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Preface to the third edition

The second edition of our book, issued in 1995, continued to receive favorable response from our
colleagues and is being used as a textbook by universities and in industry courses worldwide. The
first edition presented the fundamental theory of protective relaying as applied to individual system
components. This concept was continued throughout the second edition. In addition, the second
edition added material on generating plant auxiliary systems, distribution protection concepts and
the application of electronic inductive and capacitive devices to regulate system voltage. The second
edition also presented additional material covering monitoring power system performance and fault
analysis. The application of synchronized sampling and advanced timing technologies using the
Global Positioning Satellite (GPS) system was explained.

This third edition takes the problem of power system protection an additional step forward by
introducing power system phenomena which influence protective relays and for which protective
schemes, applications and settings must be considered and implemented. The consideration of
power system stability and the associated application of relays to mitigate its harmful effects are
presented in detail. New concepts such as undervoltage load shedding, adaptive relaying, hidden
failures and the Internet standard COMTRADE and its uses are presented. The history of notable
blackouts, particularly as affected by relays, is presented to enable students to appreciate the impact
that protection systems have on the overall system reliability.

As mentioned previously, we are gratified with the response that the first and second editions
have received as both a textbook and a reference book. Recent changes in the electric power
industry have resulted in power system protection assuming a vital role in maintaining power
system reliability and security. It is the authors’ hope that the additions embodied in this third
edition will enable all electric power system engineers, designers and operators to better integrate
these concepts and to understand the complex interaction of relaying and system performance.

S. H. Horowitz
Columbus

A. G. Phadke
Blacksburg



Preface to the second edition

The first edition, issued in 1992, has been used as a textbook by universities and in industry courses
throughout the world. Although not intended as a reference book for practicing protection engineers,
it has been widely used as one. As a result of this experience and of the dialog between the authors
and teachers, students and engineers using the first edition, it was decided to issue a second edition,
incorporating material which would be of significant value. The theory and fundamentals of relaying
constituted the major part of the first edition and it remains so in the second edition. In addition, the
second edition includes concepts and practices that add another dimension to the study of power
system protection.

A chapter has been added covering monitoring power system performance and fault analysis.
Examples of oscillographic records introduce the student to the means by which disturbances
can be analyzed and corrective action and maintenance initiated. The application of synchronized
sampling for technologies such as the GPS satellite is explained. This chapter extends the basic
performance of protective relays to include typical power system operating problems and analysis.
A section covering power plant auxiliary systems has been added to the chapter on the protection
of rotating machinery. Distribution protection concepts have been expanded to bridge the gap
between the protection of distribution and transmission systems. The emerging technology of static
var compensators to provide inductive and capacitive elements to regulate system voltage has been
added to the chapter on bus protection. The subject index has been significantly revised to facilitate
reference from both the equipment and the operating perspective.

We are gratified with the response that the first edition has received as a text and reference
book. The authors thank the instructors and students whose comments generated many of the ideas
included in this second edition. We hope that the book will continue to be beneficial and of interest
to students, teachers and power system engineers.

S. H. Horowitz
Columbus

A. G. Phadke
Blacksburg



Preface to the first edition

This book is primarily intended to be a textbook on protection, suitable for final year undergraduate
students wishing to specialize in the field of electric power engineering. It is assumed that the student
is familiar with techniques of power system analysis, such as three-phase systems, symmetrical
components, short-circuit calculations, load flow and transients in power systems. The reader is
also assumed to be familiar with calculus, matrix algebra, and Laplace and Fourier transforms and
Fourier series. Typically, this is the background of a student who is taking power option courses
at a US university. The book is also suitable for a first year graduate course in power system
engineering.

An important part of the book is the large number of examples and problems included in each
chapter. Some of the problems are decidedly difficult. However, no problems are unrealistic, and,
difficult or not, our aim is always to educate the reader, help the student realize that many of
the problems that will be faced in practice will require careful analysis, consideration and some
approximations.

The book is not a reference book, although we hope it may be of interest to practicing relay
engineers as well. We offer derivations of several important results, which are normally taken
for granted in many relaying textbooks. It is our belief that by studying the theory behind these
results, students may gain an insight into the phenomena involved, and point themselves in the
direction of newer solutions which may not have been considered. The emphasis throughout the
book is on giving the reader an understanding of power system protection principles. The numerous
practical details of relay system design are covered to a limited extent only, as required to support
the underlying theory. Subjects which are the province of the specialist are left out. The engineer
interested in such detail should consult the many excellent reference works on the subject, and the
technical literature of various relay manufacturers.

The authors owe a great debt to published books and papers on the subject of power system
protection. These works are referred to at appropriate places in the text. We would like to single out
the book by the late C. R. Mason, The Art and Science of Protective Relaying, for special praise.
We, and many generations of power engineers, have learned relaying from this book. It is a model
of clarity, and its treatment of the protection practices of that day is outstanding.

Our training as relay engineers has been enhanced by our association with the Power System
Relaying Committee of the Institute of Electrical and Electronics Engineers (IEEE), and the Study
Committee SC34 of the Conférence Internationale des Grands Réseaux Electriques des Hautes
Tensions (CIGRE). Much of our technical work has been under the auspices of these organiza-
tions. The activities of the two organizations, and our interaction with the international relaying
community, have resulted in an appreciation of the differing practices throughout the world. We
have tried to introduce an awareness of these differences in this book. Our long association with
the American Electric Power (AEP) Service Corporation has helped sustain our interest in electric
power engineering, and particularly in the field of protective relaying. We have learned much from
our friends in AEP. AEP has a well-deserved reputation for pioneering in many phases of electric



xvi Preface to the first edition

power engineering, and particularly in power system protection. We were fortunate to be a part
of many important relaying research and development efforts conducted at AEP. We have tried
to inject this experience of fundamental theory and practical implementation throughout this text.
Our colleagues in the educational community have also been instrumental in getting us started on
this project, and we hope they find this book useful. No doubt some errors remain, and we will be
grateful if readers bring these errors to our attention.

S. H. Horowitz
Columbus

A. G. Phadke
Blacksburg



1
Introduction to protective relaying

1.1 What is relaying?
In order to understand the function of protective relaying systems, one must be familiar with
the nature and the modes of operation of an electric power system. Electric energy is one of
the fundamental resources of modern industrial society. Electric power is available to the user
instantly, at the correct voltage and frequency, and exactly in the amount that is needed. This
remarkable performance is achieved through careful planning, design, installation and operation of
a very complex network of generators, transformers, and transmission and distribution lines. To the
user of electricity, the power system appears to be in a steady state: imperturbable, constant and
infinite in capacity. Yet, the power system is subject to constant disturbances created by random
load changes, by faults created by natural causes and sometimes as a result of equipment or
operator failure. In spite of these constant perturbations, the power system maintains its quasi-
steady state because of two basic factors: the large size of the power system in relation to the size
of individual loads or generators, and correct and quick remedial action taken by the protective
relaying equipment.

Relaying is the branch of electric power engineering concerned with the principles of design
and operation of equipment (called ‘relays’ or ‘protective relays’) that detects abnormal power
system conditions, and initiates corrective action as quickly as possible in order to return the
power system to its normal state. The quickness of response is an essential element of protective
relaying systems – response times of the order of a few milliseconds are often required. Con-
sequently, human intervention in the protection system operation is not possible. The response
must be automatic, quick and should cause a minimum amount of disruption to the power system.
As the principles of protective relaying are developed in this book, the reader will perceive that
the entire subject is governed by these general requirements: correct diagnosis of trouble, quick-
ness of response and minimum disturbance to the power system. To accomplish these goals, we
must examine all possible types of fault or abnormal conditions which may occur in the power
system. We must analyze the required response to each of these events, and design protective
equipment which will provide such a response. We must further examine the possibility that pro-
tective relaying equipment itself may fail to operate correctly, and provide for a backup protective
function. It should be clear that extensive and sophisticated equipment is needed to accomplish
these tasks.

P ower System R elaying, Third Edition.  Stanley H . H or owitz and A r un G . Phadke
 2008 Resear ch Studies Pr ess L im ited. ISBN: 978-0-470-05712-4



2 Introduction to protective relaying

Control Equipment

Protection Equipment

Power Apparatus

Figure 1.1 Three-layered structure of power systems

1.2 Power system structural considerations
1.2.1 Multilayered structure of power systems

A power system is made up of interconnected equipment which can be said to belong to one of
three layers from the point of view of the functions performed. This is illustrated in Figure 1.1.

At the basic level is the power apparatus which generates, transforms and distributes the electric
power to the loads. Next, there is the layer of control equipment. This equipment helps maintain the
power system at its normal voltage and frequency, generates sufficient power to meet the load and
maintains optimum economy and security in the interconnected network. The control equipment
is organized in a hierarchy of its own, consisting of local and central control functions. Finally,
there is the protection equipment layer. The response time of protection functions is generally faster
than that of the control functions. Protection acts to open and close circuit breakers, thus changing
the structure of the power system, whereas the control functions act continuously to adjust system
variables, such as the voltages, currents and power flow on the network. Oftentimes, the distinction
between a control function and a protection function becomes blurred. This is becoming even more
of a problem with the recent advent of computer-based protection systems in substations. For our
purposes, we may arbitrarily define all functions which lead to operation of power switches or
circuit breakers to be the tasks of protective relays, while all actions which change the operating
state (voltages, currents, power flows) of the power system without changing its structure to be the
domain of control functions.

1.2.2 Neutral grounding of power systems

Neutrals of power transformers and generators can be grounded in a variety of ways, depending
upon the needs of the affected portion of the power system. As grounding practices affect fault
current levels, they have a direct bearing upon relay system designs. In this section, we will examine
the types of grounding system in use in modern power systems and the reasons for each of the
grounding choices. Influence of grounding practices on relay system design will be considered at
appropriate places throughout the remainder of this book.

It is obvious that there is no ground fault current in a truly ungrounded system. This is the main
reason for operating the power system ungrounded. As the vast majority of faults on a power system
are ground faults, service interruptions due to faults on an ungrounded system are greatly reduced.
However, as the number of transmission lines connected to the power system grows, the capacitive
coupling of the feeder conductors with ground provides a path to ground, and a ground fault on
such a system produces a capacitive fault current. This is illustrated in Figure 1.2(a). The coupling
capacitors to ground C0 provide the return path for the fault current. The interphase capacitors
1
3 C1 play no role in this fault. When the size of the capacitance becomes sufficiently large, the
capacitive ground fault current becomes self-sustaining, and does not clear by itself. It then becomes
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Figure 1.2 Neutral grounding impedance. (a) System diagram. (b) Phasor diagram showing neutral shift on
ground fault

necessary to open the circuit breakers to clear the fault, and the relaying problem becomes one
of detecting such low magnitudes of fault currents. In order to produce a sufficient fault current,
a resistance is introduced between the neutral and the ground – inside the box shown by a dotted
line in Figure 1.2(a). One of the design considerations in selecting the grounding resistance is the
thermal capacity of the resistance to handle a sustained ground fault.

Ungrounded systems produce good service continuity, but are subjected to high overvoltages on
the unfaulted phases when a ground fault occurs. It is clear from the phasor diagram of Figure 1.2(b)
that when a ground fault occurs on phase a, the steady-state voltages of phases b and c become√

3 times their normal value. Transient overvoltages become correspondingly higher. This places
additional stress on the insulation of all connected equipment. As the insulation level of lower
voltage systems is primarily influenced by lightning-induced phenomena, it is possible to accept
the fault-induced overvoltages as they are lower than the lightning-induced overvoltages. However,
as the system voltages increase to higher than about 100 kV, the fault-induced overvoltages begin
to assume a critical role in insulation design, especially of power transformers. At high voltages, it
is therefore common to use solidly grounded neutrals (more precisely ‘effectively grounded’). Such
systems have high ground fault currents, and each ground fault must be cleared by circuit breakers.
As high-voltage systems are generally heavily interconnected, with several alternative paths to load
centers, operation of circuit breakers for ground faults does not lead to a reduced service continuity.

In certain heavily meshed systems, particularly at 69 kV and 138 kV, the ground fault current
could become excessive because of very low zero sequence impedance at some buses. If ground
fault current is beyond the capability of the circuit breakers, it becomes necessary to insert an
inductance in the neutral in order to limit the ground fault current to a safe value. As the network
Thévenin impedance is primarily inductive, a neutral inductance is much more effective (than
resistance) in reducing the fault current. Also, there is no significant power loss in the neutral
reactor during ground faults.

In several lower voltage networks, a very effective alternative to ungrounded operation can be
found if the capacitive fault current causes ground faults to be self-sustaining. This is the use
of a Petersen coil, also known as the ground fault neutralizer (GFN). Consider the symmetrical
component representation of a ground fault on a power system, which is grounded through a
grounding reactance of Xn (Figure 1.3). If 3Xn is made equal to Xc0 (the zero sequence capacitive
reactance of the connected network), the parallel resonant circuit formed by these two elements
creates an open circuit in the fault path, and the ground fault current is once again zero. No
circuit breaker operation is necessary upon the occurrence of such a fault, and service reliability
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Xl1

Xl1

Xl03Xn

Xc1

Xc1

Xc0

Figure 1.3 Symmetrical component representation for ground fault with grounding reactor

is essentially the same as that of a truly ungrounded system. The overvoltages produced on the
unfaulted conductors are comparable to those of ungrounded systems, and consequently GFN use is
limited to system voltages below 100 kV. In practice, GFNs must be tuned to the entire connected
zero sequence capacitance on the network, and thus if some lines are out of service, the GFN
reactance must be adjusted accordingly. Petersen coils have found much greater use in several
European countries than in the USA.

1.3 Power system bus configurations
The manner in which the power apparatus is connected together in substations and switching
stations, and the general layout of the power network, has a profound influence on protective
relaying. It is therefore necessary to review the alternatives, and the underlying reasons for selecting
a particular configuration. A radial system is a single-source arrangement with multiple loads, and
is generally associated with a distribution system (defined as a system operating at voltages below
100 kV) or an industrial complex (Figure 1.4).

Such a system is most economical to build; but from the reliability point of view, the loss of the
single source will result in the loss of service to all of the users. Opening main line reclosers or
other sectionalizing devices for faults on the line sections will disconnect the loads downstream of

From Transmission
Network

Main
Transformer

Fuse

Switch Switch Switch

Load

Load Load

Figure 1.4 Radial power system
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Load

Load

Load

Circuit Breakers

Figure 1.5 Network power system

the switching device. From the protection point of view, a radial system presents a less complex
problem. The fault current can only flow in one direction, i.e. away from the source and towards
the fault. Since radial systems are generally electrically remote from generators, the fault current
does not vary much with changes in generation capacity.

A network has multiple sources and multiple loops between the sources and the loads. Sub-
transmission and transmission systems (generally defined as systems operating at voltages of
100–200 kV and above) are network systems (Figure 1.5).

In a network, the number of lines and their interconnections provide more flexibility in main-
taining service to customers, and the impact of the loss of a single generator or transmission line
on service reliability is minimal. Since sources of power exist on all sides of a fault, fault current
contributions from each direction must be considered in designing the protection system. In addi-
tion, the magnitude of the fault current varies greatly with changes in system configuration and
installed generation capacity.

Example 1.1

Consider the simple network shown in Figure 1.6. The load at bus 2 has secure service for the loss
of a single power system element. Further, the fault current for a fault at bus 2 is −j20.0 pu when

1 3

2

4 5 6 7 8 9

1.0   01.0   0

j0.1

j0.1

j0.1

j0.3
j0.4

j0.6
j1.0 j1.0 j1.0

Network System

Radial System

Figure 1.6 Power system for Example 1.1
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all lines are in service. If line 2–3 goes out of service, the fault current changes to −j10.0 pu. This
is a significant change.

Now consider the distribution feeder with two intervening transformers connected to bus 2. All
the loads on the feeder will lose their source of power if transformer 2–4 is lost. The fault current
at bus 9 on the distribution feeder with system normal is −j0.23 pu, whereas the same fault when
one of the two generators on the transmission system is lost is −j0.229 pu. This is an insignificant
change. The reason for this of course is that, with the impedances of the intervening transformers
and transmission network, the distribution system sees the source as almost a constant impedance
source, regardless of the changes taking place on the transmission network.

Substations are designed for reliability of service and flexibility in operation, and to allow for
equipment maintenance with a minimum interruption of service. The most common bus arrange-
ments in a substation are (a) single bus, single breaker, (b) two bus, single breaker, (c) two bus,
two breakers, (d) ring bus and (e) breaker-and-a-half. These bus arrangements are illustrated in
Figure 1.7.

A single-bus, single-breaker arrangement, shown in Figure 1.7(a), is the simplest, and probably
the least costly to build. However, it is also the least flexible. To do maintenance work on the bus,
a breaker, or a disconnect switch, de-energizing the associated transmission lines is necessary. A
two-bus, single-breaker arrangement, shown in Figure 1.7(b), allows the breakers to be maintained
without de-energizing the associated line. For system flexibility, and particularly to prevent a bus
fault from splitting the system too drastically, some of the lines are connected to bus 1 and some to
bus 2 (the transfer bus). When maintaining a breaker, all of the lines that are normally connected
to bus 2 are transferred to bus 1, the breaker to be maintained is bypassed by transferring its line
to bus 2 and the bus tie breaker becomes the line breaker. Only one breaker can be maintained at
a time. Note that the protective relaying associated with the buses and the line whose breaker is

(a)

(b)

(c)

(d)

# 1 # 1

# 2

# 1
# 2

(e)

# 1

# 2

Figure 1.7 Substation bus arrangements: (a) single bus, single breaker; (b) two bus, one breaker; (c) two bus,
two breaker; (d) ring bus; (e) breaker-and-a-half
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being maintained must also be reconnected to accommodate this new configuration. This will be
covered in greater detail as we discuss the specific protection schemes.

A two-bus, two-breaker arrangement is shown in Figure 1.7(c). This allows any bus or breaker
to be removed from service, and the lines can be kept in service through the companion bus or
breaker. A line fault requires two breakers to trip to clear a fault. A bus fault must trip all of
the breakers on the faulted bus, but does not affect the other bus or any of the lines. This station
arrangement provides the greatest flexibility for system maintenance and operation; however, this is
at a considerable expense: the total number of breakers in a station equals twice the number of the
lines. A ring bus arrangement shown in Figure 1.7(d) achieves similar flexibility while the ring is
intact. When one breaker is being maintained, the ring is broken, and the remaining bus arrangement
is no longer as flexible. Finally, the breaker-and-a-half scheme, shown in Figure 1.7(e), is most
commonly used in most extra high voltage (EHV) transmission substations. It provides for the same
flexibility as the two-bus, two-breaker arrangement at the cost of just one-and-a-half breakers per
line on an average. This scheme also allows for future expansions in an orderly fashion.∗

The impact of system and bus configurations on relaying practices will become clear in the
chapters that follow.

1.4 The nature of relaying
We will now discuss certain attributes of relays which are inherent to the process of relaying, and
can be discussed without reference to a particular relay. The function of protective relaying is to
promptly remove from service any element of the power system that starts to operate in an abnormal
manner. In general, relays do not prevent damage to equipment: they operate after some detectable
damage has already occurred. Their purpose is to limit, to the extent possible, further damage to
equipment, to minimize danger to people, to reduce stress on other equipment and, above all, to
remove the faulted equipment from the power system as quickly as possible so that the integrity
and stability of the remaining system is maintained. The control aspect of relaying systems also
helps return the power system to an acceptable configuration as soon as possible so that service to
customers can be restored.

1.4.1 Reliability, dependability and security

Reliability is generally understood to measure the degree of certainty that a piece of equipment
will perform as intended. Relays, in contrast with most other equipment, have two alternative ways
in which they can be unreliable: they may fail to operate when they are expected to, or they
may operate when they are not expected to. This leads to a two-pronged definition of reliability
of relaying systems: a reliable relaying system must be dependable and secure.1 Dependability is
defined as the measure of the certainty that the relays will operate correctly for all the faults for
which they are designed to operate. Security is defined as the measure of the certainty that the
relays will not operate incorrectly for any fault.

Most protection systems are designed for high dependability. In other words, a fault is always
cleared by some relay. As a relaying system becomes dependable, its tendency to become less

∗ The breaker-and-a-half bus configuration is the natural outgrowth of operating practices that developed as systems matured. Even
in developing systems, the need to keep generating units in service was recognized as essential and it was common practice to
connect the unit to the system through two circuit breakers. Depending on the particular bus arrangement, the use of two breakers
increased the availability of the unit despite line or bus faults or circuit breaker maintenance. Lines and transformers, however,
were connected to the system through one circuit breaker per element. With one unit and several lines or transformers per station,
there was a clear economic advantage to this arrangement. When the number of units in a station increased, the number of breakers
increased twice as fast: 1 unit and 2 lines required 4 breakers, 2 units and 2 lines required 6 breakers, etc. It is attractive to
rearrange the bus design so that the lines and transformers shared the unit breakers. This gave the same maintenance advantage to
the lines, and when the number of units exceeded the number of other elements, reduced the number of breakers required.
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secure increases. Thus, in present-day relaying system designs, there is a bias towards making
them more dependable at the expense of some degree of security. Consequently, a majority of
relay system mis-operations are found to be the result of unwanted trips caused by insecure
relay operations. This design philosophy correctly reflects the fact that a power system provides
many alternative paths for power to flow from generators to loads. Loss of a power system
element due to an unnecessary trip is therefore less objectionable than the presence of a sus-
tained fault. This philosophy is no longer appropriate when the number of alternatives for power
transfer is limited, as in a radial power system, or in a power system in an emergency operat-
ing state.

Example 1.2

Consider the fault F on the transmission line shown in Figure 1.8. In normal operation, this fault
should be cleared by the two relays R1 and R2 through the circuit breakers B1 and B2. If R2

does not operate for this fault, it has become unreliable through a loss of dependability. If relay
R5 operates through breaker B5 for the same fault, and before breaker B2 clears the fault, it has
become unreliable through a loss of security. Although we have designated the relays as single
entities, in reality they are likely to be collections of several relays making up the total protection
system at each location. Thus, although a single relay belonging to a protection system may lose
security, its effect is to render the complete relaying system insecure, and hence unreliable.

B1 B2

R1 R2

R4

R5

F

B3

B4

B5

R3

Figure 1.8 Reliability of protection system

1.4.2 Selectivity of relays and zones of protection

The property of security of relays, that is, the requirement that they not operate for faults for
which they are not designed to operate, is defined in terms of regions of a power system – called
zones of protection – for which a given relay or protective system is responsible. The relay will be
considered to be secure if it responds only to faults within its zone of protection. Relays usually
have inputs from several current transformers (CTs), and the zone of protection is bounded by
these CTs. The CTs provide a window through which the associated relays ‘see’ the power system
inside the zone of protection. While the CTs provide the ability to detect a fault inside the zone
of protection, the circuit breakers (CBs) provide the ability to isolate the fault by disconnecting all
of the power equipment inside the zone. Thus, a zone boundary is usually defined by a CT and a
CB. When the CT is part of the CB, it becomes a natural zone boundary. When the CT is not an
integral part of the CB, special attention must be paid to the fault detection and fault interruption
logic. The CT still defines the zone of protection, but communication channels must be used to
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implement the tripping function from appropriate remote locations where the CBs may be located.
We will return to this point later in section 1.5 where CBs are discussed.

In order to cover all power equipment by protection systems, the zones of protection must meet
the following requirements.

• All power system elements must be encompassed by at least one zone. Good relaying practice
is to be sure that the more important elements are included in at least two zones.

• Zones of protection must overlap to prevent any system element from being unprotected. With-
out such an overlap, the boundary between two nonoverlapping zones may go unprotected. The
region of overlap must be finite but small, so that the likelihood of a fault occurring inside the
region of overlap is minimized. Such faults will cause the protection belonging to both zones
to operate, thus removing a larger segment of the power system from service.

A zone of protection may be closed or open. When the zone is closed, all power apparatus
entering the zone is monitored at the entry points of the zone. Such a zone of protection is also
known as ‘differential’, ‘unit’ or ‘absolutely selective’. Conversely, if the zone of protection is not
unambiguously defined by the CTs, i.e. the limit of the zone varies with the fault current, the zone is
said to be ‘non-unit’, ‘unrestricted’ or ‘relatively selective’. There is a certain degree of uncertainty
about the location of the boundary of an open zone of protection. Generally, the nonpilot protection
of transmission lines employs open zones of protection.

Example 1.3

Consider the fault at F1 in Figure 1.9. This fault lies in a closed zone, and will cause circuit breakers
B1 and B2 to trip. The fault at F2, being inside the overlap between the zones of protection of
the transmission line and the bus, will cause circuit breakers B1, B2, B3 and B4 to trip, although
opening B3 and B4 is unnecessary. Both of these zones of protection are closed zones.

B1

B2

B3

B4

B5 B6

F1

F 2
F3

Figure 1.9 Closed and open zones of protection

Now consider the fault at F3. This fault lies in two open zones. The fault should cause circuit
breaker B6 to trip. B5 is the backup breaker for this fault, and will trip if for some reason B6 fails
to clear the fault.

1.4.3 Relay speed

It is, of course, desirable to remove a fault from the power system as quickly as possible. However,
the relay must make its decision based upon voltage and current waveforms which are severely
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distorted due to transient phenomena which must follow the occurrence of a fault. The relay must
separate the meaningful and significant information contained in these waveforms upon which a
secure relaying decision must be based. These considerations demand that the relay take a certain
amount time to arrive at a decision with the necessary degree of certainty. The relationship between
the relay response time and its degree of certainty is an inverse one,2 and this inverse-time operating
characteristic of relays is one of the most basic properties of all protection systems.

Although the operating time of relays often varies between wide limits, relays are generally
classified by their speed of operation as follows.3

1. Instantaneous. These relays operate as soon as a secure decision is made. No intentional time
delay is introduced to slow down the relay response.†

2. Time delay. An intentional time delay is inserted between the relay decision time and the
initiation of the trip action.‡

3. High speed. A relay that operates in less than a specified time. The specified time in present
practice is 50 milliseconds (3 cycles on a 60 Hz system).

4. Ultra high speed. This term is not included in the Relay Standards but is commonly considered
to be operation in 4 milliseconds or less.

1.4.4 Primary and backup protection4,5

A protection system may fail to operate and, as a result, fail to clear a fault. It is thus essential
that provision be made to clear the fault by some alternative protection system or systems. These
alternative protection system(s) are referred to as duplicate, backup or breaker-failure protection
systems. The main protection system for a given zone of protection is called the primary protection
system. It operates in the fastest time possible and removes the least amount of equipment from
service. On EHV systems it is common to use duplicate primary protection systems in case an
element in one primary protection chain may fail to operate. This duplication is therefore intended
to cover the failure of the relays themselves. One may use relays from a different manufacturer, or
relays based upon a different principle of operation, so that some inadequacy in the design of one
of the primary relays is not repeated in the duplicate system. The operating times of the primary
and the duplicate systems are the same.

It is not always practical to duplicate every element of the protection chain – on high-voltage and
EHV systems the transducers or the circuit breakers are very expensive, and the cost of duplicate
equipment may not be justified. On lower voltage systems, even the relays themselves may not be
duplicated. In such situations, only backup relaying is used. Backup relays are generally slower
than the primary relays and remove more system elements than may be necessary to clear a fault.
Backup relaying may be installed locally, i.e. in the same substation as the primary protection, or
remotely. Remote backup relays are completely independent of the relays, transducers, batteries
and circuit breakers of the protection system they are backing up. There are no common failures
that can affect both sets of relays. However, complex system configurations may significantly affect
the ability of remote backup relays to ‘see’ all the faults for which backup is desired. In addition,
remote backup relays may remove more loads in the system than can be allowed. Local backup
relaying does not suffer from these deficiencies, but it does use common elements such as the

† There is no implication relative to the speed of operation of an instantaneous relay. It is a characteristic of its design. A plunger-
type overcurrent relay will operate in 1–3 cycles depending on the operating current relative to its pickup setting. A 125 V DC
hinged auxiliary relay, operating on a 125 V DC circuit, will operate in 3–6 cycles, whereas a 48 V DC tripping relay operating
on the same circuit will operate in 1 cycle. All are classified as instantaneous.
‡ The inserted time delay can be achieved by an R–C circuit, an induction disc, a dashpot or other electrical or mechanical means.
A short-time induction disc relay used for bus protection will operate in 3–5 cycles, a long-time induction disc relay used for motor
protection will operate in several seconds and bellows or geared timing relays used in control circuits can operate in minutes.
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transducers, batteries and circuit breakers, and can thus fail to operate for the same reasons as the
primary protection.

Breaker failure relays are a subset of local backup relaying that is provided specifically to cover
a failure of the circuit breaker. This can be accomplished in a variety of ways. The most common,
and simplest, breaker failure relay system consists of a separate timer that is energized whenever
the breaker trip coil is energized and is de-energized when the fault current through the breaker
disappears. If the fault current persists for longer than the timer setting, a trip signal is given to all
local and remote breakers that are required to clear the fault. Occasionally a separate set of relays
is installed to provide this breaker failure protection, in which case it uses independent transducers,
and batteries. (Also see Chapter 12 (Section 12.4).)

These ideas are illustrated by the following example, and will be further examined when specific
relaying systems are considered in detail later.

Example 1.4

Consider the fault at location F in Figure 1.10. It is inside the zone of protection of transmission line
AB. Primary relays R1 and R5 will clear this fault by acting through breakers B1 and B5. At station
B, a duplicate primary relay R2 may be installed to trip the breaker B1 to cover the possibility
that the relay R1 may fail to trip. R2 will operate in the same time as R1 and may use the same
or different elements of the protection chain. For instance, on EHV lines it is usual to provide
separate CTs, but use the same potential device with separate windings. The circuit breakers are
not duplicated but the battery may be. On lower voltage circuits it is not uncommon to share all of
the transducers and DC circuits. The local backup relay R3 is designed to operate at a slower speed
than R1 and R2; it is probably set to see more of the system. It will first attempt to trip breaker B1

and then its breaker failure relay will trip breakers B5, B6, B7 and B8. This is local backup relaying,
often known as breaker-failure protection, for circuit breaker B1. Relays R9, R10 and R4 constitute
the remote backup protection for the primary protection R1. No elements of the protection system
associated with R1 are shared by these protection systems, and hence no common modes of failure
between R1 and R4, R9 and R10 are possible. These remote backup protections will be slower than
R1, R2 or R3; and also remove additional elements of the power system – namely lines BC, BD
and BE – from service, which would also de-energize any loads connected to these lines.

A similar set of backup relays is used for the system behind station A.
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B10R1
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R5 R9
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Figure 1.10 Duplicate primary, local backup and remote backup protection
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1.4.5 Single- and three-phase tripping and reclosing

The prevailing practice in the USA is to trip all three phases of the faulted power system element
for all types of fault. In several European and Asian countries, it is a common practice to trip only
the faulted phase for a phase-to-ground fault, and to trip all three phases for all multiphase faults on
transmission lines. These differences in the tripping practice are the result of several fundamental
differences in the design and operation of power systems, as discussed in section 1.6.

As a large proportion of faults on a power system are of a temporary nature, the power system
can be returned to its prefault state if the tripped circuit breakers are reclosed as soon as possible.
Reclosing can be manual. That is, it is initiated by an operator working from the switching device
itself, from a control panel in the substation control house or from a remote system control center
through a supervisory control and data acquisition (SCADA) system. Clearly, manual reclosing is
too slow for the purpose of restoring the power system to its prefault state when the system is
in danger of becoming unstable. Automatic reclosing of circuit breakers is initiated by dedicated
relays for each switching device, or it may be controlled from a substation or central reclosing
computer. All reclosing operations should be supervised (i.e. controlled) by appropriate interlocks
to prevent an unsafe, damaging or undesirable reclosing operation. Some of the common interlocks
for reclosing are the following.

1. Voltage check. Used when good operating practice demands that a certain piece of equipment be
energized from a specific side. For example, it may be desirable to always energize a transformer
from its high-voltage side. Thus if a reclosing operation is likely to energize that transformer,
it would be well to check that the circuit breaker on the low-voltage side is closed only if the
transformer is already energized.

2. Synchronizing check. This check may be used when the reclosing operation is likely to ener-
gize a piece of equipment from both sides. In such a case, it may be desirable to check that
the two sources which would be connected by the reclosing breaker are in synchronism and
approximately in phase with each other. If the two systems are already in synchronism, it would
be sufficient to check that the phase angle difference between the two sources is within certain
specified limits. If the two systems are likely to be unsynchronized, and the closing of the circuit
breaker is going to synchronize the two systems, it is necessary to monitor the phasors of the
voltages on the two sides of the reclosing circuit breaker and close the breaker as the phasors
approach each other.

3. Equipment check. This check is to ensure that some piece of equipment is not energized
inadvertently.

These interlocks can be used either in the manual or in the automatic mode. It is the practice
of some utilities, however, not to inhibit the manual reclose operation of circuit breakers, on the
assumption that the operator will make the necessary checks before reclosing the circuit breaker.
In extreme situations, sometimes the only way to restore a power system is through operator
intervention, and automatic interlocks may prevent or delay the restoration operation. On the other
hand, if left to the operator during manual operation, there is the possibility that the operator may
not make the necessary checks before reclosing.

Automatic reclosing can be high speed, or it may be delayed. The term high speed generally
implies reclosing in times shorter than a second. Many utilities may initiate high-speed reclosing for
some types of fault (such as ground faults), and not for others. Delayed reclosing usually operates in
several seconds or even in minutes. The timing for the delayed reclosing is determined by specific
conditions for which the delay is introduced.
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1.5 Elements of a protection system
Although, in common usage, a protection system may mean only the relays, the actual protection
system consists of many other subsystems which contribute to the detection and removal of faults.
As shown in Figure 1.11, the major subsystems of the protection system are the transducers, relays,
battery and circuit breakers. The transducers, i.e. the current and voltage transformers, constitute a
major component of the protection system, and are considered in detail in Chapter 3. Relays are the
logic elements which initiate the tripping and closing operations, and we will, of course, discuss
relays and their performance in the rest of this book.

1.5.1 Battery and DC supply

Since the primary function of a protection system is to remove a fault, the ability to trip a circuit
breaker through a relay must not be compromised during a fault, when the AC voltage available
in the substation may not be of sufficient magnitude. For example, a close-in three-phase fault
can result in zero AC voltage at the substation AC outlets. Tripping power, as well as the power
required by the relays, cannot therefore be obtained from the AC system, and is usually provided
by the station battery.

The battery is permanently connected through a charger to the station AC service, and normally,
during steady-state conditions, it floats on the charger. The charger is of a sufficient volt–ampere
capacity to provide all steady-state loads powered by the battery. Usually, the battery is also
rated to maintain adequate DC power for 8–12 hours following a station blackout. Although the
battery is probably the most reliable piece of equipment in a station, in EHV stations it is not
uncommon to have duplicate batteries, each connected to its own charger and complement of
relays. Electromechanical relays are known to produce severe transients on the battery leads during
operation, which may cause mis-operation of other sensitive relays in the substation, or may even
damage them. It is therefore common practice, insofar as practical, to separate electromechanical
and solid-state equipment by connecting them to different batteries.

1.5.2 Circuit breakers

It would take too much space to describe various circuit breaker designs and their operating prin-
ciples here. Indeed, several excellent references do just that.6,7 Instead, we will describe a few
salient features about circuit breakers, which are particularly significant from the point of view of
relaying.

Knowledge of circuit breaker operation and performance is essential to an understanding of
protective relaying. It is the coordinated action of both that results in successful fault clearing. The

Transducer

Relay

Battery

Breaker

Figure 1.11 Elements of a protection system
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circuit breaker isolates the fault by interrupting the current at or near a current zero. At the present
time, an EHV circuit breaker can interrupt fault currents of the order of 105 A at system voltages up
to 800 kV. It can do this as quickly as the first current zero after the initiation of a fault, although
it more often interrupts at the second or third current zero. As the circuit breaker contacts move
to interrupt the fault current, there is a race between the establishment of the dielectric strength of
the interrupting medium and the rate at which the recovery voltage reappears across the breaker
contacts. If the recovery voltage wins the race, the arc re-ignites, and the breaker must wait for the
next current zero when the contacts are farther apart.

Circuit breakers of several designs can be found in a power system. One of the first designs,
and one that is still in common use, incorporates a tank of oil in which the breaker contacts and
operating mechanism are immersed. The oil serves as the insulation between the tank, which is at
the ground potential, and the main contacts, which are at line potential. The oil also acts as the
cooling medium to quench the arc when the contacts open to interrupt load or fault current. An oil
circuit breaker rated for 138 kV service is shown in Figure 1.12.

As transmission system voltages increased, it was not practical to build a tank large enough
to provide the dielectric strength required in the interrupting chamber. In addition, better insu-
lating materials, better arc quenching systems and faster operating requirements resulted in a
variety of circuit breaker characteristics: interrupting medium of oil, gas, air or vacuum; insu-
lating medium of oil, air, gas or solid dielectric; and operating mechanisms using impulse coil,
solenoid, spring–motor–pneumatic or hydraulic. This broad selection of circuit breaker types and
accompanying selection of ratings offers a high degree of flexibility. Each user has unique require-
ments and no design can be identified as the best or preferred design. One of the most important
parameters to be considered in the specification of a circuit breaker is the interrupting medium.
Oil does not require energy input from the operating mechanism to extinguish the arc. It gets
that energy directly from the arc itself. Sulfur hexafluoride (SF6), however, does require additional
energy and must operate at high pressure or develop a blast of gas or air during the interrup-
tion phase. When environmental factors are considered, however, oil circuit breakers produce high
noise and ground shock during interruption, and for this reason may be rejected. They are also
potential fire hazards, or water table pollutants. SF6 circuit breakers have essentially no emission,
although the noise accompanying their operation may require special shielding and housing. And

Figure 1.12 A 138 kV oil circuit breaker. (Courtesy of Appalachian Power Company)
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Figure 1.13 A 345 kV SF6 circuit breaker. (Courtesy of Appalachian Power Company)

as with all engineering decisions, the cost of the circuit breaker must be an important considera-
tion. At present, oil-filled circuit breakers are the least expensive, and may be preferred if they are
technically feasible, but this may change in the future. A typical SF6 circuit breaker is shown in
Figure 1.13.

An important design change in circuit breakers with a significant impact on protection systems
was the introduction of the ‘live-tank’ design.8 By placing the contact enclosure at the same potential
as the contacts themselves, the need for the insulation between the two was eliminated. However the
earlier ‘dead-tank’ (Figure 1.12) designs incorporated CTs in the bushing pocket of the tank, thereby
providing CTs on both sides of the contacts. This arrangement provided a very nice mechanism for
providing overlapping zones of protection on the two sides of the circuit breakers. In the live-tank
design, since the entire equipment is at line potential, it is not possible to incorporate CTs which
have their secondary windings essentially at the ground potential. It then becomes necessary to
design the CTs with their own insulating system, as separate free-standing devices, a design which
is quite expensive. With free-standing CTs, it is no longer economical to provide CTs on both

(a) (b)

(c)
linebus

F1 F2 F3 F4

bus

B1

F1 F2

line busbus

Figure 1.14 Zone overlap with different types of CTs and circuit breakers
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Figure 1.15 Live-tank air-blast circuit breaker and a current transformer for 800 kV. (Courtesy of Appalachian
Power Company)

sides of a circuit breaker, and one must make do with only one CT on one side of the breaker.
Of course, a free-standing CT has multiple secondaries, and protection zone overlap is achieved
by using secondary windings on opposite sides of the zones of protection. This is illustrated in
Figure 1.14(a). A live-tank air-blast circuit breaker and a free-standing CT rated at 800 kV are
shown in Figure 1.15. The location of the primary winding and the protective assignments of the
secondary winding of the CTs have a very significant implication for the protection being provided.
This is illustrated in the following example.

Example 1.5

Consider the dead-tank circuit breaker shown in Figure 1.14(b). The bushing CTs are on either
side of the breaker and the secondaries are connected to the bus and line protection so that they
overlap at the breaker. For a fault at F1 both protective systems will operate. The bus differential
relays will trip B1 and all other breakers on the bus. This will clear the fault. The line protection
will similarly trip breaker B1; and the corresponding relays at the remote station will also trip their
associated breakers. This is unnecessary, but unavoidable. If there are tapped loads on the line,
they will be de-energized until the breakers reclose. For a fault at F2, again both protective systems
will operate. For this fault, tripping the other bus breakers is not necessary to clear the fault, but
tripping the two ends of the line is necessary.

Now consider the live-tank design shown in Figure 1.14(c). For a fault at F1, only the bus
protection sees the fault and correctly trips B1 and all the other bus breakers to clear the fault. For
a fault at F2, however, tripping the bus breakers does not clear the fault, since it is still energized
from the remote end, and the line relays do not operate. This is a blind spot in this configuaration.
Column protection will cover this area. For a fault at F3 and F4, the line relays will operate and
the fault will be cleared from both ends. The fault at F3 again results in unnecessary tripping of
the bus breakers.
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1.6 International practices
Although the fundamental protective and relay operating concepts are similar throughout the world,
there are very significant differences in their implementation. These differences arise through differ-
ent traditions, operating philosophies, experiences and national standards. Electric power utilities in
many countries are organs of the national government. In such cases, the specific relaying schemes
employed by these utilities may reflect the national interest. For example, their preference may be
for relays manufactured inside their respective countries. In some developing countries, the choice
of relays may be influenced by the availability of low-cost hard-currency loans, or a transfer-of-
technology agreement with the prospective vendor of the protective equipment. The evolutionary
stage of the power system itself may have an influence on the protection philosophy. Thus more
mature power systems may opt for a more dependable protection system at the expense of some
degradation of its (protection system’s) security. A developing power network has fewer alternative
paths for power transfer between the load and generation, and a highly secure protection system
may be the desired objective. Long transmission lines are quite common in countries with large
areas, e.g. the USA or Russia. Many European and Asian countries have relatively short transmis-
sion lines, and, since the protection practice for long lines is significantly different from that for
short lines, this may be reflected in the established relaying philosophy.

As mentioned in section 1.4, reclosing practices also vary considerably among different countries.
When one phase of a three-phase system is opened in response to a single phase fault, the voltage
and current in the two healthy phases tend to maintain the fault arc after the faulted phase is de-
energized. Depending on the length of the line, system operating voltage and load, compensating
shunt reactors may be necessary to extinguish this ‘secondary’ arc.9 Where the transmission lines
are short, such secondary arcs are not a problem, and no compensating reactors are needed. Thus
in countries with short transmission lines, single-phase tripping and reclosing may be a sound
and viable operating strategy. In contrast, when transmission lines are long, the added cost of
compensation may dictate that three-phase tripping and reclosing be used for all faults. The loss
of synchronizing power flow created by three-phase tripping is partially mitigated by the use of
high-speed reclosing. Also, use is made of high-speed relaying (three cycles or less) to reduce the
impact of three-phase tripping and reclosing. Of course, there are exceptional situations which may
dictate a practice that is out of the ordinary in a given country. Thus, in the USA, where high-speed
tripping with three-phase tripping and reclosing is the general trend, exception may be made when
a single transmission line is used to connect a remote generator to the power system. Three-phase
tripping of such a line for a ground fault may cause the loss of the generator for too many faults,
and single-phase tripping and reclosing may be the desirable alternative.

An important factor in the application of specific relay schemes is associated with the configura-
tion of the lines and substations. Multiple circuit towers as found throughout Europe have different
fault histories than single circuit lines, and therefore have different protection system needs. The
same is true for double-bus, transfer bus or other breaker bypassing arrangements. In the USA,
EHV stations are almost exclusively breaker-and-a-half or ring bus configurations. This provision
to do maintenance work on a breaker significantly affects the corresponding relaying schemes. The
philosophy of installing several complete relay systems also affects the testing capabilities of all
relays. In the USA, it is not the common practice to remove more than one phase or zone relay
at a time for calibration or maintenance. In other countries this may not be considered to be as
important, and the testing facilities built in the relays may not be as selective.

The use of turnkey contracts to design and install complete substations also differs considerably
between countries, being more prevalent in many European, South American and certain Asian
countries than in North America. This practice leads to a manufacturer or consulting engineering
concern taking total project responsibility, as opposed to the North American practice where the
utilities themselves serve as the general contractor. In the latter case, the effect is to reduce the
variety of protection schemes and relay types in use.
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1.7 Summary

In this chapter, we have examined some of the fundamentals of protective relaying philosophy.
The concept of reliability and its two components, dependability and security, have been intro-
duced. Selectivity has been illustrated by closed and open zones of protection and local versus
remote backup. The speed of relay operation has been defined. Three-phase tripping, the prevailing
practice in the USA, has been compared to the more prevalent European practice of single-phase
tripping. We have discussed various reclosing and interlocking practices, and the underlying reasons
for a given choice. We have also given a brief account of various types of circuit breaker, and their
impact on the protection system design.

Problems
1.1 Write a computer program to calculate the three-phase fault current for a fault at F in

Figure 1.16, with the network normal, and with one line at a time removed from service.
The positive sequence impedance data are given in the accompanying table. Use the com-
monly made assumption that all prefault resistance values are (1.0 + j0.0) pu, and neglect all
resistance values. Calculate the contribution to the fault flowing through the circuit breaker
B1, and the voltage at that bus. For each calculated case, consider the two possibilities:
circuit breaker B2 closed or open. The latter is known as the ‘stub-end’ fault.

1 2

3

4

5

6
7

B1 B2

F

Figure 1.16 Problem 1.1

System data for Figure 1.16

From To Positive sequence
impedance

1 2 0.0 + j0.1
2 6 0.05 + j0.15
2 5 0.04 + j0.2
2 4 0.01 + j0.1
3 5 0.015 + j0.15
3 6 0.01 + j0.19
4 5 0.01 + j0.19
4 6 0.03 + j0.1
6 7 0.0 + j0.08
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1.2 Using the usual assumptions about the positive and negative sequence impedances of the
network elements, what are the currents at breaker B1 for b–c fault for each of the faults in
Problem 1.1? What is the voltage between phases b and c for each case?

1.3 For the radial power system shown in Figure 1.17, calculate the line-to-ground fault current
flowing in each of the circuit breakers for faults at each of the buses. The system data are
given in the accompanying table. Also determine the corresponding faulted phase voltage,
assuming that the generator is ideal, with a terminal voltage of 1.0 pu.

1 2 3 4 5 6

B1 B2 B3 B4 B5

Figure 1.17 Problem 1.3

System data for Figure 1.17

From To Positive sequence Zero sequence
impedance impedance

1 2 0.01 + j0.05 0.02 + j0.13
2 3 0.003 + j0.04 0.01 + j0.16
3 4 0.008 + j0.04 0.04 + j0.15
4 5 0.01 + j0.05 0.03 + j0.15
5 6 0.003 + j0.02 0.01 + j0.06

1.4 In a single loop distribution system shown in Figure 1.18, determine the fault currents flowing
in circuit breakers B1, B2 and B3 for a b–c fault at F. What are the corresponding phase-
to-phase voltages at those locations? Consider the generator to be of infinite short-circuit
capacity, and with a voltage of 1.0 pu. Consider two alternatives: (a) both transformers T1

and T2 in service and (b) one of the two transformers out of service. The system data are
given in the accompanying table.

1 2 3 4

5

67

T1

T2

B1
FB2 B3

Figure 1.18 Problem 1.4
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System data for Figure 1.18

From To Positive sequence
impedance

1 2 0.0 + j0.01(T1)

0.0 + j0.01(T2)

2 3 0.0 + j0.08
3 4 0.02 + j0.05
4 5 0.01 + j0.03
5 6 0.0 + j0.06
6 7 0.01 + j0.09
2 7 0.01 + j0.09

1.5 In the double-bus arrangement shown in Figure 1.19, circuit breaker B1 must be taken out of
service for repair. Starting with all equipment in service, make a list of operations required
to take the circuit breaker out of service, and to return it to service. Repeat for all the bus
arrangements shown in Figure 1.7. Remember that disconnect switches are generally not
designed to break or make load current.

B1 B2 B3 B4

1

2

L1 L2

S11

S12

S21

S22

S31

S32

S41

S42

Figure 1.19 Problem 1.5

1.6 Consider the various bus arrangements shown in Figure 1.7. Assume that each of the device
types, bus, disconnect switch, circuit breaker and transmission line, may develop a fault and
is removed from service. Prepare a table listing (single) faults which would cause loss of load
connected to the remote end of one of the transmission lines in each of those configurations.
What conclusions can you draw from such a table?

1.7 For the system shown in Figure 1.20, the fault at F produces these differing responses at
various times: (a) R1 B1 and R2 B2 operate; (b) R1 B1, R2, R3 B3 and R4 B4 operate;
(c) R1 B1, R2 B2 and R5 B5 operate; (d) R1 B1, R5 B5 and R6 B6 operate. Analyze each
of these responses for fault F and discuss the possible sequence of events that may have
led to these operations. Classify each response as being correct, incorrect, appropriate or
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inappropriate. Note that ‘correct–incorrect’ classification refers to relay operation, whereas
‘appropriate–inappropriate’ classification refers to the desirability of that particular response
from the point of view of the power system. Also determine whether there was a loss of
dependability or a loss of security in each of these cases.

R1 R2

R3

R4

R5

R6

B1 B2

B3

B4

B5

B6

Figure 1.20 Problem 1.7

1.8 In the systems shown in Figure 1.21(a) and (b), it is desired to achieve overlap between the
zones of protection for the bus and the transmission line. Show how this may be achieved
through the connection of CTs to the appropriate protection systems.

Bus

Line

Dead Tank
Breaker

(a) (b)

Live Tank
Breaker

Bus

Line

Figure 1.21 Problem 1.8

1.9 In the part of the network shown in Figure 1.22, the minimum and maximum operating times
for each relay are 0.8 and 2.0 cycles (of the fundamental power system frequency), and each
circuit breaker has minimum and maximum operating times of 2.0 and 5.0 cycles. Assume
that a safety margin of 3.0 cycles between any primary protection and backup protection is
desirable. P2 is the local backup for P1, and P3 is the remote backup. Draw a timing diagram
to indicate the various times at which the associated relays and breakers must operate to
provide a secure (coordinated) backup coverage for fault F.

P1 P2 P3F

Figure 1.22 Problem 1.9
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1.10 For the system shown in Figure 1.23, the following circuit breakers are known to operate:
(a) B1 and B2; (b) B3, B4, B1, B5 and B7; (c) B7 and B8; (d) B1, B3, B5 and B7. Assuming
that all primary protection has worked correctly, where is the fault located in each of these
cases?

B1

B2

B3

B4

B5 B6

B7 B8

Figure 1.23 Problem 1.10
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2
Relay operating principles

2.1 Introduction

Since the purpose of power system protection is to detect faults or abnormal operating conditions,
relays must be able to evaluate a wide variety of parameters to establish that corrective action
is required. The most common parameters which reflect the presence of a fault are the voltages
and currents at the terminals of the protected apparatus, or at the appropriate zone boundaries.
Occasionally, the relay inputs may also include states – open or closed – of some contacts or
switches. A specific relay, or a protection system, must use the appropriate inputs, process the
input signals and determine that a problem exists, and then initiate some action. In general, a
relay can be designed to respond to any observable parameter or effect. The fundamental problem
in power system protection is to define the quantities that can differentiate between normal and
abnormal conditions. This problem of being able to distinguish between normal and abnormal
conditions is compounded by the fact that ‘normal’ in the present sense means that the disturbance
is outside the zone of protection. This aspect – which is of the greatest significance in designing a
secure relaying system – dominates the design of all protection systems. For example, consider the
relay shown in Figure 2.1. If one were to use the magnitude of a fault current to determine whether
some action should be taken, it is clear that a fault on the inside (fault F1), or on the outside (fault
F2), of the zone of protection is electrically the same fault, and it would be impossible to tell the
two faults apart based upon the current magnitude alone. Much ingenuity is needed to design relays
and protection systems which would be reliable under all the variations to which they are subjected
throughout their life.

Whether, and how, a relaying goal is met is dictated by the power system and the transient
phenomena it generates following a disturbance. Once it is clear that a relaying task can be
performed, the job of designing the hardware to perform the task can be initiated. The field of
relaying is almost 100 years old. Ideas on how relaying should be done have evolved over this
long period, and the limitations of the relaying process are well understood. As time has gone
on, the hardware technology used in building the relays has gone through several major changes:
relays began as electromechanical devices, then progressed to solid-state hardware in the late
1950s and more recently they are being implemented on microcomputers. We will now exam-
ine – in general terms – the functional operating principles of relays and certain of their design
aspects.

P ower System R elaying, Third Edition.  Stanley H . H or owitz and A r un G . Phadke
 2008 Resear ch Studies Pr ess L im ited. ISBN: 978-0-470-05712-4
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R

F1

F2

Figure 2.1 Problem of relay selectivity for faults at a zone boundary

2.2 Detection of faults
In general, as faults (short circuits) occur, currents increase in magnitude, and voltages go down.
Besides these magnitude changes of the AC quantities, other changes may occur in one or more
of the following parameters: phase angles of current and voltage phasors, harmonic components,
active and reactive power, frequency of the power system, etc. Relay operating principles may be
based upon detecting these changes, and identifying the changes with the possibility that a fault
may exist inside its assigned zone of protection. We will divide relays into categories based upon
which of these input quantities a particular relay responds.

2.2.1 Level detection

This is the simplest of all relay operating principles. As indicated above, fault current magnitudes
are almost always greater than the normal load currents that exist in a power system. Consider the
motor connected to a 4 kV power system as shown in Figure 2.2. The full load current for the motor
is 245 A. Allowing for an emergency overload capability of 25 %, a current of 1.25 × 245 = 306
A or lower should correspond to normal operation. Any current above a set level (chosen to be
above 306 A by a safety margin in the present example) may be taken to mean that a fault, or
some other abnormal condition, exists inside the zone of protection of the motor. The relay should
be designed to operate and trip the circuit breaker for all currents above the setting, or, if desired,
the relay may be connected to sound an alarm, so that an operator can intervene and trip the circuit
breaker manually or take other appropriate action.

The level above which the relay operates is known as the pickup setting of the relay. For all
currents above the pickup, the relay operates, and for currents smaller than the pickup value, the
relay takes no action. It is of course possible to arrange the relay to operate for values smaller

R

2000 HP

Motor

4 kV

Figure 2.2 Overcurrent protection of a motor
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time

I/Ip1.0

Figure 2.3 Characteristic of a level detector relay

than the pickup value, and take no action for values above the pickup. An undervoltage relay is an
example of such a relay.

The operating characteristics of an overcurrent relay can be presented as a plot of the operating
time of the relay versus the current in the relay. It is best to normalize the current as a ratio of
the actual current to the pickup setting. The operating time for (normalized) currents less than 1.0
is infinite, while for values greater than 1.0 the relay operates. The actual time for operation will
depend upon the design of the relay, and will be discussed further in later chapters. The ideal level
detector relay would have a characteristic as shown by the solid line in Figure 2.3. In practice, the
relay characteristic has a less abrupt transition, as shown by the dotted line.

2.2.2 Magnitude comparison

This operating principle is based upon the comparison of one or more operating quantities with each
other. For example, a current balance relay may compare the current in one circuit with the current
in another circuit, which should have equal or proportional magnitudes under normal operating
conditions.

The relay will operate when the current division in the two circuits varies by a given tolerance.
Figure 2.4 shows two identical parallel lines which are connected to the same bus at either end. One
could use a magnitude comparison relay which compares the magnitudes of the two line currents
IA and IB. If |IA| is greater than |IB|+ ∈ (where ∈ is a suitable tolerance), and line B is not open,
the relay would declare a fault on line A and trip it. Similar logic would be used to trip line B if

R

IA

IB

Figure 2.4 Magnitude comparison relaying for two parallel transmission lines
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I1 I2

I1 I2

(I1- I2)

I'1 I'2

Figure 2.5 Differential comparison principle applied to a generator winding

its current exceeds that in line A, when the latter is not open. Another instance in which this relay
can be used is when the windings of a machine have two identical parallel sub-windings per phase.

2.2.3 Differential comparison

Differential comparison is one of the most sensitive and effective methods of providing protection
against faults. The concept of differential comparison is quite simple, and can be best understood by
referring to the generator winding shown in Figure 2.5. As the winding is electrically continuous,
current entering one end, I1, must equal the current leaving the other end, I2. One could use a
magnitude comparison relay described above to test for a fault on the protected winding. When
a fault occurs between the two ends, the two currents are no longer equal. Alternatively, one
could form an algebraic sum of the two currents entering the protected winding, i.e. (I1 − I2),
and use a level detector relay to detect the presence of a fault. In either case, the protection
is termed a differential protection. In general, the differential protection principle is capable of
detecting very small magnitudes of fault currents. Its only drawback is that it requires currents
from the extremities of a zone of protection, which restricts its application to power apparatus,
such as transformers, generators, motors, buses, capacitors and reactors. We will discuss specific
applications of differential relaying in later chapters.

2.2.4 Phase angle comparison

This type of relay compares the relative phase angle between two AC quantities. Phase angle
comparison is commonly used to determine the direction of a current with respect to a reference
quantity. For instance, the normal power flow in a given direction will result in the phase angle
between the voltage and the current varying around its power factor angle, say approximately ±30◦.
When power flows in the opposite direction, this angle will become (180◦ ± 30◦). Similarly, for a
fault in the forward or reverse direction, the phase angle of the current with respect to the voltage
will be −ϕ and (180◦ − ϕ) respectively, where ϕ, the impedance angle of the fault circuit, is close
to 90◦ for power transmission networks. These relationships are explained for two transmission
lines in Figure 2.6. This difference in phase relationships created by a fault is exploited by making
relays which respond to phase angle differences between two input quantities – such as the fault
voltage and the fault current in the present example.

2.2.5 Distance measurement

As discussed above, the most positive and reliable type of protection compares the current entering
the circuit with the current leaving it.1 On transmission lines and feeders, the length, voltage and
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Figure 2.6 Phase angle comparison for a fault on a transmission line

configuration of the line may make this principle uneconomical. Instead of comparing the local line
current with the far end line current, the relay compares the local current with the local voltage.
This, in effect, is a measurement of the impedance of the line as seen from the relay terminal. An
impedance relay relies on the fact that the length of the line (i.e. its distance) for a given conductor
diameter and spacing determines its impedance.

2.2.6 Pilot relaying

Certain relaying principles are based upon information obtained by the relay from a remote location.
The information is usually – although not always – in the form of contact status (open or closed).
The information is sent over a communication channel using power line carrier, microwave or
telephone circuits. We will consider pilot relaying in greater detail in Chapter 6.

2.2.7 Harmonic content

Currents and voltages in a power system usually have a sinusoidal waveform of the fundamental
power system frequency. There are, however, deviations from a pure sinusoid, such as the third
harmonic voltages and currents produced by the generators that are present during normal system
operation. Other harmonics occur during abnormal system conditions, such as the odd harmonics
associated with transformer saturation, or transient components caused by the energization of trans-
formers. These abnormal conditions can be detected by sensing the harmonic content through filters
in electromechanical or solid-state relays, or by calculation in digital relays. Once it is determined
that an abnormal condition exists, a decision can be made whether some control action is required.

2.2.8 Frequency sensing

Normal power system operation is at 50 or 60 Hz, depending upon the country. Any deviation
from these values indicates that a problem exists or is imminent. Frequency can be measured by
filter circuits, by counting zero crossings of waveforms in a unit of time or by special sampling
and digital computer techniques.2 Frequency-sensing relays may be used to take corrective actions
which will bring the system frequency back to normal.

The various input quantities described above, upon which fault detection is based, may be used
either singly or in any combination, to calculate power, power factor, directionality, impedance,
etc. and can in turn be used as relay actuating quantities. Some relays are also designed to respond
to mechanical devices such as fluid level detectors, pressure or temperature sensors, etc. Relays
may be constructed from electromechanical elements such as solenoids, hinged armatures, induction
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discs, solid-state elements such as diodes, SCRs, transistors or magnetic or operational amplifiers,
or digital computers using analog-to-digital converters and microprocessors. It will be seen that,
because the electromechanical relays were developed early on in the development of protection
systems, the description of all relay characteristics is often in terms of electromechanical relays.
The construction of a relay does not inherently change the protection concept, although there are
advantages and disadvantages associated with each type. We will examine the various hardware
options for relays in the following section.

2.3 Relay designs
It is beyond the scope of this book to cover relay designs in any depth. Our interest is to achieve
a general understanding of relay design and construction to assist us in realizing their capabilities,
and limitations. The following discussion covers a very small sample of the possible designs
and is intended only to indicate how parameters required for fault detection and protection can be
utilized by a relay. Specific details can be obtained from manufacturers’ literature. Several excellent
books1,3,4 also provide valuable insights into relay design and related considerations.

2.3.1 Fuses

Before examining the operating principles of relays, we should introduce the fuse, which is the
oldest and simplest of all protective devices. The fuse is a level detector, and is both the sensor and
the interrupting device. It is installed in series with the equipment being protected and operates by
melting a fusible element in response to the current flow. The melting time is inversely proportional
to the magnitude of the current flowing in the fuse. It is inherently a one-shot device since the
fusible link is destroyed in the process of interrupting the current flow. There can be mechanical
arrangements to provide multiple shots as discussed below. Fuses may only be able to interrupt
currents up to their maximum short-circuit rating, or they may have the ability to limit the magnitude
of the short-circuit current by interrupting the flow before it reaches its maximum value. This
current-limiting action is a very important characteristic that has application in many industrial and
low-voltage installations. This will be discussed in more detail in Chapter 4.

The study of fuses and their application is a complex and extensive discipline that is beyond
the scope of this book. However, historically and technically, fuses form the background of pro-
tective relaying, particularly for radial feeders such as distribution lines or auxiliary systems of
power plants. A review of fuse characteristics and performance may be found in the technical
literature,5 and will be discussed further in Chapter 4. The two major disadvantages of fuses are
the following.

1. The single-shot feature referred to above requires that a blown fuse be replaced before service
can be restored. This means a delay and the need to have the correct spare fuses and qualified
maintenance personnel who must go and replace the fuses in the field. It is possible to provide
a multiple-shot feature by installing a number of fuses in parallel and provide a mechanical
triggering mechanism so that the blowing of one fuse automatically transfers another in its place.

2. In a three-phase circuit, a single-phase-to-ground fault will cause one fuse to blow, de-energizing
only one phase, permitting the connected equipment – such as motors – to stay connected to the
remaining phases, with subsequent excessive heating and vibration because of the unbalanced
voltage supply.

To overcome these disadvantages, protective relays were developed as logic elements that are
divorced from the circuit interruption function. Relays are devices requiring low-level inputs
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(voltages, currents or contacts). They derive their inputs from transducers, such as current or voltage
transformers, and switch contacts. They are fault-detecting devices only and require an associated
interrupting device – a circuit breaker – to clear the fault. Segregating the fault detection function
from the interruption function was a most significant advance, as it gave the relay designer an abil-
ity to design a protection system that matched the needs of the power system. This separation of
protection design from power system design was further aided by standardization of input devices,
which will be discussed in detail in Chapter 3.

2.4 Electromechanical relays
The early relay designs utilized actuating forces that were produced by electromagnetic interaction
between currents and fluxes, much as in a motor. Some relays were also based upon the forces
created by expansion of metals caused by a temperature rise due to a flow of current. In electrome-
chanical relays, the actuating forces were created by a combination of the input signals, stored
energy in springs and dashpots. The plunger-type relays are usually driven by a single actuating
quantity, while the induction-type relays may be activated by single or multiple inputs. Most mod-
ern relays are still electromechanical devices, with an induction disc or cup, or a plunger-type
construction, although solid-state and digital relays are rapidly being introduced, particularly at the
higher system voltages.

2.4.1 Plunger-type relays

Consider a round moving plunger placed inside a stationary electromagnet, as shown in Figure 2.7.
With no current in the coil, the plunger is held partially outside the coil by the force �s produced
by a spring. Let x be the position of the plunger tip inside the upper opening of the coil, as shown
in the figure. When the coil is energized by a current i, and saturation phenomena are neglected,
the energy W(λ, i) and the co-energy W ′(i, x) stored in the magnetic field are given by6

W(λ, i) = W ′(i, x) = 1

2
Li2; L = µ0πd2N2

4(x + gd/4a)
(2.1)

where λ is the flux linkage of the coil and L is the inductance of the coil. The force which tries to
pull the plunger inside the coil is given by

�m = ∂

∂x
W ′(i, x) = K

i2

(x + gd/4a)2
(2.2)

where K is a constant depending upon the constants of the electromagnetic circuit and a is the
height of the pole-piece as shown in Figure 2.7. The plunger moves when �m exceeds �s. If the
current is sinusoidal with an r.m.s. value of I , the average force is proportional to I 2, and the value
of the current (Ip) at which the plunger just begins to move – known as the pickup setting of the
relay – is given by

Ip =
√

�s/K × (x0 + gd/4a) (2.3)

where x0 is the displacement of the plunger when no current is flowing in the coil. The operating
time of the relay depends upon the mass of the plunger, and can be made to suit a particular need.
The general shape of the relay characteristic, i.e. its operating time plotted as a function of the
current through the coil, is as shown in Figure 2.8. The plunger travels some distance, from x0 to
x1, before it closes its contacts and hits a stop. The energizing current must drop below a value
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Figure 2.7 Plunger-type relay
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Figure 2.8 Operating time versus current of a plunger relay

Id, known as the dropout current, before the plunger can return to its original position x0. The
dropout current is given by

Id =
√

�s/K × (x1 + gd/4a) (2.4)

As xl is smaller than x0, the dropout current is always smaller than the pickup current. This is a very
important – and common – feature of relays, and has significant implications as far as application
of relays is concerned. We will return to a discussion of this point a little later.

Example 2.1

Consider a plunger-type relay with a pickup current of 5 A r.m.s. The pole face has a height of
1.5 cm, while the spring holds the plunger 1 cm out of the coil when the current is below the
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pickup value. The air gap g is 0.2 cm, and gd/4a = 0.05. Let the spring force be a constant, with
a value of 0.001 Newtons (N), and let the mass of the plunger be 0.005 kg. Let the travel of the
plunger be 3 mm before it hits a stop and closes its contacts. The ratio of the dropout current to
the pickup current is

Id

Ip
= (0.05 + 0.7)

(0.05 + 1.0)
= 0.714

For a normalized current of magnitude I (i.e. actual current divided by the pickup current), the
accelerating force on the plunger is

� = �m − �s = K
(I × Ip)

2

(x + gd/4a)2
− �s

Substituting for �s from equation (2.3), and using centimeters for all linear dimensions, gives

� = �s

[
(x0 + gd/4a)2

(x + gd/4a)2
I 2 − 1

]
= 0.001 ×

[
(1.05)2

(0.05 + x)2
I 2 − 1

]

The equation of motion for the plunger is

mẍ = �

where m is the mass of the plunger, and the force acts to reduce the displacement x:

0.005ẍ = −0.001 ×
[

(1.05)2

(0.05 + x)2
I 2 − 1

]

This equation can be integrated twice to provide the operating time of the relay, i.e. the time
it takes the plunger to travel from x0 to x1. However, because of the nature of the dependence
of the force on x the integrals in question are elliptic integrals, and must be evaluated numeri-
cally for given displacements. We may calculate an approximate result by using a constant force
equal to the average, taken over its travel from x0 to x1. For x equal to 1 cm, the force is
0.001(I 2 − 1)N; for x equal to 0.7 cm, the force is 0.001(1.96I 2 − 1)N. Therefore the average
force is 0.001(1.48I 2 − 1)N. Using this expression for the force, the approximate equation of
motion for the plunger is

0.005ẍ = −0.001 × (1.48I 2 − 1)

and integrating this twice, the operating time (in seconds) of the relay is

t =
√

10(x0 − x1)

(1.48I 2 − 1)
=

√
0.3

(1.48I 2 − 1)

The above formula is not accurate at I = 1.0 (i.e. at the pickup setting) because of the approxima-
tions made in the force expression. However, it does show the inverse-time behavior of the relay
for larger values of the current. At or near the pickup values, the characteristic is asymptotic to the
pickup setting, as shown in Figure 2.8.
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Notice that the relay characteristic shown in Figure 2.8 has as its abscissa the ratio of the
actual current to the pickup current. This method of normalization is quite common in defining the
operating characteristic of relays. Most relays also have several taps available on the winding of
the actuating coil, so that the pickup current can be adjusted over a wide range. For example, a
plunger-type overcurrent relay may be available with tap settings of, for example, 1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 8.0, 10.0 A. Alternatively, the pickup can be controlled by adjusting the plunger within
the coil, i.e. the value of x in Figure 2.7. Plunger-type relays will operate on DC as well as on AC
currents. Hinged armature relays, also known as clapper-type relays, have similar characteristics,
but have a smaller ratio of the dropout to pickup currents.

2.4.2 Induction-type relays

These relays are based upon the principle of operation of a single-phase AC motor. As such, they
cannot be used for DC currents. Two variants of these relays are fairly standard: one with an
induction disc and the other with an induction cup. In both cases, the moving element (disc or cup)
is equivalent to the rotor of the induction motor. However, in contrast to the induction motor, the
iron associated with the rotor in the relay is stationary. The moving element acts as a carrier of
rotor currents, while the magnetic circuit is completed through stationary magnetic elements. The
general constructions of the two types of relay are shown in Figures 2.9 and 2.10.

Induction-type relays require two sources of alternating magnetic flux in which the moving
element may turn. The two fluxes must have a phase difference between them; otherwise, no
operating torque is produced. Shading rings mounted on pole faces may be used to provide one of
the two fluxes to produce motor action. In addition to these two sources of magnetic flux, other
sources of magnetic flux – such as permanent magnets – may be used to provide special damping
characteristics. Let us assume that the two currents in the coils of the relay, i1 and i2, are sinusoidal:

i1(t) = Im1 cos ωt (2.5)

and

i2(t) = Im2 cos(ωt + θ) (2.6)

If Lm is the mutual inductance between each of the coils and the rotor, each current produces a
flux linkage with the rotor given by

λ1(t) = LmIm1 cos ωt (2.7)

I1 I2

spring
pivot

pivot

contacts

disc

time dial

Figure 2.9 Principle of construction of an induction disc relay. Shaded poles and damping magnets are omitted
for clarity
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Figure 2.10 Moving cup induction relay

and

λ2(t) = LmIm2 cos(ωt + θ) (2.8)

Each of these flux linkages in turn induces a voltage in the rotor, and since the rotor is a metallic
structure with low self-inductance,3 a rotor current in phase with the induced voltages flows in the
rotor. Assuming the equivalent rotor resistance to be Rr, the induced rotor currents are given by

ir1(t) = 1

Rr

dλ1

dt
= −ωLmIm1

Rr
sin ωt (2.9)

ir2(t) = 1

Rr

dλ2

dt
= −ωLmIm2

Rr
sin(ωt + θ) (2.10)

Each of the rotor currents interacts with the flux produced by the other coil, producing a force.
The two forces are in opposite directions with respect to each other, and the net force, or, what
amounts to the same thing, the net torque τ , is given by

τ ∝ (λ1ir2 − λ2ir1) (2.11)

Substituting for the flux linkages and the rotor currents from equations (2.7)–(2.10), and absorbing
all the constants in a new constant K , we can write

τ = KIm1Im2[cos ωt sin(ωt + θ) − cos(ωt + θ) sin ωt] (2.12)

or, using a trigonometric identity,

τ = KIm1Im2 sin θ (2.13)

The direction of the torque is from the coil with the leading current to the one with the lagging
current.3
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I1 I2

I Zshunt

Figure 2.11 Phase shift for torque production

Note that the net torque is constant in this case, and does not change with time, nor as the disc (or
the cup) turns. If the phase angle between the two coil currents is zero, there is no torque produced.
This is in keeping with the theory of the single-phase induction motor.6 The induction-type relay
is a very versatile device. By an appropriate choice of the source of the two coil currents, this
relay could be made to take on the characteristic of a level detector, a directional relay or a ratio
relay. For example, by using the same current to flow through the two coils, one could make a
level detector, provided one arranged to produce a phase shift between the current carried by one
of the coils and the original current. This is quite easily done by placing in parallel with one of the
coils a shunt with an impedance angle that is different from that of the coil. This is illustrated in
Figure 2.11.

The current in the first coil I and the current in the second coil I1 have a phase difference
between them, and the relay will produce a torque. Since both coil currents are proportional to the
current I , the net torque produced by this relay is

τ = K1I
2 (2.14)

where the constant Kl has been suitably modified to include the term sin θ , which is a constant
for the relay. A spring keeps the disc from turning. When the torque produced by the current
(the pickup current of the relay) just exceeds the spring torque τS, the disc begins to turn. After
turning an angle ϕ (another constant of the relay design), the relay closes its contacts. As the torque
does not depend upon the angular position of the rotor, the current at which the spring overcomes
the magnetic torque and returns the relay to open position (the dropout current of the relay) is
practically the same as the pickup current.

Example 2.2

Consider an induction disc relay, designed to perform as an overcurrent relay. The spring torque
τS is 0.001 N m and the pickup current of the relay is 10 A. The constant of proportionality K1 is
given by

K1 = 0.001/102 = 10−5

For a normalized current (times pickup) I , the magnetic torque is given by

τm = 10−5 × (10I )2 = 10−3I 2

The accelerating torque on the disc is the difference between the magnetic torque and the spring
torque:

τ = τm − τS = 10−3(I 2 − 1)
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If the moment of inertia of the disc is 10−4 kg m2, the equation of motion of the disc is

10−4θ̈ = 10−3(I 2 − 1)

where θ is the angle of rotation of the disc. θ starts at 0 and it stops at ϕ, where the relay closes
its contacts. Let ϕ be 2′, or 0.035 rad. Integrating the equation of motion twice gives

θ = 5(I 2 − 1)t2

and the operating time (in seconds) of the relay is

T =
√

0.035

5(I 2 − 1)

The relay operating characteristic is plotted in Figure 2.12, and it is seen to be an inverse-time
relationship.

1.0 10.0

current (times pickup)

time(s)

5.0

Figure 2.12 Inverse-time characteristic of an induction disc overcurrent relay

Induction disc- or cup-type relays may be energized from voltage sources to produce under- or
overvoltage relays. Also, by providing one of the coils with a current source and the other coil with
a voltage source, the relay may be made to respond to a product of current and voltage inputs. It
should be remembered that the phase angle between the currents in the current coil and the voltage
coil appears in the torque equation. The current in the voltage coil generally lags the voltage by
an angle equal to the impedance angle of the voltage coil, while the current coil carries the actual
input current. If the angle between the voltage and the current in the voltage coil is −ϕcp, the
torque is proportional to VI sin(Bθθ + ϕ ∼ p). In general, all of these combinations of energizing
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quantities may be applied to several coils, and a composite torque expression for the accelerating
torque can be obtained:

τ = τm − τS = K1I
2 + K2V

2 + K3IV sin(θ + ϕ) − τS (2.15)

By selecting appropriate values for the various constants in equation (2.15), a very wide range of
relay characteristics can be obtained. This is explained in Example 2.3.

Example 2.3

Consider the choice of K3 equal to zero in equation (2.15), and that the control spring torque τS is
negligible. When the relay is on the verge of operation (i.e. at its balance point) τ = 0, and, if the
voltage-induced torque is arranged to be in the opposite direction to that produced by the current
(i.e. replacing K2 by −K2), then

|Z| = V

I
=

√
K1

K2

which is the equation of a circle in the R–X plane, as shown in Figure 2.13(a). This is known as
an impedance or ohm relay. The torque is greater than this pickup value when the ratio of voltage
to current (or impedance) lies inside the operative circle. By adding a current-carrying coil on the
structure carrying a current proportional to the voltage, the torque equation at the balance point is

0 = K1I
2 − K2(V + K4I )2

X

R

(a) (b) (c)

X

R
θ = − φ

Zr

Z

X

R

θ + φ− φ

θ

Figure 2.13 Characteristics obtained from the universal relay equation: (a) impedance relay; (b) directional
relay; (c) mho relay

or, in the R − X plane,

|Z + K4| =
√

K1

K2

which is an equation of a circle with its center offset by a constant.
Now consider the choice of Kl , K2 and τS equal to zero in equation (2.15). These choices

produce a balance point equation

V I sin(θ + ϕ) = 0
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or, dividing through by I 2, and assuming that I is not zero, the balance point equation is

Z sin(θ + ϕ) = 0

This is the equation of a straight line in the R–X plane, passing through the origin, and at an angle
of −ϕ to the R axis, as shown in Figure 2.13(b). This is the characteristic of a directional relay.
Finally, by setting K1 and τS equal to zero, and reversing the sign of the torque produced by the
VI term, the torque equation at the balance point becomes

0 = K2V
2 − K3V I sin(θ + ϕ)

or, dividing through by I 2 – and assuming that I is not zero – the balance point equation is

|Z| = K3

K2
sin(θ + ϕ)

This is the equation of a circle passing through the origin in the R–X plane, with a diameter of
K3/K2. The diameter passing through the origin makes an angle of maximum torque of −ϕ with the
X axis, as shown in Figure 2.13(c). This is known as an admittance or a mho relay characteristic.

2.5 Solid-state relays
The expansion and growing complexity of modern power systems have brought a need for protective
relays with a higher level of performance and more sophisticated characteristics. This has been
made possible by the development of semiconductors and other associated components which can
be utilized in relay designs, generally referred to as solid-state or static relays. All of the functions
and characteristics available with electromechanical relays can be performed by solid-state devices,
either as discrete components or as integrated circuits. Solid-state relays use low-power components
with rather limited capability to tolerate extremes of temperature and humidity, or overvoltages and
overcurrents. This introduces concerns about the survivability of solid-state relays in the hostile
substation environment. Indeed, early designs of solid-state relay were plagued by a number of
failures attributable to the harsh environment in which they were placed. Solid-state relays also
require independent power supplies, since springs and driving torques from the input quantities
are not present. These issues introduce design and reliability concerns, which do not exist to the
same degree in electromechanical relays. However, there are performance, and perhaps economic,
advantages associated with the flexibility and reduced size of solid-state devices. In general, solid-
state relays are more accurate. Their settings are more repeatable and hold to closer tolerances. Their
characteristics can be shaped by adjusting logic elements as opposed to the fixed characteristics of
induction discs or cups. This is a significant advantage where relay settings are difficult, because
of unusual power system configurations, or heavy loads. Solid-state relays are not affected by
vibration or dust, and often require less mounting space, and need not be mounted in a particular
orientation. Solid-state relays are designed, assembled and tested as a system. This puts the overall
responsibility for proper operation of the relays on the manufacturer. In many cases, especially
when special equipment or expertise for assembly and wiring is required, this results in more
reliable equipment at a lower cost.

Solid-state relay circuits may be divided into two categories: analog circuits that are either fault-
sensing or measuring circuits, and digital logic circuits for operation on logical variables. There is
a great variety of circuit arrangements which would produce a desired relaying characteristic. It is
impossible, and perhaps unnecessary, to go over relay circuit design practices that are currently in
use. We will describe some examples of circuits which can provide desired relay characteristics.
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2.5.1 Solid-state instantaneous overcurrent relays

Consider the circuit shown in Figure 2.14. The input current I is passed through the resistive shunt
R, full-wave rectified by the bridge rectifier B, filtered to remove the ripple by the R–C filter and
applied to a high-gain summing amplifier A. The other input of the summing amplifier is supplied
with an adjustable reference voltage er. When the input on the positive input of the summing
amplifier exceeds the reference setting, the amplifier output goes high, and this step change is
delayed by a time-delay circuit, in order to provide immunity against spurious transient signals
in the input circuit. Waveforms at various points in this circuit are shown in Figure 2.15 for an
assumed input fault current of a magnitude above the pickup setting er of the relay. By making the
time-delay circuit adjustable, and by making the amount of delay depend upon the magnitude of
the input current, a time-delay overcurrent relay characteristic can be obtained.

2.5.2 Solid-state distance (Mho) relays7

It was shown in Example 2.3 that a mho characteristic is defined by the equation Z = (K3/K2)

sin(θ + ϕ), where (K3/K2) is a constant for a relay design. Using the symbol Zr for (K3/K2), the
performance equation of the mho relay becomes Z = Zr sin(θ + ϕ). Multiplying both sides by the
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I

Figure 2.14 Possible circuit configuration for a solid-state instantaneous overcurrent relay
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Figure 2.15 Waveforms of a solid-state instantaneous overcurrent relay
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Figure 2.16 Distance protection of a transmission line
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Figure 2.17 Phasor diagram for a mho distance relay

relay input current I and replacing IZ by E (Figure 2.16), the voltage at the relay location, the
performance equation is

E − IZr sin(θ + ϕ) = 0 (2.16)

The mho characteristic may be visualized as the boundary of the circle, with all points inside the
circle leading to a trip and all points outside the circle producing a no-trip – or a block – signal.
The points external to the circle are such that the phase angle between the phasor E and the phasor
(IZr − E) is greater than 90◦, while for all the points inside the circle the angle between those
two phasors is less than 90◦ (Figure 2.17). Conversely, if the angle between (E − IZr) and E is
greater than 90◦, the fault is inside the zone of the relay; if this angle is smaller than 90◦, the fault
is outside the zone.

An analog circuit may be designed to measure the angle between the two input waveforms
corresponding to those two phasors. For example, consider the circuit shown in Figure 2.18. The
relay input current is passed through a shunt with an impedance Zr. This is known as a replica
impedance. The negative of this signal, as well as the relay input voltage signal, are fed to high-
gain amplifiers, which serve to produce rectangular pulses with zero-crossing points of the original
sinusoidal waveform retained in the output, as shown in Figure 2.19. The positive and negative
portions of these square waves are isolated by two half-wave bridges, and supplied to a logic AND
gate. Assuming steady-state sine wave current and voltage inputs, the outputs of the two AND gates
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Figure 2.18 Possible circuit configuration for a solid-state distance relay

I

IZr

E

e1

e2

e3

e4

e5

e6

e7

e8

Figure 2.19 Waveforms in the circuit of Figure 2.18

are at logic level 1 for the duration equal to the phase angle between the phasors −IZr and E. If
the angle is greater than 90◦, i.e. if the duration of the outputs of these two AND gates is greater
than 4.16 ms (for a 60 Hz power system), the relay should operate. This condition may be tested by
using an edge-triggered 4.16 ms timer, and by checking if the input and output of the timer are ever
at logic 1 level simultaneously. By using an AND gate on the input and the output signals of the
timer, a logic 1 output of this AND gate would indicate an internal fault, while for external faults
this output would remain at logic 0. Waveforms at various points of this circuit are also shown in
Figure 2.19. Similar comparisons may also be made on the negative half-cycles of the signals.

This is a very simplified analysis of the circuit, and issues of transient components in the input
signals, response to noise pulses in the signals and other practical matters have not been discussed.
A great many more features must be included in the relay design for this to be a practical relay.
However, our discussion should give some idea as to how a given relay characteristic may be
produced in a solid-state relay.

As is evident from the previous discussion, a substantial part of a solid-state relay design includes
logic circuits commonly found in digital circuit design. Many of the logic circuit elements, and the
symbols used to represent them, are included in an IEEE standard.8
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2.6 Computer relays
The observation has often been made that a relay is an analog computer. It accepts inputs, processes
them electromechanically, or electronically, to develop a torque, or a logic output representing a
system quantity, and makes a decision resulting in a contact closure or output signal. With the advent
of rugged, high-performance microprocessors, it is obvious that a digital computer can perform the
same function. Since the usual relay inputs consist of power system voltages and currents, it is
necessary to obtain a digital representation of these parameters. This is done by sampling the analog
signals, and using an appropriate computer algorithm to create suitable digital representations of
the signals. This is done by a digital filter algorithm. The functional blocks shown in Figure 2.20
represent a possible configuration for a digital relay.2

The current and voltage signals from the power system are processed by signal conditioners
consisting of analog circuits, such as transducers, surge suppression circuits and anti-aliasing filters,
before being sampled and converted to digital form by the analog-to-digital converter. The sampling
clock provides pulses at sampling frequency. Typical sampling frequencies in use in modern digital
relays vary between 8 and 32 times the fundamental power system frequency. The analog input
signals are generally frozen by a sample-and-hold circuit, in order to achieve simultaneous sampling
of all signals regardless of the data conversion speed of the analog-to-digital converter. The relaying
algorithm processes the sampled data to produce a digital output. The algorithm is, of course, the
core of the digital relay, and a great many algorithms have been developed and published in the
literature. It is not our purpose to examine or evaluate any algorithms. The book by Phadke and
Thorp2 contains an exhaustive treatment of the subject, and the interested reader may wish to
consult it for additional information about computer-relaying algorithms.

In the early stages of their development, computer relays were designed to replace existing
protection functions, such as transmission line, transformer or bus protection. Some relays used
microprocessors to make the relaying decision from digitized analog signals, others continued to
use analog concepts to make the relaying decision and digital techniques for the necessary logic
and auxiliary functions. In all cases, however, a major advantage of the digital relay was its ability
to diagnose itself, a capability that could only be obtained in an analog relay – if at all – with great
effort, cost and complexity. In addition, the digital relay provides a communication capability that
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Figure 2.20 Major subsystems of a computer relay
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allows it to warn system operators when it is not functioning properly, permits remote diagnostics,
and possible correction, and provides local and remote readout of its settings and operations.

As digital relay investigations continued, and confidence mounted, another dimension was added
to the reliability of the protective system. The ability to adapt itself, in real time, to changing
system conditions is an inherent feature in the software-dominated digital relay.9 These changes
can be initiated by local inputs or by signals sent from a central computer. The self-diagnostic
capability, the hierarchical nature and data-sharing abilities of microprocessors, and the ability to
adapt settings and other characteristics to actual system conditions in real time, make digital relays
the preferred present-day protective systems. As computer relays became the protection system
of choice, the problem of mixing analog and digital devices within a common overall protection
system, and the lack of standardization between manufacturers had to be addressed. Chapter 13
(section 13.6) discusses this problem and its solution.

2.7 Other relay design considerations
2.7.1 Contact definition

In an electromechanical relay, the operating mechanism is directed to physically move a contact
structure to close or open its contact. A relay may operate and either open or close the contacts
depending on the circumstances. Most relays have a spring or use gravity to make the contact
assume a given state when the relay is completely de-energized. A contact that is closed under
this condition, often referred to as its condition ‘on-the-shelf’, is said to be a ‘normally closed’
or a ‘b’ contact. If the contact is open ‘on-the-shelf’, it is referred to as a ‘normally open’ or
an ‘a’ contact. It is important to note that the word ‘normally’ does not refer to its condition in
normal operation. An auxiliary relay with ‘a’ and ‘b’ contacts, if de-energized in service, would
have its contacts as described; if the relay, however, is normally energized in service, the contact
description would be the opposite. For example, a fail-safe relay that stays energized when the
power is on and drops out with loss of power would have its ‘a’ contact closed in service. It is
also conventional to show the contacts on schematic (known as elementary diagrams) or wiring
diagrams in the on-the-shelf condition regardless of the operation of the relay in the circuit. These
contact definitions are illustrated in Figure 2.21.

2.7.2 Targets

Protective relays are invariably provided with some indication that shows whether or not the relay
operated. In electromechanical relays this indication is a target, i.e. a brightly colored flag that
becomes visible upon operation of the relay. These targets can be electrical or mechanical. An

‘a’‘b’

Figure 2.21 Conventions for contact status
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electrical target is usually preferred, because it is activated by the trip current, and shows that the
trip current actually flowed. There are some instances, however, when a mechanical target is useful.
For example, in a trip circuit with several logic elements in series, such as separate overcurrent
and directional contacts, a mechanical target will show which element operated, even if all did not
operate and no trip occurred.

Solid-state and digital relays use more complex targeting schemes which allow one to trace
the tripping sequence more completely. For example, the logic elements associated with phase or
ground fault detection, timing elements and the tripping sequence are all capable of being brought
to indicating lights, which are used as targets.

2.7.3 Seal-in circuit

Electromechanical relay contacts are designed as a part of the overall relay design, which places
restrictions on the size and mass of the contacts. They are not designed to interrupt the breaker trip
relay coil current. In order to protect the relay contacts against damage, some electromechanical
relays are provided with a holding mechanism. This is a small electromagnet whose coil is in series
with the relay contacts and whose contact is in parallel with them. The electromagnet is energized,
closing its contacts in parallel with the relay contact as soon as the trip coil is energized, and drops
out when the circuit breaker opens. This allows the circuit breaker ‘a’ switch to de-energize the
trip coil and the holding coil. Figure 2.22 shows details of a seal-in circuit.

2.7.4 Operating time

Operating time is a very important feature which can be used to amend any basic relaying function
in order to reach a specific goal. Examples of using time delays in protection system design will
be found in many of the following chapters. Time delay can be an integral part of a protective
device, or may be produced by a timer. For example, the operating time of a fuse or an overcurrent
relay is an inverse function of the operating current, i.e. the greater the current, the shorter is the
operating time. The time delay is an integral part of the fuse or overcurrent relay and varies with
the magnitude of the operating quantity. A clock or a pneumatic timer may be used as an auxiliary
relay, and will operate in its set time regardless of the operating quantities which actuate the main
relay. Figure 2.23 shows the operating characteristics of these two timing applications.

2.7.5 Ratio of pickup to reset

The pickup and dropout (also known as the reset) currents of a relay have already been mentioned.
A characteristic that affects some relay applications is the relatively large difference between the
pickup and dropout value. For instance, a plunger-type relay will shorten its air gap as it picks up,
permitting a smaller magnitude of coil current to keep it picked up than it took to pick it up. If the
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Figure 2.22 Principle of a seal-in relay circuit (TC, trip coil)
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Figure 2.23 Time-delay relays: (a) integral time-delay relay; (b) external time-delay relay added to the circuit

relay trips a circuit breaker, the coil current drops to zero so there is no problem. If, however, a
low reset relay is used in conjunction with other relays in such a way that the coil current does not
go to zero, the application should be carefully examined. When the reset value is a low percentage
of the pickup value, there is the possibility that an abnormal condition might cause the relay to
pick up but a return to normal conditions might not reset the relay.

2.8 Control circuits, a beginning
We will now begin a discussion of the station battery-powered control circuits which are used to
perform the actual tripping and reclosing functions in a substation. The output contacts of relays,
circuit breakers and other auxiliary relays, as well as the circuit breaker trip coils and timers and
reclosers, are connected to the battery terminals. Recall the discussion of ‘a’ and ‘b’ contacts in
section 2.7. The status of contacts in a control circuit is always shown in their ‘on-the-shelf’ state.
The battery terminals are shown as a positive DC bus and a negative DC bus. The DC circuits are
usually isolated from ground. A test lamp circuit is arranged in a balanced configuration as shown
in Figure 2.24 with both lamps burning at half of full brilliance. If either of the battery buses is
accidentally grounded, the indicating light connected to the grounded bus is extinguished, and the
other light burns at full brilliance. If the accidental ground has some resistance, the lamp’s intensity
will be proportional to the fault resistance, i.e. the lamp associated with the faulted bus will be
less brilliant than the lamp associated with the unfaulted bus. A series alarm relay can be added
(devices 30+ and 30− in Figure 2.24), which can actuate an audible alarm in the station or transmit
the alarm to a control center so maintenance personnel can inspect the wiring and eliminate the
accidental ground. It is extremely important to eliminate the first accidental ground even though
it does not create a fault on the battery. Should a second fault occur, it would short-circuit the
battery, and produce a catastrophic failure.

Now consider the breaker trip coil (TC) connection in the control circuit. The trip coil is usually
connected in series with a circuit breaker auxiliary ‘a’ contact to the negative DC bus. The breaker
is normally closed when the associated power equipment is energized, which ensures that the
trip coil is normally connected to the negative bus. As there is relay contact corrosion due to
electrolytic action at the positive terminals, this practice avoids any problems in the trip coil
terminal connections.3 The seal-in coil and the target coil are in series with the trip coil, and the
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Figure 2.24 Control circuit showing various contacts and test circuit

entire chain is connected to the positive DC bus through the contacts of the tripping relay. As
mentioned in section 2.7, the contacts of the seal-in relay bypass the tripping relay output contacts
to protect it from accidental opening while carrying the trip coil current. The breaker trip coil
current is interrupted by the circuit breaker auxiliary ‘a’ contact.

We will develop the connections of the DC control circuit throughout the rest of the book, as
we introduce other relaying functions and auxiliary relays. It should be apparent that the diagram
for a fully developed relay system will soon become quite complicated. In order to simplify the
labeling on the control circuit, most relays and control devices found in substations are given a
standard designation number. Thus, a circuit breaker device function number is 52; an instantaneous
overcurrent relay is 50; while a differential relay is 87. Other standard device numbers can be found
in the literature4,10 (see Appendix A). However, we will continue to use the device names in our
DC control circuit development for the sake of clarity.

2.9 Summary
In this chapter we have very briefly examined the general operating and design considerations of
some typical protective relays. Our purpose is not to cover any relay design or relay construction
beyond that which would give us an understanding of its operating principles, so we will better
understand the specific applications as they are discussed in later chapters.

We have identified the primary fault-detecting parameters of level detection, magnitude and phase
angle comparison and the differential principle. We have examined fundamental relay construction
of electromechanical, solid-state and digital relays. Finally, we have introduced DC control circuit
diagrams as an aid in understanding how the various elements of a protection system combine to
provide the desired protection function.

Problems
2.1 Consider the transmission line connected to a generator as shown in Figure 2.25. The

impedance data for the generator and the line are given in the figure. A relay to be located
at terminal A is to detect all faults on the transmission line. Assume a pre-fault voltage of
1.0 pu, and allow for a possible steady-state overvoltage of 1.2 pu during normal operation.
Determine the pickup settings for an overcurrent relay and an undervoltage relay to be used
as fault detectors for this circuit. Allow a sufficient margin between the normal conditions
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Figure 2.25 System diagram for problem 2.1

and the pickup settings to accommodate any inaccuracies in relay performance. Assume the
maximum load current to be 1.0 pu.

2.2 A phase angle detector is to be installed at location A in the power system shown in
Figure 2.26 to detect faults between the buses A and B. Determine the appropriate voltage and
current for this detection function for the case of a b-to-c fault. Show the phase relationship
for a fault between the buses A and B, as well as for a fault behind the relay at bus
A. Assume reasonable values of various reactances and voltages, and construct a phasor
diagram to illustrate the cases of the two types of fault. What voltage and current would be
appropriate to detect a forward fault between phase and ground? Also, construct a phasor
diagram showing the phase relationship between the phase a current and the current in the
transformer neutral for the case of the phase-to-ground fault. Can the neutral current be used
as a reference phasor for direction detection?

A B

a

b

c

Figure 2.26 System diagram for problem 2.2

2.3 Derive equation (2.2); and determine the value of the constant K for the relay structure
shown in Figure 2.7. You may assume that the steel core of the electromagnet has infinite
permeability. Derive the inductance for the coil, and then use equation (2.1) to derive the
required result.

2.4 Write a computer program to integrate the equation of motion of the plunger in Example 2.1
without making the approximation of a constant force on the plunger. You may use Euler’s
integration formula, or any other method of numerical integration. Plot the result as a curve
showing the operating time of the relay as a function of the current. It should produce an
asymptotic shape for currents near the pickup value.

2.5 A plunger-type relay is as shown in Figure 2.7. The inductance of the coil when the plunger
is at its de-energized position is 2.0 H, while it is 2.05 H when the plunger has completed
its travel of 2 mm. The height of the pole-piece a is 1 cm. What is the ratio of its dropout
to pickup current?

2.6 Starting from equation (2.12), derive equation (2.13). Under what conditions is the torque
produced by the relay equal to zero?
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2.7 Prove that Z sin(θ + ϕ) = 0 is an equation of a straight line in the R–X plane. What is the
slope of this line? Recall that this equation is obtained by dividing the torque equation by
I . Thus, the straight-line characteristic is not valid for I = 0. If the spring constant is not
negligible, show that the performance equation describes a circle through the origin, with the
diameter of the circle depending upon the magnitude of the voltage.3 Even for rather small
values of the voltage, the diameter of the circle is so large that a straight-line approximation
is still valid.

2.8 Show that the equation |Z + K4| = √
(K1/K2) in Example 2.3 describes a circle in the R–X

plane. Where is the origin of this circle? What is the radius of the circle? This characteristic
is known as the offset-impedance relay.

2.9 Derive the equation of the mho characteristic given in Example 2.3. Show that the char-
acteristic is a circle passing through the origin, and that its diameter is independent of the
voltage or current. What is the length of the diameter? What angle does the diameter passing
through the origin make with the R axis?

2.10 Consider the power system shown in Figure 2.27. The pu impedances of the two line sections
and the generator are shown in the figure. Concentrating on three-phase faults only, assume
the relay at bus A is set to pickup for a fault at bus C. Assuming that the pickup setting is
equal to one-third of the fault current, what is the pickup setting of this relay? If the dropout
to pickup ratio for the relay is 0.1, what is the maximum load current at bus B for which
the relay will drop out after the fault at bus C is cleared by the protection at B? Recall that
after the protection at B clears the fault at C, the current seen by the relay at A is equal to
the load connected to bus B, and if the relay does not drop out at this current level, the relay
at A will trip its breaker on the load current.

A B
R

A C

(j0.1) (j0.2) (j0.2)

Figure 2.27 System diagram for problem 2.10

2.11 Show that equation (2.16) is the equation of a circle in the voltage phasor plane. Show
that on the boundary of the circle the angle between E and (E − IZr) is 90◦. What is the
diameter of this circle, and what angle does the diameter passing through the origin make
with the horizontal axis?
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3
Current and voltage transformers

3.1 Introduction
The function of current and voltage transformers (collectively known as transducers) is to transform
power system currents and voltages to lower magnitudes, and to provide galvanic isolation between
the power network and the relays and other instruments connected to the transducer secondary
windings. The ratings of the secondary windings of transducers have been standardized, so that a
degree of interchangeability among different manufacturers’ relays and meters can be achieved. In
the USA and several other countries, current transformer secondary windings are rated for 5 A,
while in Europe a second standard of 1 A secondary is also in use. Voltage transformer secondary
windings are rated at 120 V for phase-to-phase voltage connections, or, equivalently, at 69.3 V for
phase-to-neutral connections. These are nominal ratings, and the transducers must be designed to
tolerate higher values for abnormal system conditions. Thus, current transformers are designed to
withstand fault currents (which may be as high as 50 times the load current) for a few seconds, while
voltage transformers are required to withstand power system dynamic overvoltages (of the order of
20 % above the normal value) almost indefinitely, since these types of overvoltage phenomena may
last for long durations. Current transformers are magnetically coupled, multi-winding transformers,
while the voltage transformers, in addition to the magnetically coupled voltage transformer, may
include a capacitive voltage divider for higher system voltages. In the latter case, the device is known
as a coupling capacitor voltage transformer (CCVT), and when the transformer primary winding
is directly connected to the power system it is known as a voltage transformer (VT). Current and
voltage transformers may be free-standing devices, or they may be built inside the bushing of some
power apparatus (such as a circuit breaker or a power transformer) with a grounded tank. Newer
types of transducers using electronic and fiber-optic components will be described briefly later in
this chapter.

The function of transducers is to provide current and voltage signals to the relays (and meters)
which are faithful reproductions of the corresponding primary quantities. Although modern trans-
ducers do so quite well in most cases, one must be aware of the errors of transformation introduced
by the transducers, so that the performance of the relays in the presence of such errors can be
assessed.

3.2 Steady-state performance of current transformers
Current transformers (CTs) are single primary, single secondary, magnetically coupled transformers,
and, as such, their performance can be calculated from an equivalent circuit commonly used in

P ower System R elaying, Third Edition.  Stanley H . H or owitz and A r un G . Phadke
 2008 Resear ch Studies Pr ess L im ited. ISBN: 978-0-470-05712-4
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Zm Zb

Zx2

(a) (b)

I2
I'1

E2
Eb

ZbZ'm

Z'x1
1:n Zx2

Figure 3.1 CT equivalent circuit and its simplification

the analysis of transformers.1 Some current transformers are used for metering, and consequently
their performance is of interest during normal loading conditions. Metering transformers may have
very significant errors during fault conditions, when the currents may be several times their normal
value for a very short time. Since metering functions are not required during faults, this is not
significant. Current transformers used for relaying are designed to have small errors during faulted
conditions, while their performance during normal steady-state operation, when the relay is not
required to operate, may not be as accurate. In spite of this difference, all (measuring or relaying)
CT performance may be calculated with the same equivalent circuit.2 The different values of
equivalent circuit parameters are responsible for the difference in performance between the various
types of CTs.

Consider the equivalent circuit shown in Figure 3.1(a). Since the primary winding of a CT is
connected in series with the power network, its primary current I ′

1 is dictated by the network.
Consequently, the leakage impedance of the primary winding Z′

x1 has no effect on the performance
of the transformer, and may be omitted. Referring all quantities to the secondary winding, the
simplified equivalent circuit of Figure 3.1(b) is obtained. Using the turns ratio (l : n) of the ideal
transformer of Figure 3.1(a) one can write

I1 = I ′
1

n
(3.1)

Zm = n2Z′
m (3.2)

The load impedance Zb includes the impedance of all the relays and meters connected in the
secondary winding, as well as that of the leads connecting the secondary winding terminals of the
CT located in the substation yard to the protection equipment, which is located in the control house
of the substation. Often, the lead impedance is a significant part of the total load impedance.

The load impedance Zb is also known as the burden on the CT, and is described as a burden
of Zb ohms, or as a burden of I 2Zb volt-amperes. If 5 A is the rated secondary current at which
the burden is specified, the burden would be 25Zb volt-amperes. Referring to the phasor diagram
in Figure 3.2, the voltage Em across the magnetizing impedance Zm is given by

Em = Eb + Zx2I2 (3.3)

and the magnetizing current Im is given by

Im = Em

Zm
(3.4)

The primary current I1 (referred to the secondary winding) is given by

I1 = I2 + Im (3.5)
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I1

I2

Im

Eb

Em

Zx2I2

Figure 3.2 CT phasor diagram

For small values of the burden impedance, Eb and Em are also small, and consequently Im is small.
The per unit current transformation error defined by

ε = I1 − I2

I1
= Im

I1
(3.6)

is, therefore, small for small values of Zb. In other words, CTs work at their best when they are
connected to very low impedance burdens. In the limiting case of zero burden impedance (and a
small Zx2) I1 = I2, and the CT error is zero.

More often, the CT error is presented in terms of a ratio correction factor R instead of the
per unit error E discussed above. The ratio correction factor R is defined as the constant by
which the name plate turns ratio n of a current transformer must be multiplied to obtain the
effective turns ratio. It follows from equations (3.5) and (3.6), and the definition of R, that

R = 1

1 − ε
(3.7)

Although ∈ and R are complex numbers, it is sometimes necessary to use the error and the ratio
correction factor as real numbers equal to their respective magnitudes. This is approximate, but not
excessively so.

Example 3.1

Consider a current transformer with a turns ratio of 500 : 5, a secondary leakage impedance of
(0.01 + j0.1) � and a resistive burden of 2.0 �. If the magnetizing impedance is (4.0 + j15) �,
then for a primary current (referred to the secondary) of Il

Em = I1(0.01 + j0.1 + 2.0)(4.0 + j15.0)

(0.01 + j0.1 + 2.0 + 4.0 + j15.0)
= I1×1.922∠9.62◦

and

Im = I1 × 1.922∠9.62◦

(4.0 + j15.0)
= I1 × 0.1238∠− 65.45◦

Thus, if the burden impedance and the magnetizing impedance of the CT are constant, the per unit
CT error

ε = Im

I1
= 0.1238∠− 65.45◦
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is constant, regardless of the magnitude of the primary current. However, the error does depend
upon the magnitude and phase angle of the burden impedance. Thus, in this example, for a burden
of 1.0 �, ∈ is 0.064∠− 66◦, and for an inductive burden of j2 ohms, ∈ is 0.12∠12.92◦. The
corresponding ratio correction factor can be found for each of these burdens:

R = 1

(1.0 − 0.1238∠− 65.45◦)
= 1.0468∠− 6.79◦ for Zb = 2 ohms

R = 1.025∠− 3.44◦ for Zb = 1 ohm

and
R = 1.13∠1.73◦ for Zb = j2 ohms

Since the magnetizing branch of a practical transformer is nonlinear, Zm is not constant, and
the actual excitation characteristic of the transformer must be taken into account in determining
the factor R for a given situation. The magnetizing characteristic of a typical CT is shown in
Figure 3.3. This being a plot of the r.m.s. magnetizing current versus the r.m.s. secondary voltage,
Im for each Em must be obtained from this curve, and then used in equations (3.5)–(3.7) to calculate
the ratio correction factor. The procedure is illustrated by Example 3.2 and one of the problems at
the end of the chapter. As can be seen from these problems, the calculation of CT performance
with nonlinear magnetizing characteristic is a fairly complicated procedure. A much simpler and
approximate procedure is available with the help of the standard class designations described next.

Notice that Figure 3.3 contains a family of characteristics. Each CT may be provided with several
taps, which can be used to obtain a turns ratio that is most convenient in a given application. The
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Figure 3.3 Magnetizing characteristic of a typical CT
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Table 3.1 Standard current transformer multiratios (MR
represents multiratio CTs)

600 : 5 MR 1200 : 5 MR 2000 : 5 MR 3000 : 5 MR

50 : 5 100 : 5 300 : 5 300 : 5
100 : 5 200 : 5 400 : 5 500 : 5
150 : 5 300 : 5 500 : 5 800 : 5
200 : 5 400 : 5 800 : 5 1000 : 5
250 : 5 500 : 5 1100 : 5 1200 : 5
300 : 5 600 : 5 1200 : 5 1500 : 5
400 : 5 800 : 5 1500 : 5 2000 : 5
450 : 5 900 : 5 1600 : 5 2200 : 5
500 : 5 1000 : 5 2000 : 5 2500 : 5
600 : 5 1200 : 5 3000 : 5

turns ratios for CTs have also been standardized,3 and some of the standard ratios are given in
Table 3.1. Turns ratios other than those provided by the standard may be obtained on special order.
However, this is quite expensive, and rarely can be justified for relaying applications.

Example 3.2

Consider a CT with a turns ratio of 600 : 5, and the magnetizing characteristic corresponding to
this ratio in Figure 3.3. It is required to calculate the current in its secondary winding for a primary
current of 5000 A, if the total burden impedance is (9 + j2) � and the secondary leakage impedance
is negligible. The impedance angle of the magnetizing branch is 60◦. Since the magnetizing branch
is nonlinear, we may consider the equivalent circuit to be made up of a linear part consisting of a
current source of 5000 × 5/600 = 41.66 A in parallel with the burden, and connected across the
nonlinear impedance Zm, as shown in Figure 3.4. The corresponding Thévenin equivalent consists
of a voltage source of 41.66 × (9 + j2) = 384.1∠12.53◦ volts, in series with the burden. Since the
impedance angle of Zm is known to be 60◦, the magnetizing current Im and the secondary voltage
E2 can be expressed in terms of the magnitude of Zm with the Thévenin voltage as the reference
phasor:

Im = 384.1

[|Zm| × (0.5 + j0.866) + (9.0 + j2.0)]

E2 = ImZm

(b)

384.1

9.0 + j2.0

Zm

(a)

41.66 9.0

j2.0 Zm

Figure 3.4 Calculation of CT performance in Example 3.2
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These two equations may be solved to produce values of E2 and Im in terms of |Zm| as the
parameter (Table 3.2). Plotting the curve of these values on Figure 3.3, it is found to intersect
the magnetizing characteristic at Im = 17 A, E2 = 260 V. Finally, reworking the equations to find
the phase angles of the currents, the various currents are: I1 = 41.66∠0◦ (in that case, Eth =
384.1∠12.53◦), Im = 17∠− 29.96◦ and Iz = 28.24∠17.51◦. The error ∈ is therefore 0.408∠−
29.96◦ and the ratio correction factor R = 1.47∠− 17.51◦.

Table 3.2 Values of secondary voltage E2

and magnetizing current Im in terms of
magnetizing impedance Zm as the
parameter

|Zm| |Im| |E2|

∞ 0 384.1
100 3.61 361.0
10 21.82 218.2

Clearly, this CT is in severe saturation at this current and at the burden chosen. In practice, it
must be used with much smaller burdens to provide reasonable accuracies under faulted conditions.

3.2.1 Standard class designation

The equivalent circuit method of calculating the performance of a CT depends upon the availability
of the magnetizing characteristic. When this is not readily available, an approximate assessment of
the CT performance may be made through its standard class designation3 as defined by the American
National Standards Institute (ANSI) and the Institute of Electrical and Electronics Engineers (IEEE).
The ANSI/IEEE class designation of a CT consists of two integer parameters, separated by the letter
‘C’ or ‘T’: for example, 10C400 or 10T300. The first integers describe the upper limit on the error
made by the CT when the voltage at its secondary terminals is equal to the second integer, while the
current in the transformer is 20 times its rated value. As most CT secondary windings are rated at
5 A secondary, this corresponds to a secondary current of 100 A. The 10C400 CT, for example, will
have an error of less than or equal to 10 % at a secondary current of 100 A for burden impedances
which produce 400 V or less at its secondary terminals. If the magnetizing impedance is assumed
to be linear, the error made will be approximately proportional to the developed voltage. The letter
‘C’ in the class designation implies that the transformer design is such that the CT performance
can be calculated, whereas the letter ‘T’ signifies some uncertainties in the transformer design, and
the performance of the CT must be determined by testing the CT.

Example 3.3

Consider a 600 : 5 turns ratio CT of the class 10C400. The 10C400 CT will provide 100 A in the
secondary with no more than 10 % error at 400 V secondary. Thus the magnitude of the magnetiz-
ing impedance is approximately 400/(0.1 × 100) = 40 �. With a primary current of 5000 A, the
nominal secondary current will be 5000 × 5/600 = 41.66 A. With a maximum error of 10 %, this
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will allow a magnetizing current of about 4 A. At this magnetizing current, it may have a maximum
secondary voltage of 4.16 × 400/10, or 167 V. Since the primary current is 41.66 A, the maximum
burden impedance which will produce 167 V at the secondary is 167/(41.66 − 4.16) = 4.45 �. All
burdens of a smaller magnitude will produce smaller errors.

In the above calculation, we have assumed that the magnetizing current is in phase with the
secondary current and the current in the burden. Considering all other approximations made in
this procedure (such as the assumed linearity of the magnetizing characteristic), this approxima-
tion is justifiable. We should remember that calculations such as these give us a limit for safe
operation; oftentimes the errors will be much under those limits, and the approximations will not
matter.

3.2.2 Polarity markings on CT windings

Polarity markings of transformer windings are a means of describing the relative directions in
which the two windings are wound on the transformer core. The terminals identified by solid
marks indicate the starting ends of the two windings, meaning that if these are considered to be
the starting points, and we trace the two windings along the transformer core, both windings will
go around the core in the same sense (i.e. counterclockwise or clockwise). In a transformer, if one
of the winding currents is considered to be flowing into the marked terminal, the current in the
other winding should be considered to be leaving its marked terminal. The two currents will then
be (approximately) in phase with each other. Similarly, the voltages of the two windings, when
measured from the unmarked terminal to the marked terminal, will be (approximately) in phase
with each other. This convention for polarity marking is also used for current transformers. An
alternative way is to label the primary winding terminals H1 and H2, and the secondary winding
terminals Xl and X2. H1 and X1 may then be assumed to have the polarity mark on them. Both of
these conventions are shown in Figure 3.5.

Since current transformer secondary windings are connected in quite complex networks in the
overall protection systems for three-phase apparatus, it is extremely important that the meaning of
the polarity marking be clearly understood. A current I1 in the primary winding of the CT will
produce a current I2 in its secondary winding, where the magnitudes of I1 and I2 are in inverse
proportion to the turns ratio (neglecting the magnetizing current for the moment), and their phase
angles will be as indicated by the polarity markings. An easy way to remember this is to think of
H1 being the same terminal as X1. The continuity of the current is then reflected by the polarity
markings. It is well to think of the current transformer secondary winding as a constant current
source of I2 as determined by I1. If I1 is zero, I2 also must be zero, and the secondary winding of
such a CT may be considered to be open-circuited. Some of the problems at the end of the chapter
will reinforce these ideas, especially in the context of wye or delta connections of the CTs.

X1

X2

H1

H2

Figure 3.5 Polarity markings of a CT
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Example 3.4

Consider the CTs shown in Figure 3.6(a). If the primary current is 1000 A, and the two CT ratios
are 1000 : 5 and 1000 : 5 respectively, the current in the burden impedance ZL is 10 A. If the CT
secondaries are connected as shown in Figure 3.6(b), the burden current becomes zero. In reality,
because of CT errors, the burden current in the first case will be less than 10 A, and in the second
case it will be small, but not equal to zero. If the magnetizing characteristics of the two CTs are
taken into account, the current in the burden must be calculated iteratively. One of the problems at
the end of the chapter will illustrate this case.

(a) (b)

ZL

5

5

10

10
00

0

ZL

5

5

10
00

0

Figure 3.6 CT connections for Example 3.4

3.3 Transient performance of current transformers
The performance of CTs when they are carrying the load current is not of concern as far as relaying
needs are concerned. When faults occur, the current magnitudes could be much larger, the fault
current may have substantial amounts of DC components and there may be remanence in the CT
core. All of these factors may lead to saturation of the CT core, and cause significant distortion
of the secondary current waveform. Although saturation of the core is a nonlinear phenomenon,
we will first establish a relationship between the primary fault current of a CT, its burden and
the flux in its core when the core of the CT has a linear magnetizing characteristic. After this
is done, we will qualitatively examine the effect of the nonlinearity on the performance of the
CT. Consider the CT equivalent circuit shown in Figure 3.1(b), with the total impedance in the
secondary circuit – i.e. the sum of the secondary leakage impedance, lead impedance and load
impedance – given by Zb = (Rb + jωLb). In Laplace domain, Zb = (Rb + sLb). Assume further
that the magnetizing impedance Zm is a parallel combination of the core loss resistance Rc and the
magnetizing inductance Lm (Figure 3.7). The primary current i1(t) (as reflected in the secondary),
containing an exponentially decaying DC offset, is given by

i1(t) = Imax[cos(ωt − θ) − ε−t/T cos θ ] for t > 0

= 0 for t < 0
(3.8)

where Imax is the peak value of the sinusoidal steady-state fault current, T is the time constant of
the primary fault circuit and θ is the angle on the voltage wave where the fault occurs; it has been
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Figure 3.7 CT equivalent circuit for transient analysis

assumed that there was no primary current before the inception of the fault. In Laplace domain4

the primary current is given by

i1(s) = Imax cos θ

(
s

s2 + ω2
+ T

1 + sT

)
+ Imax sin θ

(
ω

s2 + ω2

)
(3.9)

Also,
v2(s) = Rcic = sLmif = i2(Rb + sLb) (3.10)

and the flux linkages λ of the core are given by Lmif. Furthermore

i2 = i1 − (if − ic) (3.11)

Equations (3.10) and (3.11) can be solved for λ and v2 in terms of i1. A somewhat simple result
may be resistive burden. Setting Lb equal obtained for the case of a purely to zero:

λ = RcRb

Rc + Rb

1

s + 1/τ
i1 (3.12)

v2 = RcRb

Rc + Rb

1

s + 1/τ
I1 (3.13)

where
τ = RcLm + RbLm

RbRc
(3.14)

Substituting for ii from equation (3.9), and taking the inverse Laplace transform of equations
(3.12) and (3.13), the time behavior of the core flux linkages, and the secondary current, can be
derived. The time domain expressions for λ and i2 are

λ = Imax cos θ
RcRb

Rc + Rb

{
ε−t/τ

[
− τT

τ − T
+ τ(sin ϕ cos ϕ tan θ − cos2 ϕ)

]

+ ε−t/T

(
τT

τ − T

)
+ τ

cos ϕ

cos θ
cos(ωt − θ − ϕ)

}
(3.15)
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and

i2 = 1

Bb

dλ

dt

= Imax cos θ
Rc

Rc + Rb

{
ε−t/τ

[
− T

τ − T
+ (sin ϕ cos ϕ tan θ − cos2 ϕ)

]

− ε−t/T

(
τ

τ − T

)
− ωτ

cos ϕ

cos θ
sin(ωt − θ − ϕ)

}
(3.16)

where tan ϕ = ωτ .

Example 3.5

Consider the case of a purely resistive burden of 0.5 � being supplied by a current transformer
with a core loss resistance of 100 �, and a magnetizing inductance of 0.005 H. Let the primary
current with a steady-state value of 100 A be fully offset. Let the primary fault circuit time constant
be 0.1 s. For this case

i1 = 141.4× ∈−10t −141.4 cos(ωt)

θ = π,Rc = 100, Rb = 0.5, T = 0.1 s

hence

τ = (100 + 0.5) × 0.005

100 × 0.5
= 0.01005

ωτ = 377 × 0.01005 = 3.789

and
ϕ = tan−1(3.789) = 75.21◦ = 1.3127 rad

i1

i2

flux linkages

saturation level

Figure 3.8 Primary and secondary currents and core flux linkages of a CT
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Substituting these values in equations (3.15) and (3.16) gives

λ = −0.7399ε−99.5t + 0.786ε−10t − 0.1804 cos(ωt − 1.3127)

i2 = 147.24ε−99.5t − 15.726ε−10t + 136.02 sin(ωt − 1.3127)

These expressions for i1, i2 and λ have been plotted in Figure 3.8. When the burden is inductive,
Lb cannot be neglected, and the expressions for i2 and λ are far more complicated. Essentially,
additional time constants are introduced in their expressions. It is usual to solve such circuits by
one of the several available time-domain simulation programs.

The important fact to be noted in Figure 3.8 is the time behavior of the flux linkages λ. The DC
component in the fault current causes the flux linkages to increase considerably above their steady-
state peak. Now consider the effect of saturation. The dotted line in Figure 3.8 represents the flux
level at which the transformer core goes into saturation. As an approximation, assume that in the
saturated region the magnetizing curve is horizontal, i.e. the incremental core inductance is zero.
Thus, for the duration that λ is above the dotted line in Figure 3.8, it is held constant at the saturation
level, and the magnetizing inductance Lm in the equivalent circuit of Figure 3.7 becomes zero. As
this short-circuits the load impedance, the secondary current for this period also becomes zero. This
is represented by the non-shaded i2 curve in Figure 3.8. It should be noted that the flux linkages
will return to zero DC offset in time, so that the current transformer will get out of saturation
after some time, depending upon the circuit parameters. It should also be clear that any remnant
flux in the CT core will also affect the time-to-saturate. Additional details of CT performance with
different types of burden, and the expected time-to-saturate, can be found in the literature.2,5

The significance of the above discussion is that the secondary current of a CT may not represent
the primary current faithfully if the CT goes into saturation, and hence relays which depend upon
the secondary current are likely to mis-operate during this period. The possibility of CT saturation
must be taken into account when designing a relaying system.

3.4 Special connections of current transformers
3.4.1 Auxiliary current transformers

Auxiliary current transformers are used in many relaying applications for providing galvanic sep-
aration between the main CT secondary and some other circuit. They are also used to provide an
adjustment to the overall current transformation ratio. As mentioned before, CT ratios have been
standardized, and when other than a standard ratio is required an auxiliary CT provides a convenient
method of achieving the desired ratio. The auxiliary CT, however, makes its own contributions to
the overall errors of transformation. In particular, the possibility that the auxiliary CT itself may
saturate should be taken into consideration. Auxiliary CTs with multiple taps, providing a variable
turns ratio, are also available. The burden connected into the secondary winding of the auxiliary CT
is reflected in the secondary of the main CT, according to the normal rules of transformation: if the
auxiliary CT ratio is l : n, and its burden is Zl , it is reflected in the main CT secondary as Z1/n2.

Example 3.6

Consider the CT connection shown in Figure 3.9. CT1 has a turns ratio of 1200 : 5, while CT2 has
a turns ratio of 1000 : 5. It is desired that when the primary current flows through the two lines
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CT1 

1200/5

CT2 

1000/5

Zb

600 A.

2.5 A.

3.0 A.

2.5:3.0

Figure 3.9 Auxiliary CT connections for Example 3.6

as shown, the current in the burden be zero. Assume the primary current to be 600 A. The current
in the secondary winding of CT1 is 2.5 A and that in the secondary winding of CT2 is 3 A. By
inserting an auxiliary CT with a turns ratio of 3 : 2.5 or 1.2:1 in the secondary circuit of CT1,
the current in the auxiliary CT secondary becomes 3 A. With the polarity markings as shown, the
burden current is zero.

The burden on CT2 is Zb, while that on CT1 is Zb × (1.2)2 = 1.44Zb. The burden on the
auxiliary CT is of course Zb. CT connections such as these are used in various protection schemes
to be discussed later, and utilize the fact that, assuming no auxiliary CT saturation, when the
primary current flows uninterrupted through the two primary windings the burden current remains
zero, while if some of the primary current is diverted into a fault between the two CTs the burden
current is proportional to the fault current.

3.4.2 Wye and delta connections

In three-phase circuits, it is often necessary to connect the CT secondaries in wye or delta con-
nections to obtain certain phase shifts and magnitude changes between the CT secondary currents
and those required by the relays connected to the CTs. Consider the CT connections shown in
Figure 3.10. The wye connection shown in Figure 3.10(a) produces currents proportional to phase
currents in the phase burdens Zf and a current proportional to 3I0 in the neutral burden Zn. No phase
shifts are introduced by this connection. The delta connection shown in Figure 3.10(b) produces

(b)

I'a

I'b

I'c

Ia

Ib

Ic Zf

(a)

I'a

I'b

I'c

Ia

Ib

Ic Zf

Zn

Figure 3.10 Wye- and delta-connected CTs
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currents proportional to (I ′
a − I ′

b), (I ′
b − I ′

c) and (I ′
c − I ′

a) in the three burdens Zf. If the primary
currents are balanced, (I ′

a − I ′
b) = √

3|I ′
a| exp(jπ/6), and a phase shift of 30◦ is introduced between

the primary currents and the currents supplied to the burdens Zf. By reversing the direction of the
delta windings, a phase shift of −30◦ can be obtained. The factor

√
3 also introduces a magnitude

change which must be taken into consideration. We will discuss the uses of these connections as
we study various relaying applications.

3.4.3 Zero-sequence current shunts6

Recall the wye connection of CT secondaries shown in Figure 3.10(a). Each of the phase burdens
Zf carries phase currents, which include the positive, negative and zero-sequence components.
Sometimes it is desired that the zero-sequence current be bypassed from these burdens. This is
achieved by connecting auxiliary CTs which provide an alternative path for the zero-sequence
current. This is illustrated in Figure 3.11. The neutral of the main CT secondaries is not connected
to the burden neutral. Instead, a set of auxiliary CTs have their primaries connected in wye and
their secondaries in delta. The neutral of the auxiliary CTs is connected to the neutral of the main
secondaries through the neutral burden Zn. The secondary windings of the auxiliary CTs provide
a circulating path for the zero-sequence current, and it no longer flows in the phase impedance
burdens Zf.

3.4.4 Flux-summing CT7

It is possible to obtain the zero-sequence current by using a single CT, rather than by connecting
the secondaries of three CTs as in Figure 3.10(a). If three phase conductors are passed through
the window of a toroidal CT, as shown in Figure 3.12(a), the secondary current is proportional to
(Ia + Ib + Ic) = 3I0. Since this arrangement effectively sums the flux produced by the three phase
currents, the CT secondary contains the true zero-sequence current. In a connection of three CTs as
in Figure 3.10(a), any mismatches between the three CTs will introduce an error in zero-sequence
current measurement. This is entirely avoided in the present application.

I'a

I'b

I'c

Ia

Ib

Ic Zf

Zn

Figure 3.11 Zero-sequence current shunt
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a
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(a) (b)
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Isheath

-Isheath

Zb

Figure 3.12 Flux-summing CT: (a) without and (b) with current in the cable sheath

However, it must be recognized that such a CT application is possible only in low-voltage
circuits, where the three phase conductors may be passed through the CT core in close proximity
to each other. If the three phase conductors are enclosed in a metallic sheath, and the sheath may
carry some (or all) of the zero-sequence current, it must be compensated for by threading the sheath
grounding lead through the CT core, as shown in Figure 3.12(b). The ampere-turns produced by
the sheath current are now cancelled by the ampere-turns produced by the return conductor, and
the net flux linking the core is produced by the sum of the three phase currents. This sum being
3I0, the burden is once again supplied by the zero-sequence current.

3.5 Linear couplers and electronic current transformers
Linear couplers6 are CTs without an iron core. The magnetizing reactance of these transformers is
linear, and is very small compared to that of a steel-cored CT. Most of the primary current is used
up in establishing the mutual flux in the linear coupler, and the secondary windings are very limited
in the amount of current they can deliver. Indeed, the linear coupler operates as a current-to-voltage
converter: the voltage in the secondary circuit is a faithful reproduction of the primary current. As
long as the secondary current is very small, the transformation ratio is practically constant. The main
use of linear couplers is in applications where saturation of the CT presents a major problem – as
in the case of bus protection applications to be discussed later. Linear couplers are not much in use,
since they must be installed in addition to CTs, which are needed for most relaying and metering
functions.

A number of electronic CTs have been developed, which offer many advantages when compared
to traditional CTs. Most of the practical electronic CTs are based upon the relationship between
the magnetizing field produced by a current-carrying conductor and the plane of polarization of
polarized light passing through a fiber-optic block placed around the conductor.8 In some designs, a
fiber-optic cable goes around the conductor (making several turns as necessary). The angle through
which the plane of polarization of the light rotates is detected at the receiving end (Figure 3.13).
This angular shift is electronically converted to a voltage, which is proportional to the instantaneous
value of the magnetizing force around the current-carrying conductor, and hence to the instantaneous
value of the current. This voltage may then be suitably amplified and filtered to provide a replica
of the current in the primary conductor. Alternatively, the voltage may be sampled at a suitable
rate to provide a sampled-data representation of the primary current. It should be clear that such an
electronic CT is most suited to relays and meters which can utilize low-power signals, or sampled
data of the signals. As will be seen later, this type of signal source is particularly suited for electronic
relays and computer relays.

Electronic CTs are linear, and have a very wide dynamic range, i.e. they are able to measure
accurately currents at light loads as well as those corresponding to very heavy faults. Furthermore,
since they do not include oil as an insulating medium, they do not constitute a fire hazard. They
are also smaller in size and require less space in a substation. However, they do require a power
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Figure 3.13 Principle of the magneto-optic current transformer (MOCT)

supply to operate the various electronic circuits required to sense and amplify the signals. Getting
reliable power to these devices in the substation yard is a significant problem. Nevertheless, with
the advent of electronic and computer-based relays, it is only a matter of time before electronic
CTs make a significant impact on relaying practices.

3.6 Voltage transformers
Voltage transformers – also known as potential transformers – are normal transformers with the
primary winding connected directly to the high-voltage apparatus, and with one or more secondary
windings rated at the standard voltage of 69.3 V for phase-to-neutral voltages or 120 V for phase-
to-phase voltages. Their performance, equivalent circuit and phasor diagrams are similar to those of
a power transformer. The error of transformation of such a transformer is negligible for all practical
purposes in its entire operating range – from zero to about 110 % of its normal rating. We may
consider such transformers to be error-free from the point of view of relaying. Voltage transformers
are rather expensive, especially at extra high voltages: 345 kV or above. Consequently, they are
usually found on low-, medium- and high-voltage systems. At extra high voltages, capacitive

Fault

Figure 3.14 Blown fuse in a voltage transformer on ungrounded systems
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voltage transformers, to be described in the next section, are the more usual sources for relaying
and metering.

In passing, we may mention a possible problem with voltage transformers when used on
ungrounded (or high-impedance grounded) power systems.9 As shown in Figure 3.14, when a
ground fault occurs on such a system, the voltage transformers connected to the unfaulted phases
are subjected to a voltage equal to the phase-to-phase voltage of the power system. This usually
drives one of the transformers well into saturation, and, because of the excessive magnetizing
current drawn by this transformer, may blow the protective fuse.

3.7 Coupling capacitor voltage transformers
One of the most common voltage sources for relaying – particularly at higher voltages – is the cou-
pling capacitor voltage transformer (CCVT). A capacitor stack is usually connected to high-voltage
transmission lines for the purpose of feeding the carrier signal as a pilot channel for transmission
line relaying∗ (see Chapter 6). The same string of capacitors is used as a potential divider between
the high-voltage apparatus and ground, and a tap provides a reduced voltage of about 1 to 4 kV,
depending upon the particular choice made by the designer. The tap point is connected to a trans-
former through an inductance, as shown in Figure 3.15(a). The turns ratio of the transformer is such
that the secondary voltage is the standard voltage (69.3 or 120 V) required for relaying. The bur-
den impedance is Zb and Zf is a specially designed damping circuit for suppressing ferroresonance
which may occur under certain conditions. We will discuss ferroresonance phenomena a little later.

Under normal steady-state operating conditions, the load current drawn by the parallel combi-
nation of Zf and Zb is relatively small. Nevertheless, as the transformer supplies the load current,
there may be a phase shift between the primary voltage and the voltage appearing at the load.
Consider the Thévenin equivalent circuit of the capacitive divider. The Thévenin voltage is given
by Eth = EpriC1/(C1 + C2), and the Thévenin source impedance is a capacitance of (C1 + C2)
(Figure 3.15(b)). If the primary and secondary currents in the transformer are Il and I2, respec-
tively, then

E2 = Eth − I1

[
jωL + 1

jω(C1 + C2)

]
(3.17)

(b)(a)

C1

C2

L H1 X1

H2 X2

Zf Zb

(C1 + C2) L

Eth
E2 Zf Zb

Figure 3.15 CCVT connections and equivalent circuit

∗ The lower terminal of the capacitor stack is grounded through a small inductance, known as a drain coil. This offers a practically
zero impedance to the power frequency voltage, and is effectively a solid ground connection. However, as will be discussed in
Chapter 6, a carrier current of frequencies ranging from about 30 to 300 kHz is injected into the transmission lines through these
capacitors. The drain coil offers a very high impedance to the carrier current which is effectively injected into the transmission
lines without any loss of the signal to the ground connection.
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(a) (b) (c)

Figure 3.16 CCVT connections: (a) wye; (b) delta; (c) open delta

Clearly, the secondary voltage will have a phase angle error, unless the inductance L is in
resonance with (C1 + C2) at the power system frequency ω. To avoid a phase angle error, an
inductance of an appropriate size is introduced to satisfy the resonance condition:

L = 1

ω2

1

(C1 + C2)
(3.18)

Often, by careful design of the transformer, its leakage inductance can be made equal to L, and
provides this compensation.

Since the Thévenin impedance of a CCVT is capacitive, the nonlinear magnetizing branch of
the connected transformer may give rise to ferroresonant oscillations, especially under light loads.
Unless these oscillations are eliminated voltages of multiple frequencies – including subharmonic
frequencies such as ω/3 – superimposed on the power frequency are likely to appear at the sec-
ondary terminals of the transformer. A special suppression circuit, represented by Zf, is usually
provided to damp these oscillations. In general, this circuit is a damped R, L, C circuit, a non-
linear resistor, a spark-gap or a combination of these elements. The actual configuration of the
ferroresonance suppression circuit used depends upon the CCVT designer’s preference.

The voltage transformer windings are also marked to indicate their polarity. Terminals of like
polarity may be identified by dots, or by terminal labels H1, H2 and Xl , X2. Both of these con-
ventions are illustrated in Figure 3.15(a). Windings of three-phase voltage transformers may be
connected in wye or in delta, as needed in each application. As in the case of current transformers,
the delay connection introduces a magnitude factor of

√
3, and a phase angle shift of ±30◦ depend-

ing upon the manner in which the delta is connected. In this respect, voltage transformers are no
different from normal power transformers. An open delta connection may be used to provide a
three-phase voltage source with only two single-phase transformers. The wye, delta and open delta
connections are illustrated in Figure 3.16.

Example 3.7

Consider the three voltage transformers connected in delta on the primary and secondary sides as
shown in Figure 3.17(a). Assume that each of the three transformers has a leakage impedance of
(1 + j5) �. Let the burden impedances (also connected in a delta) be 50 �. If the primary voltage
is 69 kV and the turns ratio of each of the transformers is 69 000/120 = 575 the burden currents
(which are the same as the secondary delta winding currents) can be found from the equivalent
circuit shown in Figure 3.17(a):

I ′
a = Eab

Zb
= Eab0 − I ′

aZx

Zb

where Eab and Eab0 are the burden and source voltages, respectively. Solving for Eab gives

Eab = Eab0
Zb

Zx + Zb
= Eab0

50

50 + 1 + j5
= Eab0 × 0.976∠5.6◦
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Figure 3.17 Connections for Example 3.7: (a) delta connection; (b) open delta connection

Thus, the ratio correction factor for this voltage transformer at this burden is 0.976∠5.6◦. The
voltages across the three burdens are of course balanced and symmetric.

Now consider the two voltage transformers connected in open delta, shown in Figure 3.17(b).
Using the line-to-line voltage relation at the burden

E0ab + Ebc + Eca = 0

and

Eab = Eab0 − I ′
aZx; I ′

a = 1

Zb
(Eab − Eca) = 1

Zb
(2Eab + Ebc)

Ebc = Ebc0 − I ′
bZx; I ′

b = 1

Zb
(Ebc − Eca) = 1

Zb
(2Ebc + Eab)

Solving these equations for Eab and Ebc, and remembering that

Ebc0 = Eab0 ∈j2π/3

Ebc = Ebc0
ε−j2π/3Zx/Zb − (1 + 2Zx/Zb)

(Zx/Zb)2 − (1 + 2Zx/Zb)2

Eab = Eab0
ε+j2π/3Zx/Zb − (1 + 2Zx/Zb)

(Zx/Zb)2 − (1 + 2Zx/Zb)2

Substituting the values of the burden and the leakage impedances gives

Eab/Eab0 = 1.0254∠− 9.85◦

Ebc/Ebc0 = 0.8838∠− 5.93◦

Also,
Eca/Eca0 = −(Eab/Eab0) × (Eab0/Eca0) − (Ebc/Ebc0) × (Ebc0/Eca0)

= −0.8838∠− 5.93◦× ∈+j2π/3 −1.0254∠− 9.85◦× ∈−j2π/3

= 1.017∠− 1.1◦
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Clearly, the three ratio correction factors are different from 1, and are also unequal. Thus, an open
delta connection introduces unequal phase shifts in the three voltages, and may cause incorrect
measurement of positive, negative and zero-sequence voltages through such a connection. On the
other hand, the unbalances are generally quite small for all practical burdens. In any case, the errors
are not significant for relaying applications.

3.8 Transient performance of CCVTs
The steady-state errors of a well-tuned CCVT should be negligible as far as relaying applications
are concerned.† However, because of the tuned circuit used for compensation of the phase shift
between the primary and secondary voltage, the CCVT produces secondary voltages during tran-
sient conditions which may be significantly different from the primary system voltage. In particular,
relays make use of CCVT output under faulted conditions when the power frequency voltages are
low, and even a small transient component may cause problems for relaying applications. The main
concern in relaying applications, therefore, is with the output voltage of a CCVT when a fault
causes a step change in the voltage on the primary (power system) side of a CCVT. We will now
derive expressions for the subsidence transient of a CCVT. As these phenomena are primarily pro-
duced by the linear parameters, we will not consider the nonlinearity introduced by the magnetizing
branch. In fact, for the sake of simplicity, we will also omit the ferroresonance suppression circuit
for this discussion.

Consider the equivalent circuit referred to the secondary winding as shown in Figure 3.18. We
will assume the fault to be very close to the primary terminals of the CCVT, producing zero voltage
at the primary terminals during the fault. As this causes the biggest possible change in the primary
voltage of the CCVT, it produces the greatest possible subsidence transient. The source voltage is
a power frequency sinusoid until the instant of the fault, and then it goes to zero:

e(t) = Emax cos(ωt + θ) for t ≤ 0; and e(t) = 0 for t > 0 (3.19)

Since L and C are tuned to the frequency ω, the voltage across the load impedance Rb is also
e(t) = Emax cos(ωt + θ) until t = 0. We may use the principle of superposition by determining the
response of the circuit to a voltage source e′(t):

e′(t) = −Emax cos(ωt + θ) for t ≥ 0; and e′(t) = 0 for t < 0 (3.20)

C L

Rb
Rc Lm

e'(t)

e2

Figure 3.18 CCVT equivalent circuit for transient analysis

† In practice, a CCVT is subject to a turns ratio error caused by changes in the capacitor sections. The capacitor values will change
due to temperature by a significant amount, and if the relative changes in C1 are different from those in C2, a ratio error will
result. Also, since the complete capacitor stack is made up of several small capacitors in series, as some of these small capacitors
fail and get short-circuited over a period of time, the CCVT turns ratio changes from its design value.
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The Laplace transform of e′(t) is given by4

e′(s) = −Emax cos θ
s − ω tan θ

s2 + ω2
(3.21)

After finding the response of the circuit to e′(t), we may superimpose it on e(t) to find the response
of the circuit to e(t). Solving the circuit of Figure 3.18 for the transient component of e2, i.e. e′

2(s),
gives

e′
2(s) = e′(s)e′

2(s) = e′
2(s)

Lm

τL

s2

s3 + s2(L + Lm)/τL + sω + ω2/τ
(3.22)

where

τ = Lm(Rc + Rb)

RcRb

The time function e′
2(t) may be found by taking the inverse Laplace transform of equation (3.22).

However, the result is somewhat messy, and not very illuminating. A simpler result is obtained for
the case of infinite magnetizing inductance Lm. For this case

e′
2(s) = e′(s)

1

τ ′
s

s2 + s/τ + ω2
(3.23)

where

τ ′ = L(Rc + Rb)

RcRb

Substituting for e′(s) and taking the inverse Laplace transform4 gives

e′
2(t) = −Emax[cos(ωt + θ) − cos θ

√
1 + (cot ϕ + cosec ϕ tan θ)2 × ε−ωt cos ϕ × sin(ωt sin ϕ + ψ)]

(3.24)

where
ψ = arctan[− sin ϕ/(cos ϕ + tan θ)]

and
2 ωτ ′ = sec ϕ

The actual voltage at the load is found by adding e′
2(t) to its prefault value e′(t) given by

equation (3.19).

Example 3.8

Consider the case of a fault occurring at zero voltage, i.e. at θ equal to π /2. Assume the core loss
resistance to be 1000 � and the load resistance to be 2000 �. Let the tuning inductance be 1.33 H.
For this case

τ ′ = 0.002, cos ϕ = 1/2 ωτ ′ = 0.6613, sin ϕcp = 0.7485

ϕ = 48.46◦ = 0.8458 rad
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Also, since tan θ = ∞, ψ = 0. Substituting these values in the expression for e′
2(t) gives

e′
2(t) = Emax[cos(ωt + π/2) − 1.336 × ε−250t × sin(282.2t)]

and, superimposing the prefault voltage, the secondary voltage is given by

e2(t) = Emax cos(ωt + π/2) for t ≤ 0

and
e2(t) = 1.336Emax × ε−250t × sin(282.2t) for t > 0

The plots of e(t) and e2(t) are given in Figure 3.19.

e2(t)

e(t)

t = 0

Figure 3.19 CCVT transient response for Example 3.8

It should be remembered that Figure 3.19 has been obtained under some very simplified assump-
tions. First, we assumed that the ferroresonance suppression circuit is absent. Second, we assumed
that the magnetizing inductance of the transformer is infinite, and that only the core loss compo-
nent of the excitation current exists. Lastly, we assumed that the load impedance is purely resistive.
When none of these assumptions is made, it is too cumbersome to solve the problem in an analytic
form using Laplace transform, although it can be done. A much simpler method is to use a network
simulation program, such as EMTP,10 to simulate the behavior of the CCVT for different operat-
ing conditions. Other techniques of simulation are described in the literature, as are the results of
actual field tests.11 Results of more realistic simulations of the cases of a fault occurring at voltage
maximum and at voltage zero are given in Figure 3.20(a) and (b).

As mentioned previously, the performance of the CCVT during the transition from normal system
voltage to a low value during a fault is of primary concern in relaying applications. This is referred
to as a ‘subsidence transient’ and it produces a transient voltage in the secondary that may be a
damped oscillatory or unidirectional wave depending on the design of the CCVT, the connected
burden and the incidence point on the voltage wave. The apparent impedance to a relay may
include errors in both magnitude and phase angle. There is a publication12 that describes this effect
in detail and lists the effect that the subsidence transient has on a variety of relays. In general,
however, if time delay can be used, this will remove or reduce this error. Instantaneous relays
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(a) (b)

Figure 3.20 CCVT response for a complete model circuit: (a) fault at voltage maximum; (b) fault at voltage
zero

such as zone 1 distance or pilot schemes may operate incorrectly. This effect is most pronounced
during reclosing. At the instant of the initial fault, the usual cause of the fault is the breakdown
of insulation which is most likely to occur at a voltage maximum. As shown in Figure 3.20(a),
this results in a minimum subsidence voltage. During reclosing, however, if the fault still persists,
the subsidence voltage could be any value depending on the point of the voltage wave when the
reclose occurs. This condition is exacerbated by the fact that one of the mitigating conditions is
the memory voltage provided with instantaneous relays. At the time of reclosing, this memory
voltage has been significantly reduced or is gone completely. In about a cycle immediately after
the occurrence of a fault, the output of a CCVT is significantly different from the actual primary
voltage. In particular, the frequency of the output voltage is not equal to ω, the fundamental power
frequency. In designing a relay, the designer must take this phenomenon into account, and make
the relay insensitive to these transient components. For faults that produce fundamental frequency
voltages of greater than 5 % of their nominal value, the transient components do not cause any
significant problem.

3.9 Electronic voltage transformers
Electronic voltage transformers have not been developed to the same extent as electronic current
transformers. The main difficulty arises because a voltage measurement needs a reference point,
and hence both the high-voltage terminal as well as the ground terminal must be included in the
measuring device. This necessitates the use of full insulation inside the measuring device. As the
cost of the insulation structure is a significant part of the complete cost of the voltage transformer,
no significant benefit attaches to using alternative voltage measuring techniques. Furthermore, as
pointed out earlier, the capacitor stack is usually needed for coupling the carrier signal into trans-
mission lines, and therefore the capacitor section of the CCVT is already available. Adding on the
rest of the CCVT components is relatively inexpensive. Nevertheless, some progress in making
a practical electronic voltage transformer has been made in recent years. One method utilizes the
current flowing in the capacitor stack as an input signal to an integrator, which is proportional to the
voltage across the capacitor stack.13 Using high-grade capacitors, and the fiber-optic measurement
system of the magneto-optic CT described in section 3.5, a highly accurate voltage transformer can
be built. Some work has also been done on devices using Pockel cells. However, most of these
devices remain experimental at the time of writing. No doubt other advances will occur in this area
in the future.

3.10 Summary
In this chapter, we have discussed the techniques of transforming power system voltages and
currents to levels that are suitable for relaying and metering. We have described the appropriate
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industry standards for these transducers. We have discussed the importance of transient response of
CTs and CCVTs to the relaying process, and we have analyzed these transient responses in some
simple cases. We have also examined recent developments in the field of electronic transducers for
power system applications.

Problems
3.1 Prove equation (3.7). Recall that, for small E, 1/(1 − E) may be approximated by 1+ ∈.

Under what conditions is R smaller than 1 in magnitude?

3.2 Write a computer program to calculate R for a current transformer with linear magnetizing
impedance. Using the data given in Example 3.1, calculate and plot R (a complex quantity)
as the burden impedance angle is varied from +90◦ to −90◦, while its magnitude is held
constant at 2 �. Next, vary the magnitude of the burden impedance while the angle is held
at 0◦. Make the plot in polar coordinates.

3.3 For a fixed burden impedance of 2 � resistive, calculate and plot the magnitude of R as the
secondary current is varied between 0 and 50 A. Assume that the magnetizing characteristic
is as given in Figure 3.3, and the 300 : 5 tap of the CT is being used. Assume further that
the impedance angle of the magnetizing impedance is 60◦. On the same graph, plot the
magnitude of R if the magnetizing impedance of the CT is assumed to be constant at a value
corresponding to a secondary voltage of 60 V r.m.s.

3.4 The secondary windings of two current transformers with turns ratios of 300 : 5 are connected
in parallel across a common burden of 1.0 � resistive. The lead impedance of one of the
connections is 0.2 � while that of the other is 0.0 �. What is the current in the burden when
the primary windings of the two CTs carry a current of 3000 A? What is the current in each
of the CT secondaries? Assume that the magnetizing characteristic is as given in Figure 3.3,
and that the magnetizing impedance angle is 60◦.

3.5 Outputs of two CTs with designations of 10C200 and 10C400 are connected in parallel.
What is the class designation of this combination considered to be a single CT?

3.6 Two ideal CTs with turns ratios of 300 : 5 and 600 : 5 are connected as shown in Figure 3.6(a)
and (b). If the primary current is 3000 A and the burden is 1 �, what are the voltages at the
secondary terminals of the current transformers in the two cases?

3.7 Three ideal CTs with turns ratios of 600 : 5 are connected in a wye and a delta configuration
as shown in Figure 3.21(a) and (b) respectively. For the primary currents shown in each
case, what are the currents I1, I2, I3 and I0?

3.8 Prove equations (3.15) and (3.16). Derive similar expressions for the case of a purely induc-
tive burden.

3.9 Using a network simulation program, set up a model of a realistic CT. Calculate the secondary
current of the CT for various inception angles of a fault in the primary circuit. Also, simulate
the effect of remanence in the CT core. Tabulate the time-to-saturate for a CT, and compare
your results with those given by Goldman.4 The current version of the program EMTP
contains models of CTs and CCVTs.

3.10 The leakage impedance of a VT is (1 + j6) � when referred to its secondary winding. If the
secondary burden impedance is Z at an impedance angle of ϕ, calculate and plot its ratio
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Figure 3.21 Configuration for problem 3.7

correction factor in polar coordinates as the magnitude of Z is held constant at 200 �, and
ϕ is varied between 0◦ and 360◦. (This is best done with a computer program.) Generate
similar plots for a range of magnitudes of Z; say varying between 50 and 100 �. Plots like
these are of importance in metering applications, and have little significance in relaying.

3.11 Prove equation (3.24). The proof is much facilitated by the use of a good table of Laplace
transform pairs, and a table of trigonometric identities.

3.12 A CCVT is connected to its rated primary source voltage of 138/J3 kV. The value of the
capacitor from the high-voltage terminal to the tap point is 0.005µF. The tap point voltage
is 4 kV. What is the value of the capacitor connected between the tap point and the ground
terminal? What is the value of the tuning inductance? If the power system frequency changes
between 58 and 62 Hz (assuming the normal frequency to be 60 Hz), calculate and plot the
ratio correction factor of this CCVT as a function of the power system frequency. Assume
the burden connected to the secondary of the transformer to be 300 � resistive, and assume
the transformer to be ideal.
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4
Nonpilot overcurrent protection
of transmission lines

4.1 Introduction
The study of transmission line protection offers an opportunity to examine many fundamental
relaying considerations that apply, in one degree or another, to the protection of all other types of
power system equipment. Each electrical element, of course, will have problems unique to itself,
but the concepts associated with nonpilot transmission system protection are fundamental to all
other electrical equipment, and provide an excellent starting point to examine the implementation
of power system protection.

Transmission lines are primarily exposed to short circuits between phases or from phase to
ground. This is also the main source of damage to all other electrical equipment. The range of the
possible fault current, the effect of load, the question of directionality and the impact of system
configuration are all part of the transmission line protection problem. The solution to this problem,
therefore, is a microcosm of all other relaying problems and solutions.

Since transmission lines are also the links to adjacent lines or connected equipment, the protection
provided for the transmission line must be compatible with the protection of all these other elements.
This requires coordination of settings, operating times and characteristics. The analytical techniques
associated with short-circuit calculations, primarily the method of symmetrical components, are
similarly applicable to all electrical equipment, but the variety of transmission line configurations
introduces additional complexity and sophistication.

The question of directionality was mentioned in Chapter 1. It is intimately associated with the
design of the power system. A radial system, i.e. one with a single generating source, can have fault
current flowing in only one direction: from the source to the fault. In a loop or network, however,
fault current can flow in either direction, and the relay system must be able to distinguish between
the two directions.

The length of the line, as one would expect, has a direct effect on the setting of a relay. Relays are
applied, primarily, to protect a given line segment and, in addition if possible, to back up the relays
protecting adjacent line segments. It will be recalled from the discussion of zones of protection in
Chapter 1 that a circuit breaker usually defines the boundary of a protected area and, with the circuit
breaker contacts closed, there is no appreciable impedance between the end of one line segment
and the beginning of the next. A relay, therefore, cannot be set on fault current magnitude alone
in order to differentiate between a fault at the end of one zone or the beginning of the next. The
problem is further complicated if the line is short, that is, as shown in Figure 4.1, its impedance
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Figure 4.1 Short versus long line

is much less than the source impedance. In such a case there is very little difference in current
magnitude for a fault at one end of the line compared to a fault at the other. It is then difficult to set
a relay so that it only protects its own line and does not overreach into the next. Also, as shown in
Figure 4.1, a long line, i.e. one with an impedance greater than the source impedance, has another
problem. It can be set easily to reach well into its own line segment without overreaching, but the
further it ‘sees’, the closer the fault current magnitude approaches load current, and the ability to
make this important distinction is more difficult.

The voltage class of a transmission line must also be considered when applying a relay system.
The higher voltage levels would normally be expected to have more complex, hence expensive,
relay systems. This is so because higher voltages have more expensive equipment associated with
them and one would expect that this voltage class is more important to the security of the power
system than lower voltages. The higher relay costs, therefore, are usually more easily justified.
This is not always the case, however; nor is the specific voltage level, by itself, an indication of
its importance. Some systems have very important transmission systems at the low end of the high
voltage (HV) or extra high voltage (EHV) range and very little higher voltage transmission. These
lines should, therefore, justify higher relay costs. Of course, if a higher voltage system is installed,
or an installed EHV system matures, the justification for more sophisticated relays becomes easier.
In other situations, with a mature operating EHV system, the same relay costs for the HV system
might not be justified.

In order of ascending cost and complexity, the protective devices available for transmission line
protection are:

1. fuses
2. sectionalizers, reclosers
3. instantaneous overcurrent
4. inverse, time delay, overcurrent
5. directional overcurrent
6. distance
7. pilot.

In this chapter and Chapter 5 we will examine nonpilot transmission line protection systems, also
known internationally as graded or relatively selective or non-unit systems. In these systems, the
relays base their decisions solely on the measurement of electrical quantities at the relay end of
the protected line section. In this chapter we will study time delay and instantaneous overcurrent
relays. In Chapter 5 our interest will be in distance relays using nonpilot systems. In Chapter 6
we will examine pilot systems in which quantities are measured at all terminals of a protected line
section and communicated to every terminal.
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4.2 Fuses, sectionalizers, reclosers
The subject of fuses, sectionalizers and reclosers should be more properly discussed within the
context of the protective requirements of a distribution system since they are that system’s primary
protective devices.1 Since our concern here is primarily the transmission and generation elements
of the modern power system and not the distribution system, we will only touch upon some of the
distribution elements involved. Distribution is normally defined as the system level energizing the
final step-down transformer, i.e. the distribution transformer, serving the industrial, commercial or
residential customer.

The distribution system is divided into mains and laterals. The mains are three-phase systems
providing the backbone of the distribution service; the laterals are single-phase taps connected to
the mains. Industrial and commercial customers that require three-phase service are fed from the
mains. Residential and smaller industrial customers are usually serviced by the laterals. It is the
function of the distribution planning engineer to equalize the single-phase loads so the load at
the substation is essentially balanced. Figure 4.2 shows a single-line representation of a typical
distribution circuit. In practice, the horizontal feeder would be a three-phase main and each tap
would be a single-phase load, each load coming from a different phase.

Except for special cases that will be discussed below, a distribution system is almost exclusively
radial, i.e. it has a source at only one end. Its operating voltages are between 2.4 and 34.5 kV. Most
distribution transformers are pole-mounted, although underground residential distribution (URD) is
gaining in popularity and use. URD transformers are usually pad-mounted, i.e. installed on a
concrete pad on the ground, usually in a remote corner of a residential area. In such an installation,
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there is some concern over the safety and potential physical damage that could occur from a violent
type of failure. This has led to the application of current-limiting (CL) fuses, which drastically
reduce the ‘let-through’ energy for a high-current fault compared to other types of fuse. A CL fuse
consists of one or more silver wire or ribbon elements suspended in an envelope filled with sand.
When operating against a high current, the fusible element melts almost instantaneously over all
its length. The resulting arc loses its heat energy rapidly to the surrounding sand. The rapid loss of
heat energy limits the current to a small value known as the ‘let-through’ current.

The most commonly used protective device in a distribution circuit is the fuse. Fuse characteristics
vary considerably from one manufacturer to another, and the specifics must be obtained from
manufacturers’ appropriate literature. The time–current characteristic curves of fuses are presented
in the form of minimum melt and total clearing times, as shown in Figure 4.2. Minimum melt
is the time between initiation of a current large enough to cause the current-responsive element
to melt and the instant when arcing occurs. Total clearing time (TCT) is the total time elapsing
from the beginning of an overcurrent to the final circuit interruption; i.e. TCT = minimum melt +
arcing time. It is important not to mix fuse types such as ANSI ‘K’ or ‘T’. The operational
characteristics are different enough that loss of coordination can occur. This is the same precaution
that should be followed in applying other protective devices such as overcurrent relays. Although
two fuses or relays may be generically similar, there are differences in manufacture and subtle
differences in the operating characteristics that will cause coordination difficulties.

In addition to the different melting curves, fuses have different load-carrying capabilities that
must be recognized. Manufacturers’ application tables show three load-current values: continuous,
hot-load pickup and cold-load pickup. Continuous load is the maximum current that is expected
for three hours or more and for which the fuse will not be damaged. Hot load is the amount that
can be carried continuously, interrupted and immediately re-energized without blowing. Cold load
follows a 30-minute outage and is the high current that is the result of a loss of diversity when
service is restored. Since the fuse will also cool down during this period, the cold-load pickup and
the hot-load pickup may approach similar values.

Owing to the large volume of equipment involved in the distribution system, construction stan-
dards and equipment specifications are rarely custom-tailored for a specific situation or location.
Instead, universal standards and specifications are developed for ease of replacement and instal-
lation. The special hardware that is associated with distribution systems such as potheads (the
transition connectors between overhead and underground cable), poles, crossarms and insulators is
used in such large quantities that cost and replacement stock, instead of specific application, become
the controlling factors. The interrupting devices, in addition to the fuse itself, are sectionalizers and
reclosers. A sectionalizer cannot interrupt a fault. It ‘counts’ the number of times it ‘sees’ fault
current and opens after a preset number while the circuit is de-energized. A recloser has limited
fault-interrupting capability and recloses automatically in a programmed sequence.

Referring to Figure 4.2, a fault at A should be cleared by the branch fuse, leaving service
to the main line and to the other branches undisturbed. A fault at B should be cleared by the
sectionalizer, but, since the sectionalizer cannot interrupt a fault, the actual clearing is performed
by the recloser. The sectionalizer ‘sees’ the fault current, however, and registers one count. The
recloser also sees the fault and trips, de-energizing the line. If the sectionalizer setting is ‘1’ it
will now open, allowing the recloser to reclose and restore service to the rest of the system. If the
sectionalizer setting is more than ‘1’, e.g. ‘2’, the sectionalizer will not open after the first trip.
Instead, the recloser recloses a second time. If the fault is still on, the sectionalizer will see a second
count of fault current. The recloser will trip again, allowing the sectionalizer now to open, removing
the fault, and the recloser will successfully reclose, restoring service up to the sectionalizer. For a
fault at C, the recloser trips and recloses as it is programmed to do. The sectionalizer does not see
the fault and does not count.

As the fault current and interrupting requirements increase with system voltage, the protection
shifts from a fuse and/or recloser to a relay for the detection of a fault and to a circuit breaker for
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its interruption. At the location in the system where this shift occurs the relays must coordinate with
the reclosers, sectionalizers and fuses. Figure 4.2 shows how this coordination is accomplished. The
fuse has the controlling time–current characteristic, i.e. I 2t = k. The recloser and relay operating
characteristic must have the same shape with sufficient time delay between the curves, at the same
current magnitude, to allow each downstream device to clear the fault. The longer times allow the
adjacent upstream device to provide backup in the event the fault is not cleared in that device’s
operating time. Since the operating time around the minimum current is not precise, it is common
practice to stagger the pickup current, as shown in Figure 4.2.

In recent years the use of customer-owned generators (co-generators), independent power pro-
ducers (IPPs), or nonutility generators (NUGs) and feeder-to-feeder switching has resulted in the
distribution system protection taking on more of the characteristics of transmission system protec-
tion. NUGs introduce energy sources within the distribution system that result in fault currents that
differ in magnitude and direction from the fault currents produced by the utility’s sources and over
which they have control. As a result, the relays at the distribution station must now recognize these
potential variations in short-circuit current in the same way as the relays in a networked system.
Feeder-to-feeder switching provides a backup source in the event a substation transformer is out
of service or a segment of the distribution system must be de-energized. This concept is shown in
Figure 4.3.

Normally the tie switch S is open and each station transformer feeds its own load as described
above. For a permanent fault at F1, the sectionalizers or reclosers on the transformer side will open
automatically; the line must then be de-energized by opening the downstream breaker and closing
switch S, shifting the remaining load to the other transformer. For a transformer fault at F2, the
station breakers (1) and (2) are opened and the entire load can be fed from the other station. The
shift from one substation to another affects the magnitude and direction of fault current, and this
must be taken into account when applying and setting the line protection devices. Similarly, the use
of co-generators on the distribution system introduces another source of energy, independent and
remote from the utility’s substation, which also affects the magnitude and direction of fault current.
Normally this switching is done manually, by sending personnel to the various locations. Obviously,
if the switching could be done automatically, there would be significant savings in time and money.
This concept of distribution automation has been considered by utility operators for many years
and there have been many attempts to perfect such schemes. Unfortunately there are difficulties
in its implementation. Clearing a fault in a radial system is relatively simple since directional
relays are not required. If the fault can be seen by relays in either direction, then directional relays
are required which means that a potential or current-polarizing source must be provided at each
lateral. This will be covered in greater detail in section 4.5, but note that distribution systems do
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not have potential transformers or grounded transformers with current transformers (CTs) at every
distribution transformer. In addition, to automate the switching, a communication link is required
between reclosers. These are expensive measures, although fiber-optics and digital communications
may be the answer to the communication problem.

4.3 Inverse, time-delay overcurrent relays
4.3.1 Application

The principal application of overcurrent relays is on a radial system where they provide both phase
and ground protection.

Example 4.1

Given the one-line diagram shown in Figure 4.4(a), show the associated AC and DC connections
for two (and three) phase relays and one ground overcurrent relay.

A basic complement of time-delay overcurrent relays would be two phase and one ground relay.
This arrangement will protect the equipment for all combinations of phase and ground faults,
uses the minimum number of relays, but provides only the minimum of redundancy. Adding the
third phase relay provides complete backup protection. Several important design considerations
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are shown in this example. The conventions and practices used to depict elements of relays and
their associated circuits were introduced in sections 2.7 and 2.8. In one-line, elementary, schematic
and wiring diagrams, use is made of identifying device function numbers which are shown in
Figure 4.4(a), (b) and (c). These numbers are based on a system adopted as standard for automatic
switchgear by the IEEE and incorporated in American National Standard ANSI/IEEE C37.2. The
system is used in connection diagrams, instruction books and specifications. It provides a readily
identifiable reference to the function of a device in a circuit to which additional descriptive numbers
or letters can be added to differentiate between similar functions for different devices. A list of
most of the commonly used device function numbers is given in Appendix A.

Figure 4.4(a) shows a single-line representation of the three-phase power system showing the
number of current transformers, their polarity marks, the fact that it is multiratio (MR), the total
number of turns (1200/5), the actual connected ratio (600/5) and the number and type of relays
connected to the CTs. On a fully completed one-line diagram there would be comparable notes
describing the circuit breaker (52) type and mechanism as well as similar notes for other power
equipment. Figure 4.4(b) shows the three-phase secondary AC circuit of the CTs and relays, and
Figure 4.4(c) shows the relay DC tripping circuit details. The advantage of the third relay is shown
by the dotted line. All faults are covered by at least two relays and so any one relay can be removed
for maintenance or calibration leaving the other relay in service. The extra phase relay also provides
a degree of redundancy, so that complete protection is still available if any of the relays develop
a defect.

Overcurrent relays are also used in industrial systems and on subtransmission lines which cannot
justify more expensive protection such as distance or pilot relays. The time-delay overcurrent
relay is a typical example of the level detector described in section 2.2. The construction of the
electromechanical version of an overcurrent relay is shown in Figure 2.9. It should be noted that,
historically, the characteristic curve of an induction disc relay has not been precisely reproducible
by solid-state circuits, nor its shape defined by a simple formula. In solid-state relays, a complex
combination of filters is required to produce the characteristic shape, and when required in the
application of digital relays it is usual to resort to a look-up table. As a result, coordination between
relays of different construction or operating principles can be difficult. In recent years, however,
driven by the proliferation of microprocessor-based relays, there has been a determined effort to
develop analytical methods to represent these curves.2

4.3.2 Setting rules

There are two settings that must be applied to all time-delay overcurrent relays: the pickup and the
time delay.

Pickup setting

The first step in applying inverse, time-delay, overcurrent relays is to choose the pickup setting of
the relay so that it will operate for all short circuits in the line section for which it is to provide
protection. This is its fundamental function and it must be set so it will always operate for faults
in that zone of protection. This will require margins above normal operating currents and below
minimum fault currents. The considerations necessary to determine these margins are discussed in
Example 4.4.

If possible, this setting should also provide backup for an adjacent line section or adjoining
equipment such as a line-terminated transformer. It should be emphasized, however, that the backup
function is a secondary consideration. The primary function of protecting its own line section
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should not be compromised to provide this backup feature. The pickup of a relay (as shown in
Figure 2.12) is the minimum value of the operating current, voltage or other input quantity reached
by progressive increases of the operating parameter that will cause the relay to reach its completely
operated state when started from the reset condition. This is usually a contact closure, operation
of a silicon-controlled rectifier (SCR) or similar action. For example, an overcurrent relay set for

Multiples of Relay Tap Setting

1.5 3.0 5.0 10 15 4030 50

T
im

e 
in

 S
ec

on
ds

.15

.20

.30

.40

.50

.60

1.0

2.0

3.0

4.0

5.0

10

1/2

1

2

3

4

5

6

10

7
8
9

T
im

e 
D

ia
l S

et
tin

g

Figure 4.5 Time-delay overcurrent relay operating characteristic



Inverse, time-delay overcurrent relays 83

4.0 A pickup will operate only if the current through the relay is 4 A or greater. This pickup value
is determined by the application of the relay and must be available on the specific relay type being
used. The setting is first calculated considering the maximum load and minimum fault currents in
terms of the primary current and then, using the CT ratio, the secondary current is calculated. It is
then specified in terms of the pickup of the relay being used so the relay can be set and calibrated.

Time-delay setting

The time-delay feature of the relay is an independent parameter that is obtained in a variety of
ways, depending on the design of the relay. It is easiest to visualize in an electromechanical relay.
As shown in Figure 2.9, a time dial is provided that positions the moving contact relative to a
fixed contact. The dial is marked from a setting of 1

2 to 10, fastest to slowest operating times
respectively. The operating speed of the disc is determined by the magnitude of the operating
current, and the operating time is determined by the distance the moving contact has to travel
before it reaches the fixed contact. This is an inverse time–current relationship, i.e. the greater the
operating current, the less time it takes to travel from the reset position to the operating position.
In an electromechanical relay there are other time-delay mechanisms such as clock movements,
bellows or diaphragms. These may be inverse or fixed timing devices. In solid-state relays timing
is achieved by electrical circuits using R-L-C timing circuits. In digital relays the time delays are
established within the algorithm using the internal clocks or by accessing external timers.

The purpose of the time-delay setting is to enable relays to coordinate with each other. A family
of curves must be provided so two or more relays, seeing the same fault as defined by the multiples
of pickup, can operate at different times. Examples 4.2 and 4.3 show how the pickup, time-delay
setting and fault current relate to each other.

The effect of adding independent time settings is to convert the single characteristic shown in
Figure 2.12 into a family of curves as shown in Figure 4.5. As explained previously, the curves
are plotted in terms of multiples of the pickup (× pu) value, and not in terms of the actual pickup
value of current (or voltage, etc.). This allows the same curves to be used, regardless of the actual
input value corresponding to a specific tap setting. The curves shown in Figure 4.5 were derived
from an IEEE committee report2 and do not represent any actual relays. It is important to note that
actual relay settings must be based on the specific manufacturer’s curves for the relay in question.
Appendix D shows several manufacturers’ curves.

Example 4.2

Referring to Figure 4.5, determine the operating time for a relay with a 4.0 A pickup, time dial
setting of 1.0 and 12.0 A operating current.

The input current of 12 A corresponds to a value of 12
4 = 3 × pu. Using this value from the

curve and the corresponding curve for the time dial setting of 1.0 gives us an operating time of
1.375 s.

As another example, for a relay with 5.0 A pickup, time dial setting of 2.0 and 15.0 A operating
current, the operating current is 3 × pu, and the operating time corresponding to a time dial setting
of 2 is 2.25 s.

The operation of the relay is not consistently repeatable when the operating current is only
slightly above its pickup setting. In electromechanical relays, the net operating torque is so low
at this point that any additional friction or slight errors in calibration may prevent operation. In
fact, most manufacturers’ curves do not extend below 1.5 × pu. Solid-state or digital relays are
more precise, and can be applied with closer tolerances. Nevertheless, it is usual to calibrate the
relay at some multiple of pickup (such as 3 × or 4×) to get consistent results. Similarly, the actual



84 Nonpilot overcurrent protection of transmission lines

operating time may not correspond exactly to the time dial setting at any given multiple of pickup
as given on the manufacturer’s curve. The conservative approach is to calibrate the relay with the
desired current (converted to × pu by dividing the operating current in secondary amperes by the
pickup current) and to set the required time by small adjustments around the nominal dial setting.

Example 4.3

Referring again to Figure 4.5, determine the time-delay lever setting to achieve an operating time
of 1.0 s for a relay set at 10.0 A pickup and an operating current of 50.0 A.

The input current of 50.0 A corresponds to a value of 50
10 = 5 × pu. Using this value on the

abscissa and the operating time of 1.0 s on the ordinate, the corresponding time dial curve is 2.0.
As another example, consider a relay with a pickup setting of 5.0 A and the same operating time

of 1.0 s and fault current of 50 A. The operating current is 50
5 = 10 × pu on the abscissa and 1.0 s

operating time on the ordinate, corresponding to the curve of a time dial setting of 5.0.
Finally, consider a relay with the same pickup setting of 5.0 A, the same operating time of 1.0 s

and an operating current of 35.0 A. The input current is 35
5 = 7 × pu which, at an operating time of

1.25 s, corresponds to a time dial setting between the curves labeled 3 and 4. In electromechanical
relay design the time dial is a continuous adjustment, so interpolation between two settings is
possible, and a setting of 3.5 can be made. However, the exact time should be determined by test
calibration. Other relay designs would require different methods of selecting the correct time dial
setting.

Having established the mechanics of specifying the pickup tap and time lever setting of the
relay, we must now examine how these parameters relate to the actual load and fault currents on
the system.

For phase relays, it is necessary to establish the maximum load current, which requires engineer-
ing judgment based upon planning studies and reasonable system contingencies. Then the minimum
phase fault current must be calculated. This will usually be a phase-to-phase fault at some reduced
generation and system configuration. The relay should then be set somewhere between twice max-
imum load current and a third of the minimum fault current value. These are, of course, rough
guidelines. The actual setting must be an evaluation of setting closer to the maximum load, increas-
ing dependability and decreasing security or achieving less than three times pickup for the minimum
fault, decreasing dependability and increasing security.

A ground relay must ‘see’ all phase-to-ground faults within its zone of protection, and under
conditions which give a minimum fault current. Note that in calculating ground current it is the
zero-sequence current that is of interest. (Ground current = 3I0.) There is no concern for load
current, but normal phase and load unbalance and CT errors must be considered and the relays
set above these values. Again, setting between twice the ‘normal’ ground current and a third of
the minimum fault value is desirable. In the absence of any other information, the normal ground
current may be taken to be 10 % of the load current.

These rules for setting relays, and others, have been established over many years of experience, to
cover a variety of unknowns. For instance, short-circuit studies performed to determine fault currents
for relaying purposes do not normally include the resistance component of the impedances. Since
relaying studies generally precede construction, the line lengths are usually anticipated values, and
are not the actual installed values. Maximum and minimum load flows are, at best, good engineering
estimates. Equipment impedances are usually contract values, not test impedances. Finally, the relay
accuracy itself is subject to specific relay designs and manufacturers’ tolerances. As a result, these
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rules include conservative margins built into the settings. Solid-state and digital relays can be set
and calibrated to closer tolerances, and some leeway is allowed in their setting.

Example 4.4

Referring to Figure 4.6, determine the CT ratio, pickup and time dial settings for the relay at breaker
1, assuming that no coordination with any other relay is required. Assume that the maximum load
is 95 A, minimum fault is 600 A and the maximum fault is 1000 A. Select a CT ratio to give 5.0 A
secondary current for maximum load, i.e. 95

5 = 19 : 1. Since this is not a standard CT ratio (refer
to Table 3.1), we select the nearest CT ratio of 20 : 1 or 100 : 5. The relay pickup setting should
be bracketed by twice the maximum load and one-third of the minimum fault. Using the actual CT
ratio, twice maximum load is 190 A divided by 20, or a relay current of 9.5 A.

R

1

F1

Max. Load = 95 amperes

Min. Fault  = 600 amperes

Max. Fault = 1000 amperes

B

Figure 4.6 Time-delay overcurrent relay setting

Assuming the relay has taps 4.0, 6.0, 8.0, 10.0 and 12.0, we would select the 10.0 A tap, giving a
primary current relay pickup of 200 A. Dividing by 95 A load current results in a margin of 2.1 × pu
to prevent false operation (security). The minimum fault is 600 A divided by the relay pickup of
200 A, which gives 3 × pu to ensure correct operation (dependability). For this configuration no
coordination is required, so one can set the time delay at the lowest dial setting (fastest time) of 1

2 .

The principle of relay coordination can be explained by reference to Figure 4.7 which shows
a series of radial lines and the time–distance characteristics of the associated inverse-time relays.
These are relay operating curves selected for each of the relays, plotted as a function of fault
location. Since the magnitude of the fault current decreases as the fault moves away from the
source, these curves appear ‘reversed’ when compared to those in Figure 4.5.

For fault F1 at the end farthest from the generating source, relay Rd, tripping breaker (4), operates
first; relay Rcd at breaker (3) has a higher time lever setting which includes a coordinating time
delay S to let breaker (4) trip if it can; similarly, relay Rbc, at breaker (2), coordinates with the
relay at breaker (3) by having a still longer time delay (including the same coordinating time S);
and finally, relay Rab at breaker (1) has the longest time delay and will not trip unless none of the
other breakers trips, provided it can see the fault, i.e. provided the fault current is greater than its
pickup setting. Should a fault occur between breakers (3) and (4), relay Rd will receive no current
and therefore will not operate; relay Rcd will trip, since its operating time is faster than that of
relay Rb. For the settings shown in Figure 4.7, relay Rab will not see this fault. Relay Rb must still
provide backup relaying for this fault, as discussed before.
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S = Coordinating Time
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Figure 4.7 Relay coordination principles
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Figure 4.8 Time-delay overcurrent relay coordinating time

Referring again to Figure 4.7 and to the time sequence shown in Figure 4.8, a fault at the end
of the line should be cleared by Rd and CB4. Rcd sees the same fault as Rd and starts to close its
contacts. If the circuit breaker clears the fault, assuming electromechanical relays, Rcd will reset
after some overtravel. The exact overtravel time can be obtained for specific relays but the normal
assumption is that the disc will reset in the same time that it took to move in the contact-closing
direction. Contact overtravel is included in the margin of safety. Overtravel does not apply to
solid-state or digital relays which do not have moving parts although some safety margin would be
provided. If the fault is not cleared, Rcd continues to close its contacts and initiates a trip of CB3

at the end of its operating time. To be sure that Rcd does not close its contacts before the fault is
cleared by CB4 it must be set longer than Rd operating time (U ), plus CB4 clearing time (V ), and
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a factor of safety (X) (including overtravel, VV ). It is usual to add 0.3–0.5 s coordinating time to
the operating time of Rd which is calculated at its maximum fault. The same fault current is used
to determine the operating time of relay Rcd.

Example 4.5

Assume we have a radial system with two adjacent line segments as shown in Figure 4.9. The
segment farthest from the source is set as shown in Example 4.4. The relay protecting the next line
segment closest to the source must protect its own line and, if possible, back up the relays protecting
the next line. The pickup should therefore be for the same primary current as the downstream relay
and the time setting must coordinate with it. This time setting should be made with maximum
current conditions, i.e. assuming a three-phase fault, with maximum generation behind the relay.
In a radial system, all relays for which coordination is required must be examined for operation
at this same primary current. (Example 4.6 shows how to coordinate relays in a looped system.)
When coordination is achieved at maximum current, the shape of the inverse curves, provided they
are all of the same family of inverseness, will ensure coordination at all lesser current values.

Max. Load = 95 A.

Min. Fault  = 1000 A.
Max. Fault = 3000 A.

X

800 A.
1500 A.

600 A.
1000 A.

pu = 10 A.
T.D. = 1/2

A B1 2

Rab Rb

Figure 4.9 Time-delay overcurrent relay setting and coordination

From Example 4.4, the pickup setting of Rb is 10.0 A, and the time dial setting is 1
2 . Theoretically,

to ensure that Rab backs up Rb it should be set for the same pickup current, i.e. it sees the same faults,
but is set at a slower (higher) time dial.∗ The operating time of Rb is determined from Figure 4.5 at
the maximum fault current at bus B (1500 A) divided by its pickup setting (20 × 10 A) or 7.5 × pu
and the 1

2 time dial. This is seen to be 0.25 s. Add 0.3 s coordinating time and Rab operating time
should be 0.55 s. If we make reference again to Figure 4.5, at the same maximum fault current of
1500 A at bus B and pu of 20 × 10 A, the multiple of the tap setting is 7.5 × pu and the operating
time is 0.55 s. Interpolating between the time dial setting curves of 1 and 2 gives a setting of 1.5.
(The actual time dial should be determined by test.)

In a network, the coordination of time-delay overcurrent relays is complicated by the problem
of infeed and outfeed. Although this condition is most frequently associated with distance relays,

∗ In practice, for proper selectivity with the adjacent relays, as we move from the fault location to the source, each phase relay
should have a slightly higher pickup (in terms of primary current) than its preceding relay. This is to avoid the situation where,
with unexpected heavy load current or a fault with resistance, the relay current could be at this pickup point and small errors in
calibration or CT output would allow the upstream relay to drift closed while the downstream relay remained inoperative. For
instance, referring to Figure 4.7 where both Rab and Rb are both supposedly set at a pickup of 200 A secondary current, either the
relays or their CTs could be slightly in error so that Rab had a 190 A setting and Rb had a 210 A setting. If then a high resistive
fault occurred so that the fault current was 200 A, Rab would drift closed while Rb stayed open.
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as will be discussed in Chapter 5, it is also an important consideration when setting time-delay
overcurrent relays. The condition occurs when, for a given fault, due to the system configuration,
there is a different current in the downstream relays than there is in the relay being set.

Example 4.6

Referring to Figure 4.10, there is more current in the relays at current breaker (CB) 5 with all
lines in service than there is with line 3–4 out of service (8.33 versus 5.88 A). This helps the
coordination between relays at CB 5 and relays at CB 1. With line 3–4 out of service, the infeed
is no longer present and the current decreases in the relays at CB 5 (8.33 to 5.88 A) and increases
in the relays at CB 1 (4.165 to 5.88 A). This is the critical case for coordination.

A B

C

100 V. 100 V.j7 ohms

X

For fault at X, all lines in:
I5 = 100/12

For a fault at X, line 34 out

X

I5 = 100/17

I1 = 4.165 amperes

I1 = 5.88 amperes1 2

3 4
5 6

j10 j7

= 5.88 amperes

= 8.33 amperes

j 10 ohms

j 10 ohms

X
j5 j7

Figure 4.10 Effect of infeed

4.4 Instantaneous overcurrent relays
4.4.1 Application

The design and construction of the electromechanical and solid-state instantaneous overcurrent relay
are described in Section 2.4 (Figure 2.7) and Section 2.5 (Figure 2.14). In order to properly apply
the instantaneous overcurrent relay, however, there must be a substantial reduction of short-circuit
current as the fault is moved away from the relay toward the far end of the line. The relay must
be set not to overreach the bus at the remote end of the line and there still must be enough of a
difference in the fault current between the near and far end faults to allow a setting for the near-end
fault. This will prevent the relay from operating for faults beyond the end of the line and, at the
same time, will provide high-speed protection for an appreciable portion of the circuit.

Figure 4.7 also shows why simple inverse-time overcurrent relays cannot be used without addi-
tional help. The closer the fault is to the source, the greater the fault current magnitude, yet the
longer the tripping time. The addition of instantaneous overcurrent relays makes this system of
protection viable. If an instantaneous relay can be set to see almost up to, but not including, the
next bus, all of the fault-clearing times can be lowered, as shown in Figure 4.11.

4.4.2 Setting rules

The inaccuracies of the short-circuit studies discussed in setting an inverse, time-delay, overcurrent
relay apply equally to the instantaneous overcurrent relays. Since the instantaneous relay must not
see beyond its own line section, the values for which it must operate are very much higher than
even emergency loads. Therefore, load is not usually a consideration for the instantaneous relay
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Figure 4.11 Application of instantaneous relays (TDOC, time-delay overcurrent)

setting. Also, for an electromechanical instantaneous relay, the distinction between ‘go’ and ‘no-
go’ is much better defined than for a time-delay, particularly an induction-disc, relay. As a result,
there is no need to set an instantaneous overcurrent relay with margins such as 200 % of load and
one-third of fault current. However, in addition to the inaccuracies of the relay itself, there is a
factor called ‘transient overreach’ that must be considered. Transient overreach is the tendency of
a relay to instantaneously pick up for faults farther away than the setting would indicate. When
discussing the parameter T in Chapter 3 (section 3.3), we noted that this factor is related to the
time constant of the DC decay of the fault current; the slower the decay, the more overreach is
possible. High-voltage transmission systems are more susceptible to transient overreach than lower
voltage distribution systems because the latter have a lower X/R ratio in their line impedances.
The tendency is also more pronounced in electromagnetic attraction relays than in induction-type
relays. Transient overreach is usually only a concern for instantaneous or zone-1 relays. Their reach
settings are more critical than backup relays, and backup relays have a time delay which allows
the offset to decay. It is therefore common to set an instantaneous relay about 125–135 % above
the maximum value for which the relay should not operate, and 90 % of the minimum value for
which the relay should operate. Solid-state or digital relays can be set closer, e.g. 110 % above the
maximum no-go value.

Example 4.7

Using Figure 4.9 and the same fault currents of Example 4.5, set the instantaneous relays at buses
A and B.

Setting Rb

To avoid overreaching the terminal at the end of the line, Rb should be set at 135 % of the maximum
fault at that location, i.e. Rb = 135% × 1000 A = 1350 A. Dividing by the 20 : 1 CT ratio to get
relay current, the pickup of Rb is 1350/20 = 67.5 A.
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Check to see how the relay will perform for a minimum fault at bus B. The minimum fault at
bus B is 800 A, divided by the relay pickup of 1350 A, giving a multiple of pickup of 0.59: the
relay will not operate.

Check to see how the relay performs at the maximum current of 1500 A. 1500/1350 gives 1.11:-
barely above pickup.

This provides very little line protection and an instantaneous relay would not be recommended
in this situation.

Setting Rab

Avoid overreaching bus B by setting Rab = 135% times the maximum current at that bus, i.e.
1.35 × 1500 A = 2025 A.

Check the secondary current by dividing the primary current by the CT ratio: 2025/20 =
101.25 A. Current over 100 A may cause saturation of the magnetic components and is too high
for electromechanical relays. Depending upon the specific design, this current may also be too high
for both solid-state and digital relays.

Referring again to Table 3.1, select the next highest standard CT ratio of 40 : 1. The relay current
then becomes 2025/40 = 50.63 A. Depending upon the actual breaker and CT configuration, this
change in CT ratio may require that the setting of the time overcurrent relays, e.g. Example 4.5,
may have to be recalculated.

Check the performance of the relay at minimum and maximum current at bus A. Pickup at 1000 A
is 1000/2025 = 0.49. The relay will not pick up. Pickup at 3000 A, however, is 3000/2025 = 1.48
and the relay will pick up.

The decision whether or not to use an instantaneous relay depends upon the clearing time of the
time delay overcurrent relay of Example 4.5. The fact that the clearing time of the instantaneous
relay will only occur at the maximum bus fault also indicates that there may be very little advantage
to be gained with the instantaneous relay. However, if the source connected to bus A is an actual
generator, not a system equivalent, then faster clearing at the maximum fault current is justified
and an instantaneous relay would be used.

4.5 Directional overcurrent relays
4.5.1 Application

Directional overcurrent relaying is necessary for multiple source circuits, when it is essential to
limit relay tripping for faults in only one direction. It would be impossible to obtain correct relay
selectivity through the use of a nondirectional overcurrent relay in such cases. If the same magnitude
of the fault current could flow in either direction at the relay location, coordination with the relays
in front of, and behind, the nondirectional relay cannot be achieved except in very unusual system
configurations. Therefore, overcurrent relaying is made directional to provide relay coordination
between all of the relays that can see a given fault. Directional relays require two inputs, the
operating current and a reference, or polarizing, quantity (either voltage or current) that does not
change with fault location. The operating torque of a two-input relay, which may be used to provide
the directional feature, is given by equation (2.15).

To illustrate the need for directionality, refer to Figure 4.12. As a radial system (switch X
open), circuit breakers (4) and (5) receive no fault current for a fault at F1. In fact, for this system
configuration, breaker (4) is not required. In the loop system (switch X closed) we cannot set relays
at (4) above those at (5) to be selective for a fault at F2, and still maintain coordination between
(4) and (5) for a fault at F1. Directional relays are required. Occasionally, a point in the loop can
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Figure 4.12 Radial versus loop circuit

be found when there is sufficient difference between a fault in the forward direction and one in the
backward direction so that the settings alone can discriminate between them. For this to be a safe
procedure usually a ratio of 4 : 1 between forward and reverse faults would be required.

Example 4.8

Referring to Figure 4.12, with switch X closed, assume that the current through (4) and (5) for a
fault at F1 is 100 A and for a fault at F2 is 400 A. Setting the relay at (4) for pickup at 25 A gives
4 × pu for the fault at F1 and 16 × pu for the fault at F2. This relay must, therefore, be directional
to see faults only in the direction from breaker (4) to breaker (3). Setting the relay at (5) at 125 A,
however, allows it to have 3.2 × pu for the fault in its protected zone at F2, but less than 1.0 × pu
for the fault at F1. It therefore does not have to be directional. However, such a condition may
change with system growth and pass unnoticed until a false trip occurs. It is therefore good practice
to use directional relays at both locations.

There are two approaches to providing directionality to an overcurrent relay.

1. Directional control. As shown in Figure 4.13(a), the design of the relay is such that the over-
current element will not operate until the directional element operates, indicating that the fault
is in the tripping direction. In electromechanical relays this is done by using the directional
element contact in series with the overcurrent element coil so no torque can be developed until
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1 2
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Figure 4.13 Directional control versus directional overcurrent relays
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the directional element contact is closed. In solid-state and digital relays this is accomplished
by the logic circuitry or the algorithm.

2. Directional overcurrent. As shown in Figure 4.13(b), this relay has independent contacts, con-
nected in series with the circuit breaker trip coil. Both relay contacts must close before a trip
output is obtained.

The directional control relay is more secure. Referring to Figure 4.13(c), with the directional
overcurrent design, if a fault occurs in the nontrip direction, as it does for breaker (4), the overcurrent
element can pick up from the contribution in that direction. Only the directional element prevents a
trip of breaker (4). If we assume that breaker (2) opens before breaker (1), which is possible, then
the reversal of fault current through circuit breaker (4) will cause a race between the overcurrent
element opening and the directional element closing.

If the directional element wins the race, i.e. it closes its contacts before the overcurrent relay
resets, there will be a false trip. With the directional control design, this situation cannot occur
since the overcurrent relay is controlled by the directional contact and will not pick up when the
fault is in the nontrip direction. At breaker (3), although the directional contact will pick up with
all breakers closed, the overcurrent relay will not time out since it must coordinate with breaker
(2). On the one hand, it is more difficult to apply a directional control relay since the setting
must consider the two elements operating together, instead of independently. The operating time
of separate units is simply a function of the current in the overcurrent element of each unit; the
pickup and time delay of the directional unit are so small that they can be neglected. On the other
hand, the operating time of a directional relay is more complicated since it is a function of the
product of its actuating and polarizing quantities and the angle between them. For this reason, it is
not recommended that directional control relays try to coordinate with overcurrent relays, even if
the time curves are the same.

4.6 Polarizing
As described in section 2.2, the ability to differentiate between a fault in one direction or another
is obtained by comparing the phase angle of the operating current phasor, which varies directly
with the direction of the fault, and some other system parameter that is not dependent on the fault
location. This constant parameter is referred to as the polarizing quantity. For phase relays, the
polarizing quantity is, almost invariably, the system voltage at the relay location. Depending on
the voltage and current connections, a directional relay will operate either for normal load cur-
rent or fault current. In an electromechanical relay, the maximum torque on an induction disc
occurs when the two torque-producing fluxes are 90◦ apart in time and space. The space cri-
terion is easily obtained by the location of the flux-producing coils around the relay. The time
criterion is achieved by creating an appropriate phasor difference between the two operating quan-
tities.

4.6.1 Power directional relays

For protective applications where we are concerned with conditions other than short circuits, power
directional relays are required. These relays operate under conditions of balanced load and relatively
high power factor. The voltage and current phasors are approximately in phase with each other
and of constant magnitude, as shown in the balanced load case of Figure 4.14(a). Power relays are
polarized by a voltage of the circuit, e.g. Van compared to the operating current Ia as shown in the
phasor diagram for a power relay. These connections are chosen so that maximum torque in the
relay occurs under unity power factor load. The relay will then pick up for power flowing in one
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Figure 4.14 (a) Phasors for power relays. (b) Power relay connections without phase-to-neutral voltage
available

direction and will reset for the opposite direction of power flow. The relay is designed to make the
necessary 90◦ flux displacement. This connection requires a phase-to-neutral voltage. If one is not
available, then an auxiliary transformer is required, as shown in Figure 4.14(b).

4.6.2 Fault directional relays

The more usual case, however, involves protection during short circuits. For directional relays
applied to operate during a fault, it is important to remember two facts.

1. The system voltage will collapse at the point of the short circuit (Vb in Figure 4.15). Therefore
to obtain sufficient torque under fault conditions, the polarizing voltage must not include the
faulted phase.

2. The fault power factor is low, i.e. the current lags the voltage by nearly 90◦. The choice of
connections to obtain correct directional discrimination for unbalanced faults is restricted to
those shown in Figure 4.16. It is possible to determine the best connection of the three for
any given set of system and fault conditions by analyzing the phasors within the relay for the
most probable conditions of load angles, faults and the effect of arc resistance. If any of these
conditions change, the preferred connection will also change. Since it is not possible to wire
the relay for all of the possible variations, it is necessary to select the best compromise for the
widest range of possibilities. Of the three shown, the 90◦ connection is usually preferred.3,4
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Figure 4.16 Conventional connections for directional phase relays

Potential polarizing

For ground faults, the operating current is derived from the residual circuit of the phase CTs
(In = 3I0). Since the current can be derived from any phase that is faulted, it is necessary to
obtain a related voltage to obtain a correct directional response. As with phase relays, whenever
a directional relay is involved, two facts must be known: the magnitude and the direction of the
fault. Both factors may be combined in a single product-type relay or in separate elements such
that the directional element controls the overcurrent element.

For ground directional indication, a reference is necessary to determine whether the line current
is into or out of the protected line. The zero-sequence voltage (3E0) can be used since it is always
in the same direction regardless of the location of the fault. This is called potential polarizing and
can be obtained across the open corner of a wye-grounded, broken delta potential transformer, as
shown in Figure 4.17. The vector sum of the three line-to-neutral voltages Ea + Eb + Ec = 3E0,
which is zero for balanced conditions or for faults not involving ground. The magnitude of 3E0

during line-to-ground faults depends on the location of the fault, the impedance of the ground
circuit and the ratio of the zero-sequence impedance to the positive-sequence impedance. If two
winding potential transformers are used they are usually connected wye-grounded–wye-grounded
to provide metering and relaying potential. In this case 3E0 is obtained from an auxiliary potential
transformer, as shown in Figure 4.18.

Current polarizing

Another method of obtaining a directional reference is to use current in the neutral of a wye-
grounded/delta power transformer. Where there are several banks at a station it is common practice
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to parallel all of the neutral CTs to be sure that, if at least one of the banks is in service, the necessary
polarization is provided. Three winding banks can be used as long as there is a delta winding and
one wye-grounded winding. If there are two wye-grounded windings, then both neutrals must have
their CTs paralleled with their ratios inversely proportional to the bank ratings. The grounded
neutral of an autotransformer with delta tertiary may or may not be a suitable polarizing source.
The autotransformer is different from the three-winding transformer in that some of the fault current
flows directly from one voltage system to the other while the rest of the fault current is transferred
through the transformer. It is the direct flow of current in the common winding to the neutral
that presents the problem. For a high-side fault, if IH0 represents the high-side zero-sequence fault
current and IL0 represents the low-side zero-sequence fault current (both currents in amperes), then
the neutral current = 3[IH0 − IL0], IL0 = IH0 × n × k, where n is the voltage ratio and k is the
current distribution factor which gives the zero-sequence current contribution of the low-voltage
system. This expression reduces to

Ineutral = 3IH0[1 − kn]

If this current is positive, current flows up the neutral; if negative, it flows down the neutral. In
other words, if kn is 1, the neutral current is zero; if greater than 1, current flows down the neutral;
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if less than 1, current flows up the neutral. Although the current can be up or down the neutral
for a high-side fault, in practice, with the usual system and transformer parameters, the current is
always up the neutral for low-voltage faults.5

Figure 4.19 shows the connections for a variety of transformer installations. Either potential or
current polarization may be used, or both simultaneously. However, since the zero-sequence voltage
always has its maximum magnitude at the fault and decreases from the fault point to the grounded
system neutral, it is possible that there will not be sufficient zero-sequence voltage at the station to
give adequate polarizing. It is therefore generally recommended to use current polarizing at stations
where transformer banks are solidly grounded.

4.7 Summary
In this chapter we have examined the protection of a transmission line with time-delay and instan-
taneous overcurrent relays using only the information available at the relay location. These are
the most commonly used relays for the protection of radial and low-voltage subtransmission lines,
industrial or commercial installations. Time-delay relays coordinate with each other by grading the
relay operating currents, in primary amperes, as the fault is moved from the load to the source end
and by allowing enough time between the relay operating times so that the relays closest to the fault
will operate first. Instantaneous relays, by definition, cannot coordinate with each other and must
be set so as not to overreach their intended zone of protection. In a networked system, relays must
be directional so they will operate only for faults in the desired direction and allow coordination
by current and time in that one direction. Coordination must be made by comparing the current
in each relay, taking due account of the distribution of current for a given fault. Directionality is
obtained by comparing the operating current with a voltage or current that is constant, regardless
of the location of the fault.

Problems
4.1 (a) Draw the one-line diagram of a 138/12 kV, 10 000 kVA, 15 %, grounded-wye/delta trans-

former, 12 kV circuit breaker, 138 kV motor-operated switch and 138 kV 1200/5 multiratio
CTs connected 600/5. Add the following relays and meters: three instantaneous overcurrent
relays, two phase time-delay overcurrent relays, three ammeters and one time-delay over-
current ground relay. Show the appropriate ANSI device function numbers. (b) Draw the
associated three-phase AC CT secondary, relay and meter connections. (c) Draw the DC
tripping circuit showing the relay contacts and the circuit breaker trip coil and auxiliary
switch.

4.2 (a) For the system shown in Figure 4.20, calculate the current for a three-phase fault at bus
A and again at bus B. (b) Repeat (a) for the system shown in Figure 4.21.
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A B
10 OHMS 1 OHM

100 V.

Figure 4.20 System diagram for problem 4.2(a)

A B
10 OHMS1 OHM

100 V.

Figure 4.21 System diagram for problem 4.2(b)

4.3 (a) Referring to Figure 4.20, set an instantaneous relay at bus A. Calculate the pickup for
faults on buses A and B and discuss the application of the instantaneous relay for this
configuration. (b) Repeat (a) for Figure 4.21.

4.4 Repeat problems 4.2 and 4.3 for a system where the two segments are both equal to 5 �.

4.5 (a) Referring to the relay characteristics of Appendix D (a), (b) and (c), determine the oper-
ating time for each relay with a 5.0 A pickup, time dial setting of 3 and a fault current of
15.0 A. (b) Which relay, and what time dial setting, should be used if the relay is set at
5.0 A pickup, with a fault current of 15.0 A, and operating time of 1.5 s? (c) Select two
different relays, their pickup and time dial settings when the fault current is 20.0 A and the
relay must operate in 2 s.

4.6 For the radial system shown in Figure 4.22, calculate the instantaneous and time-delay over-
current relay settings at each bus. Assume the transformer must not be de-energized and that
the relays at bus B are ‘looking into’ a transformer differential and do not need to coordinate
with it. Assume any pickup tap is available, but use the relay characteristic of Figure 4.5.

Min. Fault  = 3000 A.

Max. Fault = 9000 A.

2000 A.

5000 A.

1000 A.

3000 A.

1 2
BA

ctr = 30/1 ctr = 20/1
50 A.

100 A.

Rab Rb

Figure 4.22 System diagram for problem 4.6

4.7 The current in both instantaneous relays of problem 4.6 exceeds 100 A. Revise the CT ratios
and recalculate both time-delay and instantaneous relay settings at buses A and B.

4.8 Given the subtransmission system shown in Figure 4.23, calculate currents for faults at F1

and F2 and the relay pickup settings at breakers 3 and 4. Determine which relays must be
directional.
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1 2

X

3 54 6F1

X

j5 j8 j6 j6 j2 j2

F2
100 v.

Figure 4.23 System diagram for problem 4.8

4.9 Given the system shown in Figure 4.24, calculate the currents in breakers 1, 3 and 5 for a
fault at X for the following three conditions: (a) system normal (SIN); (b) line 1–2 open;
(c) line 3–4 open. Select and set the appropriate relays from Appendix D for the relays at
breakers 1, 3 and 5. Neglect load, and assume breaker 5 needs no coordination.

1 2

3 4

5

70 v. 70 v.

j1.5

j0.5
j0.8

X

Figure 4.24 System diagram for problem 4.9

4.10 You are given that the system shown in Figure 4.25 has a 110/220 kV autotransformer. The
positive- and zero-sequence impedances in ohms or percent are as shown in the figure, the
zero-sequence impedances being in parentheses. Assume the low-voltage system is solidly
grounded. For a phase-a-to-ground fault at the midpoint of the transmission line, calculate
the transformer current In in the neutral and the phase a currents Ia and I ′

a on the high and
low sides of the transformer. If the source on the low-voltage side is to be grounded through
a reactance, determine the value of the grounding reactance for which the transformer neutral
current becomes zero. As the grounding reactance changes around this value, the direction
of the neutral current will reverse, and will affect the polarizing capability of the neutral
current for ground faults on the high side. Can faults on the low-voltage side ever cause the
neutral current to reverse?

X
F
1

In

IaI'a

4 + j40
(10 + j80)

20%
(10%)

110/220 kV

(10%)
20%

XHT  = 40%

XLT  = 20%

XHL  = 10%

@100MVA@100MVA

Figure 4.25 System diagram for problem 4.10
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5
Nonpilot distance protection
of transmission lines

5.1 Introduction
Distance relays are normally used to protect transmission lines.1 They respond to the impedance
between the relay location and the fault location. As the impedance per mile of a transmission
line is fairly constant, these relays respond to the distance to a fault on the transmission line – and
hence their name. As will be seen shortly, under certain conditions it may be desirable to make
distance relays respond to some parameter other than the impedance, such as the admittance or the
reactance, up to the fault location. Any of the relay types described in Chapter 2 can be made to
function as a distance relay by making appropriate choices of their design parameters. The R–X

diagram is an indispensable tool for describing and analyzing a distance relay characteristic, and
we will examine it initially with reference to a single-phase transmission line. Similar principles
are applicable in case of a three-phase transmission line, provided that appropriate voltages and
currents are chosen to energize the distance relay. This matter of energizing voltages and currents
in three-phase systems will be considered in detail later.

5.2 Stepped distance protection
Before describing the specific application of stepped distance protection, the definitions of under-
reach and overreach must be addressed. ‘Underreaching’ protection is a form of protection in
which the relays at a given terminal do not operate for faults at remote locations on the protected
equipment.2 This definition states that the relay is set so that it will not see a fault beyond a given
distance (e.g. an instantaneous relay should not see the remote bus, as discussed in section 4.4).
The distance relay is set to underreach the remote terminal. The corollary to this definition, of
course, is that the relay will see faults less than the setting. ‘Overreaching’ protection is a form of
protection in which the relays at one terminal operate for faults beyond the next terminal. They may
be constrained from tripping until an incoming signal from a remote terminal has indicated whether
the fault is beyond the protected line section.2 Note the added restriction placed on overreaching
protection to avoid loss of coordination.

The zone of distance relays is open at the far end. In other words, the remote point of reach
of a distance relay cannot be precisely determined, and some uncertainty about its exact reach
must be accepted. This uncertainty of reach is typically about 5 % of the setting. Referring to
Figure 5.1(a), the desired zone of protection is shown with a dotted line. The ideal situation would

P ower System R elaying, Third Edition.  Stanley H . H or owitz and A r un G . Phadke
 2008 Resear ch Studies Pr ess L im ited. ISBN: 978-0-470-05712-4
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(a)

(b)

A B C

Rab
RbcZone 1

Zone 2
Zone 3

F2

A B C

Rba RbcRab Rcb

Figure 5.1 Three-zone step distance relaying to protect 100 % of a line, and back up the neighboring line

be to have all faults within the dotted area trip instantaneously. Owing to the uncertainty at the far
end, however, to be sure that we do not overreach the end of the line section, we must accept an
underreaching zone (zone 1). It is customary to set zone 1 between 85 and 90 % of the line length
and to be operated instantaneously. It should be clear that zone 1 alone does not protect the entire
transmission line: the area between the end of zone 1 and bus B is not protected. Consequently, the
distance relay is equipped with another zone, which deliberately overreaches beyond the remote
terminal of the transmission line.

This is known as zone 2 of the distance relay, and it must be slowed down so that, for faults
in the next line section (F2 in Figure 5.1(a)), zone 1 of the next line is allowed to operate before
zone 2 of the distance relay at A. This coordination delay for zone 2 is usually of the order of
0.3 s, for the reasons explained in Chapter 4.

The reach of the second zone is generally set at 120–150 % of the line length AB. It must be
borne in mind that zone 2 of relay Rab must not reach beyond zone 1 of relay Rbc, otherwise some
faults may exist simultaneously in the second zones of Rab and Rbc, and may lead to unnecessary
tripping of both lines. This concept, of coordination by distance as well as by time, leads to a
nesting of the zones of protection, and is illustrated in Figure 5.1(b).

It should be noted that the second zone of a distance relay also backs up the distance relay of
the neighboring line. However, this is true for only part of the neighboring line, depending upon
how far the second zone reaches. In order to provide a backup function for the entire line, it is
customary to provide yet another zone of protection for the relay at A. This is known as the third
zone of protection, and usually extends to 120–180 % of the next line section. The third zone must
coordinate in time and distance with the second zone of the neighboring circuit, and usually the
operating time of the third zone is of the order of 1 s. The three zones of protection of the two line
sections AB and BC are shown in Figure 5.1(b).

It should also be mentioned that it is not always possible to have acceptable settings for the
two overreaching zones of distance relays. Many of these issues will be discussed in greater detail
in later sections. However, it is worth noting some of the limiting causes at this time. First, a
complication is caused by dissimilar lengths of adjacent lines. If the length of a downstream line is
less than 20 % of the line being protected, its zone 2 will certainly overreach the first zone of the
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shorter line. Similarly, the zone 3 of the first line may overreach the zone 2 of the next line. The
guidelines for setting the reach of zones mentioned above must be considered to be approximate,
and must be adjusted to meet a specific situation at hand. Zone 3 was originally applied as a
remote backup to zones 1 and 2 of an adjacent line in the event that a relay or breaker failure
prevented clearing the fault locally.3 The reach setting, however, is a complex problem and is the
subject of many ongoing studies and suggestions which will be discussed in detail in Chapters 5,
10 and 11. Briefly, however, the zone 3 characteristic must provide protection against faults but
should not operate for normal, albeit unusual, system conditions such as heavy loads or stability
swings. Computer relaying makes provision for identifying heavy loads or stability swings through
its load encroachment feature which is discussed further in Chapter 11. Another consideration is
the effect of the fault current contributions from lines at the intermediate buses. This is the problem
of infeed, and will be discussed in greater detail later.

Example 5.1

Consider the transmission system shown in Figure 5.2. The relay Rab is to be set to protect the
line AB, and back up the two lines BC and BD. The impedances of the three lines are as shown in
Figure 5.2. (Note that these impedances are in primary ohms – i.e. actual ohms of the transmission
lines. Normally, the settings are expressed in secondary ohms, as will be explained in section 5.3.)
Zone 1 setting for Rab is 0.85 × (4 + j30), or (3.4 + j25.5) �. Zone 2 is set at 1.2 × (4 + j30),
or (4.8 + j36) �. Since the relay Rab must back up relays Rb and Rbd, it must reach beyond the
longer of the two lines. Thus, zone 3 is set at [(4 + j30) + 1.5 × (7 + j60)], or at (14.5 + j120) �.
The time delays associated with the second and third zones should be set at about 0.3 and 1.0 s,
respectively.

A

B C

DRab

Rbc

Rbd

(4 + j30)

(2 + j20)

(7 + j60)

Figure 5.2 System for Example 5.1

It should be noted that if one of the neighboring lines, such as line BD, is too short, then the
zone 2 setting of the relay Rab may reach beyond its far end. For the present case, this would
happen if the impedance of line BD is smaller than [(4.8 + j36) − (4.0 + j30)] = (0.8 + j6) �. In
such a case, one must set zone 2 to be a bit shorter, to make sure that it does not overreach zone
1 of Rbd, or, if this is not possible, zone 2 of the relay Rab may be set longer than zone 2 of relay
Rbd or it may be dispensed with entirely and only zone 3 may be employed as a backup function
for the two neighboring lines.

The control circuit connections to implement the three-zone distance relaying scheme are shown
in Figure 5.3. The seal-in unit contact shown is typical for all three phases, and the seal-in coil may
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+

−

Seal-in
unit

Target Target Target

Z1 Z2 Z3

T2 T3

Seal-in
unit

TC
Breaker
aux. contact

T2 T3

timer timer

Figure 5.3 Control circuit for a three-zone step distance relay

be combined with the target coils in some designs. The three distance measuring elements Z1, Z2

and Z3 close their contacts if the impedance seen by the relay is inside their respective zones. The
zone 1 contact activates the breaker trip coil(s) immediately (i.e. with no intentional time delay),
whereas the zones 2 and 3 contacts energize the two timing devices T2 and T3, respectively. Once
energized, these timing devices close their contacts after their timer settings have elapsed. These
timer contacts also energize the breaker trip coil(s). Should the fault be cleared before the timers
run out, Z2, Z3, T2 and T3 will reset as appropriate in a relatively short time (about 1–4 ms).

We should remember that the zone settings for zones 2 and 3 are affected by the contributions
to the fault current made by any lines connected to the intervening buses, i.e. buses B and C in
Figure 5.1. This matter has been dealt with in the discussion of infeed and outfeed in section 4.3,
and similar considerations apply here as well. The problem is caused by the different currents
seen by the relays as a result of the system configuration. As shown in Example 4.6, the operating
currents in the upstream relays change significantly if parallel lines are in or out of service.

5.3 R–X diagram
In general, all electromechanical relays respond to one or more of the conventional torque-producing
input quantities: (a) voltage, (b) current, (c) product of voltage, current and the angle θ between
them and (d) a physical or design force such as a control spring.4 Similar considerations hold
for solid-state relays as well. For the product-type relay, such as the distance relay, analyzing the
response of the relay for all conditions is difficult because the voltage varies for each fault, or
varies for the same fault but with different system conditions.

To resolve this difficulty, it is common to use an R–X diagram to both analyze and visualize
the relay response. By utilizing only two quantities, R and X (or Z and θ ), we avoid the confusion
introduced by using the three quantities E, I and θ . There is an additional significant advantage in
that the R–X diagram allows us to represent both the relay and the system on the same diagram.

Consider an ideal (zero resistance) short circuit at location F in the single-phase system shown
in Figure 5.4. The distance relay under consideration is located at line terminal A. The primary
voltage and current at the relay location are related by

Zf,p = Ep

Ip
(5.1)
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S A B

ZF

F

Rab

Rba
Zs

Ep

Es

Is

Ip

(1 : ni )

(1 : ne )

R + jX

θ

Figure 5.4 Voltage, current and impedance as seen by the relay

where the subscript ‘p’ represents primary quantities. In terms of the secondary quantities of voltage
and current transformers, the relay sees the primary impedance Zf,p as Zf,s, where

Zf,s = Es

Is
= Zf,p

ni

ne
(5.2)

where ni and ne are the current transformer (CT) and voltage transformer (VT) turns ratios. It is
customary to suppress the subscript ‘s’, with the understanding that the secondary quantities are
always implied. Thus, we will mean Zf,s when we use Zf.

Example 5.2

Consider a distance relaying system utilizing a CT with a turns ratio of 500 : 5 and a VT with
a turns ratio of 20 000 : 69.3. Thus, the CT ratio ni is 100, while the VT ratio ne is 288.6. The
impedance conversion factor ni/ne for this case is (100/288.6), or 0.3465. All primary impedances
must be multiplied by this factor to obtain their secondary values. Thus, the line in Example 5.1
with an impedance of (4 + j30) � primary would appear to be (1.386 + j10.395) � secondary.

The zone 1 setting for this line would be 85 % of this impedance, or (1.17 + j8.84) � secondary.
Of course, the actual setting used would depend upon the nearest value which is available on a
given relay.

Although we have defined Zf under fault conditions, it must be borne in mind that the ratio of
E and I at the relay location is an impedance under all circumstances, and when a fault occurs,
this impedance assumes the value Zf. In general, the ratio E/I is known as the apparent impedance
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‘seen’ by the relay. This impedance may be plotted as a point on the complex R–X plane. This is
the plane of (apparent) secondary ohms. One could view the impedance as the voltage phasor,
provided that the current is assumed to be the reference phasor, and of unit magnitude. This
way of looking at the apparent impedance seen by a relay as the voltage phasor at the relay location
is often very useful when relay responses to changing system conditions are to be determined. For
example, consider the apparent impedance seen by the relay when there is normal power flow in the
transmission line. If the load current is of constant magnitude, and the sending end voltage at the
relay location is constant, the corresponding voltage phasor, and hence the impedance, will describe
a circle in the R–X plane. Lighter loads – meaning a smaller magnitude of the current – produce
circles of larger diameters. Similarly, when the load power factor is constant, the corresponding
locus of the impedance is a straight line through the origin. Figure 5.5 shows these contours for
varying load current magnitudes and power factors. Note that when the real power flows into the
line, the corresponding apparent impedances lie in the right half of the plane, while a reversed
power flow maps into the left half-plane. Similarly lagging power factor load plots in the upper
half-plane, while a leading power factor load plots in the lower half-plane. Zero power transfer
corresponds to points at infinity. A line open at the remote end will have leading reactive current,
and hence the apparent impedance will map at a large distance along the negative X axis.

Now consider the fault at location F as shown in Figure 5.4. The corresponding apparent
impedance is shown at F in Figure 5.5. As the location of the fault is moved along the trans-
mission line, the point F moves along the straight line AB in Figure 5.5. Thus, the transmission
line as seen by the relay maps into the line AB in the R–X plane. The line AB makes an angle
θ with the R axis, where θ is the impedance angle of the transmission line. (For an overhead
transmission line, θ lies between 70◦ and 88◦, depending upon the system voltage, the larger angles
being associated with higher transmission voltages.) When the fault is on the transmission line, the
apparent impedance plots on the line AB; for all other faults or loading conditions, the impedance
plots away from the line AB. Often it is convenient to plot the source impedance Zs also on the
R–X diagram, as shown in Figure 5.5.

X

R

E

IA

B
F

S

light load

heavy  load

ZF

ZS

power into linepower into bus

load with
lagging pf

load with
leading pf

line charging

θ

Figure 5.5 R–X diagram as a special case of the phasor diagram (pf, power factor)
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Example 5.3

Let the rated load for the transmission line shown in Figure 5.4 be 8 MVA. This corresponds
to 400 A at the rated voltage of 20 000 V. The apparent impedance corresponding to this load is
(20 000/400) = 50 � primary. In terms of secondary ohms, this impedance becomes 50 × 0.3465 =
17.32 �. Thus, a load of 8 MVA at 0.8 pf lagging is 17.32 × (0.8 + j0.6) = (13.86 + j10.4) �

secondary. This is shown as L1 in Figure 5.6. A load of 8 MVA with a leading power factor of
0.8 is (13.86 − j10.4) � secondary, which maps as point L2. Similarly, 8 MVA flowing from B to
A maps into L3 and L4 for leading and lagging power factors, respectively.

The line impedance of (1.39 + j10.4) � secondary maps into point B while the zone 1 setting
of (1.17 + j8.84) � maps into the point Z1a. A similar relay located at B would have its zone
1 map at Z1b. If we assume the equivalent source impedances as seen at buses A and B to be j10
and j8 � primary respectively, they will be j3.46 and j2.77 � secondary respectively, as shown by
points S1 and S2 in Figure 5.6. If the line-charging current is 15 A, the apparent impedance seen
by the relay at A when the breaker at terminal B is open is −j(20 000/15) = −j1333 � primary,
or −j461.9 � secondary. This is shown as the point C, on a telescoped y axis in Figure 5.6. The
zones of protection of a relay are defined in terms of its impedance, and hence it is necessary
that they cover areas in the immediate neighborhood of the line AB. As the load on the system
increases, the possibility of it encroaching upon the protection zones becomes greater. Ultimately,
at some values of the load, the relay is in danger of tripping. The R–X diagram offers a convenient
method of analyzing whether this is the case. A fuller account of the loadability of a distance relay
is considered in section 5.11.

S2 (1.39 + j13.17)

B (1.39 + j10.4)

A

S1

Z1a (1.17 + j8.84)

Z1b (0.22 + j1.16)

L1

L2

L4 (−13.86 + j10.4)

L3 (−13.86 − j10.4)

C (−j461.9)

(13.86 + j10.4)

(13.86 − j10.4)

Figure 5.6 R–X diagram for Example 5.3
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5.4 Three-phase distance relays
On a three-phase power system, there are ten distinct types of possible faults: a three-phase fault,
three phase-to-phase faults, three phase-to-ground faults and three double-phase-to-ground faults.
The equations that govern the relationship between voltages and currents at the relay location are
different for each of these faults. We should therefore expect that it will take several distance relays,
each of them energized by a different pair of voltage and current inputs, to measure the distance to
the fault correctly. It is a fundamental principle of distance relaying that, regardless of the type of
fault involved, the voltage and current used to energize the appropriate relay are such that the relay
will measure the positive sequence impedance to the fault.5 Once this is achieved, the zone settings
of all relays can be based upon the total positive sequence impedance of the line, regardless of the
type of the fault. We will now consider various types of fault, and determine the appropriate voltage
and current inputs to be used for the distance relays responsible for each of these fault types.

5.4.1 Phase-to-phase faults

Consider a fault between phases b and c of a three-phase transmission line. We may consider this
to be the fault at location F in Figure 5.4, provided we view that figure as a one-line diagram
of the three-phase system. The symmetrical component representation for this fault is shown in
Figure 5.7. The positive and negative sequence voltages at the fault bus are equal, and are given by

E1f = E2f = E1 − Z1fI1 = E2 − Z1fI2 (5.3)

where E1, E2, I1 and I2 are the symmetrical components of voltages and currents at the relay
location, and the positive and negative sequence impedances of the transmission line are equal. It
follows from equations (5.3) that

E1 − E2

I1 − I2
= Z1f (5.4)

Also, since the phase quantities at the relay location are given by

Eb = E0 + α2E1 + αE2 and Ec = E0 + αE1 + α2E2 (5.5)

then

(Eb − Ec) = (α2 − α)(E1 − E2) and (Ib − Ic) = (α2 − α)(I1 − I2) (5.6)

A BF

A B
F

E1

E2

E1f

E2f

I1

I2

Z1f

Z1f

Figure 5.7 Symmetrical component circuit for b–c fault
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E2

E1f

E2f

I1

I2

Z1f

Z1f

BF

E0
E0f

Z0f

I0

Figure 5.8 Symmetrical component circuit for b–c–g fault

Substituting from equations (5.6) in equation (5.4) gives

Eb − Ec

Ib − Ic
= E1 − E2

I1 − I2
= Z1fA (5.7)

Thus, a distance relay, to which the line-to-line voltage between phases b and c is connected,
and which is supplied by the difference between the currents in the two phases, will measure the
positive sequence impedance to the fault, when a fault between phases b and c occurs. Similar
analysis will show that, for the other two types of phase-to-phase fault, when the corresponding
voltage and current differences are used to energize the relays, the positive sequence impedance to
the fault will be measured.

The symmetrical component diagram for a phase-b-to-c-to-ground fault is shown in Figure 5.8.
It should be clear from this figure that for this fault also, the performance equations for the positive
and negative sequence parts of the equivalent circuit are exactly the same as those for the b-to-c
fault. Finally, for a three-phase fault at F, the symmetrical component diagram is as shown in
Figure 5.9. For this case

E1 = Ea = Z1fI1 = Z1fIa

E2 = E0 = 0 (5.8)

I2 = I0 = 0

Also, for this case, Ea = E1, Eb = α2E1 and Ec = αE1, and similar relations hold for the phase
currents. Consequently, for a three-phase fault

Ea − Eb

Ia − Ib
= Eb − Ec

Ib − Ic
= Ec − Ea

Ic − Ia
= Z1f (5.9)
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A BF

E1

I1

Z1f

Figure 5.9 Symmetrical component circuit for a three-phase fault

A

B

C

Rbc

Rab

Rca

Figure 5.10 Current transformer and voltage transformer connections for distance relays for phase faults

The differences of phase voltages and currents used in equation (5.9) are known as ‘delta’
voltages and currents, and we see that relays energized by the delta voltages and currents respond
to the positive sequence impedance to a multiphase fault. A complement of three phase distance
relays covers the seven multiphase faults between them. For double-phase or double-phase-to-
ground faults, one of the three relays measures the positive sequence impedance to the fault, while,
for a three-phase fault, all three relays measure the correct impedance. The connections for the
phase relays are shown schematically in Figure 5.10.

5.4.2 Ground faults

For a fault between phase a and ground, the symmetrical component connection diagram is as
shown in Figure 5.11. The voltages and currents at the relay location for this case are given by

E1f = E1 − Z1fI1

E2f = E2 − Z1fI2 (5.10)

E0f = E0 − Z0fI0
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Figure 5.11 Symmetrical component circuit for an a–g fault

The phase a voltage and current can be expressed in terms of the symmetrical components and the
voltage of phase a at the fault point can be set equal to zero:

Eaf = E0f + E1f + E2f

= (E0 + E1 + E2) − Z1f(I1 + I2) − Z0fI0 = 0 (5.11)

= Ea − Z1fIa − (Z0f − Z1f)I0 = 0 (5.12)

where Ia has been substituted for the sum (I0 + I1 + I2) in equation (5.12). Finally, a new current
I ′

a is defined as follows:

I ′
a = Ia + Z0f − Z1f

Z1f
I0 = Ia + Z0 − Z1

Z1
I0 = Ia + mI0 (5.13)

where, in equation (5.13), Z0 and Z1 are the zero and positive sequence impedances of the entire
line. The factor m is known as a compensation factor, which compensates the phase current for
the mutual coupling between the faulted phase and the other two unfaulted phases. It follows from
equation (5.12) that for a phase-a-to-ground fault

Ea

I ′
a

= Z1f (5.14)

Thus, if the distance relay is energized with the phase a voltage, and the compensated phase
a current, it also measures the positive sequence impedance to the fault. The factor m for most
overhead transmission lines is a real number, and varies between 1.5 and 2.5. A good average
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Figure 5.12 Current transformer and voltage transformer connections for distance relays for ground faults

value for m is 2.0, which corresponds to Z0 of a transmission line being equal to 3Z1. As in the
case of phase relays, it takes three ground distance relays to cover the three single-phase-to-ground
faults. It should be noted that for a three-phase fault, the compensated phase current becomes Ia,
since there is no zero sequence current for this fault. For this case, equation (5.14) is identical to
equation (5.18), and hence the three ground distance relays also measure the correct distance to
the fault in the case of a three-phase fault. A schematic connection diagram for the three ground
distance relays is shown in Figure 5.12. A full complement of phase and ground distance relays
will require six distance measuring elements connected as shown in Figures 5.10 and 5.12.

Example 5.4

Consider the simple system represented by the one-line diagram in Figure 5.13. The system nominal
voltage is 13.8 kV, and the positive and zero sequence impedances of the two elements are as shown
in the figure. The zero sequence impedances are given in parentheses. We will verify the distance
calculation equations (5.9) and (5.14) for three-phase, phase-to-phase and phase-to-ground faults.

A F

0 + j5 4 + j40

(0 + j10) (10+j90)

Figure 5.13 System for fault impedance calculation

Three-phase fault

For this case, only the positive sequence current exists, and is also the phase a current. It is given by

Ia = I1 = 7967.4

4 + j45
= 176.36∠84.92◦
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7967.4 = (13 800/
√

3) is the phase-to-neutral voltage. The phase a voltage at the relay location is
given by

Ea = E1 = 7967.4 − j5 × 176.36∠84.92◦ = 7089.49∠− 0.63◦

Thus, the fault impedance seen by the relay in this case is

Zf = Ea − Eb

Ia − Ib
= Ea

Ia
= 7089.49∠− 0.63◦

176.36∠− 84.92◦ = 4 + j40 �

Phase-to-phase fault

For a b–c fault

I1 = −I2 = 7967.4

2 × (4 + j45)
= 88.18∠84.92◦

Also, Ib = −Ic = I1(α2 − α) = −j
√

(3)I1 = 152.73∠− 174.92◦. And, (Ib − Ic) = 305.46∠−
174.92◦. The positive and negative sequence voltages at the relay location are given by

E1 = 7967.4 − j5 × 88.18∠− 84.92◦ = 7528.33∠− 0.3◦

E2 = j5 × 88.18∠− 84.92◦ = 440.90∠5.08◦

and the phase b and c voltages at the relay location are

Eb = α2E1 + αE2 = 7528.33∠− 120.3◦ + 440.90∠125.08◦

= −4051.3 − j6139.3

Ec = αE1 + α2E2 = 7528.33∠119.7◦ + 440.90∠− 114.9◦

= −3916.09 + j6139.3

Thus, Eb − Ec = 12279.37∠− 90.63◦, and

Eb − Ec

Ib − Ic
= 12 279.37∠− 90.63◦

305.46∠− 174.92◦ = 4 + j40 �

Phase-a-to-ground fault

For this fault, the three symmetrical components of the current are equal:

I1 = I2 = I0 = 7967.4

(0 + j10) + 2 × (0 + j5) + (10 + j90) + 2 × (4 + j40)

= 41.75∠− 84.59◦

The symmetric components of the voltages at the relay location are

E1 = 7967.4 − j5 × 41.75∠− 84.59◦ = 7759.58 − j19.68

E2 = −j5 × 41.75∠− 84.59◦ = −207.82 − j19.68

E0 = −(0 + j10) × 41.75∠− 84.59◦ = −415.64 − j39.36



114 Nonpilot distance protection of transmission lines

And the phase a voltage and current at the relay location are

Ea = E1 + E2 + E0 = 7136.55∠− 0.63◦

Ia = I1 + I2 + I0 = 125.25∠− 84.59◦

The zero sequence current compensation factor m is given by

m = Z0 − Z1

Z1
= 1 − j90 − 4 − j40

4 + j40
= 1.253∠− 1.13◦

and the compensated phase a current is I ′
a = Ia + mI0 = 177.54∠− 84.92◦; and, finally

Ea

I ′
a

= 7136.55∠− 0.63◦

177.54∠− 84.92◦ = 4 + j40 �

5.4.3 Relays in unfaulted phases

Although there are three phase-distance and three ground-distance relays in use for protection against
all ten types of fault on a three-phase system, only one of these relays measures the correct distance
to the fault for a specific fault type, and it is interesting to see what the remaining relays measure.
In general, they measure impedances that are greater than the impedance to the fault. However,
under certain conditions – such as for close-in faults – the distance measured by the other relays
may be such that an erroneous operation of some of the other relays may result. Of course, if the
protection system is designed to trip all three phases for every fault, the fact that one or more relays
may operate for one fault is of no practical significance, although erroneous targets produced by
some of the relays may lead to unnecessary confusion in postmortem analysis of the fault, and is
to be avoided if at all possible. Only when single-phase tripping for phase-to-ground fault is to
be used does it become a matter of concern if a phase distance relay responds (erroneously) to a
ground fault, and causes a three-phase trip. We will therefore consider the operation of the phase
distance relays for a fault on phase a. Similar analysis can be carried out for all the distance relays
in the unfaulted phases for each of the fault types.6

Consider the phasor diagram for a phase-a-to-ground fault on a radial system as shown in
Figure 5.14. The prefault voltages and currents are represented by the unprimed quantities, while
the faulted quantities are shown with primes. This being an unloaded radial system, no prefault
current exists. The phase a voltage at the relay location drops to a small value during the fault,
while the current in phase a lags the phase a voltage by the impedance angle of the combination
(Z1 + Z2 + Z0). The voltages of the unfaulted phases will change in magnitude and angle as shown
in the phasor diagram. The compensated phase current as defined by equation (5.13) for this case
(since Ia = 3I0) is given by I ′

a = (1 + m/3)Ia. The phase distance relays use delta currents, and
since Ib = Ic = 0, the three delta currents for this fault are (Ia − Ib) = Ia, (Ic − Ia) = −Ia and
(Ib − Ic) = 0. These delta currents and voltages are also shown in Figure 5.14.

Remember that the impedance seen by any relay is equal to its voltage when the corresponding
current is taken as a reference phasor of unit magnitude. Since the delta current for the b–c relay is
zero for this fault, it sees an infinite impedance, and will not mis-operate. As the delta currents for
the a–b and c–a relays are Ia and −Ia, respectively, we can visualize their response to this fault by
redrawing the delta voltages Eab and Eca with Ia and −Ia as the reference unit phasors, and adjust
(increase) the magnitude of the two voltage phasors by the factor (1 + m/3), in relation to the
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Figure 5.14 Phasor diagram for phase-a-to-ground fault: (a) voltages and currents; (b) apparent impedances

phase a voltage. This last adjustment is necessary because the phase a voltage is seen as the fault
impedance with I ′

a = (1 + m/3)Ia as the unit of measurement, whereas Eab and Eca are the fault
impedances seen by those two relays with ±Ia[= ±I ′

a/(1 + m/3)] as the units of measurement.
Thus, the impedances seen by the a–g, a–b and c–a relays for the a–g fault are seen to be AB,
AB′ and AB′′, respectively, as shown in Figure 5.14. It should be clear that for a ground fault near
the relay location, the a–b and c–a relays may mis-operate, if the protection zone covers AB′ and
AB′′ for small values of AB.

The analysis presented above must be modified to include the effect of prefault load. The load
current will change the current phasors, and hence the impedances seen by the relays. Such effects
are of less importance in a qualitative discussion, and the reader is referred to the reference cited6

for a more detailed treatment of the subject.

5.4.4 Fault resistance

In developing distance relay equations, we assumed that the fault under consideration was an ideal
(i.e. zero resistance) short circuit. In reality, for multiphase faults the fault arc will be between two
high-voltage conductors, whereas for ground faults the fault path may consist of an electrical arc
between the high-voltage conductor and a grounded object – such as the shield wire, or the tower
itself.

In either case, the fault path will have a resistance in it, which may consist of an arc resistance or
an arc resistance in series with the tower footing resistance in the case of a ground fault. The tower
footing resistance is practically constant during the fault (and ranges between 5 and 50 �), whereas
the arc resistance changes in time as the fault current continues to flow. During the early period of
the arc, say in the first few milliseconds, the arc resistance is negligible, and as the arc channel gets
elongated in time, the arc resistance increases. For relaying considerations, it is generally assumed
that the arc resistance is a constant, given by an empirical formula7,8

Rarc = 76V 2

Ssc
(5.15)

where V is the system voltage in kV and Ssc is the short-circuit kVA at the fault location. For
example, the fault arc resistance for a 345 kV transmission line fault at a place with short-circuit
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Figure 5.15 Fault path resistance, and its effect on the R–X diagram

capacity of 1500 MVA is (76 × 3452/1500 × 103) ∼= 50 �. The fault resistance introduces an error
in the fault distance estimate, and hence may create an unreliable operation of a distance relay.
Consider the single-phase transmission system shown in Figure 5.15(a), and assume that the fault
resistance is equal to Rf. If the contribution to the fault from the remote end is Ir, the fault current
If = I + Ir, and the voltage at the relay location is given by

E = ZfI + Rf(I + Ir) (5.16)

The apparent impedance Za seen by the relay is

Za = E/I = Zf + Rf

(
Ir

I
+ 1

)
(5.17)

Since Ir may not be in phase with I , the fault resistance may contribute an error to the resistance
as well as the reactance of the faulted line segment. This is illustrated in the R–X diagram in
Figure 5.15(b). In order to accommodate the resistance in the fault path, it is necessary to shape the
trip zone of a distance relay in such a manner that the region surrounding the apparent impedance
is included inside the zone. It will be seen in section 5.11 that different types of distance relay
have differing ability of accommodating the fault resistance. It should be remembered that a larger
area for the protection zone in the R–X plane accommodates greater fault path resistance, while it
also affects the loadability of the relay.

Example 5.5

Assume a single-phase circuit as shown in Figure 5.15(a), and let the line impedance to the fault
point be (4 + j40) �, while the fault resistance is 10 �. Let the current to the fault in the line in
question be 400∠− 85◦ amps, while the current contribution to the fault from the remote end is
600∠− 90◦ amps. Then, the apparent impedance seen by the relay, as given by equation (5.17), is

Za = (4 + j40) + 10

(
1 + 600∠− 90◦

400∠− 85◦

)
= 28.94 + j38.69 �

If the receiving end current contribution is in phase with the sending end current, the error in Za

will be in the real part only. That is not the case here, and hence the reactance also is in error.
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Figure 5.16 Types of impedance relay characteristics

5.5 Distance relay types
Distance relays may be classified according to the shape of their zones of operation. Traditionally, all
zone shapes have been circular, because an electromechanical relay, with the torque equation (2.15),
produces a circular boundary for the zones of operation. Some of the terminology used in describing
the zones (e.g. ‘the line of maximum torque’) dates back to the electromechanical origins of distance
relays. However, far more complex zone shapes can be achieved with modern solid-state and
computer relays, although some of the older terminology continues to be used in describing the
latter relays.

Four general relay types are recognized according to the shapes of their operating zones:
(1) impedance relays, (2) admittance or mho relays, (3) reactance relays and (4) quadrilateral relays.
These four relay characteristic shapes are illustrated in Figure 5.16. The impedance relay has a cir-
cular shape centered at the origin of the R–X diagram. The admittance (or mho) relay has a circular
shape which passes through the origin. The reactance relay has a zone boundary defined by a line
parallel to the R axis. The zone extends to infinity in three directions as shown in Figure 5.16(c).
The quadrilateral characteristic, as the name implies, is defined by four straight lines. This last char-
acteristic is only available in solid-state or computer relays. More complex shapes can be obtained
by using one or more of the above relay types, in a logical combination to provide a composite
tripping zone boundary.

5.6 Relay operation with zero voltage
It will be recalled that the generalized torque equation for an electromechanical relay, as given
by equation (2.15), is adapted to a directional relay or a mho relay by appropriate choices of
various constants appearing in that equation. Thus, the balance point equation for a directional
relay is equivalent to [V I sin(θ + ϕ) = 0], whereas for a mho relay the corresponding equation is
[V = IZr sin(θ + ϕ)]. At V = 0, both of these equations lead to uncertainties of operation. The
directional relay equation is satisfied by any value of I and θ for V = 0, while for the mho relay
equation, if V is zero, the angle between V and IZr cannot be determined, and the operation of
the relay becomes uncertain. The region around the origin in both of these characteristics is poorly
defined as to the performance of the relay (see Figure 2.13). Consequently, a zero voltage fault is
likely to be misjudged as to its direction by both of these relays.

It is possible to design relays which will overcome the problem of zero-voltage faults. A com-
mon technique is to provide a memory-action circuit in the voltage coil, which, due to a subsidence
transient, will sustain the prefault voltage in the polarizing circuit for a few cycles after the occur-
rence of the zero-voltage fault. The phase angle of the voltage impressed by the memory circuit
on the voltage coil is very close to that of the voltage before the occurrence of the fault. Since the
memory action is provided by a transient that may last only a few cycles, this feature can be used
in high-speed relaying functions only.
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Memory action requires that the prefault voltage seen by the relay is normal, or close to normal.
If there is no prefault voltage in the primary circuit (as would be the case if the transmission
line is being energized after having been de-energized for some time, and line-side potential is
being used for relaying) no memory action is available. This is a common situation when live
tank circuit breakers are being used (section 1.5). It should be remembered that a true zero-voltage
fault is somewhat rare, and can only be caused if grounding chains or switches are left connected
by maintenance crews on unenergized power apparatus. To provide adequate protection against a
zero-voltage fault, an instantaneous overcurrent relay can be used to reach just beyond the relay
location. The impedance for a fault just beyond the reach of the instantaneous relay will provide
enough of a voltage drop to provide reliable operation of the impedance unit. There is, of course,
a setting problem with an instantaneous relay. Since it is nondirectional, there must be inherent
discrimination between forward and backward faults.

Since the instantaneous relay is not directional, it may not be possible to set it to discriminate
between faults in the protected zone and faults behind the relay. A common solution is to use an
instantaneous overcurrent relay that is normally inoperative, but is made operative as soon as the
breaker closes. The relay remains in the circuit for 10–15 cycles, allowing the breaker to trip in
primary or breaker-failure time, after which the relay is removed from service. It is, of course,
assumed that there is little likelihood of a backward fault occurring during the short time that the
instantaneous relay is in the circuit.

In the case of computer-based distance relays, it is a simple matter to provide memory action
by storing prefault data for as long a duration as one wishes. Thus, it may be possible to provide
memory action for reclosing functions as well, when prefault voltage may not exist for several
seconds prior to the reclosing action. Of course, one cannot use memory voltage functions over
very long periods of time, as the phase angle of the memory voltage may no longer be valid due
to small deviations and drifts in the power system frequency.

5.7 Polyphase relays
The distance relays discussed so far have all been essentially single-phase devices, i.e. every fault
will result in the operation of one or more relays depending upon the voltage and current inputs
used to energize the relay. It would seem that a polyphase relay would be more appropriate than a
collection of single-phase relays for protecting a three-phase system. Electromechanical polyphase
relays have been described in the literature,8 and have been in use on three-phase systems for many
years. Computer-based polyphase relays have also been developed.9 Electromechanical polyphase
relays utilize all three-phase voltages and currents to develop a torque, which changes direction at
the balance point (zone boundary) of the relay. A suitable combination of voltages and currents must
be chosen, so that this torque reversal occurs for all types of fault that may occur on a three-phase
system. The reference cited above describes the operation of a polyphase electromechanical relay in
greater detail. One advantage of a polyphase relay is that for most zero-voltage faults, at least some
of the voltages are not zero and a proper directionality is maintained by the relay. Of course, for a
three-phase, zero-voltage fault, it is still necessary to include a memory action, or a nondirectional
overcurrent function as described in the previous section. Usually two polyphase relays are needed
to protect against phase and ground faults. In the case of computer-based polyphase relays,9 it is
possible to use a single performance equation to cover all fault types.

5.7.1 Zone versus phase packaging

We have examined the individual elements of a three-phase distance relay protection scheme without
regard to the way in which each of the elements is combined in one or more relay cases. Although
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the packaging has no effect on the protection of the line per se, it does have an impact on the cost of
the installation and the complexity associated with testing and maintaining the relays. A complete
phase protection package consists of an element for each pair of phases, i.e. phases a–b, b–c
and c–a, and separate elements for zones 1, 2 and 3, plus the required timers and interfaces to the
communication equipment. The timers and communication equipment are mounted separately, each
in its own relay case, very often on separate panels or cabinets. The phase and zone connections can
be combined in a variety of ways. All of the zones for a given pair of phases can be mounted in one
relay case, referred to as ‘zone packaged’ or all of the phase pairs for a given zone can be mounted in
one case and referred to as ‘phase packaged’. The advantages and disadvantages of the two schemes
relate to the common practice of testing and calibrating relays without taking the associated line out
of service. This means that during testing adequate protection must be left in service. With phase
packaging, all of the zones of the pair of phases being tested, i.e. the instantaneous zone 1 and the
backup zones 2 and 3, are removed. The remaining phases, and their zones, remain in service. With
zone packaging, each of the zones is removed, one at a time, e.g. zone 1 of all of the phase pairs
is out of service, then zone 2 and then zone 3. Unless the number of zones is not equal to three,
there is no difference in the number of relay cases between the two packaging schemes, but the
panel arrangement may differ and, in association with the control switches and testing facilities,
the wiring will differ. Ground protection is always provided by independent relays (either ground
distance or directional overcurrent), and they are mounted separately so that they are in service
when any of the phase relays are tested, and all of the phase relays are in service when the ground
relay is tested. In addition, the testing facilities usually have provision for restoring some of the
internal elements of a relay case to service while other elements are removed. The choice between
the two packaging schemes is not clear cut, but usually depends upon the previous practices and
personal preferences of the utility’s engineering and testing personnel.

The discussion above relates to packaging electromechanical relays. It is not a problem with
solid-state or digital relays. Solid-state relays have various protection functions on the same card or
are connected to the same backplane within a common case. The testing facilities usually allow each
element to be tested or calibrated separately without removing the other functions from service.
Digital relays, of course, are tested and calibrated through the algorithm, and packaging is not
an issue.

5.8 Relays for multi-terminal lines
Occasionally, transmission lines may be tapped to provide intermediate connections to loads, or to
reinforce the underlying lower voltage network through a transformer. Such a configuration is known
as a multi-terminal line, and is often built as a temporary, inexpensive measure for strengthening
the power system. Although the resulting power system configuration is inexpensive, it does pose
some special problems for the protection engineer. When the multi-terminal lines have sources of
generation behind the tap points, or if there are grounded neutral wye-delta power transformers
at more than two terminals, the protection system design requires careful study.10 Consider the
three-terminal transmission line shown in Figure 5.17. For a fault at F, there is a contribution to the
fault current from each of the three terminals. Consider the relaying current and voltage at relay R1.
(For the sake of simplicity, we will assume this to be a single-phase system, although it must be
understood that we are interested in three-phase systems, and we must consider the actual distance
evaluations for each type of fault. This aspect of multi-terminal line protection is no different from
the usual considerations of faults on a three-phase system.) The voltage at bus 1 is related to the
current at bus 1 by the equation

E1 = Z1I1 + Zf(I1 + I2) (5.18)
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Figure 5.17 Effect of infeed on zone settings of distance relays

and the apparent impedance seen by relay R1 is

Zapp = E1

I1
= Z1 + Zf

(
1 + I2

I1

)
(5.19)

The current I2, the contribution to the fault from the tap, is known as the infeed current when
it is approximately in phase with I1 and as the outfeed when its phase is opposite to that of I1.
Of course, completely arbitrary phase relationships are also possible, but in most cases the phase
relationship is such that the current I2 is an infeed current. Equation (5.19) shows that the apparent
impedance seen by relay R1 is different from the true impedance to the fault: (Z1 + Zf). When
the tap current is an infeed, the apparent impedance is greater than the correct value. Thus, if we
set the zone 1 setting of relay R1 at about 85 % of the line length 1–2, many of the faults inside
the zone of protection will appear to be outside the zone, and the relay will not operate. We must
accept this condition, since, when the tap is out of service, the correct performance of the relay is
restored. It would be insecure to set zone 1 of the relay to a high value, in order that the apparent
impedances for all faults inside the 85 % point lie inside the zone setting. For, with such a setting,
if the tap source should be out of service for some reason, faults beyond the 85 % point will cause
zone 1 operation.

On the other hand, zones 2 and 3 of relay R1 must reach beyond buses 2 and 3, respectively,
under all possible configurations of the tap. Thus, for these (overreaching) zone settings, we must
set the zones with all the infeeds in service. Then, if some of the infeeds should be out of service,
the impedance seen by the relay will be smaller, and will be definitely inside the corresponding
zones. We may summarize simply the principle of protecting a multi-terminal line as follows:
underreaching zones are set with infeeds removed from consideration, and overreaching zones are
set with the infeeds restored. These ideas are illustrated in the following example.

Example 5.6

Consider the system shown in Figure 5.18. We may assume that the relative magnitudes of I1, I2

and I3 remain unchanged for any fault on the system between the buses A through G. This is
clearly an approximation, and in an actual study we must use appropriate short-circuit calculations
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Figure 5.18 System with infeed for Example 5.6

for each of the faults. We are required to set the three zones of the relay Rb. It is assumed (as
determined by the short-circuit study) that I2/I1 = 0.5.

Zone 1

This must be set equal to 85 % of the smaller of the two impedances between buses B and D, and
B and G. Also, we will consider the infeed to be absent for setting zone 1. Thus, the zone 1 setting
is 0.85 × (4 + j40 + 1 + j10) = 4.25 + j42.5 �.

Zone 2

This is set equal to 120 % of the longer of the two impedances between buses B and D, and B and
G. The infeed will be considered to be present, and will apply to the impedance of the segment
C–D. Thus, the zone 2 setting is 1.2[4 + j40 + 1.5 × (2 + j20)] = 8.4 + j84 �.

Zone 3

Assuming that line D–E is the only one needing backup by the relay Rb, the zone 3 setting is
obtained by considering the infeed to be in service. The apparent impedance of the line B–D
with the infeed is (4 + j40) + 1.5 × (2 + j20) = 7 + j70 �. To this must be added 150 % of the
impedance of line D–E, duly corrected for the infeed. Thus, the zone 3 setting of Rb is 7 + j70 +
1.5 × 1.5 × (4 + j40) = 16 + j160 �.

5.9 Protection of parallel lines
Transmission lines that are on the same tower, or paralleled along the same right of way, present
unique problems to the associated line relays. The difficulty stems from the fact that the lines
are mutually coupled in their zero-sequence circuits. The small amount of negative- and positive-
sequence mutual coupling can usually be neglected. The zero-sequence coupling causes an error in
the apparent impedance as calculated by equation (5.14).
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Figure 5.19 Fault on a mutually coupled transmission line

Consider the fault at F on one of the two mutually coupled lines as shown in Figure 5.19. For
a phase-a-to-ground fault, the symmetrical component voltages at relay location R1 are given by
(see equations (5.10)–(5.14))

E1f = E1 − Z1fI1

E2f = E2 − Z1fI2 (5.20)

E0f = E0 − Z0fI01 − Z0mfI02

where I01 and I02 are the zero-sequence currents in lines 1 and 2, respectively, and Z0mf is the
zero-sequence mutual impedance in the faulted portion of the transmission line. As before, the
voltage of phase a at the fault point can be set equal to zero:

Eaf = E0f + E1f + E2f = (E0 + E1 + E2) − Z1f(I1 + I2) − Z0fI01 − Z0mfI02 = 0 (5.21)

= EaZ1fIa − (Z0f − Z1f)I01 − Z0mfI02 = 0 (5.22)

I ′
a of equation (5.13) must now be replaced by the following:

I ′
a = Ia + Z0f − Z1f

Z1f
I01 + Z0mf

Z1f
I02

= Ia + Z0 − Z1

Z1
I01 + Z0m

Z1
I02 = Ia + mI01 + m′I02 (5.23)

And finally, in terms of this modified compensated phase current, the impedance to the fault point
is given by

Ea

I ′
a

= Z1f (5.24)

It should be noted that the current from a parallel circuit must be made available to the relay, if
it is to operate correctly for a ground fault. This can be accomplished if the mutually coupled lines
are connected to the same bus in the substation. If the two lines terminate at different buses, this
would not be possible, and in that case one must accept the error in the operation of the ground
distance function.
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Example 5.7

Let the system shown in Figure 5.19 represent two mutually coupled transmission lines, with
impedance data as shown in the figure. The zero-sequence impedances are given in parentheses,
and the mutual impedance in the zero-sequence circuits of the two transmission lines is (3 + j30) �.
The rest of the system data are similar to those of Example 5.4. For a phase-a-to-ground fault at F,
the transmission line impedance is divided by two because of the parallel circuit of equal impedance.
Thus, the positive and negative sequence impedance due to the transmission lines in the fault circuit
is (2 + j20) �, while the zero-sequence impedance is 0.5 × (9 + j90 + 3 + j30) = (6 + j60) �. The
symmetric components of the fault current are given by

I1 = I2 = I0 = 7967.4

2 × (0 + j5) + 0 + j10 + 2 × (2 + j20) + 6 + j60

= 66.169∠− 85.23◦

The currents seen by the relay are half these values because of the even split between the two
lines, and Ia = 3 × 1

2 × I1 = 99.25∠− 85.23◦. The zero-sequence currents in the two lines are

I01 = I02 = 33.085∠− 85.23◦

The zero-sequence compensation factors m and m′ are given by (see equation (5.23))

m = 9 + j90 − 4 − j40

4 + j40
= 1.25 and m′ = 3 + j30

4 + j40
= 0.75

The compensated phase a current, as given by equation (5.23), is

I ′
a = Ia + mI01 + m′I02 = 165.42∠− 85.23◦

The symmetrical components of the voltages at the relay location are given by

E1 = 7967.4 − j5 × 66.169∠− 85.23◦ = 7637.7 − j27.51

E2 = −j5 × 66.169∠− 85.23◦ = −329.7 − j27.51

E0 = −j10 × 66.169∠− 85.23◦ = −659.4 − j55.02

and the phase a voltage at the relay location is

Ea = E1 + E2 + E0 = 6649.51∠− 0.95◦

Finally, the impedance seen by the relay Ra is

Ea

I ′
a

= 6649.5∠− 0.95◦

165.42∠− 85.23◦ = 4 + j40 �
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Besides the effect of mutual coupling on the performance of the ground distance relay, some
other relay operations may also be affected in the case of parallel transmission lines. Consider the
two examples given below.

Incorrect directional ground relay operation

Consider the system shown in Figure 5.20. A ground fault on line 2 induces a zero-sequence current
I01 in line 1. This current, in turn, circulates through the grounded neutrals at the two ends of the
transmission line. The current at the A terminal of this line is out of the line, and into the bus.
However, if the transformer neutral current is used for polarization of the directional ground relay,
the operating and the polarizing currents will be in the same direction. This condition is identical
to that corresponding to a fault on the line. Similarly, the condition at the end B of the line, with
current in the transformer neutral and the line current once again in phase with each other, is
indistinguishable from that due to an internal fault. The ground directional relays at both ends may
be fooled into seeing this condition as an internal fault. The same false operating tendency would
exist if potential polarizing were used. In other words, the phase of the polarizing quantity is not
independent of the direction of current flow, as it is when a short circuit occurs.6

Incorrect phase distance relay operation

This problem is encountered when phase and ground distance relaying is used for protecting parallel
transmission lines which are connected to common buses at both ends.11 Consider the case of a
simultaneous fault between phase a and ground on line 1, and between phase b and ground on
line 2, as shown in Figure 5.21. This is known as a cross-country fault, and is generally caused by

F I02

I01

A B
∆/Y Y/∆

Line 1

line 2

Figure 5.20 Current polarization error caused by induced current in a coupled line

A B

a–g

b–g

line 1

line 2

Figure 5.21 Simultaneous faults on parallel transmission lines
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the fault arc from the first ground fault expanding with time, and involving the other transmission
line in the fault. Such a fault produces fault current contributions in both phases a and b of both
circuits, and may be detected as a phase a–b–g fault on both lines.

A multiphase fault will cause a three-phase trip of both circuits. This problem is particularly
severe when single-phase tripping and reclosing are used. In this case, the correct and desirable
operation would of course be a single-phase trip on each of the circuits, maintaining a three-phase
tie between the two ends of the lines, although the impedances would be unbalanced. Reference 11
examines the calculations involved, and propose a solution involving a digital relay that uses
currents and voltages from all six phases. Single-phase tripping and reclosing were discussed in
Chapter 1. The possibility of failure of distance relays for such faults has been well recognized in
Europe, where both double-circuit towers and single-phase tripping are common.

5.10 Effect of transmission line compensation devices
We have assumed, so far, that the transmission system is relatively uncomplicated, and that over-
current, distance or directional relays can be applied in a straightforward manner to provide reliable
protection. There are primary transmission elements, however, that upset this arrangement. In par-
ticular, series capacitors that are installed to increase load or stability margins, or series reactors
that are used to limit short-circuit currents, can significantly affect the transmission line protection.
Our concern here is not the protection of the devices themselves: that will be the subject of later
chapters. Our concern here is how these devices affect the transmission line protection itself.

5.10.1 Series capacitors

A series capacitor can upset the basic premise upon which the principles of distance and directional
relaying are founded. Thus, we normally assume that fault currents reverse their direction only for
faults on two sides of a relay, and that the ratio of voltage to current at a relay location is a measure
of the distance to a fault. A series capacitor introduces a discontinuity in the reactive component
of the apparent impedance as the fault is moved from the relay to, and beyond, the capacitor
(Figure 5.22). Depending upon the size and location of the capacitor, distance relay settings may
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Figure 5.22 R–X diagram with a series capacitor
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or may not be possible. Consider a fault at F1 in Figure 5.22. The fault current now leads the
voltage, and is indistinguishable from the conditions resulting from a fault in the reverse direction.
As the fault moves towards F2, which is at the zone 1 boundary, the apparent impedance follows
the trajectory shown on the R–X diagram. In this situation, the distance relay at Rac will fail to
operate for F1. It should be remembered that most series capacitors are fitted with protective devices
across their terminals, such as protective gaps, surge suppressors or circuit breakers. The effect of
these protective devices is to short circuit, or bypass, the capacitors in the presence of faults. Thus,
the distance relays may be made slow enough so that the capacitors are first removed from service
by the protective devices, and the proper operation of the distance relays is restored. An alternative
scheme for protecting transmission lines with series capacitors is to use phase comparison relaying,
which will be covered in Chapter 6.

5.10.2 Series reactors

Series reactors introduce impedance into the line, but since the angle of the reactor is almost 90◦,
as is the transmission line, there is very little discontinuity in the R–X diagram. This is illustrated
in Figure 5.23. If the reactor can be switched in or out of service, the line impedance will change,
and must be taken care of by changing the relay zone settings. The series reactors will also affect
the settings of overcurrent relays, since the short-circuit currents are affected by the series reactor.
However, as the series reactors are usually required for achieving safe short-circuit current levels,
they are seldom taken out of service without taking the line out of service also. Consequently,
the reactor can be considered to be present, and the line relays set accordingly. However, in
the unlikely event that the reactor is removed from service, the line impedance will be reduced.
Assuming that there are no changes in the relay setting, the relay will now see beyond its original
zone of protection, i.e. it will now overreach its desired protective zone. For instance, if the reactor
shown in Figure 5.23 has an impedance of Zab = 10 � and the line section BC has an impedance
of j40 (ignoring the resistance), zone 1 at both ends would be set at 0.85 × (40 + 10) = 42.5 �.
If the reactor is removed from service the line impedance would be 40 �. With the relays set for
42.5 � they would see faults beyond the original zone of protection. This may be acceptable if the
zone 1 overreach does not extend into the next line section.

5.10.3 Shunt devices

Shunt capacitors and reactors are installed for entirely different reasons, and even if tied to the line
itself usually do not have a significant impact on the transmission line relays. There is a steady-state
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Figure 5.23 R–X diagram with a series reactor
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Figure 5.24 Compensation of shunt current in a relay

load current associated with the shunt devices that is seen by the line relays, but the margins used
in differentiating between load and short-circuit currents is usually sufficient to avoid any problems.
If a problem does exist, it is not too difficult to connect the CTs of the shunt devices, so that the
load current is removed from the line relay measurement (Figure 5.24).

5.11 Loadability of relays
Recall the discussion in section 5.3 of the apparent impedance seen by a relay as the load on the line
changes. As the load on a transmission line increases, the apparent impedance locus approaches the
origin of the R–X diagram. For some value of line loading, the apparent impedance will cross into
a zone of protection of a relay, and the relay will trip. The value of load MVA at which the relay is
on the verge of operation is known as the loadability limit of the relay. Consider the characteristics
of a directional impedance relay, and a mho relay, with a zone setting of Zr secondary ohms as
shown in Figure 5.25.

If the load power factor angle is assumed to be ϕ and the angle of maximum torque is assumed
to be θ , the value of the apparent impedance at which the loading limit will be reached is Zr for
the directional impedance relay and Zr cos(θ + ϕ) for the mho relay (note that a lagging power
factor angle is considered to be negative). If the primary voltage of the line is E kilovolts (phase to
neutral), and VT and CT ratios are nv and ni, respectively, the loadability limit for the directional
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impedance

mho

figure-8
quadrilateral

load line

R

X

A

B Z r

θ

Figure 5.25 Loadability of distance relays with different characteristic shapes
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distance relay is (in MVA)

S1,imp = 3
E2

Zp
= 3

E2ni

Zrnv
(5.25)

where Zp is the primary impedance, and for the mho relay is (in MVA)

S1,moh = 3
E2ni

Zr cos(θ + Eϕ)nv
(5.26)

It is clear that the loadability of a mho relay is significantly greater than that of a directional
impedance relay. The loadability of a relay can be further increased by using a figure-of-eight
characteristic (offset mho), or a quadrilateral characteristic, as shown in Figure 5.25. The latter
characteristic is achievable only with solid-state or computer-based relays.

Example 5.8

We will consider the loadability of the zone 1 setting of the relay from Example 5.2. (This will
illustrate the principle of checking the loadability, although one must realize that the critical load-
ability, which provides the smaller limit, is that associated with the third zone.) The current and
voltage transformer ratios for the relay were determined to be ni = 100 and nv = 288.6. The zone
1 setting is 1.17 + j8.84 = 8.917∠82.46◦. From equation (5.25), the loadability of an impedance
relay is given by (the phase-to-neutral voltage is 20 kV)

S1,imp = 3 × 202 × 100

8.917 × 288.6
= 46.63 MVA

In the case of a mho relay, we must calculate the loadability at a specific power factor. Let
us assume a power factor of 0.8 lagging. This corresponds to ϕ = −36.870. The angle of the
line impedance is 82.46◦. Thus, (θ + ϕ) = (82.46◦ − 36.87◦) = 45.59◦. Using equation (5.26), the
loadability of a mho relay for a 0.8 pf lagging load is

S1,mho = 3 × 202 × 100

8.917 × 288.6 × cos 45.59◦ = 66.63 MVA

Of course, one must check the loadability of all the zones, but the zone 3 loadability, being the
smallest, will usually be the deciding criterion.

5.12 Summary
In this chapter we have examined the protection of a transmission line using distance relays.
Distance relays, both single-phase and polyphase, are used when changes in system configuration,
or generating pattern, provide too wide a variation in fault current to allow reliable settings using
only current as the determining factor. Distance relays are relatively insensitive to these effects. We
have reviewed a number of characteristics that are available depending on the protection required.
We have also discussed several common problems associated with nonpilot line protection, including
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the problem of excessive or unusual load, protection of multi-terminal lines, parallel transmission
lines and lines with series or shunt compensation.

Problems
5.1 Determine the three zone settings for the relay Rab in the system shown in Figure 5.26. The

system nominal voltage is 138 kV, and the positive sequence impedances for the various
elements are given in the figure. The transformer impedance is given in ohms as viewed
from the 138 kV side. Assume that the maximum load at the relay site is 120 MVA, and
select a CT ratio accordingly. The available distance relay has zone 1 and zone 2 settings
from 0.2 to 10 �, and zone 3 settings from 0.5 to 40 �, in increments of 0.1 �. The angle
of maximum torque can be adjusted to 75◦ or 80◦. Remember that the zone 3 of the relay
must back up the line BC, as well as the transformer.

(3 + j40)

(2 + j50)

(0 + j9)

A

B

C

D

Rab

Figure 5.26 System for problem 5.1

5.2 Consider the system shown in Figure 5.13. Assume that F is at the end of the line. If the
maximum load in the line is 10 MVA, what are the zone 1 and zone 2 settings for this line?
You may assume that the available distance relay is the same as that in problem 5.1.

5.3 For the system in Figure 5.26, and using the relay settings determined in problem 5.1, plot
the three zone settings on the R–X diagram. Also show the 120 MVA load on the R–X

diagram. You may assume a load power factor of 0.8 (lagging). Plot the load impedance
when the load is flowing into the line, and when it is flowing into the bus. Is there any
problem in setting a directional impedance relay with this load? If you perceive a problem,
what solution do you suggest?

5.4 Calculate the appropriate relaying voltages and currents for faults between phases a and b,
and between phase b and the ground, for the system in Example 5.4. You may use the results
obtained in Example 5.4 to simplify the work involved.

5.5 Repeat the calculations for the system in Example 5.4 for a b–c–g fault. Check the response
of the b–c (phase) distance relay, as well as the a–g and b–g (ground) distance relays.

5.6 For the a–b fault studied in problem 5.4, what is the impedance seen by the b–c and c–a
relays? What is the impedance seen by the a–g and b–g relays for the a–b fault?

5.7 Consider the multi-terminal line in the system shown in Figure 5.27. Each of the buses
C, D, G, H and J has a source of power behind it. For a three-phase fault on bus B, the
contributions from each of the sources are as follows:
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Source Current, I

J 600
C 200
D 300
G 800
H 400
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6 + j60

4 + j40

0 + j10

Figure 5.27 System diagram for problem 5.7

You may assume that the fault current contributions from each of these sources remain
unchanged as the fault is moved around throughout the system shown. Determine the zones
1, 2 and 3 settings for the distance relays at buses A and B. Remember to take into account
the effect of the infeed for determining the zones 2 and 3 settings, while no infeeds are to
be considered for the zone 1 settings.

5.8 For relays Rd and Rg at buses D and G in Figure 5.18, determine the settings for the three
zones of their distance relays. You may assume that the positive sequence impedance of
line AB is (3 + j30) �. Also, you may assume that nothing beyond bus G needs backup.
Assume I2/I3 = 0.5.

5.9 In the problem considered in Example 5.7, the current in the parallel circuit is not available
to the relay R1. What is the impedance seen by the ground distance relay if I02 is omitted
from the relay? Is it necessary to set the ground distance relay differently to accommodate
this error?

5.10 A zone of a distance relay is set at 10 � secondary. The CT ratio is 500 : 5 and the VT
ratio is 20 000 : 69.3. What is the fault resistance which this relay tolerates for a fault at a
distance of 80 % of the zone boundary? Find the answers for a directional impedance relay,
and also for a mho relay. You may assume that the remote terminal of the line is out of
service. The line impedance angle and the relay maximum torque angle are both equal to
80◦.

5.11 For the system shown in Figure 5.19, a simultaneous fault occurs on phase b to ground
on line 1, and phase c to ground on line 2. The fault is at the midpoint of the lines. You
may assume that there is no source connected to the far end of the lines. (a) Calculate the
phase-to-neutral voltages at the sending end of the lines, and the phase currents in the two
lines. (b) What is the impedance seen by the phase (b–c) distance relays of the two lines?



References 131

References
1. Horowitz, S.H., Thorp, J.S., Phadke, A.G., Beehler, J.E., Limits to Impedance Relays , IEEE Trans. PAS

Vol PAS 98 No. 1, 246–260.
2. IEEE Standard Dictionary of Electrical and Electronic Terms , IEEE Standard 100-1972, ANSI C42.100-

1976.
3. Horowitz S.H and Phadke, A.G. (2006) Third zone revisited. IEEE Trans. Power Delivery , 21 (1), 23–9.
4. Blackburn, J.L. (1952) Ground relay polarization. AIEE Trans. PAS , 71, 1088–93.
5. Lewis, W.A. and Tippett, L.S. (1947) Fundamental basis for distance relaying on 3-phase systems. AIEE

Trans., 66, 694–708.
6. Mason, C.R. (1956) The Art and Science of Protective Relaying , John Wiley & Sons, Inc., New York.
7. Warrington, A.R.v.C. (1962) Protective Relays , John Wiley & Sons, Ltd.
8. Westinghouse (1976) Applied Protective Relaying , Westinghouse Electric Corporation, Newark, NJ.
9. Phadke, A.G., Ibrahim, M. and Hlibka, T. (1977) Fundamental basis for distance relaying with symmetrical

components. IEEE Trans. PAS , 96 (2), 635–46.
10. IEEE Power System Relaying Committee (1979) Protection Aspects of Multi-terminal Lines , IEEE special

publication 79 TH0056-2-PWR.
11. Phadke A.G. and Jihuang L. (1985) A new computer based integrated distance relay for parallel transmis-

sion lines. IEEE Trans. PAS , 104 (2), 445–52.



6
Pilot protection of transmission
lines

6.1 Introduction
The protection principles described in Chapters 4 and 5, nonpilot protection using overcurrent and
distance relays, contain a fundamental difficulty. It is not possible to instantaneously clear a fault
from both ends of a transmission line if the fault is near one end of the line. This is due to the fact
that, in detecting a fault using only information obtained at one end, faults near the remote end
cannot be cleared without the introduction of some time delay. As discussed in Chapter 5, there
is always an uncertainty at the limits of a protective zone. Referring to Figure 6.1, to avoid loss
of coordination for a fault at F2, the relays at terminal B trip instantaneously by the first zone and
the relays at terminal A use a time delay for second zone or backup tripping. This results in slow
clearing for a fault at F1. The ideal solution would be to use the differential principle described
in section 2.2. Until recently this solution was not practical for the majority of transmission lines
because of the distances involved. For a three-phase line, six pilot conductors would be required,
one for each phase, one for the neutral and two for the DC positive and negative leads required
to trip the circuit breaker(s). For distances beyond 5–10 miles the cost of the cable alone would
make this prohibitive. In addition, there could be ‘error current’ introduced by current transformer
(CT) saturation caused by heavy load, transmission line charging current or voltage drops in the
cable itself due to its length and the large secondary currents during a fault. The proximity of
the control cable to the transmission line, and its exposure to lightning, would require very high
cable insulation. All of these factors tended to rule out this method of protection except for very
short lines (less than two miles). More recently, however, with the increase use of digital relays,
transmission line current differential protection has become popular. This is further described in
section 6.10.

Pilot protection is an adaptation of the principles of differential relaying that avoids the use
of control cable between terminals. The term ‘pilot’ refers to a communication channel between
two or more ends of a transmission line to provide instantaneous clearing over 100 % of the line.
This form of protection is also known as ‘teleprotection’. The communication channels generally
used are:

• power line carrier
• microwave
• fiber optics
• communication cable.

P ower System R elaying, Third Edition.  Stanley H . H or owitz and A r un G . Phadke
 2008 Resear ch Studies Pr ess L im ited. ISBN: 978-0-470-05712-4
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Figure 6.1 Coordination between the first and second zones

6.2 Communication channels
A comprehensive discussion of communication channels and equipment is beyond the scope of
this book. However, a general understanding of this technology is essential in understanding and
applying transmission line protection.

6.2.1 Power line carrier

Figure 6.2 shows the basic one-line diagram of the main power line carrier (PLC) components. PLC
systems operate in an on–off mode by transmitting radio frequency signals in the 10 to 490 kHz
band over transmission lines. PLC systems with power outputs of 10 W are reliable up to about
100 miles and those with 100 W outputs are effective at over 150 miles. Coupling capacitors are
used to couple the carrier equipment to the high-voltage transmission line. They are low-impedance
paths to the high frequency of the carrier current but high-impedance paths to the 60 Hz power
frequency. In conjunction with the coupling capacitors, line tuners and wave traps are used which
present low impedance to the power frequency and high impedance to the radio frequency. The
signal is thus trapped between the ends of the line. Normally only one 4 kHz bandwidth channel
is provided exclusively for protection. The transmission time is approximately 5 ms. In the USA
the transmit/receive power and the number of available frequencies are limited by government
regulations.

PLC is subject to high impulse noise associated with lightning, faults, switching or other arcing
phenomena. PLC is an extremely versatile communication link that can be applied to directional
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Coupling
capacitor

RF choke
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D FD

Figure 6.2 Power line carrier one-line diagram
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or phase comparison fault-detection schemes, to block or trip circuit breakers, or with on–off or
frequency-shift modes of operation.1 These will be discussed in detail later in this chapter. PLC
has been the most common protective communication link used in the USA, but microwave and,
more recently, fiber-optic links have become more popular. PLC is not used as much in Europe
or Asia.

There are a number of ways of coupling the carrier frequency signal to one or more of the
conductors of the transmission line. The simplest, and most common, on high-voltage (HV) trans-
mission lines is to use one phase of the power line with ground as the return path. This system,
commonly called ‘line-to-ground’, ‘phase-to-ground’ or ‘single-phase’ coupling, requires less cou-
pling capacitors and tuners and wave traps. The return path is usually the overhead ground wire
although the ground itself can be used, with accompanying higher attenuation. Coupling between
any two phases of the transmission line is an alternative, referred to as ‘phase-to-phase’ or ‘line-
to-line’ coupling when the coupling is on the same three-phase transmission line, or ‘interphase’
coupling when the coupling is between adjacent lines on the same tower. Phase-to-phase coupling
appears to have an advantage in that a ground on one of the phases would not affect the commu-
nication signal as it would seem to do with phase-to-ground coupling. Actually, however, there is
enough electrostatic and electromagnetic coupling between the conductors to transfer enough energy
around the ground to maintain a useful signal. With the advent of extra high voltage (EHV), how-
ever, several conditions have been introduced that argue in favor of coupling that is more reliable,
and provides greater channel capacity and less attenuation. The lines are longer, introducing more
attenuation, and they require relaying, voice and data communication reliability that is increasingly
more important. In addition, the voltage source for the relays protecting EHV lines usually comes
from line-side potential devices. These are the coupling capacitor voltage transformers (CCVTs)
discussed in section 3.7. Figure 6.2 shows the voltage source for the relays coming from bus poten-
tial transformers. This is the common application for HV systems. At the EHV level, however, the
cost of potential transformers is high and CCVTs are used. Since three-phase voltages are required,
three coupling capacitors are also required. The preferred method for EHV lines is to couple to all
three phases. To analyze the high-frequency transmission signals an analytical technique known as
‘modal analysis’ is used. This is a procedure that is similar to symmetrical components for ana-
lyzing 60 Hz voltages and currents. During the development of this technology, however, a great
deal of confusion unfortunately was introduced. The three modes of coupling, in decreasing order
of attenuation and increasing order of reliability and cost, are phase-to-ground coupling using the
center phase, phase-to-phase coupling between the outside phases and coupling to all three phases.
Early literature referred to these modes, respectively, as modes 1, 2 and 3. Later literature reversed
these designations so it is important to check the diagrams to be sure which coupling mode is
involved.

6.2.2 Microwave

Microwave operates at frequencies between 150 MHz and 20 GHz. This bandwidth can be put
at the disposal of protection systems with many 4 kHz channels operating in parallel. Protection,
however, is usually a small part of the total use of a microwave system. The large bandwidth
allows a wide variety of information to be sent, such as voice, metering, alarms, etc. Microwave
is not affected by problems on the transmission line but is subject to atmospheric attenuation and
distortion. The transmission length is limited to a line-of-sight path between antennas but can be
increased through the use of repeaters for increased cost and decreased reliability.2

6.2.3 Fiber-optic links

The use of optical cable is becoming very popular. Such links have virtually unlimited channel
capacity. Single fibers having as many as 8000 channels are available and this can be increased
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Figure 6.3 Typical construction of a fiber cable

significantly by using multiple fiber cables. Figure 6.3 shows a typical construction of a fiber
cable. There can be any number of fibers in the cable depending upon the mode of operation
and the application. Each glass fiber is protected by a plastic tube, all of the tubes are further
protected by an aluminum alloy tube, additional strength members are used for support and the
entire construction is embedded in galvanized steel. The fiber cable itself, being nonconducting,
is immune to interference from electric or magnetic fields and provides excellent transmission
quality. There is very little signal attenuation and, through the use of repeaters, the transmission
length can be several hundreds of miles. The channel capacity is virtually unlimited, providing as
many as 8000 4 kHz channels per fiber. The use of fiber cable, however, is rarely justified just for
protection but, with its large data transmission capacity, it is used for dispatching and telemetering.
Once available, however, it makes an excellent communication channel for relaying. Many utilities
are installing multiple paths of fiber-optic cable, using sophisticated computer programs to monitor
the integrity of the cable and to reroute the signals in the event of difficulty on any path. Figure 6.4
shows several methods of stringing fiber-optic cable. Two of the most common methods are to
embed the fiber cable within the aluminum conductors of the overhead ground wire (Figure 6.4(d))
or to wrap the fiber cable around one of the phase or ground conductors.

6.2.4 Pilot wire

Telephone cable consists of shielded copper conductors, insulated up to 15 kV, and is the most
popular form of pilot protection using a separate communication medium for short distances (up
to 10–15 miles). Figure 6.5 shows a typical pilot wire construction. Usually, the conductors are
#19AWG, twisted pairs to avoid cross-talk and shielded in either braided or corrugated copper or
aluminum to minimize inductive interference from nearby power lines. The cable can be strung
along a steel messenger, or can be self-contained in a figure-of-eight configuration with the steel
messenger in the upper loop and the telephone cable in the lower loop. This type of communication
channel has a bandwidth from 0 kHz (DC) to 4 kHz. Attenuation is a function of cable type, cable
length and frequency. Overhead cable is vulnerable to induced voltages by power line faults and
lightning. Buried cable is subject to damage by digging or animals.

In the USA, pilot channels can be privately owned by the utility or industrial facility or can
be rented from a telephone company. If rented, the utility loses a significant measure of control
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over a very important protective channel. For instance, although agreements are made between
the telephone company and the utility regarding maintenance practices, it is extremely difficult for
the telephone maintenance worker atop a pole always to recognize and isolate the utility’s relay
circuit. The worker can then inadvertently remove it from service or impress a test voltage across
the pairs and cause a false trip. The utility can put a fault detector on to ensure that no trip occurs
unless there is a fault, but this will restrict the sensitivity of the protection. In addition, when
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telephone companies convert their metallic wire circuits to microwave, this protection principle is
not applicable. In other countries, the telephone system is owned by the government and use of
this channel is provided by the appropriate agency.4

6.3 Tripping versus blocking
The selection of a communication channel for protection is based upon a great many factors such
as cost, reliability, the number of terminals and the distance between them, the number of channels
required for all purposes, not only relaying, available frequencies and the prevailing practices of
the power company. In addition to these fundamental considerations, either as another factor to
be included or as a result of the selection already agreed upon, a decision must be made whether
to operate in a blocking or a tripping mode. A blocking mode is one in which the presence of a
transmitted signal prevents tripping of a circuit breaker, and a tripping mode is one in which the
signal initiates tripping a circuit breaker. There are different relay schemes that accommodate one
mode or the other. These will be discussed in detail. Basically, however, the criterion upon which
the decision to use a block or trip signal is based on the relationship between the power line and the
communication channel. The use of a blocking signal is preferred if the communication medium
is an integral part of the protected line section, such as PLC. In this case, an internal fault may
prevent or seriously attenuate the signal so that a trip signal would not be received. If a separate
transmission medium such as microwave, fiber-optic cable or a pilot cable is used then the integrity
of the power line during an internal fault will have no effect on the transmitted signal and a tripping
scheme is a viable application. In many EHV systems, two primary protection schemes are used,
in which case one may be a tripping system and the other may be a blocking system, which will
then provide diversity.5,6

6.4 Directional comparison blocking
Until recently, the most common pilot relaying scheme in the USA has been the directional com-
parison blocking scheme, using power line carrier. The fundamental principle upon which this
scheme is based utilizes the fact that, at a given terminal, the direction of a fault, either forward
or backward, is easily determined. As discussed in Chapter 4, a directional relay can differentiate
between an internal or an external fault. By transmitting this information to the remote end, and
by applying the appropriate logic, both ends can determine whether a fault is within the protected
line, or external to it. For phase faults, a directional or nondirectional distance relay can be used as
a fault detector to transmit a blocking signal, i.e. a signal that, if received, will prevent the circuit
breaker from tripping. Tripping is allowed in the absence of the signal, plus other supervising relay
action. As discussed in section 6.3, a blocking signal is used since the communication path uses
the transmission line itself. A directional relay usually an admittance type (mho) or quadrilateral
relay is used to stop the transmitter. In the event of a ground fault, either a ground distance relay
similar to the phase relay or a directional ground overcurrent relay is used. A trip is initiated if the
directional relays at both ends have operated and neither end has received a blocking signal. Each
receiver receives signals from both the local and the remote transmitter.7

The directional comparison logic is shown in Figure 6.6, and a simplified DC circuit showing
the essential contacts needed to implement this logic is shown in Figure 6.7.

If we assume an internal fault at F1, since the tripping relays Dab and Dba are directional and are
set to see faults from the bus into and beyond the line, contact 21-1 (Figure 6.7) will close. If the
fault detector starting relays FDab and FDba are directional, they are set with reversed reach, i.e.
to see behind the protected line, and they will not see the fault at F1 and will not send a blocking
signal (contact 85-1 in Figure 6.7 will remain closed). If they are nondirectional, they will start
transmission but the directional relays will stop it. In either case, since the receiver relay contacts
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85-1 will be closed due to the absence of a carrier signal, and the directional relays have operated,
both ends will trip their associated breakers. An external fault, F2, will result in the operation of the
directional relay Dab at breaker 1, but if fault detector FDab is directional it will not operate for the
fault at F2. If FDab is nondirectional, it will start transmitting a blocking signal but Dab will stop it.
At breaker 2, however, FDba will operate whether it is directional or not, and the tripping relay Dba

will not operate to stop transmission. Breaker 1 will not trip since it is receiving a blocking signal
from terminal B, opening its receiver relay contact, and breaker 2 will not trip for two reasons: it
is receiving its own blocking signal and relay Dba did not operate.

Settings

A major advantage in applying distance relays in a directional comparison scheme is the relative
ease and consistency of the settings. Since the distance relay operates on the ratio of V /I , load
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is not usually a concern. On internal faults, for most applications, the ratio of normal voltage and
load current is considerably higher than the ratio at the balance point of the relay. Even when
the two ratios are close, the phase angles are not; load power factors are close to unity, and fault
current phase angles are reactive. Except for very heavy loads or extremely large relay settings,
the relay characteristic does not encompass the load impedance. Under stressed system conditions,
however, as discussed in Chapters 10 and 11, the relay characteristic may expand and load then
becomes a factor. The major criteria are that the blocking signal must be present for all external
faults and the tripping relay must operate for all internal faults. The usual setting for the carrier
trip relay is 175–200 % of the protected line section. For the reversed mho carrier start relay,
the carrier start at one terminal must overreach the carrier trip relay at the other terminal. If this
relay is a directional, reversed mho-type relay, it is set at 125–160 % of (Mtrip − Zline). If it is a
nondirectional impedance-type relay, it is set at 150 % beyond the longest tripping zone.

Example 6.1

(a) Consider the transmission line shown in Figure 6.8. The line impedance is shown with a
resistance component of 0 � ohms. This is acceptable since the resistance is small compared to
the inductance. However, the line angle is assumed equal to the relay angle of maximum torque
to simplify the diagram, as if there were a resistance component. Both of these conventions are
commonly used despite the seeming contradiction. Line section AB is protected by a directional
comparison blocking scheme using, at each end, an admittance-type tripping relay (Mtrip) and a
reverse admittance-type blocking relay (Mblock) without any offset. Calculate the settings of the
tripping relay at A and the blocking relay at B. Draw the relay characteristics on an R–X diagram.
Assume the line angle and the angle of maximum torque of each relay is 75◦.

R
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A B
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Trip zone
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+R
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(a) Reverse Mho blocking (b) Non-directional blocking

75° 60°

Figure 6.8 One-line and R–X diagrams for Example 6.1
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(b) Repeat (a) for a nondirectional impedance blocking relay. Assume the line angle and the
angle of maximum torque of each relay is 60◦.

(a) Set Mtrip at bus A between 175 and 200 % of Zline: Mtrip = 17.520 �.

Set Mblock at bus B between 125 and 160 % of (Mtrip − Zline) so it will overreach Mtrip at bus A.

If Mtrip = 17.5: Mblock at bus B = 1.25(17.5 − 10) = 9.375 �

or Mblock at bus B = 1.60(17.5 − 10) = 12.0 �.

If Mtrip = 20: Mblock at bus B = 1.25(20 − 10) = 12.5 �

or Mblock at bus B = 1.6(20 − 10) = 16 �.

All of these settings are acceptable. In general, the smallest setting would be chosen to avoid any
problems with load, as discussed in section 5.11.

(b) In (a) the blocking relay at A must overreach the tripping relay at B, and vice versa. However,
if the blocking relay is an impedance type, the blocking relays at both terminals must coordinate
with both tripping relays as shown in Figure 6.8(b). For the system shown in this example, the
relays at both terminals are set the same.

Mtrip can be 17.5 � or 20.0 �. Use the smaller number.

Zblock = 1.5(17.5) = 26.25 �.

These settings must be checked against loadability.
For the system shown in Figure 6.8, assume the same parameters as in Example 5.8, i.e. E =

20 kV, ni = 100, nv = 288.6 and (θ + ϕ) = 45.49◦. Loadability is checked for the largest charac-
teristic that might encompass the load at a reasonable load power factor.

Mtrip = 20�; S1mho = 3 × E2ni

Zr cos(θ + ϕ)nv
= 29.80 MVA

Zblock = 26.25�; S1imp = 3 × E2ni

Zrnv
= 15.8 MVA

These values must be compared against the maximum reasonable load before determining the final
relay settings.

One of the advantages of using the directional mho relay for the carrier starting element compared
to the nondirectional impedance relay is an increase in the dependability of the protection system.
With a directional starting relay, it is not necessary to stop the transmitter for an internal fault
since it never starts. This eliminates the possibility of not tripping because the transmitter continues
to send a blocking signal. In addition, as shown in Example 6.1, the nondirectional impedance
characteristic may be so large that it may encompass the load impedance and result in a continuous
carrier signal. For long lines this concern of encompassing the impedance of heavy or emergency
loads also exists with the tripping relays. Solid-state and digital relays can avoid this by shaping the
characteristic closer to the line and thus avoiding operation for heavy load. As shown in Figure 6.9,
the reverse mho electromechanical relay (Mblock1 and Mblock2) is usually slightly offset from the
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origin to encompass the line side of the CT and the breaker. This avoids the low torque that
would exist for a fault on the relay characteristic, biasing the operation towards blocking for a bus
fault. This precaution is not necessary with solid-state or digital relays due to their more positive
operating characteristics near the balance point.

6.5 Directional comparison unblocking
The blocking signal in the directional comparison scheme is transmitted only when a fault occurs.
A malfunction can occur in the relay or communication equipment such that no signal is sent or
the receiver relay contact is continuously picked up. The result would be a failure to block during
an external fault when the directional tripping relay picks up and a false trip would occur (see the
DC circuit of Figure 6.7). To avoid this, a low-energy continuous carrier signal can be transmitted
as a check on the communication link. The frequency shifts (is unblocked) when a fault occurs. A
schematic and simplified DC circuit of the unblocking scheme is shown in Figure 6.10.8

Under normal conditions, a blocking signal is sent continuously so there is no input to OR1;
therefore, AND1 and AND2 (through path ‘a’) receive no input. During an internal fault, the tripping
relay D at each end causes the transmitter to shift to the unblocking frequency, providing an input
to OR2, and then to the receiver relay R, allowing the circuit breaker to trip. The monitoring
logic, i.e. path ‘a’, provides protection in the event there is a loss of a blocking signal without the
transmission of an unblocking signal. With no blocking frequency, there is an input to OR1 and to
AND2, and, with no unblocking signal, there is an input to OR2 through AND1 and the timer (until
it times out). This allows a trip for the interval of the timer (usually 150 ms) after which the circuit
is locked out. With the directional comparison blocking scheme a failure of the communication link
will go unnoticed until a false trip occurs during an external fault. With the unblocking scheme
this condition is immediately recognized and the relay is made inoperative. If a ‘hole’ in the carrier
should occur during a fault, both schemes are vulnerable to false trips.

6.6 Underreaching transfer trip
If the communication channel is independent of the power line, a tripping scheme is a viable
protection system. There are some slight advantages to tripping versus blocking. Tripping can
generally be done faster since there is no need to include coordination time. (Referring to Figure 6.7,
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the receiver relay must open before the directional relay closes, to avoid an incorrect trip on an
external fault.) In the blocking scheme, the blocking relay must be more sensitive than the tripping
relay. This is not always easy to accomplish, particularly if there is a big difference between the
fault contributions at each end. In making this setting, the relay must avoid operating on heavy
load or system unbalance. The transfer trip signal is a frequency shift system as described below.
This provides a continuously transmitted guard signal which must shift to a trip frequency. It is this
two-pronged action that will prevent a false trip due to random electrical noise; the guard frequency
must stop, allowing its contact to close, and the trip frequency must be received, allowing its contact
to close. The continuous guard frequency also monitors the communication channel similar to the
directional comparison unblocking scheme.

Figure 6.11 shows a schematic and DC circuit of circuit breaker 1 of a direct transfer tripping
(DTT) scheme (circuit breaker 2 has a similar circuit). The potential for the relays is derived from
CCVTs as discussed in section 6.2. This is the simplest application of the tripping scheme and
uses an underreaching relay at each terminal. A guard signal is transmitted continuously from each
terminal, energizing guard relays of the two receivers of 85-1 and 85-2 and opening their contacts
(85-1 G2 and 85-2 G1) in the associated breaker trip circuits. If a fault occurs within the reach
setting of the directional underreaching relay 21-1u, it will trip circuit breaker 1 directly. This relay
is set the same as a zone 1 instantaneous relay. In addition, 21-1u shifts the transmitted signal
from the guard frequency to the trip frequency. If the fault occurs beyond the reach of 21-1u, but
within the reach of 21-2u, that relay shifts to the trip frequency. A trip occurs when the guard relay
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Figure 6.12 Direct underreaching transfer trip with dual transmitter/receiver sets

contact 85-1 G2 drops out and the trip relay contact 85-1 T2 closes. Each terminal receives only the
signal from the remote transmitter. The frequencies of this equipment are selected so that there is
no interaction between channels. However, this scheme is not secure inasmuch as a trip can occur
simply by having the receiver relay’s tripping contact close. This can happen inadvertently during
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maintenance or calibration or it can be caused by electrical noise accompanying switching in the
substation or by control circuit transients during relay operations.

The frequencies are usually selected so that, in normal operation, the receiver will ‘see’ the
guard frequency (allowing its contact to open) before it sees a trip frequency (when its contact
closes). This cannot always be relied upon, however, in the presence of random noise. Therefore,
to prevent a false trip, two transmitter/receiver sets are sometimes used, as shown in Figure 6.12.
These receivers operate on two different frequencies, and tripping requires both receivers to operate.
Security is improved since it is unlikely that the two frequencies would be present simultaneously
due to switching or other electrical noise. There is, however, a decrease in dependability with
this solution since there are twice as many components involved. In addition, the capital and
maintenance costs are greater.

The relays designated 21-1u and 21-2u in Figures 6.11 and 6.12 represent both phase and ground
directional, high-speed, first-zone devices that are set to overlap each other but not to reach beyond
the remote terminal. For a fault in this zone, i.e. between A and B, the underreaching relays at both
ends of the line operate and trip their respective breakers directly. At the same time, trip signals are
sent from both terminals. Receipt of these signals will energize the trip coils of both breakers and
trip them, if they have not already been tripped directly by their respective underreaching relays.
If overlapping settings are not possible, such as on very short lines where an underreaching relay
cannot be set reliably to distinguish between an end-of-line fault and an external fault, this scheme
cannot be used.

Example 6.2

Consider the transmission line shown in Figure 6.13 protected by the DTT scheme using admittance-
type relays at each end. Calculate the settings of the underreaching relays. Draw the relay charac-
teristics on an R–X diagram.
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8.7

79°
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Figure 6.13 Calculation and diagram for DTT setting of Example 6.2

At bus A, Ru should be equal to 80–90 % of Zline. If we use 85 %, then M1 equals 0.85 × (2 +
j10) or 8.67∠79◦ ohms. At bus B, M2 also equals 0.85 × (2 + j10) = 8.67∠79◦ ohms.

For this type of scheme it is common practice to use directional distance relays for phase faults
and either directional overcurrent or ground distance relays for ground faults. On systems where the
ground current can change significantly for different operating conditions, it may not be possible
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to set the overcurrent relays to overlap each other and ground distance relays must be used. In any
case, the same relays that are used for the transfer trip protection could also be used with other
units to provide backup protection that is independent of the communication channel. For instance,
the zone 1 distance relay plus the directional instantaneous unit of the ground relay could serve the
underreaching relay functions. In addition, the three zones of the phase distance protection would
provide three-step distance protection in the normal manner, while the directional instantaneous
and time-delay units of the ground relay would provide two-step ground fault protection.

6.7 Permissive overreaching transfer trip
A more common, and less expensive, solution to increase the security of the DTT is to provide an
overreaching fault detector in a permissive overreaching transfer trip (POTT) scheme. This is some-
what similar to the directional comparison blocking scheme in which the directional overreaching
relay serves as both the fault detector (similar to the nondirectional impedance relay in the blocking
scheme) and as a permissive interlock to prevent inadvertent trips due to noise. The received signal
provides the tripping function. A trip signal, instead of a blocking signal, is used and each termi-
nal is tuned to a different frequency and, therefore, can only respond to the remote transmitter’s
signal. The settings can be ‘tighter’ than in the directional comparison blocking scheme, i.e. the
overreaching relay only has to see beyond the next bus section; there is no need to coordinate with
a blocking relay of an adjacent line.

Referring to Figure 6.14, directional overreaching relays 21-1o and 21-2o send tripping signals
to the remote ends. Note that only an internal fault will cause both directional overreaching relays
to operate; an external fault at either terminal will be seen by only one of the two directional
overreaching relays. A trip, therefore, will be initiated if the local overreaching relay operates
and a tripping signal is received from the remote terminal. Tripping is now dependent on both a
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Figure 6.14 Permissive overreaching transfer trip
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transmitted signal from the remote end, which will cause 85-1 G2 to drop out and 85-1 T2 to pick
up, and the overreaching fault detector 21-1o picking up at the local terminal.

Example 6.3

Consider the transmission line shown in Figure 6.15 protected by a POTT scheme using admittance-
type relays at both ends for the overreaching function. Calculate the settings and draw the relay
characteristics on an R–X diagram.

1 2

Ru

Ru

CCVT

CCVT
CT
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79°
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Figure 6.15 Calculation and diagram for POTT setting of Example 6.3

At bus A, M1 equals 150 % × Zline or 1.5 × (2 + j10) = 15.3∠79◦ ohms. Set relay at 15.0∠�60◦.
Similarly, at bus B, M2 = 150% ×Zline or 1.5 × (2 + j10) = 15.3∠79◦ ohms. Set relay at

15.0∠�60◦.

6.8 Permissive underreaching transfer trip
The use of two relays, an underreaching and an overreaching relay, at each terminal, as shown in
Figure 6.16, results in even greater security. The underreaching relays 21-1u and 21-2u initiate the
trip by shifting the transmitted frequency from guard to trip, and the overreaching relays 21-1o and
21-2o provide the permissive supervision. In addition, the underreaching relays can provide a zone
1, instantaneous, direct tripping function to the local breakers, and the overreaching relays, with an
added timer, can provide backup second zone protection. This is the most commonly used transfer
trip scheme in the USA. Again, each terminal only receives the remote transmitter’s signal. The
advantage of this over the POTT scheme is the availability of the two relays for backup protection.

Example 6.4

Consider the transmission line shown in Figure 6.17 with section AB protected by a permissive
underreaching transfer trip (PUTT) scheme using admittance-type relays at both ends for the under-
reaching and overreaching functions. Calculate the settings and draw the relay characteristics on
an R–X diagram.

At bus A, Ro equals 150 % of Zline or 15.3 �, and Ru is 90 % × 10.0 or 9.2 �.

At bus B the same settings could be used, i.e. Ro = 15.3 � and Ru = 9.2 �.



148 Pilot protection of transmission lines

Positive DC

Negative DC
(Circuit Breaker-1)

Shift frequency
of transmitter 185-1

52a-1

52TC-1

1 2
Zone 1

Zone 1

High speed relay with
over-reach setting

High speed relay with
over-reach setting

21-1 u

21-10

CCVT

21-2 u

CCVT

R 1 o

CT

CT

Transmitter
1

Receiver
1

G2

G2

T2

T2
G1

T1

Receiver
2

Transmitter
2

85-1

85-2

85-1

Pilot wire, Microwave, or PLC

21-1 o

High speed zone 1 relays

High speed zone 1 relays

R 1 u

Figure 6.16 Permissive underreaching transfer trip
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Figure 6.17 Calculation and diagram for PUTT setting of Example 6.4

6.9 Phase comparison relaying
Phase comparison relaying is a differential scheme that compares the phase angle between primary
currents at the two ends of a line. If the two currents are essentially in phase, there is no fault in
the protected section. If these two currents are essentially 180◦ out of phase, there is a fault within
the line section. Any communication link can be used.

Figure 6.18 shows the direction of the primary current in the protected line between circuit
breakers A and B. For faults at F1 or F3, IA and IB will be in phase. For a fault at F2, IA and
IB are 180◦ out of phase. The outputs of the secondaries of the three CTs at each end of the line
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Figure 6.18 Phase comparison schematic diagram

are fed into a composite sequence network that combines the positive, negative and zero sequence
currents to produce a single-phase voltage output. This voltage is directly proportional to the phase
angle and magnitude of the three-phase currents at each terminal. A squaring amplifier converts the
single-phase voltage to a square wave. The square wave is used to key the channel transmitter to
send a signal to the remote terminal. In a single-phase comparison scheme, the squaring amplifier
creates a mark on the positive half-cycle and a space, i.e. nothing, on the negative half-cycle. For
an internal fault, the CT secondary current is in phase at both ends, as shown in Figure 6.18. As
a result, both ends have a mark at the same time and each end transmits this mark to the remote
end where a comparator sees the local mark and the remote mark at the same time and issues a
trip signal. For an external fault, one end sees a positive half-cycle and creates a mark and the
other end sees a negative half-cycle at the same time and does not transmit any signal. Each local
comparator, therefore, sees only one mark and one space simultaneously, and does not issue a trip
signal. In a dual-phase comparison scheme, two frequencies are used, one in place of the mark
and the other in place of the space. The comparators at each end than see either two signals of the
same frequency at the same time and will trip or two different frequencies and will not trip.
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The overreaching fault detectors FD1 at each terminal start the transmitter and, at the same time,
provide an input to a comparator. The higher-set overreaching element FD2 at each end arms the
system for tripping, depending upon the result of the comparison of the local and remote square
waves.

The scheme is such that the positive and negative blocks of the square wave of the secondary
current are 180◦ from the positive and negative half-cycles of the primary current wave. This is due
to the relative location of the ct polarities, as shown in Figure 6.18. Since a single-phase comparison
relay transmits only on the positive half-cycle, there is a possible tripping delay of one half-cycle.
A dual-phase comparison relay transmits on both halves of the square wave and is therefore ready
to trip on each half-cycle. It is important to recognize that a phase comparison relaying scheme
provides protection only for faults within the protected line. It does not provide backup protection
for faults on an adjacent line, nor does it have inherent backup protection for its protected line
section. For this reason, additional relays must be used at each terminal for backup protection,
and to allow maintenance on the communication equipment. This lack of inherent backup may be
considered an advantage, inasmuch as the primary and backup relays are forced to be independent.
In the directional comparison or transfer tripping schemes, one is tempted to combine the primary
and the backup functions. In addition, since this system operates only on line current, it is not
subject to tripping on power swings or out-of-step conditions. Also, no potential transformers
are required, which could be a very significant cost advantage on EHV systems, although the
advantage disappears if a potential device is needed for metering or backup protection. Another
advantage is the fact that the phase comparison scheme does not require a voltage to establish
directionality or distance measurements. Distance or directional relays are subject to errors caused
by mutual coupling of parallel circuits; a common configuration at lower transmission voltages.
Lower voltage systems often are installed on double circuit towers with the resulting induced zero-
sequence voltages. Directional relays may operate for ‘backwards’ faults, and distance relays can
either underreach or overreach depending upon the relative angle between the ground current and
phase current.9,10

The most commonly used scheme is a nonsegregated phase comparison scheme in which iden-
tification of the faulted phase is lost due to the mixing transformers. Additional monitoring for
postfault analysis may be required. There is available, however, a segregated phase comparison
scheme which uses one relay per phase, each relay individually coupled to each phase. This is a
more expensive scheme but it provides faulted phase identification which is useful in single-phase
tripping, postfault analysis and other operating strategies.

The specific settings of a phase comparison system are determined in very large measure by the
filters and the timing coordination required by its blocking and tripping logic. This is unique to the
various manufacturers, and their instruction books must be followed. In general, however, there
are two fault detectors involved: FD1, a low-set relay, i.e. a relay with a low setting, which starts
carrier; and FD2, a high-set relay, a relay with a high setting, which arms the tripping circuits,
waiting for the comparison of the transmitted signals. FD1 must be set above maximum load if
possible, to avoid continuous transmission and it must operate for all internal faults. FD2 must not
operate on maximum load and is set between 125 and 200 % of FD1. FD2 must be set high enough
to reset itself in the presence of heavy loads following clearing an external fault. A distance relay
is added if the minimum internal three-phase fault is less than twice the maximum load current.
The same setting in primary amperes should be used at both ends to ensure coordination. This can
be difficult if the contributions from the two ends are significantly different.

Example 6.5

Consider that the transmission line shown in Figure 6.18 is a 138 kV, 100 mile line and its primary
impedance is 80 �. Calculate the settings for the low-set and high-set relays.
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Assume the equivalent impedances at the end of the line are negligible compared to the line
length. A three-phase fault at either end of the line is equal to 138 000/(

√
3 × 80) or 1000 primary

amperes. Assume that the minimum phase fault is 866 A and the maximum load is 300 A. Set FD1

equal to 1.5 × 300 = 450 A and FD2 equal to 1.25 × 450 = 562.5 A. The minimum fault, 866 A,
is almost twice FD1, which is acceptable, and is more than twice the maximum load, so no distance
relay is required. The actual relay settings, of course, must be calculated in secondary ohms, i.e.
using the appropriate CT ratio.

Example 6.6

Assuming that the system behind one of the buses in Example 6.5 is very weak and has an equivalent
primary impedance of 40 �, a three-phase fault at the remote end would be equal to 138 000/(

√
3 ×

120) = 664 A, and the assumed minimum fault is 575 A. The same settings would now result in
FD2 being less than twice the maximum load of 300 A and a distance relay would be required to
supervise the trip.

6.10 Current differential11

In a current differential scheme, a true differential measurement is made. Ideally, the difference
should be zero or equal to any tapped load on the line. In practice, this may not be practical due
to CT errors, ratio mismatch or any line charging currents. Information concerning both the phase
and magnitude of the current at each terminal must be made available at all terminals in order
to prevent operation on external faults. Thus a communication medium must be provided that is
suitable for the transmission of these data.

There are two main types of current differential relaying. One combines the currents at each
terminal into a composite signal and compares these composite signals through a communication
channel. The other samples individual phase currents, converts them to a digital signal and transmits
these signals between terminals.

Current differential schemes tend to be more sensitive than distance-type schemes since they
respond only to the current, i.e. no potential device is required. This tends to be more dependable
but at a cost to security. Since no potential is involved, they are not affected by system swing
conditions or blown fuse problems. However, there are no inherent backup capabilities.

However, as computers are becoming more widespread and communication more sophisticated,
transmission line current differential has become more popular. It inherently accommodates multi-
terminal lines by the logic applied within the relay which can monitor all of the current inputs. In
addition, the computer can detect second and fifth harmonics allowing it to differentiate between
transformer energization and magnetizing inrush permitting its application to a line with a tapped
transformer (refer to section 8.4). If the appropriate voltage is applied to the relay it can also provide
distance relays for backup.

Communication media can be metallic pilot wires, audio tones over leased pilot wires, microwave
or fiber optics. PLC is not suitable due to the wide bandwidth required.

6.11 Pilot wire relaying
Pilot wire relaying is a form of differential line protection similar to phase comparison, except that
the phase currents are compared over a pair of metallic wires. As in the directional comparison
versus transferred tripping schemes, there are two variations, a tripping pilot and a blocking pilot.
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6.11.1 Tripping pilot

The operation of a tripping pilot wire relay scheme is illustrated in Figure 6.19. The secondary
currents from the three CTs at each terminal are fed into a mixing network which produces a
single voltage output. This is one of the disadvantages of the pilot wire scheme. As with the phase
comparison scheme, the faulted phase identification is lost. This output voltage is applied to the
associated sensing unit, essentially composed of an operating and a restraining circuit, and on to the
pilot wires through an insulating transformer. The operating circuit is considerably more sensitive
than the restraining circuit. When the current entering bus B is equal to, and in phase with, the
current leaving bus A, as in the case of load or an external fault at F1, the voltages Va and Vb are
also equal and in phase. For this condition, there will be no current circulating in the pilot wires or
in the operating circuits of the relays. The voltages at each end will provide restraining coil current
and the relays will not operate.

For an internal fault at F2, the current entering bus A will be 180◦ out of phase with the current
entering bus B, although not necessarily of equal magnitude. For this condition, Va and Vb will
also be 180◦ out of phase and, depending on the fault currents, probably unequal. This will result
in a circulating current flowing in the pilot wires and in the operating circuits of the relays at
both terminals. While some current will flow in the restraining circuit, the operating current will
dominate and the relays will operate. Since this scheme requires a circulating current to trip, if
the channel is open-circuited, no tripping can occur. However, if the pilot wires are shorted, false
tripping can occur. To monitor for open circuits, a few milliamperes of a DC monitoring current
can be continuously impressed across the pilot pair. A fault detector can be provided to prevent
false tripping, although this reduces the sensitivity of the protection to that of the setting of the
fault detector.

6.11.2 Blocking pilot

This scheme is shown in Figure 6.20. The difference between the tripping and the blocking schemes
is in the relative location of the restraining and operating circuits and in the phase relation of
the voltage output for internal and external faults. Following the same sequence of operation as
described for the tripping pilot, it can be seen that the blocking scheme requires a circulating current
in the pilot wires to prevent tripping. The effect of open and shorted pilot pairs is opposite, but the
remedies are the same.

B

F1 F2 F3

X X X
CT CT

Relay Relay

Mixing
Network

Mixing
NetworkPilot wire

Operating coil Operating coil

Restraint coil Restraint coil

VA VB

VA and VB shown for external fault

Figure 6.19 Schematic for tripping pilot system
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Relay Relay
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Operating coil Operating coil

Restraint coil Restraint coil

VA VB

VA and VB shown for external fault

Figure 6.20 Schematic for blocking pilot system

6.12 Multi-terminal lines
In Chapter 5 we discussed the problems associated with infeeds and multi-terminal lines and the
difficulty in calculating settings for overcurrent and distance relays that would adequately pro-
tect the lines for all system configurations. The same difficulties confront us with pilot relaying.
As with two-terminal lines, pilot relaying is the only way to protect 100 % of the lines instan-
taneously. If there is no outfeed from any of the terminals, directional comparison is preferred.
If, due to the specific system configuration, the fault contribution from one terminal flows out of
that terminal, the fault detector relays, either directional or nondirectional, will start carrier, and
the tripping relays will not stop it. Tripping is, therefore, prevented. One solution to this problem
is to wait until the zone 1 relays at one or more terminals trips the associated breaker, elimi-
nating the multi-terminal configuration and normal operation will resume. Another solution is to
use phase comparison relays. Although outfeed during load or an external fault does not affect
phase comparison, the setting criteria in a three-terminal configuration are extremely stringent. In
the best situation with equal contributions from all terminals for an external fault, one terminal
will see twice as much fault current as either of the other two. During the half-cycle in which the
terminal with the larger fault current is sending a blocking signal, there is no problem. However,
during the other half-cycle, either of the other two terminals must send the blocking signal. If the
fault is assumed to be just at the trip setting of the relay with the larger contribution, neither of
the other terminals will have enough current to cause a blocking signal to be sent with normal
settings.

Example 6.7

Consider a symmetrically configured three-terminal line, 1, 2 and 3, i.e. all legs and all fault
contributions are equal (Figure 6.21). Assume an external three-phase fault beyond terminal 3.
Terminals 1 and 2 contribute equal fault current to the fault but terminal 3 contributes twice their
current. If the fault is just at the level of FDh of terminal 3, say 125 A, then the FD1 settings at
terminals 1 and 2 would be 100 A, but their fault contributions would be 62.5 A. They would not
send blocking signals to terminal 3.
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1 2

3

62.5 amps 62.5 amps

125 amps

XFault FDh = 125 amps

FD1= 100 ampsFD1= 100 amps

Figure 6.21 System for Example 6.7

The alternatives are (1) to halve the carrier start level or (2) to double the tripping level. Alterna-
tive (1) has the undesired effect of transmitting during normal load conditions which monopolizes
the communication channel, making it unavailable for other uses. Alternative (2) has the disadvan-
tage of reducing the sensitivity. If possible, the trip setting must therefore be 250 % of the start
setting and the start setting must be three times the maximum load; conditions that cannot always
be met. If there is a limited source of fault current from one terminal the situation worsens.12 – 14

With no outfeed, directional comparison schemes can be applied. A tapped load is not a concern
since the distance relay characteristics are relatively immune to load, as discussed before. All carrier
start relays must reach beyond all carrier trip relays with good margin. Recall the rules stated in
Chapter 5 concerning infeed: set the carrier start relays without any infeed and set the trip relays
with maximum infeed. If any terminal can experience outfeed, then the directional feature is fooled
and a blocking signal is sent to all terminals. The usual remedy is to rely on zone 1 relays at the
outfeed terminal to open its breaker, thus allowing all other terminals to respond correctly.

Example 6.8

Consider the system shown in Figure 6.22. We may assume that the relative magnitudes of I1, I2

and I3 remain unchanged for any fault on the system between buses A through G. This is clearly an
approximation, and in an actual study we must use appropriate short-circuit calculations for each
of the faults. We are required to set the directional comparison carrier trip and carrier start relays
at bus B. The system nominal voltage is 138 kV. Assume that the maximum load is 360 MVA.
If1 = 360 000/(

√
3 × 138) = 1506.2 A. The CT ratio is therefore 1500/5 = 300 : 1. The primary

turns ratio is 138 000/(1.73 × 69.3) = 1150. Assume that I2/I1 = 0.5.

Carrier trip

This must be set equal to 175 % of the longer of the two impedances between buses B and D, and
between buses B and G. Infeed will be considered to be present, and will apply to the impedance
segment C–D. Thus the carrier trip setting is 1.75 × [4 + j40 + 1.5 × (2 + j20)] = 12.25 + j122.5
or 123.11∠84.2◦ p rimary ohms or 32.12∠84.2◦ secondary ohms. Assume the distance relay has
settings from 10 to 40 � and angle adjustments of 75◦ and 80◦. Set the relay at 30 � and 80◦.
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Figure 6.22 System with infeed

Carrier start

This must be set equal to 125 % of the carrier trip setting minus the impedance between buses B
and D without the infeed. Thus, the carrier start setting is equal to 1.25 × [119∠80◦ − (6 + j60)] =
59.04∠75.6◦ primary ohms or 15.4∠75.6◦ secondary ohms. Set the relay at 16 � and 80◦.

6.13 Summary
In this chapter we have examined the application of pilot channels to provide instantaneous pro-
tection over the entire length of a given line section. Two operating modes are possible: a blocking
mode when the communication channel is an integral part of the power line and a tripping mode
when the channel is independent of the line. This form of protection involves the transmission
of relaying information from one terminal of the zone of protection to the other by means of an
appropriate communication channel. These channels can be power line carrier, microwave, fiber
optics or pilot cable. The relaying schemes can be classified as directional comparison, phase com-
parison, current differential or pilot wire depending on the type of sensing used, and are further
described as blocking, unblocking or transfer trip depending on how the transmitted signal is used.
The transfer trip schemes are again divided into direct, permissive underreaching and permissive
overreaching. There are, of course, advantages and disadvantages associated with each scheme and
the specific application depends on all of the individual factors and conditions involved. Direc-
tional distance relaying is the most commonly used throughout the world, but it has application
and setting problems when series capacitors are present. Phase comparison and current differential
are immune to such problems, and only require current inputs, eliminating the need for potential
sources. There is no inherent backup provided, however, and the coupling requirement may become
expensive. If a microwave or fiber-optic channel is available, then a tripping scheme is preferred.
If power line carrier is used then a blocking scheme is used. Pilot cable is only used if the dis-
tance between terminals is short. We have examined setting criteria and the specific application to
multi-terminal lines.
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Problems
6.1 For each of the following pilot schemes, select a channel of communication, i.e. power line

carrier, microwave or pilot wire, and select a mode of operation, i.e. blocking or tripping,
and explain why such a choice was made: (a) directional comparison blocking; (b) permissive
underreaching transfer trip; and (c) phase comparison.

6.2 Relay Rab in Figure 6.23 represents a directional comparison blocking relay using directional
mho relays for tripping and reversed mho relays, without offset, for blocking. Determine
the carrier start and carrier trip settings for the phase relays. The system nominal voltage

B

C

C

F2

X
Rab

(3+j40)

(2+j50)
A

(0+j9) D

Figure 6.23 System for problem 6.2
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Figure 6.24 System for problem 6.5
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is 138 kV, and the positive sequence impedances for the various elements are given in the
figure. Assume that the maximum load is 120 MVA and select a CT ratio accordingly. The
available relays can be set from 0.2 to 10 � or 0.5 to 40 �, whichever is required. The angle
of maximum torque can be adjusted to 75◦ or 80◦.

6.3 Draw the R–X diagram for the relays of problem 6.2.

6.4 Repeat problem 6.2 for a permissive overreaching transfer trip scheme.

6.5 Consider the multi-terminal line in the system shown in Figure 6.24. Each of the buses C, D,
G, H and J has a source of power behind it. For a three-phase fault on bus B, the contributions
are shown in the table in Figure 6.24. Assume that the fault current contributions from each
of the sources remain unchanged as the fault is moved around the system. Determine the start
and trip settings for the directional comparison blocking relays at buses A and B. Assume the
same relays as in problem 6.2.

6.6 Repeat problem 6.2 for a phase comparison scheme between terminals A and B. Assume
infinite equivalent sources behind terminal A, C and D.
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7
Rotating machinery protection

7.1 Introduction
The protection of rotating equipment involves the consideration of more possible failures or
abnormal operating conditions than any other system element. Although the frequency of fail-
ure, particularly for generators and large motors, is relatively low, the consequences in cost and
system performance are often very serious. Paradoxically, despite many failure modes that are
possible, the application principles of the protection are relatively simple. There are none of the
complications requiring a pilot scheme. Those failures involving short circuits are usually detected
by some type of differential or overcurrent relay. Many failures are mechanical in nature and use
mechanical devices such as limit, pressure or float switches, or depend upon the control circuits
for removing the problem.1,2

Some of the abnormal conditions that must be dealt with are the following.

1. Winding faults:
stator – phase and ground fault

2. Overload
3. Overspeed
4. Abnormal voltages and frequencies.

For generators we must consider the following.

5. Underexcitation
6. Motoring and startup.

For motors we are concerned with the following.

7. Stalling (locked rotor)
8. Single phase
9. Loss of excitation (synchronous motors).

There is, of course, some overlap in these areas, particularly in overloads versus faults, unbal-
anced currents and single phasing, etc. Thus, relays applied for one hazard may operate for others.
Since the solution to a given failure or abnormality is not the same for all failures or abnormalities,
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care must be taken that the proper solution is applied to correct a specific problem. In some
instances tripping of the unit is required; in other cases reduction in load or removing some specific
equipment is the proper action. This will be discussed in greater detail as we examine each type
of failure.

Several of these abnormal conditions do not require automatic tripping of the machine, as they
may be corrected in a properly attended station while the machine remains in service. Hence, some
protective devices only actuate alarms. Other conditions, such as short circuits, require fast removal
of the machine from service. The decision, whether to trip or alarm, varies greatly among utilities
and, in fact, between power plants of a given utility or between units in a single plant. The conflict
arises because there is a justifiable reluctance to add more automatic tripping equipment than is
absolutely necessary. Additional equipment means more maintenance and a greater possibility of
incorrect operation. In today’s systems, the loss of a generator may be more costly, in terms of
overall system performance, than the delayed removal of a machine. On the other hand, failure to
promptly clear a fault, or other abnormality, may cause extensive damage and result in a longer,
more expensive outage. The decision is not obvious nor is it the same for all situations. It requires
judgment and cooperation between the protection engineer and the appropriate operating and plant
personnel.

7.2 Stator faults
7.2.1 Phase fault protection

For short circuits in a stator winding, it is standard practice to use differential protection on gen-
erators rated 1000 kVA or higher and on motors rated 1500 hp or larger or rated 5 kV and above.
Rotating equipment provides a classic application of this form of protection since the equipment
and all of the associated peripherals such as current transformers (CTs), breakers, etc. are usually
in close proximity to each other, thereby minimizing the burden and possible error due to long
cable runs. In addition, since there is only one voltage involved, the CT ratios and types can be
the same, with matched characteristics. They should be dedicated circuits and should not be used
with any other relays, meters, instruments or auxiliary transformers without a careful check on the
effect on CT performance.

The CTs used for the generator differential are almost invariably located in the buses and leads
immediately adjacent to the generator winding. This is done to limit the zone of protection so a fault
in the generator is immediately identifiable for quick assessment of damage, repair and restoration
of service. The buses themselves are usually included in their own differential or in some overall
differential scheme.

In motor differential circuits, three CTs should be located within the switchgear in order to
include the motor cables within the protection zone. The other three CTs are located in the neutral
connection of the motor. Six leads must be brought out of the motor: three on the incoming
cable side to connect to the switching device and three on the motor neutral to accommodate the
CTs before the neutral connection is made (refer to Figure 7.15). Above 1500 hp this is standard
manufacturing practice. Below 1500 hp the provision and connections for the CTs must be specified
when the motor is purchased.3

Figure 7.1 shows the basic differential connection using a simple overcurrent relay. This protec-
tion scheme is described in section 2.2, and shown in Figure 2.5. For an external fault, the relay sees
I1 − I2, which is zero or very small. For an internal fault, the relay will see I1 + I2 which can be
very large. This big difference between the current in the relay for an internal fault compared to an
external fault makes the setting very easy, i.e. sufficiently above the external fault for security and
enough below the internal fault for dependability. This precise distinction between the location of an
internal and an external fault is what makes the differential circuit such an ideal protective principle.



Stator faults 161

R

I1 I2

I1 I2

(I1 - I2)

I'1 I'2

Figure 7.1 Generator differential connection with overcurrent relay

Example 7.1

Consider the system shown in Figure 7.2 which represents a generator prior to being synchronized
to the system. The generator is protected by an overcurrent relay, 87,∗ connected in a differential
circuit as shown. The maximum load is 125 000/(

√
3 × 15.5) = 4656.19 A. For this maximum

load select a 5000:5 (1000:1) CT ratio. This results in a secondary current of 4.66 A at full
load. Before the unit is synchronized, a three-phase fault at either F1 or F2 is (Vpu/x

′′
d ) × If1 or

(1.0/0.2) × 4656.19 = 23280.95 primary amperes or 23.28 secondary amperes.

R

F1 F2

87

IF2 (One phase shown)
IF1 (Other phases similar)

Generator parameters:
125 MVA
15.5 kV
X”d = X2 = 0.2 pu

Figure 7.2 One-line diagram for Example 7.1

For the external fault at F2, 23.28 A flow through both CT secondary circuits and nothing flows
in the overcurrent relay.

For the internal fault at F1, 23.28 A flow through only one CT secondary and the operating coil
of 87.

∗ Although 51 is the ANSI recommended device function number for an overcurrent relay, this relay is connected as a differential
relay and the designation 87 is more meaningful for this application.
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This arrangement would be ideal if the CTs always reproduced the primary currents accurately.
Actually, however, the CTs will not always give the same secondary current for the same primary
current, even if the CTs are commercially identical. The difference in secondary current, even under
steady-state load conditions, can be caused by the variations in manufacturing tolerances and in
the difference in secondary loading, i.e. unequal lengths of leads to the relay, unequal burdens of
meters and instruments that may be connected in one or both of the secondaries. What is more
likely, however, is the ‘error’ current that can occur during short-circuit conditions. Not only is
the current magnitude much greater, but there is the possibility of DC offset so that the transient
response of the two CTs will not be the same. This difference in secondary current will flow in
the relay. An overcurrent relay must then be set above the maximum error current that can flow
during the external fault; yet it must be set significantly below the minimum fault current that can
accompany a fault that is restricted due to winding or fault impedance.

The percentage differential relay solves this problem without sacrificing sensitivity. The schematic
arrangement is shown in Figure 7.3. This scheme has already been introduced in section 2.2.
Depending upon the specific design of the relay, the differential current required to operate this
relay can be either a constant or a variable percentage of the current in the restraint windings. The
constant percentage differential relay operates, as its name implies, on a constant percentage of the
through or total restraint current. For instance, a relay with a 10 % characteristic would require at
least 2.0 A in the operating winding with 20 A through-current flowing in both restraint windings.

I1 I2

I1 I2

(I1 - I2)
Operating coil

Restraint coilRestraint coil

I'1 I'2

Figure 7.3 Generator differential using percentage differential relay
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A variable percentage relay requires more operating current at the higher through-currents, as shown
in Figure 7.4. Regardless of the specific design, however, conceptually, the contact-closing torque
(for an electromechanical relay) or tripping action (in a solid-state or digital relay) caused by the
current in the operating coil is proportional to the difference between the secondary currents. In
contrast, the contact-opening torque, or nontripping action, caused by the through-current in the
restraint coils is proportional to the sum of the two currents, with the additional requirement that
there must be current in both restraint windings.

For external faults, the restraining windings receive the total secondary current and function to
desensitize the operating winding, particularly at high currents. The effect of the restraint windings
is negligible on internal faults, since the operating winding has more ampere-turns and it receives
the total secondary current while the net ampere-turns of the restraint winding are decreased by
virtue of the opposite direction of current flow m the windings during an internal fault.

Example 7.2

Figure 7.5 shows the difference in the operating characteristics of the generator differential when
using an overcurrent relay as shown in Figure 7.1 or a constant percentage differential relay as
shown in Figure 7.3. Also shown is a typical plot of the error current due to CT unbalance caused
by different burdens or saturation. Both relays are set for the same pickup of 0.1 A. It is clear
that a through-current greater than 4.5 A will exceed 0.1 A in the operating coil and will trip the
overcurrent relay incorrectly, whereas the entire error current plot lies in the nonoperating region
of the differential relay, and there would be no tendency for the percentage differential relay to
operate.

1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(I1+I2)/2  Through current

(I
1 

-I
2)

  O
pe

ra
tin

g 
cu

rr
en

t

Overcurrent relay
characteristic

Differential current
Due to CT unbalance

Non-operating
region

Operating
region

Percentage differential
characteristic

Relay pickup

Figure 7.5 Comparison between percentage differential and overcurrent relay performance

Example 7.3

Consider the system and the associated positive sequence network shown in Figure 7.6 when the
unit is synchronized to the system. The generator is protected by a percentage differential relay
(87) set for a minimum pickup of 0.2 A. Full load current is 125 000/(

√
3 × 15.5) = 4656.19 A.

Select a CT ratio of 5000:5 (1000:1). The per-unit reactances on a 100 000 kVA, 15.5 kV base are

x ′′
d = 0.2 × (100/125) = 0.16 pu
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Generator parameters:
125 MVA
15.5 kV
X”d = X2 = 0.2 pu

Transformer parameters:
150 MVA
15.5/345 kV
XT = 15%

R

F1 F2

87

Xsys = 0.025 pu
@ 100MVA/345 kV F1 and F2

Ifault

Igen Isys

V = 1.0
V = 1.0

0.16 0.1 0.025

Figure 7.6 System and positive sequence network for Example 7.3

xt = 0.15 × (100/150) = 0.1 pu

xsys = 0.025 pu

Three-phase faults at F1 and F2 are

I1f = 1.0/0.07 = 14.29

Ibase = 100 000/(
√

3 × 15.5) = 3724.9 A

If = 14.29 × 3724.9 = 53228.82 A

Igen = 23 346/1000 = 23.35 A, secondary

Isys = 29 883/1000 = 29.89 A, secondary

For a fault at F2, i.e. outside the generator differential zone, the generator contribution flows
through both sets of CTs. If both sets of CTs reproduce the primary current accurately, there will
be no current in the operating winding.

For a fault at F1, i.e. within the differential zone of protection, the generator contribution
flows through one set of CTs and the system contribution flows through the other set of CTs.
Each restraint winding sees its associated current flowing in opposite directions (which decreases
the net restraining torque) and the operating winding sees the sum of the two contributions, i.e.
53.24 A.

7.2.2 Ground fault protection

The method of grounding affects the amount of protection that is provided by a differential relay.
When the generator is solidly grounded, as in Figure 7.7, there is sufficient phase current for a phase-
to-ground fault to operate almost any differential relay. If the generator has a neutral impedance
to limit ground current, as shown in Figure 7.8, there are relay application problems that must be
considered for the differential relays that are connected in each phase. The higher the grounding
impedance, the less the fault current magnitude and the more difficult it is for the differential relay
to detect low-magnitude ground faults.

If a CT and a relay are connected between ground and the neutral point of the circuit, as shown
in Figure 7.9, sensitive protection will be provided for a phase-to-ground fault since the neutral
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Generator System

Figure 7.7 Direct connected and solidly grounded generator

Generator Step-Up (GSU)

System

Generator Transformer
Neutral impedance

Figure 7.8 Neutral impedance grounding

GSU

System

Generator Transformer

Neutral impedance

R 51N

Figure 7.9 Neutral impedance grounding with neutral CT and relay (GSU, generator step-up)

relay (51N)† sees all of the ground current and can be set without regard for load current. As
the grounding impedance increases, the fault current decreases and it becomes more difficult to
set a current-type relay. The lower the relay pickup, the higher is its burden on the CT and the
more difficult it is to distinguish between ground faults and normal third harmonic unbalance. This
unbalanced current that flows in the neutral can be as much as 10–15 % of the rated current. Other
spurious ground current may flow due to unbalances in the primary system. The total false ground

† Suffix ‘N’ is generally used in preference to ‘G’ for devices that are connected in the secondary of a current transformer whose
primary winding is located in the neutral of a machine or power transformer. ‘N’ may also be used for devices connected in
the residual circuit of the three secondary windings of the CTs connected in the primary as shown in Figure 7.12. However, if
there are relays in both the neutral connection to ground and the residual circuit of the three phase CTs, it is common practice to
differentiate between these two sets of relays by designating one ‘N’ and the other ‘G’. In the case of transmission line relaying,
the suffix ‘G’ is used for those relays that operate on ground faults, regardless of the location of the CTs.



166 Rotating machinery protection

current flows through the neutral CT and relay. However, only the difference between the secondary
currents will flow through the generator differential CTs. Since the spurious ground current is small,
there should be no effect on the accuracy of the CTs.

If the machine is solidly (or low-impedance) grounded, and protected with a neutral CT and relay
51N as shown in Figure 7.9, an instantaneous overcurrent relay is applicable. In high-impedance
grounding schemes, with the same protection, although the fault current is low and the potential
damage is reduced, a time-delay overcurrent relay is preferred since it can be set lower than an
instantaneous relay to accommodate the lower ground current and it would be set with sufficient
time delay, e.g. 5–10 cycles, to override any false ground current that could be caused by switching
or other system transients.

Example 7.4

Referring to the system diagram and the sequence networks shown in Figure 7.10, the phase current
for the differential relay (87) and the neutral relay current (51N) for various values of grounding
impedances are as follows.

(a) Solidly grounded: Rn = 0

I1 = I2 = I0 = j1.0/j(0.2 + 0.2 + 0.03) = 2.33 pu × 4656 = 10 828.35 A

Ig = Ia = 3 × I0 = 32 485 A primary. The secondary current in the generator differential relay
will be 32.5 A. The typical minimum pickup of this class of relay is 0.2–0.4 A so 32.5 A is
sufficient to reliably operate on ground faults even with additional resistance or within the generator
winding.

(b) Moderately grounded: Rn = 1.0 �

1.0 � = [(1) × (125 000)]/[(1000) × (15.5)2] = 0.52 per unit

I1 = I2 = I0 = j1.0/[3(0.52) + j0.43] = 0.617∠74.60◦ per unit

Generator ratings:
125 MVA
15.5 kV
X”d = X2 = 0.2 pu
X0 = 0.03

R

F1

87

V = 1.0

R 51N
100:5

RN

GSU
X”d= X1

X2

X0

Positive Sequence

Negative Sequence

Zero Sequence

5000:5 5000:5

(One phase shown)
(Other phases similar)

3RN

Figure 7.10 System and sequence networks for Example 7.4
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Ig = Ia = 3 × I0 = 8618 A primary. The generator differential CT secondary will be 8.62 A, which
is still adequate. However, if a neutral CT and relay were installed, the CT ratio could be as low
as 100:5 which would result in a neutral relay current of 431 A.

(c) High-impedance grounding: Rn = 10 �ohms

10 � = 5.2 pu

I1 = I2 = I0 = j1.0/[3(5.2) + j0.43] = 0.06∠1.5◦

Ig = 3I0 = 837 A primary. The generator differential secondary current (0.84 A) is above pickup
but does not allow for additional fault resistance. The neutral relay current (41.85 A) is sufficient
to make a good relay setting.

Example 7.4 shows that, for a solidly grounded generator, there is enough relay current to operate
the generator differential (32.5 A). As the impedance increases, the differential current falls to just
above relay pickup (0.29 A). Any higher neutral impedance or fault resistance and the relay will
not pick up. On the other hand, since the neutral CT does not have to consider load it can have
any ratio that is determined by the available fault current. In this case, a ratio of 100:5 will result
in a neutral relay current of 14.5 A, enough to operate a relay set at, say, 5.0 A.

If the machine is not grounded, then the first ground fault does not result in any current flow.
This situation does not require immediate tripping since there is no fault current to cause any
damage. However, a second ground fault will result in a phase-to-phase or turn-to-turn fault. This
condition can result in heavy current or magnetic unbalance and does require immediate tripping. It
is, therefore, essential to detect the first fault and start to take appropriate action. The usual ground
fault detector is a potential transformer with the primary winding connected in a grounded wye
configuration and the secondary winding connected in broken delta. This results in 3E0 across the
broken delta, as shown in Figure 7.11.

If the neutral is not accessible, or there is no neutral CT, an alternative protection scheme to
the neutral relay is a residually connected relay, as shown in Figure 7.12. This is a relay that is

Potential
Transformer

R

R 1

2

3
1

23

Pri.Sec.

V23 = 3E0 = 0 System
Normal

R

1
23

Sec. Pri.

V23 = 3E0 Phase 1-G 
= 3VLN fault

X

Figure 7.11 Broken-delta ground detector
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51g

51a

51b

51c

CTCTCT

a

b

c

g

Other devices

Figure 7.12 Residually connected ground relay

connected in the residual of the CT secondary circuit so that it sees the vector sum of the secondary
current of all three phases. This is particularly applicable in motor installations where each phase
is energized at a different point of the voltage wave, resulting in different DC offsets and inrush
currents. Because of these differences there is a difference in the CT secondary output, and this
difference flows in the common residual circuit. Therefore, instantaneous relays cannot be used and
a very-inverse or short-time induction relay, or its solid-state or digital equivalent, is required. The
time delay prevents this type of relay from tripping falsely during startup. Typical pickup settings
of the time-delay relay are one-fifth to one-third of the minimum fault current with some time
delay. In power plants, to avoid incorrect trips due to vibration, the time delay is usually not set at
the lowest setting although virtually any time delay will be longer than the starting current error.4

An alternative to the residually connected ground relay in motor applications is the toroidal CT,
shown in Figure 7.13 and discussed in section 3.4. This CT encircles all three phase conductors
and thereby allows all positive and negative sequence currents to be cancelled out so only zero
sequence current appears in the relay. Care must be taken to keep all ground wires and cable shields

Figure 7.13 Toroidal CT
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out of the toroid. If they conduct current during a ground fault, the net magnetic effect will be zero
and no current will be seen by the relay.4 Because the secondary current is a true reflection of the
total three-phase primary current, there is no CT error due to any unbalanced primary current. The
CT ratio can be any standard value that will provide the relay current from the available ground
current for adequate pickup. Since there will be no error current, the relay can be an instantaneous
relay set at a low value. Typical relay calculations are shown in the following examples.

Example 7.5

Consider the 2000 hp motor installation shown in Figure 7.14. The CT ratio is selected to provide
some margin above the trip setting so meters will not read off-scale. Normally, overcurrent relays
are set at 125 % of full load and the CT ratio should allow less than 5.0 A for this condition. If the
motor is vital to the operation of the plant, advantage is taken of the motor service factor which
is 115 %. This results in a maximum load of 245 A × 1.15 = 282 A and a relay pickup setting of
1.25 × 282 = 352.5 A. Select a CT ratio of 400:5 (80:1).

51 51 51G

4 kV bus

4005

Cable

51N = Neutral overcurrent relay

50 = Instantaneous phase relay
51 = phase overcurrent relay
51G = residual overcurrent relay

2000 hp
IFL= 245 amperes
L.R. = 1609 amperes
Start. time = 0.97 second

Bus faults:
3 phase = 25000 amperes
phase-to-phase = 20000 amperes

(Only one phase shown)
(other phases similar)

51N

Alternative ground relay

Figure 7.14 Protection for 2000 hp motor

The time-delay overcurrent relay 51 sees 352.5/80 or 4.4 secondary amperes. To set the relay,
the manufacturer’s instruction book and characteristic curves must be used. For our purposes,
however, assume there is a 5.0 A tap and the characteristics of Figure 4.5 apply. The time delay
must be set longer than the starting time of the motor. This assumes that the starting current lasts
for the full starting time. This is not strictly true. The starting current starts to decrease at about
90 % of the starting time. However, this is a conservative setting that is often used to cover any
erratic motor behavior and to avoid false tripping during starting. The relay pickup during starting
is 1609/(80 × 5) = 4 × pu; the time delay must be at least 0.97 s which results in a time dial
setting of 1.5. Two overcurrent relays are usually used, one in phase 1 and the other in phase 3, on
the assumption that an overload is a balanced load condition. An ammeter (not shown) is usually
connected in phase 2.



170 Rotating machinery protection

The instantaneous relay 50 must be set above the asymmetrical value of the locked rotor current,
i.e. 1.7 × 1609 = 2735 primary amperes or 34.19 secondary amperes. Set at 35 A. Check for pickup
at minimum 4 kV bus fault; 20 000/(35 × 80) = 7.14 × pu. Three relays are used, one per phase,
to provide redundancy for all phase faults.

The residual overcurrent relay 51G is set at one-third of the minimum ground fault. If the
auxiliary system has a neutral resistor to limit the ground fault to 1200 A,‡ the residual CT current
will be 1200/80 = 15 A. Set the relay at 5.0 A or less to ensure reliability without setting it at the
lowest tap to avoid loss of security. Set the time dial at a low setting. There are no criteria for
these settings except what is the usual practice at a given plant.

If the alternative scheme using a toroidal CT is used, the CT ratio can be 1200:5 (240:1) and
an instantaneous relay set at 1.0 A. This will give 5 times pickup at the maximum ground fault
current and provide sufficient margin above any false ground currents to prevent false tripping and
still allow for reduced ground fault current due to fault resistance.

Example 7.6

Figure 7.15 shows a 7500 hp motor connected to the same auxiliary bus as the motor in Example
7.5. The time-delay overcurrent relays follow the same setting rules as for the 2000 hp motor.

51 51G

4 kV bus

Cable

50 = Instantaneous phase relay
51 = phase overcurrent relay
51G = residual overcurrent relay
87 = percentage differential relay

7500 hp
IFL = 918 amperes
L.R. = 5512 amperes
Start. time = 3.0 second

3-phase bus fault = 25000 amperes
phase-phase bus fault = 20000 amperes

(Only one phase shown)
(Other phases similar)

87

Figure 7.15 Protection for 7500 hp motor

† See ground fault protection discussion and Figure 7.22.
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The pickup of the two phase overcurrent relays 51 is equal to 1.15 × 1.25 × 918 or 1320 primary
amperes.

Select a CT ratio of 1500:5 (300:1). The relay pickup tap is therefore 1320/300 = 4.4; use the
5.0 A tap. Pickup during starting is 5512/(5 × 300) = 3.7 × pu and the time delay must exceed
3 s. From Figure 4.5, use #6 dial. The residual overcurrent relay 51G is set at one-third of the
limited ground current (1200/300 = 4) or 1.33 A. Use the 1.0 A tap and the same dial setting as
in Example 7.5. If a toroidal CT is used, the setting rules used in Example 7.5 apply.

The setting of the instantaneous relays, however, introduces a problem. Using the criteria of
Example 7.5 we should set the relays at 1.7 × 5512 or 9370 A. Since the minimum 4 kV bus fault
is 20 000 A we would only have 2.1 × pu. This is not enough of a margin to ensure fast tripping.
For a motor of this size we would use three differential relays (87). There is no setting required
since the sensitivity of the differential relay is independent of the starting current.

If a generator is connected directly to a grounded transmission system, as shown in Figure 7.7,
the generator ground relay may operate for ground faults on the system. It is therefore necessary
for the generator ground relay to coordinate with any other relays that see the same fault. If the
generator is connected to the system through a wye-delta transformer as shown in Figure 7.16,
zero sequence current cannot flow in the generator bus beyond the delta connection of the stepup
transformer. Faults on the wye side will, therefore, not operate ground relays on the delta side.

The most common configuration for large generators today uses the generator and its stepup
transformer as a single unit, i.e. failure in the boiler, turbine, generator, stepup transformer or any
of the associated auxiliary buses will result in tripping the entire unit-connected system. The gen-
erator is grounded through some resistance to limit the fault current, yet provide enough current
or voltage to operate relays. A primary resistor or reactor can be used to limit the ground fault
current but for economic reasons the most popular arrangement uses a distribution transformer and
resistance combination, as shown in Figure 7.16. The primary voltage rating of the distribution
transformer must be equal to or greater than the line-to-neutral voltage rating of the generator,
usually with a secondary rating of 120, 240 or 480 V. The distribution transformer should have
sufficient overvoltage capability so that it does not saturate at 105 % rated voltage. A secondary
resistor is selected so that, for a single line-to-ground fault at the terminals of the generator,
the power dissipated in the resistor is equal to the reactive power that is dissipated in the zero
sequence capacitance of the generator windings, leads, surge arresters and transformer windings.

Step-up transformer SystemGenerator

59GN
60 Hz Voltage Relay

R 51N

Resistor

Figure 7.16 Generator with transformer ground
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The secondary resistor is chosen to limit the primary fault current to 10–35 A. As we have seen, this
is not enough to operate the generator differential relay. However, the voltage across the secondary
resistor for a full line-to-ground fault, i.e. at the phase terminals of the generator, is equal to the
full secondary voltage of the distribution transformer (120, 240 or 480 V) and is more than enough
to operate a voltage relay.

The impedance reflected in the primary circuit is the secondary impedance times the square of the
voltage ratio. For example, given a 26 kV generator (15 kV line-to-ground) and a 15 000 V/240 V
distribution transformer with a 1 � secondary resistor, the resistance reflected in the primary will
be (15 000)2/(240)2 times 1 �, or 3906 �. The resulting generator ground current is 15 000/3906
or 3.8 A for a full line-to-ground fault.

Ground protection is provided by a voltage relay, 59GN, connected across the secondary resistor.
The relay must discriminate between 60 Hz and third harmonic voltages and usually has a small
(approximately 30 cycles) time delay. There is adequate security in this scheme since the voltage
relay can easily be set between normal and abnormal operation. Dependability, however, should be
improved since we are depending upon a single relay to protect against the most common fault. A
backup to this scheme could be a CT in the secondary of the distribution transformer, as shown in
Figure 7.16. The CT ratio is selected to give approximately the same relay current as that flowing
in the generator neutral for a ground fault. In our example above, the secondary current is 3.8 A
times 15 000/240, or 237.5 A. A 250:5 CT ratio would be adequate with the 51N relay set at 0.5
or 1.0 A and the same time delay as 59GN. Another backup scheme that is commonly used is to
connect a potential transformer ground detector as shown in Figure 7.11 between the generator and
the generator stepup (GSU).

Example 7.7

Consider the system shown in Figure 7.17. The distributed generator capacitance to ground =
0.22 µF/phase; the distributed leads and transformer capacitance to ground = 0.10 µF/phase; and
the surge arrester capacitance = 0.25 µF/phase. Therefore, the total capacitance = 0.57 µF/phase.

Xc = 106

2πf C
= 106

377 × 0.57
= 4650 � at 60 Hz

Ic = 3V1−g

Xc
= 3V1−1√

3 × Xc
= 5.77 A

Total capacitive kVA = 5.77 × 15.5 kV√
3

= 52 kVA.

To prevent ferroresonance, Ineut > Ic and kWloss > kVAcapac. Choose Ineut = 10 A.

Rneut = 15 500√
3 × 10

= 895� primary or 895 × (480)2

(1440)2
= 1.0 � secondary

Isec = 10 × 14 400

480
= 300 A

Resistor loss = (300)2 × 1.0 = 90 kW > 52 kVA

Assume third harmonic voltage is 3 % of normal line-to-neutral voltage.

V3 = 0.03 × 15 500√
3

= 268 V



Stator faults 173

RN = 1.0 ohm

Equivalent primary
resistor

895 ohms

L.A.
-0.25 µfd/ph

distributed 
capacitance

0.22 µfd/ph

0.10 µfd/ph

distributed
capacitance 

75 kVA

14400/480 V

12500 kVA
15.5 kV

Figure 7.17 System for Example 7.7

Reactance to third harmonic is 1/3Xc = 4650/3 = 1550 � on a per-phase basis or 1550/3 = 517 �

on a three-phase basis.
Z3 = R − jX3 = 895 − j517 = 1035∠30◦

I3 = 268/1035 = 0.259 A

Vpri = 0.259×895 = 232 V

Vsec = 232 × 480/14400 = 7.74 V

The relay should be set at about twice this value to ensure dependability. Assume the relay has a
16 V tap; that would be its setting. Since no coordination is required, set at lowest or next to the
lowest time setting.

For ground faults at the phase terminal of the generator, the voltage across the relay and resistor is

15 500 × 480√
3 × 14 400

= 298 V

298/16 = 18.6 × pickup

Primary pickup voltage is 16 V times 14 400/480 primary, which is the lowest voltage the relay
will see. This results in an unprotected part of the winding equal to 480/(15 500/

√
3) or 5 % of the

total winding.

Since the entire winding is not protected, several alternative protective schemes have been
developed which will protect 100 % of the stator winding. They are covered extensively in the
literature.5

Another method of providing high-impedance grounding to a unit-connected generator is the use
of a reactor connected in the neutral of the generator and is referred to as ‘resonant grounding’
or a ‘Petersen coil’. The reactor is tuned to the total system capacitance so the only impedance
in the circuit is the resistance of the conductors. As a result there is very little fault current for a
line-to-ground fault.6,7
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Circuit breaker

Test switch

Relay
120 V AC

Generator field

Circuit breaker

Circuit breaker

Relay

Generator field

Circuit breaker

Nonlinear resistor

AC Detector DC Detector

Figure 7.18 Generator field ground detectors

7.3 Rotor faults
The field circuits of modern motors and generators are operated ungrounded. Therefore, a single
ground on the field of a synchronous machine produces no immediate damaging effect. However,
the existence of a ground fault stresses other portions of the field winding, and the occurrence
of a second ground will cause severe unbalance, rotor iron heating and vibration. Most operating
companies alarm on the indication of the first ground fault and prepare to remove the unit in an
orderly shutdown at the first opportunity.

Two commonly applied field ground detection schemes are as shown in Figure 7.18. The ground
in the detecting circuit is permanently connected through the very high impedance of the relay and
associated circuitry. If a ground should occur in the field winding or the buses and circuit breakers
external to the rotor, the relay will pick up and actuate an alarm.

For a brushless-type machine, access is not normally available to a stationary part of the machine
field circuit and no continuous monitoring is possible. However, pilot brushes can be provided that
may be periodically lowered to the generator. If a voltage is read between ground and the brush,
which is connected to one side of the generator field, then a ground exists. Alternatively, resistance
measurements can be used to evaluate the integrity of the field winding.

The primary concern with rotors in squirrel-cage induction motor construction or insulated wind-
ings in wound-rotor induction or synchronous motor construction involves rotor heating. In almost
all cases, this is the result of unbalanced operation or a stalled condition. Protection is therefore
provided against these situations rather than attempt to detect the rotor heating directly.

7.4 Unbalanced currents
Unsymmetrical faults may produce more severe heating in machines than symmetrical faults or
balanced three-phase operation. The negative sequence currents which flow during these unbalanced
faults induce 120 Hz rotor currents which tend to flow on the surface of the rotor forging and in the
nonmagnetic rotor wedges and retaining rings. The resulting I 2R loss quickly raises the temperature.
If the fault persists, the metal will melt, damaging the rotor structure.
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Industry standards have been established which determine the permissible unbalance to which a
generator is designed. The general form of the allowable negative sequence current is I 2

2 t = k (I2

is the per-unit negative sequence current; t is the time in seconds). For directly cooled cylindrical
rotors up to 800 MVA, the capability is 10. Above 800 MVA the capability is determined by the
expression [10 − (0.00625)(MVA − 800)]. For example, a 1000 MVA generator would have an
I 2

2 t = 8.75. No standards have been established for motors, although k = 40 is usually regarded as
a conservative value.

A basic question concerns the cause of the system unbalance. For generators, such operation is
very often the failure of the protection or equipment external to the machine. For large motors, the
unbalance can be caused by the supply equipment, e.g. fused disconnects. Typical conditions that
can give rise to the unbalanced generator currents are:

• accidental single-phasing of the generator due to open leads or buswork;
• unbalanced generator stepup transformers;
• unbalanced system fault conditions and a failure of the relays or breakers;
• planned single-phase tripping without rapid reclosing.

When such an unbalance occurs, it is not uncommon to apply negative sequence relays (46) on
the generator to alarm first, alerting the operator to the abnormal situation and allowing corrective
action to be taken before removing the machine from service. The relay itself consists of an inverse
time-delay overcurrent relay operating from the output of a negative sequence filter. On a log–log
scale, the time characteristic is a straight line of the form I 2

2 t = k and can be set to closely match
the machine characteristic.

In the case of motors, such protection is generally reserved for the larger motors. On smaller
motors, it is more common to use a phase balance relay. For example, in an electromechanical
relay, two induction disc units are used: one disc responding to Ia + Ib, the other to Ib + Ic. When
the currents become sufficiently unbalanced, torque is produced in one or both units to close their
contacts and trip the appropriate breaker. Solid-state and digital relays can perform in a similar
manner by incorporating the appropriate logic elements or algorithms in their design.

7.5 Overload
Protective practices are different for generators and motors. In the case of generators, overload
protection, if applied at all, is used primarily to provide backup protection for bus or feeder faults
rather than to protect the machine directly. The use of an overcurrent relay alone is difficult because
the generator’s synchronous impedance limits the fault current of sustained faults to about the same
or less than the maximum or rated load current. Typical three-phase 60 Hz generator synchronous
impedance varies between 0.95 and 1.45 per unit. Using the unit in Example 7.1, this would result
in a sustained fault current between 3211 and 4901 A; this is not enough to distinguish between
a fault and full load of 4656 A. To overcome this problem, a voltage-controlled overcurrent relay
or an impedance relay can be used. With this relay, the current setting can be less than the rated
current of the generator, but the relay will not operate until the voltage is reduced by the fault. One
hazard of all relays that rely on voltage is the inadvertent loss of voltage and consequent incorrect
trip of the machine. This should be recognized and proper precautions taken through good design
and adequate maintenance of the voltage supply.

Overload protection is always applied to motors to protect them against overheating. Frac-
tional horsepower motors usually use thermal heating elements such as bimetallic strips purchased
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(a) Light load
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(b) Heavy load
Overload Protection
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Time

Motor Limit
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(c) Combination
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Relay

Start timeStart time

TDOC
Relay

Start time

Figure 7.19 Motor overload protection (TDOC, time-delay overcurrent)

with the motor starter. Integral horsepower motors use time-delay overcurrent relays, as shown in
Examples 7.5 and 7.6. However, heating curves are difficult to obtain and vary considerably with
motor size and design. Further, these curves are an approximate average of an imprecise thermal
zone, where varying degrees of damage or shortened insulation life may occur. It is difficult, then,
for any relay design to approximate these variable curves adequately over the range from light,
sustained overloads to severe locked-rotor overload.

Thermal overload relays offer good protection for light and medium (long-duration) overloads,
but may not be good for heavy overloads (Figure 7.19(a)). A long-time induction overcurrent
relay offers good protection for heavy overloads but overprotects for light and medium over-
loads (Figure 7.19(b)). A combination of two devices can provide better thermal protection, as in
Figure 7.19(c), but the complication in settings, testing, etc. weighs heavily against it and such an
application is rarely used. Today digital relays for motor protection are widely used to overcome
the shortcomings of solid-state or electromechanical designs which use current as an indication of
temperature or a thermal replica circuit that does not have the mass necessary to reproduce the
thermal inertia of a motor. Digital relays take advantage of the ability to model the rotor and the
stator mathematically and use algorithms that calculate the conductor temperature resulting from
operating current, add the effect of ambient temperature, and calculate the heat transfer and the
heat decay. They are therefore responsive to the effects of multiple starts, the major disadvan-
tage of using only current as an indication of temperature. In addition, a digital device can record
actual operating parameters such as ambient temperature, starting and running current and adjust
the algorithms accordingly.8

The National Electric Code requires that an overload protective device be used in each phase
of a motor ‘unless protected by other approved means’. This requirement is necessary because
single-phasing (opening one supply lead) in the primary of a delta-wye transformer that supplies a
motor will produce three-phase motor currents in a 2:1:1 relationship. If the two units of current
appeared in the phase with no overload device, the motor would be unprotected.

A motor that is rotating dissipates more heat than a motor at standstill, since the cooling medium
flows more efficiently. When full voltage is applied, a motor with a locked rotor is particularly
vulnerable to damage because of the large amount of heat generated. Failure of a motor to accelerate
when the stator windings are energized may be caused by many things. Mechanical failures of motor
or bearings, low supply voltage or an open phase of a three-phase supply voltage are just a few
of the abnormal conditions that can occur. If the motor fails to accelerate, stator currents may
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typically range from 3 to 7 or more times full load value depending on motor design and supply
system impedance. In addition, the heat loss in the stator winding is 10 to 50 times normal when
the winding is without the benefit of the ventilation normally produced by rotation of the rotor.

Over-temperature from a locked rotor cannot reliably be detected by sensing the line current
magnitude. Since motors can stand high current for a short time during starting, some time delay
must be incorporated in the current-sensing device or provision must be made to sense motor
winding temperatures as well as line current magnitude. Digital relays are particularly suited to this
type of logic combined with temperature sensing. Another possible protective scheme is to shunt
out the current-sensing device during starting.

Some larger motors are designed to have a maximum allowable locked rotor current time less
than the starting time of the drive. This is permissible since, during a normal start, much of the
active power input during starting is utilized as shaft load, while on locked rotor all of the active
power input is dissipated as heat. Therefore a time delay sufficient to allow the motor to start would
have too much delay to protect against locked rotor.

Two approaches are possible to solve this dilemma.

1. Use a motor zero-speed switch which supervises an additional overload relay set for locked
rotor protection.

2. Use a relay that incorporates temperature change and discriminates between the sudden increase
during locked rotor and the gradual increase during load increases.

7.6 Overspeed
Overspeed protection for generators is usually provided on the prime mover. Older machines use
a centrifugal device operating from the shaft. More modern designs employ very sophisticated
electrohydraulic or electronic equipment to accomplish the same function. It must be recognized
that, in practical situations, overspeed cannot occur unless the unit is disconnected from the system.
When still connected to the system, the system frequency forces the unit to stay at synchronous
speed. During overspeed the turbine presents a greater danger than the generator. Overspeed is not
a problem with motors since the normal overcurrent relays will protect them.

7.7 Abnormal voltages and frequencies
In order to understand and appreciate the protection that should be provided against abnormal
voltages and frequencies, the source of the abnormality must be examined.9

7.7.1 Overvoltage

The voltage at the terminals of a generator is a function of the excitation and speed. Overvoltage
may result in thermal damage to cores due to excessive high flux in the magnetic circuits. Excess
flux saturates the core steel and flows into the adjacent structures causing high eddy current losses
in the core and adjacent conductor material. Severe overexcitation can cause rapid damage and
equipment failure.

Since flux is directly proportional to voltage and inversely proportional to frequency, the unit
of measure for excitation is defined as per unit voltage divided by per unit frequency (V/Hz).
Overvoltage exists whenever the per unit V/Hz exceeds the design limits. For example, the usual
turbine generator design is for 105 % of rated V/Hz. Overvoltage exists at 105 % of rated voltage and
per unit frequency or per unit voltage and 95 % frequency. Transformers are designed to withstand
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110 % of rated voltage at no load and 105 % at rated load with 80 % power factor.10 Overvoltage
of a steam turbine–generator set is not usually a problem. The excitation and regulator circuits
generally have inherent overvoltage limits and alarms. In a unit-connected generator–transformer
set, the transformer may be more prone to failure from this condition, and a relay sensing volts as
a function of frequency is usually used. This is discussed further in Chapter 8.

7.7.2 Undervoltage

Undervoltage presents a problem to the generator only as it affects the auxiliary system which will
be discussed later. Low voltage prevents motors from reaching rated speed on starting or causes
them to lose speed and draw heavy overloads. While the overload relays will eventually detect this
condition, in many installations the low voltage may jeopardize production or affect electronic or
digital controls, in which case the motor should be quickly disconnected. Protection from low line
voltage is a standard feature of AC motor controllers. The contactor will drop out instantaneously
when the voltage drops below the holding voltage of the contactor coil. If immediate loss of the
motor is not acceptable, for example in a manufacturing plant, the contactor must have a DC (or
AC rectified) coil and a time-delay undervoltage relay can then be used.3

7.7.3 Overfrequency

Overfrequency is related to the speed of the unit and is protected by the overspeed device. It
is possible to use an overfrequency relay as backup to mechanical devices. Again, if the unit is
connected to a stable system, the generator cannot operate above the system frequency. However,
if the system is dynamically unstable, with severe frequency excursions, overfrequency relays can
alert the operator. In general, the governing devices will protect the unit from overspeed, but the
system conditions must be addressed.

7.7.4 Underfrequency

While no standards have been established for abnormal frequency operation of generators, it is
recognized that reduced frequency results in reduced ventilation; therefore, operation at reduced
frequency should be at reduced kVA. Operating precautions should be taken to stay within the
short-time thermal ratings of the generator rotor and stator.11 Underfrequency is a system con-
dition that affects the turbine more than the generator. The turbine is more susceptible because
of the mechanical resonant stresses which develop as a result of deviations from synchronous
speed.9

System load shedding is considered the primary turbine underfrequency protection and is exam-
ined in detail in sections 10.9, 11.3 and 11.4. Appropriate load shedding will cause the system
frequency to return to normal before the turbine trouble-free limit is reached.12,13 The amount of
load shed varies with coordinating regions and individual utilities but varies from 25 to 75 % of
system load. Since the load shed program can be relied upon only to the extent that the original
design assumptions are correct, additional protection is required to prevent steam turbine damage. In
order to have the unit available for restart, it is desirable to trip the turbine to prevent damage. This
action in itself is considered as a last line of defense and is sure to cause an area blackout. It will,
however, allow the unit to be ready to restore the system. Turbine manufacturers have published
curves of frequency versus time which can be used as a guide for operators. The question is to trip
or not to trip. The problem is loss of life and it is not clear that the best interests of the system are
served by tripping the unit too quickly. From the protective relay point of view, a simple frequency
relay can be used. However, the loss of life of the turbine blades is a cumulative deterioration
every time the turbine passes through a low-frequency operating zone. Computer monitoring of the
history of frequency can be applied.9
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7.8 Loss of excitation
When a synchronous generator loses excitation it operates as an induction generator running above
synchronous speed with the system providing the necessary reactive support. Round-rotor gener-
ators are not suited for such operation because they do not have amortisseur (damper) windings
and will quickly overheat from the induced currents in the rotor iron. The heating occurs in the
end-iron region where the rotor bars leave one slot and enter another. Salient-pole generators, which
are commonly used with hydro machines have such damper windings and do not have the prob-
lem. However, in addition to overheating, both salient-pole and round-rotor synchronous machines
require a minimum level of excitation to remain stable throughout their load range. The typical
generator capability curve, shown in Figure 7.20, shows the various limits associated with over- and
underexcitation. The generator manufacturer supplies all of the temperature characteristics shown
in Figure 7.20. The user must provide the steady-state stability limit.

There are several methods of detecting underexcitation. Small units can use power factor or
reverse power relays. Manufacturers can provide current detectors in the excitation circuit. The
most popular scheme, however, uses an impedance relay as the measuring element. This application
is based on the behavior of the system impedance as seen from the generator terminals for various
underexcited conditions. This behavior is explained in detail in section 10.4. Figure 7.21 shows
how the impedance varies with loss of excitation for several system sizes. Despite the complexity
of the phenomenon and the variation in conditions, the end result is surprisingly simple. Since the
final impedance lies in the fourth quadrant of the R–X diagram, any relay characteristic that will
initiate an action in this quadrant is applicable. Various modifications are preferred by different
relay manufacturers, but the concept is the same.14,15 Once again, the question of whether to trip
or to alarm for this condition must be addressed. In almost every case, an alarm is provided early
in the locus of the impedance swing so the operator can take the appropriate corrective action.
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Figure 7.20 Generator capability curve
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Figure 7.21 Typical impedance variations

Whether this is followed by a trip after a time delay or further advance in the swing path is a
utility’s decision.

7.9 Loss of synchronism
The primary difference in the protection requirements between induction motors and synchronous
motors is the effect of the excitation system. Loss of synchronism of a synchronous motor is the
result of low excitation exactly as with the synchronous generator. For large synchronous motors or
condensers, out-of-step protection is applied to detect pullout by counting the power reversals that
occur as the poles slip. Small synchronous motors with brush-type exciters are often protected by
operation of an AC voltage relay connected in the field. No AC voltage is present when the motor
is operating synchronously. This scheme is not applicable to motors having a brushless excitation
system. For such a system a power factor relay is used.3

7.10 Power plant auxiliary system
7.10.1 Auxiliary system design

The combination of motors, transformers and other electrically driven devices that form an auxiliary
system for a power plant presents a protection problem that is, in effect, a microcosm of power
system relaying and deserves special mention. In addition to the protection of each of the elements of
the auxiliary system, there is the overall system which must be considered. The following comments
are also applicable to an industrial complex where the auxiliary system is required to sustain the
main production facilities. Our interest here does not involve the protection, per se, of the motors,
transformers or other devices but the coordination of the protection of each of these devices from



Power plant auxiliary system 181

the point of view of the normal and emergency operation of the entire plant. Faulted equipment must
be removed from service as fast as possible. For many faults or abnormal events within the plant
this may require that the generator be removed from the system, the excitation system tripped, the
turbine valves closed and the boiler fires extinguished. However, it is necessary that vital services
such as bearing oil pumps, instrument air compressors, exhaust and purging fans, etc. be maintained
even though the unit has been tripped and is in the process of being shut down. In addition, the
auxiliary system must be configured to allow the unit to return to service as soon as possible.

A portion of a typical auxiliary system of a unit-connected generator is shown in Figure 7.22.
The 4 kV auxiliary bus is fed directly from the 20 kV generator leads or from the startup trans-
former and is the source for the major motors. As unit sizes increase, the auxiliary load increases
proportionately, requiring higher rated transformers and higher rated, higher voltage motors. This
has resulted in higher bus voltages, such as 6.9 kV and 13 kV. Phase fault currents also increased,
requiring switchgear with higher interrupting capacity. In sizing the switchgear there are two con-
tradictory factors that must be considered. The impedance of standard transformers increases as
their ratings increase (Appendix C). Since the normal and short-circuit currents are also increasing,
there is a greater voltage drop between the auxiliary bus and the motor. Normal design practice
is to maintain at least 85 % voltage at the motor terminals during motor starting. If the standard
transformer impedance is specified to be at a lower value to reduce the voltage drop and maintain
the 85 % voltage criterion, the interrupting current will increase requiring larger rated switchgear. If
the transformer impedance is raised to reduce the fault current, and hence the interrupting capacity
requirement of the switchgear, the voltage drop will be too high. The art of designing the auxil-
iary system must take all of these factors into account. Transformers can be specified with special
impedances at a greater cost. The auxiliary system can be designed with several bus sections thus
reducing the transformer rating for each section. Current-limiting reactors can be used either as
separate devices or incorporated in the switchgear.

In addition to the 4 kV (or higher) bus, a lower voltage auxiliary bus system is used to feed
the dozens or hundreds of smaller motors, heating and lighting loads that are present in the plant.
The nominal voltage rating of this lower voltage bus system can be 600 or 240 V. Note that
this is the voltage class as defined by its insulation rating. The actual operating voltage can be
any standard voltage such as 600, 550 or 220 V depending on the practice and preference of the
user. The lower voltage buses are energized from the higher voltage bus as shown in Figure 7.22.
Automatic throwover schemes between the several bus sections or between the GSU and startup
transformer are used in the event of a 4 kV bus fault or failure of a 20 kV/4 kV or 4 kV/600 V
transformer. In addition, manual throwover provides flexibility for maintenance without removing
the generator from service. The circuit breakers used on the lower voltage buses are included in the
metal-enclosed switchgear and are covered in ANSI standards C37.20-1 and C37.20-3. They may
or may not be drawout type, do not have CTs and may be mounted in motor control centers. They
may be air circuit breakers or molded case breakers with limited interrupting capacity. Protection
is provided by series trip coils or thermal elements.3

7.10.2 Circuit breaker application

As discussed in section 1.5, there are many circuit breaker designs depending upon the particular
application. Oil circuit breakers use the oil as both the insulating and the arc extinguishing medium.
The energy in the arc causes the oil to expand, enlarging and cooling the arc. Air circuit breakers
extinguish the arc by moving and stretching it into an insulating arcing chamber or arc chute.
Vacuum circuit breakers extinguish the arc in a gap of less than 13 mm (0.5 in) because there are
no constituents in the vacuum that can be ionized to support the arc. Sulfur hexafluoride (SF6) circuit
breakers extinguish the arc using one of two methods: the puffer design blows the arc out with a
small amount of gas blasted in a restricted arc space; the rotating arc design uses the electromagnetic
effect to rotate the arc through SF6 that cools and extinguishes it. Buses rated above 2400 V use
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metal-clad switchgear as defined in ANSI standard C37.20-2. The heart of the switchgear is the
circuit breaker, and until the mid-1970s the use of air circuit breakers predominated. Nowadays,
vacuum and SF6 circuit breakers are more commonly used. These circuit breakers are drawout
types allowing the breaker to be removed for maintenance. The switchgear compartment contains
the CTs, auxiliary contacts and, usually, the relays and meters.

7.10.3 Phase fault protection

The phase overcurrent relays (51A and 51B) on the secondary of the unit auxiliary and startup trans-
formers provide bus protection and backup relaying for individual motor protection and switchgear.
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Figure 7.22 indicates the general arrangement of the buses and loads and shows the protection of
the 2000 hp motor and the 7500 hp motor as discussed in Examples 7.5 and 7.6. Ideally, the backup
overcurrent relays 51A and 51B should have pickup settings greater than the highest motor pro-
tection relay, and time delays longer than the longest starting time. These settings may be so high,
or the times so long, that the protection is not acceptable and modifications or compromises are
required as discussed below. If the relays are also the primary bus protective relays, the settings
may be so high that there may not be enough bus fault current to provide sufficient margin to ensure
pickup for the minimum bus fault. Even if coordination is theoretically possible, the required time
delay may be too long to be acceptable. Some compromises are possible. Since the largest motors
will probably have differential protection, the backup function could consider coordinating with the
overcurrent relays of the smaller motors with an associated reduction in pickup. Assuming that the
differential relays are always operative, coordination with the larger motors is not a problem since
the differential protection is instantaneous. Coordination would be lost if the differential relays fail
to clear a fault and the time-delay overcurrent relays must do it; this is usually an acceptable risk. A
bus differential relay could be used to provide primary protection and the overcurrent relays provide
backup protection for motor relay or switchgear failures. The time delay may then be acceptable.
The pickup setting must still recognize the magnitude of starting current of the largest motor. If it
cannot be set above this value, an interlock must be provided which will block the backup relay.
Typically, an auxiliary switch on the motor circuit breaker is used to cut out the bus overload relay,
and a voltage relay is used to unblock this protection should a fault occur.

Example 7.8

Consider the auxiliary system shown in Figure 7.22. The 2000 hp motor is protected and set as
described in Example 7.5. The protection of the 7500 hp motor is described in Example 7.6. The
total bus load is 13 000/(

√
3 × 4) = 1876 A. Choose a 3000:5 (600:1) CT for both the main and

reserve breakers. If the overcurrent relays, 51A and 51B, are used primarily for bus protection,
they are set at 20 000/3 = 6666 primary amperes or 11 secondary amperes. Assume the relay has
a 10 A tap so the actual pickup is 6000 primary amperes.

Check this setting against the starting current of the 2000 hp motor while the bus is fully loaded.

2000 hp at 0.9 efficiency = 1657 kVA

Total connected kVA less 1657 kVA = 11 343 kVA

Assume startup of this motor drops the bus voltage to 0.85 pu.

Ibus = 11 343/(
√

3 × 0.85 × 4) = 1926 A

Istart = 1609 A

Irel = 1926 + 1609 = 3535 A

This is below the 6000 A pickup of 51A and 51B so the setting is acceptable. Since the relays
will not pick up during startup of the motor they can be set as fast as we want, e.g. the #1 dial.

Check the bus overcurrent setting against startup of the 7500 hp motor.

7500 hp motor at 0.9 efficiency = 6216 kVA

The total connected load less the motor is 13 000 kVA − 6216 kVA or 6784 kVA which is equal
to 1153 A during motor startup.
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Motor starting current is 5512 A.
Therefore, total current through the bus overcurrent relay is 6665 A.

This is above the 6000 A pickup of the relay and must be controlled by some interlock as
discussed above.

7.10.4 Ground fault protection

The importance of ground fault protection cannot be overemphasized.16 Ground is considered to
be involved in 75–85 % of all faults. In addition, phase overcurrent may often reflect a temporary
process overloading, while ground current is almost invariably an indication of a fault. Auxiliary
systems may be either delta- or wye-connected. A delta system is normally operated ungrounded and
is allowed to remain in service when the first ground indication appears. It is generally assumed that
the first ground can be isolated and corrected before a second ground occurs. It is not uncommon
for systems of 600 V and less to be delta-connected. Medium-voltage systems (601 V to 15 kV)
are generally operated in wye, with a neutral resistor to limit the ground current to some definite
value. The resistor has a time-related capability, e.g. 10 s, at the maximum ground current and
it is a function of the ground protective system to remove all faults within this time constraint.
In Figure 7.22, ground faults on the 4 kV system are limited by the 2.0 � neutral resistors in
the auxiliary and startup transformers. The magnitude of the maximum fault current is the line-
to-ground voltage divided by the 2.0 � resistor. The nominal voltage of the bus is 4 kV but its
normal operating voltage is 4160 V. Therefore, the maximum ground current is 4160/(

√
3 × 2) or

1200 A. Coordination must, of course, begin at the load. If the motor ground overcurrent protection
is provided by the toroidal CT shown in Figure 7.13 there is no coordination problem. These can
have a ratio of 50:5 resulting in a relay current of 120 A. Set an instantaneous relay at 5.0 A. If a
residual ground relay is used as shown in Figure 7.12, the maximum ground fault through the CTs
on breakers A and B is 1200/600 = 2.0 A. Set the time-delay ground overcurrent relays at 0.5 A
and 15–30 cycles. The motor relays trip the associated feeder breaker, 51A and 51B trip the 4 kV
main breakers and the neutral relays 51N trip their associated primary breakers.

7.10.5 Bus transfer schemes

It is common practice to provide a bus transfer scheme to transfer the auxiliary bus to an alternative
source in the event of the loss of the primary source. In power plants, the purpose of this alternative
source is not to maintain normal operation but to provide a startup source, to act as a spare in the
event an auxiliary transformer fails and to provide for orderly and safe shutdown. In industrial plants,
the alternative source might have a different purpose, such as to provide flexibility in production
or supply some facilities from the utility and others from a local generator. The transfer scheme
must consider several factors. A manual, live transfer is performed by the operator while both the
normal and startup sources are still energized. If the two sources can be out of synchronism, it will
be necessary to include synchronizing equipment. A dead transfer refers to the condition where the
auxiliary bus has been disconnected from the generator. The speed of the transfer can be fast or
slow depending upon the switchgear and the requirements of the process. It is common to check
the outgoing breaker, by monitoring a breaker auxiliary contact, to be sure the primary source is
disconnected. There will always be an inrush current through the incoming source breaker and, in
all probability, through the motor breakers, depending upon the residual voltage of the auxiliary
bus at the instant of resynchronizing. Some schemes monitor this residual voltage and allow closing
to the alternative source only after this voltage has been significantly reduced.
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7.10.6 Generator breaker

Figure 7.22 shows a generator breaker as an alternative facility. This is common for generators
that are connected to a common bus, such as in a hydro plant. With the advent of the unit system,
however, this configuration has not been used as often. The unit system requires that the boiler,
turbine, generator and GSU transformer be operated as a single entity and the loss of any one element
requires that all of them be removed from service. The generator breaker is then unnecessary. In
addition, as the unit sizes increased, the interrupting capability of a generator breaker became
technically difficult. A 1300 MW generator can contribute as much as 100 000 A to a fault at the
generator voltage level, e.g. on the bus feeding the auxiliary transformers. Not only is such a breaker
extremely costly, it must be placed between the generator and the stepup transformer, which adds
considerable length to the building. This introduces costs to every segment of the construction and
installation. Nevertheless, the generator breaker has can be extremely useful. Its most important
advantage is the fact that, for a fault on the generator or auxiliary buses, without a generator breaker
to remove the generator contribution from the fault, the generator will continue to feed the fault until
the generator field decays. This can take as much as 7–10 s. During this time the energy in the fault
will result in extensive physical damage to all of the connected equipment and greatly increases the
possibility of fire. With a generator breaker, the generator contribution is removed in 3–5 cycles;
this is approximately the same time that the system contribution is removed by tripping the high-
voltage breakers. A further advantage lies in the reduction m switching required when transferring
the auxiliary bus. Referring to Figure 7.22, without a generator breaker, startup is accomplished
by energizing the auxiliary buses through the 800 kV breaker F, the startup transformer and 4 kV
breaker B. Synchronizing is done through 800 kV breaker E. In the event of a unit trip, the unit is
removed from the system by opening breaker E and the auxiliary bus is transferred to the startup
transformer by opening 4 kV breaker A and closing breaker B. Breaker F is operated normally
closed. If the startup transformer is connected to some other system, then breaker B must be closed
with synchronizing relays. If a generator breaker is provided, at startup the generator breaker is open
and the auxiliary buses are fed through the GSU transformer and 4 kV breaker A. Synchronizing
is done through the generator breaker. When removing the unit, only the generator breaker has to
be opened; the auxiliary bus continues to be fed through the stepup transformer. There is no need
for automatic or manual throwover schemes. In fact, there is no need for the startup transformer
unless it is needed to provide an in-place spare for one of the auxiliary transformers. If the startup
transformer is used it becomes a second source of startup or shutdown power; a source that can be
used to satisfy reliabilty requirements associated with nuclear units.

7.11 Winding connections
So far, we have been concerned with the protection principles associated with generator and motor
short circuits and overloads and the appropriate relays that should be applied. The specific imple-
mentation of these principles, particularly with differential relays, varies also with the particular
winding connections involved. Most machines have star (wye) connections. So three relays that are
connected to star-connected CTs as shown in Figure 7.23 provide both phase and ground protec-
tion. With delta-connected windings there is no connection to ground and the phase currents differ
from the winding currents by

√
3 and a phase shift of 30◦. Care must be taken to obtain correct

current flow, as shown in Figure 7.24. Similarly, split-phase windings can be protected, as shown
in Figure 7.25. If the neutral connection is made inside the machine and only the neutral lead is
brought out, differential relays can only be provided for ground faults, as shown in Figure 7.26. It
must be noted that turn-to-turn faults cannot be detected by a differential relay since there is no
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difference in the currents at the ends of the winding. Such a fault would have to burn through to
ground or to another phase before it would be detected.

7.12 Startup and motoring
The synchronous speed of a four-pole generator is 1800 rpm and 3600 rpm for a two-pole machine.
A cross-compound turbine–generator unit consists of two shafts. Each shaft has its own steam
turbine, generator and exciter. Either shaft could have a synchronous speed of 1800 or 3600 rpm.
When the unit is ready to be synchronized to the system, the two shafts must be at their respective
synchronous speeds. However, the units are rolled off turning gear by admitting steam into the
high-pressure turbine. The steam flow goes from the steam generator through the high-pressure
turbine, back to the steam generator and then to the low- or intermediate-pressure turbine. There
is therefore a finite time before steam is admitted into the low- or intermediate-pressure turbine.
If the speed of the two shafts were controlled only by the steam, the two shafts could never
maintain the same speed ratio as they came up to synchronous speed. They therefore could not
be synchronized to the system. To correct this problem, a cross-compound machine must have its
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excitation applied to each generator while on turning gear (the turning gears are designed to have
the same speed ratio as the respective synchronous speeds of each shaft). By applying field to the
two machines, they act as a motor–generator set with the high-pressure turbine–generator driving
the low-pressure turbine–generator at the proper speed ratio from turning gear up to synchronous
speed. However, since both field and rotation are present, a voltage is generated during this startup
period. A fault can therefore result in short-circuit current, even at low voltage and low frequency.
Since the magnitude of the short-circuit current will be low, and, since most differential relays are
relatively insensitive at frequencies below 60 Hz, it is common practice to add an instantaneous
overcurrent relay in the differential circuit and an instantaneous overvoltage relay in the grounding
circuit, as shown in Figure 7.27. Electromechanical relays, such as the plunger or clapper type, are
insensitive to frequency.

These relays can be set as low as necessary, provided they are removed from service prior to
synchronizing the unit to the system. One circuit to accomplish this is shown in Figure 7.28. The
startup relays, 50S and 59GN, are connected to the breaker trip coil through time-delay dropout,
auxiliary relay 81X, which takes both the operating coils and the tripping contacts out of service.
The auxiliary relay is normally energized. When the system frequency goes above 55 Hz or the
circuit breaker closes, the relay will drop out after a small time delay, usually 15 cycles. The
time delay is necessary to give the startup relays a chance to operate in the event the generator is
inadvertently energized. This is a situation that will be discussed below. Without the time delay,
when the circuit breaker closes, there would be a race between the startup relays, 59GN and/or
505, operating and auxiliary relay 81X removing them from service. If the differential relays are
solid-state or digital, their response at low frequencies must be determined and the need for startup
protection evaluated.
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Figure 7.28 DC circuit for startup protection

7.13 Inadvertent energization
A common, catastrophic mis-operation that has been reported many times involves the inadvertent
closing of high-voltage breakers or switches while a unit is on turning gear or at some speed less
than synchronous speed.17 When energized in this fashion, if field has been applied, the generator
behaves as a synchronous motor or generator that has been badly synchronized. The result can
destroy the shaft or other rotating element. There are several causes for this incorrect switching.
Operating errors have increased dramatically as the complexity of stations and circuits increase.
Stations are designed to have switching flexibility to allow a breaker or other switching device to
be removed from service while still maintaining the generator in service. This has the opposite
effect when the unit is offline. There are now several switching elements that can accidentally
energize the generator. A flashover of breaker contacts is another possible cause, particularly when
the unit is coming up to speed with field applied. As the unit rotates, the voltage increases and
assumes a constantly rotating phasor not in synchronism with the system. The voltage difference,
particularly when the generator and system phasors are 180◦ apart, can approach twice normal. If
the pressure of the breaker insulating medium decreases, the breaker can flash over, connecting the
unit to the system. The startup protection described in section 7.12 can usually act quickly enough
to avoid or minimize the damage. Tandem machines, i.e. turbine–generators on one shaft, do not
need startup protection since there is no need to apply field before the unit reaches synchronous
speed. However, inadvertent energization is still a concern, since the machine will still behave as
an induction motor when it is connected to the system before field is applied. The same protection
provided for startup can be used in this case. Some utilities use dedicated protective circuits that
are activated when the unit is taken out of service.

7.14 Torsional vibration
The potential for shaft damage can occur from a variety of electrical system events. In addition
to short circuits or bad synchronizing, studies have indicated that subsynchronous resonance or
automatic reclosing, particularly high-speed reclosing, can produce torque oscillations leading to
fatigue and eventual damage. Subsynchronous resonance is a phenomenon associated with series
capacitors and results from a resonant condition that is caused by the series capacitor and the
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line inductance. This circuit oscillates at less than 60 Hz, resulting in extremely high voltages that
are reflected back into the machine. There have been at least two well-documented incidents in
the western USA and several in Europe that initiated investigations into this problem. Specific
protection packages have been designed to detect the onset of the oscillations and to remove the
series capacitor and reconfigure the primary system so it will not have a series-resonant condition
at subsynchronous frequencies.18 The effect of high-speed reclosing is less certain and no events
involving damage have been specifically reported at this time, although there are several monitoring
studies in progress throughout the world.19,20 Nevertheless, criteria have been proposed, such as a
50 % change in power flow following a switching event, that could serve as a warning to investigate
further. The usual solution is to delay or remove high-speed reclosing or to prevent high-speed
reclosing after a multiphase fault. This, of course, removes many of the advantages of high-speed
reclosing and the total effect on the integrity of the system must be considered.

7.15 Sequential tripping
The purpose of sequential tripping a synchronous generator is to minimize the possibility of dam-
aging the turbine as a result of an overspeed condition occurring following the opening of the
generator breakers.2 With the breakers open, the unit is isolated from the system and the speed
is determined by the steam through the turbine. If a valve fails to close completely after being
given a trip signal, there is enough energy in the residual steam in the steam lines and parts of the
boiler to drive the turbine to dangerous overspeeds. Sequential tripping is accomplished by tripping
the prime mover before tripping the generator and field breakers. Reverse-power relays, pressure
switches and/or valve limit switches are used to determine that the steam input has been removed
and then to complete the trip sequence. Sequential tripping is essential because overspeeding the
turbine is a more damaging operating condition than motoring. There are recorded instances where
overspeed resulted in throwing turbine blades through the turbine casing, resulting in injury and
death to personnel in the area and, of course, extensive and costly damage to the unit. Motoring, in
which the system supplies the rotational energy with little or no steam input, will result in heating
the last-stage turbine blades; a situation that can be controlled by attemperator sprays and which
allows enough time for the operator to take corrective action.

Simultaneous tripping, i.e. tripping the boiler, closing all of the steam valves and opening the
generator and field breakers at the same time, is required in the event of an electrical failure.
Sequential tripping is the proper action in the event of a mechanical failure. When the unit is
manually tripped it is commonly done sequentially.

7.16 Summary
In this chapter we have examined the problems that can occur with AC generators and motors
and the protective devices that can be used to correct them. The most common electrical failure
involves short circuits in the stator winding. For phase faults, differential protections with percentage
differential relays are almost invariably used. For ground faults, the protection depends upon the
method of grounding. We have examined high, medium and low impedance grounding methods and
the associated protection schemes. High impedance grounding with the resistor on the secondary
side of a transformer is the most common method for large unit-connected generators. Resonant
grounding is also used, more in Europe than in the USA. Generator rotors are almost always
ungrounded, so the only problem is to detect the ground and take some action before a second
ground occurs. Two common ground detection methods are shown. The usual action is to alarm
and allow the operator to decide if a trip is warranted.

Almost all integral horsepower motors are protected with time-delay overcurrent relays to avoid
overheating due to overloads, low or unbalanced voltages or other abnormal operating conditions.
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Instantaneous or differential relays are used to protect against phase faults. Ground relays depend
upon the method of grounding and the application of phase or toroidal CTs. Time-delay overcurrent
relays are used if the CTs are connected in the residual or neutral circuit, and instantaneous relays
are used with toroidal CTs.

Unbalanced voltages and currents are usually caused by system problems, but the harmful effects
are felt by the rotating elements on the system. Detecting abnormal voltages, current and frequency
is not difficult. Volts/hertz, over- or undervoltage or negative sequence current are parameters that
are easily relayed. The problem arises as to the appropriate action to take. Very often, immediate
tripping is not required, although if the abnormality continues damage will result and the unit must
be removed from the system. Abnormal frequency is another system condition that can harm a
turbine–generator set. Low frequency will seriously stress the turbine blades and again, although
the detection is simple, the remedy requires judgment.

The protection of power plant auxiliary motors has been studied, both from the point of view of
the motor itself and as a system problem to ensure coordination. To examine the overall auxiliary
system, we have introduced the various circuit breaker operating and interrupting mechanisms and
bus transfer schemes. We have also examined a variety of operating or maintenance situations that
can cause extensive damage to the turbine or the generator. Startup of the generator, motoring,
inadvertent energization and torsional vibration are all potential hazards for which protection in
the form of relays or logic circuits must be provided. The sequence of tripping the unit from the
system is determined by the type of fault; an electrical fault, usually a short circuit in the generator
or auxiliary bus, requires simultaneous tripping of the turbine and the generator and field breakers
to remove the source of electrical energy and minimize damage. A mechanical failure, usually a
boiler tube leak or turbine or pump problem, should initiate a sequential trip of the turbine, that is
extinguish the fire and close the steam valves, followed by opening the generator and field breakers
when there is no danger of overspeed.

Problems
7.1 Consider the power system shown in Figure 7.29 which represents a unit-connected generator

prior to being synchronized to the system and protected with an overcurrent relay connected

R

F1

IF2 (One phase shown)
IF1 (Other phases similar)

F2

87G

I

Generator parameters:
975 MVA
22 kV
X”d = X2 = 0.21 pu

Figure 7.29 One-line diagram for problem 7.1
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as a differential relay. Determine the maximum load, select a CT ratio for the generator
differential, calculate the relay operating currents for a three-phase fault at F1 and F2 and set
the relay. Assume there is no CT error and the relay has the CO-11 time–current characteristics
shown in Appendix D (section D.2).

7.2 Repeat problem 7.1 assuming that the line-side CT has an error of 1 % of its secondary current.
Set the overcurrent relay so it will not operate for an external fault.

7.3 Repeat problem 7.1 for a phase-to-phase fault at F1.

7.4 Figure 7.30 shows a percentage differential relay applied for the protection of a generator
winding. The relay has a 0.1 A minimum pickup and a 10 % slope. A high-resistance ground
fault has occurred as shown near the grounded-neutral end of the generator winding while it
is carrying load with the currents flowing at each end of the generator as shown. Assume that
the CT ratios are as shown in the figure and they have no error. Will the relay operate to trip
the generator under this condition? Would the relay operate if the generator were carrying
no load with its breaker open? Draw the relay operating characteristic and the points that
represent the operating and restraining currents in the relay for the two conditions.

Relay

300 amperes280 amperes

20
amperes400:5 400:5

Figure 7.30 System for problem 7.4

7.5 Consider the system shown in Figure 7.31 with the generator, transformer and system param-
eters as shown. Calculate three-phase and phase-to-phase currents due to faults at F1 and F2

and determine the restraining and operating currents in the percentage differential relay for
the four conditions.

R

F1 F2

87G

Generator parameters:
975 MVA
22 kV
X”d = X2 = 0.21 pu

Transformer ratings:
1000 MVA
22/345 kV
XT = 15%

Xsys = 0.25 
@100MVA/345kV

Figure 7.31 System for problem 7.5
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7.6 For the system shown in Figure 7.32, draw the operating characteristics of an overcurrent
and a percentage differential relay and show the tripping points for a fault at F1 if RN is,
respectively, 0.5, 5 and 50 �.

R

F1

87G

(One phase shown)
(Other phases similar)

Generator ratings:
975 MVA
22 kV
X”d = X2 = 0.21 pu
X0 = 0.03R

51N

RN

51N TDOC Relay
Pickup taps = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0
Time dial per Figure 4.5

57G Percentage Differential Relay
0.2 ampere operating current
10% Slope

Figure 7.32 System for problem 7.6

7.7 Draw the one-line diagram showing a 200 hp motor connected to a 4 kV bus. Assume the
following bus and motor parameters:

phase-to-phase bus fault = 15 000 A

three-phase bus fault = 25 000 A

maximum ground fault = 1500 A

motor full-load current = 25 A

motor locked rotor current = 150 A

motor starting time = 1.5 s.

Select and set the phase and ground relays using the time–current characteristic of the three
relays shown in Appendix D.

7.8 Repeat problem 7.7 for a 1500 hp, 6.9 kV motor with the same bus fault parameters and
motor full-load current of 110 A, locked rotor current of 650 A and a starting time of 3 s.

7.9 For the distribution transformer, unit-connected generator shown in Figure 7.16 and the param-
eters given in Example 7.7, determine the value of the secondary resistor that will protect
85 % of the winding. You may assume that a part winding voltage and leakage reactance is
proportional to its length.
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8
Transformer protection

8.1 Introduction
The inherent characteristics of power transformers introduce a number of unique problems that are
not present in the protection of transmission lines, generators, motors or other power system appa-
ratus. Transformer faults – i.e. short circuits – are the result of internal electrical faults, the most
common one being the phase-to-ground fault. Somewhat less common are the turn-to-turn faults.
Unlike a transmission line, the physical extent of a transformer is limited to within a substation,
and consequently differential relaying, the most desirable form of protection available, can be used
to protect transformers. In general, a transformer may be protected by fuses, overcurrent relays,
differential relays and pressure relays, and can be monitored for incipient trouble with the help
of winding temperature measurements, and chemical analysis of the gas above the insulating oil.
Which of these will be used in a given instance depends upon several factors as discussed below.

• Transformer size. Transformers with a capacity less than 2500 kVA are usually protected by
fuses. With ratings between 2500 and 5000 kVA, the transformer may be protected with fuses,
but instantaneous and time-delay overcurrent relays may be more desirable from the standpoint of
sensitivity and coordination with protective relays on the high and low sides of the transformer.
Between 5000 and 10 000 kVA an induction disc overcurrent relay connected in a differential
configuration is usually applied. Above 10 MVA, a harmonic restraint, percentage differential
relay is recommended. Pressure and temperature relays are also usually applied with this size of
transformer.

• Location and function. In addition to the size of the transformer, the decision regarding the
specific protection application is significantly affected by consideration of the importance of the
transformer within the power network. If the transformer is an integral part of the bulk power
system, it will probably require more sophisticated relays in terms of design and redundancy.
If it is a distribution station stepdown transformer, a single differential relay and overcurrent
backup will usually suffice. If the transformer is near a generation source, the high X/R ratio of
the fault path will require harmonic restraint relays to accommodate the higher magnetic inrush
currents.

• Voltage. Generally, higher voltages demand more sophisticated and costly protective devices,
due to the deleterious effect of a delayed fault clearing on the system performance, and the high
cost of transformer repair.

• Connection and design. The protection schemes will vary considerably between autotrans-
formers, and two- or three-winding transformers. The winding connection of a three-phase
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transformer – whether delta or wye – will make a difference in the protection scheme chosen.
Also important are the presence of tertiary windings, type of grounding used, tap changers or
phase-shifting windings.

As we develop protection ideas for transformers in this chapter, we will comment on the influence
of these and other factors on the relaying systems of choice.

8.2 Overcurrent protection
As in all protection applications with overcurrent relays, the external faults or steady-state load cur-
rents must be distinguished from the currents produced by the internal faults. The effect of external
faults that are not cleared promptly, or steady-state heavy loads, is to overheat the transformer wind-
ings and degrade the insulation. This will make the transformer vulnerable to internal flashovers.
Protection of transformers against internal faults can be provided by time-delay overcurrent relays.
The effect of a sustained internal fault is arcing, possible fire and magnetic and mechanical forces
that result in structural damage to the windings, the tank or the bushings with subsequent danger
to personnel or surrounding equipment. Protection for transformers can be provided by high-side
fuses, instantaneous and time-delay overcurrent relays or differential relays.

8.2.1 Protection with fuses

As mentioned earlier, fuses are not used to protect transformers with ratings above 2.5 MVA. The
basic philosophy used in the selection of fuses for the high-voltage side of a power transformer
is similar to that used in other applications of fuses. Clearly, the fuse interrupting capability must
exceed the maximum short-circuit current that the fuse will be called upon to interrupt. The con-
tinuous rating of the fuse must exceed the maximum transformer load. Typically, the fuse rating
should be greater than 150 % of the maximum load. The minimum melt characteristic of a fuse
indicates that the fuse will be damaged if conditions to the right of (greater than) the characteristic
are obtained. The minimum melt characteristic of the fuse must coordinate with (i.e. should be well
separated from) the protective devices on the low side of the power transformer. In considering
the coordination, the ambient temperature, prior loading and reclosing adjustment factors should be
taken into account. All of these factors influence the prior heating of the fuse, and cause it to melt
at different times than the specifications for a ‘cold’ fuse would indicate. Example 8.1 provides
further explanation of this procedure. It is also clear that the transformer magnetizing current should
not cause damage to the fuse. This calls for a longer duration current which must be lower than
the minimum melt characteristic. The ‘speed ratio’ of the fuse is defined as the ratio between the
minimum melt current values at two widely separated times: for example, 0.1 and 100 s. A smaller
speed ratio would mean a more sloping characteristic, and for proper degree of coordination such
a fuse would have to be set with a smaller sensitivity. It is desirable to have a fuse with as high a
speed ratio as possible. Finally, if a current-limiting fuse is used, the lightning arresters on the line
side of the fuse should have a rating equal to, or higher than, the overvoltages that the fuse may
create, in order to avoid the arrester flashing over due to the operation of the fuse.

Example 8.1

Consider the transformer shown in Figure 8.1. It has a high-side delta winding and a low-side wye
winding. We will consider the selection of the fuse on the high side. It must coordinate with the
low-side feeder protection, which is assumed to be a fuse, with the characteristic ‘B’ as shown. All
currents are assumed to be given in terms of the secondary side, even though one fuse will be on
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Figure 8.1 Protection of a transformer a fuse: coordination principles

the high side, and the actual currents in that fuse will be smaller by the turns ratio factor of the
transformer.

The characteristic ‘A’ has variability, due to prior loading, ambient temperature and the timing
of the reclosers, as shown by the dotted line in its group of characteristics. The downstream fuse,
with characteristic ‘B’, must have a sufficient coordinating margin with the dotted characteristic in
the ‘A’ group. The high-side fuse must also coordinate with the short-circuit capability curve of
the transformer it is trying to protect. It should be noted that the transformer capability is not a
simple matter to define, and often the capability curve is a composite of several segments obtained
from different criteria.

8.2.2 Time-delay overcurrent relays

Protection against excessive overload, or persisting external fault, is provided by time-delay over-
current relays. The pickup setting is usually 115 % of the maximum overload acceptable. This
margin covers the uncertainty in the current transformers (CTs), relays and their calibration. The
time-delay overcurrent relays must coordinate with the low-side protective devices. These may
include low-voltage bus relays for phase-to-phase faults, phase-directional relays on parallel trans-
formers and the breaker failure relay timers on the low-voltage breakers. These considerations are
illustrated by the following example.

Example 8.2

Consider the transformer shown in Figure 8.2. It is rated at 2.5 MVA, with primary and secondary
voltages of 13.8 and 2.4 kV respectively. Thus, the full-load current for the primary is 104.6 A
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Figure 8.2 Coordination of transformer overcurrent relay with feeder protection on low side

and 600 A for the secondary. Let us assume an overload capability of 1.2 pu or 720 A in the
secondary winding. The CT ratio should be selected to produce close to 5 A when the secondary
current is 600 A. Select a CT ratio of 600 : 5, or 120 : 1. The pickup of the relay should be set
at 115 % of 720 A, or at 828 A primary, which is 828/120 = 6.9 A secondary. Select the nearest
tap, say 7.0 A. As shown in Figure 8.2, the time dial selected for the relay should coordinate with
overcurrent relays Rab and Rac, which protect the feeders on the low-voltage side. If a breaker
failure relay is used for breaker Bab or Bac, the relay should also coordinate with those time delays.

8.2.3 Instantaneous relays

There are several constraints imposed upon the use of instantaneous relays; some of them depend
upon the design of the relay. In all cases, of course, the relay must not operate on inrush, or for
low-side faults. Peak magnetizing current in a transformer can be as high as 8–10 times peak
full-load current. Since the relay will see low-side faults, one must consider these faults when they
are fully offset. Some relay designs – for example electromechanical plunger-type relays – respond
to the actual instantaneous value of the current, which includes the DC offset. Such a relay must
be set above the low-side fault currents with full DC offset. Disc-type relays respond only to the
AC portion of the current wave. Solid-state or computer-based relays may or may not respond to
the DC offset, depending upon their design.

8.3 Percentage differential protection
Consider the single-phase, two-winding power transformer shown in Figure 8.3. During normal
operation of the transformer, the algebraic sum of the ampere-turns of the primary and the secondary
windings must be equal to the MMF required to set up the working flux in the transformer core.
Because of the very small air gap in the transformer core, the MMF is negligible (often less than
0.5 % of the MMF produced by the load current), and hence for a normal power transformer

N1i1p = N2i2p (8.1)

If we use current transformers having turns ratios of 1 : n1 and 1 : n2 on the primary and the
secondary side respectively, under normal conditions the currents in the secondary windings of the
current transformers are related by

N1n1i1s = N2n2i2s (8.2)

If we select the CTs appropriately, we may make N1n1 = N2n2, and then, for a normal trans-
former, i1s = i2s. However, if an internal fault develops, this condition is no longer satisfied, and
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Figure 8.3 Differential relay connections

the difference of ils and i2s becomes much larger; in fact, it is proportional to the fault current. The
differential current

Id = i1s − i2s (8.3)

provides a highly sensitive measure of the fault current. If an overcurrent relay is connected as
shown in Figure 8.3, it will provide excellent protection for the power transformer.

Several practical issues must be considered before a workable differential relay can be implemen-
ted.1 First, it may not be possible to obtain the CT ratios on the primary and the secondary side which
will satisfy the condition N1n1 = N2n2, as we must select CTs with standard ratios. The problem
is somewhat alleviated by the fact that most relays themselves provide different tap positions for
each of the CT inputs to the relay, thus, in effect, providing auxiliary CTs which can correct any
deviation from the desired ratios. A somewhat less desirable procedure is to use auxiliary CTs to
achieve the same goal. In any case, even with these adjustments, there remains some residual ratio
mismatch, which leads to a small differential current id during normal conditions. Second, the errors
of transformation of the two CTs may differ from each other, thus leading to significant differential
current when there is normal load flow, or an external fault. Finally, if the power transformer is
equipped with a tap changer, it will introduce a main transformer ratio change when the taps are
changed. These three effects cause a differential current to flow in the overcurrent relay, and the
relay design must accommodate these differential currents without causing a trip. Since each of
these causes leads to a differential current which is proportional to the actual current flowing in the
transformer primary and secondary windings, a percentage differential relay provides an excellent
solution to this problem. In a percentage differential relay, the differential current must exceed a
fixed percentage of the ‘through’ current in the transformer. The through current is defined as the
average of the primary and the secondary currents:

ir = i1s + i2s

2
(8.4)

The current ir is known as the restraint current – a name that comes from the electromechanical
relay design, where this current produced a restraint torque on the moving disc, while the differential
current produced the operating torque. The relay operates when

id ≥ Kir (8.5)

where K is the slope of the percentage differential characteristic. K is generally expressed as a
percent value: typically 10, 20 and 40 %. Clearly, a relay with a slope of 10 % is far more sensitive
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than a relay with a slope of 40 %. Although we have used lower-case symbols for the currents,
signifying the instantaneous values, it should be clear that the corresponding relations exist between
the r.m.s. values of the currents as well. Thus, equations (8.1)–(8.5) also hold for the r.m.s. currents.

A practical percentage differential characteristic is shown in Figure 8.4. The relay slope deter-
mines the trip zone. The three sources of differential current during normal transformer operation
are shown, as is the margin of safety used in arriving at the slope. The relay has a small pickup
current setting, i.e. the relay does not operate unless the differential current is above this pickup
value. The pickup setting is usually set very low: typical values are 0.25 A secondary. This accounts
for any residual CT errors at low values of transformer load current.

Example 8.3

A single-phase transformer is rated at 69/110 kV, 20 MVA. It is to be protected by a differential
relay, with input taps of 3.0, 4.0, 4.5, 4.8, 4.9, 5.0, 5.1, 5.2, 5.5 A secondary. The transformer has
an under load tap changer (ULTC) with a turns ratio of −5 % to +5 % in steps of 5

8 %. Specify
the CTs, the pickup setting and the percentage differential slope for the relay. The available slopes
are 10, 20 and 40 %. What is the level of fault current, for an unloaded transformer, for which the
differential relay will not operate?

The currents in the primary and the secondary for the rated load are 289.8 and 181.8 A respec-
tively. We may select CT ratios of 300 : 5 and 200 : 5 for the two sides. These will produce
289.8 × 5/300 = 4.83 A, and 181.8 × 5/200 = 4.54 A in the two CT secondaries. In order to
reduce a mismatch between these currents, we may use the relay tap of 4.8 for the CT on the
primary side and the relay tap of 4.5 for the CT on the secondary side. This will give us a value
of 4.83/4.8, or 1.0062 × 5 A, and 4.54/4.5, or 1.009 × 5 A in the relay coils. Thus, the differential
current in the relay due to CT ratio mismatch would amount to (1.009 − 1.006) pu, or about 0.3 %.
The tap changer will change the main transformer ratio by 5 %, when it is in its extreme tap position.
Thus, a total differential current of 5.3 % would result from these two causes. If no information on
unequal CT errors is available, we must make appropriate assumptions, so that we may select a
proper percentage slope for the relay characteristic. Assuming the CTs to be of the 10CXXX type,
we may expect a maximum error of under 10 % in each of the CTs. It is therefore reasonable to
assume that the errors in the two CTs will not differ from each other by more than 10 % under all
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fault conditions. This gives a net differential current of 15.3 % for the largest external fault, while
the tap changer is at its farthest position. With about a 5 % margin of safety, we may therefore
select a 20 % differential slope for the relay.

For the pickup setting, we may select the lightest available setting. A typical available value
is 0.25 A. If there were a tertiary winding with no CTs available in the main transformer, we
would find the contribution to the differential current from its rated load current, as it would not
be available to the relay, and then select a pickup setting above that current.

With a 0.25 A pickup setting, the primary current on the 69 kV side will be (300/5) × (4.8/5) ×
0.25, or 14.4 A. A fault on the 69 kV side producing currents smaller than this will not be seen by
this relay.

8.4 Causes of false differential currents
The percentage differential relay described above takes care of the relatively small values of dif-
ferential currents which flow in the relay during normal load flow conditions, or during an external
fault. However, certain other phenomena cause a substantial differential current to flow, when there
is no fault, and these false differential currents are generally sufficient to cause a percentage differ-
ential relay to trip, unless some special precautions are taken. All such phenomena can be traced
to the nonlinearities in the transformer core, or in the CT core or in both. We will now consider
the effects of these nonlinearities.

8.4.1 Magnetizing inrush current during energization

Consider the energization of an unloaded power transformer as shown in Figure 8.5. As the switch
is closed, the source voltage is applied to the transformer, and a magnetizing current is drawn from
the source.1,2 Let the source voltage be

e(t) = Emax cos(ωt − ϕ) (8.6)

Generator ratings:
125 MVA
15.5 kV
X”d = X2 = 0.2 pu
X0 = 0.03

R

F1

87

V = 1.0

R 51N
100:5

RN

GSU
X”d = X1

X2

X0

Positive Sequence

Negative Sequence

Zero Sequence

5000:5 5000:5

(One phase shown)
(Other phases similar)

3RN

Figure 8.5 Transformer core flux linkages upon energization at angle ϕ from maximum
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Figure 8.6 Magnetizing current during energization of a transformer

If we neglect the resistance, and the source and the leakage inductance in the circuit, the flux
linkages of the transformer core are given by

�(t) = �max sin(ωt − ϕ) + �max sin ϕ (8.7)

Note that the flux linkages – and hence the magnetizing current – are continuous at t = 0, when
the switch is closed. Equation (8.7) assumes that there is no remnant flux in the core. Any remnant
flux must be added to the right-hand side of this equation.

In reality, the magnetizing inductance of the transformer is nonlinear. Consider the two-slope
approximation of a magnetizing characteristic shown in Figure 8.6(a). As the flux linkages go above
the saturation knee point, a much larger current is drawn from the source. The magnitude of this
current is determined by the slope of the magnetizing characteristic in the saturated region, and
by the leakage inductance of the transformer. It is obvious that magnetizing inrush currents of the
order of fault currents are possible. Because of the losses in the circuit, the magnetizing current
will decay to its nominal small value as shown in Figure 8.6(b). Time constants of several seconds
are common in most modern power transformers.

It should be clear that in most modern transformers very large inrush currents are possible,
depending upon the instant of energization, and the remnant flux in the transformer core. Since the
inrush current flows only in the primary and not in the secondary winding of the transformer, it
is clear that it produces a differential current which is 200 % of the restraining current, and would
cause a false operation.

8.4.2 Harmonic content of the inrush current

As we will see shortly, the false operation of a percentage differential relay for a transformer is
prevented by taking advantage of the fact that the inrush current is rich in harmonic components,
while the fault current is a pure fundamental frequency component (except for a possible decaying
DC component). Let us calculate the harmonic components of a typical inrush current waveform.
We will assume a simplified waveform for the inrush current. Let the magnetizing characteristic be
a vertical line in the �– i plane, and be a straight line with a finite slope in the saturated region. This
makes the current waveform of Figure 8.6(a) acquire the shape shown in Figure 8.7. The flux in the
core is above the saturation knee point for a total angular span of 2α radians, and the corresponding
current is a portion of a sine wave. For the remainder of the period, the current is zero. Although
this is an approximation, it is quite close to an actual magnetizing current waveform. We may use
Fourier series analysis to calculate the harmonics of this current. Consider the origin to be at the
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im(1−cos α)

0 α π 2π

Figure 8.7 Idealized inrush current waveform

center of a current pulse, as shown in Figure 8.7. Then, the expression for the current waveform is

i(θ) = Im(cos θ − cos α) 0 ≤ θ ≤ α, (2π − α) ≤ θ ≤ 2π

= 0 α ≤ θ ≤ (2π − α)

}
(8.8)

Since this choice of the origin gives a symmetric waveform about θ = 0, we may use the cosine
Fourier series for the current. The nth harmonic is given by

an = 1

π

∫ 2π

0
i(θ) cos nθdθ = 2

π

∫ α

0
im(cos θ cos nθ − cos α cos nθ)dθ

= Im

π

[
1

n + 1
sin(n + 1)α + 1

n − 1
sin(n − 1)α − 2 cos α

1

n
sin nα

]
(8.9)

The peak of the current wave is Im(1 − cosα), and the fundamental frequency component a1 is
given by

a1 = Im

π

[
α − 1

2
sin 2α

]
(8.10)

The relative magnitude of various harmonic components with respect to the fundamental fre-
quency component, as calculated from equations (8.9) and (8.10), is tabulated in Table 8.1 up to
the 13th harmonic, and for saturation angles of 60◦, 90◦ and 120◦. It should be noted that when the
saturation angle is 90◦ there are no odd harmonics present. As the angle of saturation increases, the
harmonic content decreases: indeed, if α becomes π there will be no harmonics at all. However,

Table 8.1 Harmonics of the magnetizing
inrush current

Harmonic an/a1

α = 60◦ α = 90◦ α = 120◦

2 0.705 0.424 0.171
3 0.352 0.000 0.086
4 0.070 0.085 0.017
5 0.070 0.000 0.017
6 0.080 0.036 0.019
7 0.025 0.000 0.006
8 0.025 0.029 0.006
9 0.035 0.000 0.008
10 0.013 0.013 0.003
11 0.013 0.000 0.003
12 0.020 0.009 0.005
13 0.008 0.000 0.002



204 Transformer protection

in most cases, α is much less than π , and a significant amount of harmonics are present in the
magnetizing inrush current. Of all the harmonic components, the second is by far the strongest.

8.4.3 Magnetizing inrush during fault removal

When a fault external to, but near, the transformer is removed by the appropriate circuit breaker,
the conditions inside the transformer core are quite similar to those during magnetization of the
transformer.1,3 As the voltage applied to the transformer windings jumps from a low prefault value
to the normal (or larger) postfault value, the flux linkages in the transformer core are once again
forced to change from a low prefault value to a value close to normal. Depending upon the instant
at which the fault is removed, the transition may force a DC offset on the flux linkages, and primary
current waveforms similar to those encountered during energization would result. It should be noted
that as there is no remnant flux in the core during this process; the inrush is in general smaller than
that during the transformer energization.

R L

G

B

A

T1

T2

iDC

eDC

(a)

(b)

iT1

iG

iT2

Figure 8.8 Sympathetic inrush current in parallel transformer banks
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8.4.4 Sympathetic inrush

This is a somewhat unusual event, but occurs often enough, and deserves a mention. Consider a
generator, connected to a bus through a transmission line having a resistance R and an inductance
L, as shown in Figure 8.8(a). The transformer T1 is energized, and the transformer T2 is being
energized by closing the breaker B. As the breaker B closes, an inrush current is established in the
primary winding of the transformer T2, and is supplied by the generator through the impedance
of the transmission line. The inrush current has a DC component, which decays with a somewhat
long time constant as explained above. This decaying DC component produces a voltage drop in
the resistance of the transmission line.

The DC voltage drop is of a polarity as shown in Figure 8.8(a) for an assumed positive DC
component flowing in the direction shown. Since the generator output is purely AC, and cannot
be affected by this voltage drop, it is clear that the voltage of bus A acquires a negative DC
component. This results in a negative change in the flux linkages (integral of the voltage change)
of the two transformer cores. As the transformer T2 was assumed to have a saturating flux in
the positive direction (which led to the inrush current as shown), the effect of this flux change
is to take T2 out of saturation, and cause a possible saturation of T1 in the negative direction.
Consequently, the inrush current in T2 decreases in time, and the inrush in T1 increases in the
opposite direction. When the DC components in the two inrush currents become equal to each other,
there is no DC component in the current in the transmission line, but there may be DC components
in both transformer magnetizing currents. The decay of this ‘trapped’ DC component may be quite
slow. The phenomenon which causes inrush to flow in a previously energized transformer, when a
parallel bank is energized, is known as the sympathetic inrush. The current waveforms of a typical
sympathetic inrush phenomenon are illustrated in Figure 8.8(b). The remedy for the protection
problem posed by sympathetic inrush currents is discussed in section 8.9.

8.4.5 Transformer overexcitation

During load rejection and certain other operating conditions, a transformer may be subjected to
a steady-state overvoltage at its nominal frequency. During overexcitation, the transformer flux
remains symmetric, but goes into saturation for equal periods in the positive and the negative half-
periods of the waveform. This condition is illustrated in Figure 8.9. The expression for the current
in this case is given by

i(θ) = Im(cos θ − cos α) 0 ≤ θ ≤ α, (2π − α) ≤ θ ≤ 2π

= 0 α ≤ θ ≤ (π − α), (π + α) ≤ θ ≤ (2π − α)

= Im(cos θ + cos α) (π − α) ≤ θ ≤ (π + α)


 (8.11)
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im(1−cos α)

−im(1−cos α)

Figure 8.9 Magnetizing current during overexcitation
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Figure 8.10 Current waveform during CT saturation

When the cosine Fourier series for this current is calculated, it turns out that all even harmonics
are identically zero. The odd harmonics are twice those given by equation (8.9), due to the contri-
butions from the negative half-cycle of the current wave. The angles of saturation in an overexcited
transformer are of the order of 10–30◦, which corresponds to an angle of 5–15◦ in equation (8.9).
For such small saturation angles, the harmonic proportions are somewhat different from those shown
in Table 8.1. For example, for α = 5◦, the third and the fifth harmonics are almost as strong as
the fundamental frequency component. And, of course, there is no second harmonic present in this
waveform. It should be remembered that we have made significant approximations in computing
these harmonic components: for example, we have assumed a two-straight-line approximation to
the magnetizing characteristic, and also we have assumed that the unsaturated characteristic has
an infinite slope. Under practical conditions, the harmonic magnitudes will tend to be somewhat
different, although the general trend will be as determined here.

8.4.6 CT saturation

For certain external faults, where the fault currents are large, it is likely that one of the CTs may
saturate. (We will disregard the possibility of CT remnant flux for the present discussion.) The
resulting current waveform of that CT secondary winding is shown in Figure 8.10. The differential
current in the relay will then equal the shaded area, which is the difference between the unsatu-
rated current waveform and the saturated current waveform. The equation for the shaded current
waveform is

i(θ) = 0 0 ≤ θ ≤ (π − α), π ≤ θ ≤ (2π − α)

= Im sin θ (π − α) ≤ θ ≤ π, (2π − α) ≤ θ ≤ 2π

}
(8.12)

This being an odd function of θ , a sine Fourier series would be appropriate to determine its
harmonic content. It is left as an exercise for the reader to show that this waveform contains no
even harmonics, and that there is a significant third harmonic component in the current.

8.5 Supervised differential relays
The inrush current phenomenon in large power transformers presented an insurmountable obstacle
to the percentage differential relay design when it was introduced. Measures were introduced for
counteracting the tendency of the relay to trip for inrush conditions. One of the earliest ideas was
to desensitize the differential relay when the transformer is energized. Thus, the less sensitive relay
would not see the inrush current, thus avoiding a false trip. However, desensitizing (or disabling)
the differential relay during energization is a poor practice, as it is precisely during the initial
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energization of the transformer, when the transformer is first energized, or some repair work on
the transformer may have been completed, that the transformer is in need of protection. This is to
ensure that the repair work has been successfully completed, and no maintenance tools inadvertently
left inside or around the transformer.

The next significant step was the introduction of the concept of voltage supervision.1 It may
be expected that during the inrush conditions, the transformer voltage would be close to normal,
while during faults, the voltage would be much less. Thus, an undervoltage relay may be used to
supervise the differential relay. If the undervoltage relay can be set to distinguish between a normal
transformer and a faulted transformer, then it could be used to block the differential relay when it
detects a voltage above its setting. In general, this type of voltage supervision is not preferred, as
the undervoltage relay tends to be slow, and consequently the entire protection becomes slower.
More importantly, this type of protection requires a voltage source for the transformer relay, which
is an added expense, and may not be justifiable in many cases.

The method currently in use on large transformers is based upon using the harmonic characteri-
zation of the inrush and overexcitation currents. The differential current is almost purely sinusoidal
when the transformer has an internal fault, whereas it is full of harmonics when the magnetizing
inrush current is present, or when the transformer is overexcited. Thus, the differential current
is filtered with filters tuned to an appropriate set of harmonics, and the output of the filters is
used to restrain the differential relay. We may consider a generic circuit for a harmonic restraint
percentage differential relay, although actual relay designs would depend upon the particular man-
ufacturer’s preference and experience. Consider the circuit shown in Figure 8.11. The restraint
current is obtained from the through-current transformer Tr, while the operating current is obtained
through the differential current transformer Td. The differential current is filtered through a funda-
mental frequency band-pass filter to provide the normal operating current. The differential current is

I2pI1pI1s I2s

e1p e2p

N1:N2

F1

F2

1:n1 1:n2

T1

T2
Restraint

Fundamental
frequency trip

Harmonic
restraint

Figure 8.11 Harmonic restraint percentage differential relay. F1 is a pass filter and F2 is a block filter for the
fundamental frequency
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passed through a fundamental frequency blocking filter, which lets through all but the fundamental
frequency, and this signal is used to provide an additional restraint force. A typical adjustment is
to use a restraint setting of 15 % in the harmonic circuit; i.e. when the harmonic current is 15 %
or greater than the fundamental frequency component of the differential current, the relay is on the
verge of operation. As can be seen from Table 8.1, this setting is sufficient to prevent operation
of the differential unit for all inrush conditions considered in that table. With more modern steels
being used in modern transformers, it has been found that often the harmonic content of the inrush
current may be as low as 7 %. In such cases, the relay using 15 % harmonic restraint would fail to
prevent tripping under inrush conditions. For such cases, an even lower inrush setting is desirable.

A harmonic restraint function that uses all the harmonics for restraint may be in danger of
preventing a trip for an internal fault if the CTs should saturate. As was pointed out in section 8.4,
saturated CTs produce a predominant third harmonic in the current. Care should be taken to make
sure that the third harmonic component produced in a saturated CT secondary current during an
internal fault is not of sufficient magnitude to block tripping of the differential relay. Some modern
relays use second and fifth harmonics for restraint so that the relay is prevented from tripping for
inrush and overexcitation, but is not blocked from tripping for internal faults with CT saturation.

8.6 Three-phase transformer protection
Protection of three-phase transformers requires that primary and secondary currents of the three
phases be compared individually to achieve differential protection of the three-phase transformer.
The major difference between three-phase transformer protection and that of three single-phase
transformers is the necessity to deal with the effect of a wye–delta transformation. Under normal
load conditions, the currents in the primary and secondary windings are in phase, but the line currents
on the wye and delta sides of the three-phase transformer are out of phase by 30◦. Since current
transformers are usually connected in the line – and not in the winding on the delta side – this
phase shift causes a standing differential current, even when the turns ratio of the main transformer
is correctly taken into account. The difficulty is resolved by connecting the current transformers
in such a manner that they undo the effect of the wye–delta phase shift produced by the main
transformer. The current transformers on the wye side of the power transformer are connected in
delta, and the current transformers on the delta side of the power transformer are connected in wye.
Recall that a delta connection can be made in two ways: one whereby the delta currents lag the
primary currents by 30◦ and the other whereby the delta currents lead the primary currents by 30◦.
It is of course necessary to use the connection which compensates the phase shift created by the
power transformer. The best method of achieving the correct connections is by carefully checking
the flow of the currents in the differential circuits when the power transformer is normally loaded.
Under these conditions, when the CT connections are correct, there will be no (or little) current in
the differential circuit. In addition to the phasing consideration discussed above, it is also necessary
to adjust the turns ratios of the CTs so that the delta connection on the wye side of the power
transformer produces relay currents that are numerically matched with the relay currents produced
by the wye-connected CTs. Thus, the delta CT winding currents must be (1/

√
3) times the wye CT

currents. The entire procedure is best illustrated by an example.

Example 8.4

Consider the three-phase transformer bank shown in Figure 8.12. The transformer is rated 500 MVA
at 34.5(delta)/500(wye) kV.
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(577.35 + j0.0)

(-288.67− j500.0)
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Figure 8.12 Connections for a three-phase differential relay. Note the polarity markings on the CTs. Relay
taps will further reduce the differential currents

Assume that the transformer is carrying normal load, and that the current in phase a on the wye
side is the reference phasor. Thus, the three-phase currents on the wye side are

Ia = 500 × 106

√
3 × 500 × 103

= (577.35 + j0.0) A

Ib = (−288.67 − j500.0) A

Ic = (−288.67 + j500.0) A

The currents on the delta side of the power transformer are

Iad = 500 × 106

√
3 × 34.5 × 103

εj30◦ = (7246.38 + j4183.69) A

Ibd = (0.0 − j8367.39) A

Icd = (−7246.37 + j4183.69) A

Note that the power transformer is connected with a leading delta. The CTs on the delta side of
the power transformer are to be connected in wye. We may therefore select the CT ratio on this
side to be such that the CT secondary current will be less than 5 A when the primary current is
8367.39 A. Select the CT ratio of 9000 : 5. This produces CT secondary currents on this side of
(8367.39 × 5/9000) = 4.65 A. The three CT secondary current phasors are shown in Figure 8.12.
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The CTs on the wye side of the power transformer are going to be connected in delta. Thus, the
CT ratios must be such that the CT secondary winding currents will be close to (4.65/

√
3) = 2.68 A.

This calls for a CT ratio of 577.35/2.68, or 1077 : 5. Selecting the nearest standard CT ratio (see
Table 3.1) of 1000 : 5 produces CT secondary winding currents of magnitude 577.35 × 5/1000 =
2.886 A. This will produce a CT delta line current of magnitude 2.886 × √

3 = 5 A. Although
this is not exactly equal to the line currents produced by CTs on the 34.5 kV side of the power
transformer (4.65 A), this is the best that can be done with standard CT ratios. As in the case of
single-phase transformers, the relay taps can be used to reduce this magnitude mismatch further.

The actual phasors of the CT secondary currents are shown in Figure 8.12. It should be noted
that the CTs on the wye side of the power transformer are connected in such a manner that the
currents in the relays are exactly in phase, and very small currents flow in the differential windings
of the three relays during normal conditions. The currents are calculated with due attention given
to the polarity markings on the CT windings.

8.6.1 Multi-winding transformer protection2

Although we consider multi-winding transformers in this section, which deals with three-phase
transformers, similar considerations hold for single-phase transformers as well. Consider the three-
winding transformer shown in Figure 8.13. One winding is assumed to be delta connected, while
the other two are assumed to be wye connected. The CTs must of course be connected in wye
on the delta side and in delta on the wye side of the power transformer. This will ensure that the
phase shifts created in the currents of the power transformer are compensated by the CTs, so that
the secondary currents are once again in phase. The CT ratios are chosen so that when any two
windings are in service, equal secondary currents are produced. The third winding is assumed to be
open-circuited under these conditions. The ratios of all three CTs are chosen in this fashion. The
phasing of the CT and relay connections is checked as in Example 8.4.

It is interesting to note that under certain conditions a two-winding differential relay can be used
to protect a three-winding transformer. If the transformer is connected to a source only on one
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Figure 8.13 Protection of a three-winding transformer with (a) a three-winding relay and (b) a two-winding
relay
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side, the other two winding CTs could be paralleled to produce a net secondary current, which
can then be used in a two-winding protection scheme. However, when more than one winding has
a source behind it, paralleling two windings could be dangerous. Consider the case illustrated in
Figure 8.13(b). If the power transformer winding A is open, then an external fault on the side B
would be supplied by the source on the side C. This should produce equal currents in the paralleled
connection, and in the relay. However, because of unequal CT ratios, or unequal error in the two sets
of CTs, there may be a residual current in the paralleled connection, which flows in the differential
coil of the relay. It also flows in half of the restraint coil, but is clearly insufficient to prevent the
relay from operating if the differential current is above the pickup setting of the relay. A much
safer practice is to employ a specially designed three-winding differential relay, which utilizes three
restraint coils, each being supplied by its own CTs. In the case discussed above, this ensures that
even if the differential coil of the relay has an unbalance current flowing in it, the restraint coils of
the relay will carry the full fault currents flowing in windings B and C of the power transformer.
The relay will thus be prevented from tripping for this external fault.

Example 8.5

Consider the three-phase three-winding transformer shown in Figure 8.13. Let the three windings
be rated at: 34.5 kV, delta, 500 MVA; 500 kV, wye, 300 MVA; and 138 kV, wye, 200 MVA. The
rated line currents on the delta side have been calculated in Example 8.4 to be 8367.39 A. As
before, the CT ratios for the wye-connected CTs on this side are 9000 : 5.

To determine the CT ratios on the 500 kV side, we must assume that the 138 kV side is carrying
no load. In this case, the 500 kV side will carry 577.35 A, when the 34.5 kV side is carrying
8367.39 A. (This will be an overload for the 500 kV side, but we are using these figures only to
calculate the CT ratios. It is not implied that with the 138 kV side unloaded, the transformer will
continue to carry 500 MVA.) As the CTs on the 500 kV side are delta-connected, the CT ratios on
this side are 1000 : 5, as in Example 8.4.

The 138 kV side, with the 500 kV side open, and the transformer loaded to 500 MVA (once
again, only theoretically, to facilitate calculating the CT ratios), the line currents will be

I138 = 500 × 106

√
3 × 138 × 103

= 2091.85 A

Since these CTs are going to be connected in delta, the secondary current should be 5/
√

3 =
2.886 A. This calls for a CT ratio of 2091.85 : 2.886. This gives the nearest available standard CT
ratio of 3600 : 5.

When the transformer is normally loaded, i.e. 500, 300 and 200 MVA in the three windings,
the three winding currents will be 8367.39, 346.41 (3/5 of 577.35) and 836.74 (2/5 of 2091.85)
amperes, respectively. The corresponding secondary currents produced by the CTs in the relay
connection will be

8367.39 × 5

9000
= 4.65 A on the 34.5 kV side

346.41 × 5

1000
×

√
3 = 3.0 A on the 500 kV side

and

836.74 × 5

3600
×

√
3 = 2.01 A on the 138 kV side
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The differential current will be 4(3.0 + 2.01 − 4.65) = 0.31 A. With the ample restraint current
provided by the three currents in a three-winding differential relay, this relay will not mis-operate
for this condition.

Now consider the possibility that a two-winding differential relay is used, with the CT secondaries
on the 500 and 138 kV sides being paralleled, as in Figure 8.13(b). Under normal loading conditions
determined above, there is no difference in the relay performance. However, consider the case of
the 34.5 kV winding being open, and a fault on the 138 kV side being supplied by the system on
the 500 kV side of the transformer. Let the fault current on the 500 kV side be 10 000 A and that
on the 138 kV side be 10 000 × 500/138 or 36 231 A. The relay currents produced by the two sets
of CTs are

10 000 × 5

1000
×

√
3 = 86.6 from the 500 kV side

and

36 231 × 5

3600
×

√
3 = 87.16 A from the 138 kV side

Assume that the CT on the 500 kV side has a 10 % error, while the CTs on the 138 kV side
have negligible error under these conditions. Thus, the current in the differential winding and half
the restraint winding of the relay will be

(87.16 − 0.9 × 86.6) = 9.22 A.

This is equivalent to 200 % of the restraint because only half the restraint winding gets this current,
and it being well above the normal pickup setting of 0.25 A for the differential relay, will trip the
relay for this condition. It is thus not advisable to use a two-winding differential relay for this case.

8.6.2 Protection of regulating transformers1,4,5

The regulating transformers may regulate the turns ratio or the phase shift between the primary
and the secondary windings. The regulating transformers usually consist of two transformers: one
to provide the magnetizing current for the transformers and the other to provide the variable turns
ratio or the variable phase shift. In either case, the percentage differential relay is not suitable
for the protection of these transformers. As the turns ratio or the phase shift changes, the balance
between the primary and the secondary currents for through faults or load currents is no longer
maintained. Thus, fairly large percentage slopes must be used to protect these transformers. In
general, such units are sufficiently rare, and their protection requirements are too specialized,
so that the manufacturer of the transformer provides, or recommends, the protection suitable for
regulating transformers. Often, a sudden pressure relay (SPR; described in section 8.8) provides the
most sensitive protection, but even that cannot be used for that part of the regulating transformer
which does the regulation, since during normal operation of the unit the tap-changing mechanism
produces sufficient arcing to cause pressure waves and gases which may trigger the SPR.

8.7 Volts-per-hertz protection6

Transformer cores are normally subjected to flux levels approaching the knee point in their mag-
netizing characteristic. Typically, the rated voltage at rated frequency may be 10 % below the
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Figure 8.14 Volts/hertz capability of transformers, and relay settings

saturation level. If the core flux should exceed the saturation level, the flux patterns in the core
and the surrounding structure would change, and significant flux levels may be reached in the
transformer tank and other structural members. As these are not laminated, very high eddy currents
are likely to result, producing severe damage to the transformer. It is therefore desirable to provide
a protection package which will respond to the flux level in the transformer. As the flux is propor-
tional to the voltage, and inversely proportional to the operating frequency, the significant relaying
quantity is the ratio of the per unit voltage to the per unit frequency. This is known as volts/hertz
protection.

This protection is specially needed in the case of unit-connected generator transformers. If the
turbine–generator is shut down with the voltage regulator in service, the volts/hertz limit of the
transformers (and indeed of generators as well) could be easily exceeded. Similar conditions could
also be reached by load rejection with voltage regulators disconnected, or in manual position, or
with faulty instrumentation in the regulator circuits. The volts/hertz capability of transformers is
specified by manufacturers. A typical capability curve is shown in Figure 8.14. Many volts/hertz
relays have two settings, a lower setting for alarm and a higher setting which may be used for
tripping.

8.8 Nonelectrical protection
8.8.1 Pressure devices

A very sensitive form of transformer protection is provided by relays based upon a mechanical
principle of operation. When a fault occurs inside an oil-filled transformer tank, the fault arc
produces gases, which create pressure waves inside the oil. In the ‘conservator’ type of tank
construction,2 which is more common in Europe, the pressure wave created in the oil is detected
by a pressure vane in the pipe which connects the transformer tank with the conservator. The
movement of the vane is detected by a microswitch, which can be used to sound an alarm, or trip
the transformer. This type of a relay is known as a Buchholz relay, named after its inventor.

In the USA, the more common transformer construction is of the tank type with a gas cushion
at the top of the tank.5 In such a transformer, the pressure wave is detected by a SPR mounted on
the side of the transformer. The mechanical sensor consists of a bellows and a pressure equalizer,
which together is insensitive to slow changes of pressure, for example those caused by thermal or
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loading changes in the transformer. However, a pressure wave created by a fault is detected by the
relay, and can be used to trip or alarm. In fact, often these relays are found to be too sensitive, and
may respond to the movement of transformer windings caused by severe external fault currents. It
should be noted that, aside from the incorrect operation just described, these pressure-type relays
can only detect faults inside the transformer tank. Faults on the bushings, and connecting leads, do
not create an arc in the insulating oil or gas, and must be protected by differential relays. In fact, a
combination of pressure relays and differential relays provides an excellent protection system for
a power transformer. In the presence of gas pressure relays, the differential relays can be made
less sensitive. Indeed, one may attempt reclosing on those faults which cause the operation of the
differential relay, but not of the pressure relay.

The differential relay has an inherent dead band (Figure 8.4), compared to the pressure relay,
which is insensitive to winding fault location. If it is assumed that the pressure relay will always
operate for an internal fault, then the operation of the differential relay alone is a safe indication
that the fault is not within the transformer tank, and reclosing can be permitted.

8.8.2 Temperature devices

There are several temperature-detecting devices used for indication, recording or control, and, on
rare occasions, for tripping. Some devices simply measure the oil temperature, usually the top oil.
Other devices use a combination of current, by placing a small search coil around a lead, and oil
temperature to measure the total effect of load and ambient temperature. The critical temperature is
referred to as the ‘hot-spot’ temperature, and is the highest temperature that will occur somewhere
in the winding. This hot-spot is not precisely known, since it varies with the physical structure
of the transformer and the flow of cooling oil or gas. It is usually determined at the factory, and
an arbitrary temperature, e.g. 10 ◦C, is specified to be added to the total temperature as indicated
at any time. The temperature devices actuate alarms to a central dispatching office, to alert the
operators, who can either remotely unload the transformer by opening the circuit breaker, or can
dispatch an operator to the station. The hot-spot sensors are also commonly used to start and stop
cooling fans and pumps. In extreme cases, when it is not possible to remotely remove the load, or
send an operator to the station, an extreme high alarm will trip the bank.

8.9 Protection systems for transformers
The protection of transformers is not simply a question of detecting faults within the winding, core
or tank. It is very often a question of how the transformer is integrated into the station or system.
The detection and clearing of transformer faults are intimately connected to the primary switching
that is available. There are too many variations of such switching arrangements to be all-inclusive
but a few typical examples will suffice to demonstrate the factors and logic involved.

8.9.1 Parallel transformer banks

It is not uncommon when two transformers are connected in parallel with no circuit breakers used
to separate them that a single differential relay is used for the protection of both banks. On the face
of it, this is reasonable, since the two banks are operated as a single unit. However, the problem of
sympathetic inrush discussed in section 8.4 presents difficulties to the common differential relay,
when one of the transformers is energized with its switch while the other transformer is in service.
The sympathetic inrush is now likely to trip the two transformers. This is because the inrush current
in the common lead becomes symmetrical very quickly, as shown in Figure 8.8(b), and does not
have a sufficient amount of the second harmonic in it to prevent the relay from tripping. The
problem can be dealt with satisfactorily by the use of separate differential relays.
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8.9.2 Tapped transformer banks

Connecting a transformer directly to the high-voltage transmission line is a practical and relatively
inexpensive way of providing service to an isolated industrial or residential load. On low-voltage
transmission systems, where circuit breakers are relatively inexpensive, the breakers are used both
as locations for the CTs to detect a fault and define the zone of protection and as the way of clearing
the fault. In Figure 8.15 a full complement of breakers is used. The transformer differential relay
(87T) includes the high-side breaker and the low-voltage leads, bus and feeder breakers as well as
the transformer itself. Alternatively, a low-side breaker may be used and the transformer differential
would be connected as shown by the dotted line in the figure. The high-voltage leads are protected
with a bus differential (87B) and each line section has its own set of directional relays (67). In this
configuration a line fault will be cleared immediately by tripping the appropriate breakers, but the
other line section continues to serve the transformer and its load.

A bus or transformer fault will, of course, de-energize the transformer and its low-voltage feeders.
The remote breakers, however, will not trip, allowing those line sections and any connected loads
to remain in service. The transformer is protected by overcurrent relay 51T from damage by heavy
through current.

Figure 8.16 shows a variation in which the line circuit breakers are not used. In this configuration
a line fault will remove the transformer by opening the remote terminals. This is an acceptable
condition only if the load being served can withstand the outage and there is no source on the
low-voltage side. It is also necessary to set the remote relays to ‘see’ into, but not beyond, the
transformer to avoid tripping the high-side breakers for low-side faults.

The use of so many circuit breakers is usually not justified, particularly at higher voltages.
Figure 8.17 shows a very common configuration using motor-operated air break switches (MOABs)
instead of circuit breakers. The transformer differential extends from the high-side bushings of the
transformer to the low-side feeder circuit breakers or to a low-side transformer breaker. The use
of the overcurrent relay 51T is the same as discussed above. Since MOABs are not designed to
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Figure 8.15 Full complement of circuit breakers for transformer protection
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Figure 8.17 Use of motor-operated air break switches at a transformer tap

interrupt fault current, in order to clear the fault in the transformer zone of protection the remote
line breakers must be tripped. As with the system shown in Figure 8.16, the relays at the remote
terminal must be set to ‘see’ into, but not beyond, the transformer. A common method of tripping
the remote terminals is to provide a single-phase ground switch at the transformer, as shown in
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Figure 8.17. This is a spring-operated switch which is released by the transformer differential relay.
The ground switch places a solid single-phase fault on the system, which the remote relays will see
and trip their associated breakers. When the line is de-energized, the MOAB is opened automatically
to remove both the ground and the faulted transformer from the system. The remote breakers then
reclose, restoring the line to service.

There are many variations on this remote tripping scheme. Some utilities simply allow the
transformer MOAB to open without the use of a ground switch. This presupposes that a heavy
fault will be seen by the remote relays, and their breakers will trip before the MOAB blades open. If
the fault cannot be seen by the remote relays the fault current is low and the MOAB will probably
not be damaged. It is possible, of course, that the switch will be damaged anyway, but the cost
savings by not providing the ground switch and its associated controls may justify the risk. If there
are communication channels available, transfer trip schemes similar to those discussed in Chapter 6
can be used.

The use of MOABs in the line in place of circuit breakers results in a change in system operations
that should be noted. When a line fault occurs, the remote breakers will trip from their respective
relays. The line is de-energized; voltage relays at the tapped bank recognize this condition and open
the switches. After a preset time delay, each remote circuit breaker will close and the one associated
with the faulted line section will immediately retrip, the other remaining closed. Each MOAB then
closes at slightly different times and the one that re-energizes the faulted line results in the breaker
tripping again. The potential device of the MOAB that allows the fault to be reenergized does not
stay energized for more than the breaker tripping time (actually the timer is usually set for about
3 s) and that MOAB is locked out. The breaker closes one more time and stays closed, restoring
the remaining line and transformer to service.

8.9.3 Substation design

Since a power transformer interconnects two or more voltage levels, its location requires special
consideration in the design of a substation and the protection of all of the elements within it.
Usually the various voltage levels are contained within separate areas, each with its own bus con-
figuration and associated equipment and separated by considerable distances. Figure 8.18 shows a
345 kV/138 kV station with a full complement of circuit breakers. The protection is straightforward.

There are redundant transformer zones of protection, i.e. an internal differential (87T) and an
overall differential (870A). In addition to providing dependability the two zones allow ready iden-
tification of the fault location, i.e. within the transformer itself or on the high- or low-voltage leads.
Variations of this configuration are very common. For instance, if the transformer and both circuit
breakers are relatively close to each other, the internal differential can be omitted and a pressure
relay used to indicate a fault within the transformer tank. If the low-voltage leads are very long a
lead differential may be added, as shown in Figure 8.19. This has the advantage of using a relay
more suited to a bus differential than a transformer differential, i.e. a short-time overcurrent relay
without harmonic restraint.

Since extra high voltage (EHV) breakers are expensive, they are often omitted in station designs
such as this. As with the tapped transformer, the transformer is tied directly to the EHV bus
through a MOAB. This is shown in Figure 8.19 with the associated zones of protection. The major
disadvantage is the fact that a transformer fault must be cleared by opening all of the 345 kV bus
breakers. This is usually acceptable since transformer faults are relatively rare.

8.9.4 Station service

Most power transformers are built with a delta tertiary winding to provide a path for third harmonics
and to help stabilize the neutral. Although the capacity of the tertiary need not be very large, it is a
good source for the station auxiliary equipment such as circuit breaker air compressors, oil pumps,
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battery chargers, etc. If the load taken off the tertiary is large enough to upset the transformer
differential, it must be connected into the differential CTs, as shown in Figure 8.20. Protection of
the 13.8 kV leads presents other problems that are discussed in Chapter 7. The difficulty arises first
from the very large phase-to-phase fault currents that are present and then from the fact that this
is an ungrounded circuit and must use a ground detector scheme as discussed in section 7.2.

8.9.5 Generator station design

The most common configuration used presently for large fossil-fired generating plants is a unit-
connected system. In this system, the generator, generator stepup transformer (GSU), the unit
auxiliary transformer(s) (UAT) and the reserve or startup transformer (RAT) are all connected as a
unit and their protection and controls are interrelated.

Figure 8.21 shows a typical design with the associated zones of protection. Since our concern
here involves only the transformers of this design we will only touch upon the protection and control
aspects of the other equipment. They are discussed in more detail in the appropriate chapters. The
GSU is usually included in the unit and overall differentials (87U and 870A). Since these see
transformer inrush they must be harmonic restrained relays. It is possible, but not common, to
use an internal transformer differential (87Tr) connected to the transformer bushing CTs. If this is
done, then high- and low-voltage lead differentials should be added. If the leads are very long, i.e.
beyond 460–610 m, then pilot-wire protection should be considered. The UAT has its own internal
differential and is not included in the unit or overall differential. However, since there are no high-
side breakers to clear a UAT fault, the generator must be tripped for such faults. For sensitivity in
setting the two sets of differential relays, and to identify the fault location, the auxiliary transformer
current is subtracted from the unit and overall transformer differential circuits.

Since the GSU and UAT are connected to the generator as it is coming up to speed prior to
synchronizing to the system, they will be energized at frequencies lower than the normal 60 or
50 Hz. Transformers are designed to operate at a given flux level and flux is related to both voltage
and frequency. It is therefore necessary to provide volts/hertz relays to detect the condition either
of excessive voltage, which is possible during startup if the excitation is not monitored, or low
frequency as the unit is starting.
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Figure 8.21 Generating station transformers and their protection systems

Fossil-fired generators require auxiliary power to start pumps, fans and pulverizers to fire up the
boiler, lubricate the bearings, etc. A startup transformer (RAT) connected to the system is therefore
required. This transformer is also available as a spare for the UAT and must be sized accordingly.
There are many possible schemes to connect the RAT to the system and bus. One common scheme
is as shown in Figure 8.19. The transformer is connected to the high-voltage bus (note that it is
not the same bus to which the generator is connected) through MOABs; and all of our previous
discussion concerning clearing faults when there is no circuit breaker applies.

8.10 Summary
In this chapter we have developed the protection concepts for single- and three-phase transformers.
We began with overcurrent protection, and after examining the effects of nonlinearities in the
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magnetic circuits, arrived at the harmonic restraint percentage differential relay as the protection
system of choice for large power transformers. We considered the effect of the wye–delta connection
of the power transformer on the protection system. We have also studied the protection problem
of a transformer when it is a part of a complex power system, with different bus and breaker
configurations.

Many of these concepts are further illustrated by the problems at the end of the chapter.

Problems
8.1 Consider the single-phase radial power system shown in Figure 8.22. The leakage impedance

of the transformer is (0.0 + j0.02) pu and the feeder impedance on the same base is (0.01 +
j0.06) pu. The transformer and the system base power is 100 kVA. The transformer voltage
ratio is 11/3.3 kV. Time–overcurrent protection is to be provided by the relays Rab and Rbc.
Using the relays with characteristics shown in Figure 4.5, determine the CT ratios, pickup
values and the time dial settings for the two relays. You may assume that no other coordination
considerations apply to this problem.

Rab

A B C

Rbc

Figure 8.22 System for overcurrent protection of a transformer

8.2 A single-phase transformer is rated at 110/33 kV, 50 MVA. It has an overload capability of
120 %. The 110 kV side has a tap changer with (5/8) % step size, and with a range of 99 to
121 kV. Determine CT ratios for a percentage differential relay to protect this transformer.
Assume a maximum CT error of 5 % in either of the two CTs. What is the minimum slope of
the percentage differential characteristic of the relay? Assume that both the relay windings are
provided with taps for 3.0, 4.0, 4.8, 5.0, 5.2, 6.0 A, and determine the appropriate taps which
will minimize the required slope of the relay characteristic. What pickup current setting for
the relay would you recommend?

8.3 If the transformer of problem 8.2 had no tap changer, could you accept a lower slope? Explain
your answer.

8.4 Assume a differential relay with a slope of 20 % and a pickup setting of 10.25 A (secondary)
protects a 69/33 kV, 10 MVA transformer. Determine the CT ratios suitable for this protection
system, assuming a 110 % overload capability. What is the minimum primary fault current that
the relay will detect when the transformer is operating at no load? What is the minimum fault
current that the relay will detect when the transformer is carrying the maximum permissible
overload?

8.5 Calculate the harmonics in the output of a CT which has symmetrical saturation as shown
in Figure 8.10. Use α = 30◦, 90◦ and 120◦. If all three CTs in a delta-connected CT bank
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(on the wye-connected side of a power transformer) saturate in an identical fashion, what
are the harmonic contents of the currents which flow in the differential windings of the three
differential relays? You may assume that the line currents produced by the delta-connected
CTs are obtained as the difference of two winding currents.

8.6 For the wye–delta transformer shown in Figure 8.12, assume that an internal three-phase fault
develops at the bushings on the wye side (within the zone of protection of the differential
relay) of the power transformer. On the transformer base, the system impedances on the
wye and the delta sides are (0.0 + j0.2) pu and (0.0 + j0.3) pu, respectively. The leakage
impedance of the transformer is (0.0 + j0.08) pu on its own base. What are the currents in
the restraining and operating windings of the differential relays? Will the relay operate?

8.7 For a phase-to-phase fault (outside the zone of the differential relay) on the wye side of
the transformer of problem 8.6, calculate the restraining and operating currents in each of
the relays. Will the relay operate for this fault? How do the fault currents compare with the
three-phase fault currents determined in problem 8.6?

8.8 Consider a zigzag transformer, as shown in Figure 8.23. Such transformers are often used
as grounding transformers on power systems. Determine the appropriate connections of the
differential relays to the CTs. Assume a normal load current to be flowing in the windings,
and determine the differential currents resulting from the load currents. What should be the
setting of the percentage slope to avoid tripping for this condition?

33 kV/138 kV, 10 MVA

Figure 8.23 Connections of differential relays for a zigzag transformer
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9
Bus, reactor and capacitor
protection

9.1 Introduction to bus protection

Bus protection systems are more straightforward than transformer protection systems because the
variables are reduced. There is no ratio or phase angle change or appreciable inrush. Paradoxi-
cally, historically bus protection has been the most difficult protection to implement because of the
severity of an incorrect operation on the integrity of the system. A bus is one of the most critical
system elements. It is the connecting point of a variety of elements and a number of transmis-
sion lines, and any incorrect operation would cause the loss of all of these elements. This would
have the same disastrous effect as a large number of simultaneous faults. However, without bus
protection, if a bus fault should occur, the remote terminals of lines must be tripped. In effect,
this could create a worse situation than the loss of all of the elements at the bus itself for two
reasons.

1. The loss of the remote ends will also result in the loss of intermediate loads.
2. As systems become stronger it is increasingly difficult for the remote ends to see all faults owing

to infeeds.

The major problem with bus protection has been unequal core saturation of the current transform-
ers (CTs). This unequal core saturation is due to the possible large variation of current magnitude
and residual flux in the individual transformers used in the system. In particular, for a close-in
external fault, one CT will receive the total contribution from the bus while the other CTs will
only see the contribution of the individual lines. The basic requirement is that the total scheme
will provide the degree of selectivity necessary to differentiate between an internal and an external
fault.

Protection of substation buses is almost universally accomplished by differential relaying. This
method makes use of Kirchhoff’s law that all currents entering or leaving a point (the substation
bus) must sum vectorially to zero. In practice, this type of protection is accomplished by balancing
the CT secondary current of all of the circuits connected to the bus and then bridging this balanced
circuit with a relay operating coil.

P ower System R elaying, Third Edition.  Stanley H . H or owitz and A r un G . Phadke
 2008 Resear ch Studies Pr ess L im ited. ISBN: 978-0-470-05712-4
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87B

Figure 9.1 Differential with overcurrent relays

9.2 Overcurrent relays
Differential relaying with overcurrent relays requires connecting CTs in each phase of each circuit
in parallel with an overcurrent relay for that phase. Figure 9.1 shows the basic bus differential
connection for one phase of a three-phase system. When conditions are normal, the bridge is
balanced and no current flows through the relay operating coil. For heavy loads the CTs may not
reproduce the primary current exactly and there will be an error current through the operating coil.
The relay must be set above this value.

When an external fault occurs, if all of the CTs reproduce the primary current accurately, the
bridge is balanced as in the normal case and no current flows in the relay operating coil. However,
as discussed above, if one of the CTs saturates, the bridge will not be balanced, the error current
will flow in the operating coil and an incorrect trip will occur. When an internal fault occurs, this
balance, as we would expect, is also disrupted and current flows through the operating coil. This,
however, is an appropriate trip situation despite the incorrect CT performance.

Similar to our discussion of transformer differential relays in Chapter 8, in general, this type of
protection should be limited to locations that are electrically remote from generating stations which
can produce large DC offset fault currents with long time constants. To minimize possible incorrect
operations, the overcurrent relay may be set less sensitive and/or with time delay. The induction
disc principle makes these relays less sensitive to DC and to the harmonic components of the
differential current. Solid-state and digital relay designs must take these factors into consideration.

9.3 Percentage differential relays
To avoid the loss of protection that results from setting the overcurrent relay above any error current,
as discussed in Chapters 7 and 8, it is common to use a percentage differential relay. These relays
have restraint and operating circuits as shown in Figure 9.2. Only one operating coil per phase is
required, but one restraint winding for each phase of each circuit is necessary. This is conceptually
similar to the transformer differential discussion in Chapter 8. Normally, one restraint winding is
connected to each circuit that is a major source of fault current. Feeders and circuits with low
fault-current contribution may be paralleled on a single restraint winding. The required current to
operate the relay is proportional to the current flowing in the restraint windings. Maximum security
for external faults is obtained when all CTs have the same ratio, but satisfactory operation can be
expected using high-quality auxiliary CTs. There are no relay taps and conventional CTs are used
with the conventional CT ratios.
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Figure 9.2 Percentage differential relay

9.4 High-impedance voltage relays
Even with the use of percentage differential relays, the problem of the completely saturated CT for a
close-in external fault still exists. To overcome this problem, the most commonly used bus differen-
tial relay, particularly on extra high voltage (EHV) buses, is the high-impedance voltage differential
relay. This relay design circumvents the effects of CT saturation during external faults by assuming
complete saturation for the worst external fault and calculating the error voltage across the operating
coil. The relay discriminates between internal and external faults by the relative magnitudes of the
voltage across the differential junction points.1 The connection for this relay is the same as shown
in Figures 9.1 and 9.2 except that the relay is a high-impedance relay. The basic scheme is shown
in Figure 9.3. The L–C circuit in series with the overvoltage relay is tuned to 60 Hz to prevent the
overvoltage relay from mis-operating on DC offset or harmonics. Since this circuit would reduce
the speed of operation of the relay, an instantaneous overcurrent relay provides fast tripping for
high-current faults. The variable resistor limits the voltage across the overcurrent relay.

The concept is to load the CTs with a high impedance to force the error differential current
through the CTs instead of through the relay operating coil. It is important that the CTs have
fully distributed windings and are used at the full winding because secondary leakage reactance,
if present, would be enough to increase the operating coil voltage for external faults and cause
mis-operation.

C

L

V I
Overcurrent
Relay

Overvoltage
Relay

Variable 
resistor

Figure 9.3 High-impedance relay



228 Bus, reactor and capacitor protection

Example 9.1

Referring to the simplified circuit of Figure 9.4, a typical setting calculation is as follows.

87B

Ia

Ib

Ia
Ib

XEa
XEbZd

Rsa RLbRLa Rsb

N N

Zd = Impedance of differential branch
Rs = CT dc winding and lead resistance
RL = CT cable dc resistance
XE = CT excitation reactance
N   = CT turns ratio

Figure 9.4 Equivalent circuit for Example 9.1

Upon the initial occurrence of an internal fault, Xea, Xeb and Zd can be assumed to be very
large. Currents Ia/N and Ib/N will tend to be forced through the large impedances in such a
direction as to cause a high voltage to be developed across the differential branch, hence operating
the relay. If an external fault occurs on line B, assuming no saturation, Ib/N will equal −Ia/N

and circulate around the outer loop, developing no net voltage across the relay. For the same fault,
assuming complete CT saturation, Xeb is approximately zero, producing a net error voltage across
the relay equal to (Rlb + Rsb)Ia/N . This voltage, which is the basis for setting the relay, is generally
much lower than that generated by the minimum internal fault. Note that smaller CT winding and
lead resistances will allow lower and more sensitive settings. All the current transformers should
have the same ratio and should have the lowest effective secondary leakage. This is obtained with
distributed windings on toroidal cores connected to the maximum tap. The use of auxiliary CTs is
not recommended.

Example 9.2

Given the equivalent circuits shown in Figure 9.5 for an external and internal fault, the voltage
across 87B for the external fault is Itotal × Rlead or 60 × 2 = 120V. Set the relay at twice this value
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Figure 9.5 Equivalent circuits for Example 9.2
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or 240 V. For an internal fault, the total current is 70 A times the relay resistance of 2600 �, or
182 kV. Obviously, such a high voltage cannot be developed without serious insulation damage.
The variable resistor is used to limit the voltage by reducing the resistance as the voltage increases.

9.5 Moderately high impedance relay
This is a combination of the high-impedance voltage relay and the percentage differential relay.
The percentage restraint characteristic makes the relay application independent of the maximum
external fault condition. The moderately high impedance circuit makes the relay insensitive to the
effects of CT saturation. The relay is usually connected into the system with a special auxiliary
CT. When 5 A rated CTs are used, one special auxiliary transformer is required for each restraint
circuit and one restraint circuit is required for each phase of each circuit connected to the bus.
The special auxiliary CT permits the use of unmatched CT ratios to bring the overall ratios into
agreement. This is a great help when adding breakers to an existing bus and the bushing CTs do
not match.2

9.6 Linear couplers
This system uses linear couplers (air core mutual reactors) in place of conventional iron core CTs.
They have linear characteristics and produce a secondary voltage that is proportional to the primary
current. The secondaries of all of the linear couplers are connected in series as shown in Figure 9.6.
This design solves the problem of saturation since there is no iron in the CT. However, since the
linear coupler is a special device, requiring low-energy relays, conventional CTs cannot be used.
This may present problems with station or bus changes.3

Example 9.3

The performance of a relay connected to a linear coupler is determined as follows:

Vsec = Ipri × M

where M is the mutual impedance of the coupler and is specified by the manufacturer. Assume
that it is equal to 0.005 at 60 Hz. Vsec = 5 V induced for 1000 primary amperes.

87B

Figure 9.6 Differential relaying with linear couplers



230 Bus, reactor and capacitor protection

For an external fault, the sum of all of the induced voltages for all of the fault current flowing
in is equal and opposite to the voltage for the current flowing out.

For an internal fault, all current is flowing in and the induced voltages add:

Irel = Vsec

Zrel + Zcoupler

The load impedance is not significant compared to the 30–80 � relay impedance and 2–20 �

coupler impedance. To set the relay, assume a three-phase external fault to establish the maximum
nonoperating current and a phase-to-ground internal fault to establish the minimum operating cur-
rent. A recommended factor of 25 is used between the maximum and minimum fault currents as
shown below.

Assume the following values for the bus shown in Figure 9.5:

Maximum external fault = 20 000 A

Minimum internal fault = 2000 A

Total Zcoupler = 30 + j45

Zrel = 55 + j20

Ipri = 20 000/25 = 800 A

M × Ipri = 800 × 0.005 = 4 V

Irel = 4/107 = 0.037 A (37 mA) pickup setting

9.7 Directional comparison
Occasionally, it is desirable to add bus protection to an existing substation where it is too costly to
change out or add current transformers. In such a case, it is possible to use the existing line CTs
to provide bus fault protection.

As we discussed in sections 2.2 (phase angle comparison), 4.5 (directional overcurrent relays)
and 5.5 (distance relay types), there are a number of directional relays that can compare the direction
of current flow in each circuit connected to the bus. If the current flow in one or more circuits is
away from the bus, an external fault exists. If the current flow in all of the circuits is into the bus,
an internal bus fault exists.

The scheme requires directional relays, fault detectors and a timer. Directional relays, usually
an admittance relay, are used on each circuit connected to the bus and they are set to see beyond
the immediate bus into the connected circuits. Since the relays must operate for all bus faults,
they are set with the same philosophy as the zone 2 settings discussed in Chapter 5, i.e. with all
infeeds being present. Fault detectors are used on several circuits, not necessarily all, to indicate
that a fault exists. Instantaneous overcurrent relays are commonly used for this purpose. For phase
faults the relays are connected to strong sources and to the bus tie breaker. For ground faults,
the relays are connected to power transformer neutrals. The timer is required to provide contact
coordination. Since all of the directional relays are connected in series, it is essential that they
all have an opportunity to close before a trip signal is initiated. Current transformer saturation is
usually not a problem when comparing the direction of current rather than current magnitude as is
done in other bus protection schemes. The CTs in each circuit do not have to have the same ratio
and can be used for other purposes such as relaying and metering. In some cases, the directional
elements of the line protection can be used.4
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The circuitry is complex and requires careful and periodic review and maintenance due to the
number of relay contacts. The timer should be set for at least four or five cycles to ensure contact
coordination. Contact bounce of electromechanical relays must be checked, particularly at high-
magnitude fault currents. The relay application and settings must be reviewed whenever system
changes are made near the protected bus.

9.8 Partial differential protection
Figures 9.7–9.10 show a variety of bus configurations that have significant impact on the connec-
tions and settings of the bus differential. A full bus differential requires that all circuits be connected
to the relay so the operating coil sees the vector sum of all of the currents as shown in Figures 9.1
and 9.2. Occasionally, however, the station design will result in the current in one or more of the
primary circuits not being included in the summation of currents in the differential circuit.

In Figure 9.7, the connection to the load does not have a circuit breaker or CT. This load then
presents a continuous error current to the bus differential relay and it must be set above this value.
A fault on this feeder is the same as a fault on the bus.

Figure 9.8 shows a transformer fed directly off the bus. This is a common configuration that
saves a circuit breaker and is a practical condition since bus and transformer faults are relatively
rare. This results in a combined bus and transformer differential. In this case the relay must be a
transformer differential type to accommodate transformer inrush, as discussed in Chapter 8.

Figure 9.9 shows a more complicated configuration. It is common planning practice to provide
duplicate feeds into one or more areas. The feeders are then split between the two buses. Bus or
breaker maintenance, bus faults or breaker failures will then only de-energize one bus, removing
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Figure 9.7 Partial bus differential
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Figure 9.9 Two-bus relaying
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Figure 9.10 Breaker-and-a-half bus differential

only one feeder into a given area. Normally, the two buses are operated as a single bus with the bus
tie closed but there are two bus differentials as shown in the figure. All sources of fault contribution
must be included in the appropriate bus differential.

Figure 9.10 shows the bus configuration referred to as a breaker-and-a-half. This is the most
common EHV system bus configuration as described in section 1.3. The primary advantage of this
configuration is that a double bus fault is unlikely due to the physical distance between the two
buses, and any breaker or relay system can be removed for maintenance without removing any
primary elements. From the protection point of view, each bus can be considered a single-bus,
single-breaker configuration similar to Figures 9.1–9.4 and the same considerations apply.
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9.9 Introduction to shunt reactor protection
Reactors are connected into a power system in either a series connection or a shunt connection.
The series reactor is used to modify the system reactance, primarily to reduce the amount of short-
circuit current available. The protection of series reactors is discussed in section 5.10. The shunt
reactor is used to modify the system voltage by compensating for the transmission line capacitance.
In general, the protection of reactors is very similar to that of transformers. In considering the
protection of shunt reactors, two configurations are involved.

1. Dry-type, connected ungrounded-wye and connected to the tertiary of a power transformer.
2. Oil-immersed, wye-connected, with a solidly grounded or impedance-grounded neutral, con-

nected to the transmission system.5

For both types of reactor construction, there are two more considerations that have an effect on
the protection.

1. Single-phase reactors, i.e. each phase is in its own tank. These are usually applied on EHV
transmission lines. There is no possibility of having a phase-to-phase fault within the reactor
enclosure although such a fault can occur in the bus and bushings.

2. Three-phase reactors where all three windings are in the same tank. These are primarily applied
at lower voltages.

9.10 Dry-type reactors
The faults encountered in dry-type reactors are the following.

1. Phase-to-phase faults on the tertiary bus, resulting in high-magnitude phase current. These faults
are rare since the phases of the reactors are located physically at a considerable distance from
each other.

2. Phase-to-ground faults on the tertiary bus resulting in low-magnitude fault current depending on
the size of the grounding transformer and resistor. These faults are also rare since the reactors
are mounted on insulators or supports with standard clearances.

3. Turn-to-turn faults within the reactor bank, resulting in a very small change in phase current.
Winding insulation failures may begin as tracking due to insulation deterioration which eventu-
ally will involve the entire winding. The result is a phase-to-neutral fault which increases the
current in the unfaulted phases to a maximum of

√
3 times normal phase current.

Fault protection for the dry-type reactor is achieved through overcurrent relays connected as
shown in Figure 9.11 and differential relays as shown in Figure 9.12. This protection is the same
as the overcurrent and differential relaying for generators and transformers. Overcurrent relays must
be set above the normal reactor load current. They can detect phase-to-phase faults, and phase-to-
ground faults if the grounding impedance is low enough, and turn-to-turn faults if enough turns are
involved to produce high enough fault currents. Since phase-to-phase and phase-to-ground faults
also produce negative sequence currents, a negative sequence relay, connected the same as the
overcurrent relay, can be used. Load is not a consideration with negative sequence, but there must
be enough current to operate the relay. Differential relays can provide sensitive protection but they
do not see turn-to-turn faults since the current entering a reactor with shorted turns is equal to
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Figure 9.11 Overcurrent relaying
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Figure 9.12 Percentage differential relay

the current leaving the reactor. Instantaneous relays are not usually applied since the only fault
location that will produce enough current to operate an instantaneous relay is at the phase end
of the reactor or in the bus or bushings. These fault locations are usually protected by the bus
differential relay.

9.11 Oil-immersed reactors
The failures encountered with oil-immersed reactors are the following.

1. Faults resulting in large changes in the magnitude of phase current such as bushing failures,
insulation failures, etc. Because of the proximity of the winding to the core and tank, phase-
to-ground faults can occur, the magnitude being dependent upon the location of the fault with
respect to the reactor bushing.

2. Turn-to-turn faults within the reactor winding, resulting in small changes in the magnitude of
phase current.

3. Miscellaneous failures such as loss of oil or cooling.
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21 21

Figure 9.13 Connection for impedance relay

Relay protection for faults producing large magnitudes of phase current is generally a combination
of overcurrent, differential and distance relaying. There are limitations to each of these protective
schemes. Overcurrent relays must be set above the normal load current and a differential relay
cannot detect a turn-to-turn fault. An impedance relay can detect shorted turns since there is a
significant reduction in the 60 Hz impedance of a shunt reactor under such a condition. Figure 9.13
shows the connection for an impedance relay (device 21). Protection against low-level faults or
mechanical failure involving the oil system is by pressure, temperature or flow devices similar to
those discussed in Chapter 8.

One of the principal difficulties with shunt reactor protection is false relay operation during
energizing or de-energizing the iron core. During these periods, DC offset with long time constants
and low-frequency components of the reactor energization current cause most of the problems.
High-impedance differential relays rather than low-impedance relays are recommended if this prob-
lem occurs.

9.12 Introduction to shunt capacitor bank protection
Capacitors are also installed as either a series or a shunt element in power systems. The series
capacitor is used primarily to modify the transmission line reactance for stability or load flow
considerations. The protection of the series capacitor and its effect on the line protection are
discussed in Chapter 5. The protection of fixed or switched shunt capacitor banks requires an
understanding of the capabilities and limitations of both the capacitors and the associated switching
devices. Capacitor bank protective equipment must guard against a variety of conditions.

1. Overcurrents due to faults between the bus and the capacitor bank. The protection afforded is
the conventional overcurrent relay applied at the breaker feeding the capacitor bank.
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Figure 9.14 General arrangement for a high-voltage capacitor bank

2. System surge voltages. The protection afforded is the conventional surge arresters and spark gaps.
3. Overcurrents due to individual capacitor unit failure. The manufacturer provides the necessary

fuses to blow for an internal unit failure. The fuse link should be capable of continuously
carrying 125–135 % of the rated capacitor current.

4. Continuous capacitor unit overvoltages.

Figure 9.14 shows the general arrangement for a high-voltage capacitor bank consisting of paral-
lel units to provide the required current capability and series units to provide the desired capacitive
rating.

An overvoltage can be imposed across individual capacitor units as a result of the loss of one or
more units, usually by the operation of a unit fuse. The overvoltage is the result of the increased
impedance of the series section from which the faulty unit has been removed. As units are removed,
the impedance of that section increases. However, since there are many sections in series the effect
of the increased impedance in one section does not decrease the phase current in the same relative
proportion. The result of the slightly reduced current flowing through the more markedly increased
impedance causes a higher voltage to appear across the remaining units in that section.6

Example 9.4

Consider the general arrangement shown in Figure 9.14 with three parallel capacitors in each group
and three groups in series in each phase. Assume each capacitor is 1.0 per unit reactance and the
bus voltage is 1.0 per unit.
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With system normal, i.e. no fuses blown, the effective parallel impedance is 0.333 pu and the
sum of the three groups per phase is 0.999 pu. The total current is 1.0/.999 = 1.01 pu A and the
voltage across each parallel group is 1.01 × 0.333 = 0.336.

Assume one capacitor develops a short and its fuse blows, removing it from the circuit. The
effective parallel impedance of that group is 0.5, and the sum of the three groups is 0.5 + 0.333 +
0.333 or 1.16 pu. The total current is 1.0/1.16 = 0.86 pu A.

In general it is very difficult to protect against overvoltages by relays. If capital were unlimited
and the need were great enough, a relay system could be designed using potential transformers
across each series section. However, operating guides have been established that recognize that
voltages in excess of 110 % can be tolerated for emergency or infrequent short-time conditions. If
there are two banks in parallel there are several commercial schemes that detect a voltage unbalance,
as shown in Figure 9.15.

CT

51N

VT

59N

Figure 9.15 Neutral current and voltage unbalance detection

9.13 Static var compensator protection7

Static var compensators (SVCs) are devices which control the voltage at their point of connection
to the power system by adjusting their susceptance to compensate for reactive power deficiencies.
The basic reactive components of SVCs are shunt reactors and shunt capacitors (Figure 9.16).
Reactor controls are either thyristor-controlled or thyristor-switched. Capacitors are either fixed or
thyristor-switched.

As the load varies, a variable voltage drop will occur in the system impedance. This impedance
is mainly reactive. Assuming the generator voltage remains constant, the voltage at the load bus
will vary. The voltage is a function of the reactive component of the load current, and system and
transformer reactance. A SVC can compensate for he voltage drop for load variations and maintain
constant voltage by controlling the gating of thyristors in each cycle. With fixed capacitors and
variable reactors, leading or lagging current can be provided to the bus and will correct the voltage
drop or rise.

The protection scheme for SVCs is made up of a number of zones. In some cases, faults in a
zone should shut down the entire SVC system. In other cases, the relaying can be coordinated so
that only the faulted zone is cleared and the SVC kept in operation with limited capabilities.

Sometimes, these protective functions can be provided as part of the integrated protective system
supplied by the manufacturer or they can be provided by the user. In either case the settings must
be coordinated between the manufacturer and the user.
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Figure 9.16 Typical SVC installation

9.13.1 Transformer protection

Differential relays, phase and ground overcurrent relays, gas pressure, low oil level and temperature
relays have all been effectively applied in accordance with standard transformer protection practice.8

The transformer guide should be applied to transformers that are part of the SVC. The connection
of the transformer windings determines the types of relay and their connection.

9.13.2 Bus protection

Phase fault protection

Conventional differential or time overcurrent relays are applicable.9 Time-overcurrent relays are
usually used for backup protection. For some installations, the SVC bus is included in the protection
zone of the transformer differential relays.

Ground fault protection

The voltage supplied to SVC buses may be grounded through a resistance or impedance in the
main transformer or through a grounding transformer, or ungrounded. Grounding transformers are
sized such that ground fault currents are limited to reduce damage, yet large enough to selectively
operate ground relays. In addition, ground fault currents on the SVC low-voltage bus should be
limited to 500–1500 A to prevent thyristor valve damage.

9.13.3 Typical protection schemes

Typical protection schemes are as follows.

1. Time-overcurrent relays connected to CTs to measure the zero sequence current in the main
transformer or grounding transformer.
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2. Time-overvoltage relays connected across the broken-delta secondary winding of a voltage
transformer as shown in Figure 7.11. This scheme does not provide fast location of a fault
since the ground fault could be anywhere in the low-voltage bus or any of its branches.

Overvoltage protection

In most installations, relays connected to the bus voltage transformers are provided to protect
the entire SVC system from excessive overvoltages. The capacitors in the SVC are vulnerable to
overvoltage and therefore determine the relay settings.

Reactor branch protection

A thyristor-controlled or thyristor-switched reactor is usually considered a separate zone of differ-
ential and coordinates with it. Conventional reactor differential and overcurrent relays are used.5 In
many designs, the reactor branch is connected to the SVC bus by a relatively slow motor-operated
disconnect switch. The relaying would then trip the SVC main breaker, the faulted element would
then be removed and the remainder of the SVC installation returned to service.

Capacitor branch protection

Conventional overvoltage and unbalance protection is applicable.6 The details are the same as
discussed in section 9.12.

Filter protection

Switching of SVC elements will introduce harmonics into the power system. Depending upon the
particular design, the manufacturer will provide the necessary filters and will provide, or recom-
mend, the protection required. The magnitude of the harmonic voltage generated depends on the
type of SVC, the SVC configuration, the system impedance and the amount of reactance switched.

In TSC branches, air-core reactors connected in series with the capacitors limit the rate of change
of inrush current generated from switching. This series combination also provides tuned frequency
filtering to a specific harmonic order.

In TSR branches, the triple harmonic currents (3, 9, 15, etc.) are removed by a delta or wye
ungrounded connection. The even harmonics are removed by symmetrical gating of the TCR
thyristors.

Thyristor protection

This protection is normally provided as a part of the thyristor control system. Typical protection
is provided for overvoltage, overcurrent, temperature and, where applicable, coolant flow and con-
ductivity.

9.14 Static compensator7

A static compensator (STATCOM) provides variable reactive power from lagging to leading, but
with no inductors or capacitors for var generation. This is achieved by regulating the terminal
voltage of the converter. The STATCOM consist of a voltage source inverter using gate turnoff
thyristors which produces an alternating voltage source in phase with the transmission voltage, and
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is connected to the line through a series inductance. If the terminal voltage of the voltage source is
higher than the bus voltage, STATCOM generates leading reactive power. If the voltage is lower
than the bus voltage, STATCOM generates lagging reactive power.

SVCs have generally proven to have lower equipment costs and lower losses. STATCOMs have
been used in transmission where land constraints, audible noise or visual impact are of concern.
STATCOM can provide both reactive power absorption and production capability whereas an SVC
requires individual branches for capacitors for var generation and reactors for var absorption.

9.15 Summary
In this chapter we have discussed the protection practices related to buses, reactors and capaci-
tors. Bus protection is almost exclusively some form of differential relaying, although overcurrent,
linear couplers and directional comparison relays are covered. Dry-type and oil-immersed reactors
use overcurrent, negative sequence, percentage differential or impedance relays depending on the
specific application. The main protection for capacitors is a function of their installation within a
station. Capacitor overvoltage protection is provided by fuses supplied by manufacturers. SVCs
and STATCOMs are gaining increasing popularity as a means of controlling both inductive and
capacitive reactive deficiencies at the point of their connection to the power system. The protection
is a combination of protection required for both reactors and capacitors and the special requirements
associated with the SVC and STATCOM design. In this chapter we have described the possible
protection schemes that are required. It is important to note that SVC and STATCOM protection is a
complex combination involving station design, conventional equipment protection and the specifics
of the equipment design. Coordination with manufacturers is essential.

Problems
9.1 Design the bus protection for the system shown in Figure 9.17. Show the location of the

primary CTs and draw the three-phase secondary wiring of the two bus differentials. Discuss
the relay applications involved.

Bus 1

Bus 2

O = Normally open
= Normally closed*

*

*

*

* *

*

O

O

O

O

O

O

Figure 9.17 System for problem 9.1

9.2 Repeat problem 9.1 for the bus configuration shown in Figure 9.18.

9.3 Develop a procedure to remove one of the circuit breakers from the bus configuration shown
in Figure 9.18 for maintenance, while continuously maintaining the bus protection specified
in problem 9.2.
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Figure 9.18 System for problem 9.2

9.4 Given three 765 kV, 50 Mvar (three-phase rating) shunt reactors, connected phase-to-ground,
with the neutral solidly grounded, specify a CT ratio and the settings for time-delay overcurrent
protection.

9.5 Design the differential protection for the reactor configuration of problem 9.4.
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10
Power system phenomena
and relaying considerations

10.1 Introduction
Historically, relays have been applied to protect specific equipment, i.e. motors, generators, lines,
etc. In so doing, the system benefits by removing the targeted devices when they are faulted,
thus eliminating the stress to the system itself and preventing further equipment damage and any
associated expensive and lengthy repairs. In addition, the system benefits by not being forced into
a temporary abnormal state. Systems, of course, must be robust enough to withstand removal of
any element but there is a limit to how far protection settings can anticipate the extent of the stress.

Systems can be forced into stressed, unplanned situations by operating beyond normally antici-
pated limits such as heavier than expected loads, abnormal weather, planned or unplanned equipment
outages or human error. These effects can result in wide-area blackouts with severe technical, eco-
nomic and social impact. This chapter will examine the system phenomena that can result in such
disturbances. Chapter 11 will introduce the protective schemes and devices that address and seek
to correct this problem.

10.2 Power system stability
As mentioned in the introduction, stability – or its loss – is the overriding concern in power system
operation. The system operates at close to its nominal frequency at all times, and all (synchronous)
rotating machines connected to the power system operate at the same average speed and in step
with each other. The generator speed governors maintain the average machine speed close to
its nominal value while random changes in load and network configuration are constantly taking
place, providing small disturbances to the network. When faults occur on major transmission lines
or transformers, the resulting disturbances are no longer small, and severe oscillations in machine
rotor angles and consequent severe swings in power flows can take place. The behavior of the
machines in this dynamic regime is very complex, and a single concept of power system stability
is not viable for all power system configurations. It has been found that three distinct classes of
stability can be identified for a power system.1 The three definitions of stability are as follows.

1. Steady-state stability. This is the property of a power system, by which it continues to operate
in its present state, and small slow changes in system loading will produce small changes in the
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operating point. A steady-state unstable system will drift off to unsynchronized operation from
its operating point when subjected to a slow small increase in load.

2. Dynamic stability. By this property, a small disturbance in the power system produces oscil-
lations which decay in time, and return the system to its predisturbance operating state. A
dynamically unstable system produces oscillations which grow in time, either indefinitely, or
lead to a sustained limited oscillation.

3. Transient stability. By this property, the power system returns to synchronous operation following
a large disturbance, such as that created by a sustained fault. A transient unstable system will
lose synchronism as a result of the fault, with groups of machines accelerating or decelerating
away from the synchronous speed.

Of these three stability concepts, steady-state stability and transient stability are of immediate
interest in protection system design. Dynamic stability is largely determined by the gain and time
constant settings of the various controllable devices (primarily the excitation systems of large
generators) on the power system. In this chapter we will only consider steady-state and transient
instabilities and their influence on relaying.

10.3 Steady-state stability
Consider the simple system consisting of one machine connected to a power system as, shown in
Figure 10.1. The internal voltage of the machine is Es and the machine reactance is Xs.

The equivalent impedance (Thévenin) of the power system is Xt and power system equivalent
voltage is E2. The voltage Es and the reactance Xs are determined by the context of the study: in
steady-state analysis one would use the field voltage Ef and the synchronous reactance Xd, while
for transient studies E′

q and X′
d would be appropriate. The total reactance between the machine

internal bus and E2 is X = Xs + Xt. The electric power output at the machine terminals (at bus S
or at bus 2) is

Pe = EsE2

X
sin δ (10.1)

where δ is the angle by which the machine internal voltage Es leads E0. The mechanical power
input to the machine is Pm, and in steady state electrical power and mechanical power are in balance
at a rotor angle δ0 which is zero when the machine is operating in steady state at δ0. The rate of
change of the output power Pe with respect to δ is given by

∂Pe

∂δ
= EsE0

X
cos δ (10.2)

which remains positive for −π/2 ≤ δ ≤ +π/2. This is the range of steady-state stability for the
system.2 As a generator our interest is in positive power output. Thus the steady-state stability limit
of interest is δ = π/2.

Es E1 E2

1 2

Xs Xt

S

Figure 10.1 Simple system for steady-state stability analysis
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Figure 10.2 (a) A circle in the P –Q plane transforms into (b) a circle in the R–X plane

The real and reactive power outputs of the machine (as measured at the machine terminals) are
given by

P1 + jQ1 = E1I
∗
1 (10.3)

At the steady-state stability limit of the machine, the rotor angle is π /2, and it can be shown that,
at the stability limit, P1 and Q1 satisfy the equation

P 2
1 +

[
Q1 − E2

1

2

(
1

Xt
− 1

Xs

)]2

=
[

E2
1

2

(
1

Xs
+ 1

Xt

)]2

(10.4)

This is an equation of a circle in the P1 –Q1 plane, as shown in Figure 10.2(a).
In the context of relaying to be discussed in Chapter 11, we are interested in determining the

response of a distance relay when the machine is operating at its steady-state limit. We will next
show that a circle in the P –Q plane maps into a circle in the apparent R–X plane. Whether or
not a machine approaches a limit (such as a steady-state stability limit) defined by a circle in the
P –Q plane can then be detected by the corresponding circle in the R–X plane, using a distance
relay.

Let us take a general circle in the P –Q plane, with its center at (P0, Q0), and a radius of S0:

(P − P0)
2 + (Q − Q0)

2 = S2
0

For example, in the case of the steady-state stability limit of equation (10.4), these parameters are
given by

P0 = 0

Q0 = E2
1

2

(
1

Xt
− 1

Xs

)

S0 = E2
1

2

(
1

Xt
+ 1

Xs

)




(10.5)

Consider the three circuits shown in Figure 10.3. Figure 10.3(a) shows a generator with output
P + jQ with a terminal voltage E. Figure 10.3(b) shows the generator with the same terminal
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Figure 10.3 (a) Generator connected to a power system. (b) The generator supplying the same power to a
parallel load. (c) The generator supplying the same power to a series-connected load. This is the apparent
impedance seen by an impedance relay

conditions but now supplying an impedance load R′ and X′ connected in parallel at the generator
terminal. The parallel impedances are next converted to series-connected R and X, which are related
to the terminal conditions by

P = E2R

R2 + X2
and Q = E2X

R2 + X2
(10.6)

Substituting equation (10.6) into equation (10.5), we obtain

(R − R0)
2 + (X − X0)

2 = Z2
0 (10.7)

This is an equation of a circle in the R–X plane with its center at (R0, X0) and a radius of Z0. It
can be shown that these parameters are given by

R0 = P0E
2

P 2
0 + Q2

0 − S2
0

X0 = Q0E
2

P 2
0 + Q2

0 − S2
0

Z0 = S0E
2

P 2
0 + Q2

0 − S2
0




(10.8)

The circle in the impedance plane for the steady-state stability limit is shown in Figure 10.2(b).2

For this case, we may substitute the values for P0, Q0 and S0 from equation (10.5), using E for
the machine terminal voltage, rather than E1 as in equation (10.5). We then obtain

R0 = 0

X0 = −(Xt − Xs)/2

Z0 = (Xt + Xs)/2


 (10.9)

This has also been referred to in section 7.8 and Figure 7.20 discussing loss of excitation.
An explanation as to why the steady-state instability is referred to as a loss-of-field condition
is necessary. Figure 10.4(a) shows the phasor diagram of the terminal voltage, stator current and
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Figure 10.4 Relationship between reduction in field current and the phasor diagram of generator voltage and
current: (a) changes in phasor diagram as field current decreases; (b) changes in apparent impedance seen by
a distance relay at the generator terminal as the field current decreases

the internal voltage of the generator Ef. Also shown is the field circuit, with a field current If.
Neglecting the effects of machine saturation, the voltage Ef and the field current If are proportional
to each other. We may use the phasor Ef (magnitude) to represent the field current.

If the field current of the generator decreases for whatever reason, the output power P is not
affected. Since the power P is equal to EI cos θ , where θ is the power factor angle, the projection
of the stator current I1 on the axis of E1 must be constant as the field current changes. This is
designated as ‘x’ in Figure 10.4(a). Now consider a reduction in the field current If. In order to
maintain the phasor relationship between Ef, E1 and I1 under these conditions, as Ef changes (drops
in magnitude) it must travel along the dashed horizontal line and the current I1 must travel along
the dashed vertical line as shown in Figure 10.4(a). This keeps the output power constant at P ,
while the stator current goes from a lagging power factor angle to a leading position. The machine
thus absorbs reactive power when the field current decreases.
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The ratio of E1 to I1 is the apparent impedance (R + jX) seen by a distance relay connected at
the terminals of the generator. Keeping ‘x’ constant, the apparent impedance travels along the circle,
crossing over from the first quadrant to the fourth quadrant. The characteristics of the impedance
relays which define the steady stability boundary are also shown in Figure 10.4(b). It should be
clear that as the field current of the generator drops, the generator goes from a lagging power
factor to a leading power factor, and the apparent impedance seen by a distance relay approaches
the steady-state stability boundary. Application of this principle to out-of-step relaying will be
considered in Chapter 11.

Example 10.1

Consider a 1000 MVA, 34.5 kV generator, with a synchronous reactance of 0.6 pu on its own
base, connected to a power system through a 1000 MVA transformer with a leakage reactance of
0.1 pu on its own base. The system may be assumed to have a Thévenin impedance of 0.2 pu
on a 100 MVA base. We are to determine the steady-state stability limit circles in the P –Q and
R–X planes.

Converting all impedances to a common base of 100 MVA, the generator and transformer reac-
tances are 0.6 × 100/1000 = 0.06 pu and 0.1 − 100/1000 = 0.01 pu, respectively. Thus, in the
notation of Figure 10.5, Xs is 0.06 pu and Xt is 0.21 pu. From equation (10.5), assuming that the
terminal voltage is 1.0 pu, it follows that the center of the stability limit circle in the P –Q plane
is located at

P0 = 0,Q0 = (1.0/2)(1.0/0.06 − 1.0/0.21) = 5.95 pu
and

S0 = (1.0/2)(1.0/0.06 + 1.0/0.21) = 10.71 pu

(c)

Es∠δ E1 E2

1
2

Xs

F

Er∠0

Xr

B
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Stableδ0

δ∞

A
ng

le

Time

(a)

(b)
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δmδcδ0

π − δ0

Accelerating 
Area

Decelerating 
Area

Figure 10.5 Principle of equal-area criterion of transient stability: (a) system diagram with a fault; (b) power
angle curve during fault and after fault clearing; (c) stable and unstable swings
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On a 100 MVA system base, the center of the steady-state stability limit circle is located at (0,
595) MVA and the radius of the circle is 1071 MVA. In the R–X plane, the center of the circle is
located at

R0 = 0, X0 = −(0.21 − 0.06)/2 = −0.075 pu

and

Z0 = (0.21 + 0.06)/2 = 0.135 pu

The base impedance on the 100 MVA base is (34.52/100) = 11.902 �. Thus, in terms of pri-
mary ohms, the coordinates of the center of the R–X circle are (0, −0.892) � and its radius is
1.607 �. If a distance relay is connected at the terminals of the generator, its settings must be
made in terms of the secondary ohms. If we assume a CT ratio of 20 000:5 (i.e. 4000:1), we
would have the full-load generator current of 1000 × 103/(

√
3 × 34.5), or 16 735 A produce a

secondary current of approximately 4.18 A. The VT ratio is 34.5 × 103/(
√

3 × 69.3) = 287.4 : 1.
Hence, the impedance conversion factor is ni/ne = 4000/287.4 = 13.92. Thus, the distance relay
zone for detecting the steady-state stability limit would be a circle, with its center at (0, −12.41)
� secondary, and the radius of the circle should be 22.37 � secondary.

10.4 Transient stability
Equation (10.1) shows the electrical power output of the generator when its internal voltage angle
is δ with respect to the angle of the equivalent voltage of the system to which it is connected. The
accelerating power Pa operating on the generator rotor is the difference between the mechanical
power input Pm and the electrical power output. The accelerating power is not zero when the network
is disturbed from its steady state. A fault and its subsequent clearing are such a disturbance. The
accelerating power sets the rotor of the machine in motion, and the law of motion in the rotational
frame of reference is the familiar Newton’s law:

2H

ωs

d2δ

dt2
= Pa = Pm − EsEr

X
sin δ (10.10)

where we have replaced E0 with Er, representing the receiving end voltage. H is the inertia constant
of the machine defined as the kinetic energy stored in the rotor at synchronous speed divided by the
MVA rating of the machine, and ωs is the synchronous speed of the machine. All other quantities
in equation (10.10) are in per unit. The units of the inertia constant are seconds, and for normal
machines driven by steam turbines the inertia constants vary between 4 and 10 s. For hydroelectric
generators, the inertia constants range between 2 and 4 s. Equation (10.10) can also be put on a
common system base, by converting all the voltages, reactances and the inertia constant by the
usual conversion formulas.

Example 10.2

Assume that the machine of Example 10.1 has an inertia constant of 7 s on its own base. On the
system base of 100 MVA, the inertia constant becomes

Hsystem = 7 − 1000/100 = 70 s
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Let the initial power transfer be 200 MW (2.0 pu on the system base), which results in an initial
rotor angle of S0 (assuming the voltages to be 1.0 pu.), given by

2.0 = 1

0.27
sin δ0; or δ0 = 32.68◦

With the synchronous speed of 377 rad/sec for the 60 Hz system, the equation of motion of the
machine is given by

2 × 70

377

d2δ

dt2
= Pa = 2.0 − 1

0.27
sin δ

0.371
d2δ

dt2
= 2.0 − 3.704 sin δ

It is interesting to calculate the frequency of small oscillations of this system, as it is often
quite close to the frequency of large oscillations produced by a transient stability swing. For small
oscillations around δ0, we may replace δ by �δ0 + �δ, and using the usual assumptions for small
�δ0, and recognizing that 3.704 sin δ0 is equal to 2.0, we get

0.371
d2�δ

dt2
− 3.704 × �δ × cos δ0 = −3.117�δ

This is the equation of motion of a pendulum, of the form

d2x

dt2
+ ω2x = 0

with an oscillation frequency of ω = (3.117/
√

0.371) = 2.9 rad/sec. This corresponds to a small
oscillation frequency of 0.461 Hz. Such low frequencies are typical of the electromechanical oscil-
lations, or ‘swings’, of large electric generators following faults and subsequent breaker operations.

As the steady-state equilibrium is disturbed by a fault, the effective reactance between the two
machines changes, and it changes again when the fault is cleared. As the reactance changes, and
the rotor angles cannot move instantaneously to compensate for this change, the rotor is subjected
to an accelerating torque, which depends upon the angle δ. The resulting equation of motion can
be solved by the familiar equal-area criterion2 in the case of a two-machine system.

Consider the simple two-machine power system shown in Figure 10.5. Before the occurrence of
the fault F the machine is operating at an initial rotor angle δ0 and the accelerating power is zero
as shown in the following equation:

Pa = Pm − EsEr

X
sin δ0 = 0 (10.11)

If a three-phase fault occurs at the terminals of the machine as shown in Figure 10.5(a), the electrical
power output of the generator goes to zero and the accelerating power of the generator becomes
equal to Pm. Under the influence of this power, the rotor angle increases until the fault is removed
by the circuit breaker B. This is shown to occur at a rotor angle δc, as shown in Figure 10.5(b).
After the removal of the fault, the electrical power Pe is greater than Pm because the rotor angle δc

is greater than δ0. The rotor now begins to decelerate, and will begin to decrease after reaching a
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maximum value δm. The principle which governs this motion of the rotor is known as the ‘equal-
area criterion’, and refers to the fact that at the maximum angle reached by the rotor the area in
the P − δ space while the rotor is accelerating is equal to the area when the rotor is decelerating.

It should be clear from Figure 10.5(b) that the maximum available decelerating area corresponds
to a maximum angle δm = π − δ0. If the total accelerating area is smaller than the maximum
available decelerating area, the resulting rotor oscillation is stable as shown in Figure 10.5(c) by
the solid line. Otherwise the oscillation is unstable, and rotor angle increases indefinitely, and the
machine is said to have lost synchronization. An unstable rotor motion is shown by the dotted line
in Figure 10.5(c). The protection problem associated with transient instability will be considered
in Chapter 11.

It should be remembered that the principle of the equal-area criterion is applicable only to a
system which can be represented by two machines connected by an impedance. For more complex
systems, other techniques of analysis are needed – for example transient stability simulation pro-
grams. However, even in those cases there are two distinct classes of rotor behavior, stable and
unstable, which must be detected and appropriate control action taken by out-of-step relays.

10.4.1 Apparent impedance during stability swings

As has been observed earlier, the stability swing is characterized by a movement of the rotor angle
over wide ranges. During a stable swing the rotor angle oscillates around an equilibrium point,
while during an unstable swing the rotor angle progressively increases (or decreases), and acquires
values beyond the ±2πr range. Consider the two-machine system shown in Figure 10.6. We will
assume that the receiving end voltage is the reference phasor, and the angle of the voltage Es

represents the position of its rotor. It is this angle which will vary during a stability swing. In order
to develop protection principles for instability detection, it is necessary to analyze the behavior of
current and voltage phasors in the power system for stable and unstable cases.

The phasor diagram for this case is shown in Figure 10.7. The current in the line is given by

I = EsEr

j(Xr + Xs + Xt)
= jB(Es − Er) (10.12)

where B is the total susceptance. If we assume Er to be the reference phasor, the current will
describe a circle as the angle δ of Es changes from 0 to 2π . If we further assume that the two
voltages are of equal magnitude (1.0 pu), the circle described by the current will pass through the
origin as shown in Figure 10.7. Now consider the voltages at the intermediate buses E1 and E2,
shown in Figure 10.6. E2 can be calculated from the voltage at the receiving bus:

E2 = Er + jXrI = Er + Xr

(Xr + Xs + Xt)
(Es − Er) (10.13)

or
(E2 − Er) + kEs, where k = Xr

(Xr + Xs + Xt)
(10.14)

Es∠δ E1 E2

1 2
Xs Xt

Er∠0

Xr

Figure 10.6 Two-machine system for analysis of phasors as δ is varied
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Figure 10.7 Phasor diagram for the system shown in Figure 10.6 for variable δ
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Figure 10.8 View of the phasor diagram for the system shown in Figure 10.6. Voltages at intermediate buses

Again, as Es describes a circle while δ varies between 0 and 2π , E2 also describes a circle, as
shown in Figure 10.7. Voltages at any other intermediate points – such as E1 – can be calculated
similarly, using the appropriate k for each location. A somewhat different way of expressing the
same relationships is shown in Figure 10.8.

The apparent impedance seen by a distance relay located at one of the intermediate points (say
at bus 1 in Figure 10.6) is the ratio of the voltage and current at that location. The voltages and
currents produced during a stability swing are balanced. As discussed in Chapter 5, all distance
relays respond to a three-phase fault, or to a balanced condition, in an identical fashion. For example,
the phase and ground distance relays located at bus 1 in Figure 10.6 will see an apparent impedance
Z given by

Z = R + jX = E1

I
(10.15)

We note that if the current I is 1.0, the voltage and the apparent impedance are numerically
identical. One could visualize the apparent impedance seen by the relay by plotting the phasor
diagram with the current as a unit reference phasor. If we redraw the phasor diagram of Figure 10.7
with the current aligned with the real axis, and use the current magnitude as a unit, we get the
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Figure 10.9 Locus of apparent impedances as seen during stable and unstable swings of a system

R–X diagram of Figure 10.9. Note that, in this figure, the apparent impedance seen by a relay at
a location is plotted from that point as the origin. This has the effect of creating an impedance
diagram, which is obtained by a rotation of the phasor diagram.

The line R–S now represents the total reactance (Xs + Xt + Xr) of Figure 10.6. The apparent
impedance seen by a distance relay located at bus R (if indeed a relay could be located there) is
represented by R–O, while the apparent impedances seen by distance relays located at buses 1, 2
and S are 1–O, 2–O and S–O respectively (Figure 10.9). For a greater value of the angle δ, such
as δ′, the current is greater. However, setting the increased current equal to (1.0 + j0), produces the
new origin O′, and the apparent impedances are the distances from R, 1, 2 and S to O′, as shown
in Figure 10.9. It should be clear that, as the rotor angle varies, the apparent impedances seen by
distance relays would also change, their apex lying on the locus of the point O. For equal voltages
at the sending and the receiving ends the locus is a straight line, while for unequal voltages the
locus is a circle.3 For a stable swing the excursion of the point O will be on a limited portion of
the locus, while for an unstable swing it will traverse from +m to −m, as the rotor angle varies
from 0◦ to 360◦.

It should be noted that the lengths of the segments S–1, 1–2 and 2–R represent the reactances
of the three elements in the power system. This must be so, since these represent the voltage
drops across each of these elements, and at a current of 1.0 the voltage drop equals the element
impedance. Since the distance relay characteristic is determined by the impedance of the line, we
are now in a very good position to follow the apparent impedance locus seen by distance relays
that are set to protect a given line.

10.5 Voltage stability
The primary causes of voltage instability are inadequate reactive support, heavy reactive power
flows and heavily loaded transmission lines. Voltage instability is often precipitated by single or
multiple contingencies. The phenomenon is very often illustrated by a curve usually referred to as
a ‘nose curve’, as shown in Figure 10.10, where the receiving end voltage is plotted against the
receiving end real power. The upper portion of the curve is the normal operating range calculated
for the static system condition. More realistic studies use a dynamic analysis and show two different
voltages for the same power delivered. The lower curve shows the performance for the unstable
voltage condition but for which a solution is possible. As �V tends to zero the margin of power
between the operating point and the point of maximum power approaches zero.4
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Figure 10.10 Voltage stability nose curve

To provide sufficient reactive support a variety of electronic devices are available (see Figures
9.13 and 9.14). It must be noted that reactive power (VARs), unlike real power (MW), cannot
be transmitted over long distances. This is due to the fact that VARs are caused to flow by the
difference in voltage and voltages on a typical transmission system are only ±5 % of nominal and
this small difference will not cause VARs to flow over long distances. Real power can be transmitted
over long distances through the coordinated operation of the interconnected grid whereas reactive
power must be generated at or near the load center.

Since VARs cannot be transmitted over long distances, the sudden loss of transmission lines
results in the immediate need for local reactive power. If this is not available, the voltage will
go down. For these reasons, voltage rather than frequency has become the key indicator that the
power system is under stress.4 Many of today’s loads are single-phase, small motors in contrast
to years ago when air conditioning and appliance loads were not prevalent and lighting and other
resistive loads were. The slow tripping of stalled motors and the relatively slow re-acceleration of
more robust motors results in low system voltage after a system fault has cleared, exacerbating the
system stress. The voltage stability phenomenon in the transient region is often closely involved
with angular stability discussed in section 10.4.

10.6 Dynamics of system frequency
When loss of generation, loss of load or out-of-step relay actions as described above cause a
mismatch to develop between the load and generation in a power system or in a portion of a power
system, the generators will either speed up (when generation is in excess), or slow down (when
load is in excess). As the generators slow down, they must be protected from reaching dangerously
low operating speeds, which may cause failures in turbine blades – especially those of the low-
pressure section of a steam turbine. The mechanical resonance frequencies of these blades lie close
to (but somewhat under) the system normal frequency. For a 60 Hz turbine–generator system, a
resonance may exist around 57 Hz, and should the generator frequency approach this value serious
damage to the turbine blades may result. Station auxiliary system motors may also be damaged by
continued operation at the reduced frequency. It is therefore imperative that the frequency decay of
an isolated system be arrested before generator protective devices isolate the plant from the system,
and further exacerbate a critical situation. It is the function of underfrequency load-shedding relays
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to detect the onset of the decay in system frequency, and shed appropriate amounts of system load,
so that the generation and load are once again in balance, and the power system can return to
normal operating frequency without disconnecting any generators from the system. Load-shedding
schemes have become quite important in present-day systems, where there is a lack of adequate
spinning reserve margins, and a shortage of tie-line capacity to make up for the lost generation by
importing large blocks of power from the interconnection. (Preferred strategies for load shedding
have been defined by a number of operating committees of the power engineering community, such
as the North American Electric Reliability Council, NERC, in the USA.)

Consider an islanded system, which has an excess load, and which starts at t = 0 with a balance
between load and generation at frequency f0 – usually close to the nominal operating frequency of
60 Hz. The system consists of many generators, and after the transient stability oscillations have
died out, the frequency of all the generators may be assumed to become equal. We combine all the
machine inertias into a total system inertia J0 by the formula2

J0 =
∑

JiSi∑
Si

(10.16)

where Ji are the individual machine inertias in kg m2 and Si are the corresponding machine power
ratings. An aggregate rotor angle δ is defined as the center of angle (COA):

δ =
∑

δiSi∑
Si

(10.17)

The equation of motion for the aggregate rotor is given by

J0
d2δ

dt2
= Ta = Tm − Te (10.18)

where Ta represents the accelerating torque, Tm the combined mechanical input torque to the system
and Te the combined electrical load torque. Multiplying both sides by the aggregate rotor speed ω

gives

ωJ0
d2δ

dt2
= ωTa = ωTm − ωTe = Pm − Pe =

∑
Gi −

∑
Li (10.19)

The inertia constant H introduced in equation (10.12) is related to J.H is the kinetic energy stored
in a machine at synchronous speed divided by its power rating. Let the total system power rating
be S0. Then

H0 = (1/2)J0 ω2
s

S0
(10.20)

Substituting for J0 in equation (10.18) gives

ω
2H0S0

ω2
s

d2δ

dt2
= Pm − Pe =

∑
Gi −

∑
Li (10.21)

Note that if we approximate ω by ωs, and convert the right-hand side of equation (10.12) to per
unit by dividing by S0, we get equation (10.12). Assuming ω equal to ωs is a valid approximation
in transient stability studies, where the frequency does not change by a large amount. However,
this approximation is not acceptable here, as we are primarily interested in determining the change
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in system frequency. We identify the system frequency as the rate of change of the aggregate
rotor angle

d2δ

dt2
= dω

dt
= 2π

df

dt
(10.22)

And thus equation (10.15) becomes

f (2H0/f
2
s )S0

df

dt
=

∑
Gi −

∑
Li (10.23)

If the generators have an average power factor rating of p, then

∑
Gi = pS0 (10.24)

and defining a relative load excess by a factor L

L ≡
∑

Li − ∑
Gi∑

Gi

(10.25)

equation (10.17) becomes

f
df

dt
= pL

2H0
f 2

s (10.26)

The above equation can be integrated directly, and using the boundary condition that at t =
0, f = f0, we get

f = f0

√
1 − pLf 2

s

2H0f
2
0

t (10.27)

As t goes to infinity, the frequency will decrease at an ever increasing rate. In reality, the load is
not independent of frequency, and decreases with a reduction in frequency. Thus, as the frequency
decreases, at some reduced frequency it balances the generation, and the frequency stabilizes at
that point. Consider a load which depends upon the frequency, with a constant decrement factor d ,
given by4

d = % load reduction

% frequency reduction
(10.28)

Let
∑

Li , the total system load, depend upon frequency in this fashion. Then, if
∑

Li is equal
to P10 at the initial frequency f0, at some other frequency it will be given by P1, where

d = (1 − P1/P10)

(1 − f/f0)
(10.29)

In terms of the factor d , the load excess factor L at some frequency f is related to the factor
L0 at frequency f0 by

L = L0 − (1 + L0)d

(
1 − f

f0

)
(10.30)
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Substituting this value of L in equation (10.19), the differential equation for the frequency decay
in this case is given by

f
df

dt
= − p

2H0

[
L0 − (1 + L0)d

(
1 − f

f0

)]
f 2

s (10.31)

After some manipulations, the solution to this equation, with the boundary condition of f = f0 at
t = 0, is given by

(f0 − f ) − f0

[
L0

(1 + L0)d
− 1

]
ln

[
1

1 − (f0 − f )(1 + L0)d/L0f0

]

= p

2H0
(1 + L0) d

f 2
s

f0
t (10.32)

This equation provides a limit f∞ as t → ∞:

f∞ = f0

[
1 − L0

(1 + L0)d

]
(10.33)

which is precisely the value of the frequency at which the frequency-dependent
∑

Li balances∑
Gi . Equations (10.27) and (10.32) are plotted in Figure 10.11 for assumed values of p = 0.85,

H0 = 10.0, L0 = 0.3 and d = 2.0. It can be seen that with a constant load, and a load excess
factor of 0.3, the frequency continues to decay with increasingly rapid rate, whereas with a load
decrement factor of 2.0 the frequency decline is arrested at 53.1 Hz. Similar curves for other cases
can be found in Chapter 21 of Applied Protective Relaying.2

It is sometimes necessary to determine the average rate of change of frequency during a
range of frequency variation, so that load-shedding relay settings could be determined. Recall
that equations (10.26) and (10.31) give us the rate of change of frequency at a single value of
frequency. We may calculate an approximate average rate of change over an interval by taking
an average of the rates at the two ends of the interval, or we may calculate the average rate by
taking a ratio of the frequency difference and the time interval. For example, if the average rate of
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Figure 10.11 Frequency decay in a power system due to generation shortage: constant and fre-
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frequency change over a frequency interval [f1, f2] is needed, using equation (10.27), the average
rate of frequency change is given by

f2 − f1

t2 − t1
= f 2

2 − f 2
1

(t2 − t1)(f2 + f1)
= f 2

s

f 2
1

pL

H

(f2 − f1)

(1 − f 2
2 / − f 2

1 )
(10.34)

If fs and f1 are approximately equal, we may make their ratio equal to 1, and the average rate
of frequency change R becomes4

R = pL

H

(f2 − f1)

(1 − f 2
2 /f 2

1 )
(10.35)

For f2 smaller than f1, R is negative, indicating a decreasing frequency. The rate of decay R is
used in setting the load-shedding relays, as will be seen in section 11.3.

10.7 Series capacitors and reactors
Series capacitors are applied to improve stability, increase power transfer capability, reduce losses
and voltage drop and provide better load division on parallel transmission lines. They may be
installed at one end of the line, at both ends or in the middle. The impedance value of a series
capacitor is typically 25–75 % of the line impedance. Capacitor overvoltage protection is part of
the manufacturer-supplied protection and usually consists of parallel power gaps or metal oxide
varistors (MOVs), the purpose of which is to limit the voltage across the capacitor if fault or load
current produces voltages high enough to damage the capacitor. A bypass breaker is also applied
for protection and operating flexibility.

The effect of series capacitors on other relays must be considered. In particular, distance relays
are adversely impacted by the discontinuity a capacitor introduces in the line impedance (see
section 5.10). Other relaying schemes must take into account the possibility of a power gap or MOV
failure, unsymmetrical gap flashing or MOV conduction. Current differential or phase comparison
schemes will work properly with series capacitors since the comparison in a series circuit will not
change. Transmission line charging current and the phase relationship of current at the two ends of
the line must be considered.

Series reactors are typically applied for better load division on parallel paths or to limit fault
current. They should have their own protection because certain internal faults may not be detected
by the line relays. Such protection usually includes differential and distance relays. Series reactors
can be bypassed with a circuit switcher or other switching device. Relay setting changes will usually
be required when the reactor is bypassed. This can be accomplished with an adaptive relay system.

10.8 Independent power producers
The advent of de- or re-regulation in the late 1990s5 allowed entrepreneurs to own power-producing
facilities and connect to existing utility transmission lines, usually at the distribution level. Termed
independent power producers (IPPs) or nonutility generators (NUGs), these entities were intended
to provide additional capacity and offered a potential significant savings to consumers. The result
was never realized fully, as residential consumers were hesitant to connect to a nonutility service.
However, the IPPs did attract industrial and commercial load, often contracting with facilities
remote from the local utilities’ service area.

Despite the uncertainty regarding the eventual advantages of this concept, the immediate impact
on system operation was significant. In general, nonutility-owned generation on the distribution
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system introduces several problems. The generation is not directly dispatched by the utility control
center and therefore is not easily included in the generation/load schedule. The primary aim of the
IPP is of course profit, and quality of service becomes a secondary issue. As a result, stringent
contractual obligations are imposed to allow the utility dispatcher to effect a reliable operating
agenda. A promising solution to this problem is being implemented by many utilities. This is the
creation of microgrids3 in the distribution system. Such grids are basically self-sufficient islands
where the generation and load are matched. In the event of trouble in the distribution system the
microgrids are automatically invoked, maintaining service to a majority of customers.

In addition to the dispatching problem there are important relaying problems introduced. With
generators dispersed throughout a distribution system the direction of fault current becomes unpre-
dictable. Replacing time-delay or instantaneous overcurrent relays with directional relays wherever
a problem of directionality exists is of course possible at a significant cost. In addition, it is essential
that the IPP and the utility cooperate fully to ensure that the magnitude of the fault contribution is
known and the timing of the installation is known. Another solution, but one that must be covered
by contract, is the permission for distributed generators to be tripped at the first indication of a
fault, before the distribution relays can operate. This can be done by local relays or a transfer trip
scheme involving a communication system.

10.9 Islanding
When groups of machines in a power system lose synchronism, they separate from the power system,
and system islands are formed. Each resulting island should have a balance between generation and
load in the island, so that islands can continue to operate at nominal frequencies, and in time can
be reconnected into an integrated network. In practice such a balance between loads and generation
within the islands may not exist, in which case some additional corrective actions (such as load or
generation shedding) must be employed to achieve some sort of normalcy within the islands.

As will be seen in Chapter 11, island formation and restoration is accomplished by automatic load
shedding and restoration schemes. In addition, operating procedures are determined from offline
planning-type simulations for resynchronizing the islands. As with many other relaying functions,
the power system is often in a state which has not been anticipated during the planning studies,
and consequently some of these schemes may not operate as expected in practice.

In recent years much emphasis has been placed on system integrity protection schemes (SIPS),
also known as remedial action schemes or system protection schemes. These schemes take into
account the prevailing power system conditions by obtaining measurements of key parameters in
real time. The most promising technique is to use wide-area measurements (such as synchronized
phasor measurements) and determine appropriate islanding and restoration strategies based upon
these measurements. However, this whole field is in its infancy, and much theoretical work needs
to be done (and is being done) before practical solutions based on real-time measurements can be
found.

10.10 Blackouts and restoration
Wide-area electric power outages, commonly referred to as blackouts, have been more prevalent
in recent years and are receiving worldwide attention, both in the popular news media and in
engineering organizations. Analysis of the events leading to and resulting in a power outage over
an extensive geographic area concludes the following sequence.6

1. The system is stressed beyond normal conditions. This can be the result of unusual weather
resulting in unanticipated power demand, unplanned or abnormal equipment outages, or heavier
than normal transmission line loads.
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2. Generator or transmission line outages as a result of a fault. Normally the system is designed
to withstand such outages but coupled with point (1) the entire system is further stressed.

3. Inappropriate control actions. The control operators are trained to respond to abnormal system
stress and performance but if their information is inaccurate or incomplete they can respond
incorrectly exacerbating the situation.

4. Cascading. As a result of points (1), (2) and (3) additional system elements are lost.
5. Loss of synchronism.
6. Blackout.

Analysis of blackouts has revealed that they are never the result of a single event. It is the
outcome of a stressed system, correct or incorrect equipment or relay operations and possible
personnel error. The fundamental system design criterion of being able to withstand one or more
outages and the relay philosophy of high dependability at the cost of somewhat reduced security
may, under abnormal system conditions, be a contributor to further stress and eventual outage.

It should be further noted that the effect of open access and de- or re-regulation5 may be a factor
in the higher incidence of blackouts. In recent years there has been a shift in the load–generation
relationship with competition among power producers and an accompanying focus on profitability
that is replacing concerns for high reliability and good service. This has resulted in a decrease in
infrastructure improvements and restrictions on information exchange.

Among the many blackouts that have occurred, several offer interesting and instructive infor-
mation that should be studied to avoid or minimize future occurrences. The detailed sequence of
operation is available in the reports cited in the references but the description below presents the
initiating cause, overall impact and lessons learned.

Northeast blackout, November 9, 19657

Popularly referred to as the ‘granddaddy’ of them all, this power failure affected 50 million people
from New York City up through New England and parts of Canada. The primary cause was the
setting of remote breaker-failure admittance relays set nine years earlier to provide remote breaker
failure protection. On November 9, 1965 a phase angle regulator was adjusted in upper New York
to correct voltage, resulting in an increase in load from the Adam Beck plant in Niagara feeding
five lines to Ontario, Canada. The increase in load caused the remote breaker-failure relays to trip
one line, increasing the load on the remaining four lines which then also tripped. The resulting
load distribution back into the USA caused transmission lines to overload and generators to trip by
loss-of-field or inadequate governor response, eventually blacking out the entire northeastern USA.
The lessons learned resulted in a complete review of utility planning practices, establishing the
North American Electric Reliability Council (NERC), establishing underfrequency load shedding
standards throughout the USA and Canada, reevaluating loadability of admittance relays and relay
performance during system stress.

New York City power failure, July 13/14, 19778

This was a classic case of multiple events, each of which was rare and improbable, but all combined
to black out New York City for two days resulting in riots, looting and millions of dollars lost in
business and social impact. Two lightning storms, 10 minutes apart resulted in losing four 345 kV
lines feeding the city from Westchester. Two of the lines tripped due to carrier problems, a line
from New England tripped due to a damaged directional relay contact, one Indian Point nuclear unit
tripped due to an incorrect breaker failure timer setting, reclosing was prevented on all lines due
to restrictive check-synchronizing relay settings and the control room operators in separate control
rooms were not fully aware of the situation and delayed manually shedding load. As a result of this
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blackout, tower grounding counterpoises were improved, the two control rooms were reconfigured
into one, reclosing settings were revised, load shedding procedures were reviewed and are now
tested periodically and barge-loaded generators on the East River surrounding New York City are
started as soon as weather reports indicate impeding weather problems.

French blackout, December 19, 1978

At 8:00 a.m. there was one operator on shift waiting for a shift change at 8:30 a.m. Load in excess
of forecast accompanied by deficiencies in generation capacity led to excessive reactive load and
low voltage on generator auxiliary buses tripping several units. Underfrequency load shedding and
planned system islanding did not operate as expected and planned. As a result better planning of
reactive supply and a revision in automatic distribution transformer load tap changing have been
instituted. Islanding is now automatic and load tap changing is manually directed from the control
center when the system is stressed.

Western US system breakup, July 2, 19969

Temperature and load were very high in the western USA, as were power exports from the Pacific
Northwest to California and the AC and DC ties. A flashover to a tree on a 345 kV line tripped
the line, a ground unit on the adjacent line mis-operated. A special stability control scheme tripped
two units when two of the three lines were out which should have stopped the cascade. However
a voltage depression followed by a zone 3 operation due to load led to controlled and uncon-
trolled load shedding which led to a breakup into five small islands and blackout in five western
states. Recognizing that a power system can never be 100 % reliable, and trying too hard may
be too costly, the best approach was considered to be defense in depth. This includes a vigorous
tree-trimming program, a thorough review of system restoration and protective relaying settings
including undervoltage load shedding, automatic reactive power compensation and improved online
security assessments and data exchange among utilities and control centers.

USA/Canada blackout, August 14, 200310

This event started in the early afternoon of a summer day with no unusual weather or line loadings.
A generator in Ohio was shut down according to schedule. The resulting change in power flows and
voltage resulted in a 345 kV line sagging into a tree despite operating within its nominal rating.
This resulted in other line overloads and voltage reduction. Unfortunately the control operators
responsible for this area did not recognize the urgency of the situation. A SCADA system was not
operating, a zone 3 relay on a key interconnection operated on load as well as other lines relaying
out, creating islands within the Eastern Interconnection. The largest island was undergenerated and
collapsed despite extensive underfrequency load shedding. Voltage collapse occurred throughout the
area. A smaller, overgenerated island survived and was used as a starting point to enable restoration.
Over 50 million people and the entire northeastern USA and part of Canada made this the largest
blackout ever experienced, surpassing the 1965 event. Analysis of all of the events was initiated
by NERC and joint USA/Canadian committees resulting in a series of recommendation concerning
relaying settings, SCADA performance and operator training.

Italian power failure, September 28, 2003

The blackout was initially triggered by a tree contact on a 380 kV line. Several attempts to reclose
automatically failed as did a manual attempt seven minutes later. The Swiss control center tried
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to relieve overloads in Switzerland by reducing Italian imports but it was insufficient. This fur-
ther overloaded other Swiss lines causing interconnections between Switzerland and Italy to trip,
resulting in low voltage in northern Italy and tripping several Italian power plants. Two-and-a-half
minutes after being disconnected from Europe, Italy suffered the severest blackout in its history.

Restoration

Blackouts can be made less likely if the system design is such that extreme system stress is avoided.
Designing a ductile system instead of a brittle system would be very helpful.1 Although random
events are beyond control, loss of reactive power and its effect on voltage must be considered.
Recent advances in digital devices makes more intelligent control possible as has the introduction of
SIPS discussed in section 11.2. Planned islanding, i.e. separating segments into areas with balanced
load and generation, would allow much of the system to maintain service and reduce the blacked
out area to a minimum and ease the resynchronizing effort.11

10.11 Summary
In this chapter we have discussed system concerns which impact protection practices. Chapter 11
will present the specific relaying that is required in response to these concerns. The chief concern
in all power system protection applications is the loss of synchronism from transient instability. In
recent years, voltage instability has been identified as yet another form of instability and the theory
has been more fully developed. A summary of some of the world’s most catastrophic blackouts
has been presented, primarily to examine the relaying involved, and describe the lessons learned.

Problems
10.1 Prove equation (10.5). To do this, first determine the terminal voltage of the generator, given

that its internal voltage phase angle is π /2 with respect to the infinite bus. Then find the line
current and, using equation (10.4), prove the required result.

10.2 Show that equation (10.9) follows from equation (10.8), with the definitions given in equation
(10.10). What is the result in the R–X plane, if the circle in the P –Q plane passes through
the origin?

10.3 Show that, as t tends to ω, the frequency of the power system reaches a limit given by
equation (10.33).

10.4 For a system with a capacity of 10 000 MW, an average power factor of 0.8 and an average
H constant of 15 s, calculates the rate of change of frequency decay upon a loss of a
1000 MW generating unit. Use the exact formula, equation (10.26), and compare your result
with that obtained with the approximate formula, equation (10.35).

10.5 If the load decrement factor d for the system of problem 10.4 is 2.5, what is the final
frequency of the system, assuming no load shedding takes place?

References
1. Stevenson Jr, W.D. (1982) Elements of Power System Analysis , 4th edn, McGraw-Hill, New York.
2. Westinghouse (1976) Applied Protective Relaying , Westinghouse Electric Corporation, Newark, NJ,

Chapter 19.



References 263

3. Hatziargyriou, N., Asano, H., Iravani, R. and Marnay, C. (2007) Microgrids. IEEE Power & Energy , 5
(4), 78–94.

4. IEEE Committee Report (1990) Voltage Stability of Power Systems; Concepts, Analytical Tools, and Indus-
try Experience, IEEE publication 90 0358-2-PWR, New York.

5. FERC (1996) FERC Order 888, Final Rule, open access docket RM95-8-000.
6. Horowitz, S.H. and Phadke, A.G. (2006) Blackouts and relaying considerations. IEEE Power & Energy ,

4 (5), 60–7.
7. US Federal Power Commission (1965) North East Power Failure, November 9–10, 1965 , US Government

Printing Office, Washington, DC.
8. Federal Energy Regulatory Commission (1978) The Con Edison power failure of July 13 and 14, 1977.

Final staff report. US Department of Energy.
9. Taylor, C.W. and Ericson, D.C. (1997) Recording and analyzing the July 2 cascading outage. IEEE Comput.

Appl. Power , 10 (1), 26–30.
10. US–Canada Power System Outage Task Force (2003) Final Report, www.doe.gov.
11. Horowitz, S.H. and Phadke, A.G. (2003) Boosting immunity to blackouts. IEEE Power & Energy , 1 (5),

47–53.



11
Relaying for system performance

11.1 Introduction
The traditional goal of protective devices is to protect power system equipment. This is achieved
by detecting a fault or undesirable performance and taking corrective action which in most cases
involves tripping appropriate circuit breakers. Thus one could say that the principal task of relays
is to disconnect equipment or subsystems from the overall power system. Normally, this is the
appropriate action. Systems are designed to be robust, i.e. to withstand the removal of one or
several elements without unduly stressing the overall system. This was discussed in Chapter 1 and
is the basis for preferring dependability over security. It is as well to recognize that the built-in,
inherent strength of the power system is the best defense against catastrophic failures. However, if
the system is already stressed for whatever reason, such as equipment outages, heavier than normal
loads, extreme weather, etc., this corrective action may exacerbate the situation and result in wide-
area outages. The condition that will result in a stressed system that eventually could become a
blackout is covered in detail in Chapter 10. In this chapter we shall discuss the specific relay actions
that are designed explicitly to avoid or minimize such outages.

11.2 System integrity protection schemes
As discussed above, a conventional protection scheme is dedicated to a specific piece of equipment
(line, transformer, generator, bus bar, etc.). However, a different concept must be developed which
would apply to the overall power system or a strategic part of it in order to preserve system stability,
maintain overall system connectivity and/or avoid serious equipment damage during major events.
For several years the concept was called special protection system (SPS) or remedial action system
(RAS). In 1988 a survey by CIGRE reported a total of 9 schemes in service in 18 utilities throughout
the world. This survey was updated in 19961 by a joint working group of CIGRE and IEEE and it
was recognized from the utilities’ response that the schemes were no longer ‘special’ but were, in
fact, included in virtually every utility’s overall protection practice.

In 2002 the Power System Relaying Committee updated this survey2 and renamed the concept
system integrity protection scheme (SIPS) with the following definition: ‘To protect the integrity
of the power system or strategic portions thereof, as opposed to conventional protection systems
that are dedicated to specific power system elements.’

Typical of such schemes are:

1. underfrequency load shedding
2. undervoltage load shedding
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3. out-of-step tripping and blocking
4. congestion mitigation
5. Static var compensator (SVC)/static compensator (STATCOM) control
6. dynamic braking
7. generator runback
8. black start of gas turbines
9. system separation.

It is beyond the scope of this book to describe the details of all of these schemes, but the reader
should be aware that they are active, effective and should be studied. However, some of the more
popular schemes will be covered below.

11.3 Underfrequency load shedding
Section 10.6 derived the equations governing the frequency decay following a loss of generation or
increase of load. For gradual changes the governor response is sufficient to maintain synchronism but
with sudden loss of generation the governors are not fast enough and if all generators are operating at
maximum capacity, spinning reserve is not available and it is necessary to automatically drop load.
The load-shedding relays may be electromechanical, solid-state or computer-based. The measuring
element senses a frequency equal to its setting, and will operate after a certain amount of time has
elapsed after the frequency passes through its setting on its way down. The relay time, the delay
time and the breaker-tripping time all add up to a delay of the order of 10 cycles or more. If the
rate of change of frequency can be estimated, as with equation (10.35), then the frequency at which
the load is actually tripped can be determined. The setting of the next step of the load-shedding
relay can then be made with a certain safety margin. This procedure is illustrated by the following
example.

Example 11.1

For a system with 10 000 MW connected load, a generating station delivering 1500 MW is lost
due to a contingency. If the aggregate inertia constant is 5 seconds, determine the settings of the
underfrequency relays which will accomplish a load-shedding plan to drop 1500 MW of load in
two steps of 750 MW each. The total relay plus interrupting time of 15 cycles may be assumed at
each step.

We will set the first step of the load shedding at 59.5 Hz. The load excess factor immediately
after the generating station is lost is

L = 10 000 − 8500

8500
= 0.1765

The average rate of frequency decline in the range 60 to 59.5 Hz is given by equation (10.34),
assuming a power factor of 0.85, as

R = 0.85 × 0.1765

5.0
× 59.5 − 60.0

1 − 59.52/60.02
= −0.9039 Hz/sec

At this rate, 59.5 Hz will be reached in (0.5/0.9039), or 0.553 seconds. With a tripping delay of
15 cycles (0.25 seconds), the frequency will decline further by 0.25 × 0.9039 or 0.226 Hz. Thus,
the load of 750 MW will be shed at an actual system frequency of (59.5 − 0.226), or 59.274 Hz.
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The actual load shedding of 750 MW will thus occur (0.726/0.9039) = 0.8032 seconds after the
generating plant is lost.

Allowing for a safety margin of 0.2 Hz, the next step of load shedding can be set at 59.3 − 0.2 =
59.1 Hz. Returning to the original disturbance, the excess load ratio now becomes

L = 9250 − 8500

8500
= 0.0882

The average rate of frequency decline in the range 59.27 to 59.0 Hz is

R = 0.85 × 0.0882

5.0
× 59.0 − 59.27

1 − 59.02/59.272
= −0.4454 Hz/sec

At this rate, 59.1 Hz will be reached in (0.174/0.4454) = 0.39 seconds. The load will be shed
in an additional time of 15 cycles; hence the frequency at which the load will be shed will be
59.1 − 0.4458 × 0.25 = 59 Hz. The two-step load shedding will be accomplished in a total time
of (60.0 − 59.274)/0.9039 + (59.274 − 59.0)/0.4458 = 1.409 seconds. At this point, a complete
balance between the load and generation will be established, and the frequency will begin to return
to its normal value of 60 Hz.

The actual relay characteristic furnished by the manufacturer must be consulted for the detailed
design of the load-shedding scheme. Additional details of the procedure to be followed in practical
cases can be found elsewhere.3

The size and steps of the load-shedding scheme must be established by studying the possible
system scenarios which may require load shedding. Consider a system with an installed plant
capacity of 10 000 MW, with the largest single unit capacity being 1000 MW, there being up to
two such units in one generating station. Let us further assume that the system imports 600 MW
from its tie lines with the neighbors. A credible set of contingencies could be the loss of one or two
generators, and the tie line. Thus the steps in which the generation could be lost would consist of:

1. 600 MW (loss of the tie line)
2. 1000 MW (loss of one generator)
3. 1600 MW (loss of one generator and the tie line)
4. 2000 MW (loss of two generators)
5. 2600 MW (loss of two generators and the tie line).

In order to meet these contingencies, one could design a load shedding scheme of five steps:

1. 600 MW
2. 400 MW
3. 600 MW
4. 400 MW
5. 600 MW.

Appropriate steps should be selected so that 2600 MW can be dropped before a dangerously
low frequency of 57 Hz is reached. The general principles of determining the relay settings are
illustrated in Example 11.1 above.

The load-shedding relays are installed in distribution or subtransmission stations, where feeder
loads can be controlled. Loads throughout the system are classified as being critical or noncritical.



268 Relaying for system performance

Only noncritical loads are subject to shedding. Feeders which meet the power rating needed for
load-shedding steps are identified, and are assigned to appropriate steps of the load-shedding relays.
In some instances, load shedding may be controlled from a central location under the control of the
supervisory control system. This is particularly useful when the load shedding is called for before
the system is islanded, and the frequency begins to decline.

Load that has been shed must be restored when the system frequency returns to normal. Automatic
load-restoration systems are in service, which accomplish this function. Load restoration must
also be done in steps, with sufficient time delays, so that hunting between the load-shedding and
restoration relays does not occur. There is divided opinion as to the order in which the load is
restored. Either the first-in-first-out or the first-in-last-out strategy may be used.

11.4 Undervoltage load shedding4

The problem of voltage stability has been discussed in section 10.5. This problem is relatively new
to system protection due to the changes in the characteristic of the total system load. The initial
application of electric energy involved heating and lighting, i.e. primarily resistive load. When the
balance between generation and load was upset, it was the system frequency that changed and either
an increase in generation or underfrequency load shedding would restore the frequency. However,
as air conditioning and other small motor appliances proliferated, it was the system voltage that
was affected. A motor is essentially a constant kVA device so the current would increase when the
voltage went down, decreasing the voltage even further.

The solution, of course, is to either add additional reactive support or remove the load. The
SVC and STATCOM described in sections 9.13 and 9.14 automatically provide the additional
reactive support to the level of their capability. If it does not correct the situation sufficiently an
undervoltage load shedding (UVLS) scheme must be employed. Traditionally, UVLS schemes are
in a distributed flat architecture, i.e. the system functions locally and independently, much the same
way as an underfrequency load shedding scheme operates. The measurement and disconnecting
devices are located within a given substation without any recourse to communication and/or a
control center.

For localized UVLS schemes it is desirable to use different bus voltages within the same high-
voltage level, as the true system voltage condition will appear on all buses of the station. Connecting
the relays to sense the voltage on all three phases ensures that a fault on one phase is not misin-
terpreted as a system undervoltage event. For schemes with hierarchical characteristics involving
multiple stations, additional factors such as reliability of the communication system, overall through-
put and added monitoring and alarming systems must be considered. Whether the UVLS is local
or hierarchical, the design must maintain operating flexibility for measuring, arming, performing
and maintaining security.

The phenomenon of voltage stability is very often illustrated by the so-called nose curve, as
shown in Figure 10.10, where the receiving end voltage in a transmission system is plotted against
the receiving end real power. The nose curve is a static description of the transmission system
capability. If dynamic aspects are taken into consideration, which is necessary for a complete
analysis, the nose curve has to be modified.

11.5 Out-of-step relaying
In section 10.3 we discussed the system phenomenon associated with steady-state stability. We now
are interested in the determining the response of a distance relay during power swing conditions.
Referring to Figure 10.6 of section 10.4, consider the distance relay used to protect line 1–2, at the
bus 1 end. We will assume that the receiving-end system consists of additional lines in series: 2–3
and 3–4. We will also reintroduce the resistances of the transmission lines. The impedances are
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Figure 11.1 Impedance loci for stable and unstable swings and their impact on step distance relays

now as shown in Figure 11.1. Each of the lines is assumed to be protected by a three-zone stepped
distance mho relay. For the sake of clarity, characteristics of only two sets of relays, R12 and R23,
are shown in Figure 11.1. Also shown is the excursion due to a stable and an unstable swing. It
can be seen that both the swings may penetrate one or more zones of one or more distance relays.
If no other measures are taken, and the impedance stays in a zone long enough, one or more relays
in this system will trip. It should be noted that when the power system is more complex, the stable
and unstable swings are no longer along the arcs of circles. More often, they have complex shapes,
an example of which is shown in Figure 11.1 as ‘other swings’.

There are two aspects to the problem of out-of-step relaying. First, a trip under stable swings
is unwarranted, and should be avoided at all costs. Second, during an unstable swing, a trip may
be desirable, but it should be permitted at locations of choice. Thus, an uncontrolled trip during
unstable swings should also be avoided. Both of these requirements are satisfied by the out-of-
step relays. Consider the power system shown in Figure 11.2. The generator output powers are
approximately equal to the total load on the system. Let us assume that G1 is approximately equal
to the sum of two loads L2 and L4, while G3 is approximately equal to L5. If this system becomes
unstable due to some transient event, it would be desirable to break the system along the dotted
line, so that the two halves of the system will have an approximate balance between generation
and load. It is thus desirable to detect the out-of-step (unstable) condition at all locations, and
block tripping for all lines, except for lines 2–3, 2–5, 4–5, where tripping should be initiated. The
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Figure 11.2 Out-of-step blocking and tripping functions for relays
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out-of-step relaying tasks can be broken into two stages: one of detection and the other of tripping
or blocking.

The detection function is served by out-of-step relays, which consist of multiple characteristics.
Remember that a fault causes the apparent impedance to come into the zones of a step distance
relay, and so does a stability swing. We must be able to distinguish between a fault and a swing. The
primary point of distinction is the speed with which the two phenomena occur: a fault trajectory
moves into a zone almost instantaneously (within a few milliseconds), while a stability swing
moves more gradually. If we assume an oscillation frequency for the swing of the order of 0.5 Hz
as suggested by Example 11.1, the excursion from the farthest to the nearest point on the impedance
trajectory would take one half the period of the 0.5 Hz oscillation, or about 1 second. We may thus
time the passage of the impedance locus in the R–X plane, and if it travels relatively quickly,
declare it to be a fault, and take the corresponding action. In contrast, if the transition is gradual,
we would declare it to be a stability swing. We then must determine if it is a stable or an unstable
swing. This is usually done by simulating numerous stability swings of the system in question
with a transient stability program. The impedance trajectory seen by the distance relay for each
of the stable cases is examined. It will be found that all stable swings come no closer than a
certain minimum distance from the origin of the R–X plane. This suggests that a zone with a
setting smaller than this minimum distance should be chosen to detect an unstable swing. If the
trajectory is detected to be that due to a stability swing, and further if it encroaches upon this small
impedance zone, an unstable swing can be concluded. If a stability swing does not encroach into
this zone, the swing is determined to be a stable swing. Upon detecting an unstable swing, an out-
of-step condition is declared, and appropriate tripping or blocking action may be initiated depending
upon the requirements of the system-splitting strategy established according to the considerations
discussed with reference to Figure 11.3.

Typical out-of-step relay characteristics are shown in Figure 11.3. Figure 11.3(a) shows the use
of two concentric impedance circles, while Figure 11.3(b) shows the use of straight lines, known
as ‘blinders’. (The blinder characteristics are obtained by using a rotated reactance characteristic
discussed in Chapter 5.) The inner zone is used to detect an unstable swing as discussed above. A
timer is set slightly greater than the longest dwell time of an unstable swing between the inner and
the outer zone. The outer zone is used to start a timer, and if the impedance locus crosses the inner
zone before the timer runs out an unstable swing is declared. If the inner zone is never entered
after the outer zone is entered, a stable swing is concluded. No tripping is permitted in the case
of a stable swing, while tripping or blocking is initiated after an unstable swing is detected. If the
outer and inner zones are entered in very quick succession, a fault is declared.

R

X

R

X

Outer zone

Inner zone

(a) (b)

Figure 11.3 Relays for detecting out-of-step condition by using distance relays and timers
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It should be noted that the stability swing is a balanced phenomenon, and hence any zero or
negative sequence currents accompanying the transient should disable the relaying out-of-step logic,
and revert to fault-detecting logic.

Example 11.2

For the system of Example 10.1, determine appropriate zone settings for an out-of-step relay to
be located at bus 1. Assume that the ‘system’ Thévenin impedance of 0.2 pu is actually made
up of three line sections1–2, 2–3, 3–4, having positive sequence impedances of 0.1, 0.05 and
0.05 pu. (Figure 11.4 shows the system and R–X diagram.) Assume that the line resistances can
be neglected. All stable swings are found to produce rotor angle excursions ranging between 15◦
and 110◦, while unstable swings are expected to produce pole-slipping conditions.

We will assume equal voltages at the sending and receiving ends of the system. Noting that
the impedance line S–R is vertical (i.e. there is no resistance in the lines), we can calculate the
distance between 1 and O, as the subtended angle changes between 15◦ and 110◦, by trigonometry.
The height of the triangle with a base of 0.27 pu (total system reactance), for these two angles is

h1 = 0.27/2

tan 15◦/2
= 1.025 pu and h2 = 0.27/2

tan 10◦/2
= 0.094 pu

The distance from point 1 for the two conditions is now determined as

d1 =
√

1.0252 + (0.135 − 0.06)2 = 1.028 pu

and

d2 =
√

0.0942 + (0.135 − 0.06)2 = 0.12 pu

1 2
j0.06 j0.01 j0.05

S 3
j0.05 j0.10

4 R
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Figure 11.4 System and R–X diagram for Example 11.2
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Parameter d2 determines the nearest excursion of a stable swing for the relay located at bus 1.
Allowing for a safety margin, a setting for the inner zone of about 0.1 pu may be adopted. The
outer zone may be set at 0.15 pu. Although oscillation periods of about 2 seconds are expected for
this case, the timer settings to determine whether a fault or an unstable swing exists may be set
at a short value, say about 20 ms. If the transition between the outer and the inner zones is faster
than 20 ms, a fault would be indicated. Another timer setting – say about 100 ms – would help
distinguish between a stable and an unstable swing. If the outer zone is entered, but the inner zone
is not entered even after 100 ms have elapsed, a stable swing would be detected. If the outer zone
is entered, and the inner zone is entered within 20–100 ms after that, an unstable swing would be
detected and appropriate blocking or tripping commands issued.

It should be noted that the zone settings determined above are on the system base. The conversion
to primary ohms, and then to secondary ohms, must be made to determine the actual relay set-
tings. Also, a supervision scheme must be provided, which would bypass the out-of-step condition
detection, if an unbalance in the currents is detected.

It is conceivable that for some high-impedance faults, a fault may enter the outer zone, and stay
there long enough, before evolving into a solid fault and entering the inner zone. If the timing
of these events is accidentally matched to the out-of-step relay settings, such an event may be
interpreted as an unstable swing. Of course, if the fault is an unbalanced fault, the out-of-step relay
would not be operative. In any case, such a combination of events is extremely unlikely.

11.6 Loss-of-field relaying
The steady-state stability limit and its equivalence to reduction in field current of a generator has
been discussed extensively in section 10.3. It should be remembered that the critical conditions for
the generator are the characteristics in the fourth quadrant of the P –Q plane. There are two possible
limiting conditions: the end-iron heating limit or the steady-state stability limit. The former is a
characteristic of the generator, and is fixed for a given machine. The latter is dependent on machine
reactance and the equivalent system impedance as seen at the machine terminal. Whichever of these
limits is smaller in the P –Q plane determines the limit which must be honored in operating the
machine. (See equation (10.5) where the machine impedance and the system impedance are seen
to affect the radius of the limiting circle in the P –Q plane.) A smaller limiting circle in the P –Q

plane corresponds to a larger circle in the R–X plane, and that should be the setting used for the
offset impedance relay used to detect the loss-of-field condition.

A two-zone offset impedance relay connected at the machine terminal as shown in Figure 10.4
is used to detect the loss-of-field condition. The inner zone is the actual limit (determined either
by the end-iron heating condition or steady-state stability condition), and a somewhat greater outer
zone is set to create an alarm that the limit (i.e. inner zone) is in danger of being breached. The
alarm usually alerts the generator operator that some corrective action needs to be taken before the
actual limit is reached.

It should also be remembered that if the operative limit is due to steady-state instability, it
may change as the power system changes, because a weaker power system means increased
equivalent impedance. Thus, as a power system begins to lose transmission facilities during a
cascading event, the loss-of-field relay setting determined when the system was normal may
not be appropriate for the prevailing system conditions, and may lead to an unstable condition
without a warning from the loss-of-field relay. The only solution to this problem is to use an adap-
tive adjustment (see section 11.7) to the loss-of-field relay depending upon the system equivalent
impedance.
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11.7 Adaptive relaying5,6

Adaptive relaying is a concept that recognizes that relays that protect a power network may need to
change their characteristics to suit the prevailing power system conditions. Normally, a protective
system responds to faults or abnormal events in a fixed, predetermined manner that is embodied in
the characteristics of the relays. It is based upon certain assumptions made about the power system.
Thus, one may have assumed a level of load current which normally would not be exceeded at the
relay location. However, there may be occasions when the actual load exceeds this assumed value
and the setting of the relay(s) is inappropriate. It is not possible to ensure that all relay settings will
be appropriate for the power system as it operates at any given instant or evolves in time.

Even if it were possible to foresee all contingencies and define boundaries of required perfor-
mance for a relay, the setting to meet this condition may be less than desirable for the normal
system parameters. It may, therefore, be desirable to make relays adapt to changing conditions. Of
course, not all features of all relays must be adaptive. Adaptive elements exist in many modern
electromechanical or solid-state relays. For instance, by automatically adjusting its speed of oper-
ation to the actual operating current, an induction-disc time-delay overcurrent relay is adapting to
changing fault locations (see section 4.3 and Figure 4.5). A harmonic-restraint transformer differ-
ential relay can recognize the difference between energizing the transformer and a fault within the
transformer as discussed in section 8.4.

Perhaps, in a less obvious fashion, adaptive relaying and control can be seen in the complex
circuitry associated with many circuit breaker bypass schemes as discussed in section 1.3. Current
transformer and tripping circuits are reconfigured using auxiliary switches to make the measuring
and tripping circuits compatible at each stage of the switching procedure. Such examples support
the view that we have, indeed, been enjoying adaptive protection and control, but they do not
encompass the present excitement about the full range of adaptive relaying made possible by
computer relays. Existing practices represent permanent provisions for well-considered scenarios
or hard-wired solutions to a variety of operating states of the power system

To completely describe the concept of adaptive relaying, it is necessary to include the possibility
that the protection systems will permit making automatic changes within the protection system
itself as the power system undergoes normal or abnormal changes during its course of operation.
With this concept of adaptive relaying, therefore, it is not necessary to anticipate all contingencies
nor is it necessary to make compromises in setting relays. Adaptive relaying is defined as follows:
it permits and seeks to make adjustments automatically in various protections in order to
make them attuned to prevailing power system conditions.

Several other adaptive relaying ideas can be found in the literature. Among these is the idea
of adaptive out-of-step relaying. This falls under the general problem in trying to predict the
instability of a power swing as it is developing. This is discussed in detail in Chapter 10. With
accurate synchronized phasor measurements from several buses, the goal of real-time instability
predictors seems achievable (as discussed in Chapter 13). One could then foresee the use of adaptive
out-of-step relays which would change their function from tripping to blocking, or vice versa, as a
power swing develops.

The adaptive relaying philosophy can be made fully effective only with digital, computer-based
relays. These relays, which are now the protective devices of choice, contain two important features
that are vital to the concept:

• their functions are determined through software;
• they have a communication capability which can be used to alter the software in response to

higher level supervisory software or under command from a remote control center.

It is, of course, necessary to recognize that any relay or communication system may fail at some
time and appropriate fallback positions and safety checks must be built in to adaptive relays.
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11.7.1 Examples of adaptive relaying

All relay settings are a compromise. In every phase of the development of a system’s protection, a
balance must be struck between economy and performance, dependability and security, complexity
and simplicity, speed and accuracy, credible versus conceivable. The objective of providing adaptive
relay settings or characteristics is to minimize compromises and allow relays to respond to actual
system conditions.

Load effect

The ability to detect low-grade faults is limited by the necessity of not tripping during emergency
load conditions. On distribution and subtransmission systems overcurrent relays must be set suffi-
ciently above load and below fault currents to allow for both dependability and security. On higher
voltage systems, distance relays must not encompass the load impedance (Figure 11.5).

End-of-line protection

For instantaneous overcurrent relays, when the remote breaker opens, the current the relay sees
will change. In the nonadaptive case, the relay must be set for the worst case currents, i.e. for
the system configuration that provides the maximum fault current. For any other configuration the
current may be less and the instantaneous relay may not pick up (see Example 4.6). With adaptive
relaying the system configuration can be communicated to all terminals and the resulting current
change can be determined and the relay setting changed accordingly.

In the case of impedance relays, the opening of the remote breaker can be communicated to the
remote relays and the zone 1 setting can be changed to overreach, thus including the 10–20 % end
of the line that was heretofore protected in zone 2 time. This is used in Europe and referred to as
zone acceleration.

Multi-terminal transmission lines

Probably one of the best known relay problems is the multi-terminal transmission line (Figure 11.6)
and the compromise settings that must be made, as discussed in section 5.8 and Example 5.6. Zone
1 relays must be set without infeed. This reduces the reach when there is infeed but it is in the safe
direction. Zone 2 relays are set with all infeeds present. Again, this results in a greater overreach
when there is no infeed which is safe but the overreach must be coordinated with all other zones
to ensure correct coordination. With adaptive relaying, communicating the conditions at all of the
terminals allows the relays to adjust their settings to either ignore any infeeds when a related breaker
is open or send the exact current infeed quantity and adjust the remote settings accordingly.

Mho characteristic
Trip area

Increasing Load

Load Limit

R

X

Figure 11.5 Load encroachment on the tripping characteristic of a mho relay
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Figure 11.6 Three-terminal line. Apparent impedance seen by the relay is not the true impedance to the fault

11.7.2 Concluding remarks

The field of adaptive protection is a growing field. A number of other subjects, such adaptive out-
of-step relays, adaptive reclosing and adaptive transformer protection, can be found in the technical
literature. The interested reader should continue to watch for newer developments in this field.

11.8 Hidden failures
A study of major outages by the North American Reliability Council (NERC) and an analysis
of other events revealed that a defect (termed a hidden failure) has a significant impact on the
possibility of false trips and extending a ‘normal’ disturbance into a major wide-area outage. Hidden
failures are defined as a ‘permanent defect that will cause a relay or relay system to incorrectly and
inappropriately remove a circuit element(s) as a direct consequence of another switching event’.

• relay malfunction that would immediately cause a trip (Z1 in Figure 11.7) is not a hidden failure.
• relay contact that is incorrectly always open or closed (as opposed to changing its state as a

result of some logic action caused by a system event which would initiate a trip).
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T2 T3

52a

TC Timer

T2
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Fault
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three zone
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relaying
Control Circuit

Figure 11.7 Hidden failure in a three-zone step-distance relay. The hidden failure is a permanently closed
third zone timer contact
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Relay with 
hidden Failure
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cause the defective relay
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Figure 11.8 Regions of vulnerability for a stepped distance relay. A hidden failure such as a permanently
closed timer contact would produce the region of vulnerability shown

• timer contact that is incorrectly closed (T2 or T3) then closing Z2 or Z3 will result in an immediate
trip, losing coordination time (Figure 11.7).

• receiver relay (contact 85-1) in a carrier blocking scheme that is always closed, resulting in a
false trip for an external fault.

None of these hidden failures becomes known until some other event occurs. This unwanted addi-
tional interruption is particularly troublesome when the system is already stressed by severe trans-
mission overloads, insecure system topology, voltage difficulties or decreased generation margins.

11.8.1 Region of vulnerability

The existence of a hidden failure does not, by itself, always result in an incorrect and undesirable
operation. There is also a component that consists of a physical region in the network such that
a given relay failure would not operate incorrectly for faults in that region. It is the combination
of the hidden failure and a fault in its region of vulnerability that results in extending the area
outage. Figure 11.8 shows a step distance scheme with zones 1 and 2 and 3 reach settings. As
discussed in section 5.2, zone 1 operates instantaneously for faults within its setting and zones 2
and 3 operate after a time delay. Assuming the timer contact is incorrectly closed all of the time,
a fault within the zone 3 setting would trip incorrectly without a time delay. In other words, there
is a zone of vulnerability for which hidden failures may cause incorrect and undesirable trips but
beyond which they would have no effect. Relaying schemes operating on a differential principle
such as phase comparison or transmission line current differential do not have zones beyond their
tripping area.

11.9 Distance relay polarizing
Section 4.6 discusses the need to polarize a relay to differentiate between a fault in one direction
and another. Distance relays can be self-polarized, i.e. using the voltage from the same phase as
the faulted phase, or cross-polarized, i.e. using unfaulted phase voltages. Self-polarized relays may
also use memory action to allow for the reduced voltage during a fault.

Consider the operation of a mho relay discussed in Chapter 5. One method of obtaining a mho
characteristic is to generate two voltages from available voltage and current signals: an operating
voltage and a polarizing voltage. For a distance relay connected at a bus, the available signals are
line terminal voltages and line currents. For this discussion, we will disregard the exact identity of
the voltages and currents, assuming that signals appropriate for the fault being protected are chosen
for this purpose (section 5.4). Let the voltage at the relay terminal be E and the current in the line
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be I . In a self-polarized mho relay, the operating and polarizing quantities are

Eop = E − IZc

Epol = E
(11.1)

where Zc is the relay setting. The condition for the relay to operate is that the phase angle between
the polarizing and operating quantities must be greater than 90◦. The operating conditions can also
be expressed in terms of operating and polarizing impedances obtained by dividing equations (11.1)
by the relay current:

Zop = E/I − Zc

Zpol = E/I
(11.2)

The ratio E/I is known as the apparent impedance Zapp seen by the relay. Thus equations (11.2)
can be rewritten as

Zop = Zapp − Zc

Zpol = Zapp
(11.3)

Consider the phasors E and I shown in Figure 11.9(a). The R–X diagram for these phasors is
shown in Figure 11.9(b). For the relay to operate, the angle between the impedances Zop and Zpol

must exceed 90◦, which defines the mho characteristic as a circle passing through the origin, and
with Zc as its diameter. This is the familiar mho characteristic passing through the origin.

A self-polarized mho relay does not operate reliably when the voltage at the relay location is low
because of the fault being close to the relay location. In order to make the relay operate reliably,
voltages from the unfaulted phases can be used to re-create the phasor relationship required to
produce the mho characteristic. This is achieved by constructing a voltage at the relay location
which reproduces the prefault voltage from voltages of the unfaulted phases. In effect, the source
voltage of the faulted circuit is to be re-created in this fashion. Using this re-created voltage for the
polarizing signal is equivalent to using the source voltage Es for the system shown in Figure 11.9(a).
This would be correct if the prefault load is quite small, so that the prefault voltage at the relay
location can be approximated by the source voltage.

Using the source voltage for the polarizing quantity, one gets

Epol = Es = E + IZs (11.4)

Or, converting to the polarizing impedance:

Zpol = Zapp + Zs (11.5)
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Figure 11.9 Mho characteristic of a self-polarized distance relay. Voltage at the relay location is used to
polarize the relay
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Figure 11.10 Phasor diagram and R–X diagram for polarizing known as 100 % cross-polarization

The corresponding phasor diagram and R–X diagram are shown in Figure 11.10. This type of
polarizing is known as 100 % cross-polarization, since the entire polarizing signal is derived from
unfaulted phases. It is of course possible to have other combination of phase voltage to achieve
different types of polarization.

Note that the characteristic of Figure 11.9(b) is expanded, and thus has a reduced loadability.
This is the principal effect of which one should be aware. If the power system becomes weaker,
thereby increasing the system source impedance Zs, the characteristic expansion (ballooning) would
be greater. It should also be noted that there is an apparent loss of directionality in the expanded
characteristic. This is of course not a correct interpretation of the case. One must redraw the phasor
diagram resulting from a current flow in the reverse direction. When this is done, it can be shown
that for reverse faults the operating zone is shifted to a circle at the remote end of the relay
setting, having a diameter equal to the source impedance of the remote system. So, although the
cross-polarized mho characteristic may balloon, it does not cause a failure of directionality.

Finally, it should be remembered that, in the case of a three-phase fault near the relay location,
there are no unfaulted phase voltages available for cross-polarization. In this case, polarized (self
or cross) distance relaying cannot be used reliably, and one must use overcurrent protection, or use
a memory voltage to reconstruct the prefault voltage phasor.

11.10 Summary
In this chapter we have responded to the system problems addressed in Chapter 10. The introduction
of a new term, system integrity protection, replaces the expression special protection schemes
since these schemes have become fairly common in response to system stresses and there is little
‘special’ about them. Underfrequency and undervoltage load shedding have become standard system
responses to potential, or actual, system stresses and are presented in some detail.
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The theory and definition of dynamic, steady-state and transient stability were presented in
Chapter 10 and in this chapter we have explored the relays that can respond to these system events.
System stress is often accompanied by unusual relay response and this effect on distance relays is
covered. Two new concepts, adaptive relaying and hidden failures, have been presented in detail.

Problems
11.1 Prove that the impedance locus for a transient swing is an arc of a circle, when the sending-

end voltage and the receiving-end voltage have unequal magnitudes. This is illustrated in
Figure 11.1.

11.2 Assume that the transmission lines in Example 11.2 have an impedance angle of 80◦. The
sending-end and the receiving-end systems may be assumed to be purely reactive. Determine
the zone settings for the out-of-step relay for this system.
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12
Switching schemes and procedures

12.1 Introduction
In this book so far we have covered the synergy involved with protective relays on individual
equipment and on entire systems. To understand the entire panoply of protective devices requires
that we also discuss peripheral disciplines associated with power system relaying. In this chapter
we will cover aspects of protection that must be included when designing or applying a protective
scheme. These are subjects that are not relays or relay applications by themselves but are areas that
must be considered such as testing, computer programs for relay setting and associated schemes
such as breaker failure, reclosing and single phase breaker operation.

12.2 Relay testing
Relay reliability in its dual aspects of dependability and security is the most important quality
of a protective relay and relay systems. Yet despite this requirement relays may have the unique
distinction of being the only power system equipment that is designed and installed with the hope
that it is never called upon to operate. In fact, over the lifetime of a given relay, which may extend
to 40 or 50 years, it may never be asked to respond to the conditions for which it was applied,
or if it does operate, it may fully complete its function in a few milliseconds. It is, therefore, not
surprising that there is a continuing concern over the possibility that a relay may not be ready to
do its job at the desired instant, and with the speed that is required. As a result, it is generally
accepted that protective relays must be periodically tested and maintained. It is ironic, though, that
for almost all of the relays presently in service, such testing, calibrating and other maintenance
only prove that the relay would have done its job up to the time it was tested. There is, of course,
no guarantee that this condition will continue when the relay is returned to service. In fact, it is
not uncommon that the testing itself may leave the relay in an undetected, degraded condition. It
cannot be stressed enough that too much testing is as bad as, or worse than, too little testing, and
whatever tests are performed, they should clearly be limited to what is essential to be verified.

12.2.1 New relay designs

Our concern here is not with testing a new design, or a prototype of a new relaying concept. Such
testing requires exhaustive simulations and studies, usually including actual short circuits on an
operating power system. It is not too difficult to design a relay to operate for specified conditions,
i.e. to prove its dependability. It is far more difficult to design a relay to be secure, i.e. one that
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will not operate for all of the other conditions that it will be exposed to in service. Laboratory
facilities can usually reproduce high voltages or high currents, but not both simultaneously. In most
cases, the laboratory equipment does not have the necessary power rating. In addition, the transient
voltages and currents on the primary system that accompany normal switching, fault initiation
and clearing are so variable and site-specific that it is almost impossible to reproduce them in a
laboratory environment, or to simulate them with a high degree of accuracy.

12.2.2 Production relays

For a proven relay design there are two general types of test that are periodically performed:
acceptance or commissioning tests and periodic tests.

Acceptance or commissioning tests during initial installation

Initial commissioning tests should include a thorough visual inspection to be sure that the relay
was not physically damaged in shipping. When the relay is connected to its current and/or voltage
transformers, it is necessary to make primary circuit checks, i.e. to inject current in the transducers
from a low-voltage source, say 230 V and 30 A. This should be a variable source, and with sufficient
current capacity to check polarities of connections but not to simulate fault current. Complete
secondary wiring checks are then performed to ensure that the relay(s) are connected according to
the drawings. Initial calibration and settings should then be completed. Of course, manufacturers’
bulletins provide valuable information concerning the specific relays being tested and should be
rigorously followed. Many utilities perform rigorous checks when the relay is received, and then
the relay is brought to the station. Regardless of the checks completed at a laboratory, final checks
must be made with the relay in place.

Periodic tests

Periodic tests are made to check calibration, overall mechanical and electrical conditions and circuit
continuity of the trip circuit. Historically, periodic relay testing has been the result of experience
with electromechanical relays. These test procedures and practices are gradually being modified as a
result of increased experience with solid-state and digital relays. Electromechanical relays are prone
to failures due to environmental factors that may not affect solid-state or digital relays. Factors, such
as aging, that change a component’s characteristic or value, wear and binding of bearings due to
temperature variations, dirt on discs and cups that affects their operating time, oxides that form on
contacts to increase their resistance and prevent circuit continuity, are all potential defects that will
alter a relay’s performance. As a result of these failure possibilities, and since most of these defects
cannot be detected with the relay in service, many test procedures call for removing the relay from
its case for inspection, and possibly dismantling part of the device for cleaning and adjustment.
After the preliminary examinations and bench tests are completed the relay must be restored to its
case on the switchboard panel for final calibration and trip tests. This is essential, particularly with
electromechanical relays, where alignment, balance and shielding affect the relay performance. To
assist in testing the relay in place, all relay manufacturers provide internal test facilities such as a
removable test block, or switches. These separate the internal parts of the relay from the external
wiring. The tester must then reconnect those elements that are to be tested through pre-connected
jumpers or switches. For example, current and voltage coils can be reconnected to check settings
or directionality, leaving the contacts disconnected, so that the relay operation will not trip the
circuit breaker. This test facility also allows the tester to test one phase of a three-phase relay,
while keeping the other two phases in service. The increased use of solid-state relays significantly
changes the testing requirements. The physical factors associated with dirt and alignment no longer
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applies, although temperature effects, aging and electrical deterioration remain a problem. However,
solid-state relays allow much more continuous monitoring of internal voltages and logic status than
their electromechanical counterparts. Indicating lights actuated by internal relay elements can trace
the flow of logic during a fault or test, and provide a good indication of possible problems. In
addition, functional testing facilities are provided with trip cutout switches, so the relay can be
tested in service without tripping the circuit breaker. As a result, the intervals between periodic
tests are being extended, and the time and effort required to do the testing greatly reduced. The
digital relay offers a completely new dimension in periodic testing and calibration. Inasmuch as
the digital relay can completely and continuously self-check itself, periodic tests can be virtually
eliminated. Since the digital relay is always performing its calculations and making a decision, and
usually there is no fault and no action is required, it is able to report that it is (or is not) operating
correctly. The relay could then be maintained only when there is an indication of a problem.

12.2.3 Monitoring

The most common practice in evaluating the performance of protective relays is with automatic
oscillographs, particularly with electromechanical relays where the internal relay parts cannot be
monitored. Interestingly, the increasing use of solid-state and digital relays has not resulted in a
decrease in such monitoring. In fact, the opposite has occurred. Oscillographs allow much more of
the protective system to be monitored, especially the coordination between various relays, commu-
nication links and circuit breakers.

12.3 Computer programs for relay setting
Relay settings are the ultimate operating variable of any protective system. As has been discussed
throughout this book, each relay has a setting philosophy that is unique to its design and to its
function within a given protective scheme. The settings of some relays, such as a zone 1 of a
mho-type relay involve relatively simple calculations that depend only upon the impedance of the
line being protected and the values of the potential and current transformers. In contrast, single-
input time-delay overcurrent (TDOC) relays actually involve far more complicated calculations that
depend upon varying fault currents, system configurations and the operating performance of other
relays with which they must coordinate. This is not a trivial task and requires a great many separate
studies that must be combined, as well as attention to system and load changes.

As computers developed from mainframe to mini- and microcomputers they became more readily
available to individual engineers. Their ability to manage a wealth of information and perform
calculations and follow logical instructions and constraints made them logical candidates to do
relay settings. The first computer programs addressed the problem of coordinating TDOC relays
at lower voltage levels,1 but gradually the entire protective system at a given voltage level or in
a given area became the subject of computer programs.2,3 One factor in accepting the computer
as a major calculating and decision-making tool is its ability to access several separate programs
and combine their results in a relay-setting program. For instance, load flows are periodically
generated for planning and operational purposes. By combining the results of those studies with a
file of relay settings, it is now practical to avoid relay mis-operations when the relay’s loadability
is exceeded. Similarly, short-circuit studies that are updated as a result of system changes can
automatically verify relay settings or suggest revisions. Digital relays have the ability of being
remotely accessed, and it is conceivable, but not very likely in the near term, that their relay
settings could be automatically revised as load-flow and short-circuit studies are completed. Part
of the reluctance to totally accept computer-generated settings without some control by the relay
engineer is the amount of engineering judgment that goes into each relay-setting decision. Another
issue with remote accessibility of computer relays which is being discussed by relay engineers is
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the fear of malicious hackers getting access to relay programs and doing damage to the power
system. No doubt in coming years this will be an important topic for discussions and design of
countermeasures against hacker attacks.

12.4 Breaker failure relaying
Section 1.4 discusses the application of primary and backup relays. Primary relays operate for a
fault in their zone of protection in the shortest time, and remove the fewest system elements to
clear the fault. Backup relays operate in the event that the primary relays fail. As discussed in
section 1.4, backup relays can be local or remote. Our interest here is in a subset of local backup
relays, referred to as breaker failure relays. We will now consider this important topic in greater
detail. Figure 12.1 shows a simple representation of lines and transformers around a bus. For the
moment, we have shown one circuit breaker per line or transformer. Later on we will consider
the variations in breaker failure needed to accommodate different types of buses. A fault at F on
line B–C should be cleared by primary relays Rbc and Rcb and their respective circuit breakers.
Now consider the possibility that circuit breaker B1 fails to clear the fault. This failure may be
caused by the failure of the primary relays, by the failure of current transformers (CTs) or potential
transformers (PTs) providing input to the primary relays, by the failure of the station battery or
by the failure of the circuit breaker. As discussed in earlier chapters, remote backup function is
provided by relays at buses A, D and E to clear the fault F, if it is not cleared by circuit breaker
B1. However, remote backup protection is often unsatisfactory in modern power systems.4 First, it
must be slow enough to coordinate with all the associated primary relays. Thus, the remote backup
function at bus A must coordinate with the zone 2 relays of lines B–C, B–D and the transformer
B–E. Second, because of the possible infeeds at the remote stations, it may be difficult to set the
remote backup relays to see fault F from stations A, D and E. Finally, the power supplied to the
tapped loads on lines A–B and B–D is unnecessarily lost due to remote backup operation.

A preferred method of protection against the failure of the primary relays at stations B and C is
to provide a second set of relays at these locations, represented by R′

bc at station B in Figure 12.2.
These relays operate more slowly than Rbc and Rcb, but trip the same circuit breakers. They cover
the failure of the primary relays and their associated CTs, the secondary windings of the associated
PTs and, as shown in Figure 12.3, the DC distribution circuit of the primary relays. However, relays
R′

bc do not cover the failure of the circuit breakers themselves. To guard against this contingency,
breaker failure relays are provided. When this scheme was first introduced5 a separate protective
relay was provided, using an independent set of CTs, PT secondary windings and DC circuit to trip
the appropriate circuit breakers. In Figure 12.1, for example, breakers 3, 5 and 7 would be tripped
by the breaker failure relays. Subsequent developments6 replaced the independent relay with the
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Figure 12.1 Breaker failure relaying for circuit breaker B1
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Figure 12.3 DC distribution for primary, backup and breaker failure relays

control circuitry shown in Figure 12.3. In this scheme, any relay or switch which initiates a trip
starts a timer known as the breaker failure timer. The timer is supervised (i.e. controlled) by an
overcurrent relay (50-1), which drops out when the current through the breaker goes to zero. If this
does not happen for any reason, the timer times out and energizes the lockout relay 86-1, which
trips and locks out the circuit breakers 3, 5 and 7.

The earliest designs of the circuit breaker failure logic used a breaker auxiliary switch in place of
the overcurrent relay. This switch is operated by mechanical or hydraulic linkages, and is designed
to mimic the main contacts of the circuit breaker. However, the auxiliary switch has been found
to be an unreliable device, especially when the circuit breaker itself is experiencing difficulties
in clearing the fault, a condition for which the breaker failure relaying is supposed to provide a
remedy. The mechanical linkages may break, the auxiliary switches or the main contacts may be
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frozen, or – for some reason – become inoperative while the main set of breaker contacts continues
to function normally. There are some instances, however, when the breaker may be required to trip,
even when there is no fault current to be interrupted. In such cases, a current detector cannot be
used. The most common example of this condition is the trip initiated by turbine or boiler controls.
Abnormalities in the pressure or temperature of the boiler, or some other mechanical critical element
of the boiler–turbine system, may require that the station breaker be tripped, and in such cases it
would be improper to use an overcurrent detector to supervise the breaker failure protection. The
setting of the breaker failure timer is determined by two constraints. The minimum time must be
longer than the breaker clearing time, plus a margin of safety. Since the breaker failure timer does
not start until a tripping relay (or switch) has initiated the trip, the operating time of the tripping
relay is not a factor in determining the timer setting. This is a decided advantage of the present
scheme. The maximum setting for the timer must be less than the critical clearing time for faults
at that substation, as determined by transient stability studies.7 Breaker failure timer settings are
generally between 7 and 10 cycles for a 60 Hz power system. This discussion is centered upon the
single-bus, single-bus arrangement shown in Figure 10.1. In reality, for other bus arrangements, a
more involved procedure is required. This is explained in the following example.

Example 12.1

Consider the ring bus and the breaker-and-a-half bus shown in Figure 12.4. Assume that breaker B1

has failed in either system, following a fault at F. In the ring-bus scheme, the breaker failure relay
must trip and lock out breaker B2. Breaker B3 will be tripped normally by the relaying responsible
for the fault F. The breaker failure relay must also send a trip and lockout signal to the remote
breakers of L2, otherwise the line will continue to feed the original fault. The remote end of line
L1 is of course cleared by its relaying in response to the fault at F.

B1
L1

L1

L2

B2

B2 B5 B6

B1

B3

B3

F

F

Figure 12.4 Breaker failure relaying for a ring bus and a breaker-and-a-half bus

In the case of the breaker-and-a-half arrangement, for a failure of breaker B1, breaker B2 will
be cleared by the line relaying of line L1. Breakers B3 and B4 must be cleared and locked out by
the breaker failure relay. The remote end of L1 will clear normally as before. If breaker B2 should
fail in this case, the breaker failure relay of that breaker must clear all the breakers on that bus (i.e.
breakers B5 and B6). Breaker B1 and the remote end of line L1 should open normally.

12.5 Reclosing
Section 1.4 discusses the dependability and security of relay systems. It should be recognized that
these definitions are different when referring to the system itself. Reliability of a system refers
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to the design if the system, i.e. the number of transmission lines and number and location of the
generation and load. The security of the system refers to the actual operating configuration, i.e. the
actual state of the system with reference to outages. Maintenance of lines, breakers, generators, etc.
is a planned event and must be considered in the normal operating procedures. Manual reclosing
is therefore used.

Outages due to faults, however, are unplanned and remedial measures must be incorporated. Auto-
matic reclosing is then used to restore the system to its normal operating configuration. Automatic
reclosing encompasses several schemes.

1. High-speed reclosing (HSR) refers to the operation of the circuit breakers without any intentional
delay, the actual reclose time depending on the voltage class and type of circuit breaker. At
800 kV, HSR is about 15–20 cycles; at 138 kV it would be 20–30 cycles.

2. Delayed reclosing introduces an intentional delay to allow fault arcs and ionized air to dissipate
or to accommodate line switching. The time can be in cycles or seconds.

3. Synchronized reclosing refers to the application of a synchronizing device which monitors the
voltage angle across the reclosing circuit breaker. Generators require full synchronizing, i.e.
comparing the voltage magnitude and angle between the system and the generator. The synchro-
nizing relay monitors the generator voltage through 360◦, giving a closing signal allowing for the
circuit beaker closing time. Circuit breakers connecting two elements of a transmission system
use only check synchronizing relays to confirm that the two elements are within a given angle,
usually 20–60◦. Section 10.10 discusses the impact that a small angle can have on restoration
following a blackout.

4. Interlocks are used when it is required that certain predetermined system conditions or elements
are present before reclosing. It is common to reclose a transmission line from a preferred terminal,
such as a remote bus rather than a generator so a ‘hot-line’ indication is used. Reclosing a
transformer only from the high-voltage side utilizes a breaker or voltage interlock. Also during
maintenance a ‘manual only’ interlock is used to prevent the breaker from reclosing during the
maintenance period.

12.6 Single-phase operation
If one phase of a three-phase transmission line is open in response to a single-line-to-ground fault,
the two healthy phases maintain synchronizing torque, allowing the system to maintain synchronism
and continue to serve load. As mentioned in sections 1.4 and 1.6, this is a common practice in
Europe and Asia. The disadvantage, however, is the fact that inherent capacitance between the
separate phases of the transmission line and the line to ground tend to maintain the fault arc
resulting in a secondary arc that will maintain the original fault and result in an unsuccessful
reclose. The remedy can be to delay the reclose until the secondary arc extinguishes itself, which
is undesirable from a system integrity viewpoint. It is also not uncommon to add shunt reactors
between the separate phases and phase-to-ground to compensate for the inherent shunt capacitances.
Shunt reactors are also beneficial on extra high voltage (EHV) transmission line to compensate for
the high voltage produced by the shunt capacitors on an open-ended line. Another disadvantage
of single-phase tripping is the negative sequence that is produced by the unbalanced system. This
will affect adversely generators on the system and must be removed by reclosing the open phase
or tripping the remaining two phases.

12.7 Summary
In this chapter we have presented some peripheral topics closely associated with protective reclosing.
Testing production relays, as well as new designs, is essential to provide the necessary trust and
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history that the relays will perform as required. The increased use of computer relays is considered
in this chapter in a preliminary way, but this subject is covered more exhaustively by specific
manufacturers’ instruction manuals. Breaker failure relaying and reclosing are essential elements
of a protective relaying scheme and should be included in any discussion of relaying. Single-
phase operation is not a generally applied concept in the USA but is relatively common in Europe
and Asia.
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13
Monitoring performance
of power systems

13.1 Introduction
The importance of monitoring the performance of power system and equipment has steadily
increased over the years. In the beginning, transmission lines had more capacity than was uti-
lized and, in general, transmitted power from point to point, with few parallel paths. In addition,
relays were provided with targets to indicate which relays operated and which phases were faulted.
The evaluation of system faults, therefore, was relatively straightforward. As systems matured,
transmission lines were connected in networks and more heavily loaded so the analysis of faults
became more complex and monitoring of equipment performance became essential for reliability
and maintenance. As early as 1914 Charles Steinmetz presented a paper1 in which he stated that the
analysis of the performance of power systems was not possible without oscillographs. This attitude
was common since it was recognized that the operation of relays and circuit breakers was too fast
for the steady-state meters and recorders then in use and certainly beyond an operator’s ability to
track an event. The analog signals associated with fault currents and voltages were captured on
galvanometers reflecting a light beam across a photographic film. These devices were variously
called ‘oscillographs’, ‘oscilloperturbographs’ or ‘analog recorders’. They were costly and intro-
duced a significant time delay between the event and the ability to view the record; the record
requiring transporting from the device to a photographic laboratory and then to the engineers who
could analyze the record. As a result, oscillographs were difficult to justify and, except at power
plants, were used sparingly. At power plants, the need to quickly analyze electrical failures to direct
repair and to restore service justified the cost. In addition, the ability to develop and analyze the
oscillogram was available on site.

At substations, a portable oscillograph that could be located wherever and whenever a particular
problem had to be investigated was the most common application. This situation eventually changed.
Photographic technology improved so that the record could be developed under ordinary light. This
allowed the relay engineer to immediately examine a record at the station. As higher transmission
line voltages were introduced and relays and stations became more complex, oscillographs became
standard equipment at key locations throughout the system. The timing of circuit breaker and relay
operations was displayed by devoting some of the traces to recording digital signals such as circuit
breaker auxiliary or pilot relay contacts. Eventually separate devices called sequence of events
recorders (SERs) were used to monitor this aspect of system and equipment performance.

P ower System R elaying, Third Edition.  Stanley H . H or owitz and A r un G . Phadke
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With the advent of digital relays the situation changed dramatically. Not only could the relays
record the fault current and voltage and calculate the fault location, they could also report this
information to a central location for analysis. Some digital devices are used exclusively as fault
recorders. They have the ability to calculate parameters of interest and adjust individual traces for
closer examination. Some of the algorithms and methods that are used will be discussed below.

13.2 Oscillograph analysis
Most technically oriented people recognize the familiar 60 Hz voltage and current traces that
constitute the parameters of an operating power system. There are, however, transient components
superimposed on the 60 Hz waveform in the form of spikes and higher and lower frequencies that
accompany faults and other switching events. These are revealed in the oscillographic records and
are an essential element in analyzing power system and equipment performance. A publication2 is
available that presents a comprehensive review of the techniques involved in this analysis. Detailed
information on pertinent quantities and events will permit identification of such problems as:

• failure of relay systems to operate as intended;
• fault location and possible cause of fault;
• incorrect tripping of terminals for external zone faults;
• determination of the optimum line reclose delay;
• determination of the magnitude of station ground mat potential rise (GPR) that influences the

design of communication circuit protection and station grids or assists in the quantification of
GPR and its DC offset;

• determination of optimum preventive maintenance schedules for fault-interrupting devices;
• deviation of actual system fault currents significantly from calculated values;
• impending failure of fault-interrupting devices and insulation systems;
• current transformer (CT) saturation and capacitor voltage transformer (CVT) response.

In this section we will present a few examples of system faults and other operating experiences
and how they appear on an oscillographic record. During any switching operation and during system
faults, transients are generally present and the 60 Hz signal must be inferred. In the figures that
follow, however, unless the transients are part of the analysis, we have eliminated them and, for
clarity, show only the 60 Hz component.

13.2.1 Oscillograph triggers

Oscillographs and other fault recorders are, by nature, automatic devices. The time frame involved
in recognizing and recording system parameters during a fault precludes any operator intervention.
The most common initiating values are the currents and voltages associated with the fault itself. The
phase currents will increase and the phase voltages decrease during a fault, so sensitive overcurrent
and undervoltage relays are used. In normal operation, there is very little ground current flowing
so an overcurrent relay can be set very sensitively and initiate the recording. It is also common
to use specific contacts such as circuit breaker auxiliary switches or relays or other recorders to
trigger a record upon the operation of a particular device or other recorder. Oscillographs can also
be started manually to capture normal operating values. During system faults, depending upon the
oscillograph design, some cycles of prefault data can be retained and displayed. This is, of course,
very useful in establishing the instant that a fault occurs and in correlating several oscillographic
records, particularly from separate stations. Another, and better, way to correlate separate devices
is to use synchronized sampling clocks, either within a station or across the entire system. This is
becoming more popular and will be discussed in more detail below.
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Figure 13.1 Voltage reduction during fault

13.2.2 Voltage reduction during faults

Figure 13.1 shows how an oscillogram can be used to determine the normal operating voltage and
the voltage reduction during a fault. In this figure there are two cycles of prefault voltage, two-and-
a-half cycles of reduced fault voltage and then voltage recovery to normal voltage after the fault
is removed. In the actual oscillogram, the trace would continue to the end of the record, which is
normally set for 60 cycles.

13.2.3 Phase-to-ground fault

Figure 13.2 shows the traces associated with a phase-to-ground fault. There are one-and-a-half
cycles of prefault normal load flow and two cycles of increased current during the fault. When
the local breaker opens there is a redistribution of fault current. Although the total fault current
will be reduced, the contribution from either end may increase due to infeed (see Example 4.6).
Figure 13.2 shows this increase from the local end until the remote end opens when the fault is
cleared. Prior to the fault, there is no ground current. Actually, as discussed above, there may be
some slight ground current trace due to unbalance. There are two cycles of ground fault current with
both breakers closed, an increase when the local breaker opens and then zero when the remote end
breaker opens. Since the two ends of the line will not open or close simultaneously, by comparing
the oscillograms from the two ends, the exact breaker sequence can be determined. The first breaker
to open will remove the fault current from that end of the line while the remote oscillogram will
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Figure 13.2 Phase-to-ground fault

continue to show fault current. The first breaker to close will result in an indication of charging
current until the other end closes and load current is restored. Since the phase current trace must
accommodate the normal prefault load current while the ground current trace sees only the small
prefault system unbalance, the two traces are calibrated differently.

Figure 13.2 shows only two cycles of fault current which is the time it takes for the relays and
the circuit breaker to operate and clear the fault. This is only an illustrative example. Actually,
in high voltage (HV) and extra high voltage (EHV) systems, with 3-cycle breakers and nominal
1-cycle relays, a fault should be cleared in about 5 cycles. Any longer time than this would alert
the relay engineers to inspect either the relays or the circuit breaker. Of course, slower breakers
or relays would take longer. Every system should have an expected clearing time to which the
oscillogram is compared. Figure 13.2 also shows how to calculate the secondary and primary load
and fault current from the oscillogram. These values can then be compared with planning and
short-circuit studies to verify the system values that have been used.

13.2.4 Phase-to-ground fault and successful high-speed reclose

Figure 13.3 shows a successful high-speed reclose (HSR) of circuit breaker (CB) A following a
phase-to-ground fault on line A–B. Note that both bus and line potentials are recorded. This is
very useful and common. Since most faults are line faults, the bus potential would be a continuous
trace, although the magnitude would be reduced during the fault. This provides a convenient timing
trace. Referring to the figure, note that the line potential trace goes to zero when circuit breaker A
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Figure 13.3 Single phase-to-ground fault with successful HSR (CB A, circuit breaker A)

opens but the bus potential trace continues and allows us to determine the HSR time. (HSR is a
practice established by each utility as discussed in section 1.4.)

Before the fault there is no ground current (or a very small amount depending upon the system
unbalance), load current and normal line and bus potential. After the fault, the ground current
increases and the line and bus potentials decrease. When circuit breaker A opens, all line parameters
go to zero while the bus potential returns to normal. When circuit breaker A recloses, if the fault no
longer exists, the line current and voltage traces return to their prefault values. In actual oscillograms,
such as those in the literature,2 the information shown during the transition from prefault to fault,
during the ‘dead time’ and after the reclose can be very significant. Some of these interesting
phenomena are shown in the figures below.

13.2.5 Phase-to-ground fault and unsuccessful HSR

Figure 13.4 shows the same situation as Figure 13.3 except that the fault is not temporary and
reappears when the line is re-energized. The reclose is, therefore, unsuccessful and the line trips
out again. The traces after the reclose are a repeat of the initial fault. Figure 13.4 shows a typical
switching transient in the bus potential trace.

13.2.6 Analyzing fault types

For illustrative purposes we have shown only one phase current and voltage in the previous figures.
Actually, we want to see, if possible, all three phase currents and voltages in a given line to
determine which phases were faulted. This may require more traces than are available so some
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Figure 13.4 Single phase-to-ground fault with unsuccessful HSR (CB A, circuit breaker A)

compromises are necessary. Since the voltages during a fault will be the same throughout the
station, a common practice is to record a different phase for each line. Also, by recording phases
one and three and the ground current on each line all fault types can be determined.

Example 13.1

Referring to Figure 13.5, note that, when the fault occurs, the voltage traces of phases 1 and 3 are
reduced, phase 2 is normal, phase 1 and 3 currents of line AB are increased and ground current
appears. These are clear indications of a phase-1-to-phase-3-to-ground fault on line AB. If there
were no ground current we would conclude that it was a phase-1-to-phase-3 fault.
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A B
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V1to oscillograph
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V2to 
oscillograph
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Figure 13.5 Phase-to-phase-to-ground fault
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Figure 13.5 Phase-to-phase-to-ground fault

13.2.7 Circuit breaker restrike

Figure 13.6 shows how to determine that a breaker requires maintenance by the fact that it is
restriking, i.e. the insulating medium is degraded or the contacts are out of adjustment so that
current flow is reestablished even though the breaker contacts have separated. Another indication,
not shown in this figure, might be the presence of high-frequency signals as the contacts begin to
close or open. Depending upon the frequency response of the oscillograph, we might see the actual
waveshape or just a fuzzy record, but definitely not a clean 60 Hz trace. This is an indication that
an arc is being established or maintained through the insulating medium.

13.2.8 Unequal pole closing

Figure 13.7 shows an oscillogram of the three phase-to-neutral potentials and the ground current
associated with closing a circuit breaker. There is always a certain amount of lag between the poles
of a circuit breaker closing. This is normally of the order of milliseconds. It is a function of the
breaker mechanism and is checked periodically by timing tests. In Figure 13.7 the lag is equal to

Figure 13.6 Circuit breaker restrike
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Figure 13.8 CT saturation

two cycles. As shown, ground current flows during this time and it is possible that ground relays
will operate.

13.2.9 CT saturation

Figure 13.8 shows the wave shape of a severely saturated CT. This phenomenon was discussed
in Chapter 3. The shaded portion of the current wave is the current delivered to the relay. The
remaining portion is shunted to the magnetizing branch of the CT.

13.2.10 System swing

Figure 13.9 shows the voltage or current during a system swing as discussed in section 11.5. The
periodic oscillations in voltage and current magnitude indicate that various generators in the system
are attempting to fall out of step with each other.

13.2.11 Summary

It is, of course, not practical to give examples of all of the information that oscillograms provide.
However, some of the interesting system parameters that are recorded during system operations
and should be studied whenever the opportunity presents itself are:

• unequal DC offset in fault current;
• trapped charge oscillations;
• line discharge through a CVT;
• ferroresonance;
• magnetizing inrush;
• evolving faults.
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13.3 Synchronized sampling
The digital oscillographs mentioned in section 13.1 have become commonplace in modern power
systems. All the signals recorded by digital oscillographs are sampled at the same instant, so that
one can obtain a simultaneous snapshot of the recorded event across the complete set of voltages
and currents. Analyses of the type described in section 13.2 are much enhanced when temporal
evolution of an event as reflected in all the recorded signals can be analyzed through a sequence of
simultaneous samples. Expanding this thought a bit further, it seems desirable that oscillographic
data or, more generally, sampled data from around an entire network simultaneously should also
be obtained.

In recent years, a new technology has emerged, which can achieve precise synchronized data
sampling across arbitrary distances reliably and economically. This is the technology of synchroniz-
ing the sampling clocks used by many (if not all) digital sampled data systems in a power network.
The synchronization is very precise, nominally with errors of less than 1 µs. In more familiar
terms, this precision corresponds to errors of less than 0.022◦ for 60 Hz waveforms. Although
several techniques are available for providing the synchronizing clock pulses, the method of choice
at present is to use the transmissions of the Global Positioning Satellite (GPS) system.3 This is a
system designed and implemented by the US Department of Defense for use in navigation, con-
sisting of 24 satellites in subsynchronous orbits. At any time, a minimum of four of these satellites
are visible from any point on earth. For timekeeping purposes, only one satellite is sufficient, and
its basic transmission consists of 1 pulse per second which on the designated ‘mark’ is within 1 µs
of a pulse received by any other GPS receiver at any point on earth.∗ The satellites also transmit
the identity of the second, with zero second arbitrarily chosen to be 00:00:00 on January 1, 1900.

A typical substation system for synchronized sampling is shown in Figure 13.10. The analog
inputs (secondary voltage and currents) are filtered with anti-aliasing filters,4 and then sampled at
the clock pulses generated by a sampling clock which is phase-locked to the GPS receiver signal.
The data samples are permanently linked with the identity of the second, as well as the sample
number within the second. Thus, the data obtained at any substation can be sent to another site

∗ The GPS transmissions are available free of charge, i.e. only the receiver must be acquired. There is no usage fee for the
transmissions, although there is always the possibility that a charge may be initiated in the future.
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Figure 13.10 Computer-based measurement system for synchronized sampling using GPS transmissions

through a modem and a communication channel, and the speed of the channel would not affect
the precise specification of the instant when the data were taken. Of course, the system shown
in Figure 13.10 is capable of producing far more sophisticated outputs than just the synchronized
samples. These outputs are computed from the synchronized data samples in the microprocessor
shown, and are time-tagged. This type of hardware is expected to be the basis for most digital
substation systems of the future, including digital relays, digital fault recorders and digital meters.

We will provide a brief catalog of the uses of synchronized sampling systems that are currently
under investigation. The reader is referred to the literature5 for more detailed information on this
subject.

13.3.1 Uses of synchronized sampled data

One of the principal uses of synchronized sampled data is to compute phasors from these data. (A
method of computing phasors from sampled data is given in the next section.) The phasors – either
phase quantities or symmetrical components of voltages and currents – when measured at the same
instant on the power network indicate the true state of the power system at that instant. One
could judge the quality of the network operating state, overloads, undervoltages, secure modes
of operation, etc., from knowledge of the synchronized phasors. This type of monitoring activity
is common at a power system control center, and synchronized phasors are expected to have a
considerable impact on central monitoring and security functions.

Synchronized sampled data could also be used in forming a consistent picture of faults and other
transient events as they occur on a power system. Thus, oscillographs obtained from any substation
could be correlated precisely, and one would have an outstanding tool for postmortem analysis on
a system-wide basis. By making a series of snapshot pictures of unfolding events, one could trace
cause-and-effect phenomena accompanying complex system events.

Synchronized sampled data collected from different ends of a transmission line could also be
used in performing differential relaying (or other advanced relaying functions) digitally, provided
dedicated high-speed communication links, for example fiber-optic links, are available for the
protection function. Synchronized measurements have also been considered for adaptive relaying,
and improved control of power systems.6 Fault location using synchronized data from the terminals
of a transmission line would be particularly straightforward (as discussed in section 13.4). We are
likely to see many innovative applications of this technology in the coming years.
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13.4 Fault location
It is advantageous to determine the location of a fault on a transmission line or a cable, as this is
extremely helpful in any maintenance or repair operation that may be necessary in the wake of a
fault. It should be recognized that distance relays may set a flag which indicates the zone in which
a fault is detected, but such a coarse estimate of fault location is not sufficient to be of help in
maintenance work. There are techniques for locating a fault, which depend upon the fault creating
a permanent discontinuity on the line, which can then be determined by subjecting the unenergized
line to injected traveling waves. By using the time for reflections at the discontinuity, it is possible
to determine the fault location. This type of fault-locating technique requires special equipment,
and is time-consuming and expensive to apply for all faults. It is usually reserved for underground
cables, where faults tend to be permanent, and the use of specialized equipment and the expense
are justified.

For overhead transmission lines, an alternative technique is to use the fault-induced currents and
voltages to determine the fault location. This is akin to the fault calculation procedure using current
and voltage phasors during the fault. Once the fault impedance is determined, the location of the
fault can be ascertained from knowledge of the transmission line impedance per mile. This method
of fault location calculation does not require any special equipment, nor does it require a special
test procedure with the line de-energized. Also, if the fault is not permanent, the fault location can
still be determined from the fault current and voltage data, if these latter have been saved.

The fault location task is usually undertaken with the help of saved transient records of currents
and voltages during the fault. These records may be analog oscillographic records, digital fault
records or records available from many of the digital computer-based relays. In the case of analog
recordings, the calculation is based upon the reading of the current and voltage phasors from the
analog tracings, while with the digital records a direct calculation of the phasor quantities could be
made from the data samples. A convenient method of finding the fundamental frequency phasor
from one cycle of a waveform sampled at N samples per cycle is to use the discrete Fourier
transform formula:

X =
√

2

N

N∑
k=1

xk

{
cos

2kπ

N
− j sin

2kπ

N

}
(13.1)

where X is the phasor representation of the fundamental frequency component of waveform with
samples xk . In determining the phasors of currents in this fashion, it should be remembered that
the DC offset (if any is present) in the current must be removed prior to the phasor calculation.
When phasors from simultaneously taken samples of several inputs are determined, the resulting
phasors are on a common reference, and may be used for fault location calculations.

Example 13.2

Consider the samples obtained from a voltage and a current channel with a digital fault recorder at
a sampling rate of 12 samples per cycle. Assume that the samples are obtained from the following
inputs:

e(t) = 141.42 cos(377t − π/6)

i(t) = 1414.42 cos(377t − π) + 1414.2ε−20t
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Table 13.1 Data for the 12 samples of Example 13.2

t (ms) e(t) i(t) i(t) − 1414.2ε−20t

0.0 122.47 0.0 −1414.2
1.388 141.42 150.7 −1224.7
2.778 122.47 630.7 −707.1
4.164 70.71 1301.2 0.0
5.555 0.0 1972.6 707.1
6.944 −70.71 2455.5 1224.7
8.333 −122.47 2611.3 1414.2
9.722 −141.42 2389.0 1224.7

11.110 −122.47 1839.5 707.71
12.499 −70.71 1101.4 0.0
13.889 0.0 364.1 −707.1
15.227 70.71 −182.8 −1224.7

The 12 samples shown in Table 13.1 are obtained from these two signals. The last column in
the table contains the current samples from which the DC offset term has been eliminated.

The phasor calculation proceeds as follows:

E =
√

2

12

12∑
k=1

ek

{
cos

kπ

6
− j sin

kπ

6

}
= (86.6 − j50)

which is the correct phasor representation of the assumed voltage signal. Also

I =
√

2

12

12∑
k=1

ik

{
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kπ

6
− j sin

kπ

6

}
= (−971.45 + j87.9)

If we use the samples of currents from the last column of Table 13.1, the current phasor turns
out to be (−1000 + j0), which is the correct value of the phasor for the assumed current waveform.
Note that the current phasor obtained without removing the DC offset is in error. If the phasors
are to be calculated from analog oscillographic records, one could follow the same procedure as
above, after the waveform samples are first digitized. Alternatively, a less accurate procedure of
reading off the phase angles from the zero crossing of waveforms could also be used.

The problem of locating the distance to a fault can be simply expressed in terms of a single-phase
circuit. This case will be considered first, and the results extended to the case of a phase-to-
ground fault. The Thévenin representation of the sources at the two ends of the transmission line is
generators with voltages Er and Es behind impedances Zr and Zs, respectively. Let the phase angles
of Er and Es be δr and δs. The difference between these two angles is primarily responsible for the
prefault load flow in the transmission line. Let Zr represent the impedance of the transmission line
(Figure 13.11). Note that R is the unknown resistance in the fault path. The fractional distance to
the fault is k, which is to be determined as accurately as possible, knowing only the current Ix and
voltage Ex at the relay terminal. If the current in the fault is If = (Is + Ir), the voltage at the relay
location is given by

Ex = kZtIx + RIf (13.2)
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Figure 13.11 Ground fault through a resistance in a single-phase circuit

As If is unknown, it is sometimes assumed that R is zero, and thus k can be solved directly. As
we will see in the following example, this can introduce significant error in k, if R is nonzero and
if there is a significant difference between δr and δs. A much better procedure7,8 is to assume that
the unknown fault current is proportional to the change in the current at the relay location:

Ix − Ix0 ≡ �Ix = dIf (13.3)

where d is known as a distribution factor,9 and describes the superposition of a current at the fault
location caused by the presence of the fault. Clearly, d depends upon the net equivalent impedances
on the two sides of the fault as seen from the fault location. For the case shown in Figure 13.11,

d = Zr + (1 − k)Zt

Zr + Zs + Zt
(13.4)

Ix0 is the current at the relay location before the occurrence of the fault. Substituting for If from
equation (13.3) into equation eq(13.2) gives

Ex = kZtIx + R

d
(Ix − Ix0) (13.5)

If the distribution factor d is known, then the only unknowns in the above equation are k and
R, both real numbers. Since equation (13.4) is a complex equation, it can be separated into two
real equations, from which the unknowns can be determined. The following example illustrates this
procedure.

Example 13.3

Let the prefault data for the system of Figure 13.11 be as follows (all quantities are in pu):

Es = 0.866 + j0.5

Er = 1.0 + j0.0

Zs = 0.0 + j0.05

Zr = 0.0 + j0.03

Zt = 0.05 + j0.5

The prefault load current is given by

Ix0 = Es − Er

Zs + Zr + Zt
= 0.8359 + j0.3031
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and the prefault voltage at the fault point is

Ef = Es − [Zs + 0.3(0.05 + j0.5)]Ix0

= (−0.866 + j0.5) − [0.0 + j0.05 + 0.3(0.05 + j0.5)](0.8359 + j0.3031)

= 0.9141 + j0.3283

Assume that a fault at a fractional distance of k = 0.3 occurs through a fault resistance of 0.3 pu.
The Thévenin impedance of the network as seen from the fault point is given by

Eth = [Zs + kZt][Zr + (1 − k)Zt]

Zr + Zs + Zt
+ R

= [j0.05 + 0.3(0.05 + j0.5)][j0.03 + 0.7(0.05 + j0.5)]

j0.05 + j0.03 + 0.05 + j0.5
+ 0.3

= 0.3106 + j0.1310

The fault current If is found by dividing the prefault voltage at the fault point by the Thévenin
impedance:

If = 0.9139 + j0.3288

0.3106 + j0.1310
= (−2.8768 + j0.1568)

The current and voltage at the relay location (again obtained by solving the faulted circuit) are
Ix = 2.7211 + j0.1892 and Ex = 0.8755 + j0.3639. Note that if we assumed that there was no fault
path resistance, we would compute the fractional distance to the fault by simply taking the ratio of
Ex and Ix, and normalizing it by the total transmission line impedance Zt:

kapprox = Ex

IxZt
= 0.2847 − j0.6304

which answer, as expected, is in serious error. In order to use equation (13.5), one must know the
distribution factor d , which itself, as seen from equation (13.4), depends upon k. Thus, one must
use an iterative procedure to compute d and k simultaneously. However, it will be seen shortly
that k is not too sensitive to errors in d . For the moment, let us assume that we know k to be 0.3.
Then, the distribution factor d is given by

d = Zr + (1 − k)Zt

Zr + Zs + Zt
= (0 + j0.03) + 0.7(0.05 + j0.5)

(0 + j0.05) + (0 + j0.03) + (0.05 + j0.5)

= 0.6555 − j0.0038

Substituting these values of d , Ix, Ix0 and Ex in equation (13.5) gives

(0.8755 + j0.3639) = k(0.05 + j0.5)(2.7211 + j0.1892) + R[(2.7211 + j0.1892)

− (0.8359 + j0.3031)]/(0.6555 − j0.0038)

= k(0.0414 + j1.37) + R(2.8768 − j0.1568)

Separating the two sides into real and imaginary parts, and eliminating R, k is found to be 0.3, the
correct value.
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Let us see the effect of approximating the distribution factor d . If we assume d to be 1.0 (a real
number) of some arbitrary magnitude, and repeat the calculation given above, it is found that k

is now 0.3037. Considering the very serious approximation made in d , this result is indeed very
accurate. In fact, in the references cited, it has been shown that the correct answer does not depend
upon the magnitude of d , but rather upon the angle of d , and, furthermore, it is often accurate
enough to assume that the angle of d is 0◦.

In a power system, the most common type of fault is the phase-to-ground fault. Furthermore,
the fault path resistance is likely to be significant for such faults, and as discussed in section 5.4,
the presence of the ground fault resistance introduces an error in the fault distance calculation as
shown in Example 13.3. For a phase-a-to-ground fault, the relay location voltage is Ea and the
relay location current is I ′

a as shown in equations (5.10)–(5.14). Using these quantities in place of
Ex and Ix in equation (13.5), an accurate estimate of distance to the fault for a ground fault can
be determined.

The accuracy of the fault location calculation is affected by several factors. For example, the
errors in current and voltage transformers directly affect the distance estimate. Similarly, uncertain-
ties in line constants, effects of untransposed transmission lines, effects of line charging capacitors,
etc. are all responsible for some error. In addition, the distribution factor d is seldom known
(or constant) for a transmission network, as the system equivalent impedance depends upon the
(changing) network configuration. All of these effects have been discussed in the references cited
above, which may be studied by the interested reader. In passing, we note that if simultaneously
obtained data (synchronized phasors as discussed in section 13.3) from the two terminals of a line
are available, one could estimate the fault distance directly without making any assumptions about
the distribution factor d . This subject has also been studied, but is beyond the scope of this section.

13.5 Alarms
13.5.1 Attended stations

Alarms, meters, recorders and annunciators provide the interface between an operator and the status
of the equipment and system being operated. They play an obvious role in attended stations and
plants but are also valuable in unattended locations when relay or operating personnel arrive at the
station to determine what has occurred and what steps must be taken to restore service.

Indicating lights, meters and recorders are used to describe the steady-state condition of electri-
cal equipment such as circuit breakers, motors, transformers and buses, and mechanical equipment
such as valves and pumps. They also are used to display the progress of automatic or semiauto-
matic processes. Although every utility and industrial plant will have its own standards regarding
color-coded lamps, labels, etc., there are several commonly accepted practices. For instance, a red
indicating light almost always indicates that the equipment being monitored is in service. In the
case of a circuit breaker this means that the breaker is closed and current and/or voltage is present;
for valves, red means the valve is open, and the fluid is flowing. The opposite is true for a green
light. The circuit breaker is open and the valve is closed. Auxiliary contacts or limit switches can
be used to infer the condition of the equipment being monitored but it must be recognized that
this is not a direct indication of the device itself and could lead to an error. For instance, if the
connecting rod from the circuit breaker main contacts to the auxiliary switch breaks, the auxiliary
switch will not reflect the true position of the main contacts. The red light supervising the trip coil
has a special application. It means that the breaker is closed and it will be tripped if the trip coil
is energized. It is not good practice to use auxiliary contacts to energize this red light since the
breaker may be closed as indicated, but the trip coil may be open and incapable of tripping the
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breaker. An amber light is usually a warning indication that some condition is approaching a level
at which some corrective action will be required. White lights are generally simply status lights.
Meters and recorders should be sized so that the normal operating point is about three-quarters of
full-scale. This allows the operator to monitor an overload or abnormal condition. This is the same
practice followed in calculating CT ratios.

The increasing use of digital meters has promoted lively discussions on the relative merits of
digital versus analog readouts. There is a tendency to assume that a digital display is inherently
more accurate than an analog display of the same quantity simply because there can be a number
of digits following a decimal point. This is not true. The accuracy of any reading is the cumulative
accuracies of the entire installation, including the transducer (maybe the most critical element of
the chain), the burden, the means of communicating the information (hard-wired, high-frequency
carrier, microwave or fiber-optic) and the panel instrument itself. The more important consideration
in determining whether to use an analog or a digital meter is its application. A digital meter is the
better choice if it is used in a regulating function. The reference is then to a specific number rather
than to the relative position of a pointer on an analog scale. However, an operator will often prefer
to see the operating value relative to some abnormal value and the absolute numbers are of little
importance. For instance, an analog ammeter in a motor circuit is preferable to a digital meter.
Many times the operator will mark the normal, alarm and tripping currents on the ammeter face
and will operate accordingly, without any interest or concern with the actual motor current.

In addition to the normal complement of meters and recorders, the use of annunciators has become
standard practice in power plant and system control rooms. The design details of annunciators
reflect the particular preferences of the user but there are general practices that are common to
all. The annunciator is primarily used to alert the operator to a change in the operating mode of a
piece of equipment or operating parameter. A window with the appropriate message is illuminated
when a condition goes ‘off-normal’. This is usually accompanied by flashing the window light and
sounding an audible alarm. The operator then silences the alarm and stops the flashing light. If
the condition is off-normal, the window stays lit. The same sequence occurs when the condition
returns to normal, only now the light stays out. The operator knows the status of the equipment
at all times by reviewing the lit annunciator windows. On a 1300 MW unit there may be between
1000 and 1500 annunciator windows and for any tripout, several hundred alarms will be actuated.
SERs are used to supplement the annunciator displays and provide the operator with a more
meaningful record of each event. As computers are being introduced into power plant control
rooms and system dispatching centers, the annunciator displays are modified so that only the
initiating causes are shown initially. The complete status of all equipment can then be displayed
on demand.

13.5.2 Unattended stations

The same complement of meters, recorders, indicating lights and annunciators is used at unat-
tended stations to facilitate maintenance and troubleshooting. However, the change of status of
equipment or the occurrence of any tripouts or overload must be immediately reported to a central
location for proper operation of the system. Before the widespread use of digital communication
systems using microwave or fiber-optic cable, relatively simple alarm systems were used. Basi-
cally, two types of alarm were sent from the station to the dispatching center. Variously called
‘critical/noncritical’, ‘operation/maintenance’ or some other descriptive terms, the purpose was to
have the proper switch, relay or maintenance personnel sent to the station to correct the prob-
lem, begin the investigation and restore service. As communications became more reliable and
sophisticated, specific details were sent, eventually resulting in very complete data acquisition
systems (DASs). A DAS can now incorporate both normal and off-normal values, equipment
condition and specific operation or maintenance messages. In addition, with the advent of digi-
tal relays and oscillographs, a remote terminal unit (RTU), which is the communication interface



COMTRADE and SYNCHROPHASOR standards 305

between the DAS and the remote dispatching or engineering center, can be used to access both
devices.

13.6 COMTRADE and SYNCHROPHASOR standards
Two recent industry standards are of particular interest for protection systems. These are COM-
TRADE (IEEE standard and a parallel IEC standard) and SYNCHROPHASOR (IEEE standard).
We will offer brief overviews of the subject matter of these standards.

13.6.1 COMTRADE10

This standard defines a standard format for data files created by computer relays, digital fault
recorders or other substation-based systems. The original idea for this standard evolved from the
need for interchangeability of data files for various user groups. Figure 13.12 shows on the left-hand
side the various groups who may produce transient data from system voltages and currents. The
potential users of the transient data are shown on the right-hand side. It became clear that various
data producers were using proprietary file structures, and users had to have access to interpreters
of data from those file sources. By defining a common file structure, a great stride has been made
in opening up data access to a much wider audience.

The initial impetus for this work came from a CIGRE working group working on a document
to offer an overview of the computer relaying technology in the 1990s. A working group of the
IEEE Power System Relaying Committee took on the task of producing a standard based upon the
CIGRE report. This standard was later revised (1999), and at the same time a parallel working
group of the IEC successfully adapted the standard as an IEC standard. This is now the worldwide
accepted standard for storing and using transient data obtained from power systems, simulators,
relays and other recording devices.

The standard calls for three main files: a header file, a configuration file and a data file. The
first two help describe in detail the contents of the data file. The data file contains sample values
of voltage and current measurements, as well as status information of various contacts available to
the recording device. Each record is time stamped to fractions of a microsecond.

The interested reader is referred to the standard document for additional details. The value of
using a common format for all data collected from substations became particularly evident when
attempts were made to reconstruct the sequence of events during major power system disturbances.
There is a strong push in the electric power industry to make sure that all files stored and used for
analysis are in COMTRADE format.
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Figure 13.12 Community of producers and users of transient data produced in electric power systems. This
concept emphasized the need for the creation of the COMTRADE standard
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13.6.2 SYNCHROPHASOR11

This standard defines the structure of the output files of synchronized phasor measurements provided
by phasor measurement units (PMUs). The rationale for creating this standard is similar to that
described above for the COMTRADE standard. As PMUs began to be manufactured by different
manufacturers, it became imperative that their output files should conform to a common format so
that interoperability of PMUs from different manufacturers can be assured. This standard is also
fashioned after the COMTRADE standard in its structures. There are header, configuration and
data files in the SYNCHROPHASOR standard. The data files carry time stamps correlated with
GPS transmissions. With the available timing precision of 1 µs from these systems, synchronized
data from various substations of the power system can be obtained, providing measurements upon
which real-time monitoring, control and protection systems can be based.

With the recurring major blackouts around the world, it became clear that data with precise
synchronization are extremely valuable in determining the sequence of events and contributing
causes to a catastrophic power system failure. This realization has led to a worldwide move toward
installing PMUs on power grids. Many applications of these measurements are being investigated
by researchers around the world, and widespread use of this standard and the PMU data is expected
to be a common feature of power system monitoring, control and protection systems of the future.

13.7 Summary
In this chapter we have presented examples of power system fault recording devices and the analysis
of typical oscillograms of records associated with faults and other operating situations. We have
described how to analyze faults, determine if equipment needs maintenance and determine if the
protection scheme is working as intended. We have discussed the concept of synchronized sampling
which allows us to correlate the records from several devices and locations. We have described
various calculating procedures to determine the location of a fault even if information from only
one terminal is available. We have described typical alarm and annunciator schemes used in power
plants and substations. We have described the technology of synchronized sampling using the GPS
system and have shown a typical substation system.

Problems
13.1 Given the oscillograph voltage trace shown in Figure 13.13 for a 345 kV bus, determine

the normal and fault phase-to-neutral and phase-to-phase primary voltage. The potential
transformer ratio is 3000:1, the galvanometer calibration is 4 V mm−1 and connected phase-
to-neutral.

Fault voltagePre-fault voltage

15 mm

4 mm

Figure 13.13 Oscillograph voltage trace for problem 13.1
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13.2 Given the oscillograph current traces of Figure 13.14, determine the normal and fault phase
and ground primary current. The CT ratio is 240:1 and the galvanometer calibration is 1 A
mm−1 for both traces. Why is there any ground current prior to the fault?

Phase current trace

Fault initiated

16mm

4 mm

Ground current trace

16 mm

1 mm

Figure 13.14 Oscillograph voltage trace for problem 13.2

13.3 From the oscillograph record of Figure 13.15, determine what type of fault A phase current
has occurred (i.e. phase-a-to-ground, phase-a-b, etc.). Is there a reclose? Is it successful or
unsuccessful? How many cycles before the fault was cleared and how long was the line
de-energized?

Bus potential

A Phase current

Line potential

B Phase current

C Phase current

Figure 13.15 Oscillograph record for problem 13.3

13.4 From the system one-line diagram and the oscillograph record of Figure 13.16, describe
the sequence of operation. For example, at T = 0–1.5 cycles – no fault, voltage normal,
current = load current, current = zero. (Note the voltage Ea on line 1 when ia = 0. What
is it?)
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Figure 13.16 System one-line diagram and oscillograph record for problem 13.4

13.5 Derive equations similar to (13.4) and (13.5) for a b–c fault and an a–g fault on a three-
phase system. Is it necessary to use distribution factors for the positive, negative and zero
networks for these cases? (Hint: use the fact that in the fault current, the positive, negative
and zero sequence currents are all equal to each other.)

13.6 Assume that the distribution factor d used in fault location equations (equations ??, etc.)
has a phase angle error of 5◦. Assuming that the rest of the data are as in Example 11.3,
determine the error in fault location as a function of the load angle, i.e. as a function of
the difference between the phase angles of the sending and receiving end voltages. Vary the
load angle in steps of 10◦ from −30◦ to +30◦.
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Appendix A

IEEE device numbers
and functions

The devices in switching apparatus are referred to by numbers, with appropriate suffix numbers and
letters when necessary. These numbers are based on a system adopted as standard for automatic
switchgear by the IEEE and incorporated in ANSI/IEEE Standard C37.2. This system is used in
electrical elementary and connection diagrams, in instruction books and in specifications. The list
below is a selected group that is commonly used.

1 Master element that operates to place a device in or out of service.
13 Synchronous speed switch that operates at approximately the synchronous speed of the machine.
20 Electrically operated valve.
21 Distance relay which functions when the circuit admittance, impedance or reactance increases

or decreases beyond predetermined limits.
23 Temperature control device.
25 Synchronizing or check synchronizing device that operates when two AC circuits are within

desired limits of frequency, phase angle or voltage to permit the paralleling of these two
circuits.

26 Thermal device that operates when the temperature of the protected apparatus decreases below
a predetermined value.

27 Undervoltage relay.
30 Annunciator relay.
32 Directional power relay that operates on a desired value of power in a given direction.
41 Field circuit breaker that applies or removes field excitation to a machine.
42 Running circuit breaker that connects a machine to its running or operating voltage.
43 Manual transfer switch.
46 Reverse-phase or phase-balance relay that operates when the polyphase currents are of reverse-

phase sequence, or when the polyphase currents are unbalanced or contain negative sequence
currents of a given amount.

47 Phase sequence voltage relay that operates upon a predetermined value of polyphase voltage
in the desired phase sequence.

48 Incomplete sequence relay that returns equipment to normal if the normal starting or stopping
sequence is not completed within a predetermined time.

49 Thermal relay that operates when the temperature of a machine exceeds a predetermined value.
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50 Instantaneous overcurrent or rate-of-rise relay.
51 AC time-delay overcurrent relay that operates when the current exceeds a predetermined value.

The relay operates with either a definite or an inverse time characteristic.
52 AC circuit breaker.
53 Exciter or DC generator relay that forces the DC machine excitation to build up during starting.
55 Power factor relay.
59 Overvoltage relay.
60 Voltage or current balance relay that operates on a given difference in the input or output of

two circuits.
62 Time-delay stopping or opening relay.
63 Pressure switch that operates on given values or given rate of change of pressure.
64 Ground protective relay.
65 Governor device used to regulate the flow of water, steam or other media.
67 AC directional overcurrent relay.
69 Permissive control device.
72 DC circuit breaker.
76 DC overcurrent relay.
78 Phase angle measuring or out-of-step relay that operates at a predetermined phase angle

between two currents, two voltages or between a voltage and a current.
81 Frequency relay.
85 Carrier or pilot wire receiver relay.
86 Lockout relay that is electrically operated and hand or electrically reset to shut down and hold

equipment out of service.
87 Differential protective relay that functions on a percentage or phase angle or other quantitative

difference of two currents or some other electrical quantities.
90 Regulating device that operates to regulate a quantity at a certain value or between certain

limits.
91 Voltage directional relay that operates when the voltage across an open circuit beaker or

contractor exceeds a given value in a given direction.
94 Trip-free relay that operates to trip a circuit breaker or contractor.

101 Control switch to open and close a circuit breaker or contractor.

If one device performs two relatively important functions so that it is desirable to identify both
functions, a double device function number is used, such as 50/51 – instantaneous and time-delay
overcurrent relay.

Suffix letters are used with device function numbers to further uniquely identify the device.
Lower case suffix letters are used for auxiliary, position and limit switches. Upper case letters are
used for all other functions.

Suffix numbers are used when two or more devices have the same device function numbers and
suffix letters to further differentiate between the devices, such as 52X-1 and 52X-2.



Appendix B

Symmetrical components

B.1 Definitions
Symmetrical components of voltages or currents are defined through a linear transformation of
phase quantities.1,2 Let Xp be the phase quantities and Xs be their symmetrical components, where
X may be voltages or currents. Thus

Xs =




X0

X1

X2


 = SXp = 1

3




1 1 1

1 α α2

1 α2 α







Xa

Xb

Xc


 (B.1)

The elements of Xs identified by the subscripts 0, 1 and 2 are known as the zero, positive, and
negative sequence components respectively. The inverse of the matrix S is given by

S−1 = 3




1 1 1

1 α α2

1 α2 α




−1

=




1 1 1

1 α2 α

1 α α2


 (B.2)

where α = (− 1
2 + j

√
3

2 ) is a cube root of 1. S is a similarity transformation on impedance matrices
of certain classes of three-phase power apparatus.

B.2 Identities
α3 = 1 (B.3)

1 + α + α2 = 0 (B.4)

1 − α =
√

3ε−jπ/6 (B.5)

1 − α2 =
√

3εjπ/6 (B.6)

α − α2 = j
√

3 (B.7)
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314 Symmetrical components

B.3 Sequence impedances
The impedance matrix (or admittance matrix) of a three-phase element Zp transforms into a
sequence impedance matrix Zs in the symmetrical component frame of reference. The general
transformation is

Zs = SZpS−1 (B.8)

The elements of Zs are known as the sequence impedances of the three-phase element. The three
diagonal elements are the zero sequence, positive sequence and negative sequence impedances
respectively. The off-diagonal elements are zero for all balanced elements. Even in the presence of
unbalances, the off-diagonal elements of Zs are often neglected. The sequence impedances of some
of the more common types of power system elements are given below. For admittances, replace
Z’s by Y ’s.

(a) Balanced impedances without mutual coupling between phases

Zp =




Zs 0 0

0 Zs 0

0 0 Zs


 (B.9)

Zs =




Zs 0 0

0 Zs 0

0 0 Zs


 (B.10)

(b) Balanced impedances with mutual coupling between phases

Zp =




Zs Zm Zm

Zm Zs Zm

Zm Zm Zs


 (B.11)

Zs =




Zs + 2Zm 0 0

0 Zs − Zm 0

0 0 Zs − Zm


 (B.12)

(c) Balanced rotating machinery

Zp =




Zs Zm1 Zm2

Zm2 Zs Zm1

Zm1 Zm2 Zs


 (B.13)

Zs =




Zs + Zm1 + Zm2 0 0

0 Zs + α2Zm1 + αZm2 0

0 0 Zs + αZm1 + α2Zm2


 (B.14)
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Figure B.1 Symmetrical component connections for various faults
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(d) Flat configuration untransposed transmission line

Zp =



Zs1 Zm1 Zm2

Zm1 Zs2 Zm1

Zm2 Zm1 Zs1


 (B.15)

Zs = 1

3




2Zs1 + Zs2 + 4Zm1 + 2Zm2 −α2(Zs1 − Zs2 − Zm1 + Zm2)

−α(Zs1 − Zs2 − Zm1 + Zm2) 2Zs1 + Zs2 − 2Zm1 − Zm2

−α2(Zs1 − Zs2 − Zm1 + Zm2) −α(Zs1 − Zs2 − Zm1 + Zm2)

−α(Zs1 − Zs2 − Zm1 + Zm2)

−α2(Zs1 − Zs2 + 2Zm1 − 2Zm2)

2Zs1 + Zs2 − 2Zm1 − Zm2


 (B.16)

Equations (B.15) and (B.16) become equations (B.11) and (B.12) when Zs1 = Zs2 and Zm1 = Zm2.
Other types of phase impedance matrices can be transformed into their sequence impedances by
using the general formula (B.8).

B.4 Representations of faults
Balanced and unbalanced faults at system buses are represented by appropriate connections of the
symmetrical component networks at the fault buses. Figure B.1 shows schematics of various types
of faults, followed by the corresponding symmetrical component network connections.3 All faults
are shown to occur through some impedances. If solid short circuits are to be represented, the
corresponding impedances must be set equal to 0. In some cases, phase shifting transformers are
shown. These transformers change the phase angles of the currents and voltages in going from the
primary to the secondary side.

References
1. Fortescue, C.L. (1918) Method of symmetrical coordinates applied to the solution of polyphase networks.

Trans. AIEE , 37, 1027–140.
2. Stevenson Jr, W.D. (1982) Elements of Power System Analysis , 4th edn, McGraw-Hill, New York.
3. Westinghouse (1976) Applied Protective Relaying , Westinghouse Electric Corporation, Newark, NJ.
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Power equipment parameters

C.1 Typical constants of three-phase synchronous machines1

In the following table, the reactances are per unit values on a machine’s base. The time constants
are in seconds. Average values for a given type of machine are given. Some constants may vary
over a wide range, depending upon the design of the machine.

Two-pole Four-pole Salient-pole machines Condensers
turbine generators turbine generators with dampers

Xd 1.10 1.10 1.15 1.80
Xq 1.07 1.08 0.75 1.15
X′

d 0.15 0.23 0.37 0.40
X′′

d 0.09 0.14 0.24 0.25
X2 0.09 0.09 0.24 0.24
X0 0.01–0.08 0.015–0.14 0.02–0.20 0.02–0.15
T ′

d0 4.4 6.2 5.6 9.0
T ′

d 0.6 1.3 1.8 2.0
T ′′

d 0.035 0.035 0.035 0.035
Ta 0.09 0.2 0.15 0.17

C.2 Typical constants of three-phase transformers2

Transformer reactance is given in percent on its own base.

BIL of HV winding BIL of LV winding Min. Max.

450 200 10.5 14.5
350 12.0 17.25

750 250 12.5 19.25
650 15.0 24.0
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BIL of HV winding BIL of LV winding Min. Max.

1050 250 14.75 22.0
825 18.25 27.5

1300 250 16.25 24.0
1050 20.75 30.5

C.3 Typical constants of three-phase transmission lines3

All impedances and susceptances are in ohms and micromhos per mile respectively at 60 Hz.

(a) 362 kV transmission line with flat configuration

Zϕ =

 0.2920 + j1.0020 0.1727 + j0.4345 0.1687 + j0.3549

0.1727 + j0.4345 0.2359 + j0.9934 0.1727 + j0.4345
0.1687 + j0.3549 0.1727 + j0.4345 0.2920 + j1.0020




Yϕ =

 j6.341 −j1.115 −j0.333

−j1.115 j6.571 −j1.115
−j0.333 −j1.115 j6.341




(b) 800 kV transmission line with flat configuration

Zϕ =

 0.1165 + j0.8095 0.0097 + j0.2691 0.0094 + j0.2231

0.0097 + j0.2961 0.1176 + j0.7994 0.0097 + j0.2691
0.0094 + j0.2213 0.0097 + j0.2691 0.1165 + j1.8095




Yϕ =

 j7.125 −j1.133 −j0.284

−j1.133 j7.309 −j1.133
−j0.284 −j1.133 j7.125




(c) 500 kV parallel transmission lines

Zϕ =
[

Zs1 Zm

Zt
m Zs2

]

Yϕ =
[

Ys1 Ym

Y t
m Ys2

]

Zϕ1 =

 0.1964 + j0.9566 0.1722 + j0.3833 0.1712 + j0.2976

0.1722 + j0.3833 0.2038 + j0.9447 0.1769 + j0.3749
0.1712 + j0.2976 0.1769 + j0.3749 0.2062 + j0.9397




Zϕ2 =

 0.2062 + j0.9397 0.1769 + j0.3749 0.1712 + j0.2976

0.1769 + j0.3749 0.2038 + j0.9447 0.1722 + j0.3833
0.1712 + j0.2976 0.1722 + j0.3833 0.1964 + j0.9566
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Zt
mϕ =


 0.1642 + j0.2150 0.1701 + j0.2422 0.1742 + j0.2863

0.1600 + j0.1922 0.1657 + j0.2120 0.1769 + j0.3749
0.1548 + j0.1769 0.1600 + j0.1920 0.1642 + j0.2150




Yϕ1 =

 j6.318 −j1.092 −j0.316

−j1.092 j6.522 −j1.092
−j0.316 −j1.092 j6.388




Yϕ2 =

 j6.388 −j1.070 −j0.316

−j1.070 j6.522 −j1.092
−j0.316 −j1.092 j6.318




Yt
mϕ =


 −j0.069 −j0.143 −j0.434

−j0.034 −j0.057 −j0.143
−j0.025 −j0.034 −j0.069
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Appendix D

Inverse time overcurrent relay
characteristics

Type CO-6 (courtesy of ABB Power T&D Company)

Definite minimum time relay

Taps: 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0
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322 Inverse time overcurrent relay characteristics

Type CO-11 (courtesy of ABB Power T&D Company)

Extremely inverse time relay

Taps: 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0
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Type IAC-53 and IAC-54 (courtesy of General Electric Company)

Very inverse time relay with instantaneous attachment

Taps: 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0



Index

Note: Bold italic type refers to entries in the Table of Contents, ∗ refers to a Standard Title and
Reference number and # refers to a specific standard within the buff book

91, 40, 48*
100, 8, 22*, 101*, 131*
11.10 #242, 47*, 77, 99
C37.1, 22*
C37.2, 48*, 81, 311
C37.91, 48, 238, 241*
C37.93, 138, 157*
C37.96, 160, 177, 193*
C37.97, 238, 241*
C37.99, 236, 241*
C37.102, 159, 179, 193*
C37.106, 177, 212, 194*, 223*
C37.109, 233, 241*
C37.111-1999, 309*
C37113-1999, 151, 157*
C37.118-2005, 309*
C57.12.01, 177, 194*
C50.13, 178, 194*
C57.13, 54, 72*

Abnormal frequency, 159.177
Abnormal voltage, 159, 177
Adaptive Relaying , 273

Hidden failures , 275
regions of vulnerabilty, 276

Alarms , 303
analog, 303
annunciator, 304
attended stations, 303
digital, 304
unattended stations, 304

Analog recorder, 289
Apparent impedance, 116, 119, 246
Automatic reclosing, 12, 77
Auxiliary current transformers, 60

Auxiliary system design, 180
Autotransformer, 95

Back-up protection, 10, 102, 146
Battery, 13
Breaker failure, 11, 284
Blinders, 270
Blocking pilot systems , 138, 141
Breaker and a half configuration, 6, 232
Broken delta connection, 94, 167
Brushless generator field, 174
Buchholz relay, 213
Burden, 50
Bus configuration , 4, 214–220, 230
Bus protection , 225

differential, 226–229, 231–232
combined bus-transformer, 240–241
directional comparison , 230
high impedance voltage, 227
linear couplers , 229
moderately high impedance, 229
overcurrent , 226
static var compensator , 237
statcon , 239

Bus transfer schemes, 184
Bushing current transformer, 16

Cables
fiber optic, 133, 136
pilot wire, 136, 151

Capacitance potential device, 48, 64
(see also CCVT),

Capacitor protection
series capacitor, 125
shunt capacitor, 235
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Capacitor protection (Continued)
SVC filter, 239
SVC thyristor, 237, 239

Carrier current, 64, 133, 134, 135
blocking pilot scheme, 138
unblocking pilot scheme, 142

Circuit breakers, 6, 13, 14, 181, 185
Co-generation, 79
Communication channels , 134, 138
Compensation devices , 125, 126
COMTRADE , 305
Computer (Digital) relays , 41, 283
Constant percentage differential relay, 162
Control Circuits, 42, 44, 80, 104, 189
Coordination

fundamentals, 85, 101, 134
loop system, 79, 90
time interval, 83, 86, 102

Couplers, linear , 62, 229
Coupling capacitor voltage transformer (CCVT),

237, 239
transient performance, 272

Current Differential , 151
Current transformer , 49

accuracy classification, 54
auxiliary, 59
burden, 50
bushing, 14
connections, 56, 110
DC component, 56, 58
electronic, 62
equivalent circuit, 49, 228
free-standing, 14
function, 49
magnetizing current, 52, 200, 201
neutral connection, 165
parallel connections, 56
polarity, 55
ratios, 53
residual connection, 168
residual flux (toroidal), 62168
saturation, 58, 206, 296
special connections, 59
standard ratios, 55
steady-state performance, 50, 243, 246
toroidal (flux summing), 52, 168, 562, 43
zero-sequence shunt, 61

DC circuit, 44, 80, 104
DC component, 56, 58
DC offset, 56, 58
DC supply, 13
Delta connection, broken, 94, 167
Dependability, 7, 160
Device numbers , 45, 161, 311

Diffrential protection, 26, 160, 183, 199, 201, 206,
209, 210

Differential relays
bus, 226–229, 231
generator, 160
motor, 160, 170, 183
reactor, 234
transformer, 199, 206, 209, 215
transmission line, 133

Digital (computer) relays , 41, 283
setting program , 283

Digital fault recorder, 290299
Direct transfer trip, 142
Directional comparison ,

blocking , 138
bus protection , 226–231
direct transfer trip, 142
permissive overreaching , 146

transfer trip,
permissive underreaching ,

transfer trip, 147
pilot systems, 133, 138
unblocking , 142
underreaching transfer trip, 142

Directional control, 91
Directional overcurrent relay , 36, 76, 90, 92

application , 90
fault directional, 93
polarizing , 92
power directional, 92

Distance relays, 76, 101
characteristics, 117
connections, 108, 109, 112
generator protection, 179
ground, 110
infeed effect, 120
line application, 101
loadability of relays , 127
loss-of-excitation , 172
multi-terminal lines , 119
operating fundamentals, 24, 36
out-of-step application , 249
overreaching, 102, 146
polarizing, 92
R-X diagram, 104
series capacitor application, 125
series reactor application, 126
stepped distance protection, 101
three phase relay , 108
types , 117
underreaching transfer trip, 142
unfaulted phases, 114
zero voltage, 117

Distribution circuit protection, 77, 79
Distribution transformer grounding, 171
Drop out (see also reset), 30, 43
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Double bus configuration, 6, 232
Dual phase comparison, 150
Dual polarizing, 90, 96

Electromechanical relays , 29
induction disk, 32
plunger, 30

Electronic current transformers , 62
Electronic voltage transformers , 70
Extra High Voltage (EHV), 7, 10, 76, 217

False residual current, 124
Fault

resistance, 115
types, 108–116, 315, 316

Fault detectors , 24
frequency, 27
distance, 26
harmonics, 27
level, 24
magnitude, 25
diffferential, 26
phase angle, 27
pilot

Fault location , 299
Fault recorder, 289

analog, 289
digital, 290, 299

Fiber optic cable, 133, 136
Flux linkage, 58

residual (remanent), 58
Frequency

generator protection, 159, 177
load shedding, 254, 265

Frequency shift (FSK), 142, 143, 147
Fuses , 28, 76, 77, 195

characteristics, 78, 196
current limiting, 78
minimum melt, 77
speed ratio, 196
total clearing, 77
transformer, 196

Generating station design , 180, 217, 219
Generator auxiliary systems , 180

auxiliary system design, 180
bus transfer schemes, 184
circuit breaker applications, 181
generator breaker, 185
ground fault protectionn, 184
phase fault protection, 182
generator protection, 159, 175
abnormal voltages and frequency , 159,

175

back-up ground, 172
capability curve, 179, 180
connections , 185
cross-compound, 187
differential protection, 160
distance protection, 179
field ground, 160
frequency, 177, 178
grounding, 164
impedances, 164, 317
inadvertent energization , 189
loss of excitation , 177, 179
loss of synchronism, 180.248
motoring , 187
negative sequence, 174
off-frequency operation, 177
overload , 175
overspeed , 177
overvoltage, 177
out-of-step, 180
reclosing, 268
rotor faults , 174
sequential tripping, 168
split-phase winding, 185
start up, 187
stator faults , 160
subsynchronous resonance, 189
third harmonic ground

protection, 164
tripping vs alarming, 160, 179
torsional vibration , 189
unbalanced currents , 174
undervoltage, 178
unit connected generator, 171

Generator winding connection, 185
Ground detector, 167
Ground distance relays, 110

application, 110, 121
mutual effect, 121
pilot systems, 138–147

Ground fault protection, 84, 110, 124, 164
Grounding

high impedance, 165
high resistance, neutral, 165
low impedance, 165
low resistance, 165
moderate impedance, 167
neutral impedance, 2, 165
reactor (resonant), 173
residual, 168
solid, 165
transformer, 171
ungrounded, 167

Global Positioning Satellite,
297
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Harmonics, 200
CT performance, 200, 203, 204
inrush current, 183, 189, 190
restraint relay, 206

High impedance bus differential , 227
grounding, 164

High speed, 9
High voltage (HV), 10

Impedance, 173
apparent, 116
arc, 115
characteristic, 317
fault, 115
generator 164–167, 317
line, 318
load, 50
negative sequence, 174, 313
relay, 36, 117
subtransient, 244, 317
synchronous, 175, 317
transformer, 317
inadvertent energization , 189

Independent power producers (IPP), 79
Induction

cup, 33
disk, 32
mutual, 314
negative sequence, 123, 314
positive sequence, 123
zero sequence, 123

Infeed effect, 91, 119, 153
Input devices, 43
Inrush current, 183, 187, 190
Instantaneous overcurrent relays , 76, 88

application , 88
protection, 88
relays, 29, 38, 88, 198
time, defined, 10

International practices , 4, 17, 214
Inverse time delay relays , 76, 80

application, 80
setting rules, 81

Linear couplers , 62, 229
Line transfer trip, 138, 142, 146,

147
Line trap, 134
Line tuner, 134
Load restoration , 254
Load tap changing, 200
Loadability , 127, 142
Local back-up, 10, 102
Long line, definition, 76
Loop switching, 76, 90

loss of excitation , 159, 179
loss of synchronism, 180, 248

Magnetizing current, 52, 200, 201
Maximum torque angle, 36
Mho (admittance) relay, 37, 117
Microwave channel, 134, 135, 138
Modal analysis, 135
Moderately high impedance relay , 229
Motor protection , 159, 168–171, 175, 181,

182, 183
Motoring , 187
Multi-terminal lines , 119, 153
Mutual coupling, 121, 124, 314

National Electric Code, 176
Negative sequence

definition, 313
current, 174
current relays, 175, 234
impedance, 314
motor heating effect, 175

Network, 5, 79, 91
Neutral

definition, 165
impedance, 165
shift, 3

Non-Pilot Overcurrent Protection of Transmission
Lines (see also Overcurrent protection), 75

directional overcurrent relay , 90
fuses , 76
graded system, 77, 78
instantaneous overcurrent relay , 88, 94
inverse, time-delay overcurrent relay , 80
long line, definition 76
non-unit system, 76
polarizing ,
reclosers, 76, 77
relatively selective system, 77
sectionalizers , 77
short line, definition, 76

North American Electric
Reliabilty Council (NERC), 255

Oscillograph Analyis
circuit breaker restrike, 295
CT saturation, 295
current, 296
high speed reclose, 293
system swing, 295, 294
transients, 297
triggers, 290
unequal-pole-close, 291
voltage, 296
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Out-of-step relaying , 291
distance protection, 268
generator protection, 269
system operation, 179, 180

Outfeed effect, 153
Overcurrent protection

bus , 226
generator , 175
static var compensation (SVC), 237
transformer, 238
transmission line Overexcitation, 238

Overfrequency, 178
Overlapping protection, 9
Overload , 159, 175, 214
Overreaching transfer trip, 146

settings, 147
Overspeed , 159, 177
Overtravel, relay, 896
Overvoltage generator, 177

static var compensation (SVC), 239

Parallel lines , 121
Partial differential protection, 231
Percentage differential relays, 162, 226
Permissive overreaching transfer trip, 146
Permissive underreaching transfer trip, 147
Petersen coil, 3
Phase comparison relays , 148

dual comparison, 150
non-segregated phase, 150
single comparison, 150
segregated phase, 150

Phase packaging, 118
Phasors, 3, 27, 93, 94105, 115, 252, 253
Pickup, 24, 29, 30, 44
pilot relaying channels , 27, 134

directional comparison ,
blocking , 138

directional comparison , 101
unblocking , 142

Phase comparison relays , 148
permissive overreaching transfer trip, 142
permissive underreaching transfer trip, 147

pilot wire relaying 1, 151
tripping vs blocking , 138
pilot wire cable, 134, 136, 151
Pilot wire relaying , 151

tripping pilot, 152
blocking pilot, 152

Plunger relay, 29
Polarity, 55, 209
Polarizing, 92

autotransformer, 96
current, 94
dual comparison, 94

Potential transformer, 94
Polyphase relays , 118
Positive sequence, 108, 111, 164, 166, 313
Potential transformer, 49, 63, 70, 135

connections, 110
function, 51, 134
electronic, 67
equivalent circuit, 64
Thevenin impedance 64
transient performance, 47

Power line carrier, 133
coupling, 133

Power system monitoring , 289
analog recorders, 289
digital recorders, 289
oscilloperturbograph, 289

portable oscillograph, 289
photographic oscillograph, 289

sequence-of-event (SER), 289
Power system stability , 243
Pressure devices, 213
Primary protection, 10
Protection baqk,up, 10, 81, 103

elements , 13
primary, 10

selectivity, 8
speed, 10
zones of protection, 8, 76, 102

Protective relays application principles, 76, 80, 88,
102

computer (digital), 41, 176, 283
connections, 108, 111, 185, 209, 235
contacts, 42, 44, 189
coordination, 77, 86, 102, 134
dependability, 7
designs , 28, 37, 41
device numbers , 42, 161, 311
differential, 26, 160, 182, 198, 209, 200, 215,

231, 234
directional overcurrent , 36, 76, 90, 92
distance, 26, 36, 101, 179
electromechanical , 29
function, 1
high speed, 10
impedance (ohm), 36, 140–142
instantaneous, 10, 38, 88, 102
induction, 32
logic representation, 40, 139, 143
operating time, 25, 32, 44, 86, 270
overcurrent , 80, 88, 176
pickup, 24, 31, 44, 83, 90
plunger, 29
polarity, 54, 299
Ratio Correction Factor (RCF), 51
reliability, 7
reset, 32, 33, 44, 86
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Protective relays application principles, (Continued)
seal-in, 43
security, 7
selectivity, 8
settings, 81, 82, 88, 102, 121, 139, 145, 147,

150, 166, 169, 170, 182, 228
solid-state, 38
targets, 42
testing , 281
time overcurrent , 35, 76, 77, 80, 176, 196, 233,

321

Radial lines, 4, 75, 77, 79
Reactance relay, 117
Reclosers , 77
Reclosing, 12, 77, 124, 189, 286, 293
Recorders analog, 289
Recovery inrush, 204
Regulating transformers, 212
Reliability, 7
Remote back-up, 11
Reset (see also dropout), 30–32, 43, 86
Resonant grounding, 173
Restraint relay, 206
Reverse power relays, 92
Ring bus, 6, 286
Ring type (toroidal) CT, 62, 168
Rotor faults , 174
R-X diagram, 36, 104

Safety factor, 85
Saturation, current transformer, 58, 202, 296
Seal-in, 43
Sectionalizers , 77
Security, 7
Segregated phase comparison, 149
Selectivity, 8
Sequence networks, 106–111, 164, 166, 174, 313
Seqential tripping , 190
Series capacitor, 125
Series reactor, 126
Short line, definition, 76
Shunt capacitor, 126, 235
Shunt reactor, 126, 233
Shunt Capacitor Bank ,

Protection , 235
Shunt Reactor Protection, 233

dry-type, 233
oil immersed, 234

Single bus, 6, 231, 285
Single phase

reclosing, 12, 125
tripping, 12, 125

Solid grounding, 165
Solid state relays , 37

Speed
relays, 10
system swings, 249

Split phase winding, 187
Stability , 243
Static Var Compensator , 237

Protection (SVC),
transformer protection, 239
bus protection, 239
typical protection schemes, 239

Station battery voltage, 13
Start-up and Motoring , 187
Stator phase faults , 160
Stator ground faults, 164
Stepped distance protection , 102
Subsidence transients, 67
Subsynchronous oscillations, 189
Subsynchronous resonance, 189
Subtransient impedance, 243, 318
Sudden pressure relays, 213
Symmetrical components , 313
Sympathetic inrush, 204
Synchronized sampling , 297

Global Positioning Satellite, 297
Synchrophasor , 305
Synchronous impedance, Section 13.6
Synchronizing, Section 11.2

automatic, Section 11.5
check,

System Integrity Protection , 265
System swing, 149, 180, 244, 248

Tapped lines, 119, 153
Testing , 281
Third harmonic, 165, 172, 202
Three phase distance relays , 12, 32, 82, 86

delay, 10, 83, 86
interval, 86, 102
overcurrent relay, 25, 32, 80, 176, 234, 321–323

Toroidal flux current transformer, 62, 168
Torsional vibration , 189
Transfer trip, 138, 142–147

direct, 142
permissive overreaching , 146
permissive underreaching , 147

Transformer protection , 195
connections, 209, 210
differential, 198, 199, 210, 206
generator step-up, 165, 185
impedances, 318
inrush, 203–206
overcurrent protection, 196
overexcitation, 205
percentage differential protection , 198
static var compensator , 237
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Static Compensator , 239
sudden pressure relay, 213
temperature devices, 214
three phase, 207
Volts per hertz , 212

Transmission line protection compensation , 125,
126

differential, 134
impedances, 318
loop, 79, 91
radial, 4, 75, 77, 79
reclosing, 12, 77, 125, 293
relay types, 80, 88, 101, 138, 142, 146,

147, 148, 151
voltage classification, 75

Transfer tripping pilot ,
schemes , 138, 142–148
direct, 144
permissive overreaching , 146
permissive underreaching , 147

Ultra-high-speed (UHS)
reclosing, 10

Underexcitation, 159, 179
Underfrequency, 159, 179
Underfrequency Load Shedding ,

266
Undervoltage Load Shedding , 268
Underground residential

distribution (URD), 77
Undervoltage, 177
Unbalanced currents , 174

Variable percentage
differential relay, 162

Voltage Transformer , 64
(see potential transformer)

Volts per Hertz relay, 177, 212

Zero sequence impedance, 112, 123,
166

Zero sequence shunt, 61
Zero voltage operation , 117
Zones of protection, 8, 9, 102
Zone packaging, 118


