceptual model of a document and
what can be described in an XML schema.

XML is now everywhere in distributed computing architectures.

The decision about where to transform documents is a business one.

3.0
3.1
3.2

3.3
3.4
3.5

Models, Patterns, and Reuse

INTRODUCTION

MODELS

ADAPTING THE CLASSIC MODELING
APPROACH TO DOCUMENTS

THE MODEL MATRIX

PATTERNS

KEY POINTS IN CHAPTER THREE

74
75
76

86
90
99

74 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

INTRODUCTION

The hypothetical GMBooks.com virtual bookstore in Chapter 1 illustrates two impor-

tant themes of Document Engineering, the idea of document exchange and the reuse
of patterns of document exchange to implement or adapt a business model. In
Chapter 4, “Describing What Businesses Do,” we begin to make a systematic survey
of the kinds of models and patterns that are reused in Document Engineering. Just
like every other engineering discipline, Document Engineering emphasizes the reuse
of existing specifications or standards that work. Doing so reduces costs and risks

while increasing the reliability and interoperability of the deployed solution.

Document Engineering emphasizes the reuse of
existing specifications or standards

We’ll begin this chapter with our own definitions of model, pattern, and other words
that are important in Document Engineering but are overused because they are
important to lots of other domains as well. In spite of their overuse, we need these

terms to describe what businesses do from a variety of perspectives.

We follow the classical modeling approach in distinguishing three levels of abstrac-
tion. The least abstract models, called external models, describe specific implemen-
tations of business documents, processes, or other artifacts. Physical models are more
general because they describe a set or class of instances, but they still capture the
technology in which the instances were implemented. Conceptual models remove the
implementation technology to emphasize the concepts and meanings that define

some class Of instances.

We can also distinguish what businesses do according to the depth or granularity
with which we describe each model. From the organizational or business-to-business
perspective, most models are coarse with just the important roles and relationships
visible. At the process level, more details of the context of use are visible, and we
begin to see the documents that are exchanged to carry out each process. The infor-
mation level is the most granular perspective, and we can see specific information

components within the documents.

MODELS, PATTERNS, AND REUSE I 75

These two dimensions of model abstraction and model granularity let us define a
model matrix that shows in a single diagram the relationships among business model,
business process, and business information models at both conceptual, physical, and
implementation levels. This gives us a framework for discussing the most important
and reusable patterns and for explaining how the most granular patterns for busi-
ness information and business processes are composed and choreographed to create

more complex patterns of greater scope.

The business, organizational, and technological structures and relationships within

MODELS

and between enterprises can be extremely complex, which is why we need models to
describe them. Models are simplified descriptions of a subject that remove some of its

complexity to emphasize certain features or characteristics and deemphasize others.
Models are simplified descriptions of a subject

Of course there are always differences between the subject being modeled and the
model, or else the model serves no purpose. Thus much of the skill of modeling
involves knowing what to ignore—if you look at every single tree you never see the

forest.

When there is a problem to be solved within a subject, analysts study the subject and
ask experts questions about it. The information they gather is embodied in models
that record and communicate the issues and constraints of the subject. These mod-
els help the analysts, domain experts, and designers understand the existing situation

and devise appropriate changes.

In Document Engineering we develop models that emphasize document requirements
and patterns of information exchange. We use these models to analyze, communi-
cate, and design the formal definitions of business processes and the documents that

are exchanged to carry them out.

76 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

In Document Engineering we develop models
that emphasize document requirements and
patterns of information exchange

We can express a model with many different notations, each of which is effective for
some purpose or audience. Simple line and box drawings on whiteboards or the back
of an envelope can depict the most important constructs in a model and their rela-
tionships to each other. At other times more verbose and narrative descriptions or
cxprcssions in formal languagc may be necessary to represent the important details

of a model.

In this book we depict our models in various ways, often using some of the conven-
tional notations of the Unified Modeling Language (UML).! But using the UML is not
in itself modeling. Nor do you need to use the UML to do Document Engineering. We
can use any modeling notation. What matters is that the notation must capture the
necessary metadata needed to define the requirements of the context of use. In this
text we will use the UML to describe business processes, collaborations and transac-
tions with UML Activity and Sequence Diagrams (Chapters 9 and 10) and document

components and structures using UML Class Diagrams (Chapters 13 and 14).

ADAPTING THE CLASSICAL MODELING
APPROACH TO DOCUMENTS

The approach and terminology we use for modeling in Document Engineering is a
document-centric adaptation of the classical three-level modeling approaches and
architecture? depicted in Figure 3-1. This approach distinguishes between external
representations that describe specific things, artifacts, or instances in the world,
physical (or internal) views that present different models of instances in some tech-
nology, and conceptual views or models that abstract those descriptions from any

particu lar im p] ementation.

Whenever we analyze documents we can’t avoid dealing with the processes that cre-
ate and use them, but it is easier to introduce Document Engineering concepts and
methods if we discuss documents and processes separately whenever we can. So we

will also be analyzing business processes and creating models that describe them, but

MODELS, PATTERNS, AND REUSE I 77

for the remainder of section 3.2 we will focus on document models and defer busi-

ness process models until section 3.3.2.

Physical Conceptual Physical
Reality Abstractions Reality

AS'IS dlarnal viaw

[Artifacts)

| Concaptual View
[Ag-l5 and

To-Be Models)

| Thysical View
(As-Implemented

Maodals)

| External View
tifacta)

TD-BE) Mew Arifacts |

Figure 3-1.The Classical Modeling Approach

The first phase of applying the classical modeling approach to documents is to find
and analyze real-world artifacts and represent the results in a model that describes
their physical implementation. We then analyze these artifacts to create what are

often called the As-Is models.

For business processes, the As-Is models are transformed into To-Be business process

models by selecting and adapting patterns appropriate for the required context of use.

For documents we call the As-Is model a document component model and the To-Be

models are called document assembly models.

Finally we bring the conceptual view back to a physical view by expressing it in tech-
nology appropriate for the contexts in which it will be used. These new document

implementation models are the As-Implemented models.

78 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

EXTERNAL VIEWS: INSTANCES OF
DOCUMENT IMPLEMENTATIONS

When documents exist in printed or tangible form, like Halfat’s tax receipt on a pot-

tery fragment (see Chapter 1), it is easy to think of them as artifacts in the world that
could be described by external models. But what is most important about a docu-
ment is the information or intangible content it contains, so the document should be
considered an external model of the thing it describes. This is especially true in the
domain of Document Engineering where our emphasis is on the documents
exchanged by business processes. We deal with inventory reports, not the actual
goods stored in a warehouse, for example. Or purchase orders rather than the specif-

ic goods being ordered.

A document can be considered an external model
of the thing it describes

If we are designing a new business process and no documents currently exist, we must
identify information and process requirements by talking to people, sources that are
even less directly coupled to the things in the world than documents are. So rather
than treat descriptions of specific things in the world (or other information sources
like printed or web forms) as models, we will treat them as the primary instances or
artifacts that we analyze to create models. For example. Figure 3-2 is an XML docu-
ment instance, which we’ll refer to as Book.xml in the sections that follow. Figure 3-

2 is not the book, “Moby Dick” by Herman Melville; it is an external view of it.

<?xml version="1.0" encoding="UTF-8"7>
<Book>
<Title>Moby Dick</Title>
<Author>Herman Melville</Author>
<ISBN>0804900337</ISBN>
<Publisher>Airmont</Publisher>
</Book>

Figure 3-2. XML Document Instance (Book.xml)

MODELS, PATTERNS, AND REUSE I 79

PHYSICAL VIEWS: DOCUMENT IMPLEMENTATION
MODELS (OR SCHEMAS)

After we analyze a number of document instances like Book.xml, we can represent
our results in a model that describes them (the As-Implemented model in the classi-
cal approach, or a document implementation model or schema in Document

Engineering).

In Chapter 2 we described the role of XML schemas in representing a document type
as some bounded set of possible or desired XML documents. Figures 3-3a and 3-3b are
XML schemas that validate Book.xml and other XML instances of the Book document
type. The first is expressed as a DTD and the second is expressed using XML Schema.

<?xml version="1.0" encoding="UTF-8"7>
<IELEMENT Book (Title, Author, ISBN, Publisher)>
<IELEMENT Title (#PCDATA)>

<IELEMENT Author (#PCDATA)>

<IELEMENT ISBN (#PCDATA)>

<IELEMENT Publisher (#PCDATA)>

Figure 3-3a. Book.dtd

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified”>
<xs:element name="Book">
<xs:complexType>
<xs:sequence>
<xs:element name="Title” type="xs:string"/>
<xs:element name="Author” type="xs:string"/>
<xs:element name="ISBN" type="xs:string”/>
<xs:element name="Publisher” type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 3-3b.Book.xsd

Figure 3-3. XML Schemas for Instances Like Book.xml

80 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Document implementation models such as XML schemas can be very narrow,
describing only the exact set of instances that were analyzed, or they can be more
general, describing a wider variety of instances that are similar, but not identical, to
those that were analyzed. In either case, the more instances we consider when we
analyze a document implementation model. the more likely we are to identify and
capture the set of rules that govern the possible instances of the document being

modeled.

But document implementation models—defined as expressions of structure and
integrity constraints on some set of information—are not limited to schemas for XML
documents or even to markup languages. They can be expressed using many formal
languages, including ISO 9735 for EDI and SQL/DDL for relational databases.
There are also less formal ways of expressing As-Implementation models, such as the
message implementation guides in narrative form that are often used to explain the
structures of EDI documents. Figure 3-4 is a document implementation model that

describes a database table in which to store information about book instances.

Create Table Book
{
Identifier CHAR(14) PRIMARY KEY,
BookTitle CHAR(50),

AuthorName CHAR(50),

Publisher ~ CHAR(20)

}

Figure 3-4. Database Schema for Instances Like Book.xml

As these three examples show, document implementation models are tightly bound
to the technology of implementation, using constructs like XML elements or data-
base fields so that computer programs can interpret the model. But this tight bind-
ing can prevent us from thinking beyond the specific implementation, especially if

the models were created to describe or validate only a limited set of samples.

For example, if we study the specific documents used by a business process and dis-
cover they have a variety of implementations, each with their own schema definition
or notation, how can we compare them? Book.dtd, Book.xsd, and the Book database
schema are expressed in widely different syntaxes that constrain our ability to under-

stand the common requirements of a “book™ in our business applications.

MODELS, PATTERNS, AND REUSE I 81

Implementation models limit design and reuse capabilities

Document implementation models also limit design and reuse capabilities. If a book-
store wants to share information between its database and documents, as it does
when responding to a customer query, neither the database schema nor the document
schema is sufficient. We need to understand the relationship between them, which
might be expressed as the mapping of one model to the other. But this is often not
straightforward. In our examples here, we might not know that PCDATA and string
are synonyms and we can’t be sure that the <ISBN> element in Book.xsd plays the

same role as Identifier in the Book database schema.

Document implementation models only tell us how their components are expressed
in a particular technology. To understand how they relate to each other we also need

to know what the components mean; that is, we need to understand their concepts.

CONCEPTUAL VIEWS: DOCUMENT
COMPONENT AND ASSEMBLY MODELS

We can best describe the semantics of documents using models of the concepts they
contain. This conceptual view lets us distinguish one class of document from anoth-
er. Conceptual views are independent of the physical implementation and so are not

tied to any particular technology.

Prose definitions are often adequate conceptual models for classifying documents.
For example, we might say that a typical dictionary is organized as a set of word
entries, each of which consists of a main word, a pronunciation guide, and one or
more definitions or senses. The entry may also have a derivation showing its roots in
some classical language, other forms of the word, a list of synonyms or antonyms,

quotations, or an illustration.

Likewise, we might say that a typical invoice contains information about goods or
services provided by the seller and the amount and date of expected payment. [t may

also describe methods of delivery or other terms governing the transactions that

82 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

occur. Dates, amounts, and account codes are among the kinds of content in invoic-

es for which expected values or ranges of values can be precisely specified.

But similar types of content occur in many documents, and the distinctions between
these can be subtle, especially when there is overlap in information and structural
patterns. Precisely what is it that differentiates a catalog from a brochure, a newspa-
per from a magazine, a dictionary from an encyclopedia, a calendar from a sched-
ule, or a purchase order from an invoice? Obviously there are distinctions between
them, or we wouldn’t have different words to describe them and we couldn’t reliably
classify them as one type of document or another. But how can we identify and com-

municate what distinguishes them?

In Document Engineering we introduce two types of conceptual models for docu-
ments that are more formal and precise than prose definitions. The first is the docu-
ment component model, which describes the complete set of information components
in a domain,’ including their structure and relationships. A document component
model portrays the network of associations between the components. So rather than
describing a single type of document, it implicitly describes many different types of
documents. Such a conceptual model of information about books is shown in Figure

3-5 using the notation of a UML class diagram.

pr——sy pr——
Author Book Edition
Surname || witer wartes of available in| Edition
First name |- |SEM : Binding _
Initials 1.% 1.+ | Til= 1 #* Base Frice
ha

1..%| publishes

1 | published by

Party

MName

Figure 3-5. Class Diagram for Document Component Model of “Book”

MODELS, PATTERNS, AND REUSE I 83

A document component model also captures important rules about the relationships
between classes. For example, a publisher can be considered a reuse of the object
class called party with a special association to book that we label as “publishes” in
Figure 3-5. So the publisher is modeled as the “published by” party. However, an
author is not a reuse of party because the former has attributes that do not apply to

the latter.

The model in Figure 3-5 also depicts the business rule that an author can write more
than one book and that books can have more than one author. It also tells us that

even if the book has more than one edition, it has only one ISBN.

A document component model describes the complete set
of semantic components in a domain

The Book conceptual model could be implemented as an XML schema, database
table, EDI message definition, or paper form. Each of these can represent concepts
like author and title even though the implementation models may vary. But there is

a crucial activity we must carry out before we can model documents.

We must follow a path through the network of associations represented in a docu-
ment component model, selecting a subset or arrangement of components to meet the
information requirements of our specific context. This assembly describes the way in

which the selected components are assembled into hierarchical structures.

A document assembly model describes the way in which
required components are assembled into
a hierarchical structure

Document assembly models are best visualized as tree diagrams of hierarchical struc-
tures. For example, from the document component model in Figure 3-5, we could
construct three different document assembly models by traversing the associations
using different paths. The resulting hierarchical document models would organize
the same components into different structures to imposc different intcrprctations or
contexts that emphasize the book, the author, or the publisher. Three such document

assembly models are shown in Figure 3-6.

Author

Surnamea
First name
Inhals

g

Book

ISEM
Title

1 by
)

Party

pullished

Marme

| —

*

I"-\.
',

84 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

availablein

—
Edition
Edition
Binding
Basze Price

b

3-6a. Document Assembly Model for Book Context

MODELS, PATTERNS, AND REUSE I 85

—
Author

Surnames
First nama
Initials
—
WiiteE 1. *

Book
ISEM
Title
.'"!_E'_"
ou L\ll:‘:he.-J 1 . ‘;._xg..-ailshle in
Party Edition
Edition
Harme Binding
Basa Price

3-6b. Document Assembly Model for Author Context
—

Party

MNama

publishas |4 %

Book

ISEM
Titl=

, ~
'K \'. .
writer 4w *w‘avmlable in

S
Author Edition
Burnarme Editicary
First marmes Binding
Initials Base Price

o —

3-6¢. Document Assembly Model for Publisher Context

Figure 3-6. Alternative Document Assembly Models

86 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Conceptual views of models like those shown in figures 3-5 and 3-6 are a better way
to represent and communicate the results of analysis and design than the physical
views in figures 3-3 and 3-4 because they are not constrained by any specific imple-
mentation. This technology independence also makes them easier to manipulate or
revise. Similarly, at the conceptual level it is easier to generalize a model to make it
describe a larger set of possible or desired artifacts than the ones we happened to
observe when we first analyzed an implementation model. It is also easier to special-
ize at the conceptual level, for example, by deriving a related model that incorporates
additional characteristics or relationships; in this case, we could express a conceptu-

al model for chemistry books based on the model for a book.

When technologies change, the optimal implementation
model will also change even though the underlying
conceptual models don’t

When technologies change, the optimal implementation model will also change even
though the underlying conceptual models don’t. A fascinating example goes back
10,000 years to the last part of the Stone Age, when farmers in the Near East began
to use clay pegs or tokens to keep track of farm products, often storing them in hol-
low clay balls.* The Neolithic accountants later realized that instead of enclosing the
tokens inside a clay ball, they could simply make marks in the clay to represent the
one-to-one correspondence between the clay tokens and the goods, ultimately lead-
ing to the invention of Cuneiform writing in the fourth millennium BCE. Today we
use more modern technologies for tracking inventory, but the underlying conceptual
model of counting remains essentially the same. We’ll further discuss the role of tech-
nology in the relationship between conceptual and physical models in Section 4.4

and Chapter 5.

Later in this book we will discuss in more detail how to understand documents by

THE MODEL MATRIX

creating physical and conceptual document models. We will also apply similar
approaches to analyzing contexts and creating models for business processes, and

other kinds of reusable patterns.

MODELS, PATTERNS, AND REUSE I 87

These two dimensions of model abstraction and model granularity form a matrix for
organizing the analysis and modeling approaches in Document Enginem‘ing?5 as
shown in Figure 3-7.

Granularity

GONCEPTUAL .
MODELS PHYSICAL MODELS IMPLEMENTA

Abstraction

Figure 3-7.The Model Matrix

Let’s begin by describing the matrix dimensions. From left to right is the abstraction
dimension. The most abstract or context-free conceptual models are arranged on the
left. Moving to the right implies more physical models, and finally specific implemen-
tations of actual documents or processes are the rightmost external models.

The two dimensions of model abstraction and granularity
form the Document Engineering Model Matrix

From top to bottom is the dimension of model granularity, on which we can depict
the amount of detail with which we describe the business relationships in each
model. From the organizational or business-to-business perspective, models show
only the most important roles and relationships. At the process level more details
about the relationship are visible, and we begin to see the documents that are

88 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

exchanged to carry out each process. The information level is the most granular per-

spective,

and we can see specific information components within the document models.

METADATA AND METAMODELS

Metadata might be the hardest term to define in the field of Document Engineering
because its usual definition of “data about data” isn’t much of a starting point. We
are using the prefix meta to convey concern with the concepts and results of the dis-
cipline named in the suffix. For example, a metalanguage is a language or system
of symbols used to discuss another language or system, and a metatheory is a formal

system that describes the structure of some other system. So metadata consists of

data structures used to discuss other data structures.

Metadata augments the values of information (or data) with additional properties
that explain its meaning, organization, and other characteristics of interest in our
models. What constitutes metadata is relative. Data may be metadata depending on
your perspective. For example, statistics are data to some people and metadata to

others.
VWhat constitutes metadata is relative

In Document Engineering we use various pieces of metadata in our models so that
we can define richer models and also compare and align different types of models.
Remember, we’re not talking about the content of the models; we're talking about

the constructs by which the model content is organized or structured.

In XML the metadata are things like elements and attributes. In SQL the metadata
includes tables and columns, and in the UML metadata includes features like class-

es, associations, and attributes.

To help us use metadata, we need a model, which we call the metamodel. A meta-
model is a higher perspective of a model, used to describe the type of information in
a model. For example, if we were to define a model of a document, the document
model’s metamodel might specify that the content of a document can be described

using separate data objects, each of which has properties such as cardinality, defini-

MODELS, PATTERNS, AND REUSE I 89

tions, conditional rules, and sets of legitimate values.” For example, the metamodel
for Book.xsd is the specification for W3C Schema (XML Schema), which explains
how schemas are constructed. By explaining what metadata is required and how they

relate to each other, metamodels enable us to build consistent and robust models.

While the overall purpose of metadata may be similar in various types of models,
because of their terminology, syntaxes, or different notations, it isn’t always easy to
recognize the correspondences. For example, is an XML element equivalent to an
SQL table? What is the relationship between elements and classes? Metamodels are
also useful if we want to exchange or compare these different models. If two models

share the same metamodel, it is easier to compare and align the two.
A common metamodel helps align different models

With physical views of models, comparing metamodels is more obvious. Two XML
Schemas are easier to compare than an XML Schema and an XML DTD. or any
XML schema and a database schema.

But models of conceptual views also have metadata and metamodels to describe
them. For example, the ebXML Core Component Technical Specification® defines a
metamodel for defining conceptual information models for document components.
This means that even though there are many different types of document compo-

nents, they can all be described using a common conceptual framework.

METAMODELS FOR PROCESSES

Metamodels for business processes are especially important in Document
Engineering because processes are inherently more abstract than documents, which
readily exist as highly tangible implementations with a conventional notion of a doc-
ument as a container or message with information components. In contrast, business
processes can be described at many levels, and the lack of a predictable amount of
detail for their constituents would make it less likely that any two process models

could be meaningfully compared.

a0 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Business processes are inherently more
abstract than documents

To deal with this fundamental modeling challenge, metamodels for describing busi-
ness processes have evolved that distinguish multiple levels of abstraction along with
the semantic properties that are necessary to define each level. We prefer the ebXML
Business Process metamodel, which specifies three levels of abstraction: processes are
defined in terms of collaborations, which are in turn described using transactions.’
In addition, the ebXML Business Process Specification Schema'® (BPSS) is designed
to express a rich repertoire of patterns in a standard way, making it much easier to
understand and compare business processes. We use this metamodel for describing
processes in Chapter 9, “Analyzing Business Processes,” and Chapter 10, “Designing

Business Processes with Patterns.”

Patterns are models that are sufficiently general, adaptable, and worthy of imitation that

PATTERNS

we can reuse them. A pattern must be general enough to apply to a meaningfully large
set of possible implementations or contexts. It must be adaptable because the implemen-
tations or contexts to which it might apply will differ in details. And it must be worthy,
that is the implementations or contexts to which the pattern might apply should benefit

from following it. Of course, patterns are an important idea in many fields.

Patterns are models that are sufficiently general, adaptable,
and worthy of imitation that we can reuse them

For example, the system of government called a parliament is a pattern used by
numerous countries and states. In a parliamentary system, people democratically
elect others to represent their interests, and the government is headed by a member

of the political party with a majority of the elected representatives.

The parliament model is an abstract, conceptual pattern because a country that
adopts this model does not adopt any specific politicians and bureaucrats, just the
pattern describing the ways in which its elected representatives are organized to gov-

ern. For a country to adopt a physical pattern for “parliament” it would have to

MODELS, PATTERNS, AND REUSE I 91

invade another country and occupy its government buildings or kidnap its politicians

(not that such events have never happened).

When patterns are implemented, they are often adjusted or customized to suit their
particular context. Thus the parliamentary systems of government in the United
Kingdom, Australia, and Japan are not identical, but they have many common fea-

tures because each follows the same basic pattern.

Patterns are useful in every activity, from constructing houses to building software
applications” to describing human behavior. Using patterns saves effort and yields
more consistent, compatible, and successful designs. Indeed, sometimes a pattern is
so consistently adopted it becomes an official or de facto standard (see Section 5.7,

“From Proprietary to Standard Models.”)

Using patterns saves effort and yields more consistent,
compatible, and successful designs

Document Engineering is mostly concerned with patterns of information exchange
within and between enterprises and the patterns of components in the documents
being exchanged. But is it also useful to take even broader perspectives on what busi-
nesses do and the relationships between them because patterns at higher levels of

abstraction set the context for more granular ones in which documents are specified.

PATTERNS IN BUSINESS

Businesses exhibit a remarkable variety of behavior. Every business is different
because they have different owners, employees, managers, and customers and
because they operate in different industry, geopolitical, and regulatory contexts. The
diversity of businesses can be seen easily in the yellow pages of a telephone directo-
ry or, more systematically, in the business classification codes designed to facilitate
uniform collection and analysis of data about businesses. Examples of these formal
categorizations include the 0-digit North American Industry Classification System

(NAICS)'2 code and the UN/SPSC!? coding system for products.

g2 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

But just as they exhibit great variety, businesses also exhibit great regularity in what
they do and how they do it. At first glance, there doesn’t seem to be much in com-
mon between “Computer Systems Design Services” (NAICS code 541512) and
“Potato Farming” (NAICS code 111211) or “Bare Printed Circuit Board
Manufacturing” (NAICS code 334412). But this diversity in classification belies the

fact that most businesses do many things in similar ways.

Businesses exhibit both great variety and great regularity
in what they do and how they do it

We call something a business or enterprise because it demonstrates some purposeful
and organized activity to provide products or services, usually with a profit motive.
But beyond this we can also agree that computer systems designers, potato farmers,
and circuit board manufacturers all need to rent or buy, furnish, and insure their
business locations, hire employees, procure and pay for supplies, market and sell
their goods and services, fulfill orders, issue invoices, finance their operations, pro-

vide customer service, and so on.

Indeed, the fact that we have words like procure, pay, order, and invoice to describe
common business processes and documents in an industry-neutral way confirms that

there are general patterns in how business gets done.

8.4. 2
WHY BUSINESSES FOLLOW PATTERNS

Businesses in different industries also adopt patterns specific to their activities for a

number of reasons:

® They may be affected by common laws or regulations. Local or national govern-
ments might require businesses to obtain permits, to ensure that their products and

services meet health or safety standards, to pay taxes, and so on.

e They may follow similar trade practices and be affected by the same microeco-
nomic factors, such as common suppliers or customers and similar opportunities or

threats related to the introduction of new technologies or methods.

MODELS, PATTERNS, AND REUSE I 93

e They may be affected by common external forces imposed by the overall economic
and financial environment such as tax laws and interest rates, levels of employment and

education, and consumer confidence and other macroeconomic factors.
® They want to minimize their costs, such as hiring and training workers.

All of these influences encourage the adoption and use of patterns. Yet businesses
don’t follow patterns just because they are forced to do so by external influences.
“Good business practice” is a dominant pattern and businesses also consciously
strive to become more efficient and effective at what they do. Obvious examples of
intentional patterns in business are those followed by franchises, where every busi-
ness uses the same detailed operating methods and technology to get the benefits of
aggregated purchasing, mass advertising, and data mining of composite transaction

information to identify sales trends.

Businesses also need to operate in ways that are intelligible and acceptable to their
trading partners or customers or else explain why they don’t. Running a retail busi-
ness according to the usual patterns and practices makes it easier for suppliers and
customers to interact with it. A retailer that accepts only cash and doesn’t allow pur-
chases to be returned will probably have to post warning signs at its checkout count-
er or website equivalent and will certainly have difficulty competing with more cus-

tomer-friendly firms.

Rcusing well-understood patterns makes businesses easier to start, manage, and
improve. Adopting common patterns can reduce development and maintenance
costs, improve performance, and enhance relationships with suppliers and cus-
tomers. A business can more easily learn from others in its industry if it contributes
to and follows industry best practices or reference models. The more systematic the
practices in an industry, the more a business benefits from following them because of

the network effects of standardization.

So businesses must balance two conflicting goals: to differentiate itself from its com-
petitors and to run their business according to principles and methods used through-
out their industry. Of course a business might decide not to follow the standard pat-
terns in its industry. Perhaps it has the market dominance to impose its will on sup-

pliers or customers or it hopes to create a competitive breakthrough by using a rad-

g4 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

ically different technology or process. If it succeeds, the business will be creating a

new pattern that others will soon try to adopt.

A business must balance how to differentiate itself and
how to run according to industry practice

But for every business that invents a truly new business model or process there are
many more who aspire only to get better at doing the things they are already doing.

They do this by recognizing and adopting good business patterns.

FINDING PATTERNS IN THE MODEL MATRIX

Generic or abstract conceptual patterns become more specific or concrete by adding
context. We will define what we mean by context more completely in Chapters 7 and
8. For now it is sufficient to say that contextualization means moving from left to
right in the Model Matrix. Similarly, moving up the granularity axis in the Model
Matrix gives a coarser granularity that can suggest patterns disguised by the details,

encouraging new innovations.

So it follows that the best place to find reusable patterns in our models will be where
they are generalized enough to be applicable across different implementation tech-
nologies but have enough context to be meaningful. And at the same time they must

give a comprehensive view that is not so detailed it limits adaptations.

To find useful patterns we navigate along the abstraction and granularity dimensions
of the Model Matrix to confirm our analysis and understanding of the context of use.
We can present this metaphor graphically in Figure 3-8 using a “Pattern Compass.”
We’ll more fully develop these ideas in Chapter 10, “Designing Business Processes

with Patterns.”

MODELS, PATTERNS, AND REUSE I g5

. Less Granular

Generalize &= % Contextualize

Granularity

More Granular

CONCEPTUAL
MODELS PHYSICAL MODELS IMPLEMENTATIONS

Abstraction

Figure 3-8.The Pattern Compass in the Model Matrix

The organization of patterns and models in the Model Matrix makes them easier to
learn and reuse. As we examine other business relationships, processes and informa-
tion from a Document Engineering perspective, the Model Matrix can provide a con-
venient framework.

Generic conceptual patterns become more specific
by adding context

(=[5} I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

3.4.4
USING THE MODEL MATRIX AS A FRAMEWORK

A complete understanding of an enterprise’s business relationships, the processes
that carry them out, and information exchanged by those processes requires compat-
ible and interconnected models of all three. This understanding is achieved when the
strategic concerns embodied in organizational patterns that describe what a business
wants to do can be linked by process patterns to information models that describe
how to do it. In graphical terms, this convergence takes place when organizational

and information models “meet in the middle” of the Model Matrix in process models.

So another use of the Model Matrix is as a roadmap for the analysis and design activ-
ities and methods that get us to its middle. Here the systematic differences in
abstraction and granularity of these kinds of models in the matrix suggest that dif-

ferent kinds of modeling approaches are needed to create them.

A business analyst, document analyst, data analyst, and
a task analyst will create different models

Different models emerge from the skills and tools of the business analyst, document
analyst, data analyst, and task analyst. Each of these approaches looks at documents
and processes differently, and while each of them is highly effective in some areas,
they all have blind spots where their methods do not work well. We can overlay these

different modeling perspectives on the Model Matrix in Figure 3-9.

MODELS, PATTERNS, AND REUSE I g7

Granularity

CONCEPTLAL
MODELS PHYSICAL MODELS IMPLEMEMTATIONS

Abstraction
Figure 3-9. Converging Modeling Approaches in the Model Matrix

This depiction shows business process analysis focusing on the top left corner of the
Model Matrix. This captures the conventional practice of process analysis in follow-
ing a top-down approach to progressively refine abstract descriptions of what a busi-
ness does. In contrast, document analysis techniques emphasize the study of
instances of document artifacts, which are found in the lower right corner of the
Model Matrix. Likewise, data analysis focuses on logical models of objects and asso-
ciations, and task analysis focuses on the specific steps and information that users
need to carry out a task. In Chapter 7 we introduce the Document Engineering
Approach as a set of activities that follow a path through the Model Matrix, employing
each of these modeling approaches in turn to yield models that “meet in the middle.”

3.4.5
PROCESSES AND DOCUMENTS: YIN AND YANG

Another important idea embodied in the Model Matrix is the essential and
inescapable relationship between models of processes and models of documents. At
the center of the matrix, where processes are described as transactions and document
exchanges, processes and documents are two perspectives of the same thing. Are
processes just combinations of document exchanges, or are documents just the pay-

as I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

load patterns in processes? The answer is yes to both questions. Business processes
and documents are the yin and yang of Document Engineering.

Granularity

CONCEPTUAL
MODELS PHYSICAL MODELS MPLEMENTATIONS

Abstraction

Figure 3-10.The Yin and Yang of Document Engineering

These central concepts of Chinese philosophy might seem out of place here, but they
express perfectly the complementary and opposing relationships between business
processes and documents. Processes produce and consume documents, which are a
static snapshot or the tangible result of the process activity. Process descriptions
emphasize business concerns and determine whether ways of doing business are
compatible. Document descriptions emphasize semantic concerns and determine
whether business systems are compatible. We can separate processes and documents
in our analysis, discussion, and models, but in the end they are always interconnect-
ed because both business and semantic compatibility are necessary.

There are complementary and opposing relationships
between processes and documents

In practical terms this means that models for processes and documents need to be
developed with the same care and to compatible levels of detail. And, it explains why

we need a Document Engineering approach that exploits complementary modeling
approaches.

MODELS, PATTERNS, AND REUSE I gg

3.5
KEY POINTS IN CHAPTER THREE

* Document Engineering emphasizes the reuse of existing specifications or
standards.

® Models are simplified descriptions of a subject.

* In Document Engineering we develop models that emphasize document
requirements and patterns of information exchange.

* A document can be considered an external model of the thing it
describes.

® Implementation models limit design and reuse capabilities.

® A document component model describes the complete set of semantic
components in a domain.

® A document assembly model describes the way in which required
components are assembled into a hierarchical structure.

* When technologies change, the optimal implementation model will also
change even though the underlying conceptual models don't.

® The two dimensions of model abstraction and granularity form the
Document Engineering Model Matrix.

* What constitutes metadata is relative.
* A common metamodel helps align different models.

® Business processes are inherently more abstract than documents.

100 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Patterns are models that are sufficiently general, adaptable, and worthy
of imitation that we can reuse them.

Using patterns saves effort and yields more consistent, compatible, and
successful designs.

Businesses exhibit both great variety and great regularity in what they
do and how they do it.

A business must balance how to differentiate itself and how to run
according fo industry practice.

Generic conceptual patterns become more specific by adding context.

A business analyst, document analyst, data analyst, and a task analyst
will create different models.

There are complementary and opposing relationships between processes
and documents.

4.0
4.1
4.2
4.3
4.4
4.5

Describing What Businesses

Do and How They Do It

INTRODUCTION

VIEWS OF BUSINESS ORGANIZATION
VIEWS OF BUSINESS PROCESSES
VIEWS OF BUSINESS INFORMATION
VIEWS OF BUSINESS ARCHITECTURE
KEY POINTS IN CHAPTER FOUR

102
104
119
128
134
145

102 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

4.0

INTRODUCTION

Readers who came to Chapter 2, “XML Foundations,” knowing something about

XML may have gained new insights and ways to apply that knowledge through our
Document Engineering perspective. Likewise, readers with business backgrounds
will be familiar with some of the material in this chapter but should benefit from see-

ing it from a Document Engineering perspective.

In Chapter 3 we deliberately used a general notion of business pattern because we
wanted to emphasize the great extent to which businesses carry out their activities in
regular and systematic ways. Now that we’ve made that basic point we will get more

precise.

Historians, sociologists, business theorists and institutional economists have devel-
oped a rich set of taxonomies for discussing variations in business organization and
models.! This deep body of work has shaped our thinking, but we won't explicitly
revisit much of it in this chapter. Instead, we will take a less formal and more prag-
matic approach, adapting some of the categories and concepts as we discuss business
models that use document exchanges and service oriented architectures. So while
some of the topics we'll discuss in this chapter will be familiar to anyone who has
studied organizational design, supply chain management, or information technology

management, the overall framework provided by Document Engineering is a new one.

We introduced this new perspective in Chapter 3 when we proposed the Model Matrix
as a framework for understanding the relationship between organizational, process,
and information models, which vary on a dimension of granularity. In this chapter
we will take a more detailed look at each of these model layers to understand the
orthogonal distinction between conceptual models and physical ones. We will then be
ready to learn how to develop compatible and interconnected models from all three

layers that describe both what the business wants to do and how it can do it.

We begin with models of how businesses organize their activities. Business models or
business reference models are abstract descriptions of what businesses do. We will
describe patterns like supply chains and marketplaces that capture complex sets of

relationships within and between enterprises.

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 103

At the more granular view of business processes, business process models take a view
that emphasizes the activities that create business value without focusing on the

information exchanges that underlie them.

Only at the most granular level of business information models do we find patterns
that reveal documents and their components. These are commonly found in their

physical form as XML schema libraries or EDI message standards.

We will introduce these different model perspectives using the distinction between
physical and conceptual views we discussed in Chapter 3. Although the contrast isn’t
always perfect, one can describe most aspects of what a business does do in either
way; for example, in highly physical terms of management reporting structures or
facility locations or in highly conceptual terms such as whether it seeks efficiency
through functional or cross-functional organization. Likewise, the information
exchanged between organizations or systems can be described in physical terms by
XML schemas or EDI implementation guidelines (that is, as document implementa-
tion models), or in conceptual terms by UML class diagrams® (as document compo-

nent and document assembly models).

Even business processes, which may seem inherently abstract for processes that are
information-intensive or computational, can be described from both physical and
conceptual perspectives. It is certainly true that in contrast to observable processes
like manufacturing, packaging, and transport of tangible goods, many business
processes like accounting, scheduling, and payment are almost invisible. But even
intangible or information-intensive processes need instructions about how they are
carried out, and the documents that are the inputs and outputs of these processes

also provide physical views of how the process works.

After a business has designed its organizational, process, and information models,
many technology and architectural choices remain about how to implement them.
And just like those models, the technology and architecture of a business can be
described in physical or conceptual terms. Physical descriptions depict the specific
computers, operating systems, and software applications that the business uses. In
contrast, conceptual and technology-neutral descriptions emphasize functional and
topological characteristics, such as whether the solution embodies a service oriented

architecture and treats business functions as reusable COIIlpOIlCIltS.

104 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

VIEWS OF BUSINESS ORGANIZATION

One approach to describing a business is in terms of the organization, management,

or control of its activities. These descriptions can explain the organization of a single

firm or the organizational relationships between multiple firms.

PHYSICAL VIEWS OF BUSINESS ORGANIZATION

The most visible and tangible view of businesses are based on physical implementa-

tions. They describe how the business works.

A common physical view of business organization is the organization chart.
J O te)

Organization Charts and Facilities Maps

Organization charts exhibit characteristic structural patterns that portray the
arrangement of management and operational responsibilities within the firm and
usually include specific people and their associated roles or titles. These patterns are
explained in textbooks on organizational design or behavior and in a more mundane
way are built into enterprise definition tables in Human Resources and Enterprise
Resource Planning applications and into templates for drawing programs like Visio,

SmartDraw, or Powerpoint.

Organization charts and facilities maps are physical
models of a business

The organizational chart for a business often closely mirrors the facilities map,
another common physical model of business organization that shows the locations of

offices, factories, distribution points, training centers, or other facilities.

The organizational chart for an enterprise is a highly specific and rich model of how

it does business. For example, IBM uses its organizational charts as the core of a

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 105

dynamic information resource called BluePeople.:; Starting with a name or email
address, BluePeople makes explicit the network of links to coworkers, projects, pub-

lications, and other information to provide context for the name or address.

4.1.1.2
Supply Chains

A firm’s supply chain is the network of relationships, communication patterns, and
distribution capabilities that provide raw materials, components, products, or serv-
ices to a firm so that it can make what it sells and deliver what it sells to its cus-
tomers. Because the pattern of a supply chain is a highly abstract one that can be
adapted to model any situation in which a product or service is created by bringing
together different parts, it is an important part of the Document Engineering pattern

repertoire.

Nevertheless, supply chains are often described in highly concrete or physical terms
with details about assembly lines, warehouses, factories, and stores full of raw mate-
rials, partly finished or finished products, along with the equipment or modes of
transport by which materials and products move between them. Likewise, because
the perspective of a supply chain follows a product’s flow from raw material to con-
sumption, a helpful analogy is to the basin or drainage area for a large river: “A sup-
ply chain is much like a river system with raw materials at the headwaters and cus-

tomers at the delta, with products floating down the river toward the customers.”*

A simplistic depiction of a global supply chain model is shown in Ficure 4-1.
P g PP g

106 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Consumer

mr!l‘lm.lﬂ .

GO urmer ﬁ_
[/

J Production Site
E == o
% o W.ar-emus.e e [4

\ e
ﬁ%) I Waretiouse

Production .

‘g':r / rlg

Warehouse —_—

Carrier
= Execulion Process

Figure 4-1. A Global Supply Chain Model

Distribution Channels

Getting finished goods to the purchaser is called distribution or fulfillment. And as
with supply chains, distribution channels are often described in highly physical terms
that detail the locations of warehouses or retail stores and the specific modes of trans-

port between them.

The simplest distribution pattern is direct distribution, in which a company sells a
product directly to the companies or consumers who buy it. However, most compa-
nies use an indirect strategy, selling their products through distributors, resellers, and
retail outlets to increase their ability to reach customers. These distribution partners
are called intermediaries or channels for the manufacturer; they may be organized
according to sales territories, geographical regions, or customer segments. The
Internet enabled many firms to shift from indirect to direct distribution, and this dis-
intermediation—Tliterally, cutting out the middleman—allowed them to increase their
margins and learn more about their customers. A company can be tempted to sell the
same products directly and through channels, but this can lead to channel conflict

and alienate distributors.

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 107

Like supply chains, distribution channels are a generalized pattern. Applying the
pattern involves choosing the roles and locations of intermediaries and balancing the
henefits of a larger network against the costs and delays of exchanging information
benefits of a larg twork against the costs and delays of exchanging informat

within it.

Marketplaces, Exchanges, and Auctions

There are few business patterns that suggest more concrete and stereotyped depic-
tions than marketplaces, exchanges, and auctions. We can all imagine and hear the
crowded old town marketplace, the controlled frenzy of the stock exchange trading

floor, and the insistent staccato of the auctioneer urging the bidders on.

These patterns have much in common, organizing their participants in characteris-
tic ways to enable familiar business models. All embody the core ideas that bringing
together a critical mass of buyers and sellers makes it easier to match them up and
creates shared efficiencies and benefits that won’t arise in interactions between a sin-
gle buyer and a single seller. By eliminating the need for participants to be in the
same physical location, the Internet allows more of them to take part, yielding much
better matching between buyers and sellers. Consider that at any given time millions

of items are offered on eBay in a set of categories nearly as broad as the web itsell.

The differences between marketplaces, exchanges, and auctions are subtle. While
almost any type of products might be offered for sale in a marketplace. an exchange
is a type of marketplace for intangible goods like financial securities where price is
the essential attribute. An auction is a method for establishing prices when market

mechanisms don’t work well, usually when goods are scarce for one reason or another.

Supply chains, distribution channels, markets and auctions
are general business patterns that can be applied
in novel contexts

Like supply chains and distribution channels, markets and auctions are very gener-
al patterns that can be applied in novel contexts. For example, an Internet market-

place called getloaded.com matches freight loads and trucks with excess capacity,

108 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

attacking the costly problem of deadheading when a truck returns without a back-

load on its return trip from delivering goods.

CONCEPTUAL VIEWS OF BUSINESS ORGANIZATION

Physical views of business organizations are useful depictions of how they operate.
In contrast, a conceptual perspective on how a business is organized explains why it
exists and the kinds of activities it engages in to stay in business. In its most abstract,

conceptual form, the “why” of a business is often simply called its business model.

A business model is concerned with the nature and pattern
of exchanges of one form of value for another

At the heart of every enterprise are trades or deals of some kind, exchanges of one
form of value for another. A business model is concerned with the nature and pat-
tern of these deals between businesses and their partners that ultimately yield the
products or services it offers to its customers. A company’s business model also
addresses the roles played by other firms that work with and around it, such as sup-
pliers, customers, stakeholders, intermediaries such as brokers, distributors, and
agencies, and service providers of one sort or another. Viewed from the perspective
of the enterprise at their intersection or common focus, this collection of parties and

their organization is called the business ecosystem.”

Acronymology in Patterns of Business Organization

A very coarse level of describing patterns of business organization in a conceptu-
al way emerged in the mid 1990s as a set of three-character acronyms beginning
with B2B and B2C and still growing.

B2B, for business to business, was the first of these patterns and it is mentioned in
millions of websites and domain names. It was used to describe business relation-
ships in pre-Internet days, often in discussions of EDI document exchanges. For
example, an industrial chemicals firm whose products are offered only to other
businesses would be following the B2B pattern.

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 109

B2C, for business to consumer, emerged as a category label for Internet retail sites
to contrast them with B2B ones. The number of B2C sites exploded with the popu-
larity of the Web, and it is certainly a more visible category than B2B.
Nevertheless, even if the breaking of the Internet bubble hadn't caused a great
many B2C sites to disappear, B2C as a sector would still be dwarfed in econom-
ic scale by B2B, since all B2C transactions depend on numerous B2B ones (recall
our discussion in Chapter 1 of the B2B Drop Shipment pattern that underlies the
Internet bookstore).

More recent variants of the B2B and B2C categories distinguish those that involve
governments. B2G, for business to government, seems slightly more common than
G2B, for government to business, but both have been showing steady growth as
governments at both municipal and national levels introduce Web initiatives of var-
ious kinds. G2C, for government to citizen, is the dominant variant. None of these
acronyms appears fo stand a chance against the term e-government, even though
a list of the “24 priority e-government initiatives” in the United States sorts them
into citizen and business categories.’

Many colleges and universities offer ellearning courses on the Internet directly to
consumers but haven't adopted the B2C category, perhaps because they aren't for-
profit businesses. Nor have they invented another acronym, although E2C, or edu-
cation to consumer might fit. However, the for profit, distance- or lifelong-learning
firms seem eager to embrace both the B2C and B2B labels.’

C2C, for consumer to consumer, had a brief appearance on the acronym stage to
describe the organization of business relationships facilitated by auction sites like
eBay, but this term didn’t seem to reach critical mass. In any case, Internetfacilitat-
ed business relationships between individuals are now almost universally
described as P2P, for peer to peer. This acronym is likely to have a long life
because of its notoriety in file-sharing applications.

110 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

4.1.2.1
Supply Chains

Supply chains, especially those for heavy manufacturing industries like aerospace
and automotive, are highly visible and physical. But when we want to design and
analyze supply chains, it is less important to think in terms of buildings, vehicles,

and pallets of goods and instead think from a more conceptual perspective.

Document Engineering treats supply chains
as information flows

A conceptual view of a supply chain must deal with complex dependencies between
the allocation of materials, production, and distribution responsibilities, the number
and location of suppliers and distributors, the amount and location of material and
product inventories, and the logistics of getting everything to its desired location at
the right time.? Most of this multidimensional design problem must be solved before

applying Document Engineering.

Document Engineering thinks of supply chains in terms of the information flows that
accompany the movement of materials and goods; creating an abstract view of the
physical events that trigger document exchanges and the reciprocal events resulting

from those exchanges.

Marketplaces, Exchanges, and Auctions

A conceptual view of marketplaces, exchanges, and auctions defines them in terms
of their participants and the services that they provide to each other. There needs to
be a least one special participant who performs the role of the market operator. The
operator, sometimes called the host or market maker, must have the credibility or
market power to attract the buyers and sellers and establish the governing rules.
These rules define the terms and conditions for participation, the specifications for
the information that participants will exchange, and the processes or services in

which the exchanges will take place. The operator must provide a trusted environ-

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 111

ment, both in terms of technology considerations like security and reliability and in

the business sense of trust about privacy and the honoring of commercial obligations.

A minimal marketplace or auction offers the “commodity” services related to buying
and selling, but what attracts and keeps participants are other value-added services
that create richer relationships between buyers and sellers and induce buyers to
return. The services that are most useful depend on the industry, geography, and
other characteristics of the context in which the marketplace or auction pattern is

being adoptcd.o

By eliminating any need for physical presence the Internet
has increased the feasibility and conceptual
variety of business models

Auctions have been around since ancient times, but by eliminating any need for
physical presence the Internet has increased the feasibility and conceptual variety of
auctions. The many different types or patterns of auctions are distinguished by the
extent of information exchange among the participants, and by the rules that govern

the timing of offers, the selection of the winning offer, and the price the buyer pays.'

CONCEPTUAL VIEWS OF BUSINESS RELATIONSHIPS

In the previous section we examined the organization of firms in supply chains, mar-
ketplaces, and other business ecosystems using a conceptual perspective that empha-
sized their functional roles. A complementary perspective looks at the nature of the
relationships among the firms, particularly the relative power and capabilities of the

parties.

Establishing a business relationship incurs the costs of finding a potential partner,
qualifying it and its products or services, and determining whether its business
processes and documents are compatible with ours. But compatibility is not an all-
or-nothing issue. We need to assess whether the costs of closing the interoperability
gap are worth it, and then we must decide how this effort is to be allocated between

the parties in the relationship.

112 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

System architectures and technologies influence the cost
of setting up business relationships

The system architectures and information systems employed by each party strongly
influence the cost of setting up a business relationship. Service oriented architectures
and web services promise ease and flexibility in exchanging documents to carry out
business processes with new partners. But parties with legacy systems and integra-
tion technologies must abandon or adapt them to take advantage of these more
loosely coupled approaches. Reluctance to incur these transitional costs has helped
mainframe computers and EDI maintain an important role in many businesses even

though their recurring costs can exceed those of newer technologies.

Some document exchanges enact public processes between two organizations, while
others perform private processes between different groups within one organization.
We often have to manage both kinds of relationships, but they involve different con-

siderations and require different approaches.

Vertically integrated organizations may require that parts or services be procured
from internal suppliers even if their quality or pricing is not competitive with the
open market. These non economic business relationships are also common in govern-
ment organizations, universities, and other enterprises where commercial market
forces are often deliberately constrained. Such organizations might employ cost
recovery or charge back models for internal transactions, which create disincentives
for automation and improved productivity. And just as no one is surprised when new
government facilities are located in the districts of powerful legislators, political con-
siderations often come into play when business service roles are allocated within an

enterprise.

The maintenance or recurring costs of managing a
business relationship are different from the startup costs

The maintenance or recurring costs of managing a business relationship are differ-
ent from the startup costs. Recurring transaction costs are minimized to the degree
that the parties established full business and systems interoperability when they cre-
ated their relationship. Nevertheless, each party may face continual pressure to
change its processes or documents to suit other relationships or technology opportu-

nities, and some effort is required to maintain existing relationships when this happens.

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 113

4.1.3.1

Asymmetric Relationships

A topical joke about business relationships that might not seem so funny to those

involved goes like this:

What's the second worst business decision that a supplier can make? Making a deal
with Wal-Mart.

What'’s the worst business decision it can make? Not making one.

This scenario is an extreme case because Wal-Mart is currently one of the world’s
largest companies and the dominant retailer of groceries and general consumer
goods.11 Wal-Mart is unparalleled in its ability to dictate the terms of supplier rela-
tionships. With a relentless focus on bringing the lowest possible prices to its cus-
tomers, Wal-Mart holds down the prices it pays its suppliers. So while having a dom-
inant customer such as Wal-Mart may expand a supplier’s sales, it can simultaneous-
ly shrink profits unless the supplier can run every aspect of its businesses more effi-
ciently. Such a relationship may distort the supplier’s product mix, undermine its

brands, and drive it to relocate manufacturing jobs to countries with lower wages.

In other business environments, often where there is a monopoly or an oligopoly, sup-
pliers rather than buyers might control these asymmetric relationships. We can view
government regulatory agencies, such as customs, building, or taxation authorities as
asymmetric suppliers of clearances, permits, and assessments. In an academic con-
text, we could consider the power of tenured university professors to dictate the spec-
ifications and terms under which their products are offered to students as an asym-

metric relationship with the university that employs them.

An increasingly common business process that embodies asymmetric relationships
between buyers and suppliers is the reverse auction, in which sellers bid against each
other to meet a single buyer’s specifications. Reverse auctions have been touted as a
silver bullet of e-Business that can cut procurement costs by as much as 20 percent,
particularly in high-value component assembly industries such as auto manufactur-
ing. However, critics of reverse auctions say that they are toxic for buyer-supplier

relationships because they inhibit future collaboration between them.!2

114 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Asymmetric relationships need not result in
costly concessions from one party

But asymmetric relationships need not result in one side extracting profit-killing or
costly concessions from the other. The dominant party in an asymmetric relationship
can always choose not to exert their dominance, either because of its kinder and gen-
tler corporate or social values or because it recognizes that long-term benefits can

accrue from collaboration even in conditions that are supposedly hostile to it.1

Modes of Exchange

The mode of exchange in a business relationship can be defined as the set of stan-
dard procedures, common practices, communication patterns, and norms governing
routine behavior in the relationship between a supplier and its customer. This is a
much broader definition of what’s exchanged than simply the exchange of money
that many economists focus on. The mode of exchange also governs the extent of
exchange of information and know-how, the level of trust, and norms of reciprocity

or fairness in the 1“(3,la.rionship.H

Exit and voice modes of exchange are opposite dimensions of commitment to suppli-
ers and the extent of coordination or collaboration with them. In the exit mode, there
is little commitment and often little coordination, and problems with a supplier gen-

erally cause the buyer to replace the supplier.

By contrast, with a voice mode of exchange, there is both substantial commitment
and communication between the buyer and supplier. So they can resolve problems

through collaboration, which creates opportunities to improve processes and designs.

The same information exchange technologies that make it easier to select or change
suppliers when relationships are managed in exit mode can enable close collabora-
tion with them when they are managed in voice mo le.1?

But neither the products nor the technology used completely determine buyer-sup-

plier relationships because different modes of exchange can exist in the same indus-

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 115

try. The clearest example is the contrasting historical patterns and business philoso-

phies of the Japanese and U.S. automobile industry.'®

Japanese buyers such as Toyota has been profitable for decades while practicing a
voice mode strategy of providing capital and technical assistance to suppliers. Over
time this enables suppliers to take on more engineering responsibilities, including
“black box” development, in which the supplier builds components with only limit-

e . . -
ed specifications from the buyer.l'

Black box development demonstrates that closer collaboration doesn’t always mean
that more information is exchanged between business partners. Long-term partners
don’t need to be as explicit in communication because they share tacit knowledge
and context. This enables the parties to rely on increased information density rather

than increased volume or speed as a way of improving productivity.

Information density also results from the use of patterns or reference models. When
Intel tells its suppliers that it expects them to conduct business with it using
RosettaNet PIPs 3A4, 3A7, 3B2, and 3C6, the seemingly unintelligible statement

conveys hundreds of pages of technical specifications that define the context of use. '8

Closer collaboration doesn't always mean more
information exchange

By contrast, U.S. automakers have historically taken exit mode positions with sup-
pliers (including employees), and adverse effects have accumulated over time.
Adversarial and stalemated relationships have caused strong labor unions to prevent
employers from replacing unproductive workers and have discouraged workers from
suggesting or adopting technologies or processes that would increase their own pro-
ductivity and the financial viability of their employer. Sometimes employees even
cause work slowdowns by carefully obeying all the explicit rules and instructions

governing their jobs while not doing things that they know would increase productivity.

The commitment and coordination dimensions that underlie contrasting modes of
exchange also illuminate other types of problematic relationships. “High commit-
ment with low coordination” aptly describes parties within a vertically integrated
enterprise or in sectors not subject to economic market forces who are compelled to

work with each other even if they might prefer other partners.

116 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Trading Communities

The stability of business relationships ultimately reflects the extent to which the par-
ties trust each other and share some long-term interests. Establishing and maintain-
ing this trust is often the motivation for trading communities. A trading community
encompasses the set of firms that fill the roles in business patterns like supply chains,
distribution networks, and marketplaces. This collective identity helps them focus on

achieving mutual business benefits.

Establishing and maintaining trust is the motivation
for trading communities

A central activity of trading communities is reducing both the initial and recurring
costs of conducting business relationships. This often requires that all companies use
the same (or interoperable) technology and information models for integration and
document exchange. It also involves establishing the terms and conditions under
which business gets carried out and the mechanisms, legal and otherwise, that
enforce them. The definition and management of the technology and business prac-

tices of the community are often called the community governance.

The typical goals of a trading community are clearly expressed in the August 2000
press release announcing the creation of the Global Trading Web Association, a trad-
ing community of B2B marketplaces that at the time were all using the XML-based

marketplace platform developed by Commerce One. "

Defining the terms and conditions in a trading community is often a highly con-
tentious and political activity that involves negotiation, compromise, and sensitivity
to existing and potential asymmetries in relationships. Not surprisingly, many suc-
cessful trading communities revolve around a dominant hub enterprise that has the

power to influence or dictate technology, terms, and standards.

Many successful trading communities revolve around
a dominant hub enterprise

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 117

Large telecommunications, software, or professional services firms can create a com-
munity around their customer bases. For example, IBM targets the banking, finan-
cial services, industrial and manufacturing, and insurance industries through its Web
Services Industry Councils, which are “chartered to accelerate time to business value
of web services implementations by addressing industry-specific problems and grow
the adoption of web services solutions in the respective industries.”*’

On the other hand, instead of using technology requirements or trade relationships
to limit membership, sometimes a community will do the opposite, broadening its
membership to increase transaction volumes and industry influence by eliminating
the requirement that all members use the same technology. In late 2002 the Global
Trading Web Association recast itself as the Open Network for Commerce Exchange

(ONCE) to emphasize that its members need not use the same marketplace platform.”!

4.1.3

¥ Facilitators, Industry Associations,
and Communities of Practice

A trading community or group of complementary business service providers some-
times evolves into a facilitator. The most common type of facilitator is an industry
group, trade association, or chamber of commerce created to set industry standards
or policies and otherwise promote the interests of its members. These organizations
operate outside of traditional business relationships, and their membership typically
includes manufacturers, distributors, customers, service providers, brokers, and
other entities that are part of an industry ecosystem or geographical business region.
They provide a broad and commercially neutral perspective in which firms can coop-
erate to set standards or policies, often relying on explicit exemptions from the
antitrust regulations that would otherwise treat cooperation between businesses as
anticompetitive activity. In some countries, these sorts of competitive conflicts are

alleviated because the primary trade facilitation organization is a government agency.

Industry groups also initiate projects to develop or improve new business services and
the documents they require. For example in the UK, SITPRO is a trade facilitation
body dedicated to simplifying the international trading process such as by creating
the Aligned Export Documents.”” In Australia the Tradegate organization was found-

ed to bring together the different regulatory and commercial organizations involved

118 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

in the trade and transport supply chain to develop a common strategy for the docu-
ment exchanges required by port operators, shippers, forwarders, and other service
providers on the waterfront.?? Similar initiatives exist in nearly every other interna-

tional trading community and in many large business ecosystems.2*l

Industry groups often initiate projects to develop or improve
new business services and the documents they require

In some cases facilitators have taken on the role of a standards body or are active
participants in standards setting activities. For example, the EAN/UCC* has devel-
oped standards for bar codes and the assignment of company prefixes in the retail
goods supply chain. The Electronics Industry Data Exchange (EIDX) organization
established the RosettaNet Consortium.? UN/CEFACT?" has long directed work to
develop EDI standards. And, the Supply-Chain Council,?®
Supply-Chain Operations Reference model (SCOR), is also a facilitator organization.

which developed the

Community of practice is a recent label that describes a facilitator organization com-
posed of individual practitioners who “share a concern or a passion for something
they do and who interact regularly to learn how to do it better.”*’ The term is broad-
er than the more familiar user group and emphasizes activities for systematizing,
storing, and sharing knowledge and best practices. There are scores of user groups
and communities of practice focused on XML, vocabulary development and other

dimensions of document inl,croperabilit,y.30

A variation on the ideas of the industry group, trade association or community of
practice is the business alliance, typically a group of companies with the common
goal of challenging or defending against the dominant firm or firms in their indus-
try. These business alliances sometimes adopt common technology to eliminate one
source of competition among the community members and focus on the rivalry with
the dominant outsiders. An example is the Liberty Alliance, whose charter expresses
the goal of “developing an open standard for federated network identity that sup-
ports all current and emerging network devices,” but whose implicit purpose is to
provide an alternative to Microsoft’s Passport mechanism for managing identity
information.?! So while an alliance may profess the goal of creating a level playing
field for its members, it often does so by creating specifications or policies that dis-

criminate against companies who didn’t join it or who were not invited to do so.

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 119

4.2
VIEWS OF BUSINESS PROCESSES

We've talked about “business process” for three chapters without a precise definition

because it is such a common phrase. It is obvious that functional business areas like
engineering, manufacturing, and sales carry out systematic activities that are some-
how interconnected, and we need a notion of business process to describe how this
works. So we’ll define business process as a chain of related activities or events that
take specified inputs, add value to the inputs, and yield a specific service or product
that can be the input to another business process. The chain of business processes is
maintained by the flow of information between them as the output of one process

becomes the input to the next.

Business process models are the bridge between
organizational models and business documents

Business process models are central to Document Engineering because they are the
bridge between higher-level strategic expressions of what businesses do represented
in organizational models and the lower-level operational concerns reflected in docu-

ment and information models.

Physical views of business processes describe the way in which specific business

PHYSICAL VIEWS OF BUSINESS PROCESSES

activities are implemented by a firm. Most firms have a vast variety of policies and
procedures governing how they hire, pay, train, evaluate, and terminate employees,
how they approve, budget, staff, review, and learn from projects, how they conceive,
design, manufacture, document, test, market, and sell products, how they procure
needed goods and services and operate and maintain equipment, how they deal with
business partners and customers, how they account for income and expenses and
meet government reporting requirements—the list goes on and on.*? All of these are

physical views of business process models.

120 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

Some of these policies and procedures exist as documents on employee’s desks and
office shelves or on the company intranet. Others are embodied as business rules in
software applications that range from electronic mail and spreadsheets to enterprise

content management and ERP systems.

As we discussed in section 3.4.2, “Why Businesses Follow Patterns,” many business
processes are dictated by laws, regulations, and standards. These may sometimes
function as conceptual models that govern or guide many aspects of individual and
corporate behavior and business processes. But sometimes they are highly prescrip-
tive, specifying how things can and cannot be done, possibly even dictating the tech-
nology and manner of solution implementation. Prescriptive models of this sort are
implcmcntcd using mundane document tcmplatcs or software applications that create

customized employee handbooks, procedure guides, and contracts.

CONCEPTUAL VIEWS OF BUSINESS PROCESSES

A company’s business model shows the logical relationship between the functional
areas in the enterprise. However, the granularity of functional areas often provides
too coarse a pcrspcctivc for analyzing what an cntcrprisc docs, what it needs to do
better, and what it can do without. It is helpful to further decompose functional busi-

ness areas into subareas and more specific business processes.

Business Reference Models

Because they are more stable descriptions of what an enterprise does, the highest
level functional areas are categories for organizing models at lower levels, and the
resulting hierarchy of business processes is sometimes called a business reference
model. An important business reference model is the recently developed Federal
Enterprise Architecture of the U.S. g_r,fovcrnmcnt733 which could be considered a pat-

tern for other governments around the world.

DESCRIBING WHAT BUSINESSES DO AND HOW THEY DO IT I 121

A reference model consolidates the best practices
@ of many companies
Business reference models exist in many industries and are most often created by
industry associations or by consulting firms that have extensive industry experience.
Almost by definition a single firm can’t create a business reference model because a
good reference model consolidates and abstracts from benchmarking or best prac-

tices analyses of many companies in the industry.

4.2.2.2
Supply Chain Reference Model

Many of the patterns in supply chain models can be seen in the Supply Chain
Operations Reference Model (SCOR), a reference model developed by an industry
group called the Supply Chain Council.** SCOR provides standard patterns for
describing supply chains in terms of five basic processes: plan, source, make, deliv-

er, and return.

These patterns are organized as conceptual models whose two lower levels of detail
refine the basic five processes to describe supply chain models for different industries
and partner relationships. Figure 4-2 shows the top level view of the SCOR supply
chain pattern.

Supply Chain

Plﬂn) Prad uces

_t =i hiedgsss

'-Makef i
Delwer '.r""'"‘f

= g '-u-_lur:-lu (
Return /

Eource -

Consume /

Warshouss
% _.—-—'_'_-.

Figure 4-2.The SCOR Supply Chain Pattern

A \\

122 I DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

4.2.2.3
RosettaNet

The RosettaNet Consortium has developed standard specifications for processes in
the global supply chain for the electronic components and IT industries.
Approximately 100 detailed process models called partner interface processes
(PIPs)* are organized hierarchically by clusters and segments. The first PIPs that
most firms implement are those in the Order Management cluster, which contains
segments for Quote and Order Entry, Transportation and Distribution, Returns and
Finance, and Product Configuration. The fourteen 14 PIPs in Quote and Order
Entry, like PIP 3A4 for Request Purchase Order, define both the document imple-
mentation models (as XML schemas) and the collaboration of document exchanges

between trading p«‘:ll“tll(‘/I'S .

The implementation focus of PIPs means that they provide physical views of busi-
ness processes that we might have discussed in section 4.2.1. But in other respects
the RosettaNet specifications represent a more conceptual view of business process-
es. In particular, the hierarchical arrangement of PIPs into clusters and segments
provides a useful vocabulary for analyzing supply chains at different levels of
abstraction. In addition, the PIPs were developed using a common metamodel shared
by all the PIPs. This facilitates its generalization to other industries. We will demon-

strate the reuse of RosettaNet PIPs as business process patterns in Chapter 10.
The Secret of Ro