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Preface

This volume is the second of the three volume publication containing
the proceedings of the 1989 International Symposium on the Mathemat-
ical Theory of Networks and Systems (MTNS-89), which was held in
Amsterdam, The Netherlands, June 13-23, 1989

The International Symposia MTNS focus attention on problems from
system and control theory, circuit theory and signal processing, which,
in general, require application of sophisticated mathematical tools, such
as from function and operator theory, linear algebra and matrix theory,
differential and algebraic geometry. The interaction between advanced
mathematical methods and practical engineering problems of circuits,
systems and control, which is typical for MTNS, turns out to be most
effective and is, as these proceedings show, a continuing source of
exciting advances.

The second volume contains invited papers and a large selection of
other symposium presentations in the vast area of robust and nonlinear
control. Modern developments in robust control and H-infinity theory,
for finite as well as for infinite dimensional systems, are presented. A
large part of the volume is devoted to nonlinear control. Special atten-
tion is paid to problems in robotics. Also the general theory of nonlinear
and infinite dimensional systems is discussed. A couple of papers deal
with problems of stochastic control and filterina.



vi Preface

The tities of the two other volumes are: Realization and Modelling in
System Theory (volume 1) and Signal Processing, Scattering and
Operator Theory, and Numerical Methods (volume 3).

The Editors are most grateful to the about 300 reviewers for their help
in the refereeing process. The Editors thank Ms. G. Bijleveld and Ms.
L.M. Schultze for their protessional secretarial assistance, and Mr. K.
van 't Hoff for his programming support.

M.A. Kaashoek
J.H. van Schuppen Amsterdam
A.C.M. Ran February 1990
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NONLINEAR H*® CONTROL THEORY:
A LITERATURE SURVEY

JosEPH A. BALL AND J. WiLLIAM HELTON

Abstract

The central problem of H*-control theory roughly is to optimize (by the choice of
compensator in a standard feedback configuration) some worst case (i.e. infinity norm)
measure of performance while maintaining stability. For the linear, time-invariant, finite-
dimensional case, rather complete state space solutions are now available, and work has
begun on understanding less restrictive settings. A recent new development has been the
establishment of a connection with differential games and the perception of the H* -problem
as formally the same as the earlier well established linear quadratic regulator problem,
but with an indefinite performance objective. In this article we review the current state
of the art for nonlinear systems. The main focus is on the approach through a global
theory of nonlinear J-inner-outer factorization and nonlinear fractional transformations
being developed by the authors. It turns out that the critical points arising naturally in
this theory can also be interpreted as optimal strategies in a game-theoretic interpretation
of the control problem.

1. INTRODUCTION.

Many control problems fit into the paradigm depicted in Figure 1.1.
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Figure 1.1

Here P stands for the plant which one is stuck with and C is the compensator to be
designed. Usually the signals uy, u2, ¥1, ¥2, €1, €2 are taken to be vector valued functions
of compatible sizes of the real variable ¢ representing time, with components in the extended

L%-space L%[0,00) of functions which are square integrable on any finite subinterval of the



real line. Here C and P represent input-output maps with domain and range spaces equal
to vector-valued L2[0,00) of appropriate sizes. Key properties for a general input-output
(I0) map H : u — y are:

1) causality: P,H = P,HP, for all 7 > 0.

2) time-invariance: [Hu] (- — 7) = [Hu(- — 7)] for all 7 > 0.

3) stability: || P H(u)||? < 6(H)||Prul|? for some §(H) < oo for all 7 > 0.

Here P; : L2[0,00) — L2[0,00) is defined by

= (30 $515

If H is causal, linear, time-invariant and in addition finite-dimensional (LTIFD),
then after Laplace transformation the input-output map H can be viewed as multiplication
by a proper rational matrix function fl(s) (called the transfer function) on a space of
functions analytic on some right half plane in the complex plane. In this case stability of
H corresponds to H having all poles in the left half plane.

The system ¥ in Figure 1.1 is said to be well-posed if it is possible to solve the system
of equations on vector-valued L2[0,00) depicted by Figure 1.1

u = €1 + Pe;

ug = —Cej + ez

for ey, ey in terms of u;y, uy. The resulting input-output map we then denote by H [e ] [ul] :
1

u]-1a]

In the LTIFD case well-posedness means that the transfer function (I + P&Y-1 is well-

€2 Ug

defined. Internal stability of the system ¥ amounts to the stability of the IO map H [61 ] [ul] .

€2 ] [U2
In the LTIFD case, internal stability is equivalent to the four transfer functions (I +

PCY1, —(I + PC)'P, (I + CP)"'C and (I + CP)™! being proper with all poles in
the open left half plane.
The standard problem in H*-control theory is to choose a compensator C' which

optimizes some measure of performance subject to the side constraint that the associated



closed loop system ¥ = E(P,C) be internally stable. In the linear H*-theory the measure
of performance P(X) is taken to be the induced operator norm of one of the IO maps H
associated with the system X :

Pr (B) = sup{||H(w)]|* : v € L?[0,00), [|ull2 < 1}

For the LTIFD case, Py(X) is simply the H*-norm of the associated transfer function
H(s).

Various examples for the choice of H are:

Weighted sensitivity: H = W o H,, ,, (W = a weighting function)

Tracking: H = Hy, v,

Robust stability with respect to additive plant perturbations: H = H,, .,
In the definition of all these IO maps, the extraneous input uy is taken to be zero. All of

these can be manipulated so as to fit the general paradigm depicted in Figure 1.2

Figure 1.2

In this configuration, well-posedness means that the IO map H [
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2 [w] is stable, and the

Y
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standard H*-problem is to choose the compensator C so as to minimize the induced oper-

in Figure 1.3 is well-defined, internal stability means that H [
u

ator norm of the IO map H,,, subject to the constraint of internal stability. All these ideas



in greater detail and with more engineering motivation can be found in [D], [FD], [Ft].
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2. THE BEGINNINGS OF A NONLINEAR THEORY.

By a nonlinear H* control theory, we mean a theory for choosing a (possibly) non-
linear compensator C which optimizes some worst case measure of performance P(X(P,C))
for the system ¥ = Z(P,C) as in Figure 1.1 or, more generally, Figure 1.2, subject to the
side condition of internal stability, where now the plant P may be nonlinear. Before such an
ambitious theory was tackled, there appeared in the literature various preliminary probings.
We mention three such thrusts.

a. NONLINEAR COPRIME FACTORIZATION

A well-known and well established approach for the linear H°°-problem is to use as a
first step the Youla-Bongiorno-Lu parameterization of all stabilizing compensators. This is
a powerful tool which has two advantages: (1) the free parameter sweeps through the linear
space of all stable rational matrix functions, and (2) the performance transfer function
becomes affine rather than linear fractional in the free parameter. The main ingredient
for the Youla parameterization is a coprime factorization of the plant P (see [Fr]). There
has been a lot of work in recent years on extending this first step to nonlinear plants, i.e.
on understanding coprime factorization for nonlinear plants and on using such a coprime

factorization to parameterize all stabilizing (possibly nonlinear as well as time-varying)



compensators for the nonlinear plant (see e.g. [DK, H, Kr, S, V] and other articles in these
Proceedings). Of course this first step does not incorporate any measure of performance
and hence is not yet from our point of view a nonlinear version of H* control theory.

b. NONLINEAR SOLUTIONS OF LINEAR PROBLEMS. An intermediate step in
the understanding of performance for nonlinear systems is to understand the role of nonlin-
ear and/or time varying solutions for linear time-invariant H* problems. This problem was
analyzed by Khargonekar and his associates in a series of papers (see e.g. [KP]). A basic
principle coming out of these studies was that for linear systems with no plant uncertainty
one does not improve performance by choosing a nonlinear compensator, but in the presence
of plant uncertainly it indeed may be possible to improve performance by using a nonlinear
controller. In later work Ball-Helton-Sung [BHS] extracted some of the mathematical ideas
of these studies so as to apply to interpolation problems independent of a control theory
context, and made a few extensions.

c. MORE GENERAL PERFORMANCE MEASURES.

Still another direction is to consider other more realistic performance measure more
complicated than the operator or infinity norms usually considered in H*-control theory.
This leads to interesting new problems and connections with other kinds of mathematics
even for SISO linear systems, and is an ongoing project of the second author. For an
overview of the current status of this area, see the survey article of the second author in

these Proceedings.

3. PERFORMANCE OPTIMIZATION FOR NONLINEAR SYSTEMS: A GLOBAL
APPROACH.

In this section we would like to present a guide to the reader of the approach to
nonlinear H*-control theory being pursued by us. Some work has already appeared in
published or preprint form [BH2-BHS8] and more is in preparation [BH9].

Consider the system X as in Figure 1.2 where the compensator C' and the plant P

are assumed to be causal and time-invariant but may be nonlinear. Well-posedness and
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internal stability for the system ¥ are defined as in Section 1; for the nonlinear setting we
have I0 maps but never mention transfer functions; we work entirely in the time domain.
For the measure of performance of the system ¥ we use the following nonlinear analogue of

the induced operator norm of the I0 map H,,, :
P(2)? = sup{[| Hzw(w)lI3/|lwll3 : w € L?[0,00)} 3.1
Note that P(X) < v if and only if
P(2) = sup{||2ll3 - V*[lwll} : w € L*[0,00), z = Hzn(w)} <0 3.2)

This formulation makes contact with game theory ideas.

Our approach to the nonlinear problem associated with the measure of performance
(3.1) follows the approach for the linear case which uses J-inner-outer factorization. For
purposes of the discussion here, we break this approach up into three steps, namely:

STEP 1. Reduction of the control problem to a J-inner-outer factorization problem.
This involves justification of the use of the J-inner factor to parameterize all achievable
performance transfer functions and of the outer factor to parameterize all stabilizing com-
pensators for which the desired level v of performance is achieved.

STEP 2. Computation of the J-inner and outer factors.

We now discuss each step in more detail.

STEP 1. In the linear case, a standard procedure (see [Fr]) reduces the control
problem to the model matching problem. For problems of the first kind (also known as
the 1-block case), the model matching problem mathematically corresponds to classical
Nevanlinna-Pick interpolation. The approach of [BH1] to interpolation then reduces the
problem to one of J-inner-outer factorization, assuming that the classical Pick matrix pos-
itive definiteness test for existence of solutions is meant. For problems of the second kind
(also known as the 2-block case), the same approach applies, but the J-inner-outer factor-
ization problem is for a rectangular (rather than square) matrix function, and the associated

J-inner factor is rectangular. For problems of the third kind (known as the 4-block case),



the approach generalizes but is more complicated (see [BC] and [GGLD]). It has recently
been observed by [HK], at least for the 2-block case, that J-inner-outer factorization can
be applied at a much earlier stage; thereby they prove that one can bypass the Youla pa-
rameterization and obtain a parameterization of the performing, stabilizing compensators
more directly.

In the nonlinear case a nonlinear analogue of the Youla parameterization exists [AD]
which at least in special situations can be used to reduce the original control problem to
a nonlinear model matching problem. For the 2-block case, the existence of a nonlinear
J-inner-outer factorization leads to a parameterization of many solutions of the control
problem (see [BH2], [BH4]); it is unknown at present if this parameterization gives all
solutions. Understanding the action of the nonlinear fractional transformation involved
requires a systematic analysis of the interconnection of nonlinear passive circuits and the
use of degree theory to prove well-posedness. This is sketched in [BH3] with complete details
in [BHT].

We expect that the control problem can be solved directly at an earlier stage via J-
inner-outer factorization, just as in [HK] for the linear case. Understanding the full 4-block
case for the nonlinear problem remains an open problem for future research.

STEP 2. For the linear case, very elegant state space solutions for J-inner and outer
factors of a given rational matrix function and solutions of related interpolation and H*-
control problems have now appeared, e.g. [G, BR, BGR, Ki], even in the setting of the
4-block problem [BC, GD, GGLD)]. For the nonlinear case, we follow the approach of [BR,
BGR)]. For mathematical convenience we consider the problem in discrete time; this amounts
to assuming that the time variable ¢ assumes values in the nonnegative integers Z* rather
than the nonnegative real line IR*. Thus L2[0,00) becomes the 2+ of sequences indexed by
Z% and L?[0,00) becomes the space £2F of such sequences which are square-summable. We
assume that we have an IO map F= on £2* given by state space equations for the system

S 2pp1 = F(zn, tn), 20=0



Yn = G(Zn, un)
and we wish to compute a state space representation for a system

O :zpq1 = f(@n, Un), 20=0

Yn = g(@n, n)
which generates a J-inner factor I0 map F©. We assume here that ¥ is stable (in particular,
F® maps £2% into itself); a thorough understanding of the unstable case awaits further
research. By a J-inner-outer factorization we mean a factorization of I0 maps such that
FE = FOo F@

(i) F® is J-inner
(ii) F9 is outer i.e. both F? and [F?]|~! are stable.

Here J inner corresponds to the physical notion of energy conserving and stable. The energy
function pys is defined on @ € £2% by

pi(8) =< JU, T >p+
where J is a constant signature matrix on vector valued £27. We say that F® is J-lossless
provided that

ps(FO(@)) = ps(8)
for % € £2% and that F® is J-passive if

pI(FO(id)) € ps(Pr(i))
for all @ = £2* and each projection P, on to £%[0,7]. Finally F© is J-inner if it is both
J-lossless and J-passive. The construction of the system © (from which it is easy to find Q
via @ = ©7! % X) breaks down into several steps.

(1) Identification of the left null dynamics of @ with the left null
dynamics of L. In the scalar linear case, this means that the transfer functions (:)(z) and
%(z) should have the same zeros in the unit disk.

(2)Construction of the right pole dynamics of ©. In the scalar linear case, this
amounts to observing that the poles of @(z) can be determined via Schwarz reflection

from the zeros of ©(z) since O(z) is to have modulus 1 values on the unit circle. A similar



idea can be made precise for the linear MIMO case ([BR], [BGR]). In the nonlinear case,
this step involves computation for each state z of the critical point u for the restriction of
the quadratic form p; to the manifold of output strings {F=(#) : @ € €2} associated with
stable inputs Z € £2% and initial state z.

(3) Construction of the full state space representation (f,g). In the linear case, this
amounts to a single J-Cholesky factorization. In the nonlinear case, one must perform a
nonlinear Morse theoretic congruence with the state variable as parameter in a smooth way.

(4)Check for passivity of ©. In the linear case this amounts to checking that the
solution to a certain Stein equation is positive definite. In the nonlinear case, the analogous
object, an energy function on the state space which satisfies a nonlinear Stein equation,
must be positive.

The formal recipe and flow chart together with general conditions for its validity is
laid out in [BH5]; some of the ideas involved in the derivation as sketched in the above steps
are given in {[BH6]. Full details appear in [BHS].

Our constructions all assume that one has found critical points for a certain energy
function associated with a control or factorization problem. The closest analogue of these
critical points in engineering are saddle points or max.-min. points which occur in game
theory (see [BH9]); note a max.-min. point of a function is always a critical point of that
function. We thank D. Limebeer for introducing us to game theory in connection with
linear control [LAKG, T1, T2].

In [BH9] we show that max.-min. points of the energy function lead directly to
particular solutions of the equivalent control problem. In [BH8] we make more global
assumptions and actually parameterize a large class of controllers in order to produce one

controller.

4. PERFORMANCE OPTIMIZATION FOR NONLINEAR SYSTEMS: OTHER AP-
PROACHES.

We mention that to our knowledge there are two other approaches to nonlinear H*
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control theory which have appeared in the literature.

The approach of Foias and Tannenbaum [BFHT1] [FT1], [FT2] is based on a power
series representation for the plant. One can linearize the n-th n-homogeneous term of
the power series by extending its action from the diagonal to the n-fold tensor product of
the space of input signals. One can then do an iterative procedure of applying the linear
commutant (more properly, intertwining) lifting theorem to each term of the power series.
The resulting norm estimates for the nonlinear lift are not as sharp as in the linear case and
the resulting power series representation for the lift may converge on a smaller ball than
the power series for the original plant. The same iterative approach using linearization of
the n-th term of the power series on the tensor space and iterating can also be used to yield
a local nonlinear Beurling-Lax theorem [BFHT2]. In applications to the control problem
[FT1, FT2], the measure of performance must be tailored to fit the iterated commutant
lifting approach.

Chen and deFigueiredo [CdeF,deFC] localize the control problem to small balls and
to plants having a simple parameterized form. Using a Lipschitz-norm measure of perfor-
mance, they are able to reduce the control problem to a standard several-variable nonlinear
optimization problem.

Research on this paper was supported in part by the National Science Foundation
and the Air Force Office of Scientific Research.
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Primitives for Robot Control

D. Curtis Deno Richard M. Murray Kristofer S. J. Pister
Shankar Sastry

Abstract

Inspired by the control system of the mammalian neuro-muscular system, we were moti-
vated to develop a methodology for description of hierarchical control in a manner which is
faithful to the underlying mechanics, structured enough to be used as an interpreted language,
and sufficiently flexible to allow the description of a wide variety of systems. We present a
consistent set of primitive operations which form the core of a robot system description and
control language. This language is capable of describing a large class of robot systems under
a variety of single level and distributed control schemes. We review a few pertinent results of
classical mechanics, describe the functionality of our primitive operations, and present several
different hierarchical strategies for the description and control of a two fingered hand holding
a box.

1 Introduction

The complexity of compound, redundant robotic systems, both in specification and control, contin-
ues to present a challenge to engineers and biologists. Complex robot actions require coordinated
motion of multiple robot arms or fingers to manipulate objects and respect physical constraints.
As we seek to achieve more of the capability of biological robots, additional descriptive structures
and control schemes are necessary. A major aim of this work is to propose such a specification
and control scheme. The ultimate goal of our project is to build a high level task programming
environment which is relatively robot independent.

In Section 2 we review the dynamics and control of coupled, constrained rigid robots in a
Lagrangian framework. Section 3 contains definitions of the primitives of our robot control envi-
ronment. Section 4 illustrates the application of our primitives to the description of a two fingered
robot hand. We show that our environment can be used to specify a variety of control schemes
for this hand, including a distributed controller which has a biological analog. In Section 5 we
discuss future avenues of research. The remainder of this introduction presents motivation and
background for our work, and an overview of the primitives we have chosen to use.

1.1 The Musculoskeletal System: Metaphor for a Robotic System

Motivation for a consistent specification and control scheme may be sought in our current knowledge
of the hierarchical organization of mammalian motor systems. To some degree of accuracy, we may
consider segments of limbs as rigid bodies connected by rotary joints. Muscles and tendons are
actuators with sensory feedback which enter into low level feedback control at the spinal level [8].
Further up the nervous system, the brainstem, cerebellum, thalamus, and basal ganglia integrate
ascending sensory information and produce coordinated motor commands. At the highest levels,
sensory and motor cortex supply conscious goal-related information, trajectory specification, and
monitoring.

“The hierarchical structure of neuromuscular control is also evident from differences in time
scale. The low-level spinal reflex control runs faster (loop delays of about 30 ms) than the high
level feedback loops (100-200 ms delays). This distinction may be exploited by control schemes
which hide information details from high level controllers by virtue of low level control enforcing
individual details. These concepts are shown in Figure 1 where a drawing of neuromuscular control

13
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Motor Cortex ~ Sensory Cortex
Sensory &
Motor Cortex
Brain
Response time
100-200 ms
Cerebellum,
Brainstem, &
Thalamus
Pincer Grip
Spinal Cord Composite System
Response time
30 ms
Spinal Loop
Spinal reflexes Spinalreflexes | Ty
Forefinger Thumb
Muscles & Muscles &
Joints Joints

Figure 1: Hierarchical control scheme of a human finger. At the highest level, the brain is repre-
sented as sensory and motor cortex (where sensory information is perceived and conscious motor
commands originate ) and brainstem and cerebellar structures (where motor commands are coordi-
nated and sent down the spinal cord). A pair of fingers forms a composite system for grasping which
is shown integrated at the level of the spinal cord. The muscles and sensory organs of each finger
form low level spinal reflex loops. These low level loops respond more quickly to disturbances than
sensory motor pathways which travel to the brain and back. Brain and spinal feedback controllers
are represented by double lined boxes.

structures for a finger is juxtaposed with a block diagram to emphasize the hierarchical nature of
the thumb-forefinger system for picking up objects.

Biological control systems commonly operate with constraints and redundancy. Kinematic
constraints arise not only from joints which restrict the relative motion of adjacent limb segments,
but also from contact with objects which leads to similar restrictions. Many musculo-skeletal
subsystems possess kinematic and actuator redundancy which may be imagined to be resolved by
effort and stability considerations. In any event, the neural controller directs a specific strategy
and so expands a reduced set of control variables into the larger complete set.

In the sequel we shall see these concepts expressed in a notation which is faithful to the laws
of mechanics and flexible enough to permit concise descriptions of robot motion control at various
hierarchical levels.

1.2 Background

The robotics and control literature contains a number of topics which are related to the specification
and control scheme of this paper.
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Robot programming languages

Two directions of emphasis may be used to distinguish robot programming languages: traditional
programming languages (perhaps including multitasking), and dynamical systems based descrip-
tions of systems and control structures.

More traditional task specification languages include VAL II, AML, and Robot-BASIC [5,
19, 7, 18]. These languages are characterized by C, BASIC, or Lisp like data structures and
syntax, coordinate frame specification and transformation primitives, sensor feedback conditionally
controlling program flow, and motion between specified locations achieved through via points and
interpolation. In a two stage hierarchy, low level controllers usually control joint angle trajectories
which are specified by high level language statements and kinematics computations.

Brockett’s Motion Description Language (MDL) is more closely aligned with dynamical systems
theory. MDL employs sequences of triples (u,k,T) to convey trajectory information, feedback
control information, and time interval [6, 2] to an extensible Forth/PostScript like interpreter. The
scheme described in this paper was inspired partly by descriptions of MDL. Our work explicitly
utilizes geometric and inertial parameters together with the equations of motion to describe the
organization and control of complex robots. MDL is less explicit on this matter but is more
completely developed in the matter of sequences of motions.

Distributed control, hierarchical control

The nervous system controls biomechanical robots using both distributed controllers and hierar-
chical organization [8]. For example, spinal reflex centers can direct portions of gait in cats and the
wiping motions of frog limbs without the brain. One reason for a hierarchical design is that high
level feedback loops may respond too slowly for all of motor control to be localized there. Indeed
the complexity and time delays inherent in biological motor control led the Russian psychologist
Bernstein to conclude the brain could not achieve motor control by an internal model of body
dynamics [10].

Centralized control has been defined as a case in which every sensor’s output influences every
actuator. Decentralized control was a popular topic in control theory in the late 1970’s and led to a
number of results concerning weakly coupled systems and multi-rate controllers [22]. Graph decom-
position techniques, applied to the graph structures employed in a hierarchical scheme, permitted
the isolation of sets of states, inputs, and outputs which were weakly coupled. This decomposition
facilitated stability analyses and controller design. Robotic applications of hierarchical control are
exemplified by HIC [3] which manages multiple low level servo loops with a robot programming
language from the “traditional” category above. One emphasis of such control schemes concerns
distributed processing and interprocess communication.

1.3 Overview of Robot Control Primitives

The fundamental objects in our robot specification environment are objects called robots. In a
graph theoretic formalism they are nodes of a tree structure. At the lowest level of the tree are
leaves which are instantiated by the define primitive. Robots are dynamical systems which are
recursively defined in terms of the properties of their daughter robot nodes. Inputs to robots
consist of desired positions and conjugate forces. The outputs of a robot consist of actual positions
and forces. Robots also possess attributes such as inertial parameters and kinematics.

There are two other primitives which act on sets of robots to yield new robots, so that the
set of robots is closed under these operations. These primitives (attach and control) may be
considered as links between nodes and result in composite robot objects. Thus nodes closer to the
root may possess fewer degrees of freedom, indicating a compression of information upon ascending
the tree.

The attach primitive reflects geometrical constraints among variables and in the process of
yielding another robot object, accomplishes coordinate transformations. Attach is also responsible
for a bidirectional flow of information: expanding desired positions and forces to the robots below,
and combining actual position and force information into an appropriate set for the higher level
robot. In this sense the state of the root robot object is recursively defined in terms of the states
of the daughter robots.

The control primitive seeks to direct a robot object to follow a specified “desired” posi-
tion/force trajectory according to some control algorithm. The controller applies its control law
(several different means of control are available such as PD and computed torque) to the desired
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and actual states to compute expected states for the daughter robot to follow. In turn, the daughter
robot passes its actual states through the controller to robot objects further up the tree.

The block diagram portion of Figure 1 may be seen to be an example of a robot system
comprised of these primitives. Starting from the bottom: two fingers are defined; each finger
is controlled by muscle tension/stiffness and spinal refiexes; the fingers are attached to form a
composite hand; the brainstem and cerebellum help control and coordinate motor commands and
sensory information; and finally at the level of the cortex, the fingers are thought of as a pincer
which engages in high level tasks such as picking.

2 Review of robot dynamics and control

In this section we review some basic results in dynamics and control of robot systems. Our goal
is to give some insight into the mathematical framework underlying the primitives which we will
be using. The basic result which we present is that even for relatively complicated robot systems,
the equations of motion for the system can be written in a standard form. This point of view has
been used by Khatib in his operational space formulation [12] and in some recent extensions [13].
The results presented in this section are direct extensions of those works, although the approach
is different.

The dynamics for a robot manipulator with joint angles § € R™ and actuator torques 7 € R®
can be derived using Lagrange’s equations and written in the form

e M(0)+C(6,6)8 =7

where M(0) € R®*" is the inertia matrix for the manipulator and C(#, 6) € R™*n ig the Coriolis
and centrifugal force matrix. For systems of this type, the inertia matrix is always symmetric and
positive definite and it can be shown that M — 2C' is skew symmetric (this requires some care in
defining C). It is both the form and the structure of this equation that we will attempt to maintain
in more complicated systems. For the moment we will ignore friction and gravity forces.

2.1 Change of coordinates

As our first exercise, we ask what effect a change of coordinates has on the form of the dynamics.
Let f : R® — R"™ represent a locally invertible change of coordinates with z = f(8) and J = %5.
Then ¢ = J(9)8 and away from singularities we have § = J~1(8)¢. We can substitute this into the

joint dynamics to obtain
(2) (" TMI N+ TMI Ve + (I TCI e =J"Tr

We see that this is close to our original form except for the second term. However, if we define

M@®) = JTM@6)J?
ce,0) = J-TC0,6)J + I TMI?
F = JTr

then we have

(3) M(0)i +C(0,0)i = F
It is easy to see that M is symmetric and positive definite (away from critical points) and it can

also be verified that M — 2C is skew-symmetric as before. Thus equation (3) has the same form
and properties as the joint equations of motion and at least substituting for § = f~(z), away
from singularities, we can write

4 M(z)i + C(z, &)t = F

which gives us an even closer correspondence. We also note that by definition 7 = JTF and so
if f is the forward kinematic function for the manipulator, F' corresponds to the Cartesian forces
generated by the manipulator.

This simple result has some interesting consequences in control. Typically robot controllers are
designed by placing a feedback loop around the joint positions (and velocities) of the robot. The
controller generates torques which attempt to make the robot follow a prescribed joint trajectory.
However, since the robot dynamics are of the same form in either joint or Cartesian space, we can
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Figure 2: Planar two-fingered hand. Contacts are assumed to be maintained throughout the
motion. Therefore the box position and orientation, z, form a generalized set of coordinates for
the system.

just as easily write the control algorithm in Cartesian coordinates. In this case, we must take the
output force from the controller and transform it back into joint torques, by premultiplying it by
JT. One advantage of this approach is that controller objectives are often specified in Cartesian
space and hence it might be easier to perform the controller design and analysis in that space.

2.2 Constrained manipulators

We next demonstrate that more complicated robot systems can also be represented by dynamics in
the same form as equation (3). For example, consider the control of a multi-fingered hand grasping
a box (see Figure 2). If we let § be the values of the joint variables for all of the joints and z be
the position and orientation of the box, then we can write z = h(#) and we would like to use our
previous analysis to claim that the dynamics of the system are given by

(5) M0)i + C(6,0)i = F

where F is the forces and torques exerted in the box’s frame of reference. We must use a slightly
different approach, however, since now we have not only a change of coordinates, but also a
constraint and additional dynamics to include in our derivation. For now we make the assumption
that our constraints are rigid (e.g., the fingers are connected to the box by ball and socket joints)
in which case we can ignore all internal forces. This restriction can be lifted at the expense of
additional complexity, as discussed in section 5.

As shown by Li, et al. [15], the constraint in this example can be written in the form

(6) J(9)6 = GT(q)2

where ¢ = (0, z), J is the Jacobian of the finger kinematic function and G is the “grasp map”
for the system. We will assume that J is bijective in some neighborhood and that G is surjective
(this condition is necessary to insure force closure of a grasp, namely the ability to exert prescribed
forces on an object). This form of constraint can also be used to describe a wide variety of other
systems, including grasping with rolling contacts, surface following and coordinated lifting. For
the primitives presented in the next section, we also assume that there exists a forward kinematic
function between 6 and z; that is, the constraint is holonomic. Non-holonomic constraints are a
relatively straightforward extension but can cause difficulties in implementation. We shall discuss
some of these details in section 5.

To include velocity constraints we must once again appeal to Lagrange’s equations. A derivation
of Lagrange’s equations in the form we need can be found in Goldstein [9] or Rosenberg [20]. Using
that derivation, the equations of motion for our constrained system can be written as

) M(q)%+Clg,d)i = F
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where
(8) M = M+GJ "My 'GT
¢ = c+aJ T (CgJ‘lGT + M,,% (J'lGT))

F = GJ Tr
M,My; = inertia matrix for the box and fingers, respectively
C,Cy = Coriolis and centrifugal terms

Thus we have an equation with similar form (and structure) to our “simple” robot. In the box
frame of reference, M is the mass of the effective mass of the box, and C is the effective Coriolis
and centrifugal matrix. These matrices include the dynamics of the fingers, which are being used to
actually control the motion of the box. However the details of the finger kinematics and dynamics
are effectively hidden in the definition of M and C.

Again we note that even though we will write our controllers in terms of F, it is actually the
joint torques which we are able to specify. Given the desired force in constrained coordinates, we
can apply that force using an actuator force of JTG*r, where J and G are as defined previously
and G¥ is a pseudo inverse for G.

2.3 Control

To illustrate the control of robot systems, we look at two controllers which have appeared in the
robotics literature. We start by considering systems of the form

(9) M(9)é+Clg,§)2+ N(¢,9) = F

where M(q) is a positive definite inertia matrix and C(g, ¢)& is the Coriolis and centrifugal force
vector. The vector N(g,¢) € R™ contains all friction and gravity terms and the vector F € R
represents generalized forces in the z coordinate frame.

Computed torque

Computed torque is an exactly linearizing control law that has been used extensively in robotics
research. It has been used for joint level control [1], Cartesian control [16], and most recently,
control of multi-fingered hands [15, 4]. Given a desired trajectory z4 we use the control

(10) F = M(q) (24 + Koé + Kpe) + C(g,9)Z + N(g,9)

where error ¢ = z4 — z and K, and K, are constant gain matrices. The resulting dynamics
equations are linear with exponential rate of convergence determined by K, and Kp. Since the
system is linear, we can use linear control theory to choose the gains (K, and K;) such that they
satisfy some set of design criteria.

The disadvantage of this control law is that it is not easy to specify the interaction with
the environment. From the form of the error equation we might think that we could use K, to
model the stiffness of the system and exert forces by commanding trajectories which result in fixed
errors. Unfortunately this is not uniformly applicable as can be seen by examining the force due
to a quasi-static displacement Az:

(11) AF = M(q)KpAz

Since K, must be constant in order to prove stability, the resultant stiffness will vary with con-
figuration. Additionally, given a desired stiffness matrix it may not be possible to find a positive
definite K, that achieves that stiffness.

PD + feedforward control

PD controllers differ from computed torque controllers in that the desired stiffness (and potentially
damping) of the end effector is specified, rather than its position tracking characteristics. Typi-
cally, control laws of this form rely on the skew-symmetric property of robot dynamics, namely

aT (M - 2C) a = 0 for all « € R™. Consider the control law

(12) F = M(q)#4 + C(q, §)2a + N(g,§) + Koé + Kpe
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where K, and K, are symmetric positive definite. Using a Liapunov stability argument, it can be
shown that the actual trajectory of the robot converges to the desired trajectory asymptotically
[14]. Extensions to the control law result in exponential rate of convergence [23, 21].

This PD control law has the advantage that for a quasi-static change in position Az the resulting
force is
(13) AF = KpAz

and thus we can achieve an arbitrary symmetric stiffness. Experimental results indicate that the
trajectory tracking performance of this control law does not always compare favorably with the
computed torque control law [17]. Additionally there is no simple design criteria for choosing K,
and K, to achieve good tracking performance. While the stability results give necessary conditions
for stability they do not provide a method for choosing the gains. Nonetheless, PD control has
been used effectively in many robot controllers and has some computational features which make
it an attractive alternative.

3 Primitives

In the previous section we saw that simple robots, Cartesian robots and constrained robots all
have dynamics which can be written in the same form. Moreover, the rules for developing these
dynamics are straightforward, at least in terms of representation. The problem of system and
control specification is essentially that of solving the dynamics. The simple structure of this
problem leads one to the natural conclusion that it should be automated. In this section we
describe a set of primitives that give us the mathematical structure necessary to achieve this goal.

In the description that follows we will not use any particular programming environment or
language. Ideas are freely borrowed from languages such as C, lisp and C++. As much as possible,
we have tried to define the primitives so that they can be implemented in any of these languages.
Whenever possible, we shall use mathematical symbols rather than functional notation. Details of
implementation will be alluded to only in the interests of clarifying the presentation.

As our basic data structure, we will assume the existence of an object with an associated list of
attributes. These attributes can be thought of as a list of name-value pairs which can be assigned
and retrieved by name. A typical attribute which we will use is the inertia of a robot. The existence
of such an attribute implies the existence of a function which is able to evaluate and return the
inertia matrix of a robot given its configuration.

Attributes will be assigned values using the notation

attribute := value
Thus we might define our inertia attribute as

— mllf + mzl% malils 005(91 - 02)
(14) M(o) '_ m21112 Cos(al - 02) mgl.f,

In order to evaluate the inertia attribute, we would call M with a vector § € R2. This returns a
2 x 2 matrix which as defined above.

We will also assume that certain functions of attributes are readily available. Such functions
might include evaluating the inverse or derivative of a function (when it exists); we will denote
these simply as M~ or M. In practice this could be implemented by defining a set of functions
for each attribute which can evaluate the various forms of the attribute that will be used. These
forms might be evaluated either numerically or symbolically, depending on the sophistication of
the system.

Another frequently used function is nil() or just nil. This function, which does nothing, indi-
cates an absence of data. It is used to avoid a situation where inappropriate data is returned when
no data is available.

3.1 The robot object

The fundamental object used by all primitives is a robot. Associated with a robot are a set of
attributes which are used to define it’s behavior. Rather than fix the attributes associated with a
robot, we wish to allow primitives to define new attributes as needed for their own use. All robots
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Figure 3: Example of the define primitive. The robot shown here corresponds to a robot with
torque driven motors and only position and velocity sensing.

have a small set of attributes which must be defined. These attributes specify the basic properties
which are used by all primitives:

M inertia of the robot

C Coriolis/centrifugal vector

N friction and gravity vector
rd() function returning position and force information about the robot

wr(z,#,%,F) function which sends information (z, £, £, F') to the robot

The meaning of M, C, and N should be clear from section 2. These are functions which are passed
certain arguments (e.g. =, £) and return a matrix, as described above for the inertia attribute.

The rd function returns the current position, velocity, and acceleration of the robot, and the
forces measured by the robot. Each of these will be vector quantity of dimension equal to the
number of degrees of freedom of the robot. Typically a robot may only have access to its joint
positions and velocities, in which case & and F will be nil.

The wr function is used to specify an expected position and force trajectory that the robot
is to follow. In the simplest case, a robot would ignore everything but F and try to apply this
force/torque at its actuators. As we shall see later, other robots may use this information in a more
intelligent fashion. We will often refer to the arguments passed to write by using the subscript e.
Thus z. is the desired position passed to the wr function.

The task of describing a primitive is essentially the same as describing how it generates the
attributes of the new robot. The following sections describe how each of the primitives generates
these attributes. The new attributes created by a primitive are distinguished by a tilde over the
name of the attribute.

3.2 DEFINE primitive

Synopsis:
DEFINE(M, C, N, rd, wr)

The define primitive is used to create a simple robot object. It defines the minimal set of
attributes necessary for a robot. These attributes are passed as arguments to the define primitive
and a new robot object possessing those attributes is created:

M@®6) = M(9)

66,0) = C(6,6)

N(,8) = N(5,6)
rd() = rd()

u‘;r(oey ée:éea Te) = wr(gea éea éey Te)

Several different types of robots can be defined using this basic primitive. For example, a DC
motor actuated robot would be implemented with a wr function which converts the desired torque
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to a motor current and generates this current by communicating with some piece of hardware (such
as a D/A converter). This type of robot system is shown in Figure 3. On the other hand, a stepper
motor actuated robot might use a wr function which ignores the torque argument and uses the
position argument to move the actuator. Both robots would use a rd function which return the
current position, velocity, acceleration and actuator torque. If any of these pieces of information
is missing, it is up to the user to insure that they are not needed at a higher level.

We may also define a payload as a degenerate robot by setting the wr argument to the nil
function. Thus commanding a motion and/or force on a payload produces no effect. The only way
to cause the object to move is to attach it to an actuated manipulator, the subject of the next
section.

As an example of of the define primitive, consider the definition of a simple Cartesian manip-
ulator for which the following functions have been defined:

m 0
M) =
® = [ o]
rd_cartesian() := query the hardware and return current robot state
wr_cartesian(z.,Z.,Ze, Fe) := output actuator torques to produce a Cartesian force F

We can define a robot, cartesian.robot, using

cartesian_robot = DEFINE(M, 0, O, rd_cartesian, wr_cartesian)

A special case of this would be to define a planar payload (with the same mass distribution)

payload = DEFINE(M, 0, 0, nil, nil)

3.3 ATTACH primitive

Synopsis:
ATTACH(J, G, h, payload, robot-list)

Attach is used to describe constrained motion involving a payload and one or more robots.
Attach must create a new robot object from the attributes of the payload and of the robots
being attached to it. The specification of the new robot requires a velocity relationship between
coordinate systems (J8 = GTz), a kinematic function relating robot positions to payload position
(z = h(f)), a payload object, and a list of robot objects involved in the contact.

The only difference between the operation of the attach primitive and the equations derived
for constrained motion of a robot manipulator is that we now have a list of robots each of which
is constrained to contact a payload. However, if we define g to be the combined joint angles of
the robots in robot-list and similarly define Mz and Cr as block diagonal matrices composed
of the individual inertia and Coriolis matrices of the robots, we have a system which is identical
to that presented previously. Namely, we have & “robot” with joint angles g and inertia matrix
Mpg connected to an object with a constraint of the form

(15) Jogr =Gz

where once again J is a block diagonal matrix composed of the Jacobians of the individual robots.To
simplify notation, we will define A := J=1GT so that

(16) br = Ai
The attributes of the new robot can thus be defined as:
an M = M,+ATMgA
(18) C = Cp+ATCrA+ ATMRA
(19) N = N,+ ATNg
(20) rd() = (h(6r), Atén, Atdp+ A*br, ATrg)
(21) Gr(Ze, der ey Fe) = wrp(h™(z.), AZ., As.+ Az, A*TF,)
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Figure 4: Data flow in a two robot attach. In this example we illustrate the structure generated
by a call to attach with 2 robots and a payload (e.g. a system like Figure 2). The two large
interior boxes represent the two robots, with their input and output functions and their inertia
properties. The outer box (which has the same structure as the inner boxes) represents the new
robot generated by the call to attach. In this example the robots do not have acceleration or force
sensors, so these outputs are set to nil.

where M, Cp, N, are attributes of the payload, Mg and Cr are as described above and Np is a
stacked vector of friction and gravity forces.

The rd attribute for an attached robot is a function which queries the state of all the robots in
robot-1list. Thus g in equation (20) is constructed by calling the individual rd functions for all
of the robots in the list. The ¢ values for each of these robots are then combined to form 6r and
this is passed to the forward kinematic function. A similar computation occurs for 6g, 0r and 7r.
Together, these four pieces of data form the return value for the rd attribute.

In a dual manner, the wr attribute is defined as a function which takes a desired trajectory
(position and force), converts it to the proper coordinate frame and sends each robot the correct
portion of the resultant trajectory.

The attach primitive also creates new attributes to store the constraint information (i.e. J
and G). These attributes are used by the internal functions which must evaluate the dynamics
and input/output attributes of the robot.

A special case of the attach primitive is its use with a nil payload object and G = I. In this
case, Mp, Cp, and N, are all zero and the equations above reduce to a simple change of coordinates,
as shown in section 2.

An example of the operation of the attach primitive is summarized in Figure 4.

3.4 CONTROL primitive

Synopsis:
CONTROL(robot, controller)

The control primitive is responsible for assigning a controller to a robot. It is also respon-
sible for creating a new robot with attributes that properly represents the controlled robot. The
attributes of the created robot are completely determined by the individual controller. However,
the rd and wr attributes will often be the same for different controllers. Typically the rd attribute
for a controlled robot will be the same as the rd attribute for the underlying robot. That is, the
current state of the controlled robot is equivalent to the current state of the uncontrolled robot. A
common wr attribute for a controlled robot would be a function which saved the desired position,
velocity, acceleration and force in a local buffer accessible to our controller. This configuration is
shown in Figure 5.
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Figure 5: Data flow in a typical controlled robot. Information written to the robot is stored in an
internal buffer where it can be accessed by the controller. The controller uses this information and
the current state of the robot to generate forces which cause it to follow the desired trajectory.

The dynamic attributes M, C and N are determined by the controller. At one extreme, a
controller which compensates for the inertia of the robot would set the dynamic attributes of the
controlled robot to zero. This does not imply that the robot is no longer a dynamic object, but
rather that controllers at higher levels can ignore the dynamic properties of the robot, since they
are being compensated for at a lower level. At the other end of the spectrum, a controller may
make no attempt to compensate for the inertia of a robot, in which case it should pass the dynamic
attributes on to the next higher level. Controllers which lie in the middle of this range may partially
decouple the dynamics of the manipulator without actually completely compensating for them. To
illustrate these concepts, we give examples of two controllers and how they might be defined.

Computed torque controller

As we mentioned in section 2, the computed torque controller is an exactly linearizing controller
which inverts the nonlinearities of a robot to construct a linear system. This linear system has a
transfer function equal to the identity map and as result has no uncompensated dynamics. The
proper representation for such a system is

M =0
¢ = 0
N =0
rd() = rd()
Wr(Te, ey Gey Fe) 1= (Ta = Te, 4 = Te, £q = Ee, Fa = Fe)

The definition of the wr attribute is intended to represent the buffering operation which we de-
scribed above.

The control process portion of the controller is responsible for generating input robot forces
which cause the robot to follow the desired trajectory (available in z4). Additionally, the controller
must determine the “expected” trajectory to be sent to lower level robots. For the computed
torque controller we use the resolved acceleration [16] to generate this path. This allows computed
torque controllers running at lower levels to properly compensate for nonlinearities and results in
a linear error response. The methodology is similar to that used in determining that the dynamic
attributes of the output robot should be zero. The control algorithm is implemented by the
following equations:

(z,2,-,7) = rd()
F, = M(9)(34+ Ky(2q — ) + Kp(zq — 2)) + C(z,2)& + N(z,2) + Fy

Bo = Fat Ko(da—2)+ Kp(za—2)
. t .
. = [y
t
z, = fo z,
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where rd and wr are attributes of the robot which is being controlled. Note the existence of the
F; term in the calculation of F,. This is placed here to allow higher level controllers to specify
not only a trajectory but also an force term to compensate for higher level payloads. In essence,
a robot which is being controlled in this manner can be viewed as an ideal force generator which
is capable of following an arbitrary path.

The computed torque controller defines two new attributes, K, and Ky, which determine the
gains (and hence the convergence properties) of the controller. A variation of the computed torque
controller is the feedforward controller, which is obtained by setting K, = K, = 0. This controller
can be used to distribute nonlinear calculations in a hierarchical controller, as we shall see in
section 4.

PD controller

Unlike the computed torque controller, the PD controller does not compensate for the nonlinearity
of the robot system. It simply uses a PD control law to improve tracking. Therefore, the dynamic
properties of the output robot are identical to those of the input robot:

M = M
¢ =cC
N = N
rd = rd
Ur(Te, Zoy ey Fe) 1= (Td = Te, a4 = Tey £q4 = &e, Fa= Fo)

(z,&,+,-) = rd()

F. = Ky(3a—#)+ Kp(za—12)
Z, = &4
Te = &4
ze = x4

wr(ze, Ze, e, Fe)
Like the computed torque controller, the PD controller defines new attributes, K, and K, for
use in setting the gains for the system. Setting K, = K, = 0 effectively disables the controller.
4 Examples

To make the use of the primitives more concrete we present some examples of a planar hand
grasping a box (Figure 2) using various control structures. For all of the controllers, we will use
the following functions

M, inertia matrix for the box in Cartesian coordinates
M, M, inertia matrix for the left and right fingers
Cy,C1, C, Coriolis/centrifugal vector for box and fingers
finger kinematics function, f : (6;,6,) — (1, 2,)
g grasp kinematics function, g : (z;,z,) — o
J finger Jacobian, J = 'gla
G grasp map, consistent with g

rdleft, rd.right read the current joint position and velocity
wrleft, wrright generate a desired torque on the joints

where 01,0y, 21, 2., and z) are defined as in Figure 2.

Example 1: High-level computed torque control

In this example we combine all systems to obtain a description of the dynamic properties of the
overall system in box coordinates. Once this is done we can move the box by directly specifying
the desired trajectory for the box. This structure is illustrated in Figure 6.

In terms of the primitives that we have defined, we build this structure from the bottom up
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Figure 6: High level computed torque. The primitives listed next to the nodes in the graph indicate
the primitive that was used to created the node. In this structure all dynamic compensation and
error correction occurs at the top of the graph, using a complex dynamic model for the underlying
system.

left DEFINE(M;, C;, 0, rd_left, wr_left)
right = DEFINE(M,, C,, 0, rd_right, wr.right)
fingers = ATTACH(J, I, f, nil, left, right)

box
hand

DEFINE(M;, C;, 0, nil, nil)
ATTACH(I, GT, g, box, fingers)

ct_hand = CONTROL(hand, computed-torque)

It is useful to consider how the data flows to and from the control law running at the hand level.
In the evaluation of 3 and &3, the following sequence occurs (through calls to the rd attribute):

hand: asks for current state, z; and Z;
finger: ask for current state, x; and 2
left: read current state, §; and 6
right: read current stafte,.ﬂr and 9,
finger: zy, 25 — f(6;,0,),J(61,0r)
hand: z,Zp — g(zf),GT:i:f

Similarly, when we write a set of hand forces using the wr attribute, it causes another chain of
events to occur: call sequence is generated

box: generate a box force Fy
hand: generate finger force GFj
finger: generate joint torques JTGF;
left: output torques conjugate to 6;
right: output torques conjugate to 8,

Using the transformations given above it is straightforward to calculate the torque generated
by the control law by expanding the structure of Figure 6 using the definition of the primitives.

Ui — T
(2) = o
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Figure 7: Low level computed torque. Computed torque controllers are used for the individual
fingers to provide trajectory following capability in joint space. Since no controller is positioned
above the box, the dynamics of the box are ignored even though the path is given in the box’s
frame of reference.

1l

JTGtFy 4
JTG* [My (£5,a + Kvé + Kpe) + Cris)

JTg* [ (My + GI T My I GT) (83,0 + Kyé + Kpe) +

(Co+GITCoI71GT) 3 + GJ—TM,,% (J6T) :E:;,]

This control law corresponds exactly to the generalized computed torque control algorithm pre-
sented by Li, et al. [15].

Example 2: Low-level computed torque control

Another common structure for controlling robots is to convert all trajectories to joint coordinates
and perform computed torque at that level. In a crude implementation one might assume the
dynamic effects of the box were negligible and construct the following structure shown in Figure 7.
The primitives used to define this structure are

left = DEFINE(M;, C;, 0, rd_left, wr_left)
right = DEFINE(M,, C,, 0, rd_right, wr_right)
ct_left = CONTROL(left, computed-torque)
ct_right = CONTROL(right, computed-torque)

fingers = ATTACH(J, I, f, nil, ct_left, ct_right)
box DEFINE(M;, Cs, 0, nil, nil)

hand = ATTACH(I, G7T, g, box, fingers)

This controller is provably exponentially stable when the mass of the box is zero. However,
this coptroller does not compensate for the mass of the box. As a result, we expect degraded
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performance if the mass of the box is large. Experimental results on a system of this form confirm
our intuition [17].

Example 3: Multi-level computed torque/stiffness control

As a final example, we consider a control structure obtained by analogy with biological systems in
which controllers to run at several different levels simultaneously (see Figure 8). At the lowest level

box trajectory

CONTROL | Computed
Torque

ATTACH|Grasping
Constraint

CONTROL Feed- Box DEFINE
forward

[

ATTACH| Finger

Kinematics|
CONTROL | PD PD CONTROL
[ [
DEFINE Left Right
Finger| Finger]

Figure 8: Multi level computed torque and stiffness (PD). Controllers are used at each level to
provide a distributed control system with biological motivation, desirable control properties, and
computational efficiency.

we use simple PD control laws attached directly to the individual fingers. These PD controllers
mimic the stiffness provided by muscle coactivation in a biological system [11]. Additionally,
controllers at this level might be used to represent spinal reflex actions. At a somewhat higher
level, the fingers are attached and considered as a single unit with relatively complicated dynamic
attributes and Cartesian configuration. At this point we employ a feedforward controller (computed
torque with no error correction) to simplify these dynamic properties, as viewed by higher levels
of the brain. With respect to these higher levels, the two fingers appear to be two Cartesian force
generators represented as a single object.

Up to this point, the representation and control strategies do not explicitly involve the box,
a payload object. These force generators are next attached to the box, yielding a robot with the
dynamic properties of the box but capable of motion due to the actuation in the fingers. Finally,
we use a computed torque controller at the very highest level to allow us to command motions of
the box without worrying about the details of muscle actuation. By this controller we simulate
the actions of the cerebellum and brainstem to coordinate motion and correct for errors.

The structure in Figure 8 also has interesting properties from a more traditional control view-
point. The low level PD controllers can be run at high servo rates (due to their simplicity) and
allow us to tune the response of the system to high frequency perturbations. The Cartesian feed-
forward controller permits a distribution of the calculation of nonlinear compensation terms at
various levels, lending itself to multiprocessor implementation. Finally, using a computed torque
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controller at the highest level gives the flexibility of performing the controller design in the task
space and results in a system with linear error dynamics. Another feature is that if we ignore the
additional torques due to the PD terms, the joint torques generated due to an error in the box
position are the same as those of the high level computed torque scheme presented earlier.

5 Discussion

The work presented in the previous sections is a starting point for the development of what we
hope will be a high level robot programming environment. The primitives of the previous sections
will represent the lowest levels of this system. However, these primitives need further refinement
since even fairly simple robot systems violate some of the assumptions we have made. In this
section we discuss some of the limitations of the current system and offer possible approaches for
their solution.

Our implementation goals include a real time digital control system driven by our description
language. A symbolic processor (such as Mathematica or MACSYMA) will interpret this language
and generate the specified control structure. This control will then be executed by a multiprocessor
real time control system. This allows for the exciting possiblility of specifying a control hierarchy
and obtaining experimental results from that controller in a matter of minutes. Unfortunately, the
output from a symbolic processor, even after application of its simplification routines, is far from
terse. However, the structure of our primitives allows for a natural division of computation, and an
initial investigation into the feasibility of the system indicated the computational burden should
be manageable using moderate resources such as a VME based 68020 multiprocessor system.

5.1 Geometric issues

The manipulator Jacobian matrix J and grasp matrix G play key roles in this work and we next
consider more carefully the consequences of violating our assumptions.

Redundancy: J or G nonsquare

There are two flavors of redundancy which we have ignored in the primitives presented so far.
The first of these, which we shall call kinematic redundancy, occurs when we have a robot with
more degrees of freedom than needed to position and orient the end effector. The result of this
redundancy is that the forward kinematic function, f is no longer locally bijective—for every end
effector position there exists a continuum of joint angles which maintain that position. The other
kind of redundancy which is common to biological systems is actuator redundancy, namely, the
presence of multiple muscles which can exert torques about a single joint. This form of redundancy
is more subtle and we defer its discussion to future work.

Problems with kinematic redundancy appear mainly in the attach primitive. There we as-
sumed the existence of the an inverse function for k, the map between joint variables and object
coordinates. If any of the robots being attached to the object is redundant such an inverse function
is not uniquely defined. Furthermore, the Jacobian of the robot forward kinematics will no longer
be square, resulting in a J which is not square and hence not invertible. Currently we assume that
a redundancy resolving controller is used between a redundant robot definition and a subsequent
attach.

The major consideration with these resolutions of redundancy is to use redundancy to improve
performance. Studies of human motion control indicate that redundancy plays roles other than
obstacle avoidance and flexibility, e.g. achieving desirable stiffness properties [11]. A classical
use of redundant motion in robotics is to specify a cost function and use the redundancy of the
manipulator to attempt to minimize this cost function. This method is equivalent to specifying a
velocity in the tangent space to the internal motion manifold. If we extend our definition of the wr
function so that it takes not only an “external” trajectory, but also an internal trajectory (which
might be represented as a cost function or directly as a desired velocity in the internal motion
directions) then this internal motion can be propagated down the graph structure.

A similar situation occurs with internal or constraint forces. As noted in section 2, forces which
lie in the null space of the grasp map cause no net motion of the system. These forces can be
useful in the case of grasping. Here sufficient internal forces are applied to insure that the forces
exerted by the fingers on the object lie in the friction cone defined by the contact. Thus we might
also extend our primitives to propagate an internal force through the graph structure.
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In summary, degrees of freedom are not completely lost due to a constraint or resolved redun-
dancy. Instead, we have shifted motion or force from external to internal. A complete approach
to control must also provide for feedback control of these internal motions and forces.

Singularities: J,G singular

Throughout the definitions of the primitives (and even the underlying dynamics) we assumed that
J~1 was well defined. This is not the case if one of the manipulators in the system goes through
a kinematic singularity. In this case the calculations performed in the primitives will become
unstable, demanding large joint velocities and torques to achieve a specific trajectory. Similarly,
when the grasp matrix G approaches a singularity, force closure is lost and large forces may be
required. If it is not possible to avoid singularities at the path planning stage then it may be
acceptable to tolerate some trajectory error.

Nonholonomic constraints

We have assumed so far the the constraints applied to the system are holonomic. For some common
systems, such as grasping with rolling in three dimensions, it can turn out that J and G are well
defined and full rank but there exists no forward kinematic function such that & = h(8). Such
systems can still be controlled, however, with some restrictions.

Control laws commonly use the position of the object as part of the feedback term. If this
position cannot be calculated from # then we must retrieve it from some other source. One
possibility is to use an external sensor which senses z directly, such as a camera or tactile array.
The function to“ read the sensor” could be assigned to the payload »d function and attach could
use this information to return the payload position when queried. Another possible approach is to
integrate the object velocity (which is well defined) to bookkeep the payload position.

5.2 Implementation issues

One of the major future goals of this research is to implement the primitives presented here on
a real system. This requires that efforts be made toward implementing primitives in as efficient
fashion as possible.

On-line vs off-line

The first choice to be made in implementing the primitives is deciding where computation should
occur. It is possible that the entire set of primitives could be implemented off-line. In this case, a
controller-generator would read the primitives and construct suitable code to control the system.
Such an approach is only possible if the basic contact structure is specified ahead of time.

A more realistic approach is to split the computation burden more judiciously between on-line
and off-line resources. Symbolically calculating the attributes of the low-level robots and storing
these as precompiled functions might enable a large number of systems to be constructed without
too much prior knowledge about the structure of the graph describing the system.

Off line computation of controller outputs may be done if an open loop control strategy is
acceptable. Such an approach, which resembles simulation of the composite robot system, will
require numeric integration of the equations of motion in place of the physical system. If the
models are faithful, such off-line techniques also may be used to compensate for low bandwidth
communication channels and time delays. On-line implementations are expected to be more robust
to sensor and modeling error, at the cost of real-time computation and data flow requirements.

Multirate controllers

Although the expressions employed are continuous time, in practice digital computers will be relied
upon for discrete time implementations. This raises the issue of computation rates and whether
lower rates may be practical for higher level robots/controllers. In the case of mammalian motor
control, higher level feedback appears to occur at a slower rate—due in part to transmission delays.
However, humans are able to perform tasks accurately in spite of this slow (and hence low gain)
high-level feedback. Both hardware and wetware implementations may benefit from distributed
gain and multiple rate controllers.
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6 Conclusion

Working from a physiological motivation we have developed a set of robot description and control
primitives consistent with Lagrangian dynamics. Starting from a description of the inertia, sensor,
and actuator properties of individual robots, these primitives allow for the construction of a com-
posite constrained motion system with control distributed at all levels. The resulting hierarchical
system can be represented as a tree structure in a graph theoretic formalism, with sensory data
fusion occurring as information flows from the leaves of the tree (individual robots and sensors)
toward the root, and data expansion as relatively simple motion commands at the root of the tree
flow down through contact constraints and kinematics to the individual robot actuators.

In future, we hope to extend these basic description and control primitives into a more complete
task level programming environment which is device independent to some extent. The output of
such a system may be employed to generate a multiprocessor based control structure. Further
work will include extending the primitives to allow specification of internal constraint forces and
specification of internal motion of redundant manipulators in a more general way.

The primitives that we have defined are intended to be useful on a theoretical level as well as
in a real time control system. This structure for describing hierarchical robot control systems may
also assist the study of biological motion control. These primitives provide a conceptual framework
in which to develop hypotheses and integrate experimental data.
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OPTIMAL FREQUENCY DOMAIN DESIGN VS. AN AREA
OF SEVERAL COMPLEX VARIABLES

J. William Helton

Abstract. H® design theory has developed rapidly in the last decade, both math-
ematically and from the standpoint of applications. The talk addresses one very
natural direction one can take in going beyond this. The goal is to develop a sys-
tematic mathematical theory of worst case frequency domain design where stability
is the key constraint. This leads immediately to a collection of mathematics prob-
lems which have strong connections with ongoing developments in several complex
variables. The main point of this article is to point out these connections.

INTRODUCTION

The development of a systematic theory of worst case design in the frequency
domain where stability is the key consideration is developing rapidly and moving in
several directions. An example of a major success in the subject is on the paradigm
mixed sensitivity problem for multiport control systems. Here a beautiful and pow-
erful theory has emerged. When one looks beyond the paradigm for new directions

in the subject several areas are quickly suggested by physical considerations.

a. time varying systems,
b. non-interacting systems: sparsity patterns,
¢. non-linear systems,

d. realistic performance specs.

This talk focuses on the last topic, since the first is already well developed, a
systematic theory of the second appears to be exceptionally hard, and Joe Ball
will lecture on the third topic.

For completeness we note that there are several other directions. One is infinite
dimensional H® control. It was not listed since philosophically it is the same as

finite dimensional H* control, however, mathematically it is much more difficult

33
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and so is something of a subject unto itself. Another very different direction lies in

adapting H® control to radically different uses, such as adaptive control.

As most MTNSer’s know there are various areas of several complex variables
which connect seriously with electrical engineering and these are admirably de-
scribed in Bose’s book [Bose]. In the talk we show how unflinching pursuit of
an H* design theory leads to a serious connection between engineering and yet

another area of SCV.

It is interesting to compare this with the early days of H* design. There a key
element was the discovery that a well developed area of mathematics, interpolation
and commutant lifting theory solved paridigm amplifier and control problems. This
led to extremely fast engineering progress. I doubt that the connections pointed out
in this article will have an instantaneous effect. The reason is that the mathematical
area involved is not yet so well developed; much remains poorly understood and it
has no tradition of numerical work. Hopefully, though over the long haul progress

by each community will substantially benefit both.

I. PROBLEM STATEMENT

A basic problem in designing stable systems is this:
At each ' € TI we are given a region Sy C CV (which represents specs

to be met at frequency’ e'®).

(OPT') Find a vector valued function f analytic in the unit disk A and contin-

uous on 4ts closure A, such that

f(e%) e Sy V6.

Here II stands for the unit circle {]2| = 1} in C and henceforth Ax denotes the set
of functions f on II which are analytic on A and continuous in A. It is easy to
put many design problems into this form, (e.g. the Horowitz templates of control)
so the issue quickly becomes mathematical: computing solutions and developing a

useful qualitative theory.

I always think of a picture in connection with (OPT').



f(e*)

Figure I.1.

The problem (OPT') is very closely related to

(OPT) GivenT > 0 a map from IIxCN to R (which is a performance measure).
Find v* > 0 and f* € Ax which solve

y* = inf sup [(e*, f(e)) = sup T(e”, f*(e*)).
f€AN ¢ 6
Indeed (OPT') is a graphical version of
(OPT,) For a fized (performance level) ¢ find a function f € Ay with

T(e, f(e%)) < ¢, V8.
(That is, f produces performance better than c). To see that (OPT') solves (OPT.)
we start with T’ and denote its sublevel sets corresponding to ¢ by
(I.1) Se(c) 2 {zeCV; T(e?,2) < c}.
Now we take Sp = Sp(c) in (OPT') and see that
f(e'®) € 8¢ if and only if T(e®, f(e'?)) <c.

Thus f € Ay solves (OPT') if and only if f solves (OPT,). Conversely, to go from
(OPT.) to (OPT') one merely builds a defining function T for the given set Sy, that
is, build a T which satisfies

(e, )=1 on 88,
I(e?®, )< 1 inside 0Ss
T(e*, )>1 outside 8Ss.
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Then one solves (OPT;) for that I'. The problem is formidable, but what is sur-
prising and makes a good story for a general audience is how this problem meshes
with a branch of intense research within the mathematical several complex variables

community.

The fact that pursuits and results on this problem now connect solidly with es-
tablished SCV theory is a recent development (the last three to four years). Indeed
I am grateful to R. Rochberg for first suspecting work of my colleagues and I on
(OPT) was related to his work on “harmonic continuation” of sets. Then Wermer
patiently explained basics of polynomial hulls (§IIIb) when we met at several con-
ferences. Z. Slodkowski also helped by sending valuable reprints and providing more
explanations. Connections with Kobayashi distance problems, §1IIc were developed
jointly in discussions with my colleague Jim Agler. As a consequence of (OPT) de-
veloping independently from these other lines of SCV we are now at a place where
someone who studies the SCV literature carefully might make considerable progress

on it.

We give a warning: Descriptions here are for functions analytic in the disk which
may or may not be real on the real axis. The effect of this important restriction is
not traced throughout this article and in several key cases it has not been analyzed.
For N = 1, Theorem IV.1 leads us to believe that many difficulties imposed by this

restriction are surmountable. Also convex problems will be well behaved.

II. ENGINEERING OCCURENCES OF (OPT)

First we give generic engineering motivation for (OPT). Then we give specific

examples.

(a) Motivation

The (OPT) problem is central to the design of a system where specifications
are given in the frequency domain and stability is a key issue. Suppose our objective
is to design a system part of which we are forced to use (in control it is called the

plant) and part of which is designable
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performance is designable

I(w, f(jw)) at frequency w

Figure II.1.

The objective of the design is to find the admissible f which gives the best perfor-

mance. The “worst case” is the frequency w at which
sup I'(w, f(jw))
w

occurs. One wants to minimize this over all admissible f. The stipulation that the
designable part of the circuit be stable amounts to requiring that f has no poles in
the R.H.P. In other words f € Ay (R.H.P.). This is exactly the (OPT) problem
for the R.H.P and, of course, conformally transforming R.H.P. to A transforms this
problem to precisely the (OPT) problem we stated in §1. However, in this section
we shall stay with the R.H.P. and jw-axis formulation of problems as is conventional
in engineering. . Even when parts of the system other than the designable part are
in H* one can frequently reparametrize to get (OPT). Consequently (OPT) arises

in a large class of problems.

Indeed the (OPT) problem is so basic that I am fond of calling it the funda-
mental H® problem of control. This sits in distinction to the fundamental problem
of H*®-control. I don’t know what that problem is.

(b) Examples

Example 1. The famous “mixed sensitivity” performance measure of control
is
(Imb.1) P(w,T) 2 Wi(jw) IT = 1 + Wa(jw) T

where W, weights low frequencies and W, weights high frequencies. The basic H*

control problem is
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Find a compensator which produces an internally stable system with ac-

ceptable performance (mized sensitivity) over all frequencies.

This converts directly to an (OPT) problem over functions T analytic in the R.H.P.
(denoted A(R.H.P.)) which meet interpolation conditions

(INT) T(fk)=7‘k k=1,2,...,m

imposed by the engineering system one wants to control. Then we get the mathe-

matical statement:

Basic H® Control Problem: Find such a T which gives a certain performance

MNw,T(jw)) <c.

This is the (OPT.) problem except for the interpolation constraints.

The interpolation constraints are easily dealt with by a reparametrization in

function space. For example, if m = 2, then express T as

(IIb.2)  T(¢) = L ™ (e 5;2) (1+&)*+ m%;_ﬁgl_) (1+&)?

(14¢)2 & -
LEm8E-8) o

(1+¢)?

where H is in A(R.H.P.). Clearly T sweeps through the desired class as H sweeps
through A(R.H.P.). Abbreviate (IIb.2) to T = a + bH and substitute into I to
define

T'(w, H) 2 T(w,a + bH).

Then (OPT),) for I is equivalent to the basic control problem.

The graphical version of this problem goes as follows. First note via simple
algebra that the sublevel sets S,(c) of T' are always disks and that they vary in a

pattern like this:



Figure II1.2.

Thus finding T in A meeting (INT) whose values on the jw axis lie in S,(c) is
equivalent to the basic problem.

Historically, the algebraic formulation (IIb.1) and graphical formulation Fig.
I1.2 together with effective proposals for solution were done independently in 1983
by Kwaakernak [Kw] and Helton [H1], respectively. Also Doyle [Dy1] simul-
taneously gave a different approach which also was both physically correct and an
effective computationally. The original paper of Zames and Francis [ZF] took
W, =0.

I might insert a caveat here to any practically oriented individual. Physically
one is not given W; and W,. The basic H control problem is a great abbreviation
of the design process. In my opinion very little intelligent discussion about design
can be carried out at this level of abbreviation.

Indeed a salty comment of mine along these lines pertains to a debate which
persists in the H*° control community. The issue is whether or not a control theory
will ever exist which in practice sets the weights W;, W, once and for all. Opponents
contend that in an industrial setting enormous tuning of the weights Wy, W, must
occur. I don’t wish to take sides here on the outcome. What impresses me about
this debate is less the arguments of one side or the other, but the fact that it
has not evolved significantly in the last five years. I (somewhat tongue in cheek)
attribute this lack of progress to the physical imprecision of talking primiarly in
terms of mixed sensitivity (IIb.1) and W, We. The Wy, W, are in fact derivable
(with explicit formulas) from more primitive specifications such as tracking error,

gain-phase margins, bandwidth constraints, etc. (c.f. [H1], [H2], [BHMer]). If
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the H culture commonly used this or an even more precise language possibly the
debate on tuning could advance to a higher plane.

It seems to me that another practical issue might be worth emphasizing (since
it is frequently treated incorrectly [Al]). It is an outgrowth of the fact that the
basic control problem for many plants (ones with a pole or zero on the jw axis) is
ill conditioned. This is because the basic control problem has not been correctly

posed; the difficulty lies in the fact that the usual notion of internal stability:
(11b.3) T,(I+PC)™",(I+PC)'P,C(I+PC)™ arein H®

while philosophically correct is too loose practically speaking. In particular a de-
signer must have specified initially enough constraints to have produced numbers
(or bounded functions)

Mla M27 M37 M4

so that
(ITb.4)
IT| < My, |(I+PC)| <My, |C(I+PC)Y|<Ms, |(I+PC)'P|<M,,

through the entire R.H.P. or even on a slightly larger region. Note that (IIb.4) is
just a strengthened form of (IIb.3), in that (IIb.3) says that these functions must
be bounded in the R.H.P., but does not say by how much. The point is that we
must a priori say what these bounds are.

As mentioned before, forgetting constraints (I1Ib.4) becomes deadly at a jw-axis
pole or zero of P. For example, when P(jwy) = 0 a naive H* solution produces
compensators with |C(jwg)| of arbitrarily large size. Fortunately, adding constraints
(ITb.4) to the standard H control solution is easy to do using a function space
reparameterization like (IIb.2). The interested reader is referred to Part I [BHMer]

which does an example thoroughly; also [H2] mentions this tersely.
Example 2. Power mismatch (cf. [H4,5], [Y], [YS]).

Example 3. Two competing constraints typically yield Sy which are intersec-

tions of two disks, etc.

Example 4. Plant uncertainty naturally leads to (OPT) problems with very

complicated T. Our formulation is to start with a performance measure I which
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depends on what one believes the plant P to be at frequency w and the choice T of

the designable parameter at w. The basic design optimization problem is:
(UNCOPT") inf sup sup I'(w,p,T(jw)).
TEAY w peR,

Here R, denotes the range of values p at frequency w which you believe the plant
P(jw) might actually take. For this problem “tightening the specs” amounts to
calculating the “tightened” performance measure

(UNC) [(w,T) = sup I'(w,p,T).
PER.

After this is done solving the full (UNCOPT') problem is equivalent to (OPT).
Plant uncertainty when treated in this way simply amounts to a mathematiza-

tion of the age old engineering adage:

In the presence of uncertainty tighten the specs.

IIT. CONNECTIONS WITH TRADITIONAL MATHEMATICS

In this section we work on the unit disk A, the unit circle II rather than on
the R.H.P. and the jw-axis. Thus, S, becomes Sy, etc.

(a) Quasicircular (OPT) problems

Call a T with sublevel sets which are disks (even higher dimensional ones) qua-
sicircular. A marvelous piece of luck is that when the Sy are disks (even in higher
dimensions), the (OPT') problem was solved by pure mathematicians starting at
the turn of the century with N =1 and moving to higher N in the 1950’s and 60’s
with operator theorists. This was first used effectively by Saito and Youla (when
N =1) and by Helton (when N > 1) on amplifier problems. The techniques were
later taken up by Zames and Francis who learned them from Helton and introduced
them to control. In an independent movement Tannenbaum solved a paradigm
(N = 1) control problem with this mathematics. Subsequent to this exciting in-
sight there has been a rush of activity called H* control and most mathematical
development in the West since the mid seventies has either been done by engineers
or by associated mathematicians. This engineering oriented community has made

major contributions to the mathematics of the problem particular in the context of
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a state space theory. There is so much good work along these lines that we neither
survey nor list references here, but refer the reader to the books [BGR], [Fr],
[H3], [Her].

When we turn to Sg which are not disks all of the mathematics of the previous
paragraph fails. I know of no (OPT') problem with an “explicit solution” for cases
where the Sy are not “generalized disks.” One must either develop completely new
techniques or find them in a different mathematics literature. That is the subject

of this talk.

(b) Polynomial hulls
This is the main mathematical connection we describe in this talk. Define the

envelope of solutions to (OPT') to be
ES)A{(&, (&) all feAy, f(e?)eS, allb, ¢ <1}.

This is a natural object physically in that it is the envelope of all design possibilities.
Its cross sections E(S)|¢ are defined to be E(S)|¢ = {z: (&, 2) € E(S)} = {f(&):
f € An, f(e®) € Sp V8}.

A surprising thing is that a classical mathematical object of a very different

character, the polynomial hull P(S) of the set
S ={(",Sp) : 0<0<2n},

is informative in understanding the envelopes. The reason put loosely is that in
many (and possibly all nice) cases it is the “envelope” of all solutions to (OPT").

Recall that the polynomial hull P(S) of a set S C C'*V is
P(S) £ {w € C*V: |p(w)| < max |p(v)|
for all pe PN},

Here P!tV denotes the set of all polynomials on C'*¥. The set S is called poly-
nomially convez provided S equals its convex hull. An excellent basic reference on
this topic is [W1].

It is well known that

Theorem IIIb.1.
SUE(S) CP(S).
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Proof. Of course S C P(S) so we must show that E(S) C P(S). Now each point
(&0, 2z0) in E(S) lies on the graph {(¢, f(£)); € € disk} of some solution f to (OPT').
To show that (&, zo) also lies in P(S) select any polynomial p in P**¥ and note by

the standard one complex variable maximum principle that

Ip(§0, 20)| = |p(&0, f(£0))] < sup lp(e®, £(e¥))].-

Since f solves (OPT’) we have f(e'®) is in Sp and conclude that
p(é0, zo)l < sup |p(€;2)]-
(&,2)€s

The fact that this holds for all p € P**¥ is precisely the statement that (£o,20) €
P(S). =

An open question which is the subject of substantial mathematical research is

(P=E) For nice & does
SUE(S)=P(8)?

The implication of this (when it is true) is that computing the envelope of solutions
to (OPT') is equivalent to computing P(S), since after all § is already known. Thus
we have a radically different way of characterizing E(S) which might ultimately be
used for computation or to gain qualitative insight. While for pathological S the
answer to (P = E) is no [W2], the answer is yes in many cases and we now turn
to that issue.

The condition (P = E) is known to be true in cases which include:

Theorem IIIb.2. (Alexander-Wermer [AW1], Slodkowski [SI1]). If the sets Sy
are all convez and uniformly (in 8) bounded, then S U E(S) = P(S).

For N =1 Slodkowski [S12] obtained:

Theorem IIIb.3. For N = 1 if the sets Sy are connected, simply connected,
smoothly varying in 8 with boundaries 0Sy which are analytic arcs, then SUE(S) =

P(S).

Also in 1988 Marshall and Helton (see [MH]) independently discovered a proof
which we sketch in §IV, since it is in the spirit of the (OPT) problem.
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Now we backtrack. To this point we have the formal definition of polynomial
hull and motivation (via envelopes) for studying it. Let us give some vague intuition
through pictures and examples of what the polynomial hull is. We begin by defining
the cross-sections or the fibers of the polynomial hull P(S) over £ to be

P(S)e = {z e CN:(¢,2) e P(S)}.

One can abbreviate this to Sg, but it is an abuse of notation, since S in this
notation corresponds to the Sy we have been using. The following figure illustrates
the gross nature of P(S)

Sy

Y]

Figure III.1.

in that the Sy are prescribed on the unit circle and the S¢ are a canonical uniquely
determined extension of these sets into the unit disk. A basic fact in the subject

(cf. Lemma 11.1 [W1])is

Theorem IIIb.4. If for any & inside the open unit disk the fiber S¢ is nonempty,
then the fiber of the polynomial hull over every point in the unit disk is nonempty.

That is, the polynomial hull either extends the “specs” {Ss} over the entire
unit disk or over none of it. Clearly in the second case no solutions to (OPT,) for
S exist, so the envelope of solutions is empty.

A simple explicit example also helps in understanding polynomial hulls.
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Ezample. Each Sy is a disk in C with center at the origin and radius R(e'®).
What is P(S)? Answer: Its fibers are disks centered at 0, thus we need only compute
the radius of the disk S¢ at each €. It turns out to be |a(€)| where a(€) is the outer
Wiener-Hopf (spectral) factor a(e?)a(e??) = R(e'?)? of R2.

From this example we see that computing polynomial hulls is bound up with
and in general more complicated than computing Wiener-Hopf factorizations.

Results about polynomial hulls. A brief bibliography is included at the
end of this paper. For N =1 there is a strong

Theorem IIIb.5. (Forstneric [F]) If (OPT') has a solution f* whose values lie
in the interior of S¢ uniformly in 6, then there is a function ¢: A x I — C which
satisfies

(i) Fiz 7, o( ,7): A — C is analytic with no zeroes in A.

(i) Fiz € € A, then (€, ): T — C is a smooth 1 — 1 map onto the curve

which 1s 1ts range.

The boundary OE(S) of E(S) satisfies
(T) SUJE(S) ={(§e(&m) + f*(2)): €€ & rell}.

This completely characterizes E(S) provided that one can obtain @. Forstneric’s
proof is not constructive.

Note that when the Sy are all disks there is a linear fractional parametriza-
tion of all solutions of (OPT') due to Nevanlinna for N = 1 and for N > 1 to
Adamajan-Arov-Krein, see also [ACF)]. The formula in this parametrization easily
parametrizes OE(S) and produces the ¢ satisfying (i), (ii) and (iii). Thus Theorem
IIIb.5 might be seen as a weaker Nevanlinna parametrization which holds in very
general problems.

Another completely different finding about polynomial hulls for N = 1 actually
seems like another type of duality. It says that each polynomial hull is the set of
all singularities of certain classes functions on C? analytic near co, see [AW2] and
[W3]. How this pertains to N > 2 is unclear.

In another direction mathematicians try to provide explicit formulas and a

concrete analysis of particular model cases. In particular Alexander and Wermer



46

[AW3] just did a successful study of the situation which each Sy is an interval
[a(e"o‘), b(e®)] in C with @ € A. They analyzed the polynomial hull of § = {(e?, Ss)}

for various classes of functions b.

A computational possibility. We conclude this subsection by mentioning a
radical possibility for performing H*® (OPT) calculations. Let v* and f* denote
the solution to (OPT) and suppose that we know (P = E) is true. Then we know

that
¢<v* ifand onlyif E(S(c)) isempty

if and only if P(S(¢))=S.
This suggests that to compute whether (OPT,) has a solution for a particular ¢
we could do a computation with P(S(c)). It turns out that it suffices to compute

whether P(S(¢)) has any point in it of the form (0,a), that is a point for which

(I1Ib.1) [p(0,a)] < sup [p(e'?, z)|
2E€Sp(c)

for all p(£,2) polynomials in ¢ € C and z € CV. Recall that Sg(c) is defined in
(1.1).

Theorem IIIb.4 says that P(S) contains such a point (0,a) if and only if the
envelope of solutions to (OPT) is nontrivial. Therefore ¢ > « if and only if a point
(0, a) satisfying (IIIb.1) exists; provided (P = E) is true.

Now inequalities like (IIIb.1) don’t seem easy to manipulate with package soft-
ware. However, one could work with an analog concocted by Merino and me. Define
a hull RP(S) of § = {('®,8p): —7 < § < 7} to be
(IlIb.2) RP(S) = {(£,2):Rep(€,2) > 0 for all p € PV satisfying Rep(s) > 0

on all s € §}
One expects that in nice cases RP(S) = P(S). Now inequalities of the form

Rep(&,2) > 0 are convex and consequently (once discretized can be treated with a
linear programming package).
Now we are a little more specific about how one converts this to a linear pro-

gram:

To test if (0,a) € RP(S),

. A
(I1Ib.3) o2, Rep(0,a) = n(a)
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subject to

Rep(s) >0 forall s€S§.

Clearly (0,a) € RP(S) if and only if the answer is > 0. We are interested in vectors
a with real entries and in max n(a). It is > 0 if and only if RP(S) has nontrivial
fiber over s = 0. Possibly a Broyden, etc. method would work reasonably for this
stage of the computation.

Finally we add one more layer of detail to our description of the computation of
(I1Ib.3). This is the crudest possible method and surely one could improve it easily.
For pedagogical simplicity take N = 2. Discretize S by selecting many points
skt & (ei% (2% z5)) in BS. The variables in the linear program are numbers
Tm,n,k Which are the coefficients of the polynomials p. Then (IIIB.3) becomes, for
fixed a = (a1, az)

M
(I1Ib.4) Minimize Re Y, Zm,n0(a1)™(az)" subject to

m,n=

K M

Re > > Zmme(¢®™) ()™ (59" 2 0
r=0 m,n=0
for all s*£,
This is a standard linear program (once each complex number m, n,r is expressed
as a sum of 4 nonnegative numbers). Here we would hope that small M say 2 or
3 would suffice to solve many interesting problems. In this case running time often
would be proportional to
(K +1)(M +1)*)PC

with C depending in a gentle way on the number of constraint points s¥.

(c) The Kobayashi distance between two points ¢ and r in a domain
D in CV.
The basic issue is to study metrics on D which are invariant under biholo-

morphic maps b:D « D. If D is the unit disk in C there is essentially one, the

Z=22| In higher dimensions there are many

Poincaré metric p(z1,22) = arctanh | #3572

inequivalent invariant metrics on D. One is the Caratheodory metric defined by

(CAR) e(g,r) = sup p(F(q), F(r))
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over F: D — A which is analytic on D. Another is the true Kobayashi metric similar
to the “one disk” Kobayashi distance between ¢ and r defined by

(KOB) K/(qu) = fl,fizréfdisk p(ﬁla 52)

where £, £, must have the property that there exists an analytic function f: disk —
D such that f(&) = ¢ and f(§2) = r. For given ¢, and i, £, which achieve inf p
in (KOB) an analytic function f: disk — D satisfying f(£1) = ¢ and f(§) =r is
called a Kobayashi extremal for the given data g,r. Also an F' on which sup p in

(CAR) is attained is called a Caratheodory extremal.

Properties:
1. c and k are biholomorphic invariants.

Proof. Trivial.

2. ¢(q,r) < k(g,7).

Proof. Let f*(¢é1) = ¢, f*(§2) = r and F*(q) = £}, F*(r) = £, denote (KOB)
and (CAR) extremals respectively. Then g 2 pr o f*: disk — disk and g(&) =
€1, 9(&2) = & Schwartz’s lemma says p(g(£1),92(€2)) < p(1,62)- This implies
p(F*(q), F*(r)) < p(&1,&2) for all (€1, €2) admissible in (KOB), so p(F*(q), F*(r)) <
2:,12 p(61,€2). =

The observation we make here is that computation of Kobayashi extremals is a
very special case of (OPT'); at least if we are willing to iterate through a sequence of
(OPT’) problems. To wit: Given g,r select two (candidate) points 0, ¢, € disk C C.
We want to know if 3 f: disk — D satisfying f(0) = ¢ and f(£2) = r. If such f
exists k(g,7) < p(0,£2). By repeatedly guessing £; > 0 one can actually compute
k(gq,r).

To convert this to an (OPT') problem we use the same type of reparametriza-
tion in function space which you saw in Example 1 on H* control. Let a: disk —
Cn be analytic and satisfy the interpolating condition a(0) = ¢ and a(§) = r. Let
b: disk — C be analytic and satisfy b(0) = 0 = b(£2) and write f as

f=a+bH
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H € An. Now such f meets interpolating constraints but may not satisfy f(§) € D

for all |¢| < 1. To invoke this condition we transform D to

a D —a(ef)

because Sy has the property
H(e*®) e Sy ifand only if f(e'®) € D.

There is one more thing to check: We require f(£) € D for V£ € disk, but we only
have f(e**) € D for all e*¥. If D is polynomially convex then the two properties are
equivalent ([K, §3.1]). So we obtain

Theorem ITIc.1. For a polynomially conver domain D C CVN, the od-Kobayashi
distance x(q,r) < p(0,&2) if and only if there is a solution H* to (OPT') for the
sets Sy given by (1lc.1). If &, produces equality, then f* = a + bH* is a Kobayashi

extremal.

This is the main conclusion of the section: Computing od-Kobayashi distances is a
special case of (OPT').

What are the consequences of this? Clearly, computational tools provided by
the engineering culture could be used to do experiments with the od-Kobayashi
distance. In a more theoretical vein while theorems on & are probably too special
for direct engineering use, they suggest generalizations which might be useful.

For example, the deepest result in the subject (see [L] Proc. ICM’86) is

Theorem. (Lempert). If D is convez then the Caratheodory metric equals the

od-Kobayashi distance equals the true Kobayashi metric.

One major component of the proof is a characterization of f* the Kobayashi ex-
tremal. Note that Theorem IV.5 on our list of results also characterizes f*. Indeed
roughly these two theorems were discovered independently by Lempert (somewhat
earlier) and Helton (more generally). Possibly other techniques of Lempert’s will
prove valuable. For example, he proves that f* is continuous. For (OPT) this is not
known for N > 1 even when T is a convex function. Maybe Lempert’s techniques

apply here.
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The treatment of Kobayashi distance given here while capturing much of its
content was done in an overly simple setting (focusing on the somewhat unusual “one
disk” Kobayashi distance). This was done in order to avoid requiring the reader
to recall the set up of differential geometry. Now we assume that the reader is
familiar with this, in particular with the fact that metrics can typically be defined
infinitesimally. The infinitesmal form of the Kobayashi metric is defined on the
tangent space D x CV of D to be

(I11c.3) Fi(¢g,n) =inf{a>0. 3f€e Ay fA—D,
fO) =g, £i(0)=(n/a,0,...,0)7}

Here f; is the first component of the vector valued function f. One might intuitively
think of F(q,n) as a directional derivative of (g, r) discussed above.

The only point we wish to make here is that Fi(¢,n) can be computed by
solving a succession of (OPT') problems, in very much the same was that « was
related to (OPT') by (IIlc.1). To write down this relationship take a.(€) = ¢ +
(-"&{, 0,...,0)T and b(¢) = ¢%. Then as H sweeps Ay, the function f = aq + bH
sweeps those functions f € Ax which satisfy f(0) = ao(0) = ¢ and f'(0) = al,(0) =
(n,e,0,...,0)%.

Suppose that we are given a defining function p for the domain D. That is, p
is smooth and

p(z)<1 for z€D,
p(z)>1 for 2¢D.

Then to produce an (OPT) problem define I's by
(I1Ic.4) Lo, 2) = p(aq +b2) VzeCVN
and denote by v its solution

72 inf sup T(e”, ().
Corollary Illc.1. We have

Fi(g,n) =inf {va <1}.
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Proof. Any h € Ay for which T'4(e®, h(e'®)) < 1 produces f = an +bh € AN
satisfying p(f(e*?)) < 1. That is f: A — D, and by construction f satisfies the
requirements to be in the set (IIlc.3). Thus Fi(g,n) < a if 4o < 1. This argument

is reversable.

A solution f* to (OPT) for optimal a is called a Kobayashi extremal. Proper-
ties proceed much as before with x(q,r).

We conclude by mentioning that the Caratheodory distance is in some sense a
dual to the Kobayashi extremal problem. The polynomial hull P(S) of {(e¥,Ss)}
with Sy given by (IIlc.1) is in another sense a dual construction to the Kobayashi
extremal. Are these two seemingly different types of duality related? For example,

can one use Theorem IIIb.2 and IIlc.1 below to prove Lempert’s theorem?

(d) Miscellaneous

It might help some engineers interested in reading SCV literature to remark
on some standard terminology. The subject we have been discussing is very much
bound up with what are called analytic disks. The idea is that we have a domain D
and are interested in ways in which the unit disk in the complex plane can fit in D
(usually while meeting other constraints). That is, we are interested in non-constant
analytic maps f: disk — D and their image which is a set called an analytic disk.
Properties and uses of analytic disks are discussed to some extent in [K, Ch. 3].

(OPT) is clearly a matter of finding analytic disks meeting certain constraints.

Another construct closely related to (OPT) is that of the analytic multifunction.
A multifunction on the disk is a function whose value at a point £ € disk is a set
in CV. There is a notion of a set valued function being analytic. These are studied
heavily by Slodkowski, see [S13] for a survey of results and definitions.

The value of all of this to us is that a polynomial hull P(S) introduced in section
IIIb is the graph of an analytic multifunction, that is, the function { — S is an
analytic multifunction. Thus theory developed for analytic multifunctions applies

to our problems.

IV. QUALITATIVE RESULTS ON (OPT)
One of the most useful things to a person who is using a computer program to

solve problems like (OPT) is a knowledge of the fundamental qualitative properties
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of solutions. Then when the program produces odd answers, or as will sometimes
happen, fails to converge the user can have an idea of what is happening or at least

eliminate some possibilities. Our standard assumption on the (OPT) problem is:

(SA) T depends smoothly on 8, is real analytic in z (and in Zz) and has gradient
M which never vanishes when I'(e*?, z) = 4*. The sets Sp(7*) are
connected, simply connected, have nonempty interior, and are uniformly
bounded in 6.

While 4* may not be known in advance in a particular situation, one might verify

that all Sp(y) for a wide range of v satisfy these conditions; this is because the

conditions are not very restrictive.
We now give a list of results. It basically follows the lines of [BHM] and
updates that list somewhat in keeping with [MH].

Existence, Smoothness, and Uniqueness of Solutions

Theorem IV.1. [MH)]. Suppose N =1 and (SA) holds. An H* solution f* to
(OPT) exzists. That solution f* is smooth! (i.e., f* € C®). If fo € Ay is a local
optimum to (OPT) and if %g(e‘o,f;(e“’)) never vanishes on II, then fo = f*. If

T(e*,z) =T(e7%, %) for all @ and z, then f* is real on the real axis.
When N > 1 we have

Theorem IV.2. [HH]. If Sy(v*) is strictly convez (uniformly in 6), then an HY
solution f* to (OPT) ezists and it is unique. Also f*(e*®) € 08y for a.e. 6.

Theorem IV.3. [MH)]. Suppose (SA) holds and that each Sy is polynomially
convez. Then an HFY solution f* to (OPT) exists. Moreover, if a sequence f; €
H approzimately solves (OPT) (in the sense esssup I'(e', fi(e'®)) = +* with
v¥ N\ 7*). Then a subsequence which converges in :ormal family sense has as its

limit @ function fo, in HY which satisfies T(e'?, foo(e'®)) < v* almost everywhere.

Example 1. (Helton, Merino [HMer2]).

! Originally S. Hui [Hu] proved Theorem IV.1 under the additional assumption

of convexity. Also he showed that f* extends analytically across the circle.



53

F(ew, z1,22) = 100 + ez + 0.1(z120 + 21 + 22)2
+ |100 + 6i022 + 0.1(2122 + 21+ 22)|2

+e(lzaf? + |22]*)

for € a real parameter, 0 < € < 19 is strictly plurisubharmonic in z, but (OPT) has

two local solutions:
f; = (C, —C) and f; = (—C, C)

with ¢ = 54/2(19 — €). For € near 19 both f; and f> belong to the same connected

component of the v* sublevel set of T'.
Stopping Criteria
Theorem IV.4. [H3]. Suppose N = 1 and (SA) holds. Suppose f* is a smooth
function in H® for which the function a(e'?) S oL (€', f*(e'®)) never vanishes.
Then f* € A is a solution to (OPT) if and only if

(i) T(e'*, f*(e*)) = constant in 6.

(ii) wno a > 0.
Here wno a means winding number of the function a about 0.

Theorem IV.5. [Mer]. For generic T the solution f* to (OPT) produces a(e'®) =

g—l; (ew’ f*(ei())) with wno a = 1.

For N > 1 this generalizes to a reasonable extent. Now we have functions
aj(e'?) = %(ew,f*(e"s)) for j = 1,...,N. If these functions are continuous and
extend meromorphically onto the disk, then define a generalized winding number
by
wno (ai,...,an) 2 pumber of common zeroes of aj,...,ayn inside the disk

minus their total number of poles inside the disk.

Here multiplicity must be counted.

Theorem IV.6. [H6]. SupposeT is smooth and that f* is a function for which the
functions a; have no common zero on II. If f* is a strict local solution to (OPT),

then
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(i) T(e, f*(e'®)) = constant in 6.
(ii) wno (a1,...,an) > 0.

Conversely, if the sublevel sets Sg(v*) of T' are strictly convex in z, then an f*

satisfying (i), (ii) is a solution to (OPT).

A forthcoming paper of Merino and Helton [HMer?2] treats non-convex prob-
lems (very successfully for N < 2). Also we give alternatives to wno in the spirit of
[L]) and discuss some implications for computation. See also [S14] for some related
results.

This theorem provides useful diagnostics for a computer program. As the
program progresses and generates approximate optima fx, we expect the function
T'(e*, fr(e'®)) to become increasingly flat. Also behavior of the winding number
%% (e, fr(e®)) diagnostic can be monitored and seems to indicate how close one is

getting to a local solution f*.

(OPT) vs. Forstneric

We conclude with a few words about the Helton-Marshall proof of Theorem
IIIb. This gives an interesting perspective on how the theory of (OPT) described in
§IV meshes with the theory of polynomial hulls in §I1Ib.3. As we shall see Forstnerics
theorem and Theorems IV.1, IV.3 have a somewhat complementary relationship and

together they combine to give Theorem IIIb.3 which says that
E(S)uS =P(S)

for nice S when N = 1. We say that the graph {(£, f(£)):]¢| £ 1} for f:A - Cy

which is contained in P(S) is a selection (or an analytic selection) of P(S).

Proof of Theorem II1b.3. The primary ingredients are Forstneric’s theorem on
a polynomial hull P(S): If P contains one selection {{, f*(£)}, then P is swept out
by sections, and our Theorem saying (OPT) has a unique solution when N = 1.

Let S be the given set. Let S” denote a family of nice sets which expand S;
here r > 1, and 8! = S (see Fig. IV.1):

Choose the expansion to contain large enough sets so that for some r the set

P(S") has an analytic selection. The family ™ of sets could be regarded as the
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ST

88T analytic arcs

smallest s.t. selection exists.

Figure IV.1.

sublevel sets for an (OPT) problem. Namely, define I by
T'(e', 2) 4 mrin {r:z € &3},
then its sublevel sets are indeed the sets Sj. The statement, P(S') contains no
analytic selection is equivalent to:
The solution r° to this (OPT) problem is greater than one.
Indeed r° is the smallest r so that P(S"™) has an analytic selection.

Lemma. Ifr | r® and all P(S™) have smooth H*™ selections in their interior, then

P(S'o) is swept out by H> selections.

Proof. Normal families plus Forstneric. That is: pick (€o,20) € P(S ) with || <
1. We know by Forstneric that 3f” € A such that f"(§) = zo and fr(e?) € S5
for all §. Normal families tells us 3 subsequences f™ — f* on compacta. Now

f*(e®) € S;O a.e. (by Theorem IV.3) and f*(£) = 20, s0 (o, 20) € selection.  m

By the lemma P(S"") is swept out by solutions f* to (OPT) in H*. By Theo-
rem IV.1 there is only one such f* and it is smooth. Thus P(S™) = {(&2): f(6) =
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This immediately implies P(S™) = P(S!), since if P(S™") D> P(S!), then
P(S') has a trivial? fiber over some [£| < 1. Theorem IIIb.4 implies P(S!) = S,

contrary to assumption.

V. NUMERICAL SOLUTIONS
This section is hardly complete and makes only a few remarks. The subject

naturally divides into numerics for
(1) T which are quasi-circular (sublevel sets are disks).
(2) General I'.

The first subject contains the numerics of H* control and so is a huge field within
the engineering (not the numerical analysis) community. I shall not discuss it.
Numerical efforts on (OPT) for general I' and related problems are carried out

by various groups using very different methods.

(1) Peak point methods—Mayne-Polak-Salucidean, Fan-Tits

(2) Linear programming—Streit, Boyd, Daleh, Pearson.

(3) Convex programming—Boyd.

(4) p-synthesis—Doyle, the Honeywell group, Chu, Lenz, etc. (solves UN-

COPT)

(5) Quasi-circular gradient Newton—Merino-Helton.

(6) Frequency dependent, conformal mapping (N = 1)—Sideris.

Codes are available from several of these groups, including Fan-Tits, Streit, Boyd,
Helton-Merino. Efforts (1), (2) and (3) are carried out independently of numerical
efforts in classical H* control while (4), (5), and (6) iterate classical H* control
solutions.

Now we turn to numerical theory on (OPT). Theorems in section IV give
qualitative perspective to users or developers of programs. For example, Theorem
IV.6 gives diagnostics which should be helpful to many computer programs. More
details can be found in [BHMer], [H-Mer].

Of all this we emphasize one simple property of the (OPT) problem which we

suspect has broad numerical implications. Certainly it has a profound effect on

2 observed by a student, M. Lawrence, at University of Washington.
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the methods of Merino and myself. The issue is one of strong directional uniguess.
Suppose we are given I' and a solution f* to (OPT) for I. We say that f* has order
p directionality provided that for each h € Ay, there exists a constant c; > 0, so

that
(SUP) Sl;p I‘(ew, f*(eie) + th(em)) >4+ tfPen

for all small real numbers . Moreover, if p = 1, then f* is called a directionally

strongly unique solution to I'.

Theorem V.1. [HMer] Suppose T is nice. If N =1, then all solutions to (OPT)
are directionally strongly unique. If N > 1, then no solution is directionally strongly

unique.

The proof is easy (see §2.d [HMer]).

We believe that when directional strong uniqueness (DSU) holds (OPT) is
much better behaved numerically then when it fails. This is based on

(1) Extensive computer experiments using the Helton-Merino “gradient New-

ton” descent methods, see [HMer]. We are certainly curious to know if
other methods are sensitive to the DSU distinction.

(2) Theoretical estimates [HMer] on our gradient-Newton methods suggest

strongly that DSU is important.

As far as our computational efforts are concerned we consider the main open
question to be that of adapting our algorithms to improve their behavior when DSU
fails as well as determining its effect on other algorithms.

Research was supported in part by the Air Force Office of Scientific Research

and the National Science Foundation.
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FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS
Eduardo D. Sontag

Abstract

This paper surveys some well-known facts as well as some recent developments on the
topic of stabilization of nonlinear systems.

1 Introduction

In this paper we consider problems of local and global stabilization of control systems
&= f(z,u), f(0,0)=0 (1)

whose states z(t) evolve on R" and with controls taking values on IR™, for some integers n
and m. The interest is in finding feedback laws

u=k(z), k(0)=0
which make the closed-loop system
= F(z) = f(=, k() )

asymptotically stable about z = 0. Associated problems, such as those dealing with the
response to possible input perturbations u = k(z) + v of the feedback law, will be touched
upon briefly.

We assume that f is smooth (infinitely differentiable) on (z,u), though much less, —for
instance a Lipschitz condition,— is needed for many results.

The discussion will emphasize intuitive aspects, but we shall state the main results as
clearly as possible. The references cited should be consulted, however, for all technical
details. Some comments on the contents of this paper:

e We do not consider control objectives different from stabilization, such as decoupling
or disturbance rejection.

o Except for some remarks, we consider only state (rather than output) feedback.

o The survey talk centers on questions of possible regularity (continuity, smoothness)
of k. This focus leads to natural mathematical questions, and it may be argued that
that regular feedback is more “robust” in various senses. But —and to some extent this
is emphasized by those negative results that are presented- it is often the case that
discontinuous control laws must be considered (sliding mode controllers, or piecewise
smooth feedback, for instance). In addition, non-continuous-time feedback (sampled
control, pulse-width modulation), is often used in practice and is also not covered.
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¢ The assumption that k(0) = 0 is quite natural; it says that no energy should need
to be pumped into the system when it is at rest. The theory that results when this
requirement is not imposed is also of great interest, however.

o Another related interesting set of problems (“practical” stabilization) deals with bring-
ing states close to certain sets rather than to the particular state z = 0.

Space constraints force us to be selective in our coverage. Such selectivity will imply,
as is often the case with surveys, some emphasis towards the speaker’s favorite topics.
Hopefully the inclusion of an additional bibliography —see the end of the paper— makes up
for some of the omitted material.

1.1 What regularity will be imposed on k ?

The main questions that we want to address involve, as pointed out above, regularity of
k. The requirements away from 0, whether k should be, say, C°, C*, or C*, appear to
be not very critical; as we see later, it is often possible to “smooth out” a feedback law
that is merely continuous. (Of course, if k is not smooth enough, questions arise regarding
uniqueness of trajectories for the closed-loop system (2).) Much more critical is the behavior
of k at the origin. Because of these facts, and in order to simplify the presentation, we shall
consider just two types of feedback; the issues arising for these are quite typical of the
general problems. We shall say that k : R™ — R™, k(0) = 0, is:

¢ smooth: if k € C*°(R") .
¢ almost smooth: if k € C*°(IR"\{0}) and k € C°(R") .

The problems of finding stabilizing feedback laws of these two types are very different:
consider for instance the system
d=z+u’

which can be globally stabilized by the almost smooth law
ui=—v/22
resulting in
2=z
but cannot even be locally stabilized by a smooth u = k(z), since for any such k one would
necessarily have k(z) = O(z) so that the closed-loop system
& =z40(2%

is unstable.

It is probably fair to say that until now the most elegant local theory has been developed
for the smooth case, while the most elegant global results are those that have been obtained
for almost smooth stabilization.

2 Asymptotic Stability

As with regularity, there are also many possible notions of stabilization. These can be
classified under two broad categories:
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¢ State-Space: There is a map k such that the system
¢ = f(z,k(z))

has z = 0 as a locally or globally asymptotically stable point. We call this local or
global, smooth or almost-smooth, stabilization, depending on the regularity required
of k.

FIGURE 1: Pure state-feedback configuration

¢ Operator-Theoretic: There is a k so that the initialized system
z= f(z,k(z)+u), z(0)=0

induces a stable operator u +— z. There are many possible, nonequivalent, definitions
of stability for operators; this point will be discussed again later. This notion is of
interest when studying stability under persistent or decaying input perturbations, and
when trying to obtain Bezout factorizations for nonlinear systems.

u z » X

FIGURE 2: Additive state-feedback configuration

An alternative is to allow for an additional feedforward term, say with the same
regularity as k. Such a variation appears when studying coprime, not necessarily
Bezout, factorizations.

+

u [ 8 O £

v
x

FIGURE 3: State-feedback with input weighing

We shall concentrate on pure state-feedback problems, but will also explain how some
operator-type results can be obtained as a consequence of these.



2.1 Asymptotic controllability

An obvious necessary condition for state-space stabilizability is the corresponding open-loop
property of (null-) asymptotic controllability: for each small zo there must exist some
measurable, locally essentially bounded control u(-) defined on [0, +00) such that, in terms
of the trajectory z(-) resulting from initial 2o and input u, (a) z(t) is defined for all ¢ and
z(t) — 0 as t — o0, (b) this happens with no large excursions (stability), and (c) since k
is continuous at the origin, u(t) — 0. This property can be summarized by the statement:
for each € > 0 there is some § > 0 such that, for each |zo| < & there is some u(:) so that

z(t),u(t) = 0
and also
fz(t)] + |u(?)] < e V¢
where z(-) is the trajectory starting at zo and applying u.

(We use bars |£| to denote any fixed norms in IR* and IR™.)

For global stabilization, one has the additional property that for every z¢ there must
exist a control u so that z(t) — 0; we call this global asycontrollability.

Observe that, for systems with no controls, classical asymptotic stability is the same as
asycontrollability.

For operator-theoretic stabilizability, one has necessary bounded-input bounded-
output or “input to state stability” necessary properties. These will be mentioned later.

The main basic questions are, for the various variants of the above concepts:

To what extent does asycontrollability imply stabilizability? ]

Such converse statements hold true for linear finite dimensional time-invariant systems, but
are in general false, as we discuss next.

3 Casen=m=1

To develop some intuition, it is useful to start with the relatively trivial case of single-input
one-dimensional systems. Many of the remarks to follow are taken from [28].

For the system (1), asycontrollability means that for each z, or at least for small z in
the local case, there must exist some u so that

zf(z,u) <0
(see [28] for a detailed proof). Consider the set

0 := {(z,u) |z f(z,u) < 0}

and let
(2, u) -z

be the projection on the first coordinate. Then, global asycontrollability implies that
~0 = R™"\{0}

while local asycontrollability says that this projection contains a neighborhood of zero; in
addition, a local property about (0,0) also holds, since u must be small if  is small.

On the other hand, if k is any feedback law giving asycontrollability, it must hold that
k provides a section over IR*\{0} of the projection , i.e.

(z,k(z)) €O V2 #0
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Thus the main problem is essentially that of finding regular sections of =.

Using this geometric intuition, it is easy to construct examples of systems which are
asycontrollable but for which there is no possible almost-smooth —or for that matter, not
even just C° away from zero— feedback stabilizer. For instance

t=2|(u=—1)-(z-1)] [ -2+ (u+1)?
is so that O consists of the two components
O ={(u-1)>?<z-1}
and
Oy={{(ut+1)’<2-2,2z#0}

and hence admits no continuous stabilizer, even though it is clearly asycontrollable. (See
Figure 4: darkened area is the complement of O; note that no continuous curve is contained
entirely in @ and projects onto the z-axis.) On the other hand, in this example it is easy to
construct a controller —a section of the projection with k(0) = 0- that is everywhere smooth
except for a single discontinuity.

Il
11

i . \ x (
N \) "
L
/
//
| ull
'
FIGURE 4: No continuous sections FIGURE 5: Semiglobal vs. global

This counterexample is based on the impossibility of choosing controls; the paper [30]
provides examples where not even a continuous choice of state trajectories is possible.

The graphical technique allows answering other questions, such as those in [28] regarding
the possibility of non-Lipschitz stabilizers even when there are none that are Lipschitz.
In [31], the authors discuss “semiglobal” stabilizers in comparison with global ones: The
question is whether it may be the case that for each compact subset of the state space
there is a feedback stabilizer, but that there is none that works globally. They provide a
counterexample analogous to the one illustrated graphically in Figure 5, the darkened area
corresponding to the complement of O. Note that for each fixed interval on the z-axis there



66

are obviously smooth sections of the projection —as indicated by a curve—, but there can be
no global sections.

An interesting fact for one-dimensional systems is that there are always rather regular
time-varying feedback stabilizers. For the precise definition of smooth time-varying and
more generally dynamic stabilizers see the reference [28]; essentially one obtains a smooth
stabilizer for the system obtained by adding a parallel integrator. The idea of the proof in
[28] is easier to understand with an example. In Figure 6a, again with the darkened area
corresponding to the complement of O, we consider two possible feedback laws, illustrated
by their graphs. There is no way to obtain a continuous stabilizing feedback law, i.e. one
whose graph stays entirely in ©@. But the idea is to oscillate very fast between the two
indicated (non-stabilizing) laws. Let B = B, denote the set of 2’s where at any given time
t the feedback law satisfies z f(z, k(t,z)) < 0 (Figure 6b). This set oscillates, and we design
the time variation so that it moves to the left slowly but it moves to the right fast (for
z > 0, and the converse for z < 0). A state z > 0 to the right of B will continue moving
to the left, towards the origin, until it hits the set B. At that point, it will move in an
undesired direction, but will do so only for a very small time duration, with a net effect of
a leftward move. The above reference provides a complete proof.

u
4

=/ > x
I—

v

FIGURE 6(a): Time-varying continuous example

> | < <
> I .
0 B

4+

FIGURE 6(b): Bad set for example in 6(a)

A different result on dynamic feedback stabilization of one-dimensional systems holds
for analytic f, and is given in the work [8]. It is shown there that asycontrollability is
equivalent to almost-smooth stabilization of the enlarged system

é:-f(ziy)i y=u.

Later we shall see examples of systems (in higher dimensions) for which not even dynamic
stabilization can be done continuously.

4 General n,m — Main Techniques

The one-dimensional case illustrated that smooth or almost-smooth stabilizers may fail to
exist even if the system is asycontrollable. We now survey the more general case, concen-
trating on the following techniques:
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1. First order methods (linearization)

2. Topological techniques

3. Lyapunov functions

4. Relation to operator-theoretic stability

5. Decomposition approaches

We will not cover, due to time and space limitations, the very interesting work being
done on special cases such as two-dimensional systems ([5], [4]) and in particular the use of
center manifold techniques and perturbation analysis (see e.g. {1],(2]).

5 First-Order Techniques

We review here some facts that apply to the problem of local, smooth stabilizability.
[The example = z + (—+/2z)3, discussed earlier, shows that these techniques do not say
anything interesting regarding almost smooth feedback.] Write

& = Az + Bu+ o(z,u) (%)

and call T first-order (or “hyperbolically”) stabilizable if the linearized system & = Az + Bu
is asycontrollable, or equivalently, if there exists a matrix F so that

A+ BF
is a Hurwitz matrix. This property is also equivalent to the requirement that
rank[s] — A,B} =n whenever Res >0

(PBH condition).

For each stabilizing feedback matrix F for the linear part, the linear law u = Fz is also
a local stabilizer for the nonlinear system, and the following classical result is obtained:
| Theorem 1. T first-order stabilizable = ¥ locally smoothly stabilizable.

Recall that this is proved by showing that a quadratic Lyapunov function for ¢ =
(A + BF)z is also a local Lyapunov function for the closed loop system

&= (A+ BF)z + o(z)

-see e.g. [36).
The converse of Theorem 1 is obviously false; for instance the system

i=u®
has a non-asycontrollable first-order part # = 0 but the smooth (even linear) feedback law
u = —z results in # = —z3 which is asymptotically stable. However, this example illustrates
what can be said about the converse. Note that even though the linearized system is not
asymptotically stabilizable, its only uncontrollable eigenvalue has zero real part. In addition,
the stability that can be achieved is not ezponential, but is “slower” than exponential.

One says that the origin is exponentially stable for £ = f(z) if there exist positive
constants A and M so that

|2(t)| < Me™|2(0)]
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for all small enough initial states and all ¢t > 0. By smooth ezponential stabilizability we
mean that there is a smooth k so that the closed loop system (2) is locally exponentially
stable. The next two results then hold:

| Theorem 2. X is locally smoothly stabilizable => rank[s] — A,B] =n VRes > 0. |

I Theorem 3. T first-order stabilizable <= X exponentially stabilizable. l

The first of these is proved by appealing to the standard controllability decomposition:
If the rank condition fails, under the variables in this decomposition the closed-loop system
corresponding to any smooth feedback law must result in block equations

(A1 + BlF)Zl + Agzs + O(CB)
Aszs + o(z)

z

22

where A3 has some eigenvalue with strictly positive real part . But then Lyapunov’s Second
Theorem on Stability, or one of its variants such as Cheataev’s Theorem, —applied to the
z3-equation,— implies that the closed-loop system is unstable, contradicting the assumption.

The second result is “folk” knowledge, and an analogous result for arbitrary-rate stabi-
lization was given in {12]. A sketch of its proof is as follows. Sufficiency is proved as with
Theorem 1. Conversely, assume that k is a smooth feedback stabilizer, and look at the
closed-loop system. Again via the controllability decomposition, the problem reduces to
showing that the eigenvalues of the linearization of an exponentially stable equation must
have negative real part. Let A be as in the definition of exponential stability, and consider
the change of variables 2(t) := e%tz(t) which results in an equation

() = ST+ A)z + o(2,1)

where g(z,t) is o(z) uniformly on ¢. Since z(t) decays at rate A, it follows that z decays
at rate A/2, and hence the z equation is asymptotically stable. From Cheataev’s Theorem,
one concludes that %I + A has all eigenvalues with real part < 0, from which it follows that
all eigenvalues of A have strictly negative real part, as wanted.

The gap in the characterization of local smooth stabilizability is due to the possible
modes corresponding to Res = 0, i.e. the “critical” cases where rank[s] — A, B] < n for
some purely imaginary s. This is precisely the point at which Center Manifold Techniques
become important.

6 Topological Techniques

In this section we review some topological considerations that establish limitations on what
almost smooth feedback can achieve. (In fact, the limitations will apply also to even weaker
types of feedback.)

To motivate, let’s start with an example due to Brockett. Consider the 3-dimensional
2-control system

2 = w
iz = U2
i:3 = U221 — U122
for which
s 0010
[sI—A,B]:(O s 00 1)
00 s 00
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looses rank at 8 = 0. First-order tests for smooth stabilization are thus inconclusive, except
for the fact that ezponential stability can’t be achieved. On the other hand, this system is
completely controllable, since it is a system of the type

&= u101(2) + u292(2)
(“symmetric” system with “no drift term”) and

det (91) 92, [91,92]) =2 ?é 0

everywhere, where (g, g2] denotes the Lie bracket. The system is in particular asycontrol-
lable, since controllability is preserved using arbitrarily small u;, u;. This suggests that the
system might be smoothly stabilizable. But in fact it isn’t. Consider the mapping

(z,u) = f(z,v) (8)
which here is

R - BR3: (21,2,23, %, u) — (U1, Uz, upz1 — wi23) .

0
(0) , EF£0
€

are in its image, so the system can’t be smoothly stabilizable, by Brockett’s necessary
condition:

Theorem 4. If ¥ is almost smoothly stabilizable then the image of (3) contains some
neighborhood of zero.

No points of the form

For linear systems, Brockett’s condition is that

rank[A,B]=n
which is the case s = 0 of the PBH criterion.

Theorem 4 was given in [6]. It reduces to the purely differential-equation result that the
image of F(z) = f(z,k(z)) must contain a neighborhood of zero if the closed-loop vector
field F is asymptotically stable. The following elementary proof was suggested to us by
Roger Nussbaum (ca. 1982), and is analogous to those proofs given in [37] and [15].

Consider the closed-loop system ¢ = F(z(t)) and let & denote the flow associated to

this. Then .

1
H(z,t):= 7 [§ (1 — t,z) - a:] , te[o,1]
is a homotopy between F(z) and —z. (As ¢t — 17, the flow converges uniformly to zero by
asymptotic stability, while as ¢ — 0% this is F(z) by the definition of flow.) From this and
the fact that F can have no zeroes —equilibria of the ode~ outside z = 0, one concludes that
F must have topological degree (—1)™ with respect to all points p near 0, and so F(z) = p
is solvable for all such p.

The above proof can be extended to show that not even “practical stability” can be
achieved, in the sense that one looks for stabilizers defined away from 0 and with the
property that closed-loop trajectories converge to a neighborhood of the origin. Moreover,
even arbitrary continuous feedbacks (satisfying conditions of existence and uniqueness of
trajectories) are ruled out by the theorem. In [37], it is shown that global attractivity is
also ruled out, even if local asymptotic stability is not required to hold.

Note that when a system fails Brockett’s test, it cannot be stabilized by almost smooth
dynamic feedback either, in the sense that any extended system

z = f(z,u)
z = v

where v is a new control, and z is a new state of state variables, will still fail the test.
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6.1 Other Topological Techniques

Consider now the following two-dimensional, single-control system ([3])

£=g(E)u

;) 0= ("))

(This system represents the real and imaginary parts of the one-dimensional complex system
% = uz?.) For each control, one can move at different velocities along the integral curves of
€= g(€). These curves are the circles centered on the y-axis and passing through zero, plus
the positive and negative z-axis; see Figure 7. Thus the system is asycontrollable, and in
fact every state can be controlled in finite time to the origin. As opposed to the previous
example, however, this one does pass Brockett’s test, and linear tests are also inconclusive.
We now show that this system is not almost-smoothly stabilizable, even locally, and use
this to illustrate another technique.

where

y
4

7'y

\ 4
FIGURE 7: Orbits of ¢ FIGURE 8: CIf level sets

Assume that there is a feedback law stabilizing this system on some open set U con-
taining the origin. Consider the closed-loop system

€= g(E)k(§)

that results; by assumption the left-hand side is at least Lipschitz away from the origin, so
this is a well-posed differential equation.

Choose any circular orbit of ¢ which is entirely contained in U. Then the restriction
of the closed-loop equation to this circle provides a differential equation which is globally
asymptotically stable on the circle. But this is impossible, because of the following fact:

Theorem 5. If a differential equation on a manifold M, & = F(z), F(zo) = 0, has z¢ as
a globally asymptotically stable state, then M must be contractible.
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The only property needed for this result is that solutions exist and be unique, plus
continuous dependence. The proof is almost trivial; see below. A somewhat stronger state-
ment, often refered to as “Milnor’s Theorem”, asserts that M must in fact be diffeomorphic
to an Euclidean space, but the above version seems to be enough for most applications.

To prove the Theorem, just note that the map

t
H(z,t) =& (1—_7,2) ) te [0,1]

provides a homotopy between the identity and the constant map H(z,17) = zo; here & is
the flow induced by F as before.

For the particular example that we had above, this is all very intuitive: for y > 0 and
2 > 0 near the origin, we must move to the left —stability part of “asymptotic stability”—,
and for z < 0 to the right. Continuing back along any fixed circle, we reach a point where
we must move both to the left and right, which would create a discontinuity of the feedback
law, unless we passed first through zero which would create a nonzero equilibrium.

In this example, in fact, not even attractivity (all trajectories converging to zero) can
hold with continuous feedback. This is because such a feedback law must satisfy

-1 1
k(0)>0 and k(0)<0
(since on the z-axis the equation is Z = 2%u, § = 0). Thus any curve between (~1,0)’ and

(1,0) will be so that k has some zero somewhere on it, giving a new equilibrium point of
the closed-loop system.

Theorem 5 implies that mechanical models with a noncontractible phase space -rigid
body orientations, for example— give rise to systems that cannot be smoothly, or in any
reasonable sense continuously, globally stabilizable.

7 Lyapunov Functions

Assume that ¥ is globally almost-smoothly stabilizable. The closed-loop system (2) being
globally asymptotically stable, standard inverse Lyapunov theorems (see for instance Theo-
rem 14 in [18],) can be used to conclude that there exists a proper (V(z) — oo as z — o0),
positive definite (V(2) > 0 for z > 0, V(0) = 0) function V so that

LrV(z)=VV(2)F(z)<0 Yz #0
which implies in open-loop terms that
(Ve #0)(3u) VV(2)f(z,u)<0

and in addition, by continuity of k at 0, the property
(Ve>0)(3>0) |0<|z|<bs > ﬁi<n VV(z)f(z,u) <0
u|<e

We call such a function V a control-Lyapunov function (“clf”). (In the terminology of
[26], this would be a clf which satisfies the small control property.) The above-mentioned
theorems show that there always exists a smooth clf if ¥ is almost-smoothly stabilizable.

Intuitively, a clf is an “energy” function which at each nonzero z can be decreased by
applying a suitable open-loop control, and this control can be picked small if 2 is small.



72

It is not hard to show that the existence of a cIf implies asycontrollability. In fact, this
implication holds even if we ask only that V' be continuous. In that case the gradient may
be meaningless, so we replace the defining condition by

(Ve>0)3>0) |o<|z|<6 = ”n|1|ig DYV, (z) < 0]
w|[<e

where Dt indicates, as usual in the literature on nonsmooth Lyapunov functions, the Dini

derivative Via(t v
D*V,(z0) := limsup V(=(®)) = V(z0)
t—0t t
and z(t) is the trajectory corresponding to the measurable control w (the norm is the sup
norm).

To state the next two results, we assume for simplicity that the system (1) is affine
in controls, a class that includes most examples of interest and which allows us to avoid
“relaxed” controls. For

¢ = fo(z) + G(z)u, fo(0)=0, G(z) € R™™ Vz

we have:
I Theorem 6. ¥ is asycontrollable <= it admits a C° clf. I

I Theorem 7. I is almost smoothly stabilizable <= it admits a C* clf. ]

Thus we know that there is no possible smooth clf for the example seen before whose
orbits are circles (Figure 7), since there are no almost-smooth stabilizers. But this system
is asycontrollable, so we know that there do exist continuous clf’s. Figure 8 illustrates
what a typical level set for one such clf may look like; note the singularity due to lack of
smoothness.

Theorem 6 was proved in [24], and is based on the solution of an appropriate optimal
control problem. “Relaxed” controls are used there, because the more general case of
systems not affine in controls is treated, but the proof here is exactly the same. Also, the
“small-control” property didn’t play a role in that reference, but as remarked there —top of
page 464—, the proof can be easily adapted.

Theorem 7, which we will refer to as Artstein’s Theorem, was originally given in [3],
which also discussed the example in Figure 7. It has since been rediscovered by others,
most notably in [32] and other work by that same author. In every case, the proof is based
on some sort of partition of unity argument, but we sketch below a simple and direct proof.
This result is very powerful; for instance, it implies:

Corollary. If there is a continuous function k : R™ — R™ with k(0) = 0 and such that
2 = fo(2) + G()k(z)

has the origin as a globally asymptotically stable point then there is also an almost-smooth
global stabilizer.

Since solutions may not be unique, the assumption is that for every trajectory the
asymptotic stability definition holds. By Kurzweil’s Theorem, —see the discussion in [3]-
there is a smooth clf, and hence by Theorem 7 there is an almost smooth feedback as
desired. This explains our earlier remarks to the effect that the precise degree of regularity
away from zero seems to be not very critical, so long as at least continuity holds.

A proof of Artstein’s Theorem is as follows. For simplicity, we consider just the case
m = 1 and a system & = fo(z) + ug(z), but for m > 1 the proof is entirely analogous.
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As explained earlier, one implication is immediate from the converse Lyapunov theorems.
Assume then that V is a smooth clf, and let

a(z) := VV(z).fo(z) , b(z):= VV(z).9(z)

Then

the pair (a(z), b(z)) is stabilizable Vz # 0
(for each fixed z as an n = m = 1 LTI system). On the other hand, an almost-smooth
feedback law that stabilizes and so that the same V is a Lyapunov function for the closed-
loop system is a k(-) so that

a(z) + k(z)b(z) < 0 Vz £ 0

and is smooth for z # 0 and satisfies k(z) — 0 as z — 0. This is basically a problem on
“Families of Systems”, if we think of (a(z), 5(z)) as a parameterized set of one-dimensional
LTI systems. We use a technique due to Delchamps ([9]) in order to construct k. Consider
the LQ Problem

00
min / w2(t) + by2(1) dt
o
for each fixed z, where the “y” appearing in the integral is a state variable for the system
y=ay+bdu .

This results in a feedback law u = ky parameterized by z. Moreover, note that when z
is near zero also b = b(z) is small, by continuity and the fact that, because V has a local
minimum at the origin, VV(0) = 0. Therefore one may expect that when z is near zero
the b? term gives more relative weighting to the u? term, forcing small controls and thus
continuity of the feedback at the origin.

Explicitely solving the corresponding algebraic Riccati equation results in the feedback

law
koo — a+Va?+ bt
- b
which is analytic in a, b; the apparent singularity at b = 0 is “removable”, and the feedback
is 0 at those points with b(z) = 0. Further, as proved in [26], this is C° at the origin, as
desired.

The same formula shows how to obtain a feedback law analytic on z # 0 provided that
fo, 9,V be analytic. A different construction can be used to prove that there is a rational
feedback stabilizer if fo, g,V are given by rational functions, but it is not yet clear if this
rational stabilizer can be made continuous at the origin.

The above formula for a stabilizing feedback law can be compared to the alternative
proposed in [32], which is

a
k(z) = X3~ b

where x : R™ — [0,1] is any function such that x =1 where a > 0 and x = 0 about b = 0.
(Such functions exist, but are hard to construct explicitely.)

Note that when it is known that a < 0 for all z, one may try the feedback law k(z) :=
—b. If there is sufficient “transversality” between fo and g a LaSalle invariance argument
establishes stability. The assumption that for some V' there holds a < 0 everywhere is valid
for instance if one knows that a = 0 for such a V', which in turn happens with conservative
systems. This idea, apparently first studied in [11], gave rise to a large literature on feedback
stabilization; see for instance [21], [10], [16], and references there. For example, consider
the system ([11])

21 = 22

Z, = —21— 21U
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for which V := (1/2)(z? + z3) satisfies a = 0. The feedback law k(z) := —b(z) = —212
leads to a Liénards-type closed-loop equation, which can be proved asymptotically stable
using the invariance principle. This function V is not a cIf in our (strict) sense, since one
can not guarantee

(Vz # 0)(3u) VV(z)f(z,u)<0

but just the corresponding weak inequality. However, one can still try to apply the above
control law, and the formula gives in this case precisely the same feedback, —z;2, (we thank
Andrea Bacciotti for pointing this out to us).

8 Input-to-State Stability

The paper [25] studied relations between state-space and operator notions of stabilization.
One such notion is that of input to state stabilization, which deals with finding a feedback
law k so that, for the system

2= f(z,k(z) + u) (4)

in Figure 2, a strong type of bounded-input bounded-output behavior is achieved. We do
not give here the precise definition of input-to-state stable system (ISS), save to point out
that such stability implies asymptotic stability when u = 0 as well as bounded trajectories
for bounded controls; see also [27] for related properties. The main Theorem from [25] is:

Theorem 8(a). If the system # = fo(z) + G(z)u is globally smoothly (respectively,
almost smoothly) stabilizable then there exists a smooth (respectively almost smooth) k
so that (4) is ISS.

Note that, in general, a different k is needed than the one that stabilizes; for instance

t=—z+ (2 +1)u

is already asymptotically stable, i.e. k = 0 can be used, but the constant input u = 1
produces an unbounded trajectory —and a finite escape time from every initial state. On
the other hand, k(z) = —z gives an ISS closed-loop system.

The result holds also locally, of course. Further, there is a generalization to systems
which are not necessarily linear in controls:

Theorem 8(b). If the system & = f(z,u) is smoothly (respectively, almost smoothly)
stabilizable then there exists a smooth (respectively almost smooth) k and an everywhere
nonzero smooth scalar function 8 so that the system

& = £z, k() + B(=)u)

in Figure 3 is ISS.

9 Decomposition Methods

Consider a cascade of systems as in Figure 9,

f(z,2)
9(z,u)

8
]
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FIGURE 9: Cascade of systems

Many authors have studied the following question: If the system z = f(z, z) is stabiliz-
able (with z thought of as a control) and the same is true for # = g(z,u), what can one
conclude about the cascade? More particularly, what if the “zero-input” system 2 = f(z,0)
is already known to be asymptotically stable?

There are many reasons for studying these problems ([34}, [17], [7]):

¢ They are mathematically natural;

¢ In “large scale” systems one can often easily stabilize subsystems;

¢ Many systems, e.g. “minimum phase” ones, are naturally decomposable in this form;
¢ In “partial linearization” work, one has canonical forms like this;

¢ Sometimes two-time scale design results in such systems.

The first result along these lines is local, and it states that a cascade of locally asymp-
totically stable systems is again asystable. One can also say this in terms of stabilizability
of the z-system, since any stabilizing feedback law u = k(z) can be also thought of as a
feedback u = k(z, 2):

Theorem 9. If z = f(z,0) has 0 as an asymptotically stable state and if 2 = g(=,u) is
locally smoothly stabilizable then the cascade is also locally smoothly stabilizable.

This follows from classical “total stability” theorems, and was proved for instance in [34]
and in a somewhat different manner in [27] using Lyapunov techniques. The same result
holds for almost-smooth stabilizability.

There is also a global version of the above:

Theorem 10. If z = f(z,0) has 0 as a globally asymptotically stable state and if
# = g(z,u) is globally smoothly stabilizable then the cascade is also smoothly globally
stabilizable, provided that the system z = f(z,z) be ISS.

The last condition can be weakened considerably, to the statement: If 2(¢) — 0 as an
input to the z-subsystem, then for every initial condition 2(0), the trajectory z(-) is defined
globally and it remains bounded. (The theorem shows that in fact it must then also go to
zero.)

For a proof, see [27]. Under extra hypotheses on the system, such as that f be globally
Liptschitz, the ISS (or the BIBS) conditions can be relaxed —the paper [31] provides a
detailed discussion of this issue, which was previously considered in [37] and [19].

Consider now the more general case in which the ISS condition fails. The last statement
in Theorem 10 suggests first making the z-system ISS, using Theorem 8(b), and thus proving
stabilizability of the composition. The problem with this idea is that the feedback law cannot
always be implemented through the first system. One case when this idea works is what is
called the “relative degree one” situation in zero-dynamics studies. Given is a system

f(z2)

u

z

&
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where 2 and u now have the same dimensions. Assume that k and S have been found
making the system

z = f(z,k(2) + B(2)=)
ISS with z as input. Then, with the change of variables

2= k(z) + B()y

(recall that B(z) is always nonzero), there results a system of the form

z = f(z,k(z) + B(2)y)
1
y = —[h(z,y)+
¥ ﬂ(z)[ (z,9) + 4]
with kA a smooth function. Then u := —f(z)y + h(z,y) stabilizes the y-subsystem, and

hence also the cascade by Theorem 10.

Other, previous, proofs of this “relative degree one” result were due to [14], in the context
of “PD control” of mechanical systems, as well as [32] and [7]. In [29], an application to
rigid body control is given, in which the equations naturally decompose as above. Another
such example is the following one. Assume that we wish to stabilize

3

2 = u
and note that u := K(z) = —z stabilizes the first system. Since
i=(u-2)>

is ISS —because z(u— z)3 < 0 for large z and bounded u,— one can chose 8 = 1 in the above
construction. There results the smooth feedback law

u=—z—z—zs

stabilizing the system.

10 Why Continuous Feedback?

Since smooth or even continuous feedback may be unachievable, one should also study
various techniques of discontinuous stabilization, and this is in our view the most important
direction for further work. Here we limit ourselves to a few references:

o Techniques from optimal control theory typically result in such stabilizing feedbacks;

o There are many classical techniques for discontinuous control, such as sliding mode
systems (see e.g. [33]);

o A piecewise-analytic synthesis of controllers was shown to be possible under control-
lability and analyticity assumptions on the original system ([30]);

o If constant-rate sampling is allowed, piecewise-linear feedback can often be imple-
mented ([22});

¢ Pulse Width Modulated control is related to sampling and becoming popular (see e.g.
[20]).
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11 Output Feedback

Typically only partial measurements are available for control. Some authors have looked
at output stabilization problems, and in particular the separation principle for ob-
server/controller configurations; see e.g. [35).

For linear systems, one knows that output (dynamic) stabilizability is equivalent to sta-
bilizability and detectability. A generalization of this theorem, when discontinuous control
is allowed, was obtained in [23], based on the stability of the subsystem that produces zero
output when the zero input is applied, a notion of detectability for nonlinear systems. Very
little is still known in this area, however.
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A MONOTONICITY RESULT FOR THE PERIODIC RICCATI EQUATION

Sergio Bittanti, Patrizio Colaneri

Abstract

The differential Riccati equation with periodic coefficients is
considered in this paper. Attention is focused on the symmetric and
periodic solutions, in particular on the strong solution. It is proven
that the strong solution is greater than or equal to any solution of
another periodic Riccati equation with coefficients which are suitably
related to those of the original equation.

Key words : periodic linear systems, periodic Riccati equation, strong
solution, stabilizability of periodic systems

1. INTRODUCTION

In [6], H.K.Wimmer proved an interesting monotonicity result for
algebraic Riccati equations. This result points out the monotonic
behaviour of the solutions when the equation coefficients are suitably

modified.

The purpose of this paper is to supply the (nontrivial) generalization
of Wimmer’'s theorem to differential Riccati equations with periodic
coefficients. As a byproduct, a number of properties concerning the
periodic Riccati equation (in standard and nonstandard form) are also

obtained.

In the sequel, some basic notions of PSICO (Periodic Systems,
Identification, Control and Optimization) will be used, see [1] for a
survey. In particular, given a T-periodic matrix A(-), i.e. A(t+T)=A(t),
Vv t, the associated transition matrix will be denoted by &A(t,r). The

matrix QA(T,O) is called monodromy matrix of A(-). Its eigenvalues,
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which determine the system stability, are called characteristic
multipliers. By Floquet theory, see e.g. [7], @A(T,O) = eAT, where the
eigenvalues of A are named characteristic exponents.

The structural property of interest herein is stabilizability. A number
of different yet equivalent characterizations of stabilizability have
been recently obtained [2]. In particular, it can be shown that a
periodic pair (A(-),B(-)), where A(t)eRmm and B(t)ERmun s is
stabilizable if and only if, for each characteristic multipliers X of

A()

4 -
8,(T,0)'n = An

¢k(0,t)'B(t)'n=0, vte[0,T]

2. THE PERIODIC RICCATI EQUATION

Consider the periodic Riccati equation
- é(t) = A(t)'P(t) + P(t)A(t) - P(£)B(t)B(t)'P(t) + Q(t) (1)

where, as already stated, A(t)eRPnz B(t)eRmm; moreover, Q(t)eRmm.
Matrices A(-), B(-) and Q(-) are periodic of period T. Note that no

definiteness assumption on Q(t) is made.

Letting

Q(t) A(t)’
M(t) = ) (2)
A(t) -B(t)B(t)’

equation (1) can be also written as

I

n

“B(6) = (I, P(D)]" M(®) | phoy

(3)
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Amongst the Symmetric T-Periodic (SP) solutions of (1), the attention
will be focused on the so called strong solution. AnSP solution
Ps(-) is said to be strong if the characteristic multipliers of ;(~) =
A(:) - B(~)B(~)’Ps(-) belong to the closed unit disk. This notion can be
seen as a generalization of the well known concept of stabilizing
solution (characteristic multipliers of ;(-) belonging to the open unit
disk).

The SP solutions of equation (3) will be compared with the SP solutions

of the following Riccati equation

’ I
B(r) = (1 B()] M) 5, (4)
where
Qce) NOK
f(ey = | _ - (5)
A(t) -B(t)B(t)’

Here, A(-), B(-), Q(:) are T-periodic matrices of the same dimensions of
A(-), B(-) and Q(-) respectively.

The comparison will be made under the basic monotonicity assumption

M(t) = M(t), vV t € [0,T].

This assumption reflects into a monotonicity property of the SP
solutions of the two periodic Riccati equations (3) and (4). Precisely,
under suitable hypothesis, any SP strong solution of (3) turns out to be
greater then any SP solution of (4). In fact, under the same hypothesis,

there is at most one SP strong solution of (3), which is also maximal.

3. MAIN RESULT

The proof of the main result relies on the following basic Lemma

concerning the periodic differential Riccati equation (of special type)
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-ﬁ(t) = F(t)'W(t) + W(E)F(t) + W(t)G(t)G(t)'W(t) + H(t)'H(t) (6)

F(t); G(t) and H(t)'H(t) are T-periodic matrices of the same dimension
of A(t), B(t) and Q(t), respectively.

We begin with by stating a preliminary result, the proof of which is

omitted for the sake of conciseness.

Microtheorem

Consider equation (6) and suppose that F(-) has n characteristic
multipliers belonging to the open unit disk and n=n-n characteristic
multipliers belonging to the unit circle.

Then, there exists a differentiable T-periodic nonsingular

transformation S(-): R = R™ such that

1

F(t) = S(E)F(£)S(t)" ! + s(r)s(e)*

is constant and given by

where the eigenvalues of F1 anf F2 coincides with the characteristic
exponents of F(:) with negative or null real part, respectively.
Moreover, letting

ecey = S(E)G(t) , V t , H(t) = H(E)S(e)™L, v ¢

and defining



87

G(c) - F'Cz(t) + G(c)? + G(c)&(c)é(c)'a(c) + ﬁ(t)'ﬁ(t) €]

the SP solutions of equation (6) are in one-to-one correspondence with

the SP solution of equation (7), with
W) - (s Hrumso
Notice that, from this result, it follows that
w(t) 20, vV te [0,T] = a(t)zo , Vte[0,T].

Lemma

Suppose that (F(:), G(-)) is stabilizable and that the characteristic
multipliers of F(:) belong to the closed unit disk.

Then an SP solution of (6), if any, is positive semidefinite at each

time point:
W(t) 20, VvV t.

Proof
Let n, be the number of characteristic multipliers of F(-) with null

real part.

- Thanks to the previous Microtheorem, it can be assumed without any

loss of generality that
F(t) = const. = (8)

where F1 and F2 are square matrices the eigenvalues of which are the
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characteristic exponents with negative or null real part, respectively.

- We first prove that

0 n
w<c)[€}=o,vc,v52eRz (9)
2
and
0 n
H(E'H(E)| | =0, Ve, VEe R% . (10)
2

To this purpose, consider a particular vector , such that

Obviously, | A|=land

efly =iy (11)
with y ' = [0 xz'] . Consider then
z(t) = 'ty . (12)

*
From (1), premultiplying by z(t) and postmultiplying by =z(t), it
follows that

- L EOT®Z®) = 2O (W) + HE)H(E) Iz(8). (13)
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By integrating (13) over [0,T], the periodicity condition W(T)=W(0) and

(11) and (12) entail that

G(t)'W(t)z(t) = 0, V t € [0,T]
H(t)'H(t)z(t) =0, V t € [0,T]

Now, postmultiplying (6) by z(t) and using (14) and (15) one
. Werz(e) = - F rW(©)z(t)
dt

Therefore

w)ze) = e F "Tuoyy .

Substituting (16) into (l4), it follows that

c(t)’ e F'toyy =0, vt e [0,T].

From (11) and (12)

z(T) = eFTy =Xy.

(14)
(15)

obtains

(16)

17)

Hence, taking into account the periodicity of W(:) and equation (16),

F

' Taoyy = F Tu(m)z(ma™ = A W)y

(18)

i.e W(0)y is an eigenvector of eFT associated with the modulus one
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eigenvalue X\~

In conclusion, a vector n has been found such that

’ =
2L(T,0)'n = Xn ,

G(t)'2,(0,t)'n =0, ¥V t e [0T],

see (17) and (18). The stabilizability of (F(-), G(-)) implies that n =
0, namely W(0)y = 0, and, from (16),

W(t)z(t) =0 , Vv te [0, T] . (19)

It is possible to generalize the previous arguments to show that (15)
and (19) hold true even if, in (12), y is replaced by a generalized
eigenvector associated with A. Then, by considering all eigenvalues of

Fz’ the following identities are obtained:

0 a
H(t)'H(t)eFt[ 6} -0,Vte[0T), Ve eR® (20)
2
Ft 0 ®
eS| | -0, vee (0T, Ve eRT . (21)
2

Since eFt is nonsingular and block diagonal, according to partition (8),
the conclusion given by (9) and (10) can be easily deduced from (20) and
(21).

~ It is important to observe that (9) and (19) entail that W(t) and

H(t)'H(t) have the following structure

V() 0
w(e) = , (22)
0 W ()
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Hl(t)’Hl(t) 0

H(t)'H(t) = 0 0

(23)

where Wl(t) and Hl(t)'Hl(t) have the same dimensions of matrix Ff
By means of partitiomns (22) and (23), the Riccati equation (6) can be

reduced to the following one:

- Wl(t) - Fl’Wl(t) + Wl(t)F1+ Wl(t)Gl(t)Gl(t)’Wl(t) + Hl(t)’Hl(t)

(24)

where Gl(t)Gl(t)' is given by the first n-n, rows and n-n, columns of
G(t)G(t)'.

- Suppose that ~W1(t) is an SP solution of (24). Replacing
Wl(t)Gl(t)Gl(t)'Wl(t) by Wl(t)Gl(t)Gl(t)’Wl(t), equation (24) becomes a
Lyapunov equation with periodic coefficients. Since F1 is asymptotically
stable, this Lyapunov equation admits a unique SP solution Wl(t) = Wl(t)
which is positive semidefinite V t, see e.g. [3] and this completes the

proof.

Theorem
Suppose that (A(-),B(:)) is stabilizable and that equation (1) has at

least an SP solution. Then
— The Riccati equation (1) has a strong SP solution Ps(-).
— Suppose also that M(t) = M(t) , Vv t € [0,T], where M(t) and M(t) are

given by (2) and (5) respectively. If P(t) is any SP solution of

equation (6), then

P (t) > P(t) , v t e [0,T].
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Proof

For the existence of Ps(-) see [6]. Let

M(t) = M(t) - M(t) and W(t) = P (t) - P(o)

Note that, by assumption, M(t) = 0, V t € [0,T]. From (3) and (4), it

can be shown that W(-) satisfies equation (6) with

F(t) = A(t) - B(£)B(t)'P (¢,
G(t) = B(t) and
_ _ I
H(e)'H(e) = (I B(e)] Mce) | 7
P(t)

Since P (-) is a strong solution of equation (1), the characteristic
s
multipliers of F(:-) belong to the closed unit disk. Then, the

statement is a straighforward consequence of the previous Lemma.

Corollary

Suppose that ((A(-), B(-)) is stabilizable and that equation (1) has at
least an SP solution. Then, the strong solution PS(-) is wunique.
Moreover, Ps(-) is maximal, i.e. Ps(t) = P(t), V t, for any SP solution
of equation (1).

Proof

The strong solution is maximal, as it can be easily concluded from the
theorem above by setting M(E} = 0, V t. Uniqueness of the maximal

solution is obvious.

Note that the above conclusions hold with no assumption on the
definiteness of Q(t). If, besides the stabilizability hyphothesis, the
assumption is made that Q(t) is positive semidefinite for each t, then
the strong solution does exist, is unique and maximal, and turns out to

be positive semidefinite as well, see [4] and [5].
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RESULTS ON GENERALISED RICCATI EQUATIONS
ARISING IN STOCHASTIC CONTROL
Carlos E. de Souza and Marcelo D. Fragoso
ABSTRACT: This deals with a gemeralized version of the standard matrix
Riccati equations which arises in certain stochastic optimal control

problems. A novelty here, regarding previous works, is that it is
assumed that the systems are not necessarily detectable, including

those havin¥ nonobservable modes on the imaginary axis. The
collection of results which are derived in this paper includes, inter
alia, the following: a) existence and uniqueness of nonnegative

definite solutions of ,the generalized algebraic Riccati equations
which give rise to stable closed loop systems in the case of
non- detectable systems; b) new convergence results for the solution
of the generalized Riccati differential equation under relatively
weaker assumptions.
1. INTRODUCTION

This paper considers a variant of well-known standard matrix
Riccati equations which arises in certain stochastic optimal control

problems. What differentiates this class of matrix Riccati equations

from the standard one is an additional linear positive operator in the
unknown matrix, as in equations (2.1a) and (2.2). As this class
encompasses the standard one, and for the sake of nomenclature
easiness, we append the name generalized here to distinguish the later
from the former whenever the additional non-trivial linear positive
operator appears, i.e. hence-forth (2.1a) shall be called genmeralized
Riccati differential equation (GRDE) and (2.2) generalized algebraic
Riccati equation (GARE). A typical situation where these equations
arise is, for example, in the stochastic optimal control problem of
linear systems with markovian jumping parameters and quadratic cost,
as, for instance, in [4], [6] and [8]. In this case, the additional
linear operator appears in comnection with the coupling of a set of
Riccati equationms.

Although generalized Riccati equations have only recently
appeared more frequency in the literature (see [5] for details), a
study of this class of Riccati equations can be traced back to [7] in
which a number of results have been established subject to both
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stabilizability and observability assumptions.

However, the results referred to above are not exhaustive, as
they cannot handle non-detectable systems. Results in this direction
for the standard Riccati equations have recently been carried out in
[1] and [3].

The prime concern of this paper then, is to establish results for
the generalized Riccati equations to handle systems not necessarily
detectable, along the same lines as in [3]. This is accomplished here
by establishing conditions for existence and uniqueness of nonnegative
definite solution of the GARE, which gives rise to a stable
closed-loop system. Furthermore, the convergence of the solution of
the GRDE is investigated under weaker assumptions.

2. PROBLEM STATEMENT
In this paper we shall be interested in the asymptotic properties
of the solution of the following GRDE

P(t) + P(t)A + ATP(t) - P(6)BN 1BTR(t) + m[P(6)] + CTC = 0; (2.1a)
t € [tO,T]
P(T) = Py 2 0 (2.1b)

where A,B,C are matrices of dimension respectively nxn, nxm, pxn;
N,P  denote symmetric matrices of dimension respectively mxm, nxn
with N  assumed positive definite and T(-) denotes a positive
linear map of the class of symmetric nxn matrices into itself, i.e.
P>0 implies m(P)>0, where P>0 (respectively, P>0) stands for

nonnegative (respectively, positive) definite matrix and AT denotes
the transpose of A.
We will also investigate the solutions of the following GARE

A+ ATp - pBN 18T 4+ m(P) + T = 0 (2.2)

These solutions play an important role because, as we shall see later,
under certain conditions the solution of the GRDE will converge to a
nonnegative definite solution, Ps’ of the GARE which gives rise to a
stable matrix
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T, = A- BN IBTp_ (2.3)

Throughout the paper, the notation A(A) denotes the eigenvalues
of the matrix A, Re(-) stands for the real part of a complex number,
I denotes the identity matrix and DAl will be used to denote the
spectral norm of the matrix A defined as its maximum singular value.

An equation of type (2.1) arises, for example, in the finite- time
horizon [tO,T], optimal control problem of linear time-invariant
systems with state-dependent noise and quadratic cost [8]. In this
situation the state feedback control gain matrix is given by
K(t) = N'1BTP(t), t € [tO, T]. Furthermore, under certain conditions
Ksz N'lBTPS, with PS as before, corresponds to the control gain
matrix for the infinite-time horizon optimal control. Therefore, the
convergence of P(t) to P, as t--o is fundamental as it ensures
that the finite-time horizon optimal control policy will tend to the
stationary infinite-time horizon optimal control as the time interval
(T- to)—» o,

Definition 2.1 (Strong Solution): A real symmetric nonnegative
definite solution, Ps’ of the GARE is called a strong solution if

the corresponding system matrix Ké has all its eigenvalues in the
closed left half plane.

Defintion 2.2 (Stabilizing Solution): A real symmetric nonnegative
definite solution, Ps’ of the GARE is called a stabilizing solution

if the corresponding system matrix Ig is stable.
In order to ensure existence of a solution to (2.2) and
uniqueness of the strong solution, we will require:

Assumption A.1: The operator m(-) is such that

(i) "Jowexp(ATt) m(I)exp(At)ds < 1,

in the case where Re[A(A)]<0 and all the modes of (C,A) are
unobservable, or



98
(ii) iﬁf "Jg exp[(A—BK)Tt]H(I)exp(A-BK)t]dt" <1,
otherwise.

Remark 2.1: Assumption A.1(ii) was introduced in [7] and expresses
the fact that T is not too large. Note that for the case where
Re[A(A)]<0 and all the modes of (C,A) are unobservable, Assumption
A.1(i) is a natural extension of Assumption A.1(ii) as in this
situation K=0 is the optimal feedback gain matrix, corresponding to
the strong solution. Assumption A.1(i) is fundamental for
establishing uniqueness of the strong and stabilizing solution of the
GARE in the case of non-observable systems (in the control context).

3. THE GENFRALIZED ALGEBRAIC RICCATI EQUATION

In this section we discuss properties of solutions of the GARE.
Conditions for existence and uniqueness of strong solutions to the
GARE for systems not necessarily detectable will be investigated. The
existence of the strong solution is established subject only to a
stabilizability assumption.

The proof of the main theorems in this section require the
following intermediate results. For detail of the proofs see [2].

Lemma 3.1: Let A be stable matrix and § be symmetric nonnegative
definite. Furthermore, assume that

I J;m exp(ATt)m(T)exp(At)dt]| < 1. (3.1)
If P is symmetric and a solution of the equation

PA + AP + m(P) = -PBN 'BTP - (3.2)
then P is nonnegative definite.

Lemma 3.2: Let P 0 be a strong solution of the GARE. If
satisfies Assumption A.1 then, we have
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I Js exp [ (A-BK) Te]m(T)exp [ (A-BK )] dt]| < 1 (3.3)
where KS=N'1BTPS is the state feedback gain.
Lemma 3.3: Let T satisfy Assumption A.1 and assume that the GARE

pA + ATp - BN 1BTP + m(P) + ¢Tc = 0 (3.4)

has a stabilizing solution Ps' Furthermore, let P1 be symmetric
and satisfy

T -1,T T
P,A+ AP - PBN'B'P, + H(P)) + C;C, = 0 (3.5)

If 0T02cfcl and NN, then POP,.

We consider in the following, conditions for existence and
uniqueness of stabilizing solution of the GARE. The lemma discussed
below is an extension of Theorem 4.1 of [7] to handle systems not
necessarily observable.

Lemma 3.4: If (A,B) 1is stabilizable, (C,A) 1is detectable and 1
satisfies Assumption A.1 then, the GARE has a unique stabilizing
solution.

The next theorems discuss the questions of the existence and
uniqueness of strong solution of the GARE.

THEOREN 3.1: If (A,B) is stabilizable and T satisfies Assumption
A.1, then a strong solution of the GARE exists and is unique.

THEOREN 3.2: If (A,B) is stabilizable, (C,A) has no unobservable
modes on the imaginary axis and I satisfies Assumption A.1 then, the
strong solution of the GARE is also the stabilizing solution.

The next theorem establishes sufficient conditions for the strong
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solution to be the unique solution of the GARE in the class of
nonnegative definite matrices.

THEOREM 3.3: If (A,B) is stabilizable, (C,A) has no unobserv-
able mode in the open right half plane and @ satisfies Assumption
A.1 then, the strong solution is the only nonnegative definite
solution of the GARE.

The last theorem in this section deals with the existence of
positive definite stabilizing solution of the GARE.

THEOREM 3.4: If (A,B) 1is stabilizable, (C,A) has no unobserv-
able mode in the closed left half plane and I satisfies Assumption
A.1 then, the stabilizing solution of the GARE exists and is positive
definite.

4. THE GENERALIZED RICCATI DIFFERENTTAL EQUATION

In the sequel we shall investigate the asymptotic behaviour of
the solution of the GRDE. The results are new and apply to systems
not necessarily detectable including those having unobservable modes
on the imaginary axis.

Initially we shall present some monotonicity properties of
solutions of the GRDE.

Lemma 4.1: Let P,(t) and Py(t) be the solutions of two GRDE's
(2.1), with the same matrices A and B but possibly different C
matrices, C1 and 02, possibly different N matrices, N and Ny
and possibly different terminal conditions, Pip and Pyp respectively.

T T
If €C;2050, Np2Ny and PipdPop then, P (t)2Py(t), tp<t<T.

Corollary 4.1: Let P(t) be the solution of the GRDE, and suppose
there exists a nonnegative definite solution, Pl’ of the GARE. If
Pp2P, then P(t)2P; on [t,T].

Lemma 4.2: Let P(t) be the solution of the GRDE. If for some t,,

P(t,)20 (respectively, P(t)<0) then, P(t)X0 (respectively, P(1)<0)
for all t<t,.
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The lemma above shows that monotonicity of  P(t) in a
neighbourhood of t=0 will imply the monotonicity of P(t) for all
t<0. This fact will allow us to establish the convergence of P(t)
under relatively weaker assumptions.

In the sequel we will investigate the convergence of the solution
of the GRDE to the strong solution of the GARE. We will consider
(2.1) with t4=- and T=0. We present three theorems, the first
one is an extension of Theorem 2.1(iv) of [7] in which the
observability requirement is weakened to detectability while the
second and third apply to non- detectable systems.

THEOREN &.1: If (A,B) 1is stabilizable, (C,A) is detectable and
m(-) satisfies Assumption A.1 then

lim P(t) = P

ts -

where P(t) is the solution to the GRDE with terminal condition
Py 20 and P is the unique stabilizing solution of the GARE.

4.2: Let P(t), t<0, be the solution of the GRDE with
terminal condition PO. Suppose (A,B) is stabilizable, (C,A) has
no unobservable modes on the imaginary axis and 1m(-) satisfies
Assumption A.1. Then, subject to either Py>0 or PO—PSZO

lin P(t) = P,

ts -

where P is the unique stabilizing solution of the GARE.

Theorem 4.3: Let P(t), t<0, be the solution of the GRDE with

terminal condition Py. If (A,B) is stabilizable, m(+) satisfies

Assumption A.1 and PO-Pszo then

lin P(t) = P

to -

vwhere P is the unique strong solution of the GARE.
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LQ-PROBLEM: THE DISCRETE-TIME TIME-VARYING CASE
J.C. Engwerda

Abstract

In this paper we solve the Linear Quadratic (LQ) regulator problem
for discrete-time time-varying systems. By making an appropriate
state-space decomposition of the system, sufficient conditions are
derived under which this LQ-problem is solvable and, moreover, the
closed-loop system becomes exponentially stable.

These conditions are extensions of the time-invariant notions of
stabilizability and detectability. Unfortunately, in general these
conditions are not necessary. The approach we take provides, however,
also a good insight into the difficulties that occur if one looks for
both necessary and sufficient conditions solving the problem.

Keywords
Linear discrete-time time-varying systems, stabilizability, detectabi-
lity, state-space decomposition.

1. Introduction

In the past much research has been done on the subject under which
conditions the linear quadratic regulator problem has a solution if
the considered system is time-varying, see e.g. Kwakernaak et al [8],
Hager et al [7] and Anderson et al [1,2].

In Anderson et al [2] it was claimed that under a uniform stabili-
zability and uniform detectability condition the Kalman filter, the
dual of the LQ problem, is exponentially stable (under the usual sys-
tem noise assumptions). Engwerda showed by means of a counterexample
in [5], however, that this claim is not correct. He shows that the
definitions given by Anderson et al of wuniform stabilizability and
uniform detectability do not imply that the system is stabilizable and
detectable, respectively. More in particular the example shows that
the intuition and definition of uniform detectability (i.e. lemma 2.2
in Anderson et al [2]) do not correspond.

For that reason Engwerda formulated in the same paper new condi-
tions which imply (exponential) stabilizability and detectability of
the system.
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These new conditions are formulated in terms of a transformed
system that is obtained by applying an appropriate state-space decom-
position. In this paper we use and extend this analysis in order to
obtain sufficient conditions under which the LQ-problem has a solution
with the property that it makes the closed-loop system exponentially
stable. The paper is organized as follows.

First, we introduce in section 2 the notions of uniform periodic
smooth exponential stabilizability and detectability respectively.
Then, we show in section 3 that under these conditions the LQ problem
has a solution. Consecutively, we show that when the resulting optimal
state-feedback control is applied the system becomes exponentially
stable.

The paper ends with some concluding remarks.

2. Preliminaries

In this paper we will be dealing with the 1linear time-varying

discrete-time system:

s - x(k+1)

A(k)x(k)+B(k)u(k); x(ko)=§
vy y(k)

Clk)x(k},

where x(k)ERn is the state of the system, u(k)€Rm the applied control
and y(k)ERr the output at time k. Here, we assume that all matrices
A(.), B(.) and C(.) are bounded.

Since the system is time-varying it is convenient to have the nota-

tion:

Let N be any positive number, then

A(k+N,k) := A(k+N-1) ..... A(k) if N>1
=1 if N=1
S[k,k-N] := [B(k)|A(k+1,k)B(k-1)]...|A(k+1,k=N+1)B(k-N)]
W[k, k-N] := [C(k)T|......|{C(k+N)A(k+N,k)} 1T
vk, A = (vE(k),.nnn vl ()T
v[k,.] t= (vo(k),v (k+1),....)T

x(k,ko,§,u) is the state of the system at time k resulting from the
initial state x at time ko if the input u[ko,k-l] is ap-
plied

y(k,kg,x,u) 1= C(k)x(k,kq,x,u). o

Using this notation we can give now easily formal definitions of

several notions that are used later on in this paper.
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Definition 1

The initial state x of the system Zy is said to be

* exponentially stable at k. if there exist positive constants o and M

—o (k-

- ) _
such that ﬂx(k,ko,x,O)HEMe 0 |x| for any k>k0

exponentially stabilizable at k0 if there exists a control sequence

u[ko,.], with the property that u(.) converges exponentially fast to
zero, and positive constants « and M such that “x(k,ko,i,u)" <
~o{k-k.)
)

Me |x| for any k>k

unobservable at kj if y(k?ko,§,0)=0 for any kk,.

exponentially detectable at ko if there exists a finite integer N>O
such that x modulo Xe(A("kO)) is determined from any y[ko,ko+N-1]
and u[ko,k0+N-2]. Here Xe (A(.,ko)) is the linear subspace consis-
ting of all exponentially stable states at time ko.
Like all exponentially stable states, the set of all unobservable

states at ko constitute a linear subspace. We denote it by Uk . Now,

Zy is called observable at k0 if x=0 is the only unobservable sgate at
ko. Moreover, we say that Zy is exponentially stable (respectively
stabilizable, exponentially detectable) at k0 if any initial state of
Zy possesses the corresponding property at kO.
Using these concepts the notion of uniform exponential stabilizability

and detectability are defined as follows.

Definition 1 (continued):

Zy is called uniformly exponentially stabilizable (respectively detec-
table) if Zy has the corresponding property at any time kaO and,
moreover, the constants o(k) and M(k) appearing in the definitions

satisfy the inequalities «(k)>x>0 and M(k)<M<= for some & and M. a

Another notion that plays an important role in our analysis is the
concept of reachability. Formal, we call a state x reachable (from
zero) if there exists a control sequence u[N,k-1] with -»<N<k such
that x(k,N,0,u)=x. The linear subspace of all reachable states at time
k is denoted by Rk'
Now, Engwerda showed in [4,6] that both Rk and U, are A(k)-invariant.

These properties are used in lemma 2, where we give an equivalent
system representation of Zy. To that extent we introduce the state-

space decomposition



106

Xl(k) := R
Xl(k)OXZ(k) := R

n
Xl(k)OXZ(k)©X3(k) := R,

where Xl, X2 and X3 are chosen orthogonal.
Then, we have

Lemma 2
There exists an orthogonal state-space transformation x(.)=T'(.)x'(.),
which does not effect the boundedness property of the system parame-

ters, such that I is described by the recurrence equation.

xi(k+1) Ail(k) Aiz(k) Ai3(k) xi(k) Bi(k)
Z&: xé(k+1) = |0 A22(k) Aé3(k) xé(k) + Bé(k) u' (k)
x3(k+1) 0 0 A33(k) x3(k) B3(k)
y (k) = (0 ci(k) Cylk))x' (k)
where
Zi: xi(k+1) = Ail(k)xi(k) + Bi(k)u'(k) is reachable at any time kggo.
Zé: xé(k+1) = Aéz(k)xé(k) + Bé(k)u'(k) + Aé3(k)Aé3(k+1,ko)xé(ko)
y(k) = Cé(k)xé(k) is both reachable and observable at any time
k > ks
Iy xg(eel) = ALa(k)xg (k). a

In order to obtain sufficient conditions for exponential stabilizabi-
lity and detectability of zy at k0 we introduce the notions of perio-
dic smooth controllability and observability. Roughly spoken, we say
that a system is periodically smoothly controllable if there exists a
finite time period such that whenever such a time period has passed,

the system has been at least once controllable during that period.

Definition 3.
Xy is called periodically smoothly controllable at ko if there exist

positive constants € and k1 such that for all k>0 there exists an

integer kz(k) in the interval [k0+(k-1) kl' k0+k kl] for which
T

S[k,-2 k; .k, 1S [k,~2 k, ,k,] > ¢ I.

Similarly we say that Zy is periodically smoothly observable at k0 if

there exist positive constants b and k1 such that for all k>0 there

exists an integer k2(k) in the interval [k0+(k-1) kO' k0+k ko] for
. T
which W[kz,k2+2 kl] %) [kZ'k2+2 kl] > b I.
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Instead of periodic smooth controllability (respectively observabili-
ty) of zy we often use the phraseology periodic smooth controllability
of the pair (A(.), B(.)) and observability of the pair (C(.), A(.)),

respectively. o

With the notation of lemma 2, we then have as a special case from
theorem 20 of Engwerda [5]:

Theorem 4:
2. is both exponentially stabilizable and exponentially detectable at
ko if the following three conditions are satisfied:

i) Zi is uniformly exponentially stable;

ii) Zé is both periodically smoothly controllable and observable at
ko;
iii) Zé is exponentially stable at ko.

From this theorem we immediately have

Corollary 5:
Zy is both uniformly exponentially stabilizable and uniformly exponen-
tially detectable if
i) Zi is uniformly exponentially stable
ii) Zé is both periodically smoothly controllable and observable at
k

0
iii) Zé is uniformly exponentially stable.

In the sequel conditions i) upto iii) in corollary 5 are called the
exponential stabilizability and detectability (E.S.D.) conditions.
Note that for time-invariant systems these three conditions are neces-

sary too.

3. The solution of the LQ control problem.

In this section we consider the LQ optimal control problem:

(1) min lim J, subject to 2
ulky, -] N y
k0+N-1
2 2 2
where  Jy = kgk Uy 1%+ Jutlp )+ Iylegm ]

0
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Here "u(k)"R(k) equals u (k) R(k) u(k). In the sequel we take without
loss of generality kO = 0, and we denote C C be denoted by Q.
Furthermore, we assume that the following, the so-called Sufficient

Control Existence (S.C.E.), conditions are satisfied.

i) The E.S.D. conditions of corollary 5
(S.C.E.) ii) a) R(k) > BI for some B > O, for all k > O
or b) BT (k)Q(k+1)B(k) > BT, Q(k) > B,I and R(k) > O for
some ﬁi >0, i=1,2 for all k.

We will show that under these conditions an optimal control for the LQ

problem exists and is given by:
(2) u(k) = - F(k) x(k)

where F(k) = (R(k) + BL(k)K(k+1)B(k)) ¥ BY(k)K(k+1)A(K),

and K(k) is given by K(k) = lim KN(k)
Now
where KN(k) is obtalned from the recursive equatlon

(RRE): Ky(k) = AT (k) {Ky (k+1) - Ky (k+1)B(k) (R(k) + BT (k)KN(k+1)B(k))

. BT (k)Ky (k+1)}A(K) + Q(k), Ky(N) = Q(N).
Moreover, we show that if this optimal feedback controller (2) is used
to regulate the system, the closed-loop system becomes exponentially
stable.

Theorem 6:
Let zy satisfy the S.C.E. conditions.

Then, controller (2) minimizes 1lim J,.
N>

Proof':

First, consider the optimal control problem min J.. subject to ) .
N y
u[0,N-1]
The optimal control for this problem is:

(3) uy(k) = - Fy(k) x(k)

where F (k) = (R(k) + BT(k)KN(k+1)B(k))-1 BT(k)KN(k+1)A(k), and K (k)
is given by the resursive equation (RRE).
Moreover, we have that the corresponding minimal control cost equals

jN:= xT(O)KN(O)x(O) (see e.g. Bertsekas [3]).
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Since, due to our assumptions, Zy is exponentially stabilizable we

have that there exists a control sequence such that 1im JN remains
Now
finite. Now, JN is a monotonically increasing sequence.

Consequently, 1lim KN(O) exists. Moreover, since Zy is uniformly
N>w

exponentially stabilizable, a similar reasoning shows that 1lim KN(k)
N>
exists for any k.

So, we have shown now that 1lim uN(k) exists. Denote this limit by
N
u(k).

Due to the monotonicity property of J._ we can apply Bellman's prin-

N
ciple to conclude that

1im 3N < min _ lim Jy.
N-e uf0,.] N

So, the only thing left to be proved is that

lim Jg > min  lim J.
N-deo uf[0,.] No=
This can be done by using some elementary analysis. Since JN consists
of the sum of positive functions, Fatou's lemma (see Rudin [9]), Theo-
rem 11.31) can namely be applied to conclude that the order of taking
limits and summations can be interchanged (for a more detailed proof

see Engwerda [6]). This completes the proof. D

To prove exponential stability of x(k+1) = (A-BF)(k)x(k) we need an
extended result of Lyapunov's lemma. This result can be proved along
the lines the proof of the corresponding property for uniformly stabi-

lizable and detectable systems in Anderson et al [2].

Lemma 7: (Extended lemma of Lyapunov).

Let A(.) and H(.) be bounded.

Suppose that (A(.), H(.)) is periodically smoothly observable and that
there is a bounded positive semi-definite symmetric matrix sequence
P(k) satisfying AL (k)P(k+1)A(k) - P(k) = -H'(k)H(k) on [0,%).

Then x(k+1) = A(k) x(k) is exponentially stable. a

We are now able to prove the main result of this paper.
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Theorem 8:

Let the S.C.E. conditions be satisfied.

Then there exist constants M<= and o > O such that | (A-BF)(k,0) | <
~-ok

Me

Proof':
We know from theorem 6 that we can associate the following control
problem with (A-BFN)(.):

min JN' subject to Y.
u[0, N-1] y

We reconsider this minimization problem.

From lemma 2 we have that this problem can be rewritten as:

N-1 2 2
min ¥ {] x50k |7 =0 17 4 +
u'[0O,N-1] k=0 Cé (k) Cé(k) Cé (k)Cé(k)
) ggg) + by 00| - Iy I ,
(k) 2 T ' 3 T '
02 (N)CZ(N) C3 (N)C3(N)

subject to Zy.

According to the proof of theorem 6 the optimal control is given by
(3).
Substitution of the system parameters yields (by induction on k) that

1
KN(k) has the following structure:

0 0 0 '
KN(k) = 0 K22 K23 (k) (i)
0 K23 K33 N
and consequently F& (k) = (O | F2 | F3 )& (k) (ii)

Since Kﬁ(.) converges to K'(.) and F&(.) to F'(.) it is élear that
K'(.) and F'(.) have the structure of (i) and (ii), respectively.
Since K'(.) converges for any k we have from (RRE), moreover, that
K'(.) satisfies the recurrence equation

K' (k) = A"T(k){ K'(kel) - K' (ke1)B' (K) (R(K) + B' (K)K' (ke1) B (k)™
B'T(l)K(k+1) }A" (k) + Q' (k),
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which can be rewritten as:
K'(k) = (A-BF)'T(k) K'(k+1) (A-BF)'(k) + (Q*FTRF)'(k).

In particular it follows now, by substitution of all the system para-

meters, that

K. (k) = (A,.-B.F.)'T(k) K..(k+1) (A, -B.F.,)'(k) + (CLC., + FLRF.)" (k)
22 227BoF> 22 227BoF> 20> + FoRF,
ith F!(k) = (R(k) + B'T(k)K!. (k+1)B:(k)) TBLT(k)K! . (k+1)AL. (k)

with F5(k) = (R( 2 22 2 2 22 20\K) -

From the S.C.E. conditions it follows that Kéz(.) and Fé(.) are boun-
ded.
Now, let D' := (CyT | FyT rH)T

* T T, T

D' and C.°C) + F,'RF] = D''D'.

then, A 5 C5 5 >

t 2 RBR'F' = A' - t =
35 - ByFy = Ab, - [0 | B}IR

Since the observability property of (Aéz. Cé) implies that (Aéz, D')

has the same property, it is easily shown that (Aéz'BéFé' D') is pe-
riodically smoothly observable too (see e.g. Anderson [2]).
Application of lemma 7 yields now that (A22-B2F2)'(.) is exponentially
stable.

Since the feedback gain F' does not influence the exponential stabili-
ty of Zi and Zé. we conclude that the overall CL-system, (A-BF)'(.),
is exponentially stable.

Finally, we note that since the transformation matrix T'(k) is boun-
ded, exponential convergence of x'(k) implies that the same property
holds for the original state of the system x(k). Which completes the
proof. o

Concluding Remarks

In this paper we solved the discrete-time time-varying LQ optimal
control problem under some weak conditions on the system. These condi-
tions were formulated in terms of a transformed system that was obtai-
ned by making use of several invariance properties of the system.

A major problem occurring was to find a suitable state-space represen-
tation. This, since the prerequisite that the convergence properties
of the transformed and original system must coincide, reduces the

class of admissible transformations.
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Fortunately, we succeeded in finding such a transformation which,

moreover, was useful when we had to prove that the closed-loop system
is exponentially stable if the optimal LQ control is applied.
An interesting question which remains to be solved is whether the LQ-
problem has also an exponentially stabilizing solution when the system
is both wuniformly exponentially stabilizable and detectable (in the
sense defined here). A subsequent question, which immediately arises
if the answer to the previous one is affirmative, is then to give both
necessary and sufficient conditions (that can a priori be verified)
that guarantee this uniform exponential stabilizability and detectabi-
lity.

Last, but not least, we note that the obtained results can be used
in a straightforward manner to solve e.g. the LQG-problem, the EQL-
problem (see Engwerda [6]) and the Kalman filter problem for discrete-

time time-varying systems.
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The output-stabilizable subspace and linear optimal control
A.H.W. Geerts & M.L.J. Hautus

Abstract

Properties of a certain subspace are linked to well-known problems in system theory.

Keywords

Output stabilizability, linear-quadratic problem, singular controls, structure algorithm,
dissipation inequality.

1. Introduction

Consider the following finite-dimensional linear time-invariant system Z:
x(t)=Ax()+Bu(t), x(0)=xq , (1.1a)
y@O)=Cx(®)+Du() , (1.1b)

where forall t2 0,x(t)e R™,u(t)e R™ and y(t) € IR", and the input u (- ) is required to
be an element of

Con = {u:[0,%) > R™ | 303 )ec(ce, o) RM V0 U (D) =v (1)},

the class of smooth controls. Moreover, without loss of generality, we may assume that
[B’ D', [C D] is injective and surjective, respectively.

For the case D =0, we now recall Wonham’s Qutput Stabilization Problem ([11, Section
44]):

(OSP): Given the system X with D =0. Find a feedback map F: R™ — R" such that with
the input u = Fx, we have y (t) — 0 for any initial value x.

If this problem has a solution, then X (with D =0) is called outpur stabilizable. A
necessary and sufficient condition for the output stabilizability was provided by [11,
Theorem 4.4]. A slightly different formulation of the condition was given in [5, Theorem
4.10], where it was shown that OSP has a solution if and only if R" =8§~, where the sub-
space S~ was defined in terms of (&, w)-representations. More generally, this subspace also
plays a role in the output-stabilization problem under disturbances, i.e., the problem of

113
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achieving BIBO stability in the presence of a disturbance input term Eq. Then, it tums out,
the condition is: im(E) = S™.

Next, let
J@ou)i= [ ¥ G0, u)y(xo,u)dt (12)
0

with y(xg, u) = Cx (x, u) + Du (compare (1.1b)), and x(x¢, ) denotes the solution of (1.1a)
for given x¢ and u € C},,. We introduce the Linear-Quadratic optimal Control Problem:

(LQCP): for all xq, determine J(xq) :=inf{J (xg, u) | u € Chy,} and, if for all xo € R",
J~(xg) < oo, then compute, if one exists, all optimal controls (i.e. all controls u* € Cf, such
that J~(xo) =J (xg, u™)).

We will call LQCP solvable if for all xq, /™ (xg) < o and if for every x there exists an
optimal input u* (i.e. an input u™* such that J™(xq) =J (xo, ¥*)). In this paper we shall see
that the subspace S~ is relevant for the issue of LQCP-solvability.

The above-mentioned problem is called regular if ker(D)=0 and singular if
ker(D) #0. The regular case is well established and considered classical. Curiously, the
problem of finding necessary and sufficient conditions for solvability of the problem has
found little attention, even in the regular case. Usually, one is satisfied with the statement
that the problem is solvable if (4, B) is stabilizable (see e.g. [10, Propositions 9-10]). Of
course, this condition is not necessary (if C =0, then u =0 is optimal for all x,). Now
recently ([1]), a necessary and sufficient condition of solvability was given for the regular
case in terms of the stabilizability of a suitable defined quotient system.

If the problem is singular, then it is known that optimal inputs need not exist within the
class C, ([7, Example 2.11]). With a reformulation in the style of [7] incorporating distri-
butions as possible inputs, this extra difficulty can be dealt with and it is proven in [2] that
the input class Cfh, of impulsive-smooth distribution on IR with support on [0, o) ([7,
Definition 3.1]) is large enough to be representative for the system’s behaviour under general
distributions as inputs. A distribution u € Cfp, can be written as a sum of a function
u, € Cy, and an impulsive distribution u; with support in {0}. Obviously, we require
u € Cigp to be such that for every xo the resulting output y (xg, #) has no impulsive com-
ponent, and the (system dependent) space of these inputs is denoted Uy. In [2, Proposition
4.5] an explicit description for this input class is given by means of a dual version of
Silverman’s structure algorithm. With the help of this generalized dual structure algorithm
([2, Section 4]), the necessary and sufficient condition for solvability of LQCP given in [1]
can be generalized to singular problems ([1, Remark 5]).
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In the present paper, it will be shown that the latter condition is equivalent to the con-
dition S™ = R". In other words, output stabilizability is necessary and sufficient for solvabil-
ity of LQCP. This intuitively rather obvious condition turns out to be relatively difficult to
prove.

In the sequel we will need the following well-known concepts. Let V= V(I)=
{xoe R"|3,ccm :y(xg, u)=0} (the weakly unobservable subspace), then ([7, Theorem
3.10]) V is the largest subspace L for which there exists a feedback F such that
(A+BF)L cL, (C+DF)L=0. Dually, W=W(Z) (the strongly reachable subspace) is
the smallest subspace K for which there exists an "output injection” G such that
(A+GC)KcK, im(B +GD) cK ([7, Theorem 3.15]) and W < <A | im(B) > (the reach-
able subspace). It is easily established that W = 0 if and only if ker(D) = 0.

. xn C'C+A’K+KA KB+C'D L
Next, if Ke R and F(X):= B'K +D'C D'D (the dissipation
matrix), then X is said to satisfy the dissipation inequality if K e T'={Ke R |K =K',
F(K)2 0} (I9]). Note that T# @ (0 e I). If T(s) :=D + C (s —A)B(s € €) (the transfer
Junction), and p :=normal rank (T (s)), then it is proven in [8] that

Lemma 1.1
If K e T, then rank (F (K))2 p.

Set I'pip := {K € T | rank (F (K)) = p}. This subset of T is of importance because of the next
result from [2].

Proposition 1.2

If (A, B) is stabilizable, then there exists an element K~ € Iy, N {K € T'1 K2 0) such
that, for all xq, J~(xo) =x¢’K "xp.

If ker(D) =0 and
OK):=C'C+A’K +KA - (KB +C’D) (D'DY\(B'’K +D’C) , (1.3)

then it is easily seen ([9]) that Iy, = (K € R™ | K =K’, ®(K) =0}, the set of solutions of
the algebraic Riccati equation. Now a second major observation of this paper is, that
Tmin 0 {K e T'I K20} 2@ if and only if S™ = R". Hence, in the regular case, there exists
a positive semi-definite solution of the algebraic Riccati equation if and only if I is output
stabilizable.
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2. The dual structure algorithm and the output-stabilizable subspace

If ¢ :=rank (D), then there exists a regular transformation S such that DSq = [D, 0]
with D left invertible and we will take Sq =1, if go =m (note that So can be chosen such
that S5! =S¢"). Set BSg =: [B g, B], then substitution of u = So[wo’, o) into (1.1) yields

)'c=Ax+l_?0W0+l~iofbo,xo,y =Cx +Dgwy , .1

and 50 is left invertible, im(l; o) € W. This input transformation corresponds to the first part
of step 0 of the generalized dual structure algorithm ([2, Section 4]). Notice that l}o is not
appearing if ¢ = m. In fact, the dual algorithm is a void concept if ker(D) = 0. If ker(D) #0,
then this algorithm transforms the given system Z into a system X, (a an integer, not less
than 1) of the form

o= Axg +Biwe + B, xq , (2.2a)
y =Cxq + D , (2.2b)

where IE = [l_?o, l_?,dd], D =[Dg, D ya4l, l_?,dd is an n X (p — qo) real matrix which is such that
im(E,dd) CAMW),Dyqq is a rxX(p—gqq) real left invertible matrix, and rank(D)= p,
C (W) cim(D) and im(l;‘) © W. Moreover, the control ¥ € C,, and the input [w,’ W’} are
linked by u = H (p)[w,’ w’Y, where H (s) is an invertible polynomial matrix, p stands for the
derivative of Diracs 8 distribution and H (p) thus is the matrix-valued distribution obtained
by substituting s =p into H(s). Finally, for all >0, we have that (x(xq,u) (¢)—
(X0, [Wo', Ww1)(®)) € W. Now, let us apply to (2.2) the preliminary state feedback law

Wo=—D'D)'D’Cxy +Wy . (2.3)

Then we get
Yo =Axq+BWe+BW, X0,y =Cxo+Dig (2.42)
with A:=4-B@O'D)Y"'D'C,C =, -DODY'D)C . (2.4b)

From [2, Lemmas 4.2 - 4.4] and the above we then have the following.

Proposition 2.1
) AWcW.
b) V(@) =V(E)+WE)=<ker(C) | 4 >.
©) <A lim(B,B)>+W=<A | im(B)>.

One consequence of Proposition 2.1 is, that y is independent of w; we may just as well
take w = 0. Now let us define (where y () denotes lim y (xg, #)(t))
t—yo0
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T ={xoe R" | ey, :y(=)=0} (2.53)

and Ty :=(xoe R™|3uep, :J(xo, u) <o) , (2.5b)
then we establish that T;={Xo |3, moom:(Cxa +DWe)e)=0} and T,=

{x0 135 smooth : _|' [Cxq+DW,Y[Cxo+Dwoldt <o}  with x,()= exp(At)xo+
0
t
j exp(A (t —1) Eﬁ)u(t) dt and hence T, ; are Z,-invariant ([5, Def. 2.2]).
0

Next, let

ST(X)=X"(A)+ <A 1imB)>+ V(D) (2.6)

(where X (A) denotes the stable subspace of A). Then it is rather obvious that
S™(Z) ¢ T;(i =1, 2) and that (Proposition 2.1) S7(%,) = S7(Z) =: S~. Therefore ([5, Remark
2.261) Ty, are strongly Z,-invariant and we thus have found that V(Z,) cS™ < T; and
AV(E,) cV(E,), AS S, AT;cTi(i=1,2). Let X,,X3,X,4 be such that V(Z,)®
X,=5,5 ®&X3=T,, T, ®X,= R". By choosing appropriate basis matrices for these
subspaces, (2.4a) (with w = 0) transforms into

x A Ap A A [x B xo1

X2 0 Axn Ay Ayl (x| |B2|  |xm

3| | 0 0 Asy Ayl x| Tl 0| Wor x|

%4 0 0 0 A4 |x4 0 Xo4

2.7

Xy
X3 Axp A Ay

y=[0C, C3C4] xs +Dwg, | [C2C3Cql,| O Asz Asy| | isobservable.
. 0 0 Ag

Note that 6(A33) U 6(A44) < ¢’ (since X~ (A) < S7(%,)). Now take a point xg € Ty,
i.e. xg4 =0 in (2.7) (and thus x4 =0). Since D’C =0 and D is left invertible, it follows that
(C2x2 + C3x3)(e0) =0, Wy (e0) = 0, and thus ([3, Chapter 3]) that x,(e) =0, x3(c0) =0 (i.e.,
x(xq, u)(t) converges to V+ W(t — o0)). Hence, necessarily, xg; =0 and we establish that
T; =S". In the same way we find that T, = S™. If forevery F e IR™", we define the spaces

Tf = {xg € R" | ifu="Fx, theny (xg, u)(eo) =0} , (2.8a)

TS := {(xg € R" |if u =Fx, then j ¥ (xo, w)y (xg, w)dt < oo} , (2.8b)
0

we thus have arrived at our first main result.
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Consider the system X and the corresponding subspaces defined above. Then T; =S~ and
TF c§~ for every F e R™*. In addition, there exists an F € R™" such that Tf =
ST @=12).

Proof. Let F € R™" be given. If we use the feedback u = Fx, then the resulting output y
will tend to zero exponentially fast when either xq € Tf or xo € T4 and thus T{ = T§. In
addition, it is trivial that T{ = T§ < T; (i = 1, 2). The fact that there exists an F such that
T’f =8~ is known (compare [5]). The rest follows from the above.

Because of the relation T =S~ for some F, we will refer to S~ as the output-stabilizable
subspace.

3. The dual structure algorithm and optimal control

Let us reconsider the LQCP and assume that S~ = IR". According to Theorem 2.2, we
can reformulate this as: For every xq there exists an input ¥ € Uy such that J (xg, &) < 0.
Clearly this is a necessary condition for the solvability of LQCP. Since y = Cx, + Dw,, with
D left invertible, we are left with a regular LQCP by taking w = 0 in (2.4a). Hence we may
apply the second part of the proof of the main Theorem in [1] and state that the algebraic
Riccati equation associated with (2.4a), (i)(K ) =0 with

®(K) =C'C +A'K +KA -KB(D'D)'B'K , G.1)

has a solution XK~ 2 0 and that every other solution K 2 0 of (i)(K )=0 satisfies K2 K~. The
optimal cost for LQCP, J~(x¢), equals xo’K ~xq for all xy, ker(K™) =V + W and, in addition,
for every x( an optimal control for LQCP exists (see for details [2, Theorem 4.5]) and thus
the condition §™ = R" is also sufficient for solvability of LQCP. Now in [2, Section 6] the
next result is proven.

Proposition 3.1
T'={K e K', W cker(K), D(K)2 0} ,
Tmin = (K € R™ | K =K', W cker(K), D(K) =0} .

Consequently, we observe that K~ € I'yy, N (K e T'I K20} and every other K
Tmin N {K € T | K2 0} satisfies K> K~ (compare Proposition 1.2). Note that (B(K )=OK)
if ker(D)=0. Therefore, in the regular case, K~ represents the smallest positive semi-
definite solution of (1.3). On the other hand, if Iy, N {K e T'I1 K20} #@, then ([3,
Chapter 3]) S™ = R". Hence
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S =R" if and only if Iy N {Ke T1K20}#@. In addition, if the latter set is
nonempty, then the smallest element of this set, K~, represents the optimal cost for the
LQCP.

Note that the characterization of X~ as given above is formulated directly in terms of
the original system data (A, B, C, D). Moreover, this representation of the optimal cost
includes the singular as well as the regular case. Finally, we mention that a condition for
output stabilizability can be given in the spirit of [4]. In fact, a more general formulation is

Proposition 3.3 ([3, Chapter 3])

Let T be a Z-invariant subspace. Then X~(A) + <A | im(B)> + T = IR" if and only if V. ¢*
Ve c* 1 [N(A — A, B)=0and nT=0]=>n=0.

The condition for output stabilizability is obtained by taking T=V.

Remarks

1. While proving out main Theorem 2.2, we established that if u € Uy is such that
¥y (xo, u)(e2)=0 or J(xg, u) < oo, then x{(xp, u)t) converges to V+ W (1 — o0), but not
necessarily to V (for a counterexample, see [6]), unless (of course) W =0, i.e. ker(D) =0.

2. Since §” c’i‘l = {x0 | yecn, :y()=0} cT; =§", we find that ’i‘l =T, and, analo-
gously, that ’i’z = {xg | 3yecn, :J(x0, u) <0} =T,. In fact, this can be seen directly as
T;=W+T, =T; because W c <A | im(B)> c T; (i =1, 2).

3. If R":= R"v.w), A:R" > R" denotes the induced map of A defined by A% :=
@x) x=x+(V+W))and E : R™ > R" is defined by E U= (Eu), then it can be seen (e.g.
compare [2, Lemma 5.6]) that the condition in Proposition 3.3 with T =V is equivalent to:

(4, B) is stabilizable. Hence, in accordance with [1, Remark 5), the latter condition is neces-
sary and sufficient for the solvability of LQCP.
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THE DECOMPOSITION OF (A,B)-INVARIANT SUBSPACES
AND ITS APPLICATIONS

HAN,ZHENG-ZHI AND ZHANG,ZHONG-JUN
ZHENG,YU-FAN

ABSTRACT: In this paper, (A,B)-radical subspaces are defined and the (A,B)-
invariant subspaces are decomposed into a direct sum of radical subspaces. With
such a decomposition, it is found that the (A,B)-invariant subspaces have the
similar geometric structure to A-invariant subspaces. the uniqueness of this de-
composition is investigated. These results are used to describe the characteristic
of assignable eigenstructure.

1. INTRODUCTION

In the geomatric approach of linear system theory, the concept of ( A,B)-invariant
subspace is of vital importance. Although this concept was defined about twenty
years ago, it is still a subject under current discussion. Many contributors continue
investigating the structure of (A,B)-invariant subspaces via different approachs,
such as: polynomail models [l state space ¥, matrix fraction!® and so on. It is
well known that an A-invariant subspace can be decomposed into a direct sum of
some cyclic subspaces, called radical subspaces 4. In this paper a similar concept,
named (A,B)-radical subspace, is defined and it is used in the decomposition of the
(A,B)-invariant subspaces. It will be shown in this paper that there is a similarity
of the geometric structures betweem (A,B)-invariant subspaces and A-invariant
subspaces. The difference between them is that the decomposition of the (A,B)-
invariant subspaces may be not unique in general. The condition of the uniqueness
is derived in this paper.

The text is organized as follows: In section 2 some preliminaries of (A,B)-
characteristic subspace are given. Section 3 investigates the decomposition of
(A,B)-invariant subspaces. In section 4 the characterization of assignable eigen-
structure is obtained by using the decomposition.

2. PRELIMINARIES
Consider the following linear control system

z = Az + Bu (2.1)

where A € R™*™ and B € R™*™. It is assumed that rank B = m and the
system (2.1) is controllable. Let X and I/ denote the state space and input space,
respectively, with the state space being complex, i.e., ¥ = C" .

The class of (A,B)-invariant subspaces is denoted by In(A,B). If V € In(A,B),
then F(V) denotes the set of the feedbacks F:X — I, such that (A+BF)V C V.
Let ©(\) be the characteristic subspace relative to A,l'!l. the following lemma
plays a fundamental role for ¢(\).

Lemma 2.1 (1; Let 2 € X and z # 0. There exists F: X — U such that z is
an eigenvector with eigenvalue A of A+BF if and only if z € ¢().
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If k is an integer, denote k the set {1,2,....k}. When S is a set, denote card{S} the
number of elements in S. Under compatible coordinate transformation T:X — X,
input transformation G:U{ — U, the closed-loop system will be

¢ = T"Y(A+ BF)Tz+ T 'BGv

where,
010 .- 00
001 .- 00
T Y(A+BF)T = block diag{| - - - --- - . | eR*">™ iem} (2.21)
000 --- 01
000 -- 00
T™'BG = block diag{(00 --- 0 1)" € R%*'} (2.2.2)

Lemma 2.2 ['1: In a suitable basis of the state space, p()) may be written as
@()) = span{block diag {(1 A ---A""1)* i€ m}} (2.3)

where, the symbol ”t” stands for transpose.

{e(X), X € C} is a subset of the family of all subspaces in X. It is known
that both ¢(A) + ¢(p) and @(A) N¢(u) are subspace in X for any A, u € C. With
respect to the two operations of subspaces, the (A,B)-characteristic subspaces have
following important properties.

Lemma 2.3: Let Aj,j € t, be different complex numbers, then

t

dim{p(A1) + -+ @A)} = > _card{vi > j, i € m}.
Jj=1

Lemma 2.3 implies that dim p(A\)=m for every A € C.
Define a subspace By in B(:= Im B) as follows:

Bo=BNA™'B={z; 2 € B,Az € B} = ¢(0).

The following lemma describes the meaning of By.

Lemma 2.4:
1) If A p € Cand X # p, then @(A) Np(p) = By;
2) By =B if and only if B = 2X.

3. STRUCTURE OF (A,B)-INVARIANT SUBSPACE

We will decompose (A,B)-invariant subspaces by (A,B)-radical subspace to be
defined in this section. By this decomposition it is shown that the geometric
structure of the (A B)-invariant subspaces is similar to that of the A-invariant
subspaces.

Let a(A) be a polynomial vector such that for any A\q € C, a(A\g) € ¢(A), then
the a(A) is celled a (A,B)-characteristic vector-polynomial. In this section and the
next one, a(A), b(A),--- represent the (A,B)-characteristic vector-polynomials,
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in general. When the A 1s fixed, the a()\) is a vector. Let a(\) € ¢()\) and
denote a;()) = a()). If fa(\) # 0, then it is possible to define that az(\) =
2£a(X) + by(N) for some bl()\) € ¢(A). In general, if a,_1()\) is defined, and

dar—?

$7=ra(A) # 0, then a,(A) may be defined as following:

1 dr1 1 dr—?

S = G N e N ) ()

for some b,_1(\) € p(N).
Definition 3.1: Let a1()\),- -+ ,a,(A) be defined as above, and denote

Dp{a(A);01(A), -+, bp—1(N)} = span{ai(X),az(}), -~ yap(A)}

The Dy{a(A);b1(A), -+ ,b,—1())} is called an (A,B)-radical subspace with eigen-
vector a()\).

By definition the (A,B)-radical subspace seems to depend on the choice of the
bj(A),J € p-1, in fact, it is not so. The following proposition shows that. So, at
moment, it is denoted as D,{a())}.

Proposition 3.1: Let Dp{a(\)} be defined as above, then dim Dy{a())} = p
Proof: By lemma 2.2, a(\) may be written as

a(X) = (block diag{(1 A --- A" Y iem}) (ur - um). (3:2)
where,(u; -+ um)! is a constant vector. Let b;()\),j € m, be written as
b;(\) = (block diag{(1 A --- A%~ Yt iem})- (&) --- b))t

Let u; be the first nonzero component of vector (u1 -++ Upm). Denote the subvactor
consisting of the (Z 1 Y5 + 1)-th up to the (Z 1 Vj)-th component of a;(\) as
J(/\) Then, for every j € p

1 1 1
df-l A R | A
/\v;—l /\v;—l )\v;—l
(3.3)

where u; # 0. Denote ¢'()) = span{(1 A --- A%~1)!}. It is clear that @*()) =

span{ai())}. Thus, we can see that f;,%lla()\) # 0 implies v; > p. By (3.3) it is
true that

i dr~!
span{ai()), - ,ai(\)} = span{a;(N), d/\al(/\) . amal()\)}
1 0 0
A 1 0
=span | yp-1 (p— 1),\p—2 (p _ 1)
AVTL (g — AB2 ";_—12)\1)' -p

(vi—p)!
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Therefore, that dim span{a{(}),--- ,a}())} = p implies that dimD,{a())} = p.
The following lemma is used to prove that Dy{a(\)} € In(A, B), the proof of
this lemma is trivial and omitted.
Lemma 3.1: Let a()) be a vector polynomial and V a given subspace, if for every

X € C, a(A) €V, then £a(}) € V, too.

Theorem 3.1: For every integer p, D,p{a())} € In(A, B).
Proof: When p =1, Dp{a(A)} = span{a1(A}}. a1(}) = a(}) € p(}A), i.e.,

(A — M)a;()\) € B. (34)

(3.4) shows that Aa(\) € B + span{a(A)}.
For the case of p > 2 we prove that the validity of the following relationship:

(A= A)ai(}) — aioa(N) € B (3.5)

By induction, let ag()\) = 0, (3.4) shows that when 7 = 1, (3.5) is valid. We
assume that (3.5) hold for all : < j — 1. Now we consider the case of ¢ = j.
Differentiating the equation (3.4) (j-1) times, by Leibnitz Formula, along with
Lemma 3.1, it yields that

di-1 72

(A— )\I)d/\] _ay(A) — (]_1)‘1 —a1()) € B. (3.6)

(3.6) is equivalent to

di! 1 4

(4- AI)( 1)'d)\11 a() - G —2)dy-2

& s\ eB. (3.7)

As by(A), -+ ,bj—1(X) € ¢(X), by the assumption of induction, the following rela-
tionship is obtained

di—2

(A- M){( 2)| oz + d/\ bj—2(A) + bj—1(N)}—
(o b b)) €B (3.8)
(G —3)tdri—" -2 ' '

(3.7) and (3.8) imply that (3.5) holds for ¢ = j.

In linear algebra it is known that every radical subspace contains only one-
dimensional eigensubspace. Therefore, from the generator point of view, it is the
minimal subspace. The following theorem shows that the (A,B)-radical subspace
has the same property.

Theorm 3.2: Let F € F(D,{a(\)}), then restricting A+BF to D,{a(})}, a(})
is the unique eigenvector. Furthermore, when p > 2, the eigenvalue of a()) is A.

Proof: First, we prove that Dp{a(A)} N¢(A) = span{a())} by taking the fol-
lowing steps:
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1) For every j, with 1 < j < p, aj(A) € @(X). Let u;, aj-(/\) and *()\) be the
notations used in the proof of proposition 3.1, thus, j > 1 implies v; > j > 1. If
aj(A) € o(X), then a¥()) € (). Since u; # 0 and v; > j, the vectors in (3.3),i.e.,

(]—"%m"ifﬂ(l A oo ABTLE Lo (1A <o A% are independent. It follows that

a%()) ¢ ¢*()) contradicting the assumption.
2) For every j, 1 < j < p, if ¢(A) € Dj_1{a(N)}, then a;(A) + c(X) & p(X).
Since ¢(A) € Dj—1{a(N)}, there exist v1(A),--,v;_1(A) € (A) (some of them
may be zero vectors) such that

c(A )_( 2)|dd,\];2 vi(A) + - +vi-1(A))
Consequently, -
00+ e4) = == ! )'dd,\l —a(\)+
e T = CIORC RERR OO TG B CE)

(3.9) shows that a;(A) +c()) has the same form as a;()). Therefore, by using the
technique developed in the proof of step 1), it can be verified that a;(A) + ¢()) ¢
p(A).

Let A be replaced by another comlex number p, it is enough to verify that
a;j(A) ¢ ¢(u), moreover, it is only necessary to prove that the following matrix M
has rank j+1.

1 1 0 0
7 A 1 0
M =1 -1 a1 Gopa? 1
v;‘—l v;-—l L | v;—2 (”:"_1)i
prTh AT (o= 1A =pG-D

Using induction, we can show that the determinant of the first (j4+1) rows of M
is equal to (A — i)?. The details are omitted.

Theorem 3.2 illustrates that for every F € F(Dp{a(A)}, with respect to A4BF,
D,{a())} is a radical subspace with eigenvector a(}).

Theorem 3.3: If V € In(A, B), then there exist
a(}j),t € p; b(p;),i € g c(nr), k €x;- -, such that

V = [@1,Di{a(A)}] @ (8=, D2{b(1;)}] @ (i Pa{c(ne) ] © - (3.10)

Proof: Take F' € F(V), then V is an (A+BF)-invariant subspace. Thus, V can
be decomposed into a direct sum of (A+BF)-radical subspaces M e,

V= [0,V (21 @ 101, V] (72;]) © [Dr=1 Vi(z3k] & - -

where V}(z,;) indicates an 1-dimensional cyclic subspace with eigenvector z;.
Exactly, V}(z1;) is just the same as the eigensubspace of A+BF, let A; be eigen-
value associated to z1j, then V}(z1;) = span{zyi} = Di{z1:(\)}. Vi(zoj) is a
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2-dimensional cyclic subspace with eigenvetor z2; whose eigenvalue is denoted by
pj. Hence, there exists z; such that (A + BF — p;I)z; = 135, and VE(z25) =
span{z2j,z;}. Since z2; is the eigenvector of A+BF with eigenvalue p;, it follows
that z2; € ¢(u;) by Lemma 2.1. Therefore, it is possible to write z; = b(p;), and

(A+BF—;LjI)b(/ij) =0 (311)

Differentiating (3.11) with respect to yj, (3.11) yields

(44 BF = i) - bs) = W) = 2 (3.12)

As a consequence of (3.12), we have
d
T = ?lp—jb(’”) +b1(k5) (3.13)

for some by (1) € p(p5)

(3.11) and (3.13) lead to the assertion that V¥(z2;) = D2{b(¢;)}. In a similar
way, it can be verified that V}(z3k) = D3{c(ni)} for some c(nx) € ¢(nx). The
details are also omitted.

For a given V € In(A, B) in the decomposion (3.10), the eigenvalues A;, ¢ €
P; 4j, J € 4 Mk, k € 1;---, as well as the integers p,q,r,- -, may be changed
along with the selection of feedback F' € F(V). The following theorem gives the
condition of uniqueness for such decomposition.

Theorem 3.4: Suppose V € In(A, B), then decompsition (3.10) is unique if and
onlyif VNB =0.

Proof: Necessity: Let R* denote the maximal (A,B)-controllability subspace
contained in V, then R* =< A+ BF/VNB > for every F € F(V) (10, ¥VNB # 0,
then R* # 0. The eigenvalues of A + BF | R* may be variable along with the
selection of F. It yield that the decomposition (3.10) is also variable.

Sufficiency: If there exist different decompositions of V, then the Jordan form
of A+ BV |V is variable along with the selectoin of F. Take a feedback F1 € F(V),
under a compatible basis of state space, V and (4 + BF; B) have the following

forms A
— It _ 11 A12 B,
V—span<0>,(A+BFlB)—(0 Ay Bo
where t = dim V. F, is another feedback with F; € F(V) such that the Jordan

form of A+ BF; |V is different from that of A+ BF | V. Setting F = F; — R, F
is partitioned as F = (F F?), then

_ _(An + B F' Ap+ B F?
A+BF2—A+BF1+BF—-( B, F! Any + By F?
As F; € F(V), it is necessary that B, F'=0. Moreover, the Jordan form of A;; +
B, F! is different form that of A;;. Hence, B;F! # 0. Select the independent

columns from F!, and then extend them to be an m x m nonsigular matrix G. We

get
By Q= By Bz
B, 0 Bxn
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with B;; # 0. Clearly V D Im (BO“

To conclude this section, we give a corollary of Theorem 3.4 for the case of m=1.

# 0 contradicting VN B = 0.

Corollary 3.1: When m=1, the decomposition (3.10) is unique if and only if
n>dim V.

Proof: When m=1, the matrix B reduces to a vector b. We consider the inter-
section span{b}NV. If b € span{Im bNV}, then for every f* € F(V), ¥ D R* =<
A+bft/Im b>=< A/Im b >= X. It leads to V = X contradicting n > dim V.
By Theorem 3.4, the conclusion comes immediately.

The authors were told by the referees that for the case m=1 the decomposition
(3.10) has been treated by Gohberg et all’l.

4. THE ASSIGNABLE EIGENSTRUCTURE

In the last decade, the problem of eigenstructure assignment has been investi-
gated. This investigation follows two directions. One is to seek the characters of
assignable eigenstructure (7], The other is to treat the design methods [13]. Most
of the contributed papers dealt with the second direction. From Lemma 2.1 and
Lemma 2.3 almost all vectors in the state space can not meet the requirement of
assignable eigenvectors. Therefore, it is very necessary to find a characterization
of eigenvector assignabilty. Any method becomes ineffective if we can not give the
assignable vectors.

In this section, this characterization will be described by many of the (A,B)-
radical subspaces and the decomposition of (A,B) invariant subspaces.

Definition 4.1: [6] The ordered set {z;;i € p} is called an assignable radical
system with eigenvalue A if there exists a feedback F:X — U such that

(A+BF —X)z; =zi1 fori€p (4.1)

where zo = 0. This radical system is denoted by {);z*,i € p}. The set of several

systems {)j; :cf,] € r_1j}, j € s, is often called eigenstructure. If E;=1 n; =n,
then the eigenstructure is complete.

Lemma 4.1 [®]; The set of {Aj; = ,,] € n,;}, j € s, is an assignable eigenstructure
if and only if
1) «,i € n;,j € s, are independent vectors;

2) (A- /\]-I)zf - z‘z_l € B for every i € n; and j € 5.

The second condition of Lemma 4.1 implies zf € ¢(Aj) for every j € s. From the
proof of Theorem 3.1, there certainly exist bx();) € ¢(A;), k € {1,2,--- ,n;_1},
such that

71 =2

d 1 d
70 = = T =) + g b () oo+ s

Therefore, using the concept of (A,B)-radical subspace, Lemma 4.1 is written
as follws:
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Theorem 4.1: The set of {Aj; z{, i €1;}, j €s, is an assignable eigenstructure
if and only if

1) &/ = ai();), for every i € n; and j € s.
2) dim span{z!,i € n;,j €s} =35, n;

5. CONCLUSION

In this paper, a new concept of (A,B)-radical subspace is defined and its prop-
erties are treated. Using this concept, an (A,B)-invariant subspace is decomposed
into a direct sum of (A,B)-radical subspaces. This decomposition shows that the
geometric structure of the (A,B)-invariant subspaces is completely similar to that
of A-invariant subspaces. From this decomposition, we get a deeper understanding
of the linear systems. The notion of (A,B)-radical subspaces and the decomposi-
tion of (A,B)-invariant subspaces are useful for the synthesis of linear systems.
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The Set of Feedback Matrices that Assign
the Poles of a System

Hu Ting-Shu, Shi Song-Jiao

The set of all the feedback matrices that assign the poles of a system is
determined through a function mapping A”>" into R™*". It Is proved
in the paper that the domain of the function is a dense open set in
R™X" and the range of it is exactly the set of ali the F's that make
A+ BF similar to A*. The set of all the F's that assign the eigenvalues of
A + BF is the union of a finite number of such ranges. This function can
be used to optimize other performance indexes of a system under the
constraint ot pole assignment.

NOTATION

R . field of real numbers

R™XN . set of m X n matrices with elements in A
Ry . range of function f

Dy . domain of function f

CsA : column vector form of matrix A
RsA : row vector form of matrix A
A®B : Kronecker product of matrices A and B

1. INTRODUCTION
Consider the system given by the following state-space representation:

x(t) = Ax(@)+Bu(r)

where A eR"*", BeR"*™, x(t) is an n-dimensional state vector and u(¢)
is an m-dimensional input vector. The feedback control law is given by:
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u(t) = Fx(2). @

The pole assignment problem is to find some F so that the eigenvalues of
A +BFis agiven set A,Ay, ..., A,

If system (1) is controllable, any pole assignment requirement can be
satisfied. Furthermore, if m >1, the number of feedback matrices F’s that
satisfy the same pole placement requirement is infinite. The extra freedom
of F is discussed by O’REILLY and FAHMY [4], and is utilized to satisfy
other criteria by RAMAR and GOURISHANKER [2,3].

In this article, we will give a new approach to determine all the F's that
satisfy the pole placement requirement.

2. FUNCTION F, ITS DOMAIN AND RANGE
At first we introduce a function which maps an almost free space onto
the set of all the F’s that make A + BF similar to a certain 4".

DEFINITION. Suppose (4,B) is controllable. 4" is an n Xn matrix with
the desired eigenvalues Aj,A;, .. . ,A,. 4 and 4" have no common eigen-
values. Then a function f mapping R™*”" into R™*" is defined as fol-
lows:

Let UsR™*", if the solution V of

AV —~VA* = —BU 3
is nonsingular, then
F=uyuy! 4

is the image of U under f, and V is the image of U under f,. We denote
the functions by F=f(U) and V = f,(U). The domain of f, denoted by
Dy, is defined as all the U’s that make ¥V nonsingular, and the range of f
is the image of Dy under f, which is denoted by R/.

REMARK.

a. The condition that 4 and A" have no common eigenvalues is very
important. Because it guarantees that (3) has a unique solution. Since
(3) is equivalent to

UBA—A"YRDCsV = —(IQB)CsU. 3)

If 4 and A" have common eigenvalues, /®A —(4 "y ®I will be singu-
lar and (3) will have no solution or have infinite solutions, hence the
definition is invalid.

b. The condition that (4,B) is controllable is also necessary. If not so,
V=fo(U) will be singular for all UeR™*", so the domain of f is
empty. This argument can be proved in the following way: If there is a
U so that ¥V =f,(U) is nonsingular, then A +BUV '=VA*'V "},
which means that (4,B) is controllable, because 4 and 4* have no
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common eigenvalues.

c. Even if the above conditions are satisfied, the domain of f may also be
empty. This is possible only if the controllability indexes of (4,B) and
(4°,B) are different. If the eigenvalues of 4* are distinct, and the
above conditions are met, D will not be empty.

In the following we will show some important properties of the range

and domain of f.

THEOREM 1. The range of f is the set of all the F’s that make A + BF simi-
larto A°.

PROOF.
i) If FeRy, then there is a UeDy so that ¥ = f(U) is nonsingular and
F=UV™! from :

A—-VA'Vl = —BUV~!
we have 4 + BUV  '=VA*V ! since F=UV ™!, so A + BF is simi-
lar to A”.
ii) If A +BF is similar to 4*, then there exists a transformation matrix
V so that

A+BF = VA'V™', AV-VA" = —BFV™L
Let U=FV !, then F is the image of U under f, therefore F €Ry. O

THEOREM 2. If the domain of f is not empty, it’s a dense open set in R™*".
(Here, the norm of an R™*" element is defined as |U\l:=X,%;|Uy|, and
the concept of distance and open set is naturally derived).

PROOF. At first, let's denote the largest element of a matrix X by

max [ X]= max {|X,|}.

i) Suppose UgeDy, then V= fy(Uy) is nonsingular, hence there exists
a ¢ if max[AV]<e¢ V,+AV is also nonsingular. For any
AU: ||AUll<e/max[(I®A —(A4*Y®I)"(I®B)], max {fo(Ug)]<e,
therefore,

foUop+AU) = fo(Up)+fo(AU)=V,+fo(AU) is nonsingular,

which implies that Uy + AU e Dy, thus Dy is open.
ii) Dy is dense. It only needs to be shown that for any U,¢Dj, every
neighborhood of U, contains at least one UeD;.
Since Dy is not empty, there exists a U, such that fo(U,;)=V, is non-
singular. Suppose V(= f,(Uy) is singular, then

fO(UO +€U1) = V() +€V1 :[V()V_] +€I]V1.

Let B be the eigenvalue of ¥oF ! which is the closest to the origin
except for zero eigenvalues, and the distance is 8, then
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Jo(Ug+eU;) is nonsingular whenever 0<<e<<4.

Therefore, every neighborhood of U, contains a U €Dy. This com-
pletes the proof. O

In the definition of f, there is a condition that 4 and 4" have no com-
mon eigenvalues. If the eigenvalues of A contain some of the desired
eigenvalues A;, we can choose a F; so that A +BF; has no common
eigenvalues with 4*. Let A, =4 + BF,, then the range of the map:

AyV—VA* = —BU, F=UV"!

equals the set of F's that make A+ BF similar to A". Therefore,
{F1: Fy=F +F,, FeR} is the set of all F’s that make A + BF similar
toAd”.

It is easy to see that if 4* is replaced by any n X#» matrix that is simi-
lar to 4", the range and domain of f will be the same. So, in the pole
placement problem, 4" is usually chosen to be a Jordan canonical form
for simplicity. In such a case, solving the Sylvester equation (3) is
equivalent to solving n n-ordered linear algebraic equations.

If the desired eigenvalues of 4 + BF are distinct, it has only one Jordan
canonical form. In general, we can list all the possible Jordan forms of
A +BF: A}, A5, ...,AN. For each 4],

AV —VA} = BU and F = UV™!
define a function f;. Let the range of f; be Rﬁ, then U; N Rz equals the

set of F's which assign the poles of (1) to given values. Since some Jordan
form cannot be actually reached, R; may be empty for some i.

EXAMPLE. Suppose m =1, A* =diag[A|,A,, . .. ,Ay], [4,b] be controll-
able. Let U =[u,,u,, ...,u,], where u;,, (i=1,...,n) are scalars, then
the solution of (3) is,

V=[Ad—-A4)""b,...,\J—A) 'b] diaguy,u,, . .., u,l

Since [A,b] is controllable, there must exist a U which makes V non-
singular, so [(A\\J —4)"'b, ..., (A\,J —A)"'b] is nonsingular. Moreover,
whenever U has no zero element, V is nonsingular. Such U’s form a dense
open set in R”™. But the range of f contains only one element:

F = UV '=[uju,, ... ,u,)diagu; Luy ', ... uy '*
A=A, ... AT —A4) 'b]!
111 {AT=A) b, ..., A\ T—A)"'B]7L.

Il
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3. APPLICATION

When a practical system is to be designed, not only its eigenvalues are
required to lie at some points, but also other performance indexes must
be satisfied. For example, the eigenvectors are required to be orthogonal,
and the sensitivity of the eigenvalues to be low, etc. Knowing the set of
all the F’s which assign the poles of a system, we can choose F in this set
to make other performance index optimal.

ExampLE. To make the eigenvectors near orthogonal under the constraint
of pole placement, we may choose the performance index as:

J=12uVV+TT] (T =V™H

where V is the eigenvector matrix of A + BF. It is easy to see that the set
of all the possible V" equals the range of f,. Therefore J is a functional of
UeR™*".
It can be proved that:
oJ /U = B'X’ ®)

where X satisfies: A" X — XA =V'—TT'T.

PROOF.
oJ /Uy = O[1/2tr(V'V +TTH)/U,;=tr[V'(@V/3U,)+T'0T/3Uy)]
= tr[V'@V/3Uy))—TT@EV/QU)T]=er[V'=TT'T)(3V/0U})
= —Rs[V-TTT){U®A —(A')’®I)"1(1®B)}aCsU/aU,;,
$0,
[Cs@J/QU)Y = —Rs[V'—TTTHU®A —(A*YRI) '(I®B))
let,

Rs(X) = —Rs[V—TTT|I®A —(A"Y®I) ! ®)
since Rs (X)(I ® B)= Rs(XB) then, oJ/0U =(XB)’ from (6), we have (5)[]

From this result, we can optimize J through gradient method. In the pro-
cess of optimization, if V is singular, we can continue the process by
making a small change on U. After the optimal U is evaluated, compute
F=U'v"".

4. CONCLUSION

For a multi-input linear multivariable system, the number of F’s which
assign the poles of the system is infinite. Using the classical method, we
can get only finite number of F’s. This paper presents a way through
which all such F’s are represented as the range of a function. In applica-
tions, this function can be used to optimize other performance indexes of
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a system.
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Model matching for linear Hamiltonian systems

H.J.C. Huijberts

Abstract

We solve the Hamiltonian model matching problem by formulating it as a Hamiltonian
disturbance decoupling problem with observation feedback and disturbance measurements.
It turns out that the conditions for solvability of the Hamiltonian model matching problem
are the same as those for solvability of the "normal” model matching problem. A procedure
for reducing the compensator order is given.

1 Introduction

The Hamiltonian model matching problem (HMMP) consists of designing a compensating
feedback for a given Hamiltonian system in such a way that the resulting input-output
behavior matches that of a prespecified Hamiltonian model.

The "normal” model matching problem (MMP) for linear systems has been solved in dif-
ferent set ups by several authors (see e.g. [6,7,8,10]). In [4,9] it is shown that we can
formulate MMP as a disturbance decoupling problem with observation feedback and dis-
turbance measurements (DDOFM).

In this paper we solve HMMP by formulating it as a Hamiltonian disturbance decoupling
problem with observation feedback and disturbance measurements (HDDOFM) and solving
this associated problem using techniques also employed in e.g. [12,13].

The organization of the paper is as follows. In Section 2 some preliminary definitions and
new and already existing invariance results are given. In Section 3 we solve HDDOFM.
It turns out that the conditions for solvability of HDDOFM are the same as those for
solvability of DDOFM. Furthermore, we can solve HDDOFM by means of a compensator
with the same order as the dimension of the original system. In Section 4 we give a procedure
for reducing the compensator order. In Section 5 finally, we formulate HMMP and, using
the results of the foregoing sections, we give conditions for the solvability of HMMP. 1t
turns out that these conditions are the same as the conditions for solvability of MMP.

2 Preliminaries

We consider a minimal linear time-invariant system:

¢ = Az+ Bu
(1) {y = Cz
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where z € R%,u € R™,y € P and A, B,C are constant matrices of appropriate dimen-
sions.

We recall briefly from [3,13): a subspace V C IR? is called (A,B)-invariant if AV C
V+ImB, it is called (C,A)-invariant if A(V\Ker C) C V and it is called (C,4,B)-
invariant if it is (C, A)-invariant as well as (A, B)-invariant. (A, B)-invariance ((C, 4)-
invariance) ((C, A, B)-invariance) is equivalent to the existence of a matrix F (G) (K) such
that (A+ BF)V C V ((A+GC)V C V) ((A+ BKC)V C V). For an (A, B)-invariant
subspace V the set of friends of V, denoted F(V), consists of all matrices F satisfying
(A+BFyVcv.

We call two (C, 4, B)-invariant subspaces Vi, V; compalibly (C,A,B)-invariant if there is a
matrix K such that (A + BKC)V; C V; (i = 1,2). In [14] it is proved that V; and V, are
compatibly (C, A, B)-invariant if and only if

(2 [’3 —OA ] ( ViV NKer[C C) ) C ( VidVo + Im [ g ] )

Here vlé)VQ 2‘:{ [ :; J ,‘01 € Vl, v € VQ }

One can easily verify that as a consequence of (2) we have:

Corollary 2.1 Two (C, A, B)-invariant subspaces V; and V; are compatibly (C, A, B)-
tnvariant if V, C V,.

m}

Now assume that there exists a non-singular map J : R9 — IRY satisfying J = —J7.
From the non-singularity and the skew-symmetry of J it follows that ¢ is necessarily even,
say ¢ = 2n. It can be proven (cf. [1]) that there exist bases for JR?" in which J has
0 -I,
I, 0
called a symplectic space. We call a linear system (1) on (IR*™,J) a Hamiltonian system if
ATJ +JA =0and BTJ = C (. [11)).

the form Such a J is called a symplectic form on IR?™, and (R*",J) is

Prototypic examples of Hamiltonian systems are conservative mechanical systems (in the
linear case: systems consisting of masses and springs). For these systems we can interpret
%xTJAx as the internal energy of the system, u as the (generalized) forces applied to the
system and y as the (generalized) displacements along the line of action of the exerted
forces (see e.g. [11)).

A subspace V will be called a symplectic subspace of (IR2",J) if J |v is non-singular (or
equivalently: J |y is a symplectic form on V). By V* we denote the orthogonal complement
of Vwrt. J,ie V!:={z € R™|2TJv=0 Vv € V}. We can prove quite easily that
(V1)* = V and that V is a symplectic subspace of (IR*,J) if and only if V\V* = {0}.
A subspace V will be called isotropic if V C V4| Lagrangian if V = VL and co-isotropic if
Vo i

We will call a feedback u = Fz for a Hamiltonian system (1) a Hamiltonian feedback if
the system after feedback is still a Hamiltonian system on (R?",J). Assuming that B
is injective (or equivalently that C is surjective), which we can assume without loss of
generality, a feedback u = Fz is a Hamiltonian feedback if and only if F = KC, where
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K = KT (cf. [12]). Hence Hamiltonian feedback is necessarily observation feedback. It is
not difficult to prove that a subspace V is (C, A, B)-invariant if and only if V4 is (C, A, B)-
invariant and that it can be made invariant by Hamiltonian feedback if and only if V* can
be made invariant by the same feedback. Hence V can be made invariant by Hamiltonian
feedback if and only if V and V* are compatibly (C, A, B)-invariant. Thus, using Corollary
2.1 we have:

Corollary 2.2 V can be made invariant by Hamiltonian fecdback if V is (C, A, B)-invariant
and isotropic (Lagrangian) (co-isotropic).

ju]

Remark 2.3 For Lagrangian subspaces this was already shown in a different fashion in

[12].

m}

3 The disturbance decoupling problem with observation feedback and distur-
bance measurements for Hamiltonian systems

We will first formulate and solve the disturbance decoupling problem with observation
feedback and disturbance measurements (DDOFM), compare {12,13]. Let (A, B,C) be
a linear time-invariant system on IR?. Suppose that there are disturbances that can be
measured influencing the system and that we are particularly interested in regulating a
part of the state space. In formulas:

i = Az +Bu+ FEd, de R
Cz
Dz, z € IR®

€

N @
(]

with d the disturbances and z the to-be-regulated variables. Then DDOFM consists of
finding an integer p and constant matrices K and G of appropriate dimensions such that
after application of the compensator:

z. = Beu
4 c ctc
( ) { Ye = Cez.
where z., uc, ¥ € IR* and B,,C, are invertible constant matrices, and the feedback:

(5) [l}:K[;]+Gd

the transfer matrix from d(-) to z(-) equals zero.

Now define:
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Then (3) and (4) yield the following extended system on IRY x JR¥;

Apzg+ Bpug + Egd

Zp =
(6) ye = Cgpzg
zg = Dgzg

For a given subspace Vy C IRY X IR* we define a subspace p(Vg) C IR? by:

) p(VE):z{zeR"HzcEﬂZ“:[:]GVE}

Proposition 3.1 DDOFM can be solved for (6) by a static observation feedback (5) if and
only if there is a (Cg, Ag, Bg)-invariant subspace Vg contained in Ker Dy satisfying:

(8) ImEsCVs+ImB;

Proof
Follows by combining the results of [5] and [2]. See also [13).

[n]

Proposition 3.2 There is a (Cg, Ag, Bg)-invariant subspace Vi contained in Ker Dg sat-
isfying (8) if and only if there is an (A, B)-invariant subspace V contained in Il er D satis-

Jying:
(9) ImECV+ImB

Proof

(necessity)

Assume that there is a (Cg, Ag, Bg)-invariant subspace V; contained in Ker Dy satisfying
(8). Now (8) implies: Im E = p(Im Eg) C p(Ve + Im Bg) = p(Vg) + Im B, because B, is
invertible. Moreover, p(Vz) is (A4, B)-invariant and contained in Ker D (cf. [14]). Hence
there is an (A4, B)-invariant subspace contained in Ker D satisfying (9).

(sufficiency)
Let V be an (4, B)-invariant subspace contained in Ker D satisfying (9). Let p := dim(V),

T :V — IR* an isomorphism and V; :={ [ fl?v ] [v €V . Then it is easy to see that Vg

is a (Cr, Ag, Bg)-invariant subspace contained in Ker D satisfying (8).

Propositions (3.1) and (3.2) immediately result in:

Theorem 3.3 DDOFM is solvable for (8) if and only if ImE C V* + Im B, where V* is
the mazimal (A, B)-invariant subspace contained in Ker D.
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Note that in fact Proposition (3.2) and Theorem (3.3) give a procedure for constructing a
compensator of order dim(V*) (sece also [13]).

Now assume that ¢ = 2n and let J be a symplectic form on IR?" such that ATJ + JA =0,
BTJ = C. Then the Hamiltonian DDOFM (HDDOFM) consists of finding an integer v,
a symplectic form J, on IR? and matrices K = KT G such that after application of the
Hamiltonian compensator:

.
o

and the feedback (5) the transfer matrix from d(-) to z(-) equals zero. The special choice
of the compensator and of K implies that the state matrix of the closed loop system is
J 0

0 Jo |

Jc'luC
_IZV‘TC

Hamiltonian w.r.t. the symplectic form Jz =

It turns out that the conditions for solvability of DDOFM are also necessary and sufficient
conditions for solvability of HDDOFM:

Theorem 3.4 HDDOFM is solvable for (3) if and only if Im E C V* +Im B, where V* is
the mazimal (A, B)-invariant subspace contained in Ker D.

Proof

(necessity)

Follows from necessity for solvability of DDOFM.

(sufficiency)

Let v = n and J. = J. Without loss of generality we can assume that J = [ IO _({" ]
n

Let R = [ I(;' _(} ] Then R satisfies R = R~! = RT and RJ 4+ JR = 0. Now dcfine

a subspace Vg of R*™ x R™ by: Vg := { [ I;l’,]v ] |v€V* ;. Then it is straight{forward

to check that Vg is (Cg, Ag, Bg)-invariant and contained in Ker Dg. Furthermore, since

RTJR = —J, we have that Vg is an isotropic subspace. Hence thereisa K = K7 that makes

Vg invariant. Noting that Im Ex C Vg +Im Bg, we can find G such that Im (Eeg+ B:G) C
Vg. Hence we have solved HDDOFM.

]

Remark 3.5 Note that, similar to DDOF, the sufficiency part of the proof of Theorem 3.4
is constructive: it gives a procedure for constructing a compensator of order 2n.

4 Reduction of the compensator order for HDDOFM

In section 3 we gave procedures for constructing compensating feedbacks that solve DDOFM
and HDDOFM. For DDOFM the order of the compensator was equal to dim(V*), whereas
for HDDOFM the order of the compensator was equal to the dimension of the state space of
(3). In this section we will try to reduce the order of the compensator that solves HDDOFM.
For this, we would like to use (a modified version of) the procedure for DDOFM. However,
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there are two problems to this. Firstly, we want the state space of the compensator to be
a symplectic space. Secondly, it is not certain beforehand that we can find a symmetric K.
In the following procedure we will give a clue to the solution of these problems:

Procedure
1. Calculate V*.

2. Let V be a symplectic subspace of (JR?",J) such that V* C V. Assume that dim(V) =
2k.

3. Choose a basis (s, -+, 82,) for I?" such that:

V= span{sy,- -, 8k}, vi= span{saky1,--,52} and $TJS = g 3’ » where § =
= 0 -
col(sy, ++,82m) and J = [Ik 0“ ]

I, 0

4. Let J.:=J, R:= [ 0 -I,

}, R :=[R 0)§~1. Define a subspace V, C IR*" x IR** by:
Vg = { [ };}v ] fveyr } Then Vj is an isotropic (C, A, B)-invariant subspace.

5. Determine K = K7,G satisfying (A + BeK Cg)V: C Vi and Im(Eg + BxG) C V5.
Then a compensator (10) on (1R, J.) together with a feedback (5) solves HDDOFM.

Comment
We will give a brief comment on some of the steps of the above procedure.

2. Given V*, we can always find a ¥ D V* that is a symplectic subspace of (IR**,J)
in the following way: There is a basis (wy,---,w,) for V* such that V*n vt =
span{wi,--+,w,}. Then we can take V = span{wy, -+, wr, Jwy,--+,Jws;}. Note
however that V is in general not uniquely determined and that V obtained in this way
is of maximal dimension.

3. See [1] for the basis choice.

4. V; is indeed an isotropic subspace of (IR*™ x IR**, J;). This can easily be checked by
using the fact that RTJ.R = —J..

5. Because Vi is an isotropic subspace, we can always find K = K7 that satisfies
(Ag + BsKCg)Vs C Vi (see Corollary (2.2)). Letting F € F(V*), R :=§ [ éi J,
o B -FR
it is easy to check that we can take K = _RTFT —RTFTCR—JCR(A+BF)R J

0

Hence by the above procedure we can construct a compensating feedback with a compen-
sator of order dim(V), where V is some symplectic subspace containing V*. Thus, if V* is
a symplectic subspace, a compensator of order dim(V*) does the job.
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5 The Hamiltonian model matching problem

We will use the results of the foregoing sections to give a solution to the Hamiltonian model
matching problem (HMMP). Given a Hamiltonian system (A,, By, Cp) on the symplectic
space (IR?"», J,) called the plant, and a Hamiltonian system (Am, Bm, Cm) on the symplectic
space (I**™, J,,) called the modcl, HMMP consists of finding a compensating feedback for
the plant in such a way that the model and the plant after feedback constitute the same
input-output behavior. Furthermore we demand the compensator and the feedback to be
Hamiltonian. Analogous to [4,9] we can define HMMP as a HDDOFM with:

A=[’:f A‘L],B:[%’],E:[ 0 ],c:{c,, 0], 0=[¢ ~Cnl,

Bn
—_ JP 0
I=1%9 7.

Then we have as an immediate consequence of Theorem (3.4):

B 0

Theorem 5.1 HMMP is solvable if and only if Im [ 0 } CV'+Im [ By ], where V*
m
is the mazimal (A, B)-invariant subspace contained in Ker D.

Remark 5.2

1. Note that the condition for solvability of HMMP given in the above theorem is equiv-

alent to the one given in e.g. [7] for solvability of the "normal” model matching
problem.

2. We can construct a compensating feedback for the solution of HMMP by using the
procedure given in section {. Afier we have applied the compensating feedback, the
input-oulput behavior of the compensated plant will be that of a Hamiltonian system.
However, it should be noted that by introducing the new input matriz (E + BG) in
general there will not be duality between inputs and ouipuls w.r.t. the symplectic
form Jg any more. This can have two reasons. Firstly, ezistence of a symplectic
Jorm for a system with Hamiltonian input-outpul behavior is only guaranteed if the
system is minimal (cf. [11]), whereas it might very well be that the compensated plant
is not minimal. Secondly, if the system is indeed minimal and thus ezistence of a
symplectic form is guaranteed, the introduction of the new input matriz may imply
that the symplectic form w.r.l. which the system is Hamiltonian changes.
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CONNECTIVE STABILIZATION OF LARGE-SCALE SYSTEMS:
A STABLE FACTORIZATION APPROACH

Masao Ikeda and Hsiang-Ling Tan

Abstract: This paper considers a decentralized stabilization problem for large-
scale linear systems composed of interconnected subsystems. The proper stable
factorization approach is taken to design local dynamic controllers for the subsys-
tems. Conditions are presented under which we can stabilize a given large-scale
system so that stability of the resultant closed-loop system is robust to bounded

perturbations of the interconnections among subsystems.

1 Introduction

Decentralized stabilization problems have been considered extensively for large-
scale systems composed of a number of interconnected subsystems [2]. The infor-
mation structure constraint imposed commonly is conformable to the subsystems,
which is because autonomy of each subsystem is desired in large-scale systems
explicitly or implicitly. Then, the overall closed-loop system is also a collection
of closed-loop subsystems with the same interconnection structure as in the open-
loop system. It is usually required that stability of the overall closed-loop system
is preserved under perturbations in the interconnections such that the strength
of each coupling between any two subsystems is bounded. This kind of stability
property is referred to as connective stability [6]. It is obviously necessary for

connective stability that each closed-loop subsystem is stable.

The methods of constructing connectively stable large-scale control systems, re-
ported so far [2], are mostly those by state feedback or observer-based feedback.
The main objective of this paper is to present a new method for such stabiliza-
tion using the proper stable factorization approach [7]. The most fundamental
and significant result of the factorization approach is the parametrization of all
centralized stabilizing controllers. We apply the result to each subsystem to de-
fine a local stabilizing controller with an unspecified parameter. Then, we tune
the parameter to make the overall closed-loop system connectively stable. This
is possible under an M-matrix condition [1] described by bounds of the intercon-

nections and minimized norms of transfer matrices of the closed-loop subsystems.
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A graph-theoretic stabilizability condition is presented, where a directed graph is
defined by the structure of the interconnections and solvability of two-sided linear

equations of rational matrices associated with open-loop subsystems.

Notations: A rational matrix in s with real coefficients is said to be stable if it
is analytic in the closed right half complex plane C, (excluding s = co0). We use
Rs and Rps to denote respectively the sets of stable and proper stable rational
matrices. If a matrix belonging to Rps has an inverse in Rps , we say that it is
Rps-unimodular. The norm of a rational matrix F' € Rps is defined by

Pl = sup] (F(i)) |,

where w is a real number and |-| denotes a norm of the indicated complex matrix,

which is induced by an [, vector norm, p = 1,2, cc.

2 Problem Formulaton

The large-scale interconnected system we deal with is a so-called input-output
decentralized system [6] described by

S: z; = Aizi + Biu; + Z GiEijH;z;
j=1
Yi = C,'.’L‘,', 1= 1,2,...,71, (21)

which is composed of n subsystems
Sit & = A + Biui + Gig

yi = Ciz;
w; = Hil'i, 7= 1,2,...,77, (22)

connecting with each other through the static interconnections
Vi = ZE;]"U)]', 1= 1,2, sy N (23)
i=1

In (2.1), (2.2) and (2.3), z; is the state, u; is the control input, y; is the measured
output, v; is the interconnection input, and w; is the interconnection output of
the subsystem S;. The matrices A;, B;, C;, G;, H;, E;; are constant and of appro-
priate dimensions. We assume that the pair (A4;, B;) is stabilizable and (C;, 4;) is
detectable.

For stabilization of the system S of (2.1), we apply local controllers

LG : & = Fiz, + My
i = Jizi+ Ky, 1=1,2,...,n, (24)
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to the individual subsystems S;. In (2.4), z is the state of the local controller
LGC;, and F}, M;, J;, K; are constant matrices of appropriate dimensions. The set of
LG (i = 1,2,...,n) constitutes a decentralized controller

DC: {LCj, LCy, ..., LCa} (2.5)

for the overall system S. Then, the overall closed-loop system is written as

Sc . ."E,' — A,’ + B,'I{,'C,‘ BZJ, Zz; +
& M;C; F; zi

2[6]eim a2 imnn

i=t

In this paper, we consider decentralized stabilization under the existence of pertur-
bations in interconnection matrices E;;. We assume that there exist nonnegative
numbers ¢;; such that ||E;;|| < &; for the original and any purturbed F;;, where

we note the norm || - || is equal to | -] for constant matrices. Then, we introduce:

Definition 1  We say that the system S of (2.1) is connectively stabilizable if
there is a decentralized controller DC of (2.5) such that the overall closed-loop
system SC of (2.6) is stable for any interconnection matrices E;; satisfying specified

upper bounds.

It is obvious that when the system S is connectively stabilized, the subsystems
S-C i .’ii _ A,‘ + B,‘I{,'Ci BZJ, Z;

I M;C; F; z ]’

i=1,2,..,n (2.7)

of the closed-loop system S€ are stable. Therefore, each local controller LC; of (2.4)
has to be at least a stabilizing controller for the subsystem S; of (2.2). This implies
that our task of connective stabilization is to select appropriate local controllers
each from the set of stabilizing controllers for the corresponding subsystems. For
this reason, we employ the proper stable factorization approach [7] to design the
local controllers. The most fundamental result of the approach is the parametriza-

tion of all stabilizing controllers for a given system.

3 Preliminaries

To apply the factorization approach, we represent the subsystem S; of (2.2) by its

w; Zi Zi v;
;0 || =40 1.2” ] 3.1
: [yi] [Zh Zy | twi 33

transfer matrix
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where Z;;q(p, g = 1,2) are defined as
Zi = Hi(sI — A)7'G; Zi, = H(sI - A)™'B;
Z;I = C,'(SI — A,‘)_lc,' Z;z = Ci(SI - A,‘)_IB,‘

and we use the same notations u;, y;, v;, w; in the s domain as in the time domain.
We note that the transfer matrix from the control input u; to the measured output

y; is Z},, which is strictly proper. For stabilization of S;, we factorize Zi, as
Z3, = N.D7' = D' N;, (3.2)

where N;, D; € Rps and 5;, N e R ps satisfy

B3R R ©3)

for some P;,Q;, P, Q; € Rps. Then, the set of all stabilizing controllers for the
subsystem S; of (3.1) is given by

LC', U= K,-(R,')y; (34)

where
Ki{(R:) = —(P: + DiR))(@: - N:R)™ (3.5)
and R; € Rp, is an unspecified parameter [7]. The time-domain realization of this

controller is LC; of (2.4).

The overall system S is now described in terms of transfer matrices. We define

w o= [w wh ... wi] ov=[o vf ... vi]
vy =1[ v ... i w=[uj uj ... up]
Zyy = diag(Z},, Z2, ..., Z7), (prg=1,2)

= [Eilij=12,..n»

HEEESIN oo

v = Fw. (37)

=
|

and write

We also collect local controllers LC; of (3.4) to form a decentralized control law
DC:u = K(R)y (3.8)
where

K(R) = diag[Ki(R1), Ka(Ry), ..., Kn(Rn))
R = diag[Ry, Ry, ..., R,
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When we apply the local controllers LC; of (3.4) to the disconnected subsystems
S; of (3.1), the closed-loop subsystems are stable for any R; € Rps. The transfer
matrix T (R;) from the interconnection input v; to the interconnection output w;
is computed as

Tiu(R) = T{ - GRT; (3.9)

which is an affine function of the parameter R;, where

Tli = Z{l - Zli215,»5,»Z;1
Ti = Zi,D; (3.10)
T = D;Zi,.

The matrix Tli is equivalent to the transfer matrix from v; to w; of the subsystem
S; stabilized by the local controller K;(0) = —P,@;!, and hence belongs to Rps.

i

T§ and T} also belong to Rps because T, (R;) belongs to Rps for any R; € Rps.

Now, we consider the overall closed-loop system, which is described by the equa-
tions (3.6), (3.7), and (3.8). The system can be viewed as a feedback system
composed of stable blocks

Tuu(R) = diag|T,,(R1), Tiy(R2), -- -, Ty (Ra)] (3.11)
and E. Then, the overall closed-loop system is stable if and only if
W =1-ET,,(R) (3.12)

is Rps-unimodular [7).

4 Connective Stabilization

We saw that our decentralized stabilization problem is to determine a block-
diagonal R € Rps so that the matrix W of (3.12) is Rps-unimodular for any
interconnection matrix E = [E;;] such that | E;|| < &, 1,7 = 1,2, ...,n, where &;
are specified upper bounds of individual E;;. For this purpose, we use the idea of

decomposition-aggregation method [6], and define an aggregated matrix

W =1I-FT.,(R), (4.1)

where
E=||E;) (4.2)
Toun(R) = diag[|| Ty, (R, IT2, (R, -+, 1 Tou(Ra)II] (4.3)

are constituted of the norms of submatrices in E and T,,,(R). Then, W of (3.12)
is Rpg-unimodular if the matrix W of (4.1) is an M-matrix [3].
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For W of (4.1) to be an M-matrix, we need to choose R; € Rps so that |75, (R;)]| is
sufficiently small. If W is not an M-matrix even for the infimum of ||T%,(R;)|| with
respect to R;, it can never be made so by changing R; € Rps. Since decreasing
| E:;|| does not violate the M-matrix property of W, testing the property is needed

only for || E;|| = &;. From these discussions, we define the matrices
= = (&) (44)
I = diag[m;, w2, ..., Ty (4.5)
where
;= inf ||TE, (R 4.6
m= i TR (45)
We use
W=I-2I (4.7)

to state the following:

Lemma 1  The system S of (2.1) is connectivly stabilizable if the matriz w of
(4.7) is an M-matriz.

To present a connective stabilizability condition on the subsystems, we note that
T = 0 (4.8)

if the equation

TiX'Ti =T} (4.9)
has a solution X* in Rs, where the matrices T%, T§, Ti are those in the definition
(3.9) of T (R;). This fact is obvious by setting R; = X* in T%,(R;) when X' is
proper, and can readily be shown using a proper approximation of X* when X*
is improper [5]. Although 7%, T and T} are not unique, which are defined by the
coprime factorization of Zi,, it can be shown [3] that solvability of the equation
(4.9) does not depend on the choice of T}, Ts and T:. Therefore, we use a particular
coprime factorization of Zi, [4] here to test the solvability.

N; = Cy(sI— Ai)™'B; D; = K(sI— A)™'B;+1I

N;, = C,'(SI - Ai)_lB,' D, = C,’(SI - AZ)_IL,' +1 (4 10)
P, = K,‘(SI —_— AZ)_IL,' Q,’ = -—I\’i(SI — Ai)_lB,' +1 ’
P = KisI—A%) 'Ly Qi = ~Ci(sI — A)'Li+ 1

where A% = A;+ B K;, ’L = A;+L;C;, and K;, L, are matrices such that At A}J
are stable. This factorization yields the following lemma [3], which implies that

we do not need to factorize Z}, to see whether there holds m; = 0.
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Lemma 2 If the equation

[SI—-Ai B,»] [V;’l V{'Z] [SI——A,- Gi]

H, 0 Vi Vi c. 0 (4.11)

sl — Ai G,’
H; 0

has a solution (Vi,, Vi, Vi, V4,) in Rs, then m; = 0.

Now, we associate a directed graph with the system S of (2.1). We first consider
a graph describing the interconnection pattern, in which node ¢ represents the
subsystem S; and the branch from node j to node ¢ corresponds to a nonzero E;;.
We refer to this graph as I'. If the equation (4.11) for S; is solvable in Rg, we then
remove all the branches which go into or go out of node ¢. We denote this graph
by I, and present the main result of this paper.

Theorem 1  If there is no directed loop in the graph T, then the system S of

(2.1) is connectively stabilizable.

Proof: A necessary and sufficient condition for the matrix W of (4.7) to be an
M-matrix is that its leading principal minors are all positive [1]. We note that the
k-th leading principal minor of W = I —=II can be expressed as 1 — *, where *
is composed of products of 7; and ¢;; along the directed loops in the subgraph of
T containing nodes 1,2, ...,k and branches among them. We see from Lemma 2
and the definition of the graph I' that such products are 0 under the condition of
the present theorem. Then, all the leading principal minors of W are 1, and W is

an M-matrix. Lemma 1 completes the proof.

Remark 1 A way of investigating solvability of the equation (4.11) is reduction
of the matriz equation to a set of scalar equations. We can do this by transforming

SI—A,' B.’ d SI—A,' Gi
H ol c; o

into the Smith forms using elementary row and column operations over the polyno-

mial ring, which do not violate the Rs property of the solution (V{,, Vi,, Vi, Vi).

Remark 2  Sufficient conditions for (4.11) to be solvable, which can be tested

readily, are:

1 sl — A,‘ G,‘
’ C; 0
Range G; C Range B;

] has full column rank for s € Cy;
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Null H; D Null C;

SI—A,‘G,‘
3.[ e

,:SI-—A,' B,‘

] has full column rank for s € Cy;

H 0 ] has full row rank for s € C,.

5 Concluding Remarks

We have applied the factorization approach to a decentralized stabilization prob-
lem for large-scale interconnected systems. The factorization adopted in this paper
was that on the subsystem level, but not on the overall system level. This is rea-
sonable when connective stabilization is considered, where perturbations of the

interconnections among subsystems are supposed.
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RICCATI EQUATIONS, ALGEBRAS, AND INVARIANT SYSTEMS
Hyo Chul Myung and Arthur A. Sagle

Riccati or quadratic differential equations are
constructed in terms of algebras. The idea is to use
the structure of algebras as semisimplicity, radical,
automorphisms to help determine the behavior of solutions,
decoupling, equilibrium, stability before doing detailed
calculations. Examples concerning geodesics, mechanics,
predator-prey model, and the general solution are given
by algebras. Relationships are given concerning the
radical of an algebra and bifurcations, the stability
of equilibrium and root space decompositions, the domains
of attraction and automorphism groups.

1. Riccati equations and algebras.

A nonassociative algebra [7] is a vector space

A over a field (usually real numbers R) with a bilinear
multiplication B:AxA-A; denote this structure by (A,B8)
or just A when B is understood. For example, if A is
an associative algebra, let A+=(A,6) be the commutative
Jordan algebra with multiplication B(X,Y)=XY+YX. Thus
if A is the nxn matrix algebra, the Jordan algebra at
has the symmetric matrices as a subalgebra. Similarly
one may form the anticommutative Lie algebra A =(A,B8) with
B(X,Y)={X,Y]=XY-YX. Generalizations of these algebras
have appeared in many applications as noted below.

An automorphism of an algebra A is a nonsingular
linear transformation ¢eGL(A), the general linear group
of A, such that ¢B8(X,Y)=8(¢X,0¢Y) for all X,YeA.

The set of all automorphisms, Aut(A), is a closed (Lie)
subgroup of GL(A). A derivation D of A is a linear
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transformation D:A>A such that DR(X,Y)=B(DX,Y)+B(X,DY)
for all X,YeA. The set of all derivations, DerA, forms
a Lie subalgebra of gl(A) which is the Lie algebra of
GL(A). Furthermore for DeDerA the exponential series
expD=I+D+D2/2!+... is in AutA; i.e., DerA is the Lie
algebra of the Lie group AutA; see [4].

An ideal I of an algebra (A,B) is a subspace of
A such that B(I,A)cI and B(A,I)cI. As in associative
algebras, the quotient algebra A/I can be formed and
the map A*A/I:x>x+I is an aigebra homomorphism. A is
a simple algebra if B(A,A)#0 and A has no proper ideals;
i.e., no proper homomorphisms. An algebra is semisimple
if it is the direct sum of ideals which are simple
algebras. The radical, RadA, of an algebra is the
smallest ideal of A such that A/RadA is semi-simple or
the zero algebra. The radical is usually related to nil-
potent elements in the algebra and RadA=(RadM)A where M
is the associative algebra generated by the right and
left multiplication functions R(Z):X>B(X,%Z) and
L(W):X>B(W,X); see [1,7].
Definition. Let A=(Rn,8) be an algebra over R. A

Riccati or quadratic differential equation is of the form

X =C+ TX + B(X,X) = E(X)

where CeA, T:A+A is linear, and X=dX/dt; see [2,9].
Remark. Let N be an equilibrium point of the above
Riccati vector field E; that is, E(N)=0. Then the trans-
lation Y=X-N gives a Riccati equation with zero constant
term which we henceforth assume.

By Taylor's theorem, Riccati equations occur as
the quadratic approximation to the vector field equation
X=F (X)~F(0)+FL (0)X+F2(0)x2/2! where the algebra multi-
plication on R" satisfies B(X,X)=F2(0)X2/2!. Also
Riccati equations occur in linear systems with quadratic
cost, and in the differential geometry of invariant
systems [5]. Thus let G be a connected Lie group and let
H be a closed (Lie) subgroup with Lie algebras g and h

respectively. The homogeneous space G/H is reductive if
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there is a subspace m of g such that g=m+h (direct sum)
and (AdH)(m)cm; i.e., [h,mlem. For example, let g and h
be semisimple and m=h' relative to the Killing form of g.
For a reductive space there is a bijective correspondence
between the set of G-invariant connections V on G/H and
the set of algebras (m,a) with AdHcAut(m,a); i.e.,

ad heber(m,a). In particular a curve o(t) in G/H is a
geodesic if its tangent field X(t)= o(t) satisfies the
Riccati equation

X + a(X,X) = 0.

Next let G/H be a configuration space for an invariant
system with nondegenerate Lagrangian. Then a solution
o(t) to the corresponding Euler-Lagrange equation satis-
fies an extended Euler field equation which reduces to

the above geodesic equation when the Lagrangian is given
by kinetic energy. More general quadratic equations occur
when the Lagrangian is not given by kinetic energy [5].

Thus quadratic equations

. _ 1

x1 = Zaljxj + Ib ijxixj

X = FXa_.x. + b, .x.X%.
n nji’j i37i%;

may be written in the form X=TX+B(X,X) with the quadratic
part an algebra multiplication B. Further examples in
this context include the Volterra-Lotka predator-prey
model, interaction equations, Lorenz system, Rossler
equations, etc.

The Van der Pol and Duffing equations also yield
quadratic equations since the following can be shown.
Proposition. Let x(n) (1), .ee x(n_l)) be a dif-

ferential equation where P(zl, cee zn) is a polynomial in

=P(x,x

the z's. Then there exists a quadratic system X=B(X,X)
whose solution gives the solution to the polynomial
differential equation.

2. Structure properties.
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The structure properties of an algebra are related
to the behavior of solutions; for example, the radical
and bifurcations, and identities and periodic points.
Using the notation B(X,Y)=XY we first consider the case
T=0. Thus the Riccati equation becomes i=x2 and using
the product rule, the series solution X(t) with X(0)=X is

(11, exf2] 4 ¢ 2x3Y, 4

X(t) = X
where x!1lax,x121ox2, x[31xx24x2x, .., x1¥+112
Z(k l)x[J+1]X[k il 4 homogeneous of degree k+l and

in the subalgebra R[X] generated by X. Thus the solution
is in this subalgebra which is also invariant under the
flow Fe of the Riccati equation [2]. In case the solution
is periodic with period 1 and the algebra A has a right

identity element e, then X(t+t1)=X(t) implies the identity
exp (t+1) — exptX = exp1X - e, for X = X(0)

in the subalgebra R[X] where exst=EsnX[nDn! with X(0)=e.
Furthermore X can not be nilpotent.
Remarks. (i) If A is power-associative (so that R[X] is
associative for each XeA), then x[n]/(n—l)!=xn, which
is the usual power in A.

(ii) If the algebra A=Al+...+Ak is semisimple, then
A, AJ—O if i#j. For X(t) IX, (;), the Ri?catizequation
decouples as IX. —X—(ZX ) X;" so that Xi=Xi in the
simple algebra Ai.

(iii) 1In case T#0, a homogonization process in [3,9]
allows X=TX+R(X,X) to be imbedded into an equation §=

n+l,§). The original

E(i,i) given by an algebra A= (R
solution X(t) is easily obtained from the solution X(t)
by setting xn+1=1.

Next consider the bifurcation of a l-parameter family
of algebras AA and the corresponding Riccati equation.
As an example, with AeR let AA=(R2’BA) have basis {el,ez}

and let BA be given by
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Bk(el'el) =0, Bk(el’ez) = BA(eZ'el)
eyr Byleyrey) = e,

Then for A<0, the algebras AA are simple but for A=0,

A, is nilpotent and equals its radical; that is, the
family of algebras AA changes its structure from semi-
simple to having a radical at the bifurcation point A=0.

For the corresponding Riccati equation let X=x +x. e

x)€ 1 72 2’
then xl 1+x e —X—B (X,X)=Ax e +2x,x,e. so that x,=ix2

271 17272 1 2
and x2—2xl 2° For A<0 the solution is a bounded ellipse
and for A=0 the solution is an unbounded ray; that is,
A=0 is a bifurcation point for the corresponding system.

Usually radicals consist of nilpotent elements so
that x!¥*11o0,  Thus the solution X(t)=
X[1]+..+tN_1X[N]/(N—1)! is an unbounded polynomial in
R[X]. Whereas with semisimplicity, there is usually
associated a nondegenerate bilinear form C(X,Y) which is
often positive definite and conserved by the solution,
and consequently gives a bounded solution; the following
is an application.
Proposition. Let G/H be a reductive space with decomposi-
tion g=m+h and let {(m,aA,CA):AeR} be a family of algebras
which give metric connections on G/H. Let the kinetic
energy given by KA(X)=%CA(X,Y) be conserved on the
trajectory of the Riccati (geodesic or Euler) equation
i+aA(X,X)=0. If A=0 is a bifurcation point for the
family of algebras where (m,aO,CO) has nilpotent radical
R of index 23, then A=0 is a bifurcation point of the
Riccati system with X(0)eR.
3. Critical elements and automorphisms.

Let X=TX+X25E(X) and let PeA, then the linearization

of E at P is it's derivative, El(P), at P which acts on
YeA:

EL(P)Y = lim(E(P + hY) - E(P))/h

h~0
[T + L(P) + R(P)]Y.

Thus El(P)=T+L(P)+R(P) and L(P)+R(P)=L+(P), the left
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multiplication in the commutative algebra A':(L(P)+R(P))X=
+ . + . .

PX+XP=L (P)X in A . It appears possible to work with

a commutative algebra, however for the Volterra-Lotka model

El(N) = L(N)

the left multiplication in A. Next decompose the algebra
into its stable, center and unstable components
A=A_(N)+A;(N)+A (N) where AS(N),AO(N),AH(T) correspond
to the real parts of the eigenvalues of E (N) being
<0, =0, >0 respectively. For the Volterra-Lotka model,
El(N)=L(N) puts us into the familiar situation of decom-
posing a nonassociative algebra (or its complexification)
into its root spaces A=IA(N,A) relative to L(N).

For the Riccati equation X=E(X), let
AutE={¢eGL(A):E¢=¢E}. This is the solution preserving
linear group which is a Lie group. A straight forward

calculation shows
Aut E = {¢eAutat : To=¢T}

with Lie algebra DerE={DsDerA+:[D,T]=O}. 1f AT is a
semisimple algebra with a right or left identity, then
AutE is determined by at as follows. Let ¢=expDeAutE
where DeDerA+, then from [4,7] D is contained in the Lie
algebra M where M is the associative algebra generated
by left and right multiplication functions; i.e., the
identity component of AutE is determined by A+. If AutE
is connected, then the identity components generates AutE
and therefore is determined by A*. The above derivation
D is called "inner" and often has explicit formulas.

Let T denote the set of critical elements for the

quadratic equation X=E(X), i.e. T is the set of equili-
brium points and periodic solutions. Automorphisms help
locate I and describe the symmetry observed in domains
of attraction.
Theorem. Let (AutE)O denote the connected component of
AutE and let T be as above. Then

(i) (AutE)-I=T.
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(ii) If I is finite, then (DerE)-T=0; that is,
I' is in the set of fixed points of (AutE)O.

(iii) Let Att(y) be the domain of attraction of
vyel'. If T is finite, then

a) (AutE)0°Att(Y)=Att(Y).

b) There exist XaeAtt(Y) such that Lé'(AutE)0°Xa=
Att(y).
Remarks. (i) Proofs use expsDce AutE for all DeDerE
and seR, and ¢Ft(X)=Ft(¢X) for ¢eAutE where Ft(X) is the
flow of E with FO(X)=X.

(ii) For example, let G/H be a reductive space with
G and H semi-simple, and g-m+h where m=h' as before.
Let X=E(X) be a quadratic equation with ad he<Der E and
let K0={Xem:(adU)X=0 all Ueh}. If T is finite then
I'eK
KO.

solutions for a quadratic equation is finite.

of see [6] for specific matrix examples involving
It has been conjectured [8] that the set of periodic

The second author thanks the Mathematics Department at the University
of Utah for their kind hospitality while doing this work.
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Maximal order reduction of proper transfer
function matrices.

Thomas John Owens

Abstract

A parameterization of the class of 1linear
state-feedback controllers that assign a set
of desired self-conjugate eigenvalues to the
closed-loop system is applied to give a method
for maximal order reduction of proper transfer
function matrices. By making the maximum
number of closed-loop modes unobservable,
while retaining arbitrary assignment of the
remaining modes, a lower-order transfer
function matrix is obtained. The method
establishes that results concerning the
existence, number, and cancellation of zeros
of proper transfer-function matrices may be
applied in the response insensitivity problem.
The main result is a class of maximal order
reducing fixed-gain state-feedback controllers
explicitly specified by a set of free
parameters which may be chosen to satisfy
additional design requirements.

1. Introduction

In Owens [11, 12] a method of maximal order

reduction for square multivariable strictly
proper invertible transfer function matrices
was presented. Maximal order reduction is

carried out by applying state feedback to

159
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the original system such that the number of
observable modes 1is reduced and a lower
minimal realization can be found. This
maximal order reduction problem is of
interest, for example, because of its
application to first-order multivariable
design.
In this paper the above mentioned method of
maximal order reduction is extended to
multivariable systems with proper transfer
function matrices. This problem has
previously been considered by Antsaklis [3].
The extension is of interest, for example,
because of its application to the problem of
exact model matching for systems with proper
transfer function matrices. Furthermore, it
will enable results concerning the existence,
number and cancellation, of =zeros of such
systems to be applied in response
insensitivity problem (Owens and O'Reilly
[14]. Owens [13]).
For ease of exposition we begin by considering
regular proper transfer function matrices. A
constant polynomial matrix is called regular
if it is square and has a nonzero determinant.
The related problem of finding input vectors
which generate =zero output vectors for
commonly used systems of the form

X = Ax + Bu, vy = Cx + Du (1.1)
was considered by Al-Nasr [l1l]. This problem,
for general state-space models of the form
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(1.1) has been addressed by Amin and Hassan
[2].

The eigenvector shifting problem plays a
central role in the suggested method. The
problem is tackled in this paper using a
parameterization of the class of linear state

feedback controllers which assign a set of
desired self-conjugate eigenvalues to the
closed-loop system (Fahmy and O'Reilly [6, 71,
Roppenecker [15, 16]). For ease of exposition
we make four simplifying though inessential
assumptions, that the algebraic multiplicity
of the left-half plane zeros is equal to their
geometric multiplicity, that the observable
closed-loop eigenvalues are assigned distinct
values not equal to the corresponding open-
loop eigenvalues or to the 1left-half plane
Zeros.

The problem is stated in section 2 and
analysed in section 3. It is established that
there exists a parametric class of maximal

order reducing controllers. An algorithm for

identifyving the class is given in section 4.
In section 5, the extension of the results
obtained in preceeding sections to nonregular
transfer function matrices is discussed.
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2. Statement of the problem

Let the system with 'proper' regular transfer
function matrix R(s) be described by the
following irreducible state space system

X = AX + Bu (2.1a)

y = Cx + Du (2.1b)

where xef", y,u:Rﬂ and A, B, C, D are constant
matrices of appropriate dimensions. (ie R (o0)
= D is bounded).

The system transfer function matrix is given
by

-
R(s) = C(sI - A) B+ D (2.2)
Denoting by T = (ET yeeeesty) and v = (¥,
,....,3& ), the eigenrow and eigenvector

frames, and by A\ the spectral matrix of A,
then

A = VAT (2.3)
In the case where A has simple spectral
structure, A = diag();) the transfer function
matrix can EF expressed in the dyadic form
R(s) =) CRE B + D (2.4)
i:l(_s—__:)

If a state feedback control law of the form
u=Kx+r, re ar,KeRrx“ (2.5)

is applied to (2.l1la, b), the nominal closed-

loop system obtained is of the form
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X
Y

Ax + Br ACQA+BK (2.6a)
(C + DK)x + Dr (2.6b)

The complete class of state feedback

controllers for the system model (2a.la, b)

that assign a prescribed spectrum of distinct
self-conjugate eigenvalues
(\y yo---+2n) to the closed-loop system is
parameterized (Fahmy and O'Reilly [6, 71) by
the real feedback gain matrix

K(F) = FV '(F) (2.7)
where

F=1[f,....,fn 1 (2.8)
is a matrix of free parameter vectors f;, i =
i,....,n. To guarantee that K 1is real, we
choose f; iRPfor a real eigenvalue, whereas for
a complex- conjugate pair of eigenvalues A;,}j= }.
$.8; —‘F‘ecp and V = [v,,....,V,] (2.9)
is a matrix of correspondingly 1linearly
independent eigenvectors v; = (A{I - Af'Bfi ,
i=1,....,n (2.10)
Under a control law of the form (2.5) the
closed-loop transfer-function matrix can be
expressed in the dyadic form

R (s) —Z (C + DK)v, t B+D (2.11)

=t ( s -m
substituting (2.7) and (2.10) into (2.1l1)
glves (2.12)
Z(CV +Df)t B +D (2.12)
=TS S ag )
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Thus, if there exists j, such that
Cv; + Df; = 0 (2.13)
the mode )\j disappears from the transfer-
function matrix and consequently does not
affect the input-output relations. This
implies that a 1lower-order model which
excludes this unobservable mode can be used
for a new minimal realization of the system.
Obviously, such a procedure 1is practically
acceptable as long as the unobservable mode
is stable
(Re(};) < 0).

Since one has no control on C or D it is
reasonable to alter the system in such a way
that the maximum number of stable modes will
become unobservable. It is well known that
the observability properties of a system are
not invariant under state feedback. Thus it
is of interest to examine the possibility of
achieving the above requirements by means of
state feedback. The problem is stated as
follows.

Given the linear time-invariant system SO(A, B,
C, D) of equations (2.1a,b) find a stable
feedback matrix K such that the closed-loop
system S_(A +BK, B, C + DK, D) has the maximum
possible number of stable unobservable modes.

3. Analysis
Substituting (2.10) into (2.13) a necessary
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and sufficient condition for the closed-loop
characteristic frequency Zi and its

. . [V
corresponding eigenvector v to be

unobservable is

[C(zI - A)'B + DIf; = 0 (3.1)

A solution to (3.1) can only exist if

C(sI - quB + D looses rank at z;. That is, if

2, is an 1invariant zero (MacFarlane and
Karcanias [8]) of the system S, (A, B, C, D).
w

f, is then referred to as an input zero

direction and

vt = (z;I - A)T'Bf; as the state zero

direction. It is clear from (2.10), (3.1)
that the invariant zZeros, state Zero
directions and input =zero directions are
invariant under state feedback.

In a previous paper (Mita [9]) the invariant
zeros have been defined as the poles of the
maximal unobservable subspace (MUS), which are
invariant under state feedback.

Amin and Hassan [2] have developed algorithms
for the determination of the invariant zeros
and 2zero directions of general state space
models of the form (1.1).

Definition 3.1 (MacFarlane and Karcanias [8]

The geometric multiplicity of an invariant
zero is defined as the rank deficiency of Ri{z)=
¢(z;I - A)"'B + D.

Lemma 3.1 (van Dooren [18]) Let S,(A, B, C, D)
be an irreducible state-space system of a
regular transfer function matrix R(s) and
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assume for the moment that D = R(o0 ) is
regular.
The zeros of R(s) are then finite and n in
number, multiplicity counted, and are the
eigenvalues of 3 = A - BD-%L One can
associate to A so-called invariant zero
directions which are the eigenvectors, or in
the defective case the principal vectors of %.
When D is singular, but the system matrix
P(s) = [sIn - A 'B‘v (3.2)
-C | D]
is still irreducible and invertible then R(s)

has some infinite =zeros. The generalized
eigenvectors corresponding to these infinite
zeros could be defined as 'infinite =zero
directions'.

Remark 3.1 The finite zeros of R(s) in Lemma
3.1 are the invariant zeros of R(s). This
means that each left-half plane invariant zero
has corresponding input zero direction and
state zero direction unique up to a scalar

multiple.

Remark 3.2 If Py is the rank deficiency of D,
then R(s) has h R

infinite zeros where h =,)_:' h;, i =1,....,p

the order (multiplicity3- of the infinite
zeros. For a regular transfer function matrix
the number of invariant zeros is given by n -
h (Amin and Hassan [2]).

Remark 3.3 The state-space model of (2.l1la, b)
is assumed to be minimal. When a system is
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minimal its invariant zZeros are the
transmission zeros of the system (Emami-Naeini
and van Dooren [51]). Therefore, in the
following we will refer to the zeros of the
system.

By Lemma 3.1 and the parameterization of (2.7-
2.10) it is possible to state the following.

Theorem 3.1 Given the linear system S (A, B, C,

D) with left-half plane zeros z;, i =1,....,q9,
there always exists a class of (r x n) state
feedback matrices K that assign the pairs (z;
,vf ), 1 = 1,...... ,4 as the closed-loop
eigenvalues and their corresponding
eigenvectors, such that the n - g observable
eigenvalues of S, may be arbitrarily assigned.

4. Algorithm for maximal order reduction
Given SO(A, B, C, D) of equations (2.1a, b) the
following steps are pursued:

Step 1 The zeros z,,....,Z4k40f So are computed.
It is assumed, without loss of generality,
that

Re(z;) < 0, i = 1,....,q9, Re(z;) » 0, i =
gtl,....,w.

Step 2 The vectors f,,....,fq, that satisfy
[C(z,I - quB + Dlf;, =0, i =1,....,9, are
computed. Having determined f,,....,fq, the
corresponding linearly independent vectors v,
rees.,Vq are computed as v; = (zI - quBf(, i
=1,....,9.
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Step 3 The remaining observable modes have
eigenvalues which may be arbitrarily assigned

to A; by taking v; = (%I - A)7'Bf; i =
g+l,....,n, subject to the restriction that £
yee+-,fn, be selected such that v,,....,v,,

are linearly independent.
Step 4 Find K using equation (2.7).
Remark 4.1 The minimum number of free

parameters (degrees of freedom after
eigenvalue assignment) in the pxn parameter
matrix F for distinct eigenvalues *i (i =
1,....,n) is (O0'Reilly and Fahmy [10])
nx(p-1). Thus, step 2 utilises all the design
freedom available in £, i = 1,....,9.
Remark 4.2 No proper transfer function matrix
may be reduced to first-order type. This is
not so for strictly proper transfer function
matrices (Owens [11]).
Remark 4.3 If no invariant zero has Re(z{) =0,
Y = {v,,....,%} is what in Antsaklis [3]
has been defined as the supremal output-
nulling (A, B)-invariant subspace.

Remark 4.4 The major 1limitation of this

approach to order reduction is the requirement
that left half-plane zeros exist. The extent
of the order reduction is dependent on the
number of such zeros.

Example
Consider the system (example 2 of Amin and

q+1
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Hassan [2]) given by

-1 o 1} 0 1
A=]0 0 0], B= 0 (4.1a)
1 0 -1] 0 0

c= o 1 o} p 0 0 (4.1b)
[1 0 0 {; OJ
Step 1 The system (4.la, b) has one invariant
zero at 2z = -1. Hence, q = 1. (van Dooren
[18] also gives a numerically stable algorithm

for computing the zero of S (A, B, C, D)).
Step 2

R(-1) = -1 O
1 0

Therefore, R(-1)f, =10
b

-1

without loss of generality since the actual

beR. Take f, = [o]

number of degrees of freedom in f; is
(p-1) (O'Reilly and Fahmy ([101). For this
choice of f,, v, = [0]. £, and v,

0

1
agree with the zero directions computed by
Amin and Hassan [2].

Step 3 Suppose, arbitrarily, that it is
desired to shift the other two modes to
-0.5, -3
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0 ~2/3]
(-0.5I - A)'B = |-2 0

0 -4/3]

"0 -2/3"
(-3t -a)"'B= |-1/3 o

0 1/3

If we denote f, = [a], £y ={E], a,b,c,deR,

Then we have that b d

Step 4 The class of feedback matrices K which

solve the maximal order reduction problem is
parameterized by
K=[0 a c]|0 -2/3b -2/3d]-1
1 Db d] 0 -2a -1/3c
1 -4/3b 1/3d
Subject to the inverse in (4.2) existing.

5. Model reduction of nonreqular proper
transfer function matrices.

Consider now systems represented by state
space models of the form (2.la, b) where xcmt
yemp, and uei&m.

For all invertible systems Amin and Hassan [2]
have shown that the zeros and zero directions
can be determined through the calculation of
the eigenvalues and eigenvectors of a matrix
having the dimension of the MUS. A system is
invertible if Rank R(s) = r = min{(m, p). This
means that under the four simplifying through
inessential assumptions stated in the
introduction the design procedure of section 4
may be applied directly with the following
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qualifications: (1)

Davidson and Wang [4] established that if p #
m then for almost all systems (2.la, b) there
exist no zeros for the system; If p> m this
can be seen, intuitively, to be so from (3.1).
(ii) If p € m the zero directions corres-
ponding to an invariant zero will Dbe
nonunique. The nonuniqueness for a given gz
being parameterized by the design freedom
remaining in f; after it has been restricted
such that equation (3.1) is satisfied.

(iii) wWhen p < m, order reduction may be
carried out without resort to pole/zero
cancellation (Antsaklis [31). In fact,
arbitrarily assignable eigenvalues may be made
unobservable. For a particular choice of
unobservable eigenvalues attainment of the
maximal order reduction may require the
assignment of specific zero directions to the
zeros cancelled by poles.

For the case p < m, the question of how many
of the n system modes can be made unobservable
by state feedback is addressed.

Theorem 5.1 An upper bound on the number of

modes that can be made unobservable is n - q,
where

g =hmé£ {rank [C(I - A) “Ig - X]‘
and X corresponds to those rows of
C(I - A) B for which the corresponding row of
D has one or more nonzero elements.
proof Analogous to that of theorem 4.2 of
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Owens and O'Reilly [14].

For the case p< m, the algorithm for maximal
order reduction becomes steps (a), (b), (c),
and (e) of the design procedure of Owens and
O'Reilly [14], substituting C for DA, and D
for DB.

Remark 5.1 The relationship of the maximal

order reduction problem to the insensitivity
problem of Owens and O'Reilly [14] highlights
the nature of ill-conditioning effect of
making closed-loop modes unobserverable (Owens
[131).

Remark 5.2 Antsaklis [3] Lemma 10 establishes
that if maximal order reduction is achieved
all stable zeros of the system are cancelled
by closed-loop poles. This result is of
significance in the response insensitivity
problem.

Finally it 1is noted that, a system is
noninvertible if R(s) looses rank
independently of s; it follows from (3.1) that
the system has an infinite number of zeros.
Such a system 1is defined as a degenerate
system. This is a case of extreme control
difficulty (Rosenbrock [17]). 1In view of our
objectives in studying the problem considered,
consequently, is not discussed further here.

6. Conclusions

A simple method for identifying the class of
state-feedback controllers for exact
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cancellation of modes from a proper transfer-
function matrix of a system by making them
unobservable with simultaneous allocaion of
the rest has been presented. It has been
assumed that all the parameters in A, B, C,
and D are given and exact. A slight ignorance
of the model or change in the system may lead
to the reappearance of the cancelled dipoles
in the expression for the closed-loop
transfer-function matrix of the original
system. However, as the maximal order
reduction does not exploit all the available
degrees of freedom exploitation of the
remaining degrees of freedom may lead to a
reduced order model which is less sensitive to
variations in A, B, C, and D (Owens and
O'Reilly [14]1). The method establishes that
results concerning the existence, number, and
cancellation of zeros of proper systems may be
applied in the response insensitivity problem
(Owens and O'Reilly [14]1), Owens [13]). The
relationship to the response insensitivity
problem highlights the nature of the 1ill-
conditioning that results from order
reduction.

The method is constructive and does not
require subspace terminology.
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THE MATCHING CONDITION AND FEEDBACK CONTROLLABILITY
OF UNCERTAIN LINEAR SYSTEMS

Jan R. Petersen

Keywords: Robust control, uncertain systems,

controllability, feedback controllability

Abstract

This paper considers a problem of controllability for a
class of linear uncertain systems. The uncertain systems
under consideration contain norm bounded time-varying
uncertainty. The paper introduces a new notion of
controllability referred to as feedback controllability.
Roughly speaking, an uncertain system 1is feedback
controllable if there exists a time varying linear state
feedback control such that with any initial condition, the
closed loop system state converges to zero in a finite time.
The main result of the paper shows that if the uncertain
system satisfies a certain matching condition then the
system will be feedback controllable. This matching
condition is also known to be a sufficient condition for the
stabilizability of the uncertain system.

I. INTRODUCTION

In order to develop a theory of robust control system
design, it 1s natural to consider linear dynamical systems
containing time-varying unknown-but-bounded uncertain
parameters. This leads to the notion of uncertain linear
systems; e.g., see [1]. Given that the notion of
controllability plays an important role in the theory of
linear time-invariant systems, one might expect that some
notion of controllability will play an important role in the
theory of uncertain linear systems. This paper introduces a
new notion of controllability for uncertain linear systems.
This notion of controllability is referred to as Feedback
Controllability. A system is feedback controllable if there

177
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exists a linear time-varying state feedback control law such
that the following condition holds: Given any admissible
uncertainty and any initial state, the state of the closed
loop system converges to zero in a finite time.

For linear time-invariant systems, the usual definition
of controllability is in terms of open 1loop control.
However, one could equivalently define controllability in
terms of closed loop control. At this point, it should be
noted that when one introduces uncertainty into the system,
the equivalence between open loop and closed loop control no
longer applies. 1Indeed, one would in general expect closed
loop control to be better able to cope with uncertainty than
open loop control. Thus, it is somewhat surprising that
most of the existing papers on the controllability of
uncertain systems have dealt with open loop control; e.qg.,
see [2]-[5]. However, reference [6] deals with a notion of
modal controllability for wuncertain systems which 1is
related to our notion of closed loop controllability.

The main result of this paper shows that 1f the
uncertain systems under consideration satisfy a certain
matching condition (e.g., see [1l]) then they will be
feedback controllable. The method used in proving feedback
controllability involves the use of a time-varying quadratic
'Lyapunov' function. This Lyapunov function is constructed
by solving a Riccati differential equation. This Riccati
equation is of the type which arises in linear optimal
control. 1In fact, our approach to feedback controllability
of uncertain linear systems is closely related to the
Riccati equation approach to the stabilization of uncertain

linear systems; e.g. see [7]-[10].
II. FEEDBACK CONTROLLABILITY

The linear time invariant system
x(t) = Ax(t) +Bu (t) (2.1)

is said to be controllable if given any T > 0 and any

initial condition x(0) = x(Q, there exists a control function

u(t) such that =x(T) = 0. A standard result in linear
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systems theory relates the controllability of the system

(2.1) to the controllability gramian

AT - e —
W, =] et "BRe? ©77 g1.
Indeed, the system (2.1) will be controllable if and only if
W(t,T) is positive-definite for all t < T. Furthermore, a
suitable control function is given by

=—Be 2 tW(O,1 x ;

u(t)=—Be 6T x; (2.2)

e.g. see [1l1}. The control law given in (2.2) is an open
loop control. However, it is straightforward to verify that

this control law is equivalent to the following

’ -1
u(t)=—BW(t,T) X(t),' te (O,T). (2.3)
This control law is of the form u(t) = K(t)x(t) and will
ensure x(t) - 0 as t — T. However when t = T, W(t,T) = 0

and hence this control law is not defined for t = T.

The above discussion of feedback controllability for
linear time invariant systems provides the motivation for
our definition of feedback controllability for wuncertain

linear systems. We consider uncertain systems of the form
X(t) = Ax(t) +Bu (t) + DF () [E, x(t) +E ,ut) |;

IF <1 (%)

where x(t) € RN is the state, u(t) € RM is the control input
and F(t) € RPX9 is a norm bounded matrix of uncertain

parameters. That 1is, F(t) 1is a matrix of measurable
functions such that ||F(t) || £ 1 for all t. (|| denotes the
induced matrix norm) It is assumed that the uncertain

system (X) satisfies the following assumptions:

Al. EJ'Ep
A2. EJ'Ej

1l

I;
0.

Notation: For any matrix R, the notation A{(R) denotes
the null space A(R) é {x: Rx = 0}. For any symmetric matrix

M, Amax (M) denotes the maximum eigenvalue of the matrix M.
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Definition 2.1: The system (X) is said to be feedback
controllable if given any T > 0 there exists a continuous
time-varying feedback gain matrix K(t) defined on (0,T) such
that the following condition holds: If we apply the state
feedback control u(t) = K(t)x(t), then given any initial
condition x(0) = x0 and any admissible uncertainty F(t), the
solution to (¥) will satisfy x(t) - 0 as t —» T.

Definition 2.2: The controllability gramian associated
with the system (X) is defined by

AT - ’ 2 e —
W.e,n=[ e ?[sg’-pple* “° a1,

By analogy with equation (2.3), one might expect that a

suitable feedback control law is given by

u(t) = —EWc(t,T)‘lx(t). However, a slight modification to

this control law is required. Indeed as in Theorem 13.2 of
[11}, it 1is straight forward to verify that Wg(t,T)

satisfies the differential equation
d ’ ’ ’
Gt Welt,/T) =AW (£, D) +W (£, ) A — BB +DD;W(T,T) = 0. (2.4)

Our required feedback gain matrix will be obtained by

solving the Riccati differential equation

() =AS(®)+S®A ~ BB + DD + SE)E  E S); S(T) =0. (2.5)
Lemma 2.1: Suppose Riccati eguation (2.5) has a

solution on the interval (M, T]. Then
S(t) € We (t,T) for all t € (M,T).

Proof: It follows from the optimal control

interpretation of (2.5) (see Theorem 21-1 of [11]) that
given any tp € (M, T)

T ’ ’ ’ ’
¥stt)x=minf, {um u® +x® B8 -DD)x(M}dT:
ut) 0

X)) =-RAx® +E ul); x(t)=x
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However, if we let u(t) = O then the resulting value of the

cost functional is

" (t—t (T-t )

T , A 0) ’ s —A o ’
Jw=[ ¥e (BB - DD)e xdT = xWc(to,T)x.

0
Thus, we must have x'S(tg)x £ xWe(tg,T)x. Since x € RM was
arbitrary, we conclude that S(t) £ We(t,T) for all

te (MT). []

In the discussion of controllability of linear time
invariant systems, we saw that the condition W(t,T) > 0 for

all t < T ensured the controllability of the system. We now
give a condition on the uncertain system (ZX) which will

ensure that Wg(t, T) > 0 for all t < T. This condition is
referred to as the matching condition and similar conditions
arises frequently in the stabilization of uncertain systems;
see [1], [12] and [13]. In the sequel, we will show that
this condition ensures that Riccati equation (2.5) has a
positive-definite solution on the interval (0,T) .
Furthermore, we will show that the matching condition is a

sufficient condition for the feedback controllability.

Definition 2.3: The uncertain system (X) is said to
satisfy the matching condition if:

M1. BB’ - DD’ = GG" 2 0;
M2. The pair (A,G) is controllable.

Remarks: Our matching condition is a generalization of
the matching conditions given in references [1], [12] and
[13]. Indeed, the matching condition given in [12] would
require that then exists a matrix M such that D = BM, where
I -MM >0 and (A, B) is controllable. If these conditions
hold then it is straightforward to verify that conditions Ml
and M2 will hold with G = B(I-MM)1/2, We also observe that
if condition M1 holds then we must have A((B) € A(D") .

Thus, there exists a matrix M such that D = BM.

ition : If the system (X) satisfies the
matching condition then the controllability gramian We(t,T)
will be positive definite for all t < T.
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Proof: If the system (X) satisfies the matching

condition then the controllability gramian is

T - ’ -
we,m=[ " "6c’e™ ™ at (2.6)

Furthermore, the pair (A,G) is controllable. Using this
fact, it now follows that Wc(t,T) will be positive-definite

for all t < T; e.g., see Theorem 13.3 in [11]. []

Remark: The condition We(t,T) > 0 for all t < T is
referred to as the 'relative controllability condition' in
the literature on linear quadratic differential games; see
[14]. Given the connection between linear quadratic
differential games and the stabilization of wuncertain
systems (pointed out in [10]), it might be expected that
this condition would be important in the study of feedback

controllability of uncertain systems.

Iheorem 2.1: The matching condition is a sufficient
system (Z).

In order to prove this theorem, we must first establish

a number of preliminary results.

Lemma 2.2: Suppose the system (X) satisfies the
matching condition. Then the Riccati equation (2.5) will
have a positive definite solution for all t € (0,T).

Proof: If the system (X) satisfies the matching

condition then Riccati equation (2.5) becomes

SM=ASM+SHA — GG + SWE E St);S(T) = 0. (2.7)

It follows from Theorem 24.1 of [11] that there exists an
€ > 0 such that (2.7) has a solution on the interval (T-¢,T].

Let the interval on which a solution to (2.7) exists be
(M, T]. Thus - < M < T. Now let ®(t,T) be the state

transition matrix of the system k(t):[—A’—%E,lEls(t)]x(t). It

follows from (2.7) that

Sm=-swI-& - 3E E SO - St~ & - $E E_ SE)]-GG; S =0,
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This leads to

st = I:tb(r,t)'GG'd) (T, t)d1

(2.8)
for t € (M,T]. It follows immediately that S(t) 2 0 for all
t € (M,T]. Also, Lemma 2.1 implies that S(t) < Wg(t,T) for

all t € (M,T]. Hence, S(t) cannot have a finite escape time
and thus (2.7) has a solution for all t < T.

In order to show that S(t) is positive-definite for all
t < T, we return to equation (2.8). Using this equation, it
follows that given any t1 < t2 < T then

S(t,) 2t ) 2.9)

Now suppose that there exists a tg < T such that S(tg) is
singular and let x0 € A(S(tQ)) be given. It follows from

(2.9) that £OS¢JXO==Ofor all t € (to,T]. Thus, we must have

d , —t -
at 0S(t)xo—xOS(t)xo-—O

for all t € (to,T]. Furthermore, using the continuity of
S(t), it follows that¥ St )x,=0. However, (2.9) implies
that é(t) < 0 for all t < T. Hence, we must have
é(to)xo = 0 and S(tg)xp = 0. Returning to Riccati equation
(2.7), it follows that

0=x,S(t )x,= X, AS(t )x,+ ¥,S(t JAx, - ¥,GCx + xSt JE E St )x,

— ’ !
—xoGGx0
and thus G'xp = 0. Also,
. ’ 7 4

0=S(t0)X0=AS(t0)XO+S(t0)AXO—GGXO+S(tO)E 1Els(to)xo

=S(t J)Ax,.
Thus, A'xg € A(S(tQ)). However, since x0 € A(S(tg)) was
arbitrary, we conclude that A'A(S(tg)) € A(S(tg)). Hence,
A(S(tg)) is a non-trivial A" - invariant subspace contained

in A(G’). This contradicts the controllability of (A,G).

Therefore, we must have S(tg) > 0. []
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Lemma 2,3: Given any x € K2 and any admissible
uncertainty F(t) for the system (¥), then
2¢s@®) " DF (t)[E ,— E,BS® _1]xs ¥sw s +o0lsw Tx+ ¥E E_ x.
Proof: Given any x € R and any admissible uncertainty
F(t), we have F(t)’F(t) €I and
’ —1 ’ -1 2
os"D s k- F(t)[El ~ E,BS(0) ]x“
=x's® 'pD'sS® x - 2x'stt) 'DF (t)[E  —E,BS® ’1};
+x[E, —E,BS® 1F®FOE, -E BS® Ix
<¥'stt) 'DDSK) 'x —2¢S(t) T DF (t)[E _—E,BS®) _l]x
+x[E, —E,BS® 1TE, —E,BS() x
=xS® 'DDS® 'x—2xS(t) DF (t)l:E L —E,BS® _l]x

- -1
+xE E x+xXSt) BBS®  x

using assumptions Al and AZ2. The required inequality now

follows immediately. []

Proof f Theorem 2.1: Suppose that the system (X)
satisfies the matching condition and let S(t) be defined by
(2.5). Using Lemma 2.2, it follows that S(t) > 0 for all
t € (0,T). Hence, we can define P(t) 8 s(t)~1 > 0. The
derivative of P(t) is given by

Lomy =—pm)SOPO
dt - :

Hence using (2.7), we conclude that P(t) satisfies the

Riccati equation

P(t)=—AP() ~P(OA+PMGGR(t) —E E 2.10)

We now construct a lower bound on P(t). Indeed, let
A

p= max {A,, € *GGe™?Y}.
%10, T]

It follows from the definition of Wg(t,T) that
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W (t,T) sj: pIdT=p(T—tv)I

for all t € [0,T]. Hence, using Lemma 2.1 we conclude that
S(t) £ r(T - t)I for all t € [0,T]. Therefore

I
Plt) 2———
pPIr—1 (2.11)

for all t € [0, T). We now let K(t) be defined by
K(t) = -BP(t) (2.12)
for t € [0, T). This results in the closed loop system

xt)=(A-BBPO+DFO[E, -E,BPO)x0; [Fo]<1. 2.13)

In order to show that all solutions to (2.13) satisfy
x(t) 20 as t & T, we propose to use the 'Lyapunov function'

v(x,t) = x'P(t)x. (2.14)

The Lyapunov derivative corresponding to (2.13) and Lyapunov

function (2.14) is
Vix,t) =xPt)x+2xP ) x
=x{- AP -POA-POGCRPW® -E E, }x
+2xpw{a-BBP® +DF@[E, -E,BP®]}x
=x{ P()BBP(1) - P(t)DDP(t)-E E, - 2P()BBP(1))}x
+2x¥PMDFM[E, —E BP0
<-¥{P®)(BB + DD)PW +E |E, }x

+¥{P®©®BE +DDIP(M) }x +XE E x

using (2.10), (2.13), matching condition M1l and Lemma 2.3.
Using the fact that V(x,t) < 0, it now follows that if x(t)
is a solution of (2.13) with x(0) = X0 then

XﬁfPﬁ$X¢)SX}P«)XO for all t € (0,T). However, using (2.11)

this implies that
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2
=l _ 11 0
PT =D _xo}?(O)x0 for a t € (0,T).
2
Hence"x(t)" Sp(T—t)x'oP(O)x0 for all t € (0,T). Therefore,

x(t) &2 0 as t - T. []

Remark: The above theorem has shown that the matching
condition 1s a sufficient <condition for feedback
controllability. Furthermore, it is well known that in
general the matching condition is a sufficient condition for
the stabilizability of an uncertain system; e.g., see [l] or
[13]. In particular, for the uncertain systems considered in
this paper, it is straightforward to show that our matching
condition is a sufficient condition for stabilizability;

e.g., see [10].

Acknowledgement: This work was supported by the Australian
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CONVERGENCE PROPERTIES OF INDEFINITE LINEAR QUADRATIC PROBLEMS
WITH RECEDING HORIZON

H.L. Trentelman & J.M. Soethoudt

Abstract: In this paper we study the following question: given a finite dimensional
linear system together with a finite horizon (possibly indefinite) quadratic cost
functional, when does the corresponding optimal cost converge to the optimal cost of the
corresponding infinite horizon problem, as the length of the horizon tends to infinity?
For the case that the linear quadratic problems are regular we establish necessary and
sufficient conditions for this convergence to hold.

1. INTRODUCTION

The finite horizon linear quadratic control problem for the linear time—invariant

system
(1.1) x(t) = Ax(t) + Bu(t), x(0) = X € R"

is concerned with choosing a control function u such that the cost functional

T
(1.2) Ip(x ) :=Uf w(x(t),u(t))dt

. P . . . 'y m .
is minimized. Here, w is a real quadratic form on R'x R™ given by

(1.3) w(x,u) = XTQ x+20Sx+uRu.

In the above expressions, A € R™, B ¢ R™, Q e R™", S € R™" and R ¢ R™™. Tt is

assumed that Q is symmetric and that R is positive definite. Apart from this
definiteness assumption on R, we allow w to be indefinite.

In order for the integral in (1.2) to be well-defined, we restrict the control
functions to be elements of the class L2[0,T] of all R"-valued functions that are square

integrable over [0,T]. The optimal cost for the above problem is then defined as
+ .
(1.4) VT(xo) := inf { JT(xo,u) fue LZ[O,T] }

In addition to the above, the infinite horizon linear quadratic problem deals with
minimizing the indefinite integral
(1.5) J(xu,u) = "}‘.1»5%’]T(Xo’u)'
189
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Let Lz,loc(R+) :=T90L2[0,T] denote the space of all R™—valued locally square
integrable functions on R*. The functional J(xo,u) is defined for all functions u e
LZ,IOC(IR+) for which the limit in (1.5) exists in the semse that it is finite or
infinite. This class of functions is denoted by

(1.6) U(xo) ={ue L2,Ioc(R+) | ,}lg JT(Xu’u) exists in R%= R u {~00,+00}}

The optimal cost for the above infinite horizon linear quadratic problem is

(7 V;(xo) = inf { J(x;u) | weUlx) )

In this paper we are interested in the question whether the optimal cost for the
finite horizon problem (1.4) converges to the optimal cost for the infinite horizon
problem (1.7) as T tends to infinity. Of course, if the quadratic form w is positive
semi-definite then it is well-known ( see [6] ) that indeed VT(XO) > V:(xo) (T»00) for
all X, (provided that (A,B) is stabilizable). It turns out however that if w is
indefinite then this convergence no longer holds in general. In this paper we establish
necessary and sufficient conditions for convergence to hold.

Actually, we shall treat the above question of convergence in the following, more
general context. Let N € R™" be a symmetric matrix, let T > 0 and consider the finite

horizon problem with cost functional

(1.8) Ip ) = Tplxpu) + x (T)Nx(T) .

The second term in the above represents a penalty on the terminal state. The matrix N is
allowed to be indefinite. The optimal cost associated with the latter problem is given
by

+ N
(1.9) VT,N(XO) := inf{ JT,N(xu’u) |ue LZ[O,T] }.

In addition to this finite horizon problem we consider the infinite horizon problem of
infimizing (1.5) under the constraint that Nx(t) converges to zero as t tends to

infinity. More specifically, let
UN(XU) ={ue U(Xu) | Ll)% Nx(t) = 0 }

and consider the problem of infimizing (1.5) over the class UN(xo)' The optimal cost for

this problem is given by

(1.10) V;}(xu) = inf { J(x,u) | u € Ug(x) }.

The latter optimization problem was studied in detail in [8]. Of course, the problem
(L.7) can be reobtained from this formulation as a special case by taking N = 0 (see
also [9]). Another special case of (1.10) is obtained by taking N = I , the identity
matrix. This special case was treated in [10].

Now, in this paper we shall ask ourselves the question: when does the optimal cost
for the finite horizon problem (1.9) converge to the optimal cost for the infinite

horizon problem (1.10) as T » o0 ?
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We conclude this introduction by noting that the questions to be studied here have
been studied before in [2] and [11]. However, in these references only the case that
both w > 0 and N > 0 was considered, while we intend to treat the most general case that

w and N are allowed to be indefinite.

2 THE ALGEBRAIC RICCATI EQUATION

The characterization of the optimal costs for the infinite horizon problems (1.7) and

(1.10) centers around the algebraic Riccati equation (ARE):
(2.1) ATK + KA + Q (KB + STIR'(B'K + S) = 0.

Let I’ be the set of all real symmetric solutions of (2.1). According to [10] , if (A,B)
is controllable and I # @ then there is exactly one K € I such that the matrix AK =A-
BR_l(BTK + 8) has all its eigenvalues in C U ¢’ and exactly one K € I’ such that AK has
all its eigenvalues in ctu Here, we define C_(CO,C+) ={seC|Res<0}(Res
= 0, Re s > 0 ). These elements of I" are denoted by K" and K~, respectively. It can be
shown that if K e I' then K~ < K < K*. We denote Ay by A” and AK+ by A*.

If M e R™ then A" (M) ( XO(M), X*(M) ) denotes the span of all generalized
eigenvectors of M corresponding to its eigenvalues in € ( CO, c* ).

Let £ denote the set of all A"—invariant subspaces of X*(A7). Let A := K* —= K™ ( the
’gap’ of the ARE ). The following result states that there exists a bijection between £2
and I :

Theorem 2.1 ( [10],[3],{7] ). Let (A,B) be controllable and assume that I' # @. If V € £2
then R® = V @ A™'V*. There exists a bijection v : £2 > I' defined by

Y(V) :==KP), + K'(1 - P),
where PV is the projector along A= {xeR"| Ax e V'}.IfK = y(V) then X+(AK) =V,
XO(AK) = ker A and X" (Ay) = &7(A) N AV o

If K = 4(V) then K is said to be supported by V.

3 THE INFINITE HORIZON PROBLEM WITH ASYMPTOTIC CONSTRAINTS

In this section we briefly recall the results from [8] on the infimization problem
(1.10). Let £ be a subspace of R". A symmetric matrix K € R™" is called negative
semi—definite on £ if the following two conditions hold: (i) V x € £ : K x <0
(ii)VxeC:xTKx=0<:>Kx=0.

If Vc R"and M € R™" then <V|M> will denote the largest M—invariant subspace of V. A

key role in the characterization of the optimal cost VI:'I(XO) is played by the subspace

(3.1) V. 1= <ker N n ker K'| A™> n X" (A").

N
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Observe that VN € 2. Thus, with VN there corresponds exactly one solution of the ARE.
This solution Y(VN) is denoted by Kl‘\}. The following theorem is the main result of [8]:

Theorem 3.1 Let (A,B) be controllable. Assume that I'#@ and that K is negative
semi-definite on ker N. Then we have

. + T+ n

(i) VN(XO) = XUKNXO for all X € R .

(ii) For all X € R" there exists an optimal u if and only if ker A € ker N n ker K.
(iii) If ker A c ker N n ker K~ then there exists exactly one optimal input and,

moreover, this input is given by the feedback control law u = Bk + S)x. O
8 N

4 THE FINITE HORIZON PROBLEM WITH ENDPOINT PENALTY

In this section we consider the finite horizon problem of infimizing the cost
functional (1.8). We note that for the case that both w > 0 and N > 0 this problem is
quite standard and is treated, for example, in [5]. The general case however is slightly

more complicated. The following result can be found in [1,p.131]:

Lemma 4.1 Suppose there exists on the interval [0,00) a solution K(t) = KN(t) of the
Riccati differential equation (RDE):

(1) K(t) = ATK(t) + K(t)A + Q — (K(t)B + STIR(BK(t) + S),
K(0) = N.

Then for all T > 0 and for all X € R" we have

v (x ) = K
o o

TN Ny

For all T > 0 and X € R" there is exactly one u'e L[0,T] such that JT N(xo,u*) =
¥

V,} N(xo). This input is given by the feedback law u =—R—1(BTK(T—t)+S)x, te[0,T]. O

It is well-known that if w > 0 and N > 0 then (4.1) indeed has a unique solution on
[0,00). In the general case, the RDE need not have a solution on a given interval. We do

have the following:

Lemma 4.2 Suppose that (A,B) is controllable and that I' # @.If N-K >0 then (4.1) has
a unique solution KN(t) on [0,00). In fact, KN(t) = K + D(t), where D(t) is the unique

solution on [0,00) of

D(t) = A"™D(t) + D(t)A” — D(t)BRB™D(1),
D(0) =N - K-

(4.2)

(with A= AK-, see section 2).

Proof The fact that (4.2) has a unique solution D(t) on [0,00) is standard (see for

example [4,cor. 2.4.4]). It is then a matter of straightforward calculation to show that
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K+ D(t) satisfies (4.1). Uniqueness of K'+ D(t) then follows from the uniqueness of
D(t). O

5 CONVERGENCE OF THE OPTIMAL COST
In this section we shall give a formulation of our main result. Before doing this ,

we state the following lemma:

nxn

Lemma 5.1 Let £ be a subspace of R" and let K € R™" be a symmetric matrix. Then K is
negative semi-definite on £ if and only if there exists a symmetric matrix N such that

ker N= L and N - K > 0.
Proof A proof of this can be given similar to the proof of [8,lemma 3.3]. O

Consider the problems (1.9) and (1.10). In the remainder of this section we assume
that (A,B) is controllable and that I' # @. According to the previous lemma, if N - K~ >
0 then K is mnegative semi-definite on ker N. Conversely, if K is negative
semi—definite on ker N then one can always find a symmetric matrix N1 such that ker N1 =
ker N and Nl— K >o0.

We now formulate our main result:

Theorem 5.2 Assume that (A,B) is controllable, I’ # @, N — K~ > 0 and ker A < ker N n ker
K™. Then V;)N(xo) > VE(XO) (T>00) for all X € R" if and only if ker N n ker K is

A —invariant.

Our proof of theorem 5.2 runs along a series of lemmas that we consider to be
interesting in their own right. Due to lack of space the proofs of these lemmas are
deferred to a future paper. Our first lemma deals with an arbitrary system (A,B) and an
arbitrary matrix R > 0, independent of the previous context. Consider the standard

Riccati differential equation

ATP(t) + P(t)A - P(t)BR™'BTP(t),

P(0) = P,

;U.
—+
I

(5.1)

together with the standard algebraic Riccati equation
(5.2) AP + PA - PBRB™P = 0.
Recall that if l'*‘0 2 0 and (A,B) is controllable, then (5.1) has a unique solution P(t) >

0 on [0,00) (see [4]). Also, (5.2) has at least one solution ( P=0 ). Let P* be the

largest real symmetric solution of (5.2).

Lemma 5.3 Assume that (A,B) is controllable and o(A) ¢ C*. Then P* > 0. For any Po >0

we have lim P(t) = P*. O
t>00

Our following result again deals with the Riccati differential equation (6.1). The

result is, in a sense, the converse of the previous lemma:
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Lemma 5.4 Assume P0 > 0 and assume that 1_1)& P(t) =: P e R™" exists. If P > 0 then P0 >

0.0
We now return to the original context of this paper. Consider the system (1.1),

together with the quadratic form w given by (1.3). Recall that we denote AK- by A™ (see
section 2). An important role is played by the following algebraic Riccati equation in

the unknown D:
(5.3) A + DA - DBR'B'D = 0
We make the following observation:

Lemma 5.5 Assume (A,B) is controllable and I' # @. Let K € R™" be symmetric. Then K is a
solution of (2.1) if and only if D = K — K™ is a solution of (5.3). In particular D = 0
and D = A (= K" - K") are solutions of (5.3). In fact, 0 and A are the extremal
solutions of (5.3) in the sense that any solution of (5.3) satisfies 0 <D < A. DO

Finally, we shall need the following result:

Lemma 5.6 Assume that (A,B) is controllable and I" # @. Assume that N — K> 0. Let D(t)
be the solution of (4.3).Then for all t > 0 we have:

<ker N n ker K'JA™> c ker D(t). O

We have now collected the most important ingredients that will be used in our proof
of theorem 5.2. In order to give this proof we shall make a suitable decomposition of

the state space. Let VN be the subspace defined in (3.1). Define

X1:= VN
«’c’zzz ker A,

i vrat -1y,L
X3._X(A)nA VN.

. 0
Denote AN:= AKI:-I.Accordmg to theorem 2.1 we have Xl = «’c"L(AN)7 X2 =X (AN) and X3 =
X-(AN). Hence R" = Xl (45} X2 (2] Xs . With respect to this decomposition we have

A

11
(5.4) A=| o
0

0
A

2
0
for given matrices A This follows from the fact that both X and X are A —invariant.
Note that or(A3 yech. Accordmg to theorem 2.1, X (45} X =A" /Y Smce also X = Kker A,
we have

A

11
(5.5) A=| 0
0

0
0
0

b o o

33
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with Au > 0 and A33 > 0. Finally, we partition

1
B=|B]|.
2
B
3
Proof of theorem 5.2 From the assumption ker A c ker N n ker K™ it follows that X’ ,® Xz

c ker N n ker K. Hence N and K~ have the form

000 000
N=|000 |, K={000 |,
00N 00K

33 33

with N_- K > 0. Since K*= K+ A, we have
33 33

00 0
+ N
KN— 00 ] 0
00 K33+A33

(Recall that K, = K'P + K*(I - P), where P is the projector onto X = VN along A_lvltI = Xz
® X3 ). By combining the above we see that

+
KN—K =

33

Let D(t) be the solution of the Riccati differential equation (4.2). By lemma 5.6 and

the fact that X2= ker A is A -invariant, we have

00 0
Dit)={ 0 0 ©
0 0 D_(t)

for some D33(t). By writing out (4.2) in the decomposition employed, we see that Das(t)

is the unique solution of

T -1,T
D (¢ )=A33D33 (t )+D33(t)A33_D33(t)B3R B Dy (t)

D _(0)=N_-K'.
33 33 33

(5.6)

also, Kf\} - K™ is a solution of the algebraic Riccati equation (5.3) (see lemma 5.5 ).
This implies that A33 is a solution to

(5.7) ATD +D_A -D.BR'B™D -—o0.
33 33 33 33 33 3 3 33

In fact, since A is the largest solution of (5.3), A33 is the largest solution of (5.7).
s + + ;

(’= ’) Assume that VT,N(XO) > VN(xo) for all X, or, equivalently, KN(t) > 1:'1 (t»00).
Here, KN(t) is the unique solution of (4.1). Then we have KN(t) -K » K;] — K™ (ts00).
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Now, the point is that KN(t) -~ K'= D(t). Hence we find that D33(t) > An(t»oo). Since
A33> 0 it follows from lemma 5.4 that N33— K;s > 0. We now prove the A —invariance of
ker NnkerK.Let xeker NnkerK, x = (x,%,,x ). Then (N - K )x = 0 whence (Nss—
K;s)x3= 0 so X, = 0. Thus A'x = (Auxl’Azzxz’O)' Since Xl ® Xz < ker N N ker K7, the
claim follows.

(>«’) Assume ker N N ker K™ invariant under A". We then claim that X . DX = ker N n ker
K™. Indeed,

X @X ={<ker N n ker K'|A™> n X'AT) } @ ker A
={(ker Nnker K) n X*(A7) } ® ker A

=(ker Nnker K" )n (ker A X' (A7) ),

where the last equality again uses the assumption ker A < ker K'n ker N. Now, ker A @
X*(A7) = X°A7) @ X* (A7) = R". This proves the claim. It follows from this that N -K_
> 0. Hence, since U(Ass) c €', the solution Dsa(t) of (5.6) converges to Ass’ the
largest solution of (5.7) (see lemma 5.3). In turn this implies that D(t) » K;I -K
or, equivalently, that K¥(t) » K. Thus V.¥,N(x0) > ;}(xo) (T>o0) for all x_. This
completes our proof of theorem 5.2. O
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Generalized Stability of Linear Singularly Perturbed Systems
Including Calculation of Maximal Parameter Range

E.H. Abed, L. Saydy and A.L. Tits
Abstract

The guardian map theory of generalized stability of parametrized linear time-
invariant systems is used to prove new results on stability of linear time-invariant
singularly perturbed systems. The results give necessary and sufficient conditions
for generalized stability of the perturbed system for all sufficiently small values
of the singular perturbation parameter, and, moreover, yield the exact param-
eter range for stability. Thus, the results generalize significantly the classical
Klimushev-Krasovskii Theorem, while at the same time providing closed-form ex-
pressions for the maximal parameter range for stability.

1. Introduction

In this paper, the “guardian map” approach to the study of generalized sta-
bility of parametrized families of linear time-invariant systems recently reported in
[11-13] is utilized to obtain several new conclusions regarding generalized stability
of linear singularly perturbed systems. Here, generalized stability refers to stability

with respect to a given domain in the complex plane. Consider the system

& = Az + By (1a)
ey =Cz + Dy (1b)

in which € > 0 is a small real parameter, r and y are vectors in IR" and IR™
respectively, and A, B, C, D are matrices of appropriate dimensions. System (1) is
referred to as a singularly perturbed system since its dimension drops from n+m to
n when the parameter ¢ is formally set to 0. Theorem 1 below is a classical result
giving sufficient conditions for the asymptotic stability of (1) for all sufficiently
small values of the singular perturbation parameter ¢ and has been derived by

several authors.

Theorem 1. [8], [4] Let D be nonsingular. If the matrices Ag := A—BD™'C
and D are Hurwitz stable, then there exists an € > 0 such that the null solution of

system (1) is asymptotically stable for all € € (0, €).

Since the parameter ¢ typically represents a small physical quantity over which

one has little or no control, it is of practical significance to find explicit upper
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bounds € on € ensuring that the conclusion of the theorem above is valid for all
€ € (0,€). The aim of this paper is three-fold: (i) We extend the analysis from the
case of Hurwitz stability to that of generalized stability relative to many domains
of practical interest; (ii) We obtain necessary and sufficient conditions for stability;
and (iii) The parameter range for generalized stability is obtained ezactly.

Previous results on upper bounds on the singular perturbation parameter for
stability have been obtained by several authors, including Zien [14], Javid [6],
Sandell [10] , Chow [3], Khalil [7], Balas [2] and Abed [1]. Recently, Feng [5] used
frequency domain stability analysis to characterize the maximal parameter range
on € for Hurwitz stability of (1), under the hypotheses of Theorem 1. In the present
paper, however, no hypotheses are employed regarding the system (1).

The paper is organized as follows. In Section 2, the concept of guardian
map is recalled and a result of interest to this paper is given. In Section 3, we
obtain necessary and sufficient conditions for generalized stability of the singularly
perturbed system (1) and give an explicit expression for the largest upper bound
on ¢ for which Theorem 1 still holds. In Section 4, we provide a one-shot test for
stability of System (1). More precisely, it is shown that System (1) is stable for all
sufficiently small values of ¢ if and only if it is stable for one specially constructed
value of €. In Section 5, we present an example. Finally, a brief discussion is given

in Section 6.
2. Guardian maps

The guardian map approach was introduced in [12], [11] as a unifying tool for
the study of generalized stability of parametrized families of matrices or polynomi-
als. A basic review of the essentials now follows.

Definition 1. Let S be an open subset of IR™*" and let v map IR"*" into C.
We say that v guards S if for all £ € S, the equivalence

zr€dS <<= v(z)=0 2

holds.
The map v is said to be polynomic if it is a polynomial function of the entries of
its argument.

For the purposes of this paper, the set § will be a (generalized) stability set,

i.e., a set of the form,
S(R):={4A e IR"™":0(4) C Q}, 3

where  is an open subset of the complex plane which is symmetric with respect

to the real axis.
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The next two examples provide the simplest useful illustrations of the concept
of guardian map: both the set of Hurwitz stable matrices (or polynomials) and the

set of Schur stable matrices (or polynomials) are guarded.
Ezample 2.1. The map v: A — det (A ® A) guards the set of n x n Hurwitz

stable matrices § ((E' ~). This follows from the property that the spectrum of A® A

consists of all pairwise sums of eigenvalues of A.

Ezample 2.2. Themapv: A det (A® A—IQ®1I) guards the set of Schur stable
matrices, i.e., of matrices with eigenvalues in in the open unit disk. This follows
from the property that the spectrum of A ® A consists of all the pairwise products
of eigenvalues of A.

For more examples of guarded sets S(Q2), the reader is referred to [11] where it
is shown that in fact, many stability sets of practical interest enjoy the guardedness
property with polynomic corresponding guardian maps.

Theorem 2 below gives a necessary and sufficient condition for stability of
parametrized families of matrices relative to domains of the complex plane corre-
sponding to guarded stability sets. Let r = (r1,...,7%) € U, where U is a pathwise
connected subset of IR¥, and let A(r) be a matrix in IR™*" which depends contin-
uously on the parameter vector r. Given an open subset {2 with guarded stability
set S(§2), we seek basic conditions for A(r) to lie within S(2) for all values of r in
U.

Theorem 2. Let S(2) be guarded by the map v. Then the family {A(r) : r € U}
is stable relative to  if and only if (i) it is nominally stable, i.e., A(r®) € §(f) for
some r’ € U, and (ii) v(A(r)) # 0 for all r € U.

3. Main result

Define the matrix

A B
J(r)= [rC TD] (4)
where 7 := €1 is large when ¢ is small. Stability of the null solution of (1) is

identical to stability of the matrix J(r).

We now proceed to study stability of J(r) relative to an open subset  of
the complex plane for which S(§2) is endowed with a polynomic guardian map v.
Since v is polynomial in its argument, and J(r) depends linearly on r, we can write

v(J(r)) as a polynomial in r:
v(J(r)) = vo+umr+...+ver® T +ur® = v(r). (5)

Here, s is the degree of the polynomial. The following cases present themselves.
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Case 1: v identically zero. In this case, the matrix J(r) is unstable relative to Q

for each r > 0. This follows immediately since v guards S().

Case 2: v not identically zero. It follows that v(r) has finitely many zeros. If the
polynomial v(r) has no positive real zeros, then J(r) does not cross 9S(f2) as r
varies in (0, +00). Thus the family {J(r): r € (0,+00)} lies entirely within either
S(Q) or int((8°(R)), the interior of the complement of S(2). To determine which
situation prevails, it suffices to test whether J(r) € S(Q) or J(r) € int (§¢(?)) for
an arbitrarily chosen r in (0, +00). If on the other hand v(r) has £ > 1 real positive
zeros 0 < ay < -+ < ay, then Theorem 2 implies that J(r) € S(R) for allr > ay
if and only if J(r) € S(2) for an arbitrarily chosen r > a,. It is also clear that in
this case, the largest neighborhood of +oco in which J(r) € §(£2) is (a¢, +00).

These remarks are now summarized in the theorem below. In the sequel, if
System (1) is stable relative to Q for all sufficiently small values of ¢, then the
smallest value of € for which (1) is unstable will be denoted by €*.

Theorem 3. Let the domain Q be guarded by a polynomic map v, with v(r) as
in Eq. (5).

(a) If v(r) vanishes identically, then the singularly perturbed system (1) is
unstable relative to 2 for all € > 0.

(b) If v(r) does not vanish identically and has no positive real zeros, then the
singularly perturbed system (1) is stable relative to Q for all sufficiently small € if
and only if it is stable relative to 2 for an arbitrarily chosen e > 0. In the latter
case, € = +00.

(c) Finally, let v(r) have a largest positive real zero a. Then System (1) is stable
relative to Q for all sufficiently small € if and only if it is stable relative to 2 for an

arbitrarily chosen € < 1/ay. We will then have

In fact, we can state the following extension of the preceding result, which has
no counterpart in the literature. It addresses the possibility of marginal stability
in the singularly perturbed system (1) for finitely many values of € in a maximal
interval of stability, showing how calculations similar to the above can be performed

even for this case.

Theorem 4. In the setting of Theorem 3(c), and using notation defined above,
System (1) is stable relative to £ for all but finitely many values of € in the interval

(0, €*), where
1

a**

*x
€ =

with o** := min; o; such that for arbitrarily chosen r; € (@i, @it1), 1=1,...,4,
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(agg1 = +00), J(r;) is stable relative to Q. Moreover, €** provides the largest

parameter range for which this conclusion holds.
4. A one-shot test

The results of Section 2 are conceptually simple and can be implemented easily.
The question arises as to whether or not a simple one-shot test exists by which one
can immediately ascertain stability of (1) for all sufficiently small e or the lack
thereof. Such a test is given next.

By a well-known theorem (e.g. [9]), all the zeros of the polynomial (5) lie
within the disc in the complex plane centered at the origin and of radius

|vil

R := 1+ max (6)

i<s |l/3|

Thus, generalized stability of the matrix J(r) at an arbitrary r > R is equivalent
to its generalized stability for all sufficiently large r. This result is now recorded
as Theorem 5, a significant generalization of the classical Theorem 1 of Klimushev

and Krasovskii.

Theorem 5. Let S(Q) be guarded be a polynomic map v of the form (5), and
assume that v(J(r)) is not identically zero. Then there exists an € > 0 such that
System (1) is stable relative to § for all € € (0, €) if and only if (1) is stable relative

to § for the value
1

€ = — . 7
1+max.'<aJ|Z—f|L )

5. Example

In this example, considered in [14], © is the open left-half plane and System
(1) is specified by

AR

0 -0.5 16 0 0
0 0 —14.3 858 0
C= 0 0 and D= 0 -25 75
—275 —-56.9 —-333 -115 -—186

In [14], it was shown that the singularly perturbed system under consideration
is Hurwitz stable for all € € (0,5.27). Following the method of this paper, we find
that the largest interval of stability is in fact (0,67.26).
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6. Discussion

The classical Klimushev-Krasovskii Theorem has been generalized in several
directions, one of which is the formulation of explicit necessary and sufficient con-
ditions for the stability conclusion to hold. The maximal parameter interval (and
therefore the best possible upper bound on €) for generalized stability has been ob-
tained. This computation does not require any assumption on the system. Besides
this, the new results treat the broader issue of generalized stability with respect
to a large class of domains in the complex plane which are of practical and the-
oretical significance. These domains are those endowed with polynomic guardian
maps [11], [12]. Finally, we note that the results of this paper may be extended to
the more general situation in which the generalized stability set is endowed with
a polynomic semiguardian map, as defined in [11]. Detailed statements of these

results will be presented elsewhere.
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CONVEX COMBINATIONS OF HURWITZ FUNCTIONS AND
ITS APPLICATIONS TO ROBUSTNESS ANALYSIS
Y. K. Foo and Y. C. Soh

Abstract

In this paper, we shall show that a family of analytic functions,
constructed from the convex hull of a finite number of vertex
functions, will have no zero within a simply-connected region in the
complex plane if and only if all its edge functions have no zero within
the simply-connected region. The result is in fact a generalization of
the Edge Theorem which has been derived for polynomial functions
[1.2,3]. We then proceed to show how the result can be used to analyse
the stability of uncertain systems.

1. Introduction

Over the recent years, there has been a considerable amount of
literature dealing with the stability of a family of polynomial
functions [1-12]. The main emphasis of these works is to find some
simple necessary and sufficient conditions for checking the stability
of a whole family of polynomials. One of the most celebrated work in
this respect is the work of Kharitonov [4] where it is shown that a
family of interval polynomials is stable if and only if four specially
constructed extreme polynomials are stable. But the extension of
Kharitonov's result to the discrete-time systems is limited [6-8,12].
Furthermore, for more general stability regions, one will have to check

all extreme polynomials of the interval polynomials [9-11].

If we are given a more general family of polynomials other than
interval polynomials, then it is not sufficient to check all the vertex
polynomials. In fact, for a polytope of polynomials, we have to check
all the edge polynomials [1-3]. This result is now known as the Edge
Theorem. Basically, the Edge Theorem states that the polytope of
polynomials is stable if and only if all the exposed edges of the
polytope of polynomials are stable.

In this paper we shall generalize the result by showing that the edge

theorem can also be applied to a more general class of analytic
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functions, and not restricted to polytopes of polynomials. We shall
present the result by means of a simple graphical proof. We shall also
discuss the application of the result to robust stability analysis of

systems under structured perturbations.

2. Problem Formulation

Consider a family of functions (real or complex), continuous with
respect to a complex variable s on the boundary of a simply-connected

region D, which is described by

S¢ 4 conv {¢i(s) , i=1,2, .. .m} (2.1)

where ¢i(s) are the vertex functions of S Our problem is to derive

"
a result which states that S¢ will have no zero within D if and
only if a finite subset of S¢ has no zero in D. Towards this end,

we define the set of edge functions as follows :

Sy 2 (#(5) : 4(s) = aby(s) + (1-a)é,(s)
i a€[0,1], i.j=1,2, ... m (2.2)

In the following section, we shall present a result which states that
S¢ has no zero within D if and only if S¢e has no zero in D.

3. The Main Result

Definition 3.1 : Let G denotes a strongly connected graph in the
complex plane. Then a point ® in the plane is said to be enclosed in
G 1if and only if o is enclosed by some'simple closed curve G' and
G' CG:. A region R in the complex plane is said to be enclosed in G

if every point in R is enclosed in G.

Theorem 3.1 : Consider a family of functions described by

S¢ 4 conv {¢i(s), i=1,2, .. .m} (3.1)

which is continuous on the boundary of a simply-connected region D in

the complex plane. Suppose that ¢i(s) are analytic in D. Then S¢

will have exactly n zeros in D if and only if S has exactly n

de

zeros in D, where
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Sge = (#(5) ¢ 8(s) = at,(s) + (1-a)é(s)
; a€[0,1], 1,j=1,2, ... m} (3.2)

Proof : Necessity is obvious. To prove the sufficiency part, we first

note that if ¢i(s) are analytic in D, then any ¢(s) € S¢ is also

analytic in D. Next we note that for any fixed s, say s = S,» on
CD vwhere CD is the contour of D, ¢i(so) is a point in the complex

plane. Furthermore,
a¢i(so) + (1—a)¢j(s°) ., a€[0, 1] (3.3)

will sweep out a straight line from ¢j(so) to ¢i(so) as a increases
from O to 1. Hence at s = So’ all the edge functions will form a
strongly connected graph (see for example figure 3.1 where four vertex

functions are considered), and for any ¢(s) € S ¢(so) is enclosed

+’
by the strongly connected graph.

1 #.(s,)
ag;(s,) + (1-a)ey(s )
#o(s,)
95(s
94(s)
Figure 3.1

By the Argument principle, the image of the edges (i.e. the strongly
connected graph) will encircle the origin of the complex plane exactly
n times since each edge function has exactly n zeros in D. This implies
that the boundary of the image of S¢ will encircle the origin exactly n
times since the boundary is simply a subset of the image of the edges.
Now, for any ¢(s) € S¢, ¢(s) will lie within the region bounded by the
boundary. Thus ¢(s) will encircle the origin of the complex plane
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exactly n times. Then the Argument Principle will imply that ¢(s) has
exactly n zeros in D. This completes the proof. AAA

Corollary 3.1 : Let Sf be a family of polynomials (real or complex)

described by Sf 4 conv {fi(s); i=1,2, .. . m} where fi(s) are the
vertex polynomials. Then Sf has no zero in a simply-connected region D

in the complex plane if and only if Sfe has no zero in D, where

S 2 {E(s) ¢ £(s) = af (s) + (1-0)f ,(s)
;a €0, 1], i,j=1,2, ... m} (3.4)

Proof : Follows from Theorem 3.1 (with n = O) since polynomials

functions are entire functions. AAA

Corollary 3.2 : Let SH be a family of rational functions described

by SH A conv {Hi(s); i=1, 2, .. . m} vwhere Hi(s) are the vertex
rational functions which have no pole in a simply-connected region in
the complex plane D. Then SH has no zero in D if and only if all
its edge rational functions have no zero in D. The edge rational

functions are defined by

Sie A (H(s) ¢ H(s) = ol (s) + (1-a)H,(s)
;a€f0, 1], i,j=1,2, ... m} (3.5)

Proof : Follows from Theorem 3.1. AAA

Before we end this section, we shall discuss the application of the
results to robustness analysis of unceratin systems. It is well known
that the characteristic equations of a set of interval matrices are
contained in the polytope of polynomials constructed from the vertex
matrices. This result can be generalized. For example, in recent
studies on the robust stability of linear time-invariant MIMO systems
[14-18], it has been shown that robustness problem is equivalent to the
problem of determining the non-singularity of det[I + M(s)A(s)] for
all s on the boundary of D. If at each frequency each element of A(s)
is contained in some polygons, then det[I + M(jwo)A(jwo)] (s = jmo) is
non-singular if the convex closure of the image of the Cartesian

product of these polygons under the mapping ¢ = det[I + M(jwo)Vi(jwo)],
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2
i=1, 2, ... 7 Vi o does not contain the origin; Vi
k=1

number of vertices of the polygon which contain the frequency response

denotes the

2

map of the kth element of A(jo ), and V.(jw_ )'s denote the ¥
o i*“7o k=1 k

vertex matrices constructed from the vertices of the polygon [17]. This

problem can be transformed into one of determining the stability of a

convex combinations of analytic functions as stated below:

Propositon 3.1 : Let ¢(s.A) = det[I + M(s)A(s)] where M(s) and
A(s) are D-stable. Let the elements of A(s) be independent of each

other and are each contained by some polygon. Let {Vi(s), i=1, 2,

2

.7 vk} be the set of vertex matrices constructed from the vertices
k=1

of the polygons. Assume that Vi(s)’s are also analytic in D. Under

these conditions, ¢(s.A) # O for all s € CD and A(s) € conv{Vi(s),

i=1,2, ... ¥2vk} (this defines a hyper-rectangle) if
k=1
S¢ A conv{¢i(s) : ¢i(s) = det[I + M(s)Vi(s)]} (3.6)

has no zero in D.

Proof : It is easy to prove that the image of S¢ in the complex plane
coincides with the convex closure of the images of ¢i(s). Hence, the
convex closure of the images of ¢i(s) will not contain the origin if
and only if the image of S¢ in the complex plane does not contain the
origin. If S¢ is analytic in D, then the image of S¢ will neither pass
through nor encircle the origin. This completes the proof. AAA

4. Checking the Stability of a Convex Combinations of Functions

Let us now consider a family of functions described by

Sf A conv{fi(s), i=1,2, ... m}

where fi(s) are the vertex functions analytic in the CRHP. Let f(s) be

an arbitrary function which is Hurwitz and analytic in the CRHP. Define

Fi(s) A fi(s)/f(s). It is then clear that fi(s) will have no zero in
the CRHP if and only if Fi(s) have none, and conv{fi(s), i=1, 2,



210
m} neither encircles nor encloses the origin if and only if neither
does conv{Fi(s), i=1,2, ... m}, as s traverses the contour of D, CD

Lemma 4.1 : Conv {fi(s). i =1, 2, ... m } neither encircles nor

encloses the origin as s traverses CD if and only if there exist a
function f(s) which has no zero and is anlytic in the CRHP, and a

function h(s) = e16(s) continuous in s € CD such that

Re(conv{h(s)fi(s)/?(s), i=1,2, ...m}} >0
; all s € CD (4.1)

Proof : With no loss of generality, we let f(s) be any function which
is Hurwitz and analytic in the CRHP such that Fi(s) is proper, where
Fi(s) = fi(s)/f(s), i=1,2, ... m Let Bmx(s) and Bmin(s) : CD - R

be two continuous (except possibly at the origin) functions defined by

e

s)

s mex {/Fi(s) } s 0<8 (0)<w (4.2)

and

0 in(s) (0) < w (4.3)

min

min {/Fy(s) } i 0 < Oy
Note that 9mx(s) and Bmin(s) are well defined on every s € CD if
and only if none of the Nyquist plots of Fi(s). i=1,2, ... m,
passes through the origin. Define

Bd(s) 6 (s)-6_.(s) (4.4)

max min

and

N =

8,(5) = 5 [0, (3) + 6, (5] (4.5)

Obviously, if Bm(s) is not continuous at the origin, then there exist

Fi(s). i =1, 2, ... m, that encircle the origin as s traverses CD

This implies that there exists no continuous 8(s) which make

Re{conv{h(s)f (s)/f(s). i = 1. 2, ... m}} >0
; all s € CD (4.6)

Thus the existence of such continuous 6(s) implies that Gm(s) is
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continuous at the origin and thus we may choose 6(s) = Om(s).
Conversely, continuity of Gm(s) at the origin implies that we may

choose 8(s) = Gm(s) as well.

If 6(s) = Om(s), then (4.1) can be satisfied if and only if Gd(s) <
w. If 6(s) < w, then it is obvious that conv{Fi(s), i=1,2, ... m}
neither encircles nor encloses the origin and hence neither does
conv{fi(s), i =1, 2, ... m}. Conversely, if Gd(s) 2 w, we may then
find two members fi(s), fj(s) € Sf such that éfi(s) - éfj(s) =7 at
some s = S € CD' Note that the edge joining these two vertices is a
straight line in the complex plane. It thus follows that there exists

an f(s) where
f(s) = afi(s) + (1—a)fj(s) a € [0, 1]

such that f(s) = 0 at s = So° Thus conv{fi(s), i =1, 2, ... m} must

enclose the origin at S, and this completes the proof. AAA
We are now in a position to state the following main theorem.

Theorem 4.1 : The family of functions analytic in the CRHP

Sf A conv{fi(s), i=1,2, ... m} (4.7)

is Hurwitz if and only if

(i) fi(s) is Hurwitz, i =1, 2, ... m, and
(ii) Bd(s) as defined by (4.4) satisfies
Bd(s) < , allse€ CD (4.8)

Proof : Obvious, since Lemma 4.1 implies that the image of Sf in the
complex plane, as s traverses CD' neither encloses nor encircles the
origin if and only if (i) and (ii) are satisfied. Apply the Principle
of Argument completes the proof. AAA

Comment 4.1 : Theorem 4.1 indicates that a necessary condition for the
Hurwitz property of Sf is that fi(s) is Hurwitz for all i. It will be
nice in practice if it is not necessary to explicitly check the Hurwitz
property of each of fi(s). The following corollary to Theorem 4.1 will
therefore be useful computationally. oo
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Corollary 4.1 : Let Bmx(s) and Gmin(s) be defined as in (4.2)-(4.3).

Then a necessary and sufficient condition for Sf to be Hurwitz is that

all the following conditions are satisfied:

(1) emax(s) and emin(s) are well-defined for all s € CD’ that is,
there does not exist S, € C.D such that fi(so) = O for some i.

(ii) 6 ___(s) is continuous at the origin, that is

1in [0, (J€) = Oy, (-36)] = O (4.9)
€
(iii) Bd(s) <w, all s€ CD

Proof : Conditions (i) and (iii) are obviously necessary in view of
Lemma 4.1. To prove that (ii) is also necessary, we note that a

necessary condition for (iii) to be satisfied is that lim[Gd(je)] = 0.
+e-0

Thus the discontinuity of Gmax(s) at the origin and the satisfaction of
(iii) implies Bm(s) of equation (4.5) is discontinuous at the origin.
Thus the proof of Lemma 4.1 indicates that conv{fi(s), i=1,2, ... m}
cannot be possibly be Hurwitz. To prove sufficiency, assume (i), (ii)

and (iii) are satisfied, then it is clear that there exists arbitrarily

small positive e such that (4.1) is satisfied with 6(s) = ["2-I -e] -
Gmax(s). This completes the proof. AAA

5. Conclusions

The main purpose of this paper is to present a generalized edge theorem
which is applicable to a wide class of analytic functions. We have
shown that a family of functions defined by the convex hull of a finite
number of vertex analytic functions has no zero within a
simply-connected region if and only if all its edge functions have no
zero in the region. Extensions of the result to multiply-connected

regions are obvious by considering some "ugly" Nyquist contour [13].

It is shown that the Edge Theorem can be very useful in studying the
robust stability of feedback systems under highly structured
perturbations. Furthermore, a simple method for checking the zero
clustering property of convex combinations of two analytic functions is
presented. In particular, corollary 4.1 should be useful in the
stability analysis of interval matrices as well as robustness analysis

of feedback systems.
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DESIGNING STRICTLY POSITIVE REAL TRANSFER FUNCTION FAMILIES: A
NECESSARY AND SUFFICIENT CONDITION FOR LOW DEGREE AND STRUCTURED
FAMILIES

C.V. Hollot, Lin Huang and Zhong-Ling Xu

ABSTRACT

Consider a transfer function family n(s)/d(s) where n(s) € N with
N being an interval of polynomials. 1In this paper we study the problem
of designing a d(s) such that n(s)/d(s) is strictly positive real for
all choices n(s) from N. A necessary condition for the existence of
such a d(s) is that N be stable. We show that this condition is also
sufficient for low degree systems (degree < 3) and when N has some
added structure.

1. INTRODUCTION

An important problem in both parameter identification (using
output-error schemes) and in adaptive control is to design a transfer
function which is strictly positve-real invariant (SPR-invariant);
e.g., see [1] and [5]. This means the following: Given a family N of
stable (numerator) polynomials n(s), find a (denominator) polynomial
d(s) such that deg [d(s)] = deg [n(s)] and the transfer function
n(s)/d(s) satisfies

Real [n(jw)/d(jw)] > O, for all w > 0 (SPR)

and for all selections n(s) from N. If such a d(s) exists we say that
the family of transfer functions

T(N,d) 2 {n(s)/d(s): n(s) € N}

is SPR-invariant.

In this paper we show that if N is a stable interval polynomial
family and of low degree (n < 3) or of a particular "structure" (the
particular structures will be introduced in Section 2), then there
always exists a d(s) such that TI'(N,d) is SPR-invariant. An interval of
polynomials N is given by

n n-1 n-2

N: a s + a;s + a,8 e +oag; a; [éi' ai] (1.1)

and is stable if and only if the four so-called Kharitonov (corner)

polynomials
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Kl(s) = ays + a;s 9 + a3, + + (1.2a)
Kz(s) = Eosn + Elsn_l + ézsn_z + QBSn_3 Foeee 4+ (1.2b)
K3(s) = éosn + Elsn_l Ezsn_z + §35n_3 Foeee + (1.2¢)
K4(s) = Eosn + glsn_l + gzsn_z + 535n_3 o + (1.2d)
are stable; e.g., see [3]. Thus, the conditions for our results are

easily tested.

2. THE MAIN RESULT

To begin, assume N is an interval of polynomials and for n(s) € N
and w > 0 write

n(iw) = h (-o°) + jog (-0). 2.1)

The polynomials h and g, are the even and odd portions of n(s). For w
> 0 define

h (-0) & max hn(-wz); h_(-o?) & min b (-u%) (2.2a)
+ neN - neN

g,(-ad) Lnax g (-aD);  g_(-aD) £ min g (D). (2.2b)
neN neN

The Kharitonov polynomials can be expressed in terms of h y h, g, and
g . If n = even, then

Ki(s) =h (Sz) + sg+(s§), (2.3a)
Kz(s) = h+(52) + sg (S )! (2.3b)
K3(s) = h (sy) + sg (Sz)’ (2.3¢)
Ky (s) = h (s7) + sg (s7). (2.3d)
For n = odd
K,(s) = h+(sz) + Sg_ (s2), (2.4a)
Kz(s) = h_(sz) + sg, (s ) (2.4b)
K3(s) = h (s;) + sg+(s2), (2.4¢)
K, (s) = h_ (s7) + sg_(s7). (2.4d)

The even and odd components of the Kharitionov polynomials play a
crucial role in the statement and proof of our main result. Before
stating this theorem we’ll need some lemmas. The first lemma states
that SPR-invariance of TI'(N,d) is equivalent to K,(s)/d(s), i = 1,2,3,4,
satisfying Condition (SPR). This result first “appeared in [2] and
amounts to a Kharitonov-like result for SPR-invariance.
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Lemma 2.1 (See [2] for proof): Consider N an interval polynomial
as in (1.1). If there exists a d(s) such that K. (s)/d(s), i=1,2,3,4,
satisfies Condition (SPR), then I'(N,d) is SPR-invariant. v

This lemma requires the ratio Real [K (jw)/d(jw)] > 0 for i =
1,2,3,4 and for all w > 0. A weaker equ1valent condition for SPR-
invariance is available and is needed in proving our main results. In
the next lemma we’ll relax the conditions in Lemma 2.1 and show that
Real [K,(jw)/d(jw)] > 0, i = 1,2,3,4 holding over portions of [0, +=)
is sufficient for SPR-invariance. To state this result we’ll need to
study the special zero patterns of h (u), h (u), g (u) and g (u) which
arise in the problem formulation. To'describe thesd patterns let

u o (2.5)

and assume that the Kharitonov polynomials K, (s) are stable. It fol-
lows from either (2.3) or (2.4) and the Hérmite-Biehler Theorem that
(h+,g ), (h+,g Y, (h, g, ) and (h ,g ) are positive pairs of polyno-
m1als, see’ Gantmacher ' [4] for details. Consequently, the zeroes of
h (u), h (u), g (u) and g (u) are negative and distinct and the zeroes
of h (u$ and g, (u) alternate. Similarly, the zeroes of each of the
pairs (h yg ), (h ,& ) and (h ,g ) alternate. Finally, recall (see
(2 2)) that h and g dominate h and g respectively. These facts
constrain the zéroes of (w), h (v); g, (u)"and g (u) to a particular
arrangement on the negative real a%is. A typical pattern is il-
lustrated in Flgure 1.
Now, wusing the zeroes of h o h, g and g we partition the nega-
tive u-axis. For n = even, let m = n/2 while for n = odd let m = (n-
1)/2. 1In either case order the zeroes of h+ and h as

h,: o <LK ag <ay <O
h : a < ... K< % < oy <0 (2.6a)
while for n = odd
+ + +
i Sm R 52 ) 2* <0 (2.6b)
g: o . 9 1 .
and for n = even
+
g, B, <... < By < B <0
g Bm—l < oo £ 62 < 61 < 0. (2.6c)

For n > 2 and for n = even let p = 4m-1; if n = odd, let p = 4m + 1.
Partition the negative u-axis into the intervals Ul’ U2’ veey U
described by
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[o],01; Uy = [og,ey]5 Uy = [B],0]15 U, = [6],6]1; Ug = [oy,6]

Ug = [egr0515 Uy = By 0515 Ug = 185,815 Uy = [o5,6,15 Upg = [og, o5l

(2.7)
Observe that the pattern in intervals U, - U, is repeated in intervals
U, - Ul6’ U17 - U24 and so forth. The cycle is evident from Figure 1
wgere n ="'5, m = 2 and where p = 9 such intervals are required to

describe complete cycles of h+, h, g, and g .

Lemma 2.2: Consider n > 2 and N an interval of polynomials as in
(1.1). Suppose there exists a d(s) which satisfies the following
conditions:

(i) For n = even:

Real[xl(jliﬁ)/d(jliﬁ)] >0 and Real[xz(jliﬁ)/d(jJ:G)] >0; uely;
Real[xz(jliﬁ)/d(jliﬁ)] >0 and Rea1[13(jJ:G)/d(jJ:E)] > 0; u e Uy
Real[K3(jl:ﬁ)/d(jJ:ﬁ)] >0 and Real[x4(jlfﬁ)/d(j125)] >0; u Uy
Real[x4(jJ:ﬁ)/d(jJ:E)] >0 and Real[xz(jliﬁ)/d(jliﬁ)] >0; uel,;
Real[Kz(jJCE)/d(jJZﬁ)] >0 . and Real[xl(jliﬁ)/d(jliﬁ)] >0; u e U
Real[Kl(jJ?E)/d(jJ:G)] >0 and Real[KA(j/:G)/d(jJ:ﬁ)] >0; uelg
Real[K4(jJ:E)/d(jJ:G)] >0 and Real[x3(jlfﬁ)/d(jJIG)1 >0; uely,
Real[K3(jIZG)/d(jliﬁ)1 >0 and Real[xl(jliﬁ)/d(jJiﬁ)] > 0; u e Ug
Real[xl(jliﬁ)/d(jJIG)] >0 and Real[K,(j¥~u)/d(iv-u)] > 0; u e Ug;
Real[xz(jJ:ﬁ)/d(jliﬁ)l >0 and Real[x3(jJ:E)/d(jJZG)] >0; uelUg;
(2.8a)
(ii) For n = odd:
Real[xz(jliﬁ)/d(jiiﬁ)] >0 and Reall[K (jY-u)/d(jV-u)] > 0; wu ¢ Uy
Real[Kl(jJ:G)/d(jJ:E)] >0 and Real[KA(j/:E)/d(jJ:ﬁ)] >0; ueUy
Real[x4(jliﬁ)/d(jliﬁ)1 >0 and Real[x3(jlfﬁ)/d(jJ:E)] >0; u e Uy;
Real[Ks(jJ:E)/d(jJ:E)] >0 and Real[xl(jlfﬁ)/d(jliﬁ)] >0; ueU;
Real[Kl(jJ?E)/d(jliﬁ)] >0 and Real[xz(j/IG)/d(jJZG)] >0; u e U
Real[Kz(jJ:E)/d(jl:E)] >0 and Real[x3(jlfﬁ)/d(jliﬁ)] >0; u el
Real[x3(jJ:G)/d(jIZG)] >0 and Real[Ka(j/:E)/d(jJ:ﬁ)] >0; uelUy;
Real[KA(jJ:E)/d(jJ:ﬁ)] >0 and Real[Kz(jJ:ﬁ)/d(jJ:E)] >0; u e U
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Real[xz(jJ:G)/d(jJZG)] >0 and Real[Kl(jJ:E)/d(jJZG)] >0; u e Uy
Real[Kl(jJiﬁ)/d(jJ:G)] >0 and Real[K4(j/:ﬁ)/d(j/:ﬁ)] >0; uel

10°
(2.8b)
Then, T'(N,d) is SPR-invariant.
Observe the the conditions in (2.8) for intervals U1 - U8 are

repeated in intervals U9 - U16’ U17 - U24 and so on.

Proof of Lemma 2.2: The proof is geometric and leans of the fact
that the so-called value set VN(jw) (for polynomial family N at fre-
quency ), defined by

Vy(3w) = {n(jw): n(s) €N},

is a 1level rectangle as depicted in Figure 2. This fact was reported
in Dasgupta [7] and Minnichelli, Anagnost and Desoer [6]. The vertices

\ of this level rectangle are the Kharitonov polynomials identified
for n = even by
1 2 3 4
Vy = Kpi Vg =Ky Vy =Ky Uy = Ky
and for n = even by
1 2 3 4
VN = Kl, VN = K3, VN = K2’ VN = KA'

For simplicity, assume n = even. From (2.5), (2.6a) and (2.6c) it
follows from Figure 3 that

u € U1 4 VN(j/:G) is contained in first quadrant;
u e U2 > VN(j/:ﬁ) is contained in first and second quadrants;
u e U3 3 VN(j/:ﬁ) is contained in second quadrant;
u € U4 3 VN(j/:E) is contained in second and third quadrants;

and so forth. By definition, I'(N,d) is SPR-invariant if and only if
Condition (SPR) holds for some d(s) and for all n(s) € N. This is
equivalent to the existence of a d(s) such that
*
Real [n(jw)d (jw)] > O, for all w > 0 (2.9)

*
and for all n(s) € N where d (jw) is the complex conjugate of d(jw).
Suppose u € Ul' From Figure 3a we see that

Real [n(jV=0)d"(j¥=u)] > O (2.10)
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for all n(s) € N if and only if this condition holds for all n(jv-u) €
VN(j/:ﬁ). This is true if and only if

*
Real[Kl(j/iE)/d (j¥=u)] > 0 and Real[Kz(j/iﬁ)/d*(jJiﬁ)] > 0. (2.11)

If ue U2, then from Figure 3b we see that (2.10) hold if and only if

* * . —
Real[K,(jV=u)/d (j¥-u)] > 0 and Real[K,(j¥-u)/d (j¥-u)] > O.
Continuing in this fashion it’s clear from (2.9) and the preceding
conditions that (2.8) are sufficient for I'(N,d) to be SPR-invariant for
some polynomial d(s). This proves Lemma 2.3. 99

We are now in a position to state and prove the main result.

Theorem 2.1: Consider N an interval polynomial as in (1.1) which
satisties

(i) a

1

1]

;i for all i = even or all i = odd.
or
(ii) n=1, 2, or 3.

Then, there exists a d(s) such that T'(N,d) is SPR-invariant if and only
if the Kharitonov polynomials K., K,, K, and K, are all stable.
Furthermore, there exists a k > 6 suc% tha% this d(s) can be written as

d(s) = h_(s") + ksg,(s7). (2.12)

Proof of Theorem 2.1: (Necessity) For I'(N,d) to be SPR-invariant
it is clear that all of N be stable. Since K,(s) ¢ N, i=1,2,3,4, then
these Kharitonov polynomials K, (s) must be stible.

(Sufficiency) Assume that the Kharitionov polynomials K,(s) are
stable. If Condition (i) or (ii) of the theorem statement hoids, then
we must find a d(s) such that T(N,d) is SPR-invariant; that is,
Condition (SPR) holds for all n(s) € N.

For n(s) € N and a candidate d(s), write

2 2 2 2
n(s) = hn(s ) + sgn(s ); d(s) = hd(s ) + sgd(s ). (2.13)

For this n(s) and d(s) Condition (SPR) is equivalent to
Real [n(jw)d*(jw)] >0, forall w>0 (2.14)

*
vhere d (jw) is the complex conjugate of d(jw). Substituting (2.13)
into the left hand side of inequality (2.14) gives
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Real [n(jw)d*(jw)]

Real [(h (-u”)+jog, (-u”))(hy<-u7)-jugy(-u")]

b (-6)hy () + g (-a)gy(-a?)

= h (uh,(u) - vg (u)g,(u) (2.15)
where u = —wz. From (2.14) and (2.15) we see that Condition (SPR) is
equivalent to

hn(u)hd(u) - ugn(u)gd(u) >0, for all u ¢ (-», 0]. (2.16)

From Lemma 2.2 it suffices to show Condition (SPR) holds for only
the Kharitonov polynomials K,(s). Furthermore, we’ll restrict d(s) to
the form in (2.5); i.e., in (2.13) we take h, = h - and g4
Therefore, to complete the proof, we use Eemma 272, (2.3)-(2. 5) and
(2.14) and seek a k > 0 satisfying

h (u)h (u) - kug (u)g (u) > 0, (2.17a)

h™(u)h (u) - kug® (u)g (u) > 0, (2.17b)

h(wh(u) - kug_(u)g!(uw) > 0 (2.17¢)
and

h_(wh, (u) - kug, (u)g, (u) > O (2.17d)

for all u € (-, 0]. Later in the proof we’ll make use of root 1locus
techniques to find a suitable k satisfying (2.17). For the moment we
reconsider Figure 1 and make two observations concerning the ine-
qualities in (2.17). First, h (u) and g (u) have no common roots.
Hence, (2.17a) holds for all k > 0and for all u ¢ (-=, 0]. Secondly,
h (0) and h (0) are positive. Thus, the requirements in (2.17a-c) are
equ1va1ent to finding a k > O such that

h_(wh_(v) - kug (w)g (u) =0, (2.18a)

h™ (U)h (u) - kug_ (U)g (u) =0 (2.18b)
and

h_(wh (v) - kug (wg (v) =0 (2.18¢)

possess no solutions u in (-«, 0]. We are now in a position to consider
conditions (i) and (ii) in the theorem statement.

Condition (i) holds: (Case 1: a; 5. for i = even) In this
situation h = h , thus the requirements o (2 18a-c) become one of
finding a K" > 0 such that

h (u)h (u) - kug_(u)g+(u) =0 (2.19)
has no solutions u in (-», 0]. The problem of finding such a k can be
resolved using root locus techniques. Indeed, (2.19) is equivalent to

ug_(w)g, (u)
1 -k —F:?GSF:TGT = 0. (2.20)
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It’s evident from the root locus diagram in Figure 4 that (2.19) has no
roots in (-», O] for sufficiently small k > 0. Thus, there exists a
(sufficiently small) k > 0 such that (2.19) possess no roots u in (-e,
0]. This completes Ehe proof of Case 1.

(Case 2: a, = a, for i = odd) The proof for this case is dual to
the proof of Case "1. We have g, =g_so that equations (2.18a-c)
reduce to

h_(u)h+(u) - kug+(u)g+(u) = 0. (2.21)

Again, using root locus arguments, one sees that (2.14) possesses no
roots u in (-», 0] for sufficiently large k; see Figure 3. Therefore,
there exists a (sufficiently large) k > O such that (2.12) has no roots
in (-», 0]. This completes the proof of Case 2.

Condition (ii) holds: We consider the three cases n = 1,2, and 3
separately. _ _

(Case 1: n =1) Here, h = as h =a, g = ag and g = a,
vhich are all positive numbers. "If we take k'= O, then (2.18) never
has non-positive real roots u.

(Case 2: n = 2) The po_ynomlals h (u) and h (u) are first order,

vhile g (u) = 3 and g, (u) = . Equations (2.18) become
h_(u)h_(u) - kuala1 =0 (2.22a)
h™ (u)h (u) - kua1 1° 0 (2.22b)
and 2
h_(u)h+(u) - kua1 = 0. (2.22¢)

For all k > 0, (2.22a) possesses no real, non-positive roots u. Since

—kua -kua a, for all u < 0, then the requirements on (2.22b) and
(2. 25c) are met if Just (2.22b) holds. However, (2.22b) is just a
special case of (2. 21). Thus, for sufficiently large k > 0, (2.22b)
possesses no roots in (-«, 0].

(Case 3: n=3) Polynomlals h ,h '8, and g are first order with
zeroes “1 <0, <0, B <0 ana B, < *o respectively. To make use of
Lemma 2.2 ve 1den%1fy the five intervals (p = 4m+l = 5)

Uy = [a],015 U, = [o),o15 Uy = [6],091; U, = [8],6]1; Ug = [—m,d 26
With the form of d(s) taken as in (2.12) we now find a k > O such that
conditions (2.8b) of Lemma 2.2 are satisfied.

From the preceding development, (2.13)-(2.18), we see using (2.4)
and (2.18a-c) that the requirements in (2.8b) are equivalent to the
existence of a k > 0 such that
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(2.18b) has no solutions u € U (2.25a)

(2.18a) and (2.18b) have no solutlons u e UZ’ (2.25b)

(2.18a) and (2.18c) have no solutions u € Uy; (2.25¢)

(2.18b) and (2.18c) have no solutions u € U4; (2.25d)
and

(2.18b) has no solutions u € US' (2.25e)

The solutions to (2.18a—c), as a function of k, can be determined
from the three root loci in Figure 6. Now, choose k > O such that the
solutions to (2.18b) are neither real nor negative. It’s clear from
Figure 6b that this is poss1b1e, e.g., take k > 0 so that the roots of
(2.18b) coincide with the "*’s" in Figure 6b. For this value of k = k
all conditions in (2.25) are satisfied. This is clear from (2.24),
(2.25) and Figure 6. For instance, conditions (2.25a-e) are satisfied
since the root locus in Figure 6b does not touch U or U Finally,
observe that even though the root loci associated w1th ?2 18a) and
(2.18c), see Figures 6a and 6b respectively, touch intervals U and U
none of the conditions (2.25) are violated. Therefore, for k =k ﬁl

Ehe cond1t19ns (2.25) are satisfied. This implies that é(s)

h (s”) + sk g+(s ) satisfies the conditions of Lemma 2.2. Hence,
T'(N,d) is SPR—1nvar1ant vhich proves Case 3 and the theorem. v
3. EXAMPLE

Consider an interval polynomial family N of degree n = 3 described
by

s3 + a 52 a.s + a,; a, € la,, a,]

2o 15 * 38 +a3i 8y T8 8
vhere a, = a, = a, = a, = 1; a, = 3; a, = 43 ag = 1; 53 = 2. The four
Kharitonov polynomials in (1.3) are

Kl(s) = sg + 52 + 3s + 2 Kz(s) = s3 + sg + 4s + 1;

K3(s) =85 + 8 + 4s + 23 K4(s) =8 +s8 +33 +1

which are all stable. We conclude from Theorem 2.1 that there exists a
polynomial d(s) such that the family of transfer functions I'(N,d) is
SPR-invariant. Moreover, a suitable d(s) is given by
2 2
d(s) = h+(s ) + ksg+(s )
where h+ and g, are defined in (2.2) and given by
h+(s) =8 + 2; g+(s) =s + 4

and where K is some non-negative number. In fact, a class of admis-
sible d(s) is

d(s) = ks> + s2 4 bks + 2; Kk € [.05, 4.1].
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X = zeroes of h, and h.

O = zeroes of g, and 9.

Figured;  From the root locus we see that for sufficiently small values of the variable k that
(2.19) has no real roots . in (-e,0].
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Figure5:  This root locus possesses no solutions on the negative real axis as long as the root
locus variable k is sufficiently large. This locus describes the roots of (2.21).
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in finding a k > O such that (2.25a-e) are satisfied.



QUADRATIC STABILIZABILITY OF LINEAR SYSTEMS WITH
STRUCTURAL INDEPENDENT TIME VARYING UNCERTAINTIES
Kehui Wei

Abstract

This paper investigates the problem of designing a linear state feedback control to
stabilize a class of single-input uncertain linear dynamical systems. The systems under
consideration contain time-varying uncertain parameters whose values are unknown but
bounded in given compact sets. The method used to establish asymptotical stability of the
closed loop system (obtained when the feedback control is applied) involves the use of a
quadratic Lyapunov function. Under the assumption that each entry of system matrices
independently varies in a sufficient large range we first show that to insure a system
stabilizable some entries of the system matrices must be sign invariant, more precisely, the
number of the least required sign invariant entries is equal to the system order. Then, for a
class of systems containing both the least required sign invariant entries and sign varying
structural uncertainties we provide the necessary and sufficient conditions under which the
system can be quadratically stabilized by a linear control for all admissible variations of
uncertainties. The conditions show that all uncertainties can only enter the system matrices
in a way to form a particular geometrical pattern called "anti-symmetry stepwise
configuration".

1. Introduction.

In recent years, the problem of designing a feedback control law to stabilize an
uncertain dynamical system has received considerable attention; e.g., see [1]-[20] and
their bibliographies. In this paper the uncertain dynamical systems under consideration are
described by state equations containing time-varying uncertain parameters which are
unknown but bounded in a prescribed arbitrary compact sets. In order to establish the
stability of the closed loop time varying uncertain system, a quadratic Lyapunov function is
used. The quadratic stabilization problem can be roughly stated as follows: Provide
conditions under which it is possible to find a suitable quadratic Lyapunov function and
design a continuous feedback controller which guarantees uniform asymptotic stability of
the origion for all admissible variations of uncertainties.

It is convenient to classify the existing results on robust stabilization into two
categories. First, there are a number of results which treate the uncertain system as a
nominal system with uncertain perturbations. No special assumptions on the location of
uncertain entries are required. By using the knowledge of the nominal system, one can
construct a feedback control and a related Lyapunov function to prove uniform asymptotic
stability for all admissible uncertainties; e.g., see [1], [9]1,[13] and [15]. With this
method, usually only sufficiently small "size" of perturbation is allowable.

The second category of results are applicable to systems having some arbitrarily large
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varying terms. In this case, the locations of uncertainties in the system matrices play a
crucial role. It has been found that if sufficiently large uncertainties enter some entries, the
system may not be stabilizable. In other words, to guarantee robust stabilizability of a
system, one has to propose some restrictions on which entries of system matrices are
permitted to be uncertain. In [4], [7]-[8] and [11]-[12], the uncertainty in the systems is
assumed to satisfy the so-called "matching conditions". In view of the fact that matching
condition as sufficient conditions are often too conservative, generalized matching
conditions are found in [16], provided the nominal system is of cannonical form. This
result is further generalized to obtain so-called "admissible shuffle” structures for
single-input systems in [2]. In [10], a sufficient condition on multi-input systems is
proposed, also based on a canonical form assumption.

This paper is fall into the second category. The main aim of this paper is to examine
the following question: When each entry of system matrices varies independently in a
sufficient large range, under what conditions can the system be quadratically stabilized by a
linear control. It is not hard to see that if every entry is allowed to vary independently
through zero, the system can not be stabilizable. In other words, in order to guarantee the
stabilizability for an uncertain system some entries of the system matrices must be sign
invariant (including a constant number). We first show that to insure a system stabilizable
via linear control the least number of sign invariant uncertain entries in the system matrices
is equal to the system order, provided that those sign invariant uncertain entries locate in
proper places. Then, under the assumption that a system containing the least required sign
invariant uncertainties in proper entries and structural uncertainties (i.e., uncertainties
which vary in arbitrary bounding sets) in some of the rest entries we derive necessary and
sufficient conditions under which the uncertain system is quadratically stabilizable via
linear control. Roughly speaking, those structural uncertainties can only locate in such
places which form a certain geometrical pattern called anti-symmetry stepwise
configuration. This paper has some siliant features: First, our stabilizability conditions
can be easily checked by just examining the uncertainty locations in the system matrices.
Second, once a system satisfies the stabilizability conditions, a suitable quadratic
Lyapunov function and a desired linear stabilizer can be computed following a constructive
procedure. The control gain will depend on the given varying ranges of all uncertain
parameters. Thirdly, as a necessary and sufficient condition, our criterion captures all the
stabilizable systems which satisfying the forementioned sufficient conditions in the same
category.

Due to space constraints, all proofs of preliminary lemmas and main theorems has
been omitted and can be found in [19].

2. Systems, assumptions and definitions.

We consider a linear time varying uncertain system >.(A(q(t)), b(q(t))) (or uncertain
system >(A(q), b(Q)) for short) described by the state equation
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() = A(q®)x(® + bg®)u®) ; t =0
where x(t)e R is the state; u(t)e R is the control; q(t)e Q< RP is the model uncertainty
which is restricted to a prescribed bounding set Q. Within this framework, A(-) and b(-)
must be nxn and nx1 dimensional matrix functions on the set Q, respectively. Hence for

fixed qe Q, A(q) and b(q) are the model matrices which result.

In this paper, unless otherwise stated, we assume that A(q) and b(q) each depends on
different components of g; that is, we have q=[r : s]', where A(-) depends solely on r and

b(-) on s.
Throughout the remainder of this paper, the following assumptions are taken as
standard:

Assumption 2.0.1 (continuity): The matrices A(-) and b(-) depend continuously on
their arguments'.
Assumption 2.0.2 (compactness): The bounding set Q is compact.

Assumption 2.0.3 (measurability): The uncertainty q(-): [0,e0)— Q is required to be
Lebesgue measurable.

Definition 2.1: An uncertain system X.(A(q(t)), b(q(t))) is said to be guadratically
stabilizable (with respect to Q) if there exists a continuous (feedback control) mapping

p(): R%— R with p(0)=0, an nxn positive-definite symmetric matrix P and a constant o >
0 leading to the satisfaction of the following condition: Given any admissible uncertainties

q(-), it follows that
L(x,t) & xTA'(q())P + PA(q(D)]x + 2xPb(q(t))p(X) < - ollxli2 @.1.1)

for all pairs (x,t)e REX[0, +e0). L(x,t) is the so-called Lyapunov derivative associated

with the quadratic Lyapunov function V(x) £x'Px. Furthermore, £(A(q(t), b(q(t))) is said
to be quadratically stabilizable via linear control (with respect to Q) if p(x)=Kx where K is

a 1xn constant matrix.

Definition 2.2: An nxn uncertain matrix M(q) £ {m; j(q)} is said to be in the standard

form if for eachi=1,2,...,n-1,m;;,1(q) is an independent sign invariant function of q

(including a constant function).
In the sequel, for notational simplicity, we always use 0 to denote an entry which is a

sign invariant uncertainty. Note that 6 in different entries are not necessarily a same
function of q.
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Definition 2.3: An uncertain system .(A(q), b(q)) is said to be in the standard form
with structural independent uncertainties if its corresponding matrix M(q) defined as

M(g) & T 2 {m; (@) @3

is in the standard form and every non-supperdiagonal entry m; j(q) of M(q) is zero or
varies independently in [-r; i j] where r; j>0 is allowed to be arbitrarily large.

Definition 2.4: An uncertain system 2.(A(q), b(q)) is said to have an anti-symmetric
stepwise configuration if its corresponding matrix M(q) as in (2.3.1) satisfies the
following conditions:

i) M(q) is in the standard form as in Definition 2.2;

ii) If p2k+2 and my p(q)$ 0,then m;; ,(q) =0 for all u2v, usp-1 and v<k+1.

Remark 2.5: A roughly geometric interpretation of an anti-symmetric stepwise
configuration is shown in Figure 2.1 where the shaded regions denote permissible
uncertain entries and the empty regions are composed entirely of zero entries. Note that in
accordence with Definition 2.4 a precise geometric interpretation of an anti-symmetric
stepwise configuration is easy to determine.

3. Preliminary lemmas for proving main theorems.

Lemma 3.1: (see [6] for proof): An uncertain system ¥.(A(q), b(q)) is quadratically

stabilizable if and only if there exists an nxn positive-definite matrix S such that
x'(A(Q)S + SA'(@)x <0

for all pairs (x,q)e NxQ with x#0 where N2 {xe R" : b'’x=0 for some be conv {b(q) :

qeQ}.

086

N

Figure 2.1: An anti-symmetric stepwise configuraton.
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Corollary 3.2: An uncertain system >.(A(q), b(q)) with

where 0 is a sign invariant uncertain function of q is quadratically stabilizable if and only if

there exists an nxn positive-definite matrix S and ©® =[ I,,_{ : 0] such that

(S, & O'(A(Q)S + SA'(Q)O (3.2.1)

is negative-definite for all ge Q.

The pair (S, 7) satisfying Corollary 3.2 is called an admissible pair for the system
2(A(Q), b(@)).

Lemma 3.3: (see [9] for proof): Consider an uncertain system >.(A(q), b) where b is

a constant vector. Let @ be any nx(n-1) orthonormal matrix whose columns span N(b").

there exists an nxn positive-definite matrix S such that
n(s,q) £ O'(A(Q)S + SA'(Q)© 3.3.1)
is negative-definite for all ge Q.

Lemma 3.4: (see [2] for proof): Consider an uncertain system 3(A(q(t)), b(q(t))).
Define the (n+1)-dimentional system Z+(A+(q(t)), b+(q(t)))

x*H(1) = A+q)x () + bt ; 120

where

Then .(A(q(1)), b(q(t))) is quadratically stabilizable via linear control if and only if

THAY(Q(D), bH(q(1)) is quadratically stabilizable via linear control.
Note that in [2], only b*=[00 ... 0 1]'is considered. However, the same proof is

also valid when b™ is replaced by b+(q(t))=[0 0...00].
Definition 3.5: Consider an uncertain system >(A(q), b(q)) where

where  is a sign invariant uncertainty. A down-augmentation system 3 *(A*(q), b*(q))
of X(A(q), b(q)) is defined as follows;
A@@ : b@ 0
N - e ; bf@e |-----
. % 9
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where 0 is a sign invariant uncertainty.

Lemma 3.6: Consider an uncertain system >(A(q), b(q)) and its down-augmentation
system Y ¥(A*(q), b*(q)) as in Definition 3.5. Then, if ¥(A(q), b(q)) is quadratically
stabilizable, T (A1(q), b*(q)) is also quadratically stabilizable.

Definition 3.7: Consider an uncertain system X.(A(q), b(q)) where

[0 A@ 0

A@Qg |------------- ;ob@e |----- .
L * * 9

An up-augmentation system X (A*(q), b¥(q)) of Z(A(q), b(q)) is defined as follows
0 @ o Ek...k 0
A*@@ & 0:0 : A(q) B br@e |
""""""""" b(q)

L % % * %k %k

Lemma 3.8: Consider an uncertain system >,(A(q), b(q)) and its up-augmentation
system > +(A*(q), b*(q)) as in Definition 3.7. Then, if 2(A(q), b(q)) is quadratically
stabilizable, ¥ *(A¥(q), b*(q)) is also quadratically stabilizable.

Observation 3.9: If an uncertain system Y.(A(q), b(q)) satisfies the following
condition:

can always be generated from Ag=[ * ], bo=[ 0]or Ag=[0], bg=[ 6] via a sequence of
augmentation (either down or up).
Lemma 3.10: Consider the free system Z(Ac, b.) where

010 ...0 0
001 ...0 0
A, & : ; b. & (3.10.1)
0 :
: 1 0
00 0 1

If there is an admissible pair (S,7) for the system Z(Ac, b.), then the entries 5§ of S have

the following properties:
1) sj; >0foralli=1,2,...,nands;;;1 <Oforalli=1,2

a2 &1l ]

...,n-1,

2) If 5;41 j41 2 0%5; j then for i+1< k <n
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s> 024 4Dy gy,
When o is large enough, then
$i1<Si+1 i+1 <-<Snn
3) if s;_q 1.1 2 B%s; j then for i-12 k 21
sk > B4R Dg .
When B2 is large enough, then
$§<8-1§-1<" <811

Lemma 3.11: Consider an uncertain system 3(A.(q), b)

010 ...0 0

001 ...0 0
Al & ;i bo & :

: 0

: v 1 0

00 0 1

having one structural uncertainty a,, ,, where 1<v<us<n-1, la, \(q)!sr and r is sufficiently
large. If there is an admissible pair (S, ) for the system 3/(A¢(q), be), then the entries s, ;
of S have following properties:

1) Isy u+1! > 18y-1 vl when v1;

2) Isyu+1!lsy ve1!> S2v v

3) syu<Sy+lu+l < <Spp-

Lemma 3.12: Consider an uncertain system Y.(A., b.(Q) )

010 0 0
0 01 0 :
A 2 : i bl & % p
0 :
: 1 0
00 0 1

Ll@_r_qakpisamgmm uncertainty : Iakp(q)ISr and r is sufficiently large. If there
exists an admissible pair (S, 7) for the system ¥(A, b(q) ), then the entries s; ; of S have
the following properties:

D Isgget! snne1!>s% o

2) 511>822> 7" > Sk k> Sk k1

Lemma 3.13: Consider an uncertain system Y(A.(q,bc(Q))
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010 ...0 0
001 ...0 :
: 0 :
: 1 0
0 0ayy ...0 1

where a,, y and ay p are independent structural uncertainties. If k=v-1, then the system is
not quadratically stabilizable.

4. Main results.

We now state our main results.

Theorem 4.1: Consider an uncertain system >.(A(q(t)), b(q(1))). If every entry of
system matrices A(q) and b(q) is an independent uncertain function of g, then the system is
guadratically stabilizable via linear control only if the following condition holds: There are

I B }

Theorem 4.1 implies that if a system having independent varing entries is stabilizable,
the number of the least required sign invariant entries is equal to the system order,
provided they are in proper locations. In the follows, we only consider the systems
having the lowest number of sign invariant uncertain entries. Obviously, the supper
diagonal of M(q) is a proper location for sign invariant entries in order to satisfy the
requirements of Theorem 4.1.

only if the system has an anti-symmetric stepwise configuration.
This research was supported by Deutsche Forschungsanstalt fuer Luft- und
Raumfahrt.
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A Finite Zero Exclusion Principle
Anders Rantzer

Abstract. The paper shows that the “frequency sweep” in the well known “zero
exclusion principle” for checking robust stability of linear systems, can be avoided.
In fact, we derive a simple sufficient condition for zero exclusion in an entire
frequency interval. The main idea is that a polynomial p of degree n is Hurwitz if
and only if Ef:z arg(p(iwk)/p(iwk—-1)) > (n — 1)7 for some wy < ... <wn.

As an application, we consider polynomials of degree n with coefficients de-
pending linearly on m parameters in the interval [0, 1]. The number of calculations
for checking Hurwitz stability of the complete family then grows only as n%mlogm,
but depends also on the “stability margin” of the family.

The test is also applied to problems with multilinear parameter dependence,
in particular checking positive realness of a rational function, whose numerator
and denominator depend linearly on interval bounded parameters.

Introduction

Considering stability robustness of linear systems raises the question whether
the characteristic polynomial is Hurwitz for every possible value of some uncertain
parameters. (A Hurwitz polynomial is usually defined as a polynomial with real
coefficients, having no zero z with Re z > 0. For convenience, we shall use the
same notation for polynomials with complex coeflicients and for families of such
objects.) A celebrated theorem by V.L. Kharitonov [6] [7], states that a family of
polynomials, defined by letting the coefficients vary independently of each other
in specified intervals, is Hurwitz if and only if four special “corner polynomials”
of the family are Hurwitz.

Other methods have been proposed for treating other stability regions and
letting several coefficients of the polynomial depend on one common set of uncer-
tain variables. In particular, Bartlett, et.al. [3], proved that the convex hull of a
set of polynomials p1(s),...,pm(s), is Q-stable (has all its zeros within the path-
wise connected region 2 C €), if all the edges Api(s) + (1 — A)p;(s), 1 <1,5 <m,
0 < X <1, are Q-stable. Edge stability may be checked using the criterions in [4]
and [5].

An older result, recently developed by Barmish [2] and Anagnost, et.al. [1],
is the “zero exclusion principle”, stating that a connected family of polynomials is
Q-stable if it contains a stable polynomial and no polynomial of the family has a
zero on the boundary of Q. For example, Anagnost, et.al. sweep the boundary of
(), plotting, for a sufficient number of points, the value closest to zero that is taken
in that point by a polynomial of the family. The family is stable, unless the plot
intersects zero. Considering Hurwitz stability, this paper shows that the boundary
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sweep can actually be replaced by calculations for a much smaller number of
frequencies. The same method can be applied to any circular stability region
D C €, by using an appropriate transformation p(s) — (as+b)"p((cs+d)/(as+b))
of the polynomials.

The argument principle implies that a polynomial p of degree n is Hurwitz
if and only if the argument variation of p along the imaginary axis equals nx.
Our first result is a finite argument principle (f.a.p.), stating that p is Hurwitz if
Zi\]:z arg(p(iwk)/p(iwk—1)) > (n — 1) for some w; < ... <wn.

When the polynomial p(s,A) also depends on A € IR™, we use the notation
p(s, A) for the set {p(s,A)]| X € A}. If thef.a.p. is satisfied by p(-,0), the additional
conditions 0 ¢ conv [p(iwk_l,A) Up(iwk,A)], k= 2,..., N, are sufficient to prove
that every p(-,A), A € A, satisfies the f.a.p. This is called the finite zero exclusion
principle (fz.e.p.).

After developing this general stability criterion, we devote one section to the
particular case

P('yA)=P0+ZT=1/\ijv A=(A,.-52m) €[0,1]7 (1

where po,...,pm are polynomials and degp; < degpo = n, j = 1,...m. One
drawback of the “edge criterion” mentioned above, is that stability has to be
checked separately for each edge of the polytope and that the number of edges
grows with m as 2™. This makes the method inconvenient when the number of
uncertain parameters is large. For the same problem, the complexity of the f.z.e.p.
grows with m and n only as n?mlogm.

A more general problem of great importance is to check Hurwitz stability of
a polynomial which depends multilinearly on a number of unknown independent
parameters, each bounded in an interval. For example, the characteristic polyno-
mial of a matrix depends multilinearly on the entries of the matrix. Our algorithm
is generalized to treat this problem as well, however with exponential complexity.
Let the set of unknown parameters be divided into two categories with [ and m
parameters each, such that the polynomial depends linearly on the parameters of
the first category, as the second is kept fixed. Then, the computational complexity
for problems with fixed stability margin grows as n?2™[logl.

As an application, we show that the problem of checking positive realness of
a rational function, whose numerator and denominator depend linearly on m inde-
pendent unknown interval bounded paramters, can be reduced to the multilinear
polynomial case with m = 2.

A Finite Zero Exclusion Principle

The principal branch of arguments of complex numbers is used, i.e. —7 <
arg z < « for z # 0. The notation argp(+ico) denotes limy, 400 arg p(iw).

THEOREM 1 (FINITE ARGUMENT PRINCIPLE, F.A.P.)Suppose —c0 = w; < ... <
wN = 400. If p is a polynomial of degree n with complex coeficients, and

p(iwg) #0, k=1,...,N

arg(p(iw Wg—1 w, k=2,...,N

Ng(p( k)/.p( k-1)) < o)
3 arg 28 _ o,

! p(iwk—1)
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then p is Hurwitz.

Conversely, if p is a Hurwitz polynomial of degree n, there are frequencies
{wi}in, that satisfy (2) .
Proof: Suppose p(s) = po(s — a1) (s — o). The first two conditions im-
mediately imply that p has no zeros on the imaginary axis, so the expression
arg((twr — a;)/(iwg—1 — a;)) is > 0 if Rea < 0 and < 0 if Re @ > 0. Since
arg(uy -+ up) < |argug| + -+ + |argu,| with strict inequality if arguy < 0 for
some k, the third condition implies that

il p(iwg) i " (iwk — aj)
k %
nr =Y arg———==» arg|| ——
kZ:Z p(twk—1) kz=2 ]1;[1 (fwk—1 — aj)
< arg ——————| = arg ———| =n=w
k=2 j=1 (zwk_l - Ozj) =1 k=2 (zwk_l - aj)

Strict inequality is impossible, so p must be Hurwitz.

If p is Hurwitz, then we can choose {w}3™, with w; = —c0, w2, = 00 such
that each of the intervals Jwg_1,wi| contains exactly one zero of either Re p(iw,0)
or Im p(iw,0). This proves the second part. n

The main result of this paper now follows as a natural generalization of the
f.a.p. to families of polynomials:

THEOREM 2 (FINITE ZERO EXCLUSION PRINCIPLE, F.Z.E.P.) Suppose p(s, )
is a polynomial in s which depends continuosly on the A € R™. Let A C R™ be
pathwise connected, and suppose p(-, Ao), Ao € A, together with {wi}_, satisfies
the fa.p. If A = UJJ=1A]' and

0 ¢ conv [p(iwk—1,A;) Up(iwk,Aj)] forj=1,...,J, k=2,...,N, (3)

D

then every polynomial in p(-,A) is Hurwitz.
Conversely, if p(-,A) is Hurwitz, then there is a partition A = UleAj and a
sequence (wg)N_, such that all conditions above are fulfilled.

Remark. The partition A = U]J=1Aj may be necessary if 0 € convp(iw,A) \
p(iw, A) for some w.
Proof: Conditions (3) imply that Y r_, arg(p(iwk, A)/p(twk—1,A)) /7 is wellde-
fined for A € A. The sum depends continuously on A but takes only integer values.
Since A is pathwise connected, every A € A must give the same value as Ag, so the
f.a.p. completes the proof of the first part.

The second part is evident, since Uj_; conv [p(iv, Aj) U p(iw, Aj)] — p(iw, A)
as the refinement of the partition increases and v — w.

To apply this criterion one gradually refines the partition A = U]J=1Aj and
adds new frequencies until either the conditions of the theorem are fulfilled, or
0 € p(wwg, A) for some k. Unfortunately, the algorithm may not stop if p(-, A) just
touches the boundary of the set of Hurwitz polynomials. However, the successive
values of new frequencies reveals what is going on.

Another complication may be the computation of p(iw, A;). In the following
sections, this problem is analysed in two important cases.
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Polynomials with linear parameter dependence

For the case (1), no partition A = UjJ=1Aj is necessary, since conv p(iw, A) =
p(iw, A). The following theorem shows how to calculate p(iw, I') for a given w when
I=]0,1]™.

THEOREM 3 Let p(-,A) = po + ET:V\J'PJ‘ where A = (Ay,...,Am) € I = [0,1]™
and suppose that argp;(w) < argpa(tw) < ... < argpm(iw) < argp;(iw) + 7 for
some w € [—00,00]. Let pm4j = —pj for j = 1,...,m and ¢t = po + E_Ij=1pj:
l=1,...,2m. Then

p(iw, I) = conv{gi(w), ..., ¢2m(tw)}. 4

Remark. It should be noted that for any family of the form (1) and any givenw €
IR, the argument condition can be fulfilled by replacing pg with (po+5_ jepPj)and
p; with —p; for j € B = {j|argp;(iw) < 0}, then renumbering the polynomials.

Proof: Let ®; = [argpj(iw),argpj41(iw)| for j = 1,...,m. The set p(iw,I) is
obviously a convex polygon with finitely many vertices of the form £ = (po +
Y14 P)(iw). Each of these has a supporting line with an argument ¢ € &; for

some j. It follows that either & = (po + Y.1_, Pi)(w) = ¢;(iw) or € = (po +
27;141 p)(w) = gm+;(iw). L]

Combining this result with the finite zero exclusion principle gives the follow-
ing Hurwitz test for polynomial families of the form (1).

ALGORITHM 1.

1. Check Hurwitz stability of the nominal polynomial p(-,0), using for example
Routh-Hurwitz criterion.

2. Choose 2n frequencies —00 = w; < ... < wq, = +00 such that each of the in-
tervals [wg—1,wk] contains exactly one zero of either Re p(iw,0) or Im p(iw, 0).
Then the f.a.p. is satisfied by p(-,0) together with {wg}%2,. (For real poly-
nomials, it is sufficient to consider positive frequencies.)

3. Calculate p(iwg,I) for k = 1,...,2n, using Theorem 3, and add new fre-
quencies until either 0 ¢ conv[p(iwk_l,I) Up(iwk,I)] for k = 2,...,2n or
0 € p(iwg,I) for some k € {1,...,2n}. In the first case, the entire family
p(+,I) is Hurwitz by the f.z.e.p. In the second case, it obviously contains a
non-Hurwitz polynomial.

Complexity. The complexity of this algorithm grows with m and n essentially as
n’mlogm. For step 3, the quadratic dependence on n follows since the number
of frequencies is proportional to n and for each frequency, the evaluation of the
polynomials also has complexity n. The factor mlogm is due to the renumbering
of polynomials, necessary before applying Theorem 3. It should be noted that
computation of the zeros of Re p(iw,0) and Im p(iw,0) in step 2 would be of
complexity n3, so for large n the initial frequencies had better be determined from
a Nyquist plot of the nominal polynomial p. This “frequency sweep” is exceedingly
simple compared to the direct application of the classical zero exclusion principle
and it grows as nZ.

We shall now illustrate our stability test with an example.
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P‘(iw‘., I)

2
% P(iw3 ,I)

(]

P(iw,,l).

Figure 1.

EXAMPLE. Suppose a discrete time linear timeinvariant system has the transfer
function B(z)/A(z) = ((2+ M)z + 4+ X2)/(z* — 1), where 0 < A\; < 1 and
0 < Ay < 2.4 are unknown parameters. We apply feedback with transfer function
D(z)/C(z) = (2 +2)/(8z + 8) and get the closed loop characteristic polynomial

A(2)C(2) 4+ B(2)D(z) = 82* + 82° + 227 + M\ (2% + 22) + Ay(2 + 2).

We would like to decide whether the closed loop system is stable, i.e. if this
polynomial has all its zeros in the unit disk.

A Moebius transformation shows that this happens if and only if the polyno-
mial p(s, A) = po(s) + A1p1(s) + Azp2(s) is Hurwitz for Ay, A; € {0,1] when

po(s) =8(s +1)* +8(s + 1)’(s — 1) + 2(s + 1)(s = 1)?
Pa(s) = (s + 1)%(s — 1) +2(s + 1)(s — 1)°
p2(s) = 24((s + 1)(s — 1)® + 2(s — 1)*).
Algorithm 1 gives the following calculations.
1. The nominal polynomial p(:,0) = pe is Hurwitz.
2. Re po(iw) = 18w* — 44w? + 2 = (w? — 0.046)(w? — 2.4) and Im py(iw)

—48(w? — 0.33), so Y i, arg(p(iwk, 0)/p(iwk—1,0)) = 27 when w; = 0, wy =
0.5, w3 =1 and wy = +00.

3. Theorem 3 is used for calculation of p(iwx, I), k = 1,...,4. In fact, we have
arg py (twr ) < argpa(twi) < argpi(iws) + 7 for all k without redefinition of py
and pj, so

pliwk, I} = po(iwk) + conv{0, p1 (iwr), (p1 + p2)(wr), p2(fwr)}, k=1,...,4.

It turns out that 0 & conv[p(iwk_l,l) U p(iwk, I)] for all k except for k = 2.
We therefore add another frequency midway between w; and we and check
the f.z.e.p. again. This time all conditions are satisfied, so the closed loop
system is stable for all parameter values (Figure 1).

o

Polynomials with multilinear parameter dependence.

In this section we let p(s, A) depend multilinearly on A = (Ay,...,An) €I =
[0,1]™. This means linear dependence on each X; as other coefficients are kept
fixed. Then the partition A = UJJ=1Aj in the f.z.e.p. becomes necessary. For
computation of conv p(iw, I) we use the following theorem by Zadeh and Desoer

(8-



244

THEOREM 4 Let p(s,\) depend multilinearly on A € I = [0,1]™. Define the
finite set AI = {0,1}™. Then conv p(s,I) = convp(s, AI) for all s € C.

Often the computation of conv p(iw, I) can be further simplified using The-
orem 3. Suppose, possibly with renumbered coefficients of A, that I = M x L
and p(-,)\) depends linearly on (Amy1,...,Am+1) € L. Then convp(iw,I) =
p(iw, AM x L),and p(iw,{(A1,...,Am)} X L) can be computed from Theorem 3
for each (A1,...,An) in the finite set AM.

The following stability test now falls out for polynomials with multilinear
parameter dependence.

ALGORITHM 2.

1. Check Hurwitz stability of the nominal polynomial p(-,0), using for example
Routh-Hurwitz criterion.

2. Choose 2n frequencies —oco = w; < ... < W, = +00 such that each of the in-
tervals [wg—1,ws] contains exactly one zero of either Re p(iw, 0) or Im p(iw, 0).
Then the f.a.p. is satisfied by p(-,0) together with {wi}i2,. Let J = 1,
M = M.

3. Calculate conv p(iwy, Mjx L) = p(iwk, AM;x L) for all (4, k) using the method
above. Refine the partition M = UJJ=1M]< until either 0 ¢ conv p(iwg, AM; X
L) for all (j,k) or 0 € p(iwg, AM; x L) for some (j, k). In the second case,
stop the algorithm. The family p(-,I) obviously contains a polynomial with
a zero on the imaginary axis.

4. If 0 € conv [p(iwk_l, AM; x LYU p(iwg, AM; x L)] for some (j, k), either split
M; as in step 3, or add a new frequency between wg—1 and wg, then return to
step 3. If not, the conditions of Theorem 2 are fulfilled, so we may conclude
that the family p(-,I) is Hurwitz.

The choice in 4, whether to add a new frequency or split M; in one of
its directions, can be made in different ways. One way, that has been imple-
mented by the author, is to consider the value p(iw, (A1, ..., Am,0,...,0)) for some
(M,--,Am) € AMj, w € {wi_1,wi} then check which coefficient Ay,..., Ay or
frequency w should be replaced by its opposite limit, to cause the biggest possible
change of complex argument. If it turns out to be one of the coefficients, then
split M; in the corresponding direction, otherwise add a new frequency between
Wk—1 and Wk.

Complexity. The complexity n22™[log! is obtained as in the linear case, with
the only difference that asymptotically each “frequency split” is accompanied by
2™ other “splits”.

Strictly Positive Real (SPR) Rational Functions

The real function p/g is called SPR if for some ¢ > 0, we have Re (p/q)(s) >
0 for all s with Res > —&. Such functions are important, e.g. in stochastic
realization theory and adaptive control theory. The next lemma shows that the
multilinear case with m = 2, can be used to test the SPR property of families of
rational functions of the form

Po+ 371 AP

G + 2701 At
LEMMA 5 The real rational function p/q is SPR if and only if the polynomial
prpep+ (p2(1—4)+i— pi1p2)q is Hurwitz for all iy, p2 € [0,1]. (i is the imaginary
unit.)

where 0 < A; <1
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This lemma also shows why it is sometimes interesting to consider polynomials
with complex coefficients.

Proof: First note that

pl—d) +i—papa _ i(ﬁ_l)-}'l _1
Hop1 K2

Hence, the condition of the lemma is equivalent to stating that p + ag is Hurwitz
when 0 < arga < /2. Since p and ¢ are supposed to be real, all solutions of the
equation (p/q)(s) = —o must belong to the open left half plane when Re o > 0.
The solutions depend continuously on ¢, so it follows that their real parts remain
smaller than some —¢ < 0. This completes the proof. n
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DESIGN OF CONTROLLER WITH ASYMPTOTIC
DISTURBANCE ATTENUATION

Kenko Uchida, Masayuki Fujita, and Etsujiro Shimemura

Abstract: This paper formulates a generalized disturbance attenuation problem, in
which two separate disturbance attenuations are required, for linear time-invariant
systems having a direct transmission of controls in controlled outputs or considering
disturbances in observations. We propose a design method of controllers which
attain asymptotically the generalized disturbance attenuation based on the perfect
regulation and the perfect observation under certain minimum phase conditions.

Key words: Disturbance attenuation; Riccati equation; stability margin; perfect
regulation; perfect observation; H* control.

1. Introduction

To reduce the effect of external disturbances is a main objective of
designing control systems. Petersen [9] recently considered a problem, which
he called the disturbance attenuation problem, of finding feedback controls
which reduce the effect of the disturbances to a prespecified level, and he
presented a state feedback solution in terms of an algebraic Riccati equation
arising in linear quadratic differential games. His result also suggested new
state space solutions to H* control problem [1][5]. Petersen and Hollot [10]
attempted to solve the disturbance attenuation problem in the case when the
state information is not available; their idea is to use the accurate optimal
observer [2][3], which is the dual of the cheap optimal regulator [8], to recover
asymptotically the norm of a certain transfer function. Another approach to
output feedback case is, of course, to treat the problem within the framework
of the standard H* control problem [1].

In this paper, we formulate a generalized disturbance attenuation prob-
lem, in which two separate disturbance attenuations are required and a direct
transmission of the control in the controlled output or an observation distur-
bance is taken into account, and we propose a design method of controllers
which attain asymptotically the generalized disturbance attenuation under
certain minimum phase conditions, based on the perfect observation or the
perfect regulation posed by Kimura and Sugiyama [6]7]. The idea of asymp-
totic attenuation is the same to that of Petersen and Hollot [10]; the use of
the perfect observation and the perfect regulation in this paper, however,
makes it possible to consider the generalized disturbance attenuation problem
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and to delete a matching condition which is required in their argument [10]
(concerning the matching condition, see Remark 2).

2. Problem formulation

We consider two types of linear time-invariant systems. One is
described by

(%) z2=Az + Bu + Dv, y= Cz, z= Fr, g=[ﬂ

and the other is described by
(%*) z=Az+Bu+Dv, y=Cs+w, z=Fz

where z€R™ is the state; ucR" is the control input; y¢R™ is the observed
output; in the system ( £ ), v€RP? is the disturbance and g = [2" u’]’ €RI*"
is the controlled output; in the system ( £*), h:=[v" w’]  €RP™™ is the
disturbance and 2€RY is the controlled output. B, C, D and F are assumed
to be full rank.

Let the controller for the system ( £ ) or ( £* ) be restricted to the form
consisting of a constant feedback gain K and a state observer with a constant
observer gain L:

(F') wu=Kx, x=Ax+ Bu+ L(Cx - y).

In the closed-loop system formed by the system ( ¥ ) with the controller
(T ), denote by S(s) = [ S,(s)" S,(s)’ |’ the transfer function from the dis-

u
’

turbance v to the controlled output g = [z »’]’. In the closed-loop system
formed by the system ( X*) with the controller (I ), denote by
T(s) =[ Tus) T,(s)] the transfer function from the disturbance
h=[v" w']" to the controlled output z.

Our concern is to find a controller with the parameter ( K, L ) which
makes the system ( £ ) or ( * ) internally stable (i.e., A + BK and 4 + LC
are stable) and realizes the disturbance attenuation: for the system ( T )

Il 8.(3w) [| < &, ] Sy(3w) || < m (2.1)
( then || S(jw) || < x/gmax(n, u) ) for given constants kK > 0, u > 0 and all
w € R, or for the system ( Z* )

[l T,(jw) [ < v, || Ty(w) [| < p (2:2)

( then || T(jw) || < 2 max(v, p) ) for given constants v > 0, p > 0 and all
w € R. In this paper we will present an asymptotic design method for such
controllers.

3. State feedback and state estimation with disturbance attenuation

As preliminaries, we discuss here two special cases of the design problem.
For the system ( ¥ ) we consider the state feedback problem; if we adopt the
feedback gain K, the closed-loop system has the form
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z=(A+ BK)z+ Dv, g= [z] = [IF(]z, (3.1)

then the transfer function from the disturbance v to the controlled output
g=[2" u']’, denoted by G(s) = [ G,(s)" G,(s)' |, is given by

G.(s)
G,(s)

- [F](sIn ~ 4®1p (3.2)

G(s) = K

where A# = A + BK. Now, as state feedback gain K, we choose
K, = - u’B'M
where M is a positive definite solution to the Riccati equation
A'M+ MA + x"2F'F — M(u?BB’ — DD')M =0 (3.3)

with parameters K > 0 and g > 0.

Theorem 1. Assume that the following conditions are satisfied:

(A;) (F, A)is detectable.

(A,) For given constants k > 0 and p > 0, the Riccati equation (3.3) has a
positive definite solution M.

Then, for the state feedback gain K, the closed-loop system (3.1) is inter-
nally stable, ie., A + BK, is stable, and has the following disturbance
attenuation property:

G(jw) G(—jw)" < [ff : } (3.9)
pI,
for all w € R; in particular,
G (jw)G(—jw)" <Ky, Gy(jw)Gy(—jw) < WL, (3.5)
forallw € R.

For the system ( * ) we consider the state estimation problem; if we
adopt the state observer with the observer gain L, the estimation error
e := z — x obeys the equation

e=(A+ LC)e+ [D L] [:}] (3.6)
then the transfer function from the disturbance A = [v" w’]’ to the estima-
tion error Fe, denoted by H(s) = [ H,(s) H,(s) ], is given by

H(s) = [ H,(s) H,(s) ] = F(sI, — Ay)7'[D L] (3.7

where Ay = A + LC. Now, as state observer gain L, we choose
L, = - p*PC’

where P is a positive definite solution to the Riccati equation
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AP + PA" +v2DD’ — P(p’C'C - F'F)P =0 (3.8)

with parameters v > 0 and p > 0.

Theorem 2. [13] Assume that the following conditions are satisfied:
(A;) (A, D) is stabilizable.

(A,) For given constants » > 0 and p > 0, the Riccati equation (3.8) has a
positive definite solution P.

Then, for the state observer gain L,, the error system (3.6) is internally
stable, i.e., A + L,C is stable, and has the following disturbance attenuation

property:

I/ZIP 0]

H(=j)" H(ju) < [ 0 (9)

for all w € R; in particular,
H,(—jw) H(jw) <L,  Hy(~jw) H,(jw) < p’L,  (3.10)
for all w € R.

Remark 1. It is shown in [4] that the state feedback gain K, has a large sta-
bility margin at the input side, which covers the well-known gain and phase
margins of the linear quadratic optimal regulator [12]. It can be also shown
that the observer gain L, guarantees a similar stability margin at the input
side in the dual system.

4. Asymptotic disturbance attenuation

In this section, using the perfect observation or the perfect regulation
posed by Kimura and Sugiyama [6][7], we design a controller guaranteeing
asymptotically the internal stability and the disturbance attenuation for the
system (£ ) or ( £*). We summarize here materials about the perfect
observation and the perfect regulation [6][7], which are necessary to our dis-
cussion. Let the observer gain Ly ( feedback gain K ) be rational in scalar
f>0 and assume that the all the eigenvalues of Ay, :=A + L;C
(A*/ .= A + BKj), denoted by M\(Ay) ( M(A*) ), i=1,..n, satisfy
either

Ai(Ayyg) — o (A (4*) - 8;)

1
or
Fi0NAgp) » i (F0A¥) - 5;)
as f— oo, where a; ( §; ) is a complex number with negative real part.

Then, we call that the observer gain L ( feedback gain Kj ) attains the per-
fect observation of the system ( C, A, D) ( perfect regulation of the system
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(F,A, B))if
o0 2 (> <] #f 2
4; || (exp Agst)D ||%dt — 0 (4; || F(exp A*'t) ||2dt — 0)

as f — oo.

Lemma. [6][7] (i) There exits an observer gain Ly ( feedback gain K; ) which
attains the perfect observation of the system ( C, 4, D) ( perfect regulation
of the system ( F, A, B) ) if and only if the conditions (A,) and (Ag) ( (A7)
and (Ag) ) holds.

(A;) (C, 4)is observable.

(Ag) ( C' A, D) is left-invertible and minimum phase.
(A7) (A, B) is controllable.

(Ag) ( F, A, B) is right-invertible and minimum phase.

(ii) If the observer gain Ly ( feedback gain K ) attains the perfect observa-
tion of the system ( C, A, D ) (perfect regulation of the system (F, A, B)),
then, for each s,

(sI ~ Agg) 'D -0 (F(sI, - A*)™1 5 0)  (4.1)((4.2))

as f — oo.

For the computational procedures of the perfect observation gain L; and the
perfect regulation gain K, see [6][7].

Now we turn to the original design problem formulated in Section 2.
First consider the system ( T ); in the closed-loop system given by the con-
troller ( T' ), the transfer function S(s) from the disturbance to the controlled
output is written as

S(s) = [IF(](sIn — A*)TILC(sI, — A4)7'D + [g](sI — Ay)7'D. (4.3)

Here, as observer gain L, we choose the perfect observation gain Lf of the
system ( C, A, D ). From (4.1), (s, —Ayug)” 1D — 0, which implies
LiC(sl, — Ayp)™'D = (sI, — A)(sI, - Ay)™'D - D - - D

as f — oo. Applying these relations to the formula (4.3), we have the follow-
ing result:

Theorem 3. Assume that (A;) and (Ag) are satisfied. Then, for the system
(T ), the controller ( T' ) with an arbitrary feedback gain K and the observer
gain L; attaining the perfect observation of the system ( C, A, D ) ensures

that, for each s,
S,(s G,(s
s3]+~ -~ 56
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as f — oo, where G(s) is defined as (3.2).

Thus, from Theorem 1 and Theorem 3, we see that the controller ( T' ) with
the parameter ( K,, Ly ) guarantees asymptotically the internal stability and
the disturbance attenuation for the system ( X ).

Next we consider the system ( £* ); in the closed-loop system given by
the controller ( T'), the transfer function T(s) from the disturbance to the
controlled output is written as

T(s) = F(sI, — A*)7YD 0] + F(sI, — A*)'BK(sI, — Ay)7'D L.

Then, by the dual argument together with the property (4.2) for the perfect
regulation gain K of the system ( F, 4, B ), we have the following result:

Theorem 4. Assume that (A;) and (Ag) are satisfied. Then, for the system
(Z*), the controller (I') with the feedback gain K attaining the perfect
regulation of the system ( F, A, B ) and an arbitrary observer gain L ensures
that, for each s,

T(s) = [ Ty(s) Ty(s) ] = — H(s) = — [ H(s) Hy(s) ]

w

as f — oo, where H(s) is defined as (3.7).

Thus, from Theorem 2 and Theorem 4, we see that the controller ( ') with
the parameter ( Ky, L, ) guarantees asymptotically the internal stability and
the disturbance attenuation for the system ( £* ).

Remark 2. By using the accurate optimal observer [2][3], which is the dual of
the cheap optimal regulator [8], Petersen and Hollot [10] shows that
[18,(jw)|| = ||G,(jw)|| for each w; compared with Theorem 3, their result
requires an additional assumption that ImC’ includes ImF’, called the
"matching" condition. After submitting this paper, the authors learned that
Petersen and Hollot in their recent paper [11] succeeded in deleting the
matching condition by generalizing the algebraic Riccati equation, on which
the accurate optimal observer is based, to an indefinite type of linear qua-
dratic differential games; however, their method and result seem still less sim-
ple and less general than ours. Note also that the computation [6][7] of the
perfect observation gain is in general easier than that of the accurate optimal
observer gain.

Remark 3. In [7] it is shown that the perfect observation ( the perfect regu-
lation ) of the system ( C, A, B ) recovers asymptotically the return differ-
ence at the input ( the output ) side of the system. Therefore, if
C = F( B = D), the perfect observation in Theorem 3 ( the perfect regula-
tion in Theorem 4 ) recovers also such a large stability margin as stated in
Remark 1 at the input ( the output ) side of the system ( £ ) ((Z*)).
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Appendices

Proof of Theorem 1. We first rewrite the Riccati equation (3.3) as
A°"M + MA®° + k™2F'F + u K, K, + MDD' M = 0 (A1)

where A° = A + BK, and K, = —u?B’ M. The stability of A° follows from
the identity (A.1) and a standard argument under the assumptions (A;) and
(A,). If we substitute M = —N~! into (A.1) and add —sI[,N"! + N71sI to
the left hand side, we have

N(=sI,—A°") + (sI,—A°)N + N(x"F'F + u~2K," K,)N + DD’ = 0.(A.2)
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Furthermore, multiplying the both sides of (A.2) by (F' K, )" (sI, — A°)™!
from the left and by (—sI, — A°")"}(F’'K,’) from the right and rearranging
terms, we have

k21
G(s)G(=s)" - [ o MSI] - ~V(s)V(=s)’ (A3)
where
G(s) = Ig (sI, — A°)™'D

V(s) = Iy, +

o

2
F N L ")
K (SIn - Ao) IN(F Ka )[ 0‘1 /LZI]

The inequality (3.4), which implies the inequalities (3.5), follows from the
identity (A.3) with s = jw. O

Proof of Theorem 2. The proof of the theorem is completely dual to that of
Theorem 1. [



Gas Turbine Control Using Mixed Sensitivity Hx-Optimisation

D.Biss and K.G.Woodgate

Abstract: The purpose of this paper is to present an
industrial application of the polynomial approach to
multivariable mixed sensitivity H= optimisation for
feedback systems introduced by Kwakernaak [8].The software
implemented was supplied by the Dept. of Applied
Mathematics,Twente University [7] based on the design
algorithm of [2].The multivariable process model was
derived from non-linear simulation data for a 1.5 MW gas
turbine supplied by Hawker Siddeley Dynamics [6] as part of
a collaborative research project at the Industrial Control
Unit,University of Strathclyde.A previous scalar design
study relating to the gas turbine problem has been
presented by Biss [1] .The design results for the MISO gas
turbine problem with respect to the controller will
demonstrate the robustness properties which can be produced
by judicious choice of weighting function matrices V,W, and
W_ within a criterion to be minimized,with respect to %he
stabilising compensator transfer matrix G, of the form
l:Z(S)lIOn where
* * * * *
Z :=V (S Wl WlS + T W2 W2T)V

and § := (I1+8G) ! and T := Gs

1.0 Industrial Application -Gas Turbine Control

1.1 Introduction

The design of a modern gas turbine control system has
a usual sequence of events from specifying a set of
performance specifications for the engine to completion of
adequate simulation and testing of the control system .The
objectives of this section are to present the linear
modelling of the gas turbine system obtained from non-

linear simulation data for a 1.5 MW gas turbine provided
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by H.S.D.E [6] and outline the usual disturbances which
affect the performance of the system .The latter sections
will discuss the actual control design and the simulation
study .

1.2 Modelling of the Gas Turbine

Non-linear simulation data for a gas turbine
has been used to develop a mathematical model of the
system which can be used for design and simulation purposes
The resultant system requires the use of MIMO compensator
design therefore the use of a modern/advanced control
technique is preferable to a classical design approach .

The gas turbine is a prime mover,its purpose is to
deliver power and the primary control requirement over this
developed power is the fuel input .For a simple single
shaft turbojet problem (SISO design),the thrust developed
by the engine can be measured by use of the gas generator
speed as an indirect method of power measurement .This is
the starting point of the modelling and control design
process .

1.2.1 Gas Generator

From Fig.2 ,it can be seen that a SISO loop for simple
power control can be established where the gas generator
speed,Ng,which is a function of Power,is the control input

and the fuel flow into the engine ,F ,which is a

t-Td
function of the actuator valve angle,ev,is the control
output [1] .

From the non-linear simulation data,a block diagram
representing the gas generator characteristics was reduced
to a general continuous-time plant model of the form :

-Tds

(1) Hl(s) = K1 e = Ng (r.p.m)

(v s+ (7, 5+D) e_V (deg)
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where Kl,tl and 12 are determined from the linearised

gains of the system and the combustion dead time,Td,is
0.04 secs .The gains of the gas generator model vary over
the fuel range and four models have been determined for
the range of fuel input .

1.2.2 Free Turbine

The inclusion of the free turbine dynamics into the
description of the system requires further linearisation of
the simulation data provided by H.S.D.E [6] .The extended
problem for the gas turbine can be represented by the
multi-loop configuration given in Fig.2 .

The derivation of a linear model for the free turbine
involves three stages - (i) derivation of the relationship
for the total driving output torque of the free turbine
shaft, (1i) the discussion of the complex load and the
derivation of the mathematical representation and (iii)

formulation of the general linear model .

(2) H2 = (Tls + 1)(K3+K46Nfl) = Nf (r.p.m)
(st/8+ K5 + KG) Ng (r.p.m)
where K3,K4 linearised gains,function of total
steady state driving torque
Jf total free turbine inertia (3.7 kgm™2/rad)
11 time constant derived for gas generator model
$Ney = Ne ” Ngy
Nf free turbine speed
an lowest free turbine speed
B = 60/2*w

K5,K6 gradients of complex load relationships

1.2.3 Gas Turbine Model for Control Design

For the MISO compensator design problem,the plant
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models of the gas generator,H_ ,and the free turbine,

1

Hz,need to be formulated in a left coprime polynomial

matrix representation .This can be achieved by

consideration of Fig.2

(3) Nf = Hl 0 Fg Hl = Ql/ 61, H2 = 02/ 02
Ng H1H2 0]10
(4) therefore H = Hl 0 = Ql/el 0
H1H2 0 ¢1¢2/0102 0

(5) H=DIN where D - -4, 6,f and N = [0 0

The polynomial theory of Kwakernaak [8] is for square
systems therefore the use of a dummy (zero) input is
required in the plant matrix H .The use of a dummy input
does not affect the squareness or invertibility of H in the
polynomial compensator design method (9] .

1.3 Disturbances

A typical disturbance associated with the scalar
control design for the gas generator loop is a high
frequency disturbance due to noise which can be
represented by high pass functions for V .For the free

turbine loop,load change in the demand represents the
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largest disturbance therefore the system requires a

large degree of stability robustness

2.0 Control Design Algorithm - H» Optimisation

2.1 Problem Formulation

The multivariable linear feedback control

scheme considered here is shown in Fig.l,where the

multivariable plant with transfer matrix H(s) corresponds

to the gas turbine model derived in $1.2.3 and the

compensator to be designed is denoted by the transfer

function matrix G(s) .

The optimisation problem can be defined as the

minimisation with respect to stabilising compensator G

(7) ::Z(s):t°° = sup ::Z(iQ)ﬁi2
Q€ER

and the system equations are
(8) H-pln=nb, here D

- B Tl B

-1

(9) V=DM where M = ul(s)
0 M

where M(s)

(10)

(11)

W

W

a

2

0
(s)

deg(ul)=deg(02)

deg(u2)=deg(el)

o T
rational matrix function,M (s)=M (-s) and

T denotes the transpose

A_B where Al

-1
A_B where A2
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where a(s) a asymptotically stable scalar polynomial
r a scalar constant
k some non-negative integer
The restrictions on the degrees of u, and U, are necessary

1 2
because V must be bi-proper .

(12) G

- -4
¥YX 1 = B2Q(BlP) compensator

In order to simplify the solution procedure a

so-called equalising solution is sought i.e stabilising

compensators G which satisfy the following
(13) Z(iQ) =221 , X ER,Q € IR equalising solution

To achieve this it is necessary to choose X=B1P and
Y=B2Q,where P and Q are square polynomial equations to be
determined .Minimisation of ::Z:im then becomes that of
minimising X 2, The generalised closed loop characteristic

polynomial is given by
(14) F = DX + NY = DBlP + NB2Q

where F is a polynomial matrix .The resulting polynomial
equations which need to be solved to obtain an equalising
solution for the mixed sensitivity H® problem are given

below,for further details of their derivation see [1] .

(15) 1/AMR = DB/ P + NB,Q

* *
where M_ is defined by M M_ = MM with M_ an
asymptotically stable polynomial matrix and R is a

polynomial matrix such that
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* * * *
(16) R R =P Al AlP + Q A2 A2Q
By inspection of (15) and (16) stability of the closed
loop system is equivalent to that of M R which is in turn

equivalent to the stability of R .

2.2 Design Algorithm

The software which will be discussed in this section

was developed at Twente University [21 .

Step 1. Specify the plant model,disturbances and
weighting function matrices ,equations (8)-(11) .

Step 2.Calculate a particular equalising solution at i =
by determining R ,P_ and Q. from the equations (15)

and (16) .For the special case Blszzl,Poo and Q_
correspond to the right-coprime representation of the
plant transfer function H ,i.e P = - Nl and Qoo = Dl'
which can be computed using a standard algorithm [3].The
matrix R_ can be calculated using P_and Q 1in eguation
(16) by spectral factorisation,though two assumptions must
be satisfied

(1) Roo has no roots on the imaginary axis i.e
:R*m(iﬂ)Rw(iﬂ)l> 0 for all @ €IR

(ii1)the column degrees of R_must be equal to those of Asz

In general these assumptions are non-restrictive .

Step 3. Calculate the degrees of P,Q and R for general A

from those of Pm,Q°° and R [8] .For the special case:
k .
(17) A2 =|I' s 0 if k=0 ,deg(a(s))=2
0 al(s)

This choice of deg(a(s)) will also minimise the total
number of coefficients of the unknown polynomials in R,P

and Q [9] . Step 4.Having determined the degrees of all
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unknown polynomials,the equations (15) and (16) may be
solved by equating coefficients in like powers of the

Laplace variable '

s' and using the REDUCE symbolic
language package [4] a solution can be obtained .Further
details of this procedure may be found in [2] where the
standard H_ problem is solved using the same approach .
Step 5. An optimal compensator is obtained from the

solution using Popt and Qopt in equation (12)

2.4 Choice of Weighting Functions

The choice of the weighting functions V,Wl and W2 can
be categorised according to the desired performance for S
and T and is discussed in detail in (8] .

3.0 Design Results

Consider the plant transfer matrix of equation
(18),this represents the midway power range model for the

gas turbine system

(18) H(s) = 208.23/0.03439s72+1.829s+1 0
227.23+436.9/0.03453+1.852+1.055+0.027 0

The design specifications are
(a) to achieve performance robustness with respect to
variations in the plant dynamics by keeping the magnitude
of the Sensitivity matrix elements small and the closed
loop transfer function matrix T' (T‘=HG(I+HG)_1) small at
low frequency and
(b) to ensure disturbance rejection at high frequency of
the high frequency noise represented by V .

The noise model V is defined to be

(19) v=D M where D = [-0.073s-0.04 s+0.0301
0.03452+1.Ss+1 0
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"

and M s+l 0

0 s2+25+1

The weighting functions W1 and W2 are chosen to be

(20) Al=B =I and A 1 0 B =1
2
0 s +2s+1

An equalising solution was obtained for the system

using the steps outlined in $2.2

= :)\ : = 27.12
(21) Gopt Qopt Popt and opt

™ hn
(22) P =|-0.098>-0.7552-208.75-6.8 0.65s°-3.39s-0.11
opt 3 2 2
| 0.00857+0.2157-7.45-0.81 0.006s"-0.125-0.01

p -

(23) Qopt: 0.04s3+1.8352+1.065+0.03 0.02952+0.017s+0.052
-0.23 -0.0017

The corresponding Sensitivity 'Sopt' and Control

Sensitivity ,T0 plots are given in Figs 3 and 4

ey
determined usinz the MATLAB multivariable frequency domain
toolbox [4] .The results have satisfied the design
specifications since both S and T' are small at low
frequency providing robust performance and the elements of
S ,Fig.4, are less than unity over the entire frequency

range therefore providing good disturbance rejection

4.0 Conclusions

The design results presented show that robustness can
be achieved for the gas turbine engine by use of the

polynomial H_ control design method due to Kwakernaak [81.
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NONLINEAR H* THEORY

Ciprian Foias Allen Tannenbaum

Abstract

In this paper we discuss a natural nonlinear extension of H synthesis theory. We
base our results on our previous papers [9] and [11].

1 Introduction

This note will be concerned with nonlinear extensions of the H* design theory. In the
papers [2], [3] an extension of the commutant lifting theorem to a local nonlinear setting
was given, together with a discussion of how this result could be used to develop a design
procedure for nonlinear systems. In the present paper, we continue this line of research
with a constructive extension of the linear H* theory to nonlinear systems. We should
note that our colleagues Joe Ball and Bill Helton [5] have developed a completely different
novel approach to this problem based on a nonlinear version of Ball-Helton theory.

In the theory presented below, we will consider majorizable input/output operators
(see Section 2 for the precise definition). In particular, these operators are analytic in a
ball around the origin in a complex Hilbert space, and it turns out that it is possible to
express each n-linear term of the Taylor expansion of such an operator as a linear operator
on a certain tensor space. (Our class of operators also include Volterra series of fading
memory [7].) This allows us to iteratively apply the classical commutant lifting theorem
in designing a compensator. (The general technique we call the “iterative commutant
lifting procedure.” See Section 6.) For single input/single output (SISO) systems, this
leads to the construction of a compensator which is optimal relative to a certain sensitivity
function which will be defined below. Moreover in complete generality (i.e. for multiple
input/multiple ouput (MIMO) systems), our procedure will ameliorate (in the sense of our
nonlinear weighted sensitivity criterion), any given design. We note that for linear systems,
our method reduces to the standard H* design technique as discussed for example in [13]
and [16].

In developing the present theory, we have had to extend some of the skew Toeplitz
techniques of [6], [10], and [12] to linear operators defined on certain tensor spaces. This
has lead to several novel results in computational operator theory, and for example pro-
vides a way of iteratively constructing the nonlinear intertwining dilation of the nonlinear
commutant lifting theorem considered in [2] and [3].

267
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2 Analytic Mappings on Hilbert Space

In order to carry out our extension of H* synthesis theory to nonlinear systems, we will
need to first discuss a few standard results about analytic mappings on Hilbert spaces.
We are essentially following the treatments of [3], [4] to which the reader may refer for all
of the details. In particular, input/output operators which admit Volterra expansions are
special cases of the operators which we study here. See (7], [14].

Let G and H denote complex Hilbert spaces. Set

B, (G) :={g9 € G :|igll < ro}

(the open ball of radius r, in G about the origin). Then we say that a mapping ¢ :
B,,(G) — H is analytic if the complex function (z1,...,2x) — ((2191 + ... + 2agn), h) is
analytic in a neighborhood of (1,1,...,1) € C™ as a function of the complex variables
21,...,%p for all g1,...,9, € G such that ||g1 + ...+ gn|| < 7o, for all h € H, and for all
n > 0. (Note that we denote the Hilbert space norms in G and H by || || and the inner
products by (,).)

We will now assume that ¢(0) = 0. It is easy to see that if ¢ : B, (G) — H is analytic,
then ¢ admits a convergent Taylor series expansion, i.e.

&(g) = 1(9) + $2(9,9) + -+ Sulg+,9) +- -+

where ¢, : G X---xG — H is an n-linear map. Clearly, without loss of generality we may
assume that the n-linear map (g1,---,9n) — #(g1,---,9gn) is symmetric in the arguments
g1, ,gn. This assumption will be made throughout this paper for the various analytic
maps which we consider. For ¢ a Volterra series, ¢, is basically the n**-Volterra kernel.
Now set
Pn(1 ® - Q gn) := nlg1, 1 9n)-

Then ¢y, extends in a unique manner to a dense set of G® := G®...® G (tensor product
taken n times). Notice by G®" we mean the Hilbert space completion of the algebraic
tensor product of the G’s. Clearly if ¢, has finite norm on this dense set, then @, extends
by continuity to a bounded linear operator én : G®* — H. By abuse of notation, we will
set ¢n 1= ¢p.

We now conclude this section with two key definitions.

Definitions 1.

(i) Notation as above. By a majorizing sequence for the holomorphic map ¢, we mean a
positive sequence of numbers a, n = 1,2,... such that ||¢,|| < an for n > 1. Suppose
that p := lim sup @,/® < co. Then it is completely standard ([8]) that the Taylor series
expansion of ¢ converges at least on the ball B,(G) of radius r = 1/p.

(ii) If ¢ admits a majorizing sequence as in (i), then we will say that ¢ is majorizable.

We will see in the next section that a very important class of input/output operators from
systems and control theory are in point of fact majorizable.
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3 Operators with Fading Memory

In this section, we will show that perhaps the most natural class of input/output operators
from the systems standpoint are majorizable. Moreover for this class of operators we will
even derive a priori majorizing sequence. We begin with the following key definition:

Definition 2.
An analytic map ¢ : B, ,(G) — H, ¢(0) = 0 has fading memory if its nonlinear part
¢ — ¢'(0) admits a factorization
¢~ ¢'(0) = gW
where @ is an analytic defined in some neighborhood of 0 € G, and W is a linear Hilbert-

Schmidt operator. (In this case, one can assume that there exists an orthonormal basis of
eigenvectors for W in G, {ex},k = 1,2,... such that We; = Are; with

0
IWIIE = > Il? < co.
k=1

[|W |2 is called the Hilbert-Schmidt norm of W. )

Remark 1. System-theoretically fading memory input/output operators have the prop-
erty that any two input signals which are close in the recent past but not necessarily close
in the remote past will yield present outputs which are close. For more details about this
important class of operators see [7].

For fading memory operators, we can construct an explicit majorizing sequence:

Lemma 1 Let ¢: B, (G) — H,$(0) =0, have fading memory. Suppose moreover that if
we write

¢~ ¢'(0) = W
as in (3.1), then ¢ : B, (G) — B,,(H). Then the sequence
a := [[¢'(0)]]
_ reIWi3
= =

for n > 2, is a majorizing sequence for ¢.

Proof. See [2], Lemma (3.5). O

In what follows, we will assume that all of the input/output operators we consider are
causal and have fading memory. An interesting and useful property of fading memory
operators is the following:

Proposition 1 Notation and hypotheses as in (1). Then each ¢, (regarded as a linear
operator on G®™) is compact for n > 2.

Proof. See (3.5) of [11]. O
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4 Control Theoretic Preliminaries

We start here with the control problem definition. First, we will need to consider the
precise kind of input/output operator we will be considering. See [9], [11] for closely
related discussions. We will assume that all of the operators we consider are causal and
majorizable. Throughout this paper H2(CX) will denote the standard Hardy space of
Ck_valued functions on the unit circle (k may be infinite, i.e., in this case Ck is replaced
by k2, the space of one-sided square summable sequences). We now make the following
definition:

Definition 2.

Let S : H3(C¥) — H?(CK) denote the canonical unilateral right shift. Then we say an
input/output operator ¢ is locally stable if it is causal and majorizable, ¢(0) = 0, and
if there exists an r > 0 such that ¢ : B,(H*(C¥)) — H2(CK) with 5¢ = ¢0 S on
B, (H%(CK)). We set

C) := {space of locally stable operators}.

Since the theory we are considering is local, the notion of local stability is sufficient for all
of the applications we have in mind. The interested reader can compare this notion, with
the more global notions of stability as for example discussed in [5].

The theory we are about to give holds for all plants which admit coprime locally stable
factorizations. However, for simplicity we will assume that our plant is also locally stable.
Accordingly, let P,WW denote locally stable operators, with W invertible. In a typical
feedback system [16], P represents the plant, and W the weight or filter on the set of
disturbances whose energy is bounded by 1. Now we say that the feedback compensator
C locally stabilizes the closed loop if the operators (I + PoC)~! and Co(I + PoC)™!
are well-defined and locally stable. By a result of [1], C locally stabilizes the closed loop
if and only if

C=goI-Pog)™ 5

for some § € C;. Notice then that the weighted sensitivity (see [13] and [16] for all the
relevant engineering definitions and motivation), (I + PoC)™! o W can be written as
W — Pogq, where ¢ := §o W. (Since W is invertible, the data ¢ and § are equivalent.)
In this context, we will call such a ¢, a compensating parameter. Note that from the
compensating parameter ¢, we get a locally stabilizing compensator C via the formula (1).

The problem we would like to solve here, is a version of the classical disturbance
attenuation problem of [13], [16]. This of course corresponds to the “minimization” of the
“sensitivity” W — P o ¢ taken over all locally stable ¢q. In order to formulate a precise
mathematical problem, we need to say in what sense we want to minimize W — Pogq. This
we will do in the next section where we will propose a notion of “sensitivity minimization”
which seems quite natural to analytic input/output operators.
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5 Sensitivity Function

In this section we define a fundamental object, namely a nonlinear version of sensitivity.
We will see that while the optimal H* sensitivity is a real number in the linear case,
the measure of performance which seems to be more natural in this nonlinear setting is a
certain function defined in a real interval.

In order to define our notion of sensitivity, we will first have to partially order germs
of analytic mappings. All of the input/output operators here will be locally stable. We
also follow here our convention that for given ¢ € Cj, ¢, will denote the bounded linear
map on the tensor space (H 2(CK))8" associated to the n-linear part of ¢ which we also
denote by ¢, (and which we always assume without loss of generality is symmetric in its
arguments). The context will always make the meaning of ¢, clear.

We can now state the following key definitions:

Definitions 3.

(i) For W, P,q € C; (W is the weight, P the plant, and ¢ the compensating parameter),
we define the sensitivity function S(q),

5(a)(p) := Y P"Il(W = Pog)ull
n=1
for all p > 0 such that the sum converges. Notice that for fixed P and W, for each ¢ € C},
we get an associated sensitivity function.

(ii) We write S(g) < S(§), if there exists a p, > 0 such that 5(q)(p) < S(g)(p) for all
p € [0,p,) If S(g) X S(g) and 5(§) X S(q), we write S(q) = S(§). This means that
5(g)(p) = S(g)(p) for all p > 0 sufficiently small, i.e. S(¢) and 5(g) are equal as germs of
functions.

(iii) If S(g) X S(§), but S(§) 2 S(qg), we will say that ¢ ameliorates §. Note that this
means S(q)(p) < S(g)(p) for all p > 0 sufficiently small.

Now with Definitions 3, we can define a notion of “optimality” relative to the sensitivity
function:
Definitions 4.

(i) go € C is called optimal if S(g,) < S(q) for all ¢ € C).

(ii) We say g € C is optimal with respect to its n-th term gy, if for every n-linear §, € Ci,
we have:

S+t -1+ttt )2S(@+ . i Gt i L)
If ¢ € C is optimal with respect to all of its terms, then we say that it is partially optimal.

Clearly, if ¢ is optimal, then it is partially optimal, but the converse may not hold.
Notice moreover that if ¢ is a Volterra series, then our definition of sensitivity measures
in a precise sense the amplification of energy of each Volterra kernel on signals whose
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energy is bounded by a given p. For this reason, it appears that in this context the
Definitions 3 of the sensitivity function S(g) seems physically natural. In the next section,
we will discuss a procedure for constructing partially optimal compensating parameters,
and then in Section 7 we will show how this procedure leads to the construction of optimal
compensating parameters for SISO systems. Of course, from formula (1) above, one can
derive the corresponding partially optimal (resp., optimal) compensator from the partially
optimal (resp., optimal) compensating parameter.

6 Iterative Commutant Lifting Method

In this section, we discuss the main construction of this paper from which we will derive
both partially optimal and optimal compensators relative to the sensitivity function given
in Definitions 3 above. As before, P will denote the plant, and W the weighting operator,
both of which we assume are locally stable. As in the linear case, we always suppose
that P, is an isometry, i.e. P; is inner. In order to state our results, we will need a few
preliminary remarks and to set-up some notation. We refer the interested reader to [11]
for the precise proofs of the various results in this section.
We begin by noting the following key relationship:

(W —-Pogq)y =W — Z Z Pi(¢;, ®...® ¢;)
1<G<kir oo tij=k

Note that once again for ¢ of fading memory, ¢, denotes the n-linear part of ¢, as well as
the associated linear operator on the appropriate tensor space.

We are now ready to formulate the iterative commutant lifting procedure. Let II :
H(Ck) > H}(CK) o PLH?(CX) denote orthogonal projection. Using the linear commu-
tant lifting theorem (CLT) (see [15] for the details), we may choose ¢; such that

W1 — Prg]| = |[TTWA]|.
Now given this g1, we choose (using CLT) ¢; such that
W2 — Po(q1 ® 1) = Prgel = |ITH(W2 = Pa(2 ® @1))ll-
Inductively, given q1,...,¢n—1, set

Avi=Wam 3 Y Pi(6:®...94))

2<j<ni1+....+ij=n
for n > 2. Then from the CLT, we may choose g, such that

lAn — Prgnll = ITLAn]|. (2)

We now come to the key point on the convergence of the iterative commutant lifting
method.
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Proposition 2 With the above notation, let ¢V i=q+qg+.... Thenq® € C,.

Note that given any ¢ € Cj, we can apply the iterative commutant lifting procedure to
W — Pogq. Now set

Sr(g)(p) := Y P"IIT(W — P og)all.

n=1
Clearly, Sni(q) < S(g) (as functions). We can now state the following result whose proof
is immediate from the above discussion:

Proposition 3 Given q € Cy, there ezists § € Cy, such that S(§) = Su(q). Moreover §
may be constructed from the iterated commutant lifting procedure.

Moreover, we easily have the following result:
Proposition 4 q is partially optimal if and only if S(q) = Snu(qg).
We can now summarize the above discussion with the following:

Theorem 1 For given P and W as above, any g € C; is either partially optimal or can
be ameliorated by a partially optimal compensating parameter.

Proof. Immediate from Propositions 2, 3, and 4. O

It is important to emphasize that a partially optimal compensating parameter need
not be optimal in the sense of Definition 4(i). Basically, what we have shown here is that
using the iterated commutant lifting procedure, we can ameliorate any given design. The
question of optimality will be considered in the next section.

7 Optimal Compensators
In this section we will derive our main results about optimal compensators. Basically, we

will show that in the single input / single output setting, the iterated commutant lifting
procedure leads to an optimal design. We begin with the following:

Theorem 2 There exist optimal compensators.
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Proof. See (7.1) of [11]. O

For the construction of the optimal compensator in Theorem 3 below, we will need
one more technical result. Accordingly, we will need to set-up a bit more notation. First
set H? := H?(C), and H*® := H>(C) (the space of bounded analytic complex-valued
functions on the unit disc). Let m € H* be a nonconstant inner function, let II; : HZ —
H?0mH? =: H(m) denote orthogonal projection, and set T’ := II; S|H (m), where S is the
canonical unilateral shift on H2. (T is the compressed shift.) For H a complex separable
Hilbert space, let S, : H — H denote a unilateral shift, i.e. an isometric operator with
no unitary part. This means that S5* — 0 for all h € H as n — o00. (See [15].) We can
now state the following generalization of a nice result due to Sarason:

Lemma 2 Notation as above. Let A: H — H20mH? be a bounded linear operator which
attains its norm, i.e. such that there exists h, € H with ||Ah,|| = || A||||ho]| # 0. Suppose
moreover that

AS., =TA.

Then there ezists a unique minimal intertwining dilation B of A, i.e. an operator B :
H — H? such that BSy, = SB, ||A|| = ||B||, and I, B = A.

Proof. See (7.2) of [11]. O

We now come to the main result of this section:

Theorem 3 Let W and P be single SISO locally stable operators, with W the weight and
P the plant. Suppose that IIW; is compact for j > 1 and ILP; is compact for k > 2.
(Il : H* — H?© PiH? denotes orthogonal projection.) Let qopt be a partially optimal
compensating parameter as constructed by the iterated commutant lifting procedure. Then
Qopt s optimal.

Proof. First of all, since [IW; attains its norm, from Lemma 2 we have that the optimal
¢ constructed relative to W; and P, is unique. Now from our above hypotheses, each IL A,
is compact for k > 2, and hence each IIA; attains its norm. Therefore by Lemma 2 each
optimal g constructed by the iterated commutant lifting procedure is unique. Theorem 3
now follows immediately from Theorem 1. O

Corollary 1 Let P and W be locally stable and SISO, with linear part Py rational. Then
the partially optimal compensating parameter qop: constructed by the iterated commutant
lifting procedure is optimal.
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Proof. Indeed, since P; is SISO rational (recall that we also always assume that P; is
inner), H? © Py H? is finite dimensional, and so we are done by Theorem 3. O

Remark 2. Corollary 1 gives a constructive procedure for finding the optimal com-
pensator under the given hypotheses. Indeed, when P, is SISO rational, the iterative
commutant lifting procedure can be reduced to finite dimensional matriz calculations.
In our paper [9], we have shown that when the hypotheses of Theorem 3 are satisfied,
the skew Toeplitz theory of [6] provides an algorithmic design procedure for distributed
nonlinear systems as well.

This research was supported in part by grants from the Research Fund of Indiana Uni-
versity, Department of Energy DE-FG02-86ER25020, NSF (ECS-8704047), NSF (DMS-
8811084), and the Air Force Office of Scientific Research AFOSR-88-0020, AFOSR-90-
0024.
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A J-SPECTRAL FACTORIZATION APPROACH TO Hoo CONTROL
Michael Green!, Keith Glover?, David Limebeer! and John Doyle3

Abstract

It is shown that necessary and sufficient conditions for the existence of sub-optimal solutions
to the model matching problem associated with 6o, control are that two coupled J-spectral
factorizations exist. The second J-spectral factor provides a parameterization of all solutions to the
model matching problem. The existence of the J-spectral factors is then shown to be equivalent to
the existence of stabilizing, non-negative definite solutions to two algebraic Riccati equations, allowing

a state-space formula for a linear fractional representation of all controllers to be given.

1. Introduction

In a recent paper [1] a general class of Jo control problems was solved via several
spectral and J-spectral factorizations. The resulting algorithm is not computationally optimal,
since the solution to the J6,, problem presented in [9] requires just two algebraic Riccati
equations to be solved. It was also observed that these Riccati equations could be associated
with two J-factorizations.

Here, we re-analyse the work in [1], showing that all the spectral and J-spectral
factorizations can be subsumed into just two J-spectral factorizations. The BGK factorization
theory [4] can then be used show that J-spectral factorization is equivalent to the soluability of
indefinite algebraic Riccati equations, enabling a generator of all solutions to the model
matching and 36, control problems to be given.

Concurrent with this work, several of the other approaches to 36, control have been
generalized and entirely new connections uncovered. The following remarks, which are in no
way a complete survey, are intended to connect this paper with these other developments. The
four block distance problem has been solved [9,10,14] using all-pass embedding. Connections
between maximum entropy 36, control and risk sensitive optimal control have been established
[9], a connection observed also in [5]. Moreover, in (7], a state space approach which is
reminiscent of classical LQG theory is developed. [12] also considers a state feedback approach,
observing a connection with LQ game theory. The connection between game theory and J-
spectral factorization is long standing [3]. A conjugation approach developed in [13] is also
closely related to the J-spectral factorization method pursued here.

! Dept. Elec. Eng., Imperial College, London SW7 2BT, U.K.
2 Engineering Dept., University of Cambridge, Trumpington St., Cambridge CB2 1PZ U.K.

3 Dept. Elec. Eng., California Institute of Technology, Pasedena CA91125 U.S.A.
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Notation throughout is standard. The prefix % (eg., %Jﬁ&"q) denotes rational, whilst
the prefix § denotes units (Q.'}GEO ={M¢e RIEP: M~ € %I}GEOXP}). M™(s) = [M(—5)]*. The

indefinite matrix |: Ip 0

0 _721(1} we denote by Jpq(y), but we freqently abreviate this to J. 'y

is the Hankel operator with symbol R.

Recall [6,8,15] that by the use of doubly coprime factorizations and the Youla
paramentrization, the 364, control problem can be posed as a model matching problem: Given
the Tij’s, find necessary and sufficient conditons for the existence of Q € RJ6o such that ||Ty;

+ T12QTa|l,, < 7, and when such conditions hold, parameterize all solutions.

2. The Nehari problem

J-spectral factorization has been associated with the Nehari problem for some time [2,8].

Here, a new condition on the J-spectral factor—namely that it have outer 1,1 block-——allows
solutions for more general model matching problems to be developed by boot-strapping from the

Nehari problem.

Theorem 2.1: Let R € R255%. Then [ITRIl < 7 ¢ there exists Q € 236559 such that ||R +
Q||°o < v & there exists W egx&“ with W,, € QJQEO satisfying

G Ipg()G = Wipg(n)W, G = [ s ] (2.1)
Proof: 1 ¢ 2 is Nehari’s Theorem. We shall prove that 1 = 3 and that 3 = 2.

3 = 2 Let V= W and note that W,, € §%5 & V,, € §%L. Set Q = V,5(V,p)™
€ RIbeo. It follows from (GV) J(GV) = J that (R+Q) " (R+Q) — 72 = ——'yﬁ(VnV“')'1 <
0.

1 = 3: Decompose R as R = R, + R_, with R_(—s) € R and strictly proper, R,
€ B¥boo. Using the state-space construction of [8, Chapter 7], construct X € §¥6co such that

GLJG. = XJX, G_ = [ 15’ Iliq_ ] A Lyapunov equation argument shows that X;; € .

_ 1 R,
DeﬁneW—-XI:O I]’ u]

The next result provides a characterization of all solutions to sub-optimal Nehari

extension problems.

Theorem 2.2: Let R € ®25°9, [[TRll < y. With W as in Theorem 2.1, the set of all Q €
R36559 such that ||R + Qlf,, < 7 is given by

Q=QQ;, [81 ] = W"{ I‘; ] U € %5 with [|U||, < 7. (2.2)
2
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Proof: Let V = W and recall V,; € §¥cc. By using the fact that VI'V™ = G I™{(G™)", we
see that |[[V34Vyll, < 7L It follows that (V33VyU + 1) € §¥, 50 Q € RIbeo. From
(GV)"J(GV) = 1 it follows that (R+Q) (R+Q) — v2I = (Q}")[U"U — y21]Q;' < 0.
Conversely, suppose Q € R o is such that ||R + Q]| , < 7. Define

5] 8-we o

Thus UjU; — y2U;U, < 0. Since U;, U, are coprime we have that U, is invertible in RoLco,
and that U = U,U7' € Bl with |[Ulj_ < 7. Hence (2.2) holds, with Q, = U3, and Q,
QQ, To show that U € RJ6, we show that U, € §¥e. To see this, observe that V}lz
(ViaVaiU + DU, € %o Also, since ||V35V5,Ull ) < IV25Vall lIUll,, < 1, we have that the
winding number (around the origin) of det{(V33V5U + I)(jw)} is zero. Thus the winding

number of det(U,(jw)) is zero, giving U, € §¥6cc, since U, € R0, 8]

3. The unilateral model matching problem

We now seek Q € RJ6oo such that ||A + BQ||_, < 7, where B is “tall” and the relevant

“G” is now also “tall”. A related theoren is given in {11, page 58].

Theorem 3.1: Suppose G = [ lg I}; ] € %ng+q)x(p+q) has a left inverse in R L. Then the
following are equivalent:

1. There exists a Q € B¥5-% such that [|A + BQlj, < 7-

2. There exists a W eg:}s&*“‘ with W, € g5, satisfying G™J Zq(7)G = Wpq(7)W.

The set of all Q € R, satisfying ||A + BQ||_, < v is given by
- U .
Q = Q,Q;, [8;] = W"[ Iq ] U € %59 with ||U}| , < 7.

Proof: Reduce to the Nehari problem as follows:
Let By € §J6 satisfy BgBo = B™B, define B; = BBy and note B{B; = 1. Let B be
such that | B; B |is all-pass. Then ||A + BQll, < 7

B
& A +[ B B_L][ gQ]uw <
R, BoQ -
© ||[R:]+[ ° :|||°°<'y, R=[B B, A
& ||R2||°o < 7 and (R;+BoQ) (R, +BoQ) + R3R; < 72L

Thus 3 Q € Yoo such that [|A + BQ]| , < 7 if and only if:

a) 3N € ¥ with v2N"N = & = 421 — R;R, = y2q — A7[I — B(B"B)'B7]A.
b) 3 Q (= BoQN™Y) € R such that |R,N? + Q| < 7.

By Theorem 2.1, (b) holds < 3 X € §3,, with X;; € §36 such that

I 0 I R,N! .
|:(N")"R{ I H 0 I ]=XJX'
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Note also that R, = (Bg)'B"A. Now observe that

cin | B 0 1 0 Bo (B3)'BA
GJG‘[A'BB[)‘ I }[o —@}[ 0 1|

1
B

1t follows that W exists <> X and N exist (X = W|: 00 I?I ] ) 0

The condition that G have a left inverse in L is not necessary for there to exist a

solution to the model matching problem. It is, however, a necessary condition for the existence

of a W € §¥ such that G"JG = W™IW.

4. The bilateral model matching problem
We seek Q € R such that [JA + BQC|| , < 7, with B “tall” and C “wide”. The

technique is based on reduction to the unilateral case, and the result involves two J-spectral

factorizations.

Theorem 4.1: Suppose A € %LQ‘P, Be ‘:'R:ng‘q and C € %L{LMP. Suppose also that B has a
left inverse and C has a right inverse in the appropriate ®L, spaces. Let B = BaBg in which
B, €R28¢ s all-pass and Bg € RIEI

There exists a Q € "J!:}Ggoxm such that [|A 4+ BQC|| , < 7 if and only if:

1. There exists a V €168+ with V,; € GX0 satisfying
- _ - 1 C o0
HJpe('y)H = Vign)V, H= B;A I, | (4.1)
2. There exists a W EQJG&jm with W,, € gs&i satisfying
- - 2134 Bsg 0 N 0 —I
G Ign(1G = Wigm(1)W, G =Jv1 [ 0 I, } i= [Im 04]. (4.2)
The set of all Q € RHZ™ such that IA + BQC|,, £ 7 is given by
_ Q U .
Q=Qq}, [Q; =wi | Ue RBL with |||, < 7. (4.3)

Proof: We may assume, without loss of generality, that B € RJ, since ||JA + BQC|| < v
& |IBaA+BsQC|l, < 7.

With B € R, we see that 1 is necessary by applying Theorem 3.1 to the problem A*
+ C*Q, where Q = (BQ)™.

Let Cy € §¥o be such that CC™ = CoCg and define G; = CyC. Let C be such that
[ Ci €7 ]is all-pass. Define Rby R =[ R, R, | = A[ G C1 |

As in the proof of Theorem 3.1, the existence of V satisfying (4.1) implies 3 M € GJo
such that 7?2MM™ = 721 — R,R;. So Q € RI6,, satisfies ||[A + BQC|| < 7 ¢ V exists
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and MR, + M'lBQCOHw < 7. But, since Cy € G, this is just a unilateral model
matching problem. Therefore, by Theorem 3.1, we know that Q exists iff 3 Y € §3 with Y;;

€ G36 such that . .
YJY = P{JP,, P, = I: MOB M IR‘ ]

and that Y! “generates” all QCy’s. But such a Y exists iff 3 W €§¥o with Wy € §3%o
satisfying
- - I 0
W7 IW = P7JP, P_.Pll: 0 CE)I}

and that W' “generates” all Q’s. It remains to show that P"JP = G"JG, with G as in (4.2):
-1 Molp o 1
p— MMIHCO B 0 |_ cooTj*Bo_
0 o 0 I R, M ] 0 I

Observe that §*JJ = —42J7), that J5* = I and that [g‘l’ I&H (th? 131 ] = HIE" = VIV",

from which it is easy to check that G"JG = P~JP. a

5. J-spectral factorization theory

In the last section we solved the model matching problem in terms of J-spectral
factorization. We now show how such factorizations can be calculated by solving an algebraic
Riccati equation. The main tool for this work is the state space factorization theory of Bart,

Gohberg and Kaashoek [4], but some care needs to be taken to avoid minimality assumptions.

A matrix H € C?™X?1 i 4 Hamiltonian matrix if JH = H*J*, J = 1: IO —Jn:l. IfH €
n

nxn
Cznxzn C

is a Hamiltonian matrix, we say H € dom(Ric) if there exists a matrix Q € such

that H|: 1(3 ] = |: 1(3 :|A, with A asymptotically stable. If H € dom(Ric), then Q = Ric(H) is
Hermitian and QH,, + H;Q + QH,,Q — Hy, = 0.
Theorem 5.1: Suppose G € %:}{;S,E‘*‘q)x(m‘*‘e) is given by the realization G(s) = D + C(sI

A)'B, with A asymptotically stable. Then there exists a W € Q%{.‘.}"'e such that G™Jpq(y)G
WJ ne(7)W if and only if:

1l

1.  There exists a non-singular matrix W, € C(m+€)x(m+€)

such that D*Jpq(7)D

I

2. H € dom(Ric), where, with J = Jpq(7),

A 0 B i
H=| g _ar —[_C*JD}(D*JD) [ptc B* ] (5.1)

In this case W is given by W(s) = Wy, + L(sI — A)'B, where L = I e(MWRD*Ipg(7)C +
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B*Q] and Q = Ric(H).

Proof: Suppose 1 and 2 hold. Then Q = Ric(H) implies that A — B(D*JD)'[D*IC + B*Q]
= A — BWZIL is asymptotically stable. It follows that W € §¥.,. Now note that the Riccati
equation for Q can be written as C*JC — Q(sI—A) — (—sI—A*)Q = L*JL. A standard
calculation, substituting for L*JL, shows that W™JW = G"JG.

Conversely, suppose W exists. Then 1 follows by setting Wo, = W(o0). Observe that
G JG = (W™J)W, W € §¥ is a canonical Wiener-Hopf factorization (see [4]; also [8]).
Temporary assumtion: (A,B) is controllable. Let 3 P = P* satisfy PA + A*P + C*IC = 0.
It follows that

A 0 B
GIG=| 0 —A*-K*| K = D*IC + B*P.
K B* D*ID

The unobservable/uncontrollable modes are the unobservable modes of of (K,A)/uncontrollable

mdles of (—A* —K*). Therefore, w.l.o.g, suppose A,B,C are such that

[an 0 8 B
A= [An An} B = [ B, | K= [Ki 0] (KyAy) observable.

A minimal realization of G"JG is given by

A, 0 B PO
GIG=| 0 —A} -Kf|[= [ g g ]
K, Bf D*ID

Since G"JG has a canonical factorization, AX = A — BD™'C has no imaginary axis eigenvalues.

Hence, since AX is Hamiltonian, 3 a non-singular matrix X such that AXX = XT, T =

T TZ* with T, asymptotically stable. Hence X4(A) = Im[ 0 and X_(A¥) =1 Xu .
0 —T} | 1 X5,

By the BGK theorem, X+(A) and X-(Ax) are complementary, i.e., X;; is non-singular, so define

Q = X, X7l It is now straightforward to check that Ric(H) = P + [ (3 g :l

Removal of the controllability assumtion: Suppose (A,B,C) is in controllable canonical form
and let H.y,t denote the Hamiltonian analogous to (5.1) constructed from the controllable part.
Apply the above result (i.e., with the controllability assumption), and observe that Ric(H) can
be constructed from Ric(Hopt) and the solutions of 3 linear equations, which the stability

conditions ensure have solutions. a]

6. A state-space formula for all solutions to the }o, control problem

Theorem 6.1: Suppose P(s) = D + C(sI — A)™*B, (£+m)x(p+q) satisfies:
a) (A, B,) stabilizable and (C,, A) detectable.
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b) A—sl B, \ A~sl B, full column and row rank respectively for all s+8 = 0.
C, Dy C, Dy

¢) DyDy; =1, DyD3, =1, Dyy = 0, Dyp = 0 (wl.o.g. by [16]).

Then there exists an internally stabilizing controller K such that ||P;; +

Py K(I-P2,K) " 'Pyy|l, < 7 if and only if:

1. Hy € dom(Ric) and Ric(Hy) > 0, where
A* 0 ch o1y [ Du,Bf G,
Hy = [—B,Bf —A :| - [—BID;‘1 0 [Ome| o o |

2. Hy € dom(Ric) snd Ric(Hz) > 0, where, with J = Jqm(y), M = [M; M;] =
[ YCi+BiD3 —72YCl ]and Yo = Ric(Hy), Hy is defined by

B o—| A=MGC 0
Z=T| -Cic, —(A-MJC)*

_[B=M;D;; M, 4 DRC,  (By—M;Dpp)*
—CID,, 0 0 M;

All controllers are given by K = — K,K3', [IIE;] = W'l'{ [IJ ], U € R with {|U]| , < 7,
where
A—M,C,—M;C; By—M;Dy, M,
w, £ L, I 0
L, 0 I
in which
* *
L= L, _ D,Cy + (B — M:DIZ) Zeo | Zeo = Ric(Hp).
L, —(Cy + 7M1Z)

Proof: Use the Youla parameterization to reduce the 6, control problem to the model

matching problem ||Ty; + T1,QTyll, < ¥ (see [6,8,15]). Assumption (a) is required here.
Now apply Theorem 4.1—assumtion (b) is required for the left/right invertibility constraints on
T,, and T5,. Using Theorem 5.1, conditions 1 and 2 of the theorem are equivalent to conditions
1 and 2 of Theorem 4.1, with a Lyapunov equation argument required to show that outer
constriants on the 1,1 blocks hold if and only if Ric(Hy) and Ric(Hz) > 0.

Obtain a generator W for all Q from Theorems 4.1 and 5.1 and observe that

_ Dy -V,
W—WIL N Vg

It follows that all controllers are generated by Wi
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A few tricks can be used to avoid 2n dimensional state-space calculations in the procedure
above. Also, the formula for all controllers can easily be turned in to an equivalent feedback

form. n]
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VECTOR INTERPOLATION, ¥, CONTROL and MODEL REDUCTION
Michael Green and David J.N. Limebeer

1. Introduction

The vector interpolation problem, posed by Ball and Helton [1,2], is the most
general version of such Nevanlinna-Pick interpolation problems, containing the matrix
interpolation problem as a special case. The problem has been solved by several methods,
all of which rely on deep and abstract mathematics. Yet it is possible to solve the vector
interpolation problem in a very straightforward way, as was done in [3,8] for the scalar case
and in [11] for the vector case.

It is our purpose in this paper to detail the basic connections between J6.-control,
model reduction and vector interpolation. Given these connections it is clearly necessary to
develop a solution for one of these problems for the solutions to the others to follow. We
focus attention on the interpolation problem, showing that a solution of this problem for the
rational case can be developed using no more than the classical Schur construction based on
elementary linear fractional transformations and results on the inertia of matrices. The
connections also allow a state-space solution to the interpolation problem to be given by
exploiting Glover’s state-space solution to the model matching problem.

As applications, we look in detail at the one-block model matching problem from 36,
control and the model reduction problem, explicity constucting the associated Pick matrices.

Notation is standard. P}boo(k) denotes rational matrix functions with at most k
poles in the closed right half plane. RJbo = RI6so(0) and M € RIbs if M(—8) € RoIbwo.
B and BLo, are the closed unit balls of BRI and L. F(H,U) denotes the linear
fractional map F(H,U) = H;, + H;,U(I—H,,U) 'H,,.

2. Vector interpolation and ¥, control

To see the connection between J6c-control and interpolation, recall {5,7,12] that a
class of Jo.-control problems may be posed as the model matching problem: Find Q €
R¥oo such that ||T); — T1,QTyll, < 7. Here, the Tij’s are stable, T, and T,, are
square and, without loss of generality, may be chosen inner (stable and all-pass). Since Q is
required to be stable, every right half plane zero of either T, or Ty, is a zero of T,,QT,,.
Therefore, let {Si ti=1,---,n;} and {si : i=ny+1,---,n} be the right half plane zeros of Ty,
and T, respectively. Also, let a;3#0 be such that Tzl(si)ai =0,i=1,---,n; and a{le(si)

285
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= 0, i = ny+1,--,n. Denote the closed-loop by ¥R, ie, YR := T;; — T,,QT,, where
[R]l, £ 1 and v is a gain parameter. Then R € B, and must satisfy the interpolation
constraints

_ Tuls)s; |

a'T
Rs)a; = _y 11(8)

7 —i=1,nrand afl'R(si) 5 i =+l 2.1)
Conversely, if R € By, satisfies (2.1), then Q defined by Q = [T5(Ty; — YR)T3,]
is stable and ||T); — T1,QTyll,, = 7lIRll, < 7. Essentially, the interpolation constraints

(2.1) ensure that Q and R share the same stability properties.

3. Vector interpolation and model reduction

For consistency with the conventional set-up, where the interpolation points are in
the right half plane, we consider the approximation of completely unstable systems.

Suppose G € B¥oeo(m) N RIbZ, (ie., is anti-stable of degree < m). We seek G €
RIoo(k), with k < m, such that |G — G||°° < v. We call G_, the unstable part of G, a
reduced order model of G.

Factorize G as G = GxG;, with Gx € RIbeo, G € R all-pass and let YR := Gy
- GG;‘. Then, provided no pole of G cancels a zero of G;‘ in the product GG{, we see that
Gfl"(sj)a,j =0 j =1, --,n implies

7R(sj)aj =by:= Gx(sj)aj (3.1)
Conversely, G is recovered from R by G = (Gx — 7R)G; = G — yR. Again, the
interpolation constraints ensure that G and R share the same right half plane poles.
The cancellation condition above does not permit approximate models to share the
same poles as G. This is perhaps a perverse condition, but one which an analysis of the
Hankel norm model reduction formulae of [9] shows is met except in the trivial case k=m

and for isolated values of v in problems having a particular structure.

4. Single point interpolation

Lemma 4.1 (elementary interpolants): Suppose s, is a point in the open right half plane,

that v is a real parameter and that a and b are complex vectors. Define

R T B S e e
in which 4, = —(ats)

(y2a*a—b*b)’

1. H. is all-pass.

2. ¢, < 0 implies Hy€ RIbo and ., > 0 implies Hy € RIb.
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3. If ¢,=0 or oo (ie, |72a*a—b*b‘ — 00 or [y|— L% then H,(s) is non dynamic, i.e.,
independent of s.

Futhermore, provided ¢., # 0,
4. R,(s) satisfies R(s))a = % if and only if Ry = F(H,,U), U € L. Futhermore,

||.R,,||°° < lifand only if U € BL.

Proof: Direct observation and calculation. Note that the only if part of 4 comes from

defining
U = %( Hiy - R) O
A N ' e

5. Parametric Interpolation

Suppose we are given two data sets {si, aiECq, biGCp :i=1,---,n;} and {si, aiGCp,
biECq : i=np+1,---,n}. The standard assumptions will be: si+§i>0 for i=1,---,n; si;ﬁsj
for i<ny, j>nr; and if 3 is an index set such that 8 =S, i,j€3 then {ai : i€3} are linearly

J
independent. We seek a characterization of all Ry € BL, such that

b; b¥
Ro(s)a; = #, i=1,--,ny and a;‘R-,(si) = —./1—, i=np+1,--n. (5.1)
We call this the parametric vector inierpolation problem (PVIP). Unlike the standard
Nevanlinna-Pick problem, we have said nothing about the stability properties of the

interpolating function at this stage.

6. The Schur construction

In the Schur construction, for iteration i, step 1 builds an elementary interpolant
Hiy(s) for the data s;, a%, bi Thus, provided ¢iﬁé0, 7[€F(Hi,,Ui)(si)]a§= b§ VUL € BLo,.
We then need to choose Ul(s) so that the other constraints are satisfied. To do this, we feed
the remaining constraints “down through Hi-,” to give an interpolation problem for UL The
algorithm returns to step one, thus satisfying another constraint. After all the all the
constraints are met, the final contraction U(s) is free:
Initial data: {si, aiIECq, biIECp 1i=1,---,np}, {si, ailecp, bilecq :i=np+1,---n}, ¥
Initialize count i=1.

1. Let Hi-,(s) be the elementary interpolant, where a=a% and b=b}.

pit . al
2. If i<np—1, update the right constraints by a-g_l_l = SlR‘(sj) b‘!! , J = i+1,---,np.
i ) )
ai+1 b!
3. Update the left constraints by bJ}+l = Si( 'j) a% , with j = npy+1,---,n if i<ny,
otherwise j=i+1,---,n. J J

SR() 1= [, Aol T e R BEVER 6.1

4. If i<n—1, set i=1+1 and return to 1.
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Theorem 6.1: Suppose that ¢i.ﬂé0, i=1,---,n in the Schur construction. Then %~ given by
Ry = F(HY, F(HE, -, F(HY)---) is a generator of all solutions to the PVIP. That is, R4
is a solution to the PVIP if and only if Ry = F(%R+,U) for some U € BLo. u}

Remark 6.2: The condition ¢§79’:0 Vi is affected by v and the ordering of the data. For
given 7, a generator of all solutions to the PVIP can be found by the Schur construction if
for some ordering of the data ¢i,ﬁé0 Vi. We call these values of v regular values. It can be
shown that + is non-regular if and only if every ixi principal minor of the Pick matrix is
zero. (In the 2x2 case, this means both diagonal entries are zero).

Genin & Kung [8] claim that the Schur construction always solves the (scalar)
interpolation problem. This claim is based on the fact that since R(7,8):=R.(s) is a
rational function of ¥ and s there can only be finitely many ¥ such that, for some i, ¢i-v = 0.

b
1t is therefore true that for any v, and k, 7]1,111/ u{ sinslkR"(s)}ak = 7—13. We know by

examining the elementary interpolants, however, that if ¢i7—>0 as 7—7,, then
b:
. . b;
Jip (i Re(o)e; # 75

That is, the two variable rational function R(7,s) has a discontinuity at (7o’si+1)'

7. The Pick matrix and stability properties of interpolating functions

The Pick matrix associated with our PVIP is:

2, % * i=lnp

_ [ my oo : _ T3 — bibk
) = |: Oy Mo | with Iy = § + 5 k=1ln
=1,n,

* ¥, yi=nr+1,n 2% % yi=nr+1ln
o = 7P — 73ty T i Sl ™
n = 22 = TS

k=1n; k=ny+1,n
Notice from Lemma 4.1 that the stability properties of the elementary interpolant which
solves a 1 point problem are determined by the sign of ¢.,, and that ——¢;1=H(1,1). For the

general case, the inertia of the Pick matrix determines the stability properties of the

generator of all interpolating functions.

Lemma 7.1: Let Hi“('y) be the Pick matrix for the n—i point interpolation problem

obtained after i iterations of the Schur construction. Partition Hi('y) as

i ix
mey = | ith A Then T+ = M, — 7l gi* /4l
) =| 4 ;| with 73y scalar. Then = M3y — w79/ 110
Ty Iy
Proof: Calculation. u]

Theorem 7.2: Suppose that v, is a regular value and that the Pick matrix II(‘yo) has k

strictly negative eigenvalues. Then the generator R, obtained from the Schur construction
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€ RIboo(k), i.e., has no more than k right half plane poles.

Proof: By Lemma 4.1, the numer of unstable Hiy in the Schur construction is the number

of positive ¢i1. The result follows from Lemma 7.1, since —(qSi)'1 = Hi(l,l). u}

Theorem 7.3: If there exists a solution Ry, to the PVIP such that Ry, € RJboo(k), then

II(7y,) has no more than k negative eigenvalues.

Proof: Write the Pick matrix as II(y,) = Z*BZ, 7 = diag{'yoai}, i=1,-n, in which

i=1,-n, i=1,---,n
B — I- _R*(Si)R(sk) T B = R*(sk) —_R*(si) T
n 8 + 5 12 8 — 5y
k=1,- k=ny+1,,n
* i=np+1,--
Bo. = R(s;)R™(sy.)
22 = '—‘5—4_51:‘_
k=nr+1,--n

By the standard assumptions, Z has full column rank, from which it follws that »(II)<v(B)
(i.e. B has at least as many negative eigenvalues as II).

Let [A,B,C,D] be a minimal realization of R. Since R € BL, We can construct

| D Dy, C -

Fale) = [Du DzJ * [Ca (el _~A) l[ B Ba ]

such that Ra(s) is all-pass [9, Theorem 5.2]. Now let P and Q be the controllability and
observability gramians of R,. Calculation, using the all-pass equations [9], gives:

Ad(s )Ad(sk)

Bu(ik) = + B¥(EI—A%)"Q(s I—-A) "B,  A4(s) £ [A,B,Ca,Dai]

+ Cs1-A)'P(s1-A*)'C*,  A(s) £ [A,Ba,C,Dy

B,,(ik) = (1) ( s)

Bya(ik) = B*(§I-A%) " (5I-A%)C*.

Hence r *
T, 0 Q I T, 0
B = T,NT} +
0 T3 I P 0 Ts
- *
T 0 Q 0 T 0
= T,NT} + 2_1 2_1 since P=Q7,
TsQ™ " Ts 0 0 |[TsQ " Ts
. . — N, 0 .
The various matrices above are identified as N = 0 N, with N; =
i=1,---,0p _ i=nr+1,---,n _
oy +sk}k 1, 7,n N, = {§}Ts_k}k=nr+17,«--7,n o= bl':wkdw”g{Ad(s)1-—1nr
AEmpp1ah T2 = [6-A7B, (-A)'B (o—AV'B" sd To =
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[(§nr+1—A*)'IC*, (§nr+2—A*)'IC*,~~~, (Sn—A*7'C**. A Lyapunov equation argument
establishes that N>0, and consequently v(II)<v(B)<v(Q) <v(A)< k. n]

8. Pick matrices for the model matching and model reduction problems

From [11,12], we obtain the following state-space realization for the Tij’s:

A—B,F  B,F B, B,

Ty Tz | s 0 A—HC, |-YC; 0

|:T21 0 }z TBX F D, 1 8.1)
0 C, I 0

(A,B,) and (A,C,) are assumed stabilizable and detectable respectively. The matices H and
F are defined by F = C, + B¥X, H = B, + YCj; in which X and Y are the unique
positive semi-definite solutions to the Riccati equations
X(A—B,Cy) + (A—B,C))*X — XB,B3X = 0 8.2)
(A—B,C,)Y + Y(A—B,Cy)* — YCIC,Y =0 (8.3)
Note that A—B,F and A—HC, are asymptotically stable, and that the matrices Dy; and

It

D;, which appear in {11,12] have been assumed to be scaled to the identity.

Lemma 8.1: If A+X>0, then there exists a0 such that T, (A)a = 0 if and only if there
exists x#0 such that

[AI—(A—B,Cp)}x = 0. (8.4)
In this case, a = —Cyx and Ty;(A)a = b = (C;—D;C))x.

Proof: Since A+4A>0, the realization of [’}:n] obtained from (8.1) is controllable and

observable at s=A. So Tu (Aa = if and only if
Ty 0

A—(A—B,F) —B,F _B, 0
0 A—(A—HC,)  YC} )y( o
—B¥X C,+B3X D, | b
0 c, 1 0
which is equivalent to a=—C,x where x satisfies (8.4), y = x and b=(C,—D,,C,)x. 0

Lemma 8.2: There exists x#0 satisfying (8.4) with A+X>0 if and only if there exists z,
with Yz#0, such that [AI+(A—HC,)*)z = 0. In this case x = Ya.

Proof: Follows from the equation Y(A—HC,)* + (A—B,C,)Y = 0. 0

Theorem 8.3: Let 8 % Yzi;éo for i=1,.---,ny with ny=rank(Y) satisfy
[siI+(A—HCZ)*]zi = 0. Let Snp+iv Vi
wils; +nrl+(A—B2F)*] = 0. Define a, = —C,Yz, b; = (C;—Dy,Cy)Yz;, i=1,-nr.

With n=nr+n, define a; = —BjXw; . bj = (B,—B;Dyy)*Xw, _

Xw, #0 for i=1,--ng with n,= rank(X) satisfy

ny i=np+1,.--,n.

The interpolation data associated with the model matching problem T,; + T,,QT5,
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is {Si’ai’bi i=1,---n;} and {si,ai,bi i=n;+1,---n}. The interpolation data satisfy the
standard assumptions if and only if siaésj for i<ny, j>nr and Z = I: Zy 2y v Ip, ], w

= [ W, Wy - Wp Z:I have full column rank. In this case, the Pick matrix is given by
I(+) = z* 0 72Y-Y  9YX_ Z 0
M=l "9 w XY y2X-%X || 0 w
where Y, X are the solutions of the Lyapunov equations

(A—HCy)Y + Y(A-HCy)* + Y(C;—D13Cy)*(Cy—D1iCy)Y = 0
(A—B,F)*X + (A—B,F)X + X(B,—B,D,,)(B,—B,Dyy)*X = 0. o

Remark 8.4: It is possible to find the least v such that II(y)>0 by an eigenvalue calculation:
Assume for simplicity that X and Y are non-singular and that Z=I, W=I. Then

Y Y I 0 YWW+Xy -Xx! I 0
() =[ 0 7 }{7’[ 0 1 ]_[ —-XY xx1 ]}[ 0 7~1x]' o

For the model reduction problem, suppose we are given a controllable realization
[A,B,C,D] of the system G in which A has all it’s eigenvalues in the open right-half plane.
Let P=P*<0 and Q=Q*<0 be the controllability and observability gramians: AP + PA*
+ BB* = 0, A*Q + QA + C*C = 0. A straightforward calculation shows that Gj(s) = I
— B*PYsI — A)'B and Gy(s) = D + [DB* + CP|(sI + A*)'P™'B satisfy G=GxG;,
Gj€ I all-pass and Gy €RIboo. The interpolation data Gf(sj)aj =0, Gx(sj)aj = bj

is given by a = ——B*P_le, by = ij, where (st - A)wj = 0,. The standard
assumptions are equivalent to the non-singularity of W = [ Wy Wy oo Wn] and

i=1...n
2a%a, — b ) T
‘ylk—lk} = WHQ — y?P~HYW (8.5)

n = { ke
k=1,--,n

Since A%(PQ) are the Hankel singular values of G(s) [9], it follows that the (positive)

zeros of the Pick matrix are precisely the Hankel singular values of G. Furthermore, the

Nehari/AAK theorem of optimal Hankel norm approximation follows directly from the

interpolation results: Every positive zero Tk of det(II(y)) is a singular value of T'a

Consequently _  inf G — G|| =7 .. 0
GERTooo(k) * k+l

9. A generator of solutions to PVIP

Suppose we are given {Sj’ ajGCq, bjGCp, j=1,---,n} for a right-sided PVIP. We use
the state space connection of §8 ‘backwards’ to construct the G of an associated model
reduction problem: Define

A = diag{s; i=1,---,n}, C = [by by --- bp], X = [a a5 -~ ap] (9.6)
Let F=F* be a solution of FA + A*F + X*X = 0. The standard assumptions imply
(X,A) is observable, so F < 0. Define
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=¥F"! B=-—PX* 9.7)
An appropriate G is given by the realization [A,B,C,D], for any DeCP*, That is, with the
realization G(s) é[A,B,C,D], the PVIP obtained via the procedure in §8 is our original PVIP
defined by the data {Si’ ay, b; i=1,---,n}.
Recall [9] that, provided R = (PQ—+7I) is non-singular,

Horls) =[ a b ]J“[—(}rl;*](“ - R7(AT+QAR) TRV QB —1C7]

is a generator of all solutions to the model reduction problem, i.e., all reduced order models

Gy € BHoo(k) such that ||G—G7|]°°§7 are given by Gy = F(36,,U), U € B Hence a

. L 1) Gx 0 Gf 0
generator of all solutions to PVIP is given by(s) = 3 0 0 |~ % 0 I (s)

=[ _01 —01 ] + [ ;gf }(sI — R™*(y?2A*+QAP)) 'R P'B —1C* |
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Sensitivity Minimization and Robust Stabilization
by Stable Controller

S. Hara and M. Vidyasagar

This paper is concerned with the problems of stabilizing an SISO system using
a stable controller. Two interpolation-minimization problems for unit functions are
investigated, and necessary and/or sufficient conditions for solvability are obtained
using the logarithm function. A necessary and sufficient conditions is also derived
for the sensitivity reduction by a stable controller. We obtain a lower bound and
two upper bounds on the uncertainty in the plant which can be stabilized by a stable
controller. A procedure for designing a stable robust controller is presented, based
on solving a nonlinear min-max optimization problem.

1 Introduction

This paper is concerned with the problems of stabilizing an SISO system using a
stable controller. Stable controllers are desirable from the standpoint of the integrity
of the closed-loop system and they are commonly used in classical control system
design. However, it is well known that in a recent approach called H,, norm opti-
mization (e.g. sensitivity minimization [13] and robust stabilization [5]) the optimal
controller or robust compensator often unstable if the plant has unstable zeros or
unstable poles.

A necessary and sufficient condition for stabilizability by a stable controller has
been derived by Youla et al. [12]. The condition is called the parity interlacing
property (p.i.p.). A parametrization of all stable stabilizing compensators has been
developed by Vidyasagar [9). Several design problems with stable controllers such
as the gain margin problem and the sensitivity minimization problem have been
discussed in the literature [7], [8] , [2], [3], [6]. However, there is no research on
robust stabilization by a stable controller. It is also noted that the results in [8] and
[2] are not complete from the practical design point of view. The results in [8] and [2]
were obtained by means of a modified Nevanlinna-Pick interpolation problem first
discussed by Ball and Helton [1]. The modified interpolation problem is to find a
unit (rather than stable) function such that it satisfies given interpolation conditions

293
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and its infinity-norm is less than 1. However the class of functions treated in [1] is
not restricted to symmetric. Their results are therefore inadequate for problems of
control system design, since the resulting controller may be a rational function with
complex coefficients.

In this paper, we consider problems of sensitivity minimization and robust sta-
bilization by a real rational stable controller. The paper is organized as follows: In
Section 2, we propose two interpolation-minimization problems for unit functions.
The first and second problems are related to the sensitivity minimization problem
and robust stabilization problem, respectively. A necessary and sufficient condition
for the solvability of the first problem is obtained using the logarithm function. The
problem and the derived condition are slightly different from those in [1]. Two nec-
essary conditions and a sufficient condition are developed for the second problem.
We investigate the sensitivity minimization problem in Section 3. A necessary and
sufficient condition is derived for the sensitivity reduction by a stable controller.
Section 4 is devoted to the robust stabilization problem. It is- shown that the nec-
essary condition (resp. sufficient condition) for the second interpolation problem
leads to an upper bound (resp. lower bound) on the plant uncertainties such that
there exists a stable controller which internally stabilizes all plants in the prescribed
bound. We also show that the problem can be approximated by a nonlinear min-max
optimization problem.

Since the problems for continuous-time systems can be converted to those for
discrete-time systems by an appropriate bilinear transformation, we only consider
the discrete-time case in this paper and all the proofs are omitted.

We use the following notation. D (resp. D) denotes the open (resp. closed)
unit disk. The set A consists of all functions mapping D into the complex numbers
such that they are analytic on D and continuous on D. A, denotes the subset of A
consisting of all symmetric functions, i.e.

A, ={f€A:f(z) = f(2),Vz € D}

where the bar denotes complex conjugation. The set of all rational functions is
denoted by R(z) and we define two subsets of R(z):

RH. ={f € As2UR(z)}, Bw ={f € RHw: | fllo <1}
where ||f||c denotes the Ho norm of f defined by

llflleo := ax |f(re”)|

sup m
r—1-,r€l0,1) 0€fo,27]

2 Interpolation by unit function

In this section, we consider the following two interpolation problems for unit func-
tions:

Problem 1:  Given complex numbers ;,8; (¢ = 1 ~ n) with |a;] < 1 and
|Bi] < 1 for all ¢, find a function f in A, satisfying

a) f is a unit of Ay, ie, f(z) #0,Vz€ D
b) f(ai)=ﬂi (i=1~n:=23+r)
c) Iflle <1
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In order for b) to be satisfied by a symmetric function, the a;’s and S8;’s occur in
complex conjugate pairs. To be specified, suppose

i) ai(i =1 ~ s) are nonreal with iy, = & and Biy, = B; (F=1~23)
ii) ai(i = 2s +1 ~ n) are real and S;(i = 25 + 1 ~ n) are real and positive

Problem 2:  Given complex numbers o;,8:(i = 1 ~ n) with |} < 1 and
|Bi] < 1 for all ¢ and a function k € A,, find a function f in A, satisfying

a) fis a unit of Ay, i.e., f(z) #0,Vz €D
b) flax) =B (=1~n:=2s+r)
d) |If - hlle <1

Problems 1 and 2 are closely related to the problems of sensitivity minimization
and robust stabilization by a stable controller, respectively. This is shown in Sections
3 and 4.

A necessary and sufficient condition for Problem 1 to have a solution is given
next:

Theorem 2.1:  There exists a function f in A, satisfying a), b) and ¢), if and
only if there exists a set of integers {mj}x=1~, satisfying

Mips =~y (k=1~3) and Mo =0({=1~7) (2.1)

such that the Pick matrix

1 — o (2.2)

Q{mu}) = [—lnﬂi —In By — j2x(m; ~ mk)]
i,k=1

is positive definite.
Corollary 2.1: Suppose s = 0 in Problem 1, i.e., there exist no nonreal
interpolation points. There exists a function f in A, satisfying a), b) and c¢), if and

only if
Q:= [ Ing; —In S

0 .
1—(1,&). ]ck 1> (23)

Remark 2.1:  The above results can be derived by using a logarithm function
—In f. A result similar to Theorem 2.1 was developed by Ball and Helton [1] and
their result was used to solve the sensitivity minimization problem and gain margin
problem by a stable controller by Genesh and Pearson [2] and Tannenbaum [8],
respectively. However, the class of functions considered in [1] is A rather than A,.
Therefore, we may not obtain a rational function with real coefficients even if the
condition in [1] holds. This means that the result in [1] is not adequate for control
problems. The only difference between Theorems 2.1 and the result in [1] is in the
choice of the set of integers {ms}. We must choose {m;} in Theorem 2.1 such that
the consistency condition (2.1) holds, while m; (k = 1 ~ n) are arbitrary integers
in [1].

Remark 2.2:  Since the numbers of possible choice of {m} is finite as shown
in [2], we can check the solvability condition in Theorem 2.1 in finitely many steps.

Next, we investigate Problem 2. Unfortunately, the problem is quite difficult, so
we only give two necessary conditions and a sufficient condition for the solvability
(all the proofs are omitted). The conditions lead to upper and lower bounds on the
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maximum plant uncertainty for which there exists a stable controller that achieves
robust stabilization.
Let his a unit in A, such that

lh(e)| = 1+ |h(e?)], VO (24)

then we have the necessary condition. .

Theorem 2.2:  Given h € A4, choose a unit h of A, such that (2.4) holds.
Under these conditions, if there exists a function f in A, satisfying a), b) and d) in
Problem 2, then there exists a set of integers {my }x=1~, satisfying the consistency
condition (2.1) such that the Pick matrix

~IngB; —InBy+Iny; +Inp — 72w (m; —my)]"
1 — a;ap

Q({m}) = (2.5)

t,le=1

is positive definite.
We can obtain another necessary condition by replacing 8; and »; (i = 1 ~ n)
by 1/8; and B
pii=1/h(a;) (¢=1~n) (2.6)

respectively, where % is a unit in A, satisfying
h(e)] > max{|h(e*’)| - 1,0}, V6 (2.7)

Note that % is not unique but it can be chosen such that |k(e?)] is as close as
possible to maz {|h(e?*)| - 1,0}.

Theorem 2.3:  Suppose y; (i = 1 ~ n) are defined by (2.6). If there exists
a function f in A, satisfying a), b) and d) in Problem 2, then there exists a set
of integers {m}r=1~, satisfying the consistency condition (2.1) such that the Pick
matrix

Qh({mk}) = lnﬂi + lnﬁk + lnl" + lnﬂ'k -—j27|'(m, - mk)]"

1— a;a

(2.8)
1,k=1
is positive definite.
Finally, we will derive a sufficient condition for the solvability of Problem 2:
Theorem 2.4:  Suppose that ||h|| < 1 and select a unit h, in A4 such that

ha(e®) = 1~ [h(e®)l, V6 (29)
Define
§;:=h(a) (i=1~n) (2.10)

Then there exists a function f in A, satisfying a), b) and d) in Problem 2, if there
exists a set of integers {my}i=1~, satisfying the consistency condition (2.1) such
that the Pick matrix

—lnﬁ.- —_ lnﬁk +1né; +1n5;, —j21r(m.~ - m;,) "
1— ;0

Qna({ms}) == (2.11)

1,k=1

is positive definite.
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3 Sensitivity minimization by stable controller

Consider a feedback control system shown in Fig.1, where P(z) € R(z) is the plant
to be controlled and C(z) € RHc, is the controller to be designed, i.e., the controller
is itself stable. The closed-loop system is said to be stable if

1/(1 + PC) —P/(1 + PC)
c/(1+PC) 1/(1+ PC)

We note that a constraint so called p.i.p (parity interlacing property) is required
for the plant to be stabilized by a stable controller [12], [9].

Let pi(k = 1 ~ m) be the distinct poles of P(z) in D, and let pp(k =m +1 ~
m + p) be the distinct poles of P(z) on the unit circle. Let z,(k = 1 ~ n) be the
distinct zeros of P(z) in D, and let z,(k =n + 1 ~ m + v) be the distinct zeros of
P(2) on the unit circle. Then, the stability condition requires that the sensitivity
function defined by

H(P,C) = € RH,, (3.1)

S(z):=1/(1+ P(2)C(z)) € RH, (3.2)
should have the following properties:
S1) S(z) is real rational and analytic, i.e., S(z) € RH,,

S2) For each k = 1 ~ p, py is a zero of S(z); moreover, its multiplicities as a zero
of S(z) is at least equal to its degree as a pole of P(z).

S3) For each k = 1 ~ v, z; is a zero of S(z) — 1; moreover, its multiplicities as a
zero of S(z) — 1 is at least equal to its degree as a zero of P(z).

We now consider the problem of weighted sensitivity minimization by a stable
controller, i.e., selecting a stable controller C(z) € RH such that (3.1) and

IWS|le < (3.3)

hold, where W(z) € R(2) is a given unit.
For simplicity we first assume that the plant P(z) has no unit circle poles or
zeros, i.e., 4 = 0 and v = 0, and that all poles and zeros in D are simple. Let

1(2) := (W(2)5(2)/di(2)) /v = W(z)u(2)/v (34)

where di(z) = [[ie1(z — pe)/(1 — Prz). + P
Then f must satisfy

a) fis a unit of RH,

b) f(m) = W(a)/(vdi(s)), k=1~n C

) Ifllo <1 Figl FEEDBACK SYSTEM

We can readily show that the existence of such an f(z) is the sufficient condition.
Consequently, sensitivity minimization by a stable controller is reduced to a problem
of interpolation by a unit function (Problem 1 proposed in Section 2). Hence, we
can apply Theorem 2.1 to solve the problem.

Theorem 3.1: Suppose all poles and zeros of P(z) in D are simple (unit
circle poles or zeros of P(z) may not be simple). Let ay(k = 1 ~ 2s) be the nonreal
zeros of P(z) in D with axy, = @& and ax(k = 2s +1 ~ n = 28 + r) be the real
zeros of P(z) in D, and let ax(k = n + 1 ~ n + v) be the distinct unit circle zeros
of P(z).

Under these conditions, there exists a stable controller C(2) € RH, satisfying
(3.1) and (3.3) if and only if

+
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1) P(z) has the parity interlacing property
2) [W(a)l <y (k=n+1l~n+v)

3) there exists a set of integers {my}i=1~, satisfying the consistency condition
(2-1) such that Q({m:}) > 0 holds, where Q({m4}) is defined by (2.2) with

Bu:=Bulv, Bu=W(an)/di(a) (k=1~n) (3.5)

Remark 3.1:  The condition 2) in Theorem 3.1 is related to the unit circle
zeros. The case where P(z) has zeros with multiplicities in D can be also treated by
using the corresponding Pick matrix made up of interpolation data on derivatives.

Remark 8.2:  The same technique is valid for the gain margin problem [7], [8],
[4] via an appropriate conformal mapping. In the MIMO case, if all zeros of P(z) in
D are real and blocking zeros, the problem of sensitivity minimization by a stable
controller can be solved by using the corresponding Pick matrix proposed by Sideris
and Safonov [6] without searching.

4 Robust stabilization by stable controller

The robust stabilization problem [5] for multiplicative (or additive) perturbations
can be reduced to an He,-norm optimization problem of the form

inf [|WT}le < 1 (4.1)

where
T:=C/1+ PC) (4.2)

and W is an appropriate RH,, function which is determined by the frequency shaped
uncertainty bound [10]. Let P = n,/d, and C = n./d. be coprime factorizations
over RH,,; then T can be rewritten as

T = dyne/(dpde + npnc) (4.3)

We can see from (4.3) that the problem of robust stabilization by a minimum-phase
controller is dual to sensitivity minimization by a stable controller. Hence, problem
of robust stabilization by a minimum-phase controller can be solved as in Section 3
by interchanging the roles of the unstable poles and zeros of P(z).

Unfortunately, the technique used in Section 3 cannot be adopted to solve the
problem of robust stabilization by a stable controller, since n.(z) may have unstable
zeros even if C(z) is stable. Therefore, we must modify the problem.

It is well known that the class of all robustly stabilizing controllers can be ex-
pressed as

C=(a+gb)/(a+gb), g€Bw (44)

where &, b, a and b are appropriate RH,, functions [5]. Hence, the problem of
robust stabilization by a stable controller can be reduced to finding a ¢ € By, such
that

a+ gbis a unit (4.5)

Note that there exists a ¢(z) € RH,, satisfying (4.5) if and only if b/a has the p.i.p,
or equivalently P(z) has the p.i.p.
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Let v := a+ gb and b = b;b, is the inner-outer factorization; then ¢ = (v—a)/b=
(v — a)/(b:b,) and hence we have

llglleo = 1I(v — a)/bolleo < 1 (4.6)

If we set
f=v/b,, h:=afb, (4.7)

then the problem is reduced to Problem 2 stated in Section 2 and hence Theorems
2.2 (or 2.3) and 2.4 can be applied to obtain a necessary condition and a sufficient
condition for the solvability (note that the technique in the proof of Theorem 3.1 is
still valid for the case where b, is not a unit, i.e., b, has unit circle zeros). In other
words, Theorems 2.2 (or 2.3) and 2.4 give an upper bound and a lower bound on
the plant uncertainty for which there exists a stable robustly stabilizing controller.
Further discussion is omitted in the interests of brevity.

Since one cannot expect to find a closed form solution to this problem, we now
present an outline of a procedure to solve the problem numerically.

Consider the following problem:

Find (if exists) a g(z) € A4 such that a(z) + ¢(z)b(2) is a unit and ||g]le < 1,
where a(z) € A, and b(z) € A,.

Let g,(z) be a function in A, such that u := a + g,b is a unit (note that such a
go exists if b/a has the p.i.p.). Then the set of all units of the form a + ¢gb can be
expressed as

a+ gb=uexp{hb+ Y 2rmudi} = uexp(v) (4.8)
k=1

where h(z) € A, is arbitrary, ms(k = 1 ~ s) are arbitrary integers and ¢ (z)(k =
1 ~ s) defined as in (3.3.6) in [9] correspond to the nonreal unstable zeros of b(z).
This implies that

_ue'—a u—a  u(e—1) u(e’ — 1)
=G =gt %t (4.9)

and hence the problem is reduced to an infinite-dimensional nonlinear optimization
problem:

o iR }Ilq., + %(exp(hb + Z2rmudi) — 1)l < 1 (4.10)
Z)im

We now assume (z) has no nonreal unstable zeros for simplicity and propose an
algorithm for solving the optimization problem by a discretizing method.
Let

¢
h(z) =Y hi2 (4.11)
=0
and evaluate the norm at some points €%(i = 1 ~ N) on the unit circle. Then, the

approximate value of the minimum norm of (4.10) can be calculated by solving a
nonlinear min-max optimization problem:

min max[g, + 2(e* — 1))(e*)] (4.12)

5 Conclusion

We proposed two interpolation- minimization problems for unit functions which are
related to the problems of sensitivity minimization and robust stabilization.
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A necessary and sufficient condition has been obtained for the problem of sensi-
tivity reduction by a stable controller. On the other hand, it is very hard to derive
a closed form solution for the problem of robust stabilization by a stable controller.
We showed that the problem can be approximately reduced to a nonlinear min-max
optimization problem.

This research was carried out while the first author was visiting the Dept. of
Electrical Engineering, University of Waterloo, and was supported by the Manufac-
turing Research Corporation of Ontario.
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CONJUGATION AND H*> CONTROL

HIDENORI KIMURA

ABSTRACT

This paper proposes a new approach to the H* control problem based
on the notion of conjugation. A method of controller augmentation is
introduced which leads to the formulation of H* control problem as a J-
lossless conjugation. The complete characterization of the class of desired
controllers is given in the state space for the so-called one-block problem.
An extension of this result to the general four-block problem is briefly
discussed.

1. INTRODUCTION

Let
[z@]:G@ [w(s)]= Gu® Gul) [w(s)]
¥ u® | | Gals) Gxs) |[u® M
be the input-output description of the plant to be controlled, where z is the
error vector of dimension m, y the observation vector of dimension q, w the

disturbance vector of dimension r and u the control input vector of
dimension p. The purpose of H*™ control is to find a control law

u(s) =K(s) y(s) 2)

such that the closed-loop system is internally stable and satisfies the norm
bound

loll<y (3)

for some 7y, where ® is the closed-loop transfer function from w to z given
explicitly by

©:=Gy+ GK (- G Gy 4)

Remarkable progress is now being made in the field of H* control
concerning the existence condition of the desired H™ control law and the
method of synthesizing such control law ([1]-[4]). Particularly, the method of
J-spectral factorization [1][2] was shown to be effective for solving the case
of output feedback and the game-theoretic approach is useful for attacking
the case of state feedback [3][4]. Other approaches have also been proposed
and successfully used ([51[6]]). However, it is the author's impression that the
unified framework of H®* control is yet to be established which covers various
problems ranging from "one-block" cases to "four-block" cases and from the
case of output feedback to that of state feedback in their full generality. For

301



302

instance, game-theoretic approach is not very convenient for
parameterizing all H* state feedback control laws, while the method of J-
spectral factorization is not appropriate to treat the case of state feedback.

In this paper, we propose a new method of H* control based on the
controller augmentation and the J-lossless conjugation. This method can
solve various H* control problems in their full generality in a unified and
systematic way. The formulation of the H® control problem rendered in this
framework is conceptually simple and gives a deep insight on the
fundamental structure of the H* control system.

Notations:

Rmxr; the set of constant real matrices of size m X r.

RL;xr; the set of rational proper matrices with size m X r.
RHn.,; the subset of stable matrices in RLp ;.

BHo,; the st of all SeRHp, satisfying |1SI1L<1.

AW :=As AE:=A ). 1
G(s)={A,B,C,D}:=D+C(s[-A) B_

2. LINEAR FRACTIONAL TRANSFORMATIONS AND J-LOSSLESS
SYSTEMS

Let U and W be two square matrices in RL;n+r)x(m+r: which are
represented in the partitioned forms

U= Uy Up W= Wiy Wy )
where the (1,1) elements denote m x m blocks. Associated with (5), we define
two types of linear fractional transformations

F(U,S): = UiS + Up) UaS + Up) » (6)
F(W,S):=(Wy+SWy)  (Wp+ SWp), )

where SeRL;xr. The following lemma demonstrates a useful property of
these transformations.

LEMMA 1. For each U; W;(i=12) and S of compatible sizes, the following
identities hold:

F(U,,F(U,8)) =F(UU, S)

F(W,F(W,,8) =F(WW,35)

If (6) respresents a right coprime fractional representation of F(U,S),
the corresponding left coprime fractional representation can be represented
in the form of (7) for some W. The following lemma establishes a condition
under which the two transformations (6) and (7) are identical.

LEMMA 2. F(U, S) = F (W, S) for each S, if and only if
WiU=aJ (8)
for some scalar o, where J is given by

In 0
J.:{O IJ (9)
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The proof is elementary and omitted here.
A matrix 6(s) € RL;,,”)X(,,.”) is said to be J-unitary, if

8 (s)J8(s) =T, (10)
holds for each s, where J is given by (9). A J-unitary matrix @(s) is said to be
J-lossless, if

8'(s)18(s) < ¥ (11)
for each Re[s]>0.

Let S be an arbitrary matrix in BH;X,. If e(s)eRL;,,,,),(m”, is J-

lossless, we have [S‘ I] 8‘(s)16(s)[§]<[s. 1]J[§]<0 for each Re[s] > 0. This

obviously implies that F(®,S)e BH;,,. In exactly the same way, we can show

that F(® ,S)e BHL,,. Thus, the following lemma holds:
LEMMA 3. If 8(s) € RLimsnxmsn is J-lossless, then, both F®,S) and F(@ ,S)
are in BH;X, for each S e BH;X,.

3. CONJUGATION
Let G(s) ={ Ag, Bg, Co, Do}. A system

V@ = [- Ao, B., C., D) (12)
is said to be a conjugator of G(s) , if the equations

AcX + XAJ +BoCc =0 (13)

BP.-XB.=0 (14)
holds for some X. Based on (13) (14), we can easily show that

G(9) V()= { - AT , Bc, CoX + DoCe , DoDe ). (15)

Notice that the A-matrix Ac¢ of G(s) is replaced by its conjugate -A: by the
postmultiplication of V(s). The operation of multiplying a conjugator is said to
be the conjugation.

Many interesting properties of conjugations were extensively
discussed in [7] including the structure of pole-zero cancellation and the
relation to the inner-outer factorization. It should be noted that the defining
equations (13) (14) of conjugators depend only on the pair (AgBo. Therefore,
we sometimes call it a conjugator of (AgBo.

An important class of conjugations is the J-lossless conjugation, the
cojugation by a J-lossless conjugator. In [7], the existence condition for the J-
lossless conjugator was derived. Also the J-lossless conjugation was shown to
be equivalent to the Nevanlinna-Pick interpolation represented in the state
space.

LEMMA 4. A J-lossless conjugator &) of a pair (AgBo), A¢€ Ryxn,
Bo € Ruxm+n,exists, if and only if the equation
T T
AKX+ XAy=BgB, (16)

has a positive definite solution X. In that case, a J-lossless conjugator of
(Ao,Bo) is given by

V@) = (- Ay, X BD,, - By, D,) (17)
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T
where D, is any matrix satisfying DJD =7 .

4. STRUCTURE OF H* CONTROLLERS
The input-output description (1) of the plant is represented in the
state-space form

i:Ax+B1w+ Ba (18a)
z=Cx+ Dyw+Dm (18b)
y=Cx+ Dyw (18¢)

where x is the state vector of dimension n. We assume that (A, By is stabilizable
and (Cz,A) is detectable. Hence, there exists a matrix Fe R,,, and He Rg,,
such that the two matrices

Ar:=A+B,F, Ayx:=A+HC, (19)
are both stable. It is well-known that each stabilizing control law (2) is given
by

K =F(Z,Q (20)

for some QeRH,,,, where

zu z2] [, Fl[-1, 0

z_[z21 Zn]_<AF, (B H] CzHO Iq]} (21)
Substituting (20) in (4) yields '

©=T,-TQT,, (22)

’

where
T, T,|_]J| Ar -BF B, B, Ci+DpF  -DyF Dy Dp
T2 0 0 AH B, + HDZI 0 0 C2 Dn 0
’ ’ ' (23)
For details, see [9]. Without loss of generality, we can normalize y in (3) to 1.
Hence our problem is to find a QERH:,‘q such that
HolL=IIT,-TQTslL< 1 (24)
Now, we make the following assumption :
-1 -1
(Ap Both T and T3 exist.
-1 -1
This implies that both Dy and Dy exist, which, of course, requires m=p andr =

q. Under this assumption, (22) can be rewritten as
-1 4]
® =(TT, -TQ)T;:TZ(TZITI-QTQ. Therefore, we have

®=FU,Q=F(U,Q (25)
-1 a1 -1
-Ty TT, T, T2T1
U.:= -1 U|,Z= (26)
0 T; 0 -Ty

Obviously, UpJU,=-7J.
The design specification (24) can be satisfied if there exists a
TM,eRHg . xmey Such that TT, is stable and
Ull,=e (27)
is J-lossless. In this case,



305

Q=F(1,, S) (28)
satisfies (24) for each Se RH:.x.« Indeed, substituting (28) in (25) yields @ =
F(U,, F(,, §)) = F(U,T1, S) =F®, S). Duc to Lemma 3, ® ¢ RH,,», - Let

I, = I, Hp e 8, 6y (29)
Iy Mz | 6y 6y
-1
be the partitioned representations of I, and . Since both II,=U,® and

-1 -1
M, =6 U, are stable, all the unstable zeros of T, and T; are cancelled out by

-1 -1 -1
the zeros and the poles of ©. Therefore, (IIS +IIyp = (84S +8x) T; s stable.

Hence, Q is stable. The structure of the closed-loop system is illustrated in Fig.
1.

e FIIIIIIIss
\ \

w : y \ \ :
—- |

: Plant N N \

I

\ U, \ a ' N

z - - !
: u ! | K

\ ' 1 \
—————————————————— tmmmmm—————— N

Fig. 1 Structure of Closed-loop System

The dual argument shows that if there exists a I,eRHg . nyxmsn Such

-1 -
that II, is stable and HJJb=811for some J-lossless matrix ©,, then,

Q=F (I, S) (30)
satisfies the specification (24). According to Lemma 2, we choose II;

satisfying IJIl,=~J so that (28) and (30) are identical. In this case,
nyPyge = nPgJuJll,= - ligii,=J. Hence, we have

MU,=©. (31)
Due to (20) (28), a desired controller is parameterized as
K(s) = F(zI1,, S) (32)

for each S € BH,, .. We now summarize the above reasoning as follows:

LEMMA 5. There exists a stabilizing controller satisfying Holl.< 1, if there
exist stable matrices Il, and Il such that (27) and (31) hold for some J-
lossless ©. In this case, desired controllers are given by (32) for each

Se BH,,,.

5. CALCULATION OF H* CONTROLLER
The relations (27) and (31) are the basis of calculating a desired H*™
controller. From these relations, we have

n,-uv.e m,=@;’e (33)
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-1 -~
Since II, is stable, ® must conjugate the anti-stable part of U,. Also, since Il is
anti-stable, © must conjugate the stable part of (U,) ! Therefore, ® must be a J-

-1 - -
lossless conjugator of the unstable part of U, and the stable part of (U,) !

In order to make the subsequent argument simple, we make the
following assumption:

-1 -1
(A) Both T, and T; are anti-stable.
-1 -1 -1 -1 -1
From (23), it follows that T, ={A-BDypC-BDy DpC;+F,Dp} and
-1 -1 -1 -1 -1
Ty ={A-BDaCy-BDy -H, DaCy+F,Dy ). The assumption (A,) implies that both

-1 -1
A,:=A-BDpC,and Ay:=A-BDxC, are anti-stable. Simple manipulations yield

-1 _-1
a | -T2 T Ty
"o o
-1 -1 -1
Al 0 L. _M. DuC1+F F -Du D12Du
0 AH 0 '(B1+HD2|) ) 0 -C2 0 Dz
-1
-1 T2 T1T3
b = -1
0 -T,
-1 T -1
Ab 0 0 B]Dﬂ+H Mb C1+ D]f D12 DuDz
= T -1
0 Ag[} B, -H -Ly 0 0 -Dy /

1T -1 T T
where L,=BDp, Ly=DxCy; M,=LDy-B; and Mp=DyL,-C, . From the assumption,
-1 <1
the anti-stable portion of U, is (A, [L, -M,]) and the stable portion of Uy is

¢ A: M, -Lp])- Therefore, ® must be a J-lossless conjugator of the pair
e I R 34
0 -A: M, -L, (34

Due to Lemma 4, a J-lossless conjugator of the pair (34) exists, if and only if

the equation

A 0 A, 0 ’

1 T P + P 2 = LI MI J Ll Ml (35)
0 -A, 0 -Ay] | My Ly M, L,

has the positive definite solution P. It is not difficult to show that solution P of
(35) is written as

P, I
P=}
[I Pb]_ (36)
where P, and P, are the solutions of
T T T T T T
AP,+PA,=LL,-MM,, APp+PA=LL,-MM, . 37

If P> 0, a J-lossless conjugator of the pair (34) is calculated to be
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T T
-A, O . .
as)= Pl L. L{l _ L. M. I, 0 (38)
0 A, My -Ly| |[My Ly| |0 I
due to Lemma 4. Thus, the closed-loop transfer function is given by & =F(®,S)

with ® being given by (38).
According to (27) (32), the controller is given by

K=F@ZU.®,s) (39)
Lengthy but simple calcul;nion yields
-1 T T -1 -1
Dp@OM,-L,+CP) -Dp DpDy
| DaMi-LP) || 0 Dy

L. M,
MLy

zv,0={ -A, DOP" (40)

These results are summed up as follows :

THOREM 1. There exists a H*® controller satisfying (24), if and only if P given
in (36) is positive definite. In that case, a desired controller is parameterized
as (39) (40).

An extension of the above result to the general case where the
assumption (A does not hold is found in [8] .

We briefly discuss how to extend the above results to the general "four-
block” case, where the assumption (Ap no longer holds. The key idea is to find
a generalization of (33) to the case where T, and T3 are no longer invertible.
For that purpose, we must introduce the notion of (J, J')-lossless system,
which is a generalization of J-lossless system to non-square matrices and is

defined as the matrix ©;€ RLgyuyxewg Satisfying
818,=J, Vs, ©,18,<J, Rels]20

= I, 0
0 'Iq.

We seek a (J, J')-lossless matrix such that

ST, 0 I, -T, , o] T, -1,
m,= e, I " )
[0 Iq] [0 n] b "[o -T3] ‘[0 I, ] (41)

for stable II, and IT,. It is easy to see that the above relations are identical to

(38), if Tz1 and T31 exist. This is again a variation of the J-lossless conjugation,
and the method used for the "one-block" case can be applied to this case. The
existence condition is represented in terms the two algebraic Riccati
equations, instead of the two Lyapunov equations (37). Due to the space
limitation we must omit the details here [8].

6. CONCLUSION

A controller augmentation is introduced through a linear fractional
transformation, which is similar to the Youla parameterization of stabilizing
controllers. This augmentation leads naturally to the formulation of H*
control problem as a J-lossless conjugation. A parameterization of all desired
controllers is obtained in the state space, as well as the existence condition
represented in term of two Lyapunov-type equations for the "one-block"
problem. Extension to the general "four-block" problem is briefly discussed.
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Necessary and sufficient conditions for the existence of H*-optimal controllers: An

interpolation approach.

D.J.N. Limebeer and E.M. Kasenally

Abstract

A recent advance in H®-optimal control has shown that it is possible to parameterize all controllers in
terms of two n-dimensional Riccati equations—n is the dimension of the problem [4,6,10]. If Xc and
Yoo are the solutions to these equations, then it has been shown that (1) X0 >0, (2) Y020 and (3)
Ama@(Xwa)qu are necessary and sufficient conditions for the existence of a solution such
that||Fu(P,K)||o<7; 7 is the target H®-norm. Doyle et al [4] have proved this result in the sub-
optimal case using classical time domain arguments. The aim of this paper is to prove this result
using interpolation theory; this proof addresses the optimal cases in which X and Yo are bounded.
As was mentioned in [9], we will prove that the four block general distance problem has an associated
Pick matrix which is congruent to

Xod 7_11

I(y) = (0.1)

+hoval

when the indicated inverses exist. It will be shown that the necessary and sufficient condition for a
solution to exist is H(’y)ZO, which by taking Schur complements, is equivalent to X >0, Yoo >0 and
Amam(XwYoo)S'yz. If either X;ol or Y&,1 do not exist, a routine balancing argument will reduce the
dimension of the interpolation problem; X;c,1 and Y;ol will always exist for the smaller problem[6}.

1. Introduction

A recent advance has shown that it is possible to express all the solutions to a general
class of H*™-optimal control problems in terms of the solutions of two n-dimensional Riccati
equations. The sub-optimal case is dealt with in [4], while the optimal cases may be addressed
via generalized state-space theory [6,10]. In these papers it is stated that necessary and sufficient
conditions for a solution to exist may be given in terms of the Riccati equation solutions:
X020, Yoo20, and Amaz(XeoYoo)<7? are all required. Once the pair (Xoo, Yoo) with the
desired properties has been found, the solutions may be substituted into a representation

formula which parameterizes all the solutions [4,6,10].

The purpose of this paper is to establish the three necessary and sufficient conditions by
vector interpolation theory. When treating the optimalities we assume that ||Xo|]<oo and

[|Y || < 0. There are certain problems in which Xeo and/or Yoo do not exist at optimality(8].

It is well known that H® control problems are equivalent to finding all Q’s€ 33’ (if any
exist) such that[3]:
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(T +T12QT =Ty +[T1, T ] [(3 g ][%i])(S)HmS‘Y (L1

in which [T, T |](s) and [T3, Tl]" (s) are inner. The problem in (1.1) is cleary equivalent to
finding all Q’s€365° such that

R;;+Q R
1 12 < (1.2)
Ry Ry
oo
in which R R 7 -
11 12 12 ~
(= | Tu (5, Tl@e% 13)
Ry Ry T 1

Four block problems of the type shown in (1.2) may be solved by interpolation [5], and we have
shown that they may also may be solved by inner embedding [6,10]. Lets suppose that (1.2) is

embedded in the all-pass matrix

Roo+Qoo Ro1+Qo: Ry,
Afs) = Ry0+Q10 Ry +Qu, Ry, (8)=Ra(s)+Qa(s) (1.4)
Rao Ry Ry

such that A(s).A~(s)=+%L. This is always possible[6]. Next, we unwrap (1.4) by writing

1 0 0 1o
%(5)=|: 0 T, T_Li|‘A(S) 0 Ty ((8) QeXy
0T
1
0
( Too Toy I 00 2“3“ 5 I o
= + 10 Q11
T, T 0 T,, T 0 Ty (s)
oo 2710l o 0 o (15)

0T,

which is a dilated version of the original problem posed in (1.1). The necessary and sufficient
conditions are established by studying the vector interpolation problem associated with (1.5).
Use will be made of the interpolation theory described in [1,2,7). In particular, we show that the
Pick matrix associated the problem in (1.5) is congruent to (0.1) if X and Y are nonsingular (X
and Y are the standard H, Riccati equation solutions). Otherwise, a smaller Pick matrix with
dimension Rank(X)+Rank(Y) must be constructed[6]. We will use the standard notation as
detailed in [3,4,6].

2. Preliminaries
We will use this section as a repository for a number of state-space models. To begin, we

assume that the standard problem matrix is given by [3,6)
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2.1)

in which D;;=0 and D,,=0 (this may be assumed without loss of generality[6]), and that [D,,
D,] and [Dy ~’_L] are orthogonal. Next, we need the H, Riccati equation solutions which are

given by

A-B,Di,C -B,B;
X=Rd _ 27 . (2.20)
-CiD,;D;C; -(A-B3Di,Cy)

A-B,Dj,C,)’ -CyC
v=rd < < 2), > (2.2)
-B,D, B B} -(A-B,D3C))
See [4] for an explaination of the Ric[-] notation. The T;;(s)’s in (1.1) are given by
Ty T2 T A-B,F B,F B, B, -X"'CiD;
Ty 0 0 fs) £ 0 A-HC, | B,-HD,, 0 0 (2.3)
T, 00 C;-D;;F  Dy,F 0 Dy, D,
0 Cy Dy 0 0
o Byl B, o0 0

if X! and Y~! exist. If this is not the case, a lower dimension problem may be found for which

these inverses exist[6]. The H, state feedback and output injection matrices are given by

F = D;,C; + ByX H = B,Dy, + YC; (2.4)
and with this particular choice of F and H, [Ty, | T ](s) and [T, | T'l]"(s) are inner [3]. In
addition, it is easy to see that X&' and Y3} exist since they are given by sz(l—y‘ZXX'l)'lx

and Yoo=Y(I—7~2Y"%¥)~! in which X and ¥ are the solutions to spectral factorization Riccati

equations associated with the embedding process[6]. Finally

A-B,F B,F
£ 0 A-HC,

0 _yDB;Y&:
Ci-DyoF Dy,F

X and Yo may be found directly from

TOO TOl
TIO Tll

-7X2CiD | B,
0 B,-HD,,

0 'yﬁJ_
7D_L 0

(2.5)
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A-B,D;,C -(B,By-772B,B;
Xoo=Ric e e ,‘) (2.6a)
-Cib, D, G, -(A-B,D;,Cy)
and
(A-B,D5,C,) -(C3C,-77%CiCy)

Yo=Ric ~, o ,
-B,D"| D | B -(A-B;D3,Cy)

(2.6b)
This completes the state-space specification of the interpolation problem in (1.5)

3 Interpolation theory

We will prove the necessary and sufficient conditions in two steps. Firstly, we will
establish that a solution to the H™ control problem exists if and only if the Pick matrix
associated with the interpolation problem in (1.5) is positive semi-definite. Secondly, we will

show by state-space calculation that the Pick matrix is congruent to II() in (0.1).

Theorem 3.1 The H* control problem specified by P(s) in (2.1) has a solution if and only if

the Pick matrix associated with (1.5) is non-negative.

Necessity. Suppose there exists an internally stabilizing controller K(s) such that
|IF(P(s),K(s))]|co<7; P(s) is the design problem matrix given in (2.1). This assumption implies
that there exists a Q(s)€363° such that

Ry;;+Q Ry,

Ry Ry (s) <7 (3-1)

oo
By dilation[6,10], one may construct the all pass matrix .A(s) given in (1.4) in such a way that

the last block row and column are parts of inner matrices. Finally,

I 0
0 Ti, .A(s)[ (I) TO_ ’,fg ](s) gives the dilated closed loop
0 T 21°1

Qoo Qo1 0
Too T I 0 0
%(s)‘_“([ TOO TOI :‘+|: 0 T.,T :l Q1oQu 0 L 0
10t 2214l o 0 o0 0 Ty )(s) R(s)eHT
0T

L
(3.2)

Since Po(s) is an interpolating matrix function, it is necessarily the case that II(y)>0 [1,2,7].

Sufficiency Suppose II(y)>0. Then there exists an interpolating matrix function such that[1,2,7]

I 0
Too Tos 1 0 0 - N
loe=( . 1+ pop || Q0T || 0 T )y BEeBT  39)
10 1 12 & | 0 TJ_

What remains to be shown is that Q(s) may always be chosen with the form
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Qoo Qo 0
Q1 Qu 0 ) (3.4)
0 0 0

To demonstrate that this is the case, we note that (1)II(7)>0¢ ||Rally <7[1,2,7], (2) we invoke
the state-space construction in [6] to show that (3.3) always admits a solution of the form

indicated in (3.4). 0

3.2 The state-space theory
In this section we derive state-space expressions for the left and right interpolation constraints

which are associated with (1.5). Following that, we go on to verify that the Pick
matrix associated with (1.5), is (0.1). [;‘I](s) will have n right half plane zeros
{si i= 1,2,...,n} (which are assumed distinct) together with a sequence of vectors a; which
satisfy {[%i](s,-)an:O : i=1,2,...,n0}1. Further, we define {bfz[”i“?;](s‘)a“: i=1,2,...,n} and
any interpolating  matrix = function  associated with (1.5) must satisfy
{®(s;)a;=b; i=1,2,...,n} [1,2,7). By duality, there exist a set of zeros and zero vectors such that
ajyf T13 T ](s;)=0: i=n+1,...,2n}. If we define {b;=a;y[ T1p Ty](s;}: i=n+1,...,2n}, then it is

necessarily the case that {a;%(s;)=b}: i=n+1,...,2n} if R(s) is interpolating.

The Pick matrix associated with the above interpolation data is given by [7)

1-Ill HIZ
Io(y) = (7) (3.5)
HIIZ H22

in which

i=1,...,11

- Ly il ) ,
M, = J Y 28" bib, ., = yaiby - vbia,
1 8, + 8 2= 8;- 5

k=1,...,11 k=n+1i,...,2n

, i=n+1,...,2n 2, i=n+1,..,2n
I, = ¢ YPide - aiby L. = d 123 - biby
w= T n= a0

k=1,...,21 k=n+1,...,2n

We will now find explicit expressions for the s;’s, a;,’s and b;’s described above. To begin with,

we note that the s;’s associated with the right constraints are given by -5;=),(A-HC,) since

1 I o
. . . a'.l . .
In order that all the dimensions match, we should write| 0 Tj; i(s;) ==0. This clearly requires
~ a2
that a;;=0 i=1,...n. 0 TJ_

A similar remark applies in the case of the left vector constraints.
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[;21](3) is all-pass. To obtain state-space models for the a,’s, we study the solutions to the
1

equation

rsiI—A'l'(BlD'zri'YC'z)Cz l -B;+(B1D5,+YC5)D,, —| Yx, 0
C, Dy, =i0 (3.6)
~ _ ~ a;
-b By b, i2 0
The (2,1) and (3,1) blocks of (3.6) =
~ -CY
a;,=[Dj D] 5J_B'1 : i=1,2,...,n (3.7)
Substituting this into the (1,1) partition of (3.6) yields
(s;I+A’'-CyH")x;=0 i=1,2,..,n (3.8)
after substituting from (2.2b).
A dual sequence of arguments shows that that
Di,
aj,=x;[-XB, CiD ] i=n+1,...,2n (3.9)
Dy
where
x;(s;I+A'-F'B3)=0 i=n+1,...,2n (3.10)
A direct calculation using (2.5), (3.7) and (3.8) shows that
s,I-A+B,F -B,F -B, Yx; 0
0 s,I-A+HC, HD,-B, | |Yx;|=| 0 i=1,2,...n (3.11)
~ ~ . b,
0 4B By 1B, 2iy °
b,
C,-Dy,F D, F 0
which gives
b, 4D | By(Yl-Yahy
bi= i = 1 ! 0 § |'=1,2,...,I1 (3.12)

b,y C\Y
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In the same way it is not difficult to verify that

[ s,J-A+B,F -B,F -XCiD | v B, _’
(X 0 ajg 0 s1-A+HC, 0 B,-HDy|= [0 0 b bjy]
L-(cl_DnF) _D,,F | ¥D | 0 _J i=n+1,..,2n
(3.13)
in which
bi=[bj, b = xi[ yX(X"-XZ)CiD|  XB] i=n+1,...,2n (3.14)

In the last phase of our calculations we substitute the state-space expressions for the

interpolation constraints into (3.5). We begin with the (1,1) block

i=1,...,1
2., , L
~v“aia; - bjb
Oy(y) = {——’—5‘ o "} (3.15)
£=1,...,0

Substituting from (3.7) and (3.12) gives

Oy(7)= 72x;Y{[Y"Blﬁlﬁl-C’an][ﬁ’_LB J_BllY_l'D,2102]‘Cllcl7—2

-[yt-vziB,B B J_BQ[Y‘I-Y;}]}Yx,‘ / (5-82) (3.16)
Eliminating terms and substituting
Y2 (A-B,D5,Co)+(A-B,Dj,C,) Yol -CyCoty2CiCy+YB, D) B | Biyl =0 (3.17)

yields:

Hu(7)=72X§Y{W;°1[A-BlD'zlcTi'BlB'J_ﬁ_|_B'1Y_1]+

[A-B,D3,C,+B, 5| B J_B’lY'l]’Y;,‘}Yxk YN (3.18)
Substituting from (2.2b) and (2.4b) allows us to write
() =-7 Y {[YY[A-HC, Y+ Y~ {A-HCYY3 }Yx, [ Gisy) (3.19)

Finally we invoke (3.8) to obtain
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=1y,

Hu(7)={72x:~YY3olek} (3.20)
E=1,...,0
In the same way we get
i=1,...,0
H12(7)={7x}YXxk} (3.21)
k=n++1,...,2n

By a symmetrical set of calculations one may establish that

i=n+1,...,2n

H21(7)={7x3XYxk} (3.22)

E=1,...,0
and

i=n+1,...,20

nzz(»,):{»,’x;xx;o‘x::k} (3.23)
k=n+1,...,20n

Since the x’s are linearly independent, it follows from Sylvester’s inertia theorem that the

inertia of the Pick matrix is the same as that given by II(y) in (0.1). 0
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On ¥, Control, LQG Control and
Minimum Entropy

Denis Mustafa

1t is shown that the usual ¥,-optimal and LQG control problems are lim-
iting cases of the minimum entropy /X control problem. It is explained how,
in general, the minimum entropy/¥,, problem may be seen as a link between
the ¥ and LQG problems. The results are illustrated using a particular
normalized problem, for which a numerical example is given.

1 Introduction

In this paper we discuss an X, control problem with a minimum entropy criterion,
which contains both the Linear Quadratic Gaussian and X.,-optimal control prob-
lems as limiting cases. This is important and interesting, because both the LQG
and ¥.-optimal problems are well-established and have attracted considerable at-
tention in their own right; details may be found in [10] for the LQG approach
and [5] for the ¥.-optimal approach. Briefly, what LQG guarantees is system sta-
bility and good performance in the face of stochastic disturbance signals and noise.
This is achieved by minimizing a quadratic cost criterion subject to a closed-loop
stability constraint. Stability and good performance are also provided by the ¥,
approach, where the Xo.-norm of a closed-loop transfer function is minimized sub-
ject to a closed-loop stability constraint. However, unlike the LQG approach, the
X approach guarantees certain robust stability properties.

We will show that the minimum entropy/X. problem provides a link between
the X, and LQG problems. We will discuss this link and explain the tradeoff
between the ¥, and LQG criteria. Essentially, less emphasis on ¥, performance
and/or robust stability implies improved LQG performance.

A more detailed treatment of the minimum entropy approach may be found
in [13,8,11]. There are a number of related problems. For example, working from
a different viewpoint, in [1] a particular combined ¥o,/L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>