

Power Systems

This page intentionally left blank

Federico Milano

Power System Modelling and
Scripting

ABC

Dr. Federico Milano
ETSII, University of Castilla - La Mancha
13071, Ciudad Real
Spain
E-mail: Federico.Milano@uclm.es

ISSN 1612-1287 e-ISSN 1860-4676
ISBN 978-3-642-13668-9 e-ISBN 978-3-642-13669-6
DOI 10.1007/978-3-642-13669-6
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010928724

c© Springer-Verlag London Limited 2010

Apart from any fair dealing for the purposes of research or private study, or criticism or re-
view, as permitted under the Copyright, Designs and Patents Act 1988, this publication may
only be reproduced, stored or transmitted, in any form or by any means, with the prior per-
mission in writing of the publishers, or in the case of reprographic reproduction in accordance
with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for
any errors or omissions that may be made.

Cover Design: deblik, Berlin, Germany

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Yolanda and Alessandro

This page intentionally left blank

Plato, Sophist, 365-361 B.C.

2.1 We make ourselves pictures of facts.
2.12 The picture is a model of reality.
2.225 There is no picture which is a priori true.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus, 1922 A.D.

This page intentionally left blank

Preface

History the Book

The first draft of these notes was born in the winter of 2002. At that time, I
was a visiting scholar at the University of Waterloo. Originally, those notes
were not intended as a book, but as a quick reference for not forgetting the
models I was implementing for my research. After eight years, I am with
Universidad de Castilla-La Mancha. During these years, the notes have been
growing up little by little, ceaselessly. During the summer of 2009, I have
reorganized the notes in the present book.

Justification of the Title

Power system modelling and scripting is a quite general and ambitious title.
Of course, to embrace all existing aspects of power system modelling would
lead to an encyclopedia. Thus, the book focuses on a subset of power system
models based on the following assumptions: (i) devices are modelled as a set of
nonlinear differential algebraic equations, (ii) all alternate-current devices are
operating in three-phase balanced fundamental frequency, and (iii) the time
frame of the dynamics of interest ranges from tenths to tens of seconds. These
assumptions basically restrict the analysis to transient stability phenomena
and generator controls. The modelling step is not self-sufficient. Mathematical
models have to be translated into computer programming code in order to
be analyzed, understood and “experienced”. It is an object of the book to
provide a general framework for a power system analysis software tool and
hints for filling up this framework with versatile programming code.

Objectives of the Book

This book is for all students and researchers that are looking for a quick
reference on power system models or need some guidelines for starting the

X Preface

challenging adventure of writing their own code. Thus, the objectives of this
book are twofold.

The primary objective is to provide a selection of the most used device
models ranging from static models for power flow, continuation power flow
and optimal power flow analyses to as complete as possible dynamic electro-
mechanical models for small-signal stability analysis and time domain simula-
tions. This selection includes classical devices (e.g., synchronous machines) as
well as non-conventional distributed energy resources (e.g., wind turbines),
static voltage dependent loads as well as emerging energy storage devices.
While describing each device, no matter if it is a well-known PV bus or a
very specific pitch angle control for wind turbines, the focus is on the model
hypotheses and on the implications of adopted simplifications.

The second objective is to provide a guide for organizing and translating
mathematical models into computer programming code. The purpose is that
the reader understands that there is always a gap between printed equations
and software applications running on computers. Fortunately, this gap is not
so huge and the book attempts to provide the methodological approach to
fill it.

Choice of the Programming Language

When dealing with programming issues, one has to face and answer a tricky
question: which is the most adequate computer language for tackling power
system analysis? Then, after deciding on the language, one already knows
that in a decade that language will be inevitably obsolete and a newer, easier,
classier language will be available. To avoid a quick obsolescence, the goal of
the book is not to provide code, but rather to teach how to design, organize
and eventually write it. Programming issues will be always the same, at least
as far as power systems will be the way they are. Thus, the adopted language
is not so important.

At the end of a careful one-year-long study, I finally opted for the Python
programming language. This language is well documented on the Internet, is
elegant and neat, is fully based on classes and provides efficient libraries for
solving linear algebra, handling sparse matrices and producing publication
quality figures. Last but not least, the Python interpreter is free and open
source. These characteristics do not guarantee that Python will last forever,
but make it very appropriate for educational purposes.

Organization of the Book

The material included in this book is organized in a somewhat unorthodox
way. Since the purpose is to concentrate on modelling, main power system
analysis tools and basic programming concepts are introduced before describ-
ing the devices. The book is organized in five parts, as follows.

Preface XI

Part I contains introductory concepts. Chapter 1 provides the motivation
of the book, some philosophical foundations of the art of modelling physi-
cal systems and defines the general mathematical model used for describing
the behavior of power systems. Chapter 2 introduces the structure and the
features of a software package for power system analysis while Chapter 3
discusses on the concept of scripting applied to power system analysis. The
latter chapter also attempts to provide general guidelines for thinking power
systems analysis in terms of computer programming. I hope that the results
can be useful for Ph.D. students that, at the very end, will be the only readers
of this book that have time to implement their own software applications.

Part II introduces basic tools for power system analysis. The viewpoint
used for describing these tools is as general as possible. Chapter 4 describes
the power flow analysis, Chapter 5 the continuation power flow, Chapter 6
the optimal power flow, Chapter 7 the small signal stability analysis, and
Chapter 8 the time domain integration. Each topic is huge and, thus, only a
very reduced selection of methods and algorithms is presented. The object is
to provide a starting point for further investigations as well as a basement on
top of which the following part dedicated to device modelling can be built.

Part III is the barycentric and most extended part of the book. It embraces
the most important families of power system devices in an as systematic and
exhaustive way as possible. Chapter 9 provides an introduction to the ba-
sic mathematical aspects of a generic electrical device. Following Chapters
from 10 to 20 describe static power flow devices, transmission lines, static
and regulating transformers, optimal power flow models, faults, protections,
measurement devices, non-conforming static and dynamic loads, synchronous
and induction machines, primary frequency and voltage regulators and power
system stabilizers, dc devices, ac-dc devices, FACTS devices, and wind tur-
bines and other distributed energy resources.

Part IV discusses spare topics that are relevant for power system analysis
but are seldom included in power system books. Chapter 21 introduces the
variegated world of data formats and discusses the challenges for creating
a common model for exchanging power system data. Chapter 22 discusses
the advantages of the Unix-style command line approach versus graphical
user interfaces. Chapter 22 also describes plotting utilities aimed to power
system visualization ranging from conventional plots to advanced 2D and 3D
temperature maps. Chapter 23 describes some relevant educational aspects
of free and open source power system software packages.

Finally Part V contains supporting material in form of appendices. Ap-
pendix A provides a minimal introduction to the Python non-standard scien-
tific libraries used in the book. The aim of Appendix A is to make the book as
self-contained as possible. Appendix B defines Python structures and classes
that are used in the examples of the book. Appendix C discusses control dia-
grams and hard limit models. Finally, Appendix D provides the power system
data used in the example of previous chapters whereas Appendix E describes

XII Preface

the software requirements for working with the book as well as some useful
links related to power system analysis.

Style of the Book

The style used in the book is somewhat unconventional with respect to tradi-
tional references about power system analysis. The will of merging together
two worlds, namely power system modelling and computer programming for
computational science, leads to the necessity of using a hybrid style that is
unusual for both worlds. The major risk is perhaps to end up writing a soft-
ware manual. To avoid that, I have tried to be as rigorous as possible and
to make the examples based on computer code a supporting material rather
than an essential part of the book, so that readers that despise computer
code can skip it. I have also tried to apply the lesson of the Venikov’s “The-
ory of Similarity and Simulation” [325]: whenever possible, I have included
analogies and similarities taken from any mathematical and scientific field.

The material is organized in several parts, each part in several chapters
and each chapter in several sections and subsections. This fragmentation
can remind Seneca’s style arena sine calce (i.e., sand without concrete) and
is a kind of deformation due to the habit of object-oriented programming.
However, this style is also dictated by the hope that in this way each topic
can be easily found and fixed in mind.

For those interested in very technicalities, to write this book, I used LATEX
3 with some useful packages such as PSfrag for the fine adjusting of figures
and the IEEE style for formatting the bibliography data base. Python 2.6.2
was used as main environment while modules CVXOPT 1.1.2 and NumPy 1.3
were used for linear algebra, sparse matrix and eigenvalue analysis. Matplotlib
0.99 was used for generating simulation plots and Xfig 3.2.5 for drawing all
other figures.

Acknowledgments

There is a beautiful Italian word that defines someone able to teach such that
he changes someone else life and makes it irremediably better. This word is
maestro. I have been lucky enough to have good ones: my grandfather Ce-
sare, my father Guido and my mother Silvana, Profs. Bruno Delfino, Gio
Battista Denegri and Marco Invernizzi from Università degli Studi di Gen-
ova, Prof. Claudio Cañizares from University of Waterloo and Prof. Antonio
Conejo from Universidad de Castilla-La Mancha.

Concluding Remark

While completing this preface, I realize that much material has been left out
of the book. However, I hope that what is included will be enough to transmit

Preface XIII

to the reader my passion for power system modelling and scripting. The book
will accomplish its ultimate object if the next time the reader looks at some
differential algebraic equations defining a power system device, he or she will
be seized by a vague intellectual pleasure and a subtle ardent curiosity.

Waterloo, Genova, Ciudad Real 2002-2010

This page intentionally left blank

Contents

Part I: Introduction

1 Power System Modelling . 3
1.1 Background . 3
1.2 Motivations . 4
1.3 Modelling Physical Systems . 5
1.4 Hybrid Dynamical Model . 11

2 Power System Architecture . 19
2.1 Structure of Software Projects . 19
2.2 Classes and Procedures . 21
2.3 Modularity . 23
2.4 Architecture of a Power System Software Tool 27

3 Power System Scripting . 31
3.1 Open and Closed Programming . 31
3.2 Scripting . 33
3.3 Scripting Languages for Computational Science 35
3.4 Computer Languages Suitable for Power System Analysis . . . 36
3.5 Python Scripting Language . 39

Part II: Power System Analysis

4 Power Flow Analysis . 61
4.1 Background . 61
4.2 Taxonomy of Power Flow Problems . 66
4.3 Classical Power Flow Equations . 67
4.4 Power Flow Solvers . 70

4.4.1 Jacobi and Gauss-Seidel’s Method 70
4.4.2 Newton’s Method . 74

XVI Contents

4.4.3 Power Flow Jacobian Matrix . 77
4.4.4 Robust Newton’s Method . 82
4.4.5 Iwamoto’s Method . 84
4.4.6 Inexact and Dishonest Newton’s Methods 85
4.4.7 Fast Decoupled Power Flow . 86
4.4.8 DC Power Flow . 92
4.4.9 Single and Distributed Slack Bus Models 95

4.5 A General Framework for Power Flow Solvers 96
4.5.1 Stability of the Continuous Newton’s Method 97

4.6 Summary . 100

5 Continuation Power Flow Analysis . 103
5.1 Background . 103
5.2 System Model . 107
5.3 Direct Methods . 108

5.3.1 Saddle-Node Bifurcation . 109
5.3.2 Limit-Induced Bifurcation . 111
5.3.3 Nonlinear Programming . 113

5.4 Homotopy Methods . 114
5.4.1 Continuation Power Flow . 117
5.4.2 Predictor Step . 117
5.4.3 Corrector Step . 121
5.4.4 Continuous Newton’s Method and Homotopy 126
5.4.5 N-1 Contingency Analysis . 127

5.5 Summary . 129

6 Optimal Power Flow Analysis . 131
6.1 Background . 131
6.2 Optimal Power Flow Model . 133
6.3 Nonlinear Programming Solvers . 139

6.3.1 Generalized Reduced Gradient Method 140
6.3.2 Interior Point Method . 142

6.4 Summary of IPM Parameters . 153

7 Eigenvalue Analysis . 155
7.1 Background . 155
7.2 Small Signal Stability Analysis . 159

7.2.1 Bifurcation Points . 161
7.2.2 Participation Factors . 165
7.2.3 Analysis in the Z-Domain . 169

7.3 Computing the Eigenvalues . 170
7.3.1 Power Method . 170
7.3.2 Inverse Iteration . 172
7.3.3 Rayleigh’s Iteration . 172

7.4 Power Flow Modal Analysis . 173

Contents XVII

7.4.1 Singular Value Decomposition 174
7.5 Summary . 177

8 Time Domain Analysis . 179
8.1 Background . 179
8.2 Power System Model . 186

8.2.1 Current-Injection Model . 187
8.2.2 Power-Injection Model . 189

8.3 Numerical Integration Methods . 192
8.3.1 Explicit Methods . 192
8.3.2 Implicit Methods . 195

8.4 Numerical Integration Routine . 198
8.4.1 Step Length . 200
8.4.2 Disturbances . 202
8.4.3 Stop Criterion . 204

8.5 Electro-magnetic Transients . 211
8.6 Quasi-static Analysis . 213
8.7 Summary . 217

Part III: Device Models

9 Device Generalities . 221
9.1 General Device Model . 221

9.1.1 Initialization of Device Internal Variables 223
9.2 Devices as Classes . 226

9.2.1 Base Device Class . 228
9.2.2 Methods of the Base Class . 236
9.2.3 Specific Device Methods . 241

10 Power Flow Devices . 247
10.1 Topological Elements . 247

10.1.1 Bus . 247
10.1.2 Areas, Zones, Regions and Systems 249

10.2 Static Generators . 250
10.2.1 PV Generator . 250
10.2.2 Constant Voltage Phasor Generator 254
10.2.3 PQ Generator . 256

10.3 Static Loads . 257
10.3.1 PQ Load . 257
10.3.2 Constant Power Factor Load . 259
10.3.3 Shunt Admittance . 260
10.3.4 Switched Shunt Admittances . 260

XVIII Contents

11 Transmission Devices . 263
11.1 Transmission Line . 263

11.1.1 Line Sections . 265
11.1.2 Tie Line . 267
11.1.3 Distributed Transmission Line Models 268
11.1.4 Effect of Frequency Variation . 270
11.1.5 Coupling Device and Zero-Impedance Line 271

11.2 Transformer . 272
11.2.1 Two-Winding Transformer . 272
11.2.2 Under Load Tap Changer . 275
11.2.3 Phase Shifting Transformer . 278
11.2.4 Three-Winding Transformer . 279

11.3 Vectorial Implementation . 282
11.3.1 Incidence Matrix . 284
11.3.2 Jacobian and Hessian Matrices 285
11.3.3 Network Connectivity . 287

12 OPF Devices . 291
12.1 Network Constraints . 291

12.1.1 Bus Voltage Limits . 291
12.1.2 Transmission Line limits . 291

12.2 Generator Constraints . 292
12.2.1 Capability Curve . 292
12.2.2 Supply Offer . 293
12.2.3 Reactive Power Payment Function 296
12.2.4 Generator Power Reserve . 298
12.2.5 Generator Power Ramp . 299

12.3 Load Constraints . 301
12.3.1 Demand Bid . 301
12.3.2 Demand Daily Profile . 302
12.3.3 Demand Power Ramp . 303

13 Faults and Protections . 305
13.1 Fault . 305
13.2 Breaker . 306
13.3 Relay . 307
13.4 Phasor Measurement Unit . 309
13.5 Bus Frequency Estimation . 311

14 Loads . 313
14.1 Voltage Dependent Load . 313
14.2 ZIP Load . 315
14.3 Frequency Dependent Load . 316
14.4 Voltage Dependent Load with Dynamic Tap Changer 317
14.5 Exponential Recovery Load . 320

Contents XIX

14.6 Thermostatically Controlled Load . 321
14.7 Jimma’s Load . 322
14.8 Mixed Load . 323

15 Alternate-Current Machines . 325
15.1 Synchronous Machine . 325

15.1.1 Synchronous Machine Parameters 326
15.1.2 Initialization . 327
15.1.3 Common Equations . 328
15.1.4 Stator Electrical Equations . 329
15.1.5 Magnetic Equations . 329
15.1.6 Simplified Magnetic Equations 332
15.1.7 Synchronous Machine Model Taxonomy 336
15.1.8 Saturation . 339
15.1.9 Center of Inertia . 342
15.1.10 Dynamic Shaft . 343
15.1.11 Sub-synchronous Resonance . 345

15.2 Induction Machine . 348
15.2.1 Initialization . 348
15.2.2 Torque Model . 349
15.2.3 Electromechanical Model . 349
15.2.4 Detailed Single-Cage Model . 350
15.2.5 Detailed Double-Cage Model . 351

16 Synchronous Machine Regulators . 355
16.1 Turbine Governor . 355

16.1.1 Turbine Governor Type I . 358
16.1.2 Turbine Governor Type II . 359

16.2 Automatic Voltage Regulator . 361
16.2.1 Automatic Voltage Regulator Type I 363
16.2.2 Automatic Voltage Regulator Type II 364
16.2.3 Automatic Voltage Regulator Type III 366

16.3 Power System Stabilizer . 369
16.3.1 Simplified Power System Stabilizer Model 371
16.3.2 Power System Stabilizer Type I 371
16.3.3 Power System Stabilizer Type II 371
16.3.4 Power System Stabilizer Type III 373

16.4 Over-Excitation Limiter . 373
16.5 Under-Excitation Limiter . 376

17 Direct-Current Devices . 379
17.1 Direct-Current Nodes . 379
17.2 Common Interface Equations for Direct-Current Devices . . . 379
17.3 Ideal Generators . 381
17.4 Basic RLC Models . 382

XX Contents

17.5 Direct-Current Machines . 384
17.6 Other Direct-Current Devices . 387

17.6.1 Solid Oxide Fuel Cell . 387
17.6.2 Solar Photovoltaic Cell . 390
17.6.3 Battery Energy System . 391

18 AC/DC Devices . 395
18.1 High-Voltage Direct-Current Transmission System 395

18.1.1 Per Unit System for DC Quantities 396
18.1.2 Rectifier Model . 396
18.1.3 Inverter Model . 397
18.1.4 HVDC Control . 398

18.2 Voltage Source Converter . 400
18.2.1 Simplified Dynamic VSC Model 408
18.2.2 Power Flow VSC Model . 409

19 FACTS Devices . 413
19.1 Static Var Compensator . 413

19.1.1 SVC Type I . 413
19.1.2 SVC Type II . 414
19.1.3 SVC Initialization . 415

19.2 Thyristor Controlled Series Compensator 417
19.2.1 TCSC Initialization . 419

19.3 Static Synchronous Compensator . 419
19.3.1 Detailed Model . 420
19.3.2 Simplified Dynamic Model . 421
19.3.3 Power Flow Model . 422
19.3.4 STATCOM Initialization . 423

19.4 Static Synchronous Series Compensator 423
19.4.1 Detailed Model . 424
19.4.2 Simplified Dynamic Model . 426
19.4.3 Power Flow Model . 427
19.4.4 SSSC Initialization . 427

19.5 Unified Power Flow Controller . 428
19.5.1 Detailed Model . 428
19.5.2 Simplified Dynamic Model . 431
19.5.3 Power Flow Model . 433
19.5.4 UPFC Initialization . 434

20 Wind Power Devices . 435
20.1 Wind Speed Models . 435

20.1.1 Weibull’s Distribution . 436
20.1.2 Composite Wind Speed Model 438
20.1.3 Mexican Hat Wavelet Model . 439

20.2 Wind Turbines . 440

Contents XXI

20.2.1 Single Machine and Aggregate Models 441
20.2.2 Wind Turbine Initialization . 443
20.2.3 Turbine Model . 443
20.2.4 Dynamic Shaft . 446
20.2.5 Non-Controlled Speed Wind Turbine 448
20.2.6 Doubly-Fed Asynchronous Generator 449
20.2.7 Direct-Drive Synchronous Generator 453

Part IV: Spare Material and Concluding Remarks

21 Data Formats . 459
21.1 Data Format Taxonomy . 459

21.1.1 Data Organization and Structures 459
21.1.2 Kind of Supported Data . 461
21.1.3 Number of Files . 462
21.1.4 Default Values, Prototypes and Data

Manipulation . 462
21.2 Canonical Model . 463
21.3 Common Information Model . 464
21.4 Consistent Data Schemes . 467

22 Visualization Matters . 475
22.1 Graphical Interface vs. Command Line Approach 475
22.2 Result Visualization . 478

22.2.1 Standard Two-Dimensional Plots 478
22.2.2 Temperature Maps . 482
22.2.3 Three-Dimensional Plots . 484
22.2.4 Geographic Information System 485

23 Challenges of Scripting for Power System Education 489
23.1 Concepts and Definitions . 489

23.1.1 Proprietary Software . 489
23.1.2 Open Source Software . 490
23.1.3 Free Software . 490
23.1.4 Free Open Source Software . 491

23.2 Education-Oriented FOSS . 491
23.2.1 Pedagogical Issues . 491
23.2.2 Failure of FOSS for Power System Analysis 492

XXII Contents

Part V: Appendices

A Python Libraries . 497
A.1 CVXOPT . 497

A.1.1 cvxopt.base . 497
A.1.2 cvxopt.blas . 502
A.1.3 cvxopt.lapack . 502
A.1.4 cvxopt.umfpack . 503

A.2 NumPy . 505
A.3 Matplotlib . 507

B System Classes . 511
B.1 System Properties and Settings . 511

C Control Diagrams . 515
C.1 Representation of Basic Functions . 515
C.2 Hard Limits . 516

D IEEE 14-Bus System Data . 523
D.1 Common Data . 523
D.2 Static Data . 523
D.3 Market Data . 523
D.4 Dynamic Data . 524
D.5 FACTS Data . 524
D.6 Wind Turbine Data . 526

E Software Packages and Links . 529
E.1 Software Packages Used in the Book . 529
E.2 Links related to Power System Analysis 530

References . 531

Index . 551

List of Figures

1.1 UCTE interconnected system . 4
1.2 General approach for studying a physical system 6
1.3 Modified general approach for studying a physical system 7
1.4 Flyball governor . 9
1.5 Various detail degree models of a inductor winding. 10
1.6 Time scales of relevant power system dynamics. 14
1.7 Time evolution of state and algebraic variables. 16

2.1 Cantorian triadic bar. 20
2.2 Tree of applications called by a simple shell script 22
2.3 Structure of a simple application that finds the zero of a

general scalar function. 25
2.4 IEEE 14-bus test system . 27
2.5 Structure of a general purpose software suite for power

system analysis . 28

3.1 Approach for studying a physical system based on a closed
software package . 32

3.2 Proposed approach for studying a physical system based on
an open software package . 34

3.3 Plot of the function around the initial guess point. 50

4.1 Classical circuit problem . 62
4.2 Classical power flow problem . 64
4.3 Geometrical interpretation of the Newton’s method. 75
4.4 2-bus system . 81
4.5 Region of attraction of the Newton’s method for a 2-bus

system. 82
4.6 Geometrical interpretation of the robust Newton’s method 83
4.7 Geometrical interpretation of the dishonest Newton’s

method. 86

XXIV List of Figures

4.8 Pictorial representation of the power flow Jacobian matrix 87
4.9 Dc power flow accuracy. 94
4.10 Convergence behavior of Runge-Kutta’s 4th order formula

and the Iwamoto’s method . 99

5.1 2-bus system . 103
5.2 PV curve for the 2-bus system. 105
5.3 PV curve for the 2-bus system considering generator reactive

power limits. 107
5.4 Saddle-node bifurcation of the 2-bus system. 111
5.5 Tangent predictor . 118
5.6 Secant predictor . 119
5.7 Perpendicular intersection corrector . 122
5.8 Local parametrization corrector . 122
5.9 Nose curve without PV reactive power limits. 124
5.10 Nose curve enforcing PV generator reactive power limits. 125
5.11 Nose curve enforcing PV and slack generator reactive power

limits. 126
5.12 Nose curves considering a variety of line outages. 128

6.1 3-bus system . 132
6.2 Convergence behavior of IPM using the Newton’s direction

and the Mehrotra’s predictor-corrector methods. 152

7.1 OMIB system . 156
7.2 Equilibrium points of the OMIB system. 156
7.3 Eigenvalues in the S-domain. 162
7.4 Eigenvalues in the Z-domain. 169
7.5 Eigenvalues of the power flow Jacobian matrix. 175
7.6 Minimum singular value index . 177

8.1 OMIB system with three-phase fault and line outage 183
8.2 Time domain analysis for the OMIB system 184
8.3 Post-fault potential energy of the OMIB system. 185
8.4 Equal area criterion for the OMIB system 186
8.5 Time domain analysis for the OMIB system with damping 187
8.6 OMIB system. 191
8.7 Time domain integration flowchart . 199
8.8 Comparison of different numerical integration methods. 202
8.9 Comparison of numerical integration results using different

step lengths. 203
8.10 Transient following a three-phase fault. 207
8.11 Equivalent OMIB electrical and mechanical powers as a

function of the equivalent OMIB rotor angle. 208
8.12 Dommel’s equivalents. 212

List of Figures XXV

8.13 Quasi-static time domain analysis through homotopy method
with generator field voltage limits. 215

8.14 Synchronous machine field voltages and reactive powers. 216
8.15 Comparison between the quasi-static time domain simulation

and the CPF analysis. 217

9.1 Initialization of dynamic devices. 224
9.2 Initialization chain of the synchronous machines and its

regulators . 224
9.3 Instancing approaches for device classes. 227
9.4 Qualitative representation of class inheritance 228

10.1 Comparison of the transient analysis using constant
impedance and constant power load models. 259

11.1 Transmission line lumped π-circuit . 264
11.2 Equivalencing procedure for line sections. 266
11.3 Star and delta circuits. 267
11.4 Comparison of transient behavior of transmission lines with

constant and frequency-dependent parameters. 271
11.5 Transformer equivalent circuit . 273
11.6 Equivalent circuit of the tap ratio module and series

impedance . 273
11.7 Alternative equivalent circuit of the tap ratio module and

series impedance . 274
11.8 ULTC voltage control diagram. 276
11.9 2-bus system with tap changer and voltage dependent

load . 277
11.10 Characteristic of the load with embedded tap changer. 278
11.11 Comparison of ULTC discrete and continuous models 279
11.12 Phase shifting transformer control diagram 280
11.13 Three-winding transformer equivalent circuit 281

12.1 Capability curve: (a) simplified model; (b) detailed model 293
12.2 Generator reactive power payment function 297
12.3 Example of daily demand profile . 304

13.1 Relay inverse time characteristic curve . 308
13.2 Data sampling windows for phasor measurements 310
13.3 Bus frequency measurement filter . 312
13.4 Comparison of rotor speed and bus frequency

measurements . 312

XXVI List of Figures

14.1 Voltage dependent load characteristics versus network PV
curves . 314

14.2 PV curves using difference load characteristics. 315
14.3 Measure of frequency deviation . 317
14.4 Voltage dependent load with dynamic tap changer 318
14.5 Effect of tap changer dynamics in transient analysis. 319
14.6 Thermostatically controlled load . 321
14.7 Jimma’s load . 323

15.1 Synchronous machine scheme . 326
15.2 Block diagram of stator fluxes for the Marconato’s model of

the synchronous machine . 332
15.3 Comparison of synchronous machine models of different

orders . 338
15.4 Comparison of synchronous machine models of different

types . 339
15.5 Piece-wise saturation model . 341
15.6 Polynomial interpolation saturation model 342
15.7 Generator rotor angles using a constant synchronous speed

reference . 343
15.8 Generator rotor angles using a COI speed reference 344
15.9 Synchronous machine mass-spring shaft model 345
15.10 Dynamic shaft rotor speed dynamics . 346
15.11 Generator with dynamic shaft and compensated line 346
15.12 Sub-synchronous resonance transient . 347
15.13 Electrical circuit of the first-order induction machine

model . 350
15.14 Electrical circuit of the third-order induction machine

model . 351
15.15 Electrical circuit of the fifth-order induction machine

model . 352
15.16 Induction motor start-up transient . 353

16.1 Synoptic scheme of synchronous machine regulators 356
16.2 Basic functioning of the primary frequency control. 357
16.3 Turbine governor Type I control diagram 359
16.4 Turbine governor Type II control diagram 360
16.5 Effect of turbine governor on generator frequency. 361
16.6 Basic functioning of the primary voltage control. 362
16.7 Primary voltage control root loci. 362
16.8 Automatic voltage regulator Type I control diagram 364
16.9 Automatic voltage regulator Type II control diagram 365
16.10 Detail of the double lead-lag block of AVR Type II 366
16.11 Automatic voltage regulator Type III control diagram 367

List of Figures XXVII

16.12 Effect of automatic voltage regulation on synchronous
machine bus voltage (100% loading level). 368

16.13 Eigenvalue loci for 120% loading level and line 2-4 outage. 368
16.14 Effect of automatic voltage regulation on synchronous

machine bus voltage (120% loading level). 369
16.15 Power system stabilizer Type I control diagram 372
16.16 Power system stabilizer Type II control diagram 372
16.17 Power system stabilizer Type III control diagram 373
16.18 Eigenvalue loci with power system stabilizer. 374
16.19 Effect of power system stabilizer on synchronous machine

bus voltage (120% loading level). 375
16.20 Over-excitation limiter control diagram . 375
16.21 Under-excitation limiter control diagram . 376

17.1 General dc device voltages and currents . 380
17.2 RLC circuits . 383
17.3 Basic dc machine equivalent circuit . 384
17.4 Compound-connected dc machine equivalent circuit: (a)

shunt field connected ahead the series field, and (b) shunt
field connected behind the series field . 386

17.5 Solid oxide fuel cell scheme . 389
17.6 Equivalent circuit of photovoltaic cells . 391
17.7 Battery discharge characteristic . 393
17.8 Battery internal resistance as a function of temperature and

state of charge . 394

18.1 HVDC scheme . 395
18.2 Rectifier scheme . 397
18.3 Inverter scheme . 398
18.4 HVDC steady state characteristic for the rectifier current

control mode . 400
18.5 Voltage source converter scheme . 401
18.6 Power and ac voltage controls for the solid oxide fuel cell 404
18.7 Effect of irradiance and temperature on the pv characteristic

of the photovoltaic cell . 406
18.8 Maximum power point tracking for the photovoltaic cell 407
18.9 SMES scheme . 407
18.10 Power flow VSC equivalent circuit: (a) shunt connection and

(b) series connection . 409
18.11 HVDC-VSC scheme . 411
18.12 Power flow HVDC-VSC model . 412

19.1 SVC schemes: (a) firing angle model and (b) equivalent
susceptance model . 414

19.2 SVC Type I control diagram . 414

XXVIII List of Figures

19.3 SVC Type II control diagram . 415
19.4 Comparison of SVC models. 416
19.5 TCSC schemes: (a) firing angle model and (b) equivalent

susceptance model . 417
19.6 TCSC control diagram. 418
19.7 STATCOM scheme . 419
19.8 STATCOM ac and dc voltage control diagrams 421
19.9 STATCOM circuit and control diagram . 422
19.10 Comparison of STATCOM models. 424
19.11 SSSC scheme . 424
19.12 SSSC control diagrams . 425
19.13 Simplified SSSC circuit . 427
19.14 SSSC simplified control diagram . 427
19.15 UPFC scheme . 428
19.16 UPFC shunt control diagrams . 429
19.17 UPFC series dq control diagrams . 430
19.18 Simplified UPFC circuit . 432
19.19 UPFC phasor diagram . 433
19.20 Power flow UPFC equivalent circuit . 434

20.1 Low-pass filter to smooth wind speed variations 436
20.2 Weibull’s distribution model of the wind speed 437
20.3 Composite model of the wind speed . 440
20.4 Mexican hat model of the wind speed . 441
20.5 Wind turbine types. 442
20.6 Pitch angle control diagram . 445
20.7 Speed-power characteristic of the wind turbine. 446
20.8 Optimal and implemented control speed-power

characteristics . 447
20.9 Rotor speed control diagram . 452
20.10 Voltage control diagram of the doubly-fed asynchronous

generator . 452
20.11 Comparison of transient behavior of different wind turbine

types. 456

21.1 Current state of data exchange structure . 464
21.2 Proposed data exchange structure . 465
21.3 Structure of a possible CIM implementation 466

22.1 Voltage temperature map. 483
22.2 2D representation of the convex hull. 484
22.3 Voltage level 3D visualization. 486

List of Figures XXIX

22.4 Bus voltage magnitude map for the Italian HV transmission
system. 487

22.5 Load active power visualization for the Italian grid obtained
using the JML-OSGIS tools. 488

C.1 Lag diagram. 516
C.2 Lead-lag diagram. 516
C.3 Windup and anti-windup diagrams. 517
C.4 Transient response of windup and anti-windup limiters 518
C.5 PI controller and hard limit models. 519

This page intentionally left blank

List of Tables

3.1 Open source packages for power system analysis. 40
3.2 Performance of open source packages for power system

analysis. 42

4.1 Variables and parameters for each bus type in the classical
power flow problem formulation . 69

4.2 Base case power flow results. 79
4.3 Base case branch power flows. 80
4.4 Comparison of a variety of methods for power flow

analysis . 92
4.5 Power flow results with distributed slack bus model. 96

5.1 N-1 contingency analysis report. 129

6.1 Optimal power flow results: power supplies. 150
6.2 Optimal power flow results: generator reactive powers. 151
6.3 Optimal power flow results: bus voltages. 151
6.4 Optimal power flow results: bus power injections. 152

7.1 Eigenvalues and most associated state variables. 167
7.2 Eigenvalue participation factors. 168
7.3 Power flow modal analysis. 176

8.1 Clearing times and angles for the OMIB system. 183

10.1 Bus parameters . 248
10.2 Area parameters . 249
10.3 PV generator parameters . 251
10.4 Power flow results with generator reactive power limit

violations. 252
10.5 Power flow results enforcing reactive power limits. 253

XXXII List of Tables

10.6 Base case power flow results with generator reactive power
limits. 254

10.7 Slack generator parameters . 256
10.8 PQ generator parameters . 257
10.9 PQ load parameters . 258
10.10 Switched shunt parameters . 261

11.1 Transmission line parameters . 265
11.2 Transformer parameters . 272
11.3 Under load tap changer control parameters 276
11.4 Phase shifting transformer control parameters 280
11.5 Three-winding transformer parameters . 281
11.6 Admittance matrix of the IEEE 14-bus system. 283
11.7 Incidence matrix of the IEEE 14-bus system 285

12.1 Capability curve parameters . 294
12.2 Supply offer parameters . 294
12.3 Generator reactive power payment parameters 298
12.4 Generator reserve parameters . 298
12.5 Generator power ramp parameters . 299
12.6 Demand bid parameters . 302
12.7 Demand profile parameters . 303

13.1 Fault parameters . 306
13.2 Over-current relay parameters . 309

14.1 Voltage dependent load parameters . 314
14.2 ZIP load parameters . 316
14.3 Frequency dependent load parameters . 317
14.4 Typical load coefficients. 317
14.5 Load with dynamic tap changer parameters 318
14.6 Exponential recovery load parameters . 320
14.7 Thermostatically controlled load parameters 322
14.8 Jimma’s load parameters . 323
14.9 Mixed load parameters . 324

15.1 Synchronous machine parameters . 327
15.2 Synchronous machine model taxonomy . 337
15.3 Reference table for synchronous machine parameters. 338
15.4 Dynamic Shaft Data . 345
15.5 Induction machine parameters . 348

16.1 Turbine governor Type I parameters . 359
16.2 Turbine governor Type II parameters . 360
16.3 Automatic voltage regulator Type I parameters 364

List of Tables XXXIII

16.4 Automatic voltage regulator Type II parameters 366
16.5 Automatic voltage regulator Type III parameters 367
16.6 Power system stabilizer parameters . 371
16.7 Over-excitation limiter parameters . 376
16.8 Under-excitation limiter parameters . 377

17.1 DC node parameters . 379
17.2 RLC parameters . 382
17.3 Direct-current machine parameters . 385
17.4 Solid oxide fuel cell parameters . 388
17.5 Solar photovoltaic cell parameters . 392
17.6 Energy battery parameters . 394

18.1 Rectifier parameters . 397
18.2 Inverter parameters . 398
18.3 HVDC control parameters . 401
18.4 Voltage source converter parameters . 402
18.5 Solid oxide fuel cell regulator parameters . 405
18.6 Photovoltaic cell regulator parameters . 407

19.1 SVC Type I parameters . 415
19.2 SVC Type II parameters . 416
19.3 TCSC parameters . 419
19.4 STATCOM regulator parameters . 422
19.5 Current-injection STATCOM parameters 423
19.6 SSSC regulator parameters . 426
19.7 Simplified SSSC model parameters . 427
19.8 UPFC regulator parameters . 432
19.9 Simplified UPFC model parameters . 434

20.1 Wind speed parameters . 436
20.2 Roughness length for a variety of ground surfaces. 439
20.3 Recent wind turbines. 442
20.4 Turbine mechanical parameters . 443
20.5 Wind turbine shaft parameters . 448
20.6 Squirrel-cage induction machine parameters 448
20.7 Doubly-fed asynchronous generator parameters 450
20.8 Direct-drive synchronous generator parameters 453

21.1 Features of a variety of data formats for power system
analysis . 460

D.1 Bus, PQ load and shunt data . 524
D.2 Static generator data . 524
D.3 Transmission line and transformer data . 525

XXXIV List of Tables

D.4 Generator bid data . 525
D.5 Synchronous machine data . 526
D.6 Automatic voltage regulator data . 526
D.7 Dynamic shaft data . 527
D.8 Turbine governor data . 527
D.9 PSS data . 527
D.10 SVC Type I data . 527
D.11 SVC Type II data . 527

List of Examples

1.1 Optimal placement of capacitor banks . 6
1.2 Flyball governor model . 8
1.3 Inductor model . 9
1.4 Transient behavior of state and algebraic variables 15
1.5 Reactor transient stability model . 16
2.1 Unix shell script . 20
2.2 Zero of a scalar function . 24
2.3 Structure of the IEEE 14-bus system. 26
3.1 Python performance . 41
4.1 Power flow analysis . 79
4.2 Region of attraction of the power flow solution 79
4.3 Comparison of methods for power flow analysis 90
4.4 Accuracy of the dc power flow . 93
4.5 Distributed slack bus power flow . 96
4.6 Runge-Kutta’s formula for solving the power flow

problem . 99
5.1 Saddle-node bifurcation . 110
5.2 Limit-induced bifurcation . 112
5.3 Optimization problem equivalent to the saddle-node direct

method . 113
5.4 Continuation power flow analysis . 123
5.5 N-1 contingency analysis . 128
6.1 Standard optimal power flow problem . 137
6.2 Maximization of the distance to voltage collapse 138
6.3 Continuation power flow as reduced gradient method 142
6.4 Optimal power flow analysis . 150
7.1 Eigenvalues in the S-domain . 161
7.2 Synchronous reference zero eigenvalue . 163
7.3 Eigenvalues participation factors . 166
7.4 Eigenvalues in the Z-domain . 169
7.5 Inverse and Rayleigh’s iterations . 172

XXXVI List of Examples

7.6 Power flow modal analysis . 174
7.7 Minimum singular value index . 176
8.1 OMIB differential algebraic equations . 190
8.2 Runge-Kutta’s formulæ . 194
8.3 Modified Euler’s method . 194
8.4 Backward Euler’s method . 196
8.5 Trapezoidal method . 196
8.6 Rosenbrock’s semi-implicit method . 197
8.7 Comparison of time domain integration methods 202
8.8 Application of the SIME method . 206
8.9 Quasi-static integration . 214
9.1 Two-axis synchronous machine model . 223
9.2 Initialization of the synchronous machine two-axis model . . . 225
10.1 Enforcing generator reactive power limits 251
10.2 Constant power vs. constant impedance load models in

transient stability analysis . 258
11.1 Tie line . 268
11.2 Effect of frequency on line parameters . 270
11.3 Voltage-tap ratio characteristic of loads fed by an ULTC . . . 277
11.4 Comparison of ULTC discrete and continuous models 278
11.5 Three-winding transformer . 281
13.1 Bus frequency measurements . 312
14.1 PV curves considering load characteristics 315
14.2 Effect of tap changer dynamics on transient analysis 319
15.1 Comparison of synchronous machine models of different

orders . 336
15.2 Comparison of synchronous machine models of different

types . 336
15.3 One-axis model with stator flux dynamics 338
15.4 Effect of Using the center of inertia . 343
15.5 Transient behavior of dynamics shafts . 344
15.6 Sub-synchronous resonance transient . 347
15.7 Induction motor start-up . 352
16.1 Effect of turbine governor on generator frequency 360
16.2 Effect of automatic voltage regulation on synchronous

machine bus voltage . 367
16.3 Effectiveness of power system stabilizers for removing

Hopf bifurcations . 373
18.1 Fuel cell controls . 403
18.2 Solar photovoltaic cell controls . 404
18.3 Superconducting magnetic energy storage 406
18.4 Power flow HVDC-VSC model . 411
19.1 Comparison of SVC models . 416
19.2 Comparison of STATCOM models . 423
20.1 Weibull’s distribution . 437

List of Examples XXXVII

20.2 Composite wind model . 439
20.3 Mexican hat wavelet wind model . 440
20.4 Comparison of wind turbine transient behaviors 456
21.1 Data format example . 468
22.1 Temperature map . 483
22.2 3D visualization . 485
22.3 Italian system temperature map . 487

This page intentionally left blank

List of Scripts

3.1 First Python script . 43
3.2 Basis of a power system analysis program 50
4.1 Jacobi’s and Gauss-Seidel’s methods . 73
4.2 Newton’s method . 75
4.3 Power flow Jacobian matrix . 78
4.4 Robust Newton’s method . 83
4.5 Fast-decoupled power flow . 89
4.6 Runge-Kutta’s formula for solving the power flow

problem . 100
5.1 CPF predictor step . 119
5.2 CPF corrector step . 121
6.1 Interior Point Method . 148
7.1 Small-signal stability analysis . 160
7.2 Participation factors . 165
8.1 Computing the first time step . 201
8.2 Complete time domain integration algorithm 206
9.1 Conversion of parameter bases . 229
9.2 Meta-attributes of a base device class . 232
9.3 Methods of the synchronous machine two-axis model 241
11.1 Sparse matrix implementation of the admittance matrix 284
11.2 Incidence matrix implementation . 285
11.3 Transmission system power flow Jacobian matrix 286
11.4 Transmission system power flow Hessian matrix 286
11.5 Network connectivity . 288
12.1 Implementation of supply offers . 295
13.1 Fault interventions . 305
21.1 Data parser . 472
22.1 Batch script for power flow analysis . 476
22.2 Parser for simulations results . 479
C.1 Implementation of windup and anti-windup limiters 518

This page intentionally left blank

Notation

To set up a complete list of symbols for a book of this kind is a complex
task. The variety of models and physical quantities used in Part III leads
to a huge list of symbols. On the other hand, Parts I and II present general
mathematical concepts that require a careful notation consistency. Hence,
two notation approaches are used throughout the book.

The first notation concerns common quantities and general mathematical
functions and variables. This notation is common to the whole book and is
followed as rigorously as possible.

The second notation concerns local parameters that are needed to describe
each device model included in Part III. These parameters are defined the
first time they appear or gathered in tables. The organization of the book in
several chapters helps avoid confusion and allows keeping each device model
or group of models well separated from the others.

General Notation Rules

General notation rules are as follows.

1. Scalar functions, variables and parameters expressed in pu are in lower
case Latin fonts. For example: x, v, p.

2. Angles and angular speeds are given in lower case Greek fonts. For exam-
ple: θ, δ, α.

3. Upper case Latin fonts indicate scalar variables and parameters expressed
in absolute values. For example: Sn [MVA], T1 [s].

4. Function and variable vectors are in lower case, bold face fonts. For exam-
ple: f , g, x.

5. Jacobian matrices are in lower case, bold face fonts with a sub-index that
indicates the variables with respect to which derivatives are computed. For
example: gy = ∇T

y g.
6. Hessian matrices are indicated as Jacobian ones but with two sub-indexes.

For example: gyy = ∇T
yyg.

XLII Notation

7. Other matrices are in upper case, bold face fonts. For example: A, In, W .
8. Sets are indicated by calligraphic fonts. For example: I, N .
9. Iterations are indicated with a superscript in brackets. For example: x(i),

y(i+1), v(0). The latter indicates the initial guess.
10. The subscript 0 indicates the equilibrium point or the initial value. For

example: x0 = x(t0).
11. A bar on top of a symbol indicates a phasor. For example: v̄ = vejθ.
12. In case of complex quantities, a superscript asterisk indicates the conju-

gate. For example: v̄∗ = ve−jθ. In case of real quantities, a superscript
asterisk indicates the optimal value. For example: p∗w.

13. A superscript T indicates transpose. For example: AT .
14. Verbatim fonts are used to indicate Python scripts. For example: list,

class. The symbol >>> indicates the Python interactive command line
prompt.

Frequent Symbols

The following is only a selection of most common quantities used in the book.

Functions and Equations

f differential equations.
g algebraic equations.
h inequality constraints.
L Lagrangian function.
q̂(i) vector used for implicit numerical methods.
r reduced gradient.
s differential operator in block diagrams (s = d

dt).
� continuation equation.
ϕ objective function.
ϕ general vector of differential equations.
ψ homotopy map.

Variables and Parameters

am converter modulating amplitude.
E energy.
kG distributed slack bus variable.
� transmission line length.
m transformer tap ratio.
ph, p active powers.
qh, q reactive powers.
s slack variables.
t time.
u discrete variables.

Notation XLIII

vh, v bus voltage magnitudes.
w left eigenvector.
x state variables.
ẋ first time derivatives of state variables.
y algebraic variables.
z compound vector of variables (e.g., z = [xT ,yT]T).
α firing angle.
δj , δ generator rotor angles.
η controllable variables or parameters.
θh, θ bus voltage angles.
Θ temperature.
λ eigenvalue.
μ loading level (continuation parameter).
μ̂ barrier parameter for the interior point method.
μ independent variables or uncontrollable parameters.
ν right eigenvector.
ξ general vector of state variables.
π dual variables associated with inequality constraints.
ρ dual variables associated with equality constraints.
τ tangent vector.
τe electrical torque.
τm mechanical torque.
φ transformer phase shift.
ωj , ω generator rotor speeds.

Matrices

A generic constant element matrix.
AC complete system Jacobian matrix.
A(i)

c matrix defined for implicit numerical methods.
AS state matrix.
B admittance matrix used in dc power flow.
B′ and B′′ admittance matrices used in fast decoupled power flow.
C incidence matrix.
fx Jacobian matrix ∇T

xf .
fy Jacobian matrix ∇T

y f .
G nodal conductance matrix.
gx Jacobian matrix ∇T

xg.
gy Jacobian matrix ∇T

y g.
N matrix of right eigenvectors.
T connectivity matrix.
W matrix of left eigenvectors.
Ȳ admittance matrix.
Λ diagonal matrix of eigenvalues.
Σ diagonal matrix of singular values.

XLIV Notation

Constants

A surface area.
B, bh0, bk0, bhk susceptances.
cp specific heat.
D rotor damping.
fn nominal frequency in Hz.
G, gh0, gk0, ghk conductances.
H , Hm, Ht inertia constants.
K, K0, Ki, Kp gains.
�t total transmission line length.
mg mass.
R, rhk, rT resistances.
Sb base power.
T , Ta, T1 time constants.
Vb base voltage.
X , xhk, xT reactances.
z̄, z̄T impedances.
ȳhk, ȳT admittances.
Ωb nominal synchronous speed in rad/s.
ωs synchronous speed in pu.

Numbers

nb number of ac buses.
nc number of series connections or branches.
ng number of algebraic functions g.
nG number of generators.
nu number of discrete variables u.
nx number of state variables x.
ny number of algebraic variables y.
nz number of variables z.
nη number of controllable variables η.
nμ number of uncontrollable variables μ.
nξ number of general state variables ξ.

Sets

B set of ac buses.
C set of series connections or branches.
D set of demands.
G set of generators.
N set of dc nodes.
R set of generator power reserves.

Notation XLV

S set of supplies.
T set of times.
Ω set of all devices.
Ωh set of devices connectes to bus h.

Device Model Notation

In Part III, the notation is aimed to maintain light expressions. The use of
indexes is avoided wherever is possible. Device equations imply the device
index i in all variables and parameters. Thus, vh and θh indicate the bus
voltage magnitude and phase angle, respectively, while ph and qh indicate
the active and power injections, respectively. For series devices connected to
two buses, the indexes h and k are used.

Bases for Per Unit Values

Throughout the whole book, the bases used for ac values are:

Sac
b three-phase power in MVA.
V ac

b phase-to-phase voltage in kV.

Thus, the current base Iac
b and the impedance base Zac

b are:

Iac
b =

Sac
b√

3 · V ac
b

Zac
b =

V ac
b√

3 · Iac
b

=
(V ac

b)2

Sac
b

For dc values, the following bases are used:

Sdc
b power in MW.
V dc

b voltage in kV.

Thus, the current base Idc
b and the resistance baseRdc

b are obtained as follows:

Idc
b =

Sdc
b

V dc
b

Rdc
b =

V dc
b

Idc
b

=
(V dc

b)2

Sdc
b

For systems where there are both ac and dc devices, it is assumed that
Sdc

b = Sac
b .

Part I

Introduction

This page intentionally left blank

Chapter 1

Power System Modelling

This chapter introduces basic modelling concepts that are used throughout
the book. Section 1.1 defines a power system and provides most relevant ref-
erences related to power system analysis. Section 1.2 states the philosophical
background of the book and general motivations. Section 1.3 presents pro-
grammatic assumptions and the proposed methodological approach for power
system modelling. Finally, Section 1.4 defines the general equations that are
used for modelling power systems.

1.1 Background

In essence, an electrical power systems is a set of interacting devices that
transform primary energy sources, e.g., heat, into electricity and then trans-
form electricity into another form of energy, e.g., the mechanical one. The
electricity is transmitted at various voltage levels, through an adequate series
of transformers, transmission lines and cables, from generators to loads. It
is noteworthy to observe that electricity is never used as is. Therefore, the
expression “electric power system” is somewhat incomplete, since a power
system is essentially an energy conversion system. For this reason, the ex-
pression “power system” is used in this book, without specifying the form of
the energy involved.

Energy is what engineering is all about. Thus, it is not surprising that
interconnected power systems are the largest and most complex systems ever
built by man. For example, Figure 1.1 depicts a simplified scheme of the
UCTE high-voltage transmission system [318]. Fortunately, one does not need
a real-world interconnected network to approach the study of power systems.
Simple benchmark systems are often enough to understand the basic func-
tioning as well as advanced topics of power systems. This remarkable property
is exploited in the book to simplify as much as possible the examples.

However, even the simplest example requires some background. In the re-
mainder, it is assumed that basic power system concepts are known by the
reader. The level required for fully taking advantage of this book is that

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 3–17.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

4 1 Power System Modelling

Fig. 1.1 UCTE interconnected system

provided by basic undergraduate courses on electrical machines and power
systems. Moreover, several excellent books in the literature provide the fun-
damentals of power system operation, analysis, control and stability. Tradi-
tional references are [10, 52, 114, 160, 163, 179, 269, 294, 330, 355]. References
that cover advanced topics while maintaining a comprehensive approach are
[110, 147, 184, 263].

1.2 Motivations

As a student, I suffered the deep hiatus between the aforementioned refer-
ences, which provide theoretical tools, and the commercial computer-based
implementations of power system models, which are almost impenetrable
black boxes. There is often a huge gap between the equations typeset on a
book page and the code that represents those equations in a form suitable
for a computer. Unfortunately, it is not easy to find books that tries to cover
this gap. This is quite surprising since nowadays no one is really doing any
calculation by hand, at least for power system analysis. Thus, given that a
book like Venikov’s “Transient Processes in Electrical Power Systems” is an
evidence of what a pencil and a long Russian winter can inspire to a brilliant
mind [330], it is time to systematically provide side by side to mathematical
models the implementation of such models in some adequate computer lan-
guage. Some examples of books that have attempted to follow such approach
are [291] and [227] and, more recently [14], [17] and [2].

As a professor, I suffer, even more than when I was a student myself,
when observing students accepting acritically the results provided by some

1.3 Modelling Physical Systems 5

software package. The idea that a computer only executes code and that the
code has been written by some error-prone human being is too often beyond
students’ imagination. Students also very often ignore the old programmer
saying garbage in, garbage out, which means that if the input data (provided
by the student) are inconsistent, the computer cannot do the miracle and
return correct results.

Although based on the well established background of the references cited
in Section 1.1, the purpose of this book is not to concentrate on some specific
detail of power systems. Rather, the main goal is to provide, through a variety
of examples, very general tools for approaching a systematic study of power
systems. These tools are both methodological (modelling), structural (archi-
tecture) and practical (scripting). The ultimate object is to help the reader
develop the ability of approaching power system analysis in a both critical and
constructive way. This chapter is dedicated to modelling issues, while architec-
ture and scripting matters are tackled in Chapters 2 and 3, respectively.

1.3 Modelling Physical Systems

In the very first class of electrical circuits that I attended at the University
of Genoa, the professor drew on the blackboard a scheme similar to the one
depicted in Figure 1.2. The scheme shows the logical steps that an engineer
has to follow to study a physical system. The first step is to define the model,
which requires hypotheses and simplifications. Then, one has to formalize
the model into equations. Finally, the equations have to be solved either in
a closed form or numerically.

In this book, the “physical system” is a power system. In the past, ana-
logical Transient Network Analyzers (TNAs) were the only simulation tools
available for research and education in power engineering [10]. However, the
advent of digital analysis has led to a more convenient way of performing
simulations through digital computers [156]. Thus, in the book, it is assumed
that the model is a simplified representation of the physical system suitable
for being expressed in terms of mathematical equations and translated into
computer programing code.

The scheme ofFigure 1.2 is actually an old concept byPlato. In the “Sophist”,
Plato defines the science (e.g., the real knowledge) as

(e.g., an imitation technique based on the experi-
ence). Thus, the engineer that formulates mathematical models corresponds
to the philosopher. Actually, one of the goals of this book is to show that
modelling does not consist simply in writing a set of equations but implies a
“philosophical” view of physical phenomena.

A delicate point that has to be emphasized is that both simplifications
and hypotheses are often driven by the numerical solution methods that are
available for solving the given system equations. Even more critical is the
importance of simplifications if one looks for an analytical explicit solution.
Indeed, it is a pity that students do not solve anything by hand anymore.

6 1 Power System Modelling

Physical system

Hypotheses

Model

Simplifications

Equations

Closed form

solutionsolution

Numerical

Fig. 1.2 General approach for studying a physical system

Good ideas often comes out just to avoid a repetitive work. In this regard, a
computer programming saying states that very good programmers are often
very lazy men.

In conclusion, the simple feed-forward scheme shown in Figure 1.2 has to
be modified as in Figure 1.3. For the sake of realism, the analytical solution
block has been removed from Figure 1.3. The key point of Figure 1.3 is that
between the equations and the numerical solution blocks there is a key step,
namely the translation of the equations in a suitable code using available
algorithms. As any translation, programming is not a trivial step and cannot
be neglected.

Example 1.1 Optimal Placement of Capacitor Banks

In order to describe with a qualitative example the modelling issues discussed
above, consider the problem of finding the optimal bus positions of a given
number nc of capacitor banks that minimizes power system losses. The posi-
tions of the capacitor banks can be conveniently described by a vector u of
order nb of binary variables, where nb is the number of system buses. The
Boolean variable associated to each bus is 1 if the bank is installed at that
bus, 0 otherwise. Since system losses are defined by the set of power flow
equations that are intrinsically nonlinear, the resulting optimization prob-
lem belongs to the class of mixed integer nonlinear programming (MINLP)
problems.

1.3 Modelling Physical Systems 7

Physical system

Hypotheses

Model

&

Simplifications

Equations

Available

algorithms

solution

Numerical

Fig. 1.3 Modified general approach for studying a physical system

This MINLP problem can certainly be solved, it is just a matter of time.
In fact, an evident solution is to try all possible permutations nb!/(nb − nc)!
of the vector u. Unfortunately, even for small values of nb and nc, the number
of permutations is huge and the required simulation time of trying all per-
mutations is intractable. Actually, MINLP problems cannot be solved using
a well-assessed and commonly accepted algorithm similar to, for example,
the LU factorization. Thus, formulating the problem as a MINLP does not
conclude the modelling phase. Further modelling effort is needed to make the
problem solvable.

A common strategy is to adopt adequate simplifications or decomposi-
tion techniques to transform a MINLP either in a mixed integer linear pro-
gramming (MILP) problem, thus eliminating nonlinearity, or in a nonlinear
programming (NLP), thus eliminating integer variables.

In order to describe the need of the feedback included in Figure 1.3, assume,
only for the sake of example, that u can be modelled as a vector of continuous
variables through the following constraint:

8 1 Power System Modelling

ui(ui − 1) = 0, ∀i ∈ 1, . . . , nb. (1.1)

Equation (1.1) may lead to think that the original MINLP problem can be
promptly converted into a nonlinear programming (NLP) one. Unfortunately
equation (1.1) is a highly nonlinear constraint that generally leads to so
severe convexity issues that it is practically impossible to find the global
optimum. Thus this is an example of modelling inconsistency driven by a
poor knowledge of NLP solvers.

Of course, in the literature, one can find a variety of methods for solving
the proposed MINLP problem. In particular, it can be approached using a
Benders’ decomposition [204]. Other techniques based on artificial intelligence
can be efficacious as well [169]. All these techniques attempt to reduce as
much and as “smartly” as possible the number of permutations to be taken
into account.

The first conclusion is that there is generally no easy shortcut for avoid-
ing the complexity due to a combinatorial problem. The second conclusion,
which is more relevant for the scope of this book, is that without an adequate
knowledge of algorithms and numerical methods, one may set up an incon-
sistent model. Since engineers are often interested more in the solution than
in the model itself, an unsolvable model is useless.

Example 1.2 Flyball Governor Model

As another qualitative example, consider the problem of the classical James
Watt’s centrifugal control (see Figure 1.41). This control system allows con-
trolling the speed of an engine by regulating the amount of fluid flow. The
centrifugal control has been widely used for steam turbines of electric power
generators for maintaining synchronism (e.g., flyball and isochronous gover-
nors). The main principle is as follows: a set of flyballs (or fly weights), which
rotate driven by the engine to be controlled, is connected to levers whose
position actuates on the steam valve (throttle). An increase in the engine
speed results in a centrifugal force increase. The latter raises the weights
and thereby reduces the steam flow into the engine. Finally, the steam flow
decrease causes a reduction in the engine speed.

There is always a delay between the time at which the engine speed varies
and the time at which the steam flow is reduced by the centrifugal control
[182]. Actually, any steam turbine governor control intrinsically suffers of
time delays. As a matter of fact, a thermal plant consists of several heat
transfer apparatus connected together by pipes. An adequate modelling of
transport delays introduced by these pipes is desirable to calculate system
transient behavior. If the fluid velocity through the pipe is constant, the

1 Picture obtained from Science Fair Project Encyclopedia, available at www.all-

science-fair-projects.com

1.3 Modelling Physical Systems 9

Fig. 1.4 Flyball governor

transfer function of the piping lag is also constant. However, if the velocity
of the fluid is a function of time, the delays become time dependent.

An accurate modelling of variable time delays complicates considerably the
analysis since it is not possible to define a standard transfer function of the
system. As in Example 1.1, the main issue is the mathematical complexity
inherent variable time delay (or retarded) systems. These belong to the class
of functional differential equations (FDEs) that are infinite dimensional, as
opposed to the finite dimension of ordinary differential equations (ODEs). In
order to explain the complexities that raises when studying retarded systems,
it suffices to say that, for FDEs, there is an infinite number of trajectories
that passes for a given state x(t). As a matter of fact, in FDEs, the state
is a function of a past time-interval [t − τ(t), t], where τ > 0 is the time
delay, which is possibly a function of time. Another difficulty is that it is not
possible to define a state matrix for FDEs as it is usual practice for ODEs.
For this reason research is in progress to assess the effects of time delays on
system stability [258].

Regarding the steam turbine regulator, the common solution, that avoids
time-delay issues, is to model the control as an ODE. As a matter of fact, time
delays are often neglected and, along with other simplifications, the resulting
differential equations used for modelling turbine governors are linear [10].
Further discussion on turbine governors is given in Chapter 16.

Example 1.3 Inductor Model

Any basic circuit theory course introduces the concept of inductance, whose
well-known constitutive differential equation is

v = L
di

dt
(1.2)

10 1 Power System Modelling

(d)

+
+++

−−−

−

vvvv

ii i i

iL

iL iL

RR R

L
C

C

G

G

L′

R′

(a) (b) (c)

Fig. 1.5 Various detail degree models of a inductor winding: (a) ideal inductance;

(b) fundamental frequency model; (c) second-order model; and (d) third-order

model. The schemes only show electrical quantities

where L is a constant parameter called inductance and di/dt is the first time
derivative of the current flowing in the device (see Figure 1.5.a).

However, ideal inductances do not exist. In other words, there is no physi-
cal device whose terminal voltage can be exactly described by the differential
equation (1.2). The physical device whose behavior is close to an ideal induc-
tance is the inductor. Inductors are made by a coil wound on an iron core. A
winding is characterized by a resistance R, hence the model of a real device
have to take into account Ohmic losses. Moreover, the magnetic properties
of the iron are not ideal, hence the relation between the total magnetic flux
φ and the electrical current i is not linear. A more realistic model of the
inductive winding is as follows (see Figure 1.5.b):

v =
dφ

dt
+Ri(φ) (1.3)

This model can be adequate in case of constant temperature and low
frequency. Otherwise, one has to take into account the dependence of the
resistance R on the temperature Θ and the capacitive effects among coils
and between the coils an the ground. Such effects can be modeled using in-
troducing a lumped parasitic (or hearting) capacity C in parallel with the
inductance (see Figure 1.5.c). One can also include a conductance G in par-
allel with the capacitance to take into account the skin resistance of the
winding. The resulting model is as follows:

v =
dφ

dt
+R(Θ)iL(φ) (1.4)

i = C
dv

dt
+ iL(φ) +Gv

Ri2L = mgcp
dΘ

dt
+ kA(Θ −Θa)

1.4 Hybrid Dynamical Model 11

where iL is the current circulating in the winding, i the total current that
flows in the inductor, mg is the winding mass, cp is the equivalent specific
heat of the winding, k the convective heat transfer coefficient, A the winding
active area and Θa the ambient temperature. Both the electrical and the ther-
modynamical models can be further complicated. For example, Figure 1.5.d
shows a third-order model of an inductor [168].

The most precise electrical model that can be formulated for the inductor
is based on Maxwell’s and constitutive equations:

∇ × �h = �j +
d�d

dt
, ∇ × �e = −d�b

dt
(1.5)

∇ · �b = 0, ∇ · �d = �

�b = μ�h, �j = ς�e, �d = ε�e

where �h is the magnetic field, �b is the magnetic flux density, �e is the electric
field, �d is the electric flux density, �j is the electric current density, � is the
charge density, μ is the magnetic permeability, ς is the electric conductivity,
and ε is the electric permittivity. Equations (1.5) have to be particularized
with adequate boundary conditions and, in general, have to be solved numer-
ically using, for example, a finite-element three-dimensional approach [82].

Even without entering into the mathematical details of modelling the in-
ductor as a continuum, one can easily anticipate that the computational
burden of modelling an entire power system using such approach as well as
the amount of information that should be processed is intractable. Too much
information can result in no information. Even though in the literature there
are some proposals of modelling a power system as a continuum [274, 308],
the continuum approach remains so far only an academic, though intriguing,
exercise.

The main conclusion that can be drawn by this example is that the upper
boundary to the details that can be taken into account in a mathematical
model is driven by the computational limits of available computers and by
the ability of processing and analyzing results. As it is discussed in Part II,
in the past, such limits have led to some approximations that are nowadays
considered standards de facto but that are not really binding anymore.

1.4 Hybrid Dynamical Model

One should gather from the discussions and the examples provided in the
previous sections that a power system consists of a set of devices that can
be described by continuous dynamics as well as discrete events. Synchronous
machines can be adequately modelled using a set of nonlinear ordinary differ-
ential equations (ODEs) as long as lumped parameters are used. Most con-
trollers can also be modelled using ODEs as long as time-dependent delays
are approximated with lags or simply neglected. Discrete events or, which
is the same, discrete variables are also an essential part of power systems.

12 1 Power System Modelling

For example, the tap position of voltage regulating transformers and breaker
statuses are discrete variables.

If one assumes that the status of discrete variables is known or can be
reasonably guessed, then, for each discrete variable change, the system jumps
from one set of continuous equations to another. In order to clarify this point,
it suffices to think of the consequence of opening a breaker of a transmission
line. Before opening the breaker the line is connected and the power flow
through the line itself can be defined using well-known continuous equations.
After opening the breaker, the line is disconnected and thus its equations
have to be removed from the model.2 Except for the fact that before and
after the breaker intervention, power flow equations are different, there is
no need of modelling the status of the breaker as a discrete variable. Of
course, a completely different issue would be to find the best transmission
line arrangement that minimize a certain aspect of the power system, say, for
example, losses. In this case the problem is again combinatorial and breaker
statuses have to be used as Boolean variables. However, while simulating the
power system behavior, the status of the lines (as well as of most devices) is
known and one has not have to deal with a MINLP problem.

The most general model that can be used for representing power systems
is as follows:

ξ̇ = ϕ(ξ,u, t) (1.6)

where ξ (ξ ∈ R
nξ) is the vector of state variables, u (u ∈ R

nu) the vector of
discrete variables, t (t ∈ R

+) the time, and ϕ (ϕ : R
nξ × R

nu × R
+ �→ R

nξ)
the vector of differential equations. As previously discussed, u have generally
not to be determined but are fixed to a given value and then changed to
enforce system transients. For example, opening a breaker can be required
for clearing a fault and can be driven by an over-current protection. If one
want to avoid using the vector u, (1.6) can be rewritten as follows:

ξ̇ =

{
ϕ−(ξ, t) if t < ti

ϕ+(ξ, t) if t ≥ ti
(1.7)

where ti is the breaker intervention time. Clearly, if more than one discrete
variable changes value, the if-then rule is more complex. In conclusion, when-
ever is possible to transform a discrete variable u as an if-then condition, the
discrete variable can be eliminated from the equation at the cost of splitting
ϕ as in (1.7).

It has to be noted that, in (1.7), both ϕ− and ϕ+ are continuous and
smooth (i.e., differentiable) functions. This fact is important since one can
use any numerical method for nonlinear equations (e.g., Newton’s method)
and standard stability analysis (e.g., eigenvalue analysis) when studying (1.7).

2 The case of under load tap changers is slightly more complex and is discussed in

Subsection 11.2.2 of Chapter 11.

1.4 Hybrid Dynamical Model 13

Equations (1.6) as well as (1.7) imply that any variable of the system is
a state. This assumption is in agreement with the Leibniz’s axiom: natura
non facit saltus (i.e., nature does not jump). This is certainly an excellent
approximation for macroscopic dynamical systems. However, when dealing
with power system analysis the time constants of different phenomena can
span a wide time range. Figure 1.6 depicts the time scales of a variety of
typical phenomena and controls that are of interest in power system analysis.
Since the time scales span from micro-seconds to several hours, taking into
account the dynamics of each phenomena in an unique model would results
in an intractable system.

The common solution to this issue is to divide the vector of general state
variables ξ into three sub-vectors: (i) state variables ξs characterized by slow
dynamics (i.e., big time constants), (ii) state variables ξi whose dynamics are
of interest, and (iii) state variables ξf characterized by fast dynamics (i.e.,
small time constants). In mathematical terms, one has:

ξ̇s = ϕs(ξs, ξi, ξf ,u, t) (1.8)

ξ̇i = ϕi(ξs, ξi, ξf ,u, t)

ξ̇f = ϕf (ξs, ξi, ξf ,u, t)

where ξ = [ξTs , ξ
T
i , ξ

T
f]T . In (1.8), the time evolution of ξs can be considered

so slow that their variations can be neglected (e.g., ξs are frozen at a given
value). On the other hand, the dynamics of ξf can be considered so fast that
their variations can be considered instantaneous.

The consequences of the approximation described above are twofold: ξs
are constant and can be considered controllable parameters; and the state
variables ξf can be considered algebraic variables, i.e., variables whose vari-
ations are instantaneous. Thus, algebraic variables can facere saltus (i.e.,
jump) from one value to another and can be discontinuous.

The resulting model is thereby a set of nonlinear differential algebraic
equations (DAEs) with discrete variables, as follows:

ẋ = f(x,y,η,u, t) (1.9)
0 = g(x,y,η,u, t)

where x (x ∈ R
nx) indicates the vector state variables, y (y ∈ R

ny) are
the algebraic variables, η (η ∈ R

nη) are the controllable parameters, f (ϕ :
R
nx × R

ny × R
nη × R

nu × R
+ �→ R

nx) are the differential equations, and g
(ϕ : R

nx × R
ny × R

nη × R
nu × R

+ �→ R
ny). Comparing (1.9) with (1.8), the

following correspondences hold:

η ≡ ξs, x ≡ ξi, y ≡ ξf , f ≡ ϕi, g ≡ ϕf (1.10)

14 1 Power System Modelling

FACTS control

Generator control

Protections

Prime mover control

ULTC control

Load frequency control

Operator actions

Lightning over-voltages

Line switching voltages

Sub-synchronous resonance

Transient stability

Long term dynamics

Tie-line regulation

Daily load following

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105

1 second1 degree at 50 Hz 1 cycle 1 minute 1 hour 1 day
P
o
w

e
r

sy
st

e
m

p
h
e
n
o
m

e
n
a

P
o
w

e
r

sy
st

e
m

c
o
n
tr

o
ls

Time scale [s]

Fig. 1.6 Time scales of relevant power system dynamics. The gray strip indicates

the time frame object of this book

In (1.9), the time t is an independent variable as opposed to dependent vari-
ables x and y. More in general, independent variables (or parameters) can
be a vector, say μ (μ ∈ R

nμ), hence (1.9) becomes:

ẋ = f(x,y,η,u,μ) (1.11)
0 = g(x,y,η,u,μ)

1.4 Hybrid Dynamical Model 15

For example, in voltage stability analysis, load power consumptions are inde-
pendent variables. In most applications considered in this book, only a scalar
independent variable is considered. For example, the loading level μ for con-
tinuation power flow analysis (see Chapter 5) and the time t for time domain
integration (see Chapter 8).

It is worth noting the difference between controllable parameters η and
device parameters such as transmission line series resistances or synchronous
generator sub-transient short-circuit time constants. The latter cannot vary
unless the device itself is changed. On the contrary, η are constant because
their dynamic is slow with respect to the considered time scale. However,
η can vary according to a given strategy or control. For example, η may
represent the vector of dispatched generator active powers in optimal power
flow analysis (see Chapter 6).

Analogously to (1.7), equations (1.11) can be split into a collection of sub-
systems if discrete variables u are substituted for if-then rules. Thus, (1.11)
can be conveniently rewritten as a collection of continuous DAEs, one per
each discrete variable change. Such a system is also known as hybrid automa-
ton or hybrid dynamical system. An in-depth description and formalization
of hybrid systems for power system analysis can be found in [131] and other
works by the same author.

The DAE system (1.11) can be defined for any time scale. The terms slow
and fast do not mean anything unless the reference time scale is defined.
In this book, the time scale of interest concerns transient stability analysis,
i.e., from 0.01 s to 10 s or, which is the same, from 0.1 Hz to 100 Hz. Sub-
synchronous resonance and some long term dynamics (such as under load
tap changer controls) overlap transient stability dynamics and are thus also
taken into account in this book (see Figure 1.6). In some specific cases, also
faster dynamics, such as synchronous machine magnetic fluxes are considered,
mostly to perform comparisons with transient models.

Example 1.4 Transient Behavior of State and Algebraic Variables

Figure 1.7 illustrates the difference between state and algebraic variable tran-
sient behavior. The figure shows the time evolution of two variables of the
IEEE 14-bus system, namely the phase angle θ of the voltage at bus 5, and
the rotor angle δ of synchronous machines at bus 3. The simulation shows
the transient following line 2-4 outage occurring at t = 1.0 s. As explained
above, the line disconnection can be modelled as a switch of a discrete vari-
able. After the occurrence of the line outage, the bus voltage phase angle
trajectory shows a discontinuity, while the synchronous machine rotor angle,
as expected, is always continuous. Discontinuities only appear if a discrete
variable changes its value. Hence, algebraic variable trajectories before and
after discrete variable switches are continuous.

In Figure 1.7, the transition of the bus phase angle θ from t− to t+ is
indicated by a dotted line vertical line. However, for simplicity, it is common

16 1 Power System Modelling

Fig. 1.7 Time evolution of state and algebraic variables

practice (also used in this book hereinafter) to plot pre- and post-disturbance
values of algebraic variables as they were connected by a continuous trajec-
tory. Thus, the reader has to be aware that straight vertical lines in the tra-
jectories of as algebraic variables indicate a discontinuity or, in other words,
a jump from t− to t+.

Example 1.5 Reactor Transient Stability Model

Let us consider again the inductor model discussed in Example 1.3 and define
a model suitable for transient stability studies. Neglecting the ideal model
(1.3) which is of no engineering interest and assuming lumped parameters,
the most adequate starting point is the model (1.4).

Reactors (or chokes) used in industrial applications for short circuit protec-
tions or filters have an iron core and copper windings. Given that the copper
and iron specific heat are cp,Cu = 0.385 and cp,Fe = 0.450 kJ/kgK, respec-
tively, we can assume a mean specific heat of about ĉp = 0.4 kJ/KgK. The
density of the copper and the iron are ρCu = 8 920 and ρFe = 7 870 kg/m3, re-
spectively, we can assume a mean reactor density of about ρ̂ = 8 500 kg/m3.
If the reactor volume is Vol = 0.5 m3, an active area of A = 4.0 m2 and
a convective heat transfer coefficient of about kc = 1.0 kW/m2K, then the
thermal time constant can estimated as:

1.4 Hybrid Dynamical Model 17

TΘ =
ρ̂ · Vol · ĉp

kcA
≈ 8 500 · 0.5 · 0.4

4.0 · 1.0
= 425 s

The thermal time constant is thus well beyond the transient stability time
scale (e.g., 10 s) and we can consider that the reactor temperature Θ is frozen
at a given value during transient stability simulations. Therefore, the reactor
resistance value R is constant.

On the other hand, the parasitic capacity C and conductance G are very
small. If the capacity is about 0.1 nF and the conductance is about 1.0 μS,
then the time constant associated to parasitic effects is:

Tp =
C

G
≈ 10−10

10−6 = 10−4 s

that is much smaller than the limit of transient stability time scale (e.g., 0.01
s). Hence, the voltage at the reactor terminal can be considered an algebraic
variable. Moreover, since both the conductance G and the capacity C are
comparatively small, the total current can be approximated as i ≈ iL.

Neglecting magnetic flux saturation and assuming that the reactance of the
reactor at the fundamental frequency of f = 50 Hz is, say, XL = ωL = 5.0
Ω and its series resistance is R = 2.0 Ω, then the time constant associated
with the inductive coil is:

Ti =
L

R
=
XL

ωR
≈ 5.0

2 · π · 50 · 2.0 = 7.96 · 10−3 s

where ω = 2πf is the fundamental angular frequency of the system. Hence,
the time constant Ti is sufficiently small to allow considering also iL an
algebraic variable. In conclusion, the reactor model for transient stability
studies, at 50 Hz, is as follows:

V̄ = (R+ jXL)Ī (1.12)

where V̄ and Ī are the phasor voltage and phasor current, respectively.
In case the reactor coil is made of a superconductor as in superconduct-

ing magnetic energy storage (SMES) devices, then the resistance R is some
orders of magnitude lower than for standard copper coils. Hence, the time
constant Ti can fall into the range of transient stability time scale. This jus-
tifies considering the SMES current as a state variable. Further insights on
the SMES model are given in Example 18.3 of Chapters 18.

This page intentionally left blank

Chapter 2

Power System Architecture

The main concept that is developed in the chapter is that any complex project
can be conveniently handled if correctly planned and structured. With this
aim, Section 2.1 discusses the fragmentation of software packages. An example
is also given in this section. Section 2.2 describes the main components that
compose a general-purpose software package, namely classes and procedures,
while Section 2.3 introduces the concept of modularity. A simple example on
how organizing a modular software package is also provided in Section 2.3.
Section 2.3 also discusses the modularity of power system structure. Finally,
Section 2.4 applies the concepts previously discussed and proposes the struc-
ture of a general power system analysis tool.

2.1 Structure of Software Projects

The Cantorian triadic bar, also known as Cantor’s set, is built as follows.
From a straight segment, one removes the central third. Then, from each
remaining lateral segments, one removes the central thirds. And so on. The
results is depicted in Figure 2.1. A software project, no matter how complex
it can appear at a first glance, is very similar in its internal structure to the
Cantor’s set. A software project is not a monolithic straight line, i.e., is not
a unique, long function, in the same way a book is not a unique breathtaking
sentence.

Any software project can be divided into a variety of modules and each
module in a variety of tasks, etc., until each operation is comparatively sim-
ple, single-purpose and easy to solve. For example, task fragmentation is the
philosophy on which Unix and Linux are based. These operating systems are
a collections of a huge number of small projects, each one solving a very
specific task and independent from the others. Like an ant colony, each ap-
plication (e.g., each ant) accomplishes a very basic function and only knows
how to solve that function. However, the sum of each program is not simply
a collection of functions but the whole operating system (e.g., the colony).

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 19–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

20 2 Power System Architecture

Fig. 2.1 Cantorian triadic bar with horizontal section dimension D = ln 2/ ln 3 =

0.6309

Clearly, some applications are more complicated than the average. For exam-
ple the kernel of the operating system is a monolithic application. A current
Linux kernel 2.6 with common modules has a size more than 8.5 millions of
lines of code. However, the kernel is an exceptional application. And even the
kernel is internally divided into several modules, each one taking care of a
specific issue.

The fact that a complex and general purpose operating system such as
Unix, can be reduced into a set of generally small programs and scripts, is
common to any software project. The key point is to find an efficient, yet
simple, mechanism to make all programs interact smoothly together. Ants
have solved the issue basing their complex communication system on fer-
ormons. The Unix solution is the assumption that everything is a file or
a file-like object. Thus, applications communicate writing and reading files.
Folders, Internet sockets, process forks and other fancy stuff commonly used
in informatics are treated as files.

An objective of this book is to formalize fundamental concepts for creating
an application oriented to power system analysis. The conceptual issues that
have to be solved are two: (i) to divide the project into a series of small
functions, and (ii) to find a convenient glue that allows a good integration
among all functions yet leaving each function as independent and stand-alone
as possible. These issues are addressed in the remainder of this chapter.

Example 2.1 Unix Shell Script

To clarify the idea presented in the previous section, consider the following
example. In the Unix (and Linux) environment, it is a common practice to
create small shell scripts to execute a given series of commands. For the sake
of example, the script used for generating the portable document format
(pdf) file of this manuscript from source LATEX files is as follows:

latex book.tex

makeindex -s index book.idx

bibtex book.aux

latex book.tex

latex book.tex

dvips -tletter -Ppdf -G0 -o book.ps book.dvi

ps2pdf book.ps book.pdf

2.2 Classes and Procedures 21

The script above calls five executable programs that are supposed to
be available in the system, namely latex, makeindex, bibtex, dvips, and
ps2pdf. The first command compiles the book.tex source file (which is di-
vided into a variety of files). The latex command, by itself, is not a monolithic
application, but is based on the TEX compiler and on a myriad of specialized
packages. Then the makeindex command create the analytical index, while
bibtex parses the entries of the reference database for populating the book
bibliography section. The following two latex commands consolidates the
references and make a consistent document. The result of the latex com-
mands is a dvi file which has to be transformed into a postscript (dvips) and
finally into a pdf file (ps2pdf).

This lengthy description is aimed to show the fractal nature of Unix sys-
tems. A complex document such as this typeset manuscript is the results of
a high fragmentation of the operations needed to obtain it. The pdf docu-
ment is created using a variety of “macroscopic” applications (e.g., latex
and ps2pdf). Then, each application internally calls a variety of other ap-
plications, packages, libraries, etc. (see Figure 2.2). If the function solved by
each applications is “small” or “simple” enough, the function is executed,
otherwise it is divided into simpler functions, and so on. The branching pro-
cess ends up if a function is so simple that it cannot be conveniently further
divided into other functions. Simplicity means that a specific function can be
implemented and maintained by a single person or by a very reduced group
of people. Moreover, simplicity generally also implies robustness. For exam-
ple, the execution of the script provided in this example rarely fails despite
the huge number of applications, functions and libraries that are directly or
indirectly called.1

A failure occurs only if the source code (e.g., the book.tex file) contains
errors, but this does not depend on the script nor on the application called
by the script. Unfortunately, being able to recognize the errors due to the
input data and those due to application bugs is not always straightforward
as in this case.

2.2 Classes and Procedures

The discussion and the simple provided in the previous section suggests that
any software project can be assessed and mastered if adequately divided into
a tree of single-goal possibly simple tasks. This is the strategy that allowed
Romans to govern their huge empire, namely divide et impera (e.g., “divide
and conquer”).

There are mainly two kinds of elementary pieces into which a software
project can be divided: (i) classes which accomplishes a specific functionality
(e.g., computing the current value of a function) and (ii) procedures that

1 Actually, the TEX version 3.141592 program which is the kernel of the latex

command, is said to be one of very few programs that are virtually bug free.

22 2 Power System Architecture

Shell script

latex makeindex bibtex dvips ps2pdf

package 1

package 2package 3 library 2 library 2

library 1library 1

library 3 library 3

Fig. 2.2 Tree of applications called by a simple shell script

coordinate the activities of classes (e.g., the Newton’s method for determining
the solution of a set of nonlinear equations). Procedures typically provide
algorithms, while classes typically provide specific functions or, as they are
known in the slang of object oriented programming, methods.

Using a modern concept of computer science, a class can be assimilated
to an agent. A rigorous definition of an agent is as follows: “A software rou-
tine that waits in the background and performs an action when a specified
event occurs. For example, agents could transmit a summary file on the first
day of the month or monitor incoming data and alert the user when a cer-
tain transaction has arrived.” In this context, the details of agent theory
are not relevant (e.g., the four key notions that distinguish agents from ar-
bitrary programs: reaction to the environment, autonomy, goal-orientation
and persistence) and agent-based programming techniques is not a concern.2

However, the agent definition fits well with the structures proposed in the
next sections of this chapter.

According to the analogy with computer agents, procedures can be iden-
tified with agencies or authorities that decide which (and if) agents have to
be called and which action or method is appropriate. After being initialized,
each class waits for an event, i.e., a call from a procedure. For example, the
power flow analysis calls device algebraic equations and power flow Jacobians.
In case one is interested in solving a time domain simulations, the numerical
integration routine calls differential equations of all dynamic devices. Note
that if a class does not take part to a certain kind of analysis, the procedure
simply does not call it.

2 The popularity of agent-based analysis is increasing in power system analysis,

even though mostly oriented to the study and the modelling of electricity markets.

The interested reader can find a comprehensive introduction to this topic in [347].

2.3 Modularity 23

Even though class details have not been introduced yet, it should be easy to
understand that classes have to be able to properly interact with procedures.
This issue is discussed in the following section.

2.3 Modularity

An important aspect that is worth further discussion is how classes and pro-
cedures communicate. Each arrow in Figure 2.2 (see also following Figures
2.3 and 2.5) represents a call to a function or to a method of some class.
Following each call, the method has to perform some action and, optionally,
return some object/data in a given format.

It is not hard to see that if each class has its own custom methods and
each method requires custom calls, the procedures have to take care of each
class in a different way. Furthermore, any change in a class method would
require a change in the procedures that call that class. Even for a reduced
number of classes, the whole project would quickly become intractable and
difficult to maintain.

The critical issue is how to define the way classes communicate with the
rest of the world. The set of rules that define the communication grammar
and syntax is often called protocol in computer data communication and
telecommunication. For example, the server message block (SNB) or the sys-
tems network architecture (SNA) provide a shared access to files, printers,
serial ports and other resources between nodes (e.g., computers) of a net-
work. More sophisticated examples of communications protocols are human
languages, like English or Italian. In the same vein, computer languages are
the communication protocol between human beings and computers.

A protocol should be as flexible and as complete as possible to avoid raising
exceptions. An example of completeness and flexibility are human languages:
a modern language such as English allows expressing any concept. However,
computer applications never require such level of completeness and flexibil-
ity. Furthermore, too much flexibility may lead to ambiguity, which has to be
carefully avoided in any computer application. Fortunately, simplicity (and,
thereby, consistency) and flexibility are not necessarily in opposition. Exam-
ple 2.2 attempts to clarify this point.

The definition of a common communication protocol for classes of the
same kind should be accompanied by a systematic programming approach,
i.e., modularity. Generally speaking, modularity is the property of a software
package to be organized in fixed though flexible sections whose structure re-
curs with little of no changes in several parts of the package itself. Modularity
is strictly linked to object-oriented programming and helps one implement,
reuse and maintain a robust code. Chapter 3 provides further discussion and
examples of class-based (i.e., modular) scripting for power system analysis.

Properly understanding the concept of modularity is fundamental for mas-
tering the architecture of power systems. In fact, although the number of

24 2 Power System Architecture

devices that compose a real-world power system is huge, these devices can
be divided into a few basic classes. Thus, even huge power systems such the
one shown in Figure 1.1 of Chapter 1 can be assessed by defining a very
reduced number of basic devices. In particular, the classes of devices that are
of interest in this book are generators, transmission systems, transformers,
loads, motors, regulators, power electronic converters and protections. Ex-
ample 2.3 discusses the device taxonomy of the IEEE 14-bus system. This
well-known benchmark system is extensively used throughout the book as
main test board.

Example 2.2 Zero of a Scalar Function

To clarify the concepts introduced above, this example provides a qualitative
description of a simple mathematical application containing modular classes
and procedures.

The objective is to write a software application that finds the solution
f(x) = 0 of a scalar function f that is defined by the user. Although f is not
known, its general structure is fixed. Say that f is of the form:

f(x) =
∑

i=1,...,n

fi(x) (2.1)

There is no particular reason for imposing such structure, it is just for the sake
of example. The important point is that the user can instantiate any number
n of functions fi. Such functions fi are collected in a library of classes, each
of which defining a specific function kind. In this example two classes are
considered: the quadratic polynomial and the sine function. The class that
defines polynomial calculates the following function:

fi(x) = aix
2 + bix+ ci (2.2)

while the sine class computes:

fi(x) = Ai sin(ωix+ φi) (2.3)

Any other function fi(x) can be defined just by adding a new class. The user
has to define in a file a triplet (ai, bi, ci) for each polynomial and a triplet
(Aj , ωj, φj) for each sine function. This can be conveniently accomplished
using a text file with a given format.

Clearly, the polynomials and the sine functions could be merged together in
a unique function. However, in this example we are not interested in efficiency
or in reducing as much as possible the lines of code, but rather in providing
an example of a modular application.

The user can also pass to the application some settings, such as the initial
guess x0, which algorithm has to be used for finding the solution f(x) = 0, the
tolerance that has to be used for defining the convergence of the algorithm,

2.3 Modularity 25

Function

Classes

In
te

rf
a
c
e

Settings

Plot f(x) Solution

polynomial

add

add

sine

Input data file

Data parser

Solver procedure

fi(x)

fi(x)

dfi(x)
dx

dfi(x)
dx

Fig. 2.3 Structure of a simple application that finds the zero of a general scalar

function f(x)

the maximum number of iterations before stopping the algorithm in case of
no convergence, etc.

After parsing the input data file, the application calls the main procedure
for solving f(x) = 0. At the each iteration k, the procedure calls the classes
to compute each fi(xk), and the derivatives dfi(x)/dx|k. If the method con-
verges, the application returns to the user the solution x and, optionally, the
final tolerance, the number of iterations, the plot of f(x) in the neighborhood
of the initial guess x0, etc. Otherwise, the application displays an error mes-
sage stating that the solver has not converged. The structure of this simple
application is depicted in Figure 2.3.

The most important point that has to be retained is that any number of
classes implementing a particular function can be added without changing
the structure of the program or of the procedures outside the fi(x) classes.3

However, in order to accomplish this modularity, each fi(x) class has to
communicate using a standard protocol. In this simple example, the commu-
nication protocol simply consists in passing to the fi(x) classes the current
value of the variable xk and expecting that the classes return the values
fi(xk) and dfi(x)/dx|xk . It can also be helpful to use a common interface
for simplifying the operations of handling several fi(x) classes. The inter-
face can be a class itself or simply a collection of methods that organize the

3 The only exception to this rule are data parsers that strictly depend on the

functionality and features of the whole application. Adding a new fi(x) class

likely affects also the parser, since the input data format changes.

26 2 Power System Architecture

initialization and the calls to the fi(x) classes. A possible implementation of
this application is given in Script 3.1 of Chapter 3.

The example provided in this section is quite simple and has a limited prac-
tical use, however it is useful to understand the behavior of more complex
tools, such as a power system software package. As a matter of fact, a power
system package works in a very similar way as the tool described above. For
example, classes that define dynamic power system devices may contain a
method that evaluates differential equations. This method requires the cur-
rent simulation time and the state variable vector as input and return first
time derivatives of those state variables of its competence. The duty of the
procedures that calls dynamic devices (e.g., the time integration algorithm) is
to collect the time derivatives in an ordered vector. However, there is no need
for the time integration algorithm to know the details of the implementation
of each device as long as the device returns the first time derivatives. Thus,
adding a new device does not require to modify existing code. Furthermore,
except for the multi-dimensional variable vector, the analysis techniques de-
scribed in Part II consists, at the very end, in finding the solution of a set of
nonlinear equations in the form:

0 = ϕ̂(ξ̂) (2.4)

where ϕ̂ and ξ̂ changes depending on the application. For example, in case
of standard power flow analysis, ϕ̂ describes the power injections at network
buses and ξ̂ are the voltage magnitudes and phases at load buses. In case
of time domain analysis, (2.4) is solved for a sequence of given times and
ϕ̂ is a set of equations that depends on the integration algorithm while ξ̂
are the state and algebraic variables of the DAE system. The same can be
said for continuation and optimization methods. Thus the main issue that is
addressed in Part II is the proper definition of the set of nonlinear equations
ϕ̂(ξ̂).

Example 2.3 Structure of the IEEE 14-Bus System

In order to clarify the structure of a power system, Figure 2.4 depicts
the IEEE 14-bus benchmark system that consists of two generators, three
synchronous compensators, two two-winding and one three-winding trans-
formers, fifteen transmission lines, eleven loads and one shunt capacitor. Not
depicted in Figure 2.4, but implicitly included, are generator controllers, such
as the primary voltage and frequency regulators, transmission line and trans-
former protections and breakers, etc. This simple network (as well as most
benchmark systems) can be used to illustrate virtually all power system phe-
nomena and, if properly modified, to show the behavior of any device model.
This is a byproduct of the modularity of the power system structure.

2.4 Architecture of a Power System Software Tool 27

G

G

G

C

C

C

C

C1

2

3

4

4

5

6 7

7

8

8

9

9

10
11

12

13

14

Generators

Synchronous

Compensators

Transformer Equivalent

Three Winding

Fig. 2.4 IEEE 14-bus test system

2.4 Architecture of a Power System Software Tool

This section attempts to define a basic and as general as possible architec-
ture for a power system analysis software package. The proposed structure
is shown in Figure 2.5. The main parts that are shown in the figure are as
follows.

1. Parsing input data. Input data can be defined as plain text files or through
graphical tools, such as one-line network diagrams or graphical information
systems (GIS). There is no particular need for using only one graphical
library or GIS tool. The fact that proprietary software applications do
not allow using graphical systems but the one embedded in the applica-
tion itself is an example of traditional programming that, in this book, is
deprecated. In the same vein, there is no reason for adopting a particular
data format as long as suitable parsers for the input data are provided. A
detailed discussion on data format issues is provided in Chapter 21.

2. Initialization of power flow devices. Given the input data, the initializa-
tion of power flow devices consists in creating an instance of all devices
that are used in the power flow analysis and populating these instances
with the data provided by the parser. In power flow analysis one has to
define at least buses, transmission lines, static generators and loads. But,
in principle, any device can be included in the power flow analysis. This
point is further discussed in Chapter 4.

28 2 Power System Architecture

Input Data

Initialization of

Initialization of

Parser

Network Diagram

Plots

Static Static DynamicDynamic

Analysis 1Analysis 1 Analysis n Analysis n

Report Files

Settings

Power Flow Devices

Remaining Devices

Graphic Library 1

Graphic Library 2

Graphic Library n

Graphic Tool 1

Graphic Tool 2

Graphic Tool n

Output Format 1

Output Format 2

Output Format n

Data Format 1

Data Format 2

Data Format n

Power Flow Method 1

Power Flow Method 2

Power Flow Method n

GIS 1

GIS 2

GIS n

Device 1

Device 2

Device 3

Device n− 1

Device n

Fig. 2.5 Structure of a general purpose software suite for power system analysis

3. Power flow analysis. Since the focus of the book is on balanced systems at
the fundamental frequency, the very kernel of the application is the power
flow analysis. Of course, a similar structure can be extended or moved
to other analysis, such as electro-magnetic transient (EMT) analysis. In
this case, the core algorithm would be the EMT integration. However, the
basic concepts that are beneath the proposed structure are independent
of the specific analysis that is carried on.

The power flow analysis is a general solver that looks for the zeros of a
set of nonlinear equations but does not contain any information about the
network or the devices included in the network. The solver is not neces-
sarily unique. As a matter of fact, several algorithms have been proposed
in the literature and are discussed in Chapter 4 (e.g., Newton’s method,
Seidel’s method and fast decoupled).

2.4 Architecture of a Power System Software Tool 29

4. Initialization of remaining devices. After completing the power flow analy-
sis, it is common practice to initialize dynamic devices such as synchronous
machines, primary voltage and frequency regulators, etc. The initialization
consists in creating an instance of all required devices, assigning the data
to the instances and computing the initial value of state and algebraic vari-
ables (see Subsection 9.1.1 of Chapter 7). At the end of the initializations,
the power system model is at a steady-state equilibrium point that serves
as initial condition for further analysis.

5. Static or dynamic analyses. Given a steady-state equilibrium point, several
analysis can be performed. This book focuses on two static ones (namely,
continuation power flow and optimal power flow) and two dynamical ones
(namely, eigenvalue analysis and time domain simulation). Other relevant
topics are harmonic analysis, fault analysis, state estimation, etc. However,
the relevant point is that any algorithm can be included in the scheme of
Figure 2.5 provided that the algorithm properly interacts with all available
devices.

6. Output storage and display. The last step is to display the results in a
convenient format. Report files, tables, plots and other visualization tech-
niques help understand and interpret results. As for the input data and
one-line diagram editors, the choice should not be limited to only one
tool or output format. Further discussions on these topics are provided in
Chapters 21 and 22.

From the observation of the scheme depicted in Figure 2.5, one can identify
procedures and classes. It is easy to distinguish classes from procedures based
on a pictorial difference: while classes are like terminals from which depart
arrows, procedures are like hubs from and at which several arrows depart and
arrive.

The procedures are: the input data parser; the initialization of power flow
devices; the power flow analysis; the initialization of devices used after the
power flow analysis; static and dynamic analyses; and output storage and dis-
play. The classes are: graphic libraries for defining network diagrams; graph-
ical information systems; data format parser definitions; devices; and text
and graphic output formatters. A special kind of class is the set of settings
of the software package. Settings allow a fine tuning of the behavior of the
application and of each procedure.

There are two kinds of procedures: the ones that implement mathemat-
ical analyses and algorithms (e.g., power flow analysis) and those that are
mainly needed for organizing and putting in order the devices (e.g., input data
parser). In the same vein, there are two kinds of classes: the ones that imple-
ments differential and algebraic equations of power system devices and those
that are for non-engineering operations (e.g., data grammars and graphic li-
braries). In this book, the focus is only on algorithms (Part II) and algebraic
differential equations (Part III). Part IV provides an overview of non-strictly-
technical topics.

30 2 Power System Architecture

While procedures are totally application dependent and have thus to be
written for the specific problem that has to be solved, classes can be in some
cases imported from existing public-domain libraries. For example, GIS and
graphical functions can be imported from external libraries. On the other
hand, power system device classes or data parsers have to be implemented
as they are highly application dependent. However, the key point of a frag-
mented (or fractal) structure, is the fact that device and parser classes can
be collected in a library and, if one needs a new device or a new parser, only
that specific device or parser has to be implemented.

Figure 2.5 also helps understand one of the main reasons why undergradu-
ate and Ph.D. students are afraid of writing their own power system software
package. Thinking, organizing, planning and implementing the whole project
is, at a first glance, overwhelming. Furthermore, a great portion of the code
is out of the scope of power system analysis and modelling. However, had
the student only to implement a few device classes or an algorithm (proce-
dure), the amount of code to implement would be relatively easy to mas-
ter. Of course, the underlying assumption is that the main project to which
the student adds his contributions has to be open in the sense discussed in
Section 3.1. More details on educational aspects of power system software
tools are given in Chapter 23.

Chapter 3

Power System Scripting

The topics of this chapter are threefold. The first topic is to find the most
adequate scenario for a didactic and research-oriented programming environ-
ment (Section 3.1). With this aim, the concepts of open and closed software
as well as the differences between traditional programming and scripting are
introduced and discussed (Sections 3.2 and 3.3, respectively). The second
topic is to describe the minimal features that a computer language should
have to be suitable for power system analysis and simulation (Section 3.4).
Comparisons among various modern programming languages commonly used
in computational science is given. Finally, the chapter introduces the Python
programming language and provides a complete simple example of modular
application implemented in this language (Section 3.5).

The main thread of this chapter is that a computer language is not only a
mean for translating mathematical formulæ into a computer-readable format.
Rather, each computer language provides a particular “way of thinking”. The
choice of the computer language is thus more a philosophical issue than a
technical one.

3.1 Open and Closed Programming

In a theoretical scenario, the steps to follow for studying the behavior of a
power system are (i) to establish the model, (ii) to set up equations and (iii)
to implement on a computer the resulting system using a suitable solution
algorithm (see also Figure 1.3 of Chapter 1). This process is actually quite
rare in practice, at least in what concerns standard analyses such as the
solution of the power flow problem or time domain integrations. Students
and, sad to say, even some researchers, often use a closed software package
for solving the assigned problem. This scenario is illustrated in Figure 3.1.

In this context, the term closed refers to the lack of freedom to modify the
source code of a certain software package. In this sense, commercial products

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 31–58.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

32 3 Power System Scripting

Physical system

AdjustmentsData
Closed

software package

Fig. 3.1 Approach for studying a physical system based on a closed software

package

are generally closed. However, also freely-distributed projects1 can be closed
at practical effects if the source code is not provided or, if provided, is too
complicated to be mastered in a reasonable time. As it can be promptly
observed, closed software packages embed and mask the most interesting
parts, i.e., the modelling and computer implementation phases.

There are at least two important drawbacks in this approach. The first
one is that the user has to accept the hypotheses and simplifications used
by the authors of the software package. The other one is that the user often
ignores the hypotheses and simplifications used by the authors of the software
package. A byproduct drawback is also the absent or reduced possibility of
modifying the equations and of replacing the algorithms used by the software
package.

Clearly, the main advantage of using a closed software packages is to save
time. For well-assessed and repetitive operations, such as most industry ap-
plications, it is also the correct approach. On the other hand, the educational
weakness of closed software is evident. The user gives up the possibility of
thinking in exchange for setting up input data and adjustments (e.g., soft-
ware parameter settings). It has to be noted that setting up a set of data
without having the control or the full knowledge of the model can lead to
unpredictable results.

In any case, the approach illustrated in Figure 3.1 should be avoided as
much as possible at least in the academic environment, since it promotes two
dangerous habits: (i) to consider the implementation phase a non-relevant
step of the study, and (ii) to accept acritically the model provided by the
closed software application. The latter habit is in antithesis with the correct
academic approach.

1 The expression open source is widely used for defining a software application or

library whose code is available to the final user. If the user is also free to copy,

modify and re-utilize the code, provided that the resulting application remains

open and free, the project pertain to the family of free and open source software

(FOSS). Further details on this topic can be found in Chapter 23.

3.2 Scripting 33

It has to be said that in most branches of engineering the approach de-
picted in Figure 3.1 is not so common as it is in power system analysis.
This likely happens because, in power systems analysis, setting up the power
flow problem and the transient analysis for a general system composed of an
arbitrary number of buses, connections and devices implies the implemen-
tation of a considerable amount of code that accomplishes ancillary tasks
(e.g., data parsing) and is not strictly related to power system analysis (see
Section 2.4 of Chapter 2). Thus, using a closed software package is an easy
shortcut that allows the students focusing on theoretical concepts more than
on programming issues.

This book attempts to demonstrate that programming issues are not in-
superable and actually help assimilate theoretical aspects. The proposed ap-
proach for studying a physical system is shown in Figure 3.2. In this figure,
the open software package stands either for a self-made application or an
available open source project that can be easily mastered and modified by
the user. Of course, implementing the whole software package could result an
overwhelming task for the average student. But, according to this approach,
it is not necessary that the user implements the whole architecture, just a
limited set of modifications, extensions, add-ons or plug-ins. If the extensions
are worth, these can be used by others and the project grows up.

Actually, this approach is not new. It is the philosophical basis of the
free and open source software community [292] and has proved to work well,
at least for projects like Linux, Apache, LATEX, Python, etc. Chapter 23 dis-
cusses these concepts and attempts to explain why the open source philosophy
catches on with great difficulty in the power system community.

3.2 Scripting

In the previous section, the word programming is used for indicating the activ-
ity of writing computer code. The primary purpose of this section is to clarify
the differences between two available approaches for computer programming,
namely traditional programming and scripting. The second purpose of this
section is to explain why the scripting approach is adopted in this book.

Traditional programming or system programming consists in the construc-
tion of a self-contained, stand-alone, typically complex and monolithic com-
puter application.

Scripting or simply programming consists in the production of typically
small fractal applications that get advantage of other existing packages to
provide new functionalities.

The following remarks are useful to better explain the conceptual differ-
ences between traditional programming and scripting.

1. Languages that are suitable for traditional programming projects are
typically C, C++, Java, C# and Scala. For engineering applications,

34 3 Power System Scripting

&

Adjustments

Data

Equations

Open

software package

Physical system

Hypotheses

Model

Simplifications

Available

algorithms

solution

Numerical

Fig. 3.2 Proposed approach for studying a physical system based on an open

software package

FORTRAN (in any available versions, namely, 77, 90/95 and 2003) is also
quite popular.

2. Languages commonly used for scripting are, for example, Perl, Python,
Php, Tcl and Ruby. In the engineering world, high abstraction level lan-
guages such as R, Matlab, Mathematica and Octave are popular choices.
The learning process of these languages is much faster than that of C,
C++, Java and FORTRAN.

3. Traditional programming is oriented almost exclusively to the application
and not to the re-usability of the code. However, one could do scripting
also using C or FORTRAN. In the same vein, one could use Perl for a large
project, although this would not likely be a good choice. The key point
is that the difference between scripting and traditional programming does
not concerns necessarily the computer language.

3.3 Scripting Languages for Computational Science 35

4. C, C++, Java and other languages used for traditional programming are
compiled, while Perl, Python and other languages used for scripting are
interpreted. An interpreted language facilitates the implementation phase
and allows quickly prototyping new functions. On the other hand, com-
piled languages are able to provide faster applications than interpreted
languages. Some nuances to the latter statement is provided in Exam-
ple 3.1.

5. Traditional programming is general based on low level languages, while
scripting prefers high level languages. Of course, the frontier that divides
a low level from a high level language is somewhat subjective. However,
we can assume that the language is high level for our purposes if we do
not need to worry about the language idiosyncrasies and can concentrate
on the kernel of our application.

6. Traditional programming generally leads to closed software applications,
while scripting promotes open projects. In this context, the terms open and
closed have the meanings discussed in the previous Section 3.1. Traditional
programming would likely lead to a closed software application even if the
source code were available. This is a result of the monolithic approach and
low-level languages used in traditional programming.

In conclusion, the scripting language approach intrinsically promotes the re-
usability of the code and is suitable for quickly developing small applications
and/or extensions of existing projects. These features are ideal for didactic
purposes and fit well with the scheme shown in Figure 3.2.

3.3 Scripting Languages for Computational Science

Based on the discussion of the previous section, scripting appears an inter-
esting option for any computer application. Actually, there are specific ad-
vantages that makes this programming approach suitable for computational
science. The following is a list of remarks that are relevant to the material
presented in this book but that can suite any other branch of engineering ap-
plications. For the interested reader, an excellent dissertation about scripting
for computational science can be found in [164].

1. While system languages are adequate for big stand-alone applications that
require time and a team of software developers, students and researchers
are interested in a versatile tool for quickly developing their ideas. The
scripting approach is able to provide such versatility and rapidity since
most basic operations are already available in existing libraries. Moreover,
scripting languages are characterized by a high-rate learning curve com-
pared to system languages. This is due to the fact that scripting languages
do not require worrying about type definition, memory allocation, etc. Fur-
thermore the syntax of scripting languages is generally quite simple and
clean.

36 3 Power System Scripting

2. As discussed in Chapter 2, scientific computing is not strictly limited to
mathematical algorithms or number crunching. Focusing on power system
analysis, it is important to have the possibility of a graphical interface for
both drawing network one-line diagrams and visualizing results. Further-
more, a graphical user interface can be of great help in educational appli-
cations. Scripting languages simplify the process of building such graphical
tools. Actually, most scripting languages are general purpose and are not
explicitly oriented to scientific applications (such as FORTRAN). Thus,
using scripting languages make generally easy or, at least, possible, any
kind of task (e.g., web-based applications, multimedia, etc.)

3. Mathematical and scientific applications have been the original purpose of
computers and are the noblest way of using such machines. No surprise that
in the last decades very efficient libraries for linear algebra, matrix factor-
ization, eigenvalue analysis, etc., have been developed and optimized with
the help of thousands of scientists. BLAS, ATLAS, LAPACK, UMFPACK
are good examples of such libraries. Most of these libraries are legacy code
written in FORTRAN or in C. Using modern scripting languages do not
mean to bury old code. On the contrary, the ability of scripting languages
of gluing different applications allows creating very efficient interfaces and
re-utilize legacy libraries. It is important to note that scripting language
are generally a high-level layer between the programmer and a variety of
low-level libraries.2 Thus using a scripting languages allows taking advan-
tage of all resources in a more efficient and seamless way than system
languages.

4. Most scripting languages were born in a Unix or Unix-like environment.
For example, Python, Perl, Php, and Ruby. This is not accidental but is
largely due to the features of Unix and Unix-like operating systems that
highly promote the development of custom applications. Most popular
free and open source scripting languages provide a Windows version that
thereby makes available the Unix power on this platform. A byproduct
is that using popular scripting languages, the code is portable on various
platforms with no or very limited modifications. Portability or platform
independence can be of great importance in case a scientific project is
carried out by different research groups or in case of popular projects that
receive third-party contributions.

3.4 Computer Languages Suitable for Power System
Analysis

Among the tens (or hundreds) of all available languages, only those that
fit some basic requirements are eligible for power system analysis. These
requirements are the availability of efficient and easy-to-use libraries for:

2 The interpreter of the scripting language itself is generally written in some legacy

system language such as C.

3.4 Suitable Computer Languages 37

1. Basic mathematical functions (e.g., exponential, logarithm and trigono-
metric functions).

2. Complex numbers.
3. Multi-dimensional arrays (e.g., element by element operations and slicing).
4. Linear algebra (e.g., LU and Cholesky’s factorization).
5. Sparse matrices.
6. Eigenvalue analysis of non-symmetrical matrices.

The reasons of the need for these libraries in power system analysis is quite
evident. However, the discussions on mathematical tools given in Part II
dissipate any possible doubt.

Strictly speaking, only basic mathematical functions are really necessary.
All other routines can be implemented starting from there. However, this
would require a really long time and results could hardly be as efficient as ex-
isting libraries. Graphical libraries, although certainly important for plotting
results, have not been included in the basic requirements above. Plotting a
curve is a post-processing operation, which can be done by means of exter-
nal applications such as Gnuplot or Excel R© once a plain ascii file of data
in tabular format is available. Thus, it suffices that the computer language
is able to (efficiently) read and write files, which is a feature common to all
languages.

One may argue that also the availability of algorithms for numerical inte-
gration of differential equations or optimization problem solvers can be useful.
These algorithms perform properly if adjusted to the specific problem to be
solved and is thereby a good idea to avoid using predefined functions unless
these can be easily customized.

Computer languages that provide the features described above can be di-
vided into four categories:

1. Legacy system languages (e.g., FORTRAN, C and C++).
2. Modern system languages (e.g., Delphi, Java, C# and Scala).
3. General purpose scripting languages with inclusion of adequate mathe-

matical libraries (e.g., Python and Perl).
4. Scientific-oriented scripting languages (e.g., Matlab and Octave).

No computer language is perfect. Any choice has advantages and drawbacks.
An assumption of this book is that the advantages of using general purpose
scripting languages prevail on the advantages provided by other computer
languages.

Sections 3.2 and 3.3 provide sufficient reasons for preferring scripting lan-
guages to system ones. Anyone that has programmed in FORTRAN or in
C knows the suffering of building up a complex project. More difficult is to
convince supporters of Java or other modern system languages. Java has be-
come popular at the end of the last century as a substitute of C++. In my
opinion, Java is not adequate for scientific applications that involve massive
number crunching. This is a common drawback of most modern system lan-
guages that have been designed by and for computer programmers and not

38 3 Power System Scripting

for engineers. I also think that languages that overuse punctuation marks
(e.g., braces) are quite messy but, maybe, it is just a matter of tastes. Much
more important for preferring scripting languages is the fact that Java and
other modern system programming languages promote closed software tools
and, thus, should be avoided in education and research.

More difficult is to justify why general purpose programming languages
has to be preferred to scientific-oriented scripting languages. Actually, this
may seem just a nonconformist attitude. Matlab along with the Simulink
environment is a standard de facto in the scientific community for both edu-
cation and research. Apart from Matlab, there are a variety of other scripting
languages, for example Gauss, MathCAD, Mathematica, Maxima, Modelica,
Octave, Q, R, SciLab and Yorick. All these languages are specifically ori-
ented to scientific applications and abound with mathematical functions and
libraries.

There are, however, a few drawbacks inherent to languages such as Matlab
and other scientific scripting languages that should be carefully evaluated, as
follows.

1. Scientific oriented languages are designed to make easy a specific mathe-
matical task. For example, Matlab is systematically matrix oriented, thus
any variable is by default a multi-dimensional, easy-to-reshape, complex
array. This feature can be convenient in most cases, but one may some-
times simply need a scalar float or a short integer.

2. Most scientific languages do not support classes or provide a näıve class
implementation. This fact makes difficult or impossible object-oriented
programming.

3. While providing a good support for types useful for mathematical opera-
tions (e.g., multi-dimensional arrays), scientific scripting languages often
lack or make difficult the use of some useful basic types such as tuples,
lists or hashes.

4. Matlab is a proprietary software. Thus, the user has to rely on the solu-
tions provided by the developers of Matlab. Of course, one could use some
Matlab-like interpreters such as Octave or SciLab, but at the cost of using
a slower interpreter, a limited programming language and a reduced set of
libraries.

Despite the arguments above, the scientific community is clearly oriented to
Matlab or to system languages. Table 3.1 depicts a rough comparison of a
variety of open source software packages for power system analysis. Com-
mercial packages are not considered since all of them are closed applications
and, thus, are of no interest for the scope of this book. The features illus-
trated in Table 3.1 are standard power flow (PF), continuation power flow
and/or voltage stability analysis (CPF), optimal power flow (OPF), eigen-
value or small signal stability analysis (EA), time domain simulation (TDS)
for transient stability analysis, electro-magnetic transients (EMT), and some

3.5 Python Scripting Language 39

æsthetic features such as graphical user interface (GUI) and one-line diagram
editor through computer aided design (CAD).

The tools shown in Table 3.1 are heterogeneous and are characterized by
very different complexity levels. Thus, it is not fully fair to compare these
projects. As a matter of fact, some packages are Ph.D. students’ projects (e.g.,
MatDyn and Pylon) or niche research tools (e.g., AMES), while others are
well-assessed projects with several years of experience (e.g., UWPFLOW).
In any case, there is a clear preponderance of Matlab and system language-
based tools. Furthermore, it is not by chance that the two industry-oriented
packages, OpenDSS and InterPSS, are based on system languages and use
Windows as operating system. In fact, these projects have been developed
by companies used for producing proprietary software. On the other hand,
Matlab is the preferred language in education and research environments.

3.5 Python Scripting Language

This section discusses the reasons for using Python as scripting language
throughout this book. In the remainder of this chapter, it is assumed that
the reader has some basic knowledge of this language. If this is not the
case, among the wide variety of books and on-line documentations about
Python, relevant references are [18, 32, 62, 164, 186]. The Python website
(www.python.org) is also an excellent starting point for obtaining the latest
Python version, learning about Python standard libraries and accessing a
variety of spare material related to the Python language. Finally, Appendix
A provides a quick reference of non-standard libraries used in this book.

Python is a safely, dynamically and strongly typed language. Hence
polymorphism, meta-programming and introspection are easy to implement
and to use. Concepts such as safe, dynamic and strong typing as well as
meta-programming, polymorphism and introspection are relatively advanced
(though intriguing) programming topics. While an in-depth discussion on
types can be found in [239], intuitive definitions are as follows:

Safe typing: a programming language is considered “type-safe” if it does not
allow operations or conversions that lead to erroneous or unpredictable
results. The opposite of safe typing is unsafe typing.

Dynamic typing: a programming language is said to be dynamically typed
if the majority of type checking is performed at run-time as opposed to
at compile-time. Dynamic typing is easier to find in scripting languages
(e.g., Python). The opposite of dynamic typing is static typing, which is
typical of system programming languages (e.g., C). Dynamic and static
typing can cohabit since a programming language can be dynamically
typed in some aspects and statically typed in others (e.g., Matlab).

Strong typing : strongly typed programming languages prevent success for an
operation on arguments which have the wrong type. The opposite of
strong typing is weak typing.

40 3 Power System Scripting

T
a
b
le

3
.1

O
p
e
n

so
u
rc

e
p
a
ck

a
g
e
s

fo
r

p
o
w

e
r

sy
st

e
m

a
n
a
ly

si
s

P
a
ck

a
g
e

R
e
f.

L
a
n
g
u
a
g
e

P
F

C
P

F
O

P
F

E
A

T
D

S
E

M
T

G
U

I
C

A
D

A
M

E
S

[1
7
1
]

J
a
v
a

�
�

E
S
T

[3
3
8
]

M
a
tl
a
b

�
�

�
�

In
te

rP
S
S

[3
6
0
]
J
a
v
a

�
�

�
�

M
a
tD

y
n

[6
4
]

M
a
tl
a
b

�
�

M
a
tE

M
T

P
[1

8
1
]

M
a
tl
a
b

�
�

�
�

M
a
tp

o
w

e
r

[3
6
3
]

M
a
tl
a
b

�
�

O
b
je

c
tS

ta
b

[1
6
6
]

M
o
d
e
li
c
a

�
�

�
�

�

O
p
e
n
D

S
S

[8
6
]

D
e
lp

h
i

�
�

�
�

P
A

T
[2

7
1
]

M
a
tl
a
b

�
�

�
�

P
S
A

T
[1

9
5
]

M
a
tl
a
b
,
O

c
ta

v
e

�
�

�
�

�
�

�

P
S
T

[6
0
]

M
a
tl
a
b

�
�

�
�

P
y
lo

n
[1

7
2
]

P
y
th

o
n

�
�

�
�

U
W

P
F
L
O

W
[4

2
]

C
�

�

V
S
T

[5
3
]

M
a
tl
a
b

�
�

�
�

�

3.5 Python Scripting Language 41

Meta-programming: meta-programming consists in writing computer pro-
grams that write or manipulate other programs (or themselves) as their
data, or that do part of the work at compile-time that would otherwise
be done at run-time.

Introspection: type introspection is the ability of some object-oriented pro-
gramming languages to determine the type of an object at run-time.

Polymorphism: polymorphism is a programming language feature that allows
values of different data types to be handled using a unique interface.

Other relevant features of Python are as follows.

1. Python is fully based on well-structured classes, which make easy creating,
maintaining and reusing modular object-oriented code.

2. Libraries such as NumPy and CVXOPT provide a link to legacy libraries
(e.g., BLAS, LAPACK, UMFPACK, etc.) for manipulating multidimen-
sional arrays, linear algebra, eigenvalue analysis and sparse matrices.

3. Thanks to graphical libraries such as Matplotlib, the ability of produc-
ing publication quality 2D figures in Python is at least as powerful as in
Matlab.

4. The huge variety of free third-party libraries available for Python, allows
easily and quickly extending the features of an application well beyond the
scope of the original project.

5. Python is free and open source. Hence Python promotes the implementa-
tion and distribution of open projects.

6. Python syntax is relatively simple, neat, compact and elegant. Hence
Python is particularly adequate for education and illustrative examples.3

Although the features listed above can be likely found in other scripting
languages and does not imply that Python is flawless, these are enough for
developing the examples provided in this book.

Example 3.1 Python Performance

Before providing an example of Python script, it is worth checking the per-
formance of Python in terms of power system analysis of a real-world power
systems. If Python code were not fast enough, all arguments provided above
would loose strength. However, computational efficiency is not the main is-
sue in the context of this book. According to Moore’s law, the number of
transistors that can be placed inexpensively on an integrated circuit doubles
approximately every two years. Thus, a software application that is compar-
atively slow today will be solved quickly in a few years. Nevertheless, most
readers will likely argue that Python cannot be competitive with Matlab
or with system programming languages. As a matter of fact, most power

3 Some books use pseudo-code for illustrating implementation examples. The ratio-

nale behind the use of pseudo-code is the sake of generality. Actually pseudo-code

is a sort of Esperanto of computer languages. However, Python syntax is almost

as clear as pseudo-code and has the advantage of being a real scripting language.

42 3 Power System Scripting

system practitioners need a several thousand-bus system case study to be-
lieve the robustness and efficiency of novel techniques. Table 3.2 aims clearing
any possible mistrust.

Table 3.2 Performance of open source packages for power system analysis

Application Programming Total time Jacob. matrix fact.

Language [s] time [s]

UWPFLOW C 1.155 -

InterPSS Java 15.97 -

Matpower Matlab 1.464 0.0363

PSAT Octave 5.221 0.0433

- Python 1.420 0.0319

Table 3.2 shows the CPU times of different power system packages (i.e.,
UWPFLOW, InterPSS, Matpower, PSAT and a custom code written in
Python) for solving the power flow analysis using a standard Newton’s
method for a 2746-bus 3514-line network. This case represents the Polish
400, 220 and 110 kV networks during winter 2003-04 evening peak condi-
tions and is provided by the current Matpower release [363]. The processor
used is a 2.4 GHz Intel Core 2 Duo with 2 GB of RAM. The software pack-
ages used in the comparison are: Java 1.6, Matlab 7.8, Python 2.6.3, Octave
3.0.1, UWPFLOW release 2006, InterPSS 1.4, Matpower 3.2 and PSAT 2.1.5.
Simulations were solved using Windows XP R© as operating system.

The comparison, although drawn using same environment conditions for all
software packages, cannot be completely fair. For example, the time required
to load the interpreter (e.g., the Java, Matlab, Octave or Python environ-
ments), and to convert the input data file, which vary considerably, are not
taken into account. In case of InterPSS and PSAT, the time for creating
the output file is not included. However, neglecting technicalities, relevant
conclusions are:

1. Python can be competitive with Matlab and Octave.
2. System programming languages are not much faster than efficient scientific

scripting languages. However, scripting languages do not perform directly
heavy mathematical operations, but call efficient FORTRAN or C-based
libraries. Thus, the main conclusion is that the interfaces that link scripting
languages with external compiled libraries are quite efficient.

3. Array indexing in Octave is slower than in Matlab. However, the matrix
factorization performance of these two languages is comparable.

4. The Java-based application is one order of magnitude slower than the other
software tools considered in this comparison. This result is not surprising
since Java was not born for number crunching.

3.5 Python Scripting Language 43

5. The mean CPU time needed to factorize the power flow Jacobian matrix
is slightly smaller for the Python implementation because the symbolic fac-
torization provided by the module CVXOPT is used. Symbolic factorization
allows pre-factorizing dense or sparse matrices based only on the non-zeros
elements (see also Appendix A). Thus, if the number and the position of
non-zero elements of the Jacobian matrix do not vary, the symbolic factor-
ization is needed only once. The first full factorization required 0.0424 s.

Script 3.1 First Python Script

In Example 2.2 a general modular applications for finding the zero of a non-
linear scalar function. This example provides a possible translation of the
scheme shown in Figure 2.3 in the Python language. The goals of this exam-
ple are to show how: (i) to implement each block of the scheme of Figure 2.3;
and (ii) to organize the code in a modular and easily extensible way.

For the sake of simplicity, the whole project is contained in a unique file,
say zero.py, and the algorithm used for finding the solution of f(x) = 0 is
the Newton’s method.

It is a good habit to begin a Python module with the declarations of the
packages used by the module. In this case, the modules optparse and sys
are needed for parsing the parameters passed to the module zero.py when it
is called from the command line. Then, the modules numpy and cvxopt are
needed for array operations and the module matplotlib for producing 2D
plots. The script header is as follows:

from optparse import OptionParser

from cvxopt.base import matrix, mul, sin, cos

from numpy import linspace

import sys

import matplotlib.pyplot as pyplot

The second step consists in defining the common class for the functions fi(x).
Defining a common base class is a good practice that is made possible by the
ability of classes of inheriting methods and attributes from other classes.
The base class is called parent, ancestor, father or mother class while the
classes that inherit the method from the original class are called child class or
subclass. Inheritance can be multiple, i.e., a subclass may have several parent
classes. However, in this example, only simple inheritance is considered. The
class base defines the common methods add for adding a function element,
setup for initializing class parameters, and list2matrix for converting lists
to double-precision arrays. Since the class base does not define a specific
function fi(x), the methods fcall and fxcall for computing fi(xk) and
dfi/dx|k are void. The class base is as follows:

class base():

"""base class for functions"""

def init (self):

44 3 Power System Scripting

self.params = {}
self.n = 0

def setup(self):

for key in self.params.keys():

self. dict [key] = []

def list2matrix(self):

for key in self.params.keys():

self. dict__[key] = matrix(self. dict [key], (self.n, 1), ’d’)

def add(self, **kwargs):

self.n += 1

keys = self.params.keys()

for key in keys:

self. dict [key].append(self.params[key])

for key, val in kwargs.iteritems():

if not key in keys: continue

self. dict [key][-1] = val

def fcall(self, x):

return 0

def dfcall(self, x):

return 0

The internal built-in dictionary4 dict contains all attributes and method
names of a class. Using dict makes possible to efficiently use meta-
programming. For example, the method setup dynamically initializes at
run-time the parameters of each specific function fi(x). These parameters
are defined in the child classes poly and sine, i.e., the polynomial and sine
functions. These are implemented as follows:

class poly(base):

"""polynomial class"""

def init (self):

base. init (self)

4 Dictionaries are sometimes found in other languages as associative memories,
associative arrays or hashes. Unlike sequences, which are indexed by a range of

numbers, dictionaries are indexed by keys. Keys can be any immutable Python

type, e.g., strings or numbers.

3.5 Python Scripting Language 45

self.params = {’a’:0.0, ’b’:0.0, ’c’:0.0}
self.setup()

def fcall(self, x):

fvec = self.c + x*(self.b + x*self.a)

return sum(fvec)

def dfcall(self, x):

dfvec = self.b + 2.0*x*self.a

return sum(dfvec)

class sine(base):

"""sine function class"""

def init (self):

base. init (self)

self.params = {’A’:0.0, ’omega’:0.0, ’phi’:0.0}
self.setup()

def fcall(self, x):

fvec = mul(self.A, sin(self.omega*x + self.phi))

return sum(fvec)

def dfcall(self, x):

dfvec = mul(mul(self.A, self.omega),

cos(self.omega*x + self.phi))

return sum(dfvec)

As discussed above, the two classes poly and sine inherit the methods of
the class base. Thus, to complete these classes it suffices to define function
parameters and the methods fcall and fxcall. It is important to note
that any other function fi(x) can be defined using the basic structure of the
classes poly and sine. The functions mul and cos imported from the cvxopt
package compute the element-by-element products and cosine, respectively,
of double-precision arrays (see also Appendix A).

Figure 2.3 of Chapter 2 shows a dotted line for indicating an interface
that takes care of the communication between the function fi(x) classes and
the procedures. This interface is not strictly necessary but allows further
generalizing the code and simplifies adding new fi(x) classes. In this example,
the interface is implemented as the following class function.

class function():

"""interface for all specific function classes"""

def init (self, flist):

46 3 Power System Scripting

self.flist = flist

for item in self.flist:

self. dict [item] = eval(item + ’()’)

def setup(self):

for item in self.flist:

if self. dict [item].n:

self. dict [item].list2matrix()

def fcall(self, x):

f = 0

for item in self.flist:

if self. dict [item].n:

f += self. dict [item].fcall(x)

return f

def dfcall(self, x):

df = 0

for item in self.flist:

if self. dict [item].n:

df += self. dict [item].dfcall(x)

return df

flist = [’poly’, ’sine’]

Function = function(flist)

The constructor init of the class function requires as input the list
(flist) of all defined function classes. In this case, the list is composed of
only two items, but can be easily extended. The meta-dictionary dict
and the meta-function eval allow using a general approach for handling all
fi(x). By means of dict and eval, adding a new function fi(x) requires
only including a new item in the function list flist apart from the definition
of the new fi(x) class. But no procedure has to be modified. Thus, meta-
programming and dynamical typing simplify the expansion of a project at
the cost of an higher level of abstraction. The last line defines an instance
Function of the class function. This instance is used by all procedures.

The kernel of the application is a routine run that collects all settings,
calls the data parser, sets up the functions fi(x), launches the solver and, if
required, executes the 2D plot.

def run(datafile, x0=0.0, plot=True, imax=20, tol=1e-5):

"""initialize function and run appropriate routines"""

if not datafile:

print ’* Error: A data file must be defined!’

print ’* Type "dome -h" for help.’

sys.exit(1)

3.5 Python Scripting Language 47

read(datafile)

Function.setup()

solve(x0, imax, tol)

if plot: fplot(x0)

The settings are kept minimal for simplicity but one can easily include any
adjustments in the form of input parameters. For example one could allow
choosing among different solvers. In this case, available settings are the initial
guess x0, the maximum number of iterations imax, the tolerance tol for the
Newton’s method, and a Boolean parameter plot that enforces the graphical
output. Finally, observe the use of default values for the settings.

The parser of the data file is implemented in the routine read. The input
data is a plain text ascii file, as follows:

Poly 1.0 4.0 -12.0

Sine 3.0 5.0 -1.57079632679

Sine 5.0 3.0 0.0

The parser for this format is given below.

def read(datafile):

"""parse input data in plain text format"""

fid = open(datafile, ’rt’)

for line in fid:

data = line.split()

if not len(data): continue

if data[0] == ’Poly’:

Function.poly.add(a = float(data[1]),

b = float(data[2]),

c = float(data[3]))

elif data[0] == ’Sine’:

Function.sine.add(A = float(data[1]),

omega = float(data[2]),

phi = float(data[3]))

fid.close()

The parser directly calls the methods of the classes poly and sine. Thus,
the parser has to know the parameters of these classes. Parsers are thus a
fragile part of the application, since a change in the classes that implements
functions fi(x) can make the parser inconsistent.

The solver solve implements a standard Newton’s method. The solver
only interacts with the instance Function of the interface class and does not
know anything about the specific functions fi(x).

48 3 Power System Scripting

def solve(x0 = 0.0, imax = 20, tol = 1e-5):

"""simple Newton’s method"""

f = 1.0

iteration = 0

x = x0

while abs(f) > tol:

if iteration > imax: break

f = Function.fcall(x)

df = Function.dfcall(x)

inc = f/df

print ’Convergence error: %.8f’ % inc

x -= inc

iteration += 1

if iteration <= imax:

print ’The solution is x = %.5f’ % x

else:

print ’Reached maximum number of iterations’

The routine fplot takes care of graphical operations. In particular, fplot
generates a 2D plot of the complete function f(x) in a given interval around
the initial guess x0. This can be useful to double-check the solution obtained
using the Newton’s method. Most lines in the routine fplot are needed for
defining the format of the 2D plot and are strictly dependent on the graphical
module (Matplotlib in this case).

def fplot(x0):

"""plot f(x) in the neighborhood of the initial guess"""

build x and f vectors

points = 200

xmin = x0 - 5.0

xmax = x0 + 5.0

xvec = linspace(xmin, xmax, num = points, endpoint = True)

fvec = matrix(0, (points, 1), ’d’)

for item, x in enumerate(xvec):

fvec[item] = Function.fcall(x)

graphical commands

fig = pyplot.figure()

pyplot.hold(True)

pyplot.plot(xvec, fvec, ’k’)

pyplot.axhline(linestyle = ’:’, color = ’k’)

pyplot.axvline(linestyle = ’:’, color = ’k’)

pyplot.xlabel(’x’)

pyplot.ylabel(’$f(x)$’)

pyplot.savefig(’zeroplot.eps’, format=’eps’)

pyplot.show()

3.5 Python Scripting Language 49

Finally, any script requires some command line interface to properly interact
with the user. The following routine main accomplishes this task.

def main():

"""parse settings and launch solver"""

parser = OptionParser(version=’ ’)

parser.add option(’-x’, ’--x0’, dest=’x0’,

default=0.0, help=’Initial guess’)

parser.add option(’-p’, ’--plot’, dest=’plot’,

action=’store true’, default=False,

help=’Plot f(x) around x0.’)

parser.add option(’-n’, ’--iterations’, dest=’imax’,

help=’Maximum number of iterations.’,

default=20)

parser.add option(’-t’, ’--tolerance’, dest=’tol’,

help=’Convergence tolerance.’,

default=1e-5)

options, args = parser.parse args(sys.argv[1:])

datafile = args[0]

run(datafile,

x0 = float(options.x0),

plot = options.plot,

imax = int(options.imax),

tol = float(options.tol))

command line usage

if name == " main ": main()

The routine main uses the package optparse for providing a simple yet pow-
erful parser of command line options. optparse is a good example of module
that simplifies the effort of programming in Python.

Combining all code pieces depicted above in an unique file zero.py pro-
vides the complete Python script. Assuming that the input data are saved
in the file test.txt, calling zero.py produces Figure 3.3 and the following
output:

>>> python zero.py -p test.txt

Convergence error: -0.78947368

Convergence error: 0.16580881

Convergence error: -1.15519109

Convergence error: -0.13338833

Convergence error: -0.01723270

Convergence error: -0.00041200

Convergence error: -0.00000024

The solution is x = 1.92989

Although much more complex, a software package for power system analysis is
very similar to this example. The main difference is the multi-dimensionality

50 3 Power System Scripting

of the set of DAE. This implies that a particular care has to be devoted to
index each variable so that each device operates on the correct element of
the vector of DAE and the corresponding Jacobian matrices. The variable
indexing issue is further discussed in Chapter 9.

Fig. 3.3 Plot of the function around the initial guess point x0 = 0.0

Script 3.2 Basis of a Power System Analysis Program

The main parts of a general script for power system analysis are the same as
those described in the previous Script 3.1. Only, there are much more pieces
that compose the puzzle. Listing all the code would take much more than the
pages of this book. Thus, this example draws only a few outlines.

Following the logical order of the previous example and the synoptic
scheme given in Figure 2.5 of Chapter 2, the following basic elements are
needed:

1. External modules required by the program. This topic is discussed in Ap-
pendix E.

2. A structure whose attributes are all classes used by the program.
3. A main script that handles user inputs and options.
4. A general interface class that takes care of making routines to call device

methods.
5. A general device class from which specific device classes inherit basic meth-

ods. This is the topic of Chapter 9.

3.5 Python Scripting Language 51

6. A set of scripts that read input data.
7. A set of scripts that implement solvers. This is the topic of Part II.
8. A set of scripts that implement devices. This is the topic of Part III.
9. A set of scripts that process results (e.g., creating reports and drawing

plots). This is the topic of Chapter 22.

Neglecting the issues that are treated in details in dedicated chapters and
parts, only three topics remain to be discussed, namely the “system struc-
ture”, the “main script” and the “interface class”. The principal function of
these three elements is to provide a common environment for all other parts
of the software package. These are further described in the following items.

Structure System

The scheme of Figure 2.5 of Chapter 2 states that the number of classes and
data types required by a complex program such as power system analysis
software package is potentially huge. Each class and data type has at least one
instance. Since most instances are shared by several methods and functions,
it would be particularly lengthy to import instances one by one.

For example, if there are 100 device instances, one has to write 100 im-
port statements in each solver. Furthermore, if a new device is added to the
program, one has to revise all the program code an add the new compo-
nent in the import list occurrences. This is clearly a weak and error-prone
approach.

A more robust approach is to define a global structure which can be im-
ported using simply one line of code. This structure is thus a “store” contain-
ing all instances of classes and data types required by the program. Thus, if
a new class is added to this structure, all other parts of the program auto-
matically inherit also the new class instance.

Assume that this global structure is called system. This name will be used
hereinafter in all script examples. In Python, the easiest way to implement
such structure is to define a module (i.e., a file), called for example system.py.
A simple example of the contents of this module is given below.

Settings

from settings.settings import settings

from settings.sssa import sssa

from settings.cpf import cpf

from settings.opf import opf

Variables

from variables.dae import dae

from variables.device import device

from variables.varout import varout

Devices

from devices.bus import bus

from devices.line import line

52 3 Power System Scripting

from devices.pv import pv, slack

from devices.pq import pq

from devices.shunt import shunt

from devices.fault import fault

from devices.breaker import breaker

from devices.zone import zone

from devices.synchronous import syn2, syn3, syn4, syn5a, syn5b

from devices.synchronous import syn5c, syn5d, syn6a, syn6b

from devices.avr import avr1, avr2, avr3

from devices.turbine import tg1, tg2

from devices.pss import pss1, pss2, pss3

list of all active devices

device list = [’Bus’, ’Area’, ’Region’, ’System’, ’Line’,

’Shunt’, ’Breaker’, ’Fault’, ’PV’, ’SW’, ’Syn2’,

’Syn3’, ’Syn4’, ’Syn5a’, ’Syn5b’, ’Syn5c’, ’Syn5d’,

’Syn6a’, ’Syn6b’, ’Avr1’, ’Avr2’, ’Avr3’, ’Tg1’,

’Tg2’, ’Pss1’, ’Pss2’, ’Pss3’]

settings

Settings = settings() # power flow and time domain settings

SSSA = sssa() # eigenvalue analysis settings

CPF = cpf() # continuation power flow settings

OPF = opf() # optimal power flow settings

variables

DAE = dae()

Varname = varname()

Varout = varout()

Device = device(device list)

D E V I C E S

basic power flow devices

Bus = bus()

Line = line()

SW = slack()

PV = pv()

PQ = pq()

Shunt = shunt()

Area = zone(’Area’)

Region = zone(’Region’)

System = zone(’System’)

switches

Fault = fault()

Breaker = breaker()

synchronous machines

Syn2 = syn2() # machine models

Syn3 = syn3()

Syn4 = syn4()

Syn5a = syn5a()

Syn5b = syn5b()

3.5 Python Scripting Language 53

Syn5c = syn5c()

Syn5d = syn5d()

Syn6a = syn6a()

Syn6b = syn6b()

synchronous machines controls

Avr1 = avr1() # automatic voltage regulators

Avr2 = avr2()

Avr3 = avr3()

Tg1 = tg1() # turbine governors

Tg2 = tg2()

Pss1 = pss1() # power system stabilizers

Pss2 = pss2()

Pss3 = pss3()

The script is organized into two parts. In the first part, all modules are
imported; in the second one, an instance of all classes is assigned to a variable
with a meaningful name. Hence, any script importing the module system
has access to any of these instances. For example system.Settings allows
accessing methods and attributes of the instance of the class settings that,
surprisingly enough, contains general settings for the system including power
flow and numerical integration settings. The class device and its associated
instance Device functions as the class function described in the Script 3.1 is
further discussed at the end of this section. Other variable names should be
self-explicative. The reader is invited to familiarize with the variable names
of the code above because these will be used systematically throughout this
book.

Another important point is the definition of a list of all devices imple-
mented in the program (device list). This list is used by the class device
discussed below. Adding a new device is as simple as (i) importing the de-
vice module, (ii) adding a item to the list device list and (iii) adding an
instance of the new device. After these simple operations, the whole program
treats the new device as any other pre-existing devices.

Main Script

The functions of the main script are:

1. Initializing all elements of the package.
2. Collecting the information about input data and custom options.
3. Checking the consistency of the options.
4. Calling the adequate parser for reading the input data.
5. Calling the power flow routine and checking the solution.
6. If required, initializing dynamic devices.
7. If required, calling a solver for further analysis (e.g. numerical integration,

optimal power flow, etc.).

54 3 Power System Scripting

8. If required, calling the post-processing scripts for generating suitable out-
put report and/or plots.

9. Terminating the execution and, if required, producing a log file.

No one of the operations above is per se particularly complicated. The
main script is more a “secretary” that organizes the work of other routines.
No “real” task should be solved in the main script rather those described
above. This rule allows separating the administrative work for the technical
one, which is carried out by specific solvers, parsers, device models, post-
processing routines, etc.

The Python language is particularly well-suited for organizing the mate-
rial in such tidy way. The main tool offered by Python is the possibility of
wrapping all scripts (or modules) of the same kind within folders, that works
as meta-modules. The duty of the the main script is thus only to launch the
correct module for each task.

An example is probably easier to understand than several abstract expla-
nations. Let us consider the task of choosing the correct parser for the input
data. With this aim, suppose that the user can specify the format of the
input data as a command line option and that this information is assigned
to the variable input format. Assume also that the set of all parsers is con-
tained in the folder filters. Within this folder, there is a set of files (i.e.,
one per parser) and a special file init .py that is a kind of dedicated
“secretary” for that module. The init .py script provides general meth-
ods for handling all defined parsers. Thus, the main script only needs to call
the methods defined in the init .py script. For example, a code fragment
that implements the concept above is as follows:

import filters

parse data file using a suitable filter

if not input format or input format == ’all’:

input format = filters.guess(datafile, path)

filters.read(input format, datafile, path, addfile)

The code above takes into account the possibility that the user does not
define any format for the input data. If this is the case, an heuristic proce-
dure, namely filters.guess(), is called and tries to determine the input
data format. Then, the main script call the method filters.read() (in the
programming slang, this method is a wrapper) that tries to parse the input
data files datafile and the optional additional file addfile located at the
path path using the parser input format. This code fragment remains valid
regardless the kind of the data format and regardless the implementation of
the init .py script. Changes are needed only if the input options of the
method filters.read change.

The main difficulty when writing the main script is to find a general
syntax for the modules to be called so that the arguments of wrapper meth-
ods are sufficiently general to be able to take into account any possible fu-
ture modification of the modules. For example, in the case of the wrapper

3.5 Python Scripting Language 55

filters.read(), one should be sure that input format, datafile, path,
and addfile are enough information for any current and future parser. Since
one cannot anticipate the future, this is clearly impossible. For example, if a
specific data format requires two additional files, the argument list above is
incomplete. Fortunately, thanks to the possibilities offered by modern script-
ing languages such as Python, it is sometime possible to anticipate the future
or, in other words, to make that future changes do not affect the current struc-
ture of the program. In this case, the ability of introspection can be useful.
If addfile is a list of strings rather than a simple string, one can define any
number of additional data files. The only difference in the code is that the
wrapper filters.read() has to check the type of addfile. This is easily
done by:
if type(addfile) == list:

some action

else:

some other action

The built-in Python function type is a simple way of implementing intro-
spection.

Device Interface Class

The class function described in Script 3.1 is a quite simple solution to the
problem of interfacing the solver with function types. The class function calls
all functions defined in the list flist, no matter if calling these functions is
required or not. If the number of elements is small, there is no real efficiency
issue and the class function does not need to be optimized.

Unfortunately, for a power system software package, the number of possible
devices can be huge. In EPRI Extended Transient-Midterm Stability Program
manual [130], tens of AVRs, turbine governors and PSS devices are defined.
Furthermore, scripting-based tools for power system analysis are the ideal
platform on which building user-defined models.

The key point is that most of these models are likely never used together
in the same network. Thus, there is a potential disproportion between the
devices normally used and the ones that are actually defined in the package.
For example, say that the defined devices are 100 and that those required in
a simple benchmark system are 10. During a time domain analysis, device
methods are called thousands of times. It is clearly inefficient to call all 100
device methods since 90% of them actually does nothing.

This problem is not new. For example, PSCAD [183] faces a similar is-
sue for solving electro-magnetic transients. However, the solution is strongly
dependent on the programming language used. In PSCAD, mathematical
routines are written in FORTRAN which is a system language. The only
solution in this case is to create for each case study a specific routine and
compiling it with a FORTRAN compiler. Thus, in the case of PSCAD, the
interface actually collects the information of the system topology and devices

56 3 Power System Scripting

and writes the equations of the system in form of FORTRAN code. The re-
sults is certainly efficient since the program that is executed is specifically
suited for the case study. However, one has to write and compile a certain
amount of code before running the simulation.

Scripting languages allows implementing the approach discussed above,
but also provide other interesting solutions. One of these solutions relies on
meta-programming. The key point is that a scripting language is interpreted
and not compiled. Thus, a script can be used for generating code fragments
during its execution and then for executing that code “on the fly”. This
feature can be conveniently used for implementing the interface class.

For example, suppose that we want to solve a numerical integration for
the IEEE 14-bus system. Assuming that an implicit solver is used, one has to
call, at each iteration of each time step (see also Chapter 8 for mathematical
details on implicit numerical methods) the differential and algebraic equations
as well as Jacobian matrices of differential and algebraic equations.

The following code implements the concept of meta-programming previ-
ously discussed.

import system

class device:

self.n = 0

self.gcall = []

self.gycall = []

self.fcall = []

self.fxcall = []

def init (self, device list):

self.devices = device list

def setup(self):

self.n = 0

for item in self.devices:

if system. dict [item].n:

self.n += 1

self.devices.append(item)

properties = system. dict [item].properties

for key in properties.keys():

self. dict [key].append(properties[key])

string = ’"""\n’
for gcall, device in zip(self.gcall, self.devices):

if gcall: string += ’system.’ + device + ’.gcall(system.DAE)\n’
string += ’\n’
for gycall, device in zip(self.gycall, self.devices):

if gycall: string += ’system.’ + device + ’.gycall(system.DAE)\n’
string += ’\n’
for fcall, device in zip(self.fcall, self.devices):

3.5 Python Scripting Language 57

if fcall: string += ’system.’ + device + ’.fcall(system.DAE)\n’
string += ’\n’
for fxcall, device in zip(self.fxcall, self.devices):

if fxcall: string += ’system.’ + device + ’.fxcall(system.DAE)\n’
string += ’"""’

self.call int = compile(eval(string), ’’, ’exec’)

The first part of the method setup scans all devices defined in the structure
system. This operation is quite simple in Python thanks to the built-in dic-
tionary dict that contains the names of all attributes of the structure.
If a device is currently defined (i.e., if system. dict [item].n is a pos-
itive integer), then that device is added to the list devices. Furthermore,
it assumed that each device has an attribute called properties that is a
dictionary of the form:

self.properties = {’gcall’:True, ’fcall’:False,

’gycall’:True, ’fxcall’:False}

In other words, the dictionary properties specifies if a device has to be
called when computing algebraic equations g (gcall), differential equations
f (fcall), algebraic Jacobian matrix gy (gycall) and remaining Jacobian
matrices fx, fy and gx (fxcall).5 The class device stores the information
contained in the attribute properties of each device required in the current
case study.

The second part of the method setup is a meta-code that creates another
code and pre-compiles it using the built-in function compile. For example,
for the IEEE 14-bus system, the variable string assumes the following value:

"""

system.Line.gcall(system.DAE)

system.PQ.gcall(system.DAE)

system.Shunt.gcall(system.DAE)

system.PV.gcall(system.DAE)

system.SW.gcall(system.DAE)

system.Syn5a.gcall(system.DAE)

system.Syn6a.gcall(system.DAE)

system.Avr1.gcall(system.DAE)

system.Line.gycall(system.DAE)

system.PQ.gycall(system.DAE)

system.Shunt.gycall(system.DAE)

system.PV.gycall(system.DAE)

system.SW.gycall(system.DAE)

system.Syn5a.gycall(system.DAE)

system.Syn6a.gycall(system.DAE)

system.Avr1.gycall(system.DAE)

system.Syn5a.fcall(system.DAE)

system.Syn6a.fcall(system.DAE)

system.Avr1.fcall(system.DAE)

5 Chapter 9 provides further details on device methods and attributes.

58 3 Power System Scripting

system.Syn5a.fxcall(system.DAE)

system.Syn6a.fxcall(system.DAE)

system.Avr1.fxcall(system.DAE)

"""

All devices defined in the data file (see also Chapter 21) are called depending
if it contains algebraic an/or differential equations. For example, the Shunt
device is purely algebraic and is called only for computing g and gy. Each
device call accepts as argument the class system.DAE that is assumed to
contain the value of the complete set of differential-algebraic equations as
well as Jacobian matrices.

Part II

Power System Analysis

This page intentionally left blank

Chapter 4

Power Flow Analysis

This chapter describes the power flow1 analysis from both analytic and algo-
rithmic viewpoints. Section 4.1 introduces the power flow problem through a
simple example and clarifies the differences between power flow and circuit
analysis. Section 4.2 provides a taxonomy of the power flow problem, while
Section 4.3 presents the standard power flow equations. Section 4.4 describes
the most common algorithms used for solving this problem. These are the
Gauss-Seidel’s method, the Newton’s method and its variants, the fast de-
coupled power flow and the dc power flow. A discussion about the single and
distributed slack bus models and a comparative example are also included
in Section 4.4. Section 4.5 provides a general mathematical framework for
the power flow problem based on the continuous Newton’s method. Finally,
Section 4.6 summarizes the most relevant concepts provided in this chapter.

4.1 Background

A classical problem of circuit theory is to find all branch currents and all node
voltages of an assigned circuit. Typical input data are generator voltages as
well as the impedances of all branches. If all impedances are constant, the
resulting set of equations that describe the circuit is linear.

For example, Figure 4.1 represents a single-phase steady-state ac system.
Let us assume that the circuit shown in Figure 4.1 represents the single-phase
equivalent of a symmetrical balanced three-phase transmission system where
the branches between nodes 1, 2 and 3 are transmission lines, the impedance
z̄3 is a load and the independent current sources ī1 and ī2 are generators.
Assuming node 0 as the reference voltage, the current injections at nodes 1,

1 In several papers and books, especially old ones, the power flow analysis is called

load flow analysis. This notation should be avoided since, quoting Concordia and

Tinney [335]: “Load does not flow, but power flows.”

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 61–101.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

62 4 Power Flow Analysis

++

+

−

−−

0

1 2

3v̄1 v̄2

v̄3

ī1 ī2

ī3

jx12

jx13 jx23

z̄3

Fig. 4.1 Classical circuit problem

2 and 3 are obtained based on the well-known branch current method2 as the
solution of a simple set of linear equations:

0 =
v̄1 − v̄2
jx12

+
v̄1 − v̄3
jx13

− ī1 (4.1)

0 =
v̄2 − v̄1
jx12

+
v̄2 − v̄3
jx23

− ī2

0 =
v̄3 − v̄1
jx13

+
v̄3 − v̄2
jx23

− ī3

where ī1 and ī2 are imposed by the generators and ī3 depends on the voltage
v̄3, as follows:

ī3 = −v̄3/z̄3 (4.2)

Rewriting (4.1) and (4.2) in vectorial form, one has:⎡
⎣ ī1ī2

0

⎤
⎦ =

⎛
⎝Ȳ + I3

⎡
⎣ 0

0
1/z̄3

⎤
⎦
⎞
⎠
⎡
⎣ v̄1v̄2
v̄3

⎤
⎦ = Ȳ totv̄ (4.3)

where I3 is a 3×3 identity matrix and Ȳ is the so-called admittance matrix:

Ȳ =

⎡
⎣ 1/jx12 + 1/jx13 −1/jx12 −1/jx13

−1/jx12 1/jx12 + 1/jx23 −1/jx23
−1/jx13 −1/jx23 1/jx13 + 1/jx23

⎤
⎦ (4.4)

2 The mesh (or loop) current method is not used in this example because: (i) it

can be used only for planar circuits, (ii) it is hard to implement in a computer

code and, as a consequence of the previous issues, (iii) it has no relevant practical

applications except for being a problem source for first-year students of electrical

circuits.

4.1 Background 63

More details about the admittance matrix are given in Section 11.1 of Chapter
11. For the moment, it suffices to say that this matrix can be easily built
once the circuit topology is defined and that −1/z̄3 is taken apart from the
admittance matrix since it does not belong to the transmission system. Since
(4.3) is linear, the solution v̄ is unique and can be obtained, for example by
means of an LU factorization of Ȳ tot.3

The power flow problem is conceptually the same problem as solving a
steady-state ac circuit as the one shown in Figure 4.1. The only, though sub-
stantial, difference is the set of input data. In power flow analysis, loads are
expressed in terms of consumed active and reactive powers (PQ load) and
generators are defined in terms of constant voltage magnitude and active
power injection (PV generator). Finally, one generator is defined as a stan-
dard independent voltage source (i.e., as a constant voltage magnitude and
phase angle) and is called slack or swing generator.

Defining one generator phase angle is needed for two reasons: (i) to fix
an angle reference, and (ii) to balance system active losses. The first rea-
son is mathematical: in ac systems, at least one phase angle has always to
be assigned otherwise system equations are under-determined. For the same
reason, in the branch current method discussed above, one node has to be
chosen as the reference voltage level. The second reason can be explained
based on a simple physical remark: one cannot fix all generator and load
active powers since active power losses are not known a priori. Thus at
least one active power has to be free to vary to account for transmission
losses.4

In power flow analysis, it is also typical to represent the circuit as a one-
line diagram as illustrated in Figure 4.2. The one-line diagram is topologically
equivalent to the circuit of Figure 4.1 and implicitly assumes that generators
and loads (and all shunt elements) are connected trough a common reference
bus 0, which is called ground or earth.

For the system shown in Figure 4.2, one can write three complex equations
(e.g., the expression of the complex power injection at each bus) or, as it is
common practice to separate active and reactive power injections, six real
equations. Assuming voltage polar coordinates (e.g., v̄ = vejθ) and that the
generator at bus 1 is the slack, generator at bus 2 is a PV and the load at
bus 3 is a PQ, input data are: v1, θ1, p2, v2, p3 and q3. Thus, variables are
p1, q1, q2, θ2, v3 and θ3.

The power flow problem is formulated in order to determine unknown volt-
age magnitudes and angles. Remaining unknowns, i.e., the power injections,

3 In this simple example, (4.3) can be solved by hand. However practical systems

have much more than three nodes and a numerical solution is thus the unique

choice.
4 In the example discussed in this section (see Figure 4.2), transmission lines have

no resistance, thus the active power balance can be actually deduced before

solving the power flow analysis. However, a loss-less transmission system is a

mere approximation and is used in this example only for the sake of simplicity.

64 4 Power Flow Analysis

1 2

3

v̄1 v̄2

v̄3

jx̄12

jx̄13 jx̄23

s̄1 s̄2

s̄3

Fig. 4.2 Classical power flow problem

can be straightforwardly computed once all bus voltages are known. In con-
clusion, one has to write only the equations where active or reactive power
injections are known. For example, according to the rule above, the power
flow equations of the system depicted in Figure 4.5 are:

0 =
v2v1
x12

sin(θ2 − θ1) − p2 (4.5)

0 =
v3v1
x13

sin(θ3 − θ1) +
v3v2
x23

sin(θ3 − θ2) − p3

0 =
v2
3

x13
+

v2
3

x23
− v3v1

x13
cos(θ3 − θ1) − v3v2

x23
cos(θ3 − θ2) − q3

where the unknowns are v3, θ3 and θ2. It is important to note that the
resulting set of equations is intrinsically nonlinear since the load at bus 3 is
specified as a constant power consumption.

Equations (4.5) originate from the models of generators and loads. These
models are defined based on common practice, as follows.

1. At high voltage level, loads represents an equivalent of sub-transmission
systems or distribution networks. The equivalent load power consumptions
can be generally well approximated as voltage dependent monomials:

pL = pL0v
ap (4.6)

qL = qL0v
aq

where pL0 and qL0 are the active and reactive power consumption, respec-
tively, at the nominal voltage. Moreover, the voltage of the equivalent load
bus is typically regulated through an under load tap changer (see Chapter
14). Thus, if the voltage is maintained constant, the load can be modelled
in steady-state as a constant active and reactive power consumption.

4.1 Background 65

2. Synchronous generator turbine governors and automatic voltage controls
are able to regulate the generated active power and the voltage at the
machine bus, respectively (see Chapter 16). In steady-state, these controls
can be modelled as constant p and v at the generator bus.

3. Less intuitive is the physical meaning of the slack bus, which is actually
quite artificial. A slack bus is, in principle, a generator as any PV ones.
However, since one active power cannot be assigned, the slack generator
can only specify the voltage magnitude. Then, for similarity with all other
buses where there are two unknowns, the slack generator bus is also used as
reference voltage angle. Further insights and critics on the standard slack
generator model are provided in Subsection 4.4.9 and in Section 10.2.2 of
Chapter 10.

4. Transmission lines and transformers are generally modelled as lumped π-
circuits with constant parameters (see Chapter 11).

These assumptions yield the classical power flow model. This model is
nowadays so widely accepted that practically all commercial tools imple-
ment power flow equations using the assumptions discussed above. Main dif-
ferences about power flow methods implemented in practice concern how
variable limits (e.g., generator reactive power and load voltage limits) are
handled. Another important issue is how discrete variables are handled (e.g.,
tap ratio of under load tap changer transformers). While these topics are
detailed in Chapters 10 and 11, this chapter only focuses on power flow so-
lution algorithms. However, it is important to note that the standard power
flow model is not established by “law”. For example, there is no specific
reason for assigning the reference angle at the slack generator, or for not
using load and generator voltage dependent models. A very common error
is to confuse common (and reasonable) model assumptions with the power
flow problem itself. Furthermore, whenever possible, the solution method
should not rely on the model. Last but not least, these assumptions are not
unchangeable just because they are used in common commercial software
packages.

In the remainder of this chapter, the power flow analysis is formulated as a
general problem of finding a physical5 solution of a set of nonlinear equations.
Device models are exploited only if the algorithm used for solving the power
flow problem relies on them. However, one has to be aware that relying on a
specific device model is a drawback of the solution method, not an advantage.

Finally, before going into the mathematical matter, let me question the
power flow problem itself. Saint Agustin wrote that the doubt is the first
step on the way to the truth. Thus, to question everything, especially very
basic concepts, is always a good habit. The power flow analysis is actually an

5 In this context, physical means acceptable. Since power flow equations are not

linear, they have, generally, more than one solution. Only the solutions for which

system variables are within admissible limits are of interest. Non-physical solu-

tions of the power flow problem are further discussed in Chapter 5.

66 4 Power Flow Analysis

artificial problem. Determining the bus voltage profile based on bus power
injections (positive or negative) is the correct approach only if one knows
power injections. Actually, when scheduling the power productions based on
forecasted load demand, generator powers and voltage are not known. On
the other hand, during normal operations, bus voltages magnitudes as well
as power injections can be measured. However, the power flow problem is the
starting point for a variety of important further analysis such as, for example,
those discussed in the following chapters of this part. For this reason, the
solution of power flow problem is a crucial step in power system analysis.

4.2 Taxonomy of Power Flow Problems

The origins of the formulation of the power flow problem and the solution
based on the Newton’s method date back to the late sixties [310]. Since
then, a huge variety of studies have been presented about the solution of the
power flow problem, addressing starting initial guess [296], computational
efficiency [54, 97, 176, 275, 297, 299, 324], ill-conditioned cases and robustness
[27, 29, 94, 149, 150, 270, 304, 315, 317], multiple solutions [135, 221], and
unsolvable cases [219, 220].

It is relevant to classify the power flow problems into the following
categories:

1. Well-conditioned case. The power flow solution exists and is reachable
using a flat initial guess (e.g., all load voltage magnitudes equal to 1 and
all bus voltage angles equal to 0) and a standard Newton’s method. This
case is the most common situation.

2. Ill-conditioned case. The solution of the power flow problem does exist,
but standard solvers fail to get this solution starting from a flat initial
guess. This situation is due to the fact that the region of attraction of the
power flow solution is narrow or far from the initial guess. In this case,
the failure of standard power flow procedure is due to the instability of
the numerical method, not of the power flow equations. Robust power flow
methods have proved to be efficacious for solving ill-conditioned cases.

3. Bifurcation point. The solution of the power flow exists but it is either a
saddle-node bifurcation or a limit-induced bifurcation [39].

a. Saddle-node bifurcations are associated with the maximum loading con-
dition of a system. The solution cannot be obtained using standard or
robust power flow methods, since the power flow Jacobian matrix is
singular at the solution point.

b. Limited-induced bifurcations are associated with a physical limit of the
system, such as the shortage of generator reactive power. Although
limit-induced bifurcation can in some cases lead to the voltage collapse
of the system, the solution point is typically a well-conditioned case and
does not show convergence issues.

4.3 Classical Power Flow Equations 67

Several continuation techniques [5, 39] and optimal power flow problems
[36, 112, 148] have been proposed for determining bifurcation points (for
additional references see also Chapters 5). These methods allow defining
the distance between the present power flow solution and the bifurcation
points and thus are useful for assessing the voltage stability of the sys-
tem [39]. However, encountering a case study whose solution is exactly a
bifurcation point is quite uncommon in practice.

4. Unsolvable case. The solution of the power flow problem does not exist.
Typically, the issue is that the loading level of the network is too high. As
in the case of the bifurcation points, a continuation method or an optimal
power flow problem allow defining the maximum loading level that the
system can supply. An alternative method to analyze unsolvable cases is
given in [219, 220]. As shown in [219], robust power flow methods provide
a solution close to the feasibility boundary rather than diverge.

The continuation power flow analysis discussed in Chapter 5 provides a gen-
eral and powerful approach to both assess bifurcation points and handle un-
solvable cases. Thus, this chapter only focuses on solvable and ill-conditioned
cases.

4.3 Classical Power Flow Equations

As discussed in the previous section, there is no particular reason (but histor-
ical ones) for reducing the power flow model to power flows in transmission
lines, constant PQ loads and constant PV or slack generators. Generally
speaking, the power flow problem consists in finding the zero of a set of
nonlinear equations starting from an adequate initial guess. Thus, the most
general form of the power flow equations is a set of DAE in steady-state, as
follows:

0 = f (x,y) (4.7)
0 = g(x,y)

where differential equations f model dynamic devices such as, for example,
under load tap changers,6 and algebraic equations g define the power balance
at network buses.

However, in general, most dynamic devices are initialized after solving
the power flow problem (e.g., synchronous machines and regulators).7 Thus,
the most common formulation of the power flow equations is reduced to the
algebraic part of (4.7):

0 = g(y) (4.8)

6 A discussion about regulating transformers is given in Subsection 11.2.2 of

Chapter 11.
7 Subsection 9.1.1 of Chapter 7 discusses in detail this topic.

68 4 Power Flow Analysis

Equations (4.8) can be written in several ways. However, the classical formu-
lation of power flow equations, which is intuitively introduced in Section 4.1,
is as follows. The vector of currents injected at each node is:

ī = Ȳ v̄ (4.9)

which leads to write (4.8) as the complex power injections at buses:

s̄ = V̄ ī
∗ = V̄ Ȳ

∗
v̄∗ (4.10)

where V̄ = diag(v̄1, v̄2, . . . , v̄nb
) and nb is the number of network buses. In

tensorial form, (4.10) becomes:

s̄h = v̄hī
∗
h = v̄h

∑
k∈B

ȳ∗hkv̄
∗
k, h ∈ B (4.11)

where B = {1, 2, . . . , nb} and ȳhk is the element (h, k) of the admittance
matrix Ȳ . From (4.11), one obtains:

s̄h = ph + jqh = v̄h
∑
k∈B

(ghk − jbhk)v̄∗k, h ∈ B (4.12)

where ȳhk = ghk + jbhk.
In (4.12), ph and qh are neat power injections at the bus h. If at the same

bus there is both a PV generator and a PQ load, then the bus is considered
a PV whose power injection ph is defined as the difference of generator and
load powers connected to that bus:

ph = pG − pL (4.13)

The reactive power generated by the PV can be computed only after solving
the power flow as

qG = qh + qL (4.14)

Similar considerations can be done if a PQ load is connected at the same bus
as a slack generator.

The product of voltage phasors can be written in polar form as:

v̄hv̄
∗
k = vhe

jθhvke
−jθk = vhvke

j(θh−θk) (4.15)

Thus, using (4.15), (4.12) becomes:

ph = vh
∑
k∈B

vk(ghk cos θhk + bhk sin θhk), h ∈ B (4.16)

qh = vh
∑
k∈B

vk(ghk sin θhk − bhk cos θhk), h ∈ B

4.3 Classical Power Flow Equations 69

where θhk = θh − θk. In the classical power flow formulation, the variables
are voltage amplitudes and phases at load buses, reactive powers and voltage
phases at generator PV buses and active and reactive power at the slack bus
[310]. A synoptic summary of variables and data for each bus type is shown
in Table 4.1.

Table 4.1 Variables and parameters for each bus type in the classical power flow

problem formulation

Bus type Variables Data

Slack generator p, q v, θ

PV generator q, θ p, v

PQ load v, θ p, q

Alternatively, the product of voltage phasors in (4.12) can be written in
rectangular form as:

v̄hv̄
∗
k = (vd,h + jvq,h)(vd,k − jvq,k) (4.17)

Thus, using (4.17), (4.12) becomes:

ph =
∑
k∈B

[vd,h(ghkvd,k − bhkvq,k) + vq,h(ghkvq,k + bhkvd,k)], h ∈ B (4.18)

qh =
∑
k∈B

[vq,h(ghkvd,k − bhkvq,k) − vd,h(ghkvq,k + bhkvd,k)], h ∈ B

In (4.18), bus voltage magnitudes of PV generators do not appears explicitly.
Thus, it is necessary to add a set of equations for imposing such voltage
magnitudes:

0 = v2
d,h + v2

q,h − v2
h,PV, h ∈ BPV (4.19)

where BPV is the set of PV generator buses and vh,PV is the desired PV
generator voltage. As for the slack generator, (4.19) is not necessary since at
the slack generator imposes both the magnitude and the phase angle of the
bus voltage. For example, if θslack = 0, one has:

0 = vd,slack − vslack, 0 = vq,slack (4.20)

From the mathematical viewpoint, equations (4.16) and equations (4.18)-
(4.20) are equivalent. From the computational viewpoint, the polar form in-
volves the relatively costly sine and cosine functions while the rectangular
form needs the additional equations (4.19). Both formulations show advan-
tages and drawbacks. In some cases, as it is discussed later in the chapter,
the solution method drives the choice of the polar or of the rectangular form.

70 4 Power Flow Analysis

Both (4.16) and (4.18)-(4.20) are nonlinear and have no analytical explicit
solution. Not even the simple loss-less system (4.5) can be solved by hand.
Actually, the analytical solution of the power flow problem can be found only
for a loss-less two-bus system. Thus, one has to use a numerical iterative
technique for solving the power flow problem.

4.4 Power Flow Solvers

4.4.1 Jacobi and Gauss-Seidel’s Method

The Jacobi’s and Gauss-Seidel’s methods are iterative techniques for solving
a set of linear equations in the form:

Ay = b (4.21)

Especially the Gauss-Seidel’s method has been widely used in the last decades
for solving the power flow problem since it do not require factorizing the
matrix A. Nowadays, computational constraints are less binding and other
methods are preferred. However, both Jacobi’s and Gauss-Seidel’s methods
still have a didactic value.

Decomposing A in a diagonal component D and a remainder R,

A = D +R (4.22)

where:

D =

⎡
⎢⎢⎢⎣
a11 0 · · · 0
0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣

0 a12 · · · a1n
a21 0 · · · a2n
...

...
. . .

...
an1 an2 · · · 0

⎤
⎥⎥⎥⎦ (4.23)

Thus, (4.21) can be rewritten as:

Dy = b−Ry (4.24)

The Jacobi’s method consists in solving iteratively the left-end side of (4.24)
using the current values of the elements of the vector y in the right-end side:

y(i+1) =D−1(b−Ry(i)) (4.25)

or, in tensorial form:

y
(i+1)
h = y

(i)
h +

1
ahh

(bh −
n∑
k=1

ahky
(i)
k), h = 1, 2, . . . , n (4.26)

4.4 Power Flow Solvers 71

The Gauss-Seidel’s method is very similar to the Jacobi’s one. In this case,
A is decomposed in a lower triangular component L and a strictly upper
triangular one U ,

A = L+U (4.27)

where:

L =

⎡
⎢⎢⎢⎣
a11 0 · · · 0
a21 a22 · · · 0
...

...
. . .

...
an1 an2 · · · ann

⎤
⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎣

0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎦ (4.28)

Thus, (4.21) can be rewritten as:

Ly = b−Uy (4.29)

The Gauss-Seidel’s method consists in solving iteratively the left-end side of
(4.29) using the current values of the elements of the vector y in the right-end
side:

y(i+1) = L−1(b−Uy(i)) (4.30)

or, in tensorial form:

y
(i+1)
h =

1
ahh

(bh −
n∑

k=h+1

ahky
(i)
k −

h−1∑
k=1

ahky
(i+1)
k), h = 1, 2, . . . , n (4.31)

Both methods stop if the maximum equation mismatch:

max{|Ay(i+1) − b|} < ε (4.32)

or the maximum variable variation:

max{|y(i+1) − y(i)|} < ε (4.33)

where ε is a given tolerance, or the number of iterations is greater than a
given limit imax. The main differences between the Jacobi’s method and the
Gauss-Seidel’s one are twofold:

1. In the Gauss-Seidel’s method, each variable y(i+1)
h is updated using the

previously updated variables y(i+1)
k , for all k < h. This allows accelerating

the convergence of the algorithm. This is why the Gauss-Seidel’s method
is more used than the Jacobi’s one for solving the power flow problem.

2. The previous point yields another relevant difference. Since the Gauss-
Seidel’s method uses updated variables y(i+1)

k with k < h for computing
y
(i+1)
h , (4.30) cannot be computed using vectorial operations, but has to

be necessarily implemented element by element in a for-loop. On the other

72 4 Power Flow Analysis

hand, (4.25) can be implemented using vectors. This difference is clearly
not relevant if using programming languages such as C or FORTRAN.
However, in case of using scripting languages, such as Matlab and Python,
for-loops are always less efficient than vector algebra. The rationale for
this difference in performance is the following. In scripting languages, for-
loops implies working on arrays element by element, which is generally not
very efficient. On the other hand, vector algebra internally calls efficient
C-based routines (e.g., BLAS library), which generally leads to reduce the
computing time.

Thus, the choice of the method depends in some measure on the programming
language. For system languages, the Gauss-Seidel’s method is the best option.
For scripting languages, The Jacobi’s method can lead to save time in case
the time spent in solving extra iterations (with respect to the Gauss-Seidel’s
method) is compensated by the time saved using vectorial code.

Equation (4.21) is linear, thus is not directly applicable to power flow
equations. However, from (4.11), one can write:∑

k∈B
ȳhkv̄k = s̄∗h/v̄

∗
h, h ∈ B (4.34)

or, in vectorial form:
Ȳ v̄ = [V̄ ∗]−1s̄∗ (4.35)

where V̄ = diag(v̄1, v̄2, . . . , v̄nb
). Imposing A = Ȳ , y = v̄ and b =

[V̄ ∗]−1s̄∗, the Jacobi’s and Gauss-Seidel’s methods can be straightforwardly
implemented.

The convergence criterion generally used for the power flow problem is:

max{|s̄(i+1) − v̄(i+1)Ȳ
∗
v̄∗,(i+1)|} < ε (4.36)

which is generally referred to as power mismatch. In common practice, equa-
tion (4.36) is split into its real and imaginary components. This convergence
criterion is generally preferred to (4.32) due to its direct physical meaning.
For example, ε = 0.001 means a 0.1% power mismatch that, on a 100 MVA
base, corresponds to a 0.1 MVA.

According to the classical power flow model, there are only two kinds of
devices that update variables v̄, namely PQ loads and PV generators, as
follows.

PQ loads : The ith iteration of the Jacobi’s method is:

v̄
(i+1)
h = v̄

(i)
h +

1
ȳhh

(
s̄∗h
v̄
∗,(i)
h

−
∑
k∈B

ȳhkv̄
(i)
k

)
, h ∈ B (4.37)

4.4 Power Flow Solvers 73

The ith iteration of the Gauss-Seidel’s method is:

v̄
(i+1)
h =

1
ȳhh

(
s̄∗h
v̄
∗,(i)
h

−
∑
k>h

ȳhkv̄
(i)
k −
∑
k<h

ȳhkv̄
(i+1)
k

)
, h ∈ B, k ∈ B

(4.38)
PV generator : Equations (4.37) and (4.38) hold also for PV generators
for the Jacobi’s and Gauss-Seidel’s method, respectively. However, since
reactive power injections are not known at PV generator buses, s̄h is
estimated as follows:

s̄
(i)
h = ph + j
{v̄(i)

h

∑
k∈B

ȳ∗hkv̄
∗,(i)
k }, h ∈ B (4.39)

Equations (4.37) and (4.38) provide both the new magnitude and the
new phase of voltage v̄(i+1)

h . Since the PV generator imposes the voltage
magnitude, only the voltage angle has to be updated.

Script 4.1 Jacobi’s and Gauss-Seidel’s Methods

The following code fragments implement (4.37) and (4.38) in Python lan-
guage. It is assumed that these methods are part of a class that implements
the PQ load.

from cvxopt.base import matrix, spdiag, mul, div, log, exp

from cvxopt.blas import dotu # scalar product

import cmath

def gauss(self, dae, line, pinj, qinj):

for item in range(self.n):

a = self.a[item]

v = self.v[item]

vy = mul(dae.y[line.v], exp(dae.y[line.a]*1j))

vl = vy[a]

k1 = dotu(matrix(line.Y[a, :]), vy)

k3 = (pinj[a] + qinj[a]*1j)/vl

vl += (k3.conjugate() - k1)/line.Y[a, a]

dae.y[v] = abs(vl)

dae.y[a] = cmath.log(vl/abs(vl)).imag

def jacobi(self, dae, line, pinj, qinj):

vl = mul(dae.y[self.v] + 0j, exp(dae.y[self.a]*1j))

vy = mul(dae.y[line.v] + 0j, exp(dae.y[line.a]*1j))

k1 = div(pinj[self.a] + qinj[self.a]*1j, vl)

u = matrix(1, (self.n, 1), ’z’)

y = mul(spdiag(u), line.Y[self.a, self.a])*u

vl += div(k1.H.T - line.Y[self.a, :]*vy, y)

mod = abs(vl)

ang = log(div(vl, mod))

74 4 Power Flow Analysis

dae.y[self.v] = mod

dae.y[self.a] = ang.imag()

In the code above, self.a and self.v represent the PQ bus voltage angle and
magnitude indexes, respectively, of the algebraic variable vector dae.y. Other
variable names are self-explicative. For example, line.Y is the admittance
matrix Ȳ defined as a sparse matrix cvxopt.base.spmatrix. The statement
k1.H.T means the transpose of the Hermitian (e.g., conjugate transpose) of
k1 and thus yields the transpose of k1 (see also Appendix A). As discussed
above, the Jacobi’s iteration does not need a for-loop, while the Gauss-Seidel’s
iteration does. Thus, it has to be expected that the Jacobi’s iteration is
executed faster than the Gauss-Seidel’s one, especially for large networks
with several PQ loads (see Example 4.3).

4.4.2 Newton’s Method

The Newton’s method (also known as Newton-Raphson’s or Newton-Fourier’s
method) for solving the power flow problem is described in many books and
papers (e.g., [310]). It is nowadays the most commonly used algorithm for
solving the power flow problem (along with the fast decoupled power flow).
However, in the seventies it was considered very computationally expensive
due to the need of computing and factorizing the Jacobian matrix at each
iteration.

The i-th iteration of the classical Newton’s method for (4.8) is as follows:

Δy(i) = −[g(i)
y]−1g(i) (4.40)

y(i+1) = y(i) +Δy(i)

where g(i) = g(y(i)), g(i)
y = gy(y(i)), and gy = ∇T

y g is the Jacobian matrix
of the power flow equations. The geometrical interpretation of the Newton’s
method is well-known. For the actual value y(i), one computes the tangent
of g(i) as:

τ (y) = g(i) + g(i)
y (y − y(i)) (4.41)

Then imposing τ (y) = 0 yields the value y(i+1) defined in (4.40). Figure 4.3.a
illustrates the Newton’s method for a scalar function g(y).

The algorithm ends if the maximum equation mismatch or variable incre-
ment satisfies:

max{|g|} < ε, or max{|Δy|} < ε (4.42)

or if the number of iterations is greater than a given limit imax. In the latter
case, the algorithm has likely failed to converge.

4.4 Power Flow Solvers 75

(a)
(b)

(c) (d)

y

yy

y

∠gy

∠gy

∠gy

∠gy

∠gy

∠gy

∠gy

g(y)

g(y)g(y)

g(y)

Fig. 4.3 Geometrical interpretation of the Newton’s method for a scalar function

g(y). (a) well-conditioned case, (b) unsolvable case, (c) and (d) ill-conditioned cases

Script 4.2 Newton’s method

The following Python code implements a basic Newton’s routine.

import system

from cvxopt.base import matrix, spmatrix, sparse, div

from cvxopt.umfpack import symbolic, numeric, solve

from cvxopt.blas import dotu

F = None

def calcInc():

global F

exec system.Device.call pf

A = sparse(system.DAE.Gy)

inc = matrix(system.DAE.g)

76 4 Power Flow Analysis

if system.DAE.factorize:

F = symbolic(A)

system.DAE.factorize = False

try:

N = numeric(A, F)

solve(A, N, inc)

except:

print ’Unexpected symbolic factorization’

F = symbolic(A)

solve(A, numeric(A, F), inc)

return -inc

def powerflow():

"""main power flow routine"""

general settings

iteration = 1

iter max = system.Settings.pf max iter

convergence = True

tol = system.Settings.tol

system.Settings.error = tol + 1

err vec = []

main loop

while system.Settings.error > tol and iteration <= iter max:

inc = calcInc()

system.DAE.y += inc

system.Settings.error = max(abs(inc))

err_vec.append(system.Settings.error)

msg = ’Iteration = %3d Max. Convergence Error = %8.7f’ \
% (iteration, system.Settings.error)

print msg

iteration += 1

stop if the error increases too much

if iteration > 4 and err vec[-1] > 1000*err vec[0]:

print ’The error is increasing too much’

print ’Convergence is likely not reachable’

convergence = False

break

if iteration > iter_max:

print ’Reached maximum number of iterations’

convergence = False

4.4 Power Flow Solvers 77

The proposed code is fully independent from the system model. As dis-
cussed in Script 3.2 of Chapter 3, g(i) and g

(i)
y are calculated by means

of the statement exec system.Device.call pf, which updates the vec-
tor system.DAE.g the matrix and system.DAE.Gy using the current value
system.DAE.y. The class system.Device works as an interface between the
power flow routine and the classes that define system devices. For further
details on the class system.Device see Script 3.2 of Chapter 3.

The function symbolic symbolically factorizes the power flow Jacobian
matrix. If the number and the position of non-zero elements of the Jacobian
matrix do not change, the symbolic factorization is needed only once, which
allows saving CPU time. The symbolic re-factorization is needed, for example,
each time a PV generator reaches a reactive power production limit. The
code also handles an exception in case the Jacobian matrix has changed
unexpectedly. This exception generally occurs if the Jacobian matrix is badly
conditioned and it is thus a symptom of convergence issues. Finally, the
list err vec allows stopping the algorithm in case the variable increment
anomalously increases.

4.4.3 Power Flow Jacobian Matrix

For the classical power flow problem (4.16) written in polar form, it is common
practice to order variables y so that bus voltage angles are grouped together
and come before bus voltage magnitudes:

y = [θT ,vT]T (4.43)

In the same vein, equations g are organized grouping together active power
mismatches first and then reactive power ones:

g = [gTp , g
T
q]T (4.44)

With these assumptions, the Jacobian matrix gy can be written as:

gy =
[
gp,θ gp,v
gq,θ gq,v

]
(4.45)

where gp,θ = ∇T
θ gp, gp,v = ∇T

v gp, gq,θ = ∇T
θ gq, and gq,v = ∇T

v gq.
The expressions for the elements of the Jacobian matrix ∂gp/∂y of (4.16)

are:

78 4 Power Flow Analysis

∂gp,h
∂θh

= −vhvk
nb∑
k �=h

(ghk sin θhk − bhk cos θhk) (4.46)

∂gp,h
∂θk

= vhvk(ghk sin θhk − bhk cos θhk)

∂gp,h
∂vh

= 2vhghh + vk

nb∑
k �=h

(ghk cos θhk + bhk sin θhk)

∂gp,h
∂vk

= vh(ghk cos θhk + bhk sin θhk)

and the elements of the Jacobian matrix ∂gq/∂y of (4.16) are:

∂gq,h
∂θh

= −vhvk
nb∑
k �=h

(ghk cos θhk + bhk sin θhk) (4.47)

∂gq,h
∂θk

= vhvk(ghk cos θhk + bhk sin θhk)

∂gq,h
∂vh

= −2vhbhh − vk

nb∑
k �=h

(ghk sin θhk − bhk cos θhk)

∂gq,h
∂vk

= −vh(ghk sin θhk − bhk cos θhk)

An advantage of the vectorial notation is that (4.46) and (4.47) can be written
very compactly as exemplified in the following script.

Script 4.3 Power Flow Jacobian Matrix

The following Python code implements (4.46) and (4.47) without using
for-loops:

def build_gy(self, dae):

Vn = exp(dae.y[self.a]*1j)

Vc = mul(dae.y[self.v] + 0j, Vn)

Ic = self.Y*Vc

nb = len(self.a)

diagVn = spmatrix(Vn, self.a, self.a, (nb, nb), ’z’)

diagVc = spmatrix(Vc, self.a, self.a, (nb, nb), ’z’)

diagIc = spmatrix(Ic, self.a, self.a, (nb, nb), ’z’)

dS = self.Y*diagVn

dS = diagVc*dS.H.T

dS += diagIc.H.T*diagVn

dR = diagIc

dR -= self.Y*diagVc

4.4 Power Flow Solvers 79

Table 4.2 Base case power flow results for the IEEE 14-bus system

Bus v θ pG qG pL qL

h [pu] [rad] [pu] [pu] [pu] [pu]

1 1.06 0 2.324 −0.1655 0 0

2 1.045 −0.0870 0.4 0.4356 0.217 0.127
3 1.01 −0.2221 0 0.2507 0.942 0.19
4 1.018 −0.18 0 0 0.478 −0.039
5 1.02 −0.1531 0 0 0.076 0.016
6 1.07 −0.2482 0 0.1273 0.112 0.075
7 1.062 −0.2332 0 0 0 0

8 1.09 −0.2332 0 0.1762 0 0

9 1.056 −0.2607 0 0 0.295 −0.0459
10 1.051 −0.2635 0 0 0.09 0.058
11 1.057 −0.2581 0 0 0.035 0.018
12 1.055 −0.2631 0 0 0.061 0.016
13 1.05 −0.2645 0 0 0.135 0.058
14 1.036 −0.2798 0 0 0.149 0.05

Totals 2.7239 0.8244 2.59 0.5232

dR = diagVc.H.T*dR

return sparse([[dR.imag(), dR.real()], [dS.real(), dS.imag()]])

where self.a and self.v are the indexes of all bus voltage phase angles and
magnitudes, respectively, nb is the number of network ac buses and self.Y
contains the admittance matrix Ȳ . As explained above, the notation mat.H.T
indicates the transpose of mat. The code above is written as a method of the
class that describe transmission lines (see Chapter 11).

Example 4.1 Power Flow Analysis of the IEEE 14-Bus system

The results of the power flow analysis can be conveniently presented in tab-
ular form. For example the base case power flow solution of the IEEE 14-bus
system are shown in Table 4.2. Once all bus voltages are known, any other
variable of the system can be straightforwardly computed. For example, ac-
tive and reactive flows as well as losses in transmission lines and transformers
are typically included in the power flow report, as shown in Table 4.3.

Example 4.2 Region of Attraction of the Power Flow Solution

Whatever method is used for solving the power flow problem, a good initial
guess y(0) is needed to start the iterative process. Typically a flat start is
an acceptable initial guess, i.e., load voltage magnitudes are set to 1 pu and
all voltage phase angles are set equal to the reference (e.g., 0 rad) [296].

80 4 Power Flow Analysis

T
a
b
le

4
.3

B
a
se

c
a
se

b
ra

n
ch

p
o
w

e
r

fl
o
w

s
fo

r
th

e
IE

E
E

1
4
-b

u
s

sy
st

e
m

B
ra

n
ch

F
ro

m
T
o

p
h

k
p

k
h

q h
k

q k
h

p
lo

ss
q l

o
ss

b
u
s
h

b
u
s
k

[p
u
]

[p
u
]

[p
u
]

[p
u
]

[p
u
]

[p
u
]

1
1

2
1
.5

6
9

−1
.5

2
6

−0
.2

0
4

0
.2

7
6
8

0
.0

4
3
0

0
.0

7
2
7
2

2
1

5
0
.7

5
5
1

−0
.7

2
7
5

0
.0

3
8
6

0
.0

2
2
2
9

0
.0

2
7
6

0
.0

6
0
8
4

3
2

3
0
.7

3
2
4

−0
.7

0
9
1

0
.0

3
5
6

0
.0

1
6
0
2

0
.0

2
3
2
3

0
.0

5
1
6
2

4
2

4
0
.5

6
1
3

−0
.5

4
4
5

−0
.0

1
5
5

0
.0

3
0
2

0
.0

1
6
8

0
.0

1
4
7

5
2

5
0
.4

1
5
2

−0
.4

0
6
1

0
.0

1
1
7

−0
.0

2
1
0

0
.0

0
9
0

−0
.0

0
9
3

6
3

4
−0
.2

3
2
9

0
.2

3
6
6

0
.0

4
4
7

−0
.0

4
8
4

0
.0

0
3
7

−0
.0

0
3
6
3

7
4

5
−0
.6

1
1
6

0
.6

1
6
7

0
.1

5
8
2

−0
.1

4
2

0
.0

0
5
1

0
.0

1
6
2

8
4

7
0
.2

8
0
7

−0
.2

8
0
7

−0
.0

9
6
8

0
.1

1
3
8

0
0
.0

1
7
0

9
4

9
0
.1

6
0
8

−0
.1

6
0
8

−0
.0

0
4
3

0
.0

1
7
3

0
0
.0

1
3
1

1
0

5
6

0
.4

4
0
9

−0
.4

4
0
9

0
.1

2
4
7

−0
.0

8
0
5

0
0
.0

4
4
2

1
1

6
1
1

0
.0

7
3
5

−0
.0

7
3
0

0
.0

3
5
6

−0
.0

3
4
5

0
.0

0
0
6

0
.0

0
1
2

1
2

6
1
2

0
.0

7
7
9

−0
.0

7
7
1

0
.0

2
5
0

−0
.0

2
3
5

0
.0

0
0
7

0
.0

0
1
5

1
3

6
1
3

0
.1

7
7
5

−0
.1

7
5
4

0
.0

7
2
2

−0
.0

6
8
0

0
.0

0
2
1

0
.0

0
4
2

1
4

7
8

0
−0

−0
.1

7
1
6

0
.1

7
6
2

0
0
.0

0
4
6

1
5

7
9

0
.2

8
0
7

−0
.2

8
0
7

0
.0

5
7
8

−0
.0

4
9
8

0
0
.0

0
8
0

1
6

9
1
0

0
.0

5
2
3

−0
.0

5
2
2

0
.0

4
2
2

−0
.0

4
1
9

0
.0

0
0
1
3

0
.0

0
0
3

1
7

9
1
4

0
.0

9
4
3

−0
.0

9
3
1

0
.0

3
6
1

−0
.0

3
3
6

0
.0

0
1
1
6

0
.0

0
2
5

1
8

1
0

1
1

−0
.0

3
7
8
5

0
.0

3
8
0

−0
.0

1
6
2

0
.0

1
6
5

0
.0

0
0
1
3

0
.0

0
0
3

1
9

1
2

1
3

0
.0

1
6
1

−0
.0

1
6
1

0
.0

0
7
5

−0
.0

0
7
5

0
0

2
0

1
3

1
4

0
.0

5
6
4

−0
.0

5
5
9

0
.0

1
7
5

−0
.0

1
6
4

0
.0

0
0
5

0
.0

0
1
1

T
o
ta

ls
0
.1

3
3
9

0
.3

0
1
2

4.4 Power Flow Solvers 81

1 2

z̄ = 0.01 + j0.1 pu

v̄1 = 1.0 + j0 pu s̄2 = 0.9 + j0.6 pu

Fig. 4.4 2-bus system

Although the flat start works in the majority of the cases, convergence is
never guaranteed.

In theory, the only way to know if a given initial guess is adequate for
obtaining a solution y0 of (4.8) is to determine the region of attraction of y0.
At this regard, the initial guess can be of three types:

1. The initial guess is inside the region of attraction of the solution y0 and
the numerical method converges.

2. The initial guess is outside the region of attraction of the solution y0.
Numerical methods typically diverge if one starts with such initial guess.

3. Although the initial guess is within the region of attraction, the numerical
method diverges.

This example focuses on initial guesses of the first and second type, whereas
the latter case implies some interesting mathematical issues that are discussed
in Section 4.5.

Unfortunately, an analytical definition of the region of attraction is not
possible. Thus, only numerical methods can be used. A simple way to de-
termine the region of attraction of a given solution y0 is to generate a huge
number of initial guesses and solve (4.8) for each initial guess. As example,
consider the 2-bus system depicted in Figure 4.4. All power flow data are
indicated in this figure. To define the region of attraction of the solution
v̄2,0 = 0.9209 − j0.0913 pu, one can create a grid of initial guesses and solve
for each pair (θ(0)2 , v

(0)
2) the power flow problem using the Newton’s method.

The resulting map is depicted in Figure 4.5. Contour labels indicate the
number of iterations needed to get the solution while black regions means that
the method does not converge. The region of attraction is quite wide and the
standard flat start v̄(0)

2 = 1.0+ j0 pu falls within the region that requires less
iteration to converge. It is important to note that the region of attraction
depends on the solution method. Different algorithms are characterized by
different region of attractions.

The method discussed above is extremely costly8 and cannot be used for
real size systems. For example, the map of Figure 4.5 was obtained using a
grid of 1000 × 1000 initial guesses, e.g., solving the power flow problem one

8 The computational burden is similar to that of computing Julia’s or Mandelbrot’s

sets.

82 4 Power Flow Analysis

Fig. 4.5 Region of attraction of the Newton’s method for a 2-bus system. Con-

tour labels indicate the number of iteration needed to obtain the solution within a

tolerance of 10−5

million times. The interested reader can find further discussion on the region
of attraction of power flow solutions in [219].

4.4.4 Robust Newton’s Method

For well-conditioned cases, the standard Newton’s method generally con-
verges in 4-5 iterations. Most books on numerical techniques warn about the
possibility that the Newton’s technique can cycle around the solution without
actually never getting to the solution. Figures 4.3.c and 4.3.d illustrate two
ill-conditioned cases by means of a scalar function g(y).

A power flow example that shows a behavior similar to ones depicted in
Figures 4.3.c and 4.3.d is quite rare indeed. However, there are idiosyncratic
cases for which the Newton’s technique fails to converge. A variety of robust
variations of the basic Newton’s method have been proposed in the literature
for solving ill-conditioned cases [27, 29, 149, 150, 270, 304, 317]. The majority
of these techniques mainly consist in modifying the first equation of (4.40)
as follows:

Δy(i) = −α[g(i)
y]−1g(i) (4.48)

4.4 Power Flow Solvers 83

(a) (b)

y y∠gy

∠gy ∠gy

∠αgy

g(y) g(y)

Fig. 4.6 Geometrical interpretation of the robust Newton’s method for a scalar

function g(y). (a) standard method and (b) robust method

where α is a factor that improves the convergence properties of the iterative
process. If α is the result of an optimization process, α is called optimal mul-
tiplier. The geometrical interpretation of robust Newton’s methods is shown
in Figure 4.6.

It is important not to confuse ill-conditioned cases with those that are
unsolvable since the solution does not exist (see Figure 4.3.b). Robust solvers
are useful in case of ill-conditioned systems but do not generally work well for
unsolvable cases. Unsolvable cases are better tackled using the continuation
power flow technique described in Chapter 5.

At a given iteration i, the optimal value of α is the one that minimizes
the maximum power mismatch max{|g(y(i+1))|}. Since the maximum power
mismatch at the iteration i + 1 is not known a priori, one has to iterate
over α. However, it is not necessary to find the optimum. A simple, yet quite
robust method is the bisection method, as follows.

1. Set α ⇐ 1.
2. Compute max{|g(y(i+1))|}.
3. If max{|g(y(i+1))|} ≤ max{|g(y(i))|}, continue with the next iteration,

otherwise set α ⇐ 0.5 · α and go back to step 2.

For unsolvable cases, α → 0, thus one has to fix a minimum value for α.

Script 4.4 Robust Newton’s method

The following Python code illustrates this simple robust method:

inc = alpha*calcInc()

error = max(abs(inc))

if error > error_old:

alpha *= 0.5

84 4 Power Flow Analysis

if alpha < tol:

fm_disp(’The optimal multiplier is too small.’)

iteration = iter_max + 1

break

else:

system.DAE.y += inc

error_old = error

alpha = 1.0

In the previous code, it is assumed that calcInc() returns Δy(i). Clearly,
the previous code has to be inserted within the main power flow loop.

4.4.5 Iwamoto’s Method

More sophisticate methods attempt to estimate max{|g(y(i+1))|}. For the
sake of example, this subsection describes the Iwamoto’s method, that is
one of the firstly proposed robust power flow methods [149]. With this aim,
consider the Taylor’s expansion of (4.8) at the ith iteration:

g(y) = g(i) + g(i)
y Δy(i) + g(Δy(i)) (4.49)

In (4.49) the correction vector Δy(i) is not known. In order to optimize the
length of Δy(i), a factor α is included in (4.49), as follows:

g(y) = g(i) + g(i)
y αΔy(i) + g(αΔy(i)) (4.50)

Assuming the rectangular form (4.18) of power flow equations:

g(αΔy(i)) = α2g(Δy(i)) (4.51)

Thus (4.49) is a quadratic equation with respect to α:

d(α) = c0 + c1α+ c2α2 (4.52)

where:
c0 = g(i), c1 = g(i)

y Δy(i), c2 = g(Δy(i)) (4.53)

It is relevant to note that, from (4.40), one has c1 = −c0. The optimal value
of α is determined minimizing the following cost function:

κ(α) =
1
2
d(α)Td(α) (4.54)

In this case, the KKT conditions simply give:

∂κ

∂α
= 0 ⇒ g0 + g1α+ g2α

2 + g3α
3 = 0 (4.55)

4.4 Power Flow Solvers 85

where:

g0 = cT0 c1, g1 = cT1 c1 + 2cT0 c2, g2 = 3cT1 c2, g3 = 2cT2 c2 (4.56)

Since (4.55) is a cubic scalar polynomial, the Cardan’s formula provides the
analytical solution:

α = a1 + 3
√
a2 + a3 + 3

√
a2 − a3 (4.57)

where:

a1 = − g2
3g3

a2 = a3
1 +

g2g1 − 3g3g0
6g2

3
(4.58)

a3 =
√
a2
2 + (a4 − a2

1)3 a4 =
g1
3g3

An issue of the Iwamoto’s method is that the optimal multiplier α decreases
as y converges to the solution, thus the Iwamoto’s method typically converges
slowly.

4.4.6 Inexact and Dishonest Newton’s Methods

One of the most relevant drawbacks of the Newton’s method is the need of
factorizing the full Jacobian matrix at each iteration. From the computational
point of view, the factorization of a matrix is an order N3 operation, i.e., the
computational weight increases with the cube of the size N of the matrix.
The computational effort can be reduced to N1.5 if using sparse matrices
techniques, which allows saving a considerable time for large systems (e.g.,
thousands of buses). However, the Jacobian matrix factorization remains the
most critical issue of the Newton’s method (about 85% of the total CPU time
for networks with thousands of buses). Thus, in the literature, there are a
variety of proposals for reducing as much as possible the computational effort
of the Jacobian matrix factorization.

A family of methods based on the Generalized Minimal Residual (GM-
RES) method are [54, 97, 275]. The GMRES is a particular case of Krylov’s
subspace approaches and attempts to minimize (4.21) by minimizing the
residual:

r(y) = b−Ay (4.59)

For the power flow problem, b = g(i) and A = g
(i)
y . Since A and b are

not constant, the residual r in (4.59) has to be minimized at each iteration.
GMRES-based methods differ from the Gauss-Seidel’s method in that the
latter does not compute the Jacobian matrix. Without entering into math-
ematical details, GMRES-based methods can be used for setting up the so-
called inexact Newton’s methods. The term inexact comes from the fact
that the power flow Jacobian matrix factorization is not computed exactly

86 4 Power Flow Analysis

(a) (b)

y

y

∠g̃y

∠g̃y

g(y) g(y)

Fig. 4.7 Geometrical interpretation of the dishonest Newton’s method for a scalar

function g(y). (a) well-conditioned case and (b) infinite-cycle case

(for example using the LU factorization) but approximated with the GM-
RES using an acceptable accuracy. The higher the accuracy, the smaller the
number of iterations but also the higher the CPU time for approximating
the Jacobian matrix factorization. Thus, GMRES-inexact Newton’s methods
require a fine tuning that is generally obtained by preconditioning the matrix
A in (4.59).

Pushing inexact methods to the limit, one can approximate the Jacobian
matrix factorization using always the same factorization for each iteration of
the Newton’s method. In other words, one can rewrite (4.40) as follows:

Δy(i) = −[g̃y]−1g(i) (4.60)

y(i+1) = y(i) +Δy(i)

where g̃−1
y is the inverse of gy computed for a given vector ỹ and main-

tained constant during all iterations. In this way, the number of iterations
is generally quite high (tens versus 4-5 of the standard Newton’s method).
However, since g̃y is factorized only once, CPU times generally decreases for
large systems. The method (4.60) is called dishonest Newton’s method. The
standard Newton’s method can be used in conjunction with the dishonest
one. For example gy can be factorized at the first two or three iterations and
then left constant for the remainders. It is also important to note that the
dishonest method does not guarantee convergence (see Figure 4.7).

4.4.7 Fast Decoupled Power Flow

A widely used variant of dishonest methods is the so-called Fast Decoupled
Power Flow (FDPF). This technique was originally proposed in [299] and has
been further developed and generalized in several variations. Most common
variants are the XB and BX methods presented in [324].

4.4 Power Flow Solvers 87

gp,θgp,θgp,θgp,θgp,θgp,θgp,θ

gp,vgp,vgp,vgp,vgp,vgp,vgp,v

gq,θgq,θgq,θgq,θgq,θgq,θgq,θ

gq,vgq,vgq,vgq,vgq,vgq,vgq,v

Fig. 4.8 Pictorial representation of the power flow Jacobian matrix for the IEEE

14-bus system. The darker the area the higher the absolute value of the elements

of the Jacobian matrix

The FDPF method can be used only if algebraic variables are voltage mag-
nitudes and phases, i.e., the FDPF can be used only with the classical power
flow model in polar form (4.16). Recalling (4.45), the power flow Jacobian
matrix gy can be decomposed in four sub-matrices, namely gp,θ, gp,v, gq,θ,
and gq,v . The FDPF approach consists in approximating these sub-matrices
as constant through some smart assumptions. Thus the main difference with
the dishonest method lies in the fact that gy is not approximated using a
given value y, but computed a priori.

The main observation that has led to the FDPF method is that there is a
clear decoupling between the (p, θ) and (q, v) variables. A direct consequence
is that the sensitivity of active power mismatches with respect to voltage
magnitudes (i.e., gp,v) and of reactive power mismatches with respect to
voltage phases are relatively small (i.e., gq,θ). This is pictorially illustrated
in Figure 4.8. In this figure, the darker the region the higher the absolute
value of matrix elements. Since the darker region is diagonal, one can expect
that θ and v are quite decoupled.

The basic assumptions of the FDPF method are:

gp,θ ≈ B′ gp,v = 0 (4.61)

gq,θ = 0 gq,v ≈ B′′

88 4 Power Flow Analysis

where B′ and B′′ are simplified admittance matrices, as follows:

1. Line charging, shunts and transformer tap ratios are neglected when com-
puting B′;

2. Phase shifters are neglected and line charging and shunts are doubled when
computing B′′.

The XB and BX variants differ only in further simplifications of the B′ and
B′′ matrices respectively, as follows:

XB: line resistances and shunt conductances are neglected when computing
B′;

BX: line resistances and shunt conductances are neglected when computing
B′′.

For loss-less systems the XB and BX variants coincide. All assumptions are
valid for HV transmission systems, where line and transformer resistances are
generally one order of magnitude smaller than reactances. For distribution
systems (e.g., medium or low voltage systems), where series resistances are
similar or higher than reactances, the FDPF does not generally work well.9

The FDPF algorithm consists in solving two linear systems at each itera-
tion, as follows:

θ(i+1) = θ(i) − [B′]−1[V (i)]−1gp(v
(i),θ(i)) (4.62)

v(i+1) = v(i) − [B′′]−1[V (i)]−1gq(v
(i),θ(i+1))

where V (i) = diag(v(i)
1 , v

(i)
2 , . . . , v

(i)
nb). To reduce the iteration number, the

angles θ(i+1) are used for computing the reactive power mismatches gq. Since
B′ andB′′ are constant, these matrices can be factorized only once. However,
B′′ does not change only in case reactive power limits of PV generators are
not binding. Otherwise, B′′ has to be re-built and re-factorized each time a
PV generator switches to a constant PQ load.

As in case of dishonest Newton’s methods, the FDPF does not ensure
to get a solution, but the FDPF method generally shows better convergence
properties than the dishonest one. It has also been observed that the FDPF is
able to converge for some ill-conditioned case for which the standard Newton
method fails [299].

9 This is one of the reasons why some commercial tools distinguish between the

power flow analysis for transmission and distribution systems. However, network

parameters do not make any difference if one uses a general Newton method.

Rather, the main relevant difference between transmission and distribution sys-

tems is the network topology. Transmission system are generally meshed, while

distribution systems show a radial configuration. For the interested reader a selec-

tion of methods that takes advantage of the radial topology has been developed

for distribution systems can be found in [71, 121, 191, 279, 357].

4.4 Power Flow Solvers 89

Script 4.5 Fast-Decoupled Power Flow

The Python implementation of a the FDPF algorithm is as follows:

from cvxopt.base import matrix, div

from cvxopt.umfpack import symbolic, numeric, solve

def fdpf():

general settings

iteration = 1

iter max = system.Settings.pf max iter

convergence = True

tol = system.Settings.tol

system.Settings.error = tol + 1

err vec = []

main loop

while system.Settings.error > tol and iteration <= iter max:

if iteration == 1: # initialize variables

sw = system.SW. geta()

sw.sort(reverse = True)

no sw = system.Bus.a[:]

no swv = system.Bus.v[:]

for item in sw:

no sw.pop(item)

no swv.pop(item)

pv = system.SW. geta(True) + system.PV. geta(True)

ngen = sum(system.SW.n) + sum(system.PV.n)

pv.sort(reverse = True)

no g = system.Bus.a[:]

no gv = system.Bus.v[:]

for item in pv:

no g.pop(item)

no gv.pop(item)

Bp = system.Line.Bp[no sw, no sw]

Bpp = system.Line.Bpp[no g, no g]

Fp = numeric(Bp, symbolic(Bp))

Fpp = numeric(Bpp, symbolic(Bpp))

exec system.Device.call fdpf

P-theta

da = -matrix(div(system.DAE.g[no sw], system.DAE.y[no swv]))

solve(Bp, Fp, da)

system.DAE.y[no sw] += da

exec system.Device.call fdpf

normP = max(abs(system.DAE.g[no sw]))

Q-V

dV = -matrix(div(system.DAE.g[no gv], system.DAE.y[no gv]))

solve(Bpp, Fpp, dV)

system.DAE.y[no gv] += dV

exec system.Device.call fdpf

90 4 Power Flow Analysis

normQ = max(abs(system.DAE.g[no gv]))

inc = matrix([normP, normQ])

system.DAE.y += inc

system.Settings.error = max(abs(inc))

err_vec.append(system.Settings.error)

msg = ’Iteration = %3d Max. Convergence Error = %8.7f’ \
% (iteration, system.Settings.error)

print msg

iteration += 1

stop if the error increases too much

if iteration > 4 and err vec[-1] > 1000*err vec[0]:

print ’The error is increasing too much’

print ’Convergence is likely not reachable’

convergence = False

break

if iteration > iter_max:

print ’Reached maximum number of iterations’

convergence = False

where the variables SW and PV indicate the slack and PV generator classes,
respectively, the method geta() returns the indexes of bus voltage phase an-
gles, and the expression exec system.Device.call fdpf implements equa-
tions g. Function symbolic and numeric are executed only once at the first
iteration for factorizing B′ and B′′.

Example 4.3 Comparison of Methods for Power Flow Analysis

In this example, several methods for power flow analysis are compared,
namely the standard Newton’s method, the Jacobi and the Gauss-Seidel’s
methods, a simple GMRES-based approach, the dishonest Newton’s method,
the XB and the BX version of the FDPF. The test systems are the IEEE 14-
bus system, the IEEE 118-bus system, a real-world 1228-bus system and the
11856-bus system which is available at [359].10 These systems are chosen so
that the bus number spans four orders of magnitude and there is one order
of magnitude between one system and the following one.

10 The 11856-bus system is formed putting together the IEEE 57-bus system 208

times. The resulting test system is thus composed of 208 independent networks

and the complete power flow Jacobian matrix is formed by 208 diagonal blocks.

However, if one does not take advantage of the structure of the Jacobian matrix,

the factorization time depends only on the sparsity of the complete matrix, which

is similar to the one of a fully interconnected network.

4.4 Power Flow Solvers 91

In order to use similar conditions for all methods, a flat start is used
and generator reactive power limits are not enforced. Results are shown in
Table 4.4. Relevant remarks are as follows:

1. Methods that involve the computation of the Jacobian matrix, no matter
if approximated or kept constant, are generally faster than the Gauss-
Seidel’s and Jacobi’s methods. Thus, the concern that is reported in some
relatively old papers about the amount of memory used by Jacobian matrix
is not actually an issue, at least for modern personal computers.

2. Overall, the Newton’s method is the best method among the ones consid-
ered in this example. The rationale behind this fact is twofold:

a. Sparse matrix factorization algorithms are very efficient. Furthermore,
the symbolic factorization provided by the CVXOPT module allows
saving additional CPU time.

b. One of the most critical bottlenecks of scripting languages is matrix
memory allocation, slicing and manipulation in general. This is because
any operation done on floating-point multi-dimensional arrays are not
done by the scripting language itself but sent to some C-library through
a hidden-layer interface (bridge). This bridge is where the interpreter
wastes time.

In conclusion, in scripting languages the less the array manipulations the
better. For these reasons, FDPF approaches are not faster than the New-
ton’s method.

3. As previously discussed, the Jacobi’s method is faster than the Gauss-
Seidel’s one even if it requires more iterations. This happens because,
in scripting languages, array operations are faster than scalar operations
within a for-loop. However, the Jacobi’s method cannot be competitive
with the Newton’s method for the reasons discussed in the previous point.

4. The GMRES method used in the simulations below is the version imple-
mented in the module scipy.sparse.linalg [334]. No preconditioning is
used. This is the slowest method among those considered in this example.
Moreover, the simulation hangs up for the two biggest systems, probably
due to array interface issues in the scipy module. In any case, also the
Matlab implementation of the GMRES algorithm is generally slower than
the LU factorization of sparse matrices.

5. With regard to the dishonest method, the Jacobian matrix is kept constant
starting from the second iteration. As expected the number of iterations
is higher than for the Newton’s method and also of the FDPF. However,
CPU time is generally competitive.

6. The two versions of the FDPF show similar results for the considered
systems. The BX version is slightly better (one iteration less for the 118
and 11856-bus systems) than the XB one, thus confirming the experimental
results discussed in [324].

92 4 Power Flow Analysis

Table 4.4 Comparison of a variety of methods for power flow analysis

Newton Jacobi Gauss-Seidel

Bus # Iter. # time [s] Iter. # time [s] Iter. # time [s]

14 4 0.0050 76 0.0217 56 0.0288

118 5 0.0287 580 0.505 388 2.738

1228 5 0.210 454 5.120 224 112.4

11856 4 3.15 340 399.0 173 9112

GMRES Dishonest FDPF-BX

Bus # Iter. # time [s] Iter. # time [s] Iter. # time [s]

14 4 0.4339 7 0.0040 6 0.0053

118 7 53.53 15 0.0183 6 0.0117

1228 n.a. n.a. 26 0.207 12 0.160

11856 n.a. n.a. 10 3.820 5 5.174

4.4.8 DC Power Flow

All methods discussed so far provide, with more or less efficiency, the exact
solution of the problem (4.8). Besides the computational burden, the nonlin-
earity of (4.8) implies three relevant drawbacks:

1. Possible difficulties in finding the solution (e.g., ill-conditioned cases).
2. In case of no convergence, impossibility to determine if the solution does

not exist or cannot be reached.
3. Existence of multiple solutions.

These issues, while quite stimulating for researchers, seriously concern prac-
titioners. A common solution consists in simplifying g(y) in order to obtain
a set of linear equations. The result is the so-called dc power flow.

The basic assumption of the dc power flow model is to focus only on the
(p, θ) world and completely neglect the (q, v) one. The hypotheses are:

1. All voltage magnitudes are assumed constant and equal to 1.0 pu and
reactive powers are neglected.

2. Line resistance and charging are neglected when computing the simplified
admittance matrixB. The matrixB coincides with the susceptance matrix
B′ of the XB variant of the FDPF if all transformer tap ratios and phase
shifter angles are 1 pu and 0 rad, respectively.

3. Bus voltage phases are considered small, so that sin θhk ≈ θhk and
cos θhk ≈ 1.0.

The resulting system equations are:

p = Bθ + pφ (4.63)

where p are the power injections at buses and θ are unknowns and pφ are
the power shifts introduced by phase shifting transformers. Equation (4.63)

4.4 Power Flow Solvers 93

accounts for each bus of the network but the reference one. In other words,
if the network contains nb buses, then B is a square matrix of order nb − 1.
Introducing the incidence matrix C, (4.63) can be rewritten as:

p =X−1Cθ +CTX−1φ (4.64)

where X = diag(m1x1,m2x2, . . . ,mncxnc) are the series reactances multi-
plied by the off-nominal tap ratio of each network branch,11 nc is the number
of branches that compose the transmission network, φ is the nc × 1 vec-
tor nc of phase shifts of each network branch. The incidence matrix C is a
nc × (nb − 1) matrix that accounts for network topology. Further insights of
the incidence matrix C are given in Subsection 11.3.1 of Chapter 11.

Equation (4.63) has a formal similarity with a purely resistive linear dc
system:

idc = Gdcvdc (4.65)

where idc are currents injected at nodes, vdc are the node voltages and Gdc
is the conductance nodal matrix. Hence the name “dc power flow”. However,
this notation is misleading, since it implies that a dc system is necessarily
linear. More precise definitions are linear power flow or approximated active
power flow.

The dc power flow is an easy way out to avoid the issues inherent the
nonlinear nature of power flow equations. The voltage phase angle error in-
troduced by the dc power flow can vary between 1% and 20%. Errors typically
increase as the loading level increases (see Figure 4.9 in Example 4.4). Fur-
thermore, neglecting voltage magnitude variations and reactive power flows
is an arguable assumption since voltage magnitudes and reactive powers play
an important role in the behavior of ac power systems (e.g., voltage stability
issues [39]). Chapters 5 and 6 show that it is possible to tackle and often
to successfully solve nonlinearity issues at the price of involving adequate
mathematical tools.

Example 4.4 Accuracy of the DC Power Flow

The most important drawback of the dc power flow approach is the inaccuracy
of the results. The error on voltage magnitudes is generally within 10% and
the error of bus voltage phase angles can be up to 20%. This may lead to
a wrong estimation of power flows in transmission lines and transformers.
Figure 4.9 shows the mean and maximum angle errors introduced by the
dc power flow with respect to the exact solution provided by the Newton’s
method for the IEEE 14-bus system. Angle errors are plotted versus the

11 Strictly speaking, the correct ith element of matrix X is mi
r2

i +x2
i

x2
i

, where ri is

the series resistance of the ith branch element. However, for ri < xi/3 the error

introduced by approximating the correct value with mixi is lower than 1%.

94 4 Power Flow Analysis

Mean error

Max. error

Load level [pu]

P
h
as

e
an

gl
e

er
ro

r
[%

]

Fig. 4.9 Mean voltage phase angle error of the dc power flow as a function of the

loading level for the IEEE 14-bus system

loading level (1 means base case). While the mean error is relatively low, the
maximum error vary considerably depending on the loading level.

In order to estimate the error introduced in transmission line active power
flows, consider the following simple calculation. The active power flowing in a
loss-less transmission line connecting buses h and k through a series reactance
xhk is:

phk =
vhvk
xhk

sin θhk

Assuming that vh = vk = 1.0 pu, θhk = 0.1 rad and xhk = 0.1 pu, one has:

phk ≈ 1.0 pu

If each voltage is affected by a 5% error and the angle difference by a 10%
error, and assuming the worst-case scenario in which all errors have the same
sign:

p̃hk ≈ (vh +Δvh)(vk +Δvk)
xhk

(θhk +Δθhk) = 1.21 pu

that leads to an error of more than 20%. In most engineering applications,
an error of 20% is a sufficient argument for dropping a method, especially
taking into account that electrical measures of active power flows can be

4.4 Power Flow Solvers 95

easily obtained with an error of at most 5%. However, surprisingly enough,
the dc power flow is widely used in power system planning and operation and
in economic dispatch.

4.4.9 Single and Distributed Slack Bus Models

The concept of single slack bus used in the classical power flow formulation
is arguable for the following rationale. In the single slack bus model, an
unique generator has to take care of system losses or, at least, of the entire
power loss increment in case a contingency occurs (e.g., a transmission line
outage). This is not the real behavior of the system, since turbine governors
of synchronous machines vary the power production of all generators in case
of power unbalance (see also Chapter 16). Furthermore, no physical generator
has an unlimited capacity or can absorb a negative active power, while this
is possible for slack generators. Thus, unless the slack bus is an equivalent
model of a big network,12 the single slack bus model is not realistic. The
distributed slack bus model allows avoiding this inconsistency.

The distributed slack bus model is based on a generalized power center con-
cept and consists in distributing losses among all generators [23]. In math-
ematical terms, this is obtained by substituting the slack generator active
power injection ph in (4.12) by a scalar variable kG and by rewriting all ph
at generator buses (slack bus included) as follows:

ph = (1 + kGγh)pG0,h − pLh, h ∈ BG (4.66)

where pG0,h is the loss net generator power, BG is the set of static generator
buses, and γh is a factor that allows weighting the participation of each
generator to network losses.

The loss participation factors γh can be fixed to 1, i.e., each generator
contributes proportionally to its generated power, or computed based on
the droop of the turbine governors as discussed Chapter 16. Other methods
for defining γh values are based on synchronous machine inertiæ, frequency
control participation factors and also economic dispatch [116, 118, 364]. The
single slack bus formulation is a particular case of the distributed one, being
γh = 0 for all generators except for the slack bus that has γslack = 1 (see also
Subsections 10.2.2 and 10.2.1).

Equations (4.40) are still valid if using the distributed slack bus model.
The same cannot be said for the Gauss-Seidel, FDPF and dc power flow
approaches. The only change in (4.40) is the form of gy. In particular, the
following partial derivative has to be added to (4.46):

∂gph
∂kG

= −γhpG0,h, h = BG (4.67)

12 Big means with a power capacity much greater than those of physical generators

modelled in the network.

96 4 Power Flow Analysis

Example 4.5 Distributed Slack Bus Power Flow for the IEEE
14-Bus System

Table 4.5 shows the results of the power flow with distributed slack bus model
for the IEEE 14-bus test system. The loss participation factors of generators
1 and 2 are γ1 = γ2 = 1. Furthermore, pG0,1 = 2.3 pu for the slack bus. In
this case, the final generated powers are very similar to the single slack bus
model. This result is a consequence of the fact that pG0,1 � pG0,2.

Table 4.5 Power flow results for the IEEE 14-bus system with distributed slack

bus model

Bus v θ pG qG pL qL

h [pu] [rad] [pu] [pu] [pu] [pu]

1 1.06 0 2.32 −0.1647 0 0

2 1.045 −0.0868 0.4035 0.4342 0.217 0.127
3 1.01 −0.2219 0 0.2507 0.942 0.19
4 1.018 −0.1799 0 0 0.478 −0.039
5 1.02 −0.153 0 0 0.076 0.016
6 1.07 −0.2481 0 0.1273 0.112 0.075
7 1.062 −0.233 0 0 0 0

8 1.09 −0.233 0 0.1762 0 0

9 1.056 −0.2606 0 0 0.295 −0.0459
10 1.051 −0.2634 0 0 0.09 0.058
11 1.057 −0.258 0 0 0.035 0.018
12 1.055 −0.263 0 0 0.061 0.016
13 1.05 −0.2644 0 0 0.135 0.058
14 1.036 −0.2797 0 0 0.149 0.05

Totals 2.724 0.8237 2.59 0.5232

4.5 A General Framework for Power Flow Solvers

Let us consider a set of autonomous ODE:

ẏ = f̃(y) (4.68)

The simplest method of numerical integrating (4.68) is the explicit Euler’s
method, as follows:

Δy(i) = Δtf̃(y(i)) (4.69)
y(i+1) = y(i) +Δy(i)

where Δt is a given step length.

4.5 A General Framework for Power Flow Solvers 97

The analogy between (4.40) and (4.69) is straightforward if one defines:

f̃(y) = −[gy]−1g(y) (4.70)

Equations (4.40) can thus be viewed as the ith step of the Euler’s forward
method where Δt = 1 [127]. Furthermore, robust Newton’s methods (4.48)
are nothing but the ith step of the Euler’s integration method where Δt = α.
In other words, the computation of the optimal multiplier α corresponds to
a variable step forward Euler’s method.

Equations (4.68) and (4.70) leads to:

ẏ = −[gy]−1g(y) (4.71)

which is known as continuous Newton’s method.
The equilibrium point y0 of (4.71) is

0 = f̃ (y0) = −[gy|0]−1g(y0) (4.72)

Thus, assuming that gy is not singular, y0 is also the solution of (4.8). As-
suming a non-singular Jacobian matrix for the power flow equations is an
implicit hypothesis of any power flow analysis based on the factorization of
gy (see also the discussion in Section 5.4 of the Chapter 5).

4.5.1 Stability of the Continuous Newton’s Method

Differentiating (4.70) with respect to y leads to:

f̃y = ∇T
y f̃ (y) (4.73)

= −[gy]−1gy − (∇T
y ([gy]−1))g(y)

= −Iny − (∇T
y ([gy]−1))g(y)

where Iny is the identity matrix of order ny. Since the equilibrium point y0
is a solution for g(y0) = 0, one has:

f̃y|0 = −Iny (4.74)

To prove equation (4.74) let us define the following quantities, based on tensor
notation:

f̃i element i of the vector function f̃(y).
gk element k of the vector function g(y).
aik element (i, k) of the matrix [gy]−1.
f̃i,j partial derivative of f̃i with respect to the variable yj .
gk,j partial derivative of gk with respect to the variable yj .
aik,j partial derivative of aik with respect to the variable yj.

98 4 Power Flow Analysis

For simplicity, the dependence of f̃i,j , gk,j and aik,j on y is omitted. Equations
(4.70) and (4.73) can be rewritten as follows:

f̃i = −
ny∑
k=1

aik · gk (4.75)

f̃i,j = −
ny∑
k=1

aik · gk,j −
ny∑
k=1

aik,j · gk (4.76)

Since the matrix [aik] is the inverse of gy, then

ny∑
k=1

aik · gk,j =

{
1 if i = j

0 if i �= j
(4.77)

Thus, (4.76) can be written in the compact form:

f̃i,j = −δij −
n∑
k=1

aik,j · gk (4.78)

where δij is the well-known Kronecker’s operator. Furthermore, if gk = 0 ∀k =
1, . . . , ny (which is verified at the solution y0), then one obtains the final
expression:

f̃i,j = −δij (4.79)

that is the tensor version of (4.74).
This result is straightforward for a scalar g(y), i.e. for y ∈ R and g ∈ R,

as follows:

ẏ = f̃(y) = − g(y)
gy(y)

(4.80)

⇒ f̃y(y) = −gy(y)
gy(y)

+
gyy(y)
g2
y(y)

g(y) (4.81)

= −1 +
gyy(y)
g2
y(y)

g(y)

thus f̃y(y0) = −1 if g(y0) = 0 and gy(y0) �= 0.
Equation (4.74) implies that all eigenvalues of f̃y at the solution point

are equal to −1. Thus, (4.74) means that the solution of (4.8), if exists,
is asymptotically stable. The reachability of this solution depends on the
starting point y(t0) = y(0), which has to be within the region of attraction
or stability region of the equilibrium point y0.

The continuous Newton’s method is expected to show better ability to
converge than other methods previously discussed if the initial guess is within

4.5 A General Framework for Power Flow Solvers 99

the region of attraction. A case study that confirms this hypothesis is given
in [196].

Example 4.6 Runge-Kutta’s Formula for Solving the Power Flow
Problem

It is well-known that the forward Euler’s method, even with variable time
step, can be numerically unstable. Reference [127] suggests that, given the
analogy between the power flow equations (4.8) and the ODE (4.68), any
well-assessed numerical method can be used for integrating (4.68). It is thus
intriguing to use some efficient integration method for solving (4.8). Since
the computation of f̃ = −[gy]−1g implies the inversion of the power flow
Jacobian matrix, only explicit integration methods are suitable and compu-
tationally efficient, since one does not need to compute the Jacobian matrix
of f̃ . Explicit numerical integration methods, including a variety of Runge-
Kutta’s formulæ are described in Subsection 8.3.1 of Chapter 8.

It is worth noting that any order and any version of explicit integration
method can be used, and any of these methods is expected to be numeri-
cally more stable than the Euler’s forward method. For example, Figure 4.10
compares the convergence behavior of continuous Newton’s method solved
using the classical 4th order Runge-Kutta’s formula (8.35) (see Example 8.2

Fig. 4.10 Convergence behavior of Runge-Kutta’s 4th order formula and the

Iwamoto’s method for the IEEE 14-bus system

100 4 Power Flow Analysis

of Chapter 8) and the Iwamoto’s method for the IEEE 14-bus system. The
use of a robust power flow solver algorithm is not required in this case since
this is a well-conditioned case. However, the results confirm that the Runge-
Kutta’s formula converges faster than a variable step Euler’s method (e.g.,
Iwamoto’s method).

Script 4.6 Runge-Kutta’s Formula for Solving the Power Flow
Problem

The Python implementation of the generic ith iteration of the Runge-Kutta’s
4th order formula (8.35) provided in Chapter 8 looks as follows:

yold = system.DAE.y

k1 = alfa*calcInc()

system.DAE.y = yold + 0.5*k1

k2 = alfa*calcInc()

system.DAE.y = yold + 0.5*k2

k3 = alfa*calcInc()

system.DAE.y = yold + k3

k4 = alfa*calcInc()

compute RK4 increment of variables

inc = (k1 + 2*(k2+k3) + k4)/6

to estimate RK error, use the RK2:Dy and RK4:Dy.

csi = max(abs(abs(k2) - abs(inc)))

if csi > 0.01:

deltat = max([0.985*deltat, 0.75])

else:

deltat = min([1.015*deltat, 0.75])

system.DAE.y = yold + inc

where it is assumed that calcInc() returns f̃(y(i)). The code above has to
be inserted in a while-loop similar to that discussed in Script 4.2.

4.6 Summary

This section summarizes most relevant concepts related to power flow
analysis.

Power flow problem vs. classical circuit analysis: The power flow analysis
differs from classical circuit analysis in what concerns input data. Typi-
cal circuit input data are generator voltage phasors and load impedances.
Thus, circuit analysis problem formulation is based on current injections
that result in a linear problem if all parameters are constant. On the

4.6 Summary 101

other hand, typical power flow data are load power consumptions and
generator active power supplies. Thus, the power flow problem formula-
tion is based on power injections that result in a nonlinear set of algebraic
equations. The intrinsic nonlinearity of the power flow problem makes its
solution a challenge.

System model: The classical power flow problem formulation considers only
constant PV generators and constant PQ loads. Furthermore, one gener-
ator, the slack, is defined as slack and is used as phase angle reference.
These models are deduced based on practical assumptions and opera-
tion of transmission systems. However, the classical power flow problem
formulation can be improved in a variety of ways. For example, the dis-
tributed slack model is a better description of the behavior of the system
than the standard single slack model. Other improvements of the classical
models concerns the inclusion of detailed models of regulating transform-
ers and dynamic devices. The entire Part III is devoted to provide further
insights on detailed power flow models.

Power flow solvers: The classical formulation of the power flow problem can
be solved only numerically. With this aim, several methods are available,
including but not limited to: Gauss-Seidel’s, Jacobi’s, Newton’s, FDPF,
and dc power flow methods. The Newton’s method is available in several
versions: inexact (e.g., GMRES), dishonest and robust.

Dc power flow: The dc power flow formulation avoids the issues originated by
the nonlinearity of the classical power flow problem. The dc formulation
allows simplifying the equations so that only active power mismatches and
bus voltage phase angles are considered. The resulting problem is linear
but completely neglects reactive power flows and bus voltage magnitude
deviations. For this reasons, the error introduced by the dc power flow
model are not negligible.

General framework for power flow analysis solvers: Power flow algorithms
based on the Newton’s method and its variants can be viewed as par-
ticular implementations of a general class of solvers, namely the continu-
ous Newton’s method. This approach shows that the map of an iterative
method is formally equivalent to find the equilibrium point of a set of dif-
ferential equations. The equilibrium point of the equivalent ODE system
is the solution of the power flow problem.

This page intentionally left blank

Chapter 5

Continuation Power Flow Analysis

This chapter describes a variety of techniques used for determining the point
of collapse of power flow equations with particular emphasis on continuation
power flow analysis. Section 5.1 introduces the maximum loading condition
problem using a didactic 2-bus system. Section 5.2 defines the general model
for the maximum loading condition. Section 5.3 describes direct methods
for computing saddle-node bifurcation and limit-induced bifurcation points
while Section 5.4 describes the continuation power flow technique. Section 5.4
also explains the conceptual differences, advantages and drawbacks of con-
tinuation (or homotopy) methods with respect to direct ones. Subsections
5.4.4 and 5.4.5 discuss the analogy between the continuous Newton’s method
and the homotopy approach and the N−1 contingency analysis, respectively.
Finally, Section 5.5 summarizes the main concepts of the continuation power
flow analysis.

5.1 Background

A relevant problem of power system analysis is the determination of the max-
imum load power consumption that a network can supply. With this aim,
consider the 2-bus test system depicted in Figure 5.1. A similar example con-
sidering voltage dependent load characteristics can be found in Example 14.1
of Chapter 14.

1 2

jxL

v1 + j0 p2 + jq2

Fig. 5.1 2-bus system

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 103–130.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

104 5 Continuation Power Flow Analysis

The power flow equations that describe this system are:

− p2 =
v2v

ref
1

xL
sin θ2 (5.1)

−q2 =
v2
2

xL
− v2v

ref
1

xL
cos θ2

where we assume that the slack generator voltage at bus 1 is the phase
reference. After some simple manipulations, one obtains:

p2
2 =

v2
2(v

ref
1)2

x2
L

sin2 θ2

q22 +
v4
2

x2
L

+ 2q2
v2
2

xL
=
v2
2(v

ref
1)2

x2
L

cos2 θ2

⇒ 0 = p2
2 + q22 +

v4
2

x2
L

+ 2q2
v2
2

xL
− v2

2(v
ref
1)2

x2
L

(5.2)

The load bus voltage magnitude v2 can be written as a function of the load
power p2:

v2 =

√
−(q2xL − (vref

1)2/2) ±
√

(q2xL − (vref
1)2/2)2 − x2

L(p2
2 + q22) (5.3)

Assuming, without loss of generality, that the load has a constant power
factor, i.e., q2 = p2 tanφ2, (5.3) becomes:

v2 =

√
−a±
√
a2 − x2

Lp
2
2(1 + tan2 φ2) (5.4)

where:

a = p2 tanφ2xL − (vref
1)2

2
(5.5)

Equation (5.4) is depicted in Figure 5.2 and is known as PV curve or nose
curve, due to its characteristic shape. It may be of interest to note that, in
order to plot the PV curve of Figure 5.2, using (5.4) is not the best choice
because the function v2(p2) is not defined on all R and is not biunivocal. To
use the other way round, i.e., the function p2(v2) results easier:

p2 =
v2
2

xL

⎛
⎜⎜⎝

− tanφ2 +
√

tan2 φ2 −
(
1 − (vref1)2

v22

)
1 + tan2 φ2

⎞
⎟⎟⎠ (5.6)

5.1 Background 105

Fig. 5.2 PV curve for the 2-bus system

Some relevant remarks on (5.4) are:

1. The system is characterized by a maximum value of the load power, say
pmax
2 , which is known as maximum loading condition.

2. For p2 > pmax
2 the power flow equations (5.1) have no solution. For this

reason, the power flow solution for p2 = pmax
2 is known as point of collapse.

In physical terms, this means that the system cannot supply a load whose
power is p2 > pmax

2 . Thus, pmax
2 is the maximum power that can be trans-

mitted by the network and it can be considered a limit of the transmission
system.

3. For p2 < pmax
2 , there are two values of v2 that solve (5.1). However, only the

solution with the higher v2 value (upper solution) is physically acceptable.
The other value (lower solution) has only a mathematical interest.

4. The shape of the PV curve is independent of the load power factor, as
well as of system parameters. In other words, any network of any size and
complexity shows a similar relationship between bus voltage magnitudes
and load powers. PV curves are inherent the structure of classical power
flow equations. As a matter of fact, as shown in (4.16) or (4.18), these
have a quadratic dependence on bus voltages.

The PV curve depicted in Figure 5.2 was obtained assuming that the slack
generator at bus 1 can supply any amount of active and reactive power. If
the hypothesis about the reactive power is removed, there can be a value of

106 5 Continuation Power Flow Analysis

p2 for which the reactive power generated by the slack bus is the maximum
one, say qmax

1 . Since the system has no other reactive power source, the load
power cannot be increased any further. If the generator reactive power limit
is reached before the transmission system limit, the former yields the point
of collapse or, which is the same, the pmax

2 value.
In order to determine the collapse point due to reactive power limit for the

2-bus system, assume that the slack is modelled as a constant QV generator,
where q1 = qmax

1 . The resulting power flow equations are:

− p2 =
v2v1
xL

sin θ2 (5.7)

−q2 =
v2
2

xL
− v2v1

xL
cos θ2

qmax
1 =

v2
1

xL
− v2v1

xL
cos(−θ2)

In this case, the voltage magnitude v1 is a variable. Using the second and the
third equations of (5.7), one has:

v1 =
√
xLqmax

1 + v2
2 + xLp2 tanφ2 (5.8)

Then, substituting (5.8) in (5.2), the expression of p2(v2) becomes:

p2 =
v22
xL

tanφ2 +
√

(v
2
2
xL

tanφ2)2 + 4v2
2q

max
1 (1 + tan2 φ2)/xL

2(1 + tan2 φ2)
(5.9)

If (5.6) and (5.9) intersect in the upper part of (5.6), then the generator reac-
tive power limit occurs before the transmission system limit. This situation is
illustrated in Figure 5.3. The interpretation of Figure 5.3 is as follows: as far
as q1 < qmax

1 , the system is described by (5.6); then, at q1 = qmax
1 , the slack

bus model changes from constant vθ to constant qv and the system behavior
is described by the equation (5.9).

The determination of PV curves and, in particular, of the maximum load-
ing condition, has great relevance in security analysis. In fact, the knowledge
of the maximum loading condition allows defining the distance of the current
working condition to the collapse. If this distance is too small, the system op-
erator has to take corrective actions to provide a minimum security margin,
i.e. a minimum distance of the current operating point to the collapse.

Unfortunately, analytical formulæ such as (5.6) or (5.9) cannot be found
for a generic system. Even for the 2-bus system considered so far, including
a resistance in the transmission line prevents from obtaining an explicit ex-
pression for p2(v2). Thus, a general numerical method for determining the
maximum loading condition is desirable. The following sections describe sys-
tematic approaches to tackle this problem.

5.2 System Model 107

Fig. 5.3 PV curve for the 2-bus system considering generator reactive power limits

5.2 System Model

In order to generalize the concepts presented in the previous section, it is
necessary to define a power system model suitable for encountering the max-
imum loading condition. With this aim, the power flow model is modified as
follows:

0 = g(y, μ) (5.10)

where y are, as usual, the algebraic variables and μ ∈ R is a loading param-
eter, i.e., a scalar independent parameter that multiplies all generator and
load powers, as follows:

pG = (μInG + kGΓ)pG0 (5.11)
pL = μpL0

qL = μqL0

where InG is the identity matrix of order nG, Γ = diag(γ1, γ2, . . . , γnG) are
generator loss participation factors, kG is a scalar variable used for accom-
plishing the distributed slack bus model as discussed in Subsection 4.4.9 of
Chapter 4, and pG0, pL0 and qL0 are the “base case” or initial generator and
load powers, respectively.

108 5 Continuation Power Flow Analysis

An alternative loading model that can be found in the literature is:

pG = (InG + μ̃InG + kGΓ)pG0 (5.12)
pL = (1 + μ̃)pL0

qL = (1 + μ̃)qL0

where μ̃ expresses the distance of the base case to the stressed operating
condition and μ̃max is thus the distance to the point of collapse.

Another loading model is as follows:

pG = pG0 + (μ̆InG + kGΓ)pS0 (5.13)
pL = pL0 + μ̆pD0

pL = pL0 + μ̆pD0

where pS0, pD0 and qD0 are called generator (or supply) and load (or de-
mand) power directions since they define a custom path along which the
system is loaded through the parameter μ̆. The three models (5.11), (5.12)
and (5.13) are equivalent and do not introduce conceptual differences. Thus,
in the following, unless explicitly stated, model (5.11) is used.

5.3 Direct Methods

Probably, the most intuitive approach for solving the maximum loading con-
dition problem is to use a direct method. The idea is to encounter a set of
equations that defines the point of collapse of the power system modelled as
(5.10). As observed in Section 5.1, system equations change depending on the
type of maximum loading condition: transmission system or reactive power
limit. Thus one has to formulate a different set of equations for each type of
maximum loading condition.

In the literature, this task has been assessed with the help of bifurcation
theory which allows defining a taxonomy of the points of collapse, which
are, in turns, bifurcation points. A bifurcation point is a solution of (5.10)
that satisfies certain mathematical conditions. In particular, classical power
flow equations can show only two kinds of bifurcation points, namely, the
saddle-node bifurcation and limit-induced bifurcation.

It is important to note that bifurcation theory applies to dynamical sys-
tems (i.e., ordinary differential equations), while the power flow equations
(5.10) are algebraic. Thus, strictly speaking, stability concepts and bifurca-
tion theory cannot be applied to (5.10). However, it is common practice to
associate the maximum loading condition with bifurcation points and, hence,
to infer the static voltage stability region of the power system through the
analysis of algebraic power flow equations.

5.3 Direct Methods 109

Using stability concepts proper of dynamical systems for a set of algebraic
equations can be justified in mathematical terms if one considers that (5.10)
can be rewritten as:

T εẏ = g(y, μ(t)) (5.14)

where T ε = diag(Tε1, Tε2, . . . , Tεny) is a diagonal matrix composed of “small”
time constants. Furthermore, the time dependent variation of μ(t) is assumed
to be “slow”, so that system dynamics are considered steady-state and sys-
tems devices are approximated by means of the models used in the classical
power flow analysis. These assumptions agree with the definition of algebraic
variables given in Section 1.4 of Chapter 1. Further insights on (5.14) are
given in Section 8.6 of Chapter 8.

5.3.1 Saddle-Node Bifurcation

The Saddle-Node Bifurcation (SNB) is the formal mathematical notation of
the transmission system limit that is described in Section 5.1. Figure 5.2
shows that the tangent to the curve v2(p2) at the maximum loading point is
vertical, i.e., dv2/dp2 → ∞ at the point of collapse.

The conditions for a SNB point are as follows:

g(y, μ) = 0 (5.15)
gyν = 0

‖ν‖2 = 1

or

g(y, μ) = 0 (5.16)
gTyw = 0

‖w‖2 = 1

where v and w are the right and the left eigenvectors, respectively, and the
operator ‖·‖2 indicates the Euclidean norm. The solution of (5.15) and (5.16)
can be obtained by means of a Newton’s method, which requires to compute
and factorize the Jacobian matrix. For example, the complete Jacobian ma-
trix of (5.15) is: ⎡

⎣ gy 0 gμ
gyyν gy 0

0 ∂‖ν‖2/∂ν 0

⎤
⎦ (5.17)

The Euclidean norm |ν| reduces the sparsity of the Jacobian matrix com-
puted at each iteration of the Newton’s method, but allows avoiding re-
factorizations (as happens in the case of ∞-norm) and is numerically more
stable than the 1-norm. Since (5.17) requires the calculations of the Hessian

110 5 Continuation Power Flow Analysis

matrix gyy, direct methods are computationally expensive. Furthermore, if
the number of buses is nb, the variables in (5.15) or (5.16) are 2nb + 1.

Unfortunately, even assuming that modern computers and adequate func-
tions for handling sparse matrices are able to reduce the computational bur-
den, problems (5.15) and (5.16) are hard to solve. The main issue is to find a
good initial guess for the eigenvectors ν or w. This is not an easy task since
the eigenvector elements vary drastically close to the bifurcation point. Thus,
in order to find a good initial guess, one has to start relatively close to the
bifurcation point.

Example 5.1 Saddle-Node Bifurcation of the 2-Bus System

This example provides the analytical expression of the SNB point of the 2-
bus system of Figure 5.1. System data are: vref

1 = 1 pu, xL = 0.1 pu, and
cosφ2 = 0.9 lag. Due to the simplicity of the problem, the solution can be
find analytically. The value of pmax

2 is:

pmax
2 =

(vref
1)2

2xL
(− tanφ2 +

√
1 + tan2 φ2) = 3.1339 pu (5.18)

Equation (5.18) can be obtained by imposing that the argument of the inner
square root of (5.4) is zero:

(pmax
2 tanφ2xL − (vref

1)2/2)2 − x2
L(pmax

2)2(1 + tan2 φ2) = 0 (5.19)

And, substituting (5.18) in (5.4), one obtains:

vM2 =
√

−a =

√
(vref

1)2

2
− pmax

2 tanφ2xL = 0.5901 pu (5.20)

The same solution can be found observing that the second equation of (5.16)
implies that the Jacobian matrix gy has to be singular at the SNB point.1

This is another way of imposing the the tangent of v2(p2) is vertical at the
SNB. Since in this simple case the power flow Jacobian matrix size is 2 × 2,
one can compute analytically the determinant. The Jacobian matrix of (5.1)
is:

gy =
1
xL

⎡
⎣ vref

1 v2 cos θ2 vref
1 sin θ2

vref
1 v2 sin θ2 2v2 − vref

1 cos θ2

⎤
⎦ (5.21)

Hence, imposing that the determinant is zero leads to:

2
vref
1 v2
xL

cos θ2 − vref
1 v2
xL

= 0 (5.22)

1 In fact ν cannot be zero because of the constraint ‖ν‖2 = 1.

5.3 Direct Methods 111

Fig. 5.4 Graphical illustration of the direct method for computing the SNB of the

2-bus system

The trigonometric function cos θ2 can be substituted for the expression de-
duced by the second of (5.1):

cos θ2 =
1

vref
1 v2

(
v2
2 + xLp2 tanφ2

)
(5.23)

Thus (5.22) and (5.23) lead to:

p2 =
(vref

1)2 − 2v2
2

2xL tanφ2
(5.24)

The intersection of (5.6) and (5.24) is the SNB point (see Figure 5.4).

5.3.2 Limit-Induced Bifurcation

Limit-Induced Bifurcations (LIBs) allow formally defining maximum loading
conditions due to generator reactive power limits. LIB points are the solution
of two sets of equations:

0 = g1(y, μ) (5.25)
0 = g2(y, μ)

112 5 Continuation Power Flow Analysis

where g1 and g2 differ in the model of some devices. For example, let us
assume that in g1 a certain generator is modelled as a constant pv and that
in g2 the same generator is modelled as a constant pq, with q = qmax. Then,
the LIB point is the intersection of the two sets of power flow equations g1
and g2.

In practice, it is not necessary to duplicate all equations, since at the LIB
point (y, μ) is the same for the two systems. It suffices to solve:

0 = g(y, μ) (5.26)
0 = ğ(y, μ)

where g ≡ g1 and ğ ≡ g2 is a scalar equation that imposes the desired
additional constraint. For example, assuming that the limit is a generator
reactive power, g can model the generator at bus h as a constant pv and ğ
is:

ğ = qGh − qmax
Gh (5.27)

In principle, one can impose more than one scalar constraint in (5.26). As
a matter of fact, not all LIBs lead to the maximum loading condition (see
Example 5.4). Moreover, constraints can be of any kind, e.g., voltage limits,
transmission line thermal limits, etc. However, in the literature, LIBs gener-
ally concern only generator reactive power limits, since only these limits can
lead to a point of collapse.

In mathematical terms, a LIB is not characterized by a Jacobian ma-
trix singularity. The Jacobian matrix is only discontinuous at the bifurcation
point. This property is used in continuation power flow analysis for distin-
guishing between SNB and LIB points.

Example 5.2 Limit-Induced Bifurcation of the 2-Bus System

For the 2-bus example of Figure 5.1, the LIB point can be determined ana-
lytically. In particular, the intersection of (5.6) and (5.9) can be determined
solving the following system:

− p2 =
v2v

ref
1

xL
sin θ2 (5.28)

−q2 =
v2
2

xL
− v2v

ref
1

xL
cos θ2 (5.29)

qmax
1 =

(vref
1)2

xL
− v2v

ref
1

xL
cos(−θ2) (5.30)

From (5.30) and (5.29):

q2 =
(vref

1)2 − v2
2

xL
− qmax

1 (5.31)

5.3 Direct Methods 113

Then, substituting (5.31) in (5.2), one obtains:

(b− 1)v4
2 + dv2

2 + dc2 = 0 (5.32)

where:

b =
1 + tan2 φ2

tan2 φ2
(5.33)

c = xLq
max
1 − (vref

1)2

d = (1 − 2b)(vref
1)2 + 2xL(b− 1)qmax

1

The only physical solution of the bi-quadratic equation (5.32) is:

vM2 =

√
−d−
√
d2 − 4b(b− 1)c2

2(b− 1)
= 0.8708 pu (5.34)

Finally, pmax
2 = p2(vM2) can be determined indifferently from (5.6) or (5.9),

that yield pmax
2 = 1.8928 pu. These results are obtained assuming the follow-

ing system data: qmax
1 = 1.5 pu, xL = 0.1 pu, and cosφ2 = 0.9 lag.

5.3.3 Nonlinear Programming

Another class of direct approaches consists in formulating the maximum load-
ing condition as a nonlinear programming problem. This approach has proved
to be robust [35, 36, 37, 259]. Furthermore, the formulation as an optimiza-
tion problem allows including a variety of constraints and setting up complex
models [198, 260]. Due to the relevance of nonlinear programming in power
system analysis, the entire Chapter 6 is dedicated to this topic. This section
only provides a simple yet relevant example.

Example 5.3 Optimization Problem Equivalent to the
Saddle-Node Direct Method

This example proves that (5.16) is formally equivalent to an optimization
problem. This proof firstly appeared in [36]. Consider the following problem:

Minimize
y, μ

−μ (5.35)

subject to g(y, μ) = 0

The Lagrangian function associated with problem (5.35) is:

L (y, μ,ρ) = −μ+ gT (y, μ)ρ (5.36)

114 5 Continuation Power Flow Analysis

whose the Karush-Kuhn-Tucker’s optimality conditions are:

g(y, μ) = 0 (5.37)
gTyρ = 0

gTμρ = 1

Thus, the global minimizer of (5.35) is a solution of (5.16). In fact, the left
eigenvector is equal to the vector of dual variables (w = ρ) and the condition
gTμρ = 1 is equivalent to ‖w‖2 = 1 since its effect is to impose that the vector
of dual variables is not zero (ρ �= 0).

The analogy between direct methods and nonlinear programming problems
can be extended to LIBs given that proper inequalities and complementarity
constraints are included in (5.35). The interested reader can find a rigorous
proof in [21].

5.4 Homotopy Methods

The common feature of all direct methods is to find a single solution, i.e.,
the maximum loading condition. Since the objective is to find the maximum
loading condition, one may argue that direct methods provide just the re-
quired information. Actually, this is not completely true. The nose curves
shown in Figures 5.2 and 5.3 provide much more information than the mere
bifurcation point (vM2 , pmax

2). In fact, nose curves provide a continuous set of
solutions, one of which is the maximum loading condition. This continuous
set allows understanding the behavior of the system likely better than the sin-
gle bifurcation point. Moreover, important drawbacks of the direct methods
discussed above except for the nonlinear programming approach are:

1. The solution can be difficult to obtain as a good initial guess is required.
This is especially true for determining SNB points.

2. Each bifurcation point is treated separately. Since one does not know a
priori whether a LIB or a SNB yields the maximum loading condition,
taking into account all possible bifurcations (a real-world system can show
tens of LIBs before getting to the maximum loading condition) can be a
lengthy process.

Finally, with regard to the nonlinear programming approach, it has to be
noted that the computational burden of an optimal power flow problem of a
real-size system is not negligible.

To overcome the drawbacks of direct methods, consider the following strat-
egy. Starting from an initial solution (e.g., base case) of (5.10), the loading
parameter μ is increased by a small amount, say Δμ, and then (5.10) is
solved again for the new value μ+Δμ. The operation is repeated as long as
the solution of (5.10) cannot be found. This procedure is known as embedding
algorithm [147]. In case (5.10) represent power flow equations, this procedure

5.4 Homotopy Methods 115

yields a series of power flow solutions, of which the last one is supposedly the
maximum loading condition.

The critical point of the embedding algorithm is the word supposedly. In
fact, there is no guarantee that the procedure ends at the maximum loading
condition. Each solution is obtained by means of an iterative algorithm (e.g.,
Newton’s method) and thus failing to obtain the convergence can be due
either to numerical issues or to the fact that the solution actually does not
exists. This issue is unsolvable, even using some robust technique as those
described in Chapter 4. Other critical issues of the embedding algorithm are:

1. At SNB points, the Jacobian matrix is singular. Thus the Newton’s method
surely diverges for cases close enough to SNB points.

2. The number of steps and the magnitude of Δμ are not known a priori.
In any case, Δμ has to be sufficiently small to ensure that the Newton’s
method applied to the next step converges. This fact prevents from using
parallel computing as the initial guess of each step is the solution of the
previous step. Thus, the computational burden of embedding algorithms
is generally high.

A solution to all issues above is provided by homotopy methods [218]. The
homotopy approach consists in defining a homotopy map ψ based on the
original system equations g(y), as follows:

ψ(y, μ) = g(y, μ) (5.38)

where the main difference between g and ψ is that in the latter μ is a variable
of the system, thus g : R

ny �→ R
ny and ψ : R

ny+1 �→ R
ny . According to the

definitions given in Section 1.4 of Chapter 1, μ (μ ∈ R) is an independent
variable (i.e., μ = [μ]) and ψ : R

ny ×R
nμ �→ R

ny where nμ = 1. In homotopy
methods, μ is called continuation parameter. However, in the following, μ
is called loading level, thus referring to its physical meaning rather to the
mathematical one.

Equation (5.38) may seem trivial since ψ and g coincide. This is because
(5.38) is a forced or natural parameter homotopy, i.e., μ is a parameter of g. It
is important to note that, in general, homotopy maps can be defined also using
an external parameter that has no physical meaning and no relation with
g(y). In this case, the homotopy is called free-running or artificial parameter
homotopy and has the general form:

ψ(y, μ) = (1 − μ)r(y) + μg(y) (5.39)

where μ ∈ [0, 1] and r(y) is an arbitrary smooth function. However, in the
following, only forced homotopy methods are considered.

Parametrizing y and μ by means of an arc length s, one has:

ψ(y(s), μ(s)) = 0 (5.40)

116 5 Continuation Power Flow Analysis

and differentiating (5.40) with respect to s:

dψ

ds
=

⎡
⎢⎢⎣ψy

dy

ds

ψμ
dμ

ds

⎤
⎥⎥⎦ (5.41)

with: ∥∥∥∥
(
dy

ds
,
dμ

ds

)∥∥∥∥
2

= 1 (5.42)

and initial conditions:

y(0) = y(0), μ(0) = μ(0) (5.43)

Equation (5.41) is used for mapping ψ along a path parametrized by s. For a
current point (y(i), μ(i)), the next point (y(i+1), μ(i+1)) can be found using a
predictor-corrector method. In particular, the predictor step can be as follows:

ỹ(i+1) = y(i) +Δy(i) = y(i) + k
dy

ds
(5.44)

μ̃(i+1) = μ(i) +Δμ(i) = μ(i) + k
dμ

ds

where k is an adequate step size. The corrector step consists in ensuring
that the point (y(i+1), μ(i+1)) satisfies the condition ψ(y(i+1), μ(i+1)) = 0. A
possible choice of the corrector step is to solve an optimization problem, as
follows:

Minimize
y, μ

‖(y(i+1) − ỹ(i+1), μ(i+1) − μ̃(i+1))‖2 (5.45)

subject to ψ(y(i+1), μ(i+1)) = 0

Although elegant, the solution of (5.45) for each step of the path can be
cumbersome. In practical applications, it is thus preferred to substitute the
optimization problem (5.45) for:

g(y, μ) = 0 (5.46)

�(y, μ, ỹ(i+1), μ̃(i+1)) = 0

where � : R
ny+1 �→ R is the continuation function. How to choose � depends

on the application. Subsection 5.4.3 discusses typical expressions of � used in
the continuation power flow analysis.

The mathematical construction above may appear artificial. However,
the advantage of homotopy methods is the robustness. The convergence is
guaranteed by a series of theorems that the interested reader can find in
[218]. Moreover, the homotopy approach has been successfully applied to

5.4 Homotopy Methods 117

bifurcation analysis [276]. If the function � is properly set up, the Jacobian
matrix of (5.46), i.e., [

gy gμ
�y �μ

]
(5.47)

is not singular at the SNB point. This property is important for ensuring the
convergence of the Newton’s method close to the SNB point.

5.4.1 Continuation Power Flow

Although the very first appearance of homotopy methods in a power system
conference dates back to the seventies [307], the proposal of the technique
known as Continuation Power Flow (CPF) was conceived in the nineties [5].
Currently, the most authoritative reference about continuation power flow
analysis and its usage for voltage stability assessment is [39].

For the interested reader, a system programming-based implementation of
general homotopy methods can be found in [344]. Simulation results of this
software package for power system problems, as well as an in-depth discussion
of homotopy methods can be found in [147]. Finally, an implementation of
homotopy methods for power system analysis is presented in [56], whereas
C- and Matlab-based implementations of the CPF analysis can be found in
[42] and [194], respectively.

The CPF method described in following subsections consists in a predic-
tor step realized by the computation of the tangent vector and a corrector
step that can be obtained either by means of a local parametrization or a
perpendicular intersection.

5.4.2 Predictor Step

In the CPF analysis, the arc length that parametrizes (5.40) is defined as
s ≡ μ. Thus, for a generic step i and for the solution (y(i), μ(i)), the following
relation for the homotopy map ψ applies:

ψ(y(i)(μ(i)), μ(i)) = 0 ⇒ dψ

dμ

⏐⏐⏐⏐
i

= 0 = ψy|i
dy

dμ

⏐⏐⏐⏐
i

+ψμ|i (5.48)

Hence, the tangent vector for the solution (y(i), μ(i)) can be approximated
by:

τ (i) =
dy

dμ

⏐⏐⏐⏐
i

≈ Δy(i)

Δμ(i) (5.49)

From (5.48) and (5.49), one has:

τ (i) = −ψ−1
y |iψμ|i (5.50)

Δy(i) = τ (i)Δμ(i)

118 5 Continuation Power Flow Analysis

A step size control k has to be chosen for determining the increment Δy(i)

and Δμ(i) that appear in (5.44), along with the normalization (5.42) that
avoids large steps when ‖τ (i)‖2 increases:

Δμ(i) � k

‖τ (i)‖2
Δy(i) � kτ (i)

‖τ (i)‖2
(5.51)

Figure 5.5 provides a pictorial representation of the predictor step.
The sign of the step size k determines whether to increase or decrease μ.

In order to obtain a complete nose curve, k > 0 in the upper part and k < 0
in the lower one. It is easy to know if the current point is in the upper or
in the lower part of the nose curve, since the determinant of the Jacobian
matrix sign before and after SNB or critical LIB points changes.

τ (i)

(y(i), μ(i))

(ỹ(i), μ̃(i))

ψ(y, μ) = 0

Fig. 5.5 Tangent predictor

For the sake of completeness, it is worth observing that predictor steps
other than the tangent vector can be implemented. For example, an alter-
native predictor step is based on the secant [56]. The secant allows approxi-
mating the tangent τ (i) once two solutions (y(i−1), μ(i−1)) and (y(i), μ(i)) are
known:

τ (i) =
dy

dμ

⏐⏐⏐⏐
i

≈ y(i) − y(i−1) (5.52)

Predictions based on the secant have been observed to reach the maximum
loading condition faster than those based on the tangent vector [39]. Faster
means that the secant predictor requires less steps to reach the maximum
loading point. However, the secant method may provide an inadequate pre-
diction in case of sharp corners or if the solutions i − 1 and i are too far
apart (see Figure 5.6). An efficient method to accelerate the convergence of
the CPF analysis to the point of collapse is the Tangent Vector Index (TVI)
proposed in [289].

5.4 Homotopy Methods 119

(a) (b)

τ (i)

τ (i) (y(i−1), μ(i−1))

(y(i−1), μ(i−1))
(y(i), μ(i))

(y(i), μ(i))

(ỹ(i), μ̃(i))

(ỹ(i), μ̃(i))

ψ(y, μ) = 0
ψ(y, μ) = 0

Fig. 5.6 Secant predictor: (a) smooth function, and (b) sharp corner

Script 5.1 CPF Predictor Step

The following Python script implements a predictor step based on the tangent
vector.

import system

from cvxopt.base import matrix, spmatrix, sparse, log

from cvxopt.umfpack import symbolic, numeric, solve

from cvxopt.lapack import gees

def predictor(k, Jsign):

exec system.Device.call pf

exec system.Device.call gmu

B = sparse(system.DAE.Gy)

dy dmu = -matrix(system.DAE.Gmu)

if system.DAE.factorize:

G = symbolic(B)

try:

solve(B, numeric(B, G), dy dmu)

except:

G = symbolic(B)

solve(B, numeric(B, G), dy dmu)

Jsign old = Jsign

Jsign = gees(matrix(B, tc = ’z’), select = negative)

if Jsign != Jsign old:

ksign = -1

Sflag = False

norm = sum(dz dmu**2)**0.5

if not norm: norm = 1.0

d mu = ksign*k/norm

d_y = d mu*dy dmu

inc = matrix([d y, d mu])

120 5 Continuation Power Flow Analysis

def negative(x):

return (x.real < 0.0)

The interface system.Device computes g and gy and gμ of all devices that
compose the system. The functioning of the class system.Device is described
in Script 3.2 of Chapter 3. Furthermore, observe the use of the symbolic
factorization of the power flow Jacobian matrix. The symbolic re-factorization
is needed whenever a LIB occurs.

An important point of the predictor step is how to decide if the sign of the
step k has to be changed. As previously discussed, the sign of the determinant
of the Jacobian matrix gy changes if the path has reached the lower part of
the nose curve. Unfortunately computing the determinant is an expensive
operation and cannot be used for real-size systems.

A simple method to compute the determinant of a matrix is using the LU
factorization. In fact, one has:

A = LU

⇒ det(A) = det(L)det(U) = 1 · det(U) =
n∏
h=1

uhh (5.53)

where uhh are the diagonal elements of the matrix U . However, efficient
sparse matrix algorithms generally provides a variant of the LU factorization,
namely the LU factorization with partial pivoting, or LUP factorization. In
this case:

A = LUP (5.54)

where P is a permutation matrix. Thus, the determinant of the matrix A de-
pends also on P whose number of permutations has to be taken into account
to define the sign of the determinant of A.

The proposed code uses an ordered Schur’s factorization through the func-
tion gees provided by the module cvxopt. The function gees returns the
number of eigenvalues selected by a user-defined “ordering routine”. In this
case, the ordering routine is the function negative. The rationale of this
procedure is as follows. The determinant of a matrix can be also computed
as the product of all eigenvalues λi of that matrix:

det(A) =
n∏
h=1

λh (5.55)

Thus, if the number of negative eigenvalues increases or decreases by one, the
sign of the determinant changes. The proposed approach allows also deter-
mining if the number of eigenvalues that change sign is more than one (e.g.,
in case a Hopf bifurcation occurs). In particular, it would work also if this
number is even, while the method based on the LU factorization would fail in
this case. However, the Schur’s factorization is computationally expensive for

5.4 Homotopy Methods 121

large matrices and the LU factorization-based calculation of the determinant
sign has to be preferred if Hopf bifurcations are not of interest.2

5.4.3 Corrector Step

As discussed above, the most commonly used corrector step is (5.46), which
is a set of ny + 1 equations in ny + 1 variables. The solution of (5.46) is the
new point (y(i+1), μ(i+1)). This solution must be in the bifurcation manifold
(i.e., the nose curve) of ψ and � is an additional equation to guarantee a non-
singular set at the bifurcation point. As for the choice of �, there are several
options. Common continuation equations are the perpendicular intersection
and the local parametrization.

In case of perpendicular intersection, whose pictorial representation is re-
ported in Fig. 5.7, the expression of � becomes [136]:

�(y, μ) =
[
Δy(i)

Δμ(i)

]T [
y − (y(i) +Δy(i))
μ− (μ(i) +Δμ)

]
=
[
Δy(i)

Δμ(i)

]T [
y − ỹ(i)

μ− ˜μ(i)

]
(5.56)

whereas for the local parametrization, either the parameter μ or a variable
yk is forced to be an assigned value [5, 56]:

�(y, μ) = μ− μ(i) −Δμ(i) = μ− μ̃(i) (5.57)

or
�(y, μ) = yk − y

(i)
k −Δy

(i)
k = yk − ỹ

(i)
k (5.58)

The choice of the variable to be fixed depends on the bifurcation manifold of
ψ, as depicted in Fig. 5.8.

Script 5.2 CPF Corrector Step

The following Python script implements a corrector step with both perpen-
dicular intersection and local parametrization corrector steps. The system
(5.46) is solved using a Newton’s method.

2 The CVXOPT module does not currently provide a method for computing the

determinant and does not return the LU factorization as a transparent Python

object. Hence, a solution is to use the det function of the numpy.linalg module,

as follows:

Jsign = numpy.linalg.det(matrix(B))

Since the function det internally uses the LAPACK package and the LU factor-

ization, the computation of the determinant is relatively efficient. However, this

requires factorizing the matrix B twice per each predictor step. Thus, the best so-

lution is to modify the method solve cvxopt.umfpack module so that it returns

the value (or the sign) of the determinant of the argument matrix to be factorized.

This is possible only modifying the source C code of the CVXOPT package.

122 5 Continuation Power Flow Analysis

τ (i)

(y(i), μ(i))

(y(i+1), μ(i+1))

(y(i+1) − ỹ(i), μ(i+1) − μ̃(i))

ψ(y, μ) = 0

π/2

Fig. 5.7 Perpendicular intersection corrector

corrector

corrector

yk

μ

� = μ(i+1) − μ̃(i)

� = y
(i+1)
k − ỹ

(i)
k

Fig. 5.8 Local parametrization corrector

import system

from cvxopt.base import matrix, spmatrix, sparse, log

from cvxopt.umfpack import symbolic, numeric, solve

def corrector(inc, y old, v bus):

iter corr = 0

system.Settings.error = system.Settings.tol + 1

while system.Settings.error > system.Settings.tol:

if iter corr > system.Settings.maxiter: break

call component functions

exec system.Device.call pf

5.4 Homotopy Methods 123

exec system.Device.call gmu

Mmu[0, 0] = 0.0

if system.CPF.method == ’perpendicular intersection’:

My = inc[n:n+m].T

rho = My*(system.DAE.y - y old - My.T)

else: # local parametrization

My[0, v_bus] = 1.0

rho = system.DAE.y[v bus] - inc[v bus] - y old[v bus]

A = sparse([[system.DAE.Gy, My],

[system.DAE.Gmu, Mmu]])

inc_corr = matrix([system.DAE.g, rho])

if system.DAE.factorize:

F = symbolic(A)

if iteration > 1: system.DAE.factorize = False

try:

solve(A, numeric(A, F), inc corr)

except:

F = symbolic(A)

solve(A, numeric(A, F), inc corr)

system.DAE.y -= inc corr[:m]

system.DAE.mu -= inc corr[-1]

iter corr += 1

system.Settings.error = max(abs(inc corr))

The following observations are relevant: (i) the interface Device is used for
computing g and gy and gμ of all devices that compose the system; (ii) the
function symbolic is used for symbolically factorizing the power flow Jacobian
matrix (the symbolic re-factorization is needed whenever a LIB occurs); and
(iii) in case of local parametrization, the variable yk used in the continuation
function � is the bus voltage magnitude of a PQ load with index v bus.

Example 5.4 Continuation Power Flow Analysis for the IEEE
14-Bus System

Figure 5.9 shows some results of the CPF analysis for the IEEE 14-bus sys-
tem. The nose curves are obtained using a distributed slack bus model and
neglecting reactive power limits of PV generators. In this case, the maximum
loading condition is due to a SNB.

Figure 5.10 shows the results of the continuation power flow analysis en-
forcing PV generator reactive power limits. The figure shows both bus voltage
magnitude at load buses, and the voltage magnitude and reactive power at
bus 6. The voltage at bus 6 is constant until the PV generator reactive power
is lower than its limits (i.e., 0.24 pu). Then, the reactive power is maintained
equal to 0.24 pu and the bus voltage is let free to vary. The LIB caused by
the reactive power saturation of the PV generator at bus 6 is not critical

124 5 Continuation Power Flow Analysis

Fig. 5.9 Nose curve for the IEEE 14-bus system without PV reactive power limits

since other generators have still an available reserve of reactive power. As a
matter of fact, the maximum loading condition is a SNB because the slack
generator is assumed to have an unlimited reactive power reserve.

Figure 5.11 shows the results of the continuation power flow analysis en-
forcing both PV and slack generator reactive power limits (it is assumed
qmax
G1 = 1.0 pu). In this case, the maximum loading condition is a LIB due

to the slack generator maximum reactive power. In [332], a LIB is classified
as static if it leads to the maximum loading condition and dynamic other-
wise. This taxonomy can be misleading, since no dynamic device is actually
considered. A simpler notation is critical for static LIBs and non-critical for
dynamic ones.3

3 In [325], only critical LIBs are called LIB, while non-critical LIBs are called

breaking points. This definition bases its rationale on the fact that stability is not

endangered for non-critical LIBs. In fact, a common definition of local bifurcation
states that a bifurcation occurs when a parameter change causes the stability of

an equilibrium (or fixed point) to change. In continuous systems, this corresponds

to the real part of an eigenvalue of an equilibrium passing through zero. According

to this definition, breaking points are not bifurcations. However, according to a

more qualitative (or philosophical) definition, a bifurcation is a point of branching

or forking where a non-linear system qualitatively shows new types of behavior. In

this respect, while a change of stability of a non-linear system always implies the

occurrence of a bifurcation, the occurrence of a bifurcation does not necessarily

imply a change of stability.

5.4 Homotopy Methods 125

Fig. 5.10 Nose curve for the IEEE 14-bus system enforcing PV generator reactive

power limits

126 5 Continuation Power Flow Analysis

Fig. 5.11 Nose curve for the IEEE 14-bus system enforcing PV and slack generator

reactive power limits

Any other limit can be checked during the CPF analysis. For example, bus
voltage magnitude limits and transmission line and transformer thermal lim-
its. However, these limits are conceptually different than generator reactive
power limits because the former do not directly lead to a point of collapse.
However, voltage and thermal limit violations have to be avoided to prevent
cascade line tripping phenomena.

5.4.4 Continuous Newton’s Method and Homotopy

This subsection discusses an analogy between the homotopy method pro-
posed by Davidenko in [72] and the continuous Newton’s method presented
in Chapter 4. Differentiating the power flow equations (5.10) at an equilib-
rium point, one has:

0 = gydy + gμdμ (5.59)

Equation (5.59) leads to the homotopy method proposed by Davidenko for
computing the variation of y as a function of the parameter μ [72]:

dy

dμ
= −[gy]−1gμ (5.60)

5.4 Homotopy Methods 127

where gμ = ∇T
μg.4 The Davidenko’s method fails at turning points (e.g.

saddle-node bifurcations) because of the singularity of gy. More details on
homotopy techniques can be found in [276].

Equations (5.60) is equivalent to a set of ODE, where the integration
variable is μ. It is relevant to note the similarity of the continuous Newton’s
method (4.70) and (5.60). In fact, let us define the function h(y, t) as follows:

0 = h(y, t) = etg(y) (5.61)

where e represents the natural exponential. Then, differentiating h, one has:

0 = hydy + htdt (5.62)
= etgxdy + etgdt

Thus, (4.70) can be rewritten as:

dy

dt
= −[hy]−1ht (5.63)

Equation (5.63) shows that t can be viewed as the continuation parameter
for the function h(y, t). As for the Davidenko’s method, the continuous New-
ton’s method fails at turning points where the power flow Jacobian matrix is
singular.

The main difference between (5.60) and (5.63) is that μ is an internal
parameter (i.e., the homotopy is forced) while t is an external one (i.e., the
homotopy is free-running). Thus, only the final equilibrium point of (5.63)
is physically relevant, while the values of y in intermediate iterations lack of
physical meaning.

5.4.5 N-1 Contingency Analysis

On the use of the CPF analysis there is sometime some confusion. The most
frequent critic that is moved to the CPF model is that the path used for
increasing load powers cannot be known a priori. Another critic is about the
use of a scalar parameter μ that increases all load and generator powers.

Actually, these critics are not justified since the basic assumption of con-
tinuation power flow analysis is that the load increase is virtual. In other
words, the information provided by the CPF is how distant from the point
of collapse is the current loading condition. Thus, the loading level μ is not a

4 Equation (5.60) can be also obtained from (4.70). As a matter of fact, differen-

tiating (4.68) and imposing dẏ = 0 leads to:

0 = df̃ = −Indy − [gy]
−1gμdμ

where it is implicitly assumed that gy does not depend on μ, as discussed in

Section 5.2.

128 5 Continuation Power Flow Analysis

real load increase, but rather a measure of the security margin of the current
loading condition.

The usefulness of the CPF analysis is clear if applied to contingency analy-
sis. System operators have to ensure that for each credible contingency (e.g.,
line or generator outage) the system is able to supply the current load. This
is also referred as N-1 contingency criterion. The CPF provides a tool to
evaluate the impact of each contingency in terms of the maximum loading
level μmax. If a contingency leads to a μmax < 1, then the contingency is not
feasible.

System operators generally fix a minimum loading margin to ensure that
the current loading condition has a minimum distance to the point of collapse.
Thus, for each contingency, μmax ≥ μsm must hold, where μsm is the required
security margin. For example, if μsm = 1.1, the system has to ensure a 10%
loading margin. If a certain contingency is characterized by μmax < μsm,
then that contingency is classified as critical and corrective actions are
recommended.

Example 5.5 N-1 Contingency Analysis for the IEEE 14-Bus
System

Figure 5.12 and Table 5.1 illustrate the N-1 contingency analysis for the IEEE
14-bus test system. Results are obtained considering only generator reactive
power limits. The table shows the maximum loading level μmax correspondent

Fig. 5.12 Nose curves for the IEEE 14-bus system considering a variety of line

outages

5.5 Summary 129

Table 5.1 N-1 contingency analysis for the IEEE 14-bus system

Branch From To Outage μmax

bus h bus k type [pu]

1 1 2 Unfeasible 0.9930
2 1 5 Feasible 1.3223
3 2 3 Critical 1.2622
4 2 4 Feasible 1.4428
5 2 5 Feasible 1.4876
6 3 4 Feasible 1.5243
7 4 5 Feasible 1.4578
8 4 7 Feasible 1.3310
9 4 9 Feasible 1.5289
10 5 6 Feasible 1.3081
11 6 11 Feasible 1.5489
12 6 12 Feasible 1.5499
13 6 13 Feasible 1.5239
14 7 8 Feasible 1.4623
15 7 9 Feasible 1.4476
16 9 10 Feasible 1.5499
17 9 14 Feasible 1.5318
18 10 11 Feasible 1.5554
19 12 13 Feasible 1.5572
20 13 14 Feasible 1.5501

to the outage of each line of the network. The outage is considered feasible if
the maximum loading condition associated to line outage is μmax > 1 (μ = 1
is the base case loading condition). According to this condition, only line 1-2
outage is unfeasible. Moreover, assuming for the sake of example that the
required security margin is μsm = 1.3 (i.e., 30% loading margin), the line 2-3
outage is critical.

5.5 Summary

This section summarizes most relevant concepts related to continuation power
flow analysis.

Maximum loading condition: The calculation of the maximum loading con-
dition of a power system can be formulated as the problem of computing
the bifurcation points of classical power flow equations. Although bifur-
cation theory applies to dynamical systems, the use of static power flow
equations is justified by assuming slow load variations and fast dynamics
of power flow variables.

Point of collapse and bifurcation points: The only bifurcations of interest in
power flow analysis are those that lead to a point of collapse, i.e., the

130 5 Continuation Power Flow Analysis

maximum loading level beyond which power flow equations have no solu-
tion. These are the saddle-node and the limit-induced bifurcations. The
saddle-node bifurcation is associated with the transmission system ca-
pacity and is intrinsic of the quadratic form of power flow equations.
The limit-induced bifurcation refers to the reactive power reserve of syn-
chronous generators. While the saddle-node bifurcation is always a point
of collapse, limit-induced bifurcations can be critical or non-critical. Only
critical limit-induced bifurcations are points of collapse.

Direct methods: Direct methods allows calculating directly the maximum
loading condition of the system. The simplest direct methods are for-
mulated as a set of nonlinear equations that include power flow equa-
tions and other constraints aimed to impose the conditions of either the
saddle-node or the limited-induced bifurcation. Such direct methods are
difficult to solve and have no practical interest. Another class of direct
methods is based on nonlinear programming techniques. These lead to
the formulation of the maximum loading condition as an optimal power
flow problem. Due to its several implications that go far beyond the de-
termination of the maximum loading condition, the entire Chapter 6 is
dedicated the discussion of the optimal power flow analysis.

Homotopy methods: Homotopy methods are a class of algorithms that allow
efficiently and reliably solving the problem of calculating the maximum
loading condition of power flow equations. Homotopy methods consist
in defining a homotopy map and a continuation equation whose Jaco-
bian matrix is not singular at bifurcation points, hence the numerical
robustness. In particular, the continuation power flow analysis is a forced
homotopy method and consists in a predictor and in a corrector step. The
predictor can be obtained through a tangent vector or the secant, whereas
the corrector can be obtained through a perpendicular intersection or a
local parametrization.

N-1 contingency analysis: The maximum loading condition can be consid-
ered as a measure of the distance to the collapse of the current operating
point and not the other way round, i.e., the amount of load that the
system can feed before collapsing. Thus, the most relevant application of
the CPF technique is the N-1 contingency analysis. Given a set of con-
tingencies (e.g., line outages), the CPF analysis provides the maximum
loading level corresponding to each contingency. If a contingency is char-
acterized by a maximum lading level lower than the current operating
condition, that contingency is unfeasible. If a contingency is character-
ized by a maximum lading level lower than a given margin (typically fixed
by the system operator), that contingency is critical. In both cases, the
system operator has to take corrective actions to improve system security.

Chapter 6

Optimal Power Flow Analysis

This chapter describes the optimal power flow problem. Section 6.1 provides
the background of the OPF problem and justifies the need for numerical
methods. Section 6.2 provides a general nonlinear programming model for
the OPF problem. A variety of examples are also provided in this section.
Section 6.3 describes two solver methods for tackling the OPF problem,
namely the generalized reduced gradient and the primal-dual interior-point
methods. For the latter method, the Python implementation and numerical
results are also provided. Finally, Section 6.4 summarizes common parameters
of the interior point method.

6.1 Background

Several issues in power system analysis can be formulated as an optimiza-
tion problem. For example, in centralized power systems typical objectives
are minimizing generation cost and/or transmission system losses. In recent
years, most national power grids have been restructured so that the central-
ized management has been substituted by a decentralized electricity market.
In a competitive environment, the objective function is typically the max-
imization of the social benefit. Other common objectives are to minimize
emissions, to maximize system security, etc.

The common constraint of most power system optimization problems
are the power flow equations that are discussed in Chapter 4. As a sim-
ple example, consider again the didactic 3-bus example system discussed in
Section 4.1. For clarity, this system is depicted again in Figure 6.1.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 131–153.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

132 6 Optimal Power Flow Analysis

1 2

3

pG1 pG2

−pL3

Fig. 6.1 3-bus system

As a simple example of optimization problem, consider the classical prob-
lem of generator cost minimization. Since this 3-bus system is loss-less, one
has:

Minimize
pG1, pG2

cG1(pG1) + cG2(pG2) (6.1)

subject to pG1 + pG2 − pL3 = 0 (6.2)

where cG1 and cG2 are generator cost functions and can be assumed quadratic.
For example, cG1(pG1) is:

cG1(pG1) = a1 + b1pG1 +
c1
2
p2
G1 (6.3)

A similar expression holds for cG2(pG2).
The solution of (6.1)-(6.2) is straightforward if one defines the Lagrangian

function and imposes the Karush-Kuhn-Tacker’s (KKT) optimality condi-
tions. The Lagrangian function is:

L (pG1, pG2, ρ) = cG1(pG1) + cG2(pG2) − ρ(pG1 + pG2 − pL3) (6.4)

Hence the KKT condition are:

0 =
∂L

∂pG1
= c1pG1 − ρ (6.5)

0 =
∂L

∂pG2
= c2pG2 − ρ

0 =
∂L

∂ρ
= pG1 + pG2 − pL3

where ρ is the dual variable or Lagrangian multiplier associated with the
power balance equation (6.2). Thus, the solution is:

6.2 Optimal Power Flow Model 133

pG1 =
c2

c1 + c2
pL3 (6.6)

pG2 =
c1

c1 + c2
pL3

ρ =
c1c2
c1 + c2

pL3

The dimension of the dual variable ρ is a cost per power unit and per hour.
For this reason, ρ is also called marginal cost of the system. In a restruc-
tured power system, generator costs have become “secret” and only offers are
known. However, as it often happens, this is only a new name for the same
mathematical quantity. If one assumes that functions cG1(pG1) and cG2(pG2)
are offers, the dual variable ρ takes the meaning of market clearing price, i.e.,
the amount that each generator of the system has to be paid for each unit of
produced power. In any case, the solution procedure of (6.1)-(6.2) does not
change.

Problem (6.1)-(6.2) is linear and does not contain inequalities. There are
virtually infinite ways of complicating this problem. Actually, optimization
problems are a kind of Swiss-army knife in power system analysis and can
be used for tackling a huge variety of power system issues. The scope of this
chapter is not to enumerate all possible formulations but rather to provide
the tools for solving an as general as possible class of optimization problems.
With this aim, following sections focus only nonlinear programming (NLP)
techniques and, among all possible NLP methods, only the reduced gradient
method and the interior point methods are discussed.

6.2 Optimal Power Flow Model

The very first formulations of the optimal power flow problem taking into
account both power flow equations and economic dispatch were presented
at the beginning of the sixties [48, 290] and further important developments
were given in the following decade. At that time, there was no distinction
between the solution method and the problem formulation. On the contrary,
solution methods were suited to a specific problem formulation. For exam-
ple, reduced gradient method in [80], Powell’s and Fletcher-Powell’s methods
[265], Hessian method in [266], sequential programming [255], differential in-
jection method in [49], and linear programming [301]. By the middle of the
seventies, the optimal power flow problem was a mature tool for assessing
both power system security and economic dispatch [50, 120, 267, 309]. Since
then, a huge variety of methods/models have been proposed so that survey
papers have been necessary (e.g., [134, 300]).

In the last decade, power system restructuring has led to a renewed inter-
est in mathematical programming, since it provides the adequate tools for
tackling electricity markets [277]. From the programming point of view, in
the last decade, the trend has been to take implementation details and prob-
lem formulation separated. This separation has been made possible by the

134 6 Optimal Power Flow Analysis

availability of mature software packages that provide a general purpose meta-
language for mathematical programming (e.g., GAMS [31] and AMPL [99]).
In this chapter, modelling and implementation are also discussed separately.

The system model that is used throughout this chapter is a constrained
nonlinear programming problem in the following general form:

Minimize
z

ϕ(z) (6.7)

subject to g(z) = 0

h(z) ≤ 0

where z ∈ R
nz , ϕ(z) is the objective function (ϕ(z) : R

nz �→ R), g(z) are
the equality constraints (g(z) : R

nz �→ R
ng), and h(z) are the inequality

constraints (h(z) : R
nz �→ R

nh), and ng < nz. The latter condition allows
(6.7) having (nz − ng) degrees of freedom.1 The functions ϕ(z), g(z) and
h(z) are assumed to be smooth, i.e., continuous and differentiable at least
two times for z ∈ R

nz .
According to the definitions given in Section 1.4 of Chapter 1, the vector

z is formed by algebraic variables y and controllable parameters η. Thus,
z = [yT ,ηT]T and nz = ny + nη.

In order to properly describe the solution methods for the problem (6.7),
some definitions are required.

1. A point z∗ ∈ R
nz is a local minimizer if g(z∗) = 0 and h(z∗) ≤ 0 and

there exists an ε > 0 such that ϕ(z∗) ≤ ϕ(z) ∀x ∈ R
nz , with g(z) = 0

and h(z) ≤ 0 and |z − z∗| < ε.
2. A point zr ∈ R

nz is said to be a regular point of the constraints g(z) and
h(z) if satisfies the conditions g(z) = 0 and h(z) ≤ 0 and if the gradients
gzr and hzr are linearly independent.

The former definitions allows formulating the first-order KKT optimality
conditions, as follows. If z∗ is both a local minimizer of (6.7) and a regular
point of the constraints g(z) and h(z), then there exist vectors ρ ∈ R

ng and
π ∈ R

nh , with π ≥ 0, such that:

ϕz(z∗) + ρTgz(z∗) + πThz(z∗) = 0 (6.8)
πTh(z∗) = 0

The vectors ρ and π are called dual variables or multipliers. The first-order
optimality conditions (6.8) can be conveniently expressed in terms of the
Lagrangian function. The Lagrangian of the constrained problem (6.7) is:

L (z,ρ,π) = ϕ(z) + ρTg(z) + πTh(z) (6.9)

1 This definition is actually borrowed from mechanical engineering and is not used

in mathematical programming.

6.2 Optimal Power Flow Model 135

Thus, the first-order optimality conditions (6.8) become:

Lz(z,ρ,π) = 0 (6.10)
Lρ(z,ρ,π) = 0 (6.11)
h(z) ≤ 0 (6.12)
Πh(z) = 0 (6.13)
π ≥ 0 (6.14)

where Π = diag(π1, π2, . . . , πnh
), the conditions (6.11) and (6.12) ensure the

primal feasibility; the conditions (6.10) and (6.14) ensure the dual feasibil-
ity; and (6.13) are the complementarity conditions. It is important to note
that the first-order optimality conditions allow characterizing only regular
points. Non-regular points require specific conditions and are not considered
in what follows since non-regular points are quite uncommon in power system
problems.

The system (6.10)-(6.14) is a set of nonlinear equations that include both
equalities and inequalities. A constraint is said to be binding (or active) if
it is equal to zero. By definition, equalities g are always binding, while an
inequality is binding only if hk = 0. It is worth observing that if a constraint
is not binding for a given local minimizer, that constraint can be removed
from (6.7), thus reducing the problem to:

Minimize
z

ϕ(z) (6.15)

subject to g(z) = 0

h̃(z) = 0

where h̃ (h̃ ⊂ h) is the set of binding constraints. Unfortunately, one knows
which inequalities are binding only after founding a local minimizer z∗ of
the original problem (6.7). However (6.15) can be useful for extracting some
properties of the solution z∗.

If h(z) is a null vector, then the solution of the optimization problem (6.7)
reduces to the solution of a set of nonlinear equalities. However, in general,
h(z) is not null, which considerably complicates the solution of (6.10)-(6.14).
With this aim, it may be useful to transform the initial optimization problem
(6.7) introducing a vector of non-negative slack variables s ∈ R

nh , as follows:2

Minimize
z

ϕ(z) (6.16)

subject to g(z) = 0

s+ h(z) = 0, s ≥ 0

2 The advantages of this transformation are clarified in Subsection 6.3.2.

136 6 Optimal Power Flow Analysis

The first-order optimality conditions of (6.16) are:

Lz(z,ρ,π, s) = 0 (6.17)
Lρ(z,ρ,π, s) = 0 (6.18)
Lπ(z,ρ,π, s) = 0 (6.19)
Πs = 0 (6.20)
s ≥ 0 (6.21)
π ≥ 0 (6.22)

The latter problem is somewhat easier to solve than (6.10)-(6.14). Analo-
gously to the non-transformed problem, the conditions (6.18), (6.19) and
(6.21) ensure the primal feasibility; the conditions (6.17) and ((6.22)) ensure
the dual feasibility; and (6.20) are the complementarity conditions.

The concept of degenerated constraints completes this brief list of defini-
tions. A constraint is degenerate if it is binding and its associated multiplier
is null. For example, an inequality constraint is degenerate if hk = 0 and
πk = 0, and is non-degenerate otherwise. In physical optimization problems
and in particular in optimal power flow problems, binding constraints are
generally non-degenerate. This observation eases the solution of the first-
order optimality conditions. Assuming non-degenerate binding constraints
(6.10)-(6.14) become:

Lz(z,ρ,π) = 0 (6.23)
Lρ(z,ρ,π) = 0
if hk < 0 ⇒ πk = 0
if hk = 0 ⇒ πk > 0

and the first-order optimality conditions (6.17)-(6.22) of the transformed
problem (6.16) become:

Lz(z,ρ,π, s) = 0 (6.24)
Lρ(z,ρ,π, s) = 0

Lπ(z,ρ,π, s) = 0
if sk > 0 ⇒ πk = 0
if sk = 0 ⇒ πk > 0

Mathematical programming is a broad branch of mathematics and this sec-
tion is not intended to provide a comprehensive treatise. The interested reader
can find useful the following references [24, 51, 95, 96, 106, 175].

6.2 Optimal Power Flow Model 137

Example 6.1 Standard Optimal Power Flow Problem

A typical, relatively general OPF-based problem can be represented using
the following nonlinear constrained optimization problem:

Minimize
z

ϕ = −(
∑
h∈D

cL(pL) −
∑
h∈S

cG(pG)) (6.25)

subject to g(θ,v, qG,pG,pL) = 0 → Power flow equations

pmin
G ≤ pG ≤ pmax

G → Generator p limits

qmin
G ≤ qG ≤ qmax

G → Generator q limits
pmax
L ≤ pL ≤ pmax

L → Load p limits
| φij(θ,v) |≤ φmax

ij → Flow limits

| φji(θ,v) |≤ φmax
ji

vmin ≤ v ≤ vmax → Voltage limits

where z = (θ,v, qG,pG,pL), cG and cL are vectors of functions of the genera-
tor and load powers, respectively; qG stand for the generator reactive powers;
v and θ represent the bus phasor voltages; and pG and pL represent bounded
generator and load limits; and φij and φji represent the active powers (or
apparent powers or currents) flowing through the lines in both directions. In
the security context, power transfer limits are usually determined based only
on power flow based voltage stability studies [107] and can be determined
using the N − 1 contingency analysis that is described in Subsection 5.4.5 of
Chapter 5.

In spite of its simplicity, problem (6.25) can tackle a variety of important
problems.

1. If cG are generation cost functions, cL = 0 and pmin
L = pmax

L , (6.25) allows
solving the classical economic dispatch ensuring security limits such as
voltage limits and transmission line thermal limits.

2. If cG(pG) = pG and cG(pL) = pL, (6.25) allows minimizing power system
losses.

3. If cG(pG) = −pG and cL = 0, (6.25) allows maximizing the power produc-
tion. This problem is useful to evaluate the allowable penetration of energy
resources in the power system (e.g., renewable and distributed generation).

4. If cG(pG) and cL(pL) have the meaning of offers and bids, respectively,
rather then costs, then the objective function becomes the social benefit
and (6.25) allows solving the security constrained market dispatch [353].
The demand is said to be inelastic if pmin

L = pmax
L (which is the common

case), elastic if pmin
L < pmax

L .

138 6 Optimal Power Flow Analysis

Example 6.2 Maximization of the Distance to Voltage Collapse

The following optimization problem is implemented to represent system se-
curity through the use of voltage stability conditions, based on what was
proposed in [43, 46, 47]:

Minimize
z

ϕ = −μ (6.26)

subject to g(θ,v, qG,pG,pL) = 0 → PF equations
gc(θc,vc, qcG, k

c
G, μ,pG,pL) = 0 → Max load PF equations

μmin ≤ μ → Loading level

pmin
G ≤ pG ≤ pmax

G → Generator p limits

pmin
L ≤ pL ≤ pmax

L → Load p limits
φij(θ,v) ≤ φmax

ij → Flow limits

φji(θ,v) ≤ φmax
ji

φij(θ
c,vc) ≤ φmax

ij

φji(θ
c,vc) ≤ φmax

ji

qmin
G ≤ qG ≤ qmax

G → Generator q limits

qmin
G ≤ qcG ≤ qmax

G

vmin ≤ v ≤ vmax → Voltage limits

vmin ≤ vc ≤ vmax

where z = (μ,θ,v, qG,θ
c,vc, qcG,pG,pL).

In this case, a second set of power flow equations and constraints with
a superscript c is introduced to represent the system at the limit or criti-
cal conditions associated with the loading margin μ that drives the system
to its maximum loading condition. The critical power flow equations gc can
present a line outage. The maximum or critical loading point could be either
associated with a thermal or bus voltage limit or a voltage stability limit
(collapse point) corresponding to a system singularity (saddle-node bifurca-
tion) or system controller limits like generator reactive power limits (limit
induced bifurcation) [39, 259]. Thus, for the current and maximum loading
conditions, the generator and load powers are defined as follows:

pcG = (1 + μ+ kcG)pG
pcL = (1 + μ)pL

where kcG represents a scalar variable which distributes system losses associ-
ated only with the solution of the critical power flow equations in proportion
to the power injections obtained in the solution process (distributed slack bus

6.3 Nonlinear Programming Solvers 139

model). It is assumed that the losses corresponding to the maximum loading
level defined by μ are distributed among all generators.

For the sake of example, consider the Lagrangian function L associated to
problem (6.26) with all inequalities transformed into equalities through the
vector of slack variables s as in (6.16).

L = ϕ− ρTg(θ,v, qG,pG,pL) (6.27)

− ρTc gc(θc,vc, qcG, μ,pG,pL)

− πμmin(μ− μmin − sμmin)

− πTpmax
G

(pmax
G − pG − spmax

G
)

− πTpmin
G

(pG − pmin
G − spmin

G
)

− πTpmax
L

(pmax
L − pL − spmax

L
)

− πTpmin
L

(pL − pmin
L − spmin

L
)

− πTφmax
ij

(φmax
ij − φij − sφmax

ij
)

− πTφmax
ji

(φmax
ji − φji − sφmax

ji
)

− πTφc max
ij

(φmax
ij − φijc − sφc max

ij
)

− πTφc max
ji

(φmax
ji − φjic − sφc max

ji
)

− πTqmax
G

(qmax
G − qG − sqmax

G
)

− πTqmin
G

(qG − qmin
G − sqmin

G
)

− πTqc max
G

(qmax
G − qcG − sqc max

G
)

− πTqc min
G

(qcG − qmin
G − sqc min

G
)

− πTvmax(vmax − v − svmax)

− πTvmin(v − vmin − svmin)

− πTvc max(vmax − vc − svc max)

− πTvc min(vc − vmin − svc min)

where ρ and ρc ∈ R
ng , and all the other π (πk > 0, ∀k) correspond to the

Lagrangian multipliers. The s variables have to satisfy the non-negativity
condition s > 0.

6.3 Nonlinear Programming Solvers

As indicated in the previous section, the problem of finding a local mini-
mizer of (6.7) or (6.16) is equivalent to solve (6.10)-(6.14) or (6.17)-(6.22),
respectively. These are sets of nonlinear equalities and inequalities. The main
challenges from the solution method viewpoint are twofold:

140 6 Optimal Power Flow Analysis

1. The inequalities constraints (6.12) and (6.14) or (6.21) and (6.22) compli-
cate considerably the solution process.

2. The conditions (6.10) or (6.17) contain the Jacobian matrices ϕz and
gz and hz. Thus any solution method that involves the calculation of
Lzz (such as the any Newton’s method), implies setting up the Hessian
matrices ϕzz and gzz and hzz. In case of power flow equations, calculating
gzz is not a trivial task.

In the following sections, only two solution methods are described, namely
the reduced gradient method and the primal-dual interior point method.

6.3.1 Generalized Reduced Gradient Method

The generalized reduced gradient (GRG) has been one of first methods used
in power system analysis [80]. The GRG method is also used in well-assessed
solvers such as CONOPT [81]. This method works for constrained nonlinear
problems and resembles the solution approach of the simplex method used for
linear programming [96]. The main idea of the GRG method is to divide the
variables z into two subsets, one of basic (or dependent) variables and one of
non-basic (or independent) variables. In mathematical terms, basic variables
are those variables that are unequivocally determined once the vector of non-
basic variables is assigned. To define basic and non-basic variables is generally
easy in physical problems. As a matter of fact, according to Sections 1.4 and
6.2, z = [yT ,ηT]T . Thus y are the basic variables and η are the non-basic
ones. For example, in the standard optimal power flow problem, y are bus
voltages, while η are the generator active powers.

In order to describe the reduced gradient method, consider for simplicity
the following optimization problem:

Minimize
y,η

ϕ(y,η) (6.28)

subject to g(y,η) = 0

How to handle inequalities is explained later on. The reduced gradient r(η)
of (6.7), with r(η) : R

nη �→ R
nη , is defined as:

r(η) =
dϕ

dη
= ϕy +

dy

dη
ϕη (6.29)

Differentiating g(y,η), and assuming that the current point (y(i),η(i)) is
feasible and satisfies g(y(i),η(i)) = 0, one has:

gy|idy + gη|idη = 0 (6.30)

Thus, (6.29) can be rewritten as:

r(η) = ϕy − g−1
y gηϕη (6.31)

6.3 Nonlinear Programming Solvers 141

The reduced gradient is used a direction along which finding a small move
from the current value of η(i) that is able to decrease the objective function ϕ.
For the current feasible point (y(i),η(i)), the step size Δη(i)

k for k = 1, . . . , nη
is:

Δη
(i)
k =

{
0 if η

(i)
k = 0 and rk(η) > 0

−rk(η) otherwise
(6.32)

Then, the basic variable step size Δy(i) is computed as:

Δy(i) = −g−1
y gηΔη

(i) (6.33)

Thus, the projection move is:

z̃(i+1) = z(i) +Δz(i) (6.34)

where Δz(i) = [[Δy(i)]T , [Δη(i)]T]T .
Due to the nonlinearity of constraints g, the projection move provides a

new point that does not satisfy g(ỹ(i+1), η̃(i+1)) = 0. It is thus necessary to
apply a restoration move that moves the current point back to the constraint
boundary. A possibility is to use a linear approximation of the constraints
g(z(i+1)):

g(z(i+1)) ≈ g(z̃(i+1)) + gz(z(i+1) − z̃(i+1)) (6.35)

Since equations g(z) are not linear and the Jacobian matrix gz is not square,
the correction z(i+1) can be found using a Newton’s method and iterating
the following equation until max{abs(g(z(i+1)))} is sufficiently small:

z(i+1) = z̃(i+1) − gz(gTz gz)−1g(z(i+1)) (6.36)

The whole reduced gradient procedure ends if max{abs(Δz(i))} < ε or if the
maximum number of moves are completed.

In case the optimization problem contains inequalities, the procedure de-
scribed above uses the vector of all binding constraints, e.g., one has to sub-
stitute g with ga = [gT , h̃

T
]T , where h̃ are the binding inequalities at the

step i. The main difficulty is to find a projection move that does not violates
inactive constraints. With this aim, the projection move (6.34) is modified
using the Haug and Arora’s procedure [125], which is a combination of the
projection and the restoration modes:

z(i+1) = α∗z(i) − ga,z(gTa,zga,z)−1ga(z
(i+1)) (6.37)

where α∗ is defined by defining a given reduction γ in the objective function:

α∗ =
γϕ(z(i))

(Δz(i))Tϕz(z(i))
(6.38)

142 6 Optimal Power Flow Analysis

After solving the restoration move, new constraints may become binding, and
the vector ga has to be updated before solving the next projection step.

Example 6.3 Continuation Power Flow as Reduced Gradient
Method

This example states the formal analogy between the reduced gradient method
described above and the homotopy predictor-corrector method described in
Section 5.4 of Chapter 5. A similar proof was originally presented in [37] and
further formalized in [21].

The analogy can be shown straightforwardly by observing that in the con-
tinuation power flow analysis, the non-basic variable is the loading level μ
and that the objective function is ϕ = −μ. Since ϕy = 0 and ϕμ = −1, the
reduced gradient (6.31) becomes:

r(μ) = g−1
y gμ (6.39)

Hence, the reduced gradient r coincides with the tangent vector τ used for
the predictor step (e.g., projection move) discussed in Section 5.4. As for the
restoration move discussed above, it is just another version of the correctors
steps described the same Section 5.38. Moreover, the PV generator reactive
power limits discussed in Example 5.4 are inequality constraints. Whenever
a reactive power limit (e.g., qmax

Gh) is reached, the constraint qGh ≤ qmax
Gh

becomes binding and the vector of y is updated to include the voltage mag-
nitude vh at the PV generator bus. Alternatively, if vh is already defined as
a variable, the constraint vh = vref

Gh is removed from g.

6.3.2 Interior Point Method

Although Interior Points Methods (IPMs) have been formalized in late sixties
[95], the nineties are the dawn of most IPM-based applications for power
system analysis [8, 111, 148, 209, 311, 352]. IPM-based OPF problems proved
to be robust, especially in large networks, as the number of iterations increase
slightly with the number of constraints and network size.

In particular, in [251, 311, 312], the authors present a comprehensive inves-
tigation of the use of primal-dual IPM for nonlinear problems, and describe
the application of Newton’s direction and Mehrotra’s predictor-corrector to
the OPF. The latter allows reducing the number of iterations to obtain the
final solution. Both methods are described in this section.

The main idea of the primal-dual IPM discussed in [95] is the introduc-
tion of logarithmic barrier function that allows incorporating inequality con-
straints in the objective function. In this way, inequalities are implicitly taken
into account. The objective function modified by means of the logarithmic
barrier function is:

6.3 Nonlinear Programming Solvers 143

ϕ̂(z, μ̂) = ϕ(z) − μ̂

nh∑
k=1

ln(−hk(z)) (6.40)

where μ̂ > 0 is the barrier parameter. The logarithmic function ensures that
h(z) < 0. In order to effectively minimize the objective function, during the
iterative process of the IPM, μ̂ is decreased monotonically to zero.

Applying the logarithmic function to the transformed problem (6.16), one
obtains:

Minimize
z

ϕ(z) − μ̂

nh∑
k=1

ln(sk) (6.41)

subject to g(z) = 0

s+ h(z) = 0, s > 0

The logarithmic terms impose strict positivity on the slack variables. First
order optimality conditions for (6.41) are:

ϕz + ρTgz(z) + πThz(z) = 0 (6.42)
g(z) = 0

s+ h(z) = 0
π − μ̂S−1e = 0

where S = diag(s1, s2, . . . , snh
) and e = [1, 1, . . . , 1]T . The complementarity

constraints can be rewritten as:

Sπ − μ̂e = 0 (6.43)

where μ̂e with μ̂ > 0 is a perturbation of the standard complementarity
conditions.

The primal-dual IPM consists in the following steps.

1. Initial guess. Set a starting point i ⇐ 0, z(0), s(0), π(0) and μ̂(0). The
initial guess must satisfy the strict positivity condition.

2. Computing variable directions. Compute the Jacobian matrix of the first-
order optimality conditions (6.42) and compute variable directions.

3. Updating variables. Update primal and dual variables using a step length
on the directions computed in the previous step.

4. Reducing the barrier parameter. A new barrier parameter μ̂(i+1) is updated
based on the current slack and dual variables s(i) and π(i), respectively.

5. Convergence test. Check if the new point is a local minimizer. If yes the
algorithm ends, otherwise set i ⇐ i+ 1, update the barrier parameter μ̂(i)

and go back to Step 2.

Each step is briefly described in the following subsections.

144 6 Optimal Power Flow Analysis

Initial Guess

IPM methods do not requires that the initial point z is a feasible point,
however the strict positivity conditions s > 0 and π > 0 must be satisfied,
otherwise the method does not converge. Some heuristics can also help obtain
the convergence. In [311], the following initialization are proposed:

1. Primal variables z can be obtained as the solution of a power flow problem
or computing the middle point between the upper and the lower limit for
the bounded variables.

2. The slack variables s are initialized to satisfy the strict positivity con-
straint. Rewriting inequalities as:

hmin ≤ ĥ(z) ≤ hmax (6.44)

slack variables associated with lower limits, say smin are obtained as:

s
(0)
min = min{max{γhΔ, ĥ(z(0)) − hmin}, (1 − γ)hΔ} (6.45)

where hΔ = hmax − hmin and γ = 0.25. Then, slack variables associated
with upper limits are set as:

s(0)
max = hΔ − s(0)

min (6.46)

3. The dual variables π(0) are given by:

π(0) = μ̂(0)[S(0)]−1e (6.47)

4. The dual variables ρ(0)
k are set to 1 if associated with an active power

constraint, 0 otherwise.

Computing Variable Directions

At each step i of the IPM method, variable directions are used for following
the path of minimizers parametrized by μ̂(i). The most common method to
compute directions is the Newton’s method which consists in solving the
following linear system obtained from (6.42) and (6.43):

Lξξ

⎡
⎢⎢⎣
Δz
Δρ
Δπ
Δs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Lzz g

T
z h

T
z 0

gz 0 0 0
hz 0 0 Inh

0 0 S Π

⎤
⎥⎥⎦
⎡
⎢⎢⎣
Δz
Δρ
Δπ
Δs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Lz

Lρ

Lπ

Ls

⎤
⎥⎥⎦ (6.48)

where ξ = [zT ,ρT ,πT , sT]T and the super-script i has been omitted for
simplicity. The size of the system (6.48) can be reduced to a 2nz×2nz system
by approximating Lπ ≈ 0 and Ls ≈ 0 as follows:

6.3 Nonlinear Programming Solvers 145

[
L̂zz g

T
z

gz 0

] [
Δz
Δρ

]
=
[
Lz

Lρ

]
(6.49)

that provides Δz and Δρ, plus the following direct equations:

Δs = −hzΔz (6.50)
Δπ = −S−1ΠΔs

where:
L̂zz = Lzz + hTzS

−1Πhz (6.51)

Newton directions obtained from (6.48) or (6.49) are generally sufficient to
lead to convergence. However, sparse matrix factorization is the most time
consuming operation of the whole algorithm. Thus, it is worth looking for
methods that allows reducing the iterations and, consequently, the number
of factorizations. In this vein, the Mehrotra’s predictor-corrector method is
a good option. The Mehrotra’s method consists in computing variable direc-
tions in two steps but only needs one factorization of the matrices in (6.48) or
(6.49), thus leading to a computational burden similar to the standard New-
ton’s directions. Details on the Mehrotra’s method can be found in [190].

Predictor Step: The predictor step is obtained as follows:

Lξξ

⎡
⎢⎢⎣
Δzp
Δρp
Δπp
Δsp

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Lz

Lρ

Lπ

−Sπ

⎤
⎥⎥⎦ (6.52)

The prediction provided by (6.52) is also called the affine-scaling direc-
tion. Using this direction is possible to estimate a new barrier parameter
value μ̂(i)

p . How to update the barrier parameter is explained in the fol-
lowing subsection.

Corrector Step: The corrector step is obtained as follows:

Lξξ

⎡
⎢⎢⎣
Δz
Δρ
Δπ
Δs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Lz

Lρ

Lπ

−Sπ + μ̂
(i)
p e−ΔSpΔπp

⎤
⎥⎥⎦ (6.53)

where the term μ̂
(i)
p e is called centering direction and helps the current

point keep away from the boundary of the feasible region, andΔSpΔπp is
called corrector direction and in some measure compensates nonlinearity
not taken into account in the affine-scaling direction.

Since the matrix Lξξ in (6.52) and (6.53) is the same, only one factorization is
needed and thus the corrector step does not suppose a relevant extra comput-
ing time. Nevertheless, the variable directions obtained using the Mehrotra’s

146 6 Optimal Power Flow Analysis

method allow reducing the number of iterations with respect to Newton’s
directions.

Updating Variables

The new primal and dual variables are computed based on the previously
computed directions:

z(i+1) = z(i) + α
(i)
P Δz (6.54)

s(i+1) = s(i) + α
(i)
P Δs

ρ(i+1) = ρ(i) + α
(i)
D Δρ

π(i+1) = π(i) + α
(i)
D Δπ

where α(i)
P ∈ (0, 1] and α

(i)
D ∈ (0, 1] are the step length parameters for the

primal and dual variables, respectively. The maximum values of the step
lengths can be estimated using the following heuristic rules:

α
(i)
P = min{1, γmin

k
{−s(i)k /Δsk if Δsk < 0}} (6.55)

α
(i)
Q = min{1, γmin

k
{−π(i)

k /Δπk if Δπk < 0}}

where γ ∈ (0, 1) is a safety factor that ensure that the next point satisfies the
strict positivity condition. A typical value for the safety factor is γ = 0.99995.
In NLP problems, such as the optimal power flow, primal and dual variables
are interdependent due to the dual feasibility conditions. In this case, to use
the same step length for both primal and dual variables can help obtain
convergence:

α
(i)
P = α

(i)
Q ← min{α(i)

P , α
(i)
Q } (6.56)

However, separate step lengths have proved to work well in [111].

Reducing the Barrier Parameter

The barrier parameter μ̂(i) has to be updated (and hopefully reduced) at
each iteration. The new value of the barrier parameter is computed based
on the complementarity gap �̂(i) that is the residual of the complementarity
conditions:

�̂(i) = [s(i)]Tπ(i) (6.57)

The complementarity gap �̂(i) → 0 as the primal variables approach a local
minimizer z → z∗. Then, the new barrier parameter is computed as:

μ̂(i+1) = σ(i+1) �̂
(i)

nh
(6.58)

6.3 Nonlinear Programming Solvers 147

where σ(i+1) ∈ (0, 1) is the centering parameter that can be evaluated as
σ(i+1) = min{0.99σ(i)}, with σ(0) = 0.2.3 For the Mehrotra’s predictor step,
the barrier parameter μ̂(i)

p is computed in a similar way as for the Newton’s
direction-based method. Firstly, the predictor complementarity gap is com-
puted as:

�̂(i)
p = [s+ αpPΔsp]

T (π + αpQΔπp) (6.59)

where αpP and αpQ are the primal and dual predictor step lengths, respectively.
Then the predictor barrier parameter is given by:

μ̂(i)
p = min

⎧⎨
⎩
(
�̂
(i)
p

�̂(i)

)2

, 0.2

⎫⎬
⎭ �̂

(i)
p

nh
(6.60)

Finally, the barrier parameter following the Mehrotra’s corrector step is com-
puted using (6.57) and (6.58).

Convergence Test

The convergence test has to satisfy primal feasibility, dual feasibility and
complementarity conditions:

max{max{h(z)}, ‖g(z)‖∞} ≤ ε1 (6.61)
‖ϕz + ρT gz + πThz‖∞
1 + ‖z‖2 + ‖ρ‖2 + ‖π‖2

≤ ε1

�̂

1 + ‖z‖2
≤ ε2

where the index i is omitted for simplicity. Alternative convergence conditions
are:

μ̂(i) ≤ εμ (6.62)

‖Δz(i)‖∞ ≤ ε2

‖g(z(i))‖∞ ≤ ε1

Finally, a convergence test on the objective function is as follows:

Δϕ(z(i)) =
|ϕ(z(i)) − ϕ(z(i−1))|

1 + |ϕ(z(i))| ≤ ε2 (6.63)

If all convergence tests are satisfied, the current point z(i) is a local minimizer
of (6.41). Typical tolerances are ε1 = 10−4, ε2 = 10−2ε1 and εμ = 10−12.

3 If σ(i) = 1, the first-order optimality conditions define a centering direction, i.e.,

a step towards a point at the barrier trajectory. If σ(i) = 0, the direction is a

pure Newton’s one.

148 6 Optimal Power Flow Analysis

Script 6.1 Interior Point Method

The following Python code implement the IPM described above including
both Newton’s direction method and the Mehrotra’s predictor-corrector step.
As usual, the system.Device class provides the interface between the IPM
algorithm and system devices as discussed in Script 3.2 of Chapter 3. The
matrices system.DAE.Oz and system.DAE.Hes are ϕz and Lzz, respectively.

import system

from cvxopt.base import matrix, spmatrix, sparse, spdiag, div, mul, log

from cvxopt.umfpack import solve, symbolic, numeric

from cvxopt.blas import dotu

def opf():

setup dimensions, variables, vectors and matrices

exec system.Device.setup opf

Zz = spmatrix([], [], [], (system.DAE.ng, system.DAE.ng), ’d’)

parameters

iteration = 1

mui = system.OPF.sigma/system.DAE.nh

msg = ’Iter. = %3d, mui = %s, |dz| = %s, |g(z)| = %s, |dOF| = %s’

initial guess of primal, dual and slack variables

exec system.Device.call opfguess

exec system.Device.call obj

system.DAE.s += 1e-6 # avoid zero slack variables

system.DAE.pi = div(mui, system.DAE.s)

system.DAE.rho[:system.Bus.n] = matrix(1, (system.Bus.n, 1), ’d’)

primal dual interior-point method

while 1:

compute g(z), h(z, s), and Jacobian and Hessian matrices

exec system.Device.call opf

system.DAE.h += system.DAE.s

s = mul(system.DAE.pi, system.DAE.s) - mui

Lz = system.DAE.Oz + (system.DAE.Gz.T)*system.DAE.rho + \
(system.DAE.Hz.T)*system.DAE.pi

Hp = spdiag(div(system.DAE.pi, system.DAE.s))

reduced system

Lr = sparse([[system.DAE.Hes + system.DAE.Hz.T*(Hp*system.DAE.Hz), \
system.DAE.Gz], [system.DAE.Gz.T, Zz]])

if iteration <= 2: F = symbolic(Lr)

try:

C = numeric(Lr, F)

except ValueError:

unexpected refactorization of Langragian Jacobian matrix

F = symbolic(Lr)

C = numeric(Lr, F)

6.3 Nonlinear Programming Solvers 149

if system.OPF.method == ’Newton’:

Hs = spdiag(div(1.0, system.DAE.s))

Dz = -matrix([Lz + system.DAE.Hz.T*(Hp*system.DAE.h - Hs*s), \
system.DAE.g])

solve(Lr, C, Dz)

Ds = -system.DAE.h - system.DAE.Hz*Dz[:system.DAE.nz]

Dp = -Hs*s - Hp*Ds

elif system.OPF.method == ’Mehrotra’:

predictor step

Dz = -matrix([Lz + system.DAE.Hz.T*(Hp*system.DAE.h - \
system.DAE.pi), system.DAE.g])

solve(Lr, C, Dz)

Ds = -system.DAE.h - system.DAE.Hz*Dz[:system.DAE.nz]

Dp = -system.DAE.pi - Hp*Ds

centering correction

alpha P, alpha D = step length(Ds, Dp)

cgap p = dotu(system.DAE.s + alpha P*Ds, \
system.DAE.pi + alpha D*Dp)

cgap = dotu(system.DAE.s, system.DAE.pi)

mui = min((cgap p/cgap)**2, 0.2)*cgap p/system.DAE.nh

s = system.DAE.pi + div(mul(Ds, Dp) - mui, system.DAE.s)

corrector step

Dz = -matrix([Lz + system.DAE.Hz.T*(Hp*system.DAE.h - s), \
system.DAE.g])

solve(Lr, C, Dz)

Ds = -system.DAE.h - system.DAE.Hz*Dz[:system.DAE.nz]

Dp = -s - Hp*Ds

update primal and dual variables

alpha P, alpha D = step length(Ds, Dp)

system.DAE.z += alpha P*Dz[:system.DAE.nz]

system.DAE.s += alpha P*Ds

system.DAE.rho += alpha D*Dz[system.DAE.nz:]

system.DAE.pi += alpha D*Dp

objective function

obj old = system.DAE.obj

exec system.Device.call obj

system.DAE.obj -= mui*sum(log(system.DAE.s + system.OPF.eps mu))

centering parameter, complementarity gap and barrier parameter

system.OPF.sigma = max(0.99*system.OPF.sigma, 0.1)

cgap = dotu(system.DAE.s, system.DAE.pi)

mui = min(abs(system.OPF.sigma*cgap/system.DAE.nh), 1.0)

convergence tests

test1 = mui <= system.OPF.eps mu

norma2 = max(abs(Dz))

150 6 Optimal Power Flow Analysis

test2 = norma2 <= system.OPF.eps2

norma3 = system.Settings.error = max(abs(system.DAE.g))

test3 = norma3 <= system.OPF.eps1

norma4 = abs(system.DAE.obj - obj old)/(1 + abs(system.DAE.obj))

test4 = norma4 <= system.OPF.eps2

print msg % (iteration, mui, norma2, norma3, norma4)

if test1 and test2 and test3 and test4: break

iteration += 1

if iteration > system.OPF.max iter: break

def step length(Ds, Dp):

ratio1 = [1.0/system.OPF.gamma] + \
[-s/d for s, d in zip(system.DAE.s, Ds) if d < 0]

ratio2 = [1.0/system.OPF.gamma] + \
[-s/d for s, d in zip(system.DAE.pi, Dp) if d < 0]

alpha P = system.OPF.gamma*min(ratio1)

alpha D = system.OPF.gamma*min(ratio2)

return alpha P, alpha D

Example 6.4 Optimal Power Flow Analysis for the IEEE 14-Bus
System

This example shows the results of the primal-dual nonlinear IPM applied to
the IEEE 14-bus system. The demand is considered inelastic and equal to
the base case while generator costs are quadratic and, in order to provide
more “freedom degrees”, also synchronous compensators are assumed to be
standard generators with an active power output. The cost function data
and variable limits are taken from [363] and are given in Appendix D. At the
local minimizer, the objective function is 8081.55 e/h. Tables 6.1, 6.2, 6.3
and 6.4 show generator active and reactive powers, bus voltages and power
flow results, respectively. As expected, dual variables are positive only if a
limit is binding. Transmission line limits are not imposed.

Table 6.1 Optimal power flow results for the IEEE 14-bus system: power supplies

Bus πpmin
G

pmin
G pG pmax

G πpmin
G

[MW] [MW] [MW]

1 0.0000 0.0000 194.3276 200.0000 0.0000
2 0.0000 0.0000 36.7192 140.0000 0.0000
3 0.0000 0.0000 28.7453 100.0000 0.0000
6 0.2663 0.0000 0.0000 100.0000 0.0000
8 0.0000 0.0000 8.4948 100.0000 0.0000

6.3 Nonlinear Programming Solvers 151

Table 6.2 Optimal power flow results for the IEEE 14-bus system: generator re-

active powers

Bus πqmin
G

qmin
G qG qmax

G πqmin
G

[MVAr] [MVAr] [MVAr]

1 0.0938 0.0000 0.0000 10.0000 0.0000
2 0.0000 −40.0000 23.6860 50.0000 0.0000
3 0.0000 0.0000 24.1265 40.0000 0.0000
6 0.0000 −6.0000 11.5448 24.0000 0.0000
8 0.0000 −6.0000 8.2719 24.0000 0.0000

Table 6.3 Optimal power flow results for the IEEE 14-bus system: bus voltages

Bus πvmin vmin v vmax πvmin θ
[pu] [pu] [pu] [rad]

1 0.0000 0.9400 1.0600 1.0600 5.8375 0.0000
2 0.0000 0.9400 1.0408 1.0600 0.0000 −0.0702
3 0.0000 0.9400 1.0156 1.0600 0.0000 −0.1732
4 0.0000 0.9400 1.0145 1.0600 0.0000 −0.1512
5 0.0000 0.9400 1.0164 1.0600 0.0000 −0.1296
6 0.0000 0.9400 1.0600 1.0600 0.5522 −0.2215
7 0.0000 0.9400 1.0464 1.0600 0.0000 −0.1953
8 0.0000 0.9400 1.0600 1.0600 0.7107 −0.1818
9 0.0000 0.9400 1.0437 1.0600 0.0000 −0.2268
10 0.0000 0.9400 1.0391 1.0600 0.0000 −0.2309
11 0.0000 0.9400 1.0460 1.0600 0.0000 −0.2285
12 0.0000 0.9400 1.0448 1.0600 0.0000 −0.2362
13 0.0000 0.9400 1.03995 1.0600 0.0000 −0.2371
14 0.0000 0.9400 1.0239 1.0600 0.0000 −0.2491

In the OPF report, the LMP (Locational Marginal Prices) column are
dual variables ρp, while the NCP column indicates Nodal Congestion Prices
that are computed as follows. Using the decomposition formula for LMPs
proposed in [353], one has:

NCP = g−1
y ĥ

T

y (πymax − πymin) (6.64)

where ĥ represents the inequality constraints as defined in (6.44), and πymax

and πymin are the dual variables associated with the lower and upper limits
of such inequality constraints.

Figure 6.2 shows the behavior of the convergence tests of the IPM method
during the 8 iterations required to find the local minimizer with the given
tolerance. The quantities used for the convergence tests are μ̂(i), ‖Δz(i)‖∞,
‖g(z(i))‖∞, and Δϕ(z(i)). Each quantity is normalized with respect to the

152 6 Optimal Power Flow Analysis

Table 6.4 Optimal power flow results for the IEEE 14-bus system: bus power

injections

Bus p q ρp ρq NCP

[MW] [MVAr] [$/MWh] [$/MVArh] [$/MWh]

1 194.3276 0.0000 36.7238 −0.0938 0.0000
2 15.0192 10.9860 38.3596 0.00005 0.6220
3 −65.4547 5.1265 40.5749 0.00005 1.5524
4 −47.8000 3.9000 40.1902 0.1199 1.3823
5 −7.6000 −1.6000 39.6608 0.2076 1.1809
6 −11.2000 4.0448 39.7337 0.00002 1.9533
7 0.0000 −0.0000 40.1715 0.1197 1.7654
8 8.4948 8.2719 40.1699 0.00002 1.6526
9 −29.5000 4.0968 40.1662 0.1961 2.0468
10 −9.0000 −5.8000 40.3178 0.3089 2.1032
11 −3.5000 −1.8000 40.1554 0.2282 2.0627
12 −6.1000 −1.6000 40.3791 0.2124 2.1386
13 −13.5000 −5.8000 40.5755 0.3535 2.1729
14 −14.9000 −5.0000 41.1974 0.5710 2.3410

Fig. 6.2 Convergence behavior of IPM for the IEEE 14-bus system. The upper

plot is obtained using the Newton’s direction method, the lower plot using the

Mehrotra’s predictor-corrector method

value of the first iteration. As expected, the Mehrotra’s predictor-corrector
method converges in less iterations than the Newton’s direction method.

6.4 Summary of IPM Parameters 153

6.4 Summary of IPM Parameters

This section summarizes most relevant parameters related to the interior
point method.

Solver method: The methods described in this chapter are the GRG and the
IPM. Of course, several other methods for nonlinear programming are
available [24]. It is important to note that, since the OPF problem is
non-convex,4 in general only local minima can be found. Furthermore,
due to idiosyncrasies of nonlinearity, it is difficult to say a priori if a
solver method performs well for a given NLP problem.

Tolerance ε1: Tolerance used for checking the convergence of equalities
g(z(i)). Typical value is ε1 = 10−4.

Tolerance ε2: Tolerance used for checking the convergence of variable incre-
ments Δz(i). Typical value is ε2 = 10−2ε1.

Tolerance εμ: Threshold of the barrier parameter μ̂(i) used for defining the
convergence of the IPM. Typical value is εμ = 10−12.

Initial guess type: The initial guess can be obtained as a solution of a pre-
liminary power flow analysis or as a flat start (e.g., middle value between
the upper and lower limits).

Safety factor γ: The safety factor γ ∈ (0, 1) is used for estimating a good
step length and ensuring the strict positivity condition. A typical value
for the safety factor is 0.99995.

Maximum number of iterations: The maximum number of iterations before
stopping the solver method if convergence is not reached. For IPM, a
reasonable iteration limit is 50.

Method used for computing variable directions: Various methods are avail-
able for computing variable directions for the IPM. The most common is
the Newton’s direction. The Mehrotra’s predictor-corrector method pro-
vides more precise directions with a negligible additional computational
effort. Higher order methods (such as composite Newton’s method) can
be also used [312].

Centering parameter σ(i): The centering factor σ(i) ∈ (0, 1). The initial value
of the centering factor can be fixed to σ(0) = 0.2.

4 In fact, if ĥ(z) ≤ hmax is convex, then −ĥ(z) ≤ −hmin is concave, and vice
versa.

This page intentionally left blank

Chapter 7

Eigenvalue Analysis

This chapter describes various aspects of eigenvalues analysis. Section 7.1
provides the background of modal analysis using a simple one-machine
infinite-bus example. Section 7.2 describes the small signal stability anal-
ysis for dynamical power systems and outlines the properties of equilibrium
points, including bifurcation points commonly shown by power systems, par-
ticipation factors and the Z-domain transformation. Section 7.3 describes a
variety of methods for computing a reduced set of eigenvalues and introduces
the singular value decomposition. Section 7.4 describes the modal analysis
applied to the power flow Jacobian matrix. Finally, Section 7.5 summarizes
most relevant concepts related to eigenvalue analysis.

7.1 Background

Consider the one-machine infinite-bus system of Figure 7.1. Assuming that
the machine dynamics are described by the classical model, system equations
are as follows:

δ̇ = Ωb(ω − ωs) (7.1)

ω̇ =
1

2H
(pm − pe(δ)) (7.2)

where Ωb is the synchronous frequency in rad/s, ωs is the synchronous speed
(ωs = 1 pu), H is the rotor inertia constant, pm is the mechanical power,
pe(δ) is the electrical power defined as:

pe =
ev

xeq
sin δ (7.3)

and xeq is the equivalent series reactance composed of the internal machine
reactance, of the transmission line reactance and of the Thevenin reactance
of the infinite bus, i.e., xeq = x′d + xL + xTh.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 155–178.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

156 7 Eigenvalue Analysis

1 0

x′
d

xL xTh

e∠δ v∠0

Fig. 7.1 OMIB system

Fig. 7.2 Equilibrium points of the OMIB system

As it is well known, for δ ∈ [0, π], the dynamical system (7.1)-(7.2) has
two equilibrium points. Figure 7.2 shows these equilibrium points assuming
e = v = pm = 1.0 pu and xeq = 0.5 pu.

Given the vector of state variables x = (δ, ω), the equilibrium points are:

xA = (0.5236, 1)
xB = (2.6180, 1)

The most important property of an equilibrium point is whether it is stable
or unstable. For the simple OMIB system, the stability of the points xA and
xB can be easily determined using virtual variations, as follows.

Point xA: Assume that the system is steady-state at the equilibrium point
xA and that the angle δ is perturbed by a small positive quantity, say

7.1 Background 157

∂δ > 0. Then, pe(δA + ∂δ) > pm and, from (7.1), ω̇ < 0, which leads
to decrease ω. If ω decreases, ω < ωA = 1 and, from (7.2), δ̇ < 0 that
leads to decrease δ. In conclusion, the system responds to an increase of
δ by decreasing it. Similarly, the system responds to a decrease of δ by
increasing it. Hence, the point xA is a sink as it attracts the trajectories
of the system that are sufficiently close to it. Such point is also commonly
called a stable equilibrium point.

Point xB: A specular reasoning can be done for the equilibrium point xB.
Assume that the system is steady-state at the equilibrium point xB and
that the angle δ is perturbed by a small positive quantity, say ∂δ > 0.
Then, pe(δB + ∂δ) < pm and, from (7.1), ω̇ > 0, which leads to increase
ω. If ω increases, ω > ωB = 1 and, from (7.2), δ̇ > 0, which leads to
increase δ. In conclusion, the system responds to an increase of δ by
further increasing it. Similarly, the system responds to a decrease of δ by
further decreasing it. Hence, the point xB is a source as it repulses the
trajectories of the system that are sufficiently close to it. Such point is
also commonly called an unstable equilibrium point.

Unfortunately, the procedure above cannot be applied to a system with hun-
dreds of state variables. There is thus the need of a systematic procedure
that allows defining the stability of an equilibrium point. This systematic
approach is the eigenvalue analysis.

Assume a continuous, nonlinear and smooth ODE system:

ẋ = f(x) (7.4)

where x ∈ R
nx and f : R

nx �→ R
nx . An equilibrium point of (7.4) is a point

x0 that satisfies f (x0) = 0. Then, the solution λ of the following system:

det(fx|0 − λInx) = 0 (7.5)

are the eigenvalues (or characteristic roots [132] or latent roots [185]) of the
state matrix fx|0.

An equilibrium point (or stationary solution) x0 is called hyperbolic or
non-degenerate when the state matrix fx|0 has no eigenvalue with zero real
part. Otherwise the equilibrium is called non-hyperbolic or degenerate. The
well-known Lyapunov’s first stability method states that the properties of the
eigenvalues λ can describe the behavior of the nonlinear system (7.4) around
a hyperbolic equilibrium point x0 [178]. In particular one has:

1. If �{λh} < 0, ∀h = 1, 2, . . . , nx, then the equilibrium point x0 is stable.
2. If ∃ �{λh} > 0 for some h = 1, 2, . . . , nx, then the equilibrium point x0 is

unstable.

If the equilibrium is non-hyperbolic, i.e., ∃ �{λh} = 0 for some h =
1, 2, . . . , n, the eigenvalues are not adequate to define the properties of the
equilibrium point x0 and further analysis is needed. The latter statement

158 7 Eigenvalue Analysis

can be explained with a simple example. Let us consider the following scalar
ODE system:

ẋ = x2 (7.6)

that has the equilibrium x0 = 0. Linearizing (7.6) at x0, one has:

Δẋ = 2x0 ·Δx = 0 ·Δx (7.7)

where 2x0 is both the state matrix and the unique eigenvalue of the system.
As it can be noted, (7.7) provides no relevant information about the stability
of the equilibrium point since Δẋ = 0 notwithstanding any variation of Δx.1

Equilibrium points for which at least one eigenvalue has zero real part are
called bifurcation points. The only bifurcation points that are of practical in-
terest are generic ones, i.e., bifurcations that are likely to appear in a physical
system. The concept of genericity also implies robustness, i.e., the bifurcation
persists for any parameter perturbation. For example, the bifurcation point
x0 = 0 of (7.6) is generic.2

For the OMIB system, the eigenvalue analysis reduces to find the roots of
the following equation:

det(AS − λI2) = 0 (7.8)

where AS = fx is the state matrix of (7.1)-(7.2) computed at an equilibrium
point.

Point xA: The state matrix at the equilibrium point xA is:

fx|A =

⎡
⎢⎢⎣

0 Ωb

− 1
2H

ev

xeq
cos δA 0

⎤
⎥⎥⎦ (7.9)

Thus, (7.8) yields:

λ1,2 =

√
−Ωb

1
2H

ev

xeq
cos δA = ±j5.8317 (7.10)

where Ωb = 314.16 rad/s (i.e., the system rated frequency is 50 Hz) and
the mechanical starting time is H = 8 MWs/MVA. Since the pair of com-
plex eigenvalues is purely imaginary, the system trajectories around the
equilibrium point are undamped and xA is a bifurcation point. However,

1 Observe that the approach based on virtual variation used for studying (7.1)

works fine if one varies x0 by δx in (7.6).
2 In fact, the differential equation:

ẋ = x2
+ μ

is the germ or the normal form of the saddle-node bifurcation.

7.2 Small Signal Stability Analysis 159

this is an ideal condition. By including a damping (i.e., a viscous friction)
coefficient D in (7.2), e.g.:

ω̇ =
1

2H
(pm − pe(δ) −D(ω − ωs)) (7.11)

the pair of complex eigenvalues shows a negative real part, hence the
bifurcation is not robust. The equilibrium point xA is stable (or weakly
stable as reported in some books), which confirms the qualitative analysis
above based on virtual perturbations.

Point xB: Drawing the eigenvalue analysis for the point xB, one has:

λ1,2 =

√
−Ωb

1
2H

ev

xeq
cos δB = ±5.8317 (7.12)

One of the characteristics roots is positive, hence the system is unstable.
In this case, the instability cannot be eliminated by simply including a
damping coefficient in (7.2).

The solution of (7.5) is a problem conceptually different from the ones dis-
cussed so far, e.g., finding a solution (only one) of a set of nonlinear functions.
The solution of (7.5) consists in finding all the roots (e.g., zeros) of a poly-
nomial function. Since Abel proved in 1826 that there is no explicit solution
for generic polynomials of order greater than 4, (7.5) has to be necessarily
solved numerically. Some matrix-based methods are discussed in the following
sections.

7.2 Small Signal Stability Analysis

The system used for the small signal stability analysis is a set of differential
algebraic equations, in the form:

ẋ = f(x,y) (7.13)
0 = g(x,y)

where x is the vector of the state variables and y the vector of the algebraic
variables, f is the vector of differential equations, and g is the vector of
algebraic equations. Small signal stability analysis studies the properties of
equilibria or stationary points (x0,y0) that satisfies:

0 = f (x0,y0) (7.14)
0 = g(x0,y0)

through an eigenvalue analysis of the state matrix AS of the system.

160 7 Eigenvalue Analysis

The state matrix AS is obtained by manipulating the complete Jacobian
matrix AC , that is defined by the linearization of the DAE system equations
(7.13) at the equilibrium point:[

Δẋ
0

]
=
[
fx fy

gx gy

] [
Δx
Δy

]
= AC

[
Δx
Δy

]
(7.15)

The state matrix AS is obtained by eliminating the algebraic variables
and, thus, it is implicitly assumed that gy is not singular (i.e., absence of
singularity-induced bifurcations):

AS = fx − fyg
−1
y gx (7.16)

There have been an extensive research on singularity-induced bifurcations
[22, 113, 256]. It is now recognized that the singularity of gy at an equilibrium
point is a folding of the manifold of algebraic variables. This is not actually
a stability issue, but rather a modelling one. If gy is singular at a given
equilibrium, then the dynamic of some of the algebraic variables yh cannot
be considered infinitely fast (e.g., its time constant cannot be considered
zero). In other words, recalling the discussion given in Section 1.4 of Chapter
1, the sets of variables ξi and ξf have to be revised and some of the ξf
have to be passed to the set of state variables ξi. The best candidates to be
switched to state variables are the subset of ξf that most participate to the
zero eigenvalue of gy.

The matrixD = fyg
−1
y gx can be considered a degradation matrix since it

degrades the stability of the matrix fx. In fact, the eigenvalues of fx are typ-
ically all negative, as in fx, each device and associated controls are basically
decoupled from the others. The matrix D couples each device through the
network and, hence, through variables y, which can be considered aggrega-
tion variables (see also Section 8.2 of Chapter 8). Since AC may show poorly
damped or even positive real part eigenvalues, an effective technique for im-
proving or obtaining stability is to reduce, by means of adequate controllers,
the effect of D and, in turn, to decouple dynamic devices.

Script 7.1 Small-Signal Stability Analysis

The Python implementation of the standard small-signal stability analysis is
rather simple. Provided that the Jacobian matrices of the DAE system are
available, a possible implementation is as follows.

import system

from numpy.linalg import eigvals

from cvxopt.umfpack import linsolve

def state matrix():

Gyx = matrix(system.DAE.Gx)

linsolve(system.DAE.Gy, Gyx)

return system.DAE.Fx - system.DAE.Fy*Gyx

7.2 Small Signal Stability Analysis 161

def eigs():

As = state matrix()

return eigvals(As)

Clearly, the efficiency of the implementation strongly depends on the algo-
rithm used for computing all eigenvalues.

Example 7.1 Eigenvalues of the IEEE 14-Bus System in the
S-Domain

Figure 7.3 shows the eigenvalue analysis for the IEEE 14-bus system whose
dynamic data are given in Appendix D. For the sake of illustration, only the
eigenvalues with �{λh} > −10 are shown in Figure 7.3. The figure also shows
two dotted lines indicating the locus with 5% damping. Given a complex
eigenvalue α± jβ, the damping ζ is defined as:

ζ = − α√
α2 + β2

(7.17)

with ζ ∈ [−1, 1]. The slope s of the line with a given damping ζ is given by:

s = ±

√
1 − ζ2

ζ2 (7.18)

The damping is an important measure of the quality of the transient response
of the system. A poorly damped system oscillates for a relatively long time
after a contingency, which has to be avoided. Figure 7.3 shows that a pair
of complex eigenvalues is poorly damped, thus some corrective actions are
advisable for improving the system response. Further discussion on oscillation
damping is given in Section 16.3 of Chapter 16.

7.2.1 Bifurcation Points

In most stability applications, it is of interest determining whether the system
equilibrium is a bifurcation point or not, i.e., whether some eigenvalues ofAS

have zero real part.
At practical effects, there are only two cases that have to be taken into

account:3

1. One eigenvalue is λk = 0. This condition generally implies the occurrence
of a saddle-node bifurcation [6, 35, 37, 76].

3 Eigenvalue conditions for saddle-node and Hopf bifurcations are necessary but

not sufficient. Proper transversality conditions that impose the dependence of

the critical eigenvalues on system parameters complete the definitions of these

bifurcation points. Transversality conditions are omitted in the chapter for the

sake of simplicity. The interested reader can find rigorous definitions in [276].

162 7 Eigenvalue Analysis

Fig. 7.3 Relevant eigenvalues in the S-domain for the IEEE 14-bus system

2. A pair of complex eigenvalues as zero real part, i.e., λh,k = ±jβ. This
condition generally implies the occurrence of a Hopf bifurcation [44, 45,
77, 207, 361].

For saddle-node bifurcations, the determinant det(AS) = 0, which directly
derives from the matrix property:

det(AS) =
nx∏
h=1

λh (7.19)

For Hopf bifurcations, the determinant of AS is not informative. However, if
α ± jβ is a pair of complex eigenvalues of AS with associated eigenvectors
νr ± jνi, then the following expression holds [45]:

(AS − αIn)νr + βνi = 0 (7.20)
(AS − αIn)νi − βνr = 0

Then the modified state matrix:

AMS =
[
AS +βInx

−βInx AS

]
(7.21)

is singular at the bifurcation point. It is interesting to note that AMS is
singular for both saddle-node (β = 0) and Hopf bifurcations (β �= 0).

7.2 Small Signal Stability Analysis 163

Since the computation of the determinant is computationally inefficient,
various alternative methods can be used, for example (i) computing the eigen-
value with smallest magnitude (see also Subsection 7.3), (ii) computing the
minimum singular value [39], and (iii) computing the LU factorization of AS

or AMS (see also the discussion given in Section 5.4 of Chapter 5).
It has also been observed that using the complete Jacobian matrix AC can

be more efficient thanAS [45]. In fact,AC does not requires the computation
of the inverse of gy and is generally sparser than AS . Thus sparse matrix
algorithms work generally faster for AC than for AS even though the size
of AC is greater than that of AS . At this regard, the following remarks are
relevant:

1. For saddle-node bifurcations, from the Leibniz’s formula, one has:

det(AC) = det
([
fx fy

gx gy

])
(7.22)

= det
([
fx − fyg

−1
y gx 0

g−1
y gx Iny

])
det
([
Inx fy

0 gy

])
= det(gy)det(fx − fyg

−1
y gx)

= det(gy)det(AS)

where det(gy) �= 0, since by hypothesis gy is invertible. Hence det(AC) = 0
iff det(AS) = 0.

2. Generalizing equation (7.20) for the complete matrix AC leads to:[
fx fy

gx gy

] [
νx,r ± jνx,i
νy,r ± jνy,i

]
= (α ± jβ)

[
νx,r ± jνx,i

0

]
(7.23)

Thus, the modified complete matrix AMC becomes:

AMC =

⎡
⎢⎢⎣

fx fy +βInx 0
gx gy 0 0

−βInx 0 fx fy

0 0 gx gy

⎤
⎥⎥⎦ (7.24)

Example 7.2 Synchronous Reference Zero Eigenvalue for the
IEEE 14-Bus System

In Example 7.1, Figure 7.3 shows one zero eigenvalue indicated as a circle at
the intersection of the real and imaginary axes. According to the discussion
above, a zero eigenvalue always requires special care.

In most situations, a zero eigenvalue implies a saddle-node bifurcation.
However, in this case the bifurcation is due to the model of synchronous
generators. Although the details of synchronous machine models are discussed
in Chapter 15, the explanation of this issue can be explained using the simple

164 7 Eigenvalue Analysis

classical model used in Section 7.1. In (7.1), the reference angle θ0 = 0 is that
of the infinite bus. The machine rotor angle δ is implicitly a relative angle, i.e.,
δ− θ0. Thus, as discussed in Section 7.1, the state matrix of the system does
not show zero eigenvalues. Consider now the same two bus system of Figure
7.1, but assuming that the machines connected at both buses are modelled
using a classical generator model. Thus, one has:

δ̇1 = Ωb(ω1 − ωs) (7.25)

ω̇1 =
1

2H1
(pm − pe(δ1, δ2))

δ̇2 = Ωb(ω2 − ωs)

ω̇2 =
1

2H2
(−pm + pe(δ1, δ2))

where
pe =

e1e2
xeq

sin(δ1 − δ2) = k sin(δ1 − δ2) (7.26)

The state matrix of the system is:

fx =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 Ωb 0 0

−k cos(δ1 − δ2) 0 k cos(δ1 − δ2) 0

0 0 0 Ωb

k cos(δ1 − δ2) 0 −k cos(δ1 − δ2) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.27)

where the first and third columns are linearly dependent and, thus, det(fx) =
0 for any equilibrium point.4 Actually, the issue is not the stability of the sys-
tem, but the model of the synchronous machines that refer to a fictitious ideal
synchronous reference. In other words, the reference angle of the machines is
not a physical angle of the network. Hence, one of the angles of the machines
is redundant, as in the ODE system (7.25) rotor angles only appear as δ1−δ2.
By defining the angle and speed differences δ12 = δ1 − δ2 and ω12 = ω1 −ω2,
(7.25) becomes:

δ̇12 = Ωb(ω1 − ω2) (7.28)

ω̇12 =
1

2Heq
(pm − pe(δ12))

where Heq = H1H2/(H1+H2). The transformed ODE system (7.28) does not
show the zero eigenvalues of the original system (7.25). The transformation

4 In particular, since damping is not considered, the state matrix shows two zero

eigenvalues. One can easily check that, by adding a damping coefficient, the state

matrix shows an unique zero eigenvalue.

7.2 Small Signal Stability Analysis 165

used in (7.28) cannot be promptly generalized for a multi-machine system,
mainly for two reasons:

1. One of the synchronous machines has to be chosen as reference machine.
This implies that the model of a machine changes depending if it chosen
as reference or not.

2. In order to maintain a consistent model, the reference machine has to be
connected through ac branches to all machines of the network. This cannot
be ensured in case of network topological changes, (e.g., line outages) or if
the system is composed of regions connected only through HVDC systems.

In conclusion, in multi-machine systems, each generator rotor angle and speed
is referred to a fictitious ideal synchronous machine which is not physically
connected to the system. As a consequence, the state matrix shows a zero
eigenvalue that is not a symptom of instability but rather an intrinsic char-
acteristic of the machine model.

7.2.2 Participation Factors

Along with eigenvalues λ, it is relevant to compute the participation factors,
that are evaluated in the following way [269]. Let N and W be the right
and the left eigenvector matrices respectively, such that Λ = WASN and
W = N−1, then the participation factor pij of the ith state variable to the
jth eigenvalue can be defined as:

pij =
wijνji
wT
j νj

(7.29)

In case of complex eigenvalues, the amplitude of each element of the eigen-
vectors is used:

pij =
|wij ||νji|∑nx

k=1 |wjk||νkj |
(7.30)

Script 7.2 Participation Factors

The following Python code implements the function for computing partic-
ipation factors of a given matrix As. The function gesv accomplishes the
operation N−1W and works for both real and complex matrices. The par-
ticipation factor matrix pf is normalized and small eigenvalues are rounded
to zero. The latter operation allows quickly detecting bifurcation points.5 In
the code the eigenvalues are called mu because, for an idiosyncrasy of Python,
lambda is a language reserved word.

5 In fact, it takes a little while to recognize that −1.209803e−15 is practically zero,

especially if this number appears in a long eigenvalue list.

166 7 Eigenvalue Analysis

import system

from numpy.linalg import eig

from cvxopt.lapack import gesv

from cvxopt.base import matrix, spmatrix

def compute eigs(As):

mu, N = eig(matrix(As))

N = matrix(N)

n = len(mu)

idx = range(n)

W = matrix(spmatrix(1.0, idx, idx, (n, n), v.typecode))

gesv(N, W)

pf = mul(abs(W.T), abs(V))

b = matrix(1.0, (1, n))

WN = b * pf

pf = pf.T

for item in idx:

mur = mu[item].real

mui = mu[item].imag

mu[item] = complex(round(mur, 5), round(mui, 5))

pf[item, :] /= WN[item]

Example 7.3 Eigenvalue Participation Factors for the IEEE
14-Bus System

Table 7.1 shows the full eigenvalue list for the IEEE 14-bus system, as well as
the most associated state variables to each eigenvalue, the undamped natural
angular frequency ω0, the damping ratio ζ and the damped natural angular
frequency ωd.

The damped frequency has the following meaning. Let α± jβ be a pair of
complex conjugate eigenvalues. The frequency ω0 is defined as:

ω0 =
√
α2 + β2 (7.31)

while the damping is:
ζ = − α

ω0
(7.32)

where ζ ∈ [−1, 1]. The damping is positive if the mode is stable (i.e. α < 0).
Thus, one has:

α = −ζω0 (7.33)

β =
√

1 − ζ2 ω0

The frequency ω0 is also called the frequency of resonance, or undamped
frequency. However, the frequency that can be observed during the transient,
namely the damped frequency, depends on the damping ζ, as follows:

ωd =
√

1 − ζ2 ω0 = β (7.34)

The frequency of resonance coincides with the damped frequency only if α = 0.

7.2 Small Signal Stability Analysis 167

Table 7.1 Eigenvalues and most associated state variables for the IEEE 14-bus

system

Eigen. Mostly associated �{λh} 	{λh} Damped Freq. Freq. Damping
λh state variable ωd ω0 ζ [%]

1 vm AVR 1 −1000 0 0 0 100
2 vm AVR 2 −1000 0 0 0 100
3 vm AVR 3 −1000 0 0 0 100
4 vm AVR 5 −1000 0 0 0 100
5 vm AVR 4 −1000 0 0 0 100
6 vr1 AVR 1, ψ′′

d Syn 1 −45.22 9.375 1.492 7.351 97.92
7 vr1 AVR 1, ψ′′

d Syn 1 −45.22 −9.375 1.492 7.351 97.92
8 vr1 AVR 2 −50 0 0 0 100
9 vr1 AVR 3 −49.99 0 0 0 100
10 vr1 AVR 5 −49.9 0 0 0 100
11 vr1 AVR 4 −49.93 0 0 0 100
12 ψ′′

q Syn 1 −37.37 0 0 0 100
13 ψ′′

d Syn 2 −33.8 0 0 0 100
14 ψ′′

d Syn 3 −31.23 0 0 0 100
15 ψ′′

d Syn 4 −29.59 0 0 0 100
16 ψ′′

d Syn 5 −25.79 0 0 0 100
17 ψ′′

q Syn 2 −20.93 0 0 0 100
18 ψ′′

q Syn 3 −18.16 0 0 0 100
19 ω Syn 4, δ Syn 4 −5.592 11.05 1.758 1.97 45.17
20 ω Syn 4, δ Syn 4 −5.592 −11.05 1.758 1.97 45.17
21 e′q Syn 1, vf AVR 1 −0.2317 9.32 1.483 1.484 2.485
22 e′q Syn 1, vf AVR 1 −0.2317 −9.32 1.483 1.484 2.485
23 ω Syn 2, δ Syn 2 −3.949 10.93 1.74 1.85 33.97
24 ω Syn 2, δ Syn 2 −3.949 −10.93 1.74 1.85 33.97
25 ω Syn 3, δ Syn 3 −3.954 10.19 1.622 1.74 36.17
26 ω Syn 3, δ Syn 3 −3.954 −10.19 1.622 1.74 36.17
27 ω Syn 3, δ Syn 3 −2.194 8.95 1.424 1.467 23.81
28 ω Syn 3, δ Syn 3 −2.194 −8.95 1.424 1.467 23.81
29 ψ′′

q Syn 4 −11.44 0 0 0 100
30 ψ′′

q Syn 5 −9.864 0 0 0 100
31 e′d Syn 2 −4.968 0 0 0 100
32 e′d Syn 3 −3.381 0 0 0 100
33 vf AVR 5, e′q Syn 5 −1.008 1.398 0.2225 0.2743 58.5
34 vf AVR 5, e′q Syn 5 −1.008 −1.398 0.2225 0.2743 58.5
35 vf AVR 4, e′q Syn 4 −1.156 0.9523 0.1516 0.2384 77.19
36 vf AVR 4, e′q Syn 4 −1.156 −0.9523 0.1516 0.2384 77.19
37 δ Syn 1 0 0 0 0 100
38 e′q Syn 3, vf AVR 3 −0.6064 0.7361 0.1172 0.1518 63.58
39 e′q Syn 3, vf AVR 3 −0.6064 −0.7361 0.1172 0.1518 63.58
40 ω Syn 1 −0.1862 0 0 0 100
41 e′q Syn 2, vf AVR 2 −0.584 0.3424 0.05449 0.1077 86.27
42 e′q Syn 2, vf AVR 2 −0.584 −0.3424 0.05449 0.1077 86.27
43 e′d Syn 4 −0.7128 0 0 0 100
44 e′d Syn 5 −0.7463 0 0 0 100
45 vr2 AVR 1 −1.017 0 0 0 100
46 vr2 AVR 2 −1.009 0 0 0 100
47 vr2 AVR 3 −1.004 0 0 0 100
48 vr2 AVR 4 −1.003 0 0 0 100
49 vr2 AVR 5 −1.004 0 0 0 100

168 7 Eigenvalue Analysis

While the meaning of each state variable is clarified in Part III, in this
example, it is relevant to note just the way the most associated state variables
are determined. Since the full participation factor matrix would occupy too
much space, Table 7.2 shows a selection of eigenvalues, say eigenvalues 19, 20
and 23-28. Generally, only few state variables participate with a pij > 0.1 to
a given eigenvalue, which eases the choice of control actions.

Table 7.2 Selection of eigenvalue participation factors for the IEEE 14-bus system

State variable pk,19 pk,20 pk,23 pk,24 pk,25 pk,26 pk,27 pk,28

δ Syn 1 0.0002 0.0002 0.0024 0.0024 0.0043 0.0043 0.0827 0.0827
ω Syn 1 0.0002 0.0002 0.0024 0.0024 0.0043 0.0043 0.0831 0.0831
e′q Syn 1 0.0003 0.0003 0.0022 0.0022 0.0021 0.0021 0.0480 0.0480
ψ′′

d Syn 1 0.0001 0.0001 0.0008 0.0008 0.0007 0.0007 0.0123 0.0123
ψ′′

q Syn 1 0.0001 0.0001 0.0008 0.0008 0.0011 0.0011 0.0130 0.0130
δ Syn 2 0.0040 0.0040 0.2158 0.2158 0.0550 0.0550 0.0516 0.0516
ω Syn 2 0.0041 0.0041 0.2168 0.2168 0.0553 0.0553 0.0518 0.0518
e′q Syn 2 0.0001 0.0001 0.0023 0.0023 0.0006 0.0006 0.0008 0.0008
ψ′′

d Syn 2 0.0002 0.0002 0.0052 0.0052 0.0012 0.0012 0.0012 0.0012
e′d Syn 2 0.0010 0.0010 0.0470 0.0470 0.0117 0.0117 0.0066 0.0066
ψ′′

q Syn 2 0.0019 0.0019 0.0848 0.0848 0.0193 0.0193 0.0098 0.0098
δ Syn 3 0.0025 0.0025 0.0045 0.0045 0.1480 0.1480 0.1654 0.1654
ω Syn 3 0.0025 0.0025 0.0045 0.0045 0.1487 0.1487 0.1660 0.1660
e′q Syn 3 0 0 0 0 0 0 0.0005 0.0005
ψ′′

d Syn 3 0 0 0.0001 0.0001 0 0 0.0007 0.0007
e′d Syn 3 0.0009 0.0009 0.0014 0.0014 0.0454 0.0454 0.0400 0.0400
ψ′′

q Syn 3 0.0016 0.0016 0.0025 0.0025 0.0747 0.0747 0.0591 0.0591
δ Syn 4 0.2618 0.2618 0.0207 0.0207 0.0443 0.0443 0.0241 0.0241
ω Syn 4 0.2637 0.2637 0.0208 0.0208 0.0446 0.0446 0.0242 0.0242
e′q Syn 4 0 0 0 0 0 0 0.0001 0.0001
ψ′′

d Syn 4 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0003
e′d Syn 4 0.0047 0.0047 0.0003 0.0003 0.0008 0.0008 0.0004 0.0004
ψ′′

q Syn 4 0.2334 0.2334 0.0151 0.0151 0.0305 0.0305 0.0113 0.0113
δ Syn 5 0.0759 0.0759 0.1289 0.1289 0.1148 0.1148 0.0373 0.0373
ω Syn 5 0.0764 0.0764 0.1296 0.1296 0.1156 0.1156 0.0375 0.0375
e′q Syn 5 0 0 0 0 0 0 0.0001 0.0001
ψ′′

d Syn 5 0 0 0.0001 0.0001 0 0 0.0002 0.0002
e′d Syn 5 0.0013 0.0013 0.0019 0.0019 0.0018 0.0018 0.0005 0.0005
ψ′′

q Syn 5 0.0627 0.0627 0.0860 0.0860 0.0724 0.0724 0.0158 0.0158
vm AVR 1 0 0 0 0 0 0 0.0004 0.0004
vf AVR 1 0.0003 0.0003 0.0024 0.0024 0.0022 0.0022 0.0452 0.0452
vr1 AVR 1 0.0001 0.0001 0.0006 0.0006 0.0005 0.0005 0.0088 0.0088
vr2 AVR 1 0 0 0 0 0 0 0.0007 0.0007
vm AVR 2 0 0 0 0 0 0 0 0
vf AVR 2 0 0 0 0 0 0 0.0001 0.0001
vr1 AVR 2 0 0 0 0 0 0 0 0
vr2 AVR 2 0 0 0 0 0 0 0 0
vm AVR 3 0 0 0 0 0 0 0 0
vf AVR 3 0 0 0 0 0 0 0.0001 0.0001
vr1 AVR 3 0 0 0 0 0 0 0 0
vr2 AVR 3 0 0 0 0 0 0 0 0
vm AVR 4 0 0 0 0 0 0 0 0
vf AVR 4 0 0 0 0 0 0 0.0001 0.0001
vr1 AVR 4 0 0 0 0 0 0 0 0
vr2 AVR 4 0 0 0 0 0 0 0 0
vm AVR 5 0 0 0 0 0 0 0 0
vf AVR 5 0 0 0 0 0 0 0.0001 0.0001
vr1 AVR 5 0 0 0 0 0 0 0 0
vr2 AVR 5 0 0 0 0 0 0 0 0

7.2 Small Signal Stability Analysis 169

7.2.3 Analysis in the Z-Domain

The state matrix in (7.16) leads to the computation of the eigenvalues in the
S-domain, i.e., the system is stable if �{λh} < 0, ∀h = 1, 2, . . . , nx. To com-
pute the eigenvalues in the Z-domain can lead to some numeric advantages
as discussed in the following subsection. The Z-domain can also ease the vi-
sualization of stiff systems since, in the Z-domain, if the system is stable, all
the eigenvalues are inside the unit circle [147]. For obtaining the Z-domain
eigenvalues, a bi-linear transformation is performed:

AZ = (AS + χInx)(AS − χInx)−1 (7.35)

where χ is a weighting factor that, based on heuristic considerations, can be
set χ = 8. Computing AZ is more expensive than AS but using AZ can be
useful for fastening the determination of the maximum amplitude eigenvalue
(e.g., by means of a power method), especially in case of unstable equilibrium
points with only one eigenvalue outside the unit circle.

Example 7.4 Eigenvalues of the IEEE 14-Bus System in the
Z-Domain

Figure 7.4 shows the eigenvalue analysis for the IEEE 14-bus tests system
in the Z-domain. The figure also shows two dotted curves indicating the

Fig. 7.4 Eigenvalues of the IEEE 14-bus system in the Z-domain

170 7 Eigenvalue Analysis

circumference with unitary radius (stability limit in the Z-domain) and the
locus of eigenvalues with a damping ζ = 5%. The latter curve can be com-
puted as follows.

From (7.33) and (7.35), it can be deduced that the transformed value
αZ ± jβZ in the Z-domain of a given pair of complex eigenvalues α± jβ is:

αZ ± jβZ =
−ζω0 ±

√
1 − ζ2ω0 + χ

−ζω0 ±
√

1 − ζ2ω0 − χ
(7.36)

Thus, imposing a fixed damping ζc and parametrizing (7.36) with ω0, each
value of ω0 yields a point in the Z-domain pertaining to the locus with ζ = ζc.

As expected from the analysis presented in Example 7.1, Figure 7.4 shows
a pair of complex eigenvalues poorly damped. Figure 7.4 also shows an eigen-
value equal to −1, which is the equivalent in the Z-domain of a zero eigenvalue
in the S-domain.

7.3 Computing the Eigenvalues

Most common methods for computing all eigenvalues of a matrix are the
QR algorithm, the Arnoldi’s iteration, and, if the matrix is Hermitian, the
Lanczos’ method [74, 313]. However, computing of all eigenvalues generally
requires the use of the Gram-Schmidth’s orthonormalization method and,
thus, can be a lengthy process if the dynamic order of the system is high.

To reduce the computational effort, it is possible to compute only a few
eigenvalues with a particular property, i.e., largest or smallest magnitude,
largest or smaller real or imaginary part. All or some of these options may
be already available in some scientific-oriented scripting language such as
Matlab, but have currently to be implemented in general-purpose scripting
languages such as Python.

7.3.1 Power Method

A very simple method that allows determining the eigenvalue with greatest
absolute value, although may show a slow convergence rate, is the power
method, which works as follows.

Given a matrix A and an initial vector ν(0), a generic iteration of the
power method is given by:

ν(i+1) =
Aν(i)

‖Aν(i)‖2
(7.37)

If A has an eigenvalue λk that is strictly greater than all other eigenvalues of
A, i.e., λk > λh, ∀h �= k (in this case λk is called the dominant eigenvalue),
and ν(0) has a non-zero component in the direction of the eigenvector νk

7.3 Computing the Eigenvalues 171

associated with λk, then ν(i) → νk for i → ∞. Finally, the eigenvalue λk is
computed as:

λk =
νTkAνk
νTk νk

(7.38)

The rationale of the power method is relatively simple and is worth being
briefly outlined. Assume that the initial vector ν(0) can be written as the
linear combination of all eigenvectors νh of the matrix A:

ν(0) = c1ν1 + c2ν2 + · · · + ckνk + · · · + cnνn (7.39)

where, by hypothesis, ck �= 0. Assume also that A is diagonalizable and can
be written as NΛN−1.6 Then, at the ith iteration:

ν(i) =
A(i)ν(0)

‖A(i)ν(0)‖2
(7.40)

=
(NΛN−1)(i)ν(0)

‖(NΛN−1)(i)ν(0)‖2

=
NΛ(i)N−1ν(0)

‖NΛ(i)N−1ν(0)‖2

=
(
λk
|λk|

)(i)
ck
|ck|

νk + 1
ck
N
(

1
λk
Λ
)(i)

b

‖νk + 1
ck
N
(

1
λk
Λ
)(i)

b‖2

where
b = c1e1 + · · · + ck−1ek−1 + ck+1ek+1 + · · · + cnen (7.41)

From observing that:

lim
i→∞

(
1
λk
Λ

)(i)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
(i)
1

λ
(i)
k

. . .
λ
(i)
k

λ
(i)
k

. . .
λ(i)

n

λ
(i)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎣

0
. . .

1
. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(7.42)

Then, it follows that:

lim
i→∞

1
ck
N

(
1
λk
Λ

)(i)

b → 0 (7.43)

6 A similar proof holds if A is decomposed into its Jordan’s canonical form.

172 7 Eigenvalue Analysis

7.3.2 Inverse Iteration

The inverse method is a variant of the power method described above and
allows finding the eigenvalue λk and the associated eigenvector νk if a good
estimation λ̃k of the eigenvalue is known.

By way of introduction, observe that to find the minimum eigenvalue of
a given matrix A, it suffices to apply the power method iteration (7.37) to
A−1. In fact, the eigenvalues of A−1 are the inverse of the eigenvalues of A.
Clearly, this algorithm works only if the matrix A is not singular.

The inverse iteration consists in applying the power method iteration (7.37)
to the matrix (A − λ̃kIn)−1. In fact, the eigenvalues of (A − λ̃kIn)−1 are
(λ1 − λ̃k)−1, . . . , (λk− λ̃k)−1, . . . , (λk − λ̃n)−1. Thus, if λ̃k is sufficiently close
to λh, then (λk − λ̃k)−1 is the biggest eigenvalue of (A − λ̃kIn)−1, which is
the necessary condition for the power method to converge.

7.3.3 Rayleigh’s Iteration

The Rayleigh’s iteration is an improvement of the inverse iteration. One
chooses an initial value λ̃(0)

k , then at each iteration both the eigenvector ν(i+1)

and the eigenvalue estimation λ̃(i+1)
k are computed, as follows:

ν(i+1) =
(A− λ(i)In)−1ν(i)

‖(A− λ(i)In)−1ν(i)‖2
(7.44)

λ(i+1) =
(ν(i+1))TAν(i+1)

ν(i+1))Tν(i+1) (7.45)

where (7.45) is called the Rayleigh’s quotient. The convergence characteristics
of this method are generally better (i.e., cubically) than the inverse iteration.

Example 7.5 Inverse and Rayleigh’s Iterations for the IEEE
14-Bus System

For the sake of example, consider the matrix AZ defined in (7.35), ν(0) =
[1, 1, . . . , 1] and λ̃

(0)
k = −0.9 and a tolerance ε = 10−5. The inverse iteration

converges to the eigenvalue −0.9545 in 13 iterations, while the Rayleigh’s
iteration in 5.

From the scripting viewpoint, both inverse and Rayleigh’s iterations re-
quire practically the same code. For example, the inverse iteration is as
follows:

from cvxopt.umfpack import linsolve

from cvxopt.base import matrix

from cvxopt.blas import dotu

b = matrix(1, (system.DAE.nx, 1), ’d’)

7.4 Power Flow Modal Analysis 173

mold = 99999

m0 = -0.9

iteration = 0

while 1:

linsolve(As - m0*In, b)

nor = (dotu(b, b))**0.5

b = b/nor

m = dotu(b, As*b)/dotu(b, b)

if abs(m - mold) < 1e-5:

break

mold = m

iteration += 1

To obtain the Rayleigh’s iteration, it suffices to substitute the 12th line of
the code above with:

m0 = m = dotu(b, As*b)/dotu(b, b)

7.4 Power Flow Modal Analysis

Beside small-signal stability analysis, eigenvalues and eigenvectors can also
be used for assessing sensitivities. In particular, an interesting approach is
evaluating the modal analysis for the power flow Jacobian matrix [104, 211,
354].

Let us consider the classical power flow model defined in Section 4.3 (e.g.,
constant PQ loads and constant PV generators). After solving the power
flow analysis, the Jacobian matrix can be easily computed. If the Newton’s
method is used, the Jacobian matrix is available as byproduct of the solu-
tion algorithm. The eigenvalue analysis is performed on a reduced matrix,
as follows. Recalling (4.45), the Jacobian matrix can be divided into four
sub-matrices:

gy =
[
gp,θ gp,v
gq,θ gq,v

]
(7.46)

In case of the classical power flow model, one can associate a physical meaning
to each sub-matrix, since load and generator powers are constant. In fact,
consider the linearization of the power flow equations with constant power
injections: [

Δp
Δq

]
=
[
gp,θ gp,v
gq,θ gq,v

] [
Δθ
Δv

]
(7.47)

The basic assumption of [104] is to consider that Δp ≈ 0. This is reason-
able if one is interested only in the relationship between reactive powers
and bus voltage magnitudes. Furthermore, recalling the assumptions of the
fast-decoupled power flow (see Section 4.4.7 of Chapter 4), the pθ world is
quite decoupled from the qv one. Thus, one can define a reduced power flow
Jacobian matrix as follows:

JLF = gq,v − gq,θg−1
p,θgp,v (7.48)

174 7 Eigenvalue Analysis

where it is assumed that gp,θ is non-singular. The sensitivity analysis follows
from the observation that:

Δq = JLFΔv (7.49)

hence:
Δv = J−1

LFΔq =NΛ−1N−1Δq (7.50)

and defining the modal reactive power and voltage variations as:

Δqm = N−1Δq (7.51)
Δvm = N−1Δv

it follows that the modal sensitivity for each eigenvalue λk is:

dvm,k
dqm,k

=
1
λk
, k ∈ BPQ (7.52)

where BPQ is the set of PQ load buses. If λh > 0, then an increase in the
injected reactive power leads to a bus voltage increase, which is the normal
situation for systems with inductive branches and loads. If λk < 0, the voltage
decreases if the reactive power injected at the bus increases. This is considered
an unstable behavior (at least for inductive systems), and actually it is typical
of power flow solutions of the lower part of the nose curve (see Section 5.1
of Chapter 5). A special case is λk = 0 that can be viewed as an infinite
sensitivity of the voltage with respect to the reactive power. Actually, this
case corresponds to a saddle-node bifurcation.

Example 7.6 Power Flow Modal Analysis for the IEEE 14-Bus
System

Figure 7.5 and Table 7.3 show the results of the modal analysis of the power
flow Jacobian matrix as well as the participation factors for the IEEE 14-bus
test system. In this case study, only static power flow data are considered,
i.e., loads are modelled as constant PQ and generators as constant PV or
slack.

Figure 7.5 and Table 7.3 only show 9 eigenvalues. In fact, the 14-bus system
system has 5 generators that maintain constant the voltage at the bus where
they are connected. As expected, all eigenvalues are positive, thus indicating
that ∂v/∂q > 0 at all load buses.

7.4.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is an important kind of matrix
factorization and has several applications, for example, for computing the

7.4 Power Flow Modal Analysis 175

Fig. 7.5 Eigenvalues of the power flow Jacobian matrix for the IEEE 14-bus system

pseudo-inverse, for matrix approximation, and for determining the rank of a
matrix. The SVD consists in a factorization of a matrix A in the form:

A = UΣV H (7.53)

where U is an unitary (but not diagonal) matrix, Σ is a diagonal matrix
whose diagonal elements are the singular values (non-negative real numbers)
and V H is the Hermitian matrix (conjugate transpose) of V , which is also a
unitary matrix.

The singular values can be interpreted as “gain controls” that multiply
the input signals filtered by the orthonormal V and that pass these signals
to the orthonormal U that generates the output signals.

Although the main applications of the SVD can be found in signal pro-
cessing and statistics, the feature that is relevant in the context of small
signal stability is that the computation of the SVD or better of the minimum
singular value of a matrix is much more efficient than the corresponding
eigenvalue computation [313]. Moreover, the following relevant property of
the determinant:

det(A) = det(NΛN−1) = det(UΣV H) (7.54)
⇒ det(A) = det(Λ) = det(Σ)

has an interesting application in case the det(A) = 0. In fact, if A is singular,
there exists a zero singular value. Since all singular values are non-negative,

176 7 Eigenvalue Analysis

Table 7.3 Power flow modal analysis and participation factors for the IEEE 14-bus

system

Eigenvalue ph,4 ph,5 ph,7 ph,9 ph,10

65.3424 0.5416 0.4517 0.0066 0.0001 0

39.9528 0 0.0006 0.1531 0.6147 0.2153

21.9828 0.0756 0.1517 0.4942 0.0030 0.2216

18.9217 0.0005 0.0007 0.0002 0.0002 0.0046

16.4317 0.2835 0.3223 0.0202 0.0476 0.1614

2.7060 0.0082 0.0040 0.0699 0.1999 0.2394

5.5693 0.0024 0.0013 0.0166 0.0314 0.1157

7.6621 0 0 0.0001 0.0001 0.0379

11.3351 0.0881 0.0677 0.2392 0.1030 0.0041

Eigenvalue ph,11 ph,12 ph,13 ph,14

65.3424 0 0 0 0

39.9528 0.0076 0 0.0001 0.0085

21.9828 0.0534 0 0.0001 0.0003

18.9217 0.0021 0.1781 0.7652 0.0485

16.4317 0.1530 0.0024 0.0057 0.0040

2.7060 0.1108 0.0190 0.0324 0.3164

5.5693 0.1281 0.3392 0.1636 0.2017

7.6621 0.1168 0.4512 0.0306 0.3634

11.3351 0.4282 0.0101 0.0023 0.0573

σk = 0 is the minimum singular value of A. On the other hand, if one
looks for the minimum singular value and min{σk} > 0, then A is certainly
non-singular. Thus, if one is interested only in knowing if A is singular or
not, computing the minimum singular value is a numerically efficient option.
This property has been used in voltage stability studies for determining the
distance to saddle-node bifurcations [39, 45].

Example 7.7 Minimum Singular Value Index for the IEEE
14-Bus System

Example 5.4 in Chapter 5 shows the continuation power flow analysis for
the IEEE 14-bus system using a distributed slack bus model and neglecting
reactive power limits of PV generators. In this case, the maximum loading
condition is due to a SNB. As discussed above, at the SNB point, the min-
imum singular value of the power flow Jacobian matrix is zero. Thus, the
minimum singular value of the Jacobian matrix can be used as an index for
evaluating the proximity to the point of collapse.

Figure 7.6 shows the behavior of the minimum singular value of the power
flow Jacobian matrix. As expected, as the loading level μ increases, the mini-
mum singular value decreases. It is numerically quite difficult to find exactly

7.5 Summary 177

Fig. 7.6 Minimum singular value of the power flow Jacobian matrix computed

during the CPF analysis for the IEEE 14-bus system

the saddle-node bifurcation point, hence, the curve shown in Figure 7.6 only
gets very close to zero.

7.5 Summary

This section summarizes most relevant concepts related to small-signal sta-
bility analysis.

Solver method: There are several methods for computing the eigenvalues of
a matrix. Methods that compute all eigenvalues are based on the QR al-
gorithm or on some of its variants, such as the Arnoldi’s iteration. In this
chapter, three simple methods for computing a reduced number of eigen-
values are described, namely the power method , the inverse iteration and
the Rayleigh’s iteration. The latter is quite efficient if a good estimation
of the eigenvalues of interest is known. In practical applications, it is not
necessary to compute all eigenvalues since only the smallest ones are of
interest. Furthermore, if one is only interested in knowing if a matrix has
a zero eigenvalue or not, computing the minimum singular value problem
is generally more efficient than finding the minimum eigenvalue.

Matrix type: Typically, the matrix used for studying the small-signal stability
analysis is the state matrix. For ODE systems, the Jacobian fx coincides

178 7 Eigenvalue Analysis

with the state matrix. However, for DAE systems, computing the state
matrix requires factorizing the algebraic Jacobian matrix gy. To avoid
this step, it is also possible to study the complete Jacobian matrix of
the DAE system, which has the advantage of being sparser that the state
matrix. Finally, the power flow Jacobian matrix is useful for assessing the
sensitivities between reactive powers and bus voltages.

Domain type: The typical eigenvalue analysis uses the matrix as is. This leads
to the eigenvalues in the S-domain. Using the Z-domain transformation
leads to a change of coordinates so that all eigenvalues with negative
real part fall inside a unitary circle, while positive real part eigenvalues
fall outside the unitary circle. The Z-domain transformation requires the
factorization of the state matrix but can be efficient if used in conjunction
with a method that computes only a reduced set of eigenvalues since the
module of unstable eigenvalues can be easily estimated.

Participation factors: Participation factors are computed using right and left
eigenvector matrices and allow defining the participation of each system
state variable to each system mode. This information is relevant for syn-
thesizing control systems and for defining sensitivities.

Chapter 8

Time Domain Analysis

This chapter describes numerical integration methods for transient stability
analysis. Section 8.1 provides a qualitative justification of the need for nu-
merical integration and describes intrinsic limitations of Lyapunov’s direct
method. Section 8.2 describes two common models for time domain analy-
sis, namely the current-injection and the power-injection models. Section 8.3
outlines a variety of explicit and implicit numerical methods, paying partic-
ular attention to the accuracy and the stability of these methods. Section
8.4 provides a complete numerical integration routine and discusses related
issues such as the choice of the step length, disturbances and stop criteria,
including the SIME method. Sections 8.5 and 8.6 briefly describes numerical
methods for electro-magnetic as well as long-term transients, respectively.
Finally Section 8.7 summarizes most relevant concepts given in this Chapter.

8.1 Background

A basic tool of stability analysis is the integration of the initial-value problem

ẋ = f (x, t), x(t0) = x0 (8.1)

where f(x, t) is a set of ordinary differential equations (ODE). The solution
of (8.1) is a trajectory ϕ(x0, t) or, simply, x(t).

As discussed in Chapter 1, the most convenient power system model for
transient stability analysis is a set of differential algebraic equations (DAE).
Thus, the initial value problem (8.1) becomes:

ẋ = f (x,y, t), x(t0) = x0 (8.2)
0 = g(x,y, t), y(t0) = y0

In theory, (8.2) can be transformed in (8.1) if algebraic variables y are ex-
plicited using equations g.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 179–218.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

180 8 Time Domain Analysis

y = g̃(x, t) (8.3)

Using (8.3), the DAE system (8.2) can be rewritten as:

ẋ = f(x, g̃(x, t), t), x(t0) = x0 (8.4)

that is formally the same problem as (8.1).
In the discussion above there are two relevant issues:

1. The initial value problems (8.1) or (8.4) do not generally have an explicit
solution due to the nonlinearity of f . In other words, to find an analytical
expression for the trajectory ϕ(x, t) is generally impossible.

2. The implicit function theorem guarantees the existence of g̃ if gy is not
singular. However, to find an analytical expression for (8.3) is generally
not possible due to the nonlinearity of g.

To overcome these issues, the only solution is to use a numerical integration
method. The numerical solution approximates x(t) using a series of discrete
values ti of the independent variable t:

x(t0), x(t1), x(t2), . . . (8.5)

or, with a compact notation:

x0, x1, x2, . . . (8.6)

There is a huge variety of numerical integration methods. The most intuitive
one is the explicit forward Euler’s method. At a generic time ti+1, the scheme
of the explicit Euler’s method is:

xi+1 = xi +Δtf(xi, t) (8.7)

where Δt is the step length that can be fixed or varied from step to step.
Although it worked well for computing planet orbits, the explicit Euler’s
method can be improved in terms of both accuracy and numerical stability.
A small selection of methods that yield an improvement over the basic Euler’s
scheme is presented in the following Section 8.3.

Assuming that a suitable numerical integration method is used, the im-
portance of time domain simulations for power system analysis is twofold:

1. Assessing the electro-magnetic behavior of power system devices. Relevant
studies are transients following line switching operations, symmetrical and
asymmetrical faults or imbalanced conditions and power electronics con-
verters [345]. This approach is called electro-magnetic transient analysis.

2. Assessing the electro-mechanical response of power system networks fol-
lowing a large disturbance such as line outages or short circuits. This
approach is called transient stability analysis.

8.1 Background 181

Since the time scales of electro-magnetic and electro-mechanical transients
differ at least one order of magnitude (see Figure 1.6 of Chapter 1), the two
studies have followed separate development and are generally tackled by dif-
ferent specific software tools. Only in recent years it has been recognized
the need for interfacing Electro-Magnetic Transient (EMT) programs and
Transient Stability (TS) ones [151]. Although this book focuses on transient
stability analysis, HVDC systems and the increasing penetration of renew-
able energy sources and energy storage systems, most of which in dc (e.g.,
photovoltaic and fuel cells and battery energy storage systems) lead to the
need of interfacing several small dc systems with a large ac network. Thus,
Section 8.5 briefly discusses the EMT approach.

The main goal of transient stability analysis is to determine the effects of
large disturbances on the dynamic response of a given power system. This
problem is conceptually different from the small-signal stability analysis. In
fact, the system before and after the disturbance generally shows a stable
equilibrium point. In other words, pre- and post-disturbance equilibria exist
and all the eigenvalues of the state matrix have negative real part. The issue
is that the trajectory of the system following the disturbance is unstable and
never reaches the stable post-disturbance equilibrium point.

Thus, the object of transient stability analysis is to determine whether the
system trajectory is stable or not. A variety of mathematical and engineering
books have been written on this fascinating topic. In this context, it is relevant
to summarize the most important solutions that have been proposed.

1. The first solution is to solve the numerical integration and observe the
response of the power system. If the time domain simulation diverges, the
system is unstable, otherwise it is stable. This approach has the advantage
of being “exact”. The accuracy only depends on the numerical integration
method and on the system model. On the other hand, the numerical inte-
gration is computationally demanding, especially taking into account that
one has to solve a simulation for each contingency. Although modern com-
puters can solve the numerical integration for real size power systems very
quickly, the computational burden of a full contingency analysis is still
high.

2. The second solution is based on the Lyapunov’s direct method. This method
attempts to infer the stability of the ODE system (8.1) by building a func-
tion ϑ(x,x0) : R

nx �→ R called Lyapunov’s function able to “measure”
the stability of the system. The total energy of the system is a good Lya-
punov function and thus the Lyapunov’s function is called Transient En-
ergy Function (TEF) in most publications on transient stability. The main
advantage of the Lyapunov’s direct method is that the large disturbance
stability of a multi-variable system is reduced to the study of a scalar func-
tion. Thus no numerical integration is needed. The main drawbacks are:

182 8 Time Domain Analysis

a. There is no general systematic method to define the Lyapunov’s func-
tion ϑ(x,x0). As a matter of fact, the TEF can be easily computed only
for comparatively simple systems.

b. The stability region of the TEF has to be computed to provide the
stability measure. This can be a difficult task for large systems.

c. For systems with losses (e.g., for the totality of real systems) the sta-
bility test provided by the TEF is only sufficient, not necessary.

d. An hypothesis of the Lyapunov’s direct method is that the structure of
the system must not change after a given initial instant ti. This can be
a limiting hypothesis in case one wants to study the effect of corrective
actions (e.g., fast valving of synchronous machine turbines).

e. The multi-swing instability phenomenon cannot be taken into account.
The multi-swing instability consists in a system that loses synchronism
after the first oscillation following a large disturbance. The origin of
this phenomenon is intrinsic of the nonlinear system and it has been
conjectured to be caused by an unbounded chaotic motion [173].

It is worth observing that all the drawbacks of the TEF are intrinsic of
the Lyapunov’s direct method and thus can be hardly solved, unless one in-
vents some new theory able to overcome mathematical issues. On the other
hand, the main drawback of the numerical time integration is only to be time
consuming. Thanks to the enhancement of micro-processors, the computa-
tional burden is more and more an irrelevant constraint. For this reason, in
this chapter, only numerical integration methods are described. However, the
Lyapunov’s direct method is so intriguing that it is difficult to resist to the
temptation of trying to solve mathematical issues. As a matter of fact, for
over three decades there have been attempts to provide suitable procedures
for building the Lyapunov’s function [20, 57, 98, 228, 229, 257, 328].

For the sake of example, consider the OMIB system described in Section 7.1
of Chapter 7. The OMIB system can be modelled as a two-order ODE:

δ̇ = Ωb(ω − ωs) (8.8)

ω̇ =
1

2H

(
pm − ev

xeq
sin δ
)

(8.9)

where all parameters are defined in Section 7.1. The TEF for this system is
the sum of the kinetic and potential energy, EK and EP , respectively, of the
synchronous machine, as follows:

ϑ(x,x0) = ϑ((δ, ω), (δ0, ω0)) (8.10)
= EK + EP

= Hω2 − ev

xeq
(cos δ − cos δ0) − pm(δ − δ0)

where (δ0, ω0) = (0.5236, 1) is the stable equilibrium point discussed in Sec-
tion 7.1. A three-phase fault occurs at t0 = 0.5 s at one end of the two parallel

8.1 Background 183

transmission lines that connect the synchronous machine to the infinite bus.
The fault is cleared at t0 + tc by disconnecting the faulted transmission line
(see Figure 8.1). The parameters of the system are e = v = pm = 1 pu,
H = 8 MWs/MVA, Ωb = 314.16 rad/s. The pre-fault equivalent series reac-
tance between buses 1 and 0 is xeq = 0.5 pu, while the post-fault reactance
is xeq = 0.6 pu.

t0 + tc

t0

1 0

x′
d

xL/2

xL/2

xTh

e∠δ v∠0

Fig. 8.1 OMIB system with three-phase fault and line outage

A typical didactic problem is to determine the critical clearing time tc,
i.e., the maximum time tc that allows maintaining the synchronism of the
synchronous machine. Through numerical integration, the solution can be
found using a trial-and-error strategy, as follows.

1. Choose an initial guess for t(0)c .
2. Run the numerical integration.
3. Evaluate t(i+1)

c . If the system is stable, tc is increased, otherwise tc is de-
creased. A bisection method can be just fine for choosing the next value
of tc.

4. If |t(i+1)
c − t

(i)
c | < ε, stop. Otherwise, go back to Step 2.

Figure 8.2 shows some iterations of this procedure. The critical clearing time
falls between 0.255 and 0.26 s. Since the time domain simulation provides the
state variable trajectory, the value δ(tc) of the rotor angle that corresponds
to the clearing time tc is a byproduct of the solution, as shown in Table 8.1.

Table 8.1 Clearing times and angles for the OMIB system

Clearing time Rotor angle

tc [s] δc = δ(tc) [rad]

0.210 0.9619

0.255 1.1686

0.260 1.1939

A similar solution can be obtained through the Lyapunov’s direct method.
The general procedure of this method is to find the stability boundary of the

184 8 Time Domain Analysis

Fig. 8.2 Time domain analysis for the OMIB system

stable equilibrium point. In our case, it is relevant to define the stability region
of the post-fault condition. Figure 8.3 shows the potential energy EP (δ) of
the post-fault OMIB system (e.g., for xeq = 0.6 pu). The minimum of EP (δ)
corresponds to the stable equilibrium point (δ̃0, 1), where δ̃0 = asin(0.6) rad.
The stability region is bounded by the maxima of EP (δ), that occur for the
unstable equilibrium points (−π − δm, 1) and (δm, 1), where δm = π − δ̃0.
Since EP1 = EP (δm) < EP (−π − δm) = EP2, the binding limit is EP1. For
loss-less systems, the Lyapunov’s direct method states that:

1. If the total system energy at t0 + tc is E ≤ EP1, then the system is stable.
2. If the total system energy at t0 + tc is greater than E > EP1, then the

system is unstable.

For loss-less systems, the Lyapunov’s direct method is both necessary and
sufficient.

A simple yet powerful way to apply the Lyapunov’s direct method is the
equal area criterion (EAC) that is shown in Figure 8.4. The areas in the plane
(δ, p) are energies. In particular, the accelerating area Aa = pm(δc−δ0) is the
energy increase during the fault. In fact, during the fault the electrical power
pe generated by the synchronous machine is zero (the voltage at the short-
circuit point is zero). The decelerating area Ad =

∫ δm

δc
(pm − p̃max

e sin δ)dδ
for the post-fault system provides the potential energy that is available for

8.1 Background 185

Fig. 8.3 Post-fault potential energy of the OMIB system

compensating the accelerating area Aa. The critical angle δc satisfies the
condition Aa = Ad. In particular one has:

Aa = Ad (8.11)
⇒ Aa +Ac = Ad +Ac

⇒ pm(δc − δ0) =
∫ δm

δc

p̃e(δ)dδ

⇒ δc = 1.1759 rad

where δ0 = 0.5235 rad, δm = 2.4981 rad and p̃max
e = 1.6667 pu. The value of

the critical angle δc confirms the results of the numerical integration.
The following final remarks are relevant.

1. If a damping is included in the machine equations, the Lyapunov’s direct
method is conclusive only if the energy at t0 + tc satisfies E ≤ EP1. If
E > EP1, the Lyapunov direct method is inconclusive or, in mathematical
terms, only provides a sufficient stability condition (see Figure 8.5).

2. The critical clearing time is big with respect to typical protection inter-
vention times. Modern protections can detect and open a transmission line
in about 4 four cycles (80 ms at 50 Hz) which is well lower then typical
values of critical clearing times (about 200 ms). Thus, only in case primary
protections fail to clear the fault, there can be a real risk of transient in-
stability. As a consequence, transient instability has become a relatively
rare event in the last decades.

186 8 Time Domain Analysis

Fig. 8.4 Equal area criterion for the OMIB system

For the reasons above, the interest in TEF has somewhat decreased in recent
years. Unfortunately other instability phenomena, included but not limited
to voltage and frequency instability, are still a major system operator con-
cern. Numerical integration can tackle any kind of instability phenomena,
not just the loss of synchronism of synchronous machines. Thus, numerical
integration is and will likely always be the workhorse of any power system
stability analysis. The challenge is how to improve efficiency and/or accuracy
of numerical methods.

8.2 Power System Model

As discussed in Chapter 1, the power system model used for time domain
analysis is a set of nonlinear differential algebraic equations (DAE) with
discrete variables:

ẋ = f(x,y,η,u, t) (8.12)
0 = g(x,y,η,u, t)

If discrete variables u are substituted for if-then rules, (8.12) becomes an
hybrid dynamical system, e.g., a collection of continuous DAE, one per each

8.2 Power System Model 187

Fig. 8.5 Time domain analysis for the OMIB system with damping. The clearing

time is tc = 0.26 s for all simulations

discrete variable change [131].1 Thus, one can assume that the problem to be
solved for each set of discrete variables is a problem similar to (8.2).

In (8.12), differential equations f depends on machine, regulator and load
models. On the other hand, the form of algebraic equations in (8.12) can be
twofold, namely (i) current-injection model and (ii) power-injection model.
These two models are described in the following subsections.

8.2.1 Current-Injection Model

The classical and most common model of algebraic equations for transient
stability analysis is the current-injection one [298]. According to this model,
the algebraic variables are bus voltage phasors v̄ and the algebraic equations
express the current injections at network buses:

ẋ = f (x, v̄) (8.13)
0 = ī(x, v̄) − Ȳ (x)v̄

1 The notation “hybrid system” has not to be confused with hybrid transient sim-
ulator that is used in the literature on time domain integration of power systems

for indicating tools that integrate together EMT and TS analyses [151].

188 8 Time Domain Analysis

Under certain hypothesis, it is possible that the admittance matrix Ȳ does
not depend on state variables. For example by modelling dynamic series de-
vices (e.g., regulating transformers or FACTS devices) as current injections
at the sending and receiving buses, respectively. In this case the only links
among dynamic devices are the algebraic variables v̄ through the admittance
matrix Ȳ . For this reason, v̄ are also sometimes called aggregation variables.

Constant admittance loads allows simplifying (8.13) since, for a constant
admittance, the correspondent element of the vector ī(x, v̄) is zero.2 Thus,
ordering the vector of bus voltages into a vector of generator bus voltages v̄G
and a vector load bus voltages v̄L, the algebraic equations in (8.13) becomes:

0 = īG(x, v̄) + Ȳ GGv̄G + Ȳ GLv̄L (8.14)
0 = Ȳ LGv̄G + Ȳ LLv̄L

where:

Ȳ =
[
Ȳ GG Ȳ GL

Ȳ LG Ȳ LL

]
(8.15)

Thus, load bus voltages can be eliminated from (8.14):

v̄L = −Ȳ −1
LLȲ LGv̄G (8.16)

⇒ 0 = īG(x, v̄) + (Ȳ GG − Ȳ GLȲ
−1
LLȲ LG)v̄G

Finally, by defining a reduced admittance matrix Ȳ r as:

Ȳ r = Ȳ GG − Ȳ GLȲ
−1
LLȲ LG (8.17)

the system (8.13) becomes:

ẋ = f(x, v̄G) (8.18)
0 = īG(x, v̄) + Ȳ rv̄G

The latter model is the most commonly used in transient stability analysis,
especially in proprietary software packages. The advantage of this formulation
is that the order of algebraic equations is consistently reduced with respect to
the full system size since generator buses are much less than load and transit
nodes. Furthermore, algebraic equations are linear and most elements of the
reduced admittance matrix are constant (although they can vary due to line
outages, fault occurrences and load shedding).

The current-injection model (8.18) is a standard de facto for transient
stability analysis. However, any model, even the most well-accepted one, is

2 Observe that pure transit nodes are a special case of loads with a zero con-

stant admittance. In the following, pure transit nodes are implicitly considered

constant admittance loads.

8.2 Power System Model 189

simply a model, subjected to hypothesis. The most restrictive hypothesis that
leads to (8.18) is to assume constant impedance loads. This hypothesis is rea-
sonable only if the time frame is that of transient stability (e.g., few seconds
following a short circuit occurrence). In fact, load controls (e.g., tap changer
voltage regulation) can be considered frozen for the few seconds following a
large disturbance. On the other hand, voltage and frequency stability analyses
require detailed models of dynamic loads and their controls [146]. Constant
impedance loads are also inadequate for long-term voltage and frequency
stability analyses. As a matter of fact, for long-term analysis, tap changer
voltage control allows modelling loads as constant power consumptions.

8.2.2 Power-Injection Model

The power injection mode is obtained from (8.13) by multiplying the conju-
gate of algebraic equations by bus voltages:

ẋ = f(x, v̄) (8.19)
0 = V̄ ī

∗(x, v̄) − V̄ Ȳ ∗(x)v̄∗

where V̄ = diag(v̄1, v̄2, . . . , v̄nb
). The term V̄ Ȳ

∗(x)v̄∗ are the power flow
equations, while V̄ ī∗(x, v̄) are the complex powers injected at network buses.
Thus, (8.19) can be rewritten as:

ẋ = f(x, v̄) (8.20)
0 = s̄(x, v̄) − V̄ Ȳ ∗(x)v̄∗

Equations (8.20) are equivalent to (8.13) but are intrinsically nonlinear and
are thus computationally more demanding than (8.13).

Another issue of writing algebraic equations in terms of power injections is
numerical. Assume that, as a consequence of a short-circuit, some bus voltage
magnitudes become zero. After clearing the fault, voltage magnitudes recover
positive values. However, if one uses a Newton’s method to solve algebraic
equations, one has, at a certain bus h where vh = 0:

0 = vhe
jθh

(
ī∗h(x, v̄) −

n∑
k=1

ȳ∗hkv̄k

)
= vhκ(z) (8.21)

where z = [xT ,vT ,θT]T . The Newton’s equation for (8.21) at a generic
iteration i is:

v
(i)
h κ(z(i)) = κ(i)(z(i))Δv(i)

h + vh

(
nz∑
=1

∂κ(i)

∂z
Δz

(i)

)
(8.22)

190 8 Time Domain Analysis

If v(i)
h = 0 at a certain iteration i, then (8.22) becomes:

0 = κ(i)(z(i))Δv(i)
h (8.23)

which lead to Δv
(i)
h = 0. In other words, if v(i)

h = 0 at the iteration i, it
will remain zero for all the following iterations. A very small value of v(i)

h

would also show a similar numerical issue. Furthermore, v = 0 is a solution
of algebraic equations in (8.20). Thus, one has to carefully avoid that voltages
become zero (or very small values) at any iteration, otherwise, the Newton’s
method is not able to recover voltage magnitudes.

In (8.20), the only algebraic variables are bus voltage magnitudes and
phase angles. A more general and flexible model includes additional algebraic
variables ŷ, algebraic equations ĝ and controllable parameters η:

ẋ = f (x, ŷ, v̄,η) (8.24)
0 = ĝ(x, ŷ, v̄,η)
0 = s̄(x, ŷ, v̄,η) − V̄ Ȳ ∗(x, ŷ,η)v̄∗

The following conclusive remarks are relevant:

1. Both (8.13) and (8.24) are nonlinear. In fact, (8.13) is nonlinear at least
in the differential equations of synchronous machines. Thus, if an implicit
solution method is used for the numerical integration, both (8.13) and
(8.24) requires a Newton’s method for solving a set of nonlinear equations
at each integration step.

2. Equations (8.24) have the advantage of requiring the same model for power
flow, continuation power flow and time domain analyses. In other words,
(8.24) allow using an unique structure for all devices (there is no difference
between power flow and time domain analysis models of the same device)
and writing more compact code (the same algebraic equations are used for
both static and dynamic analysis).

Example 8.1 OMIB Differential Algebraic Equations

This example provides the power-injection as well as the current-injection
model (8.24) and (8.13), respectively, for the 2-bus system depicted in
Figure 8.6. Bus 0 is an infinite bus where the voltage v̄0 = v0∠θ0 is constant,
while the machine is a two-order machine model. Assuming that the voltage
at the infinite bus is a parameter, the system power-injection model is:

f ⇒
{
δ̇ = ωn(ω − ωs)
ω̇ = (pm − pe −D(ω − ωs))/2H

(8.25)

8.2 Power System Model 191

1 0

xL

v1∠θ1 v0∠θ0

Fig. 8.6 OMIB system

ĝ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 = (vq + raiq)iq + (vd + raid)id − pe

0 = vq + raiq − e′q + x′did
0 = vd + raid − x′diq
0 = v1 sin(δ − θ1) − vd

0 = v1 cos(δ − θ1) − vq

s̄ ⇒
{

0 = vdid + vqiq − v1v0
xL

sin(θ1 − θ0)

0 = vqid − vdiq − v21
xL

+ v1v0
xL

cos(θ1 − θ0)

The current-injection model can be obtained by substituting s̄ in (8.25) with
the current injection:

īG ⇒ 0 = (id + jiq) − 1
jxL

(v̄1 − v̄0) (8.26)

In (8.26), the generator current id + jiq can be substituted by explicit func-
tions of x and v̄1. From (8.25), one obtains:[

id
iq

]
=

1
x′d

2 + r2a

[
x′d ra
ra −x′d

] [
e′q − vq
−vd

]
(8.27)

where vd and vq are functions of the rotor angle δ and of the bus voltage v̄1.
Assuming ra ≈ 0, which is a common hypothesis for the classical machine
model, (8.27) can be further simplified as:

id = (e′q − vq)/x′d = (e′q − v1 cos(δ − θ1))/x′d (8.28)
iq = vd/x

′
d = v1 sin(δ − θ1)/x′d

and the electrical power pe becomes:

pe =
e′qv1
x′d

sin(δ − θ1) (8.29)

In summary, the simplified current-injection model is:

f ⇒
{
δ̇ = ωn(ω − ωs)

ω̇ = (pm − e′qv1
x′

d
sin(δ − θ1) −D(ω − ωs))/2H

(8.30)

īG ⇒
{
0 = 1

x′
d
(e′q − v1 cos(δ − θ1) + jv1 sin(δ − θ1)) − 1

jxL
(v̄1 − v̄0)

192 8 Time Domain Analysis

8.3 Numerical Integration Methods

In order to numerically integrate (8.2), the first issue that has to be solved is
how to handle algebraic equations g. There are mainly two approaches:

1. Partitioned-solution approach. Variables x and y are updated sequentially.
2. Simultaneous-solution approach. Variables x and y are solved together in

a unique step using a solver such as the Newton’s method.

As usual, both approaches have advantages and drawbacks.
In the partitioned approach, since x and y are updated independently, any

numerical integration method can be used. However, the sequential approach
is typically used combined with explicit numerical methods (e.g., Runge-
Kutta’s formulæ) that do not require computing and factorizing the Jacobian
matrix fx. On the other hand, the partitioned approach introduces a “delay”
between x and y. In fact, for a generic step i, while computing x(i+1), alge-
braic variables are frozen to the old value y(i). Moreover, the state variables
x(i+1) are not modified when computing y(i+1). To avoid the delay between
x(i) and y(i), one has to iterate over x(i) and y(i) for each time step. This
process can lead to numerical instabilities. It has to be noted that solving
g = 0 for updating algebraic variables requires the solution of a nonlinear
system, which generally requires computing and factorizing iteratively the
Jacobian matrix gy. At this aim, to reduce the computational effort, one can
use a Newton’s dishonest method as described in Subsection 4.4.6 of Chapter
4. In case the Jacobian matrix of algebraic equations is kept constant for
multiple integration time steps, the method is called very dishonest Newton’s
method [19].

The simultaneous approach has the advantage that x(i) and y(i) are up-
dated together, thus no delay is introduced. This approach is used in con-
junction with implicit numerical methods that require, at each time step, the
solution of a set of nonlinear equations. This solution is generally obtained
through a Newton’s method. Thus, the simultaneous approach requires iter-
atively computing and factorizing an (nx +ny) × (nx +ny) Jacobian matrix.

In conclusion, the partitioned approach can be considered faster but less
numerically stable than the simultaneous approach. Further details are given
in the following subsections.

8.3.1 Explicit Methods

Multi-stage explicit methods can be expressed using a m-stage formula in the
form [276]:

8.3 Numerical Integration Methods 193

x(t+Δt) = x(t) +Δt
m−1∑
k=0

ckf
{k} (8.31)

x̂(t+Δt) = x(t) +Δt

m∑
k=0

ĉkf
{k}

where t is the current integration time and Δt is the step length and:

f{0} = f(x(t), ti) (8.32)

f{k} = f(x(t) +Δt

k−1∑
j=0

bkjf
{j}, ti + akΔt)

Both x(t+Δt) and x̂(t+Δt) approximate the exact solution and x̂(t+Δt) is
an approximation of higher order than x(t+Δt). The difference x(t+Δt)−
x̂(t+Δt) allows estimating the error with respect to the exact solution and
adjusting the step length Δt.

The m-stage formula (8.31) evaluates the new value of the state variables
x(t+Δt) using a weighted sum of m values of ẋ at suitable points between
t and t+Δt.

A convenient way of visualizing the formulæ (8.31) for a given method is
through the Butcher’s tableau [34], as follows:

0
a1 b10
a2 b20 b21
...

...
...

. . .
am bm0 bm1 . . . bm,m−1

c0 c1 . . . cm−1
ĉ0 ĉ1 . . . ĉm−1 ĉm

(8.33)

Using (8.31), a huge variety of explicit methods can be defined, including the
large family of Runge-Kutta’s formulæ.

Multi-step or predictor-corrector methods are another class of explicit
methods. The general formula of a multi-step method is:

x(t+Δt) = x(t) +Δt

m∑
k=0

ckf(x(t− kΔt), t− kΔt) (8.34)

A drawback of multi-step methods is that they are not self-starting, since
the first m steps has to be known to compute the generic step (8.34) for
t+Δt. The well-known Adams-Bashforth’s method, Milne-Simpson’s method
and Hamming’s method belong to the family of multi-step methods [34].
However, these methods have proved to be less accurate and efficient then
Runge-Kutta’s formulæ, at least for power system applications [163].

194 8 Time Domain Analysis

Example 8.2 Runge-Kutta’s Formulæ

Example 4.6 presented the classical 4th order Runge-Kutta’s formula:

f{0} = f(x(t)) (8.35)

f{1} = f(x(t) + 0.5Δtf{0})

f{2} = f(x(t) + 0.5Δtf{1})

f{3} = f(x(t) +Δtf{2})

⇒ x(t+Δt) = x(t) +Δt(f{0} + 2f{1} + 2f{2} + f{3})/6

The RK4 is represented by the following Butcher’s tableau:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

(8.36)

Several more sophisticated schemes have been proposed [117]. For example,
the Runge-Kutta-Fehlberg’s formula has the following Butcher’s tableau:

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40

25
216 0 1408

2565
2197
4104 − 1

5
16
135 0 6656

12825
28561
56430 − 9

50
2
55

(8.37)

Example 8.3 Modified Euler’s Method

The modified Euler’s method is the simplest multi-step method and is the
only that has been widely used in power system analysis [163, 291]. It is
composed of a predictor and a corrector step, as follows:

8.3 Numerical Integration Methods 195

x̃(t+Δt) = x(t) +Δtf(x(t), t) (8.38)

x(t+Δt) = x(t) +
1
2
Δt(f (x(t), t) + f(x̃(t+Δt), t))

The accuracy of this method can be improved by assigning x(t) ← x(t+Δt)
and repeating the two-step formula (8.38).

8.3.2 Implicit Methods

In transient stability analysis, one of the possible issues is that time constant
can span various time scales. For example if both transient stability and long
term dynamics are considered together, time constants vary between 10−2

and 103 s (see Figure 1.6 of Chapter 1). Similarly, if one considers both
sub-synchronous resonance phenomena and transient stability, the time scale
range is between 10−4 and 101 s. If the time scale range of a ODE problem
is “big”, the ODE problem is said to be stiff.

The behavior of numerical methods on stiff ODE problems can be analyzed
by applying these methods to the test equation:

ẋ = kx, k ∈ C (8.39)

The solution of (8.39) is x(t) = ekt that approaches zero as t → ∞ when
�{k} < 0, i.e., the left-half of the complex plane is the stability region of
the test equation (8.39). If the numerical method also exhibits this behavior,
then the method is said to be absolute stable or A-stable according to the
Dahlquist’s definition [69]. For example, applying the Runge-Kutta’s formulæ
to the test equation (8.39), one has:

x(t+Δt) = χ(kΔt)x(t) = χn(kΔt)x(t0) (8.40)

where n is the number of steps and x(t0) is the initial value. The function
χ(kΔt) is called stability function and must be |χ(kΔt)| < 1 to satisfy x(t) →
0 for n → ∞.

An interesting result of Dahlquist’s theorems is that an explicit multi-
step method cannot be A-stable [69, 165, 316]. Thus, explicit methods are
expected to provide poor behavior for stiff ODE problems. On the other
hand, implicit methods can be A-stable. For this reason, and because implicit
methods allow a simultaneous solution of both state and algebraic variables in
DAE problems, implicit methods are of particular relevance for power system
analysis.

When using implicit methods, each step of the numerical integration is ob-
tained as the solution of a set of nonlinear equations. Thus, implicit methods
are particularly suited for nonlinear DAE systems, since the algebraic equa-
tions can be included in the nonlinear system to be solved at each iteration.

For a generic time t, and assumed a step length Δt, one has to solve the
following problem [30]:

196 8 Time Domain Analysis

0 = q̂(x(t+Δt),y(t+Δt),f (t)) (8.41)
0 = g(x(t+Δt),y(t+Δt))

where f and g are the differential and algebraic equations and q̂ is a function
that depends on the implicit numerical method. Equations (8.41) are nonlin-
ear and their solution is obtained by means of a Newton’s method, which in
turn consists of computing iteratively the increments Δx(i) and Δy(i) of the
state and algebraic variables and updating the actual variables:[

Δx(i)

Δy(i)

]
= −[A(i)

c]−1
[
q̂(i)

g(i)

]
(8.42)

[
x(i+1)(t+Δt)
y(i+1)(t+Δt)

]
=
[
x(i)(t+Δt)
y(i)(t+Δt)

]
+
[
Δx(i)

Δy(i)

]

whereA(i)
c is a matrix depending on the algebraic and state Jacobian matrices

of the system. Some examples of implicit method formulæ are given in the
following examples. Most techniques described in Chapter 4 can be applied
to (8.42). For example, the dishonest or very dishonest Newton’s methods
can be useful to reduce the number of factorizations of A(i)

c and speed up the
simulation.

Example 8.4 Backward Euler’s Method

The backward Euler’s method is a first order implicit method. It is generally
faster but less accurate than the trapezoidal method that is discussed in the
next example. At a generic time step t + Δt and a generic iteration i, A(i)

c

and q̂(i) are as follows:

A(i)
c =

[
Inx −Δtf (i)

x −Δtf (i)
y

g
(i)
x g

(i)
y

]
(8.43)

q̂(i) = x(i)(t+Δt) − x(t) −Δtf (i)

where Inx is the identity matrix of the same dimension of the dynamic order
of the DAE system and all Jacobian matrices and f (i), are computed at the
current point (x(i)(t+Δt),y(i)(t+Δt), t+Δt).

Example 8.5 Trapezoidal Method

The Crank-Nicolson’s or trapezoidal method is the workhorse solver for
electro-mechanical DAE, and is widely used, in a variety of flavors, in most
commercial and non-commercial power system software packages. The im-
plicit version of the trapezoidal method has proved to be very robust and

8.3 Numerical Integration Methods 197

reliable for a variety of stiff ODE and DAE systems. At a generic iteration i,
A(i)
c and q̂(i) are as follows:3

A(i)
c =

[
Inx − 0.5Δtf (i)

x −0.5Δtf (i)
y

g
(i)
x g

(i)
y

]
(8.44)

q̂(i) = x(i) − x(t) − 0.5Δt(f (i) + f(t))

where the notation is the same as in (8.43).

Example 8.6 Rosenbrock’s Semi-Implicit Method

Dahlquist’s theorems discourage from setting up implicit methods of order
greater than 2 [165]. However, an interesting method for improving the ac-
curacy of an implicit method is proposed in [316]. This reference proposes
semi-implicit methods for solving ODE systems which are A-stable and avoid
the need of iterating. However, semi-implicit methods applied to nonlinear
DAE systems still require iterating and factorizing the matrix A(i)

c at each
iteration.

A well-known semi-implicit method is the one based on Rosenbrock’s for-
mulæ. For example, a 4th order Rosenbrock’s formula is as follows. At a
generic time t and iteration i, the matrix A(i)

c is the same as in (8.44). The
variables x(i) and y(i) are determined by means of a 4th order approximation:

q̂
(i)
1 = [

1
0.5Δt

A(i)
c]−1ϕ(t) (8.45)

z
(i)
1 = z(t) + a21q̂

(i)
1

q̂
(i)
2 = [

1
0.5Δt

A(i)
c]−1(ϕ(t+ a2xΔt) + c21q̂

(i)
1 /Δt)

z
(i)
2 = z(t) + a31q̂

(i)
1 + a32q̂

(i)
2

q̂
(i)
3 = [

1
0.5Δt

A(i)
c]−1(ϕ(t+ a3xΔt) + (c31q

(i)
1 + c32q̂

(i)
2)/Δt)

q̂
(i)
4 = [

1
0.5Δt

A(i)
c]−1(ϕ(t+ a3xΔt) + (c41q̂

(i)
1 + c42q̂

(i)
2 + c43q̂

(i)
3)/Δt)

z(i) = z(t) + b1q̂
(i)
1 + b2q

(i)
2 + b3q̂

(i)
3 + b4q̂

(i)
4

3 Butcher’s tableaux can be defined also for implicit methods. The only difference

with explicit methods is that the coefficient matrix bkj is not necessarily lower

triangular. For example, the Butcher’s tableau of the trapezoidal method is:

1 1
2

1
2

0 0 0

1
2

1
2

However, for implicit methods, the determination of each f {k} is generally in-

volved and, hence, the Butcher’s tableau representation is not practical.

198 8 Time Domain Analysis

where z = [xT ,yT]T and ϕ = [fT , gT]T and the coefficients are:

a21 = 2 a31 = 48/25 a32 = 6/25
c21 = −8 c31 = 372/25 c32 = 12/5
c41 = −112/125 c42 = −54/125 c43 = −2/5
b1 = 19/9 b2 = 0.5 b3 = 25/108 b4 = 125/108
a2x = 1 a3x = 3/5

For this method, the convergence error is:

ε = max{abs(e1q̂1 + e2q̂2 + e3q̂3 + e4q̂4)} (8.46)

where:

e1 = 17/54 e2 = 7/36 e3 = 0 e4 = 125/108 (8.47)

It is worth noting that (8.45) requires only one factorization ofA(i)
c . Thus, the

Rosenbrock’s formula is only slightly more computational demanding than
the trapezoidal method.

8.4 Numerical Integration Routine

This section describes a complete routine for numerical integrations. Only
the implicit backward Euler’s and the trapezoidal methods are considered.
However, the routine can be easily modified to take into account any other
numerical method.

Figure 8.7 shows the flowchart for a generic implicit numerical method.
The integration starts at a given initial point and at a given initial time.
Then, for each time step, an inner Newton’s method is solved for (8.42).
The inner loop stops if the required variable increment is below a tolerance
ε or if the maximum number of iterations is reached. In the latter case, the
step length Δt is decreased. If the inner loop does not converge and the step
length Δt is decreased below a minimum threshold, than the simulation stops
since a singularity has been likely encountered (this behavior is typical of a
collapse point). Otherwise, the simulation goes on the following time step.
The external loop stops if t ≥ tf , where tf is the desired final integration
time, or if some other stop criterion is verified.

The numerical method is clearly the kernel of the whole routine but other
important issues have to be taken into account, namely, (i) the initial condi-
tion, (i) how to update the step length Δt, (iii) how to define disturbances,
and (iv) the criteria for stopping the simulation. The calculation of initial
conditions is described in Subsection 9.1.1 of Chapter 9. Other issues are
discussed in the following subsections.

8.4 Numerical Integration Routine 199

END

END

Singularity

likely

Integration

method

Compute

Evaluate

Evaluate system

Evaluate initial

Power Flow &

Initial State Variables

equations & Jacobians

disturbance

OutputUpdate x and y

Update

time step Δt

t = t0

i = 0

i = i+ 1

Reduce Δti > imax Δt < Δtmin

Δt

Δx and Δy

|Δx(i)|, |Δy(i)| < ε

Stop Criterion

yes

yes

yes

yes

no

no

no

no

Fig. 8.7 Time domain integration flowchart

200 8 Time Domain Analysis

8.4.1 Step Length

The step lengthΔt can be fixed or variable. Increasing the step length is useful
for saving time if the numerical integration is going on “smoothly”, while
decreasing the step length can be useful in the instants after the occurrence
of a large disturbance (e.g., short-circuit or line outage).

Multi-stage explicit methods allow estimating the step length. A commonly
used formula is:

Δt ← σ
εΔt

|x̂(t+Δt) − x(t+Δt)| (8.48)

where σ ∈ [0.8, 0.9] is a safety factor and ε a given tolerance.
A-stable implicit methods are less sensitive to the step length. However,

it can be useful to increase Δt if “nothing happens”. A heuristic method
that has provided good results for the software package PSAT is as follows
[195]. The main idea is to use the number of iterations of the inner Newton’s
method used for solving (8.42) as a “measure” of the difficulty that is facing
the numerical method for obtaining the point at t = Δt. The rules are:

1. If the inner Newton’s method has not converged, the step length is defined
as:

Δt ← 0.5Δt (8.49)

Furthermore, if Δt < Δtmin, the routine stops since a singularity has been
likely encountered.

2. If the iterations are more than 15, then the following step length is defined
as:

Δt ← max{0.9Δt,Δtmin} (8.50)

3. If the iterations are less than 10, then the following step length is defined
as:

Δt ← min{1.3Δt,Δtmax} (8.51)

4. During faults, the time step is defined as:

Δt ← min{Δt, 0.0025 s} (8.52)

5. Otherwise the step length is not changed.

The minimum and maximum step lengths Δtmin and Δtmax are defined at
the beginning of the simulation based on the eigenvalues of the system state
matrix. In fact, the eigenvalues of the state matrix provide a valuable infor-
mation on the time constants of the system, as follows:

Tk =
1

|λk|
, k = 1, 2, . . . , nx (8.53)

where nx is the dynamic order of the system. The following script further
develops this concept.

8.4 Numerical Integration Routine 201

Script 8.1 Computing the First Time Step

The following script provides some heuristics that are able to estimate the
first step length,Δtmin andΔtmax and, in case of fixed step length, to evaluate
if the step length chosen by the user is reasonable.

import system

from cvxopt.base import matrix

from cvxopt.umfpack import linsolve

def first time step():

"""compute first time step"""

estimate the minimum time step

if not system.DAE.nx:

freq = 1.0

elif system.DAE.nx == 1:

B = matrix(system.DAE.Gx)

linsolve(system.DAE.Gy, B)

As = system.DAE.Fx - system.DAE.Fy*B

freq = abs(As[0,0])

else:

freq = 20.0

if freq > system.Settings.freq:

freq = float(system.Settings.freq)

if not freq: freq = 20.0

set the minimum time step

deltaT = abs(system.Settings.tf - system.Settings.t0)

Tstep = 1/freq

system.Settings.deltatmax = min(5*Tstep, deltaT/100.0)

system.Settings.deltat = min(Tstep, deltaT/100.0)

system.Settings.deltatmin = min(Tstep/64, system.Settings.deltatmax/20)

if system.Settings.fixt:

if system.Settings.tstep <= 0:

print ’Fixed time step is negative or zero’

print ’Automatic time step has been set’

system.Settings.fixt = False

elif system.Settings.tstep < system.Settings.deltatmin:

print ’Fixed time step is less than estimated minimum time step’

system.Settings.deltat = system.Settings.tstep

else:

system.Settings.deltat = system.Settings.tstep

return system.Settings.deltat

202 8 Time Domain Analysis

Fig. 8.8 Comparison between the backward Euler’s method and the implicit trape-

zoidal method for the IEEE 14-bus system

Example 8.7 Comparison of Time Domain Integration Methods

Figure 8.8 shows a comparison between the backward Euler’s method and the
implicit trapezoidal method using a step length Δt = 0.01 s for the IEEE 14-
bus system. The simulation refers to the IEEE 14-bus system and is obtained
by applying line 2-4 outage at t = 1 s. The backward Euler’s method damps
oscillations more than the implicit trapezoidal method and, thus, requires a
smaller time step to provide precise results.

Figure 8.9 shows a comparison of numerical integration results using the
implicit trapezoidal method and different step lengths Δt, namely a fixed
step length Δt = 0.01 s, a fixed step length Δt = 0.10 s and an adaptive
step length as described above. The disturbance is the same as the one used
for obtaining the results shown in Figure 8.8. As expected, since the implicit
trapezoidal method is A-stable, results are relatively independent from the
time step.

8.4.2 Disturbances

In the classical transient stability analysis, whose object is to determine
whether synchronous machines go out of step, disturbances of interest are
essentially short-circuits and device outages (e.g., lines, generators or loads).

8.4 Numerical Integration Routine 203

Fig. 8.9 Comparison of numerical integration results using different step lengths

for the IEEE 14-bus system

These disturbances are so relevant that have to be handled by means of ded-
icated classes and functions. These are described in details in Sections 13.1
and 13.2, respectively, of Chapter 13.

Other perturbations, such as load ramps, are more relevant for long-term
analysis and, thus, are less commonly included in transient stability packages.
A particular case of load ramps is discussed in the following Section 8.6.

Generic disturbances are an issue for most transient stability packages. The
main difficulty is that, to be “generic”, the time domain integration routine
has to be able to support a custom user-defined function. This is quite com-
plicated for software packages built using a system programming language,
since the user defined function has to be compiled within the package to work
correctly. To overcome this issue, there are mainly three solutions:

1. To allow the user to apply only a predefined set of disturbances. Clearly
this is not a solution, but just a way of overcoming the issue. Unfortunately,
this solution is more common than not in proprietary software.

2. To define a special syntax for disturbances. The syntax can be in form
of data [59], in form of a meta-language [68], or using a system-language
function that is compiled at run-time [243].

3. To allow the user to embed any function within the main routine. While rel-
atively complicated for packages based on system programming languages
(especially if the source code is not provided), this solution is trivial for

204 8 Time Domain Analysis

scripting language-based applications. For example, in Python, function
names are handled as any other variable type.

As the reader may expect, my favorite solution is the last one. However,
this solution has also some drawback. First of all, a user-defined disturbance
function must have a fixed syntax to be compatible with the main numerical
integration routine. For example, the function header can be of the type:

def disturbance(t):

...

where t is current simulation time. Then, in order to modify the parameters
of some device, that device has to be imported and visible in the function
scope. The main issue of this approach is that the user has to be familiar
with the syntax and the idiosyncrasies of the software package in use. This
familiarity is often difficult to obtain. In conclusion, to much flexibility can
result in an obstacle rather than a freedom.

8.4.3 Stop Criterion

An important issue to solve when dealing with numerical integration is when
to stop the simulation. In transient stability, most simulations are performed
to define if the system is able to maintain the synchronism after a large
disturbance. In practice, a common security analysis consists in defining a
set of “credible” contingencies and in running a time domain simulation for
each contingency.

A relevant question is: is it possible to anticipate whether the system tra-
jectory is going to be stable or unstable and, thus, to save simulation time
by opportunely stopping the numerical integration?

A simple method for determining if the trajectory is going to be unstable is
to monitor the rotor angle of synchronous machines. If at a certain time t, the
maximum difference between two rotor angles exceeds 2π,4 then some machine
is certainly losing the synchronism and the simulation can be stopped.

However, the previous method does not allow saving time if the simulation
is stable. In fact, if the simulation is stable, one has to wait for the final
assigned time tf before stopping the numerical method.

A well-known technique that allows defining the stability or instability of
a given trajectory is the SIME method [236], which works as follows. At each
step of the numerical integration, the machine rotor angles are sorted and the
maximum difference of two consecutive synchronous machine rotor angles is
found. Assuming that these angles are δi and δj , with δi > δj , all machines
whose rotor angles satisfy δh ≥ δi are considered critical machines, while
all machines whose rotor angles satisfy δh ≤ δj are considered non-critical
machines.
4 It is assumed that the system data are in pu and thus the phase shift introduced

by three-phase transformers do not affect rotor angle values.

8.4 Numerical Integration Routine 205

Once defined the critical and non-critical machine sets, say GC and GNC,
the equivalent OMIB rotor angle is defined as:

δOMIB =
1
HC

∑
j=GC

Hjδj − 1
HNC

∑
j=GNC

Hjδj (8.54)

where the sub-indexes C and NC stand for critical and non-critical, and the
equivalent inertia constants are:

HC =
∑
j=GC

Hj (8.55)

HNC =
∑
j=GNC

Hj

Similarly, OMIB electrical and mechanical powers are defined as:

pOMIB
e = HOMIB

⎡
⎣ 1
HC

∑
j=GC

pej − 1
HNC

∑
j=GNC

pej

⎤
⎦ (8.56)

pOMIB
m = HOMIB

⎡
⎣ 1
HC

∑
j=GC

pmj − 1
HNC

∑
j=GNC

pmj

⎤
⎦

where HOMIB = HCHNC/(HC + HNC). According to the EAC described in
Section 8.1, the equivalent OMIB accelerating power pOMIB

a is:

pOMIB
a = pOMIB

m − pOMIB
e (8.57)

The following stability conditions hold for the equivalent OMIB:

1. If, at a certain time step t, pOMIB
a = 0 and ṗOMIB

a > 0 and δ̇OMIB > 0
the system is unstable.5 In fact, the previous conditions ensure that the
system has no further kinetic energy to spend for decelerating the system.
Furthermore, δ̇OMIB > 0 implies that the rotor angle is increasing. These
are sufficient conditions for defining instability.

2. If, at a certain time step t, pOMIB
a < 0 and δ̇OMIB ≤ 0 the system is first-

swing stable. In fact, in this case, the kinetic energy is enough to stop

5 The first time derivative of the equivalent OMIB rotor angle δ̇OMIB can be written

as:

δ̇OMIB
=

1

HC

∑
j=GC

Hj δ̇j − 1

HNC

∑
j=GNC

Hj δ̇j

=
1

HC

∑
j=GC

Hjωj − 1

HNC

∑
j=GNC

Hjωj = ΔωOMIB

Thus, δ̇OMIB is the speed deviation ΔωOMIB of the equivalent OMIB system.

206 8 Time Domain Analysis

the critical machine rotor angles and make them to “come back”. These
stability conditions are only necessary. In fact, the system can later on
show multi-swing instability. Only the numerical integration can show if
the trajectory is multi-swing stable or not.

3. If pOMIB
a > 0, ∀t > 0, then the system is certainly unstable. However, some

heuristic is needed to determine when to stop the simulation [236].

The most relevant features of the SIME method are (i) no assumption is made
on the original system and (ii) computing the OMIB equivalent is practically
inexpensive with respect to the computational burden of the numericalmethod.

The main assumption of the SIME method is that the two sets of critical
and non-critical machines can be considered as an OMIB system. One may
argue that there could be a case in which the system separates into three or
more groups. Actually, there is no experimental result that shows a system
separating in more than two groups since it becomes unstable.6 Thus, until a
case study will prove the contrary, the main assumption of the SIME method
can be considered true.

Example 8.8 Application of the SIME Method for the IEEE
14-Bus System

Figure 8.10 shows synchronous machine rotor speeds for the IEEE 14-bus sys-
tem following a three-phase fault at bus 4. The fault occurs at t = 1 s and is
cleared at t = 1.2 s by line 2-4 outage. The numerical integration provides the
first 4 s following the fault clearing. During the fault and in the first instances
after the line outage, the system separates into two groups: the first group is
composed of machines 1 and 2, and the other one is composed of machines 3,
4 and 5. From observing the plot, it is clear that the system is stable. Never-
theless, the SIME method allows stopping the simulation at about t = 1.265 s,
i.e., when the stability conditions pOMIB

a < 0 and δ̇OMIB ≤ 0 are satisfied (see
Figure 8.11). It is important to note that only the full time domain simulation
ensures that the system does not show multi-swing instability.

Script 8.2 Complete Time Domain Integration Algorithm

The following script provides a complete routine for numerical integration
implementing the backward Euler’s and the trapezoidal implicit methods.
The functions first time step(), time step(convergence, iteration,
t) and anglediff() allows defining the first step length as well as maxi-
mum and minimum step length, updating the step length and computing
the rotor angle difference or the stability according to the SIME approach,
respectively. The class system.Varout is used for storing the simulation re-
sults: each instance of the method store() append to the output file the
current simulation time and the vectors of state and algebraic variables. As

6 Observe that if the system trajectory is stable, the critical and the non-critical

machine groups are arbitrary since there are no critical machines.

8.4 Numerical Integration Routine 207

Fig. 8.10 Transient following a three-phase fault at bus 4 for the IEEE 14-bus

system. The gray region indicates the part of the simulation that is required by the

SIME method to determine that rotor speed trajectories are first-swing stable

usual, the expression exec system.Device.call int is used as interface for
computing algebraic and differential equations and Jacobian matrices of all
devices defined in the system (see Script 3.2 of Chapter 3).

Two remarks are relevant:

1. State variable hard limits requires a special care. When a state variable
hits a hard limit, its value becomes a constant and the correspondent
differential equation is “frozen”. This has to be taken into account in
the matrix A(i)

c and in the vector q̂(i). With this aim, the interface exec
system.Device.call windup makes sure that if a state variable, say xi
hits a limit, the ith column and the ith row ofA(i)

c as well as the ith element
of the vector q̂(i) are set to zero, while the element (i, i) of A(i)

c is set to 1.
2. Special events such as fault occurrences and breaker operations are taken

into account so that, regardless the step length Δt, the numerical inte-
gration evaluates a point right before and right after that event. In other
words, if the event occurs at t = te, then a point is evaluated at te− ε and
at te+ ε. This “trick” avoids that a specific event is evaluated with a delay
due to the step length.

import system

from cvxopt.base import matrix, spmatrix, sparse

from cvxopt.umfpack import linsolve, symbolic, numeric

208 8 Time Domain Analysis

Fig. 8.11 Equivalent OMIB electrical and mechanical powers as a function of the

equivalent OMIB rotor angle δOMIB for the transient following a three-phase fault

at bus 4 for the IEEE 14-bus system

from cvxopt.umfpack import solve as umfsolve

def timedomain():

check settings

iter max = system.Settings.dynmit

tol = system.Settings.tol

nx = system.DAE.nx

ny = system.DAE.ny

In = spmatrix(1, range(nx), range(nx), (nx, nx), ’d’)

initializations

t = system.Settings.t0

step = 0

h = first time step()

inc = matrix(0, (nx + ny, 1), ’d’)

inc = matrix(0, (nx + ny, 1), ’d’)

system.DAE.factorize = True

system.DAE.mu = 1.0

system.DAE.kg = 0.0

switch = False

nextpc = 0.1

time vector faults and breaker events

8.4 Numerical Integration Routine 209

fixed times = system.Device.get times()

compute max rotor angle difference

diff max = anglediff()

Main loop

while t <= system.Settings.tf and t + h > t and not diff max:

if t + h > system.Settings.tf: h = system.Settings.tf - t

actual time = t + h

check for the occurrence of a disturbance

for item in fixed times:

if item > t and item < t + h:

actual time = item

h = actual time - t

switch = True

break

set global time

system.DAE.t = actual time

backup of actual variables

xa = matrix(system.DAE.x)

ya = matrix(system.DAE.y)

initialize NR loop

iteration = 0

fn = matrix(system.DAE.f)

applying faults, breaker interventions and disturbances

if switch:

system.Fault.intervention(actual time)

system.Breaker.intervention(actual time)

switch = False

if system.Settings.disturbance: system.File.disturbance(actual time)

main loop of the Newton’s method

system.Settings.error = tol + 1 # force at least one iteration

while system.Settings.error > tol and iteration < iter max:

DAE equations

exec system.Device.call int

complete Jacobian matrix DAE.Ac

if system.Settings.method == ’euler’:

system.DAE.Ac = sparse([[In - h*system.DAE.Fx, system.DAE.Gx], \
[-h*system.DAE.Fy, system.DAE.Gy]])

system.DAE.q = system.DAE.x - xa - h*system.DAE.f

else: # default is implicit trapezoidal method

system.DAE.Ac = sparse([[In - h*0.5*system.DAE.Fx, system.DAE.Gx],\
[-h*0.5*system.DAE.Fy, system.DAE.Gy]])

system.DAE.q = system.DAE.x - xa - h*0.5*(system.DAE.f + fn)

210 8 Time Domain Analysis

anti-windup limiters

exec system.Device.call windup

if system.DAE.factorize:

F = symbolic(system.DAE.Ac)

system.DAE.factorize = False

inc = -matrix([system.DAE.q, system.DAE.g])

try:

umfsolve(system.DAE.Ac, numeric(system.DAE.Ac, F), inc)

except ArithmeticError:

print ’Singular matrix’

iteration = iter max + 1

except ValueError:

Unexpected refactorization of the power flow Jacobian matrix

F = symbolic(system.DAE.Ac)

try:

umfsolve(system.DAE.Ac, numeric(system.DAE.Ac, F), inc)

except ArithmeticError:

print ’Singular matrix’

iteration = iter max + 1

system.DAE.x += inc[:nx]

system.DAE.y += inc[nx:nx + ny]

system.Settings.error = max(abs(inc))

iteration += 1

if iteration >= iter max:

h = time step(False, iteration, t)

print ’Reducing time step (delta t = %.5f s)’ % h

system.DAE.x = matrix(xa)

system.DAE.y = matrix(ya)

system.DAE.f = matrix(fn)

continue

update output variables and time step

t = actual_time

step += 1

system.Varout.store(t, step)

avoid freezing at t == system.Settings.tf

if h == 0: break

h = time_step(True, iteration, t)

plot variables and display iteration status

perc=(t - system.Settings.t0)/(system.Settings.tf - system.Settings.t0)

if perc > nextpc:

print ’ # Simulation time = %.4f s (%.1f%%)’ % (system.DAE.t, perc*100)

nextpc += 0.1

compute max rotor angle difference

diff max = anglediff()

8.5 Electro-magnetic Transients 211

8.5 Electro-magnetic Transients

In [78], Dommel proposed a compensation method based on nodal analysis
for a systematic study of electro-magnetic transients of electrical circuits. The
Dommel’s method is a numerical integration substitution that transforms the
basic electrical elements, namely resistances, inductances and capacitances,
into an equivalent parallel circuit composed of a resistance and a current
generator. A fixed-step trapezoidal method allows obtaining this result.

Inductance

For an inductance, one has:

vh − vk = L
dihk
dt

(8.58)

where h and k are the terminal nodes of the inductance. At a generic time
step t, the current variations for t+Δt is:

ihk(t+Δt) = ihk(t) +
1
L

∫ t+Δt

t

(vh − vk)dt (8.59)

Applying the trapezoidal rule:

ihk(t+Δt) = îhk(t) +
Δt

2L
(vh(t+Δt) − vk(t+Δt)) (8.60)

where the equivalent current îhk(t) depends on the system state at t:

îhk(t) = ihk(t) +
Δt

2L
(vh(t) − vk(t)) (8.61)

Capacitance

For a capacitance, one has:

vh(t+Δt) − vk(t+Δt) =
1
C

∫ t+Δt

t

ihkdt+ vh(t) − vk(t) (8.62)

Applying the trapezoidal rule:

ihk(t+Δt) = îhk(t) +
2C
Δt

(vh(t+Δt) − vk(t+Δt)) (8.63)

212 8 Time Domain Analysis

where the equivalent current îhk(t) depends on the system state at t:

îhk(t) = −ihk(t) − 2C
Δt

(vh(t) − vk(t)) (8.64)

Resistance

The resistance is a memory-less element. Thus, one has:

ihk(t+Δt) =
1
R

(vh(t+Δt) − vk(t+Δt)) (8.65)

Inductance ResistanceCapacitance

L RCR = 2L
Δt

R = Δt
2C

hh hhh

kk kkk

îhk(t)îhk(t)

ihk(t)ihk(t)ihk(t)ihk(t)ihk(t)

Fig. 8.12 Dommel’s equivalents

Figure 8.12 summarizes the compensated models introduced by the Dommel’s
method. In conclusion, an electrical network composed of linear devices can
be represented as:

Gv(t+Δt) = i(t+Δt) + î(t) (8.66)

where G is the nodal conductance matrix, v(t + Δt) is the vector of node
voltages at time t+Δt, i(t+Δt) is the vector of currents injected at nodes
at time t+Δt, and î(t) is the vector of known current sources at time t.

The main advantage of (8.66) is that the conductance matrix G is con-
stant (as long as the network topology does not change) and thus it can be
factorized only once at the beginning of the time integration. The efficiency
of the Dommel’s method has made it a standard de facto in electro-magnetic
transients and has been adopted by most popular EMT software tools (e.g.,
PSCAD and ATP).

However, the proposed method is not flawless, at least if one needs to
integrate it into a transient stability analysis tool. Main drawbacks are as
follows [154]:

1. If the network topology changes several times (e.g., due to converter
switching), the method is not so effective since the matrix G has to be
recomputed and re-factorized several times.

8.6 Quasi-static Analysis 213

2. Matrix G is constant only if the system element are linear. At most, non-
linear current sources can be used [79]. In case of nonlinear elements, G
has to be re-factorized at each time step.

3. Since nodal equations are reformulated as integral-differential algebraic
equations (IDAE), the network nodal conductance matrix may result poor-
ly conditioned and may show numerical instabilities [109].

Although in EMT programs the issues above can be overcome, the integration
of electro-magnetic transient analysis into a transient stability program is
still an open task [151]. The integration is more and more a necessity due
to the large penetration of non-conventional energy sources, most of which
are dc systems (e.g., photo-voltaic and fuel cells). Thus, there is the need of
modelling both static converters and dc circuits. Chapters 17 and 18 describe
in details dc models and ac/dc converters, respectively. In those chapters, a
general nonlinear current-injection model (8.13) is used.

8.6 Quasi-static Analysis

In some applications, the variations of the inputs are relatively slow with
respect to transient dynamics. A relevant example is the study of the effect
of long term voltage stability phenomena, such as the daily load ramp or
voltage collapse [336]. In this case load powers are modelled as time dependent
controllable parameters η(t). Since load variations take from tens of minutes
to some hours, any transient dynamic can be considered steady-state. The
resulting system equations are obtained by imposing ẋ = 0 in (8.12):

0 = f (x,y,η(t)) (8.67)
0 = g(x,y,η(t))

which is generally referred to as quasi-static or quasi-steady-state model. For
example, a quasi-steady-state simulator called WPSTAB has been developed
by the National Technical University of Athens [340].

Loads can be modeled as linear time ramps:

pL(t) = p0
L + rLt (8.68)

In practice, the load ramp can be assumed as:

rL ≡ ktp
0
L (8.69)

where kt is a coefficient that imposes the time rate. For example kt = 1/3600
s−1 means the that load powers double in one hour.

Solving the original system (8.12) with a very small time rate kt provides
practically same results as (8.67). However, (8.67) allows drastically reducing
the computing time. In fact, the maximum time step that can be used for
integrating (8.12) depends on the system time constants. On the other hand,

214 8 Time Domain Analysis

the solution of (8.67) is a sequence of equilibrium points and thus the step
length size is limited only by the convergence properties of the method used
for solving (8.67) and by the initial guess, which is generally set as the solution
of the previous point.

It is relevant to note the similarity between (8.68) and the load direction
model (5.13) given in Chapter 5. Section 5.4.4 suggests that the homotopy
(5.59) can be interpreted as a differential equation where the continuation
parameter μ is used as an independent variable (e.g., Davidenko’s method).
Analogously, in (8.67), the independent variable t can viewed as a continua-
tion parameter. The point is that any homotopy method described in Chapter
5 can be used for studying (8.67) and for determining how much the system
can be loaded until a bifurcation occurs.

The quasi-static system (8.67) can show three kinds of bifurcations. Besides
saddle-node and limit-induced bifurcations that were introduced in Chapter
5, synchronous machines and primary voltage regulation (e.g., AVRs) can
lead to Hopf bifurcations. This kind of bifurcations is characterized by a pair
of complex eigenvalues that crosses the imaginary axis as the load increases
[45, 115, 337]. After the occurrence of an Hopf bifurcation the system shows
undamped oscillations that can lead to a collapse, to a limit cycle or to more
complex phenomena such as period doubling or chaos [6]. In any case, the
occurrence of the Hopf bifurcation has to be considered a maximum loading
condition similar to a saddle-node or a critical limit-induced bifurcation.

It is important to note that there is a conceptual difference between the
solution of (8.67) through an homotopy method and the solution of a con-
tinuation power flow using the static model (5.10) with the initialization of
dynamic device state variables for each point of the nose curve. In fact, al-
though both analyses compute a series of equilibrium points, the continuation
power flow approach imposes constant bus voltage magnitudes at generator
buses, while the quasi-steady-state analysis imposes constant regulator ref-
erence signals. This difference may lead to quite different results in terms of
small-signal stability analysis as it is qualitatively discussed in the following
example.

Example 8.9 Quasi-static Integration for the IEEE 14-Bus
System

This example shows the results of the quasi-static time domain analysis for
the IEEE 14-bus system. The dynamic models include synchronous machines
and AVRs as described in Appendix D. The perturbation consists in in-
creasing the load using a time ramp (8.68). Figure 8.13 shows voltages at
load buses 12, 13 and 14. Only the upper part of the curve has a physical
meaning, i.e., up to the maximum loading condition at which a saddle-node
bifurcation occurs. In this case, the loading level μ ≡ ktt.

When considering synchronous machines and AVRs, limit-induced bifurca-
tions are implicitly taken into account by field voltage and AVRs hard limits.

8.6 Quasi-static Analysis 215

Fig. 8.13 Quasi-static time domain analysis through homotopy method for the

IEEE 14-bus system with generator field voltage limits

Figure 8.14 shows the saturation of field voltage of synchronous machine 2 to
5 (which is a consequence of the saturation of AVR state variable vr1) and
the generated reactive powers for the IEEE 14-bus system. As long as field
voltages increase, also the reactive powers injected into the network increase.
As field voltages saturate, synchronous machines limit the reactive power
output. The saturation of vr1 and thus of the field voltage is a limit-induced
bifurcation since, once saturated, the AVR control loop opens and system
equations change.

The results of the quasi-static analysis can be compared with the static
CPF analysis shown in Example 5.4 of Chapter 5. Figure 8.15 compares such
simulations in a synoptic plot. The CPF analysis and the homotopy method
applied to the quasi-static system provides similar nose curves. Actually,
the classical approximation of synchronous machines with primary voltage
regulation as constant PV generators is quite reasonable. If the reactive power
limits of the PV generators are properly chosen, the two models show a LIB
for similar values of the loading level. In quasi-static analysis, the bus voltage
is not perfectly constant since the AVR control is not integral (see Section
16.2.1 of Chapter 16). As a consequence, the machine bus voltage decreases
even though the field voltage is not saturated.

Figure 8.15 also shows the loading level at which a Hopf bifurcation occurs
for the two approaches. In this case, the two approaches provide compara-
tively different results. For the static CPF analysis, state matrix eigenvalues

216 8 Time Domain Analysis

Fig. 8.14 Synchronous machine field voltages and reactive powers for the IEEE

14-bus system

8.7 Summary 217

Fig. 8.15 Comparison between the quasi-static time domain simulation and the

CPF analysis for the IEEE 14-bus system. The plot shows the voltage magnitude

of bus 6

are obtained after initializing state variables using the procedure described
in Section 9.1.1 of Chapter 9. For the quasi-static analysis, eigenvalues are
computed by forming the state matrix for each point of the curve. In this
case, the static CPF analysis is conservative with respect to the quasi-static
simulation.

8.7 Summary

This section summarizes most relevant concepts related to time-domain
analysis.

Time Scale: It is important to clearly define the time scale. Depending on
the time scale, the full set of state variables can be divided into fast,
normal and slow. Time constants associated with fast dynamics can be
considered zero and the associated variables are modelled as algebraic.
State variables associated with state variables can be considered “frozen”
and do not move during the transients. In transient stability analysis the
time scale is between 10−2 and 101 s. This means that electro-magnetic
transients can be considered fast (i.e., bus voltages are algebraic variables)
and long-term dynamics are slow (e.g., daily load ramp).

218 8 Time Domain Analysis

Integration Method: There is huge variety of numerical integration methods.
Explicit methods such as Runge-Kutta’s formulæ are well suited for non-
stiff ODE systems. However, transient stability analysis concerns the in-
tegration of a nonlinear and generally stiff DAE systems. In this case, the
most adequate methods are A-stable implicit and semi-implicit methods
such as the implicit trapezoidal method or Rosenbrock’s formulæ.

Step Length: The step length Δt can be fixed or variable. Implicit A-stable
numerical methods allow relatively large step length without loosing ac-
curacy. The step length has to take into account the time constants of
the system. With this aim, an eigenvalue analysis for the initial value can
provide information about the time scales of the system.

Disturbance: Typical disturbances for transient stability analysis are short-
circuit and device outages. However a general routine for time domain
analysis has to be able to support any user-defined disturbance. The latter
can be easily obtained if using an open-source tool based on a scripting
language.

Stop Criterion: When dealing with contingency analysis, it is important to
save time by stopping the numerical integration routine if the trajecto-
ries are surely stable or unstable. Monitoring the maximum synchronous
machine rotor angle difference provides such information. The SIME
method provides sufficient instability conditions and necessary stability
ones based on the computation of an equivalent OMIB system at each
time step.

Part III

Device Models

This page intentionally left blank

Chapter 9

Device Generalities

This chapter is about modelling and scripting of general purpose devices.
Section 9.1 defines the mathematical model of an as general as possible device,
while Section 9.2 provides the conceptual basis for implementing a device as a
class. Subsection 9.2.1 presents a Python example of a base device class, while
Subsection 9.2.3 provides an example of specific device methods, namely the
two-axis model of the synchronous machine.

9.1 General Device Model

Chapter 8 defines a general power injection model, as follows:

ẋ = f (x, ŷ, v̄,η) (9.1)
0 = ĝ(x, ŷ, v̄,η) (9.2)
0 = s̄(x, ŷ, v̄,η) − V̄ Ȳ ∗(x, ŷ,η)v̄∗ (9.3)

Each device is a subset of equations (9.1)-(9.3). In particular, for each device,
one can define a certain set of differential equations f i ⊂ f and algebraic
equations ĝi ⊂ ĝ. Moreover, if the device is connected to a network bus,
say bus h, the element h of the vector s̄ contains the power injection of the
considered device. In general, there can be more than one device connected
to the same bus. Thus, the element h of the vector s̄ is obtained as the
sum of the contributions of each device connected to the bus h. Similarly,
the element h of the vector V̄ Ȳ ∗(x,η)v̄∗ can be also viewed as the sum of
all powers injected to branches (e.g., transmission lines and transformers)
connected to bus h.

According to the discussion above, equation (9.3) can be rewritten as:

0 =
∑
i∈Ω̂h

s̄h,i(x, ŷ, v̄,η) − v̄h
∑
k∈Ch

ȳ∗hk(x, ŷ,η)v̄∗k, h ∈ B (9.4)

where Ω̂h and Ch are the sets of all devices and all branches, respectively,
connected to bus h, and B is the set of buses. Further generalizing (9.4),

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 221–246.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

222 9 Device Generalities

i.e., considering also transmission lines and transformers as devices that inject
powers at buses, leads to:

0 =
∑
i∈Ωh

s̄h,i(x, ŷ, v̄), h ∈ B (9.5)

where Ωh = Ω̂h ∪ Ch.
A similar equation holds for node current balance equations of dc devices:

0 =
∑

i∈Ωdc,h

ih,i(x, ŷ,v), h ∈ N (9.6)

where ih,i is the current injected at node h by device i, Ωdc,h is the set of all
dc devices connected to node h, and N is the set of nodes of the dc network.

In conclusion, the most general model of an ac device is as follows:

ẋi = f i(xi,xe, ŷi, ŷe,v,θ,η) (9.7)
0 = ĝi(xi,xe, ŷi, ŷe,v,θ,η)

ph,i = gp,hi(xi,xe, ŷi, ŷe,v,θ,η)
qh,i = gq,hi(xi,xe, ŷi, ŷe,v,θ,η)

where the sub-index i indicates internal device variables and equations and
the sub-index e indicates external variables shared with other devices. Hence,
x = [xTi ,x

T
e]T and ŷ = [ŷTi , ŷ

T
e]T . In (9.7), complex voltage phasors v̄ are

split into magnitudes v and phase angles θ. A similar general model can be
defined for dc devices.

Typical device models satisfy the following conditions:

1. The vector of state variables x can be divided into internal device variables,
say xi, and external ones, say xe. If xi ∈ R

nxi , then f i has to map to R
nxi .

2. The vector of algebraic variables ŷ can be divided into internal device
variables, say ŷi, and external ones, say ŷe. If ŷi ∈ R

nyi , then ĝi has to
map to R

nyi .
3. If the device is connected to ni buses, then both gp,hi and gq,hi have to

map to R
ni .

If all devices satisfy these rules, then the complete system (9.1)-(9.3) is well
defined, i.e., the number of state variables is equal to the number of differen-
tial equations and the number of algebraic variables is equal to the number
of algebraic equations. However, the rules above are only sufficient conditions
for obtaining a consistent DAE system. As long as f : R

nx ×R
ny ×R

nη �→ R
nx

and g : R
nx × R

ny × R
nη �→ R

ny , it is not necessary that each device strictly
follows these rules.

Finally, in (9.7), it is implicitly assumed that the device depends on a set
of parameters, say a, which characterize the behavior of the device itself. By
default, parameters a are constant.

9.1 General Device Model 223

Example 9.1 Two-Axis Synchronous Machine Model

Consider the two-axis synchronous machine model that is formally deduced
in Chapter 15. According to the notation introduced in (9.7), the machine
DAE can be subdivided as follows:

f i ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ̇ = Ωb(ω − ωs)
ω̇ = (τm − τe −D(ω − ωs))/2H
ė′q = (−e′q − (xd − x′d)id + vf)/T ′

d0

ė′d = (−e′d + (xq − x′q)iq)/T
′
q0

(9.8)

ĝi ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = (vd + raid)id + (vq + raiq)iq − τe

0 = vq + raiq − e′q + x′did
0 = vd + raid − e′d − x′qiq
0 = vh sin(δ − θh) − vd

0 = vh cos(δ − θh) − vq

0 = τm0 − τm

0 = vf0 − vf

gp,hi ⇒
{
ph,i = vdid + vqiq

gq,hi ⇒
{
qh,i = vqid − vdiq

where:

1. The state variables are x = xi = [e′d, e
′
q, δ, ω]T and xe = [].

2. The algebraic variables are ŷ = ŷi = [id, iq, vd, vf , vq, τe, τm]T and ŷe = [].
3. The bus voltage is v̄h = vh∠θh.
4. The controllable variables are η = [vf0, τm0]T .
5. The constant parameters are a = [D,H, ra, T ′

d0, T
′
q0, xd, x

′
d, xq, x

′
q, Ωb, ωs]

T .

Observe the use of the trivial equations for assigning the mechanical torque
τm and the field voltage vf . Using such dummy algebraic equations is a
common practice that allows easily interfacing devices. For example, the me-
chanical torque τm0 can be set as the output of a turbine governor and the
field voltage vf0 can be set as the output of an automatic voltage regulator
(see also Chapter 16).

9.1.1 Initialization of Device Internal Variables

As discussed in Chapter 4, the solution of the power flow problem provides
an operating point, i.e., voltage phasors and complex power injections at each
node of the network. Since the standard power flow analysis does not contain
dynamic models, the calculation of the equilibrium point (x0,y0) requires a
specific routine for dynamic devices.

224 9 Device Generalities

If a devices is initialized after the power flow analysis, bus voltages (v0 and
θ0) and power injections (ph,i0 and qh,i0) are used as input parameters for
computing the initial state variable vector xi0, internal algebraic variables
ŷi0, and/or controllable parameters η0, as depicted in Figure 9.1.

The following remarks about the device variable initialization step are
relevant:

1. Figure 9.1 only considers the case of a device directly connected to the
network. This is not the case of most controllers. For example, AVRs are
connected to synchronous machines and PSSs are connected to AVRs. In
this case, the initialization has to proceed from device to device, starting
for the device connected to the ac grid (see Figure 9.2).

2. Since during the initialization step input and output variables are swapped,
the initialization step requires an ad hoc procedure for each device.

3. The solution of the system:

0 = f i(xi, ŷi,v0,θ0,η) (9.9)
0 = ĝi(xi, ŷi,v0,θ0,η)

can be a non-trivial task depending on equation nonlinearity. Typical con-
trol schemes are linear and allow defining an explicit solution. In other
cases, nonlinearity forces to use an iterative method, such as the Newton’s
method. See for example the TCSC and the wind turbine models described
in Sections 19.2 and 20.2, respectively.

0 = f i(xi, ŷi,v0, θ0,η)

0 = ĝi(xi, ŷi,v0, θ0,η)

x̂i0, ŷi0,η0v0, θ0, ph,i0, qh,i0

Fig. 9.1 Initialization of a typical dynamic device connected to the ac grid

Power Flow

Solution

Synchronous

Machine

Turbine

Governor

AVR

PSS

OXL

v, θ

p, q

pe, ω

τm, ω

vf

v

if

vref

vref

Fig. 9.2 Initialization chain of the synchronous machines and its regulators

9.1 General Device Model 225

Example 9.2 Initialization of the Synchronous Machine
Two-Axis Model

To clarify the procedure for initializing state variables, consider the syn-
chronous machine two-axis model of the previous Example 9.1. The set of
equations for initializing the two-axis model of the synchronous machine are
(see also Section 15.1):

0 = Ωb(ω − ωs) (9.10)
0 = (τm − τe −D(ω − ωs))/2H
0 = (vq + raiq)iq + (vd + raid)id − τe

0 = vdid + vqiq − p0

0 = vqid − vdiq − q0

0 = −e′q − (xd − x′d)id + vf

0 = −e′d + (xq − x′q)iq)
0 = (vd + raid)id + (vq + raiq)iq − τe

0 = vq + raiq − e′q + x′did
0 = vd + raid − e′d − x′qiq
0 = v0 sin(δ − θ0) − vd

0 = v0 cos(δ − θ0) − vq

where v0, θ0, p0 and q0 are the input variables as obtained from the power
flow solution and e′d, e

′
q, δ, ω, id, iq, vd, vf , vq, τe, τm, τm0, vf0 are the

quantities to be initialized. In this case, (9.10) have an explicit solution, as
follows. The rotor angle δ can be obtained as:

δ0 = ∠(v̄ + (ra + jxq)̄i) (9.11)

where v̄0 = v0e
jθ0 and ī = (p0 − jq0)/v̄∗0 . Then, it follows that:

vd0 + jvq0 = v̄e−j(δ0−π/2) (9.12)

id0 + jiq0 = īe−j(δ0−π/2)

pe0 = (vq0 + raiq0)iq0 + (vd0 + raid0)id0
e′q0 = vq0 + raiq0 + x′did0
e′d0 = vd0 + raid0 − x′qiq0
vf0 = e′q0 + (xd − x′d)id0

Finally, in order to impose δ̇ = 0, it must be:

ω0 = ωs = 1.0 pu (9.13)

226 9 Device Generalities

i.e., the machine speed is synchronous at the initial equilibrium point. This
is a consequence of using a fictitious synchronous reference for δ̇. The latter
condition leads to

τm0 = τe0 (9.14)

that completes the initialization of the synchronous machine two-axis model.

9.2 Devices as Classes

In computer programming, a class is a complex type that contains a variety
of properties, namely attributes (e.g., data and settings) and methods (e.g.,
functions and procedures). Class attributes are, in some aspects, similar to
Leibniz’s monads, since attributes are entities of irreducible simplicity.1 Class
methods operates on attributes and allows devices interacting with the rest
of the program. Thus, unlike monads, class methods do communicate with
the rest of the world.

When designing a project based on classes one has to have clear that
there is a distinction between the code that implements a certain class and
the instances of that class. The code that implements the class is an abstract
structure that only defines a new type and states how that new type behaves.
On the other hand, an instance of a class is a specific variable whose behavior
is defined by the class definition. While the class is unique, there can be any
number of class instances. Using a human language analogy, a class is similar
to a grammatical object, such as the noun, the verb, the adjective, etc. Words
are similar to instances of some grammatical object. For example, script is
an instance of the class noun.

Given this premise, we are interested in defining power system devices as
classes. Before proceeding with the definition of classes, there is an important
decision that has to be taken. There are two possibilities for implementing
such device classes (see Figure 9.3).

1. To create an instance for each device defined in the system. In this case, the
interface class that coordinates the functioning of all devices2 will handle
series (or arrays) of class instances.

2. To create an unique instance for each group of devices of the same kind.
In this case, the interface class that coordinates the functioning of all
devices will handle series of class methods of each device. Each method
will internally work on an array of elements of the same device.

At a first glance, these two approaches above may seem equivalent, although,
probably, the most intuitive is the first one. In fact, considering again the
analogy with human languages, the nouns that are contained in a dictionary

1 Actually, class attributes may be instances of other classes, but this possibility

is not used in this chapter.
2 For a definition of this class see Script 3.2 of Chapter 3.

9.2 Devices as Classes 227

PQ load classPQ load class

PQ load instance

PQ load instance 1

PQ load instance 2

PQ load instance n

p1, q1 p1, q1

p2, q2

p2, q2

pn, qn

pn, qn

(a) (b)

Fig. 9.3 Instancing approaches for device classes: (a) one instance per each phys-

ical device, and (b) unique instance per device type

are each one an instance of the grammatical object noun. This corresponds to
the creation of an instance for each device of the class, say, PQ load. According
to this approach, whenever the bus power balance (9.5) is computed, one has
to look for each instance of the PQ load class and the method that computes
the bus power balance has to be called for each one of these instances. The
second approach declares only one instance of the PQ load class. Thus, it
suffices to call the method for computing the bus power balance only once if
PQ loads are defined in the system. The PQ load method internally iterates
over each element and computes (9.5).

There is an important difference between iterating over class instances or
over elements of a class. In the latter case, operation can be made vectorially
since the elements can be grouped into matrices or vectors. When using
scripting languages, avoiding explicit for-loops always allows saving CPU
time. Thus, for scripting languages, the second approach has to be preferred.
For example, in Python, built-in vectorial operations of NumPy arrays or of
CVXOPT matrices are by far more efficient than operating over lists or tuples
using for loops [164]. On the other hand, system programming languages are
not affected by explicit for-loops. Thus, the first approach is also a valid
alternative [287]. However, the risk of the first approach is to create a high
fragmentation of the information. In fact, for a system with several thousands
of devices, there are several thousand of class instances on which operate. In
the second approach, since the number of device types is never really high, the
program has to handle only a reduced number of class instances. Thus, the
second approach should be preferred independently from the programming
language adopted.

Assuming that each class has only one instance, the second question that
might arise is whether it is really necessary to define a class for each device or
if it is better to use some other programming technique (e.g., modules or sim-
ple functions). At this regard, it suffices to observe that some properties are

228 9 Device Generalities

Base class 1

Base class 2Device 1 Device 2 Device 3

Device 4 Device 5

Fig. 9.4 Qualitative representation of class inheritance

common to all devices (as it will be described later on in this section), while
other properties are specific of a certain device and make it different from
all other devices. Taking advantage of the inheritance property of classes,
common methods can be defined in a base class that will be imported by
all other specific classes. The inheritance can span more than only one “gen-
eration”. Furthermore, one device can inherit methods from more than one
class. Figure 9.4 illustrates qualitatively the concept of class inheritance.

9.2.1 Base Device Class

The purposes of a base class are twofold: (i) to define common attributes and
(ii) to provide common methods for basic device operations. The main diffi-
culty is to be able to build methods sufficiently general to be used smoothly
by most devices without the need of write further specific code for each de-
vice. Thus, the methods of a base class have to provide a high abstraction
level (e.g., meta-methods). At this regard, also the attributes of the base class
have to be abstract (e.g., meta-attributes), otherwise they would not be of
general use. A brilliant solution to this problem is provided by the Python
language in the form of dictionaries [164].

Let consider an example. Consider the following simple Python class:
class simple:

def init (self):

self.attr1 = 1.0

self.attr2 = 2.0

def method1(self):

print ’method1’

def method2(self):

print ’method2’

9.2 Devices as Classes 229

The function init is the default constructor method. This simple class has
two attributes (attr1 and attr2) and two methods (method1 and method2).
Instantiating this class creates an object with two attributes and two meth-
ods, plus some built-in attributes and methods provided by Python. In par-
ticular, all attribute names of a class are internally organized in a dictionary
type, namely dict . Thus an instance of the class simple, say instance1
will have an attribute dict as follows:

>>> instance1 = simple()

>>> print instance1. dict

{’attr2’: 2.0, ’attr1’: 1.0}

One can thus access any attribute or directly using the attribute name or
through the dictionary dict :

>>> print instance1.attr1

1.0

>>> print instance1. dict [’attr1’]

1.0

The second syntax may seem only a involved programming style. However,
it is the key feature for writing general methods. This concept is exemplified
in the following scripts.

Script 9.1 Conversion of Parameter Bases

Let us assume the we want to define a base class for converting the parameters
of a generic device to system basis. For the sake of example, let us consider
that the possible parameter kinds are only reactances, susceptances and pow-
ers. The base class has to operate properly on the parameters depending on
their physical functioning.

The base class can be defined as follows.

class base:

def init (self):

self.reactances = []

self.admittances = []

self.powers = []

def setup(self):

for item in self.reactances:

self. dict [item] = 0

for item in self.admittances:

self. dict [item] = 0

for item in self.powers:

self. dict [item] = 0

230 9 Device Generalities

def assign(self, z = [], y = [], p = []):

[z] are in Ohm, [y] in Siemens and [p] in MVA

for item, val in zip(self.reactances, z):

self. dict [item] = val

for item, val in zip(self.admittances, y):

self. dict [item] = 0

for item, val in zip(self.powers, p):

self. dict [item] = 0

def convert(self, Sn, Vn):

[Sn] is in MVA and [Vn] in kV

Zn = Vn*Vn/Sn

for item in self.reactances:

self. dict [item] /= Zn

for item in self.admittances:

self. dict [item] *= Zn

for item in self.powers:

self. dict [item] /= Sn

The constructor method only defines three void lists that will be used by
device classes for defining the names of reactance, susceptance and power
attributes. The three methods of class base have the following meaning:

1. Method setup initializes the value of each parameters to 0. In this simple
example, attributes are assumed to be scalar. A similar although more
complex procedure applies for vectorial attributes.

2. Method assign assigns custom values to each parameter. Default values
for each input argument let that the user is not forced to pass all arguments
if these are not used by the device.

3. Method convert computes the base conversion using assigned system
power and voltage bases, Sn and Vn, respectively.

An example of device built using class base is as follows:

class shunt(base):

def init (self):

base. init (self)

self.admittances = [’b’, ’g’]

self.setup()

The class above defines a constant impedance device. The constructor of the
base class is called by the statement base. init (self) and declares the
three general lists reactances, admittances and powers. This is necessary
since the methods of the class base expect that all three lists exist. However,

9.2 Devices as Classes 231

the class shunt only requires admittances, namely the susceptance b and the
conductance g.

At this point, an instance of the class shunt can be created and the system
base conversion can be performed.
>>> shunt1 = shunt()

>>> shunt1.assign(y = [0.01, 0.02])

>>> shunt1.convert(100.0, 220.0)

>>> print shunt1.b

4.84

>>> print shunt1.g

9.68

The class base does not “know” anything about the specific parameters of the
class shunt. However, if the parameters are properly categorized in the meta-
attributes reactances, admittances and powers everything works smoothly.

Using meta-methods and meta-attributes also allows easily building up
new more general classes. For example, let us assume that we want to define
a new model whose parameters include also currents, say a ZIP load. Then,
the device code can be as follows:

class zip(base):

def init (self):

base. init (self)

self.impedance = [’r’, ’x’]

self.currents = [’ip’, ’iq’]

self.powers = [’p’, ’q’]

self.setup()

def setup(self):

base.setup(self)

for item in self.currents:

self. dict [item] = 0

def assign(self, z = [], i = [], p = []):

base.assign(self, z = z, y = [], p = p)

for item, val in zip(self.currents, i):

self. dict [item] = val

def convert(self, Sn, Vn):

base.convert(self, Sn, Vn)

assuming a three-phase power and a phase-to-phase voltage

232 9 Device Generalities

In = Sn/Vn/(3**0.5)

for item in self.currents:

self. dict [item] /= In

All original methods of the class base are overloaded to take into account
the new parameter type currents.

Script 9.2 Meta-attributes of a Base Device Class

A base class for power system devices requires necessarily much more meta-
methods and meta-attributes than the ones discussed in the previous ex-
ample. However, such base class is not conceptually more complex than the
class base. The following code shows a possible constructor method for a
base device class on top of which any other device can be built similarly to
the previous example.

class device:

def init (self):

self.n = 0 # number of devices

self.u = [] # device status

self.name = [] # device names

self.int = # index dictionary

self.properties = {’gcall’:False, ’gycall’:False,

’fcall’:False, ’fxcall’:False,

’windup’:False, ’pflow’:False,

’xinit’:False, ’shunt’:False,

’series’:False, ’flows’:False,

’connection’:False, ’times’:False,

’stagen’:False, ’dyngen’:False,

’gmcall’:False, ’fmcall’:False,

’dcseries’:False, ’opf’:False,

’obj’:False}

meta-attributes

self. type = None # device type

self. name = None # device name

self. bus = {} # ac bus indexes

self. node = {} # dc node indexes

self. states = [] # list of state variables

self. algebs = [] # list of algebraic variables

self. ymarket = [] # OPF variable indexes

self. cmarket = []

self. opf = {}

data dictionary

self. data = {’u’:1, ’Sn’:100.0, ’Vn’:220.0}

9.2 Devices as Classes 233

parameters

self. params = [’u’, ’Sn’, ’Vn’]

parameters that cannot be zero

self. zeros = [’Sn’, ’Vn’]

parameter units

self. units = {’Sn’:’MVA’, ’Vn’:’kV’, ’u’:’boolean’}

parameter descriptions

self. descr = {’Sn’:’rated power’, ’Vn’:’rated voltage’,

’u’:’connection status’}

self. powers = [] # powers, inertiae and dampings

self. voltages = [] # voltages

self. currents = [] # currents

self. z = [] # impedances

self. y = [] # admittances

self. dccurrents = [] # dc currents

self. dcvoltages = [] # dc voltages

self. r = [] # resistances (for dc circuits)

self. g = [] # susceptances (for dc circuits)

self. times = [] # time constants

self. service = [] # auxiliary variables

self. mandatory = [] # list of mandatory parameters

In the previous code, the first four attributes, namely n, u, name and int, are
common to all system devices. The attribute n is an integer that indicates
the number of devices of the same kind, while u and name are lists containing
the statuses (e.g., on-line or off-line) and the names of the device elements.
Finally, the dictionary int contains the pairs of identification codes (or, sim-
ply,id) and indexes of the device.3 Since the built-in Python type dictionary is
quite efficient,4 using the dictionary int provides both flexibility and speed.

The attribute properties is a dictionary that defines the functioning of
the device. The base class initializes all properties as False. Then the device
that inherits the base class switches to True the properties that are pertinent.
For example, if we want to define a static shunt device to be used in power
flow analysis, one can set:

self.properties.update({’gcall’:True, ’gycall’:True, ’pflow’:True})
3 An “id” is a number or a string that is assigned by the user to a device item. On

the other hand, an index is an integer that is internally assigned and used by the

program for locating or pointing to an item of device arrays. To separate the ids

from the indexes increases the flexibility of the code and is common practice in

computer programming.
4 For example, if listvar and dictvar are a list and a dictionary contain-

ing the same data, the operation item in listvar is much slower than

dictvar.has key(item)

234 9 Device Generalities

The attribute properties is used by the interface class device for properly
handling the bridge between devices and routines (for further details see
Script 3.2 of Chapter 3).

Meta-attributes are indicated using the Python convention of preceding
the name of private attributes with an underscore “ ”.5 The proposed list of
meta-parameters is commented in the script above. Of course, this is just a
possible implementation. Any other meta-parameter can be added directly
in the class device or locally in the child class.

The dictionary data provides the list of data required by the device. By
default, three data are defined for any devices, namely the status u, the nom-
inal power Sn and the nominal voltage Vn. Associated to each datum, there is
also a default value. The attribute list params is a subset of the dictionary
data. The attribute names included in params are those that have to be
declared as CVXOPT arrays and that are used in vectorial operations.

To complete this example and clarify the usage of the general class device
discussed above, the following script provides the implementation of the con-
structor method of the synchronous machine two-axis model, whose equations
are given in Example 9.1.

class synchronous(device):

def init (self):

device. init (self)

private data

self. type = ’Synchronous machine’

self. name = ’Synchronous machine two-axis model’

self. data.update({’fn’:50, ’bus’:None, ’H’:3,

’ra’:0.0, ’xd’:1.9, ’xd1’:0.302,

’xq’:1.7, ’xq1’:0.5,

’Td10’:8.0, ’Tq10’:0.8,

’D’:0.0, ’gen’:None,

’gammap’:1.0, ’gammaq’:1.0})
self. params.extend([’D’, ’H’, ’ra’, ’xd’, ’xd1’,

’xq’, ’xq1’, ’Td10’, ’Tq10’,

’gammap’, ’gammaq’])

self. bus = {’bus’:[’a’, ’v’]}
self. z = [’ra’, ’xd’, ’xd1’, ’xq’, ’xq1’]

self. name = ’Syn’

self. powers= [’H’, ’D’]

self. states = [’delta’, ’omega’, ’e1d’, ’e1q’]

self. algebs = [’tm’, ’te’, ’Id’, ’Iq’, ’vd’, ’vq’]

self. service = [’tm0’, ’vf0’]

self. times = [’Td10’, ’Tq10’]

5 According to official Python conventions, using a single underscore indicates

that the attribute is private but is inherited by subclasses. A double underscore

indicates a private attribute that is not inherited by subclasses. However, in the

current Python release, any parameter is inherited by subclasses, regardless the

number of preceding underscores.

9.2 Devices as Classes 235

self. zeros = [’H’, ’Td10’, ’Tq10’]

self. mandatory = [’bus’, ’gen’]

self. descr.update({’H’:’inertia constant’,

’D’:’rotor damping’,

’fn’:’rated frequency’,

’bus’:’bus id’,

’gen’:’static generator id’,

’ra’:’armature resistance’,

’Td10’:’d-axis transient time constant’,

’Tq10’:’q-axis transient time constant’,

’xd’:’d-axis synchronous reactance’,

’xd1’:’d-axis transient reactance’,

’xd’:’d-axis synchronous reactance’,

’xq1’:’q-axis transient reactance’,

’gammap’:’active power ratio’,

’gammaq’:’reactive power ratio’})
self. units.update({’H’:’MWs/MVA’, ’D’:’pu’, ’fn’:’Hz’,

’ra’:’pu’, ’xd’:’pu’, ’xd1’:’pu’, ’xq’:’pu’,

’xq1’:’pu’, ’Td10’:’pu’, ’Tq10’:’pu’,

’gammaq’:’pu’, ’gammap’:’pu’})
self.properties.update({’gcall’:True, ’gycall’:True,

’fcall’:True, ’fxcall’:True,

’xinit’:True, ’dyngen’:True})

In the previous code, the meaning of most variables is self-explicative or is
defined in the dictionary descr. The use of the parameter gen that indi-
cates the id of the static generator (e.g., PV bus) used for initializing the
synchronous machine state and algebraic variables. Parameters gammap and
gammaq that indicate the ratio in per unit of the static generator active and
reactive power, respectively, produced by the synchronous machine. These
factors allows connecting more than one machine to the same bus and prop-
erly initialize all machines (for the initialization process see also Example
9.2). Parameters ra, xd, xd1, xq and xq1 are included in the list z, whereas
parameters H and D in the list powers. In this way, the meta-method that
converts device parameters to system bases will operate correctly. It is nec-
essary to include the damping parameter D in the list powers since in the
differential equation that returns ω̇, the damping is divided by the inertia con-
stant H. So, since H has to be converted to the system power base, the ratio
D/H, is not affected by this base conversion. Controllable parameters vari-
ables τm0 (tm0) and vf0 (vf0) are included in the attribute service. These
values can remain constant or be modified by other devices (e.g., a turbine
governor). Finally, the modifications to the attribute properties indicate
that the device contains algebraic and differential equations and Jacobians,
that has to be initialized (xinit) and that is a dynamic generator (dyngen).

236 9 Device Generalities

9.2.2 Methods of the Base Class

The methods (or meta-methods) of the class device are basically the same
as the ones defined for the class base introduced in Script 9.1. A rough list
of these methods is as follows.6

1. Initialization of all data and indexes defined in the constructor init .
By default, all attributes are initialized as empty lists, as follows.

def init data(self):

for arg in self. data:

self. dict [arg] = []

for key in self. bus:

for item in self. bus[key]:

self. dict [item] = []

for arg in self. node.values():

self. dict [arg] = []

for arg in self. states:

self. dict [arg] = []

for arg in self. algebs:

self. dict [arg] = []

for arg in self. service:

self. dict [arg] = []

if self. name is None: self. name = self. type

2. Conversion of parameter values to system bases. In the following code only
ac base conversion is considered.

def base(self, Sb=100.0, Vb=None):

for var in self. voltages:

self. dict [var] = mul(self. dict [var], self.Vn)

self. dict [var] = div(self. dict [var], Vb)

for var in self. powers:

self. dict [var] = mul(self. dict [var], self.Sn)

self. dict [var] /= Sb

for var in self. currents:

self. dict [var] = mul(self. dict [var], self.Sn)

self. dict [var] = div(self. dict [var], self.Vn)

self. dict [var] = mul(self. dict [var], Vb)

self. dict [var] /= Sb

6 The script examples that are provided in this section refer only to ac devices.

For dc devices, similar methods can be defined.

9.2 Devices as Classes 237

if len(self. z) or len(self. y):

Zn = div(self.Vn**2, self.Sn)

Zb = (Vb**2)/Sb

for var in self. z:

self. dict [var] = mul(self. dict [var], Zn)

self. dict [var] = div(self. dict [var], Zb)

for var in self. y:

if self. dict [var].typecode == ’d’:

self. dict [var] = div(self. dict [var], Zn)

self. dict [var] = mul(self. dict [var], Zb)

elif self. dict [var].typecode == ’z’:

self. dict [var] = div(self. dict [var], Zn + 0j)

self. dict [var] = mul(self. dict [var], Zb + 0j)

The base conversion of dc parameters undergoes a similar procedure. The
method arguments Sb and Vb are the system power base in MVA and a
vector of voltage bases in kV, respectively.

3. Inclusion of a new element to the device instance. This method is used by
routines that parse input data. The code below accepts as input arguments
the index and the name of the new element, plus a variable-length dictio-
nary of the input data. If no index or name is provided, a default index
and name are assigned to the new element. Then the attribute self.n is
incremented by 1. The following step is to check whether the input data
contains mandatory parameters. If not, a warning message is displayed.
Then, the default values are assigned to all data. In this way, the user
does not need to pass all data when calling the method add but only those
that are known or relevant. The data provided by the user overwrite de-
fault data. While updating data, some consistency check are performed.
For example, if a data is not part of the keys of the dictionary data a
warning message is displayed. A check of data that cannot be zero is also
performed.

def add(self, idx=None, name=None, **kwargs):

if idx is None: idx = self. type + ’ ’ + str(self.n + 1)

self.int[idx] = self.n

self.n += 1

if name is None:

self.name.append(self. type + ’ ’ + str(self.n))

else:

self.name.append(name)

check whether mandatory parameters have been set up

for key in self. mandatory:

if not kwargs.has key(key):

print ’Mandatory parameter <%s> has not been set up’ % key

238 9 Device Generalities

set default values

for key, value in self. data.iteritems():

self. dict [key].append(value)

overwrite custom values

for key, value in kwargs.iteritems():

if not self. data.has key(key):

print ’This device has no parameter called <%s>.’ % key

continue

self. dict [key][-1] = value

check data consistency

if not value and key in self. zeros:

if key == ’Sn’:

default = system.Settings.mva

elif key == ’Vn’:

default = self. data[key]

elif key == ’fn’:

default = system.Settings.freq

else:

default = self. data[key]

self. dict [key][-1] = default

4. Post-parsing operations. These operations consist in setting up the indexes
of device algebraic and state variables. These indexes allows locating the
elements of the vectors g, f , y and x and of the Jacobian matrices gy,
gx, fy and fx associated with the each device element. Assigning indexes
is a key operation since it makes each device to properly interact with
the the system. For example, in order to update differential equations, a
device has to know the position (indexes) of its differential equations f i
in the system vector of differential equations f . The following method im-
plements a possible way of assigning algebraic and state variables indexes.
It is assumed that if a state variable has a position k in the vector x, then
the index of the differential equation that computes ẋk is also k. A similar
convention is assumed for the indexes of algebraic variables and equations
ŷi and ĝi.

def xy index(self, dae):

zeros = [0]*self.n

for item in self. states:

self. dict [item] = zeros[:]

for item in self. algebs:

self. dict [item] = zeros[:]

for var in range(self.n):

for item in self. states:

self. dict [item][var] = system.DAE.nx

9.2 Devices as Classes 239

system.DAE.nx += 1

for item in self. algebs:

self. dict [item][var] = system.DAE.ny

system.DAE.ny += 1

Where the scalars system.DAE.ny and system.DAE.nx indicate the num-
ber of total algebraic and state variables, respectively. A slightly different
approach is required for assigning the indexes of ac voltage magnitudes vh
and phases θh as well as of equations gp,hi and gq,hi. The indexes of these
variables and equations are assigned by the device system.Bus. Thus, a
device connected to a certain bus has to retrieve the indexes of vh and
phases θh from system.Bus itself. This is easily obtained by providing to
the device the indexes of the buses to which are connected.

def bus index(self):

for index in self. bus.keys():

for item in self. dict [index]:

if not system.Bus.int(has key(idx):

self.message(’Bus index <%s> does not exist’,

data tuple=item, level=self.ERROR)

else:

idx = system.Bus.int[item]

self. dict [self. bus[index][0]].append(system.Bus.a[idx])

self. dict [self. bus[index][1]].append(system.Bus.v[idx])

For example, if self. bus = {’bus’:[’a’, ’v’]}, the previous code as-
signs to the attributes self.a and self.v the elements self.bus of
system.Bus.a and system.Bus.v, respectively. Another post-parsing op-
eration consists in converting to CVXOPT arrays all parameters of the
list param, as follows:

def list2matrix(self):

for item in self. params:

self. dict [item] = matrix(self. dict [item])

5. Deletion of an element from the device instance. Removing an element
can be useful for internal operations. For example, after solving the power
flow analysis and before running a time domain simulation, it could be
necessary to remove static generators at the buses where there are syn-
chronous machines (i.e., synchronous machines substitute static generators
in dynamic analysis). The code below accepts as input the index of the
element that has to be removed. If the index is not defined, then the pro-
cedure exits. Otherwise, all parameter arrays and lists are processed and
the element at the position item is popped out.

def remove(self, idx=None):

if idx != None:

if not self.int.has key(idx):

240 9 Device Generalities

item = self.idx.index[idx]

key = idx

else:

print ’The item <%s> does not exist.’ % idx

return None

else:

nothing to remove

return None

convert = False

if isinstance(self. dict [self. params[0]], matrix):

self. matrix2list()

convert = True

self.n -= 1

self.int.pop(key, ’’)

self.idx.pop(item)

for x, y in self.int.iteritems():

if y > item: self.int[x] = y - 1

for param in self. data:

self. dict [param].pop(item)

for param in self. service:

if len(self. dict [param]) == (self.n + 1):

if isinstance(self. dict [param], list):

self. dict [param].pop(item)

elif isinstance(self. dict [param], matrix):

service = list(self. dict [param])

service.pop(item)

self. dict [param] = matrix(service)

for x in self. states:

if len(self. dict [x]): self. dict [x].pop(item)

for y in self. algebs:

if self. dict [y]: self. dict [y].pop(item)

for key, param in self. bus.iteritems():

if isinstance(param, list):

for subparam in param:

if len(self. dict [subparam]):

self. dict [subparam].pop(item)

else:

self. dict [param].pop(item)

for key, param in self. node.iteritems():

self. dict [param].pop(item)

self.name.pop(item)

if convert and self.n: self. list2matrix()

9.2 Devices as Classes 241

The built-in method pop is available for both lists and dictionaries and
is used in the script for removing the assigned element. Since CVX-
OPT array dimension cannot be modified and do not provide the method
pop, CVXOPT arrays are firstly converted into lists through the method
matrix2list which implements the opposite conversion than the method
list2matrix.

6. Handling windup and anti-windup limiters. A description of windup and
anti-windup limiters as well as the implementation of the correspondent
meta-methods is provided in Appendix C and Script C.1, respectively.

9.2.3 Specific Device Methods

A description and an example of specific device methods conclude this chap-
ter. Specific methods define the mathematical model of the device, as follows.

1. Initialization of state and algebraic variables (for devices initialized after
the power flow analysis).

2. Algebraic equations g.
3. Differential equations f .
4. Jacobian matrix gy.
5. Jacobian matrices gx, fy and fx.7

6. Objective function, inequality constraints and Hessian matrix (for devices
that are included in the OPF problem).

7. Windup and anti-windup limiters (for devices with variables than can
saturate).

Script 9.3 Methods of the Synchronous Machine Two-Axis
Model

The following methods implement the algebraic differential equations and
Jacobian matrices as well as the initialization function for the two-axis model
of the synchronous machine. It is assumed that the constructor method is the
one presented in the previous Script 9.2 and that all parameters are vectors
initialized by the function matrix of the module CVXOPT. For all functions,
the following header is assumed:

import system

from cvxopt.base import spmatrix, matrix

from cvxopt.base import mul, div, exp, log, sin, cos

1. Initialization of algebraic and state variables. Since the synchronous ma-
chine model is not used in power flow analysis, this device has to be
initialized after the solution of the power flow problem. The equations

7 The Jacobian matrix gy is taken apart from other Jacobian matrices to allows

implementing efficiently explicit numerical methods (see Chapter 8).

242 9 Device Generalities

used for initializing the synchronous machine two-axis model are given in
Example 9.2.

def xinit(self, dae):

p0 = mul(mul(self.u, system.Bus.pg[self.a]), self.gammap)

q0 = mul(mul(self.u, system.Bus.qg[self.a]), self.gammaq)

v0 = mul(self.u, dae.y[self.v])

theta0 = dae.y[self.a]

V = mul(v0 + 0j, exp(theta0*1j))

S = p0 - q0*1j

I = div(S, V.H.T)

E = V + mul(self.ra + self.xq*1j, I)

delta = log(div(E, abs(E) + 0j))

dae.x[self.delta] = mul(self.u, delta.imag())

dae.x[self.omega] = matrix(1.0, (self.n, 1), ’d’)

d- and q-axis voltages and currents

jpi2 = 1.5707963267948966j

vdq = mul(self.u + 0j, mul(V, exp(jpi2 - delta)))

idq = mul(self.u + 0j, mul(I, exp(jpi2 - delta)))

vd = dae.y[self.vd] = vdq.real()

vq = dae.y[self.vq] = vdq.imag()

Id = dae.y[self.Id] = idq.real()

Iq = dae.y[self.Iq] = idq.imag()

self.tm0 = mul(vq + mul(self.ra, Iq), Iq) + \
mul(vd + mul(self.ra, Id), Id)

dae.y[self.tm] = self.tm0

dae.x[self.e1q] = vq + mul(self.ra, Iq) + mul(self.xd1, Id)

dae.x[self.e1d] = vd + mul(self.ra, Id) - mul(self.xq1, Iq)

self.vf0 = dae.x[self.e1q] + mul(self.xd - self.xd1, Id)

dae.y[self.vf] = self.vf0

system.Device.remove gen(self.gen)

In this example, it is assumed that generated active and reactive powers are
stored in the vectors system.Bus.Pg and system.Bus.Qg, while the bus
voltage is contained in the variable dae (which is passed as an argument of
the method and coincides with system.DAE). In the last line, the interface
class system.Device is called for removing, if required, the static generator
connected at the synchronous machine buses. A possible implementation
of the method system.Device.remove gen is as follows:

def remove gen(self, idx):

for item, stagen in zip(self.devices, self.stagen):

if stagen:

indexes = system. dict [item].int.keys()

for key in idx:

9.2 Devices as Classes 243

if key in indexes:

system. dict [item].remove(key)

where self.devices is is the list of devices currently in use and the at-
tribute self.stagen is a list of the same length as self.devices and
whose elements are True if the correspondent device is a static generator,
False otherwise.

2. Algebraic equations.

def gcall(self, dae):

delta = dae.x[delta]

e1d = dae.x[e1d]

e1q = dae.x[e1q]

v = mul(self.u, dae.y[self.v])

theta = dae.y[self.a]

tm = dae.y[self.tm]

vf = dae.y[self.vf]

te = dae.y[self.te]

vq = mul(self.u, dae.y[self.vq])

vd = mul(self.u, dae.y[self.vd])

Iq = mul(self.u, dae.y[self.Iq])

Id = mul(self.u, dae.y[self.Id])

internal algebraic equations

dae.g[self.te] = mul(vq + mul(self.ra, Iq), Iq) + \
mul(vd + mul(self.ra, Id), Id) - te

dae.g[self.Id] = vq + mul(self.ra, Iq) - e1q + mul(self.xd1, Id)

dae.g[self.Iq] = vd + mul(self.ra, Id) - e1d - mul(self.xq1, Iq)

dae.g[self.vd] = mul(v, sin(delta - theta)) - vd

dae.g[self.vq] = mul(v, cos(delta - theta)) - vq

dae.g[self.tm] = mul(self.u, self.tm0) - tm

dae.g[self.vf] = mul(self.u, self.vf0) - vf

network interface equations

active power

dae.g[self.a] += spmatrix(mul(vd, Id) + mul(vq, Iq), \
self.a, [0]*self.n, (dae.ny, 1), ’d’)

reactive power

dae.g[self.v] += spmatrix(mul(vq, Id) - mul(vd, Iq), \
self.v, [0]*self.n, (dae.ny, 1), ’d’)

There is a conceptual difference between internal algebraic equations ĝi
and gp,hi and gq,hi. Equations ĝi are specific of the synchronous machine
model and are not shared with other devices. Thus a direct indexation
works fine. On the other hand, gp,hi and gq,hi are the synchronous machine
contribution to the power balance at the bus h. Since other devices (e.g.,
transmission lines) sum their power injections to the same bus, the function

244 9 Device Generalities

gcall has to update and not to overwrite the current value of gp,hi and
gq,hi.

The status vector self.u systematically multiplies parameters and/or
variables to impose ĝi = 0, gp,hi = 0 and gq,hi = 0 in case some syn-
chronous machine element is off-line.

3. Differential equations.

def fcall(self, dae):

differential equations

omega = dae.x[self.omega]

tm = dae.y[self.tm]

te = dae.y[self.te]

vf = dae.y[self.vf]

iTd = div(self.u, self.Td10)

xTd = mul(iTd, self.xd - self.xd1)

iTq = div(self.u, self.Tq10)

xTq = mul(iTq, self.xq - self.xq1)

dae.f[self.delta] = system.Settings.rad * \
mul(self.u, omega - 1)

dae.f[self.omega] = mul(self.u, div(tm - te - \
mul(self.D, omega - 1), 2*self.H))

dae.f[self.e1q] = mul(iTd, vf) - mul(xTd, dae.y[self.Id]) - \
mul(iTd, dae.x[self.e1q])

dae.f[self.e1d] = mul(xTq, dae.y[self.Iq]) - mul(iTq, dae.x[self.e1d])

The variable system.Settings.rad contains the base synchronous speed
in rad/s. The status vector self.u imposes f i = 0 if some synchronous
machine element is switched off.

4. Jacobian matrices.

def gycall(self, dae):

delta = dae.x[delta]

v = mul(self.u, dae.y[self.v])

theta = dae.y[self.a]

vq = mul(self.u, dae.y[self.vq])

vd = mul(self.u, dae.y[self.vd])

Iq = mul(self.u, dae.y[self.Iq])

Id = mul(self.u, dae.y[self.Id])

ny x ny = (dae.ny, dae.ny)

internal Jacobians

dae.Gy -= spmatrix(1, self.te, self.te, ny x ny, ’d’)

dae.Gy += spmatrix(Iq, self.te, self.vq, ny x ny, ’d’)

dae.Gy += spmatrix(Id, self.te, self.vd, ny x ny, ’d’)

9.2 Devices as Classes 245

dae.Gy += spmatrix(vq + 2*mul(self.ra, Iq), self.te, \
self.Iq, ny x ny, ’d’)

dae.Gy += spmatrix(vd + 2*mul(self.ra, Id), self.te, \
self.Id, ny x ny, ’d’)

dae.Gy += spmatrix(self.u, self.Id, self.vq, ny x ny, ’d’)

dae.Gy += spmatrix(mul(self.u, self.ra), self.Id, self.Iq, \
ny x ny, ’d’)

dae.Gy += spmatrix(self.xd1, self.Id, self.Id, ny x ny, ’d’)

dae.Gy += spmatrix(self.u, self.Iq, self.vd, ny x ny, ’d’)

dae.Gy += spmatrix(mul(self.u, self.ra), self.Iq, self.Id, \
ny x ny, ’d’)

dae.Gy -= spmatrix(self.xq1, self.Iq, self.Iq, ny x ny, ’d’)

dae.Gy -= spmatrix(1, self.vd, self.vd, ny x ny, ’d’)

dae.Gy += spmatrix(mul(self.u, sin(delta - theta)), \
self.vd, self.v, ny x ny, ’d’)

dae.Gy -= spmatrix(mul(v, cos(delta - theta)), \
self.vd, self.a, ny x ny, ’d’)

dae.Gy -= spmatrix(1, self.vq, self.vq, ny x ny, ’d’)

dae.Gy += spmatrix(mul(self.u, cos(delta - theta)), \
self.vq, self.v, ny x ny, ’d’)

dae.Gy += spmatrix(mul(v, sin(delta - theta)), \
self.vq, self.a, ny x ny, ’d’)

dae.Gy -= spmatrix(1, self.tm, self.tm, ny x ny, ’d’)

dae.Gy -= spmatrix(1, self.vf, self.vf, ny x ny, ’d’)

network interface Jacobians

dae.Gy += spmatrix(Id, self.a, self.vd, ny x ny, ’d’)

dae.Gy += spmatrix(vd, self.a, self.Id, ny x ny, ’d’)

dae.Gy += spmatrix(Iq, self.a, self.vq, ny x ny, ’d’)

dae.Gy += spmatrix(vq, self.a, self.Iq, ny x ny, ’d’)

dae.Gy += spmatrix(Id, self.v, self.vq, ny x ny, ’d’)

dae.Gy += spmatrix(vq, self.v, self.Id, ny x ny, ’d’)

dae.Gy -= spmatrix(Iq, self.v, self.vd, ny x ny, ’d’)

dae.Gy -= spmatrix(vd, self.v, self.Iq, ny x ny, ’d’)

def fxcall(self, dae):

delta = dae.x[delta]

theta = dae.y[self.a]

v = mul(self.u, dae.y[self.v])

Jacobian matrix g x

dae.Gx += spmatrix(mul(v, cos(delta - theta)), self.vd, \
self.delta, (dae.ny, dae.nx), ’d’)

dae.Gx -= spmatrix(mul(v, sin(delta - theta)), self.vq, \
self.delta, (dae.ny, dae.nx), ’d’)

246 9 Device Generalities

dae.Gx -= spmatrix(self.u, self.Id, self.e1q, (dae.ny, dae.nx), ’d’)

dae.Gx -= spmatrix(self.u, self.Iq, self.e1d, (dae.ny, dae.nx), ’d’)

Jacobian matrix f y

dae.Fy += spmatrix(div(self.u, 2*self.H), self.omega, \
self.tm, (dae.nx, dae.ny), ’d’)

dae.Fy -= spmatrix(div(self.u, 2*self.H), self.omega, \
self.te, (dae.nx, dae.ny), ’d’)

dae.Fy += spmatrix(div(self.u, self.Td10), self.e1q, \
self.vf, (dae.nx, dae.ny), ’d’)

dae.Fy -= spmatrix(div(mul(self.u, self.xd - self.xd1), self.Td10), \
self.e1q, self.Id, (dae.nx, dae.ny), ’d’)

dae.Fy += spmatrix(div(mul(self.u, self.xq - self.xq1), self.Tq10), \
self.e1d, self.Iq, (dae.nx, dae.ny), ’d’)

Jacobian matrix f x

dae.Fx += spmatrix(1 - self.u, self.delta, \
self.delta, (dae.nx, dae.nx), ’d’)

dae.Fx += spmatrix(system.Settings.rad*self.u, self.delta, \
self.omega, (dae.nx, dae.nx), ’d’)

dae.Fx -= spmatrix(div(self.D, 2*self.H), self.omega, \
self.omega, (dae.nx, dae.nx), ’d’)

dae.Fx -= spmatrix(div(1.0, self.Td10), self.e1q, \
self.e1q, (dae.nx, dae.nx), ’d’)

dae.Fx -= spmatrix(div(1.0, self.Tq10), self.e1d, \
self.e1d, (dae.nx, dae.nx), ’d’)

In case an element is off-line, all Jacobians matrices are null except for the
diagonal elements, which cannot be zero to avoid singularities.

Chapter 10

Power Flow Devices

This chapter describes topological elements as well as standard shunt (i.e.,
connected to a single bus) devices for power flow analysis. The most im-
portant topological element is the bus, while standard devices are constant
vθ generators, PV generators, PQ generators, PQ loads and constant and
switched shunt admittances.

10.1 Topological Elements

This section describes the main topological elements used in power system
analysis, namely buses, zones, areas, regions and systems. The main data and
constraints associated with topological elements are also discussed.

10.1.1 Bus

The minimal network unit is the bus. Shunt devices are connected to buses,
while series devices connect two or more buses together.

The name bus is an abbreviation of the Latin word omnibus, which means
for anybody. This is actually what a bus should be: a connection point for any
device. Unfortunately, the original meaning of the word bus is often misused
in power flow analysis. Several software packages and books refer to “PV
bus”, “slack bus” or “PQ bus”. These expressions mix together two different
concept: (i) the concept of bus, which provides a topological information and
(ii) the concept of generators or loads, which are devices connected to a bus.
Actually, there is no real matter in connecting a PQ load and a PV generator
at the same bus. Thus, strictly speaking, expressions as “PV bus” or “PQ
bus” are misleading and should be avoided.

In power flow analysis, buses are intended as topological nodes, not as phys-
ical connections. This may prevent modelling physical bus-bars. For example
it can be necessary to model buses composed by different bars or divided into

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 247–261.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

248 10 Power Flow Devices

sections. These features can be easily modelled by means of coupling devices
(see Section 11.1.5 of Chapter 11).

Typical bus parameters are depicted in Table 10.1. Bus numbers (or names)
are used by all other devices for identifying the bus to which are connected.
Thus, each bus has to be identified by a unique number, code or name. In some
old formats (e.g., IEEE common data format [350]), bus identification codes
are integers. This was mainly due to old-style system programming languages
such as FORTRAN that hardly handle hash types (e.g., lists of key-value
pairs). Modern script languages provide a simple manner to handle hashes.
The Python implementation of the hash is the built-in type dictionary. A
key can be any number or string, the only requisite is that keys have to be
unique. Then, the value associated to each key is the bus index h. In general,
hashes provide a great programming flexibility and should be preferred to
other indexing methods.

Table 10.1 Bus parameters

Variable Description Unit

- Bus code -

- Bus name -

- Area code -

- Zone code -

- Region code -

- System code -

v(0) Voltage amplitude initial guess pu

Vb Voltage rating kV

vmax Maximum admissible voltage pu

vmin Minimum admissible voltage pu

θ(0) Voltage phase initial guess rad

The voltage rating Vb is generally used in power flow analysis for fixing the
voltage bases for per unit analysis. Voltage magnitudes v(0) and phases θ(0)

can be optionally set if the power flow solution is known or if a custom initial
guess is needed. If voltages are not specified, a flat start is used (e.g., v(0) = 1
at all buses except for buses where a PV or slack generator is present, and
θ(0) = 0). Finally, area, zone, region and system codes are generally used for
evaluating inter-area power flows or simply to assign an owner to the bus.

Since buses contain only topological information, no equation is required
for defining the bus model. The only issue that can arise is in case a bus is
islanded. In that case, the system admittance matrix may become singular if
it is not properly conditioned. The easiest solution is to find islanded buses
and to impose that the power balance at those buses is zero. This also implies
that, the Jacobian matrix has to be properly conditioned, as follows. If a given
bus h is islanded, the columns associated with the derivatives with respect to

10.1 Topological Elements 249

θh and vh and the rows associated with the derivatives of ph, qh have to be
set to zero except for diagonal elements that have to set to 1. A simple script
that implements this operation is presented in Script C.1 of Appendix C.
Further discussion about islanded buses as well as the more general concept
of network connectivity is given in Subsection 11.3.3 of Chapter 11.

10.1.2 Areas, Zones, Regions and Systems

Apart from buses, most power flow analysis tools allow defining other classes
of topological devices such as areas, zones, regions and/or systems. For ex-
ample, the IEEE common data format defines interchange area data [350].
These are generally used for evaluating power transfers between areas. For
example:

pex =
∑
h∈BA

pG,h − pL,h (10.1)

where pex is the neat power exchange, BA is the set of buses that belong to the
area and pG,h and pL,h the generated and consumed powers within the area.
If the area is exporting power pex > 0, while pex < 0 otherwise. In power
flow analysis, one cannot impose a fixed power exchange, say pex = pex0,
unless some generator active power is left undetermined. Thus, in general,
power exchange limits are used only in OPF analysis, where market rules
or agreements among area operators impose limits to the import/export of
active power between areas.

Typical data for such areas are depicted in Table 10.2. In some cases, an
area slack bus can be defined. This slack bus is generally just a “suggestion”
and does not affect or redefine vθ generators. Only in case the area separates
from the remaining system as a consequence of line outages, the slack bus
is used as reference bus. Similar data can be defined for zones, regions and
systems.

Another use of areas is the possibility of grouping variables to be plotted
or visualized in the power flow report file. This feature is particularly useful
when dealing with networks containing thousands of buses since the complete
power flow report would result too large to be understandable. Depicting only
a reduced number of buses, for example those pertaining to a given area can
simplify the interpretation of the results.

Table 10.2 Area parameters

Variable Description Unit

pmax
ex Maximum interchange export (> 0 = out) pu

pmin
ex Minimum interchange export (< 0 = in) pu

ptol Interchange tolerance pu

Δp% Annual growth rate %

250 10 Power Flow Devices

10.2 Static Generators

In the classical power flow analysis, generators are only PV and slack ones.
This section revises and generalizes the concepts and the models of static gen-
erators from the viewpoint of the implementation in a general power system
analysis tool.

10.2.1 PV Generator

PV generators impose the voltage magnitude and the power injected at the
buses where they are connected, as follows:

ph = pG0 (10.2)
vh = vG0

There are three ways of implementing PV generators for power flow analysis.

1. The classical model considers the voltage vh as a constant and thus, only
imposes one equations for the active power ph. This model allows reducing
the number of power flow equations as well as the size of the Jacobian
matrix. On the other hand, handling reactive power limits is complex
because the number of variables and equations changes whenever a reactive
power limit becomes binding. However, if generator reactive power limits
are not considered, this is the most efficient model.

2. To avoid the issue above, one can use two equations, one for the active
power ph and one for the reactive power qh. If qmax

G < qh < qmin
G , the

reactive power equation has to impose that the reactive power balance at
node h is satisfied and that the row corresponding to qh and the column
corresponding to vh in the Jacobian matrix gy are zero. Only the diagonal
element has to be set to 1 to avoid singularity. In this way, the voltage
vh is not varied in the iterations of the Newton’s method. If qh ≥ qmax

G or
qh ≤ qmin

G , then the reactive power is set to qh = qmax
G or qh = qmin

G and the
Jacobian matrix gy is not modified so that the voltage vh can vary. This
approach has the advantage of maintaining constant dimensions of the
variables, the equations and the Jacobian matrix. However, the number
of zeros of the Jacobian matrix changes whenever a reactive power limit
becomes binding. This can be an issue if symbolic factorization is used.

3. Using three equations solves the issues of the previous model. Two equa-
tions are for the active and reactive power injections ph and qh, while
the third one imposes the voltage value or the reactive power value as
follows:

10.2 Static Generators 251

ph = pG0 (10.3)
qh = qG⎧⎪⎨
⎪⎩
qG = qmax

G if qh ≥ qmax
G

vh = vG0 if qmax
G < qh < qmin

G

qG = qmin
G if qh ≤ qmin

G

In this model, the reactive power qG is an internal variable of the PV gen-
erator. The drawback of this model is that each PV generator introduces
an additional variable. Another drawback is that only one PV generator
can be defined at each bus. In fact equation vh = vG0 would be duplicated
in case of defining two PV generators at bus h. This is generally not a real
issue, since it is not a good practice defining more than one PV generator
at the same bus.

In case of using the distributed slack bus model, the active power equation
becomes:

ph = (1 + γkG)pG0 (10.4)

where kG is the distributed slack bus variable and γ is the loss participation
factor. Table 10.3 depicts PV generator parameters, which include reactive
power and voltage limits needed for optimal power flow and continuation load
flow analysis. Refer to Chapters 5 and 6 for details.

Table 10.3 PV generator parameters

Variable Description Unit

pG0 Active Power pu

qmax
G Maximum reactive power pu

qmin
G Minimum reactive power pu

vG0 Voltage magnitude pu

vmax
G Maximum voltage pu

vmin
G Minimum voltage pu

γ Loss participation factor -

Example 10.1 Enforcing Generator Reactive Power Limits

This example focuses on the handling of PV generator reactive power limits.
With this aim, consider the IEEE 14-bus system with the following modifi-
cations with respect to the base case:

1. The shunt capacity at bus 9 is removed.
2. The load at bus 4 is inductive instead of capacitive and is consuming 0.04

pu of reactive power.

252 10 Power Flow Devices

Table 10.4 Power flow results for the IEEE 14-bus system with generator reactive

power limit violations

Bus v θ pG qG pL qL

h [pu] [rad] [pu] [pu] [pu] [pu]

1 1.06 0 2.3258 −0.1498 0 0

2 1.045 −0.0871 0.4 0.4882 0.217 0.127
3 1.01 −0.2226 0 0.2737 0.942 0.19
4 1.012 −0.1785 0 0 0.478 0.04
5 1.016 −0.1527 0 0 0.076 0.016
6 1.07 −0.2516 0 0.2251 0.112 0.075
7 1.0493 −0.2309 0 0 0 0

8 1.09 −0.2309 0 0.2516 0 0

9 1.0328 −0.2585 0 0 0.295 0.166
10 1.0318 −0.2622 0 0 0.09 0.058
11 1.0471 −0.2590 0 0 0.035 0.018
12 1.0534 −0.2665 0 0 0.061 0.016
13 1.047 −0.2671 0 0 0.135 0.058
14 1.0207 −0.2802 0 0 0.149 0.05

Totals 2.7258 1.0889 2.59 0.814

The power flow results, without enforcing generator reactive power limits are
shown in Table 10.4. The PV generator at bus 8 is producing more reactive
power than the maximum limit 0.24 pu (see Appendix D for the complete
data of the IEEE 14-bus system). Thus, this solution is not acceptable.

Enforcing reactive power limits is a delicate task since it requires to switch
the PV generator model to a constant PQ generator, fixing the generated reac-
tive power to qG = qmax

G or to qG = qmin
G , depending on the limit that is binding.

The principal difficulty is that limits should be modelled as inequalities:

qmin
G ≤ qG ≤ qmax

G

Unfortunately, no power flow method discussed in Chapter 4 allows directly
modelling and handling inequalities.

A possible approach is to solve a preliminary power flow without enforcing
reactive power limit, to check the solution and, if there are reactive power
limit violations, to re-run the power flow analysis changing binding PV gen-
erators to PQ ones. With this aim, it is not advisable to switch all critical
PV generators at a time since doing so could lead to switch more generators
than strictly necessary. In fact, switching a PV to a PQ generator leads to a
redistribution of all power flows in the network and, as a consequence of this
redistribution, some reactive power limit may not be binding anymore. The
most secure strategy is to switch one PV generator per iteration, for exam-
ple starting from the one that exceeds most its reactive power limit. Then,
the power flow problem is solved again, and if some reactive power limit is
violated, the procedure is repeated.

10.2 Static Generators 253

The method described above is not efficient, especially if the network con-
tains thousands of buses and hundreds of PV generators. In order to save
time, a common strategy is to check PV generator reactive powers on the
fly, i.e., while executing the iterative method used for solving the power flow
problem. The idea is to check the reactive power production of the PV gen-
erators at each iteration and if there is some limit violation, switch the PV
generator to a PQ one. The main issue is to decide not only how many gen-
erators have to be switched per iteration, but also when it is convenient to
apply the model switch. In fact, some limit violation can be due to a tempo-
rary power mismatch that disappear in the following iterations. On the other
hand, if one waits too much, the efficiency can be low.

Table 10.5 shows the result of the power flow analysis for the IEEE 14-
bus system allowing switching PV generators since the first iteration of the
Newton’s method. The reactive power limits of three generators are binding.
However, this does not seem a reasonable result since, in Table 10.5, only
one PV generator is exceeding its reactive power limit by a relatively small
amount.

Table 10.5 Base case power flow results for the IEEE 14-bus system enforcing

reactive power limits since the first iteration

Bus v θ pG qG pL qL

h [pu] [rad] [pu] [pu] [pu] [pu]

1 1.06 0 2.331 0.139 0 0

2 1.033 −0.0845 0.4 0.5 0.217 0.127
3 0.9666 −0.2182 0 0 0.942 0.19
4 0.9916 −0.1777 0 0 0.478 0.04
5 0.9996 −0.1519 0 0 0.076 0.016
6 1.053 −0.2545 0 0.24 0.112 0.075
7 1.028 −0.2321 0 0 0 0

8 1.068 −0.2321 0 0.24 0 0

9 1.012 −0.2608 0 0 0.295 0.166
10 1.012 −0.2647 0 0 0.09 0.058
11 1.028 −0.2617 0 0 0.035 0.018
12 1.036 −0.2698 0 0 0.061 0.016
13 1.029 −0.2704 0 0 0.135 0.058
14 1.001 −0.2836 0 0 0.149 0.05

Totals 2.7312 1.119 2.59 0.814

Solving once again the power flow problem and enabling the check of PV
generator reactive powers only after the second iteration provide the results
that are shown in Table 10.6. As expected, only the generator at bus 8 is
switched to a constant PQ model.

As a final remark, consider the following question: which is the better solu-
tion between the two depicted in Tables 10.5 and 10.6? From the mathemat-
ical point of view, both solve the power flow problem and provide a solution

254 10 Power Flow Devices

Table 10.6 Base case power flow results for the IEEE 14-bus system enforcing

generator reactive power limits

Bus v θ pG qG pL qL

h [pu] [rad] [pu] [pu] [pu] [pu]

1 1.06 0 2.326 −0.1488 0 0

2 1.045 −0.0871 0.4 0.4916 0.217 0.127
3 1.01 −0.2227 0 0.2758 0.942 0.19
4 1.012 −0.1784 0 0 0.478 0.04
5 1.016 −0.1527 0 0 0.076 0.016
6 1.07 −0.2518 0 0.2298 0.112 0.075
7 1.048 −0.2308 0 0 0 0

8 1.087 −0.2308 0 0.24 0 0

9 1.032 −0.2585 0 0 0.295 0.166
10 1.031 −0.2622 0 0 0.09 0.058
11 1.047 −0.259 0 0 0.035 0.018
12 1.053 −0.2666 0 0 0.061 0.016
13 1.047 −0.2672 0 0 0.135 0.058
14 1.02 −0.2802 0 0 0.149 0.05

Totals 2.726 1.0883 2.59 0.814

within technical limits. Thus, if one looks at each solution separately, both
are acceptable. Actually, the solution shown in Table 10.5 is characterized
by 0.1412 pu of active losses and by 0.3050 pu of reactive losses while the
solution shown in Table 10.5 is characterized by 0.1360 pu of active losses
and by 0.2743 pu of reactive losses. Thus, the latter solution is preferable if
the goal is to minimize losses.

In conclusion, enforcing generator reactive power limit cannot be conve-
niently solved using a simple power flow problem. As shown in this example,
using the Newton’s method or similar iterative techniques, one can obtain a
feasible solution, but there is no guarantee that there not exist a better solu-
tion. Only formulating the power flow problem as a nonlinear programming
optimization problem as described in Chapter 6 can provide, under certain
hypotheses, the best solution with respect to a given objective function.

10.2.2 Constant Voltage Phasor Generator

Constant voltage phasor generators are modelled as follows:

vh = vG0 (10.5)
θh = θG0

In principle, any number of constant vθ generators can be included in a
network. In fact, consider the results shown in Table 10.6. The power flow

10.2 Static Generators 255

solution would not change if one assumes that the system has two vθ gener-
ators, say at bus 1 and bus 2, where:

v1 = 1.060 θ1 = 0
v2 = 1.045 θ2 = −0.0871 rad

However, since bus voltage phase angles are generally not known a priori, it is
quite uncommon to define more than one vθ generator per interconnected ac
network. The unique vθ generator is generally called slack bus. As discussed
in Chapter 4, a slack bus is not fully justified unless it is an equivalent of a
strong network with unlimited active and reactive power capacity. In general,
a distributed slack bus model should be preferred.

From the implementation viewpoint, a vθ generator can inherit from the
PV generators the voltage/reactive power model. In other words, the vθ gen-
erator can be a subclass of the PV one. Then, similarly to the PV generator,
the angle/active power model can be defined in three ways (see also the
previous section).

1. To assume that θh is a constant parameter. Thus no equations for the
active power injection is needed. This model allows reducing the number
of equations and the size of the Jacobian matrix. If an active power limit
becomes binding, both equations and Jacobian matrix have to be re-sized.
If no active power limits are considered, which is the standard case, this
is the most efficient model.

2. To impose that the active power balance at bus h is always satisfied. In
this case, one has to impose that the active power mismatch at bus h is
zero and that the row corresponding to ph and the column correspond-
ing to θh in the Jacobian matrix gy are zero. Only diagonal elements
have to be set to 1 to avoid singularity. In this way, the voltage θh is not
varied during the Newton’s method. This approach has the advantage of
maintaining constant dimensions of the variables, the equations and the
Jacobian matrix.

3. To add auxiliary variables and equations for the active and reactive powers
produced by the generator. This model includes two additional variables,
kG and qG, for the active and reactive powers, respectively:

ph = kG (10.6)
qh = qG⎧⎪⎨
⎪⎩
kG = pmax

G if ph ≥ pmax
G

θh = θG0 if pmax
G < ph < pmin

G

kG = pmin
G if ph ≤ pmin

G⎧⎪⎨
⎪⎩
qG = qmax

G if qh ≥ qmax
G

vh = vG0 if qmax
G < qh < qmin

G

qG = qmin
G if qh ≤ qmin

G

256 10 Power Flow Devices

As remarked above, it is unusual to consider active power limits for the
slack bus. In fact, if the slack cannot provide the required active power, the
power flow problem has no solution. However, this model has the advan-
tage of providing a unique formulation for the single and the distributed
slack bus model. In case of distributed slack bus model, the active power
injection becomes:

ph = (1 + γkG)pG0 (10.7)

where pG0 is the scheduled active power production for the vθ generator
and all other equation are unchanged. Introducing the variable kG allows
writing an unique code for the single and the slack bus model. In fact the
number of variables and equations is always the same.

In case of the single slack bus model, kG is the active power production of
the single slack bus.

Table 10.7 depicts the constant vθ generator parameters, which also con-
tains data used in optimal power flow and continuation power flow analysis.
In case of distributed slack bus model, the parameters pG0 and γ are required.

Table 10.7 Slack generator parameters

Variable Description Unit

pG0 Scheduled active power pu

qmax
G Maximum reactive power pu

qmin
G Minimum reactive power pu

vG0 Voltage magnitude pu

vmax
G Maximum voltage pu

vmin
G Minimum voltage pu

γ Loss participation coefficient -

θG0 Reference angle pu

10.2.3 PQ Generator

PQ generators are modeled as constant active and reactive powers:

ph = pG0 (10.8)
qh = qG0

as long as voltages are within the specified limits. If a voltage limit is violated,
PQ generators are converted into constant impedances, as follows:

ph = pG0v
2/(vlim

G)2 (10.9)
qh = qG0v

2/(vlim
G)2

where vlim
G is vmax

G or vmin
G depending on the case. For example, maximum

and minimum voltage limits can be assumed 1.1 and 0.9 pu, respectively.

10.3 Static Loads 257

Table 10.8 depicts PQ generator parameters. The maximum and minimum
reactive powers qmax

G and qmin
G can be defined in analogy with PV and vθ

generators and can be used in CPF and OPF analyses.
From the implementation viewpoint, PQ generators have the same model

as a PQ loads, which are described in the next section. Thus, PQ generators
can be implemented as a subclass of the PQ load class. The only difference
is in the sign of active and reactive powers:

pL0 = −pG0 (10.10)
qL0 = −qG0

Alternatively, one can define a PQ generator using a PQ load and declaring
negative power consumptions. However, a specific class for PQ generators
is useful for separating power productions and power consumptions in the
power flow report.

Table 10.8 PQ generator parameters

Variable Description Unit

pG0 Active Power pu

qG0 Reactive Power pu

qmax
G Maximum reactive power pu

qmin
G Minimum reactive power pu

vmax
G Maximum voltage pu

vmin
G Minimum voltage pu

10.3 Static Loads

In the classical power flow analysis, loads are constant PQ or shunt admit-
tances. In the following, static load models are revised and generalized from
the viewpoint of the implementation in a general power system analysis tool.

10.3.1 PQ Load

PQ loads are modelled as constant active and reactive powers:

ph = −pL0 (10.11)
qh = −qL0

258 10 Power Flow Devices

as long as voltages are within the specified limits. If a voltage limit is violated,
PQ loads are converted into constant impedances,1 as follows:

ph = −pL0v
2/(vlim

L)2 (10.12)
qh = −qL0v

2/(vlim
L)2

where vlim
L is vmax

L or vmin
L depending on the case. For example, maximum

and minimum voltage limits can be assumed 1.1 and 0.9 pu, respectively.
Table 10.9 depicts PQ load parameters.

Table 10.9 PQ load parameters

Variable Description Unit

pL0 Active Power pu

qL0 Reactive Power pu

vmax
L Maximum voltage pu

vmin
L Minimum voltage pu

In the standard transient stability analysis, PQ loads are converted to
constant impedances after the power flow solution (see Section 8.2 of Chapter
8). In this case, PQ loads are forced to switch to constant admittances, as
follows:

ph = −pL0v
2/v2

0 (10.13)
qh = −qL0v

2/v2
0

where v0 is the voltage value obtained through the power flow analysis. How-
ever, the adequacy of constant admittance or other load models depends on
the simulation time frame as it is discussed in Chapter 14.

Example 10.2 Constant Power vs. Constant Impedance Load
Models in Transient Stability Analysis for the IEEE 14-Bus
System

Using a constant impedance or a constant power load model can drastically
modify simulation results. Figure 10.1 shows the results for the IEEE 14-bus

1 Some software package such as Eurostag allows defining the exponent of the

voltage, as follows:

ph = −pL0v
2/(vlim

L)
αp

qh = −qL0v
2/(vlim

L)
αq

10.3 Static Loads 259

Fig. 10.1 Comparison of the transient analysis using constant impedance and

constant power load models for the IEEE 14-bus system

system of the transient following the line 2-4 outage at t = 1 s. In order to
dramatize the effect of load models, the load power consumption is increased
by 20% with respect to the base case. As shown in Example 16.2 of Chapter
16, the IEEE 14-bus system is unstable for such loading level and for line
2-4 outage due to the occurrence of a Hopf bifurcation. The instability drives
the system trajectory to fall into a limit cycle. However, the Hopf bifurcation
only occurs if using constant power load models. For constant impedance
load models, the Hopf bifurcation and the consequent limit cycle disappear.

10.3.2 Constant Power Factor Load

In some industrial applications, loads can be known in terms of active power
consumption pL0 and power factor cosφL0. The conversion to constant PQ
load is readily obtained as:

ph = −pL0 (10.14)
qh = −pL0 tanφL0

where:

tanφL0 =
sinφL0

cosφL0
=

√
1 − (cosφL0)2

cosφL0
(10.15)

260 10 Power Flow Devices

The only drawback of this kind of input data is that purely reactive loads
cannot be defined. Pcosφ loads can be defined as a subclass of the PQ load
class.

10.3.3 Shunt Admittance

Constant shunt admittances are described by the following equations:

ph = −gv2
h (10.16)

qh = bv2
h

where g and b are the shunt conductance and susceptance, respectively. In
(10.16), the susceptance b is negative for inductive charges, positive for ca-
pacitive ones. Despite the simplicity of this model, shunt admittances can
be used as base class for several other devices. For example, simplified SVC
models can be based on (10.16) (see Chapter 19).

In most software packages, constant admittances are included in the admit-
tance matrix Y built for transmission lines and transformers. This practice
has the advantage of reducing the computational effort of the power flow
analysis. However, there are two relevant drawbacks:

1. If shunt admittances are merged into the transmission line admittance
matrix, any connection and disconnection of shunt admittances requires
re-building the admittance matrix.

2. In the power flow report, shunt admittances are not considered loads but,
rather, included in the transmission system losses. This may be reasonable
only in case the shunt admittance is purely reactive. On the other hand, in
case of modelling some active loads as constant shunt admittances, merging
these loads into the admittance matrix leads to an inconsistent power flow
report. In fact, active losses are computed including shunt conductance
consumptions.

10.3.4 Switched Shunt Admittances

A simple way to regulate the bus voltage can be obtained using a set of
shunt admittances that can be switched on or off depending on the value
of the voltage of the bus at which the admittances are connected. Strictly
speaking, switched shunt admittances do not provide a voltage control, since
admittance variations are not continuous. The base model of switched shunts
is given by (10.16) but the values of g and b are not fixed and are defined
using a switching logic. A possible switching rule is as follows:

b =

⎧⎪⎨
⎪⎩
b+ bi, if vh − vref < Δv and b < bmax

b, if |vh − vref | < Δv

b− bi, if vh − vref > Δv and b > 0
(10.17)

10.3 Static Loads 261

where vref is the assigned reference voltage, Δv is the voltage error toler-
ance and b is the current susceptance value and bi the susceptance value of
the next element of the admittance array. The value of bi can vary if there
are admittance blocks of different sizes. The admittance is not varied if all
admittances are switched on (i.e., b = bmax) or off (e.g., b = 0). Assuming
that there are s blocks and that each block has ni elements, each of which
characterized by a susceptance bi, then:

bmax =
s∑
i=1

nibi (10.18)

The conductances gi are generally not physical resistors, but model the losses
of the capacitors or reactors. In this case, the conductances gi are switched
on or off if the correspondent susceptance bi is switched on or off. Finally,
during time domain simulations, the switch of shunt elements are delayed by a
time Δts to avoid activating too frequently admittance breakers. Table 10.10
summarizes the parameters required for defining switched shunt admittances.
Other more sophisticate models of shunt devices that are able to regulate the
bus voltage are described in Chapter 19.

Table 10.10 Switched shunt parameters

Variable Description Unit

[b1, b2, . . . , bs] Susceptance of each element of each block pu

[g1, g2, . . . , gs] Conductance of each element of each block pu

[n1, n2, . . . , ns] Number of elements of each block int

vref Reference voltage pu

Δts Time delay for discrete model s

Δv Voltage error tolerance pu

This page intentionally left blank

Chapter 11

Transmission Devices

This chapter describes the models of standard series devices, namely trans-
mission lines (Section 11.1) and transformers (Section 11.2). In particu-
lar, Subsection 11.2.1 presents static two-winding transformers, Subsections
11.2.2 and 11.2.3 present under load tap changers and phase shifters, respec-
tively, and Subsection 11.2.4 describes three-winding transformers. Finally,
Section 11.3 discusses efficient vectorial computation for static series devices.

11.1 Transmission Line

Several power system books provide a rigorous description of the determi-
nation of transmission line parameters [84, 114, 294]. In this section, it is
assumed that a short line can be represented as π lumped model as shown in
Figure 11.1. Short means that

� � λ (11.1)

where � is the line length and λ is the wave length defined as:

λ =
1

fn
√
LC

(11.2)

where fn is the rated frequency of the ac system, and L and C are the per-
unit length inductance and capacity respectively, of the transmission line.
Assuming typical values of L and C (that depend on the line geometry)
and considering fn = 50 Hz, high voltage overhead transmission lines are
characterized by λ ≈ 6000 km, while cables by λ ∈ (2000, 2800) km. In
practice, transmission line length is never � > λ/4 and the vast majority
satisfies the condition � < λ/8 (e.g., ≈ 750 km at 50 Hz). For � ≤ λ/30, the
error introduced using lumped parameters is ≤ 1%. At 50 Hz, this condition
leads to � ≤ 200 km. The hypothesis of short line is assumed for the remainder
of this section.

The equivalent circuit of Figure 11.1 includes a series resistance, a se-
ries reactance and four shunt elements, namely sending-end conductance and

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 263–289.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

264 11 Transmission Devices

īh īk

h k

rL jxL

gL,h bL,h gL,kbL,k

vh∠θh vk∠θk

Fig. 11.1 Transmission line lumped π-circuit

susceptance and receiving-end conductance and susceptance. The complex
powers injected at each node are:

s̄h = v̄h ī
∗
h (11.3)

s̄k = v̄k ī
∗
k

According to the π model of Figure 11.1, the injected currents īh and īk can
be written as: [̄

ih
īk

]
=
[
ȳL + ȳL,h −ȳL

−ȳL ȳL + ȳL,k

] [
v̄h
v̄k

]
(11.4)

where

ȳL = gL + jbL = (rL + jxL)−1 (11.5)
ȳL,h = gL,h + jbL,h

ȳL,k = gL,k + jbL,k

Hence, (11.3) can be rewritten as:

ph = v2
h(gL + gL,h) − vhvk(gL cos θhk + bL sin θhk) (11.6)

qh = −v2
h(bL + bL,h) − vhvk(gL sin θhk − bL cos θhk)

pk = v2
k(gL + gL,k) − vhvk(gL cos θhk − bL sin θhk)

qk = −v2
k(bL + bL,k) + vhvk(gL sin θhk + bL cos θhk)

where θhk = θh − θk.
For short lines, gL,h ≈ gL,k ≈ 0. This assumption also derives from the

difficulty of evaluating shunt parasite conductances, which are generally ne-
glected. The lumped series resistance and reactance can be computed as:

rL = R�t/Zb (11.7)
xL ≈ ωsL�t/Zb (11.8)

11.1 Transmission Line 265

where ωs = 2πfn is the synchronous pulsation in rad/s, Zb is the base
impedance in Ω and other parameters are defined in Table 11.1. The per-
unit length resistance R depends on the temperature, on the section and on
resistivity of the conductor. The lumped shunt susceptances bL,h and bL,k
can be approximated as:

bL,h ≈ bL,k ≈ 1
2
ωsC�tZb (11.9)

Even though for standard transmission lines bL,h ≈ bL,k, it is better to main-
tain separated these parameters for the sake of generality. In this way, line
sectioning as well as transformers can share the same programming code as
transmission lines.

Table 11.1 defines all transmission line parameters. Imax, Pmax and Smax

indicate the limits for currents, active power flows and apparent power flows.
These limits are generally not required in power flow analysis, but can be
used for CPF and OPF analyses (see Chapters 5 and 6 for details). Currents
or apparent power limits are thermal limits. In some applications it may
be required to define two or three values of such limits, depending on the
emergency level and or the time that can be waited before taking a corrective
action (e.g., disconnecting the line). On the other hand, active power limits
generally approximate stability limits and are computed off-line base on some
N-1 contingency criterion (see Subsection 5.4.5 of Chapter 5).

Table 11.1 Transmission line parameters

Variable Description Unit

bL,h, bL,k Shunt susceptances pu

C� Per-unit length line capacity F/km

gL,h, gL,k Shunt conductances pu

Imax Current limit kA

L� Per-unit length line inductance H/km

t Total line length km

Pmax Active power limit MW

R� Per-unit length line resistance Ω/km

rL Resistance pu

Smax Apparent power limit MVA

xL Reactance pu

11.1.1 Line Sections

In some cases, it may be required to define a transmission line as a series of
line sections, each of which is characterized by a lumped π-circuit model as
in (11.6). Sections originate from transposed lines or from connections that
are composed of sections of different materials or characteristic parameters

266 11 Transmission Devices

(e.g., a branch composed of the series of overhead lines and underground ca-
bles). It is certainly possible to model each section as a transmission line and
including fictitious buses to connect sections. However, including fictitious
buses generally results in an unnecessary complication.

The equivalent model of a transmission line composed of various sections
can be obtained by alternatively using the star-delta (Y -Δ) and the delta-
star (Δ-Y) transformations (see Figure 11.2). This can lead to the definition
of an equivalent line whose sending and receiving-end shunt admittances are
not equal.

(a) (b)

(c) (d)

(e) (f)

Fig. 11.2 Equivalencing procedure for line sections: (a) original line sections; (b)-

(e) intermediate equivalents; (f) final equivalent line

For completeness, the general Y -Δ and Δ-Y transformation formulæ are
given below (see also Figure 11.3).

1. Y -Δ transformation:

z̄1 =
z̄az̄b

z̄a + z̄b + z̄c
(11.10)

z̄2 =
z̄bz̄c

z̄a + z̄b + z̄c

z̄3 =
z̄az̄c

z̄a + z̄b + z̄c

11.1 Transmission Line 267

2. Δ-Y transformation:

z̄a =
z̄1z̄2 + z̄2z̄3 + z̄3z̄1

z̄2
(11.11)

z̄b =
z̄1z̄2 + z̄2z̄3 + z̄3z̄1

z̄3

z̄c =
z̄1z̄2 + z̄2z̄3 + z̄3z̄1

z̄1

z̄a

z̄b z̄c

z̄1

z̄2

z̄3

Fig. 11.3 Star and delta circuits used in formulæ (11.10) and (11.11)

11.1.2 Tie Line

Tie lines are branches on which the active power flow is set to a given value
or is bounded within assigned limits. Assuming that the active power flow
is set to a constant value, the resulting model is (11.6) plus the additional
equation:

0 = ph − pref (11.12)

or the inequality constraints:

pmin ≤ ph ≤ pmax (11.13)

Previous constraints can be easily included in an OPF problem, since gener-
ator power productions and load consumptions in case of elastic demand are
not assigned. On the other hand, including (11.12) or (11.13) in the power
flow problem requires that some parameter becomes a variable. At this re-
gard, there are various possibilities.

A model consists in considering one parameter of the tie-line as a variable,
for example, the series reactance xL. A very similar solution is to define a
compensation variable cL, that multiplies a given series reactance, say cLxL.
Considering the tie line series reactance as a variable is not an arbitrary
choice. Series FACTS devices (e.g., the TCSC discussed in Chapter 19) vary
the series reactance of a transmission line to impose a given active power
flow.

Clearly, it is not mandatory that the new variable belongs to the tie line.
For example one can use the active power of some generator (thus leading
to a constant v generator model). However, in the latter case, it is more
reasonable to formulate the problem as an OPF rather than as a power flow.

268 11 Transmission Devices

Example 11.1 Tie Line for the IEEE 14-Bus System

According to the base case power flow solution of the IEEE 14-bus system
shown in Table 4.3 of Chapter 4, the active power flow injected at bus 4 by
transmission line 2-4 is p5 = 0.5445 pu. Assume that we want to impose an
active power flow injection of pref

5 = 0.60 pu. Using a tie line that allows
varying the series reactance can do the job. In order to obtain this result, the
series reactance of line 2-4 must be x24 = 0.14624 pu. The solution of this
power flow problem requires 6 iterations using a standard Newton’s method
and x(0)

24 = 0.17632 as initial guess for the tie line series reactance. Imposing
pref
5 = 0.64 requires 9 iterations and provides x24 = 0.13402 pu, while for
pref
5 = 0.65, the power flow problem diverges. The critical point is the initial

guess of the series reactance x24.
This simple example allows drawing a general conclusion. Series devices al-

ways create more convergence issues than shunt devices. Thus, tie line models
such the one discussed in this example have to be used with caution.

11.1.3 Distributed Transmission Line Models

As previously discussed, long transmission lines have to be modelled using a
distributed parameter model. This leads to the well-known partial-derivative
transmission line equations:

∂v(�, t)
∂�

= Ri(�, t) + L
∂i(�, t)
∂t

(11.14)

∂i(�, t)
∂�

= Gv(�, t) + C
∂v(�, t)
∂t

where R, L and C are defined in Table 11.1 and G is the line conductance
per unit length.

Equations (11.14) and the boundary conditions:

v(0, t) = vh(t), v(�t, t) = vk(t) (11.15)
i(0, t) = ih(t), i(�t, t) = ik(t) = −ih(t)

define a boundary value problem whose general solution is too complex to
be used for systems with hundreds of lines.1 Thus, some simplifications are
required.

The first commonly accepted assumption is to use fast balanced time-
varying phasors. The boundary value problem becomes:

1 A very interesting although little exploited continuum model of power systems

has been proposed in [274] and recently extended in [233].

11.1 Transmission Line 269

∂v̄(�, t)
∂�

= Rī(�, t) + L
∂ī(�, t)
∂t

+ jωsLī(�, t) (11.16)

∂ī(�, t)
∂�

= Gv̄(�, t) + C
∂v̄(�, t)
∂t

+ jωsCv̄(�, t)

v̄(0, t) = v̄h(t), v̄(�t, t) = v̄k(t)
ī(0, t) = īh(t), ī(�t, t) = −īh(t)

where ωs is the synchronous pulsation.
Assuming G ≈ 0, the boundary value problem (11.16) has an explicit

solution [147]. Let define the following quantities:

• Characteristic line admittance Y =
√
C/L.

• Line time delay (or travelling time) τ = �t/s, which is the time required
by a wave to pass through the line at the wave speed s = 1/

√
LC.

Typically s ≈ c, where c = 299 792 458 m/s is the light speed.
• Line phase shift α = ωsτ.
• Attenuation factor ζ = R�t

2 Y.

Then, (11.16) has the solution:

īh(t) = īh(t− 2τ)e−2(ζ�+jα�) − Yw̄h(t) (11.17)
+2Yw̄k(t− τ)e−(ζ�+jα�) − Yw̄h(t− 2τ)e−(ζ�+jα�)

īk(t) = īk(t− 2τ)e−2(ζ�+jα�) − Yw̄k(t)
+2Yw̄h(t− τ)e−(ζ�+jα�) − Yw̄k(t− 2τ)e−2(ζ�+jα�)

where w̄h and w̄k satisfy the following set of complex differential equations:

˙̄wh = −jωsw̄h − R
2L

w̄h + ˙̄vh + jωsv̄h (11.18)

˙̄wk = −jωsw̄k − R
2L

w̄k + ˙̄vk + jωsv̄k

If R ≈ 0 (e.g., loss-less line), equations (11.17) become:

īh(t) = īh(t− 2τ)e−j2α� − Yv̄h(t) (11.19)
+2Yv̄k(t− τ)e−jα� − Yv̄h(t− 2τ)e−j2α�

īk(t) = īk(t− 2τ)e−j2α� − Yv̄k(t)
+2Yv̄h(t− τ)e−jα� − Yv̄k(t− 2τ)e−j2α�

Equations (11.17) and (11.18) or (11.19) are a set of functional differential
equations with constant delay τ. As discussed in Example 1.2 of Chapter
1, the solution of such systems is rather complex. However, in principle, the

270 11 Transmission Devices

expressions of the line currents defined in (11.17) or (11.19) can be used for
recomputing (11.3).2

11.1.4 Effect of Frequency Variation

One of the most well accepted hypothesis of transient stability analysis is
that transmission system parameters do not depend on the frequency. The
assumption is that, although synchronous machine rotor speeds vary, the
frequency deviations in transmission line parameters is negligible:

xL =
ωL�t
Zb

≈ ωsL�t
Zb

(11.20)

bL,h = bL,k =
1
2
ωC�tZb ≈ 1

2
ωsC�tZb

where Zb is the impedance base and ωs is the synchronous speed in pu (e.g.,
ωs = 1 pu).

Removing this assumption leads to the following equations:

ph = v2
h(gL,hk(ω) + gL,h) − vhvk(gL(ω) cos θhk + bL(ω) sin θhk) (11.21)

qh = −v2
h(bL,hk(ω) + bL,h(ω)) − vhvk(gL(ω) sin θhk − bL(ω) cos θhk)

pk = v2
k(gL(ω) + gL,k) − vhvk(gL,hk(ω) cos θhk − bL(ω) sin θhk)

qk = −v2
k(bL(ω) + bL,k(ω)) + vhvk(gL(ω) sin θhk + bL(ω) cos θhk)

The value of ω can be defined in various ways. Two common choices are:

1. Computing a local frequency as the derivative of the bus phase angle. This
technique is described in Section 13.4 of Chapter 13.

2. Using a system-wide frequency such as the center of inertia (COI), which
is described in Subsection 15.1.9 of Chapter 15.

Example 11.2 Effect of Frequency on Line Parameters

Figure 11.4 compares the numerical integration for the IEEE 14-bus system
using three different models of transmission lines, namely (i) constant param-
eters as in (11.6), (ii) COI dependent parameters, and (iii) local bus frequency
dependent parameters. The disturbance consists in line 2-4 outage for t = 1
s. For clarity, Figure 11.4 only shows a window from 10 to 15 s. As it can
be noted, the classical approximation of using constant parameters does not
introduce a significant error, at least for small variations of machine rotor
speeds. Furthermore, COI and local bus approximations provides practically
identical results.
2 Equations (11.14) to (11.19) are in absolute values. Thus, before substituting

(11.17) or (11.19) in (11.3) a proper per unit conversion has to be carried out.

11.1 Transmission Line 271

Fig. 11.4 Comparison of the transient behavior of transmission lines with constant

and frequency-dependent parameters for the IEEE 14-bus system.

11.1.5 Coupling Device and Zero-Impedance Line

Coupling devices such as disconnecting switches or very short lines can be
modelled as zero-impedance lines. Unfortunately, equations (11.6) are not
adequate for modelling such coupling devices. In fact, using a very small
series impedance (e.g., xL < 10−6 pu) may lead to numerical issues.

Thus, coupling devices require an ad hoc model. For example, the following
model was proposed in [210]:

0 = θh − θk (11.22)
0 = vh − vk

ph = pc

qh = qc

pk = −pc
qk = −qc

where the internal variables pc and qc are the active and reactive power
flowing in the coupling device from bus h to bus k. The only drawback of
the model (11.22) is that it does not allows putting two or more coupling
devices in parallel since the powers pc and qc in each device would result
indeterminate.

272 11 Transmission Devices

11.2 Transformer

This section describes fixed tap and regulating two- and three-winding trans-
formers.

11.2.1 Two-Winding Transformer

Two-winding transformers can be modelled as a transmission line with a
series impedances z̄T = rT + jxT and a shunt admittance at the sending-end
bus, which models iron losses gFe and the magnetizing susceptance bμ.3 Thus,
substituting transformer parameters in (11.6), the following correspondences
hold:

rL = rT xL = xT

bL,h = bμ gL,h = gFe

bL,k = 0 gL,k = 0

All transformer parameters are defined in Table 11.2.

Table 11.2 Transformer parameters

Variable Description Unit

bμ Magnetizing susceptance pu

kT = Vn,h/Vn,k nominal voltage ratio kV/kV

gFe Iron losses pu

Imax Current limit kA

m Fixed tap ratio pu/pu

Pmax Active power limit MW

rT Resistance pu

Smax Apparent power limit MVA

Vn,h Primary voltage rating kV

Vn,k Secondary voltage rating kV

xT Reactance pu

φ Fixed phase shift rad

From the modelling viewpoint, the main difference between transform-
ers and transmission lines is that transformers can introduce a complex off-
nominal tap ratio mejφ that allows modifying the magnitude and the phase
angle of the receiving or sending-end bus voltage. For static transformers,

3 Strictly speaking, a transformer should be modelled using a T model. However

the error introduced by the approximated circuit is acceptable. Furthermore, in

power flow analysis, transformer shunt admittances are generally neglected.

11.2 Transformer 273

k′ kh

īh īkī′h ī′k

v̄h v̄k

gFe bμ

ȳT /m

1 −m

m2
ȳT

m− 1

m
ȳT

v̄′h 1 · ejφ : 1

Fig. 11.5 Transformer equivalent circuit

k′h′h

v̄h v̄′k

ī′h ī′k

m : 1
ȳ′T

v̄′h

Fig. 11.6 Equivalent circuit of the tap ratio module and series impedance

both m and φ are constant. Regulating transformers with under load vari-
able tap ratio are described in Subsection 11.2.2. Assuming that the tap is
on the primary side, the complete equivalent circuit of a generic two-winding
transformer is depicted in Figure 11.5.

The π-circuit that depends on the series admittance ȳT and on the off-
nominal tap ratio m can be obtained from the circuit depicted in Figure 11.6
[163]. The currents ī′h and ī′k can be written as:

ī′h =
1
m
ȳ′T (v̄′h − v̄′k) =

1
m
ȳ′T (v̄h/m− v̄′k) (11.23)

ī′k = ȳ′T (v̄′k − v̄′h) = ȳ′T (v̄′k − v̄h/m)

where ȳ′T = ȳT = (rT + jxT)−1, v̄′h = v̄h/m and v̄′k = v̄ke
jφ = vke

j(θk+φ).
Equations (11.23) in vectorial form become:[̄

i′h
ī′k

]
= ȳ′T

[1
m2 − 1

m
− 1
m 1

] [
v̄h
v̄′k

]
(11.24)

274 11 Transmission Devices

k′k′′h

v̄h v̄′k

ī′h ī′k

m : 1
ȳ′′T

v̄′′k

Fig. 11.7 Alternative equivalent circuit of the tap ratio module and series

impedance

The same result can be obtained using the equivalent circuit shown in
Figure 11.7 [2, 184]. In this case, the currents ī′h and ī′k are:

ī′h = ȳ′′T (v̄h − v̄′′k) = ȳ′′T (v̄h −mv̄′k) (11.25)
ī′k = mȳ′′T (v̄′′k − v̄h) = mȳ′′T (mv̄′k − v̄h)

where ȳ′′T = ȳT /m
2 and v̄′′h = mv̄′k. Equations (11.25) in vectorial form

become: [̄
i′h
ī′k

]
= ȳ′′T

[
1 −m

−m m2

] [
v̄h
v̄′k

]
(11.26)

Equations (11.23) and (11.25) are obtained assuming that the tap is on the
transformer primary side. Nevertheless, if the tap is on the secondary winding
and the off-nominal tap ratio is m̃ = 1/m, then the admittances in (11.23)
and (11.25) have to be redefined as ȳ′T = ȳT /m̃

2 and ȳ′′T = ȳT , respectively.
Thus, it is important to check on which transformer side the tap changer is
installed.

In conclusion, the algebraic equations of the power injections are as follows:

ph = v2
h(gFe + gT /m

2) (11.27)
−vhvk(gT cos(θhk − φ) + bT sin(θhk − φ))/m

qh = −v2
h(bμ + bT /m

2)
−vhvk(gT sin(θhk − φ) − bT cos(θhk − φ))/m

pk = v2
kgT − vhvk(gT cos(θhk − φ) − bT sin(θhk − φ))/m

qk = −v2
kbT + vhvk(gT sin(θhk − φ) + bT cos(θhk − φ))/m

where gT + jbT = ȳT .
The fixed tap ratio unit is pu/pu since it represents the ratio of the primary

voltage in pu by the secondary voltage in pu. For example, if the nominal
voltages are Vn,h = 220 kV and Vn,k = 128 kV, and the actual tap positions
of the transformer are Vh = 231 kV and Vk = 128 kV, the tap ratio m is:

11.2 Transformer 275

m =
Vh
Vn,h

· Vn,k
Vk

=
231
220

· 128
128

= 1.05
pu
pu

11.2.2 Under Load Tap Changer

Under Load Tap Changer (ULTC) transformers control the voltage or the
reactive power varying the tap ratio. There are two models of ULTC trans-
formers: a discrete model and a continuous one [189, 238, 241].

1. The discrete model consists in modelling the step ratio as a discrete vari-
able, which can vary between the minimum and the maximum tap values
mmax and mmin by a fixed step Δm. The regulator model simply switches
up or down by one step Δm the tap ratio if the deviation of the regulated
quantity vk (e.g., the voltage on the secondary winding) with respect to
the reference vref exceeds a given tolerance Δv, which works similarly to
a dead zone (see Figure 11.8.a). The switching logic is as follows:

m =

⎧⎪⎨
⎪⎩
m+Δm, if vk − vref < Δv and m < mmax

m, if |vk − vref | < Δv

m−Δm, if vk − vref > Δv and m > mmin

(11.28)

Each tap switch is a delicate process, since requires moving physically
the tap position. In order to avoid unnecessary switching operations, the
regulator is delayed so that a tap switch can occur only if a minimum time
Δts has passed since the last switch. For this reason, ULTC controllers are
relatively slow.4

2. The continuous model assumes that the tap ratio step Δm is small so that
discrete switches can be approximated with a continuous variation of the
tap ratio m. The time delay is approximated as a lag transfer function (see
Figure 11.8.b). Hence, the tap ratio differential equation is:

ṁ = −Kdm+Ki(vk − vref) (11.29)

where all parameters are defined in Table 11.3 and the tap m undergoes
an anti-windup limiter and the sign of the error εv = vk−vref is due to the
stability characteristic of the nonlinear control loop. In fact, as shown in
Figure 11.10, the regulator stable equilibrium point occurs for a negative
tangent slope of the ULTC-load characteristic. Example 11.3 provides a
graphical proof of this statement. A similar control can be obtained by
regulating the voltage of a remote bus or regulating the reactive power
output of the transformer, e.g.:

ṁ = −Kdm+Ki(qref + qk) (11.30)

4 New generations of ULTC are equipped with thyristor-switched controllers, which

are characterized by a fast time response.

276 11 Transmission Devices

+

+

−

−

(a)

(b)

LTC &

LTC &

Network

Network

dead zone

m

m
Ki

Kd + s

vk

vkvref

vref

mmax

mmax

mmin

mmin

Fig. 11.8 Voltage control diagram of the ULTC transformer: (a) discrete control

and (b) continuous control

The discrete model reproduces precisely the physical behavior of the ULTC
regulator. However, as discussed in Chapter 1, discrete variables complicate
the analysis of DAE systems. For this reason, the continuous model is pre-
ferred for stability analysis [55]. An interesting stability study that consists
in bounding the discrete behavior through an upper and a lower continuous
models is proposed in [339].

Table 11.3 Under load tap changer control parameters

Variable Description Unit

Kd Integral deviation 1/s

Ki Integral gain 1/s/pu

mmax Maximum tap ratio pu/pu

mmin Minimum tap ratio pu/pu

vref or qref Reference voltage or reactive power pu

Δm Tap ratio step pu/pu

Δts Time delay for discrete model s

Δv Voltage dead zone pu

11.2 Transformer 277

v̄Th v̄L

xTh xT
pL0v

αp

L + jqL0v
αq

L

m : 1

Fig. 11.9 2-bus system with tap changer and voltage dependent load

Example 11.3 Voltage-Tap Ratio Characteristic of Loads Fed by
an ULTC

Figure 11.9 shows a simple system composed of a Thevenin equivalent mod-
elling the external transmission system and an under load tap changer feeding
a load. The load is a monomial function of the voltage vL (see also Sec-
tions 14.1 and 14.4 of Chapter 14). If αp = αq = 2, the load is a constant
impedance, say rL + jxL. Assuming that the Thevenin equivalent is a con-
stant voltage vTh behind a reactance xTh and that the transformer reactance
is xT , one has:

v̄L = v̄Th
m(rL + jxL)

m2rL + j(xTh +m2x′L)
(11.31)

where x′L = xT + xL. The maximum voltage is obtained for:

m∗ =

√√√√ xTh√
r2L + x′L

2
(11.32)

And the maximum voltage value is:

vmax
L =

√
v2
Tha

rL
2xTh

(11.33)

where

a = 1 + b2(
√

1 + c2 − c), b =
xL
rL
, c =

x′L
rL

(11.34)

Similar expressions can be obtained for constant current (αp = αq = 1)
and constant power (αp = αq = 0) loads. The characteristics of the load
voltage vL as a function of m and of the load voltage dependence is shown in
Figure 11.10. There are two possible equilibrium points, that correspond to
the intersections with the regulator reference voltage vref . The only feasible
equilibrium point (i.e., the one for which mmin ≤ m ≤ mmax) is characterized
by a negative tangent slope of the curve (vL,m).

278 11 Transmission Devices

Fig. 11.10 Characteristic of the load with embedded tap changer. The curve

is obtained assuming vTh = 1.05 pu, xTh = xT = 0.05 pu, pL0 = 0.7 pu and

qL0 = 0.5 pu

Example 11.4 Comparison of ULTC Discrete and Continuous
Models

Figure 11.11 shows a comparison of the transient behavior of the discrete
and continuous ULTC control models. The plot is obtained substituting in
the IEEE 14-bus system the fixed transformer connecting buses 4 and 9 with
a voltage regulating transformer. The disturbance is line 2-4 outage at t = 1 s.
For the continuous model, Kd = 0 and Ki = 0.1 1/s/pu, while for the discrete
model Δv = 5%, Δm = 0.02 pu/pu and Δts = 5 s. For both models, the
regulated voltage is that of bus 9, vref = 1.0563 pu, mmax = 1.2 pu/pu and
mmin = 0.8 pu/pu. As expected, the behavior of the two models is similar.
The discrete model introduces discontinuities in the algebraic variables (e.g.,
bus voltages).

11.2.3 Phase Shifting Transformer

Phase Shifting Transformers (PhSTs) are able to vary the phase shifting angle
φ to control the active power flow. These devices are used in meshed networks
for reducing the congestion on some transmission lines and/or properly redis-
tributing active power flows in transmission lines. A fairly complete review
of PhST technologies can be found in [333]. However, regardless the PhST

11.2 Transformer 279

Fig. 11.11 Comparison of ULTC discrete and continuous models

type, the resulting behavior can be described by (11.27) with a variable phase
shifting angle φ.

Similarly to the ULTC, both a discrete and a continuous models can be
formulated. The discrete model is the same as (11.28) but for the regulated
quantity φ. Figure 11.12 depicts the continuous control diagrams. The mea-
sure pmes of the real power flow pk is compared with the desired power flow
pref and a PI controller is used for varying the phase angle φ. Differential
equations are as follows:

φ̇ = Kp(pk − pmes)/Tm +Ki(pmes − pref) (11.35)
ṗmes = (pk − pmes)/Tm

The phase angle φ is subjected to an windup limiter. PhST parameters are
defined in Table 11.4. It is relevant to note that connecting two areas of a
network only by means of PhSTs can lead to unsolvable cases, as PhSTs
impose the total real power transfer between the two areas.

11.2.4 Three-Winding Transformer

Three-winding transformers can be modelled as three two-winding transform-
ers in a star connection, as depicted in Figure 11.13. The transformation
requires adding one fictitious bus. The data of three-winding transformers

280 11 Transmission Devices

1

s
+

− Kps+Ki

Tms+ 1

pmes

pref pk

φmax

φmin

PhST &

Network

Fig. 11.12 Phase shifting transformer control diagram

Table 11.4 Phase shifting transformer control parameters

Variable Description Unit

Ki Integral gain rad/s/pu

Kp Proportional gain rad/pu

pref Reference power pu

Tm Measurement time constant s

φmax Maximum phase angle rad

φmin Minimum phase angle rad

typically are the impedances of the triangle branches, whose relationships
with the resulting star impedances are as follows:

z̄12 = z̄1 + z̄2 (11.36)
z̄13 = z̄1 + z̄3

z̄23 = z̄2 + z̄3

Thus, one has:

z̄1 = (z̄12 + z̄13 − z̄23)/2 (11.37)
z̄2 = (z̄12 + z̄23 − z̄13)/2
z̄3 = (z̄13 + z̄23 − z̄12)/2

Table 11.5 defines three-winding transformer parameters. Tap ratios and the
phase shifts are with respect to each winding. For example m1 is the ratio
V1/Vn,1.

From the implementation viewpoint, three-winding transformer can be
converted into a two-winding transformers during the parsing of input data.

11.2 Transformer 281

1 1

2 2

3 30

m1∠φ1 : 1

z̄1, Vn,1/Vn,1

z̄2, Vn,1/Vn,2

z̄3, Vn,1/Vn,3

z̄12

z̄13

z̄23

Vn,1
Vn,2

Vn,3

Fig. 11.13 Three-winding transformer equivalent circuit

Table 11.5 Three-winding transformer parameters

Variable Description Unit

Imax
1 , Imax

2 , Imax
3 Winding current limits kA

m1, m2, m3 Fixed tap ratios kV/kV

Pmax
1 , Pmax

2 , Pmax
3 Winding active power limits kA

r12, r23, r13 Branch resistances pu

Smax
1 , Smax

2 , Smax
3 Winding apparent power limits kA

x12, x23, x13 Branch reactances pu

Vn,1, Vn,2, Vn,3 Winding voltage ratings kV

φ1, φ2, φ3 Fixed phase shifts rad

Thus, the three-winding transformer class requires only a method for creating
the set of equivalent two-winding transformers.

Example 11.5 Three-Winding Transformer of the IEEE 14-Bus
System

The IEEE 14-bus system contains a three-winding transformer that connects
buses 4, 8 and 9. Provided that x47 = 0.20912 pu, x87 = 0.17615 pu and x79 =
0.11001 (see Appendix D), from (11.36) one obtains the original impedances
of the three-winding transformer as:

x48 = 0.38527 pu
x89 = 0.28616 pu
x49 = 0.31913 pu

Finally, the winding at bus 4 has the tap ratio m4 = 0.978 kV/kV.
Bus 7 is a fictitious bus introduced by the transformation of the three-

winding transformer into three branches. I guess that the IEEE 14-bus system
is not known as the (14 − 1)-bus system just for superstition.

282 11 Transmission Devices

11.3 Vectorial Implementation

Equations (11.6) and (11.27) are written as power injections at buses h and
k. This is the most versatile form of modelling transmission lines. However, in
most power system analysis books and software packages, particular relevance
is devoted to the construction of the admittance matrix Ȳ , which allows
rewriting (11.3) in vectorial form:

s̄ = v̄Ȳ
∗
v̄∗ (11.38)

The admittance matrix Ȳ is formed as follows:

1. The diagonal element (h, h) is computed as the sum of all shunt and series
admittances of line incident at bus h.

2. The element (h, k) is computed as the sum of series admittances of
branches that connect buses h and k changed of sign.

Table 11.6 depicts the full admittance matrix for the IEEE 14-bus system.
Using adequate matrix manipulation libraries (e.g., BLAS), the admittance

matrix allows efficiently calculating current and power flow vectors, as well as
forming the Jacobian and Hessian matrix of the transmission system. Sample
scripts implementing these calculations are provided below. However, the
admittance matrix also has important drawbacks, as follows.

1. The information provided by (11.38) is “less” than the information pro-
vided by (11.6) and (11.27). In fact, the admittance matrix merges together
all parallel lines and shunt devices. In other words, from the knowledge
of the admittance matrix, one cannot unequivocally go back to line and
transformer parameters.

2. Any change in the system topology (e.g., line outages) as well as in branch
parameters requires re-building the whole admittance matrix. Line outages
are relatively uncommon events and re-building the admittance matrix can
be acceptable. However, regulating transformers that vary continuously
or almost continuously the tap ratio and/or the phase shift cannot be
efficiently handled through the admittance matrix.

3. As discussed in Subsection 11.1.5, simple coupling devices cannot be in-
cluded in the admittance matrix. Actually, most series FACTS devices as
well as HVDC systems cannot be modelled through the admittance matrix.

The limitations above lead to some issues when it comes to implement a
general power system devices model. Moreover, using the admittance matrix
model prevents from using the transmission line model as a base class for
other devices, such as series devices. Nevertheless, the admittance matrix
approach is so widely accepted that it deserves further discussion.

11.3 Vectorial Implementation 283

Table 11.6 Admittance matrix of the IEEE 14-bus system

Bus 1 2 3 4
1 6.025 − 19.447j −4.999 + 15.263j 0 0
2 −4.999 + 15.263j 9.521 − 30.271j −1.135 + 4.782j −1.686 + 5.116j
3 0 −1.135 + 4.782j 3.121 − 9.811j −1.986 + 5.069j
4 0 −1.686 + 5.116j −1.986 + 5.069j 10.513 − 38.635j
5 −1.026 + 4.235j −1.701 + 5.194j 0 −6.841 + 21.579j
6 0 0 0 0
7 0 0 0 −0.000 + 4.890j
8 0 0 0 0
9 0 0 0 −0.000 + 1.855j
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0

Bus 5 6 7 8
1 −1.026 + 4.235j 0 0 0
2 −1.701 + 5.194j 0 0 0
3 0 0 0 0
4 −6.841 + 21.579j 0 −0.000 + 4.890j 0
5 9.568 − 35.528j −0.000 + 4.257j 0 0
6 −0.000 + 4.257j 6.580 − 17.341j 0 0
7 0 0 0.000 − 19.549j −0.000 + 5.677j
8 0 0 −0.000 + 5.677j 0.000 − 5.677j
9 0 0 −0.000 + 9.090j 0
10 0 0 0 0
11 0 −1.955 + 4.094j 0 0
12 0 −1.526 + 3.176j 0 0
13 0 −3.099 + 6.103j 0 0
14 0 0 0 0

Bus 9 10 11 12
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 −0.000 + 1.855j 0 0 0
5 0 0 0 0
6 0 0 −1.955 + 4.094j −1.526 + 3.176j
7 −0.000 + 9.090j 0 0 0
8 0 0 0 0
9 5.326 − 24.283j −3.902 + 10.365j 0 0
10 −3.902 + 10.365j 5.783 − 14.768j −1.881 + 4.403j 0
11 0 −1.881 + 4.403j 3.836 − 8.497j 0
12 0 0 0 4.015 − 5.428j
13 0 0 0 −2.489 + 2.252j
14 −1.424 + 3.029j 0 0 0

Bus 13 14
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 −3.099 + 6.103j 0
7 0 0
8 0 0
9 0 −1.424 + 3.029j
10 0 0
11 0 0
12 −2.489 + 2.252j 0
13 6.725 − 10.670j −1.137 + 2.315j
14 −1.137 + 2.315j 2.561 − 5.344j

284 11 Transmission Devices

Script 11.1 Sparse Matrix Implementation of the Admittance
Matrix

The following script is an efficient sparse matrix-based implementation for
the computation of the admittance matrix. The following code can be used as
a method of the class that models both transmission lines and two-winding
transformers.

def build y(self):

process line data and build admittance matrix [Y]

u = self.u + 0j

yh0 = mul(u, self.gh0 + self.bh0*1j)

yk0 = mul(u, self.gk0 + self.bk0*1j)

yhk = div(u, self.rhk + self.xhk*1j)

m = mul(self.m + 0j, exp(self.phi*0.017453292519943295*1j))

m2 = abs(t)**2 + 0j

self.Y = spmatrix(div(yhk + yh0, m2), self.afr, \
self.afr, (self.nb, self.nb), ’z’)

self.Y -= spmatrix(div(yhk, m.H.T), self.afr, \
self.ato, (self.nb, self.nb), ’z’)

self.Y -= spmatrix(div(yhk, m), self.ato, self.afr, \
(self.nb, self.nb), ’z’)

self.Y += spmatrix(yhk + yk0, self.ato, self.ato, \
(self.nb, self.nb), ’z’)

check for missing connections (0 diagonal elements)

for item in range(self.nb):

if abs(self.Y[item, item]) == 0:

self.Y[item, item] = 1e-6 + 0j

In the code above, self.nb is the number of network buses, while self.afr
and self.ato are lists of indexes of branch sending and receiving-end buses,
respectively. All other parameters are vectors whose length is the number
of branch elements. The function spmatrix works properly also in case of
parallel branches since elements of repeated indexes are summed.

11.3.1 Incidence Matrix

Subsection 4.4.8 of Chapter 4 describes the dc power flow model. The result-
ing dc power flow equations are synthesized in (4.64) which is repeated below
for clarity:

p =X−1Cθ +CTX−1φ (11.39)

where C is the incidence matrix of the transmission system. this matrix is
built as follows:

11.3 Vectorial Implementation 285

1. If the sending-end of branch h is bus k, set chk = 1.
2. If the receiving-end of branch h is bus k, set chk = −1.
3. Otherwise, set chk = 0.

Table 11.6 depicts the full incidence matrix for the IEEE 14-bus system.

Table 11.7 Incidence matrix of the IEEE 14-bus system

Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 -1 0 0 0 0 0 0 0 0 0
3 0 1 -1 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 -1 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 -1 0 0 0 0 0 0 0 0 0
6 0 0 1 -1 0 0 0 0 0 0 0 0 0 0
7 0 0 0 1 -1 0 0 0 0 0 0 0 0 0
8 0 0 0 1 0 0 -1 0 0 0 0 0 0 0
9 0 0 0 1 0 0 0 0 -1 0 0 0 0 0
10 0 0 0 0 1 -1 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 0 0 0 -1 0 0 0
12 0 0 0 0 0 1 0 0 0 0 0 -1 0 0
13 0 0 0 0 0 1 0 0 0 0 0 0 -1 0
14 0 0 0 0 0 0 1 -1 0 0 0 0 0 0
15 0 0 0 0 0 0 1 0 -1 0 0 0 0 0
16 0 0 0 0 0 0 0 0 1 -1 0 0 0 0
17 0 0 0 0 0 0 0 0 1 0 0 0 0 -1
18 0 0 0 0 0 0 0 0 0 1 -1 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 1 -1 0
20 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

Script 11.2 Incidence Matrix Implementation

The following script implements the incidence matrix C using the CVXOPT
function spmatrix. the variables self.n and self.nb are the number of
branches and network buses, respectively. The status vector self.u is used
for removing off-line branches from the incidence matrix. For being used in
(11.39), the column correspondent to the slack bus should be removed from
the resulting matrix self.C.

def incidence(self):

self.C = spmatrix(self.u, range(self.n), self.afr, \
(self.n, self.nb), ’d’) - \

spmatrix(self.u, range(self.n), self.ato, \
(self.n, self.nb), ’d’)

11.3.2 Jacobian and Hessian Matrices

The admittance matrix along with efficient routines for manipulating sparse
matrices allows a very compact implementation of the Jacobian and Hessian
matrices of the transmission system. This compactness allows speeding up
power flow, continuation power flow and optimal power flow solvers.

The computation of the Hessian matrix has a further complication due to
the size of the Hessian matrix itself. By definition, gyy is a three-dimensional

286 11 Transmission Devices

array, which can be difficult to handle and manipulate. Fortunately, the Hes-
sian matrix always appears in the calculations multiplied by a vector. For
example, in the IPM-OPF problem, the Hessian matrix of the transmission
system is multiplied by dual variables of power flow equations. The product
of the Hessian matrix by a vector is a two-dimensional array that can be
handled in a conventional way.

Script 11.3 Transmission System Power Flow Jacobian Matrix

The following scripts implements the Jacobian matrix for equations (11.6)
and (11.27). The variables self.a and self.v are the indexes of active and
reactive power flow equations, respectively, as well as the indexes of bus
voltage angles and magnitudes, respectively. Finally, self.nb indicates the
number of network buses.

def jacobian(self, dae):

Vn = exp(dae.y[self.a]*1j)

Vc = mul(dae.y[self.v] + 0j, Vn)

Ic = self.Y*Vc

diagVn = spmatrix(Vn, self.a, self.a, (self.nb, self.nb), ’z’)

diagVc = spmatrix(Vc, self.a, self.a, (self.nb, self.nb), ’z’)

diagIc = spmatrix(Ic, self.a, self.a, (self.nb, self.nb), ’z’)

dS = self.Y*diagVn

dS = diagVc*dS.H.T

dS += diagIc.H.T*diagVn

dR = diagIc

dR -= self.Y*diagVc

dR = diagVc.H.T*dR

return sparse([[dR.imag(), dR.real()], \
[dS.real(), dS.imag()]])

Script 11.4 Transmission System Power Flow Hessian Matrix

The following scripts implements the Hessian matrix for equations (11.6) and
(11.27). Variables have the same meanings as in the previous Script 11.3.
Furthermore, dae.rho indicates the vector of dual variables associated with
power flow equations.

def hessian(self, dae):

ang = exp(dae.y[self.a]*1j)

vol = dae.y[self.v]

V = matrix(1.0, (1, self.nb), ’d’)

Ma = ang*V

MW = dae.rho[self.a]*V

MM = dae.rho[self.v]*V

11.3 Vectorial Implementation 287

S0 = mul(Ma, mul(self.Y, Ma.H))

S1 = mul(Ma, mul(self.Y.H.T, Ma.H))

S2 = S0.H.T

A1 = S1.real()

B1 = S1.imag()

A2 = S2.real()

B2 = S2.imag()

H22 = mul(MW, A1) + mul(MW.T, A2) + \
mul(MM, B1) + mul(MM.T, B2)

H11 = mul(vol*vol.T, H22)

H11 = H11 - spdiag(V*H11)

H21 = mul(V.T*vol.T, mul(MW, B1) - mul(MW.T, B2) - \
mul(MM, A1) + mul(MM.T, A2))

H21 = H21 - spdiag(V*H21.T)

return sparse([[H11, H21], [H21.T, H22]])

11.3.3 Network Connectivity

The network connectivity provides information about the existence of is-
landed buses or islanded regions of a given network. This information is
important for various reasons.

1. For power flow analysis, islanded buses have to be carefully treated to avoid
singularities in the Jacobian matrix. Furthermore, each islanded region
requires a reference bus.

2. For time domain simulations, islanded regions may lead to inconsistent
calculations of the center of inertia or cause loss of synchronism of gener-
ators.

The network connectivity can be determined efficiently using the topological
data of series devices. Let us define the connectivity matrix T as a binary
matrix built as follows:

1. The element thh = 1 if there exists a branch starting or ending at bus h,
thh = 0 otherwise.

2. The element thk = 1 if there exists a branch connecting buses h and k,
thk = 0 otherwise.

In practice, T has the same non-zero elements as the admittance matrix Ȳ .
A straightforward information provided by the connectivity matrix T is

that if a diagonal element is thh = 0, then bus h is islanded. Furthermore,
each non-zero element thk indicates the first-level connectivity of buses h
and k. Another interesting property of T is that off-diagonal elements of
T n provide the n-level connectivity of buses. For example, if an off-diagonal
element (h, k) of T 2 is not zero, then there is a path that connects buses h
and k through a third bus j. The Goderya’s algorithm takes advantage of

288 11 Transmission Devices

the properties of T powers to set up an efficient method that assesses the
connectivity of the whole network [108]. In fact, by multiplying iteratively T
by itself, one can find two situations:

1. For a given iteration n, T n is full. Thus, the network is fully connected.
2. For a given iteration n, the non-zeros elements of T n are the same of T n−1.

Then, the system presents some islands and the non-zeros elements of each
row (or column) correspond to the buses that belong to a certain island.

Script 11.5 Network Connectivity

The following script finds islanded buses as well as islanded areas using
the Goderya’s algorithm. The variables self.n, self.nb, self.afr and
self.ato have the meaning of the previous Script 11.3.

def connectivity(self, bus):

n = self.nb

fr = self.afr

to = self.ato

os = [0]*self.n

find islanded buses

diag = list(matrix(spmatrix(1.0, to, os, (n, 1), ’d’) + \
spmatrix(1.0, fr, os, (n, 1), ’d’)))

nib = bus.n islanded buses = diag.count(0)

bus.islanded buses = []

for bus in range(n):

if diag[bus] == 0:

bus.islanded buses.append(bus)

find islanded areas

temp = spmatrix(1.0, fr + to + fr + to, \
to + fr + fr + to, (n, n), ’d’)

cons = temp[0, :]

nelm = len(cons.J)

conn = spmatrix([], [], [], (1, n), ’d’)

bus.island sets = []

idx = islands = 0

while 1:

while 1:

cons = cons*temp

new nelm = len(cons.J)

if new nelm == nelm: break

nelm = new nelm

bus.island sets.append(list(cons.J))

conn += cons

islands += 1

nconn = len(conn.J)

if nconn >= (n - nib): break

for element in conn.J[idx:]:

11.3 Vectorial Implementation 289

idx += 1

if not diag[element]:

this is an isolated bus

continue

if element > (idx - 1): break

cons = temp[idx, :]

It is worth observing that in the discussion of [108], a reviewer argues that
a minimum spanning tree algorithm could do the same job as the Goderya’s
algorithm, but without the need of matrix multiplications. This concern was
very adequate having in mind system programming languages available in
1980, which is the date of publication of [108]. However, as discussed in
Chapter 3, for scripting languages, for-loops are much less efficient than ma-
trix multiplications obtained using external FORTRAN-based libraries.

The following code implements a recursive minimum spanning tree algo-
rithm and does the same as the double while-loop in the previous script:

def find_conn(item, group, fr, to):

while 1:

if item in fr:

idx = fr.index(item)

fr.pop(idx)

new_item = to.pop(idx)

elif item in to:

idx = to.index(item)

to.pop(idx)

new_item = fr.pop(idx)

else:

break

group.add(new_item)

group, fr, to = find conn(new_item, group, fr, to)

return group, fr, to

bus.island sets = []

islands = 0

while 1:

if not len(fr): break

islands += 1

group = set([])

group, fr, to = find conn(fr[0], group, fr, to)

bus.island sets.append(group)

However, the minimum spanning tree algorithm is much slower than the
Goderya’s algorithm, at least for a scripting language as Python. For exam-
ple, for the 11856-bus system discussed in Example 4.3 of Chapter 4, the
Goderya’s algorithm takes 3.5 s to find the 208 islands, while the minimum
spanning tree algorithm takes about 66 s, i.e., it is almost 20 times more time
consuming.

This page intentionally left blank

Chapter 12

OPF Devices

The object of this chapter are the models that define the objective func-
tion and inequality constraints for the optimal power flow analysis discussed
in Chapter 6. Sections 12.1 describes typical network security constraints.
Section 12.2 describes technical limits and offering functions of generators.
Finally Section 12.3 describes technical limits and bidding functions of loads.

12.1 Network Constraints

This section briefly outlines typical network technical limits, namely the
bus voltage limits (Subsection 12.1.1) and transmission line flow limits
(Subsection 12.1.2).

12.1.1 Bus Voltage Limits

Bus voltage limits are:
vmin ≤ vh ≤ vmax (12.1)

These limits are generally required for all buses, hence also for pure transit
nodes (see Table 10.1). However, generator and load devices can impose more
restrictive limits.

12.1.2 Transmission Line limits

Branch flow constraints are:

φhk ≤ φmax
hk (12.2)

φkh ≤ φmax
hk

where φij and φji are current, active power or apparent power flows (see
Tables 11.1, 11.2 and 11.5). Transformer tap ratios and phase shifts can also
be subjected to inequalities constraints:

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 291–304.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

292 12 OPF Devices

mmin ≤ m ≤ mmax (12.3)
φmin ≤ φ ≤ φmax

Finally, as discussed in Subsection 11.1.2 of Chapter 11, tie line constraints
can be included in an OPF problem as inequalities:

pmin ≤ ph ≤ pmax (12.4)

12.2 Generator Constraints

This section describes most relevant generator constraints an technical limits.
Subsection 12.2.1 defines the static synchronous generator capability curve.
Subsection 12.2.2 to 12.2.5 describe generator supply offers, the reactive
power payment function, and reserve and ramp limits.

12.2.1 Capability Curve

Generator technical limits form the so-called capability curve and are of par-
ticular relevance in OPF analysis. Active power limits are simply:

pmin
G ≤ ph ≤ pmax

G (12.5)

where pmax
G are associated with the generator capacity whereas pmin

G are as-
sociated with the minimum technical power output. For thermal plants, pmin

G

cannot be zero because the plant requires power for feeding internal compres-
sors and pumps. Hydro plants can show pmin

G = 0.
Analogously to (12.5), reactive power limits can be approximated as:

qmin
G ≤ qh ≤ qmax

G (12.6)

where both qmin
G and qmax

G are constant and approximate minimum and max-
imum field current limits. Constraints (12.5) and (12.6) define the simplest
and most commonly used generator capability curve, as shown in Figure
12.1.a.

A more precise curve can be defined considering the physical cause behind
reactive power limits. These are thermal constraints, namely (i) stator current
limit, (ii) rotor current limit, and (iii) under-excitation limit.

The stator thermal limit or stator current limit can be written as:

|v̄h ī∗h| =
√
p2
h + q2h ≤ smax

G (12.7)

where smax
G is the nominal generator power in pu. The rotor thermal limit is

as follows:

p2
h +
(
qh +

v2
h

xd

)2

≤
(
vhi

max
f

xd

)2

(12.8)

12.2 Generator Constraints 293

where
1.7 pu ≤ imax

f ≤ 1.79 pu (12.9)

for salient-pole alternators and

2.6 pu ≤ imax
f ≤ 2.73 pu (12.10)

for turbo-generators. Finally, the under-excitation limit is also a thermal
limit. Due to the low field current if , the leakage flux re-closes in the end
of stator windings. This flux creates eddy currents that overheat the end of
stator windings. The under-excitation limit can be approximated as a straight
line:

qh ≤ −q0(vh) + βpmax
G (12.11)

where typical values of the parameters β and q0 are β ∈ (0.1, 0.2) pu/pu,
and q0 depends on the bus voltage set point and can be approximated with
q0 ≈ 0.4 pu. Figure 12.1.b illustrates the detailed generator capability curve
while Table 12.1 defines the parameters required for defining generator limits.

Rotor thermal

Stator thermal
v̄hi

max
f

xd

− v2
h

xd

smax
G

phph

pmax
Gpmax

G pmin
Gpmin

G

qhqh

−q0
Under-excitation

limit

limit

limit

qmax
G

qmin
G

(a) (b)

Fig. 12.1 Capability curve: (a) simplified model; (b) detailed model

12.2.2 Supply Offer

Apart from the technical limits discussed in the previous section, electricity
markets require the definition of economical data. These are expressed in
form of offers, as depicted in Table 12.2. Generator costs have the same
mathematical form as price offers. However, in restructured power systems,
generator costs are confidential. Since electricity markets are nowadays the
common trend, this section refers to offers rather than to costs. Offers can

294 12 OPF Devices

Table 12.1 Capability curve parameters

Variable Description Unit

imax
f Maximum field current pu

pmax
G Generator capacity pu

pmin
G Technical minimum pu

q0 Under-excitation limit off-set pu

qmax
G Maximum reactive power pu

qmin
G Minimum reactive power pu

xd Synchronous reactance pu

β Slope of the under-excitation limit pu/pu

Table 12.2 Supply offer parameters

Variable Description Unit

CS0 Fixed offer price e/h

CS1 Proportional offer price e/MWh

CS2 Quadratic offer price e/MW2h

kTB Tie breaking cost e/MW2h

pmax
S Maximum power offer pu

pmin
S Minimum power offer pu

be associated with active power are generally modelled using a polynomial
model:1

cS(pS) = cS0 + cS1pS + cS2p
2
S (12.12)

Another kind of supply data are tie breaking costs kTB. The tie breaking
involves a penalty cost kTB prorated by the amount scheduled over the
maximum amount that could be scheduled for the generator by means of
a quadratic function added to the objective function:

cTB = kTB
p2
S

(pmax
S)2

(12.13)

If the generator does not supply power, this cost is zero, whereas if pS is
close to the maximum power the tie breaking cost increases quadratically
and penalizes the generator. Thus two otherwise tied energy offers will be

1 The difference in the notation of upper case prices CS in Table 12.2 and lower

case price cS in (12.12) is due to quantity units. CS is used for absolute values,

while cS for pu ones. The relation is as follows:

cS0 = CS0/Sn

cS1 = CS1

cS2 = CS2Sn

where Sn is the device nominal base.

12.2 Generator Constraints 295

scheduled to the point where their modified costs are identical, effectively
achieving a prorated result. Generally, the value of kTB is small (e.g., 0.0005).

Supply offer blocks are:

pmin
S ≤ pS ≤ pmax

S (12.14)

Several offer blocks can be defined for each generator (piece-wise bids). The
constraints that have to be satisfied are:∑

j∈S
pS,j ≤ pmax

G (12.15)

∑
j∈S

pmin
S,j ≥ pmin

G

where S is the set of supply blocks of the generator. A more precise supply
offer block includes a unit commitment binary variable uC :

uCp
min
S ≤ pS ≤ uCp

max
S (12.16)

The unit commitment discrete variable uC allows putting off-line generators
whose technical minimum pmin

S �= 0. However, including discrete variables in
the OPF leads to a MINLP problem whose optimum can be hardly found (see
also the discussion provided in Example 1.1 of Chapter 1). Thus, nonlinear
OPF problems are generally formulated without unit commitment variables.

Script 12.1 Implementation of Supply Offers

This example provides a possible implementation of the methods for com-
puting the objective function, g(z), h(z) as well as Jacobian and Hessian
matrices associated with the supply offer constraints. These methods are
called by the IPM-OPF method described in Script 6.1 of Chapter 6.

from cvxopt.base import spmatrix, sparse, matrix, mul, div

from cvxopt.blas import dotu

def gcall opf(self, dae):

zeros = [0]*self.n

dae.h += spmatrix(self.pmin - dae.z[self.p], \
self.pn, zeros, (dae.nh, 1), ’d’)

dae.h += spmatrix(dae.z[self.p] - self.pmax, \
self.px, zeros, (dae.nh, 1), ’d’)

dae.g -= spmatrix(dae.z[self.p], self.a, zeros, \
(dae.ng, 1), ’d’)

def gycall opf(self, dae):

dae.Hz -= spmatrix(1.0, self.pn, self.p, \
(dae.nh, dae.nz), ’d’)

296 12 OPF Devices

dae.Hz += spmatrix(1.0, self.px, self.p, \
(dae.nh, dae.nz), ’d’)

dae.Gz -= spmatrix(1.0, self.a, self.p, \
(dae.ng, dae.nz), ’d’)

dae.Oz[self.p] = self.cp1 + 2*mul(self.cp2 + \
self.tie, dae.z[self.p])

dae.Hes += spmatrix(2*(self.cp2 + self.tie), \
self.p, self.p, (dae.nz, dae.nz), ’d’)

def call obj(self, dae):

p = dae.z[self.p]

dae.obj += sum(self.cp0)

dae.obj += dotu(self.cp1, p)

dae.obj += dotu(self.cp2 + self.tie, p**2)

In the code above, dae.nh is the number of inequality constraints h, dae.ng is
the number of equality constraints g, and dae.nz is the number of variables z.
Furthermore, self.p are the indexes of variables ph in the vector z, whereas
self.px and self.pn are the indexes of dual variables associated with the
maximum and minimum limits of ph, respectively.

12.2.3 Reactive Power Payment Function

In restructured power systems, generator reactive powers can be subjected to
payment. Reactive power payments are generally associated with the loss of
opportunity of generating active power. Figure 12.2 shows the payment func-
tion proposed in [85, 358]. The production of reactive power can be divided
into three regions:

1. Region I: for qCG ≤ qh ≤ 0, the generator is under-excited and produces
inductive reactive power.

2. Region II: for 0 ≤ qh ≤ qAG, the generator is over-excited and produces
capacitive reactive power without the need of reducing its active power
production.

3. Region III: for qAG ≤ qh ≤ qBG, the generator is over-excited and produces
capacitive reactive power but has to reduce its active power production to
provide the required reactive power. It is assumed that, in this region, the
payment increases quadratically with respect to the reactive power.

12.2 Generator Constraints 297

Regions I and II can be further divided into two regions:

1. Mandatory reactive power availability: for qleadG ≤ qh ≤ qlagG , the generator
has to provide reactive power at no cost.

2. Payment for the cost of losses: for qlagG ≤ qh ≤ qAG and qCG ≤ qh ≤ qleadG , the
losses due to the reactive power production justify a payment for genera-
tors. In this case, the payment is a linear function of the reactive power.

While qleadG and qlagG are assigned constant parameters, qAG, qBG and qCG de-
pend on the generator operating point2 and can be determined based on the
capability curve (see Figure 12.1). In summary, the payment function is:

cQ(qh) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if qleadG ≤ qh ≤ qlagG
cQ0 − cQ1(qh − qleadG) if qCG ≤ qh ≤ qleadG

cQ0 + cQ2(qh − qlagG) if qlagG ≤ qh ≤ qAG
cQ0 + cQ2(qAG − qlagG) + 0.5cQ3(qh − qAG)2 if qAG ≤ qh ≤ qBG

(12.17)
Table 12.3 resumes the parameters required for defining the generator reactive
power payment function.

qh
0

cQ0

cQ1
cQ2

cQ3qh

Mandatory

P
a
y
m

e
n
t

Availability payment

Payment for cost of losses

Payment for opportunity cost

Region I Region II Region III

qCG qleadG qlagG qAG qBG

Fig. 12.2 Generator reactive power payment function

2 In particular, qAG and qBG depend on the stator and rotor current limits whereas

qCG depends on the under-excitation limit.

298 12 OPF Devices

Table 12.3 Generator reactive power payment parameters

Variable Description Unit

CQ0 Availability cost e/h

CQ1 Under-excitation loss cost e/MVArh

CQ2 Over-excitation loss cost e/MVArh

CQ3 Cost of opportunity loss e/MVAr2h

Sn Power rating MVA

qleadG Minimum mandatory reactive power pu

qlagG Maximum mandatory reactive power pu

12.2.4 Generator Power Reserve

The operating reserve of a system is associated with the power that is not
directly used by loads but can be requested and generators have to provide
quickly. The power reserve has an associated offer:

cR(pR) = cR1pR (12.18)

and limits:
pmin
R ≤ pR ≤ pmax

R (12.19)

along with the inequalities that ensure that the sum of the power supply and
the power reserve is less than the total available power supply pmax

S and that
the total power reserve must be less than the total power demand:

pS + pR ≤ pmax
S (12.20)∑

j∈R
pR,j ≤

∑
i∈D

pD,i

where D and R are the set of demands and reserves, respectively. Reserve
parameters are shown in Table 12.4.

Table 12.4 Generator reserve parameters

Variable Description Unit

- -

CR1 Reserve offer price e/MWh

pmax
R Maximum power reserve pu

pmin
R Minimum power reserve pu

Sn Power rating MVA

12.2 Generator Constraints 299

12.2.5 Generator Power Ramp

Generation facilities have limits on their ability to move from one level of
production to another, and these limits are generally taken in account by
the so-called ramp constraints. Some typical generator ramp parameters are
depicted in Table 12.5.

The parameters used in the multi-period OPF problems are the up and
down ramp rates, i.e. rup and rdw. These quantities express the amount of
power that can be moved each minute up or down by the generator and are
associated to technical limits of the generation plants. Ramp constraints are
modelled as follows:

pS(t) − pS(t−Δt) ≤ pmax
S rupΔt, t ∈ T (12.21)

−pS(t) + pS(t−Δt) ≤ pmax
S rdwΔt, t ∈ T

where T is set of periods of the multi-period time horizon, Δt is the time
interval in which is divided the complete time horizon spanned by the multi-
period OPF.

Along with ramp limits (12.21), one should also define a maximum re-
serve ramp rate rmax

r , that multiplied by the time interval Δt, expresses the
maximum amount of power that can be dedicated to the reserve, thus:

pR(t) ≤ rmax
r Δt, t ∈ T (12.22)

If the generator output is low, also the operating reserve can decrease, and
the operating reserve loading point pRLP allows to reduce the power reserve
for low outputs:

pR(t) ≤ pS(t)
rmax
r Δt

pRLP
, t ∈ T (12.23)

Thus, the power reserve pR is the minimum value as obtained from (12.22)
and (12.23).

Table 12.5 Generator power ramp parameters

Variable Description Unit

DT Minimum # of period down h

pRLP Operating reserve loading point pu

rup Ramp rate up pu/h

rdw Ramp rate down pu/h

rmax
r Maximum reserve ramp rate pu/h

UT Minimum # of period up h

α0 # of periods up for t = 0 int

β0 # of periods down for t = 0 int

300 12 OPF Devices

Minimum on-line and off-line time constraints can be formulated as pro-
posed in [66] and in [65]. These are as follows:

Minimum up time:

UT0∑
t=1

(1 − uOL(t)) = 0 (12.24)

t+UT−1∑
τ=t

uOL(τ) ≥ UTuSU(t), ∀t = UT0 + 1, . . . , T − UT + 1

T∑
τ=t

(uOL(τ) − uSU(t)) ≥ 0, ∀t = T − UT + 2, . . . , T

Minimum down time:

DT0∑
t=1

uOL(t) = 0 (12.25)

t+DT−1∑
τ=t

(1 − ui(τ)) ≥ DTuSD(t), ∀t = DT0 + 1, . . . , T −DT + 1

T∑
τ=t

(1 − uOL(τ) − uSD(t)) ≥ 0, ∀t = T −DT + 2, . . . , T

where uOL(t) is a binary variable that is equal to 1 if the generator is on-line
in period t;3 uSU(t) is a binary variable that is equal to 1 if the generator is
started up at the beginning of period t; uSD(t) is a binary variable that is
equal to 1 if the generator is shut down at the beginning of period t; T is the
scheduled time horizon (e.g. 24 hours); and UT0 and DT0 are the number of
period units during which the generator must be on-line and off-line at the
beginning of the time horizon respectively, as follows:

UT0 = min{T, (UT − α0)uOL(0)} (12.26)
DT0 = min{T, (DT − β0)(1 − uOL(0))}

where α0 is the number of time periods that the generator has been on-line
at the beginning of the market horizon; and β0 is the number of time periods
that the generator has been off-line at the beginning of the market horizon.
Finally, the start-up and the shut-down status of the units are managed as
follows:
3 Observe that, if considering minimum up and down constraints, (12.21), (12.22)

and (12.23) have to be modified by multiplying the supply powers pS(t) and

pS(t−Δt) by the binary variable uOL(t) and uOL(t−Δt), respectively.

12.3 Load Constraints 301

uSU(t) − uSD(t) = uOL(t) − uOL(t−Δt), ∀t ∈ T (12.27)
uSU(t) + uSD(t) ≤ 1, ∀t ∈ T

Equations (12.27) are necessary to avoid simultaneous commitment and de-
commitment of a unit.

The constraints above make clear that multi-period OPF problems that
include generator ramp limits, start-up and shut-down constraints, mini-
mum number of up and down periods, etc., are generally modelled as MILP
problems. The interested reader can found detailed model in [65, 66, 212].
However, an use of generator ramp limits can be also associated to stability
constrained OPF problems. The interested reader can found an example of
such use of ramp limits in [356].

12.3 Load Constraints

This section discusses constraints related to loads. Subsection 12.3.1 describes
demand bid functions. Subsection 12.3.2 describes a model of load daily pro-
file. Finally, Subsection 12.3.3 describes load ramp limits.

12.3.1 Demand Bid

In some electricity markets, loads are elastic, i.e., participate to the auction
providing bid blocks in the same way suppliers provide offer blocks. The
basic parameters for elastic demand bids are shown in Table 12.6 and include
maximum and minimum power consumption as well as the coefficient of the
bid function. The bid function has the same structure as (12.12), as follows:

cD(pD) = cD0 + cD1pD + cD2p
2
D

The reactive power can be a function of the active power demand through a
constant power factor cosφD:

qD = pD

√
1 − cos2 φD
cosφD

= pD tanφD (12.28)

As for the constraints, one has:

pmin
D ≤ pD ≤ pmax

D (12.29)

Similarly to generator bid blocks, one can define a unit commitment discrete
variable uC that allows modelling non-dispatched demands with pmin

D �= 0:

uCp
min
D ≤ pD ≤ uCp

max
D (12.30)

302 12 OPF Devices

Finally, similarly to generator bids, one can define a tie breaking cost kTB .
The tie breaking involves a penalty cost kTB prorated by the amount sched-
uled over the maximum amount that could be scheduled for the load by
means of a quadratic function added to the objective function:

cTB = kTB
p2
D

pmax
D

(12.31)

If the load does not consume power, this cost is zero, whereas if pD is close
to the maximum power the tie breaking cost increases quadratically and
penalizes the load. Thus, two otherwise tied energy demands will be scheduled
to the point where their modified costs are identical, effectively achieving a
prorated result. Generally, the value of kTB is small (e.g., 0.0005).

Table 12.6 Demand bid parameters

Variable Description Unit

CD0 Fixed bid price e/h

CD1 Proportional bid price e/MWh

CD2 Quadratic bid price e/MW2h

kTB Tie breaking cost e/MWh

pmax
D Maximum power bid pu

pmin
D Minimum power bid pu

12.3.2 Demand Daily Profile

Multi-period market clearing procedures require the definition of a daily de-
mand profile. The simplest model is simply a sequence of demand values, one
per each period in which the time horizon is subdivided:

d = [d1, d2, . . . , dnT] (12.32)

For example, for a Δt = 1 h, nT = 24. Each element dt of the demand profile
array is a percentage of the load pL0 or, in case of elastic demands, of the
demand bid limits pmax

D and pmin
D . Thus, one has:

pL(t) =
dt
100

pL0, ∀t ∈ T (12.33)

or

pmax
D (t) =

dt
100

pmax
D , ∀t ∈ T (12.34)

pmin
D (t) =

dt
100

pmin
D , ∀t ∈ T

12.3 Load Constraints 303

where T = {1, 2, . . . , 24}. Figure 12.3 shows an example of daily demand
profile.

The daily demand profile can be defined depending on kind of the day, the
day of the week, and the week of the year (see Table 12.7). For example, the
coefficients dt can be computed as:

dt =
kα(t, α)

100
· kβ(β)

100
· kγ(γ)

100
100, t ∈ T (12.35)

where kα(t, α) (24 elements), kβ (scalar) and kγ (scalar) are in % and rep-
resent the kind of the day, the day of the week and the week of the year,
respectively, and the indexes α, β and γ are as follows:

α: index of the kind of the day in the range from 1 to 6, with the following
notation:

1: winter working day
2: winter weekend
3: summer working day
4: summer weekend
5: spring/fall working day
6: spring/fall weekend

β: day of the week in the range from 1 (Monday) to 7 (Sunday).
γ: week of the year in the range from 1 to 52.

Table 12.7 Demand profile parameters

Variable Description Unit

kα(t, 1) Daily profile for a winter working day %

kα(t, 2) Daily profile for a winter weekend %

kα(t, 3) Daily profile for a summer working day %

kα(t, 4) Daily profile for a summer weekend %

kα(t, 5) Daily profile for a spring/fall working day %

kα(t, 6) Daily profile for a spring/fall weekend %

kβ Profile for the days of the week %

kγ Profile for the weeks of the year %

α Kind of the day {1, . . . , 6}
β Day of the week {1, . . . , 7}
γ Week of the year {1, . . . , 52}

12.3.3 Demand Power Ramp

Although less commonly used than generation ramp rates, also demands can
undergo ramp constraints. These take in account the ability of demands to
move from one level of consumption to another. Demand ramp parameters

304 12 OPF Devices

Fig. 12.3 Example of daily demand profile

are basically the same as generator ones (see Table 12.5). For example, up
and down ramp constraints express the amount of demand power that can be
moved up or down during each period Δt and are associated with technical
limits in demand facilities, as follows:

pD(t) − pD(t−Δt) ≤ pmax
D rupΔt, t ∈ T (12.36)

−pD(t) + pD(t−Δt) ≤ pmax
D rdwΔt, t ∈ T

These equations are conceptually similar to (12.21) for the generation ramp
rate, and uses the same time interval Δt defined in the OPF time horizon.
Finally, if pertinent, minimum up and down demand periods can be modelled
by means of constraints similar to (12.24)-(12.27).

Chapter 13

Faults and Protections

This chapter describes symmetrical three phase faults (Section 13.1), break-
ers (Section 13.2) and relays (Section 13.3). The chapter also describes mea-
surement devices of non-standard quantities during time domain simulations,
namely the Phasor Measurement Unit (Section 13.4) and the bus frequency
measurement (Section 13.5).

13.1 Fault

As discussed in Chapter 8, transient stability analysis studies the effects of
short circuits on the dynamic of synchronous machines. From the modelling
viewpoint, three-phase faults can be considered as static shunt impedances
that are connected to a bus at a given time tf (fault time) and cleared at a
given time tc (clearing time). Equations are:

ph = −u(t)gfv2
h (13.1)

qh = −u(t)bfv2
h

u(t) =

{
1 if tf ≤ t ≤ tc

0 if t < tf or t > tc

where gf + jbf = 1/(rf + jxf). The main difference with shunt impedances
is the time dependence and the impedance value that, for faults, is typically
low. Table 13.1 defines the parameters required for three phase faults.

Script 13.1 Fault Interventions

The following script implements fault interventions. This method is called
by the numerical integration routine described in Script 8.2 of Chapter 8.
The method turns on or off the status of the fault impedance. To avoid
convergence issues when clearing the fault, voltage angles and magnitudes

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 305–312.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

306 13 Faults and Protections

Table 13.1 Fault parameters

Variable Description Unit

rf Fault resistance pu

tc Clearing time s

tf Fault time s

xf Fault reactance pu

are recovered to the pre-fault values. The statement system.DAE.factorize
= True forces the symbolic re-factorization of the system Jacobian matrix
for any topological change following a fault status switch. The set self. t
contains all fault and clearing times.

import system

def intervention(self, t):

if not t in self. t: return False

for item in range(self.n):

if t == self.tf[item]: # fault occurrence

print ’Apply fault at t = %s s’ % self.tf[item]

enable fault

self.u[item] = 1.0

system.DAE.factorize = True

store pre-fault bus angles

self. ang = matrix(system.DAE.y[system.Bus.a])

self. vol = matrix(system.DAE.y[system.Bus.v])

if t == self.tc[item]: # fault clearance

print ’Clear fault at t = %s s’ % self.tc[item]

disable fault

self.u[item] = 0.0

system.DAE.factorize = True

recover bus voltages

system.DAE.y[system.Bus.a] = matrix(self. ang)

system.DAE.y[system.Bus.v] = matrix(self. vol)

13.2 Breaker

In transient stability analysis, a breaker is a simple switch that contains
the information on when another device has to be put on- or off-line.
Electro-magnetic transients following breaker operations are quite fast with

13.3 Relay 307

respect to transient stability and can thus be neglected (see Figure 1.6 of
Chapter 1).

Since each device has its own status u, the breaker only has to set to 1
(on-line) or to 0 (off-line) the status of other devices at assigned times. In
case of switching transmission lines, each switch also requires rebuilding the
admittance matrix as well as checking the network connectivity. Scripts 11.1
and 11.5 of Chapter 11 provide further details on the admittance matrix and
the assessment of network connectivity, respectively.

13.3 Relay

Relays are devices that, based on certain measures, decide and coordinate
the times at which breaker actions occur. The decision logic depends on the
relay type. There exist over-current relays, over- and under-voltage relays,
distance relays, etc. The decision logic is translated into code by if-then-else
logic depending on the relay type. For example, for an instantaneous over-
current relay, one has:

if i(t) ≥ isp then top = t (13.2)

where isp is the relay current set point and top is the operating time at which
the relay sends to the breaker the switching signal. If the controlled quantity
is measured remotely, a measurement delay tm can be required:

if i(t+ tm) ≥ isp then ta = t+ tm (13.3)

A lag block can also do the job:

i̇m = Km(i− im)/Tm (13.4)
if im(t) ≥ isp then ta = t

where im is the measured current that is delayed with respect to the real
current i. Instantaneous relays are affected by a delay tr which is the time
required by the breaker to actually switch after receiving the signal by the
relay. Thus the breaker time intervention can be estimated as:

tb = ta + tr (13.5)

Inverse definite time lag relays have a more interesting model then instanta-
neous ones. The inverse time function can be defined by a series of (isp, top)
pairs. Another possibility is to approximate the operating curve of the relay
by means of a function, for example a logarithm [14]:

top =

{
3.0/ log(i), if 1.1 ≤ i ≤ 20 pu
∞, if i < 1.1

(13.6)

308 13 Faults and Protections

Fig. 13.1 Relay inverse time characteristic curve

Figure 13.1 illustrates (13.6).
For electro-mechanical relays, the dynamic of the disc travel d can be

modelled as:

ḋ =

⎧⎪⎨
⎪⎩

log(i/spb)/(3stm), if i ≥ 1.1spb

−1/(Trstm), if i < 1.1spb

0, if d = 0 and ḋ < 0
(13.7)

where spb and stm are the plug bridge and the time multiplier settings, re-
spectively, and Tr is the time required by the disc to reset due to spring
action. In (13.7), it is assumed that the initial d(0) after a complete resetting
is zero. Then the operating time top is defined as:

d(top) = 1 pu (13.8)

In numerical integration, the following formula can be used for approximating
(13.8) [14]:

top = t− d(t) − 1
d(t) − d(t−Δt)

Δt, for d(t) ≥ 1 and d(t−Δt) ≤ 1 (13.9)

where Δt is the step length of the numerical integration. Finally, the breaker
intervention time is defined by (13.5). Table 13.2 defines the parameters re-
quired for an electro-mechanical inverse time over-current relay.

13.4 Phasor Measurement Unit 309

Table 13.2 Over-current relay parameters

Variable Description Unit

Km Measurement lag block gain pu/pu

isp Current set point s

spb Plug bridge setting -

stm Time multiplier setting -

Tm Measurement lag block time constant s

tr Breaker delay s

Tr Spring reset time s

13.4 Phasor Measurement Unit

A Phasor Measurement Unit (PMU) is a device able to measure the mag-
nitude and the angle of a phasor. Basic theory, definitions and applications
about PMUs can be found in [349]. Brief outlines are provided below.

Let us define a sinusoidal quantity:

x(t) = XM cos(ωt+ φ) (13.10)

its phasor representation is:

X̄ =
XM√

2
ejφ (13.11)

The phasor is defined for a pure constant sinusoid, but it can also be used for
transients, assuming that the phasor is the fundamental frequency component
of a waveform over a finite interval (observation window).

PMU devices work on sampled measures (see Figure 13.2). In the case of
x(t), we can define the samples signal xk at t = kτs, where τs is the sampling
interval. Using a Discrete Fourier Transform (DFT), the phasor X̄ is given
by:

X̄ =
1√
2

2
n

(Xc − jXs) (13.12)

where n is the number of samples in one period of the nominal fundamental
frequency fn, and:

Xc =
n∑
k=1

xk cos kθ (13.13)

Xs =
n∑
k=1

xk sin kθ (13.14)

and θ is the sampling angle associated with the sampling interval τs, as
follows:

310 13 Faults and Protections

θ =
2π
n

= 2πfnτ (13.15)

A typical sampling rate used in relaying and measurements functions is 12
times the power system frequency (e.g., 600 Hz for a 50 Hz system or 720 Hz
for a 60 Hz system).

Fig. 13.2 Data sampling windows for phasor measurements

Equation (13.12) represents a non-recursive DFT calculation. A recursive
calculation is an efficient method for time varying phasors. Let X̄r be the
phasor corresponding to the data set x{k = r, r + 1, . . . , n+ r − 1}, and let
a new data sample be obtained to produce a new data set x{k = r + 1, r +
2, . . . , n + r}. The recursive phasor corresponding to the new data window
X̄r+1 is as follows:

X̄r+1 = X̄r +
1√
2

2
n

(xn+r − xr)e−jrθ (13.16)

A recursive calculation through a moving window data sample is faster than
a non-recursive one, needs only two sample data at each calculation (xn+r
and xr) and provides a stationary phasor.

If the quantity x(t) undergoes a transient, the moving window detects
the amplitude and angle variations with a delay which depends on the time
sample rate τs. If the system frequency fn undergoes a variation Δf , at the

13.5 Bus Frequency Estimation 311

rth time sampling, the positive sequence of the phasor undergoes the following
change:

X̄r(fn +Δf) = X̄e−j(n−1)πΔfΔt sin(nΔfΔt)
n sin(ΔfΔt)

ej2πrΔfΔt (13.17)

Thus, the rate of change of the phasor angle is as follows:

dφ

dt
= 2πΔf (13.18)

PMU devices can be used for measuring both phasor magnitudes and phase
angles. The detailed functioning of these device is rather complex. Further-
more, different (and not always clearly documented) technologies are used by
different manufacturers. However, for transient analysis, the measurement
can be approximated as a simple low-pass filter, as follows:

v̇m = (vh − vm)/Tv (13.19)
θ̇m = (θh − θm)/Tθ (13.20)

where vm and θm are the measured voltage magnitude and phase, respec-
tively, and Tv and Tθ are the filter time constants.

13.5 Bus Frequency Estimation

The estimation of bus frequency deviation described in this section is based
on the bus voltage phase angle time derivative. The frequency estimation
is obtained by means of a high-pass and a low-pass filter, as depicted in
Figure 13.3. The high-pass filter approximates the derivative of the input
signal. Differential equations are as follows:

ẋθ =
1
Tf

(1
2πfn

1
Tf

(θ − θ0) − xθ

)
(13.21)

ω̇ = (Δω + ωs − ω)/Tω

where θ0 is the initial phase angle (e.g., the phase angle obtained by the
power flow analysis), fn is the nominal frequency in Hz, ωs is the synchronous
frequency in pu (e.g., ωs = 1 pu), Tf and Tω are the time constants of the
high-pass and of the low-pass filters, respectively, and Δω is defined as:

Δω = −xθ +
1

2πfn
1
Tf

(θ − θ0) (13.22)

312 13 Faults and Protections

Δω ω

ωs

θh

θ0

11 s
+

+

+

−
2πfn 1 + sTf 1 + sTω

Fig. 13.3 Bus frequency measurement filter

Fig. 13.4 Comparison of rotor speed and bus frequency measurements for the

IEEE 14-bus system

Example 13.1 Bus Frequency Measurements for the IEEE
14-Bus System

Figure 13.4 shows the rotor machine speed as well as the bus 1 frequency
computed as described above for the IEEE 14-bus system. The disturbance
consists in line 2-4 outage for t = 1 s. In the simulation, Tf = 0.1 s is used.
The low-pass filter of the bus measurement allows following the trend of the
rotor speed but removes swing oscillations. As expected, the smaller Tω, the
more accurate the measurement output.

Chapter 14

Loads

This chapter describes static and dynamic nonlinear loads. Since traditional
loads used in power flow and transient analysis are constant PQ and shunt ad-
mittances, the loads described in this chapter are also called non-conforming
loads. These are the voltage dependent load (Section 14.1), the ZIP load
(Section 14.2), the frequency dependent load (Section 14.3), the exponential re-
covery load (Section 14.5), the thermostatically controlled load (Section 14.6),
the Jimma’s load (Section 14.7), and the mixed load (Section 14.8).

Non-conforming loads are generally initialized after the power flow anal-
ysis. However, there is no particular difficulty in including non-conforming
loads in power flow equations. This possibility is taken into account in the
following formulation of non-conforming loads. Moreover, according to the
notation given in Chapter 9, load powers ph and qh are preceded by a minus
because these powers are absorbed from the bus.

14.1 Voltage Dependent Load

Voltage Dependent Loads (VDLs) are loads whose powers are monomial func-
tions of the bus voltage magnitude, as follows:

− ph = p0(v/v0)αp (14.1)
−qh = q0(v/v0)αq

where v0 is the initial voltage at the load bus as obtained by the power flow
solution. Other parameters are defined in Table 14.1. Equations (14.1) can
be directly included in the formulation of power flow equations. However,
VDLs are generally initialized after the power flow analysis, and p0 and q0
are computed based on constant PQ load powers pL0 and qL0:

p0 =
kp
100

pL0 (14.2)

q0 =
kq
100

qL0

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 313–324.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

314 14 Loads

Clearly, in this case, a PQ load must be connected to the same bus as the
VDL. Equations (14.1) are a simplification of the nonlinear general exponen-
tial voltage frequency dependent load described in Section 14.3.

Table 14.1 Voltage dependent load parameters

Variable Description Unit

kp or p0 Active power rating % or pu

kq or q0 Reactive power rating % or pu

αp Active power exponent -

αq Reactive power exponent -

In [230], it was recognized that the load characteristic is fundamental to
define the PV curves of the system. The standard CPF analysis considers
only PQ loads. This assumption is justified by the presence of ULTCs that
fix the voltage and thus the power consumption at load buses. However, if
the load voltage is not regulated, or if ULTCs saturate, then the load voltage
dependency has to be considered. Figure 14.1 compares the voltage dependent
load curves with the network curves. Figure 14.1 only shows the active power,
but similar curves can be drawn for the reactive power. Depending on the
value of αp, the load characteristics may or may not intersect the network
PV curves.

Fig. 14.1 Voltage dependent load characteristics versus network PV curves

14.2 ZIP Load 315

Example 14.1 Network PV Curves Considering Load
Characteristics

The standard CPF analysis provides an information about the existence of
power flow solutions if considering constant PQ load models. Figure 14.2
shows the effect of load characteristics for the determination of PV curves
for the IEEE 14-bus system. The higher the exponents αp and αq, the higher
the maximum loading level.

Fig. 14.2 PV curves using difference load characteristics for the IEEE 14-bus

system

14.2 ZIP Load

Polynomial or ZIP loads are loads whose powers are a quadratic expression
of the bus voltage:

− ph = pz0

(vh
v0

)2
+ pi0

vh
v0

+ pp0 (14.3)

−qh = qz0

(vh
v0

)2
+ qi0

vh
v0

+ qp0

where v0 is the initial voltage at the load bus as obtained by the power
flow solution. Other parameters are defined in Table 14.2. If the ZIP load

316 14 Loads

is initialized after the power flow analysis, the parameters in (14.3) can be
defined based on the PQ load powers pL0 and qL0:

pz0 =
kpz
100

pL0

v2
0
, pi0 =

kpi
100

pL0

v0
, pp0 =

kpp
100

pL0; (14.4)

qz0 =
kqz
100

qL0

v2
0
, qi0 =

kqi
100

qL0

v0
, qp0 =

kqp
100

qL0.

In this case, a PQ load must be connected at the ZIP load bus.

Table 14.2 ZIP load parameters

Variable Description Unit

kpi or pi0 Active current % or pu

kpp or pp0 Active power % or pu

kpz or pz0 Conductance % or pu

kqi or qi0 Reactive current % or pu

kqp or qp0 Reactive power % or pu

kqz or qz0 Susceptance % or pu

14.3 Frequency Dependent Load

A generalized exponential voltage frequency dependent load is modeled by
the following set of DAE [130]:

ẋ = −Δω

Tf
(14.5)

0 = x+
1

2πfn
1
Tf

(θ − θ0) −Δω

−ph = p0

(v
v0

)αp

(1 +Δω)βp

−qh = q0

(v
v0

)αq

(1 +Δω)βq

where the frequency deviation Δω is approximated by filtering and differen-
tiating the bus voltage phase angle θ (see Figure 14.3). The parameters p0
and q0 are the initial active and reactive powers, respectively, computed after
the power flow solution and based on the PQ load active and reactive powers
pL0 and qL0 as defined in (14.2), and v0 and θ0 are the voltage magnitude
and phase angle determined by the power flow analysis.

Table 14.3 defines the parameters of the frequency dependent load whereas
Table 14.4 depicts some typical exponent values for characteristic loads [25].

14.4 Voltage Dependent Load with Dynamic Tap Changer 317

Δωθh

θ0

1 s+

−
2πfn 1 + sTf

Fig. 14.3 Measure of frequency deviation

Table 14.3 Frequency dependent load parameters

Variable Description Unit

kp Active power percentage %

kq Reactive power percentage %

Tf Filter time constant s

αp Active power voltage exponent -

αq Reactive power voltage exponent -

βp Active power frequency exponent -

βq Reactive power frequency exponent -

Table 14.4 Typical load exponents [25]

Load αp αq βp βq

Filament lamp 1.6 0 0 0

Fluorescent lamp 1.2 3.0 -0.1 2.8

Heater 2.0 0 0 0

Induction motor (half load) 0.2 1.6 1.5 -0.3

Induction motor (full load) 0.1 0.6 2.8 1.8

Reduction furnace 1.9 2.1 -0.5 0

Aluminum plant 1.8 2.2 -0.3 0.6

14.4 Voltage Dependent Load with Dynamic Tap
Changer

Figure 14.4 depicts a simplified model of voltage dependent load with embed-
ded dynamic tap changer.1 The transformer model consists of an ideal circuit
with tap ratio m, hence the voltage on the secondary winding is vs = vh/m.
The voltage control is obtained by means of a quasi-integral anti-windup
regulator. All constant parameters are defined in Table 14.5.

1 A more detailed model can be obtained using an ULTC (see Subsection 11.2.2

of Chapter 11) feeding a voltage dependent load (see Section 14.1).

318 14 Loads

1

h

ph = p0v
αp
s

qh = q0v
αq
s

Kd +Kis

vs

+

−

vref

m : 1vh∠θh

mmax

mmin

Fig. 14.4 Voltage dependent load with dynamic tap changer

Table 14.5 Load with dynamic tap changer parameters

Variable Description Unit

Kd Integral deviation 1/s

Ki Integral gain 1/s/pu

mmin Maximum tap ratio pu/pu

mmax Minimum tap ratio pu/pu

vref Reference voltage pu

p0 Load active power pu

q0 Load reactive power pu

αp Voltage exponent for the active power -

αq Voltage exponent for the reactive power -

The algebraic equations of the device are:

− ph = p0

(
vh
m

)αp

(14.6)

−qh = q0

(
vh
m

)αq

and the differential equation is:

ṁ = −Kdm+Ki

(
vh
m

− vref
)

(14.7)

The reference voltage sign is negative due to the characteristic of the stable
equilibrium point (see Example 11.3).

If voltage dependent loads with embedded dynamic tap changer are ini-
tialized after the power flow analysis, the powers p0 and q0 are computed
based on the PQ load powers as in (14.2), and the state variable m and the
voltage reference vref are initialized as follows:

14.4 Voltage Dependent Load with Dynamic Tap Changer 319

m0 = v0 (14.8)

vref = 1 +
Kd

Ki
v0

where v0 is the bus voltage obtained by the power flow solution.

Example 14.2 Effect of Tap Changer Dynamics on Transient
Analysis for the IEEE 14-Bus System

Figure 14.5 compares the results of the time domain integration for the IEEE
14-bus system using constant PQ loads, constant impedance loads and voltage
dependent loads with embedded dynamic tap changer. Tap changer depen-
dent loads are initialized after the power flow solution and have the following
data: αp = αq = 2, Kd = 0 and Ki = 0.1 1/s/pu. When considering tap-
changer embedded loads, the response of the system in the first seconds after
the disturbance is similar to that of the system with constant impedance load
models (see also Example 10.2 of Chapter 10). This is due to the slow re-
sponse of tap changers. After some seconds, tap changers are able to regulate
the voltage magnitude and the bus voltage trajectories approximate those of
the system with constant PQ load models.

Fig. 14.5 Effect of tap changer dynamics in transient analysis for the IEEE 14-bus

system

320 14 Loads

14.5 Exponential Recovery Load

This section describes an exponential recovery load based on the model pro-
posed in [128, 155]. Equations are:

ẋp = −xp/Tp + ps − pt (14.9)
−ph = xp/Tp + pt

where ps and pt are the static and transient real power absorptions, which
depend on the load voltage:

ps = p0(v/v0)αs (14.10)
pt = p0(v/v0)αt

Similar equations hold for the reactive power:

ẋq = −xq/Tq + qs − qt (14.11)
−qh = xq/Tq + qt

and:

qs = q0(v/v0)βs (14.12)
qt = q0(v/v0)βt

The power flow solution and the PQ load data are used for determining the
values of p0, q0 and v0. In particular, p0 and q0 are determined as in (14.2).
A PQ load is required to initialize the exponential recovery load bus. All
parameters are defined in Table 14.6.

Table 14.6 Exponential recovery load parameters

Variable Description Unit

kp Active power percentage %

kq Reactive power percentage %

Tp Active power time constant s

Tq Reactive power time constant s

αs Static active power exponent -

αt Dynamic active power exponent -

βs Static reactive power exponent -

βt Dynamic reactive power exponent -

14.6 Thermostatically Controlled Load 321

14.6 Thermostatically Controlled Load

This section describes a dynamic load with temperature control based on the
model given in [130]. This device is initialized after the power flow solution
and needs a PQ load connected at the same bus to properly initialize the state
variables. The control diagram is depicted in Figure 14.6 that represents the
following equations:

Θ̇ = (Θa −Θ +K1p)/T1 (14.13)
ẋ = Ki(Θref −Θ)/Ti
g = Kp(Θref −Θ) + x

−ph = p = gv2
h

qh = 0

where the state variable x undergoes an anti-windup limiter and the algebraic
variable G undergoes a windup limiter.

Θref

Θa v2
h

Θ

1

0

0

g

x

p

gmax

gmaxKp

K1

Ki

+

+

+

+

+

−

Tis

T1s+ 1

Fig. 14.6 Thermostatically controlled load

The power flow solution provides the initial voltage v0 and active power
p0 that are used for determining the gain K1 and the maximum conductance
gmax, as follows:

K1 =
Θref −Θa

p0
(14.14)

gmax = KLg0

322 14 Loads

where g0 = p0/v0
2 and KL (KL > 1) is the ceiling conductance output ratio.

Finally, the initial load temperature is Θ0 = Θref and Table 14.7 defines all
constant parameters required by this device.

Table 14.7 Thermostatically controlled load parameters

Variable Description Unit

Ki Gain of integral controller pu/K

KL Ceiling conductance output pu/pu

kp Percentage of active power %

Kp Gain of proportional controller pu/K

T1 Time constant of thermal load s

Ti Time constant of integral controller s

Θa Ambient temperature K

Θref Reference temperature K

14.7 Jimma’s Load

This section describes a load similar to a ZIP model except for the dependence
of the reactive power on the time derivative of the bus voltage [152, 341].
This device is not included in the power flow analysis and thus requires a PQ
load connected at the same bus to be properly initialized. Since in transient
stability analysis bus voltages are not state variables, the time derivative is
defined using an auxiliary state variable xv and a high-pass filter similar to
the bus frequency measurement device described in Section 13.5 of Chapter
13 (see Figure 14.7). The differential equation is:

ẋv = (−vh/Tf − xv)/Tf (14.15)
dvh
dt

= xv + vh/Tf

and the power injections are defined as:

− ph = pz0

(
vh
v0

)2

+ pi0

(
vh
v0

)
+ pp0 (14.16)

−qh = qz0

(
vh
v0

)2

+ qi0

(
vh
v0

)
+ qp0 +Kv

dvh
dt

(14.17)

where the load parameters pz0, pi0, pp0, qz0, qi0 and qp0 are computed as in
(14.4). The power flow analysis provides the initial voltage v0 that is needed
for computing the Jimma’s load power injections. Table 14.8 defines the pa-
rameters of this device.

14.8 Mixed Load 323

dvh/dtvh s

1 + sTf

Fig. 14.7 Jimma’s load

Table 14.8 Jimma’s load parameters

Variable Description Unit

kpi Percentage of active power ∝ vh %

kpp Percentage of constant active power %

kpz Percentage of active power ∝ v2
h %

kqi Percentage of reactive power ∝ vh %

kqp Percentage of constant reactive power %

kqz Percentage of reactive power ∝ v2
h %

Kv Coefficient of the voltage time derivative s pu/pu

Tf Time constant of the high-pass filter s

14.8 Mixed Load

This section describes a load similar to a frequency dependent load. In addi-
tion, the active and the reactive powers depend on the time derivative of the
bus voltage. This device is not included in the power flow analysis and thus
requires a PQ load connected at the same bus to be properly initialized. Since
in transient stability analysis bus voltage phasors are not state variables, the
time derivatives of the voltage magnitude and angle are defined through two
auxiliary state variables xv and xθ and high-pass filters similar to the bus
frequency measurement device described in Section 13.5 of Chapter 13 (see
Figures 14.7 and 14.3). The differential equations are:

ẋv = (−vh/Tfv − xv)/Tfv (14.18)

⇒ dvh
dt

= xv + vh/Tfv

ẋθ = − 1
Tft

(
1

2πfn
1
Tft

(θ − θ0) + xθ

)
(14.19)

⇒ Δω = xθ +
1

2πfn
1
Tft

(θ − θ0)

The bus power injections ph and qh are defined as follows:

− ph = KpfΔω + p0

[(
vh
v0

)αp

+ Tpv
dvh
dt

]
(14.20)

−qh = KqfΔω + q0

[(
vh
v0

)αq

+ Tqv
dvh
dt

]

324 14 Loads

where p0 and q0 are computed based on the PQ load active and reactive
powers pL0 and qL0 as defined in (14.2). The power flow solution provides
the initial voltage v0 that is needed for computing the power injections. Table
14.9 defines all constant parameters of this devices.

Table 14.9 Mixed load parameters

Variable Description Unit

kp Percentage of active power %

Kpf Frequency coefficient for the active power s pu/pu

kq Percentage of reactive power %

Kqf Frequency coefficient for the reactive power s pu/pu

Tft Time constant of voltage angle filter s

Tfv Time constant of voltage magnitude filter s

Tpv Time constant of dV/dt for the active power s

Tqv Time constant of dV/dt for the reactive power s

αp Voltage exponent for the active power -

αq Voltage exponent for the reactive power -

Chapter 15

Alternate-Current Machines

This chapter describes the two most important alternate-current machines
used in power systems, namely the synchronous machine and the induction
machine. Section 15.1 provides a detailed taxonomy of synchronous machine
models, as well as a discussion about saturation models, the center of inertia
and the sub-synchronous resonance phenomenon. Section 15.2 describes var-
ious induction machine models and provides an example about the induction
motor start-up transient.

15.1 Synchronous Machine

Virtually the totality of power system books agree on the Park’s “two-reaction
theory” of synchronous machine model [234].1 Thus the basic assumptions
about the synchronous machine model are well-known and are not repeated
here. Unfortunately, there is not so much agreement on the transfer functions
that link stator fluxes with stator currents and the field voltage. Depending
on the dynamic order and the detail of these transfer functions, the resulting
set of machine DAE changes. This section provides a modular approach to
set up a huge variety of synchronous machine models.

The machine scheme considered in this section is shown in Figure 15.1. This
machine has a salient-pole rotor with one field (excitation) winding ff ′ and a
three-phase system of stator windings, namely aa ′, bb ′ and cc′. The effect of
induced currents in the rotor core is modelled as a lumped winding q1q ′

1 in
quadrature with the field winding. Finally, damping effects are modelled as
two fictitious lumped windings, d1d ′

1 and q2q ′
2, respectively, in the rotor.

As it is well known, the Park’s transformation consists in projecting all
quantities onto three axes, namely the direct, the quadrature and the ho-
mopolar axes, d , q and 0, respectively. Since the direct and the quadrature
axes are rotating at the synchronous speed, the Park transformation allows

1 It is interesting to note that in [330] and in Russian publications in general, the

Park’s model is called Park-Gorev’s model.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 325–353.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

326 15 Alternate-Current Machines

δ

ω

q

d

ar

f

f ′

d1

d ′
1

a

a ′

b

b′

c

c′

q1

q2

q ′
1

q ′
2

dc field

Damper

windings

Effects of induced currents

in the rotor core

Fig. 15.1 Synchronous machine scheme

reducing machine equations to static phasors if the machine rotor is also ro-
tating at the synchronous speed. Less evident is the advantage of the Park’s
transformation in case the rotor is not rotating at the synchronous speed.
Nevertheless, the Park’s model is a standard de facto and is so widely used
that machine data are generally available according to the axes of the Park’s
transformation.

Following subsections are organized as follows. The complete set of ma-
chine parameters are defined in Subsection 15.1.1. Then the machine vari-
able initialization procedure is outlined in Subsection 15.1.2. The remainder
presents the machine equations. The material is organized taking into account
implementation issues. Since some equations are common to all models, it is
convenient to create a base class that includes such common equations and
then to import the base class into specific machine models. No homopolar
equations are given since the system and the machine are considered perfectly
balanced.

15.1.1 Synchronous Machine Parameters

Table 15.1 defines the complete set of synchronous machine parameters. Fac-
tors αp and αq are used in case of multiple generators connected to the same
bus and indicate the fraction of active and reactive powers that each machine
provides with respect to the total power produced by the static generator

15.1 Synchronous Machine 327

defined in power flow analysis. The sum of these factors for the machines
connected to the same bus has to be 1.

Table 15.1 Synchronous machine parameters

Variable Description Unit

D Damping coefficient pu

H Inertia constant MWs/MVA

ra Armature resistance pu

x� Leakage reactance pu

xd d-axis synchronous reactance pu

x′
d d-axis transient reactance pu

x′′
d d-axis sub-transient reactance pu

xq q-axis synchronous reactance pu

x′
q q-axis transient reactance pu

x′′
q q-axis sub-transient reactance pu

TAA d-axis additional leakage time constant s

T ′
d0 d-axis open circuit transient time constant s

T ′′
d0 d-axis open circuit sub-transient time constant s

T ′
q0 q-axis open circuit transient time constant s

T ′′
q0 q-axis open circuit sub-transient time constant s

αp Active power ratio at node [0,1]

αq Reactive power ratio at node [0,1]

15.1.2 Initialization

Dynamic models of synchronous machines are not included in standard power
flow analysis. Thus a PQ, PV or a slack generator are required to impose the
desired voltage and active power at the synchronous machine bus. Once the
power flow solution is determined, v0, θ0, p0 and q0 at the generator bus are
used for initializing the machine state variables, the field voltage vf and the
mechanical torque τm. Example 9.2 of Chapter 7 describes the initialization
of the two-axis synchronous machine model. The initialization procedure for
other machine models is basically the same. The only differences are:

1. Higher order machine models require the initialization of state variables
associated with magnetic fluxes and or sub-transient emfs. These can be
obtained directly by the algebraic equations (15.11) and any set of mag-
netic equations (assumed steady-state) provided in Subsection 15.1.5.

2. If more than one machine is connected to the same bus, the total injected
powers p0 and q0 obtained by the power flow analysis have to be multiplied
by the factors αp and αq, respectively.

3. In case of the classical machine model (i.e., emf behind the transient re-
actance), equation (9.11) has to be substituted for:

328 15 Alternate-Current Machines

δ0 = ∠(v̄h + (ra + jx′d)̄ih) (15.1)

In fact, for the classical model, xq is not defined.

15.1.3 Common Equations

The equations common to all machine models are the interface with the
network and mechanical differential equations. The power injection ph and
qh at bus h are:

ph = vdid + vqiq (15.2)
qh = vqid − vdiq (15.3)

whereas the link between the network quasi-static voltage phasor vh∠θh and
machine voltages vd and vq are:

0 = vh sin(δ − θh) − vd (15.4)
0 = vh cos(δ − θh) − vq

where δ is the machine rotor angle. Mechanical differential equations are:

δ̇ = Ωb(ω − ωs) (15.5)

ω̇ =
1

2H
(τm − τe −D(ω − ωs))

where the electro-magnetic torque τe is:

τe = ψdiq − ψqid (15.6)

where Ωb is the base synchronous frequency in rad/s (314.16 rad/s at 50
Hz) and ωs is the reference frequency in pu. If the reference frequency is
the synchronous one, then ωs = 1 pu. Some references define the machine
starting time as M = 2H (or TM = 2H) and use this quantity in (15.5)
instead of the inertia constant H .

Finally, one can define auxiliary equations for the input mechanical torque
and field voltage. For the mechanical torque:

0 = τm0 − τm (15.7)

and for the field voltage:
0 = vf0 − vf (15.8)

where τm0 and vf0 are the initial values of the mechanical torque and the
field voltage, respectively. As discussed in Example 9.1 of Chapter 9, τm and
vf are auxiliary algebraic variables that allows easily interfacing the machine
model with other devices such as turbine governors and automatic voltage
regulators.

15.1 Synchronous Machine 329

15.1.4 Stator Electrical Equations

Stator electrical equations link the voltages to currents and magnetic fluxes,
as follows:

ψ̇d = Ωb(raid + ωψq + vd) (15.9)

ψ̇q = Ωb(raiq − ωψd + vq)

While required for electro-magnetic transients, flux dynamics are relatively
fast for transient stability studies. In fact, the inverse of the base frequency
1/Ωb ≈ 10−3s for common power systems working at 50 or 60 Hz. Thus, a
common simplification is to assume ψ̇d ≈ ψ̇q ≈ 0, which leads to:

0 = raid + ωψq + vd (15.10)
0 = raiq − ωψd + vq

Furthermore, considering that rotor speed deviations are small, one can as-
sume ω ≈ 1 in (15.10). Hence:

0 = raid + ψq + vd (15.11)
0 = raiq − ψd + vq

The three models above, namely (15.9), (15.10) and (15.11), can be used
indifferently. Thus, it is convenient to create a class for each electrical equa-
tion model and then to form the complete machine model by importing the
required electrical equation class. Clearly, using model (15.9) makes sense
only in very detailed analyses that require a precise formulation of electro-
magnetic dynamics. The most common choice adopted by most power system
books is (15.11), which also allows removing the variables ψd and ψq from
the machine model.

15.1.5 Magnetic Equations

As discussed in the introduction of this section, the transfer functions that
link stator fluxes with stator currents and the field voltage provide a certain
degree of arbitrariness in the synchronous machine model. Most complete
models introduce one state variable per rotor winding, real or equivalent.
Thus for the machine depicted in Figure 15.1, four state variables and their
associated differential equations are required for most detailed models. Fi-
nally, two algebraic equations allow defining stator fluxes as functions of the
stator currents, the field voltage and the rotor state variables. Simplified
models consist in downgrading one or more rotor state variables to algebraic
ones.

The dynamic response of damper windings is faster than that of the dc
field winding and of the rotor-core induced currents. The standard notation

330 15 Alternate-Current Machines

defines sub-transient (indicated by a double superscript ′′) the fast dynamics
of damper windings and transient (indicated by a single superscript ′) the
dynamics of the dc field winding and of the rotor-core induced currents. Fi-
nally, steady-state quantities are said synchronous and are indicated without
superscripts.

Sauer-Pai’s Model

The Sauer-Pai’s model is as follows [269]:

ė′q = (−e′q − (xd − x′d)(id + γd2ψ̇
′′
d) + vf)/T ′

d0 (15.12)

ė′d = (−e′d + (xq − x′q)(iq + γq2ψ̇
′′
q))/T ′

q0

ψ̇′′
d = (−ψ′′

d + e′q − (x′d − x)id)/T ′′
d0

ψ̇′′
q = (−ψ′′

q − e′d − (x′q − x)iq)/T ′′
q0

or using the standard ODE notation:

ė′q = (−e′q − (xd − x′d)(id − γd2ψ
′′
d − (1 − γd1)id + γd2e

′
q) + vf)/T ′

d0

ė′d = (−e′d + (xq − x′q)(iq − γq2ψ
′′
q − (1 − γq1)iq − γd2e

′
d))/T

′
q0 (15.13)

ψ̇′′
d = (−ψ′′

d + e′q − (x′d − x)id)/T ′′
d0

ψ̇′′
q = (−ψ′′

q − e′d − (x′q − x)iq)/T ′′
q0

where:

γd1 =
x′′d − x
x′d − x

(15.14)

γq1 =
x′′q − x

x′q − x

γd2 =
x′d − x′′d

(x′d − x)2
=

1 − γd1
x′d − x

γq2 =
x′q − x′′q

(x′q − x)2
=

1 − γq1
x′q − x

Finally, the following algebraic equations complete the model:

0 = ψd + x′′did − γd1e
′
q − (1 − γd1)ψ′′

d (15.15)
0 = ψq + x′′q iq + γq1e

′
d − (1 − γq1)ψ′′

q

Marconato’s Model

The complete d- and q-axis diagrams of the Marconato’s model are depicted
in Figure 15.2. The differential equations are [184]:

15.1 Synchronous Machine 331

ė′q = (−e′q − (xd − x′d − γd)id + (1 − TAA
T ′
d0

)vf)/T ′
d0 (15.16)

ė′d = (−e′d + (xq − x′q − γq)iq)/T ′
q0

ė′′q = (−e′′q + e′q − (x′d − x′′d + γd)id +
TAA
T ′
d0
vf)/T ′′

d0

ė′′d = (−e′′d + e′d + (x′q − x′′q + γq)iq)/T ′′
q0

where coefficients γd and γq are defined as follows:

γd =
T ′′
d0

T ′
d0

x′′d
x′d

(xd − x′d) (15.17)

γq =
T ′′
q0

T ′
q0

x′′q
x′q

(xq − x′q)

The following algebraic equations complete the model:

0 = ψd + x′′did − e′′q (15.18)
0 = ψq + x′′q iq + e′′d

Anderson-Fouad’s Model

The Anderson-Fouad’s model, which, apart from [10], is also reported by the
majority of books on power systems, e.g., [14] and [179], is as follows:

ė′q = (−e′q − (xd − x′d)id + vf)/T ′
d0 (15.19)

ė′d = (−e′d + (xq − x′q)iq)/T
′
q0

ė′′q = (−e′′q + e′q − (x′d − x′′d)id)/T
′′
d0

ė′′d = (−e′′d + e′d + (x′q − x′′q)iq)/T
′′
q0

and (15.15). The Anderson-Fouad’s model can be considered a simplifica-
tion of the Sauer-Pai’s model. In fact, the Sauer-Pai’s model leads to the
Anderson-Fouad’s one by defining:

e′′q = ψ′′
d , e′′d = −ψ′′

q (15.20)

and assuming:

• γd1 ≈ γq1 ≈ 0.
• γd2ψ̇

′′
d ≈ 0 in the differential equations of ė′q.

• γq2ψ̇
′′
q ≈ 0 in the differential equations of ė′d.

The Anderson-Fouad’s model can be also derived from the Marconato’s model
by assuming:

γd ≈ γq ≈ TAA ≈ 0 (15.21)

332 15 Alternate-Current Machines

+ +

+

+
+

+

+

+

+
+

+

+

− −

−

− −

−

−

11

1 1

1−

−ψq

ψd

iq

id

e′q

e′d

e′′q

e′′d

vf

(xd − x′
d) − γd (x′

d − x′′
d) + γd x′′

d

(xq − x′
q) − γq (x′

q − x′′
q) + γq x′′

q

d-axis

q-axis

TAA TAA

T ′
d0 T ′

d0

sT ′
d0 sT ′′

d0

sT ′
q0 sT ′′

q0

Fig. 15.2 Block diagram of stator fluxes for the Marconato’s model of the syn-

chronous machine

15.1.6 Simplified Magnetic Equations

There are a variety of possible simplifications for the magnetic equations
presented above. Following paragraphs only show some models presented in
the literature.

Two d- and One q-Axis Model

Assuming T ′
q0 ≈ 0 and x′q ≈ xq in (15.13) leads to e′d ≈ 0. Hence, (15.13) can

be rewritten as:

ė′q = (−e′q − (xd − x′d)(id − γd2ψ
′′
d − (1 − γd1)id + γd2e

′
q) + vf)/T ′

d0

ψ̇′′
d = (−ψ′′

d + e′q − (x′d − x)id)/T ′′
d0 (15.22)

ψ̇′′
q = (−ψ′′

q − (x′q − x)iq)/T ′′
q0

This page intentionally left blank

15.1 Synchronous Machine 333

and algebraic equations (15.15) become:

0 = ψd + x′′did − γd1e
′
q − (1 − γd1)ψ′′

d (15.23)
0 = ψq + x′′q iq − (1 − γq1)ψ′′

q

A second type of two d- and one q-axis model, can be obtained from (15.16)
assuming only one additional circuit on the q-axis (e.g., T ′

q0 ≈ 0) [184]. The
resulting model has three magnetic state variables e′q, e′′q and e′′d as follows:

ė′q = (−e′q − (xd − x′d − γd)id + (1 − TAA
T ′
d0

)vf)/T ′
d0 (15.24)

ė′′q = (−e′′q + e′q − (x′d − x′′d + γd)id +
TAA
T ′
d0
vf)/T ′′

d0

ė′′d = (−e′′d + (xq − x′′q)iq)/T
′′
q0

with the algebraic equations:

0 = vq + raiq − e′′q + x′′did (15.25)
0 = vd + raid − e′′d − x′′q iq

Similar equations can be obtained using (15.19) or imposing γd ≈ TAA ≈ 0
in (15.24).

One d- and Two q-Axis Model

Another model presented in [184] assumes:

x′d ≈ x′′d ≈ x′′q (15.26)

which leads to a single d-axis equation for the variable e′q. Both q-axis tran-
sient and sub-transient dynamics are used. Hence, (15.16) becomes:

ė′q = (−e′q − (xd − x′d)id + vf)/T ′
d0 (15.27)

ė′d = (−e′d + (xq − x′q − γq)iq)/T ′
q0

ė′′d = (−e′′d + e′d + (x′q − x′d + γq)iq)/T ′′
q0

with the following algebraic equations:

0 = vq + raiq − e′q + x′did (15.28)
0 = vd + raid − e′′d − x′qiq

Similar equations can be obtained using (15.19) or imposing γq ≈ 0 in (15.27).

334 15 Alternate-Current Machines

One d- and One q-Axis Model

In this model, lead-lag transfer functions are used for modelling the d- and
q-axis inductances (e.g., T ′′

d0 ≈ T ′′
q0 ≈ 0). The resulting magnetic equations

have only two state variables, namely e′q and e′d, as follows:

ė′q = (−e′q − (xd − x′d)id + vf)/T ′
d0 (15.29)

ė′d = (−e′d + (xq − x′q)iq)/T
′
q0

and the following algebraic equations:

0 = vq + raiq − e′q + x′did (15.30)
0 = vd + raid − e′d − x′qiq

This model can be obtained indifferently from any of the complete models
(15.13), (15.16) and (15.19). This two-axis model is the highest order model
on which there is substantial agreement in the literature. Actually, this model
is the most commonly used in power system stability analysis because it
provides the right compromise between simplicity and accuracy.

A similar fourth order model can be formulated using the sub-transient d-
axis voltage e′′d instead of e′d (e.g., T ′′

d0 ≈ T ′
q0 ≈ 0). The differential equations

becomes:

ė′q = (−e′q − (xd − x′d)id + vf)/T ′
d0 (15.31)

ė′′d = (−e′′d + (xq − x′′q)iq)/T
′′
q0

and the algebraic equations:

0 = vq + raiq − e′q + x′did (15.32)
0 = vd + raid − e′′d − x′′q iq

One d-Axis Model

A common model used in transient stability consists in neglecting all q-axis
electro-magnetic circuits, and using a lead-lag transfer function for the d-
axis inductance [325, 330]. The only magnetic state variable is e′q, with the
following differential equation:

ė′q = (−e′q − (xd − x′d)id + vf)/T ′
d0 (15.33)

and with the algebraic equations:

0 = vq + raiq − e′q + x′did (15.34)
0 = vd + raid − xqiq

15.1 Synchronous Machine 335

This model is the simplest one to which an automatic voltage regulator can
be connected.

Classical Model

The classical electro-mechanical model neglects all electro-magnetic dynam-
ics. As a consequence the field voltage is substituted by a constant e′q. The
electrical equations are (15.11). Since in these equations, ω ≈ 1, one can also
assume that the electrical power pe = ωτe ≈ τe. Hence, the electrical power
pe can be written as:

pe = (vq + raiq)iq + (vd + raid)id (15.35)

If ra ≈ 0, then pe ≈ ph. Another assumption is that and assume that xq = x′d,
hence the following relations between voltages and currents hold:

0 = vq + raiq − e′q + x′did (15.36)
0 = vd + raid − x′diq

where e′q is a constant emf behind the transient reactance x′d. For sake of
clarity, the full classical model is given below:

δ̇ = Ωb(ω − 1) (15.37)
ω̇ = (pm − pe −D(ω − 1))/2H
0 = (vq + raiq)iq + (vd + raid)id − pe

0 = vq + raiq − e′q + x′did
0 = vd + raid − x′diq
0 = vh sin(δ − θh) − vd

0 = vh cos(δ − θh) − vq

ph = vdid + vqiq

qh = vqid − vdiq

In most books and software packages, it is also assumed that ra ≈ D ≈ 0,
thus leading to a loss-less model. However, the property of being loss-less is
not implicit in the approximation of neglecting all flux dynamics.

It is possible to define a second type of synchronous machine second-order
model by assuming constant sub-transient emfs e′′d and e′′q . From (15.11) and
(15.18), one obtains:

vd = e′′d − raid + x′′q iq (15.38)
vq = e′′q − raiq − x′′did

336 15 Alternate-Current Machines

This model consists in a constant emf behind the sub-transient reactance and
is more precise than the classical one in the first instants after a disturbance.
Also in this case, it is common practice to assume ra ≈ D ≈ 0 [184].

15.1.7 Synchronous Machine Model Taxonomy

To complete the machine model taxonomy, Table 15.2 indicates the dynamic
order, the equations and the state variables for all models described in pre-
vious subsections.

Table 15.3 depicts a quick reference for the usage of time constants and
reactances within synchronous machine models. It is assumed that the leakage
reactance x is used only in models 8.a, 6.a, 6.d and 5.a, whereas the time
constant TAA is used only in models 8.b, 6.b, 6.e, 5.b and 5.c.

Example 15.1 Comparison of Synchronous Machine Models of
Different Orders

Figure 15.3 shows a comparison of the transient behavior of synchronous
machine models 8.a, 6.a and 6.d. The simulation refers to the generator 1
bus voltage of the IEEE 14-bus system. The disturbance is line 2-4 outage
at t = 0.2 s. In the first few instants after the disturbance, the most detailed
model, namely model 8.a, which includes stator fluxes dynamics, shows fast
damped oscillations. However, For t > 0.45, the trajectory of the three models
is practically the same. As expected, flux dynamics are very fast with respect
to electro-mechanical time scales. Furthermore, a relatively small step length
is required to observe the effect of flux dynamics. Finally, there is practically
no difference in the dynamic responses of models 6.a and 6.d. This result
confirms the conclusion drawn in Example 11.2 of Chapter 11.

Example 15.2 Comparison of Synchronous Machine Models of
Different Types

Figure 15.4 shows a comparison of transient response of Sauer-Pai’s, Mar-
conato’s and Anderson-Fouad’s models. In particular the plots show the gen-
erator 1 bus voltage for the IEEE 14-bus system following a line 2-4 outage at
t = 1 s. The simulation is repeated using three synchronous machines models,
namely models 6.a, 6.b and 6.c. The differences in the magnetic equations do
not lead to substantial changes in the transient behavior. However, the three
models show different oscillation modes and damping. In other words, state
matrix eigenvalues change depending on the model used. This eigenvalue un-
certainty has to be taken into account when setting up parameters of control
systems such as AVRs and PSSs.

15.1 Synchronous Machine 337

T
a
b
le

1
5
.2

S
y
n
ch

ro
n
o
u
s

m
a
ch

in
e

m
o
d
e
l
ta

x
o
n
o
m

y

N
a
m

e
O

rd
e
r

E
q
u
a
ti
o
n
s

S
ta

te
V

a
ri
a
b
le

s

M
o
d
e
l
8
.a

8
(1

5
.2

)-
(1

5
.8

),
(1

5
.9

),
(1

5
.1

3
),

(1
5
.1

5
)
δ,
ω
,
e′ q

,
e′ d

,
ψ

′′ d
,
ψ

′′ q
,
ψ

d
,
ψ

q

M
o
d
e
l
8
.b

8
(1

5
.2

)-
(1

5
.8

),
(1

5
.9

),
(1

5
.1

6
),

(1
5
.1

8
)
δ,
ω
,
e′ q

,
e′ d

,
e′

′ d
,
e′

′ q
,
ψ

d
,
ψ

q

M
o
d
e
l
8
.c

8
(1

5
.2

)-
(1

5
.8

),
(1

5
.9

),
(1

5
.1

9
),

(1
5
.1

8
)
δ,
ω
,
e′ q

,
e′ d

,
e′

′ d
,
e′

′ q
,
ψ

d
,
ψ

q

M
o
d
e
l
6
.a

6
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.1

3
),

(1
5
.1

5
)
δ,
ω
,
e′ q

,
e′ d

,
ψ

′′ d
,
ψ

′′ q

M
o
d
e
l
6
.b

6
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.1

6
),

(1
5
.1

8
)
δ,
ω
,
e′ q

,
e′ d

,
e′

′ d
,
e′

′ q

M
o
d
e
l
6
.c

6
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.1

9
),

(1
5
.1

8
)
δ,
ω
,
e′ q

,
e′ d

,
e′

′ d
,
e′

′ q

M
o
d
e
l
6
.d

6
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

0
),

(1
5
.1

3
),

(1
5
.1

5
)
δ,
ω
,
e′ q

,
e′ d

,
ψ

′′ d
,
ψ

′′ q

M
o
d
e
l
6
.e

6
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

0
),

(1
5
.1

6
),

(1
5
.1

8
)
δ,
ω
,
e′ q

,
e′ d

,
e′

′ d
,
e′

′ q

M
o
d
e
l
6
.f

6
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

0
),

(1
5
.1

9
),

(1
5
.1

8
)
δ,
ω
,
e′ q

,
e′ d

,
e′

′ d
,
e′

′ q

M
o
d
e
l
5
.a

5
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.2

2
),

(1
5
.2

3
)
δ,
ω
,
e′ q

,
ψ

′′ d
,
ψ

′′ q

M
o
d
e
l
5
.b

5
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.2

4
),

(1
5
.2

5
)
δ,
ω
,
e′ q

,
e′

′ d
,
e′

′ q

M
o
d
e
l
5
.c

5
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.2

7
),

(1
5
.2

8
)
δ,
ω
,
e′ q

,
e′ d

,
e′

′ d

T
w

o
-a

x
is

m
o
d
e
l

4
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.2

9
),

(1
5
.3

0
)
δ,
ω
,
e′ q

,
e′ d

M
o
d
e
l
4
.b

4
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.3

1
),

(1
5
.3

2
)
δ,
ω
,
e′ q

,
e′

′ d

O
n
e
-a

x
is

m
o
d
e
l

3
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.3

3
),

(1
5
.3

4
)
δ,
ω
,
e′ q

C
la

ss
ic

a
l
m

o
d
e
l
2
.a

2
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.3

5
),

(1
5
.3

6
)
δ,
ω

C
la

ss
ic

a
l
m

o
d
e
l
2
.b

2
(1

5
.2

)-
(1

5
.8

),
(1

5
.1

1
),

(1
5
.3

5
),

(1
5
.3

8
)
δ,
ω

338 15 Alternate-Current Machines

Table 15.3 Reference table for synchronous machine time constants and

reactances

Order T ′
d0 T

′
q0 T

′′
d0 T

′′
q0 xd x

′
d x

′′
d xq x

′
q x

′′
q

Models 8.x � � � � � � � � � �
Models 6.x � � � � � � � � � �
Model 5.a � � � � � � � �
Model 5.b � � � � � � �
Model 5.c � � � � � � � �

Two-axis model � � � � � �
Model 4.b � � � � � �

One-axis model � � � �
Classical model 2.a �
Classical model 2.b � �

Fig. 15.3 Comparison of synchronous machine models of different orders

Example 15.3 One-Axis Model with Stator Flux Dynamics

For the sake of showing all possible combinations of the sets of equations de-
scribed above, this example considers an unusual fifth order model described
in [263]. This model is formed by equations (15.2)-(15.8), by the dynami-
cal electrical equations (15.9), (15.34), and by the field voltage differential
equation:

ψ̇f = (vf − e′q)/T
′
d0 (15.39)

15.1 Synchronous Machine 339

Fig. 15.4 Comparison of synchronous machine models of different types

where the field flux ψf is:

ψf = e′q − (xd − x′d)id (15.40)

which leads to rewrite (15.39) as:

ė′q =
xd
x′d

(
1
T ′
d0

(vf − e′q) − xd − x′d
xd

ψ̇d

)
(15.41)

Clearly, this model has no practical applications since is too detailed and
too simplified at the same time. It is too detailed because it includes stator
flux dynamics, thus requiring a comparatively small step length in numerical
integration, and it is too simplified because it considers only one dynamic on
the d-axis, thus resulting inadequate for detailed transient stability analysis.

15.1.8 Saturation

As discussed above, the variety of magnetic equations allows defining a huge
variety of machine models. Taking into account saturation introduces even
more arbitrariness in the formulation of the synchronous machine model.

340 15 Alternate-Current Machines

A general model that accounts for saturation is a generalization of the
Sauer-Pai’s model (15.13) and (15.15) [269].

ė′q = (−e′q − (xd − x′d)(id − γd2ψ
′′
d − (1 − γd1)id + γd2e

′
q (15.42)

+γd2ςd(z)) − ςf (z) + vf)/T ′
d0

ė′d = (−e′d + (xq − x′q)(iq − γq2ψ
′′
q − (1 − γq1)iq − γd2e

′
d

+ςq2(z)) + ςq1(z))/T ′
q0

ψ̇′′
d = (−ψ′′

d + e′q − (x′d − x)id − ςd(z))/T ′′
d0

ψ̇′′
q = (−ψ′′

q − e′d − (x′q − x)iq − ςq2(z))/T ′′
q0

0 = ψd + x′′did − γd1e
′
q − (1 − γd1)ψ′′

d − ςd(z)
0 = ψq + x′′q iq + γq1e

′
d − (1 − γq1)ψ′′

q − ςq(z)

where z = [e′q, e
′
d, ψ

′′
d , ψ

′′
q , id, iq]

T and the saturation functions are:

ςf (z): saturation of the dc field winding.
ςd(z) and ςq(z): d- and q-axis saturation of the stator windings.
ςq1(z): saturation of current induced in the rotor core.
ςd1(z) and ςq2(z): saturation of the equivalent damper windings.

Instead of focusing on some particular model that includes saturation, fol-
lowing subsections discuss two examples of saturation functions and the data
required for defining such saturation. Once the functions are defined, the in-
clusion of a saturation function is straightforward using (15.42). For simplic-
ity, in the remainder, it is considered a generic saturation function ψ = ς(i)
that links a generic current i to a generic flux ψ.

Piece-Wise Saturation Function

A piece-wise saturation model is discussed in [163] and is shown in
Figure 15.5. The saturation function consists of three regions, as follows:

ψ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1i, if ψ < ψA

x1i
ψ

ψ +AseBs(ψ−ψA) , if ψA ≤ ψ < ψB

x1i
ψ

ψC + xr(ψ − ψB)
, if ψB ≤ ψ

(15.43)

where xr = x1/x2. The curve is completely defined by the parameters ψA,
ψB, ψC , xr, As and Bs. The main issue of this model is that for iA = ψA/x1,
the function is discontinuous, since for i−A, the function returns x1iA and for
i+A, the function returns x1iAψA/(ψA +As). This discontinuity is immaterial
only if As � ψA.

15.1 Synchronous Machine 341

Air gap line
ψC

ψB

ψA

1.0

x1

x2

ψ

i

Fig. 15.5 Piece-wise saturation model

Polynomial Interpolation

This model consists in computing the coefficients of the polynomial that
best interpolates three points of the saturation curve [272]. The three points
are associated with ψ0.8 = 0.8, ψ1.0 = 1.0 and ψ1.2 = 1.2 pu, as shown in
Figure 15.6. The saturation curve is assumed to be linear for ψ < 0.8. For
ψ ≥ 0.8 one has:

ψ = c2i
2 + c1i+ c0 (15.44)

where:

c0 = s [15, −24, 10]T (15.45)
c1 = s [−27.5, 50, −22.5]T

c2 = s [12.5, −25, 12.5]T

and
s = [0.8, 1 − s1, 1.2(1 − s2)] (15.46)

The saturation factors s1 and s2 are computed as:

s1 = 1 − ia1
ib1

(15.47)

s2 = 1 − ia1.2
ib1.2

and, along with the slope for ψ < 0.8, completely define the saturation curve.
The main issues of this model are (i) the point at which the polynomial is

342 15 Alternate-Current Machines

computed are fixed, and (ii) high sensitivity with respect to the parameters
s1 and s2.

Air gap line

ψ1.2

ψ1.0

ψ0.8

ia0.8 ia1

ib1

ia1.2 ib1.2

ψ

i

Fig. 15.6 Polynomial interpolation saturation model

15.1.9 Center of Inertia

In equation (15.5), the machine rotor angle and speed are assumed relative to
the reference angle and speed of a hypothetical machine with constant speed
ωs and constant rotor angle δs, where generally ωs = 1 and δs = 0. In some
applications, it is useful to refer machine angles and speeds to the center of
inertia (COI), which is a weighted sum of all machine angles and speeds:

δCOI =

∑
j∈G Hjδj∑
j∈G Hj

(15.48)

ωCOI =

∑
j∈G Hjωj∑
j∈G Hj

(15.49)

Thus, the first of (15.5) becomes:

δ̇ = Ωb(ω − ωCOI) (15.50)

In order to avoid inconsistencies, all speeds used in the computation of the
equivalent COI speed have to pertain to an interconnected area. If, as a
consequence of line outages, the system separates into two or more areas, a
COI speed should be defined for each area.

15.1 Synchronous Machine 343

Fig. 15.7 Generator rotor angles using a constant synchronous speed reference

Example 15.4 Effect of Using the Center of Inertia for the IEEE
14-Bus System

Figures 15.7 and 15.8 show the difference between rotor angles referred to
a constant synchronous speed and the same angles but using a COI speed
reference. These figures represent a line 2-4 outage at t = 1 for the IEEE
14-bus system. At a first glance, the angle trajectories of Figure 15.7 could
lead to think that the system is losing synchronism. Actually, the relative
differences among rotor angles remain bounded, thus the system is stable.
This conclusion is straightforward if using the COI speed reference.

15.1.10 Dynamic Shaft

A dynamic mass-spring model is used for defining the shaft of the synchronous
machine. Figure 15.9 depicts the shaft scheme (springs are in solid gray). The
complete set of differential equations that describe the dynamic shaft is as
follows:

δ̇HP = Ωb(ωHP − ωs) (15.51)
ω̇HP = (τm −DHP(ωHP − ωs) −D12(ωHP − ωIP)

+KHP(δIP − δHP))/2HHP

δ̇IP = Ωb(ωIP − ωs)

344 15 Alternate-Current Machines

Fig. 15.8 Generator rotor angles using a COI speed reference

ω̇IP = (−DIP(ωIP − ωs) −D12(ωIP − ωHP) −D23(ωIP − ωLP)
+KHP(δHP − δIP) +KIP(δLP − δIP))/2HIP

δ̇LP = Ωb(ωLP − ωs)
ω̇LP = (−DLP(ωLP − ωs) −D23(ωLP − ωIP) −D34(ωLP − ω)

+KIP(δIP − δLP) +KLP(δ − δLP))/2HLP

δ̇ = Ωb(ω − 1)
ω̇ = (−τe −D(ω − ωs) −D34(ω − ωLP) −D45(ω − ωEX)

+KLP(δLP − δ) +KEX(δEX − δ))/2H
δ̇EX = Ωb(ωEX − ωs)
ω̇EX = (−DEX(ωEX − ωs) −D45(ωEX − ω)

+KEX(δ − δEX))/2HEX

Example 15.5 Transient Behavior of Dynamics Shafts

Figure 15.10 shows the transient behavior of typical shaft rotor speed dy-
namics. The plot is obtained considering a dynamic shaft for the synchronous
machine 1 of the IEEE 14-bus system. All shaft data are given in Appendix D.

15.1 Synchronous Machine 345

τm τe

HP IP LP EXrotor

Fig. 15.9 Synchronous machine mass-spring shaft model

Table 15.4 Dynamic Shaft Data

Variable Description Unit

- Synchronous machine code -

HHP High pressure turbine inertia constant MWs/MVA

HIP Intermediate pressure turbine inertia constant MWs/MVA

HLP Low pressure turbine inertia constant MWs/MVA

HEX Exciter inertia constant MWs/MVA

DHP High pressure turbine damping pu

DIP Intermediate pressure turbine damping pu

DLP Low pressure turbine damping pu

DEX Exciter damping pu

D12 High-interm. pressure turbine damping pu

D23 Interm.-low pressure turbine damping pu

D34 Low pressure turbine-rotor damping pu

D45 Rotor-exciter damping pu

KHP High pressure turbine angle coefficient pu

KIP Intermed. pressure turbine angle coefficient pu

KLP Low pressure turbine angle coefficient pu

KEX Exciter angle coefficient pu

15.1.11 Sub-synchronous Resonance

Figure 15.11 depicts a generator with shaft dynamics and compensated line,
which represents a simple model for studying the sub-synchronous resonance
(SSR) problem. Shaft dynamics are the same as those described in previous
Section 15.1.10 and are modeled as high, intermediate and low pressure tur-
bine masses, exciter mass and machine rotor. The scheme of Figure 15.11
is one of the simplest models that may show the SSR phenomenon. SSR is
a well-known problem of undamped oscillations that may occur when the
transmission line to which the machine is connected is compensated by a
series capacitor [140, 141, 142, 355].

The dynamics of the RLC circuit cannot be neglected since the line
presents two modes whose frequency can be roughly estimated as Ωb(1 ±√
xC/xL). For typical values of the inductive and capacitive reactances, the

346 15 Alternate-Current Machines

Fig. 15.10 Dynamic shaft rotor speed dynamics

−+

r

h

xL xC

vd + jvq
vC,d + jvC,q

vh∠θh

iL,d + jiL,q

τm τe

HP IP LP EXRotor

Fig. 15.11 Generator with dynamic shaft and compensated line

lower of these two frequencies can be close to one of the mechanical oscilla-
tions of the generator shaft. Thus, beyond a certain value of the compensation
level, the machine may experiment a negative damping of one of the mechan-
ical modes that results in dangerous stresses on the shaft. This phenomenon
can be also described in terms of Hopf bifurcation [45, 205, 206].

A simple model used for studying SSR is presented in [361]. The machine
is modelled through (15.9), (15.51) and

ψ̇f = (vf − if)/T ′
d0 (15.52)

15.1 Synchronous Machine 347

The transmission line dynamics are:

i̇L,d = Ωb(iL,q + (vd − riL,d − vC,d − V sin(δ − θ))/xL) (15.53)
i̇L,q = Ωb(−iL,d + (vq − riL,q − vC,q − V cos(δ − θ))/xL)
v̇C,d = Ωb(xC iL,d + vC,q)
v̇C,q = Ωb(xC iL,q − vC,d)

Finally, the constraints that link the time derivatives of generator fluxes and
line currents are:

ψ̇f = i̇f − (xd − x′d)i̇L,d (15.54)

ψ̇d = i̇f − xd i̇L,d

ψ̇q = −xq i̇L,q

Example 15.6 Sub-synchronous Resonance Transient

Figure 15.12 shows the dynamic behavior of a system that shows sub-synchro-
nous resonance. The plot was obtained using data provided in [206].

Fig. 15.12 Sub-synchronous resonance transient

348 15 Alternate-Current Machines

15.2 Induction Machine

Induction machine models can be formally formulated using the Park’s ap-
proach. However, since induction machine rotors have no salient poles and
since the rotor angular position is generally irrelevant, the Park’s two-reaction
approach is not strictly necessary. This section describes three models of
increasing complexity. These are pure mechanical model, single-cage rotor
model, and double-cage rotor model. Each machine model includes a me-
chanical torque, which can thus be modeled separately and then included as
a common ancestor class.

Table 15.5 defines the parameters of all induction machine models de-
scribed in this section. Since a typical study related to induction machines is
the start-up transient, the parameter list includes start-up parameters that
control if and when the machine is started (i.e., sup and tup in Table 15.5). If
the machine is marked for start-up, the slip is σ = 1 (e.g., rotor speed ω = 0)
and the machine status is u = 0 for t ≤ tup.

Table 15.5 Induction machine parameters

Variable Description Unit

a 1st coeff. of τm(ω) pu

b 2nd coeff. of τm(ω) pu

c 3rd coeff. of τm(ω) pu

Hm Machine rotor inertia constant MWs/MVA

rR1 1st cage rotor resistance pu

rR2 2nd cage rotor resistance pu

rS Stator resistance pu

sup Start-up control {0, 1}
tup Start up time s

xR1 1st cage rotor reactance pu

xR2 2nd cage rotor reactance pu

xS Stator reactance pu

xμ Magnetization reactance pu

ℵ Allow working as brake {0, 1}

15.2.1 Initialization

As discussed in Chapter 4, the standard power flow problem is formulated
describing loads as constant power consumptions. However, induction motors
do not behave as constant power consumptions. Thus, if the machine dynamic
equations are initialized after the power flow analysis, there will be certainly a
data inconsistency. In fact if one uses the bus voltage v̄0 and the active power
p0 to compute the machine slip and mechanical torque, then the reactive
power consumed by the machine is assigned. Generally, this reactive power

15.2 Induction Machine 349

is not equal to the one obtained as the solution of the power flow analysis.
To solve this inconsistency, there are two possibilities:

1. Taking into account that induction motors are generally compensated, a
shunt capacitor bank can be included to fix the reactive power mismatch
at the machine bus.

2. The dynamic machine model can be directly included into the power flow
problem. In this case the data to be imposed in the power flow analysis
is the mechanical torque at the machine shaft. This method is certainly
the most precise. Furthermore, if there is a capacitor bank, this can be
modelled using its real capacity.

A detailed discussion on this topic can be found in [262].

15.2.2 Torque Model

A typical model that can be used for the mechanical torque is a quadratic
function of the rotor speed:

τm = a+ bω + cω2 (15.55)

and given the relationship between the slip σ and the speed ω in pu, e.g.
σ = 1 − ω, the torque/slip characteristic becomes:

τm = α+ βσ + γσ2 (15.56)

where

α = a+ b+ c, β = −b− 2c, γ = c (15.57)

In some cases, the previous model is not adequate, for example, it does not
allow taking into account the machine duty-cycle. In this case, it is necessary
to provide a function of time τm(t). Since accounting for any possible behavior
is not possible, the better solution is likely to provide a series of (τm, t)-value
pairs.

15.2.3 Electromechanical Model

The electrical circuit for the first order induction motor is depicted in
Figure 15.13. Only the mechanical state variable is considered, being the
circuit in steady-state condition. The differential equation is:

σ̇ =
1

2Hm

(
τm(σ) − rR1v

2
h/σ

(rS + rR1/σ)2 + (xS + xR1)2

)
(15.58)

350 15 Alternate-Current Machines

+

−

v̄h

rS

xμ

xS xR1

rR1/σ

Fig. 15.13 Electrical circuit of the first-order induction machine model

whereas the power injections are:

ph = − (rS + rR1/σ)v2
h

(rS + rR1/σ)2 + (xS + xR1)2
(15.59)

qh = − v2
h

xμ
− (xS + xR1)v2

h

(rS + rR1/σ)2 + (xS + xR1)2

The negative sign of the active and reactive power indicates that the machine
is working as a motor. If the machine cannot work as a brake, then the
differential equation undergoes an anti-windup limiter that activates if σ ≤ 0
and σ̇ < 0 (see Appendix C).

15.2.4 Detailed Single-Cage Model

The simplified electrical circuit for the single-cage induction motor is de-
picted in Figure 15.14. Equations are formulated in terms of the real (d-)
and imaginary (q-) axes, with respect to the network reference angle. In a
synchronously rotating reference frame, the link between the network and
the stator machine voltages is as follows:

vd = −vh sin θ (15.60)
vq = vh cos θ

Using the notation of Figure 15.14, the power absorptions are:

ph = −(vdid + vqiq) (15.61)
qh = −(vqid − vdiq)

The differential equations in terms of the voltage behind the the stator resis-
tance rS are:

ė′d = Ωbσe
′
q − (e′d + (x0 − x′)iq)/T ′

0 (15.62)
ė′q = −Ωbσe′d − (e′q − (x0 − x′)id)/T ′

0

15.2 Induction Machine 351

whereas the link between voltages, currents and state variables is as follows:

vd − e′d = rSid − x′iq (15.63)
vq − e′q = rSiq + x′id

where x0, x′ and T0 can be obtained from the motor parameters:

x0 = xS + xμ (15.64)

x′ = xS +
xR1xμ
xR1 + xμ

T ′
0 =

xR1 + xμ
ΩbrR1

Finally, the mechanical equation is as follows:

σ̇ = (τm(σ) − τe)/(2Hm) (15.65)

where the electrical torque is:

τe ≈ e′did + e′qiq (15.66)

+

−

vd + jvq

id + jiq xμ

xSrS xR1

rR1/σ

Fig. 15.14 Electrical circuit of the third-order induction machine model

15.2.5 Detailed Double-Cage Model

The electrical circuit for the double-cage induction machine model is depicted
in Figure 15.15. As for the single-cage model, real and imaginary axes are
defined with respect to the network reference angle, and (15.60) and (15.61)
apply. Two voltages behind the stator resistance rS model the cage dynamics,
as follows:

352 15 Alternate-Current Machines

ė′d = Ωbσe
′
q − (e′d + (x0 − x′)iq)/T ′

0 (15.67)
ė′q = −Ωbσe′d − (e′q − (x0 − x′)id)/T ′

0

ė′′d = −Ωbσ(e′q − e′′q) + ė′d − (e′d − e′′q − (x′ − x′′)iq)/T ′′
0

ė′′q = Ωbσ(e′d − e′′d) + ė′q − (e′q − e′′d + (x′ − x′′)id)/T ′′
0

and the links between voltages and currents are:

vd − e′′d = rSid − x′′iq (15.68)
vq − e′′q = rSiq + x′′id

where the parameters are determined from the circuit resistances and reac-
tances and are given by equations (15.64) and:

x′′ = xS +
xR1xR2xμ

xR1xR2 + xR1xμ + xR2xμ
(15.69)

T ′′
0 =

xR2 + xR1xμ/(xR1 + xμ)
ΩbrR2

The differential equation for the slip is the (15.65), while the electrical torque
is defined as follows:

τe ≈ e′′did + e′′q iq (15.70)

+

−

vd + jvq

id + jiq

xμ

xSrS

xR1

rR1/σ

xR2

rR2/σ

Fig. 15.15 Electrical circuit of the fifth-order induction machine model

Example 15.7 Induction Motor Start-Up

Figure 15.16 shows the start-up of a double-cage induction motor modelled
with a fifth order set of DAE as discussed in the previous section. The motor
is connected to the network at t = 1 s. Fast electrical dynamics damp out in
about a second while the mechanical transient takes several seconds. Thus,
fast dynamics should be considered in the classical transient stability analysis
i.e., for time scale from one to five seconds after the fault clearing. For voltage

15.2 Induction Machine 353

Fig. 15.16 Induction motor start-up transient

or frequency stability analysis (e.g., tens of seconds), a simple mechanical
model for the induction motor is adequate.

This page intentionally left blank

Chapter 16

Synchronous Machine Regulators

This chapter describes the most relevant synchronous machines primary reg-
ulators and limiters. These are the turbine governor, the automatic voltage
regulator and the over- and under-excitation limiters. These regulators are
the dynamic counterpart of the static capability curve described in Section
12.2.1 of Chapter 12. Furthermore, this chapter also describes the power
system stabilizer that allows efficiently damping synchronous machine ro-
tor oscillations. Figure 16.1 provides a synoptic scheme of the synchronous
machine regulators described in this chapter.

There is a huge variety of synchronous machine regulator models. For ex-
ample, the EPRI Extended Transient-Midterm Stability Program (ETMSP)
User’s Manual contains hundreds of controls schemes for turbine governors,
automatic voltage regulators and power system stabilizers [130]. The main
object of this chapter is to provide an overview of the basic functioning and
some commonly used models. Other models, even very complex, can be im-
plemented starting from the basic schemes given in this chapter. Moreover,
providing a complete list of all existing regulator models is likely useless, since
it is always possible that someone proves that currently accepted models are
actually inadequate [237].

16.1 Turbine Governor

Turbine Governors (TGs) define the primary frequency control of syn-
chronous machines. Figure 16.2 shows the basic functioning of the primary
frequency control. In particular, Figure 16.2.a depicts the linearized control
loop that includes the turbine governor transfer function G(s) and a sim-
plified machine model. The transfer function G(s) depends on the type of
the turbine and on the control (see for example Figures 16.3 and 16.4). In
steady-state conditions:

lim
s→0

G(s) =
1
R

(16.1)

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 355–377.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

356 16 Synchronous Machine Regulators

+
+

+

+

+

−−

−

Generator

Governor

Turbine

Automatic

Power

Voltage

Regulator

System

Stabilizer

Over & Under

Excitation

Limiters

porder

Δp

vf

ω

ωref

vref

v

v, i, p, q

vs

p, ω, v

vOXL
, vU

XL

Fig. 16.1 Synoptic scheme of synchronous machine regulators

thus, approximating the mechanical torque with the mechanical power, one
has:

Δpm =
1
R

(Δωref −Δω) (16.2)

where all quantities are in pu with respect to machine bases. Figure 16.2.b
shows the effect of the droop R on the regulation: (i) R �= 0 is the normal
situation; (ii) R = 0 implies that G(s) contains a pure integrator and, thus,
a constant frequency control; and (iii) R → ∞ means constant power control
(the primary frequency control loop is open). In general, R �= 0 and R < ∞,
so that the machine regulates the frequency proportionally to its rated power.
Only in islanded systems with one or very few machines, it makes sense to set
R = 0. Finally, Figure 16.2.c shows the effect of the variation of the system
frequency Δω on a multi-machine system. If Δω < 0 (which implies that the
power absorbed by the load has increased), then each machine k increases its
power production by a quantity proportional to 1/Rk.

The droop R is a measure of the participation of each machine to system
losses and load power variations. Thus, one can define the loss participation
coefficient γk in the static generator models (see Sections 10.2.1 and 10.2.2)
based on Rk, as follows:

γk =
1/Rk∑
j∈G 1/Rj

(16.3)

where G is the set of synchronous machines. For example, if a system has
three machines with 1/R1 = 3%, 1/R2 = 5%, and 1/R3 = 4%, then:

16.1 Turbine Governor 357

(a)

(b)

(c)

+

+ −

−

Δωref

Δω

Δω

Δω

ω ωω

ωωω

G(s)

Δpe

Δpm

Δpm,1 Δpm,2 Δpm,3pm pmpm

pmpmpm

1

2Hs

R �= 0

R = 0

R → ∞

Fig. 16.2 Basic functioning of the primary frequency control: (a) linearized control

loop; (b) effect of the droop R on the control loop; and (c) effect of a variation of

the rotor speed Δω on a multi-machine system with Rj �= 0, ∀j ∈ G

γ1 =
0.03

0.03 + 0.05 + 0.04
= 0.25

γ2 =
0.05

0.03 + 0.05 + 0.04
= 0.42

γ3 =
0.04

0.03 + 0.05 + 0.04
= 0.33

Only the relative values of the coefficients γi are relevant, not the absolute
ones. Two relevant remarks are as follows:

1. If Rk → ∞, γk = 0 for the machine k.
2. If Rk = 0, γk = 1 for the machine k, being all other loss participation

coefficients γj = 0, ∀j ∈ G and j �= i.

When defining the TG data, the droop R and mechanical power limits are
often given in pu with respect to the synchronous machine power rating. If
this is the case, during the initialization of turbine governors data, the droops
have to be converted to the system power base, as follows:

358 16 Synchronous Machine Regulators

Rsystem =
Ssystem

Smachine
Rmachine (16.4)

When initializing the turbine governor variable, mechanical power limits have
to be checked. If a limit is violated, it means that the turbine governor pa-
rameters are not consistent with those of the static generator used in power
flow analysis.

Each turbine governor model has two algebraic equations, as follows:

0 = τ̃m − τm (16.5)
0 = ωref

0 − ωref (16.6)

where (16.5) represents the link between the turbine governor and the syn-
chronous machines, being τm the input mechanical power variable used in
synchronous machine models, i.e., (16.5) substitutes (15.7); and (16.6) defines
the turbine governor reference rotor speed. The reference signal ωref

0 can be
modified, for example, by the automatic generation control (e.g., secondary
frequency regulation).

Following subsections describe two simple yet commonly used turbine gov-
ernor models.

16.1.1 Turbine Governor Type I

The TG type I is depicted in Figure 16.3. It includes a governor, a servo and
a reheat block. The DAE system that describes this TG model is as follows:

p̂in = porder +
1
R

(ωref − ω) (16.7)

pin =

⎧⎪⎨
⎪⎩
p̂in if pmin ≤ p̂in ≤ pmax

pmax if p̂in > pmax

pmin if p̂in < pmin

ẋg1 = (pin − xg1)/Ts

ẋg2 = ((1 − T3

Tc
)xg1 − xg2)/Tc

ẋg3 = ((1 − T4

T5
)(xg2 +

T3

Tc
xg1) − xg3)/T5

τ̃m = xg3 +
T4

T5
(xg2 +

T3

Tc
xg1)

The number of blocks of each part of the turbine can be increased to take into
account each stage in detail. However, the structure of the control diagram
does not change. Table 16.1 defines the parameters of TG type I.

16.1 Turbine Governor 359

Governor Servo Reheat

+

+

+

−

ωref

ω

1/R

1

porder

p̂in pin

pmin

pmax

τ̃m

Tss+ 1

T3s+ 1

Tcs+ 1

T4s+ 1

T5s+ 1

Fig. 16.3 Turbine governor Type I control diagram

Table 16.1 Turbine governor Type I parameters

Variable Description Unit

- Generator code -

pmax Maximum turbine output pu

pmin Minimum turbine output pu

R Droop pu

T3 Transient gain time constant s

T4 Power fraction time constant s

T5 Reheat time constant s

Tc Servo time constant s

Ts Governor time constant s

16.1.2 Turbine Governor Type II

The TG type II is depicted in Figure 16.4 and described by the following
equations:

ẋg = (
1
R

(1 − T1

T2
)(ωref − ω) − xg)/T2 (16.8)

τ̂m = xg +
1
R

T1

T2
(ωref − ω) + τm0

τ̃m =

⎧⎪⎨
⎪⎩
τmax if τ̂m > τmax

τ̂m if τmin ≤ τ̂m ≤ τmax

τmin if τ̂m < τmin

where τm0 is the initial mechanical torque determined when initializing syn-
chronous machines (see equation (15.7)) and other parameters are defined
in Table 16.2. Equations (16.8) simplify the previous model (16.7). The tur-
bine governor type II is typically more than adequate for transient stability
analysis.

360 16 Synchronous Machine Regulators

+
+

+−

ωref

ω

1/R

τm0

τmin

τmax

τ̃mτ̂mT1s+ 1

T2s+ 1

Fig. 16.4 Turbine governor Type II control diagram

Table 16.2 Turbine governor Type II parameters

Variable Description Unit

- Generator code int

R Droop pu

T1 Transient gain time constant s

T2 Governor time constant s

τmax Maximum turbine output pu

τmin Minimum turbine output pu

Example 16.1 Effect of Turbine Governor on Generator
Frequency

Figure 16.5 shows the effect of turbine governors on generator rotor speeds
for the IEEE 14-bus system. The plot was obtained including two turbine
governors of type II at generators 1 and 2. The complete data are reported
in Appendix D. The disturbance is line 2-4 outage at t = 1 s. As expected,
the turbine governor is able to recover the rotor speed to a value close to
the initial synchronous speed. However, since the disturbance considered in
this case study implies only a redistribution of losses, the effect of turbine
governor is negligible.1 As discussed above, the primary frequency regulation
is never integral, hence the final frequency cannot be equal to the initial one.

Turbine governors regulates the production of synchronous machine active
powers. In the case of the IEEE 14-bus system, only two machines produce
active power. Since synchronous machine 1 is ten times bigger than machine
2 and the two machines have the same droop, machine 1 takes about the 90%
of the active power variation after the disturbance.

1 In fact, without turbine governors, the frequency error is < 0.2%. This is why

turbine governors are not considered in most examples of this book.

16.2 Automatic Voltage Regulator 361

Fig. 16.5 Effect of the turbine governor on the generator frequency for the IEEE

14-bus system

16.2 Automatic Voltage Regulator

Automatic Voltage Regulators (AVRs) define the primary voltage regula-
tion of synchronous machines. Several AVR models have been proposed and
realized in practice [89, 145]. In this section, three simple AVR types are de-
scribed. AVR Type I is a simplified version of the standard dc exciter IEEE
type I, whereas AVR Type II is a typical static exciter model. AVR Type III
is the simplest AVR model that can be used for rough stability evaluations.

Figure 16.6 depicts a conceptual linearized model of the primary voltage
regulation of the synchronous machine. Although the detailed system is much
more complicated, the kernel of primary voltage regulation can be reduced
to a transfer function composed of the AVR regulator, the exciter and the
machine d-axis emf. The system of Figure 16.6 has the closed-loop root loci
shown in Figure 16.7. Depending on the AVR gain the system can be stable
or unstable (due to the occurrence of a Hopf bifurcation). Clearly, AVR gains
are chosen to avoid instability in most operating conditions. However, it is
possible that an unusual loading condition and/or line outage causes an in-
crease of the equivalent closed-loop gain and, thus, leads to instability [337].
This phenomenon is illustrated in Example 16.2.

362 16 Synchronous Machine Regulators

+

−

Exciter MachineRegulator

Δvref Δvh

Δvh

1 + sT0 1 + sTe 1 + sT ′
d0

11K0

Fig. 16.6 Basic functioning of the primary voltage control

Fig. 16.7 Primary voltage control root loci

Each AVR model has two algebraic equations, as follows:

0 = ṽf − vf (16.9)
0 = vref

0 − vref (16.10)

where (16.9) represents the link in between the AVR and the synchronous
machines, being vf the algebraic variable that defines the synchronous ma-
chine field voltage, i.e., (16.9) substitutes (15.8). Equation (16.10) defines
the AVR reference voltage. It is useful to define the reference voltage as a
variable since other devices such as over-excitation limiters or power system
stabilizers modify such reference with additional signals. Thus, (16.10) al-
lows interfacing other regulators to the AVR. Furthermore, the bus voltage
measure delay is usually modelled as a lag block:

v̇m = (vh − vm)/Tr (16.11)

16.2 Automatic Voltage Regulator 363

where vh is the generator bus voltage or any bus voltage regulated by the
AVR, vm is the state variable used as voltage signal within the AVR and
Tr the measurement block time constant. Equations (16.9)-(16.11) constitute
the common equations of AVR models and can be included in a base AVR
class.

The reference voltage vref
0 is initialized after the power flow analysis and

after the initialization of synchronous machines. In case the violations of
AVR limits, the data of the static generator used in power flow analysis are
not consistent with the AVR data and, thus, AVR state variables cannot be
correctly initialized.

16.2.1 Automatic Voltage Regulator Type I

The AVR Type I depicted in Figure 16.8 represents a typical dc exciter model.
The DAE system is (16.9)-(16.11) and:

v̇r1 = (Ka(vref − vm − vr2 − Kf

Tf
ṽf) − vr1)/Ta (16.12)

v̇r2 = −(
Kf

Tf
ṽf + vr2)/Tf

˙̃vf = −(ṽf (Ke + Se(ṽf)) − vr1)/Te

where vh is the generator terminal voltage or a remote-bus regulated voltage
and the ceiling function Se is:2

Se(ṽf) = Aee
Be|ṽf | (16.13)

This model is a simplified version of the classic IEEE type DC1 [145]. The
IEEE DC1 system includes an additional lead-lag block before the amplifier
block. However, this lead-lag block is often neglected. The amplifier state
variable vr1 is subjected to an anti-windup limit. Table 16.3 defines all pa-
rameters of AVR Type I.

2 The coefficients Ae and Be can be determined by measuring two points of the

ceiling function Se. Typically, one knows the values Smax
e and S0.75·max

e that

correspond to the field voltages vmax
f and 0.75 · vmax

f , respectively. To compute

Ae and Be, one has to solve the following system:

0 = −(1 + Smax
e)vmax

f + vmax
r

Smax
e = Aee

Bevmax
f

S0.75·max
e = Aee

Be·0.75·vmax
f

where Smax
e , S0.75·max

e , vmax
f , and vmax

r are given values.

364 16 Synchronous Machine Regulators

+ +

+−

−

−

vref

vh

vm

Ka

Kfs

ṽfvr

vmax
r

vmin
r1

1

Trs+ 1

Tas+ 1

Tfs+ 1

Tes+Ke

Stabilizing feedback

Amplifier

Measure

Exciter

Se

Fig. 16.8 Automatic voltage regulator Type I control diagram

Table 16.3 Automatic voltage regulator Type I parameters

Variable Description Unit

- Generator code -

- Regulated voltage code -

Ae 1st ceiling coefficient -

Be 2nd ceiling coefficient 1/pu

Ka Amplifier gain pu/pu

Ke Field circuit integral deviation -

Kf Stabilizer gain s pu/pu

Ta Amplifier time constant s

Tf Stabilizer time constant s

Te Field circuit time constant s

Tr Measurement time constant s

vmax
r Maximum regulator voltage pu

vmin
r Minimum regulator voltage pu

16.2.2 Automatic Voltage Regulator Type II

The AVR Type II is shown in Figures 16.9 and 16.10. This AVR models a typ-
ical static exciter which is characterized by higher gains and faster response
than the previous dc exciter. The DAE system is (16.9)-(16.11) and:

v̇r1 = (K0(1 − T2

T1
)(vref − vm) − vr1)/T1 (16.14)

v̇r2 = ((1 − T4

T3
)(vr1 +K0

T2

T1
(vref − vm)) − vr2)/T3 (16.15)

v̂r = vr2 +
T4

T3
(vr1 +K0

T2

T1
(vref − vm)) (16.16)

16.2 Automatic Voltage Regulator 365

vr =

⎧⎪⎨
⎪⎩
vmax
r if v̂r > vmax

r ,

v̂r if vmin
r ≤ v̂r ≤ vmax

r ,

vmin
r if v̂r < vmin

r .

(16.17)

˙̃vf = −(ṽf (1 + Se(ṽf)) − vr)/Te (16.18)

where where vh is the generator terminal voltage or a remote-bus regulated
voltage and Se is the ceiling function (16.13). For high values of the gain K0,
the state variable vr2 takes also high values. To keep the values of vr1 and
vr2 comparable, the following variable change is used:

ṽr2 =
vr2
K0

(16.19)

Hence, (16.15) and (16.16) can be rewritten as follows:

˙̃vr2 = ((1 − T4

T3
)(vr1 +K0

T2

T1
(vref − vm)) −K0ṽr2)/(K0T3) (16.20)

v̂r = K0ṽr2 +
T4

T3
(vr1 +K0

T2

T1
(vref − vm)) (16.21)

Table 16.4 defines all parameters required by the AVR Type II.

+

+

−

−

vref

vh

vm

K0

ṽfvrv̂r

vmax
r

vmin
r

1

1

Trs+ 1

(T2s+ 1)(T4s+ 1)

(T1s+ 1)(T3s+ 1) Tes+ 1

Se

Fig. 16.9 Automatic voltage regulator Type II control diagram

366 16 Synchronous Machine Regulators

+

+

+

+vref − vm

K0

v∗r

vr1 vr2

K0T2/T1

1 − T2/T1

(T1s+ 1)

T4/T3

1 − T4/T3

(T3s+ 1)

Fig. 16.10 Detail of the double lead-lag block of AVR Type II

Table 16.4 Automatic voltage regulator Type II parameters

Variable Description Unit

- Generator code -

- Regulated voltage code -

Ae 1st ceiling coefficient -

Be 2nd ceiling coefficient 1/pu

K0 Regulator gain pu/pu

T1 1st pole s

T2 1st zero s

T3 2nd pole s

T4 2nd zero s

Te Field circuit time constant s

Tr Measurement time constant s

vmax
r Maximum regulator voltage pu

vmin
r Minimum regulator voltage pu

16.2.3 Automatic Voltage Regulator Type III

The AVR Type III depicted in Figure 16.11 is a simple model that can be
useful for simplified stability studies. The DAE system is (16.9)-(16.11) and:

v̇r = (K0(1 − T1

T2
)(vref − vm) − vr)/T2 (16.22)

˙̃vf = ((vr +K0
T1

T2
(vref − vm) + vf0)(1 + s0(

vh
v0

− 1)) − ṽf)/Te

where vh is the generator terminal voltage or a remote-bus regulated voltage.
The initial field voltage vf0 and bus voltage v0 are set during the synchronous
machine initialization step. The field voltage ṽf is subjected to an anti-windup
limiter. Table 16.5 defines all parameters required by the AVR Type III. If
s0 is set to 1, the signal vh/v0 is enabled.

16.2 Automatic Voltage Regulator 367

+

+

+

−

vref

vh vm

K0

ṽf

s0

vf0

vmax
f

vmin
f

11

Trs+ 1

T1s+ 1

T2s+ 1 Tes+ 1

1/v0

Fig. 16.11 Automatic voltage regulator Type III control diagram

Table 16.5 Automatic voltage regulator Type III parameters

Variable Description Unit

- Generator code -

- Regulated voltage code -

K0 Regulator gain pu/pu

s0 Bus voltage signal {0, 1}
T1 Regulator zero s

T2 Regulator pole s

Te Field circuit time constant s

Tr Measurement time constant s

vmax
f Maximum field voltage pu

vmin
f Minimum field voltage pu

Example 16.2 Effect of Automatic Voltage Regulation on
Synchronous Machine Bus Voltage

Figure 16.12 shows the effect of the automatic voltage regulation on the bus
voltage of synchronous machine 1 of the IEEE 14-bus system. The transient
refers to line 2-4 outage at t = 1 s. As expected, the system without pri-
mary voltage regulation does not recover the desired voltage values after the
disturbance.

Figure 16.14 shows the transient following the same disturbance but with
a 20% load increase.3 For this loading level, the line outage leads to an un-
stable equilibrium point, as shown in Figure 16.13. In fact, as discussed in
Example 8.9 of Chapter 8, a Hopf bifurcation occurs when increasing the
loading level. In summary, the response of the system without AVRs is poor
but, depending on the loading level, the inclusion of AVRs can lead to in-
stability. Thus, it is required to include additional controllers to improve the
system transient behavior. A solution is provided by power system stabilizers
that are described in the following section.

3 Loads are modelled as constant powers and are switched to constant impedances

for low bus voltage magnitude, i.e., vh < 0.8 pu.

368 16 Synchronous Machine Regulators

Fig. 16.12 Effect of automatic voltage regulation on synchronous machine bus

voltage for the IEEE 14-bus system (100% loading level)

Fig. 16.13 Eigenvalue loci for 120% loading level and line 2-4 outage for the IEEE

14-bus system

16.3 Power System Stabilizer 369

Fig. 16.14 Effect of automatic voltage regulation on synchronous machine bus

voltage for the IEEE 14-bus system (120% loading level)

16.3 Power System Stabilizer

Power System Stabilizers (PSSs) are used for damping power system oscil-
lations. Although several PSS models have been proposed in the literature,
the rationale behind the PSS functioning is the same for all control schemes.
To explain the basic functioning of PSSs, consider a simple electromechanical
model of the synchronous machine with no damping:

2H
dω

dt
= pm − pe(δ) (16.23)

where:

pe(δ) =
e′qvh
x′d

sin(δ − θh) (16.24)

differentiating the above expression and assuming a constant mechanical
power pm leads to:

2HsΔω = −∂pe
∂δ

Δδ − ∂pe
∂e′q

Δe′q − ∂pe
∂vh

Δvh (16.25)

If e′q and vh are constant, one has:

2HsΔω = −∂pe
∂δ

Δδ = −kΔδ (16.26)

370 16 Synchronous Machine Regulators

where

k =
e′qvh
x′d

cos(δ0 − θ0) (16.27)

Since Δω = sΔδ:
2Hs2Δδ + kΔδ = 0 (16.28)

which has a pair of pure complex eigenvalues (no damping):

λ1,2 = ±j
√

k

2H
(16.29)

The PSS allows imposing
Δvh = k1Δδ (16.30)

Hence, one has:
2HsΔω = −kΔδ − kωsΔδ (16.31)

where
kω = k1

∂pe
∂e′q

(16.32)

and, finally:
2Hs2Δδ + kωsΔδ + kΔδ = 0 (16.33)

which has a pair of complex eigenvalues with negative real part:

λ1,2 = − kω
4H

± j

√
8kH − k2

ω

4H
(16.34)

In practice (16.30) is obtained by introducing a feedback signal proportional
to the active power or rotor frequency into the primary voltage control loop.
Typical PSS input signals are the rotor speed ω, the active power ph and also
the bus voltage vh of the generator to which the PSS is connected through
the automatic voltage regulator. The PSS output signal is a signal vs that
modifies the reference voltage vref of the AVR.

In the following subsections, four typical PSS models are described. Except
for the simple model described in Subsection 16.3.1, other models have two
algebraic equations, as follows:

0 = gs(xi, ŷi) − vs (16.35)
0 = v0

ref − vref + vs (16.36)

where (16.35) defines the PSS signal vs, and (16.36) sums the signal vs to
the AVR reference voltage (see also (16.10)). All PSS parameters used in the
following subsections are defined in Table 16.6.

16.3 Power System Stabilizer 371

Table 16.6 Power system stabilizer parameters

Variable Description Unit

- AVR code -

Kp Gain for active power pu/pu

Kv Gain for bus voltage magnitude pu/pu

Kw Stabilizer gain pu/pu

T1 First stabilizer time constant s

T2 Second stabilizer time constant s

T3 Third stabilizer time constant s

T4 Fourth stabilizer time constant s

vmax
s Max stabilizer output signal pu

vmin
s Min stabilizer output signal pu

Tw Wash-out time constant s

16.3.1 Simplified Power System Stabilizer Model

According to the qualitative discussion above, the simplest PSS model is
obtained by introducing in the synchronous machine equations a feedback
signal that modifies the field voltage:

ṽf = vf +Kω(ω − ωs) −KP (ph(xi, vh, θh) − p0) (16.37)

where p0 is the initial electric power generated by the machine. The modi-
fied field voltage ṽf can substitute vf in equations (15.13), (15.16), (15.19),
(15.22), (15.24), (15.27), (15.29), (15.31) or (15.33) defined in Section 15.1 of
Chapter 15.

16.3.2 Power System Stabilizer Type I

PSS Type I is depicted in Figure 16.15, and is described by the following
differential equation:

v̇1 = −(Kwω +Kpph +Kvvh + v1)/Tw (16.38)
vs = Kwω +Kpph +Kvvh + v1

where ω, ph and vh are the rotor speed, the active power and the voltage
magnitude of the generator to which the PSS is connected through the AVR.

16.3.3 Power System Stabilizer Type II

The PSS Type II is depicted in Figure 16.16, and is described by the
equations:

372 16 Synchronous Machine Regulators

v̇1 = −(KwvSI + v1)/Tw (16.39)

v̇2 = ((1 − T1

T2
)(KwvSI + v1) − v2)/T2

v̇3 = ((1 − T3

T4
)(v2 + (

T1

T2
(KwvSI + v1))) − v3)/T4

vs = v3 +
T3

T4
(v2 +

T1

T2
(KwvSI + v1))

Equations (16.39) are an arbitrary choice of DAE that describes the control
blocks depicted in Figure 16.16. Another possible formulation is:

v̇1 = (KwvSI − v1)/Tw (16.40)
v̇2 = (KwvSI − v1 − v2)/T2

v̇3 = ((1 − T1

T2
)v2 +

T1

T2
(KwvSI − v1) − v3)/T4

vs = (1 − T3

T4
)v3 +

T3

T4
((1 − T1

T2
)v2 +

T1

T2
(KwvSI − v1))

The two sets of DAE (16.39) and (16.40) have same dynamic response and
stability properties, but the values of state variables are different.

+

+
+

+

+

vref

vref
0Kw

Kp

Kv

ω

ph

vh

vs

vmax
s

vmin
s

Tws

Tws+ 1

Fig. 16.15 Power system stabilizer Type I control diagram

Kw

vSI vs

vmax
s

vmin
s

Tws

Tws+ 1

T1s+ 1

T2s+ 1

T3s+ 1

T4s+ 1

Fig. 16.16 Power system stabilizer Type II control diagram

16.4 Over-Excitation Limiter 373

16.3.4 Power System Stabilizer Type III

The PSS Type III is depicted in Fig. 16.17, and is described by the equations:

v̇1 = −(KwvSI + v1)/Tw (16.41)
v̇2 = v3

v̇3 = (KwvSI + v1 − T4v3 − v2)/T2

vs = v2 +
T1

T2
(KwvSI + v1) + (T3 − T1

T2
T4)v3 + (1 − T1

T2
)v2

Kw

vSI vs

vmax
s

vmin
s

Tws

Tws+ 1

T1s
2 + T3s+ 1

T2s
2 + T4s+ 1

Fig. 16.17 Power system stabilizer Type III control diagram

Example 16.3 Effectiveness of Power System Stabilizers for
Removing Hopf Bifurcations

Figure 16.18 shows the eigenvalue loci for the IEEE 14-bus system with a
120% loading level and line 2-4 outage with inclusion of a PSS Type II con-
nected at generator 1. The PSS data are reported in Appendix D. The system
is stable and well damped. Thus, in this case, the effect of the PSS is twofold:

1. To remove the Hopf bifurcation.
2. To properly damp the system (compare Figure 16.18 with the eigenvalue

loci of Example 7.1 of Chapter 7).

Figure 16.19 compares the transient response of the IEEE 14-bus system with
and without PSS at generator 1. As expected from the eigenvalue analysis,
the system with PSS is stable and well damped. Furthermore, the PSS allows
recovering the generator bus voltage at the desired value. This simulation has
to be compared with Figure 16.14 of Example 16.2.

16.4 Over-Excitation Limiter

Over-eXcitation Limiters (OXLs) provide an additional signal vOXL to the
reference voltage vref

0 of AVRs [143]. The OXL is modelled as a pure inte-
grator, with anti-windup hard limits (see Figure 16.20). This regulator is
generally sleeping, i.e., vOXL = 0, unless the field current is greater than its

374 16 Synchronous Machine Regulators

Fig. 16.18 Eigenvalue loci for the IEEE 14-bus system with 120% loading level,

line 2-4 outage and a PSS at generator 1

thermal limit (if > ilimf ≈ 2.7 pu). It is implicitly assumed that at the ini-
tial condition given by the power flow solution, all if ≤ ilimf , thus leading to
vOXL = 0 at t = 0. If the field current exceeds its limits the power flow data
are not consistent with dynamic ones.

The output signal vOXL is zero as long as if ≤ ilimf . If if > ilimf , the OXL
becomes active and undergoes the following differential equation:

v̇OXL = (if − ilimf)/T0 (16.42)

In some cases the direct measure of the field current if is not available. Thus,
the field current has to be estimated using available measures. A possible
estimation is:

0 =
√

(vh + γq)2 + p2
h +
(
xd
xq

+ 1
)
γq(vh + γq) + γ2

p√
(vh + γq)2 + p2

h

− if (16.43)

where

γp = xqph/vh

γq = xqqh/vh

16.4 Over-Excitation Limiter 375

Fig. 16.19 Effect of power system stabilizer on synchronous machine bus voltage

for the IEEE 14-bus system (120% loading level)

and vh is the voltage at the generator bus, and ph and qh are the active
and the reactive power of the generator, respectively, and all parameters are
defined in Table 16.7. Observe that the reactances xd and xq of the generator
at which the OXL is connected through the AVR are required in (16.43).

The OXL output signal vOXL modifies the reference AVR voltage (see also
(16.10)):

0 = vref
0 − vref + vOXL (16.44)

(ph, qh, vh)

+

+

−

−

0

1

if

if

ilimf v
OXL

vmax

OXL

AVR Generator Network

vref0

vref

T0s

Fig. 16.20 Over-excitation limiter control diagram

376 16 Synchronous Machine Regulators

Table 16.7 Over-excitation limiter parameters

Variable Description Unit

- AVR code -

ilimf Maximum field current pu

T0 Integrator time constant s

vmax
OXL Maximum output signal pu

xd d-axis estimated generator reactance pu

xq q-axis estimated generator reactance pu

16.5 Under-Excitation Limiter

Under-eXcitation Limiters (UXL) behave similarly to over-excitation ones,
i.e., provide an additional signal to the reference voltage of automatic voltage
regulators. Typical UXL schemes take as input signal a measure of generator
active and reactive powers and bus voltage as well as the exciter field voltage
[144]. A common UXL scheme is shown in Figure 16.21 whereas all parameters
are defined in Table 16.8. The complete DAE system is quite lengthy, but it
can be easily deduced based on the PSS model Type II described in Section
16.3, which can actually be used as base class for this device.

Similarly to the OXL and the PSS, the UXL output signal vUXL modifies
the reference AVR voltage:

0 = vref
0 − vref + vUXL (16.45)

The reference value vUXL0 is computed at the initialization step and serves to
impose vUXL = 0 at the initial condition.

+

+

−

−

−

−

Kp

Kq

Kv Kf

1 + Tps

1 + Tqs

1 + Tvs 1 + Tfs

Kvp +
Kvi

s

(1 + sT1)(1 + sT3)

(1 + sT2)(1 + sT4)

ph

qh

v2
h vf

vUXL

vmin
UXL

vmax
UXLvUXL0

Fig. 16.21 Under-excitation limiter control diagram

16.5 Under-Excitation Limiter 377

Table 16.8 Under-excitation limiter parameters

Variable Description Unit

- AVR code -

Kf , Tf Active power measurement lag pu/pu, s

Kp, Tp Active power measurement lag pu/pu, s

Kq , Tq Reactive power measurement lag pu/pu, s

Kv, Tv Field voltage measurement lag pu/pu, s

Kvp, Kvi PI controller gains pu/pu, pu/pu/s

T1, T2, T3, T4 Controller time constants s

vmax
UXL Maximum output signal pu

vmin
UXL Minimum output signal pu

Chapter 17

Direct-Current Devices

This chapter describes dc devices used for modelling hybrid electro-magnetic
and electro-mechanical power system models. The devices included in this
chapter are: dc nodes (Section 17.1), common interface equations for dc de-
vices (Section 17.2), ideal generators (Section 17.3) and basic components
such as RLC circuits (Section 17.4), dc machines (Section 17.5), and uncon-
ventional dc generators, namely solid oxide fuel cell, solar photovoltaic cell
and energy battery (Section 17.6).

17.1 Direct-Current Nodes

Like ac buses, dc nodes has only a topological function. Dc nodes also serve
for defining the base dc voltages Vdc,b that are used for computing system pu
values of dc devices. Table 17.1 defines all dc node parameters.

Table 17.1 DC node parameters

Variable Description Unit

- Node code -

v0 Initial voltage guess pu

Vdc,n Dc voltage rating kV

17.2 Common Interface Equations for Direct-Current
Devices

Each dc node introduces a new variable (i.e., the node voltage vdc,h) and
an equation (i.e., the current balance at that node). The approach used in
this section and in the following Chapter 18 for modelling dc devices is the
current injection model. As discussed in Chapter 9, the balance equations for
the dc system are:

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 379–394.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

380 17 Direct-Current Devices

0 =
∑
i∈Ωh

idch,i(x, ŷ,v), h ∈ N (17.1)

where idch,i is the current injected at node h by device i and N is the set of
nodes of the dc network.

Since all devices described in this section (except for the ground element
described in following Section 17.3) connects two nodes, the dc equation
interfaces can be standardized in a common class. The general two-node dc
device is depicted in Figure 17.1. Using the generator convention, the dc
network interface equations are:

0 = vdc,h − vdc,k − vdc(xi, ŷi) (17.2)
idc,h = idc(xi, ŷi)
idc,k = −idc(xi, ŷi)

With this simple interface, completing a device model only requires defining
vdc(xi, ŷi) and idc(xi, ŷi) along with one differential equation per each ele-
ment of the internal state variables xi and one algebraic equation per each
element of the internal algebraic variables ŷi.

+ −

h k

vdc,h vdc,k

idc,h idc,k

vdc

idc

Fig. 17.1 General dc device voltages and currents

This approach does not distinguish between series and shunt devices and
allows a high grade of flexibility because the same device (i.e., same pro-
gramming code) can be used both in series and shunt configurations. This
is not the case of ac devices described so far. A pure inductive shunt admit-
tance and a pure reactive transmission line are the same electrical element
(i.e., a reactance), but require two different classes for being defined. The
key point is that in the ac network the ground bus is implicitly used by all
shunt devices. Hence, the proposed dc device modelling approach requires
to explicitly define the ground dc node. The different approach used for ac
and dc networks has a rationale. For ac networks, defining the ground bus
does not provide a significant advantage from the implementation viewpoint
since shunt and series devices are conceptually different devices with quite
different functioning. On the other hand, in dc networks, most devices can
be connected in series or in parallel (e.g., photovoltaic cell grids).

17.3 Ideal Generators 381

Note on Unit Notation

In this chapter and in the following Chapter 18, the values of dc currents and
voltages are considered in pu with respect to the device rated current and
voltage, respectively. As discussed in the chapter Notation at the beginning of
the book, a dc per-unit system is used for analogy with the ac per-unit system.
To maintain consistency, the relative values of resistances, inductances and
capacitances are computed as:

R(pu) =
R(Ω)

Rdc,n
, L(s) =

L(H)

Rdc,n
, C(s) = C(F)Rdc,n (17.3)

where the nominal resistance is computed using the nominal power and
voltage device ratings, i.e., Rdc,n = Sn/Vdc,n. In this way, L(s)/R(pu) and
C(s)R(pu) are in seconds, as one expects. Whenever absolute values are
needed, per-unit quantities are multiplied by the nominal device quantities.
For example, to indicate the power in MW, the notation Snvdcidc will be
used.

17.3 Ideal Generators

Ideal generators are modelled as assigned functions of the time and can be
voltage or current sources. A special case of ideal generator is the ground
device, that fixes the voltage reference for a given dc network.

Ideal Independent Sources

Given the interface (17.2), the equation that defines an ideal independent
current source is simply:

0 = idc − ides (17.4)

where ides is the current imposed by the generator. In this case, since the
current injection is imposed, the equation for the voltage vdc (i.e., the first
of (17.2)) is not required.

Analogously, the equation that defines an ideal independent voltage source
is:

0 = vdc − vref (17.5)

where vdes is the voltage imposed by the generator. The current idc is needed
as an explicit variable due to the current injection model (17.2).

Ground

The ground works for dc networks similarly to the reference angle in ac ones.
Since the ground imposes an absolute value to a node voltage, the inter-
face (17.2) is not required. Similarly to the definition of the reference angle

382 17 Direct-Current Devices

discussed in Section 10.2.2 of Chapter 10, there are at least three possible
models, as follows.

1. To assign to the ground node a fixed value, thus removing the voltage
at that node from the vector of algebraic variables. This solution reduces
the size of the resulting DAE system, but complicates the implementation
since it cannot be easily generalized.

2. To leave the ground voltage as a variable, but “freezing” it through setting
to zero the row and the column of the Jacobian matrix corresponding to
that variable. This method can be easily generalized.

3. To leave the ground voltage as a variable and to include an additional alge-
braic variable for imposing the desired ground voltage value. This method
is very general and do not require manipulating the system Jacobian ma-
trix. Equations are:

idc,h = −iground (17.6)
0 = vdc,h − vground

where iground is a dummy variable and vground is the desired ground voltage.
Typically vground = 0.

17.4 Basic RLC Models

For the sake of example, this section provide the models of the basic circuit
elements depicted in Figure 17.2. The resistance, inductance and capacitance
models have to be compared with those based on the Dommel’s method (see
Section 8.5 of Chapter 8). The main differences are that (i) the approach
used in this chapter does not depend on the integration step length and (ii)
does not require any hypothesis about the linearity of the devices. Table 17.2
summarizes the parameters required for basic RLC elements.

Table 17.2 RLC parameters

Variable Description Unit

R Resistance pu

L Inductance s

C Capacitance s

• Resistance (Figure 17.2.a):

0 = vdc/R+ idc (17.7)

17.4 Basic RLC Models 383

R

R

R

R

R

L

L

L

L

C

C

C

C

h

h

h
h

h

h hk

k

k
k

k

k k
(a) (b) (c)

(d) (e)

(f) (g)

Fig. 17.2 RLC circuits

• Inductance (Figure 17.2.b):

i̇L = vdc/L (17.8)
0 = iL + idc

• Capacitance (Figure 17.2.c):

v̇C = −idc/C (17.9)
0 = vC − vdc

• RC parallel (Figure 17.2.d):

v̇C = −(idc + vC/R)/C (17.10)
0 = vC − vdc

• RL series (Figure 17.2.e):

i̇L = (vdc −RiL)/L (17.11)
0 = iL + idc

384 17 Direct-Current Devices

• RLC series (Figure 17.2.f):

i̇L = (vdc −RiL − vC)/L (17.12)
v̇C = iL/C

0 = iL + idc

• RLC parallel (Figure 17.2.g):

v̇C = −(idc + vC/R+ iL)/C (17.13)
i̇L = vC/L

0 = vC − vdc

Along with the Voltage Source Converter (VSC) described in the following
Chapter 18, these basic elements can provide a versatile tool for setting up
composite devices. For example, a SMES is an inductance connected to an
ac network through a VSC. Furthermore, VSC-based FACTS devices are
composed of a VSC or two back-to-back VSCs with a capacitance on the dc
side. These devices are described in Chapter 19.

17.5 Direct-Current Machines

A power system book of XXth century would have dedicated an entire chap-
ter to direct-current machines. Unfortunately, these beautiful (from the mod-
elling viewpoint) machines are not very common in these years, although a
renewed interest could come from some distributed energy resource applica-
tions. However, I believe that a book on power system devices is not complete
if it does not include at least a brief outline of basic dc machine models and
configurations.

h

k

h′

k′

RaRf

Lff

ωLaf if

Laa

iaif
vavf

++

−−

Fig. 17.3 Basic dc machine equivalent circuit

Figure 17.3 shows the basic equivalent circuit of a direct-current machine.
The following notation assumes that the machine is working as a motor. The
dc machine DAE system is [160]:

17.5 Direct-Current Machines 385

i̇f = (vf −Rf if)/Lff (17.14)
i̇a = (va −Raia − Laf ifω)/Laa
ω̇ = (τe − τm −Dω)/2H
0 = Laf if ia − τe

where ia and if are the armature and field currents, respectively, va and vf
are the armature and field voltages, respectively, ω is the rotor angular speed,
τe is the electrical torque, and all other parameters are defined in Table 17.3.
The coefficient D models frictions and windage losses, hence D � 1 pu for
τe ≈ 1 pu.

Table 17.3 Direct-current machine parameters

Variable Description Unit

D Coefficient for frictions and windage losses pu

H Machine inertia constant MWs/MVA

Laa Armature winding self-inductance s

Laf Mutual field-armature inductance s

† Las Mutual series field-armature inductance s

Lff Field winding self-inductance s

† Lfs Mutual series-shunt field windings inductance s

† Lss Series field winding self-inductance s

Ra Armature winding resistance pu

Rf Field winding resistance pu

† Rs Series field winding resistance pu

τm Mechanical torque pu

† Parameters required only for the compound-connected dc machine.

The typical configurations of the dc machine described above are: (i) sepa-
rate winding excitation, (ii) shunt connection, (iii) series connection and (iv)
compound connection. The following items provide the interface equations
that make each connection type compliant with (17.2).

Separate Winding Connection

The machine is connected to two pairs of dc nodes, i.e. h-k for the armature
winding and h′-k′ for the field winding (see Figure 17.3). The voltage and
current pairs (vdc, idc) and (v′dc, i

′
dc) are associated with the nodes h-k and

h′-k′, respectively. Thus, for the armature winding:

vdc = va, idc = −ia (17.15)

and for the field winding:

v′dc = vf , i′dc = −if (17.16)

386 17 Direct-Current Devices

(a)

(b)
h

k

Ra

Rf

Rs

Lff

Lfs

ωLaf if ± ωLasis

Laa

is

ia

if

va

vf

vs

+

+

+

−

−

−

Fig. 17.4 Compound-connected dc machine equivalent circuit: (a) shunt field con-

nected ahead the series field, and (b) shunt field connected behind the series field

Shunt-Connected DC Machine

The armature and the field windings are connected in parallel (i.e., h ≡ h′

and k ≡ k′). Hence:

vdc = va = vf , idc = −ia − if (17.17)

Series-Connected DC Machine

The armature and the field windings are connected in series (i.e., k ≡ h′).
Hence:

vdc = va + vf , idc = −ia = −if (17.18)

Compound-Connected DC Machine

In this case, the machine is equipped with two field windings (see Figure 17.4).
The first winding is connected in series, while the second one in parallel with
the armature winding. Assuming that vf and if are the voltage and the
current, respectively, for the shunt-connected field winding, and vs and is
are the voltage and the current, respectively, for the series-connected field
winding, the DAE system becomes:

17.6 Other Direct-Current Devices 387

d

dt

⎡
⎣ifis
ia

⎤
⎦ =

⎡
⎣ Lff ±Lfs 0
±Lfs Lss 0

0 0 Laa

⎤
⎦
−1

(17.19)

⎡
⎣
⎡
⎣vfvs
va

⎤
⎦−

⎡
⎣ Rf 0 0

0 Rs 0
ωLaf ±ωLas Ra

⎤
⎦
⎡
⎣ifis
ia

⎤
⎦
⎤
⎦

ω̇ = (τe − τm −Dω)/2H
0 = Laf if ia ± Lasisia − τe

where the ± sign indicates either a cumulative or a differential series connec-
tion. Finally, the dc-network interface constraints depend on the field circuit
connections, as follows.

(a) Shunt field connected ahead the series field:
vdc = vs + va = vf , idc = −is − if , ia = is (17.20)

(b) Shunt field connected behind the series field:
vdc = vs + va = vs + vf , idc = −is, ia = is − if (17.21)

17.6 Other Direct-Current Devices

This section describes three models of nonlinear dc devices, namely the solid
oxide fuel cell, the solar photovoltaic cell and the energy battery. These de-
vices are of growing interest for distributed and/or renewable resource gener-
ation and energy storage. Furthermore, they have interesting nonlinear DAE
models, which is enough for being included in this section.

17.6.1 Solid Oxide Fuel Cell
Fuel cells are a promising technology for producing electrical energy. The
main issues that complicate the design of efficient and robust fuel cells are
related to electrode heating and corrosion. However, fuel cells are expected
to play an important role in distributed generation.

A Solid Oxide Fuel Cell (SOFC) model described in this section is based
on what was proposed in [124, 159, 226, 273, 362]. Figure 17.5 depicts the
fuel cell scheme, which is based on the following equations:

Θ̇ =
1

mgcp
(Qe − hcAc(Θ −Θa) − σεAr(Θ4 −Θ4

a)) (17.22)

ṗH2 = ((qH2 − 2Kridc)/KH2 − pH2)/TH2

ṗH2O = (2Kridc/KH2O − pH2O)/TH2O

ṗO2 = ((qH2/rHO −Kridc)/kO2 − pO2)/TO2

q̇H2 = (2Kridc/Uopt − qH2)/Tf

0 = −vdc −Rdc(Θ)idc +
N0

Vdc,n
(E0 +

rΘ
2f

ln(pH2

√
pO2/pH2O))

388 17 Direct-Current Devices

Table 17.4 Solid oxide fuel cell parameters

Variable Description Unit

Ac Cell effective convection area m2

Ar Cell effective radiation area m2

cp Average cell specific heat J/kg/K

E0 Ideal standard potential V

hc Convection-cooling coefficient W/K/m2

KH2 Valve molar constant for hydrogen -

KH2O Valve molar constant for water -

KO2 Valve molar constant for oxygen -

K̃r Mole flow-dc current coefficient mol/C

mg Cell mass kg

N0 Number of cells in series in the stack int.

Qe Heat generated by the electrochemical reaction W

Ra
dc Ohmic losses at ambient temperature pu

rHO Ratio of hydrogen to oxygen -

Tf Fuel processor response time s

TH2 Response time for hydrogen flow s

TH2O Response time for water flow s

TO2 Response time for oxygen flow s

Uopt Optimal fuel utilization -

βr Ohmic loss temperature factor -

ε Emittance -

Θa Ambient temperature K

where σ = 5.670 · 10−8 W/m2/K4 is the Stefan-Boltzmann’s constant. The
first equation defines the thermodynamic energy balance, while second to
fifth equations defines the electrochemical reaction dynamics and the last
equation defines the fuel cell voltage. In (17.22), pH2 , pO2 and pH2O are the
hydrogen, oxygen and water mole fractions, respectively, qH2 , qO2 and qH2O

are the hydrogen, oxygen and water flows, respectively, r is the gas constant
(r = 8.314 J/mol/K), f is the Faraday constant (f = 96487 C/mol), and the
remaining quantities are defined in Table 17.4. The coefficient Kr depends
on the number of electrons ne in the reaction, the Faraday f constant and
the current rating Idc,n = Sn/Vdc,n, as follows:

Kr = K̃rIdc,n =
neIdc,n

4f
(17.23)

The ohmic losses modelled through the resistance Rdc are due to the re-
sistance to the flow of ions in the electrolyte and resistance to the flow of
electrons through the electrode materials. The resistance depends on the
temperature Θ:

Rdc = Radce
βr(1

Θa
− 1

Θ) (17.24)

17.6 Other Direct-Current Devices 389

_

_

_

1
1

+

+

+

R
d
c

K
r

2
K

r

2
K

r

i d
c

v d
c

q H
2

q O
2

p
H

2
p

O
2

p
H

2
O

p
H

2
O

r H
O

p
H

2
√ p

O
2

1
/
K

H
2

T
H

2
s

+
1

1
/
K

H
2
O

T
H

2
O
s

+
1

1
/
K

O
2

T
O

2
s

+
1

T
f
s

+
1

N
0

E
0
+

ln
rΘ 2
f

U
o
p
t

Fig. 17.5 Solid oxide fuel cell scheme

390 17 Direct-Current Devices

17.6.2 Solar Photovoltaic Cell

Despite their high cost and low efficiency, solar photovoltaic cells are gain-
ing in recent years popularity, thanks to the growing interest in renewable
sources and, especially, thanks to public funding. At the moment, the biggest
photovoltaic plant capacity is 60 MW,1 but the vast majority of solar plants
have a capacity ≤ 0.2 MW. However, at least from the modelling viewpoint,
photovoltaic plants are quite interesting [174, 177].

The electrical circuit is described by the following equations (see
Figure 17.6):

idc = iL − iD − vD
Rsh

(17.25)

0 = vD − vdc −RSeidc

0 = is(Θ)(evD/(γvΘ(Θ)) − 1) − iD

where iL is the photo-current generated by sunlight, vD and iD are the PN
junction voltage and current, respectively, vΘ is the thermal potential, is
is the reverse saturation current, and remaining parameters are defined in
Table 17.5. The variables vΘ and is can be expressed as:

vΘ(Θ) =
kBΘ

qε
(17.26)

is(Θ) = is0

(
Θ

Θa

)3

eϕ(Θ)

where Θ is the cell temperature and the function ϕ(Θ) is:

ϕ(Θ) =
qε
γkB

(
Eg(Θa)
Θa

− Eg(Θ)
Θ

)
(17.27)

and kB = 1.381 · 10−23 J/K is the Boltzmann’s constant, , qε = 1.602 · 10−19

C is the electron charge, and Eg is the energy band gap, which is a function
of the temperature:

Eg(Θ) = Eg0 − αgΘ
2

βg +Θ
(17.28)

The light-generated current can be linearized around a temperature of 298
K and an irradiance of 1000 W/m2:

0 = (AaρeG+ CΘ(Θ − 298.0))
G

1000
− Sn
Vdc,n

iL (17.29)

where G is the solar irradiance or insolation in W/m2.

1 This plant was completed in 2008 and is located in Olmedilla de Alarcón, Castilla-

La Mancha, Spain.

17.6 Other Direct-Current Devices 391

+ +

− −

G

vD vdc

idc

iL

iD ish

Rsh

Rse

Fig. 17.6 Equivalent circuit of photovoltaic cells

Finally, the model is completed by an energy-balance differential equation
that regulates the cell heat transfer with the ambient:

Θ̇ =
1

cpmg

(
Sn

(vdc − vD)2

Rse
+ Sn

v2
D

Rsh
+ SniDvD (17.30)

+ (1 − ρc − τc − ηc)AaG− hcAc(Θ −Θa) − σεAr(Θ4 −Θ4
a)
)

where σ = 5.670 · 10−8 W/m2/K4 is the Stefan-Boltzmann’s constant and ηc
is the cell power conversion efficiency:

ηc =
Snvdcidc

GAa
(17.31)

The model described above represents a single cell. A panel is composed of a
grid of cells connected in series and in parallel. Then a plant is composed of
a series of several panels. However, the model above can be also used for rep-
resenting the entire plant by using proper equivalent parameters. The photo-
voltaic cell (detailed or equivalent model) has then to be connected to the ac
network. This is generally done through a VSC device and proper controllers.
An example of controllers are given in Example 18.2 of Chapter 18.

In this model, the solar irradiance G is the input variable since it depends
on time t, season, atmospheric conditions, dirtiness of the cell surface, etc.
The solar irradiance can be provided as a series of measurements (i.e., (G, t)-
value pairs) or approximated using mathematical models [33].

17.6.3 Battery Energy System

Storing electrical energy is a hard task. Since capacitors are far from behaving
similarly to an ideal capacitance, the only effective way to store electrical
energy is to convert it in another form of energy. For example, batteries are
able to store chemical energy, pumping hydro plants store water potential
energy, and flywheels store kinetic energy.2

2 Example 18.3 of Chapter 18 provides another example of energy storage device

based on a superconducting coil (SMES). In this case the electrical energy is

converted into magnetic one.

392 17 Direct-Current Devices

Table 17.5 Solar photovoltaic cell parameters

Variable Description Unit

Aa Cell active area m2

Ac Cell effective convection area m2

Ar Cell effective radiation area m2

CΘ temperature coefficient of the photo-current iL A/K

cp Average cell specific heat J/kg/K

Eg0, αg , βg Energy band gap function parameters eV, eV/K, K

hc Convection-cooling coefficient W/K/m2

is0 Saturation current at Θa A

mg Cell mass kg

Rse Cell body series resistance pu

Rsh Cell body shunt resistance pu

γ Diode ideality factor -

ε Emittance -

Θa Ambient temperature K

ρe Average spectral responsivity A/W

ρc Cell reflection factor -

τc Cell transmission factor -

In recent years, storage devices have gained more and more relevance be-
cause they can help systems with stochastic primary energy sources (e.g.,
wind or solar energy) maintain a smooth power production profile. Among
the several existing energy storage devices (e.g., flywheels, electrolyzers, hy-
drogen storage, etc.), batteries are one of the most promising [235].

A battery is a voltage source that depends on the generated current and
on the state of charge (SOC) of the battery itself. There are several battery
types, e.g., lead-acid, lithium-ion, lithium-polymer, nickel-cadmium, nickel-
metal hydride, zinc-air, etc. A dynamic rechargeable battery model, based on
the classical Shepherd’s model, is as follows [278, 314]:

q̇e = idc/3600 (17.32)
i̇m = (idc − im)/Tm
0 = voc − vp(qe, im) + vee

−βeqe −Riidc − vdc

where qe is the per unit extracted capacity normalized with respect to the
maximum battery capacity Qn in Ah, im is the battery current idc passed
through a low-pass filter, the polarization voltage vp(qe) depends on the sign
of im, as follows:

vp(qe, im) =

⎧⎪⎨
⎪⎩
Rpim +Kpqe

SOC
if im > 0 (discharge)

Rpim
qe + 0.1

+
Kpqe
SOC

if im < 0 (charge)
(17.33)

17.6 Other Direct-Current Devices 393

and the SOC is defined as:

SOC =
Qn −Qe
Qn

= 1 − qe (17.34)

where Qe is the extracted capacity in Ah and remaining parameters are
defined in Table 17.6. Figure 17.7 shows a typical discharge of a battery.

Fig. 17.7 Battery discharge characteristic

In the literature, several other battery models have been proposed. For ex-
ample, the so-called universal model [320] and a Thevenin’s equivalent model
including resistive and capacitive elements [264]. While the universal model is
basically a linearization of the previous model (17.32), the Thevenin’s battery
equivalent attempts to model the battery capacity through fictitious capaci-
tors. The latter model can be linear (constant parameters) or nonlinear (the
parameters depend on the SOC).

Apart from the SOC, another aspect that has to be taken into account in
battery models is the parameter dependence on the temperature. In partic-
ular, the internal and polarization resistances are a function of the average
battery temperature Θ. Figure 17.8 shows some typical empirical curves of
the battery equivalent total internal resistance as a function of both Θ and
SOC [235]. As a consequence of the internal resistance is that, during the
charge and discharge processes, the battery generates heat proportionally to
the energy transit in the time interval. To avoid over-heating, the battery has
to be cooled down. The battery temperature dynamic can be written as:

394 17 Direct-Current Devices

Θ̇ =
1

cpmg

(
Snvdcidc(1 − ηv +

Ed
Vdc,nvoc

) (17.35)

−hcAc(Θ −Θa) − σεAr(Θ4 −Θ4
a)
)

where σ = 5.670 · 10−8 W/m2/K4 is the Stefan-Boltzmann’s constant.

Fig. 17.8 Battery internal resistance as a function of temperature and state of charge

Table 17.6 Energy battery parameters

Variable Description Unit

Ac Cell effective convection area m2

Ar Cell effective radiation area m2

cp Average battery specific heat J/kg/K

Ed Average power loss per ampere of discharge W/A

hc Convection-cooling coefficient W/K/m2

Kp Polarization constant pu/pu

mg Battery mass kg

Qn Rated battery capacity Ah

Ri Internal battery resistance Ω
Rp Polarization resistance pu

voc Open circuit potential pu

ve Exponential voltage pu

βe Exponential capacity coefficient 1/pu

ε Emittance -

ηv Voltage efficiency factor on discharge -

Θa Ambient temperature K

Chapter 18

AC/DC Devices

This chapter describes the two most common ac/dc devices, namely the high-
voltage dc transmission system (Section 18.1) and the voltage source con-
verter (Section 18.2). Each section provides the detailed device model and
control scheme examples.

18.1 High-Voltage Direct-Current Transmission
System

High-Voltage Direct-Current (HVDC) transmission systems consist of a
dc line interfaced to the ac network through a rectifier and an inverter.
Figure 18.1 shows a typical HVDC scheme. HVDC systems have been in-
tensively studied in the eighties and nineties and raised great expectations
[1, 12, 13, 15, 26, 28, 40, 41, 202, 203, 240, 261, 268, 280, 305, 331]. A future
of power systems entirely composed of HVDC systems was anticipated. That
foreseen scenario has not happened mostly due to rectifier and inverter costs
and regulation issues. However, HVDC systems accomplish important niche
applications for which there are no other device candidates.

++

−−

iR,dc = −iI,dc

vI,dcvR,dc

v̄h
v̄k

s̄h s̄k

InverterRectifier

1 : mR mI : 1

Fig. 18.1 HVDC scheme

HVDC systems are mainly used for long connections that cannot be ob-
tained with standard ac transmission lines due distributed parameter issues,

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 395–412.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

396 18 AC/DC Devices

e.g., Ferranti’s effect and delays (see Section 11.1 of Chapter 11). HVDC are
also the unique choice in case of long submarine connections. Another in-
teresting application is in the back-to-back configuration, which consists in
connecting the rectifier and the inverter dc sides without the dc line. The
back-to-back configuration is useful to decouple system frequencies. For ex-
ample a back-to-back HVDC device is necessary to interconnect two ac sys-
tems working at different nominal frequencies (e.g., Japanese interconnected
system) or if one of the ac sides shows a poor frequency regulation and the
other side wants to avoid problems. Finally, a configuration that includes
a rectifier and a dc load are used in some industrial applications (e.g., arc
furnaces).

The most flexible manner to implement a general HVDC system is to
divide the system into its minimal entities:

1. Ac/dc converter (rectifier and inverter).
2. Dc network.
3. Regulators.

In this way, any HVDC configuration (including multi-terminal ones) and
control can be implemented with the minimum effort. Dc network elements
are described in Chapter 17. Following subsections present the models of con-
verters and HVDC controllers used for a standard two-terminal connection.
The interested reader can find a discussion on multi-converter HVDC systems
in [16].

18.1.1 Per Unit System for DC Quantities

In [163], the following bases are used for computing the dc per unit quantities:

V dc
base =

3
√

2
π

V ac
base (18.1)

Idc
base = Idc

rate = Idc
n

Sdc
base = V dc

baseI
dc
base

Zdc
base = V dc

base/I
dc
base

Furthermore, Sn ≈ V dc
n Idc

n holds to avoid inconsistencies. In the following
subsections, the dc power base is assumed equal to the ac one, i.e., Sdc

base = Sn.

18.1.2 Rectifier Model

The rectifier scheme with current and voltage sign notation is shown in
Figure 18.2. The dc-side interface equations are (17.2), i.e., the same as any
two-terminal dc device described in Chapter 17. According to the notation
of Figure 18.2, the active and reactive power injections at the ac-side are:

18.1 High-Voltage Direct-Current Transmission System 397

ph = −vR,dciR,dc (18.2)
qh = −kmRvhiR,dc sinφh

where φh is the angle between the average ac voltage and the ac current of
the rectifier, mR is the transformer tap ratio, and k = 0.9995 · 3

√
2/π. The

link between the ac and the dc sides is given by:

0 = kmRvh cosα− 3
π
xR,ciR,dc − vR,dc (18.3)

0 = kmRvh cosφh − vR,dc

where α is the rectifier firing angle. Remaining parameters and rectifier vari-
able limits are defined in Table 18.1. Two equations are required to complete
the converter model. These equations are used for controlling the transformer
tap ratio mR and the firing angle α (see following Subsection 18.1.4).

+

−

iR,dc

vR,dc

vh∠θh

ph + jqh

1 : mR

Fig. 18.2 Rectifier scheme

Table 18.1 Rectifier parameters

Variable Description Unit

mmax
R Maximum transformer tap ratio pu/pu

mmin
R Minimum transformer tap ratio pu/pu

xR,c Commutation reactance pu

αmax Maximum firing angle α rad

αmin Minimum firing angle α rad

18.1.3 Inverter Model

The equations that describe the inverter dc-side interface are (17.2). Further-
more, equations (18.2) and (18.3) have to be rewritten to take into account
the extinction angle or commutation margin γ and the sign of the dc cur-
rent on the inverter dc side (see Figure 18.3). For the two-terminal scheme
of Figure 18.1, iI,dc = −iR,dc, hence one has:

398 18 AC/DC Devices

pk = −vI,dciI,dc (18.4)
qk = kmIvkiI,dc sinφk

0 = kmIvk cos(π − γ) − 3
π
xI,ciI,dc + vI,dc

0 = kmIvk cosφk − vI,dc

where φk is the angle between the ac voltage and the ac current of the in-
verter and all remaining parameters and inverter variable limits are defined in
Table 18.2. Observe that, since iI, < 0, the inverter injects active power and
consumes reactive power at the ac bus k. As for the rectifier, two equa-
tions are required to complete the model. These equations are used for
controlling the transformer tap ratio mI and the extinction angle γ (see
Subsection 18.1.4).

+

−

iI,dc

vI,dc

vk∠θk

pk + jqk

mI : 1

Fig. 18.3 Inverter scheme

Table 18.2 Inverter parameters

Variable Description Unit

mmax
I Maximum transformer tap ratio pu/pu

mmin
I Minimum transformer tap ratio pu/pu

xI,c Commutation reactance pu

γmax Maximum extinction angle γ rad

γmin Minimum extinction angle γ rad

18.1.4 HVDC Control

HVDC controllers have to coordinate the operations of the rectifier and the
inverter devices. The controlling variables are the transformer tap ratio and
the firing angle on the rectifier side and the transformer tap ratio and the
extinction angle on the inverter side.

Tap ratio controls are necessarily slower than those of firing/extinction
angles. The firing and extinction angles, which are characterized by fast dy-
namics, are considered algebraic variables, while the tap ratio, whose dynamic
is relatively slow, are considered state variables.

18.1 High-Voltage Direct-Current Transmission System 399

A common control scheme for the HVDC transmission system scheme of
Figure 18.1 is as follows.

Rectifier current control mode (RCCM): Rectifier-side regulators control the
dc current idc through a PI controller that varies the firing angle α, and
the ac voltage vh through the off-nominal tap ratio mR. Inverter-side
regulators maintain constant the extinction angle γ = γref ≥ γmin and
control the dc voltage vI,dc through the tap ratio mI . The DAE system
is as follows:

ẋR,m = (vh − vref
ac)/TR (18.5)

ẋI,m = (vref
dc − vI,dc)/TI

0 = mR − xR,m

0 = mI − xI,m

ẋR,i = Ki(irefdc − idc)
0 = xR,i +Kp(irefdc − idc) − α

0 = γref − γ

The PI control undergoes an anti-windup limiter (see Section C.2 of Ap-
pendix C) to maintain the firing angle within its limits. The state variable
xR,m and xI,m are introduced to allow a general interface with the con-
verter and rectifier models.

Inverter current control mode (ICCM): Inverter-side regulators control the
dc current idc through the extinction angle γ and the the ac voltage vk
through the tap ratio mI . Rectifier-side regulators maintain constant the
firing angle α = αmin and control the dc voltage vR,dc through the tap
ratio mR. The DAE system is as follows:

ẋR,m = (vref
dc − vR,dc)/TR (18.6)

ẋI,m = (vk − vref
ac)/TI

0 = mR − xR,m

0 = mI − xI,m

0 = αmin − α

ẋI,i = Ki(irefdc + idc − imdc)
0 = xI,i +Kp(irefdc + idc − imdc) − γ

where the current margin imdc avoids that the RCCM and ICCM con-
trols overlap. As for the RCCM, the state variables undergo anti-windup
limiters.

Power control : If a power/frequency control is required, the reference current
irefdc can be the output of a power (or master) control, as follows [184]:

irefdc = min{ides
dc , i

lim
dc } (18.7)

400 18 AC/DC Devices

0

0

α = αmin

γ = γref

vdc

idc

imdc

irefdc

kmRvh cosαmin

kmIvk cos(π − γref)

Normal

Operating Point

Inverter

Rectifier

Fig. 18.4 HVDC steady state characteristic for the rectifier current control mode

where ides
dc = pref/vdc is the current that provides the desired reference

power pref and vdc is the dc voltage at one of the two converter terminals,
and ilimdc is defined based on the dc voltage value, as follows:

ilimdc =

⎧⎪⎨
⎪⎩
imin
dc , if vdc < vmin

dc

imin
dc + c(vdc − vmin

dc), if vmin
dc ≤ vdc ≤ vmax

dc

imin
dc + c(vmax

dc − vmin
dc), if vdc > vmax

dc

(18.8)

where, typically, c = 1 pu/pu.

Figure 18.4 summarizes the steady-state characteristic of the HVDC control
for the RCCM, whereas Table 18.3 summarizes and defines the parameters
of the HVDC controllers.

18.2 Voltage Source Converter

The Voltage Source Converter (VSC) device is similar to the rectifier or in-
verter devices of the HVDC transmission system. Thus, the VSC provides a
link between an ac and and dc networks. The main difference with HVDC sys-
tems is the technology of power electronic switches. HVDC devices are built
using conventional thyristors, which provide the turn-on control, but can be
turned off only if the current is zero. The electronic switches used for VSC de-
vices are Gate Turn-Off Thyristor (GTO), MOS Turn-off Thyristor (MTO),
Integrated Gate Bipolar Transistor (IGBT) or Integrated Gate-Commutated
Thyristor (IGCT). These are called turn-off devices since they provide both
turn-on and turn-off controls, the latter also for non-zero currents. Turn-off
devices are more expensive and have higher losses than conventional thyris-
tors. These drawbacks implies that the typical VSC capacity is smaller than

18.2 Voltage Source Converter 401

Table 18.3 HVDC control parameters

Parameter Description Units

c Slope of the voltage/current power control pu

imdc Current margin pu

imin
dc Minimum dc current pu

Ki Integral gain for the current PI control 1/s

Kp Proportional gain for the current PI control rad/pu

pref Power reference pu

TI Inverter control time constant s

TR Rectifier control time constant s

vmax
dc Maximum dc voltage pu

vmin
dc Minimum dc voltage pu

vref
dc Reference dc voltage pu

vref
ac Reference ac voltage pu

αref Reference firing angle rad

γref Reference extinction angle rad

HVDC ones. However, the turn-off ability allows obtaining controls with
higher flexibility than those that can be implemented for HVDC systems.
In practice, VSC are used for small to medium power applications such as
FACTS devices, wind turbines and other distributed energy resources.

The VSC scheme is shown in Figure 18.5. The typical configuration includes
a capacitor, a bi-directional inverter and a transformer. The capacitor allows
maintaining constant the dc voltage while the transformer provides a Galvanic
insulation. The ac/dc conversion is provided by the VSC, which also includes a
series phase reactor and a shunt ac filter.1 The dc voltage is converted into an
ac one whose magnitude depends on the VSC modulating amplitude am and
whose phase is the inverter firing angle α.

+

−

VSC

vdc

√
3
8
amvdc∠α vac∠θac

idc

pac + jqac, iac∠φac

Fig. 18.5 Voltage source converter scheme

The dc-side interface is defined by (17.2). In principle, the elements con-
nected to the dc terminals of the VSC are not part of the VSC model. How-
ever, in most cases, the dc side of the VSC contains at least a capacitor used
1 The phase reactor and the shunt ac filter as well as the phase-locked loop are not

modelled in this chapter since their effects are relevant only for electromagnetic

transients.

402 18 AC/DC Devices

for fixing the dc voltage (see Figure 18.5). The capacitor can be modelled as a
parallel RC described by equations (17.10) provided in Chapter 17. To work
properly, the dc network must contain two nodes, one of which is connected
to the ground. The VSC and the RC element are connected in parallel to the
dc nodes. From the implementation viewpoint, it is better that the capaci-
tor is independent from the VSC model. This allows more flexibility in the
configuration of the dc side (see for example the different configurations de-
scribed in [129]). On the other hand, the ac/ac transformer can be embedded
in the VSC model. The ac-side interface is:

pac = gT v
2
ac −
√

3/8 amvdcvacgT cos(θac − α) (18.9)

−
√

3/8 amvdcvacbT sin(θac − α)

qac = −bT v2
ac +
√

3/8 amvdcvacbT cos(θac − α)

−
√

3/8 amvdcvacgT sin(θac − α)

where gT + jbT = 1/(rT + jxT) is the transformer series admittance. The
power balance between the dc and the ac sides is:

0 = gT (
√

3/8 amvdc)2 −
√

3/8 amvdcvacgT cos(θac − α) (18.10)

+
√

3/8 amvdcvacbT sin(θac − α)

Finally, it is important to monitor the ac current to avoid overloading VSC
circuits. The ac current iac∠φac can be obtained imposing the following
constraints:

0 = p2
ac + q2ac − vaciac (18.11)

0 = pac sin(θac − φac) − qac cos(θac − φac)

The VSC parameters are defined in Table 18.4 according to the implementa-
tion choice of maintaining the capacitor as an independent device.

Table 18.4 Voltage source converter parameters

Variable Description Unit

imax
ac Maximum ac current pu

imax
dc Maximum dc current pu

amax
m Maximum modulating amplitude pu

amin
m Minimum modulating amplitude pu

rT Transformer resistance pu

xT Transformer reactance pu

αmax Maximum firing angle rad

αmin Minimum firing angle rad

18.2 Voltage Source Converter 403

VSC models can be connected as shunt or series devices to the ac network.
Equations (17.2) and (18.9)-(18.11) can be used as base for both connections,
as follows.

VSC Shunt Connection: Assuming that the VSC is connected to the ac bus
h, the shunt connection is obtained imposing:

ph = −pac, qh = −qac, vh = vac, θh = θac (18.12)

VSC Series Connection: Assuming that the VSC is connected to the ac buses
h and k, the series connection is defined by:

0 = ph + pk − pac (18.13)
0 = qh + qk − qac

0 = p2
h + q2h − (vhiac)2

0 = ph sin(θh − φac) − qh cos(θh − φac)
0 = p2

k + q2k − (vkiac)2

0 = pk sin(θh − φac) − qk cos(θk − φac)

The VSC model is completed by the controls that regulates the modulating
amplitude am and the firing angle α. These controls depend on the application
and should be defined separately to maintain the VSC model as general as
possible (similarly to the case of the inverter and rectifier models used in the
HVDC link).

A special care has to be devoted to the operating limits of the VSC device.
Both the firing angle and the modulating amplitude are limited:

αmax ≤ α ≤ αmin (18.14)
amax
m ≤ am ≤ amin

m

These limits are used for bounding the controls of the VSC device. Then the
ac and dc current limits indicated in Table 18.4 have also to be checked during
VSC operation. If a current limit is reached, then some of the VSC controls
have to be locked. In other words, current limits impose indirect limits on
the firing angle α and the modulating amplitude am (e.g., αmax(idc)).

The following examples describe two typical applications of the VSC device
for connecting distributed dc resources to the ac network, namely the fuel cell
and the photovoltaic cell.

Example 18.1 Solid Oxide Fuel Cell Control

The SOFC model described in Subsection 17.6.1 is linked to ac networks
through a shunt-connected VSC device. The two controllers that have to be
included to complete the system composed of the SOFC and the VSC are
shown in Figure 18.6. The ac voltage magnitude vh is regulated by means of
the VSC inverter modulating amplitude am:

404 18 AC/DC Devices

ȧm = (Km(vref − vh) − am)/Tm (18.15)

The amplitude control undergoes an anti-windup limiter. The fuel cell dc
current set point irefdc is defined based on power reference pref :

irefdc = pref/vdc (18.16)

The set point irefdc is limited by the dynamic limits proportional to the hydro-
gen flow:

UminqH2

2Kr
≤ irefdc ≤ UmaxqH2

2Kr
(18.17)

where qH2 is the hydrogen flow and Umax are Umin are the maximum or the
minimum hydrogen utilization, respectively. Then the current idc is regulated
through the VSC firing angle α by means of a PI controller:

ẋα = Ki(irefdc − idc) (18.18)
0 = Kp(irefdc − idc) + xα − α

Table 18.6 defines all parameters of the SOFC controllers.

vref

vh am

amax
m

amin
m

αmax

αmin

Km

Tms+ 1

+

+

−

−

α

s
Kp+

Ki

qH2

qH2

pref

idc

irefdc

1/vdc
Umax/2Kr

Umin/2Kr

Fig. 18.6 Power and ac voltage controls for the solid oxide fuel cell

Example 18.2 Solar Photovoltaic Cell Control

Similarly to the fuel cell, photovoltaic panels are linked to the ac network
through a shunt-connected VSC device. The voltage control on the ac side can

18.2 Voltage Source Converter 405

Table 18.5 Solid oxide fuel cell regulator parameters

Variable Description Unit

Ki Integral gain of the current control rad/s/pu

Km Gain of the voltage control loop pu

Kp Proportional gain of the current control rad/pu

pref Reference power pu

Tm Time constant of the voltage control loop s

Umax Maximum fuel utilization -

Umin Minimum fuel utilization -

be obtained using the VSC inverter modulating amplitude am. The voltage
control equation is, for example, (18.15).

The other control is aimed to maximize the power production of the pho-
tovoltaic cell:

max{pdc} = max{vdc · idc(vdc, Θ,G)} (18.19)

This control is called Maximum Power Point Tracking (MPPT). As discussed
in Section 17.6.2, the output current idc is a function of the voltage vdc, of
the temperature Θ and of the solar irradiance G. The exponential does not
allow writing an explicit expression of the current idc with respect of the
other variables. Thus the static pv characteristic of the photovoltaic cell can
be found only numerically.

Figure 18.7 shows the pv characteristic of a typical photovoltaic cell. The
curve has always a maximum, which depends on the temperature and the
solar irradiance values. The power produced by the cell increases as the solar
irradiance increases and the temperature decreases.

The maximum power point satisfies the condition:

0 =
dpdc

dvdc
=

d

dvdc
(vdc · idc(vdc, Θ,G)) (18.20)

= idc(vdc, Θ,G) + vdc
∂idc(vdc, Θ,G)

∂vdc

which can be solved numerically. The solution of (18.20) provides the opti-
mal value of the dc voltage reference. Then a PI controller can be used for
regulating the VSC firing angle. The resulting equations are:

0 = idc(vref
dc , Θ,G) + vref

dc
∂idc(vref

dc , Θ,G)
∂vref

dc
(18.21)

ẋ = Ki(vref
dc − vdc)

0 = Kp(vref
dc − vdc) + x− α

406 18 AC/DC Devices

Fig. 18.7 Effect of solar irradiance and temperature on the pv characteristic of

the photovoltaic cell

In most practical applications, the first equation of (18.21) is often substituted
by empirical systems based on measures. Most MPPT tracking systems vary
periodically the dc voltage of the photovoltaic cell. The MPPT firstly tries
increasing the dc voltage. If the output power increases, then the voltage is
further increased, otherwise, the MPPT decreases the dc voltage. This kind
of control is easy to implement since it requires only the measures of the
electrical dc power (no need of measuring the temperature and the solar
irradiance and of knowing cell parameters).

The ac voltage and the power controls of the photovoltaic cell are depicted
in Figure 18.8 and all cell regulator parameters are defined in Table 18.6.

Example 18.3 Superconducting Magnetic Energy Storage

The Superconducting Magnetic Energy Storage (SMES) is a shunt-connected
VSC-based device where in the dc side a superconducting coil is connected
in parallel with the VSC capacitor through a dc/dc system (chopper) [123].
The SMES scheme is shown in Figure 18.9. The coil is able to store magnetic
energy and to release it to the network depending on the duty cycle of the
chopper. Since the resistance of the superconducting coil and of the dc system
is very small with respect to the inductance, the time constant of the RL
circuit is relatively high with respect to conventional electro-magnetic time
scales.

18.2 Voltage Source Converter 407

vref

vh am

amax
m

amin
m

αmax

αmin

Km

Tms+ 1
+

+

−

−

α

s
Kp+

Kivref
dc

vdc

MPPT

idc,Θ, G

Fig. 18.8 Maximum power point tracking for the photovoltaic cell

Table 18.6 Photovoltaic cell regulator parameters

Variable Description Unit

Ki Integral gain of the current control rad/s/pu

Km Gain of the voltage control loop pu

Kp Proportional gain of the current control rad/pu

Tm Time constant of the voltage control loop s

−

+

+

−

vdc

vh∠θh

idc

ph + jqh

Chopper

is
vs

Fig. 18.9 SMES scheme

The equations for the SMES can be divided into three parts: (i) dc network
model, (ii) VSC model, and (iii) controllers.

Dc network : The dc network is composed of the parallel the VSC capacitor
and the superconducting coil behind the chopper. The capacitor can be
considered a parallel RC element described by equations (17.10) and is
interfaced to the dc network through (17.2). The coil-chopper block is
modelled as:

408 18 AC/DC Devices

i̇s = −vs/L (18.22)
vs = (1 − 2dc)vdc

idc = (1 − 2dc)is

where all voltages and currents are average values, L is the superconduct-
ing coil inductance and dc is the chopper duty cycle. The duty cycle can
be used a control variable of the SMES, in fact for dc = 0.5 the average
coil voltage vs and the average dc current idc are zero. For dc > 0.5 the
coil is charged, while for dc < 0.5 the coil is discharged.

Finally, the dc network must contain two nodes, one of which is con-
nected to the ground. The VSC and the RL element are connected in
parallel to the dc nodes.

Shunt-connected VSC : Equations are (17.2) and (18.9)-(18.11) and (18.12).
Regulators : The regulator are aimed to provide correct handling of the coil

charge and discharge. As indicated in (18.22), the coil charge/discharge
is defined by the value of the duty cycle. Thus, the active power ph at the
ac side is regulated by means of the duty cycle. Then the VSC firing angle
and modulation amplitude can be used for regulating the dc voltage vdc
and the ac voltage vh, respectively. PI or lag controllers similar to the
ones defined for the SOFC can be used (see Figure 18.6).

To avoid over- and under-charging, it is necessary to monitor the
energy stored in the superconducting coil, for example measuring and
integrating the dc voltage and current:

Ė = vsis = vdcidc (18.23)

Then, based on the maximum and minimum coil energy limits, one can
define the maximum and minimum duty cycle value and disable the active
power control. As discussed in [11], properly handling VSC firing angle
and modulating amplitude control limits can also improve the transient
behavior of the SMES.

18.2.1 Simplified Dynamic VSC Model

Due to the fast response of the power electronic switches and of the capacitor,
in most transient stability applications, the VSC can be modelled taking into
account only the power balance and simplified control equations. If the power
flow is from the dc side to the ac one, the power balance is:

0 = vdcidc − pac − ploss(idc, vdc) (18.24)

where ploss is due to commutation and conduction losses of switches and
diodes and capacitor losses, and can be evaluated as a function of the rms
value of the current circulating in the electronic switches (approximated by
the dc current idc) and of the dc voltage vdc:

18.2 Voltage Source Converter 409

ploss = ai2dc + bidc + c+ dv2
dc (18.25)

where the coefficients a, b, c and d are provided by the VSC manufacturer.
The simplified control equations do not explicitly include the firing angle
α and the modulating amplitude am but only consider input and output
variables. Hence, to regulate the active and reactive powers on the ac side,
the control differential equations can be written as:

ṗac = (pref − pac)/Tp (18.26)
q̇ac = (qref − qac)/Tq

Similar equations can be written for controlling the ac voltage, the power
factor, the dc current or the dc voltage. VSC current limits can be taken into
account by replacing one of the previous equations (18.26) with the current
limit that is violated (e.g., idc − imax

dc = 0).

18.2.2 Power Flow VSC Model

In power flow analysis, it can be convenient to simplify the VSC model using
only static equations. A very simple model is depicted in Figure 18.10, in
both versions, i.e., shunt and series connections [2].

+

+ −

−
(a) (b)

ph + jqh

ph + jqh

vh∠θh

vh∠θh

pk + jqk

vk∠θk

h

h k

vsh∠αsh

z̄sh

vse∠αse

z̄se

Fig. 18.10 Power flow VSC equivalent circuit: (a) shunt connection and (b) series

connection

Shunt-connected VSC : The equations for the shunt-connected VSC are:

ph = v2
hgsh − vhvsh(gsh cos(θh − αsh) + bsh sin(θh − αsh)) (18.27)

qh = −v2
hbsh − vhvsh(gsh sin(θh − αsh) − bsh cos(θh − αsh))

psh = v2
shgsh − vhvsh(gsh cos(θh − αsh) − bsh sin(θh − αsh))

qsh = −v2
shbsh + vhvsh(gsh sin(θh − αsh) + bsh cos(θh − αsh))

410 18 AC/DC Devices

where gsh + jbsh = 1/(rsh + jxsh) = 1/z̄sh. These equations approximate
the VSC through an independent generator and a connection that models
the embedded VSC transformer and internal VSC losses. The variables
are psh, qsh, vsh, θsh for the VSC internal bus and vh, θh at the point of
connection with the ac network. Since there are six quantities and four
equations, two additional equations are needed. These equations strictly
depend on the application. In general, one has:

0 = g1(psh, qsh, vsh, θsh, ph, qh, vh, θh) (18.28)
0 = g2(psh, qsh, vsh, θsh, ph, qh, vh, θh)

Section 19.3 of Chapter 19 describes an example of shunt-connected VSC
configuration, namely the STATCOM device.

Series-connected VSC : The equations for the series-connected VSC are:

ph = v2
hgse − vhvk(gse cos(θh − θk) + bse sin(θh − θk)) (18.29)

−vhvse(gse cos(θh − αse) + bse sin(θh − αse))
qh = −v2

hbse − vhvk(gse sin(θh − θk) − bse cos(θh − θk))
−vhvse(gse sin(θh − αse) − bse cos(θh − αse))

pk = v2
kgse − vhvk(gse cos(θh − θk) − bse sin(θh − θk))

−vkvse(gse cos(θk − αse) − bse sin(θk − αse))
qk = −v2

kbse + vhvk(gse sin(θh − θk) + bse cos(θh − θk))
+vkvse(gse sin(θk − αse) + bse cos(θk − αse))

pse = v2
segse − vhvse(gse cos(θh − αse) − bse sin(θh − αse))

−vkvse(gse cos(θk − αse) + bse sin(θk − αse))
qse = −v2

sebse + vhvse(gse sin(θh − θse) + bse cos(θh − θse))
−vkvse(gse sin(θh − αse) − bse cos(θh − αse))

where gse + jbse = 1/(rse + jxse) = 1/z̄se. These equations approximate
the VSC through an independent generator and a series connection that
models the embedded VSC transformer and internal VSC losses. The
variables are pse, qse, vse, θse for the VSC internal bus and vh, θh, vk and
θk at the points of connection with the network. Since there are eight
quantities and six equations, two additional equations are needed. These
equations strictly depend on the application. In general, one has:

0 = g1(pse, qse, vse, θse, ph, qh, vh, θh, pk, qk, vk, θk) (18.30)
0 = g2(pse, qse, vse, θse, ph, qh, vh, θh, pk, qk, vk, θk)

Section 19.4 of Chapter 19 describes an example of series-connected VSC
configuration, namely the SSSC device.

18.2 Voltage Source Converter 411

The models (18.27) and (18.29) are nothing more than standard power flow
equations of a transmission line between the point-of-connection buses (h
and/or k) and fictitious buses of the generator v̄sh or v̄se. The detailed dc
system has to be replaced using equivalent ac quantities (psh, qsh, vsh, θsh) for
the shunt connections or (pse, qse, vse, θse) for the series connection. Another
issue is that these models are static and, thus, are not adequate for transient
analysis.

As discussed for the detailed model, it is important to impose the adequate
limits for both (18.27) and (18.29). These limits depends on the applications
but can be resumed as voltage limits and current limits. Hence, for the shunt
connected VSC:

vmin
sh ≤ vsh ≤ vmax

sh (18.31)√
p2
h + q2h/vh ≤ imax

sh

and for the series-connected VSC:

vmin
se ≤ vse ≤ vmax

se (18.32)√
p2
h + q2h/vh ≤ imax

se

Once a limit is violated, the corresponding constraint becomes binding and
one of the control equations (18.28) or (18.30) has to be relaxed.

Example 18.4 Power Flow HVDC-VSC Model

This example describes the HVDC-VSC system that can be obtained using
two shunt-connected VSC devices as modelled in (18.27). The power flow
HVDC-VSC scheme is shown in Figure 18.11 [2]. The main differences with
conventional thyristor-based HVDC links are the applications and the con-
trollers of the rectifier and the inverter. The back-to-back configuration is
used, for example, in direct-drive synchronous generator for wind turbine
applications (see Section 20.2.7 of Chapter 20).

pk + jqkph + jqh

vh∠θh vk∠θk

h k

Fig. 18.11 HVDC-VSC scheme

As discussed above, each VSC requires two constraints. One of the four
constraints that have to be defined is the power balance of the HVDC-VSC

412 18 AC/DC Devices

system. In fact, the power flow model (18.27) does not explicitly model the
dc systems and, thus the power balance is the only way to link the two VSC
devices that form the HVDC system. The power balance can be expressed as
(see Figure 18.12):

0 = pdc,R + pdc,I + pdc loss (18.33)

where back-to-back connections, pdc loss ≈ 0, while for cable connections
pdc loss accounts for the Ohmic losses of the dc line.

It is interesting to note that the detailed hybrid model (17.2), (17.10) and
(18.9)-(18.11) takes implicitly into account the power balance since dc node
equations impose the Kirchhoff’s current law, while ac bus equations impose
the active and reactive power balances. This is another advantage of the
detailed model over the simplified ones.

++

−−

ph + jqh

vh∠θh

h

vR∠αR

z̄R

pR + pI + pdc loss = 0

pk + jqk

vk∠θk

k

vI∠αI

z̄I

Fig. 18.12 Power flow HVDC-VSC model

Further constraints can be set as follows:

0 = ph − pref
h (18.34)

0 = vh − vref
h

0 = vk − vref
k

Chapter 19

FACTS Devices

This chapter describes Thyristor Controlled Reactor (TCR) and Voltage
Sourced Converter (VSC) based Flexible AC Transmission System (FACTS)
devices. In particular, the considered TCR-based FACTS devices are the
static var compensator (Section 19.1) and the thyristor controlled series com-
pensator (Section 19.2), whereas VSI-based FACTS devices are the static
synchronous compensator (Section 19.3), the static synchronous series com-
pensator (Section 19.4) and the unified power flow controller (Section 19.5).

19.1 Static Var Compensator

The Static Var Compensator (SVC) is a variable shunt capacitor that is
varied to maintain a constant voltage at the bus to which it is connected.
The admittance is varied using a thyristor-based switch, as shown in Figure
19.1.a. The firing angle α controls the turn-on period of the thyristor and
hence varies the equivalent reactance of the SVC. Assuming a balanced, fun-
damental frequency operation, the equivalent susceptance of the SVC is a
function of the firing angle α [129]:

bSVC(α) =
2α− sin 2α− π(2 − xL/xC)

πxL
(19.1)

From the numerical viewpoint, using the susceptance as defined in (19.1) is
more stable than the reactance, because 1/bSVC(α) tends to infinity at the
resonant point, defined by:

2αr − sin 2αr − π(2 − xL/xC) = 0 (19.2)

19.1.1 SVC Type I

As discussed above, the controlled variable is the firing angle α. Thus, the
regulator has to vary α in order to control the bus voltage (see Figure 19.2).

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 413–434.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

414 19 FACTS Devices

xC xL

hh

α

α

bSVC

(a) (b)

Fig. 19.1 SVC schemes: (a) firing angle model and (b) equivalent susceptance

model

α

αmax

αmin

vh

+

−

vref

vMKM

TMs+ 1

K(T1s+ 1)

T2s+KD

Fig. 19.2 SVC Type I control diagram

The DAE system is follows:

v̇M = (KMvh − vM)/TM (19.3)

α̇ = (−KDα+K
T1

T2TM
(vM −KMvh) +K(vref − vM))/T2

qh =
2α− sin 2α− π(2 − xL/xC)

πxL
v2
h

The state variable α undergoes an anti-windup limiter which indirectly al-
lows limiting the SVC current. Table 19.1 defines all parameters of the SVC
Type I.

19.1.2 SVC Type II

A common approximation consists in assuming that the controlled variable
is bSVC and not the firing angle α (see Figure 19.1.b). The simplified control
scheme is depicted in Figure 19.3 and undergoes the following differential
equation:

ḃSVC = (Kr(vref − vh) − bSVC)/Tr (19.4)

19.1 Static Var Compensator 415

Table 19.1 SVC Type I parameters

Variable Description Unit

K Regulator gain rad/pu

KD Integral deviation -

KM Measure gain pu/pu

T1 Transient regulator time constant s

T2 Regulator time constant s

TM Measure time delay s

vref Reference Voltage pu

xL Reactance (inductive) pu

xC Reactance (capacitive) pu

αmax Maximum firing angle rad

αmin Minimum firing angle rad

bSVC

bmax
SVC

bmin
SVC

vh

+

−

vref

Kr

Trs+ 1

Fig. 19.3 SVC Type II control diagram

The model is completed by the algebraic equation expressing the reactive
power injected at the SVC node:

q = bSVCv
2
h (19.5)

The regulator has an anti-windup limiter, i.e., the reactance bSVC is locked
if one of its limits is reached. Table 19.2 reports data and control parameters
for the SVC type 2.

19.1.3 SVC Initialization

Although there is no particular issue in including the detailed SVC model
into the power flow analysis, SVC devices are typically initialized after power
flow analysis. To impose the voltage regulation a PV generator with p0

G = 0
can be used. The only difference is that the reactive power limits of the PV
generator do not coincide exactly with the susceptance limits of the SVC
device, in fact, qmax

G �= bmax
SVCv

2
h only for the nominal value of the bus voltage.

416 19 FACTS Devices

Table 19.2 SVC Type II parameters

Variable Description Unit

- Bus code -

bmax
SVC Maximum susceptance pu

bmin
SVC Minimum susceptance pu

Kr Regulator gain pu/pu

Tr Regulator time constant s

vref Reference Voltage pu

Fig. 19.4 Comparison of SVC models for the IEEE 14-bus system

Example 19.1 Comparison of SVC Models

Figure 19.4 shows a comparison of the transient response of the SVC models
Type I and II described above. The plot was obtained substituting the static
shunt admittance at bus 9 of the IEEE 14-bus system for an SVC device. All
SVC data are given in Appendix D. The reference voltage of SVC regulators
is vref = 1.0563 pu, i.e., the same voltage value as obtained by the power
flow analysis using the static shunt admittance. The regulators of both SVC
models improve the voltage profile at bus 9. SVC Type II shows a zero static
error (due to the integral regulator) but presents high-frequency oscillations.

19.2 Thyristor Controlled Series Compensator 417

19.2 Thyristor Controlled Series Compensator

The Thyristor Controlled Series Compensator (TCSC) allows varying the
series reactance of a transmission line and, thus, regulating the active flow
through the transmission line itself. The functioning of the TCSC is similar
to the SVC, but for the fact that the TCSC is a series device, as shown in
Figure 19.5.

xC

xL

hh kk

α

α

xTCSC

(a) (b)

Fig. 19.5 TCSC schemes: (a) firing angle model and (b) equivalent susceptance

model

The regulated variable is the firing angle α. The equivalent series reactance
xTCSC in balanced, fundamental frequency conditions is [129]:

xTCSC(α) =
[
xC

(
πk4

x cos kx(π − α) (19.6)

− π cos kx(π − α) − 2k4
xα cos kx(π − α)

+ 2αk2
x cos kx(π − α) − k4

x sin 2α cos kx(π − α)
+ k2

x sin 2α cos kx(π − α) − 4k3
x cos2 α sin kx(π − α)

− 4k2
x cosα sinα cos kx(π − α)

)]
/[π(k4

x − 2k2
x + 1) cos kx(π − α)]

kx =
√
xC
xL

The power injections at buses h and k are:

ph = vhvkb(α) sin(θh − θk) (19.7)
qh = v2

hb(α) − vhvkb(α) cos(θh − θk)
pk = −ph = −vhvkb(α) sin(θh − θk)
qk = v2

kb(α) − vhvkb(α) cos(θh − θk)

where
b(α) =

1
xTCSC(α)

(19.8)

The model (19.7) can show numerical issues in case xTCSC(α) = 0.

418 19 FACTS Devices

Since the TCSC device is always connected in series with a transmission
line, another common model considers the series of the TCSC and the trans-
mission line as an unique device. Assuming a loss-less line and that the series
reactance of the line is xhk, the resulting power flow equations are:

phk = vhvkb(α, xhk) sin(θh − θk) (19.9)
pkh = −phk
qhk = v2

hb(α, xhk) − vhvkb(α, xhk) cos(θh − θk)
qkh = v2

kb(α, xhk) − vhvkb(α, xhk) cos(θh − θk)

where:

b(α, xhk) =
1

xhk + xTCSC(α)
(19.10)

This model also allows removing numerically issues of (19.7) of xTCSC(α) if
|xmin

TCSC| < xhk.

+

−

b

αmax

αmin

α

ph

pref

x1 x2 x3

b(α)
KwTws

Tws+ 1

1

T1s+ 1

T2s+ 1

T3s+ 1

Fig. 19.6 TCSC control diagram

A common control scheme for TCSC devices is shown in Figure 19.6 and
works for regulating both the firing angle α and the reactance xTCSC. The
DAE system is as follows:

ẋ1 = −Kw(pref − ph)/Tw − x1/Tw (19.11)
ẋ2 = (x1 − x2 + (pref − ph))/T1

ẋ3 = ((1 − T2/T3)x2 − x3)/T3

where all parameters are defined in Table 19.3. The output signal of the lead-
lag block can be either the firing angle α or, using a simplified model, the
reactance xTCSC. Considering the firing angle, one has:

α =
T2

T3
x2 + x3 (19.12)

If using the reactance xTCSC, equation (19.12) and the control scheme of
Figure 19.6 are still valid but substituting α with xTCSC.

19.3 Static Synchronous Compensator 419

Table 19.3 TCSC parameters

Variable Description Unit

Kw Regulator gain pu/pu

pref Reference power pu

T1 Low-pass time constant s

T2 Lead time constant s

T3 Lag time constant s

Tw Washout time constant s

xC Reactance (capacitive) pu

xL Reactance (inductive) pu

xmax
TCSC (αmax) Maximum reactance (firing angle) pu (rad)

xmin
TCSC (αmin) Minimum reactance (firing angle) pu (rad)

19.2.1 TCSC Initialization

There are various methods for initializing a TCSC. A possibility is to include
the detailed model of the TCSC in the power flow analysis. However, this is
not the common practice. Another strategy is to use a static tie line model
such that described in Subsection 11.1.2 of Chapter 11.

19.3 Static Synchronous Compensator

The Static Synchronous Compensator (STATCOM) is a shunt-connected
VSC-based FACTS device that regulates the voltage of the ac bus to which
it is connected (see Figure 19.7). The effect is similar to the SVC device, but
the internal model is rather different, as discussed in the following sections.

h

+

−
vdc

vh∠θh

ph + jqh

Fig. 19.7 STATCOM scheme

420 19 FACTS Devices

19.3.1 Detailed Model

The detailed model consists of a shunt-connected VSC device with a capacitor
in the dc side. The model is composed of three parts, namely the dc network,
the VSC and the controllers.

Dc network : The dc side is a parallel RC defined by (17.10) and (17.2). Fur-
thermore, the dc network must contain two nodes, one of which is con-
nected to the ground. The VSC and the RC element are connected in
parallel to the dc nodes.

Shunt-connected VSC model : The equations of the VSC are (17.2) and (18.9)-
(18.12).

Regulators : The ac voltage control is obtained regulating the modulating
amplitude am [322]:

ȧm =
1
T2

[
−KDam +K(vref

ac − vmac)
]

− KT1

T2Tac
(Kacvh − vmac) (19.13)

whereas the dc voltage control is regulated through the firing angle α:

α̇ =
(
KP

Tdc
−KI

)
vmdc +KIv

ref
dc − KPKdc

Tdc
vdc (19.14)

Finally, low pass filters are used for modelling both the ac and dc voltage
measurements:

v̇mac = (−vmac +Kacvh)/Tac (19.15)
v̇mdc = (−vmdc +Kdcvdc)/Tdc

Voltage and modulating amplitude controls along with the measurement
transfer functions are depicted in Figure 19.8. Both the ac and dc voltage
controls undergo a windup limiter. For the dc voltage control, the limits
on α can be computed imposing the power balance:

0 =
v2
dc

rdc
+ rT i

2
ac − v2

hgT (19.16)

+
√

3/8vdcvhgT cos(α) +
√

3/8vdcvhbT sin(α)

where gT + jbT = 1/(rT + jxT) is the impedance of the VSC embedded
transformer. Imposing vdc = vref

dc and vh = vref
ac , from (19.16) it can be

obtained:

cos(α) =
bc

a2 + b2
±

√(
bc

a2 + b2

)2

− c2 − a2

a2 + b2
(19.17)

19.3 Static Synchronous Compensator 421

vh am

vref
ac

vm
ac

amin
m

amax
m

Kac

Tacs+ 1

K(T1s+ 1)

T2s+KD

α

+

+

−

−

s

vref
dc

vm
dcvdc

αmin

αmax

KP s+KI

Tdcs+ 1

Kdc

Fig. 19.8 STATCOM ac and dc voltage control diagrams

where

a = −
√

3/8vref
dc v

ref
ac bT (19.18)

b = −
√

3/8vref
dc v

ref
ac gT

c = (vref
ac)2gT − (vref

dc)2

rdc
− rT i

2
ac

Finally, the limits for the firing angle α are computed imposing in the
equation (19.17) the limits imax and imin. Table 19.4 defines all parame-
ters required by STATCOM regulators.

19.3.2 Simplified Dynamic Model

A simplified STATCOM current injection model has been proposed in [61,
122, 252]. The STATCOM current ish is always kept in quadrature in relation
to the bus voltage so that only reactive power is exchanged between the ac
system and the STATCOM. The equivalent circuit and the control scheme
are shown in Figure 19.9. The differential equation and the reactive power
injected at the STATCOM node are, respectively:

i̇sh = (Kr(vref − vh) − ish)/Tr (19.19)
qh = ishvh

422 19 FACTS Devices

Table 19.4 STATCOM regulator parameters

Variable Description Unit

K Gain of the ac voltage control pu/pu

Kac Gain of the ac measurement pu/pu

KD Integral deviation of the ac voltage control -

Kdc Gain of the dc measurement pu/pu

KI Integral gain for the dc voltage control rad/pu/s

KP Proportional gain for the dc voltage control rad/pu

imax Maximum current pu

imin Minimum current pu

rdc Resistance of the dc circuit pu

rT Resistance of the ac circuit pu

T1 Transient time constant of the ac voltage control s

T2 Time constant of the ac voltage control s

Tac Time constant of the ac measurement s

Tdc Time constant of the dc measurement s

vref ac reference voltage pu

vref
dc dc reference voltage pu

xT Reactance of the ac circuit pu

īsh

vh∠θh

ish

imax

imin

vh

+

−h

vref

Kr

Trs+ 1

Fig. 19.9 STATCOM circuit and control diagram

where all parameters are defined in Table 19.5. The current ish undergoes an
anti-windup limiter.

19.3.3 Power Flow Model

The STATCOM power flow model is simply obtained based on the power
flow model of the VSC device (18.27) and (18.28). In particular, (18.28) are:

0 = psh, 0 = vref − vsh (19.20)

The latter condition is satisfied only if the current ish ≤ imax
sh .

19.4 Static Synchronous Series Compensator 423

Table 19.5 Current-injection STATCOM parameters

Variable Description Unit

Kr Regulator gain pu/pu

imax Maximum current pu

imin Minimum current pu

Tr Regulator time constant s

19.3.4 STATCOM Initialization

Dynamic STATCOM devices can be initialized using a static PV generator
with pG0 = 0 (similarly to the SVC device), or using the power flow model
described in the previous Subsection 19.3.3, which can be viewed as a PV
generator behind an impedance.

Example 19.2 Comparison of STATCOM Models

Figure 19.10 shows the transient behavior of the detailed STATCOM model
described in Subsection 19.3.1 as well as that of the simplified STATCOM
model described in Subsection 19.3.2. The plot was obtained substituting the
static shunt admittance at bus 9 of the IEEE 14-bus system for the detailed
or the simplified STATCOM models. All data are given in Appendix D. The
reference voltage of the STATCOM regulators is vref = 1.0563 pu, i.e., the
same voltage value as obtained by the power flow analysis using the static
shunt admittance. The detailed model behaves similarly to the SVC Type
I, whereas the simplified model behaves similarly to the SVC Type II (see
Figure 19.4). High frequency oscillations shown by the detailed model are
due to the interaction between the VSC control and the dc circuit dynamic.
Furthermore, due to fast dc dynamics, the numerical integration requires a
relatively small step length for the detailed STATCOM model.

19.4 Static Synchronous Series Compensator

The Static Synchronous Series Compensator (SSSC) is a series-connected
VSC-based FACTS device that regulates the active power flow between the
two ac buses to which it is connected. The effect is similar to the TCSC
device or the phase-shifting regulating transformer, but the internal model is
rather different, as discussed in the following sections.

424 19 FACTS Devices

Fig. 19.10 Comparison of STATCOM models for the IEEE 14-bus system

19.4.1 Detailed Model

The detailed model consists of a series-connected VSC device with a capacitor
on the dc side (see Figure 19.11). The model is composed of three parts,
namely the dc network, the VSC and the controllers.

h k

+

−
vdc

vh∠θh vk∠θk

ph + jqh pk + jqk

Fig. 19.11 SSSC scheme

19.4 Static Synchronous Series Compensator 425

Dc network : The dc side is a parallel RC defined by (17.10) and (17.2). Fur-
thermore, the dc network must contain two nodes, one of which is con-
nected to the ground. The VSC and the RC element are connected in
parallel to the dc nodes.

Series-connected VSC model : The equations of the VSC are (17.2), (18.9)-
(18.11) and (18.13).

Regulators : The control system is then used for controlling the dc voltage
vdc and the active power ph or current flow ih in the ac side. Figure 19.12
depicts the dc voltage control, the active power control and the mea-
surement transfer functions, which are described by the following DAE
system:

v̇mdc = (Kdcvdc − vmdc)/Tdc (19.21)

α̇ =
(
KP

Tdc
−KI

)
vmdc +KIv

ref
dc − KPKdc

Tdc
vdc

ṗmac = (Kacph − pmac)/Tac

ȧm =
1
T2

[
−KDam +K(pref − pmac)

]
− KT1

T2Tac
(Kacph − pmac)

where all parameters are defined in Table 19.12. Both the firing angle α
and the modulating amplitude am undergo windup limiters. The active
power signal in the firing angle control diagram can be substituted by
the current ih.

α

am

ph

(ih)

Kdc

Tdcs+ 1

KP s+KI

Kac

Tacs+ 1

K(T1s+ 1)

T2s+KD

+

+

−

−
s

vdc

vref
dc

vm
dc

pref

pm
ac

(iref)

(imac)

αmin

αmax

amin
m

amax
m

Fig. 19.12 SSSC control diagrams

426 19 FACTS Devices

Table 19.6 SSSC regulator parameters

Variable Description Unit

K Gain of the ac voltage control pu/pu

Kac Gain of the ac measurement pu/pu

KD Integral deviation of the ac voltage control -

Kdc Gain of the ac measurement pu/pu

KI Integral gain for the α control rad/pu/s

KP Proportional gain for the α control rad/pu

pref (iref) Ac reference power (current) pu

T1 Transient time constant of the ac control s

T2 Time constant of the ac control s

Tac Time constant of the ac measurement s

Tdc Time constant of the dc measurement s

vref
dc Dc reference voltage pu

19.4.2 Simplified Dynamic Model

Simplified SSSC dynamic models have been proposed in [162, 193, 288]
where the SSSC is represented by a series voltage source v̄S , as depicted in
Figure 19.13. The voltage v̄S is in quadrature with line current. Thus, the
voltage magnitude vS is the only controllable variable. The total active and
reactive power flows in a transmission line in series with a SSSC device are:

ph = (1 + c)
vhvk
xhk

sin(θh − θk) (19.22)

pk = −ph
qh = (1 + c)

vh
xhk

(vh − vk cos(θh − θk)

qk = (1 + c)
vk
xhk

(vk − vh cos(θh − θk)

where xhk is the series reactance of the transmission line assumed loss-less
and:

c =
vS√

v2
h + v2

k − 2vhvk cos(θh − θk)
(19.23)

The SSSC regulator is shown in Figure 19.14. The regulator differential equa-
tions are:

ẋ = KI(pref − ph) (19.24)
0 = x+KI(pref − ph) − ṽS

v̇S = (ṽS − vS)/Tr

Table 19.7 defines all parameters of the SSSC simplified dynamic model.

19.4 Static Synchronous Series Compensator 427

īh īkh k

+−
v̄Svh∠θh v̄′h vk∠θk

jxhk

Fig. 19.13 Simplified SSSC circuit

vS

vmax
S

vmin
S

ṽS

+

−
pref

ph

1

Trs+ 1
KP +KI/s

Fig. 19.14 SSSC simplified control diagram

Table 19.7 Simplified SSSC model parameters

Variable Description Unit

KI Integral gain of PI controller pu/pu/s

KP Proportional gain of PI controller pu/pu

Tr Regulator time constant s

vmax
S Maximum series voltage vS pu

vmin
S Minimum series voltage vS pu

19.4.3 Power Flow Model

The SSSC power flow model is simply obtained based on the power flow
model of the VSC device (18.29) and (18.30). In particular, (18.30) are:

0 = pse, 0 = ph − pref (19.25)

The latter condition is satisfied only if the current ise ≤ imax
se .

19.4.4 SSSC Initialization

Dynamic SSSC devices can be initialized using a static tie line, similarly to
the TCSC devices. The tie line provides the compensated value x̃hk of the

428 19 FACTS Devices

series reactance that leads to the desired active power flow. Then, the SSSC
state variable vS can be obtained by solving:

0 =
xhk

1 + c(vS)
− x̃hk (19.26)

Alternatively, one can use the power flow model described in Subsection 19.4.3.

19.5 Unified Power Flow Controller

The Unified Power Flow Controller (UPFC) combines together a shunt and
a series VSC with a common capacitor in the dc side. The shunt connection
allows regulating the voltage (like a STATCOM) while the series connection
allows controlling the power flow (like a SSSC). The UPFC is a very versatile
device although it is relatively rare due to its complexity and high cost.

19.5.1 Detailed Model

The detailed model consists in a shunt-connected VSC device and a series-
connected VSC device with a common capacitor in the dc side (see
Figure 19.15). The model is composed of four parts, namely the dc network,
the shunt VSC, the series VSC and the controllers.

h k

+

−
vdc

vh∠θh vk∠θk

ph + jqh pk + jqk

Fig. 19.15 UPFC scheme

Dc network : The dc side is a parallel RC defined by (17.10) and (17.2).
Furthermore, the dc network must contain two nodes, one of which is

19.5 Unified Power Flow Controller 429

connected to the ground. The shunt VSC, the series VSC and the RC
element are connected in parallel.

Shunt-connected VSC model : The equations of the VSC are (17.2) and (18.9)-
(18.12).

Series-connected VSC model : The equations of the VSC are (17.2), (18.9)-
(18.11) and (18.13).

+

+

−

−

vdc

vh am,sh

amax
m,sh

amin
m,sh

αsh

αmax
sh

αmin
sh

s

s

vm
ac

vm
dc

vref

vref
dc

Kac

Tacs+ 1

KPacs+KIac

Kdc

Tdcs+ 1

KPdcs+KIdc

AC Voltage Control

DC Voltage Control

Fig. 19.16 UPFC shunt control diagrams

Regulators : Figure 19.16 depicts the shunt control for the ac voltage vh and
the dc voltage vdc, obtained by means of PI regulators and measurement
filters. The equations are:

v̇mac = (−vmac +Kacvh)/Tac (19.27)

ȧm,sh =
(
KPac

Tac
−KIac

)
vmac +KIacv

ref − KPacKac

Tac
vh

v̇mdc = (−vmdc +Kdcvdc)/Tdc

α̇sh =
(
KPdc

Tdc
−KIdc

)
vmdc +KIdcv

ref
dc − KPdcKdc

Tdc
vdc

430 19 FACTS Devices

The power flow regulation is a dq control, as shown in Figure 19.17, which
allows decoupling the controls of the active and reactive powers [232, 323].

+

+

++

+

+
+

+

−

−

−

−

1

1

2

2

Ωb

Ωb

Ωb

Ωb

x1

x2

x̂1

x̂2

vk,d

vk,q

ik,d

ik,d

imax

imax

imin

imin

ik,q

ik,q

pref
k

qrefk

irefk,d

irefk,q

KP +KI/s

KP +KI/s

K + s

K + s

Fig. 19.17 UPFC series dq control diagrams

The DAE system is as follows:

˙̂x1 = KI

(
2pref
k

vk,d
− ik,d

)
(19.28)

i̇k,d = x̂1 −Kik,d +KP

(
2pref
k

vk,d
− ik,d

)

˙̂x2 = KI

(
2qrefk
vk,q

− ik,q

)

i̇k,q = x̂2 −Kik,q +KP

(
2qrefk
vk,q

− ik,q

)

where the sub-indexes d and q indicate the direct and quadrature compo-
nents, respectively. For this series branch dq control, the variables am,se,
αse and other control parameters are given by the following relations
where Ωb is the fundamental frequency base in rad/s and other variables
are expressed in per unit:

19.5 Unified Power Flow Controller 431

K =
rse
Ωbxse

(19.29)

vk,d =
√

2vk
vh,d =

√
2vh cos(θk − θh)

vh,q =
√

2vh sin(θk − θh)

x1 = x̂1 +KP

(
2pref
k

vk,d
− ik,d

)
−Ωbik,q

x2 = x̂2 +KP

(
2qrefk
vk,q

− ik,q

)
+Ωbik,d

vse,d = vh,d − vk,d − xse

Ωb
x1

vse,q = vh,q − xse

Ωb
x2

vse =
1√
2

√
v2
se,d + v2

se,q

am,se =

√
8
3
vse
vdc

αse = θk − tan−1
(
vse,q
vse,d

)

All other parameters are defined in Table 19.8.

19.5.2 Simplified Dynamic Model

Simplified UPFC dynamic models are proposed in [161, 192, 213]. The equiv-
alent circuit is obtained merging together the STATCOM and the SSSC sim-
plified models, i.e., a series voltage source v̄S and a shunt current source īsh,
as depicted in Figure 19.18.

According to the vector diagram of Figure 19.19, the series voltage v̄S and
the shunt current v̄sh sources are defined as:

v̄S = vSe
j(γ+θh) = (vp + jvq)ej(θh−φ) (19.30)

īsh = (ip + jiq)ejθh

where:

vp is the component of the voltage v̄S that is in phase with the line current
īh.

vq is the component of the voltage v̄S that is in quadrature with line current
īh.

ip is the component of the current īsh in phase with the voltage v̄h. Typically
ip = 0.

432 19 FACTS Devices

Table 19.8 UPFC regulator parameters

Variable Description Unit

Kac Gain of the ac measurement pu/pu

Kdc Gain of the dc measurement pu/pu

KI Integral gain for the dq control pu/pu/s

KIac Integral gain for the ac voltage control pu/pu/s

KIdc Integral gain of the vdc control rad/pu/s

KP Proportional gain for the dq control pu/pu

KPdc Proportional gain of the vdc control rad/pu

KPac Proportional gain for the ac voltage control pu/pu

imax Maximum current pu

imin Minimum current pu

pref
k Active reference power pu

qrefk Reactive reference power pu

rse Resistance of the series ac circuit pu

rsh Resistance of the shunt ac circuit pu

Tac Time constant of the ac measurement s

Tdc Time constant of the dc measurement s

vref ac voltage reference pu

vref
dc dc voltage reference pu

xse Reactance of the series ac circuit pu

xsh Reactance of the shunt ac circuit pu

īh īk

īsh

h

k

+−
v̄Svh∠θh v̄′h vk∠θk

jxhk

Fig. 19.18 Simplified UPFC circuit

iq is the component of the current īsh in quadrature with the voltage v̄h.
Typically ish = iq.

19.5 Unified Power Flow Controller 433

īsh

īh

vp

vq

ip

iq v̄S

v̄h γ

−φ−φ

θh

Fig. 19.19 UPFC phasor diagram

The resulting DAE system is as follows. Algebraic equations are:

ph =
1
xhk

(vhvk sin(θh − θk) + vhvS sin γ) (19.31)

pk = −ph
qh =

1
xhk

(v2
h − vhvk cos(θh − θk) + vhvS cos γ) − iqvh

qk =
1
xhk

(v2
k − vhvk cos(θh − θk) − vkvS cos γ)

where xhk is the series reactance of the loss-less transmission line connected
in series to the UPFC device and Table 19.9 defines all other parameters.
Differential equations are:

v̇p =
1
Tr

(vp0 − vp) (19.32)

v̇q =
1
Tr

(vq0 − vq)

i̇sh =
1
Tr

[Kr(vref − vh) − ish]

In general vp0 = 0 so that the voltage v̄S is in quadrature with the line current
īh (as for the SSSC device). All state variables undergo anti-windup limits.

19.5.3 Power Flow Model

The power flow model is obtained using the series-connected VSC static
model (18.27) and (18.28) and the series-connected VSC static model (18.29)
and (18.30) as shown in Figure 19.20. Since the UPFC does not produce
active power, one has:

0 = psh + pse, (19.33)

434 19 FACTS Devices

Table 19.9 Simplified UPFC model parameters

Variable Description Unit

Kr Regulator gain pu/pu

imax
q Maximum iq pu

imin
q Minimum iq pu

Tr Regulator time constant s

vmax
p Maximum vp pu

vmin
p Minimum vp pu

vmax
q Maximum vq pu

vmin
q Minimum vq pu

+

+

−

−

ph + jqh

vh∠θh

pk + jqk

vk∠θk

h
k

vsh∠αsh

z̄sh

vse∠αse

z̄se

psh + pse = 0

Fig. 19.20 Power flow UPFC equivalent circuit

The other three constraints required can be fixed as follows:

0 = vref − vsh (19.34)
0 = pref − pk (19.35)
0 = qref − qk (19.36)

These constraints can be satisfied as long as ish ≤ imax
sh and ise ≤ imax

se .

19.5.4 UPFC Initialization

The initialization of the UPFC device can be obtained using a static PV
generator at bus h and a tie line between buses h and k, similarly to what
described for the STATCOM and the SSSC devices. Alternatively, the static
model described in Subsection 19.5.3 can be used.

Chapter 20

Wind Power Devices

This chapter presents wind speed and wind turbine models. Wind power
is particularly interesting from the modelling viewpoint since it combines
stochastic models (i.e., wind speed), mechanics (i.e., wind turbine), electrical
machines, power electronics (i.e., VSC devices) and controls. For this reason,
wind power models conclude this part dedicated to power system modelling.

The chapter is divided into two sections. Section 20.1 describes three wind
speed models, namely the Weibull’s distribution, a wind model composed of
average speed, ramp, gust and turbulence and the normalized Mexican hat
wavelet model. Section 20.2 describes three models of wind turbines, namely
the constant speed wind turbine with squirrel-cage induction generator, the
variable speed wind turbine with doubly-fed (wound rotor) asynchronous
generator and the variable speed wind turbine with direct-drive synchronous
generator.

20.1 Wind Speed Models

The best way to model the wind speed is by an historical series of measure-
ment data. However, measures are not adequate for comparison and bench-
marking. Thus, fictitious mathematical wind speed models are of interest.

The wind speed models described in this section are the Weibull’s dis-
tribution, a composite model that includes average speed, ramp, gust and
turbulence, and the Mexican hat wavelet model.

Table 20.1 defines all parameters used in wind speed models that are de-
scribed in the following subsections. Air density ρ at 15◦C and standard
atmospheric pressure is 1.225 kg/m3, and depends on the altitude (e.g., at
2000 m ρ is 20% lower than at the sea level).

Wind speed time sequences are calculated after solving the power flow
and initializing wind turbine variables. To simulate the smoothing of high-
frequency wind speed variations over the rotor surface, the actual wind speed

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 435–456.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

436 20 Wind Power Devices

values is filtered through low-pass filter before being used for computing the
mechanical power of the wind turbine (see Figure 20.1):

v̇m = (v̌w(t) − vw)/Tw (20.1)

1

1 + Tws

v̌w vw
Wind

Time Sequence

Fig. 20.1 Low-pass filter to smooth wind speed variations

Table 20.1 Wind speed parameters

Variable Description Unit

cw Scale factor for Weibull’s distribution -

hw Height of the wind speed signal m

kw Shape factor for Weibull’s distribution -

nhar Number of harmonics int

t0 Centering time of the Mexican hat wavelet s

tge Ending gust time s

tre Ending ramp time s

tgs Starting gust time s

trs Starting ramp time s

Tw Low-pass filter time constant s

vg
w Gust speed magnitude m/s

vr
w Ramp speed magnitude m/s

vwn Nominal wind speed m/s

z0 Roughness length m

Δf Frequency step Hz

Δt Sample time for wind measurements s

ρ Air density kg/m3

σ Shape factor of the Mexican hat wavelet -

20.1.1 Weibull’s Distribution

A common way to describe the wind speed is by means of the Weibull’s
distribution, which is as follows:

f(vw, cw, kw) =
kw
ckw
vk−1
w e−(vw

cw
)kw

(20.2)

where vw is the wind speed and cw and kw are constants as defined in the
wind model data matrix. Time variations ξw(t) of the wind speed are then
obtained by means of a Weibull’s distribution, as follows:

20.1 Wind Speed Models 437

Fig. 20.2 Weibull’s distribution model of the wind speed

ξw(t) =
(
− lnι(t)

cw

) 1
kw (20.3)

where ι(t) is a generator of random numbers (ι ∈ [0, 1]). Usually the shape
factor kw = 2, which leads to the Rayleigh’s distribution, while kw > 3 ap-
proximates the normal distribution and kw = 1 gives the exponential distri-
bution. The scale factor c should be chosen in the range cw ∈ (1, 10). Finally,
the wind speed is computed setting the initial average speed vaw determined
at the initialization step as mean speed:

v̌w(t) = (1 + ξw(t) − ξaw)vaw (20.4)

where ξaw is the average value of ξw(t).

Example 20.1 Weibull’s Distribution

An example of wind speed time sequence generated using a Weibull’s distri-
bution is depicted in Figure 20.2. Wind data are vwn = 16 m/s, Δt = 0.1 s,
Tw = 0.5 s, cw = 20 and kw = 2.

438 20 Wind Power Devices

20.1.2 Composite Wind Speed Model

This subsection describes a composite wind model similar to what proposed
in [343] and [9]. This model considers that the wind speed is composed of
four parts:

1. Average and initial wind speed vaw.
2. Ramp component of the wind speed vrw.
3. Gust component of the wind speed vgw.
4. Wind speed turbulence vtw.

The resulting wind speed v̌w is:

v̌w(t) = vaw + vrw(t) + vgw(t) + vtw(t) (20.5)

where all components are time-dependent except for the average speed vaw.

Wind Ramp Component

The wind ramp component is defined by an amplitude Arw and starting and
ending times, trs and tre respectively:

t < trs : vrw(t) = 0 (20.6)

trs ≤ t ≤ tre : vrw(t) = Arw

(t− trs
tre − trs

)
t > tre : vrw(t) = Arw

Wind Gust Component

The wind gust component is defined by an amplitude Agw and starting and
ending times, tgs and tge respectively:

t < tgs : vgw(t) = 0 (20.7)

tgs ≤ t ≤ tge : vgw(t) =
Agw
2

(
1 − cos

(
2π

t− tgs
tge − tgs

))
t > tge : vgw(t) = Agw

Wind Turbulence Component

The wind turbulence component is described by a power spectral density, as
follows:

Stw =
1

(ln(hw/z0))2
�vaw(

1 + 1.5 fva
w

) 5
3

(20.8)

where f is the frequency, hw the wind turbine tower height, z0 is the roughness
length and � is the turbulence length scale:

20.1 Wind Speed Models 439

hw < 30 : � = 20h (20.9)
hw ≥ 30 : � = 600

Table 20.2 depicts roughness values z0 for a variety of ground surfaces.

Table 20.2 Roughness length z0 for a variety of ground surfaces [231, 281]

Ground surface Roughness length z0 [m]

Open sea, sand 10−4 ÷ 10−3

Snow surface 10−3 ÷ 5 · 10−3

Mown grass, steppe 10−3 ÷ 10−2

Long grass, rocky ground 0.04 ÷ 0.1
Forests, cities, hilly areas 1 ÷ 5

The spectral density is then converted in a time domain cosine series as
illustrated in [283]:

vtw(t) =
nhar∑
i=1

√
Stw(fi)Δf cos(2πfit+ φi +Δφ) (20.10)

where fi and φi are the frequency and the initial phase of the ith frequency
component, being φi random phases (φi ∈ [0, 2π)). The frequency step Δf
should be Δf ∈ (0.1, 0.3) Hz. Finally Δφ is a small random phase angle
introduced to avoid periodicity of the turbulence signal.

Example 20.2 Composite Wind Model

An example of wind speed time series generated using a composite model is
depicted in Figure 20.3. Wind data are vwn = 16 m/s, Δt = 0.1 s, Tw = 0.5
s, trs = 5 s, tre = 15 s, vrw = 0.5 m/s, tgs = 5 s, tge = 15 s and vgw = 0.2 m/s,
hw = 50 m, z0 = 0.01 m, Δf = 0.1 Hz and n = 50.

20.1.3 Mexican Hat Wavelet Model

The Mexican hat wavelet is a deterministic wind gust that has been stan-
dardized by IEC [139]. The Mexican hat wavelet is the normalized second
derivative of the Gauss’ distribution function, i.e., up to scale normalization,
the second Hermite’s function, as follows:

v̌w(t) = vaw + (vgw − vaw)
(
1 − (t− t0)2

σ2

)
e−

(t−t0)2

2σ2 (20.11)

where t0 is the centering time of the gust, σ is the gust shape factor, vgw is
the peak wind speed value and vaw the average speed value.

440 20 Wind Power Devices

Fig. 20.3 Composite model of the wind speed

Example 20.3 Mexican Hat Wavelet Wind Model

Figure 20.4 shows an example of wind gust modeled through a Mexican hat
wavelet with vwn = 16 m/s, vaw = 12 m/s, Δt = 0.1 s, Tw = 0.5, t0 = 10 s,
σ = 1, and vgw = 25 m/s.

20.2 Wind Turbines

This section describes the three most common wind turbine types: the non-
controlled speed wind turbine with squirrel-cage induction generator, the
controlled speed wind turbine with doubly-fed (wound rotor) asynchronous
generator and the direct-drive synchronous generator [4]. Figure 20.5 depicts
three wind turbines types, while Table 20.3 illustrates a few recent wind
turbines data as documented in [91].

The squirrel-cage induction generator type is the oldest one. It has the
advantages of being relatively cheap and electrically efficient. However, due
to the lack of speed regulation, it is not aerodynamically efficient. This kind
of wind generators is also noisy, requires a gearbox and the shaft suffers
mechanical stresses (i.e., oscillations due the shadow effect and blade torsional
modes). It has to be noted that the speed control is theoretically possible for
this machines. However, this would require refurbishing existing turbines.

20.2 Wind Turbines 441

Fig. 20.4 Mexican hat model of the wind speed

The doubly-fed asynchronous generator and direct-drive synchronous gen-
erator are aerodynamically more efficient than the squirrel-cage induction
generator type thanks to the speed control. However, the electrical efficiency
is lower. The need of two VSC converters with a back-to-back connection
increases the cost but provides the ability of controlling the voltage and the
power output. In the case of the synchronous generator, the converters are
relatively more expensive than for the asynchronous generator because have
to stand the entire generator power output. This fact has limited the diffusion
the the direct-drive type. However, VSC converter cost is rapidly decreasing,
hence the increasing interest in synchronous generators for wind power appli-
cations. Finally, no gearbox is required for the synchronous generator since
the VSC converters fully decouple the machine from the grid.

20.2.1 Single Machine and Aggregate Models

The wind turbine and generators models that are described in following sub-
sections are adequate for a single machine as well as for a wind park composed
of several generators (i.e., aggregate wind turbine model). The rules for a cor-
rect definition of the wind turbine data are:

1. The nominal power Sn is the total power in MVA of the single or aggregate
wind turbine. If the wind turbine is an aggregate equivalent model of a

442 20 Wind Power Devices

Grid

Grid

Grid

v̄s

v̄s

v̄s

īs

īs

īs

v̄rīr

v̄c

īc

īc

Gear box

Gear box

VSC Converter

VSC Converter

(a)

(b)

(c)

Fig. 20.5 Wind turbine types. (a) Non-controlled speed wind turbine with squirrel-

cage induction generator; (b) Controlled speed wind turbine with doubly-fed

asynchronous generator; (c) Controlled speed wind turbine with direct-drive syn-

chronous generator

Table 20.3 Recent wind turbines [91]

Type Power Diam. Height Control Speed

[MW] [m] [m] [rpm]

Bonus 2 86 80 GD/TS/PS 17

NEC NM 1500/72 1.5 72 98 GD/TS/PS 17.3

Nordex N-80 2.5 80 80 GD/VS/PC 19

Vestas V-80 2 80 78 GD/VS/PC 19

Enercon e-66 1.5 66 85 GD/VS/PC 22

GD gearbox drive DD direct drive VS variable speed
TS two speed PC pitch control PS shift pitch by stall

20.2 Wind Turbines 443

wind park, then the number of generators ngen > 1. The capacity of each
generator is about [0.5, 5] MVA (being 1 and 2 MVA the most common
capacities), thus ngen ∈ [0.2Sn, 2Sn]. An inconsistent value of ngen can
lead to an inadequate initialization of the wind speed.

2. Machine impedances and inertiæ are equivalent weighted pu values of the
machines that compose the aggregate wind park.

20.2.2 Wind Turbine Initialization

Wind turbines are initialized after power flow analysis and a static generator
is needed to impose the desired voltage and active power at the wind turbine
bus. Once the power flow solution is available, v0, θ0, p0 and q0 at the genera-
tion bus are used for initializing the state and input variables, the latter being
the wind speed vw0, which is used as the average wind speed vaw for the wind
speed models. Due to the nonlinearity of generator, converter and turbine
models, the initialization requires the implementation of a Newton’s method.
For the interested reader, further insights on wind turbine initialization are
given in [285] and [133].

The following subsections are organized taking into account implementa-
tion issues. The models that are common to all wind turbine are described
first. These are the turbine model and the shaft model. Then, each specific
wind generator type is described. With this aim, electrical machine and VSC
converter models are described together.

20.2.3 Turbine Model

The mechanical model of the wind turbine is independent from the generator
configuration. Thus, the mechanical equations of the turbine can be imple-
mented as a separate class and then imported in the wind generator model.

Following items describe two models, namely fixed-blade and variable pitch
angle position blade turbines. Table 20.4 defines all parameters used below.

Table 20.4 Turbine mechanical parameters

Variable Description Unit

Kp Pitch control gain rad/pu

nblade Number of blades int

ngen Number of machines that compose the wind park int

npole Number of poles int

Sn Power rating MVA

R Rotor radius m

Tp Pitch control time constant s

ηGB Gear box ratio -

ρ Air density kg/m3

444 20 Wind Power Devices

Fixed-Blade Turbine Model

This model assumes fixed turbine blades and is adequate for wind generators
without speed regulation. The mechanical power pw extracted from the wind
is a function of the wind speed vw and the turbine rotor speed ωt and can be
approximated as follows:

pw =
ngenρ

2Sn
cp(λ)Arv3

w (20.12)

where cp is the performance coefficient or power coefficient, λ the tip speed
ratio and Ar = πR2 the area swept by the rotor. The speed tip ratio λ is the
ratio between the blade tip speed vbt and the wind upstream the rotor vw:

λ =
vbt
vw

= ηGB
2Rωt
npolevw

(20.13)

Finally, the cp(λ) curve is approximated as follows:

cp = 0.44
(

125
λi

− 6.94
)
e
− 16.5

λi (20.14)

with
λi =

1
1
λ + 0.002

(20.15)

Turbine Model with Pitch Angle Control

In this model, turbine blades can rotate in order to reduce the rotor speed in
case of super-synchronous conditions. The angular position θp of the blades
is called pitch angle. This turbine model is adequate for wind generators with
speed control.

The mechanical power pw extracted from the wind is a function of the
wind speed vw, the rotor speed ωm and the pitch angle θp. The mechanical
power pw can be approximated as:

pw =
ngenρ

2Sn
cp(λ, θp)Arv3

w (20.16)

where parameters and variables are the same as in (20.12) and the speed tip
ratio λ is defined in (20.13). The cp(λ, θp) curve is approximated as follows
[126]:

cp = 0.22
(

116
λi

− 0.4θp − 5
)
e
− 12.5

λi (20.17)

with
1
λi

=
1

λ+ 0.08θp
− 0.035
θ3p + 1

(20.18)

20.2 Wind Turbines 445

Alternative equations are given in [284], as follows:

cp = 0.73
(

151
λi

− 0.58θp − 0.002θ2.14 − 13.2
)
e
− 18.4

λi (20.19)

with
1
λi

=
1

λ− 0.02θp
− 0.003
θ3p + 1

(20.20)

As discussed above, the pitch angle θp is controlled to avoid super-synchro-
nous speeds. The control diagram is shown in Figure 20.6 and described by
the differential equation:

θ̇p = (Kpφ(ωm − ωref) − θp)/Tp (20.21)

where φ is a function which allows varying the pitch angle set point only
when the difference (ωm − ωref) exceeds a predefined value ±Δω. Since the
pitch control works only for super-synchronous speeds, an anti-windup limiter
locks the pitch angle to θp = 0 for sub-synchronous speeds.

θpωm

0

ωref

Kp

1 + Tps

+

−

Fig. 20.6 Pitch angle control diagram

The speed control is aimed to maximize the power production of the wind
turbine. Figure 20.7 shows the dependence of the mechanical power pw pro-
duced by the wind turbine on the wind speed vw and the turbine rotor speed
ωt. The solid line is the maximum mechanical power locus for each wind
and rotor speeds. This curve is used for defining, for each value of the rotor
speed, the optimal mechanical power p∗w that the turbine has to produce.
Figure 20.8 shows a possible implementation of the (p∗w, ωt) characteristic.
For super-synchronous speeds, the reference power is fixed to 1 pu to avoid
overloading the generator. For ωt < 0.5 pu, the reference mechanical power
is set to zero.

The detailed (p∗w, ωt) characteristic is:

p∗w(ωt) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ωt < 0.5

pw(ω∗
t) that satisfies

dpw(ω∗
t , vw, θp)
dωt

= 0 if 0.5 ≤ ωt ≤ 1

1 if ωm > 1
(20.22)

446 20 Wind Power Devices

Fig. 20.7 Speed-power characteristic of the wind turbine. The pitch angle is as-

sumed θp = 0 to plot the pw(ωt, vw, θp) curve

The simplified (p∗w, ωt) characteristic is:

p∗w(ωt) =

⎧⎪⎨
⎪⎩

0 if ωt < 0.5
2ωt − 1 if 0.5 ≤ ωt ≤ 1
1 if ωt > 1

(20.23)

20.2.4 Dynamic Shaft

The shaft of wind generators can be modelled as two masses connected by a
spring. The masses represent the turbine shaft and the generator shaft, while
the spring models the shaft stiffness. The resulting model is similar to the
one described in Section 15.1.10 of Chapter 15.

Mechanical differential equations are:

ω̇t = (τt −Ksδtm)/(2Ht) (20.24)
ω̇m = (Ksδtm − τe)/(2Hm)
δ̇tm = Ωb(ωt − ωm)

where Ωb is the system rated frequency in rad/s, ωt is the wind turbine
angular speed, ωm is the generator rotor speed, δtm is the relative angle

20.2 Wind Turbines 447

Fig. 20.8 Optimal and implemented control speed-power characteristics

displacement of the two shafts, τe is the electrical torque and τt is the me-
chanical torque:

τt =
pw
ωt

(20.25)

and all other parameters are defined in Table 20.5.
A periodic torque pulsation can be added to τt to simulate the tower

shadow effect. The shadow-effect frequency depends on the rotor speed ωt,
the gear box ratio ηGB, and the number of blades nblade, as follows:

τ̃t = τt

(
1 + αs sin

(
ηGB

Ωbωt
nblade

t
))

(20.26)

where the torque pulsation amplitude can be fixed equal to αs = 0.025 [7].
The expression (20.26) substitutes the mechanical torque in the first equation
of (20.24).

Shaft oscillations cannot be removed in the squirrel-cage induction gen-
erator type. For other wind turbine types that include VSC devices, the
converter controls can effectively damp shadow effect modes and shaft oscil-
lations [187]. If the control is efficient enough, the shaft can be considered
rigid, i.e., ωt = ωm. Hence:

ω̇t = (τt − τe)/(2Ht + 2Hm) (20.27)

448 20 Wind Power Devices

Table 20.5 Wind turbine shaft parameters

Variable Description Unit

Hm Machine rotor inertia constant MWs/MVA

Ht Wind turbine inertia constant MWs/MVA

Ks Shaft stiffness pu

αs Shadow effect factor -

20.2.5 Non-Controlled Speed Wind Turbine

The simplified electrical circuit used for the squirrel-cage induction gener-
ator is the same as the one for the single-cage induction motor, shown in
Figure 15.14 of Chapter 15. The only difference with respect to the induction
motor is that the currents are positive if injected into the network. The equa-
tions are formulated in terms of the real (d-) and imaginary (q-) axes, with
respect to the network reference angle. Table 20.6 summarizes and defines all
parameters of the squirrel-cage induction machine.

Table 20.6 Squirrel-cage induction machine parameters

Variable Description Unit

rr Rotor resistance pu

rs Stator resistance pu

xr Rotor reactance pu

xs Stator reactance pu

xμ Magnetizing reactance pu

Network Interface

In a synchronously rotating reference frame, the link between the network
and the stator machine voltages is:

vd = −vh sin θh (20.28)
vq = vh cos θh

and the active and reactive power productions are:

ph = vdid + vqiq (20.29)
qh = vqid − vdiq + bc(v2

d + v2
q)

where bc is the fixed capacitor conductance which is determined at the ini-
tialization step to impose the required bus voltage level.

20.2 Wind Turbines 449

Machine Electro-Magnetic Equations

The differential equations in terms of the voltage behind the stator resistance
rS are:

e′d − vd = rsid − x′iq (20.30)
e′q − vq = rsiq + x′id

whereas the link between voltages, currents and state variables is as follows:

ė′d = Ωb(1 − ωm)e′q − (e′d − (x0 − x′)iq)/T ′
0 (20.31)

ė′q = −Ωb(1 − ωm)e′d − (e′q + (x0 − x′)id)/T ′
0

where ωm is the rotor angular speed, and x0, x′ and T ′
0 can be obtained from

generator parameters:

x0 = xs + xμ (20.32)

x′ = xs +
xrxμ
xr + xμ

T ′
0 =

xr + xμ
ΩbrR

Turbine and Machine Mechanical Equations

The mechanical DAE system is (20.12) and (20.24)-(20.26), where the elec-
trical torque τe is defined as:

τe = e′did + e′qiq (20.33)

20.2.6 Doubly-Fed Asynchronous Generator

The model of the doubly-fed asynchronous generator is assumed steady-state,
as the stator and rotor flux dynamics are fast with respect to grid dynamics.
As a result of these assumptions, one has the DAE system described below.
Table 20.7 summarizes and defines all parameters required by wind turbine
with doubly-fed asynchronous generator.

Network Interface

Stator voltages depends on the bus voltage v̄h:

vs,d = −vh sin θh (20.34)
vs,q = vh cos θh

450 20 Wind Power Devices

Table 20.7 Doubly-fed asynchronous generator parameters

Variable Description Unit

KV Voltage control gain pu/pu/s

pmax Maximum active power pu

pmin Minimum active power pu

qmax Maximum reactive power pu

qmin Minimum reactive power pu

rr Rotor resistance pu

rs Stator resistance pu

Tε Power control time constant s

xr Rotor reactance pu

xs Stator reactance pu

xμ Magnetizing reactance pu

The generator active and reactive power productions depend on the stator
and converter currents is,d+ jis,q and ic,d+ jic,q, respectively, and stator and
converter voltages vs,d + jvs,q and vc,d + jvc,q, respectively, as follows:

ph = vs,dis,d + vs,qis,q + vc,dic,d + vc,qic,q (20.35)
qh = vs,qis,d − vs,dis,q + vc,qic,d − vc,dic,q

The expressions above can be rewritten as a function of stator and rotor
currents is,d+ jis,q and ir,d+ jir,q, respectively, and stator and rotor voltages
vs,d + jvs,q and vr,d + jvr,q, respectively. In fact, the converter powers on the
grid side are:

pc = vc,dic,d + vc,qic,q (20.36)
qc = vc,qic,d − vc,dic,q

whereas, on the rotor side:

pr = vr,dir,d + vr,qir,q (20.37)
qr = vr,qir,d − vr,dir,q

Assuming a loss-less converter model, the active power of the converter coin-
cides with the rotor active power, thus pc = pr. The reactive power injected
into the grid can be approximated neglecting stator resistance and assuming
that the d-axis coincides with the maximum of the stator flux. Therefore, the
powers injected in the grid are:

ph = vs,dis,d + vs,qis,q + vr,dir,d + vr,qir,q (20.38)

qh = −xμvhir,d
xs + xμ

− v2
h

xμ

20.2 Wind Turbines 451

Machine Electro-Magnetic Equations

The machine stator and rotor voltages are a function of stator and rotor
currents and the rotor speed ωm:

vs,d = −rsis,d + ((xs + xμ)is,q + xμir,q) (20.39)
vs,q = −rsis,q − ((xs + xμ)is,d + xμir,d)
vr,d = −rrir,d + (1 − ωm)((xs + xμ)ir,q + xμis,q)
vr,q = −rrir,q − (1 − ωm)((xs + xμ)ir,d + xμis,d)

whereas the links between stator fluxes and generator currents are:

ψs,d = −((xs + xμ)is,d + xμir,d) (20.40)
ψs,q = −((xs + xμ)is,q + xμir,q)

Turbine and Machine Mechanical Equations

The generator motion equation is modeled as a single shaft, i.e., (20.27), as
it is assumed that the converter controls are able to filter shaft dynamics.
For the same reason, no tower shadow effect is considered in this model. In
(20.27), the electrical torque is:

τe = ψs,dis,q − ψs,qis,d (20.41)

Substituting the stator flux equations (20.40) in (20.41) leads to:

τe = xμ(ir,qis,d − ir,dis,q) (20.42)

In [286], the following approximation of the electrical torque τe is proposed:

τe ≈ − xμvhir,q
Ωb(xs + xμ)

(20.43)

where Ωb is the system rated frequency in rad/s.
Mechanical equations are completed by the mechanical torque τt equation

(20.25) and the turbine model (20.16) and (20.17)-(20.18) or (20.19)-(20.20)
and the pitch angle control (20.21).

VSC Regulators

Since VSC dynamics are quite fast with respect to the electro-mechanical
transients, the converter can be modeled as an ideal current source, where
ir,q and ir,d are state variables and are used for controlling the rotor speed
and the bus voltage, respectively. VSC control diagrams are depicted in
Figures 20.9 and 20.10. The DAE system of the converter currents is:

452 20 Wind Power Devices

i̇r,q =
(
−xs + xμ

xμv
p∗w(ωm)/ωm − ir,q

) 1
Tε

(20.44)

i̇r,d = KV (vh − vref) − vh/xμ − ir,d

where vref is the reference voltage computed at the initialization step and
p∗w(ωm) is the power-speed characteristic (20.22) or (20.23).

ir,q

imax
r,q

imin
r,q

ωm

ωm

τ∗m
p∗w

p∗w −(xs + xμ)

xμv(1 + sTε)

Fig. 20.9 Rotor speed control diagram

ir,d

imax
r,d

imin
r,d

vh

vref

KV

1

1 + s

−1

xμ

+
+

+−

Fig. 20.10 Voltage control diagram of the doubly-fed asynchronous generator

Hard Limits

Both the speed and voltage controls undergo anti-windup limiters to avoid
converter over-currents. Rotor current limits are computed based on active
and reactive limits, and assuming bus voltage vh ≈ 1 one has:

imax
r,q ≈ −xs + xμ

xμ
pmin (20.45)

imin
r,q ≈ −xs + xμ

xμ
pmax

imax
r,d ≈ −xs + xμ

xμ
qmin − xs + xμ

x2
μ

imin
r,d ≈ −xs + xμ

xμ
qmax − xs + xμ

x2
μ

20.2 Wind Turbines 453

20.2.7 Direct-Drive Synchronous Generator

The model of the direct-drive synchronous generator is assumed steady-state,
as the stator and rotor flux dynamics are fast with respect to grid dynamics.
Furthermore, the converter decouples the generator from the grid. As a result
of these assumptions, one has the DAE system described below. Table 20.8
summarizes and defines all parameters required by wind turbine with direct-
drive synchronous generator.

Table 20.8 Direct-drive synchronous generator parameters

Variable Description Unit

Kdc Gain of the bus voltage control pu/pu

Kds Gain of the generator reactive power control pu/pu

Kqc Gain of the active power control pu/pu

imax Maximum current pu

rs Stator resistance pu

Tdc Time constant of the bus voltage control s

Tds Time constant of the generator reactive power control s

Tqc Time constant of the active power control s

Tqs Time constant of the speed control s

xd d-axis reactance pu

xq q-axis reactance pu

ψp Permanent field flux pu

Network Interface

The active and reactive powers injected into the grid depend on the grid side
current ic,d + jic,q and voltage vc,d + jvc,q of the converter:

ph = pc = vc,dic,d + vc,qic,q (20.46)
qh = qc = vc,qic,d − vc,dic,q

where the converter voltages are functions of the grid voltage magnitude and
phase, as follows:

vc,d = −vh sin θh (20.47)
vc,q = vh cos θh

Machine Electro-Magnetic Equations

Assuming a permanent magnet synchronous generator, machine equations
are

454 20 Wind Power Devices

vs,d = −rsis,d + ωmxqis,q (20.48)
vs,q = −rsis,q − ωm(xdis,d − ψp)

where the permanent field flux ψp represents the rotor circuit. The active and
reactive power produced by the generator are as follows:

ps = vs,dis,d + vs,qis,q (20.49)
qs = vs,qis,d − vs,dis,q

The link between stator fluxes and generator currents:

ψs,d = −xdis,d + ψp (20.50)
ψs,q = −xqis,q

Turbine and Machine Mechanical Equations

The generator motion equation is modeled as a single shaft, i.e., (20.27), as
it is assumed that the converter controls are able to filter shaft dynamics.
For the same reason, no tower shadow effect is considered in this model. In
(20.27), the electrical torque is:

τe = ψs,dis,q − ψs,qis,d (20.51)

Substituting (20.50) in (20.51) leads to:

τe = (ψs,d + (xq − xd)is,d)is,q (20.52)

Mechanical equations are completed by the mechanical torque τt equation
(20.25) and the turbine model (20.16) and (20.17)-(20.18) or (20.19)-(20.20)
and the pitch angle control (20.21).

VSC Regulators

The back-to-back VSC that connect the generator to the grid allow control-
ling four quantities. Controllable quantities are the converter currents is,d,
is,q, ic,d and ic,q. Typical controlled quantities are the active power injected
into the grid, the grid side voltage, the dc voltage of the capacitor in the
dc back-to-back connection, and the reactive power on the generator side.
Several combinations have been proposed [3, 4, 119, 351]. A possible control
scheme is as follows.

The currents on the generator side control the rotor speed and the gener-
ator reactive power:

20.2 Wind Turbines 455

i̇s,q =
1
Tqs

(
p∗w(ωm)

ωm(ψp − xdis,d)
− is,q

)
(20.53)

i̇s,d = (Kds(qs0 − qs) − is,d)/Tds

where p∗w(ωm) is the power-speed characteristic (20.22) or (20.23) and qs0 is
the reactive power determined at the initialization step.

The currents on the grid side control the active power and bus voltage:

i̇c,q = (Kqc(ps − pc) − ic,q)/Tqc (20.54)
i̇c,d = (Kdc(vref − vh) − ic,d)/Tdc

The first of the previous equations indirectly models the dynamic of the
dc system of the back-to-back connection. The steady-state error ps − pc
is a model of VSC and capacitor losses. A pure integrator can be used for
modelling a loss-less back-to-back VSC:

i̇c,q = Kqc(ps − pc)/Tqc (20.55)

If the dynamics of the VSC dc connection are fast, one can simply impose:

0 = ps − pc (20.56)

Limits

All currents in (20.53) and (20.54) undergo anti-windup limiters. The limits
have to be carefully calculated to avoid overloading. On the dc side, one has:√

i2c,d + i2c,q ≤ imax (20.57)

where imax is the VSC maximum current. Since (20.57) contains two variables,
additional conditions are required to define imax

c,d and imax
c,q . For example:

imax
c,q = imax (20.58)

imax
c,d =

√
(imax)2 − i2c,q

Thus, one of the limits, e.g., imax
c,d is a function of the other current. Then,

for the lower limits:

imin
c,q = −imax (20.59)

imin
c,d = −imax

c,d

Similar expressions can be defined for the limits of generator stator currents
is,d and is,q.

456 20 Wind Power Devices

Fig. 20.11 Comparison of transient behavior of different wind turbine types:

doubly-fed asynchronous generator (DFAG), and direct-drive synchronous machine

(DDSG), and non-controlled speed wind turbine (NCSWT)

Example 20.4 Comparison of Wind Turbine Transient Behaviors

Figure 20.11 shows a comparison of the transient behavior of the three wind
turbine types described in this section. In particular, the plot shows the
power injected by the wind park at bus 2 of the IEEE 14-bus system.1 The
disturbance is a Mexican hat wavelet centered at t = 5 s, with a peak of
25 m/s. The initial power of the wind turbine is 0.4 pu and the wind park
is composed of 40 machines (hence, the capacity of each machine is 1 MW).
Mechanical data are the same for all wind turbine types. Machine and control
data are provided in Appendix D.

The transient behaviors of the controlled speed wind turbines are quite
similar: the controls of both the doubly-fed asynchronous generator and the
direct-drive synchronous generator are able to slightly smooth the wind peak.
On the other hand, the non-controlled wind turbine with squirrel-cage induc-
tion machine shows high oscillations that follows the wind peak and leads to
undamped oscillations due to the shadow effect.

1 The synchronous machine at bus 2 is substituted for a wind turbine.

Part IV

Spare Material and Concluding
Remarks

This page intentionally left blank

Chapter 21

Data Formats

This chapter provides a taxonomy of existing data formats for power power
system analysis. These include most commonly used formats of free and pro-
prietary software packages as well as the IEC common information model.
The chapter is completed by a discussion about the desirable features of a
data format for power system analysis.

21.1 Data Format Taxonomy

The number of existing formats for power system analysis is huge. In general,
each software application has is own specific data format. However, among all
existing formats, few basic characteristics can be identified. The taxonomy
can be made based on different features, as follows.

1. The way data are stored, organized and structured.
2. The kind of data and analysis supported.
3. The number of files that compose the full system data set.
4. The way default values and data manipulation is handled.

Each feature is described in the following subsections. Table 21.1 shows a
synoptic scheme of the features of a variety of formats for power system
analysis. In Table 21.1 as well as in the whole chapter, only formats available
as plain ASCII files are available. Most commercial software applications
store data as binary files, with the clear intention of making impossible to
use those data by other applications. Such binary formats are intentionally
ignored.

21.1.1 Data Organization and Structures

The way data are organized and structured affects the aspect of the resulting
data file. Old data formats uses a fixed position and fixed order format, while
the modern trend is to use mark-up languages. The following items describes
some examples.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 459–474.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

460 21 Data Formats

T
a
b
le

2
1
.1

F
e
a
tu

re
s

o
f
a

v
a
ri
e
ty

o
f
d
a
ta

fo
rm

a
ts

fo
r

p
o
w

e
r

sy
st

e
m

a
n
a
ly

si
s

F
o
rm

a
t

D
a
ta

D
a
ta

D
y
n
a
m

ic
M

a
rk

et
S
h
o
rt

C
ir

cu
it

G
ra

p
h
ic

C
u
st

o
m

N
u
m

b
er

D
ef

a
u
lt

A
lt
er

N
a
m

e
P
o
si

ti
o
n

O
rd

er
D

a
ta

D
a
ta

D
a
ta

D
a
ta

D
a
ta

o
f
F
il
es

V
a
lu

es
C

o
m

m
a
n
d

C
E

P
E

L
F
ix

ed
F
ix

ed
N

o
N

o
N

o
N

o
N

o
U

n
iq

u
e

N
o

N
o

C
Y

M
E

F
ix

ed
F
ix

ed
Y

es
N

o
Y

es
N

o
N

o
M

u
lt

ip
le

Y
es

N
o

D
ig

S
il
en

t
F
re

e
F
re

e
Y

es
N

o
Y

es
Y

es
N

o
U

n
iq

u
e

P
ro

to
ty

p
es

N
o

E
P

R
I/

B
P
A

F
ix

ed
F
ix

ed
Y

es
N

o
Y

es
N

o
N

o
U

n
iq

u
e

Y
es

N
o

E
u
ro

st
a
g

F
ix

ed
F
ix

ed
Y

es
N

o
Y

es
N

o
N

o
M

u
lt

ip
le

Y
es

N
o

F
lo

w
D

em
o

F
re

e
F
ix

ed
N

o
N

o
N

o
Y

es
N

o
U

n
iq

u
e

N
o

N
o

G
E

-P
S
L
F

F
re

e
F
ix

ed
N

o
N

o
N

o
N

o
N

o
U

n
iq

u
e

Y
es

N
o

IE
E

E
C

D
F

F
ix

ed
F
ix

ed
N

o
N

o
N

o
N

o
N

o
U

n
iq

u
e

N
o

N
o

IN
P

T
C

1
F
ix

ed
F
ix

ed
N

o
N

o
N

o
N

o
N

o
M

u
lt

ip
le

N
o

Y
es

M
a
tp

ow
er

F
re

e
F
re

e
N

o
Y

es
N

o
N

o
N

o
A

n
y

N
o

N
o

N
ep

la
n

F
re

e
F
re

e
Y

es
N

o
Y

es
Y

es
Y

es
M

u
lt

ip
le

Y
es

N
o

P
o
w

er
W

o
rl

d
F
re

e
F
re

e
N

o
Y

es
Y

es
Y

es
N

o
U

n
iq

u
e

Y
es

N
o

P
S
A

T
F
re

e
F
re

e
Y

es
Y

es
N

o
Y

es
Y

es
A

n
y

N
o

Y
es

P
S
S
/
E

F
re

e
F
ix

ed
Y

es
N

o
Y

es
N

o
Y

es
U

n
iq

u
e

Y
es

N
o

P
S
T

F
re

e
F
re

e
Y

es
N

o
Y

es
N

o
Y

es
A

n
y

N
o

Y
es

S
im

p
ow

F
re

e
F
re

e
Y

es
N

o
Y

es
Y

es
Y

es
A

n
y

Y
es

Y
es

U
C

T
E

F
ix

ed
F
ix

ed
N

o
N

o
N

o
N

o
N

o
U

n
iq

u
e

Y
es

N
o

21.1 Data Format Taxonomy 461

- Fixed position, fixed order. This is the oldest method of storing data and
date back to the paper cards that were used in the seventies for loading
and saving the information used by computers. Any data has is starting
and ending columns and is assigned a maximum number of digits. Also
the order in which data are listed is fixed. For example, in the IEEE CDF
the bus card comes before the branch card, and the voltage magnitude
must occupy columns 28 to 33 of the bus card [350]. The formats created
by WSCC-EPRI [90], Eurostag [92], UCTE [318], and ENEL (INPTC1)
[87] are other examples of this kind of format.

- Free position, fixed order. The position of the data is free, however, the
order in which the data is listed in the file is fixed. For example, in the
PSS/E format, the load data must follow the bus data, and the generator
data must follow the load data [245]. In the bus data, the bus name must
follow the bus identification number, etc. However, there is no restriction
on the token position, and data can be separated by commas or by spaces.
Other examples of this kind of formats are those of GE-PSLF [88] and
FlowDemo.net [83].

- Free position, free order. The position and the order of the data are free.
Typically, an ad-hoc parser is needed to read this kind of data files, which
makes quite difficult to create an import/export utility. Some examples
of such formats are the formats used by Simpow [302], DigSilent [75],
PowerWorld [246] and InterPSS [359]. A special example of this format
are also all data files written in Matlab (see for example, PSAT [194],
PST [59], and Matpower [363]).

In this case, the data file is parsed by the Matlab interpreter, which
makes extremely flexible the information that can be stored in the file, but
also hard to export to other platforms if not using the Matlab interpreter.

- Mark-up languages Mark-up languages allows the maximum freedom for
organizing data. The idea of mark-up languages is simple but power-
ful: each data is introduced by a pre-defined syntax which allows clearly
identifying the data itself. Thus the position and the order of the data is
not relevant. For example a widely used mark-up language is XML [342].
Another example is the Resource Description Framework (RDF) that is
used for CIM data bases.

21.1.2 Kind of Supported Data

This feature affects the contents of the data file. Clearly, the more data kinds
the format can support, the more complete and general the format is. A
format that pretends to be application independent should provide as many
kind of data as possible. For example, typical data kinds are as follows.

- Static Data. (e.g., power flow data).
- Dynamic Data. (e.g., synchronous machine and regulator parameters).
- Market Data. (e.g., generator and load bids).

462 21 Data Formats

- Short Circuit Analysis Data. (e.g., negative and zero sequence of genera-
tors and transformers).

- Graphical Data. (e.g., network scheme, geographical information system,
etc.).

- Other Data. (e.g., FACTS data, user defined component data, etc.).

21.1.3 Number of Files

Having multiple files for defining a network can be an useful feature if working
with several scenarios for the same network. For example, one can use a single
power flow data and work on several dynamic scenarios. This feature allows
reducing the amount of data stored on the computer. However, nowadays, this
is a not so critical issue taking into account that a 15000 bus system takes
about 10 MB of disk space while modern hard disks contain hundreds of GB.
Furthermore, the “modification command” described in the next subsection
is a better option than the multiple-file feature for multi-scenario studies.
The following items describes some examples.

- Single file. Most of the data formats requires a single file for defining the
whole network. This is typical of most formats.

- Multiple fixed number of files. Some formats uses different files for dif-
ferent information. For example the power flow data is in some case
separated from the dynamic data (e.g., CYME [68] and Eurostag [92]
formats).

- Any number of files. The Simpow format [302] provides the possibility of
including any number of files. Nested file inclusion is also allowed. This
feature is useful in case of large networks, where the amount of data is
cumbersome. The user can be interested in modifying only a small part
of the network and it is thus easier to work on a small file that is then
included in the main data file.

21.1.4 Default Values, Prototypes and Data
Manipulation

Accepting default data is both a feature of the data format and of the appli-
cation that reads the data format. The application that reads the data file
must assign a known default value to all parameters that are not specifically
defined in the file. Thus, it is necessary that the documentation of the data
format clearly specifies default values.

Similar to default value definition is data prototyping, which consists in
referring certain device data to a common device prototype. Any device in-
stance inherits the data of the prototypes. This technique is similar to creating

21.2 Canonical Model 463

a class (prototype) and then instantiating several times that class.1 The ad-
vantage is that a change in the prototype data automatically update all the
data referring to that prototype.

Finally, being able to modify data “on the fly” is an useful feature for
scripting applications. For example, if one wants to solve the power flow for
different load levels, it could be convenient to have a compact command
included in the data file that modifies the load powers without the need of
rewriting all load data.

The following items describes some examples.

- Default Values. Most formats, especially fixed position formats, does not
support default values and force writing all data of a component, even if
those data are not known or could be easily deduced by default.

- Device Prototyping. This feature is provided by the DigSilent format [75].
In case of big distribution networks where most of the transformers and
protections are the same, data prototyping can save space. The Simpow
format also provides a sort of device prototyping feature in the defini-
tion of synchronous machine regulators [302]. Synchronous machine data
include the code of a certain AVRs and/or turbine governor prototype.
This technique allows reducing the data file size if most of AVRs and
turbine governors have same data.

- Modification Command. The Simpow format provides the powerful al-
ter command for modifying the base case data. Matlab-based formats
implicitly include modification commands, since any Matlab function and
matrix manipulation can be included in the data file.

21.2 Canonical Model

From the previous section, it is clear that if one wants to use different soft-
ware tools, some data import/export utility is needed. Software companies
such as PowerWorld and most open-source tools, such as UWPFLOW, In-
terPSS and PSAT, develop and provide adapters to import data. However,
the direction is mainly one way, i.e., importing data in different formats into
simulation applications, but generally not the other way round, i.e., exporting
data to different data formats. This makes very difficult (if not impossible)
to exchange power system simulation study case in a robust and reliable way.

Another strong restriction to the diffusion and creation of data format
adapters is the fact that the documentation of most commercial data formats
is not freely available and, in some cases, is intentionally not complete.

Even if one can access the full and detailed documentation of any formats
in use in the power system community, there is another important issue that

1 The difference between “classes” and “prototypes” is that a class defines a ab-

stract type that in general does not contains any specific data, whereas a proto-

type is a template that defines data.

464 21 Data Formats

should be solved. If there are n data formats and m software applications, the
possible filtering/converting routes that connect each format to each appli-
cation are n×m. This fact is illustrated in Figure 21.1. Actually, the number
of routes is even higher than n ×m, because some formats come in several
versions and require a specific filter for each version (e.g., the family of PSS/E
v. 2x and 3x formats).

Import/Export

Utilities
Format 1

Format 2

Format 3

Format i

Format n

Software 1

Software j

Software m

Fig. 21.1 Current state of data exchange structure

A more efficient solution is to use a canonical model [201]. In the infor-
mation model theory, a canonical model indicates a common format into
which any data file written in other formats can be converted and that can
be read by any software application. In other words, a canonical model is a
“super-set” of all other data formats. Using the canonical model, the possible
filtering/converting routes for n formats and m applications are only n+m,
as illustrated in Figure 21.2.

The critical assumption is that the canonical model is a standard for power
system analysis. Without this assumption the canonical model would be just
another available format. A tentative to create such canonical model actually
exists and is described in the following section.

21.3 Common Information Model

The Common Information Model (CIM) is defined by international IEC stan-
dards, e.g., [137, 138]. Reference [188] provides the following good definition
of CIM:

21.3 Common Information Model 465

Import/ExportImport/Export

UtilitiesUtilities
Format 1

Format 2

Format 3

Format i

Format n

Software 1

Software j

Software m

Canonical

Model

Fig. 21.2 Proposed data exchange structure

“The IEC standard 61970-301 [138] is a semantic model that describes the
components of a power system at an electrical level and the relationships
between each component. The IEC 61968-11 [137] extends this model to
cover the other aspects of power system software data exchange such as asset
tracking, work scheduling and customer billing. These two standards, 61970-
301 and 61968-11 are collectively known as the Common Information Model
(CIM) for power systems and currently have two primary uses: to facilitate
the exchange of power system network data between companies; and to allow
the exchange of data between applications within a company.”

In its purpose, CIM is designed to cover all aspects of power systems and
uses RDF for organizing data. There are several ways to implement a CIM
data file. A common structure consists in dividing the power system elements
into two sections, namely topological data and physical resources. The topo-
logical data organizes the system into islands and each island into topological
nodes that contain terminals. The attributes of each topological object define
its connectivity to other terminals. Resources can be further subdivided into
two groups, operational resources and equipments. Operational resources are
containers such as control areas, bays, substations, voltage levels, etc, while
equipments are the physical devices, such as loads, that belong to some con-
tainer. Terminals provide the links between topological data and physical
resources, as illustrated in Figure 21.3. Topological nodes and equipments
belong to containers. Then, equipments can be connected to a node through
one or more terminals.

The CIM scheme is sufficiently general to be able to describe any aspect of
power systems. And actually this is the goal of the task forces that are defining
the IEC standards that describes the CIM format. Furthermore, being based

466 21 Data Formats

Equipment

Equipment

Equipment

Equipment

Node

Node

Node

Island

Island

Terminal

Terminal

Terminal

Terminal

Container

Container

Fig. 21.3 Structure of a possible CIM implementation

on international standards, CIM is gaining more and more popularity among
utilities and practitioners. However, there are some intrinsic weaknesses that
make CIM quite inadequate for being systematically adopted for research-
and education-oriented power system analysis.

1. The CIM structure is rather complex and requires a time to be understood
and efficiently used. This is against the well-known “kiss” rule.

2. Due to the internal division into topological and physical elements, most
devices are defined twice. This is against the Occam’s razor principle that
forbids unnecessarily multiplying objects.2

3. CIM is based on RDF, which is similar but much more difficult to process
than the XML schema. In any case, RDF is designed to be processed by
machines, since it is nearly impossible for a human to read a CIM document
describing a real power system. Furthermore, RDF has the drawback of
being particularly lengthy. The use of meaningful tags and the intrinsic
CIM redundancy lead to files of abnormal size. Generally, a CIM file is
500 to 1000 times bigger than data files written in some common power
system format. Thus, a power system that could be described by a 4 MB
files requires 4 GB if written in the CIM format. CIM supporters claim
that disk space is not an issue anymore. However, the time required for
reading a 4 GB file cannot be neglected if the operation has to be repeated
hundreds or thousands of times (e.g., for some Montecarlo simulation).

4. A byproduct of the issues above is that writing, reading and maintaining
CIM data bases are not straightforward tasks. The RDF scheme underly-
ing the CIM format is quite difficult to implement. There are some early
stage implementations of CIM version based on XML schemes, but only
proprietary and commercial solutions are currently available for handling
complete CIM data bases. Clearly, there is nothing wrong in that there

2 The Occam’s razor states that entia non sunt multiplicanda præter necessitatem.

21.4 Consistent Data Schemes 467

are commercial interests behind the definition of CIM. However, a monop-
olistic proprietary approach is certainly to be avoided if a format claims
to be an international standard.

5. CIM has been designed to cover all aspects of power systems. In the idea
of its creators, CIM can be actually able to describe any aspect of reality.
Due to the Gödel’s theorem, if a system is complete is inconsistent, and
if it is consistent is incomplete. If the goal of CIM is to be complete, then
CIM is inexorably destined to be inconsistent.

6. The name itself, i.e., common information model, indicates the inadequacy
of CIM for describing data for power system analysis. CIM is designed to
be a mere “information” data base. However, as discussed in the follow-
ing section, a data format cannot be independent from the mathematical
models used for describing power system devices.

21.4 Consistent Data Schemes

Any data format is implicitly based on a certain set of mathematical models
of power system devices. Part III has discussed a variety of devices, but
the list is well far to be complete and more devices will be invented in the
future. Furthermore, each device has a variety of possible models, depending
on the detail level and on the analysis that has to be solved. According to
this premise, the definition of a complete data format is simply impossible.
But, fortunately, it is not desirable. Rather than aiming to classify any power
system device in a closed structure, a consistent data format should simply
provide a structure (or a scheme) able to describe as many devices as possible.
In other words, it is not relevant how many devices a data format includes,
but how versatile and well-designed is the scheme on which the format is
built. In this regard, the approach of CIM is correct, since it provides a
general scheme for describing power systems.3

A scheme is an abstract object and should not be based on a specific
language. A common issue of most data formats is to confuse syntax rules
with the data scheme. Mark-up languages avoid this confusion and should
be preferred. However, the scheme should not depend on a specific mark-up
language.

Based on the features described in Section 21.1, other desired properties
are the possibility of spreading data in multiple files, data prototyping and
data manipulating commands. Least but not last, a scheme should be as
readable as possible so that it is not necessary to use dedicated software to
write a simple data file for didactic use. This feature is irrelevant for industrial
applications because nobody actually writes by hand a data file composed
of thousands of buses. However, designing a data format only thinking in

3 The success of the XML language is also due to the fact that XML provides the

means for designing as complex as desired schemes.

468 21 Data Formats

industrial applications (e.g., CIM) and neglecting didactic issues implies a
training cost when it comes to employ just-graduated engineers.

Nevertheless, it would be very useful if a data format for power system
analysis aligns with the concepts that are included in the CIM for power
system data (i.e., standards IEC 61970, 61968, 61850, 60870-6 (TASE.2),
ISO9506 (MMS), etc.) In fact, it is not desirable to have corporate systems,
SCADA, and substation protection and control working on a common infor-
mation model, and the analysis software moving to a completely different
direction.

Finally, according to the discussion given in Subsection 22.2.4 of Chapter
22, it is desirable that a data format integrates device parameters and ge-
ographical information so that one does not have to maintain two separate
databases that almost never agree.

Example 21.1 Data Format Example

This example provides a simple yet versatile data format.
The proposed scheme is as follows. A network is composed of a set of de-

vices. A device can be topological (e.g., buses and areas) or physical (e.g.,
generators and loads). Each device is defined by a list of parameters. The
device identification code (called idx in the following example) allows con-
necting devices together. For example, to indicate that a load is connected
to a certain bus, it suffices to assign the bus identification code to the load
parameter bus.

As discussed above, the syntax is not really important, especially if using
mark-up languages. However, to maintain as readable as possible the file, the
following rules are used:

1. The name of the device starts in the first column.
2. Device data can span multiple lines.
3. Lines following the first one must be indented.
4. Data follows in Property Name = Value pairs, separated by commas.
5. Data in form of strings must be delimited by "".
6. Data in form of arrays must be delimited by brackets [].
7. Each element of the array must be separated by semicolons.
8. Float data support simple operations (sum, multiplication, etc.).
9. Comments starts with a # in the first column

For example this is how the IEEE 14-bus system looks like in this format:

Bus, Vn = 69.0, idx = 1, name = "Bus 1"

Bus, Vn = 69.0, idx = 2, name = "Bus 2"

Bus, Vn = 69.0, idx = 3, name = "Bus 3"

Bus, Vn = 69.0, idx = 4, name = "Bus 4"

Bus, Vn = 69.0, idx = 5, name = "Bus 5"

Bus, Vn = 13.8, idx = 6, name = "Bus 6"

Bus, Vn = 13.8, idx = 7, name = "Bus 7"

21.4 Consistent Data Schemes 469

Bus, Vn = 18.0, idx = 8, name = "Bus 8"

Bus, Vn = 13.8, idx = 9, name = "Bus 9"

Bus, Vn = 13.8, idx = 10, name = "Bus 10"

Bus, Vn = 13.8, idx = 11, name = "Bus 11"

Bus, Vn = 13.8, idx = 12, name = "Bus 12"

Bus, Vn = 13.8, idx = 13, name = "Bus 13"

Bus, Vn = 13.8, idx = 14, name = "Bus 14"

Area, idx = 1, name = "14-Bus"

Region, Ptol = 9.9999, idx = 1, name = "IEEE 14 Bus",

slack = 1.0

Line, Vn = 69.0, Vn2 = 69.0, b = 0.0528, bus1 = 1, bus2 = 2,

idx = "Line_1", name = "Line 1", r = 0.01938, x = 0.05917

Line, Vn = 69.0, Vn2 = 69.0, b = 0.0492, bus1 = 1, bus2 = 5,

idx = "Line_2", name = "Line 2", r = 0.05403, x = 0.22304

Line, Vn = 69.0, Vn2 = 69.0, b = 0.0438, bus1 = 2, bus2 = 3,

idx = "Line_3", name = "Line 3", r = 0.04699, x = 0.19797

Line, Vn = 69.0, Vn2 = 69.0, b = 0.0374, bus1 = 2, bus2 = 4,

idx = "Line_4", name = "Line 4", r = 0.05811, x = 0.17632

Line, Vn = 69.0, Vn2 = 69.0, b = 0.034, bus1 = 2, bus2 = 5,

idx = "Line_5", name = "Line 5", r = 0.05695, x = 0.17388

Line, Vn = 69.0, Vn2 = 69.0, b = 0.0346, bus1 = 3, bus2 = 4,

idx = "Line_6", name = "Line 6", r = 0.06701, x = 0.17103

Line, Vn = 69.0, Vn2 = 69.0, b = 0.0128, bus1 = 4, bus2 = 5,

idx = "Line_7", name = "Line 7", r = 0.01335, x = 0.04211

Line, Vn = 69.0, Vn2 = 13.8, bus1 = 4, bus2 = 7, idx = "Line_8",

name = "Line 8", tap = 0.978, trasf = True, x = 0.20912

Line, Vn = 69.0, Vn2 = 13.8, bus1 = 4, bus2 = 9, idx = "Line_9",

name = "Line 9", tap = 0.969, trasf = True, x = 0.55618

Line, Vn = 69.0, Vn2 = 13.8, bus1 = 5, bus2 = 6, idx = "Line_10",

name = "Line 10", tap = 0.932, trasf = True, x = 0.25202

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 6, bus2 = 11, idx = "Line_11",

name = "Line 11", r = 0.09498, x = 0.19890

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 6, bus2 = 12, idx = "Line_12",

name = "Line 12", r = 0.12291, x = 0.25581

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 6, bus2 = 13, idx = "Line_13",

name = "Line 13", r = 0.06615, x = 0.13027

Line, Vn = 13.8, Vn2 = 18.0, bus1 = 7, bus2 = 8, idx = "Line_14",

name = "Line 14", trasf = True, x = 0.17615

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 7, bus2 = 9, idx = "Line_15",

name = "Line 15", x = 0.11001

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 9, bus2 = 10, idx = "Line_16",

name = "Line 16", r = 0.03181, x = 0.08450

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 9, bus2 = 14, idx = "Line_17",

name = "Line 17", r = 0.12711, x = 0.27038

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 10, bus2 = 11, idx = "Line_18",

name = "Line 18", r = 0.08205, x = 0.19207

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 12, bus2 = 13, idx = "Line_19",

name = "Line 19", r = 0.22092, x = 0.19988

Line, Vn = 13.8, Vn2 = 13.8, bus1 = 13, bus2 = 14, idx = "Line_20",

name = "Line 20", r = 0.17093, x = 0.34802

470 21 Data Formats

PQ, Vn = 69.0, bus = 2, idx = "PQ load_1", name = "PQ Bus 2",

p = 0.217, q = 0.127

PQ, Vn = 69.0, bus = 3, idx = "PQ load_2", name = "PQ Bus 3",

p = 0.942, q = 0.19

PQ, Vn = 69.0, bus = 4, idx = "PQ load_3", name = "PQ Bus 4",

p = 0.478, q = -0.039

PQ, Vn = 69.0, bus = 5, idx = "PQ load_4", name = "PQ Bus 5",

p = 0.076, q = 0.016

PQ, Vn = 13.8, bus = 6, idx = "PQ load_5", name = "PQ Bus 6",

p = 0.112, q = 0.075

PQ, Vn = 13.8, bus = 9, idx = "PQ load_6", name = "PQ Bus 9",

p = 0.295, q = 0.166

PQ, Vn = 13.8, bus = 10, idx = "PQ load_7", name = "PQ Bus 10",

p = 0.09, q = 0.058

PQ, Vn = 13.8, bus = 11, idx = "PQ load_8", name = "PQ Bus 11",

p = 0.035, q = 0.018

PQ, Vn = 13.8, bus = 12, idx = "PQ load_9", name = "PQ Bus 12",

p = 0.061, q = 0.016

PQ, Vn = 13.8, bus = 13, idx = "PQ load_10", name = "PQ Bus 13",

p = 0.135, q = 0.058

PQ, Vn = 13.8, bus = 14, idx = "PQ load_11", name = "PQ Bus 14",

p = 0.149, q = 0.05

Breaker, Vn = 69.0, bus = 2, fn = 60.0, idx = 1, line = "Line_4",

name = "Breaker 1", t1 = 1.0, u1 = 1

PV, Vn = 69.0, bus = 2, busr = 2, idx = 2, name = "PV Bus 2",

pg = 0.4, pmax = 1.0, pmin = 0, qmax = 0.5, qmin = -0.4,

v0 = 1.045

PV, Vn = 69.0, bus = 3, busr = 3, idx = 3, name = "PV Bus 3",

pmax = 1.0, pmin = 0, qmax = 0.4, v0 = 1.01

PV, Vn = 13.8, bus = 6, busr = 6, idx = 6, name = "PV Bus 6",

pmax = 1.0, pmin = 0, qmax = 0.24, qmin = -0.06, v0 = 1.07

PV, Vn = 18.0, bus = 8, busr = 8, idx = 8, name = "PV Bus 8",

pmax = 1.0, pmin = 0, qmax = 0.24, qmin = -0.06, v0 = 1.09

Shunt, Vn = 13.8, b = 0.19, bus = 9, idx = "Shunt 1",

name = "Shunt Bus 9"

SW, Vn = 69.0, bus = 1, busr = 1, idx = 1, name = "SW Bus 1",

pg = 2.324, pmax = 999.9, pmin = -999.9, qmax = 9.9,

qmin = -9.9, v0 = 1.06

Syn5a, D = 2.0, M = 2*5.143, Sn = 615.0, Td10 = 7.4, Td20 = 0.03,

Tq20 = 0.033, Vn = 69.0, bus = 1, fn = 60.0, gen = 1,

idx = 1, name = "Syn 1", xd = 0.8979, xd1 = 0.2995, xd2 = 0.23,

xl = 0.2396, xq = 0.646, xq1 = 0.646, xq2 = 0.4

Syn6a, D = 2.0, M = 2*6.54, Sn = 60.0, Td10 = 6.1, Td20 = 0.04,

Tq10 = 0.3, Tq20 = 0.099, Vn = 69.0, bus = 2, fn = 60.0,

gen = 2, idx = 2, name = "Syn 2", ra = 0.0031, xd = 1.05,

xd1 = 0.185, xd2 = 0.13, xq = 0.98, xq1 = 0.36, xq2 = 0.13

Syn6a, D = 2.0, M = 2*6.54, Sn = 60.0, Td10 = 6.1, Td20 = 0.04,

Tq10 = 0.3, Tq20 = 0.099, Vn = 69.0, bus = 3, fn = 60.0,

gen = 3, idx = 3, name = "Syn 3", ra = 0.0031, xd = 1.05,

21.4 Consistent Data Schemes 471

xd1 = 0.185, xd2 = 0.13, xq = 0.98, xq1 = 0.36, xq2 = 0.13

Syn6a, D = 2.0, M = 2*5.06, Sn = 25.0, Td10 = 4.75, Td20 = 0.06,

Tq10 = 1.5, Tq20 = 0.21, Vn = 13.8, bus = 6, fn = 60.0,

gen = 6, idx = 4, name = "Syn 4", ra = 0.0041, xd = 1.25,

xd1 = 0.232, xd2 = 0.12, xl = 0.134, xq = 1.22, xq1 = 0.715,

xq2 = 0.12

Syn6a, D = 2.0, M = 2*5.06, Sn = 25.0, Td10 = 4.75, Td20 = 0.06,

Tq10 = 1.5, Tq20 = 0.21, Vn = 18.0, bus = 8, fn = 60.0,

gen = 8, idx = 5, name = "Syn 5", ra = 0.0041, xd = 1.25,

xd1 = 0.232, xd2 = 0.12, xl = 0.134, xq = 1.22, xq1 = 0.715,

xq2 = 0.12

Avr1, Ka = 200.0, Kf = 0.0012, Ta = 0.02, Te = 0.19, Tf = 1.0,

bus = 1, idx = 1, name = "AVR 1", syn = 1, vmax = 9.99,

vmin = 0.0

Avr1, Ka = 20.0, Kf = 0.001, Ta = 0.02, Te = 1.98, Tf = 1.0,

bus = 2, idx = 2, name = "AVR 2", syn = 2, vmax = 2.05,

vmin = 0.0

Avr1, Ka = 20.0, Kf = 0.001, Ta = 0.02, Te = 1.98, Tf = 1.0,

bus = 3, idx = 3, name = "AVR 3", syn = 3, vmax = 1.7,

vmin = 0.0

Avr1, Ka = 20.0, Kf = 0.001, Ta = 0.02, Te = 0.7, Tf = 1.0,

bus = 6, idx = 4, name = "AVR 4", syn = 4, vmax = 2.2,

vmin = 1.0

Avr1, Ka = 20.0, Kf = 0.001, Ta = 0.02, Te = 0.7, Tf = 1.0,

bus = 8, idx = 5, name = "AVR 5", syn = 5, vmax = 2.2,

vmin = 1.0

The format can be completed by the INCLUDE and ALTER commands, that
allows including external files and modifying data previously defined, respec-
tively.

For example, the syntax of the INCLUDE command is:

INCLUDE, include file

where include path is the full or relative path to the external file. The syntax
of the ALTER command is as follows:

ALTER, device name, action, filter, property, value

where

device name is the system name of any device previously defined.
actions are: MUL, DIV, SUM, SUB, POW, REP.
filter is the reg-exp to be used for selecting the device (based on the name).
property is any numerical property of the device.
value the numerical value to be used by action. The value must be a float.

For example, to multiply by 1.2 all loads and PV generator powers, one has:

ALTER, PQ, MUL, *, p, 1.2

ALTER, PQ, MUL, *, q, 1.2

ALTER, PV, MUL, *, pg, 1.2

472 21 Data Formats

Script 21.1 Data Parser

The following Python code implements a parser for the data format described
in the previous section. A parser consists in a procedure that reads a file and
extracts data and/or information based on a given syntax. Regular expres-
sions (imported through the standard library re) allows efficiently parsing
the data.4 Finally, the command INCLUDE is supported through a recursive
call to the function read.

import re

import system

def alter(data):

device = data[0]

action = data[1]

if data[2] == ’*’: data[2] = ’.*’

regex = re.compile(data[2])

prop = data[3]

value = float(data[4])

if action == ’MUL’:

for item in xrange(system. dict [device].n):

if regex.search(system. dict [device].name[item]):

system. dict [device]. dict [prop][item] *= value

elif action == ’REP’:

for item in xrange(system. dict [device].n):

if regex.search(system. dict [device].name[item]):

system. dict [device]. dict [prop][item] = value

elif action == ’DIV’:

if not value:

return

for item in xrange(system. dict [device].n):

if regex.search(system. dict [device].name[item]):

system. dict [device]. dict [prop][item] /= value

elif action == ’SUM’:

for item in xrange(system. dict [device].n):

if regex.search(system. dict [device].name[item]):

system. dict [device]. dict [prop][item] += value

elif action == ’SUB’:

for item in xrange(system. dict [device].n):

if regex.search(system. dict [device].name[item]):

system. dict [device]. dict [prop][item] -= value

elif action == ’POW’:

for item in xrange(system. dict [device].n):

if regex.search(system. dict [device].name[item]):

system. dict [device]. dict [prop][item] **= value

4 Regular expressions are a fascinating world apart in computer programming. The

regular expression parser is an extremely powerful tool for manipulating text

and data and is provided as a standard library by most programming languages,

including Perl, Python and Java. The interested reader can find a complete de-

scription of regular expressions in [102].

21.4 Consistent Data Schemes 473

else:

print ’ALTER action <%s> is not defined’ % action

def read(fid, header = True):

useful regular expressions and constants

sep = re.compile(r’\s*,\s*’)
comment = re.compile(r’^#\s*’)
equal = re.compile(r’\s*=\s*’)
math = re.compile(r’[*/+-]’)

double = re.compile(r’[+-]? *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?’)

parse data

while 1:

line = fid.readline()

if not line: break

line = line.replace(’\n’, ’’)

line = line.strip()

if not line: continue

if comment.search(line): continue

span multiple line

while line.endswith(’,’) or line.endswith(’;’):

newline = fid.readline()

line = line.replace(’\n’, ’’)

if not newline: break

newline = newline.strip()

if not newline: continue

if comment.search(newline): continue

line += ’ ’ + newline

data = sep.split(line)

device = data.pop(0)

device = device.strip()

if device == ’ALTER’:

alter(data)

continue

if device == ’INCLUDE’:

print ’Parsing include file <%s>.’ % data[0]

newfid = open(data[0], ’rt’)

read(newfid, header = False) # recursive call

newfid.close()

print ’Parsing of include file <%s> completed.’ % data[0]

continue

kwargs =

for item in data:

pair = equal.split(item)

key = pair[0].strip()

474 21 Data Formats

value = pair[1].strip()

if value.startswith(’"’):

value = value[1:-1]

elif value.startswith(’[’):

array = value[1:-1].split(’;’)

if math.search(value): # execute simple operations

value = map(lambda x: eval(x), array)

else:

value = map(lambda x: float(x), array)

elif double.search(value):

if math.search(value): # execute simple operations

value = eval(value)

else:

value = float(value)

elif value == ’True’:

value = True

elif value == ’False’:

value == False

else:

value = int(value)

kwargs[key] = value

index = kwargs.pop(’idx’, None)

namex = kwargs.pop(’name’, None)

try:

system. dict [device].add(idx=index, name=namex, **kwargs)

except KeyError:

print ’Device <%s> is will be skipped’ % device

return True

Chapter 22

Visualization Matters

This chapter discusses visualization matters related to power system anal-
ysis. In particular, the aspects covered in the chapter are the adequacy of
graphical user interfaces versus the command line usage (Section 22.1) and
available approaches for displaying results (Section 22.2). The latter describes
standard two-dimensional plots (Subsection 22.2.1), temperature maps
(Subsection 22.2.2), three-dimensional plots (Subsection 22.2.3), and the inte-
gration of graphical information systems into power system analysis software
packages (Subsection 22.2.4).

22.1 Graphical Interface vs. Command Line Approach

The current trend of proprietary operating systems and software applications
is to mask the functioning of the software behind a Graphical User Interface
(GUI). There is no doubt that intuitive GUIs simplify the learning process
of the application, at least at the first approach. Furthermore, GUIs are
certainly useful for didactic purposes. On the other hand, the weakness of
any GUI is that the only allowed operations are those embedded in the GUI
itself. Thus, GUIs reduce user freedom. This is a real issue for most scientific
(i.e., number-crunching) applications.1

Opposite to GUIs is the command-line approach. The advantages of using
a pure command-line approach for scientific applications are as follows.

1. The command-line approach allows efficient use on remote servers.
2. Batch programming is possible only with the command-line approach (see

Script 22.1).
3. The size of the application can be very reduced if GUIs are taken apart.
4. GUIs are often operating system dependent. Thus, using a command line

approach eases portability.

1 It is important not to confuse GUIs with CAD/CAM applications and result

visualization. The latter is discussed in the following section.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 475–488.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

476 22 Visualization Matters

5. The command-line approach can provide a finer tuning than GUI-based
ones.

6. Due to the lack of a user-friendly interface, the user is forced to carefully
study the command-line options that, in turn, leads to a better under-
standing of the application functioning.

GUIs are compatible with the command-line approach but only if the GUI
is maintained strictly separated from the main application that performs
the operations. GUIs built on top of an existing command-line application
are often called skins. The advantage of separating the skin from the kernel
application is twofold: (i) the user can chose if using the GUI or not, and
(ii) several skins can be built for the same application.2 In conclusion, the
command line approach results in more flexibility and more freedom for the
user.

Unfortunately, few power system applications have adopted the efficient
command-line approach, e.g., [42, 363], and very few have provided a
command-line version and a separate skin [195]. This is probably due to the
fact that most power system software packages are proprietary applications
and works only on Microsoft R© operating systems.

Script 22.1 Batch Script for Power Flow Analysis

Batch scripting is a powerful technique that consists in executing a series of
operations in a non-interactive way. All commands are stored in a file (batch
script) and then the file executed. Batch scripting can be considered a sort
of meta-programming.

Python provides an easy way to take advantage of batch scripting. In
fact any Python procedure can be distributed as a library rather than as
stand-alone applications.3 Since Python libraries can be imported by any
Python script, the same Python language can be used for creating batch
files. This technique is illustrated in the script below, which produces the
results presented in Example 4.4 of Chapter 4.

The script works as follows. For the sake of example, assume that the power
flow analysis tool described in Script 3.2 of Chapter 3 is available as a Python
library called powerlib. Thus, importing this library provides all classes and
routines described in Parts II and III. For example, settings can be adjusted
using the attributes of the powerlib.system.Settings class (see Script 3.2
for further details on the architecture of the system structure).

In the example below, the main data file is ieee14.dm that, apart from
the power flow data, contains the statement:

INCLUDE, load.txt

2 This explains why, for example, there exist several window managers for Linux

systems, while Windows system have an unique user interface.
3 The setuptools library allows creating custom libraries in few easy steps.

22.1 Graphical Interface vs. Command Line Approach 477

This command imposes that the parser reads a file called load.txt (see
Example 21.1 and Script 21.1 of Chapter 21 for further details on INCLUDE
statement). Then the script calls repeatedly the solution of the power flow
analysis changing the load level in the file load.txt. The load level is modified
through the ALTER statement (see again Example 21.1 for details). Finally
results are plotted and saved to a file using the Matplotlib library.

import powerlib

import numpy

from cvxopt.base import matrix, div

from matplotlib import pyplot

def run():

load = numpy.linspace(0.6, 2.6, num=50, endpoint=True)

a = []

b = []

powerlib.system.Settings.pv2pq = False

powerlib.system.Settings.pq2z = False

powerlib.system.Settings.pfsolver = ’NR’

for m in load:

powerlib.system.Settings.iteration = 0

fid = open(’load.txt’, ’wt’)

fid.write(’ALTER, PQ, MUL, *, p, %.5f\n’ % m)

fid.write(’ALTER, PQ, MUL, *, q, %.5f\n’ % m)

fid.close()

powerlib.run(’ieee14.dm’, path=’tests/powerlib’)

vec = powerlib.system.DAE.y[powerlib.system.Bus.a]

a.append(vec)

powerlib.system.Settings.pfsolver = ’DC’

for m in load:

powerlib.system.Settings.iteration = 0

fid = open(’load.txt’, ’wt’)

fid.write(’ALTER, PQ, MUL, *, p, %.5f\n’ % m)

fid.write(’ALTER, PQ, MUL, *, q, %.5f\n’ % m)

fid.close()

powerlib.run(’ieee14.dm’, path=’tests’)

vec = powerlib.system.DAE.y[powerlib.system.Bus.a]

b.append(vec)

n = load.size

c = matrix(0, (n, 1), ’d’)

d = matrix(0, (n, 1), ’d’)

m = matrix(load)

for i, ai, bi in zip(range(n), a, b):

am = matrix(ai)

bm = matrix(bi)

ad = matrix(ai)

ad[0] = 1.0

er = 100*div(abs(am - bm), abs(ad))

478 22 Visualization Matters

d[i] = max(er)

c[i] = sum(er)/(n - 1)

fig = pyplot.figure()

pyplot.hold(True)

pyplot.plot(m, c, ’k’, label=’mean error’)

pyplot.plot(m, d, ’k:’, label=’max error’)

pyplot.legend(loc=’upper left’)

pyplot.xlabel(’load’)

pyplot.ylabel(’error’)

pyplot.xlim([min(m), max(m)])

pyplot.savefig(’dcerror.eps’, format=’eps’)

pyplot.show()

22.2 Result Visualization

The importance of an intuitive and fully informative visualization of power
system results has been recognized and formalized in early nineties. In [180],
the authors specify three guidelines for setting up a good graphical repre-
sentation of physical phenomena: (i) natural encoding of information; (ii)
task specific graphics; and (iii) no gratuitous graphics. In [225, 346], two-
dimensional contour plots are proposed for the visualization of voltage bus
levels with inclusion of the topological information of the network. Standard
two-dimensional plots, temperature maps and three-dimensional plots and ge-
ographical information systems comply with the three guidelines mentioned
above and are described in the following subsections.

22.2.1 Standard Two-Dimensional Plots

Standard two-dimensional (2D) plots are extensively used throughout the
whole book. Moreover, the features of this visualization technique are very
well-known. This subsection only describes an efficient approach for manip-
ulating simulations results.

One of the most important strengths of UNIX systems is that every ma-
nipulable object is a file. Using this concept, UNIX system has proved to be
the most adequate for scientific applications. A standard UNIX application
can be launched from the command line and accepts files for both input data
and settings and then provides the output as a set of files. For example, the
LATEX compiler accepts as input .tex files and provides as outputs a .dvi file.
Then, the .dvi file can be viewed as is or translated into postscript or pdf
formats by other applications.

Following the UNIX teaching, the outputs of a power system analysis tool,
such as time domain simulations or continuation power flow analysis, can be
conveniently exported as plain ASCII files. For example, one file can report
variable values in columns and another file can specify to which variable each

22.2 Result Visualization 479

column corresponds. Then the two files can be parsed and results plotted
according to user settings.

This approach provides several advantages with respect to a all-in-one
approach which is the standard of most power system applications. In par-
ticular, the main advantage is the possibility of keeping the application that
performs the simulation separated from the application that plots results.
This provides more freedom, similarly to the command-line/skin approach
described in previous Section 22.1.

Script 22.2 Parser for Simulations Results

The following script provides an example of parser for simulation results. The
parser reads one or more files, stores the specified values in lists and finally
calls a plot function that actually creates the 2D plot. The syntax for calling
the script for the command line is as follows:

parse results [-options] datafile1 listfile1 x y1 [y2 y3 ...]

[datafile2 listfile2 x y1 [y2 y3 ...]] ...

where x is the number the variable used for the x-axis and y1, y2, etc., are
the numbers of the variables used for the y-axis.

import os

import re

import sys

from optparse import OptionParser

def parse results():

parser = OptionParser()

parser.add option(’-p’, ’--path’, dest=’path’,

default=cwd, help=’Path of the data file’)

parser.add option(’-l’, ’--legend’, dest=’legend’,

action=’store true’, default=False,

help=’Add legend to the plot’)

parser.add option(’-g’, ’--grid’, dest=’grid’,

action=’store true’, default=False,

help=’Add grid to the plot’)

parser.add option(’-s’, ’--style’, dest=’style’, default=’colors’,

help=plotstyle)

parser.add option(’-y’, ’--ylabel’, dest=’ylabel’,

default=None, help=’Label for the y axis’)

parser.add option(’-k’, ’--position’, dest=’position’,

default=’lower right’, help=legendhelp)

options, args = parser.parse args(sys.argv[1:])

set up arguments

if len(args) == 0:

print ’* Error: At least one data file must be defined!’

sys.exit(1)

480 22 Visualization Matters

interval = re.compile(r’\d+:\d+’)
stepint = re.compile(r’\d+:\d+:\d+’)
xname = ’’

ylegend = []

xout = []

yout = []

nval = 0

parse argument list

while len(args):

data file name

datafile = args.pop(0)

listfile = args.pop(0)

output file

outfile, ext = os.path.splitext(options.output)

outfile += ’.eps’

populate index vector

xyidx = []

yname = []

while len(args):

if stepint.search(args[0]):

values = re.findall(r’\d+’, args.pop(0))

for item in range(int(values[0]), int(values[2]) + 1, \
int(values[1])):

xyidx.append(item)

elif interval.search(args[0]):

values = re.findall(r’\d+’, args.pop(0))

for item in range(int(values[0]), int(values[1]) + 1):

xyidx.append(item)

elif not args[0].isdigit():

break

else:

xyidx.append(int(args.pop(0)))

if len(xyidx) == 0:

xyidx = [0, 1]

elif len(xyidx) == 1:

xyidx.append(1)

scan list file

fid = open(listfile, ’r’)

for line in fid:

data = line.split(’,’)

if int(data[0].strip()) == xyidx[0]:

xname = data[1].strip()

if int(data[0].strip()) in xyidx[1:]:

yname.append(data[1].strip())

order variable names according to command line order

yidx = xyidx[1:]

ysorted = sorted(yidx)

22.2 Result Visualization 481

mapy = map(yidx.index, ysorted)

yname temp = yname[:]

for idx, item in enumerate(mapy):

yname[idx] = yname temp[item]

fid.close()

scan data file

fid = open(datafile, ’r’)

xx = [[] for x in range(len(xyidx) - 1)]

yy = [[] for y in range(len(xyidx) - 1)]

""" Note: xx = [[]]*(len(xyidx) - 1) does not work since each

element is a copy of the others and updating one element will

update all the remaining ones."""

xidx = xyidx[0]

ref = False

if not options.reference is None:

ref = True

rdx = int(options.reference)

for line in fid:

data = line.split()

for item, yidx in enumerate(xyidx[1:]):

xx[item].append(float(data[xidx]))

yy[item].append(float(data[yidx]))

fid.close()

xout += xx

yout += yy

ylegend += yname

call the plot function

plot(outfile, xout, yout, xname, ylegend,

style = options.style,

legend = options.legend,

names = options.names,

ylabel = options.ylabel,

grid = options.grid,

position = options.position)

if name == ’ main ’:

parse results()

The standard library OptionParser provides the user with Unix-like com-
mand line options. The function plot imports the Matplotlib library for
creating the figure. A possible implementation of the function plot is as
follows.

482 22 Visualization Matters

from matplotlib import pyplot

def plot(output, x, y, xname, yname, style=’colors’,

legend=True, grid=False,

ylabel=None, position=’lower right’):

colors = [’b’, ’r’, ’g’, ’c’, ’m’, ’y’]

black = [’k-’, ’k--’, ’k:’, ’k-.’, ’k,’]

fig = pyplot.figure()

pyplot.hold(True)

if style in (’black’, ’b’):

s = black

else: # default is "colors" or "c"

s = colors

for item in xrange(len(y)):

pyplot.plot(x[item], y[item], \
s[item % len(s)], label=yname[item])

if legend:

if position.isdigit():

position = int(position)

pyplot.legend(loc=position)

pyplot.xlabel(xname)

if not ylabel is None:

pyplot.ylabel(ylabel)

pyplot.grid(grid)

plot figure and save to file

pyplot.savefig(output, format=’eps’)

pyplot.show()

All plots provided in this book were obtained using the Python functions
described in this example.

22.2.2 Temperature Maps

Contour and temperature maps have proved to be an effective solution for
visualizing results of a variety of power system analyses. In [157, 158, 222,
223, 224, 303], 2D maps are used for visualizing a variety of results, such as
power flows in transmission lines, locational marginal prices, available transfer
capability, contingency analysis, etc. All the previous references are based on
a proprietary software package [247] but, nowadays, scripting languages are
mature enough for producing high quality temperature maps [197, 295].

From the implementation viewpoint, producing 2D maps is just a matter
of assigning topological data (i.e., coordinates) to technical data (e.g., bus
voltage magnitudes). This can be obtained using a one-line diagram editor

22.2 Result Visualization 483

(e.g., PSAT leans on the Simulink editor [195]) or using graphical information
systems (see Subsection 22.2.4).

Example 22.1 Temperature Map of the IEEE 14-Bus System

Figure 22.1 shows the voltage temperature map for the power flow solution of
the IEEE 14-bus system. The procedure for obtaining the map is as follows.

1. Topological data have to be assigned to buses, lines and other devices that
compose the system.

2. Once the power flow analysis is solved, bus coordinates and voltage mag-
nitude values are collected as a set of triplets.

3. A map is created using the functions meshgrid and griddata from the
libraries NumPy and Matplotlib, respectively. The function meshgrid cre-
ates a coordinate matrix of uniformly spaced points while griddata fits
a surface of the form z = f(x, y) to the data in the non-uniformly spaced
vectors of bus coordinates (x, y) and voltage magnitude values z.

4. The surface computed in the previous point is plotted using any of the 2D
functions provided by the Matplotlib library. For example, Figure 22.1 is
obtained using the function imshow.

Fig. 22.1 Voltage temperature map for the IEEE 14-bus system. Values in the

legend are in pu

484 22 Visualization Matters

22.2.3 Three-Dimensional Plots

Three-dimensional (3D) visualization has been little exploited for power sys-
tem analysis, although in [348], the advantages of the 3D visualization are
discussed and recognized. In [208], rotor speeds of a multi-machine system are
displayed in a kind of 3D plot, however the topological information is miss-
ing. Reference [93] proposes a variety of 3D visualizations and animations of
traveling waves in transmission lines. Finally, [197] proposes 3D animations
for visualizing the voltage collapse and undamped oscillation phenomena.

The main issue with 3D plots is how to create a smooth surface that qual-
itatively captures the “shape” of a set of data (e.g., bus voltage magnitude
values). An effective solution to this problem is to compute the convex hull
of a set of points, which “is considered one of the most elementary interest-
ing problem in computational geometry, just as minimum spanning tree is
the most elementary interesting problem in graph algorithms” [282]. Using
mathematical terms, the convex hull for a set of points X in a real vector
space V is the minimal convex set containing X [248].

The idea of convex hull can be easily visualized in two dimensions, i.e., for
data sets that lie in the plane. In this case, the convex hull can be thought
as an elastic band stretched open to encompass the given object. If released,
the elastic band assumes the shape of the convex hull (see Figure 22.2).

Fig. 22.2 2D representation of the convex hull [282]

The convex hull of a set X in a real vector space V certainly exists since X
is contained at least in V , which is a convex set. Furthermore, any intersection
containing X is also a convex set containing X . This fact, is useful for a
mathematical definition of the convex hull. In particular, the Carathéodory’s
theorem states that the convex hull of X is the union of all simplexes with
at most n+ 1 vertices from X .

A convex hull can be defined for any set composed of points in a vector
space. The dimension of the data set can be any. However, the convex hull

22.2 Result Visualization 485

of finite sets of points in a two or three dimensions are the cases of most
practical importance.

The determination of the convex hull is an important problem of com-
putational geometry. Several algorithms with various computational burdens
have been proposed for a finite set of points [67, 73]. The complexity of the
corresponding algorithms is usually estimated in terms of n, of the number of
input points, and of the number of points on the convex hull. An open source
implementation of algorithms related to the convex hull problem are pro-
vided by the qhull project, which is a general dimension code for computing
convex hulls, Delaunay’s triangulations, and Voronoi’s diagrams [249].

The problem of finding convex hulls has several practical applications.
Fields where the convex hull is widely used include, for example, pattern
recognition, image processing, statistics and GIS. Furthermore, several im-
portant geometrical problems are based on the determination of the convex
hull. For example, just think of the determination of the diameter given a
set of points describing a circle is based on the convex hull. In fact, any
diameter will always connect to points laying on the convex hull (e.g., the
circumference) of the circle.

Example 22.2 3D Visualization of the IEEE 14-Bus System

Figure 22.3 shows a 3D voltage temperature map for the power flow solution
of the IEEE 14-bus system. The procedure for obtaining the map is as follows.
The 3D plot is obtained using the Mayavi suite for Python [253]. The procedure
is practically the same as that described in Example 22.1 except for the last
step for which the function mesh of the Mayavi library was used.

An important aspect that is difficult to “feel” from Figure 22.3 is the fact
that 3D maps are interactive, i.e., the user can rotate, zoom and manipulate
the map. In a 3D map, “peaks” are generally easy to see, while “valleys” can
be hidden. However, rotating the 3D map allows viewing the map from all
perspectives and creates in the user the impression of “flying” over the power
system. Since one can see the map from any point of view, there is actually
no part of the map that remains hidden.

22.2.4 Geographic Information System

Geographical Information Systems (GIS) are used for visualizing, digitizing
and analyzing data by linking geographic locations to information. Geospatial
data is used for creating maps, assigning data (or extracting “features”, which
is the name given to individual geometrical objects) and performing spatial
analysis.

Network operators use GIS for their infrastructure and utilities manage-
ment and network construction planing. As a part of the network information
system, the geographical data of the network is associated with the database
of the utility. An interface to enterprise resource planning (ERP) software

486 22 Visualization Matters

Fig. 22.3 Voltage level 3D visualization for the IEEE 14-bus system

may exist for the organization of the resources. Furthermore, network plan-
ners often need the GIS data for simulating future planned network assets.
In most cases, these two systems are separated and operate independently.
The only link is an identification or location reference in a database table.

In summary, a GIS-based power system information platform can provide:

• Geographical, topological and schematic representation.
• Graphical representation of simulation analysis results.
• Cable layout and detailed local area network plan.
• Search and query functions.
• Live information about the network status.

Recently, the major GIS software houses have being trying to interface power
system simulation software. This interface allows only one common and con-
sistent database. For example, a project of EDF Energy and GE Energy for
a network planning system comprises of the Smallworld GIS application with
an embedded network analysis engine [70]. Other examples are Smallworld
and PTI/PSSEngines. All these attempts to combine GIS and simulation
tools are proprietary solutions, thus showing all the issues associated with
“closed” systems that have to be avoided.

In recent years, several open source GIS applications have reached the re-
quired maturity for being used in power system analysis [101, 214, 216, 217,
242, 250, 306, 319]. Open source geospatial libraries are the base of many
open-source desktop GIS applications. Since these libraries are distributed as

22.2 Result Visualization 487

extensible open-source code, one can freely use, access and extend the func-
tionality of these libraries by means of plug-ins or script interfaces (Python,
Java, etc.).

The quickest way to incorporate a GIS system in a power system applica-
tion is to create the geographical map using an external open source program
and then import GIS data into the power system application. In this way, the
programming effort is reduced to the code necessary for importing the data.
Clearly, a necessary condition for implementing the bridge between the GIS
application (e.g., OpenJump [217]) and Python is that the GIS application
allows creating user-defined data. This is possible only if the GIS software
packages is “open”.

As discussed in Script 9.2 of Chapter 9, any device is referenced using
unique identification codes (ids). These ids must be assigned to their geomet-
rical representation. For example, the simplest geometrical representation of
topological buses is a point type primitive; transmission lines can be repre-
sented using polylines, etc.

Example 22.3 Italian System Temperature Map

OpenJump allows exporting topological data in GML format, which is a spe-
cial XML scheme particularly suited for defining GIS [105]. The GML/XML
format can be easily exchanged and parsed by other applications. The next
step is to parse the XML file containing the GIS data and assign the
topological information to each electrical device. Parsing XML data is rather
simple in Python [153].

Fig. 22.4 Bus voltage magnitude map for the Italian HV transmission system.

Values in the legend are in pu

488 22 Visualization Matters

4.2 - 6.02

3.35 - 4.2

2.81 - 3.35

2.51 - 2.81

2.18 - 2.51

1.76 - 2.18

1.21 - 1.76

0.87 - 1.21

0 - 0.87

Fig. 22.5 Load active power visualization for the Italian grid obtained using the

JML-OSGIS tools. Values in the legend are in pu

Figure 22.4 depicts the Italian 400 kV transmission grid. The system in-
cludes 32 generators and 82 loads. The mainland system has been drawn in
OpenJump and then parsed using Python. In particular, Figure 22.4 shows a
temperature map of bus voltage magnitude levels of a power flow solution. In
the maps, generators are represented as blue squares while loads are indicated
by green triangles.

The procedure for generating the topological scheme is as follows. The first
step is to acquire and generate the geographical information as a data set for
the GIS platform. The picture of the geographical layout of the Italian Grid
is georeferenced with the help of QuantumGIS to generate the spatial repre-
sentation of the buses and lines. Then, the bus connections of the lines and
the length are analyzed. Finally a GML file is generated. This file holds the
geospatial features and attributes of the Italian HV grid. The map of Figure
22.4 was obtained using the Matplotlib library, which allows automatically
clipping the map using the border paths.

An entire family of maps can be also generated the other way round, e.g.,
by importing power flow results into the JML file once the power flow analysis
is solved. Figure 22.5 shows an example of the possibilities of the JML format
and GIS visualization tools [295].4

4 The picture is courtesy of Mr. Matthias Stifter, arsenal research, Vienna.

Chapter 23

Challenges of Scripting for Power
System Education

Most power system software packages are commercial proprietary products
that require a generally costly license. This fact is implicitly accepted as nor-
mal in the power system community. However, there can be a reliable and
costless alternative. This alternative is provided by Free and Open Source
Software (FOSS). This chapter shows that FOSS is a valid platform to dis-
tribute educational and research-oriented tools for power system analysis as
it has proved to be in several other scientific fields.

23.1 Concepts and Definitions

In Chapter 3, scripting is presented as an effective approach for producing
open software projects, as opposed to system programming that lead to closed
projects. In this section, the concepts “open” and “close” are formalized using
commonly accepted definitions.

Software can be divided into three main categories based on the develop-
ment method: proprietary software, open source software and free software.
Free and open source software merges together the common characteristics
of free software and open source software. This section introduces concepts
and definitions of each type of software development.

23.1.1 Proprietary Software

Proprietary software refers to software that has restrictions for its use, mod-
ification and, more importantly, restrictions on copying, distributing, and
publishing unmodified or modified versions of it. The restrictions are placed
by the proprietors of the software and are detailed in the software license. In
the U.S., copyright laws provide severe penalties for unlawful distribution of
copyrighted material. Reverse engineering of the software could also violate
the U.S. Copyright Law or the Digital Millennium Copyright Act [321].

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 489–493.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

490 23 Challenges of Scripting for Power System Education

Proprietary software is also referred as commercial, non-open, or non-free
software. Sometimes these terms are considered derogatory, which is actu-
ally unintended, due to the fact that terms like freedom and openness are
more appealing than their opposites. In [170], the term closed software has
been coined to refer to all this type of software and avoid the derogatory
misunderstanding.

23.1.2 Open Source Software

Open Source Software (OSS) is one that complies with the Open Source
Definition (OSD) [63], published by the Open Source Initiative (OSI) [215].
Formed in 1998, OSI is a non-profit corporation created by a group of pro-
grammers to promote the adoption of OSS licenses. The OSD gives the cri-
teria to which software wishing to adopt an OSS license must comply with.
These criteria are that users must be free to use the software for any purpose,
make copies and distribute the software without paying to the issuer of the
license, to create derived works and to distribute them without paying roy-
alties, to view and use the source code and to use the open source software
in combination with other software including proprietary software.

In summary, open source software permits anyone, anywhere and for any
purpose to copy, modify, and distribute the software for free or for a fee.
Therefore, anyone has to have full access to the source code.

23.1.3 Free Software

Free Software (FS) is software that can be used, studied, and modified with-
out restriction. The term free software was coined by Richard Stallman who
founded the Free Software Foundation, its formally defined by the Free Soft-
ware Definition [100]. One of the most important instances of the definition is
that software can be copied and distributed in modified or unmodified form
without restrictions. Restrictions may be used only for ensuring that future
recipients of the software are guaranteed to copy, study, modify and distribute
the software (this is the main difference with respect to OSS). Moreover, the
source code of the software must be made available, and it may be accompa-
nied by a software license. The license should state that the copyright holder
permits these acts, or alternatively the software can be released into pub-
lic domain so that the rights mentioned above automatically hold. The Free
Software Foundation maintains a list of Free Software Licenses [103], being
the most common the GNU General Public License (GPL) [293].

It is customary to explain the FS concept by saying that the idea is not
that the software should be free “as in beer”, or available at no charge, but
that it should be free “as in speech”, so that the software can be reviewed
and modified.

23.2 Education-Oriented FOSS 491

23.1.4 Free Open Source Software

Free Open Source Software (FOSS), also known as Free/Libre Open Source
Software (FLOSS), is a merger of the FS and OS concepts focusing on the
characteristics for software development and distribution without addressing
subtle differences between the two of them. To this extent, Free Software
and Open Source Software are near synonyms. Interested readers can find
details on the philosophical background and differences between FS and OSS
in [58, 167, 254, 292].

23.2 Education-Oriented FOSS

Software for educational purposes should be user-friendly, easy to use and
reliable. In particular, software for power system education should contain
an user interface that allows drawing one-line diagrams, displays results and
plots time domain simulations. Most proprietary software for power system
analysis presents these features (see for example PSS/E [244]). However, pro-
prietary software has two main drawbacks: it needs a costly license and it is
generally difficult (if not impossible) to modify models and/or algorithms pro-
vided with the software. The first drawback limits the diffusion of commercial
software in developing countries, while the second issue imposes a severe lim-
itation to the software development by Ph.D. students and researchers.

Opposite to proprietary software, free and open source software provides
the user with the freedom of reading, copying, and modifying the source code.
It is also possible with FOSS to redistribute the modified code, with the only
condition that the resulting program must also be distributed as free and open
source software [293]. Despite initial skepticism shown by commercial software
houses, a huge number of FOSS projects have been developed and improved
thanks to the cooperation of thousands of users. Some FOSS projects have
also obtained worldwide success (see for example the Linux, Perl and LATEX
experiences).

If applied to the power system academic community, the FOSS approach
would allow deploying tools that are suitable for education and research, and
at the same time creating a community of learners [292]. From the educational
viewpoint, FOSS projects have the drawback of being barely understood by
an undergraduate student. Even for Ph.D. students, to be familiar with the
details of large C++ or Java projects requires a lot of time, which should be
better dedicated to their research topics.

23.2.1 Pedagogical Issues

The current generation of students is accustomed to sophisticated software
suites that aid academic work via the computer. However, the most serious
drawback of proprietary software for educational purposes is to reduce the

492 23 Challenges of Scripting for Power System Education

freedom of the students and to not develop their skill of analyzing results. On
the other hand, open source software, while not limiting the user freedom,
tends to be less complete and intuitive than proprietary one. Thus, a compro-
mise is needed. Open source software should have a reasonably user-friendly
interface and should be written in a simple and high-level programming lan-
guage (e.g., Octave or Python).

An education-oriented FOSS should merge the positive features of edu-
cational software and open source philosophy. Educational free and open
source software should have a reasonably user-friendly interface and should
be written in a simple and high-level programming language (e.g., Python).
Educational software should develop the learning process and the curiosity
of the student. In summary, the use of an open source package for education
should be preferred for the following reasons.

1. The mind of the student should be opened. The student should not become
accustomed to a program that gives all the answers.

2. The learning process should develop the curiosity of the student. Only if
the code is open can the student explore all software features.

3. The students should understand that knowledge should be free and avail-
able to everyone [292].

23.2.2 Failure of FOSS for Power System Analysis

One of the most interesting phenomena of open source software is that users
feel involved in the development of the project. Instead of complaining about
missing features or bugs, users often contribute suggestions, bug fixes, and
even new code [292]. However, this cooperative attitude is not the case of open
source projects for power system analysis. The miracle of a rapid growth and
community-based development that is typical of most open source projects
(for example the Linux case) does not happen in the power system commu-
nity. This situation is a result of four main issues.

1. The typical users of an open source power system software package are
students attending the last year of their undergraduate courses or at the
beginning of their Master or Ph.D. program. However, these students are
typically not yet experienced enough to write code by themselves.

2. Students attending the last years of their Master or Ph.D. courses are in
principle the ideal candidates for contributing with new code. However, in
this case, the students are more likely developing their own software tools
and uses the open software only as a benchmark or as a store from which
getting ideas.

3. Researchers seldom use open source power system software package or con-
tribute new code. The conservativeness (i.e., closed view) of the scientific
world is unfortunately a common practice. Furthermore, a surprisingly
high percentage of researchers is not aware of the advantages of the “open
source” way of thinking.

23.2 Education-Oriented FOSS 493

4. The users of an open source power system software package are a very
reduced subset of the total number of university students and researchers.
Thus, an open source project aimed to power system analysis cannot be
compared with other open source packages, such as Apache or LATEX, which
are used by a broad range of people.

Despite several attempts [199, 200, 326, 327], FOSS projects for power system
analysis are still in a very early stage. A generational change is required. The
next generation of electrical engineering students should learn to question
commonly accepted assumptions and simplifications, should understand the
deep, intriguing mechanisms that link modelling and scripting, and should
not acritically accept results provided by an opaque proprietary software
application. This is a currently open challenge.

This page intentionally left blank

Part V

Appendices

This page intentionally left blank

Appendix A

Python Libraries

This appendix provides a quick reference for the Python libraries used in
the examples provided in the book. In particular, Section A.1 describes the
CVXOPT library, Section A.2 describes the NumPy library, and Section
A.3 describes the Matplotlib library. Following sections only concern func-
tions and methods that are used in the book. The interested reader can find
the complete documentation on the websites of these software packages (see
Appendix E).

A.1 CVXOPT

CVXOPT is a free software package for convex optimization based on the
Python programming language. It can be used with the interactive Python
interpreter, on the command line by executing Python scripts, or integrated in
other software via Python extension modules. Its main purpose is to make the
development of software for convex optimization applications straightforward
by building on Python’s extensive standard library and on the strengths of
Python as a high-level programming language. Material presented in this
section was obtained by the CVXOPT on-line documentation, available at
http://abel.ee.ucla.edu/cvxopt.

A.1.1 cvxopt.base

This module defines a Python type matrix for storing and manipulating dense
matrices, a Python type spmatrix for storing and manipulating sparse ma-
trices, routines for generating sparse dense matrices, and routines for sparse
matrix-vector and matrix-matrix multiplication.

Dense Matrices

matrix(x[, size[, tc]]) creates dense matrices.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 497–509.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

498 A Python Libraries

x can be a number, a sequence of numbers, a dense or sparse matrix,
a one- or two-dimensional NumPy array, or a list of lists of matrices
and numbers.

size is a tuple of length two with the matrix dimensions. The number
of rows and/or the number of columns can be zero.

tc stands for type code. The possible values are ’i’, ’d’ and ’z’, for
integer, double float and complex matrices, respectively.

Examples:

>>> from cvxopt.base import matrix

>>> A = matrix([1., 2., 3., 4., 5., 6.], (2,3))

>>> print A

[1.00e+00 3.00e+00 5.00e+00]

[2.00e+00 4.00e+00 6.00e+00]

>>> A1 = matrix([1, 2], (2,1))

>>> B1 = matrix([6, 7, 8, 9, 10, 11], (2,3))

>>> B2 = matrix([12, 13, 14, 15, 16, 17], (2,3))

>>> B3 = matrix([18, 19, 20], (1,3))

>>> C = matrix([[A1, 3.0, 4.0, 5.0], [B1, B2, B3]])

>>> print C

[1.00e+00 6.00e+00 8.00e+00 1.00e+01]

[2.00e+00 7.00e+00 9.00e+00 1.10e+01]

[3.00e+00 1.20e+01 1.40e+01 1.60e+01]

[4.00e+00 1.30e+01 1.50e+01 1.70e+01]

[5.00e+00 1.80e+01 1.90e+01 2.00e+01]

Sparse Matrices

spmatrix(x, I, J[, size[, tc]]) constructs a sparse matrix from a
triplet description.

I and J are sequences of integers (lists, tuples, array arrays, xrange ob-
jects, . . .) or integer matrices (matrix objects with type code ’i’),
containing the row and column indexes of the nonzero entries. The
lengths of I and J must be equal. If I and J are matrices, they are
treated as lists of indexes stored in column-major order, i.e., as lists
list(I), respectively, list(J).

size is a tuple of non-negative integers with the row and column dimen-
sions of the matrix. The size argument is only needed when creating
a matrix with a zero last row or last column. If the size is not speci-
fied, it is determined from I and J: the default value for size[0] is
max(I)+1 if I is nonempty and zero otherwise. The default value for
size[1] is max(J)+1 if J is nonempty and zero otherwise.

tc is the type code, ’d’ or ’z’, for double and complex matrices, re-
spectively. Integer sparse matrices are not implemented.

x can be a number, a sequence of numbers, or a dense matrix. This
argument specifies the numerical values of nonzero entries.

A.1 CVXOPT 499

Example:

>>> from cvxopt.base import spmatrix

>>> A = spmatrix([2,-1,2,-2,1,4,3], [1,2,0,2,3,2,0],

[0,0,1,1,2,3,4])

>>> print A

[0 2.00e+00 0 0 3.00e+00]

[2.00e+00 0 0 0 0]

[-1.00e+00 -2.00e+00 0 4.00e+00 0]

[0 0 1.00e+00 0 0]

sparse(x[, tc]) constructs a sparse matrix from a block-matrix descrip-
tion.

tc is the type code, ’d’ or ’z’, for double and complex matrices, re-
spectively.

x can be a matrix, spmatrix, or a list of lists of matrices (matrix or
spmatrix objects) and numbers (Python integer, float or complex).

Example:

>>> from cvxopt.base import matrix, spmatrix, sparse

>>> A = matrix([[1, 2, 0], [2, 1, 2], [0, 2, 1]])

>>> B = spmatrix([], [], [], (3,3))

>>> C = spmatrix([3, 4, 5], [0, 1, 2], [0, 1, 2])

>>> D = sparse([[A, B], [B, C]])

>>> print D

[1.00e+00 2.00e+00 0 0 0 0]

[2.00e+00 1.00e+00 2.00e+00 0 0 0]

[0 2.00e+00 1.00e+00 0 0 0]

[0 0 0 3.00e+00 0 0]

[0 0 0 0 4.00e+00 0]

[0 0 0 0 0 5.00e+00]

spdiag(x) constructs a block-diagonal sparse matrix from a list of matrices.

x is a matrix with a single row or column, or a list of square dense or
sparse matrices or scalars. If x is matrix, a sparse diagonal matrix is
returned with the entries of x on its diagonal. If x is list, a sparse
block-diagonal matrix is returned with the element in the list as its
diagonal blocks.

Example:

>>> from cvxopt.base import matrix, spmatrix, spdiag

>>> A = 3.0

>>> B = matrix([[1,-2],[-2,1]])

>>> C = spmatrix([1,1,1,1,1],[0,1,2,0,0,],[0,0,0,1,2])

>>> D = spdiag([A, B, C])

>>> print D

[3.00e+00 0 0 0 0 0]

[0 1.00e+00 -2.00e+00 0 0 0]

500 A Python Libraries

[0 -2.00e+00 1.00e+00 0 0 0]

[0 0 0 1.00e+00 1.00e+00 1.00e+00]

[0 0 0 1.00e+00 0 0]

[0 0 0 1.00e+00 0 0]

Matrix Attributes, Methods and Operations

Dense matrix attributes and methods. The attribute and methods of dense
matrices that are used in the book are as follows:

size A tuple with the dimensions of the matrix. The size of the matrix
can be changed by altering this attribute, as long as the number of
elements in the matrix remains unchanged.

typecode A char, either ’i’, ’d’, or ’z’, for integer, real and complex
matrices, respectively. It is a read-only attribute.

trans() Returns the transpose of the matrix as a new matrix. The no-
tation A.T is an alias of A.trans().

ctrans() Returns the conjugate transpose of the matrix as a new matrix.
The notation A.H is an alias of A.ctrans().

real() For complex matrices, returns the real part as a real matrix. For
integer and real matrices, returns a copy of the matrix.

imag() For complex matrices, returns the imaginary part as a real ma-
trix. For integer and real matrices, returns an integer or real zero
matrix.

Sparse matrix attributes and methods. The attribute and methods of sparse
matrices that are used in the book are as follows:

V A single-column dense matrix containing the numerical values of the
nonzero entries in column-major order. Making an assignment to the
attribute is an efficient way of changing the values of the sparse ma-
trix, without changing the sparsity pattern. When the attribute V is
read, a copy of V is returned, as a new dense matrix. This implies,
for example, that an indexed assignment A.V[I] = B does not work.
Instead, the attribute V has to be read and returned as a new matrix;
then the elements of this new matrix are modified.

I A single-column integer matrix with the row indexes of the entries in
V. It is a read-only attribute.

J A single-column integer matrix with the column indexes of the entries
in V. It is a read-only attribute. size A tuple with the dimensions of
the matrix. The size of the matrix can be changed by altering this
attribute, as long as the number of elements in the matrix remains
unchanged.

trans() Returns the transpose of a sparse matrix as a new sparse matrix.
The notation A.T is an alias of A.trans().

A.1 CVXOPT 501

ctrans() Returns the complex conjugate transpose of a sparse matrix
as a new sparse matrix. The notation A.H is an alias of A.ctrans().

Arithmetic operations. The following table lists the arithmetic operations de-
fined for dense matrices. In this table A and B are dense matrices with
compatible dimensions, c is a scalar (a Python number or a dense 1 by 1
matrix), and d is a Python number.

+A, -A Unary plus/minus.
A+B, A+c, c+A Addition.
A-B, A-c, c-A Subtraction.
A*B Matrix multiplication.
c*A, A*c, A/c Scalar multiplication and division.
A%c Remainder after division.
A**d Element-wise exponentiation.

The following in-place operations are also defined, but only if they do not
change the type of the matrix A:

A+=B, A+=c In-place addition.
A-=B, A-=c In-place subtraction.
A*=c, A/=c In-place scalar multiplication and division.
A%=c In-place remainder.

Indexing and slicing. There are four indexing methods, as follows.

1. The index can be a single integer. This returns a number. For example,
A[0] is the first element of A.

2. The index can be an integer matrix. This returns a column matrix.
For example, the command A[matrix([0,1,2,3])] returns the 4 by
1 matrix consisting of the first four elements of A. The size of the index
matrix is ignored: A[matrix([0,1,2,3], (2,2))] returns the same
4 by 1 matrix.

3. The index can be a list of integers. This returns a column matrix. For
example, A[[0,1,2,3]] is the 4 by 1 matrix consisting of elements 0,
1, 2, 3 of A.

4. The index can be a Python slice. This returns a matrix with one col-
umn (possibly 0 by 1, or 1 by 1). For example, A[::2] is the column
matrix defined by taking every other element of A, stored in column-
major order. A[0:0] is a matrix with size (0, 1).

Matrix operations. The following operations are supported by both dense and
sparse matrices.

sqrt(x) The element-wise square root of x. The result is returned as a
real matrix if x is an integer or real matrix and as a complex matrix
if x is a complex matrix. This method raises an exception when x is
an integer or real matrix with negative elements.

502 A Python Libraries

sin(x) The sine function applied element wise to x. The result is re-
turned as a real matrix if x is an integer or real matrix and as a
complex matrix otherwise.

cos(x) The cosine function applied element wise to x. The result is re-
turned as a real matrix if x is an integer or real matrix and as a
complex matrix otherwise.

exp(x) The exponential function applied element wise to x. The result
is returned as a real matrix if x is an integer or real matrix and as a
complex matrix otherwise.

log(x) The natural logarithm applied element wise to x. The result is
returned as a real matrix if x is an integer or real matrix and as a
complex matrix otherwise. This method raises an exception when x
is an integer or real matrix with non-negative elements, or a complex
matrix with zero elements.

mul(x, y) The element-wise product of x and y. The two matrices must
have the same size and type.

div(x, y) The element-wise division of x by y. The two matrices must
have the same size and type.

A.1.2 cvxopt.blas

The cvxopt.blas module provides an interface to the double-precision real
and complex Basic Linear Algebra Subprograms (BLAS). The names and
calling sequences of the Python functions in the interface closely match the
corresponding FORTRAN BLAS routines (described in the references below)
and their functionality is exactly the same.

dotu(x, y) returns xTy where x and y are matrices of the same type (’d’
or ’z’).

A.1.3 cvxopt.lapack

The module cvxopt.lapack includes functions for solving dense sets of lin-
ear equations, for the corresponding matrix factorizations (LU, Cholesky,
LDLT), for solving least-squares and least-norm problems, for QR factor-
ization, for symmetric eigenvalue problems and for singular value decompo-
sition.

gees(...) Schur’s factorization of a real of complex matrix.
The syntax is as follows:

sdim = gees(A, w=None, V=None, select=None, n=A.size[0],

ldA=max(1,A.size[0]), ldV=max(1,Vs.size[0]),

offsetA=0, offsetw=0, offsetV=0)

A.1 CVXOPT 503

Purpose:

Computes the real Schur’s form A = V SV T or the complex Schur’s
form A = V SV H , the eigenvalues, and, optionally, the matrix of Schur’s
vectors of an n × n matrix A. The real Schur’s form is computed if A
is real, and the complex Schur’s form is computed if A is complex. On
exit, A is replaced with S. If the argument w is provided, the eigenvalues
are returned in w. If V is provided, the Schur’s vectors are computed and
returned in V. The argument select can be used for obtaining an ordered
Schur’s factorization. It must be a Python function that can be called as
f(s) with s complex, and returns 0 or 1. The eigenvalues s for which
f(s) is 1 are placed first in the Schur’s factorization. For the real case,
eigenvalues s for which f(s) or f(conj(s)) is 1, are placed first. If select
is provided, gees() returns the number of eigenvalues that satisfy the
selection criterion. Otherwise, it returns 0.

Arguments:

A ’d’ or ’z’ matrix.
w ’z’ matrix of length at least n.
V ’d’ or ’z’ matrix. It must have the same type as A.
select Python function that takes a complex number as argument and

returns True or False.
n integer. If n is negative, the default value is used.
ldA non-negative integer. ldA >= max(1,n). If ldA is zero, the default

value is used.
ldV non-negative integer. ldV >= 1 and ldV >= n if V is present. If

ldV is zero, the default value is used (with V.size[0] replaced by 0 if
V is None).

offsetA non-negative integer.
offsetW non-negative integer.
offsets non-negative integer.
sdim number of eigenvalues that satisfy the selection criterion specified

by select.

A.1.4 cvxopt.umfpack

The module cvxopt.umfpack includes four functions for solving sparse non-
symmetric sets of linear equations. These functions call routines from the
UMFPACK library, with all control options set to the default values described
in the UMFPACK user guide.

linsolve(A, B[, trans=’N’]) solves a sparse set of linear equations:

trans = ’N’: AX = B
trans = ’T’: ATX = B
trans = ’C’: AHX = B

504 A Python Libraries

where A is a sparse matrix and B is a dense matrix of the same type (’d’ or
’z’) as A. On exit, B contains the solution. It raises an ArithmeticError
exception if the coefficient matrix is singular.

Example:

>>> from cvxopt.base import spmatrix, matrix

>>> from cvxopt import umfpack

>>> V = [2,3, 3,-1,4, 4,-3,1,2, 2, 6,1]

>>> I = [0,1, 0, 2,4, 1, 2,3,4, 2, 1,4]

>>> J = [0,0, 1, 1,1, 2, 2,2,2, 3, 4,4]

>>> A = spmatrix(V,I,J)

>>> B = matrix(1.0, (5,1))

>>> umfpack.linsolve(A,B)

>>> print B

[5.79e-01]

[-5.26e-02]

[1.00e+00]

[1.97e+00]

[-7.89e-01]

The function umfpack.linsolve() is equivalent to the following three
functions called in sequence.

symbolic(A) reorders the columns of A to reduce fill-in and performs a sym-
bolic LU factorization. A is a sparse, possibly rectangular, matrix. It re-
turns the symbolic factorization as an opaque C object that can be passed
on to umfpack.numeric().

numeric(A, F) performs a numeric LU factorization of a sparse, possibly
rectangular, matrix A. The argument F is the symbolic factorization com-
puted by umfpack.symbolic() applied to the matrix A, or another sparse
matrix with the same sparsity pattern, dimensions, and type. The nu-
meric factorization is returned as an opaque C object that that can be
passed on to umfpack.solve(). It raises an ArithmeticError if the ma-
trix is singular.

solve(A, F, B[, trans=’N’]) solves a set of linear equations:

trans = ’N’: AX = B
trans = ’T’: ATX = B
trans = ’C’: AHX = B

where A is a sparse matrix and B is a dense matrix of the same
type as A. The argument F is a numeric factorization computed by
umfpack.numeric(). On exit, B is overwritten by the solution.

The functions symbolic, numeric and solve are useful for solving several sets
of linear equations with the same coefficient matrix and different right-hand
sides, or with coefficient matrices that share the same sparsity pattern. The
symbolic factorization depends only on the sparsity pattern of the matrix,
and not on the numerical values of the nonzero coefficients. The numerical

A.2 NumPy 505

factorization on the other hand depends on the sparsity pattern of the matrix
and on its the numerical values. The following is an example of the use of the
functions symbolic, numeric and solve.

>>> from cvxopt.base import spmatrix, matrix

>>> from cvxopt import umfpack

>>> VA = [2,3, 3,-1,4, 4,-3,1,2, 2, 6,1]

>>> VB = [4,3, 3,-1,4, 4,-3,1,2, 2, 6,2]

>>> I = [0,1, 0, 2,4, 1, 2,3,4, 2, 1,4]

>>> J = [0,0, 1, 1,1, 2, 2,2,2, 3, 4,4]

>>> A = spmatrix(VA, I, J)

>>> B = spmatrix(VB, I, J)

>>> x = matrix(1.0, (5,1))

>>> Fs = umfpack.symbolic(A)

>>> FA = umfpack.numeric(A, Fs)

>>> FB = umfpack.numeric(B, Fs)

>>> umfpack.solve(A, FA, x)

>>> umfpack.solve(B, FB, x)

>>> umfpack.solve(A, FA, x, trans=’T’)

>>> print x

[5.81e-01]

[-2.37e-01]

[1.63e+00]

[8.07e+00]

[-1.31e-01]

A.2 NumPy

NumPy provides types and packages for scientific computing [334]. Basic
types provided by the NumPy suite are n-dimensional arrays and univer-
sal functions. Relevant packages are basic linear algebra (linalg), discrete
Fourier transforms (dft), random number generators (random) and automatic
wrapping of FORTRAN code (f2py).

linspace(start, stop, num=50, endpoint=True, retstep=False)
returns num evenly spaced samples, calculated over the interval [start,
stop]. The end point of the interval can optionally be excluded.

Parameters:

start the starting value of the sequence.
stop the end value of the sequence, unless endpoint is set to False. In

that case, the sequence consists of all but the last of num + 1 evenly
spaced samples, so that stop is excluded. Note that the step size
changes when endpoint is False.

num integer, number of samples to generate. The default value is 50.
endpoint if True, stop is the last sample. Otherwise, it is not included.

The default value is True.
retstep if True, return (samples, step), where step is the spacing

between samples.

506 A Python Libraries

Returns:

samples there are num equally spaced samples in the closed interval
[start, stop] or the half-open interval [start, stop) (depending
on whether endpoint is True or False).

step (only if retstep is True) size of spacing between samples.

Examples:
>>> numpy.linspace(2.0, 3.0, num=5)

array([2. , 2.25, 2.5 , 2.75, 3.])

>>> numpy.linspace(2.0, 3.0, num=5, endpoint=False)

array([2. , 2.2, 2.4, 2.6, 2.8])

>>> numpy.linspace(2.0, 3.0, num=5, retstep=True)

(array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

linalg.eigvals(A) computes the eigenvalues of a general matrix.

Parameters:

A a complex or real square matrix whose eigenvalues and eigenvectors
have to be computed.

Returns:

w the eigenvalues. Each eigenvalue is repeated according to its multi-
plicity. Eigenvalues are not ordered and can be complex.

linalg.eig(A) computes eigenvalues and right eigenvectors of an array.

Parameters:

A a complex or real square matrix.

Returns:

w the eigenvalues, each repeated according to its multiplicity. The eigen-
values are not necessarily ordered, nor are they necessarily real for
real matrices.

v the normalized eigenvector corresponding to the eigenvalue w[i] is
the column v[:,i].

meshgrid(x, y) returns coordinate matrices from two coordinate vectors.

Parameters:

x, y two one-dimensional arrays representing the x and y coordinates of
a grid.

Returns:

X, Y for vectors x, y with lengths Nx=len(x) and Ny=len(y), return X,
Y where X and Y are (Ny, Nx) shaped arrays with the elements of x
and y repeated to fill the matrix along the first dimension for x, the
second for y.

A.3 Matplotlib 507

A.3 Matplotlib

Matplotlib is a library for making 2D plots of arrays in Python. The syntax
is similar to that of Matlab graphic commands. However, Matplotlib is inde-
pendent of Matlab, and can be used in a object oriented way. Matplotlib is
based on NumPy.

axhline(y=0, xmin=0, xmax=1, **kwargs) draws a horizontal line at y
from xmin to xmax. The line always spans the horizontal extent of the
axes.

Optional arguments:

color any matplotlib color, e.g., ’k’ for black.
linestyle any line style expression, e.g., ’-’, ’--’, ’-.’, ’:’.

axvline(x=0, ymin=0, ymax=1, **kwargs) draws a vertical line at x from
ymin to ymax. The line always spans the vertical extent of the axes.
Optional arguments are same as for axhline.

figure(num=None) creates a new figure and returns an instance of the class
matplotlib.figure.Figure. If num = None, the figure number is incre-
mented and a new figure is created. The returned figure objects have
a number attribute holding this number. If num must be an integer. If
figure(num) already exists, the figure becomes active and a handle to
that figure is returned. If figure(num) does not exist, a new figure is
created.

grid(self, b=None, **kwargs) sets the axis grids on or off; b is a Boolean.
If b is None and len(kwargs)==0, the grid state is toggled. If kwargs
are supplied, b is set to True. kwargs are used for setting the grid line
properties.

hold(b=None) sets the hold state. If b is None (default), the hold state is
toggled, otherwise the hold state is set to b. Examples:

hold() # toggle hold

hold(True) # hold is on

hold(False) # hold is off

If hold is True, subsequent plot commands are added to the current axes.
If hold is False, the current axes and figure are cleared on the next plot
command.

legend(*args, **kwargs) places a legend on the current axes at location
loc. Labels are a sequence of strings and loc can be a string or an integer
that specifies the legend location. Available locations are ’upper right’,
’upper left’, ’lower left’, ’lower right’, etc.

plot(*args, **kwargs) plots lines and/or markers to the current axes.
args is a variable length argument, allowing for multiple x, y pairs with
an optional format string. For example, each of the following statement
is allowed.

508 A Python Libraries

plot(x, y) # plot x and y using default settings

plot(x, y, ’bo’) # plot x and y using blue circle markers

plot(y) # plot y using x as index array 0..N-1

plot(y, ’r+’) # ditto, but with red plusses

If x and/or y is two-dimensional, then the corresponding columns is plot-
ted.

An arbitrary number of x, y, fmt groups can be specified. The returned
value is a list of the lines that have been added.

The following format string characters are accepted to control the line
style or marker:

’-’ solid line style.
’--’ dashed line style.
’-.’ dash-dot line style.
’:’ dotted line style.
’.’ point marker.
’o’ circle marker.
’v’ triangle-down marker.
’^’ triangle-up marker.
’<’ triangle-left marker.
’>’ triangle-right marker.
’*’ star marker.
’x’ x marker.

The following color abbreviations are supported:

’b’ blue.
’g’ green.
’r’ red.
’c’ cyan.
’m’ magenta.
’y’ yellow.
’k’ black.
’w’ white.

The kwargs can be used for setting line properties. One can use this to
set a line label (for auto legends), line width, anitialising, marker face
color, etc. Some examples are as follows.

plot([1,2,3], [1,2,3], ’go-’, label=’line 1’, linewidth=2)

plot([1,2,3], [1,4,9], ’rs’, label=’line 2’)

axis([0, 4, 0, 10])

legend()

savefig(fname, **kwargs) saves the current figure. The output formats
depend on the availability of the back-end in use.

A.3 Matplotlib 509

Arguments:

fname a string containing a path to a file name, or a Python file-like
object. If format is None and fname is a string, the output format is
deduced from the extension of the file name.

format one of the file extensions supported by the active back-end. Most
back-ends support png, pdf, ps, eps and svg formats.

show() shows all the figures. This function should conclude the script.
xlabel(s) sets the x-axis label of the current axis to string s.
xlim(*args, **kwargs) sets or gets the x-limits of the current axes. The

new x-axis limits are returned as a length 2 tuple. Examples:

xmin, xmax = xlim() # return the current xlim

xlim((xmin, xmax)) # set the xlim to xmin, xmax

xlim(xmin, xmax) # set the xlim to xmin, xmax

ylabel(s) sets the y-axis label of the current axis to string s.

ylim(*args, **kwargs) sets or gets the y-limits of the current axes. The
new y-axis limits are returned as a two-element tuple. Examples:

ymin, ymax = ylim() # return the current ylim

ylim((ymin, ymax)) # set the ylim to ymin, ymax

ylim(ymin, ymax) # set the ylim to ymin, ymax

This page intentionally left blank

Appendix B

System Classes

This appendix provides a quick reference of the classes DAE, Settings, CPF
and OPF. These classes are used in the scripts provided in the book.

B.1 System Properties and Settings

DAE Differential and algebraic equations, functions and Jacobians matrices.

Ac Complete DAE Jacobian matrix for numerical integration.
f Differential equations f .
factorize If True, it forces the factorization of the system Jacobian

matrix.
Fx Jacobian matrix of differential equations fx.
Fy Jacobian matrix of differential equations fy.
h Inequality constraints h.
g Algebraic equations g.
Gmu Jacobian matrix of algebraic equations gμ.
Gx Jacobian matrix of algebraic equations gx.
Gy Jacobian matrix of algebraic equations gy.
Gz Jacobian matrix of algebraic equations gz .
Hes Hessian matrix multiplied by dual variables.
Hz Jacobian matrix of inequality constraints hz .
kg Variable for distributing losses among generators.
mu Continuation parameter or loading level μ.
ng Number of equality constraints.
nh Number of inequality constraints.
nx Number of state variables.
ny Number of algebraic variables.
nz Number of algebraic variables used in OPF analysis.
obj Objective function ϕ.
Oz Jacobian matrix of the objective function ϕz.
pi Dual variables π of inequality constraints.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 511–513.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

512 B System Classes

q Vector q used in numerical integration.
rho Dual variables ρ of equality constraints.
s Slack variables s for OPF analysis.
t Current simulation time.
x State variables x.
y Algebraic variables y.
z Algebraic variables z used in OPF analysis.

Settings General settings and parameters for power flow computations and
numerical integration.

deltat Time step for time domain integrations in seconds.
deltatmax Maximum time step in seconds.
deltatmin Minimum time step in seconds.
disturbance If True, it forces the call of an external disturbance func-

tion during numerical integration.
dynmit Maximum number of iterations for each step of the numerical

integration.
error Maximum equation mismatch.
fixt If True, it forces a fixed time step for numerical integration.
freq System frequency rating in Hz.
tol Mismatch tolerance for static analyses (default 10−5).
method Numerical integration method (e.g., trapezoidal method, back-

ward Euler, etc.).
mva System power rating in MVA (default 100 MVA).
pf max iter Maximum number of iteration of the power flow solver.
pfsolver Power flow solver.

’DC’ Dc power flow.
’NR’ Newton’s method.
’XB’ XB variation of fast decoupled power flow.
’BX’ BX variation of fast decoupled power flow.
’RK’ Runge-Kutta-based continuous Newton’s method.
’IW’ Iwamoto’s method.
’SR’ Simple robust method.

rad System frequency rating in rad/s.
t0 Initial simulation time in seconds.
tf Final simulation time in seconds.
tstep Fixed step length Δt in seconds for numerical integration.

CPF Continuation power flow settings.

method Method for corrector step.

’perpendicular intersection’ Perpendicular intersection.
’local parametrization’ Local parametrization.

OPF Optimal power flow settings.

B.1 System Properties and Settings 513

eps1 Error tolerance of the power flow equations.
eps2 Error tolerance of the objective function.
eps mu Error tolerance of the barrier parameter μ̂.
gamma Safety factor γ.
max iter Maximum number of iterations of the NLP solver.
method Method used for computing the variable directions and incre-

ments.

’Newton’ Newton’s directions.
’Mehrotra’ Mehrotra’s predictor-corrector.

sigma Centering parameter σ.

This page intentionally left blank

Appendix C

Control Diagrams

This appendix describes the representation of transfer functions through con-
trol diagrams and defines the notation used in the book. The control diagram
approach is particularly suited for illustrating regulators but, in principle, can
be used for any DAE system. Modelling and implementation of windup and
anti-windup limits are also discussed.

C.1 Representation of Basic Functions

A control diagram is an oriented graph where arcs (arrows) indicate signal
flows and nodes (blocks) indicate transfer functions (e.g., gain and integrator)
or operations (e.g., sum and product). For example, Figure C.1 shows the
detailed and compact notation of a lag transfer function:

ẋ =
1
T

(Ky − x) (C.1)

In Figure C.1, s represents the differential operator, i.e., s = d
dt .

Another example is shown in Figure C.2 that shows three possible repre-
sentations of a lead-lag transfer function. The “parallel” model is described
by:

ẋ =
((

1 − T1

T2

)
y − x

)
1
T2

(C.2)

w =
T1

T2
y + x

whereas the “series” model leads to the DAE system:

ẋ′ =
1
T2

(y − x′) (C.3)

w = T1ẋ
′ + x′ =

T1

T2
(y − x′) + x′

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 515–521.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

516 C Control Diagrams

Gain Integrator Lag

(a) (b)

+

−

K
K

y yx x

Ts 1 + sT

1

Fig. C.1 Lag diagram: (a) detailed diagram, and (b) compact diagram

Lead-lag

(a)

(b) (c)

+

+

+

+

T1/T2

1 − T1
T2

y

y

y

x

w

w

w
x′

sT1

1 + sT2

1 + sT2

1 + sT2

1 + sT1

1

Fig. C.2 Lead-lag diagram: (a) compact notation, (b) “parallel” model, and (c)

“series” model

The state variable x in (C.2) takes different values than x′ in (C.3). Clearly,
the output w is the same for the two models. Multi-pole and multi-zero
transfer functions can be decomposed by both the “series” and the “parallel”
approaches, but the “series” approach is generally more intuitive an easier to
apply (see for example the transfer function of Figure 16.17 in Chapter 16).

C.2 Hard Limits

An important issue related to control systems is the way hard limits are
handled. Hard limits consist in locking the output of a variable when it reaches
a limit (or saturates). The simplest manner for modelling a hard limit is the
windup model shown in Figure C.3.a. Mathematically, one has:

C.2 Hard Limits 517

(a) (b)

yy xx

xmax

xmax

xmin

xmin

x̃

1 + sT1 + sT

11

Fig. C.3 Hard limit diagrams: (a) windup model, (b) anti-windup model

x =

⎧⎪⎨
⎪⎩
xmax, if x̃ ≥ xmax

x̃, if xmin < x̃ < xmax

xmin, if x̃ ≤ xmin

(C.4)

The windup limiter is also the simplest saturation model. Other saturation
models are described in Subsection 15.1.8 of Chapter 15.

The windup limiter introduces a delay, also known as windup effect. Figure
C.4 illustrates the windup effect of the system of Figure C.3.a assuming
y(t) = sin(t), T = 1 s, xmax = 0.5 and xmin = −0.5. When the state variable
x̃ > xmax at t = 1.34 s, the output x is locked. Afterwards, x remains locked
until x̃ < xmax, which happens at t = 3.18 s.

The windup limiter is not adequate for modelling the behavior of the
majority of real controllers, for which x is decreased when ẋ < 0. Figure C.4
also shows the output of the anti-windup limiter that, as expected, removes
the windup effect, i.e., x starts decreasing at t = 2.62 s, which is the instant for
which ẋ becomes negative. Mathematically, the anti-windup limiter imposes
conditions on both the state variable x and its time derivative ẋ, as follows:

if x ≥ xmax and ẋ ≥ 0 ⇒ x = xmax and ẋ = 0 (C.5)
if x ≤ xmin and ẋ ≤ 0 ⇒ x = xmin and ẋ = 0

otherwise ⇒ ẋ = (y − x)/T

The amount of the delay introduced by windup limiters depends on how fast
is the response of the system. The higher is the time constant T , the higher is
the windup effect, i.e., the delay. Hence, for low time constants (e.g., T < 0.1
s), the output of windup and anti-windup limiters is practically the same.
Moreover, the windup effect does not exist for algebraic variables, since these
can be considered state variables with an infinitely fast dynamic (i.e., T → 0).

While it is relatively easy to implement an anti-windup limiter for a pure
integrator or a lag transfer function, the model of an anti-windup limiter
for lead-lags or PI (i.e., proportional and integral) controllers are not so

518 C Control Diagrams

Fig. C.4 Transient response of windup and anti-windup limiters

straightforward.1 The issue consists in that the output w of lead-lags or PI
controllers is an explicit function of the input y, whose first time derivative, in
some cases, cannot be determined. Figure C.5 shows some common solutions
for implementing an anti-windup limiter of a PI controller. Figure C.5.e is
the most precise model, which is also the most complex.

Script C.1 Implementation of Windup and Anti-Windup
Limiters

The object of the scripts below is to define a vector, say self.z, whose
elements are 1 if the associated state variable is not saturated and belongs
to an on-line element; and 0 otherwise. Thus, self.z is a copy of the status
array self.u if no state variable is saturated.

The following code implements the windup limiter. The input arguments
are the DAE system (dae) and the names of the state variable (x), of the
maximum and minimum value (xmax and xmin, respectively) and of the sat-
uration status (z).

1 Difficulties arises whenever the transfer function has the same number of poles and
zeros.

C.2 Hard Limits 519

(a) (b)

(c)

(d)

(e)

0 ≶

> &

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

− −

yy

yyyy

yyy

x

xx

x

wmax

wmaxwmax

wmax

wmin

wminwmin

wmin

xmax

xmin

ss

ssss

sss

w

w

w

w

w

Ks

KpKp

KpKpKpKp

KpKpKp

KiKi

KiKiKiKi

KiKiKi

Fig. C.5 PI controller: (a) basic PI scheme without hard limits, (b) windup limiter,

(c) limited integrator, (d) tracking anti-windup, and (e) integrator clamping

def windup(self, dae, x, xmax, xmin, z):

sumz = sum(self. dict [z])

self. dict [z] = matrix(self.u)

zmax = matrix(self.u)

zmin = matrix(self.u)

for idx, item in enumerate(self. dict [x]):

if dae.x[item] >= self. dict [xmax][idx]:

dae.f[item] = 0

dae.x[item] = self. dict [xmax][idx]

520 C Control Diagrams

self. dict [z][idx] = 0

zmax[idx] = 0

elif dae.x[item] <= self. dict [xmin][idx]:

dae.f[item] = 0

dae.x[item] = self. dict [xmin][idx]

self. dict [z][idx] = 0

zmin[idx] = 0

if sumz != sum(zmax) or sumz != sum(zmin):

dae.factorize = True

A similar method can be used for limiting algebraic variables. The last line
of the previous code is needed to impose a re-factorization of the system
Jacobian matrix. If a state variable reaches a limit, its value is constant.
Thus, if a variable has a position k in the system Jacobian matrix AC , then
one has to set to zero the entire kth row and kth column. Only the diagonal
element (k, k) of the matrix AC has to be non-zero to avoid singularity. Since
AC = [[fx,fy]; [gx, gy]], the saturation of the state variable with index k
corresponds to set to zero the k-th row of fx and fy and the k-th column of
fx and gx and to assign a non-zero value to the element (k, k) of fx. The
following code is an efficient way to do that (it is assumed that the function
is a method of the class system.DAE).

def set Ac(self, idx):

H = spmatrix(1.0, idx, idx, (self.ny, self.ny))

I = spdiag([1.0]*self.ny) - H

self.Gy = I * (self.Gy * I) + H

self.Fy = self.Fy * I

self.Gx = I * self.Gx

The following code does the same as the previous one, but it is less efficient
(about 5 times slower):

def set Ac(self, idx):

self.Gy[idx, :] = 0

self.Gy[:, idx] = 0

self.Gy += spmatrix(1.0, idx, idx, (self.ny, self.ny), ’d’)

self.Fy[:, idx] = 0.0

self.Gx[idx, :] = 0.0

needed to maintain the minimum sparsity level

self.Gy = sparse(self.Gy)

self.Fy = sparse(self.Fy)

self.Gx = sparse(self.Gx)

The difference in the efficiency of the previous functions is typical of scripting
languages. In fact, matrix initialization, indexing and operations are obtained
through interfaces to external libraries. Since the bottleneck are the calls to
the external library, the less the number of calls, the faster the resulting code.

The following method implements an anti-windup limiter. The main dif-
ference with the previous method is the check on the sign of the differential
equation, i.e., the state variable time derivative.

C.2 Hard Limits 521

def anti windup(self, dae, x, xmax, xmin, z):

sumz = sum(self. dict [z])

self. dict [z] = matrix(self.u)

zmax = matrix(self.u)

zmin = matrix(self.u)

for idx, item in enumerate(self. dict [x]):

if dae.x[item] >= self. dict [xmax][idx] and \
dae.f[item] > 0:

dae.f[item] = 0

self. dict [z][idx] = 0

zmax[idx] = 0

dae.x[item] = self. dict [xmax][idx]

elif dae.x[item] <= self. dict [xmin][idx] and \
dae.f[item] < 0:

dae.f[item] = 0

self. dict [z][idx] = 0

zmin[idx] = 0

dae.x[item] = self. dict [xmin][idx]

if sumz != sum(zmax) or sumz != sum(zmin):

dae.factorize = True

This page intentionally left blank

Appendix D

IEEE 14-Bus System Data

This appendix provides the data of the IEEE 14-bus test systems used in most
examples of this book. The topological scheme of this system in depicted in
Figure 2.4 of Chapter 2.

D.1 Common Data

System bases are:

1. Power base: 100 MVA.
2. Frequency base: 60 Hz.
3. Voltage bases: 69 kV for buses 1 to 5, 13.8 kV for buses 6, 7 and 9 to 14,

and 18 kV for bus 8.

Unless otherwise indicated, nominal ratings of devices are equal to system
bases. Parameters are in pu with respect to device nominal ratings. For power
flow analysis, bus 1 is the slack bus and the reference angle. For optimal
power flow analysis, vmax = 1.06 pu and vmin = 0.94 pu are used as voltage
security limits. Following sections provides the data of all devices used in the
examples based on the IEEE 14-bus system. Parameter symbols are defined
in the chapters where the devices are presented.

D.2 Static Data

This section provides the static data used throughout this book, unless ex-
plicitly specified. Bus, PQ load and shunt data are depicted in Table D.1.
Static generator data are shown in Table D.2 whereas transmission line and
transformer data are depicted in Table D.3.

D.3 Market Data

Table D.4 shows the generator bid data used in the examples of Chapter 6.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 523–528.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

524 D IEEE 14-Bus System Data

Table D.1 Bus, PQ load and shunt data

Bus Voltage Rating pL qL bsh
kV pu pu pu

1 69.0 - - -

2 69.0 0.217 0.127 -

3 69.0 0.942 0.19 -

4 69.0 0.478 -0.039 -

5 69.0 0.076 0.016 -

6 13.8 0.112 0.075 -

7 13.8 - - -

8 18.0 - - -

9 13.8 0.295 0.166 0.19

10 13.8 0.09 0.058 -

11 13.8 0.035 0.018 -

12 13.8 0.061 0.016 -

13 13.8 0.135 0.058 -

14 13.8 0.149 0.05 -

Table D.2 Static generator data

Bus Type pG vG qmax
G qmin

G

pu pu pu pu

1 Slack 2.324 1.06 9.9 -9.9

2 PV 0.4 1.045 0.5 -0.4

3 PV 0 1.01 0.4 0

6 PV 0 1.07 0.24 -0.06

8 PV 0 1.09 0.24 -0.06

D.4 Dynamic Data

Tables D.5 and D.6 show the synchronous machine and automatic voltage
regulator data used throughout this book, unless otherwise indicated. Dy-
namic shaft data used in Example 15.5 are shown in Table D.7. Turbine
governor data used in Example 16.1 are depicted in Table D.8. Power System
stabilizer data used in Example 16.3 are shown in Table D.9.

D.5 FACTS Data

SVC Type I and Type II data used in Example 19.1 are depicted in Tables
D.10 and D.11.

The data of the detailed STATCOM device used in Example 19.2 are as
follows.

D.5 FACTS Data 525

Table D.3 Transmission line and transformer data

From bus To Bus Type rhk xhk bh = bk m
pu pu pu pu/pu

1 2 Line 0.01938 0.05917 0.0528 -

1 5 Line 0.05403 0.22304 0.0492 -

2 3 Line 0.04699 0.19797 0.0438 -

2 4 Line 0.05811 0.17632 0.0374 -

2 5 Line 0.05695 0.17388 0.034 -

3 4 Line 0.06701 0.17103 0.0346 -

4 5 Line 0.01335 0.04211 0.0128 -

4 7 Transf. 0 0.20912 0 0.978

4 9 Transf. 0 0.55618 0 0.969

5 6 Transf. 0 0.25202 0 0.932

6 11 Line 0.09498 0.19890 0 -

6 12 Line 0.12291 0.25581 0 -

6 13 Line 0.06615 0.13027 0 -

7 8 Transf. 0 0.17615 0 1.0

7 9 Line 0 0.11001 0 -

9 10 Line 0.03181 0.08450 0 -

9 14 Line 0.12711 0.27038 0 -

10 11 Line 0.08205 0.19207 0 -

12 13 Line 0.22092 0.19988 0 -

13 14 Line 0.17093 0.34802 0 -

Table D.4 Generator bid data

Bus Cp1 Cp2 pmax
G pmin

G

e/MWh e/MW2h pu pu

1 20 0.04303 2.0 0

2 20 0.25 1.4 0

3 40 0.01 1.0 0

6 40 0.01 1.0 0

8 40 0.01 1.0 0

Dc nodes: The dc networks is composed of two dc nodes with Vdc,n = 10 kV.
One of the node is the ground (v = 0).

Parallel RC: G = 0.0017 S, C = 0.0432 F.
VSC device: rT = 0.02 pu, xT = 0.1 pu, imax = 1.2 pu.
STATCOM regulators: vref

dc = 1.06 pu, vref
ac = 1.0563 pu, T1 = T2 = Tac =

Tdc = 0.01 s, K = 100 pu/pu, KD = 0, KI = 5 rad/pu/s, KP = 10
rad/pu, Kac = Kdc = 1 pu/pu, mmax = 3, mmin = 0.5, αmax = π rad,
αmin = −π rad.

526 D IEEE 14-Bus System Data

Table D.5 Synchronous machine data

Param. Unit Mach. 1 Mach. 2 Mach. 3 Mach. 4 Mach. 5
Bus # 1 2 3 6 8

Model 5.a 6.a 6.a 6.a 6.a
Sn MVA 615 60 60 25 25
x� pu 0.2396 0 0 0.134 0.134
ra pu 0 0.0031 0.0031 0.0041 0.0041
xd pu 0.8979 1.05 1.05 1.25 1.25
x′d pu 0.2995 0.185 0.185 0.232 0.232
x′′d pu 0.23 0.13 0.13 0.12 0.12
T ′
d0 s 7.4 6.1 6.1 4.75 4.75
T ′′
d0 s 0.03 0.04 0.04 0.06 0.06
xq pu 0.646 0.98 0.98 1.22 1.22
x′q pu 0.646 0.36 0.36 0.715 0.715
x′′q pu 0.4 0.13 0.13 0.12 0.12
T ′
q0 s 0 0.3 0.3 1.5 1.5
T ′′
q0 s 0.033 0.099 0.099 0.21 0.21
D pu 2 2 2 2 2
H MWs/MVA 5.148 6.54 6.54 5.06 5.06

Table D.6 Automatic voltage regulator data

Param. Unit AVR 1 AVR 2 AVR 3 AVR 4 AVR 5

Machine # 1 2 3 4 5

Model 1 1 1 1 1

vmax
r pu 9.9 2.05 1.7 2.2 2.2

vmin
r pu 0 0 0 1.0 1.0

Ka pu/pu 200 20 20 20 20

Ta s 0.02 0.02 0.02 0.02 0.02

Kf s pu/pu 0.0012 0.001 0.001 0.001 0.001

Tf s 1.0 1.0 1.0 1.0 1.0

Ke pu 1.0 1.0 1.0 1.0 1.0

Te s 0.19 1.98 1.98 0.7 0.7

Tr s 0.001 0.001 0.001 0.001 0.001

Ae - 0.0006 0.0006 0.0006 0.0006 0.0006

Be 1/pu 0.9 0.9 0.9 0.9 0.9

D.6 Wind Turbine Data

Wind turbine data used in Example 20.4 of Chapter 20 are given below.

Mechanical data: ngen = 40, npole = 4, nblade = 3, ηGB = 1/89, Ht = 1.5
MWs/MVA, Hm = 0.5 MWs/MVA, Ks = 1 pu, ρ = 1.225 kg/m3, R = 35
m, Tp = 3 s, and Kp = 10 rad/pu.

D.6 Wind Turbine Data 527

Table D.7 Dynamic shaft data

HHP HIP HLP HEX DHP DIP DLP DEX
MWs
MVA

MWs
MVA

MWs
MVA

MWs
MVA

pu pu pu pu

0.3348 0.7306 0.8154 0.0452 0.518 0.2240 0.224 0.145

D12 D23 D34 D45 K12 K23 K34 K45

pu pu pu pu pu pu pu pu

0.0518 0.0224 0.0224 0.0145 33.07 28.59 44.68 21.984

Table D.8 Turbine governor data

Machine R Ts Tc T3 T4 T5 pmax pmin

pu s s s s s pu pu

1 0.02 0.1 0.45 0 0 50.0 1.2 0.3

2 0.02 0.1 0.45 0 0 50.0 1.2 0.3

Table D.9 PSS data

AVR Kw Tw T1 T2 T3 T4 vmax
s vmin

s

pu/pu s s s s s pu pu

1 5.0 10.0 0.28 0.02 0.28 0.02 0.1 -0.1

Table D.10 SVC Type I data

Bus vref K KD KM T1

pu rad/pu - pu/pu s

9 1.0563 10.0 0 1.0 0.01

T2 Tm xC xL αmax αmin

s s pu pu rad rad

0.01 0.01 0.1 0.1 3.14 -3.14

Table D.11 SVC Type II data

Bus vref Kr Tr bmax bmin

pu pu/pu s pu pu

9 1.0563 10.0 0.01 5.0 5.0

528 D IEEE 14-Bus System Data

Non-controlled speed wind turbine data: rr = 0.01 pu, rs = 0.01 pu, xμ =
3.0 pu, xr = 0.08 pu, and xs = 0.1 pu.

Doubly-fed asynchronous generator data: KV = 10 pu/pu/s, Tε = 0.01 s,
rr = 0.01 pu, rs = 0.01 pu, xμ = 3.0 pu, xr = 0.08 pu, and xs = 0.1 pu.

Direct-drive synchronous machine data: Kdc = Kds = 1.0 pu/pu, Kqc = 200
pu/pu, Tdc = Tds = Tqc = Tqs = 0.01 s, ψp = 1.2 pu, rs = 0.01, pu,
xd = 1.0, and xq = 0.8 pu.

Appendix E

Software Packages and Links

This appendix describes the software packages used throughout the book,
discusses the requirements for working with these software tools and provides
the links of such tools. Useful links of webpages related to power system
analysis are also provided in Section E.2.

E.1 Software Packages Used in the Book

All scripts and simulations of this book are carried out using a Unix-based
system. All script examples implicitly assume that the user is familiar with
the command lines of a Unix shell. However, it is not an issue if the user is
not, since shell commands are reduced to the minimum and are as much as
possible self-explicative.

The basic applications that have to be installed on the system are: Python
2.5 or Python 2.6 with a few external packages that are not provided with the
main Python distribution. These are: NumPy, Matplotlib and CVXOPT. The
latest versions of these modules should work fine for the examples provided
in this book. However, the specific versions used in the book are NumPy 1.3,
CVXOPT 1.1.2 and Matplotlib 0.99.

At the time of writing the book, the latest Python version is the 3.1, how-
ever, this is the first intentionally backward-incompatible version of Python,
and most third-party modules (included all used in this book) are not cur-
rently providing a version for Python 3.1. Fortunately, even though incom-
patible with previous versions, changes introduced in Python 3.1 do not alter
the essence of the Python syntax. Only a limited number of functions have
been modified and the changes are mostly immaterial for the purposes of the
book.

For those that cannot avoid using Windows, it is recommended to install
Python 2.5 and IPython, which is the Python idle and reproduce a kind
of Unix terminal. Likely, also installing Python using Cygwin should work.
Users of Mac OS X 10.4 or newer can install XCode and MacPorts in order
to have a full working Unix environment.

F. Milano: Power System Modelling and Scripting, Power Systems, pp. 529–530.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

530 E Software Packages and Links

For the sake of completeness, the web pages of the software packages dis-
cussed above are:

Python www.python.org
NumPy numpy.scipy.org
CVXOPT abel.ee.ucla.edu/cvxopt
Matplotlib matplotlib.sourgeforge.net
IPython ipython.scipy.org/moin
Cywin www.cygwin.com
Xcode developer.apple.com/TOOLS/Xcode
MacPorts www.macports.org

Unfortunately, since most of these packages are free and open source, their
web pages can move or, worse, disappear. The maintenance of some packages
could be also discontinued in the future. However, one of the advantages of
free and open source projects is that even if the original maintainer drops his
project, the latest stable version will be always available and, in most cases,
other developers will take care of that project. Thus, using Python and other
open source projects ensures long-lasting software applications.

E.2 Links related to Power System Analysis

Other useful links related to power system analysis are:

• IEEE Task Force on Open Source Software for Power Systems, available
at:

ewh.ieee.org/cmte/psace/CAMS taskforce/index.htm

• IEEE PES PEEC Digital Educational Resources, available at:

www.ece.mtu.edu/faculty/ljbohman/peec/Dig Rsor.htm

• IEEE Power Systems Test Case Archive, available at:

www.ee.washington.edu/research/pstca/

• Power Systems Dynamic Test Cases Archive, available at:

psdyn.ece.wisc.edu/IEEE benchmarks/index.htm

References

[1] Acevedo, S., Linares, L.R., Mart́ı, J.R., Fujimoto, Y.: Efficient HVDC Con-

verter Model for Real Time Transient Simulation. IEEE Transactions on

Power Systems 14(1), 166–171 (1999)

[2] Acha, E., Fuerte-Esquivel, C.R., Ambriz-Pérez, H., Angeles-Camacho, C.:

FACTS - Modelling and Simulation in Power Networks. John Wiley & Sons,

New York (2004)

[3] Achilles, S., Pöller, M.: Direct Drive Synchronous Machine Models for Sta-

bility Assessment of Wind Farms. In: Proceedings of the 4th International

Workshop on Large-Scale Integration of Wind Power and Transmission Net-

works for Offshore Wind Farms (October 2003)

[4] Ackermann, T.: Wind Power in Power Systems. John Wiley & Sons, Chich-

ester (2005)

[5] Ajjarapu, V., Christy, C.: The Continuation Power Flow: a Tool for Steady

State Voltage Stability Analysis. IEEE Transactions on Power Systems 7(1),

416–423 (1992)

[6] Ajjarapu, V., Lee, B.: Bifurcation Theory and its Application to Nonlinear

Dynamical Phenomena in an Electrical Power System. IEEE Transactions on

Power Systems 7(1), 424–431 (1992)

[7] Akhmatov, V., Knudsen, H., Nielsen, A.H.: Advanced Simulation of Wind-

mills in the Electric Power Supply. International Journal of Electrical Power

and Energy Systems 22(6), 421–434 (2000)

[8] Alsac, O., Bright, J., Prais, M., Stott, B.: Further Developments in LP-based

Optimal Power Flow. IEEE Transactions on Power Systems 5(3), 697–711

(1990)

[9] Anderson, P.M., Bose, A.: Stability Simulation of Wind Turbine Systems.

IEEE Transactions on Power Apparatus and Systems 102(12), 3791–3795

(1983)

[10] Anderson, P.M., Fouad, A.A.: Power System Control and Stability. Wiley-

IEEE Press, New York (2002)

[11] Arabi, S., Kundur, P.: Stability Modelling of Storage Devices in FACTS Ap-

plications. In: Proceedings of the IEEE PES Summer Meeting, Edmonton,

Alberta (July 2001)

532 References

[12] Arabi, S., Kundur, P., Sawada, J.H.: Appropriate HVDC Transmission Simu-

lation Models for Various Power System Stability Studies. IEEE Transactions

on Power Systems 13(4), 1292–1297 (1998)

[13] Arabi, S., Rogers, G.J., Wong, D.Y., Kundur, P., Lauby, M.G.: Small Signal

stability Program Analysis of SVC and HVDC in AC Power Systems. IEEE

Transactions on Power Systems 6(3), 1147–1153 (1991)

[14] Arrillaga, J., Arnold, C.P.: Computer Analysis Power Systems. John Wiley

& Sons, New York (1990)

[15] Arrillaga, J., Arnold, C.P., Camacho, J.R., Sankar, S.: AC-DC Load Flow with

Unit-Connected Generator-Converter Infeeds. IEEE Transactions on Power

Systems 8(2), 701–706 (1993)

[16] Arrillaga, J., Smith, B.: AC-DC Power System Analysis. power and Energy

Series. The Institution of Electrical Engineers, London (1998)

[17] Arrillaga, J., Watson, N.R.: Computer Modelling of Electrical Power Systems,

2nd edn. John Wiley & Sons, York (2001)

[18] Ascher, D., Martelli, A., Ravenscroft, A.: Python Cookbook, 2nd edn.

O’Reilly, Sebastopol (2006)

[19] Astic, J.Y., Binhain, A., Jerosolimski, M.: The Mixed Adams-BDF Variable

Step Size Algorithm to Simulate Transient and Long Term Phenomena in

Power Systems. IEEE Transactions on Power Systems 9(2), 929–935 (1994)

[20] Athay, T., Podmore, R., Virmani, S.: A Practical Method for the Direct

Analysis of Transient Stability. IEEE Transactions on Power Apparatus and

Systems 98(2), 573–584 (1979)

[21] Ávalos, R.J., Cañizares, C.A., Milano, F., Conejo, A.J.: Equivalency of Con-

tinuation and Optimization Methods to Determine Saddle-node and Limit-

induced Bifurcations in Power Systems. IEEE Transactions on Circuits and

Systems - I: Fundamental Theory and Applications 56(1), 210–223 (2009)

[22] Ayasun, S., Nwankpa, C.O., Kwatny, H.G.: Computation of Singular and

Singularity Induced Bifurcation Points of Differential-Algebraic Power Sys-

tem Model. IEEE Transactions on Circuits and Systems - I: Fundamental

Theory and Applications 51(8), 1525–1538 (2004)

[23] Barcelo, W.R., Lemmon, W.W.: Standardized Sensitivity Coefficients for

Power System Networks. IEEE Transactions on Power Systems 3(4), 1591–

1599 (1988)

[24] Bazaraa, M.S., Sherali, H.O., Shetty, C.M.: Nonlinear Programming: Theory

and Algorithms, 2nd edn. John Wiley & Sons, New York (1993)

[25] Berg, G.L.: Power System Load Representation. Proceedings of the

IEEE 120(3), 344–348 (1973)

[26] Bhattacharya, S., Dommel, H.W.: A New Commutation Margin Control Rep-

resentation for Digital Simulation of HVDC System Transient. IEEE Trans-

actions on Power Systems 3(3), 1127–1132 (1988)

[27] Bijwe, P.R., Kelapure, S.M.: Nondivergent Fast Power Flow Methods. IEEE

Transactions on Power Systems 18(2), 633–638 (2003)

[28] Billington, R., Aborehaid, S., Fotuhi-Firuzabad, M.: Well-Being Analysis for

HVDC Transmission Systems. IEEE Transactions on Power Systems 12(2),

913–918 (1997)

[29] Braz, L.M.C., Castro, C.A., Murari, C.A.F.: A Critical Evaluation of Step

Size Optimization Based Load Flow Methods. IEEE Transactions on Power

Systems 15(1), 202–207 (2000)

References 533

[30] Brenan, K.E., Campbell, S.L., Petzold, L.: Numerical Solution of Initial-Value

Problems in Differential-Algebraic Equations. SIAM, Philadelphia (1995)

[31] Brooke, A., Kendrick, D., Meeraus, A., Raman, R., Rosenthal, R.E.: GAMS,

a User’s Guide, GAMS Development Corporation, 1217 Potomac Street, NW,

Washington, DC 20007, USA (December 1998), http://www.gams.com

[32] Brueck, D., Tanner, S.: Python 2.1 Bible. Hungry Minds, Inc., New York

(2006)

[33] Buresh, M.: Photovoltaic Energy Systems, Design and Installation. McGraw-

Hill, New York (1983)

[34] Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John

Wiley & Sons, New York (2003)

[35] Cañizares, C.A.: On Bifurcation Voltage Collapse and Load Modeling. IEEE

Transactions on Power Systems 10(1), 512–522 (1995)

[36] Cañizares, C.A.: Applications of Optimization to Voltage Collapse Analysis.

In: Proceedings of the IEEE PES Summer Meeting, San Diego, USA (July

1998)

[37] Cañizares, C.A.: Calculating Optimal System Parameters to Maximize the

Distance to Saddle-Node Bifurcations. IEEE Transactions on Circuits and

Systems - I: Fundamental Theory and Applications 45(3), 225–237 (1998)

[38] Cañizares, C.A.: Modeling of TCR and VSI Based FACTS Controllers.

ENEC, Milan, Italy, Tech. Rep. (December 1999)

[39] Cañizares, C.A.: Voltage Stability Assessment: Concepts, Practices and Tools.

IEEE/PES Power System Stability Subcommittee, Final Document, Tech.

Rep. (August 2002), http://www.power.uwaterloo.ca

[40] Cañizares, C.A., Alvarado, F.L.: Point of Collapse Methods and Continua-

tion Methods for Large AC/DC Systems. IEEE Transactions on Power Sys-

tems 8(1), 1–8 (1993)

[41] Cañizares, C.A., Alvarado, F.L., DeMarco, C.L., Dobson, I., Long, W.F.:

Point of Collapse Methods applied to AC/DC Power Systems. IEEE Trans-

actions on Power Systems 7(2), 673–683 (1992)

[42] Cañizares, C.A., Alvarado, F.L., Zhang, S.: UWPFLOW Program, university

of Waterloo (2006), http://www.power.uwaterloo.ca

[43] Cañizares, C.A., Chen, H., Rosehart, W.: Pricing System Security in Elec-

tricity Markets. In: Proceedings of the Bulk Power systems Dynamics and

Control V, Onomichi, Japan (September 2001)

[44] Cañizares, C.A., Hranilovic, S.: Transcritical and Hopf Bifurcation in AC/DC

Systems. In: Proceedings of the Bulk Power System Voltage Phenomena III

- Seminar, Davos, Switzerland (August 1994)

[45] Cañizares, C.A., Mithulananthan, N., Milano, F., Reeve, J.: Linear Perfor-

mance Indices to Predict Oscillatory Stability Problems in Power Systems.

IEEE Transactions on Power Systems 19(2), 1104–1114 (2004)

[46] Cañizares, C.A., Rosehart, W., Berizzi, A., Bovo, C.: Comparison of Voltage

Security Constrained Optimal Power flow Techniques. In: Proceedings of the

IEEE PES Summer Meeting, Vancouver, BC, Canada (July 2001)

[47] Cañizares, C.A., Rosehart, W., Quintana, V.: Costs of Voltage Security in

Electricity Markets. In: Proceedings of the IEEE PES Summer Meeting, Seat-

tle, WA, USA (July 2000)

[48] Carpentier, J.: Contribution á l’Étude du Dispatching Économique. Bulletin

de la Société Française des Electriciens 3(6), 431–447 (1962)

534 References

[49] Carpentier, J.: Differential Injection Method, a General Method for Secure

and Optimal Load Flows. In: Proceedings of the Power Industry Computer

Application (PICA), 255–262 (1973)

[50] Carpentier, J.: Optimal Power Flows. International Journal of Electrical

Power and Energy Systems 1(1), 3–15 (1979)

[51] Castillo, E., Conejo, A.J., Pedregal, P., Garćıa, R., Alguacil, N.: Building

and Solving Mathematical Programming Models in Engineering and Science.

John Wiley & Sons, New York (2001)

[52] Chapman, S.J.: Electric Machinery and Power System Fundamentals. Mc-

Graw Hill, New York (2002)

[53] Chen, A.H.L., Nwankpa, C.O., Kawatny, H.G., Ming Yu, X.: Voltage Stability

Toolbox: An Introduction and Implementation. In: Proceedings of the North

American Power Symposium (NAPS), MIT, Cambridge (November 1996)

[54] Chen, Y., Shen, C.: A Jacobian-Free Newton-GMRES(m) Method with Adap-

tive Preconditioner and its Application for Power Flow Calculations. IEEE

Transactions on Power Systems 21(3), 1096–1103 (2006)

[55] Chiang, H.D., Dobson, I., Thomas, R.J.: On Voltage Collapse in Electric

Power Systems. IEEE Transactions on Power Systems 5(2), 601–611 (1990)

[56] Chiang, H.D., Flueck, A.J., Shah, K.S., Balu, N.: CPFLOW: A Practical Tool

for Tracing Power System Steady-State Stationary Behavior due to Load and

Generation Variations. IEEE Transactions on Power Systems 10(2), 623–634

(1995)

[57] Chiang, H.D., Wu, F.F., Varaiya, P.P.: Foundations of the Direct Methods

for Power System Transient Stability Analysis. IEEE Transactions on Circuits

and Systems - I: Fundamental Theory and Applications 34(1), 160–173 (1987)

[58] Chopra, S., Dexter, S.D.: Decoding Liberation: The Promise of Free and Open

Source Software. Routledge Taylor & Francis Group, New York (2008)

[59] Chow, J.: Power System Toolbox (2002), http://www.eagle.ca/~cherry

[60] Chow, J.H., Cheung, K.W.: A Toolbox for Power System Dynamics and Con-

trol Engineering Education and Research. IEEE Transactions on Power Sys-

tems 7(4), 1559–1564 (1992)

[61] Chun, L., Qirong, J., Xiaorong, X., Zhonghong, W.: Rule-based Control for

STATCOM to Increase Power System Stability. In: Proceedings of the Pow-

erCon, (August 1998)

[62] Chun, W.J.: Core Python Programming, 1st edn. Prentice Hall, Inc., Upper

Saddle River (2000)

[63] Coar, K.: Open Source Definition (2007),

http://www.opensource.org/docs/osd

[64] Cole, S.: MatDyn. Katholieke Universiteit Leuven, Belgium,

http://www.esat.kuleuven.be/electa/teaching/matdyn

[65] Conejo, A.J., Arroyo, J.M.: Optimal Response of a Thermal Unit to an Elec-

tricity Spot Market. IEEE Transactions on Power Systems 15, 1098–1104

(2000)

[66] Conejo, A.J., Arroyo, J.M.: Multiperiod Auction for a Pool-based electricity

market. IEEE Transactions on Power Systems 17(4), 1225–1231 (2002)

[67] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-

rithms. MIT Press and McGraw-Hill (2001)

[68] CYME International Inc., CYMSTAB - User’s Guide and Reference Manual,

Burlington, MA (July 1994)

References 535

[69] Dahlquist, G.G.: A Special Stability Problem for Linear Multistep Methods.

BIT Numerical Mathematics 3(1), 27–43 (1963)

[70] D’Albertanson, B., Hawkins, D.: An Integrated MV Distributed Generation

Connection Planning Tool. In: Proceedings of the IET-CIRED SmartGrids

for Distribution (June 2008)

[71] Das, D., Kothari, D.P., Kalam, A.: Simple and Efficient Method for Load Flow

Solution of Radial Distribution Networks. International Journal of Electrical

Power and Energy Systems 17(5), 335–346 (1995)

[72] Davidenko, D.F.: On a New Method of Numerical Solution of Systems of

Nonlinear Equations. Mathematical Reviews 14, 906 (1953)

[73] de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational

Geometry, Algorithms and Applications. Springer, Heidelberg (2000)

[74] Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia

(1997)

[75] Power System Engineering and Software, DigSilent,

http://www.digsilent.de

[76] Dobson, I.: Observations on the Geometry of Saddle Node Bifurcation and

Voltage Collapse in Electrical Power Systems. IEEE Transactions on Circuits

and Systems - I: Fundamental Theory and Applications 39(3), 240–243 (1992)

[77] Dobson, I., Alvarado, F., DeMarco, C.L.: Sensitivity of Hopf Bifurcation to

Power System Parameters. IEEE Decision and Control 3, 2928–2933 (1992)

[78] Dommel, H.W.: Digital Computer Solution of Electromagnetic Transients in

Single and Multiphase Networks. IEEE Transactions on Power Apparatus

and Systems 88(4), 388–398 (1969)

[79] Dommel, H.W.: Nonlinear and Time-Varying Elements in Digital Simulation

of Electromagnetic Transients. IEEE Transactions on Power Apparatus and

Systems 90(6), 2561–2567 (1971)

[80] Dommel, H.W., Tinney, W.F.: Optimal Power Flow Solutions. IEEE Trans-

actions on Power Apparatus and Systems 87(10), 1866–1876 (1968)

[81] Drud, A.S.: GAMS/CONOPT, ARKI Consulting and Development,

Bagsvaerdvej 246A, DK-2880 Bagsvaerd, Denmark (1996),

http://www.gams.com/

[82] Dular, P., Kuo-Peng, P.: Three-Dimensional Modeling of Both Inductive

and Capacitive Effects in Massive Inductors. IEEE Transactions on Mag-

netics 42(4), 743–746 (2006)

[83] FlowDemo.net, EEH - Power Systems Laboratory, Zürich,

http://flowdemo.net

[84] El-Hawary, M.E.: Electrical Energy Systems. CRC Press, Boca Raton (2000)

[85] El-Samahy, I., Bhattacharya, K., Cañizares, C., Anjos, M.F., Pan, J.: A Pro-

curement Market Model for Reactive Power Services Considering System Se-

curity. IEEE Transactions on Power Systems 23(1), 137–149 (2008)

[86] OpenDSS, Electric Power Research Institute,

http://sourceforge.net/projects/electricdss

[87] ENEL, http://www.enel.com

[88] Energy, G.: GE-PSLF Load Flow Data Export/Import File for PSLF Version

15.1, General Electric International, Inc., 1 River Road, Schenectady, NY

12345, USA (June 2005)

536 References

[89] Energy Development and Power Generating Committee of the Power Engi-

neering Society, “IEEE Recommended Practice for Excitation System Models

for Power System Stability Studies,” IEEE Std 421.5-1992, New York, Tech.

Rep. (March 1992)

[90] Extended Transient-Midterm Stability Package: User’s Manual for the Power

Flow Program, EPRI, ePRI computer code manual EL-2002-CCM (January

1987)

[91] European Wind Energy Association, Wind Force 12-A Blueprint to Archive

12% of the World’s Electricity from Wind Power by 2020, EWEA, Tech. Rep.,

56 pages (2001)

[92] Eurostag, http://www.eurostag.be

[93] Evrenosog̃lu, C.Y., Abur, A., Akleman, E.: Three Dimensional Visualization

and Animation of Traveling Waves in Power Systems. Electric Power Systems

Research 77(7), 876–883 (2007)

[94] Feng, Z., Xu, W.: Fast Computation of Post-contingency System Margins for

Voltage Stability Assessments of Large-scale Power Systems. IEE Proceedings

on Generation, Transmission and Distribution 147(2), 76–80 (1990)

[95] Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Uncon-

strained Minimization. John Wiley & Sons, New York (1968)

[96] Fletcher, R.: Practical Methods of Optimization. John Wiley & Sons, New

York (1987)

[97] Flueck, A.J., Chiang, H.D.: Solving the Nonlinear Power Flow Equations with

an Inexact Newton Method Using GMRES. IEEE Transactions on Power

Systems 13(2), 267–273 (1998)

[98] Fouad, A.A., Vittal, V.: Power System Transient Stability Analysis Using

the Transient Energy Function Method. Prentice Hall, Upper Saddle River

(1992)

[99] Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for

Mathematical Programming, 2nd edn. Duxbury Press/Brooks/Cole Publish-

ing Company, Boston (2002)

[100] Free Software Foundation (FSF), http://www.fsf.org/

[101] FreeGIS, http://www.freegis.org

[102] Friedl, J.E.F.: Mastering Regular Expressions, 2nd edn. O’Reilly, Sebastopol

(2002)

[103] FSF Free Software Licensing and Compliance Lab,

http://www.fsf.org/licensing/

[104] Gao, B., Morison, G.K., Kundur, P.: Voltage Stability Evaluation using Modal

Analysis. IEEE Transactions on Power Systems 7(4), 1529–1542 (1992)

[105] Geography Markup Language,

http://www.opengeospatial.org/standards/gml

[106] Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic

Press, London (1981)

[107] Gisin, B.S., Obessis, M.V., Mitsche, J.V.: Practical Methods for Transfer

Limit Analysis in the Power Industry Deregulated Environment. In: Pro-

ceedings of the Power Industry Computer Application (PICA), pp. 261–266

(1999)

[108] Goderya, F., Metwally, A.A., Mansour, O.: Fast Detection and Identification

of Islands in Power Systems. IEEE Transactions on Power Apparatus and

Systems 99(1), 217–221 (1980)

References 537

[109] Gole, A.M., Sood, V.K.: A Static Compensator Model for use with Elec-

tromagnetic Transients Simulation Programs. IEEE Transactions on Power

Systems 5(3), 1389–1407 (1990)

[110] Gómez-Expósito, A., Conejo, A.J., Cañizares, C.: Electric Energy Systems -

Analysis and Operation. CRC Press, Boca Raton (2008)

[111] Granville, S.: Optimal Reactive Dispatch through Interior Point Methods.

IEEE Transactions on Power Systems 9(1), 136–146 (1994)

[112] Granville, S., Mello, J.C.O., Melo, A.C.G.: Application of Interior Point Meth-

ods to Power Flow Unsolvability. IEEE Transactions on Power Systems 11(4),

1096–1103 (1996)

[113] Grijalva, S., Sauer, P.W.: A Necessary Condition for Power Flow Power Ja-

cobian Singularity Based on Branch Complex Flows. IEEE Transactions on

Circuits and Systems - I: Fundamental Theory and Applications 52(7), 1406–

1413 (2005)

[114] Gross, C.A.: Power System Analysis, 2nd edn. John Wiley & Sons, Chichester

(1986)

[115] Gu, W., Milano, F., Jang, P., Tang, G.: Hopf Bifurcations Induced by SVC

Controllers: A Didactic Example. Electric Power Systems Research 77(3-4),

234–240 (2007)

[116] Guoyu, X., Galiana, F.D., Low, S.: Decoupled Economic Dispatch using the

Participation Factors Load Flow. IEEE Transactions on Power Apparatus

and Systems 104(6), 1377–1384 (1985)

[117] Hairer, E., Nørsett, S.: Solving Ordinary Differential Equations I: Nons-

tiff Problems, 2nd edn., Berlin, Germany. Springer Series in Computational

Mathematics, vol. 8 (2000)

[118] Haley, P.H., Ayres, M.: Super Decoupled Loadflow with Distributed Slack

Bus. IEEE Transactions on Power Apparatus and Systems 104(1), 104–113

(1985)

[119] Hansen, A.D., Michalke, G.: Modelling and Control of Variable speed Multi-

pole Permanent Magnet Synchronous Generator Wind Turbine. Wind En-

ergy 11(5), 537–554 (2008)

[120] Happ, H.H.: Optimal Power Dispatch: A Comprehensive Survey. IEEE Trans-

actions on Power Apparatus and Systems PAS-96(3), 841–854 (1977)

[121] Haque, M.H.: A General Load Flow Method for Distribution Systems. Electric

Power Systems Research 54(1), 47–54 (2000)

[122] Haque, M.H.: Improvement of First Swing Stability Limit by Utilizing Full

Benefit of Shunt FACTS Devices. IEEE Transactions on Power Systems 19(4),

1894–1902 (2004)

[123] Hassan, I.D., Bucci, R.M., Swe, K.T.: 400 MW SMES Power Conditioning

System Development and Simulation. IEEE Transactions on Power Electron-

ics 8(3), 237–249 (1993)

[124] Hatziadoniu, C.J., Lobo, A.A., Pourboghrat, F., Daneshdoost, M.: A Simpli-

fied Dynamic Model of Grid-Connected Fuel-Cell Generators. IEEE Transac-

tions on Power Systems 17(2), 467–473 (2002)

[125] Haug, E.J., Arora, J.S.: Applied Optimal Design. John Wiley & Sons, New

York (1979)

[126] Heier, S.: Grid Integration of Wind Energy Conversion Systems. John Wiley

& Sons, England (1998)

538 References

[127] Hetzler, S.M.: A Continuous Version of Newton’s Method. The College Math-

ematical Journal 28(5), 348–351 (1997)

[128] Hill, D.J.: Nonlinear Dynamic Load Models with Recovery for Voltage Sta-

bility Studies. IEEE Transactions on Power Systems 8(1), 166–176 (1993)

[129] Hingorani, G., Gyugyi, L.: Understanding FACTS: Concepts and Technology

of Flexible AC Transmission Systems. IEEE Press, Los Alamitos (1999)

[130] Hirsch, P.: Extended Transient-Midterm Stability Program (ETMSP) Ver.

3.1: User’s Manual, EPRI, TR-102004-V2R1 (May 1994)

[131] Hiskens, I.A.: Power System Modeling for Inverse Problems. IEEE Transac-

tions on Circuits and Systems - I: Regular Papers 51(3), 539–551 (2004)

[132] Hoffman, K., Kunze, R.: Linear Algebra, 2nd edn. Prentice-Hall, Englewood

Cliffs (1971)

[133] Holdsworth, L., Wu, X.G., Ekanayake, J.B., Jenkins, N.: Direct Solution

Method for Initialising Doubly-fed Induction Wind Turbines in Power System

Dynamic Models. IEE Proceedings on Generation, Transmission and Distri-

bution 150(3), 334–342 (2003)

[134] Huneault, M., Galiana, F.D.: A Survey of the Optimal Power Flow Literature.

IEEE Transactions on Power Systems 6(2), 762–770 (1991)

[135] Iba, K., Suzuki, H., Egawa, M., Watanabe, T.: A Method for Finding a Pair

of Multiple Load Flow Solutions in Bulk Power Systems. IEEE Transactions

on Power Systems 5(2), 582–591 (1990)

[136] Iba, K., Suzuki, H., Egawa, M., Watanabe, T.: Calculation of Critical Loading

Condition with Nose Curve using Homotopy Continuation Method. IEEE

Transactions on Power Systems 6(2), 584–593 (1991)

[137] IEC, IEC 61968 Application Integration at Electric Utilities - System Inter-

faces for Distribution Management - Part 11: Common Information Model

(CIM), draft

[138] IEC, IEC 61970 Energy Management System Application Program Interface

(EMS-API) - Part 301: Common Information Model (CIM) Base, edition 1.0

(November 2003)

[139] IEC 61400-1, Wind Turbines - Part 1: Design Requirements, International

Electrotechnical Commission, Geneva, Switzerland, Tech. Rep. (August 2005)

[140] IEEE Commettee Report, Reader’s Guide to SSR. IEEE Transactions on

Power Apparatus and Systems 7(2), 150–157 (1992)

[141] IEEE Power System Engineering Committee Report, Terms, Definitions &

Symbols for Subsynchronous Oscillations. IEEE Transactions on Power Ap-

paratus and Systems 104(6), 1326–1334 (1985)

[142] IEEE Subsynchronous Resonance Task Force, First Benchmark Model for

Computer Simulation of Subsynchronous Resonance. IEEE Transactions on

Power Apparatus and Systems 96(5), 1565–1572 (1977)

[143] IEEE Task Force on Excitation Limiters, Recommended Models for Overex-

citation Limiting Devices. IEEE Transactions on Energy Conversion 10(4),

706–713 (1995)

[144] IEEE Task Force on Excitation Limiters, Underexcitation Limiter Models

for Power System Stability Studies. IEEE Transactions on Energy Conver-

sion 10(3), 524–531 (1995)

[145] IEEE Working Group on Computer Modelling of Excitation Systems, Excita-

tion System Models for Power System Stability Studies. IEEE Transactions

on Power Apparatus and Systems 100(2), 494–509 (1981)

References 539

[146] IEEE/CIGRE Joint Task Force on stability Terms and Definitions, Definition

and Classification of Power System Stability. IEEE Transactions on Power

Systems 19(2), 1387–1401 (2004)

[147] Ilić, M., Zaborszky, J.: Dynamic and Control of Large Electric Power Systems.

Wiley-Interscience Publication, New York (2000)

[148] Irisarri, G.D., Wang, X., Tong, J., Mokhtari, S.: Maximum Loadability of

Power Systems using Interior Point Nonlinear Optimization Method. IEEE

Transactions on Power Systems 12(1), 162–172 (1997)

[149] Iwamoto, S., Tamura, Y.: A Fast Load Flow Method Retaining Nonlinearity.

IEEE Transactions on Power Apparatus and Systems PAS-97(5), 1586–1599

(1978)

[150] Iwamoto, S., Tamura, Y.: A Load Flow Calculation Method for Ill-

Conditioned Power Systems. IEEE Transactions on Power Apparatus and

Systems 100(4), 1736–1743 (1981)

[151] Jalili-Marandi, V., Dinavahi, V., Strunz, K., Martinez, J.A., Ramirez, A.:

Interfacing Techniques for Transient Stability and Electromagnetic Transient

Programs. IEEE Transactions on Power Delivery 24(4), 2385–2395 (2009)

[152] Jimma, K., Tomac, A., Liu, C.C., Vu, K.T.: A Study of Dynamic Load Models

for Voltage Collapse Analysis. In: Proceedings of the Bulk Power System

Voltage Phenomena II - Voltage Stability and Security, August 1991, pp.

423–429 (1991)

[153] Jones, C.A., Drake Jr., F.L.: Python & XML. O’Reilly, Sebastopol (2001)

[154] Kang, Y., Lavers, J.D.: Transient Analysis of Electric Power Systems: Refor-

mulation and Theoretical Basis. IEEE Transactions on Power Systems 11(2),

754–760 (1996)

[155] Karlsson, D., Hill, D.J.: Modelling and Identification of Nonlinear Dynamic

Loads in Power Systems. IEEE Transactions on Power Systems 9(1), 157–166

(1994)

[156] Kezunovic, M., Abur, G.H.A., Bose, A., Tomsovic, K.: The Role of Digital

Modeling and Simulation in Power Engineering Education. IEEE Transac-

tions on Power Systems (1), 64–72 (2004)

[157] Klump, R., Wu, W., Dooley, G.: Displaying Aggregate Data, Interrelated

Quantities, and Data Trends in Electric Power Systems. In: Proceedings of

the 36th Hawaii International Conference on System Sciences, Hawaii (2003)

[158] Klump, R.P., Weber, J.D.: Real-Time Data Retrieval and New Visualiza-

tion Techniques for the Energy Industry. In: Proceedings of the 35th Hawaii

International Conference on System Sciences, Hawaii (2002)

[159] Knyazkin, V., Söder, L., Cañizares, C.: Control Challenges of Fuel Cell-Driven

Distributed Generation. In: Proceedings of the IEEE PES General Meeting,

Toronto (July 2003)

[160] Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: Analysis of Electric Machinery

and Drive Systems, 2nd edn. John Wiley & Sons, New York (2002)

[161] Kumkratug, P., Haque, M.: Versatile Model of a Unified Power Flow Con-

troller a Simple Power System. IEE Proceedings on Generation, Transmission

and Distribution 150, 155–161 (2003)

[162] Kumkratug, P., Haque, M.H.: Improvement of Stability Region and Damping

of a Power System by Using SSSC. In: Proceedings of the IEEE PES General

Meeting, Denver, CO, vol. 3 (2003)

540 References

[163] Kundur, P.: Power System Stability and Control. McGraw-Hill, New York

(1994)

[164] Langtangen, H.P.: Python Scripting for Computational Science, 3rd edn.

Springer, Heidelberg (2002)

[165] Lapidus, L., Seinfeld, J.H.: Numerical Solution of Ordinary Differential Equa-

tions. Academic Press, New York (1971)

[166] Larsson, M.: ObjectStab − An Educational Tool for Power System Stability

Studies. IEEE Transactions on Power Systems 19(1), 56–63 (2004)

[167] Laurent, A.M.S.: Understanding Open Source & Free Software Licensing.

O’Reilly Media, Sebastopol (2004)

[168] Lee, K., Mohammadi, S., Bhattacharya, P.K., Katehi, L.P.B.: Compact Mod-

els Based on Transmission-Line Concept for Integrated Capacitors and In-

ductors. IEEE Transactions on Microwave Theory and Techniques 54(12),

4141–4148 (2006)

[169] Lee, K.Y., El-Sharkawi, A.: Modern Heuristic Optimization Techniques. IEEE

Press Series on Power Engineering. John Wiley & Sons, Hoboken (2008)

[170] Lessing, L.: The Future of Ideas: The Fate of the Commons in a Connected

World. Vintage (2002)

[171] Li, H., Tesfatsion, L.: The AMES Wholesale Power Market Test Bed: A Com-

putational Laboratory for Research, Teaching, and Training. In: Proceedings

of the IEEE PES General Meeting, Calgary, Alberta (July 2009)

[172] Lincoln, R.W.: Pylon. University of Strathclide, UK,

http://pylon.eee.strath.ac.uk/

[173] Liu, C.W., Thorp, J.S., Lu, J., Thomas, R.J., Chiang, H.D.: Detection of

Transient Chaotic Swings in Power Systems using Real-Time Phasor Mea-

surements. IEEE Transactions on Power Systems 9(3), 1285–1292 (1994)

[174] Liu, S., Dougal, R.A.: Dynamic Multi-physics Model for Solar Array. IEEE

Transactions on Energy Conversion 17(3), 285–294 (2002)

[175] Luenberger, D.G.: Linear and Nonlinear Programming, 2nd edn. Addison-

Wesley Publishing Company, Reading (1984)

[176] Luo, G.X., Semlyen, A.: Efficient Load Flow for Large Weakly Meshed Net-

works. IEEE Transactions on Power Systems 5(4), 1309–1316 (1990)

[177] Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering.

John Wiley & Sons, Chichester (2003)

[178] Lyapunov, A.M.: Stability of Motion. Academic Press, New York (1966)

[179] Machowski, J., Bialek, J.W., Bumby, J.R.: Power System Dynamics and Sta-

bility. John Wiley & Sons, New York (1998)

[180] Mahadev, P.M., Christie, R.D.: Envisioning Power System Data: Concepts

and a Prototype System State Representation. IEEE Transactions on Power

Systems 8(3), 1084–1090 (1993)

[181] Mahseredjian, J., Alvarado, F.: Creating an Electromagnetic Transient Pro-

gram in Matlab: MatEMTP. IEEE Transactions on Power Delivery 12(1),

380–388 (1997)

[182] Malek-Zavarei, M., Jamshidi, M.: Time-Delay Systems Analysis, Optimiza-

tion and Applications. Elsevier Science Publishers B. V., Amsterdam (1987)

[183] Manitoba HVDC Research Center, “PSCAD/EMTDC,” Manitoba Hydro,

Canada, https://pscad.com

[184] Marconato, R.: Electric Power Systems, vol. 2. CEI, Italian Electrotechnical

Committee, Milano, Italy (2002)

References 541

[185] Marcus, M., Minc, H.: Introduction to Linear Algebra. Dover, New York

(1988)

[186] Martelli, A.: Python in a Nutshell, 2nd edn. O’Reilly, Sebastopol (2006)

[187] Mauricio, J.M., León, A.E., Gómez-Expósito, A., Solsona, J.A.: An Electri-

cal Approach to Mechanical Effort Reduction in Wind Energy Conversion

Systems. IEEE Transactions on Energy Conversion 23(4), 1108–1611 (2008)

[188] McMorran, A.W.: An Introduction to IEC 61970-301 & 61968-11: The Com-

mon Information Model (January 2007),

http://cimphony.org/cimphony/cim-intro.pdf

[189] Medanić, J., Ilić-Spong, M., Christensen, J.: Discrete Models of Slow Voltage

Dynamics for Under Load Tap-Changing Transformer Coordination. IEEE

Transactions on Power Systems 2(4), 873–880 (1987)

[190] Mehrotra, S.: On the Implementation of a Primal-dual Interior Point Method.

SIAM Journal on Optimization 2(3), 575–601 (1992)

[191] Mekhamer, S.F., Soliman, S.A., Moustafa, M.A., El-Hawary, M.E.: Load Flow

Solution of Radial Distribution Feeders: A New Contribution. International

Journal of Electrical Power and Energy Systems 24(9), 701–707 (2002)

[192] Meng, Z.J., So, P.L.: A Current Injection UPFC Model for Enhancing Power

System. In: Proceedings of the IEEE PES Winter Meeting, 2nd edn., pp.

1544–1549 (2000)

[193] Mihalic, R., Gabrijel, U.: A Structure-Preserving Energy Function for a

Static Series Synchronous Compensator. IEEE Transactions on Power Sys-

tems 19(3), 1501–1507 (2004)

[194] Milano, F.: PSAT, Matlab-based Power System Analysis Toolbox (2002),

http://www.uclm.es/area/gsee/Web/Federico

[195] Milano, F.: An Open Source Power System Analysis Toolbox. IEEE Trans-

actions on Power Systems 20(3), 1199–1206 (2005)

[196] Milano, F.: Continuous Newton’s Method for Power Flow Analysis. IEEE

Transactions on Power Systems 24(1), 50–57 (2009)

[197] Milano, F.: Three-Dimensional Visualization and Animation for Power Sys-

tems Analysis. Electric Power Systems Research 79(12), 1638–1647 (2009)

[198] Milano, F., Cañizares, C.A., Invernizzi, M.: Multi-objective Optimization for

Pricing System Security in Electricity Markets. IEEE Transactions on Power

Systems 18(2), 596–604 (2003)

[199] Milano, F., Vanfretti, L.: State of the Art and Future of OSS for Power

Systems. In: Proceedings of the IEEE PES General Meeting, Calgary, Canada

(July 2009)

[200] Milano, F., Vanfretti, L., Morataya, J.C.: An Open Source Power System

Virtual Laboratory: The PSAT Case and Experience. IEEE Transactions on

Education 51(1), 17–23 (2008)

[201] Milano, F., Zhou, M., Hou, G.: Open Model for Exchanging Power System

Data. In: Proceedings of the IEEE PES General Meeting, Calgary, Canada

(July 2009)

[202] Milias-Argitis, J., Zacharias, T., Hatzadoniu, C., Galanos, G.D.: Transient

Simulation of Integrated AC/DC Systems, Part I: Converter Modeling and

Simulation. IEEE Transactions on Power Systems 3(1), 166–172 (1988)

[203] Milias-Argitis, J., Zacharias, T., Hatzadoniu, C., Galanos, G.D.: Transient

Simulation of Integrated AC/DC Systems, Part II: System Modeling and

Simulation. IEEE Transactions on Power Systems 3(1), 173–179 (1988)

542 References

[204] Mı́nguez, R., Milano, F., Zárate-Miñano, R., Conejo, A.J.: Optimal Net-

work Placement of SVC Devices. IEEE Transactions on Power Systems 22(4),

1851–1860 (2007)

[205] Mitani, Y., Tsuji, K.: Bifurcations Associated with Sub-Synchronous Reso-

nance. IEEE Transactions on Power Systems 10(4), 1471–1478 (1995)

[206] Mitani, Y., Tsuji, K., Varghese, M., Wu, F., Varaiya, P.: Bifurcation Asso-

ciated with Sub-Synchronous Resonance. IEEE Transactions on Power Sys-

tems 13(1), 139–144 (1998)

[207] Mithulananthan, N., Cañizares, C.A., Reeve, J.: Indices to Detect Hopf Bi-

furcation in Power Systems. In: Proceedings of the North American Power

Symposium (NAPS), vol. 23, pp. 15–18–15–23. University of Waterloo, Wa-

terloo (2000)

[208] Mithulananthan, N., Cañizares, C.A., Reeve, J., Rogers, G.J.: Comparison of

PSS, SVC and STATCOM Controllers for Damping Power System Oscilla-

tions. IEEE Transactions on Power Systems 18(2), 786–792 (2003)

[209] Monmoh, J.A., Guo, S.X., Ogbuobiri, E.C., Adapa, R.: The Quadratic In-

terior Point Method solving Power System Optimization Problems. IEEE

Transactions on Power Systems 9(3), 1327–1336 (1994)

[210] Monticelli, A., Garcia, A.: Modeling Zero Impedance Branches in Power Sys-

tem State Estimation. IEEE Transactions on Power Systems 6(4), 1561–1570

(1991)

[211] Morison, G.K., Gao, B., Kundur, P.: Voltage Stability Analysis using Static

and Dynamic Approaches. IEEE Transactions on Power Systems 8(3), 1159–

1171 (1993)

[212] Motto, A.L., Galiana, F.D., Conejo, A.J., Arroyo, J.M.: Network-constrained

Multiperiod Auction for a Pool-based Electricity Market. IEEE Transactions

on Power Systems 17(3), 646–653 (2002)

[213] Noroozian, M., Angquist, L., Ghandhari, M., Andersson, G.: Improving Power

System Dynamics by Series-Connected FACTS Devices. IEEE Transactions

on Power Delivery 12, 1635–1641 (1997)

[214] Open Geospatial Consortium, http://www.opengeospatial.org

[215] Open Source Initiative (OSI), http://www.opensource.org/

[216] OpenGIS R© Standards and Specifications,

http://www.opengeospatial.org/standards

[217] The Free, Java-based and Open Source Geographic Information System for

the World, OpenJump, http://openjump.org

[218] Ortega, J.M., Rheinbolt, W.C.: Iterative Solutions of Nonlinear Equations in

Several Variables. Academic, New York (1969)

[219] Overbye, T.J.: A Power Flow Measure for Unsolvable Cases. IEEE Transac-

tions on Power Systems 9(3), 1359–1365 (1994)

[220] Overbye, T.J.: Computation of a Practical Method to Restore Power Flow

Solvability. IEEE Transactions on Power Systems 10(1), 280–287 (1995)

[221] Overbye, T.J., Klump, R.P.: Effective Calculation of Power System Low-

Voltage Solutions. IEEE Transactions on Power Systems 11(1), 75–82 (1996)

[222] Overbye, T.J., Weber, J.D.: Visualizing Power System Data. In: Proceed-

ings of the 33th Hawaii International Conference on System Sciences, Hawaii

(2000)

[223] Overbye, T.J., Weber, J.D.: Visualizing the Electric Grid. IEEE Spectrum

38(2), 52–58 (2001)

References 543

[224] Overbye, T.J., Weber, J.D., Patten, K.J.: Analysis and Visualization of Mar-

ket Power in Electric Power Systems. In: Proceedings of the 32nd Hawaii

International Conference on System Sciences, Hawaii (1999)

[225] Overbye, T.J., Wiegmann, D.A., Rich, A.M., Sun, Y.: Human Factors As-

pects of Power System Voltage Contour Visualizations. IEEE Transactions

on Power Systems 18(1), 76–82 (2003)

[226] Padullés, J., Ault, G.W., McDonald, J.R.: An Integrated SOFC Plant Dy-

namic Model for Power Systems Simulation. International Journal of Power

Sources 86, 495–500 (2000)

[227] Pai, M.A.: Computer Techniques in Power System Analysis. Tata McGraw-

Hill Publishing Company, New Delhi (1979)

[228] Pai, M.A.: Power System Stability. North-Holland Company, New York

(1981)

[229] Pai, M.A.: Energy Function Analysis for Power System Stability. Kluwer

Academic Publishers, Boston (1989)

[230] Pal, M.K.: Voltage Stability Conditions considering Load Characteristics.

IEEE Transactions on Power Systems 7(1), 243–249 (1992)

[231] Panofsky, H.A., Dutton, J.A.: Atmospheric Turbulence; Models and Methods

for Engineering Applications. John Wiley & Sons, New York (1984)

[232] Papic, I., Zunko, P., Povh, D.: Basic Control of Unified Power Flow Controller.

IEEE Transactions on Power Systems 12(4), 1734–1739 (1997)

[233] Parashar, M., Thorp, J.S., Seyler, C.E.: Continuum Modeling of Electrome-

chanical Dynamics in Large-Scale Power Systems. IEEE Transactions on Cir-

cuits and Systems - I: Fundamental Theory and Applications 51(9), 1848–

1858 (2004)

[234] Park, R.H.: Two-reaction Theory of Synchronous Machines. Generalized

Method of Analysis - Part I. AIEE Transactions 48, 716–727 (1929)

[235] Patel, M.R.: Wind and Solar Power Systems. CRC Press, Boca Raton (1999)

[236] Pavella, M., Ernst, D., Ruiz-Vega, D.: Transient Stability of Power systems:

A Unified Approach to Assessment and Control. Kluwer Academic Publisher,

Boston (2000)

[237] Pereira, L., Undrill, J., Kosterev, D., Patterson, S.: A New Thermal Gov-

ernor Modeling Approach in the WECC. IEEE Transactions on Power Sys-

tems 18(2), 819–829 (2003)

[238] Petersen, N.M., Scott Meyer, W.: Automatic Adjustment of Transformer and

Phase-Shifter Taps in the Newton Power Flow. IEEE Transactions on Power

Apparatus and Systems 90(1), 103–108 (1971)

[239] Pierce, B.: Types and Programming Languages. MIT Press, Cambridge

(2002)

[240] Pilotto, L.A.S., Roitman, M., Alves, J.E.R.: Digital Control HVDC Convert-

ers. IEEE Transactions on Power Systems 4(2), 704–711 (1989)

[241] Popović, D., Hiskens, I.A., Hill, D.J.: Investigations of Load-Tap Changer

Interaction. International Journal of Electrical Power and Energy Sys-

tems 18(2), 81–97 (1996)

[242] PostGIS, http://postgis.refractions.net

[243] PSS/E Program Application Guide, Power Technologies, Inc. (December

1996)

[244] Online Documentation PSS/E 30, Power Technologies, Inc. (2004)

[245] Siemens PTI, Power Technologies International, http://www.pti-us.com

544 References

[246] PowerWorld Corporation, Auxiliary File Format for Simulator 11.0, Power-

wold Corporation (April 2005), http://www.powerworld.com

[247] PowerWorld Corporation, POWERWORLD Simulator Version 11.0: Interac-

tive Power System Simulator Analysis and Visualization, Powerwold Corpo-

ration (April 2005), http://www.powerworld.com

[248] Preparata, F.P., Hong, S.J.: Convex Hulls of Finite Sets of Points in Two and

Three Dimensions. Commun. ACM 20(2), 87–93 (1977)

[249] Qhull, http://www.qhull.org

[250] QGIS - user friendly Open Source Geographic Information System, Quantum

GIS, http://www.qgis.org/

[251] Quintana, V.H., Torres, G.L., Medina-Palomo, J.: Interior-Point Methods

and their Applications to Power Systems: A Classification of Publications

and Software Codes. IEEE Transactions on Power Systems 15(1), 170–176

(2000)

[252] Rahim, A.H.M.A., Al-Baiyat, S.A., Al-Maghrabi, H.M.: Robust damping

controller design for a static compensator. IEE Proceedings on Generation,

Transmission and Distribution 149(4), 491–496 (2002)

[253] Ramachandran, P., Varoquaux, G.: Mayavi User Guide Release 3.2.1 (July

2009), https://svn.enthought.com/

[254] Raymond, E.S.: The Cathedral and the Bazaar. Thyrsus Enterprises (2000),

http://www.tuxedo.org/~esr/

[255] Reid, G.F., Hasdorff, L.: Economic Dispatch using Quadratic Programming.

IEEE Transactions on Power Apparatus and Systems 92(6), 2015–2023 (1973)

[256] Riaza, R.: Singularity-Induced Bifurcations in Lumped Circuits. IEEE Trans-

actions on Circuits and Systems - I: Fundamental Theory and Applica-

tions 52(7), 1442–1450 (2005)

[257] Ribbens-Pavella, M., Evans, F.J.: Direct Methods for Studying Dynamics

of Large-Scale electric Power Systems - A Survey. Automatica 32(1), 1–21

(1985)

[258] Richard, J.P.: Time-Delay Systems: An Overview of some Recent Advances

and Problems. Automatica 39, 1667–1694 (2003)

[259] Rosehart, W., Cañizares, C.A., Quintana, V.H.: Optimal Power Flow In-

corporating Voltage Collapse Constraints. In: Proceedings of the IEEE PES

Summer Meeting, Edmonton, Alberta (July 1999)

[260] Rosehart, W.D., Cañizares, C.A., Quintana, V.: Multi-Objective Optimal

Power Flows to Evaluate Voltage Security Costs in Power Networks. IEEE

Transactions on Power Systems 18(2), 578–587 (2003)

[261] Rostamkolai, N., Wegner, C.A., Piwko, R.J., Elahi, H., Eitzmann, M.A.,

Garzi, G., Tietz, P.: Control Design of Santo Tomé Bak-to-Back HVDC Link.

IEEE Transactions on Power Systems 8(3), 1250–1256 (1993)

[262] Ruiz-Vega, D., Asiáın Olivares, T.I., Olgúın Salinas, D.: An Approach to the

Initialization of Dynamic Induction Motor Models. IEEE Transactions on

Power Systems 17(3), 747–751 (2002)

[263] Saccomanno, F.: Electric Power Systems - Analysis and Control. John Wiley

& Sons, New York (2003)

[264] Salameh, Z.M., Casacca, M.A., Lynch, W.A.: A Mathematical Model for

Lead-Acid Batteries. IEEE Transactions on Energy Conversions 7(1), 93–97

(1992)

References 545

[265] Sasson, A.M.: Combined Use of the Powell and Fletcher-Powell Nonlinear

Programming Methods for Optimal Load Flows. IEEE Transactions on Power

Apparatus and Systems 88(10), 1530–1537 (1969)

[266] Sasson, A.M.: Optimal Load Flow Solution using the Hessian Matrix. IEEE

Transactions on Power Apparatus and Systems 92(1), 31–41 (1973)

[267] Sasson, A.M., Merrill, H.M.: Some Applications of Optimization Techniques

to Power System Problems. Proceedings of the IEEE 62(7), 959–972 (1974)

[268] Sato, M., Yamaji, K., Sekita, M.: Development of a Hybrid Margin Angle

Controller for HVDC Continuous Operation. IEEE Transactions on Power

Systems 11(4), 1792–1798 (1996)

[269] Sauer, P.W., Pai, M.A.: Power System Dynamics and Stability. Prentice Hall,

Upper Saddle River (1998)

[270] Schaffer, M.D., Tylavsky, D.J.: A Nondiverging Polar-Form Newton-Based

Power Flow. IEEE Transactions on Industry Applications 24(5), 870–877

(1988)

[271] Schoder, K., Feliachi, A., Hasanović, A.: PAT: A Power Analysis Toolbox for

Matlab/Simulink. IEEE Transactions on Power Systems 18(1), 42–47 (2003)

[272] Schultz, R.P.: Synchronous Machine Modeling. In: Symposium on Adequacy

and Philosophy of Modeling: System Dynamic Performance, San Francisco,

CA (July 1972)

[273] Sedghisigarchi, K., Feliachi, A.: Dynamic and Transient Analysis of Power

Distribution Systems With Fuel Cells, Part I: Fuel-Cell Dynamic Model. IEEE

Transactions on Power Systems 19(2), 423–428 (2004)

[274] Semlyen, A.: Analysis of Disturbance Propagation in Power Systems Based

on a Homogeneous Dynamic Model. IEEE Transactions on Power Apparatus

and Systems 93(2), 676–684 (1974)

[275] Semlyen, A.: Fundamental Concepts of a Krylov Subspace Power Flow

Methodology. IEEE Transactions on Power Systems 11(3), 1528–1537 (1996)

[276] Seydel, R.: Practical Bifurcation and Stability Analysis: From Equilibrium to

Chaos, 2nd edn. Springer, New York (1994)

[277] Sheblé, G.B.: Computational Auction Mechanism for Restructured Power

Industry Operation. Kluwer Academic Publishers, Boston (1998)

[278] Shepherd, C.M.: Design of Primary and Secondary Cells. Journal of The

Electrochemical Society 112(3), 252–257 (1965)

[279] Shirmohammadi, D., Hong, H.W., Semlyen, A., Luo, G.X.: A Compensation-

based Power Flow Method for Weakly Meshed Distribution and Transmission

Systems. IEEE Transactions on Power Systems 3(2), 753–762 (1988)

[280] Shome, T., Gole, A.M., Brandt, D.P., Hamlin, R.J.: Adjusting Converter

Control for Paralled DC Converters Using a Digital Transient Simulation

Program. IEEE Transactions on Power Systems 5(1), 12–19 (1990)

[281] Simiu, E., Scanlan, R.H.: Wind Effects on Structures; an Introduction to

Wind Engineering. John Wiley & Sons, New York (1986)

[282] Skiena, S.S.: The Algorithm Design Manual. Springer, New York (1998)

[283] Slootweg, J.G.: Wind Power: Modelling and Impact on Power System Dy-

namics. Ph.D. dissertation, Delft University of Technology, Delft, Netherlands

(2003)

[284] Slootweg, J.G., de Haan, S.W.H., Polinder, H., Kling, W.L.: General Model

for Representing Variable Speed Wind Turbines in Power System Dynamics

Simulations. IEEE Transactions on Power Systems 18(1), 144–151 (2003)

546 References

[285] Slootweg, J.G., Polinder, H., Kling, W.L.: Initialization of Wind Turbine

Models in Power System Dynamics Simulations. In: Proceedings of the IEEE

PowerTech Conference, Porto, Portugal (September 2001)

[286] Slootweg, J.G., Polinder, H., Kling, W.L.: Representing Wind Turbine Elec-

trical Generating Systems in Fundamental Frequency Simulations. IEEE

Transactions on Power Systems 18(4), 516–524 (2003)

[287] Soman, S.A., Khaparde, S.A., Pandit, S.: Computational Methods for Large

Sparse Power Systems Analysis: An Object Oriented Approach. Kluwer Aca-

demic Publisher, Boston (2002)

[288] Song, Y.H., Johns, A.T.: Flexible AC Transmission System (FACTS). The

Institute of Electrical Engineers, London (1999)

[289] Souza, A.C.Z., Cañizares, C.A., Quintana, V.H.: New Techniques to Speed up

Voltage Collapse Computations using Tangent Vectors. IEEE Transactions on

Power Systems 12(3), 1380–1387 (1997)

[290] Squires, R.B.: Economic Dispatch of Generation Directly From Power System

Voltages and Admittances. AIEE Transactions 79(3), 1235–1244 (1961)

[291] Stagg, G.W., El-Abiad, A.H.: Computer Methods in Power System Analysis.

McGraw-Hill, New York (1968)

[292] Stallman, R.M.: Free Software, Free Society: Selected Essays of Richard M.

Stallman. Free Software Foundation, Boston (2002)

[293] Stallman, R.M.: GNU General Public License.plus 0.5em minus 0.4emFree

Software Foundation (2007), http://www.gnu.org/copyleft/gpl.html

[294] Stevenson, W.D.: Elements of Power System Analysis. McGraw-Hill, New

York (1975)

[295] Stifter, M., Milano, F.: An Example of Integrating Open Source Modelling

Frameworks: The Integration of GIS in PSAT. In: Proceedings of the IEEE

PES General Meeting, Calgary, Canada (July 2009)

[296] Stott, B.: Effective Starting Process for Newton-Raphson Load Flows. In:

Proceedings of the Institute of Electrical Engineering, vol. 118(8), 983–987

(August 1971)

[297] Stott, B.: Review of load-Flow Calculation Methods. Proceedings of the

IEEE 62(7), 916–929 (1974)

[298] Stott, B.: Power System Dynamic Response Calculations. Proceedings of the

IEEE 67(2), 219–241 (1979)

[299] Stott, B., Alsac, O.: Fast Decoupled Load Flow. IEEE Transactions on Power

Apparatus and Systems PAS-93(3), 859–869 (1974)

[300] Stott, B., Alsac, O., Monticelli, A.J.: Security Analysis and Optimization.

Proceedings of the IEEE 75(12), 1623–1644 (1987)

[301] Stott, B., Marino, J.L., Alsac, O.: Review of Linear Programming Applied to

Power System Rescheduling. In: Proceedings of the Power Industry Computer

Application (PICA), 142–154 (1979)

[302] ABB Simpow, STRI, http://www.stri.se

[303] Sun, Y., Overbye, T.J.: Visualizations for Power System Contingency Anal-

ysis Data. IEEE Transactions on Power Systems 19(4), 1859–1866 (2004)

[304] Tate, J.E., Overbye, T.J.: A Comparison of the Optimal Multiplier in Polar

and Rectangular Coordinates. IEEE Transactions on Power Systems 20(4),

1667–1674 (2005)

[305] Taylor, C.W., Lefebvre, S.: HVDC Controls for System Dynamic Perfor-

mance. IEEE Transactions on Power Systems 6(2), 743–752 (1991)

References 547

[306] The Open Source Geospatial Foundation, http://www.osgeo.org

[307] Thomas, R.J., Barnard, R.D., Meisel, J.: The Generation of Quasi Steady-

State Load Flow Trajectories and Multiple Singular Point Solutions. In: Pro-

ceedings of the IEEE PES Winter Meeting, New York, NY (1971)

[308] Thorp, J.S., Seyler, C.E., Phadke, A.G.: Electromechanical Wave Propagation

in Large Electric Power Systems. IEEE Transactions on Circuits and Systems

- I: Fundamental Theory and Applications 45(6), 614–622 (1998)

[309] Tinney, W.F., Enns, M.K.: Controlling and Optimizing Power Systems. IEEE

Spectrum 11, 56–60 (1974)

[310] Tinney, W.F., Hart, C.E.: Power Flow Solution by Newton’s Method. IEEE

Transactions on Power Apparatus and Systems PAS-86, 1449–1460 (1967)

[311] Torres, G.L., Quintana, V.H.: An Interior Point Method for Nonlinear Opti-

mal Power Flow using Voltage Rectangular Coordinates. IEEE Transactions

on Power Systems 13(4), 1211–1218 (1998)

[312] Torres, G.L., Quintana, V.H.: Introduction to Interior-Point Methods. In:

Proceedings of the Power Industry Computer Application (PICA), Santa

Clara, CA (May 1999)

[313] Trefethen, L.N.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

[314] Tremblay, O., Dessaint, L.A., Dekkiche, A.I.: A Generic Battery Model for the

Dynamic Simulation of Hybrid Electric Vehicles. In: Proceedings of the IEEE

Vehicle Power and Propulsion Conference, Arlington, TX, USA, September

2007, pp. 284–289 (2007)

[315] Tripathy, S.C., Durga Prasad, G., Malik, O.P., Hope, G.S.: Load-Flow So-

lutions for Ill-Conditioned Power Systems by a Newton-like Method. IEEE

Transactions on Power Apparatus and Systems 101(10), 3648–3657 (1982)

[316] Tripathy, S.C., Rao, N.D.: A-Stable Numerical Integration Method for Trans-

mission System Transients. IEEE Transactions on Power Apparatus and Sys-

tems 96(4), 1399–1407 (1977)

[317] Tylavsky, D.J., Crouch, P., Jarriel, L.F., Adapa, R.: Improved Power Flow

Robustness for Personal Computers. IEEE Transactions on Industry Appli-

cations 28(5), 1102–1108 (1992)

[318] UCTE, Approximate Model of European Interconnected System,

http://www.see.ed.ac.uk/~jbialek/Europe_load_flow/

[319] User-friendly Desktop Internet GIS, uDig, http://udig.refractions.net

[320] Unnewehr, L.E., Nasar, S.A.: Electric vehicle technology. Wiley, New York

(1982)

[321] U.S. Congress. Senate, Digital Millennium Copyright Act,

http://thomas.loc.gov/

[322] Uzunovic, E., Cañizares, C.A., Reeve, J.: Fundamental Frequency Model of

Static Synchronous Compensator. In: Proceedings of the North American

Power Symposium (NAPS), Laramie, Wyoming, 49–54 (October 1997)

[323] Uzunovic, E., Cañizares, C.A., Reeve, J.: Fundamental Frequency Model of

Unified Power Flow Controller. In: Proceedings of the North American Power

Symposium (NAPS), Cleveland, Ohio, 294–299 (October 1998)

[324] van Amerongen, R.: A General-Purpose Version of the Fast Decoupled Load-

flow. IEEE Transactions on Power Systems 4(2), 760–770 (1989)

[325] Van Cutsem, T., Vournas, C.: Voltage Stability of Electric Power Systems.

Springer Science, New York (1998)

548 References

[326] Vanfretti, L., Milano, F.: Application of the PSAT, an Open Source Software,

for Educational and Research Purposes. In: Proceedings of the IEEE PES

General Meeting, Tampa, USA (June 2007)

[327] Vanfretti, L., Milano, F.: The Experience of PSAT (Power System Analysis

Toolbox) as a Free and Open Source Software for Power System Education

and Research. International Journal of Electrical Engineering Education 43(3)

(July 2009) (Accepted for future publication),

http://www.uclm.es/area/gsee/Federico

[328] Varaiya, P.P., Wu, F.F., Chen, R.L.: Direct Methods for Transient Stability

Analysis of Power Systems: Recent Results. Proceedings of the IEEE 73(5),

266–276 (1985)

[329] Venikov, V.A.: Theory of Similarity and Simulation with Applications to

Problems in Electrical Power Engineering. Macdonald Techincal & Scientific,

London (1969)

[330] Venikov, V.A.: Transient Processes in Electrical Power Systems. Mir Publish-

ers, Moscow (1977)

[331] Venkataraman, S., Khammash, M.H., Vittal, V.: Analysis and Synthesis of

HVDC Controls for Robust Stability of Power Systems. IEEE Transactions

on Power Systems 10(4), 1933–1938 (1995)

[332] Venkatasubramanian, V., Schättler, H., Zaborszky, J.: Dynamics of Large

Constrained Nonlinear Systems-A Taxonomy Theory. Proceedings of the

IEEE 83(11), 1530–1560 (1995)

[333] Verboomen, J., Van Hertem, D., Schavemaker, P., Kling, W., Belmans, R.:

Phase shifting transformers: Principles and applications. In: International

Conference on Future Power Systems, Amsterdam, Netherlands (November

2005), http://www.esat.kuleuven.be/electa/publications/fulltexts/

pub 1502.pdf

[334] Virtanen, P., Gouillart, E.: Numpy and Scipy Documentation. Scipy.org,

http://docs.scipy.org/doc

[335] Vittal, V.: Electric Energy Systems - Analysis and Operation. IEEE Power

& Energy Magazine 7(5), 75–76 (2009) (book review)

[336] Vournas, C.D., Nikolaidis, V.C., Tassoulis, A.A.: Postmortem Analysis and

Data Validation in the Wake of the 2004 Athens Blackout. IEEE Transactions

on Power Systems 21(3), 1331–1339 (2004)

[337] Vournas, C.D., Pai, M.A., Sauer, P.W.: The Effect of Automatic Voltage Reg-

ulation on the Bifurcation Evolution in Power Systems. IEEE Transactions

on Power Systems 11(4), 37–43 (1996)

[338] Vournas, C.D., Potamianakis, E.G., Moors, C., Van Cutsem, T.: An Educa-

tional Simulation Tool for Power System Control and Stability. IEEE Trans-

actions on Power Systems 19(1), 48–55 (2004)

[339] Vournas, C.D., Sakellaridis, N.G.: Region of Attraction in a Power System

with Discrete LTCs. IEEE Transactions on Circuits and Systems - I: Funda-

mental Theory and Applications 53(7), 1610–1618 (2006)

[340] Vournas, C.D.: Scientific Coordinator, Software Development for Voltage Sta-

bility Analysis, National Technical University of Athens, Greece, project 96

SYN 95

[341] Vu, K.T., Liu, C.-C., Taylor, C.W., Jimma, K.M.: Voltage instability: Mech-

anisms and Control Strategy. Proceedings of the IEEE 83(11), 1442–1455

(1995)

References 549

[342] Extensible Markup Language, W3.ORG, http://www.w3.org/XML

[343] Wasynczuk, O., Man, D.T., Sullivan, J.P.: Dynamic Behavior of a Class of

Wind Turbine Generators during Random Wind Fluctuations. IEEE Trans-

actions on Power Apparatus and Systems 100(6), 2837–2845 (1981)

[344] Watson, L.T., Billups, S.C., Morgan, A.P.: HOMPACK: A Suite of Codes for

Globally Convergent Homotopy Algorithms. ACM Transactions on Mathe-

matical Software 13, 281–310 (1987)

[345] Watson, N., Arrillaga, J.: Power Systems Electromagnetic Transients Simu-

lation. The Institution of Engineering and Technology, London (2003)

[346] Weber, J.D., Overbye, T.J.: Voltage Contours for Power System Visualization.

IEEE Transactions on Power Systems 15(1), 404–409 (2000)

[347] Weidlich, A.: Engineering Interrelated Electricity Markets - An Agent-Based

Computational Approach. Physica-Verlag, Heidelberg (2008)

[348] Wiegmann, D.A., Overbye, T.J., Hoppe, S.M., Essemberg, G.R., Sun, Y.:

Human Factors Aspects of Three-Dimensional Visualization of Power System

Information. In: Proceedings of the IEEE PES General Meeting, Montreal

(July 2006)

[349] Working Group H-7 of the Relaying Channels Subcommittee of the IEEE

Power System Relaying Committee, Synchronized Sampling and Phasor Mea-

surements for Relaying and Control. IEEE Transactions on Power Deliv-

ery 9(1), 442–452 (1994)

[350] Working Group on a Common Format for Exchange of Solved Load Flow

Data, Common Format for the Exchange of Solved Load Flow Data. IEEE

Transactions on Power Apparatus and Systems 92(6), 1916–1925 (1973)

[351] Wu, F., Zhang, X., Ju, P.: Small Signal Stability Analysis and Control of the

Wind Turbine with the Direct-Drive Permanent Magnet Generator Integrated

to the Grid. Electric Power Systems Research 79(12), 1661–1667 (2009)

[352] Wu, Y., Debs, A.S., Marsten, R.E.: A Direct Nonlinear Predictor-Corrector

Primal-Dual Interior Point Algorithm for Optimal Power Flow. IEEE Trans-

actions on Power Systems 9(3), 876–883 (1994)

[353] Xie, K., Song, Y.-H., Stonham, J., Yu, E., Liu, G.: Decomposition Model and

Interior Point Methods for Optimal Spot Pricing of Electricity in Deregulation

Environments. IEEE Transactions on Power Systems 15(1), 39–50 (2000)

[354] Xu, W., Mansour, Y.: Voltage Stability Analysis Using Generic Dynamic

Load Models. IEEE Transactions on Power Systems 9(1), 479–493 (1994)

[355] Yao-Nan-Yu: Electric Power System Dynamic. Academic Press, New York

(1983)

[356] Zárate-Miñano, R., Conejo, A.J., Milano, F.: OPF-based Security Redispatch-

ing Including FACTS Devices. IET Generation, Transmission & Distribu-

tion 2(6), 821–833 (2008)

[357] Zhang, F., Cheng, C.S.: A Modified Newton Method for Radial Distribution

System Power Flow Analysis. IEEE Transactions on Power Systems 12(1),

389–397 (1997)

[358] Zhong, J., Bhattacharya, K.: Toward a Competitive Market for Reactive

Power. IEEE Transactions on Power Systems 17(4), 1206–1215 (2002)

[359] Zhou, M.: InterPSS, http://www.interpss.org

[360] Zhou, M., Zhou, S.: Internet, Open-source and Power System Simulation.

In: Proceedings of the IEEE PES General Meeting, Montreal, Quebec (June

2007)

550 References

[361] Zhu, W., Mohler, R., Spee, R., Mittelstadt, W., Maratukulam, D.: Hopf Bi-

furcations in a SMIB Power System with SSR. IEEE Transactions on Power

Systems 11(3), 1579–1584 (1996)

[362] Zhu, Y., Tomsovic, K.: Development of Models for Analyzing the Load-

Following Performance of Microturbines and Fuel Cells. Electric Power Sys-

tems Research 62(1), 1–11 (2002)

[363] Zimmerman, R.D., Murrillo-Sánchez, C.E.: MatPower: A Matlab Power Sys-

tem Simulation Package. User’s Manual, Power System Engineering Research

Center, Cornell University (2007), version 3.2,

http://www.pserc.cornell.edu/matpower/matpower.html

[364] Zobian, A., Ilić, M.D.: Unbundling of Transmission and Ancillary Services.

Part I: Technical Issues. IEEE Transactions on Power Systems 12(2), 539–548

(1997)

Index

A

Abel 159

Absolute stability 195

Accelerating area 184

Adams-Bashforth’s method 193

Aggregation variable 160, 188

Anderson-Fouad’s model 331

Anti-windup limiter 517

Area 249

Arnoldi’s iteration 170, 177

Asynchronous machine see Induction

machine

ATLAS 36

Automatic voltage regulator 355, 376

type I, 363

type II, 364

type III, 366

AVR, see Automatic voltage regulator

B

Batch script 476

Battery energy system 391, 394

Bifurcation point 108, 158, 161

BLAS 36, 41, 72, 282, 502

Boltzmann’s constant 390

Bus

ac model, 247, 249

dc model, 379

frequency, 270, 311, 312

Butcher’s tableau 193, 194

C

C language 33–37, 39, 42, 72, 91,

117, 121

C++ 33–35, 37, 121, 491

C# 33, 37

Canonical model 464

Cardan 85

Center of inertia 270, 342, 343

Chaotic motion 182

Cholesky’s factorization 37, 502

Chopper 406

CIM, see Common information model

COI, see Center of inertia

Command line 475

Common information model 464, 467

Commutation margin 397

Constant power generator, see PQ

generator

Constant power load, see PQ load

Constitutive equations 9, 11

Continuation power flow 38, 40, 103,

117, 129, 265, 512

Continuous Newton’s method 96

Convex hull 484

Corrector step 121

Coupling device, see Transmission line

CPF, see Continuation power flow

Crank-Nicolson’s method 196

Critical clearing time 183

Current-injection model 187

CVXOPT, VIII, 41, 43, 91, 121, 227,

234, 239, 241, 285, 497, 505, 529

Cygwin 529

CYME 460, 462

552 Index

D

Dahlquist

A-stable definition, 195

theorems, 195, 197

Davidenko’s method 126, 127,

214

Dc machine 384

compound connection, 386

separate winding, 385

series connection, 386

shunt connection, 386

Dc power flow 61, 92, 95, 101, 512

DDSG 453, 455

Decelerating area 184

Degradation matrix 160

Delaunay’s triangulations 485

Delphi 37, 40

Demand

bid function, 301, 302

daily profile, 302, 303

power ramp, 303, 304

DFAG 449, 452

Direct-drive synchronous generator, see
DDSG

Direct methods 108

Dominant eigenvalue 170

Dommel’s method 211, 212, 382

Doubly-fed asynchronous generator, see
DFAG

Dynamic shaft

synchronous machine, 343, 344

wind turbine, 446, 448

E

Enterprise resource planning 485

Euler

backward method, 196, 198, 202, 206,

512

forward method, 96, 97, 99, 100,

180

modified method, 194

Excitation, see Automatic voltage

regulator

Exponential recovery load 313, 320

Extinction angle 397

F

FACTS 188, 267, 282, 384, 401, 413,

434, 524

Fast Decoupled Power Flow, see FDPF

FDPF 86, 90, 91, 101, 512

Ferranti’s effect 396

Flexible ac transmission system, see
FACTS

FORTRAN 34, 36, 37, 42, 55, 56, 72,

248, 289, 505

FOSS, see Free open source software

Free open source software 491

Free software 490

Frequency dependent load 313, 316,

317

Frequency regulation, see Turbine

governor

Fuel cell, see Solid oxide fuel cell

G

Galvanic insulation 401

Gauss

distribution function, 439

language, 38

Gauss-Seidel’s method 61, 70, 74, 85,

90, 91, 101

Generator

capability curve, 292, 293

offer function, 293, 296

power ramp, 299, 301

power reserve, 298

reactive power payment function,

296, 297

Genericity 158

Geographical information system 485

GIS, see Geographical information

system

GMRES 85, 86, 90, 91, 101

GNU Octave 34, 37, 38, 40, 42, 492

Gnuplot 37

Gödel’s theorem 467

Goderya’s algorithm 287–289

Gram-Schmidth orthonormalization

170

Graphical interface 475

Ground 381

Index 553

H

Hamming’s method 193

Hard limit 516

Hermite’s function 439

Hermitian matrix 74, 170, 175

High voltage dc transmission system,

see HVDC

Homotopy methods 114, 117

Hopf bifurcation 120, 162, 214, 215,

258, 346, 361, 367, 373

HVDC 165, 282, 395, 400

Hybrid automaton 11

Hybrid dynamical system 11, 186

Hybrid transient simulator 187

I

Ideal generator 381

IEEE, VIII, 27, 174, 530

Induction machine 325, 348, 353

double cage, 351

mechanical model, 349

order I, 349

order III, 350

order V, 351

single cage, 350

Inductor model 9

Infinite bus, see Slack generator

Integrator clamping 519

Interior point method 142, 152

InterPSS 40, 42, 461, 463

Inverse iteration 172, 177

Inverse time characteristic 308

IPython 529

Iwamoto’s method 84, 85, 99, 100,

512

J

Jacobi’s method 70, 74, 90, 91, 101

Java 33–35, 37, 38, 40, 42, 472, 487,

491

Jimma’s load 313, 322

Jordan’s canonical form 171

K

Kiss rule 466

Kronecker’s operator 98

L

Lanczos’ method 170

LAPACK 36, 41, 121

Latex, VIII, 20, 33, 478, 491, 493

Leibniz 163

axiom, 13

monad, 226

Limit-induced bifurcation 111

Limit cycle 258

Line, see Transmission line

Line sections, see Transmission line

Linux 19, 20, 33, 476, 491, 492

LMP, see Locational marginal price

Load tap changer, see Tap changer

Local parametrization 121

Locational marginal price 150

Loss of opportunity 296

LTC, see Tap Changer

LU factorization 7, 37, 63, 86, 91,

121, 163, 502

LUP factorization 120

Lyapunov

direct method, 179, 181–185

first stability method, 157

function, 181, 182

M

Mac OS X 529

MacPorts 529

Manifold folding 160

Marconato’s model 330–332

MathCAD 38

Mathematica 34, 38

Matlab 34, 37–42, 72, 91, 117, 170,

461, 507

Matplotlib, VIII, 41, 48, 477, 481,

483, 497, 507, 509, 529

Matpower 40, 42, 460, 461

Maxima 38

Maximum power point tracking 405

Maxwell’s equations 11

Mehrotra’s predictor-corrector 142,

513

Mexican hat wavelet 435, 439, 440

Milne-Simpson’s method 193

Mixed load 313, 323, 324

Modelica 38, 40

Montecarlo simulation 466

554 Index

Moore’s law 41

Multi-stage method 192

Multi-step method 193

Multi-swing instability 182, 206

N

N-1 contingency analysis 127

NCP, see Nodal congestion price

NCSWT 448, 449

Newton 99

composite method, 153

continuous method, 101, 126, 127,

512

direction, 142, 145–148, 152, 153,

513

dishonest method, 85, 86, 88, 101,

192, 196

inexact method, 85, 86, 101

method, 12, 22, 28, 42, 43, 48, 61, 74,

82, 86, 90, 91, 101, 103, 109, 115,

121, 140, 141, 144, 190, 192, 196,

198, 200, 224, 250, 253–255, 268,

443, 512

robust method, 82, 84, 97, 101

very dishonest method, 192, 196

Nodal congestion price 150

Non-conforming load 313

Non-controlled speed wind turbine, see
NCSWT

Nonlinear programming 113

Normal form 158

NumPy, VIII, 41, 121, 227, 483, 497,

505–507, 529

O

Observation window 309

Occam’s razor 466

Octave, see GNU Octave

OLTC, see Tap Changer

OpenDSS 39, 40

Open source software 490

OPF, see Optimal power flow

Optimal Power Flow 131

Optimal power flow 38, 40, 131, 153,

265, 291, 304, 512

OSS, see Open source software

Over-excitation limiter 355, 373, 375

OXL, see Over-excitation limiter 373

P

Park

model, 325, 326, 348

transformation, 325, 326

Participation factor 165

Partitioned-solution approach 192

Perl 34–37, 472

Perpendicular intersection 121

Phase shifter, see Phase shifting

transformer

Phase shifting transformer 278, 279

Phasor measurement unit 309, 311

Php 34

PhST, see Phase shifting transformer

PI controller 518

Pitch angle 444

Pitch control 445

Plato 5

Plug bridge 308

PMU, see Phasor measurement unit

Power-injection model 189

Power method 170, 172, 177

Power system stabilizer 355, 369, 373

simplified model, 371

type I, 371

type II, 371

type III, 373

PQ generator 256, 257

PQ load 257, 259, 314, 316

Predictor step 117

Primary frequency regulation, see
Turbine governor

Primary voltage regulation, see
Automatic voltage regulator

Proprietary software 489

PSAT 42, 460, 461, 463

PSCAD 55

PSS 376

PSS, see Power system stabilizer

PV generator 250, 254, 327

Python, VII, VIII, 31, 33–37, 39–43,

49, 51, 54, 55, 57, 72, 73, 75, 78,

83, 89, 100, 119, 121, 131, 148,

160, 165, 170, 204, 221, 227–229,

Index 555

233, 234, 248, 289, 472, 476, 482,

485, 487, 488, 492, 497, 509, 529,

530

Q

Q language 38

QR algorithm 170, 177

QR factorization 502

R

R language 34, 38

Rayleigh

distribution, 437

iteration, 172, 173, 177

quotient, 172

Reactor model 16

Region 249

Relay 307, 308

RLC models 382

Robustness 158

Rosenbrock 197

formula, 197, 198, 218

semi-implicit method, 197

Ruby 34

Runge-Kutta’s formula 99, 100,

192–195, 218, 512

Runge-Kutta-Fehlberg’s formula 194

S

Saddle-node bifurcation 109, 158,

161–163, 176

Sauer-Pai’s model 330, 331

Scala 33, 37

Schur’s factorization 120, 121, 502,

503

SciLab 38

Secant predictor 118

Seidel’s method 28

Seneca’s style, VIII

Shadow effect 447, 456

Shaft, see Subsynchronous resonance,

Dynamic shaft

Shunt 260, 261

SIME method 179, 204, 206, 218

Simulink 38, 483

Simultaneous-solution approach 192

Singular value decomposition 174

Singularity-induced bifurcation 160

Skin 476

Slack bus, see Slack generator

Slack generator 254, 256

SMES, see Superconducting magnetic

energy storage

Solar photovoltaic cell 390, 391

control, 404

Solid oxide fuel cell 387, 388

control, 403

SSSC 413, 423, 428

Stability function 195

Stallman 490

Statcom 413, 419, 423, 524

Static Compensator, see Statcom

Static Synchronous Series

Compensator, see SSSC

Static var compensator, see SVC

Stefan-Boltzmann’s constant 388,

391, 394

Step length 218

Stiff problem 195

Sub-synchronous resonance 345, 347

Superconducting magnetic energy

storage 17, 391, 406, 408

Supply 293, 297

SVC 413, 416, 524

Swing bus, see Slack generator

Synchronous machine 67, 325, 355,

361

Anderson-Fouad’s model, 331

center of inertia, 270, 342

classical model, 335

common equations, 328

constant emf behind the sub-transient

reactance, 335

constant emf behind the transient

reactance, 335

dynamic shaft, 343

magnetic equations, 329

Marconato’s model, 330

one d- and one q-axis equation, 334

one d- and two q-axis equation, 333

one d-axis model, 334

one d-axis model with stator flux

dynamics, 338

Saccomanno’s model, 338

saturation, 339

Sauer-Pai’s model, 330

556 Index

simplified models, 332

stator electrical equations, 329

sub-synchronous resonance, 345

two d- and one q-axis equation, 332

two-axis model, 223, 225, 234, 241,

246, 334

System 249

T

Tangent vector 117

Tap changer

dynamic model, 275, 278

with embedded load, 317, 320

Tcl 34

TCSC 267, 413, 417, 419

TCUL, see Tap Changer

Temperature map 482

Test equation 195

TG, see Turbine governor

Thermostatically controlled load 313,

321, 322

Three-dimensional plot 484

Thyristor Controlled Series

Compensator, see TCSC

Tie line, see Transmission line

Time multiplier 308

Transformer 272, 281

Transient energy function 181

Transmission line 263, 271

Admittance matrix, 282

coupling, 271

distributed model, 268

frequency effect, 270

Hessian matrix, 285

Jacobian matrix, 285

lumped model, 263

sections, 265

tie line, 267, 427

zero impedance, 271

Trapezoidal method 198, 202, 206,

211, 218, 512

Turbine governor 355, 360

flyball governor, 9

isochronous governor, 9

type I, 358

type II, 359

Turn-off device 400

Two-dimensional plot 478, 507

U

UCTE 3

ULTC, see Tap Changer 275, 317

UMFPACK 36, 41, 503

Under-excitation limiter 355, 376

Unified PF controller, see UPFC

Unix 19, 20, 36, 481, 529

UPFC 413, 428, 433

UWPFLOW 39, 40, 42, 463

UXL, see Under-excitation limiter

V

Voltage dependent load 313

static model, 313, 315

with dynamic tap changer, 317, 320

Voltage regulation, see Automatic

voltage regulator 361

Voltage source converter 400, 403,

413

VSC, see Voltage source converter

W

Weibull’s distribution 435–437

Wind 435, 456

composite model, 438, 439

gust, 438

ramp, 438

turbulence, 438

Wind turbine 443

Windows 36, 39, 529

Windup effect 517

Windup limiter 517

X

Xcode 529

Y

Yorick 38

Z

Zero impedance line, see Transmission

line

ZIP load 313, 315, 316

Zone 249

	Cover
	Power System Modelling and Scripting
	ISBN 9783642136689 e-ISBN 9783642136696
	Preface
	Contents
	List of Figures
	List of Tables
	List of Examples
	List of Scripts
	Notation
	General Notation Rules
	Frequent Symbols
	Device Model Notation
	Bases for Per Unit Values

	Part I Introduction
	Chapter 1 Power System Modelling
	1.1 Background
	1.2 Motivations
	1.3 Modelling Physical Systems
	1.4 Hybrid Dynamical Model

	Chapter 2 Power System Architecture
	2.1 Structure of Software Projects
	2.2 Classes and Procedures
	2.3 Modularity
	2.4 Architecture of a Power System Software Tool

	Chapter 3 Power System Scripting
	3.1 Open and Closed Programming
	3.2 Scripting
	3.3 Scripting Languages for Computational Science
	3.4 Computer Languages Suitable for Power System Analysis
	3.5 Python Scripting Language

	Part II Power System Analysis
	Chapter 4 Power Flow Analysis
	4.1 Background
	4.2 Taxonomy of Power Flow Problems
	4.3 Classical Power Flow Equations
	4.4 Power Flow Solvers
	4.4.1 Jacobi and Gauss-Seidel’s Method
	4.4.2 Newton’s Method
	4.4.3 Power Flow Jacobian Matrix
	4.4.4 Robust Newton’s Method
	4.4.5 Iwamoto’s Method
	4.4.6 Inexact and Dishonest Newton’s Methods
	4.4.7 Fast Decoupled Power Flow
	4.4.8 DC Power Flow
	4.4.9 Single and Distributed Slack Bus Models

	4.5 A General Framework for Power Flow Solvers
	4.5.1 Stability of the Continuous Newton’s Method

	4.6 Summary

	Chapter 5 Continuation Power Flow Analysis
	5.1 Background
	5.2 System Model
	5.3 Direct Methods
	5.3.1 Saddle-Node Bifurcation
	5.3.2 Limit-Induced Bifurcation
	5.3.3 Nonlinear Programming

	5.4 Homotopy Methods
	5.4.1 Continuation Power Flow
	5.4.2 Predictor Step
	5.4.3 Corrector Step
	5.4.4 Continuous Newton’s Method and Homotopy
	5.4.5 N-1 Contingency Analysis

	5.5 Summary

	Chapter 6 Optimal Power Flow Analysis
	6.1 Background
	6.2 Optimal Power Flow Model
	6.3 Nonlinear Programming Solvers
	6.3.1 Generalized Reduced Gradient Method
	6.3.2 Interior Point Method

	6.4 Summary of IPM Parameters

	Chapter 7 Eigenvalue Analysis
	7.1 Background
	7.2 Small Signal Stability Analysis
	7.2.1 Bifurcation Points
	7.2.2 Participation Factors
	7.2.3 Analysis in the Z-Domain

	7.3 Computing the Eigenvalues
	7.3.1 Power Method
	7.3.2 Inverse Iteration
	7.3.3 Rayleigh’s Iteration

	7.4 Power Flow Modal Analysis
	7.4.1 Singular Value Decomposition

	7.5 Summary

	Chapter 8 Time Domain Analysis
	8.1 Background
	8.2 Power System Model
	8.2.1 Current-Injection Model
	8.2.2 Power-Injection Model

	8.3 Numerical Integration Methods
	8.3.1 Explicit Methods
	8.3.2 Implicit Methods

	8.4 Numerical Integration Routine
	8.4.1 Step Length
	8.4.2 Disturbances
	8.4.3 Stop Criterion

	8.5 Electro-magnetic Transients
	8.6 Quasi-static Analysis
	8.7 Summary

	Part III Device Models
	Chapter 9 Device Generalities
	9.1 General Device Model
	9.1.1 Initialization of Device Internal Variables

	9.2 Devices as Classes
	9.2.1 Base Device Class
	9.2.2 Methods of the Base Class
	9.2.3 Speci.c Device Methods

	Chapter 10 Power Flow Devices
	10.1 Topological Elements
	10.1.1 Bus
	10.1.2 Areas, Zones, Regions and Systems

	10.2 Static Generators
	10.2.1 PV Generator
	10.2.2 Constant Voltage Phasor Generator
	10.2.3 PQ Generator

	10.3 Static Loads
	10.3.1 PQ Load
	10.3.2 Constant Power Factor Load
	10.3.3 Shunt Admittance
	10.3.4 Switched Shunt Admittances

	Chapter 11 Transmission Devices
	11.1 Transmission Line
	11.1.1 Line Sections
	11.1.2 Tie Line
	11.1.3 Distributed Transmission Line Models
	11.1.4 E.ect of Frequency Variation
	11.1.5 Coupling Device and Zero-Impedance Line

	11.2 Transformer
	11.2.1 Two-Winding Transformer
	11.2.2 Under Load Tap Changer
	11.2.3 Phase Shifting Transformer
	11.2.4 Three-Winding Transformer

	11.3 Vectorial Implementation
	11.3.1 Incidence Matrix
	11.3.2 Jacobian and Hessian Matrices
	11.3.3 Network Connectivity

	Chapter 12 OPF Devices
	12.1 Network Constraints
	12.1.1 Bus Voltage Limits
	12.1.2 Transmission Line limits

	12.2 Generator Constraints
	12.2.1 Capability Curve
	12.2.2 Supply Offer
	12.2.3 Reactive Power Payment Function
	12.2.4 Generator Power Reserve
	12.2.5 Generator Power Ramp

	12.3 Load Constraints
	12.3.1 Demand Bid
	12.3.2 Demand Daily Pro.le
	12.3.3 Demand Power Ramp

	Chapter 13 Faults and Protections
	13.1 Fault
	13.2 Breaker
	13.3 Relay
	13.4 Phasor Measurement Unit
	13.5 Bus Frequency Estimation

	Chapter 14 Loads
	14.1 Voltage Dependent Load
	14.2 ZIP Load
	14.3 Frequency Dependent Load
	14.4 Voltage Dependent Load with Dynamic Tap Changer
	14.5 Exponential Recovery Load
	14.6 Thermostatically Controlled Load
	14.7 Jimma’s Load
	14.8 Mixed Load

	Chapter 15 Alternate-Current Machines
	15.1 Synchronous Machine
	15.1.1 Synchronous Machine Parameters
	15.1.2 Initialization
	15.1.3 Common Equations
	15.1.4 Stator Electrical Equations
	15.1.5 Magnetic Equations
	15.1.6 Simpli.ed Magnetic Equations
	15.1.7 Synchronous Machine Model Taxonomy
	15.1.8 Saturation
	15.1.9 Center of Inertia
	15.1.10 Dynamic Shaft
	15.1.11 Sub-synchronous Resonance

	15.2 Induction Machine
	15.2.1 Initialization
	15.2.2 Torque Model
	15.2.3 Electromechanical Model
	15.2.4 Detailed Single-Cage Model
	15.2.5 Detailed Double-Cage Model

	Chapter 16 Synchronous Machine Regulators
	16.1 Turbine Governor
	16.1.1 Turbine Governor Type I
	16.1.2 Turbine Governor Type II

	16.2 Automatic Voltage Regulator
	16.2.1 Automatic Voltage Regulator Type I
	16.2.2 Automatic Voltage Regulator Type II
	16.2.3 Automatic Voltage Regulator Type III

	16.3 Power System Stabilizer
	16.3.1 Simpli.ed Power System Stabilizer Model
	16.3.2 Power System Stabilizer Type I
	16.3.3 Power System Stabilizer Type II
	16.3.4 Power System Stabilizer Type III

	16.4 Over-Excitation Limiter
	16.5 Under-Excitation Limiter

	Chapter 17 Direct-Current Devices
	17.1 Direct-Current Nodes
	17.2 Common Interface Equations for Direct-Current Devices
	17.3 Ideal Generators
	17.4 Basic RLC Models
	17.5 Direct-Current Machines
	17.6 Other Direct-Current Devices
	17.6.1 Solid Oxide Fuel Cell
	17.6.2 Solar Photovoltaic Cell
	17.6.3 Battery Energy System

	Chapter 18 AC/DC Devices
	18.1 High-Voltage Direct-Current Transmission System
	18.1.1 Per Unit System for DC Quantities
	18.1.2 Recti.er Model
	18.1.3 Inverter Model
	18.1.4 HVDC Control

	18.2 Voltage Source Converter
	18.2.1 Simpli.ed Dynamic VSC Model
	18.2.2 Power Flow VSC Model

	Chapter 19 FACTS Devices
	19.1 Static Var Compensator
	19.1.1 SVC Type I
	19.1.2 SVC Type II
	19.1.3 SVC Initialization

	19.2 Thyristor Controlled Series Compensator
	19.2.1 TCSC Initialization

	19.3 Static Synchronous Compensator
	19.3.1 Detailed Model
	19.3.2 Simpli.ed Dynamic Model
	19.3.3 Power Flow Model
	19.3.4 STATCOM Initialization

	19.4 Static Synchronous Series Compensator
	19.4.1 Detailed Model
	19.4.2 Simpli.ed Dynamic Model
	19.4.3 Power Flow Model
	19.4.4 SSSC Initialization

	19.5 Uni ed Power Flow Controller
	19.5.1 Detailed Model
	19.5.2 Simpli.ed Dynamic Model
	19.5.3 Power Flow Model
	19.5.4 UPFC Initialization

	Chapter 20 Wind Power Devices
	20.1 Wind Speed Models
	20.1.1 Weibull’s Distribution
	20.1.2 Composite Wind Speed Model
	20.1.3 Mexican Hat Wavelet Model

	20.2 Wind Turbines
	20.2.1 Single Machine and Aggregate Models
	20.2.2 Wind Turbine Initialization
	20.2.3 Turbine Model
	20.2.4 Dynamic Shaft
	20.2.5 Non-Controlled Speed Wind Turbine
	20.2.6 Doubly-Fed Asynchronous Generator
	20.2.7 Direct-Drive Synchronous Generator

	Part IV Spare Material and Concluding Remarks
	Chapter 21 Data Formats
	21.1 Data Format Taxonomy
	21.1.1 Data Organization and Structures
	21.1.2 Kind of Supported Data
	21.1.3 Number of Files
	21.1.4 Default Values, Prototypes and Data Manipulation

	21.2 Canonical Model
	21.3 Common Information Model
	21.4 Consistent Data Schemes

	Chapter 22 Visualization Matters
	22.1 Graphical Interface vs. Command Line Approach
	22.2 Result Visualization
	22.2.1 Standard Two-Dimensional Plots
	22.2.2 Temperature Maps
	22.2.3 Three-Dimensional Plots
	22.2.4 Geographic Information System

	Chapter 23 Challenges of Scripting for Power System Education
	23.1 Concepts and De nitions
	23.1.1 Proprietary Software
	23.1.2 Open Source Software
	23.1.3 Free Software
	23.1.4 Free Open Source Software

	23.2 Education-Oriented FOSS
	23.2.1 Pedagogical Issues
	23.2.2 Failure of FOSS for Power System Analysis

	Part V Appendices
	Appendix A Python Libraries
	A.1 CVXOPT
	A.2 NumPy
	A.3 Matplotlib

	Appendix B System Classes
	B.1 System Properties and Settings

	Appendix C Control Diagrams
	C.1 Representation of Basic Functions
	C.2 Hard Limits

	Appendix D IEEE 14-Bus System Data
	D.1 Common Data
	D.2 Static Data
	D.3 Market Data
	D.4 Dynamic Data
	D.5 FACTS Data
	D.6 Wind Turbine Data

	Appendix E Software Packages and Links
	E.1 Software Packages Used in the Book
	E.2 Links related to Power System Analysis

	References
	Index

