
Modelling, Simulation and Control
of Non-Linear Dynamical Systems

© 2002 Taylor & Francis

Numerical Insights

Series Editor
A. Sydow, GMD-FIRST, Berlin, Germany

Editorial Board
P. Borne, ~ c o l e de Lille, France G. Carmichael, University of Iowa, USA

L. Dekker, Delft University of Technology, The Netherlands A. Iserles, University
of Cambridge, UK A. Jakeman, Australian National University, Australia

G. Korn, Industrial Consultants (Tucson), USA G.P. Rao, Indian Institute of
Technology, India R. Rice, Purdue University, USA A.A. Samarskii, Russian
Academy of Science, Russia Y. Takahara, Tokyo Institute of Technology, Japan

The Numerical Insights series aims to show how numerical simulations provide valuable
insights into the mechanisms and processes involved in a wide range of disciplines. Such
simulations provide a way of assessing theories by comparing simulations with observa-
tions. These models are also powerful tools which serve to indicate where both theory and
experiment can be improved.

In most cases the books will be accompanied by software on disk demonstrating working
examples of the simulations described in the text.

The editors will welcome proposals using modelling, simulation and systems analysis
techniques in the following disciplines: physical sciences; engineering; environment; ecol-
ogy; biosciences; economics.

Volume 1
Numerical Insights into Dynamic Systems: Interactive Dynamic System Simulation with
Microsofto, Windows 95TM and NTTM
Granino A. Korn

Volume 2
Modelling, Simulation and Control of Non-Linear Dynamical Systems: An Intelligent
Approach using Soft Computing and Fractal Theory
Patricia Melin and Oscar Castillo

This book is part of a series. The publisher will accept continuation orders which may be cancelled
at any time and which provide for automatic billing and shipping of each title in the series upon
publication. Please write for details.

© 2002 Taylor & Francis

Modelling, Simulation and Control
of Non-Linear Dynamical Systems

An Intelligent Approach Using Soft Computing
and Fractal Theory

Patricia Melin and Oscar Castillo
Tijuana Institute of Technology, Tijuana, Mexico

Taylor & Francis
Taylor&Francis Group

Boca Raton London NewYork Singapore

A CRC title, part of the Taylor & Francis imprint, a member of the
Taylor & Francis Croup, the academic division of T&F lnforrna plc.

© 2002 Taylor & Francis

First published 2002 by Taylor & Francis
11 New Fetter Lane, London EC4P 4EE

Simultaneously published in the USA and Canada
by Taylor & Francis Inc,
29 West 35th Street, New York, NY 10001

Taylor & Francis is an inzprint of the Taylor & Francis Group

O 2002 Taylor & Francis

This book has been produced from camera-ready copy supplied by the authors
Printed and bound in Great Britain by
TJ International Ltd, Padstow, Cornwall

All rights reserved. No part of this book may be reprinted or reproduced or utilised in
any form or by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying and recording, or in any information storage or
retrieval system, without permission in writing from the publishers.

Every effort has been made to ensure that the advice and information in this book is true
and accurate at the time of going to press. However, neither the publisher nor the authors
can accept any legal responsibility or liability for any errors or omissions that may be
made. In the case of drug administration, any medical procedure or the use of technical
equipment mentioned within this book, you are strongly advised to consult the
manufacturer's guidelines.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
A catalog record for this book has been requested

ISBN 0-415-27236-X

© 2002 Taylor & Francis

CONTENTS

PREFACE ix

1 INTRODUCTION TO MODELLING, SIMULATION AND CONTROL
OF NON-LINEAR DYNAMICAL SYSTEMS 1
1.1 Modelling and Simulation of Non-Linear Dynamical Systems 2
1.2 Control of Non-Linear Dynamical Systems 5

2 FUZZY LOGIC FOR MODELLING
2.1 Fuzzy Set Theory
2.2 Fuzzy Reasoning
2.3 Fuzzy Inference Systems
2.4 Fuzzy Modelling
2.5 Summary

3 NEURAL NETWORKS FOR CONTROL
3.1 Backpropagation for Feedforward Networks

3.1.1 The backpropagation learning algorithm
3.1.2 Backpropagation multilayer perceptrons

3.2 Adaptive Neuro-Fuzzy Inference Systems
3.2.1 ANFIS architecture
3.2.2 Learning algorithm

3.3 Neuro-Fuzzy Control
3.3.1 Inverse learning
3.3.2 Specialized learning

3.4 Adaptive Model-Based Neuro-Control
3.4.1 Indirect neuro-control
3.4.2 Direct neuro-control
3.4.3 Parameterized neuro-control

3.5 Summary

4 GENETIC ALGORITHMS AND FRACTAL THEORY FOR
MODELLING AND SIMULATION 65
4.1 Genetic Algorithms 67
4.2 Simulated Annealing 72
4.3 Basic Concepts of Fractal Theory 75
4.4 Summary 80

© 2002 Taylor & Francis

vi CONTENTS

5 FUZZY-FRACTAL APPROACH FOR AUTOMATED
MATHEMATICAL MODELLING
5.1 The Problem of Automated Mathematical Modelling
5.2 A Fuzzy-Fractal Method for Automated Modelling
5.3 Implementation of the Method for Automated Modelling

5.3.1 Description of the time series analysis module
5.3.2 Description of the expert selection module
5.3.3 Description of the best model selection module

5.4 Comparison with Related Work
5.5 Summary

6 FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION
6.1 The Problem of Automated Simulation

6.1.1 Numerical simulation of dynamical systems
6.1.2 Behavior identification for dynamical systems
6.1.3 Automated simulation of dynamical systems

6.2 Method for Automated Parameter Selection using Genetic Algorithms
6.3 Method for Dynamic Behavior Identification using Fuzzy Logic

6.3.1 Behavior identification based on the analytical properties of
the model

6.3.2 Behavior identification based on the fractal dimension and the
Lyapunov exponents

6.4 Summary

7 NEURO-FUZZY APPROACH FOR ADAPTIVE MODEL-BASED
CONTROL
7.1 Modelling the Process of the Plant
7.2 Neural Networks for Control
7.3 Fuzzy Logic for Model Selection
7.4 Neuro-Fuzzy Adaptive Model-Based Control
7.5 Summary

8. ADVANCED APPLICATIONS OF AUTOMATED MATHEMATICAL
MODELLING AND SIMULATION
8.1 Modelling and Simulation of Robotic Dynamic Systems

8.1.1 Mathematical modelling of robotic systems
8.1.2 Automated mathematical modelling of robotic dynamic systems
8.1.3 Automated simulation of robotic dynamic systems

8.2 Modelling and Simulation of Biochemical Reactors
8.2.1 Modelling biochemical reactors in the food industry
8.2.2 Automated mathematical modelling of biochemical reactors
8.2.3 Simulation results for biochemical reactors

8.3 Modelling and Simulation of International Trade Dynamics
8.3.1 Mathematical modelling of international trade
8.3.2 Simulation results of international trade

© 2002 Taylor & Francis

CONTENTS vii

8.4 Modelling and Simulation of Aircraft Dynamic Systems 165
8.4.1 Mathematical modelling of aircraft systems 165
8.4.2 Simulation results of aircraft systems 167

8.5 Concluding Remarks and Future Directions 174

9 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED
CONTROL 175
9.1 Intelligent Control of Robotic Dynamic Systems 175

9.1.1 Traditional model-based adaptive control of robotic systems 177
9.1.2 Adaptive model-based control of robotic systems with a

neuro-fuzzy approach 177
9.2 Intelligent Control of Biochemical Reactors 184

9.2.1 Fuzzy rule base for model 'selection 184
9.2.2 Neural networks for identification and control 190
9.2.3 Intelligent adaptive model-based control for biochemical reactors 192

9.3 Intelligent Control of International Trade 202
9.3.1 Adaptive model-based control of international trade 202
9.3.2 Simulation results for control of international trade 204

9.4 Intelligent Control of Aircraft Dynamic Systems 208
9.4.1 Adaptive model-based control of aircraft systems 208
9.4.2 Simulation results for control of aircraft systems 210

9.5 Concluding Remarks and Future Directions 213

References 215

APPENDIX A PROTOTYPE INTELLIGENT SYSTEMS FOR
AUTOMATED MATHEMATICAL MODELLING 225
A.l Automated Mathematical Modelling of Dynamical Systems 225
A.2 Automated Mathematical Modelling of Robotic Dynamic

Systems 229

APPENDIX B PROTOTYPE INTELLIGENT SYSTEMS FOR
AUTOMATED SIMULATION 235
B.l Automated Simulation of Non-Linear Dynamical Systems 235
B.2 Numerical Simulation of Non-Linear Dynamical Systems 239

APPENDIX C PROTOTYPE INTELLIGENT SYSTEMS FOR
ADAPTIVE MODEL-BASED CONTROL 242
C. 1 Fuzzy Logic Model Selection 242
C.2 Neural Networks for Identification and Control 245

© 2002 Taylor & Francis

PREFACE

This book presents a unified view of mathematical modelling, simulation and control for
complex non-linear dynamical systems using soft computing techniques and fractal theory.
Our particular point of view is that modelling, simulation and control are problems that can
not be considered apart because they are intrinsically related in real-world applications.
Control of non-linear dynamical systems can not be achieved if we don't have proper
mathematical models for the systems. Also, useful simulations of a model, that can give us
numerical insights into the behavior of a dynamical system, can not be obtained if we don't
have the appropriate mathematical model. On the other hand, we have to recognize that
complex non-linear dynamical systems can exhibit a wide range of dynamic behaviors
(ranging from simple periodic orbits to chaotic strange attractors), so the problem of behavior
identification is a very diffcult one. Also, we want to automate each of these tasks (mod-
elling, simulation and control) because in this way it is easier to solve a particular problem.
We then have three difficult tasks at hand: automated mathematical modelling of a dynami-
cal system, automated simulation of the model, and model-based control of the system. A
real world problem may require that we use modelling, simulation and control, to achieve
the desired level of performance needed for the particular application.

Soft computing consists of several computing paradigms, including fuzzy logic, neural
networks and genetic algorithms, which can be used to produce powerful hybrid intelligent
systems. We believe that solving the difficult problems of modelling, simulation and control
of non-linear dynamical systems require the use of several soft computing techniques to
achieve the level of intelligence needed to automate the processes of modelling and simula-
tion, and also to achieve adaptive control. On the other hand, fractal theory provides us with
powerful mathematical tools that can be used to understand the geometrical complexity of
natural or computational objects. We believe that, in many cases, it is necessary to use fractal
tools to understand the geometry of the problem at hand. For example, the fractal dimension
is a useful tool in measuring the geometrical complexity of a time series and for this reason
can be used to formulate the corresponding mathematical model for the particular problem.

This book is intended to be a major reference for scientists and engineers interested in
applying new computational and mathematical tools for solving the complicated problems
of mathematical modelling, simulation and control of non-linear dynamical systems. The
book can also be used at the graduate or advanced undergraduate level, as a textbook or
major reference, for courses like: mathematical modelling, numerical simulation, non-
linear control of dynamical systems, applied artificial intelligence and many others. We
consider that this book can also be used to get new ideas for new lines of research or to
continue the lines of future research proposed by the authors of the book. The software
accompanying this book provides a good basis for developing more advanced 'intelligent'
software tools for modelling, simulation and control of non-linear dynamical systems.

© 2002 Taylor & Francis

In Chapter 1, we begin by giving a brief introduction to the problems of modelling,
simulation and control of non-linear dynamical systems. We motivate the importance of
solving these problems, in an automated fashion, for real-world applications. We also
outline the importance of using soft computing techniques and fractal theory to really
achieve automated mathematical modelling and simulation, and model-based adaptive control
of non-linear dynamical systems.

We present in Chapter 2 the main ideas underlying fuzzy logic and the application of this
powerful computational theory to the problem of modelling. We discuss in some detail
fuzzy set theory, fuzzy reasoning and fuzzy inference systems. At the end, we also give
some remarks about fuzzy modelling. The importance of fuzzy logic as a basis for devel-
oping intelligent systems (sometimes in conjunction with other soft computing techniques)
for control has been recognized in many areas of application. For this reason, we consider
reading this chapter essential to understand the new methods for modelling, simulation and
control presented in later chapters.

We present in Chapter 3 the basic concepts, notation and basic learning algorithms for
neural networks. We discuss in some detail feedforward networks, adaptive neuro-fuzzy
inference systems, neuro-fuzzy control and adaptive neuro-control. First, we give a brief
review of the basic concepts of neural networks and the backpropagation learning algo-
rithm. We then give a brief description of adaptive neuro-fuzzy systems. Finally, we end the
chapter with a brief review on the current methods for neuro-fuzzy control and some
remarks about adaptive control and model-based control. We can not emphasize enough the
importance of neural networks as a computational tool to achieve 'intelligence' for software
systems. For this reason, neural networks have been applied for solving complex problems
of modelling, control and identification.

We present in Chapter 4 the basic concepts and notation of genetic algorithms, simulated
annealing and fractal theory. Both genetic algorithms and simulated annealing are basic
search methodologies that can be used for modelling and simulation of complex non-linear
dynamical systems. Since both techniques can be considered as general purpose optimiza-
tion methodologies, we can use them to find the mathematical model which minimizes the
fitting errors for a specific problem. We also present in this chapter the basic concepts of
dynamical systems and fractal theory, which are two powerful mathematical theories that
enable the understanding of complex non-linear phenomena. Dynamical systems theory
gives us the general framework for treating non-linear systems and enables the identifica-
tion of the different dynamical behaviors that can occur for a particular dynamical system.
On the other hand, fractal theory gives us powerful concepts and techniques that can be
used to measure the complexity of geometrical objects.

We present in Chapter 5 our new method for automated mathematical modelling of non-
linear dynamical systems. This method is based on a hybrid fuzzy-fractal approach to
achieve, in an efficient way, automated modelling for a particular problem using a time
series as a data set. The use of the fractal dimension is to perform time series analysis of
the data, so as to obtain a qualitative characterization of the time series. The use of fuzzy
logic techniques is to simulate the process of expert model selection using the qualitative
information obtained from the time series analysis module. At the end, the 'best' math-
ematical model is obtained by comparing the measures of goodness for the selected math-
ematical models. In Chapter 8, we show some advanced applications of this method for
automated mathematical modelling.

© 2002 Taylor & Francis

PREFACE xi

In Chapter 6, we describe the problem of numerical simulation for non-linear dynamical
systems and its solution by using intelligent methodologies. The numerical simulation of
a particular dynamical system consists in the successive application of a map and the
subsequent identification of the corresponding dynamic behaviors. Automated simulation
of a given dynamical system consists in selecting the appropriate parameter values for the
model and then applying the corresponding iterative method (map) to find the limiting
behavior. In this chapter, a new method for automated parameter selection, based on genetic
algorithms, is introduced. Also, a new method for dynamic behavior identification, based
on fuzzy logic, is introduced. The fuzzy-genetic approach for automated simulation con-
sists in the integration of the method for automated parameter selection and the method for
behavior identification.

We describe in Chapter 7 our new method for adaptive model-based control of non-
linear dynamical systems. This method is based on a hybrid neuro-fuzzy approach to achieve,
in an efficient way, adaptive robust control of non-linear dynamical systems using a set of
different mathematical models. We use fuzzy logic to select the appropriate mathematical
model for the dynamical system according to the changing conditions of the system. Adap-
tive control is achieved by using a neural network for control and a neural network for
identification. Combining this method for control with the procedure for fuzzy model
selection, gives us a new method for adaptive model-based control using a hybrid neuro-
fuzzy approach. This method for adaptive control can be used for general dynamical
systems or non-linear plants, since its architecture is domain independent. In Chapter 9, we
show some advanced applications of this new method for adaptive model-based control.

In Chapter 8, we present several advanced applications of the new methods for auto-
mated mathematical modelling and simulation. First, we describe the application of the
new methods for automated modelling and simulation to robotic dynamic systems, which
is a very important application in the control of real-world robot arms and general robotic
systems. Second, we apply our new methods for modelling and simulation to the problem
of understanding the dynamic behavior of biochemical reactors in the food industry, which
is also very important for the control of this type of dynamical system. Third, we consider
the problem of modelling and simulation of international trade dynamics, which is an
interesting problem in economics and finance. Finally, we also consider the problem of
modelling and simulation of aircraft, as this is important for the real-world problem of
automatic aircraft control.

In Chapter 9, we present several advanced applications of the new method for adaptive
model-based control. First, we describe the application of the new method for adaptive
model-based control to the case of robotic dynamic systems, which is very important for
solving the problem of controlling real-world manipulators in real-time. Second, we
describe the application of the method for adaptive model-based control to the case of
biochemical reactors in the food industry, which is a very interesting case due to the
complexity of this non-linear problem. Third, we consider briefly the problem of control-
ling international trade between three or more countries, with our new method for adaptive
model-based control. Finally, we also consider briefly the problem of controlling aircraft
with our new method for adaptive model-based control.

Finally, we would like to thank all the people who helped make this book possible. In
particular, we would like to acknowledge our families for their love and support during the
realization of this project; without them this book would never have been possible.

© 2002 Taylor & Francis

Chapter 1

Introduction to Modelling, Simulation and Control of
Non-Linear Dynamical Systems

We describe in this book new methods for automated modelling and simulation of

non-linear dynamical systems using Soft Computing techniques and Fractal

Theory. We also describe a new method for adaptive model-based control of non-

linear dynamical systems using a hybrid neuro-hzzy-fractal approach. Soft

Computing (SC) consists of several computing paradigms, including fuzzy logic,

neural networks and genetic algorithms, which can be used to produce powerful

hybrid intelligent systems. Fractal Theory (FT) provides us with the mathematical

tools (like the fractal dimension) to understand the geometrical complexity of

natural objects and can be used for identification and modelling purposes.

Combining SC techniques with FT tools we can take advantage of the

"intelligence" provided by the computer methods (like neural networks) and also

take advantage of the descriptive power of fractal mathematical tools. Non-linear

dynamical systems can exhibit extremely complex dynamic behavior and for this

reason it is of great importance to develop intelligent computational tools that will

enable the identification of the best model for a particular dynamical system, then

obtaining the best simulations for the system and also achieving the goal of

controlling the dynamical system in a desired manner. We also describe in this

© 2002 Taylor & Francis

2 INTRODUCTION

book the basic methodology to develop prototype intelligent systems that are able

to find the best model for a particular dynamical system, then perform the

numerical simulations necessary to identify all of the possible dynamical

behaviors of the system, and finally achieve the goal of adaptive control using the

mathematical models of the system and SC techniques.

As a prelude, we shall provide a brief overview of the existing

methodologies for modelling, simulation and control of non-linear dynamical

systems and also of our own approach in dealing with these problems.

1.1 Modelling and Simulation of Non-Linear Dynamical
Systems

Traditionally, mathematical modelling of dynarnical systems has been performed

by human experts in the following manner (Jamshidi, 1997): 1) The expert

according to his knowledge selects a set of models consider to be appropriate for a

specific given problem, 2) Parameter estimation of the models is performed with

methods similar to least-squares (using the relevant data available), and 3) The

"best" model is selected using the measures of goodness for each of the models.

Also, we can say that linear statistical models have been traditionally used as an

approximation of real dynamic systems, which is not the best thing to do since

many of the mechanical, electrical, biological and chemical systems are

intrinsically non-linear in nature. In this work, we achieved automated

mathematical modelling by using different Soft Computing techniques (Jang, Sun

& Mizutani, 1997). The whole process of modelling starts with a time series (data

set), which is used to perform a "Time Series Analysis" to extract the components

of the time series (Weigend & Gershenfeld, 1994). Time series analysis can be

achieved by traditional statistical methods or by efficient classification methods

based on SC techniques, like neural networks or fuzzy logic (Kosko, 1997). In our

case, we used fuzzy logic for classification of the time series components. After

this time series analysis is performed, the qualitative values of the time series

components are used to obtain a set of admissible models for a specific problem,

this part of the problem was solved by using a set of fuzzy rules (knowledge base)

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 3

that simulates the human experts in the domain of application. Finally, the "best"

model is selected by comparing the measures of goodness for each of the

admissible models considered in the previous step.

The simulation of mathematical models traditionally has been performed

by exploring the possible dynamic behaviors, for a specific system, for different

parameter values of the model (Rasband, 1990). More recently, it has been

proposed to use Artificial Intelligence (Russell & Norvig, 1995) techniques for the

simulation of mathematical models (for example, by using expert systems

(Badiru, 1992)). In this work, we used SC techniques to automate the simulation

of dynamical systems. In particular, we make use of genetic algorithms to generate

the "best" set of parameter values for a specific model with respect to the goal of

obtaining the most efficient simulation possible. Genetic Algorithms (GA)

essentially consist of methods for the optimization of a general function based on

the concept of "evolution" (Goldberg, 1989). In our particular case, the problem

consisted in specifying the appropriate function to be optimized, with the goal of

achieving the most efficient simulation possible, i.e., a simulation that enables the

identification of all the possible dynamic behaviors for a specific dynamical

system. For the identification of dynamic behaviors we make use of a fuzzy rule

base that will identifl a particular behavior according to the results of the

numerical simulations.

In general, the study of non-linear dynamical systems is very important

because most of the physical, electrical, mechanical and biochemical systems can

be mathematically represented by models (differential or difference equations) in

the time domain. Also, it is well known in Dynamical Systems Theory (Devaney,

1989) that the dynamic behavior of a particular system can range from very simple

periodic orbits to the very complicated "chaotic" orbits. Non-linear models may

exhibit the chaotic behavior for systems of at least three coupled differential

equations or at least one difference equation (Ruelle, 1990). In particular, for the

case of real-world dynamical systems the mathematical models needed are of very

high dimensionality and in general there is a high probability of chaotic behavior,

along with all sorts of different periodic and quasi-periodic behaviors (Castillo &

Melin, 1998b). For this reason, it becomes very important to be able to obtain the

appropriate mathematical models for the dynamical systems and then to be able to

© 2002 Taylor & Francis

4 INTRODUCTION

perform numerical simulations of these models (Castillo & Melin, 1997b), since

this enables forecasting system's performance in future time. In this way,

automated mathematical modelling and simulation of dynamical systems can

contribute to real-time control of these systems, and this is critical in real-world

applications (Melin & Castillo, 1998b). Also, an intelligent system for modelling

and simulation can be useful in the design of real dynamical systems with certain

constraints, since the information obtained by the numerical simulations can be

used as a feedback in the process of design. The main contribution of the research

work presented in this book is to combine several Soft Computing techniques to

achieve automated mathematical modelling and simulation of non-linear

dynamical systems using the advantages that each specific technique offers. For

example, fuzzy logic (Von Altrock, 1995) was used to simulate the reasoning

process of human experts in the process of mathematical modelling and genetic

algorithms was used to select the best set of parameter values for the simulation of

the best model.

The importance of the results presented in this book can be measured from

the scientific point of view and also from the practical (or applications) point of

view. First, from the scientific point of view, we consider that this research work

is very important because the computer methods for automated mathematical

modelling and simulation of dynamic systems that were developed contribute, in

general, to the advancement of Computer Science, and, in particular, to the

advancement of Soft Computing and Artificial Intelligence because the new

algorithms that were developed can be considered "intelligent" in the sense that

they simulate human experts in modelling and simulation. From the practical

point of view, we consider the results of this research work very important for the

areas of Control and Design of dynamical systems. Controlling dynamical systems

can be made more easy if we are able to analyze and predict the dynamic

evolution of these systems and this goal can be achieved with an intelligent

system for automated mathematical modelling and simulation. The design of

dynamical systems can be made more easy if we can use mathematical models and

their simulations for planning the performance of these systems under different set

of design constraints. This last two points are of great importance for the

industrial applications, since the control of dynamical systems in real-world plants

© 2002 Taylor & Francis

MODELLPJG, SIMULATION AND CONTROL . . .

has to be very precise and also the design of this type of systems for specific tasks

can be very useful for industry.

1.2 Control of Non-Linear Dynamical Systems

Traditional control of non-linear dynamical systems has been done by using

Classical Linear Control Theory and assuming simple linear mathematical models

for the systems. However, it is now well known that non-linear dynamical systems

can exhibit complex behavior (and as a consequence are difficult to control) and

the most appropriate mathematical models for them are the non-linear ones. Since

the complexity of mathematical models for real dynarnical systems is very high it

becomes necessary to use more advanced control techniques. This is precisely the

fact that motivated researchers in the area of Artificial Intelligence (AI) to apply

techniques that mimic human experts in the domain of dynarnical systems control.

More recently, techniques like neural networks and fuzzy logic have been applied

with some success to the control of non-linear dynamical systems for several

domains of application. However, there also has been some limitations and

problems with these approaches when applied to real systems. For this reason, we

proposed in this book the application of a hybrid approach for the problem of

control, combining neural and fuzzy technologies with the knowledge of the

mathematical models for the adaptive control of dynamical systems. The basic

idea of this hybrid approach is to combine the advantages of the computer

methods with the advantages of using mathematical models for the dynamical

systems. In this work, new methods were developed for adaptive control of non-

linear systems using a combination of neural networks, fuzzy logic and

mathematical models. Neural networks were used for the identification and

control of the dynamical system and fuzzy logic was used to enable the change of

mathematical models according to the dynamic state of the system. Also, the

information and knowledge contained in the mathematical models was used for

the control of the system by using their numerical results as input of the neural

networks.

© 2002 Taylor & Francis

6 INTRODUCTION

Traditionally, the control of dynamical systems has been performed using

the classical methods of Linear Control Theory and also using linear models for

the systems (Albertos, Strietzel & Mart, 1997). However, real-world problems can

be viewed, in general, as non-linear dynamical systems with complex behavior

and because of this, the most appropriate mathematical models for these systems

are the non-linear ones. Unfortunately, to the moment, it hasn't been possible to

generalize the results of Linear Control Theory to the case of Non-linear Control

due to the complexity of the mathematics that will be required (Omidvar & Elliot,

1997). Of course, this mathematical generalization could still take several years of

theoretical and empirical research to be developed. On the other hand, it is

possible to use non-linear universal approximators that have resulted from the

research in the area of SC to the problem of system identification and control. In

particular, SC methodologies like neural networks and fuzzy logic have been

applied with some success to problems of control and identification of dynamical

systems (Korn, 1995). However, there are also problems where one or both

methodologies have failed to achieved the level of accuracy desired in the

applications (Omidvar & Elliot, 1997). For this reason, we have proposed in this

work the use of a hybrid approach for the problem of non-linear adaptive control,

i.e., we proposed to combine the use of neural networks and fuzzy logic with the

use of non-linear mathematical models to achieve the goal of adaptive control. In

the following lines we give the general idea of this new approach as well as the

reasons why such an approach is a good alternative for non-linear control of

dynamical systems.

Neural networks are computational systems with learning (or adaptive)

characteristics that model the human brain (Kosko, 1992). Generally speaking,

biological neural networks consist of neurons and connections between them and

this is modeled by a graph with nodes and arcs to form the computational neural

network. This graph along with a computational algorithm to specify the learning

capabilities of the system is what makes the neural network a powerful

methodology to simulate intelligent or expert behavior (Miller, Sutton & Werbos,

1995). It has been shown, that neural networks are universal approximators, in the

sense that they can model any general function to a specified accuracy (Kosko,

1992) and for this reason neural networks have been applied to problems of

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 7

system identification (Pham & Xing, 1995). Also, because of their adaptive

capabilities neural networks have been used to control real-world dynamical

systems (Ng, 1997).

Fuzzy Logic is an area of SC that enables a computer system to reason

with uncertainty. Fuzzy inference systems consist of a set of "if-then" rules

defined over fuzzy sets. Fuzzy sets are relations that can be used to model the

linguistic variables that human experts use in their domain of expertise (Kosko,

1992). The main difference between fuzzy sets and traditional (crisp) sets is that

the membership function for elements of a hzzy set can take any value between 0

and 1, and not only 0 or 1. This corresponds, in the real world, to many situations

where it is difficult to decide in an unambiguous manner if something belongs or

not to a specific class. Fuzzy expert systems, for example, have been applied with

some success to problems of control, diagnosis and classification just because

they can manage the difficult expert reasoning involved in these areas of

application (Korn, 1995). The main disadvantage with fuzzy systems is that they

can't adapt to changing situations. For this reason, it is a good idea to combine

both methodologies to have the advantages of neural networks (learning and

adaptive capabilities) along with the advantages of fuzzy logic (contain expert

knowledge) in solving complex real world problems where this flexibility is

needed (Yen, Langar & Zadeh, 1995).

In this work, we have proposed a new architecture for developing

intelligent control systems based on the use of neural networks, fuzzy logic and

mathematical models, to achieve the goal of adaptive control of non-linear

dynamical systems. The mathematical model of a non-linear dynamical system

consist of a set of simultaneous non-linear differential (or difference) equations

describing the dynamics of the system. The knowledge contained in the model is

very important in the process of controlling the system, because it relates the

different physical variables and their dependencies (Sueda & Iwamasa, 1995). For

this reason, our approach is to combine mathematical models with neural

networks and fuzzy logic, to achieve adaptive control of non-linear dynamical

systems.

The study of non-linear dynamical systems is very interesting because of

the complexity of the dynamics involved in the underlying processes (for

© 2002 Taylor & Francis

example, biological, chemical or electrical) and also because of the implications,

in the real world, of controlling industrial processes to maximize production. Real

non-linear dynarnical systems can have a wide range of possible dynamic

behaviors, going from simple periodic orbits (stable) to the very complicated

chaotic behavior (Kapitaniak, 1996). Controlling a non-linear dynamical system,

avoiding chaotic behavior, is only possible using the mathematical models of the

system (Sueda & Iwamasa, 1995). For this reason, model-based control is having

great success in the control of complex real-world dynamical systems. In our

approach, the neural networks were used for identification and control of the

system, fuzzy logic was used to choose between different mathematical models of

the system, and the knowledge given by the models was used to avoid specific and

dangerous dynamic behaviors.

We consider the work on non-linear control presented in this book very

important, from the point of view of Computer Science, because it contributed

with new methods to develop intelligent control systems using a new hybrid

model-based neuro-fuzzy approach for controlling non-linear dynarnical systems.

Also, from the point of view of the applications, this work is very important

because it contributed with new methods for adaptive non-linear control that

could eventually be used in the control of real industrial plants or general

dynamical systems, which in turn will result in increased productivity and

efficiency for these systems.

© 2002 Taylor & Francis

Chapter 2

Fuzzy Logic for Modelling

This chapter introduces the basic concepts, notation, and basic operations for

fuzzy sets that will be needed in the following chapters. Since research on Fuzzy

Set Theory has been underway for over 30 years now, it is practically impossible

to cover all aspects of current developments in this area. Therefore, the main goal

of this chapter is to provide an introduction to and a summary of the basic

concepts and operations that are relevant to the study of fuzzy sets. We also

introduce in this chapter the definition of linguistic variables and linguistic values

and explain how to use them in fuzzy rules, which are an efficient tool for

quantitative modelling of words or sentences in a natural or artificial language. By

interpreting fuzzy rules as fuzzy relations, we describe different schemes of fuzzy

reasoning, where inference procedures based on the concept of the compositional

rule of inference are used to derive conclusions from a set of fuzzy rules and

known facts. Fuzzy rules and fuzzy reasoning are the basic components of fuzzy

inference systems, which are the most important modelling tool based on fuzzy set

theory.

The "fuzzy inference system" is a popular computing framework based on

the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning (Jang,

Sun & Mizutani, 1997). It has found successful applications in a wide variety of

© 2002 Taylor & Francis

10 FUZZY LOGIC FOR MODELLING

fields, such as automatic control, data classification, decision analysis, expert

systems, time series prediction, robotics, and pattern recognition (Jarnshidi, 1997).

Because of its multidisciplinary nature, the fuzzy inference system is known by

numerous other names, such as "fuzzy expert system" (Kandel, 1992), "fuzzy

model" (Sugeno & Kang, 1988), " k z y associative memory" (Kosko, 1992), and

simply "fuzzy system".

The basic structure of a fuzzy inference system consists of three

conceptual components: a "rule base", which contains a selection of fuzzy rules; a

"data base" (or "dictionary"), which defines the membership functions used in the

fuzzy rules; and a "reasoning mechanism", which performs the inference

procedure upon the rules and given facts to derive a reasonable output or

conclusion. In general, we can say that a fuzzy inference system implements a

non-linear mapping from its input space to output space. This mapping is

accomplished by a number of fuzzy if-then rules, each of which describes the

local behavior of the mapping. In particular, the antecedent of a rule defines a
fuzzy region in the input space, while the consequent specifies the output in the

fuzzy region.

In what follows, we shall first introduce the basic concepts of fuzzy sets

and fuzzy reasoning. Then we will introduce and compare the three types of fuzzy

inference systems that have been employed in various applications. Finally, we

will address briefly the features and problems of fuzzy modelling, which is

concerned with the construction of fuzzy inference systems for modelling a given

target system.

2.1 Fuzzy Set Theory

Let X be a space of objects and x be a generic element of X. A classical set A,

AcX, is defined by a collection of elements or objects x E X, such that each x can

either belong or not belong to the set A. By defining a "characteristic function" for

each element x E X, we can represent a classical set A by a set of order pairs (x,O)

or (x,l), which indicates x P A or x E A, respectively.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 11

Unlike the aforementioned conventional set, a fuzzy set (Zadeh, 1965)

expresses the degree to which an element belong to a set. Hence the characteristic

function of a fuzzy set is allowed to have values between 0 and 1, which denotes

the degree of membership of an element in a given set.

Definition 2.1 Fuzzy sets and membership functions

If X is a collection of objects denoted generically by x, then a "fuzzy set" A in X

is defined as a set of ordered pairs:

A = { (x, PA(X)) I (2.1)
where pA(x) is called "membership function" (or MF for short) for the fuzzy set A.

The MF maps each element of X to a membership grade (or membership value)

between 0 and 1.

Obviously, the definition of a fuzzy set is a simple extension of the

definition of a classical set in which the characteristic function is permitted to

have any values between 0 and 1. If the values of the membership function pA(x)

is restricted to either 0 or 1, then A is reduced to a classical set and pA(x) is the

characteristic function of A.

A fuzzy set is uniquely specified by its membership function. To describe

membership functions more specifically, we shall define the nomenclature used in

the literature (Jang, Sun & Mizutani, 1997).

Definition 2.2 Support

The "support" of a fuzzy set A is the set of all points x in X such that pA(x) > 0:

support (A) = { x l CLAW ' 0 1. (2.2)

Definition 2.3 Core

The "core" of a fuzzy set is the set of all points x in X such that p,(x) = 1 :

core (A) = { x 1 pA(x) = 1). (2.3)

Definition 2.4 Normality

A fuzzy set A is "normal" if its core is nonempty. In other words, we can always

find a point x E X such that pA(x) = 1.

© 2002 Taylor & Francis

12 FUZZY LOGIC FOR MODELLING

Definition 2.5 Crossover points

A "crossover point" of a fuzzy set A is a point x E X at which pA(x) = 0.5:

crossover (A) = { x I pA(x) = 0.5). (2.4)

Definition 2.6 Fuzzy singleton

A fuzzy set whose support is a single point in X with pA(x) = 1 is called a "fuzzy

singleton".

Corresponding to the ordinary set operations of union, intersection and

complement, fuzzy sets have similar operations, which were initially defined in

Zadeh's seminal paper (Zadeh, 1965). Before introducing these three fuzzy set

operations, first we shall define the notion of containment, which plays a central

role in both ordinary and fuzzy sets. This definition of containment is, of course, a

natural extension of the case for ordinary sets.

Definition 2.7 Containment

The fuzzy set A is "contained" in fuzzy set B (or, equivalently, A is a "subset" of

B) if and only if pA(x) I pB(x) for all x. Mathematically,

A E 8 pA(x) 5 pB(x). (2.5)

Definition 2.8 Union

The "union" of two hzzy sets A and B is a fuzzy set C, written as C = AuB or C

= A OR B, whose MF is related to those of A and B by

PC(X) = max(PA('), PB(X)) = PA(X) CLB(X). (2.6)

Definition 2.9 Intersection

The "intersection" of two fuzzy sets A and B is a fuzzy set C, written as C = A n B

or C = A AND B, whose MF is related to those of A and B by

~lc(x) = min(PA(X), PB(X) = PAW A PB(X). (2.7)

Definition 2.10 Complement or Negation

The "complement" of a fuzzy set A, denoted by A (1 A, NOT A), is defined as

p;i(x> = 1 - PA(X). (2.8)

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 13

As mentioned earlier, a fuzzy set is completely characterized by its MF.

Since most fuzzy sets in use have a universe of discourse X consisting of the real

line R, it would be impractical to list all the pairs defining a membership function.

A more convenient and concise way to define an MF is to express it as a

mathematical formula. First we define several classes of parameterized MFs of

one dimension.

Definition 2.1 1 Triangular MFs
A "triangular MF" is specified by three parameters {a, b, c) as follows:

I 0 , x l a .

y = triangle(x;a,b,c) = a l x l b . (2.9)
b l x l c .

c l x .

The parameters {a,b,c) (with a < b< c) determine the x coordinates of the three

corners of the underlying triangular MF.

Figure 2.1 (a) illustrates a triangular MF defined by triangle(x; 10,20,40).

Definition 2.12 Trapezoidal MFs

A "trapezoidal MF" is specified by four parameters {a, b, c, d) as follows:

0 , x l a .
(x-a)/(b-a) , a l x l b . (2.10)

trapezoid (x;a,b,c,d) = 1 , b s x l c .

(d-X) / (d-C) , I c s x l d .

0 , d l x .

The parameters {a, b, c, d) (with a < b l c <d) determine the x coordinates of the

four corners of the underlying trapezoidal MF.

Figure 2.1 (b) illustrates a trapezoidal MF defined by trapezoid(x; 10, 20

40, 75).

Due to their simple formulas and computational efficiency, both triangular

MFs and trapezoidal MFs have been used extensively, especially in real-time

implementations. However, since the MFs are composed of straight line segments,

© 2002 Taylor & Francis

14 FUZZY LOGIC FOR MODELLING

they are not smooth at the comer points specified by the parameters. In the

following we introduce other types of MFs defined by smooth and nonlinear

functions.

Definition 2.13 Gaussian MFs

A "Gaussian MF" is specified by two parameters (c , o)

A "Gaussian MF is determined completely by c and o ; c represents the MFs

center and o determines the MFs width. Figure 2.2 (a) plots a Gaussian MF

defined by gaussian (x; 50,20).

(a) Triangular MF (b) Trapezoidal MF

Figure 2.1 Examples of two types of parameterized MFs

Definition 2.14 Generalized bell MFs

A "generalized bell MF" is specified by three parameters {a, b, c):

bell(x; a, b, c) = 1
1 + 1 (x-c) / a 12b

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 15

where the parameter b is usually positive. We can note that this MF is a direct

generalization of the Cauchy distribution used in probability theory, so it is also

referred to as the "Cauchy MF".

Figure 2.2 (b) illustrates a generalized bell MF defined by bell(x; 20, 4,

50).

Although the Gaussian MFs and bell MFs achieve smoothness, they are

unable to specify asymmetric MFs, which are important in certain applications.

Next we define the sigmoidal MF, which is either open left or right.

(a) Gaussian MF (b) Generalized Bell MF

Figure 2.2 Examples of two classes of parameterized continuous MFs.

Definition 2.15 Sigmoidal MFs

A "Sigmoidal MF" is defined by the following equation:

sig(x; a, c) = 1 (2.13)
1 + exp [-a(x-c)]

where a controls the slope at the crossover point x = c.

Depending on the sign of the parameter "a", a sigmoidal MF is inherently

open right or left and thus is appropriate for representing concepts such as "very

large" or "very negative". Figure 2.3 shows two sigmoidal functions yl =sig(x; 1, -
5) and y2 =sig(x; -2,5).

© 2002 Taylor & Francis

FUZZY LOGIC FOR MODELLING

(a) y1 = sig(x; 1, -5) (b) y;! = sig(x; -2,5)

Figure 2.3 Two sigmoidal functions yl and y2 .

2.2 Fuzzy Reasoning

As was pointed out by Zadeh in his work on this area (Zadeh, 1973), conventional

techniques for system analysis are intrinsically unsuited for dealing with

humanistic systems, whose behavior is strongly influenced by human judgment,

perception, and emotions. This is a manifestation of what might be called the

"principle of incompatibility": "As the complexity of a system increases, our

ability to make precise and yet significant statements about its behavior

diminishes until a threshold is reached beyond which precision and significance

become almost mutually exclusive characteristics" (Zadeh, 1973). It was because

of this belief that Zadeh proposed the concept of linguistic variables (Zadeh,

1971) as an alternative approach to modelling human thinking.

Definition 2.1 6 Linguistic variables

A "Linguistic variable" is characterized by a quintuple (x, T(x), X, G, M) in which

x is the name of the variable; T(x) is the "term set" of x-that is, the set of its

"linguistic values" or "linguistic terms"; X is the universe of discourse, G is a

"syntactic rule" which generates the terms in T(x); and M is a "semantic rule"

which associates with each linguistic value A its meaning M(A), where M(A)

denotes a fuzzy set in X.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . .

Definition 2.17 Concentration and dilation of linguistic values

Let A be a linguistic value characterized by a fuzzy set membership function

pA(.). Then ~k is interpreted as a modified version of the original linguistic value

expressed as

Ak = jx [pA(x)lk 1 X . (2.14)

In particular, the operation of "concentration" is defined as

CON (A) = A2 , (2.15)

while that of "dilatation" is expressed by

DIL (A) = ~ 0 . 5 . (2.16)

Conventionally, we take CON(A) and DIL(A) to be the results of applying

the hedges "very" and "more or less", respectively, to the linguistic term A.

However, other consistent definitions for these linguistic hedges are possible and

well justified for various applications.

Following the definitions given before, we can interpret the negation

operator NOT and the connectives AND and OR as

NOT(A)=lA= fx [l - p , (x)] l x ,

A AND B = A n B = f, [p,(x) A p,(x)] I x , (2.1 7)

A OR B = A u B = f, [pA(x) v p,(x)] 1 x

respectively, where A and B are two linguistic values whose meanings are defined

PA(.) and PB(.) .

Definition 2.18 Fuzzy If-Then Rules

A "fuzzy if-then rule" (also known as "fuzzy rule", "fuzzy implication", or "fuzzy

conditional statement") assumes the form

if x is A then y is B , (2.18)

© 2002 Taylor & Francis

18 FUZZY LOGIC FOR MODELLING

where A and B are linguistic values defined by fuzzy sets on universes of

discourse X and Y, respectively. Often "x is A" is called "antecedent" or

"premise", while "y is B" is called the "consequence" or "conclusion".

Examples of fuzzy if-then rules are widespread in our daily linguistic

expressions, such as the following:

If pressure is high, then volume is small.

If the road is slippery, then driving is dangerous.

If the speed is high, then apply the brake a little.

Before we can employ fuzzy if-then rules to model and analyze a system,

first we have to formalize what is meant by the expression "if x is A then y is B",

which is sometimes abbreviated as A + B . In essence, the expression describes a

relation between two variables x and y; this suggests that a fuzzy if-then rule is

defined as a binary fuzzy relation R on the product space X Y. Generally

speaking, there are two ways to interpret the fuzzy rule A + B. If we interpret A

9 B as A "coupled with" B then

R = A + B = A x B = jxxy pA(x)CpB(y)f(x,y)
"

where * is an operator for intersection (Marndani & Assilian, 1975). On the other

hand, if A + B is interpreted as A "entails" B, then it can be written as one of two

different formulas:

Material implication:

R = A + B = l A u B .

Propositional Calculus:

R = A + B = l A u (A n B) .

Although these two formulas are different in appearance, they both reduce to the

familiar identity A + B = 1 A u B when A and B are propositions in the sense of

two-valued logic.

Fuzzy reasoning, also known as approximate reasoning, is an inference

procedure that derives conclusions from a set of fuzzy if-then rules and known

facts. The basic rule of inference in traditional two-valued logic is "modus

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 19

ponens", according to which we can infer the truth of a proposition B from the

truth of A and the implication A + B. This concept is illustrated as follows:

premise 1 (fact): x i s A ,

premise 2 (rule): if x is A then Y is B ,
consequence (conclusion): y is B .

However, in much of human reasoning, modus ponens is employed in an

approximate manner. This is written as

premise 1 (fact): x is A'

premise 2 (rule): if x is A then y is B ,
consequence (conclusion): y is B'

where A' is close to A and B' is close to B. When A, B, A' and B' are fuzzy sets of

appropriate universes, the foregoing inference procedure is called "approximate

reasoning" or "fuzzy reasoning"; it is also called "generalized modus ponens"

(GMP for short), since it has modus ponens as a special case.

Definition 2.19 Fuzzy reasoning

Let A, A', and B be fuzzy sets of X, X, and Y respectively. Assume that the fuzzy

implication A + B is expressed as a fuzzy relation R on X Y .Then the fuzzy set

B induced by "x is A ' and the fuzzy rule "if x is A then y is B" is defined by

PB'(Y) = maxx min [PA~x), CLR(X, Y) 1
= v, [A PR(x, Y) 1 . (2.2 1)

Now we can use the inference procedure of fuzzy reasoning to derive

conclusions provided that the fuzzy implication A + B is defined as an

appropriate binary fuzzy relation.

Single Rule with Single Antecedent

This is the simplest case, and the formula is available in Equation (2.21). A

further simplification of the equation yields

PBI(Y) = [Vx (PA@) A PA(X) I A PB(Y)

= 0 A PB(Y)

© 2002 Taylor & Francis

20 FUZZY LOGIC FOR MODELLING

In other words, first we find the degree of match o as the maximum of pAl(x) A

pA(x) ; then the MF of the resulting B' is equal to the MF of B clipped by o.

Intuitively, o represents a measure of degree of belief for the antecedent part of a

rule; this measure gets propagated by the if-then rules and the resulting degree of

belief or MF for the consequent part should be no greater than a.

Multiple Rules with Multiple Antecedents

The process of fuzzy reasoning or approximate reasoning for the general case can

be divided into four steps:

1) Degrees of compatibility: Compare the known facts with the antecedents of

fuzzy rules to find the degrees of compatibility with respect to each antecedent

MF.

2) Firing Strendh: Combine degrees of compatibility with respect to antecedent

MFs in a rule using fuzzy AND or OR operators to form a firing strength that

indicates the degree to which the antecedent part of the rule is satisfied.

3) Qualified (induced) consequent MFs: Apply the firing strength to the

consequent MF of a rule to generate a qualified consequent MF.

4) Overall output MF: Aggregate all the qualified consequent MFs to obtain an

overall output MF.

2.3 Fuzzy Inference Systems

The "Marndani fuzzy inference system" (Mamdani & Assilian, 1975) was

proposed as the first attempt to control a steam engine and boiler combination by

a set of linguistic control rules obtained from experienced human operators.

Figure 2.4 is an illustration of how a two-rule Mamdani fuzzy inference system

derives the overall output z when subjected to two numeric inputs x and y.

In Marndani's application, two fuzzy inference systems were used as two

controllers to generate the heat input to the boiler and throttle opening of the

engine cylinder, respectively, to regulate the steam pressure in the boiler and the

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 2 1

speed of the engine. Since the engine and boiler take only numeric values as

inputs, a defuzzifier was used to convert a fuzzy set to a numeric value.

Figure 2.4 The Mamdani fuzzy inference system using the min and max operators.

Defuzzification

Defuzzification refers to the way a numeric value is extracted from a fuzzy set as

a representative value. In general, there are five methods for defuzzifying a fuzzy

set A of a universe of discourse Z, as shown in Figure 2.5 (Here the fuzzy set A is

usually represented by an aggregated output MF, such as C' in Figure 2.4). A brief

explanation of each defuzzification strategy follows.

© 2002 Taylor & Francis

FUZZY LOGIC FOR MODELLING

Centroid of area z,,,:

where pA(z) is the aggregated output MF. This is the most widely adopted

dehzzification strategy, which is reminiscent of the calculation of expected values

of probability distributions.

Bisector of area z,,, : zBoA satisfies

where a = min{z (z E Z) and p = max{z I z E Z).

Mean of maximum zMOM : z,,, is the average of the maximizing z at

which the MF reach a maximum p*. Mathematically,

where z' = { z I pA(z) = p*). In particular, if pA(z) has a single maximum at z =

z*, then zMoM = z*. Moreover, if pA(z) reaches its maximum whenever z E [zleA,

~ r i g h t l then z ~ o ~ = (zlefi + Zright) 1 2.
Smallest of maximum z,,, : z,,, is the minimum (in terms of

magnitude) of the maximizing z.

Largest of maximum zLOM : zLoM is the maximum (in terms of magnitude)

of the maximizing z. Because of their obvious bias, z,,, and zLOM are not used as

often as the other three defuzzification methods.

The calculation needed to carry out any of these five defuzzification

operations is time-consuming unless special hardware support is available.

Furthermore, these defuzzification operations are not easily subject to rigorous

mathematical analysis, so most of the studies are based on experimental results.

This leads to the propositions of other types of fuzzy inference systems that do not

need defuzzification at all; two of them will be described in the following. Other

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 23

more flexible defuzzification methods can be found in several more recent papers

(Yager & Filer, 1993), (Runkler & Glesner, 1994).

1

0.8

0.6

0.4

0.2

0
-1 0 -5 0 5 10

Figure 2.5 Various defuzzification methods for obtaining a numeric output.

Sugeno Fuzzy Models

The "Sugeno fuzzy model" (also known as the "TSK fuzzy model") was proposed

by Takagi, Sugeno and Kang in an effort to develop a systematic approach to

generating fuzzy rules from a given input-output data set (Takagi & Sugeno,

1985), (Sugeno & Kang, 1988). A typical fuzzy rule in a sugeno fuzzy model has

the form:

if x is A and y is B then z = f(x,y)

where A and B are fuzzy sets in the antecedent, while z = f(x,y) is a traditional

function in the consequent. Usually f(x,y) is a polynomial in the input variables x

and y, but it can be any function as long as it can appropriately describe the output

of the model within the fuzzy region specified by the antecedent of the rule. When

f(x,y) is a first-order polynomial, the resulting fuzzy inference system is called a

"first-order Sugeno fuzzy model". When f is constant, we then have a "zero-order

Sugeno fuzzy model", which can be viewed either as a special case of the

Marndani inference system, in which each rule's consequent is specified by a

fuzzy singleton, or a special case of the Tsukamoto fuzzy model (to be introduced

next), in which each rule's consequent is specified by an MF of a step function

center at the constant.

© 2002 Taylor & Francis

24 FUZZY LOGIC FOR MODELLING

Figure 2.6 shows the fuzzy reasoning procedure for a first-order Sugeno

model. Since each rule has a numeric output, the overall output is obtained via

"weighted average", thus avoiding the time-consuming process of defuzzification

required in a Mamdani model. In practice, the weighted average operator is

sometimes replaced with the "weighted sum" operator (that is, wlzl + w2z2 in

Figure 2.6) to reduce computation further, specially in the training of a fuzzy

inference system. However, this simplification could lead to the loss of MF

linguistic meanings unless the sum of firing strengths (that is, Cwi) is close to

unity.

Figure 2.6 The Sugeno' fuzzy model.

A
P A1 P Min

A

zl = pix + q1y + rl
w1

Tsukamoto Fuzzy Models

In the "Tsukarnoto fuzzy models" (Tsukamoto, 1979), the consequent of each

fuzzy if-then rule is represented by a fuzzy set with a monotonical MF, as shown

in Figure 2.7. As a result, the inferred output of each rule is defined as a numeric

value induced by the rule firing strength. The overall output is taken as the

weighted average of each rule's output. Figure 2.7 illustrates the reasoning

procedure for a two-input two-rule system.

X Y

A A
P A2 P B2

-
L . Y

Z2 = P2X + q2y + r2
w2

a
x Y weighted average

z = Y ~ Z ~ ~ z 2
Wl + w2

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 25

Since each rule infers a numeric output, the Tsukamoto fuzzy model

aggregates each rule's output by the method of weighted average and thus avoids

the time-consuming process of defuzzification. However, the Tsukamoto fuzzy

model is not used often since it is not as transparent as either the Mamdani or

Sugeno fuzzy models.

Min P

Y w1 z 1 z
P

.-.-.-.-.-.-.-.-.a.

.-.-A-s-.-.-.-. .- - T A 2 .'I 2 x P2 Y Y w2 U weighted z2 z average

Z = X12r+w.L22
Wl + w2

Figure 2.7 The Tsukamoto fuzzy model.

There are certain common issues concerning all the three fuzzy inference

systems introduced previously, such as how to partition an input space and how to

construct a fuzzy inference system for a particular application.

Input Space Partitioning,

Now it should be clear that the spirit of fuzzy inference systems resembles that of

"divide and conquer" - the antecedent of a fuzzy rule defines a local fuzzy region,

while the consequent describes the behavior within the region via various

constituents. The consequent constituent can be a consequent MF (Mamdani and

Tsukamoto fuzzy models), a constant value (zero-order Sugeno model), or a linear

© 2002 Taylor & Francis

26 FUZZY LOGIC FOR MODELLING

equation (first-order Sugeno model). Different consequent constituents result in

different fuzzy inference systems, but their antecedents are always the same.

Therefore, the following discussion of methods of partitioning input spaces to

form the antecedents of fuzzy rules is applicable to all three types of fuzzy

inference systems.

Grid partition: This partition method is often chosen in designing a fuzzy

controller, which usually involves only several state variables as the inputs

to the controller. This partition strategy needs only a small number of MFs

for each input. However, it encounters problems when we have a

moderately large number of inputs. For instance, a fuzzy model with 10

inputs and 2 MFs on each input would result in 210 = 1024 fuzzy if-then

rules, which is prohibitively large. This problem, usually referred to as the

"curse of dimensionality", can be alleviated by other partition strategies.

Tree partition: In this method each region can be uniquely specified along

a corresponding decision tree. The tree partition relieves the problem of an

exponential increase in the number of rules. However, more MFs for each

input are needed to define these fuzzy regions, and these MFs do not

usually bear clear linguistic meanings. In other words, ortogonality holds

roughly in X Y, but not in either X or Y alone.

Scatter partition: By covering a subset of the whole input space that

characterizes a region of possible occurrence of the input vectors, the

scatter partition can also limit the number of rules to a reasonable amount.

However, the scatter partition is usually dictated by desired input-output

data pairs and thus, in general, orthogonality does not hold in X, Y or X

Y. This makes it hard to estimate the overall mapping directly from the

consequent of each rule's output.

2.4 Fuzzy Modelling

In general, we design a fuzzy inference system based on the past known behavior

of a target system. The fuzzy system is then expected to be able to reproduce the

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 27

behavior of the target system. For example, if the target system is a human

operator in charge of a chemical reaction process, then the fuzzy inference system

becomes a fuzzy logic controller that can regulate and control the process.

Let us now consider how we might construct a fuzzy inference system for

a specific application. Generally speaking, the standard method for constructing a

fuzzy inference system, a process usually called "fuzzy modelling", has the

following features:

The rule structure of a fuzzy inference system makes it easy to incorporate

human expertise about the target system directly into the modelling

process. Namely, fuzzy modelling takes advantage of "domain knowledge"

that might not be easily or directly employed in other modelling

approaches.

When the input-output data of a target system is available, conventional

system identification techniques can be used for fuzzy modelling. In other

words, the use of "numerical data" also plays an important role in "fuzzy

modelling", just as in other mathematical modelling methods.

Conceptually, hzzy modelling can be pursued in two stages, which are not

totally disjoint. The first stage is the identification of the "surface structure",

which includes the following tasks:

1. Select relevant input and output variables.

2. Choose a specific type of fuzzy inference system.

3. Determine the number of linguistic terms associated with each input and

output variables.

4. Design a collection of fuzzy if-then rules.

Note that to accomplish the preceding tasks, we rely on our own

knowledge (common sense, simple physical laws, an so on) of the target system,

information provided by human experts who are familiar with the target system,

or simply trial and error.

After the first stage of fuzzy modelling, we obtain a rule base that can

more or less describe the behavior of the target system by means of linguistic

terms. The meaning of these linguistic terms is determined in the second stage, the

© 2002 Taylor & Francis

28 FUZZY LOGIC FOR MODELLING

identification of "deep structure", which determines the MFs of each linguistic

term. Specifically, the identification of deep structure includes the following

tasks:

1. Choose an appropriate family of parameterized MFs.

2. Interview human experts familiar with the target systems to determine the

parameters of the MFs used in the rule base.

3. Refine the parameters of the MFs using regression and optimization

techniques.

Task 1 and 2 assume the availability of human experts, while task 3

assumes the availability of a desired input-output data set.

2.5 Summary

In this chapter, we have presented the main ideas underlying Fuzzy Logic and we

have only started to point out the many possible applications of this powerful

computational theory. We have discussed in some detail fuzzy set theory, fuzzy

reasoning and fuzzy inference systems. At the end, we also gave some remarks

about k z y modelling. In the following chapters, we will show how fuzzy logic

techniques (in some cases, in conjunction with other methodologies) can be

applied to solve real world complex problems. This chapter will serve as a basis

for the new hybrid intelligent methods, for modelling and simulation, that will be

described in Chapters 5 and 6 of this book. Fuzzy Logic will also play an

important role in the new neuro-fuzzy methodology for control that is presented in

Chapter 7 of this book.

© 2002 Taylor & Francis

Chapter 3

Neural Networks for Control

Application of fuzzy inference systems to automatic control was first reported in

Mamdani's paper (Mamdani & Assilian, 1975), where a "fuzzy logic controller"

(FLC) was used to emulate a human operator's control of a steam engine and

boiler combination. Since then, "fuzzy logic control" has been recognized as the

most significant and fruitful application for fuzzy logic (Kosko, 1992). In the past

few years, advances in microprocessors and hardware technologies have created

an even more diversified application domain for fuzzy logic controllers, which

ranges from consumer electronics to the automobile industry. However, without

adaptive capability, the performance of FLCs relies exclusively on two factors: the

availability of human experts, and the knowledge acquisition techniques to

convert human expertise into appropriate fuzzy rules. These two factors

substantially restrict the application domain of FLCs.

On the other hand, investigation into using neural networks in automatic

control systems did not receive much attention until the "backpropagation"

learning rule was formulated by Rumelhart and others (Rumelhart, Hinton &

Williams, 1986). Since then, research of neural control has evolved quickly and a

number of neural controller design methods have been proposed in the literature

(Werbos, 1991).

© 2002 Taylor & Francis

30 NEURAL NETWORKS FOR CONTROL

Figure 3.1 is a block diagram of a typical "feedback control system",

where the "plant" (or "process") represents the dynamic system to be controlled

and the "controller" employs a control strategy to achieve a control goal. Here we

shall denote the state variables of the plant as a vector x(t); these variables are

usually governed by a set of "state equations" (usually differential equations) that

characterize the dynamic behavior of the plant. Since the state variables are

internal to the plant, some of them may not be directly measurable from the

external world. The measurable quantities of the plant, also known as its outputs,

are denoted as a vector y(t). We shall assume that all states are measurable; thus

the output of the plant y(t) is equal to the state x(t).

The state equation for a general non-linear plant can be expressed in the

matrix notation

x'(t> = f (x(t), u(t)) (plant dynamics) (3.1)

u(t> Plant
Dynamics

x(t>

Figure 3.1 Block diagram for a continuous feedback control system.

where u(t) is the controller's output at time t, and the size of the vector x(t) is

called the "order" of the plant. A general control goal is to find a controller with a

static function $ that maps an observed plant output x(t) to a control action u-that

is, u(t) = $ (x(t))- such that the plant output can follow some given desired output

signal xd(t) as closely as possible. If xd(t) is a constant vector, then the control

problem is referred to as "regulator problem", where the plant states are directly

fed back to the controller. This is actually what Figure 3.1 shows. On the other

hand, if the desired trajectory xd(t) is a time-varying signal, then we have a

"tracking problem" in which an error signal, defined as the difference between

© 2002 Taylor & Francis

MODELLNG, SIMULATION AND CONTROL . . . 3 1

desired and actual outputs, is fed back to the controller. I f f is unknown, we need

to perform system identification first to find a model for the plant. Moreover, i f f

is time varying, it is desirable to make 4 adaptive to respond to the changing

characteristics of the plant.

In the case of linear feedback control systems, the plant and controller can

be reformulated as the following equations:

xt(t) = Ax(t) + Bu(t) (plant dynamics) (3.2)

u(t) = kx(t) (linear controller)

The treatment of linear control systems is relatively complete in the literature (for

example, see Brogan, 1991) and will not be discussed here. On the other hand, the

area of non-linear control is still with many open problems and its more

interesting. In this book, the treatment will be restricted to non-linear plants with a

general form given by Equation (3.1).

If we replace the controller block in Figure 3.1 with neural networks or

fuzzy systems, then we end up with "neural" or "fuzzy control systems",

respectively. In other words, neural or fuzzy control design methods are

systematic ways of constructing neural networks or fuzzy inference systems,

respectively, as controllers intended to achieve prescribed control goals. In the

same vein, the term "neuro-fuzzy control" has been used when one is speaking

about design methods for fuzzy logic controllers that use neural network

techniques.

Most neural or fuzzy controllers are nonlinear; thus rigorous analysis for

neuro-fuzzy control systems is difficult and remains a challenging area for further

investigation. On the other hand, a neuro-fuzzy controller usually contains a large

number of parameters; it is thus more versatile than a linear controller in dealing

with non-linear plant characteristics. Therefore, neuro-fuzzy controllers almost

always surpass pure linear controllers if designed properly.

In this chapter, we present the basic concepts, notation, and basic learning

algorithms for neural networks that will be needed in the following chapters of

this book. The chapter is organized as follows: Backpropagation for Feedforward

Networks, Adaptive Neuro-Fuzzy Inference Systems, Neuro-Fuzzy Control and

© 2002 Taylor & Francis

32 NEURAL NETWORKS FOX CONTROL

Adaptive Neuro-Control. First, we give a brief review of the basic concepts of

neural networks and the backpropagation learning algorithm. Second, we give a

brief description of adaptive neuro-fuzzy systems. Third, we give a brief review

on the current methods for neuro-fuzzy control. Finally, we end the chapter with

some remarks about adaptive control and model-based control. We consider this

material necessary to understand the new methods for control that will be

presented in Chapter 7 of this book.

3.1 Backpropagation for Feedforward Networks

This section describes the architectures and learning algorithms for adaptive

networks, a unifying framework that subsumes almost all kinds of neural network

paradigms with supervised learning capabilities. An adaptive network, as the

name indicates, is a network structure consisting of a number of nodes connected

through directional links. Each node represents a process unit, and the links

between nodes specify the causal relationship between the connected nodes. The

learning rule specifies how the parameters (of the nodes) should be updated to

minimize a prescribed error measure.

The basic learning rule of the adaptive network is the well-known steepest

descent method, in which the gradient vector is derived by successive invocations

of the chain rule. This method for systematic calculation of the gradient vector

was proposed independently several times, by Bryson and Ho (1969), Werbos

(1974), and Parker (1982). However, because research on artificial neural

networks was still in its infancy at those times, these researchers' early work failed

to receive the attention it deserved. In 1986, Rurnelhart et al. used the same

procedure to find the gradient in a multilayer neural network. Their procedure was

called "backpropagation learning rule", a name which is now widely known

because the work of Rurnelhart inspired enormous interest in research on neural

networks. In this section, we introduce Werbos's original backpropagation method

for finding gradient vectors and also present improved versions of this method.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . .

3.1.1 The Backpropagation learning algorithm

Suppose that a given feedforward adaptive network has L layers and layer 1 (1 = 0,

1 ,..., L) has N(l) nodes. Then the output and function of node i [i = 1, ..., N(l)] in

layer 1 can be represented as xl,i and fl,i, respectively, as shown in Figure 3.2.

Since the output of a node depends on the incoming signals and the parameter set

of the node, we have the following general expression for the node function fl,i :

Xl,i = fi,i (Xi- l , l 3 .-. I XI-I,N(~-I), a, 0, Y 5 ...) (3.3)
where a, p, y , etc. are the parameters of this node.

- x1,3

t
Layer 0

t
Layer 1

t
Layer 2

t
Layer 3

Figure 3.2 Feedforward adaptive network.

Assuming that the given training data set has P entries, we can define an

error measure for the pth (1 5 p I P) entry of the training data as the sum of the

squared errors:
N l U

where dk is the kth component of the pth desired output vector and x ~ , k is the kth

component of the actual output vector produced by presenting the pth input vector

to the network. Obviously, when Ep is equal to zero, the network is able to

© 2002 Taylor & Francis

34 NEURAL NETWORKS FOR CONTROL

reproduce exactly the desired output vector in the pth training data pair. Thus our

task here is to minimize an overall error measure, which is defined as E = C Ep .
We can also define the "error signal" E ~ , ~ as the derivative of the error

measure Ep with respect to the output of the node i in layer 1, taking both direct

and indirect paths into consideration. Mathematically,

El,i = P E P - (3.5)
a Xl,i

this expression was called the "ordered derivative" by Werbos (1974). The

difference between the ordered derivative and the ordinary partial derivative lies

in the way we view the function to be differentiated. For an internal node output

xl,i , the partial derivative P E P / is equal to zero, since Ep does not depend

on xl,i directly. However, it is obvious that Ep does depend on xl,i indirectly, since

a change in xl,i will propagate through indirect paths to the output layer and thus

produce a corresponding change in the value of Ep

The error signal for the ith output node (at layer L) can be calculated

directly:

 EL,^ = Fap- = d p - (3 -6)
a X L , ~ a xL,i

This is equal to EL,^ = -2(di - x~ i) if Ep is defined as in Equation (3.4). For the

internal node at the ith position of layer 1, the error signal can be derived by the

chain rule of differential calculus:

error signal error signal
at layer 1 at layer 1+1

where 0 I 1 < L-1. That is, the error signal of an internal node at layer 1 can be

expressed as a linear combination of the error signal of the nodes at layer 1+1.

Therefore, for any 1 and i, we can find &l,i by first applying Equation (3.6) once to

get error signals at the output layer, and then applying Equation (3.7) iteratively

until we reach the desired layer 1. The underlying procedure is called

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 3 5

backpropagation since the error signals are obtained sequentially from the output

layer back to the input layer.

The gradient vector is defined as the derivative of the error measure with

respect to each parameter, so we have to apply the chain rule again to find the

gradient vector. If a is a parameter of the ith node at layer 1, we have

d t ~ = F E a f - . a f . - p - -p- -1,i- - EI,I - 1 , ~ (3.8)
dm ax l i d a d a

The derivative of the overall error measure E with respect to a is

Accordingly, for simple steepest descent (for minimization), the update

formula for the generic parameter a is

in which q is the "learning rate", which can be further expressed as

where k is the "step size", the length of each transition along the gradient direction

in the parameter space.

There are two types of learning paradigms that are available to suit the

needs for various applications. In "off-line learning" (or "batch learning"), the

update formula for parameter a is based on Equation (3.9) and the update action

takes place only after the whole training data set has been presented-that is, only

after each "epoch" or "sweep". On the other hand, in "on-line learning" (or

"pattern-by-pattern learning"), the parameters are updated immediately after each

input-output pair has been presented, and the update formula is based on Equation

(3.8). In practice, it is possible to combine these two learning modes and update

the parameter after k training data entries have been presented, where k is between

1 and P and it is sometimes referred to as the "epoch size".

© 2002 Taylor & Francis

36 NEURAL NETWORKS FOR CONTROL

3.1.2 Backpropagation multilayer perceptrons

Artificial neural networks, or simply "neural networks" (NNs), have been studied

for more than three decades since Rosenblatt first applied single-layer

"perceptrons" to pattern classification learning (Rosenblatt, 1962). However,

because Minsky and Papert pointed out that single-layer systems were limited and

expressed pessimism over multilayer systems, interest in NNs dwindled in the

1970s (Minsky & Papert, 1969). The recent resurgence of interest in the field of

NNs has been inspired by new developments in NN learning algorithms (Fahlman

& Lebiere, 1990), analog VLSI circuits, and parallel processing techniques

(Lippmann, 1987).

Quite a few NN models have been proposed and investigated in recent

years. These NN models can be classified according to various criteria, such as

their learning methods (supervised versus unsupervised), architectures

(feedforward versus recurrent), output types (binary versus continuous), and so on.

In this section, we confine our scope to modelling problems with desired input-

output data sets, so the resulting networks must have adjustable parameters that

are updated by a supervised learning rule. Such networks are often referred to as

"supervised learning" or "mapping networks", since we are interested in shaping

the input-output mappings of the network according to a given training data set.

A backpropagation "multilayer perceptron" (MLP) is an adaptive network

whose nodes (or neurons) perform the same function on incoming signals; this

node function is usually a composite of the weighted sum and a differentiable

non-linear activation function, also known as the "transfer function". Figure 3.3

depicts three of the most commonly used activation functions in backpropagation

MLPs:

Logistic function: f(x) = 1
1 + e-X

Hyperbolic tangent function: f(x) = tan h (~12) = &-x-
1 + e-x

Identity function: f(x) = x

Both the hyperbolic tangent and logistic functions approximate the signum

and step function, respectively, and provide smooth, nonzero derivatives with

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 37

respect to input signals. Sometimes these two activation functions are referred to

as "squashing functions" since the inputs to these functions are squashed to the

range [0,1] or [-1 ,I]. They are also called "sigmoidal functions" because their s-

shaped curves exhibit smoothness and asymptotic properties.

Backpropagation MLPs are by far the most commonly used NN structures

for applications in a wide range of areas, such as pattern recognition, signal

processing, data compression and automatic control. Some of the well-known

instances of applications include NETtalk (Sejnowski & Rosenberg, 1987), which

trained an MLP to pronounce English text, Carnegie Mellon University's

ALVINN (Pomerleau, 1991), which used an MLP for steering an autonomous

vehicle; and optical character recognition (Sakinger, Boser, Bromley, Lecun &

Jackel, 1992). In the following lines, we derive the backpropagation learning rule

for MLPs using the logistic function.

Logistlc Funct~on Hyperbolic Tangent Function ldentlty Function
2 - 2 10 - -

-- /

Figure 3.3 Activation functions for backpropagation MLPs: (a) logistic function;

(b) hyperbolic function; (c) identity function.

The "net input" K of a node is defined as the weighted sum of the incoming

signals plus a bias term. For instance, the net input and output of node j in Figure

3.4 are
- x. = xi w.. Xi + w.

J 1J J '
x. = f(T.) =

J J 1
1 + exp (- Zj) ,

© 2002 Taylor & Francis

3 8 NEURAL NETWORKS FOR CONTROL

where xi is the output of node i located in any one of the previous layers, wij is the

weight associated with the link connecting nodes i and j, and wj is the bias of node

j. Since the weights wij are actually internal parameters associated with each node

j, changing the weights of a node will alter the behavior of the node and in turn

alter the behavior of the whole backpropagation MLP.

x 1

x2 ~ F C I w2j xj

x3 W3j Node j

Figure 3.4 Node j of a backpropagation MLP.

Figure 3.5 shows a three-layer backpropagation MLP with three inputs to

the input layer, three neurons in the hidden layer, and two output neurons in the

output layer. For simplicity, this MLP will be referred to as a 3-3-2 network,

corresponding to the number of nodes in each layer.

fl fl fl
Layer 0 Layer 1 Layer 2

(Input Layer) (Hidden Layer) (Output Layer)

Figure 3.5 A 3-3-2 backpropagation MLP.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 39

The "backward error propagation", also known as the "backpropagation"

(BP) or the "generalized data rule" (GDR), is explained next. First, a squared error

measure for the pth input-output pair is defined as

Ep = (dk - xkl2 (3.13)

where dk is the desired output for node k, and xk is the actual output for node k

when the input part of the pth data pair presented. To find the gradient vector, an

error term &i is defined as
-
&i = P I P - (3.14)

d xi

By the chain rule, the recursive formula for &i can be written as

-2(di - xi) a i - = -2(di - xi) xi (1- xi) if node i is a output
d Zi node

(3.15)
-

Cj,iq d+Xp- i3T3~- = xi (1- xi) Cj,i<j cj wij otherwise
a zj a xi

where wij is the connection weight from node i to j; and wij is zero if there is no

direct connection. Then the weight update wki for on-line (pattern-by-pattern)

learning is
-

A wki = - q Pip- = - q d+lp- &q- = - q &i xk (3.16)

Wki x i d wki

where q is a learning rate that affects the convergence speed and stability of the

weights during learning.

For off-line (batch) learning, the connection weight wki is updated only

after presentation of the entire data set, or only after an "epoch":

A w k i = - q d + E = - q C P I p - (3.17)
d wki P dwki

or, in vector form,

A w = - q P E = - q V , E (3.18)
a w

© 2002 Taylor & Francis

40 NEURAL NETWORKS FOR CONTROL

where E = Cp Ep. This corresponds to a way of using the true gradient direction

based on the entire data set.

The approximation power of backpropagation MLPs has been explored by

some researchers. Yet there is very little theoretical guidance for determining

network size in terms of, say, the number of hidden nodes and hidden layers it

should contain. Cybenko (1989) showed that a backpropagation MLP, with one

hidden layer and any fixed continuous sigmoidal non-linear function, can

approximate any continuous function arbitrarily well on a compact set. When used

as a binary-valued neural network with the step activation function, a

backpropagation MLP with two hidden layers can form arbitrary complex

decision regions to separate different classes, as Lippmann (1987) pointed out. For

function approximation as well as data classification, two hidden layers may be

required to learn a piecewise-continuous function (Masters, 1993).

3.2 Adaptive Neuro-Fuzzy Inference Systems

In this section, we describe a class of adaptive networks that are functionally

equivalent to fuzzy inference systems (Kosko, 1992). The architecture is referred

to as ANFIS, which stands for "adaptive network-based fuzzy inference system".

We describe how to decompose the parameter set to facilitate the hybrid learning

rule for ANFIS architectures representing both the Sugeno and Tsukamoto fuzzy

models.

3.2.1 ANFIS architecture

A fuzzy inference system consists of three conceptual components: a fuzzy rule

base, which contains a set of fuzzy if-then rules; a database, which defines the

membership functions used in the fuzzy rules; and a reasoning mechanism, which

performs the inference procedure upon the rules to derive a reasonable output or

conclusion (Kandel, 1992). For simplicity, we assume that the fuzzy inference

system under consideration has two inputs x and y and one output z. For a first-

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 4 1

order Sugeno fuzzy model (Sugeno & Kang, 1988), a common rule set with two

fuzzy if-then rules is the following:

Rule 1: If x is Al and y is B1, then fl = plx + qly + rl ,
Rule 2: If x is A2 and y is B2, then f2 = p2x + qzy + 1-2 ,

Figure 3.6 (a) illustrates the reasoning mechanism for this Sugeno model; the

corresponding equivalent ANFIS architecture is as shown in Figure 3.6 (b), where

nodes of the same layer have similar functions, as described next. (Here we denote

the output of the ith node in layer 1 as 01 i).

Layer 1: Every node i in this layer is an adaptive node with a node fiinction

Ol,i = p ~ i (x), for i = 1 , 2 ,

01,~ = p ~ i - 2 (y), for i = 3 , 4 , (3.19)

where x (or y) is the input to node i and Ai (or Bi-2) is a linguistic label (such as

"small" or "large") associated with this node. In other words, Oli is the

membership grade of a fuzzy set A and it specifies the degree to which the given

input x (or y) satisfies the quantifier A. Here the membership function for A can

be any appropriate parameterized membership function, such as the generalized

bell function:

where {ai , bi , ci) is the parameter set. As the values of these parameters change,

the bell-shaped function varies accordingly, thus exhibiting various forms of

membership functions for a fuzzy set A. Parameters in this layer are referred to as

"premise parameters"

Layer 2: Every node in this layer is a fixed node labeled II, whose output is the

product of all incoming signals:

O2,i = wi = p ~ i (x) p ~ i (Y), i = 1, 2 . (3.21)

Each node output represents the firing strength of a fuzzy rule.

Layer 3: Every node in this layer is a fixed node labeled N. The ith node

calculates the ratio of the ith rule's firing strength to the sum of all rules' firing

strengths:

03,i=w',= wi / (wl + w2) , i = 1,2. (3.22)

For convenience, outputs of this layer are called "normalized firing strengths".

© 2002 Taylor & Francis

42 NEURAL NETWORKS FOR CONTROL

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 +
Al

X

A2

B1
Y

B2

(b)

Figure 3.6 (a) A two-input Sugeno fuzzy model with 2 rules; (b) equivalent

ANFIS architecture (adaptive nodes shown with a square and fixed

nodes with a circle).

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 43

Layer 4: Every node i in this layer is an adaptive node with a node function

O4,i = wi fi = Wi (pix + qiy + ri) , (3.23)

where Ei is a normalized firing strength from layer 3 and {pi , qi , ri } is the

parameter set of this node. Parameters in this layer are referred to as "consequent

parameters".

Layer 5: The single node in this layer is a fixed node labeled C, which computes

the overall output as the summation of all incoming signals:

overall output = 05,i =. C SiJi fi = Xi wi fi- (3.24)
1 Ci Wi

Thus we have constructed an adaptive network that is functionally

equivalent to a Sugeno fuzzy model. We can note that the structure of this

adaptive network is not unique; we can combine layers 3 and 4 to obtain an

equivalent network with only four layers. In the extreme case, we can even shrink

the whole network into a single adaptive node with the same parameter set.

Obviously, the assignment of node functions and the network configuration are

arbitrary, as long as each node and each layer perform meaningful and modular

functionalities.

The extension from Sugeno ANFIS to Tsukamoto ANFIS is

straightforward, as shown in Figure 3.7, where the output of each rule (fi, i = 1, 2)

is induced jointly by a consequent membership function and a firing strength.

3.2.2 Learning algorithm

From the ANFIS architecture shown in Figure 3.6 (b), we observe that when the

values of the premise parameters are fixed, the overall output can be expressed as

a linear combination of the consequent parameters. Mathematically, the output f i n

Figure 3.6 (b) can be written as

f = W I f i + W 2 f 2 (3.25)
Wl+W2 Wl+W2

= G I (P]X+qlY+rl) + = 2 (~ 2 ~ + 9 2 Y + '2)
= (Elx) p1 + (Fly) ql + (GI) rl + (E2x) P2 + 6%~) 92 + @2) '2

© 2002 Taylor & Francis

44 NEURAL NETWORKS FOR CONTROL

Figure 3.7 (a) A two-input Tsukamoto fuzzy model with two rules;

(b) equivalent ANFIS architecture.

which is linear in the consequent parameters pl, q l , rl , p2, q2, and r2. From this

observation, we can use a hybrid learning algorithm for parameter estimation in

this kind of models (Jang, 1993). More specifically, in the forward pass of the

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 45

hybrid learning algorithm, node outputs go forward until layer 4 and the

consequent parameters are identified by the least-squares method. In the backward

pass, the error signals propagate backward and the premise parameters are updated

by gradient descent.

It has been shown (Jang, 1993) that the consequent parameters identified

in this manner are optimal under the condition that the premise parameters are

fixed. Accordingly, the hybrid approach converges much faster since it reduces

the search space dimensions of the original pure backpropagation method. For

Tsukamoto ANFIS, this can be achieved if the membership function on the

consequent part of each rule is replaced by a piecewise linear approximation with

two consequent parameters.

3.3 Neuro-Fuzzy Control

The original purpose of fuzzy logic control, as proposed in Mamdani's paper in

1975, was to mimic the behavior of a human operator able to control a complex

plant satisfactorily. The complex plant in question could be a chemical reaction

process, a subway train, or a traffic signal control system. After more than 20

years, the ultimate goal of fuzzy controllers remains the sarne-that is, to automate

an entire control process by replacing a human operator with a fuzzy controller

made up of computer software/hardware.

To construct a fuzzy controller, we need to perform "knowledge

acquisition", which takes a human operator's knowledge about how to control a

system and generates a set of fuzzy if-then rules as the backbone for a fuzzy

controller that behaves like the original human operator. Usually we can obtain

two types of information from a human operator: "linguistic information" and

"numerical information".

Linguistic information: An experienced human operator can usually summarize

his or her reasoning process in arriving at final control actions or decisions as a set

of fuzzy if-then rules with imprecise but roughly correct membership functions;

© 2002 Taylor & Francis

46 NEURAL NETWORKS FOR CONTROL

this corresponds to the linguistic information supplied by human experts, which is

obtained via a lengthy interview process plus a certain amount of trial and error.

Numerical information: When a human operator is working, it is possible to

record the sensor data observed by the human and the human's corresponding

actions as a set of desired input-output data pairs. This data set can be used as

training data in constructing a fuzzy controller.

Prior to the emergence of neuro-fuzzy approaches, most design methods

used only linguistic information to build fuzzy controllers; this approach is not

easily formalized and is more of an art than an engineering practice. Following

this approach usually involves manual trial-and-error processes to fine-tune the

membership functions. Successful fuzzy control applications based on linguistic

information plus trial-and-error tuning include steam engine and boiler control

(Mamdani & Assilian, 1975), Sendai subway systems (Yasunobu & Miyamoto,

1985), nuclear reaction control (Bernard, 1988), automobile transmission control

(Kasai & Morimoto, 1988), aircraft control (Chiu, Chand, Moore & Chaudhary,

199 I), and many others.

Now, with learning algorithms, we can take further advantage of the

numerical information (input-output data pairs) and refine the membership

functions in a systematic way. In other words, we can use linguistic information to

identify the structure of a fuzzy controller, and then use numerical information to

identify the parameters such that the fuzzy controller can reproduce the desired

action more accurately.

3.3.1 Inverse learning

The development of "inverse learning" (Widrow & Steams, 1985) for designing

neuro-fuzzy controllers involves two phases. In the learning phase, an on-line or

off-line technique is used to model the inverse dynamics of the plant. The

obtained neuro-fuzzy model, which represents the inverse dynamics of the plant,

is then used to generate control actions in the application phase. These two

© 2002 Taylor & Francis

MODELLMG, SIMULATION AND CONTROL . . . 47

phases, can proceed simultaneously, hence this design method fits in perfectly

with the classical adaptive control scheme.

By assuming that the order of the plant (that is, the number of state

variables) is known and all state variables are measurable, we have

x(k+l) = f(x(k), u(k)) (3.26)

where x(k+l) is the state at time k+l, x(k) is the state at time k, and u(k) is the

control signal at time k (assuming for simplicity that u(k) is a scalar). Similarly,

the state at time k+2 is expressed as

x(k+2) = f(x(k+l), u(k+l)) = f(f(x(k), u(k)), u(k+l)) (3.27)

In general, we have

x(k+n) = F(x(k), U) (3.28)

where n is the order of the plant, F is a multiple composite function off , and U is

the control actions from k to k+n-1, which is equal to

[u(k), u(k+l), ..., u(k+n- 1)]T

The preceding equation points out the fact that given the control input u from time

k to k+n-1, the state of the plant will move from x(k) to x(k+n) in exactly n time

steps. Furthermore, we assume that the inverse dynamics of the plant do exist, that

is, U can be expressed as an explicit function of x(k) and x(k+n):

U = G(x(k), x(k+n)) (3.29)

This equation essentially says that there exists a unique input sequence U,

specified by mapping G, that can drive the plant from state x(k) to x(k+n) in n

time steps. The problem now becomes how to find the inverse mapping G.

Although the inverse mapping G in Equation (3.29) exists by assumption,

it does not always have an analytically closed form. Therefore, instead of looking

for methods of solving Equation (3.29) explicitly, we can use an adaptive network

or ANFIS with 2n inputs and n outputs to approximate the inverse mapping G

according to the generic training data pairs

[x(k)T , x(k+n)T ; UT] (3.30)

Figure 3.8 illustrates the situation in which n is equal to 1. Figure 3.8 (a)

shows a plant block in which the plant output x(k+l) is a function of a previous

state x(k) and input u(k); we use z-1 block to represent the unit-time delay

operator. Figure 3.8 (b) is the block diagram during the training phase; Figure 3.8

(c) is the block diagram during the application phase.

© 2002 Taylor & Francis

48 NEURAL NETWORKS FOR CONTROL

Assume that the adaptive network truly imitates the input-output mapping

of the inverse dynamics G. Then, given the current state x(k) and the desired
A

hture state xd(k+n), the adaptive network will generate an estimated U:

fr = e(X(k), xd(kfn)) (3.31)

(a)
x(k+ 1)

Plant

uk"L~=!~b iden ' er

i '
@I Plant

x(k+l)
(c)

I - I
I

Figure 3.8 Block diagram for the inverse learning method: (a) plant block;

I
I
I ,

(b) training phase; (c) application phase

After n steps, this control sequence can bring the state x(k) to the desired
A

state xd(k+n), assuming that the adaptive network function G is exactly the same

z- I

as the inverse mapping G. This application phase is shown in the block diagram

of Figure 3.8 (b). If the future desired state xd(k+n) is not available in advance, we

can use the current desired state xd(k) in Figure 3.8 (b). This implies that the

current desired state will appear after n time steps and the whole system behaves

,
i Plant
I

I x(k)

like a pure n-step time delay system.

, I
u(k) I I

I

I x(k+l) = f(u(k), x(k))
I I
I I .----------------------------------

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 49

A

When G is not close to G, the control sequence U cannot bring the state to

xd(k+n) in exactly the next n time step. As more data pairs are used to refine the
/'

parameters in the adaptive network, G will become closer to G and the control

will be more and more accurate as the training process goes on.

For off-line applications, we have to collect a set of training data pairs and

then train the adaptive network in the batch mode. For on-line applications to deal

with time-varying systems, the control actions in Equation (3.31) are generated

every n time steps while on-line learning occurs at every time step. Alternatively,

we can generate the control sequence at every time step and apply only the first

component to the plant. Figure 3.9 is a block diagram for on-line learning when n

is equal to 1. The dashed line in the figure indicates that the two ANFIS blocks are

exact duplicates of each other. (For simplicity, we have removed the unit-time

delay operator from this figure).

x(k) -b
-

ANFIS Plant b
~d(k+l) -b
'7 I +

Duplicate

Figure 3.9 Block diagram for on-line inverse learning

3.3.2 Specialized learning

A major problem with inverse learning is that an inverse model does not always

exist for a given plant. Moreover, inverse learning is an indirect approach that

tries to minimize the network output error instead of the overall system error

© 2002 Taylor & Francis

50 NEURAL NETWORKS FOR CONTROL

(defined as the difference between desired and actual trajectories). "Specialized

learning" (Psaltis, Sideris & Yarnamura, 1988) is an alternative method that tries

to minimize the system error directly by backpropagating error signals through the

plant block. The price that we pay is that we need to know more about the plant

under consideration.

Figure 3.10 illustrates the most basic type of specialized learning, Figure

3.10 (a) is the plant block (assuming its order is I), and Figure 3.10 (b) indicates

the training of the ANFIS controller. The ANFIS parameters are updated to reduce

the system error e,(k), which is defined as the difference between the system's

output x(k) and the desired output xd(k).

Desired Model
I - -1 x(k) - 1 .

x(k+ 1) = eu(k), x(k))
I

u(k)
I
I
I I .----------------------------------

(a) , , xa(k+l) - > ,

u(k) b
Desired
Model

Figure 3.10 (a) Desired model block; (b) specialized learning

with model referencing

To be more specific, let the plant dynamics be specified by

x(k+ 1) = f(x(k), v(k))

and the ANFIS output be denoted as

Q(k) = F(x(k), u(k), 8)

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 5 1

where 8 is a parameter vector to be updated. If we set the ANFIS output as the

plant's input, then v(k) = G(k) and we have a closed-loop system specified by

x(k+l) = f(x(k), F(x(k), u(k), 8))
The objective of specialized learning is to minimize the difference

between the closed-loop system and the desired model. Hence we can define an

error measure:

J(8) = ; Ilf(x(k), F(x(k), u(k), 8)) - xd(k+l)l12 (3.33)

We can use backpropagation or steepest descent to update 9 to minimize the

above error measure. To find the derivative of J(8) with respect to 9, we need to

know the derivative o f f with respect to its second argument. In other words, to

backpropagate error signals through the plant block in Figure 3.10 (b), we need to

know the "Jacobian matrix" of the plant, where the element at row i and column j

is equal to the derivative of the plant's ith output with respect to its jth input. This

usually implies that we need a model for the plant and the Jacobian matrix

obtained from the model, which could be a neural network, an ANFIS, or another

appropriate mathematical description of the plant.

For a single-input plant, if the Jacobian matrix is not easily found directly,

a crude estimate can be obtained by approximating it directly from the changes in

the plant's input and output(s) during two consecutive time instants. Other

methods that aim at using an approximate Jacobian matrix to achieve the same

learning effects can be found in Chen and Pao (1989).

It is not always convenient to specify the desired plant output xd(k) at

every time instant k. As a standard approach in model reference adaptive Control,

the desired behavior of the overall system can be implicitly specified by a model

that is able to achieve the control goal satisfactorily. Let the desired model be

specified by

xd(k+l) = Rx(k), u(k))

Then the error measure in Equation (3.33) becomes

Again, we still need the Jacobian matrix of the plant to do backpropagation.

Note that the ANFIS controller in Equation (3.32) represents the most

general situation. More commonly, the ANFIS controller is a function of x(k) and

© 2002 Taylor & Francis

52 NEURAL NETWORKS FOR CONTROL

8 only and the input to the plant v(k) is expressed as the difference between the

command signal u(k) and ANFIS output, as follows:

$(k) = ~ (k) - F(x(~), e) .

3.4 Adaptive Model-Based Neuro-Control

This section briefly reviews various approaches in current adaptive neuro-control

design (Odmivar & Elliot, 1997). Although there are other ways to classify these

approaches (e.g., Hunt, Sbarbaro, Zbikowski & Gawthrop, 1992) this section

nevertheless adopts one similar to adaptive control theory: 1) indirect neuro-

control and 2) direct neuro-control.

In the indirect neuro-control scheme, a neural network does not send a

control signal "directly" to the process. Instead, a neural network is often used as

an indirect process characteristics indicator. This indicator can be a process model

that mimics the process behavior or a controller auto-tuner that produces

appropriate controller settings based upon the process behavior. In this category,

the neuro-control approaches can be roughly distinguished as follows: 1) neural

network model-based control, 2) neural network inverse model-based control, and

3) neural network auto-tuner development.

In the direct neuro-control scheme, a neural network is employed as a

feedback controller, and it sends control signals "directly" to the process.

Depending on the design concept, the direct neuro-control approaches can be

categorized into: 1) controller modelling, 2) model-free neuro-control design, 3)

model-based neuro-control design, and 4) robust model-based neuro-control

design.

Regardless of these distinctions, a unifying framework for neuro-control is

to view neural network training as a non-linear optimization problem,

NN: min J(w)
W

in which one tries to find an optimal representation of the neural network that

minimizes an objective function J over the network weight space w. Here, NN

indicates that the optimization problem formulation involves a neural network.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 53

The role a neural network plays in the objective hnction is then a key to

distinguishing the various neuro-control design approaches.

3.4.1 Indirect Neuro-Control

The most popular control system application of neural networks is to use a neural

network as an input-output process model. This approach is a data-driven

supervised learning approach, i.e., the neural network attempts to mimic an

existing process from being exposed to the process data (see Figure 3.11). The

most commonly adopted model structure for such a purpose is the non-linear auto-

regressive and moving average with exogenous inputs (known as NARMAX)

model or a simpler NARX (Su, McAvoy & Werbos, 1992). Alternatively, one can

choose to identify a continuous-time model with a dynamic neural network.

Regardless of the model structure and the control strategy, the neuro-control

design in this case can be conceptually stated as follows:

NN: min F (yp - yn(w, ...)) (3.36)
W

where yp stands for plant/process output, yn for neural network output, and w for

neural network weights. Here F is a functional that measures the performance of

the optimization process. It is usually an integral or sum of the prediction errors

between yp and y,. For example, in this model development stage, process inputs

and outputs (up, yp) are collected over a finite period of time and used for neural

network training.

Plant

, ------ T_ - - - - - -

u '

Figure 3.1 1 Neural Network as a black-box model of a process

© 2002 Taylor & Francis

54 NEURAL NETWORKS FOR CONTROL

At the implementation stage, nevertheless, the neural network model

cannot be used alone. It must be incorporated with a model-based control scheme.

In the chemical process industry, for example, a neural network is usually

employed in a non-linear model predictive control (MPC) scheme (Su & McAvoy,

1993). Figure 3.12 illustrates the block diagram of an MPC control system. In

fact, the MPC control is also an optimization problem.

Figure 3.12 Neural network model with non-linear model

predictive control (MPC)

The optimization problem here can be expressed as follows:

min F' { y* - yn (u, ...)) (3.37)
U

where y* designates the desired close-loop process output, u the process/model

input or control signal, and y, the predicted process output (by the neural network

model). Here F' stands for an objective function that evaluates the closed-loop

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 5 5

performance. For example, the optimization problem in the implementation stage

is usually as follows:

where y*(t) stands for desired set point trajectory and d(t) for estimated

disturbance. This optimization is performed repeatedly at each time interval

during the course of feedback control. Although the constrains are not particularly

of interest in the discussion, one advantage of this indirect control design

approach over the direct ones is that the constraints can be incorporated when

solving the above optimization problem.

In some cases, a certain degree of knowledge, about the process might be

available, such as model structure or particular physical phenomena that are well

understood. In this case, a full black-box model might not be most desirable. For

example, if the structure of the process model is available, values for the

associated parameters can be determined by a neural network. Examples of these

parameters can be time constants, gains, and delays or physical parameters such as

diffusion rates and heat transfer coefficients. When model structure is not known

a priori, neural networks can be trained to select elements of a model structure

from a predetermined set. Lastly, in other cases where model structure is partially

known, neural networks can also be integrated with such a partial model so that

the process can be better model (see Figure 3.1 3).

For illustration purposes, the parametric or partial neural network

modelling problem can be formulated as follows:

NN: min F { yp - ym (0, ...) } , 0 = N (w, ...) (3.39)
W

where y, is the predicted output from the model and 8 stands for the process

parameters, model structural information and other elements required to complete

the model. Notice the only difference between Equation (3.39) and Equation

(3.36) is that ym replaces y,. From a model-based control standpoint, this

approach is essentially identical to the full black-box neural network model except

that the neural network does not directly mimic the process behavior.

© 2002 Taylor & Francis

NEURAL NETWORKS FOR CONTROL

Plant I b
I
I
I
I
I
I
I I _ _ _ _ _ - - _ _ _ _ _ - - - - - - - - - - - - I

Neural
Network I I I .__--_____---_-

f
I
I

I I I
I Model I I I

I b
I I
I I
I I

: Complete Model I
Y ,

I
L _ _ _ _ _ _ - - _ _ _ _ _ - _ _ _ _ - - - - - I

Figure 3.13 A neural network can be a parameter estimator, model structure

selector, or a partial element of a physical model

A neural network can be trained to develop an inverse model of the plant.

The network input is the process output, and the network output is the

corresponding process input (see Figure 3.14). In general, the optimization

problem can be formulated as

NN: min F { u*p-l - u, (w, ...)) (3.40)
W

where u * ~ - , is the process inputs. Typically, the inverse model is a steady

statelstatic model, which can be used for feedforward control. Given a desired

process set point y*, the appropriate steady-state control signal u* for this set

point can be immediately known:

u* = K (y*, ...) (3.41)

Successful applications of inverse modelling are discussed in (Miller,

Sutton & Werbos, 1995). Obviously, an inverse model exists only when the

process behaves monotonically as a "forward" function at steady state.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

b b
I
I Plant

I
I

v
4 Neural

Network
4

Figure 3.14 A neural network inverse model

As in the previous case where neural networks can be used to estimate

parameters of a known model, they can also be used to estimate tuning parameters

of a controller whose structure is known a priori. A controller's tuning parameter

estimator is often referred to as an autotuner. The optimization problem in this

case can be formulated as follows:

NN: min F { q* - q, (w, ...)) (3.42)
W

where q* denotes the controller parameters as targets and rjn stands for the

predicted values by the neural network. Network input can comprise sampled

process data or features extracted from it. However, these parameters q cannot be

uniquely determined from the process characteristics. They also depend on the

desired closed-loop control system characteristics. Usually, the controller

parameters are solutions to the following closed-loop control optimization:

min F' (y* - yplm (u, ...)) ; u = C(q, ...) (3.43)

where C is a controller with a known structure. Here, yplm denotes that either a

process or a model can be employed in this closed-loop control in order to find the

target controller C.

© 2002 Taylor & Francis

NEURAL NETWORKS FOR CONTROL

3.4.2 Direct Neuro-Control

Among the four direct neuro-control schemes, the simplest for neuro-controller

development is to use a neural network to model an existing controller (see Figure

3.15). The input to the existing controller is the training input to the network and

the controller output serves as the target. This neuro-control design can be

formulated as follows:

NN: min F {u*, - u, (w, ...)) (3.44)
W

where u*, is the output of an existing controller C*. Usually, the existing

controller C* can be a human operator or it can be obtained via

min F' (y* - yp/, (u, ...)) ; u = C(...) (3.45)
C

Like a process model, a controller is generally a dynamical system and

often comprises integrators or differentiators. If a feedforward network is used to

model the existing controller, dynamical information must be explicitly provided

as input to the network.

b

Figure 3.15 The simplest approach to neuro-control is to use a

neural network to model an existing controller

I I - - - - - - - - - - - - 1
I

v 4

v ' - - - - - - - - - - - - .
I - - - - - - - - - - - - - - - -
I

Controller

b

b
I
I
I

Neural
Network

I
I

b

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 59

While the benefits of this approach may be apparent when the existing

controller is a human, its utility may be limited. It is applicable only when an

existing controller is available, which is the case in many applications. Staib &

Staib (1992) discuss how it can be effective in a multistage training process.

In the absence of an existing controller, some researchers have been

inspired by the way a human operator learns to "control/operate" a process with

little or no detailed knowledge of the process dynamics. Thus they have attempted

to design controllers that by adaptation and learning can solve difficult control

problems in the absence of process models and human design effort. In general,

this model-free neuro-control can be stated as:

NN: min F {y* - yp (u, ...)} , u = N (w, ...) (3.46)
W

where yp is the output from the plant. The key feature of this direct adaptation

control approach is that a process model is neither known in advance nor

explicitly developed during control design. Figure 3.16 is a typical representation

of this class of control design.

Figure 3.16 The model-free control design concept

I I
I I

I
I I

I
I I

I
I I

I
I I

I
I I

I
I I

I
I I

I
I I

I
I
I

I v
I u

Neural
I Y
b r +

Network Plant

© 2002 Taylor & Francis

60 NEURAL NETWORKS FOR CONTROL

The first work in this area was the "adaptive critic" algorithm proposed by

Barto et al. (1983). Such an algorithm can be seen as an approximate version of

dynamic programming. In this work, they posed a well-known cart-pole balancing

problem and demonstrated their design concept. In this class of control design,

limitedpoor information is often adopted as an indication of performance criteria.

For example, the objective is the cart-pole balancing problem is simply to

maintain the pole in a near-upright balanced position for as long as possible. The

instructional feedback is limited to a "failure" signal when the controller fails to

hold the pole in an upright position. The cart-pole problem has become a popular

test-bed for explorations of the model-free control design concept.

Despite its historical importance and intuitive appeal, model-free adaptive

neuro-control is not appropriate for most real-world applications. The plant is

most likely out of control during the learning process, and few industrial processes

can tolerate the large number of "failures" needed to adapt the controller.

From a practical perspective, one would prefer to let failures take place in

a simulated environment (with a model) rather than in a real plant even if the

failures are not disastrous or do not cause substantial losses. As opposed to the

previous case, this class of neuro-control design is referred to as "model-based

neuro-control design". Similar to Equation (3.46), as a result, the problem

formulation becomes

NN: min F {y* - y, (u, ...)) , u = K (w, ...) (3.47)
W

Here, yp in Equation (3.46) is replaced by y,-the model's output. In this case,

knowledge about the processes of interest is required. As can be seen in Figure

3.17, a model replaces the plantlprocess in the control system.

If a process model is not available, one can first train a second neural

network to model the plant dynamics. In the course of modelling the plant, the

plant must be operated "normally" instead of being driven out of control. After the

modelling stage, the model can then be used for control design. If a plant model is

already available, a neural network controller can then be developed in a

simulation in which failures cannot cause any loss but that of computer time. A

neural network controller after extensive training in the simulation can then be

installed in the actual control system.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 61

In fact, these "model-based neuro-control design" approaches have not

only proven effective in several studies (Troudet, 1991), but also have already

produced notable economic benefits (Staib, 1993). Nevertheless, the quality of

control achieved with this approach depends crucially on the quality of the process

model. If a model is not accurate enough, the trained neuro-controller is unlikely

to perform satisfactorily on the real process. Without an on-line adaptive

component, this neuro-controller does not allow for plant drifts or other factors

that could adversely affect the performance of the control system.

Figure 3.17 A model replaces the plant/process in the control system

during the control design phase

The neuro-controller approaches discussed above still share a common

shortcoming: A neural network must be trained for every new application.

Network retraining is needed even with small changes in the control criterion,

such as changes in the relative weighting of control energy and tracking response,

or if the controller is to be applied to a different but similar processes. In order to

avoid such drawbacks, the concept of "robustness" is naturally brought into the

© 2002 Taylor & Francis

62 NEURAL NETWORKS FOR CONTROL

design of a neuro-controller. In robust model-based neuro-control design, a family

of process models is considered instead of just a nominal one (see Figure 3.18).

Often such a family is specified by a range of noise models or range of the process

parameters. Robust neuro-control design can be formulated as follows:

NN: min F {y* - y,i (u, ...)) , u = t.C (w, ...), 'd mi E M (3.48)
W

where mi stands for the ith member of the model family M. Ideally, the real

process to be controlled should belong to this family as well so that the controller

is robust not only for the model but also for the real process.

Two aspects of robustness are commonly distinguished. Robust Stability

refers to a control system that is stable (qualitatively) over the entire family of

processes, whereas robust performance refers to (quantitative) performance

criteria being satisfied over the family (Morari & Zafiriou, 1989). Not

surprisingly, there is a tradeoff to achieve robustness. By optimizing a neural

network controller based upon a fixed (and accurate) process model, high

performance can be achieved as long as the process remains invariant, but at the

likely cost of brittleness. A robust design procedure, on the other hand, is not

likely to achieve the same level of nominal performance but will be less sensitive

to process drifts, disturbances, and other sources of process-model mismatch.

I
Figure 3.18 Robust model-based neuro-control

I I
I I

I
I I

I
I I 1
I I
I
I v
I u

I
I

r

I

Y I
b

-
Neural

Network
Model b

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

3.4.3 Parameterized Neuro-Control

All the above neuro-control approaches share a common shortcoming-the need for

extensive application-specific development efforts. Each application requires the

optimization of the neural network controller and may also require process model

identification. The expense in time and computation has been a significant barrier

to widespread implementation of neuro-control systems.

In an attempt to avoid application-specific development, a new neuro-

control design concept-parameterized neuro-control (PNC)-has evolved (Samad &

Foslien, 1994). Figure 3.19 illustrates this PNC strategy. The PNC controller is

equipped with parameters that specify process characteristics and those that

provide performance criterion information. For illustration purposes, a PNC can

be conceptually formulated as follows:
n

NN: min F(E) {y* - ymi (0, u, ...)) , u = N (w, 0, E, ...) , V mi@) E M(0)
W (3.49)

where E designates the parameter set that defines the space of performance
f i

criteria, 8 stands for the process parameter set, 0 is the estimates for process

parameters, and again M(0) is a family of parameterized models mi(€)) in order to

account for errors in process parameters estimates 0.

In fact, the two additional types of parameters (E and 0) make a PNC

generic. A PNC is generic in two respects: 1) the process model parameters 0

facilitate its application to different processes and 2) the performance parameters E

allow its performance characteristics to be adjustable, or "tunable". For example,

if a PNC is designed for first-order plus delay processes, the process parameters

(i.e., process gain, time constant, and dead time) will be adjustable parameters to

this PNC. Once developed, this PNC requires no application-specific training or

adaptation when applied to a first-order plus delay process. It only requires

estimates of these process parameters. These estimates do not have to be accurate

because the robustness against such inaccuracy is considered in the design phase.

© 2002 Taylor & Francis

NEURAL NETWORKS FOR CONTROL

- - - - - - - r - - - - - - - - - - - ,: Training ?-----------------------------^------------
I
I , I

I L - - -
I I

I 1------- I

I 1 A I
I 1 1 1 I
I I ,--- I Process and other I
I I

I I I
I I I

I Parameterization , I
I I r - - - i , ------------------------: ! I

I

Figure 3.19 Parameterized Neuro-Control

3.5 Summary

In this chapter, we have presented the main ideas underlying Neural Networks and

the application of this powerful computational theory to general control problems.

We have discussed in some detail the backpropagation learning algorithm for

f e e d f o m d networks, the integration of fuzzy logic techniques to neural

networks to form powerful adaptive neuro-fuzzy inference systems and the basic

concepts and current methods of neuro-fuzzy control. At the end, we also gave

some remarks about adaptive neuro-control and model-based control of non-linear

dynamical systems. In the following chapters, we will show how neural network

techniques (in conjunction with other techniques) can be applied to solve real

world complex problems of control. This chapter will serve as a basis for the new

hybrid intelligent control methods that will be described in Chapter 7 of this book.

© 2002 Taylor & Francis

Chapter 4

Genetic Algorithms and Fractal Theory for Modelling
and Simulation

This chapter introduces the basic concepts and notation of genetic algorithms and

simulated annealing, which are two basic search methodologies that can be used

for modelling and simulation of complex non-linear dynamical systems. Since

both techniques can be considered as general purpose optimization

methodologies, we can use them to find the mathematical model which minimizes

the fitting errors for a specific problem. On the other hand, we can also use any of

these techniques for simulation if we exploit their efficient search capabilities to

find the appropriate parameter values for a specific mathematical model. We also

present in this chapter the basic concepts and notation of Dynamical Systems and

Fractal theory, which are two powerful mathematical theories that enable the

understanding of complex nonilinear phenomena. Dynamical Systems theory

gives us the general framework for treating non-linear systems and enables the

identification of the different dynamical behaviors that can occur for a particular

dynamic system. On the other hand, Fractal theory gives us powerful concepts and

techniques that can be used to measure the complexity of geometrical objects. In

particular, the concept of the fractal dimension can be used to measure the

© 2002 Taylor & Francis

66 GENETIC ALGORITHMS AND FRACTAL THEORY . . .

geometrical complexity of a data set and this information could be used for

modelling as will be illustrated in Chapter 5 of this book.

Genetic algorithms and simulated annealing have been used extensively

for both continuous and discrete optimization problems (Jang, Sun & Mizutani,

1997). Common characteristics shared by these methods are described next.

a Derivative freeness: These methods do not need functional derivative

information to search for a set of parameters that minimize (or maximize)

a given objective function. Instead they rely exclusively on repeated

evaluations of the objective function, and the subsequent search direction

after each evaluation follows certain heuristic guidelines.

a Heuristic guidelines: The guidelines followed by these search procedures

are usually based on simple intuitive concepts. Some of these concepts are

motivated by so-called nature's wisdom, such as evolution and

thermodynamics.

Flexibility: Derivative freeness also relieves the requirement for

differentiable objective functions, so we can use as complex an objective

function as a specific application might need, without sacrificing too much

in extra coding and computation time. In some cases, an objective function

can even include the structure of a data-fitting model itself, which may be

a fuzzy model.

a Randomness: These methods are stochastic, which means that they use

random number generators in determining subsequent search directions.

This element of randomness usually gives rise to the optimistic view that

these methods are "global optimizers" that will find a global optimum

given enough computing time. In theory, their random nature does make

the probability of finding an optimal solution nonzero over a fixed amount

of computation time. In practice, however, it might take a considerable

amount of computation time.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 67

Analytic opacity: It is difficult to do analytic studies of these methods, in

part because of their randomness and problem-specific nature. Therefore,

most of our knowledge about them is based on empirical studies.

Iterative nature: These techniques are iterative in nature and we need

certain stopping criteria to determine when to terminate the optimization

process. Let K denote an iteration count and fk denote the best objective

function obtained at count k; common stopping criteria for a maximization

problem include the following:

1) Computation time: a designated amount of computation time, or

number of function evaluations and/or iteration counts is reached.

2) Optimization goal: fk is less than a certain preset goal value.

3) Minimal improvement: fk - fk-1 is less than a preset value.
4) Minimal relative improvement: (fk - fk-1)/ fk-l is less than a preset

value.

Both genetic algorithms (GAS) and simulated annealing (SA) have been

receiving increasing amounts of attention due to their versatile optimization

capabilities for both continuous and discrete optimization problems. Moreover,

both of them are motivated by so-called "nature's wisdom": GAS are based on the

concepts of natural selection and evolution; while SA originated in annealing

processes found in thermodynamics and metallurgy.

4.1 Genetic Algorithms

Genetic algorithms (GAS) are derivative-free optimization methods based on the

concepts of natural selection and evolutionary processes (Goldberg, 1989). They

were first proposed and investigated by John Holland at the University of

Michigan (Holland, 1975). As a general-purpose optimization tool, GAS are

moving out of academia and finding significant applications in many areas. Their

popularity can be attributed to their freedom from dependence on functional

derivatives and their incorporation of the following characteristics:

© 2002 Taylor & Francis

GENETIC ALGORITHMS AND FRACTAL THEORY . . .

GAS are parallel-search procedures that can be implemented on parallel

processing machines for massively speeding up their operations.

GAS are applicable to both continuous and discrete (combinatorial)

optimization problems.

GAS are stochastic and less likely to get trapped in local minima, which

inevitably are present in any optimization application.

GAS' flexibility facilitates both structure and parameter identification in

complex models such as h z y inference systems or neural networks.

GAS encode each point in a parameter (or solution) space into a binary bit

string called a "chromosome", and each point is associated with a "fitness value"

that, for maximization, is usually equal to the objective function evaluated at the

point. Instead of a single point, GAS usually keep a set of points as a "population",

which is then evolved repeatedly toward a better overall fitness value. In each

generation, the GA constructs a new population using "genetic operators" such as

crossover and mutation; members with higher fitness values are more likely to

survive and to participate in mating (crossover) operations. After a number of

generations, the population contains members with better fitness values; this is

analogous to Darwinian models of evolution by random mutation and natural

selection. GAS and their variants are sometimes referred to as methods of

"population-based optimization" that improve performance by upgrading entire

populations rather than individual members. Major components of GAS include

encoding schemes, fitness evaluations, parent selection, crossover operators, and

mutation operators; these are explained next.

Encodinn schemes: These transform points in parameter space into bit string

representations. For instance, a point (1 1, 4, 8) in a three-dimensional parameter

space can be represented as a concatenated binary string:

1011 0100 1000
-TJ+-TJ

11 4 8

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 69

in which each coordinate value is encoded as a "gene" composed of four binary

bits using binary coding. other encoding schemes, such as gray coding, can also be

used and, when necessary, arrangements can be made for encoding negative,

floating-point, or discrete-valued numbers. Encoding schemes provide a way of

translating problem-specific knowledge directly into the GA framework, and thus

play a key role in determining GAS' performance. Moreover, genetic operators,

such as crossover and mutation, can and should be designed along with the

encoding scheme used for a specific application.

Fitness evaluation: The first step after creating a generation is to calculate the

fitness value of each member in the population. For a maximization problem, the

fitness value fi of the ith member is usually the objective hnction evaluated at this

member (or point). We usually need fitness values that are positive, so some kind

of monotonical scaling and/or translation may by necessary if the objective

function is not strictly positive. Another approach is to use the rankings of

members in a population as their fitness values. The advantage of this is that the

objective function does not need to be accurate, as long as it can provide the

correct ranking information.

Selection: After evaluation, we have to create a new population from the current

generation. The selection operation determines which parents participate in

producing offspring for the next generation, and it is analogous to "survival of the

fittest" in natural selection. Usually members are selected for mating with a

selection probability proportional to their fitness values. The most common way

to implement this is to set the selection probability equal to:

where n is the population size. The effect of this selection method is to allow

members with above-average fitness values to reproduce and replace members

with below-average fitness values.

© 2002 Taylor & Francis

70 GENETIC ALGORITHMS AND FRACTAL THEORY.. .

Crossover: To exploit the potential of the current population, we use "crossover"

operators to generate new chromosomes that we hope will retain good features

from the previous generation. Crossover is usually applied to selected pairs of

parents with a probability equal to a given "crossover rate". "One-point crossover"

is the most basic crossover operator, where a crossover point on the genetic code

is selected at random and two parent chromosomes are interchanged at this point.

In "two-point crossover", two crossover points are selected and the part of the

chromosome string between these two points is then swapped to generate two

children. We can define n-point crossover similarly. In general, (n-1)-point

crossover is a special case of n-point crossover. Examples of one-and two-point

crossover are shown in Figure 4.1.

crossover point

Figure 4.1 Crossover operators: (a) one-point crossover; (b) two-point crossover.

Mutation: Crossover exploits current gene potentials, but if the population does

not contain all the encoded information needed to solve a particular problem, no

amount of gene mixing can produce a satisfactory solution. For this reason, a

"mutation" operator capable of spontaneously generating new chromosomes is

included. The most common way of implementing mutation is to flip a bit with a

probability equal to a very low given "mutation rate". A mutation operator can

prevent any single bit from converging to a value throughout the entire population

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 7 1

and, more important, it can prevent the population from converging and stagnating

at any local optima. The mutation rate is usually kept low so good chromosomes

obtained from crossover are not lost. If the mutation rate is high (above 0.1), GA

performance will approach that of a primitive random search. Figure 4.2 provides

an example of mutation.

1001 11 10 =

Figure 4.2 Mutation operator.

Mutated bit
.L

1001 1010

In the natural evolutionary process, selection, crossover, and mutation all

occur in the single act of generating offspring. Here we distinguish them clearly to

facilitate implementation of and experimentation with GAS.

Based on the aforementioned concepts, a simple genetic algorithm for

maximization problems is described next.

Step 1 : Initialize a population with randomly generated individuals and evaluate

the fitness value of each individual.

Step 2: Perform the following operations:

(a) Select two members from the population with probabilities

proportional to their fitness values.

(b) Apply crossover with a probability equal to the crossover rate.

(c) Apply mutation with a probability equal to the mutation rate.

(d) Repeat (a) to (d) until enough members are generated to form the next

generation.

Step 3: Repeat steps 2 and 3 until a stopping criterion is met.

Figure 4.3 is a schematic diagram illustrating how to produce the next

generation from the current one.

© 2002 Taylor & Francis

72 GENETIC ALGORITHMS AND FRACTAL THEORY . . .

Current Generation Next Generation

Figure 4.3 Producing the next generation in GAS.

4.2 Simulated Annealing

"Simulated Annealing" (SA) is another derivative-free optimization method that

has recently drawn much attention for being as suitable for continuous as for

discrete (combinational) optimization problems (Otten & Ginneken, 1989). When

SA was first proposed (Kirkpatrick, Gelatt & Vecchi, 1983) it was mostly known

for its effectiveness in finding near optimal solutions for large-scale combinatorial

optimization problems, such as traveling salesperson problems and placement

problems. Recent applications of SA and its variants (Ingber & Rosen, 1992) also

demonstrate that this class of optimization approaches can be considered

competitive with other approaches when there are continuous optimization

problems to be solved.

Simulated annealing was derived from physical characteristics of spin

glasses (Kirkpatrick, Gelatt & Vecchi, 1983). The principle behind simulated

annealing is analogous to what happens when metals are cooled at a controlled

rate. The slowly falling temperature allows the atoms in the molten metal to line

themselves up and form a regular crystalline structure that has high density and

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 73

low energy. But if the temperature goes down too quickly, the atoms do not have

time to orient themselves into a regular structure and the result is a more

amorphous material with higher energy.

In simulated annealing, the value of an objective function that we want to

minimize is analogous to the energy in a thermodynamic system. At high

temperatures, SA allows function evaluations at faraway points and it is likely to

accept a new point with higher energy. This corresponds to the situation in which

high-mobility atoms are trying to orient themselves with other nonlocal atoms and

the energy state can occasionally go up. At low temperatures, SA evaluates the

objective function only at local points and the likelihood of it accepting a new

point with higher energy is much lower. This is analogous to the situation in

which the low-mobility atoms can only orient themselves with local atoms and the

energy state is not likely to go up again.

Obviously, the most important part of SA is the so-called "annealing

schedule" or "cooling schedule", which specifies how rapidly the temperature is

lowered from high to low values. This is usually application specific and requires

some experimentation by trial-and-error.

Before giving a detailed description of SA, first we shall explain the

fundamental terminology of SA.

Obiective function: An objective function f(.) maps an input vector x into a scalar

E: E = f(x),

where each x is viewed as a point in an input space. The task of SA is to sample

the input space effectively to find an x that minimizes E.

Generating function: A generating function g(. , .) specifies the probability density

function of the difference between the current point and the next point to be

visited. Specifically, Ax (= x,,, - x) is a random variable with probability

density function g(Ax,T), where T is the temperature. For common SA (especially

in combinatorial optimization applications), g(. , .) is usually a function

independent of the temperature T.

© 2002 Taylor & Francis

74 GENETIC ALGORITHMS AND FRACTAL THEORY . . .

Acceptance function: After a new point x,,, has been evaluated, SA decides

whether to accept or reject it based on the value of an acceptance function h(. , .).

The most frequently used acceptance function is the "Boltzmann probability

distribution" :

where c is a system-dependent constant, T is the temperature, and AE is the energy

difference between x,,, and x:

AE = f(x,,,) - f(x)

The common practice is to accept x,,, with probability h(AE , T).

Annealing schedule: An annealing schedule regulates how rapidly the temperature

T goes from high to low values, as a function of time or iteration counts. The

exact interpretation of "high" and "low" and the specification of a good annealing

schedule require certain problem-specific physical insights and/or trial-and-error.

The easiest way of setting an annealing schedule is to decrease the temperature T

by a certain percentage at each iteration.

The basic algorithm of simulated annealing is the following:

Step 1: Choose a start point x and set a high starting temperature T. Set the

iteration count k to 1.

Step 2: Evaluate the objective function E = f(x) .
Step 3: Select Ax with probability determined by the generating function g(Ax, T).

Set the new point x,,, equal to x + Ax .
Step 4: Calculate the new value of the objective function: En,, = f(x,,,) .
Step 5: Set x to x,,, and E to En,, with probability determined by the acceptance

function h(AE , T), where AE = En,,- E .
Step 6: Reduce the temperature T according to the annealing schedule (usually by

simply setting T equal to qT, where is a constant between 0 and 1).

Step 7: Increment iteration count k. If k reaches the maximum iteration count, stop

the iterating. Otherwise, go back to step 3.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 75

In conventional SA, also known as "Boltzmann machines", the generating

function is a Gaussian probability density function:

g(Ax , T) = (2nT)-nI2 exp[-11 Ax 112 / (2T)l (4.2)
where Ax (= x,,, - x) is the deviation of the new point from the current one, T is

the temperature, and n is the dimension of the space under exploration. It has been

proven (Geman & Geman, 1984) that a Boltzman machine using the

aforementioned generating function g(. , .) can find a global optimum of f(x) if

the temperature T is reduced no faster than To / Ink .
Variants of Boltzmann machines include the "Cauchy machine" or "fast

simulated annealing" (Szu & Hartley, 1987), where the generating function is the

Cauchy distribution:

The fatter tail of the Cauchy distribution allows it to explore farther from the

current point during the search process.

Another variant of the original SA, the so-called "very fast" simulated

annealing (Ingber & Rosen, 1992), was designed for optimization problems in a

constrained search space. Very fast simulated annealing has been reported to be

faster than genetic algorithms on several test problems by the same authors.

4.3 Basic Concepts of Fractal Theory

In this section we present a brief overview of the field of Non-Linear Dynamical

Systems and Fractal Theory. Recently research has shown that many simple non-

linear deterministic systems can behave in an apparently unpredictable and

"chaotic" manner (Grebogi, Ott, & Yorke, 1987). The existence of complicated

dynamics has been discussed in the mathematical literature for many decades with

important contributions by PoincarC, Birkhoft, Smale and Kolmogorov and his

students, among others. Nevertheless, it is only recently that the wide-ranging

impact of "chaos" has been recognized. Consequently, the field is now undergoing

explosive growth, and many applications have been made across a broad spectrum

of scientific disciplines-robotics, engineering, physics, chemistry, fluid mechanics

© 2002 Taylor & Francis

76 GENETIC ALGORITHMS AND FRACTAL THEORY . . .

and economics, to name several. We start with some basic definitions of concepts

used in this book.

Dynamic System: This is a set of mathematical equations that allows one, in

principle, to predict the future behavior of the system given the past. One example

is a system of first-order ordinary differential equations in time:

= G(x,t) (4.4)

where x(t) is a D-dimensional vector and G is a D-dimensional vector function of

x and t. Another example is a map.

m: A map is an equation of the following form:

Xt+l = F(xt) (4.5)
where the "time" t is discrete and integer valued. Thus, given x,, the maps gives

XI . Given X I , the map gives x2, and so on.

Dissipative system: In Hamiltonian (conservative) systems such as the ones

arising in Newtonian mechanics of particles (without friction), phase space

volumes are preserved by time evolution (the phase space is the space of variables

that specify the state of the system). Consider, for example, a two-dimensional

phase space (q, p), where q denotes a position variable and p a momentum

variable. Hamilton's equations of motion take the set of initial conditions at time t

=to and evolve them in time to the set at time t = tl . Although the shapes of the

sets are different, their areas are the same. By a dissipative system we mean one

that does not have this property. Areas should typically decrease (dissipate) in

time so that the area of the final set would be less than the area of the initial set.

As a consequence of this, dissipative systems typically are characterized by the

presence of attractors.

Attractor: If one considers a system and its phase space, then the initial conditions

may be attracted to some subset of the phase space (the attractor) as time t + a.
For example, for a damped harmonic oscillator the attractor is the point at rest.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 77

For a periodically driven oscillator in its limit cycle the limit set is a closed curve

in the phase space.

Strange attractor: In the above two examples, the attractors were a point, which is

a set of dimension zero, and closed curve, which is a set of dimension one. For

many other attractors the attracting set can be much more irregular (some would

say pathological) and, in fact, can have a dimension that is not an integer. Such

sets have been called "fractal" and, when they are attractors, they are called

strange attractors. The existence of a strange attractor in a physically interesting

model was first demonstrated by Lorenz (see Lorenz, 1963).

Chaotic attractor: By this term we mean that if we take two typical points on the

attractor that are separated from each other by a small distance A(0) at t = 0, then

for increasing t they move apart exponentially fast. That is, in some average sense:

A(t) - A(0) exp(h t) (4.6)
with 3L > 0 (where 3L is called the Lyapunov exponent). Thus a small uncertainty in

the initial state of the system rapidly leads to inability to forecast its future. It is

typically the case that strange attractors are also chaotic.

One of the most prominent, chaotic, continuous-time dynamical systems is

the "Lorenz attractor", named after the meteorologist E.N. Lorenz who

investigated the three-dimensional, continuous-time system

x' = S(- x + y)
yt = rx - y - xz s, r, b > 0 (4.7)
z ' = - b z + x y

emerging in the study of turbulence in fluids. For r above the critical value of r =

28.0, trajectories of Equation (4.7) evolve in a rather unexpected way. Suppose

that a trajectory starts at an initial value near the origin. For some time the

trajectory regularly spirals outward from one fixed point, then the trajectory jumps

to a region near another fixed point and does the same thing. As trajectories

starting at different initial values all converge to and remain in the same region

near the two fixed points, the region is considered an "attractor". It is a "strange

attractor" because it is neither a point nor a closed curve. In general, this chaotic

behavior can only occur for systems of at least three simultaneous non-linear

© 2002 Taylor & Francis

78 GENETIC ALGORITHMS AND FRACTAL THEORY . . .

differential equations or for systems of at least a one-dimensional non-linear map

(Devaney, 1989).

Fractal geometry is a mathematical tool for dealing with complex systems

that have no characteristic length scale. A well known example is the shape of a

coastline. When we see two pictures of a coastline on two different scales, we

cannot tell which scale belongs to which picture: both look the same. This means

that the coastline is scale invariant or, equivalently, has no characteristic length

scale. Other examples in nature are rivers, cracks, mountains, and clouds. Scale-

invariant systems are usually characterized by noninteger ("fractal") dimensions.

The dimension tell us how some property of an object or space changes as

we view it at increased detail. There are several different types of dimension. The

fractal dimension df describes the space filling properties of an object. Three

examples of the fractal dimension are the self-similarity dimension, the capacity

dimension, and the Hausdorff-Besicovitch dimension. The topological dimension

dT describes how points within an object are connected together. The embedding

dimension d, describes the space in which the object is contained.

The fractal dimensions df are useful and important tools to quantify self-

similarity and scaling. Essentially, the dimension tell us how many new pieces are

resolved as the resolution is increased. The self-similarity dimension can only be

applied to geometrical self-similar objects, where the small pieces are exact copies

of the whole object. However the capacity dimension can be used to analyze

irregularly shaped objects that are statistically self-similar. On the other hand, the

Hausdorff-Besicovitch dimension requires more complex mathematical tools. For

this reason, we will limit our discussion here to the capacity dimension.

A ball is the set of points within radius r of a given point. We determine

N(r) the minimum number of balls required so that each point in the object is

contained within at least one ball of radius r. In order to cover all the points of the

object, the balls may need to overlap. The capacity dimension is defined by the

following equation:
d, = lim log N(r) .

log(l/r)

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 79

The capacity dimension defined as above is a measure of the space filling

properties of an object because it gives us an idea of how much work is needed to

cover the object with balls of changing size.

A useful method to determine the capacity dimension is to choose balls

that are the non-overlapping boxes of a rectangular coordinate grid. N(r) is then

the number of boxes with side of length r that contain at least one point of the

object. Efficient algorithms have been developed to perform this "box counting"

for different values of r, and thus determine the box counting dimension as the

best fit of log N(r) versus log(l1r).

The fractal dimension df characterizes the space-filling properties of an

object. The topological dimension dT characterizes how the points that make up

the object are connected together. It can have only integer values. Consider a line

that is so long and wiggly that it touches every point in a plane and thus covers an

area. Because it covers a plane, its space-filling fractal dimension df = 2.

However, no matter how wiggly it is, it is still a line and thus has topological

dimension dT=l. Thus, the essence of a fractal is that its space-filling properties

are larger than one anticipates from its topological dimension. Thus we can now

present a formal definition of a fractal (Mandelbrot, 1987), namely, that an object

is a fractal if and only if d f > d T .
However, there is no one definition that includes all the objects or processes that

have fractal properties.

Despite the identification of fractals in nearly every branch of science, too

frequently the recognition of fractal structure is not accompanied with any

additional insight as to its cause. Often we do not even have the foggiest idea as to

the underlying dynamics leading to the fractal structure. The chaotic dynamics of

non-linear systems, on the other hand, is one area where considerable progress has

been made in understanding the connection with fractal geometry. Indeed, chaotic

dynamics and fractal geometry have such a close relationship that one of the

hallmarks of chaotic behavior has been the manifestation of fractal geometry,

particularly for strange attractors in dissipative systems (Rasband, 1990). For a

practical definition we take a "strange attractor", for a dynamic system, to be an

attracting set with fractal dimension. For example, the famous Lorenz strange

attractor has a fractal dimension of about 2.06. Also, we think that beyond only

© 2002 Taylor & Francis

80 GENETIC ALGORITHMS AND FRACTAL THEORY . . .

this relationship between strange attractors and the fractal dimension of the set,

there is a deeper relationship between the underlying dynamics of a system and

the fractal nature of its behavior. We will explore this relationship in more detail

in the following chapter.

4.4 Summary

In this chapter, we have presented the main ideas underlying Dynamical

Systems and Fractal theory and we have only started to point out the many

possible applications of these two powerful mathematical theories. We have

discussed in some detail the concepts of strange attractors, chaotic behavior and

fractal dimension. The concept of the fractal dimension will be the basis of the

method for time series analysis that will be used in Chapter 5 to achieve

Automated Mathematical Modelling of dynamic systems. Also, we have

introduced two basic intelligent search methodologies that can be used for

mathematical modelling and simulation. We have described in some detail how

genetic algorithms can be used for the optimization of non-linear functions.

Genetic algorithms can be used for modelling by defining an appropriate objective

function or they can be used for simulation if they are aimed mainly at searching

the parameter space (of the models) in an efficient way. In Chapter 6, we will

explore this approach to achieve automated simulation of non-linear dynamical

systems. We have also described in this chapter an alternative search method

called simulated annealing, which is also a good choice for optimization

problems.

© 2002 Taylor & Francis

Chapter 5

Fuzzy-Fractal Approach for Automated Mathematical
Modelling

We describe in this chapter a new method to perform automated mathematical

modelling for non-linear dynamic systems using SC techniques, Dynamical

Systems Theory and Fractal Theory. The idea of using Dynamical Systems Theory

(DST) and Fractal Theory (FT) as alternative approaches for modelling can be

justified if we consider that traditional statistical methods only have limited

success in real world complex applications, and this is mainly because many real

problems show very complicated dynamics in time. Traditional statistical methods

assume that the erratic behavior of a time series is mainly due to a external

random error (that can not be explained (Castillo & Melin, 1994)). However, a

DST approach, using non-linear mathematical models, can explain this erratic

behavior because "chaos" is an intrinsic part of this type of models (Castillo &

Melin, 1995a). It is a well known fact from DST (see Devaney, 1989), that even

very simple non-linear mathematical models can exhibit the behavior known as

"chaos" for certain parameter values, and therefore are good candidates to use as

equations for modelling complex dynamic systems (Castillo & Melin, 1995b).

Fractal Theory (see Mandelbrot, 1987), also offers a way to explain the erratic

behavior of a time series, but the method is geometrical in the sense that the

© 2002 Taylor & Francis

82 FUZZY-FRACTAL APPROACH FOR AUTOMATED . . .

fractal dimension is used to describe the complexity of the distribution of the data

points (Castillo & Melin, 1996a).

We describe a prototype implementation of our new method for

Automated Mathematical Modelling (AMM) as a computer program written in the

PROLOG programming language (Bratko, 1990). This computer program can be

considered an intelligent system for the domain of Non-linear Dynamical Systems

(NDS) because it uses SC techniques to obtain the "best" mathematical model for

a given dynamic system. The use of SC techniques is to achieve the goal of

automated modelling of NDS by simulating (in the computer) how human experts

in this domain obtain the "best" model for a given problem. Given a specific time

series the intelligent system develops mathematical models based on the geometry

of the data. The method for AMM consists of three main parts: Time Series

Analysis, Developing a Set of Admissible Models and Selecting the Best Model.

First, the intelligent system uses the fractal dimension to classify the components

of the time series over a set of qualitative values, then the system uses this

information to decide (using a fuzzy rule base) which dynamical models are the

most appropriate for the data, and finally the system decides which model is the

"best" one using heuristics and statistical calculations. The use of Fuzzy logic in

real-world applications has been now well recognized and many systems have

been developed (Yamamoto & Yun, 1997). In this case, we came to the

conclusion that the best way to convey the information of modelling problems

was using fuzzy sets (Badiru, 1992). Also, we think that the best way to reason

with uncertainty in this case is using Fuzzy Logic.

The intelligent system develops only the kind of mathematical models that

are more likely to give a "good" prediction based on the knowledge that human

experts have about this matter. This knowledge is contained in the knowledge

base of the intelligent system, and is the main factor in limiting the number of

models that the system explores (Castillo & Melin, 1996b). The intelligent system

also has some generalized knowledge about the mathematical models that we

expect to discover in the NDS domain (Castillo & Melin, 1996~). This knowledge

is expressed as families of parameterized mathematical models.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

5.1 The Problem of Automated Mathematical Modelling

The problem of achieving automated mathematical modelling can be defined

formally as follows (Castillo & Melin, 1994) :

Given: A data set (time series) with m data points, D = {dl, d2, ..., dm) where

di E Rn, i = 1 ,..., m , a n d n = 1 , 2 ,... .
Goal: From the data set D, discover automatically the "best" mathematical

model for the time series.

This problem is not a simple one, because in theory there can be an infinite

number of mathematical models that can be build for a given data set (Rao & Lu,

1993). So the problem lies in knowing which models to try for a data set and then

to select the "best" one. Let M be the space of mathematical models defined for a

given data set D. Let MA = {MI, ..., Mq) be the set of admissible models that are

considered to be appropriate for the geometry of the data set D. The problem is to

find automatically the "best" model Mb for time series prediction (Castillo &

Melin, 1995a).

We can consider mathematical statistical models of the following form:

Y = F(X) + E (0,o) (5.1)
where E (0,o) represents a 0-mean Gaussian noise-process with standard deviation

o . F(X) is a polynomial equation in X, where the p predictor variables are in the

vector:

X = (XI, X2, .. ., Xp).

We can also consider mathematical models as "dynamical systems" of the

following form:

dY/dt = F(Y) (5.2)

where Y is a vector of variables of the form @ is the number of variables):

= (Y17 Y2, ... 7 Y ~)
and F(Y) is a non-linear function of Y. Other kind of mathematical models are the

discrete "dynamical systems" of the following form:

Y, = F(X) (5.3)

© 2002 Taylor & Francis

84 FUZZY-FRACTAL APPROACH FOR AUTOMATED . . .

where X = (Yt-,, Yt-2, ..., Yt-p) and F(X) is a non-linear function of X. Note that in

these last two cases we have deterministic models expressed as differential or

difference equations.

We consider the use of the fractal dimension as a mathematical model of

the time series in the following form:

d = [log(N)/log(l/r)] (5.4)

where d is the fractal dimension for an object of N parts, each scaled down by a

ratio r. For an estimation of this dimension we can use the following equation:

N(r) = p[I/@] (5.5)
where N(r) = number of boxes contained in a geometrical object and r = size of

the box. We can obtain the box dimension of a geometrical object (Mandelbrot,

1987) counting the number of boxes for different sizes and performing a

logarithmic regression on this data. For our particular case the geometrical object

consists of the curve constructed using the set of points from the time series. We

show in Figure 5.1 (a) the curve and the boxes used to cover it. In Figure 5.1 (b)

the corresponding logarithmic regression is illustrated.

0 t time 0 In@>
(a) (b)

Figure 5.1 Fractal dimension of a time series: (a) the curve and the boxes covering

it, (b) the logarithmic regression to find d

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 85

The models for the statistical methods can be linear as well as non-linear

equations. We show below some sample statistical models (Gujarati, 1987) that

can be used for mathematical modelling:

a) linear regression: Y t = a + b t (5-6)

b) quadratic regression: Yt = a + bt + ct2 (5.7)
c) logarithmic regression: lnYt = a + blnt (5.8)

d) semi-log regression: Yt = a + blnt (5.9)

e) first order autoregression: Y t = a + bYt_l (5.10)

f) second order autoregression: Yt = a + bYt-l+cYt-2 (5.1 1)

The mathematical models for continuous dynarnical systems can be one-

dimensional, two-dimensional, three-dimensional and so on. We show below

some sample models (Rasband, 1990) that can be used for mathematical

modelling:

a) Logistic differential equation:

dYl/dt = a Y1(l - Y1) (5.12)

b) Lotka Volterra two dimensional:

dYl/dt = aY1 - bYlY2 (5.13)

dY2/dt = bY Y2 - cY2

c) Lotka Volterra three dimensional:

dY ,/dt = Y ,(I - Y - aY2 - by3)

dY2/dt = Y2(1 - by1 - Y2 - aY3)

dY3/dt = Y3(l - aYl - by2 - Y3)

d) Lorenz three dimensional:

dYl/dt = aY2 - aY1

dY2/dt=- Y1Y3 + by1 - Y2 (5.1 5)

dY3/dt = Y ,Y2 - cY3

The mathematical models for discrete dynamical systems can also be one,

two, three dimensional or more. We show below some sample models (Rasband,

1990) that can be used for mathematical modelling:

a) Logistic difference equation:

Yt+1 = aYt(1 - Y,)

© 2002 Taylor & Francis

86 FUZZY-FRACTAL APPROACH FOR AUTOMATED . . .

b) Logistic two dimensional difference equation:

yt+1 = xt
xt+1 = aXt(1 - Xt)

c) Lotka Volterra two dimensional:

Yt+* = aYt - bYtXt

- bYtXt - cXt Xt+l -
d) Henon map two dimensional:

yt+1 = x,
x,+~ = a - x t2 + bYt

In all of the above mathematical models a, b and c are parameters that

need to be estimated using the corresponding numerical methods. For example,

for the regression models we can use the least squares method (Gujarati, 1987) for

parameter estimation, but for the differential equations we need to use a Gauss-

Newton type method (Jang, Sun & Mizutani, 1997).

5.2 A Fuzzy-Fractal Method for Automated Modelling

In this section, we show how SC techniques can be used to automate the process

of discovering the best model for a given dynamical system. The human experts

usually try several (in some cases many) mathematical models before they are

satisfied with the "goodness" of one model. The experts use their knowledge

about modelling problems in a specific domain to limit their search of models, in

this way obtaining the "best" results as quickly as possible. The main goal of our

work was to capture this knowledge of modelling in a computer program, in this

way obtaining a software tool capable of emulating intelligent behavior in the

domain of NDS (Castillo & Melin, 1997a). In the remaining of this section we

describe the basic algorithm for discovering mathematical models, then in the

following section the implementation of the algorithm as a computer program in

the PROLOG programming language.

Our new method for solving the automated modelling problem is based on

several novel ideas. We consider that the modelling problem can be divided in

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 87

three main parts: Time Series Analysis, Selection of Appropriate Models and

Selection of the Best Model. The first part of the problem consists in obtaining the

time series components from the data. Our solution to this part of the problem is a

new classification scheme based on the notion of the fractal dimension . This

classification scheme is a one to one map between the fractal dimension of the

data set and the qualitative values for the components of the time series (Castillo

& Melin, 1995a). Once this part of the problem is solved, the second part consists

in simulating an expert decision process that gives us the set of Mathematical

Models appropriate for the geometry of the time series. This expert decision

process is simulated using SC techniques and is the main part of the method for

AMM (Castillo & Melin, 1997b). The third part of the problem consists in

designing a method to compare all the models obtained in the second part, to

obtain which one is the "best" model for the given time series. Our method to

compare all the models has to consider statistical measures of goodness between

non-linear dynamical systems and linear statistical models, to decide which model

fits best the data set (time series).

The new algorithm for automated mathematical modelling is shown in

Figure 5.2.

STEP 1 Read the data set D = {dl, d2, ..., dm).

STEP 2 Time Series Analysis of the set D to find the components.

STEP 3 Find the set of Admissible models MA = {MI, M2, ..., Mq),

using the qualitative values of the time series components.

STEP 4 Find the "Best" mathematical model Mb from the set MA using

the measures of "goodness" of each of the models from the set

MA.

Figure 5.2 Algorithm for automated mathematical modelling

© 2002 Taylor & Francis

88 FUZZY-FRACTAL APPROACH FOR AUTOMATED . .

We call this algorithm IDIMM (for Intelligent Discovery of Mathematical

Models) and is an integration of SC techniques with Dynamical Systems Theory,

Fractal Theory and Statistical Methods, to obtain mathematical models for a given

time series. In the following section we will show how this algorithm can be

implemented to achieve the goal of AMM for Dynamical Systems.

5.3 Implementation of the Method for Automated Modelling

The implementation of the new method for AMM as a computer program was

done using the PROLOG programming language (the complete program for

general dynamical systems is shown in Appendix A). The choice of PROLOG is

because of its symbolic manipulation features and also because it is an excellent

language for developing Prototypes (Bratko, 1990). The computer program was

developed using an architecture very similar to that of an intelligent system

(knowledge base, inference engine and user interface) with the addition of a

numerical module for parameter estimation (see Figure 5.3). We will focus our

description of implementation details only to the knowledge base of the intelligent

system because this is the most important part of the computer program. In the

program, the knowledge base is the part that simulates the process of model

discovery described by steps 2 to 4 in the IDIMM algorithm of the last section.

Accordingly, the knowledge base consists of three Expert Modules: Time Series

Analysis, Expert Selection and Best Model Selection. In the following lines we

will describe each of these modules.

5.3.1 Description of the Time Series Analysis Module

This module is the implementation of Step 2 of the IDIMM algorithm and

contains the knowledge necessary for time series analysis, i.e., the knowledge to

extract from the data the time series components. Our method for time series

analysis consist in the use of the fractal dimension of the set of points D as a

measure of the geometrical complexity of the time series (Castillo & Melin,

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 89

1996b). We use the value of the fractal dimension to classify the time series

components over a set of qualitative values. Our classification scheme was

obtained by a combination of expert knowledge and mathematical modelling for

several samples of data. To give an idea of this scheme we show in Table 5.1

some sample rules of this module.

Knowledge 1 Base I
Inference

Interface

Module

Figure 5.3 General architecture of the intelligent system

The basic idea behind the rule base of Table 5.1 is that when the fractal

dimension is close to one, we have a data set resembling a line, and when the

fractal dimension is near two, we have a data set with very rapid oscillations

(almost covering a finite area). We performed several experiments with real data

sets to decide on the classification needed for this "Time Series Analysis Module"

and we found that for the moment classifying the periodic components in

"simple", "regular", "difficult" and "chaotic" was sufficient. Also, we only classify

the "trend" component in two kinds: "linear" and "non-linear". Of course, it is

possible that we may need a better classification in the future, for a more accurate

© 2002 Taylor & Francis

90 FUZZY-FRACTAL APPROACH FOR AUTOMATED . . .

implementation of this Module, but now we are only showing how the method can

be implemented.

Table 5.1 Sample rules for time series analysis

IF THEN

Fractal-dimension(D)~(0.8,1.2) Trend = linear, Time-series = smooth

Fractal-dimension(D)~ [1.2,1.5) Trend = non-linear, Time-series = cyclic

Fractal-dimension(D) E [1.5,l. 8) Time-series = erratic

Fractal-dimension(D)~ [I .2,1.4) Periodicgart = simple

Fractal-dimension(D) E [1.4,1.6) Periodicgart = regular

Fractal-dimension(D)~ [1.6,1.7) Periodicqart = difficult

Fractal-dimension(D) E [1.7,l.S) Periodicgart = verydifficult

Fractal dimension(D)~ [1.8,2] Periodic part = chaotic

In conclusion, our method for time series analysis consists of a one to one

mapping between the fractal dimension of the set D and the qualitative values of

the time series components. This set of qualitative values for the components is

the information needed as input for the "Expert Selection Module" (implementing

Step 3 of the algorithm) which will be described next.

5.3.2 Description of the Expert Selection Module

This module is the implementation of the step 3 of the IDIMM algorithm and

contains the knowledge necessary to select the kind of mathematical models more

appropriate for the type of data given, i.e., given the qualitative values of the time

series components decide which models are more likely to give a good prediction.

Our method for selecting the models consists of a set of fuzzy rules (heuristics)

that simulates the human expert decision process of model selection (Castillo &

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 91

Melin, 1997b). In our approach the qualitative values of the time series

components are viewed as fuzzy sets (using the fractal dimension as a

classification variable). We have membership functions for each of the qualitative

values of the time series components. Also, the qualitative values of the

"Type-Model" variable are considered as fuzzy sets and we have membership

functions for each of these values. To give and idea of the way this Expert

knowledge is structured, we show in Table 5.2 some sample rules of this module

(Castillo & Melin, 1998a).

The rules in Table 5.2 show how this expert module selects the appropriate

models for a given dynamical system, using as information the dimensionality of

the problem (number of variables, which are the "Dim" values in Table 5.2) and

the qualitative values of the time series components. Each rule of this table

contains a piece of knowledge about the problem of model selection.

We have to mention here that the role of Fuzzy Logic is very important for

this module, because it enables the simulation of the expert reasoning process

under uncertainty. We came to the conclusion that the rules, for deciding which

models are appropriate for a given time series, can't be categorical because the

complexity of the modelling problems is very high. Since, it is well known that

fuzzy logic has been applied successfully to problems in Engineering and

Manufacturing (Badiru, 1992), and our modelling problem required reasoning

under uncertainty, we decided to use fuzzy logic techniques. In the following lines

we will explain how the knowledge of the experts is contained in the fuzzy rules

of this module with an example.

Suppose that a Time Series Analysis on a particular data set (time series)

for a one-dimensional problem results in a Trend component valued as "non-

linear" with a fractal dimension of 1.37, and a Periodic component valued as

"simple" with the same fractal dimension, then the logical conclusion is that the

"Logistic Map" is the best model for this problem with a 90% degree of certainty.

Of course, other mathematical models have a lower degree of certainty for this

particular example. The reasoning behind this rule is that a time series that

exhibits a non-linear trend and simple periodicity can be modeled by a logistic

map with relatively good accuracy.

© 2002 Taylor & Francis

FUZZY-FRACTAL APPROACH FOR AUTOMATED . . .

Table 5.2 Sample fuzzy rules for model selection

IF THEN

Dim Trend Periodic part Type Model

one non-linear simple logistic-differential-equation

two non-linear simple lotka-volterra-differential-equation

three non-linear regular lorenz-differential-equation

one non-linear simple logistic-differenceequation

two non linear regular lotka volterra difference equation

5.3.3 Description of the Best Model Selection Module

This module is the implementation of step 4 of the IDIMM algorithm and contains

the knowledge to select the "best" mathematical model for prediction, i.e., given

the set of selected models generated by step 3, decide which model is the "best"

one to predict the time series. Our method for selecting the "best" model consists

of comparing the Sum of Squares of Errors (SSE) for all the models and selecting

the one that minimizes SSE. This criteria has the advantage of been valid for all

the types of models that we consider for the intelligent system (statistical models

and non-linear dynamical models). The reasoning behind this criteria is that the

value of the SSE is a measure of how well a particular mathematical model fits

the data (time series) for a given problem. To give an idea of our method, we

show in Table 5.3 a sample case where the set of selected models is:

MS = {MI, M,, M3, M4, M5, M61

and the model with the lowest SSE is M4.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

Table 5.3 Method for best model selection using the SSE

MODEL TYPE SSE BEST

MODEL

MI: Y = a l + blt Statistical SSEl no

M2: Y = a2 + b2t + c2t2 Statistical SSE2 no

M3: 1nY = lna3 + b31nt Statistical SSE3 no

M4: logistic-differential-eq Dynamical SSE, Yes

M5: lotka-volterra-difference-eq Dynamical SSE5 no

M6: lorenz differential eq Dynarnical SSEh no

In Table 5.3 the best model is M4 because:

SSE4 = min (SSEl, SSE2, SSE,, SSE4, SSE,, SSE,)

The implementation of this minimization procedure is easy once the numerical

values of the Sum of the Squares (SSE) are calculated by the numerical module.

We have to say here that this method for selecting the "best" model for a

given problem can be improved in several ways to consider other factors that

relate to this decision process. For example, one may like to consider the "type" of

the model or the "simplicity" of the model as other factors of importance in the

process of "best" model selection. In this case, a set of if-then rules would be

required to make the decision and this module would be then considered a real

"knowledge base". For the moment, we have only a method for "best" model

selection that uses statistical measures and "knowledge" about the process of

mathematical modelling.

© 2002 Taylor & Francis

94 FUZZY-FRACTAL APPROACH FOR AUTOMATED . . .

5.4 Comparison with Related Work

There has been some work recently in the area of numerical law discovery, but

much of the research in Machine Learning is in other areas such as induction

(Sleeman & Edwards, 1992). We think that this is mainly because "discovery" is a

more difficult kind of "learning" (in this case, finding the best mathematical

models for a given data set). However, we can say that automated mathematical

modelling is very important for many domains of application for obvious reasons.

For example, in the engineering and robotics domains is critical to obtain

mathematical models for the problems, to be able to understand them and also to

be able to predict and control their future behavior.

Similar work with respect to Machine Learning can be found in a paper by

Moulet (1992), however the approach to model discovery is different that the one

presented here (this can be seen from the heuristic method proposed by Moulet).

Also in a paper by Rao and Lu (1993) we can see a method for model discovery

for engineering domains, but also with a different approach (his approach is

similar to "clustering"). Also, there is another very important difference with other

authors, in the kind of mathematical models that we are considering for our

intelligent system. We are considering non-linear mathematical models from the

theory of Dynamical Systems and not only linear regression models like other

authors. This is because non-linear dynamical models offer the possibility of

explaining the erratic behavior of real time series with "chaos theory" (Devaney,

1989).

5.5 Summary

We have presented in this chapter a new method for automated mathematical

modelling of non-linear dynamical systems. This method is based on a hybrid

fuzzy-fractal approach to achieve, in an efficient way, automated modelling for a

particular problem using a time series as a data set. The use of the fractal

dimension is to perform time series analysis of the data, so as to obtain a

© 2002 Taylor & Francis

MODELLING. SIMULATION AND CONTROL . . . 95

qualitative characterization of the time series. The use of fuzzy logic techniques is

to simulate the process of expert model selection using the qualitative information

obtained from the time series analysis module. At the end, the "best"

mathematical model is obtained by comparing the measures of goodness for the

selected mathematical models. In Chapter 8, we will explore some advanced

applications of this method for automated mathematical modelling. The results

will show the efficiency and potential benefits of using this new method for

modelling and simulation of complex non-linear dynamical systems.

© 2002 Taylor & Francis

Chapter 6

Fuzzy-Genetic Approach for Automated Simulation

This Chapter describes the important problem of numerical simulation for non-

linear dynamical systems and its solution by using intelligent methodologies. The

numerical simulation of a particular dynamical system consists in the successive

application of a map (difference equation) and the subsequent identification of the

corresponding dynamic behaviors. Automated simulation of a given dynamical

system consists in selecting the appropriate parameter values for the mathematical

model and then applying the corresponding iterative method (map) to find the

limiting behavior. In this chapter, a new method for automated parameter

selection based on the use of genetic algorithms, is introduced. Also, a new

method for dynamic behavior identification based on fuzzy logic, is introduced.

The fuzzy-genetic approach for automated simulation consists in the integration of

the method for automated parameter selection (based on GA) and the method for

behavior identification (based on hzzy logic).

6.1 The Problem of Automated Simulation

In this section, we describe briefly the problem of numerical simulation for non-

linear dynamical systems. First, we present some basic concepts and the main goal

© 2002 Taylor & Francis

98 FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

of the field of numerical simulation. Then, we present some basic concepts about

dynamical systems theory that we consider necessary to understand the methods

that will be described later in the chapter. At the end, we describe the problem of

automated simulation of dynamical systems

6.1.1 Numerical simulation of dynamical systems

Real dynamical systems can be represented by mathematical models expressed as

non-linear differential equations of the form:

dY/dt = f (Y, t, 0) (6.1)
where Y is a vector of dynamic variables, t is time, and 0 is a vector of

parameters, or as non-linear difference equations of the form:

Yt+l = F (Yt, yt-1, . - - 3 0) (6.2)
In the case of Equation (6.1) one says that the model is a continuous one.

On the other hand, for Equation (6.2) the model is considered of the discrete type.

The simulation of the real dynamical system, in the first case, consists in

the numerical solution of the non-linear differential equation along with the

identification of all the possible corresponding dynamic behaviors of the system.

For example, the numerical solution of the differential equation can be obtained

by the well known second-order Runge-Kutta method (Nakamura, 1997):

Yn+ 1 = Yn + 1/2(kl + k2)
kl =hf (Yn,4 , ,0) (6.3)

k 2 = h f (Y,, kl,4,+l, 0)
where h is the stepsize of the method. Equation (6.3) can be used for different

parameter values of 0 to obtain the different dynamic behaviors of the system

described by the model of Equation (6.1). Of course, more advanced methods for

the numerical solution of differential equations can be used if more accuracy is

desired.

The simulation of the real dynamical system, in the second case, consists

in the successive application of the map given by Equation (6.2) for different

parameter values of 0 and then identifying the different corresponding dynamic

behaviors of the system.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 99

In any case, the result of the numerical simulation of the real dynamical

system (represented by Eq. (6.1) or Eq. (6.2)) is a time series of the following

form:

Yl,Y2,Y3, ..., Yp forO=O* (6.4)

this time series represents the motion of the dynamical system for the specific

parameter value 0 = O*. It is well known in dynamical systems theory, that this

time series can have many different types of dynamic behaviors ranging from very

simple periodic fixed points to the very complicated "chaotic" behavior. Even

more, for non-linear mathematical models it is possible to have all the range of

dynamic behaviors for different parameter values of 0. For this reason, the

numerical simulation of relative complex non-linear mathematical models

requires a lot of exploration in order to find all of the possible dynamic behaviors

for the real dynamical system.

6.1.2 Behavior identification for dynamical systems

There are theoretical results that can be used to establish the existence of chaotic

trajectories or other dynamic behaviors for several dynamical systems (Devaney,

1989). However, in many cases it may be difficult or analytically impossible to

detect a period-three cycle (required by Li/Yorke1s Theorem) necessary to identify

chaotic behavior, and for most differential equation systems there are no

theoretical results at all. Experiments show that even for cycles of a relatively low

period it may be impossible to distinguish regular time series from completely

chaotic time series by simple visual inspection.

If a dynamical system is given whose behavior can not be investigated

further by applying the standard geometric or analytical methods, numerical

simulations are appropriate. The generated time series in such a simulation may

exhibit simple patterns like monotonic convergencies or harmonic oscillations.

However, the series may also appear to be random due either to

periodic behavior with a long period

quasiperiodic behavior with many different frequencies

© 2002 Taylor & Francis

FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

deterministic chaos, or to

noise generated by the use of specific algorithms during the

simulation.

The following numerical tools can be useful in deciding whether an actual time

series generated by the simulation of a known dynamical system is regular,

chaotic, or stochastic.

Spectral analysis: Has proven to be particularly useful in attempts to distinguish

periodic and quasi-periodic time series with few frequencies from random

behavior. The aim of spectral analysis is dividing a given time series into different

harmonic series with different frequencies. For example, if a time series consists

of two overlapping harmonic series, spectral analysis attempts to isolate these two

harmonic series and to calculate the involved frequencies. Furthermore, spectral

analysis provides information on the contribution of each harmonic series to the

overall motion. While power spectra are particularly useful in investigating the

periodic or quasi-periodic behavior of dynamical systems, chaotic and random

behavior can not be discriminated with this method. For this reason, we will not

describe this statistical method in more detail.

The short presentation of spectral analysis has shown that traditional

statistical techniques fail to provide a definite answer to the question of whether a

given complex time series is generated by a random process or by deterministic

laws of motion. Appropriate concepts for distinguishing between these two

sources of complex and irregular behavior have emerged only recently, and the

development of new techniques is still in progress. In addition to the empirical

motivation for dealing with these concepts, their discussion will be useful because

new insights into the nature of deterministic chaotic systems can be provided.

Phase space embedding: Of central importance to the numerical investigation of

complex dynamical systems is the notion of the "embedding dimension". Suppose

that a dynamical process is generated by a deterministic set of equations like

X' t+l = gi(xt), x E Rn, i = 1, ..., n (6.5)

© 2002 Taylor & Francis

MODELLING, SIMULATION A N D CONTROL . . . 10 1

and let a certain xj be the variable which attracts the attention of an observer. The

observer neither knows the structural form of (6.5) and its dimension n, or can he

be sure that this measurement of the quantity xjt is correct. Denote the observed

value of the variable xj at t as %jt and let
-
xJt = h(xt) (6.6)

i.e., the observed variable depends on the "true" values XI,, but the measurement

of the variable may imply differences between dt and xjt.

The measurement procedure over time generates a time series { %Jt }Tt=l.

An "embedding" is an artificial dynamical system which is constructed from the

one-dimensional time series in the following way: consider the last element 2jT in

the observed time series and combine it with its m predecessors into a vector EmT

= (%jT , %jT.., , ~ j ~ - ~ + ~). Perform this grouping for every element %jt in the

descending order t = T, ..., 1 and drop the remaining m-1 first elements in the

original time series because they do not possess measured predecessors. The m-

dimensional vector PT is called the "m-history" of the observation zjt. Since the

first elements are dropped, the sequence of the vectors { Zmt STt,, is shorter than

the original time series and varies with the length of the history. The length m is

called the "embedding dimension".

Each m-history describes a point in an m-dimensional space, the

coordinates of which are the delayed observed values in the vector gmt . The

sequence { xmt ITt,, of points will therefore form a geometric object in this space.

It was proven by Takens (198 1) that this object is topologically equivalent to the

appropriate object generated by the true dynamical system (6.5) if the functions gi

and h are smooth and m > 2n-1. If these conditions are satisfied, it is thus

theoretically possible to reconstruct the behavior of the (unknown) true dynamical

system from a single observed time series.

Correlation dimension: Suppose that an attractor is chaotic and consider two

points on this attractor which are far apart in time. Due to the sensitive

dependence on initial conditions, these points are dynamically uncorrelated since

arbitrarily small measurement errors in the determination of the initial point can

lead to drastically different locations of the second point. However, as both points

© 2002 Taylor & Francis

102 FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

are located on an attractor, they may come close together in phase space, i.e., they

may be spatially correlated.

The two points P i , 2m.i are said to be spatially correlated if the Euclidian

distance is less than a given radius r of an m-dimensional ball centered at one of

the two points, i.e., / / zmi - zmJ I / < r. The spatial correlation between all points on

the attractor for a given r is measured by

c(r,m) = lim 2 x [number of pairs i j with distance / / zmi - ~ i m j 11 < r] (6.7)
7 '3m ~2

The function c(r,m) is called the "correlation integral". The "correlation

dimension" is defined as:

DC(m) = lim In c(r,m)
0 In r

The calculated values of the correlation dimension are close to the Hausdorff-

Besicovitch dimension and do not exceed it. Obviously, the correlation dimension

can be computed more easily than the Hausdorff-Besicovitch dimension since

counting is the essential ingredient in calculating the correlation dimension: fix a

small r and count the number of points N(r) lying in a ball centered at a xml.

Perform this procedure for every xml and calculate c(r,m) and DC(m).

Lyapunov exponents: Strange attractors are geometrically characterized by the

simultaneous presence of "stretching" and "folding", implying that two initially

close points will be projected to different locations in phase space. The presence

and interaction of stretching and folding in a certain dynamical system can be

described via the so-called "Lyapunov exponents". The Lyapunov exponents

constitute a quantity for characterizing the rate of divergence of two initial points

(Rasband, 1990). Note that this divergence on the attractor is a dynamical

property. Consider first the discrete-time case with an n--dimensional mapping

xt+ 1 = f(xt) , x E Rn (6.9)
and two initial points xo and x'o. Let the difference ax, = x, - x', be small. After,

the first iteration, the difference between the two points will be

X I - xI1 = f(')(x0) - fll)(xlo) (6.10)

A linear approximation of the difference yields

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 103

where d Al)(xo) Idx is the Jacobian matrix J. After N iterations the difference

between the corresponding points will be

XN - xIN = fCN)(x0) - RN)(x'~) (6.12)

and linearization yields

xN - x', = df(N)@o) 6xo (6.13)
dx -

where, by the chain rule, dW)(xo) - / dx = JW) equals the product of N Jacobian

matrices J evaluated at x,.

As J(N) is an nxn matrix, it also possesses n eigenvalues. Denote the

eigenvalues of this matrix as ANi and rearrange them such that ANl 2 AN2 2 ... AN,.

The Lyapunov exponents hi; i = I , ..., n, are defined as

hi = lim 1 log2(ANi) (6.14)
N 3 - a N

An analogous procedure for the continuous-time case leads to

with T E R, i.e., the time step between iterations tends to zero.

The meaning of the Lyapunov exponents can be interpreted as follows:

when all Lyapunov exponents are negative on an attractor, the attractor is an

asymptotically stable fixed point. When one or more Lyapunov exponents are

non-negative, then at least one exponent must vanish. A limit cycle must involve a

hi = 0 and thus cannot occur in the one-dimensional case. A torus can emerge

only in at least three-dimensional phase space. As two cyclical directions are

involved in a 2-torus, two of its Lyapunov exponents are equal to zero. If one of

the exponents is positive, chaotic motion prevails (Rasband, 1990).

The characterization of the behavior of low-dimensional continuous-time

dynamical systems by means of their Lyapunov exponents is summarized in Table

6.1. Empty fields indicate the impossibility of the appropriate dynamical behavior

if the dimension n is two low.

© 2002 Taylor & Francis

FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

Table 6.1 Lyapunov exponents and Dynamical Behavior in

Continuous-Time Systems

Dimension Asymptotic Limit cycle Torus Chaos
Stability (T1) (T2>

6.1.3 Automated simulation of dynamical systems

The problem of performing an efficient simulation for a particular dynamical

system can be better understood if we consider a specific mathematical model. Let

us consider the following model:

X' = o(Y-X)

Y ' = r X - Y - X Z (6.1 6)

Z '=XY - bZ

where X, Y, Z, o7 r, b E R, and o , r and b are three parameters which are normally

taken, because of their physical origins, to be positive. The equations are often

studied for different values of r in 0 < r < oo. This mathematical model has been

studied by Rasband (1 990) to some extent, however there are still many questions

to be answer for this model with respect to its very complicated dynamics for

some ranges of parameter values.

If we consider simulating Equation (6.16), for example, the problem is of

selecting the appropriate parameter values for o, r, b, so that the interesting

dynamical behavior of the model can be extracted. The problem is not an easy

one, since we need to consider a three-dimensional search space o r b and there

are many possible dynamical behaviors for this model. In this case, the model

consisting of three simultaneous differential equations, the behaviors can range

from simple periodic orbits to very complicated chaotic attractors. Once the

parameter values are selected then the problem becomes a numerical one, since

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 105

then we need to iterate an appropriate map to approximate the solutions

numerically.

The problem of performing automated simulation for a particular

dynamical system is then of finding the "best" set of parameter values for the

mathematical model. Our general algorithm (Castillo & Melin, 1995c) for

selecting the "best" set of parameter values is shown in Figure 6.1.

The algorithm shown in Figure 6.1 can be explained as follows: first, the

mathematical model is analyzed to "understand" it; second, a set of admissible

parameters is generated using the understanding of the model; third, a specific

genetic algorithm is used to select the best set of parameter values; finally, the

numerical simulations are performed and the dynarnical behaviors are identified

using fuzzy logic.

STEP 1 Read the mathematical model M.

STEP 2 Analyze the model M to "understand" its complexity.

STEP 3 Generate a set of admissible parameters using the understanding of

the model.

STEP 4 Perform a selection of the "best" set of parameter values. This set is

generated using a specific genetic algorithm.

STEP 5 Perform the simulations by solving numerically the equations of the

mathematical model. At this time the different types of dynamical

behaviors are identified using a hzzy rule base.

Figure 6.1 New algorithm for selecting the best set of parameter values.

The implementation of the new method for Automated Simulation as a

computer program was done using the PROLOG programming language (the

complete program is shown in Appendix B). The choice of PROLOG is because

of its symbolic manipulation features and also because it is an excellent language

© 2002 Taylor & Francis

106 FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

for developing prototypes (Bratko, 1990). The general architecture of the

prototype intelligent system for simulation is the same as the one shown in Figure

5.3. The main difference is that the knowledge base for simulation now consists of

two modules: Parameter Selection, and Dynamic Behavior Identification. In the

following lines we will describe these two modules in more detail.

6.2 Method for Automated Parameter Selection using
Genetic Algorithms

The knowledge for simulation of the intelligent system consists in the application

of a specific genetic algorithm (Jang, Sun & Mizutani, 1997) to select the best set

of parameters of a particular dynamical system. Our genetic algorithm for

parameter value selection (Castillo & Melin, 1998b) can be defined as shown in

Figure 6.2.

STEP 1 Initialize a population with randomly generated individuals

(parameters) and evaluate the fitness value of each individual

STEP 2 (a) Select two members from the population with probabilities

proportional to their fitness values

(b) Apply crossover with a probability equal to the crossover rate

(c) Apply mutation with a probability equal to the mutation rate

(d) Repeat (a) to (d) until enough members are generated to form the

next generation

STEP 3 Repeat steps 2 and 3 until the stopping criterion is met

Figure 6.2 Genetic algorithm for parameter value selection.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 107

The fitness function should evaluate the dynamical information given by a

particular set of parameter values, i.e. the fitness b c t i o n should measure the

power of the parameter set. Lets consider a three-dimensional model with 3

parameters 0, a and y, then assuming that we have only four possible dynamical

behaviors (for a given system):

BO: fixed point of period 1

B 1 : fixed point of period 2

B2: fixed point of period 4

B3: fixed point of period 8

B4: chaotic behavior

we will have that the parameter set n = (0,a,y), where 0,a,y E R, can result in any

of the five possible behaviors. In this case, we need to consider 5 individuals in

the Population and an initial population can be denoted as:

For an initial population there is a high probability that most of the ni could give

the BO behavior, so there has to be evolution to obtain a better parameter set. The

identification of the respective behaviors can be done by iteration of the dynamic

systems or by other mathematical means, for example the fractal dimension or the

Lyapunov exponents (Rasband, 1990). The fitness value of each individual in

population Pi can by defined as follows (Castillo & Melin, 1998a):

F(nij) = 1 for fixed point of period 1

F(n") = 2 for fixed point of period 2
1J

F(n..) = 4 for fixed point of period 4 ?I
F(nij) = 8 for fixed point of period 8

F(nij) = 10 for chaotic behavior

this is only one of the possible schemes that can be used for this case. In this case,

we have assigned the fitness values proportional to the complexity of the dynamic

behavior to guide the search of the genetic algorithm. However, the specific

numeric values could be changed to suit the needs of particular applications. We

need to remember here that the fitness function has to be designed for each

specific application of a genetic algorithm.

© 2002 Taylor & Francis

108 FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

A more general form for defining the fitness function for real dynamical

systems can be establish by using the fractal dimension df of the time series

generated by the numerical simulation of the dynamical system. Mathematically,

we can define the fitness function as:

F(rrij) = e df(nd) , 0 5 df s 3, (6.17)

where dAnij) = fractal dimension of the time series for parameter set nij. The

general idea of Equation (6.17) is to assign a bigger value to the fitness function

when the complexity of the time series, generated by the simulation, is greater

(which is true, of course, when df is of a higher value). Of course, here the use of

the exponential function is only to spread the values of the fractal dimension but

other functions could be used as well.

6.3 Method for Dynamic Behavior Identification using
Fuzzy Logic

Once the parameter values have been found and the numerical simulations have

been performed then the final step is to identify the possible dynamic behaviors of

the system. The knowledge for behavior identification can be expressed as a

fuzzy-rule base that uses the information obtained in the numerical simulation to

identify the different behaviors of the model. To give an idea of how this

knowledge can be expressed as a fuzzy-rule base we show below two sample

schemes that can be used for behavior identification.

6.3.1 Behavior identification based on the analytical properties
of the model

We can build a set of fuzzy rules for dynamic behavior identification based on the

analytical properties of the mathematical models and using the well known

theorems of dynamical systems theory (Castillo & Melin, 1997b). To give an idea

of how this knowledge can be translated to fuzzy rules we show below some

sample rules for several types of dynamical systems.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 109

1) Single-link ~ o b d t Model: This mathematical model of a sinusoidally non-linear

robot consist of two simultaneous differential equations:

q' = Q (6.1 8)
Q' = (K,I - Nsin(q) - FdQ) / M4

where the parameters I, Mq, N, Fd and Kt are all positive. Lim, Hu and Dawson

(1 996) have presented an extensive gallery of periodic and a-periodic motions for

this model. In this case the equilibria (q*,Q*) is stable if and only if the real parts

of the eigenvalues are negative and this is equivalent to the rule:

IF a > O THEN Equilibria = stable

where a is defined by the characteristic equation:

A2+aA+b=O

with a = - trJ, b = detJ. Where "trJ" is the trace and "detJ" is the determinant of the

Jacobian Matrix.

2) Other Bi-dimensional Models: Similar bi-dimensional autonomous models can

be written in the following manner:

X' = a f(X,Y) (6.19)

Y' = P g(X,Y)
In this case, the Equilibria (X*,Y*) is stable if:

a fx + (gy - P) < 0
where fx and gy are partial derivatives. In fuzzy logic language we have the

following rule:

IF [a fx + (gy - P) < 0] THEN Equilibria = stable

Also we have the following rule for a Hopf Bifurcation:

IF ao = (0 - gy)ffx THEN Hopf-Bifurcation

which gives us the condition for a Hopf bifurcation to occur.

3) Firth's Model of a sin~le-mode laser: The basic equations of a single-mode

(unidirectional) homogeneously broadened laser in a high-finesse cavity, tuned to

resonance, may be written as a system of three differential equations (Abraham &

Firth, 1984):

© 2002 Taylor & Francis

FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

X' = y, (X + 2Cp)

PI = - T (P - XD)

D l = - y (D + X P - 1)

Here X is a scaled electric field (or Rabi frequency), y, is a constant describing the

decay of the cavity field and C is the cooperativity parameter.

In this case, the Equilibria (X*,P*,D*) is stable if a, b, c > 0 and (ab - c) >

0, where a, b and c are defined by the characteristic equation for the system. We

can also have more complicated rules for other types of dynamical behaviors.

4) Other three-dimensional Models: A three-dimensional system of differential

equations can be written in the following form:

X' = af(X,Y ,Z)

Y' = pg(x,y,z) (6.21)
2' = yh(X,Y,Z)

In this case, the Equilibria (X*,Y*,Z*) is stable if a, b, c > 0 and (ab - c) > 0,

where a, b and c are defined by the characteristic equation for the system:

A 3 + a A 2 + b A + c = 0

In fuzzy logic language we have the rule:

IF a,b,c >O AND (ab-c) >O

THEN Equilibria = stable

other rules follow in the same manner for all the types of dynamical behaviors

possible for this class of mathematical models.

We have to note here that in this case the computer program for this

method needs to obtain the symbolic derivatives for the functions in the

conditions of the rules. This is critical for the problem of behavior identification,

since we require these derivatives to obtain the values of the parameters in the

rules. This will make this method time consuming because the time series from

the simulations are not used at all.

© 2002 Taylor & Francis

MODELLING. SIMULATION AND CONTROL . . .

6.3.2 Behavior identification based on the fractal dimension
and the Lyapunov exponents

We can obtain a more efficient method of dynamic behavior identification, if we

make use of the information contained in the time series that resulted from the

simulation of the dynamical system. From the time series of the numerical

simulations, we can calculate the Lyapunov exponents of the dynamical system

and also the fractal dimension of the time series. With this dynarnical information,

we can easily identify the corresponding behaviors of the system.

For dissipative dynamical systems, for example, we can use the results that

where shown in Table 6.1 to build a set of fuzzy rules for behavior identification

using the Lyapunov exponents. However, since the Lyapunov exponents can only

identify between asymptotic stability, general limit cycles and chaos, we need to

use the fractal dimension df to discriminate between the different periodic

behaviors possible. Based on prior empirical work (Castillo & Melin, 1996b), we

have been able to use the fractal dimension to discriminate between different

periodic behaviors. Then, if we combine the use of the Lyapunov exponents with

the use of the fractal dimension, we can obtain a set of fuzzy rules that can

identify in a one-to-one manner the different dynamic behaviors. The if-then rules

have to be "fuzzy" because there is uncertainty associated with the numerical

values of the Lyapunov exponents and also the classification scheme (for the limit

cycles) using the fractal dimension is only approximated.

We show in Table 6.2 the fuzzy rule base that we have developed for

dynamic behavior identification for dynamical systems of up to three variable.

The empty fields in Table 6.2 indicate no use of the fractal dimension for that

case.

We can define membership functions for the numerical intervals of the

fractal dimension, for the Lyapunov exponents and for the behavior identifications

shown in Table 6.2. Once this membership functions are defined, the usual fuzzy

reasoning methodology can be applied to implement this method of behavior

identification.

© 2002 Taylor & Francis

FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION

Table 6.2 Fuzzy rule base for behavior identification using Lyapunov

exponents and fractal dimension

IF THEN

Number of Lyapunov Fractal Behavior

variables exponents Dimension Identification

1 (-1 stable fixed point

2 (- , -1 stable fixed point

2 (0, -) [1.1, 1.2) limit cycle of period 2

2 (0, -1 11.2, 1.3) limit cycle of period 4

2 (0, -1 [1.3, 1.4) limit cycle of period 8

2 (0, -1 [1.4, 1.5) limit cycle of period 16

3 (-, -, -1 stable fixed point

3 (0, -, -1 12.1, 2.2) limit cycle of period 2

3 (07 -, -1 [2.2,2.4) limit cycle of period 4

3 (0, -> -1 [2.4,2.6) limit cycle of period 8

3 (0, -, -1 12.6, 2.8) limit cycle of period 16

3 (+, 0, -> 12.8, 3.0) chaos

6.4 Summary

We have presented in this chapter a new method for automated simulation of non-

linear dynamical systems. This method is based on a hybrid fuzzy-genetic

approach to achieve, in an efficient way, automated simulation for a particular

dynamical system given its mathematical model. The use of genetic algorithms is

to achieve automated parameter selection for the models. The use of hzzy logic is

to simulate the process of expert behavior identification by implementing the

knowledge of identification by a set of fuzzy rules. In Chapter 8, we will explore

some advanced applications of this method for automated simulation. The results

will show the efficiency of this new method for the simulation of complex non-

linear dynamical systems.

© 2002 Taylor & Francis

Chapter 7

Neuro-Fuzzy Approach for Adaptive Model-Based
Control

We describe in this chapter a new method for adaptive control of Non-Linear

Dynamical Systems based on the use of Neural Networks, Fuzzy Logic and

mathematical models. Dynamical Systems can have many forms and be of many

types, but one very important case is that of non-linear dynamic plants. Production

processes in real world Plants are often highly non-linear and difficult to control.

The problem of controlling them using conventional controllers has been widely

studied (Albertos, Strietzel & Mart, 1997). Much of the complexity in controlling

any process comes from the complexity of the process being controlled. This

complexity can be described in several ways. Highly non-linear systems are

difficult to control, particularly when they have complex dynamics (such as

instabilities to limit cycles and chaos). Difficulties can often be presented by

constraints, either on the control parameters or in the operating regime. Lack of

exact knowledge of the process, of course, makes control more difficult. Optimal

control of many processes also requires systems which make use of predictions of

future behavior. The mathematical models for the Plants are assumed to be

expressed as systems of differential equations. The goal of having these models is

to capture the dynamics of production processes, so as to have a way of

© 2002 Taylor & Francis

114 NEURO-FUZZY APPROACH FOR ADAPTIVE . . .

controlling this dynamics for industrial purposes. Accordingly, this chapter is

divided into four parts: Modelling the Process of the Plant, Neural Networks for

Control, Fuzzy Logic for Model Selection, and Neuro-Fuzzy Adaptive Model-

Based Control. Of course, even if we illustrate here our new method for adaptive

control only for non-linear plants, the method can also be used for general non-

linear dynamical systems.

7.1 Modelling the Process of the Plant

The problem of automated mathematical modelling for non-linear dynamical

systems was considered in Chapter 5 of this book. However, we need to consider

the problem of modelling related to achieving model-based control. In this case,

we need mathematical models of the specific dynamical system to have a

reference dynamic behavior that the controller can follow. Also, it is important to

consider the control parameters in the mathematical model, so that we can apply

the appropriate control actions to the dynamical system. We will illustrate in this

section these ideas for the case of dynamic plants and will show in the following

sections how to use the models for adaptive control.

We need a mathematical model of the non-linear dynamic plant to

understand the dynamics of the processes involved in production. For a specific

case, this may require testing several models before obtaining the appropriate

mathematical model for the process. For real world plants with complex

dynamics, we may even need several models for different set of parameter values

to represent all of the possible behaviors of the plant. Mathematical models for the

plants can be expressed as differential equations (in continuous time) or

alternatively as difference equations (in discrete time). We assume in this chapter

(without loss of generality) that the models are expressed as differential equations.

The simplest mathematical model for a non-linear plant can be expressed

as follows:

dddt fi(x) - f3f2(x) (7.1)

dpldt = f3f2(x)

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 115

where x = state variable, p = quantity of the product, P = constant dependent on

the efficiency of the conversion process (production). This is a good mathematical

model for the case in which there is only one input into the production process (x)

and there is only one product (p). Functions fl(x) and f2(x) should represent the

dynamics of the plant.

For the case of two inputs to the process XI , x2 and one product p, we have

the following general mathematical model:

dxl/dt = fl (XI, x2) - Pfz(x1) (7.2)

dx2/dt = gl(xl, x2) - ygz(x2)

dp/dt = Pfz(x1) + ~ 8 2 (~ 2)
where p and y are constants measuring the efficiency of the production process. In

this case, we have to design four functions fl(xl, x2), f2(x1), gl(xl, x2) and g2(x2)

to represent the corresponding non-linear plant.

For the case of two inputs to the process XI, x2, one desired product p, and

one undesirable product x3, we can have the following mathematical model:

dxl/dt = fl(xl, x2) - Pf2(xI) - 01x1 x3 (7.3)

dx2/dt = gl(xl? x2) - yg2(x2) - 02x2 X3

dx3/dt = h(x3) + 01 X I x3 + 02x2 x3

dp/dt = Pfz(x1) + ~ 8 2 (~ 2)
where p, y, ol and 0 2 are constants measuring the efficiency of the production

process. In this case, we have to design five hnctions fl(xl, x2), f2(x1), gl(xl, x2),

g2(x2) and h(x3) to represent the corresponding plant.

For the case of two inputs to the process x l , x2 and two products pl and p2

, we have the general mathematical model:

dxl/dt=fi(xl, ~ 2) - Plf2(~1) - P2f3(x1) (7.4)

dx2/dt = gl (X 1, ~ 2) - Y 182(~2) - ~ 2 8 3 (~ 2)

dp 1 /dt = P 1 f2(x 1) + Y 182(~2)

dp2/dt = + ~ 2 g 3 (~ 2)
where Dl, P2, y1, y2 are constants measuring the efficiency of the production

process. In this case, we have to design six functions fl(xl, x2), f2(xl), f3(x1),

gl(xl, x2), g2(x2) and g3(x2) to represent the corresponding plant.

© 2002 Taylor & Francis

116 NEURO-FUZZY APPROACH FOR ADAPTIVE . . .

General mathematical models for more complicated non-linear plants can

be developed in a similar manner. In any case, the models can always be

represented as sets of coupled simultaneous non-linear differential equations.

The control of non-linear plants, represented by mathematical models like

the ones described before, is a very complicated task because of the complex

dynamics that can arise. The mathematical models, given by Equations (7.2), (7.3)

and (7.4), can exhibit a wide range of dynamical behaviors (from periodic ones to

even chaotic behavior). For this reason, it is very important to design control

methods that can learn to control (in an adaptive manner) complex dynamical

systems. These methods should use the knowledge and information about the

plant contained in the mathematical models and also should use "intelligent"

methodologies to really achieve adaptive and learning capabilities. In the

following sections of this chapter we will describe in more detail how can we

achieve this model-based adaptive control of non-linear plants.

7.2 Neural Networks for Control

Parametric Adaptive Control is the problem of controlling the output of a

dynamical system with a known structure but unknown parameters. These

parameters can be considered as the elements of a vector p. If p is known, the

parameter vector 8 of a controller can be chosen as 8* so that the plant together

with the fixed controller behaves like a reference model described by a differential

equation with constant coefficients (Narendra & Annaswamy, 1989). If p is

unknown, the vector 9(t) has to be adjusted on-line using all the available

information concerning the dynamical system.

Two distinct approaches to the adaptive control of an unknown plant are

(i) direct control and (ii) indirect control. In direct control, the parameters of the

controller are directly adjusted to reduce some norm of the output error. In indirect

control, the parameters of the plant are estimated as p"(t) at any time instant and

the parameter vector 8(t) of the controller is chosen assuming that ;(t) represents

the true value of the plant parameter vector. Even when the plant is assumed to be

© 2002 Taylor & Francis

MODELLING. SIMULATION AND CONTROL . . . 117

linear and time-invariant, both direct and indirect adaptive control result in non-

linear systems.

When the plant is non-linear and dynamic (i.e. the present value of its

output depends upon the past values of the input and the output respectively), a

neural network can be used as a controller as shown in Figure 7.1. This

corresponds to direct control.

Direct Control: In conventional direct adaptive control theory, methods for

adjusting the parameters of a controller based on the measured output error rely on

concepts such as positive realness and/or passivity. By making suitable

assumptions concerning the plant and the reference model, it is shown that the

direction in which a parameter is to be adjusted can be obtained by correlating two

signals that can be measured.

Figure 7.1 Direct adaptive control using neural networks.

r

-D

Neural
Network N.

u ,
A A A A A

v v

Non-linear
Plant

TDL

YP

TDL

i

I

© 2002 Taylor & Francis

118 NEURO-FUZZY APPROACH FOR ADAPTIVE . . .

At present, methods for directly adjusting the parameters of the controller

(the neural network N, in Figure 7.1) in a stable fashion based on the output error

are not available. This is due to the non-linear nature of both the plant and the

controller. Even backpropagation cannot be used directly, since the plant is

unknown and hence cannot be used to generate the desired partial derivatives.

Hence, until direct control methods are developed, adaptive control of non-linear

dynamical systems has to be carried out using indirect control methods.

Indirect Control: As mentioned earlier, when indirect control is used to control a

non-linear system, the plant is parameterized using one of the models described in

the previous section and the parameters of the model are updated using the

identification error. The controller parameters in turn are adjusted by

backpropagating the error (between the identified model and the reference model

outputs) through the identified model. A block diagram of such an adaptive

system is shown in Figure 7.2.

- - -- --- - -

Figure 7.2 Indirect adaptive control using neural networks.

Ym

Reference Model

r

-b

+ ei ?p
-

Neural
NetworkNi

Network N,

A A A A A h

.

I
v v

TDL TDL

TDL

_+

TDL

Neural
u
-

Non-linear Yp

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 119

Both identification and control can be carried out at every instant or after

processing the data over finite intervals. When external disturbances andlor noise

are not present in the system, it is reasonable to adjust the control and

identification parameters synchronously. However, when sensor noise or external

disturbances are present, identification is carried out at every instant while control

parameter updating is carried out over a slower time scale, to assure robustness.

The structure of the adaptive system proposed in this work to control a

non-linear dynamic plant is similar to the one shown in Figure 7.2, the main

difference is that we use a decision scheme to select the appropriate reference

model for the plant. This decision scheme is based on the use of fuzzy logic

techniques and is explained in the next section. In Figure 7.2, the delayed values

of the plant input and plant output form the inputs to the neural network N, which

generates the feedback control signal to the plant. The parameters of the neural

network Ni are adjusted by backpropagating the identification error ei while those

of the neural network N, are adjusted by backpropagating the control error

(between the output of the reference model and the identification model) through

the identification model.

Process control of non-linear plants is an attractive application because of

the potential benefits to both adaptive network research and to actual process

control in the industry. In spite of the extensive work on self-tuning controllers

and model-reference control, there are many problems in the real world processing

industries for which current techniques are inadequate. Many of the limitations of

current adaptive controllers arise in trying to control poorly modeled non-linear

systems. For most of these processes extensive data are available from past runs,

but it is difficult to formulate precise models. This is precisely where adaptive

networks are expected to be useful (Ungar, 1995).

7.3 Fuzzy Logic for Model Selection

For a complex dynamical system it may be necessary to consider a set of

mathematical models to represent adequately all of the possible dynamic

behaviors of the system (Melin & Castillo, 1997). In this case, we need a decision

© 2002 Taylor & Francis

120 NEURO-FUZZY APPROACH FOR ADAPTIVE . . .

scheme to select the appropriate model to use according to the value of a selection

parameter a . In this section, we show a method for model selection based on

fuzzy logic and a new fuzzy inference system for differential equations.

We have designed a method, based on fuzzy logic techniques, for

mathematical model selection using as input the numerical value of a selection

parameter a . We assume, in what follows, that parameter a is defined over a real-

valued interval:

a g I a S a , . (7.5)

We also assume that we have n mathematical models considered appropriate for

the respective n subintervals, defined on [a 0 , a, 1, as follows:

a o I a < a l , al I a < a2 , ..., a,-] I a S a , . (7.6)

The corresponding n mathematical models for these subintervals can be expressed

as differential equations:

dyldt = fl (y, a) , dyldt = f2(y, a) , ... , dyldt = fn(y, a) . (7.7)

Then, we can define a set of fuzzy if-then rules that basically relate the

subintervals to the mathematical models in a one-to-one fashion. The advantage of

using fuzzy rules (instead of conventional simple if-then rules) is that we can

manage the underlying uncertainty of this process of model selection. We show

the set of fuzzy rules for model selection in Table 7.1.

Table 7.1 Decision scheme for model selection

IF THEN

MI: dyldt=f l (y ,a)

M2: dyldt = f2(y, a)

M3: dyldt = f3(y, a)

an-l I a I a , M,: dyldt = fn(y, a)

© 2002 Taylor & Francis

MODELLNG, SIMULATION AND CONTROL . . . 121

To implement this decision scheme, we need a reasoning method that can

use differential equations as consequents. We have developed a new fuzzy

inference system that can be considered as a generalization of Sugeno's inference

system (Sugeno & Kang, 1988) in which we are now considering differential

equations as consequents of the fuzzy rules, instead of simple polynomials. Using

this method, the decision scheme of Table 7.1 can be expressed as a single-input

fuzzy model as follows:

(If a is small then dyldt = fl(y,a)

If a is regular then dytdt = f2(y,a)

If a is medium then dyldt = f3(y,a)

If a is large then dyldt = f,(y,a)

where the output y is obtained by the numerical solution of the corresponding

differential equation. We have to note here that this new fuzzy inference system

reduces to the standard Sugeno system only when the differential equations have

closed-form solutions in the form of polynomials. However, the solutions to the

differential equations can be more complicated analytical functions or in most

cases the solutions are so complex that can only be approximated by numerical

methods. The advantage of this generalization of Sugeno's original method is that,

in general, we can represent more complicated dynamic behaviors and also

because of this fact, the number of rules needed to represent a given dynamical

system is smaller.

In Figure 7.3, we show the reasoning procedure for our fuzzy inference

system for the case of a one-input single-output fuzzy model. The procedure is

very similar to the original Sugeno's procedure, except that now in the output we

obtain the crisp values of "y" by solving numerically the corresponding

differential equations. The numerical solutions of the differential equations can be

achieved by the standard Runge-Kutta type method (Nakamura, 1997):

Yn+l = RK(yn) = Yn + 1/2(kl + k2)

k 1 = hf(y,,tn)

k2 = h f (~ n + kl, tn+l)

© 2002 Taylor & Francis

122 NEURO-FUZZY APPROACH FOR ADAPTIVE . . .

where h is the step size of the numerical method and RK can be considered as the

Runge-Kutta operator that transforms numerical solutions from time n to time

n+l.

Figure 7.3 The fuzzy inference system for differential equations.

The reasoning procedure for differential equations can also be used for

rules with multiple inputs (for the case of several selection parameters) by simply

considering the minimum ("min" operator in Figure 7.3) of the firing strengths of

each of the inputs. The fuzzy inference system for differential equations can also

be illustrated as in Figure 7.4, where a complex dynarnical system is modeled by

using four different mathematical models (MI, M2, M3 and M4).

Of course, for this decision scheme to work we need to define membership

functions for the different values of the parameter a corresponding to the

mathematical models. The membership functions for the models should give us

the degree of belief that a particular model is the correct one for a specific value of

the parameter a. In Figure 7.5 we show a general method for defining the

membership functions for n = 4 models.

Min

wl dyldt = fl(y,a) 3 yl = RK(fl(y,a))

w2 dyldt=f2(y,a) =. y2=RK(f2(y,a))

U weighted average

y = wlyl +w2y2

P A '4 1

a w1+ W2

P A A2

, a

a

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

Figure 7.4 Modelling a complex dynamical system with the

fuzzy inference system.

In Figure 7.5, the membership functions for models M2 and M3 are of the

"gaussian" type and the membership functions for models MI and M4 are

"sigmoidal". In this way, we can guarantee that there exists a smooth transition

between the degree of membership between the different mathematical models.

degree

of

membership

Figure 7.5 General membership functions for n = 4 mathematical models.

To apply this method of model selection, to a particular application, we

have to find the corresponding selection parameter a (or even several parameters)

© 2002 Taylor & Francis

124 NEURO-FUZZY APPROACH FOR ADAPTIVE . . .

to be used in the decision scheme proposed in Table 7.1. Then, a partition of the

definition interval for a has to be performed. After this, the one-to-one map

between the mathematical models and the subintervals (obtained from the

partition) is constructed. In this way, we can obtain the fuzzy rule base for model

selection for a particular application.

7.4 Neuro-Fuzzy Adaptive Model-Based Control

In this section, we combine the method for adaptive model-based control using

neural networks (described in Section 7.2) with the method for model selection

using fuzzy logic (described in Section 7.3) to obtain a new hybrid neuro-fuzzy

method for control of non-linear dynarnical systems. This new method combines

the advantages of neural networks (ability for identification and control) with the

advantages of fuzzy logic (ability for decision and use of expert knowledge) to

achieve the goal of robust adaptive control of non-linear dynamical systems. The

general structure of the adaptive system for control is shown in Figure 7.6. In this

figure, a module for Model Selection based on fuzzy logic is added to the

structure that we had in Figure 7.2, in this way the method can now change

between mathematical models according to the dynamic conditions of the plant.

An intelligent control system with the structure shown in Figure 7.6 is

capable of adapting to changing dynamic conditions in the plant, because it can

change the control actions (given by the neural networks N,) according to the data

that is been measured on-line and also can change the reference mathematical

model if there is a large enough change in the value of the selection parameter a.

Of course, a change in the reference mathematical model also causes that the

neural network Ni performs a new identification for the model. This is the reason

why the whole process is called adaptive model-based control of non-linear

dynamical systems.

The architecture shown in Figure 7.6 can be used for constructing

intelligent control systems for different applications. This can be done by defining

the appropriate set of mathematical models for the particular application

(according to the type and complexity of the plant or system) and the correct

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 125

architecture of the neural networks for identification and control. Initial training

data can then be used to obtain the initial weights for the networks. The intelligent

control system will then be ready for use on-line in the real plant or dynamical

system. We have implemented a prototype intelligent control system, with the

neuro-fuzzy approach for control, using the MATLABO programming language.

The intelligent system for adaptive model-based control is shown in Appendix C

of this book. The computer program listed in this appendix can be used as a basis

for developing intelligent control systems for different applications and will be

explained in more detail in Chapter 9.

Figure 7.6 Indirect adaptive model-based neuro-fuzzy control.

Model Selection
Module

Reference Model Mi , y m

© 2002 Taylor & Francis

NEURO-FUZZY APPROACH FOR ADAPTIVE . . .

7.5 Summary

We have presented in this chapter a new method for adaptive model-based control

of non-linear dynamical systems. This method is based on a hybrid neuro-fuzzy

approach to achieve, in an efficient way, adaptive robust control of non-linear

dynamical systems using a set of different mathematical models. We use fuzzy

logic to select the appropriate mathematical model for the dynamical system

according to the changing conditions of the system. To this end, we have

developed a new fuzzy inference system for sets of differential equations, that can

be considered a generalization of Sugeno's original method for fuzzy reasoning

with polynomials. We have also shown a new method for adaptive model-based

control using a neural network for control and a neural network for identification.

Combining this method for control with the procedure for fuzzy model selection,

gives us a new method for adaptive model-based control using a hybrid neuro-

fuzzy approach. This method for adaptive control can be used for general

dynamical systems or non-linear plants, since its architecture is independent of the

application or the domain and will be illustrated for several complex non-linear

problems in Chapter 9.

© 2002 Taylor & Francis

Chapter 8

Advanced Applications of Automated Mathematical
Modelling and Simulation

In this chapter, we present several advanced applications of the new method for

automated mathematical modelling and simulation described in Chapters 5 and 6

of this book. First, we describe the application of the new methods for automated

modelling and simulation to robotic dynamic systems, which is a very important

application in the control of real-world robot arms and general robotic systems.

Second, we apply our new methods for modelling and simulation to the problem

of understanding the dynamic behavior of biochemical reactors in the food

industry, which is also very important for the control of this type of dynamical

systems. Third, we consider the problem of modelling and simulation of

international trade dynamics, which is an interesting problem in economics and

finance. Finally, we also consider the problem of modelling and simulation of

aircrafts, as this is important for the real-world problem of automatic aircraft

control. We conclude this chapter with some concluding remarks and also some

future directions of research work.

© 2002 Taylor & Francis

128 ADVANCED APPLICATIONS OF AUTOMATED . . .

8.1 Modelling and Simulation of Robotic Dynamic Systems

Robotic Dynamic Systems can be modelled by systems of coupled non-linear

differential equations and then it is possible to have a wide range of possible

dynamic behaviors, including the "chaotic" behavior explained above. Of course,

this kind of behavior is not desirable in this type of dynamic systems because we

need stable robotic systems in the applications. For this reason, it is important to

obtain the right mathematical models for the robotic systems and then perform

numerical simulations on the models to obtain the information needed in the

design and control of these systems. In this section we will review the different

methods that can be used to derive mathematical models of robotic systems.

8.1.1 Mathematical modelling of robotic systems

Robot arm dynamics deals with the mathematical formulations of the equations of

robot arm motion. The dynamic equations of motion of a manipulator are a set of

mathematical equations describing the dynamic behavior of the manipulator (Fu,

Gonzalez & Lee, 1987). Such equations of motion are useful for computer

simulation of the robot arm motion, the design of suitable control equations for a

robot arm, and the evaluation of the kinematic design and structure of a robot arm

(Lilly, 1993). The actual dynamic model of a robot arm can be obtained from

known physical laws such as the laws of Newtonian mechanics and Lagrangian

mechanics. This leads to the development of the dynamic equations of motion for

the various articulated joints of the manipulator in terms of specified geometric

and inertial parameters of the links. Conventional approaches like the Lagrange-

Euler (L-E) and Newton-Euler (N-E) formulations could then be applied

systematically to develop the actual robot-arm motion equations. (Fu, Gonzalez &

Lee, 1987). These motion equations are "equivalent" to each other in the sense

that they describe the dynamic behavior of the same physical robot manipulator.

We will consider only the L-E formulation in the following since we are interested

in the model of a robotic system in continuous-time.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 129

The derivation of the dynamic model of a manipulator based on the L-E

formulation is simple and systematic. Assuming rigid body motion, the resulting

equations of motion are a set of second-order coupled non-linear differential

equations. The L-E equations of motion provide explicit state equations for robot

dynamics and can be utilized to analyze and design advanced joint-variable space

control strategies. The derivation of the dynamic equations of an n degrees of

freedom manipulator is based on the Lagrange-Euler equation:

where: L = Lagrangian function = kinetic energy k - potential energy p

k = total kinetic energy of the robot arm

p = total potential energy of the robot arm

qi = generalized coordinates of the robot arm

qti = first derivative of the generalized coordinate, qi

~i = generalized force (or torque) applied to the system at joint i to drive

link i

From the above Lagrange-Euler equation, one is required to properly choose a set

of "generalized coordinates" to describe the system. Generalized coordinates are

used as a convenient set of coordinates which completely describe the location

(position and orientation) of a system with respect to a reference coordinate frame.

Applying the Lagrange-Euler formulation to the Lagrangian function of

the robot arm (Fu, Gonzalez & Lee, 1987) yields the necessary generalized torque

zi for joint i actuator to drive the ith link of the manipulator,

or in a matrix form as

where ~ (t) = n x 1 generalized torque vector applied at joints i = 1, ..., n ; that is,

q(t) = an nxl vector of the joint variables of the robot arm and can be

expressed as

q(t) = (ql(t), 92012 ... 5 9,(t)IT (8.5)
q'(t) = an nxl vector of the joint velocity of the robot arm and can be

© 2002 Taylor & Francis

ADVANCED APPLICATIONS OF AUTOMATED . .

expressed as

qYt> = (q'l @I> q'2(t)7 ... , q'n(t>>T (8.6)
qU(t) = an nx1 vector of the acceleration of the joint variables q(t) and can

be expressed as

q"(t> = (ql'l(t), qI12(t), ... , qll,(t>)T (8.7)
D(q) = an nxn inertial acceleration-related symmetric matrix

h(q,q') = an nxl non-linear coriolis and centrifugal force vector whose

elements are

h(q7q') = (hl, h2, e e . 7 hJT (8.8)
c(q) = an nxl gravity loading force vector whose elements are

c(q) = (cl, ~ 2 , -.., cnIT (8.9)
We will show as an example the Lagrange-Euler equations of motion for a two-

link manipulator (Figure 8.1). We assume the following: joint variables = e l , 82;

mass of the links = m17 m2; link parameters = al = a 2 = 0; dl = d2 = 0; and a, =

a2 = 1. Then, from Equation (8.3) we can obtain that for the two-link manipulator:

~ (t) = D(8) 811(t) + h(0 , 0') + c (0)

where:

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 131

As a result of this, we can say that the equations of motion for a two-link

manipulator are a set of two second-order coupled non-linear differential

equations. By an appropriate change of variables this mathematical model of a

two link-manipulator can also be viewed as a set of four first-order coupled non-

linear differential equations. Then, the range of dynamic behaviors for (8.10) can

go from simple periodic (stable) orbits to even complicated "chaotic" attractors.

Of course, more complicated robotic systems will need mathematical models of

even higher complexity (in the number of equations and the number of terms) and

the identification of dynamic behaviors becomes a real problematic issue. This is

the reason why new methods for automated modelling and simulation of robotic

dynamic systems are needed and we think that the work presented in this book is a

contribution in this line of research.

Figure 8.1 A two-link manipulator.

8.1.2 Automated mathematical modelling of robotic dynamic
systems

The general method for automated mathematical modelling, described in Chapter

5 of this book, can be used to automate the process of modelling robotic dynamic

systems. We only need to specify the set of mathematical models for a specific

© 2002 Taylor & Francis

132 ADVANCED APPLICATIONS OF AUTOMATED . . .

domain of Robotics and also to define the appropriate values for the variables

involved in the process of modelling. We will consider, in this section, the case of

modelling robotic manipulators to illustrate the application of the method for

automated modelling (Castillo & Melin, 1997b). The general mathematical model

for this kind of robotic system is the following:

M(q)q" + V(q, qt))q' + G(q) + Fdqt= 7 (8.1 1)

where q E Rn denotes the link position, M(q) E RnXn is the inertia matrix, V(q,qt)

E Rnxn is the centripetal-Coriolis matrix, G(q) E Rn represents the gravity vector,

Fd E Rnxn is a diagonal matrix representing the friction term, and z is the input

torque applied to the links.

For the simplest case of a one-link robot arm, we have the scalar equation:

Mqql + Fdql + G(q) = T (8.12)

If G(q) is a linear function (G = Nq), then we have the "linear oscillator" model:

q" + aq' + bq = c

where a = Fd/Mq , b = N/Mq and c = z/Mq. This is the simplest mathematical

model for a one-link robot arm. More realistic models can be obtained for more

complicated functions G(q). For example, if G(q) = ~ ~ 2 , then we obtain the

"quadratic oscillator" model:

q" + aql+ bq2 = c (8.13)

where a, b and c are defined as above.

A more interesting model is obtained if we define G(q) = Nsinq. In this

case, the mathematical model is

q" + aq' + bsinq = c (8.14)

where a, b and c are the same as above. This is the so-called "sinusoidally forced

oscillator". More complicated models for a one-link robot arm can be defined

similarly.

For the case of a two-link robot arm, we can have two simultaneous

differential equations as follows:

qM1 + alqtl + blq22 = c1 (8.15)

qtI2 + a2qt2 + b2q21 = c2

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 133

which is called the "coupled quadratic oscillators" model. In Equation (8.15) a],

bl, a2, b2, c1 and c2 are defined similarly as in the previous models. We can also

have the "coupled cubic oscillators" model:

qlI1 + alqgl + b1q32 = C I (8.1 6)

q112 + a2qr2 + b2q3 1 = c2

We can also have the "coupled forced quadratic oscillators" model:

qlI1 + alqtl + b1q2] = clsinq2 (8.1 7)

q1I2 + a2qt2 + b2q22 = c2sinq2

which is a system of two coupled second-order non-linear differential equations.

More complicated models for a two-link robot arm can be defined similarly.

Finally, we will consider the case of three-link robot arm. In this case, the

mathematical models consist of a set of tlvee simultaneous differential equations

of the following form:

qU1 + alqVl + blql = clsinq2sinq3 (8.18)

q1I2 + a2qT2 + b2q2 = c2sinql sinq3

q113 + a3q13 + b3q3 = c3sinq1sinq2

where the constants are defined in a similar way. This mathematical model can be

called "three coupled strongly forced oscillators".

The new method for automated mathematical modelling was defined

before (in Chapter 5) for general mathematical models from Dynamical Systems

Theory. However, we need to define it now for robotic dynamic systems. This can

be accomplish, by making the appropriate changes to the general method

described in Chapter 5. We do not have to change the time series analysis module,

because the classification scheme for the time series components is valid for any

type of dynarnical system. We also do not have to change the best model selection

module, because the criteria to select the model is still valid. On the other hand,

we definitely have to change the expert selection module, because we now have to

specify the models appropriate for robotic dynamic systems. We have developed a

fuzzy rule base for model selection, for the case of robotic systems, which selects

the mathematical models that are the most appropriate with the data available for

the given problem. We show in Table 8.1 some sample rules of this knowledge

base for model selection.

© 2002 Taylor & Francis

ADVANCED APPLICATIONS OF AUTOMATED . . .

Table 8.1 Sample fuzzy rules for model selection for robotic systems.

IF THEN

No. of Trend Periodic Mathematical Model

Links Part

1 linear null linear-oscillator

1 non-linear simple quadratic-oscillator

1 non-linear regular cubic~oscillator

1 non-linear difficult forced~quadratic~oscillator

1 non-linear very-difficult forced~cubic~oscillator

1 non-linear chaotic strongly~forced~oscillator

2 linear null double~linear~oscillators

2 non-linear simple coupled~quadratic~oscillators

2 non-linear regular coupled~cubic~oscillator

2 non-linear difficult coupled~forced~quadratic~oscillator

2 non-linear very-difficult coupled~forced~cubic~oscillators

2 non-linear chaotic coupled strongly forced oscillator

The new method for automated mathematical modelling of robotic

dynamic systems was implemented in the PROLOG programming language. A

prototype intelligent system for automated modelling of robotic manipulator can

be found in Appendix A of this book. We have tested the prototype intelligent

system with different data to validate the new method and also the implementation

with very good results (Castillo & Melin, 1998a). We show below some of the

results obtained with the intelligent system for automated modelling of robotic

dynamic systems, to give an idea of the performance of the system.

In Figure 8.2 we show the results obtained with the intelligent system for

automated modelling of robotic systems for two different cases. First, for a time

series with fractal dimension of 0.9 and a robotic system of one link, we can see

that the proposed mathematical model is the "linear oscillator" model. The reason

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 135

why this model is the best one for this case, is because the complexity of the time

series is small (which can be classified as "smooth") and the robot arm has only

one link.

Figure 8.2 Sample inputloutput using the intelligent system for automated

mathematical modelling of robotic dynamic systems

(First set of cases).

The second case in Figure 8.2 is for a time series with a fractal dimension

of 1.63 and two variables, we can see that the proposed mathematical model is the

"coupled forced quadratic oscillators". The reason why this model is considered

© 2002 Taylor & Francis

136 ADVANCED APPLICATIONS OF AUTOMATED . . .

the best one for this case, is because the time series is considered "erratic" (the

fractal dimension is relatively high) and the robot arm has two links (in the above

cases q is the generalized coordinate of the robot arm).

In Figure 8.3 we show the results obtained by the intelligent system for

two more cases. First, for a time series with fractal dimension of 1.35 and a

robotic system of one link, we can see that the proposed mathematical model is

the "quadratic oscillator". The reason why this model is the best one for this case,

is because the complexity of the time series is not that small (which is classified

as "erratic" by the program) and the robot arm has only one link.

Figure 8.3 Sample inputloutput using the intelligent system for automated

mathematical modelling of robotic dynamic systems

(Second set of cases).

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 137

The second case in Figure 8.3 is for a fractal dimension of 1.97 and a

robotic system of three links, in this case the proposed mathematical model is the

"three coupled strongly forced oscillators". The reason why this model is

considered the best one for this case, is because the time series is considered

"chaotic" (the fractal dimension is very high) and the robot arm has three links.

In Figure 8.4 we show the results obtained by the intelligent system for

two more cases. First, for a time series with fractal dimension of 1.54 and a

robotic system of two links, we can see that the proposed mathematical model is

the "coupled cubic oscillators". The reason why this model is considered the best

one for this case, is because the complexity of the time series is not that small

(which is classified as "erratic" by the program) and the robot arm has two links.

Figure 8.4 Sample inputloutput using the intelligent system for automated

mathematical modelling of robotic dynamic systems

(Third set of cases).

© 2002 Taylor & Francis

138 ADVANCED APPLICATIONS OF AUTOMATED . . .

The second case in Figure 8.4 is for a fractal dimension of 1.85 and a

robotic system of three links, in this case the proposed mathematical model is the

"three coupled strongly forced oscillators". The reason why this model is

considered the best one for this case, is because the time series is considered

"chaotic" and the robot arm has three links.

8.1.3 Automated simulation of robotic dynamic systems

Our new method for automated simulation of non-linear dynamical systems was

described in Chapter 6 and a prototype implementation of this method in

PROLOG can be found in Appendix B of this book. We tested the prototype

intelligent system with different data to validate the new method and also the

implementation with very good results. In this section, we show some of the

results obtained using the intelligent system for automated simulation, to give an

idea of the performance of the system.

In Figure 8.5 we show the results obtained for a random initial population

(of three members) and a simple mathematical model (given as a set of facts in the

program of Appendix B). We can see in Figure 8.5 how the genetic algorithm

evolves the initial population in such a way that three different dynamical

behaviors are identified for the three corresponding parameter values. For a

parameter value of 3 the behavior is a "cycle of period two", for a parameter value

of 14 the behavior is a "cycle of period eight", and for a parameter value of 4 the

behavior is a "cycle of period four".

In Figure 8.6 we show the results obtained for a random initial population

and a simple mathematical model. We can see in Figure 8.6 how the genetic

algorithm evolves the initial population in such a way that three different

dynamical behaviors are identified for the three corresponding parameter values.

For a parameter value of 9 the behavior is "chaotic", for a parameter value of 4 the

behavior is a "cycle of period four", and for a parameter value of 1 the behavior is

a "fixed point".

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 139

Figure 8.5 Sample inputloutput using the intelligent system for automated

simulation with an initial population of [I 0, 15,4].

We also show in this section some simulation results obtained with a

prototype intelligent system for automated simulation that was developed in

MATLAB, for several types of robotic dynamic systems. The prototype intelligent

system in the MATLAB programming language runs more efficiently because

MATLAB can perform numerical calculations faster than PROLOG. Also,

MATLAB offers advantages in visualizing the results graphically. The numerical

simulation results are briefly explained to give an idea of the performance of the

intelligent system.

© 2002 Taylor & Francis

140 ADVANCED APPLICATIONS OF AUTOMATED . . .

Figure 8.6 Sample inputloutput using the intelligent system for automated

simulation with an initial population of [O, 5 , 11.

In Figure 8.7 we show the simulation results for a single-link robotic

dynamic system with a mathematical model given by the second order differential

equation:

q" + aq' + bsinq = c (8.19)

where a, b and c are physical parameters of the robotic system. The simulation

results shown in Figure 8.7 correspond to the parameters: a = 30, b = 60, c = 7

and to the initial conditions: q(0) = 5, q'(0) = 5. The solution shown in Figure 8.7

is what is known as a cycle of period two because the orbit is oscillating between

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 141

two different points. As a consequence of this the behavior identification in this

case is of a "cycle of period two".

Simulation of single-link Robotic System
I

4.5

3.5

2.5

I -

0.5- -1
\ I

4 - - - L - \ / \- -

0 I 1

0 5 10 15 20 25 30 35 40
time t (seconds)

Figure 8.7 Simulation of a single-link robot arm showing a cycle of period two.

In Figure 8.8 we show the simulation results for a single-link robotic

dynamic system with a mathematical model given by Equation (8.19) The

parameters remain the same as in the previous case, except for "a" which changes

to: a=2. The initial conditions are different to better appreciate the dynamical

behavior and are given by: q(0) = 35, q'(0) = 35. The solution shown in Figure 8.8

is what is known as a cycle of period eight because the orbit is oscillating between

© 2002 Taylor & Francis

142 ADVANCED APPLICATIONS OF AUTOMATED . . .

eight different points (after a transient period). As a consequence of this fact the

behavior identification in this case is of a "cycle of period eight".

The explanation for the change of dynamical behavior between a = 30 and

a = 2 is related to the "damping" (given by "a") of the forced oscillator given by

Equation (8.19). It is a well known fact that less damping implies more oscillatory

power for a mechanical system (in this case, the robotic system).

Simulation of single-link Robotic System

33.5 L - - "-~

time t (seconds)

Figure 8.8 Simulation of a single-link robot arm showing a cycle of period eight.

In Figure 8.9 we show the simulation results for a two-link robotic

dynamic system with a mathematical model given by the two coupled second

order differential equations:

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 143

q1I1 + alqVl + blsinq2 = cl

q1I2 + a2qg2 + b2sinq2 = c2 (8.20)

where al, a2, bl , b2, c1 and c2 are physical parameters of the robotic system. The

simulation results shown in Figure 8.9 correspond to the parameter values:

a l=212, a2=44, b l = b 2 = 6 0 , c l = c 2 = 7 2

and to the initial conditions: ql(0) = 0.5, qfl(0) = 5, q2(0) = 4, qf2(0) = 5.

The Solutions shown in Figure 8.9 are known as cycles of period two because

their orbits are oscillating between two different points. The behavior

identification in this case is of a "cycle of period two" for both links.

Simulation of two-link Robotic System
4 1

time t (seconds)

Figure 8.9 Simulation of a two-link robot arm showing cycles of period two for

the positions ql and q2 of the links.

© 2002 Taylor & Francis

144 ADVANCED APPLICATIONS OF AUTOMATED I

In Figure 8.10 we show the simulation results for a two-link robotic

dynamic system with a mathematical model given by Equation (8.20). The

parameters remain the same as in the previous case, except for 'la2" which changes

to: a2 = 2. The initial conditions are different to better appreciate the complex

dynamical behavior and are now given by: ql(0) = 0.5, qql(0) = 5, q2(0) = 35,

qt2(0) = 5. The solution shown in Figure 8.10 is what is known as a "chaotic

solution" because the orbit is oscillating (in an unstable manner) between an

infinite number of periodic points. As a consequence of this fact the behavior

identification in this case is of a "chaotic solution".

Figure 8.10 Simulation of a two-link robot arm showing chaotic behavior for

position ql .

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL I 145

The explanation for the change of dynamical behavior between the

previous case for a2 = 44 and the case for a2 = 2 is similar to the one given before

for a single-link robot, the only difference is that now the behavior is more

complex (no periodic solution is found).

In Figure 8.1 1 we also show the simulation results for a two-link robotic

system with model given by Equation (8.20). The parameters and initial

conditions remain the same as in the last case, except that now q2 is shown in

Figure 8.1 1. We also have chaotic behavior for position q2, as in the previous

figure, the only difference is in the range of numerical values of q2.

Figure 8.1 1 Simulation of a two-link robot arm showing chaotic behavior for

position q2.

© 2002 Taylor & Francis

146 ADVANCED APPLICATIONS OF AUTOMATED I

Finally, in Figure 8.12 we show the simulation results for the two-link

robotic system with the same model and parameters as in the last two cases,

except that now q2 and ql are shown in the same figure. In this figure, we can see

how both ql and qz tend to a "strange attractor", which is one of the distinguishing

signs of "chaotic" behavior (Rasband, 1990). Of course, in Robotic applications

this behavior has to be avoided because it will cause physical damage to the

robotic system. This is why it is important to identify when this behavior can

occur in advance to avoid critical situations.

Figure 8.12 Simulation of a two-link robot arm showing chaotic behavior for

positions ql and q2.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . .

8.2 Modelling and Simulation of Biochemical Reactors

We describe in this section the application of the new methods for modelling and

simulation (described in Chapters 5 and 6) to the complex case of biochemical

reactors. The case of biochemical reactors for food processing plants is a very

complex one, because biochemical processes are often highly non-linear and

consequently difficult to control (Melin & Castillo, 1998a). First, we consider the

problem of modelling biochemical reactors using non-linear differential

equations. We then describe how to automate this process of modelling, using the

fuzzy-fractal approach described in Chapter 5. We also describe how to automate

the process of numerical simulation for the mathematical models, using the fuzzy-

genetic approach described in Chapter 6. Finally, we show some simulation

results for the mathematical models of the biochemical reactors.

8.2.1 Modelling biochemical rectors in the food industry

Many products of considerable economic value of us humans are the result of the

metabolic functions of microorganisms. From the industrial point of view, the

substrate can be considered as the raw material and the microorganisms as the

biochemical "micro-industry" that transforms this material into new products. In

this section, we consider briefly the problem of food production using bacteria for

industrial purposes. Many different food products are the result of bacteria

population and the best example of this is the set of dairy (milk) products (Pelczar

& Reid, 1982).

We will consider the problem of food production for the case of yogurt. In

this case, the use of Streptococcus thermophilus and Lactobacillus bulgaricus is to

produce Lactic Acid which is the critical chemical compound necessary for

obtaining this product with the exact biochemical properties. The right use of this

two types of bacteria in this case, i.e. right temperature and time, results in more

quantity and better quality of yogurt. We can say then, that from the industrial

point of view the goal is to obtain the maximum quantity of the food product with

the desired chemical and biological properties (Melin & Castillo, 1997d).

© 2002 Taylor & Francis

148 ADVANCED APPLICATIONS OF AUTOMATED . . .

However, this goal from the engineering point of view can be translated to

obtaining the "best" control possible for the food generation process, and this

involves modelling bacteria population in the substrate.

For the case of yogurt we need to have mathematical models for the

population of S. thermophilus and L. bulgaricus and the quantity of Lactic Acid

produced by both bacteria. In this case, we require a Lotka-Volterra type model

consisting of a system of three simultaneous differential equations, modelling the

situation of two bacteria populations and one chemical compound concentration

(Melin & Castillo, 1996).

We will consider first the case of using only one bacteria for food

production. The mathematical model in this case can be of the following form:

where: N = population of bacteria, P = quantity of chemical product, r = rate of

growth of the bacteria, k = limiting capacity of the environment (substrate

quantity) and P = biochemical conversion factor. We can see how Equation (8.21)

is of the general form given by the mathematical model of a non-linear plant of a

single input and single output (Equation (7.1) of Chapter 7).

We will consider now the case of two bacteria used for food production:

where: N1 = population of bacteria 1, N2 = population of bacteria 2, P = quantity

of chemical product, rl = rate of growth of bacteria 1, r2 = rate of growth of

bacteria 2, K1=capacity of the environment for bacteria 1, K2=capacity of the

environment for bacteria 2, P=biochemical conversion factor from bacteria 1 to

product, y = biochemical conversion factor from bacteria 2 to product, a 1 2 and

a21 are coefficients of the system. We can see how Equation (8.22) is of the

general form given by the model of a non-linear plant of Equation (7.2) of Chapter

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 149

Another interesting case will be if one considers two "good" bacteria for

food production and one "bad" bacteria that is "attacking" the other bacteria:

where: N3 = population of bacteria 3 (bad bacteria), r3 = rate of growth of

bacteria 3, K3= capacity of the environment for bacteria 3 and ol = rate of attack

of bacteria 3 to bacteria 1, and o2 = rate of attack of bacteria 3 to bacteria 2. We

can see how Equation (8.23) is of the general form given by the mathematical

model of a non-linear plant of Equation (7.3) of Chapter 7.

This last two cases are more interesting from the mathematical point of

view, because it is a well known fact from Dynamical Systems theory that a model

of three or more coupled non-linear differential equations can exhibit the behavior

known as "chaos" (Kapitaniak, 1996). This chaotic behavior has to be avoided for

this kind of problems, because we need to have a stable food production process.

Then, part of the problem in this case will be to control the food production

process avoiding at the same time the chaotic regime of this type of models.

In Equations (8.21) - (8.23) we are modelling bacteria growth only in the

time domain. If we want also to consider bacteria growth in the space domain, we

need to consider a measure of the geometrical complexity of bacteria colonies. A

method that classifies bacteria colonies using the fractal dimension was developed

for identification purposes (Castillo & Melin, 1994a). This method uses the fractal

dimension to make a unique classification of the different types of bacteria,

because it is a well known experimental fact that colonies of different types of

bacteria have different geometrical forms. Then a one-to-one map can be

constructed that relates each type of bacteria to its corresponding fractal

dimension.

Now we propose mathematical models that integrate the method for

geometrical modelling of bacteria growth (using the fractal dimension) with the

method for modelling the dynamics of bacteria population (using differential

© 2002 Taylor & Francis

150 ADVANCED APPLICATIONS OF AUTOMATED . .

equations). The resulting mathematical models describe bacteria growth in space

and in time, because the use of the fractal dimension enables us to classify

bacteria by the geometry of the colonies and the differential equations help us to

understand the evolution in time of bacteria population. The models will be

similar to the ones described before, except that now the fractal dimension D is

integrated into the differential equations (Melin & Castillo, 1997b).

We will consider first the case of using one bacteria for food production.

The mathematical model in this case can be of the following form:

dN/dt = r(l - N-D/K)N-D - PN-D (8.24)

dP/dt = PN-D

where D is the fractal dimension and the rest of the variables are as described

before.

We will consider now the case of two bacteria used for food production:

where Dl = fractal dimension of bacteria 1, D2 = fractal dimension of bacteria 2

and the rest of variables are as described before.

We can also propose an equation similar to the one described before (Eq.

8.23) for two "good" bacteria and one "bad" bacteria by using the fractal

dimensions, Dl D2 and D3 , for the corresponding types of bacteria. Also, we can

apply this method of modelling to more complicated cases of food production.

As we can see from Equations (8.24) and (8.25) the idea of our method of

modelling is to use the fractal dimension D as a parameter in the differential

equations, so as to have a way of classifLing for which type of bacteria the

equation corresponds. In this way, Equation (8.24), for example, can represent the

model for food production using one bacteria (the one defined by the fractal

dimension D). Since, the fractal dimension gives us a unique way to classify

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 151

bacteria, then also Equation (8.24) gives us a unique way to model the

corresponding problem of food production using one bacteria.

8.2.2 Automated mathematical modelling of biochemical reactors

The method for automated modelling using a fuzzy-fractal approach (described in

Chapter 5) can be used to select the appropriate mathematical models for

biochemical reactors. We only need to make the necessary changes to the rules for

model selection. No changes are needed for the "time series analysis" module or

the "best model selection" module. The main changes needed to the "Expert

Modelling" module are the following:

1) Use of mathematical models for biochemical reactors

2) Use of the fractal dimension as a classification variable.

With these changes the general method for automated modelling of dynamical

systems (described in Chapter 5) can be transformed to a method for modelling

biochemical reactors. We show in Table 8.2 some sample rules of the knowledge

for model selection.

In Table 8.2, the fuzzy value "small" means near to 1, because when the

fractal dimension is near to a value of 1, we can use equations (8.21), (8.22) and

(8.23). On the other hand, the fuzzy value "large" means greater than 1, because

when the fractal dimension is sufficiently different from 1, we have to use

equations (8.24) and (8.25). Of course, we have to define the appropriate

membership functions for the values "small" and "large" in this fuzzy rule base, to

make this method work for the domain of modelling biochemical reactors.

© 2002 Taylor & Francis

ADVANCED APPLICATIONS OF AUTOMATED . . .

Table 8.2 Sample fuzzy rules for model selection for biochemical reactors.

-

IF THEN
No. of Fractal Fractal Fractal Mathematical Model

bacteria Dimension Dimension Dimension
of bacteria 1 of bacteria 2 of bacteria 3

1 small Lotka-Volterra

of Ea. (8.21)

1 Large Lotka-Volterra with

fractal dimension

of Ea. (8.24)

2 small small Equation (8.22)

2 Large small Equation (8.25)

2 small Large Equation (8.25)

2 Large Large Equation (8.25)

3 small small small Equation (8.23)

3 Large small small Equation (8.23) with

fractal dimension

3 Large Large small Equation (8.23) with

fractal dimension

3 Large Large Large Equation (8.23) with

fractal dimension

8.2.3 Simulation results for biochemical reactors

We describe in this section the simulation results obtained with the

implementation of numerical methods for the approximate solution of differential

equations. The complete listings of the computer programs (written in the

MATLAB language) can be found in Appendix B. In all cases we used Runge-

Kutta type methods to approximate the numerical solution of the mathematical

models for the plants. The parameter values of the mathematical models are for

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 153

the case of real biochemical reactors in the food industry. The numerical

simulation of the models (MI, M2 and M3) show the complex dynamics involved

in the biochemical process of production. In the following figures, we show some

of these results to give an idea of the complexity of biochemical reactors (and as a

consequence of the food processing plants) and the degree of difficulty in

controlling them.

We show in Figure 8.13 the complicated dynamics involved even for the

simplest case of only one bacteria used for food production (for example, yogurt).

The mathematical model (MI) is as given by Equation (8.21).

Simulation of MI : one Bacteria used for food production

97.5 / - -
-- I

1 97.25,-2 ------- - L -

O 2 4 6 8 10
time t (seconds)

Figure 8.13 Numerical Simulation of the population in the model of one

bacteria used for food production.

© 2002 Taylor & Francis

154 ADVANCED APPLICATIONS OF AUTOMATED . . .

The numerical simulation shown in Figure 8.13 is for the following initial

conditions: initial population: N = 97.5 for t =0 initial product: P = 0 for t = 0

and the parameter values given as follows:

rate of growth of the bacteria: r = 30

limiting capacity of the environment: k = 100

biochemical conversion factor: P = 0.8

In this case, bacteria grows at a rate of 30 % and only 80 % of microbial life is

converted into the chemical that produces food. The parameter values are standard

in food production and the simulation shows that the dynamics is complicated.

We also show in Figure 8.14 the dynamics for the food product for the same case

of only one bacteria used for production.

Simulation of MI: one Bacteria used for food production
800 1 1

-- --
1

0 1

0 2 4 6 8 10
time t (seconds)

Figure 8.14 Numerical Simulation of the product in the model of one bacteria

used for food production.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL I 155

We can see in Figure 8.14 that the production is linear in time, with a final value

of 70% at a time of 10. The mathematical model (MI) used in the simulation is

given by Equation (8.21). The initial conditions and the parameter values are the

same as the ones used in Figure 8.1 3.

We show in Figure 8.15, the complicated dynamics for the case of two

bacteria used for food production (for example, yogurt). The mathematical model

(M2) is given by Equation (8.22).

Figure 8.15 Numerical simulation of the population in the model of

two bacteria used for food production.

© 2002 Taylor & Francis

156 ADVANCED APPLICATIONS OF AUTOMATED . .

The numerical simulation shown in Figure 8.15 is for the following initial

conditions:

initial populations: N1 = N2 = 26.5 for t = 0

initial product P = O for t = 0

and the parameter values are given as fbllows:

rate of growth for the bacteria: rl = r2 = 30

limiting capacity of the environment: kl = k2 = 100

biochemical conversion factors: P = y = 0.8

coefficients of the bioreactor: a12 = a 2 1 = 2.6666

These parameter values can be interpreted similarly to the case of only one

bacteria. These values are standard in food production and show the complicated

dynamics of the population for the two bacteria.

We show in Figure 8.16, the complicated dynamics for the case of two

"good" bacteria used for food production and one "bad" bacteria that is reducing

the efficiency of the process. The mathematical model (M3) is given by Equation

(8.23). We can see in Figure 8.16 how the population N2 of the "good" bacteria 2

reduces to zero, and how the populations of the "bad" bacteria (N3) and of the

other "good" bacteria (N1) stabilize the value to a fixed population. The net result

of this situation is that the final quantity of the food product decreases because

only one bacteria is producing and the other ones are not producing. The

numerical simulation in Figure 8.16 is for the following initial conditions:

initial populations: N1 = 65 N2 = 6.5 N3 = 10 for t = 0

initial product P = O for t = 0

and the parameter values are given as follows:

rate of growth for the bacteria: rl = r2 = r3 = 30

limiting capacity of the environment: kl = k2 = k3 = 100

biochemical conversion factors: P = y = 0.8

rate of attack of bacteria 3 ol = 0 2 = 0.2

coefficients of the bioreactor: a 1 2 = a 2 1 = 2.6666

Of course, this is a case we want to avoid in the food production process. In our

method, by controlling the temperature we can control the population of the 'bad"

bacteria to avoid the corresponding reduction in the production.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 157

Figure 8.16 Numerical simulation of the populations in the model of three

bacteria in the food production process (case "a").

We show in Figure 8.17, the complicated dynamics for the case of two

"good" bacteria used for production and one "bad" bacteria attacking the other

ones. The mathematical model is the same as in the last case. We can see in

Figure 8.17 how the population N1 of the "good" bacteria 1 reduces to zero, and

how the other two populations stabilize to a fixed population value. The net result

of this situation is that the final production decreases because only one bacteria is

producing. In this case, the production is higher than the one of case "a" because

© 2002 Taylor & Francis

158 ADVANCED APPLICATIONS OF AUTOMATED . .

the population N2 is greater than the population of the "bad" bacteria N3. In

Figure 8.16, the situation is the other way around. The numerical simulation

shown in Figure 8.17 is for the following initial conditions:

initial populations: N1 = N2 = 60 N3 = 0.5 for t = 0

initial product P = O for t = 0

Figure 8.17 Numerical simulation of the populations in the model of three

bacteria in the food production process (case "b").

and the parameter values are given as follows:

rate of growth for the bacteria: r, = 50 r2 = 60r3 = 20

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 159

limiting capacity of the environment: kl = 166.666 k2 = 200 k3 = 66.666

biochemical conversion factors: P = y = 0.8

rate of attack of bacteria 3 01 = 0 2 = 0.0002

coefficients of the bioreactor: a12 = = 2.6666

Of course, this is another case we want to avoid in the food production process.

The new method for adaptive control will reduce the temperature (or increase it)

to reduce the population of the "bad" bacteria and increase production.

8.3 Modelling and Simulation of International Trade
Dynamics

We describe in this section mathematical models that can be used to study the

dynamics of international trade (Castillo & Melin, 1998~). Mathematical models

of International Trade (IT), between three or more countries, can show very

complicated dynamics in time (with the possible occurrence of chaotic behavior).

The simulation of these models is critical in understanding the behavior of the

relevant financial and economical variables for the problem of IT. Also,

performing the simulations for different parameter values of the models will

enable the forecasting of future IT. The problem of modelling and simulation of

IT has been solved in this section by applying the methods described in Chapters 5

and 6 of this book.

8.3.1 Mathematical modelling of international trade

Mathematical modelling of international trade has been done traditionally with

linear statistical models from classical Econometric Theory. However, more

recently some researchers have found statistical evidence that time series from

financial and economical variables show erratic fluctuations in time. It is well

known that simple linear models can not represent this erratic dynamic behavior.

for this reason, it becomes necessary to use non-linear mathematical models that

will enable us to represent this complex dynamic behavior found for systems in

© 2002 Taylor & Francis

160 ADVANCED APPLICATIONS OF AUTOMATED . .

economics and finance. Non-linear models from the theory of dynamical systems

can show the behavior known as "chaos" for different ranges of parameter values

and for this reason they become a good choice in modelling complex financial or

economic problems (Castillo & Melin, 1998~).

We will consider first modelling the dynamics of autonomous economies,

i.e.., study the oscillations of an autonomous economy. Then, we will consider

modelling the problem of International Trade as a perturbation of the internal

oscillations of an autonomous economy.

Consider the Keynesian macroeconomic model of a single economy with

Y as income, r as the interest rate, M as the (constant) nominal money supply, and

assume that the good prices, P, are fixed during the relevant time interval.

Suppose that gross investment, I, and savings, S, depend both on income and the

interest rate in the familiar way, i.e.,

I=I(Y,r) , Iy > 0, Ir < 0

S=S(Y,r) , Sy>O,Sr<O

Income adjusts according to excess demand in the goods market, i.e.,

Y1= a (I - S) a > O (8.26)

The set of points {(Y,r)l I(Y,r) = S(Y,r)) constitutes the IS-curve of the model. Let

L(Y,r) denote the liquidity preference with Ly > 0, Lr < 0 and assume that the

interest rate adjusts according to:

r' = P (L(Y,r) - Mlp) , P > o (8.27)

with the set of points {(Y,r)l L(Y,r) = Mlp) forming the LM-curve of the model.

As is well known, the equilibrium (Y*,r*) is asymptotically (locally) stable if trJ <

0 and det J >O, where J is the Jacobian of the system and Tr = trace, det =

determinant. Also, it can be demonstrated by means of the Poincare-Bendixon

Theorem that system (8.26) - (8.27) is able to generate oscillating behavior.

Consider three economies, each of which is described by equations like

(8.26) - (8.27) with possibly different numerical specifications of the functions,

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 161

Equation (8.28) constitutes a six-dimensional differential equation system which

can also be written as a system of three independent two-dimensional limit cycle

oscillators.

By introducing international trade with linear hnctions EXi=EXi(Yj,Yk),

i#j,k and Imi=Imi(Yi), Equation (8.28) becomes:

Y'i = ai (Ii(Yi,ri) - Si(Yi,ri) + EXi(Yj,Yk) - Imi(Yi)) (8.29)

rIi = Pi (Li(Yi,ri) - Milpi)

with i, j, k= 1, 2, 3; j, k = i, and Mi as the money supplies reflecting balance of

payments equilibria. Equation (8.29) constitutes a system of three linearly coupled

limit cycle oscillators. The following theorem can then be demonstrated for

system (8.29).

Theorem: If all three autonomous economies are oscillating, the introduction of

international trade may imply the existence of a strange attractor (chaotic

behavior).

Of course, chaotic behavior may occur for certain ranges of parameter

values for the ai, pi, Mi parameters. However, the emergence of strange attractors

is not exclusive in models like these: some variations in the parameters can lead to

the occurrence of other phenomena like quasi-periodic motion or phase-locking.

The main goal for a certain country is to achieve a stable behavior in its economy

while in this International Trade System, in this way controlling its future

behavior in this system. As a result of this, a specific country (like Mexico) can

optimize its profit while in a system of three countries (like with the NAFTA trade

agreement).

The general method for automated mathematical modelling, described in

Chapter 5, can be used to automate the process of modelling the problem of

international trade. We only need to specify the set of mathematical models

(satisfying the general form of Equation (8.29)) and also to define the appropriate

values for the variables involved in the process of modelling.

© 2002 Taylor & Francis

162 ADVANCED APPLICATIONS OF AUTOMATED . .

8.3.2 Simulation results of international trade

We show in this section some simulation results obtained using the method for

automated simulation of dynamical systems (described in Chapter 6). The fuzzy-

genetic approach for simulation enables the automated generation of parameter

values for the models and obtains the corresponding identifications of the dynamic

behaviors. We will show here only simulation results for the case of three

countries and leave to the reader the simulation of other cases.

For the case of USA, Canada and Mexico we can assume that the system

of differential equations given by Equation (8.29) represents a good general model

of the actual system of the three corresponding economies. Then, using

investment and saving functions of the form:

Ii = ai Yi/ri
i = 1,2,3 (8.30)

Si = bi Yi/ri

and with Liquidity given by a similar function:

Li = ci Yi/ri i = 1,2,3 (8.3 1)

and assuming that the export and import functions are linear:

EX; = diYj + eiYk i # j , k (8.32)

Im; = fi + giYi i = 1,2,3 (8.33)

we can find that a specific mathematical model for the three economies is given

by the following system:

ril = Pi (ci (Yi/ri) - Milpi)

where a , p, a, b, c, d, e, f, g are parameters to be estimated using actual data of the

problem (time series for Y and r). Of course, Equation (8.34) is only one of the

specific models that can be explored for this particular problem.

Whether or not there are indeed "strange" attractors and hence chaotic

trajectories in a specific model can be established only by numerical techniques.

Simulation results for the system of Equation (8.34) indicate that economically

reasonable specifications for this model can be found which indeed imply positive

Lyapunov exponents and chaos. For this reason, we think that erratic fluctuations

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 163

in the economy of a specific country can occur when a transition is made from a

closed economy to an open one.

We show in Figure 8.18 the dynamic behavior for the investment in the

international trade system of Equation (8.34). The parameter values for this

simulation were obtained automatically by the intelligent system for automated

simulation. We can see in Figure 8.1 8 how the investment for USA and Canada

are growing more rapidly than the one for Mexico in this specific case.

Figure 8.18 Simulation results showing the dynamic behavior for the investment

of USA, Canada and Mexico.

© 2002 Taylor & Francis

164 ADVANCED APPLICATIONS OF AUTOMATED . . .

The simulation results shown in Figure 8.18 are for a situation of stable

growing economies for the three countries. In the present time, the dynamic

evolution for the countries (specially for Mexico) is not stable at all, but the

ultimate goal is to achieve a stable growing pattern for the international trade

system of USA, Canada and Mexico so as to optimize the profits for the three

countries. The situation shown in Figure 8.1 8 could be a goal state for the three

economies.

Figure 8.19 Simulation results showing the dynamic behavior for the interest rate

of USA, Canada and Mexico.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 165

We show in Figure 8.19 the simulation results for the interest rate dynamic

evolution in time, for the same case of stable growing economies for the three

countries. We can see in Figure 8.19 how the interest rates of the three countries

are relatively stable (Mexico's interest rate is higher but can be considered good).

Still, we think that more research has to be done regarding which is to be

considered the best situation for the three economies in this international trade

system.

8.4 Modelling and Simulation of Aircraft Dynamic Systems

We describe in this section mathematical models that can be used to study the

dynamics of aircraft systems. Mathematical models of aircraft systems can show

very complicated dynamics in time (with possible occurrence of chaos). The

simulation of these models is critical in understanding the dynamic behavior of a

real airplane. Also, performing the simulations for different parameter values of

the models will enable the forecasting of future behavior of the airplane, to avoid

possible failures of the aircraft. We solved the problem of modelling and

simulation of aircraft systems by applying the methods described in Chapters 5

and 6.

8.4.1 Mathematical modelling of aircraft systems

We now present some simplified mathematical models of aircraft systems to study

the dynamics of the aircraft during flight (Melin & Castillo, 1998~). The models

are in the form of equations of motion for the aircraft. The mathematical model of

an airplane in the plane x-y is as follows:

p ' = 11(-q+ 1) (8.35)

9' = I2(p + m)
where I1 and I2 are the inertia moments of the airplane with respect to axis x and

y, respectively, 1 and m are physical constants specific to the airplane, and p, q are

the positions with respect to axis x and y, respectively. For small velocities, it

© 2002 Taylor & Francis

166 ADVANCED APPLICATIONS OF AUTOMATED . . .

maybe sufficient to approximate the behavior of an airplane with the model given

by Equation (8.35), which ignores the z-component. However, a more realistic

mathematical model of an airplane, in three-dimensional space, is as follows:

p ' = I,(-qr + 1) (8.36)

q' = 12(pr + m)

r' = 13(-pq + n)

where now I3 is the inertia moment of the airplane with respect to the z axis, n is a

physical constant specific to the airplane, and r is the position along the z axis (see

Figure 8.20). We have to mention here that Equation (8.36) consists of a system of

three simultaneous non-linear differential equations with very complicated

dynamics. This is not the case for Equation (8.35) which is linear and no

complicated behavior can occur.

Figure 8.20 An airplane in three-dimensional space.

Next we introduce the influences of the environment. We will be confined

to winds for simplicity. Wind disturbances are assumed to have only one

component of constant velocity. The magnitude of the constant velocity

component is a function of altitude. The constant velocity wind component exists

only in the horizontal direction and its value is given in Equation (8.37) as a

logarithmic variation with altitude (Jorgensen & Schley, 1995).

us = uwind5 [1 + (ln(r15 10))] (8.37)
In (51)

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 167

where: ug is the constant velocity component, uwi,d,,, is the wind speed at 510 ft.

altitude (typical value = 20 ft/sec), and r is the aircraft altitude. Then the

mathematical model for the airplane with wind disturbances is as follows:

p' = I,(-qr + 1) - u, (8.38)

q1 = 12(pr + m)

r' = 13(-pq + n)

In Equation (8.38) the wind velocity is affecting only the velocity of the airplane

in the x direction. The magnitude of wind velocity is dependent on the altitude r of

the airplane. Other disturbances like temperature, pressure and turbulence can also

be modeled and could be introduced in the mathematical model of Equation

(8.36).

The method for automated mathematical modelling of dynarnical systems

using the fuzzy-fractal approach (of Chapter 5) can be used to automate the

process of modelling aircraft systems. We can use the fractal dimension of the

time series of the positions p,q,r for the airplane as a measure of the complexity of

the modelling problem. Then, a set of fuzzy rules for model selection has to be

developed to decide which models are the most appropriate ones for the airplane.

Finally, the best mathematical model for the airplane has to be selected. The

interested reader can follow the same procedure used in previous sections (for

robotic systems and biochemical reactors) to develop an intelligent system for

automated modelling of aircraft dynamic systems.

8.4.2 Simulation results of aircraft systems

We show in this section some simulation results for aircraft systems obtained

using the method for automated simulation of dynamical systems (described in

Chapter 6). The fuzzy-genetic approach for simulation enables the automated

generation of parameter values for the models and obtains the corresponding

identifications of the dynamic behaviors. We will show here only simulation

results for the case of an airplane in three-dimensional space (Equation (8.36)) and

leave to the reader the simulations of other cases.

© 2002 Taylor & Francis

168 ADVANCED APPLICATIONS OF AUTOMATED I

In Figures 8.21 and 8.22 we show the simulation results for an airplane in

three-dimensional space with inertia moments:

I1 = 0.9, I2 = 0.5, = 0.1

and the physical constants are: 1 = m = n = 0.1. The initial conditions are: p(0) = 0,

q(0) = 0, r(0) = 0. In Figure 8.21 we show the position p of the airplane plotted

from time 0 to 200. We can see clearly, in this figure, how the dynamic behavior

of the system is becoming chaotic by period doublings (bifurcations). In Figure

8.22 we show the position q of the airplane plotted again from 0 to 200. We can

see from this figure a similar behavior for variable q, but even more chaotic

because there more unstable points.

Figure 8.21 Simulation of position p for an airplane with

I, = 0.9, I, = 0.5, = 0.1

© 2002 Taylor & Francis

MODELLING. SIMULATION AND CONTROL . . .

Simulation of Aircraft Dynamic System
0.6 A 1 I I

-0.8
0 50 100 150 200

time t

Figure 8.22 Simulation of position q for an airplane with

I, = 0.9, 1, = 0.5, I3 = 0.1

In Figure 8.23 we show the simulation results for a smaller airplane with

inertia moments:

I~ = 0.3, I~ = 0.2, I, =0.1

with the same physical constants and initial conditions. In Figure 8.23 we show

the position p of the airplane plotted from time 0 to 200. We can see clearly, in

this figure, how the dynamic behavior of the system is becoming chaotic by period

© 2002 Taylor & Francis

170 ADVANCED APPLICATIONS OF AUTOMATED . . .

doublings but at a slower rate than in the first case. This is because a smaller

airplane is more stable than a bigger airplane.

Simulation of Aircraft Dynamic System
I , I I I I

0 50 100 150 200
time t

Figure 8.23 Simulation of position p for an airplane with

I, = o . ~ , I ~ = o . ~ , I , = o . I

In Figure 8.24 we show the simulation results for a large airplane with the

following inertia moments:

I, = 5, I2 = 4, I, = 3

with the same physical constants and initial conditions. In Figure 8.24 we show

the position p of the airplane plotted from time 0 to 100. We can see very clearly,

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL I 171

in this figure, how the dynamic behavior of the system is becoming chaotic at a

faster rate than in the other cases. This is because we are considering a bigger

airplane in this case.

Figure 8.24 Simulation of position p for an airplane with I1 = 5, I2 = 4, I3 = 3

In Figure 8.25 we show the simulation results for a smaller airplane with

inertia moments:

I1 = 0.009, I2 = 0.005, I3 = 0.001

with the same physical constants and initial conditions. In Figure 8.25 we show

the position p of the airplane plotted from time 0 to 1000. We can see in this case

© 2002 Taylor & Francis

172 ADVANCED APPLICATIONS OF AUTOMATED . . .

how the dynamic behavior is stable for most of this time interval. The reason is

that the airplane is so small that instability is highly improbable.

Simulation of Aircraft Dynamic System
6 i

-6 ' I

0 200 400 600 800 1000
time t

Figure 8.25 Simulation of position p for an airplane with

I, = 0.009, I2 = 0.005, I3 = 0.001

Now we will consider changing the physical constants 1, m, and n of the

model of an airplane. In Figure 8.26 we show the simulation results for 1, = 0.9, 12

= 0.5 and I3 = 0.1 and we consider increasing the values of 1, m and n to explore

the change in dynamic behavior (Figure 8.26).

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL I 173

Figure 8.26 Simulation of position p for an airplane with 1 = 1, m = 1, n = 1

We can see in Figure 8.26, how the dynamic behavior of the system

becomes chaotic even faster than in previous cases. The reason for this fact is that

the system is more unstable for larger values of the physical constants 1, m and n.

If we, on the other hand, decrease the values of the constants 1, m and n, we can

see that dynamic behavior become stable.

Finally, we have to mention that chaotic behavior for the case of aircraft

systems has been associated with the dangerous "flutter" effect that occurs in real-

world airplanes (Melin & Castillo, 1998~). For this reason, it is very important to

understand how and when chaotic behavior occurs for this type of dynamical

© 2002 Taylor & Francis

174 ADVANCED APPLICATIONS OF AUTOMATED . .

systems. However, we also have to recognize that still there is a lot of research

work to be done in this area of application.

8.5 Concluding Remarks and'Future Directions

In this chapter, we have presented several advanced applications of the methods

for automated modelling and simulation (described in Chapters 5 and 6) with very

good results. First, we described the application of the methods for modelling and

simulation to robotic dynamic systems, which is a very interesting and important

domain of application. The results were presented only for single-link and two-

link robot arms, however the reader is welcome to explore more complicated

systems with the methodology presented here. We also described the application

of the methods for modelling and simulation to the problem of understanding the

complex dynamic behavior of biochemical reactors. We showed mathematical

models for biochemical reactors and also simulation results to explore the

dynamic behavior of these dynamic systems. We expect the reader to explore

similar systems (chemical reactors or nuclear reactors) with the same

methodology and obtain also good results. We also describe briefly the application

of the methods for modelling and simulation to the problem of international trade

between three or more countries. This application is from the area of Economics

and poses some difficult questions about the stability of a system of three or more

countries with international trade. Finally, we have also considered briefly the

problem of modelling and simulation of aircraft systems. We showed some

simulation results for aircraft systems and leave to the reader further exploration

of this type of dynamical systems. In conclusion, we have to say that we have

presented four interesting applications with some encouraging results in the

modelling and simulation of the corresponding dynamical systems, but still a lot

of research work remains be done with these applications or with similar ones.

© 2002 Taylor & Francis

Chapter 9

Advanced Applications of Adaptive Model-Based Control

In this chapter, we present several advanced applications of the new method for

adaptive model-based control described in Chapter 7 of this book. First, we

describe the application of the new method for adaptive model-based control to

the case of robotic dynamic systems, which is very important for solving the

problem of controlling real-world manipulators in real-time. Second, we describe

the application of the method for adaptive model-based control to the case of

biochemical reactors in the food industry, which is a very interesting case due to

the complexity of this non-linear problem. Third, we consider briefly the problem

of controlling international trade between three or more countries, with our new

method for adaptive model-based control. Finally, we also consider briefly the

problem of controlling aircrafts with our new method for adaptive model-based

control. We conclude this chapter with some concluding remarks and also some

future directions of research work.

9.1 Intelligent Control of Robotic Dynamic Systems

Given the dynamic equations of motion of a manipulator, the purpose of robot

arm control is to maintain the dynamic response of the manipulator in accordance

© 2002 Taylor & Francis

176 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . .

with some prespecified performance criterion (Fu, Gonzalez & Lee, 1987).

Although the control problem can be stated in such a simple manner, its solution

is complicated by inertial forces, coupling reaction forces, and gravity loading on

the links. In general, the control problem consists of (1) obtaining dynamic

models of the robotic system, and (2) using these models to determine control

laws or strategies to achieve the desired system response and performance. The

first part of the control problem has been discussed to some extent in Section 8.1

of the previous chapter. Now, this section concentrates on the latter part of the

control problem.

Among various adaptive control methods, the model-based adaptive

control is the most widely used and it is also relatively easy to implement. The

concept of model-based adaptive control is based on selecting an appropriate

reference model and adaptation algorithm which modifies the feedback gains to

the actuators of the actual system. The adaptation algorithm is driven by the errors

between the reference model outputs and the actual system outputs. A general

control block diagram of the model-based adaptive control system is shown in

Figure 9.1

Figure 9.1 A general control block diagram for model-based adaptive control.

Reference Input r
b Robot arm X = (eT, WT)

w + dynamics

Adjustable feedback
gains

+

Adaptation
mechanism

- Reference
Model

Y

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 177

9.1.1 Traditional model-based adaptive control of robotic systems

Many authors (Fu, Gonzalez & Lee, 1987) have proposed linear mathematical

models to be used as reference models in the general scheme shown in Figure 9.1.

For example, a linear second-order time invariant differential equation can be

used as the reference model for each degree of freedom of the robot a m . Defining

the vector y(t) to represent the reference model response and the vector x(t) to

represent the manipulator response, the joint i of the reference model can be

described by

aiyWi(t) + biyti(t) + yi(t) = ri(t) (9.1)
If we assume that the manipulator is controlled by position and velocity feedback

gains, and the coupling terms are negligible, then the manipulator dynamic

equation for joint i can be written as

ai(t)xni(t) + Pi(t)xfi(t) + xi(t) = ri(t) (9.2)
where the system parameters ai(t) and Pi(t) are assumed to vary slowly with time.

Several techniques are available to adjust the feedback gains of the

controlled system. Due to its simplicity, a steepest descent method is used to

minimize a quadratic function of the system error, which is the difference between

the response of the actual system (Equation (9.2)) and the response of the

reference model (Equation (9.1)).

The fact that this control approach is not dependent on a complex

mathematical model is one of its major advantages, but stability considerations of

the closed-loop adaptive system are critical. A stability analysis is difficult and

has only been carried out using linearized models. However, the adaptability of

the controller can become questionable if the interaction forces among the various

joints are severe (non-linear).

9.1.2 Adaptive model-based control of robotic systems with a
neuro-fuzzy approach

We can apply our new method for adaptive model-based control using a neuro-

fuzzy approach (described in Chapter 7) to the problem of controlling robotic

© 2002 Taylor & Francis

178 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

dynamic systems. Intelligent control of robotic systems is a difficult problem

because the dynamics of these systems is highly non-linear. Optimal control of

many robotic systems also requires methods which make use of predictions of

future behavior. We describe, in this section, an intelligent control system for

controlling robot manipulators to illustrate our neuro-fuzzy hybrid approach for

adaptive control.

We use a fuzzy rule base for model selection for the case of robotic

manipulators. In Section 8.1, we presented mathematical models that can be used

to model the dynamic behavior of robotic manipulators. Lets call MI the

mathematical model given by Equation (8.13), M2 the mathematical model given

by Equation (8.14), Mj the model given by Equation (8.15), and M4 the model

given by Equation (8.16). Then we can establish a fuzzy rule base for these

models as explained in Section 7.3 of this book. We will assume here without loss

of generality that the selection parameters are the fractal dimension of a time

series of measured values of the relevant variables in the problem (angle, angular

velocity) and the number of links of the manipulator. Also, we are assuming that

only four models are needed to model completely the robotic system. Then, we

can define a set of four fuzzy if-then rules that basically relate the fuzzy values of

the selection parameters with the corresponding mathematical model. We show in

Table 9.1 this set of fhzzy rules for model selection for the case of manipulators of

one and two links.

Table 9.1 Fuzzy rule base for model selection of robotic systems

IF THEN

Fractal dimension Number of links Mathematical Model

low one MI

high one M2

low two M3

high two M4

© 2002 Taylor & Francis

MODELLWG, SIMULATION AND CONTROL . . . 179

We also need to define the membership functions for the fuzzy values in

Table 9.1. The membership functions for the models should give us the degree of

belief that a particular mathematical model is the correct one for the specific

values of the selection parameters. We have to note here that for using a fuzzy

rule base (like the one described in Table 9.1) with mathematical models, we need

to use our new fuzzy inference system for multiple differential equations

(described in Chapter 7).

We use neural networks for identification and control of the robotic

dynamic system. The neural networks are trained with the backpropagation

algorithm with real data to achieve the desired level of performance. Two

multilayer neural networks are used, one for identification of the model of the

robotic system and the second for the controller. If we combine the fuzzy rule base

for model selection with the neural networks for identification and control, we can

obtain an intelligent system for adaptive model-based control of robotic dynamic

systems. The intelligent control system combines the advantages of neural

networks (ability for identification and control) with the advantages of fuzzy logic

(use of expert knowledge) to achieve the goal of robust adaptive control of robotic

dynamic systems. The general architecture of the intelligent control system for

robotic systems is shown in Figure 9.2. In this figure, we have a module for the

fuzzy-rule base of model selection, a module for the neural network of control,

and a module for the neural network of identification.

An intelligent control system with the architecture shown in Figure 9.2 is

capable of adapting to changing dynamic conditions in the robotic system,

because it can change the control actions (given by the network Nc) according to

the data measured on-line and also can change the reference mathematical model

if there is a large enough change in the fractal dimension of the time series. Of

course, a change in the reference mathematical model also causes that the neural

network Ni performs a new identification for the model. In conclusion, the

intelligent system with the architecture shown in Figure 9.2 achieves model-based

control of robotic systems using a combination of Neural Networks and Fuzzy

Logic.

© 2002 Taylor & Francis

ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

Fuzzy rule base
for

Model Selection

Figure 9.2 General architecture of the intelligent control system for

robotic dynamic systems.

+

To give an idea of the performance of our neuro-fuzzy approach for

adaptive model-based control of robotic systems, we show below simulation

results obtained for a single-link robot. The desired trajectory for the link was

selected to be

qd = 1 .Osin(2.0(1 -e-t3)t)

and the simulation was carried out with the initial values:

q(O)=O.l qt1(0)=O

We used three-layer neural networks (with 5 hidden neurons) with the

backpropagation algorithm and hyperbolic tangent sigmoidal functions as the

activation functions for the neurons. We show in Figure 9.3 the initial function

approximation achieved with the neural network for control. Of course, the

approximation is not good (at the beginning) because the net hasn't been trained

yet with the data.

1

b

Neural Network
for

Control Nc

Neural Network
for

Identification Ni

u b
Robotic
System

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

Figure 9.3 Initial function approximation of the neural network for control.

We show in Figure 9.4 the function approximation achieved with the

neural network for control after 400 epochs of training with a variable learning

rate. The identification achieved by the neural network (after 400 epochs) can be

considered very good because the error has been decreased to the order of 10-I.

Still, we can obtain a better approximation by using more hidden neurons or more

© 2002 Taylor & Francis

182 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

layers. In any case, we can see clearly how the neural network learns to control the

robotic system, so it is able to follow the arbitrary desired trajectory.

Figure 9.4 Function approximation of the neural network

for control after 400 epochs.

We also show in Figure 9.5 the curve relating the sum of squared errors

SSE against the number of epochs of neural network training. We can see in

Figure 9.5 how the SSE diminishes rapidly from being of the order of lo1 to a

smaller value of the order of 10-1.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 183

Figure 9.5 Sum of squares of errors for the neural network plotted

from 0 to 400 epochs.

We have to mention here that these simulation experiments for a single

link robot show very good results. We have also tried our approach for control

with more complex robotic systems with encouraging results. We recommend for

the interested reader to follow our methodology for control with this type of

systems, so he or she can get all of the ideas behind solving the problem of robot

control.

© 2002 Taylor & Francis

184 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

9.2 Intelligent Control of Biochemical Reactors

We describe in this section the application of our new method for adaptive model-

based control to the complex case of biochemical reactors in the food industry.

The case of biochemical reactors for food processing plants is a very complex one

because biochemical processes are often highly non-linear and difficult to control

(Ungar, 1995). Optimal control of many biochemical processes also requires

systems which make use of predictions of future behavior. In this section, we

describe the methodology to develop and intelligent control system for

biochemical reactors that can be used in food processing plants to maximize food

production by controlling the biochemical processes that occur in the biochemical

reactors (Melin & Castillo, 1998b).

9.2.1 Fuzzy rule base for model selection

We describe in this section a fuzzy rule base for model selection for the case of

biochemical reactors producing yogurt. In Section 8.2, we presented the

mathematical models that can be used to model the dynamical behavior in the

biochemical reactors for this case. Lets call MI the mathematical model given by

Equation (8.21), M2 the mathematical model given by Equation (8.22), and M3
the mathematical model given by Equation (8.23). Then we can establish a fuzzy

rule base for these models as explained in Section 7.3 of this book. We will

assume in the following that the selection parameter is the temperature T used in

the production process, defined over the real-valued interval:

100 5 T 5 120

because the range of temperatures used in the production process of yogurt is

usually between 100 O F and 120 O F . Since we have three mathematical models in

this case, we define three subintervals of [loo, 1201 as follows:

l O O r T < 105 ,105IT< 1 1 5 , 1 1 5 I T I 120,

where MI corresponds to the first subinterval, M2 corresponds to the second

subinterval, and M3 corresponds to the third subinterval. Then, we can define a set

of three fuzzy if-then rules that basically relate the subintervals to the

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 185

mathematical models in a one-to-one fashion. We show the set of fuzzy rules for

model selection in Table 9.2.

Table 9.2 Fuzzy rule base for model selection.

IF THEN

100 I T < 105 (Low) MathematicalModel = MI

1 0 5 I T < 1 1 5 (Medium) Mathematical-Model = M2

1 1 5 S T S 120 (High) Mathematical-Model = M7

We also need to define the membership functions for the three

corresponding mathematical models. The membership functions for the models

should give us the degree of belief that a particular mathematical model is the

correct one for a specific value of the temperature T in the closed interval

[100,120]. In Figure 9.6 we show the membership functions for models MI, M2
and M3.

Degree of

Membership

100 105 110 115 120

Temperature

Figure 9.6 Membership functions for the mathematical models.

© 2002 Taylor & Francis

186 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . .

In Figure 9.6, the membership functions for models M1 and M3 are of the

"sigmoidal" type and the membership function for model M2 is of the "gaussian"

type. This is to guarantee a smooth transition between the degree of membership

between the different mathematical models.

We have implemented this hzzy rule base in the MATLAB programming

language (the complete program is listed in Appendix C). The MATLAB

programming language has symbolic and numeric features (Hanselman &

Littlefield, 1995). Also the MATLAB has available the "Fuzzy Logic Toolbox"

which enables an easy implementation of fuzzy inference systems (Jang & Gulley,

1997). We can use the "Rule Editor" of the Fuzzy Toolbox to construct the rules

of the fuzzy inference system. In Figure 9.7, we show the fuzzy rules of Table 9.2

as they are entered in the Rule Editor.

1. If [temperature is Low) then (model is M I] (I)
2. If [temperature is Medium] then (model is M2) (1)
3. If (temperature is High] then (model is M3) [I)

Figure 9.7 Fuzzy rule base for model selection in the Rule Editor.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL I 187

We can use the "Membership Function Editor" to display and edit all of

the membership functions for the fuzzy inference system. In Figure 9.8, we show

the membership functions for the mathematical models (output) as they are edited

in the Membership Function editor. Also, we show in Figure 9.9 the membership

functions for the temperature (input).

Figure 9.8 Membership functions (model selection) in the

"Membership Function Editor".

© 2002 Taylor & Francis

188 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED I

In Figure 9.8 we show the three different membership functions for the

models MI, M2 and M3 and we can see the "smooth transition" between the

degree of membership between each mathematical model.

Figure 9.9 Membership functions for the temperature in the

"Membership Function Editor"

In Figure 9.9 we show the three different membership functions for the

temperature classified as Low, Medium and High.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL I 189

Figure 9.10 General structure of the fuzzy rule base in the FIS Editor.

In the Fuzzy Inference System (FIS) Editor we can display the general

information about the fuzzy rule base that we have just designed. In Figure 9.10,

we show the general structure of the fuzzy rule base that we have just designed for

model selection.

© 2002 Taylor & Francis

190 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

9.2.2 Neural networks for identification and control

We describe in this section the neural networks used for identification and control

for the case of adaptive model-based control of biochemical reactors producing

yogurt. The neural networks were triined initially using the "backpropagation"

learning algorithm (Miller, Sutton & Werbos, 1995) with real data to achieve the

desired level of performance and then they were tested for robustness with new

data. Process control of biochemical plants is an attractive application because of

the potential benefits to both adaptive network research and to actual biochemical

process control. In spite of the extensive work on self-tuning controllers and

model-reference control, there are many problems in chemical processing

industries for which current techniques are inadequate. Many of the limitations of

current adaptive controllers arise in trying to control poorly modeled non-linear

systems. For most of these processes extensive data are available from past runs,

but it has been difficult to formulate precise models (Ungar, 1995).

Bioreactors are difficult to model because of the complexity of the living

organisms in them and also they are difficult to control because one often can't

measure on-line the concentration of the chemicals being metabolized or

produced. Bioreactors can also have markedly different operating regimes,

depending on whether the bacteria is rapidly growing or producing product.

Model-based control of this reactors offers a dual problem: determining a realistic

process model and determining effective control laws in the face of inaccurate

process models and highly non-linear processes.

Biochemical systems can be relatively simple in that they have few

variables, but still very difficult to control due to strong nonlinearities which are

difficult to model accurately. A prime example is the bioreactor. In its simplest

form, a bioreactor is simply a tank containing water and cells (e.g. bacteria) which

consume nutrients ("substrate") and produce products (both desired and

undesired) and more cells. Bioreactors can be quite complex: cells are self-

regulatory mechanisms, and adjust their growth rates and production of different

products radically depending on temperature and concentrations of waste

products. Mathematical models for these systems can be expressed as differential

equations of the type shown in Section 8.2 of the previous chapter.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 191

We have implemented a model-based neural controller using the

architecture of Figure 7.6, described in Chapter 7. Two multilayer neural networks

are used, one for identification of the model of the plant and the second for the

controller. Each neural network has 3 layers, a one node input layer, a 5-node

hidden layer, and a one-node output layer. We show in Figure 9.11 the

architecture of the neural networks for identification and control. The neural

networks were implemented in the MATLAB programming language to achieve a

high level of efficiency on the numerical calculations needed for these networks.

We trained the adaptive networks using temperatures and control actions varying

over the range of values relevant to the specific application. The

"backpropagation" learning algorithm was used with the data to obtain the weights

of the networks.

Figure 9.1 1 Structure of the networks for identification and control.

© 2002 Taylor & Francis

192 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

The backpropagation algorithm (Soucek, 1991) can be written as follows:

1 .- Start with a random set of weights.

2.- Calculate yp by propagating the input xp trough the network.

3.- Calculate the error of a node corresponding to the pattern p as:

where dp is the desired output.

4.- Adjust the weights of the network with the iterative equation:

where apln is the error for node n at layer 1 and for the pattern p, given by

the equation:
-

a p ~ n - dp~n - Y p ~ n

if node n is an output node, and by equation:

Fpln = f '(~pln) Cr ap ,~+l , r W~+l,r,n

where r is over the nodes in layer 1+1. f(y) is the activation function of the

nodes. The activation function can be a sigmoidal function, for example,

the logistic function is widely used.

5.- Repeat by going to step 2.

The complete computer program for the backpropagation algorithm,

implemented in the MATLAB programming language, can be found in Appendix

C of this manuscript. This computer program can be used to train the neural

networks with real data for the problem of controlling biochemical reactors in the

Food Industry.

9.2.3 Intelligent adaptive model-based control for biochemical
reactors

In this section, we combine the implementation of the fuzzy rule base for model

selection with the implementation of the neural networks for identification and

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 193

control to obtain an intelligent system for adaptive model-based control for

biochemical reactors. This intelligent control system combines the advantages of

neural networks (ability for identification and control) with the advantages of

fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive

control of biochemical reactors in food processing plants. The general architecture

of the intelligent control system for biochemical reactors is shown in Figure 9.12.

In this figure, we have a module for the fuzzy rule base of model selection, a

module for the Neural Network of Control, and a module for the Neural network

of Identification.

Figure 9.12 General architecture of the intelligent control system

Neural Network
for

Identification Ni

Fuzzy rule base
for

Model Selection

An intelligent control system with the architecture shown in Figure 9.12 is

capable of adapting to changing dynamic conditions in the biochemical reactors,

because it can change the control actions (given by the network Nc) according to

the data measured on-line and also can change the reference mathematical model

if there is a large enough change in the temperature T. Of course, a change in the

b

t +

Neural Network
for

Control Nc
b U

Plant

© 2002 Taylor & Francis

194 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

reference mathematical model also causes that the neural network Ni performs a

new identification for the model.

After the neural networks were trained, we validated their performance

with simulations to get an idea of the degree of approximation achieved. The

results can be considered very good because the errors (of identification and

control) achieved with the networks were relatively small. In the following

figures, we show some of these results to give an idea of the performance of the

neural networks for identification and control.

We show in Figure 9.13 the initial function approximation achieved with a

neural network for identification with the architecture shown in Figure 9.1 1. Of

course, the approximation is not good (at the beginning) because the net hasn't

been trained yet with the data. We set the parameters for the backpropagation

algorithm as follows:

goal-error = 0.00002

learning-rate = 0.0001

and we use as activation functions hyperbolic tangent sigmoidal functions

(tansig). We use as reference model for the identification, the model of two

bacteria (M2) used for production, because this is the case that is been considered

for food production. This is sufficient for our purpose of having a neural network

that knows the process of the plant, because the MI model (of one bacteria) can

be considered a special case of the M2 model and the M3 model can be treated as

a case to be controlled.

We show in Figure 9.14 the function approximation achieved with the

neural network for identification after 40,000 epochs of training with a learning

rate of 0.0001. The target values shown in Figure 9.14 are from the numerical

solution of the M2 model (system of coupled differential equations) given as

Equation (8.22) in Chapter 8. The curve shown as output in Figure 9.14 is the

approximation given by the neural network after training it with the target values

of the M2 model.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

Figure 9.13 Initial function approximation of the neural network for identification.

The identification of the model achieved (after 40,000 epochs) by the neural

network, shown in Figure 9.14, can't be considered good at all. This means that

still more training is needed to achieve the desired level of accuracy.

© 2002 Taylor & Francis

196 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

Figure 9.14 Function approximation of the neural network for identification

after 40,000 epochs.

We show in Figure 9.15 the curve relating the sum of Squared Errors

(SSE) against the number of epochs of neural network training. We can see in

Figure 9.1 5 how the SSE diminishes rapidly from being of the order of lo5 to the

smaller value of the order of 101. However, we need more training to achieve an

even smaller value of SSE.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 197

Figure 9.15 Sum of squares of errors for the neural network plotted

from 0 to 40,000 epochs

We show in Figure 9.16 the function approximation achieved with the

network for identification after 80,000 epochs of training with a learning rate of

0.0001. The target values shown in Figure 9.16 are from the numerical solution of

the M2 model (Equation (8.22)). The curve shown as output in Figure 9.16 is the

approximation of the neural network after training it with the target values. The

identification achieved (after 80,000 epochs) by the neural network is much better

than the one shown in Figure 9.14. Of course, more training could improve even

more the approximation.

© 2002 Taylor & Francis

198 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . .

Figure 9.16 Function approximation of the neural network for identification

after 80,000 epochs

We show in Figure 9.17 the curve relating the sum of squared errors

against the number of epochs of neural network training. We can see in Figure

9.17 how the sum of squared errors diminishes rapidly from being of the order of

1 O5 to the relatively small value of 1 0-2. The fact that the sum of errors is of the

order of after 80,000 epochs, means that the neural network has achieved a

relative good approximation to the solution of the mathematical model M2. Of

course, more training of the neural network could improve even more this

© 2002 Taylor & Francis

MODELLING. SIMULATION AND CONTROL . . . 199

approximation. However, we have considered this approximation as sufficiently

good for identification of the complex model of two bacteria for food production.

Figure 9.17 Sum of squares of errors for the neural network plotted

from 0 to 80,000 epochs.

We show in Figure 9.18 the initial function approximation achieved with a

neural network for control with the architecture shown in Figure 9.1 1. Of course,

the approximation is not good (at the beginning) because the network hasn't been

trained yet with the data. The parameters for the backpropagation algorithm are

the same as the ones used for identification. On the other hand, we use in this case

© 2002 Taylor & Francis

200 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

as activation functions the pure linear ones (purelin), instead of sigmoidal type

functions. This is because production control only requires the simulation of a

linear production process. We use as data for training the neural network for

control (see Appendix C) a sample which has the values of real production for

different times. This is sufficient, in this case, for our purpose of having a neural

network that knows how to control the production process of the plant.

Figure 9.18 Initial function approximation of the neural network for control.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 20 1

We show in Figure 9.19 the function approximation achieved by the neural

network for control after 5,000 epochs of training with a learning rate of 0.0001.

The target values shown in Figure 9.19 are from the sample of production data

(Appendix C) used to train the neural network. The line shown as output in Figure

9.19 is the approximation of the neural network to the pattern of the target values.

The approximation achieved (after 5,000 epochs) by the neural network for

control is excellent (as can be seen in Figure 9.19). The sum of squared errors is

of the order of 10-2, which is sufficient in this case.

Figure 9.19 Function approximation of the neural network for control

after 5,000 epochs.

© 2002 Taylor & Francis

202 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

We have to remember that this training of the neural networks is only to

have an initial knowledge of the plant. Later when the neural networks are used

on-line, the real data that is going to be measured will be used to improve even

more their performance.

9.3 Intelligent Control of International Trade

We describe in this section the application of our new method for adaptive model-

based control to the problem of controlling international trade dynamics. The

problem of international trade between three or more countries is a very complex

one because of the couplings and non-linearities involved in the mathematical

models (Castillo & Melin, 1998~). In this section, we describe the methodology to

develop an intelligent system for controlling international trade that can be used

by the government of a specific country to maximize the profit from its

international trade with other countries.

9.3.1 Adaptive model-based control of international trade

The method for adaptive model-based control of non-linear dynamical systems

consists of using a fuzzy rule base for model selection, a neural network for

identification and a neural network for control (as described in Chapter 7). For the

case of international trade, we need to define each of the method's components

mentioned above to achieve the goal of controlling the dynamical system of three

(or more) countries with trade between them.

The mathematical models of international trade can be represented as

systems of coupled non-linear differential equations (as described in Section 8.3

of the previous chapter). In this case, we can establish a fuzzy rule base for model

selection that enables the use of the appropriate mathematical model according to

the changing conditions of the economies involved. For example, if we use the

general mathematical models of Equations (8.28) and (8.29) for describing the

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 203

international trade dynamics between one, two or three countries, we can have the

following specific models. For one country with no international trade we have:

M,: Y'I = al(I1 - S1)

rll = Pl(L1 - M l l ~ l)
For two countries with no international trade:

M2 : yVi = ai(Ii - Si) i = 1,2

rti = Pi(Li - Milpi)

For two countries with international trade:

M3 : yti = ai(Ii - Si + y (EXi - IMi)) i = 1,2

rfi = bi(Li - Milpi)

For three countries with no international trade:

M4 : yfi = ai(Ii - Si) i = 1,2,3

rti = bi(Li - Milpi)

And for three countries with international trade:

M5: yti = ai(Ii - Si + y (EXi - IMi)) i = 1,2,3

rti = bi(Li - Milpi)

where Ii, Si, Li, Mi, EXi, IMi, and pi are defined as in Section 8.3 of the previous

chapter. Now, using y as a selection parameter we can establish the fuzzy rule

base for model selection as in Table 9.3.

Table 9.3 Fuzzy rule base for model selection of international trade

1 W THEN

Y Number of countries Mathematical Model

one MI

small two M2

large two M3

small three M4

large three M5

© 2002 Taylor & Francis

204 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

In Table 9.3 we are assuming that the selection parameter y can have only

two possible fuzzy values (small and large). The reasoning behind this is that

when y is small, we can use the model with no international trade and when y is

large we can use the model with international trade. We have to note here that the

fuzzy rule base has to be developed according to the particular case that is being

considered.

We use neural networks, for identification and control, trained with the

backpropagation algorithm (as in previous section). The integration of the fuzzy

rule base for model selection with the neural networks for identification and

control, results in an intelligent system for adaptive model-based control of

international trade. This intelligent system combines the advantages of neural

networks (ability for identification and control) with the advantages of fuzzy logic

(use of expert knowledge) to achieve the goal of robust adaptive control of

international trade. The general architecture of the intelligent control system for

international trade is similar to the one shown in Figure 9.12, except that now

instead of the plant we have a non-linear dynamical system in economics. An

intelligent system with this architecture is capable of adapting to changing

conditions in the economies of the countries, because it can change the control

actions according to the data available and also can change the reference

mathematical model if there is a large enough change in the parameter y. Of

course, for this method to work we need to estimate parameter y from time series

of the real values for the variables in the mathematical models. ,

9.3.2 Simulation results for control of international trade

To give an idea of the performance of our neuro-fuzzy approach for adaptive

model-based control of international trade dynamics, we show below simulation

results obtained for the case of three countries (USA, Canada and Mexico) with

international trade. We will consider the problem of controlling the economy of

the less developed country (Mexico) because it is the most challenging from the

control point of view. For the case of Mexico, one problem is that of reducing

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL I 205

interest rates in the short term so we will consider as a desired trajectory for this

economy:
rd = 0.25e-().It + 0.02s.int + 0.05

with initial values o f :

r(0) = 0.30 r'(0) = 0.

In this desired trajectory for the economy, we are assuming that the goal interest

rate is 5% and that we need to decrease the initial rate of 30% to the final interest

rate of 5%. We also consider that the economy has natural cycles and because of

this fact we use the "sine' function.

We use three-layer neural networks (with 10 hidden neurons) with the

backpropagation algorithm and hyperbolic tangent sigmoidal functions as the

activation functions for the neurons. We show in Figure 9.20 the initial function

approximation achieved with the neural networks for control.

Figure 9.20 Initial function approximation of the neural network for control.

© 2002 Taylor & Francis

206 ADVANCED APPLICATIONS OF ADAPITVE MODEL-BASED I

We show in Figure 9.21 the function approximation achieved with the

neural network for control after 59 epochs of training with a variable learning rate.

The identification achieved by the neural network (after 59 epochs) can be

considered very good because the error has been decreased to the order of

Still, we can obtain a better approximation by using more hidden neurons or more

layers. In any case, we can see clearly how the neural network learns to control the

economic dynamic system, because it is able to follow the arbitrary desired

trajectory.

Figure 9.21 Function approximation of the neural network for control

after 59 epochs.

© 2002 Taylor & Francis

MODELLING. SIMULATION AND CONTROL . . . 207

We also show in Figure 9.22 the curve relating the sum of squared errors

SSE against the number of epochs of neural network training. We can see in

Figure 9.22 how the SSE decreases rapidly from being of the order of lo1 to a

smaller value of the order of 10-4.

Figure 9.22 Sum of squares of errors for the neural network plotted

from 0 to 59 epochs.

We have to mention here that these simulation experiments for the case of

three specific countries (USA, Canada and Mexico) show very good results. We

have also tried our approach for control with other dynamic systems in economics

© 2002 Taylor & Francis

208 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . .

with encouraging results. We recommend to the interested reader to use our

methodology for this type of economic systems or other similar systems to explore

on his (or her) own the interesting problem of controlling complex non-linear

dynarnical systems.

9.4 Intelligent Control of Aircraft Dynamic Systems

We describe in this section the application of our new method for adaptive model-

based control to the problem of controlling the dynamics of aircraft systems. The

problem of controlling the dynamic behavior of an aircraft during flight is a very

complex one because of the strong non-linearities involved in the mathematical

models (Melin & Castillo 1998~). In this section, we describe the methodology to

develop an intelligent system for controlling aircraft systems that can be used to

automate the flight (or part of it) of a real airplane.

9.4.1 Adaptive model-based control of aircraft systems

The method for adaptive model-based control of non-linear dynarnical systems

consists of using a fuzzy rule base for model selection, a neural network for

identification and a neural network for control. For the case of aircraft systems,

we need to define each of these components to achieve the goal of controlling the

dynamical system during flight.

The mathematical models of aircraft systems can be represented as

coupled non-linear differential equations (as described in Section 8.4). In this

case, we can develop a fuzzy rule base for model selection that enables the use of

the appropriate mathematical model according to the changing conditions of the

aircraft and its environment. For example, if we use the general mathematical

models of Equations (8.35), (8.36) and (8.38) for describing aircraft dynamics, we

can formulate a set of fuzzy if-then rules that relate the models to the conditions

of the aircraft and its environment. Lets assume that MI is given by Equation

(8.35), M2 is given by Equation (8.36) and M3 is given by Equation (8.38). Now,

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL .. . 209

using the wind velocity ug and inertia moment I1 as selection parameters we can

establish the fizzy rule base for model selection as in Table 9.4.

Table 9.4 Fuzzy rule base for model selection of aircraft systems

IF THEN

Wind Velocity, up Inertia Moment, I, Mathematical Model

small small MI

small large M2

large large M3

In Table 9.4, we are assuming that the wind velocity ug can have only two

possible fuzzy values (small and large). This is sufficient to know if we have to

use the mathematical model that takes into account the effect of the wind (M3) for

up large, or if we don't need to use it and simply the model M2 is sufficient (for ug

small). Also, the inertia moment (I1) helps in deciding between models M1 and

M2 (or M3).
We use neural networks, for identification and control, trained with the

backpropagation algorithm (as in previous sections). The integration of the fuzzy

rule base for model selection with the neural networks for identification and

control, results in an intelligent system for adaptive model-based control of

aircraft dynamic systems. This intelligent system combines the advantages of

neural networks (ability for identification and control) with the advantages of

fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive

control of aircrafts. The general, architecture of the intelligent control system for

aircrafts is similar to the one shown in Figure 9.12, except that now instead of the

plant we have an aircraft dynamic system. An intelligent system with this

architecture is capable of adapting to changing conditions in the airplane or in its

environment, because it can change the control actions according to the data

available and also can change the reference mathematical model if there is a large

© 2002 Taylor & Francis

210 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

enough change in the parameters ug and 11. Of course, for this method to work we

need to estimate these parameters from the time series of the real values for the

variables in the mathematical models.

9.4.2 Simulation results for control of aircraft systems

To give an idea of the performance of our neuro-fuzzy approach for adaptive

model-based control of aircraft dynamics, we show below simulation results

obtained for the case of controlling the altitude of an airplane for a flight of 5

hours. We assume that the airplane takes about one hour to achieve the cruising

altitude 30 000 ft, then cruises along for about three hours at this altitude (with

minor fluctuations), and finally descends for about one hour to its final landing

point. We will consider the desired trajectory as follows:

for O S t < l

rd= 30 +2sinlOt for l < t < 4 {I:: - 30t for 4 < t 1 5

Of course, a complete desired trajectory for the airplane would have to include the

positions for the airplane in the x and y directions (variables p, q in the models of

Section 8.4). However, we think that here for illustration purposes is sufficient to

show the control of the altitude r for the airplane.

We used three-layer neural networks (with 10 hidden neurons) with the

backpropagation algorithm and hyperbolic tangent sigmoidal functions as the

activation functions for the neurons. We show in Figure 9.23 the initial function

approximation achieved with the neural network for control.

We show in Figure 9.24 the function approximation achieved by the neural

network for control after 600 epochs of training with a variable learning rate. The

identification achieved by the neural network (after 600 epochs) can be considered

very good because the error has been decreased to the order of lo1. Still, we can

obtain a better approximation by using more hidden neurons or more layers. In

any case, we can see clearly (from Figure 9.24) how the neural network learns to

control the aircraft, because it is able to follow the arbitrary desired trajectory.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

Figure 9.23 Initial function approximation of the neural network

for control of an airplane.

We also show in Figure 9.25 the curve relating the sum of squared errors

SSE against the number of epochs of neural network training. We can see in

Figure 9.25 how the SSE decreases rapidly from being of the order of 104 to a

smaller value of the order of 1 O1.

© 2002 Taylor & Francis

212 ADVANCED APPLICATIONS OF ADAFTWE MODEL-BASED I

Figure 9.24 Function approximation of the neural network for control

of an airplane after 600 epochs.

We have to mention here that these simulation experiments for the case of

a specific flight for a given airplane show very good results. We have also tried

our approach for control with other types of flights and airplanes with

encouraging results. We leave to the reader further experimentation with this type

of aircraft systems and other similar dynamical systems.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 213

Figure 9.25 Sum of squares of errors for the neural network plotted

from 0 to 600 epochs.

9.5 Concluding Remarks and Future Directions

In this chapter, we have presented several advanced applications of the method for

adaptive model-based control (described in Chapter 7) with very good results.

First, we described the application of the method for adaptive model-based control

to the problem of controlling robotic dynamic systems, which is a very important

© 2002 Taylor & Francis

214 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . .

domain of application for areas such as manufacturing, medicine, aerospace and

others. The simulation results were presented only for the case of single-link robot

arms, however the reader is welcome to explore more complicated systems with

the methodology presented here. We also described the application of the method

for adaptive control to the problem of controlling the dynamical behavior of

biochemical reactors used for food production in the food industry. The

simulation results we presented only for relative simple biochemical reactors (for

the case of producing yogurt), however we expect the reader to explore the control

of similar systems (like chemical reactors or nuclear reactors) with the same

methodology and obtain also good results. We also described briefly the

application of the method for adaptive control to the problem of controlling

international trade between several countries. This application is from the area of

Economics and poses some difficult questions about the stabilization (or control)

of an erratic economy with international trade. We have encouraging results in

this area of application, but still there is a lot of work to be done for this type of

problems. Finally, we have also considered briefly the problem of controlling

aircrafts systems during flight. We have showed some simulation results for

aircraft systems and leave to the reader further exploration of this type of

dynamical systems. In conclusion, we have to say that we have presented four

interesting applications of the method for adaptive control with encouraging

results in controlling the corresponding dynamical systems, but still a lot of

research work remains to be done with these applications or with similar ones.

© 2002 Taylor & Francis

References

Abraham, E. & Firth, W. J. (1984). "Multipararneter Universal Route to Chaos

in a Fabry-Perot Resonator", Optical Bistability, Vol. 2, pp. 119-126.

Albertos, P., Strietzel, R. & Mart, N. (1997). "Control Engineering Solutions: A

Practical Approach", IEEE Computer Society Press.

Badiru, A.B. (1992). "Expert Systems Applications in Engineering and

Manufacturing", Prentice-Hall.

Barto, A. G., Sutton, R. S. & Anderson, C. (1983). "Neuronlike Elements that

can Solve Difficult Learning Control Problems", IEEE Transactions on

Systems, Man & Cybernetics, Vol. 13, pp. 835-846.

Bernard, J. A. (1988). "Use of Rule-Based System for Process Control", IEEE

Control Systems Magazine, Vol. 8, pp. 3-13.

Bratko, I. (1990). "Prolog Programming for Artificial Intelligence", Addison

Wesley.

Brogan, W. (1991). "Modem Control Theory", Prentice-Hall.

Bryson, A. E. & Ho Y.-C. (1969). "Applied Optimal Control", Blaisdell Press.

Castillo, 0. & Melin, P. (1994a). "Developing a New Method for the

Identification of Microorganisms for the Food Industry using the Fractal

Dimension, Journal of Fractals, World Scientific, Vol. 2, No. 3, pp. 457-

460.

© 2002 Taylor & Francis

216 REFERENCES

Castillo, 0. & Melin, P. (1994b). "An Intelligent System for Discovering

Mathematical Models for Financial Time Series Prediction", Proceedings of

TENCON'94, IEEE Computer Society Press, Vol. 1, pp. 2 17-22 1.

Castillo, 0. & Melin, P. (1995a). "An Intelligent System for Financial Time

Series Prediction Combining Dynamical Systems Theory, Fractal Theory

and Statistical Methods", Proceedings of CIFER'95, IEEE Computer Society

Press, pp.151-155.

Castillo, 0. & Melin, P. (1995b). "Intelligent Model Discovery for Financial

Time Series Prediction using Non-Linear Dynamical Systems and Statistical

Methods", Proceedings of the Third International Conference on Artificial

Intelligence Applications on Wall Street", Software Engineering Press, pp.

80-89.

Castillo, 0. & Melin, P. (199%). "An Intelligent System for the Simulation of

Non-Linear Dynamical Economical Systems", Journal of Mathematical

Modelling and Simulation in Systems Analysis, Edited by Achim Sydow,

Gordon and Breach Publishers, Vol. 18-1 9, pp. 767-770.

Castillo, 0. & Melin, P. (1996a). "Automated Mathematical Modelling for

Financial Time Series Prediction using Fuzzy Logic, Dynamical Systems

and Fractal Theory", Proceedings of CIFER'96, IEEE Computer Society

Press, pp. 120-126.

Castillo, 0. & Melin, P. (1996b). "Automated Mathematical Modelling and

Simulation of Dynamical Engineering Systems using Artificial Intelligence

Techniques", Proceedings CESA'96, Gerf EC Lille, pp. 682-687.

Castillo, 0. & Melin, P. (1996~). "An Intelligent System for Financial Time

Series Prediction using Fuzzy Logic Techniques and Fractal Theory",

Proceedings ITHURS'96, Vol. 1, AMSE Press, pp. 423-430.

Castillo, 0. & Melin, P. (19979). "Mathematical Modelling and Simulation of

Robotic Dynamic Systems using an Intelligent Tutoring System based on

Fuzzy Logic and Fractal Theory", Proceedings of AIENG'97, Wessex

Institute of Technology, pp. 97-100.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 217

Castillo, 0. & Melin, P. (1997b). "Mathematical Modelling and Simulation of

Robotic Dynamic Systems using Fuzzy Logic Techniques and Fractal

Theory", Proceedings of IMACS World Congress'97, Wissenschaft &

Technik Verlag, Vol. 5, pp.343-348.

Castillo, 0. & Melin, P. (1998a). "A New Fuzzy-Fractal-Genetic Method for

Automated Mathematical Modelling and Simulation of Robotic Dynamic

Systems", Proceedings of World Congress on Computational Intelligence

FUZZ'98, IEEE Computer Society Press, Vol. 2, pp. 1 182-1 187.

Castillo, 0. & Melin, P. (1998b). "Modelling, Simulation and Behavior

Identification of Non-Linear Dynamical Systems with a New Fuzzy-Fractal-

Genetic Approach", Proceedings of IPMU'98, EDK Publishers, Vol. 1, pp.

467-474.

Castillo, 0. & Melin, P. (199th). "Modelling, Simulation and Forecasting of

International Trade Dynamics using a New Fuzzy-Genetic Approach",

Proceedings of CCM'98, AMSE Press, pp. 2 1-24.

Chen, V. C. & Pao, Y. H. (1989). "Learning Control with Neural Networks",

Proceedings of the International Conference on Robotics and Automation,

pp. 1448-1453.

Chiu, S., Chand, S., Moore, D. & Chaudhary, A. (1991). "Fuzzy Logic for

Control of Roll and Moment for a Flexible Wing Aircraft", IEEE Control

Systems Magazine, Vol. 11, pp. 42-48.

Cybenko, G. (1989). "Approximation by Superpositions of a Sigmoidal

Function", Mathematics of Control, Signals and Systems, Vol. 2, pp. 303-

314.

Davidor, Y. (1991). "Genetic Algorithms and Robotics: A Heuristic Strategy for

Optimization", World Scientific Publishing.

Devaney, R. (1989). "An Introduction to Chaotic Dynamical Systems", Addison

Wesley Publishing.

Fahlman, S. E. & Lebiere C. (1990). "The Cascade-Correlation Learning

Architecture", Advances in Neural Information Processing Systems, Morgan

Kaufmann.

Fu, K.S., Gonzalez, R.C. & Lee, C.S.G (1987). "Robotics: Control, Sensing,

Vision and Intelligence", McGraw-Hill.

© 2002 Taylor & Francis

218 REFERENCES

Geman, S. & Geman, D. (1984). "Stochastic Relaxation, Gibbs Distribution and

the Bayesian Restoration in Images", IEEE Transactions of Pattern Analysis

and Machine Intelligence, Vol. 6, pp. 721-741.

Goldberg, D.E. (1989). "Genetic Algorithms in Search, Optimization and

Machine Learning", Addison Wesley Publishing.

Grebogi, C., Ott, E. & Yorke, J. A. (1987). "Chaos, Strange Attractors, and

Fractal Basin Boundaries in Nonlinear Dynamics", Science, Vol. 238, pp.

632-637.

Gujarati, D. (1987). "Basic Econometrics", McGraw-Hill Publishing.

Gupta, M. M. & Sinha, N. K. (1996). "Intelligent Control Systems: Theory and

Applications", IEEE Computer Society Press.

Hanselman D. & Littlefield B. (1995). "The Student Edition of MATLAB

Version 4 : User's Guide", The Math-Works, Inc. Prentice-Hall.

Holland, J. H. (1975). "Adaptation in Natural and Artificial Systems", University

of Michigan Press.

Hunt, K. J., Sbarbaro, D., Zbikowski R. & Gawthrop, P. J. (1992). "Neural

Networks for Control Systems-A survey", Automatica, Vol. 28 No. 6, pp.

1083-1 112.

Ingber, L. & Rosen, B.E. (1992). "Genetic Algorithms and Very Fast Simulated

Reannealing", Journal of Mathematical and Computer Modelling, Vol. 16,

pp. 87-100.

Jamshidi, M. (1997). "Large-Scale Systems: Modelling, Control and Fuzzy

Logic", Prentice-Hall

Jang, J.-S. R. (1993). "ANFIS: Adaptive-Network-Based Fuzzy Inference

Systems", IEEE Transactions on Systems, Man and Cybernetics", Vol. 23,

pp. 665-685.

Jang, J.-S. R. & Gulley, N. (1997). "MATLAB: Fuzzy Logic Toolbox, User's

Guide", The Math-Works, 1nc.Publisher.

Jang, J.-S. R., Sun, C.-T. & Mizutani, E. (1997). "Neurofuzzy and Soft

Computing: A Computational Approach to Learning and Machine

Intelligence", Prentice-Hall.

Kandel, A. (1992). "Fuzzy Expert Systems", CRC Press Inc.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 219

Kapitaniak, T. (1996). "Controlling Chaos: Theoretical and Practical Methods in

Non-Linear Dynamics", Academic Press.

Kasai, Y. & Morimoto, Y (1988). "Electronically Controlled Continuously

Variable Transmission", Proceedings of International Congress

Transportation Electronics.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). "Optimization by

Simulated Annealing", Science, Vol. 220, pp. 671-680.

Korn, G. A. (1995). "Neural Networks and Fuzzy Logic Control on Personal

Computers and Workstations", MIT Press.

Kosko, B. (1992). "Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence", Prentice-Hall.

Kosko, B. (1997). "Fuzzy Engineering", Prentice-Hall.

Lilly, K. W. (1993). "Efficient Dynamic Simulation of Robotic Mechanisms",

Kluwer Academic Press.

Lim, S.Y., Hu, J. & Dawson, D.M. (1996). "An Output Feedback Controller for

Trajectory Tracking of RLED Robots using Observed Backstepping

Approach", Journal of Robotics and Automation, pp. 149-160.

Lippmann, R. P. (1987). "An Introduction to Computing with Neural Networks",

IEEE Acoustics, Speech, and Signal Processing Magazine, Vol. 4, pp. 4-22.

Mamdani, E. H. & Assilian, S. (1975). "An Experiment in Linguistic Synthesis

with a Fuzzy Logic Controller", International Journal of Man-Machine

Studies, Vol. 7, pp. 1-13.

Mandelbrot, B. (1987). "The Fractal Geometry of Nature", W. H. Freeman and

Company.

Masters, T. (1993). "Practical Neural Network recipe in C++", Academic Press,

Inc.

Melin, P. & Castillo, 0. (1996). "Modelling and Simulation for Bacteria Growth

Control in the Food Industry using Artificial Intelligence", Proceedings of

CESA196, Gerf EC Lille, pp. 676-68 1.

Melin, P. & Castillo, 0. (1997a). " An Adaptive Model-Based Neural Network

Controller for Biochemical Reactors in the Food Industry", Proceedings of

ControlP7, Acta Press, pp. 147- 150.

© 2002 Taylor & Francis

220 REFERENCES

Melin, P. & Castillo, 0. (1997b). "Mathematical Modelling and Simulation of

Bacteria Growth in the Time and Space Domains using Artificial

Intelligence, Dynamical Systems and Fractal Theory", Proceedings of

AMSt97, Acta Press, pp. 484-487.

Melin, P. & Castillo, 0. (1997~). "An Adaptive Neural Network System for

Bacteria Growth Control in the Food Industry using Mathematical

Modelling and Simulation", Proceedings of IMACS World Congresst97,

Wissenschaft & Technik Verlag, Vo14 pp. 203-208.

Melin, P. & Castillo, 0. (1997d). "Automated Mathematical Modelling and

Simulation for Bacteria Growth Control in the Food Industry using Artificial

Intelligence and Fractal Theory", Journal of Systems Analysis, Modelling

and Simulation, Edited by Achim Sydow, Gordon and Breach Publishers,

Vol. 29, pp. 189-206.

Melin, P. & Castillo, 0. (1998a). "An Adaptive Model-Based Neuro-Fuzzy-

Fractal Controller for Biochemical Reactors in the Food Industry",

Proceedings of IJCNNt98, IEEE Computer Society Press, Vol. 1, pp. 106-

11 1.

Melin, P. & Castillo, 0. (1998b). "A New Method for Adaptive Model-Based

Neuro-Fuzzy-Fractal Control of Non-Linear Dynamic Plants: The Case of

Biochemical Reactors", Proceedings of IPMUt98, EDK Publishers, Vol. 1,

pp. 475-482.

Melin, P. & Castillo, 0. (1998~). "A New Method for Adaptive Model-Based

Neuro-Fuzzy-Fractal Control of Non-Linear Dynamical Systems",

Proceedings of the International Conference of Non-Linear Problems in

Aviation and Aerospacet98, Daytona Beach, Florida, USA (to appear).

Miller, W. T., Sutton, R. S. & Werbos P. J. (1995). "Neural Networks for

Control", MIT Press.

Minsky, M. & Papert, S. (1969). "Preceptrons", MIT Press.

Morari, M. & Zafiriou, E. (1989). "Robust Process Control", Prentice-Hall.

Moulet, M. (1992). "A Symbolic Algorithm for Computing Coefficients

Accuracy in Regression", Proceedings of the International Workshop on

Machine Learning, pp. 332-337.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 22 1

Nakamura, S. (1997). "Numerical Analysis and Graphic Visualization with

MATLAB", Prentice Hall.

Narendra, K. S. & Annaswamy, A. M. (1989). "Stable Adaptive Systems",

Prentice Hall Publishing Company.

Ng, G. W. (1997). "Application of Neural Networks to Adaptive Control of Non-

Linear Systems", John Wiley & Sons.

Omidvar, 0. & Elliot, D. L. (1997). "Neural Systems for Control", Academic

Press.

Otten, R. H. J. M. & van Ginneken, L. P. P. P. (1989). "The Annealing

Algorithm", Kluwer Academic.

Pelczar, M. J. & Reid, R. D. (1982). "Microbiology", McGraw Hill.

Parker D. B. (1982). "Learning Logic", Invention Report S8 1-64, File 1, Office

of Technology Licencing.

Pham, D. T. & Xing, L. (1995). "Neural Networks for Identification, Prediction

and Control", Springer-Verlag.

Pomerleau, D. A. (1991). "Efficient Training of Artificial Neural Networks for

Autonomous Navigation", Journal of Neural Computation, Vol. 3, pp. 88-

97.

Psaltis, D., Sideris, A. & Yamamura, A. (1988). "A Multilayered Neural

Network Controller", IEEE Control Systems Magazine, Vol. 8, pp. 17-2 1.

Rao, R. B. & Lu, S. (1993). "A Knowledge-Based Equation Discovery System

for Engineering Domains", IEEE Expert, pp. 37-42.

Rasband, S.N. (1990). "Chaotic Dynamics of Non-Linear Systems", Wiley

Interscience.

Rich, E. & Knight, K. (1991). "Artificial Intelligence", McGraw-Hill.

Rosenblatt, P. (1962). "Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms", Spartan.

Ruelle, D. (1990). "Deterministic Chaos: The Science and the Fiction", Proc. Roy.

Soc. London, Vol. 427, pp. 241-248.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). "Learning Internal

Representations by Error Propagation", Parallel Distributed Processing:

Explorations in the Microestructure of Cognition, Vol. 1, Chapter 8, pp.

3 18-362, MIT Press.

© 2002 Taylor & Francis

222 REFERENCES

Runkler, T. A. & Glesner, M. (1994). "Defizzification and Ranking in the

Context of Membership Value Semantics, Rule Modality, and Measurement

Theory", Proceedings of European Congress on Fuzzy and Intelligent

Technologies.

Russell, S. & Norvig, P. (1995). "Artificial Intelligence: A Modern Approach",

Prentice-Hall.

Sackinger, E., Boser, B. E., Bromley, J., LeCun, Y. & Jackel, L. D. (1992).

"Application of the Anna Neural Network Chip to High-Speed Character

Recognition", IEEE Transactions on Neural Networks, Vol. 3, pp. 498-505.

Samad, T. & Foslien, W. (1994). "Neural Networks as Generic Nonlinear

Controllers", Proceedings of the World Congress on Neural Networks, pp.

191-194.

Sejnowski, T. J. & Rosenberg, C. R. (1987). "Parallel Networks that Learn to

Pronounce English Text", Journal of Complex Systems, Vol. 1, pp. 145-168.

Sleeman, D. & Edwards, P. (1992). "Proceedings of the International Workshop

on Machine Learning", Morgan Kauffman Publishers.

Soucek, B. (1991). "Neural and Intelligent Systems Integration: Fifth and Sixth

Generation Integrated Reasoning Information Systems", John Wiley and

Sons.

Staib, W. E. (1993). "The Intelligent Arc Furance: Neural Networks

Revolutionize Steelmaking", Proceedings of the World Congress on Neural

Networks, pp. 466-469.

Staib, W. E. & Staib, R. B. (1992). "The Intelligent Arc Furnace Controller: A

Neural Network Electrode Position Optimization System for the Electric Arc

Furnace", Proceedings of the International Conference on Neural Networks,

Vol. 3, pp. 1-9.

Su, H. T. & McAvoy, T. J. (1993). "Neural Model Predictive Models of

Nonlinear Chemical Processes", Proceedings of the 8th International

Symposium on Intelligent Control, pp. 358-363.

Su, H. T., McAvoy, T. J. & Werbos, P. J. (1992). "Long-term Predictions of

Chemical Processes using Recurrent Neural Networks: A Parallel Training

Approach", Industrial & Engineering Chemistry Research, Vol. 3 1, pp.

1338-1352.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 223

Sueda, N. & Iwamasa, M. (1995). "A Pilot System for Plant Control using

Model-Based Reasoning", IEEE Expert, Vol. 10, No. 4, pp.24-31.

Sugeno, M. & Kang, G. T. (1988). "Structure Identification of Fuzzy Model",

Journal of Fuzzy Sets and Systems", Vol. 28, pp. 15-33.

Szu, H. & Hartley, R. (1987). "Fast Simulated Annealing", Physics Letters, Vol.

122, pp. 157-162.

Takagi, T. & Sugeno, M. (1985). "Fuzzy Identification of Systems and its

Applications to Modeling and Control", IEEE Transactions on Systems,

Man and Cybernetics, Vol. 15, pp. 116-132.

Troudet, T. (1991). "Towards Practical Design using Neural Computation",

Proceedings of the International Conference on Neural Networks, Vol. 2, pp.

675-68 1.

Tsukamoto, Y. (1979). "An Approach to Fuzzy Reasoning Method", In Gupta,

M. M., Ragade, R. K. and Yager, R. R., editors, Advanced in Fuzzy Set

Theory and Applications, pp. 137-1 49, North-Holland.

Ungar, L. H. (1995). "A Bioreactor Benchmark for Adaptive Network-Based

Process Control", Neural Networks for Control, MIT Press, pp. 387-402.

Von Altrock, C. (1995). "Fuzzy Logic & Neuro Fuzzy Applications Explained",

Prentice Hall.

Weigend, A. & Gershenfeld, N.A. (1994). "Time Series Prediction: Forecasting

the Future and Understanding the Past", Addison Wesley Publishing.

Werbos, P. J. (1991). "An Overview of Neural Networks for Control", IEEE

Control Systems Magazine, Vol. 1 1, pp. 40-4 1.

Werbos, P. J. (1974). "Beyond Regression: New Tools for Prediction and

Analysis in the Behavioral Sciences", Ph.D. Thesis, Harvard University.

Widrow, B. & Stearns, D. (1985). "Adaptive Signal Processing", Prentice-Hall.

Yager, R.R. & Filev, D.P. (1993). "SLIDE: A Simple Adaptive Defuzzification

Method", IEEE Transactions on Fuzzy Systems, Vol. 1, pp. 69-78.

Yamamoto, Y. & Yun, X. (1997). "A Modular Approach to Dynamic Modelling

of a Class of Mobil Manipulators", Journal of Robotics and Automation. pp.

41-48.

© 2002 Taylor & Francis

224 REFERENCES

Yasunobu, S. & Miyamoto, S. (1985). "Automatic Train Operation by Predictive

Fuzzy Control", Industrial Applications of Fuzzy Control, pp.1-18, North

Holland.

Yen, J., Langar, R. & Zadeh, L. A. (1995). "Industrial Applications of Fuzzy

Control and Intelligent Systems", IEEE Computer Society Press.

Zadeh, L.A. (1965). "Fuzzy Sets", Journal of Information and Control, Vol. 8, pp.

338-353.

Zadeh, L.A. (1971). "Similarity Relations and Fuzzy Ordering", Journal of

Information Sciences", Vol. 3, pp. 177-206.

Zadeh, L.A. (1973). "Outline of a New Approach to the Analysis of Complex

Systems and Decision Processes", IEEE Transactions on Systems, Man and

Cybernetics, Vol. 3, pp. 28-44.

Zomaya, A. Y. (1992). "Modelling and Simulation of Robot Manipulators: A

Parallel Processing Approach", World Scientific Publishing.

© 2002 Taylor & Francis

Appendix A

Prototype Intelligent Systems for Automated
Mathematical Modelling

In this Appendix, we show two computer programs that can be considered

prototype intelligent systems for automated mathematical modelling. First, we

show a prototype intelligent system for automated modelling of general non-linear

dynamical systems. Then, we show a prototype intelligent system for the domain

of robotic dynamic systems. The implementation of both computer programs was

done in ARITYO PROLOG interpreter Version 6.00.86 for MS-DOS.

A.l Automated Mathematical Modelling of Dynamical
Systems

We show in this section a computer program, in the PROLOG programming

language, based on the fuzzy-fractal method for automated mathematical

modelling described in Chapter 5 of this book. The prototype intelligent system

for automated modelling uses as input the fractal dimension of the time series and

the complexity of the problem (number of variables), and obtains as a result the

"best" mathematical model of the dynarnical system under consideration. The file

© 2002 Taylor & Francis

226 APPENDIX A

of this computer program can be found in the floppy disk accompanying this book

(the name o f the file is 0smodel.ari).

I* Prototype intelligent system for automated mathematical modelling using Fuzzy Logic
by Oscar Castillo and Patricia Melin (written in ARITY PROLOG) */

automated-modelling :-
writecinput the fractal dimension:'),
read(Fractal-dim),
writerinput the complexity of the problem:'),
read(Dim),
trend(Fractal-dim, Trend),
time-series(Fractal-dim, Time-series),
periodicgart(Fractal-dim, Periodicgart),
model-selected(Fractal-dim, Dim, Trend, Periodicgart, Model),
write('a candidate model is the:'), write(Model), nl,
write('because the time series is:'), write(Time-series).

I* Module for Time Series Analysis */

trend(Fractaldim, linear) :-
Fractal-dim > 0.8,
Fractal-dim < 1.2, !.

trend(Fractal-dim, non-linear) :-
Fractal-dim >= 1.2,
Fractal-dim < 1.5.

time-series(Fractal-dim, smooth) :-
Fractal-dim > 0.8,
Fractaldim < 1.2, !.

time-series(Fractal-dim, cyclic) :-
Fractal-dim >= 1.2,
Fractal-dim < 1.5, !.

time-series(Fractal-dim, erratic) :-
Fractal-dim >= 1.5,
Fractaldim < 1.8, !.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

time-series(Fractal-dim, chaotic) :-
Fractal-dim >= 1.8,
Fractal-dim =< 2.0.

periodicgart(Fractal-dim, null) :-
Fractal-dim > 0.8,
Fractal-dim < 1.2, ! .

periodic-part(Fractal-dim, simple) :-
Fractal-dim >= 1.2,
Fractal-dim < 1.4, ! .

periodicgad(Fractaldim, regular) :-
Fractal-dim >= 1.4,
Fractaldim < 1.6, !.

periodicgart(Fractal-dim, difficult) :-
Fractal-dim >= 1.6,
Fractal-dim < 1.7, !.

periodicgart(Fractaldim, very-difficult) :-
Fractaldim >= 1.7,
Fractaldim < 1.8, !.

periodicgart(Fractal-dim, chaotic) :-
Fractal-dim >= 1.8,
Fractal-dim =< 2.0.

/* Module for Selection of the Mathematical Models */

model-selected(Fractal-dim, one, linear, null, linear-regression) :-
Fractal-dim > 0.8,
Fractal-dim < 1.1, ! .

model-selected(Fractaldim, one, linear, null, logarithmic-regression) :-
Fractal-dim >= I . 1,
Fractal-dim < 1.2.

model-selected(Fractal-dim, one, non-linear, simple, logistic-differential-equation) :-
triangular-logistic(Fractal-dim, Membership),
Membership > 0.5.

model-selected(Fractal-dim, two, non-linear, simple,
lotka-voiterra-differential-equation) :-

triangular-volterra-simple(Fractal-dim, Membership),
Membership > 0.5.

© 2002 Taylor & Francis

228 APPENDIX A

model-selected(Fractal-dim, three, non-linear, regular, lorenz-differential-equation) :
triangular-lorenz(Fractal-dim, Membership),
Membership > 0.5.

model-selected(Fractal-dim, one, non-linear, simple, logistic-difference-equation) :-
triangular-logistic(Fractal-dim, Membership),
Membership > 0.6.

model-selected(Fractal-dim, two, non-linear, regular,
lotka-volterra-difference-equation) :-

triangular-volterra-regular(Fractal-dim, Membership),
Membership > 0.6.

/* Triangular Membership Functions for the Fuzzy Sets */

triangular-logistic(Fractal-dim, Membership) :-
Fractal-dim >= 1.2,
Fractal-dim < 1.3, !,
Membership is (Fractal-dim - 1.2)/(0.1).

triangular-logistic(Fractal-dim, Membership) :-
Fractal-dim >= 1.3,
Fractal-dim < 1.4, !,
Membership is (1.4 - Fractal-dim)/(O. 1).

triangular-volterra-simple(Fractal-dim, Membership) :-
Fractaldim >= 1.2,
Fractaldim < 1.3, !,
Membership is (Fractal-dim - 1.2)/(0.1).

triangular-volterra-simple(Fractal-dim, Membership) :-
Fractal-dim >= 1.3,
Fractal-dim < 1.4, !,
Membership is (1.4 - Fractal-dim)/(O.l).

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

triangular-volterra-regular(Fractal-dim, Membership) :-
Fractal-dim >= 1.4,
Fractal-dim < 1.5, !,
Membership is (Fractal-dim - 1.4)/(0.1).

triangular-volterra-regular(Fractal-dim, Membership) :-
Fractal-dim >= 1.5,
Fractal-dim < 1.6, !,
Membership is (1.6 - Fractal-dim)/(O. 1).

triangular-lorenz(Fractal-dim, Membership) :-
Fractal-dim >= 1.4,
Fractal dim < 1.5, !,
~ e m b e r s h i ~ is (Fractaldim - 1.4)/(0.1).

triangular-lorenz(Fractal-dim, Membership) :-
Fractal-dim >= 1.5,
Fractal-dim < 1.6, !,
Membership is (1.6 - Fractal-dim)/(O. 1) .

triangular-lorenz(Fractal-dim, 0) :-
Fractaldim >= 1.6.

A.2 Automated Mathematical Modelling of Robotic Dynamic
Systems

We show in this section a computer program written in PROLOG based on the

fuzzy-fractal method for automated modelling (described in Chapter 5) for the

domain of robotic dynamic systems. The prototype intelligent system for

automated modelling of robotic dynamic systems uses as input the fractal

© 2002 Taylor & Francis

230 APPENDIX A

dimension of the time series and the number of links of the robotic system, and

obtains as a result the "best" mathematical model of the robotic system under

consideration. The file of this computer program can be found in the floppy disk

accompanying this book. (The name of the file is Prmorobl .txt).

I* Prototype intelligent system for automated mathematical modelling of Robotic
Dynamic Systems using Soft Computing techniques
by Oscar Castillo and Patricia Melin

(written in the ARITY PROLOG programming language) *I

automated-modelling-robotic :-
write('input the fractal dimension of the time series:'),
read(Fractal-dim),
writerinput the number of links of the robotic system:'),
read(Dim),
trend(Fractal-dim, Trend),
time-series(Fractal-dim, Time-series),
periodicgad(Fractal-dim, Periodicgart),
model-selected(Fractal-dim, Dim, Trend, Periodicgart, Model),
write('a candidate model for the robotic system is the:'), nl, write(Model), nl,
write('because the time series is:'), nl, write(Time-series).

I* Module for Time Series Analysis *I

trend(Fractaldim, linear) :-
Fractal-dim > 0.8,
Fractaldim < 1.2, !.

time-series(Fractaldim, smooth) :-
Fractal-dim > 0.8,
Fractaldim < 1.2, !.

time-series(Fractal-dim, cyclic) :-
Fractal-dim >= 1.2,
Fractal-dim < 1.5, !.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL.. .

time-series(Fractal-dim, erratic) :-
Fractal-dim >= 1.5,
Fractaldim < 1.8, !.

time-series(Fractal-dim, chaotic) :-
Fractal-dim >= 1.8,
Fractal-dim =< 2.0.

periodicgart(Fractal-dim, null) :-
Fractal-dim > 0.8,
Fractal-dim < 1.2, !.

periodicgart(Fractal-dim, simple) :-
Fractal-dim >= 1.2,
Fractal-dim < 1.4, !.

periodicgart(Fractal-dim, regular) :-
Fractal-dim >= 1.4,
Fractal-dim < 1.6, ! .

periodicgart(Fractal-dim, difficult) :-
Fractal-dim >= 1.6,
Fractaldim < 1.7, !.

periodicgart(Fractal-dim, very-difficult) :-
Fractal-dim >= 1.7,
Fractal-dim < 1.8, !.

periodicgart(Fractal-dim, chaotic) :-
Fractal-dim >= 1.8,
Fractal-dim =< 2.0.

I* Module for Selection of the Mathematical Models *I

model-selected(Fractal-dim, one, linear, null, linear-oscillator) :-
Fractaldim > 0.8,
Fractal-dim < 1.2.

model-selected(Fractal-dim, one, non-linear, simple, quadratic-oscillator) :-
triangular-quadratic(Fractal-dim, Membership).

model-selected(Fractal-dim, one, non-linear, regular, cubic-oscillator) :-
triangular-cubic(Fractal-dim, Membership).

model-selected(Fractal-dim, one, non-linear, difficult, forced-quadratic-oscillator) :-
triangular-forced-quad(Fractal-dim, Membership).

model-selected(Fractal-dim, one, non-linear, verydifficult, forced~cubic~oscillator) :-
triangular-forced-cub(Fractal-dim, Membership).

© 2002 Taylor & Francis

232 APPENDIX A

model-selected(Fractaldim, one, non-linear, chaotic, strongly-forced-oscillator) :-
triangular-strongly_forced(Fractal-dim, Membership).

model-selected(Fractal-dim, two, linear, null, double-linear-oscillators) :-
Fractal-dim > 0.8,
Fractal-dim < 1.2.

model-selected(Fractal-dim, two, non-linear, simple, coupled-quadratic-oscillators) :-
triangular-quadratic(Fractal-dim, Membership).

model-selected(Fractal-dim, two, non-linear, regular, coupled~cubic~oscillators) :-
triangular-cubic(Fractal-dim, Membership).

modelselected(Fractal-dim, two, non-linear, difficult, coupled~forced~quad~oscillators) :-
triangular-forced-quad(Fractal-dim, Membership).

model-selected(Fractal-dim, two, non-linear, very-difficult, coupled~forced~cub~oscillators) :-
triangular-forced-cub(Fractal-dim, Membership).

model-selected(Fractaldim, two, non-linear, chaotic, coupled~strongly~forced~oscillators) :-
triangular-strongly-forced(Fractaldim, Membership).

model-selected(Fractal-dim, three, linear, null, triple-linear-oscillators) :-
Fractal-dim > 0.8,
Fractal-dim < 1.2.

model-selected(Fractaldim, three, non-linear, simple, three-coupled-quad-oscillators) :-
triangular-quadratic(Fractal-dim, Membership).

model-selected(Fractaldim, three, non-linear, regular, three~coupled~cubic~oscillators) :-
triangular-cubic(Fractal-dim, Membership).

model-selected(Fractal-dim, three, non-linear, difficult, threesoupled-force-quad-oscillators) :-
triangular-forced-quad(Fractal-dim, Membership).

model-selected(Fractal-dim, three, non-linear, very-difficult, three~coupled~force~cub~oscill) :-
triangular-forced-cub(Fractal-dim, Membership).

model-selected(Fractaldim, three, non-linear, chaotic, three-coupled-strongly-forced-oscill) :-
triangular-strongly-forced(Fractal-dim, Membership).

I* Triangular Membership Functions for the Fuzzy Sets*/

triangular-quadratic(Fractal-dim, 0) :-
Fractaldim < 1.2, !.

triangular-quadratic(Fractal-dim, Membership) :-
Fractal-dim >= 1.2,
Fractal-dim < 1.3, !,
Membership is (Fractaldim - 1.2)/(0.1).

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

triangular-quadratic(Fractal-dim, Membership) :-
Fractaldim >= 1.3,
Fractaldim < 1.4, ! ,
Membership is (1.4 - Fractal-dim)/(O. 1).

triangular-cubic(Fractal-dim, Membership) :-
Fractaldim >= 1.4,
Fractal-dim 1.5, !,
Membership is (Fractal-dim - 1.4)/(0.1).

triangular-cubic(Fractal-dim, Membership) :-
Fractal-dim >= 1.5,
Fractal-dim < 1.6, !,
Membership is (1.6 - Fractal-dim)/(O.l).

triangularcubic(Fractal-dim, 0) :-
Fractaldim >= I .6.

triangular-forced-quad(Fractal-dim, Membership) :-
Fractal-dim >= 1.6,
Fractal-dim < 1.65, !,
Membership is (Fractaldim - 1.6)/(0.05).

triangular-forced-quad(Fractal-dim, Membership) :-
Fractal-dim >= 1.65,
Fractal-dim < 1.7, !,
Membership is (1.7 - Fractal-dim)/(O.O5).

triangular-forced-cub(Fractal-dim, Membership) :-
Fractal-dim >= 1.7,
Fractaldim < 1.75, !,
Membership is (Fractaldim - 1.7)/(0.05).

© 2002 Taylor & Francis

APPENDIX A

triangular-forced-cub(Fractaldim, Membership) :-
Fractaldim >= 1.75,
Fractaldim 1.8, !,
Membership is (1.8 - Fractal-dim)/(O.OS).

triangular-strongly-forced(Fractal-dim, Membership) :-
Fractal-dim >= 1.8,
Fractal-dim < 1.9, !,
Membership is (Fractal-dim - 1.8)/(0.1).

triangular-strongly-forced(Fractal-dim, Membership) :-
Fractal-dim >= 1.9,
Fractal-dim =< 2.0, !,
Membership is (2.0 - Fractal-dim)/(O.l).

triangular-strongly-forced(Fractaldim, 0) :-
Fractal-dim > 2.0.

© 2002 Taylor & Francis

Appendix B

Prototype Intelligent Systems for Automated Simulation

In this appendix, we show a prototype intelligent system for automated simulation

of non-linear dynamical systems written in the ARITYO PROLOG programming

language. We also show computer programs written in the MATLAB

programming language (Version 5.1 for Windows 95) for the simulation of

several non-linear dynamical systems.

B.1 Automated Simulation of Non-Linear Dynamical Systems

We show in this section a computer written in PROLOG based on our method for

automated simulation using our new fuzzy-genetic approach (described in

Chapter 6 of this book). The computer program uses as input the initial population

and the maximum number of iterations (of the genetic algorithm), and obtains as a

result the final population of parameters as well as the corresponding behavior

identification for the dynamical system. The file of this computer program can be

found in the floppy disk accompanying this book under the name of Osimrob3.txt.

© 2002 Taylor & Francis

236 APPENDIX B

I* Prototype Intelligent System for Automated Simulation of Dynamical Systems
by Oscar Castillo and Patricia Melin
(developed in ARITY PROLOG) *I

automated-simulation :-
write(' Input the initial population:'),
read(Initial-Population),
write('Input the maximum number of iterations:'),
read(NumberIter),
parameter-selection(Initial~Population,NumberIter,Final_Population),
behavior-identification(Final-Population).

I* parameter selection using a specific genetic algorithm *I

parameter-selection(Initial-Population,NumberIter,FinalPopulation) :-
NumberIter > 0,
fitness-value(Initial-Pop~lation,List~fitness),
selecttwo(Initial-Population,List-fitness,X,Y),
crossover(Initial-Population,X,Y,Next_Population),
mutation(NextPopulation,Mutated~Population),
NumberIterl is NumberIter - 1,
parameter-selection(Mutated-Population,NumberIter1 ,Final-Population).

fitness-value([I,[I).
fitness-value([X / Initial-Population],[FitnessX / List]) :-

evaluate(X,FitnessX),
fitness-value(Initial-Population,List).

select-two([X,Y I -],List-fitness,X,Y).
crossover(L,- I Rest],X,Y,[NewX,NewY / Rest]) :-

split(X,X 1 ,X2),
split(Y,Y 1 ,Y2),
conc(X1 ,Y2,NewX),
conc(Y 1 ,X2,NewY).

mutation([X I Rest],[NewX / Rest]) :-
X = [X l (L],
XI = 0, !,
NewX = [1 I L].

mutation([X I Rest],[NewX I Rest]) :-
X = [X l IL],
X 1 = I,
NewX = [0 I L].

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

I* evaluation of the fitness of the members of the population *I

member(X,[X I L]).
member(X,[Y / L]) :-

member(X,L).

I* dynamic behavior identification using a fuzzy rule base *I

behavior-identification([1).
behavior-identification([X I Final-Population]) :-

dictionary(X,NewX),
numerical-solution(NewXJdentification),
write(' The identification for the value:'),
write(NewX), nl,
write(' is the behavior known as:'),
write(Identification), nl,
behavior-identification(Final-Population).

I* dictionary for decodification *I

dictionary([0,0,0,0],0).
dictionary([0,0,0,1], I).
dictionary([0,0,1,0],2).
dictionary([0,0,1,1],3).
dictionary([O, 1,0,0],4).
dictionary([O, 1,0,1],5).
dictionary([O, 1,1,0],6).
dictionary([O, I,], 1],7).

© 2002 Taylor & Francis

APPENDIX B

dictionary([1,0,0,0],8).
dictionary([l,O,O,l],9).
dictionary([1,0,1,0], 10).
dictionary([1,0,1, I], 1 1).
dictionary([1, l,0,0], 12).
dictionary([1, l,0, I], 13).
dictionary([1, I, l,0], 14).
dictionary([1,1,1,1],15).

I* particular mathematical model *I

I* classification with a rule base *I

I* heuristic to evaluate the fitness *I

fitness(fixedgoint, 1).
fitness(cyclegeriod-two,2).
fitness(cycleqeriod-four,4).
fitness(cyclegeriod-eight$).
fitness(chaoticbehavior, 10).

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . . 239

B.2 Numerical Simulation of Non-Linear Dynamical Systems

We show in this section the computer programs, written in the MATLAB

programming language, for the numerical simulation of biochemical reactors.

These computer programs were used to obtain the simulation results shown in

Section 8.2 of this book. The computer programs for the simulation of the other

applications are contained in the floppy disk, but they aren't described here

because they are very similar to the ones for biochemical reactors. In all cases, we

use a Runge-Kutta method for the numerical solution of the differential equations.

The only difference between the files for the different applications is in the

mathematical models that are used. For the case of biochemical reactors we show

below the computer programs for the simulation of the mathematical models (the

names of these files can be found in the 1ist.txt file in the floppy disk).

% Simulation of Model M 1 : one Bacteria used for Food Production.
% see Figure 8.13 of the Book.
% Modelling, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
[t,y] = ode45('Modelse13',[0 10],[97.5; 01);
plot(t,y(:, 1));
title('Simu1ation of MI: one Bacteria used for food production');
xlabel('time t (seconds)');
ylabel('Population of Bacteria N')
zoom

% Simulation of Model MI: one Bacteria used for Food Production.
% see Figure 8.14 of the Book.
% Modelling, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
[t,y] = ode45('Modelse13',[0 10],[97.5; 01);
plot(t,y(:,2),'LineWidth1,2);
title('Simu1ation of MI: one Bacteria used for food production');
xlabel('time t (seconds)');
ylabel('Product P')
zoom

© 2002 Taylor & Francis

APPENDIX B

function dy = Modelsel3(t,y)
dy = [30*y(l) - 0.3*~(1)/'2 - 0.8*y(l); 0.8*y(l)];

% Simulation of Model M2: two Bacteria used for Food Production.
% see Figure 8.15 of the Book.
% Modelling, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
[t,y] = ode45('Moselc2',[0 15],[26.5; 26.5; 01);
plot(t,y(:, 1));
title('Simulation of M2: two Bacteria used for food production');
xlabel('time t');
ylabel('Popu1ation of Bacteria N 1')
zoom

function dy = Moselc2(t,y)
dy = [30*y(l)-0.3*y(l)"2-0.8*y(2)*y(l)-0.8*y(l);

30*~(2)-0.3*y(2)~2-0.8*y(l)*y(2)-0.8*~(2);
0.8*y(1)+0.8*y(2)];

% Simulation of Model M3: two good Bacteria (N 1, N2) used for Food Production
% and one "bad" Bacteria (N3).
% see Figure 8.16 of the Book.
% Modelling, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
[t,y] = ode45('Mosel',[O 8],[65; 6.5; 10; 01);
plot(t,y(:, 1),'o',t,y(:,2),'+',t,y(:73),'-');
title('Simulation of M3: two "good" Bacteria and one "bad" Bacteria');
xlabel('time t');
ylabel('Population of Bacteria, oo N1, ++ N2, -- N3')

function dy = Mosel(t,y)
dy = [30*y(l)-0.3*y(l)A2-0.8*y(2)*y(l)-0.8*y(l)-0.2*y(l)*y(3);

3O*y(2)-O.3*y(2)A2-O.8*y(l)*y(2)-O.8*y(2)-O.2*y(2)*y(3);
30*y(3)-o.3*y(3)A2+o.2*y(l)*y(3)+o.2*y(2)*y(3);
0.8*y(1)+0.8*y(2)];

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . .

% Simulation of Model M3: two good Bacteria (Nl, N2) used for Food Production .
% and one "bad" Bacteria (N3) Case b.
% see Figure 8.17 of the Book.
% Modelling, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
[t,y] = ode45('Mosell',[O 2],[60; 60; 0.5; 01);
plot(t,y(:, 1),'o',t,y(:,2),'+',t,y(:,3),'-');
title('Simu1ation of M3: two "good" Bacteria and one "bad" Bacteria');
xlabel('time t');
ylabel('Population of Bacteria, oo N1, ++ N2, -- N3')

function dy = Mosel l(t,y)
dy = [50*y(l)-0.3*y(1)A2-0.8*y(2)*y(l)-0.8*y(l)-0.0002*y(l)*y(3);

60*y(2)-O.3*y(2)A2-O.8*y(l)*y(2)-O.8*y(2)-O.OOO2*y(2)*y(3);
20*~(3)-0.3*y(3)~2+0.0002*y(1)*y(3)+0.0002*y(2)*y(3);
0.8*y(1)+0.8*y(2)];

© 2002 Taylor & Francis

Appendix C

Prototype Intelligent Systems for Adaptive Model-Based
Control

In this Appendix, we show computer programs for adaptive model-based control

of non-linear dynamical systems. First, we show a computer program for fuzzy

logic model selection that was developed using the Fuzzy Logic ToolboxTM of the

MATLABO programming language. Then, we show computer programs for

identification and control using neural networks that were developed with the

Neural Networks ToolboxTM of the MATLAB programming language.

C.l Fuzzy Logic Model Selection

We show in this section a computer program in MATLAB based on our new

method for fuzzy model selection (described in Chapter 7 of this book) for the

domain of biochemical reactors. The computer programs for model selection for

the other applications can be obtained in a similar way. The file of this computer

program can be found in the floppy disk accompanying this book, under the name

modelsel.fis.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

%Computer Program for Fuzzy Logic Model Selection for Adaptive Model-

Based Control of biochemical reactors.

% Written by: Patricia Melin and Oscar Castillo in MATLABO Version 5.1.

% See Figures 9.7-9.10 of the book.

% Program for model selection using the Fuzzy Inference System (FIS) from

Fuzzy Logic ToolboxTM.

[System]

Narne='modelsell

Type='marndanil

NumInputs= 1

NumOutputs= 1

NumRules=3

AndMethod='minl

OrMethod='maxl

ImpMethod='minl

AggMethod='maxl

DefuzzMethod='centroidl

[Input 1]

Name='temperaturel

Range=[100 1201

NumMFs=3

MF 1 ='Lowl:'gaussmf ,[4.247 1001

MF2='Medium':'gaussrnf J4.247 1 101

MF3='High':'gaussrnf ,[4.247 1201

© 2002 Taylor & Francis

APPENDIX C

[Output I]

Name='modell

Range=[100 1201

NumMFs=3

MF 1 ='M 1 ':'gaussmf ,[4.247 1001

MF2='MZ':'gaussmf ,[4.247 1 101

MF3='M3':'gaussmf J4.247 1201

[Rules]

1, 1 (1) : 1

2, 2 (1) : 1

3 , 3 (1) : 1

% membership functions
function y = gauss-mf(x, parameter)
%GAUSS-MF Gaussian membership function with two parameters.
% GAUSSIAN(x, [sigma, c]) returns a matrix y with the same size
% as x; each element of y is a grade of membership.

c = parameter(1);
sigma = parameter(2);
tmp = (x - c)/sigma;
y = exp(-tmp.*tmp/2);

function y = sig-mf(x, parameter)
%SIG-MF Sigmoidal membership function with two parameters.
% SIGMF(x, [a, c]) returns a matrix y with the same size
% as x; each element of y is a grade of membership.

© 2002 Taylor & Francis

MODELLING, SIMULATION AND CONTROL . . .

C.2 Neural Networks for Identification and Control

We show in this section, computer programs for identification and control using

neural networks that were developed with the Neural Networks ToolboxTM of

MATLAB. In both cases, the backpropagation learning algorithm was used for

training the neural networks with real data. We will only show the computer

programs for the case of biochemical reactors. These computer programs were

used to obtain the simulation results shown in Section 9.2 of this book. The

computer programs for the other applications can be found in the floppy disk

accompanying this book (the name of these files can be found in the 1ist.txt file in

the floppy disk). The names of the files for the case of biochemical reactors are

traidal .m, traida3.m and traiconl .m.

% Computer Program for training the Neural Network for identification.
% See Figures 9.13,9.14 and 9.15 of the Book.
% Modellig, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
P = [0.0001 0.0003 0.0926 0.1 170 0.1415 0.1905 0.2238 0.2570 0.2903 0.3236 0.3532 ...

0.3827 0.4123 0.4418 0.4714 0.5009 0.5305 0.5893 0.6186 0.6479 0.6772 0.7049.. .
0.7326 0.7880 0.8 147 0.8414 0.8947 0.9222 0.9497 0.9772 1.0047 1.0340 1.0926.. .
1.1219 1.1518 1.1818 1.2117 1.2416 1.2986 1.3270 1.3555 1.3822 1.4088 1.4355 ...
1.4888 1.5155 1.5422 1.5974 1.6260 1.6546 1.6832 1.7135 1.7438 1.7740 1.8043 ...
1.8338 1.8928 1.9223 2.0000];

T = [26.5002 26.5002 26.5403 26.5408 26.5447 26.5434 26.5492 26.55 10 26.5439.. .
26.5398 26.5491 26.5524 26.5436 26.5380 26.5503 26.5557 26.5430 26.5355 ...

26.55 14 26.5571 26.5424 26.5329 26.5550 26.5426 26.5342 26.551 7 26.5433. ..
26.5375 26.5473 26.55 1 1 26.5437 26.5494 26.5533 26.5433 26.5369 26.55 18.. .
26.5570 26.5332 26.5506 26.5571 26.5422 26.5324 26.5469 26.5429 26.5362. ..
26.5464 26.5437 26.5437 26.5389 26.5483 26.55 18 26.5437 26.5384 26.5513.. .
26.5558 26.5427 26.5525 26.5589 26.54251;

[W 1 ,bl ,W2,b2] = initff(P,5,'tansig',T,'tansigt);
A2 = simuff(P, W 1 ,bl ,'tansig',W2,b2,'tansigt);
disp_freq=5000
max~epoch=40000;
err~goal=0.00002;
lr=O.OOOO 1 ;
tp = [disp-fieq maxepoch err-goal Ir];
[W 1 ,bl ,W2,b2,epochs,tr] = trainbp(W1 ,bl,'tansig',W2,b2,'purelin',P,T,tp);

© 2002 Taylor & Francis

246 APPENDIX C

% Computer Program for training the Neural Network for identification.
% See Figures 9.16 and 9.17 of the Book.
% Modelling, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
P = [O.OOOl 0.0003 0.0926 0.1 170 0.1415 0.1905 0.2238 0.2570 0.2903 0.3236 0.3532..

0.3827 0.4123 0.4418 0.4714 0.5009 0.5305 0.5893 0.6186 0.6479 0.6772 0.7049 ...
0.7326 0.7880 0.8147 0.8414 0.8947 0.9222 0.9497 0.9772 1.0047 1.0340 1.0926.. .
1.1219 1.1518 1.1818 1.2117 1.2416 1.2986 1.3270 1.3555 1.3822 1.4088 1.4355 ...
1.4888 1.5155 1.5422 1.5974 1.6260 1.6546 1.6832 1.7135 1.7438 1.7740 1.8043 ...
1.8338 1.8928 1.9223 2.0000];

T = [26.5002 26.5002 26.5403 26.5408 26.5447 26.5434 26.5492 26.55 10 26.5439.. .
26.5398 26.5491 26.5524 26.5436 26.5380 26.5503 26.5557 26.5430 26.535 5...
26.5514 26.5571 26.5424 26.5329 26.5550 26.5426 26.5342 26.55 17 26.5433.. .
26.5375 26.5473 26.55 1 1 26.5437 26.5494 26.5533 26.5433 26.5369 26.55 18.. ..
26.5570 26.5332 26.5506 26.5571 26.5422 26.5324 26.5469 26.5429 26.5362. ..
26.5464 26.5437 26.5437 26.5389 26.5483 26.55 18 26.5437 26.5384 26.55 13.. .
26.5558 26.5427 26.5525 26.5589 26.54251;

[W l ,bl ,W2,b2] = initff(P,5,'tansigt,T,'tansig');
A2 = simuff(P,Wl ,bl,'tansig',W2,b2,'tansigV);
disp_freq=5000
max~epoch=80000;
err-goal=0.00002;
lr=O.OO 1 ;
tp = [disp-freq max-epoch err-goal Ir];
[W I ,bl ,W2,b2,epochs,tr] = trainbp(W l ,b l ,'tansig',W2,b2,'purelin',P,T,tp)

% Computer Program for training the Neural Network for Control.
% See Figures 9.18 and 9.19 of the Book.
% Modelling, Simulation and Control of Non-Linear Dynamical Systems.
% Patricia Melin and Oscar Castillo, 1998.
P = [0.0001 0.1 170 0.2238 0.3236 0.4123 0.5009 0.6186 0.7049 0.8147 0.9222 1.0047..

1.1219 1.21 17 1.3270 1.4088 1.5 155 1.6260 1.71 35 1.8043 1.9223 2.00001;
T = 10.005 3.9293 8.0875 12.3289 16.2527 20.0185 23.7850 27.51 70 32.2898 36.8664..

40.3349 45.1585 48.91 82 53.941 7 57.5704 62.1 006 66.63 18 70.2739 74.0590.. .
79.1370 83.29391;

[W 1 ,bl ,W2,b2] = initff(P,5,'purelin',T,'purelin1);
A2 = simuff(P,W I ,bl ,'purelin',W2,b2,'purelin');
disp-freq=l000
max-epoch=5000;
err-goal=0.00002;
lr=O.OOO 1 ;
tp = [disp-freq max-epoch e x g o a l Ir];
[W l ,bl ,W2,b2,epochs,tr] = trainbp(W1 ,bl ,'purelin1,W2,b2,'purelin',P,T,tp);

© 2002 Taylor & Francis

