

Visual Basic .NET! : I Didn't Know You Could Do That...
by Matt Tagliaferri

Sybex © 2001, 303 pages

A crash-course guide for Visual Basic programmers who
need assistance managing the learning curve's new
language.

Table of Contents

Visual Basic .NET!—I Didn't Know You Could Do That...
Introduction
From VB6 to VB.NET
Learning the Framework
OOP Techniques
Databases
More Framework Topics
Beyond Visual Basic
Internet Topics
Index

Back Cover

Discover Visual Basic .NET

Visual Basic .NET! I Didn't Know You Could Do That... will help you conquer
the .NET learning curve quickly as you make the transition to Microsoft's new
programming paradigm. Inside you'll find loads of ideas and advice that will
teach you the essential aspects of VB.NET.

Stop Monkeyin' Around and Get Up to Speed on VB.NET

This book covers all the key changes in the new version of Visual Basic.
Numerous example projects provide both an excellent teaching aid and a

Page 1 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Visual Basic .NET!—I Didn't Know You Could
Do That...
Matt Tagliaferri

Associate Publisher: Richard Mills

Acquisitions and Developmental Editor: Tom Cirtin

Editor: Sally Engelfried

Production Editor: Kylie Johnston

Technical Editors: Greg Guntle, John Godfrey

Book Designers: Franz Baumhackl, Kate Kaminski

Electronic Publishing Specialist: Nila Nichols

Proofreaders: Emily Hsuan, Dave Nash, Nicole Patrick, Yariv Rabinovitch

Indexer: Lynnzee Elze

CD Coordinator: Christine Harris

great source library. With the tips and tricks in Visual Basic .NET! I Didn't
Know You Could Do That... , you'll be impressing your fellow VB programmers
in no time.

Go Bananas--Become a VB.NET Expert

Inside you'll learn how to:

l Write smarter code
l Use new object-oriented language features
l Understand garbage collection
l Use databases
l Use VB objects in ASP.NET pages
l Write and Consume XML web services

And much more!

About the Author

Matt Tagliaferri is a Senior Analyst with the Cleveland Indians baseball
organization. He has 12 years of experience in professional software
development and has programmed in Visual Basic since version 1.0 was
included free with a PC he purchased in 1992. Matt also wrote Duke Nukem
3D Level Design Handbook and Quake Level Design Handbook, both for
Sybex.

Page 2 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

CD Technician: Keith McNeil

Cover Designer: Daniel Ziegler

Cover Illustrator/Photographer: PhotoDisc

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights
reserved. No part of this publication may be stored in a retrieval system, transmitted, or reproduced
in any way, including but not limited to photocopy, photograph, magnetic, or other record, without
the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2001094778

ISBN: 0-7821-2890-4

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the
United States and/or other countries.

IDKYCDT and I Didn’t Know You Could Do That are trademarks of SYBEX Inc.

The CD interface was created using Macromedia Flash, COPYRIGHT 1995–2001 Macromedia Inc.
For more information on Macromedia and Macromedia Flash, visit www.macromedia.com.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks
from descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based
upon final release software whenever possible. Portions of the manuscript may be based upon pre-
release versions supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or accuracy of the contents
herein and accept no liability of any kind including but not limited to performance, merchantability,
fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be
caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in the
future contain programs and/or text files (the “Software”) to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject to the terms that follow. Your
purchase, acceptance, or use of the Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless otherwise indicated and is protected by
copyright to SYBEX or other copyright owner(s) as indicated in the media files (the “Owner(s)”).
You are hereby granted a single-user license to use the Software for your personal, noncommercial
use only. You may not reproduce, sell, distribute, publish, circulate, or commercially exploit the
Software, or any portion thereof, without the written consent of SYBEX and the specific copyright
owner(s) of any component software included on this media.

In the event that the Software or components include specific license requirements or end-user
agreements, statements of condition, disclaimers, limitations or warranties (“End-User License”),

Page 3 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

those End-User Licenses supersede the terms and conditions herein as to that particular Software
component. Your purchase, acceptance, or use of the Software will constitute your acceptance of
such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export laws and
regulations of the United States as such laws and regulations may exist from time to time.

Reusable Code in This Book

The authors created reusable code in this publication expressly for reuse for readers. Sybex grants
readers permission to reuse for any purpose the code found in this publication or its accompanying
CD-ROM so long as all of the authors are attributed in any application containing the reusable code,
and the code itself is never sold or commercially exploited as a stand-alone product.

Software Support

Components of the supplemental Software and any offers associated with them may be supported by
the specific Owner(s) of that material, but they are not supported by SYBEX. Information regarding
any available support may be obtained from the Owner(s) using the information provided in the
appropriate read.me files or listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any offer,
SYBEX bears no responsibility. This notice concerning support for the Software is provided for your
information only. SYBEX is not the agent or principal of the Owner(s), and SYBEX is in no way
responsible for providing any support for the Software, nor is it liable or responsible for any support
provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects for a period of ninety (90) days
after purchase. The Software is not available from SYBEX in any other form or media than that
enclosed herein or posted to www.sybex.com. If you discover a defect in the media during this
warranty period, you may obtain a replacement of identical format at no charge by sending the
defective media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
WEB: WWW.SYBEX.COM

After the 90-day period, you can obtain replacement media of identical format by sending us the
defective disk, proof of purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or implied, with respect to the
Software or its contents, quality, performance, merchantability, or fitness for a particular purpose. In
no event will SYBEX, its distributors, or dealers be liable to you or any other party for direct,
indirect, special, incidental, consequential, or other damages arising out of the use of or inability to
use the Software or its contents even if advised of the possibility of such damage. In the event that
the Software includes an online update feature, SYBEX further disclaims any obligation to provide
this feature for any specific duration other than the initial posting.

Page 4 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The exclusion of implied warranties is not permitted by some states. Therefore, the above exclusion
may not apply to you. This warranty provides you with specific legal rights; there may be other
rights that you may have that vary from state to state. The pricing of the book with the Software by
SYBEX reflects the allocation of risk and limitations on liability contained in this agreement of
Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed as shareware. Copyright laws apply
to both shareware and ordinary commercial software, and the copyright Owner(s) retains all rights. If
you try a shareware program and continue using it, you are expected to register it. Individual
programs differ on details of trial periods, registration, and payment. Please observe the requirements
stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-protected or encrypted. However, in all
cases, reselling or redistributing these files without authorization is expressly forbidden except as
specifically provided for by the Owner(s) therein.

To Sophia, the stinker-doodle

Acknowledgments

This was a difficult book to write, and there were many people who made it possible. First, Tom
Cirtin at Sybex receives thanks for shaping and focusing the idea of the book into its final form. The
next round of kudos goes to Sally Engelfried and Kylie Johnston, who took my unstructured heap of
book copy and organized it into a coherent whole. I also need to thank Greg Guntle and John
Godfrey for going over the thousands of lines of code with a fine-toothed comb and making sure it
worked on more than the two PCs I have available for .NET testing at the moment. Finally, I need to
thank my ever-tolerant wife Janet, who stared at my back as I sat swearing in front of my PC these
past few months.

Introduction
About a year ago, I began reading about the forthcoming version of Visual Basic, and I was jazzed
about it from the get-go. The early details were sketchy, but I did know that Microsoft was going to
turn Visual Basic into a full object-oriented language. I had experience in some “full” object -
oriented development and was quite impressed with the way that good OOP design seemed to
naturally organize my thoughts (and my code). I was eager to begin using these design principles in
Visual Basic.

Of course, such power was not to come without a price. The new Visual Basic, I would learn, was
not to be backward compatible with VB6. Since all of my current day job development was in VB6,
upgrading to the new language would not simply be a one day slam-dunk, as it was when I moved
from Visual Basic 4 to 5 or from VB5 to VB6.

I was doubly excited when I was offered the chance by Sybex to write a book highlighting some of
the power of VB.NET for people just like myself—experienced Visual Basic programmers who
wanted a crash course to help tackle the learning curve associated with learning the new language.

Of course, in order to help get you, the reader, over the VB.NET learning curve, I had to get over it
myself. My prior object-oriented programming experience helped a bit here, as did some pretty fine

Page 5 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Microsoft documentation (especially for an early beta—much of the example programs in this book
were developed in Visual Studio.NET beta 1 and converted to beta 2 once it became available). I
can’t claim myself a bona fide “expert” in the .NET Framework as of yet (not without a year or two
of real-world development under my belt), but writing this book has me well on my way. I hope that
reading the book will point you in that direction as well.

Who Am I?

I was one of only two sophomores in my high school way back in 1982 who was offered a computer
class after the high school purchased six TRS-80s (“Trash-80s,” we called them). I attended the PC
classes in junior and senior year, as well. Those were fun times, as the teachers were pretty much
learning to navigate the PC world at the same time we were, and we all kind of stumbled through
those first years together.

Once I got my hands on software development in high school, I didn’t let go. I got my B.S. in
Information Systems at the Ohio State University (s’go Bucks!) and started work shortly thereafter
for an insurance organization. My job there was pretty interesting: all their data was locked inside
this legacy mainframe system (I couldn’t even tell you what system), and one of their mainframe
programmers wrote a custom query tool that extracted the data out of the mainframe and into PC text
files. They hired me out of school to act as a “business analyst,” which basically meant that I would
do ad hoc projects for people in the company (spitting out mailing labels, summarizing data to back
up research projects, and so on). My programming tool at the time was FoxPro 2 by Fox Software
(before Microsoft swallowed them whole).

When I left the insurance company, I began a job-hopping journey (some my own doing, some the
doing of layoffs and mergers) through several industries, including finance, retail, commercial
software development (an antivirus package), and trucking. The main lesson that I learned during
these sojourns was that, even though I was pretty much doing the same work (cranking out code) for
all of these companies, I wasn’t really happy in any job unless I personally found the industry
interesting. Having had this epiphany, I set out to land a job in the coolest industry I could think of,
which brought me to my current (and, I hope, final) position at the Cleveland Indians’ office, where
I’ve been happily designing in-house systems for just over four years.

Not being satisfied with developing software a mere eight hours per day, I also write some code in
my spare time. I became enamored with the PC game industry and found myself writing level-editing
programs for games like Doom and Quake. I also wrote my first two books for Sybex on
constructing levels for games. My Quake level editor, qED, enjoyed modest success as a shrink-
wrapped, retail piece of software.

If something ever does manage to get me away from my PC, it’s usually my wife and two little girls
or a baseball game.

About the Book

The book is based on Visual Basic.NET Beta 2, and is aimed at the experienced Visual Basic
programmer. Having stated this, I don’t spend any time on a “hello world” program of any type. I
also wanted to stay away from the other extreme, however: writing a complete, fully functional
application of some sort and then explaining every line of it. These “made for the book” applications
are rarely of much use to the majority of readers. Instead, I chose to write small programs that
embody one or two of the topics in the book.

I didn’t waste time prettying up the interface on the programs or designing them to pretend that they
were part of some productive application. Some of the programs are simply buttons that do their

Page 6 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

thing when clicked, along with a means to output the results (Listbox, label, Treeview, and so on).
The focus here is on the nuts and bolts of the code that performs the task in question.

I hope you can take some of the example code and refer to it later as you start to develop your own
applications. Need to read from a text file? One of the examples reads the contents of a text file and
loads the results into a multiline Textbox. Need to read and write to INI files? The book contains a
self-contained class for doing just that.

What’s on the CD

The CD contains all of the projects that correspond to the example code found in the book text.
There is not always a one-to-one relationship between book section and project. For example, there
is a project named prjNetNotePad that contains sample code for three of the topics (reading from a
text file, writing to a text file, and owner-drawn menus). In many other cases, a single project does
correspond to a single topic (the message queuing section, for example). At the beginning of each
topic I tell you the name of the folder on the CD that contains the code corresponding to that section.

Conventions

Most of the text of this book is formatted like this paragraph. Occasionally, code elements, project
names, and URLs are set in a fixed-width font, as shown in this sentence, to distinguish them from
regular text. Code examples appear as follows:

 Dim aTable As DataTable
 aTable = aDataset.Tables("Products")

At the beginning of each topic, you’ll see a pointer to the relevant code on the CD that looks like this.

Onward to VB.NET

As you’ve probably already figured out, the .NET Framework is a brave, new world. It offers new
capabilities to VB programmers but not without a cost: you have a few things to learn, and you’ll
change the way you approach programming. The mission of this book is to turn you from a VB.NET
novice into an “experienced programmer.” With any luck at all, it will give you the confidence to
march into your boss’s office and justify the need to rewrite all of your current VB code in the new
version of the language using the .NET platform, thereby justifying your existence at your place of
business for many years to come. And, if you’re like me, you’ll have a ton of fun doing it.

From VB6 to VB.NET
1: Using the New Operators

The new operator code can be found in the folder prjOperators.

Visual Basic has always been a bit behind the curve in its use of operators. Fortunately, the .NET
Framework has allowed Microsoft to easily make some old shortcuts as well as some new operators
available to the VB programmer.

Note Information that might be helpful but tangential to the topic at hand is set off from regular text
in notes.

Warning Special cautionary information is found in warnings that look like this.

Page 7 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Operator Shortcuts

Borrowing from the C family of languages, you can now shorten the line of code

x = x + 1

with the following

x += 1

Most of the other basic operators work the same way, as shown in the following table:

All of the operators shown in the table are arithmetic operators, with the exception of the string
concatenation operator &.

Bitwise Operators

Visual Basic has never had operators for performing bitwise functions—until now, that is. The
following table shows the three bitwise operators available in VB.NET.

As a refresher, the following table shows the four possible combinations of left and right sides of
bitwise operators and the result of each:

Operator Shortcut Short For Meaning
x += y x = x + y add y to x and put result in x
x -= y x = x - y subtract y from x and put result in x
x *= y x = x * y multiply y by x and put result in x
x /=y x = x / y divide x by y and put result in x
x \= y x = x \ y divide x by y and put result in x (integer

divide)
x ^= y x = x ^ y raise x to the y power and put result in x
x &= y x = x & y concatenate y to x and put result in x (string)

Operator Short For Meaning Example Result
And Bitwise And Both left and right

side of the operator
1 And 0 0

Or Bitwise Inclusive
Or

Either left or right
side of operator is 1

1 Or 0 1

Xor Bitwise Exclusive
Or

Either left or right
side of operator is
1, but not both

1 Xor 0 1

Left Right Bitand Bitor Bitxor
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Page 8 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Still Missing

The following lists some operators that you might be familiar with in other languages but that still
haven’t made their way into Visual Basic yet:

Mod Shortcut Many languages use % as a shortcut for the modulus (remainder) operator and then
use x %= y as a shortcut for taking the remainder of x divided by y and putting the result back in x.
The Visual Basic modulus operator is still “mod”, and there is no corresponding operator shortcut.

Bitwise Shift There are still no operators for shifting a set of bits left or right.

Postfix increment/decrement The C language family allows you to write x++, which is short for x
= x + 1, or x—, which is short for x = x - 1. These operator shortcuts are not available in Visual
Basic. (One wonders why x += y was borrowed from C, but not x++.)

Using the Operators

The example program (illustrated here) shows all of the new Visual Basic arithmetic operators in
action:

It is divided into two sections. The left side of the program is a rudimentary calculator that takes the
integer values entered into two text box controls and performs an operation on them, depending on
the radio button selected. The code that determines what operation to take is shown here:

Private Sub cbCompute_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles cbCompute.Click

 Dim iValueA As Integer
 Dim iValueB As Integer

 ‘exception handlers catch user putting
 ‘non-numbers in text boxes
 Try
 iValueA = CInt(tbA.Text)
 Catch
 tbA.Text = "0"
 iValueA = 0
 End Try

 Try
 iValueB = CInt(tbB.Text)
 Catch
 tbB.Text = "0"
 iValueB = 0
 End Try

Page 9 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 If rbPlus.Checked Then
 iValueA += iValueB ‘this is short for
 iValueA = iValueA + iValueB.
 ElseIf rbMinus.Checked Then
 iValueA -= iValueB
 ElseIf rbTimes.Checked Then
 iValueA *= iValueB
 ElseIf rbDiv.Checked Then
 Try
 iValueA \= iValueB
 Catch eErr As Exception
 Call MsgBox(eErr.ToString)
 End Try
 ElseIf rbAnd.Checked Then
 iValueA = iValueA And iValueB
 ElseIf rbOR.Checked Then
 iValueA = iValueA Or iValueB
 End If

 lbAnswer.Text = "Answer: " & iValueA
 End Sub

The procedure makes use of exception handling to make sure that numeric values are entered in the
text boxes (zeros are used as the operands if nonnumeric values are supplied) and to trap any divide-
by-zero errors that might occur. The rest of the routine merely checks which radio button is checked
and performs the correct operation on the two numbers.

The second part of the program generates the beginning of the Fibonacci sequence of numbers and
displays the results in a Listbox:

Private Sub cbFib_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles cbFib.Click

 Dim i As Integer = 1
 Dim j As Integer = 1
 Dim t As Integer
 Dim iCtr As Integer = 0
 Dim arList As New ArrayList(20)

 arList.Add(i)
 arList.Add(j)

 For iCtr = 0 To 20
 t = i ‘save i
 i += j ‘add j to i
 j = t ‘put save i into j
 arList.Add(i) ‘add result to arraylist
 Next

 lbFib.DataSource = arList ‘bind arraylist to listbox
 End Sub

This procedure makes use of the ArrayList class to store the integers and then binds the ArrayList to
the Listbox in the last line. The idea behind the Fibonacci sequence is to start two variables at value
1, add them together, and store the result back into one of the variables. You then repeat this process
as long as desired. The previous sample generates the first 21 values in the sequence.

2: New Tricks in Variable Declaration

The variable declaration code can be found in the folder prjVariables.

Page 10 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Usually, a book in this format might not cover something as rudimentary as variable declaration in a
programming language. However, Visual Basic.NET has quite a few significant differences in its
base data types and variable declaration syntax. These differences bear discussion, because not
knowing about them can cause anything from temporary confusion to a hair-pulling bug or two.

Integer Type Changes

The first major change you need to be aware of is that an Integer is not an Integer anymore (huh?).
Likewise, a Long is not a Long, either. In previous versions of Visual Basic, a variable declared as an
Integer gave you a 16-bit variable with a range from –32768 to +32767. In VB.NET, an Integer is a
32-bit variable with a range from about negative to positive 2 million. In other words, it’s what you
used to call a Long. A variable declared in VB.NET as a Long is now a 64-bit integer. So, where did
the 16-bit integer go? That’s now called a Short. Here’s a quick translation table:

Why in the name of Sweet Fancy Moses did Microsoft change the integer type names in what seems
to be the most confusing way imaginable? There’s a good reason, actually. The answer lies in the
fact that the .NET platform is Microsoft’s attempt to bring all (or most, anyway) of their
programming languages under a single runtime umbrella: the .NET Framework. One problem in
attempting this was that Microsoft’s C++ and Visual Basic languages did not use a common naming
system for their data types. So, in order to unify the naming system, some changes had to be made in
one or the other of the languages, and we VB programmers were chosen to take on the challenging
task of learning a new naming convention (because of our superior intelligence, naturally).

If the new integer naming scheme is simply too much for you to keep track of, you have a nice,
simple alternative, fortunately. The Short, Integer, and Long data types are the VB equivalents of
the .NET Framework data types System.Int16, System.Int32, and System.Int64. You can always
declare your integer variables using these types instead. This would certainly end all confusion as to
what type is what size.

Dim Statement Behaves Differently

Consider the following Visual Basic variable declaration:

Dim A, B, C as Integer

In VB.OLD, a line like this was the source of boundless confusion among programmers because the
data type of variables A and B was not well defined. The intention of the programmer was probably
to declare three Integer variables, but VB6 and below did not treat this line in this way. Instead, only
variable C was declared as an Integer, and A and B are most likely variants.

VB.NET corrects this long-time confusion. The previous line behaves as God, Bill Gates, and most
likely the programmer who wrote it intended it to behave: it declares three Integer variables.

You can still add each type explicitly, or you can mix types, as shown here:

Dim A as Short, B as Integer, C as String

What You Used to Call Is Now Called
Integer Short
Long Integer
Really big 64-bit number that I can’t define Long

Page 11 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

No More Variants

The Variant data type has gone the way of the mastodon. Instead, the base, catch-all data type in
Visual Basic.NET is the Object. The new Object type duplicates all the functionality of the old
variant.

Personally, I was never much for using the Variant data type because it seemed like all I was ever
doing was explicitly converting the contents of my variant variables into integers or strings or
whatever in order to perform accurate operations on them. However, I find I’m already using the
Object data type much more frequently because it’s not just for holding base data types like integers
and strings, but also for holding actual class instance types like Buttons, Forms, or my own invented
classes.

Initializers

Initializers are a cute new feature that let you declare and initialize a variable in the same line, as in
these examples:

Dim X as Integer = 0
Dim S as String = "SomeStringValue"
Dim B as New Button()
Dim A(4) As Integer = {0, 10, -2, 8}

The first two declare and initialize simple data types to default values. The third line is a holdover
from prior versions of VB—it declares an object of type button and instantiates it in the same line.
The last line creates an array of four integers and sets the initial values of all four elements in the
array.

Local Scope

A variable can now be declared inside a statement block such as an If or Do While statement, and the
variable will have scope only within the block in which it is declared, for example:

Dim bDone As Boolean = False
Dim r As New Random()

Do While Not bDone
 Dim Y As Integer

 Y = r.Next(1, 100)
 bDone = (Y < 10)
Loop

Call Console.Writeline("Final value=" & Y)

This block of code will not compile properly because the declaration of Y is inside the Do While
block, but the Console.Writeline attempts to access it. Since the Console.Writeline is outside the
scope of the loop, the variable is also out of scope.

Most programmers might combat the potential for these local scope errors by putting every Dim
statement at the top of the procedure or function. This can lead to an inefficient use of resources,
however. Consider the following code fragment:

Note Arrays in Visual Basic.NET are always zero-based arrays. The Option Base statement is no
longer supported.

Page 12 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

If not UserHasAlreadyRegistered() then
 Dim f as New RegistrationForm()
 f.ShowDialg
end if

In this code, some magic function goes off and checks if the program has already been registered. If
it has not, then an instance of the registration form is declared and shown. If the user has already
registered the software, why bother creating an instance of a form that will never be displayed? All
this does is clog up the garbage collector later. As you can see, clever use of local scope variable can
save your program memory, making it run more efficiently.

3: Avoiding Redundant Function Calls

The redundant function calls code can be found in the folder prjRedundantFunctionCalls.

This little coding shortcut seems so obvious that I almost didn’t consider it worth inclusion in the
book, but I see this rule broken so frequently that I felt it worth repeating. The rule, in its most basic
form, is as follows:

Why execute code more than once when running it once gives the same result?

To illustrate the rule with an absurd example, consider the following block of code:

For X = 1 to 1000
 Y = 2
Next

This loop assigns the value 2 to variable Y, one thousand times in a row. Nobody would ever do this,
would they? What’s the point? Since no other code executes in the loop except for the assignment
statement, you know that nothing could possibly be affecting the value of Y, except the assignment
statement itself.

When the previous loop is complete, Y has the value of 2. It doesn’t matter if this loop runs one
thousand times, one hundred times, or simply once—the end result is the same.

While I’ve never seen code quite as worthless as this, the following block of code is very close to
one that I read in a Visual Basic programming article a while back:

Do While instr(cText, "a") > 0
 cText = Left(cText, instr(cText, "a") - 1) & _
 "A" & mid(cText, instr(cText, "a") + 1)
Loop

This code scans through the contents of a string variable and replaces all of the lowercase letter a’s
with uppercase A’s. While the function performs exactly what it’s intended to perform, it does so in a
very inefficient manner. Can you detect the inefficiency?

A Simple Speedup

To determine what rankled my feathers so much about this block of code, you need to think about
how long it takes your lines of code to run. All Visual Basic lines of code are not created equal in
terms of the length of time they take to execute. Take the instr function, for example. The instr
function scans through a string looking for the occurrence of a second string. Imagine that you had to
write a Visual Basic replacement for the instr function. You would start at the beginning of the
string, compare it to the comparison string, and keep looping through each character until you either

Page 13 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

found the comparison string, or got to the end of the original string.

The instr function built into Visual Basic probably does the same thing, albeit in some optimized
fashion. However, you don’t get anything for free. If you call instr, Visual Basic internally loops
through the test string looking for the comparison string. This loop is going to take some finite
amount of time (a very small amount of time, to be sure, but a finite amount, nonetheless). Following
my rule, why would you want to run this loop more than once when running it once gives the same
result?

The previous tiny little block of code calls the exact same instr function three times every time the
loop is iterated. If you assume that the instr call itself runs as I surmise (some linear search through
the input string), the instr call will take longer to run on bigger input strings (because the code has to
loop through every character in the string). What if the input string to the loop was the entire
contents of all the books in the Library of Congress? Let’s say, for the sake of argument, that the
instr call takes one minute to run on a string as large as the entire contents of the Library of
Congress. Since I call the instr call three times, the loop will require (at least) three minutes for every
iteration of the loop. Multiply that by the number of A’s found in the Library of Congress, and you’ll
have the total operating time of the loop.

If I make a simple change to the loop, I can reduce the number of instr function calls from three to
one:

iPos = instr(cText, "a")
Do While iPos > 0
 cText = Left(cText, iPos - 1) & "A" & mid(cText, iPos + 1)
 iPos = instr(cText, "a")

Loop

The change I made was to store the result of the instr function call into a variable and to use that
variable in the first line of the loop, where the lowercase a is replaced by an uppercase A. The loop
result is the same, but the instr function is called only once per loop iteration.

Does a change like this really make a difference in speed? The example program proves the
difference. The program creates a large string of random letters (with spaces thrown in to make them
look a bit more like words) and then runs through one of the previous loops to replace all of the
lowercase a’s with uppercase A’s. The “fast” loop (one instr call per loop iteration), runs at about 75
percent of the speed of the "slow" loop (three instr calls per loop iteration). A 25 percent speed
savings is considered quite good. If a loop of this type were called repeatedly in your application, a
25 percent speed increase might make your application feel faster to the end users. I’ve learned that
the feel of an application is of primary importance to the end user—if the program feels slow, the
user might not use the application.

4: The Visual Studio “HoneyDo” List

The Task List code can be found in the folder prjDataset.

At my home, as in many homes, I’m sure, we have what we call a “HoneyDo” list—a list of

Note The example program shows a brief example of random number generation in Visual Basic. A
class called Random is included in the .NET Framework that handles all types of random
number generation. The Random class contains methods for generating floating point random
numbers between 0.0 and 1.0 or between a numeric range. See the example program function
named RandomBigString for some sample uses of the Random class.

Page 14 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

outstanding jobs around the house for me to do. These jobs range in size from small things like
sweeping out the garage or putting up some shelves to larger tasks like removing wallpaper or
staining the deck. Sometimes, I’ll be working on one chore that reveals a second—like when I pull
up old carpet in the basement only to reveal some rust-stained concrete underneath. Or when I
discover a hole created by chipmunks while cleaning out the garage. It never ends.

When things like this happen, I often don’t have time to get to the second job in the same day (the
ballgame awaits, after all…). Instead, I add it to the HoneyDo list, complete the first job, and get
back to the second job another day. Visual Studio.NET has a feature much like the HoneyDo list
(except that it doesn’t call me “honey”—good thing): the Task List. The Task List is similar to that
found in Outlook, or even previous versions of Visual Studio, with one important distinction: you
can auto-fill Task List entries with specially constructed comments. Let’s look at how this works.

Task List categories are set up under the Tools � Options dialog. The Task List settings are under
the Environment category, as shown in the next illustration.

You can modify the entries under the Tokens list. A token is a special phrase with which you can
begin a comment. If you do begin a comment with one of the predefined tokens, an entry is
automatically added to the task list. The text of the task is the text of the comment. This code snippet
shows a comment entered into the sample project:

‘ TODO - replace connection object later
Dim aConn As New SQLConnection(CONNECTIONSTRING)

Because the comment begins with the TODO token, a task is automatically placed into the Task list,
as shown here:

Once the comment is set up in this way, you can double-click the item in the Task List and it will
zoom your code directly to the corresponding comment. Deleting the comment deletes the task in the
Task List. This functionality acts as the HoneyDo list for your project. You can set up open tasks as
comments and they’ll show up in the Task List. Using different tokens allows you to group tasks
under different categories and priorities.

Note As you can see in the illustration, I created a BETA2 token that I used throughout the
development of this book. Whenever something wasn’t working in VS.NET beta 1 and I
suspected that the problem might be because the language was an early beta, I left myself a
note to recheck the problem once I received VS.NET beta 2.

Page 15 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

5: Delving into Docking and Anchoring

The docking and anchoring code can be found in the folder prjAnchors.

Finally, finally, finally! I am so tired of writing code to resize controls on a form. How many third-
party auto-resizer VBXs and OCXs and ActiveX controls have been put on the commercial and
freeware market? Being the type of person who would only use a third-party control when its
functionality couldn’t be duplicated with good old VB code, I never used one of these controls.
Instead, I used to spend an hour writing silly little snippets of code in the Resize event of my VB
forms to do things like:

l Making sure the Treeview got longer as the form did

l Making sure the grid got wider as the form did

l Keeping the OK and Cancel buttons near the bottom of the form

Visual Basic GUI components finally have two properties that save me from having to write this
kind of time-wasting code ever again. These are called the Dock and Anchor properties (any reason
why they chose two maritime references?).

The Dock property can be set to one of the following values: None (the default), Top, Left, Right,
Bottom, or Fill . Setting the property to None causes the control to stay right where you put it on the
form. A setting of Top, Left, Bottom, or Right causes the control to remain attached to that side of
the parent of the control. Setting these properties in the Visual Studio Property Editor is done with a
little graphical representation, as shown here:

In the sample project, the Treeview is set with a Dock of Left, so it remains attached to the left side
of its parent, which is the main form. The control lbDirections is set with a Dock of Top, which
causes it to remain docked with the top of its parent, which is the upper-panel control. The following
illustration shows a picture of the project while it’s running:

Page 16 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Docked controls grow appropriately if the edges of the parents to which they are docked grow in the
following manner:

l A control with a Dock set to Left or Right grows in height as its parent grows in height.

l A control with a Dock set to Top or Bottom grows in width as its parent grows in width.

The Anchor property is somewhat similar to the Dock property, but the control doesn’t attach itself
directly to the edge of the form. Instead, its edges maintain a constant distance to the edges defined
by the property.

Setting the Anchor property is also done graphically, as shown in this illustration:

The available settings are some combination of Top, Left, Bottom, and Right. The default Anchor
value is Top,Left meaning that the control’s top and left side will remain a constant distance from the
top and left edges of its parent. If you were to set a control to Left,Right the left and right edges
would stay anchored to the left and right edges of the form—meaning that the control would have to
resize as the form was resized. The lowermost panel in the sample project has an Anchor property of
Left,Right so you can see it resize as the form is resized and it maintains its left and right anchors.

The last illustration shows the same project with the form made both taller and wider. Note how all
of the controls on the form have fallen into line without a single line of code!

Page 17 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Looking at the illustration should give you a pretty good idea of the Dock and Anchor properties in
action, but things should really click into place when you run the provided project. Watch all of the
controls conform to their Dock and Anchor properties as you resize the form.

6: Beyond the Tag property

The Tag property code can be found in folder prjCustomTreeNode.

“What? No Tag property? Why would they remove that? I use that property in at least 100 different
ways. What the heck am I supposed to do now?"

The hue and cry came from all directions when it was learned that Microsoft had removed the Tag
property from all of their controls in the .NET Framework. That Tag property serves as a catch-all
property to store user-defined data. It originally started as an Integer property, but changed over to a
String property to meet user demand.

People found myriad uses for the Tag property. For example, suppose you were populating a
Treeview with the names of employees from a corporate database for the purposes of creating an org
chart. While loading each employee into a TreeNode object on the Treeview, you could store the
primary key for each employee (be it the social security number, a GUID, or some other unique
identifying element) into the Tag property on the TreeNode. Then, when the application user selected
a TreeNode in the Treeview, you would have instant access to the primary key of the table from
which you loaded these employees. This would allow you to query the database to return additional
information about the employee (date of birth, service time, current title, and so on).

Along Came Beta 2

I guess Microsoft actually heard the developer screams when they attempted to remove the Tag
property. As of Visual Studio.NET beta 2, they actually put the user-defined property back, as a
member of the Control class. Apart from almost rendering this part of the book useless, all Microsoft
did was anger the other developers, the ones who liked the reasoning behind the removal of this
property to begin with. These developers argue that we really don’t need Microsoft to give us a
property for supplying user-defined data, because the object-oriented features of VB.NET make it
really easy (almost trivial, really) to add user-defined properties ourselves. I happen to fall into this
camp. I submit that by removing the Tag property, Microsoft is actually taking away a crutch that
might prevent you from using object-oriented techniques and therefore not use the new language in
the way in which it was intended.

Furthermore, having a Tag property on every single component can add up to a great deal of
overhead. Do you really need a Tag property on every label and button on every form in your
application? Perhaps, but probably not. Why have properties on controls that you’ll never use? In the

Page 18 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

long run, it’s better to run with stripped down versions of all the controls and use other tools to bolt
new things on the side as you need them. This is a core component of object-oriented programming.

To demonstrate the power of using object-oriented programming, I’ll take an existing component and
bolt a few new properties onto it. In this example, the goal is to load up a Treeview with a list of files
on the machine’s hard drive. When the user clicks one of the nodes in the Treeview, I would like the
program to display the date and size of that file.

There are two basic ways I can solve this problem. The first way is to wait until the user clicks a file
in the Treeview, then go back to the file system to load the file date and time and display it. I decided
this method might be a bit difficult to implement, mainly because my Treeview node isn’t going to
have the filename with its complete path on each node. I would probably have to iterate through the
parents of the node to reconstruct the full path of the file.

Instead, I decided that it would be much easier to store the date and time of each file somewhere as I
was iterating through the file system and loading the file names into the Treeview. The only question
was where to store these date and time variables. Since I needed a date and time variable for each file
I was going to load into the Treeview, it made sense to bolt these variables onto the TreeNode class,
as shown here:

 Class FilePropertitesTreeNode
 Inherits TreeNode

 Private FFileDate As DateTime
 Private FFileSize As Long

 Property FileDate() As DateTime
 Get
 Return FFileDate
 End Get
 Set
 FFileDate = Value
 End Set
 End Property

 Property FileSize() As Long
 Get
 Return FFileSize
 End Get
 Set
 FFileSize = Value
 End Set
 End Property

 End Class

The class is called FilePropertiesTreeNode. It inherits off of the base TreeNode class, found in the
System.Windows.Forms namespace. The purpose of the class is to add two additional properties to
the standard Tree- Node. These properties store a date and a number representing the size of a file.

The intention is to use these new TreeNodes instead of the standard Tree- Node when filling a
Treeview with file/directory information. While loading the Treeview, I can put the date and time of
each file in these new properties, thus giving me easy access to them as a node is selected in the
Treeview. I could easily create more properties that further describe each file, such as hidden/read-
only attribute information, the file extension, the bitmap associated with this file type, and so on.

Using an Inherited Class

Page 19 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

To use your custom inherited TreeNode instead of the base TreeNode, you merely create an instance
of your new class and add it to the Treeview using the same Add method you would normally use.
The Add method takes a TreeNode as its parameter—this includes TreeNode objects or direct
descendants of TreeNode objects, like my FilePropertiesTreeNode. Here is some example code to
add one of our new TreeNodes to a Treeview named tvStuff

oNode = New FilePropertitesTreeNode()
oNode.Text = "C:\WINDOWS\SOMEDUMMYFILE.TXT"
oNode.FileDate = "Jan 1, 2001"
oNode.FileSize = 65536
tvStuff.Nodes.Add(oNode)

Of course, the file information just listed is all made up. What would be more useful would be to
load actual filenames off disk and store their properties in the new TreeNode class instances. This
would be the first step in writing a Windows Explorer–like program. The sample project prjCustom-
TreeNode does just that. It fills a Treeview with instances of my new File- PropertiesTreeNode class,
reading files on the C drive as the source of the file information. The main recursive function that
loads the Treeview is listed here:

 Protected Sub FillTreeView(ByVal cFolder
 As String, ByVal oParentFolder As FilePropertitesTreeNode,
 ByVal iLevel As Integer)

 Dim d As DirectoryInfo
 Dim f As FileInfo
 Dim o As Object
 Dim oFolder As FilePropertitesTreeNode
 Dim oNode As FilePropertitesTreeNode
 Dim cName As String

 ‘for this demo, we’re only going ‘
 3 levels deep into the file structure
 ‘for speed reasons
 If iLevel > 3 Then Exit Sub

 d = New DirectoryInfo(cFolder)
 cName = d.Name

 ‘fix the entry ‘C:\’, so we don’t
 ‘have double \\ in filenames

 If cName.EndsWith("\") Then
 cName = cName.Substring(0, cName.Length - 1)
 End If ‘create node for this folder
 oFolder = New FilePropertitesTreeNode()

 ‘fill the custom properties
 oFolder.Text = cName
 oFolder.FileDate = d.LastWriteTime

 ‘add this node. May have to add to Treeview
 ‘if no parent passed in
 If oParentFolder Is Nothing Then
 tvFileListing.Nodes.Add(oFolder)
 Else
 oParentFolder.Nodes.Add(oFolder)
 End If

 Try
 For Each f In d.GetFiles()

 oNode = New FilePropertitesTreeNode()

Page 20 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 ‘set up folder
 oNode.Text = f.Name

 ‘fill in our custom properties
 oNode.FileDate = f.LastWriteTime
 oNode.FileSize = f.Length
 ‘add this node
 oFolder.Nodes.Add(oNode)
 Next

 For Each d In d.GetDirectories
 Try
 Call FillTreeView(d.FullName, oFolder, iLevel + 1)

 ‘catch errors, like access denied
 ‘errors to system folders
 Catch oEX As Exception
 Console.WriteLine(oEX.Message)
 End Try
 Next
 Catch e As Exception
 Console.WriteLine(e.Message)
 End Try

 End Sub

The procedure expects a folder name as its first parameter. It creates an instance of a DirectoryInfo
object based on this folder name. The Directory- Info object returns useful information like the name
of the directory and the last time it was written to. It also contains methods for looping through all of
the structures inside it.

The first step is to create a FilePropertiesTreeNode and add it as a child to the passed-in parent node,
also a FilePropertiesTreeNode. This routine has a depth tester that makes sure that the routine stops
loading after four levels of depth in the file system. This is done only as an optimization, so the load
routine takes a shorter amount of time.

There are two For…Each loops in the routine—the first loops through all the subdirectories in the
current directory, and the second loops through all the files in the directory. For each subdirectory,
the same procedure is recursively called against the new subdirectory name. For each file, one of the
FilePropertiesTreeNode instances is created, loaded with the file date and time information, and
added to the parent (folder) node.

Once the Treeview is filled, the OnAfterSelect event is set up so that the following code runs when
the user clicks on a node in the Treeview:

Private Sub tvFileListing_AfterSelect(ByVal sender_ As System.Object, ByVal e As_ System.Windows.Forms.TreeViewEventArgs)_ Handles tvFileListing.AfterSelect

Page 21 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim oNode As FilePropertitesTreeNode

 oNode = CType(e.Node, FilePropertitesTreeNode)
 If Not oNode Is Nothing Then
 lbFileName.Text = oNode.FullPath
 lbDate.Text = "File Date: " & oNode.FileDate()
 lbSize.Text = "File Size: " & oNode.FileSize() &_
 " bytes"
 End If

 End Sub

This code first returns the node that was clicked and typecasts it to our special node class (the
typecast is necessary because the Node property on the System.Windows.Forms.TreeViewEventArgs
object is of the normal TreeNode class). If the typecast is successful, some labels are filled with the
contents of the custom FileDate and FileSize properties.

7: Handling Control Arrays Another Way

The control array code can be found in the folder prjNoControlArrays.

From my very first days of Visual Basic, I was enamored with using control arrays. My first “real”
Visual Basic program was a card game, and it seemed a perfect solution to create an array of picture
box controls with the appropriate bitmaps for playing cards. I completed my card game, uploaded it
to a local BBS (this was a few years before the Internet), and received a few comments about it.

My use of control arrays didn’t stop with that first card game. I must have written a half dozen card
games, as well as some crossword-type games, the mandatory number scramble game, and a few
other simple games that gave me fun projects to work on while I learned Visual Basic. I’ll bet almost
all of those early programs used control arrays to handle the game elements.

Before I got my first copy of VB.NET, I was reading an online summary of some of the language
changes, and one of the differences mentioned that control arrays were no longer a feature of the
language.

The main benefit of having an array of controls is, of course, being able to write the same event
handling code for multiple controls and the ability to easily tell which control fired the event, as seen
here:

Sub pnPanel_Click(Index as Integer)
 Msgbox("Panel index " & index & "was clicked")
End Sub

This piece of VB6 code handles the Click event for an array of controls named pnPanel and displays
a message about which one was picked.

So what’s a closet game programmer like me to do? If I have several similar user interface elements

Note When I finally got Visual Studio.NET beta 2 installed on my machine, I thought I’d have to
throw this part of the book away because Microsoft decided to put the Tag property back into
the language. As it turns out, though, this example project is still quite valid. Because the
sample code adds properties to a Treenode class, and because the Treenode class is not a
descendant of the Control class, I wouldn’t have been able to use the Tag property to store my
file info anyway. Now, if Microsoft decides to move the Tag property down to the Object class
instead of the Control class, I just might have to scream…

Page 22 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

that I want handled all the same way and I can’t group them with a control array, is there some other
means to have all of these controls share the same event code? The answer is, of course, yes. Visual
Basic introduces a Handles clause on procedures that allows you to link many event procedures to
the same code. Here is an example of the Handles clause in action:

 Public Sub PanelClick(ByVal sender_
 As Object, ByVal e As System.EventArgs)_
 Handles Panel1.Click, Panel2.Click, Panel3.Click,_
 Panel4.Click, Panel5.Click, Panel6.Click,_
 Panel7.Click,Panel8.Click, Panel9.Click

 Dim p As Panel
 p = CType(sender, Panel)
 If p.BackColor.Equals(Red) Then
 p.BackColor = Blue
 Else
 p.BackColor = Red
 End If
 p.Invalidate()
 End Sub

This Click event is wired up to nine different Panel controls here. Para- meter Sender is the control
that caused the event. There is nothing that forces you to link the same event to controls of all the
same class, so the Sender parameter gets passed in with generic type Object. The programmer has to
help out in determining what class of object caused the event. In the example program, the choice is
easy, because I purposely wired this Click event up to only Panel controls. Because I know this, I am
able to typecast the Sender parameter to a Panel variable, and I now have access to the panel that was
clicked.

The rest of the Click event checks the color of the clicked panel and switches the color between blue
and red. The last line, p.Invalidate(), forces the panel to repaint itself. This brings me to my second
event, which is helped out by a Handles clause:

Protected Sub PanelPaint(ByVal sender As Object, ByVal e As
 System.Windows.Forms.PaintEventArgs) Handles Panel1.Paint,
 Panel2.Paint, Panel3.Paint, Panel4.Paint, Panel5.Paint,
 Panel6.Paint, Panel7.Paint, Panel8.Paint, Panel9.Paint

 Dim p As Panel
 p = CType(sender, Panel)

 e.Graphics.FillRectangle(New SolidBrush(p.BackColor),
 p.ClientRectangle)

 If p.BackColor.Equals(Red) Then
 e.Graphics.DrawEllipse(New
 Pen(System.Drawing.Color.Green, 3), p.ClientRectangle)
 Else
 e.Graphics.DrawEllipse(New
 Pen(System.Drawing.Color.Yellow, 3), p.ClientRectangle)
 End If

 End Sub

Again, the paint event for all nine panels is handled by this single event, in which I again typecast the
sender variable to a local Panel variable so I can do stuff to it. I then write some custom painting
code. First, I fill the panel with its defined BackColor, and then (just for fun), I draw a circle within
the boundary of the panel.

Page 23 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The final effect is that clicking any of the nine panels switches their color from red to blue. You can
easily see how this might be the beginning of a tic-tac-toe game or something similar:

Learning the Framework
8: Getting Resourceful

The resource code can be found in folder prjResources.

The Web has turned all facets of computer use into a set of global communities. Whether your
computer-related interests include programming, game playing, shopping, the arts, or one of dozens
of other topics, using the Web to engage these interests means dealing with people from all over the
world (they don’t call it the World Wide Web for nothing). It’s not the least bit unusual for me to
converse with a fellow developer from Australia via a Usenet post minutes after Instant Messaging
an old school friend living in London.

Developing software in the Internet age should be a global endeavor now, as well. Why cut off a
huge portion of your potential user base because your software can be understood only by those who
can read English?

Resource Strings

Coding for multiple language sets can be made easier with the use of resource files. A resource file is
a list of string constants that are to be used in your application. Such strings might be used to display
messages or as the captions to other user-interface elements. By giving your program the ability to
display these messages in multiple languages, you increase the potential audience for your software
(more users is always better, right?).

A string resource file is a text file with a familiar INI file format to it. Here is the resource file for a
small subset of words in Italian:

[strings]
Language=Italiano

Page 24 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Hello=Ciao
Goodbye=Ciao
Door=Porta
Window=finestra
House=Casa
Dog=Cane
Cat=Gatto

The idea is to create a separate resource file for each language that you plan on supporting. Each
resource file would contain identical strings (the left side of the equal sign in the previous lines), with
only the strings themselves changing from file to file (the right side of the equal sign).

Once the resource files are created, they must be converted to an XML-style format using the
command-line resource generator program named resgen.exe. An example of running this program is
shown here:

"C:\Program Files\Microsoft.NET\FrameworkSDK\Bin\resgen.exe" resITA.txt resITA.resx

Running the program with these parameters takes the resITA.TXT file, which has the INI-like format
shown previously, and converts it to a resITA.resx format. The RESX format is used by Visual
Studio programs to refer to on-disk resources that are to be embedded into the application. Adding
these resources to your application involves the simple matter of adding the new RESX file to your
project, as shown in this illustration:

Once added to the project in this way, you can open the resource file and access any of the strings
therein by using

Dim ResMan As System.Resources.ResourceManager
Dim cResource as string

ResMan = New System.Resources.ResourceManager("prjResources _ .resITA", _ System.Reflection.Assembly.GetExecutingAssembly) _

cResource = ResMan.GetString("Language")

The ResourceManager class is used for getting embedded resources out of your application. To
instantiate a ResourceManager object, you pass the name of the RESX file (removing the extension,
but adding the project name) and the name of the assembly in which the resources reside, which can
usually be retrieved using the System.Reflection.Assembly.GetExecuting- Assembly method.
Retrieving a string within the file is done using the GetString method on the ResourceManager
object.

Page 25 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The sample project uses the basic techniques just shown to create three different resource files in
English, Italian, and German (only one of which I know with any fluency—guess which one!). As
the user clicks each of the radio buttons, the corresponding resource file is loaded from the
application and the strings are displayed in a Listbox. One can easily see how to extend this
functionality to load resource strings for different languages to be used as all of the internal messages
and labels in your application, instead of simply hard-coding those values into the source code. (Now
if someone could just teach us to speak all of the languages we need to support, we’d all be rich!)

Bitmaps, Too

Resources are not limited only to strings. One can turn just about any disk-based file into a resource
and embed it into the application. This can be a much better alternative than installing a bunch of
“loose” files with the application and hoping nobody deletes them.

Bitmaps are a good example of a type of resource that you might want to embed into your
application. To add a bitmap resource to your application, select Add Existing Item from the context
menu in Solution Explorer, select the BMP file that you wish to add, then make sure that the file
properties read Embedded Resource, as shown here:

Once you’ve compiled a bitmap into your application in this fashion, you can retrieve it using the
following code:

Dim a As Reflection.Assembly = _ System.Reflection.Assembly.GetExecutingAssembly()

Dim b As New _ Bitmap(a.GetManifestResourceStream("prjResources." & _ "BlueLace16.bmp"))

This code retrieves a resource by name into a Stream object, and that stream is passed to the Bitmap
class constructor. You can now use the bitmap object normally in your code.

9: Reading from a Text File: An Introduction to Streams

The streams code can be found in folder prjNetNotePad.

The VB6 syntax for reading from a text file seemed archaic at best: one had to keep track of file
handles and so forth. You might figure that the .NET Framework would handle text files in a more
elegant fashion, and you’d be correct. In fact, an entire set of classes exists that handles the I/O of not
only text files, but also data of all types. This set of classes is known collectively as Streams.
According to the .NET Framework help file, a stream provides a way to read or write

data from a backing store. A backing store can be a file on disk, an area of RAM, or even a variable
like a large string.

Page 26 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

There are different types of Stream classes to handle the reading and writing of different types of
data from different types of backing stores. A short summary of all the stream classes used for
reading is given here:

All of these classes can be found in the System.IO namespace. They handle reading different types of
information from many different types of sources.

Reading data from a text file is best done using the StreamReader class. The following code comes
from the prjNetNotePad project. It populates the Textbox control tbMain with the contents of the
passed-in file.

 Protected Sub LoadTextFile(ByVal cFilename As String)

 Dim sIn As StreamReader
 Dim cLine As String
 Dim bDone As Boolean = False

 tbMain.Text = ""
 sIn = New StreamReader(cFilename)
 Try
 While Not bDone
 cLine = sIn.ReadLine()
 If cLine Is Nothing Then
 bDone = True
 Else
 ‘note: carriagereturn = environment.newline
 tbMain.Text = tbMain.Text & cLine & Environment.NewLine
 End If
 End While
 Finally
 sIn.Close()
 End Try

 End Sub

Class Inherits From Notes
Stream System.Object Abstract class, cannot use. Must

use a class inherited from
Stream.

BufferedStream Stream Provides a memory buffer to
cache reads and writes in a loop.

Class Inherits From Notes
FileStream Stream Provides a random access to a

disk file.
MemoryStream Stream Provides I/O to a block of

memory.
TextReader System.Object Provides an abstract calss to

read text.
StreamReader TextReader Reads text from a Stream

object.
StringReader TextReader Reads text from a string

variable.
BinaryReader System.Object Provides an abstract class to

read binary data.

Page 27 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

After clearing the Textbox, a StreamReader class is instantiated, passing the filename as the
parameter on the constructor. (The StreamReader class has no fewer than nine different overloaded
constructors, so some study might be warranted to learn all of the options available.)

The main reading loop might look different from file reading loops you’ve set up in prior versions of
Visual Basic. The main difference is that the StreamReader class does not have an .EOF (End of
File) method. Instead, a ReadLine method is called, and the contents of this read are compared to
Nothing. If the string is equal to Nothing, then you are at the end of file. If you’re not at the end of
file, then the string is appended to the Textbox.

The last three lines of the procedure close the StreamReader, inside a Finally block. Note that the
entire read loop is inside this Try..Finally block. This guarantees that the StreamReader will be
closed when the procedure returns.

10: Writing to a Text File: More on Streams

The writing to a text file code can be found in folder prjNetNotePad.

A bunch of classes for reading data isn’t much good if there aren’t equivalent writing capabilities to
go along with it. As you might expect, all of the Stream reading classes have writing classes right
alongside of them. A summary of output-specific classes is listed in the following table:

Like their reader equivalents, all of these classes can be found in the System .IO namespace. Writing
data to a text file is best done using the StreamWriter class. The following code comes from the
prjNetNotePad project. It takes the contents of the tbMain Textbox control and writes the result to
the passed-in filename parameter.

 Protected Sub SaveTextFile(ByVal cFilename As String)

 Dim sOut As StreamWriter
 Dim i As Integer

 sOut = New StreamWriter(cFilename)
 Try
 For i = 0 To tbMain.Lines.Length - 1
 Call sOut.WriteLine(tbMain.Lines(i))
 Next
 Finally

Class Inherits From Notes
Stream System.Object Abstract class, cannot use. Must use a

class inherited from Stream.
BufferedStream Stream Provides a memory buffer to cache

reads and writes in a loop.
FileStream Stream Provides random access to a disk file.
MemoryStream Stream Provides I/O to a block of memory.
TextWriter System.Object Provides an abstract class to write

text.
StreamWriter TextWriter Writes text to a Stream object.
StringWriter TextWriter Writes text to a string variable.
BinaryWriter System.Object Provides an abstract class to write

binary data.

Page 28 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 sOut.Close() ‘make sure the stream closes
 End Try

 End Sub

This procedure is pretty basic in nature. A StreamWriter object instance is created, and the contents
of the Textbox tbMain is written to it line by line. The loop is enclosed in a Try…Finally block to
make sure the StreamWriter gets closed before the procedure exits.

11: Reading and Writing to the Registry

The Registry code can be found in folder prjRegistry.

The largest obstacle to learning Visual Basic.NET, in my opinion, isn’t going to be the new language
features or syntactical changes. Instead, becoming familiar with all the ins and outs of the common
language runtime (CLR) should prove to be the biggest hurdle for most NET programmers regardless
of their language of choice. Learning a class framework has proven to be difficult in the past, as
well—I recall hearing and reading numerous statements claiming that learning the Microsoft
Foundation Classes (MFC) was the hardest part about learning Microsoft Visual C++.

One example of functionality built into the CLR is accessing the Windows Registry. I had written
my own little Registry class in VB6 for setting and retrieving values. A quick search in the Visual
Studio.NET help file, however, told me that classes were already in place to handle that same
functionality.

There are two Registry-specific classes in the CLR. The first is called simply Registry. The only
purpose of this class is to store the Registry constants that make up the roots of each Registry branch:
HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER, and so on. The table of these constants,
and the properties on the Registry class that represent each constant, is given here:

Besides storing these constants, the Registry class isn’t used for anything. Most of the work that
you’ll be doing is with the RegistryKey class. Here’s a small procedure taken from the sample
program that writes a value to the Registry:

Private Sub cbWrite_Click(ByVal sender As System.Object, _ ByVal e As System.EventArgs) Handles cbWrite.Click

Note You can access the contents of a Textbox either line by line using the Lines property or all at
once using the Text property.

Note Chances are, if you used any Windows API call in the past, there’s some type of class in the
CLR to handle that same functionality. This rule of thumb is a good starting point in learning
about the CLR.

Constant Registry Property Name
HKEY_LOCAL_MACHINE LocalMachine
HKEY_CURRENT_CONFIG CurrentConfig
HKEY_CURRENT_USER CurrentUser
HKEY_DYN_DATA DynData
HKEY_CLASSES_ROOT ClassesRoot
HKEY_PERFORMANCE_DATA PerformanceData
HKEY_USERS Users

Page 29 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim aKey As RegistryKey
 Dim iSec As Integer = Now.Second

 ‘start at HKEY_LOCALMACHINE
 aKey = Registry.LocalMachine

 ‘create a subkey. trap any error (security, etc)
 Try
 aKey = aKey.CreateSubKey(TESTSUBKEY)
 aKey.SetValue(TESTSTRING, iSec)
 Finally
 Call aKey.Close()
 End Try

 lbStat.Text = "read registry value " & cFullKeyName _ & " set to " & iSec

 End Sub

The constants TESTSUBKEY and TESTSTRING are defined as form-level variables, so they are not
shown in this procedure. As you can see, the Registry- Key variable name aKey is initialized to the
constant Registry.Local- Machine. From here, you can traverse down into this branch of the Registry
using the CreateSubKey method. This method opens a key if it exists and creates it if it does not.
Writing to the key is done using the SetValue method.

Note that I wrap the Registry functions in a Try…Finally block. Many users do not have permission
to write to the system Registry (in an NT/2000 environment, for example, people without local
Administrator privileges cannot write to the Registry). The Try…Finally block handles any errors
that might occur while writing to the Registry and allows the program to continue. One could further
enhance the exception handling with a message box to the user, logging to the event log, or some
other notification that the Registry write failed.

The sample procedure to read a value from the Registry is almost identical:

 Protected Sub cbRead_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles cbRead.Click

 Dim aKey As RegistryKey
 Dim iSec As Integer

 ‘start at HKEY_LOCALMACHINE
 aKey = Registry.LocalMachine

 ‘create a subkey. trap any errors (security, etc)
 Try
 aKey = aKey.CreateSubKey(TESTSUBKEY)
 iSec = CInt(aKey.GetValue(TESTSTRING, -1))
 Finally
 Call aKey.Close()
 End Try

 lbStat.Text = "read registry value " & cFullKeyName _
 & " as " & iSec

 End Sub

The only difference between this routine and the last is that the GetValue method is used instead of
SetValue. The GetValue method has two parameters:

l The name of the variable to read under the current key

Page 30 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

l The default value to return if the read fails (because the variable does not exist, for example)

In this procedure, the result of the read is converted to an Integer. Once again, the Registry handling
code is wrapped around an appropriate Try…Finally block.

The Registry is the logical place to store user-specific settings for your application, like font and
color choices, file history lists, or other properties that can be changed from user to user. It is also a
veritable fun house of operating system and other application settings that you can mine for your
own purposes. For example, I was recently writing a program that exported its data to an Excel
spreadsheet. Knowing that many end-users have trouble with the concept of drives and folder
locations (especially in a networked environment), I decided that it would be useful for my program
to store the spreadsheet in whatever folder the user had specified as his default Excel file location.
That way, when the user opened Excel and clicked Open, the new file would be right there in front of
him. I searched the Registry, found the desired key, and implemented this feature in under 30
minutes. My end users were very impressed with this little functionality because it saved them the
headache of finding the exported Excel spreadsheet themselves.

12: Keeping Regular with Regular Expressions

The regular expressions code can be found in the folder prjRegularExpressions.

Any developer writing text parsing software has probably found regular expressions to be an
important tool in their toolbox. Regular expressions can be useful in programs such as log file
parsers, HTML readers/extractors, and string search engines.

Regular expressions allow for the fast searching (and optional replacing) of text matching a certain
pattern. For the inexperienced, consider regular expressions to be like the VB Instr function to the
hundredth power. While Instr allows you to look for a hard-coded occurrence of one string within
another, one can use regular expressions to look for patterns of strings in extremely complex queries.

The different types of regular expressions that can be composed could easily themselves be the
subject of a book, so trying to cover them in any detail here would be, as they say, “beyond the scope
of this text.” Indeed, the building of regular expressions requires its own separate language that is
outlined in good detail in the .NET Framework Developer’s Guide. This text, along with the sample
program, which gives a half dozen or so examples, can serve as the start of your journey into regular
expression expertise.

The sample program creates a class named StringValidator that contains several validation functions
that use regular expressions to perform their validation. The following code shows one of those
functions:

 Shared Function IsAlpha(ByVal s As String) As Boolean

 Dim r As New Regex("[^a-zA-Z]")
 Return Not r.IsMatch(s)

 End Function

The two-line function declares an instance of the RegEx class, and then returns whether the passed-in
string s is a match to the regular expression [^a-zA-Z]. This regular expression is true if any letter in
the function is not in a letter, either upper- or lowercase. The caret (^) in front of the expression
negates the expression, which means the IsMatch method returns true of any character is not an
upper- or lowercase letter. Note the IsAlpha function itself returns Not r.IsMatch(s), meaning if any
character is not an alpha character, IsAlpha returns false (the function reads like a double-negative,

Page 31 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

so it might take a bit of time in your thinking chair to figure out the logic).

The rest of the StringValidator class contains more methods identical to this one, but looks for
different types of strings. There are methods to test if a string looks like a phone number, a social
security number, or ends in the letter k.

The program itself shows a Listbox containing several strings of different formats. Clicking each
string shows the result of each StringValidator method as a check in a check box control, as seen
here:

13: Improving File Copies, Moves, and Deletes

The copy, move, and delete code can be found in folder prjEnhanceFileOperations.

One of my pet peeves is that when a new version of Windows introduces new functionality,
Microsoft makes it maddeningly difficult for the Visual Basic programmer to take advantage of that
functionality. In the old days, this was usually because of some limitation of the older versions of
Visual Basic: no function callbacks, no function address pointers, unwieldy API parameters, and so
on.

Two such examples of “new Windows functionality” have been around so long that I can hardly call
them new anymore without smirking. Both are file-based features, introduced way back in Windows
95. The first is the nice “progress dialog” that comes up when you’re copying a large file, as seen
here:

This little nicety is something I’ve often wanted to toss into my programs, and, until recently, didn’t
know exactly what mysterious incantation (or API call) I had to make.

The second example is the use of the Recycle Bin. When I want to delete a file in one of my
programs, I’d often like it to go live in the Recycle Bin with the other “almost” deleted files, so the
user can bring the file back from the dead if the need arises.

The VB6 FileCopy and Kill statements did not take advantage of these Windows features. FileCopy
simply locks up your program until the copy is performed, which makes it pretty difficult to give the
user feedback as to what your program is doing. Likewise, The Kill statement banishes a file to
Nowhere Land with no chance for revival.

Page 32 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

I was hoping VB.NET would have these two new features built right into the File class. As of this
writing, this functionality is not present out of the box. However, due to the new object-oriented
methodology, you can easily construct a little class that handles these functions for you. Thus, the
EnhancedFileOps class was born!

Using the EnhancedFileOps Class

The most logical method of designing the EnhancedFileOps class would have been to inherit a new
class from the existing File class. Unfortunately, this isn’t possible because the File class is marked
as NonInheritable, which means that you cannot create new class under it. Instead, I decided to
create a base class (which inherits right from System.Object) that does the work I need it to do.

The API call that handles both file copying (with progress dialog) and moving files to the Recycle
Bin is called SHFileOperation. It takes as its lone parameter a structure called SHFileOpStruct. The
declaration for the function and the structure are shown here:

 Private Declare Function SHFileOperation _ Lib "Shell32.dll" Alias "SHFileOperationA" (ByRef _ lpFileOp As SHFILEOPSTRUCT) As Integer

Structure SHFILEOPSTRUCT
 Public hwnd As Integer
 Public wFunc As Integer
 Public pFrom As String
 Public pTo As String
 Public fFlags As Integer
 Public fAnyOperationsAborted As Integer
 Public hNameMappings As Integer
 Public lpszProgressTitle As Integer
 End Structure

There are also a fair amount of private constants declared in the class, which represent constants
placed into various fields of the SHFileOpStruct.

Sending a File to the Recycle Bin

To send a file to the Recycle Bin, you make the API call with the wFunc parameter set to
FO_DELETE, and the fFlags parameter set to FOF_ALLOWUNDO, as shown here:

 Public Function SendToRecycleBin() As Boolean

 Dim sOP As New SHFILEOPSTRUCT()

 With sOP
 .hwnd = FhWnd.ToInt32
 .wFunc = FO_DELETE
 .pFrom = FFilename & Chr(0) & Chr(0)
 .fFlags = FOF_ALLOWUNDO
 End With

 Return (SHFileOperation(sOP) = 0)
 End Function

Note that the pFrom parameter requires termination in two nulls, written as chr(0) in VB-speak. The
reason for this is that the SHFileOperation API call can actually work on more than one file at a time.
To process multiple files, you fill the pFrom parameter with each filename separated by single nulls,
and then you end the whole file list with two nulls. My example class does not take advantage of the
multiple file functionality, but it would be easy enough to add in.

Take special note of the last line in the function, as there are a few different little tricks going on

Page 33 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

there. The first is that VB.NET functions can return their value by using the special keyword Return.
Older versions of Visual Basic required assigning a value to a variable whose name was the function
name (this was a big pain when you decided to change the function name but forgot to change the
result assignment at the bottom).

The second little trick is a programmer’s preference that I like to use to compress my code into fewer
lines. The last line of code is exactly equivalent to the following statement block:

iResult = SHFileOperation(sOP)
If iResult = 0 then
 Return True
Else
 Return False
End If

This block is a bit easier to read, perhaps, but it takes six lines of code, whereas my replacement
takes a single line. The trick here is to note that (SHFileOperation(sOP) = 0) is itself a Boolean
expression—that is, it has a value of True or False. If the SHFileOperation API call returns 0, then
the expression is true. If the API call returns non-zero, then the expression is false. Instead of writing
all that out, I find it easier to compress it on one line. I call the function, compare the result to 0, and
return the result of that comparison as the result of my SendToRecycleBin function.

Copying or Moving a File

Copying (or moving) a file using the API call is equally simple. In addition to the pFrom parameter
that specifies the source, you must also fill in the pTo parameter, which gives the destination. This is
usually a folder name, as shown here:

 Private Function InternalCopy(ByVal cDestination _
 As String, ByVal bMove As Boolean) As Boolean

 Dim sOP As New SHFILEOPSTRUCT()

 With sOP
 .hwnd = FhWnd.ToInt32

 If bMove Then
 .wFunc = FO_MOVE
 Else
 .wFunc = FO_COPY
 End If

 .pFrom = FFilename & Chr(0) & Chr(0)
 .pTo = cDestination & Chr(0) & Chr(0)

 .fFlags = FOF_SIMPLEPROGRESS Or _
 FOF_FILESONLY Or FOF_NOCONFIRMMKDIR
 End With

 Return (SHFileOperation(sOP) = 0)

 End Function

I made this function a private function because it handles both the moving and copying of large files,
based on the second function parameter. I then created easy-to-read methods named
CopyWithProgress and MoveWithProgress that in turn call this private function.

The function itself simply sets up the API structure and makes the call. Note the
FOF_SIMPLEPROGRESS constant as part of the fFlags parameter—that’s what displays the

Page 34 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

progress dialog when large files are copied.

The example application allows you to pick a file, which it copies to hard-coded folder C:\tempvb
when a button is clicked. Select a large file (100MB files are pretty commonplace these days on
many hard drives) to make sure you see the progress dialog in action. The second button on the form
deletes this newly copied file by placing it in the Recycle Bin.

14: Detecting File Changes in a Folder

The file changes code can be found in the folder prjFileSystemWatcher.

Necessity is the mother of invention, or something like that. Take, for example, the project that
accompanies this chapter. While researching potential topics for my book, I came across the
FileSystemWatcher class in the CLR. Thinking this might be a good candidate for a topic, I began
writing a program to demonstrate the functionality of this class. After just over an hour, however, I
couldn’t get my example to work. I thought I was using the class correctly, but it just wasn’t
detecting file changes in the folder I specified.

As a wise help desk clerk once told me, “RTDM!” (or “Read the Darn Manual,”—although the
actual phrase most help desk clerks say substitutes a much less family-oriented word into the phrase).
A quick consultation into the Visual Studio.NET help gave me my answer: it seems the FileSystem-
Watcher class works only on Windows NT or 2000 platforms. My recently purchased PC was
equipped with Windows Me.

Warning Unsuspecting Users

This turn of events got me thinking: “If the FileSystemWatcher class doesn’t work on Windows
95/98/Me platforms, shouldn’t there be some type of programmatic warning when trying to use it in
that type of environment?" Therefore, before I show you how to use FileSystemWatcher, I’ll show
you how to create an error message for those who try to use it on unsupported platforms.

Thanks to the power of object-oriented programming, I can easily solve my own problem. With just
a few short lines of code, I can write a descendant of the FileSystemWatcher class that displays an
error message if someone attempts to use it in the wrong operating system environment. Here is the
entire code for that class:

 Class tagFileSystemWatcher
 Inherits FileSystemWatcher

 Overloads Shadows Property EnableRaisingEvents() _
 As Boolean
 Get
 Return MyBase.EnableRaisingEvents
 End Get
 Set(ByVal Value As Boolean)

 If Environment.OSVersion.Platform() = _
 System.PlatformID.Win32NT Then
 MyBase.EnableRaisingEvents = Value
 Else
 Console.WriteLine"& _
 "("the FileSystemWatcher does not work in _
 this operating system")
 Console.WriteLine("Windows "& _
 NT or Windows 2000 required.")
 MyBase.EnableRaisingEvents = False
 End If

Page 35 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 End Set
 End Property
 End Class

What we’re doing here is overriding the EnableRaisingEvents property in the FileSystemWatcher
class. A simple test is performed to see what operating system is being used. If it is a Windows NT
system (including Windows 2000), then the ancestor EnableRaisingEvents property is set to the
appropriate value. If the operating system test fails, then a warning message is written to the console,
and the setting is left as false.

Not long after I completed this class, I upgraded my new PC to Windows 2000, which not only gave
me about 3000 percent fewer crashes, but it also got me the benefit of using the CLR
FileSystemWatcher class as shown in the example project.

Watching for Files

I decided to use a form-level property for this project to track the directory that I wanted the
FileSystemWatcher to watch. Properties are useful because you can place code inside the Set
procedure, which causes the code to execute whenever the property changes. Here is the code for that
form level property:

Property pFolderName() As String
 Get
 pFolderName = llFolderName.text
 End Get

 Set(ByVal Value As String)

 llFolderName.text = Value

 oWatcher = New tagFileSystemWatcher()
 oWatcher.Path = Value
 oWatcher.IncludeSubdirectories = False
 ‘oWatcher.Target = WatcherTarget.File

 oWatcher.NotifyFilter = NotifyFilters.Attributes Or NotifyFilters.LastAccess Or NotifyFilters.LastWrite Or NotifyFilters.Security Or NotifyFilters.Size

AddHandler oWatcher.Changed, AddressOf FolderChanged
AddHandler oWatcher.Created, AddressOf FolderCreated
AddHandler oWatcher.Deleted, AddressOf FolderDeleted
AddHandler oWatcher.Renamed, AddressOf FolderRenamed

 oWatcher.EnableRaisingEvents = True
 End Set
 End Property

The Get procedure simply returns the value of the LinkLabel control as the value of the property.
When the property is set, the LinkLabel value is also set (keeping the LinkLabel and the property
values in sync). After this, the FileSystemWatcher is initialized (actually, my descendant
tagFileSystem- Watcher class is used, so I can get the benefit of my new operating system version
check). The oWatcher variable instantiates, and several properties are set to control the functionality.
The ChangedFilter property controls what types of file changes to report on. The sample procedure
reports on all available changes (the values are combined using the VB.NET bitwise OR operator
Or). Then, events are tied to the object using the AddHandler procedure. This procedure connects an
object’s event to an event handler at runtime (the event handler’s parameters have to match the
parameters required by the event type).

Once a folder is selected in the sample application, you can see it in action by starting an instance of

Page 36 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Windows Explorer and playing around in that folder. Try creating a new file, moving files in and out
of the folder, deleting files, and renaming files. Each time, the tagFileSystemWatcher instance
should diligently report each of your actions.

15: Thinking in Threads

The thread code can be found in the folder prjThreads.

Threaded programming has been around for several versions of Windows now, but it was scarcely
available to the Visual Basic programmer of yesterday. Thread support was not built into prior
versions of Visual Basic, and some third-party control or DLL was usually needed to accomplish any
type of threaded programming. Those days have left the building. Thread support is built into
the .NET Framework, so if you can find an application or routine that would be best served running
in its own thread, you can now easily make this happen.

The most “famous” example of threaded programming (at least to me) is the spell checker in
Microsoft Word. You can see the little book and pencil icon running in the lower toolbar as you type,
and if you happen to mistype a word, you see the little red squiggle underneath the word as soon as
you hit the spacebar to start a new word. This process is running in its own thread, so that the
constant icon updating, spell checking, and red squiggle drawing code doesn’t (apparently) take CPU
cycles away from you while you type. Actually, the threaded spell checker in Word was somewhat of
a revolution in spell checking, as all prior spell checkers were a separate process that you performed
after you were done typing. Taking advantage of threads allowed the Microsoft programmers to
implement the live, red-squiggle spell checker with which we’re all familiar today.

The sample program borrows a bit from the Microsoft Word spell check idea. I decided to implement
a letter occurrence counter that runs in its own thread, as shown in the following illustration. The
Listbox at the right of the text will keep a running count of the letters that you type and perform this
counting in a separate thread so as to not disturb your typing.

Starting a thread is done just like instantiating any other .NET Framework object. As a parameter on
the New constructor, you need to pass a pointer to the code you would like the thread to run when it
begins. This is done using the AddressOf operator, shown here:

aThread = New Thread(AddressOf ThreadBegin)
aThread.IsBackground = True
aThread.Start()

This code instantiates a thread and sets it to run the ThreadBegin procedure when it starts. It then sets
the thread to run as a background thread, and gets things rolling by calling the Start method.

Let’s jump ahead to the ThreadBegin routine to see how that does its job:

Page 37 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Private Sub ThreadBegin()

 Do While True
 CountTheLetters()

 ‘sleep for 1 second, then start the loop over
 Thread.CurrentThread.Sleep(1000)
 Loop

 End Sub

By looking at this code, you can see how almost trivial it is to set up a background thread. The
routine runs in an endless loop. A second routine is called which counts all the letters in the Textbox
and reports them in the Listbox (the details of that procedure are not important in the threading
example). Then, the current thread is told to sleep for one second (1000 milliseconds), and the
infinite loop is resumed. Since the loop runs forever, you need to shut it down gracefully when the
program is closing. This is done in the Closing event of the form:

Public Sub Form1_Closing(ByVal sender As Object, ByVal e As System.ComponentModel.CancelEventArgs) Handles Form1.Closing
 Call aThread.Abort()
 End Sub

That’s about it. You should try running the example program and see how smooth it feels to type into
the Textbox while the letter counter on the right keeps updating at the same time.

Once you find out how easy it is to program using threads, you may find yourself rethinking how
you might use them in some of your current projects. For example, I’m currently writing a VB6
project that builds a little summary bar graph in the upper-right corner of the screen as a set of data is
loaded. This bar graphs adds an extra second to the loading time of my data set, but it isn’t really
used by the application except for the user to view. My thought was that I could make my application
feel faster by loading that bar graph in a separate thread, which might cut down the total loading time
of the large data set into the application.

16: Timing Up Events with Timers

The events and timer code can be found in the folder prjScreenSaver.

Timer controls have been around VB for a long time, but now you can create them on the fly without
having to drop a placeholder component on the form. Declaring and initializing a Timer dynamically
can be done as follows:

oTimer = New Timer()
oTimer.Interval = 100 ‘10 ticks per second
AddHandler oTimer.Tick, AddressOf oTimerTick
oTimer.Enabled = True

This code creates a timer, sets it to fire its Tick event every 100 milli- seconds, attaches the Tick
event to the procedure named oTimerTick, and then turns the timer on.

The most interesting part of this code is the AddHandler statement. While the end result here is the
same as if you had dropped a timer control into your project, double-clicked it, and then written code
for the Tick event, being able to dynamically add and remove event handlers at runtime can be very

Note You can still use the old way to add most nonvisual controls into VB6-created projects.
However, instead of being right on the form, there is a special location in the IDE below the
form design area that shows the nonvisual controls.

Page 38 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

powerful. You could, for example, write two different event handlers for the Tick event and then
switch between them when desired—something like the pseudocode here:

If (some value is even) then
 RemoveHandler oTimer.Tick, AddressOf OddEvent
 AddHandler oTimer.Tick, AddressOf EvenEvent
Else
 RemoveHandler oTimer.Tick, AddressOf EvenEvent
 AddHandler oTimer.Tick, AddressOf OddEvent
End if

You would then have distinct event handlers for the same Timer control.

This ability to dynamically assign events doesn’t just apply to the Timer control. It opens the door to
being able to create any type of control at runtime and hook up the controls’ events to code you have
written.

17: At Your (Windows) Service

The Windows Service code can be found in the folder prjWindowsService.

Now here’s something the prior-generation VB programmers could never do—write a working
Windows NT (or Windows 2000) service. In the past, if you wanted to write a Windows Service you
had to ask your C++ buddy to do it for you, who would usually just laugh at your “inferior”
programming language (meanwhile, it took the C++ guys seven hours to get a dialog box with four
buttons and a Listbox laid out, but nobody ever seemed to call them on that little problem in the
language, did they?). In any event, you can now thumb your nose back at the world, for you have the
power to write Windows Services as well.

What kind of program is useful as a Windows Service? Any program that needs to run all the time
but (normally) not be seen can be a good candidate for a Windows Service. Monitor programs, virus
checkers, and security watchdog programs all fall into this category.

My example Windows Service is a RAM monitor. It uses a performance counter object to poll the
amount of available RAM and to write this number into the event log. My service is hard-coded to
perform its polling every 10 seconds—a real-world application would probably wait a bit longer
between polling times (or even be user configurable). However, I was impatient and wanted to see
my results quickly, so 10 seconds was my choice.

Setting up a Windows Service is one of the project types you can choose when you create a new
project, as seen in this dialog box:

Page 39 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Once you create a project of this type, you will be given a base project with a predefined class that
helps get the service installed on a computer. The first thing you need to do is change the
ServiceName property on the main object to a memorable name for what your service does. This
name is important to remember, as you will see it in the list of available services on your PC once
you’ve installed it correctly.

Once you’ve named the service, you can go into the predefined code and start working on what your
service will actually do. The default service class gives you empty OnStart and OnStop methods,
which are called when the service is started (either manually or on system bootup) or stopped on the
computer. The OnStart method is where you should claim any resources and initialize any data your
service needs. Likewise, the OnStop method can clean up such resources.

If you only coded within the OnStart and OnStop methods, it would be pretty hard to write a service
that did anything useful. Some type of "hook" mechanism is needed to keep your service doing work
while it’s running. This hook could be a Timer object, a FileSystemWatcher object, a Scheduler
object, or anything that gives you the means to run code at a specified time. I chose a Timer object
for my sample class. The OnStart method enables the timer, as seen here:

Protected Overrides Sub OnStart(ByVal args() As String)
 oEventLog.WriteEntry(Me.ServiceName & " service started")
 oTimer.Enabled = True
End Sub

On every tick of the timer, the sample service updates a counter, and if the magic 10-second
milestone is reached, a procedure is called to write the available RAM to the event log. Both the
timer tick and the RAM writing routines are shown here:

Private Sub oTimer_Elapsed(ByVal sender As System.Object, ByVal _
 e As System.Timers.ElapsedEventArgs) Handles oTimer.Elapsed

 Const RECORDEVERY As Integer = 10

 iCtr += 1
 If iCtr Mod RECORDEVERY = 0 Then
 Call RecordAvailableRAM()
 iCtr = 0
 End If

 End Sub

 Private Sub RecordAvailableRAM()

 Dim oCounter As PerformanceCounter

Page 40 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim r As Long

 Try
 oCounter = New PerformanceCounter("Memory", _
 "Available Bytes")
 r = oCounter.RawValue()
 oEventLog.WriteEntry("RAM: Available Bytes = " & _
 r.ToString)

 Catch oEX As Exception
 oEventLog.WriteEntry("tagTestService failed: " & _
 oEX.Message)
 End Try

 End Sub

Once the service is compiled, it is installed from a command line using the InstallUtil program:

Installutil prjWindowsService.EXE

You should get a message stating that your service was installed correctly. A quick look at your
Windows Services should confirm this. My test service (named tagTestService) is shown here
property installed, waiting to be started:

After testing my service by starting and stopping it a minute or two later, a quick check to the event
log proved that my service was executing properly:

18: Diving into Collections

The collections code can be found in the folder prjCollections.

A collection is a type of class with the primary purpose of containing a group of objects. Collections

Page 41 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

vary in how objects are added and removed, how they are stored, and how they are accessed.
Numerous collections are built into the .NET Framework, or you can create your own collection
classes. Here we’ll look at some common collection types and usage examples.

The NameValueCollection

The NameValueCollection class is designed for storing string key-value pairs. For example, you
might have a list of employee names and their social security numbers. The social security number of
each employee (because each is unique) could be used as the key to look up the name of the
corresponding employee. You can use a NameValueCollection object to store the employee/social
security number pairs.

The following code demonstrates common usage of the NameValueCollection. First, five items are
added to an instance of the NameValueCollection object. To return the value corresponding to a
given key, use the Item property. You can also enumerate through all the keys or all the values using
the AllKeys property, respectively, as shown here:

Private Sub cbNameValueCollection_Click(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) Handles _
 cbNameValueCollection.Click

 Dim oNVC As New NameValueCollection()
 Dim s As String

 Console.WriteLine("————————NameValueCollection " & _
 "example——————————")
 oNVC.Add("000-00-0001", "Mother Goose")
 oNVC.Add("000-00-0002", "The Frugal Gourmet")
 oNVC.Add("000-00-0003", "Pokeman Master")
 oNVC.Add("000-00-0004", "Simpsons Compendium")
 oNVC.Add("000-00-0001", "Real Estate Tycoons")

 Console.WriteLine(oNVC.Item("000-00-0001"))

 Console.WriteLine("enumerate the keys" & _
 "(notice how duplicates are handled)")
 For Each s In oNVC.AllKeys
 Console.WriteLine("—— key " & s & " ———-")
 Console.WriteLine(oNVC.Item(s))
 Next

 End Sub

Note that duplicates are allowed in a NameValueCollection. If a duplicate key is added, the two
values corresponding to that key are displayed, separated with a comma. In the code above, the
return value for property oNVC.Item("000-00-0001") is Mother Goose, Real Estate Tycoons.

The HashTable

While the NameValueCollection is made purely for string storage, the HashTable is a general-
purpose collection that can hold any group of objects. Each object must be associated with a unique
key. The most common use of a key is a string value. For example, one could store a collection of
Employee objects using the employee social security number as the key. Instead of associating the
key with a simple string like in the NameValue- Collection, however, you can put any Visual
Basic.NET object in the HashTable.

Note The rest of the collection examples create collections of a simple business object named
BookEncapsulater. This class contains properties for a book ISBN (the unique identifier used

Page 42 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The sample code adds four instances of a BookEncapsulater object into a HashTable, and then
demonstrates both retrieving one of the objects by its hash code, as well as enumerating through all
the objects in the collection.

 Private Sub cbHashtable_Click(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) Handles _
 cbHashtable.Click

 Dim oHash As New Hashtable()
 Dim oBook As BookEncapsulater
 Dim d As DictionaryEntry

 "Console.WriteLine("————————HashTable " & _
 "example——————————")
 Try
 oBook = New BookEncapsulater("000-00-0001", _
 "Mother Goose", #6/24/1966#)
 oHash.Add(oBook.ISBN, oBook)

 oBook = New BookEncapsulater("000-00-0002", _
 "The Frugal Gourmet", #2/21/1951#)
 oHash.Add(oBook.ISBN, oBook)

 oBook = New BookEncapsulater("000-00-0003", _
 "Pokeman Master", #11/2/1964#)
 oHash.Add(oBook.ISBN, oBook)

 oBook = New BookEncapsulater("000-00-0004", _
 "Simpsons Compendium", #3/18/1945#)
 oHash.Add(oBook.ISBN, oBook)

 ‘uncommenting this will produce
 ‘an exception because you can’t
 ‘have a duplicate key (ISBN)
 ‘in the hashtable
 ‘oBook = New BookEncapsulater("000-00-0001",
 ‘"Real Estate Tycoons", #7/11/1969#)
 ‘oHash.Add(oBook.ISBN, oBook)
 Catch oEX As Exception
 Console.WriteLine("exception alert: " & _
 oEX.Message)
 End Try

 ‘return one of the objects in the
 ‘hashtable using the ‘Item’ property
 Console.WriteLine(oHash.Item("000-00-0003"))

 ‘enumerating the elements in the
 ‘hashtable requires a typecast
 For Each d In oHash
 oBook = CType(d.Value, BookEncapsulater)
 Console.WriteLine(oBook.Name & ", " & oBook.ISBN)
 Next

 End Sub

One of the slight problems with the HashTable (and most of the other collection classes) can be seen
at the end of the example code, where you’re enumerating through it to return the individual items.

by the book industry to identify a title), a title, and a publish date. Obviously, a fully functional
class would include many more properties to fully describe a book title. The code for the
BookEncapsulater can be found in the mBook.vb module in the sample project prjCollections.

Page 43 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Once you get an item back, you have to do a typecast using a CType() function to get the object back
into a usable state. This isn’t too big a deal, but having to typecast as you take objects out of all your
collections is something that’s easy to forget and can lead to problems. It seems that it would be
much easier to iterate through a HashTable this way, for example:

For each oBook in oHash
 Console.WriteLine(oBook.Name & ", " & oBook.ISBN)
 Next

However, trying to pull the class directly out of the HashTable in this way causes a runtime
InvalidCastException error, unfortunately.

The Stack

The Stack collection implements the adding of objects in a last -in, first-out order. Think of a stack of
trays in the cafeteria. If someone puts one on the top of the stack right before you show up, that is the
one you’ll take. The one way at the bottom was the first one on the stack, and it’ll be the last one off.

The Stack implements a Push method to add an object and a Pop method to remove an item. In
addition, you can use the Peek method to check out the item on the top of the Stack without actually
removing it.

Private Sub cbStack_Click(ByVal sender As System.Object, ByVal _ e As System.EventArgs) Handles cbStack.Click

 Dim oStack As New Stack()
 Dim oBook As BookEncapsulater

 Console.WriteLine("————————Stack example——————————")
 oBook = New BookEncapsulater("000-00-0001", _
 "Mother Goose", #6/24/1966#)
 Call oStack.Push(oBook)

 ‘—— other items pushed onto stack here,
 ‘removed for brevity

 Console.WriteLine("stack being emptied, note order")
 Do While oStack.Count > 0
 oBook = CType(oStack.Pop, BookEncapsulater)
 Console.WriteLine(oBook.ISBN)
 Loop

 End Sub

Note that you must once again perform a typecast during the Pop to cast the object coming off the
Stack into a strongly typed object variable.

The Queue

The Queue collection implements the removal of objects in a first-in, first-out order, like the line for
an amusement park ride. The first person in the line is the first person to come out the other end.
Adding an object to a Queue is done using the EnQueue method; removing an object is done using
the DeQueue method. You may also Peek at the top object without removing it.

Creating a Type-Safe Collection

You’ve already seen the minor hassle of having to typecast all of the objects coming out of the
collection classes in order to use the objects in the code. In addition, you might run into problems

Page 44 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

putting objects into a collection. All of the methods used to add an object to a collection take any
object as a parameter. What if, for example, you create a collection variable meant to hold
BookEncapsulator objects, and you accidentally put a Magazine- Encapsulator object in the
collection? The compiler isn’t going to bark at you—you can put any type of object you want into a
collection. The problem will show up when you try and remove that rogue object at runtime,
however because the typecast you attempt will more than likely fail.

What would be really useful would be to create a type-safe collection—one that allows you to add
and remove objects of one certain type only. In addition, you could perhaps handle all the messy
typecasting inside your type-safe collection, making the usage of that collection all the easier.

This sounds like an object-oriented programming slam dunk, but in practice it ’s not all that easy.
Here is what looks like a perfectly good inherited class for storing my BookEncapsulator object in a
Stack:

 Class SimpleBookStackEncapsulator
 Inherits Stack

 Public Overloads Sub Push(ByVal b As BookEncapsulater)
 Call MyBase.Push(b)
 End Sub

 Public Function Pop() As BookEncapsulater
 Return CType(MyBase.Pop(), BookEncapsulater)
 End Function

 End Class

Easy as pie, no? Unfortunately, the Pop method on this class is illegal. It is not permissible to have
an overridden function that differs only by return type. That is, my BookStackEncapsulator Pop
function is identical to the Stack Pop function, except for the type of object it returns, and this is
illegal.

This problem is easily fixed by adding a Shadows keyword to the Pop definition:

 Public Shadows Function Pop() As BookEncapsulater
 Return CType(MyBase.Pop(), BookEncapsulater)
 End Function

The Shadows keyword allows me to completely ignore the base class Pop method and replace it with
my own.

A Second Type-Safe Solution

Just to play devil’s advocate here—what if there were no such thing as a Shadows keyword? Could
you still write a type-safe stack? The answer is yes, but you’d need to do a bit more work:

 Class BookEncapsulaterStack

 Dim oStack As New Stack()

 Sub Push(ByVal oEmp As BookEncapsulater)
 oStack.Push(oEmp)
 End Sub

 Function Pop() As BookEncapsulater
 Return CType(oStack.Pop, BookEncapsulater)
 End Function

Page 45 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 ReadOnly Property Count() As Integer
 Get
 Return oStack.Count
 End Get
 End Property

 Sub Clear()
 oStack.clear()
 End Sub

 Function Peek() As BookEncapsulater
 Return CType(oStack.Peek, BookEncapsulater)
 End Function
 End Class

This class does not inherit from a stack. Instead, it inherits directly off an object and contains a stack
inside it. It has Push, Pop, Peek, and Clear methods, just like a Stack object would, but you don’t run
into override problems because these methods aren’t overriding methods in a lower class.

Yet Another Type-Safe Solution

There is a third way you can implement type-safe collections. This method is built right into
the .NET Framework. It involves creating your class by making it a descendant of the class
CollectionBase, as shown here:

 <Serializable()> Class AnotherBookEncapsulaterStack
 Inherits System.Collections.CollectionBase

 Sub Push(ByVal oEmp As BookEncapsulater)
 MyBase.InnerList.Add(oEmp)
 End Sub

 Function Pop() As BookEncapsulater

 Dim iCtr As Integer = MyBase.InnerList.Count
 Dim oBook As BookEncapsulater

 If iCtr > 0 Then
 oBook = CType(MyBase.InnerList.Item(iCtr - 1), _
 BookEncapsulater)
 MyBase.InnerList.RemoveAt(iCtr - 1)
 Return oBook
 Else
 Dim e As New _
 Exception("error: cannot pop, stack is empty")
 End If

 End Function

 Function Peek() As BookEncapsulater
 Dim iCtr As Integer = MyBase.InnerList.Count

 If iCtr > 0 Then
 Return CType(MyBase.InnerList.Item(iCtr - 1), _
 BookEncapsulater)
 Else
 Dim e As New
 Exception("error: cannot peek, stack is empty")
 End If

 End Function

Page 46 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 End Class

The CollectionBase class has an Innerlist property that should be used to store all of your typed
objects. The Innerlist property is protected, meaning it is available only to descendants of the class,
not to anyone outside the class. To implement my type-safe stack, I implemented the Push, Pop, and
Peek methods by manipulating this inner list and by performing the necessary typecasts on the
objects on the way out of the list.

Both of the later solutions work fine, but they aren’t nearly as elegant as the first solution—simply
creating a descendant of the Stack class. For starters, you have to duplicate every property, event,
and method from the Stack class in your new class that you want to support. Suppose, for example,
that a new version of VB.NET comes out in a few years, and some useful feature is added to the base
Stack class. You would have to open up this new class and add that feature manually. By inheriting
right off the Stack class, your new object would automatically inherit those new features when you
started using the new version of Visual Basic. This example shows one of the reasons that object-
oriented programming is so powerful.

19: System Trays in Their Full, Upright Positions

The system tray code can be found in the folder prjSlashdotReader.

Everybody wants to put their program in the Windows system tray these days. My system tray at one
point or another has been bursting at the seams with icons for AOL Instant Messenger, Napster (well,
not anymore), WinAmp, speaker volume control, and a few others that I clicked once to find out
what they did and then promptly deleted from my system.

You too can clog up your users’ system tray with your own program by using the NotifyIcon class in
the .NET Framework. As mentioned above, I borrowed the idea for a system tray program from an
online .NET programming colleague who displayed the headlines of the SlashDot news service
(images/www.slashdot.org) as a series of menu items.

Tray icon programs are created by using the NotifyIcon class. Creating a NotifyIcon to show up in
the Taskbar is as easy as the following few lines of code

 aNotifyIcon = New NotifyIcon()
 aNotifyIcon.Text = "Slashdot Today"
 aNotifyIcon.Icon = Me.Icon
 aNotifyIcon.Visible = True

With this code, the icon displayed in the task tray is whatever icon is defined for the main form of
the application. The Text property defines the tooltip that will appear when the user holds the mouse
over the icon. Finally, the icon is made visible.

What’s on the Menu?

Note The SlashDot reader program was originally conceived by John O’Donnell, and was the source
of an article at http://www.c-sharpcorner.com. This article was the first in a two-part set which
explained how to retrieve and parse the XML data from SlashDot, but it had not yet placed the
article titles into a system tray icon. Given proper permission, I "borrowed" this excellent idea,
completed the program, and used it in this book. Check out the C# Corner web site for more
excellent .NET programming ideas and tutorials.

Note As of Windows XP, the system tray is no longer referred to as such—it’s called the notification
area.

Page 47 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The pop-up menu that appears when the user right-clicks the icon in the system tray is the
ContextMenu property of the NotifyIcon class. The Context- Menu class can be used to display a
pop-up menu on any control. Setting up a ContextMenu in code is done exactly as normal menus
are—by appending MenuItem objects to the ContextMenu object.

For my example, I knew that I was going to be displaying SlashDot article titles in the menu, and
that each of these articles was going to be associated with a web address that the user could navigate
to by accessing that menu item. To easily store the web address with each MenuItem, I decided to
create a descendant of the MenuItem class with a string property to store the URL.

Class MenuItemWithURL
 Inherits MenuItem

 Sub New(ByVal cText As String, ByVal cURL As String)
 Call MyBase.New(cText)
 URL = cURL
 End Sub

 Private FURL As String
 Property URL() As String
 Get
 Return FURL
 End Get
 Set(ByVal Value As String)
 FURL = Value
 End Set
 End Property
End Class

This short set of code creates a new type of MenuItem object with one additional string property for
storing the URL associated with the article. It also creates a new constructor so that I can easily pass
in the menu text and the URL as I create each instance.

Once armed with my new MenuItem descendant, building the ContextMenu was done as follows:

 Dim cTitle As String
 Dim cURL As String
 Dim aMenu As ContextMenu
 Dim aUMenuItem As MenuItemWithURL
 Dim aMenuItem As MenuItem

 Try
 aMenu = New ContextMenu()
 aMenu.MenuItems.Clear()
 Catch oEX As Exception
 MsgBox(oEX.ToString)
 Exit Sub
 End Try

 ‘ **** start: code simplified for this section ——
 For Each (something) In (somethingelse)
 cTitle = ObtainTitle()
 cURL = ObtainURL()
‘**** end: code simplified for this section ——

 aUMenuItem = New MenuItemWithURL(cTitle, cURL)
 AddHandler aUMenuItem.Click, AddressOf MenuClick
 aMenu.MenuItems.Add(aUMenuItem)
 End If
 Next

Page 48 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 aMenuItem = New MenuItem("-")
 aMenu.MenuItems.Add(aMenuItem)
 aMenuItem = New MenuItem("Exit")
 AddHandler aMenuItem.Click, AddressOf AppExit
 aMenu.MenuItems.Add(aMenuItem)

 aNotifyIcon.ContextMenu = aMenu

I purposely left out the code that figures out how to loop through and load the headlines and URL
strings so that I might better explain them in their own chapter. Thus, the code between the obvious
comments above is merely placeholder pseudocode to show you that a loop is in fact being executed
and an article title and URL are being somehow loaded into string variables.

Once these variables are loaded, one of my snazzy new MenuItemWithURL classes is instantiated
and these two variables are passed in to the constructor, and the object is added to a ContextMenu
instance named aMenu. The Click event for each of these menus is set to a procedure named
MenuClick.

Next, two standard MenuItem objects are added to the ContextMenu. The first is simply a divider
line, and the second is the option to exit the program. This last MenuItem has its Click event set to a
procedure named AppExit.

Finally, the ContextMenu for my NotifyIcon object is set to point to the aMenu variable that I just
built. This allows the pop-up menu to appear when the user right-clicks my tray icon.

When the user selects one of the MenuItemWithURL objects from the menu, this two-line procedure
is called:

 Private Sub MenuClick(ByVal sender As Object, ByVal e As _ EventArgs)

 Dim aItem As MenuItemWithURL

 aItem = CType(sender, MenuItemWithURL)
 Process.Start(aItem.URL)
 End Sub

This code typecasts the passed-in Sender variable back to my MenuItemWithURL class and then
calls the Process.Start method on the URL that is stored in this menu item. This has the effect of
starting the machine’s default browser and navigating to that site. Thus, when the user selects one of
the articles from the menu, their browser opens and they can read the text of the article, as seen in
this illustration:

Page 49 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The program is rounded out by adding a timer that reloads the Context- Menu at a regular interval. I
set this interval to two minutes while testing my program—a production version of the program
would probably reload the menu at a more sane level, say once or twice per hour.

20: Seeing the Inner Workings of Your Code

The StackFrame code can be found in folder prjStackFrames.

Writing code that displays information about your code—now that’s pretty cool. The .NET
Framework allows you to access information about the procedure-calling stack using the StackTrace
and StackFrame classes. The following procedure gives an example:

 Private Sub DisplayStackFrameReport()

 Dim oST As New StackTrace(0)
 Dim oSF As StackFrame
 Dim oMeth As MethodBase
 Dim oParm As ParameterInfo
 Dim i As Integer

 Call lbOut.Items.Clear()
 For i = 0 To oST.FrameCount - 1
 oSF = oST.GetFrame(i)
 oMeth = oSF.GetMethod
 lbOut.Items.Add("————— stack frame " & i _
 & " —————")

 lbOut.Items.Add("MethodName=" & oMeth.Name)
 lbOut.Items.Add("Private=" & oMeth.IsPrivate)
 lbOut.Items.Add("Public =" & oMeth.IsPublic)
 For Each oParm In oMeth.GetParameters
 lbOut.Items.Add(" Parameter=" & oParm.Name)
 lbOut.Items.Add(" Type=" & _
 oParm.ParameterType.ToString)
 Next
 Next

 End Sub

The StackTrace constructor in this procedure takes a single Integer parameter that defines how many
frames to skip in this trace. This functionality is provided so that you might skip reporting on
procedures dealing only with the debugging code you are writing. In this example, however, I chose
to not skip any frames by providing a 0 as the parameter.

The available frames are then iterated with a For loop. For each frame, the method (procedure) name
is obtained by returning the MethodBase object tied to the current StackFrame object. The
MethodBase class also provides detailed information on each parameter passed in as a collection of
ParameterInfo objects. The last part of the procedure shows each para- meter’s name and type.

The following is the full output to this simple procedure. You can learn an enormous amount of
information about the inner workings of your program, VB.NET, and Windows in general by
studying the full stack trace of even a simple program like this one:

————— stack frame 0 —————
MethodName=Button2_Click
Private=False
Public =False
 Parameter=sender

Page 50 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Type=System.Object
 Parameter=e
 Type=System.EventArgs
————— stack frame 1 —————
MethodName=OnClick
Private=False
Public =False
 Parameter=e
 Type=System.EventArgs
————— stack frame 2 —————
MethodName=OnClick
Private=False
Public =False
 Parameter=e
 Type=System.EventArgs
————— stack frame 3 —————
MethodName=OnMouseUp
Private=False
Public =False
 Parameter=mevent
 Type=System.WinForms.MouseEventArgs
————— stack frame 4 —————
MethodName=WmMouseUp
Private=True
Public =False
 Parameter=m
 Type=System.WinForms.Message&
 Parameter=button
 Type=System.WinForms.MouseButtons
————— stack frame 5 —————
MethodName=WndProc
Private=False
Public =False
 Parameter=m
 Type=System.WinForms.Message&
————— stack frame 6 —————
MethodName=WndProc
Private=False
Public =False
 Parameter=m
 Type=System.WinForms.Message&
————— stack frame 7 —————
MethodName=WndProc
Private=False
Public =False
 Parameter=m
 Type=System.WinForms.Message&
————— stack frame 8 —————
MethodName=WndProc
Private=False
Public =False
 Parameter=m
 Type=System.WinForms.Message&
————— stack frame 9 —————
MethodName=OnMessage
Private=False
Public =True
 Parameter=m
 Type=System.WinForms.Message&
————— stack frame 10 —————
MethodName=WndProc
Private=False
Public =False
 Parameter=m

Page 51 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Type=System.WinForms.Message&
————— stack frame 11 —————
MethodName=DebuggableCallback
Private=True
Public =False
 Parameter=hWnd
 Type=Int32
 Parameter=msg
 Type=Int32
 Parameter=wParam
 Type=Int32
 Parameter=lParam
 Type=Int32
————— stack frame 12 —————
MethodName=DispatchMessageW
Private=False
Public =True
 Parameter=msg
 Type=Microsoft.Win32.Interop.MSG&
————— stack frame 13 —————
MethodName=Microsoft.Win32.Interop.IMsoComponentManager.FPushMessageLoop
Private=True
Public =False
 Parameter=dwComponentID
 Type=Int32
 Parameter=reason
 Type=Int32
 Parameter=pvLoopData
 Type=Int32
————— stack frame 14 —————
MethodName=RunMessageLoop
Private=False
Public =False
 Parameter=reason
 Type=Int32
 Parameter=form
 Type=System.WinForms.Form
————— stack frame 15 —————
MethodName=Run
Private=False
Public =True
 Parameter=mainForm
 Type=System.WinForms.Form
————— stack frame 16 —————
MethodName=Main
Private=False
Public =True
————— stack frame 17 —————
MethodName=_main
Private=False
Public =True
 Parameter=_s
 Type=System.String[]

21: Writing Code for Your Code

The commenting code can be found in the folder prjCustomAttributes.

Prior to VB.NET, the only means a developer had to document code was the use of comments.
Commenting code is a widely varied art—each developer has their own style and technique for
documentation. The blessing and the curse of comments is their free-form nature. While free-form
comments allow developers to express themselves in whatever means they desire, the comments

Page 52 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

often fail in their overall purpose, which is to document the project at all levels.

I’ve worked in a number of development shops where the senior developers decided to implement a
structured format for comments in key areas, to introduce subroutines, for example. These structured
comment blocks might contain a brief description of the routine, the original author, the date last
modified, and possibly a change history. While the intentions of structured code commenting are
noble, there are many problems with this method of code documentation. Most importantly is that
there’s no way to police their use. If a lazy programmer decides he isn’t going to use the structured
comment headers, who’s to stop him? Sure, someone can be paid to scour code for hours and make
sure that each procedure has a comment, but that sounds like a waste of time and money. Plus, what
happens when the code cop actually finds an uncommented routine? Who does she yell at? By
definition, the code is undocumented, so there’s no easy way to figure out who failed to add the
comment block.

Visual Basic.NET attempts to aid in the code documentation effort through the use of attributes.
Attributes are a type of class in the .NET Framework that you can create and “attach” to code
elements—methods, events, properties, or even whole classes.

There are many predefined attributes built into the .NET Framework that help to describe
characteristics of existing Framework elements. For example, the description that appears at the
bottom of the Property Inspector in Visual Studio each time you select a property is an attribute of
that property. The following illustration shows an example of this descriptive text:

You are not limited to attributes that Microsoft thought you might need to describe your project,
however. Because attributes are .NET Framework classes themselves, you can create and use your
own. This is kind of like writing code for your code. Let’s look at the beginning of a custom
attribute:

<AttributeUsage(AttributeTargets.Class Or _ AttributeTargets.Method Or AttributeTargets.Constructor Or _ AttributeTargets.Property)> _
Public Class CodeDescriptor
 Inherits System.Attribute

 Private FModifiedBy As String = "mjt"
 Private FDate As Date
 Private FDescription As String

 Sub New(ByVal cName As String, ByVal dDate As String, ByVal cDesc As String)
 MyBase.New()

 FModifiedBy = cName
 Try
 FDate = CDate(dDate)
 Catch oEX As Exception

Page 53 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 FDate = Now
 End Try

 FDescription = cDesc
 End Sub

This is a simple class with three basic properties: a name (intended to be an author name), a last-
modified date, and a description. The class inherits off base class System.Attribute. This class itself
is declared with one of the built-in .NET Framework attributes, named AttributeUsage. The
declaration of this attribute describes where the new attribute can be used. In this case, you can use
the new attribute on a class definition, a method, a constructor (a special type of method), or a
property.

The constructor to the CodeDescriptor attribute merely takes default values for the three parameters
and stores them in the private variables. Additional code (not shown here) is set up to make these
three private variables accessible via properties.

Once the attribute is defined in this way, you can use it to describe code in your projects. The
following is a simple class that uses the attribute to help describe it:

CodeDescriptor("mjt", "4/01/2001", _ "A normal label that defaults to Navy Forecolor")> _
Public Class BlueLabel
 Inherits Label

 <CodeDescriptor("mjt", "4/01/2001", "Base Constructor")> _
 Public Sub New()
 MyBase.New()
 Me.ForeColor = system.drawing.Color.Navy
 End Sub

End Class

Note the CodeDescriptor attribute passing in the author initials, the date, and some descriptive text.
The attribute is used on both the class definition and the constructor for this new class.

Using Attributes for Documentation

So have you really improved anything? OK, you’ve defined a documenting attribute that your
developers can attach to their code, but how do you force them to use it? You still have to police the
use of your attribute. This is where the beauty of structured documentation kicks in: you can actually
write code that tests for the presence or absence of a given attribute. Here is some code that does just
that:

Public Shared Sub FindPropertiesMissingMe(ByVal _
 t As Type)

 Dim oAT As Attribute
 Dim oPR As PropertyInfo
 Dim bAtLeastOne As Boolean
 Dim bFoundit As Boolean
 Dim cLine As String

 Console.WriteLine("")
 Console.WriteLine("Class " & t.Name)
 Console.WriteLine(" documenting the presence " & _
 "of the CodeDescriptor Attribute:")
 bAtLeastOne = False
 For Each oPR In t.GetProperties()
 bFoundit = False

Page 54 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 For Each oAT In oPR.GetCustomAttributes(False)
 If TypeOf oAT Is CodeDescriptor Then _
 bFoundit = True
 Next
 cLine = oPR.Name
 If Not bFoundit Then
 cLine = cLine & " -MISSING"
 Else
 cLine = cLine & " -ok"
 End If
 Console.WriteLine(cLine)
 Next
 Console.WriteLine("End Class " & t.Name)

 End Sub

First off, note that this method is declared as a shared method on your CodeDescriptor class. Shared
methods are those called without requiring an instance of the class. This method is called as follows:

Dim t As type

t = Type.GetType("prjCustomAttributes.BookClass")
Call CodeDescriptor.FindPropertiesMissingMe(t)

Once called, the method uses reflection to hack into the type definition of the class that you pass in
and look for the CodeDescriptor attribute on every property of that class. It then reports on its
findings for every property to the console. The following listing shows the output of this method on a
sample class where I used the attribute on almost all the properties.

Class BookClass
 documenting the presence of the CodeDescriptor Attribute:
Price -MISSING
Title -ok
Author -ok
ISBN -ok
End Class BookClass

Note that I forgot to add the attribute to the Price property, and my new method dutifully informs me
of that. I’ve coded an attribute policeman!

In addition to reporting on the existence of an attribute, you can use the data within the attribute to
automatically generate documentation for your code. I wrote a second method for my
CodeDescriptor class that outputs the name, date, and description for all the CodeDescriptor
attributes it finds in a class. Here are the results of this new output:

Start Documentation, Class BookClass
BookClass : mjt 05/02/2001 _ Storage for Book Detail Data

Documented Constructors
.ctor : mjt 05/10/2001 Base Constructor
.ctor : mjt 05/22/2001 Parameterized Constructor

Documented Properties
Title : mjt 05/10/2001 Title of the book
ISBN : mjt 05/10/2001 Publishers Book Code
Author : mjt 05/10/2001 Author of the book

Documented Methods
(none)

Page 55 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

End Documentation, Class BookClass

Imagine the possibilities now! You can create attributes to help you document your code, you can
write code to help enforce their use in your entire software shop, and then you can write code to
output the data within those attributes into a coherent, structured document, useful for code review or
turning into superiors. Goodbye, comments!

22: My Code Can See Itself: Reflection

The reflection code can be found in the folder prjReflection.

I always wondered how the VB6 Object Browser was coded. It contained a list of all the objects
available to my program, including ActiveX objects, as well as classes I had written myself. How did
the Object Browser parse through all my code and display all of the available objects, along with
their properties, events, and methods?

I still have no idea how they made this happen in Visual Basic 6, but Microsoft makes it all clear to
me (and you) in the .NET Framework—it’s the ability to write code provides interfaces to other code
in your own projects, or within the .NET Framework: reflection.

Confused? Me too, at least at first. Who’s writing code to describe other code? As you saw
previously, one set of people is trying to automate and enforce the proper documentation of source
code, but the guy who was in charge of writing the Object Browser for Visual Studio.NET is
someone else. Since reflection is such a new topic, I thought it might be useful to try and use
reflection to write something that looks like the Visual Studio.NET Object Browser. The end result
of my endeavor can be seen in the following illustration:

Getting Started

I decided (probably due to my usually hard head) that my Object Browser was going to work a bit
differently from the one in Visual Studio.NET. What I was really interested in seeing was the .NET
Framework object hierarchy as a Treeview. I wanted to see the generic class Object as the root node
of my Treeview and then have all the classes descend down from that. I kept the interface simple; I
allow the user to type in an Assembly name, and I display all the classes in that assembly, as well as
all the parent classes of those classes (after all, if I’m going to trace all the way back up to Object, I
may need to travel outside the bounds of the entered assembly, since Object itself is in the System
assembly).

Once the user supplies my program with an assembly, retrieving all of the types within it is done

Page 56 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

with the GetTypes method, as shown here:

Sub FillTreeView(ByVal cDLL As String)

 Dim t As Type
 Dim oAS As System.Reflection.Assembly
 Dim oRoot As TreeNode
 Dim oNode As TreeNode
 Dim cTemp As String

 oHash.Clear()
 tvLeft.Nodes.Clear()
 tvLeft.Sorted = True

 Try
 oAS = System.Reflection.Assembly.Load(cDLL)
 For Each t In oAS.GetTypes()
 Call AddTypeToTreeView(t)
 Next

 tvLeft.Nodes(0).Expand()
 Catch oEx As Exception
 MsgBox(oEx.Message)
 End Try
 End Sub

This tiny little procedure is the base for extracting all of the type information out of the given
assembly. The Assembly’s DLL name is passed in as the parameter. The Treeview tvLeft is cleared
and set to display its nodes in sorted order. A HashTable named oHash is also cleared (the purpose of
the HashTable is explained later). Then, the Assembly object is instantiated using the passed-in DLL
name, and all of the types within it are iterated. For each type, a procedure named
AddTypeToTreeview is called. The entire loop is enclosed in a Try..Except block to easily display
any errors encountered when ripping through the types (the concept of reflection was a new one to
me, and it took me a little while to get up to speed while creating this project).

Filling the Types Treeview

Imagine it’s time now to add your first class to the Treeview. Say it’s the ToolboxBitmapAttribute
class (this is an actual class in the System .Drawing namespace). To add this class to the proper place
in Treeview, you’ll first have to locate the ancestor type for ToolboxBitmapAttribute class, which
happens to be the Attribute class. What if this class doesn’t yet exist in the Treeview (in this case, it
won’t—I already stated that the ToolboxBitmapAttribute class is the first class you’ve attempted to
put into the Treeview so far). Before you can add the ToolboxBitmapAttribute class, you’ll first have
to add the Attribute class, which itself inherits from Object. Finally, since Object hasn’t been added
yet, you’ll need to add that class to the Treeview first. Once Object is added, you can add Attribute,
and then finally ToolboxBitmapAttribute.

What a mess, no? The basic premise here is to take the original class and loop upward through the
object hierarchy, looking for a parent object that has already been added to the Treeview. If you find
it, you can add your object to it as a child and move on. If you don’t find the parent, then you need to
mark and set aside that parent class to also add it to the Treeview, and keep moving upward. You are
guaranteed to either get to the top of the Object hierarchy or to a parent class that has already been
added to the Treeview. This rather nasty algorithm is embodied in the following procedure:

 Private Sub AddTypeToTreeView(ByVal t As Type)

 Dim bDone As Boolean
 Dim oStack As New Stack()

Page 57 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim aParent As TypeTreeNode
 Dim aNode As TypeTreeNode

 ‘loop upward from the passed in
 ‘class until you find the class
 ‘already in the hashtable
 bDone = (t Is Nothing)
 Do While Not bDone

 If oHash.Contains(t.FullName) Then
 ‘found, no more looping needed
 bDone = True
 Else
 ‘type not found, add it to the stack and _
 keep looping upward
 aNode = New TypeTreeNode(t)
 oStack.Push(aNode)

 t = t.BaseType
 bDone = (t Is Nothing)
 End If
 Loop

 ‘now, iterate the stack and add each node to the tree
 Do While oStack.Count > 0
 aNode = CType(oStack.Pop, TypeTreeNode)
 t = aNode.Type

 If t.BaseType Is Nothing Then
 ‘is a root object
 tvLeft.Nodes.Add(aNode)
 Else
 ‘find the base type’s node
 ‘(guaranteed to be there)
 ‘and add this node to it
 aParent = _
 CType(oHash.Item(t.BaseType.FullName), _
 TypeTreeNode)
 aParent.Nodes.Add(aNode)
 End If
 oHash.Add(t.FullName, aNode)
 Loop

 End Sub

Remember the HashTable named oHash that was cleared previously? That class contains a list of
every type that has been added to the Treeview so far. It gives you a quick way to see if a given class
already exists in the Treeview. The loop at the beginning of the procedure first checks if the given
class is in the HashTable. If it is, then you’re ready to add this class to the Treeview. If it is not in the
HashTable, then a special Treeview node called a TypeTreeNode is created and pushed onto a Stack.
Then, the ancestor class becomes the "current" class, and the loop is reiterated.

Once the loop is exited, the Stack represents all of the nodes that need to be added to the Treeview.
They are removed in reverse order of their entry (which is what stacks are good at), and each type is
added to the Treeview.

The TypeTreeNode bears some examination. This is just a standard Tree- Node class with a Type
property bolted onto it, so you can easily examine the Type for each node as it is clicked. That
descendant class is shown here:

Class TypeTreeNode

Page 58 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Inherits TreeNode

 Sub New(ByVal t As Type)
 MyBase.New()
 FType = t
 Me.Text = t.Name
 End Sub

 Private FType As Type
 Property Type() As Type
 Get
 Return FType
 End Get
 Set(ByVal Value As Type)
 FType = Value
 End Set
 End Property

End Class

Examining a Type

I wanted the right side of my Object Browser program to display the member information about each
Type as it was clicked (properties, events, and methods). After stealing the little member icons used
in the Object Browser with my handy screen capture program, I set out to create a procedure to fill a
Listview with the member information for a given Type. That procedure is shown here:

Private Sub FillRightSide(ByVal t As Type)

 Dim mi As MemberInfo
 Dim lItem As ListViewItem
 Dim iImg As Integer

 lvRight.Items.Clear()

 For Each mi In t.GetMembers()

 Select Case mi.MemberType
 Case MemberTypes.Property, MemberTypes.Field
 iImg = 0
 Case MemberTypes.Event
 iImg = 1
 Case MemberTypes.Method, _
 MemberTypes.Constructor
 iImg = 2
 Case Else
 iImg = 0
 End Select

 lItem = lvRight.Items.Add(mi.Name)
 lItem.ImageIndex = iImg
 lItem.StateImageIndex = iImg
 Next
 End Sub

The GetMembers method is used to retrieve an array of MemberInfo objects for each member in the
type. This simple loop iterates through each member and displays it, assigning it the appropriate
ImageIndex based on whether it is a property, event, method, or constructor.

23: Discovering the New Diagnostic Classes

Page 59 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The diagnostic code can be found in the folder prjDiagnostics.

Visual Basic.NET provides several robust diagnostic classes that make it much easier to track down
bugs in your applications, whether the bugs show up during development or after installation on the
end user’s machine.

Sending Output to the Debug Window

The Debug object should be familiar to VB6 veterans, but it has undergone some enhancements in
VB.NET. Instead of a single Print method to write output to the immediate window (now called the
Output window), you have a choice of several methods:

In addition, the properties IndentSize and Indent allow further formatting of the text in the Output
window. IndentSize refers to the number of characters for which an indent level consists. By
increasing and decreasing the Indent property, you can control the output formatting.

For the experienced VB programmer, our old friend the Assert method is back. This method allows
you to test a condition and display a message if that condition is not true. This functionality is sort of
the opposite of WriteLineIf, but the program stops execution entirely if the assertion (the condition
parameter of the Assert method) fails. Many programs use this to test that a variable falls in a certain
range or that an object is not null before moving on to processing that is going to rely on the value of
that variable.

The Debug methods and properties just described are demonstrated in the following code (which can
be found in the example project). This procedure initializes three Integer variables to random values,
and then displays their values in the Debug window.

Private Sub cbDebug_Click(ByVal sender As Object, ByVal e As _ System.EventArgs) Handles cbDebug.Click

 Dim oRand As New Random()
 Dim i, j, k As Integer

 i = oRand.Next(0, 100)
 j = oRand.Next(0, 100)
 k = oRand.Next(0, 100)

 Debug.IndentSize = 5
 Call Debug.WriteLine("—- about to " & _
 "start debugging output ——")
 Debug.Indent()
 Call Debug.WriteLine("i=" & i)
 Call Debug.WriteLine("j=" & j)
 Call Debug.WriteLine("k=" & k)
 Debug.Indent()
 Call Debug.WriteLine(oRand)
 ‘can write objects to debug window, not just _
 simple types

MethodName Notes
WriteLine Writes the specified output to the output window, followed by a linefeed
WriteLineIf If passed-in condition is true, writes the specified output to the output

window, followed by a linefeed
Write Writes the specified output to the output window
WriteIf If passed-in condition is true, writes the specified output to the output

window

Page 60 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Debug.Unindent()
 Debug.Unindent()
 Call Debug.WriteLine("—- debugging output completed _
 ——")

 Call Debug.Assert(i <= 90, "variable i is over 90")
 Call Debug.WriteLineIf(j > 50, "variable j is over 50")
 End Sub

Switching Debug Output On and Off

A BooleanSwitch is a simple class that allows for the control of Debug output based on the value of
an environment variable or a Registry setting. This is useful in a production environment. You can
write code that by default would not create Trace or Debug output, but when a simple configuration
file setting is flipped, your application creates Debug output that might help you track down a bug (in
the form of text file logs, for example, that could be e-mailed from the customer site to your office).

Each BooleanSwitch that you want to use will have a default name that distinguishes itself from
other switches. If the name you choose is MySwitch, for example, then creating a file named
app.config the with the following structure would set up that switch:

<configuration>
 <system.diagnostics>
 <switches>
 <add name="MySwitch" value="1" />
 </switches>
 </system.diagnostics>
</configuration>

Once properly set up as shown, the switch value can be tested and used with this code:

Protected Sub cbBooleanSwitch_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

CONST BSWITCHNAME = "MySwitch"

Dim oSwitch As New BooleanSwitch(BSWITCHNAME, _
"BooleanSwitch Demo")

If oSwitch.Enabled Then
 put debugging output code here>
End If

End Sub

Setting Different Levels of Debug Output

The TraceSwitch class is very similar to the BooleanSwitch class, except that it provides multiple
levels for debug output, instead of just on or off. The TraceSwitch is set up in the same way that the
BooleanSwitch is, using the same app.config file. Instead of setting to just 0 or 1, however, you can
set the TraceSwitch value to 0–4. The meaning of each value is given here:

Note The Trace class is interchangeable with the Debug class. The methods and usage are identical.
Microsoft recommends that you compile out the Debug methods from your final, production
application compiles, but you leave the Trace methods in for post-delivery
diagnostic/debugging needs.

Page 61 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The exact meaning of these terms is up to the programmer. You must decide what messages you are
going to put into the Info section, the Warning section, and so on.

What this allows you to do is create short, simple trace logs of your program (perhaps that list only
the procedure names as they’re called), or get as verbose as you need (logging every value of every
variable, if necessary). Then, depending on the problem that you’re trying to uncover, you can set the
appropriate Registry setting for the TraceSwitch and produce the desired Debug output.

A simple TraceSwitch example is given in the example code. To use it, make sure the app.config file
contains the TestTraceSwitch setting as shown here, and then click the TraceSwitch button to see the
Debug output.

<configuration>
 <system.diagnostics>
 <switches>
 <add name="TestTraceSwitch" value="2" />
 </switches>
 </system.diagnostics>
</configuration>
Protected Sub cbTraceSwitch_Click(ByVal sender As Object, ByVal _
e As System.EventArgs)

Const TSWITCHNAME As String = "TestTraceSwitch"
Dim oSwitch As New TraceSwitch(TSWITCHNAME, TSWITCHNAME)

 If oSwitch.TraceInfo Then debug.WriteLine _
 ("info messages enabled")
 If oSwitch.TraceWarning Then _
 debug.WriteLine("warning messages enabled")
 If oSwitch.TraceError Then _
 debug.WriteLine("error messages enabled")
 If oSwitch.TraceVerbose Then _
 debug.WriteLine("verbose messages enabled")
End Sub

Customizing Trace Output

A TraceListener is a class that directs Debug output to a location: the output window, a text file, or
even the Windows NT event log. By default, Debug and Trace output is directed to the output
window. This functionality is encapsulated in the DefaultTraceListener class. Because we’re living
in Object-Oriented Land now, you can create descendants of the DefaultTraceListener class that will
do your own evil bidding.

Like what? A simple example might be to output a time stamp along with any message you might be
sending to the Debug window. You might imagine that adding this time stamp to every
Debug.Writeline statement in your application might take a while. A much more efficient way of
doing this is to create a custom listener that adds the time stamp, and then tell the Debug class to use
that listener instead of the default listener. The code that follows is an example listener class that

Switch Value Meaning
0 Off
1 Info
2 Warning
3 Error
4 Verbose

Page 62 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

adds a time stamp to the Debug output.

Class TimeStampTraceListener
 Inherits DefaultTraceListener

 ‘adds the current time stamp
 ‘to the message about to be output as a trace
 Private Function FormatMessage(ByVal s As String) _
 As String

 Dim cMsg As String

 cMsg = Format(now, "hh:mm") & ": "
 cMsg = cMsg & s

 Return cMsg

 End Function

 Public Overrides Sub WriteLine(ByVal s As String)
 MyBase.WriteLine(s)
 End Sub

 Public Overrides Sub Write(ByVal s As String)
 MyBase.Write(FormatMessage(s))
 End Sub

 End Class

To write your own listener, you must inherit off the DefaultTraceListener class and override the
Write and WriteLine methods. The previous class does exactly this. The Write method slaps a time
stamp onto the desired output, and then calls the respective ancestor method to get the output to the
appropriate place. The WriteLine method does nothing new (because WriteLine in turns calls Write,
which will handle the time stamp)

To use this new listener, you would perform something like the following:

Trace.Listeners.Clear()
Trace.Listeners.Add(New TimestampTraceListener())

The Clear method is important because it removes all listeners that are currently assigned to the
Trace (or Debug) class. After setting up the TimeStampTraceListener, the output after calling
Trace.WriteLine("test message") would look something like this:

10:34: test message

One of the interesting things about listeners is that you can have more than one running at the same
time. The example program creates a second listener that adds the name of the calling procedure to
the Debug output (I’m sure many of you would agree with me that this is indeed a useful feature!).
The sample program adds an instance of this class (called the MethodNameTraceListener) and an
instance of the TimestampTraceListener to the Trace object. The sample output after calling
Trace.WriteLine("test message") looks like the following:

10:55: test message
WriteLine: cbTraceListener_Click: test message

Because there are two listeners on the Trace object, two lines will be written for every
Trace.WriteLine call.

Page 63 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Outputting Trace Data to Text

Another useful debugging function is to direct the output of the Trace- Listeners to a text file. This is
done using the class TextWriterTraceListener. A simple example of using this class follows:

Protected Sub cbTraceText_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Dim i As Integer
 Dim fOut As Stream = _
 file.Create("c:\TextTraceOutput.txt")
 Dim oTextListener As New TextWriterTraceListener(fOut)

 Trace.Listeners.Clear()
 Trace.Listeners.Add(oTextListener)
 For i = 1 To 10
 Trace.WriteLineIf(i Mod 2 = 0, _
 "using WriteLineIf to write Even loop iteration _
 (" & i & ")")
 Trace.WriteLineIf(i Mod 2 = 1, _
 "using WriteLineIf to write Odd loop iteration _
 (" & i & ")")
 Next
End Sub

The parameter of the TextWriterTraceListener is a Stream, which is defined in the preceding line.
This stream creates a new text file, named c:\TextTraceOutput.TXT in this example. Then, the
TextWriterTrace- Listener is added as the sole listener on the Trace object. Finally, a simple loop is
executed and Trace lines are written to the text file, using WriteLineIf to alternately write an "is
even" or "is odd" message.

Automatically Removing Debug Code

VB.NET has a new feature that allows you to define a conditional attribute on a procedure. This
allows you to define compilation constants in your application that can prevent subroutines from
being included in your application. Here is a trivial example:

Private Sub <Conditional("DEBUG")> MethodRunsOnlyIfDebugSet(ByVal cMsg As String)
 Debug.WriteLine(cMsg)
End Sub

Protected Sub cbConditional_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 Call MethodRunsOnlyIfDebugSet("test message")
End Sub

The first sub is defined with the Conditional attribute. This states that if the DEBUG constant is set,
then the compiler should include this procedure in the application. If the DEBUG is not set, then this
entire procedure (and all calls to it) will be removed from the compilation altogether.

The benefit to this setup is that if you use the conditional method you don’t have to make any
decisions when writing code. You can simply call this method whenever you want to display some
Debug code, but if (when) the DEBUG constant gets removed in the production compilation of the
application, all of the Debug code is automagically removed from the final compilation.

Note To set or clear the DEBUG and/or TRACE constants in your project, right-click your project
name in the Solution Explorer, select Properties from the menu, and click Build under
Configuration Properties in the dialog box. There, you will see the DEBUG and TRACE check
boxes under Conditional Compilation Constants.

Page 64 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

24: Logging Events the Easy Way

The event logging code can be found in folder prjEventLogging.

Microsoft left Windows NT/2000 programmers with a built-in operating system tool for logging
program operation: the NT event logs. The event logs can be used to log occurrences from the
mundane to the catastrophic.

There are three built-in event logs: the Application, System, and Security event logs. The logs are
identical except for the names—you could actually write any event in any of the logs, but obviously,
you should keep the naming convention consistent to allow your users to more readily find the events
you’re logging. In addition, you can create your own event logs.

Event logging is important enough that you’d expect that the .NET Framework would contain
support for it—and you’d be right. There is an EventLog class in the System.Diagnostics namespace
that handles all NT event logging support. All event logging functions are done by adding an
EventLog instance to your project and then setting the appropriate properties for the object at either
runtime or design time. The most important property to set is the property Log, which tells the object
in which event log it will perform its work.

Writing to an Event Log

Writing to an event log is done with the WriteEntry method. The second parameter in the code
shown next specifies whether the entry you are writing is a Warning, Error, Information, Successful
Audit, or Failed Audit type of entry. In the example, two entries are written to the Application event
log.

‘writes a few test entries.
 Private Sub cbWrite_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cbWrite.Click

 Call oEventLogIO.WriteEntry("here is a test Info " & _
 "message to the Application Log", _
 System.Diagnostics.EventLogEntryType.Information)

 Call oEventLogIO.WriteEntry("here is a test " & _
 "Warning message to the Application Log", _
 System.Diagnostics.EventLogEntryType.Warning)

 ‘lbStatus.Text =
 ""2 entries written to the application event log"
 End Sub

Reading from an Event Log

The EventLog class has a property named Item that represents an array of EventLogEntry objects.
Each EventLogEntry object contains all the information about a single entry in the given log. The
following code reads the 10 most recent entries in the array and displays some information about
them in a Listbox named lbEventLog.

Protected Sub cbRead_Click(ByVal sender As Object, ByVal e As_
 System.EventArgs) Handles cbRead.Click

 Dim i As Integer
 Dim iCtr As Integer
 Dim oE As EventLogEntry

Page 65 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim cMsg As String

 iCtr = oEventLogIO.Entries.Count
 For i = 0 To 9
 oE = oEventLogIO.Entries.Item(iCtr - 1 - i)
 cMsg = oE.TimeGenerated.ToString & " "
 cMsg = cMsg & oE.Message

 Call lbEventLog.Items.Add(cMsg)
 Next

 End Sub

Note that the most recent entries are at the end of the Item array, so you have to read backward to get
the 10 most recent entries.

Monitoring an Event Log for Changes

Setting the property monitoring on the EventLog instance to True creates an object that will fire an
event whenever an entry is written to the given event log. (The event fires when any program writes
to the log, not just your own program.) A simple example of the event fired is shown here:

Private Sub oEventLogMonitor_EntryWritten(ByVal sender As _
 System.Object, ByVal e As
 System.Diagnostics.EntryWrittenEventArgs) Handles
 oEventLogMonitor.EntryWritten
 lbStatus.Text = _
 "monitor detected event log entry written, " & Now
 End Sub

This code writes a simple message to a label control. The System .Diagnostics.EventLogEvent
parameter on the procedure gives you full access to the EventLogEntry object that encapsulates the
log entry.

Using a Custom Event Log

If you wish, you can use the NT event log engine, but write to your own log. The following code
demonstrates creating an event log named DotNetTest, after first checking if that log already exists.
Once created, the source on the EventLog object is set to this new log, and an entry is written.

Protected Sub cbCustom_Click(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles cbCustom.Click

 Dim oEVCustom As New EventLog()

 oEVCustom.Source = "DotNetTest"
 oEVCustom.Log = "DotNetTestLog"
 oEVCustom.WriteEntry("test Event log entry.")

 lbStatus.Text = "Custom Event Log created. Go into " & _
 "Event Viewer to see the new log"

 End Sub

The following illustration shows the new event log in the Windows 2000 Event Viewer.

Page 66 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

To delete a custom event log, simply call the Delete method on the EventLog object.

25: Monitoring Your Application’s Performance

The Performance Monitor code can be found in the folder prjPerformanceCounters.

The Windows NT/2000 platform has some wonderful performance monitoring tools built right into
the operating system. Most people think of the Performance Monitor as the program used to query
and log system performance results such as processor utilization, hard disk performance, thread
utilization, and so on. With the introduction of the .NET Framework, however, programmers have
access to the same operating system performance tools that can be built right into their applications.

There are hundreds of individual performance counters in the Windows NT operating system (I
counted exactly 700 on my Windows 2000 system, but this number can probably go up and down
depending on what services and applications are installed on a given computer). This large number
of individual counters is grouped into categories for easier lookup. When I see anything grouped into
categories and I want to write a program to display them, I think Treeview (I’m addicted to the
Treeview control, I admit it). The following subroutine loads all of the available performance
counters, grouped by their category, into a Treeview named tvCounters.

 Sub FillCategories()

 Dim aCat As PerformanceCounterCategory
 Dim oCounter As PerformanceCounter
 Dim i As Integer
 Dim tnRoot As TreeNode
 Dim tnParent As TreeNode
 Dim tnNode As TreeNode
 Dim cInstance As String

 tnRoot = tvCounters.Nodes.Add("Performance Counters")

 For Each aCat In PerformanceCounterCategory.GetCategories
 tnParent = tnRoot.Nodes.Add(aCat.CategoryName)
 If aCat.GetInstanceNames.GetLength(0) = 0 Then
 cInstance = ""
 Else
 cInstance = aCat.GetInstanceNames(0)
 End If

 For Each oCounter In aCat.GetCounters(cInstance)
 tnNode = tnParent.Nodes.Add(oCounter.CounterName)
 Next
 Next
 tnRoot.Expand()
 End Sub

Page 67 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

There’s quite a bit to cover in this relatively small block of code. First, a root node is added to the
Treeview. Then, the available performance counter categories are iterated by using the method
GetCategories on the static object (no need to instantiate) named PerformanceCounterCategory. For
each category, a node named tnParent is added to the Treeview as a child of the root node. Then, for
each category, the available counters in this category are also iterated, with a node added for each.
You can see a portion of the results in this illustration:

Once the Treeview is filled, I wanted to provide users with feedback about each counter and each
category as they clicked them. There is built-in help text for both counters and categories, and
providing this help as feedback was a simple matter of responding to the Treeview’s AfterSelect
event.

 Private Sub tvCounters_AfterSelect(ByVal sender As _ System.Object, ByVal e As _ System.Windows.Forms.TreeViewEventArgs) Handles _ tvCounters.AfterSelect

 Dim cCatName As String
 Dim cCntName As String
 Dim oCategory As PerformanceCounterCategory
 Dim oCounter As PerformanceCounter
 Dim aList As String()

 cbCheck.Enabled = False
 If e.Node.Parent Is Nothing Then Exit Sub ‘root

 ‘is a category node
 If e.Node.Parent.Text = "Performance Counters" Then

 cCatName = e.Node.Text
 oCategory = New _
 PerformanceCounterCategory(cCatName)
 lbHelp.Text = oCategory.CategoryHelp

Page 68 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Else

 Try

 cCatName = e.Node.Parent.Text
 cCntName = e.Node.Text
 oCounter = New _
 PerformanceCounter(cCatName, cCntName)
 lbHelp.Text = oCounter.CounterHelp

 Catch oEX As Exception
 lbHelp.Text = _
 "Error reading Performance Counter"
 End Try

 End If

 End Sub

This code is only the portion of the AfterSelect event in the final project that deals with retrieving the
help text for either the counter or category help text. Note that I determine whether the user clicked a
counter or category by examining the caption of the parent node in the Treeview. If the parent node’s
caption is "Performance Counters," then I assume that this is a category. If the parent node’s caption
is anything else, I assume that the clicked node is a counter. Once I determine if a counter or
category node was clicked, I instantiate the respective object instance and retrieve the property value
that represents the help text (CounterHelp for the Performance- Counter class, CategoryHelp for the
PerformanceCounterCategory class).

Retrieving Performance Counter Instances

It would seem at first glance that once you identify a performance counter on the system, you could
start it up and read some values. However, there is one more important concept to consider: the
concept of instances. A performance counter might have multiple instances on a single computer. For
example, suppose you want to monitor processor performance on a high-end, four processor server.
The logical question to ask is which of the four processors do you want to monitor? Or, if you want
to monitor the relative processor time taken by each running thread on the system, you would first
have to get a list of all available threads. These are known as instances of each counter.

The instances are actually defined at the category level, not the individual counter level. For
example, all the performance counters under the Threads category will deal with the same instances.
The remainder of the AfterSelect event code deals with retrieving the instances from the currently
selected category and filling a Listbox with these instance names:

cCatName = e.Node.Parent.Text
cCntName = e.Node.Text
oCounter = New PerformanceCounter(cCatName, cCntName)
lbHelp.Text = oCounter.CounterHelp

oCategory = New PerformanceCounterCategory(cCatName)
aList = oCategory.GetInstanceNames
lbInstance.DataSource = aList
cbCheck.Enabled = True

If lbInstance.Items.Count > 0 Then
 lbInstance.SelectedIndex = 0
End If

The available instances of the given category are placed into an array named aList. The statement

Page 69 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

lbInstance.DataSource = aList populates the Listbox named lbInstance with the contents of this
array. (The array will be empty if the current category has only a single instance.) Finally, if the
Listbox has been filled, the first item is selected.

Querying the Performance Counter

With the addition of instances, you finally have all the information needed to actually query a
performance counter value. The following code, executed when a button is clicked, retrieves the
currently selected performance counter value in the application.

Protected Sub cbCheck_Click(ByVal sender As Object, ByVal e As
 System.EventArgs)

 Dim cCatName As String
 Dim cCntName As String
 Dim oCounter As PerformanceCounter
 Dim tnNode As TreeNode
 Dim cInstance As String = ""
 Dim r As Single

 tnNode = tvCounters.SelectedNode
 cCntName = tnNode.text
 cCatName = tnNode.Parent.text

 If lbInstance.SelectedIndex > -1 Then
 cInstance = lbInstance.SelectedItem.ToString
 End If

 Try
 oCounter = New _
 PerformanceCounter(cCatName, cCntName, cInstance)
 r = oCounter.RawValue()
 lbValue.text = "Value = " & r.ToString
 lbRecordedAt.Text = _
 "Recorded At: " & Format(Now, "dd:hh:ss")

 Catch oEX As Exception
 lbHelp.Text = "Error Retrieving Performance
 information"
 End Try
 End Sub

There is nothing too fancy in this code. Using the Treeview and the instance’s Listbox, the category
name, counter name, and instance name are retrieved and stored into string variables (the instance
name might be an empty string). A PerformanceCounter variable is instantiated using these string
names, and a label control is filled by calling the RawValue method off this variable. I also filled a
second label with the current time, which makes it easier to verify that the button is a working event
if the performance counter value is unchanged from button click to button click.

There are multiple ways of querying a performance counter for data. Using the RawValue method as
just shown is the simplest technique. You can also call the NextValue method, which turns the raw
readings into a best-fit line and then returns a point on that line. Finally, you can use the NextSample
method, which allows you to take two or more samples over time and then compare them or perform
calculations on them. See the section in the Microsoft Framework help entitled "Performance
Counter Value Retrieval" for detailed information on getting the most out of your performance
counter readings.

26: Braving the Basics of GDI+

Page 70 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The GDI+ code can be found in the folder prjBasicGDIPlus.

I’ve always been drawn to the subject of computer graphics: the very thought of creating animated
pixels on a computer screen was one of the primary things that drew me into the computer field. I
remember writing a program on my very first PC—an Apple 2c (I’m dating myself now, aren’t I? Oh
well). The program recreated the cover for Pink Floyd’s album The Wall (more self-dating—I said
album, as opposed to CD). The program plotted the basic brick outline and then the album logo using
nothing but the PSET command (plot a single pixel) and about a zillion loops. I was really proud of
that program; it looked just like the album cover (to me, anyway—I was only 15).

I’m still a sucker for computer graphics at all levels—from state-of-the-art movie effects like The
Matrix to the ever-changing standards in the world of PC game programming. Unfortunately, my
math skills never caught up with my love of computer graphics, so I could never quite cut the
mustard programming for id Software or a similar company.

You’re not going to mistake me for a graphics-programming guru when you look at the GDI sample
program on the CD, either. Its main purpose is to demonstrate some of the graphics classes and
methods in the .NET Framework. The graphics classes in VB.NET are collectively called GDI+,
which is apparently an improvement over the “old” GDI API found in regular Win32 programming
(hey, the name ends in a “+”, so it must be better, right?). The graphics output produced by the
sample program is rather simple, but it should give you an idea of how to start creating graphics for
your applications.

The Graphics Class

OK, you’re ready to draw. So where exactly do you draw? Usually, you need an object instantiated
from the Graphics class to do your drawing. A Graphics object represents a drawing surface (an
electronic piece of paper, if you will).

If you plan on drawing directly onto a control, you can get at the drawing surface associated with
that control by writing your drawing code in the Paint method of the control.

Protected Sub pnDraw_Paint(ByVal sender As Object, ByVal e As System.WinForms.PaintEventArgs)

 Dim gr as Graphics

 gr = e.Graphics

(do stuff with gr here)

End Sub

The Paint event passes the Graphics object associated with the control in as a component of the
second parameter, which allows you to draw all over the control. The drawing is more or less
permanent, meaning that if you were to cover up your application with another window and then Alt-
Tab back over to it, a new Paint event would get automatically fired, allowing your custom drawing
code to be re-executed. You can force a firing of the Paint event by calling the Invalidate method on
the control you wish to repaint, as well.

Good Penmanship

Note If you have experience with any graphics programming in the pre-VB.NET world of the Win32
API, then it makes sense to tell you that the Graphics object is an encapsulation of a Windows
device context. If you don’t have such prior experience, then never mind…

Page 71 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

So you have your drawing surface, now you need an instrument or two to draw with. If you want to
draw lines and curves, the first class with which you’ll need to become familiar is the Pen class. A
Pen object contains all of the properties necessary to draw a line in a certain width, color, and style
(dotted, dashed, and so on). There are two ways to instantiate a Pen object. The first is to use the
New operator as you would for any other object, passing the desired color of the pen in as the first
parameter:

Dim p As New Pen(Color.Red)

This method can be used to create pens of any color. However, there is a built-in collection object
named Pens that contains several dozen colored pens, already predefined. To use a pen in this
collection, you can do something like the following:

Dim p as Pen = Pens.Red

You can see all the colors available in the Pens collection using the Intellisense feature in Visual
Studio.

Now that you can define a pen and you have access to a graphics class, you can draw a line on a
control:

Private Sub pnDraw_Paint(ByVal sender As Object, ByVal e As
 System.Windows.Forms.PaintEventArgs) Handles pnDraw.Paint

 Dim p as Pen = Pens.Red
 e.Graphics.DrawLine(p, 0,0, e.ClipRectangle.Width, _ e.ClipRectangle.Height)

End Sub

Here, you define a red pen and pass it along with four integers to the DrawLine method on the
Graphics class. The four integers give the start point and the end point of the line you want to draw
(start left, start top, end left, end top, respectively). The e.ClipRectangle property gives us access to
the width and height of the control upon which you’re drawing, so the line above draws a diagonal
line from the upper-left to the lower-right corner of the control, using the pen color set in Pen
variable p.

Brushes

Brushes are for filling in enclosed areas, like the interior of rectangles or circles. The Brush class
itself is abstract, meaning you cannot inherit directly from it. Instead, you create an instance of one
of its ancestors, like the SolidBrush class.

Dim b As New Solidbrush(Colors.Blue)

The SolidBrush class can be used to create brushes of any color. However, like the Pens collection,
there is a built-in collection object named Brushes that contains several dozen colored brushes,
already predefined. To use a brush in this collection, you can do something like the following:

Private Sub pnDraw_Paint(ByVal sender As Object, ByVal e As
 System.Windows.Forms.PaintEventArgs) Handles pnDraw.Paint

 Dim b as Brush = Brushes.Green
 e.Graphics.FillRectangle(b, e.ClipRectangle)
End Sub

This Paint event paints the control green. Of course, setting a control to look green can be more

Page 72 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

easily done using the already-supplied BackColor property, so it’s time I showed you some more
sophisticated drawing methods for scribbling on your controls.

Graphics Class Methods

There are a few dozen methods on the Graphics class that can be used to draw all different shapes,
lines, and curves. The sample program goes through several of them. Listed here is a summary of the
methods in the sample program. Almost all of these methods can be called with multiple parameter
lists:

DrawArc Draws part of an ellipse. Passed in are a pen, the parameters to define the ellipse, and the
starting and ending angle value for the arc, specified in degrees.

DrawBezier Draws a Bezier curve (pictured here), which is a curve that is generated from a set of
control points. The DrawBezier method accepts a pen and the list of control points as its parameters.

DrawLine Draws a straight line. Accepts a pen and four values that represent the starting x, y, and
ending x, y coordinates of the line. The example program draws several lines in a grid pattern.

FillEllipse Draws a filled ellipse. The ellipse is defined by specifying a rectangle, inside which the
ellipse is drawn.

DrawString Draws text onto the surface. A Font object, a brush, and either a starting point or an
enclosing rectangle are specified.

FillPie Draws a pie, which is like a filled-in arc. This method draws one pie slice out of an ellipse.
An enclosing rectangle is passed in, as well as starting and ending angles

FillPolygon Draws a polygon (pictured here), which is defined by a set of points. The method will
automatically connect the first point specified to the last point.

Page 73 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

FillRectangle Fills a rectangle with the passed-in brush.

TransparentBrush Not a method of the graphics class, this is instead an example of creating a
brush with a transparent color. A transparent brush can be defined as follows:

Dim bTrans As New SolidBrush(Color.FromARGB(192, Color.Red))

The FromARGB method accepts a color parameter and an alpha, or transparent value, from 0 to 255.
This example creates a 75 percent transparent brush. The example program draws an ellipse using
this brush over some text. As expected, the text shows plainly through the ellipse.

27: Advanced GDI+: GraphicsPaths and Transforms

The Advanced GDI+ code can be found in the folder prjAdvancedGDIPlus.

We just discussed the Pen, Brush, and Graphics classes. These classes correspond to similar classes
in the pre-VB.NET, Win32 API world (the Graphics class is an encapsulation of the device context,
which may not have been apparent, as it was renamed to a more descriptive name). The plus in
GDI+, however, refers to a number of new features that were not part of any previous API but are
extremely useful in graphics programming (so useful, in fact, that most graphics programmers have
been reinventing the wheel for each one of their programs). I will use these features to create a
simple Sprite class, which can be plugged in to create the scene shown in the following illustration:

The GraphicsPath

The GraphicsPath class is a somewhat abstract but extremely powerful feature built into the .NET

Note In general, the methods that start with Draw accept a pen as a parameter and draw the outline of
a shape, line, or curve. The methods that begin with Fill accept a brush as a parameter and
output a filled shape.

Page 74 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Framework. A GraphicsPath allows you to define complex drawing objects by connecting lines,
curves, polygons, text, and virtually any other drawing element together. Once your GraphicsPath is
defined in this way, you can treat it as a single object. Here is a chunk of code that sets up a simple
little shape into a GraphicsPath object instance:

Private Sub SetupGraphicsPath()

 gp = New GraphicsPath()

 gp.AddLine(0, 20, 40, 20)
 gp.AddLine(20, 0, 20, 40)
 gp.AddEllipse(New Rectangle(10, 10, 20, 20))

 gpSave = New GraphicsPath()
 gpSave = CType(gp.Clone, GraphicsPath)

End Sub

My original intent when defining this object was to create a circle with two lines going through it,
but the end result was even cooler than that idea, so I kept it. The code shown previously draws a
horizontal and a vertical line through the center of a circle. The two lines extend out past the circle.

The last two lines of code in the routine above create a copy of the defined GraphicsPath using the
Clone method. The reason I need to save this copy will become clear as I further explain my Sprite
class.

To draw a GraphicsPath on a Graphics object, you can use the DrawPath or the FillPath method. The
following code draws the GraphicsPath variable gp onto the Graphics object gWorld using a blue
brush object as the fill color.

 Public Sub DrawFrame(ByVal gWorld As Graphics, ByVal nWidth _ As Integer, ByVal nHeight As Integer)

 Dim bColor As New SolidBrush(Color.Blue)

 gWorld.FillPath(bColor, gp)

End Sub

Do You Know What the Matrix Is (Neo)?

Take note that the GraphicsPath object just discussed is defined in a small coordinate space—the
entire object fits into a rectangle from (0,0) to (40,40) in the screen. My eventual goal is to take this
little object and move it all across a painted area. Furthermore, it would be cool if I could rotate it
around like it was spinning. Both of these operations can be accomplished though the use of the
Matrix class. A matrix is a set of numbers arranged in rows and columns. Matrices are most useful in
describing movement of objects through coordinate systems (both 2D and 3D coordinate systems)—
movement such as rotations, translations, scaling, and something called shear. The purpose of this
text is not to give a full background on matrix mathematics, so I don’t want to get into the gory
mathematical details. Instead, I’ll just show you the Matrix class and how to use it to perform simple
movements.

To create a rotation matrix that will spin an object around, you can do something like the following:

 Dim mR As Matrix = New Matrix(1, 0, 0, 1, 0, 0)
 mR.RotateAt(FRotationAngle, New PointF(20, 20))

The first line instantiates a member of the Matrix class and initializes it to what’s known as an

Page 75 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

identity matrix. An identity matrix performs no movement if it’s used on an object. The RotateAt
method is then called on the Matrix. The first parameter specifies the angle of rotation, and the
second parameter specifies the 2D point around which the rotation takes place. I chose a rotation
point of (20,20) because that represents the center of my 40X40 sprite. Once the rotation matrix is set
up in this fashion, I can perform the Transform method on the intended GraphicsPath object and pass
the Matrix object in as the sole parameter, as shown here:

 gp.Transform(mR)

This rotates the GraphicsPath object as specified in the matrix. To translate (move) a GraphicsPath
object to a new set of coordinates, you can perform an operation similar to this:

 Dim mT As Matrix = New Matrix(1, 0, 0, 1, 0, 0)

 mT.Translate(X, Y)
 gp.Transform(mT)

This code sets up an identity matrix, translates the coordinates to position (x, y), and then moves the
GraphicsPath object gp to those coordinates by using the Transform method.

Putting it Together: The SimpleSprite Class

Thanks to the magic of object-oriented programming, I now have enough background information to
construct a fully contained Sprite class, which is reproduced here in its entirety:

Imports System.Windows.Forms
Imports System.Drawing
Imports System.Drawing.Drawing2D

Public Class SimpleSprite

 Private FWidth As Integer = 40 ‘my size
 Private FHeight As Integer = 40

 Private FPosition As New Point(0, 0) ‘position of sprite
 Private FVelocity As New Point(0, 0) ‘how fast it moves per
 frame
 Private FRotationAngle As Integer = 0
 Private FRotatationDirection As Integer = 5

 Private FColor As Color
 Private gp As GraphicsPath
 Private gpSave As GraphicsPath

 Public Sub New(ByVal aColor As Color)
 MyBase.new()

 FColor = aColor

 Dim oRand As New Random()
 Do While FVelocity.X = 0
 FVelocity.X = oRand.Next(-5, 5)
 Loop
 Do While FVelocity.Y = 0

Note The order that Matrix transformations are performed is important. Rotating an object then
translating it will yield a much different result than translating first and then rotating. You have
to be careful to perform your translations in the correct order to get the intended final position
of your objects.

Page 76 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 FVelocity.Y = oRand.Next(-5, 5)
 Loop

 Call SetupGraphicsPath()

 End Sub

 Property Color() As Color
 Get
 Return FColor
 End Get
 Set
 FColor = Value
 End Set
 End Property

 Private Sub SetupGraphicsPath()

 gp = New GraphicsPath()

 gp.AddLine(0, 20, 40, 20)
 gp.AddLine(20, 0, 20, 40)
 gp.AddEllipse(New Rectangle(10, 10, 20, 20))

 gpSave = New GraphicsPath()
 gpSave = CType(gp.Clone, GraphicsPath)

 End Sub

 Public Sub RandomPosition(ByVal aWorldSize As Size)

 Dim oRand As New Random()
 FPosition.X = oRand.Next(0, aWorldSize.Width)
 FPosition.Y = oRand.Next(0, aWorldSize.Height)

 End Sub

 Public Sub DrawFrame(ByVal gWorld As Graphics, ByVal _
 nWidth As Integer, ByVal nHeight As Integer)

 Dim oRand As New random()
 Dim mT As Matrix = New Matrix(1, 0, 0, 1, 0, 0)
 Dim mR As Matrix = New Matrix(1, 0, 0, 1, 0, 0)
 Dim bBounced As Boolean = False

 Dim bColor As New SolidBrush(FColor)

 mR.RotateAt(FRotationAngle, New PointF(20, 20))
 gp.Transform(mR)

 mT.Translate(FPosition.X, FPosition.Y)
 gp.Transform(mT)

 gWorld.FillPath(bColor, gp)

 ‘reset the graphicspath
 gp = CType(gpSave.Clone, GraphicsPath)

 ‘move the sprite
 FPosition.X += FVelocity.X
 FPosition.Y += FVelocity.Y

 ‘if reaches edge of world, ‘bounce’
 If FPosition.X > nWidth - FWidth Then

Page 77 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 FPosition.X = nWidth - FWidth
 FVelocity.X = -FVelocity.X
 bBounced = True
 End If
 If FPosition.X < 0 Then
 FPosition.X = 0
 FVelocity.X = -FVelocity.X
 bBounced = True
 End If

 ‘same for y
 If FPosition.Y > nHeight - FHeight Then
 FPosition.Y = nHeight - FHeight
 FVelocity.Y = -FVelocity.Y
 bBounced = True
 End If
 If FPosition.Y < 0 Then
 FPosition.Y = 0
 FVelocity.Y = -FVelocity.Y
 bBounced = True
 End If

 ‘50-50 chance that the spin direction
 ‘will change after a bounce
 If bBounced And oRand.Next(0, 100) Mod 2 = 0 Then
 FRotatationDirection = -FRotatationDirection
 End If
 FRotationAngle = FRotationAngle + FRotatationDirection
 If FRotationAngle > 360 _
 Then FRotationAngle = (FRotationAngle Mod 360)
 If FRotationAngle < 0 _
 Then FRotationAngle = FRotationAngle + 360
 End Sub

End Class

The class contains all the information about a single object, including its color, its position in the
world, the speed at which it’s moving, and its rotation speed and direction. When the object is
instantiated, the SetupGraphics_ Path method is called (described earlier), which defines the shape of
the object. In addition, the velocity of the object is defined by setting the values in a Point structure
to a random number between –5 and +5.

All of the drawing work happens in the DrawFrame method. A Graphics object is passed into this
method, along with the width and height of the surface. Drawing is done by setting up matrices as
described previously and performing the rotation and translation necessary to place this object into
the world. Then the sprite is drawn onto the Graphics object using the GraphicsPath.FillPath method.

After the drawing is done, several housecleaning steps are performed. First, the GraphicsPath object
is set back to its original state by cloning the gpSave variable (recall that I created gpSave by cloning
my original Graphics- Path variable). This is a quick way to reset all of the rotation and translation
matrices back to an identity state. If I did not do this, further rotations and translations would be
appended to the existing ones. My code is written to always start from "square one," apply the
appropriate rotation, and finally to move the object to its final place in the world. Next, the position
of the object is updated, and checks against the boundary of the world are performed to see if I need
to make the object bounce off one of the edges. Finally, I update this object’s rotation. As an added
feature, I added some code that switches the object’s rotation direction after it bounces, but this
rotation direction switch happens only 50 percent of the time for some variety.

Using the SimpleSprite Class

Page 78 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The sample project uses an ArrayList collection to keep track of any number of SimpleSprite object
instances (hit the Add a Sprite button to add another one to the list). A Timer variable is instantiated
to draw the world in an endless loop. The drawing of the world is handled with the following few
lines of code:

 Private Sub DrawTheWorld()

 Dim oSprite As SimpleSprite

 Dim g As Graphics
 g = pnDraw.CreateGraphics
 Try
 g.FillRectangle(New SolidBrush _
 (pnBackColor.BackColor), pnDraw.ClientRectangle)

 ‘draw each sprite in the list
 For Each oSprite In aSpriteList
 oSprite.Color = pnForeColor.BackColor
 Call oSprite.DrawFrame(g, pnDraw.Width, _
 pnDraw.Height)
 Next

 Finally
 g.Dispose()
 End Try
 End Sub

In this code, a Graphics class is created from the Panel control on the form. The entire panel is
rendered in the currently selected background color. Then, for each SimpleSprite object defined in
the ArrayList, the color is reset, and the sprite is drawn using the DrawFrame method I’ve already
discussed.

28: Something About Screensavers

The screensaver code can be found in the folder prjScreenSaver.

I decided to put together many of the graphics concepts I just discussed and come up with a basic
Screensaver class that can be extended and reused. The ScreenSaver class will be responsible for
managing a list of Sprite objects created from a class similar to the SimpleSprite I created earlier.
The class will also manage a few bitmaps needed to perform its drawing. When I’m done, I’ll have
the colorful screensaver shown here (I know, the picture is in black and white; you’ll have to run the
program yourself to see the colors—or just trust me)

Note The scene-rendering code above is so simple and short because all the work is done inside the
SimpleSprite class, as it should be. Encapsulation, or hiding implementation details inside a
black box, is one of the primary features of object-oriented programming. Imagine how useful
it would be to download an Open Source version of the SimpleSprite class and not have to
worry about all the implementation details of how to draw the sprite to your graphics object.
Simply call the DrawFrame method and it’s done! Another big feature of object-oriented
programming is Polymorphism, meaning the ability to create child classes easily off ancestor
classes. You could make the SimpleSprite class an ancestor class and use it as a base to create
dozens of different shaped sprites with only a little extra work—simply by overriding the
SetupGraphicsPath method. This would give you a great starting point for a great 2D, Space
Invaders–like shooter.

Page 79 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Screensaver Basics

Writing screensavers for Windows is much easier than many programmers anticipate. The trick is
that the SCR file that goes into the Windows folder is just an EXE that’s been renamed with an SCR
extension. Windows will call the EXE with one of two command line parameters: /s or /r. If the
passed-in command line parameter is /s, you should run the setup dialog for your screensaver. If the
command line is /r, then you should actually run the screensaver.

Screen Capture

Many screensavers appear to be drawing their effects right over the top of your word processor, e-
mail program, or whatever applications you happened to have open when the screensaver kicks in. In
truth, this is a cleverly disguised trick. Most screensavers perform this trick by grabbing an image of
the screen, copying it onto a bitmap, and then drawing on that bitmap. In the Win32 environment,
there were several API-based methods for grabbing the Desktop window handle for the purpose of
treating it like a bitmap. Unfortunately, I couldn’t find a similar method built into the .NET
Framework, so I borrowed some of this older Win32 API code to get the job done:

Protected Sub CaptureScreen()

 Dim hSDC, hMDC As Integer
 Dim hBMP, hBMPOld As Integer
 Dim r As Integer

 hSDC = CreateDC("DISPLAY", "", "", "")
 hMDC = CreateCompatibleDC(hSDC)

 FW = GetDeviceCaps(hSDC, 8)
 FH = GetDeviceCaps(hSDC, 10)
 hBMP = CreateCompatibleBitmap(hSDC, FW, FH)

 hBMPOld = SelectObject(hMDC, hBMP)
 r = BitBlt(hMDC, 0, 0, FW, FH, hSDC, 0, 0, 13369376)
 hBMP = SelectObject(hMDC, hBMPOld)

 r = DeleteDC(hSDC)
 r = DeleteDC(hMDC)

 oBackground = Image.FromHbitmap(New IntPtr(hBMP))
 DeleteObject(hBMP)

 End Sub

Page 80 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The end result of the procedure is to store the image of the Windows Desktop in the bitmap object
named oBackground. It does this by creating a device context for the display device, then creating a
bitmap, and finally copying the image of the display into this bitmap. Note that because I’ve resorted
to using "old-style" API calls in this procedure, I have to take better care of cleaning up my resources
with the appropriate DeleteDC and DeleteObject calls. The VB.NET garbage collector doesn’t keep
track of Windows resources like those created in this procedure.

The SaverSprite

I decided to make a few modifications to the SimpleSprite class used in the previous example
program, and the result of those modifications is the SaverSprite class. Since the two classes are so
similar, I don’t want to waste time explaining this new class from the ground up. I will, however,
point out the key differences in this new class:

Shape of object The sprites in the screensaver still use a GraphicsPath to control their shape, but
they are all defined as regular polygons of between 5 and 12 sides. See the SetupGraphicsPath
method to see how the polygon was specified. The radius of each sprite is also a random value.

Split up update and draw code into two procedures The original class had the code to update the
object position in the same procedure as the code to draw the sprite. Since these are really two
distinct jobs, I decided to break them into two procedures named UpdatePosition and DrawFrame.

Random Colors Each sprite has a random inner and outer color. Both colors are defined with a
random transparency, as well, giving a very colorful final effect.

The ScreenSaver Class

The ScreenSaver class itself contains both the Arraylist that holds the SaverSprites above and the
screen capture code described previously. All that’s really left to explain is how the class renders its
image onto a form. The main method call is named Tick, shown here:

 Public Sub Tick(ByVal f As form)

 Dim g As Graphics
 Dim oWork As Bitmap

 FTicks += 1

 ‘copy the background bitmap to a work bitmap
 oWork = CType(oBackground.Clone, Bitmap)
 Try
 ‘draw stuff on the work bitmap
 Call DrawSaver(oWork)

 g = Graphics.FromHWND(f.Handle)
 Try
 g.DrawImageUnscaled(oWork, 0, 0)
 Finally
 g.Dispose()
 End Try
 Finally
 oWork.Dispose()
 End Try

 End Sub

Procedure Tick runs every time the screensaver is redrawn. The first thing it does is to create a work

Page 81 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

bitmap named oWork, cloned from the background bitmap. Then the DrawSaver method is called,
which is the code that renders the polygons onto the work bitmap. Finally, the work bitmap’s image
is copied onto the passed-in form using the DrawImageUnscaled method, and cleanup is performed.

Procedure DrawSaver, the code that renders the sprites, looks as follows:

Protected Sub DrawSaver(ByVal oBitmap As Bitmap)

 Dim gr As Graphics
 Dim oSprite As SaverSprite

 gr = Graphics.FromImage(oBitmap)
 Try
 For Each oSprite In aSpriteList
 oSprite.UpdatePosition(New Size(FW, FH))
 oSprite.DrawFrame(gr)
 Next
 Finally
 gr.Dispose()
 End Try

 End Sub

This code simply iterates through the Arraylist and calls the position update and draw methods of
each sprite therein.

One can see how easily extendible both the ScreenSaver and SaverSprite classes object are. You can
override the SetupGraphicsPath method on the SaverSprite to create objects of all different shapes.
Likewise, you can make screensavers that do any type of drawing by overriding the Intialize- Saver
and DrawSaver methods. Using inheritance in this way can save you an extraordinary amount of
work in the long run. Suppose you decide to write an entire series of screensavers to either sell, enter
in a graphics contest, or put on your web site as open source freeware. Having base screensaver
foundation classes prevents you from having to rewrite (or even copy/paste) code from old projects
into new ones. Simply inherit off the base classes and all the existing functionality is available in
your new class for free.

OOP Techniques
29: Embracing Object-Oriented Programming

The OOP code can be found in the folder prjCustomValidator.

Successful object-oriented programming (affectionately called OOP) requires new strategies for
tackling problems and organizing code. Let’s take a simple task and solve it using a traditional VB6
method, and then tackle the same problem in an object-oriented framework to see the differences
between the two methods.

The simple task that you are going to perform using both methods is implementing an algorithm to
validate user-entered credit card numbers. You will use an implementation of the well-known LUHN
algorithm to perform the actual determination of whether a card number is accurate. The details of
that algorithm are not important to this programming exercise and therefore will not be detailed here.
Suffice to say that you have a ready-to-drop-in function named CheckCCNumber with the following
signature:

Function CheckCCNumber(ByVal cCCNo As String) As Boolean

Page 82 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

This function will return True if the passed-in string is a valid credit card number. Assume that the
routine can handle the removal of spaces in the number. How would one use such a function in a
Visual Basic program? The most likely situation that comes to mind is "attaching" the validation
function to a Textbox. In this scenario, the user enters the credit card number into the Textbox, the
validation function is performed, and some action is taken based on the result of the validation
function.

Method 1: Non-OOP

The traditional procedural-programming (non-OOP) method of accomplishing this task would be to
use the LostFocus event of the Textbox as the point to call the validation function. A typical VB6
code snippet might look like this:

Private Sub tbCredCard_LostFocus()
 If Not CheckCCNumber(tbCredCard.Text) then
 Call MsgBox("Invalid Credit Card Entered")
End If
End Sub

So, is anything “wrong” with this method of coding? Technically, no: linking up a Textbox to a
validation function in this way will work perfectly well. However, some potentially difficult
situations arise out of coding in this style:

Cut and paste nightmare for multiple controls Suppose our application consists of multiple
forms, and many of these forms are going to require a Textbox that performs credit card validation.
In this situation, the three-line If statement shown previously will have to be repeated in the
LostFocus event of each one of these Textboxes. Furthermore, the parameter of the validation
function will have to be changed to match the Textbox upon which the check is to be performed. It is
easily conceivable that a programmer might paste the code into each new Textbox LostFocus event
that requires credit card validation but forget to change the parameter (I know I’ve made this exact
error on more than one occasion). This would lead to a strange bug where the validation was
seemingly not being performed at the right time on the right data.

Furthermore, having all of this duplicate code in multiple controls becomes problematic if you
decide to change the error action of the validation (for example, you decide to change the text of the
error message in the MsgBox command). To accomplish this, you will have to hunt down every
instance of the validation code in your application and change the text accordingly. If you miss one,
your application looks or acts different from form to form, which is one sign of an unprofessional-
looking application.

Difficult to document for other programmers If multiple developers are developing this
application, how and where do you put the appropriate comments to document the behavior and
linkage of the Textbox and the validation function? I would argue that you should document the
function itself as well as the call to the function (the LostFocus event). Again, if multiple Textboxes
are being used throughout the application, comments are being duplicated throughout the application.

Location of the validation function The validation function will probably be placed into a common
functions library of one sort or another. I’ve seen dozens of libraries of this type in different group
programming environments in which I’ve worked, and they’re not pretty. Usually, an application’s
common functions library is one or more module packs with dozens (if not hundreds) of completely
unrelated functions. You might have the credit card validation function right next to the code that
loads the 50 states into an array, right next to the code that generates sine and cosine tables, right
above the code that converts long file names to DOS 8.3 format. How does anyone find anything in
these huge libraries? The answer, without having an intimate, experienced knowledge of the library,
is that one does not find anything in them. Nothing short of months of experience and asking other

Page 83 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

developers questions gets the new developer up to speed on all the common tasks available to him.

Method 2: OOPs Away!

Now it’s time to make all of the problems just listed vanish with a wave of my magic OOP wand. In
the object-oriented world, the experienced programmer might immediately think to explicitly link the
Textbox control and the credit card validation code into a single, all-new, special function Textbox.
The code for this type of Textbox is shown here:

Imports System.Drawing
Imports System.Windows.Forms
Imports System.Text

Public Class CreditCardValidatorTextBox
 Inherits TextBox

 Private FBadCreditCardColor As Color

 Sub New()
 MyBase.New()
 FBadCreditCardColor = color.Red
 End Sub
 Property BadCreditCardColor() As Color
 Get
 Return FBadCreditCardColor
 End Get

 Set
 FBadCreditCardColor = Value
 ‘refresh the control if it has contents
 If len(Me.Text) > 0 Then Call Refresh() End Set
 End Property

 Protected Overrides Sub OnGotFocus(ByVal e _
 As System.EventArgs)
 Me.ForeColor = color.Black
 Me.SelectAll()
 Call MyBase.OnGotFocus(e)
 End Sub

 Protected Overrides Sub OnLostFocus(ByVal e _
 As System.EventArgs)
 If Not CheckCCNumber(Me.Text) Then
 Me.ForeColor = FBadCreditCardColor
 Call refresh()
 End If

 Call MyBase.OnlostFocus(e)
 End Sub

 Private Function CheckCCNumber(ByVal cCCNo _
 As String) As Boolean
(details of this function omitted, see code to learn how to validate a credit card)
 End Function
End Class

The new object is inherited off a basic Textbox control. The check for the validation happens in the
OnLostFocus method. The purpose of this method is to have a "normal" Visual Basic routine that is
responsible for calling the LostFocus event of each individual control.

Note You wouldn’t want to call the validation code in the actual LostFocus event in the control

Page 84 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

In this control, if the validation fails, the text of the control is changed to a different color. To make
even further use of object-oriented programming, I’ve made this extra color a property of my new
control, which means the programmer could change it to match the color scheme in their application.

The OnGotFocus event is responsible for putting the text back to black when the user enters the
control, just so the user isn’t forced to edit red text. As a convenience, the current text in the control
is selected when the user gives the control focus.

Let’s see how this object-oriented design addresses the problems listed in the prior, non-OOP
example.

Cut and paste nightmare for multiple controls The cut and paste nightmare is gone
because the Textbox and its validation code have been put together into one place in the
code. No programmer-required linkage has to be done between the control and the
validation. This is one of the primary benefits of OOP: the ability to group code (the
validation function) and data (the Textbox and the text within it) into a single place
within the code.

If the author decides to change the fail action of the validation, this is easily changed in
one place. If the author desires a choice of multiple failure actions, these are again all
coded into the same control, with a property to determine which action to take (or,
fancier yet, the programmer could create further subclasses off this class that behave
differently upon failure).

Difficult to document for other programmers Documentation is quite easy in the
OOP world. The author of the control documents the source of the control itself. When
the control is used on a form, no additional coding is required. The programmer studying
the application will see that a control class named CreditCardValidatorTextBox was
used on a certain form and can search the code for the definition of that class.

Location of the validation function Again, the code and the data are all together, so
the problem of huge modules of disparate functions often goes away automatically in the
OOP world. The sine and cosine functions are often hidden away in their own class, the
state loader has a class of its own, and the credit card validator is separated from each of
those, as well.

This simple example demonstrates how some of the failures of the older, procedural-based
programming style have been addressed through the use of object-oriented programming methods.
Admittedly, there is a learning curve when moving into the object-oriented world, but once that
curve has been overcome, you should find yourself solving all of your new programming challenges
using these methods. The goal is to get yourself “thinking OOP” as new projects come your way.

30: Calculating Elapsed Time

The redundant function calls code can be found in folder prjRedundantFunctionCalls.

definition because you would be "stealing" the event from the programmers who actually use
your control. Instead, any LostFocus code that you need to write when your control loses focus
should be called in the OnLostFocus method. Most of the control events have partner methods
for the same purpose. Make sure to call the ancestor method by issuing MyBase.OnLost- Focus
(e), though, or the users of your control will still not be able to have their own LostFocus
events.

Page 85 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

During development, I often find the need to calculate the time it takes to run a given piece of code.
This gives me a quantitative measure of how fast (or slow) a procedure I’m working on is running. If
I decide that I can improve on the time by optimizing the code, I’ll have a number in mind that I have
to beat.

I whipped up a little elapsed-time calculation class for this purpose. This is a good example of a high
“bang for the buck” class; that is, it took practically no time for me to come up with this class, but I
find myself using it repeatedly.

The code for the ElapsedTime class is so small, in fact, that I’ll reproduce it here in its entirety:

Public Class tagElapsedTime

 Private iStartTime As Integer

 Public Sub New()
 MyBase.New()

 Call StartTimer()
 End Sub

 Public Sub StartTimer()
 iStartTime = Environment.TickCount
 End Sub

 ReadOnly Property MilliSecondsElapsed() As Double
 Get
 Return (Environment.TickCount - iStartTime)
 End Get
 End Property

 ReadOnly Property SecondsElapsed() As Double
 Get
 Return MilliSecondsElapsed / 1000
 End Get
 End Property

 ReadOnly Property MinutesElapsed() As Double
 Get
 Return SecondsElapsed / 60
 End Get
 End Property

End Class

Pretty simple, no? A method called StartTimer sets a private variable based on a .NET Framework
variable named Environment.TickCount. This value represents the number of milliseconds that have
elapsed since the system was started last. (For all of you Win32 API gurus, this is equivalent to the
GetTickCount API call, which I could have used here with identical results.)

To calculate the number of seconds or minutes that have elapsed since StartTimer is called, merely
call the SecondsElapsed or the MinutesElapsed method.

The sample program does some time trials on converting all of the lowercase a’s in a block of
random text to uppercase A’s using two different methods (see “Redundant Function Calls” earlier in
this book for more information on why these comparisons were being made). Here is a portion of the
code, showing the tagElapsedTimer class in action:

 oTimer = New tagElapsedTime()

Page 86 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 oTimer.StartTimer()
 cText = SlowTextConvert(cText)
 lbSlow.Text = "Time: " & oTimer.MilliSecondsElapsed & " ms."
 tbExampleText.Text = cText

The SlowTextConvert function in this example is the function being timed. To get the most accurate
result, I start the timer on the line immediately preceding this function call and print the milliseconds
elapsed on the line immediately following the function call.

31: Reading and Writing INI Files

The INI file code can be found in folder prjIniFiles.

Microsoft has been trying to put the use of INI files out to pasture, but they just won’t die. I find
them much more convenient than writing to the Registry in many cases. For example, say I’m
writing a SQL Server database application program that is to be run off a shared network drive. One
of the things my program will need is the name of the database server. This server name will be the
same for all users of the program, so why store it in each user’s individual Registry? It is much easier
to store the server name in an INI file in the application directory. That way, when my network
manager comes and tells me she’s performing a SQL Server upgrade over the weekend, and, oh by
the way, she’s changing the name of the server during the upgrade, I can simply change the INI file
to point to the new server. If this information were stored in the Registry, I’d have to change it on
each end user’s machine.

Microsoft’s desire to do away with the INI file has gotten strong enough that they conveniently
“forgot” to include support for them in the .NET Framework. But I’m not going to let that stop me,
oh no. A bit of coding, and I had a nice, compact INI file class that performed all of the INI file
support that I needed.

The API Calls

The basic API declarations that I needed for my INI file class are listed here:

Private Declare Function GetPrivateProfileInt Lib _ "kernel32" Alias "GetPrivateProfileIntA" (ByVal _ lpApplicationName As String, ByVal lpKeyName As String, ByVal _ nDefault As Integer, ByVal lpFileName As String) As Integer

Private Declare Function GetPrivateProfileString Lib _ "kernel32" Alias "GetPrivateProfileStringA" (ByVal _ lpApplicationName As String, ByVal lpKeyName As String, ByVal _ lpDefault As String, ByVal lpReturnedString As String, ByVal _ nSize As Integer, ByVal lpFileName As String) As Integer

Private Declare Function WritePrivateProfileString Lib _ "kernel32" Alias "WritePrivateProfileStringA" (ByVal _ lpApplicationName As String, ByVal lpKeyName As String, ByVal _ lpString As String, ByVal lpFileName As String) As Integer

Private Declare Function FlushPrivateProfileString Lib _
"kernel32" Alias "WritePrivateProfileStringA" (ByVal _ lpApplicationName As Integer, ByVal _ lpKeyName As Integer, ByVal lpString As Integer, ByVal _ lpFileName As String) As Integer

There are more INI-related API calls than these, but these are the basic calls needed for reading and
writing to a private INI file (which includes all INI files except for WIN.INI).

The last API declaration is a special purpose declaration of WritePrivate- ProfileString that declares
the first three parameters as type Integer instead of type String. This declaration is renamed
FlushPrivateProfile- String. The purpose of this function is to flush changes written to the INI file to
disk, since INI file operations are cached. You probably wouldn’t need to worry about flushing INI
file changes to disk in your applications, but I wanted to show the INI file contents directly after
making changes to the INI file in my example program, and the program wasn’t showing the changes
immediately because of the caching nature of the INI file. Flushing the changes to disk before
reading them from the file solved this problem for me.

Page 87 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Digging into the INI Class

The class itself is small and straightforward. The constructor takes a single string as a parameter.
This string is used as the INI file name in all further operations. I also made the filename available as
a read-only property, as shown here:

Dim FFilename As String

Public Sub New(ByVal cFilename As String)
 FFilename = cFilename
End Sub

ReadOnly Property FileName() As String
 Get
 Return FFilename
 End Get
End Property

Because the INI filename is passed into the constructor and because the Filename property is read-
only, this means that an instance of the INIFile class can read and write to only one INI file. This
could be easily rectified if your desired use of the file was to have a class that could write to more
than one INI file at the same time, but I did not find this to be a necessary feature of my class.

The class contains read and write methods for strings, integers, and Booleans. Booleans are typically
stored in INI files as 0 or 1, and I chose to retain that storage scheme in this class. Therefore, the
GetBoolean method calls the GetPrivateProfileInt API call.

I chose to implement the writing of strings, integers, and Booleans through the single
WritePrivateProfileString API call. Thus, both the WriteBoolean and WriteInteger methods end up
calling the WriteString method, after converting the desired value to a string.

The example application demonstrates reading and writing to an INI file. The INI file is first created
with default values. The buttons to the left side of the application allow you to write information to
the INI file, and the INI file is redisplayed after each change (this is where I needed the “flush”
functionality in my class), as shown in the following illustration:

One interesting trick in my sample program is the use of a single Click event to handle more than
one button click. The sub below handles the two Boolean value buttons:

Protected Sub cbBS1_Click(ByVal sender As _
Object, ByVal e As System.EventArgs) _
Handles cbBS1.Click, cbBS2.Click

 Dim b As Boolean
 Dim aButton As Button

Page 88 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 aButton = CType(sender, Button)
 b = Ini.GetBoolean(SECTIONNAME, aButton.Text, False)
 b = Not b

 Call Ini.WriteBoolean(SECTIONNAME, aButton.Text, b)
 Call ShowINIFileContents()

 End Sub

Note the Handles clause at the end of the procedure declaration. This tells the compiler that this sub
should be called as the Click event for buttons cbBS1 and cbBS2. This type of functionality
generally replaces the use of control arrays in previous versions of Visual Basic.

The next interesting part of this procedure is the line aButton = Ctype(sender, Button). This line of
code determines which button was clicked to call this procedure and assigns that button to a variable
named aButton. The next line of code retrieves a value from the INI file, and the key name that it
uses is the caption of the button that was clicked (aButton.text).

Finally, the Boolean value is negated (b = Not b), and the negated value is written back to the INI
file.

The same Handles event trick is used for the two integer buttons and again for the two string buttons.

32: Adding Controls to the Toolbox

The toolbox controls code can be found in folders prjControlsInTheToolbox and
prjControlsInTheToolboxUsage.

It’s always been my dream, ever since I was a little boy, to add my own components to the Visual
Basic toolbox. OK, so that statement is a tad extreme. But why the heck couldn’t I? Sure, I could add
these things called UserControls, or I could write ActiveX controls and stick them in there, but that
just wasn’t the same. Why couldn’t I just take a regular control, add a few new properties, change a
color or font or two, and drop it into the toolbox for use in all my projects?

Visual Studio.NET lets you do just that. Thanks to the magic of object- oriented programming, you
can inherit new controls off of existing ones and place them in the component toolbox right where
they belong.

The example code for adding controls is actually two different projects in Visual Studio. The first,
named prjOddListBox, is the new control that I’ve developed, a do-almost-nothing control that I’ve
named the OddListBox. After I’ve explained how this control was developed, I’ll describe how it can
be added to the toolbox. In the second project, prjControlsInTheToolboxUsage, I’ll demonstrate how
to use the control.

Developing the Control

The prjOddListBox project was created as a Windows Control Library, as you can see in the
following illustration:

Page 89 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

This creates a project without a main form and instead creates a single module named Control.vb, the
contents of which is as follows:

Public Class UserControl1
 Inherits System.Windows.Forms.UserControl

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 ‘This call is required by the Windows Form Designer.
 InitializeComponent()

 ‘Add any initialization after the InitializeComponent() call

 End Sub

 ‘UserControl1 overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 ‘Required by the Windows Form Designer
 Private components As System.ComponentModel.Container

 ‘NOTE: The following procedure is required by the Windows Form Designer
 ‘It can be modified using the Windows Form Designer.
 ‘Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
 components = New System.ComponentModel.Container()
 End Sub

#End Region

End Class

The most interesting thing here is that a new class named Control1 has been defined, and this class
inherits off System.Windows.Forms.UserControl. Note that you don’t have to inherit off this control,
that’s just a suggestion that VS.NET makes to you. I instead chose to inherit off a more well -defined
control, the standard Listbox. To do this, I merely changed the inherits line to read Inherits

Page 90 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

System.Windows.Forms.Listbox. I now have the makings of my own little Listbox, ready for
customization.

The first thing I decided I wanted to add to my custom Listbox was a string-based Tag property
similar to that found in prior versions of Visual Basic. Now, VB.NET controls do have a Tag
property (as of beta 2 of the .NET Framework, anyway), but I originally coded this object in beta 1
of Visual Studio.NET. I chose to reimplement the Tag property for two reasons:

As an exercise The Tag property doesn’t have to do a thing inside the control as long as it can store
a string value for the programmer to use. Therefore, this is the easiest possible property to write and
a good place to start learning about inheritance.

Backward-compatibility In large projects, it might be easier to use a Listbox with a Tag property
on it than to sort through 100,000 lines of code looking for all the places to change .Tag
to .PrimaryKey, or whatever you decided to name some new property.

The code to add the Tag property is only a few lines and is shown here:

Private FTag As String

<Description("User-Defined Property to mimic VB6 Tag"), _ Category("UserStuff")> _
Property MyReplacementTag() As String
 Get
 Return FTag
 End Get
 Set(ByVal Value As String)
 FTag = Value
 End Set

 End Property

The private variable FTag is how the control will internally store the Tag data. As you see, the
property definition has the simplest possible Get and Set procedures, whose functions are to simply
read and write the value of the FTag variable.

The interesting part of the procedure is the stuff between the <> symbols. This information is called
metadata. Metadata is information that helps describe your code to the Visual Studio environment. In
this case, we are describing two attributes of the Tag property through the metadata. The first
attribute is the Description attribute—this is a comment that will appear at the bottom of the Property
Browser when the programmer is editing this property. The second attribute is call the Category
attribute—it describes in which grouping the new property should appear in the Property Browser.
We will see how these attributes work later.

The second custom property that I created is called AvgLength. This is a read-only property that
returns the average character length of all the elements in the Listbox at a given time. The code for
this property is as follows:

 <Description("Average String Length of elements"), _ Category("UserStuff")>
 ReadOnly Property AvgLength() As Integer
 Get
 Dim i As Integer
 Dim iTot As Integer = 0

 If Me.Items.Count = 0 Then

Note Once Visual Studio.NET beta 2 came out, my own Tag property conflicted with the one they
put back on all the controls. I therefore chose to rename my own property MyReplacementTag.

Page 91 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Return 0
 Else
 For i = 0 To Me.Items.Count - 1
 iTot += CStr(Me.Items(i)).Length
 Next
 Return iTot \ Me.Items.Count
 End If

 End Get

 End Property

Note that there is no Set portion of this property, because it’s a read-only property. This code loops
through all the items, adding up the characters and then dividing by the number of items. Note this
property has the same two attributes defined for it in the metadata portion.

Metadata is not only used to further describe properties; it can also be used to describe an entire
class. The class definition of the OddListBox reads as follows:

<ToolboxItem(True)> _
 Public Class OddListBox
 Inherits System.Windows.Forms.ListBox

Setting the ToolBoxItem attribute to True is necessary for controls that I intend to be placed in the
Visual Studio.NET toolbox.

Adding the Control to the Toolbox

Once my new component was completed, I was ready to add it to the toolbox. After compiling, I
made sure that there was an OddListBox.dll file in the bin folder of my Windows Control Library
project. This is the DLL that I’ll need to reference when I add my control to the toolbox.

Since this was the first toolbox control that I was adding, I decided to create a new tab in the toolbox
for all of my custom controls. Adding a tab is done by right-clicking an empty space and choosing
Add Tab from the pop-up menu. I named my new tab MattTagCustom, referring to my custom
controls. My naked, ready-to-use tab is shown here:

Finally, the time had come to add the control. With my new tab as the current tab, right-clicking and
selecting Customize Toolbox brought up the following dialog. This dialog is used for adding
different types of controls to the toolbox. I’m interested in .NET Framework Components, which is
the right-most tab in the dialog.

Page 92 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

To add my new control, I clicked the Browse button and selected the OddListBox.dll file whose
existence I had verified earlier. The final step was to make sure the OddListBox control has been
added to the master list of Visual Studio controls and that it was checked. After closing the dialog
box by clicking OK, I was treated to seeing my very own custom control in the Visual Studio
toolbox for the first time (insert thunderous applause here).

Using the New Control

Getting your custom controls in the Visual Studio.NET toolbox is the hard part. Once you manage to
get them there, using them is easy, because it’s no different from using the built-in toolbox controls.

The example project prjControlsInTheToolboxUsage shows the OddListBox control that I created in
the prior example dropped onto an empty form. It looks just like a normal Listbox except for the lack
of a 3D border and the somewhat odd background color. (Examining the code for the control will
show that I changed these two visual elements in the constructor, mainly so I had a visual way to tell
my control from a normal Listbox. Nothing prevents the user of my control from setting these
properties back to their default values, or any other values for that matter.)

Note The large list of components already listed in the .NET Framework Components tab of the
Customize Toolbox is a good tool for familiarizing yourself with the controls and namespaces
available to you.

Page 93 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The truly cool part (to me, anyway) is examining the custom properties that I created right in the
Property Browser. As shown in the next illustration, the two properties of my OddListBox are shown
at the bottom of the Property Browser. They have been placed into the category I specified (via
metadata attributes) and have the correct descriptive text when they are selected (more metadata
attributes).

The AvgLength property in particular is interesting to play with. If you go ahead and add some items
to your OddListBox in design mode, the AvgLength property updates automatically, right in the
Property Browser. Remember, this read-only property returns the average string length of the items
in the OddListBox. The code that I wrote that calculates this average is running during design mode.
Whoa.

If you’re anything like I was when I first played with this functionality, your head is probably
spinning with ideas right now about all the custom components you can create for your company or
your next big project and how cool they’ll look all lined up side by side in the Visual Studio.NET
toolbox.

Page 94 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

33: Earning Your Inheritance

The inheriting forms code can be found in the folder prjInheritingForms and
prjUsingInheritingForms.

Inheriting existing classes to create descendant classes is an easy enough concept to understand.
What about inheriting forms to create descendant forms? Could this serve a purpose?

The answer to this question is, of course, “yes.” A form is a class in the .NET Framework, so every
form that you make is in fact an inherited form. However, you can extend the inheritance concept
more deeply by creating forms with predefined elements on them and then creating descendant
classes from them. Inheriting forms gives you the same benefit that inheriting any other class does:
sharing functionality, “black-boxing” code inside descendant classes, reducing code duplication, and
so on. Because forms are visual elements, you can use form inheritance to give your application a
consistent look, as well. If you want every form in your application to have the same status bar, for
example, you can create a base form with this status bar and then subclass every form in your project
from this base form. Then, if you decide to change the look of the common status bar, you need only
change it in one place.

The sample projects demonstrate creating a base form and then using it in a new project as the
descendant of a new form. The base form is located in project prjInheritingForms. This project starts
off as a standard Windows application. The base form is very simple: a three-panel status bar at the
bottom of the form and a close button anchored to the lower right corner. In addition, a timer control
is set up and used to display the current time in one of the panels, as seen in this illustration:

Once the base form is fully designed and finalized, the project type needs to be changed from a
Windows application to a Class Library. This is done in the Project Properties dialog, which is
accessed by selecting the project in the Solution Explorer, right-clicking, and selecting Properties.
The following illustration shows exactly what needs to be changed:

Page 95 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Once the project type is changed, you need to make sure to rebuild the project, which will create the
necessary DLL file in which the base form class resides. The form will then be ready to be
subclassed. I created a new project named prjUsingInheritedForms for my subclassed form example.
Once this project was created, I first removed the default form that Visual Studio.NET created for
me. Then, I right-clicked the project in the Solution Explorer and selected Add Inherited Form. In the
Add Item dialog box, make sure Local Project Items is selected on the left and Inherited Form is
selected on the right. After naming the new form file, click Open. You will be prompted to select the
file containing your base form. Locate and select the DLL file built in the previous step. You will
now have the base form added to your project, as seen in this illustration:

Note that the form looks a bit different in that the status bar/Close button has a little graphic in its
upper-left corner. This indicates that these controls are part of the Ancestor class and cannot be
modified. I could alter this behavior by going back into the original class library that contains the
base form and changing the Modifiers property on the button or the status bar from Private to
Protected or Public. A setting of Protected would still not allow changes to the position or size of the
control but would allow access to the controls by subclassed objects. A setting of Public would allow
access to the controls by all objects.

One thing I found interesting in my example was that my inherited form showed the accurate time in
the status bar, even while in design mode. This told me my base form code was running and updating
the status bar clock during the design mode of my new project. Pretty cool.

Note that if you go back and decide to make changes to your base form, make sure to rebuild that
base form class library to a DLL after the changes are made, or you won’t see the changes in your
inherited forms.

34: Performing a Ping

The ping code can be found in folder prjPinger.

A large part of the .NET strategy is the concept of web services. In the world of web services,
programmers write useful little black boxes of code and expose them to other programmers via the
Internet. Need the shipping status of a package displayed on your e-tailer site? Just call your
shipper’s .NET web service (such a service does not exist at the time of this writing, but Microsoft is
banking on the fact that it will be in the .NET future). Want to incorporate a search engine into your
own site? Just hook up to Yahoo or AltaVista or Google’s web service.

Note The basis for the prjPinger project was "borrowed" from a source code example found at the
VBNET web site, www.mvps.org/vbnet. This site (which was named long before VB.NET was
introduced, so the name is really a coincidence) has dozens of great VB examples, and new
VB.NET examples are coming every day. With permission from the author and web master,
Randy Birch, I took a VB6 ping example and hacked it up into a VB.NET equivalent. I highly
recommend Randy’s site as a learning tool.

Page 96 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

As a long-time (at least in developer years) programmer, I’ve been taught to look at the glass as not
half full or even as half empty, but to consider the possibility that someone has stolen the glass
completely, and it hasn’t rained in months. The developer must consider the “worst-case scenario”
when developing applications because our friend Murphy has taught him time and time again that
this scenario is exactly what will face the end user of the software within the first 30 minutes of its
execution.

My worst-case scenario in the web services world is building a slick, state-of-the-art VB application
around a really useful web service, only to have that web service be nonfunctional half the time for
myriad reasons I can’t control. After all, if I’m going to use a web service in my app, then I’m at the
mercy of the hardware, the developer(s), the internal network architecture, and databases upon which
that web service is acting, right? In other words, if my shipper’s server is down all weekend, then my
app is down, too.

This gloom and doom scenario is not a good enough reason to abandon all hope, though. A web
service from my shipper might be the only way I have to incorporate shipping information directly
into my application, so if I want that functionality, then I’m going to throw myself on the mercy of
the resources on the shipper’s side of the Internet. After all, if my shipper does offer this service, and
it doesn’t fulfill its intended purpose due to network outages, badly designed code, and so on, they
stand to lose business.

So What to Do?

OK, so I’ve bitten the bullet and decided that I can’t live without incorporating a certain web service
in my application, but I don’t want the application going boom when the code on the other side of the
world isn’t functioning because the server is down. I might want to code some simple diagnostic
ability into my application that tells me when it can’t find the server upon which the web service is
running. When I need to see if a server is available, I usually perform a simple ping on the server. A
ping is a command-line program that’s shipped with all flavors of Windows. The results of the ping
look like this:

C:\WINDOWS>ping espn.go.com

Pinging espn.go.com [204.202.129.230] with 32 bytes of data:

Reply from 204.202.129.230: bytes=32 time=233ms TTL=245
Reply from 204.202.129.230: bytes=32 time=165ms TTL=245
Reply from 204.202.129.230: bytes=32 time=192ms TTL=245
Reply from 204.202.129.230: bytes=32 time=192ms TTL=245

Ping statistics for 204.202.129.230:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 165ms, Maximum = 233ms, Average = 195ms

In this example, I simply typed ping and then a domain name (in this case, my bi-hourly-visited
sports news source, espn.go.com) from a command prompt, and the ping program went out and
performed a small meet-and-greet with that web server. It sent four packets of test information to the
site and waited for the same information to come back. It then reported on how long the test
information took to make its round-trip. I’m not usually worried about the time taken itself: as long
as the information does return, this tells me that the web server on the other side is in good working
order.

Using the Pinger Class

The VB.NET Pinger class does the same thing as ping. Given a domain name, the code will ping-test

Page 97 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

that domain and return the results of that test. This type of test might be useful in a program that
relies on a web service as part of its functionally. You could easily build in a ping test to the machine
upon which the web service is running to support your application. If the ping fails, then the web
service probably cannot be contacted either, and the portion of your application that relies on the web
service will probably not be functioning until this problem is resolved.

The Pinger class in the prjPinger application demonstrates the VB.NET equivalent of the ping
command-line utility. To use it, you simply create an instance of the Pinger class and call the Ping
method, passing it a web address. The object performs the ping black-box style (like all good objects
should) and returns to you the results of the ping operation.

The first thing that the Pinger class needs to do is resolve the web address that you pass into an IP
address. The human-readable form of an IP address is x.y.z.w, where x, y, z, and w are numbers from
0 to 255. The Windows-readable form of an IP address is just a large number, storable in the
VB.NET integer data type.

The Pinger class resolves the passed-in URL to both the human-and Windows-readable IP address in
the ResolveHostName procedure. That procedure is reproduced here:

Private Sub ResolveHostName()

 ‘converts a host name to an IP address,
 ‘both string and int form.

 Dim IPAddress As IPAddress
 Dim IPHE As IPHostEntry

 IPHE = DNS.GetHostByName(FHostName)
 If IPHE.AddressList.Length > 0 Then

 IPAddress = IPHE.AddressList(0)
 FAddress = IPAddress.ToString
 FdwAddress = IPAddress.Address

 Else
 FdwAddress = INADDR_NONE
 End If

 End Sub

This procedure is nice and short because there are classes in the .NET Framework that do much of
the work for you. The DNS class has a method named GetHostByName, which returns an instance of
the IPHostEntry class. This class contains all the information about a URL that you would ever want,
including the IP address information you need for this project. The code eventually stores the human-
readable IP address in the Faddress variable and the Integer version of the address in the FdwAddress
variable.

The Ping method itself relies on a few API calls found in the ICMP.DLL file, which is present on all
32-bit versions of Windows. This code is fairly simple to understand. The main call, to DLL function

Warning Keep in mind, the VB.NET Integer is equivalent to the VB6 Long data type. It might seem
that Microsoft is purposely trying to drive us programmers nuts by renaming data types in
this fashion. The reason they’re doing this is to bring the naming convention in all of their
languages (C++, C#) into a common vernacular. If you have a real problem keeping track
of these, you can use the Int16 and Int32 types, which are the strict .NET Framework–
equivalent names and easier to remember. Consult the Visual Studio help section "Data
Type Summary" for a complete reference on the mapping of old to new data types.

Page 98 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

IcmpSendEcho, fills an API structure called ICMP_ECHO_REPLY, which contains the useful
information about the ping, such as the total round trip time in milliseconds.

The remainder of the Pinger class sets up properties that can be queried by the "outside world," such
as the human-readable IP address, the round trip time, and the status of the ping (which may fail for a
number of reasons, remember).

35: A Big Savings: Object Graph Serialization

The object graph code can be found in the folder prjCollections.

If you’re like me, you’ll find that object-oriented programming is almost addictive on some levels.
As new projects come up and you begin working on the application design, you’ll most likely
envision all manner of complex object structures and their interrelationships. Consider an example:
an object graph that loads information about a list of employees for a human resources application.
There might be a master object called EmployeeList, and within it a collection of Employee objects.
Each Employee object might have one (or more) MailingAddress, PhoneNumber, and EmailAddress
objects within it. The entire EmployeeList might be stored in such a way so that an OrgChart can be
easily generated from the data, either as some form of b-tree, or with a separate construct within it
containing pointers to the org chart hierarchy.

In a business development environment, all of this data would probably be permanently stored in a
database like Microsoft SQL Server and then loaded into your complex object graph, as just
described, for manipulation. The class structure just described might be the middle tier in a three-tier
architecture, for example. While this programming model works well for most business applications,
one cannot always use a powerhouse back-end database like SQL Server to store data. Imagine
wanting to write a little contact manager application for open source or retail shelf release. This
contact manager application might need the exact same object graph as just described in the Human
Resources application. As the developer, however, you don’t want to require the presence of a back-
end database to use our program.

The .NET Framework has an alternate storage solution in cases where a database might not be
practical. Built into every .NET Framework class (including the ones you create yourself) is the
ability to serialize, or save, object instances in a proprietary binary format to disk and then reload
them later.

This opens up an entire new range of possibilities for the storage needs of your application. If you’re
designing your data in a well thought out, nested group of objects, you’ll be able to add an amazingly
few lines of code to your application and have the ability to save/load these objects to disk.

I haven’t included very much code here, because the technique for object graph serialization is
almost frighteningly easy. Here is the code to save any object graph to disk:

Dim f As New FileStream(BINARYFILE, FileMode.Create)
Dim b As New BinaryFormatter()

Try
 b.Serialize(f, oStack)
Catch oEX As Exception
 MsgBox(oEX.Message)
Finally
 f.Close()
End Try

The constant BINARYFILE in the code above is a string constant containing a filename. The key to

Page 99 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

serializing an object graph is the BinaryFormatter class. Once you’ve instantiated an object of this
class, you call the Serialize method on it, passing a FileStream object and the object you want to save
to disk.

To load the serialized object, you merely do the following:

Dim oStack As New AnotherBookEncapsulaterStack()

Dim f As New FileStream(BINARYFILE, FileMode.Open)
Dim b As New BinaryFormatter()
Try
 oStack = CType(b.Deserialize(f), _ AnotherBookEncapsulaterStack)
Finally
 f.Close()
End Try

This is really just the inverse of the code to save the object. The only tricky part here is that you have
to typecast the results of the DeSerialize method back to whatever class you’re loading.

For quite a few years, I wrote level-editor programs for popular computer games. I wrote a level-
editing program for id Software’s Doom and Quake. I also wrote a level editor for a commercial
game company. In all of these cases, I wish wish wish I could have had the ability to serialize objects
to disk as described here. Such an ability would have cut dozens of hours off of each of these
projects and allowed me time to concentrate on more important problems like user interface design
and adding powerful features to the program, instead of writing hundreds of lines of I/O code to store
my level information to disk.

36: Delegate Some Authority

The event code can be found in the folder prjEventsAndDelegates.

As you start converting your thinking process into an object-oriented programming mode, the
concept of writing properties and methods will probably come pretty easily to you. A property on
your object appears just like a variable attached to your class definition, and a method is just a
procedure or function. Variables, procedures, and functions are all familiar elements to programmers,
so the only change in an object-oriented world is that you’re now “attaching” these things to a class.
Furthermore, the pseudo/almost/not-quite OOP features in Visual Basic 6 allowed you to create
classes with both properties and methods.

Coding events, however, might be delving into some unfamiliar territory. Just when do you need an
event on your class? How is it coded? We’re all familiar with responding to events on existing
classes, like the Click event of a button or the Changed event of a Textbox. This is called responding
to an event, and because it’s a familiar topic to any developer with Visual Basic experience, I won’t
cover it here. Instead, I want to talk about coding objects that raise events.

Why?

To think of situations in which you would want to code objects that raise events, you have to turn
around your thinking a bit. Almost all of your Visual Basic coding experience to this point has been
writing code that responds to events. Most VB programs start off with a blank form onto which
controls are placed, followed by event-handling code written for the controls.

In the VB.NET world, you’re not only using objects, but you’re writing them as well. This doesn’t
just mean visual controls like buttons or Listboxes, but data-driven objects like custom collections or
typed datasets. When writing such classes, imagine that other coders might be using them in their

Page 100 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

own projects and that they may need to respond to something important happening to these objects.
This is when you might consider adding the ability of your object to raise an event.

How?

Events in the .NET Framework are created using something called a delegate. A delegate is a special
type of pointer to a function that handles communication between an object trying to raise an event
and the event-handling code. Delegates are what allow you to dynamically attach event-handling
code to events on all object instances—not only your own, but existing, well-known objects like
buttons, timers, and Treeviews.

Trying to nail down exactly what a delegate is and how it works is pretty tricky since it’s such a new
concept, so it might be easier (if not 100 percent dead-on accurate) to think of a delegate as a
procedure of a certain type. What differentiates one type of procedure from another is the argument
list passed to the procedure. As an example, the first two procedures here are of the same type, and
the third is of a different type:

Sub SomeFuncA(p1 as integer, p2 as integer, s as string)
Sub SomeFuncB(aLeft as integer, aTop as integer, _ cText as string)
Sub SomeFuncC(aPoint as Point, cText as string)

Note that the name of the arguments in the parameter list are not important when comparing
procedure types, just the number of arguments, the type of each argument, and the calling convention
(by reference or by value). If the number, type, and calling convention of arguments match, then the
two procedures are of the same type.

An example of declaring a delegate is shown here:

Delegate Sub PersonVerifier(ByVal oP As Person, _
 ByRef bIsOk As Boolean)

The purpose of this statement is to declare a type of procedure, having two arguments. The first
argument is of type Person (declared elsewhere in the sample project), and the second argument is a
simple Boolean, but passed by reference. Declaring this delegate means that I can now create events
for my objects having this delegate signature.

The following code shows the beginning of a new class called a Person- Collection. The purpose of
this class is to store a collection of another class, called the Person class. The Person class in the
example code is trivial and is not detailed here, except to mention that it has three string properties to
store a person’s first name, last name, and state of residence.

Class PersonCollection
 Inherits System.Collections.CollectionBase

 Public Event VerifyPerson As PersonVerifier

Note that one of the members on the PersonCollection is an event named VerifyPerson, and the type
of this event is the delegate type I defined earlier. What this means is that my custom collection now
has the ability to raise an event named VerifyPerson, and any programmer using my Person-
Collection will be able to write code to respond to this event.

Why did I write such an event? The purpose of the event is made much more clear when the Add
method on the collection class is examined:

 Public Function Add(ByVal oP As Person) As Boolean

Page 101 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim bIsOk As Boolean = False

 RaiseEvent VerifyPerson(oP, bIsOk)

 If bIsOk Then
 MyBase.InnerList.Add(oP)
 End If

 Return bIsOk
 End Function

The first line of code raises the VerifyPerson event. This means that if the programmer using my
class has written event-handling code for my event, then that code will be called here. I pass that
code the Person object that is about to be added and a Boolean variable that has been initialized to
false. The code after the RaiseEvent checks the Boolean, and, if found to be true, adds the Person
object instance to the collection. This gives the programmer of my class the means to perform any
type of custom validation on the Person object before it is added to the collection.

Handling the Event

Now that the PersonCollection is written, writing the code to use it and to handle the event is more
like the coding you’ve done in the past. The following sample creates an instance of the
PersonCollection object and then adds not one but two event handlers to the VerifyPerson event:

 Dim oColl As New PersonCollection()

 AddHandler oColl.VerifyPerson, _
 AddressOf DoesLastNameEndWithVowell
 AddHandler oColl.VerifyPerson, _
 AddressOf IsStateOhioOrPennsylvania

 Public Sub DoesLastNameEndWithVowell(ByVal oP _
 As Person, ByRef bIsOk As Boolean)

 Dim cLetter As String = oP.LastName.ToLower

 bIsOk = bIsOk Or cLetter.EndsWith("a") Or _
 cLetter.EndsWith("e") Or _
 cLetter.EndsWith("i") Or _
 cLetter.EndsWith("o") Or _
 cLetter.EndsWith("u")

 End Sub

 Public Sub IsStateOhioOrPennsylvania(ByVal _
 oP As Person, ByRef bIsOk As Boolean)
 bIsOk = bIsOk Or _
 (oP.State.Equals("OH") Or oP.State.Equals("PE"))
 End Sub

Note that the two event-handling procedures have the same argument list as the delegate that’s been
used to declare the event. If this were not true, Visual Studio would report a design-time error that
my event handler signature does not match the signature of the event on the PersonCollection object.

Now that my class is instantiated and wired up to some event-handling code, I can try and create
some Person objects and add them to the collection. For each Person object, both events will fire, and
if both return true, the Person object will be successfully added to the collection:

oP = New Person("Tony", "Soprano", "NJ")

Page 102 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

If oColl.Add(oP) Then
 console.WriteLine(oP.Fullname _
 & " from " & oP.state & " — added")
Else
 console.WriteLine(oP.Fullname _
 & " from " & oP.state & " — NOT added")
End If

Tony would get added because his last name ends in a vowel. I coded my two events to return true if
either the person’s last name ended in a vowel, or their state of residence were Ohio or Pennsylvania.
(I could have just as easily required both events to be true by ANDing the event results together
instead of ORing them.)

Once you reverse your thinking to start considering how other people might use your new classes,
ideas for events will start coming to you. On my simple PersonCollection, I could create new events
that fire after a person is successfully added, after a person is rejected, and after one has been
removed from the list. All of these events would allow the developer using my class to respond to
these important happenings with their own code.

37: Taking Out the Trash: The Garbage Collector

The garbage collection code can be found in folder the prjGarbageCollector.

Visual Studio.NET represents a complete paradigm shift for many programmers to a 100 percent
object-oriented programming methodology. This affects some programmers more than others. I, for
example, was used to programming a bit in C++ and even more in Inprise Delphi. (A non-Microsoft
product? Shame on me!) Because of my experience in these languages, many of the object-oriented
programming (OOP) concepts were already familiar to me.

But Microsoft threw a new wrench into the .NET Framework: the concept of garbage collection, a
concept familiar to Java developers but completely foreign to C++ or Delphi programmers (and
altogether alien to VB programmers). The garbage collector is like a little invisible maid for your
programs that cleans up all of the memory you’ve left behind. Consider the following code fragment:

Sub DoABunchOfStuff

Dim o as SomeObject
Dim i as integer

For i = 1 to 100
 o = new SomeObject(i)
 call o.SomeMethod
 call o.SomeOtherMethod
Next

End Sub

Reading this code fragment about six months ago would have had me breaking out in a rash. The
routine declares 100 instances of the class SomeObject and does some work with each instance, but
it never frees them! There they are, floating around in space like Captain Kirk in "The Tholian Web"
episode, with no chance to be freed. This is what we used to affectionately call "a memory leak," and
it lead to uncountable hours of debugging by coders all over the planet.

The garbage collector in the .NET Framework is a deliberate attempt by Microsoft to save you, the
programmer, from spending all those untold hours hunting down memory leaks. Put in its simplest
terms, the garbage collector does all the object freeing for you. This means that the previous code

Page 103 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

fragment is perfectly legal, and in fact, it is the correct way to code a loop of this nature. (Although it
will still look strange to a prior-life OOP programmer, it’s just something you’ll have to get used to.)

The garbage collector is like a little separate process, running off on its own in the background of
your application. As the programmer, you do not have 100 percent control over when and how it
runs. This tends to drive some old C++ programmers loony, but overall you should eventually find
the new memory scheme to your liking (perhaps after a little “get to know you” adjustment period).

One reason this style of thinking is so different to C++ programmers is because .NET Framework
classes do not have the concept of destructors in them. A destructor is a piece of code that executes
as an object is being freed. A class destructor was a really handy place to deallocate resources used
by the class instance. For example, a class that encapsulated file access could make sure that any
open file handles were closed in the destructor. A class that encapsulated a GDI object like a brush
could make sure the brush handle was freed in the destructor.

Deallocating Resources

So how do you deal with resource-using classes like the examples just given? Where is a good place
to deallocate resources? .NET classes allow for a special method called Finalize. This is where you
should put all resource-freeing code needed by your class.

The garbage collector treats a class with an overridden Finalize method much differently from one
with no Finalize method. An object that requires finalization is put into a list and finalized later. That
is, the garbage collector must perform its collection twice before an object with a finalization method
is truly freed.

For this and other reasons, Microsoft contends that you should avoid using finalization methods
whenever possible. If your class does not have any specific resources to clean up, then skip writing a
finalization method. They provide much more overhead to the program and could slow down your
application significantly.

Another reason that you might want to avoid writing a finalization method is that you have no
control over exactly when finalization methods are called. The garbage collector is responsible for
calling finalization methods. If your class allocates large memory footprint objects and doesn’t get
rid of them until the finalization method is called, you might have big chunks of memory hanging
around long after you need them.

Since programmers don’t like to be told they don’t have control over parts of their program, a
different programming convention has been established for memory cleanup. This new convention
has you write a Dispose method for your classes that looks exactly like the following:

Public Sub Dispose()
Call Finalize
GC.SuppressFinalize(me)
End Sub

This sub calls the Finalize method (which is where all your resources are freed) and then tells the
garbage collector not to call the finalize method on this instance (because you’ve already done it).
This method gives the best of both worlds: if you want to allow the garbage collector total control,
you can declare your object instances and not bother to do any cleanup, as you would with
most .NET Framework classes, and the garbage collector will take care of everything. However, if
you have a section of code where more control is needed, you can declare your objects and call their
Dispose methods when you’re through with them. This will free all of the resources your class
requires and will prevent the now-unnecessary overhead of the garbage collector calling the Finalize

Page 104 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

method. Tricky, huh?

Controlling Garbage Collection

The garbage collector has a few more methods that might assist you in managing the memory of
your application. You can force the garbage collector to perform a collection by calling GC.Collect.
Most applications would probably not have to worry about telling the garbage collector when to run,
but you do have the option. In addition, you can also pass an integer to the GC.Collect method. This
integer refers to a generation of objects in the application heap. The generation of an object refers to
how long it has been sitting around and how many passes of the garbage collector it has survived. A
generation 0 object has never been tested by the garbage collector. A generation 1 object has
survived one swing of the garbage collector’s axe, and so on.

A basic assumption is made in heap management: recently created objects have a higher probability
of being destroyed sooner, and “old” objects tend to continue longer rather than be destroyed in the
near future. This assumption can be used to optimize garbage collection: if recent objects are the
most likely candidates for collection, then perhaps you could run through a collection test of only
early generation objects. By calling GC.Collect(0), for example, you’re telling the garbage collector
to take a pass only through generation 0 objects, and collect them if they are no longer being used.
This could be much faster than going through all the objects on your heap.

Garbage collection sounds at first like an easy topic to understand, but it quickly spirals out of
control the longer you study it. The .NET programmer newsgroups rage in endless message threads
about the benefits and drawbacks of the garbage collecting scheme versus previous more manual
methods of memory management. Arguing over these methods of memory management reminds me
of how my father used to tell me never to argue about religion or politics: you can’t win no matter
what side you’re on.

38: Saving Your RAM and Using It, Too

The weak reference code can be found in the folder prjWeakReferences.

The space versus speed issue is a constant battle for programmers (or, at least it should be a constant
battle), as they weigh the benefits of certain choices, such as taking up more RAM at the expense of
saving computing time.

The .NET Framework has some features that let us, in some instances, have the best of both worlds
(low memory and fast access times). There are many examples of objects that you can construct
easily that take up a large amount of memory. For example, suppose you had a measuring device that
took an air pressure reading once per minute, and you put the results in some type of text file. Say
you were writing a program that displayed the results of those readings for the past year in many
different ways (bar graphed with straight or averaged values, high/low/mean values per hour or day,
greatest change in an hour interval, and so on).

For a program like this, it would be useful to take all of the air pressure readings from the past year
from disk and load it into RAM at the start of the program. When the end user specifies which report
she wants to see, along with her desired parameters for the report (date range, intervals, and so on),
all of the detail data would already be loaded and you could easily perform the calculations for her.
This would be much faster than loading the data from the file for each calculation.

Of course, the downside to this approach is that you’re saving speed at the expense of space (or
RAM). Having all of those numbers in memory will take up a significant amount of RAM—one
reading per minute for a year is 525,600 readings, times the number of bytes per reading (say 4 bytes

Page 105 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

for an integer), which gives you about a 2MB RAM requirement. Now, 2MB doesn’t seem all that
huge in today’s world of 256+ MB systems, but if this air pressure functionality is just one of several
different functions that our program provides, then you’re taking up 2MB that might be in contention
with memory that could be better used by other parts of the application.

What would be useful in a case like this is to load the measurement data up front, but to tell the .NET
garbage collector that it can go ahead and collect this memory for another task if it needs to. If your
program needs the data at a later time, you can always reload the information from the file.

Using Weak References

The .NET Framework accomplishes this through the use of weak references. A weak reference is a
special type of reference to an object that tells the garbage collector “you can collect this object if
you want to,” and then gives to report on whether it has been collected or not.

Weak references come in handy for objects that are RAM-expensive but computationally easy to
create. It allows you to guarantee that you’ll have the object around when you need it, but you can
mark it as expendable when you don’t need it, for example, when the user is going to a different part
of the application.

The example project shows how to set up a weak reference. I invented a class that loads about one
million random integers into an array—truly useless, considering the Random class built into in
the .NET Framework, but you can pretend that the numbers are air pressure readings for the
example. Having a million integers in RAM is pretty expensive, so I decided that this object was a
good candidate for a weak reference, as shown in the following code:

Public Class Form1
 Inherits System.Windows.Forms.Form

 Private oMyNumbers As PreLoadedRandomNumberArray
 Private oWRef As WeakReference

 Public Sub New()
 MyBase.New

 Form1 = Me

 ‘This call is required by the Win Form Designer.
 InitializeComponent

 oMyNumbers = New PreLoadedRandomNumberArray()
 oWRef = New WeakReference(oMyNumbers)
 oMyNumbers = Nothing

 End Sub

This code shows the beginning of the form definition and the constructor. There is a form-level
variable for my memory-hogging class (the Pre- LoadedRandomNumberArray class), named
oMyNumbers. There is also a variable of type WeakReference that will refer to variable
oMyNumbers.

In the New procedure, the PreLoadedRandomNumberArray variable is instantiated. Then the weak
reference is instantiated; passing it the object I want to be set up as weak referenced. Finally, the
PreLoadedRandomNumberArray variable is set to Nothing. This step is important, as the garbage
collector would never target this variable for collection if it were declared as a variable on the
application’s main form, because that variable would never go out of scope.

Page 106 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

When the time comes in the program to use the oMyNumbers variable, the following code tests to
see if it is still around or if the garbage collector has claimed it.

‘re-point the form level variable to the weak reference target property
 oMyNumbers = CType(oWRef.Target, PreLoadedRandomNumberArray)

 ‘if nothing, then the GC collected this puppy. Re-create it.
 If oMyNumbers Is Nothing Then
 Console.WriteLine("object was collected, re-creating...")
 oMyNumbers = New PreLoadedRandomNumberArray()
 oWRef = New WeakReference(oMyNumbers)
 Else
 Console.WriteLine("object still here, generating random numbers")
 End If

As you can see, I reset the form level variable to the value of oWRef.Target. This is the holding
place for the weak reference. If the garbage collector has collected this variable, my form level
variable will have the value Nothing. This is my cue to re-create the object instance and to
reestablish the weak reference. If the variable is not Nothing, then the garbage collector has not taken
my memory-intensive class instance away yet, so I am free to use it. The code that actually uses the
random number class in the example project simply prints the next five values in the class.

Once I am done with the random number class, it is important to reset the value back to Nothing,
which removes the scope of the form level variable and signals the garbage collector that it can take
the variable if desired.

Controlling Garbage Collection

Writing a program to test weak references is a bit tricky because in normal cases the programmer has
no control over when and how garbage collection occurs. Garbage collection is related to things like
available RAM and the general state of the PC running the program.

In my example program, I simulated a program doing different types of things in the Do Some Stuff
button. When this button is clicked, the program will either load a large, empty array, or it will load a
button object (which has a relatively small memory requirement). To test the program, you should hit
this button repeatedly in a random fashion and then hit the Generate Numbers button, which uses the
oMyNumbers variable to print the next five random numbers it has generated (after re-creating it if
necessary). The program reports to the console if the object had to be regenerated because the
garbage collector had taken it away.

The last button explicitly performs a garbage collection, which should force the oMyNumbers
variable to be re-created the next time it is tested against the weak reference.

Weak references allow you to hog chunks of RAM for objects that are nice to have around but are
reasonably easy to re-create if they should happen to be collected by the garbage collector. You gain
the speed benefit of having the objects in RAM and the space benefit of allowing the .NET runtime
to claim that RAM if needed. Since all machines will behave differently, it might be a good idea to
add some logging or debugging code around the use of the weak references in your program. At
worst, the reference would have to be re-created every single time the object is needed, which would
be no different from using a local variable and creating it each time. At best, the object is taken away
by the garbage collector only a small percentage of the time, and you are saving valuable CPU cycles
by avoid that object’s re-creation time and time again. Either way, the log will help determine if the
weak reference is doing the job for you.

Databases

Page 107 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

39: Speed Reading: Using the DataReader

The DataReader code can be found in the folder prjDataReader.

The workload of the database programmer can be summed up in a few simple words: read the data,
display the data, edit the data, and write the data. The details under these broad tasks vary widely
from project to project, of course, depending on the type of application (1-tier, 2-tier, n-tier), the
structure of the data itself, the desired user interface, and many other factors. However, the
“read/edit/write” cycle of the typical database application remains pretty constant.

Almost all database applications need to rip through some set of data at several points in the
application. Some list-based control may need to be populated (a Listbox, Combobox, Listview,
Treeview, grid, and so on), or some complex business logic may need to be applied to a set of
records. The .NET Framework has a built-in construct for ripping through a group of records: the
SQLDataReader. This class is optimized to perform a once-only, high-speed traversal of a set of
data.

The following procedure uses an SQLDataReader to populate a Listview object with the employee
records from the ever-popular Northwind database:

 Private Sub cbDataReader_Click(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) Handles _
 cbDataReader.Click

 Dim SQL As String = "Select EmployeeId, "
 SQL = SQL & "LastName, FirstName, Title, "
 SQL = SQL & "BirthDate from Employees"
 Dim aDate As DateTime

 Dim oConn As New SqlConnection(CONNECTIONSTRING)
 Dim oCmd As New SqlCommand(SQL, oConn)
 Dim oRD As SqlDataReader
 Dim lvItem As ListViewItem

 Call lvEmps.Items.Clear()
 Try
 oConn.Open()
 oRD = oCmd.ExecuteReader(_
 CommandBehavior.CloseConnection)

 Do While (oRD.Read())
 lvItem = New ListViewItem(_
 oRD.Item("EmployeeId").ToString)

 lvItem.SubItems.Add(_
 oRD.Item("LastName").ToString)

 lvItem.SubItems.Add(_
 oRD.Item("FirstName").ToString)

 lvItem.SubItems.Add(_
 oRD.Item("Title").ToString)

 ‘need to format date field
 aDate = oRD.GetDateTime(_
 oRD.GetOrdinal("BirthDate"))

 lvItem.SubItems.Add(_
 aDate.ToShortDateString)

Page 108 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Call lvEmps.Items.Add(lvItem)
 Loop

 Finally
 oRD.Close()
 End Try

 End Sub

First, an SQLCommand object is instantiated using a simple SQL Select statement and a local
connection string (you may have to change the CONNECTION- STRING constant in the sample app
to point to an available Northwind sample database). An SQLDataReader class is instantiated by
passing it to the Execute method on the SQLCommand object. Once instantiated, the rip-through can
begin.

Traversing the SQLDataReader object is done much differently than you might be used to if you
have experience using ADO Recordset objects. You will not be using EOF or MoveNext methods.
Instead, the Read method is called, which returns a True if the read succeeds, or a False if you are at
the end of the data. The primary benefit of this new syntax is that you don’t need to explicitly issue a
MoveNext at the end of the loop to move on to the next record. I can’t count how many times I
forgot my MoveNext in the past and got myself stuck in an infinite loop. The Read method replaces
the need for a separate MoveNext and the end of file check performed by the EOF method.

If the Read method succeeds in the previous code, a ListItem variable is populated with fields from
the SQLDataReader, and this ListItem is added to the Listview. Note how the Item property is used
to retrieve the string fields from the SQLDataReader. When it comes time to retrieve the date value,
however, I chose a slightly different tack: I used the GetDateTime method to load the column
information directly into a date variable. This allowed me to easily format the date value to my
liking. The SQLDataReader has similar Get properties for all the base data types. Since the
GetDateTime method required the desired column position as an ordinal (the integer position of the
column in the DataReader), I had to call the GetOrdinal method on the BirthDate column.

The example program has a second procedure that uses an SQLDataReader to return some additional
data. Once the Listview is filled, if the user clicks one of the names, the address information for that
user is retrieved and placed in a label control. The code to perform this is as follows:

Private Sub LoadAddressInfoForEmp(ByVal nID As Integer)

 Dim SQL As String = "Select * from Employees"
 SQL = SQL & "where EmployeeID = @p"

 Dim oConn As New SqlConnection(CONNECTIONSTRING)
 Dim oCmd As New SqlCommand(SQL, oConn)
 Dim oParm As New SqlParameter("@p", SqlDbType.Int)
 Dim oRD As SqlDataReader

 oParm.Direction = Data.ParameterDirection.Input
 oParm.Value = nID
 Call oCmd.Parameters.Add(oParm)
 Try
 Call oConn.Open()
 oRD = oCmd.ExecuteReader(CommandBehavior.CloseConnection)
 If (oRD.Read()) Then

 Dim cAdd As String

 cAdd = oRD.Item("Address").ToString & _
 Environment.NewLine

Page 109 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 cAdd = cAdd & oRD.Item("City").ToString & _
 Environment.NewLine

 cAdd = cAdd & oRD.Item("Region").ToString & " "
 cAdd = cAdd & oRD.Item("PostalCode").ToString & " "
 cAdd = cAdd & oRD.Item("Country").ToString
 lbAddress.Text = cAdd

 End If
 Finally
 oRD.Close()
 End Try

End Sub

The Employee ID (the primary key on the Employee table) is passed in as the parameter to this
routine. That parameter is turned into an SQLParameter object instance and attached to the
SQLCommand object. Note how the SQL string for the command object contains a @p, which will
be replaced with the value of the parameter when the command is executed.

Once the SQLCommand is executed, an SQLDataReader is filled with the resultant records (or, in
this case, resultant single record). The Read method is issued, and, if successful, the employee
address information is constructed in a string variable (note the use of the Environment.Newline
character to add line breaks to the string). Finally, this address string is set to be the Text property of
the label control lbAddress. Once this work is complete, the SQLDataReader’s connection is closed
inside a Try…Finally block to guarantee its successful closure.

40: The Missing Link: The DataSet

The dataset code can be found in the folder prjDataSet.

The standard for today’s database programming model is the multi-tier, or n-tier, application. This
application is typically comprised of a database tier (like a SQL Server database with tables, views,
stored procedures, and so on), a presentation tier (a VB or ASP front end that presents the
information to the end user), and one or more “middle tiers,” which typically contain the business
rules required to act as a broker between the data and presentation tiers. For example, the application
may require a grid of inventory items to be displayed on the screen, with high-selling items displayed
in green and poor-selling items displayed in red (perhaps the colors are even user-configurable). This
item coloring information is a type of business rule and would often live in the middle tier.

The ADO.NET programming model has been modified extensively from prior database models to
more easily allow developers to adhere to this multi-tier architectural approach. A DataSet class is a
key component in this new architecture. The DataSet is best thought of as a disconnected
representation of data. Like a database, it can be constructed in a relational, hierarchical fashion for
easy representation of master-detail relationships between information, like customer/order
information. However, the DataSet normally runs in a disconnected mode. A typical application
cycle might consist of the following:

Note The SQLDataReader is part of the System.Data.SQLClient namespace, which contains classes
specifically for connecting to Microsoft SQL Server. If you are connecting to another database,
you’ll want to use the classes in the System .Data.OLEDB namespace, which use the OLE DB
layer to connect to the back-end database. The classes in this namespace are functionally
equivalent, but they have different names. For example, the equivalent of the SQLDataReader
in the System.Data.OLEDB namespace is OleDBDataReader. You could use the
System.Data.OleDB for SQL Server database access as well, but you will probably achieve
better performance using the namespace specifically constructed for this database engine.

Page 110 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

1. DataSet object instances are created and filled from a database connection. DataSet then
disconnects from the database.

2. DataSet is used by the presentation layer to display data to end-user.

3. Changes made to the data by the end user are done on the data in the DataSet object (not on the
database).

4. Changes are validated using business rules.

5. Once validated, all changes are written from the DataSet back to the database.

Note that the DataSet is only connected to the data tier at the beginning and the end of this cycle (this
is why it is often referred to as running in a disconnected state).

Because the DataSet runs most of the time in a disconnected state, it must be supplied detailed
information as to the structure of the data contained within it. The following code creates a DataSet
containing two tables and sets up the relationship between those tables:

Dim aConn As New SqlConnection(CONNECTIONSTRING)

dscProducts = New _
SqlDataAdapter("Select * from Products", aConn)

dscCategories = New _
SqlDataAdapter("Select * from Categories", aConn)

aDataset = New DataSet()

dscProducts.Fill(aDataset, "Products")
dscCategories.Fill(aDataset, "Categories")

aDataset.Relations.Add("rProdCat", _
aDataset.Tables("Categories").Columns("CategoryID"), _
aDataset.Tables("Products").Columns("CategoryID"))

As just shown, DataSets can be populated using SQLDataAdapter objects. These objects allow SQL
Statements into your database layer to quickly load sub-objects inside your DataSet known as
DataTables. In the previous code, the SQLDataAdapter that loads the result of Select * From
Products is used to fill a DataTable named Products. A DataTable named Categories is similarly
filled. The last line in the code creates a DataRelation between the two DataTables. I now have a
DataSet that I can report out of, add and remove rows, and so forth.

Let’s stop for a minute and consider what I’ve done. At first glance, doesn’t it seem like I’m doing a
great deal of extra work? My goal is to write a database application. As the sole developer on many
such applications, I usually start by defining all the tables I’ll need in SQL Server, then I write some
views and stored procedures to easily read and write the data, and finally, I start developing the
presentation layer (a VB app or web-based Active Server Pages) to start working on the data. This is
the classic 2-tier design. Now, by introducing the DataSet object, it seems I have to redefine all of
my tables and relationships again to correctly set up the DataSet. What’s the benefit of this?

There are a few reasons this seemingly extra setup work becomes beneficial in the long run. The first
involves the connection between the tiers. If you’re writing an application that’s designed to move
data over a standard dial-up Internet connection, for example, then the connection bandwidth quickly
becomes an issue as the amount of data increases. Having this middle tier (depending on exactly
“where” the tier lives) of DataSet objects can immensely ease bandwidth requirements, as adds and

Page 111 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

changes to data can happen locally as opposed to constantly reopening the database connection over
the wire to read and write changes.

Another aspect of the DataSet object is that all of its communication is handled "under the hood" via
XML, a text-based method of transferring data that can occur entirely over an HTTP connection.
This means that you can write sophisticated data-processing applications over a standard Internet
connection without doing any low-level, custom TCP/IP protocol coding. The short DataSet loading
code above could be run over a standard HTTP connection, where the SQL Server is on one end of
the connection and the DataSet is on the other end, and the "loading" of the data is all done via XML.

The third reason to use the DataSet object is a simple division of labor: as your business grows, your
applications become more complex, and your development staff grows, having a multi-tier
application architecture allows you to assign developers to areas where they might be more skilled.
You can hire or train "business expert" developers who can code in the middle tier (using DataSets
and writing business rules), without having to learn Transact-SQL to write stored procedures.
Likewise, you can hire a dba to administer and write all the SQL Server code, without her having to
know all the business logic needed to display or calculate all the data. Finally, you can have ASP or
VB-interface experts that can work on the presentation layer.

OK, now that we’ve set up a simple DataSet and justified its existence, let’s see how it was used in
the sample project to perform a number of actions.

Filling a Treeview

The following code, taken and modified only slightly from the example program (to remove some
bits that were extraneous to the task), loads a Treeview control with the categories and products from
the DataSet I just built.

Sub FillTreeView()

 Dim Category As DataRow
 Dim Product As DataRow
 Dim oRoot As TreeNode
 Dim oParent As TreeNode
 Dim cCategory As String
 tvStuff.BeginUpdate()
 tvStuff.Nodes.Clear()
 Try
 For Each Category In _
 aDataset.Tables("Categories").Rows

 cCategory = Category.Item("CategoryName").ToString()
 oParent = oRoot.Nodes.Add(cCategory)
 For Each Product In aDataset.Tables("Products").Rows
 oParent.Nodes.Add(_
 Product.Item("ProductName").ToString())
 Next
 Next

 oRoot.ExpandAll()
 Finally
 tvStuff.EndUpdate()
 tvStuff.SelectedNode = oRoot
 End Try
End Sub

One cool feature of the DataTable objects inside a DataSet is that you can use the For Each...Next
construct to iterate through all the rows in the table. Each iteration of the For Each loop returns a

Page 112 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

DataRow object, which can then be used to retrieve field values by using the Item property. Since
this is a hierarchical relationship, two For Each loops are coded, one inside the other. The outer loop
creates a category node named oParent, and the inner loop creates a number of product nodes off the
oParent node. The Finally block makes sure that the Treeview drawing is turned back on and that the
currently selected node is the topmost root node.

Adding and Removing Rows

Adding a row to a DataTable in a DataSet is a three-step process. First, you call the NewRow method
off a DataTable object to create a DataRow object. Then, you fill the Item properties on the new
DataRow object with the desired values. Finally, you issue the Rows.Add method on the DataTable.
All three steps are shown in the following code:

 aProdRow = aDataset.Tables("Products").NewRow
 aProdRow.Item("ProductID") = PRODID
 aProdRow.Item("ProductName") = "BudMeister Stout Ale"
 aProdRow.Item("CategoryID") = 1
 aDataset.Tables("Products").Rows.Add(aProdRow)

If you can find the row you want to delete and point to it using a DataRow object, you can simply
call the Delete method on the object.

 aProdRow.Delete()

Applying Changes to the Database

Once the user has performed all of the desired in-memory changes to the DataSet, the back-end
database needs to get updated to reflect those changes. The SQLDataAdapter contains three
properties to assist in sending the changes back to the database: the InsertCommand,
UpdateCommand, and DeleteCommand. These three properties are of type SQLCommand. They can
contain anything from simple SQL statements to complex stored procedures. The following example
shows how a database insert is configured on a SQLDataAdapter and how an actual insert is sent to
the Northwind database.

 Protected Sub cbApply_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles cbApply.Click

 Dim aConn As New SqlConnection(CONNECTIONSTRING)
 Dim SQL As String = "Insert into Products " & _
 (ProductName, "CategoryID) Values (@n, @ID)"
 Dim aParam As SqlParameter
 Dim aProdRow As DataRow

 dscProducts.InsertCommand = New SqlCommand(SQL, aConn)

 aParam = dscProducts.InsertCommand.Parameters.Add(New SqlParameter("@n", SqlDbType.VarChar, 50))
 With aParam
 .SourceColumn = "ProductName"
 .SourceVersion = DataRowVersion.Current
 End With

 aParam = dscProducts.InsertCommand.Parameters.Add(New _
 SqlParameter("@ID", SqlDbType.Int))
 With aParam
 .SourceColumn = "CategoryID"
 .SourceVersion = DataRowVersion.Current
 End With

Page 113 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 ‘add a row
 aProdRow = aDataset.Tables("Products").NewRow
 aProdRow.Item("ProductName") = "BudMeister Stout Ale"
 aProdRow.Item("CategoryID") = 1
 aDataset.Tables("Products").Rows.Add(aProdRow)

 ‘update the database
 Try
 dscProducts.Update(aDataset, "Products")
 Catch eEx As Exception
 Call MsgBox(eEx.Message)
 End Try

 Call FillTreeView()
 sbStat.Text = "row permanently added to database"

 End Sub

This example maps the InsertCommand object on the DataAdapter to a simple SQL Insert statement.
Your database update techniques might be more complicated, for example, they might call a stored
procedure to perform their inserts, updates, or deletes. If this is the case, you can specify these
custom update methods using the SQLDataCommand’s InsertCommand, UpdateCommand, and
DeleteCommand properties to specify the stored procedure name.

With dscProducts
.InsertCommand.CommandText = "pInsertNewProduct"
.InsertCommand.CommandType = CommandType.StoredProcedure
.UpdateCommand.CommandText = "pUpdateProduct"
.UpdateCommand.CommandType = CommandType.StoredProcedure
.DeleteCommand.CommandText = "pDeleteProduct"
.DeleteCommand.CommandType = CommandType.StoredProcedure
End With

Looking at this example, you can begin to imagine now how the definition of a DataSet could vary
greatly from the physical layout of your database, if you desired. You could create an
SQLDataAdapter object with custom SelectCommand, InsertCommand, UpdateCommand, and
DeleteCommand properties, all of which could actually be reading and writing data in many different
tables. For the purposes of the presentation tier, however, this complexity can be removed and
"flattened out" into a single, easier to understand, non-normalized view of the same data.

Filtering, Sorting, and Searching with the DataView

Once your DataSet is constructed and filled with data, you will probably have to view the data in
many different ways. For example, on one form you may need to show all the products less than a
given price, in product name order. On another form, you might need to show all the products in a
given category, in price order. The DataView object can help you create a custom view on a
DataTable. The DataView allows you to filter and sort the data in a DataTable. Furthermore, the
DataView can then be bound to a grid control for a quick listing of the desired data. The following
code constructs a DataView off the DataSet’s Products DataTable, filters the products to show only
those having a CategoryID of 2, and sorts the results on the ProductName field. Finally, the
DataView is bound to the grid control named dgStuff.

 aDataView = New DataView(aDataset.Tables("Products"))
 aDataView.RowFilter = "CategoryID = 2"
 aDataView.Sort = "ProductName"

 dgStuff.DataSource = aDataview

Page 114 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The DataView can also be used to search for a record. The following code searches for a row in the
DataView and reports on the results:

 Const FINDSTRING As String = "Gula Malacca"
 Dim iRow As Integer

 aDataView = New DataView(aDataset.Tables("Products"))
 aDataView.Sort = "ProductName"

 dgStuff.DataSource = aDataview

 Try
 iRow = aDataView.Find(FINDSTRING)
 If iRow = -1 Then
 sbStat.Text = FINDSTRING & " not found "
 Else
 sbStat.Text = FINDSTRING & " found at row " & iRow + 1
 dgStuff.NavigateTo(iRow, "")
 End If
 Catch
 ‘find failed
 End Try

The DataSet object is one of the core components of the .NET Framework database architecture. It is
specifically designed to aid the developer in writing middle-tier components that pass data between
the presentation and database tier, without the need for either a repeated or persistent database
connection. The DataSet object is designed to send data to and from both layers in more of a batch
update mode, taking advantage of XML to do so.

41: Tackling Typed DataSets

The typed dataset code can be found in the folder prjTypedDataset.

The DataSet concept in .NET Framework is really powerful: it provides for a ready-made,
disconnected container for hierarchical data. This is just what the doctor ordered in terms of
constructing the middle tier(s) in an n-tier architecture.

However, the DataSets that we’ve used to this point are not the easiest to use. For one thing, as
we’ve already discussed, they are a bit of a pain to set up. One has to create SqlDataAdapter objects,
use them to fill the DataSet, and then add DataRelation objects manually. This is almost like setting
up the database a second time (once in SQL Server and once again in VB code).

Secondly, the syntax required to use the DataSet is a bit cumbersome. Consider the following code
fragment, taken from "Filling a Treeview," which iterates the rows in one table in a DataSet and
adds the ProductName field as nodes in a Treeview:

For Each Product In aDataset.Tables("Products").Rows
 oParent.Nodes.Add(Product.Item("ProductName").ToString())
Next

Product.Item("ProductName").ToString? Cumbersome code like this kind of makes me wish for the
days of ADO, when I could write something like Product!ProductName.

Fortunately for everyone’s sanity, there is a new concept in the .NET Framework that helps to ease
the burden of both these problems. This concept is the typed dataset. A typed DataSet is a class that
descends from a normal DataSet, in which all of the tables, columns, and relations are defined as
properties of the class.

Page 115 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Why Use a Typed DataSet?

There are several benefits to using a typed DataSet. The main benefit is that it dispenses with
programming in the cumbersome object model of the standard DataSet. Instead of writing a line of
code that looks like this:

For Each Product In aDataset.Tables("Products").Rows
 oParent.Nodes.Add(Product.Item("ProductName").ToString())
Next

you instead write the much more readable:

For Each aPRow In aCRow.ProductsByCategoriesCategories
 oParent.Node.Add(aPRow.ProductName)
Next

Not only is this more readable (once you get used to it), but you get the benefit of Intellisense
helping you write the code. The benefit of this might be easier to show you than to describe. The
following illustration shows Intellisense suggesting the column name as I work with my typed
DataSet.

The second benefit to using typed DataSets is that they are more easily set up than standard DataSets.
At first, you might think the exact opposite, that setting up a descendant class with custom properties
linked to all the tables, relations, rows, and columns of a DataSet might take a long time. However,
Visual Studio provides you with an automatic means of creating typed DataSets from XSL Schema.
This streamlines the entire process into a few simple steps.

Creating a Typed DataSet

Creating a typed DataSet is pretty straightforward, but the documentation doesn’t give a good step-
by-step example, so you might have trouble figuring out the exact sequence of steps needed to create
one. Let’s go through that sequence here.

1. Create a new project. The project type doesn’t matter. The example project is a Winforms
project.

2. Create a data connection to a desired database. From the Server Explorer on the left side of
the screen, make a new data connection to the proper SQL Server or similar database, as
shown here:

Page 116 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

3. Add a new XSD schema to the project. From the Solution Explorer, right-click the project

name, select Add from the menu, select Add New Item, and then select XSD Schema. Rename
the filename as desired. This filename will become the name of the class of the typed DataSet,
so choose something memorable.

4. Create a schema . Select the tables from the database connection in Server Explorer by
dragging them onto the Schema design area. Connect the tables by creating relations. See the
Visual Studio.NET help file for details on completing the schema under topic. Once your
schema is complete, right-click the Schema design area and make sure the Generate Dataset
menu item is checked. When all is complete, make sure to save the schema.

5. Add a generated .vb file to the project. Saving the XSD schema will create a .VB file in the
project folder. This file contains the definition for the typed DataSet that corresponds to the
XSD schema. This file is automatically part of the current project, as long as the XSD file
remains in the project.

Using the Typed DataSet

Once the typed DataSet is defined and part of your project, you can use it the way you use any other
DataSet and get the same benefits. The first thing you need to do is populate the DataSet by bringing
the data out of the database. This is done in the same way that any other DataSet is populated, by
using code similar to the following:

 Private Sub FillDataset()

 Dim dscP As New SqlDataAdapter("Select * from _
 Products", CONNECTIONSTRING)
 Dim dscC As New SqlDataAdapter("Select * _
 from Categories", CONNECTIONSTRING)

 dsPWC = New ProductsWithCat()

 dscC.Fill(dsPWC, "Categories")
 dscP.Fill(dsPWC, "Products")

 End Sub

In this code, dsPWC is the form-level instance variable of your typed DataSet, named
ProductsWithCat. (Recall that the class name of the typed DataSet is the same as the name you gave
to the XSD schema you created in order to define this DataSet.) The DataSet variable is filled with
SQLDataAdapter instances, just as a nontyped DataSet would be.

Once the DataSet it filled in the example program, the following code is run to bind the Categories
DataTable to a Combobox named cbCategories:

Page 117 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

cbCategories.DisplayMember = "CategoryName"
cbCategories.ValueMember = "CategoryID"
cbCategories.DataSource = dsPWC.Categories

cbCategories.SelectedIndex = 0

The binding code defines the member (field name) of the DataTable to display and the member to
use as the ValueMember, which is often used as the primary key to which the DisplayMember
corresponds. Then the Combobox data source is bound to the DataTable. Because of the typed nature
of your DataSet, you refer to the table by its name, instead of having to refer to it as dwPWC.Tables
("Categories").

When the user changes an item in the Combobox, the following code runs to fill a Listbox with all of
the products in the selected category:

 Private Sub cbCategories_SelectedIndexChanged(ByVal _
 sender As System.Object, ByVal e As System.EventArgs) _
 Handles cbCategories.SelectedIndexChanged

 Dim iID As Integer
 Dim aDV As DataView

 iID = CInt(cbCategories.SelectedValue)

 ‘create a filtered dataview on the dataset
 aDV = New DataView(dsPWC.Products)
 aDV.RowFilter = "CategoryID = " & iID
 aDV.Sort = "ProductName"

 ‘bind the dataview to the listbox
 lbProducts.DisplayMember = "ProductName"
 lbProducts.ValueMember = "ProductID"
 lbProducts.DataSource = aDV

 End Sub

To get only products within the currently selected category, a DataView is created and a RowFilter is
specified. The Listbox is then bound to the DataView. Note that once again you were able to refer to
a table as if it were a property in the statement dsPWC.Products.

This example only scratches the surface in demonstrating how useful the typed DataSet will be.
Remember that all of the table names, relations, constraints, and column names correspond to
properties in the DataSet. This will aid in the coding of all of the desired I/O into your data source,
including adding, editing, and deleting rows and performing data validation. And, because of the
disconnected nature of the DataSet, you will be able to perform all of this validation locally and write
all of the data changes back to the database in batch.

42: A Legally Binding Form

The data binding code can be found in the folder prjBindingManager.

I don’t know many VB programmers who like good old-fashioned data binding, but that might
change for a number of reasons in VB.NET. One reason binding wasn’t the most popular approach
was that it broke the n-tier model. By binding a data control to UI elements like Textboxes and
Listboxes, you’re going right from the data tier to the presentation tier, bypassing any chance to use a
middle tier in between.

Page 118 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

As you’ve already seen, the DataSet is the .NET Framework solution for creating middle-tier
business objects. As such, you’d hope that it would support decent data binding—and your hopes
would be answered. The data binding capabilities in the .NET Framework are very well defined and
powerful.

Data binding on a VB.NET form is handled via a class called a Binding- Context. There is an
instance of this class on each form in your project. Within the BindingContext class, there will be
one or more Binding- ManagerBase classes. There will be one BindingManagerBase class for every
data source on the form. The following code points a local Binding- ManagerBase variable named
aBase to a DataTable in an already-defined DataSet object:

 Dim aTable As DataTable
 aTable = aDataset.Tables("Products")

 aBase = Me.BindingContext(aTable)
 aBase.Position = 0

AddHandler aBase.PositionChanged, _
AddressOf aBase_PositionChanged

AddHandler aBase.CurrentChanged, _
AddressOf aBase_ItemChanged

Once you set up your data source and locate the corresponding BindingManagerBase class, you
control the scrolling through your DataSet via the Position property on the BindingManagerBase.
Position 0 is the first row in the data source, position Count - 1 is the last row (Count is also a
property on the BindingManagerBase). This code attaches some code to the Position- Changed and
the CurrentChanged events on the BindingManagerBase as well. The former is an event that fires
every time the position is changed in the BindingManagerBase, which is good for updating a status
or writing to a log, for example. The CurrentChanged event fires when data in the data source is
changed. This could be a useful place to put data validation routines.

Binding Controls

Binding basic UI controls to the data source is done with the Bindings collection built into each
control. An example for binding a text box to a column in a DataTable is shown here:

tbName.Bindings.Add("Text", aTable, "ProductName")

The second parameter is the data source, which was defined in the earlier sample code to be a
DataTable off data source variable aDataSet. The third parameter is the column name on the dataset
to which the Textbox is being bound. The first parameter raised my eyebrows a bit when I saw it for
the first time. This parameter specifies the name of the property on the Textbox to which the data is
bound. One would expect that most Textboxes would bind their text property to the desired data
element. But the .NET Framework binding capabilities allow for much more. For example, we can
bind the Enabled or the Visible properties to Boolean elements in the data source. How about
binding color properties? The possibilities really begin to present themselves once you start thinking
about them.

As an example of this binding functionality, I decided that I wanted to link some Textboxes to a
DataSet. I chose the Northwind Products table as my sample table to bind the controls. In scanning
this table, I noticed an interesting column: the Discontinued column. My thought was that I could
create an edit form for the common fields in this table, and I could then disable the controls for items
that are discontinued by binding the Enabled property to this field.

Below was my first pass at the code that binds a DataSet containing the Northwind Products table to

Page 119 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

five Textbox controls and a check box:

Private Sub BindTheControls()

 Dim aTable As DataTable
 aTable = aDataset.Tables("Products")
 tbName.DataBindings.Add("Text", aTable, "ProductName")
 tbPrice.DataBindings.Add("Text", aTable, "UnitPrice")
 tbOnOrder.DataBindings.Add("Text", aTable, "UnitsOnOrder")
 tbReorder.DataBindings.Add("Text", aTable, "ReorderLevel")
 tbOnhand.DataBindings.Add("Text", aTable, "UnitsInStock")

 cbDis.DataBindings.Add("Checked", aTable, "Discontinued")
 tbName.DataBindings.Add("Enabled", aTable, "Discontinued")
 tbPrice.DataBindings.Add("Enabled", aTable, "Discontinued")
 tbOnOrder.DataBindings.Add("Enabled", aTable, _ "Discontinued")
 tbReorder.DataBindings.Add("Enabled", aTable, _ "Discontinued")
 tbOnhand.DataBindings.Add("Enabled", aTable, "Discontinued")
 aBase = Me.BindingContext(aTable)
 aBase.Position = 0

 AddHandler aBase.PositionChanged, AddressOf aBase_PositionChanged
 AddHandler aBase.CurrentChanged, AddressOf aBase_ItemChanged
 Call aBase_PositionChanged(aBase, Nothing)
End Sub

Note how I bound the same field, Discontinued, to the Checked property on a check box named
cbDis, as well as the Enabled property on all five of my Textbox controls. Pure genius (or so I
thought)!

One problem, though: my Enabled logic works in reverse. When I ran the project, the Textboxes
were enabled for the discontinued items and disabled for the live items. I wanted things the other
way around. What I really wanted to do was somehow bind the Enabled properties of the Textboxes
to "Not Discontinued", or something similar. A few attempts at this type of logic didn’t yield good
results, though. Then, after sleeping on the problem for a day or so, I came up with the answer: I
could just create a new, calculated column in my dataset that represents the negative of Discontinued
and bind it to the calculated column. Adding my new calculated column took about 30 seconds:

Dim SQL As String

SQL = "Select *,"
SQL = SQL & "1-Discontinued as NotDiscontinued "
SQL = SQL & "from Products "

dscProducts = New SqlDataAdapter(SQL, CONNECTIONSTRING)
aDataset = New DataSet()
dscProducts.Fill(aDataset, "Products")

My extra field is calculated as the opposite of Discontinued (the 1–boolean = not Boolean is an old
trick I recalled from my PDS Basic 6.1 days). I could just as easily hide this detail in a view in the
database, if I desired. What I have now is the existing Discontinued column and the new column,
named NotDiscontinued. It’s a trivial task to bind the Enabled property to this new column, as shown
here:

cbDis.Bindings.Add("Checked", aTable, "Discontinued")
tbName.Bindings.Add("Enabled", aTable, "NotDiscontinued")
tbPrice.Bindings.Add("Enabled", aTable, "NotDiscontinued")
tbOnOrder.Bindings.Add("Enabled", aTable, "NotDiscontinued")
tbReOrder.Bindings.Add("Enabled", aTable, "NotDiscontinued")
tbOnhand.Bindings.Add("Enabled", aTable, "NotDiscontinued")

Page 120 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Note that the check box Checked property is still set to the original column, but the Enabled property
is set to my new, calculated column.

This technique of creating new calculated data in DataSets for the purpose of data binding seems
simple enough in concept, but there’s a very important underlying design tactic going on here. In
terms of the n-tier design strategy, the new binding abilities of .NET Framework allow us to move
even more business logic out of the presentation tier (the VB program or web page used by the end
user) and into the middle tiers (usually COM components or VB classes running either under MTS
on a server or locally on the end user machine). The whole purpose of introducing the middle tiers is
to abstract business logic out of the presentation and data tiers. The act of disabling controls based on
data values or changing font colors to red when a number is negative are examples of business logic
that could never before be designed to live in the middle tier, because VB wouldn’t allow binding of
Color or Enabled properties to data.

43: Still More Binding

The binding code can be found in the folder prjBindingToACollection.

You’ve seen how binding works on the database-like DataSet. This construct makes it easy to load
information out of a database and into a DataSet (residing as some form of middle tier object
perhaps) and use the DataSet to bind to presentation tier controls. Binding is not limited to DataSets,
however. You can bind your own classes and custom collections to UI controls. This is useful
because not all applications are database applications, after all. You may have a custom storage
solution for the data your application is manipulating, and you simply don’t need the overhead of a
database to store that data. Because you can bind just about any class to a UI element, however, you
don’t have to give up the simplicity of data binding just because you’re not using a database.

The example program contains a class named PolygonDescriptor, which stores a polygon name
along with the number of sides:

Public Class PolygonDescriptor

 Private FNumSides As Integer
 Private FName As String

 Sub new(ByVal Name As String, ByVal NumSides As Integer)
 MyBase.New()
 FName = Name
 FNumSides = NumSides
 End Sub

 Property Name() As String
 Get
 Return FName
 End Get
 Set
 FName = Value
 End Set
 End Property

 Property NumSides() As Integer
 Get
 Return FNumSides
 End Get
 Set
 FNumsides = Value
 End Set
 End Property

Page 121 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

End Class

To hold a group of PolygonDescriptor objects, I created a typed collection named (appropriately
enough) the PolygonDescriptor collection. This special collection allows only the intended type to be
added into it and removes the need for typecasting when retrieving an object from it:

Public Class PolygonDescriptorCollection
 Inherits CollectionBase

 Public Sub Add(ByVal P As PolygonDescriptor)
 MyBase.InnerList.Add(P)
 End Sub

 Function Remove(ByVal P As PolygonDescriptor) As Integer

 Dim iCtr As Integer = MyBase.InnerList.IndexOf(P)

 If iCtr > 0 Then
 MyBase.InnerList.Remove(P)
 Return iCtr
 End If

 End Function

Function Item(ByVal i As Integer) As PolygonDescriptor
 Return CType(MyBase.InnerList.Item(i), _
 PolygonDescriptor)
 End Function

End Class

Through the magic of VB.NET binding, I can now bind this collection class to a Listbox, which will
create a row in the Listbox for every element in the collection, and show the desired field as the
entries in the Listbox. The following code populates an instance of the PolygonDescriptorCollection
and then performs the binding:

 Dim cPolygons As New PolygonDescriptorCollection()

 cPolygons.Add(New PolygonDescriptor("Triangle", 3))
 cPolygons.Add(New PolygonDescriptor("Rectangle", 4))
 cPolygons.Add(New PolygonDescriptor("Square", 4))
 cPolygons.Add(New PolygonDescriptor("Pentagon", 5))
 cPolygons.Add(New PolygonDescriptor("Hexagon", 6))
 cPolygons.Add(New PolygonDescriptor("Octagon", 8))
 cPolygons.Add(New PolygonDescriptor("Dodecahedron", 12))
 cPolygons.Add(New PolygonDescriptor("Icosahedron", 20))

 Try
 lbShapes.DataSource = cPolygons
 lbShapes.DisplayMember = "Name"
 Catch oEX As Exception
 Console.WriteLine(oEX.ToString)
 End Try

The code that performs the binding step is two simple lines. The first sets the Listbox DataSource
property to the collection instance, and the second line tells the Listbox which property of the
PolygonDescriptor to display. You can see from the following illustration that once you’ve set it up
in this way, the Listbox is filled with the desired elements.

Page 122 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Clicking an item in the Listbox returns the PolygonDescriptor object that corresponds to this row.
This makes it really easy to display further information about the selected object. The following code
resolves the selected item back into a PolygonDescriptor and then displays the number of sides for
that polygon in a label control:

 Private Sub lbShapes_SelectedIndexChanged(ByVal _
 sender As System.Object, ByVal e As System.EventArgs) _
 Handles lbShapes.SelectedIndexChanged

 Dim oPD As PolygonDescriptor

 oPD = CType(lbShapes.SelectedItem, PolygonDescriptor)
 lbSides.Text = "Sides: " & oPD.NumSides

 End Sub

You can see that data binding to collections gives you a powerful alternative to using a database for
all your data storage. Smaller apps might require a more simplistic data storage solution, but you
don’t have to give up binding to your controls just because you’ve decided against a full-blown SQL
Server application.

44: Complete the (Database) Transaction

The database transaction code can be found in the folder prjDatabaseTransactions.

Database transactions are not new—I’m sure many of you out there experienced in writing database
applications have used transactions at one time or another. With some of the new language constructs
built into Visual Basic.NET, however, you might find database transactional code bit more “natural”
to implement. Specifically, I’m talking about the vastly improved exception handling in VB.NET.
Database transactions fit in perfectly with the concept of structured exception handling. Here is some
pseudocode for running multiple database statements in a transaction:

Try
 Open Connection
 Try
 Start Transaction
 Run SQL Statement(s)
 Commit Transaction

Page 123 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Catch
 Roll Back Transaction
 Finally
 Close Connection
 End Try
Catch
 Report Error
End

Transactions and exceptions look like they were made for each other, don’t they? In the preceding
code, I open a connection inside its own exception block, reporting any errors it might come across
(the database is unavailable, bad login credentials, and so on). Inside a second Try block, I start a
transaction, run a bunch of SQL Statements, and then commit the transaction at the end. If any errors
occur during the SQL statements (trying to insert a duplicate key, for example), the entire transaction
is rolled back. The connection is closed inside a Finally block, which guarantees that the connection
closes regardless of whether the database actions succeed or fail.

Pseudocode is good for getting a general idea; now let’s look at some code that does some real work.

Private Sub cbEnter_Click_1(ByVal sender As _
System.Object, ByVal e As _
System.EventArgs) Handles cbEnter.Click

 Dim SQL As String
 Dim aConn As SqlConnection = New _
 SqlConnection(CONNECTIONSTRING)

 Dim aCmd As SqlCommand = New SqlCommand(SQL, aConn)
 Dim aTrans As SqlTransaction
 Dim o As Object
 Dim nID As Integer

 tbError.Text = ""
 lbResults.Items.Clear()

 Try

 Call LogEntry("open connection")
 aConn.Open()

 Try

 Call LogEntry("start a transaction")
 aTrans = _
 aConn.BeginTransaction(IsolationLevel.ReadCommitted)
 Call LogLastEntrySuccess(True)

 Call LogEntry("run the order header insert")
 SQL = "Insert into Orders "
 SQL = SQL & "(CustomerID,EmployeeId,"
 SQL = SQL & "OrderDate,RequiredDate,"
 SQL = SQL & "ShipVia,Freight,ShipName,"
 SQL = SQL & "ShipAddress,ShipCity,ShipPostalCode,"
 SQL = SQL & "ShipCountry "
 SQL = SQL & ") VALUES ("
 SQL = SQL & Quoted("SUPRD") & ","
 SQL = SQL & "4,"
 SQL = SQL & "getdate(),"
 SQL = SQL & Quoted("10/1/2002") & ","
 SQL = SQL & "1,"
 SQL = SQL & "7.00,"
 SQL = SQL & Quoted("Mr. Big") & ","

Page 124 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 SQL = SQL & Quoted("123 Anytown Lane") & ","
 SQL = SQL & Quoted("Cleveburg") & ","
 SQL = SQL & Quoted("55112") & ","
 SQL = SQL & Quoted("USA") & ");"
 SQL = SQL & "select @@identity"

 aCmd.Transaction = aTrans
 aCmd.CommandText = SQL
 nID = CInt(aCmd.ExecuteScalar())
 Call LogLastEntrySuccess(True)

 Call LogEntry("enter an line item on the order")

 SQL = "Insert into [Order Details] "
 SQL = SQL & "(OrderID, ProductID, UnitPrice,"
 SQL = SQL & "Quantity, Discount"
 SQL = SQL & ") VALUES ("
 SQL = SQL & nID & ","
 SQL = SQL & "77,"
 SQL = SQL & "10.40,"
 SQL = SQL & "1,"
 SQL = SQL & "0)"
 aCmd.CommandText = SQL
 aCmd.ExecuteNonQuery()
 Call LogLastEntrySuccess(True)

 If cbRollback.Checked Then
 Call LogEntry("enter a bogus line item")
 SQL = "Insert into [Order Details] "
 SQL = SQL & "(OrderID, ProductID, UnitPrice,"
 SQL = SQL & "Quantity, Discount"
 SQL = SQL & ") VALUES ("
 SQL = SQL & nID & ","
 ‘invalid product number
 SQL = SQL & "399,"
 SQL = SQL & "99.95,"
 SQL = SQL & "1,"
 SQL = SQL & "0)"
 aCmd.CommandText = SQL
 aCmd.ExecuteNonQuery()
 Call LogLastEntrySuccess(True)
 End If

 Call LogEntry("committing transaction")
 aTrans.Commit()
 Call LogLastEntrySuccess(True)
 Call LogEntry("Order " & nID & " written to database")

 Catch eEx As Exception
 Call LogLastEntrySuccess(False)
 aTrans.Rollback()
 tbError.Text = eEx.ToString()
 Finally
 aConn.Close()
 End Try

 Catch eEx As Exception
 Call LogLastEntrySuccess(False)
 tbError.Text = eEx.ToString()
 End Try

 End Sub

The structure of this procedure is identical to the pseudocode shown earlier. The database code is

Page 125 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

attempting to enter an order into the Northwind database. A record is entered into the Orders table,
and two items are entered into the Order Details table. The second item has a bad product ID, which
causes a constraint error against the Products table. Because we have structured all of this code
inside a database transaction, all of the database inserts are rolled back once this error is encountered.
The project reports the error as seen in the following illustration:

A note about coding style. I do a great deal of database programming and find myself writing a ton
of SQL statements inside my VB code (probably way more than I should, actually—shouldn’t I be
using stored procedures or something?). I find it difficult to build SQL statements in VB strings
because they are often very long, and one is often embedding quote characters inside the double
quotes required to set up the VB strings. And these SQL-building statements are often next to
impossible to read by other programmers. To aid in this task, I’ve developed a few conventions to
make the SQL building statements as easy to read as possible. Some of the conventions in the
following list are shown in the previous statements.

Use a consistent naming convention. I always build my SQL statements in a variable named SQL.
It’s easy to read, easy to understand, and consistent from project to project. I’ve often been tempted
to declare SQL as a project global variable, but to this point I’ve refrained and declared it locally
everywhere it’s needed.

Don’t use the line continuation character. Some of my SQL statements have gotten so long that I
need to break them into multiple statements (you can only have so many line continuation statements
before the VB IDE barks at you). Rather than doing this, however, I build my SQL with lots of
single-line statements, starting all but the first with SQL = SQL & <new stuff>.

Don’t embed single quotes. I find it really hard to read a statement like this:

SQL = "Insert into Tbl VALUES (‘" & _
cVal1 & "’,’" & cVal2 & "’)"

Huh? I call this delimiter hell. The single and double quotes alongside the string concatenating
ampersands and parentheses make my head spin. I can’t even be sure I built a valid SQL string there
without actually running it. I find it much more readable to use a function named Quoted whenever I
need to embed a quoted variable inside my SQL statements. The previous statement would then be
converted to something like this:

SQL = "Insert into Tbl VALUES ("
SQL = SQL & Quoted(cVal1) & ","
SQL = SQL & Quoted(cVal2) & ")"

The function Quoted is simply this:

Private Function Quoted(ByVal s As String) As String
 Return "‘" & s & "‘"

Page 126 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

End Function

You can build similar helper functions for double quotes, brackets, braces, and so on.

I realize this is all a matter of personal style, but getting your database building statements correct is
critical, and it takes a good deal of debugging time. Having easy-to-read code in these parts of the
application can save you (and your developer peers) headaches in the future.

45: Legal (Stored) Procedures

The stored procedure code can be found in folder prjStoredProcedures.

Most database programmers learn the power and usefulness of the stored procedure as they become
familiar with client-server programming. Stored procedures are chunks of code that are written in
Transact-SQL that run on the database server machine, as opposed to the client machine. When your
database server is a $20,000, multiprocessor box, and your client is a $1,200 box, which one should
you choose to perform most of the database processing? If you’re interested in speed and
performance, the answer is of course the server. The stored procedure is the place to make much of
that database processing happen.

Like procedures in most languages, database stored procedures accept and return parameters with
which they do their work. There are three types of parameters on a stored procedure:

Input Anything you need to send to a stored procedure goes into an input parameter.

Output Most data that you would like the stored procedure to return to your application is done so
via an output parameter.

Return values Return values are a special type of output parameter. They are limited to integers,
and only one can be returned per procedure. Return values are most often used to return whether the
procedure succeeded or failed in its intended task.

My goal was to demonstrate using all three types of parameters in a stored procedure in the
Northwind database. Unfortunately, none of the built -in stored procedures had all three types of
stored procedures, so I wrote my own:

CREATE PROCEDURE CustOrderTotals
 @CustomerID varchar(5),
 @AmtSpent money OUTPUT
AS

DECLARE @NumOrd INT

SELECT @NumOrd = COUNT(*) FROM Orders
WHERE CustomerID = @CustomerID

IF (@NumOrd = 0)
 RETURN 1
ELSE BEGIN

 SELECT @AmtSpent =SUM(ExtendedPrice)
 FROM [Order Details Extended] OD
 INNER JOIN Orders O ON O.OrderID = OD.OrderID

Note We’ll be dealing with Microsoft SQL Server stored procedures here. Results will vary by
database vendor.

Page 127 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 WHERE O.CustomerID = @CustomerID

 RETURN 0
END

This stored procedure takes a customer ID as its input parameter and returns the total amount spent
by that customer. If the customer has never ordered (or is an invalid ID), the return value parameter
is set to 1.

With this stored procedure in place, here’s how it is called in a VB.NET application:

Private Sub cbGet_Click(ByVal sender As _
System.Object, ByVal e As _
System.EventArgs) Handles cbGet.Click

 Dim SQL As String = "Select CustomerID, "
 SQL = SQL & "CompanyName from Customers"

 Dim ocConn As New SqlConnection(CONNECTIONSTRING)
 Dim opConn As New SqlConnection(CONNECTIONSTRING)

 Dim oCmd As New SqlCommand(SQL, ocConn)
 Dim oParm As SqlParameter
 Dim oRD As SqlDataReader
 Dim cCustId As String
 Dim cTot As String
 Dim lvItem As ListViewItem

 Dim oProc As New SqlCommand("CustOrderTotals", opConn)
 oProc.CommandType = CommandType.StoredProcedure

 oParm = New SqlParameter("rVal", SqlDbType.Int)
 oParm.Direction = ParameterDirection.ReturnValue
 oProc.Parameters.Add(oParm)

 oParm = New SqlParameter("@CustomerID", _ SqlDbType.VarChar, 5)
 oParm.Direction = ParameterDirection.Input
 oProc.Parameters.Add(oParm)

 oParm = New SqlParameter("@AmtSpent", SqlDbType.Money)
 oParm.Direction = ParameterDirection.Output
 oProc.Parameters.Add(oParm)

 ocConn.Open()
 opConn.Open()
 Call lvCust.Items.Clear()
 Try
 oRD = oCmd.ExecuteReader(CommandBehavior.CloseConnection)
 Do While (oRD.Read())
 cCustId = oRD.Item("CustomerID").ToString

 lvItem = New ListViewItem(cCustId)
 lvItem.SubItems.Add(oRD.Item("CompanyName").ToString)

 oProc.Parameters("@CustomerID").Value = cCustId
 Try
 oProc.ExecuteNonQuery()
 Catch oEX As Exception
 MsgBox(oEX.Message)
 End Try

 If CInt(oProc.Parameters("rVal").Value) = 1 Then
 cTot = "<never ordered>"

Page 128 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Else
 cTot = Format(oProc.Parameters(_
 "@AmtSpent").Value, "####.00")
 End If

 lvItem.SubItems.Add(cTot)
 Call lvCust.Items.Add(lvItem)
 Loop

 Finally
 opConn.Close()
 End Try
End Sub

This code loops through all the customers in the Northwind database and calls the stored procedure
for each customer. The customer ID, customer name, and total amount ordered are placed into the
columns of a Listview. If the return value of the stored procedure comes back as 1, then the total
amount spent is replaced with the string <never ordered>.

Setting up the stored procedure is done using an SQLCommand object. Parameters are added using
SQLParameter instances, as shown here:

 Dim oProc As New SqlCommand("CustOrderTotals", opConn)
 oProc.CommandType = CommandType.StoredProcedure

 oParm = New SqlParameter("@AmtSpent", SqlDbType.Money)
 oParm.Direction = ParameterDirection.Output
 oProc.Parameters.Add(oParm)

This code sets up the output parameter. Note that the parameter name matches the name as defined in
the procedure itself. Once the stored procedure is executed, you access its value as follows:

cTot = Format(oProc.Parameters("@AmtSpent").Value, "####.00")

This line takes the AmtSpent output parameter and formats it to use two decimals. The final results
of my Listbox loader are shown in the following illustration:

More Framework Topics
46: Creating Owner-Drawn Menus

Page 129 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The owner-drawing menu code can be found in folder prjNetNotePad.

“Modern” Microsoft applications, such as Word 2000 and Excel 2000, have menus with bitmaps
embedded in them, as shown in the following graphic:

Microsoft has never made it very easy to duplicate this functionality in Visual Basic. VB.NET makes
it easier than ever before, though I will admit that I think Microsoft could make it simpler still.
(Can’t we just have an Image property right on the MenuItem class? But that’s another story for
another version of VB.)

If we want pictures on our menus, we’ll have to code them ourselves. What we need to create are
owner-drawn menus. Owner-drawn means that Windows is relying on you, the programmer, to draw
the menu item text, instead of drawing it for you.

Creating Your Menu

The first step is to create a menu for your application. My prjNetNotePad application has a small,
simple menu, one that allows the user to create a new file, save it, or open an exiting file. Once the
menu is created, you should set the OwnerDraw property of each MenuItem object to True, as shown
in the following illustration:

Now VB is expecting you to handle all the drawing of the menu items. To accomplish this, two
events need to be coded for each MenuItem. The first is called the MeasureItem event. This event is
called to specify the height and width that you want the menu item to be and to pass that information

Page 130 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

back to Windows. The MeasureItem event in prjNetNotePad is shown here:

Public Sub mNew_MeasureItem(ByVal sender As Object, _ ByVal e As _
System.Windows.Forms.MeasureItemEventArgs) _
 Handles mNew.MeasureItem, mOpen.MeasureItem, _
 mSave.MeasureItem, mExit.MeasureItem

 Dim mi As MenuItem = CType(sender, MenuItem)
 Dim textSize As Size
 Dim textFormat As New StringFormat()

 If (ShowKeyboardCues) Then
 textFormat.HotkeyPrefix = _
 Drawing.Text.HotkeyPrefix.Show
 Else
 textFormat.HotkeyPrefix = _
 Drawing.Text.HotkeyPrefix.Hide
 End If

 textSize = _
 e.Graphics.MeasureString(mi.Text, aFont).ToSize()

 maxMenuTextWidth = Math.Max(maxMenuTextWidth, _
 textSize.Width + 20)

 textSize = e.Graphics.MeasureString(mi.Text, _
 aFont, New PointF(0, 0), textFormat).ToSize()

 e.ItemHeight = Math.Max(textSize.Height + 2, _ SystemInformation.SmallIconSize.Height + 2)
 e.ItemWidth = maxMenuTextWidth
 End Sub

Note the Handles clause on the procedure. This Handles clause specifies that this event should run as
the MeasureItem event for four different MenuItem controls. This is a big time saver, as you no
longer need to call the same function in multiple event procedures for multiple objects, nor do you
have to create control arrays. (In fact, this functionality replaces the need for control arrays entirely,
and they are not available at all in VB.NET.)

The MeasureItem event needs to fill the ItemHeight and ItemWidth properties of the
System.Windows.Forms.MeasureItemEventArgs parameter, which is passed into it. It does this by
calling the MeasureString method against the text of each menu item. The string is compared against
a form-level variable named maxMenuTextWidth. This variable will end up containing the widest
line of text of all of our owner-drawn menus, plus 20 pixels to take the width of the bitmap into
account (the bitmap is 16X16, and 4 pixels for buffer equal 20).

Placing Your Menu

The second event that needs to be created is the one that actually draws the menu into the proper
area. It is called the DrawItem event:

 Public Sub mNew_DrawItem(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.DrawItemEventArgs) _
 Handles mNew.DrawItem, mOpen.DrawItem, mSave.DrawItem, _
 mExit.DrawItem

 Dim mi As MenuItem = CType(sender, MenuItem)
 Dim iImage As Integer

 Dim textColor As Color = SystemColors.MenuText

Page 131 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim textBounds As New _
 RectangleF(e.Bounds.Left + 20, _
 e.Bounds.Top + 2, e.Bounds.Right, _
 e.Bounds.Bottom - 2)

 Dim textFormat As New StringFormat()
 Dim tabStops() As Single = {0}

 textFormat.SetTabStops(maxMenuTextWidth, tabStops)

 If (ShowKeyboardCues) Then
 textFormat.HotkeyPrefix = _
 Drawing.Text.HotkeyPrefix.Show
 Else
 textFormat.HotkeyPrefix = _
 Drawing.Text.HotkeyPrefix.Hide
 End If

 Dim selected As Boolean = False

 selected = ((e.State And DrawItemState.Selected) = _
 DrawItemState.Selected)

 If selected Then
 e.DrawBackground()
 textColor = SystemColors.HighlightText
 Else
 e.Graphics.FillRectangle(SystemBrushes.Menu, _
 e.Bounds)
 End If

 Select Case mi.Text
 Case "&New"
 iImage = 0
 Case "&Open"
 iImage = 1
 Case "&Save"
 iImage = 2
 Case Else
 iImage = -1
 End Select

 If iImage > -1 Then
 e.Graphics.DrawImageUnscaled(_
 oImageList.Images(iImage), e.Bounds.Left + 1, _
 e.Bounds.Top + 1)
 End If

 e.Graphics.DrawString(mi.Text, aFont, _
 New SolidBrush(textColor), textBounds, textFormat)

 End Sub

The DrawItem event has a Handles clause as well, which allows this routine to be called for all four
of my owner-drawn menus. This function first determines if the menu to be drawn is currently
selected by the user, since a selected menu is visually different from a normal menu. If it is a selected
menu, it is filled in with the default background drawing method, named FillRectangle, which is a
method of the passed-in System.Windows.Forms .DrawItemEventArgs object. If the menu is not
currently selected, then a FillRectangle method is called to draw the menu a basic gray (or whatever
the SystemBrushes.Menu color is defined as on this system).

The case statement maps the current menu being drawn to an image in the ImageList control. The

Page 132 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

New, Open, and Save menu options all have bitmaps to go with them, and the Exit menu has no
bitmap. If it is determined that a bitmap is to be drawn on this menu, it is drawn with the
DrawImageUnscaled method. You can see the images in the menus in the first illustration in this
section (which shows menus with bitmaps embedded in them).

Finally, the text itself is drawn into place. Note that the Tahoma font is used in this example. (Form
level variable aFont is initialized to an 8 point Tahoma font). This also makes the menu look more
like Microsoft Office application menus.

47: Creating UI Elements at Runtime

The UI code can be found in folder prjRuntimeUIElements.

I have a big confession to make: Visual Basic hasn’t been my language of choice for every
programming project that I’ve done in the past. I experimented with different languages through the
years, checking out the features of each, comparing and contrasting. (But I didn’t compile. Ba-dum-
BAH!).

But seriously…

One of the other languages that I did grow fond of was Delphi. This object -oriented version of Pascal
by Inprise (formerly Borland) was a great combination of the power of a “true” compiled language
with a great visual programming development and form designer like Visual Basic. I did quite a few
projects in Delphi, in both my professional “day jobs” and my nighttime hobby programming.

Because of my prior experience with Delphi, my interest was piqued when I learned that one of
Delphi’s original designers, Anders Hejlsberg, had moved over to the Microsoft team to help work
on Visual Studio.NET. The buzz was that some of Delphi’s functionality would be migrating over
into Visual Basic. The feature I describe here is one of those Delphi-like tricks.

Creating Buttons On-the-Fly

In certain cases you might find the need to create user interface elements at runtime as opposed to
doing so at design time. For example, you may want to load a set of choices out of a database and
display them on a form as a group of radio buttons. Because you have no idea how many choices
there are going to be, you can’t use the form designer to put the radio buttons on the form at design
time. What you need is the ability to programmatically create new user interface controls. This
allows for a much more flexible and maintainable application that can respond to different business
logic in a data-driven way.

Now, if you’re a VB6 (or earlier) guru, you might be thinking, “Hey, wait a minute, you can create
controls on a form in VB6, so why is this so different?” The answer to that question is that in order to
programmatically create user interface elements in VB6, you had to utilize control arrays. VB.NET
doesn’t support control arrays. Instead, a much more flexible method for programmatically creating
controls has been introduced.

The way to create new controls on forms is pretty easy to understand once you remember that

Note There is no Font property on the MenuItem class, so you’ll have to create owner-drawn menus
even if all you want to do is change their font. The good news is that once you take the leap
into using owner-drawn menus, you have total control over that menu’s appearance. You can
draw background bitmap patterns, use any font color or size, make menu items bold or italic, or
get fancy with graphics instead of normal menu text.

Page 133 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

controls are implemented as classes in the .NET Framework. So, to create a new control on a form,
you merely instantiate an instance of the appropriate class:

Dim b As Button

b = New Button()
b.Size = new Size(48, 16)
b.Text = "A New Button"
b.Location = new Point(10,10)
Me.Controls.Add(b)

The preceding code creates a new object of class Button, sets the size and location properties of the
button (how big will it be and where on the form will it be positioned), sets the Text (formerly
Caption) property of the button, and then calls the all important Me.Controls.Add(b). This last line is
what attaches (for lack of a more precise word) the button to the current form.

The code will create a button that you can see, but the button won’t do anything. Why not? Well, we
haven’t told the button what code to run when the user clicks it. To connect an event to a button, you
use the AddHandler statement:

AddHandler b.Click, AddressOf cbCreate_Click

The AddHandler statement takes two parameters. The first is an event on an object. In the example,
we are adding a handler to the Click event on Button control b.

The second parameter of the AddHandler statement is what’s known as a delegate. The best way to
think of a delegate is as a type-safe function pointer. By type-safe, I mean that the parameter list of
the function must match the parameter list that the event requires.

In the example code, the Click event of a button requires two parameters. Parameter 1 must be of
type object, and parameter 2 must be of type System.EventArgs. (The name of each parameter is not
important, only the type). Any sub in your application with this matching parameter list can be
assigned as an event handler for a button.

The previous AddHandler line links procedure cbCreate_Click to the new Button control. This
procedure is, of course, the procedure that creates yet another button. This means that any time any
button on the form is clicked, an additional button is created, whose action is the same: to create a
new button when clicked. (This might be easier to see in action than to explain in text—try the
prjRuntimeUIElements program out and see it for yourself.)

To further demonstrate the type-safe nature of delegates, try performing an AddHandler statement on
a function pointer whose signature does not match that of the event that you are trying to define. The
sample application has a commented line of code which attempts to make a procedure named
BadCreate_Click the Click event of a button.

AddHandler b.Click, AddressOf BadCreate_Click

Protected Sub BadCreate_Click(ByVal sender As Object)
 Call Msgbox("this sub cannot be attached to a button")

Note Code completion becomes a handy learning tool for learning the Microsoft .NET Framework in
places like this. If you have code completion turned on, you will get a list of valid events on
object b as soon as you type b. in the AddHandler code line. Take a minute to browse through
the list and see if you see any events you might not recognize, and make a note to learn about
those events later. (To enable code completion, in the Tools � Options dialog box, check Auto
List Members.)

Page 134 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

End Sub

This code will yield a compile time error: Could not find method ‘Protected Sub BadCreate_Click
(sender As Object)’ with the same signature as the delegate ‘Delegate Sub EventHandler(sender As
Object, e As System.EventArgs)’. This is telling you that the BadCreate_Click procedure does not
have the correct parameter list to be used as a button’s Click event.

Creating Menus Dynamically

The sample application has two other examples of dynamic control creation. The first is displayed
when you select Add Menu Item from the File menu. The following code runs when the menu item
is selected:

Private Sub mAddMenu_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) handles mAddMenu.Click

 Dim m As MenuItem

 ‘create a new menuitem
 m = New MenuItem()

 ‘set the caption (er, Text) property
 ‘(change it for every menu)
 m.Text = "Menu " & iMenuCtr

 ‘add this menu to File menu
 mFile.MenuItems.Add(1, m)

 ‘make this new menu add another menu when selected
 AddHandler m.Click, AddressOf Me.mAddMenu_Click

 ‘increment the counter
 iMenuCtr += 1
End Sub

This example is similar to the button example. A new menu item is created, its Text property is
assigned, and its Click event is assigned to this same sub. The last example works on one of the
submenus of the application. This time, the new menu item and its handler are created in a single line
of code:

mAddSubMenu.MenuItems.Add(New _
MenuItem("SubMenu " & iSubMenuCtr, New _
EventHandler(AddressOf mAddSubmenu_Click)))

This code smashes most of the same concepts into a single line of code. A new MenuItem is added to
control mAddSubMenu. The MenuItem uses an alternate constructor, one that requires the menu’s
Text property, and another that ’s the delegate for the Click event. Note that the structure of this
delegate is a bit different. Instead of simply writing AddressOf mAdd- Submenu_Click, this example
uses New EventHandler(AddressOf mAddSubmenu_Click). Although this seems confusing, in
actuality the first syntax is simply a form of shorthand for this syntax.

An EventHandler is actually a type of object, and when you call AddHandler, you are really creating
an instance of an EventHandler object. VB.NET lets you omit this, however, and simply pass in the
delegate function address, and the compiler understands all of this. To better understand what’s
going on with delegates, you may want to use the "long" syntax at first—it help to explain exactly
how you’re linking up events to the code underneath.

Page 135 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

48: Dynamic Object Creation Using RTTI

The dynamic object code can be found in folder prjRTTI.

Earlier, you learned about creating user interface controls such as buttons and menu items at runtime.
The code for creating a button at runtime looks something like the following:

 Dim b As Button

 b = New Button()
 b.Size = new Size(48, 16)
 b.Text = "A New Button"
 b.Location = new Point(10,10)
 Me.Controls.Add(b)

Now I’d like to take dynamic object creation a few steps further. The preceding code works fine as
long as you know at design time that you want to create a button, because that’s what you declare in
the Dim statement. What if you know you want to create an object, but don’t know which class that
object needs to be until runtime? This is where runtime type information (often abbreviated RTTI)
comes in. RTTI provide the necessary constructs to determine an object’s type at execution time and
to dynamically create different types of objects based on values determined at execution type.

Consider a simple example. Suppose I write a class that handles the verification of a user-entered
state. (Ohio and OH are valid; Californika and CX are invalid.) I also write a class that verifies
countries. (U.S.A. and United Kingdom are valid; XXX is invalid.) I have a simple form for the user
to enter address information, which is arranged in such a way that the user enters either a state (if he
lives in the U.S.), or a country, and then I need to validate the input using my object. The pseudocode
for such logic might look something like the following:

If (user entered a state)
 Dim oSV as New StateValidator
 oSV.Validate(cState)
else
 Dim oCV as New CountryValidator
 oCV.Validate(cCountry)
end if

This code would work just fine. A more abstract way to look at the same logic might be as follows,
however:

If (user entered a state)
 cClassName = "StateValidator"
else
 cClassName = "CountryValidator"
end if

dim o as object
o = NewObjectofType(cClassName)

The last line is the odd one: I’m telling VB to instantiate an object whose type name is stored in a
string variable. This is the art of using RTTI. The actual VB syntax is not exactly as shown here; you
will see a true example a bit later.

Using RTTI in the Real World

The previous example might seem a bit strange—why use RTTI when you can use a much more
standard method to accomplish the same thing? However, if you give it some thought, you might be

Page 136 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

able to conceive of some interesting uses for RTTI. Consider a database of information that contains
not only the data, but also the VB class information used to edit that data. For example, you might
have a series of custom data types that represent your business objects (customers, orders, and so
on). Given some well-thought-out design, you could create classes for these business objects and
specify which class to load for which object, all in database tables. The VB client application would
end up being very thin—it would just handle the dynamic loading and display of the business objects
specified in the database.

The example project (shown next) creates a simple class named Generic- ButtonMaker and two more
specific classes that descend from it, RedButton- Maker and GreenButtonMaker. The
GenericButtonMaker and RedButtonMaker class is shown here:

MustInherit Class GenericButtonMaker

 Protected FB As Button

 Public Sub New()
 MyBase.new()
 End Sub

 Property TheButton() As Button
 Get
 Return Fb
 End Get
 Set
 Fb = value
 End Set
 End Property

 Public MustOverride Sub ChangeButtonCaption()
 Public MustOverride Sub ChangeButtonColor()

End Class

Class RedButtonMaker
 Inherits GenericButtonMaker

 Public Sub New(ByRef aButton As Button)
 MyBase.new()
 FB = aButton
 End Sub

 Public Overrides Sub ChangeButtonCaption()
 Try
 FB.Text = "I am RedButtonMaker"
 Catch
 Call msgbox("button not initialized")
 End Try
 End Sub

 Public Overrides Sub ChangeButtonColor()
 Try
 FB.BackColor = color.Red
 Catch
 Call msgbox("button not initialized")
 End Try
 End Sub
End Class

The class contains two methods, ChangeButtonColor and ChangeButtonCaption. Each method relies
on the fact that a button has been assigned to the TheButton property on the generic class, which is

Page 137 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

done as part of the constructor. The descendant classes override the two methods, changing the
button’s caption or color. (Have I won the award for most useless, do-nothing class definition yet? I
hope so).

Based on the value of a radio button in the main project, the program dynamically loads one of the
specific descendant classes, and has it perform some work on the button control.

The code that loads the class and calls the desired method is shown next:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

 Dim t As Type
 Dim o As Object
 Dim cClassName As String
 Dim cMethodName As String

 ‘reset the button back to the default look
 Button1.BackColor = Form1.BackColor
 Button1.Text = "Button"

 If rbRed.Checked Then
 cClassName = "prjRTTI." & rbRed.Text
 Else
 cClassName = "prjRTTI." & rbGreen.Text
 End If

 If rbText.Checked Then
 cMethodName = "ChangeButtonCaption"
 Else
 cMethodName = "ChangeButtonColor"
 End If

 t = Type.GetType(cClassName)
 o = Activator.CreateInstance(t, New Object() {Button1})
 t.GetMethod(cMethodName).Invoke(o, Nothing)

 End Sub

This is the routine that handles the RTTI work. Based on the setting of the top radio button, a string
is assigned to one of the two descendent class names. (Note that the namespace prjRTTI must be
added to the class name or the program won’t be able to find the class.) The desired method to call is
also stored in a string, based on the setting of the bottom radio button.

Page 138 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The line t = Type.GetType(cClassName) is where a object of class Type is instantiated from the class
name. The Type class contains all of the necessary information about a class. The next line
instantiates the object o off the type t. Note the second parameter of the CreateInstance method. This
parameter is an array of objects, constructed on-the-fly, containing a single object, and that object is
Button1. When you create an instance of any object using Activator.CreateInstance, the second
parameter of the CreateInstance function must be an object array containing all the parameters
required by the constructor. My RedButtonMaker and GreenButton- Maker classes require a button
to be passed in as the lone parameter on the constructor, and the previous syntax places that button
into an array of objects.

The last line calls a method on the new object. The name of the method to call is stored in variable
cMethodName. This variable is populated by one of the radio buttons on the lower half of the form.
The second parameter on the Type.Invoke call would be an array of objects that represent any
parameters that the method you’re trying to call expects. The two methods on my ButtonMaker
classes don’t expect any parameters, so I’ve left the second parameter as Nothing.

Debugging RTTI

I’d like to give one final word about coding using runtime type information. Although it can be
extremely powerful, it also adds a layer of complexity that can make debugging an application much
more difficult. This is because many errors that are normally design-time errors become runtime
errors in the RTTI world. Consider the following simple line of code:

Dim B as new SomeButtonOutThere()

This line of code declares a variable of type SomeButtonOutThere. This type must be locatable by
Visual Studio in your current defined list of Imports clauses, or Visual Studio will give you an error
and disallow you from compiling the program. Now, consider the same declaration using an RTTI
style:

Dim o as Object
Dim t As Type

t = Type.GetType("SomeButtonOutThere")
o = Activator.CreateInstance(t, Nothing)

This code compiles fine under Visual Studio. However, if the SomeButton- OutThere class is
unknown, you will get a runtime error when this snippet is executed, telling you that the class can’t
be located. Obviously, runtime errors are much harder to debug than compile-time errors, because
they rely heavily on the state of the program, the current values of all the variables, the procedure
call stack, and so on. Make sure to have some good exception handling around your RTTI code to
appropriately handle errors that might occur.

49: Versioning and the End of DLL Hell

The versioning code can be found in folder prjVersioning.

The original purpose of the dynamic link library (DLL) was to provide a means for many
applications to share the same code. Without DLLs, every application would have to have the Win32
API libraries statically linked into the EXE. This is impractical, especially in a multitasking
environment. Pretty much every Windows program has to call the CreateWindow API call, as an
example. If there were no DLLs, every program would have the code for this function loaded in their
own little part of RAM. If the user is running 10 different programs, then this function is sitting in
RAM in 10 different places. And this is only the first of the hundreds of shared functions that make

Page 139 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

up the Win32 API.

So the DLL provides an important function. Now, only one copy of the CreateWindow code is taking
up RAM, leaving more available RAM for your own program code.

DLL Hell refers to a situation where a commonly used DLL gets replaced and is not backward
compatible. This seems to have become a frequent problem in newer releases of Internet Explorer,
for example. A new install of Internet Explorer replaces a shared DLL, and suddenly the accounting
package doesn’t work on the PC. Careful diagnosis reveals the problem to be a bad version of
SHAREME.DLL, but one cannot go back to the old version because the new version of Internet
Explorer requires the latest DLL. This forces the end user (or the company’s IS department) to make
a choice between two programs.

The .NET Framework allows for alternatives to DLL Hell through the use of assembly versioning.
We can now instruct certain applications to use certain versions of a shared DLL if we deem that
conflicts might exist. As developers, we know that an application will use DLLs only if they are the
exact same version of the DLL that we built and tested the application against. However, if we
choose, we can override this action and instruct our application that it’s OK to use a newer version.
This should give us the best of both worlds and the end of DLL Hell.

What’s a Version?

Versions are assigned at the assembly level. An assembly is a block of code that provides for
deployment, security, reuse, and version control. Single file assemblies are usually DLL or EXE
files, but you can create multifile assemblies as well.

Each assembly is given a version number. The complete version number has four components and is
written like the following:

1.0.0.0
1.2.2034.1

The four components of the version number are known as the major number, the minor number, the
build number, and the revision number. In the second example just shown, the assembly in question
is major version 1, minor version 2, build number 2034, and revision number 1.

These numbers can mean anything you want them to mean, and it’s up to you as the developer to
version all of your assemblies in an intelligent manner to allow the assemblies in your application to
play nicely together. Forgetting to change the version number between releases of your assemblies
can cause disastrous results. For example, suppose you release an application that uses a shared
component library, and both assemblies start off at version 1.0.0.0. Then, you decide to make some
changes to the component library. Depending on the changes you make, you may or may not be able
to simply upgrade the component library without releasing a new version of the executable. If this is
true, but you fail to change the version number on your library, then the executable will load the new
library without problems (since it was tested against version 1.0.0.0) and possibly fail to recognize
the changes you have made.

Setting the Version

When you create a new project in Visual Studio, a file named AssemblyInfo.vb is created as part of
the project. Here are the contents of this file in one of my projects (with comments removed):

Imports System.Reflection
Imports System.Runtime.InteropServices

Page 140 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

<Assembly: AssemblyTitle("myProgressBar")>
<Assembly: AssemblyDescription("Progress Bar version 1.0")>
<Assembly: AssemblyCompany("")>
<Assembly: AssemblyProduct("")>
<Assembly: AssemblyCopyright("")>
<Assembly: AssemblyTrademark("")>
<Assembly: CLSCompliant(True)>

<Assembly: Guid("3359E44B-034D-4C14-8204-C4EB12CB9539")>
<Assembly: AssemblyVersion("1.0.0.0")>

Several attributes have been assigned to this assembly, including the version number. Setting the
assembly version is simple as changing this attribute and recompiling your application.

A Version Example

To demonstrate .NET Framework versioning, I decided to create a component that acted like the
ProgressBar component that comes as a built-in .NET class. No, I didn’t fail to realize that such a
component already existed, but I wanted to see if I could create a slightly different visual look to my
progress bar. Here’s what I came up with:

Imports System.ComponentModel

<ToolboxItem(True)> _
Public Class myProgressBar
 Inherits Panel

 Sub New()
 MyBase.New()
 Me.BorderStyle = BorderStyle.Fixed3D
 End Sub

 ‘properties for Minimum, Maximum, and Value
 Private FMin As Integer = 0
 Property Min() As Integer
 Get
 Return FMin
 End Get
 Set(ByVal Value As Integer)
 FMin = Value
 Invalidate()
 End Set
 End Property

 Private FMax As Integer = 100
 Property Max() As Integer
 Get
 Return FMax
 End Get
 Set(ByVal Value As Integer)
 FMax = Value
 Invalidate()
 End Set
 End Property

 Private FValue As Integer = 0
 Property Value() As Integer
 Get
 Return FValue
 End Get
 Set(ByVal iValue As Integer)

Page 141 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 If iValue <= FMax Then
 FValue = iValue
 Else
 FValue = FMax
Throw New OverflowException(_
"Cannot set myProgressBar Value" & _
"to greater than Max.")
 End If
 Invalidate()
 End Set
 End Property

 ‘override Onpaint and paint the progress rectangle
 Protected Overrides Sub Onpaint(ByVal e As _
 System.Windows.Forms.PaintEventArgs)
 Call MyBase.OnPaint(e)

 Dim iRight As Integer
 Dim b As Brush = Brushes.Navy
 Try
 iRight = FValue * Me.Width / FMax
 e.Graphics.FillRectangle(b, _
 New Rectangle(0, 0, iRight, Me.Height))
 Catch oEx As Exception
 ‘nevermind
 End Try
 End Sub
End Class

This component inherits from a standard Panel control, and adds the Min, Max, and Value integer
properties to mimic the functionality of the standard panel. The Onpaint method is overridden to
draw a filled navy rectangle in proportion to the percentage that the progress bar is to display. Any
type of exception (like divide by zero) is ignored.

After coding my progress bar, I dutifully set the version number to 1.0.0.0, compiled it into a DLL,
then created a new Windows Forms project to test it out. After adding my new component to the
toolbar, I created a simple app that incremented the new progress bar off of a timer. The end result
looks something like this:

Finally, to test out the “XCOPY Install” ability of .NET projects, I copied the EXE from my test
program and the DLL that contains the progress bar into a folder named C:\TEMP and re-ran the
program from there. Copying the EXE and DLL to their own folder simulates an installation version
of my application.

Version 2 (Actually, 1.1.0.0)

My progress bar was pretty good, but after a while a few ideas for enhancements came to mind:

l The ability to change the color of the progress meter

l Displaying the percentage as text in the center of the bar

Page 142 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Because I was being mindful of my versions, I created a new folder for my progress bar project and
left the old one. (Yes, I could be using SourceSafe, but I’m not.) After changing the version number
to 1.1.0.0, I made the following changes(duplicate code from previous example omitted):

Private FProgressColor As Color = Color.Maroon
 Property ProgressColor() As Color
 Get
 Return FProgressColor
 End Get
 Set(ByVal Value As Color)
 FProgressColor = Value
 End Set
 End Property

 ‘override Onpaint and paint the progress rectangle
 Protected Overrides Sub Onpaint(ByVal e As _
 System.Windows.Forms.PaintEventArgs)
 Call MyBase.OnPaint(e)

 Dim iRight As Integer
 Dim b As New SolidBrush(FProgressColor)

 Try
 iRight = FValue * Me.Width / FMax
 e.Graphics.FillRectangle(b, _
 New Rectangle(0, 0, iRight, Me.Height))
 Catch oEx As Exception
 ‘nevermind
 End Try

 Dim iPct As Integer

 Try
 iPct = FValue / FMax * 100
 If iPct < 48 Then
 b = Brushes.Black
 Else
 b = Brushes.White
 End If
 e.Graphics.DrawString(iPct & "%", _
 Me.Font, b, (Me.Width / 2) - 10, 4)
 Catch oEx As Exception
 ‘nevermind
 End Try

As you can see, I added the property ProgressColor, which I defaulted to maroon (this made it really
easy to tell which version of the control was being used), and I changed the Onpaint procedure to use
this color when painting. I also drew the text that represents the percentage in roughly the center of
the progress bar and used either black or white for this text depending on the position of the bar.

The next thing I had to decide was if my original project would require a recompile due to changes in
this component. For example, if I had changed the Value property to something like Position or
CurrentValue, then any reference to the old property name would fail. However, I hadn’t made any
changes of this nature. My two changes involved adding a property, which can’t cause errors in the
old application since it never knew about the property to begin with, and changing what was drawn
on the control, which again shouldn’t require any coding changes in the application.

Now, to prove that assembly versioning is working, I took my compiled version 1.1.0.0 DLL, copied
it to the C:\TEMP folder (thereby overwriting the 1.0.0.0 version of the same DLL), and re-ran my
test application. As expected, I received an error which read "An exception

Page 143 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

System.IO.FileLoadException has occurred in prjVersioning.exe", and the application halted.

Version Control

To allow version 1.1.0.0 of my component to work with a program compiled against version 1.0.0.0
of that assembly, I need to place some instructions in an application configuration file. This file is an
XML-format file that can contain several different commands concerning assemblies.

Before I can set up the application configuration file, however, I must do one more thing to my
component, and that is to set up a strong name for the assembly in which the component resides. A
strong name incorporates the assembly’s simple name and version number, along with a
public/private key crypto-pair, which guarantees uniqueness for your assembly name as you install it
on other machines.

Generating a strong name for an assembly is done in the project properties. To access these
properties, right-click the project name in the Solution Explorer and select Properties. Under Strong
Name, check the Generate Strong Name Using check box, then click the Generate button. This will
create a strong name key file for you; add that file to your project, as shown here:

Next, you need to find out what the public key for your assembly is. To do this, compile your project
to a DLL, go to a command line, and run the following:

sn -Tp myProgressBar.dll

The sn.exe program is located in the Bin folder of the .NET Framework—you may have to change to
that directory to get the program to run. The results of that program look something like the
following:

Microsoft (R) .NET Framework Strong Name Utility Version 1.0.2914.16
Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.

Public key is
00240000048000009400000006020000002400005253413100040000010
00100fdb965f524e287575eb66aed705a7ca5242f2b7c9690b61ecf1168
2c9edd3527baf3bcbaa5c4bd67fe495061231a6177b512ccbff4248d22f
0248bd0d8977237a3556847a38919dc3f1750564d9474ffd868c2d042f7
bb70ce35491cf22794f479536279e23ff4b88f97abdcb213475854f
cc98
d5bffa1c1d5b962ca7198b2b2

Public key token is 5274ff09512bfcf5

Page 144 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The value that we’re interested in is the Public Key Token value. I saved this value in a convenient
spot and then created a file named prjVersioning .exe.config that had the following contents:

<?xml version="1.0"?>
<configuration>
 <runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="myProgressBar" publicKeyToken="5274ff09512bfcf5" />
 <bindingRedirect oldVersion="1.0.0.0" newVersion="1.1.0.0" />
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

The values I needed to customize were the name and publicKeyToken values (under
assemblyIdentity). The name is the name of my component assembly, and the publicKeyToken is the
value that was the result of me running the sn utility. The other values that require changing are
the oldVersion and newVersion values, which, as you can see, instruct the .NET Framework to
allow the 1.1.0.0 version of this assembly to replace the 1.0.0.0.

This application configuration file is placed into the C:\TEMP folder along with the EXE and the
component DLL. Once this is all in place, my program runs with the new DLL, as seen in the
following illustration:

50: The New Security Model

The security model code can be found in folders prjCodeAccessSecurity and
prjCodeAccessSecurity2.

It’s a brave new world in code development, or rather, it will be if the Microsoft .NET strategy is
adopted and widely used. (Are you going to be against Microsoft? Nah, me neither.)

The .NET strategy relies heavily on modular code, either built into units called assemblies that exist
as DLLs on the end user’s system, or as web services that send data across HTTP. No matter the
source, the evil Microsoft scheme is to have developers writing modular code and sharing these
modules in order to save work. Why write a binary tree class for the fiftieth time in your career (not
including a dozen times in college) when someone’s already written one that you can snap into your
program?

A common concern in this brave new world is security. If I’m going to rely on someone else’s code
module, can I really be sure of everything that module does? Could a module actually appear to
perform its published task and at the same time gather up my Microsoft Money backup file for
upload to some strange ftp site?

The .NET Framework attempts to deal with these issues through a new concept called code access
security. Code access security allows you as the developer to publish the permissions that your
program will require and to establish trust relationships between your code and modules that your

Page 145 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

program will use, even if those modules are from unknown or unreliable sources.

Permissions

The first sample in the example program denies the program access to the C:\WINNT folder, a pretty
common security permission that you might want to deny. (I’m sure most of us have trashed our PC
by nuking something in the Windows folder at one time or another.) The following code sets up a
PermissionSet object instance that includes all access permissions to the C:\WINNT folder:

Private Sub SetupApplicationPermissionSet()

 Dim ofp As New _
 FileIOPermission(FileIOPermissionAccess.AllAccess, _
 "c:\winnt")

 oPS = New PermissionSet(PermissionState.None)
 oPS.AddPermission(ofp)
 End Sub

Note that a specific object instance of class FileIOPermission is created, and this object is added to
the PermissionSet object through the use of the AddPermission method. This syntax allows us to add
several different types of permissions to a single permission set (which is exactly what the final
version of the sample program does).

Once this permission set is created, we can do several things with it. We can call the Demand method
against it, for example, to request all of the enclosed permissions. Based on the security policy
established on the end user’s PC, the Demand will succeed or fail with an exception. (Most users in a
networked environment don’t have local write access to the Windows folders, for example, so the
Demand would fail.) We can also call the Deny method on the PermissionSet, which would prevent
our code any access to the resources described.

The sample program calls the Deny method and then goes right ahead and attempts to copy a text file
into the C:\WINNT folder. This copy fails with a SecurityException.

Now, why would we ever set up a security permission and then deny it? If our intention is to never
write to the C:\WINNT folder on a computer, why go through all the trouble of setting up a
permission to deny it?

The answer becomes clear when you go back to the fact that our application may rely on code that
isn’t ours, and we’re not exactly sure what it does. If we’re going to use third-party modules, we can
set up and deny various security permissions before we call that module. If that module attempts to
do anything against our PermissionSet, it too will be denied.

There are other permission types besides the FileIOPermission. The sample program adds four
different types of permissions to the PermissionSet, as seen here:

 Private Sub SetupApplicationPermissionSet()

 Dim ofp As New FileIOPermission _
 (FileIOPermissionAccess.AllAccess, "c:\winnt")

 Dim ors As New RegistryPermission _
 (RegistryPermissionAccess.AllAccess, _
 "HKEY_LOCAL_MACHINE\SOFTWARE")

 Dim orf As New ReflectionPermission _
 (PermissionState.Unrestricted)

Page 146 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim oev As New EnvironmentPermission _
 (PermissionState.Unrestricted)

 oPS = New PermissionSet(PermissionState.None)
 oPS.AddPermission(ofp)
 oPS.AddPermission(ors)
 oPS.AddPermission(orf)
 oPS.AddPermission(oev)
 End Sub

Each additional permission can be described as follows:

RegistryPermission This permission describes access to a Registry key. Permission can be given
(or removed) to create keys or to read or write Registry values. The previous code sets up a
permission for full access to the HKEY_LOCAL_MACHINE\SOFTWARE Registry key.

ReflectionPermission This permission sets up access to perform reflection on a .NET Framework
assembly. Without specific permission, only public members are available for reflection. The sample
program shows that only 107 classes are counted via reflection if the permission is denied, while 158
classes are counted if the permission is granted.

EnvironmentPermission This permission allows access to read or write system environment
variables.

Declarative Security

The type of permission checking in the sample program is called imperative security—it is
performed at runtime. A second type of code access security can be employed called declarative
security. This type of security is defined by using security attributes (metadata) at the assembly level.

This type of security offers different types of benefits. For one, a program could be written that scans
an assembly and lists exactly what types of permissions that assembly is defined as having. This
might have the effect of making the assembly more trusted to other users because the permissions
you’ve granted to your own code are verifiable.

The second sample program, prjCodeAccessSecurity2, gives a solid example of declarative security
using the StrongNameIdentityPermission attribute. This permission, when used with the
LinkDemand security action as is done in this example, denies access of this class by any assembly
except the one with the strong name key described by the long hex string shown. (See "Versioning
and the End of DLL Hell" for information on the strong name.)

Imports System
Imports System.Security.Permissions
Imports System.Reflection

<assembly: AssemblyKeyFileAttribute("friend.keys")>

< StrongNameIdentityPermission(SecurityAction.LinkDemand, _
 PublicKey:="002400000480000094000000060200000024000052534131000400000100010041fa118e7994d91ba823ee72d911ca7612fc87515633f83b168d2413ebd3b27710d861314c5de0cfe6f9240e1764b8597bb57692d104f375fcb177dd346ee51e8c1016ee6b327944e98010638d6b77f24eafbafc72de04c965f3a91f5ef3dc950f2148dc95531d9326ede5f1ba90b6fd8fb4b7d856034b2f70ac3a7f44797fe1") > _
public class Utility
 public shared sub Work()
 Console.WriteLine("Utility.Work")
 end sub
end class

This has the effect of locking down a class so that only one assembly can call it. A situation like this

Page 147 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

would allow a developer to put up a web service on the Internet to take advantage of that technology
but to have the appropriate security so that unauthorized users can’t access the potentially sensitive
code or the data it exposes.

Beyond Visual Basic
51: Expanding Your Horizons: Mixing Languages

The mixed languages code can be found in folders clHoverButton and prjMixingLanguages.

I’ve already read (and even participated in) some online debate on which language is “better,” Visual
Basic.NET or C#. The arguments range from interesting to inane to inaccurate. The VB versus C++,
or VB versus Delphi, or VB versus anything wars have been raging on and on since the release of
our favorite language.

I have the feeling, though, that this latest incarnation of the VB wars won’t last long. After all, both
VB and C# are built on top of the same framework, and there really isn’t any important thing you can
do in one language that you can’t do in the other. This means that the answer to the VB versus C#
question really boils down to personal preference. What’s the point in arguing about that?

In all truthfulness, I’m thinking it might be a good idea to become proficient in both VB.NET and
C#. Being able to call myself a .NET guru in either language will probably look good on the resume.
But I’m pretty sure that my own personal preference will always be the Basic syntax over the C
syntax.

The point is, we really don’t have to choose one or the other, even within the same project. The
language you choose must be the same across each assembly, but you can have a project with
multiple assemblies, like an EXE calling a DLL, for example. And these two assemblies can be in
different .NET languages.

Trying It Out

To test out the language mixing abilities of the .NET Framework, I decided to create a component in
C# and then use it in a VB project. My C# component is called a HoverButton—it’s simply a button
that highlights its caption when the mouse moves over the button.

 namespace clHoverButton
{
 using System;
 using System.Windows.Forms;
 using System.Drawing;

 public class HoverButton: Button
 {

Note The project in folder prjCodeAccessSecurity2 was graciously donated by Mike Woodring, who
maintains a coding website at http://staff.develop.com/woodring. This project was not created
using the Visual Studio IDE, as I found out that the beta 2 version of Visual Studio could not
successfully parse Visual Basic modules using declarative security attributes. Mike helped me
diagnose this problem by converting this example from the original C# example he had written.
The end result was a great little example of using a declarative attribute, which prompted me to
request its addition to the book. I later found this bug to be already known by Microsoft and
reported fixed for the final version.

Page 148 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Color FChangedForeColor = Color.Red;
 Color FSaveForeColor;
 public Color ChangedForeColor
 {
 get { return FChangedForeColor; }
 set { FChangedForeColor = value; }
 }
 protected override void OnMouseEnter(System.EventArgs e)
 {
 base.OnMouseEnter(e);
 FSaveForeColor = ForeColor;
 ForeColor = FChangedForeColor;
 }

 protected override void OnMouseLeave(System.EventArgs e)
 {
 base.OnMouseLeave(e);
 ForeColor = FSaveForeColor;
 }

 }
}

Looks pretty alien, no? You should have seen me trying to write it. All those curly braces and such,
yuck (just kidding)! Anyway, this button descendant has a new property named ChangedForeColor
that represents the color that the caption turns to when the button is hovered over. The hover code is
accomplished in the OnMouseEnter and OnMouseLeave methods. These methods save the original
color, set the ForeColor to the value of the new property, and then set the original color back when
the mouse leaves the control.

Mixing It Up

After compiling my new control, I started up a new Visual Basic project and wrote some code to put
a ton of hover buttons on my form. This double loop creates 64 hover buttons in an 8X8 grid and
reports which button is clicked.

 Dim i As Integer
 Dim j As Integer
 Dim aB As HoverButton
 For i = 0 To 7
 For j = 0 To 7
 aB = New HoverButton()
 aB.Text = "Button " & ((i * 8) + j)
 aB.Size = New Size(64, 32)
 aB.Location = New Point(4 + (i * 68), 4 + (j * 36))
 aB.Visible = True
 AddHandler aB.Click, AddressOf ClickMe
 controls.Add(aB)
 Next
 Next

Not being completely satisfied with this, however, I stumbled across a new idea: I wanted my new
control’s caption to change to still another color when clicked (to summarize, it would be one
ForeColor when the control is idle, a second when the mouse is hovering over, and a third when the
button is in the down state). Now, I had two different ways of adding this new functionality: I could
either modify the original control or I could create a new descendant control that inherits off of the
original HoverButton and adds this new functionality. To further show off the abilities of mixing
languages, I chose the latter solution, and created the new descendant HoverButton in my "native"
Visual Basic:

Page 149 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Class NewHoverButton
 Inherits HoverButton

 Private FSaveColor As Color
 Private FDownColor As Color = Color.Navy
 Property DownColor() As Color
 Get
 Return FDownColor
 End Get
 Set(ByVal Value As Color)
 FDownColor = Value
 End Set
 End Property

 Protected Overrides Sub OnMouseDown(ByVal e As _
 system.Windows.Forms.MouseEventArgs)
 MyBase.OnMouseDown(e)
 FSaveColor = Me.ForeColor
 Me.ForeColor = FDownColor
 End Sub

 Protected Overrides Sub OnMouseUp(ByVal e As _
 system.Windows.Forms.MouseEventArgs)
 MyBase.OnMouseUp(e)
 Me.ForeColor = FSaveColor
 End Sub

End Class

Pretty cool, no? I created a control in C# and inherited off it in Visual Basic. This type of power
might come in handy in larger development shops (by larger, I mean larger than one), where a new
hire might be more fluent in one .NET language over the other and wouldn’t be forced to switch
right away before she became productive.

52: The Joy of Console Applications

The code accompanying this section can be found in folder prjConsoleApp.

I write a great deal of utility type programs in my current job. These programs usually run
unattended at some ghastly hour and perform one or more tasks, like taking all the data over here,
summing it up, and putting the results over there. For these types of applications, user interface isn’t
important, obviously—there’s usually nobody around to watch the program when it’s running
anyway.

VB.NET allows you to write a new kind of application known as a console application. Actually,
calling it a new kind of application is not really correct—console applications are really “old school”
apps from back in the pre-Windows days of DOS (ask your grandfather or that 38-year-old senior
developer in your company about those days). All of the input and output in a console app happens
in a simple console command line, similar to a DOS prompt.

Note When you load up the prjMixingLanguages sample project in Visual Studio, you might be
faced with several errors about not being able to find the clHoverButton assembly. This is
because the clHoverButton assembly resides in a different folder from this project, and Visual
Studio is having trouble finding this folder depending on where you installed the sample
projects to on your hard drive. To correct the error, go to the Solution Explorer, right-click
References, select Add Reference, and then navigate to and select clHoverButton .dll. Adding
this reference should remove all of the errors in the project.

Page 150 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Creating a Console App

Creating a console application is a simple task. When you create a new project in Visual
Studio.NET, the first thing you’ll want to do is get rid of the default Form1 that’s created as part of
the application. Next, you’ll want to add a new code module. Inside the code module, make sure you
have a subroutine named Main. This will be the first sub that the application runs.

Next, you’ll need to go into the properties for this project and set up a few settings. To access the
project properties, right-click the project name in the Solution Explorer and choose Properties from
the pop-up menu. A dialog similar to this will appear:

There are two important settings, both under the General section of Common Properties. The first is
to set the Output Type drop-down list to Console Application (the default is Windows Application).
The second is to set the Startup Object to Sub Main (you’ll need an existing Sub Main in your
project first).

Once you have set the properties like this, your console app is ready to go.

Producing Input/Output in a Console App

The Console class handles most of the features of your console app. You don’t have to create an
instance of the Console class, either: an instance is created automatically as part of the application.

To produce a line of output in your console application, use the WriteLine method of the Console
class:

Console.WriteLine("Here is some Output")

The WriteLine method will output whatever you specify and follow that up with a carriage return
and line feed, so that the next output will start on a new line. If you want to output only part of a line
and have subsequent output on the same line, use the Write method:

Console.Write("Here is some Output…")
Console.Write("and some more output")

If your application needs to query the user for some information, use the ReadLine method. The
following snippet of code asks the user for his age and stores the result into a string variable named
sResult.

Console.Write("Enter your Age: ")

Page 151 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

sResult = Console.ReadLine()

OK, you might have noticed something a bit odd. I mentioned that console apps are often used for
creating unattended jobs. If that were the case, why would there be a need for writing output to the
screen or asking a user for input—there’s supposedly no user around to read the output or answer the
prompts.

Ah, good point, number one. As usual, Microsoft anticipated this exact question and designed the
Console class in a somewhat unique way to handle input from types of sources other than user input.
The Console class has a property named IN that represents the current stream of input to the
program. By default, the input stream is the console input itself (where you can type entries). Say, for
example, that you wanted to write a program that processed the contents of a text file. One way to
handle this would be to change the Console.In property to be an instance of the text stream which
contained the desired program input.

Output is handled in a similar way. There might not be anybody around to read the output of your
program, but you could write the results to a text file log, which could be examined in the morning.
There is a Console.Out property which holds a StreamWriter object that serves as the destination to
all console application output.

The Console.In and Console.Out properties are read-only and therefore cannot be changed directly.
There are methods named Console.SetIn and Console.SetOut that accomplish this, however.

The ConsoleApp project included on the CD is a silly little program that can run two different types
of programs. The first function of the program demonstrates simple user interaction by playing a
number guessing game with the user. You will be prompted to guess a number between 1 and 100
and will be told whether your number is too high or too low, until you get the number correct.

The second part of the program takes a command line that represents the name of a valid text file
(the text file must be in the same folder as the ConsoleApp executable). This part of the program
redirects console input to that text file and console output to a second, new text file, and then writes
the contents of the source file into the destination file, converting all the text to uppercase along the
way. The reading and writing of the two text files is done using the Console.ReadLine and
Console.WriteLine methods. The procedure that accomplishes this function is shown next:

 Private Sub MakeFileContentsUpperCase(ByVal cInputFile _
 As String)

 Dim tIn As StreamReader
 Dim tOut As StreamWriter
 Dim bDone As Boolean = False
 Dim cLine As String
 Dim cOutputFile As String

 Dim oSaveIn As TextReader
 Dim oSaveOut As TextWriter

 If Not File.Exists(cInputFile) Then
 Console.WriteLine(cInputFile & " does not exist")
 Exit Sub
 End If

 cOutputFile = Application.StartupPath & _
 "\TextOutput.txt"

 Console.WriteLine("processing file " & cInputFile)
 Console.WriteLine("output filename is " & cOutputFile)
 tIn = New StreamReader(cInputFile)

Page 152 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 tOut = New StreamWriter(cOutputFile)

 oSaveIn = Console.In
 oSaveOut = Console.Out
 Call Console.SetIn(tIn)
 Call Console.SetOut(tOut)

 Try
 While Not bDone
 cLine = Console.ReadLine()
 If cLine Is Nothing Then
 bDone = True
 Else
 Call Console.WriteLine(UCase(cLine))
 End If
 End While
 Finally
 Call tIn.Close()
 Call tOut.Close()

 Call Console.SetIn(oSaveIn)
 Call Console.SetOut(oSaveOut)
 End Try

 End Sub

Note that TextReader and TextWriter objects are instantiated and set to console input and output
using the SetIn and SetOut methods. Also note that the original input and output streams are saved to
variables so they can be restored later. This step isn’t necessary except that I wanted to write a
message to the console that the program was complete, and I couldn’t write to the console once I had
redirected output to the text file.

The loop itself is not extraordinary. Console.Readline is called in a loop, which retrieves one line of
the input text file at a time. The uppercase version of that string is written to the console (again,
redirected to an output text file) using Console.WriteLine. This continues until the end of the input
file is reached. When that happens, the input and output streams are closed, and the console streams
are restored to their original state. The loop is enclosed in a Try..Finally block to make sure that the
streams are closed and the console streams are restored, no matter what errors we might encounter
during the loop.

53: Getting Entangled in Some Web Development

The web development code can be found in folder prjWebApp.

Developing browser-based apps instead of “fat” Visual Basic clients has both advantages and
disadvantages to the user community and to the developer. The browser app can be deployed over
the Internet, meaning your users can sit on their home PCs and use your application without having
to install anything. In addition, new types of wireless handheld devices are being invented seemingly
every day (things like WAP phones, PDAs, portable instant messengers, and so on), and browser-
based applications are a good choice for designing applications to run on these devices. The
downsides to browser-based applications include the requirement for an Internet connection (no
running your app on a laptop while flying in a plane, for example), and the lack of the rich client
interface you can provide your user base in a VB front- end. On the developer side, I find web
development much more difficult than Visual Basic coding, mainly because the development tool set
is much more primitive.

Still, both types of applications fill a need given the application requirements, and to be a well-

Page 153 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

rounded developer, it’s probably a good idea to be able to throw at least a little web development
experience on your resume. Fortunately, in the .NET world, web development and VB development
have gotten much closer to each other in both coding style and development tool usage.

An ASP.NET Primer

Browser-based development is done using ASP+, or ASP.NET (they keep renaming it, but I think
ASP.NET is the name that’s sticking now). ASP, for the uninitiated, stands for Active Server Pages,
and it represents a set of code built to interact with web pages. This code runs on the web server (as
opposed to VBScript or JavaScript code that runs on the client machine). The purpose of most ASP
code is to render HTML pages for the user to view. If the end user were to select View Source in his
browser, the ASP code isn’t there—it runs on the web server, creates the final web page, and sends
that to the browser.

In Visual Studio.NET, an ASP.NET application uses something called Web Forms, which are
collectively the set of user interface controls that you can use to design your web pages. This is much
closer to designing a Visual Basic application than previous web development environments.
Controls are dragged onto Web Forms and positioned along a grid. When a control is double-clicked
in the design environment, a code window comes up for you to edit the event code behind that
control. After designing a simple web page with a text box, a button, and a label, the result HTML
page looks as follows:

<%@ Page Language="vb"
 AutoEventWireup="false" Codebehind="CustLookup.aspx.vb"
 Inherits="prjWebApp2.WebForm1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <title>customer lookup</title>
 <link rel="stylesheet" href="Styles.css">
 <meta name="GENERATOR"
 content="Microsoft Visual Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="aForm"
 method="post"
 runat="server"
 action="CustList.aspx">
 <p>
 Enter the Last Name of the Customer
 to Look up (partial name ok)
 </p>
 <asp:TextBox id="tbName"
 style="Z-INDEX: 100;
 LEFT: 8px; POSITION: absolute;
 TOP: 38px"
 runat="server"
 Width="208px"
 Height="24px"></asp:TextBox>
 <asp:Label id="lbMessage"
 style="Z-INDEX: 102;
 LEFT: 13px; POSITION: absolute;
 TOP: 83px"
 runat="server"
 Width="207px"
 Height="17px"></asp:Label>

Page 154 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 <asp:Button id="cbSearch"
 style="Z-INDEX: 103;
 LEFT: 232px;
 POSITION: absolute;
 TOP: 40px" runat="server"
 Text="Search"></asp:Button>
 </form>
 </body>
</HTML>

This looks like pretty standard HTML, with a few new elements. There are several <asp:something>
tags, which represent the Web Forms controls I added to the page. The top line refers to a "code
behind" file, which points to a standard Visual Basic.NET (or C#) file that will contain the event
code for the controls on the web page. Listed next are the contents of the code behind file for this
page:

Imports System.Data.SqlClient

Public Class WebForm1
 Inherits System.Web.UI.Page
 Protected WithEvents tbName _
 As System.Web.UI.WebControls.TextBox
 Protected WithEvents cbSearch _
 As System.Web.UI.WebControls.Button
 Protected WithEvents lbMessage _
 As System.Web.UI.WebControls.Label

Private Sub cbSearch_Click(ByVal sender As _
System.Object, ByVal e As _
System.EventArgs) Handles cbSearch.Click

 Dim cName As String

 cName = tbName.Text
 cName = cName.Trim

 If cName.Length > 0 Then
 Response.Redirect("custlist.aspx?Name=" & cName)
 End If
 End Sub
End Class

This chunk of code shouldn’t intimidate anyone who has some VB.NET experience: it’s the exact
same VB.NET code you’d put in a non-web project. The only thing that might be new to you is
Response.Redirect command. This command tells the browser to load up a new page, and we’re
adding something called a query string to the end of the web page (a query string is like passing a
parameter as part of the URL).

Creating Page 2

The second page in our web application contains a empty datagrid and a label control. The code-
behind file looks as follows:

Imports System.Data.SqlClient

Public Class CustList
 Inherits System.Web.UI.Page
 Protected WithEvents lbMessage _
 As System.Web.UI.WebControls.Label
 Protected WithEvents aDataGrid _

Page 155 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 As System.Web.UI.WebControls.DataGrid

 Private Sub Page_Load(ByVal sender As _
 System.Object, ByVal e As _
 System.EventArgs) Handles MyBase.Load

 Const CONNECTIONSTRING As String = _ "DATABASE=Northwind;SERVER=localhost;UID=sa;PWD=;"

 Dim aDR As SqlDataReader
 Dim aConn As SqlConnection
 Dim aCmd As SqlCommand
 Dim SQL As String
 Dim cName As String

 cName = Request.QueryString("Name") & ""
 cName = cName.Trim

 lbMessage.Text = "names matching ‘" & cName & "‘"
 SQL = "Select CustomerID, CompanyName, "
 SQL = SQL & " ContactName from Customers "
 SQL = SQL & " where ContactName like ‘%" & cName & "%’"

 aConn = New SqlConnection(CONNECTIONSTRING)
 aCmd = New SqlCommand(SQL, aConn)

 aConn.Open()
 Try
 aDR = aCmd.ExecuteReader
 aDataGrid.DataSource = aDR
 aDataGrid.DataBind()
 Catch oEX As Exception ‘no records
 aDataGrid.Visible = False
 lbMessage.Text &= " (none)"
 Finally
 aConn.Close()
 End Try

 End Sub

End Class

Again, this code is syntactically just like any other VB.NET code you’ve worked on to this point.
Note one of the first lines in the Page_Load event is to pull the parameter off the current URL by
using Request.QueryString. This allows us to retrieve whatever the user typed into the text box on
the previous page. Then, a DataReader is opened and filled with all of the customers in the
Northwind database that contain the typed-in string. Finally, the datagrid is bound to that datareader.
The end result is the web page shown in the following illustration:

ASP.NET programming can (and will) be the subject of many books by itself, so we can’t do it full

Page 156 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

justice in this chapter. The point to understand is that once you become a .NET Framework and
VB.NET syntax expert, your path to also becoming a web developer is much shorter than it used to
be because you’ll be able to use most of the techniques and code from your VB.NET projects. In
fact, you’ll most likely be able to use many of your actual classes (at least the nonvisual classes) in
both VB and ASP projects.

Internet Topics
54: XML Speed Reading

The XML Reader code can be found in the folder prjSlashdotReader.

XML has been a major topic of conversation lately, commanding attention from books and articles
and websites and the like. The .NET strategy uses XML as a key part of its communication, though
in many cases this is an “under the hood” technology, so you as the developer need never know it.
However, many websites and third-party sources are starting to make their data available via the web
as XML, and it’s probably a good idea to learn how to directly parse XML. The prjSlashDotReader
project introduced earlier takes advantage of the fact that the SlashDot news site makes their current
news pages an XML document. Let’s see how I retrieved this document and parsed it out so that the
current news became menu items in my project.

The Class to Know

The XMLDocument class in the .NET Framework will give you everything you’ll need for parsing
valid XML data for your own purpose. This class contains members for creating and reading all of
the different types of XML data (and, since the XML spec seems to grow and morph on a weekly
basis, I’m sure we’ll be seeing some changes to this class as well).

If you have a valid XML document URL, you can load that XML file into an XMLDocument object
instance using the following code:

 Dim doc As New XmlDocument()
 Dim wr As WebRequest
 Dim ws As WebResponse
 Dim sr As StreamReader
 Try
 wr = _
 WebRequest.Create("images/www.slashdot.org/slashdot.xml")
 ws = wr.GetResponse()
 sr = New StreamReader(ws.GetResponseStream(), _
 Encoding.ASCII)

 ‘Read entire document
 cLine = sr.ReadToEnd()

 ‘Load the text into the xml document
 doc.LoadXml(cLine)
 Catch oEX As Exception
 MsgBox(oEX.ToString)
 Finally
 sr.close()
 ws.Close()
 End Try

The location for the SlashDot news XML document is images/www.slashdot.org/slashdot.xml. This
document is retrieved by first opening a WebRequest class, retrieving the response off that

Page 157 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

WebRequest, and then converting that response into a stream. Finally, the complete contents of the
stream are loaded into a single string variable named cLine.

Once the document content has been loaded into a local string, the XMLDocument instance can
import it using the LoadXml method. Now we have our document loaded into the object and we’re
ready to parse. A small portion of this XML code has been reproduced here so that you may refer to
it as I describe how the code parses it.

<?xml version="1.0" encoding="ISO-8859-1" ?>
- <backslash xmlns:backslash=
"http://slashdot.org/backslash.dtd">
- <story>
 <title>Slashback: Mono, Names, Locking Up</title>
 <url>http://slashdot.org/article.pl?sid=01/07/09/136208</url>
 <time>2001-07-09 23:59:34</time>
 <author>timothy</author>
 <department>goin’-south-again</department>
 <topic>slashback</topic>
 <comments>118</comments>
 <section>articles</section>
 
 </story>
- <story>
 <title>Canada Post Kills Free
Internet-For-Life Program</title>
 <url>http://slashdot.org/article.pl?
sid=01/07/09/2223227</url>
 <time>2001-07-09 22:44:48</time>
 <author>timothy</author>
 <department>only-kidding</department>
 <topic>internet</topic>
 <comments>124</comments>
 <section>articles</section>
 
 </story>

Scanning the XML Document

The highest level in the XML just shown appears to be a collection of <story> elements. Within
these elements are several different nodes, the most important of which are the <title> and <url>
nodes. We are going to use the <title> nodes as our menu text, and we also want to save the URLs
that correspond to each title.

If you’ll recall from “System Trays in Their Full, Upright Position,” I created a descendant class
from a standard MenuItem that contained an extra string property named URL for the purpose of
storing the URL for each story right in the menu item that the user will select when he wants to read
that story. That class, the MenuItemWithURL, is used in the parsing code:

Dim nlStories As XmlNodeList = _
doc.GetElementsByTagName("story")
Dim oNode As XmlNode
Dim oChild As XmlNode

For Each oNode In nlStories
cTitle = ""
 cURL = ""
 For Each oChild In oNode.ChildNodes
 If oChild.Name = "title" Then
 cTitle = oChild.InnerXml
 ElseIf oChild.Name = "url" Then

Page 158 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 cURL = oChild.InnerXml
 End If
 Next

 If cTitle.Length > 0 And cURL.Length > 0 Then
 aUMenuItem = New MenuItemWithURL(cTitle, cURL)
 AddHandler aUMenuItem.Click, AddressOf MenuClick
 aMenu.MenuItems.Add(aUMenuItem)
 End If
 Next

What we’re doing here is loading all of the <story> nodes into a collection known as an
XMLNodeList, in order to iterate through them. Each item in an XMLNodeList is of type
XMLNode. XMLNode objects themselves can have an XMLNodeList collection under them
(remember that an XML document is a fully recursive structure).

For each XML node that represents a story, we loop through all the child nodes. We’re looking for
the <title> tag and the <url> tag, and, if we find each, we store their values into a string variable. If
we end up finding both tags, then a MenuItemWithURL object instance is created, and it is added to
our menu.

Writing code to rip through an XML document is really easy in theory—in practice, however, you
usually have to have some idea of exactly what you’re looking for as you rip through it. In this case,
we knew we wanted to load up the <title> and <url> tag for each <story> node in our document. Of
course, XML documents can get infinitely complex, and your parsing logic will have to grow more
complex as you try and extract data out of such documents.

55: Producing XML

The XML writing code can be found in folder prjDataset and prj- ManualXML.

I’m sure that sooner or later, some outside party will ask you to make the data from your application
available in an XML format so that they might import it into their own applications. There are
several ways of doing this.

Database XML

If your application uses database data and you’ve already implemented the I/O by using the DataSet,
then creating XML is about as trivial as you can get. Once your DataSet is defined and populated,
you can use the GetXml method to return the XML representation of that dataset as a string variable:

 tbXML.Text = aDataset.GetXml

A sample of the XML produced by the sample project and the GetXml method is shown here:

<NewDataSet>
 <Products>
 <ProductID>1</ProductID>
 <ProductName>Chai</ProductName>
 <SupplierID>1</SupplierID>
 <CategoryID>1</CategoryID>
 <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
 <UnitPrice>18</UnitPrice>
 <UnitsInStock>39</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>10</ReorderLevel>
 <Discontinued>false</Discontinued>

Page 159 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 </Products>
 <Products>
 <ProductID>2</ProductID>
 <ProductName>Chang</ProductName>
 <SupplierID>1</SupplierID>
 <CategoryID>1</CategoryID>
 <QuantityPerUnit>24 - 12 oz bottles</QuantityPerUnit>
 <UnitPrice>19</UnitPrice>
 <UnitsInStock>17</UnitsInStock>
 <UnitsOnOrder>40</UnitsOnOrder>
 <ReorderLevel>25</ReorderLevel>
 <Discontinued>false</Discontinued>
 </Products>

If you’re interested in writing a DataSet’s XML to a file, you can use the WriteXml method in one of
its many incarnations:

Call aDataset.WriteXML("c:\fred.xml")

DataSets can export their schema as XML as well. The schema of an XML document is a list of the
nodes and their relationships, just as the schema of a database is a listing of the tables, columns, and
relationships between them. The tricky part is that an XML schema is itself an XML document. The
schema document describes the structure of the data document, if you will.

The GetXmlSchema method on the DataSet class is used to create the schema. Shown next is an
example of the DataSet schema from the sample project prjDataset:

<xsd:schema id="NewDataSet" targetNamespace=""
 xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:element name="NewDataSet" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Products">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ProductID"
 type="xsd:int" minOccurs="0" />
 <xsd:element name="ProductName"
 type="xsd:string" minOccurs="0" />
 <xsd:element name="SupplierID"
 type="xsd:int" minOccurs="0" />
 <xsd:element name="CategoryID"
 type="xsd:int" minOccurs="0" />
 <xsd:element name="QuantityPerUnit"
 type="xsd:string" minOccurs="0" />
 <xsd:element name="UnitPrice"
 type="xsd:decimal" minOccurs="0" />
 <xsd:element name="UnitsInStock"
 type="xsd:short" minOccurs="0" />
 <xsd:element name="UnitsOnOrder"
 type="xsd:short" minOccurs="0" />
 <xsd:element name="ReorderLevel"
 type="xsd:short" minOccurs="0" />
 <xsd:element name="Discontinued"
 type="xsd:boolean" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Note how the schema defines an element named Products and a bunch of elements under it named

Page 160 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

ProductID, ProductName, SupplierID, and so on. This is equivalent to describing a SQL Server table
named Products with fields named ProductID, ProductName, SupplierID, and so on.

Manual XML

If your goal is to manually produce an XML file on disk, then the XMLText- Writer class is what
you’ll probably use. This class contains methods for creating nodes structures of any complexity
level. Shown next is a code fragment and the resultant XML from that code:

 Private Sub WriteTheFile()

 Dim oW As New XmlTextWriter(cXMLFilename, Nothing)

 Try
 oW.Formatting = System.Xml.Formatting.Indented
 oW.WriteStartDocument(False)
 oW.WriteComment("This file represents another " & _
 "fragment of a book store inventory database")

 oW.WriteStartElement("order")

 oW.WriteStartElement("customer", Nothing)
 oW.WriteAttributeString("custid", "123456-Q")
 oW.WriteElementString("firstname", Nothing, _
 "matthew")
 oW.WriteElementString("lastname", Nothing, _
 "tagliaferri")
 oW.WriteEndElement()

 oW.WriteStartElement("ItemList", Nothing)

 oW.WriteStartElement("Item", Nothing)
 oW.WriteAttributeString("ItemID", "XD-1267")
 oW.WriteElementString("Description", "PowerBar")
 oW.WriteElementString("Quantity", "2")
 oW.WriteElementString("Price", "2.99")
 oW.WriteEndElement()

 oW.WriteStartElement("Item", Nothing)
 oW.WriteAttributeString("ItemID", "DE-2322")
 oW.WriteElementString("Description", "Grape-Ade")
 oW.WriteElementString("Quantity", "1")
 oW.WriteElementString("Price", ".89")
 oW.WriteEndElement()

 oW.WriteEndElement()
 oW.WriteEndElement()

 ‘Write the XML to file and close the writer
 oW.Flush()
 oW.Close()

 Finally
 oW.Close()
 End Try

 End Sub

<?xml version="1.0" standalone="no"?>
<!—This file represents another fragment of a
book store inventory database—>
<order>

Page 161 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 <customer custid="123456-Q">
 <firstname>matthew</firstname>
 <lastname>tagliaferri</lastname>
 </customer>
 <ItemList>
 <Item ItemID="XD-1267">
 <Description>PowerBar</Description>
 <Quantity>2</Quantity>
 <Price>2.99</Price>
 </Item>
 <Item ItemID="DE-2322">
 <Description>Grape-Ade</Description>
 <Quantity>1</Quantity>
 <Price>.89</Price>
 </Item>
 </ItemList>
</order>

As you can see, actually writing out the XML is pretty easy. As with any set of structured data, the
hard part is the organization of the data in a coherent manner that is understandable by whomever or
whatever needs to read it.

56: Special Delivery: Sending E-mail

The code accompanying this section can be found in the folder prjEmail.

I write quite a few programs that run unattended at night, and one way I use to report on their success
(or failure) is to have the program send me an e-mail that I can read in the morning. The contents of
the e-mail tells me if everything ran smoothly or—in the most dire cases—the failure to receive said
e-mail tells me something ran less than smoothly.

Sending an e-mail in Visual Basic.NET takes only a few lines of code, but getting those few lines to
work takes a bit of background work. E-mail sending is done using the SMTP services in Windows
NT or 2000, and therefore this service must be installed and running on your server to send the mail.
Adding this service is done in Control Panel, under the Add/Remove Programs section and then
under the Windows Components section. Under Internet Information Services (IIS), you should find
the SMTP mail service. Get this installed and running and you’ll be able to send e-mail from your
PC using the .NET Framework.

Sending mail is done using two classes, the SMTPMail class and the MailMessage class, both of
which are found in the System.web.Mail namespace. Following is the sample code that sends a test
message:

Private Sub cbSend_Click(ByVal sender As System.Object
, ByVal e As System.EventArgs) Handles cbSend.Click

 Dim m As New MailMessage()

 lbStatus.Text = "Sending Message"
 Application.DoEvents()

 m.From = "nobody@somewhere.net"
 m.To = tbTo.Text
 m.Subject = tbSubject.Text
 m.Body = tbMessage.Text
 m.BodyFormat = MailFormat.Text

 Try
 Call SmtpMail.Send(m)

Page 162 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 lbStatus.Text = "Message Sent"
 Catch oEx As Exception
 lbStatus.Text = oEx.Message
 End Try

 End Sub

This code takes the mail recipient, the subject, and the body from Textboxes found on the following
form, and sends the mail message off. The sender is the made-up address nobody@somewhere.net. I
implemented some simple exception handling because, as I mentioned, my first attempts at sending
e-mail were not successful (because I didn’t have the SMTP service installed), and I wanted as much
information as possible about why the e-mail wasn’t being sent properly.

57: Message for You, Sir

The message queue code can be found in the folder prjMessageQueues.

A few years back, Microsoft introduced message queuing technology as part of their Microsoft
Message Queue 1 product (called MSMQ for short). This product worked pretty well, assuming you
could get the thing installed on your NT 4 client machines in order to use it (oh, the horror stories I
could tell…).

Message Queuing is a technology that allows a client machine to send asynchronous messages back
to a server without the need to worry about the current connectivity state. The client application
doesn’t have to contact the server to check if it’s up, establish a connection, or anything of that
nature. In fact, the destination server in question need not even be up and running at the time the
message is sent. The best analogy for message queuing is to think of it as e-mail for code. The client
application can create an object instance, package it up in a message, and send it off. If the client is
connected to the server and all is well, the message flows to the server at that time. If the client
machine and server are currently not in contact (perhaps the client simply isn’t dialed in), the object
is stored in the client queue and shipped off automatically when connectivity is established.

The release of Windows 2000 made message queuing part of the operating system as a Windows NT
service, so the install woes of MSMQ version 1 pretty much vanished. They also removed the
requirement that the client machine be attached to the message queue server when configuring the
client service, which made client machine rollout a much simpler proposition. And now, with the
advent of the .NET Framework, Microsoft has introduced some readymade classes for taking
advantage of this technology in your applications.

The sample program acts as both the sender and receiver, so you might have to study it for a minute
or two to assure yourself that it is really two distinct processes communicating with one another.
Let’s see how to send things from a client perspective first.

Sending a Message

Page 163 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

The most obvious thing that you might want to send along in a message queue is a string. The code
behind the Send String button in the application performs that task with under a dozen lines of code:

Private Sub cbSendString_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles cbSendString.Click

 Try
 Dim mq As MessageQueue = New MessageQueue(QUEUEPATH)
 mq.Formatter = New BinaryMessageFormatter()
 Call mq.Send(tbOut.Text, "StringMessage")
 Catch oEX As Exception
 MsgBox(oEX.Message)
 End Try
End Sub

First, a MessageQueue object instance is created, with the name of the queue as the parameter into its
constructor (a message queue server can communicate via any number of queues. These queues can
be split up by application, type of message, or function). The message is set to be a binary format by
attaching a BinaryFormatter instance to the message. Then, the message is sent. The first parameter
in this example is the contents of a Textbox control on the main form of the application, but the data
type of this parameter can be any object instance (remember, simple strings are also inherited from
Object). The second parameter is known as the label of the message. This is equivalent of the subject
of the e-mail, to further that analogy.

Sending a more complex object isn’t much more difficult than sending a simple string. First, you
need to make sure that the object you want to send is marked as serializable, which is done using an
attribute. The following code shows the beginning of a simple class definition with the attribute
attached:

<Serializable()> _
Public Class PolygonDescriptor

 Private FNumSides As Integer
 Private FName As String

 Sub New()
 MyBase.New()
 FName = "Undefined"
 FNumSides = 0
 End Sub
…
End Class

Now that our class definition is marked as such, we can send it off in an MSMQ message, the same
way we sent a string:

Private Sub cbSendObject_Click(ByVal sender As _
System.Object, ByVal e As System.EventArgs) _
Handles cbSendObject.Click

 Dim p As New PolygonDescriptor("Square", 2)

 Select Case iCtr Mod 3
 Case 0
 p.Name = "Triangle"
 p.NumSides = 3
 Case 1
 p.Name = "Rectangle"
 p.NumSides = 4

Page 164 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Case Else
 p.Name = "Pentagon"
 p.NumSides = 5
 End Select
 iCtr += 1

Try
 Dim mq As MessageQueue = _
 New MessageQueue(QUEUEPATH)
 mq.Formatter = New BinaryMessageFormatter()
 Call mq.Send(tbOut.Text, "StringMessage")
 Catch oEX As Exception
 MsgBox(oEX.Message)
 End Try
 End Sub

The bottom of this procedure is identical to the string-sending code, with the exception of the send
method. The first parameter is the object instance we’re sending, and the second parameter is again
the label. In this implementation, we’re going to use the label to determine what type of object the
message contains.

The top of the procedure just sets up a simple iterative loop so that the object’s properties are
different each time you send an object into the queue (with three different variations on the object).

Get the Message (?)

We’ve got code to send the message; now we need to receive them on the server side. This is also
done using the MessageQueue object:

 If (Not MessageQueue.Exists(QUEUEPATH)) Then
 MessageQueue.Create(QUEUEPATH)
 End If

 oMSMQ = New MessageQueue(QUEUEPATH)
 oMSMQ.Formatter = New BinaryMessageFormatter()

 AddHandler oMSMQ.ReceiveCompleted, New _
 ReceiveCompletedEventHandler(AddressOf _
 ReceiveCompleted)
 oMSMQ.BeginReceive()

The first part of this code checks to see if a queue exists and creates it if not. Note that both the test
and queue creation is done using the static functions MessageQueue.Exists, and
MessageQueue.Create, as opposed to creating an instance of the MessageQueue class and then
calling methods off the instance.

Now that the queue is set up, we can open it up and start looking for messages. This program uses a
form-level variable named oMSMQ. This object is instantiated, the formatter attached (make sure to
use the same formatter class as the client programs are using), and then code is attached to the
ReceiveCompleted event of this object using the AddHandler statement. This event fires whenever a
message comes into the queue. Once that event is set up, the MessageQueue variable is instructed to
start listening for messages using the BeginReceive method. All we need to see now is the contents
of that ReceiveCompleted event so we know what the program does with the message when it
receives it:

Protected Sub ReceiveCompleted(ByVal sender _
As Object, ByVal args _
As ReceiveCompletedEventArgs)

Page 165 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim mq As MessageQueue = CType(sender, MessageQueue)
 mq.Formatter = New BinaryMessageFormatter()
 Dim m As System.Messaging.Message = _
 mq.EndReceive(args.AsyncResult)
 Dim p As PolygonDescriptor
 Dim cLine As String = Format(Now, "hh:mm:ss") & " - "

 Try
 If m.Label = "StringMessage" Then
 cLine = cLine & CStr(m.Body)
 Else
 p = CType(m.Body, PolygonDescriptor)
 cLine = cLine & p.ToString
 End If
 lbOutput.Items.Add(cLine)

 Catch oEX As Exception
 Call MsgBox(oEX.Message)
 Finally
 mq.BeginReceive()
 End Try
 End Sub

First, we have the message queue responsible for firing this event resolved to a local MessageQueue
object, since it comes through as a parameter having data type Object. Then, the EndReceive method
is issued on the queue, which retrieves the actual message sent.

Next, the label of the message object (named simply m in the code) is checked to see if a string or
PolygonDescriptor object was sent (these are the only two things this program sends, your client app
would have to be smarter if different objects were being passed in the queue). Depending on what’s
being sent, the message is extracted from the body of the message and reported on using the Listbox
on the form.

The last part is very important: the BeginReceive is reissued inside a Finally block. This method
must be reissued to make sure that the queue resumes looking for messages, no matter what
happened while processing this current message. Without this call, further messages would never be
extracted from the queue. Issuing the command inside a finally block guarantees that it is called.

The following illustration shows the program after sending a few of each message type:

58: Remoting Control

The remoting code can be found in the folder prjRemotingServer.

The computing universe is ever expanding, and our programs are expected to communicate over

Page 166 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

ever-widening boundaries. Point of sale systems are expected to be able to send data to the home
office retail system and retrieve information on an ad hoc basis from that same system. Never mind if
the home office and the retail outlet are in different cities, states, or countries. A remote sales force
requires instant access to up-to-the-second inventory information. If the company just filled a order
this morning and emptied the warehouse out of a hot item, the remote salesman needs to know.

Remoting is a term used to describe .NET Framework objects talking to each other across application
domains. The two domains might be on the same computer or on computers with an ocean or two
between them.

Developing applications using remoting concepts in the .NET Framework can be very powerful.
Your all-important business logic can be coding into objects that stay close to home and in a single
place and require remote users to access from their own location. Changes or new functionality to
these classes don’t require distribution of new code to the entire remote force (a pretty daunting task
for a 250-store retail chain or a sales force of 100+).

A remoting framework requires three parts: a server-based class, a server-based “listener” program to
wait for requests, and a client program to request instances of the server class. This section will
demonstrate the two server side components.

The Server Class

The server class that will be used to create remote instances from a client has but one requirement:
that it be a descendant of the MarshalByRef- Object class. This class uses the Northwind database to
report on the total amount spent by a customer, given the customer ID:

Imports System
Imports System.IO
Imports System.Data
Imports System.Data.SqlClient

Public Class OrderServantClass
 Inherits MarshalByRefObject

 Const CONNECTIONSTRING As String = _
 DATABASE=Northwind;SERVER=localhost;UID=sa;PWD=;"

 Public Function Test() As Integer
 Return 41
 End Function

 Public Function GetCustSpentAmount _
 (ByVal cCustID As String) As Single

 Dim SQL as String
 SQL = " SELECT ISNULL(SUM(ExtendedPrice),0) "
 SQL = SQL & " as TotalSpent "
 SQL = SQL & "FROM [Order Details Extended] OD "
 SQL = SQL & "INNER JOIN Orders O ON "
 SQL = SQL & "O.OrderID = OD.OrderID "
 SQL = SQL & "WHERE O.CustomerID = ‘" & cCustID & "‘"

 Dim oConn As New SqlConnection(CONNECTIONSTRING)
 Dim oCmd As New SqlCommand(SQL, oConn)
 oCmd.CommandType = CommandType.Text

 Dim iSpent As Single = 0
 Dim oRD As SqlDataReader

Page 167 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 oConn.Open()
 Try
 oRD = _
 oCmd.ExecuteReader(CommandBehavior.CloseConnection)
 If oRD.Read() Then
 iSpent = oRD.Item("TotalSpent")
 End If
 Finally
 oRD.Close()
 End Try

 Return iSpent

 End Function

End Class

This class should look no different from any other VB.NET class you’ve seen so far, except for it
being a descendant of the MarshalByRefObject class. The Test class is used purely as a debugging
placeholder—it provides something to call that returns a given value when making sure that the
remoting itself is working, rather than trying to track down a bug in the larger functions. The real
function, GetCustSpentAmount , takes the passed-in customer ID and runs it up against a view in the
Northwind database to see how much that customer spent. Exception handling is used to make sure
the remote object doesn’t behave poorly for the client application in the case of an error.

This object is compiled into its own assembly named OrderServant.DLL. Now that we have an
object ready to be called remotely, we need a simple "listener" program to load up that class and
prepare it to receive requests.

Listen Up!

The purpose of the listener program is to register the server class on either an HTTP channel or a
TCP channel. This program uses an HTTP channel for purposes we’ll examine later.

Imports System
Imports System.IO
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Http
Imports OrderServant

Class OrderServerClass

 Shared Sub Main()

 Const PORT As Integer = 5001
 Const URI As String = "Orders"

 ChannelServices.RegisterChannel(New HttpChannel(PORT))

 Dim oAsm As System.Reflection.Assembly
 Dim oTyp As Type
 Dim cMsg As String

 oAsm = System.Reflection.Assembly.Load("OrderServant")
 oTyp = oAsm.GetType("OrderServant.OrderServantClass")

 RemotingConfiguration.RegisterWellKnownServiceType(_
 oTyp, URI, WellKnownObjectMode.SingleCall)

 System.Console.WriteLine("")

Page 168 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 System.Console.WriteLine("")
 cMsg = "server ‘" & URI
 cMsg = cMsg & "‘ active on port " & PORT
 cMsg = cMsg & Environment.NewLine
 cMsg = cMsg & "to test in browser: "
 cMsg = cMsg & "http://localhost:" & PORT
 cMsg = cMsg & "/" & URI & "?WSDL" & Environment.NewLine
 cMsg = cMsg & "hit <enter> to stop"
 System.Console.WriteLine(cMsg)
 System.Console.ReadLine()

 End Sub

End Class

The channel you choose (5001 in this example) will need to be known by clients designed to use the
remote object. The channel is registered in the first line of the listener program. Then the server class
that is to serve as the remoting object is registered using the RegisterWellKnownServiceType
method. This method takes the type of the class as its first parameter (the type of a class can be
described using a class itself. This class is called Type and is part of the reflection abilities of
the .NET Framework). The second parameter is the name that the class will be known as by clients.
In this case, the more common name Orders is used instead of the actual name of the class,
OrderServantClass. The third parameter specifies that the each object created from the clients will be
a distinct object (SingleCall), rather than each client call sharing a single, global object instance
(Singleton). The latter type of remoting might be useful when objects have to share amongst
themselves and the remote object is brokering that object sharing.

Running the previous listener program gives the following results:

server ‘Orders’ active on port 5001
to test in browser: http://localhost:5001/Orders?WSDL
hit <enter> to stop

The URL displayed here can be entered into your favorite browser to test if the server is working.
The results you see in the browser represent the WSDL (web services description language) of the
remoted class. The WSDL is an XML description that describes the class.

<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="OrderServantClass" targetNamespace=
 "http://schemas.microsoft.com/clr/nsassem/OrderServant/
 OrderServant" xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:suds="http://www.w3.org/2000/wsdl/suds"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns2="http://schemas.microsoft.com/clr/nsassem/
 OrderServant.OrderServantClass/OrderServant"
 xmlns:ns0="http://schemas.microsoft.com/clr/nsassem/
 OrderServant/OrderServant"
 xmlns:ns1="http://schemas.microsoft.com/clr/ns/System"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
- <types>
 <schema targetNamespace="http://schemas.microsoft.com/
 clr/nsassem/OrderServant/OrderServant"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="unqualified" attributeFormDefault
 ="unqualified" />
 </types>

Page 169 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 <message name="OrderServantClass.TestInput" />
- <message name="OrderServantClass.TestOutput">
 <part name="return" type="xsd:int" />
 </message>
- <message name="OrderServantClass.GetCustSpentAmountInput">
 <part name="cCustID" type="xsd:string" />
 </message>
- <message name="OrderServantClass.GetCustSpentAmountOutput">
 <part name="return" type="xsd:float" />
 </message>
- <portType name="OrderServantClassPortType">
- <operation name="Test">
 <input name="TestRequest"

 message="ns0:OrderServantClass.TestInput" />
 <output name="TestResponse"
 message="ns0:OrderServantClass.TestOutput" />
 </operation>
- <operation name="GetCustSpentAmount">
 <input name="GetCustSpentAmountRequest"
 message="ns0:OrderServantClass.GetCustSpentAmountInput" />
 <output name="GetCustSpentAmountResponse"
 message="ns0:OrderServantClass.GetCustSpentAmountOutput" />
 </operation>
 </portType>
- <binding name="OrderServantClassBinding"
 type="ns0:OrderServantClassPortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <suds:class type="ns0:OrderServantClass"
 rootType="MarshalByRefObject" />
- <operation name="Test">
 <soap:operation soapAction=
 "http://schemas.microsoft.com/clr/nsassem/
 OrderServant.OrderServantClass/OrderServant#Test" />
- <input name="TestRequest">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://schemas.microsoft.com/clr/nsassem/
 OrderServant.OrderServantClass/OrderServant" />
 </input>
- <output name="TestResponse">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://schemas.microsoft.com/clr/nsassem/
 OrderServant.OrderServantClass/OrderServant" />
 </output>
 </operation>
- <operation name="GetCustSpentAmount">
 <soap:operation soapAction=
 "http://schemas.microsoft.com/clr/nsassem/
 OrderServant.OrderServantClass/
 OrderServant#GetCustSpentAmount" />
- <input name="GetCustSpentAmountRequest">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://schemas.microsoft.com/clr/nsassem/
 OrderServant.OrderServantClass/OrderServant" />
 </input>
- <output name="GetCustSpentAmountResponse">
 <soap:body use="encoded"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://schemas.microsoft.com/clr/nsassem/
 OrderServant.OrderServantClass/OrderServant" />

Page 170 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 </output>
 </operation>
 </binding>
- <service name="OrderServantClassService">
- <port name="OrderServantClassPort"
 binding="ns0:OrderServantClassBinding">

 <soap:address location=
 "http://24.51.177.153:5001/Orders" />
 </port>
 </service>
 </definitions>

When beginning with remoting, I recommend using the HTTP protocol to test out your objects
because it gives you the benefit of being able to test the communication in a browser as just shown.
You can’t perform a test like this when using the TCP protocol. However, once you’re confident in
the new technology, you might consider switching to the binary (and therefore faster) TCP protocol.

Now that you’ve got a remote class and a listener, you’re ready to write a client that calls it.

59: Remoting Control Calling

The code accompanying this section can be found in the folder prjRemotingClient.

To write a client application that calls your remote object, you can test the client application on the
same PC or a different PC that has connectivity to the server PC. Setting up the remoting call and
using the remote object instance is done as follows:

Imports System
Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.http
Imports OrderServant

Public Class OrderClient

 Shared Sub Main()

 ChannelServices.RegisterChannel(New HttpChannel())

 Dim oObj As OrderServantClass

 Dim oAsm As System.Reflection.Assembly
 Dim oTyp As Type
 Dim cMsg As String
 oAsm = System.Reflection.Assembly.Load("OrderServant")
 oTyp = oAsm.GetType("OrderServant.OrderServantClass")

 oObj = CType(Activator.GetObject(oTyp, _
 "http://localhost:5001/Orders"), _
 OrderServantClass)

 If oObj Is Nothing Then
 System.Console.WriteLine("Could not locate server")
 Else
 Dim cCust As String
 Dim iSpent As Single

 Console.WriteLine("")
 Console.Write("Enter a valid Customer ID: ")

Page 171 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 cCust = Console.ReadLine()

 Try
 iSpent = oObj.GetCustSpentAmount(cCust)
 If iSpent = 0 Then
 Console.WriteLine("customer " & _
 "ID invalid or spent $0.00")
 Else
 Console.WriteLine("customer spent $" & _
 iSpent)
 End If
 Catch oEX As Exception
 Console.WriteLine(oEX.Message)
 End Try
 Console.WriteLine("")
 Console.WriteLine("")
 End If
 Console.WriteLine("hit enter key to end")
 Console.ReadLine()

 End Sub

End Class

The key call in the client program is the Activator.GetObject call. This object creates an instance of
the remote object using the port and URL defined by the listener application and then typecasts that
object to the appropriate type for use in this application.

Remoting is a large topic that can warrant an entire book in its own right. There are many design
issues to consider such as what type of connection the end user might have to the remote server, or
how much data will be sent back and forth. A remoting solution won’t work in cases where a
network or Internet connection is not 100 percent available (how can the client create the remote
object instance without a connection to the server?). Do you want your application to “hang” while it
makes instantiates the remote object, or is there something it can do in the meantime? All of these
design issues will influence the design of your application and whether remoting is the correct
solution in your environment.

60: Web Service Creation

The web service code can be found in folder prjRemotingClient and prjWebService.

Remoting represents one way for client applications to access components on remote servers. This
method of object invocation is powerful and easy to use, but it is not open-ended. Only .NET clients
can invoke .NET remote objects. Microsoft was looking to provide a means of remote object
invocation using standard Internet protocols like HTTP and XML, as well as a means of creating
objects from any source. This was the idea that gave rise to web services.

Web services are defined strictly in terms of the functions that communicate with the outside world.
In that respect, they are not “complete” objects like regular .NET objects—you don’t create web
services with properties or events. Instead, the set of methods exposed by the object define the web
service.

To demonstrate that most .NET Framework classes can be exposed as a web service, I decided to
take the same server class used in the remoting samples and modify them for use as a web service.
Here is part of the code to describe the new server class:

Imports System

Page 172 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Imports System.IO
Imports System.Data
Imports System.Data.SqlClient
Imports System.Web.Services

Public Class OrderServantClass
 Inherits MarshalByRefObject

 <WebMethod()> _
 Public Function Test() As Integer
 Return 41
 End Function

 <WebMethod()> _
 Public Function GetCustSpentAmount(ByVal cCustID _
 As String) As Single

<stuff deleted>

 Return iSpent

 End Function

End Class

I removed much of the guts of the GetCustSpentAmount method so we can focus on the details of
setting up the web service itself. After some study, you’ll discover that the only difference between
this object and the remoting server is the addition of the WebMethod attribute at the start of each of
the methods. This attribute tells the .NET Framework to expose this method as part of the web
service.

Could that be it? In short, yes. You use the VB.NET you already know to create the class, and then
signify which methods make up the web service with the WebMethod attribute. Time for testing.

Testing, Testing…

To test your web service, create a new application in IIS. Take your compiled DLL and place it into
a BIN folder underneath the IIS application virtual directory. Then, create a file named orders.asmx
that contains the following line of text:

<%@ WebService Class="OrderServant.OrderServantClass" %>

The name in the quotes should match the assemblyname.classname of the .NET class created in the
last step (the assembly is the DLL name, and the class name is just that: the name of the class
created). The actual name of the .asmx file can be anything, you just need to know it when you want
to test or use the web service.

We’ve got the service all configured, so we can go to our browser and type the following URL to test
it all out:

http://localhost/prjwebservice/orders.asmx

The prjwebservice component of the URL is the virtual directory we created in IIS, and the
orders.asmx component is the name of the file we just created. If all is working correctly, you should
see something resembling the following description:

Page 173 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Note how the two web methods we defined in the class have been exposed in this sample web page.
Clicking each method in the browser will allow you to enter any necessary parameters and test the
functionality of the web service, all without the need to set up a client application before testing. This
allows a great division of labor. The web service component developers don’t have to mess around
with writing client code to test their services, and the client developers can see an exact description
of the available services by typing the URL.

Note that all of this fancy DLL-to-browser communication is happening via XML over standard
HTTP on plain old HTTP port 80. The object is described using an XML specification named SOAP,
which you can see if you add ?WSDL to the end of the URL in the browser. Because the
communication is happening over standard HTTP port 80, communications problems due to pesky
firewalls are eliminated. As long as your client can see your server over a standard Internet
connection, web services are a viable way to have the two communicate.

61: Web Service Usage

The web service client code can be found in folder prjWebServiceClient.

Microsoft’s vision of the future is that every online business and programmer will want to expose
business functionality via the Internet and web services. If this is true, our client applications will
link to and use all of these web services all over the world. Our remote salesman with a laptop may
dial up, check inventory levels using a web service we wrote, enter the order using another web
service, look up an address using a U.S Postal web service, and then check shipping schedules and
rates at using yet another web service provided by UPS.

If all this comes true, we client-side developers will have to become experts in linking to and
consuming web services, both our own and those from third parties. Fortunately for us, doing so
couldn’t have been made any easier.

To add a web service to your current project, go to the Solution Explorer and right-click the Web
References item in the Treeview. Select Add Web Reference. A dialog box will come up that allows
you to enter a URL. Simply add the exact URL that you entered to test the web service in the
previous step. The lower half of the dialog box will show the same browser output we saw when
testing our service. If all looks well, click Add Reference, and the web service is ready for our use.

Here is the code for a simple client to consume the customer order totals web service:

Imports System
Imports prjWebServiceClient.localhost

Public Class WebServiceClient

 Public Shared Sub Main()

 Dim cCust As String
 Dim iSpent As Single

Page 174 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 Dim oObj As OrderServantClass

 Console.WriteLine("")
 Console.Write("Enter a valid Customer ID: ")
 cCust = Console.ReadLine()

 oObj = New OrderServantClass()
 iSpent = oObj.GetCustSpentAmount(cCust)
 If iSpent = 0 Then
 Console.WriteLine("customer ID " & _
 "invalid or spent $0.00")
 Else
 Console.WriteLine("customer spent $" & iSpent)
 End If
 Console.WriteLine("")
 Console.WriteLine("")
 Console.WriteLine("hit enter key to end")
 Console.ReadLine()
 End Sub
End Class

Note that this code can declare a variable of class OrderServantClass directly, because the SOAP
description of the service tells our application that this class (and all of its methods) are part of that
service. In order to most easily use this class, the Imports section at the top of the project includes a
reference to the projectname.referencename displayed in the solution explorer.

Once all the linkage is done, the OrderServantClass can be used as easily as a class built right into
our application.

62: Talking to Microsoft TerraServer

The TerraService code can be found in folder prjTerraService.

One of the largest parts of the Microsoft vision of the future, and therefore a big part of the .NET
initiative, is the concept of the web service. The web service is a piece of code that does its job over
the Internet. This job could be anything from calculating a monetary exchange rate, returning a credit
history or package status, to locating and/or retrieving files.

In this new vision, Internet access is built into almost every program, not just programs that use the
browser as the interface. Regular desktop programs will call upon code across the world via the
Internet to provide their functionality as well.

An early example of a program that works in this brave new world is Gnutella. This program
attaches via the Internet to other Gnutella users and provides a list of shared files on all of those
users’ hard drives. These files can be MP3s (which makes Metallica et al. nervous), pictures, or any
file deemed sharable by a group of people. These types of programs provide all the power of the vast
world-encompassing network that the Internet has become, but not at the expense of the slimmed-
down, wizard-like simplicity of a browser-based application.

As a programmer in this new world, Microsoft hopes that we’ll all play nice with their new toys and
share. If we write a useful piece of code from which other programmers would benefit, we can use
the .NET technology to expose that code as a web service. Once installed as such, other
programmers can call our code over the Internet, have it do its job, and return information back to the
caller.

Accessing a Web Service

Page 175 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Web services use the common framework of XML to send the required information back and forth
across the .NET. However, you don’t need to be an XML expert to call an existing web service. In
fact, you may write an entire application that talks to a web service and not know that XML was
involved at all.

One of the first interesting, nontrivial web services to spring up is the .NET version of Microsoft
TerraServer, which is a huge database of aerial and satellite images of the earth, stored in a SQL
Server database, available online.

The first glimpses into the vast quantity TerraServer information came via the browser-based
interfaces at www.terraserver.com. One could use the supplied programs to look at a map by
latitude/longitude, famous place name, city name, or several other interfaces.

Close to the time that Visual Studio.NET beta 1 was released, a .NET- programmed web service
version of TerraServer was announced, called the TerraService. This exposes the enormous
collection of TerraServer data to the programmer. After licking my chops for a few seconds, I
decided to dive in and try to grab some data for my own little program: a TerraServer ballpark
viewer.

To use a web service in your program, you need to know its URL. The file extension at the end of
the URL is always .asmx. To add the web service to your project, go into the Solution Explorer and
right-click the Web References line in the Treeview. The first menu option will be Add Web
Reference. Selecting this option brings up the following dialog box:

The Add Web Reference dialog box works just like a mini-web browser application. In the Address
field at the top of the dialog, enter the web service URL (the one that ends in .asmx). This begins the
communication process between Visual Studio.NET and the web service. If the communication
works properly, the large box on the left side of the dialog will be populated with the available
interfaces available to you as the user of this web service. Once everything appears to be working,
simply click the Add Reference button on the dialog and the connection has been made.

At this point, you might want to rename the web reference in the Solution Explorer to match your
own naming scheme. I decided to leave my name as it was defined: net.terraservice. The name you
select for the service is important in the next step.

To expose all of the classes described by the web reference, you should also include the full
namespace of the web reference in the Imports section of your main form. The full namespace is the
project name of the current project, a period, and then the web reference name you used in the
previous step. The Imports section of my project is shown next:

Page 176 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

Imports System.IO
Imports System.Drawing.Imaging
Imports prjNewTerraservice.net.TerraService

Using the Web Services Classes

Once the web service has been added to your project and the namespace has been added to the
Imports section of your main form, Visual Studio.NET has all the information it needs to help you to
program using the new web service classes. They will appear in Intellisense along with all of the
other .NET Framework classes you have exposed to your project.

My ballpark viewer project leverages the fact that Microsoft TerraServer has thousands of “famous
places” stored in it by name and the ability to display the geographic region surrounding that famous
place. I selected a dozen baseball ballparks throughout the Major Leagues and included their names
in a Listbox on the left side of the form. Once the user selects one of the ballparks and hits the View
button, the display routines kicks in. That routine is reproduced next:

Protected Sub CreatBitmapBasedOnPlaceName(ByVal _
cPlaceName As String)

 Const IWIDTH As Integer = 600
 Const IHEIGHT As Integer = 400

 Dim theme As Theme = New Theme()
 Dim scale As Scale = New Scale()
 Dim ts As TerraService
 Dim abb As AreaBoundingBox
 Dim iImage As Image
 Dim pfs() As PlaceFacts

 Me.Cursor = Cursors.WaitCursor
 lbWait.text = "retrieving image data"
 application.DoEvents()

 Try
 ts = New TerraService()
 pfs = ts.GetPlaceList(cPlaceName, 1, False)
 If pfs.Length = 0 Then Exit Sub

 If rbAerial.Checked Then
 theme = Theme.Photo
 Else
 theme = Theme.Topo
 End If

 scale = Scale.Scale2m

 abb = ts.GetAreaFromPt(pfs(0).center, _
 theme, scale, IWIDTH, IHEIGHT)

 Dim pf As PixelFormat = PixelFormat.Format32bppRGB
 Dim compositeImage As Image = _
 New Bitmap(IWIDTH, IHEIGHT, pf)

 Dim compositeGraphics As Graphics = _
 Graphics.FromImage(compositeImage)

 Dim xStart As Integer = abb.NorthWest.TileMeta.Id.X
 Dim yStart As Integer = abb.NorthWest.TileMeta.Id.Y
 Dim x, y As Integer

Page 177 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 For x = xstart To abb.NorthEast.TileMeta.Id.X
 For y = ystart _
 To abb.SouthWest.TileMeta.Id.Y Step -1

 Dim tid As TileId
 Dim tileimage As Image

 tid = abb.NorthWest.TileMeta.Id
 tid.X = x
 tid.Y = y
 tileImage = Image.FromStream(New _
 MemoryStream(ts.GetTile(tid)))
 compositeGraphics.DrawImage(tileImage, _
 (x - xStart) * tileImage.Width - _
 abb.NorthWest.Offset.xOffset, _
 (yStart - y) * tileImage.Height - _
 abb.NorthWest.Offset.yOffset, _
 tileImage.Width, tileImage.Height)
 Next
 Next

 Compositeimage.Save(DUMMYNAME, imageformat.BMP)
 Finally
 Me.Cursor = Cursors.Arrow
 lbWait.text = ""
 End Try
End Sub

The name of the famous place to display is passed in as the sole para- meter. The first statement after
the TRY statement initializes the Terra- Service class. This is the "main" class in the web service,
and you must create an instance of it to use any TerraServer functionality in your project. The second
line after the TRY statement retrieves what’s known as a PlaceFacts object, based on the passed in
place (ballpark) name. The PlaceFacts class is a Collection class that contains within it some number
of PlaceFact classes. The GetPlaceList method allows you to specify the maximum number of
PlaceFact objects to return in the collection.

Working with the Graphics

The hardest part about working with TerraServer image data is that it is returned in 200X200 pixel
tiles. Usually, a single tile does not display enough visual information by itself to be useful to an end
user, so the programmer will almost always have to "stitch together" several adjacent tiles to display
a map with meaningful value.

The stitching process in the previous procedure takes up most of the routine. My final output picture
is 600X400, or three tiles across by two down. I have set up constants at the top of the routine to
specify this image size—the final routine can be changed to output different size pictures by
changing these constants.

The next important TerraServer-related line in the routine is the following:

abb = ts.GetAreaFromPt(pfs(0).center, _
theme, scale, IWIDTH, IHEIGHT)

This line passes in the PlaceFact object we received about our ballpark, along with the intended

Note Places like Cleveland or Los Angeles could have thousands of PlaceFact objects associated
with them in TerraServer. My program chooses to return only one PlaceFact object, since I
know that each ballpark is at the most granular level of place data in TerraServer.

Page 178 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

width and height of the final image, and returns another structure known as an AreaBoundingBox
structure. This structure contains the four geographic corner coordinates, as well as the center, of the
PlaceFact we pass it. We now have enough info to begin stitching our final image together. The next
three lines set up the destination bitmap in memory:

Dim pf As PixelFormat = PixelFormat.Format32bppRGB
Dim compositeImage As Image = _
New Bitmap(IWIDTH, IHEIGHT, pf)

Dim compositeGraphics As Graphics = _
Graphics.FromImage(compositeImage)

The object that we are going to draw into is an instance of the Graphics class. This class is the
encapsulation of a GDI+ drawing surface. We set up both a Graphics instance from a Bitmap
instance. The Bitmap instance is created by specifying the intended height and width, as well as a
Pixel- Format (number of colors in the bitmap).

Finally, the stitching loop begins (shown next). Actually, there are two loops, one side the other.
Both loops begin in the northwest corner of our map. The x loop travels east, and the y travels south.
For each tile, the GetTile method is called off the TerraService object instance. The tile image data is
loaded into a MemoryStream instance and in turn into an Image instance. Finally, this single image is
drawn into the composite- Graphics instance. Some reasonably tricky math has to be done to turn the
coordinates of the tile into the bitmap coordinates that we draw into.

For x = xstart To abb.NorthEast.TileMeta.Id.X
 For y = ystart To abb.SouthWest.TileMeta.Id.Y Step -1

 Dim tid As TileId
 Dim tileimage As Image

 tid = abb.NorthWest.TileMeta.Id
 tid.X = x
 tid.Y = y
 tileImage = Image.FromStream(New _
 MemoryStream(ts.GetTile(tid)))

 compositeGraphics.DrawImage(tileImage, _
 (x - xStart) * tileImage.Width - _
 abb.NorthWest.Offset.xOffset, _
 (yStart - y) * tileImage.Height - _
 abb.NorthWest.Offset.yOffset, _
 tileImage.Width, tileImage.Height)
 Next
Next

Once the loop is complete, our compositeGraphics instance contains the completed image.

The next step is to save this image to disk as a BMP file so we can load it into the form:

Compositeimage.Save(DUMMYNAME, imageformat.BMP)

The constant DUMMYNAME is a temporary filename that I used just for the life of this application.
The routine to load the BMP file into the PictureBox pbImage is fairly simple:

Public Sub LoadAndDeleteTheDiskFile()

 Dim f As file
 Dim s As New FileStream(DUMMYNAME, FileMode.Open)

Page 179 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

 pbImage.Image = system.Drawing.image.FromStream(s)
 s.Close()

 Try
 f = New File(DUMMYNAME)
 f.delete()
 Catch ert As Exception
 msgbox(ert.Message)
 End Try

End Sub

This code loads the BMP file into a FileStream object, and the pbImage object uses a method known
as FromStream to copy that stream data into itself for display, which can be seen in the following
figure. The dummy file is then deleted. I wrapped the file delete routine around a simple Try..Except
block because my first pass at this program was written in VB.NET beta 1, and I had uncovered a
small bug in the language that prevented the file from being deleted in all cases. I decided to leave
the handler in for the final version, as it helps warn the user if the program is going to leave the
dummy bitmap file on disk.

Page 180 of 180

15/03/2002file://E:\Books\dotNET\Visual%20Basic%20.NET%20I%20Didn't%20Know%20You...

