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PREFACE 

This book presents a unified view of mathematical modelling, simulation and control for 
complex non-linear dynamical systems using soft computing techniques and fractal theory. 
Our particular point of view is that modelling, simulation and control are problems that can 
not be considered apart because they are intrinsically related in real-world applications. 
Control of non-linear dynamical systems can not be achieved if we don't have proper 
mathematical models for the systems. Also, useful simulations of a model, that can give us 
numerical insights into the behavior of a dynamical system, can not be obtained if we don't 
have the appropriate mathematical model. On the other hand, we have to recognize that 
complex non-linear dynamical systems can exhibit a wide range of dynamic behaviors 
(ranging from simple periodic orbits to chaotic strange attractors), so the problem of behavior 
identification is a very diffcult one. Also, we want to automate each of these tasks (mod- 
elling, simulation and control) because in this way it is easier to solve a particular problem. 
We then have three difficult tasks at hand: automated mathematical modelling of a dynami- 
cal system, automated simulation of the model, and model-based control of the system. A 
real world problem may require that we use modelling, simulation and control, to achieve 
the desired level of performance needed for the particular application. 

Soft computing consists of several computing paradigms, including fuzzy logic, neural 
networks and genetic algorithms, which can be used to produce powerful hybrid intelligent 
systems. We believe that solving the difficult problems of modelling, simulation and control 
of non-linear dynamical systems require the use of several soft computing techniques to 
achieve the level of intelligence needed to automate the processes of modelling and simula- 
tion, and also to achieve adaptive control. On the other hand, fractal theory provides us with 
powerful mathematical tools that can be used to understand the geometrical complexity of 
natural or computational objects. We believe that, in many cases, it is necessary to use fractal 
tools to understand the geometry of the problem at hand. For example, the fractal dimension 
is a useful tool in measuring the geometrical complexity of a time series and for this reason 
can be used to formulate the corresponding mathematical model for the particular problem. 

This book is intended to be a major reference for scientists and engineers interested in 
applying new computational and mathematical tools for solving the complicated problems 
of mathematical modelling, simulation and control of non-linear dynamical systems. The 
book can also be used at the graduate or advanced undergraduate level, as a textbook or 
major reference, for courses like: mathematical modelling, numerical simulation, non- 
linear control of dynamical systems, applied artificial intelligence and many others. We 
consider that this book can also be used to get new ideas for new lines of research or to 
continue the lines of future research proposed by the authors of the book. The software 
accompanying this book provides a good basis for developing more advanced 'intelligent' 
software tools for modelling, simulation and control of non-linear dynamical systems. 
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In Chapter 1, we begin by giving a brief introduction to the problems of modelling, 
simulation and control of non-linear dynamical systems. We motivate the importance of 
solving these problems, in an automated fashion, for real-world applications. We also 
outline the importance of using soft computing techniques and fractal theory to really 
achieve automated mathematical modelling and simulation, and model-based adaptive control 
of non-linear dynamical systems. 

We present in Chapter 2 the main ideas underlying fuzzy logic and the application of this 
powerful computational theory to the problem of modelling. We discuss in some detail 
fuzzy set theory, fuzzy reasoning and fuzzy inference systems. At the end, we also give 
some remarks about fuzzy modelling. The importance of fuzzy logic as a basis for devel- 
oping intelligent systems (sometimes in conjunction with other soft computing techniques) 
for control has been recognized in many areas of application. For this reason, we consider 
reading this chapter essential to understand the new methods for modelling, simulation and 
control presented in later chapters. 

We present in Chapter 3 the basic concepts, notation and basic learning algorithms for 
neural networks. We discuss in some detail feedforward networks, adaptive neuro-fuzzy 
inference systems, neuro-fuzzy control and adaptive neuro-control. First, we give a brief 
review of the basic concepts of neural networks and the backpropagation learning algo- 
rithm. We then give a brief description of adaptive neuro-fuzzy systems. Finally, we end the 
chapter with a brief review on the current methods for neuro-fuzzy control and some 
remarks about adaptive control and model-based control. We can not emphasize enough the 
importance of neural networks as a computational tool to achieve 'intelligence' for software 
systems. For this reason, neural networks have been applied for solving complex problems 
of modelling, control and identification. 

We present in Chapter 4 the basic concepts and notation of genetic algorithms, simulated 
annealing and fractal theory. Both genetic algorithms and simulated annealing are basic 
search methodologies that can be used for modelling and simulation of complex non-linear 
dynamical systems. Since both techniques can be considered as general purpose optimiza- 
tion methodologies, we can use them to find the mathematical model which minimizes the 
fitting errors for a specific problem. We also present in this chapter the basic concepts of 
dynamical systems and fractal theory, which are two powerful mathematical theories that 
enable the understanding of complex non-linear phenomena. Dynamical systems theory 
gives us the general framework for treating non-linear systems and enables the identifica- 
tion of the different dynamical behaviors that can occur for a particular dynamical system. 
On the other hand, fractal theory gives us powerful concepts and techniques that can be 
used to measure the complexity of geometrical objects. 

We present in Chapter 5 our new method for automated mathematical modelling of non- 
linear dynamical systems. This method is based on a hybrid fuzzy-fractal approach to 
achieve, in an efficient way, automated modelling for a particular problem using a time 
series as a data set. The use of the fractal dimension is to perform time series analysis of 
the data, so as to obtain a qualitative characterization of the time series. The use of fuzzy 
logic techniques is to simulate the process of expert model selection using the qualitative 
information obtained from the time series analysis module. At the end, the 'best' math- 
ematical model is obtained by comparing the measures of goodness for the selected math- 
ematical models. In Chapter 8, we show some advanced applications of this method for 
automated mathematical modelling. 
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PREFACE xi 

In Chapter 6, we describe the problem of numerical simulation for non-linear dynamical 
systems and its solution by using intelligent methodologies. The numerical simulation of 
a particular dynamical system consists in the successive application of a map and the 
subsequent identification of the corresponding dynamic behaviors. Automated simulation 
of a given dynamical system consists in selecting the appropriate parameter values for the 
model and then applying the corresponding iterative method (map) to find the limiting 
behavior. In this chapter, a new method for automated parameter selection, based on genetic 
algorithms, is introduced. Also, a new method for dynamic behavior identification, based 
on fuzzy logic, is introduced. The fuzzy-genetic approach for automated simulation con- 
sists in the integration of the method for automated parameter selection and the method for 
behavior identification. 

We describe in Chapter 7 our new method for adaptive model-based control of non- 
linear dynamical systems. This method is based on a hybrid neuro-fuzzy approach to achieve, 
in an efficient way, adaptive robust control of non-linear dynamical systems using a set of 
different mathematical models. We use fuzzy logic to select the appropriate mathematical 
model for the dynamical system according to the changing conditions of the system. Adap- 
tive control is achieved by using a neural network for control and a neural network for 
identification. Combining this method for control with the procedure for fuzzy model 
selection, gives us a new method for adaptive model-based control using a hybrid neuro- 
fuzzy approach. This method for adaptive control can be used for general dynamical 
systems or non-linear plants, since its architecture is domain independent. In Chapter 9, we 
show some advanced applications of this new method for adaptive model-based control. 

In Chapter 8, we present several advanced applications of the new methods for auto- 
mated mathematical modelling and simulation. First, we describe the application of the 
new methods for automated modelling and simulation to robotic dynamic systems, which 
is a very important application in the control of real-world robot arms and general robotic 
systems. Second, we apply our new methods for modelling and simulation to the problem 
of understanding the dynamic behavior of biochemical reactors in the food industry, which 
is also very important for the control of this type of dynamical system. Third, we consider 
the problem of modelling and simulation of international trade dynamics, which is an 
interesting problem in economics and finance. Finally, we also consider the problem of 
modelling and simulation of aircraft, as this is important for the real-world problem of 
automatic aircraft control. 

In Chapter 9, we present several advanced applications of the new method for adaptive 
model-based control. First, we describe the application of the new method for adaptive 
model-based control to the case of robotic dynamic systems, which is very important for 
solving the problem of controlling real-world manipulators in real-time. Second, we 
describe the application of the method for adaptive model-based control to the case of 
biochemical reactors in the food industry, which is a very interesting case due to the 
complexity of this non-linear problem. Third, we consider briefly the problem of control- 
ling international trade between three or more countries, with our new method for adaptive 
model-based control. Finally, we also consider briefly the problem of controlling aircraft 
with our new method for adaptive model-based control. 

Finally, we would like to thank all the people who helped make this book possible. In 
particular, we would like to acknowledge our families for their love and support during the 
realization of this project; without them this book would never have been possible. 
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Chapter 1 

Introduction to Modelling, Simulation and Control of 
Non-Linear Dynamical Systems 

We describe in this book new methods for automated modelling and simulation of 

non-linear dynamical systems using Soft Computing techniques and Fractal 

Theory. We also describe a new method for adaptive model-based control of non- 

linear dynamical systems using a hybrid neuro-hzzy-fractal approach. Soft 

Computing (SC) consists of several computing paradigms, including fuzzy logic, 

neural networks and genetic algorithms, which can be used to produce powerful 

hybrid intelligent systems. Fractal Theory (FT) provides us with the mathematical 

tools (like the fractal dimension) to understand the geometrical complexity of 

natural objects and can be used for identification and modelling purposes. 

Combining SC techniques with FT tools we can take advantage of the 

"intelligence" provided by the computer methods (like neural networks) and also 

take advantage of the descriptive power of fractal mathematical tools. Non-linear 

dynamical systems can exhibit extremely complex dynamic behavior and for this 

reason it is of great importance to develop intelligent computational tools that will 

enable the identification of the best model for a particular dynamical system, then 

obtaining the best simulations for the system and also achieving the goal of 

controlling the dynamical system in a desired manner. We also describe in this 
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2 INTRODUCTION 

book the basic methodology to develop prototype intelligent systems that are able 

to find the best model for a particular dynamical system, then perform the 

numerical simulations necessary to identify all of the possible dynamical 

behaviors of the system, and finally achieve the goal of adaptive control using the 

mathematical models of the system and SC techniques. 

As a prelude, we shall provide a brief overview of the existing 

methodologies for modelling, simulation and control of non-linear dynamical 

systems and also of our own approach in dealing with these problems. 

1.1 Modelling and Simulation of Non-Linear Dynamical 
Systems 

Traditionally, mathematical modelling of dynarnical systems has been performed 

by human experts in the following manner (Jamshidi, 1997): 1) The expert 

according to his knowledge selects a set of models consider to be appropriate for a 

specific given problem, 2) Parameter estimation of the models is performed with 

methods similar to least-squares (using the relevant data available), and 3) The 

"best" model is selected using the measures of goodness for each of the models. 

Also, we can say that linear statistical models have been traditionally used as an 

approximation of real dynamic systems, which is not the best thing to do since 

many of the mechanical, electrical, biological and chemical systems are 

intrinsically non-linear in nature. In this work, we achieved automated 

mathematical modelling by using different Soft Computing techniques (Jang, Sun 

& Mizutani, 1997). The whole process of modelling starts with a time series (data 

set), which is used to perform a "Time Series Analysis" to extract the components 

of the time series (Weigend & Gershenfeld, 1994). Time series analysis can be 

achieved by traditional statistical methods or by efficient classification methods 

based on SC techniques, like neural networks or fuzzy logic (Kosko, 1997). In our 

case, we used fuzzy logic for classification of the time series components. After 

this time series analysis is performed, the qualitative values of the time series 

components are used to obtain a set of admissible models for a specific problem, 

this part of the problem was solved by using a set of fuzzy rules (knowledge base) 
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MODELLING, SIMULATION AND CONTROL . . . 3 

that simulates the human experts in the domain of application. Finally, the "best" 

model is selected by comparing the measures of goodness for each of the 

admissible models considered in the previous step. 

The simulation of mathematical models traditionally has been performed 

by exploring the possible dynamic behaviors, for a specific system, for different 

parameter values of the model (Rasband, 1990). More recently, it has been 

proposed to use Artificial Intelligence (Russell & Norvig, 1995) techniques for the 

simulation of mathematical models (for example, by using expert systems 

(Badiru, 1992)). In this work, we used SC techniques to automate the simulation 

of dynamical systems. In particular, we make use of genetic algorithms to generate 

the "best" set of parameter values for a specific model with respect to the goal of 

obtaining the most efficient simulation possible. Genetic Algorithms (GA) 

essentially consist of methods for the optimization of a general function based on 

the concept of "evolution" (Goldberg, 1989). In our particular case, the problem 

consisted in specifying the appropriate function to be optimized, with the goal of 

achieving the most efficient simulation possible, i.e., a simulation that enables the 

identification of all the possible dynamic behaviors for a specific dynamical 

system. For the identification of dynamic behaviors we make use of a fuzzy rule 

base that will identifl a particular behavior according to the results of the 

numerical simulations. 

In general, the study of non-linear dynamical systems is very important 

because most of the physical, electrical, mechanical and biochemical systems can 

be mathematically represented by models (differential or difference equations) in 

the time domain. Also, it is well known in Dynamical Systems Theory (Devaney, 

1989) that the dynamic behavior of a particular system can range from very simple 

periodic orbits to the very complicated "chaotic" orbits. Non-linear models may 

exhibit the chaotic behavior for systems of at least three coupled differential 

equations or at least one difference equation (Ruelle, 1990). In particular, for the 

case of real-world dynamical systems the mathematical models needed are of very 

high dimensionality and in general there is a high probability of chaotic behavior, 

along with all sorts of different periodic and quasi-periodic behaviors (Castillo & 

Melin, 1998b). For this reason, it becomes very important to be able to obtain the 

appropriate mathematical models for the dynamical systems and then to be able to 
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4 INTRODUCTION 

perform numerical simulations of these models (Castillo & Melin, 1997b), since 

this enables forecasting system's performance in future time. In this way, 

automated mathematical modelling and simulation of dynamical systems can 

contribute to real-time control of these systems, and this is critical in real-world 

applications (Melin & Castillo, 1998b). Also, an intelligent system for modelling 

and simulation can be useful in the design of real dynamical systems with certain 

constraints, since the information obtained by the numerical simulations can be 

used as a feedback in the process of design. The main contribution of the research 

work presented in this book is to combine several Soft Computing techniques to 

achieve automated mathematical modelling and simulation of non-linear 

dynamical systems using the advantages that each specific technique offers. For 

example, fuzzy logic (Von Altrock, 1995) was used to simulate the reasoning 

process of human experts in the process of mathematical modelling and genetic 

algorithms was used to select the best set of parameter values for the simulation of 

the best model. 

The importance of the results presented in this book can be measured from 

the scientific point of view and also from the practical (or applications) point of 

view. First, from the scientific point of view, we consider that this research work 

is very important because the computer methods for automated mathematical 

modelling and simulation of dynamic systems that were developed contribute, in 

general, to the advancement of Computer Science, and, in particular, to the 

advancement of Soft Computing and Artificial Intelligence because the new 

algorithms that were developed can be considered "intelligent" in the sense that 

they simulate human experts in modelling and simulation. From the practical 

point of view, we consider the results of this research work very important for the 

areas of Control and Design of dynamical systems. Controlling dynamical systems 

can be made more easy if we are able to analyze and predict the dynamic 

evolution of these systems and this goal can be achieved with an intelligent 

system for automated mathematical modelling and simulation. The design of 

dynamical systems can be made more easy if we can use mathematical models and 

their simulations for planning the performance of these systems under different set 

of design constraints. This last two points are of great importance for the 

industrial applications, since the control of dynamical systems in real-world plants 
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has to be very precise and also the design of this type of systems for specific tasks 

can be very useful for industry. 

1.2 Control of Non-Linear Dynamical Systems 

Traditional control of non-linear dynamical systems has been done by using 

Classical Linear Control Theory and assuming simple linear mathematical models 

for the systems. However, it is now well known that non-linear dynamical systems 

can exhibit complex behavior (and as a consequence are difficult to control) and 

the most appropriate mathematical models for them are the non-linear ones. Since 

the complexity of mathematical models for real dynarnical systems is very high it 

becomes necessary to use more advanced control techniques. This is precisely the 

fact that motivated researchers in the area of Artificial Intelligence (AI) to apply 

techniques that mimic human experts in the domain of dynarnical systems control. 

More recently, techniques like neural networks and fuzzy logic have been applied 

with some success to the control of non-linear dynamical systems for several 

domains of application. However, there also has been some limitations and 

problems with these approaches when applied to real systems. For this reason, we 

proposed in this book the application of a hybrid approach for the problem of 

control, combining neural and fuzzy technologies with the knowledge of the 

mathematical models for the adaptive control of dynamical systems. The basic 

idea of this hybrid approach is to combine the advantages of the computer 

methods with the advantages of using mathematical models for the dynamical 

systems. In this work, new methods were developed for adaptive control of non- 

linear systems using a combination of neural networks, fuzzy logic and 

mathematical models. Neural networks were used for the identification and 

control of the dynamical system and fuzzy logic was used to enable the change of 

mathematical models according to the dynamic state of the system. Also, the 

information and knowledge contained in the mathematical models was used for 

the control of the system by using their numerical results as input of the neural 

networks. 
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6 INTRODUCTION 

Traditionally, the control of dynamical systems has been performed using 

the classical methods of Linear Control Theory and also using linear models for 

the systems (Albertos, Strietzel & Mart, 1997). However, real-world problems can 

be viewed, in general, as non-linear dynamical systems with complex behavior 

and because of this, the most appropriate mathematical models for these systems 

are the non-linear ones. Unfortunately, to the moment, it hasn't been possible to 

generalize the results of Linear Control Theory to the case of Non-linear Control 

due to the complexity of the mathematics that will be required (Omidvar & Elliot, 

1997). Of course, this mathematical generalization could still take several years of 

theoretical and empirical research to be developed. On the other hand, it is 

possible to use non-linear universal approximators that have resulted from the 

research in the area of SC to the problem of system identification and control. In 

particular, SC methodologies like neural networks and fuzzy logic have been 

applied with some success to problems of control and identification of dynamical 

systems (Korn, 1995). However, there are also problems where one or both 

methodologies have failed to achieved the level of accuracy desired in the 

applications (Omidvar & Elliot, 1997). For this reason, we have proposed in this 

work the use of a hybrid approach for the problem of non-linear adaptive control, 

i.e., we proposed to combine the use of neural networks and fuzzy logic with the 

use of non-linear mathematical models to achieve the goal of adaptive control. In 

the following lines we give the general idea of this new approach as well as the 

reasons why such an approach is a good alternative for non-linear control of 

dynamical systems. 

Neural networks are computational systems with learning (or adaptive) 

characteristics that model the human brain (Kosko, 1992). Generally speaking, 

biological neural networks consist of neurons and connections between them and 

this is modeled by a graph with nodes and arcs to form the computational neural 

network. This graph along with a computational algorithm to specify the learning 

capabilities of the system is what makes the neural network a powerful 

methodology to simulate intelligent or expert behavior (Miller, Sutton & Werbos, 

1995). It has been shown, that neural networks are universal approximators, in the 

sense that they can model any general function to a specified accuracy (Kosko, 

1992) and for this reason neural networks have been applied to problems of 
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MODELLING, SIMULATION AND CONTROL . . . 7 

system identification (Pham & Xing, 1995). Also, because of their adaptive 

capabilities neural networks have been used to control real-world dynamical 

systems (Ng, 1997). 

Fuzzy Logic is an area of SC that enables a computer system to reason 

with uncertainty. Fuzzy inference systems consist of a set of "if-then" rules 

defined over fuzzy sets. Fuzzy sets are relations that can be used to model the 

linguistic variables that human experts use in their domain of expertise (Kosko, 

1992). The main difference between fuzzy sets and traditional (crisp) sets is that 

the membership function for elements of a hzzy set can take any value between 0 

and 1, and not only 0 or 1. This corresponds, in the real world, to many situations 

where it is difficult to decide in an unambiguous manner if something belongs or 

not to a specific class. Fuzzy expert systems, for example, have been applied with 

some success to problems of control, diagnosis and classification just because 

they can manage the difficult expert reasoning involved in these areas of 

application (Korn, 1995). The main disadvantage with fuzzy systems is that they 

can't adapt to changing situations. For this reason, it is a good idea to combine 

both methodologies to have the advantages of neural networks (learning and 

adaptive capabilities) along with the advantages of fuzzy logic (contain expert 

knowledge) in solving complex real world problems where this flexibility is 

needed (Yen, Langar & Zadeh, 1995). 

In this work, we have proposed a new architecture for developing 

intelligent control systems based on the use of neural networks, fuzzy logic and 

mathematical models, to achieve the goal of adaptive control of non-linear 

dynamical systems. The mathematical model of a non-linear dynamical system 

consist of a set of simultaneous non-linear differential (or difference) equations 

describing the dynamics of the system. The knowledge contained in the model is 

very important in the process of controlling the system, because it relates the 

different physical variables and their dependencies (Sueda & Iwamasa, 1995). For 

this reason, our approach is to combine mathematical models with neural 

networks and fuzzy logic, to achieve adaptive control of non-linear dynamical 

systems. 

The study of non-linear dynamical systems is very interesting because of 

the complexity of the dynamics involved in the underlying processes (for 
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example, biological, chemical or electrical) and also because of the implications, 

in the real world, of controlling industrial processes to maximize production. Real 

non-linear dynarnical systems can have a wide range of possible dynamic 

behaviors, going from simple periodic orbits (stable) to the very complicated 

chaotic behavior (Kapitaniak, 1996). Controlling a non-linear dynamical system, 

avoiding chaotic behavior, is only possible using the mathematical models of the 

system (Sueda & Iwamasa, 1995). For this reason, model-based control is having 

great success in the control of complex real-world dynamical systems. In our 

approach, the neural networks were used for identification and control of the 

system, fuzzy logic was used to choose between different mathematical models of 

the system, and the knowledge given by the models was used to avoid specific and 

dangerous dynamic behaviors. 

We consider the work on non-linear control presented in this book very 

important, from the point of view of Computer Science, because it contributed 

with new methods to develop intelligent control systems using a new hybrid 

model-based neuro-fuzzy approach for controlling non-linear dynarnical systems. 

Also, from the point of view of the applications, this work is very important 

because it contributed with new methods for adaptive non-linear control that 

could eventually be used in the control of real industrial plants or general 

dynamical systems, which in turn will result in increased productivity and 

efficiency for these systems. 
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Chapter 2 

Fuzzy Logic for Modelling 

This chapter introduces the basic concepts, notation, and basic operations for 

fuzzy sets that will be needed in the following chapters. Since research on Fuzzy 

Set Theory has been underway for over 30 years now, it is practically impossible 

to cover all aspects of current developments in this area. Therefore, the main goal 

of this chapter is to provide an introduction to and a summary of the basic 

concepts and operations that are relevant to the study of fuzzy sets. We also 

introduce in this chapter the definition of linguistic variables and linguistic values 

and explain how to use them in fuzzy rules, which are an efficient tool for 

quantitative modelling of words or sentences in a natural or artificial language. By 

interpreting fuzzy rules as fuzzy relations, we describe different schemes of fuzzy 

reasoning, where inference procedures based on the concept of the compositional 

rule of inference are used to derive conclusions from a set of fuzzy rules and 

known facts. Fuzzy rules and fuzzy reasoning are the basic components of fuzzy 

inference systems, which are the most important modelling tool based on fuzzy set 

theory. 

The "fuzzy inference system" is a popular computing framework based on 

the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning (Jang, 

Sun & Mizutani, 1997). It has found successful applications in a wide variety of 
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10 FUZZY LOGIC FOR MODELLING 

fields, such as automatic control, data classification, decision analysis, expert 

systems, time series prediction, robotics, and pattern recognition (Jarnshidi, 1997). 

Because of its multidisciplinary nature, the fuzzy inference system is known by 

numerous other names, such as "fuzzy expert system" (Kandel, 1992), "fuzzy 

model" (Sugeno & Kang, 1988), " k z y  associative memory" (Kosko, 1992), and 

simply "fuzzy system". 

The basic structure of a fuzzy inference system consists of three 

conceptual components: a "rule base", which contains a selection of fuzzy rules; a 

"data base" (or "dictionary"), which defines the membership functions used in the 

fuzzy rules; and a "reasoning mechanism", which performs the inference 

procedure upon the rules and given facts to derive a reasonable output or 

conclusion. In general, we can say that a fuzzy inference system implements a 

non-linear mapping from its input space to output space. This mapping is 

accomplished by a number of fuzzy if-then rules, each of which describes the 

local behavior of the mapping. In particular, the antecedent of a rule defines a 
fuzzy region in the input space, while the consequent specifies the output in the 

fuzzy region. 

In what follows, we shall first introduce the basic concepts of fuzzy sets 

and fuzzy reasoning. Then we will introduce and compare the three types of fuzzy 

inference systems that have been employed in various applications. Finally, we 

will address briefly the features and problems of fuzzy modelling, which is 

concerned with the construction of fuzzy inference systems for modelling a given 

target system. 

2.1 Fuzzy Set Theory 

Let X be a space of objects and x be a generic element of X. A classical set A, 

AcX, is defined by a collection of elements or objects x E X, such that each x can 

either belong or not belong to the set A. By defining a "characteristic function" for 

each element x E X, we can represent a classical set A by a set of order pairs (x,O) 

or (x,l), which indicates x P A or x E A, respectively. 
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MODELLING, SIMULATION AND CONTROL . . . 11  

Unlike the aforementioned conventional set, a fuzzy set (Zadeh, 1965) 

expresses the degree to which an element belong to a set. Hence the characteristic 

function of a fuzzy set is allowed to have values between 0 and 1, which denotes 

the degree of membership of an element in a given set. 

Definition 2.1 Fuzzy sets and membership functions 

If X is a collection of objects denoted generically by x, then a "fuzzy set" A in X 

is defined as a set of ordered pairs: 

A = { (x, PA(X)) I (2.1) 
where pA(x) is called "membership function" (or MF for short) for the fuzzy set A. 

The MF maps each element of X to a membership grade (or membership value) 

between 0 and 1. 

Obviously, the definition of a fuzzy set is a simple extension of the 

definition of a classical set in which the characteristic function is permitted to 

have any values between 0 and 1. If the values of the membership function pA(x) 

is restricted to either 0 or 1, then A is reduced to a classical set and pA(x) is the 

characteristic function of A. 

A fuzzy set is uniquely specified by its membership function. To describe 

membership functions more specifically, we shall define the nomenclature used in 

the literature (Jang, Sun & Mizutani, 1997). 

Definition 2.2 Support 

The "support" of a fuzzy set A is the set of all points x in X such that pA(x) > 0: 

support (A) = { x l CLAW ' 0 1. (2.2) 

Definition 2.3 Core 

The "core" of a fuzzy set is the set of all points x in X such that p,(x) = 1 : 

core (A) = { x 1 pA(x) = 1 ). (2.3) 

Definition 2.4 Normality 

A fuzzy set A is "normal" if its core is nonempty. In other words, we can always 

find a point x E X such that pA(x) = 1. 
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12 FUZZY LOGIC FOR MODELLING 

Definition 2.5 Crossover points 

A "crossover point" of a fuzzy set A is a point x E X at which pA(x) = 0.5: 

crossover (A) = { x I pA(x) = 0.5 ). (2.4) 

Definition 2.6 Fuzzy singleton 

A fuzzy set whose support is a single point in X with pA(x) = 1 is called a "fuzzy 

singleton". 

Corresponding to the ordinary set operations of union, intersection and 

complement, fuzzy sets have similar operations, which were initially defined in 

Zadeh's seminal paper (Zadeh, 1965). Before introducing these three fuzzy set 

operations, first we shall define the notion of containment, which plays a central 

role in both ordinary and fuzzy sets. This definition of containment is, of course, a 

natural extension of the case for ordinary sets. 

Definition 2.7 Containment 

The fuzzy set A is "contained" in fuzzy set B (or, equivalently, A is a "subset" of 

B) if and only if pA(x) I pB(x) for all x. Mathematically, 

A E 8 pA(x) 5 pB(x). (2.5) 

Definition 2.8 Union 

The "union" of two hzzy sets A and B is a fuzzy set C, written as C = AuB or C 

= A OR B, whose MF is related to those of A and B by 

PC(X) = max( PA('), PB(X) ) = PA(X) CLB(X). (2.6) 

Definition 2.9 Intersection 

The "intersection" of two fuzzy sets A and B is a fuzzy set C, written as C = A n B  

or C = A AND B, whose MF is related to those of A and B by 

~lc(x) = min( PA(X), PB(X) = PAW A PB(X). (2.7) 

Definition 2.10 Complement or Negation 

The "complement" of a fuzzy set A, denoted by A ( 1 A, NOT A), is defined as 

p;i(x> = 1 - PA(X). (2.8) 
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As mentioned earlier, a fuzzy set is completely characterized by its MF. 

Since most fuzzy sets in use have a universe of discourse X consisting of the real 

line R, it would be impractical to list all the pairs defining a membership function. 

A more convenient and concise way to define an MF is to express it as a 

mathematical formula. First we define several classes of parameterized MFs of 

one dimension. 

Definition 2.1 1 Triangular MFs 
A "triangular MF" is specified by three parameters {a, b, c) as follows: 

I 0 , x l a .  

y = triangle(x;a,b,c) = a l x l b .  (2.9) 
b l x l c .  

c l x .  

The parameters {a,b,c) (with a < b< c ) determine the x coordinates of the three 

corners of the underlying triangular MF. 

Figure 2.1 (a) illustrates a triangular MF defined by triangle(x; 10,20,40). 

Definition 2.12 Trapezoidal MFs 

A "trapezoidal MF" is specified by four parameters {a, b, c, d) as follows: 

0 ,  x l a .  
(x-a)/(b-a) , a l x l b . (2.10) 

trapezoid (x;a,b,c,d) = 1 ,  b s x l c .  

(d-X) / (d-C) , I c s x l d .  

0 , d l x .  

The parameters {a, b, c, d) (with a < b l c <d) determine the x coordinates of the 

four corners of the underlying trapezoidal MF. 

Figure 2.1 (b) illustrates a trapezoidal MF defined by trapezoid(x; 10, 20 

40, 75). 

Due to their simple formulas and computational efficiency, both triangular 

MFs and trapezoidal MFs have been used extensively, especially in real-time 

implementations. However, since the MFs are composed of straight line segments, 
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14 FUZZY LOGIC FOR MODELLING 

they are not smooth at the comer points specified by the parameters. In the 

following we introduce other types of MFs defined by smooth and nonlinear 

functions. 

Definition 2.13 Gaussian MFs 

A "Gaussian MF" is specified by two parameters (c , o ) 

A "Gaussian MF is determined completely by c and o ; c represents the MFs 

center and o determines the MFs width. Figure 2.2 (a) plots a Gaussian MF 

defined by gaussian (x; 50,20). 

(a) Triangular MF (b) Trapezoidal MF 

Figure 2.1 Examples of two types of parameterized MFs 

Definition 2.14 Generalized bell MFs 

A "generalized bell MF" is specified by three parameters {a, b, c): 

bell(x; a, b, c) = 1 
1 + 1 (x-c) / a 12b 
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where the parameter b is usually positive. We can note that this MF is a direct 

generalization of the Cauchy distribution used in probability theory, so it is also 

referred to as the "Cauchy MF". 

Figure 2.2 (b) illustrates a generalized bell MF defined by bell(x; 20, 4, 

50). 

Although the Gaussian MFs and bell MFs achieve smoothness, they are 

unable to specify asymmetric MFs, which are important in certain applications. 

Next we define the sigmoidal MF, which is either open left or right. 

(a) Gaussian MF (b) Generalized Bell MF 

Figure 2.2 Examples of two classes of parameterized continuous MFs. 

Definition 2.15 Sigmoidal MFs 

A "Sigmoidal MF" is defined by the following equation: 

sig(x; a, c) = 1 (2.13) 
1 + exp [-a(x-c)] 

where a controls the slope at the crossover point x = c. 

Depending on the sign of the parameter "a", a sigmoidal MF is inherently 

open right or left and thus is appropriate for representing concepts such as "very 

large" or "very negative". Figure 2.3 shows two sigmoidal functions yl =sig(x; 1, - 
5) and y2 =sig(x; -2,5). 
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(a) y1 = sig(x; 1, -5) (b) y;! = sig(x; -2,5) 

Figure 2.3 Two sigmoidal functions yl and y2 . 

2.2 Fuzzy Reasoning 

As was pointed out by Zadeh in his work on this area (Zadeh, 1973), conventional 

techniques for system analysis are intrinsically unsuited for dealing with 

humanistic systems, whose behavior is strongly influenced by human judgment, 

perception, and emotions. This is a manifestation of what might be called the 

"principle of incompatibility": "As the complexity of a system increases, our 

ability to make precise and yet significant statements about its behavior 

diminishes until a threshold is reached beyond which precision and significance 

become almost mutually exclusive characteristics" (Zadeh, 1973). It was because 

of this belief that Zadeh proposed the concept of linguistic variables (Zadeh, 

1971) as an alternative approach to modelling human thinking. 

Definition 2.1 6 Linguistic variables 

A "Linguistic variable" is characterized by a quintuple (x, T(x), X, G, M) in which 

x is the name of the variable; T(x) is the "term set" of x-that is, the set of its 

"linguistic values" or "linguistic terms"; X is the universe of discourse, G is a 

"syntactic rule" which generates the terms in T(x); and M is a "semantic rule" 

which associates with each linguistic value A its meaning M(A), where M(A) 

denotes a fuzzy set in X. 
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Definition 2.17 Concentration and dilation of linguistic values 

Let A be a linguistic value characterized by a fuzzy set membership function 

pA(.). Then ~k is interpreted as a modified version of the original linguistic value 

expressed as 

Ak = jx [ pA(x)lk 1 X . (2.14) 

In particular, the operation of "concentration" is defined as 

CON (A) = A2 , (2.15) 

while that of "dilatation" is expressed by 

DIL (A) = ~ 0 . 5  . (2.16) 

Conventionally, we take CON(A) and DIL(A) to be the results of applying 

the hedges "very" and "more or less", respectively, to the linguistic term A. 

However, other consistent definitions for these linguistic hedges are possible and 

well justified for various applications. 

Following the definitions given before, we can interpret the negation 

operator NOT and the connectives AND and OR as 

NOT(A)=lA= fx [ l - p , ( x ) ] l x  , 

A AND B = A n B = f, [ p,(x) A p,(x) ] I x , (2.1 7) 

A OR B = A u B = f, [ pA(x) v p,(x) ] 1 x 

respectively, where A and B are two linguistic values whose meanings are defined 

PA(.) and PB(.) . 

Definition 2.18 Fuzzy If-Then Rules 

A "fuzzy if-then rule" (also known as "fuzzy rule", "fuzzy implication", or "fuzzy 

conditional statement") assumes the form 

if x is A then y is B , (2.18) 
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18 FUZZY LOGIC FOR MODELLING 

where A and B are linguistic values defined by fuzzy sets on universes of 

discourse X and Y, respectively. Often "x is A" is called "antecedent" or 

"premise", while "y is B" is called the "consequence" or "conclusion". 

Examples of fuzzy if-then rules are widespread in our daily linguistic 

expressions, such as the following: 

If pressure is high, then volume is small. 

If the road is slippery, then driving is dangerous. 

If the speed is high, then apply the brake a little. 

Before we can employ fuzzy if-then rules to model and analyze a system, 

first we have to formalize what is meant by the expression "if x is A then y is B", 

which is sometimes abbreviated as A + B . In essence, the expression describes a 

relation between two variables x and y; this suggests that a fuzzy if-then rule is 

defined as a binary fuzzy relation R on the product space X Y. Generally 

speaking, there are two ways to interpret the fuzzy rule A + B. If we interpret A 

9 B as A "coupled with" B then 

R = A + B = A x B =  jxxy  pA(x)CpB(y)f(x,y) 
" 

where * is an operator for intersection (Marndani & Assilian, 1975). On the other 

hand, if A + B is interpreted as A "entails" B, then it can be written as one of two 

different formulas: 

Material implication: 

R = A + B = l A u B .  

Propositional Calculus: 

R = A + B = l A u ( A n B ) .  

Although these two formulas are different in appearance, they both reduce to the 

familiar identity A + B = 1 A u B when A and B are propositions in the sense of 

two-valued logic. 

Fuzzy reasoning, also known as approximate reasoning, is an inference 

procedure that derives conclusions from a set of fuzzy if-then rules and known 

facts. The basic rule of inference in traditional two-valued logic is "modus 
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ponens", according to which we can infer the truth of a proposition B from the 

truth of A and the implication A + B. This concept is illustrated as follows: 

premise 1 (fact): x i s  A ,  

premise 2 (rule): if x is A then Y is B , 
consequence (conclusion): y is B . 

However, in much of human reasoning, modus ponens is employed in an 

approximate manner. This is written as 

premise 1 (fact): x is A' 

premise 2 (rule): if x is A then y is B , 
consequence (conclusion): y is B' 

where A' is close to A and B' is close to B. When A, B, A' and B' are fuzzy sets of 

appropriate universes, the foregoing inference procedure is called "approximate 

reasoning" or "fuzzy reasoning"; it is also called "generalized modus ponens" 

(GMP for short), since it has modus ponens as a special case. 

Definition 2.19 Fuzzy reasoning 

Let A, A', and B be fuzzy sets of X, X, and Y respectively. Assume that the fuzzy 

implication A + B is expressed as a fuzzy relation R on X Y .Then the fuzzy set 

B induced by "x is A '  and the fuzzy rule "if x is A then y is B" is defined by 

PB'(Y) = maxx min [ PA~x), CLR(X, Y) 1 
= v, [ A PR(x, Y) 1 . (2.2 1) 

Now we can use the inference procedure of fuzzy reasoning to derive 

conclusions provided that the fuzzy implication A + B is defined as an 

appropriate binary fuzzy relation. 

Single Rule with Single Antecedent 

This is the simplest case, and the formula is available in Equation (2.21). A 

further simplification of the equation yields 

PBI(Y) = [ Vx ( PA@) A PA(X) I A PB(Y) 

= 0 A PB(Y) 
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In other words, first we find the degree of match o as the maximum of pAl(x) A 

pA(x) ; then the MF of the resulting B' is equal to the MF of B clipped by o. 

Intuitively, o represents a measure of degree of belief for the antecedent part of a 

rule; this measure gets propagated by the if-then rules and the resulting degree of 

belief or MF for the consequent part should be no greater than a. 

Multiple Rules with Multiple Antecedents 

The process of fuzzy reasoning or approximate reasoning for the general case can 

be divided into four steps: 

1) Degrees of compatibility: Compare the known facts with the antecedents of 

fuzzy rules to find the degrees of compatibility with respect to each antecedent 

MF. 

2) Firing Strendh: Combine degrees of compatibility with respect to antecedent 

MFs in a rule using fuzzy AND or OR operators to form a firing strength that 

indicates the degree to which the antecedent part of the rule is satisfied. 

3) Qualified (induced) consequent MFs: Apply the firing strength to the 

consequent MF of a rule to generate a qualified consequent MF. 

4) Overall output MF: Aggregate all the qualified consequent MFs to obtain an 

overall output MF. 

2.3 Fuzzy Inference Systems 

The "Marndani fuzzy inference system" (Mamdani & Assilian, 1975) was 

proposed as the first attempt to control a steam engine and boiler combination by 

a set of linguistic control rules obtained from experienced human operators. 

Figure 2.4 is an illustration of how a two-rule Mamdani fuzzy inference system 

derives the overall output z when subjected to two numeric inputs x and y. 

In Marndani's application, two fuzzy inference systems were used as two 

controllers to generate the heat input to the boiler and throttle opening of the 

engine cylinder, respectively, to regulate the steam pressure in the boiler and the 
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speed of the engine. Since the engine and boiler take only numeric values as 

inputs, a defuzzifier was used to convert a fuzzy set to a numeric value. 

Figure 2.4 The Mamdani fuzzy inference system using the min and max operators. 

Defuzzification 

Defuzzification refers to the way a numeric value is extracted from a fuzzy set as 

a representative value. In general, there are five methods for defuzzifying a fuzzy 

set A of a universe of discourse Z, as shown in Figure 2.5 (Here the fuzzy set A is 

usually represented by an aggregated output MF, such as C' in Figure 2.4). A brief 

explanation of each defuzzification strategy follows. 
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Centroid of area z,,,: 

where pA(z) is the aggregated output MF. This is the most widely adopted 

dehzzification strategy, which is reminiscent of the calculation of expected values 

of probability distributions. 

Bisector of area z,,, : zBoA satisfies 

where a = min{z ( z E Z) and p = max{z I z E Z). 

Mean of maximum zMOM : z,,, is the average of the maximizing z at 

which the MF reach a maximum p*. Mathematically, 

where z' = { z I pA(z) = p* ). In particular, if pA(z) has a single maximum at z = 

z*, then zMoM = z*. Moreover, if pA(z) reaches its maximum whenever z E [zleA, 

~ r i g h t l  then z ~ o ~  = (zlefi + Zright ) 1 2. 
Smallest of maximum z,,, : z,,, is the minimum (in terms of 

magnitude) of the maximizing z. 

Largest of maximum zLOM : zLoM is the maximum (in terms of magnitude) 

of the maximizing z. Because of their obvious bias, z,,, and zLOM are not used as 

often as the other three defuzzification methods. 

The calculation needed to carry out any of these five defuzzification 

operations is time-consuming unless special hardware support is available. 

Furthermore, these defuzzification operations are not easily subject to rigorous 

mathematical analysis, so most of the studies are based on experimental results. 

This leads to the propositions of other types of fuzzy inference systems that do not 

need defuzzification at all; two of them will be described in the following. Other 
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more flexible defuzzification methods can be found in several more recent papers 

(Yager & Filer, 1993), (Runkler & Glesner, 1994). 

1 

0.8 

0.6 

0.4 

0.2 

0 
-1 0 -5 0 5 10 

Figure 2.5 Various defuzzification methods for obtaining a numeric output. 

Sugeno Fuzzy Models 

The "Sugeno fuzzy model" (also known as the "TSK fuzzy model") was proposed 

by Takagi, Sugeno and Kang in an effort to develop a systematic approach to 

generating fuzzy rules from a given input-output data set (Takagi & Sugeno, 

1985), (Sugeno & Kang, 1988). A typical fuzzy rule in a sugeno fuzzy model has 

the form: 

if x is A and y is B then z = f(x,y) 

where A and B are fuzzy sets in the antecedent, while z = f(x,y) is a traditional 

function in the consequent. Usually f(x,y) is a polynomial in the input variables x 

and y, but it can be any function as long as it can appropriately describe the output 

of the model within the fuzzy region specified by the antecedent of the rule. When 

f(x,y) is a first-order polynomial, the resulting fuzzy inference system is called a 

"first-order Sugeno fuzzy model". When f is constant, we then have a "zero-order 

Sugeno fuzzy model", which can be viewed either as a special case of the 

Marndani inference system, in which each rule's consequent is specified by a 

fuzzy singleton, or a special case of the Tsukamoto fuzzy model (to be introduced 

next), in which each rule's consequent is specified by an MF of a step function 

center at the constant. 
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Figure 2.6 shows the fuzzy reasoning procedure for a first-order Sugeno 

model. Since each rule has a numeric output, the overall output is obtained via 

"weighted average", thus avoiding the time-consuming process of defuzzification 

required in a Mamdani model. In practice, the weighted average operator is 

sometimes replaced with the "weighted sum" operator (that is, wlzl + w2z2 in 

Figure 2.6) to reduce computation further, specially in the training of a fuzzy 

inference system. However, this simplification could lead to the loss of MF 

linguistic meanings unless the sum of firing strengths (that is, Cwi ) is close to 

unity. 

Figure 2.6 The Sugeno' fuzzy model. 

A 
P A1 P Min 

A 

zl = pix + q1y + rl 
w1 

Tsukamoto Fuzzy Models 

In the "Tsukarnoto fuzzy models" (Tsukamoto, 1979), the consequent of each 

fuzzy if-then rule is represented by a fuzzy set with a monotonical MF, as shown 

in Figure 2.7. As a result, the inferred output of each rule is defined as a numeric 

value induced by the rule firing strength. The overall output is taken as the 

weighted average of each rule's output. Figure 2.7 illustrates the reasoning 

procedure for a two-input two-rule system. 

X Y 

A A 
P A2 P B2 

- 
L . Y 

Z2 = P2X + q2y + r2 
w2 

a 
x Y weighted average 

z = Y ~ Z ~ ~ z 2  
Wl + w2 
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Since each rule infers a numeric output, the Tsukamoto fuzzy model 

aggregates each rule's output by the method of weighted average and thus avoids 

the time-consuming process of defuzzification. However, the Tsukamoto fuzzy 

model is not used often since it is not as transparent as either the Mamdani or 

Sugeno fuzzy models. 

Min P 

Y w1 z 1 z 
P 

.-.-.-.-.-.-.-.-.a. 

.-.-A-s-.-.-.-. .- - T A 2  .'I 2 x P2 Y Y w2 U weighted z2 z average 

Z = X12r+w.L22 
Wl + w2 

Figure 2.7 The Tsukamoto fuzzy model. 

There are certain common issues concerning all the three fuzzy inference 

systems introduced previously, such as how to partition an input space and how to 

construct a fuzzy inference system for a particular application. 

Input Space Partitioning, 

Now it should be clear that the spirit of fuzzy inference systems resembles that of 

"divide and conquer" - the antecedent of a fuzzy rule defines a local fuzzy region, 

while the consequent describes the behavior within the region via various 

constituents. The consequent constituent can be a consequent MF (Mamdani and 

Tsukamoto fuzzy models), a constant value (zero-order Sugeno model), or a linear 
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equation (first-order Sugeno model). Different consequent constituents result in 

different fuzzy inference systems, but their antecedents are always the same. 

Therefore, the following discussion of methods of partitioning input spaces to 

form the antecedents of fuzzy rules is applicable to all three types of fuzzy 

inference systems. 

Grid partition: This partition method is often chosen in designing a fuzzy 

controller, which usually involves only several state variables as the inputs 

to the controller. This partition strategy needs only a small number of MFs 

for each input. However, it encounters problems when we have a 

moderately large number of inputs. For instance, a fuzzy model with 10 

inputs and 2 MFs on each input would result in 210 = 1024 fuzzy if-then 

rules, which is prohibitively large. This problem, usually referred to as the 

"curse of dimensionality", can be alleviated by other partition strategies. 

Tree partition: In this method each region can be uniquely specified along 

a corresponding decision tree. The tree partition relieves the problem of an 

exponential increase in the number of rules. However, more MFs for each 

input are needed to define these fuzzy regions, and these MFs do not 

usually bear clear linguistic meanings. In other words, ortogonality holds 

roughly in X Y, but not in either X or Y alone. 

Scatter partition: By covering a subset of the whole input space that 

characterizes a region of possible occurrence of the input vectors, the 

scatter partition can also limit the number of rules to a reasonable amount. 

However, the scatter partition is usually dictated by desired input-output 

data pairs and thus, in general, orthogonality does not hold in X, Y or X 

Y. This makes it hard to estimate the overall mapping directly from the 

consequent of each rule's output. 

2.4 Fuzzy Modelling 

In general, we design a fuzzy inference system based on the past known behavior 

of a target system. The fuzzy system is then expected to be able to reproduce the 
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behavior of the target system. For example, if the target system is a human 

operator in charge of a chemical reaction process, then the fuzzy inference system 

becomes a fuzzy logic controller that can regulate and control the process. 

Let us now consider how we might construct a fuzzy inference system for 

a specific application. Generally speaking, the standard method for constructing a 

fuzzy inference system, a process usually called "fuzzy modelling", has the 

following features: 

The rule structure of a fuzzy inference system makes it easy to incorporate 

human expertise about the target system directly into the modelling 

process. Namely, fuzzy modelling takes advantage of "domain knowledge" 

that might not be easily or directly employed in other modelling 

approaches. 

When the input-output data of a target system is available, conventional 

system identification techniques can be used for fuzzy modelling. In other 

words, the use of "numerical data" also plays an important role in "fuzzy 

modelling", just as in other mathematical modelling methods. 

Conceptually, hzzy modelling can be pursued in two stages, which are not 

totally disjoint. The first stage is the identification of the "surface structure", 

which includes the following tasks: 

1. Select relevant input and output variables. 

2. Choose a specific type of fuzzy inference system. 

3. Determine the number of linguistic terms associated with each input and 

output variables. 

4. Design a collection of fuzzy if-then rules. 

Note that to accomplish the preceding tasks, we rely on our own 

knowledge (common sense, simple physical laws, an so on) of the target system, 

information provided by human experts who are familiar with the target system, 

or simply trial and error. 

After the first stage of fuzzy modelling, we obtain a rule base that can 

more or less describe the behavior of the target system by means of linguistic 

terms. The meaning of these linguistic terms is determined in the second stage, the 
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identification of "deep structure", which determines the MFs of each linguistic 

term. Specifically, the identification of deep structure includes the following 

tasks: 

1. Choose an appropriate family of parameterized MFs. 

2. Interview human experts familiar with the target systems to determine the 

parameters of the MFs used in the rule base. 

3. Refine the parameters of the MFs using regression and optimization 

techniques. 

Task 1 and 2 assume the availability of human experts, while task 3 

assumes the availability of a desired input-output data set. 

2.5 Summary 

In this chapter, we have presented the main ideas underlying Fuzzy Logic and we 

have only started to point out the many possible applications of this powerful 

computational theory. We have discussed in some detail fuzzy set theory, fuzzy 

reasoning and fuzzy inference systems. At the end, we also gave some remarks 

about k z y  modelling. In the following chapters, we will show how fuzzy logic 

techniques (in some cases, in conjunction with other methodologies) can be 

applied to solve real world complex problems. This chapter will serve as a basis 

for the new hybrid intelligent methods, for modelling and simulation, that will be 

described in Chapters 5 and 6 of this book. Fuzzy Logic will also play an 

important role in the new neuro-fuzzy methodology for control that is presented in 

Chapter 7 of this book. 
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Chapter 3 

Neural Networks for Control 

Application of fuzzy inference systems to automatic control was first reported in 

Mamdani's paper (Mamdani & Assilian, 1975), where a "fuzzy logic controller" 

(FLC) was used to emulate a human operator's control of a steam engine and 

boiler combination. Since then, "fuzzy logic control" has been recognized as the 

most significant and fruitful application for fuzzy logic (Kosko, 1992). In the past 

few years, advances in microprocessors and hardware technologies have created 

an even more diversified application domain for fuzzy logic controllers, which 

ranges from consumer electronics to the automobile industry. However, without 

adaptive capability, the performance of FLCs relies exclusively on two factors: the 

availability of human experts, and the knowledge acquisition techniques to 

convert human expertise into appropriate fuzzy rules. These two factors 

substantially restrict the application domain of FLCs. 

On the other hand, investigation into using neural networks in automatic 

control systems did not receive much attention until the "backpropagation" 

learning rule was formulated by Rumelhart and others (Rumelhart, Hinton & 

Williams, 1986). Since then, research of neural control has evolved quickly and a 

number of neural controller design methods have been proposed in the literature 

(Werbos, 1991). 
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Figure 3.1 is a block diagram of a typical "feedback control system", 

where the "plant" (or "process") represents the dynamic system to be controlled 

and the "controller" employs a control strategy to achieve a control goal. Here we 

shall denote the state variables of the plant as a vector x(t); these variables are 

usually governed by a set of "state equations" (usually differential equations) that 

characterize the dynamic behavior of the plant. Since the state variables are 

internal to the plant, some of them may not be directly measurable from the 

external world. The measurable quantities of the plant, also known as its outputs, 

are denoted as a vector y(t). We shall assume that all states are measurable; thus 

the output of the plant y(t) is equal to the state x(t). 

The state equation for a general non-linear plant can be expressed in the 

matrix notation 

x'(t> = f (x(t), u(t)) (plant dynamics) (3.1) 

u(t> Plant 
Dynamics 

x(t> 

Figure 3.1 Block diagram for a continuous feedback control system. 

where u(t) is the controller's output at time t, and the size of the vector x(t) is 

called the "order" of the plant. A general control goal is to find a controller with a 

static function $ that maps an observed plant output x(t) to a control action u-that 

is, u(t) = $ (x(t))- such that the plant output can follow some given desired output 

signal xd(t) as closely as possible. If xd(t) is a constant vector, then the control 

problem is referred to as "regulator problem", where the plant states are directly 

fed back to the controller. This is actually what Figure 3.1 shows. On the other 

hand, if the desired trajectory xd(t) is a time-varying signal, then we have a 

"tracking problem" in which an error signal, defined as the difference between 
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desired and actual outputs, is fed back to the controller. I f f  is unknown, we need 

to perform system identification first to find a model for the plant. Moreover, i f f  

is time varying, it is desirable to make 4 adaptive to respond to the changing 

characteristics of the plant. 

In the case of linear feedback control systems, the plant and controller can 

be reformulated as the following equations: 

xt(t) = Ax(t) + Bu(t) (plant dynamics) (3.2) 

u(t) = kx(t) (linear controller) 

The treatment of linear control systems is relatively complete in the literature (for 

example, see Brogan, 1991) and will not be discussed here. On the other hand, the 

area of non-linear control is still with many open problems and its more 

interesting. In this book, the treatment will be restricted to non-linear plants with a 

general form given by Equation (3.1). 

If we replace the controller block in Figure 3.1 with neural networks or 

fuzzy systems, then we end up with "neural" or "fuzzy control systems", 

respectively. In other words, neural or fuzzy control design methods are 

systematic ways of constructing neural networks or fuzzy inference systems, 

respectively, as controllers intended to achieve prescribed control goals. In the 

same vein, the term "neuro-fuzzy control" has been used when one is speaking 

about design methods for fuzzy logic controllers that use neural network 

techniques. 

Most neural or fuzzy controllers are nonlinear; thus rigorous analysis for 

neuro-fuzzy control systems is difficult and remains a challenging area for further 

investigation. On the other hand, a neuro-fuzzy controller usually contains a large 

number of parameters; it is thus more versatile than a linear controller in dealing 

with non-linear plant characteristics. Therefore, neuro-fuzzy controllers almost 

always surpass pure linear controllers if designed properly. 

In this chapter, we present the basic concepts, notation, and basic learning 

algorithms for neural networks that will be needed in the following chapters of 

this book. The chapter is organized as follows: Backpropagation for Feedforward 

Networks, Adaptive Neuro-Fuzzy Inference Systems, Neuro-Fuzzy Control and 
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Adaptive Neuro-Control. First, we give a brief review of the basic concepts of 

neural networks and the backpropagation learning algorithm. Second, we give a 

brief description of adaptive neuro-fuzzy systems. Third, we give a brief review 

on the current methods for neuro-fuzzy control. Finally, we end the chapter with 

some remarks about adaptive control and model-based control. We consider this 

material necessary to understand the new methods for control that will be 

presented in Chapter 7 of this book. 

3.1 Backpropagation for Feedforward Networks 

This section describes the architectures and learning algorithms for adaptive 

networks, a unifying framework that subsumes almost all kinds of neural network 

paradigms with supervised learning capabilities. An adaptive network, as the 

name indicates, is a network structure consisting of a number of nodes connected 

through directional links. Each node represents a process unit, and the links 

between nodes specify the causal relationship between the connected nodes. The 

learning rule specifies how the parameters (of the nodes) should be updated to 

minimize a prescribed error measure. 

The basic learning rule of the adaptive network is the well-known steepest 

descent method, in which the gradient vector is derived by successive invocations 

of the chain rule. This method for systematic calculation of the gradient vector 

was proposed independently several times, by Bryson and Ho (1969), Werbos 

(1974), and Parker (1982). However, because research on artificial neural 

networks was still in its infancy at those times, these researchers' early work failed 

to receive the attention it deserved. In 1986, Rurnelhart et al. used the same 

procedure to find the gradient in a multilayer neural network. Their procedure was 

called "backpropagation learning rule", a name which is now widely known 

because the work of Rurnelhart inspired enormous interest in research on neural 

networks. In this section, we introduce Werbos's original backpropagation method 

for finding gradient vectors and also present improved versions of this method. 
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3.1.1 The Backpropagation learning algorithm 

Suppose that a given feedforward adaptive network has L layers and layer 1 (1 = 0, 

1 ,..., L) has N(l) nodes. Then the output and function of node i [i = 1, ..., N(l)] in 

layer 1 can be represented as xl,i and fl,i, respectively, as shown in Figure 3.2. 

Since the output of a node depends on the incoming signals and the parameter set 

of the node, we have the following general expression for the node function fl,i : 

Xl,i = fi,i ( Xi- l , l  3 .-. I XI-I,N(~-I), a, 0, Y 5 ... ) (3.3) 
where a, p, y , etc. are the parameters of this node. 

- x1,3 

t 
Layer 0 

t 
Layer 1 

t 
Layer 2 

t 
Layer 3 

Figure 3.2 Feedforward adaptive network. 

Assuming that the given training data set has P entries, we can define an 

error measure for the pth (1 5 p I P) entry of the training data as the sum of the 

squared errors: 
N l U  

where dk is the kth component of the pth desired output vector and x ~ , k  is the kth 

component of the actual output vector produced by presenting the pth input vector 

to the network. Obviously, when Ep is equal to zero, the network is able to 
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reproduce exactly the desired output vector in the pth training data pair. Thus our 

task here is to minimize an overall error measure, which is defined as E = C Ep . 
We can also define the "error signal" E ~ , ~  as the derivative of the error 

measure Ep with respect to the output of the node i in layer 1, taking both direct 

and indirect paths into consideration. Mathematically, 

El,i = P E P -  (3.5) 
a Xl,i 

this expression was called the "ordered derivative" by Werbos (1974). The 

difference between the ordered derivative and the ordinary partial derivative lies 

in the way we view the function to be differentiated. For an internal node output 

xl,i , the partial derivative P E P  / is equal to zero, since Ep does not depend 

on xl,i directly. However, it is obvious that Ep does depend on xl,i indirectly, since 

a change in xl,i will propagate through indirect paths to the output layer and thus 

produce a corresponding change in the value of Ep 

The error signal for the ith output node (at layer L) can be calculated 

directly: 

 EL,^ = Fap- = d p -  (3 -6) 
a X L , ~  a xL,i 

This is equal to  EL,^ = -2(di - x~ i ) if Ep is defined as in Equation (3.4). For the 

internal node at the ith position of layer 1, the error signal can be derived by the 

chain rule of differential calculus: 

error signal error signal 
at layer 1 at layer 1+1 

where 0 I 1 < L-1. That is, the error signal of an internal node at layer 1 can be 

expressed as a linear combination of the error signal of the nodes at layer 1+1. 

Therefore, for any 1 and i, we can find &l,i by first applying Equation (3.6) once to 

get error signals at the output layer, and then applying Equation (3.7) iteratively 

until we reach the desired layer 1. The underlying procedure is called 
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backpropagation since the error signals are obtained sequentially from the output 

layer back to the input layer. 

The gradient vector is defined as the derivative of the error measure with 

respect to each parameter, so we have to apply the chain rule again to find the 

gradient vector. If a is a parameter of the ith node at layer 1, we have 

d t ~  = F E  a f  - . a f .  - p -  -p- -1,i- - EI,I - 1 , ~  (3.8) 
dm ax l i  d a  d a 

The derivative of the overall error measure E with respect to a is 

Accordingly, for simple steepest descent (for minimization), the update 

formula for the generic parameter a is 

in which q is the "learning rate", which can be further expressed as 

where k is the "step size", the length of each transition along the gradient direction 

in the parameter space. 

There are two types of learning paradigms that are available to suit the 

needs for various applications. In "off-line learning" (or "batch learning"), the 

update formula for parameter a is based on Equation (3.9) and the update action 

takes place only after the whole training data set has been presented-that is, only 

after each "epoch" or "sweep". On the other hand, in "on-line learning" (or 

"pattern-by-pattern learning"), the parameters are updated immediately after each 

input-output pair has been presented, and the update formula is based on Equation 

(3.8). In practice, it is possible to combine these two learning modes and update 

the parameter after k training data entries have been presented, where k is between 

1 and P and it is sometimes referred to as the "epoch size". 
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3.1.2 Backpropagation multilayer perceptrons 

Artificial neural networks, or simply "neural networks" (NNs), have been studied 

for more than three decades since Rosenblatt first applied single-layer 

"perceptrons" to pattern classification learning (Rosenblatt, 1962). However, 

because Minsky and Papert pointed out that single-layer systems were limited and 

expressed pessimism over multilayer systems, interest in NNs dwindled in the 

1970s (Minsky & Papert, 1969). The recent resurgence of interest in the field of 

NNs has been inspired by new developments in NN learning algorithms (Fahlman 

& Lebiere, 1990), analog VLSI circuits, and parallel processing techniques 

(Lippmann, 1987). 

Quite a few NN models have been proposed and investigated in recent 

years. These NN models can be classified according to various criteria, such as 

their learning methods (supervised versus unsupervised), architectures 

(feedforward versus recurrent), output types (binary versus continuous), and so on. 

In this section, we confine our scope to modelling problems with desired input- 

output data sets, so the resulting networks must have adjustable parameters that 

are updated by a supervised learning rule. Such networks are often referred to as 

"supervised learning" or "mapping networks", since we are interested in shaping 

the input-output mappings of the network according to a given training data set. 

A backpropagation "multilayer perceptron" (MLP) is an adaptive network 

whose nodes (or neurons) perform the same function on incoming signals; this 

node function is usually a composite of the weighted sum and a differentiable 

non-linear activation function, also known as the "transfer function". Figure 3.3 

depicts three of the most commonly used activation functions in backpropagation 

MLPs: 

Logistic function: f(x) = 1 
1 + e-X 

Hyperbolic tangent function: f(x) = tan h (~12)  = &-x- 
1 + e-x 

Identity function: f(x) = x 

Both the hyperbolic tangent and logistic functions approximate the signum 

and step function, respectively, and provide smooth, nonzero derivatives with 
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respect to input signals. Sometimes these two activation functions are referred to 

as "squashing functions" since the inputs to these functions are squashed to the 

range [0,1] or [-1 ,I]. They are also called "sigmoidal functions" because their s- 

shaped curves exhibit smoothness and asymptotic properties. 

Backpropagation MLPs are by far the most commonly used NN structures 

for applications in a wide range of areas, such as pattern recognition, signal 

processing, data compression and automatic control. Some of the well-known 

instances of applications include NETtalk (Sejnowski & Rosenberg, 1987), which 

trained an MLP to pronounce English text, Carnegie Mellon University's 

ALVINN (Pomerleau, 1991), which used an MLP for steering an autonomous 

vehicle; and optical character recognition (Sakinger, Boser, Bromley, Lecun & 

Jackel, 1992). In the following lines, we derive the backpropagation learning rule 

for MLPs using the logistic function. 

Logistlc Funct~on Hyperbolic Tangent Function ldentlty Function 
2 - 2 10 - -  

-- / 

Figure 3.3 Activation functions for backpropagation MLPs: (a) logistic function; 

(b) hyperbolic function; (c) identity function. 

The "net input" K of a node is defined as the weighted sum of the incoming 

signals plus a bias term. For instance, the net input and output of node j in Figure 

3.4 are 
- x. = xi w.. Xi + w. 

J 1J J '  
x. = f(T. ) = 

J J 1 
1 + exp (- Zj ) , 
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where xi is the output of node i located in any one of the previous layers, wij is the 

weight associated with the link connecting nodes i and j, and wj is the bias of node 

j. Since the weights wij are actually internal parameters associated with each node 

j, changing the weights of a node will alter the behavior of the node and in turn 

alter the behavior of the whole backpropagation MLP. 

x 1 

x2 ~ F C I  w2j xj 

x3 W3j Node j 

Figure 3.4 Node j of a backpropagation MLP. 

Figure 3.5 shows a three-layer backpropagation MLP with three inputs to 

the input layer, three neurons in the hidden layer, and two output neurons in the 

output layer. For simplicity, this MLP will be referred to as a 3-3-2 network, 

corresponding to the number of nodes in each layer. 

fl fl fl 
Layer 0 Layer 1 Layer 2 

(Input Layer) (Hidden Layer) (Output Layer) 

Figure 3.5 A 3-3-2 backpropagation MLP. 
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The "backward error propagation", also known as the "backpropagation" 

(BP) or the "generalized data rule" (GDR), is explained next. First, a squared error 

measure for the pth input-output pair is defined as 

Ep = (dk - xkl2 (3.13) 

where dk is the desired output for node k, and xk is the actual output for node k 

when the input part of the pth data pair presented. To find the gradient vector, an 

error term &i is defined as 
- 
&i = P I P -  (3.14) 

d xi 

By the chain rule, the recursive formula for &i can be written as 

-2(di - xi) a i -  = -2(di - xi) xi (1- xi) if node i is a output 
d Zi node 

(3.15) 
- 

Cj,iq d+Xp- i3T3~- = xi (1- xi) Cj,i<j cj wij otherwise 
a zj a xi 

where wij is the connection weight from node i to j; and wij is zero if there is no 

direct connection. Then the weight update wki for on-line (pattern-by-pattern) 

learning is 
- 

A wki = - q Pip- = - q d+lp-  &q- = - q &i xk (3.16) 

Wki x i  d wki 

where q is a learning rate that affects the convergence speed and stability of the 

weights during learning. 

For off-line (batch) learning, the connection weight wki is updated only 

after presentation of the entire data set, or only after an "epoch": 

A w k i = - q d + E = - q C  P I p -  (3.17) 
d wki P dwki 

or, in vector form, 

A w = - q P E = - q V , E  (3.18) 
a w  
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where E = Cp Ep. This corresponds to a way of using the true gradient direction 

based on the entire data set. 

The approximation power of backpropagation MLPs has been explored by 

some researchers. Yet there is very little theoretical guidance for determining 

network size in terms of, say, the number of hidden nodes and hidden layers it 

should contain. Cybenko (1989) showed that a backpropagation MLP, with one 

hidden layer and any fixed continuous sigmoidal non-linear function, can 

approximate any continuous function arbitrarily well on a compact set. When used 

as a binary-valued neural network with the step activation function, a 

backpropagation MLP with two hidden layers can form arbitrary complex 

decision regions to separate different classes, as Lippmann (1987) pointed out. For 

function approximation as well as data classification, two hidden layers may be 

required to learn a piecewise-continuous function (Masters, 1993). 

3.2 Adaptive Neuro-Fuzzy Inference Systems 

In this section, we describe a class of adaptive networks that are functionally 

equivalent to fuzzy inference systems (Kosko, 1992). The architecture is referred 

to as ANFIS, which stands for "adaptive network-based fuzzy inference system". 

We describe how to decompose the parameter set to facilitate the hybrid learning 

rule for ANFIS architectures representing both the Sugeno and Tsukamoto fuzzy 

models. 

3.2.1 ANFIS architecture 

A fuzzy inference system consists of three conceptual components: a fuzzy rule 

base, which contains a set of fuzzy if-then rules; a database, which defines the 

membership functions used in the fuzzy rules; and a reasoning mechanism, which 

performs the inference procedure upon the rules to derive a reasonable output or 

conclusion (Kandel, 1992). For simplicity, we assume that the fuzzy inference 

system under consideration has two inputs x and y and one output z. For a first- 
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order Sugeno fuzzy model (Sugeno & Kang, 1988), a common rule set with two 

fuzzy if-then rules is the following: 

Rule 1: If x is Al and y is B1, then fl = plx + qly + rl , 
Rule 2: If x is A2 and y is B2, then f2 = p2x + qzy + 1-2 , 

Figure 3.6 (a) illustrates the reasoning mechanism for this Sugeno model; the 

corresponding equivalent ANFIS architecture is as shown in Figure 3.6 (b), where 

nodes of the same layer have similar functions, as described next. (Here we denote 

the output of the ith node in layer 1 as 01 i). 

Layer 1: Every node i in this layer is an adaptive node with a node fiinction 

Ol,i = p ~ i  (x), for i = 1 , 2  , 

01,~ = p ~ i - 2  (y), for i = 3 , 4  , (3.19) 

where x (or y) is the input to node i and Ai (or Bi-2) is a linguistic label (such as 

"small" or "large") associated with this node. In other words, Oli is the 

membership grade of a fuzzy set A and it specifies the degree to which the given 

input x (or y) satisfies the quantifier A. Here the membership function for A can 

be any appropriate parameterized membership function, such as the generalized 

bell function: 

where {ai , bi , ci) is the parameter set. As the values of these parameters change, 

the bell-shaped function varies accordingly, thus exhibiting various forms of 

membership functions for a fuzzy set A. Parameters in this layer are referred to as 

"premise parameters" 

Layer 2: Every node in this layer is a fixed node labeled II, whose output is the 

product of all incoming signals: 

O2,i = wi = p ~ i  (x) p ~ i  (Y), i = 1, 2 . (3.21) 

Each node output represents the firing strength of a fuzzy rule. 

Layer 3: Every node in this layer is a fixed node labeled N. The ith node 

calculates the ratio of the ith rule's firing strength to the sum of all rules' firing 

strengths: 

03,i=w',= wi / (wl  + w2) , i = 1,2. (3.22) 

For convenience, outputs of this layer are called "normalized firing strengths". 
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 + 
Al 

X 

A2 

B1 
Y 

B2 

(b) 

Figure 3.6 (a) A two-input Sugeno fuzzy model with 2 rules; (b) equivalent 

ANFIS architecture (adaptive nodes shown with a square and fixed 

nodes with a circle). 
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Layer 4: Every node i in this layer is an adaptive node with a node function 

O4,i = wi fi = Wi ( pix + qiy + ri ) , (3.23) 

where Ei is a normalized firing strength from layer 3 and {pi , qi , ri } is the 

parameter set of this node. Parameters in this layer are referred to as "consequent 

parameters". 

Layer 5: The single node in this layer is a fixed node labeled C, which computes 

the overall output as the summation of all incoming signals: 

overall output = 05,i =. C SiJi fi = Xi wi fi- (3.24) 
1 Ci Wi 

Thus we have constructed an adaptive network that is functionally 

equivalent to a Sugeno fuzzy model. We can note that the structure of this 

adaptive network is not unique; we can combine layers 3 and 4 to obtain an 

equivalent network with only four layers. In the extreme case, we can even shrink 

the whole network into a single adaptive node with the same parameter set. 

Obviously, the assignment of node functions and the network configuration are 

arbitrary, as long as each node and each layer perform meaningful and modular 

functionalities. 

The extension from Sugeno ANFIS to Tsukamoto ANFIS is 

straightforward, as shown in Figure 3.7, where the output of each rule ( fi, i = 1, 2) 

is induced jointly by a consequent membership function and a firing strength. 

3.2.2 Learning algorithm 

From the ANFIS architecture shown in Figure 3.6 (b), we observe that when the 

values of the premise parameters are fixed, the overall output can be expressed as 

a linear combination of the consequent parameters. Mathematically, the output f i n  

Figure 3.6 (b) can be written as 

f =  W I  f i +  W 2 f 2  (3.25) 
Wl+W2 Wl+W2 

= G I  (P]X+qlY+rl  ) + = 2 ( ~ 2 ~ + 9 2 Y  + '2) 
= (Elx) p1 + (Fly) ql + (GI) rl + (E2x) P2 + 6%~) 92 + @2) '2 
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Figure 3.7 (a) A two-input Tsukamoto fuzzy model with two rules; 

(b) equivalent ANFIS architecture. 

which is linear in the consequent parameters pl, q l ,  rl ,  p2, q2, and r2. From this 

observation, we can use a hybrid learning algorithm for parameter estimation in 

this kind of models (Jang, 1993). More specifically, in the forward pass of the 
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hybrid learning algorithm, node outputs go forward until layer 4 and the 

consequent parameters are identified by the least-squares method. In the backward 

pass, the error signals propagate backward and the premise parameters are updated 

by gradient descent. 

It has been shown (Jang, 1993) that the consequent parameters identified 

in this manner are optimal under the condition that the premise parameters are 

fixed. Accordingly, the hybrid approach converges much faster since it reduces 

the search space dimensions of the original pure backpropagation method. For 

Tsukamoto ANFIS, this can be achieved if the membership function on the 

consequent part of each rule is replaced by a piecewise linear approximation with 

two consequent parameters. 

3.3 Neuro-Fuzzy Control 

The original purpose of fuzzy logic control, as proposed in Mamdani's paper in 

1975, was to mimic the behavior of a human operator able to control a complex 

plant satisfactorily. The complex plant in question could be a chemical reaction 

process, a subway train, or a traffic signal control system. After more than 20 

years, the ultimate goal of fuzzy controllers remains the sarne-that is, to automate 

an entire control process by replacing a human operator with a fuzzy controller 

made up of computer software/hardware. 

To construct a fuzzy controller, we need to perform "knowledge 

acquisition", which takes a human operator's knowledge about how to control a 

system and generates a set of fuzzy if-then rules as the backbone for a fuzzy 

controller that behaves like the original human operator. Usually we can obtain 

two types of information from a human operator: "linguistic information" and 

"numerical information". 

Linguistic information: An experienced human operator can usually summarize 

his or her reasoning process in arriving at final control actions or decisions as a set 

of fuzzy if-then rules with imprecise but roughly correct membership functions; 
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this corresponds to the linguistic information supplied by human experts, which is 

obtained via a lengthy interview process plus a certain amount of trial and error. 

Numerical information: When a human operator is working, it is possible to 

record the sensor data observed by the human and the human's corresponding 

actions as a set of desired input-output data pairs. This data set can be used as 

training data in constructing a fuzzy controller. 

Prior to the emergence of neuro-fuzzy approaches, most design methods 

used only linguistic information to build fuzzy controllers; this approach is not 

easily formalized and is more of an art than an engineering practice. Following 

this approach usually involves manual trial-and-error processes to fine-tune the 

membership functions. Successful fuzzy control applications based on linguistic 

information plus trial-and-error tuning include steam engine and boiler control 

(Mamdani & Assilian, 1975), Sendai subway systems (Yasunobu & Miyamoto, 

1985), nuclear reaction control (Bernard, 1988), automobile transmission control 

(Kasai & Morimoto, 1988), aircraft control (Chiu, Chand, Moore & Chaudhary, 

199 I), and many others. 

Now, with learning algorithms, we can take further advantage of the 

numerical information (input-output data pairs) and refine the membership 

functions in a systematic way. In other words, we can use linguistic information to 

identify the structure of a fuzzy controller, and then use numerical information to 

identify the parameters such that the fuzzy controller can reproduce the desired 

action more accurately. 

3.3.1 Inverse learning 

The development of "inverse learning" (Widrow & Steams, 1985) for designing 

neuro-fuzzy controllers involves two phases. In the learning phase, an on-line or 

off-line technique is used to model the inverse dynamics of the plant. The 

obtained neuro-fuzzy model, which represents the inverse dynamics of the plant, 

is then used to generate control actions in the application phase. These two 
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phases, can proceed simultaneously, hence this design method fits in perfectly 

with the classical adaptive control scheme. 

By assuming that the order of the plant (that is, the number of state 

variables) is known and all state variables are measurable, we have 

x(k+l) = f(x(k), u(k)) (3.26) 

where x(k+l) is the state at time k+l, x(k) is the state at time k, and u(k) is the 

control signal at time k (assuming for simplicity that u(k) is a scalar). Similarly, 

the state at time k+2 is expressed as 

x(k+2) = f(x(k+l ), u(k+l)) = f(f(x(k), u(k)), u(k+l)) (3.27) 

In general, we have 

x(k+n) = F(x(k), U) (3.28) 

where n is the order of the plant, F is a multiple composite function off ,  and U is 

the control actions from k to k+n-1, which is equal to 

[u(k), u(k+l), ..., u(k+n- 1)]T 

The preceding equation points out the fact that given the control input u from time 

k to k+n-1, the state of the plant will move from x(k) to x(k+n) in exactly n time 

steps. Furthermore, we assume that the inverse dynamics of the plant do exist, that 

is, U can be expressed as an explicit function of x(k) and x(k+n): 

U = G(x(k), x(k+n)) (3.29) 

This equation essentially says that there exists a unique input sequence U, 

specified by mapping G, that can drive the plant from state x(k) to x(k+n) in n 

time steps. The problem now becomes how to find the inverse mapping G. 

Although the inverse mapping G in Equation (3.29) exists by assumption, 

it does not always have an analytically closed form. Therefore, instead of looking 

for methods of solving Equation (3.29) explicitly, we can use an adaptive network 

or ANFIS with 2n inputs and n outputs to approximate the inverse mapping G 

according to the generic training data pairs 

[x(k)T , x(k+n)T ; UT ] (3.30) 

Figure 3.8 illustrates the situation in which n is equal to 1. Figure 3.8 (a) 

shows a plant block in which the plant output x(k+l) is a function of a previous 

state x(k) and input u(k); we use z-1 block to represent the unit-time delay 

operator. Figure 3.8 (b) is the block diagram during the training phase; Figure 3.8 

(c) is the block diagram during the application phase. 
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Assume that the adaptive network truly imitates the input-output mapping 

of the inverse dynamics G. Then, given the current state x(k) and the desired 
A 

hture state xd(k+n), the adaptive network will generate an estimated U: 

fr = e(X(k), xd(kfn)) (3.31) 

(a) 
x(k+ 1 ) 

Plant 

uk"L~=!~b iden ' er 

i ' 
@I Plant 

x(k+l) 
(c) 

I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  I 
I 

Figure 3.8 Block diagram for the inverse learning method: (a) plant block; 

I 
I 
I , 

(b) training phase; (c) application phase 

After n steps, this control sequence can bring the state x(k) to the desired 
A 

state xd(k+n), assuming that the adaptive network function G is exactly the same 

z- I 

as the inverse mapping G. This application phase is shown in the block diagram 

of Figure 3.8 (b). If the future desired state xd(k+n) is not available in advance, we 

can use the current desired state xd(k) in Figure 3.8 (b). This implies that the 

current desired state will appear after n time steps and the whole system behaves 

, 
i Plant 
I 

I x(k) 

like a pure n-step time delay system. 

, I 
u(k) I I 

I 

I x(k+l) = f(u(k), x(k)) 
I I 
I I .---------------------------------- 
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A 

When G is not close to G, the control sequence U cannot bring the state to 

xd(k+n) in exactly the next n time step. As more data pairs are used to refine the 
/' 

parameters in the adaptive network, G will become closer to G and the control 

will be more and more accurate as the training process goes on. 

For off-line applications, we have to collect a set of training data pairs and 

then train the adaptive network in the batch mode. For on-line applications to deal 

with time-varying systems, the control actions in Equation (3.31) are generated 

every n time steps while on-line learning occurs at every time step. Alternatively, 

we can generate the control sequence at every time step and apply only the first 

component to the plant. Figure 3.9 is a block diagram for on-line learning when n 

is equal to 1. The dashed line in the figure indicates that the two ANFIS blocks are 

exact duplicates of each other. (For simplicity, we have removed the unit-time 

delay operator from this figure). 

x(k) -b 
- 

ANFIS Plant b 
~d(k+l)  -b 
'7 I + 

Duplicate 

Figure 3.9 Block diagram for on-line inverse learning 

3.3.2 Specialized learning 

A major problem with inverse learning is that an inverse model does not always 

exist for a given plant. Moreover, inverse learning is an indirect approach that 

tries to minimize the network output error instead of the overall system error 
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(defined as the difference between desired and actual trajectories). "Specialized 

learning" (Psaltis, Sideris & Yarnamura, 1988) is an alternative method that tries 

to minimize the system error directly by backpropagating error signals through the 

plant block. The price that we pay is that we need to know more about the plant 

under consideration. 

Figure 3.10 illustrates the most basic type of specialized learning, Figure 

3.10 (a) is the plant block (assuming its order is I), and Figure 3.10 (b) indicates 

the training of the ANFIS controller. The ANFIS parameters are updated to reduce 

the system error e,(k), which is defined as the difference between the system's 

output x(k) and the desired output xd(k). 

Desired Model 
I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  -1 x(k) - 1 . 

x(k+ 1) = eu(k), x(k)) 
I 

u(k) 
I 
I 
I I .---------------------------------- 

(a) , , xa(k+l) - >  , 

u(k) b 
Desired 
Model 

Figure 3.10 (a) Desired model block; (b) specialized learning 

with model referencing 

To be more specific, let the plant dynamics be specified by 

x(k+ 1) = f(x(k), v(k)) 

and the ANFIS output be denoted as 

Q(k) = F(x(k), u(k), 8) 
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where 8 is a parameter vector to be updated. If we set the ANFIS output as the 

plant's input, then v(k) = G(k) and we have a closed-loop system specified by 

x(k+l) = f(x(k), F(x(k), u(k), 8)) 
The objective of specialized learning is to minimize the difference 

between the closed-loop system and the desired model. Hence we can define an 

error measure: 

J(8) = ; Ilf(x(k), F(x(k), u(k), 8)) - xd(k+l)l12 (3.33) 

We can use backpropagation or steepest descent to update 9 to minimize the 

above error measure. To find the derivative of J(8) with respect to 9, we need to 

know the derivative o f f  with respect to its second argument. In other words, to 

backpropagate error signals through the plant block in Figure 3.10 (b), we need to 

know the "Jacobian matrix" of the plant, where the element at row i and column j 

is equal to the derivative of the plant's ith output with respect to its jth input. This 

usually implies that we need a model for the plant and the Jacobian matrix 

obtained from the model, which could be a neural network, an ANFIS, or another 

appropriate mathematical description of the plant. 

For a single-input plant, if the Jacobian matrix is not easily found directly, 

a crude estimate can be obtained by approximating it directly from the changes in 

the plant's input and output(s) during two consecutive time instants. Other 

methods that aim at using an approximate Jacobian matrix to achieve the same 

learning effects can be found in Chen and Pao (1989). 

It is not always convenient to specify the desired plant output xd(k) at 

every time instant k. As a standard approach in model reference adaptive Control, 

the desired behavior of the overall system can be implicitly specified by a model 

that is able to achieve the control goal satisfactorily. Let the desired model be 

specified by 

xd(k+l ) = Rx(k), u(k)) 

Then the error measure in Equation (3.33) becomes 

Again, we still need the Jacobian matrix of the plant to do backpropagation. 

Note that the ANFIS controller in Equation (3.32) represents the most 

general situation. More commonly, the ANFIS controller is a function of x(k) and 
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8 only and the input to the plant v(k) is expressed as the difference between the 

command signal u(k) and ANFIS output, as follows: 

$(k) = ~ ( k )  - F(x(~),  e) . 

3.4 Adaptive Model-Based Neuro-Control 

This section briefly reviews various approaches in current adaptive neuro-control 

design (Odmivar & Elliot, 1997). Although there are other ways to classify these 

approaches (e.g., Hunt, Sbarbaro, Zbikowski & Gawthrop, 1992) this section 

nevertheless adopts one similar to adaptive control theory: 1) indirect neuro- 

control and 2) direct neuro-control. 

In the indirect neuro-control scheme, a neural network does not send a 

control signal "directly" to the process. Instead, a neural network is often used as 

an indirect process characteristics indicator. This indicator can be a process model 

that mimics the process behavior or a controller auto-tuner that produces 

appropriate controller settings based upon the process behavior. In this category, 

the neuro-control approaches can be roughly distinguished as follows: 1) neural 

network model-based control, 2) neural network inverse model-based control, and 

3) neural network auto-tuner development. 

In the direct neuro-control scheme, a neural network is employed as a 

feedback controller, and it sends control signals "directly" to the process. 

Depending on the design concept, the direct neuro-control approaches can be 

categorized into: 1) controller modelling, 2) model-free neuro-control design, 3) 

model-based neuro-control design, and 4) robust model-based neuro-control 

design. 

Regardless of these distinctions, a unifying framework for neuro-control is 

to view neural network training as a non-linear optimization problem, 

NN: min J(w) 
W 

in which one tries to find an optimal representation of the neural network that 

minimizes an objective function J over the network weight space w. Here, NN 

indicates that the optimization problem formulation involves a neural network. 
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The role a neural network plays in the objective hnction is then a key to 

distinguishing the various neuro-control design approaches. 

3.4.1 Indirect Neuro-Control 

The most popular control system application of neural networks is to use a neural 

network as an input-output process model. This approach is a data-driven 

supervised learning approach, i.e., the neural network attempts to mimic an 

existing process from being exposed to the process data (see Figure 3.11). The 

most commonly adopted model structure for such a purpose is the non-linear auto- 

regressive and moving average with exogenous inputs (known as NARMAX) 

model or a simpler NARX (Su, McAvoy & Werbos, 1992). Alternatively, one can 

choose to identify a continuous-time model with a dynamic neural network. 

Regardless of the model structure and the control strategy, the neuro-control 

design in this case can be conceptually stated as follows: 

NN: min F ( yp - yn(w, ...) ) (3.36) 
W 

where yp stands for plant/process output, yn for neural network output, and w for 

neural network weights. Here F is a functional that measures the performance of 

the optimization process. It is usually an integral or sum of the prediction errors 

between yp and y,. For example, in this model development stage, process inputs 

and outputs (up, yp) are collected over a finite period of time and used for neural 

network training. 

Plant 

, ------  T_ - - - - - -  

u ' 

Figure 3.1 1 Neural Network as a black-box model of a process 
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At the implementation stage, nevertheless, the neural network model 

cannot be used alone. It must be incorporated with a model-based control scheme. 

In the chemical process industry, for example, a neural network is usually 

employed in a non-linear model predictive control (MPC) scheme (Su & McAvoy, 

1993). Figure 3.12 illustrates the block diagram of an MPC control system. In 

fact, the MPC control is also an optimization problem. 

Figure 3.12 Neural network model with non-linear model 

predictive control (MPC) 

The optimization problem here can be expressed as follows: 

min F' { y* - yn (u, ...) ) (3.37) 
U 

where y* designates the desired close-loop process output, u the process/model 

input or control signal, and y, the predicted process output (by the neural network 

model). Here F' stands for an objective function that evaluates the closed-loop 
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performance. For example, the optimization problem in the implementation stage 

is usually as follows: 

where y*(t) stands for desired set point trajectory and d(t) for estimated 

disturbance. This optimization is performed repeatedly at each time interval 

during the course of feedback control. Although the constrains are not particularly 

of interest in the discussion, one advantage of this indirect control design 

approach over the direct ones is that the constraints can be incorporated when 

solving the above optimization problem. 

In some cases, a certain degree of knowledge, about the process might be 

available, such as model structure or particular physical phenomena that are well 

understood. In this case, a full black-box model might not be most desirable. For 

example, if the structure of the process model is available, values for the 

associated parameters can be determined by a neural network. Examples of these 

parameters can be time constants, gains, and delays or physical parameters such as 

diffusion rates and heat transfer coefficients. When model structure is not known 

a priori, neural networks can be trained to select elements of a model structure 

from a predetermined set. Lastly, in other cases where model structure is partially 

known, neural networks can also be integrated with such a partial model so that 

the process can be better model (see Figure 3.1 3). 

For illustration purposes, the parametric or partial neural network 

modelling problem can be formulated as follows: 

NN: min F { yp - ym (0, ... ) } , 0 = N (w, ...) (3.39) 
W 

where y, is the predicted output from the model and 8 stands for the process 

parameters, model structural information and other elements required to complete 

the model. Notice the only difference between Equation (3.39) and Equation 

(3.36) is that ym replaces y,. From a model-based control standpoint, this 

approach is essentially identical to the full black-box neural network model except 

that the neural network does not directly mimic the process behavior. 
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Figure 3.13 A neural network can be a parameter estimator, model structure 

selector, or a partial element of a physical model 

A neural network can be trained to develop an inverse model of the plant. 

The network input is the process output, and the network output is the 

corresponding process input (see Figure 3.14). In general, the optimization 

problem can be formulated as 

NN: min F { u*p-l - u, (w, ... )) (3.40) 
W 

where u * ~ - ,  is the process inputs. Typically, the inverse model is a steady 

statelstatic model, which can be used for feedforward control. Given a desired 

process set point y*, the appropriate steady-state control signal u* for this set 

point can be immediately known: 

u* = K (y*, ... ) (3.41) 

Successful applications of inverse modelling are discussed in (Miller, 

Sutton & Werbos, 1995). Obviously, an inverse model exists only when the 

process behaves monotonically as a "forward" function at steady state. 
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Figure 3.14 A neural network inverse model 

As in the previous case where neural networks can be used to estimate 

parameters of a known model, they can also be used to estimate tuning parameters 

of a controller whose structure is known a priori. A controller's tuning parameter 

estimator is often referred to as an autotuner. The optimization problem in this 

case can be formulated as follows: 

NN: min F { q* - q, (w, ... )) (3.42) 
W 

where q* denotes the controller parameters as targets and rjn stands for the 

predicted values by the neural network. Network input can comprise sampled 

process data or features extracted from it. However, these parameters q cannot be 

uniquely determined from the process characteristics. They also depend on the 

desired closed-loop control system characteristics. Usually, the controller 

parameters are solutions to the following closed-loop control optimization: 

min F' ( y* - yplm (u, ... )) ; u = C(q, ... ) (3.43) 

where C is a controller with a known structure. Here, yplm denotes that either a 

process or a model can be employed in this closed-loop control in order to find the 

target controller C. 
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3.4.2 Direct Neuro-Control 

Among the four direct neuro-control schemes, the simplest for neuro-controller 

development is to use a neural network to model an existing controller (see Figure 

3.15). The input to the existing controller is the training input to the network and 

the controller output serves as the target. This neuro-control design can be 

formulated as follows: 

NN: min F {u*, - u, (w, ... )) (3.44) 
W 

where u*, is the output of an existing controller C*. Usually, the existing 

controller C* can be a human operator or it can be obtained via 

min F' (y* - yp/, (u, ... )) ; u = C( ... ) (3.45) 
C 

Like a process model, a controller is generally a dynamical system and 

often comprises integrators or differentiators. If a feedforward network is used to 

model the existing controller, dynamical information must be explicitly provided 

as input to the network. 

b 

Figure 3.15 The simplest approach to neuro-control is to use a 

neural network to model an existing controller 
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While the benefits of this approach may be apparent when the existing 

controller is a human, its utility may be limited. It is applicable only when an 

existing controller is available, which is the case in many applications. Staib & 

Staib (1992) discuss how it can be effective in a multistage training process. 

In the absence of an existing controller, some researchers have been 

inspired by the way a human operator learns to "control/operate" a process with 

little or no detailed knowledge of the process dynamics. Thus they have attempted 

to design controllers that by adaptation and learning can solve difficult control 

problems in the absence of process models and human design effort. In general, 

this model-free neuro-control can be stated as: 

NN: min F {y* - yp (u, ... )} , u = N (w, ... ) (3.46) 
W 

where yp is the output from the plant. The key feature of this direct adaptation 

control approach is that a process model is neither known in advance nor 

explicitly developed during control design. Figure 3.16 is a typical representation 

of this class of control design. 

Figure 3.16 The model-free control design concept 
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The first work in this area was the "adaptive critic" algorithm proposed by 

Barto et al. (1983). Such an algorithm can be seen as an approximate version of 

dynamic programming. In this work, they posed a well-known cart-pole balancing 

problem and demonstrated their design concept. In this class of control design, 

limitedpoor information is often adopted as an indication of performance criteria. 

For example, the objective is the cart-pole balancing problem is simply to 

maintain the pole in a near-upright balanced position for as long as possible. The 

instructional feedback is limited to a "failure" signal when the controller fails to 

hold the pole in an upright position. The cart-pole problem has become a popular 

test-bed for explorations of the model-free control design concept. 

Despite its historical importance and intuitive appeal, model-free adaptive 

neuro-control is not appropriate for most real-world applications. The plant is 

most likely out of control during the learning process, and few industrial processes 

can tolerate the large number of "failures" needed to adapt the controller. 

From a practical perspective, one would prefer to let failures take place in 

a simulated environment (with a model) rather than in a real plant even if the 

failures are not disastrous or do not cause substantial losses. As opposed to the 

previous case, this class of neuro-control design is referred to as "model-based 

neuro-control design". Similar to Equation (3.46), as a result, the problem 

formulation becomes 

NN: min F {y* - y, (u, ... )) , u = K (w, ... ) (3.47) 
W 

Here, yp in Equation (3.46) is replaced by y,-the model's output. In this case, 

knowledge about the processes of interest is required. As can be seen in Figure 

3.17, a model replaces the plantlprocess in the control system. 

If a process model is not available, one can first train a second neural 

network to model the plant dynamics. In the course of modelling the plant, the 

plant must be operated "normally" instead of being driven out of control. After the 

modelling stage, the model can then be used for control design. If a plant model is 

already available, a neural network controller can then be developed in a 

simulation in which failures cannot cause any loss but that of computer time. A 

neural network controller after extensive training in the simulation can then be 

installed in the actual control system. 
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In fact, these "model-based neuro-control design" approaches have not 

only proven effective in several studies (Troudet, 1991), but also have already 

produced notable economic benefits (Staib, 1993). Nevertheless, the quality of 

control achieved with this approach depends crucially on the quality of the process 

model. If a model is not accurate enough, the trained neuro-controller is unlikely 

to perform satisfactorily on the real process. Without an on-line adaptive 

component, this neuro-controller does not allow for plant drifts or other factors 

that could adversely affect the performance of the control system. 

Figure 3.17 A model replaces the plant/process in the control system 

during the control design phase 

The neuro-controller approaches discussed above still share a common 

shortcoming: A neural network must be trained for every new application. 

Network retraining is needed even with small changes in the control criterion, 

such as changes in the relative weighting of control energy and tracking response, 

or if the controller is to be applied to a different but similar processes. In order to 

avoid such drawbacks, the concept of "robustness" is naturally brought into the 
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design of a neuro-controller. In robust model-based neuro-control design, a family 

of process models is considered instead of just a nominal one (see Figure 3.18). 

Often such a family is specified by a range of noise models or range of the process 

parameters. Robust neuro-control design can be formulated as follows: 

NN: min F {y* - y,i (u, ... )) , u = t.C (w, ... ), 'd mi E M (3.48) 
W 

where mi stands for the ith member of the model family M. Ideally, the real 

process to be controlled should belong to this family as well so that the controller 

is robust not only for the model but also for the real process. 

Two aspects of robustness are commonly distinguished. Robust Stability 

refers to a control system that is stable (qualitatively) over the entire family of 

processes, whereas robust performance refers to (quantitative) performance 

criteria being satisfied over the family (Morari & Zafiriou, 1989). Not 

surprisingly, there is a tradeoff to achieve robustness. By optimizing a neural 

network controller based upon a fixed (and accurate) process model, high 

performance can be achieved as long as the process remains invariant, but at the 

likely cost of brittleness. A robust design procedure, on the other hand, is not 

likely to achieve the same level of nominal performance but will be less sensitive 

to process drifts, disturbances, and other sources of process-model mismatch. 

I 
Figure 3.18 Robust model-based neuro-control 
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3.4.3 Parameterized Neuro-Control 

All the above neuro-control approaches share a common shortcoming-the need for 

extensive application-specific development efforts. Each application requires the 

optimization of the neural network controller and may also require process model 

identification. The expense in time and computation has been a significant barrier 

to widespread implementation of neuro-control systems. 

In an attempt to avoid application-specific development, a new neuro- 

control design concept-parameterized neuro-control (PNC)-has evolved (Samad & 

Foslien, 1994). Figure 3.19 illustrates this PNC strategy. The PNC controller is 

equipped with parameters that specify process characteristics and those that 

provide performance criterion information. For illustration purposes, a PNC can 

be conceptually formulated as follows: 
n 

NN: min F(E) {y* - ymi (0, u, ... )) , u = N (w, 0, E, ... ) , V mi@) E M(0) 
W (3.49) 

where E designates the parameter set that defines the space of performance 
f i  

criteria, 8 stands for the process parameter set, 0 is the estimates for process 

parameters, and again M(0) is a family of parameterized models mi(€)) in order to 

account for errors in process parameters estimates 0. 

In fact, the two additional types of parameters ( E and 0 ) make a PNC 

generic. A PNC is generic in two respects: 1) the process model parameters 0 

facilitate its application to different processes and 2) the performance parameters E 

allow its performance characteristics to be adjustable, or "tunable". For example, 

if a PNC is designed for first-order plus delay processes, the process parameters 

(i.e., process gain, time constant, and dead time) will be adjustable parameters to 

this PNC. Once developed, this PNC requires no application-specific training or 

adaptation when applied to a first-order plus delay process. It only requires 

estimates of these process parameters. These estimates do not have to be accurate 

because the robustness against such inaccuracy is considered in the design phase. 
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Figure 3.19 Parameterized Neuro-Control 

3.5 Summary 

In this chapter, we have presented the main ideas underlying Neural Networks and 

the application of this powerful computational theory to general control problems. 

We have discussed in some detail the backpropagation learning algorithm for 

f e e d f o m d  networks, the integration of fuzzy logic techniques to neural 

networks to form powerful adaptive neuro-fuzzy inference systems and the basic 

concepts and current methods of neuro-fuzzy control. At the end, we also gave 

some remarks about adaptive neuro-control and model-based control of non-linear 

dynamical systems. In the following chapters, we will show how neural network 

techniques (in conjunction with other techniques) can be applied to solve real 

world complex problems of control. This chapter will serve as a basis for the new 

hybrid intelligent control methods that will be described in Chapter 7 of this book. 
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Chapter 4 

Genetic Algorithms and Fractal Theory for Modelling 
and Simulation 

This chapter introduces the basic concepts and notation of genetic algorithms and 

simulated annealing, which are two basic search methodologies that can be used 

for modelling and simulation of complex non-linear dynamical systems. Since 

both techniques can be considered as general purpose optimization 

methodologies, we can use them to find the mathematical model which minimizes 

the fitting errors for a specific problem. On the other hand, we can also use any of 

these techniques for simulation if we exploit their efficient search capabilities to 

find the appropriate parameter values for a specific mathematical model. We also 

present in this chapter the basic concepts and notation of Dynamical Systems and 

Fractal theory, which are two powerful mathematical theories that enable the 

understanding of complex nonilinear phenomena. Dynamical Systems theory 

gives us the general framework for treating non-linear systems and enables the 

identification of the different dynamical behaviors that can occur for a particular 

dynamic system. On the other hand, Fractal theory gives us powerful concepts and 

techniques that can be used to measure the complexity of geometrical objects. In 

particular, the concept of the fractal dimension can be used to measure the 
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geometrical complexity of a data set and this information could be used for 

modelling as will be illustrated in Chapter 5 of this book. 

Genetic algorithms and simulated annealing have been used extensively 

for both continuous and discrete optimization problems (Jang, Sun & Mizutani, 

1997). Common characteristics shared by these methods are described next. 

a Derivative freeness: These methods do not need functional derivative 

information to search for a set of parameters that minimize (or maximize) 

a given objective function. Instead they rely exclusively on repeated 

evaluations of the objective function, and the subsequent search direction 

after each evaluation follows certain heuristic guidelines. 

a Heuristic guidelines: The guidelines followed by these search procedures 

are usually based on simple intuitive concepts. Some of these concepts are 

motivated by so-called nature's wisdom, such as evolution and 

thermodynamics. 

Flexibility: Derivative freeness also relieves the requirement for 

differentiable objective functions, so we can use as complex an objective 

function as a specific application might need, without sacrificing too much 

in extra coding and computation time. In some cases, an objective function 

can even include the structure of a data-fitting model itself, which may be 

a fuzzy model. 

a Randomness: These methods are stochastic, which means that they use 

random number generators in determining subsequent search directions. 

This element of randomness usually gives rise to the optimistic view that 

these methods are "global optimizers" that will find a global optimum 

given enough computing time. In theory, their random nature does make 

the probability of finding an optimal solution nonzero over a fixed amount 

of computation time. In practice, however, it might take a considerable 

amount of computation time. 
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Analytic opacity: It is difficult to do analytic studies of these methods, in 

part because of their randomness and problem-specific nature. Therefore, 

most of our knowledge about them is based on empirical studies. 

Iterative nature: These techniques are iterative in nature and we need 

certain stopping criteria to determine when to terminate the optimization 

process. Let K denote an iteration count and fk denote the best objective 

function obtained at count k; common stopping criteria for a maximization 

problem include the following: 

1) Computation time: a designated amount of computation time, or 

number of function evaluations and/or iteration counts is reached. 

2) Optimization goal: fk is less than a certain preset goal value. 

3) Minimal improvement: fk - fk-1 is less than a preset value. 
4) Minimal relative improvement: (fk - fk-1)/ fk-l is less than a preset 

value. 

Both genetic algorithms (GAS) and simulated annealing (SA) have been 

receiving increasing amounts of attention due to their versatile optimization 

capabilities for both continuous and discrete optimization problems. Moreover, 

both of them are motivated by so-called "nature's wisdom": GAS are based on the 

concepts of natural selection and evolution; while SA originated in annealing 

processes found in thermodynamics and metallurgy. 

4.1 Genetic Algorithms 

Genetic algorithms (GAS) are derivative-free optimization methods based on the 

concepts of natural selection and evolutionary processes (Goldberg, 1989). They 

were first proposed and investigated by John Holland at the University of 

Michigan (Holland, 1975). As a general-purpose optimization tool, GAS are 

moving out of academia and finding significant applications in many areas. Their 

popularity can be attributed to their freedom from dependence on functional 

derivatives and their incorporation of the following characteristics: 

© 2002 Taylor & Francis



GENETIC ALGORITHMS AND FRACTAL THEORY . . . 

GAS are parallel-search procedures that can be implemented on parallel 

processing machines for massively speeding up their operations. 

GAS are applicable to both continuous and discrete (combinatorial) 

optimization problems. 

GAS are stochastic and less likely to get trapped in local minima, which 

inevitably are present in any optimization application. 

GAS' flexibility facilitates both structure and parameter identification in 

complex models such as h z y  inference systems or neural networks. 

GAS encode each point in a parameter (or solution) space into a binary bit 

string called a "chromosome", and each point is associated with a "fitness value" 

that, for maximization, is usually equal to the objective function evaluated at the 

point. Instead of a single point, GAS usually keep a set of points as a "population", 

which is then evolved repeatedly toward a better overall fitness value. In each 

generation, the GA constructs a new population using "genetic operators" such as 

crossover and mutation; members with higher fitness values are more likely to 

survive and to participate in mating (crossover) operations. After a number of 

generations, the population contains members with better fitness values; this is 

analogous to Darwinian models of evolution by random mutation and natural 

selection. GAS and their variants are sometimes referred to as methods of 

"population-based optimization" that improve performance by upgrading entire 

populations rather than individual members. Major components of GAS include 

encoding schemes, fitness evaluations, parent selection, crossover operators, and 

mutation operators; these are explained next. 

Encodinn schemes: These transform points in parameter space into bit string 

representations. For instance, a point (1 1, 4, 8) in a three-dimensional parameter 

space can be represented as a concatenated binary string: 

1011 0100 1000 
-TJ+-TJ 

11 4 8 
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in which each coordinate value is encoded as a "gene" composed of four binary 

bits using binary coding. other encoding schemes, such as gray coding, can also be 

used and, when necessary, arrangements can be made for encoding negative, 

floating-point, or discrete-valued numbers. Encoding schemes provide a way of 

translating problem-specific knowledge directly into the GA framework, and thus 

play a key role in determining GAS' performance. Moreover, genetic operators, 

such as crossover and mutation, can and should be designed along with the 

encoding scheme used for a specific application. 

Fitness evaluation: The first step after creating a generation is to calculate the 

fitness value of each member in the population. For a maximization problem, the 

fitness value fi of the ith member is usually the objective hnction evaluated at this 

member (or point). We usually need fitness values that are positive, so some kind 

of monotonical scaling and/or translation may by necessary if the objective 

function is not strictly positive. Another approach is to use the rankings of 

members in a population as their fitness values. The advantage of this is that the 

objective function does not need to be accurate, as long as it can provide the 

correct ranking information. 

Selection: After evaluation, we have to create a new population from the current 

generation. The selection operation determines which parents participate in 

producing offspring for the next generation, and it is analogous to "survival of the 

fittest" in natural selection. Usually members are selected for mating with a 

selection probability proportional to their fitness values. The most common way 

to implement this is to set the selection probability equal to: 

where n is the population size. The effect of this selection method is to allow 

members with above-average fitness values to reproduce and replace members 

with below-average fitness values. 
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Crossover: To exploit the potential of the current population, we use "crossover" 

operators to generate new chromosomes that we hope will retain good features 

from the previous generation. Crossover is usually applied to selected pairs of 

parents with a probability equal to a given "crossover rate". "One-point crossover" 

is the most basic crossover operator, where a crossover point on the genetic code 

is selected at random and two parent chromosomes are interchanged at this point. 

In "two-point crossover", two crossover points are selected and the part of the 

chromosome string between these two points is then swapped to generate two 

children. We can define n-point crossover similarly. In general, (n-1)-point 

crossover is a special case of n-point crossover. Examples of one-and two-point 

crossover are shown in Figure 4.1. 

crossover point 

Figure 4.1 Crossover operators: (a) one-point crossover; (b) two-point crossover. 

Mutation: Crossover exploits current gene potentials, but if the population does 

not contain all the encoded information needed to solve a particular problem, no 

amount of gene mixing can produce a satisfactory solution. For this reason, a 

"mutation" operator capable of spontaneously generating new chromosomes is 

included. The most common way of implementing mutation is to flip a bit with a 

probability equal to a very low given "mutation rate". A mutation operator can 

prevent any single bit from converging to a value throughout the entire population 
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and, more important, it can prevent the population from converging and stagnating 

at any local optima. The mutation rate is usually kept low so good chromosomes 

obtained from crossover are not lost. If the mutation rate is high (above 0.1), GA 

performance will approach that of a primitive random search. Figure 4.2 provides 

an example of mutation. 

1001 11 10 = 

Figure 4.2 Mutation operator. 

Mutated bit 
.L 

1001 1010 

In the natural evolutionary process, selection, crossover, and mutation all 

occur in the single act of generating offspring. Here we distinguish them clearly to 

facilitate implementation of and experimentation with GAS. 

Based on the aforementioned concepts, a simple genetic algorithm for 

maximization problems is described next. 

Step 1 : Initialize a population with randomly generated individuals and evaluate 

the fitness value of each individual. 

Step 2: Perform the following operations: 

(a) Select two members from the population with probabilities 

proportional to their fitness values. 

(b) Apply crossover with a probability equal to the crossover rate. 

(c) Apply mutation with a probability equal to the mutation rate. 

(d) Repeat (a) to (d) until enough members are generated to form the next 

generation. 

Step 3: Repeat steps 2 and 3 until a stopping criterion is met. 

Figure 4.3 is a schematic diagram illustrating how to produce the next 

generation from the current one. 
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Current Generation Next Generation 

Figure 4.3 Producing the next generation in GAS. 

4.2 Simulated Annealing 

"Simulated Annealing" (SA) is another derivative-free optimization method that 

has recently drawn much attention for being as suitable for continuous as for 

discrete (combinational) optimization problems (Otten & Ginneken, 1989). When 

SA was first proposed (Kirkpatrick, Gelatt & Vecchi, 1983) it was mostly known 

for its effectiveness in finding near optimal solutions for large-scale combinatorial 

optimization problems, such as traveling salesperson problems and placement 

problems. Recent applications of SA and its variants (Ingber & Rosen, 1992) also 

demonstrate that this class of optimization approaches can be considered 

competitive with other approaches when there are continuous optimization 

problems to be solved. 

Simulated annealing was derived from physical characteristics of spin 

glasses (Kirkpatrick, Gelatt & Vecchi, 1983). The principle behind simulated 

annealing is analogous to what happens when metals are cooled at a controlled 

rate. The slowly falling temperature allows the atoms in the molten metal to line 

themselves up and form a regular crystalline structure that has high density and 
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low energy. But if the temperature goes down too quickly, the atoms do not have 

time to orient themselves into a regular structure and the result is a more 

amorphous material with higher energy. 

In simulated annealing, the value of an objective function that we want to 

minimize is analogous to the energy in a thermodynamic system. At high 

temperatures, SA allows function evaluations at faraway points and it is likely to 

accept a new point with higher energy. This corresponds to the situation in which 

high-mobility atoms are trying to orient themselves with other nonlocal atoms and 

the energy state can occasionally go up. At low temperatures, SA evaluates the 

objective function only at local points and the likelihood of it accepting a new 

point with higher energy is much lower. This is analogous to the situation in 

which the low-mobility atoms can only orient themselves with local atoms and the 

energy state is not likely to go up again. 

Obviously, the most important part of SA is the so-called "annealing 

schedule" or "cooling schedule", which specifies how rapidly the temperature is 

lowered from high to low values. This is usually application specific and requires 

some experimentation by trial-and-error. 

Before giving a detailed description of SA, first we shall explain the 

fundamental terminology of SA. 

Obiective function: An objective function f(.) maps an input vector x into a scalar 

E: E = f(x), 

where each x is viewed as a point in an input space. The task of SA is to sample 

the input space effectively to find an x that minimizes E. 

Generating function: A generating function g(. , .) specifies the probability density 

function of the difference between the current point and the next point to be 

visited. Specifically, Ax ( = x,,, - x ) is a random variable with probability 

density function g(Ax,T), where T is the temperature. For common SA ( especially 

in combinatorial optimization applications), g(. , .) is usually a function 

independent of the temperature T. 
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Acceptance function: After a new point x,,, has been evaluated, SA decides 

whether to accept or reject it based on the value of an acceptance function h(. , .). 

The most frequently used acceptance function is the "Boltzmann probability 

distribution" : 

where c is a system-dependent constant, T is the temperature, and AE is the energy 

difference between x,,, and x: 

AE = f( x,,, ) - f(x) 

The common practice is to accept x,,, with probability h( AE , T). 

Annealing schedule: An annealing schedule regulates how rapidly the temperature 

T goes from high to low values, as a function of time or iteration counts. The 

exact interpretation of "high" and "low" and the specification of a good annealing 

schedule require certain problem-specific physical insights and/or trial-and-error. 

The easiest way of setting an annealing schedule is to decrease the temperature T 

by a certain percentage at each iteration. 

The basic algorithm of simulated annealing is the following: 

Step 1: Choose a start point x and set a high starting temperature T. Set the 

iteration count k to 1. 

Step 2: Evaluate the objective function E = f(x) . 
Step 3: Select Ax with probability determined by the generating function g(Ax, T). 

Set the new point x,,, equal to x + Ax . 
Step 4: Calculate the new value of the objective function: En,, = f(x,,,) . 
Step 5: Set x to x,,, and E to En,, with probability determined by the acceptance 

function h( AE , T ), where AE = En,,- E . 
Step 6: Reduce the temperature T according to the annealing schedule (usually by 

simply setting T equal to qT, where is a constant between 0 and 1). 

Step 7: Increment iteration count k. If k reaches the maximum iteration count, stop 

the iterating. Otherwise, go back to step 3. 
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In conventional SA, also known as "Boltzmann machines", the generating 

function is a Gaussian probability density function: 

g( Ax , T ) = (2nT)-nI2 exp[-11 Ax 112 / (2T)l (4.2) 
where Ax ( = x,,, - x) is the deviation of the new point from the current one, T is 

the temperature, and n is the dimension of the space under exploration. It has been 

proven (Geman & Geman, 1984) that a Boltzman machine using the 

aforementioned generating function g( . , . ) can find a global optimum of f(x) if 

the temperature T is reduced no faster than To / Ink . 
Variants of Boltzmann machines include the "Cauchy machine" or "fast 

simulated annealing" (Szu & Hartley, 1987), where the generating function is the 

Cauchy distribution: 

The fatter tail of the Cauchy distribution allows it to explore farther from the 

current point during the search process. 

Another variant of the original SA, the so-called "very fast" simulated 

annealing (Ingber & Rosen, 1992), was designed for optimization problems in a 

constrained search space. Very fast simulated annealing has been reported to be 

faster than genetic algorithms on several test problems by the same authors. 

4.3 Basic Concepts of Fractal Theory 

In this section we present a brief overview of the field of Non-Linear Dynamical 

Systems and Fractal Theory. Recently research has shown that many simple non- 

linear deterministic systems can behave in an apparently unpredictable and 

"chaotic" manner (Grebogi, Ott, & Yorke, 1987). The existence of complicated 

dynamics has been discussed in the mathematical literature for many decades with 

important contributions by PoincarC, Birkhoft, Smale and Kolmogorov and his 

students, among others. Nevertheless, it is only recently that the wide-ranging 

impact of "chaos" has been recognized. Consequently, the field is now undergoing 

explosive growth, and many applications have been made across a broad spectrum 

of scientific disciplines-robotics, engineering, physics, chemistry, fluid mechanics 
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and economics, to name several. We start with some basic definitions of concepts 

used in this book. 

Dynamic System: This is a set of mathematical equations that allows one, in 

principle, to predict the future behavior of the system given the past. One example 

is a system of first-order ordinary differential equations in time: 

= G(x,t) (4.4) 

where x(t) is a D-dimensional vector and G is a D-dimensional vector function of 

x and t. Another example is a map. 

m: A map is an equation of the following form: 

Xt+l  = F(xt) (4.5) 
where the "time" t is discrete and integer valued. Thus, given x,, the maps gives 

XI .  Given X I ,  the map gives x2, and so on. 

Dissipative system: In Hamiltonian (conservative) systems such as the ones 

arising in Newtonian mechanics of particles (without friction), phase space 

volumes are preserved by time evolution (the phase space is the space of variables 

that specify the state of the system). Consider, for example, a two-dimensional 

phase space (q, p), where q denotes a position variable and p a momentum 

variable. Hamilton's equations of motion take the set of initial conditions at time t 

=to and evolve them in time to the set at time t = tl .  Although the shapes of the 

sets are different, their areas are the same. By a dissipative system we mean one 

that does not have this property. Areas should typically decrease (dissipate) in 

time so that the area of the final set would be less than the area of the initial set. 

As a consequence of this, dissipative systems typically are characterized by the 

presence of attractors. 

Attractor: If one considers a system and its phase space, then the initial conditions 

may be attracted to some subset of the phase space (the attractor) as time t + a. 
For example, for a damped harmonic oscillator the attractor is the point at rest. 
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For a periodically driven oscillator in its limit cycle the limit set is a closed curve 

in the phase space. 

Strange attractor: In the above two examples, the attractors were a point, which is 

a set of dimension zero, and closed curve, which is a set of dimension one. For 

many other attractors the attracting set can be much more irregular (some would 

say pathological) and, in fact, can have a dimension that is not an integer. Such 

sets have been called "fractal" and, when they are attractors, they are called 

strange attractors. The existence of a strange attractor in a physically interesting 

model was first demonstrated by Lorenz (see Lorenz, 1963). 

Chaotic attractor: By this term we mean that if we take two typical points on the 

attractor that are separated from each other by a small distance A(0) at t = 0, then 

for increasing t they move apart exponentially fast. That is, in some average sense: 

A(t) - A(0) exp(h t) (4.6) 
with 3L > 0 (where 3L is called the Lyapunov exponent). Thus a small uncertainty in 

the initial state of the system rapidly leads to inability to forecast its future. It is 

typically the case that strange attractors are also chaotic. 

One of the most prominent, chaotic, continuous-time dynamical systems is 

the "Lorenz attractor", named after the meteorologist E.N. Lorenz who 

investigated the three-dimensional, continuous-time system 

x' = S(- x + y) 
yt = rx - y - xz s, r, b > 0 (4.7) 
z ' = - b z + x y  

emerging in the study of turbulence in fluids. For r above the critical value of r = 

28.0, trajectories of Equation (4.7) evolve in a rather unexpected way. Suppose 

that a trajectory starts at an initial value near the origin. For some time the 

trajectory regularly spirals outward from one fixed point, then the trajectory jumps 

to a region near another fixed point and does the same thing. As trajectories 

starting at different initial values all converge to and remain in the same region 

near the two fixed points, the region is considered an "attractor". It is a "strange 

attractor" because it is neither a point nor a closed curve. In general, this chaotic 

behavior can only occur for systems of at least three simultaneous non-linear 
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differential equations or for systems of at least a one-dimensional non-linear map 

(Devaney, 1989). 

Fractal geometry is a mathematical tool for dealing with complex systems 

that have no characteristic length scale. A well known example is the shape of a 

coastline. When we see two pictures of a coastline on two different scales, we 

cannot tell which scale belongs to which picture: both look the same. This means 

that the coastline is scale invariant or, equivalently, has no characteristic length 

scale. Other examples in nature are rivers, cracks, mountains, and clouds. Scale- 

invariant systems are usually characterized by noninteger ("fractal") dimensions. 

The dimension tell us how some property of an object or space changes as 

we view it at increased detail. There are several different types of dimension. The 

fractal dimension df describes the space filling properties of an object. Three 

examples of the fractal dimension are the self-similarity dimension, the capacity 

dimension, and the Hausdorff-Besicovitch dimension. The topological dimension 

dT describes how points within an object are connected together. The embedding 

dimension d, describes the space in which the object is contained. 

The fractal dimensions df are useful and important tools to quantify self- 

similarity and scaling. Essentially, the dimension tell us how many new pieces are 

resolved as the resolution is increased. The self-similarity dimension can only be 

applied to geometrical self-similar objects, where the small pieces are exact copies 

of the whole object. However the capacity dimension can be used to analyze 

irregularly shaped objects that are statistically self-similar. On the other hand, the 

Hausdorff-Besicovitch dimension requires more complex mathematical tools. For 

this reason, we will limit our discussion here to the capacity dimension. 

A ball is the set of points within radius r of a given point. We determine 

N(r) the minimum number of balls required so that each point in the object is 

contained within at least one ball of radius r. In order to cover all the points of the 

object, the balls may need to overlap. The capacity dimension is defined by the 

following equation: 
d, = lim log N(r) . 

log(l/r) 
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The capacity dimension defined as above is a measure of the space filling 

properties of an object because it gives us an idea of how much work is needed to 

cover the object with balls of changing size. 

A useful method to determine the capacity dimension is to choose balls 

that are the non-overlapping boxes of a rectangular coordinate grid. N(r) is then 

the number of boxes with side of length r that contain at least one point of the 

object. Efficient algorithms have been developed to perform this "box counting" 

for different values of r, and thus determine the box counting dimension as the 

best fit of log N(r) versus log(l1r). 

The fractal dimension df characterizes the space-filling properties of an 

object. The topological dimension dT characterizes how the points that make up 

the object are connected together. It can have only integer values. Consider a line 

that is so long and wiggly that it touches every point in a plane and thus covers an 

area. Because it covers a plane, its space-filling fractal dimension df = 2. 

However, no matter how wiggly it is, it is still a line and thus has topological 

dimension dT=l. Thus, the essence of a fractal is that its space-filling properties 

are larger than one anticipates from its topological dimension. Thus we can now 

present a formal definition of a fractal (Mandelbrot, 1987), namely, that an object 

is a fractal if and only if d f > d T  . 
However, there is no one definition that includes all the objects or processes that 

have fractal properties. 

Despite the identification of fractals in nearly every branch of science, too 

frequently the recognition of fractal structure is not accompanied with any 

additional insight as to its cause. Often we do not even have the foggiest idea as to 

the underlying dynamics leading to the fractal structure. The chaotic dynamics of 

non-linear systems, on the other hand, is one area where considerable progress has 

been made in understanding the connection with fractal geometry. Indeed, chaotic 

dynamics and fractal geometry have such a close relationship that one of the 

hallmarks of chaotic behavior has been the manifestation of fractal geometry, 

particularly for strange attractors in dissipative systems (Rasband, 1990). For a 

practical definition we take a "strange attractor", for a dynamic system, to be an 

attracting set with fractal dimension. For example, the famous Lorenz strange 

attractor has a fractal dimension of about 2.06. Also, we think that beyond only 
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this relationship between strange attractors and the fractal dimension of the set, 

there is a deeper relationship between the underlying dynamics of a system and 

the fractal nature of its behavior. We will explore this relationship in more detail 

in the following chapter. 

4.4 Summary 

In this chapter, we have presented the main ideas underlying Dynamical 

Systems and Fractal theory and we have only started to point out the many 

possible applications of these two powerful mathematical theories. We have 

discussed in some detail the concepts of strange attractors, chaotic behavior and 

fractal dimension. The concept of the fractal dimension will be the basis of the 

method for time series analysis that will be used in Chapter 5 to achieve 

Automated Mathematical Modelling of dynamic systems. Also, we have 

introduced two basic intelligent search methodologies that can be used for 

mathematical modelling and simulation. We have described in some detail how 

genetic algorithms can be used for the optimization of non-linear functions. 

Genetic algorithms can be used for modelling by defining an appropriate objective 

function or they can be used for simulation if they are aimed mainly at searching 

the parameter space (of the models) in an efficient way. In Chapter 6, we will 

explore this approach to achieve automated simulation of non-linear dynamical 

systems. We have also described in this chapter an alternative search method 

called simulated annealing, which is also a good choice for optimization 

problems. 
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Chapter 5 

Fuzzy-Fractal Approach for Automated Mathematical 
Modelling 

We describe in this chapter a new method to perform automated mathematical 

modelling for non-linear dynamic systems using SC techniques, Dynamical 

Systems Theory and Fractal Theory. The idea of using Dynamical Systems Theory 

(DST) and Fractal Theory (FT) as alternative approaches for modelling can be 

justified if we consider that traditional statistical methods only have limited 

success in real world complex applications, and this is mainly because many real 

problems show very complicated dynamics in time. Traditional statistical methods 

assume that the erratic behavior of a time series is mainly due to a external 

random error (that can not be explained (Castillo & Melin, 1994)). However, a 

DST approach, using non-linear mathematical models, can explain this erratic 

behavior because "chaos" is an intrinsic part of this type of models (Castillo & 

Melin, 1995a). It is a well known fact from DST (see Devaney, 1989), that even 

very simple non-linear mathematical models can exhibit the behavior known as 

"chaos" for certain parameter values, and therefore are good candidates to use as 

equations for modelling complex dynamic systems (Castillo & Melin, 1995b). 

Fractal Theory (see Mandelbrot, 1987), also offers a way to explain the erratic 

behavior of a time series, but the method is geometrical in the sense that the 
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fractal dimension is used to describe the complexity of the distribution of the data 

points (Castillo & Melin, 1996a). 

We describe a prototype implementation of our new method for 

Automated Mathematical Modelling (AMM) as a computer program written in the 

PROLOG programming language (Bratko, 1990). This computer program can be 

considered an intelligent system for the domain of Non-linear Dynamical Systems 

(NDS) because it uses SC techniques to obtain the "best" mathematical model for 

a given dynamic system. The use of SC techniques is to achieve the goal of 

automated modelling of NDS by simulating (in the computer) how human experts 

in this domain obtain the "best" model for a given problem. Given a specific time 

series the intelligent system develops mathematical models based on the geometry 

of the data. The method for AMM consists of three main parts: Time Series 

Analysis, Developing a Set of Admissible Models and Selecting the Best Model. 

First, the intelligent system uses the fractal dimension to classify the components 

of the time series over a set of qualitative values, then the system uses this 

information to decide (using a fuzzy rule base) which dynamical models are the 

most appropriate for the data, and finally the system decides which model is the 

"best" one using heuristics and statistical calculations. The use of Fuzzy logic in 

real-world applications has been now well recognized and many systems have 

been developed (Yamamoto & Yun, 1997). In this case, we came to the 

conclusion that the best way to convey the information of modelling problems 

was using fuzzy sets (Badiru, 1992). Also, we think that the best way to reason 

with uncertainty in this case is using Fuzzy Logic. 

The intelligent system develops only the kind of mathematical models that 

are more likely to give a "good" prediction based on the knowledge that human 

experts have about this matter. This knowledge is contained in the knowledge 

base of the intelligent system, and is the main factor in limiting the number of 

models that the system explores (Castillo & Melin, 1996b). The intelligent system 

also has some generalized knowledge about the mathematical models that we 

expect to discover in the NDS domain (Castillo & Melin, 1996~).  This knowledge 

is expressed as families of parameterized mathematical models. 
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5.1 The Problem of Automated Mathematical Modelling 

The problem of achieving automated mathematical modelling can be defined 

formally as follows (Castillo & Melin, 1994) : 

Given: A data set (time series) with m data points, D = {dl, d2, ..., dm) where 

di E Rn, i =  1 ,..., m , a n d n =  1 , 2  ,... . 
Goal: From the data set D, discover automatically the "best" mathematical 

model for the time series. 

This problem is not a simple one, because in theory there can be an infinite 

number of mathematical models that can be build for a given data set (Rao & Lu, 

1993). So the problem lies in knowing which models to try for a data set and then 

to select the "best" one. Let M be the space of mathematical models defined for a 

given data set D. Let MA = {MI, ..., Mq) be the set of admissible models that are 

considered to be appropriate for the geometry of the data set D. The problem is to 

find automatically the "best" model Mb for time series prediction (Castillo & 

Melin, 1995a). 

We can consider mathematical statistical models of the following form: 

Y = F(X) + E (0,o) (5.1) 
where E (0,o) represents a 0-mean Gaussian noise-process with standard deviation 

o .  F(X) is a polynomial equation in X, where the p predictor variables are in the 

vector: 

X = (XI, X2, .. ., Xp). 

We can also consider mathematical models as "dynamical systems" of the 

following form: 

dY/dt = F(Y) (5.2) 

where Y is a vector of variables of the form @ is the number of variables): 

= (Y17 Y2, ... 7 Y ~ )  
and F(Y) is a non-linear function of Y. Other kind of mathematical models are the 

discrete "dynamical systems" of the following form: 

Y, = F(X) (5.3) 
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where X = (Yt-,, Yt-2, ..., Yt-p) and F(X) is a non-linear function of X. Note that in 

these last two cases we have deterministic models expressed as differential or 

difference equations. 

We consider the use of the fractal dimension as a mathematical model of 

the time series in the following form: 

d = [log(N)/log(l/r)] (5.4) 

where d is the fractal dimension for an object of N parts, each scaled down by a 

ratio r. For an estimation of this dimension we can use the following equation: 

N(r) = p[ I/@ ] (5.5) 
where N(r) = number of boxes contained in a geometrical object and r = size of 

the box. We can obtain the box dimension of a geometrical object (Mandelbrot, 

1987) counting the number of boxes for different sizes and performing a 

logarithmic regression on this data. For our particular case the geometrical object 

consists of the curve constructed using the set of points from the time series. We 

show in Figure 5.1 (a) the curve and the boxes used to cover it. In Figure 5.1 (b) 

the corresponding logarithmic regression is illustrated. 

0 t time 0 In@> 
(a) (b) 

Figure 5.1 Fractal dimension of a time series: (a) the curve and the boxes covering 

it, (b) the logarithmic regression to find d 
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The models for the statistical methods can be linear as well as non-linear 

equations. We show below some sample statistical models (Gujarati, 1987) that 

can be used for mathematical modelling: 

a) linear regression: Y t = a + b t  (5-6) 

b) quadratic regression: Yt = a + bt + ct2 (5.7) 
c) logarithmic regression: lnYt = a + blnt (5.8) 

d) semi-log regression: Yt = a + blnt (5.9) 

e) first order autoregression: Y t = a +  bYt_l (5.10) 

f )  second order autoregression: Yt = a + bYt-l+cYt-2 (5.1 1) 

The mathematical models for continuous dynarnical systems can be one- 

dimensional, two-dimensional, three-dimensional and so on. We show below 

some sample models (Rasband, 1990) that can be used for mathematical 

modelling: 

a) Logistic differential equation: 

dYl/dt = a Y1(l - Y1) (5.12) 

b) Lotka Volterra two dimensional: 

dYl/dt = aY1 - bYlY2 (5.13) 

dY2/dt = bY Y2 - cY2 

c) Lotka Volterra three dimensional: 

dY ,/dt = Y ,(I - Y - aY2 - by3) 

dY2/dt = Y2(1 - by1 - Y2 - aY3) 

dY3/dt = Y3(l - aYl - by2 - Y3) 

d) Lorenz three dimensional: 

dYl/dt = aY2 - aY1 

dY2/dt=- Y1Y3 + by1  - Y2 (5.1 5) 

dY3/dt = Y ,Y2 - cY3 

The mathematical models for discrete dynamical systems can also be one, 

two, three dimensional or more. We show below some sample models (Rasband, 

1990) that can be used for mathematical modelling: 

a) Logistic difference equation: 

Yt+1 = aYt( 1 - Y,) 

© 2002 Taylor & Francis



86 FUZZY-FRACTAL APPROACH FOR AUTOMATED . . . 

b) Logistic two dimensional difference equation: 

yt+1 = xt 
xt+1 = aXt(1 - Xt) 

c) Lotka Volterra two dimensional: 

Yt+* = aYt - bYtXt 

- bYtXt - cXt Xt+l - 
d) Henon map two dimensional: 

yt+1 = x, 
x,+~ = a - x  t2 + bYt 

In all of the above mathematical models a, b and c are parameters that 

need to be estimated using the corresponding numerical methods. For example, 

for the regression models we can use the least squares method (Gujarati, 1987) for 

parameter estimation, but for the differential equations we need to use a Gauss- 

Newton type method (Jang, Sun & Mizutani, 1997). 

5.2 A Fuzzy-Fractal Method for Automated Modelling 

In this section, we show how SC techniques can be used to automate the process 

of discovering the best model for a given dynamical system. The human experts 

usually try several (in some cases many) mathematical models before they are 

satisfied with the "goodness" of one model. The experts use their knowledge 

about modelling problems in a specific domain to limit their search of models, in 

this way obtaining the "best" results as quickly as possible. The main goal of our 

work was to capture this knowledge of modelling in a computer program, in this 

way obtaining a software tool capable of emulating intelligent behavior in the 

domain of NDS (Castillo & Melin, 1997a). In the remaining of this section we 

describe the basic algorithm for discovering mathematical models, then in the 

following section the implementation of the algorithm as a computer program in 

the PROLOG programming language. 

Our new method for solving the automated modelling problem is based on 

several novel ideas. We consider that the modelling problem can be divided in 
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three main parts: Time Series Analysis, Selection of Appropriate Models and 

Selection of the Best Model. The first part of the problem consists in obtaining the 

time series components from the data. Our solution to this part of the problem is a 

new classification scheme based on the notion of the fractal dimension . This 

classification scheme is a one to one map between the fractal dimension of the 

data set and the qualitative values for the components of the time series (Castillo 

& Melin, 1995a). Once this part of the problem is solved, the second part consists 

in simulating an expert decision process that gives us the set of Mathematical 

Models appropriate for the geometry of the time series. This expert decision 

process is simulated using SC techniques and is the main part of the method for 

AMM (Castillo & Melin, 1997b). The third part of the problem consists in 

designing a method to compare all the models obtained in the second part, to 

obtain which one is the "best" model for the given time series. Our method to 

compare all the models has to consider statistical measures of goodness between 

non-linear dynamical systems and linear statistical models, to decide which model 

fits best the data set (time series). 

The new algorithm for automated mathematical modelling is shown in 

Figure 5.2. 

STEP 1 Read the data set D = {dl, d2, ..., dm). 

STEP 2 Time Series Analysis of the set D to find the components. 

STEP 3 Find the set of Admissible models MA = {MI, M2, ..., Mq), 

using the qualitative values of the time series components. 

STEP 4 Find the "Best" mathematical model Mb from the set MA using 

the measures of "goodness" of each of the models from the set 

MA. 

Figure 5.2 Algorithm for automated mathematical modelling 
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We call this algorithm IDIMM (for Intelligent Discovery of Mathematical 

Models) and is an integration of SC techniques with Dynamical Systems Theory, 

Fractal Theory and Statistical Methods, to obtain mathematical models for a given 

time series. In the following section we will show how this algorithm can be 

implemented to achieve the goal of AMM for Dynamical Systems. 

5.3 Implementation of the Method for Automated Modelling 

The implementation of the new method for AMM as a computer program was 

done using the PROLOG programming language (the complete program for 

general dynamical systems is shown in Appendix A). The choice of PROLOG is 

because of its symbolic manipulation features and also because it is an excellent 

language for developing Prototypes (Bratko, 1990). The computer program was 

developed using an architecture very similar to that of an intelligent system 

(knowledge base, inference engine and user interface) with the addition of a 

numerical module for parameter estimation (see Figure 5.3). We will focus our 

description of implementation details only to the knowledge base of the intelligent 

system because this is the most important part of the computer program. In the 

program, the knowledge base is the part that simulates the process of model 

discovery described by steps 2 to 4 in the IDIMM algorithm of the last section. 

Accordingly, the knowledge base consists of three Expert Modules: Time Series 

Analysis, Expert Selection and Best Model Selection. In the following lines we 

will describe each of these modules. 

5.3.1 Description of the Time Series Analysis Module 

This module is the implementation of Step 2 of the IDIMM algorithm and 

contains the knowledge necessary for time series analysis, i.e., the knowledge to 

extract from the data the time series components. Our method for time series 

analysis consist in the use of the fractal dimension of the set of points D as a 

measure of the geometrical complexity of the time series (Castillo & Melin, 
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1996b). We use the value of the fractal dimension to classify the time series 

components over a set of qualitative values. Our classification scheme was 

obtained by a combination of expert knowledge and mathematical modelling for 

several samples of data. To give an idea of this scheme we show in Table 5.1 

some sample rules of this module. 

Knowledge 1 Base I 
Inference 

Interface 

Module 

Figure 5.3 General architecture of the intelligent system 

The basic idea behind the rule base of Table 5.1 is that when the fractal 

dimension is close to one, we have a data set resembling a line, and when the 

fractal dimension is near two, we have a data set with very rapid oscillations 

(almost covering a finite area). We performed several experiments with real data 

sets to decide on the classification needed for this "Time Series Analysis Module" 

and we found that for the moment classifying the periodic components in 

"simple", "regular", "difficult" and "chaotic" was sufficient. Also, we only classify 

the "trend" component in two kinds: "linear" and "non-linear". Of course, it is 

possible that we may need a better classification in the future, for a more accurate 
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implementation of this Module, but now we are only showing how the method can 

be implemented. 

Table 5.1 Sample rules for time series analysis 

IF THEN 

Fractal-dimension(D)~(0.8,1.2) Trend = linear, Time-series = smooth 

Fractal-dimension(D)~ [1.2,1.5) Trend = non-linear, Time-series = cyclic 

Fractal-dimension(D) E [ 1.5,l. 8) Time-series = erratic 

Fractal-dimension(D)~ [I .2,1.4) Periodicgart = simple 

Fractal-dimension(D) E [1.4,1.6) Periodicgart = regular 

Fractal-dimension(D)~ [1.6,1.7) Periodicqart = difficult 

Fractal-dimension(D) E [ 1.7,l.S) Periodicgart = verydifficult 

Fractal dimension(D)~ [1.8,2] Periodic part = chaotic 

In conclusion, our method for time series analysis consists of a one to one 

mapping between the fractal dimension of the set D and the qualitative values of 

the time series components. This set of qualitative values for the components is 

the information needed as input for the "Expert Selection Module" (implementing 

Step 3 of the algorithm) which will be described next. 

5.3.2 Description of the Expert Selection Module 

This module is the implementation of the step 3 of the IDIMM algorithm and 

contains the knowledge necessary to select the kind of mathematical models more 

appropriate for the type of data given, i.e., given the qualitative values of the time 

series components decide which models are more likely to give a good prediction. 

Our method for selecting the models consists of a set of fuzzy rules (heuristics) 

that simulates the human expert decision process of model selection (Castillo & 
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Melin, 1997b). In our approach the qualitative values of the time series 

components are viewed as fuzzy sets (using the fractal dimension as a 

classification variable). We have membership functions for each of the qualitative 

values of the time series components. Also, the qualitative values of the 

"Type-Model" variable are considered as fuzzy sets and we have membership 

functions for each of these values. To give and idea of the way this Expert 

knowledge is structured, we show in Table 5.2 some sample rules of this module 

(Castillo & Melin, 1998a). 

The rules in Table 5.2 show how this expert module selects the appropriate 

models for a given dynamical system, using as information the dimensionality of 

the problem (number of variables, which are the "Dim" values in Table 5.2) and 

the qualitative values of the time series components. Each rule of this table 

contains a piece of knowledge about the problem of model selection. 

We have to mention here that the role of Fuzzy Logic is very important for 

this module, because it enables the simulation of the expert reasoning process 

under uncertainty. We came to the conclusion that the rules, for deciding which 

models are appropriate for a given time series, can't be categorical because the 

complexity of the modelling problems is very high. Since, it is well known that 

fuzzy logic has been applied successfully to problems in Engineering and 

Manufacturing (Badiru, 1992), and our modelling problem required reasoning 

under uncertainty, we decided to use fuzzy logic techniques. In the following lines 

we will explain how the knowledge of the experts is contained in the fuzzy rules 

of this module with an example. 

Suppose that a Time Series Analysis on a particular data set (time series) 

for a one-dimensional problem results in a Trend component valued as "non- 

linear" with a fractal dimension of 1.37, and a Periodic component valued as 

"simple" with the same fractal dimension, then the logical conclusion is that the 

"Logistic Map" is the best model for this problem with a 90% degree of certainty. 

Of course, other mathematical models have a lower degree of certainty for this 

particular example. The reasoning behind this rule is that a time series that 

exhibits a non-linear trend and simple periodicity can be modeled by a logistic 

map with relatively good accuracy. 
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Table 5.2 Sample fuzzy rules for model selection 

IF THEN 

Dim Trend Periodic part Type Model 

one non-linear simple logistic-differential-equation 

two non-linear simple lotka-volterra-differential-equation 

three non-linear regular lorenz-differential-equation 

one non-linear simple logistic-differenceequation 

two non linear regular lotka volterra difference equation 

5.3.3 Description of the Best Model Selection Module 

This module is the implementation of step 4 of the IDIMM algorithm and contains 

the knowledge to select the "best" mathematical model for prediction, i.e., given 

the set of selected models generated by step 3, decide which model is the "best" 

one to predict the time series. Our method for selecting the "best" model consists 

of comparing the Sum of Squares of Errors (SSE) for all the models and selecting 

the one that minimizes SSE. This criteria has the advantage of been valid for all 

the types of models that we consider for the intelligent system (statistical models 

and non-linear dynamical models). The reasoning behind this criteria is that the 

value of the SSE is a measure of how well a particular mathematical model fits 

the data (time series) for a given problem. To give an idea of our method, we 

show in Table 5.3 a sample case where the set of selected models is: 

MS = {MI, M,, M3, M4, M5, M61 

and the model with the lowest SSE is M4. 
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Table 5.3 Method for best model selection using the SSE 

MODEL TYPE SSE BEST 

MODEL 

MI: Y = a l  + blt Statistical SSEl no 

M2: Y = a2 + b2t + c2t2 Statistical SSE2 no 

M3: 1nY = lna3 + b31nt Statistical SSE3 no 

M4: logistic-differential-eq Dynamical SSE, Yes 

M5: lotka-volterra-difference-eq Dynamical SSE5 no 

M6: lorenz differential eq Dynarnical SSEh no 

In Table 5.3 the best model is M4 because: 

SSE4 = min (SSEl, SSE2, SSE,, SSE4, SSE,, SSE,) 

The implementation of this minimization procedure is easy once the numerical 

values of the Sum of the Squares (SSE) are calculated by the numerical module. 

We have to say here that this method for selecting the "best" model for a 

given problem can be improved in several ways to consider other factors that 

relate to this decision process. For example, one may like to consider the "type" of 

the model or the "simplicity" of the model as other factors of importance in the 

process of "best" model selection. In this case, a set of if-then rules would be 

required to make the decision and this module would be then considered a real 

"knowledge base". For the moment, we have only a method for "best" model 

selection that uses statistical measures and "knowledge" about the process of 

mathematical modelling. 
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5.4 Comparison with Related Work 

There has been some work recently in the area of numerical law discovery, but 

much of the research in Machine Learning is in other areas such as induction 

(Sleeman & Edwards, 1992). We think that this is mainly because "discovery" is a 

more difficult kind of "learning" (in this case, finding the best mathematical 

models for a given data set). However, we can say that automated mathematical 

modelling is very important for many domains of application for obvious reasons. 

For example, in the engineering and robotics domains is critical to obtain 

mathematical models for the problems, to be able to understand them and also to 

be able to predict and control their future behavior. 

Similar work with respect to Machine Learning can be found in a paper by 

Moulet (1992), however the approach to model discovery is different that the one 

presented here (this can be seen from the heuristic method proposed by Moulet). 

Also in a paper by Rao and Lu (1993) we can see a method for model discovery 

for engineering domains, but also with a different approach (his approach is 

similar to "clustering"). Also, there is another very important difference with other 

authors, in the kind of mathematical models that we are considering for our 

intelligent system. We are considering non-linear mathematical models from the 

theory of Dynamical Systems and not only linear regression models like other 

authors. This is because non-linear dynamical models offer the possibility of 

explaining the erratic behavior of real time series with "chaos theory" (Devaney, 

1989). 

5.5 Summary 

We have presented in this chapter a new method for automated mathematical 

modelling of non-linear dynamical systems. This method is based on a hybrid 

fuzzy-fractal approach to achieve, in an efficient way, automated modelling for a 

particular problem using a time series as a data set. The use of the fractal 

dimension is to perform time series analysis of the data, so as to obtain a 
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qualitative characterization of the time series. The use of fuzzy logic techniques is 

to simulate the process of expert model selection using the qualitative information 

obtained from the time series analysis module. At the end, the "best" 

mathematical model is obtained by comparing the measures of goodness for the 

selected mathematical models. In Chapter 8, we will explore some advanced 

applications of this method for automated mathematical modelling. The results 

will show the efficiency and potential benefits of using this new method for 

modelling and simulation of complex non-linear dynamical systems. 
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Chapter 6 

Fuzzy-Genetic Approach for Automated Simulation 

This Chapter describes the important problem of numerical simulation for non- 

linear dynamical systems and its solution by using intelligent methodologies. The 

numerical simulation of a particular dynamical system consists in the successive 

application of a map (difference equation) and the subsequent identification of the 

corresponding dynamic behaviors. Automated simulation of a given dynamical 

system consists in selecting the appropriate parameter values for the mathematical 

model and then applying the corresponding iterative method (map) to find the 

limiting behavior. In this chapter, a new method for automated parameter 

selection based on the use of genetic algorithms, is introduced. Also, a new 

method for dynamic behavior identification based on fuzzy logic, is introduced. 

The fuzzy-genetic approach for automated simulation consists in the integration of 

the method for automated parameter selection (based on GA) and the method for 

behavior identification (based on hzzy logic). 

6.1 The Problem of Automated Simulation 

In this section, we describe briefly the problem of numerical simulation for non- 

linear dynamical systems. First, we present some basic concepts and the main goal 
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of the field of numerical simulation. Then, we present some basic concepts about 

dynamical systems theory that we consider necessary to understand the methods 

that will be described later in the chapter. At the end, we describe the problem of 

automated simulation of dynamical systems 

6.1.1 Numerical simulation of dynamical systems 

Real dynamical systems can be represented by mathematical models expressed as 

non-linear differential equations of the form: 

dY/dt = f (Y, t, 0) (6.1) 
where Y is a vector of dynamic variables, t is time, and 0 is a vector of 

parameters, or as non-linear difference equations of the form: 

Yt+l = F (Yt, yt-1, . - - 3  0) (6.2) 
In the case of Equation (6.1) one says that the model is a continuous one. 

On the other hand, for Equation (6.2) the model is considered of the discrete type. 

The simulation of the real dynamical system, in the first case, consists in 

the numerical solution of the non-linear differential equation along with the 

identification of all the possible corresponding dynamic behaviors of the system. 

For example, the numerical solution of the differential equation can be obtained 

by the well known second-order Runge-Kutta method (Nakamura, 1997): 

Yn+ 1 = Yn + 1/2(kl + k2) 
kl =hf (Yn,4 , ,0 )  (6.3) 

k 2 = h f  (Y,, kl,4,+l, 0 )  
where h is the stepsize of the method. Equation (6.3) can be used for different 

parameter values of 0 to obtain the different dynamic behaviors of the system 

described by the model of Equation (6.1). Of course, more advanced methods for 

the numerical solution of differential equations can be used if more accuracy is 

desired. 

The simulation of the real dynamical system, in the second case, consists 

in the successive application of the map given by Equation (6.2) for different 

parameter values of 0 and then identifying the different corresponding dynamic 

behaviors of the system. 
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In any case, the result of the numerical simulation of the real dynamical 

system (represented by Eq. (6.1) or Eq. (6.2)) is a time series of the following 

form: 

Yl,Y2,Y3, ..., Yp forO=O* (6.4) 

this time series represents the motion of the dynamical system for the specific 

parameter value 0 = O*. It is well known in dynamical systems theory, that this 

time series can have many different types of dynamic behaviors ranging from very 

simple periodic fixed points to the very complicated "chaotic" behavior. Even 

more, for non-linear mathematical models it is possible to have all the range of 

dynamic behaviors for different parameter values of 0. For this reason, the 

numerical simulation of relative complex non-linear mathematical models 

requires a lot of exploration in order to find all of the possible dynamic behaviors 

for the real dynamical system. 

6.1.2 Behavior identification for dynamical systems 

There are theoretical results that can be used to establish the existence of chaotic 

trajectories or other dynamic behaviors for several dynamical systems (Devaney, 

1989). However, in many cases it may be difficult or analytically impossible to 

detect a period-three cycle (required by Li/Yorke1s Theorem) necessary to identify 

chaotic behavior, and for most differential equation systems there are no 

theoretical results at all. Experiments show that even for cycles of a relatively low 

period it may be impossible to distinguish regular time series from completely 

chaotic time series by simple visual inspection. 

If a dynamical system is given whose behavior can not be investigated 

further by applying the standard geometric or analytical methods, numerical 

simulations are appropriate. The generated time series in such a simulation may 

exhibit simple patterns like monotonic convergencies or harmonic oscillations. 

However, the series may also appear to be random due either to 

periodic behavior with a long period 

quasiperiodic behavior with many different frequencies 
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deterministic chaos, or to 

noise generated by the use of specific algorithms during the 

simulation. 

The following numerical tools can be useful in deciding whether an actual time 

series generated by the simulation of a known dynamical system is regular, 

chaotic, or stochastic. 

Spectral analysis: Has proven to be particularly useful in attempts to distinguish 

periodic and quasi-periodic time series with few frequencies from random 

behavior. The aim of spectral analysis is dividing a given time series into different 

harmonic series with different frequencies. For example, if a time series consists 

of two overlapping harmonic series, spectral analysis attempts to isolate these two 

harmonic series and to calculate the involved frequencies. Furthermore, spectral 

analysis provides information on the contribution of each harmonic series to the 

overall motion. While power spectra are particularly useful in investigating the 

periodic or quasi-periodic behavior of dynamical systems, chaotic and random 

behavior can not be discriminated with this method. For this reason, we will not 

describe this statistical method in more detail. 

The short presentation of spectral analysis has shown that traditional 

statistical techniques fail to provide a definite answer to the question of whether a 

given complex time series is generated by a random process or by deterministic 

laws of motion. Appropriate concepts for distinguishing between these two 

sources of complex and irregular behavior have emerged only recently, and the 

development of new techniques is still in progress. In addition to the empirical 

motivation for dealing with these concepts, their discussion will be useful because 

new insights into the nature of deterministic chaotic systems can be provided. 

Phase space embedding: Of central importance to the numerical investigation of 

complex dynamical systems is the notion of the "embedding dimension". Suppose 

that a dynamical process is generated by a deterministic set of equations like 

X' t+l  = gi(xt), x E Rn, i = 1, ..., n (6.5) 
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and let a certain xj be the variable which attracts the attention of an observer. The 

observer neither knows the structural form of (6.5) and its dimension n, or can he 

be sure that this measurement of the quantity xjt is correct. Denote the observed 

value of the variable xj at t as %jt and let 
- 
xJt = h(xt) (6.6) 

i.e., the observed variable depends on the "true" values XI,, but the measurement 

of the variable may imply differences between dt and xjt. 

The measurement procedure over time generates a time series { %Jt }Tt=l. 

An "embedding" is an artificial dynamical system which is constructed from the 

one-dimensional time series in the following way: consider the last element 2jT in 

the observed time series and combine it with its m predecessors into a vector EmT 

= ( %jT , %jT.., , ~ j ~ - ~ + ~  ). Perform this grouping for every element %jt in the 

descending order t = T, ..., 1 and drop the remaining m-1 first elements in the 

original time series because they do not possess measured predecessors. The m- 

dimensional vector PT is called the "m-history" of the observation zjt. Since the 

first elements are dropped, the sequence of the vectors { Zmt STt,, is shorter than 

the original time series and varies with the length of the history. The length m is 

called the "embedding dimension". 

Each m-history describes a point in an m-dimensional space, the 

coordinates of which are the delayed observed values in the vector gmt . The 

sequence { xmt ITt,, of points will therefore form a geometric object in this space. 

It was proven by Takens (198 1) that this object is topologically equivalent to the 

appropriate object generated by the true dynamical system (6.5) if the functions gi 

and h are smooth and m > 2n-1. If these conditions are satisfied, it is thus 

theoretically possible to reconstruct the behavior of the (unknown) true dynamical 

system from a single observed time series. 

Correlation dimension: Suppose that an attractor is chaotic and consider two 

points on this attractor which are far apart in time. Due to the sensitive 

dependence on initial conditions, these points are dynamically uncorrelated since 

arbitrarily small measurement errors in the determination of the initial point can 

lead to drastically different locations of the second point. However, as both points 
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are located on an attractor, they may come close together in phase space, i.e., they 

may be spatially correlated. 

The two points P i  , 2m.i are said to be spatially correlated if the Euclidian 

distance is less than a given radius r of an m-dimensional ball centered at one of 

the two points, i.e., / /  zmi - zmJ I /  < r. The spatial correlation between all points on 

the attractor for a given r is measured by 

c(r,m) = lim 2 x [number of pairs i j  with distance / /  zmi - ~ i m j  11  < r] (6.7) 
7 '3m ~2 

The function c(r,m) is called the "correlation integral". The "correlation 

dimension" is defined as: 

DC(m) = lim In c(r,m) 
0 In r 

The calculated values of the correlation dimension are close to the Hausdorff- 

Besicovitch dimension and do not exceed it. Obviously, the correlation dimension 

can be computed more easily than the Hausdorff-Besicovitch dimension since 

counting is the essential ingredient in calculating the correlation dimension: fix a 

small r and count the number of points N(r) lying in a ball centered at a xml. 

Perform this procedure for every xml  and calculate c(r,m) and DC(m). 

Lyapunov exponents: Strange attractors are geometrically characterized by the 

simultaneous presence of "stretching" and "folding", implying that two initially 

close points will be projected to different locations in phase space. The presence 

and interaction of stretching and folding in a certain dynamical system can be 

described via the so-called "Lyapunov exponents". The Lyapunov exponents 

constitute a quantity for characterizing the rate of divergence of two initial points 

(Rasband, 1990). Note that this divergence on the attractor is a dynamical 

property. Consider first the discrete-time case with an n--dimensional mapping 

xt+ 1 = f(xt) , x E Rn (6.9) 
and two initial points xo and x'o. Let the difference ax, = x, - x', be small. After, 

the first iteration, the difference between the two points will be 

X I  - xI1 = f(')(x0) - fll)(xlo) (6.10) 

A linear approximation of the difference yields 
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where d Al)(xo) Idx is the Jacobian matrix J. After N iterations the difference 

between the corresponding points will be 

XN - xIN = fCN)(x0) - RN)(x'~) (6.12) 

and linearization yields 

xN - x', = df(N)@o) 6xo (6.13) 
dx - 

where, by the chain rule, dW)(xo) - / dx = JW)  equals the product of N Jacobian 

matrices J evaluated at x,. 

As J(N) is an nxn matrix, it also possesses n eigenvalues. Denote the 

eigenvalues of this matrix as ANi and rearrange them such that ANl 2 AN2 2 ... AN,. 

The Lyapunov exponents hi; i = I ,  ..., n, are defined as 

hi = lim 1 log2(ANi) (6.14) 
N 3 - a  N 

An analogous procedure for the continuous-time case leads to 

with T E R, i.e., the time step between iterations tends to zero. 

The meaning of the Lyapunov exponents can be interpreted as follows: 

when all Lyapunov exponents are negative on an attractor, the attractor is an 

asymptotically stable fixed point. When one or more Lyapunov exponents are 

non-negative, then at least one exponent must vanish. A limit cycle must involve a 

hi = 0 and thus cannot occur in the one-dimensional case. A torus can emerge 

only in at least three-dimensional phase space. As two cyclical directions are 

involved in a 2-torus, two of its Lyapunov exponents are equal to zero. If one of 

the exponents is positive, chaotic motion prevails (Rasband, 1990). 

The characterization of the behavior of low-dimensional continuous-time 

dynamical systems by means of their Lyapunov exponents is summarized in Table 

6.1. Empty fields indicate the impossibility of the appropriate dynamical behavior 

if the dimension n is two low. 

© 2002 Taylor & Francis



FUZZY-GENETIC APPROACH FOR AUTOMATED SIMULATION 

Table 6.1 Lyapunov exponents and Dynamical Behavior in 

Continuous-Time Systems 

Dimension Asymptotic Limit cycle Torus Chaos 
Stability (T1) (T2> 

6.1.3 Automated simulation of dynamical systems 

The problem of performing an efficient simulation for a particular dynamical 

system can be better understood if we consider a specific mathematical model. Let 

us consider the following model: 

X' = o(Y-X) 

Y ' = r X - Y - X Z  (6.1 6) 

Z '=XY - bZ 

where X, Y, Z, o7 r, b E R, and o ,  r and b are three parameters which are normally 

taken, because of their physical origins, to be positive. The equations are often 

studied for different values of r in 0 < r < oo. This mathematical model has been 

studied by Rasband (1 990) to some extent, however there are still many questions 

to be answer for this model with respect to its very complicated dynamics for 

some ranges of parameter values. 

If we consider simulating Equation (6.16), for example, the problem is of 

selecting the appropriate parameter values for o, r, b, so that the interesting 

dynamical behavior of the model can be extracted. The problem is not an easy 

one, since we need to consider a three-dimensional search space o r b and there 

are many possible dynamical behaviors for this model. In this case, the model 

consisting of three simultaneous differential equations, the behaviors can range 

from simple periodic orbits to very complicated chaotic attractors. Once the 

parameter values are selected then the problem becomes a numerical one, since 
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then we need to iterate an appropriate map to approximate the solutions 

numerically. 

The problem of performing automated simulation for a particular 

dynamical system is then of finding the "best" set of parameter values for the 

mathematical model. Our general algorithm (Castillo & Melin, 1995c) for 

selecting the "best" set of parameter values is shown in Figure 6.1. 

The algorithm shown in Figure 6.1 can be explained as follows: first, the 

mathematical model is analyzed to "understand" it; second, a set of admissible 

parameters is generated using the understanding of the model; third, a specific 

genetic algorithm is used to select the best set of parameter values; finally, the 

numerical simulations are performed and the dynarnical behaviors are identified 

using fuzzy logic. 

STEP 1 Read the mathematical model M. 

STEP 2 Analyze the model M to "understand" its complexity. 

STEP 3 Generate a set of admissible parameters using the understanding of 

the model. 

STEP 4 Perform a selection of the "best" set of parameter values. This set is 

generated using a specific genetic algorithm. 

STEP 5 Perform the simulations by solving numerically the equations of the 

mathematical model. At this time the different types of dynamical 

behaviors are identified using a hzzy rule base. 

Figure 6.1 New algorithm for selecting the best set of parameter values. 

The implementation of the new method for Automated Simulation as a 

computer program was done using the PROLOG programming language (the 

complete program is shown in Appendix B). The choice of PROLOG is because 

of its symbolic manipulation features and also because it is an excellent language 
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for developing prototypes (Bratko, 1990). The general architecture of the 

prototype intelligent system for simulation is the same as the one shown in Figure 

5.3. The main difference is that the knowledge base for simulation now consists of 

two modules: Parameter Selection, and Dynamic Behavior Identification. In the 

following lines we will describe these two modules in more detail. 

6.2 Method for Automated Parameter Selection using 
Genetic Algorithms 

The knowledge for simulation of the intelligent system consists in the application 

of a specific genetic algorithm (Jang, Sun & Mizutani, 1997) to select the best set 

of parameters of a particular dynamical system. Our genetic algorithm for 

parameter value selection (Castillo & Melin, 1998b) can be defined as shown in 

Figure 6.2. 

STEP 1 Initialize a population with randomly generated individuals 

(parameters) and evaluate the fitness value of each individual 

STEP 2 (a) Select two members from the population with probabilities 

proportional to their fitness values 

(b) Apply crossover with a probability equal to the crossover rate 

(c) Apply mutation with a probability equal to the mutation rate 

(d) Repeat (a) to (d) until enough members are generated to form the 

next generation 

STEP 3 Repeat steps 2 and 3 until the stopping criterion is met 

Figure 6.2 Genetic algorithm for parameter value selection. 
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The fitness function should evaluate the dynamical information given by a 

particular set of parameter values, i.e. the fitness b c t i o n  should measure the 

power of the parameter set. Lets consider a three-dimensional model with 3 

parameters 0, a and y, then assuming that we have only four possible dynamical 

behaviors (for a given system): 

BO: fixed point of period 1 

B 1 : fixed point of period 2 

B2: fixed point of period 4 

B3: fixed point of period 8 

B4: chaotic behavior 

we will have that the parameter set n = (0,a,y), where 0,a,y E R, can result in any 

of the five possible behaviors. In this case, we need to consider 5 individuals in 

the Population and an initial population can be denoted as: 

For an initial population there is a high probability that most of the ni could give 

the BO behavior, so there has to be evolution to obtain a better parameter set. The 

identification of the respective behaviors can be done by iteration of the dynamic 

systems or by other mathematical means, for example the fractal dimension or the 

Lyapunov exponents (Rasband, 1990). The fitness value of each individual in 

population Pi can by defined as follows (Castillo & Melin, 1998a): 

F(nij ) = 1 for fixed point of period 1 

F(n" ) = 2 for fixed point of period 2 
1J 

F(n.. ) = 4 for fixed point of period 4 ?I 
F(nij ) = 8 for fixed point of period 8 

F(nij ) = 10 for chaotic behavior 

this is only one of the possible schemes that can be used for this case. In this case, 

we have assigned the fitness values proportional to the complexity of the dynamic 

behavior to guide the search of the genetic algorithm. However, the specific 

numeric values could be changed to suit the needs of particular applications. We 

need to remember here that the fitness function has to be designed for each 

specific application of a genetic algorithm. 
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A more general form for defining the fitness function for real dynamical 

systems can be establish by using the fractal dimension df of the time series 

generated by the numerical simulation of the dynamical system. Mathematically, 

we can define the fitness function as: 

F(rrij ) = e df(nd) , 0 5 df s 3, (6.17) 

where dAnij) = fractal dimension of the time series for parameter set nij. The 

general idea of Equation (6.17) is to assign a bigger value to the fitness function 

when the complexity of the time series, generated by the simulation, is greater 

(which is true, of course, when df is of a higher value). Of course, here the use of 

the exponential function is only to spread the values of the fractal dimension but 

other functions could be used as well. 

6.3 Method for Dynamic Behavior Identification using 
Fuzzy Logic 

Once the parameter values have been found and the numerical simulations have 

been performed then the final step is to identify the possible dynamic behaviors of 

the system. The knowledge for behavior identification can be expressed as a 

fuzzy-rule base that uses the information obtained in the numerical simulation to 

identify the different behaviors of the model. To give an idea of how this 

knowledge can be expressed as a fuzzy-rule base we show below two sample 

schemes that can be used for behavior identification. 

6.3.1 Behavior identification based on the analytical properties 
of the model 

We can build a set of fuzzy rules for dynamic behavior identification based on the 

analytical properties of the mathematical models and using the well known 

theorems of dynamical systems theory (Castillo & Melin, 1997b). To give an idea 

of how this knowledge can be translated to fuzzy rules we show below some 

sample rules for several types of dynamical systems. 
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1) Single-link ~ o b d t  Model: This mathematical model of a sinusoidally non-linear 

robot consist of two simultaneous differential equations: 

q' = Q (6.1 8) 
Q' = (K,I - Nsin(q) - FdQ) / M4 

where the parameters I, Mq, N, Fd and Kt are all positive. Lim, Hu and Dawson 

(1 996) have presented an extensive gallery of periodic and a-periodic motions for 

this model. In this case the equilibria (q*,Q*) is stable if and only if the real parts 

of the eigenvalues are negative and this is equivalent to the rule: 

IF a > O  THEN Equilibria = stable 

where a is defined by the characteristic equation: 

A2+aA+b=O 

with a = - trJ, b = detJ. Where "trJ" is the trace and "detJ" is the determinant of the 

Jacobian Matrix. 

2) Other Bi-dimensional Models: Similar bi-dimensional autonomous models can 

be written in the following manner: 

X' = a f(X,Y) (6.19) 

Y' = P g(X,Y) 
In this case, the Equilibria (X*,Y*) is stable if: 

a fx + (gy - P) < 0 
where fx and gy are partial derivatives. In fuzzy logic language we have the 

following rule: 

IF [a fx + (gy - P) < 0] THEN Equilibria = stable 

Also we have the following rule for a Hopf Bifurcation: 

IF ao = (0 - gy)ffx THEN Hopf-Bifurcation 

which gives us the condition for a Hopf bifurcation to occur. 

3) Firth's Model of a sin~le-mode laser: The basic equations of a single-mode 

(unidirectional) homogeneously broadened laser in a high-finesse cavity, tuned to 

resonance, may be written as a system of three differential equations (Abraham & 

Firth, 1984): 
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X' = y, (X + 2Cp) 

PI = - T (P - XD) 

D l = - y ( D + X P - 1 )  

Here X is a scaled electric field (or Rabi frequency), y, is a constant describing the 

decay of the cavity field and C is the cooperativity parameter. 

In this case, the Equilibria (X*,P*,D*) is stable if a, b, c > 0 and (ab - c) > 

0, where a, b and c are defined by the characteristic equation for the system. We 

can also have more complicated rules for other types of dynamical behaviors. 

4) Other three-dimensional Models: A three-dimensional system of differential 

equations can be written in the following form: 

X' = af(X,Y ,Z) 

Y' = pg(x,y,z) (6.21) 
2' = yh(X,Y,Z) 

In this case, the Equilibria (X*,Y*,Z*) is stable if a, b, c > 0 and (ab - c) > 0, 

where a, b and c are defined by the characteristic equation for the system: 

A 3 + a A 2 + b A + c = 0  

In fuzzy logic language we have the rule: 

IF a,b,c >O AND (ab-c) >O 

THEN Equilibria = stable 

other rules follow in the same manner for all the types of dynamical behaviors 

possible for this class of mathematical models. 

We have to note here that in this case the computer program for this 

method needs to obtain the symbolic derivatives for the functions in the 

conditions of the rules. This is critical for the problem of behavior identification, 

since we require these derivatives to obtain the values of the parameters in the 

rules. This will make this method time consuming because the time series from 

the simulations are not used at all. 
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6.3.2 Behavior identification based on the fractal dimension 
and the Lyapunov exponents 

We can obtain a more efficient method of dynamic behavior identification, if we 

make use of the information contained in the time series that resulted from the 

simulation of the dynamical system. From the time series of the numerical 

simulations, we can calculate the Lyapunov exponents of the dynamical system 

and also the fractal dimension of the time series. With this dynarnical information, 

we can easily identify the corresponding behaviors of the system. 

For dissipative dynamical systems, for example, we can use the results that 

where shown in Table 6.1 to build a set of fuzzy rules for behavior identification 

using the Lyapunov exponents. However, since the Lyapunov exponents can only 

identify between asymptotic stability, general limit cycles and chaos, we need to 

use the fractal dimension df to discriminate between the different periodic 

behaviors possible. Based on prior empirical work (Castillo & Melin, 1996b), we 

have been able to use the fractal dimension to discriminate between different 

periodic behaviors. Then, if we combine the use of the Lyapunov exponents with 

the use of the fractal dimension, we can obtain a set of fuzzy rules that can 

identify in a one-to-one manner the different dynamic behaviors. The if-then rules 

have to be "fuzzy" because there is uncertainty associated with the numerical 

values of the Lyapunov exponents and also the classification scheme (for the limit 

cycles) using the fractal dimension is only approximated. 

We show in Table 6.2 the fuzzy rule base that we have developed for 

dynamic behavior identification for dynamical systems of up to three variable. 

The empty fields in Table 6.2 indicate no use of the fractal dimension for that 

case. 

We can define membership functions for the numerical intervals of the 

fractal dimension, for the Lyapunov exponents and for the behavior identifications 

shown in Table 6.2. Once this membership functions are defined, the usual fuzzy 

reasoning methodology can be applied to implement this method of behavior 

identification. 
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Table 6.2 Fuzzy rule base for behavior identification using Lyapunov 

exponents and fractal dimension 

IF THEN 

Number of Lyapunov Fractal Behavior 

variables exponents Dimension Identification 

1 (-1 stable fixed point 

2 ( - ,  -1 stable fixed point 

2 (0, -) [1.1, 1.2) limit cycle of period 2 

2 (0, -1 11.2, 1.3) limit cycle of period 4 

2 (0, -1 [1.3, 1.4) limit cycle of period 8 

2 (0, -1 [1.4, 1.5) limit cycle of period 16 

3 (-, -, -1 stable fixed point 

3 (0, -, -1 12.1, 2.2) limit cycle of period 2 

3 (07 -, -1 [2.2,2.4) limit cycle of period 4 

3 (0, -> -1 [2.4,2.6) limit cycle of period 8 

3 (0, -, -1 12.6, 2.8) limit cycle of period 16 

3 (+, 0, -> 12.8, 3.0) chaos 

6.4 Summary 

We have presented in this chapter a new method for automated simulation of non- 

linear dynamical systems. This method is based on a hybrid fuzzy-genetic 

approach to achieve, in an efficient way, automated simulation for a particular 

dynamical system given its mathematical model. The use of genetic algorithms is 

to achieve automated parameter selection for the models. The use of hzzy logic is 

to simulate the process of expert behavior identification by implementing the 

knowledge of identification by a set of fuzzy rules. In Chapter 8, we will explore 

some advanced applications of this method for automated simulation. The results 

will show the efficiency of this new method for the simulation of complex non- 

linear dynamical systems. 
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Chapter 7 

Neuro-Fuzzy Approach for Adaptive Model-Based 
Control 

We describe in this chapter a new method for adaptive control of Non-Linear 

Dynamical Systems based on the use of Neural Networks, Fuzzy Logic and 

mathematical models. Dynamical Systems can have many forms and be of many 

types, but one very important case is that of non-linear dynamic plants. Production 

processes in real world Plants are often highly non-linear and difficult to control. 

The problem of controlling them using conventional controllers has been widely 

studied (Albertos, Strietzel & Mart, 1997). Much of the complexity in controlling 

any process comes from the complexity of the process being controlled. This 

complexity can be described in several ways. Highly non-linear systems are 

difficult to control, particularly when they have complex dynamics (such as 

instabilities to limit cycles and chaos). Difficulties can often be presented by 

constraints, either on the control parameters or in the operating regime. Lack of 

exact knowledge of the process, of course, makes control more difficult. Optimal 

control of many processes also requires systems which make use of predictions of 

future behavior. The mathematical models for the Plants are assumed to be 

expressed as systems of differential equations. The goal of having these models is 

to capture the dynamics of production processes, so as to have a way of 
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controlling this dynamics for industrial purposes. Accordingly, this chapter is 

divided into four parts: Modelling the Process of the Plant, Neural Networks for 

Control, Fuzzy Logic for Model Selection, and Neuro-Fuzzy Adaptive Model- 

Based Control. Of course, even if we illustrate here our new method for adaptive 

control only for non-linear plants, the method can also be used for general non- 

linear dynamical systems. 

7.1 Modelling the Process of the Plant 

The problem of automated mathematical modelling for non-linear dynamical 

systems was considered in Chapter 5 of this book. However, we need to consider 

the problem of modelling related to achieving model-based control. In this case, 

we need mathematical models of the specific dynamical system to have a 

reference dynamic behavior that the controller can follow. Also, it is important to 

consider the control parameters in the mathematical model, so that we can apply 

the appropriate control actions to the dynamical system. We will illustrate in this 

section these ideas for the case of dynamic plants and will show in the following 

sections how to use the models for adaptive control. 

We need a mathematical model of the non-linear dynamic plant to 

understand the dynamics of the processes involved in production. For a specific 

case, this may require testing several models before obtaining the appropriate 

mathematical model for the process. For real world plants with complex 

dynamics, we may even need several models for different set of parameter values 

to represent all of the possible behaviors of the plant. Mathematical models for the 

plants can be expressed as differential equations (in continuous time) or 

alternatively as difference equations (in discrete time). We assume in this chapter 

(without loss of generality) that the models are expressed as differential equations. 

The simplest mathematical model for a non-linear plant can be expressed 

as follows: 

dddt fi(x) - f3f2(x) (7.1) 

dpldt = f3f2(x) 
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where x = state variable, p = quantity of the product, P = constant dependent on 

the efficiency of the conversion process (production). This is a good mathematical 

model for the case in which there is only one input into the production process (x) 

and there is only one product (p). Functions fl(x) and f2(x) should represent the 

dynamics of the plant. 

For the case of two inputs to the process XI ,  x2 and one product p, we have 

the following general mathematical model: 

dxl/dt = fl (XI, x2) - Pfz(x1) (7.2) 

dx2/dt = gl(xl, x2) - ygz(x2) 

dp/dt = Pfz(x1) + ~ 8 2 ( ~ 2 )  
where p and y are constants measuring the efficiency of the production process. In 

this case, we have to design four functions fl(xl, x2), f2(x1), gl(xl, x2) and g2(x2) 

to represent the corresponding non-linear plant. 

For the case of two inputs to the process XI,  x2, one desired product p, and 

one undesirable product x3, we can have the following mathematical model: 

dxl/dt = fl(xl, x2) - Pf2(xI) - 01x1 x3 (7.3) 

dx2/dt = gl(xl? x2) - yg2(x2) - 02x2 X3 

dx3/dt = h( x3) + 01 X I  x3 + 02x2 x3 

dp/dt = Pfz(x1) + ~ 8 2 ( ~ 2 )  
where p, y, ol and 0 2  are constants measuring the efficiency of the production 

process. In this case, we have to design five hnctions fl(xl, x2), f2(x1), gl(xl, x2), 

g2(x2) and h( x3) to represent the corresponding plant. 

For the case of two inputs to the process x l ,  x2 and two products pl and p2 

, we have the general mathematical model: 

dxl/dt=fi(xl, ~ 2 )  - Plf2(~1) - P2f3(x1) (7.4) 

dx2/dt = gl (X 1, ~ 2 )  - Y 182(~2) - ~ 2 8 3 ( ~ 2 )  

dp 1 /dt = P 1 f2(x 1) + Y 182(~2) 

dp2/dt = + ~ 2 g 3 ( ~ 2 )  
where Dl, P2, y1, y2 are constants measuring the efficiency of the production 

process. In this case, we have to design six functions fl(xl, x2), f2(xl), f3(x1), 

gl(xl, x2), g2(x2) and g3(x2) to represent the corresponding plant. 
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General mathematical models for more complicated non-linear plants can 

be developed in a similar manner. In any case, the models can always be 

represented as sets of coupled simultaneous non-linear differential equations. 

The control of non-linear plants, represented by mathematical models like 

the ones described before, is a very complicated task because of the complex 

dynamics that can arise. The mathematical models, given by Equations (7.2), (7.3) 

and (7.4), can exhibit a wide range of dynamical behaviors (from periodic ones to 

even chaotic behavior). For this reason, it is very important to design control 

methods that can learn to control (in an adaptive manner) complex dynamical 

systems. These methods should use the knowledge and information about the 

plant contained in the mathematical models and also should use "intelligent" 

methodologies to really achieve adaptive and learning capabilities. In the 

following sections of this chapter we will describe in more detail how can we 

achieve this model-based adaptive control of non-linear plants. 

7.2 Neural Networks for Control 

Parametric Adaptive Control is the problem of controlling the output of a 

dynamical system with a known structure but unknown parameters. These 

parameters can be considered as the elements of a vector p. If p is known, the 

parameter vector 8 of a controller can be chosen as 8* so that the plant together 

with the fixed controller behaves like a reference model described by a differential 

equation with constant coefficients (Narendra & Annaswamy, 1989). If p is 

unknown, the vector 9(t) has to be adjusted on-line using all the available 

information concerning the dynamical system. 

Two distinct approaches to the adaptive control of an unknown plant are 

(i) direct control and (ii) indirect control. In direct control, the parameters of the 

controller are directly adjusted to reduce some norm of the output error. In indirect 

control, the parameters of the plant are estimated as p"(t) at any time instant and 

the parameter vector 8(t) of the controller is chosen assuming that ;(t) represents 

the true value of the plant parameter vector. Even when the plant is assumed to be 
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linear and time-invariant, both direct and indirect adaptive control result in non- 

linear systems. 

When the plant is non-linear and dynamic (i.e. the present value of its 

output depends upon the past values of the input and the output respectively), a 

neural network can be used as a controller as shown in Figure 7.1. This 

corresponds to direct control. 

Direct Control: In conventional direct adaptive control theory, methods for 

adjusting the parameters of a controller based on the measured output error rely on 

concepts such as positive realness and/or passivity. By making suitable 

assumptions concerning the plant and the reference model, it is shown that the 

direction in which a parameter is to be adjusted can be obtained by correlating two 

signals that can be measured. 

Figure 7.1 Direct adaptive control using neural networks. 
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At present, methods for directly adjusting the parameters of the controller 

(the neural network N, in Figure 7.1) in a stable fashion based on the output error 

are not available. This is due to the non-linear nature of both the plant and the 

controller. Even backpropagation cannot be used directly, since the plant is 

unknown and hence cannot be used to generate the desired partial derivatives. 

Hence, until direct control methods are developed, adaptive control of non-linear 

dynamical systems has to be carried out using indirect control methods. 

Indirect Control: As mentioned earlier, when indirect control is used to control a 

non-linear system, the plant is parameterized using one of the models described in 

the previous section and the parameters of the model are updated using the 

identification error. The controller parameters in turn are adjusted by 

backpropagating the error (between the identified model and the reference model 

outputs) through the identified model. A block diagram of such an adaptive 

system is shown in Figure 7.2. 

- - -- --- - - 

Figure 7.2 Indirect adaptive control using neural networks. 
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Both identification and control can be carried out at every instant or after 

processing the data over finite intervals. When external disturbances andlor noise 

are not present in the system, it is reasonable to adjust the control and 

identification parameters synchronously. However, when sensor noise or external 

disturbances are present, identification is carried out at every instant while control 

parameter updating is carried out over a slower time scale, to assure robustness. 

The structure of the adaptive system proposed in this work to control a 

non-linear dynamic plant is similar to the one shown in Figure 7.2, the main 

difference is that we use a decision scheme to select the appropriate reference 

model for the plant. This decision scheme is based on the use of fuzzy logic 

techniques and is explained in the next section. In Figure 7.2, the delayed values 

of the plant input and plant output form the inputs to the neural network N, which 

generates the feedback control signal to the plant. The parameters of the neural 

network Ni are adjusted by backpropagating the identification error ei while those 

of the neural network N, are adjusted by backpropagating the control error 

(between the output of the reference model and the identification model) through 

the identification model. 

Process control of non-linear plants is an attractive application because of 

the potential benefits to both adaptive network research and to actual process 

control in the industry. In spite of the extensive work on self-tuning controllers 

and model-reference control, there are many problems in the real world processing 

industries for which current techniques are inadequate. Many of the limitations of 

current adaptive controllers arise in trying to control poorly modeled non-linear 

systems. For most of these processes extensive data are available from past runs, 

but it is difficult to formulate precise models. This is precisely where adaptive 

networks are expected to be useful (Ungar, 1995). 

7.3 Fuzzy Logic for Model Selection 

For a complex dynamical system it may be necessary to consider a set of 

mathematical models to represent adequately all of the possible dynamic 

behaviors of the system (Melin & Castillo, 1997). In this case, we need a decision 
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scheme to select the appropriate model to use according to the value of a selection 

parameter a .  In this section, we show a method for model selection based on 

fuzzy logic and a new fuzzy inference system for differential equations. 

We have designed a method, based on fuzzy logic techniques, for 

mathematical model selection using as input the numerical value of a selection 

parameter a .  We assume, in what follows, that parameter a is defined over a real- 

valued interval: 

a g I a S a , .  (7.5) 

We also assume that we have n mathematical models considered appropriate for 

the respective n subintervals, defined on [ a 0  , a, 1, as follows: 

a o I a < a l ,  al I a < a2 , ..., a,-] I a S a , .  (7.6) 

The corresponding n mathematical models for these subintervals can be expressed 

as differential equations: 

dyldt = fl (y, a ) , dyldt = f2(y, a ) , ... , dyldt = fn(y, a ) . (7.7) 

Then, we can define a set of fuzzy if-then rules that basically relate the 

subintervals to the mathematical models in a one-to-one fashion. The advantage of 

using fuzzy rules (instead of conventional simple if-then rules) is that we can 

manage the underlying uncertainty of this process of model selection. We show 

the set of fuzzy rules for model selection in Table 7.1. 

Table 7.1 Decision scheme for model selection 

IF THEN 

MI:  dyldt=f l (y ,a)  

M2: dyldt = f2(y, a ) 

M3: dyldt = f3(y, a ) 

an-l I a I a ,  M,: dyldt = fn(y, a ) 
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To implement this decision scheme, we need a reasoning method that can 

use differential equations as consequents. We have developed a new fuzzy 

inference system that can be considered as a generalization of Sugeno's inference 

system (Sugeno & Kang, 1988) in which we are now considering differential 

equations as consequents of the fuzzy rules, instead of simple polynomials. Using 

this method, the decision scheme of Table 7.1 can be expressed as a single-input 

fuzzy model as follows: 

( If a is small then dyldt = fl(y,a) 

If a is regular then dytdt = f2(y,a) 

If a is medium then dyldt = f3(y,a) 

If a is large then dyldt = f,(y,a) 

where the output y is obtained by the numerical solution of the corresponding 

differential equation. We have to note here that this new fuzzy inference system 

reduces to the standard Sugeno system only when the differential equations have 

closed-form solutions in the form of polynomials. However, the solutions to the 

differential equations can be more complicated analytical functions or in most 

cases the solutions are so complex that can only be approximated by numerical 

methods. The advantage of this generalization of Sugeno's original method is that, 

in general, we can represent more complicated dynamic behaviors and also 

because of this fact, the number of rules needed to represent a given dynamical 

system is smaller. 

In Figure 7.3, we show the reasoning procedure for our fuzzy inference 

system for the case of a one-input single-output fuzzy model. The procedure is 

very similar to the original Sugeno's procedure, except that now in the output we 

obtain the crisp values of "y" by solving numerically the corresponding 

differential equations. The numerical solutions of the differential equations can be 

achieved by the standard Runge-Kutta type method (Nakamura, 1997): 

Yn+l = RK(yn) = Yn + 1/2(kl + k2) 

k 1 = hf(y,,tn) 

k2 = h f ( ~ n  + kl, tn+l) 
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where h is the step size of the numerical method and RK can be considered as the 

Runge-Kutta operator that transforms numerical solutions from time n to time 

n+l. 

Figure 7.3 The fuzzy inference system for differential equations. 

The reasoning procedure for differential equations can also be used for 

rules with multiple inputs (for the case of several selection parameters) by simply 

considering the minimum ("min" operator in Figure 7.3) of the firing strengths of 

each of the inputs. The fuzzy inference system for differential equations can also 

be illustrated as in Figure 7.4, where a complex dynarnical system is modeled by 

using four different mathematical models (MI, M2, M3 and M4). 

Of course, for this decision scheme to work we need to define membership 

functions for the different values of the parameter a corresponding to the 

mathematical models. The membership functions for the models should give us 

the degree of belief that a particular model is the correct one for a specific value of 

the parameter a. In Figure 7.5 we show a general method for defining the 

membership functions for n = 4 models. 

Min 

wl dyldt = fl(y,a) 3 yl = RK(fl(y,a)) 

w2 dyldt=f2(y,a) =. y2=RK(f2(y,a)) 
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, a 

a 
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Figure 7.4 Modelling a complex dynamical system with the 

fuzzy inference system. 

In Figure 7.5, the membership functions for models M2 and M3 are of the 

"gaussian" type and the membership functions for models MI and M4 are 

"sigmoidal". In this way, we can guarantee that there exists a smooth transition 

between the degree of membership between the different mathematical models. 

degree 

of 

membership 

Figure 7.5 General membership functions for n = 4 mathematical models. 

To apply this method of model selection, to a particular application, we 

have to find the corresponding selection parameter a (or even several parameters) 
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to be used in the decision scheme proposed in Table 7.1. Then, a partition of the 

definition interval for a has to be performed. After this, the one-to-one map 

between the mathematical models and the subintervals (obtained from the 

partition) is constructed. In this way, we can obtain the fuzzy rule base for model 

selection for a particular application. 

7.4 Neuro-Fuzzy Adaptive Model-Based Control 

In this section, we combine the method for adaptive model-based control using 

neural networks (described in Section 7.2) with the method for model selection 

using fuzzy logic (described in Section 7.3) to obtain a new hybrid neuro-fuzzy 

method for control of non-linear dynarnical systems. This new method combines 

the advantages of neural networks (ability for identification and control) with the 

advantages of fuzzy logic (ability for decision and use of expert knowledge) to 

achieve the goal of robust adaptive control of non-linear dynamical systems. The 

general structure of the adaptive system for control is shown in Figure 7.6. In this 

figure, a module for Model Selection based on fuzzy logic is added to the 

structure that we had in Figure 7.2, in this way the method can now change 

between mathematical models according to the dynamic conditions of the plant. 

An intelligent control system with the structure shown in Figure 7.6 is 

capable of adapting to changing dynamic conditions in the plant, because it can 

change the control actions (given by the neural networks N,) according to the data 

that is been measured on-line and also can change the reference mathematical 

model if there is a large enough change in the value of the selection parameter a. 

Of course, a change in the reference mathematical model also causes that the 

neural network Ni performs a new identification for the model. This is the reason 

why the whole process is called adaptive model-based control of non-linear 

dynamical systems. 

The architecture shown in Figure 7.6 can be used for constructing 

intelligent control systems for different applications. This can be done by defining 

the appropriate set of mathematical models for the particular application 

(according to the type and complexity of the plant or system) and the correct 
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architecture of the neural networks for identification and control. Initial training 

data can then be used to obtain the initial weights for the networks. The intelligent 

control system will then be ready for use on-line in the real plant or dynamical 

system. We have implemented a prototype intelligent control system, with the 

neuro-fuzzy approach for control, using the MATLABO programming language. 

The intelligent system for adaptive model-based control is shown in Appendix C 

of this book. The computer program listed in this appendix can be used as a basis 

for developing intelligent control systems for different applications and will be 

explained in more detail in Chapter 9. 

Figure 7.6 Indirect adaptive model-based neuro-fuzzy control. 
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7.5 Summary 

We have presented in this chapter a new method for adaptive model-based control 

of non-linear dynamical systems. This method is based on a hybrid neuro-fuzzy 

approach to achieve, in an efficient way, adaptive robust control of non-linear 

dynamical systems using a set of different mathematical models. We use fuzzy 

logic to select the appropriate mathematical model for the dynamical system 

according to the changing conditions of the system. To this end, we have 

developed a new fuzzy inference system for sets of differential equations, that can 

be considered a generalization of Sugeno's original method for fuzzy reasoning 

with polynomials. We have also shown a new method for adaptive model-based 

control using a neural network for control and a neural network for identification. 

Combining this method for control with the procedure for fuzzy model selection, 

gives us a new method for adaptive model-based control using a hybrid neuro- 

fuzzy approach. This method for adaptive control can be used for general 

dynamical systems or non-linear plants, since its architecture is independent of the 

application or the domain and will be illustrated for several complex non-linear 

problems in Chapter 9. 
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Chapter 8 

Advanced Applications of Automated Mathematical 
Modelling and Simulation 

In this chapter, we present several advanced applications of the new method for 

automated mathematical modelling and simulation described in Chapters 5 and 6 

of this book. First, we describe the application of the new methods for automated 

modelling and simulation to robotic dynamic systems, which is a very important 

application in the control of real-world robot arms and general robotic systems. 

Second, we apply our new methods for modelling and simulation to the problem 

of understanding the dynamic behavior of biochemical reactors in the food 

industry, which is also very important for the control of this type of dynamical 

systems. Third, we consider the problem of modelling and simulation of 

international trade dynamics, which is an interesting problem in economics and 

finance. Finally, we also consider the problem of modelling and simulation of 

aircrafts, as this is important for the real-world problem of automatic aircraft 

control. We conclude this chapter with some concluding remarks and also some 

future directions of research work. 
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8.1 Modelling and Simulation of Robotic Dynamic Systems 

Robotic Dynamic Systems can be modelled by systems of coupled non-linear 

differential equations and then it is possible to have a wide range of possible 

dynamic behaviors, including the "chaotic" behavior explained above. Of course, 

this kind of behavior is not desirable in this type of dynamic systems because we 

need stable robotic systems in the applications. For this reason, it is important to 

obtain the right mathematical models for the robotic systems and then perform 

numerical simulations on the models to obtain the information needed in the 

design and control of these systems. In this section we will review the different 

methods that can be used to derive mathematical models of robotic systems. 

8.1.1 Mathematical modelling of robotic systems 

Robot arm dynamics deals with the mathematical formulations of the equations of 

robot arm motion. The dynamic equations of motion of a manipulator are a set of 

mathematical equations describing the dynamic behavior of the manipulator (Fu, 

Gonzalez & Lee, 1987). Such equations of motion are useful for computer 

simulation of the robot arm motion, the design of suitable control equations for a 

robot arm, and the evaluation of the kinematic design and structure of a robot arm 

(Lilly, 1993). The actual dynamic model of a robot arm can be obtained from 

known physical laws such as the laws of Newtonian mechanics and Lagrangian 

mechanics. This leads to the development of the dynamic equations of motion for 

the various articulated joints of the manipulator in terms of specified geometric 

and inertial parameters of the links. Conventional approaches like the Lagrange- 

Euler (L-E) and Newton-Euler (N-E) formulations could then be applied 

systematically to develop the actual robot-arm motion equations. (Fu, Gonzalez & 

Lee, 1987). These motion equations are "equivalent" to each other in the sense 

that they describe the dynamic behavior of the same physical robot manipulator. 

We will consider only the L-E formulation in the following since we are interested 

in the model of a robotic system in continuous-time. 
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The derivation of the dynamic model of a manipulator based on the L-E 

formulation is simple and systematic. Assuming rigid body motion, the resulting 

equations of motion are a set of second-order coupled non-linear differential 

equations. The L-E equations of motion provide explicit state equations for robot 

dynamics and can be utilized to analyze and design advanced joint-variable space 

control strategies. The derivation of the dynamic equations of an n degrees of 

freedom manipulator is based on the Lagrange-Euler equation: 

where: L = Lagrangian function = kinetic energy k - potential energy p 

k = total kinetic energy of the robot arm 

p = total potential energy of the robot arm 

qi = generalized coordinates of the robot arm 

qti = first derivative of the generalized coordinate, qi 

~i = generalized force (or torque) applied to the system at joint i to drive 

link i 

From the above Lagrange-Euler equation, one is required to properly choose a set 

of "generalized coordinates" to describe the system. Generalized coordinates are 

used as a convenient set of coordinates which completely describe the location 

(position and orientation) of a system with respect to a reference coordinate frame. 

Applying the Lagrange-Euler formulation to the Lagrangian function of 

the robot arm (Fu, Gonzalez & Lee, 1987) yields the necessary generalized torque 

zi for joint i actuator to drive the ith link of the manipulator, 

or in a matrix form as 

where ~ ( t )  = n x 1 generalized torque vector applied at joints i = 1, ..., n ; that is, 

q(t) = an nxl vector of the joint variables of the robot arm and can be 

expressed as 

q(t) = (ql(t), 92012 ... 5 9,(t)IT (8.5) 
q'(t) = an nxl vector of the joint velocity of the robot arm and can be 
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expressed as 

qYt> = (q'l @I> q'2(t)7 ... , q'n(t>>T (8.6) 
qU(t) = an nx1 vector of the acceleration of the joint variables q(t) and can 

be expressed as 

q"(t> = (ql'l(t), qI12(t), ... , qll,(t>)T (8.7) 
D(q) = an nxn inertial acceleration-related symmetric matrix 

h(q,q') = an nxl non-linear coriolis and centrifugal force vector whose 

elements are 

h(q7q') = (hl, h2, e e . 7  hJT (8.8) 
c(q) = an nxl gravity loading force vector whose elements are 

c(q) = (cl, ~ 2 ,  -.., cnIT (8.9) 
We will show as an example the Lagrange-Euler equations of motion for a two- 

link manipulator (Figure 8.1). We assume the following: joint variables = e l ,  82; 

mass of the links = m17 m2; link parameters = al = a 2  = 0; dl = d2 = 0; and a, = 

a2 = 1. Then, from Equation (8.3) we can obtain that for the two-link manipulator: 

~ ( t )  = D(8) 811(t) + h(0 , 0') + c (0 ) 

where: 
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As a result of this, we can say that the equations of motion for a two-link 

manipulator are a set of two second-order coupled non-linear differential 

equations. By an appropriate change of variables this mathematical model of a 

two link-manipulator can also be viewed as a set of four first-order coupled non- 

linear differential equations. Then, the range of dynamic behaviors for (8.10) can 

go from simple periodic (stable) orbits to even complicated "chaotic" attractors. 

Of course, more complicated robotic systems will need mathematical models of 

even higher complexity (in the number of equations and the number of terms) and 

the identification of dynamic behaviors becomes a real problematic issue. This is 

the reason why new methods for automated modelling and simulation of robotic 

dynamic systems are needed and we think that the work presented in this book is a 

contribution in this line of research. 

Figure 8.1 A two-link manipulator. 

8.1.2 Automated mathematical modelling of robotic dynamic 
systems 

The general method for automated mathematical modelling, described in Chapter 

5 of this book, can be used to automate the process of modelling robotic dynamic 

systems. We only need to specify the set of mathematical models for a specific 
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domain of Robotics and also to define the appropriate values for the variables 

involved in the process of modelling. We will consider, in this section, the case of 

modelling robotic manipulators to illustrate the application of the method for 

automated modelling (Castillo & Melin, 1997b). The general mathematical model 

for this kind of robotic system is the following: 

M(q)q" + V(q, qt))q' + G(q) + Fdqt= 7 (8.1 1) 

where q E Rn denotes the link position, M(q) E RnXn is the inertia matrix, V(q,qt) 

E Rnxn is the centripetal-Coriolis matrix, G(q) E Rn represents the gravity vector, 

Fd E Rnxn is a diagonal matrix representing the friction term, and z is the input 

torque applied to the links. 

For the simplest case of a one-link robot arm, we have the scalar equation: 

Mqql + Fdql + G(q) = T (8.12) 

If G(q) is a linear function (G = Nq), then we have the "linear oscillator" model: 

q" + aq' + bq = c 

where a = Fd/Mq , b = N/Mq and c = z/Mq. This is the simplest mathematical 

model for a one-link robot arm. More realistic models can be obtained for more 

complicated functions G(q). For example, if G(q) = ~ ~ 2 ,  then we obtain the 

"quadratic oscillator" model: 

q" + aql+ bq2 = c (8.13) 

where a, b and c are defined as above. 

A more interesting model is obtained if we define G(q) = Nsinq. In this 

case, the mathematical model is 

q" + aq' + bsinq = c (8.14) 

where a, b and c are the same as above. This is the so-called "sinusoidally forced 

oscillator". More complicated models for a one-link robot arm can be defined 

similarly. 

For the case of a two-link robot arm, we can have two simultaneous 

differential equations as follows: 

qM1 + alqtl + blq22 = c1 (8.15) 

qtI2 + a2qt2 + b2q21 = c2 
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which is called the "coupled quadratic oscillators" model. In Equation (8.15) a], 

bl, a2, b2, c1 and c2 are defined similarly as in the previous models. We can also 

have the "coupled cubic oscillators" model: 

qlI1 + alqgl + b1q32 = C I  (8.1 6) 

q112 + a2qr2 + b2q3 1 = c2 

We can also have the "coupled forced quadratic oscillators" model: 

qlI1 + alqtl  + b1q2] = clsinq2 (8.1 7) 

q1I2 + a2qt2 + b2q22 = c2sinq2 

which is a system of two coupled second-order non-linear differential equations. 

More complicated models for a two-link robot arm can be defined similarly. 

Finally, we will consider the case of three-link robot arm. In this case, the 

mathematical models consist of a set of tlvee simultaneous differential equations 

of the following form: 

qU1 + alqVl + blql  = clsinq2sinq3 (8.18) 

q1I2 + a2qT2 + b2q2 = c2sinql sinq3 

q113 + a3q13 + b3q3 = c3sinq1sinq2 

where the constants are defined in a similar way. This mathematical model can be 

called "three coupled strongly forced oscillators". 

The new method for automated mathematical modelling was defined 

before (in Chapter 5) for general mathematical models from Dynamical Systems 

Theory. However, we need to define it now for robotic dynamic systems. This can 

be accomplish, by making the appropriate changes to the general method 

described in Chapter 5. We do not have to change the time series analysis module, 

because the classification scheme for the time series components is valid for any 

type of dynarnical system. We also do not have to change the best model selection 

module, because the criteria to select the model is still valid. On the other hand, 

we definitely have to change the expert selection module, because we now have to 

specify the models appropriate for robotic dynamic systems. We have developed a 

fuzzy rule base for model selection, for the case of robotic systems, which selects 

the mathematical models that are the most appropriate with the data available for 

the given problem. We show in Table 8.1 some sample rules of this knowledge 

base for model selection. 
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Table 8.1 Sample fuzzy rules for model selection for robotic systems. 

IF THEN 

No. of Trend Periodic Mathematical Model 

Links Part 

1 linear null linear-oscillator 

1 non-linear simple quadratic-oscillator 

1 non-linear regular cubic~oscillator 

1 non-linear difficult forced~quadratic~oscillator 

1 non-linear very-difficult forced~cubic~oscillator 

1 non-linear chaotic strongly~forced~oscillator 

2 linear null double~linear~oscillators 

2 non-linear simple coupled~quadratic~oscillators 

2 non-linear regular coupled~cubic~oscillator 

2 non-linear difficult coupled~forced~quadratic~oscillator 

2 non-linear very-difficult coupled~forced~cubic~oscillators 

2 non-linear chaotic coupled strongly forced oscillator 

The new method for automated mathematical modelling of robotic 

dynamic systems was implemented in the PROLOG programming language. A 

prototype intelligent system for automated modelling of robotic manipulator can 

be found in Appendix A of this book. We have tested the prototype intelligent 

system with different data to validate the new method and also the implementation 

with very good results (Castillo & Melin, 1998a). We show below some of the 

results obtained with the intelligent system for automated modelling of robotic 

dynamic systems, to give an idea of the performance of the system. 

In Figure 8.2 we show the results obtained with the intelligent system for 

automated modelling of robotic systems for two different cases. First, for a time 

series with fractal dimension of 0.9 and a robotic system of one link, we can see 

that the proposed mathematical model is the "linear oscillator" model. The reason 
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why this model is the best one for this case, is because the complexity of the time 

series is small (which can be classified as "smooth") and the robot arm has only 

one link. 

Figure 8.2 Sample inputloutput using the intelligent system for automated 

mathematical modelling of robotic dynamic systems 

(First set of cases). 

The second case in Figure 8.2 is for a time series with a fractal dimension 

of 1.63 and two variables, we can see that the proposed mathematical model is the 

"coupled forced quadratic oscillators". The reason why this model is considered 
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the best one for this case, is because the time series is considered "erratic" (the 

fractal dimension is relatively high) and the robot arm has two links (in the above 

cases q is the generalized coordinate of the robot arm). 

In Figure 8.3 we show the results obtained by the intelligent system for 

two more cases. First, for a time series with fractal dimension of 1.35 and a 

robotic system of one link, we can see that the proposed mathematical model is 

the "quadratic oscillator". The reason why this model is the best one for this case, 

is because the complexity of the time series is not that small (which is classified 

as "erratic" by the program) and the robot arm has only one link. 

Figure 8.3 Sample inputloutput using the intelligent system for automated 

mathematical modelling of robotic dynamic systems 

(Second set of cases). 
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The second case in Figure 8.3 is for a fractal dimension of 1.97 and a 

robotic system of three links, in this case the proposed mathematical model is the 

"three coupled strongly forced oscillators". The reason why this model is 

considered the best one for this case, is because the time series is considered 

"chaotic" (the fractal dimension is very high) and the robot arm has three links. 

In Figure 8.4 we show the results obtained by the intelligent system for 

two more cases. First, for a time series with fractal dimension of 1.54 and a 

robotic system of two links, we can see that the proposed mathematical model is 

the "coupled cubic oscillators". The reason why this model is considered the best 

one for this case, is because the complexity of the time series is not that small 

(which is classified as "erratic" by the program) and the robot arm has two links. 

Figure 8.4 Sample inputloutput using the intelligent system for automated 

mathematical modelling of robotic dynamic systems 

(Third set of cases). 
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The second case in Figure 8.4 is for a fractal dimension of 1.85 and a 

robotic system of three links, in this case the proposed mathematical model is the 

"three coupled strongly forced oscillators". The reason why this model is 

considered the best one for this case, is because the time series is considered 

"chaotic" and the robot arm has three links. 

8.1.3 Automated simulation of robotic dynamic systems 

Our new method for automated simulation of non-linear dynamical systems was 

described in Chapter 6 and a prototype implementation of this method in 

PROLOG can be found in Appendix B of this book. We tested the prototype 

intelligent system with different data to validate the new method and also the 

implementation with very good results. In this section, we show some of the 

results obtained using the intelligent system for automated simulation, to give an 

idea of the performance of the system. 

In Figure 8.5 we show the results obtained for a random initial population 

(of three members) and a simple mathematical model (given as a set of facts in the 

program of Appendix B). We can see in Figure 8.5 how the genetic algorithm 

evolves the initial population in such a way that three different dynamical 

behaviors are identified for the three corresponding parameter values. For a 

parameter value of 3 the behavior is a "cycle of period two", for a parameter value 

of 14 the behavior is a "cycle of period eight", and for a parameter value of 4 the 

behavior is a "cycle of period four". 

In Figure 8.6 we show the results obtained for a random initial population 

and a simple mathematical model. We can see in Figure 8.6 how the genetic 

algorithm evolves the initial population in such a way that three different 

dynamical behaviors are identified for the three corresponding parameter values. 

For a parameter value of 9 the behavior is "chaotic", for a parameter value of 4 the 

behavior is a "cycle of period four", and for a parameter value of 1 the behavior is 

a "fixed point". 
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Figure 8.5 Sample inputloutput using the intelligent system for automated 

simulation with an initial population of [I 0, 15,4]. 

We also show in this section some simulation results obtained with a 

prototype intelligent system for automated simulation that was developed in 

MATLAB, for several types of robotic dynamic systems. The prototype intelligent 

system in the MATLAB programming language runs more efficiently because 

MATLAB can perform numerical calculations faster than PROLOG. Also, 

MATLAB offers advantages in visualizing the results graphically. The numerical 

simulation results are briefly explained to give an idea of the performance of the 

intelligent system. 
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Figure 8.6 Sample inputloutput using the intelligent system for automated 

simulation with an initial population of [O, 5 ,  11. 

In Figure 8.7 we show the simulation results for a single-link robotic 

dynamic system with a mathematical model given by the second order differential 

equation: 

q" + aq' + bsinq = c (8.19) 

where a, b and c are physical parameters of the robotic system. The simulation 

results shown in Figure 8.7 correspond to the parameters: a = 30, b = 60, c = 7 

and to the initial conditions: q(0) = 5, q'(0) = 5. The solution shown in Figure 8.7 

is what is known as a cycle of period two because the orbit is oscillating between 
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two different points. As a consequence of this the behavior identification in this 

case is of a "cycle of period two". 

Simulation of single-link Robotic System 
I 

4.5 

3.5 

2.5 

I - 

0.5- -1 
\ I 

4 - - - L - \ / \- - 

0 I 1 

0 5 10 15 20 25 30 35 40 
time t (seconds) 

Figure 8.7 Simulation of a single-link robot arm showing a cycle of period two. 

In Figure 8.8 we show the simulation results for a single-link robotic 

dynamic system with a mathematical model given by Equation (8.19) The 

parameters remain the same as in the previous case, except for "a" which changes 

to: a=2. The initial conditions are different to better appreciate the dynamical 

behavior and are given by: q(0) = 35, q'(0) = 35. The solution shown in Figure 8.8 

is what is known as a cycle of period eight because the orbit is oscillating between 
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eight different points (after a transient period). As a consequence of this fact the 

behavior identification in this case is of a "cycle of period eight". 

The explanation for the change of dynamical behavior between a = 30 and 

a = 2 is related to the "damping" (given by "a") of the forced oscillator given by 

Equation (8.19). It is a well known fact that less damping implies more oscillatory 

power for a mechanical system (in this case, the robotic system). 

Simulation of single-link Robotic System 

33.5 L - -  "-~ 

time t (seconds) 

Figure 8.8 Simulation of a single-link robot arm showing a cycle of period eight. 

In Figure 8.9 we show the simulation results for a two-link robotic 

dynamic system with a mathematical model given by the two coupled second 

order differential equations: 

© 2002 Taylor & Francis



MODELLING, SIMULATION AND CONTROL . . . 143 

q1I1 + alqVl + blsinq2 = cl  

q1I2 + a2qg2 + b2sinq2 = c2 (8.20) 

where al, a2, bl ,  b2, c1 and c2 are physical parameters of the robotic system. The 

simulation results shown in Figure 8.9 correspond to the parameter values: 

a l=212,  a2=44,  b l = b 2 = 6 0 ,  c l =  c 2 = 7 2  

and to the initial conditions: ql(0) = 0.5, qfl(0) = 5, q2(0) = 4, qf2(0) = 5. 

The Solutions shown in Figure 8.9 are known as cycles of period two because 

their orbits are oscillating between two different points. The behavior 

identification in this case is of a "cycle of period two" for both links. 

Simulation of two-link Robotic System 
4 1 

time t (seconds) 

Figure 8.9 Simulation of a two-link robot arm showing cycles of period two for 

the positions ql and q2 of the links. 
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In Figure 8.10 we show the simulation results for a two-link robotic 

dynamic system with a mathematical model given by Equation (8.20). The 

parameters remain the same as in the previous case, except for 'la2" which changes 

to: a2 = 2. The initial conditions are different to better appreciate the complex 

dynamical behavior and are now given by: ql(0) = 0.5, qql(0) = 5, q2(0) = 35, 

qt2(0) = 5. The solution shown in Figure 8.10 is what is known as a "chaotic 

solution" because the orbit is oscillating (in an unstable manner) between an 

infinite number of periodic points. As a consequence of this fact the behavior 

identification in this case is of a "chaotic solution". 

Figure 8.10 Simulation of a two-link robot arm showing chaotic behavior for 

position ql . 
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The explanation for the change of dynamical behavior between the 

previous case for a2 = 44 and the case for a2 = 2 is similar to the one given before 

for a single-link robot, the only difference is that now the behavior is more 

complex (no periodic solution is found). 

In Figure 8.1 1 we also show the simulation results for a two-link robotic 

system with model given by Equation (8.20). The parameters and initial 

conditions remain the same as in the last case, except that now q2 is shown in 

Figure 8.1 1. We also have chaotic behavior for position q2, as in the previous 

figure, the only difference is in the range of numerical values of q2. 

Figure 8.1 1 Simulation of a two-link robot arm showing chaotic behavior for 

position q2. 
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Finally, in Figure 8.12 we show the simulation results for the two-link 

robotic system with the same model and parameters as in the last two cases, 

except that now q2 and ql are shown in the same figure. In this figure, we can see 

how both ql and qz tend to a "strange attractor", which is one of the distinguishing 

signs of "chaotic" behavior (Rasband, 1990). Of course, in Robotic applications 

this behavior has to be avoided because it will cause physical damage to the 

robotic system. This is why it is important to identify when this behavior can 

occur in advance to avoid critical situations. 

Figure 8.12 Simulation of a two-link robot arm showing chaotic behavior for 

positions ql and q2. 
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8.2 Modelling and Simulation of Biochemical Reactors 

We describe in this section the application of the new methods for modelling and 

simulation (described in Chapters 5 and 6) to the complex case of biochemical 

reactors. The case of biochemical reactors for food processing plants is a very 

complex one, because biochemical processes are often highly non-linear and 

consequently difficult to control (Melin & Castillo, 1998a). First, we consider the 

problem of modelling biochemical reactors using non-linear differential 

equations. We then describe how to automate this process of modelling, using the 

fuzzy-fractal approach described in Chapter 5. We also describe how to automate 

the process of numerical simulation for the mathematical models, using the fuzzy- 

genetic approach described in Chapter 6. Finally, we show some simulation 

results for the mathematical models of the biochemical reactors. 

8.2.1 Modelling biochemical rectors in the food industry 

Many products of considerable economic value of us humans are the result of the 

metabolic functions of microorganisms. From the industrial point of view, the 

substrate can be considered as the raw material and the microorganisms as the 

biochemical "micro-industry" that transforms this material into new products. In 

this section, we consider briefly the problem of food production using bacteria for 

industrial purposes. Many different food products are the result of bacteria 

population and the best example of this is the set of dairy (milk) products (Pelczar 

& Reid, 1982). 

We will consider the problem of food production for the case of yogurt. In 

this case, the use of Streptococcus thermophilus and Lactobacillus bulgaricus is to 

produce Lactic Acid which is the critical chemical compound necessary for 

obtaining this product with the exact biochemical properties. The right use of this 

two types of bacteria in this case, i.e. right temperature and time, results in more 

quantity and better quality of yogurt. We can say then, that from the industrial 

point of view the goal is to obtain the maximum quantity of the food product with 

the desired chemical and biological properties (Melin & Castillo, 1997d). 
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However, this goal from the engineering point of view can be translated to 

obtaining the "best" control possible for the food generation process, and this 

involves modelling bacteria population in the substrate. 

For the case of yogurt we need to have mathematical models for the 

population of S. thermophilus and L. bulgaricus and the quantity of Lactic Acid 

produced by both bacteria. In this case, we require a Lotka-Volterra type model 

consisting of a system of three simultaneous differential equations, modelling the 

situation of two bacteria populations and one chemical compound concentration 

(Melin & Castillo, 1996). 

We will consider first the case of using only one bacteria for food 

production. The mathematical model in this case can be of the following form: 

where: N = population of bacteria, P = quantity of chemical product, r = rate of 

growth of the bacteria, k = limiting capacity of the environment (substrate 

quantity) and P = biochemical conversion factor. We can see how Equation (8.21) 

is of the general form given by the mathematical model of a non-linear plant of a 

single input and single output (Equation (7.1) of Chapter 7). 

We will consider now the case of two bacteria used for food production: 

where: N1 = population of bacteria 1, N2 = population of bacteria 2, P = quantity 

of chemical product, rl = rate of growth of bacteria 1, r2 = rate of growth of 

bacteria 2, K1=capacity of the environment for bacteria 1, K2=capacity of the 

environment for bacteria 2, P=biochemical conversion factor from bacteria 1 to 

product, y = biochemical conversion factor from bacteria 2 to product, a 1 2  and 

a21 are coefficients of the system. We can see how Equation (8.22) is of the 

general form given by the model of a non-linear plant of Equation (7.2) of Chapter 

© 2002 Taylor & Francis



MODELLING, SIMULATION AND CONTROL . . . 149 

Another interesting case will be if one considers two "good" bacteria for 

food production and one "bad" bacteria that is "attacking" the other bacteria: 

where: N3 = population of bacteria 3 (bad bacteria), r3 = rate of growth of 

bacteria 3, K3= capacity of the environment for bacteria 3 and ol = rate of attack 

of bacteria 3 to bacteria 1, and o2 = rate of attack of bacteria 3 to bacteria 2. We 

can see how Equation (8.23) is of the general form given by the mathematical 

model of a non-linear plant of Equation (7.3) of Chapter 7. 

This last two cases are more interesting from the mathematical point of 

view, because it is a well known fact from Dynamical Systems theory that a model 

of three or more coupled non-linear differential equations can exhibit the behavior 

known as "chaos" (Kapitaniak, 1996). This chaotic behavior has to be avoided for 

this kind of problems, because we need to have a stable food production process. 

Then, part of the problem in this case will be to control the food production 

process avoiding at the same time the chaotic regime of this type of models. 

In Equations (8.21) - (8.23) we are modelling bacteria growth only in the 

time domain. If we want also to consider bacteria growth in the space domain, we 

need to consider a measure of the geometrical complexity of bacteria colonies. A 

method that classifies bacteria colonies using the fractal dimension was developed 

for identification purposes (Castillo & Melin, 1994a). This method uses the fractal 

dimension to make a unique classification of the different types of bacteria, 

because it is a well known experimental fact that colonies of different types of 

bacteria have different geometrical forms. Then a one-to-one map can be 

constructed that relates each type of bacteria to its corresponding fractal 

dimension. 

Now we propose mathematical models that integrate the method for 

geometrical modelling of bacteria growth (using the fractal dimension) with the 

method for modelling the dynamics of bacteria population (using differential 
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equations). The resulting mathematical models describe bacteria growth in space 

and in time, because the use of the fractal dimension enables us to classify 

bacteria by the geometry of the colonies and the differential equations help us to 

understand the evolution in time of bacteria population. The models will be 

similar to the ones described before, except that now the fractal dimension D is 

integrated into the differential equations (Melin & Castillo, 1997b). 

We will consider first the case of using one bacteria for food production. 

The mathematical model in this case can be of the following form: 

dN/dt = r(l - N-D/K)N-D - PN-D (8.24) 

dP/dt = PN-D 

where D is the fractal dimension and the rest of the variables are as described 

before. 

We will consider now the case of two bacteria used for food production: 

where Dl = fractal dimension of bacteria 1, D2 = fractal dimension of bacteria 2 

and the rest of variables are as described before. 

We can also propose an equation similar to the one described before (Eq. 

8.23) for two "good" bacteria and one "bad" bacteria by using the fractal 

dimensions, Dl D2 and D3 , for the corresponding types of bacteria. Also, we can 

apply this method of modelling to more complicated cases of food production. 

As we can see from Equations (8.24) and (8.25) the idea of our method of 

modelling is to use the fractal dimension D as a parameter in the differential 

equations, so as to have a way of classifLing for which type of bacteria the 

equation corresponds. In this way, Equation (8.24), for example, can represent the 

model for food production using one bacteria (the one defined by the fractal 

dimension D). Since, the fractal dimension gives us a unique way to classify 
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bacteria, then also Equation (8.24) gives us a unique way to model the 

corresponding problem of food production using one bacteria. 

8.2.2 Automated mathematical modelling of biochemical reactors 

The method for automated modelling using a fuzzy-fractal approach (described in 

Chapter 5) can be used to select the appropriate mathematical models for 

biochemical reactors. We only need to make the necessary changes to the rules for 

model selection. No changes are needed for the "time series analysis" module or 

the "best model selection" module. The main changes needed to the "Expert 

Modelling" module are the following: 

1) Use of mathematical models for biochemical reactors 

2) Use of the fractal dimension as a classification variable. 

With these changes the general method for automated modelling of dynamical 

systems (described in Chapter 5) can be transformed to a method for modelling 

biochemical reactors. We show in Table 8.2 some sample rules of the knowledge 

for model selection. 

In Table 8.2, the fuzzy value "small" means near to 1, because when the 

fractal dimension is near to a value of 1, we can use equations (8.21), (8.22) and 

(8.23). On the other hand, the fuzzy value "large" means greater than 1, because 

when the fractal dimension is sufficiently different from 1, we have to use 

equations (8.24) and (8.25). Of course, we have to define the appropriate 

membership functions for the values "small" and "large" in this fuzzy rule base, to 

make this method work for the domain of modelling biochemical reactors. 
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Table 8.2 Sample fuzzy rules for model selection for biochemical reactors. 

- 

IF THEN 
No. of Fractal Fractal Fractal Mathematical Model 

bacteria Dimension Dimension Dimension 
of bacteria 1 of bacteria 2 of bacteria 3 

1 small Lotka-Volterra 

of Ea. (8.21) 

1 Large Lotka-Volterra with 

fractal dimension 

of Ea. (8.24) 

2 small small Equation (8.22) 

2 Large small Equation (8.25) 

2 small Large Equation (8.25) 

2 Large Large Equation (8.25) 

3 small small small Equation (8.23) 

3 Large small small Equation (8.23) with 

fractal dimension 

3 Large Large small Equation (8.23) with 

fractal dimension 

3 Large Large Large Equation (8.23) with 

fractal dimension 

8.2.3 Simulation results for biochemical reactors 

We describe in this section the simulation results obtained with the 

implementation of numerical methods for the approximate solution of differential 

equations. The complete listings of the computer programs (written in the 

MATLAB language) can be found in Appendix B. In all cases we used Runge- 

Kutta type methods to approximate the numerical solution of the mathematical 

models for the plants. The parameter values of the mathematical models are for 
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the case of real biochemical reactors in the food industry. The numerical 

simulation of the models (MI, M2 and M3) show the complex dynamics involved 

in the biochemical process of production. In the following figures, we show some 

of these results to give an idea of the complexity of biochemical reactors (and as a 

consequence of the food processing plants) and the degree of difficulty in 

controlling them. 

We show in Figure 8.13 the complicated dynamics involved even for the 

simplest case of only one bacteria used for food production (for example, yogurt). 

The mathematical model (MI) is as given by Equation (8.21). 

Simulation of MI :  one Bacteria used for food production 

97.5 / - -  
-- I 

1 97.25,-2 ------- - L -  

O 2 4 6 8 10 
time t (seconds) 

Figure 8.13 Numerical Simulation of the population in the model of one 

bacteria used for food production. 
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The numerical simulation shown in Figure 8.13 is for the following initial 

conditions: initial population: N = 97.5 for t =0 initial product: P = 0 for t = 0 

and the parameter values given as follows: 

rate of growth of the bacteria: r = 30 

limiting capacity of the environment: k = 100 

biochemical conversion factor: P = 0.8 

In this case, bacteria grows at a rate of 30 % and only 80 % of microbial life is 

converted into the chemical that produces food. The parameter values are standard 

in food production and the simulation shows that the dynamics is complicated. 

We also show in Figure 8.14 the dynamics for the food product for the same case 

of only one bacteria used for production. 

Simulation of MI:  one Bacteria used for food production 
800 1 1 

-- -- 
1 

0 1 

0 2 4 6 8 10 
time t (seconds) 

Figure 8.14 Numerical Simulation of the product in the model of one bacteria 

used for food production. 
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We can see in Figure 8.14 that the production is linear in time, with a final value 

of 70% at a time of 10. The mathematical model (MI) used in the simulation is 

given by Equation (8.21). The initial conditions and the parameter values are the 

same as the ones used in Figure 8.1 3. 

We show in Figure 8.15, the complicated dynamics for the case of two 

bacteria used for food production (for example, yogurt). The mathematical model 

(M2) is given by Equation (8.22). 

Figure 8.15 Numerical simulation of the population in the model of 

two bacteria used for food production. 
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The numerical simulation shown in Figure 8.15 is for the following initial 

conditions: 

initial populations: N1 = N2 = 26.5 for t = 0 

initial product P = O  for t = 0 

and the parameter values are given as fbllows: 

rate of growth for the bacteria: rl = r2 = 30 

limiting capacity of the environment: kl = k2 = 100 

biochemical conversion factors: P = y = 0.8 

coefficients of the bioreactor: a12 = a 2 1  = 2.6666 

These parameter values can be interpreted similarly to the case of only one 

bacteria. These values are standard in food production and show the complicated 

dynamics of the population for the two bacteria. 

We show in Figure 8.16, the complicated dynamics for the case of two 

"good" bacteria used for food production and one "bad" bacteria that is reducing 

the efficiency of the process. The mathematical model (M3) is given by Equation 

(8.23). We can see in Figure 8.16 how the population N2 of the "good" bacteria 2 

reduces to zero, and how the populations of the "bad" bacteria (N3) and of the 

other "good" bacteria (N1) stabilize the value to a fixed population. The net result 

of this situation is that the final quantity of the food product decreases because 

only one bacteria is producing and the other ones are not producing. The 

numerical simulation in Figure 8.16 is for the following initial conditions: 

initial populations: N1 = 65 N2 = 6.5 N3 = 10 for t = 0 

initial product P = O  for t = 0 

and the parameter values are given as follows: 

rate of growth for the bacteria: rl = r2 = r3 = 30 

limiting capacity of the environment: kl  = k2 = k3 = 100 

biochemical conversion factors: P = y = 0.8 

rate of attack of bacteria 3 ol = 0 2  = 0.2 

coefficients of the bioreactor: a 1 2  = a 2 1  = 2.6666 

Of course, this is a case we want to avoid in the food production process. In our 

method, by controlling the temperature we can control the population of the 'bad" 

bacteria to avoid the corresponding reduction in the production. 
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Figure 8.16 Numerical simulation of the populations in the model of three 

bacteria in the food production process (case "a"). 

We show in Figure 8.17, the complicated dynamics for the case of two 

"good" bacteria used for production and one "bad" bacteria attacking the other 

ones. The mathematical model is the same as in the last case. We can see in 

Figure 8.17 how the population N1 of the "good" bacteria 1 reduces to zero, and 

how the other two populations stabilize to a fixed population value. The net result 

of this situation is that the final production decreases because only one bacteria is 

producing. In this case, the production is higher than the one of case "a" because 
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the population N2 is greater than the population of the "bad" bacteria N3. In 

Figure 8.16, the situation is the other way around. The numerical simulation 

shown in Figure 8.17 is for the following initial conditions: 

initial populations: N1 = N2 = 60 N3 = 0.5 for t = 0 

initial product P = O  for t = 0 

Figure 8.17 Numerical simulation of the populations in the model of three 

bacteria in the food production process (case "b"). 

and the parameter values are given as follows: 

rate of growth for the bacteria: r, = 50 r2 = 60r3 = 20 
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limiting capacity of the environment: kl = 166.666 k2 = 200 k3 = 66.666 

biochemical conversion factors: P = y = 0.8 

rate of attack of bacteria 3 01 = 0 2  = 0.0002 

coefficients of the bioreactor: a12 = = 2.6666 

Of course, this is another case we want to avoid in the food production process. 

The new method for adaptive control will reduce the temperature (or increase it) 

to reduce the population of the "bad" bacteria and increase production. 

8.3 Modelling and Simulation of International Trade 
Dynamics 

We describe in this section mathematical models that can be used to study the 

dynamics of international trade (Castillo & Melin, 1998~). Mathematical models 

of International Trade (IT), between three or more countries, can show very 

complicated dynamics in time (with the possible occurrence of chaotic behavior). 

The simulation of these models is critical in understanding the behavior of the 

relevant financial and economical variables for the problem of IT. Also, 

performing the simulations for different parameter values of the models will 

enable the forecasting of future IT. The problem of modelling and simulation of 

IT has been solved in this section by applying the methods described in Chapters 5 

and 6 of this book. 

8.3.1 Mathematical modelling of international trade 

Mathematical modelling of international trade has been done traditionally with 

linear statistical models from classical Econometric Theory. However, more 

recently some researchers have found statistical evidence that time series from 

financial and economical variables show erratic fluctuations in time. It is well 

known that simple linear models can not represent this erratic dynamic behavior. 

for this reason, it becomes necessary to use non-linear mathematical models that 

will enable us to represent this complex dynamic behavior found for systems in 
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economics and finance. Non-linear models from the theory of dynamical systems 

can show the behavior known as "chaos" for different ranges of parameter values 

and for this reason they become a good choice in modelling complex financial or 

economic problems (Castillo & Melin, 1998~). 

We will consider first modelling the dynamics of autonomous economies, 

i.e.., study the oscillations of an autonomous economy. Then, we will consider 

modelling the problem of International Trade as a perturbation of the internal 

oscillations of an autonomous economy. 

Consider the Keynesian macroeconomic model of a single economy with 

Y as income, r as the interest rate, M as the (constant) nominal money supply, and 

assume that the good prices, P, are fixed during the relevant time interval. 

Suppose that gross investment, I, and savings, S, depend both on income and the 

interest rate in the familiar way, i.e., 

I=I(Y,r )  , Iy > 0, Ir < 0 

S=S(Y,r)  , Sy>O,Sr<O 

Income adjusts according to excess demand in the goods market, i.e., 

Y1= a (I - S) a > O  (8.26) 

The set of points {(Y,r)l I(Y,r) = S(Y,r)) constitutes the IS-curve of the model. Let 

L(Y,r) denote the liquidity preference with Ly > 0, Lr < 0 and assume that the 

interest rate adjusts according to: 

r' = P (L(Y,r) - Mlp) , P > o  (8.27) 

with the set of points {(Y,r)l L(Y,r) = Mlp) forming the LM-curve of the model. 

As is well known, the equilibrium (Y*,r*) is asymptotically (locally) stable if trJ < 

0 and det J >O, where J is the Jacobian of the system and Tr = trace, det = 

determinant. Also, it can be demonstrated by means of the Poincare-Bendixon 

Theorem that system (8.26) - (8.27) is able to generate oscillating behavior. 

Consider three economies, each of which is described by equations like 

(8.26) - (8.27) with possibly different numerical specifications of the functions, 
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Equation (8.28) constitutes a six-dimensional differential equation system which 

can also be written as a system of three independent two-dimensional limit cycle 

oscillators. 

By introducing international trade with linear hnctions EXi=EXi(Yj,Yk), 

i#j,k and Imi=Imi(Yi), Equation (8.28) becomes: 

Y'i = ai (Ii(Yi,ri) - Si(Yi,ri) + EXi(Yj,Yk) - Imi(Yi)) (8.29) 

rIi = Pi (Li(Yi,ri) - Milpi) 

with i, j, k= 1, 2, 3; j, k = i, and Mi as the money supplies reflecting balance of 

payments equilibria. Equation (8.29) constitutes a system of three linearly coupled 

limit cycle oscillators. The following theorem can then be demonstrated for 

system (8.29). 

Theorem: If all three autonomous economies are oscillating, the introduction of 

international trade may imply the existence of a strange attractor (chaotic 

behavior). 

Of course, chaotic behavior may occur for certain ranges of parameter 

values for the ai,  pi, Mi parameters. However, the emergence of strange attractors 

is not exclusive in models like these: some variations in the parameters can lead to 

the occurrence of other phenomena like quasi-periodic motion or phase-locking. 

The main goal for a certain country is to achieve a stable behavior in its economy 

while in this International Trade System, in this way controlling its future 

behavior in this system. As a result of this, a specific country (like Mexico) can 

optimize its profit while in a system of three countries (like with the NAFTA trade 

agreement). 

The general method for automated mathematical modelling, described in 

Chapter 5, can be used to automate the process of modelling the problem of 

international trade. We only need to specify the set of mathematical models 

(satisfying the general form of Equation (8.29)) and also to define the appropriate 

values for the variables involved in the process of modelling. 
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8.3.2 Simulation results of international trade 

We show in this section some simulation results obtained using the method for 

automated simulation of dynamical systems (described in Chapter 6). The fuzzy- 

genetic approach for simulation enables the automated generation of parameter 

values for the models and obtains the corresponding identifications of the dynamic 

behaviors. We will show here only simulation results for the case of three 

countries and leave to the reader the simulation of other cases. 

For the case of USA, Canada and Mexico we can assume that the system 

of differential equations given by Equation (8.29) represents a good general model 

of the actual system of the three corresponding economies. Then, using 

investment and saving functions of the form: 

Ii = ai Yi/ri 
i = 1,2,3 (8.30) 

Si = bi Yi/ri 

and with Liquidity given by a similar function: 

Li = ci Yi/ri i = 1,2,3 (8.3 1) 

and assuming that the export and import functions are linear: 

EX; = diYj + eiYk i # j , k  (8.32) 

Im; = fi + giYi i = 1,2,3 (8.33) 

we can find that a specific mathematical model for the three economies is given 

by the following system: 

ril = Pi ( ci (Yi/ri) - Milpi) 

where a ,  p, a, b, c, d, e, f, g are parameters to be estimated using actual data of the 

problem (time series for Y and r). Of course, Equation (8.34) is only one of the 

specific models that can be explored for this particular problem. 

Whether or not there are indeed "strange" attractors and hence chaotic 

trajectories in a specific model can be established only by numerical techniques. 

Simulation results for the system of Equation (8.34) indicate that economically 

reasonable specifications for this model can be found which indeed imply positive 

Lyapunov exponents and chaos. For this reason, we think that erratic fluctuations 

© 2002 Taylor & Francis



MODELLING, SIMULATION AND CONTROL . . . 163 

in the economy of a specific country can occur when a transition is made from a 

closed economy to an open one. 

We show in Figure 8.18 the dynamic behavior for the investment in the 

international trade system of Equation (8.34). The parameter values for this 

simulation were obtained automatically by the intelligent system for automated 

simulation. We can see in Figure 8.1 8 how the investment for USA and Canada 

are growing more rapidly than the one for Mexico in this specific case. 

Figure 8.18 Simulation results showing the dynamic behavior for the investment 

of USA, Canada and Mexico. 
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The simulation results shown in Figure 8.18 are for a situation of stable 

growing economies for the three countries. In the present time, the dynamic 

evolution for the countries (specially for Mexico) is not stable at all, but the 

ultimate goal is to achieve a stable growing pattern for the international trade 

system of USA, Canada and Mexico so as to optimize the profits for the three 

countries. The situation shown in Figure 8.1 8 could be a goal state for the three 

economies. 

Figure 8.19 Simulation results showing the dynamic behavior for the interest rate 

of USA, Canada and Mexico. 
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We show in Figure 8.19 the simulation results for the interest rate dynamic 

evolution in time, for the same case of stable growing economies for the three 

countries. We can see in Figure 8.19 how the interest rates of the three countries 

are relatively stable (Mexico's interest rate is higher but can be considered good). 

Still, we think that more research has to be done regarding which is to be 

considered the best situation for the three economies in this international trade 

system. 

8.4 Modelling and Simulation of Aircraft Dynamic Systems 

We describe in this section mathematical models that can be used to study the 

dynamics of aircraft systems. Mathematical models of aircraft systems can show 

very complicated dynamics in time (with possible occurrence of chaos). The 

simulation of these models is critical in understanding the dynamic behavior of a 

real airplane. Also, performing the simulations for different parameter values of 

the models will enable the forecasting of future behavior of the airplane, to avoid 

possible failures of the aircraft. We solved the problem of modelling and 

simulation of aircraft systems by applying the methods described in Chapters 5 

and 6. 

8.4.1 Mathematical modelling of aircraft systems 

We now present some simplified mathematical models of aircraft systems to study 

the dynamics of the aircraft during flight (Melin & Castillo, 1998~). The models 

are in the form of equations of motion for the aircraft. The mathematical model of 

an airplane in the plane x-y is as follows: 

p ' =  11(-q+ 1) (8.35) 

9' = I2(p + m) 
where I1 and I2 are the inertia moments of the airplane with respect to axis x and 

y, respectively, 1 and m are physical constants specific to the airplane, and p, q are 

the positions with respect to axis x and y, respectively. For small velocities, it 
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maybe sufficient to approximate the behavior of an airplane with the model given 

by Equation (8.35), which ignores the z-component. However, a more realistic 

mathematical model of an airplane, in three-dimensional space, is as follows: 

p ' =  I,(-qr + 1) (8.36) 

q' = 12(pr + m) 

r' = 13(-pq + n) 

where now I3 is the inertia moment of the airplane with respect to the z axis, n is a 

physical constant specific to the airplane, and r is the position along the z axis (see 

Figure 8.20). We have to mention here that Equation (8.36) consists of a system of 

three simultaneous non-linear differential equations with very complicated 

dynamics. This is not the case for Equation (8.35) which is linear and no 

complicated behavior can occur. 

Figure 8.20 An airplane in three-dimensional space. 

Next we introduce the influences of the environment. We will be confined 

to winds for simplicity. Wind disturbances are assumed to have only one 

component of constant velocity. The magnitude of the constant velocity 

component is a function of altitude. The constant velocity wind component exists 

only in the horizontal direction and its value is given in Equation (8.37) as a 

logarithmic variation with altitude (Jorgensen & Schley, 1995). 

us = uwind5 [ 1 + (ln(r15 10)) ] (8.37) 
In (51) 
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where: ug is the constant velocity component, uwi,d,,, is the wind speed at 510 ft. 

altitude (typical value = 20 ft/sec), and r is the aircraft altitude. Then the 

mathematical model for the airplane with wind disturbances is as follows: 

p' = I,(-qr + 1) - u, (8.38) 

q1 = 12(pr + m) 

r' = 13(-pq + n) 

In Equation (8.38) the wind velocity is affecting only the velocity of the airplane 

in the x direction. The magnitude of wind velocity is dependent on the altitude r of 

the airplane. Other disturbances like temperature, pressure and turbulence can also 

be modeled and could be introduced in the mathematical model of Equation 

(8.36). 

The method for automated mathematical modelling of dynarnical systems 

using the fuzzy-fractal approach (of Chapter 5) can be used to automate the 

process of modelling aircraft systems. We can use the fractal dimension of the 

time series of the positions p,q,r for the airplane as a measure of the complexity of 

the modelling problem. Then, a set of fuzzy rules for model selection has to be 

developed to decide which models are the most appropriate ones for the airplane. 

Finally, the best mathematical model for the airplane has to be selected. The 

interested reader can follow the same procedure used in previous sections (for 

robotic systems and biochemical reactors) to develop an intelligent system for 

automated modelling of aircraft dynamic systems. 

8.4.2 Simulation results of aircraft systems 

We show in this section some simulation results for aircraft systems obtained 

using the method for automated simulation of dynamical systems (described in 

Chapter 6). The fuzzy-genetic approach for simulation enables the automated 

generation of parameter values for the models and obtains the corresponding 

identifications of the dynamic behaviors. We will show here only simulation 

results for the case of an airplane in three-dimensional space (Equation (8.36)) and 

leave to the reader the simulations of other cases. 
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In Figures 8.21 and 8.22 we show the simulation results for an airplane in 

three-dimensional space with inertia moments: 

I1 = 0.9, I2 = 0.5, = 0.1 

and the physical constants are: 1 = m = n = 0.1. The initial conditions are: p(0) = 0, 

q(0) = 0, r(0) = 0. In Figure 8.21 we show the position p of the airplane plotted 

from time 0 to 200. We can see clearly, in this figure, how the dynamic behavior 

of the system is becoming chaotic by period doublings (bifurcations). In Figure 

8.22 we show the position q of the airplane plotted again from 0 to 200. We can 

see from this figure a similar behavior for variable q, but even more chaotic 

because there more unstable points. 

Figure 8.21 Simulation of position p for an airplane with 

I, = 0.9, I, = 0.5, = 0.1 
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Simulation of Aircraft Dynamic System 
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Figure 8.22 Simulation of position q for an airplane with 

I, = 0.9, 1, = 0.5, I3 = 0.1 

In Figure 8.23 we show the simulation results for a smaller airplane with 

inertia moments: 

I~ = 0.3, I~ = 0.2, I, =0.1 

with the same physical constants and initial conditions. In Figure 8.23 we show 

the position p of the airplane plotted from time 0 to 200. We can see clearly, in 

this figure, how the dynamic behavior of the system is becoming chaotic by period 
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doublings but at a slower rate than in the first case. This is because a smaller 

airplane is more stable than a bigger airplane. 

Simulation of Aircraft Dynamic System 
I ,  I I I I 

0 50 100 150 200 
time t 

Figure 8.23 Simulation of position p for an airplane with 

I, = o . ~ , I ~ = o . ~ , I , = o . I  

In Figure 8.24 we show the simulation results for a large airplane with the 

following inertia moments: 

I, = 5, I2 = 4, I, = 3  

with the same physical constants and initial conditions. In Figure 8.24 we show 

the position p of the airplane plotted from time 0  to 100. We can see very clearly, 
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in this figure, how the dynamic behavior of the system is becoming chaotic at a 

faster rate than in the other cases. This is because we are considering a bigger 

airplane in this case. 

Figure 8.24 Simulation of position p for an airplane with I1 = 5, I2 = 4, I3 = 3 

In Figure 8.25 we show the simulation results for a smaller airplane with 

inertia moments: 

I1 = 0.009, I2 = 0.005, I3 = 0.001 

with the same physical constants and initial conditions. In Figure 8.25 we show 

the position p of the airplane plotted from time 0 to 1000. We can see in this case 
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how the dynamic behavior is stable for most of this time interval. The reason is 

that the airplane is so small that instability is highly improbable. 

Simulation of Aircraft Dynamic System 
6 i 

-6 ' I 

0 200 400 600 800 1000 
time t 

Figure 8.25 Simulation of position p for an airplane with 

I, = 0.009, I2 = 0.005, I3 = 0.001 

Now we will consider changing the physical constants 1, m, and n of the 

model of an airplane. In Figure 8.26 we show the simulation results for 1, = 0.9, 12 

= 0.5 and I3 = 0.1 and we consider increasing the values of 1, m and n to explore 

the change in dynamic behavior (Figure 8.26). 
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Figure 8.26 Simulation of position p for an airplane with 1 = 1, m = 1, n = 1 

We can see in Figure 8.26, how the dynamic behavior of the system 

becomes chaotic even faster than in previous cases. The reason for this fact is that 

the system is more unstable for larger values of the physical constants 1, m and n. 

If we, on the other hand, decrease the values of the constants 1, m and n, we can 

see that dynamic behavior become stable. 

Finally, we have to mention that chaotic behavior for the case of aircraft 

systems has been associated with the dangerous "flutter" effect that occurs in real- 

world airplanes (Melin & Castillo, 1998~).  For this reason, it is very important to 

understand how and when chaotic behavior occurs for this type of dynamical 
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systems. However, we also have to recognize that still there is a lot of research 

work to be done in this area of application. 

8.5 Concluding Remarks and'Future Directions 

In this chapter, we have presented several advanced applications of the methods 

for automated modelling and simulation (described in Chapters 5 and 6) with very 

good results. First, we described the application of the methods for modelling and 

simulation to robotic dynamic systems, which is a very interesting and important 

domain of application. The results were presented only for single-link and two- 

link robot arms, however the reader is welcome to explore more complicated 

systems with the methodology presented here. We also described the application 

of the methods for modelling and simulation to the problem of understanding the 

complex dynamic behavior of biochemical reactors. We showed mathematical 

models for biochemical reactors and also simulation results to explore the 

dynamic behavior of these dynamic systems. We expect the reader to explore 

similar systems (chemical reactors or nuclear reactors) with the same 

methodology and obtain also good results. We also describe briefly the application 

of the methods for modelling and simulation to the problem of international trade 

between three or more countries. This application is from the area of Economics 

and poses some difficult questions about the stability of a system of three or more 

countries with international trade. Finally, we have also considered briefly the 

problem of modelling and simulation of aircraft systems. We showed some 

simulation results for aircraft systems and leave to the reader further exploration 

of this type of dynamical systems. In conclusion, we have to say that we have 

presented four interesting applications with some encouraging results in the 

modelling and simulation of the corresponding dynamical systems, but still a lot 

of research work remains be done with these applications or with similar ones. 

© 2002 Taylor & Francis



Chapter 9 

Advanced Applications of Adaptive Model-Based Control 

In this chapter, we present several advanced applications of the new method for 

adaptive model-based control described in Chapter 7 of this book. First, we 

describe the application of the new method for adaptive model-based control to 

the case of robotic dynamic systems, which is very important for solving the 

problem of controlling real-world manipulators in real-time. Second, we describe 

the application of the method for adaptive model-based control to the case of 

biochemical reactors in the food industry, which is a very interesting case due to 

the complexity of this non-linear problem. Third, we consider briefly the problem 

of controlling international trade between three or more countries, with our new 

method for adaptive model-based control. Finally, we also consider briefly the 

problem of controlling aircrafts with our new method for adaptive model-based 

control. We conclude this chapter with some concluding remarks and also some 

future directions of research work. 

9.1 Intelligent Control of Robotic Dynamic Systems 

Given the dynamic equations of motion of a manipulator, the purpose of robot 

arm control is to maintain the dynamic response of the manipulator in accordance 
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with some prespecified performance criterion (Fu, Gonzalez & Lee, 1987). 

Although the control problem can be stated in such a simple manner, its solution 

is complicated by inertial forces, coupling reaction forces, and gravity loading on 

the links. In general, the control problem consists of (1) obtaining dynamic 

models of the robotic system, and (2) using these models to determine control 

laws or strategies to achieve the desired system response and performance. The 

first part of the control problem has been discussed to some extent in Section 8.1 

of the previous chapter. Now, this section concentrates on the latter part of the 

control problem. 

Among various adaptive control methods, the model-based adaptive 

control is the most widely used and it is also relatively easy to implement. The 

concept of model-based adaptive control is based on selecting an appropriate 

reference model and adaptation algorithm which modifies the feedback gains to 

the actuators of the actual system. The adaptation algorithm is driven by the errors 

between the reference model outputs and the actual system outputs. A general 

control block diagram of the model-based adaptive control system is shown in 

Figure 9.1 

Figure 9.1 A general control block diagram for model-based adaptive control. 

Reference Input r 
b Robot arm X = (eT, WT) 

w + dynamics 

Adjustable feedback 
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9.1.1 Traditional model-based adaptive control of robotic systems 

Many authors (Fu, Gonzalez & Lee, 1987) have proposed linear mathematical 

models to be used as reference models in the general scheme shown in Figure 9.1. 

For example, a linear second-order time invariant differential equation can be 

used as the reference model for each degree of freedom of the robot a m .  Defining 

the vector y(t) to represent the reference model response and the vector x(t) to 

represent the manipulator response, the joint i of the reference model can be 

described by 

aiyWi(t) + biyti(t) + yi(t) = ri(t) (9.1) 
If we assume that the manipulator is controlled by position and velocity feedback 

gains, and the coupling terms are negligible, then the manipulator dynamic 

equation for joint i can be written as 

ai(t)xni(t) + Pi(t)xfi(t) + xi(t) = ri(t) (9.2) 
where the system parameters ai(t) and Pi(t) are assumed to vary slowly with time. 

Several techniques are available to adjust the feedback gains of the 

controlled system. Due to its simplicity, a steepest descent method is used to 

minimize a quadratic function of the system error, which is the difference between 

the response of the actual system (Equation (9.2)) and the response of the 

reference model (Equation (9.1)). 

The fact that this control approach is not dependent on a complex 

mathematical model is one of its major advantages, but stability considerations of 

the closed-loop adaptive system are critical. A stability analysis is difficult and 

has only been carried out using linearized models. However, the adaptability of 

the controller can become questionable if the interaction forces among the various 

joints are severe (non-linear). 

9.1.2 Adaptive model-based control of robotic systems with a 
neuro-fuzzy approach 

We can apply our new method for adaptive model-based control using a neuro- 

fuzzy approach (described in Chapter 7) to the problem of controlling robotic 
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dynamic systems. Intelligent control of robotic systems is a difficult problem 

because the dynamics of these systems is highly non-linear. Optimal control of 

many robotic systems also requires methods which make use of predictions of 

future behavior. We describe, in this section, an intelligent control system for 

controlling robot manipulators to illustrate our neuro-fuzzy hybrid approach for 

adaptive control. 

We use a fuzzy rule base for model selection for the case of robotic 

manipulators. In Section 8.1, we presented mathematical models that can be used 

to model the dynamic behavior of robotic manipulators. Lets call MI the 

mathematical model given by Equation (8.13), M2 the mathematical model given 

by Equation (8.14), Mj  the model given by Equation (8.15), and M4 the model 

given by Equation (8.16). Then we can establish a fuzzy rule base for these 

models as explained in Section 7.3 of this book. We will assume here without loss 

of generality that the selection parameters are the fractal dimension of a time 

series of measured values of the relevant variables in the problem (angle, angular 

velocity) and the number of links of the manipulator. Also, we are assuming that 

only four models are needed to model completely the robotic system. Then, we 

can define a set of four fuzzy if-then rules that basically relate the fuzzy values of 

the selection parameters with the corresponding mathematical model. We show in 

Table 9.1 this set of fhzzy rules for model selection for the case of manipulators of 

one and two links. 

Table 9.1 Fuzzy rule base for model selection of robotic systems 

IF THEN 

Fractal dimension Number of links Mathematical Model 

low one MI 

high one M2 

low two M3 

high two M4 
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We also need to define the membership functions for the fuzzy values in 

Table 9.1. The membership functions for the models should give us the degree of 

belief that a particular mathematical model is the correct one for the specific 

values of the selection parameters. We have to note here that for using a fuzzy 

rule base (like the one described in Table 9.1) with mathematical models, we need 

to use our new fuzzy inference system for multiple differential equations 

(described in Chapter 7). 

We use neural networks for identification and control of the robotic 

dynamic system. The neural networks are trained with the backpropagation 

algorithm with real data to achieve the desired level of performance. Two 

multilayer neural networks are used, one for identification of the model of the 

robotic system and the second for the controller. If we combine the fuzzy rule base 

for model selection with the neural networks for identification and control, we can 

obtain an intelligent system for adaptive model-based control of robotic dynamic 

systems. The intelligent control system combines the advantages of neural 

networks (ability for identification and control) with the advantages of fuzzy logic 

(use of expert knowledge) to achieve the goal of robust adaptive control of robotic 

dynamic systems. The general architecture of the intelligent control system for 

robotic systems is shown in Figure 9.2. In this figure, we have a module for the 

fuzzy-rule base of model selection, a module for the neural network of control, 

and a module for the neural network of identification. 

An intelligent control system with the architecture shown in Figure 9.2 is 

capable of adapting to changing dynamic conditions in the robotic system, 

because it can change the control actions (given by the network Nc) according to 

the data measured on-line and also can change the reference mathematical model 

if there is a large enough change in the fractal dimension of the time series. Of 

course, a change in the reference mathematical model also causes that the neural 

network Ni performs a new identification for the model. In conclusion, the 

intelligent system with the architecture shown in Figure 9.2 achieves model-based 

control of robotic systems using a combination of Neural Networks and Fuzzy 

Logic. 
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Fuzzy rule base 
for 

Model Selection 

Figure 9.2 General architecture of the intelligent control system for 

robotic dynamic systems. 

+ 

To give an idea of the performance of our neuro-fuzzy approach for 

adaptive model-based control of robotic systems, we show below simulation 

results obtained for a single-link robot. The desired trajectory for the link was 

selected to be 

qd = 1 .Osin(2.0(1 -e-t3)t) 

and the simulation was carried out with the initial values: 

q(O)=O.l qt1(0)=O 

We used three-layer neural networks (with 5 hidden neurons) with the 

backpropagation algorithm and hyperbolic tangent sigmoidal functions as the 

activation functions for the neurons. We show in Figure 9.3 the initial function 

approximation achieved with the neural network for control. Of course, the 

approximation is not good (at the beginning) because the net hasn't been trained 

yet with the data. 

1 

b 

Neural Network 
for 

Control Nc 

Neural Network 
for 

Identification Ni 

u b 
Robotic 
System 

© 2002 Taylor & Francis



MODELLING, SIMULATION AND CONTROL . . . 

Figure 9.3 Initial function approximation of the neural network for control. 

We show in Figure 9.4 the function approximation achieved with the 

neural network for control after 400 epochs of training with a variable learning 

rate. The identification achieved by the neural network (after 400 epochs) can be 

considered very good because the error has been decreased to the order of 10-I. 

Still, we can obtain a better approximation by using more hidden neurons or more 
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layers. In any case, we can see clearly how the neural network learns to control the 

robotic system, so it is able to follow the arbitrary desired trajectory. 

Figure 9.4 Function approximation of the neural network 

for control after 400 epochs. 

We also show in Figure 9.5 the curve relating the sum of squared errors 

SSE against the number of epochs of neural network training. We can see in 

Figure 9.5 how the SSE diminishes rapidly from being of the order of lo1 to a 

smaller value of the order of 10-1. 
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Figure 9.5 Sum of squares of errors for the neural network plotted 

from 0 to 400 epochs. 

We have to mention here that these simulation experiments for a single 

link robot show very good results. We have also tried our approach for control 

with more complex robotic systems with encouraging results. We recommend for 

the interested reader to follow our methodology for control with this type of 

systems, so he or she can get all of the ideas behind solving the problem of robot 

control. 
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9.2 Intelligent Control of Biochemical Reactors 

We describe in this section the application of our new method for adaptive model- 

based control to the complex case of biochemical reactors in the food industry. 

The case of biochemical reactors for food processing plants is a very complex one 

because biochemical processes are often highly non-linear and difficult to control 

(Ungar, 1995). Optimal control of many biochemical processes also requires 

systems which make use of predictions of future behavior. In this section, we 

describe the methodology to develop and intelligent control system for 

biochemical reactors that can be used in food processing plants to maximize food 

production by controlling the biochemical processes that occur in the biochemical 

reactors (Melin & Castillo, 1998b). 

9.2.1 Fuzzy rule base for model selection 

We describe in this section a fuzzy rule base for model selection for the case of 

biochemical reactors producing yogurt. In Section 8.2, we presented the 

mathematical models that can be used to model the dynamical behavior in the 

biochemical reactors for this case. Lets call MI the mathematical model given by 

Equation (8.21), M2 the mathematical model given by Equation (8.22), and M3 
the mathematical model given by Equation (8.23). Then we can establish a fuzzy 

rule base for these models as explained in Section 7.3 of this book. We will 

assume in the following that the selection parameter is the temperature T used in 

the production process, defined over the real-valued interval: 

100 5 T 5 120 

because the range of temperatures used in the production process of yogurt is 

usually between 100 O F  and 120 O F .  Since we have three mathematical models in 

this case, we define three subintervals of [loo, 1201 as follows: 

l O O r T <  105 ,105IT< 1 1 5 , 1 1 5 I T I  120, 

where MI corresponds to the first subinterval, M2 corresponds to the second 

subinterval, and M3 corresponds to the third subinterval. Then, we can define a set 

of three fuzzy if-then rules that basically relate the subintervals to the 
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mathematical models in a one-to-one fashion. We show the set of fuzzy rules for 

model selection in Table 9.2. 

Table 9.2 Fuzzy rule base for model selection. 

IF THEN 

100 I T < 105 (Low) MathematicalModel = MI 

1 0 5 I T < 1 1 5  (Medium) Mathematical-Model = M2 

1 1 5 S T S  120 (High) Mathematical-Model = M7 

We also need to define the membership functions for the three 

corresponding mathematical models. The membership functions for the models 

should give us the degree of belief that a particular mathematical model is the 

correct one for a specific value of the temperature T in the closed interval 

[100,120]. In Figure 9.6 we show the membership functions for models MI,  M2 
and M3. 

Degree of 

Membership 

100 105 110 115 120 

Temperature 

Figure 9.6 Membership functions for the mathematical models. 
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In Figure 9.6, the membership functions for models M1 and M3 are of the 

"sigmoidal" type and the membership function for model M2 is of the "gaussian" 

type. This is to guarantee a smooth transition between the degree of membership 

between the different mathematical models. 

We have implemented this hzzy rule base in the MATLAB programming 

language (the complete program is listed in Appendix C). The MATLAB 

programming language has symbolic and numeric features (Hanselman & 

Littlefield, 1995). Also the MATLAB has available the "Fuzzy Logic Toolbox" 

which enables an easy implementation of fuzzy inference systems (Jang & Gulley, 

1997). We can use the "Rule Editor" of the Fuzzy Toolbox to construct the rules 

of the fuzzy inference system. In Figure 9.7, we show the fuzzy rules of Table 9.2 

as they are entered in the Rule Editor. 

1. If [temperature is Low) then (model is M I ]  ( I )  
2. If [temperature is Medium] then (model is M2) (1) 
3. If (temperature is High] then (model is M3) [I) 

Figure 9.7 Fuzzy rule base for model selection in the Rule Editor. 
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We can use the "Membership Function Editor" to display and edit all of 

the membership functions for the fuzzy inference system. In Figure 9.8, we show 

the membership functions for the mathematical models (output) as they are edited 

in the Membership Function editor. Also, we show in Figure 9.9 the membership 

functions for the temperature (input). 

Figure 9.8 Membership functions (model selection) in the 

"Membership Function Editor". 
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In Figure 9.8 we show the three different membership functions for the 

models MI,  M2 and M3 and we can see the "smooth transition" between the 

degree of membership between each mathematical model. 

Figure 9.9 Membership functions for the temperature in the 

"Membership Function Editor" 

In Figure 9.9 we show the three different membership functions for the 

temperature classified as Low, Medium and High. 
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Figure 9.10 General structure of the fuzzy rule base in the FIS Editor. 

In the Fuzzy Inference System (FIS) Editor we can display the general 

information about the fuzzy rule base that we have just designed. In Figure 9.10, 

we show the general structure of the fuzzy rule base that we have just designed for 

model selection. 

© 2002 Taylor & Francis



190 ADVANCED APPLICATIONS OF ADAPTIVE MODEL-BASED . . . 

9.2.2 Neural networks for identification and control 

We describe in this section the neural networks used for identification and control 

for the case of adaptive model-based control of biochemical reactors producing 

yogurt. The neural networks were triined initially using the "backpropagation" 

learning algorithm (Miller, Sutton & Werbos, 1995) with real data to achieve the 

desired level of performance and then they were tested for robustness with new 

data. Process control of biochemical plants is an attractive application because of 

the potential benefits to both adaptive network research and to actual biochemical 

process control. In spite of the extensive work on self-tuning controllers and 

model-reference control, there are many problems in chemical processing 

industries for which current techniques are inadequate. Many of the limitations of 

current adaptive controllers arise in trying to control poorly modeled non-linear 

systems. For most of these processes extensive data are available from past runs, 

but it has been difficult to formulate precise models (Ungar, 1995). 

Bioreactors are difficult to model because of the complexity of the living 

organisms in them and also they are difficult to control because one often can't 

measure on-line the concentration of the chemicals being metabolized or 

produced. Bioreactors can also have markedly different operating regimes, 

depending on whether the bacteria is rapidly growing or producing product. 

Model-based control of this reactors offers a dual problem: determining a realistic 

process model and determining effective control laws in the face of inaccurate 

process models and highly non-linear processes. 

Biochemical systems can be relatively simple in that they have few 

variables, but still very difficult to control due to strong nonlinearities which are 

difficult to model accurately. A prime example is the bioreactor. In its simplest 

form, a bioreactor is simply a tank containing water and cells (e.g. bacteria) which 

consume nutrients ("substrate") and produce products (both desired and 

undesired) and more cells. Bioreactors can be quite complex: cells are self- 

regulatory mechanisms, and adjust their growth rates and production of different 

products radically depending on temperature and concentrations of waste 

products. Mathematical models for these systems can be expressed as differential 

equations of the type shown in Section 8.2 of the previous chapter. 
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We have implemented a model-based neural controller using the 

architecture of Figure 7.6, described in Chapter 7. Two multilayer neural networks 

are used, one for identification of the model of the plant and the second for the 

controller. Each neural network has 3 layers, a one node input layer, a 5-node 

hidden layer, and a one-node output layer. We show in Figure 9.11 the 

architecture of the neural networks for identification and control. The neural 

networks were implemented in the MATLAB programming language to achieve a 

high level of efficiency on the numerical calculations needed for these networks. 

We trained the adaptive networks using temperatures and control actions varying 

over the range of values relevant to the specific application. The 

"backpropagation" learning algorithm was used with the data to obtain the weights 

of the networks. 

Figure 9.1 1 Structure of the networks for identification and control. 
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The backpropagation algorithm (Soucek, 1991) can be written as follows: 

1 .- Start with a random set of weights. 

2.- Calculate yp by propagating the input xp trough the network. 

3.- Calculate the error of a node corresponding to the pattern p as: 

where dp is the desired output. 

4.- Adjust the weights of the network with the iterative equation: 

where apln is the error for node n at layer 1 and for the pattern p, given by 

the equation: 
- 

a p ~ n  - dp~n - Y p ~ n  

if node n is an output node, and by equation: 

Fpln = f '(~pln ) Cr ap ,~+l , r  W~+l,r,n 

where r is over the nodes in layer 1+1. f(y) is the activation function of the 

nodes. The activation function can be a sigmoidal function, for example, 

the logistic function is widely used. 

5.- Repeat by going to step 2. 

The complete computer program for the backpropagation algorithm, 

implemented in the MATLAB programming language, can be found in Appendix 

C of this manuscript. This computer program can be used to train the neural 

networks with real data for the problem of controlling biochemical reactors in the 

Food Industry. 

9.2.3 Intelligent adaptive model-based control for biochemical 
reactors 

In this section, we combine the implementation of the fuzzy rule base for model 

selection with the implementation of the neural networks for identification and 
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control to obtain an intelligent system for adaptive model-based control for 

biochemical reactors. This intelligent control system combines the advantages of 

neural networks (ability for identification and control) with the advantages of 

fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive 

control of biochemical reactors in food processing plants. The general architecture 

of the intelligent control system for biochemical reactors is shown in Figure 9.12. 

In this figure, we have a module for the fuzzy rule base of model selection, a 

module for the Neural Network of Control, and a module for the Neural network 

of Identification. 

Figure 9.12 General architecture of the intelligent control system 

Neural Network 
for 

Identification Ni 

Fuzzy rule base 
for 

Model Selection 

An intelligent control system with the architecture shown in Figure 9.12 is 

capable of adapting to changing dynamic conditions in the biochemical reactors, 

because it can change the control actions (given by the network Nc) according to 

the data measured on-line and also can change the reference mathematical model 

if there is a large enough change in the temperature T. Of course, a change in the 

b 

t + 

Neural Network 
for 

Control Nc 
b U 

Plant 
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reference mathematical model also causes that the neural network Ni performs a 

new identification for the model. 

After the neural networks were trained, we validated their performance 

with simulations to get an idea of the degree of approximation achieved. The 

results can be considered very good because the errors (of identification and 

control) achieved with the networks were relatively small. In the following 

figures, we show some of these results to give an idea of the performance of the 

neural networks for identification and control. 

We show in Figure 9.13 the initial function approximation achieved with a 

neural network for identification with the architecture shown in Figure 9.1 1. Of 

course, the approximation is not good (at the beginning) because the net hasn't 

been trained yet with the data. We set the parameters for the backpropagation 

algorithm as follows: 

goal-error = 0.00002 

learning-rate = 0.0001 

and we use as activation functions hyperbolic tangent sigmoidal functions 

(tansig). We use as reference model for the identification, the model of two 

bacteria (M2) used for production, because this is the case that is been considered 

for food production. This is sufficient for our purpose of having a neural network 

that knows the process of the plant, because the MI model ( of one bacteria) can 

be considered a special case of the M2 model and the M3 model can be treated as 

a case to be controlled. 

We show in Figure 9.14 the function approximation achieved with the 

neural network for identification after 40,000 epochs of training with a learning 

rate of 0.0001. The target values shown in Figure 9.14 are from the numerical 

solution of the M2 model (system of coupled differential equations) given as 

Equation (8.22) in Chapter 8. The curve shown as output in Figure 9.14 is the 

approximation given by the neural network after training it with the target values 

of the M2 model. 
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Figure 9.13 Initial function approximation of the neural network for identification. 

The identification of the model achieved (after 40,000 epochs) by the neural 

network, shown in Figure 9.14, can't be considered good at all. This means that 

still more training is needed to achieve the desired level of accuracy. 
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Figure 9.14 Function approximation of the neural network for identification 

after 40,000 epochs. 

We show in Figure 9.15 the curve relating the sum of Squared Errors 

(SSE) against the number of epochs of neural network training. We can see in 

Figure 9.1 5 how the SSE diminishes rapidly from being of the order of lo5 to the 

smaller value of the order of 101. However, we need more training to achieve an 

even smaller value of SSE. 

© 2002 Taylor & Francis



MODELLING, SIMULATION AND CONTROL . . . 197 

Figure 9.15 Sum of squares of errors for the neural network plotted 

from 0 to 40,000 epochs 

We show in Figure 9.16 the function approximation achieved with the 

network for identification after 80,000 epochs of training with a learning rate of 

0.0001. The target values shown in Figure 9.16 are from the numerical solution of 

the M2 model (Equation (8.22) ). The curve shown as output in Figure 9.16 is the 

approximation of the neural network after training it with the target values. The 

identification achieved (after 80,000 epochs) by the neural network is much better 

than the one shown in Figure 9.14. Of course, more training could improve even 

more the approximation. 
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Figure 9.16 Function approximation of the neural network for identification 

after 80,000 epochs 

We show in Figure 9.17 the curve relating the sum of squared errors 

against the number of epochs of neural network training. We can see in Figure 

9.17 how the sum of squared errors diminishes rapidly from being of the order of 

1 O5 to the relatively small value of 1 0-2. The fact that the sum of errors is of the 

order of after 80,000 epochs, means that the neural network has achieved a 

relative good approximation to the solution of the mathematical model M2. Of 

course, more training of the neural network could improve even more this 
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approximation. However, we have considered this approximation as sufficiently 

good for identification of the complex model of two bacteria for food production. 

Figure 9.17 Sum of squares of errors for the neural network plotted 

from 0 to 80,000 epochs. 

We show in Figure 9.18 the initial function approximation achieved with a 

neural network for control with the architecture shown in Figure 9.1 1. Of course, 

the approximation is not good (at the beginning) because the network hasn't been 

trained yet with the data. The parameters for the backpropagation algorithm are 

the same as the ones used for identification. On the other hand, we use in this case 
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as activation functions the pure linear ones (purelin), instead of sigmoidal type 

functions. This is because production control only requires the simulation of a 

linear production process. We use as data for training the neural network for 

control (see Appendix C) a sample which has the values of real production for 

different times. This is sufficient, in this case, for our purpose of having a neural 

network that knows how to control the production process of the plant. 

Figure 9.18 Initial function approximation of the neural network for control. 
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We show in Figure 9.19 the function approximation achieved by the neural 

network for control after 5,000 epochs of training with a learning rate of 0.0001. 

The target values shown in Figure 9.19 are from the sample of production data 

(Appendix C) used to train the neural network. The line shown as output in Figure 

9.19 is the approximation of the neural network to the pattern of the target values. 

The approximation achieved (after 5,000 epochs) by the neural network for 

control is excellent (as can be seen in Figure 9.19). The sum of squared errors is 

of the order of 10-2, which is sufficient in this case. 

Figure 9.19 Function approximation of the neural network for control 

after 5,000 epochs. 
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We have to remember that this training of the neural networks is only to 

have an initial knowledge of the plant. Later when the neural networks are used 

on-line, the real data that is going to be measured will be used to improve even 

more their performance. 

9.3 Intelligent Control of International Trade 

We describe in this section the application of our new method for adaptive model- 

based control to the problem of controlling international trade dynamics. The 

problem of international trade between three or more countries is a very complex 

one because of the couplings and non-linearities involved in the mathematical 

models (Castillo & Melin, 1998~). In this section, we describe the methodology to 

develop an intelligent system for controlling international trade that can be used 

by the government of a specific country to maximize the profit from its 

international trade with other countries. 

9.3.1 Adaptive model-based control of international trade 

The method for adaptive model-based control of non-linear dynamical systems 

consists of using a fuzzy rule base for model selection, a neural network for 

identification and a neural network for control (as described in Chapter 7). For the 

case of international trade, we need to define each of the method's components 

mentioned above to achieve the goal of controlling the dynamical system of three 

(or more) countries with trade between them. 

The mathematical models of international trade can be represented as 

systems of coupled non-linear differential equations (as described in Section 8.3 

of the previous chapter). In this case, we can establish a fuzzy rule base for model 

selection that enables the use of the appropriate mathematical model according to 

the changing conditions of the economies involved. For example, if we use the 

general mathematical models of Equations (8.28) and (8.29) for describing the 
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international trade dynamics between one, two or three countries, we can have the 

following specific models. For one country with no international trade we have: 

M,: Y'I = al(I1 - S1) 

rll = Pl(L1 - M l l ~ l )  
For two countries with no international trade: 

M2 : yVi = ai(Ii - Si) i = 1,2 

rti = Pi(Li - Milpi) 

For two countries with international trade: 

M3 : yti = ai(Ii - Si + y (EXi - IMi )) i = 1,2 

rfi = bi(Li - Milpi) 

For three countries with no international trade: 

M4 : yfi = ai(Ii - Si) i = 1,2,3 

rti = bi(Li - Milpi) 

And for three countries with international trade: 

M5: yti = ai(Ii - Si + y (EXi - IMi )) i = 1,2,3 

rti = bi(Li - Milpi) 

where Ii, Si, Li, Mi, EXi, IMi, and pi are defined as in Section 8.3 of the previous 

chapter. Now, using y as a selection parameter we can establish the fuzzy rule 

base for model selection as in Table 9.3. 

Table 9.3 Fuzzy rule base for model selection of international trade 

1 W  THEN 

Y Number of countries Mathematical Model 

one MI 

small two M2 

large two M3 

small three M4 

large three M5 
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In Table 9.3 we are assuming that the selection parameter y can have only 

two possible fuzzy values (small and large). The reasoning behind this is that 

when y is small, we can use the model with no international trade and when y is 

large we can use the model with international trade. We have to note here that the 

fuzzy rule base has to be developed according to the particular case that is being 

considered. 

We use neural networks, for identification and control, trained with the 

backpropagation algorithm (as in previous section). The integration of the fuzzy 

rule base for model selection with the neural networks for identification and 

control, results in an intelligent system for adaptive model-based control of 

international trade. This intelligent system combines the advantages of neural 

networks (ability for identification and control) with the advantages of fuzzy logic 

(use of expert knowledge) to achieve the goal of robust adaptive control of 

international trade. The general architecture of the intelligent control system for 

international trade is similar to the one shown in Figure 9.12, except that now 

instead of the plant we have a non-linear dynamical system in economics. An 

intelligent system with this architecture is capable of adapting to changing 

conditions in the economies of the countries, because it can change the control 

actions according to the data available and also can change the reference 

mathematical model if there is a large enough change in the parameter y. Of 

course, for this method to work we need to estimate parameter y from time series 

of the real values for the variables in the mathematical models. , 

9.3.2 Simulation results for control of international trade 

To give an idea of the performance of our neuro-fuzzy approach for adaptive 

model-based control of international trade dynamics, we show below simulation 

results obtained for the case of three countries (USA, Canada and Mexico) with 

international trade. We will consider the problem of controlling the economy of 

the less developed country (Mexico) because it is the most challenging from the 

control point of view. For the case of Mexico, one problem is that of reducing 
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interest rates in the short term so we will consider as a desired trajectory for this 

economy: 
rd = 0.25e-().It + 0.02s.int + 0.05 

with initial values o f :  

r(0) = 0.30 r'(0) = 0. 

In this desired trajectory for the economy, we are assuming that the goal interest 

rate is 5% and that we need to decrease the initial rate of 30% to the final interest 

rate of 5%. We also consider that the economy has natural cycles and because of 

this fact we use the "sine' function. 

We use three-layer neural networks (with 10 hidden neurons) with the 

backpropagation algorithm and hyperbolic tangent sigmoidal functions as the 

activation functions for the neurons. We show in Figure 9.20 the initial function 

approximation achieved with the neural networks for control. 

Figure 9.20 Initial function approximation of the neural network for control. 
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We show in Figure 9.21 the function approximation achieved with the 

neural network for control after 59 epochs of training with a variable learning rate. 

The identification achieved by the neural network (after 59 epochs) can be 

considered very good because the error has been decreased to the order of 

Still, we can obtain a better approximation by using more hidden neurons or more 

layers. In any case, we can see clearly how the neural network learns to control the 

economic dynamic system, because it is able to follow the arbitrary desired 

trajectory. 

Figure 9.21 Function approximation of the neural network for control 

after 59 epochs. 

© 2002 Taylor & Francis



MODELLING. SIMULATION AND CONTROL . . . 207 

We also show in Figure 9.22 the curve relating the sum of squared errors 

SSE against the number of epochs of neural network training. We can see in 

Figure 9.22 how the SSE decreases rapidly from being of the order of lo1 to a 

smaller value of the order of 10-4. 

Figure 9.22 Sum of squares of errors for the neural network plotted 

from 0 to 59 epochs. 

We have to mention here that these simulation experiments for the case of 

three specific countries (USA, Canada and Mexico) show very good results. We 

have also tried our approach for control with other dynamic systems in economics 
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with encouraging results. We recommend to the interested reader to use our 

methodology for this type of economic systems or other similar systems to explore 

on his (or her) own the interesting problem of controlling complex non-linear 

dynarnical systems. 

9.4 Intelligent Control of Aircraft Dynamic Systems 

We describe in this section the application of our new method for adaptive model- 

based control to the problem of controlling the dynamics of aircraft systems. The 

problem of controlling the dynamic behavior of an aircraft during flight is a very 

complex one because of the strong non-linearities involved in the mathematical 

models (Melin & Castillo 1998~).  In this section, we describe the methodology to 

develop an intelligent system for controlling aircraft systems that can be used to 

automate the flight (or part of it) of a real airplane. 

9.4.1 Adaptive model-based control of aircraft systems 

The method for adaptive model-based control of non-linear dynarnical systems 

consists of using a fuzzy rule base for model selection, a neural network for 

identification and a neural network for control. For the case of aircraft systems, 

we need to define each of these components to achieve the goal of controlling the 

dynamical system during flight. 

The mathematical models of aircraft systems can be represented as 

coupled non-linear differential equations (as described in Section 8.4). In this 

case, we can develop a fuzzy rule base for model selection that enables the use of 

the appropriate mathematical model according to the changing conditions of the 

aircraft and its environment. For example, if we use the general mathematical 

models of Equations (8.35), (8.36) and (8.38) for describing aircraft dynamics, we 

can formulate a set of fuzzy if-then rules that relate the models to the conditions 

of the aircraft and its environment. Lets assume that MI is given by Equation 

(8.35), M2 is given by Equation (8.36) and M3 is given by Equation (8.38). Now, 
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using the wind velocity ug and inertia moment I1 as selection parameters we can 

establish the fizzy rule base for model selection as in Table 9.4. 

Table 9.4 Fuzzy rule base for model selection of aircraft systems 

IF THEN 

Wind Velocity, up Inertia Moment, I, Mathematical Model 

small small MI 

small large M2 

large large M3 

In Table 9.4, we are assuming that the wind velocity ug can have only two 

possible fuzzy values (small and large). This is sufficient to know if we have to 

use the mathematical model that takes into account the effect of the wind (M3) for 

up large, or if we don't need to use it and simply the model M2 is sufficient (for ug 

small). Also, the inertia moment (I1) helps in deciding between models M1 and 

M2 (or M3). 
We use neural networks, for identification and control, trained with the 

backpropagation algorithm (as in previous sections). The integration of the fuzzy 

rule base for model selection with the neural networks for identification and 

control, results in an intelligent system for adaptive model-based control of 

aircraft dynamic systems. This intelligent system combines the advantages of 

neural networks (ability for identification and control) with the advantages of 

fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive 

control of aircrafts. The general, architecture of the intelligent control system for 

aircrafts is similar to the one shown in Figure 9.12, except that now instead of the 

plant we have an aircraft dynamic system. An intelligent system with this 

architecture is capable of adapting to changing conditions in the airplane or in its 

environment, because it can change the control actions according to the data 

available and also can change the reference mathematical model if there is a large 
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enough change in the parameters ug and 11. Of course, for this method to work we 

need to estimate these parameters from the time series of the real values for the 

variables in the mathematical models. 

9.4.2 Simulation results for control of aircraft systems 

To give an idea of the performance of our neuro-fuzzy approach for adaptive 

model-based control of aircraft dynamics, we show below simulation results 

obtained for the case of controlling the altitude of an airplane for a flight of 5 

hours. We assume that the airplane takes about one hour to achieve the cruising 

altitude 30 000 ft, then cruises along for about three hours at this altitude (with 

minor fluctuations), and finally descends for about one hour to its final landing 

point. We will consider the desired trajectory as follows: 

for O S t < l  

rd= 30 +2sinlOt for l < t < 4  {I:: - 30t for 4 < t 1 5  

Of course, a complete desired trajectory for the airplane would have to include the 

positions for the airplane in the x and y directions (variables p, q in the models of 

Section 8.4). However, we think that here for illustration purposes is sufficient to 

show the control of the altitude r for the airplane. 

We used three-layer neural networks (with 10 hidden neurons) with the 

backpropagation algorithm and hyperbolic tangent sigmoidal functions as the 

activation functions for the neurons. We show in Figure 9.23 the initial function 

approximation achieved with the neural network for control. 

We show in Figure 9.24 the function approximation achieved by the neural 

network for control after 600 epochs of training with a variable learning rate. The 

identification achieved by the neural network (after 600 epochs) can be considered 

very good because the error has been decreased to the order of lo1. Still, we can 

obtain a better approximation by using more hidden neurons or more layers. In 

any case, we can see clearly (from Figure 9.24) how the neural network learns to 

control the aircraft, because it is able to follow the arbitrary desired trajectory. 
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Figure 9.23 Initial function approximation of the neural network 

for control of an airplane. 

We also show in Figure 9.25 the curve relating the sum of squared errors 

SSE against the number of epochs of neural network training. We can see in 

Figure 9.25 how the SSE decreases rapidly from being of the order of 104 to a 

smaller value of the order of 1 O1. 
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Figure 9.24 Function approximation of the neural network for control 

of an airplane after 600 epochs. 

We have to mention here that these simulation experiments for the case of 

a specific flight for a given airplane show very good results. We have also tried 

our approach for control with other types of flights and airplanes with 

encouraging results. We leave to the reader further experimentation with this type 

of aircraft systems and other similar dynamical systems. 
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Figure 9.25 Sum of squares of errors for the neural network plotted 

from 0 to 600 epochs. 

9.5 Concluding Remarks and Future Directions 

In this chapter, we have presented several advanced applications of the method for 

adaptive model-based control (described in Chapter 7) with very good results. 

First, we described the application of the method for adaptive model-based control 

to the problem of controlling robotic dynamic systems, which is a very important 
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domain of application for areas such as manufacturing, medicine, aerospace and 

others. The simulation results were presented only for the case of single-link robot 

arms, however the reader is welcome to explore more complicated systems with 

the methodology presented here. We also described the application of the method 

for adaptive control to the problem of controlling the dynamical behavior of 

biochemical reactors used for food production in the food industry. The 

simulation results we presented only for relative simple biochemical reactors (for 

the case of producing yogurt), however we expect the reader to explore the control 

of similar systems (like chemical reactors or nuclear reactors) with the same 

methodology and obtain also good results. We also described briefly the 

application of the method for adaptive control to the problem of controlling 

international trade between several countries. This application is from the area of 

Economics and poses some difficult questions about the stabilization (or control) 

of an erratic economy with international trade. We have encouraging results in 

this area of application, but still there is a lot of work to be done for this type of 

problems. Finally, we have also considered briefly the problem of controlling 

aircrafts systems during flight. We have showed some simulation results for 

aircraft systems and leave to the reader further exploration of this type of 

dynamical systems. In conclusion, we have to say that we have presented four 

interesting applications of the method for adaptive control with encouraging 

results in controlling the corresponding dynamical systems, but still a lot of 

research work remains to be done with these applications or with similar ones. 
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Appendix A 

Prototype Intelligent Systems for Automated 
Mathematical Modelling 

In this Appendix, we show two computer programs that can be considered 

prototype intelligent systems for automated mathematical modelling. First, we 

show a prototype intelligent system for automated modelling of general non-linear 

dynamical systems. Then, we show a prototype intelligent system for the domain 

of robotic dynamic systems. The implementation of both computer programs was 

done in ARITYO PROLOG interpreter Version 6.00.86 for MS-DOS. 

A.l Automated Mathematical Modelling of Dynamical 
Systems 

We show in this section a computer program, in the PROLOG programming 

language, based on the fuzzy-fractal method for automated mathematical 

modelling described in Chapter 5 of this book. The prototype intelligent system 

for automated modelling uses as input the fractal dimension of the time series and 

the complexity of the problem (number of variables), and obtains as a result the 

"best" mathematical model of the dynarnical system under consideration. The file 
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of  this computer program can be found in the floppy disk accompanying this book 

(the name o f  the file is  0smodel.ari). 

I* Prototype intelligent system for automated mathematical modelling using Fuzzy Logic 
by Oscar Castillo and Patricia Melin (written in ARITY PROLOG) */ 

automated-modelling :- 
writecinput the fractal dimension:'), 
read( Fractal-dim), 
writerinput the complexity of the problem:'), 
read( Dim), 
trend( Fractal-dim, Trend), 
time-series( Fractal-dim, Time-series), 
periodicgart( Fractal-dim, Periodicgart), 
model-selected( Fractal-dim, Dim, Trend, Periodicgart, Model), 
write('a candidate model is the:'), write(Model), nl, 
write('because the time series is:'), write(Time-series). 

I* Module for Time Series Analysis */ 

trend( Fractaldim, linear) :- 
Fractal-dim > 0.8, 
Fractal-dim < 1.2, !. 

trend( Fractal-dim, non-linear) :- 
Fractal-dim >= 1.2, 
Fractal-dim < 1.5. 

time-series( Fractal-dim, smooth) :- 
Fractal-dim > 0.8, 
Fractaldim < 1.2, !. 

time-series( Fractal-dim, cyclic) :- 
Fractal-dim >= 1.2, 
Fractal-dim < 1.5, !. 

time-series( Fractal-dim, erratic) :- 
Fractal-dim >= 1.5, 
Fractaldim < 1.8, !. 

© 2002 Taylor & Francis



MODELLING, SIMULATION AND CONTROL . . . 

time-series( Fractal-dim, chaotic) :- 
Fractal-dim >= 1.8, 
Fractal-dim =< 2.0. 

periodicgart( Fractal-dim, null) :- 
Fractal-dim > 0.8, 
Fractal-dim < 1.2, ! . 

periodic-part( Fractal-dim, simple) :- 
Fractal-dim >= 1.2, 
Fractal-dim < 1.4, ! . 

periodicgad( Fractaldim, regular) :- 
Fractal-dim >= 1.4, 
Fractaldim < 1.6, !. 

periodicgart( Fractal-dim, difficult) :- 
Fractal-dim >= 1.6, 
Fractal-dim < 1.7, !. 

periodicgart( Fractaldim, very-difficult) :- 
Fractaldim >= 1.7, 
Fractaldim < 1.8, !. 

periodicgart( Fractal-dim, chaotic) :- 
Fractal-dim >= 1.8, 
Fractal-dim =< 2.0. 

/* Module for Selection of the Mathematical Models */ 

model-selected( Fractal-dim, one, linear, null, linear-regression) :- 
Fractal-dim > 0.8, 
Fractal-dim < 1.1, ! . 

model-selected( Fractaldim, one, linear, null, logarithmic-regression) :- 
Fractal-dim >= I .  1, 
Fractal-dim < 1.2. 

model-selected( Fractal-dim, one, non-linear, simple, logistic-differential-equation) :- 
triangular-logistic( Fractal-dim, Membership), 
Membership > 0.5. 

model-selected( Fractal-dim, two, non-linear, simple, 
lotka-voiterra-differential-equation) :- 

triangular-volterra-simple( Fractal-dim, Membership), 
Membership > 0.5. 
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model-selected( Fractal-dim, three, non-linear, regular, lorenz-differential-equation) : 
triangular-lorenz( Fractal-dim, Membership), 
Membership > 0.5. 

model-selected( Fractal-dim, one, non-linear, simple, logistic-difference-equation) :- 
triangular-logistic( Fractal-dim, Membership), 
Membership > 0.6. 

model-selected( Fractal-dim, two, non-linear, regular, 
lotka-volterra-difference-equation) :- 

triangular-volterra-regular( Fractal-dim, Membership), 
Membership > 0.6. 

/* Triangular Membership Functions for the Fuzzy Sets */ 

triangular-logistic( Fractal-dim, Membership) :- 
Fractal-dim >= 1.2, 
Fractal-dim < 1.3, !, 
Membership is (Fractal-dim - 1.2)/(0.1). 

triangular-logistic( Fractal-dim, Membership) :- 
Fractal-dim >= 1.3, 
Fractal-dim < 1.4, !, 
Membership is (1.4 - Fractal-dim)/(O. 1). 

triangular-volterra-simple( Fractal-dim, Membership) :- 
Fractaldim >= 1.2, 
Fractaldim < 1.3, !, 
Membership is (Fractal-dim - 1.2)/(0.1). 

triangular-volterra-simple( Fractal-dim, Membership) :- 
Fractal-dim >= 1.3, 
Fractal-dim < 1.4, !, 
Membership is (1.4 - Fractal-dim)/(O.l). 
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triangular-volterra-regular( Fractal-dim, Membership) :- 
Fractal-dim >= 1.4, 
Fractal-dim < 1.5, !, 
Membership is (Fractal-dim - 1.4)/(0.1). 

triangular-volterra-regular( Fractal-dim, Membership) :- 
Fractal-dim >= 1.5, 
Fractal-dim < 1.6, !, 
Membership is (1.6 - Fractal-dim)/(O. 1). 

triangular-lorenz( Fractal-dim, Membership) :- 
Fractal-dim >= 1.4, 
Fractal dim < 1.5, !, 
~ e m b e r s h i ~  is (Fractaldim - 1.4)/(0.1). 

triangular-lorenz( Fractal-dim, Membership) :- 
Fractal-dim >= 1.5, 
Fractal-dim < 1.6, !, 
Membership is (1.6 - Fractal-dim)/(O. 1) .  

triangular-lorenz( Fractal-dim, 0) :- 
Fractaldim >= 1.6. 

A.2 Automated Mathematical Modelling of Robotic Dynamic 
Systems 

We show in this section a computer program written in PROLOG based on the 

fuzzy-fractal method for automated modelling (described in Chapter 5) for the 

domain of robotic dynamic systems. The prototype intelligent system for 

automated modelling of robotic dynamic systems uses as input the fractal 
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dimension of the time series and the number of links of the robotic system, and 

obtains as a result the "best" mathematical model of the robotic system under 

consideration. The file of this computer program can be found in the floppy disk 

accompanying this book. (The name of the file is Prmorobl .txt). 

I* Prototype intelligent system for automated mathematical modelling of  Robotic 
Dynamic Systems using Soft Computing techniques 
by Oscar Castillo and Patricia Melin 

(written in the ARITY PROLOG programming language) *I 

automated-modelling-robotic :- 
write('input the fractal dimension of the time series:'), 
read( Fractal-dim), 
writerinput the number of links of the robotic system:'), 
read( Dim), 
trend( Fractal-dim, Trend), 
time-series( Fractal-dim, Time-series), 
periodicgad( Fractal-dim, Periodicgart), 
model-selected( Fractal-dim, Dim, Trend, Periodicgart, Model), 
write('a candidate model for the robotic system is the:'), nl, write(Model), nl, 
write('because the time series is:'), nl, write(Time-series). 

I* Module for Time Series Analysis *I 

trend( Fractaldim, linear) :- 
Fractal-dim > 0.8, 
Fractaldim < 1.2, !. 

time-series( Fractaldim, smooth) :- 
Fractal-dim > 0.8, 
Fractaldim < 1.2, !. 

time-series( Fractal-dim, cyclic) :- 
Fractal-dim >= 1.2, 
Fractal-dim < 1.5, !. 
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time-series( Fractal-dim, erratic) :- 
Fractal-dim >= 1.5, 
Fractaldim < 1.8, !. 

time-series( Fractal-dim, chaotic) :- 
Fractal-dim >= 1.8, 
Fractal-dim =< 2.0. 

periodicgart( Fractal-dim, null) :- 
Fractal-dim > 0.8, 
Fractal-dim < 1.2, !. 

periodicgart( Fractal-dim, simple) :- 
Fractal-dim >= 1.2, 
Fractal-dim < 1.4, !. 

periodicgart( Fractal-dim, regular) :- 
Fractal-dim >= 1.4, 
Fractal-dim < 1.6, ! . 

periodicgart( Fractal-dim, difficult) :- 
Fractal-dim >= 1.6, 
Fractaldim < 1.7, !. 

periodicgart( Fractal-dim, very-difficult) :- 
Fractal-dim >= 1.7, 
Fractal-dim < 1.8, !. 

periodicgart( Fractal-dim, chaotic) :- 
Fractal-dim >= 1.8, 
Fractal-dim =< 2.0. 

I* Module for Selection of the Mathematical Models *I 

model-selected( Fractal-dim, one, linear, null, linear-oscillator) :- 
Fractaldim > 0.8, 
Fractal-dim < 1.2. 

model-selected( Fractal-dim, one, non-linear, simple, quadratic-oscillator) :- 
triangular-quadratic( Fractal-dim, Membership). 

model-selected( Fractal-dim, one, non-linear, regular, cubic-oscillator) :- 
triangular-cubic( Fractal-dim, Membership). 

model-selected( Fractal-dim, one, non-linear, difficult, forced-quadratic-oscillator) :- 
triangular-forced-quad( Fractal-dim, Membership). 

model-selected( Fractal-dim, one, non-linear, verydifficult, forced~cubic~oscillator) :- 
triangular-forced-cub( Fractal-dim, Membership). 
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model-selected( Fractaldim, one, non-linear, chaotic, strongly-forced-oscillator) :- 
triangular-strongly_forced( Fractal-dim, Membership). 

model-selected( Fractal-dim, two, linear, null, double-linear-oscillators) :- 
Fractal-dim > 0.8, 
Fractal-dim < 1.2. 

model-selected( Fractal-dim, two, non-linear, simple, coupled-quadratic-oscillators) :- 
triangular-quadratic( Fractal-dim, Membership). 

model-selected( Fractal-dim, two, non-linear, regular, coupled~cubic~oscillators) :- 
triangular-cubic( Fractal-dim, Membership). 

modelselected( Fractal-dim, two, non-linear, difficult, coupled~forced~quad~oscillators) :- 
triangular-forced-quad( Fractal-dim, Membership). 

model-selected( Fractal-dim, two, non-linear, very-difficult, coupled~forced~cub~oscillators) :- 
triangular-forced-cub( Fractal-dim, Membership). 

model-selected( Fractaldim, two, non-linear, chaotic, coupled~strongly~forced~oscillators) :- 
triangular-strongly-forced( Fractaldim, Membership). 

model-selected( Fractal-dim, three, linear, null, triple-linear-oscillators) :- 
Fractal-dim > 0.8, 
Fractal-dim < 1.2. 

model-selected( Fractaldim, three, non-linear, simple, three-coupled-quad-oscillators) :- 
triangular-quadratic( Fractal-dim, Membership). 

model-selected( Fractaldim, three, non-linear, regular, three~coupled~cubic~oscillators) :- 
triangular-cubic( Fractal-dim, Membership). 

model-selected( Fractal-dim, three, non-linear, difficult, threesoupled-force-quad-oscillators) :- 
triangular-forced-quad( Fractal-dim, Membership). 

model-selected( Fractal-dim, three, non-linear, very-difficult, three~coupled~force~cub~oscill) :- 
triangular-forced-cub( Fractal-dim, Membership). 

model-selected( Fractaldim, three, non-linear, chaotic, three-coupled-strongly-forced-oscill) :- 
triangular-strongly-forced( Fractal-dim, Membership). 

I* Triangular Membership Functions for the Fuzzy Sets*/ 

triangular-quadratic( Fractal-dim, 0) :- 
Fractaldim < 1.2, !. 

triangular-quadratic( Fractal-dim, Membership) :- 
Fractal-dim >= 1.2, 
Fractal-dim < 1.3, !, 
Membership is ( Fractaldim - 1.2)/(0.1). 
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triangular-quadratic( Fractal-dim, Membership) :- 
Fractaldim >= 1.3, 
Fractaldim < 1.4, ! , 
Membership is ( 1.4 - Fractal-dim)/(O. 1). 

triangular-cubic( Fractal-dim, Membership) :- 
Fractaldim >= 1.4, 
Fractal-dim 1.5, !, 
Membership is ( Fractal-dim - 1.4)/(0.1). 

triangular-cubic( Fractal-dim, Membership) :- 
Fractal-dim >= 1.5, 
Fractal-dim < 1.6, !, 
Membership is ( 1.6 - Fractal-dim)/(O.l). 

triangularcubic( Fractal-dim, 0) :- 
Fractaldim >= I .6. 

triangular-forced-quad( Fractal-dim, Membership) :- 
Fractal-dim >= 1.6, 
Fractal-dim < 1.65, !, 
Membership is ( Fractaldim - 1.6)/(0.05). 

triangular-forced-quad( Fractal-dim, Membership) :- 
Fractal-dim >= 1.65, 
Fractal-dim < 1.7, !, 
Membership is ( 1.7 - Fractal-dim)/(O.O5). 

triangular-forced-cub( Fractal-dim, Membership) :- 
Fractal-dim >= 1.7, 
Fractaldim < 1.75, !, 
Membership is ( Fractaldim - 1.7)/(0.05). 
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triangular-forced-cub( Fractaldim, Membership) :- 
Fractaldim >= 1.75, 
Fractaldim 1.8, !, 
Membership is ( 1.8 - Fractal-dim)/(O.OS). 

triangular-strongly-forced( Fractal-dim, Membership) :- 
Fractal-dim >= 1.8, 
Fractal-dim < 1.9, !, 
Membership is ( Fractal-dim - 1.8)/(0.1). 

triangular-strongly-forced( Fractal-dim, Membership) :- 
Fractal-dim >= 1.9, 
Fractal-dim =< 2.0, !, 
Membership is ( 2.0 - Fractal-dim)/(O.l). 

triangular-strongly-forced( Fractaldim, 0) :- 
Fractal-dim > 2.0. 
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Prototype Intelligent Systems for Automated Simulation 

In this appendix, we show a prototype intelligent system for automated simulation 

of non-linear dynamical systems written in the ARITYO PROLOG programming 

language. We also show computer programs written in the MATLAB 

programming language (Version 5.1 for Windows 95) for the simulation of 

several non-linear dynamical systems. 

B.1 Automated Simulation of Non-Linear Dynamical Systems 

We show in this section a computer written in PROLOG based on our method for 

automated simulation using our new fuzzy-genetic approach (described in 

Chapter 6 of this book). The computer program uses as input the initial population 

and the maximum number of iterations (of the genetic algorithm), and obtains as a 

result the final population of parameters as well as the corresponding behavior 

identification for the dynamical system. The file of this computer program can be 

found in the floppy disk accompanying this book under the name of Osimrob3.txt. 
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I* Prototype Intelligent System for Automated Simulation of Dynamical Systems 
by Oscar Castillo and Patricia Melin 
(developed in ARITY PROLOG) *I 

automated-simulation :- 
write( ' Input the initial population:'), 
read( Initial-Population), 
write( 'Input the maximum number of iterations:'), 
read( NumberIter), 
parameter-selection( Initial~Population,NumberIter,Final_Population), 
behavior-identification( Final-Population). 

I* parameter selection using a specific genetic algorithm *I 

parameter-selection( Initial-Population,NumberIter,FinalPopulation) :- 
NumberIter > 0, 
fitness-value( Initial-Pop~lation,List~fitness), 
selecttwo( Initial-Population,List-fitness,X,Y), 
crossover( Initial-Population,X,Y,Next_Population), 
mutation( NextPopulation,Mutated~Population), 
NumberIterl is NumberIter - 1, 
parameter-selection( Mutated-Population,NumberIter1 ,Final-Population). 

fitness-value( [ I,[ I). 
fitness-value( [X / Initial-Population],[FitnessX / List]) :- 

evaluate(X,FitnessX), 
fitness-value( Initial-Population,List). 

select-two( [X,Y I -],List-fitness,X,Y). 
crossover( L,- I Rest],X,Y,[NewX,NewY / Rest]) :- 

split( X,X 1 ,X2), 
split( Y,Y 1 ,Y2), 
conc( X1 ,Y2,NewX), 
conc( Y 1 ,X2,NewY). 

mutation( [X I Rest],[NewX / Rest]) :- 
X = [ X l  (L], 
XI = 0, !, 
NewX = [ 1 I L]. 

mutation( [X I Rest],[NewX I Rest]) :- 
X = [ X l  IL], 
X 1 =  I, 
NewX = [ 0  I L]. 
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I* evaluation of the fitness of the members of the population *I 

member( X,[X I L]). 
member( X,[Y / L]) :- 

member( X,L). 

I* dynamic behavior identification using a fuzzy rule base *I  

behavior-identification( [ 1). 
behavior-identification( [X I Final-Population]) :- 

dictionary( X,NewX), 
numerical-solution( NewXJdentification), 
write(' The identification for the value:'), 
write( NewX), nl, 
write(' is the behavior known as:'), 
write(Identification), nl, 
behavior-identification( Final-Population). 

I* dictionary for decodification *I 

dictionary( [0,0,0,0],0). 
dictionary( [0,0,0,1], I). 
dictionary( [0,0,1,0],2). 
dictionary( [0,0,1,1],3). 
dictionary( [O, 1,0,0],4). 
dictionary( [O, 1,0,1],5). 
dictionary( [O, 1,1,0],6). 
dictionary( [O, I,], 1],7). 
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dictionary( [1,0,0,0],8). 
dictionary( [l,O,O,l],9). 
dictionary( [1,0,1,0], 10). 
dictionary( [1,0,1, I], 1 1). 
dictionary( [1, l,0,0], 12). 
dictionary( [1, l,0, I], 13). 
dictionary( [1, I, l,0], 14). 
dictionary( [1,1,1,1],15). 

I* particular mathematical model *I 

I* classification with a rule base *I 

I* heuristic to evaluate the fitness *I 

fitness( fixedgoint, 1). 
fitness( cyclegeriod-two,2). 
fitness( cycleqeriod-four,4). 
fitness( cyclegeriod-eight$). 
fitness( chaoticbehavior, 10). 
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B.2 Numerical Simulation of Non-Linear Dynamical Systems 

We show in this section the computer programs, written in the MATLAB 

programming language, for the numerical simulation of biochemical reactors. 

These computer programs were used to obtain the simulation results shown in 

Section 8.2 of this book. The computer programs for the simulation of the other 

applications are contained in the floppy disk, but they aren't described here 

because they are very similar to the ones for biochemical reactors. In all cases, we 

use a Runge-Kutta method for the numerical solution of the differential equations. 

The only difference between the files for the different applications is in the 

mathematical models that are used. For the case of biochemical reactors we show 

below the computer programs for the simulation of the mathematical models (the 

names of these files can be found in the 1ist.txt file in the floppy disk). 

% Simulation of Model M 1 : one Bacteria used for Food Production. 
% see Figure 8.13 of the Book. 
% Modelling, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
[t,y] = ode45('Modelse13',[0 10],[97.5; 01); 
plot(t,y(:, 1)); 
title('Simu1ation of MI: one Bacteria used for food production'); 
xlabel('time t (seconds)'); 
ylabel('Population of Bacteria N') 
zoom 

% Simulation of Model MI: one Bacteria used for Food Production. 
% see Figure 8.14 of the Book. 
% Modelling, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
[t,y] = ode45('Modelse13',[0 10],[97.5; 01); 
plot(t,y(:,2),'LineWidth1,2); 
title('Simu1ation of MI: one Bacteria used for food production'); 
xlabel('time t (seconds)'); 
ylabel('Product P') 
zoom 
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function dy = Modelsel3(t,y) 
dy = [30*y(l) - 0.3*~(1)/'2 - 0.8*y(l); 0.8*y(l)]; 

% Simulation of Model M2: two Bacteria used for Food Production. 
% see Figure 8.15 of the Book. 
% Modelling, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
[t,y] = ode45('Moselc2',[0 15],[26.5; 26.5; 01); 
plot(t,y(:, 1)); 
title('Simulation of M2: two Bacteria used for food production'); 
xlabel('time t'); 
ylabel('Popu1ation of Bacteria N 1') 
zoom 

function dy = Moselc2(t,y) 
dy = [30*y(l)-0.3*y(l)"2-0.8*y(2)*y(l)-0.8*y(l); 

30*~(2)-0.3*y(2)~2-0.8*y(l)*y(2)-0.8*~(2); 
0.8*y(1)+0.8*y(2)]; 

% Simulation of Model M3: two good Bacteria (N 1, N2) used for Food Production 
% and one "bad" Bacteria (N3). 
% see Figure 8.16 of the Book. 
% Modelling, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
[t,y] = ode45('Mosel',[O 8],[65; 6.5; 10; 01); 
plot(t,y(:, 1 ),'o',t,y(:,2),'+',t,y(:73),'-'); 
title('Simulation of M3: two "good" Bacteria and one "bad" Bacteria'); 
xlabel('time t'); 
ylabel('Population of Bacteria, oo N1, ++ N2, -- N3') 

function dy = Mosel(t,y) 
dy = [30*y(l)-0.3*y(l)A2-0.8*y(2)*y(l)-0.8*y(l)-0.2*y(l)*y(3); 

3O*y(2)-O.3*y(2)A2-O.8*y(l)*y(2)-O.8*y(2)-O.2*y(2)*y(3); 
30*y(3)-o.3*y(3)A2+o.2*y(l)*y(3)+o.2*y(2)*y(3); 
0.8*y(1)+0.8*y(2)]; 
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% Simulation of Model M3: two good Bacteria (Nl, N2) used for Food Production . 
% and one "bad" Bacteria (N3) Case b. 
% see Figure 8.17 of the Book. 
% Modelling, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
[t,y] = ode45('Mosell',[O 2],[60; 60; 0.5; 01); 
plot(t,y(:, 1 ),'o',t,y(:,2),'+',t,y(:,3),'-'); 
title('Simu1ation of M3: two "good" Bacteria and one "bad" Bacteria'); 
xlabel('time t'); 
ylabel('Population of Bacteria, oo N1, ++ N2, -- N3') 

function dy = Mosel l(t,y) 
dy = [50*y(l)-0.3*y(1)A2-0.8*y(2)*y(l)-0.8*y(l)-0.0002*y(l)*y(3); 

60*y(2)-O.3*y(2)A2-O.8*y(l)*y(2)-O.8*y(2)-O.OOO2*y(2)*y(3); 
20*~(3)-0.3*y(3)~2+0.0002*y(1)*y(3)+0.0002*y(2)*y(3); 
0.8*y(1)+0.8*y(2)]; 
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Prototype Intelligent Systems for Adaptive Model-Based 
Control 

In this Appendix, we show computer programs for adaptive model-based control 

of non-linear dynamical systems. First, we show a computer program for fuzzy 

logic model selection that was developed using the Fuzzy Logic ToolboxTM of the 

MATLABO programming language. Then, we show computer programs for 

identification and control using neural networks that were developed with the 

Neural Networks ToolboxTM of the MATLAB programming language. 

C.l Fuzzy Logic Model Selection 

We show in this section a computer program in MATLAB based on our new 

method for fuzzy model selection (described in Chapter 7 of this book) for the 

domain of biochemical reactors. The computer programs for model selection for 

the other applications can be obtained in a similar way. The file of this computer 

program can be found in the floppy disk accompanying this book, under the name 

modelsel.fis. 
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%Computer Program for Fuzzy Logic Model Selection for Adaptive Model- 

Based Control of biochemical reactors. 

% Written by: Patricia Melin and Oscar Castillo in MATLABO Version 5.1. 

% See Figures 9.7-9.10 of the book. 

% Program for model selection using the Fuzzy Inference System (FIS) from 

Fuzzy Logic ToolboxTM. 

[System] 

Narne='modelsell 

Type='marndanil 

NumInputs= 1 

NumOutputs= 1 

NumRules=3 

AndMethod='minl 

OrMethod='maxl 

ImpMethod='minl 

AggMethod='maxl 

DefuzzMethod='centroidl 

[Input 1 ] 

Name='temperaturel 

Range=[100 1201 

NumMFs=3 

MF 1 ='Lowl:'gaussmf ,[4.247 1001 

MF2='Medium':'gaussrnf J4.247 1 101 

MF3='High':'gaussrnf ,[4.247 1201 
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[Output I] 

Name='modell 

Range=[100 1201 

NumMFs=3 

MF 1 ='M 1 ':'gaussmf ,[4.247 1001 

MF2='MZ':'gaussmf ,[4.247 1 101 

MF3='M3':'gaussmf J4.247 1201 

[Rules] 

1, 1 (1) : 1 

2, 2 (1) : 1 

3 , 3  (1) : 1 

% membership functions 
function y = gauss-mf(x, parameter) 
%GAUSS-MF Gaussian membership function with two parameters. 
% GAUSSIAN(x, [sigma, c]) returns a matrix y with the same size 
% as x; each element of y is a grade of membership. 

c = parameter(1); 
sigma = parameter(2); 
tmp = (x - c)/sigma; 
y = exp(-tmp.*tmp/2); 

function y = sig-mf(x, parameter) 
%SIG-MF Sigmoidal membership function with two parameters. 
% SIGMF(x, [a, c]) returns a matrix y with the same size 
% as x; each element of y is a grade of membership. 
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C.2 Neural Networks for Identification and Control 

We show in this section, computer programs for identification and control using 

neural networks that were developed with the Neural Networks ToolboxTM of 

MATLAB. In both cases, the backpropagation learning algorithm was used for 

training the neural networks with real data. We will only show the computer 

programs for the case of biochemical reactors. These computer programs were 

used to obtain the simulation results shown in Section 9.2 of this book. The 

computer programs for the other applications can be found in the floppy disk 

accompanying this book (the name of these files can be found in the 1ist.txt file in 

the floppy disk). The names of the files for the case of biochemical reactors are 

traidal .m, traida3.m and traiconl .m. 

% Computer Program for training the Neural Network for identification. 
% See Figures 9.13,9.14 and 9.15 of the Book. 
% Modellig, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
P = [ 0.0001 0.0003 0.0926 0.1 170 0.1415 0.1905 0.2238 0.2570 0.2903 0.3236 0.3532 ... 

0.3827 0.4123 0.4418 0.4714 0.5009 0.5305 0.5893 0.6186 0.6479 0.6772 0.7049.. . 
0.7326 0.7880 0.8 147 0.8414 0.8947 0.9222 0.9497 0.9772 1.0047 1.0340 1.0926.. . 
1.1219 1.1518 1.1818 1.2117 1.2416 1.2986 1.3270 1.3555 1.3822 1.4088 1.4355 ... 
1.4888 1.5155 1.5422 1.5974 1.6260 1.6546 1.6832 1.7135 1.7438 1.7740 1.8043 ... 
1.8338 1.8928 1.9223 2.0000]; 

T = [ 26.5002 26.5002 26.5403 26.5408 26.5447 26.5434 26.5492 26.55 10 26.5439.. . 
26.5398 26.5491 26.5524 26.5436 26.5380 26.5503 26.5557 26.5430 26.5355 ... 

26.55 14 26.5571 26.5424 26.5329 26.5550 26.5426 26.5342 26.551 7 26.5433. .. 
26.5375 26.5473 26.55 1 1 26.5437 26.5494 26.5533 26.5433 26.5369 26.55 18.. . 
26.5570 26.5332 26.5506 26.5571 26.5422 26.5324 26.5469 26.5429 26.5362. .. 
26.5464 26.5437 26.5437 26.5389 26.5483 26.55 18 26.5437 26.5384 26.5513.. . 
26.5558 26.5427 26.5525 26.5589 26.54251; 

[W 1 ,bl ,W2,b2] = initff(P,5,'tansig',T,'tansigt); 
A2 = simuff(P, W 1 ,bl ,'tansig',W2,b2,'tansigt); 
disp_freq=5000 
max~epoch=40000; 
err~goal=0.00002; 
lr=O.OOOO 1 ; 
tp = [disp-fieq maxepoch err-goal Ir]; 
[W 1 ,bl ,W2,b2,epochs,tr] = trainbp(W1 ,bl,'tansig',W2,b2,'purelin',P,T,tp); 
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% Computer Program for training the Neural Network for identification. 
% See Figures 9.16 and 9.17 of the Book. 
% Modelling, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
P = [O.OOOl 0.0003 0.0926 0.1 170 0.1415 0.1905 0.2238 0.2570 0.2903 0.3236 0.3532.. 

0.3827 0.4123 0.4418 0.4714 0.5009 0.5305 0.5893 0.6186 0.6479 0.6772 0.7049 ... 
0.7326 0.7880 0.8147 0.8414 0.8947 0.9222 0.9497 0.9772 1.0047 1.0340 1.0926.. . 
1.1219 1.1518 1.1818 1.2117 1.2416 1.2986 1.3270 1.3555 1.3822 1.4088 1.4355 ... 
1.4888 1.5155 1.5422 1.5974 1.6260 1.6546 1.6832 1.7135 1.7438 1.7740 1.8043 ... 
1.8338 1.8928 1.9223 2.0000]; 

T = [ 26.5002 26.5002 26.5403 26.5408 26.5447 26.5434 26.5492 26.55 10 26.5439.. . 
26.5398 26.5491 26.5524 26.5436 26.5380 26.5503 26.5557 26.5430 26.535 5... 
26.5514 26.5571 26.5424 26.5329 26.5550 26.5426 26.5342 26.55 17 26.5433.. . 
26.5375 26.5473 26.55 1 1 26.5437 26.5494 26.5533 26.5433 26.5369 26.55 18.. .. 
26.5570 26.5332 26.5506 26.5571 26.5422 26.5324 26.5469 26.5429 26.5362. .. 
26.5464 26.5437 26.5437 26.5389 26.5483 26.55 18 26.5437 26.5384 26.55 13.. . 
26.5558 26.5427 26.5525 26.5589 26.54251; 

[W l ,bl ,W2,b2] = initff(P,5,'tansigt,T,'tansig'); 
A2 = simuff(P,Wl ,bl,'tansig',W2,b2,'tansigV); 
disp_freq=5000 
max~epoch=80000; 
err-goal=0.00002; 
lr=O.OO 1 ; 
tp = [disp-freq max-epoch err-goal Ir]; 
[W I ,bl ,W2,b2,epochs,tr] = trainbp(W l ,b l ,'tansig',W2,b2,'purelin',P,T,tp) 

% Computer Program for training the Neural Network for Control. 
% See Figures 9.18 and 9.19 of the Book. 
% Modelling, Simulation and Control of Non-Linear Dynamical Systems. 
% Patricia Melin and Oscar Castillo, 1998. 
P = [0.0001 0.1 170 0.2238 0.3236 0.4123 0.5009 0.6186 0.7049 0.8147 0.9222 1.0047.. 

1.1219 1.21 17 1.3270 1.4088 1.5 155 1.6260 1.71 35 1.8043 1.9223 2.00001; 
T = 10.005 3.9293 8.0875 12.3289 16.2527 20.0185 23.7850 27.51 70 32.2898 36.8664.. 

40.3349 45.1585 48.91 82 53.941 7 57.5704 62.1 006 66.63 18 70.2739 74.0590.. . 
79.1370 83.29391; 

[W 1 ,bl ,W2,b2] = initff(P,5,'purelin',T,'purelin1); 
A2 = simuff(P,W I ,bl ,'purelin',W2,b2,'purelin'); 
disp-freq=l000 
max-epoch=5000; 
err-goal=0.00002; 
lr=O.OOO 1 ; 
tp = [disp-freq max-epoch e x g o a l  Ir]; 
[W l ,bl ,W2,b2,epochs,tr] = trainbp(W1 ,bl ,'purelin1,W2,b2,'purelin',P,T,tp); 
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