Page 1 of 180

Visual Basic .NET! : | Didn't Know You (

. ' by Matt Tagliaferri
Sybex © 2001, 303 pages
A crash-course guide for Visual Basic prog

need assistance managing the learning cui
language.

I Didn’t .

Know You Could
Do That...

Table of Contents

Visual Basic .NET!—I Didn't Know You Could Do That...
Introduction

From VB6 to VB.NET

Learning the Framework

OOP Techniques

Databases

More Framework Topics

Beyond Visual Basic

Internet Topics

Index

Back Cover

Discover Visual Basic .NET

Visual Basic .NET! | Didn't Know You Could Do That... will help you conquer
the .NET learning curve quickly as you make the transition to Microsoft's new
programming paradigm. Inside you'll find loads of ideas and advice that will
teach you the essential aspects of VB.NET.

Stop Monkeyin' Around and Get Up to Speed on VB.NET

This book covers all the key changes in the new version of Visual Basic.
Numerous example projects provide both an excellent teaching aid and a

file://E:\Books\dotNET\Visua %20Basi c%20.NET %20l %20Didn't%20K now%20Y ou... 15/03/2002

Page 2 of 180

great source library. With the tips and tricks in Visual Basic .NET! | Didn't
Know You Could Do That..., you'll be impressing your fellow VB programmers
in no time.

Go Bananas--Become a VB.NET Expert

Inside you'll learn how to:

Write smarter code

Use new object-oriented language features
Understand garbage collection

Use databases

Use VB objects in ASP.NET pages

Write and Consume XML web services

And much more!
About the Author

Matt Tagliaferri is a Senior Analyst with the Cleveland Indians baseball
organization. He has 12 years of experience in professional software
development and has programmed in Visual Basic since version 1.0 was
included free with a PC he purchased in 1992. Matt also wrote Duke Nukem
3D Level Design Handbook and Quake Level Design Handbook, both for
Sybex.

Visual Basic .NET!—I Didn't Know You Could
Do That...

Matt Tagliaferri

Associate Publisher: Richard Mills

Acquisitions and Developmental Editor: Tom Cirtin

Editor: Sally Engelfried

Production Editor: Kylie Johnston

Technical Editors: Greg Guntle, John Godfrey

Book Designers: Franz Baumhackl, Kate Kaminski

Electronic Publishing Specialist: NilaNichols

Proofreaders. Emily Hsuan, Dave Nash, Nicole Patrick, Y ariv Rabinovitch
Indexer: Lynnzee Elze

CD Coordinator: Christine Harris

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 3 of 180

CD Technician: Keith McNell
Cover Designer: Daniel Ziegler
Cover Illustrator/Photographer: PhotoDisc

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights
reserved. No part of this publication may be stored in aretrieval system, transmitted, or reproduced
in any way, including but not limited to photocopy, photograph, magnetic, or other record, without
the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2001094778
ISBN: 0-7821-2890-4

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the
United States and/or other countries.

IDKYCDT and | Didn’t Know Y ou Could Do That are trademarks of SYBEX Inc.

The CD interface was created using Macromedia Flash, COPYRIGHT 1995-2001 Macromedia Inc.
For more information on Macromedia and Macromedia Flash, visit www.macromedia.com.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks
from descriptive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based
upon final release software whenever possible. Portions of the manuscript may be based upon pre-
release versions supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or accuracy of the contents
herein and accept no liability of any kind including but not limited to performance, merchantability,
fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be
caused directly or indirectly from this book.

Manufactured in the United States of America
10987654321
Softwar e License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in the
future contain programs and/or text files (the“ Software™) to be used in connection with the book.
SYBEX hereby grants to you alicense to use the Software, subject to the terms that follow. Y our
purchase, acceptance, or use of the Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless otherwise indicated and is protected by
copyright to SYBEX or other copyright owner(s) as indicated in the mediafiles (the “ Owner(s)”).
Y ou are hereby granted a single-user license to use the Software for your personal, noncommercial
use only. You may not reproduce, sell, distribute, publish, circulate, or commercialy exploit the
Software, or any portion thereof, without the written consent of SYBEX and the specific copyright
owner(s) of any component software included on this media.

In the event that the Software or components include specific license requirements or end-user
agreements, statements of condition, disclaimers, limitations or warranties (“ End-User License”),

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 4 of 180

those End-User Licenses supersede the terms and conditions herein as to that particular Software
component. Y our purchase, acceptance, or use of the Software will constitute your acceptance of
such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to comply with all export laws and
regulations of the United States as such laws and regulations may exist from time to time.

Reusable Codein This Book

The authors created reusable code in this publication expressly for reuse for readers. Sybex grants
readers permission to reuse for any purpose the code found in this publication or its accompanying
CD-ROM so long as all of the authors are attributed in any application containing the reusable code,
and the code itself is never sold or commercially exploited as a stand-alone product.

Softwar e Support

Components of the supplemental Software and any offers associated with them may be supported by
the specific Owner(s) of that material, but they are not supported by SYBEX. Information regarding
any available support may be obtained from the Owner(s) using the information provided in the
appropriate read.me files or listed el sewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support or decline to honor any offer,
SYBEX bears no responsibility. This notice concerning support for the Software is provided for your
information only. SYBEX is not the agent or principal of the Owner(s), and SYBEX isin no way
responsible for providing any support for the Software, nor isit liable or responsible for any support
provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed mediato be free of physical defects for a period of ninety (90) days
after purchase. The Softwareis not available from SYBEX in any other form or media than that
enclosed herein or posted to www.sybex.com. If you discover a defect in the media during this
warranty period, you may obtain areplacement of identical format at no charge by sending the
defective media, postage prepaid, with proof of purchase to:

SYBEX Inc.

Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501

WEB: WWW.SYBEX.COM

After the 90-day period, you can obtain replacement media of identical format by sending us the
defective disk, proof of purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or implied, with respect to the
Software or its contents, quality, performance, merchantability, or fitness for a particular purpose. In
no event will SYBEX, itsdistributors, or dealers be liable to you or any other party for direct,
indirect, special, incidental, consequential, or other damages arising out of the use of or inability to
use the Software or its contents even if advised of the possibility of such damage. In the event that
the Software includes an online update feature, SYBEX further disclaims any obligation to provide
this feature for any specific duration other than the initial posting.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 5 of 180

The exclusion of implied warrantiesis not permitted by some states. Therefore, the above exclusion
may not apply to you. This warranty provides you with specific legal rights; there may be other
rights that you may have that vary from state to state. The pricing of the book with the Software by
SYBEX reflects the allocation of risk and limitations on liability contained in this agreement of
Terms and Conditions.

Sharewar e Distribution

This Software may contain various programs that are distributed as shareware. Copyright laws apply
to both shareware and ordinary commercial software, and the copyright Owner(s) retains al rights. If
you try a shareware program and continue using it, you are expected to register it. Individual
programs differ on details of trial periods, registration, and payment. Please observe the requirements
stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-protected or encrypted. However, in all
cases, reselling or redistributing these files without authorization is expressly forbidden except as
specifically provided for by the Owner(s) therein.

To Sophia, the stinker-doodle
Acknowledgments

Thiswas a difficult book to write, and there were many people who made it possible. First, Tom
Cirtin at Sybex receives thanks for shaping and focusing the idea of the book into itsfinal form. The
next round of kudos goesto Sally Engelfried and Kylie Johnston, who took my unstructured heap of
book copy and organized it into a coherent whole. | also need to thank Greg Guntle and John
Godfrey for going over the thousands of lines of code with a fine-toothed comb and making sure it
worked on more than the two PCs | have available for .NET testing at the moment. Finaly, | need to
thank my ever-tolerant wife Janet, who stared at my back as| sat swearing in front of my PC these
past few months.

| ntroduction

About ayear ago, | began reading about the forthcoming version of Visual Basic, and | was jazzed
about it from the get-go. The early details were sketchy, but | did know that Microsoft was going to
turn Visual Basic into afull object-oriented language. | had experience in some “full” object -
oriented development and was quite impressed with the way that good OOP design seemed to
naturally organize my thoughts (and my code). | was eager to begin using these design principlesin
Visual Basic.

Of course, such power was not to come without a price. The new Visual Basic, | would learn, was
not to be backward compatible with VB6. Since all of my current day job development wasin VB6,
upgrading to the new language would not simply be a one day slam-dunk, asit was when | moved
from Visual Basic4to 5 or from VB5 to VB6.

| was doubly excited when | was offered the chance by Sybex to write a book highlighting some of
the power of VB.NET for people just like myself—experienced Visua Basic programmers who
wanted a crash course to help tackle the learning curve associated with learning the new language.

Of course, in order to help get you, the reader, over the VB.NET learning curve, | had to get over it
myself. My prior object-oriented programming experience helped a bit here, as did some pretty fine

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 6 of 180

Microsoft documentation (especially for an early beta—much of the example programs in this book
were developed in Visual Studio.NET beta 1 and converted to beta 2 once it became available). |
can't claim myself abonafide “expert” in the NET Framework as of yet (not without a year or two
of real -world development under my belt), but writing this book has me well on my way. | hope that
reading the book will point you in that direction as well.

Who Am |?

| was one of only two sophomoresin my high school way back in 1982 who was offered a computer
class after the high school purchased six TRS-80s (“ Trash-80s,” we called them). | attended the PC
classesin junior and senior year, as well. Those were fun times, as the teachers were pretty much
learning to navigate the PC world at the same time we were, and we all kind of stumbled through
those first years together.

Once | got my hands on software development in high school, | didn’t let go. | got my B.S. in
Information Systems at the Ohio State University (s’go Bucks!) and started work shortly thereafter
for an insurance organization. My job there was pretty interesting: all their datawas locked inside
this legacy mainframe system (I couldn’t even tell you what system), and one of their mainframe
programmers wrote a custom query tool that extracted the data out of the mainframe and into PC text
files. They hired me out of school to act as a “business analyst,” which basically meant that | would
do ad hoc projects for people in the company (spitting out mailing labels, summarizing data to back
up research projects, and so on). My programming tool at the time was FoxPro 2 by Fox Software
(before Microsoft swallowed them whole).

When | |€eft the insurance company, | began ajob-hopping journey (some my own doing, some the
doing of layoffs and mergers) through severa industries, including finance, retail, commercial
software development (an antivirus package), and trucking. The main lesson that | learned during
these sojourns was that, even though | was pretty much doing the same work (cranking out code) for
all of these companies, | wasn’t really happy in any job unless | personally found the industry
interesting. Having had this epiphany, | set out to land ajob in the coolest industry | could think of,
which brought me to my current (and, | hope, final) position at the Cleveland Indians’ office, where
I” ve been happily designing in-house systems for just over four years.

Not being satisfied with developing software a mere eight hours per day, | also write some codein
my spare time. | became enamored with the PC game industry and found myself writing level -editing
programs for games like Doom and Quake. | also wrote my first two books for Sybex on
constructing levels for games. My Quake level editor, gED, enjoyed modest success as a shrink-
wrapped, retail piece of software.

If something ever does manage to get me away from my PC, it’ susually my wife and two little girls
or a baseball game.

About the Book

The book is based on Visual Basic.NET Beta 2, and isaimed at the experienced Visua Basic
programmer. Having stated this, | don’'t spend any time on a “hello world’ program of any type. |
also wanted to stay away from the other extreme, however: writing a complete, fully functional
application of some sort and then explaining every line of it. These “ made for the book” applications
are rarely of much use to the majority of readers. Instead, | chose to write small programs that
embody one or two of the topicsin the book.

| didn’t waste time prettying up the interface on the programs or designing them to pretend that they
were part of some productive application. Some of the programs are simply buttons that do their

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 7 of 180

thing when clicked, along with a means to output the results (Listbox, label, Treeview, and so on).
The focus here is on the nuts and bolts of the code that performs the task in question.

| hope you can take some of the example code and refer to it later as you start to develop your own
applications. Need to read from atext file? One of the examples reads the contents of atext file and
loads the results into a multiline Textbox. Need to read and write to INI files? The book contains a
self-contained class for doing just that.

What'son the CD

The CD contains all of the projects that correspond to the example code found in the book text.
Thereis not always a one-to-one relationship between book section and project. For example, there
isaproject named prjNetNotePad that contains sample code for three of the topics (reading from a
text file, writing to atext file, and owner-drawn menus). In many other cases, asingle project does
correspond to a single topic (the message queuing section, for example). At the beginning of each
topic | tell you the name of the folder on the CD that contains the code corresponding to that section.

Conventions

Most of the text of this book is formatted like this paragraph. Occasionally, code elements, project
names, and URL s are set in afixed-width font, as shown in this sentence, to distinguish them from
regular text. Code examples appear as follows:

Di m aTabl e As Dat aTabl e
aTabl e = aDat aset. Tabl es(" Product s")

At the beginning of each topic, you’ll see a pointer to the relevant code on the CD that looks like this.

Note Information that might be helpful but tangential to the topic at hand is set off from regular text
in notes.
Warning Special cautionary information isfound in warnings that look like this.

Onward to VB.NET

Asyou’ve probably already figured out, the NET Framework is abrave, new world. It offers new
capabilitiesto VB programmers but not without a cost: you have afew thingsto learn, and you'll
change the way you approach programming. The mission of this book isto turn you from aVB.NET
novice into an “experienced programmer.” With any luck at al, it will give you the confidence to
march into your boss’s office and justify the need to rewrite al of your current VB code in the new
version of the language using the .NET platform, thereby justifying your existence at your place of
business for many yearsto come. And, if you're like me, you'll have aton of fun doing it.

From VB6to VB.NET
1. Using the New Operators

The new operator code can be found in the folder prjOperators.

Visual Basic has always been a bit behind the curve in its use of operators. Fortunately, the .NET
Framework has allowed Microsoft to easily make some old shortcuts as well as some new operators
available to the VB programmer.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 8 of 180

Operator Shortcuts

Borrowing from the C family of languages, you can now shorten the line of code

with the following

X += 1

Most of the other basic operators work the same way, as shown in the following table:

|Operator Shortcut ||Short For ||M eaning |
X+=y Ix=x+y lladd y to x and put result in x |
X-=y Ix=x-y ||subtract y from x and put result in x |
|x*:y ||x:x* y ||mu|tip|yybyxand put result in x |
|X 1=y ||x=x/y ||dividex by y and put result in x |
x\=y x=x\y divide x by y and put result in x (integer
divide)

Ix "=y Ix=x"y |Iraise x to the y power and put result in x |
|x &=y ||x:x& y ||concatenateytox and put result in x (string) |

All of the operators shown in the table are arithmetic operators, with the exception of the string
concatenation operator & .

Bitwise Operators

Visual Basic has never had operators for performing bitwise functions—until now, that is. The
following table shows the three bitwise operators available in VB.NET.

|Operator ||Short For ||M eaning ||Examp|e ||Resu|t |
And Bitwise And Both left and right ||1 And O 0
side of the operator
Or Bitwise Inclusive ||Either left or right ||1Or O 1
Or side of operator is 1
Xor Bitwise Exclusive ||Either left or right ||1 Xor O 1
Or side of operator is
1, but not both

As arefresher, the following table shows the four possible combinations of left and right sides of
bitwise operators and the result of each:

|L eft ||Right ||Bitand ||Bitor ||Bitxor |
0 o o o o |
0 [lo i i |
1L o o lL lL |
1L L L lL lo |

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 9 of 180
Still Missing

The following lists some operators that you might be familiar with in other languages but that still
haven’'t made their way into Visual Basic yet:

Mod Shortcut Many languages use % as a shortcut for the modulus (remainder) operator and then
use X %=y as a shortcut for taking the remainder of x divided by y and putting the result back in x.
The Visual Basic modulus operator is still “mod”, and there is no corresponding operator shortcut.

Bitwise Shift There are till no operators for shifting a set of bits|eft or right.

Postfix increment/decrement The C language family allows you to write x++, which is short for x
=X+ 1, or x—, which is short for x = x - 1. These operator shortcuts are not available in Visual
Basic. (One wonders why x +=y was borrowed from C, but not x++.)

Using the Operators

The example program (illustrated here) shows all of the new Visual Basic arithmetic operatorsin
action:

"~ Addition (+)
~ Subtraction (-)

[5 @ Multiplication () [3
 Integer Division (\)

wn

© Bitwise AND
* Bitwise OR =
El
[| Answer: 15 7z

It isdivided into two sections. The left side of the program is a rudimentary calculator that takes the
integer values entered into two text box controls and performs an operation on them, depending on
the radio button selected. The code that determines what operation to take is shown here:

Private Sub cbConmpute_Click(ByVal sender As System Object,
ByVal e As System Event Args) Handl es cbConpute. Click

Di mi Val ueA As I nteger
Di mi Val ueB As I nteger

‘exception handl ers catch user putting
‘non-nunbers in text boxes

Try

i Val ueA = CInt (t bA. Text)
Cat ch

t bA. Text = "0"

i Val ueA = 0
End Try
Try

i Val ueB = CInt (tbB. Text)
Cat ch

t bB. Text = "0"

i ValueB = 0
End Try

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 10 of 180

I f rbPl us. Checked Then
i Val ueA += i Val ueB ‘this is short for
i Val ueA = i Val ueA + i Val ueB.
El sel f rbM nus. Checked Then
i Val ueA -= i Val ueB
El self rbTi nes. Checked Then
i Val ueA *= i Val ueB
El self rbDi v. Checked Then
Try
i Val ueA \ = i Val ueB
Catch eErr As Exception
Call MsgBox(eErr. ToString)
End Try
El sel f rbAnd. Checked Then
i Val ueA = i Val ueA And i Val ueB
El self rbOR Checked Then
i Val ueA = i Val ueA O i Val ueB
End | f

| bAnswer . Text = "Answer: " & i Val ueA
End Sub

The procedure makes use of exception handling to make sure that numeric values are entered in the

text boxes (zeros are used as the operands if nonnumeric values are supplied) and to trap any divide-
by-zero errors that might occur. The rest of the routine merely checks which radio button is checked
and performs the correct operation on the two numbers.

The second part of the program generates the beginning of the Fibonacci sequence of numbers and
displaysthe resultsin a Listbox:

Private Sub cbFib_Click(ByVal sender As System Cbject,
ByVal e As System Event Args) Handl es cbFib. Click

1
1

Dimi As Integer
Dimj As Integer
Dimt As Integer
DmiCtr As Integer = 0

DimarList As New ArraylLi st (20)

arList. Add(i)
arList. Add(j)

For iCr =0 To 20

t =i ‘save i
i += ‘add j to i
j =t ‘put save i into j
arList. Add(i) ‘add result to arrayli st
Next
| bFi b. Dat aSource = arlLi st ‘bind arraylist to |istbox
End Sub

This procedure makes use of the ArrayList class to store the integers and then binds the ArrayList to
the Listbox in the last line. The idea behind the Fibonacci sequenceisto start two variables at value
1, add them together, and store the result back into one of the variables. Y ou then repeat this process
aslong as desired. The previous sample generates the first 21 values in the sequence.

2: New Tricksin Variable Declar ation

The variable declaration code can be found in the folder prjVariables.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 11 of 180

Usually, abook in this format might not cover something as rudimentary as variable declarationin a
programming language. However, Visual Basic.NET has quite afew significant differencesin its
base data types and variable declaration syntax. These differences bear discussion, because not
knowing about them can cause anything from temporary confusion to a hair-pulling bug or two.

Integer Type Changes

The first mgjor change you need to be aware of isthat an Integer isnot an Integer anymore (huh?).
Likewise, aLong isnot aLong, either. In previous versions of Visual Basic, avariable declared as an
Integer gave you a 16-bit variable with arange from —32768 to +32767. In VB.NET, an Integer isa
32-bit variable with arange from about negative to positive 2 million. In other words, it’ s what you
usedto call alLong. A variable declared in VB.NET asalong is now a 64-bit integer. So, where did
the 16-bit integer go? That’s now called a Short. Here’s a quick translation table:

IWhat You Used to Call llIsNow Called |
lInteger llShort |
[Long Integer |

|

IReally big 64-bit number that | can’t define ||Long

Why in the name of Sweet Fancy Moses did Microsoft change the integer type names in what seems
to be the most confusing way imaginable? There’s a good reason, actually. The answer liesin the
fact that the .NET platform is Microsoft’s attempt to bring al (or most, anyway) of their
programming languages under a single runtime umbrella: the NET Framework. One problem in
attempting this was that Microsoft’s C++ and Visual Basic languages did not use acommon naming
system for their data types. So, in order to unify the naming system, some changes had to be made in
one or the other of the languages, and we VB programmers were chosen to take on the challenging
task of learning a new naming convention (because of our superior intelligence, naturally).

If the new integer naming scheme is simply too much for you to keep track of, you have anice,
simple alternative, fortunately. The Short, Integer, and Long data types are the VB equival ents of
the .NET Framework data types System.Int16, System.Int32, and System.Int64. Y ou can aways
declare your integer variables using these types instead. Thiswould certainly end all confusion asto
what type iswhat size.

Dim Statement Behaves Differently

Consider the following Visual Basic variable declaration:

Dim A, B, C as Integer

In VB.OLD, aline like this was the source of boundless confusion among programmers because the
datatype of variables A and B was not well defined. The intention of the programmer was probably

to declare three Integer variables, but VB6 and below did not treat thislinein thisway. Instead, only

variable C was declared as an Integer, and A and B are most likely variants

VB.NET corrects this long-time confusion. The previous line behaves as God, Bill Gates, and most
likely the programmer who wrote it intended it to behave: it declares three Integer variables.

Y ou can still add each type explicitly, or you can mix types, as shown here:

Dim A as Short, B as Integer, C as String

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 12 of 180

No MoreVariants

The Variant data type has gone the way of the mastodon. Instead, the base, catch-all datatypein
Visual Basic.NET isthe Object. The new Object type duplicates al the functionality of the old
variant.

Personally, | was never much for using the Variant datatype because it seemed like all | was ever
doing was explicitly converting the contents of my variant variables into integers or strings or
whatever in order to perform accurate operations on them. However, | find I’'m already using the
Object data type much more frequently becauseit’s not just for holding base data types like integers
and strings, but also for holding actual class instance types like Buttons, Forms, or my own invented
classes.

Initializers

Initializers are a cute new feature that let you declare and initialize avariable in the same ling, asin
these examples:

Dim X as Integer = 0
DimS as String = "SoneStringVal ue”
Dim B as New Button()
Dim A(4) As Integer = {0, 10, -2, 8}

Thefirst two declare and initialize ssmple data types to default values. The third lineis a holdover
from prior versions of VB—it declares an object of type button and instantiates it in the same line.
Thelast line creates an array of four integers and sets the initial values of all four elementsin the

array.

Note Arraysin Visual Basic.NET are aways zero-based arrays. The Option Base statement is no
longer supported.

L ocal Scope

A variable can now be declared inside a statement block such as an If or Do While statement, and the
variable will have scope only within the block in which it is declared, for example:

Di m bDone As Bool ean = Fal se
Dimr As New Random()

Do Whil e Not bDone
DimY As Integer

Y = r.Next(1, 100)
bDone = (Y < 10)
Loop

Call Console.Witeline("Final value=" &Y)

This block of code will not compile properly because the declaration of Y isinside the Do While
block, but the Console. Writeline attempts to access it. Since the Console Writeline is outside the
scope of the loop, the variable is also out of scope.

Most programmers might combat the potential for these local scope errors by putting every Dim
statement at the top of the procedure or function. This can lead to an inefficient use of resources,
however. Consider the following code fragment:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 13 of 180

I f not UserHasAl readyRegi stered() then
Dimf as New Regi strationForm)
f. ShowDi al g

end if

In this code, some magic function goes off and checks if the program has already been registered. If
it has not, then an instance of the registration form is declared and shown. If the user has already
registered the software, why bother creating an instance of aform that will never be displayed? All
thisdoesis clog up the garbage collector later. Asyou can see, clever use of local scope variable can
save your program memory, making it run more efficiently.

3: Avoiding Redundant Function Calls

The redundant function calls code can be found in the folder prjRedundantFunctionCalls.

This little coding shortcut seems so obvious that | aimost didn’t consider it worth inclusion in the
book, but | see this rule broken so frequently that | felt it worth repeating. The rule, in its most basic
form, isasfollows:

Why execute code more than once when running it once gives the same result?

To illustrate the rule with an absurd example, consider the following block of code:

For X
Y
Next

1 to 1000
2

Thisloop assigns the value 2 to variable Y, one thousand times in arow. Nobody would ever do this,
would they? What’ s the point? Since no other code executes in the loop except for the assignment
statement, you know that nothing could possibly be affecting the value of Y, except the assignment
statement itself.

When the previous loop is complete, Y hasthe value of 2. It doesn’t matter if thisloop runs one
thousand times, one hundred times, or simply once—the end result is the same.

While I’ ve never seen code quite as worthless as this, the following block of codeis very close to
onethat | read in aVisua Basic programming article a while back:

Do Wiile instr(cText, "a") > 0
cText = Left(cText, instr(cText, "a") - 1) & _
"A" & md(cText, instr(cText, "a") + 1)
Loop

This code scans through the contents of a string variable and replaces all of the lowercase letter a's
with uppercase A’s. While the function performs exactly what it’s intended to perform, it doessoin a
very inefficient manner. Can you detect the inefficiency?

A Simple Speedup

To determine what rankled my feathers so much about this block of code, you need to think about
how long it takes your lines of code to run. All Visual Basic lines of code are not created equal in
terms of the length of time they take to execute. Take the instr function, for example. Theinstr
function scans through a string looking for the occurrence of a second string. Imagine that you had to
write a Visual Basic replacement for the instr function. Y ou would start at the beginning of the
string, compare it to the comparison string, and keep looping through each character until you either

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 14 of 180

found the comparison string, or got to the end of the original string.

The instr function built into Visual Basic probably does the same thing, abeit in some optimized
fashion. However, you don’t get anything for free. If you call instr, Visual Basic internally loops
through the test string looking for the comparison string. Thisloop is going to take some finite
amount of time (avery small amount of time, to be sure, but a finite amount, nonetheless). Following
my rule, why would you want to run this loop more than once when running it once gives the same
result?

The previoustiny little block of code calls the exact same instr function three times every time the
loop isiterated. If you assume that the instr call itself runs as | surmise (some linear search through
the input string), the instr call will take longer to run on bigger input strings (because the code has to
loop through every character in the string). What if the input string to the loop was the entire
contents of all the books in the Library of Congress? Let’s say, for the sake of argument, that the
instr call takes one minute to run on a string as large as the entire contents of the Library of
Congress. Since | call theinstr call three times, the loop will require (at least) three minutes for every
iteration of the loop. Multiply that by the number of A’sfound in the Library of Congress, and you' Il
have the total operating time of the loop.

If I make a simple change to the loop, | can reduce the number of instr function calls from threeto
one:

i Pos = instr(cText, "a")

Do While iPos > 0
cText = Left(cText, iPos - 1) & "A" & mid(cText, iPos + 1)
i Pos = instr(cText, "a")

Loop

The change | made was to store the result of the instr function call into a variable and to use that
variable in thefirst line of the loop, where the lowercase a is replaced by an uppercase A. The loop
result is the same, but the instr function is called only once per loop iteration.

Does a change like this really make a difference in speed? The example program proves the
difference. The program creates alarge string of random letters (with spaces thrown in to make them
look a bit more like words) and then runs through one of the previous loops to replace all of the
lowercase a’s with uppercase A’s. The “fast” loop (one instr call per loop iteration), runs at about 75
percent of the speed of the "slow" loop (three instr calls per loop iteration). A 25 percent speed
savingsis considered quite good. If aloop of thistype were called repeatedly in your application, a
25 percent speed increase might make your application feel faster to the end users. I’ ve learned that
the feel of an application is of primary importance to the end user—if the program feels slow, the
user might not use the application.

Note The example program shows a brief example of random number generation in Visual Basic. A
class called Random isincluded in the .NET Framework that handles all types of random
number generation. The Random class contains methods for generating floating point random

numbers between 0.0 and 1.0 or between a numeric range. See the example program function
named RandomBigString for some sample uses of the Random class.

4: The Visual Studio “HoneyDo” List

The Task List code can be found in the folder prjDataset.

At my home, asin many homes, I’ m sure, we have what we call a “HoneyDo” list—allist of

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 15 of 180

outstanding jobs around the house for me to do. These jobs range in size from small things like
sweeping out the garage or putting up some shelves to larger tasks like removing wallpaper or
staining the deck. Sometimes, I'll be working on one chore that reveals a second—Iike when | pull
up old carpet in the basement only to reveal some rust-stained concrete underneath. Or when |
discover a hole created by chipmunks while cleaning out the garage. It never ends.

When things like this happen, | often don’t have time to get to the second job in the same day (the
ballgame awaits, after al...). Instead, | add it to the HoneyDo list, complete the first job, and get
back to the second job another day. Visual Studio.NET has a feature much like the HoneyDo list
(except that it doesn’t call me*honey”—good thing): the Task List. The Task List issimilar to that
found in Outlook, or even previous versions of Visual Studio, with one important distinction: you
can auto-fill Task List entries with specially constructed comments. Let’slook at how this works.

Task List categories are set up under the Tools @ Options dialog. The Task List settings are under
the Environment category, as shown in the next illustration.

Epbon x|
~§ Efmvirofresil; - iaarursl
penaral F Confurm deleiann of Lisks

I vwearn when sdding s uer task that wont Be shown

It
Forks and Colors Commant Toksns
H
I'H:L Token Lisk; Priorky; Yearre;
i e used misfunl Sl Do L . e S
Kicksid Btz [Mewa =] [LPGRADE waRnING
Projescts and Solubon: L;_L;Ii .
o

w Task Lhk
Wb Browess
) Seawoe Contral

|

) Taxd Edber _Jm
= WET Framesvorks Desigrd—
1l Analyzer Qm
= Drakabuari Tesi The TOO inkan cannot ba nanamed or removed, Buk the prionty For e
1 Db | okan con b il
Lfs=————]
I

Note Asyou can seein theillustration, | created a BETAZ2 token that | used throughout the
development of this book. Whenever something wasn’t working in VS.NET beta 1 and |
suspected that the problem might be because the language was an early beta, | left myself a
note to recheck the problem once | received VS.NET beta 2.

Y ou can modify the entries under the Tokenslist. A token is a specia phrase with which you can
begin acomment. If you do begin a comment with one of the predefined tokens, an entry is
automatically added to the task list. The text of the task is the text of the comment. This code snippet
shows a comment entered into the sample project:

TODO - replace connection object |ater
Di m aConn As New SQLConnecti on(CONNECTI ONSTRI NG)

Because the comment begins with the TODO token, atask is automatically placed into the Task list,
as shown here:

T —

W T D - [

T ©ifemanes wed . el
= UPERALE T - R i ighl e Codmaumits ad, grCaadehen.r
T PIAZ - e e ke b Jrraiy g yrDeale i & 1!

e[S

Once the comment is set up in thisway, you can double-click theitem in the Task List and it will
zoom your code directly to the corresponding comment. Deleting the comment del etes the task in the
Task List. Thisfunctionality acts as the HoneyDo list for your project. Y ou can set up open tasks as
comments and they’ || show up in the Task List. Using different tokens allows you to group tasks
under different categories and priorities.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 16 of 180

5: Delving into Docking and Anchoring

The docking and anchoring code can be found in the folder prjAnchors.

Finaly, finally, finally! | am so tired of writing code to resize controls on aform. How many third-
party auto-resizer VBXs and OCXs and ActiveX controls have been put on the commercial and
freeware market? Being the type of person who would only use athird-party control when its
functionality couldn’t be duplicated with good old VB code, | never used one of these controls.
Instead, | used to spend an hour writing silly little snippets of code in the Resize event of my VB
formsto do thingslike:

e Making sure the Treeview got longer as the form did
e Making sure the grid got wider as the form did
¢ Keeping the OK and Cancel buttons near the bottom of the form

Visual Basic GUI components finally have two properties that save me from having to write this
kind of time-wasting code ever again. These are called the Dock and Anchor properties (any reason
why they chose two maritime references?).

The Dock property can be set to one of the following values: None (the default), Top, Left, Right,
Bottom, or Fill . Setting the property to None causes the control to stay right where you put it on the
form. A setting of Top, Left, Bottom, or Right causes the control to remain attached to that side of
the parent of the control. Setting these propertiesin the Visual Studio Property Editor is done with a
little graphical representation, as shown here:

Prieed B

x|
| TreeWiew] Systemn WinForms. Tiseties =

st (HH =
Selechedimageinda |: o |
Fhoeilines True
ShosFlehine True
St oot ire=s Trus
Sorted Fahs
Tabfrades o
TabiRop True
i True

B Dk

B (Birdngs)

B Ciesinge
(i) TreeViem]
L L]
Mincifwrs Promhe

B Foois
i ahelation Trus

B Layoml
Anahor ToplLsf

Lelt

Tk
Thee hociireg Socation of th
boeders are docked bo the

e |

B il = T - C a7

In the sample project, the Treeview is set with a Dock of Left, so it remains attached to the left side
of its parent, which is the main form. The control |bDirections is set with aDock of Top, which
causes it to remain docked with the top of its parent, which is the upper-panel control. The following
illustration shows a picture of the project whileit’s running:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 17 of 180

=101 xf

Restra khe form bo sen the contnoks move

Treerview! Dodied Lt ae.E X

| Panel: Archored LeftRight

Buttons: Andhorsd Bortosdiuht
o | casl |

Docked controls grow appropriately if the edges of the parents to which they are docked grow in the
following manner:

e A control with aDock set to Left or Right grows in height as its parent growsin height.
¢ A control with aDock set to Top or Bottom grows in width asits parent grows in width.

The Anchor property is somewhat similar to the Dock property, but the control doesn’t attach itself

directly to the edge of the form. Instead, its edges maintain a constant distance to the edges defined
by the property.

Setting the Anchor property is also done graphicaly, as shown in thisillustration:

| Properties 2

=
IPaneIl Syskem, Windows, Farms.Panel ;I
4|2 8
Modifiers Privake _:!
SnapToGrid True
El Focus
Causesyalidation True
B Layout
Top, Left
Aukoscroll
i AutoScrolMargin
AutascrollMingize —
Dock, —_—

DackPadding

Location s
Size 464, 80 -
Anchor

The anchor of the control, Anchors define ko which edges
of the container a certain control is bound, When a ...

The available settings are some combination of Top, Left, Bottom, and Right. The default Anchor
valueis Top,Left meaning that the control’s top and left side will remain a constant distance from the
top and left edges of its parent. If you were to set acontrol to Left,Right the left and right edges
would stay anchored to the left and right edges of the form—meaning that the control would have to
resize as the form was resized. The lowermost panel in the sample project has an Anchor property of
Left,Right so you can seeit resize asthe formisresized and it maintains its left and right anchors.

The last illustration shows the same project with the form made both taller and wider. Note how all
of the controls on the form have fallen into line without a single line of code!

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 18 of 180

N =0 M
Famiza 'Ea Fivm B2 amw b conbroh move
]

ST e

Furad Aochos od Lafthaghe

B A e Somonge
ok caren |

Looking at the illustration should give you a pretty good idea of the Dock and Anchor propertiesin
action, but things should really click into place when you run the provided project. Watch all of the
controls conform to their Dock and Anchor properties as you resize the form.

6: Beyond the Tag property

The Tag property code can be found in folder prjCustomTreeNode.

“What? No Tag property? Why would they remove that? | use that property in at least 100 different
ways. What the heck am | supposed to do now?'

The hue and cry came from all directions when it was learned that Microsoft had removed the Tag
property from all of their controlsin the .NET Framework. That Tag property serves as a catch-all
property to store user-defined data. It originally started as an Integer property, but changed over to a
String property to meet user demand.

People found myriad uses for the Tag property. For example, suppose you were populating a
Treeview with the names of employees from a corporate database for the purposes of creating an org
chart. While |oading each employee into a TreeNode object on the Treeview, you could store the
primary key for each employee (beit the socia security number, a GUID, or some other unique
identifying element) into the Tag property on the TreeNode. Then, when the application user selected
a TreeNode in the Treeview, you would have instant access to the primary key of the table from
which you loaded these employees. Thiswould allow you to query the database to return additional
information about the employee (date of birth, service time, current title, and so on).

Along Came Beta 2

| guess Microsoft actually heard the developer screams when they attempted to remove the Tag
property. Asof Visual Studio.NET beta 2, they actually put the user-defined property back, asa
member of the Control class. Apart from almost rendering this part of the book useless, all Microsoft
did was anger the other developers, the ones who liked the reasoning behind the removal of this
property to begin with. These devel opers argue that we really don’t need Microsoft to give us a
property for supplying user-defined data, because the object-oriented features of VB.NET make it
really easy (almost trivial, really) to add user-defined properties ourselves. | happen to fall into this
camp. | submit that by removing the Tag property, Microsoft is actually taking away a crutch that
might prevent you from using object-oriented techniques and therefore not use the new language in
the way in which it was intended.

Furthermore, having a Tag property on every single component can add up to agreat deal of
overhead. Do you redlly need a Tag property on every label and button on every formin your
application? Perhaps, but probably not. Why have properties on controls that you’ll never use? In the

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 19 of 180

long run, it’s better to run with stripped down versions of all the controls and use other tools to bolt
new things on the side as you need them. Thisis a core component of object-oriented programming.

To demonstrate the power of using object-oriented programming, I’ll take an existing component and
bolt afew new properties onto it. In this example, the goal isto load up a Treeview with alist of files
on the machine’s hard drive. When the user clicks one of the nodes in the Treeview, | would like the
program to display the date and size of that file.

There are two basic ways | can solve this problem. The first way isto wait until the user clicks afile
in the Treeview, then go back to the file system to load the file date and time and display it. | decided
this method might be a bit difficult to implement, mainly because my Treeview nodeisn’t going to
have the filename with its compl ete path on each node. | would probably have to iterate through the
parents of the node to reconstruct the full path of thefile.

Instead, | decided that it would be much easier to store the date and time of each file somewhere as |
was iterating through the file system and loading the file names into the Treeview. The only question
was where to store these date and time variables. Since | needed a date and time variable for each file
| was going to load into the Treeview, it made sense to bolt these variables onto the TreeNode class,
as shown here:

Cl ass Fil ePropertitesTreeNode
I nherits TreeNode

Private FFil eDate As DateTi nme
Private FFileSize As Long

Property FileDate() As DateTi ne

Cet

Return FFil eDat e
End Get
Set

FFi | eDate = Val ue
End Set

End Property

Property FileSize() As Long

Cet

Return FFil eSi ze
End Get
Set

FFi |l eSi ze = Val ue
End Set

End Property

End Cl ass

Theclassis called FilePropertiesTreeNode. It inherits off of the base TreeNode class, found in the
System.Windows.Forms namespace. The purpose of the classisto add two additional propertiesto
the standard Tree- Node. These properties store a date and a number representing the size of afile.

Theintention isto use these new TreeNodes instead of the standard Tree- Node when filling a
Treeview with file/directory information. While loading the Treeview, | can put the date and time of
each file in these new properties, thus giving me easy access to them as anode is selected in the
Treeview. | could easily create more properties that further describe each file, such as hidden/read-
only attribute information, the file extension, the bitmap associated with thisfile type, and so on.

Using an Inherited Class

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 20 of 180

To use your custom inherited TreeNode instead of the base TreeNode, you merely create an instance
of your new class and add it to the Treeview using the same Add method you would normally use.
The Add method takes a TreeNode as its parameter—this includes TreeNode objects or direct
descendants of TreeNode objects, like my FilePropertiesTreeNode. Here is some example code to
add one of our new TreeNodes to a Treeview named tvStuff

oNode = New Fil ePropertitesTreeNode()
oNode. Text = "C:\ W NDOAS\ SOVEDUMMYFI LE. TXT"
oNode. Fi |l eDate = "Jan 1, 2001"
oNode. Fi | eSi ze = 65536

t vSt uf f . Nodes. Add(oNode)

Of course, the file information just listed is all made up. What would be more useful would be to
load actual filenames off disk and store their propertiesin the new TreeNode class instances. This
would be the first step in writing a Windows Explorer—ike program. The sample project prjCustom-
TreeNode does just that. It fills a Treeview with instances of my new File- PropertiesTreeNode class,
reading files on the C drive as the source of the file information. The main recursive function that
loads the Treeview islisted here:

Protected Sub Fill TreeVi ewm ByVal cFol der
As String, ByVal oParentFol der As Fil ePropertitesTreeNode,
ByVal iLevel As Integer)

Dimd As Directorylnfo

Dmf As Filelnfo

Dimo As Object

Di m oFol der As Fil ePropertitesTreeNode
Di m oNode As Fil ePropertitesTreeNode
Dim cNanme As String

‘for this denp, we're only going
3 levels deep into the file structure
‘for speed reasons
If iLevel > 3 Then Exit Sub

d = New Directoryl nfo(cFol der)
cNanme = d. Nane

‘fix the entry ‘“C\’, so we don't
‘have double \\ in filenanes

I f cNanme. EndsWth("\") Then

cName = cNane. Substring(0, cNane.Length - 1)
End | f ‘create node for this fol der
oFol der = New Fil ePropertitesTreeNode()

‘“fill the custom properties
oFol der. Text = cNane
oFol der.FileDate = d. Last WiteTi ne

‘add this node. May have to add to Treeview
“if no parent passed in
I f oParentFol der |Is Nothing Then

t vFi | eLi sting. Nodes. Add(oFol der)

El se

oPar ent Fol der . Nodes. Add(oFol der)
End If
Try

For Each f In d.GetFiles()

oNode = New Fil ePropertitesTreeNode()

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 21 of 180

‘set up folder
oNode. Text = f. Nane

“fill in our custom properties
oNode. Fil eDate = f.LastWiteTi ne
oNode. Fil eSize = f.Length
‘add this node
oFol der . Nodes. Add(oNode)

Next

For Each d In d.GetDirectories
Try
Call FillTreeView(d. Ful | Name, oFol der, ilLevel + 1)

‘catch errors, |like access denied
‘errors to system fol ders
Catch oEX As Exception
Consol e. WiteLi ne(oEX. Message)
End Try
Next
Catch e As Exception
Consol e. WiteLine(e. Message)
End Try

End Sub

The procedure expects afolder name as itsfirst parameter. It creates an instance of a Directorylnfo
object based on this folder name. The Directory- Info object returns useful information like the name
of the directory and the last time it was written to. It also contains methods for looping through all of
the structuresinside it.

Thefirst step isto create a FilePropertiesTreeNode and add it as a child to the passed-in parent node,
also a FilePropertiesTreeNode. This routine has a depth tester that makes sure that the routine stops
loading after four levels of depth in the file system. Thisis done only as an optimization, so the load
routine takes a shorter amount of time.

There aretwo For...Each loops in the routine—the first loops through al the subdirectoriesin the
current directory, and the second loops through all the files in the directory. For each subdirectory,
the same procedure is recursively called against the new subdirectory name. For each file, one of the
FilePropertiesTreeNode instances is created, loaded with the file date and time information, and
added to the parent (folder) node.

BB Living witkaut the T.ag paopety 2101 %
2 WIHLOWS Fil Tresmview
f-_RESTORE
2t NODIREE
EIEEETN
i Del CENCD TREEVNAVSYSR DAT
¥ Drteers
+H- Fomrp
% Lo Fio Dista: | 2/2012000 B:00L06 PH
L R
B Commm Fills Sem: 20D B
Program Filss
B My Cxmmeridy
7 el
+ Feyried
5 Badup
- iretpub
roet s,
3:'2.-< L =

Once the Treeview isfilled, the OnAfterSelect event is set up so that the following code runs when
the user clicks on anode in the Treeview:

Private Sub tvFileListing AfterSel ect(ByVal sender_ As System Object, ByVal e As_

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 22 of 180

Di m oNode As Fil ePropertitesTreeNode

oNode = CType(e. Node, FilePropertitesTreeNode)
If Not oNode Is Nothing Then
| bFi | eName. Text = oNode. Ful | Path

| bDate. Text = "File Date: " & oNode. Fi | eDat e()
| bSi ze. Text = "File Size: " & oNode.FileSize() &
' bytes"

End | f

End Sub

This code first returns the node that was clicked and typecasts it to our special node class (the
typecast is necessary because the Node property on the System.Windows.Forms.TreeViewEventArgs
object is of the normal TreeNode class). If the typecast is successful, some labels are filled with the
contents of the custom FileDate and FileSize properties.

Note When | finally got Visual Studio.NET beta 2 installed on my machine, | thought I’'d haveto
throw this part of the book away because Microsoft decided to put the Tag property back into
the language. Asit turns out, though, this example project is still quite valid. Because the
sample code adds properties to a Treenode class, and because the Treenode classis not a
descendant of the Control class, | wouldn’t have been able to use the Tag property to store my
fileinfo anyway. Now, if Microsoft decides to move the Tag property down to the Object class
instead of the Control class, | just might have to scream...

7: Handling Control Arrays Another Way

The control array code can be found in the folder prjNoControl Arrays.

From my very first days of Visual Basic, | was enamored with using control arrays. My first “real”
Visual Basic program was a card game, and it seemed a perfect solution to create an array of picture
box controls with the appropriate bitmaps for playing cards. | completed my card game, uploaded it
to alocal BBS (thiswas afew years before the Internet), and received a few comments about it.

My use of control arrays didn’t stop with that first card game. | must have written a half dozen card
games, as well as some crossword-type games, the mandatory number scramble game, and afew
other ssimple games that gave me fun projects to work on while | learned Visual Basic. I’ Il bet almost
all of those early programs used control arrays to handle the game elements.

Before | got my first copy of VB.NET, | was reading an online summary of some of the language
changes, and one of the differences mentioned that control arrays were no longer afeature of the
language.

The main benefit of having an array of controlsis, of course, being able to write the same event
handling code for multiple controls and the ability to easily tell which control fired the event, as seen
here:

Sub pnPanel _Cick(Index as |nteger)
Msgbox (" Panel index " & index & "was clicked")
End Sub

This piece of VB6 code handles the Click event for an array of controls named pnPanel and displays
amessage about which one was picked.

So what's a closet game programmer like me to do? If | have several similar user interface elements

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 23 of 180

that | want handled all the same way and | can’t group them with a control array, is there some other
means to have all of these controls share the same event code? The answer is, of course, yes. Visual
Basic introduces a Handles clause on procedures that allows you to link many event procedures to
the same code. Here is an example of the Handles clause in action:

Public Sub Panel Click(ByVal sender _
As Object, ByvVal e As System Event Args) _
Handl es Panel 1. Cli ck, Panel 2.dick, Panel 3.Cick, _
Panel 4. Cli ck, Panel5.C ick, Panel6.Click, _
Panel 7. Cl i ck, Panel 8. Cl i ck, Panel 9. Click

Dimp As Panel

p = CType(sender, Panel)

I f p.BackCol or. Equal s(Red) Then
p. BackCol or = Bl ue

El se
p. BackCol or = Red
End |f
p. I nvalidate()
End Sub

This Click event iswired up to nine different Panel controls here. Para- meter Sender is the control
that caused the event. There is nothing that forces you to link the same event to controls of al the
same class, so the Sender parameter gets passed in with generic type Object. The programmer has to
help out in determining what class of object caused the event. In the example program, the choiceis
easy, because | purposely wired thisClick event up to only Panel controls. Because | know this, | am
able to typecast the Sender parameter to aPanel variable, and | now have access to the panel that was
clicked.

Therest of the Click event checks the color of the clicked panel and switches the color between blue
and red. Thelast line, p.Invalidate(), forces the panel to repaint itself. This brings me to my second
event, which is helped out by a Handles clause:

Protected Sub Panel Pai nt (ByVal sender As Object, ByVal e As
Syst em W ndows. For ms. Pai nt Event Args) Handl es Panel 1. Pai nt,
Panel 2. Pai nt, Panel 3. Pai nt, Panel 4. Pai nt, Panel 5. Pai nt
Panel 6. Pai nt, Panel 7. Pai nt, Panel 8. Pai nt, Panel 9. Pai nt

Dimp As Panel
p = ClType(sender, Panel)

e. Graphi cs. Fil | Rect angl e(New Sol i dBrush(p. BackCol or),
p. Cli ent Rect angl e)

I f p.BackCol or. Equal s(Red) Then
e. G aphi cs. DrawEl | i pse(New
Pen(Syst em Drawi ng. Col or. Green, 3), p.ClientRectangle)
El se
e. Graphi cs. DrawEl | i pse(New
Pen(System Drawi ng. Col or. Yell ow, 3), p.ClientRectangle)
End | f

End Sub
Again, the paint event for all nine panelsis handled by this single event, in which | again typecast the
sender variable to alocal Panel variable so | can do stuff toit. | then write some custom painting

code. First, | fill the panel with its defined BackColor, and then (just for fun), | draw acircle within
the boundary of the panel.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 24 of 180

Thefina effect isthat clicking any of the nine panels switches their color from red to blue. Y ou can
easily see how this might be the beginning of atic-tac-toe game or something similar:

:!Handles Clause | -0 x|

click on the panels

HeN
000
HeoN

L ear ning the Framewor k

8: Getting Resour ceful

The resource code can be found in folder prjResources.

The Web has turned all facets of computer use into a set of global communities. Whether your
computer-related interests include programming, game playing, shopping, the arts, or one of dozens
of other topics, using the Web to engage these interests means dealing with people from al over the
world (they don’t call it the World Wide Web for nothing). It’s not the least bit unusual for me to
converse with afellow developer from Australia via a Usenet post minutes after Instant Messaging
an old school friend living in London.

Developing software in the Internet age should be a global endeavor now, aswell. Why cut off a
huge portion of your potential user base because your software can be understood only by those who
can read English?

Resour ce Strings

Coding for multiple language sets can be made easier with the use of resource files. A resourcefileis
alist of string constants that are to be used in your application. Such strings might be used to display
messages or as the captions to other user-interface elements. By giving your program the ability to
display these messages in multiple languages, you increase the potential audience for your software
(more usersis always better, right?).

A string resource fileis atext file with afamiliar INI file format to it. Here is the resource file for a
small subset of wordsin Italian:

[strings]
Language=Ital i ano

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 25 of 180

Hel | 0=Ci ao
Goodbye=Ci ao
Door =Port a

W ndow=fi nestra
House=Casa
Dog=Cane
Cat=Gatto

Theideaisto create a separate resource file for each language that you plan on supporting. Each
resource file would contain identical strings (the left side of the equal sign in the previous lines), with
only the strings themselves changing from file to file (the right side of the equal sign).

Once the resource files are created, they must be converted to an XML-style format using the
command-line resource generator program named resgen.exe. An example of running this programis
shown here:

"C:\Program Fi | es\ M crosoft.NET\ Fr amewor KSDK\ Bi n\ r esgen. exe" resl TA. txt resl TA re:

Running the program with these parameters takes the resI TA.TXT file, which has the INI-like format
shown previously, and convertsit to aresl TA.resx format. The RESX format is used by Visuad
Studio programs to refer to on-disk resources that are to be embedded into the application. Adding
these resources to your application involves the simple matter of adding the new RESX file to your
project, as shown in thisillustration:

Solution Explorer - prjResources

[2] | & |-

@ Solution 'prifesources’ (1 projeck)
'.il (s3] References
El £ res
- [#] BlueLace16.bmp
E’-‘] resEMG.resx
!E] resiaER.resx
L e] resITAuresx
@ Forml.vb

Once added to the project in this way, you can open the resource file and access any of the strings
therein by using

Di m ResMan As Syst em Resources. Resour ceManager
Di m cResource as string

ResMan = New System Resour ces. Resour ceManager (" prj Resources _ .resl TA", _ System/|

cResource = ResMan. Get Stri ng("Language")

The ResourceM anager classis used for getting embedded resources out of your application. To
instantiate a ResourceM anager object, you pass the name of the RESX file (removing the extension,
but adding the project name) and the name of the assembly in which the resources reside, which can
usually be retrieved using the System.Reflection.Assembly.GetExecuting- Assembly method.
Retrieving a string within the file is done using the GetString method on the ResourceM anager
object.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 26 of 180

The sample project uses the basic techniques just shown to create three different resource filesin
English, Italian, and German (only one of which | know with any fluency—guess which one!). As
the user clicks each of the radio buttons, the corresponding resource file is loaded from the
application and the strings are displayed in a Listbox. One can easily see how to extend this
functionality to load resource strings for different languages to be used as all of the internal messages
and labelsin your application, instead of simply hard-coding those values into the source code. (Now
if someone could just teach us to speak all of the languages we need to support, wed al berich!)

Bitmaps, Too

Resources are not limited only to strings. One can turn just about any disk-based file into aresource
and embed it into the application. This can be a much better alternative than installing a bunch of
“loose” files with the application and hoping nobody deletes them.

Bitmaps are a good example of atype of resource that you might want to embed into your
application. To add a bitmap resource to your application, select Add Existing Item from the context
menu in Solution Explorer, select the BMP file that you wish to add, then make sure that the file
properties read Embedded Resource, as shown here:

Properties 3 x|
BlueLacelb.bmp File Properties ;I
= 24| B| E

inced
Embedded Resource -
Cuskaomm Tool Mone
Custorn Tool Mamespace |Compile
Bl Misc Content
File Marme Embedded Resource
Full Path CNDOCOments and oetbngsiman

Once you’ve compiled a bitmap into your application in this fashion, you can retrieve it using the
following code:

Dima As Reflection. Assenbly = _ System Refl ection. Assenbl y. Get Executi ngAssenbl y(

Dimb As New _ Bitmap(a. Get Mani f est ResourceStrean("prj Resources.” & _ "BluelLacel6.

This code retrieves a resource by name into a Stream object, and that stream is passed to the Bitmap
class constructor. Y ou can now use the bitmap object normally in your code.

9: Reading from a Text File: An Introduction to Streams

The streams code can be found in folder prjNetNotePad.

The VB6 syntax for reading from atext file seemed archaic at best: one had to keep track of file
handles and so forth. Y ou might figure that the .NET Framework would handle text filesin amore
elegant fashion, and you’ d be correct. In fact, an entire set of classes exists that handles the I/O of not
only text files, but also data of all types. This set of classesisknown collectively as Sreams.
According to the .NET Framework help file, a stream provides away to read or write

datafrom a backing store. A backing store can be afile on disk, an area of RAM, or even avariable
like alarge string.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 27 of 180

There are different types of Stream classes to handle the reading and writing of different types of
data from different types of backing stores. A short summary of al the stream classes used for

reading is given here:

|Class ||Inherits From ||Not05 |

Stream System.Object Abstract class, cannot use. Must
use a classinherited from
Stream.

BufferedStream Stream Provides a memory buffer to
cache reads and writesin aloop.

[Class il nherits From INotes |

FileStream Stream Provides arandom accessto a
disk file.

MemoryStream Stream Provides /O to a block of
memory.

TextReader System.Object Provides an abstract calssto
read text.

StreamReader TextReader Reads text from a Stream
object.

StringReader TextReader Reads text from a string
variable.

BinaryReader System.Object Provides an abstract classto
read binary data.

All of these classes can be found in the System.lO namespace. They handle reading different types of

information from many different types of sources.

Reading data from atext file is best done using the StreamReader class. The following code comes
from the prjNetNotePad project. It populates the Textbox control tbMain with the contents of the

passed-in file.

Protected Sub LoadTextFil e(ByVa

cFil enane As String)

Dimsln As StreanmReader
DimcLine As String
Di m bDone As Bool ean = Fal se

t bMai n. Text = ""
sln = New StreanReader (cFi |l enane)
Try

VWi | e Not bDone
cLi ne = sl n. ReadLi ne()
If cLine Is Nothing Then
bDone = True
El se
‘note: carriagereturn = environment.new i ne
t bMai n. Text = tbMin. Text & cLine & Environnment. NewLi ne
End If
End While
Finally
sln. Cl ose()
End Try

End Sub

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 28 of 180

After clearing the Textbox, a StreamReader class isinstantiated, passing the filename as the
parameter on the constructor. (The StreamReader class has no fewer than nine different overloaded
constructors, so some study might be warranted to learn al of the options available.)

The main reading loop might look different from file reading loops you’ ve set up in prior versions of
Visua Basic. The main difference is that the StreamReader class does not have an .EOF (End of
File) method. Instead, a ReadLine method is called, and the contents of this read are compared to
Nothing. If the string is equal to Nothing, then you are at the end of file. If you’re not at the end of
file, then the string is appended to the Textbox.

The last three lines of the procedure close the StreamReader, inside a Finally block. Note that the

entire read loop isinside this Try..Finally block. This guarantees that the StreamReader will be
closed when the procedure returns.

10: Writingto a Text File: Moreon Streams

The writing to a text file code can be found in folder prjNetNotePad.

A bunch of classes for reading dataisn’t much good if there aren’t equivalent writing capabilities to
go aong with it. Asyou might expect, all of the Stream reading classes have writing classes right
alongside of them. A summary of output-specific classesislisted in the following table:

[Class lInherits From |Notes |

Stream System.Object Abstract class, cannot use. Must use a
class inherited from Stream.

BufferedStream Stream Provides amemory buffer to cache
reads and writesin aloop.

|FiIeStream ||Stream ||Provide£ random access to adisk file. |

|MemoryStream ||Stream ||Provides I/O to a block of memory. |

TextWriter System.Object Provides an abstract classto write
text.

|StreamWriter ||TextWriter ||Writes text to a Stream object. |

|Stri ngWriter ||TextWriter ||Writes text to a string variable. |

BinaryWriter System.Object Provides an abstract classto write
binary data.

Like their reader equivalents, all of these classes can be found in the System .|O namespace. Writing
datato atext fileis best done using the StreamWriter class. The following code comes from the
priNetNotePad project. It takes the contents of the tbMain Textbox control and writes the result to
the passed-in filename parameter.

Protected Sub SaveText Fil e(ByVal

DimsQut As StreamWiter
Dimi As Integer

cFil enane As String)

sQut = New StreamWiter(cFil enane)
Try
For i 0 To tbMin.Lines.Length -
sQut. WiteLine(tbMin.Lines(i))
Next
Finally

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 29 of 180

sQut. Cl ose() ‘make sure the stream cl oses
End Try

End Sub

This procedure is pretty basic in nature. A StreamWriter object instance is created, and the contents
of the Textbox toMainiswritten to it line by line. Theloop isenclosed ina Try...Finally block to
make sure the StreamWriter gets closed before the procedure exits.

Note Y ou can access the contents of a Textbox either line by line using the Lines property or all at
once using the Text property.

11: Reading and Writing to the Registry

The Registry code can be found in folder prjRegistry.

The largest obstacle to learning Visual Basic.NET, in my opinion, isn’t going to be the new language
features or syntactical changes. Instead, becoming familiar with all the ins and outs of the common
language runtime (CLR) should prove to be the biggest hurdle for most NET programmers regardless
of their language of choice. Learning a class framework has proven to be difficult in the past, as
well—I recall hearing and reading numerous statements claiming that learning the Microsoft
Foundation Classes (MFC) was the hardest part about learning Microsoft Visual C++.

One example of functionality built into the CLR is accessing the Windows Registry. | had written
my own little Registry classin VB6 for setting and retrieving values. A quick search in the Visual
Studio.NET help file, however, told me that classes were already in place to handle that same
functionality.

Note Chances are, if you used any Windows API call in the past, there’s some type of classin the
CLR to handle that same functionality. This rule of thumb isagood starting point in learning
about the CLR.

There are two Registry-specific classesin the CLR. Thefirst is called smply Registry. The only
purpose of this classisto store the Registry constants that make up the roots of each Registry branch:
HKEY_LOCAL_MACHINE, HKEY_CURRENT_USER, and so on. The table of these constants,

and the properties on the Registry class that represent each constant, is given here:

|Constant ||Registry Property Name |
I[HKEY LOCAL_MACHINE |[LocalMachine |
I[HKEY CURRENT CONFIG |[CurrentConfig |
I[HKEY CURRENT USER |CurrentUser |
I[HKEY DYN DATA |IDynData |
I[HKEY CLASSES ROOT | ClassesRoot |
I[HKEY PERFORMANCE _DATA |PerformanceData |
I[HKEY USERS |Users |

Besides storing these constants, the Registry classisn’t used for anything. Most of the work that
you'll be doing iswith the RegistryKey class. Here's asmall procedure taken from the sample
program that writes a value to the Registry:

Private Sub cbWite_Click(ByVal sender As System Object, _ ByVal e As System B

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 30 of 180

Di m aKey As Regi stryKey
Dimi Sec As |Integer = Now. Second

‘start at HKEY_LOCALMACHI NE
aKey = Regi stry. Local Machi ne

‘create a subkey. trap any error (security, etc)
Try

aKey = aKey. Cr eat eSubKey(TESTSUBKEY)

aKey. Set Val ue(TESTSTRI NG, i Sec)

Finally
Cal | aKey. Cl ose()
End Try
| bStat. Text = "read registry value " & cFullKeyNane _ & " set to " & i Sec
End Sub

The constants TESTSUBKEY and TESTSTRING are defined as form-level variables, so they are not
shown in this procedure. As you can see, the Registry- Key variable name aKey isinitialized to the
constant Registry.Local - Machine. From here, you can traverse down into this branch of the Registry
using the CreateSubKey method. This method opens akey if it exists and createsit if it does not.
Writing to the key is done using the SetVaue method.

Note that | wrap the Registry functionsinaTry...Finaly block. Many users do not have permission
to write to the system Registry (in an NT/2000 environment, for example, people without local
Administrator privileges cannot write to the Registry). The Try...Finally block handles any errors
that might occur while writing to the Registry and allows the program to continue. One could further
enhance the exception handling with a message box to the user, logging to the event log, or some
other notification that the Registry write failed.

The sample procedure to read a value from the Registry isamost identical:

Protected Sub cbRead_Click(ByVal sender As Object, _
ByVal e As System Event Args) Handl es cbRead. Cl i ck

Di m aKey As Regi stryKey
Dimi Sec As |nteger

‘start at HKEY_LOCALMACHI NE
aKey = Regi stry. Local Machi ne

‘create a subkey. trap any errors (security, etc)

Try
aKey = aKey. Cr eat eSubKey(TESTSUBKEY)
i Sec = Clnt(aKey. Get Val ue(TESTSTRI NG, -1))
Final l'y
Cal | aKey. Cl ose()
End Try
| bStat. Text = "read registry value " & cFull KeyNanme _

& " as " & i Sec

End Sub

The only difference between this routine and the last is that the GetValue method is used instead of
SetVaue. The GetValue method has two parameters:

¢ The name of the variable to read under the current key

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 31 of 180

e Thedefault valueto return if the read fails (because the variable does not exist, for example)

In this procedure, the result of the read is converted to an Integer. Once again, the Registry handling
code is wrapped around an appropriate Try...Finally block.

The Registry isthe logical place to store user-specific settings for your application, like font and
color choices, file history lists, or other properties that can be changed from user to user. Itisaso a
veritable fun house of operating system and other application settings that you can mine for your
own purposes. For example, | was recently writing a program that exported its data to an Excel
Spreadsheet. Knowing that many end-users have trouble with the concept of drives and folder
locations (especially in a networked environment), | decided that it would be useful for my program
to store the spreadsheet in whatever folder the user had specified as his default Excel file location.
That way, when the user opened Excel and clicked Open, the new file would be right there in front of
him. | searched the Registry, found the desired key, and implemented this feature in under 30
minutes. My end users were very impressed with this little functionality because it saved them the
headache of finding the exported Excel spreadsheet themselves.

12: Keeping Regular with Regular Expressions
The regular expressions code can be found in the folder prjRegularExpressions.

Any developer writing text parsing software has probably found regular expressions to be an
important tool in their toolbox. Regular expressions can be useful in programs such aslog file
parsers, HTML readerg/extractors, and string search engines.

Regular expressions allow for the fast searching (and optional replacing) of text matching a certain
pattern. For the inexperienced, consider regular expressionsto be like the VB Instr function to the
hundredth power. While Instr allows you to look for a hard-coded occurrence of one string within
another, one can use regular expressions to look for patterns of strings in extremely complex queries.

The different types of regular expressions that can be composed could easily themselves be the
subject of abook, so trying to cover them in any detail here would be, as they say, “beyond the scope
of thistext.” Indeed, the building of regular expressions requires its own separate language that is
outlined in good detail in the .NET Framework Developer’s Guide. This text, along with the sample
program, which gives a half dozen or so examples, can serve as the start of your journey into regular
expression expertise.

The sample program creates a class named StringV alidator that contains several validation functions
that use regular expressions to perform their validation. The following code shows one of those
functions:

Shared Function |sAl pha(ByVal s As String) As Bool ean

Dimr As New Regex("[”"a-zA-Z]")
Return Not r.IsMatch(s)

End Functi on

The two-line function declares an instance of the RegEXx class, and then returns whether the passed-in
string s isamatch to the regular expression [a-zA-Z]. Thisregular expression istrueif any letter in
the function is not in aletter, either upper- or lowercase. The caret (") in front of the expression
negates the expression, which means the IsMatch method returns true of any character is not an
upper- or lowercase letter. Note the IsAlpha function itself returns Not r.IsMatch(s), meaning if any
character is not an alpha character, 1sAlpha returns false (the function reads like a double-negative,

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 32 of 180

so it might take abit of time in your thinking chair to figure out the logic).

Therest of the StringValidator class contains more methods identical to this one, but looks for
different types of strings. There are methods to test if a string looks like a phone number, a socia
security number, or endsin the letter k.

The program itself shows a Listbox containing several strings of different formats. Clicking each
string shows the result of each StringValidator method as a check in a check box control, as seen
here:

W pegular Frgression =100 =l
£
duck101 F aigha
123
TR TS W alohabiameri:
25 2 Yy
e Y e] ™ Positive Whole Humber

TR ™ Secial Secusity Numbar
I Phone humbes
[double lethers
T wiord mncks i ¥

13: Improving File Copies, Moves, and Deletes

The copy, move, and delete code can be found in folder prjEnhanceFileOperations.

One of my pet peevesisthat when anew version of Windows introduces new functionality,
Microsoft makes it maddeningly difficult for the Visual Basic programmer to take advantage of that
functionality. In the old days, this was usually because of some limitation of the older versions of
Visual Basic: no function callbacks, no function address pointers, unwieldy APl parameters, and so
on.

Two such examples of “ new Windows functionality” have been around so long that | can hardly call
them new anymore without smirking. Both are file-based features, introduced way back in Windows
95. Thefirst isthe nice “progress dialog” that comes up when you’re copying alarge file, as seen
here:

Copging. x|

i &
Szl Wine - Sign of Hie Gty Quesnmpd
From Wic' lo TempSilf®

—

Thislittle nicety is something |’ ve often wanted to toss into my programs, and, until recently, didn’t
know exactly what mysterious incantation (or API call) | had to make.

The second example is the use of the Recycle Bin. When | want to delete afile in one of my
programs, I’d often like it to go live in the Recycle Bin with the other “amost” deleted files, so the
user can bring the file back from the dead if the need arises.

The VB6 FileCopy and Kill statements did not take advantage of these Windows features. FileCopy
simply locks up your program until the copy is performed, which makesit pretty difficult to give the
user feedback as to what your program is doing. Likewise, The Kill statement banishes afile to
Nowhere Land with no chance for revival.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 33 of 180

| was hoping VB.NET would have these two new features built right into the File class. As of this
writing, this functionality is not present out of the box. However, due to the new object-oriented
methodology, you can easily construct alittle class that handles these functions for you. Thus, the
EnhancedFileOps class was born!

Using the EnhancedFileOps Class

The most logical method of designing the EnhancedFileOps class would have been to inherit a new
class from the existing File class. Unfortunately, thisisn't possible because the File class is marked
as Nonlnheritable, which means that you cannot create new class under it. Instead, | decided to
create a base class (which inherits right from System.Object) that does the work | need it to do.

The API call that handles both file copying (with progress dialog) and moving filesto the Recycle
Binis called SHFileOperation. It takes as its lone parameter a structure called SHFileOpStruct. The
declaration for the function and the structure are shown here:

Private Declare Function SHFil eOperation _ Lib "Shell32.dlI" Alias "SHFi |l eOpe

Structure SHFI LEOPSTRUCT
Publi c hwnd As I nteger
Publ i ¢ wFunc As I nteger
Public pFrom As String
Public pTo As String
Public fFlags As Integer
Publ i c f AnyOperati onsAborted As I nteger
Publ i ¢ hNameMappi ngs As | nteger
Public | pszProgressTitle As |nteger
End Structure

There are also afair amount of private constants declared in the class, which represent constants
placed into various fields of the SHFileOpStruct.

Sending a Fileto the Recycle Bin

To send afile to the Recycle Bin, you make the API call with the wFunc parameter set to
FO_DELETE, and the fFlags parameter set to FOF_ALLOWUNDO, as shown here:

Public Function SendToRecycl eBi n() As Bool ean
Dim sOP As New SHFI LEOPSTRUCT()

Wth sOP
. hwnd = FhWhd. Tol nt 32
.wFunc = FO _DELETE
. pFrom = FFil ename & Chr(0) & Chr(0)
.fFl ags = FOF_ALLOMINDO
End Wth

Return (SHFi |l eOperation(sOP) = 0)
End Function

Note that the pFrom parameter requires termination in two nulls, written as chr(0) in VB-speak. The

reason for thisisthat the SHFileOperation API call can actually work on more than onefile at atime.
To process multiple files, you fill the pFrom parameter with each filename separated by single nulls,

and then you end the whol e file list with two nulls. My example class does not take advantage of the

multiple file functionality, but it would be easy enough to add in.

Take special note of the last line in the function, as there are afew different little tricks going on

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 34 of 180

there. Thefirst isthat VB.NET functions can return their value by using the special keyword Return.
Older versions of Visual Basic required assigning a value to a variable whose name was the function
name (this was a big pain when you decided to change the function name but forgot to change the
result assignment at the bottom).

The second little trick is a programmer’s preference that | like to use to compress my code into fewer
lines. Thelast line of code is exactly equivalent to the following statement block:

i Result = SHFi | eOperation(sOP)
If iResult = 0 then
Return True
El se
Return Fal se
End | f

Thisblock isabit easier to read, perhaps, but it takes six lines of code, whereas my replacement
takesasingleline. Thetrick hereisto note that (SHFileOperation(sOP) = 0) isitself aBoolean
expression—that is, it has avalue of True or False. If the SHFileOperation API cal returns 0, then
the expression is true. If the API call returns non-zero, then the expression is false. Instead of writing
all that out, | find it easier to compressit on oneline. | cal the function, compare the result to 0, and
return the result of that comparison as the result of my SendToRecycleBinfunction.

Copying or Moving aFile

Copying (or moving) afile using the API call isequally smple. In addition to the pFrom parameter
that specifies the source, you must also fill in the pTo parameter, which gives the destination. Thisis
usually afolder name, as shown here:

Private Function Internal Copy(ByVal cDestination _
As String, ByVal bMove As Bool ean) As Bool ean

Di m sOP As New SHFI LEOPSTRUCT()

Wth sOP
. hwnd = FhWwhd. Tol nt 32

If bMove Then

.wFunc = FO_MOVE
El se

.wFunc = FO_COPY
End If

.pFrom = FFil ename & Chr(0) & Chr(0)
.pTo = cDestination & Chr(0) & Chr(0)

.fFlags = FOF_SI MPLEPROGRESS Or _
FOF_FI LESONLY Or FOF_NOCONFI RMVKDI R
End Wth
Return (SHFi |l eOperation(sOP) = 0)

End Function
| made this function a private function because it handles both the moving and copying of largefiles,
based on the second function parameter. | then created easy-to-read methods named
CopyWithProgress and MoveWithProgress that in turn call this private function.

The function itself ssimply sets up the API structure and makes the call. Note the
FOF SIMPLEPROGRESS constant as part of the fFlags parameter—that’s what displays the

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 35 of 180

progress dialog when large files are copied.

The example application allows you to pick afile, which it copies to hard-coded folder C:\tempvb
when a button is clicked. Select alarge file (100MB files are pretty commonplace these days on
many hard drives) to make sure you see the progress dialog in action. The second button on the form
deletes this newly copied file by placing it in the Recycle Bin.

14. Detecting File Changesin a Folder

The file changes code can be found in the folder prjFileSystemWatcher.

Necessity is the mother of invention, or something like that. Take, for example, the project that
accompanies this chapter. While researching potential topics for my book, | came across the
FileSystemWatcher classin the CLR. Thinking this might be a good candidate for atopic, | began
writing a program to demonstrate the functionality of this class. After just over an hour, however, |
couldn’t get my example to work. | thought | was using the class correctly, but it just wasn't
detecting file changesin the folder | specified.

Asawise help desk clerk once told me, “RTDM!” (or “Read the Darn Manual,”—although the
actual phrase most help desk clerks say substitutes a much less family-oriented word into the phrase).
A quick consultation into the Visual Studio.NET help gave me my answer: it seems the FileSystem-
Watcher class works only on Windows NT or 2000 platforms. My recently purchased PC was
equipped with Windows Me.

War ning Unsuspecting Users

Thisturn of events got me thinking: “If the FileSystemWatcher class doesn’t work on Windows
95/98/Me platforms, shouldn’ t there be some type of programmeatic warning when trying to useit in
that type of environment?' Therefore, before | show you how to use FileSystemWatcher, I’ Il show
you how to create an error message for those who try to use it on unsupported platforms.

Thanks to the power of object-oriented programming, | can easily solve my own problem. With just
afew short lines of code, | can write a descendant of the FileSystemWatcher class that displays an
error message if someone attempts to use it in the wrong operating system environment. Here is the
entire code for that class:

Cl ass tagFil eSyst en\at cher
I nherits Fil eSystenWatcher

Overl oads Shadows Property Enabl eRai si ngEvents() _
As Bool ean
Get
Ret urn MyBase. Enabl eRai si ngEvent s
End Cet
Set (ByVal Val ue As Bool ean)

If Environnent.OSVersion.Platform) =
System Pl at form D. Wn32NT Then

MyBase. Enabl eRai si ngEvents = Val ue
El se

Console. WiteLine"& _

"("the Fil eSystemAat cher does not work in _

this operating systent)

Consol e. WiteLine("Wndows "& _

NT or W ndows 2000 required.")

MyBase. Enabl eRai si ngEvents = Fal se
End |f

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 36 of 180

End Set
End Property
End Cl ass

What we re doing here is overriding the EnableRai singEvents property in the FileSystemWatcher
class. A simpletest is performed to see what operating system is being used. If it isaWindows NT
system (including Windows 2000), then the ancestor EnableRaisingEvents property is set to the
appropriate value. If the operating system test fails, then awarning message is written to the console,
and the setting is | eft asfalse.

Not long after | completed this class, | upgraded my new PC to Windows 2000, which not only gave
me about 3000 percent fewer crashes, but it also got me the benefit of using the CLR
FileSystemWatcher class as shown in the example project.

Watching for Files

| decided to use aform-level property for this project to track the directory that | wanted the
FileSystemWatcher to watch. Properties are useful because you can place code inside the Set
procedure, which causes the code to execute whenever the property changes. Here is the code for that
form level property:

Property pFol der Nane() As String
Get
pFol der Nane = || Fol der Nane. t ext
End GCet

Set (ByVal Value As String)
I | Fol der Name. t ext = Val ue

oWat cher = New t agFi | eSyst emat cher ()
oWat cher. Path = Val ue

oWat cher. I ncl udeSubdi rectori es = Fal se
‘oWatcher. Target = WatcherTarget.File

oWatcher. NotifyFilter = NotifyFilters. Attributes Or NotifyFilters. Last

AddHandl er oWat cher. Changed, AddressOF Fol der Changed
AddHandl er oWat cher. Creat ed, AddressOF Fol der Creat ed
AddHandl er oWat cher. Del et ed, AddressOf Fol der Del et ed
AddHand| er oWat cher. Renaned, AddressOF Fol der Renaned

oWat cher . Enabl eRai si ngEvents = True
End Set
End Property

The Get procedure simply returns the value of the LinkLabel control as the value of the property.
When the property is set, the LinkLabel valueis also set (keeping the LinkLabel and the property
valuesin sync). After this, the FileSystemWatcher isinitialized (actually, my descendant
tagFileSystem- Watcher classis used, so | can get the benefit of my new operating system version
check). The oWatcher variable instantiates, and several properties are set to control the functionality.
The ChangedFilter property controls what types of file changes to report on. The sample procedure
reports on all available changes (the values are combined using the VB.NET bitwise OR operator
Or). Then, events are tied to the object using the AddHandler procedure. This procedure connects an
object’s event to an event handler at runtime (the event handler’ s parameters have to match the
parameters required by the event type).

Once afolder is selected in the sample application, you can see it in action by starting an instance of

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 37 of 180

Windows Explorer and playing around in that folder. Try creating a new file, moving filesin and out
of the folder, deleting files, and renaming files. Each time, the tagFileSystemWatcher instance
should diligently report each of your actions.

15: Thinking in Threads

The thread code can be found in the folder prjThreads.

Threaded programming has been around for several versions of Windows now, but it was scarcely
available to the Visual Basic programmer of yesterday. Thread support was not built into prior
versions of Visual Basic, and some third-party control or DLL was usually needed to accomplish any
type of threaded programming. Those days have left the building. Thread support is built into

the .NET Framework, so if you can find an application or routine that would be best served running
in its own thread, you can now easily make this happen.

The most “famous” example of threaded programming (at least to me) is the spell checker in
Microsoft Word. Y ou can see the little book and pencil icon running in the lower toolbar as you type,
and if you happen to mistype aword, you see the little red squiggle underneath the word as soon as
you hit the spacebar to start a new word. This processis running in its own thread, so that the
constant icon updating, spell checking, and red squiggle drawing code doesn’t (apparently) take CPU
cycles away from you while you type. Actually, the threaded spell checker in Word was somewhat of
arevolution in spell checking, asall prior spell checkers were a separate process that you performed
after you were done typing. Taking advantage of threads allowed the Microsoft programmers to
implement the live, red-squiggle spell checker with which we re al familiar today.

The sample program borrows a bit from the Microsoft Word spell check idea. | decided to implement
aletter occurrence counter that runsin its own thread, as shown in the following illustration. The
Listbox at the right of the text will keep a running count of the letters that you type and perform this
counting in a separate thread so as to not disturb your typing.

[Bveats =10 x|

The bsthan of Ehe right counts the resnbes of occosences of each letter. Try bping =
o thes ba s sasbchy the counts changs on the fly, The counting happens inis
o Ehwead, o & shouldn’t inbernut your Eypng,

The cuacic becw Foo jumges aver Hhe lazy dog.

Starting athread is done just like instantiating any other .NET Framework object. As a parameter on
the New constructor, you need to pass a pointer to the code you would like the thread to run when it
begins. Thisis done using the AddressOf operator, shown here:

aThread = New Thread(AddressOf Thr eadBegi n)
aThread. | sBackground = True
aThread. Start ()

This code instantiates a thread and sets it to run the ThreadBegin procedure when it starts. It then sets
the thread to run as a background thread, and gets things rolling by calling the Start method.

Let’ sjump ahead to the ThreadBegin routine to see how that doesits job:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 38 of 180

Private Sub ThreadBegi n()

Do Wile True
Count TheLetters()

‘sleep for 1 second, then start the | oop over
Thread. Current Thr ead. Sl eep(1000)
Loop

End Sub

By looking at this code, you can see how almost trivial it isto set up a background thread. The
routine runsin an endlessloop. A second routine is called which counts all the lettersin the Textbox
and reports them in the Listbox (the details of that procedure are not important in the threading
example). Then, the current thread is told to sleep for one second (1000 milliseconds), and the
infinite loop is resumed. Since the loop runs forever, you need to shut it down gracefully when the
programis closing. Thisis donein the Closing event of the form:

Public Sub Forml_Cl osi ng(ByVal sender As Cbject, ByVal e As System Conponent Mbdel
Cal |l aThread. Abort ()
End Sub

That’ s about it. Y ou should try running the example program and see how smooth it feels to typeinto
the Textbox while the letter counter on the right keeps updating at the same time.

Once you find out how easy it isto program using threads, you may find yourself rethinking how
you might use them in some of your current projects. For example, I’ m currently writing aVB6
project that builds a little summary bar graph in the upper-right corner of the screen as a set of datais
loaded. This bar graphs adds an extra second to the loading time of my data set, but it isn’t realy
used by the application except for the user to view. My thought was that | could make my application
feel faster by loading that bar graph in a separate thread, which might cut down the total loading time
of the large data set into the application.

16: Timing Up Eventswith Timers

The events and timer code can be found in the folder prjScreenSaver.

Timer controls have been around VB for along time, but now you can create them on the fly without
having to drop a placeholder component on the form. Declaring and initializing a Timer dynamically
can be done as follows:

oTi mer = New Tiner ()

oTinmer.Interval = 100 10 ticks per second
AddHandl er oTi mer. Tick, AddressOf oTi nmerTick

oTi ner. Enabl ed = True

This code creates atimer, setsit to fireits Tick event every 100 milli- seconds, attaches the Tick
event to the procedure named oTimerTick, and then turns the timer on.

Note Y ou can still use the old way to add most nonvisual controlsinto VB6-created projects.
However, instead of being right on the form, there is a special location in the IDE below the
form design area that shows the nonvisual controls.

The most interesting part of this code isthe AddHandler statement. While the end result hereisthe
same as if you had dropped atimer control into your project, double-clicked it, and then written code
for the Tick event, being able to dynamically add and remove event handlers at runtime can be very

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 39 of 180

powerful. Y ou could, for example, write two different event handlers for the Tick event and then
switch between them when desired—something like the pseudocode here:

If (sone value is even) then
RenoveHandl er oTi nmer. Tick, AddressOf OddEvent
AddHandl er oTi ner. Ti ck, AddressOFr EvenEvent

El se
RenpveHandl er oTi ner. Ti ck, AddressOfF EvenEvent
AddHandl er oTi nmer. Ti ck, AddressOf OddEvent

End if

Y ou would then have distinct event handlers for the same Timer control.

This ability to dynamically assign events doesn't just apply to the Timer control. It opens the door to
being able to create any type of control at runtime and hook up the controls’ events to code you have
written.

17: At Your (Windows) Service

The Windows Service code can be found in the folder prjWindowsService.

Now here’s something the prior-generation VB programmers could never do—write aworking
Windows NT (or Windows 2000) service. In the past, if you wanted to write a Windows Service you
had to ask your C++ buddy to do it for you, who would usualy just laugh at your “inferior”
programming language (meanwhile, it took the C++ guys seven hours to get a dialog box with four
buttons and a Listbox laid out, but nobody ever seemed to call them on that little problem in the
language, did they?). In any event, you can now thumb your nose back at the world, for you have the
power to write Windows Services as well.

What kind of program is useful as a Windows Service? Any program that needs to run all the time
but (normally) not be seen can be a good candidate for a Windows Service. Monitor programs, virus
checkers, and security watchdog programs all fall into this category.

My example Windows Serviceisa RAM monitor. It uses a performance counter object to poll the
amount of available RAM and to write this number into the event log. My service is hard-coded to
perform its polling every 10 seconds—a real -world application would probably wait a bit longer
between polling times (or even be user configurable). However, | was impatient and wanted to see
my results quickly, so 10 seconds was my choice.

Setting up a Windows Service is one of the project types you can choose when you create a new
project, as seen in this dialog box:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 40 of 180

5
Froject Types: Templabes: mﬂ
o —

] Vit £ Projmets % 3 «_—a
15] Veossl Cor+ Projects ! &
]] Vel FoaPro Projects ek Whndower Emplty Propect

] Sestup and Desphosysnand Projects Rpphcstion Service

£] Othesr Projects
] Viasl Shuda Sok e '% g
Emply Wek: Import Fobdes
Praject Wierd x|

B proiect o ersling eraes e Windoes
Mare; |'n-'r\-dmss-e| wioe
Legation: |'- Eoturents and Settirgs]matt biaghsharm]My Godume ;I Browss. .,

A by Solubior % e Sokidtian
Projpect will ba craated ot C:f. . imatt EaghalamiMy Documenby’vblet (winckwiSanacnl

T Mo I o] carcdl | Heks |

Once you create a project of thistype, you will be given a base project with a predefined class that
helps get the service installed on a computer. The first thing you need to do is change the
ServiceName property on the main object to a memorable name for what your service does. This
name is important to remember, as you will seeit in thelist of available services on your PC once
you'veinstalled it correctly.

Once you’ ve named the service, you can go into the predefined code and start working on what your
service will actually do. The default service class gives you empty OnStart and OnStop methods,
which are called when the service is started (either manually or on system bootup) or stopped on the
computer. The OnStart method is where you should claim any resources and initialize any data your
service needs. Likewise, the OnStop method can clean up such resources.

If you only coded within the OnStart and OnStop methods, it would be pretty hard to write a service
that did anything useful. Some type of "hook" mechanism is needed to keep your service doing work
whileit s running. This hook could be a Timer object, a FileSystemWatcher object, a Scheduler
object, or anything that gives you the means to run code at a specified time. | chose a Timer object
for my sample class. The OnStart method enables the timer, as seen here:

Protected Overrides Sub OnStart(ByVal args() As String)
oEvent Log. WiteEntry(Me. Servi ceNane & " service started")
oTi mer . Enabl ed = True

End Sub

On every tick of the timer, the sample service updates a counter, and if the magic 10-second
milestone is reached, a procedure is called to write the available RAM to the event log. Both the
timer tick and the RAM writing routines are shown here:

Private Sub oTi ner_El apsed(ByVal sender As System Object, ByVal _
e As System Ti nmers. El apsedEvent Args) Handl es oTi mer. El apsed

Const RECORDEVERY As |nteger = 10
ictr += 1
If iCtr Mbd RECORDEVERY = 0 Then
Cal | RecordAvai |l abl eRAM)
ictr =0
End If
End Sub
Private Sub RecordAvai |l abl eRAM)

Di m oCount er As Perfor manceCount er

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 41 of 180

Dimr As Long

Try
oCount er = New PerformanceCounter (" Menory", _
"Avai |l abl e Bytes")
r = oCounter. Rawval ue()
oEvent Log. WiteEntry("RAM Available Bytes =" &
r.ToString)

Catch oEX As Exception
oEvent Log. WiteEntry("tagTestService failed: " & _
oEX. Message)

End Try

End Sub

Once the serviceis compiled, it isinstalled from a command line using the InstallUtil program:

Installutil prjWndowsService. EXE

Y ou should get a message stating that your service was installed correctly. A quick look at your
Windows Services should confirm this. My test service (named tagTestService) is shown here

property installed, waiting to be started:

[Faservices o[-
[e o ||+ » BE FRHB v = 1 »
Trea | Hame ¢ St | Stertup T, O As -
Sanvices (Locall By 5l irage Serene Tated Automatic LocaSysen
B Svitem Evend ol . Trachs sval... Sarled Aidonaslic LicalSyleT
| CpTEe—r. Erables ... Started Auborssly [rprm——
R TCPIP NBIOS Ml Erabessu,. Shated Automstic Localystan
BBy Tebedniry Provides T... Tharted Marwal LocaSysben
By Tenet Ao e Marnal LicalSyshem
Eq,'nnn-umu--hu- Paruwwr A Magarad 1 i A vy ;l

After testing my service by starting and stopping it a minute or two later, a quick check to the event

log proved that my service was executing properly:

11
Evert |
Diaim BTN Sowce lagTedSerace +
T,] Calegoey Nore
Tipe Infonpier Evertilc 0 *
User [73
Comguster. PGIGA 4
Dgcipmo

[Fitid: A adabian Bytas = BEZAEITE

L]

£

uxll;.-ﬂl|.|

18: Diving into Collections

The collections code can be found in the folder prjCollections.

A collection is atype of class with the primary purpose of containing a group of objects. Collections

file:///E:\Books\dotNET\Visua %20Basi c%20.NET %201 %20Didn't%20K now%20Y ou...

15/03/2002

Page 42 of 180

vary in how objects are added and removed, how they are stored, and how they are accessed.
Numerous collections are built into the .NET Framework, or you can create your own collection
classes. Here wé Il ook at some common collection types and usage examples.

The NameValueCollection

The NameV alueCollection class is designed for storing string key-value pairs. For example, you
might have alist of employee names and their social security numbers. The social security number of
each employee (because each is unique) could be used as the key to look up the name of the
corresponding employee. Y ou can use a NameV alueCollection object to store the employee/social
security number pairs.

The following code demonstrates common usage of the NameV alueCollection. First, five items are
added to an instance of the NameV alueCollection object. To return the value corresponding to a
given key, use the Item property. Y ou can also enumerate through all the keys or all the values using
the AllKeys property, respectively, as shown here:

Private Sub cbNanmeVal ueCol | ection_Click(ByVal sender As _
System Obj ect, ByVal e As System Event Args) Handles _
cbNaneVal ueCol | ection. dick

Di m oNVC As New NaneVal ueCol | ecti on()
Dims As String

Consol e. Wi teLi ne("——NaneVal ueCol | ection " & _
"exanmpl e—)

oNVC. Add(" 000- 00- 0001", "NMNother Goose")

oNVC. Add(" 000- 00- 0002", "The Frugal Gournmet")

oNVC. Add(" 000- 00- 0003", "Pokerman Master")

oNVC. Add(" 000- 00-0004", "Si npsons Conpendi um')

oNVC. Add(" 000- 00- 0001", "Real Estate Tycoons")

Consol e. Wi t eLi ne(oNVC. | t en(" 000- 00- 0001"))

Consol e. WiteLine("enunerate the keys" & _
"(notice how duplicates are handl ed)")
For Each s In oNVC All Keys
Console. WiteLine("—Kkey " &s &" ——")
Consol e. WiteLine(oNVC. Itenm(s))
Next

End Sub

Note that duplicates are allowed in a NameVaueCollection. If aduplicate key is added, the two
values corresponding to that key are displayed, separated with acomma. In the code above, the
return value for property oNV C.Item("000-00-0001") is Mother Goose, Real Estate Tycoons.

The HashTable

While the NameV aueCollection is made purely for string storage, the HashTableis a general -
purpose collection that can hold any group of objects. Each object must be associated with a unique
key. The most common use of akey isastring value. For example, one could store a collection of
Employee objects using the employee social security number as the key. Instead of associating the
key with asimple string like in the NameVaue- Collection, however, you can put any Visual
Basic.NET object in the HashTable

Note The rest of the collection examples create collections of a simple business object named
BookEncapsulater. This class contains properties for a book ISBN (the unique identifier used

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 43 of 180

by the book industry to identify atitle), atitle, and a publish date. Obviously, afully functional
class would include many more properties to fully describe a book title. The code for the
BookEncapsulater can be found in the mBook.vb module in the sample project prjCollections.

The sample code adds four instances of a BookEncapsulater object into a HashTable, and then
demonstrates both retrieving one of the objects by its hash code, as well as enumerating through all
the objects in the collection.

Private Sub cbHashtable Click(ByVvVal sender As _
System Obj ect, ByVal e As System Event Args) Handles _
cbHasht abl e. Cick

Di m oHash As New Hasht abl e()
Di m oBook As BookEncapsul at er
Dimd As DictionaryEntry

"Consol e. WiteLi ne("———HashTable " &

"exampl e— ——*)

Try
oBook = New BookEncapsul ater ("000-00-0001",
"Mot her Goose", #6/24/ 1966#)
oHash. Add(oBook. | SBN, oBook)

oBook = New BookEncapsul at er (" 000-00-0002"
"The Frugal Gournet", #2/21/1951#)
oHash. Add(oBook. | SBN, oBook)

oBook = New BookEncapsul ater ("000-00-0003",
"Pokeman Master", #11/2/1964#)
oHash. Add(oBook. | SBN, oBook)

oBook = New BookEncapsul ater ("000-00-0004",
"Si npsons Conpendi uni', #3/ 18/ 1945#)
oHash. Add(oBook. | SBN, oBook)

‘unconmenting this will produce
‘an exception because you can’'t
‘have a duplicate key (I SBN)
“in the hashtabl e
‘ oBook = New BookEncapsul at er (" 000-00-0001",
‘"Real Estate Tycoons", #7/11/ 1969#)
‘ oHash. Add(oBook. | SBN, oBook)
Catch oEX As Exception
Consol e. WiteLine("exception alert: " &
oEX. Message)
End Try

‘return one of the objects in the
‘hashtabl e using the ‘Item property
Consol e. WiteLine(oHash.Itenm("000-00-0003"))

‘“enunerating the elenents in the
‘hashtabl e requires a typecast
For Each d In oHash
oBook = CType(d. Val ue, BookEncapsul at er)
Consol e. Wi telLi ne(oBook. Name & ", " & oBook. | SBN)
Next

End Sub

One of the dight problems with the HashTable (and most of the other collection classes) can be seen
at the end of the example code, where you'’ re enumerating through it to return the individual items.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 44 of 180

Once you get an item back, you have to do atypecast using a CType() function to get the object back
into ausable state. Thisisn't too big adeal, but having to typecast as you take objects out of al your
collections is something that’s easy to forget and can lead to problems. It seems that it would be
much easier to iterate through a HashTable this way, for example:

For each oBook in oHash
Consol e. WiteLine(oBook. Nane & ", " & oBook. | SBN)
Next

However, trying to pull the class directly out of the HashTablein thisway causes aruntime
InvalidCastException error, unfortunately.

The Stack

The Stack collection implements the adding of objectsin alast-in, first-out order. Think of a stack of
traysin the cafeteria. If someone puts one on the top of the stack right before you show up, that isthe
one you'll take. The one way at the bottom was the first one on the stack, and it’ll be the last one off.

The Stack implements a Push method to add an object and aPop method to remove an item. In
addition, you can use the Peek method to check out the item on the top of the Stack without actually
removing it.

Private Sub cbStack_Click(ByVval sender As System Cbject, ByVal _ e As System Event

Di m oSt ack As New Stack()
Di m oBook As BookEncapsul at er

Consol e. WiteLi ne("——Stack exanpl e———*)
oBook = New BookEncapsul ater ("000-00-0001", _

"Mot her Goose", #6/24/ 1966#)

Cal | oStack. Push(oBook)

‘—other itens pushed onto stack here,
‘renoved for brevity

Consol e. WiteLine("stack being enptied, note order")
Do Wil e oStack.Count > 0
oBook = CType(oStack. Pop, BookEncapsul ater)
Consol e. Wit eLi ne(oBook. | SBN)
Loop

End Sub

Note that you must once again perform atypecast during the Pop to cast the object coming off the
Stack into a strongly typed object variable.

The Queue

The Queue collection implements the removal of objectsin afirst-in, first-out order, like the line for
an amusement park ride. The first person in the line is the first person to come out the other end.
Adding an object to a Queue is done using the EnQueue method; removing an object is done using
the DeQueue method. Y ou may also Peek at the top object without removing it.

Creating a Type-Safe Collection

You'’ve already seen the minor hassle of having to typecast all of the objects coming out of the
collection classes in order to use the objects in the code. In addition, you might run into problems

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 45 of 180

putting objects into a collection. All of the methods used to add an object to a collection take any
object as a parameter. What if, for example, you create a collection variable meant to hold
BookEncapsulator objects, and you accidentally put a Magazine- Encapsulator object in the
collection? The compiler isn’t going to bark at you—Yyou can put any type of object you want into a
collection. The problem will show up when you try and remove that rogue object at runtime,
however because the typecast you attempt will more than likely fail.

What would be really useful would be to create a type-safe collection—one that allows you to add
and remove objects of one certain type only. In addition, you could perhaps handle all the messy
typecasting inside your type-safe collection, making the usage of that collection all the easier.

This sounds like an object-oriented programming slam dunk, but in practice it’snot al that easy.
Hereiswhat looks like a perfectly good inherited class for storing my BookEncapsulator object in a

Stack:

Cl ass Si npl eBookSt ackEncapsul at or
I nherits Stack

Publ i c Overloads Sub Push(ByVal b As BookEncapsul ater)
Cal |l MyBase. Push(b)
End Sub

Publ i ¢ Function Pop() As BookEncapsul at er
Return CType(MyBase. Pop(), BookEncapsul ater)
End Function

End Cl ass

Easy as pie, no? Unfortunately, the Pop method on this classisillegal. It is not permissible to have
an overridden function that differs only by return type. That is, my BookStackEncapsulator Pop
function isidentical to the Stack Pop function, except for the type of object it returns, and thisis

illegal.
This problem is easily fixed by adding a Shadows keyword to the Pop definition:

Publ i ¢ Shadows Function Pop() As BookEncapsul at er
Return CType(MBase. Pop(), BookEncapsul ater)
End Function

The Shadows keyword allows me to completely ignore the base class Pop method and replace it with
my own.

A Second Type-Safe Solution

Just to play devil’s advocate here—what if there were no such thing as a Shadows keyword? Could
you still write atype-safe stack? The answer isyes, but you' d need to do a bit more work:

Cl ass BookEncapsul at er St ack
Di m oSt ack As New Stack()
Sub Push(ByVal oEnp As BookEncapsul at er)

oSt ack. Push(oEnp)
End Sub

Function Pop() As BookEncapsul ater
Return CType(oStack. Pop, BookEncapsul at er)
End Function

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 46 of 180

ReadOnly Property Count() As Integer
Get
Return oSt ack. Count
End Get
End Property

Sub Cl ear ()
oSt ack. cl ear ()
End Sub

Functi on Peek() As BookEncapsul ater
Return CType(oStack. Peek, BookEncapsul ater)
End Function
End C ass

This class does not inherit from a stack. Instead, it inherits directly off an object and contains a stack
insideit. It has Push, Pop, Peek, and Clear methods, just like a Stack object would, but you don’t run
into override problems because these methods aren't overriding methods in alower class.

Yet Another Type-Safe Solution

Thereis athird way you can implement type-safe collections. This method is built right into
the NET Framework. It involves creating your class by making it a descendant of the class
CollectionBase, as shown here:

<Serializabl e()> C ass Anot her BookEncapsul at er St ack
Inherits System Col | ections. Col | ecti onBase

Sub Push(ByVal oEnp As BookEncapsul at er)
MyBase. | nner Li st. Add(oEnp)
End Sub

Function Pop() As BookEncapsul ater

DmiCtr As Integer = MyBase. | nnerlList. Count
Di m oBook As BookEncapsul at er

If iCtr > 0 Then
oBook = CType(MyBase.lnnerList.lten(iCr - 1),
BookEncapsul at er)
MyBase. | nner Li st. RenoveAt (i Ctr - 1)
Ret urn oBook
El se
Dime As New _
Exception("error: cannot pop, stack is enpty")
End I f

End Function

Function Peek() As BookEncapsul at er
DmiCtr As Integer = MyBase. | nnerlList. Count

If iCtr > 0 Then
Return CType(MBase.lnnerList.ltem(iCtr - 1),
BookEncapsul at er)
El se
Dime As New
Exception("error: cannot peek, stack is enpty")
End If

End Functi on

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 47 of 180

End Cl ass

The CollectionBase class has an Innerlist property that should be used to store all of your typed
objects. The Innerlist property is protected, meaning it is available only to descendants of the class,
not to anyone outside the class. To implement my type-safe stack, | implemented the Push, Pop, and
Peek methods by manipulating thisinner list and by performing the necessary typecasts on the
objects on the way out of thelist.

Both of the later solutions work fine, but they aren’t nearly as elegant as the first solution—simply
creating a descendant of the Stack class. For starters, you have to duplicate every property, event,
and method from the Stack class in your new class that you want to support. Suppose, for example,
that anew version of VB.NET comes out in afew years, and some useful feature is added to the base
Stack class. Y ou would have to open up this new class and add that feature manually. By inheriting
right off the Stack class, your new object would automatically inherit those new features when you
started using the new version of Visual Basic. This example shows one of the reasons that object-
oriented programming is so powerful.

19: System Traysin Their Full, Upright Positions

The system tray code can be found in the folder prjSashdotReader.

Note The SlashDot reader program was originally conceived by John O’ Donnell, and was the source
of an article at http://www.c-sharpcorner.com. Thisarticle was the first in atwo-part set which
explained how to retrieve and parse the XML datafrom SlashDot, but it had not yet placed the
article titles into a system tray icon. Given proper permission, | "borrowed" this excellent idea,
completed the program, and used it in this book. Check out the C# Corner web site for more
excellent .NET programming ideas and tutorials.

Everybody wants to put their program in the Windows system tray these days. My system tray at one
point or another has been bursting at the seams with icons for AOL Instant Messenger, Napster (well,
not anymore), WinAmp, speaker volume control, and a few othersthat | clicked once to find out
what they did and then promptly deleted from my system.

Y ou too can clog up your users’ system tray with your own program by using the Notifylcon classin
the NET Framework. As mentioned above, | borrowed the idea for a system tray program from an
online .NET programming colleague who displayed the headlines of the SlashDot news service
(images/www.slashdot.org) as a series of menu items.

Tray icon programs are created by using the Notifylcon class. Creating a Notifylcon to show up in
the Taskbar is as easy asthe following few lines of code

aNotifylcon = New Notifylcon()
aNotifylcon. Text = "Slashdot Today"
aNotifylcon.lcon = Me.lcon

aNoti fylcon. Visible = True

With this code, the icon displayed in the task tray is whatever icon is defined for the main form of
the application. The Text property defines the tooltip that will appear when the user holds the mouse
over the icon. Finally, the icon is made visible.

Note As of Windows XP, the system tray is no longer referred to as such—it’s called the notification
area.

What’son the Menu?

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 48 of 180

The pop-up menu that appears when the user right-clicks the icon in the system tray is the
ContextMenu property of the Notifylcon class. The Context- Menu class can be used to display a
pop-up menu on any control. Setting up a ContextMenu in code is done exactly as normal menus
are—by appending Menultem objects to the ContextMenu object.

For my example, | knew that | was going to be displaying SlashDot article titlesin the menu, and
that each of these articles was going to be associated with a web address that the user could navigate
to by accessing that menu item. To easily store the web address with each Menultem, | decided to
create a descendant of the Menultem class with a string property to store the URL.

Cl ass MenultemA t hURL
I nherits Menultem

Sub New(ByVal cText As String, ByVal cURL As String)
Call MyBase. New(cText)
URL = cURL

End Sub

Private FURL As String
Property URL() As String
Get
Return FURL
End GCet
Set (ByVal Value As String)
FURL = Val ue
End Set
End Property
End Cl ass

This short set of code creates a new type of Menultem object with one additional string property for
storing the URL associated with the article. It also creates a new constructor so that | can easily pass
in the menu text and the URL as | create each instance.

Once armed with my new Menultem descendant, building the ContextMenu was done as follows:

DimcTitle As String

DimcURL As String

Di m aMenu As Cont ext Menu

Di m aUMenul tem As Menul t emW t hURL
Di m aMenultem As Menultem

Try
aMenu = New Cont ext Menu()
aMenu. Menul tens. Cl ear ()
Catch oEX As Exception
MsgBox(0EX. ToStri ng)
Exit Sub
End Try

‘ *x*x gtart: code sinplified for this section —
For Each (something) In (sonethingel se)
cTitle = ObtainTitle()
CURL = Obtai nURL()
‘x*x% and: code sinplified for this section —

aUMenul tem = New MenultenmW thURL(cTitle, cURL)
AddHandl er aUMenultem Cl i ck, AddressOf MenuC i ck
aMenu. Menul t ens. Add(aUMenul t em)
End If

Next

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 49 of 180

aMenultem = New Menultem("-")

aMenu. Menul t ens. Add(aMenul t em)

aMenultem = New Menultem("Exit")

AddHandl er aMenultem Click, AddressOf AppExit
aMenu. Menul t ens. Add(aMenul t en)

aNot i fyl con. Cont ext Menu = aMenu

| purposely left out the code that figures out how to loop through and load the headlines and URL
strings so that | might better explain them in their own chapter. Thus, the code between the obvious
comments above is merely placeholder pseudocode to show you that aloop isin fact being executed
and an article title and URL are being somehow loaded into string variables.

Once these variables are loaded, one of my snazzy new MenultemWithURL classes is instantiated
and these two variables are passed in to the constructor, and the object is added to a ContextMenu
instance named aMenu. The Click event for each of these menusis set to a procedure named
MenuClick.

Next, two standard Menultem objects are added to the ContextMenu. The first issimply adivider
line, and the second is the option to exit the program. This last Menultem hasits Click event set to a
procedure named AppExit.

Finally, the ContextMenu for my Notifylcon object is set to point to the aMenu variable that | just
built. This allows the pop-up menu to appear when the user right-clicks my tray icon.

When the user selects one of the MenultemWithURL objects from the menu, this two-line procedure
iscalled:

Private Sub MenuClick(ByVal sender As Object, ByVal e As _ Event Ar gs)
Dimaltem As Menul t emW t hURL
altem = CType(sender, MenultenmWt hURL)

Process. Start(altem URL)
End Sub

This code typecasts the passed-in Sender variable back to my MenultemWithURL class and then
callsthe Process.Start method on the URL that is stored in this menu item. This has the effect of
starting the machine’s default browser and navigating to that site. Thus, when the user selects one of
the articles from the menu, their browser opens and they can read the text of the article, asseenin
thisillustration:

Twio Sci-Fi Legends Slated To Return To T
Metpliance Pays Lip For False Advertising And Maore
Ricochet May Go Away; Metricom Files Chapter 11
Microsoft "Bans" Use OF GPL Code

Software In The Land That Time Forgak

Computer Faces Human Psychological Tesk

Adobe Threatens KIllustrator Owver Mame

CRES Forks

1EM's First Compuker

Tampa's Cameras Mok Just Far The Superbowl

Exit

Slashdat Today
I H

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 50 of 180

The program is rounded out by adding atimer that reloads the Context- Menu at aregular interval. |
set thisinterval to two minutes while testing my program—a production version of the program
would probably reload the menu at a more sane level, say once or twice per hour.

20: Seeing the Inner Workingsof Your Code

The StackFrame code can be found in folder prjStackFrames.

Writing code that displays information about your code—now that’s pretty cool. The .NET
Framework allows you to access information about the procedure-calling stack using the StackTrace
and StackFrame classes. The following procedure gives an example:

Private Sub Di spl ayStackFrameReport ()

Di m oST As New StackTrace(0)
Di m oSF As St ackFrane

Di m oMet h As Met hodBase

Di m oParm As Paraneterlnfo
Dimi As Integer

Call I bQut.Iltems.Cl ear()

For i = 0 To oST. FraneCount - 1
OSF = 0ST. Get Frane(i)
oMet h = oSF. Get Met hod
| bOQut. I tens. Add("
& ")

[bQut . | tens. Add(" Met hodNanme=" & oMet h. Nane)

| bQut. Itens. Add("Private=" & oMeth.IsPrivate)

| bQut. Itens. Add("Public =" & oMeth.IsPublic)

For Each oParm In oMeth. Get Par anet ers
| bQut. Itens. Add(" Paraneter=" & oParm Nane)
| bOQut. Itens. Add(" Type=" & _
oPar m Par anet er Type. ToSt ri ng)

Next

Next

stack frame " &

End Sub

The StackTrace constructor in this procedure takes a single Integer parameter that defines how many
framesto skip in thistrace. This functionality is provided so that you might skip reporting on
procedures dealing only with the debugging code you are writing. In this example, however, | chose
to not skip any frames by providing a0 as the parameter.

The available frames are then iterated with a For loop. For each frame, the method (procedure) name
is obtained by returning the MethodBase object tied to the current StackFrame object. The
MethodBase class also provides detailed information on each parameter passed in as a collection of
ParameterInfo objects. The last part of the procedure shows each para- meter’ s name and type.

The following isthe full output to this simple procedure. Y ou can learn an enormous amount of
information about the inner workings of your program, VB.NET, and Windows in general by
studying the full stack trace of even asimple program like this one:

stack frame O
Met hodNanme=But t on2_Cl i ck
Pri vat e=Fal se

Publ i ¢ =Fal se

Par anet er =sender

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Type=Syst em Obj ect
Par anet er =e
Type=Syst em Event Ar gs
stack frame 1
Met hodName=OnCl i ck
Pri vat e=Fal se
Publ i ¢ =Fal se

Par anet er =e
Type=Syst em Event Ar gs
stack frame 2
Met hodName=OnCl i ck
Pri vat e=Fal se
Publ i ¢ =Fal se

Par anet er =e
Type=Syst em Event Args
stack frame 3
Met hodName=OnMbuseUp
Pri vat e=Fal se

Publ i ¢ =Fal se

Par anmet er =nevent
Type=Syst em W nFor ns. MbuseEvent Ar gs
stack franme 4
Met hodName=WrivbuseUp
Pri vat e=Tr ue

Publ i ¢ =Fal se

Par anet er =m
Type=Syst em W nFor ns. Message&

Par anmet er =but t on
Type=Syst em W nFor ns. MouseBut t ons
stack franme 5
Met hodName=WhdPr oc
Pri vat e=Fal se
Publ i ¢ =Fal se

Par anet er =m
Type=Syst em W nFor ns. Message&
stack franme 6
Met hodName=WhdPr oc
Pri vat e=Fal se
Publ i ¢ =Fal se

Par anet er =m
Type=Syst em W nFor ns. Message&
stack frame 7
Met hodName=WhdPr oc
Pri vat e=Fal se
Publ i ¢ =Fal se

Par anet er =m
Type=Syst em W nFor ns. Message&
stack frane 8
Met hodName=WhdPr oc
Pri vat e=Fal se
Publ i ¢ =Fal se

Par anet er =m
Type=Syst em W nFor ns. Message&
stack frame 9
Met hodName=OnMessage
Pri vat e=Fal se

Public =True

Par anet er =m
Type=Syst em W nFor ns. Message&
stack franme 10
Met hodName=WhdPr oc
Pri vat e=Fal se

Publ i ¢ =Fal se

Par anet er =

Page 51 of 180

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Type=Syst em W nFor ns. Message&
stack frame 11
Met hodName=Debuggabl eCal | back
Privat e=True

Publ i ¢ =Fal se

Par amet er =hWd

Type=Il nt 32

Par anmet er =nsg
Type=I nt 32

Par amet er =wPar am
Type=Il nt 32

Par anmet er =| Par am
Type=I nt 32

stack frame 12
Met hodName=Di spat chMessageW
Pri vat e=Fal se

Public =True

Par anmet er =nsg

Type=M crosoft. Wn32. | nterop. MSG&

stack franme 13

Page 52 of 180

Met hodName=M crosoft. Wn32. | nt er op. | MsoConponent Manager . FPushMessageLoop

Privat e=True

Publ i ¢ =Fal se

Par amet er =dwConponent | D
Type=Il nt 32

Par anet er =r eason
Type=I nt 32

Par anmet er =pvLoopDat a
Type=I nt 32

stack franme 14
Met hodName=RunMessageLoop
Pri vat e=Fal se

Publ i ¢ =Fal se

Par anet er =r eason
Type=I nt 32

Par amet er=form
Type=Syst em W nFor ns. For m
stack frame 15
Met hodName=Run

Pri vat e=Fal se

Public =True

Par amet er =mai nFor m
Type=Syst em W nFor ns. For m
stack franme 16
Met hodName=Mai n

Pri vat e=Fal se

Public =True

stack frame 17
Met hodName=_nmi n

Pri vat e=Fal se

Public =True

Par anmeter=_s
Type=System String[]

21: Writing Codefor Your Code

The commenting code can be found in the folder prjCustomAttributes.

Prior to VB.NET, the only means a devel oper had to document code was the use of comments.
Commenting code is awidely varied art—each developer has their own style and technique for
documentation. The blessing and the curse of comments is their free-form nature. While free-form
comments allow developers to express themselves in whatever means they desire, the comments

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 53 of 180

often fail in their overal purpose, which isto document the project at all levels.

I’ ve worked in anumber of devel opment shops where the senior devel opers decided to implement a
structured format for comments in key areas, to introduce subroutines, for example. These structured
comment blocks might contain a brief description of the routine, the original author, the date last
modified, and possibly a change history. While the intentions of structured code commenting are
noble, there are many problems with this method of code documentation. Most importantly is that
there’s no way to police their use. If alazy programmer decides heisn’t going to use the structured
comment headers, who’s to stop him? Sure, someone can be paid to scour code for hours and make
sure that each procedure has a comment, but that sounds like awaste of time and money. Plus, what
happens when the code cop actually finds an uncommented routine? Who does she yell at? By
definition, the code is undocumented, so there s no easy way to figure out who failed to add the
comment block.

Visual Basic.NET attempts to aid in the code documentation effort through the use of attributes.
Attributes are atype of classin the NET Framework that you can create and “attach” to code
elements—methods, events, properties, or even whole classes.

There are many predefined attributes built into the .NET Framework that help to describe
characteristics of existing Framework elements. For example, the description that appears at the
bottom of the Property Inspector in Visual Studio each time you select a property is an attribute of
that property. The following illustration shows an example of this descriptive text:

R — e
RightToLeft Mo
Text Sending EMail
E Behavior
AllawDrop False| ‘:I
ContexthMenu (none)
Enabled True
IMEMode MNoConkrol
E Data
|[H (Bindings) __v_]
allowDrop

Cetermines if the contral will receive drag-drop
notifications.

Y ou are not limited to attributes that Microsoft thought you might need to describe your project,
however. Because attributes are .NET Framework classes themselves, you can create and use your
own. Thisiskind of like writing code for your code. Let' slook at the beginning of a custom
attribute:

<AttributeUsage(AttributeTargets.Class Or _ AttributeTargets. Method Or AttributeT:
Publ i ¢ Cl ass CodeDescri ptor
Inherits System Attribute

Private FMbdifiedBy As String = "njt"
Private FDate As Date
Private FDescription As String

Sub New(ByVal cName As String, ByVal dDate As String, ByVal cDesc As String)
MyBase. New()

FMbdi fi edBy = cNane
Try

FDat e = CDat e(dDat e)
Catch oEX As Exception

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 54 of 180

FDat e = Now
End Try

FDescri ption = cDesc
End Sub

Thisisasimple class with three basic properties. a name (intended to be an author name), alast-
modified date, and a description. The class inherits off base class System.Attribute. This classitself
is declared with one of the built-in .NET Framework attributes, named AttributeUsage. The
declaration of this attribute describes where the new attribute can be used. In this case, you can use
the new attribute on a class definition, a method, a constructor (a special type of method), or a

property.

The constructor to the CodeDescriptor attribute merely takes default values for the three parameters
and stores them in the private variables. Additional code (not shown here) is set up to make these
three private variables accessible via properties.

Once the attribute is defined in this way, you can use it to describe code in your projects. The
following is asimple class that uses the attribute to help describe it:

CodeDescriptor("nmt", "4/01/2001", _ "A nornmal |abel that defaults to Navy Forecol
Public C ass Bl uelLabel
I nherits Label

<CodeDescriptor("nt", "4/01/2001", "Base Constructor")> _
Public Sub New()

MyBase. New()
Me. For eCol or = system draw ng. Col or. Navy

End Sub

End Cl ass

Note the CodeDescriptor attribute passing in the author initials, the date, and some descriptive text.
The attribute is used on both the class definition and the constructor for this new class.

Using Attributes for Documentation

So have you really improved anything? OK, you'’ ve defined a documenting attribute that your
developers can attach to their code, but how do you force them to useit? Y ou still have to police the
use of your attribute. Thisiswhere the beauty of structured documentation kicksin: you can actually
write code that tests for the presence or absence of a given attribute. Here is some code that does just
that:

Publ i c Shared Sub Fi ndPropertiesM ssi ngMe(ByVal
t As Type)

Di m oAT As Attribute

Di m oPR As Propertylnfo

Di m bAt Least One As Bool ean
Di m bFoundit As Bool ean
DimcLine As String

Consol e. WiteLine("")
Console.WiteLine("Class " & t.Nane)
Consol e. WiteLine(" docunenting the presence " & _
"of the CodeDescriptor Attribute:")
bAt Least One = Fal se
For Each oPR In t. GetProperties()
bFoundit = Fal se

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 55 of 180

For Each OAT In oPR. GetCustomAttri butes(Fal se)
If TypeOf oAT |Is CodeDescriptor Then _
bFoundit = True

Next

cLi ne = oPR. Nane

If Not bFoundit Then
cLine = cLine & " -M SSING'

El se
cLine = cLine & " -ok"
End | f
Consol e. Wit eLi ne(cLi ne)
Next

Console. WiteLine("End Class " & t. Nane)

End Sub

First off, note that this method is declared as a shared method on your CodeDescriptor class. Shared
methods are those called without requiring an instance of the class. This method is called as follows:

Dmt As type

t = Type. Cet Type("prj CustomAttri butes. BookCl ass")
Cal | CodeDescri ptor. Fi ndProperti esM ssi ngMe(t)

Once called, the method uses reflection to hack into the type definition of the class that you passin
and look for the CodeDescriptor attribute on every property of that class. It then reports on its
findings for every property to the console. The following listing shows the output of this method on a
sample class where | used the attribute on almost al the properties.

Cl ass BookCl ass
docunenting the presence of the CodeDescriptor Attribute:
Price -M SSI NG

Title -ok
Aut hor - ok
| SBN - ok

End Cl ass BookCl ass

Note that | forgot to add the attribute to the Price property, and my new method dutifully informs me
of that. I’ ve coded an attribute policeman!

In addition to reporting on the existence of an attribute, you can use the data within the attribute to
automatically generate documentation for your code. | wrote a second method for my
CodeDescriptor class that outputs the name, date, and description for all the CodeDescriptor
attributes it finds in a class. Here are the results of this new output:

Start Docunentation, Class BookCl ass

BookCl ass onmt 05/ 02/ 2001 _ Storage for Book Detail Data
Docunent ed Constructors

.ctor Dot 05/ 10/ 2001 Base Constructor

.ctor Dot 05/ 22/ 2001 Parameterized Constructor
Docunment ed Properties

Title omt 05/ 10/ 2001 Title of the book

| SBN onmt 05/ 10/ 2001 Publishers Book Code

Aut hor onmt 05/ 10/ 2001 Aut hor of the book

Documnment ed Met hods
(none)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 56 of 180

End Docunent ati on, Cl ass BookC ass

Imagine the possibilities now! Y ou can create attributes to help you document your code, you can
write code to help enforce their use in your entire software shop, and then you can write code to
output the data within those attributes into a coherent, structured document, useful for code review or
turning into superiors. Goodbye, comments!

22. My Code Can See Itsdlf: Reflection

The reflection code can be found in the folder prjReflection.

| always wondered how the VB6 Object Browser was coded. It contained alist of all the objects
available to my program, including ActiveX objects, aswell as classes | had written myself. How did
the Object Browser parse through all my code and display all of the available objects, along with
their properties, events, and methods?

| still have no idea how they made this happen in Visual Basic 6, but Microsoft makesit all clear to
me (and you) in the NET Framework—it’s the ability to write code provides interfaces to other code
in your own projects, or within the .NET Framework: reflection.

Confused? Metoo, at least at first. Who’s writing code to describe other code? As you saw
previously, one set of people is trying to automate and enforce the proper documentation of source
code, but the guy who was in charge of writing the Object Browser for Visual Studio.NET is
someone else. Since reflection is such a new topic, | thought it might be useful to try and use
reflection to write something that looks like the Visual Studio.NET Object Browser. The end result
of my endeavor can be seen in the following illustration:

==
Assembly fovstem drawing G0
[':J ‘:v;pm
® Clore
& Crpancbme
Lirer G sceriEvssh W [rdiskzel i kriedervcn
Pathiraderiingh 8 okl FetimeServics
Sk W GetHashods
TextureBneh o
4 Companent q;_.w, :

] sl e ag

W gat_Hatchityle

FentFarmhy # get_Foregroundokor
Gragihics ® gt _BachorouraColes
GraphicsConkaney *5uTioe
Gragiicaath W chor
GraphicsR sthibershor W chor
Graphicsitate Hachshvde
toen Foegr und ok

=1 g j Bk oo glor

B X

Getting Started

| decided (probably due to my usually hard head) that my Object Browser was going to work a bit
differently from the onein Visual Studio.NET. What | was really interested in seeing was the .NET
Framework object hierarchy as a Treeview. | wanted to see the generic class Object as the root node
of my Treeview and then have all the classes descend down from that. | kept the interface smple; |
allow the user to type in an Assembly name, and | display all the classesin that assembly, aswell as
all the parent classes of those classes (after all, if I’ m going to trace all the way back up to Object, |
may need to travel outside the bounds of the entered assembly, since Object itself isin the System
assembly).

Once the user supplies my program with an assembly, retrieving all of the typeswithin it is done

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 57 of 180

with the GetTypes method, as shown here:

Sub Fill TreeView(ByVal cDLL As String)

Dmt As Type

Di m 0AS As System Refl ection. Assenbly
Di m oRoot As TreeNode

Di m oNode As TreeNode

DimcTenp As String

oHash. Cl ear ()
tvLeft. Nodes. Cl ear ()
tvLeft. Sorted = True

Try
0AS = System Refl ection. Assenbl y. Load(cDLL)
For Each t In 0AS. Get Types()
Call AddTypeToTreeVi ew(t)
Next

tvLeft. Nodes(0). Expand()
Catch oEx As Exception
MsgBox(oEx. Message)
End Try
End Sub

Thistiny little procedure is the base for extracting all of the type information out of the given
assembly. The Assembly’ s DLL nameis passed in as the parameter. The Treeview tvLeft iscleared
and set to display its nodes in sorted order. A HashTable named oHash is also cleared (the purpose of
the HashTableis explained later). Then, the Assembly object isinstantiated using the passed-in DLL
name, and all of the typeswithin it are iterated. For each type, a procedure named
AddTypeToTreeview iscaled. The entireloop is enclosed in a Try..Except block to easily display
any errors encountered when ripping through the types (the concept of reflection was a new one to
me, and it took me alittle while to get up to speed while creating this project).

Filling the Types Treeview

Imagineit’ stime now to add your first class to the Treeview. Say it’s the ToolboxBitmapAttribute
class (thisisan actual classin the System .Drawing namespace). To add this class to the proper place
in Treeview, you'll first have to locate the ancestor type for ToolboxBitmapAttribute class, which
happens to be the Attribute class. What if this class doesn't yet exist in the Treeview (in this case, it
won’t—I already stated that the ToolboxBitmapAttribute classis the first class you' ve attempted to
put into the Treeview so far). Before you can add the ToolboxBitmapAttribute class, you' Il first have
to add the Attribute class, which itself inherits from Object. Finally, since Object hasn’t been added
yet, you’'ll need to add that classto the Treeview first. Once Object is added, you can add Attribute,
and then finally ToolboxBitmapAttribute.

What a mess, no? The basic premise here is to take the original class and loop upward through the
object hierarchy, looking for a parent object that has already been added to the Treeview. If you find
it, you can add your object to it as a child and move on. If you don’t find the parent, then you need to
mark and set aside that parent class to also add it to the Treeview, and keep moving upward. You are
guaranteed to either get to the top of the Object hierarchy or to a parent class that has already been
added to the Treeview. Thisrather nasty algorithm is embodied in the following procedure:

Private Sub AddTypeToTreeVi ew(ByVal t As Type)

Di m bDone As Bool ean
Di m oSt ack As New St ack()

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 58 of 180

Di m aParent As TypeTreeNode
Di m aNode As TypeTreeNode

‘l oop upward fromthe passed in
‘class until you find the class
‘already in the hashtable

bDone = (t Is Nothing)

Do Wil e Not bDone

I f oHash. Contai ns(t. Full Name) Then
‘found, no nore | ooping needed
bDone = True
El se
‘type not found, add it to the stack and _
keep | oopi ng upward
aNode = New TypeTreeNode(t)
oSt ack. Push(aNode)

t = t.BaseType
bDone = (t Is Not hing)
End If
Loop

‘now, iterate the stack and add each node to the tree
Do Wil e oStack. Count > 0

aNode = CType(oStack. Pop, TypeTreeNode)

t = aNode. Type

If t.BaseType |Is Nothing Then
‘is a root object
tvLeft. Nodes. Add(aNode)

El se
‘find the base type’s node

‘(guaranteed to be there)
‘and add this node to it
aParent = _
CType(oHash. Item(t. BaseType. Ful | Nane), _
TypeTr eeNode)
aPar ent . Nodes. Add(aNode)
End If
oHash. Add(t. Ful | Name, aNode)
Loop

End Sub

Remember the HashTable named oHash that was cleared previously? That class contains alist of
every type that has been added to the Treeview so far. It gives you a quick way to seeif agiven class
already existsin the Treeview. The loop at the beginning of the procedure first checksiif the given
classisinthe HashTable If itis, then you’'re ready to add this class to the Treeview. If itisnot in the
HashTable then a special Treeview node called a TypeTreeNode is created and pushed onto a Stack.
Then, the ancestor class becomes the "current” class, and the loop is reiterated.

Once the loop is exited, the Stack represents all of the nodes that need to be added to the Treeview.
They are removed in reverse order of their entry (which iswhat stacks are good at), and each typeis
added to the Treeview.

The TypeTreeNode bears some examination. Thisisjust a standard Tree- Node class with a Type

property bolted onto it, so you can easily examine the Type for each node asit is clicked. That
descendant class is shown here:

Cl ass TypeTr eeNode

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 59 of 180

I nherits TreeNode

Sub New(ByVal t As Type)

MyBase. New()

FType =t

Me. Text = t. Nane
End Sub

Private FType As Type
Property Type() As Type
Get
Return FType
End Get
Set (ByVal Val ue As Type)
FType = Val ue
End Set
End Property

End Cl ass
Examining a Type

| wanted the right side of my Object Browser program to display the member information about each
Type asit was clicked (properties, events, and methods). After stealing the little member icons used
in the Object Browser with my handy screen capture program, | set out to create a procedure to fill a
Listview with the member information for a given Type. That procedure is shown here;

Private Sub Fill Ri ghtSide(Byval t As Type)
Dimm As Menberlnfo
DmlltemAs ListViewtem
Dimilmg As |nteger
I vRi ght.ltems. Cl ear ()
For Each m In t.Get Menbers()

Sel ect Case m . Menber Type
Case Menber Types. Property, Menber Types. Field

ilmg =0
Case Menber Types. Event
ilm =1

Case Menber Types. Met hod, _
Menmber Types. Construct or

ilmy = 2
Case El se
ilmg =0
End Sel ect
[ltem = | vRi ght.|tens. Add(m . Nane)
[1tem | magel ndex = ilnyg
[1tem St atel magel ndex = ilng
Next
End Sub

The GetMembers method is used to retrieve an array of Memberinfo objects for each member in the
type. This simple loop iterates through each member and displaysiit, assigning it the appropriate
Imagel ndex based on whether it is a property, event, method, or constructor.

23. Discovering the New Diagnostic Classes

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 60 of 180

The diagnostic code can be found in the folder prjDiagnostics.

Visual Basic.NET provides several robust diagnostic classes that make it much easier to track down
bugs in your applications, whether the bugs show up during development or after installation on the
end user’s machine.

Sending Output to the Debug Window
The Debug object should be familiar to VB6 veterans, but it has undergone some enhancements in

VB.NET. Instead of a single Print method to write output to the immediate window (now called the
Output window), you have a choice of several methods:

|M ethodName ||Notes |

|WriteLine ||Writes the specified output to the output window, followed by alinefeed |

WriteLinelf If passed-in condition is true, writes the specified output to the output
window, followed by alinefeed

IWrite |\Writes the specified output to the output window |

Writel f If passed-in condition istrue, writes the specified output to the output
window

In addition, the properties IndentSize and Indent allow further formatting of the text in the Output
window. IndentSize refers to the number of characters for which an indent level consists. By
increasing and decreasing the Indent property, you can control the output formatting.

For the experienced VB programmer, our old friend the Assert method is back. This method allows
you to test a condition and display a message if that condition is not true. This functionality is sort of
the opposite of WriteLinelf, but the program stops execution entirely if the assertion (the condition
parameter of the Assert method) fails. Many programs use thisto test that a variable fallsin a certain
range or that an object is not null before moving on to processing that is going to rely on the value of
that variable.

The Debug methods and properties just described are demonstrated in the following code (which can
be found in the example project). This procedure initializes three Integer variables to random values,
and then displays their values in the Debug window.

Private Sub cbDebug_Click(ByVval sender As Object, ByVal e As _ System Event Args) |

Di m oRand As New Random()
Dimi, j, k As Integer

i
J

oRand. Next (0, 100)
oRand. Next (0, 100)

k oRand. Next (0, 100)

Debug. I ndent Size = 5

Cal| Debug. WiteLine("— about to " & _
"start debuggi ng out put —=)

Debug. I ndent ()

Call Debug. WiteLine("i=" & i)

Cal | Debug. WiteLine("j=" & j)

Cal | Debug. WiteLine("k=" & k)

Debug. I ndent ()
Cal | Debug. Wit eLi ne(oRand)
‘can write objects to debug wi ndow, not just _

sinpl e types

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 61 of 180

Debug. Uni ndent ()
Debug. Uni ndent ()
Cal | Debug. WiteLine("— debuggi ng output completed _

)

Cal | Debug. Assert(i <= 90, "variable i is over 90")
Cal| Debug.WiteLinelf(j > 50, "variable j is over 50")
End Sub

Note The Trace class is interchangeable with the Debug class. The methods and usage are identical.
Microsoft recommends that you compile out the Debug methods from your final, production
application compiles, but you leave the Trace methodsin for post-delivery
diagnostic/debugging needs.

Switching Debug Output On and Off

A BooleanSwitch is asimple class that allows for the control of Debug output based on the value of
an environment variable or a Registry setting. Thisis useful in a production environment. Y ou can
write code that by default would not create Trace or Debug output, but when a simple configuration
file setting is flipped, your application creates Debug output that might help you track down abug (in
the form of text file logs, for example, that could be e-mailed from the customer site to your office).

Each BooleanSwitch that you want to use will have a default name that distinguishes itself from
other switches. If the name you choose is MySwitch, for example, then creating a file named
app.config the with the following structure would set up that switch:

<configuration>
<system di agnhosti cs>
<swi t ches>
<add nanme="MySwi tch" val ue="1" />
</ swi t ches>
</ system di agnosti cs>
</ configuration>

Once properly set up as shown, the switch value can be tested and used with this code:

Protected Sub cbBool eanSwitch_Click(ByVal sender As Object, _
ByVal e As System Event Args)

CONST BSW TCHNAME = "MySwi tch"

DimoSwitch As New Bool eanSwi t ch(BSW TCHNAVE,
"Bool eanSwi t ch Demp")

I f oSwitch. Enabl ed Then
put debuggi ng out put code here>
End | f

End Sub
Setting Different Levels of Debug Output

The TraceSwitch classis very similar to the BooleanSwitch class, except that it provides multiple
levels for debug output, instead of just on or off. The TraceSwitch is set up in the same way that the
BooleanSwitch is, using the same app.config file. Instead of setting to just O or 1, however, you can
set the TraceSwitch value to 04. The meaning of each value is given here:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 62 of 180

|Switch Value ||M eaning |
0 Ot |
1		Info
2		Warni ng
3		Error
l4 |V erbose |

The exact meaning of these termsis up to the programmer. Y ou must decide what messages you are
going to put into the Info section, the Warning section, and so on.

What this allows you to do is create short, simple trace logs of your program (perhaps that list only
the procedure names as they’ re called), or get as verbose as you need (logging every value of every
variable, if necessary). Then, depending on the problem that you'’ re trying to uncover, you can set the
appropriate Registry setting for the TraceSwitch and produce the desired Debug outpui.

A simple TraceSwitch example is given in the example code. To use it, make sure the app.config file
contains the TestTraceSwitch setting as shown here, and then click the TraceSwitch button to see the

Debug output.

<confi guration>
<system di agnosti cs>
<swi t ches>
<add nane="Test TraceSwi tch" val ue="2" />
</ swi tches>
</ system di agnosti cs>
</ configuration>
Protected Sub cbTraceSwitch_Click(ByVal sender As Object, ByVal
e As System Event Args)

Const TSW TCHNAME As String = "TestTraceSw tch"
DimoSwitch As New TraceSwi t ch(TSW TCHNAVE, TSW TCHNAME)

If oSwitch. Tracel nfo Then debug. WiteLine _

("info nessages enabl ed")

If oSwitch. TraceWarni ng Then _

debug. Wit eLi ne("warni ng nessages enabl ed")

If oSwitch. TraceError Then _

debug. WiteLine("error messages enabl ed")

If oSwitch. TraceVerbose Then _

debug. WiteLi ne("verbose nessages enabl ed")
End Sub

Customizing Trace Output

A Tracelistener isaclass that directs Debug output to alocation: the output window, atext file, or
even the Windows NT event log. By default, Debug and Trace output is directed to the output
window. This functionality is encapsulated in the DefaultTracelistener class. Because we're living
in Object-Oriented Land now, you can create descendants of the DefaultTracelistener class that will
do your own evil bidding.

Likewhat? A simple example might be to output a time stamp along with any message you might be
sending to the Debug window. Y ou might imagine that adding this time stamp to every
Debug.Writeline statement in your application might take awhile. A much more efficient way of
doing thisisto create a custom listener that adds the time stamp, and then tell the Debug class to use
that listener instead of the default listener. The code that follows is an example listener class that

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 63 of 180

adds a time stamp to the Debug output.

Cl ass Ti meSt anpTracelLi st ener
I nherits DefaultTracelLi stener

‘adds the current tinme stanp

‘to the nessage about to be output as a trace
Private Function Format Message(ByVal s As String) _
As String

DimcMsg As String

cMsg = Format (now, "hh:mi) & "
cMsg = cMsg & s
Return cMsg

End Functi on

Public Overrides Sub WiteLine(ByVal s As String)
MyBase. Wi telLi ne(s)
End Sub

Public Overrides Sub Wite(ByVal s As String)
MyBase. Wit e(For mat Message(s))
End Sub

End Cl ass

To write your own listener, you must inherit off the DefaultTracelistener class and override the
Writeand WriteLine methods. The previous class does exactly this. The Write method slaps atime
stamp onto the desired output, and then calls the respective ancestor method to get the output to the
appropriate place. The WriteLine method does nothing new (because WriteLine in turns calls Write,
which will handle the time stamp)

To use this new listener, you would perform something like the following:

Trace. Li steners. Clear ()
Trace. Li steners. Add(New Ti nest anpTr acelLi stener())

The Clear method is important because it removes all listeners that are currently assigned to the
Trace (or Debug) class. After setting up the TimeStampTracelListener, the output after calling
Trace.WriteLine("test message") would look something like this:

10: 34: test nmessage

One of the interesting things about listenersis that you can have more than one running at the same
time. The example program creates a second listener that adds the name of the calling procedure to
the Debug output (I’ m sure many of you would agree with me that thisisindeed a useful feature!).
The sample program adds an instance of this class (called the MethodNameTracelistener) and an
instance of the TimestampTraceListener to the Trace object. The sample output after calling
Trace.WriteLine("test message") looks like the following:

10: 55: test message
WitelLine: cbTracelListener_Click: test nmessage

Because there are two listeners on the Trace object, two lines will be written for every
Trace.WriteLine call.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 64 of 180

Outputting Trace Data to Text

Another useful debugging function isto direct the output of the Trace- Listeners to atext file. Thisis
done using the class TextWriterTraceListener. A ssimple example of using this class follows:

Protected Sub cbTraceText _Click(ByVal sender As Object, _
ByVal e As System Event Args)

Dimi As Integer

DimfQut As Stream= _

file.Create("c:\Text TraceCQutput.txt")

Di m oText Li stener As New Text WiterTracelLi stener (fQut)

Trace. Li steners. Cl ear ()

Trace. Li steners. Add(oText Li st ener)

For i =1 To 10
Trace. WiteLinelf(i Mod 2 = 0, _
"using WiteLinelf to wite Even loop iteration _
(" &i &")")
Trace. WiteLinelf(i Mod 2 = 1, _
"using WiteLinelf to wite Odd loop iteration _
(" &i &")")

Next

End Sub

The parameter of the TextWriterTraceListener isa Stream, which is defined in the preceding line.
This stream creates a new text file, named c:\TextTraceOutput. TXT in this example. Then, the
TextWriterTrace- Listener is added as the sole listener on the Trace object. Finally, asimpleloop is
executed and Trace lines are written to the text file, using WriteLinelf to aternately write an "is
even” or "isodd" message.

Automatically Removing Debug Code

VB.NET has anew feature that allows you to define a conditional attribute on a procedure. This
allows you to define compilation constants in your application that can prevent subroutines from
being included in your application. Here is atrivial example:

Private Sub <Conditional ("DEBUG') > Met hodRunsOnl yI f DebugSet (ByVal cMsg As String)
Debug. Wit eLi ne(cMsQ)
End Sub

Protected Sub cbConditional _Cick(ByVal sender As Object, ByVal e As System Event,
Cal |l Met hodRunsOnl yl f DebugSet ("test nessage”)
End Sub

Thefirst sub is defined with the Conditional attribute. This states that if the DEBUG constant is set,
then the compiler should include this procedure in the application. If the DEBUG is not set, then this
entire procedure (and all callsto it) will be removed from the compilation altogether.

The benefit to this setup isthat if you use the conditional method you don’t have to make any
decisions when writing code. Y ou can simply call this method whenever you want to display some
Debug code, but if (when) the DEBUG constant gets removed in the production compilation of the
application, al of the Debug code is automagically removed from the final compilation.

Note To set or clear the DEBUG and/or TRACE constantsin your project, right-click your project
name in the Solution Explorer, select Properties from the menu, and click Build under
Configuration Propertiesin the dialog box. There, you will see the DEBUG and TRACE check
boxes under Conditional Compilation Constants.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 65 of 180

24. Logging Eventsthe Easy Way

The event logging code can be found in folder prjEventLogging.

Microsoft left Windows NT/2000 programmers with a built-in operating system tool for logging
program operation: the NT event logs. The event logs can be used to log occurrences from the
mundane to the catastrophic.

There are three built-in event logs: the Application, System, and Security event logs. The logs are
identical except for the names—you could actually write any event in any of the logs, but obvioudly,
you should keep the naming convention consistent to allow your users to more readily find the events
you're logging. In addition, you can create your own event logs.

Event logging isimportant enough that you’ d expect that the .NET Framework would contain
support for it—and you’ d be right. Thereis an EventLog class in the System.Diagnostics namespace
that handles all NT event logging support. All event logging functions are done by adding an
EventL og instance to your project and then setting the appropriate properties for the object at either
runtime or design time. The most important property to set is the property Log, which tells the object
in which event log it will perform its work.

Writing to an Event L og

Writing to an event log is done with the WriteEntry method. The second parameter in the code
shown next specifies whether the entry you are writing is a Warning, Error, Information, Successful
Audit, or Failed Audit type of entry. In the example, two entries are written to the Application event

log.

‘wites a few test entries.
Private Sub cbWite Click(Byval sender As System Object, _
ByVal e As System Event Args) Handl es cbWite. Click

Call oEventLogl O WiteEntry("here is a test Info " & _
"nmessage to the Application Log", _
System Di agnosti cs. Event LogEntryType. | nf or mati on)

Cal|l oEventLogl O WiteEntry("here is a test " & _
"War ni ng nessage to the Application Log", _
Syst em Di agnosti cs. Event LogEnt ryType. Wr ni ng)

‘|l bStatus. Text =
""2 entries witten to the application event |og"
End Sub

Reading from an Event Log

The EventLog class has a property named Item that represents an array of EventLogEntry objects.
Each EventLogEntry object contains all the information about a single entry in the given log. The
following code reads the 10 most recent entries in the array and displays some information about
them in a Listbox named |bEventL og.

Protected Sub cbRead Click(ByVal sender As Object, ByVal e As_
System Event Args) Handl es cbRead. Cl i ck

Dimi As Integer

DimiCtr As |nteger
Di m oE As Event LogEntry

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 66 of 180

DimcMsg As String

i Ctr = oEventLogl O Entries. Count
For i =0 To 9
OE = oEventLogl O Entries.lten(iCtr - 1 - i)

cMsg = oE. Ti mneCGenerated. ToString & " "
cMsg = cMsg & oE. Message
Call | bEvent Log. |tens. Add(cMsg)
Next
End Sub

Note that the most recent entries are at the end of the Item array, so you have to read backward to get
the 10 most recent entries.

Monitoring an Event Log for Changes

Setting the property monitoring on the EventL og instance to True creates an object that will fire an
event whenever an entry is written to the given event log. (The event fires when any program writes
to the log, not just your own program.) A simple example of the event fired is shown here:

Private Sub oEvent Loghonitor_EntryWitten(ByVal sender As _
System Obj ect, ByVal e As
System Di agnostics. EntryWittenEvent Args) Handl es
oEvent Loghonitor. EntryWitten
| bSt at us. Text = _
"nonitor detected event log entry witten, " & Now
End Sub

This code writes a simple message to a label control. The System .Diagnostics.EventL ogEvent
parameter on the procedure gives you full access to the EventL ogEntry object that encapsulates the
log entry.

Using a Custom Event Log

If you wish, you can use the NT event log engine, but write to your own log. The following code
demonstrates creating an event log named DotNetTest, after first checking if that log already exists.
Once created, the source on the EventLog object is set to this new log, and an entry is written.

Protected Sub cbCustom Click(ByVal sender As Cbject, ByvVal e As _
System Event Args) Handl es chCustom Click

Di m oEVCust om As New Event Log()
oEVCust om Source = "Dot Net Test"
OEVCust om Log = " Dot Net Test Log"
OEVCustom WiteEntry("test Event log entry.")

| bSt at us. Text = "Custom Event Log created. Go into " & _
"Event Viewer to see the new | og"

End Sub

The following illustration shows the new event log in the Windows 2000 Event Viewer.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

dton Yew |0 = | BEIHFEHE @
tree | | Dothist Tstiog | semifs)

[Ewent Viewer (Locai) R T Tource
E Irfoamation 1 Oy 210 [mwra 3 Pl o

| Foplcation Log
| ey e

System Log
Dicttiek Testlog

To delete a custom event log, simply call the Delete method on the EventLog object.

25: Monitoring Your Application’s Performance

The Performance Monitor code can be found in the folder prjPerformanceCounters.

Page 67 of 180

The Windows NT/2000 platform has some wonderful performance monitoring tools built right into
the operating system. Most people think of the Performance Monitor as the program used to query
and log system performance results such as processor utilization, hard disk performance, thread
utilization, and so on. With the introduction of the NET Framework, however, programmers have
access to the same operating system performance tools that can be built right into their applications.

There are hundreds of individual performance countersin the Windows NT operating system (I
counted exactly 700 on my Windows 2000 system, but this number can probably go up and down
depending on what services and applications are installed on a given computer). This large number
of individual countersis grouped into categories for easier lookup. When | see anything grouped into
categories and | want to write a program to display them, | think Treeview (I’ m addicted to the
Treeview control, | admit it). The following subroutine loads al of the available performance

counters, grouped by their category, into a Treeview named tvCounters

Sub Fill Categories()

Di m aCat As PerformanceCount er Cat egory
Di m oCount er As PerformnceCount er
Dimi As Integer

Di m t nRoot As TreeNode

Di mtnParent As TreeNode

Di m t nNode As TreeNode

Dim clnstance As String

tnRoot = tvCounters. Nodes. Add(" Perfornmance Counters")

For Each aCat | n PerfornmanceCounterCat egory. Get Cat egori es

tnParent = tnRoot. Nodes. Add(aCat . Cat egor yNane)
If aCat. Getl nstanceNanes. Get Length(0) = 0 Then
clnstance = ""
El se
clnstance = aCat. GetlnstanceNanes(0)
End If

For Each oCounter |In aCat. GetCounters(clnstance)

t nNode = tnParent. Nodes. Add(oCount er. Count er Narne)

Next
Next
t nRoot . Expand()
End Sub

file:///E:\Books\dotNET\Visua %20Basi c%20.NET %201 %20Didn't%20K now%20Y ou...

15/03/2002

Page 68 of 180

Theré s quite abit to cover in thisrelatively small block of code. First, aroot node is added to the
Treeview. Then, the avail able performance counter categories are iterated by using the method
GetCategories on the static object (no need to instantiate) named PerformanceCounterCategory . For
each category, a node named tnParent is added to the Treeview as a child of the root node. Then, for
each category, the available countersin this category are also iterated, with a node added for each.

Y ou can see a portion of the resultsin thisillustration:

]Using Performance Counters

=R F=rformance Counters

- net cle netwiorking
-ias authentication clients
- et clr threads
- ras kotal

prink queus

-thread
- swskern
-ias accaunting clients
-udp
- jas accounking server
- redirector
- processor
‘o, Pracessor Time
- % User Time

- % Privileged Time
- Interrupks)sec

- e DPC Tirne

- %o Imberrupk Tirme
- DPCs Queued)sec
- DPiZ Rake
- DPC Bypasses/sec
- BPC Bypasses/sec

[+ icrp

LSS

[#- distributed transaction coordinator _,l
-

Oncethe Treeview isfilled, | wanted to provide users with feedback about each counter and each
category as they clicked them. Thereis built-in help text for both counters and categories, and
providing this help as feedback was a simple matter of responding to the Treeview’ s AfterSelect

event.

P

file:///E:\Books\dotNET\Visua %20Basi c%20.NET %201 %20Didn't%20K now%20Y ou...

rivate Sub tvCounters_AfterSel ect (ByVval sender As _ System Obj ect, ByVal

Di m cCat Name As String

Di m cCnt Name As String

Di m oCat egory As PerfornmanceCount er Cat egory
Di m oCount er As PerformnceCount er
DimaList As String()

cbCheck. Enabl ed = Fal se
I f e.Node.Parent Is Nothing Then Exit Sub ‘root

‘is a category node
I f e.Node. Parent. Text = "Performance Counters" Then

cCat Name = e. Node. Text

oCat egory = New _

Per f or manceCount er Cat egor y(cCat Nane)
| bHel p. Text = oCategory. Cat egoryHel p

15/03/2002

Page 69 of 180

El se
Try

cCat Name e. Node. Par ent . Text

cCnt Name e. Node. Text

oCounter = New _

Per f or manceCount er (cCat Nane, cCnt Nane)
| bHel p. Text = oCount er. Count er Hel p

Catch oEX As Exception

| bHel p. Text = _
"Error reading Performance Counter™
End Try
End | f
End Sub

This codeis only the portion of the AfterSelect event in the final project that deals with retrieving the
help text for either the counter or category help text. Note that | determine whether the user clicked a
counter or category by examining the caption of the parent node in the Treeview. If the parent node’ s
caption is "Performance Counters," then | assume that thisis a category. If the parent node’s caption
isanything else, | assume that the clicked node is a counter. Once | determine if a counter or
category node was clicked, | instantiate the respective object instance and retrieve the property value
that represents the help text (CounterHelp for the Performance- Counter class, CategoryHelp for the
PerformanceCounterCategory class).

Retrieving Performance Counter Instances

It would seem at first glance that once you identify a performance counter on the system, you could
start it up and read some values. However, there is one more important concept to consider: the
concept of instances. A performance counter might have multiple instances on a single computer. For
example, suppose you want to monitor processor performance on a high-end, four processor server.
The logical question to ask iswhich of the four processors do you want to monitor? Or, if you want
to monitor the relative processor time taken by each running thread on the system, you would first
have to get alist of all available threads. These are known as instances of each counter.

The instances are actually defined at the category level, not the individual counter level. For
example, all the performance counters under the Threads category will deal with the same instances.
The remainder of the AfterSelect event code deals with retrieving the instances from the currently
selected category and filling a Listbox with these instance names:

cCat Nane = e. Node. Parent. Text
cCnt Nane = e. Node. Text
oCount er = New Per f or menceCount er (cCat Nanme, cCnt Nane)

| bHel p. Text = oCount er. Count er Hel p

oCat egory = New Perfor manceCount er Cat egor y(cCat Nane)
aLi st = oCategory. Getl nstanceNanes

| bl nst ance. Dat aSour ce = alLi st

cbCheck. Enabl ed = True

If I blnstance.ltens. Count > 0 Then
| bl nstance. Sel ectedl ndex = 0
End | f

The available instances of the given category are placed into an array named alList. The statement

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 70 of 180

IbInstance.DataSource = alist populates the Listbox named Iblnstance with the contents of this
array. (The array will be empty if the current category has only asingle instance.) Finally, if the
Listbox has been filled, the first item is selected.

Querying the Performance Counter

With the addition of instances, you finally have all the information needed to actually query a
performance counter value. The following code, executed when a button is clicked, retrieves the
currently selected performance counter value in the application.

Protected Sub cbCheck_Click(ByVal sender As Object, ByVal e As
Syst em Event Ar gs)

Di m cCat Nane As String

Dim cCnt Name As String

Di m oCount er As PerformanceCount er
Di m t nNode As TreeNode
Dimclnstance As String = ""

Dimr As Single

t nNode = tvCounters. Sel ect edNode
cCnt Nanme = tnNode. t ext
cCat Name = tnNode. Parent .t ext
If | blnstance. Sel ectedl ndex > -1 Then

clnstance = | bl nstance. Sel ectedltem ToString
End | f

Try
oCounter = New _
Per f or manceCount er (cCat Name, cCnt Nanme, cl nstance)
r = oCounter. Rawval ue()

| bVal ue.text = "Value =" & r.ToString
| bRecor dedAt. Text = _
"Recorded At: " & Fornmmat(Now, "dd: hh:ss")
Catch oEX As Exception
| bHel p. Text = "Error Retrieving Performance
i nformation"
End Try

End Sub

There is nothing too fancy in this code. Using the Treeview and the instance’s Listbox, the category
name, counter name, and instance name are retrieved and stored into string variables (the instance
name might be an empty string). A PerformanceCounter variable isinstantiated using these string
names, and alabel control isfilled by calling the RawVaue method off thisvariable. | alsofilled a
second label with the current time, which makes it easier to verify that the button is aworking event
if the performance counter value is unchanged from button click to button click.

There are multiple ways of querying a performance counter for data. Using the RawVaue method as
just shown is the simplest technique. Y ou can also call the NextVaue method, which turns the raw
readings into a best-fit line and then returns a point on that line. Finally, you can use the NextSample
method, which allows you to take two or more samples over time and then compare them or perform
calculations on them. See the section in the Microsoft Framework help entitled "Performance
Counter Value Retrieval” for detailed information on getting the most out of your performance
counter readings.

26. Braving the Basics of GDI+

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 71 of 180

The GDI+ code can be found in the folder prjBasicGDIPlus.

I’ ve always been drawn to the subject of computer graphics: the very thought of creating animated
pixels on a computer screen was one of the primary things that drew me into the computer field. |
remember writing a program on my very first PC—an Apple 2c (I’ m dating myself now, aren’t 1? Oh
well). The program recreated the cover for Pink Floyd's album The Wall (more self-dating—1 said
album, as opposed to CD). The program plotted the basic brick outline and then the album logo using
nothing but the PSET command (plot a single pixel) and about a zillion loops. | was really proud of
that program; it looked just like the album cover (to me, anyway—I was only 15).

I”m still asucker for computer graphics at al levels—from state-of-the-art movie effects like The
Matrix to the ever-changing standards in the world of PC game programming. Unfortunately, my
math skills never caught up with my love of computer graphics, so | could never quite cut the
mustard programming for id Software or asimilar company.

You'’re not going to mistake me for a graphics-programming guru when you look at the GDI sample
program on the CD, either. Its main purpose is to demonstrate some of the graphics classes and
methods in the .NET Framework. The graphics classesin VB.NET are collectively called GDI +,
which is apparently an improvement over the “old” GDI API found in regular Win32 programming
(hey, the nameendsin a“+”, so it must be better, right?). The graphics output produced by the
sample program is rather ssimple, but it should give you an idea of how to start creating graphics for
your applications.

The GraphicsClass

OK, you're ready to draw. So where exactly do you draw? Usually, you need an object instantiated
from the Graphics classto do your drawing. A Graphics object represents a drawing surface (an
electronic piece of paper, if you will).

Note If you have experience with any graphics programming in the pre-VB.NET world of the Win32
AP, then it makes sense to tell you that the Graphics object is an encapsulation of a Windows
device context. If you don’t have such prior experience, then never mind...

If you plan on drawing directly onto a control, you can get at the drawing surface associated with
that control by writing your drawing code in the Paint method of the control.

Protected Sub pnDraw _Pai nt (ByVal sender As Object, ByvVal e As Syst em W nFor ns.
Dimgr as Graphics
gr = e.Graphics

(do stuff with gr here)

End Sub

The Paint event passes the Graphics object associated with the control in as a component of the
second parameter, which allows you to draw all over the control. The drawing is more or less
permanent, meaning that if you were to cover up your application with another window and then Alt-
Tab back over toit, anew Paint event would get automatically fired, allowing your custom drawing
code to be re-executed. Y ou can force afiring of the Paint event by calling the Invalidate method on
the control you wish to repaint, as well.

Good Penmanship

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 72 of 180

So you have your drawing surface, now you need an instrument or two to draw with. If you want to
draw lines and curves, the first class with which you’ [l need to become familiar isthe Penclass. A
Pen object contains all of the properties necessary to draw alinein acertain width, color, and style
(dotted, dashed, and so on). There are two ways to instantiate a Pen object. The first isto use the
New operator as you would for any other object, passing the desired color of the penin asthe first
parameter:

Dimp As New Pen(Col or. Red)

This method can be used to create pens of any color. However, thereis abuilt-in collection object
named Pens that contains several dozen colored pens, already predefined. To use apen in this
collection, you can do something like the following:

Dimp as Pen = Pens. Red

Y ou can see all the colors available in the Pens collection using the Intellisense feature in Visual
Studio.

Now that you can define a pen and you have access to a graphics class, you can draw aline on a
control:

Private Sub pnDraw Pai nt (ByVal sender As Cbject, ByVal e As
Syst em W ndows. For ns. Pai nt Event Args) Handl es pnDraw. Pai nt

Dimp as Pen = Pens. Red
e. Graphi cs. DrawLi ne(p, 0,0, e.CipRectangle.Wdth, _ e.CipRectangle. Hei

End Sub

Here, you define ared pen and passit along with four integers to the DrawLine method on the
Graphics class. The four integers give the start point and the end point of the line you want to draw
(start I€eft, start top, end left, end top, respectively). The e.ClipRectangle property gives us access to
the width and height of the control upon which you’re drawing, so the line above draws a diagonal
line from the upper-left to the lower-right corner of the control, using the pen color set in Pen
variable p.

Brushes

Brushes are for filling in enclosed areas, like the interior of rectangles or circles. The Brush class
itself is abstract, meaning you cannot inherit directly from it. Instead, you create an instance of one
of its ancestors, like the SolidBrush class.

Dimb As New Sol i dbrush(Col ors. Bl ue)

The SolidBrush class can be used to create brushes of any color. However, like the Pens collection,
thereis abuilt-in collection object named Brushes that contains several dozen colored brushes,
already predefined. To use a brush in this collection, you can do something like the following:

Private Sub pnDraw Pai nt (ByVal sender As Object, ByvVal e As
Syst em W ndows. For ns. Pai nt Event Args) Handl es pnDr aw. Pai nt

Dimb as Brush = Brushes. G een
e. Graphics. Fill Rectangl e(b, e.ClipRectangle)
End Sub

This Paint event paints the control green. Of course, setting a control to look green can be more

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 73 of 180

easily done using the already-supplied BackColor property, soit’stime | showed you some more
sophisticated drawing methods for scribbling on your controls.

Graphics Class M ethods

There are afew dozen methods on the Graphics class that can be used to draw all different shapes,
lines, and curves. The sample program goes through several of them. Listed here is a summary of the
methods in the sample program. Almost all of these methods can be called with multiple parameter
ligts:

DrawArc Draws part of an ellipse. Passed in are a pen, the parameters to define the ellipse, and the
starting and ending angle value for the arc, specified in degrees.

DrawBezier Draws aBezier curve (pictured here), which isa curve that is generated from a set of
control points. The DrawBezier method accepts a pen and the list of control points as its parameters.

el |
Fosagrouns 1

DrawLine Drawsastraight line. Accepts a pen and four values that represent the starting x, y, and
ending X, y coordinates of the line. The example program draws several linesin agrid pattern.

FillEllipse Drawsafilled ellipse. The ellipse is defined by specifying arectangle, inside which the
ellipse is drawn.

DrawString Draws text onto the surface. A Font object, a brush, and either a starting point or an
enclosing rectangle are specified.

FillPie Draws apie, which islike afilled-in arc. This method draws one pie slice out of an ellipse.
An enclosing rectangle is passed in, as well as starting and ending angles

FillPolygon Draws a polygon (pictured here), which is defined by a set of points. The method will
automatically connect the first point specified to the last point.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 74 of 180

FillRectangle Fills arectangle with the passed-in brush.

TransparentBrush Not amethod of the graphics class, thisisinstead an example of creating a
brush with atransparent color. A transparent brush can be defined as follows:

Di m bTrans As New Sol i dBrush(Col or. Fr omARGB(192, Col or. Red))

The FromARGB method accepts a color parameter and an apha, or transparent value, from 0 to 255.
This example creates a 75 percent transparent brush. The example program draws an ellipse using
this brush over some text. As expected, the text shows plainly through the ellipse.

Note In general, the methods that start with Draw accept a pen as a parameter and draw the outline of
ashape, line, or curve. The methods that begin with Fill accept a brush as a parameter and
output afilled shape.

27. Advanced GDI+: GraphicsPaths and Transforms

The Advanced GDI+ code can be found in the folder prjAdvancedGDIPIus.

We just discussed the Pen, Brush, and Graphics classes. These classes correspond to similar classes
in the pre-VB.NET, Win32 API world (the Graphics class is an encapsulation of the device context,
which may not have been apparent, as it was renamed to a more descriptive name). The plusin
GDI+, however, refers to anumber of new features that were not part of any previous API but are
extremely useful in graphics programming (so useful, in fact, that most graphics programmers have
been reinventing the wheel for each one of their programs). | will use these features to create a
simple Sprite class, which can be plugged in to create the scene shown in the following illustration:

Wi+ transbori and Graghicspaths

The GraphicsPath

The GraphicsPath class is a somewhat abstract but extremely powerful feature built into the .NET

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 75 of 180

Framework. A GraphicsPath allows you to define complex drawing objects by connecting lines,
curves, polygons, text, and virtually any other drawing element together. Once your GraphicsPath is
defined in thisway, you can treat it as a single object. Hereis a chunk of code that sets up asimple
little shape into a GraphicsPath object instance:

Private Sub SetupG aphicsPat h()
gp = New Graphi csPat h()
gp. AddLi ne(0, 20, 40, 20)
gp. AddLi ne(20, 0, 20, 40)
gp. AddE!l I i pse(New Rect angl e(10, 10, 20, 20))

gpSave
gpSave

New Gr aphi csPat h()
CType(gp. Cl one, G aphi csPat h)

End Sub

My original intent when defining this object was to create a circle with two lines going through it,
but the end result was even cooler than that idea, so | kept it. The code shown previously draws a
horizontal and a vertical line through the center of acircle. The two lines extend out past the circle.

Thelast two lines of code in the routine above create a copy of the defined GraphicsPath using the
Clone method. The reason | need to save this copy will become clear as | further explain my Sprite
class.

To draw a GraphicsPath on a Graphics object, you can use the DrawPath or the FillPath method. The
following code draws the GraphicsPath variable gp onto the Graphics object gworld using a blue
brush object as thefill color.

Public Sub DrawFrane(ByVal gwerld As Graphics, ByVal nWdth _ As | nteger, B
Di m bCol or As New Sol i dBrush(Col or. Bl ue)
gworl d. Fi Il Pat h(bCol or, gp)

End Sub
Do You Know What the Matrix |s (Neo)?

Take note that the GraphicsPath object just discussed is defined in asmall coordinate space—the
entire object fitsinto arectangle from (0,0) to (40,40) in the screen. My eventua goal isto take this
little object and move it all across a painted area. Furthermore, it would be cool if | could rotate it
around like it was spinning. Both of these operations can be accomplished though the use of the
Matrix class. A matrix isaset of numbers arranged in rows and columns. Matrices are most useful in
describing movement of objects through coordinate systems (both 2D and 3D coordinate systems)—
movement such as rotations, trandations, scaling, and something called shear. The purpose of this
text is not to give afull background on matrix mathematics, so | don’ t want to get into the gory
mathematical details. Instead, |1l just show you the Matrix class and how to use it to perform simple
movements.

To create arotation matrix that will spin an object around, you can do something like the following:

DmmR As Matrix = New Matrix(1, 0, 0, 1, 0, 0)
MR. Rot at eAt (FRot at i onAngl e, New Poi nt F(20, 20))

Thefirst line instantiates a member of the Matrix class and initializes it to what’s known as an

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 76 of 180

identity matrix. An identity matrix performs no movement if it’s used on an object. The RotateAt
method is then called on the Matrix. The first parameter specifies the angle of rotation, and the
second parameter specifies the 2D point around which the rotation takes place. | chose arotation
point of (20,20) because that represents the center of my 40X40 sprite. Once the rotation matrix is set
up in thisfashion, I can perform the Transform method on the intended GraphicsPath object and pass
the Matrix object in as the sole parameter, as shown here:

gp. Transf orm nR)

This rotates the GraphicsPath object as specified in the matrix. To trangate (move) a GraphicsPath
object to anew set of coordinates, you can perform an operation similar to this:

Dimmlr As Matrix = New Matrix(1, 0, 0, 1, 0, 0)

nr. Transl ate(X, Y)
gp. Transf or m(nir)

This code sets up an identity matrix, translates the coordinates to position (X, y), and then moves the
GraphicsPath object gp to those coordinates by using the Transform method.

Note The order that Matrix transformations are performed isimportant. Rotating an object then
trandating it will yield amuch different result than trandating first and then rotating. Y ou have
to be careful to perform your tranglations in the correct order to get the intended final position
of your objects.

Putting it Together: The SimpleSprite Class

Thanks to the magic of object-oriented programming, | now have enough background information to
construct afully contained Sprite class, which is reproduced here in its entirety:

| nports System W ndows. For ns
| nports System Draw ng
| nports System Draw ng. Drawi ng2D

Public Class SinpleSprite

Private FWdth As Integer = 40 ‘ny size
Private FHei ght As Integer = 40

Private FPosition As New Point(0, 0) ‘position of sprite
Private FVelocity As New Point(0, 0) ‘how fast it noves per
frame

Private FRotationAngle As Integer = 0

Private FRotatationDirection As Integer = 5

Private FCol or As Col or
Private gp As GraphicsPath
Private gpSave As G aphicsPath

Public Sub New(ByVal aCol or As Col or)
MyBase. new()

FCol or = aCol or

Di m oRand As New Random()
Do While FVelocity.X =0
FVel ocity. X = oRand. Next (-5, b5)
Loop
Do Wiile FVelocity.Y = 0

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 77 of 180

FVel ocity.Y = oRand. Next (-5, 5)
Loop

Cal | SetupG aphi csPat h()

End Sub
Property Color() As Color
Get
Ret urn FCol or
End Get
Set

FCol or = Val ue
End Set
End Property

Private Sub SetupG aphicsPat h()
gp = New Graphi csPat h()
gp. AddLi ne(0, 20, 40, 20)

gp. AddLi ne(20, 0, 20, 40)
gp. AddEIl | i pse(New Rect angl e(10, 10, 20, 20))

gpSave = New Graphi csPat h()
gpSave = CType(gp. Cl one, G aphicsPath)
End Sub

Publ i ¢ Sub RandomPosition(ByVal aWorl dSize As Size)

Di m oRand As New Random()

FPosi ti on. X = oRand. Next (0, aWorl dSi ze. W dt h)
FPosition.Y = oRand. Next (0, aWorl dSi ze. Hei ght)
End Sub

Publi c Sub DrawFranme(ByVal gwsrld As Graphics, ByVal
nWdth As Integer, ByVal nHei ght As I nteger)

Di m oRand As New random()

Dmmr As Matrix = New Matrix(1, 0, 0, 1, 0, 0)
DmnmR As Matrix = New Matrix(1, 0, 0, 1, 0, 0)
Di m bBounced As Bool ean = Fal se

Di m bCol or As New Sol i dBrush(FCol or)

MR. Rot at eAt (FRot at i onAngl e, New Poi nt F(20, 20))
gp. Transf orm nR)

nir. Transl at e(FPosi tion. X, FPosition.Y)
gp. Transf or m_ nir)

gworl d. Fill Pat h(bCol or, gp)

‘reset the graphicspath
gp = CType(gpSave. Cl one, G aphicsPath)

‘nmove the sprite
FPosition. X += FVelocity. X
FPosition.Y += FVelocity.Y

‘if reaches edge of world, ‘bounce’
If FPosition.X > nWdth - FWdth Then

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 78 of 180

nWdth - FWdth
-FVel ocity. X
ue

FPosition. X
FVel ocity. X
bBounced = T

End If

If FPosition.X < 0 Then
FPosition.X = 0
FVel ocity. X = -FVelocity. X
bBounced = True

End | f

= 1o

‘sane for y

If FPosition.Y > nHeight - FHeight Then
FPosition.Y = nHei ght - FHei ght
FVel ocity.Y = -FVelocity.Y
bBounced = True

End | f

If FPosition.Y < 0 Then
FPosition.Y = 0
FVelocity.Y = -FVelocity.Y
bBounced = True

End If

*50-50 chance that the spin direction

‘will change after a bounce

I f bBounced And oRand. Next (0, 100) Mod 2 = 0 Then
FRot at ati onDirection = -FRotatationDirection

End | f

FRot ati onAngl e = FRotati onAngl e + FRotatati onDirection

If FRotationAngle > 360 _

Then FRot ati onAngl e = (FRotati onAngl e Mbd 360)

If FRotationAngle <

Then FRot ati onAngl e
End Sub

1ol

ERotationAngIe + 360

End Cl ass

The class contains al the information about a single object, including its color, its position in the
world, the speed at which it’s moving, and its rotation speed and direction. When the object is
instantiated, the SetupGraphics Path method is called (described earlier), which defines the shape of
the object. In addition, the velocity of the object is defined by setting the values in a Point structure
to arandom number between -5 and +5.

All of the drawing work happens in the DrawFrame method. A Graphics object is passed into this
method, along with the width and height of the surface. Drawing is done by setting up matrices as
described previously and performing the rotation and translation necessary to place this object into
the world. Then the sprite is drawn onto the Graphics object using the GraphicsPath.FillPath method.

After the drawing is done, several housecleaning steps are performed. First, the GraphicsPath object
is set back to its original state by cloning the gpSave variable (recall that | created gpSave by cloning
my original Graphics- Path variable). Thisisaquick way to reset all of the rotation and translation
matrices back to an identity state. If | did not do this, further rotations and trandlations would be
appended to the existing ones. My code is written to always start from "square one," apply the
appropriate rotation, and finally to move the object to itsfinal place in the world. Next, the position
of the object is updated, and checks against the boundary of the world are performed to see if | need
to make the object bounce off one of the edges. Finally, | update this object’ s rotation. As an added
feature, | added some code that switches the object’s rotation direction after it bounces, but this
rotation direction switch happens only 50 percent of the time for some variety.

Using the SimpleSprite Class

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 79 of 180

The sample project uses an ArrayList collection to keep track of any number of SimpleSprite object
instances (hit the Add a Sprite button to add another one to the list). A Timer variable isinstantiated
to draw the world in an endless loop. The drawing of the world is handled with the following few
lines of code:

Private Sub DrawTheWorl d()
DimoSprite As SinpleSprite

Dimg As Graphics
g = pnDraw. Creat eG aphi cs
Try
g. Fill Rect angl e(New Sol i dBrush _
(pnBackCol or. BackCol or), pnDraw. Client Rectangl e)

‘draw each sprite in the list

For Each oSprite In aSpriteList
oSprite. Color = pnForeCol or. BackCol or
Call oSprite.DrawFrane(g, pnDraw. Wdth, _
pnDr aw. Hei ght)

Next

Finally
g. Di spose()
End Try
End Sub

In this code, a Graphics class is created from the Panel control on the form. The entire panel is
rendered in the currently selected background color. Then, for each SimpleSprite object defined in
the ArrayList, the color isreset, and the sprite is drawn using the DrawFrame method I’ ve already
discussed.

Note The scene-rendering code above is so simple and short because all the work is done inside the
SimpleSprite class, asit should be. Encapsulation, or hiding implementation detailsinside a
black box, is one of the primary features of object-oriented programming. Imagine how useful
it would be to download an Open Source version of the SimpleSprite class and not have to
worry about al the implementation details of how to draw the sprite to your graphics object.
Simply call the DrawFrame method and it’ s done! Another big feature of object-oriented
programming is Polymorphism, meaning the ability to create child classes easily off ancestor
classes. Y ou could make the SimpleSprite class an ancestor class and use it as a base to create
dozens of different shaped sprites with only alittle extra work—simply by overriding the
SetupGraphicsPath method. Thiswould give you a great starting point for agreat 2D, Space
Invaders-like shooter.

28. Something About Screensavers

The screensaver code can be found in the folder prjScreenSaver.

| decided to put together many of the graphics concepts | just discussed and come up with abasic
Screensaver class that can be extended and reused. The ScreenSaver class will be responsible for
managing alist of Sprite objects created from a class similar to the SimpleSprite | created earlier.
The class will also manage afew bitmaps needed to perform its drawing. When |'m done, I’ll have
the colorful screensaver shown here (I know, the pictureisin black and white; you' Il have to run the
program yourself to see the colors—or just trust me)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 80 of 180

Screensaver Basics

Writing screensavers for Windows is much easier than many programmers anticipate. Thetrick is
that the SCR file that goes into the Windows folder is just an EXE that’s been renamed with an SCR
extension. Windows will call the EXE with one of two command line parameters: /s or /r. If the
passed-in command line parameter is/s, you should run the setup dialog for your screensaver. If the
command lineis /r, then you should actually run the screensaver.

Screen Capture

Many screensavers appear to be drawing their effects right over the top of your word processor, e-
mail program, or whatever applications you happened to have open when the screensaver kicksin. In
truth, thisisacleverly disguised trick. Most screensavers perform this trick by grabbing an image of
the screen, copying it onto a bitmap, and then drawing on that bitmap. In the Win32 environment,
there were several API-based methods for grabbing the Desktop window handle for the purpose of
treating it like a bitmap. Unfortunately, | couldn't find asimilar method built into the .NET
Framework, so | borrowed some of this older Win32 API code to get the job done:

Protected Sub CaptureScreen()

Di m hSDC, hMDC As | nt eger
Di m hBMP, hBMPO d As | nt eger
Dimr As Integer

hSDC
hvDC

Cr eat eDC(" DI SPLAY", ™", "", "")
Cr eat eConpat i bl eDC(hSDC)

FW = Get Devi ceCaps(hSDC, 8)
FH = Get Devi ceCaps(hSDC, 10)
hBMP = CreateConpati bl eBi t map(hSDC, FW FH)

hBMPO d = Sel ect Obj ect (hMDC, hBMP)
r = BitBlt(hMdC, 0, 0, FW FH, hSDC, 0, 0, 13369376)
hBMP = Sel ect Obj ect (hivDC, hBMPA d)

r
r

Del et eDC(hSDC)
Del et eDC(hMDC)

oBackground = | mage. Fr onmHbi t map(New | nt Pt r (hBMP))
Del et ehj ect (hBMP)

End Sub

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 81 of 180

The end result of the procedure is to store the image of the Windows Desktop in the bitmap object
named oBackground. It does this by creating a device context for the display device, then creating a
bitmap, and finally copying the image of the display into this bitmap. Note that because I’ ve resorted
to using "old-style" APl callsin this procedure, | have to take better care of cleaning up my resources
with the appropriate DeleteDC and DeleteObject calls. The VB.NET garbage collector doesn’t keep
track of Windows resources like those created in this procedure.

The Saver Sprite

| decided to make afew modifications to the SimpleSprite class used in the previous example
program, and the result of those modificationsis the SaverSprite class. Since the two classes are so
similar, | don’t want to waste time explaining this new class from the ground up. | will, however,
point out the key differencesin this new class:

Shape of object The spritesin the screensaver still use a GraphicsPath to control their shape, but
they are all defined as regular polygons of between 5 and 12 sides. See the SetupGraphicsPath
method to see how the polygon was specified. The radius of each sprite is also arandom value.

Split up update and draw code into two procedures The original class had the code to update the
object position in the same procedure as the code to draw the sprite. Since these are really two
distinct jobs, | decided to break them into two procedures named UpdatePosition and DrawFrame.

Random Colors Each sprite has arandom inner and outer color. Both colors are defined with a
random transparency, as well, giving avery colorful final effect.

The ScreenSaver Class

The ScreenSaver classitself contains both the Arraylist that holds the Saver Sprites above and the
screen capture code described previously. All that’s really left to explain is how the class rendersits
image onto aform. The main method call is named Tick, shown here:

Public Sub Tick(Byval f As form

Dimg As G aphics
Dim oWwrk As Bitmap

FTicks += 1

‘copy the background bitmap to a work bitmap
oWwrk = CType(oBackground. Cl one, Bitnmap)
Try

‘draw stuff on the work bitmap

Cal | DrawSaver (oWr k)

g = Graphics. FromHWND(f . Handl e)
Try
g. Drawl nageUnscal ed(oWork, 0, 0)
Finally
g. Di spose()
End Try
Finally
oWbr k. Di spose()
End Try

End Sub

Procedure Tick runs every time the screensaver is redrawn. Thefirst thing it doesisto create awork

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 82 of 180

bitmap named oWork, cloned from the background bitmap. Then the DrawSaver method is called,
which isthe code that renders the polygons onto the work bitmap. Finally, the work bitmap’simage
is copied onto the passed-in form using the DrawlmageUnscal ed method, and cleanup is performed.

Procedure DrawSaver, the code that renders the sprites, looks as follows:

Protected Sub DrawSaver (ByVal oBitmp As Bitnap)

Dimgr As Graphics
DimoSprite As SaverSprite

gr = Graphics. From nmage(oBi t nap)
Try
For Each oSprite In aSpriteList
oSprite. Updat ePositi on(New Si ze(FW FH))
oSprite. DrawFrame(gr)
Next
Finally
gr. Di spose()
End Try

End Sub

This code ssimply iterates through the Arraylist and calls the position update and draw methods of
each sprite therein.

One can see how easily extendible both the ScreenSaver and Saver Sprite classes object are. Y ou can
override the SetupGraphicsPath method on the SaverSprite to create objects of all different shapes.
Likewise, you can make screensavers that do any type of drawing by overriding theIntialize- Saver
and DrawSaver methods. Using inheritance in this way can save you an extraordinary amount of
work in the long run. Suppose you decide to write an entire series of screensaversto either sell, enter
in agraphics contest, or put on your web site as open source freeware. Having base screensaver
foundation classes prevents you from having to rewrite (or even copy/paste) code from old projects
into new ones. Simply inherit off the base classes and all the existing functionality isavailablein
your new class for free.

OOP Techniques
29: Embracing Object-Oriented Programming

The OOP code can be found in the folder prjCustomValidator.

Successful object-oriented programming (affectionately called OOP) requires new strategies for
tackling problems and organizing code. Let’ stake a simple task and solveit using atraditional VB6
method, and then tackle the same problem in an object-oriented framework to see the differences
between the two methods.

The simple task that you are going to perform using both methods is implementing an algorithm to
validate user-entered credit card numbers. Y ou will use an implementation of the well -known LUHN
algorithm to perform the actual determination of whether a card number is accurate. The details of
that algorithm are not important to this programming exercise and therefore will not be detailed here.
Suffice to say that you have a ready-to-drop-in function named Check CCNumber with the following
signature:

Functi on CheckCCNunber (ByVal cCCNo As String) As Bool ean

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 83 of 180

This function will return Trueif the passed-in string isavalid credit card number. Assume that the
routine can handle the removal of spaces in the number. How would one use such afunctionin a
Visua Basic program? The most likely situation that comes to mind is "attaching" the validation
function to a Textbox. In this scenario, the user enters the credit card number into the Textbox, the
validation function is performed, and some action is taken based on the result of the validation
function.

Method 1: Non-OOP

The traditional procedural -programming (non-OOP) method of accomplishing this task would be to
use the LostFocus event of the Textbox as the point to call the validation function. A typical VB6
code snippet might look like this:

Private Sub tbCredCard_Lost Focus()
If Not CheckCCNunber (tbCredCard. Text) then
Call MsgBox("lnvalid Credit Card Entered")
End | f
End Sub

So, is anything “wrong” with this method of coding? Technically, no: linking up a Textbox to a
validation function in this way will work perfectly well. However, some potentially difficult
situations arise out of coding in this style:

Cut and paste nightmare for multiple controls Suppose our application consists of multiple
forms, and many of these forms are going to require a Textbox that performs credit card validation.
In this situation, the three-line If statement shown previously will have to be repeated in the
LostFocus event of each one of these Textboxes. Furthermore, the parameter of the validation
function will have to be changed to match the Textbox upon which the check is to be performed. It is
easily concelvable that a programmer might paste the code into each new Textbox L ostFocus event
that requires credit card validation but forget to change the parameter (I know I’ve made this exact
error on more than one occasion). Thiswould lead to a strange bug where the validation was
seemingly not being performed at the right time on the right data.

Furthermore, having all of this duplicate code in multiple controls becomes problematic if you
decide to change the error action of the validation (for example, you decide to change the text of the
error message in the MsgBox command). To accomplish this, you will have to hunt down every
instance of the validation code in your application and change the text accordingly. If you miss one,
your application looks or acts different from form to form, which is one sign of an unprofessional-
looking application.

Difficult to document for other programmers If multiple developers are developing this
application, how and where do you put the appropriate comments to document the behavior and
linkage of the Textbox and the validation function? | would argue that you should document the
function itself aswell asthe call to the function (the LostFocus event). Again, if multiple Textboxes
are being used throughout the application, comments are being duplicated throughout the application.

L ocation of the validation function The validation function will probably be placed into a common
functions library of one sort or another. I’ ve seen dozens of libraries of thistype in different group
programming environments in which I’ ve worked, and they’ re not pretty. Usually, an application’s
common functions library is one or more module packs with dozens (if not hundreds) of completely
unrelated functions. Y ou might have the credit card validation function right next to the code that
loads the 50 states into an array, right next to the code that generates sine and cosine tables, right
above the code that converts long file names to DOS 8.3 format. How does anyone find anything in
these huge libraries? The answer, without having an intimate, experienced knowledge of the library,
is that one doesnot find anything in them. Nothing short of months of experience and asking other

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 84 of 180

devel opers guestions gets the new developer up to speed on all the common tasks available to him.
Method 2: OOPs Away!

Now it’stime to make all of the problems just listed vanish with awave of my magic OOP wand. In
the object-oriented world, the experienced programmer might immediately think to explicitly link the
Textbox control and the credit card validation code into asingle, all-new, special function Textbox.
The code for this type of Textbox is shown here:

| mports System Draw ng
I mports System W ndows. For ns
I nports System Text

Public Cl ass CreditCardVal i dat or Text Box
| nherits Text Box

Pri vate FBadCredit CardCol or As Col or

Sub New()

MyBase. New()

FBadCr edi t Car dCol or = col or. Red
End Sub
Property BadCredit CardCol or() As Col or

Get

Ret urn FBadCr edi t Car dCol or
End Get

Set
FBadCr edi t Car dCol or = Val ue
‘refresh the control if it has contents
If len(Me. Text) > O Then Call Refresh() End Set
End Property

Protected Overrides Sub OnCot Focus(ByVal e _
As System Event Ar gs)

Me. For eCol or = col or. Bl ack

Me. Sel ect Al l ()

Call MyBase. OnGot Focus(e)
End Sub

Protected Overrides Sub OnLost Focus(ByVval e _
As Syst em Event Ar gs)
I f Not CheckCCNunber (Me. Text) Then
Me. For eCol or = FBadCr edit CardCol or
Call refresh()
End If

Cal | MyBase. Onl ost Focus(e)
End Sub

Private Function CheckCCNumber (ByVal cCCNo _

As String) As Bool ean

(details of this function omtted, see code to |learn howto validate a credit cart
End Function

End Cl ass

The new object isinherited off a basic Textbox control. The check for the validation happensin the
OnL ostFocus method. The purpose of this method isto have a"normal” Visual Basic routine that is
responsible for calling the LostFocus event of each individual control.

Note Y ou wouldn’t want to call the validation code in the actual LostFocus event in the control

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 85 of 180

definition because you would be "stealing" the event from the programmers who actually use
your control. Instead, any LostFocus code that you need to write when your control loses focus
should be called in the OnL ostFocus method. Most of the control events have partner methods
for the same purpose. Make sure to call the ancestor method by issuing MyBase.OnL ost- Focus
(e), though, or the users of your control will still not be able to have their own LostFocus
events.

In this control, if the validation fails, the text of the control is changed to a different color. To make
even further use of object-oriented programming, |’ ve made this extra color a property of my new
control, which means the programmer could change it to match the color scheme in their application.

The OnGotFocus event is responsible for putting the text back to black when the user enters the
control, just so the user isn’t forced to edit red text. As a convenience, the current text in the control
is selected when the user gives the control focus.

Let’ s see how this object-oriented design addresses the problems listed in the prior, non-OOP
example.

Cut and paste nightmare for multiple controls The cut and paste nightmare is gone
because the Textbox and its validation code have been put together into one place in the
code. No programmer-required linkage has to be done between the control and the
validation. Thisis one of the primary benefits of OOP: the ability to group code (the
validation function) and data (the Textbox and the text within it) into asingle place
within the code.

If the author decides to change the fail action of the validation, thisis easily changed in
one place. If the author desires a choice of multiple failure actions, these are again all
coded into the same control, with a property to determine which action to take (or,
fancier yet, the programmer could create further subclasses off this class that behave
differently upon failure).

Difficult to document for other programmers Documentation is quite easy in the
OOP world. The author of the control documents the source of the control itself. When
the control isused on aform, no additional coding is required. The programmer studying
the application will see that a control class named CreditCardValidatorTextBox was
used on a certain form and can search the code for the definition of that class.

L ocation of the validation function Again, the code and the data are all together, so
the problem of huge modules of disparate functions often goes away automaticaly in the
OOP world. The sine and cosine functions are often hidden away in their own class, the
state loader has a class of its own, and the credit card validator is separated from each of
those, aswell.

This ssimple example demonstrates how some of the failures of the older, procedural -based
programming style have been addressed through the use of object-oriented programming methods.
Admittedly, there is alearning curve when moving into the object-oriented world, but once that

curve has been overcome, you should find yourself solving all of your new programming challenges
using these methods. The goal isto get yourself “thinking OOP” as new projects come your way.

30: Calculating Elapsed Time

The redundant function calls code can be found in folder prjRedundantFunctionCalls.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 86 of 180

During development, | often find the need to calculate the time it takes to run a given piece of code.
This gives me a quantitative measure of how fast (or slow) aprocedure I'm working on is running. If
| decide that | can improve on the time by optimizing the code, I’ | have a number in mind that | have
to beat.

| whipped up alittle elapsed-time calculation class for this purpose. Thisis agood example of ahigh
“bang for the buck” class; that is, it took practically no time for me to come up with this class, but |
find myself using it repeatedly.

The code for the ElapsedTime classis so small, in fact, that I’ |l reproduce it herein its entirety:

Public Cl ass tagEl apsedTi ne
Private i StartTinme As |Integer

Public Sub New()
MyBase. New()

Call StartTinmer()
End Sub

Public Sub StartTimer()
iStartTinme = Environnent. Ti ckCount

End Sub
ReadOnly Property M II|iSecondsEl apsed() As Doubl e
Get
Return (Environnent. Ti ckCount - i StartTi ne)
End GCet

End Property

ReadOnly Property SecondsEl apsed() As Doubl e
Get
Return M1 1i SecondsEl apsed / 1000
End GCet
End Property

ReadOnly Property M nutesEl apsed() As Doubl e
Get
Ret urn SecondsEl apsed / 60
End Get
End Property

End Cl ass

Pretty simple, no? A method called StartTimer sets a private variable based on a .NET Framework
variable named Environment.TickCount. This value represents the number of milliseconds that have
elapsed since the system was started last. (For all of you Win32 API gurus, thisis equivalent to the
GetTickCount API call, which | could have used here with identical results.)

To calculate the number of seconds or minutes that have elapsed since StartTimer is called, merely
call the SecondsElapsed or the MinutesElapsed method.

The sample program does some time trials on converting all of the lowercase a’ sin ablock of
random text to uppercase A’s using two different methods (see* Redundant Function Calls” earlier in
this book for more information on why these comparisons were being made). Here is a portion of the
code, showing the tagElapsedTimer classin action:

oTi mer = New t agEl apsedTi me()

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 87 of 180

oTimer. Start Timer ()

cText = Sl owText Convert (cText)

| bSl ow. Text = "Tine: " & oTinmer.M | 1i SecondsEl apsed & " ns."
t bExanpl eText. Text = cText

The SlowTextConvert function in this example is the function being timed. To get the most accurate
result, | start the timer on the lineimmediately preceding this function call and print the milliseconds
elapsed on the line immediately following the function call.

31: Reading and Writing INI Files

The INI file code can be found in folder prjIniFiles.

Microsoft has been trying to put the use of INI files out to pasture, but they just won’t die. | find
them much more convenient than writing to the Registry in many cases. For example, say I'm
writing a SQL Server database application program that is to be run off a shared network drive. One
of the things my program will need is the name of the database server. This server name will be the
same for all users of the program, so why storeit in each user’sindividual Registry? It is much easier
to store the server name in an INI filein the application directory. That way, when my network
manager comes and tells me she’s performing a SQL Server upgrade over the weekend, and, oh by
the way, she’s changing the name of the server during the upgrade, | can simply change the INI file
to point to the new server. If thisinformation were stored in the Registry, I’ d have to change it on
each end user’s machine.

Microsoft’s desire to do away with the INI file has gotten strong enough that they conveniently
“forgot” to include support for them in the .NET Framework. But I’m not going to let that stop me,
oh no. A bit of coding, and | had anice, compact INI file class that performed all of the INI file
support that | needed.

The API Calls

The basic API declarations that | needed for my INI file class are listed here:

Private Declare Function GetPrivateProfilelnt Lib _ "kernel 32" Alias "CGetPrivateP
Private Declare Function GetPrivateProfileString Lib _ "kernel 32" Alias "GetPrival
Private Declare Function WitePrivateProfileString Lib _ "kernel 32" Alias "WiteP

Private Declare Function FlushPrivateProfileString Lib _
"kernel 32" Alias "WitePrivateProfileStringA" (ByVal _ | pApplicationNane As |nteg:

There are more INI-related API calls than these, but these are the basic calls needed for reading and
writing to a private INI file (which includes all INI files except for WIN.INI).

Thelast API declaration is aspecia purpose declaration of WritePrivate- ProfileString that declares
the first three parameters as type Integer instead of type String. This declaration is renamed
FlushPrivateProfile- String. The purpose of this function is to flush changes written to the INI file to
disk, since INI file operations are cached. Y ou probably wouldn’t need to worry about flushing INI
file changes to disk in your applications, but | wanted to show the INI file contents directly after
making changes to the INI file in my example program, and the program wasn't showing the changes
immediately because of the caching nature of the INI file. Flushing the changes to disk before
reading them from the file solved this problem for me.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 88 of 180

Digging into the INI Class

The classitself is small and straightforward. The constructor takes a single string as a parameter.
This string is used as the INI file namein all further operations. | also made the filename available as
aread-only property, as shown here:

Dim FFi |l ename As String

Public Sub New(ByVal cFilename As String)
FFil ename = cFil enanme

End Sub
ReadOnly Property FileNanme() As String
Get
Return FFi |l enane
End Get

End Property

Because the INI filename is passed into the constructor and because the Filename property is read-
only, this means that an instance of the INIFile class can read and write to only one INI file. This
could be easily rectified if your desired use of the file was to have a class that could write to more
than one INI file at the same time, but | did not find this to be a necessary feature of my class.

The class contains read and write methods for strings, integers, and Booleans. Booleans are typically
stored in INI filesas 0 or 1, and | chose to retain that storage scheme in this class. Therefore, the
GetBoolean method calls the GetPrivateProfilelnt API call.

| chose to implement the writing of strings, integers, and Booleans through the single
WritePrivateProfileString API call. Thus, both the WriteBoolean and Writel nteger methods end up
calling the WriteString method, after converting the desired value to a string.

The example application demonstrates reading and writing to an INI file. The INI fileisfirst created
with default values. The buttons to the |eft side of the application allow you to write information to
the INI file, and the INI file is redisplayed after each change (thisis where | needed the“flush”
functionality in my class), as shown in the following illustration:

=01 %§
il walue o cottenis of I et
— [etup]
srngssiting | Grmginttrg=Test etbrg
SraagiettegTm drwtlu T Settng
ATt ExcepleanSetting { =1
Boclansettng2=0
Irkesger Setting [=14
Eocksardatting| :.,3._“;:;__,_
L i 2
rtegerseitngl |
inkegeesetting
i |

One interesting trick in my sample program is the use of asingle Click event to handle more than
one button click. The sub below handles the two Boolean value buttons:

Protected Sub cbBS1 _Click(Byval sender As _
Obj ect, ByVal e As System Event Args) _
Handl es chbBS1. Click, chBS2.Cick

Dim b As Bool ean
Di m aButton As Button

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 89 of 180

aButton = CType(sender, Button)
b I ni . Get Bool ean(SECTI ONNAME, aButton. Text, Fal se)
b Not b

Call Ini.WiteBool ean(SECTI ONNAME, aButton. Text, b)
Call Show NI Fil eContents()

End Sub

Note the Handles clause at the end of the procedure declaration. This tells the compiler that this sub
should be called as the Click event for buttons cbBS1 and cbBS2. Thistype of functionality
generally replaces the use of control arraysin previous versions of Visual Basic.

The next interesting part of this procedure is the line aButton = Ctype(sender, Button). Thisline of
code determines which button was clicked to call this procedure and assigns that button to a variable
named aButton. The next line of code retrieves a value from the INI file, and the key name that it
uses isthe caption of the button that was clicked (aButton.text).

Finally, the Boolean value is negated (b = Not b), and the negated value is written back to the INI
file.

The same Handles event trick is used for the two integer buttons and again for the two string buttons.

32: Adding Controlsto the Toolbox

The toolbox controls code can be found in folders prjControlslnTheToolbox and
prjControlslnTheToolboxUsage.

It’s aways been my dream, ever since | was alittle boy, to add my own components to the Visual
Basic toolbox. OK, so that statement is atad extreme. But why the heck couldn’t 1? Sure, | could add
these things called UserControls, or | could write ActiveX controls and stick them in there, but that
just wasn't the same. Why couldn’t | just take aregular control, add afew new properties, change a
color or font or two, and drop it into the toolbox for use in all my projects?

Visua Studio.NET lets you do just that. Thanks to the magic of object- oriented programming, you
can inherit new controls off of existing ones and place them in the component toolbox right where
they belong.

The example code for adding controlsis actually two different projectsin Visua Studio. The first,
named prjOddListBox, isthe new control that I’ ve developed, a do-amost-nothing control that I’ ve
named the OddListBox. After I” ve explained how this control was developed, I'll describe how it can
be added to the toolbox. In the second project, prjControlsinTheToolboxUsage, Il demonstrate how
to use the control.

Developing the Control

The prjOddListBox project was created as a Windows Control Library, asyou can seein the
following illustration:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 90 of 180

o Projoct |
Eviesct Ty Terrgistes Iﬁg
3 Vieusl B agc Progch -
2] Wissatd C% Fromsctz _,E il E&l
15 Vhiual s Progechs Windows Clars Livary [Wdows
] Wisnasl FoadPro Pacjachs Appic.stion E [
1= Setup aeed Dleplogrrent Progests
" 5 Vessuso @ & &
] Wisnand S bk S plutions i
‘web wieh Service e Coniml
Applcstion Libwary 4
o optec] B CieBie CorlEls 1 e o Wt ke sled
Harre Jpriicd istheo
Lecation [Ty Dosumertiintiet = [P

 AddinSekier {7 Close Sakibion
Propeci vall b erdated o M p Dourmants v ofonl delsibo

FHeg I [] = | He |

This creates a project without a main form and instead creates a single module named Control.vb, the
contents of which is as follows:

Public Class UserControl 1
I nherits System W ndows. Forns. User Contro

#Regi on " W ndows Form Desi gner generated code "

Public Sub New()
MyBase. New()

‘This call is required by the Wndows Form Desi gner
InitializeConponent ()

“Add any initialization after the InitializeConmponent() cal
End Sub

‘UserControl 1 overrides dispose to clean up the conponent |ist.
Protected Overl oads Overrides Sub Di spose(ByVal disposing As Bool ean)
I f disposing Then
If Not (conponents Is Nothing) Then
conmponent s. Di spose()

End If
End If
MyBase. Di spose(di sposi ng)

End Sub

‘Required by the Wndows Form Desi gner
Private conmponents As System Conponent Mbdel . Cont ai ner

‘NOTE: The follow ng procedure is required by the Wndows Form Desi gner

‘It can be nodified using the Wndows Form Desi gner

‘Do not nodify it using the code editor

<System Di aghosti cs. Debugger St epThr ough()> Private Sub InitializeConmponent ()
conmponents = New System Conponent Mbdel . Cont ai ner ()

End Sub

#End Regi on

End Cl ass

The most interesting thing hereis that a new class named Control1 has been defined, and this class
inherits off System.Windows.Forms.UserControl. Note that you don’ t have to inherit off this control,
that’s just a suggestion that VS.NET makes to you. | instead chose to inherit off a more well -defined
control, the standard Listbox. To do this, | merely changed the inherits line to read Inherits

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 91 of 180

System.Windows.Forms.Listbox. | now have the makings of my own little Listbox, ready for
customization.

Thefirst thing | decided | wanted to add to my custom Listbox was a string-based Tag property
similar to that found in prior versions of Visual Basic. Now, VB.NET controls do havea Tag
property (as of beta 2 of the .NET Framework, anyway), but | originally coded this object in beta 1
of Visual Studio.NET. | chose to reimplement the Tag property for two reasons:

Asan exercise The Tag property doesn’t have to do athing inside the control aslong asit can store
astring value for the programmer to use. Therefore, thisis the easiest possible property to write and
agood place to start learning about inheritance.

Backwar d-compatibility Inlarge projects, it might be easier to use a Listbox with aTag property
on it than to sort through 100,000 lines of code looking for all the places to change .Tag
to .PrimaryKey, or whatever you decided to name some new property.

The code to add the Tag property isonly afew lines and is shown here:

Private FTag As String

<Description("User-Defined Property to mmc VB6 Tag"), _ Category("UserStuff")> _
Property MyRepl acenent Tag() As String
Get

Return FTag

End GCet

Set (ByVal Value As String)
FTag = Val ue

End Set

End Property

The private variable FTag is how the control will internally store the Tag data. Asyou see, the
property definition has the simplest possible Get and Set procedures, whose functions are to smply
read and write the value of the FTag variable.

Note Once Visual Studio.NET beta 2 came out, my own Tag property conflicted with the one they
put back on all the controls. | therefore chose to rename my own property MyReplacementTag.

Theinteresting part of the procedure is the stuff between the <> symbols. Thisinformation is called
metadata. M etadata is information that helps describe your code to the Visual Studio environment. In
this case, we are describing two attributes of the Tag property through the metadata. The first
attribute is the Description attribute—this is a comment that will appear at the bottom of the Property
Browser when the programmer is editing this property. The second attribute is call the Category
attribute—it describes in which grouping the new property should appear in the Property Browser.
We will see how these attributes work later.

The second custom property that | created is called AvgLength. Thisis aread-only property that
returns the average character length of all the elementsin the Listbox at a given time. The code for
this property is as follows:

<Description("Average String Length of elenents"), _ Cat egory("User Stuff"’
ReadOnly Property AvgLength() As |nteger
Get

Dimi As Integer
DimiTot As Integer = 0

If Me.ltens. Count = O Then

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 92 of 180

Return O
El se
For i = 0 To Me.ltens. Count - 1
i Tot += CStr(Me.ltems(i)).Length
Next
Return i Tot \ Me.Itens. Count
End | f

End Get

End Property

Note that thereisno Set portion of this property, because it’s aread-only property. This code loops
through all the items, adding up the characters and then dividing by the number of items. Note this
property has the same two attributes defined for it in the metadata portion.

Metadata is not only used to further describe properties; it can also be used to describe an entire
class. The class definition of the OddListBox reads as follows:

<Tool boxl tem(True)> _
Public Cl ass OddLi st Box
I nherits System W ndows. For ns. Li st Box

Setting the T ool BoxItem attribute to True is necessary for controls that | intend to be placed in the
Visual Studio.NET tool box.

Adding the Control to the Toolbox

Once my new component was completed, | was ready to add it to the toolbox. After compiling, |
made sure that there was an OddListBox.dll filein the bin folder of my Windows Control Library
project. Thisisthe DLL that I'll need to reference when | add my control to the toolbox.

Since this was the first toolbox control that | was adding, | decided to create a new tab in the toolbox
for al of my custom controls. Adding atab is done by right-clicking an empty space and choosing
Add Tab from the pop-up menu. | named my new tab MattTagCustom, referring to my custom
controls. My naked, ready-to-use tab is shown here:

Toolbox =l
D ata

|
Campanents |
"Win Forms |
Clipboard Ring |
|
|

[aeneral

b att T agCustarm |
| N Fointer

Finally, the time had come to add the control. With my new tab as the current tab, right-clicking and
selecting Customize Toolbox brought up the following dialog. Thisdialog is used for adding
different types of controls to the toolbox. I’m interested in .NET Framework Components, which is
the right-most tab in the dialog.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 93 of 180

T 1
COM Cortoks | Genesal Shapes | Modelrg Shapes [NET Framenod: Components |
Hare] hsnespace | path | Lasthiodfi =
L e Syshern Dok AIND CAWTMDOWEMICRDS. ., BIT2E
AL pSeb o] Sysbatn. Db AD0 WD M CROS. Bifaraig
| ROt ator Spshem. wish LT, WiebControls CAWIHOCAWSMICRGS, B i
Azgemibhrinstsher Syshem. Configuration, Instsl CAWTHICRVSMICAOS, 117252000
B g ol ShheP e HEcrosoft Vesastudo. Shyleles. .. CIWIMDOWESMICROS. . LOF2&Z00
Eu Mtk St o Hicrasolt vilwsorer Dakn Dus. . CAWTMDOWSMICROS, ., LOF2E/300
Cali¥ i Cribam WirFores CAWMNDOWEMICROS, ., 112000
| hatEor Syshem. Wb U1 WebControl: EAWTMOCAVRMICROS L1 Farang
Cafer gl Syshern. 'Web LT WelTontrok: CIWTMDOWSMICROS. L1F2ia0n.
| ChckBio Swsbemmn WinForms CUWRDOWSMICROS.., D120
g Browse ...
Wiad ko
gk | Cwed | Bem | He |

To add my new control, | clicked the Browse button and selected the OddListBox.dll file whose
existence | had verified earlier. The fina step was to make sure the OddListBox control has been
added to the master list of Visual Studio controls and that it was checked. After closing the dialog
box by clicking OK, | was treated to seeing my very own custom control in the Visual Studio
toolbox for the first time (insert thunderous applause here).

Toobor

Drata

|
Components |
Win Formis |
|
|

Clipboard Ring

General

MattT agCuztom |ﬂ
k- Fuainter

& DddListBox

Note The large list of components already listed in the NET Framework Components tab of the
Customize Toolbox isagood tool for familiarizing yourself with the controls and namespaces
availableto you.

Using the New Control

Getting your custom controls in the Visual Studio.NET toolbox is the hard part. Once you manage to
get them there, using them is easy, because it’s no different from using the built-in toolbox controls.

The example project prjControlsinTheT oolboxUsage shows the OddListBox control that | created in
the prior example dropped onto an empty form. It looks just like a normal Listbox except for the lack
of a 3D border and the somewhat odd background color. (Examining the code for the control will
show that | changed these two visual elementsin the constructor, mainly so | had avisual way to tell
my control from anormal Listbox. Nothing prevents the user of my control from setting these
properties back to their default values, or any other values for that matter.)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 94 of 180

R e e e e e i)

W Test App that Shows off Ig-m

(arm A
b e
stll mrwcther iben

e e s & |

S § o
oAL¥

s

R

B S

Thetruly cool part (to me, anyway) is examining the custom propertiesthat | created right in the
Property Browser. As shown in the next illustration, the two properties of my OddListBox are shown
at the bottom of the Property Browser. They have been placed into the category | specified (via
metadata attributes) and have the correct descriptive text when they are selected (more metadata
attributes).

Propetties
| OddListBox1 OddListBox. OddListBox |
ek =l =
{Mame) OddListBox1 |
Locked False
Maodifiers Assembly
B Focus
Causesyalidation True
E Layout
Anchor Top, Left
Dock, Mone
Location 32, 16
Size 160, 223
B uUserstuff
Avglength 10
MyReplacementTag ﬂ
MyReplacementTag
Izer-Defined Property ko mimic YB& Tag!

Properties 9 Crymamic Help i

The AvgLength property in particular isinteresting to play with. If you go ahead and add some items
to your OddListBox in design mode, the AvgLength property updates automatically, right in the
Property Browser. Remember, this read-only property returns the average string length of the items
in the OddListBox. The code that | wrote that calculates this average is running during design mode.
Whoa.

If you’re anything like | was when | first played with this functionality, your head is probably
spinning with ideas right now about all the custom components you can create for your company or
your next big project and how cool they’ll look all lined up side by side in the Visual Studio.NET
tool box.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 95 of 180

33: Earning Your Inheritance

The inheriting forms code can be found in the folder prjlnheritingForms and
prjUsinglnheritingForms.

Inheriting existing classes to create descendant classesis an easy enough concept to understand.
What about inheriting forms to create descendant forms? Could this serve a purpose?

The answer to this question is, of course, “yes.” A formisaclassinthe .NET Framework, so every
form that you makeisin fact an inherited form. However, you can extend the inheritance concept
more deeply by creating forms with predefined elements on them and then creating descendant
classes from them. Inheriting forms gives you the same benefit that inheriting any other class does:
sharing functionality, “black-boxing” code inside descendant classes, reducing code duplication, and
so on. Because forms are visual elements, you can use form inheritance to give your application a
consistent look, aswell. If you want every form in your application to have the same status bar, for
example, you can create a base form with this status bar and then subclass every form in your project
from this base form. Then, if you decide to change the look of the common status bar, you need only
change it in one place.

The sample projects demonstrate creating a base form and then using it in a new project as the
descendant of a new form. The base form islocated in project prjInheritingForms. This project starts
off as a standard Windows application. The base form is very simple: athree-panel status bar at the
bottom of the form and a close button anchored to the lower right corner. In addition, a timer control
is set up and used to display the current time in one of the panels, as seen in thisillustration:

[B e Forms Faigle =10 =|

o

1y v

Once the base form is fully designed and finalized, the project type needs to be changed from a
Windows application to a Class Library. Thisis done in the Project Properties dialog, which is
accessed by selecting the project in the Solution Explorer, right-clicking, and selecting Properties.
The following illustration shows exactly what needs to be changed:

o Cariuration Propasties

T ratan
ot foider C:iDonumants and SErgnimadt Caghel e @My Dooment Kbt orfinh
Erzject i priinberErgfoms vigrs|

Cupnd rarm prinbesdegFomes

[Ta] Cad | e | e

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 96 of 180

Once the project type is changed, you need to make sure to rebuild the project, which will create the
necessary DLL filein which the base form class resides. The form will then be ready to be
subclassed. | created anew project named prjUsingl nheritedForms for my subclassed form example.
Once this project was created, | first removed the default form that Visual Studio.NET created for
me. Then, | right-clicked the project in the Solution Explorer and selected Add Inherited Form. In the
Add Item dialog box, make sure Local Project Itemsis selected on the left and Inherited Form is
selected on the right. After naming the new form file, click Open. Y ou will be prompted to select the
file containing your base form. Locate and select the DLL file built in the previous step. Y ou will
now have the base form added to your project, as seen in thisillustration:

o o o
S
R R T
=] i
o]
= 11:57159 e

o (=]

Note that the form looks a bit different in that the status bar/Close button has alittle graphic in its
upper-left corner. Thisindicates that these controls are part of the Ancestor class and cannot be
modified. | could alter this behavior by going back into the original classlibrary that contains the
base form and changing the Modifiers property on the button or the status bar from Privateto
Protected or Public. A setting of Protected would still not allow changes to the position or size of the
control but would allow access to the controls by subclassed objects. A setting of Public would allow
access to the controls by all objects.

Onething | found interesting in my example was that my inherited form showed the accurate timein
the status bar, even while in design mode. This told me my base form code was running and updating
the status bar clock during the design mode of my new project. Pretty cool.

Note that if you go back and decide to make changes to your base form, make sure to rebuild that
base form classlibrary to aDLL after the changes are made, or you won'’t see the changes in your
inherited forms.

34: Performing a Ping

The ping code can be found in folder prjPinger.

Note The basis for the prjPinger project was "borrowed" from a source code example found at the
VBNET web site, www.mvps.org/vbnet. This site (which was named long before VB.NET was
introduced, so the nameisreally a coincidence) has dozens of great VB examples, and new
VB.NET examples are coming every day. With permission from the author and web master,
Randy Birch, | took aVB6 ping example and hacked it up into a VB.NET equivalent. | highly
recommend Randy’ s site as alearning tool.

A large part of the .NET strategy is the concept of web services. In the world of web services,
programmers write useful little black boxes of code and expose them to other programmers viathe
Internet. Need the shipping status of a package displayed on your e-tailer site? Just call your
shipper’s .NET web service (such a service does not exist at the time of thiswriting, but Microsoft is
banking on the fact that it will be in the NET future). Want to incorporate a search engine into your
own site? Just hook up to Y ahoo or AltaVista or Google’'s web service.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 97 of 180

Asalong-time (at least in developer years) programmer, |’ ve been taught to look at the glass as not
half full or even as half empty, but to consider the possibility that someone has stolen the glass
completely, and it hasn’t rained in months. The developer must consider the “worst-case scenario”
when devel oping applications because our friend Murphy has taught him time and time again that
this scenario is exactly what will face the end user of the software within the first 30 minutes of its
execution.

My worst-case scenario in the web services world is building a dlick, state-of-the-art VB application
around areally useful web service, only to have that web service be nonfunctional half the time for
myriad reasons | can’t control. After all, if I’m going to use aweb service in my app, then I’'m at the
mercy of the hardware, the developer(s), the internal network architecture, and databases upon which
that web serviceis acting, right? In other words, if my shipper’s server is down all weekend, then my
app is down, too.

This gloom and doom scenario is not a good enough reason to abandon al hope, though. A web
service from my shipper might be the only way | have to incorporate shipping information directly
into my application, so if | want that functionality, then I’m going to throw myself on the mercy of
the resources on the shipper’s side of the Internet. After all, if my shipper does offer this service, and
it doesn’t fulfill its intended purpose due to network outages, badly designed code, and so on, they
stand to lose business.

So What to Do?

OK, so I've bitten the bullet and decided that | can’t live without incorporating a certain web service
in my application, but | don’t want the application going boom when the code on the other side of the
world isn't functioning because the server is down. | might want to code some simple diagnostic
ability into my application that tells me when it can’ t find the server upon which the web serviceis
running. When | need to seeif aserver isavailable, | usually perform asimple ping on the server. A
ping is acommand-line program that’s shipped with all flavors of Windows. The results of the ping
look like this:

C: \ W NDOWS>pi ng espn. go. com
Pi ngi ng espn. go.com [204. 202. 129. 230] with 32 bytes of data:

Reply from 204. 202. 129. 230: bytes=32 ti ne=233ms TTL=245
Reply from 204. 202. 129. 230: bytes=32 tinme=165ms TTL=245
Reply from 204. 202. 129. 230: bytes=32 tinme=192nms TTL=245
Reply from 204.202. 129. 230: bytes=32 tinme=192ms TTL=245

Ping statistics for 204.202.129. 230:

Packets: Sent = 4, Received = 4, Lost = 0 (0% oss),
Approximate round trip tinmes in mlli-seconds:

M ni mrum = 165nms, Maxi num = 233ns, Average = 195nms

In this example, | simply typed ping and then a domain name (in this case, my bi-hourly-visited
sports news source, espn.go.com) from a command prompt, and the ping program went out and
performed a small meet-and-greet with that web server. It sent four packets of test information to the
site and waited for the same information to come back. It then reported on how long the test
information took to make its round-trip. I’ m not usually worried about the time taken itself: aslong
as the information does return, thistells me that the web server on the other side isin good working
order.

Using the Pinger Class

The VB.NET Pinger class does the same thing as ping. Given a domain name, the code will ping-test

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 98 of 180

that domain and return the results of that test. This type of test might be useful in a program that
relies on aweb service as part of its functionally. Y ou could easily build in aping test to the machine
upon which the web service is running to support your application. If the ping fails, then the web
service probably cannot be contacted either, and the portion of your application that relies on the web
service will probably not be functioning until this problem is resolved.

The Pinger class in the prjPinger application demonstrates the VB.NET equivalent of the ping
command-line utility. To useit, you simply create an instance of the Pinger class and call the Ping
method, passing it a web address. The object performs the ping black-box style (like all good objects
should) and returns to you the results of the ping operation.

The first thing that the Pinger class needs to do is resolve the web address that you passinto an IP
address. The human-readable form of an IP addressis x.y.z.w, where x, y, z, and w are numbers from
0 to 255. The Windows-readable form of an IP addressisjust alarge number, storable in the
VB.NET integer data type.

Warning Keep in mind, the VB.NET Integer is equivalent to the VB6 Long data type. It might seem
that Microsoft is purposely trying to drive us programmers nuts by renaming data typesin
this fashion. The reason they’ re doing thisis to bring the naming convention in al of their
languages (C++, C#) into acommon vernacular. If you have areal problem keeping track
of these, you can use the Int16 and Int32 types, which are the strict .NET Framework—
equivalent names and easier to remember. Consult the Visual Studio help section "Data
Type Summary" for a complete reference on the mapping of old to new data types.

The Pinger class resolves the passed-in URL to both the human-and Windows-readable IP addressin
the ResolveHostName procedure. That procedure is reproduced here:

Private Sub Resol veHost Nane()

‘converts a host nane to an | P address,
‘both string and int form

Di m | PAddress As | PAddr ess
Dim I PHE As | PHost Entry

| PHE = DNS. Get Host ByName(FHost Name)
I f | PHE. Addr essLi st.Length > 0 Then

| PAddress = | PHE. Addr essLi st (0)
FAddress = | PAddress. ToStri ng
FdwAddr ess = | PAddr ess. Addr ess

El se
FdwAddr ess = | NADDR_NONE
End If

End Sub

This procedure is nice and short because there are classes in the .NET Framework that do much of
the work for you. The DNS class has a method named GetHostByName, which returns an instance of
the IPHostEntry class. This class contains all the information about a URL that you would ever want,
including the IP address information you need for this project. The code eventually stores the human-
readable | P address in the Faddress variable and the Integer version of the address in the FdwAddress
variable.

The Ping method itself relies on afew API callsfound in the ICMP.DLL file, which is present on all
32-bit versions of Windows. This codeisfairly ssmpleto understand. The main call, to DLL function

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 99 of 180

IcmpSendEcho, fillsan APl structure called ICMP_ECHO_REPLY , which contains the useful
information about the ping, such as the total round trip time in milliseconds.

The remainder of the Pinger class sets up properties that can be queried by the "outside world," such
as the human-readable I P address, the round trip time, and the status of the ping (which may fail for a
number of reasons, remember).

35: A Big Savings: Object Graph Serialization
The object graph code can be found in the folder prjCollections.

If you're like me, you’ll find that object-oriented programming is amost addictive on some levels.
As new projects come up and you begin working on the application design, you' Il most likely
envision all manner of complex object structures and their interrelationships. Consider an example:
an object graph that loads information about alist of employees for a human resources application.
There might be a master object called Employeelist, and within it a collection of Employee objects.
Each Employee object might have one (or more) MailingAddress, PhoneNumber, and Email Address
objects within it. The entire EmployeeList might be stored in such away so that an OrgChart can be
easily generated from the data, either as some form of b-tree, or with a separate construct within it
containing pointers to the org chart hierarchy.

In a business development environment, all of this data would probably be permanently stored in a
database like Microsoft SQL Server and then loaded into your complex object graph, as just
described, for manipulation. The class structure just described might be the middle tier in athree-tier
architecture, for example. While this programming model works well for most business applications,
one cannot always use a powerhouse back-end database like SQL Server to store data. Imagine
wanting to write alittle contact manager application for open source or retail shelf release. This
contact manager application might need the exact same object graph as just described in the Human
Resources application. As the developer, however, you don’ t want to require the presence of a back-
end database to use our program.

The .NET Framework has an alternate storage solution in cases where a database might not be
practical. Built into every .NET Framework class (including the ones you create yourself) isthe
ability to serialize, or save, object instances in a proprietary binary format to disk and then reload
them later.

This opens up an entire new range of possibilities for the storage needs of your application. If you're
designing your datain awell thought out, nested group of objects, you'll be able to add an amazingly
few lines of code to your application and have the ability to save/load these objects to disk.

| haven’t included very much code here, because the technique for object graph serialization is
almost frighteningly easy. Here is the code to save any object graph to disk:

Dimf As New Fil eStrean(Bl NARYFI LE, Fil eMode. Create)
Dimb As New Bi naryFormatter()

Try
b. Serialize(f, oStack)
Catch oEX As Exception
MsgBox(oEX. Message)
Finally
f.C ose()
End Try

The constant BINARY FILE in the code above is a string constant containing a filename. The key to

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 100 of 180

serializing an object graph is the BinaryFormatter class. Once you’ ve instantiated an object of this
class, you call the Serialize method on it, passing aFileStream object and the object you want to save
to disk.

To load the serialized object, you merely do the following:

Di m oSt ack As New Anot her BookEncapsul at er St ack()

Dimf As New Fil eStrean(Bl NARYFI LE, Fil eMbde. Open)
Dimb As New Bi naryFormatter ()
Try
oStack = CType(b. Deserialize(f), _ Anot her BookEncapsul at er St ack)
Finally
f.C ose()
End Try

Thisisredly just the inverse of the code to save the object. The only tricky part hereis that you have
to typecast the results of the DeSerialize method back to whatever class you' re loading.

For quite afew years, | wrote level -editor programs for popular computer games. | wrote a level -
editing program for id Software’s Doom and Quake. | also wrote alevel editor for acommercia
game company. In al of these cases, | wish wish wish | could have had the ability to serialize objects
to disk as described here. Such an ability would have cut dozens of hours off of each of these
projects and allowed me time to concentrate on more important problems like user interface design
and adding powerful features to the program, instead of writing hundreds of lines of 1/0 code to store
my level information to disk.

36: Delegate Some Authority

The event code can be found in the folder prjEventsAndDel egates.

Asyou start converting your thinking process into an object-oriented programming mode, the
concept of writing properties and methods will probably come pretty easily to you. A property on
your object appears just like a variable attached to your class definition, and a method isjust a
procedure or function. Variables, procedures, and functions are all familiar elements to programmers,
so the only change in an object-oriented world is that you' re now “attaching” these thingsto a class.
Furthermore, the pseudo/almost/not-quite OOP featuresin Visual Basic 6 allowed you to create
classes with both properties and methods.

Coding events, however, might be delving into some unfamiliar territory. Just when do you need an
event on your class? How isit coded? We' re all familiar with responding to events on existing
classes, like the Click event of a button or the Changed event of a Textbox. Thisis called responding
to an event, and because it's afamiliar topic to any developer with Visual Basic experience, | won’t
cover it here. Instead, | want to talk about coding objects that raise events.

Why?

To think of situations in which you would want to code objects that raise events, you have to turn
around your thinking abit. Almost all of your Visual Basic coding experience to this point has been
writing code that responds to events. Most VB programs start off with a blank form onto which
controls are placed, followed by event-handling code written for the controls.

In the VB.NET world, you’re not only using objects, but you’re writing them as well. This doesn’t

just mean visual controls like buttons or Listboxes, but date-driven objects like custom collections or
typed datasets. When writing such classes, imagine that other coders might be using them in their

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 101 of 180

own projects and that they may need to respond to something important happening to these objects.
Thisiswhen you might consider adding the ability of your object to raise an event.

How?

Eventsin the NET Framework are created using something called a delegate. A delegate is a special
type of pointer to a function that handles communication between an object trying to raise an event
and the event-handling code. Delegates are what allow you to dynamically attach event-handling
code to events on all object instances—not only your own, but existing, well-known objects like
buttons, timers, and Treeviews.

Trying to nail down exactly what a delegate is and how it works is pretty tricky sinceit’s such anew
concept, so it might be easier (if not 100 percent dead-on accurate) to think of adelegate asa
procedure of a certain type. What differentiates one type of procedure from another is the argument
list passed to the procedure. As an example, the first two procedures here are of the same type, and
thethird is of adifferent type:

Sub SonmeFuncA(pl as integer, p2 as integer, s as string)
Sub SoneFuncB(alLeft as integer, aTop as integer, _ cText as string)
Sub SoneFuncC(aPoi nt as Point, cText as string)

Note that the name of the arguments in the parameter list are not important when comparing
procedure types, just the number of arguments, the type of each argument, and the calling convention
(by reference or by value). If the number, type, and calling convention of arguments match, then the
two procedures are of the same type.

An example of declaring a delegate is shown here:

Del egate Sub PersonVerifier(ByvVal oP As Person, _
ByRef blsCk As Bool ean)

The purpose of this statement isto declare atype of procedure, having two arguments. The first
argument is of type Person (declared elsewhere in the sample project), and the second argument isa
simple Boolean, but passed by reference. Declaring this delegate means that | can now create events
for my objects having this delegate signature.

The following code shows the beginning of anew class called a Person- Collection. The purpose of
this classisto store a collection of another class, called the Person class. The Person classin the
example code istrivial and is not detailed here, except to mention that it has three string propertiesto
store a person’sfirst name, last name, and state of residence.

Cl ass PersonCol | ection
Inherits System Col |l ections. Col | ecti onBase

Public Event VerifyPerson As PersonVerifier

Note that one of the members on the PersonCollection is an event named VerifyPerson, and the type
of this event isthe delegate type | defined earlier. What this meansis that my custom collection now
has the ability to raise an event named V erifyPerson, and any programmer using my Person-
Collection will be able to write code to respond to this event.

Why did | write such an event? The purpose of the event is made much more clear when the Add
method on the collection class is examined:

Publ i ¢ Function Add(ByVal oP As Person) As Bool ean

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 102 of 180

Di m bl sCk As Bool ean = Fal se

Rai seEvent VerifyPerson(oP, bl sCk)

I f blsCk Then
MyBase. | nner Li st. Add(oP)
End | f

Return bl sCk
End Functi on

Thefirst line of code raises the VerifyPerson event. This means that if the programmer using my
class has written event-handling code for my event, then that code will be called here. | pass that
code the Person object that is about to be added and a Boolean variable that has been initialized to
false. The code after the RaiseEvent checks the Boolean, and, if found to be true, adds the Person
object instance to the collection. This gives the programmer of my class the means to perform any
type of custom validation on the Person object before it is added to the collection.

Handling the Event

Now that the PersonCollection is written, writing the code to use it and to handle the event is more
like the coding you've done in the past. The following sample creates an instance of the
PersonCollection object and then adds not one but two event handlers to the VerifyPerson event:

Di m oCol I As New PersonCol | ection()

AddHandl er oCol | . VerifyPerson, _
Addr essOf DoeslLast NanmeEndW t hVowel |
AddHandl er oCol | . VerifyPerson, _
AddressCOf | sStat eChi oOr Pennsyl vani a

Public Sub DoesLast NaneEndW t hVowel | (ByVal oP _
As Person, ByRef blsOk As Bool ean)

DimcLetter As String = oP.Last Name. ToLower

blsOk = blsCk Or cLetter. EndsWth("a") O _
cLetter.EndsWth("e") O _
cLetter. EndsWth("i") O _
cLetter. EndsWth("o") O _
cLetter. EndsWth("u")

End Sub

Public Sub IsStateChi oO Pennsyl vani a(ByVal
oP As Person, ByRef blsOk As Bool ean)
bl sOk = bls&k O

(oP. State. Equal s("OH') Or oP. State. Equal s("PE"))
End Sub

Note that the two event-handling procedures have the same argument list as the delegate that’s been
used to declare the event. If this were not true, Visual Studio would report a design-time error that
my event handler signature does not match the signature of the event on the PersonCollection object.

Now that my classisinstantiated and wired up to some event-handling code, | can try and create
some Person objects and add them to the collection. For each Person object, both events will fire, and
if both return true, the Person object will be successfully added to the collection:

oP = New Person("Tony", "Soprano", "NJ")

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 103 of 180

If oColl.Add(oP) Then
consol e. WiteLine(oP. Full name _

& " from" & oP.state & " —added")
El se

consol e. WiteLine(oP. Ful | name _

& " from" & oP.state & " —NOT added")
End | f

Tony would get added because his last name endsin avowel. | coded my two events to return true if
either the person’s last name ended in avowel, or their state of residence were Ohio or Pennsylvania.
(I could have just as easily required both events to be true by ANDing the event results together
instead of ORing them.)

Once you reverse your thinking to start considering how other people might use your new classes,
ideas for events will start coming to you. On my simple PersonCollection, | could create new events
that fire after a person is successfully added, after a person is rejected, and after one has been
removed from the list. All of these events would allow the developer using my class to respond to
these important happenings with their own code.

37. Taking Out the Trash: The Garbage Collector

The garbage collection code can be found in folder the prjGarbageCollector.

Visual Studio.NET represents a complete paradigm shift for many programmersto a 100 percent
object-oriented programming methodology. This affects some programmers more than others. I, for
example, was used to programming a bit in C++ and even more in Inprise Delphi. (A non-Microsoft
product? Shame on me!) Because of my experience in these languages, many of the object-oriented
programming (OOP) concepts were already familiar to me.

But Microsoft threw a new wrench into the .NET Framework: the concept of garbage collection, a
concept familiar to Java developers but completely foreign to C++ or Delphi programmers (and
altogether alien to VB programmers). The garbage collector islike alittle invisible maid for your
programs that cleans up all of the memory you’ve left behind. Consider the following code fragment:

Sub DoABunchOf St uf f

Dim o as SoneObj ect
Dimi as integer

For i =1 to 100
0 = new SonmeQbj ect (i)
call o. SoneMet hod
call o.SoneO her Met hod
Next

End Sub

Reading this code fragment about six months ago would have had me breaking out in arash. The
routine declares 100 instances of the class SomeObject and does some work with each instance, but
it never freesthem! There they are, floating around in space like Captain Kirk in "The Tholian Web"
episode, with no chance to be freed. Thisiswhat we used to affectionately call "a memory leak," and
it lead to uncountable hours of debugging by coders all over the planet.

The garbage collector in the NET Framework is a deliberate attempt by Microsoft to save you, the
programmer, from spending all those untold hours hunting down memory leaks. Put in its simplest
terms, the garbage collector does all the object freeing for you. This means that the previous code

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 104 of 180

fragment is perfectly legal, and in fact, it is the correct way to code aloop of this nature. (Although it
will still look strange to a prior-life OOP programmer, it’s just something you' [have to get used to.)

The garbage collector is like alittle separate process, running off on its own in the background of
your application. As the programmer, you do not have 100 percent control over when and how it
runs. This tendsto drive some old C++ programmers loony, but overall you should eventually find
the new memory scheme to your liking (perhaps after alittle “get to know you” adjustment period).

One reason this style of thinking is so different to C++ programmersis because .NET Framework
classes do not have the concept of destructorsin them. A destructor is a piece of code that executes
asan object isbeing freed. A class destructor was areally handy place to deallocate resources used
by the class instance. For example, a class that encapsulated file access could make sure that any
open file handles were closed in the destructor. A class that encapsulated a GDI object like a brush
could make sure the brush handle was freed in the destructor.

Deallocating Resour ces

So how do you deal with resource-using classes like the examples just given? Where is agood place
to deallocate resources? .NET classes alow for a special method called Finalize. Thisiswhere you
should put all resource-freeing code needed by your class.

The garbage collector treats a class with an overridden Finalize method much differently from one
with no Finalize method. An object that requires finalization is put into alist and finalized later. That
is, the garbage collector must perform its collection twice before an object with a finalization method
istruly freed.

For this and other reasons, Microsoft contends that you should avoid using finalization methods
whenever possible. If your class does not have any specific resources to clean up, then skip writing a
finalization method. They provide much more overhead to the program and could slow down your
application significantly.

Another reason that you might want to avoid writing a finalization method is that you have no
control over exactly when finalization methods are called. The garbage collector is responsible for
calling finalization methods. If your class alocates large memory footprint objects and doesn’t get
rid of them until the finalization method is called, you might have big chunks of memory hanging
around long after you need them.

Since programmers don’t like to be told they don’t have control over parts of their program, a
different programming convention has been established for memory cleanup. This new convention
has you write a Dispose method for your classes that looks exactly like the following:

Public Sub Di spose()
Call Finalize

GC. SuppressFinali ze(ne)
End Sub

This sub calls the Finalize method (which iswhere al your resources are freed) and then tells the
garbage collector not to call the finalize method on this instance (because you’ ve already done it).
This method gives the best of both worlds: if you want to allow the garbage collector total control,
you can declare your object instances and not bother to do any cleanup, as you would with

most .NET Framework classes, and the garbage collector will take care of everything. However, if
you have a section of code where more control is needed, you can declare your objects and call their
Dispose methods when you’ re through with them. Thiswill free al of the resources your class
requires and will prevent the now-unnecessary overhead of the garbage collector calling the Finalize

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 105 of 180

method. Tricky, huh?
Controlling Garbage Collection

The garbage collector has afew more methods that might assist you in managing the memory of
your application. Y ou can force the garbage collector to perform a collection by calling GC.Collect.
Most applications would probably not have to worry about telling the garbage collector when to run,
but you do have the option. In addition, you can also pass an integer to the GC.Collect method. This
integer refers to a generation of objects in the application heap. The generation of an object refersto
how long it has been sitting around and how many passes of the garbage collector it has survived. A
generation 0 object has never been tested by the garbage collector. A generation 1 object has
survived one swing of the garbage collector’s axe, and so on.

A basic assumption is made in heap management: recently created objects have a higher probability
of being destroyed sooner, and “old” objects tend to continue longer rather than be destroyed in the
near future. This assumption can be used to optimize garbage collection: if recent objects are the
most likely candidates for collection, then perhaps you could run through a collection test of only
early generation objects. By calling GC.Collect(0), for example, you're telling the garbage collector
to take a pass only through generation O objects, and collect them if they are no longer being used.
This could be much faster than going through all the objects on your heap.

Garbage collection sounds at first like an easy topic to understand, but it quickly spirals out of
control the longer you study it. The .NET programmer newsgroups rage in endless message threads
about the benefits and drawbacks of the garbage collecting scheme versus previous more manual
methods of memory management. Arguing over these methods of memory management reminds me
of how my father used to tell me never to argue about religion or politics: you can’t win no matter
what side you're on.

38: Saving Your RAM and Using It, Too

The weak reference code can be found in the folder prj\WeakReferences.

The space versus speed issue is a constant battle for programmers (or, at least it should be a constant
battle), as they weigh the benefits of certain choices, such as taking up more RAM at the expense of
saving computing time.

The .NET Framework has some features that let us, in some instances, have the best of both worlds
(low memory and fast access times). There are many examples of objects that you can construct
easily that take up alarge amount of memory. For example, suppose you had a measuring device that
took an air pressure reading once per minute, and you put the results in some type of text file. Say
you were writing a program that displayed the results of those readings for the past year in many
different ways (bar graphed with straight or averaged values, high/low/mean values per hour or day,
greatest change in an hour interval, and so on).

For aprogram like this, it would be useful to take all of the air pressure readings from the past year
from disk and load it into RAM at the start of the program. When the end user specifies which report
she wants to see, along with her desired parameters for the report (date range, intervals, and so on),
al of the detail data would aready be loaded and you could easily perform the calculations for her.
Thiswould be much faster than loading the data from the file for each calculation.

Of course, the downside to this approach is that you’ re saving speed at the expense of space (or

RAM). Having al of those numbersin memory will take up a significant amount of RAM —one
reading per minute for ayear is 525,600 readings, times the number of bytes per reading (say 4 bytes

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 106 of 180

for an integer), which gives you about a2MB RAM requirement. Now, 2MB doesn't seem all that
huge in today’ s world of 256+ MB systems, but if thisair pressure functionality isjust one of several
different functions that our program provides, then you’re taking up 2MB that might be in contention
with memory that could be better used by other parts of the application.

What would be useful in acase like thisis to load the measurement data up front, but to tell the NET
garbage collector that it can go ahead and collect this memory for another task if it needsto. If your
program needs the data at a later time, you can always reload the information from thefile.

Using Weak References

The .NET Framework accomplishes this through the use of weak references. A weak referenceisa
special type of reference to an object that tells the garbage collector “you can collect this object if
you want to,” and then gives to report on whether it has been collected or not.

Weak references come in handy for objects that are RAM-expensive but computationally easy to
create. It allows you to guarantee that you’ [I have the object around when you need it, but you can
mark it as expendable when you don’t need it, for example, when the user is going to a different part
of the application.

The example project shows how to set up awesak reference. | invented a class that |oads about one
million random integers into an array—truly useless, considering the Random class built into in
the NET Framework, but you can pretend that the numbers are air pressure readings for the
example. Having amillion integersin RAM is pretty expensive, so | decided that this object was a
good candidate for aweak reference, as shown in the following code:

Public Class Fornil
Inherits System W ndows. Forms. Form

Private oMyNunmbers As PrelLoadedRandonmNunber Array
Private oWRef As WeakRef erence

Public Sub New()
MyBase. New

FormlL = Me

‘This call is required by the Wn Form Desi gner.
InitializeConponent

oMyNunbers = New PrelLoadedRandomNunber Array()
oWRef = New WeakRef er ence(oMyNumber s)
oMyNunbers = Not hi ng

End Sub

This code shows the beginning of the form definition and the constructor. Thereisaform-level
variable for my memory-hogging class (the Pre- LoadedRandomNumberArray class), named
oMyNumbers. There is also avariable of type WeakReferencethat will refer to variable
oMyNumbers.

In the New procedure, the PreL oadedRandomNumberArray variable is instantiated. Then the weak
reference isinstantiated; passing it the object | want to be set up as weak referenced. Finally, the
PreL oadedRandomNumberArray variable is set to Nothing. This step isimportant, as the garbage
collector would never target this variable for collection if it were declared as a variable on the
application’s main form, because that variable would never go out of scope.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 107 of 180

When the time comes in the program to use the oMyNumbers variable, the following code tests to
seeif itisstill around or if the garbage collector has claimed it.

‘re-point the formlevel variable to the weak reference target property
oMyNunbers = CType(oWRef. Target, PrelLoadedRandonNunber Array)

“if nothing, then the GC collected this puppy. Re-create it.
If oMyNunbers Is Nothing Then
Consol e. WiteLine("object was collected, re-creating...")
oMyNunbers = New PrelLoadedRandomNunber Array()
oWRef = New WeakRef er ence(oMyNunber s)
El se
Consol e. WiteLine("object still here, generating random nunbers")
End If

Asyou can see, | reset the form level variable to the value of oWRef. Target. Thisisthe holding
place for the weak reference. If the garbage collector has collected this variable, my form level
variable will have the value Nothing. Thisis my cue to re-create the object instance and to

reestablish the weak reference. If the variable is not Nothing, then the garbage collector has not taken
my memory-intensive class instance away yet, so | am free to use it. The code that actually uses the
random number classin the example project ssimply prints the next five valuesin the class.

Once | am done with the random number class, it isimportant to reset the value back to Nothing,
which removes the scope of the form level variable and signals the garbage collector that it can take
the variable if desired.

Controlling Garbage Collection

Writing a program to test weak referencesis abit tricky because in normal cases the programmer has
no control over when and how garbage collection occurs. Garbage collection is related to things like
available RAM and the general state of the PC running the program.

In my example program, | simulated a program doing different types of thingsin the Do Some Stuff
button. When this button is clicked, the program will either load alarge, empty array, or it will load a
button object (which has arelatively small memory requirement). To test the program, you should hit
this button repeatedly in arandom fashion and then hit the Generate Numbers button, which uses the
oMyNumbers variable to print the next five random numbers it has generated (after re-creating it if
necessary). The program reports to the console if the object had to be regenerated because the
garbage collector had taken it away.

The last button explicitly performs a garbage collection, which should force the oMyNumbers
variable to be re-created the next time it is tested against the weak reference.

Weak references allow you to hog chunks of RAM for objects that are nice to have around but are
reasonably easy to re-create if they should happen to be collected by the garbage collector. You gain
the speed benefit of having the objectsin RAM and the space benefit of allowing the .NET runtime
to claim that RAM if needed. Since al machines will behave differently, it might be agood ideato
add some logging or debugging code around the use of the weak references in your program. At
worst, the reference would have to be re-created every single time the object is needed, which would
be no different from using alocal variable and creating it each time. At best, the object is taken away
by the garbage collector only a small percentage of the time, and you are saving valuable CPU cycles
by avoid that object’ s re-creation time and time again. Either way, the log will help determine if the
weak reference is doing the job for you.

Databases

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 108 of 180

39: Speed Reading: Using the DataReader

The DataReader code can be found in the folder prjDataReader.

The workload of the database programmer can be summed up in afew ssimple words: read the data,
display the data, edit the data, and write the data. The details under these broad tasks vary widely
from project to project, of course, depending on the type of application (1-tier, 2-tier, n-tier), the
structure of the dataitself, the desired user interface, and many other factors. However, the
“read/edit/write’ cycle of the typical database application remains pretty constant.

Almost all database applications need to rip through some set of data at several pointsin the
application. Some list-based control may need to be populated (a Listbox, Combobox, Listview,
Treeview, grid, and so on), or some complex business logic may need to be applied to a set of
records. The .NET Framework has a built-in construct for ripping through a group of records:. the
SQL DataReader. This classis optimized to perform a once-only, high-speed traversal of a set of
data

The following procedure uses an SQL DataReader to populate a Listview object with the employee
records from the ever-popular Northwind database:

Private Sub cbDataReader_ Click(ByVal sender As _
System Obj ect, ByVal e As System Event Args) Handles _
cbDat aReader . Cl i ck

Dim SQL As String = "Sel ect Enpl oyeeld,
SQ = SQ & "LastNane, FirstName, Title,
SQL = SQ. & "BirthDate from Enpl oyees”
Di m aDat e As Dat eTi ne

Di m oConn As New Sql Connecti on(CONNECTI ONSTRI NG)
Di m oCrd As New Sql Conmand(SQL, oConn)

Di m oRD As Sql Dat aReader

Dimlvitem As ListViewtem

Call |vEnps.Items. Clear()

Try
oConn. Open()
oRD = oCnd. Execut eReader (_
CommandBehavi or. Cl oseConnecti on)

Do Wil e (oRD. Read())
[vitem = New ListViewmtem _
ORD. | t en(" Enpl oyeel d") . ToStri ng)

I vitem Subltens. Add(_
ORD. | t en(" Last Nane"). ToStri ng)

[vitem Subltens. Add(_
ORD. I ten("FirstNanme"). ToStri ng)

[vitem Subltens. Add(_
ORD. Item("Title"). ToString)

‘need to format date field
aDat e = ORD. Get Dat eTi ne(_
ORD. Get Ordinal ("BirthDate"))

[vitem Subltens. Add(_
aDat e. ToShort Dat eStri ng)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 109 of 180

Call |vEnps.Itens. Add(lvitem
Loop

Final l'y
oRD. Cl ose()
End Try

End Sub

First, an SQLCommand object is instantiated using a simple SQL Select statement and a local
connection string (you may have to change the CONNECTION- STRING constant in the sample app
to point to an available Northwind sample database). An SQL DataReader classisinstantiated by
passing it to the Execute method on the SQL Command object. Once instantiated, the rip-through can

begin.

Traversing the SQL DataReader object is done much differently than you might be used to if you
have experience using ADO Recordset objects. Y ou will not be using EOF or MoveNext methods.
Instead, the Read method is called, which returns a True if the read succeeds, or aFalseif you are at
the end of the data. The primary benefit of this new syntax is that you don’t need to explicitly issue a
MoveNext at the end of the loop to move on to the next record. | can’t count how many times|
forgot my MoveNext in the past and got myself stuck in an infinite loop. The Read method replaces
the need for a separate MoveNext and the end of file check performed by the EOF method.

If the Read method succeeds in the previous code, a Listltem variableis populated with fields from
the SQLDataReader, and this Listitem is added to the Listview. Note how the Item property is used
to retrieve the string fields from the SQL DataReader. When it comes time to retrieve the date value,
however, | chose adightly different tack: | used the GetDateTime method to load the column
information directly into adate variable. This allowed me to easily format the date value to my
liking. The SQLDataReader has similar Get properties for all the base data types. Since the
GetDateTime method required the desired column position as an ordinal (the integer position of the
column in the DataReader), | had to call the GetOrdinal method on the BirthDate column.

The example program has a second procedure that uses an SQL DataReader to return some additional
data. Once the Listview isfilled, if the user clicks one of the names, the address information for that
user isretrieved and placed in alabel control. The code to perform thisis asfollows:

Private Sub LoadAddressl nfoFor Enp(ByVal nlD As |nteger)

Dim SQL As String = "Select * from Enpl oyees™
SQL = SQ & "where Enpl oyeelD = @"

Di m oConn As New Sql Connecti on(CONNECTI ONSTRI NG)
Di m oCnmd As New Sql Conmmand(SQL, oConn)

Di m oParm As New Sql Paraneter (" @", Sql DbType. Int)
Di m oRD As Sql Dat aReader

oParm Direction = Data. ParanmeterDirection.|nput

oParm Value = nlD

Cal | oCnd. Par anet ers. Add(oPar m

Try
Cal | oConn. Open()
oRD = oCnd. Execut eReader (CormandBehavi or. Cl oseConnecti on)
If (oRD.Read()) Then

Dim cAdd As String

cAdd = ORD.|ten("Address").ToString & _
Envi r onnment . NewLi ne

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 110 of 180

cAdd = cAdd & oRD.Item"City").ToString & _
Envi ronnent . NewLi ne

cAdd cAdd & oRD.|ten("Region").ToString & " "

cAdd = cAdd & oRD.Itenm("Postal Code").ToString & " "
cAdd = cAdd & oRD.Item("Country").ToString
| bAddr ess. Text = cAdd
End | f
Finally
oRD. Cl ose()
End Try
End Sub

The Employee ID (the primary key on the Employee table) is passed in as the parameter to this
routine. That parameter is turned into an SQL Parameter object instance and attached to the

SQL Command object. Note how the SQL string for the command object contains a @p, which will
be replaced with the value of the parameter when the command is executed.

Once the SQLCommand is executed, an SQL DataReader is filled with the resultant records (or, in
this case, resultant single record). The Read method isissued, and, if successful, the employee
address information is constructed in a string variable (note the use of the Environment.Newline
character to add line breaks to the string). Finally, this address string is set to be the Text property of
the label control IbAddress. Once thiswork is complete, the SQL DataReader’ s connection is closed
insdeaTry...Finaly block to guarantee its successful closure.

Note The SQLDataReader is part of the System.Data.SQL Client namespace, which contains classes
specifically for connecting to Microsoft SQL Server. If you are connecting to another database,
you'll want to use the classes in the System .Data. OLEDB namespace, which use the OLE DB
layer to connect to the back-end database. The classes in this namespace are functionally
equivalent, but they have different names. For example, the equivalent of the SQL DataReader
in the System.Data. OLEDB namespace is OleDBDataReader. Y ou could use the
System.Data.OleDB for SQL Server database access as well, but you will probably achieve
better performance using the namespace specifically constructed for this database engine.

40: The Missing Link: The DataSet

The dataset code can be found in the folder prjDataSet.

The standard for today’ s database programming model is the multi-tier, or n-tier, application. This
application istypically comprised of a databasetier (like a SQL Server database with tables, views,
stored procedures, and so on), a presentation tier (aVB or ASP front end that presents the
information to the end user), and one or more“middle tiers,” which typically contain the business
rules required to act as a broker between the data and presentation tiers. For example, the application
may require agrid of inventory items to be displayed on the screen, with high-selling items displayed
in green and poor-selling items displayed in red (perhaps the colors are even user-configurable). This
item coloring information is a type of business rule and would often live in the middletier.

The ADO.NET programming model has been modified extensively from prior database models to
more easily allow developers to adhere to this multi-tier architectural approach. A DataSet classisa
key component in this new architecture. The DataSet is best thought of as a disconnected
representation of data. Like a database, it can be constructed in arelational, hierarchical fashion for
easy representation of master-detail relationships between information, like customer/order
information. However, the DataSet normally runs in a disconnected mode. A typical application
cycle might consist of the following:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 111 of 180

1. DataSet object instances are created and filled from a database connection. DataSet then
disconnects from the database.

2. DataSet isused by the presentation layer to display datato end-user.

3. Changes made to the data by the end user are done on the data in the DataSet object (not on the
database).

4. Changes are validated using business rules.
5. Oncevalidated, all changes are written from the DataSet back to the database.

Note that the DataSet is only connected to the data tier at the beginning and the end of this cycle (this
iswhy it is often referred to as running in a disconnected state).

Because the DataSet runs most of the time in a disconnected state, it must be supplied detailed
information as to the structure of the data contained within it. The following code creates a DataSet
containing two tables and sets up the relationship between those tables:

Di m aConn As New Sql Connecti on(CONNECTI ONSTRI NG)

dscProducts = New _
Sql Dat aAdapt er (" Sel ect * from Products", aConn)

dscCat egories = New _
Sql Dat aAdapt er (" Sel ect * from Categories”, aConn)

aDat aset = New Dat aSet ()

dscProducts. Fill (aDat aset, "Products")
dscCat egories. Fill (aDat aset, "Categories")

aDat aset . Rel ati ons. Add("r ProdCat", _
abDat aset . Tabl es(" Cat egori es"). Col ums("Categoryl D"), _
aDat aset . Tabl es(" Products"). Col unmms(" Cat egoryl D"))

Asjust shown, DataSets can be populated using SQL DataAdapter objects. These objects allow SQL
Statements into your database layer to quickly load sub-objectsinside your DataSet known as
DataTables. In the previous code, the SQLDataAdapter that |oads the result of Select * From
Products is used to fill a DataTable named Products. A DataT able named Categories is similarly
filled. Thelast linein the code creates a DataRelation between the two DataTables. | now have a
DataSet that | can report out of, add and remove rows, and so forth.

Let’ s stop for aminute and consider what |’ve done. At first glance, doesn't it seem like I’m doing a
great deal of extrawork? My goal isto write a database application. As the sole developer on many
such applications, | usually start by defining al the tables I’ 1l need in SQL Server, then | write some
views and stored procedures to easily read and write the data, and finally, | start developing the
presentation layer (aVB app or web-based Active Server Pages) to start working on the data. Thisis
the classic 2-tier design. Now, by introducing the DataSet object, it seems | have to redefine all of
my tables and relationships again to correctly set up the DataSet. What' s the benefit of this?

There are afew reasons this seemingly extra setup work becomes beneficial in the long run. The first
involves the connection between the tiers. If you're writing an application that’ s designed to move
data over astandard dial -up Internet connection, for example, then the connection bandwidth quickly
becomes an issue as the amount of dataincreases. Having this middle tier (depending on exactly
“where” thetier lives) of DataSet objects can immensely ease bandwidth requirements, as adds and

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 112 of 180

changes to data can happen locally as opposed to constantly reopening the database connection over
the wire to read and write changes.

Another aspect of the DataSet object isthat all of its communication is handled "under the hood" via
XML, atext-based method of transferring data that can occur entirely over an HT TP connection.
This means that you can write sophisticated data-processing applications over a standard Internet
connection without doing any low-level, custom TCP/IP protocol coding. The short DataSet 1oading
code above could be run over a standard HT TP connection, where the SQL Server is on one end of
the connection and the DataSet is on the other end, and the "loading” of the datais all done via XML.

The third reason to use the DataSet object isasimple division of labor: as your business grows, your
applications become more complex, and your development staff grows, having a multi-tier
application architecture allows you to assign devel opers to areas where they might be more skilled.

Y ou can hire or train "business expert" developers who can code in the middle tier (using DataSets
and writing business rules), without having to learn Transact-SQL to write stored procedures.
Likewise, you can hire a dbato administer and write all the SQL Server code, without her having to
know all the business logic needed to display or calculate all the data. Finally, you can have ASP or
VB-interface experts that can work on the presentation layer.

OK, now that we ve set up asimple DataSet and justified its existence, let’ s see how it was used in
the sample project to perform a number of actions.

Filling a Treeview

The following code, taken and modified only slightly from the example program (to remove some
bits that were extraneous to the task), loads a Treeview control with the categories and products from
the DataSet | just built.

Sub Fill TreeVi ewm)

Di m Cat egory As Dat aRow
Di m Product As Dat aRow
Di m oRoot As TreeNode
Di m oParent As TreeNode
Dim cCategory As String
t vSt uf f. Begi nUpdat e()
tvSt uff. Nodes. Cl ear ()
Try
For Each Category In _
aDat aset . Tabl es(" Cat egori es"). Rows

cCategory = Category.|lten("CategoryNanme"). ToString()
oParent = oRoot. Nodes. Add(cCat egory)
For Each Product |n aDataset. Tabl es("Products"). Rows
oPar ent . Nodes. Add(_
Product. I tem " Product Nane"). ToString())
Next
Next

oRoot . ExpandAl | ()
Finally
tvSt uf f. EndUpdat e()
tvStuff. Sel ect edNode = oRoot
End Try
End Sub

One cool feature of the DataTable objectsinside a DataSet is that you can use the For Each...Next
construct to iterate through all the rows in the table. Each iteration of the For Each loop returns a

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 113 of 180

DataRow object, which can then be used to retrieve field values by using the Item property. Since
thisisahierarchical relationship, two For Each loops are coded, one inside the other. The outer loop
creates a category node named oParent, and the inner loop creates a number of product nodes off the
oParent node. The Finally block makes sure that the Treeview drawing is turned back on and that the
currently selected node is the topmost root node.

Adding and Removing Rows

Adding arow to a DataTable in a DataSet is a three-step process. First, you call the NewRow method
off a DataTable object to create a DataRow object. Then, you fill the Item properties on the new
DataRow object with the desired values. Finally, you issue the Rows.Add method on the DataT able.
All three steps are shown in the following code:

aProdRow = aDat aset . Tabl es(" Product s") . NewRow
aProdRow. I tem(" Product| D") = PRODI D

aProdRow. I tem(" Product Nane") = "BudMei ster Stout Ale"
aProdRow. Item("CategorylD') =1

aDat aset . Tabl es(" Products"). Rows. Add(aPr odRow)

If you can find the row you want to delete and point to it using aDataRow object, you can simply
call the Delete method on the object.

aPr odRow. Del et e()
Applying Changesto the Database

Once the user has performed all of the desired in-memory changes to the DataSet, the back-end
database needs to get updated to reflect those changes. The SQL DataAdapter contains three
properties to assist in sending the changes back to the database: the InsertCommand,
UpdateCommand, and DeleteCommand. These three properties are of type SQLCommand. They can
contain anything from simple SQL statements to complex stored procedures. The following example
shows how a database insert is configured on a SQL DataAdapter and how an actual insert is sent to
the Northwind database.

Protected Sub cbApply Click(ByVal sender As Object, _
ByVal e As System Event Args) Handl es cbApply. Click

Di m aConn As New Sql Connecti on(CONNECTI ONSTRI NG)
Dim SQL As String = "Insert into Products " & _
(Product Nane, "CategorylD) Values (@, @D)"

Di m aParam As Sql Par anet er

Di m aPr odRow As Dat aRow

dscProducts. | nsert Command = New Sql Command(SQL, aConn)

aParam = dscProducts. | nsert Command. Par anet er s. Add(New Sql Par anmeter (" @", !
Wth aParam

. Sour ceCol untm = " Product Nane"
. Sour ceVer si on = Dat aRowVer si on. Curr ent
End Wth

aParam = dscProducts. | nsert Command. Par anmet er s. Add(New _
Sql Paraneter ("@D', Sql DbType.Int))
Wth aParam
. Sour ceCol um = " Cat egoryl D"
. Sour ceVer si on = Dat aRowVer si on. Curr ent
End Wth

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 114 of 180

‘add a row
aProdRow = aDat aset. Tabl es(" Products"). NewRow
aProdRow. I tem(" Product Nane") = "BudMei ster Stout Ale"

aProdRow. [ten("CategorylD') =1
aDat aset . Tabl es(" Products"). Rows. Add(aPr odRow)

‘updat e the database
Try

dscProduct s. Updat e(aDat aset, "Products")
Catch eEx As Exception

Cal | MsgBox(eEx. Message)

End Try

Call FillTreeView)

sbStat. Text = "row permanent|y added to dat abase”
End Sub

This example maps the InsertCommand object on the DataAdapter to asimple SQL Insert statement.
Y our database update techniques might be more complicated, for example, they might call a stored
procedure to perform their inserts, updates, or deletes. If thisis the case, you can specify these
custom update methods using the SQL DataCommand’ s InsertCommand, UpdateCommand, and
DeleteCommand properties to specify the stored procedure name.

Wt h dscProducts

. I nsert Command. CommandText
. I nsert Command. CommandType
. Updat eCommand. CommandText
. Updat eCommand. CommandType
. Del et eCommand. CommandText
. Del et eCommand. CommandType
End Wth

"pl nsert NewPr oduct "
CommandType. St or edPr ocedur e
"pUpdat ePr oduct "
CommandType. St or edPr ocedure
"pDel et eProduct "
CommandType. St or edPr ocedure

Looking at this example, you can begin to imagine now how the definition of a DataSet could vary
greatly from the physical layout of your database, if you desired. Y ou could create an

SQL DataAdapter object with custom SelectCommand, I nsertCommand, UpdateCommand, and
DeleteCommand properties, all of which could actually be reading and writing datain many different
tables. For the purposes of the presentation tier, however, this complexity can be removed and
"flattened out” into asingle, easier to understand, non-normalized view of the same data.

Filtering, Sorting, and Sear ching with the DataView

Once your DataSet is constructed and filled with data, you will probably have to view the datain
many different ways. For example, on one form you may need to show all the products less than a
given price, in product name order. On another form, you might need to show all the productsin a
given category, in price order. The DataView object can help you create a custom view on a
DataTable. The DataView allows you to filter and sort the data in a DataT able. Furthermore, the
DataView can then be bound to a grid control for a quick listing of the desired data. The following
code constructs a DataView off the DataSet’s Products DataT able, filters the products to show only
those having a CategorylD of 2, and sorts the results on the ProductName field. Finally, the
DataView is bound to the grid control named dgStuff.

aDat aVi ew = New Dat aVi ewm aDat aset . Tabl es(" Products"))
aDat aVi ew. RowFi | ter = "CategorylD = 2"
abDat aVi ew. Sort = "Product Name"

dgSt uf f . Dat aSour ce = aDat avi ew

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 115 of 180

The DataView can aso be used to search for arecord. The following code searches for arow in the
DataView and reports on the results:

Const FINDSTRING As String = "Gula Mal acca”
Di mi Row As | nteger

aDat aVi ew = New Dat aVi ewm aDat aset . Tabl es(" Products"))
abDat aVi ew. Sort = "Product Name"

dgSt uf f . Dat aSour ce = aDat avi ew

Try
i Row = aDat aVi ew. Fi nd(FI NDSTRI NG)
If iRow = -1 Then
sbStat. Text = FINDSTRING & " not found "
El se
sbStat. Text = FINDSTRING & " found at row " & i Row + 1
dgSt uf f. Navi gat eTo(i Row, "")
End | f
Cat ch
‘find failed
End Try

The DataSet object is one of the core components of the .NET Framework database architecture. Itis
specifically designed to aid the developer in writing middle-tier components that pass data between
the presentation and database tier, without the need for either arepeated or persistent database
connection. The DataSet object is designed to send data to and from both layers in more of a batch
update mode, taking advantage of XML to do so.

41: Tackling Typed DataSets

The typed dataset code can be found in the folder prjTypedDataset.

The DataSet concept in .NET Framework isreally powerful: it provides for a ready-made,
disconnected container for hierarchical data. Thisisjust what the doctor ordered in terms of
constructing the middle tier(s) in an n-tier architecture.

However, the DataSets that we’ve used to this point are not the easiest to use. For one thing, as
we’ve already discussed, they are a bit of apain to set up. One hasto create SglDataAdapter objects,
use them to fill the DataSet, and then add DataRelation objects manually. Thisis almost like setting
up the database a second time (once in SQL Server and once again in VB code).

Secondly, the syntax required to use the DataSet is a bit cumbersome. Consider the following code
fragment, taken from "Filling a Treeview," which iterates the rows in one table in a DataSet and
adds the ProductName field as nodesin a Treeview:

For Each Product | n aDataset. Tabl es("Products"). Rows
oPar ent . Nodes. Add(Product . I tem(" Product Nane"). ToString())
Next

Product.ltem("ProductName").ToString? Cumbersome code like this kind of makes me wish for the
days of ADO, when | could write something like Product! ProductName.

Fortunately for everyone’s sanity, there is anew concept in the .NET Framework that helps to ease
the burden of both these problems. This concept is the typed dataset. A typed DataSet is a class that
descends from a normal DataSet, in which all of the tables, columns, and relations are defined as
properties of the class.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 116 of 180

Why Use a Typed DataSet?

There are several benefits to using atyped DataSet. The main benefit is that it dispenses with
programming in the cumbersome object model of the standard DataSet. Instead of writing aline of
code that looks like this:

For Each Product | n aDataset. Tabl es("Products"). Rows
oPar ent . Nodes. Add(Product . I tem(" Product Nane"). ToString())
Next

you instead write the much more readable;

For Each aPRow I n aCRow. Product sByCat egori esCat egori es
oPar ent . Node. Add(aPRow. Pr oduct Nane)
Next

Not only isthis more readable (once you get used to it), but you get the benefit of Intellisense
helping you write the code. The benefit of this might be easier to show you than to describe. The
following illustration shows Intellisense suggesting the column name as | work with my typed
DataSet.

aCRow = dsPWC. Cacegories. FindByCat sgoryIDioToem. Hayh
For Hach abhow In alhow_ BreductsbyCarsgorissCategories
IbFrodusts, Icens, Ldd (aFRow
i MasWersion -
W i
Bub Fillbataset (] R Dem

aCona Ar Hew FOLCormagy; D emsmay
sk

Hast
Ind Sub

Frivate
=
= d Az

B dacl Ad

ER ProdeciD
Meu :?LD:.:-E.-.IZ:EE PFroduciflams J:\r.:
Haw ?':ll-f"l'.rSul:l"ﬂ Gy Perling

D3
D
b

= . EF CGusrkbePerUing sl
dEFEC = Hev FroductsWichlac & Repect ¢
de
i

oC. FillDaraSat {depue, =canEE Retrdeledsl =
#P. FLL1Tar aBar {48 PV, “Produses®)

The second benefit to using typed DataSets is that they are more easily set up than standard DataSets.
At first, you might think the exact opposite, that setting up a descendant class with custom properties
linked to all the tables, relations, rows, and columns of a DataSet might take a long time. However,
Visual Studio provides you with an automatic means of creating typed DataSets from XSL Schema.
This streamlines the entire process into a few simple steps.

Creating a Typed DataSet

Creating atyped DataSet is pretty straightforward, but the documentation doesn’'t give a good step-
by-step example, so you might have trouble figuring out the exact sequence of steps needed to create
one. Let’ s go through that sequence here.

1. Create a new project. The project type doesn't matter. The example project isa Winforms
project.

2. Create a data connection to a desired database. From the Server Explorer on the left side of
the screen, make a new data connection to the proper SQL Server or similar database, as
shown here:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 117 of 180

Server Explorer x| I
"”ﬁ“r Vigw - 2

=g g? Data Connections
; gj <add Connection, .. = !
= g F14GIGA . Marthwind . dbo il :
: & Ei;—" Dakabase Diagrams
E+; F' Tables
E+, 5@ Views
E+, @ Stored Procedures
- % Functions

@ SErvErS

Al cAdd Cav e

3. Add anew XD schema to the project. From the Solution Explorer, right-click the project
name, select Add from the menu, select Add New Item, and then select XSD Schema. Rename
the filename as desired. This filename will become the name of the class of the typed DataSet,
so choose something memorable.

4. Create a schema. Select the tables from the database connection in Server Explorer by
dragging them onto the Schema design area. Connect the tables by creating relations. See the
Visua Studio.NET help file for details on completing the schema under topic. Once your
schema is complete, right-click the Schema design area and make sure the Generate Dataset
menu item is checked. When all is complete, make sure to save the schema.

5. Add a generated .vb file to the project. Saving the XSD schemawill create a.VB filein the
project folder. Thisfile contains the definition for the typed DataSet that corresponds to the
XSD schema. Thisfile is automatically part of the current project, aslong as the XSD file
remainsin the project.

Using the Typed DataSet

Once the typed DataSet is defined and part of your project, you can use it the way you use any other
DataSet and get the same benefits. The first thing you need to do is populate the DataSet by bringing
the data out of the database. Thisis done in the same way that any other DataSet is populated, by
using code similar to the following:

Private Sub Fill Dataset ()

Di m dscP As New Sql Dat aAdapter("Select * from _
Products”, CONNECTI ONSTRI NG

Di m dscC As New Sql Dat aAdapt er (" Sel ect * _
from Cat egori es”, CONNECTI ONSTRI NG

dsPWC = New ProductsWthCat ()

dscC. Fill (dsPWC, "Categories")
dscP.Fill (dsPWC, "Products")

End Sub

In this code, dsPWC is the form-level instance variable of your typed DataSet, named
ProductswithCat. (Recall that the class name of the typed DataSet is the same as the name you gave
to the XSD schemayou created in order to define this DataSet.) The DataSet variable isfilled with
SQLDataAdapter instances, just as a nontyped DataSet would be.

Once the DataSet it filled in the example program, the following code is run to bind the Categories
DataTable to a Combobox named cbCategories:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 118 of 180

cbCat egori es. Di spl ayMenber = "Cat egor yNane"
cbCat egori es. Val ueMenber = "Categoryl D"
cbCat egori es. Dat aSource = dsPWC. Cat egori es

cbCat egori es. Sel ectedl ndex = 0

The binding code defines the member (field name) of the DataTable to display and the member to
use as the ValueMember, which is often used as the primary key to which the DisplayMember
corresponds. Then the Combobox data source is bound to the DataT able. Because of the typed nature
of your DataSet, you refer to the table by its name, instead of having to refer to it as dwPWC.Tables
("Categories").

When the user changes an item in the Combobox, the following code runsto fill a Listbox with all of
the products in the selected category:

Private Sub cbCategories_Sel ect edl ndexChanged(ByVal _
sender As System Cbject, ByVal e As System Event Args) _
Handl es cbCat egori es. Sel ect edl ndexChanged

DimilD As Integer
Di m aDV As Dat aVi ew

iD= Clnt(chCategories. Sel ect edVval ue)

‘create a filtered dataview on the dataset
aDV = New Dat aVi ewm(dsPWC. Pr oduct s)

aDV. RowFilter = "CategorylD =" & ilD

aDV. Sort = "Product Name"

‘bind the dataview to the |istbox

| bProducts. Di spl ayMenber = "Product Nane"
| bProduct s. Val ueMenber = "Product!| D"

| bPr oduct s. Dat aSour ce = abV

End Sub

To get only products within the currently selected category, a DataView is created and aRowFilter is
specified. The Listbox isthen bound to the DataView. Note that once again you were able to refer to
atable asif it were a property in the statement dsPWC.Products.

This example only scratches the surface in demonstrating how useful the typed DataSet will be.
Remember that all of the table names, relations, constraints, and column names correspond to
propertiesin the DataSet. Thiswill aid in the coding of all of the desired I/O into your data source,
including adding, editing, and deleting rows and performing data validation. And, because of the
disconnected nature of the DataSet, you will be able to perform all of this validation locally and write
all of the data changes back to the database in batch.

42: A Legally Binding Form

The data binding code can be found in the folder prjBindingManager.

| don’t know many VB programmers who like good ol d-fashioned data binding, but that might
change for a number of reasonsin VB.NET. One reason binding wasn’ t the most popular approach
was that it broke the n-tier model. By binding a data control to Ul elements like Textboxes and

Listboxes, you' re going right from the data tier to the presentation tier, bypassing any chanceto use a
middle tier in between.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 119 of 180

Asyou’ve aready seen, the DataSet isthe .NET Framework solution for creating middle-tier
business objects. As such, you’d hope that it would support decent data binding—and your hopes
would be answered. The data binding capabilitiesin the .NET Framework are very well defined and
powerful.

Data binding on a VB.NET formis handled via a class called aBinding- Context. Thereisan
instance of this class on each form in your project. Within the BindingContext class, there will be
one or more Binding- ManagerBase classes. There will be one BindingManagerBase class for every
data source on the form. The following code points alocal Binding- ManagerBase variable named
aBaseto a DataTable in an already-defined DataSet object:

Di m aTabl e As Dat aTabl e
aTabl e = aDat aset. Tabl es(" Product s")

aBase = Me. Bi ndi ngCont ext (aTabl e)
aBase. Position = 0

AddHandl er aBase. Posi ti onChanged, _
AddressOf aBase_Posi ti onChanged

AddHandl er aBase. Current Changed, _
AddressOf aBase_| t enChanged

Once you set up your data source and locate the corresponding BindingManagerBase class, you
control the scrolling through your DataSet via the Position property on the BindingM anagerBase.
Position O isthe first row in the data source, position Count - 1 isthe last row (Count isalso a
property on the BindingManagerBase). This code attaches some code to the Position- Changed and
the CurrentChanged events on the BindingManagerBase as well. The former is an event that fires
every time the position is changed in the BindingManagerBase, which is good for updating a status
or writing to alog, for example. The CurrentChanged event fires when datain the data sourceis
changed. This could be a useful place to put data validation routines.

Binding Controls

Binding basic Ul controlsto the data source is done with the Bindings collection built into each
control. An example for binding atext box to a column in a DataT able is shown here:

t bNanme. Bi ndi ngs. Add(" Text", aTabl e, "ProductNanme")

The second parameter is the data source, which was defined in the earlier sample codeto be a
DataTable off data source variable aDataSet. The third parameter is the column name on the dataset
to which the Textbox is being bound. The first parameter raised my eyebrows abit when | saw it for
thefirst time. This parameter specifies the name of the property on the Textbox to which the datais
bound. One would expect that most Textboxes would bind their text property to the desired data
element. But the .NET Framework binding capabilities allow for much more. For example, we can
bind the Enabled or the Visible properties to Boolean elements in the data source. How about
binding color properties? The possibilities really begin to present themselves once you start thinking
about them.

As an example of this binding functionality, | decided that | wanted to link some Textboxesto a
DataSet. | chose the Northwind Products table as my sample table to bind the controls. In scanning
thistable, | noticed an interesting column: the Discontinued column. My thought was that | could
create an edit form for the common fields in this table, and | could then disable the controls for items
that are discontinued by binding the Enabled property to thisfield.

Below was my first pass at the code that binds a DataSet containing the Northwind Products table to

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 120 of 180

five Textbox controls and a check box:

Private Sub Bi ndTheControl s()

Di m aTabl e As Dat aTabl e

aTabl e = aDat aset. Tabl es(" Product s")

t bNane. Dat aBi ndi ngs. Add(" Text", aTable, "ProductNanme")

t bPri ce. Dat aBi ndi ngs. Add(" Text", aTable, "UnitPrice")

t bOnOr der . Dat aBi ndi ngs. Add(" Text", aTable, "UnitsOnOrder")
t bReor der . Dat aBi ndi ngs. Add(" Text", aTable, "ReorderLevel")
t bOnhand. Dat aBi ndi ngs. Add(" Text", aTable, "UnitslnStock")

cbDi s. Dat aBi ndi ngs. Add(" Checked", aTable, "Di scontinued")

t bNane. Dat aBi ndi ngs. Add(" Enabl ed", aTabl e, "Discontinued")

t bPri ce. Dat aBi ndi ngs. Add(" Enabl ed", aTable, "Di scontinued")

t bOnOr der . Dat aBi ndi ngs. Add(" Enabl ed", aTable, _ "Di sconti nued")
t bReor der . Dat aBi ndi ngs. Add(" Enabl ed", aTable, _ "Di sconti nued")
t bOnhand. Dat aBi ndi ngs. Add(" Enabl ed", aTabl e, "Di scontinued")

aBase = Me. Bi ndi ngCont ext (aTabl e)

aBase. Position = 0

AddHandl er aBase. Posi ti onChanged, AddressOf aBase_ Posi ti onChanged
AddHandl er aBase. Current Changed, AddressOF aBase_|t enChanged
Cal | aBase_Positi onChanged(aBase, Not hi ng)

End Sub

Note how | bound the same field, Discontinued, to the Checked property on a check box named
cbDis aswell asthe Enabled property on all five of my Textbox controls. Pure genius (or so |
thought)!

One problem, though: my Enabled logic works in reverse. When | ran the project, the Textboxes
were enabled for the discontinued items and disabled for the live items. | wanted things the other
way around. What | really wanted to do was somehow bind the Enabled properties of the Textboxes
to "Not Discontinued"”, or something similar. A few attempts at this type of logic didn’t yield good
results, though. Then, after sleeping on the problem for aday or so, | came up with the answer: |
could just create a new, calculated column in my dataset that represents the negative of Discontinued
and bind it to the calculated column. Adding my new calculated column took about 30 seconds:

Dim SQL As String

SQ = "Select *,"
SQ = SQ & "1-Discontinued as NotDi scontinued "
SQL = SQ & "from Products "

dscProducts = New Sgl Dat aAdapt er (SQL, CONNECTI ONSTRI NG)
aDat aset = New Dat aSet ()
dscProducts. Fill (aDat aset, "Products")

My extrafield is calculated as the opposite of Discontinued (the 1—boolean = not Boolean is an old
trick | recalled from my PDS Basic 6.1 days). | could just as easily hide this detail in aview in the
database, if | desired. What | have now is the existing Discontinued column and the new column,
named NotDiscontinued. It’satrivia task to bind the Enabled property to this new column, as shown
here:

cbDi s. Bi ndi ngs. Add(" Checked", aTabl e, "Di scontinued")

t bNanme. Bi ndi ngs. Add(" Enabl ed", aTabl e, "NotDi scontinued")

t bPri ce. Bi ndi ngs. Add(" Enabl ed", aTabl e, "NotDi scontinued")

t bOnOr der . Bi ndi ngs. Add(" Enabl ed”, aTabl e, "NotDi sconti nued")
t bReOr der . Bi ndi ngs. Add(" Enabl ed”, aTabl e, "NotDi sconti nued")
t bOnhand. Bi ndi ngs. Add(" Enabl ed”, aTabl e, "NotDi sconti nued")

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 121 of 180

Note that the check box Checked property is still set to the original column, but the Enabled property
is set to my new, calculated column.

This technique of creating new calculated data in DataSets for the purpose of data binding seems
simple enough in concept, but there’ s avery important underlying design tactic going on here. In
terms of the n-tier design strategy, the new binding abilities of .NET Framework allow us to move
even more business logic out of the presentation tier (the VB program or web page used by the end
user) and into the middle tiers (usually COM components or VB classes running either under MTS
on aserver or locally on the end user machine). The whole purpose of introducing the middletiersis
to abstract business logic out of the presentation and datatiers. The act of disabling controls based on
data values or changing font colorsto red when a number is negative are examples of business logic
that could never before be designed to live in the middle tier, because VB wouldn’t alow binding of
Color or Enabled propertiesto data.

43. Still More Binding

The binding code can be found in the folder prjBindingToACollection.

Y ou’ ve seen how binding works on the database-like DataSet. This construct makes it easy to load
information out of a database and into a DataSet (residing as some form of middle tier object
perhaps) and use the DataSet to bind to presentation tier controls. Binding is not limited to DataSets,
however. Y ou can bind your own classes and custom collections to Ul controls. Thisis useful
because not all applications are database applications, after al. Y ou may have a custom storage
solution for the data your application is manipulating, and you simply don’t need the overhead of a
database to store that data. Because you can bind just about any classto a Ul element, however, you
don’t have to give up the simplicity of data binding just because you’ re not using a database.

The example program contains a class named PolygonDescriptor, which stores a polygon name
along with the number of sides:

Public Cl ass Pol ygonDescri ptor

Private FNunSi des As | nteger
Private FNane As String

Sub new(ByVal Name As String, ByVal NunSi des As |nteger)
MyBase. New()

FNane = Nane
FNuntSi des = NunSi des

End Sub
Property Nane() As String
Get
Ret urn FName
End Get
Set

FName = Val ue
End Set
End Property

Property NunSti des() As I|nteger
Get
Ret urn FNunSi des
End Get
Set
FNursi des = Val ue
End Set
End Property

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 122 of 180

End Cl ass

To hold a group of PolygonDescriptor objects, | created a typed collection named (appropriately
enough) the PolygonDescriptor collection. This specia collection allows only the intended type to be
added into it and removes the need for typecasting when retrieving an object from it:

Publ i ¢ Cl ass Pol ygonDescri ptorCol |l ection
Inherits Coll ectionBase

Public Sub Add(ByVal P As Pol ygonDescri ptor)
MyBase. | nner Li st . Add(P)
End Sub

Functi on Renove(ByVal P As Pol ygonDescriptor) As I|nteger
DimiCtr As Integer = MyBase. | nnerList.|ndexOf (P)

If iCtr > 0 Then
MyBase. | nner Li st. Remove(P)
Return iCtr

End If

End Function

Function Item(ByVal i As Integer) As Pol ygonDescriptor
Return CType(MBase.lnnerList.Itenm(i), _
Pol ygonDescri pt or)
End Function

End Cl ass

Through the magic of VB.NET binding, | can now bind this collection class to a Listbox, which will
create arow in the Listbox for every element in the collection, and show the desired field as the
entries in the Listbox. The following code populates an instance of the PolygonDescriptorCollection
and then performs the binding:

Di m cPol ygons As New Pol ygonDescri ptorCol | ection()

cPol ygons. Add(New Pol ygonDescriptor (" Triangle", 3))

cPol ygons. Add(New Pol ygonDescri ptor (" Rectangle", 4))
cPol ygons. Add(New Pol ygonDescri ptor (" Square", 4))

cPol ygons. Add(New Pol ygonDescri pt or (" Pentagon", 5))

cPol ygons. Add(New Pol ygonDescri pt or (" Hexagon", 6))

cPol ygons. Add(New Pol ygonDescri ptor (" Cctagon”, 8))

cPol ygons. Add(New Pol ygonDescri pt or (" Dodecahedron", 12))
cPol ygons. Add(New Pol ygonDescri ptor ("I cosahedron", 20))

Try
| bShapes. Dat aSour ce = cPol ygons
| bShapes. Di spl ayMenber = " Nane"
Catch oEX As Exception
Consol e. WiteLi ne(oEX. ToStri ng)
End Try

The code that performs the binding step istwo simple lines. The first sets the Listbox DataSource
property to the collection instance, and the second line tells the Listbox which property of the
PolygonDescriptor to display. Y ou can see from the following illustration that once you’ ve set it up
in thisway, the Listbox isfilled with the desired elements.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 123 of 180

B Binding UI to Classes -0 =|

Triang|e Sides: &
Reckangle

Square

Pentagon

Hexagaon

Dodecahedron
Icosahedron

Clicking an item in the Listbox returns the PolygonDescriptor object that corresponds to this row.
Thismakesit realy easy to display further information about the selected object. The following code
resolves the selected item back into a PolygonDescriptor and then displays the number of sides for
that polygonin alabel control:

Private Sub | bShapes_Sel ect edl ndexChanged(ByVval _
sender As System Cbject, ByVal e As System Event Args) _
Handl es | bShapes. Sel ect edl ndexChanged

Di m oPD As Pol ygonDescri pt or

oPD = CType(| bShapes. Sel ect edltem Pol ygonDescri ptor)
| bSi des. Text = "Sides: " & oPD. Nunti des

End Sub

Y ou can see that data binding to collections gives you a powerful alternative to using a database for
all your data storage. Smaller apps might require a more simplistic data storage solution, but you
don’'t have to give up binding to your controls just because you’ ve decided against a full-blown SQL
Server application.

44:. Completethe (Database) Transaction

The database transaction code can be found in the folder prjDatabaseTransactions.

Database transactions are not new—I’m sure many of you out there experienced in writing database
applications have used transactions at one time or another. With some of the new language constructs
built into Visual Basic.NET, however, you might find database transactional code bit more “natural”
to implement. Specifically, I’ m talking about the vastly improved exception handling in VB.NET.
Database transactions fit in perfectly with the concept of structured exception handling. Here is some
pseudocode for running multiple database statements in a transaction:

Try
Open Connection
Try
Start Transaction
Run SQL St atenent(s)
Commit Transaction

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 124 of 180

Cat ch
Rol | Back Transaction
Finally
Cl ose Connection
End Try
Cat ch

Report Error
End

Transactions and exceptions ook like they were made for each other, don’t they? In the preceding
code, | open a connection inside its own exception block, reporting any errors it might come across
(the database is unavailable, bad login credentials, and so on). Inside a second Try block, | start a
transaction, run a bunch of SQL Statements, and then commit the transaction at the end. If any errors
occur during the SQL statements (trying to insert a duplicate key, for example), the entire transaction
isrolled back. The connection is closed inside a Finally block, which guarantees that the connection
closes regardless of whether the database actions succeed or fail.

Pseudocode is good for getting a general idea; now let’slook at some code that does some real work.

Private Sub cbEnter_ Click_1(ByVval sender As _
System Obj ect, ByVal e As _
System Event Args) Handl es cbEnter.Cick

Dim SQL As String
Di m aConn As Sql Connection = New _
Sql Connect i on(CONNECTI ONSTRI NG)

Di m aCmd As Sql Conmmand = New Sql Command(SQL, aConn)
Di m aTrans As Sql Transacti on

Dimo As Object

Dimnl D As | nteger

tbError. Text = ""
| bResul ts.Itens. Cl ear ()

Try
Call LogEntry("open connection")
aConn. Open()
Try

Call LogEntry("start a transaction")

aTrans = _

aConn. Begi nTransacti on(| sol ati onLevel . ReadCommi tt ed)
Cal | LogLast EntrySuccess(True)

Call LogEntry("run the order header insert")

SQL = "Insert into Orders "

SQL = SQL & "(Customerl D, Enpl oyeel d,
SQL = SQ & "OrderDat e, Requi redDat e,
SQL = SQ. & "Shi pVi a, Frei ght, Shi pNane, '
SQ = SQ. & "Shi pAddress, ShipCity, Shi pPostaI Code,
SQ = SQ & "ShipCountry "

SQL = SQL & ") VALUES ("

SQL = SQL & QJOt ed("SUPRD") &'

SQL = SQL & "4,

SQL = SQ &' getdat e(),

SQL = SAL & QJOt ed("10/1/2002") &'
SQL = S &

SQL = SQA &' 7 00,

SQL = SAL & QJoted(M. Big") &","

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 125 of 180

SQL = SQ & Quoted("123 Anytown Lane") & ","
SQL = SQ & Quoted("C eveburg") & ","

SQL = SQL & Quoted("55112") & ","

SQL = SQL & Quoted("USA") & ");'

SQL = SQL & "select @@ddentity"

aCnd. Transaction = aTrans

aCnd. CommandText = SQL

nl D = ClInt(aCnd. Execut eScal ar ())
Cal | LogLastEntrySuccess(True)

Call LogEntry("enter an line itemon the order")

SQL = "Insert into [Order Details] "

SQL = SQ & "(OrderI D, ProductID, UnitPrice,"
SQL = SQ. & "Quantity, Discount"”

SQL = SQL & ") VALUES ("

SQL =SQ@Q &nlD&","

SQL = s & "77,"

SQL = S & "10.40,"

SQL = S@&L & "1,"

SQL = S@&L & "0)"

aCnd. ConmandText = SQL
aCnd. Execut eNonQuery()
Cal | LogLast EntrySuccess(True)

I f cbRol | back. Checked Then
Call LogEntry("enter a bogus line itent)

SQ = "Insert into [Order Details] "

SQL = SQ & "(OrderI D, ProductlID, UnitPrice,"
SQL = SQ & "Quantity, Discount”

SQL = SQL & ") VALUES ("

SQL =S &nID&","

“invalid product nunber

SQL = SQ & "399,"

SQL = S & "99.95,"

SQL = S & "1,"

SQL = S@&L & "0)"

aCmd. ConmandText = SQL

aCmd. Execut eNonQuery()

Cal | LogLast EntrySuccess(True)
End |f

Call LogEntry("commtting transaction")

aTrans. Conmi t ()

Cal | LogLast EntrySuccess(True)

Call LogEntry("Order " & nlD & " witten to database")

Catch eEx As Exception
Cal | LogLast EntrySuccess(Fal se)
aTrans. Rol | back()
tbError. Text = eEx. ToString()
Finally
aConn. Cl ose()
End Try

Catch eEx As Exception
Cal | LogLast EntrySuccess(Fal se)
tbError. Text = eEx. ToString()
End Try

End Sub

The structure of this procedure isidentical to the pseudocode shown earlier. The database codeis

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 126 of 180

attempting to enter an order into the Northwind database. A record is entered into the Orders table,
and two items are entered into the Order Details table. The second item has a bad product 1D, which
causes a constraint error against the Products table. Because we have structured al of this code
inside a database transaction, al of the database inserts are rolled back once this error is encountered.
The project reports the error as seen in the following illustration:

_Boatabase Transactions =0 =l
P Faca it

fopen tonnection

fetart 8 transaction — suctess

b e crclan hageder naart -~ sucoess
lerter an b o on e order - fusteds
enber a bogus Ine Kem ~ FAILED

1

1 Sysbern Daba 500 . SOLE reapbinn: BEERT fatoment confiotad with COLLMKN FOREIGNTEY oofmnand

| P _uder_Deetals_Products’. The conflct coousmed in database Northwind, table Froducts’, column ProductID,
&t System Data. SOL. SO0 Connesdtion OnErmon SOLE noeption exoeption, TdsParserSabe stabe)

| ot Systern.Deta, S0L. TdsParser, ThrowEsoapbiondnd#aming(h
st Syikern Dot S0L. TouParser Run(Rurfisharar nan, 20U Command cmdHander, S0L0GE alagce:

| dataSreamn)

|

A note about coding style. | do agreat deal of database programming and find myself writing aton
of SQL statementsinside my VB code (probably way more than | should, actually—shouldn’t | be
using stored procedures or something?). | find it difficult to build SQL statementsin VB strings
because they are often very long, and one is often embedding quote characters inside the double
guotes required to set up the VB strings. And these SQL -building statements are often next to
impossible to read by other programmers. To aid in thistask, |’ ve developed a few conventions to
make the SQL building statements as easy to read as possible. Some of the conventionsin the
following list are shown in the previous statements.

Use a consistent naming convention. | always build my SQL statementsin avariable named SQL.
It’s easy to read, easy to understand, and consistent from project to project. |’ ve often been tempted
to declare SQL as a project global variable, but to this point I’ ve refrained and declared it locally
everywhere it’s needed.

Don’t usetheline continuation character. Some of my SQL statements have gotten so long that |
need to break them into multiple statements (you can only have so many line continuation statements
before the VB IDE barks at you). Rather than doing this, however, | build my SQL with lots of
single-line statements, starting all but the first with SQL = SQL & <new stuff>.

Don’t embed single quotes. | find it really hard to read a statement like this:

SQ = "Insert into Thl VALUES (‘" & _
cvall & "' ,’" &cVal2 & "')"

Huh?1 call this delimiter hell. The single and double quotes alongside the string concatenating
ampersands and parentheses make my head spin. | can’t even be sure | built avalid SQL string there
without actually running it. | find it much more readable to use a function named Quoted whenever |
need to embed a quoted variable inside my SQL statements. The previous statement would then be
converted to something like this:

SQ = "Insert into Thl VALUES ("
SQL = SQ & Quoted(cvall) & ","
SQL = SQL & Quoted(cval2) & ")"

The function Quoted is simply this:

Private Function Quoted(ByVal s As String) As String
Return "*" & s & "*"

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 127 of 180

End Function
Y ou can build similar helper functions for double quotes, brackets, braces, and so on.

| realizethisis all amatter of personal style, but getting your database building statements correct is
critical, and it takes agood deal of debugging time. Having easy-to-read code in these parts of the
application can save you (and your devel oper peers) headaches in the future.

45: Legal (Stored) Procedures

The stored procedure code can be found in folder prjStoredProcedures.

Most database programmers learn the power and usefulness of the stored procedure as they become
familiar with client-server programming. Stored procedures are chunks of code that are writtenin
Transact-SQL that run on the database server machine, as opposed to the client machine. When your
database server is a $20,000, multiprocessor box, and your client is a $1,200 box, which one should
you choose to perform most of the database processing? If you’re interested in speed and
performance, the answer is of course the server. The stored procedure is the place to make much of
that database processing happen.

Note We' Il be dealing with Microsoft SQL Server stored procedures here. Results will vary by
database vendor.

Like procedures in most languages, database stored procedures accept and return parameters with
which they do their work. There are three types of parameters on a stored procedure:

Input Anything you need to send to a stored procedure goes into an input parameter.

Output Most data that you would like the stored procedure to return to your application is done so
via an output parameter.

Return values Return values are a special type of output parameter. They are limited to integers,
and only one can be returned per procedure. Return values are most often used to return whether the
procedure succeeded or failed in itsintended task.

My goal was to demonstrate using all three types of parametersin a stored procedure in the
Northwind database. Unfortunately, none of the built-in stored procedures had all three types of
stored procedures, so | wrote my own:

CREATE PROCEDURE Cust Order Total s
@cust omer | D varchar (5),
@Ant Spent nmoney OUTPUT

AS

DECLARE @umOrd | NT

SELECT @NumOrd = COUNT(*) FROM Orders
WHERE Custoner!| D = @Custoner| D

IF (@unOrd = 0)
RETURN 1
ELSE BEG N

SELECT @Ant Spent =SUM Ext endedPri ce)

FROM [Order Details Extended] OD
INNER JON Orders OON O OrderID = OD.OrderI D

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 128 of 180

VWHERE O. Custoner| D = @ustoner| D

RETURN O
END

This stored procedure takes a customer ID as its input parameter and returns the total amount spent
by that customer. If the customer has never ordered (or isan invalid ID), the return value parameter
issetto 1.

With this stored procedure in place, here’show it iscalled in aVB.NET application:

Private Sub cbGet _Click(Byval sender As _
System Obj ect, ByVal e As _
System Event Args) Handl es cbhGet. i ck

Dim SQL As String = "Sel ect Custonerl D,
SQ = SQ & "ConmpanyNane from Custoners”

ocConn As New Sgl Connecti on(CONNECTI ONSTRI NG)
opConn As New Sgl Connecti on(CONNECTI ONSTRI NG)

33

oCnmd As New Sgl Command(SQ., ocConn)
oParm As Sql Par anet er

oRD As Sql Dat aReader

cCustld As String

cTot As String

[vitem As ListView tem

333333

Di
Di
Di
Di
Di
Di
Di
Di
Di

m oProc As New Sgl Command(" Cust Order Tot al s", opConn)
oProc. ComandType = CommandType. St or edPr ocedur e

oParm = New Sql Parameter("rVal", Sql DbType.Int)
oParm Direction = ParaneterDirection. ReturnVal ue
oProc. Paranet ers. Add(oPar m

oParm = New Sql Par anet er (" @ust oner| D', _ Sql DbType. Var Char, 5)
oParm Direction = ParaneterDirection.|nput
oProc. Par anet ers. Add(oPar m

oParm = New Sql Par anmet er (" @Ant Spent ", Sql DbType. Money)
oParm Di rection = ParaneterDirection. Qut put
oProc. Paranet ers. Add(oPar m

ocConn. Open()
opConn. Open()
Call lvCust.ltens.C ear()
Try
oRD = oCnd. Execut eReader (CommandBehavi or. Cl oseConnecti on)
Do Wil e (oRD. Read())
cCustld = oRD. Item("Custoner| D"). ToString

Ivitem = New ListView tem(cCustld)
[vitem Subltens. Add(oRD. | t em(" ConpanyNane"). ToStri ng)

oProc. Paraneters(" @ustonerl D'). Val ue = cCustld
Try
oPr oc. Execut eNonQuery()
Catch oEX As Exception
MsgBox(oEX. Message)
End Try

If Clnt(oProc. Paranmeters("rVval").Value) = 1 Then
cTot = "<never ordered>"

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 129 of 180

El se
cTot = Format (oProc. Paraneters(_
" @Ant Spent ") . Val ue, "####. 00")
End If

I vitem Subltens. Add(cTot)
Call IvCust.ltens. Add(lvitem)
Loop

Finally
opConn. Cl ose()
End Try
End Sub

This code loops through all the customers in the Northwind database and calls the stored procedure
for each customer. The customer 1D, customer name, and total amount ordered are placed into the
columns of a Listview. If the return value of the stored procedure comes back as 1, then the total
amount spent is replaced with the string <never ordered>.

Setting up the stored procedure is done using an SQL Command object. Parameters are added using
SQL Parameter instances, as shown here:

Di m oProc As New Sqgl Cormmand(" Cust Order Tot al s", opConn)
oProc. ComandType = ComrandType. St or edPr ocedur e

oParm = New Sqgl Par amet er (" @A\nt Spent ", Sql DbType. Money)

oParm Direction = ParaneterDirection. Qut put
oProc. Paranet ers. Add(oPar m

This code sets up the output parameter. Note that the parameter name matches the name as defined in
the procedure itself. Once the stored procedure is executed, you access its value as follows:

cTot = Format (oProc. Paranet ers(" @\nt Spent"). Val ue, "####. 00")

Thisline takes the AmtSpent output parameter and formats it to use two decimals. The final results
of my Listbox loader are shown in the following illustration:

i

(et Crdar Toksls

CustomeriD | Customsrbiams Total Spart | -
PAFEL dfred: Futterkishe 427300

ANATR Ang Trupio Empansdadons v Falados 140295

BMTON Artoric Morena Tagueris s i)

BB 0T Arcigrd the Homs 1339065

EERGS Esergharai snabibkog 242758

ELALIS Hsuer Ses Delkstessen xrm

ELOHF Blondesddsd pire ot i 1E534.08

BOLID by Comadees praparadad el

BhAF Bon spp' 2196324

BOTTM Bttor-Dollar Makats 0061

ey b5 Bewarages S0 30

CACTU Ciartus Comiders para bever 1814.50

CENTC Contro comerol Mochsnms 10050

HOPS: Choprsusy Chiness 1242 8

QoMM ok Hirsre =075

0T Corgnldated Mokdrgs 17110

WK D 'Wandamade Kuh FoER A2

RACD Dracherblot Calabesinn CHL S|

(DL Do oo enitied 161550

EASTE Essienm: Conmeiam 1476108 __'l_-J

More Framework Topics

46: Creating Owner-Drawn Menus

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 130 of 180

The owner -drawing menu code can be found in folder prjNetNotePad.

“Modern” Microsoft applications, such as Word 2000 and Excel 2000, have menus with bitmaps
embedded in them, as shown in the following graphic:

| W HET Hotepod =1o] =]
Ele
O tew =l
(EFpen
=
£
=l

Microsoft has never made it very easy to duplicate this functionality in Visual Basic. VB.NET makes
it easier than ever before, though | will admit that | think Microsoft could make it simpler still.

(Can’'t we just have an Image property right on the Menultem class? But that’s another story for
another version of VB.)

If we want pictures on our menus, we'll have to code them ourselves. What we need to create are
owner -drawn menus. Owner-drawn means that Windows is relying on you, the programmer, to draw
the menu item text, instead of drawing it for you.

Creating Your Menu

The first step isto create amenu for your application. My prjNetNotePad application has a small,
simple menu, one that allows the user to create a new file, saveit, or open an exiting file. Once the
menu is created, you should set the OwnerDraw property of each Menultem object to True, as shown
in the following illustration:

x|
=
B Behavior
Chner Draw True
B Design
(Mame) mE=xit
Modifiers Private
B Misc
Checked False
CefaulkItem False
Enabled True
MOCILisk False
Mergerder n
MergeTvpe Add
RadioCheck False
Shorkout Mone
ShowShaortouk True
Texk E&:xit
Wisible True

Now VB is expecting you to handle al the drawing of the menu items. To accomplish this, two
events need to be coded for each Menultem. Thefirst is called the Measureltem event. Thisevent is
called to specify the height and width that you want the menu item to be and to pass that information

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 131 of 180

back to Windows. The Measureltem event in prjNetNotePad is shown here:

Public Sub nmNew MeasureltemByVal sender As Object, _ ByVal e As _
System W ndows. For ns. Measur el t enEvent Args) _

Handl es mNew. Measureltem mOpen. Measureltem _

nSave. Measureltem mExit.Measureltem

Dimm As Menultem = CType(sender, Menulten)
DimtextSize As Size
Di mt ext Format As New StringFormat ()

I f (ShowKeyboar dCues) Then
t ext For mat . Hot keyPr efi x _
Dr awi ng. Text . Hot keyPr ef i x. Show
El se
t ext For mat . Hot keyPrefix = _
Drawi ng. Text . Hot keyPr efi x. Hi de
End |f

text Size = _
e. Graphi cs. MeasureString(m . Text, aFont).ToSize()

maxMenuText W dt h = Mat h. Max(maxMenuText Wdth, _
textSize.Wdth + 20)

text Si ze = e. Graphi cs. MeasureString(m . Text, _
aFont, New PointF(0, 0), textFormat).ToSize()

e.ltenmHei ght = Math. Max(textSi ze. Hei ght + 2, _ System nf ormation. Snal | | conSi
e.ltenWdth = maxMenuText W dt h
End Sub

Note the Handles clause on the procedure. This Handles clause specifies that this event should run as
the Measureltem event for four different Menultem controls. Thisis a big time saver, as you no
longer need to call the same function in multiple event procedures for multiple objects, nor do you
have to create control arrays. (In fact, this functionality replaces the need for control arrays entirely,
and they are not available at all in VB.NET.)

The Measureltem event needs to fill the ItemHeight and ItemWidth properties of the
System.Windows.Forms.M easurel temEventArgs parameter, which is passed into it. It does this by
calling the MeasureString method against the text of each menu item. The string is compared against
aform-level variable named maxMenuTextWidth. This variable will end up containing the widest
line of text of all of our owner-drawn menus, plus 20 pixelsto take the width of the bitmap into
account (the bitmap is 16X 16, and 4 pixels for buffer equal 20).

Placing Your Menu

The second event that needs to be created is the one that actually draws the menu into the proper
area. It iscalled the Drawltem event:

Public Sub mNew Drawltem ByVal sender As Object, _

ByVal e As System W ndows. For ns. Draw t enEvent Args) _
Handl es mNew. Drawi tem nOpen. Drawitem nSave.Drawitem _
nExit.Draw tem

Dimm As Menultem = CType(sender, Menulten)
Dimilmage As |nteger

Di m t ext Col or As Col or = SystentCol ors. MenuText

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 132 of 180

Di m t ext Bounds As New _

Rect angl eF(e. Bounds. Left + 20, _
e. Bounds. Top + 2, e.Bounds. Ri ght,
e. Bounds. Bottom - 2)

Dimtext Format As New StringFormat ()
DimtabStops() As Single = {0}

t ext For mat . Set TabSt ops(maxMenuText W dt h, tabSt ops)

I f (ShowKeyboar dCues) Then
t ext For mat . Hot keyPr ef i x _
Dr awi ng. Text . Hot keyPr ef i x. Show
El se
t ext For mat . Hot keyPr efi x _
Drawi ng. Text . Hot keyPr ef i x. Hi de
End | f

Di m sel ected As Bool ean = Fal se

selected = ((e.State And Drawltenttate. Sel ected) = _
Draw t enfSt at e. Sel ect ed)

I f selected Then
e. DrawBackgr ound()
t ext Col or = SystentCol ors. Hi ghl i ght Text
El se
e. G aphi cs. Fil | Rect angl e(Syst enBr ushes. Menu,
e. Bounds)
End If

Sel ect Case m . Text
Case " &New'
ilmage = 0
Case "&QOpen”
ilmage = 1
Case "&Save"
ilmge = 2
Case El se
i | mge
End Sel ect

-1

If ilmage > -1 Then
e. G aphi cs. Drawi mageUnscal ed(_
ol magelLi st. | mages(i | mage), e.Bounds. Left + 1,
e. Bounds. Top + 1)

End If

e. Graphics. Drawstri ng(m . Text, aFont, _
New Sol i dBrush(textCol or), textBounds, textFornat)

End Sub

The Drawltem event has aHandles clause as well, which allows this routine to be called for all four
of my owner-drawn menus. This function first determines if the menu to be drawn is currently
selected by the user, since a selected menu is visually different from anormal menu. If it is a selected
menu, it isfilled in with the default background drawing method, named FillRectangle, whichisa
method of the passed-in System.Windows.Forms .DrawltemEventArgs object. If the menu is not
currently selected, then a FillRectangle method is called to draw the menu a basic gray (or whatever
the SystemBrushes.Menu color is defined as on this system).

The case statement maps the current menu being drawn to an image in the ImagelList control. The

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 133 of 180

New, Open, and Save menu options al have bitmaps to go with them, and the Exit menu has no
bitmap. If it is determined that a bitmap is to be drawn on this menu, it is drawn with the
DrawlmageUnscal ed method. Y ou can see the images in the menus in the first illustration in this
section (which shows menus with bitmaps embedded in them).

Finally, the text itself is drawn into place. Note that the Tahoma font is used in this example. (Form
level variable aFont isinitialized to an 8 point Tahoma font). This also makes the menu look more
like Microsoft Office application menus.

Note Thereisno Font property on the Menultem class, so you' Il have to create owner-drawn menus
even if all you want to do is change their font. The good news is that once you take the leap
into using owner-drawn menus, you havetotal control over that menu’s appearance. Y ou can
draw background bitmap patterns, use any font color or size, make menu items bold or italic, or
get fancy with graphicsinstead of normal menu text.

47. Creating Ul Elementsat Runtime

The Ul code can be found in folder prjRuntimeUl Elements.

| have abig confession to make: Visual Basic hasn’t been my language of choice for every
programming project that |’ve done in the past. | experimented with different languages through the
years, checking out the features of each, comparing and contrasting. (But | didn’t compile. Ba-dum-
BAH!).

But serioudly ...

One of the other languages that | did grow fond of was Delphi. This object -oriented version of Pascal
by Inprise (formerly Borland) was a great combination of the power of a “true” compiled language
with agreat visual programming development and form designer like Visual Basic. | did quite afew
projectsin Delphi, in both my professional “day jobs” and my nighttime hobby programming.

Because of my prior experience with Delphi, my interest was piqued when | learned that one of
Delphi’s original designers, Anders Hejlsberg, had moved over to the Microsoft team to help work
on Visual Studio.NET. The buzz was that some of Delphi’ s functionality would be migrating over
into Visual Basic. The feature | describe hereis one of those Delphi-like tricks.

Creating Buttons On-the-Fly

In certain cases you might find the need to create user interface elements at runtime as opposed to
doing so at design time. For example, you may want to load a set of choices out of a database and
display them on aform as agroup of radio buttons. Because you have no idea how many choices
there are going to be, you can’t use the form designer to put the radio buttons on the form at design
time. What you need is the ability to programmatically create new user interface controls. This
allows for a much more flexible and maintainable application that can respond to different business
logic in adata-driven way.

Now, if you'reaVB6 (or earlier) guru, you might be thinking, “Hey, wait a minute, you can create
controlson aform in VBG6, so why isthis so different? The answer to that question is that in order to
programmatically create user interface elementsin VB6, you had to utilize control arrays. VB.NET
doesn’ t support control arrays. Instead, a much more flexible method for programmatically creating
controls has been introduced.

The way to create new controls on formsis pretty easy to understand once you remember that

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 134 of 180

controls are implemented as classesin the NET Framework. So, to create a new control on aform,
you merely instantiate an instance of the appropriate class:

Dimb As Button

b = New Button()

b.Size = new Si ze(48, 16)

b. Text = "A New Button"

b. Locati on = new Poi nt (10, 10)
Me. Cont rol s. Add(b)

The preceding code creates a new object of class Button, sets the size and location properties of the
button (how big will it be and where on the form will it be positioned), sets the Text (formerly
Caption) property of the button, and then calls the all important Me.Controls. Add(b). Thislast lineis
what attaches (for lack of a more precise word) the button to the current form.

The code will create a button that you can see, but the button won’ t do anything. Why not? Well, we
haven't told the button what code to run when the user clicksit. To connect an event to a button, you
use the AddHandler statement:

AddHandl er b.Cick, AddressOF cbCreate_Cick

The AddHandler statement takes two parameters. Thefirst is an event on an object. In the example,
we are adding a handler to the Click event on Button control b.

Note Code compl etion becomes a handy learning tool for learning the Microsoft .NET Framework in
places like this. If you have code completion turned on, you will get alist of valid events on
object b as soon as you type b. in the AddHandler code line. Take a minute to browse through
the list and seeif you see any events you might not recognize, and make a note to learn about
those events later. (To enable code completion, in the Tools @ Options dialog box, check Auto
List Members.)

The second parameter of the AddHandler statement iswhat’ s known as a delegate. The best way to
think of a delegate is as a type-safe function pointer. By type-safe, | mean that the parameter list of
the function must match the parameter list that the event requires.

In the example code, the Click event of a button requires two parameters. Parameter 1 must be of
type object, and parameter 2 must be of type System.EventArgs. (The name of each parameter is not
important, only the type). Any sub in your application with this matching parameter list can be
assigned as an event handler for a button.

The previous AddHandler line links procedure chCreate Click to the new Button control. This
procedure is, of course, the procedure that creates yet another button. This means that any time any
button on the form is clicked, an additional button is created, whose action is the same: to create a
new button when clicked. (This might be easier to see in action than to explain in text—try the

prj RuntimeUlElements program out and see it for yourself.)

To further demonstrate the type-safe nature of delegates, try performing an AddHandler statement on
afunction pointer whose signature does not match that of the event that you are trying to define. The
sample application has a commented line of code which attempts to make a procedure named
BadCreate Click the Click event of a button.

AddHandl er b.Cick, AddressOf BadCreate Click

Protected Sub BadCreate_ Click(ByVal sender As Object)
Call Msgbox("this sub cannot be attached to a button")

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 135 of 180

End Sub

This code will yield a compile time error: Could not find method ‘ Protected Sub BadCreate Click
(sender As Object)’ with the same signature as the delegate ‘ Delegate Sub EventHandler(sender As
Object, e As System.EventArgs)' . Thisistelling you that the BadCreate Click procedure does not
have the correct parameter list to be used as a button’s Click event.

Creating Menus Dynamically

The sample application has two other examples of dynamic control creation. The first is displayed
when you select Add Menu Item from the File menu. The following code runs when the menu item
is selected:

Private Sub mAddMenu_Cli ck(ByVal sender As Object, _
ByVal e As System Event Args) handl es mAddMenu. Cl i ck

Dim m As Menul tem

‘create a new nenuitem
m = New Menul t em()

‘set the caption (er, Text) property
‘(change it for every nenu)
m Text = "Menu " & i MenuCtr

‘add this nmenu to File nenu
nFil e. Menul tens. Add(1, m

‘make this new nenu add anot her nmenu when sel ect ed
AddHandl er m Cli ck, AddressOf Me. mMAddMenu_Cl i ck

‘increment the counter
i MenuCtr += 1
End Sub

This example is similar to the button example. A new menu item is created, its Text property is
assigned, and its Click event is assigned to this same sub. The last example works on one of the
submenus of the application. Thistime, the new menu item and its handler are created in asingle line
of code:

mAddSubMenu. Menul t ems. Add(New _
Menul t en(" SubMenu " & i SubMenuCtr, New _
Event Handl er (AddressOf mAddSubnenu_dCl i ck)))

This code smashes most of the same conceptsinto asingle line of code. A new Menultem is added to
control mAddSubMenu. The Menultem uses an alternate constructor, one that requires the menu’s
Text property, and another that’s the delegate for the Click event. Note that the structure of this
delegateisabit different. Instead of ssimply writing AddressOf mAdd- Submenu_Click, this example
uses New EventHandler(AddressOf mAddSubmenu_Click). Although this seems confusing, in
actuality thefirst syntax is simply aform of shorthand for this syntax.

An EventHandler is actually atype of object, and when you call AddHandler, you are really creating
an instance of an EventHandler object. VB.NET lets you omit this, however, and simply passin the
delegate function address, and the compiler understands all of this. To better understand what’s
going on with delegates, you may want to use the "long" syntax at first—it help to explain exactly
how you'’re linking up events to the code underneath.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 136 of 180

48: Dynamic Object Creation Using RTTI

The dynamic object code can be found in folder prjRTTI.

Earlier, you learned about creating user interface controls such as buttons and menu items at runtime.
The code for creating a button at runtime looks something like the following:

Dimb As Button

b = New Button()

b. Si ze new Si ze(48, 16)

b. Text "A New Button"

b. Locati on = new Poi nt (10, 10)
Me. Control s. Add(b)

Now I’ d like to take dynamic object creation a few steps further. The preceding code works fine as
long as you know at design time that you want to create a button, because that’s what you declarein
the Dim statement. What if you know you want to create an object, but don’t know which class that
object needs to be until runtime? This is where runtime type information (often abbreviated RTTI)
comesin. RTTI provide the necessary constructs to determine an object’s type at execution time and
to dynamically create different types of objects based on values determined at execution type.

Consider a simple example. Suppose | write a class that handles the verification of a user-entered
state. (Ohio and OH are valid; Californikaand CX areinvalid.) | also write a class that verifies
countries. (U.S.A. and United Kingdom are valid; XXX isinvalid.) | have asimple form for the user
to enter address information, which is arranged in such away that the user enters either a state (if he
livesin the U.S.), or acountry, and then | need to validate the input using my object. The pseudocode
for such logic might look something like the following:

If (user entered a state)
Di m oSV as New St at eVal i dat or
oSV. Val i dat e(cSt at e)

el se
Di m oCV as New CountryVal i dat or
oCV. Val i dat e(cCountry)

end if

This code would work just fine. A more abstract way to look at the same logic might be as follows,
however:

If (user entered a state)

cCl assNane = "StateVal i dator"”
el se

cCl assName = "CountryValidator"
end if

di m o as obj ect
0 = NewObj ect of Type(cCl assNane)

Thelast lineisthe odd one: I’ m telling VB to instantiate an object whose type nameis stored in a
string variable. Thisisthe art of using RTTI. The actual VB syntax is not exactly as shown here; you
will see atrue example a bit | ater.

Using RTTI inthe Real World

The previous example might seem a bit strange—why use RTTI when you can use a much more
standard method to accomplish the same thing? However, if you give it some thought, you might be

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 137 of 180

able to concelve of some interesting uses for RTTI. Consider a database of information that contains
not only the data, but also the VB class information used to edit that data. For example, you might
have a series of custom data types that represent your business objects (customers, orders, and so

on). Given some well-thought-out design, you could create classes for these business objects and
specify which class to load for which object, all in database tables. The VB client application would
end up being very thin—it would just handle the dynamic loading and display of the business objects
specified in the database.

The example project (shown next) creates a simple class named Generic- ButtonMaker and two more
specific classes that descend from it, RedButton- Maker and GreenButtonMaker. The
GenericButtonMaker and RedButtonMaker class is shown here:

Must I nherit Cl ass Generi cButtonhaker
Protected FB As Button

Public Sub New()

MyBase. new()
End Sub
Property TheButton() As Button
Get
Return Fb
End Get
Set
Fb = val ue
End Set

End Property

Publi ¢ MustOverride Sub ChangeButtonCaption()
Publi c MustOverride Sub ChangeButt onCol or ()

End Cl ass

Cl ass RedButt onVaker
I nherits Generi cButtonMaker

Public Sub New(ByRef aButton As Button)

MyBase. new()
FB = aButton
End Sub
Public Overrides Sub ChangeButtonCaption()
Try
FB. Text = "I am RedButtonMaker"
Cat ch
Call nsgbox("button not initialized")
End Try
End Sub
Public Overrides Sub ChangeButtonCol or ()
Try
FB. BackCol or = col or. Red
Cat ch
Cal |l nsgbox("button not initialized")
End Try
End Sub
End Cl ass

The class contains two methods, ChangeButtonColor and ChangeButtonCaption. Each method relies
on the fact that a button has been assigned to the TheButton property on the generic class, which is

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 138 of 180

done as part of the constructor. The descendant classes override the two methods, changing the
button’s caption or color. (Have | won the award for most useless, do-nothing class definition yet? |
hope s0).

Based on the value of aradio button in the main project, the program dynamically loads one of the
specific descendant classes, and has it perform some work on the button control.

M Run Time Type informatior =10 x|

Eutton

—Class

* RedButtoniaker

" GreenButtontaker

—Method
* ChageButtonTexk

" ChangeButtonColor

The code that loads the class and calls the desired method is shown next:

Private Sub Buttonl Click(ByVal sender As System Object, _
ByVal e As System Event Args) Handl es Buttonl. Cick

Dmt As Type

Dimo As Object

Dim cCl assNane As String
Di m cMet hodNane As String

‘reset the button back to the default | ook
Buttonl. BackCol or = Forml. BackCol or
Buttonl. Text = "Button"

I f rbRed. Checked Then

cClassNanme = "prj RTTI." & rbRed. Text
El se

cClassNanme = "prj RTTI." & rbG een. Text
End | f

If rbText. Checked Then

cMet hodNane = "ChangeButtonCapti on"
El se

cMet hodNane = " ChangeButtonCol or"
End I f

t Type. Get Type(cCl assNane)
o] Activator. Createlnstance(t, New Cbject() {Buttonl})
t. Get Met hod(cMet hodNane) . | nvoke(o, Not hi ng)

End Sub

Thisisthe routine that handles the RTTI work. Based on the setting of the top radio button, a string
is assigned to one of the two descendent class names. (Note that the namespace prjRTTI must be
added to the class name or the program won’t be able to find the class.) The desired method to call is
also stored in a string, based on the setting of the bottom radio button.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 139 of 180

Theline t = Type.GetType(cClassName) iswhere a object of class Type isinstantiated from the class
name. The Type class contains all of the necessary information about a class. The next line
instantiates the object o off the type t. Note the second parameter of the Createl nstance method. This
parameter is an array of objects, constructed on-the-fly, containing a single object, and that object is
Buttonl. When you create an instance of any object using Activator.Createl nstance, the second
parameter of the Createl nstance function must be an object array containing all the parameters
required by the constructor. My RedButtonMaker and GreenButton- Maker classes require a button
to be passed in as the lone parameter on the constructor, and the previous syntax places that button
into an array of objects.

Thelast line calls a method on the new object. The name of the method to call is stored in variable
cMethodName. This variable is populated by one of the radio buttons on the lower half of the form.
The second parameter on the Type.lnvoke call would be an array of objects that represent any
parameters that the method you’re trying to call expects. The two methods on my ButtonM aker
classes don'’ t expect any parameters, so |’ ve left the second parameter as Nothing.

Debugging RTTI

I"d like to give one final word about coding using runtime type information. Although it can be
extremely powerful, it also adds alayer of complexity that can make debugging an application much
more difficult. Thisis because many errorsthat are normally design-time errors become runtime
errorsin the RTTI world. Consider the following simple line of code:

Dim B as new SoneButtonQut There()

Thisline of code declares a variable of type SomeButtonOutThere This type must be locatable by
Visual Studio in your current defined list of Imports clauses, or Visual Studio will give you an error
and disallow you from compiling the program. Now, consider the same declaration using an RTTI
style:

Dimo as Object
Dmt As Type

t
0]

Type. Get Type(" SoneBut t onQut There")
Acti vat or. Creat el nstance(t, Not hi ng)

This code compiles fine under Visual Studio. However, if the SomeButton- OutThereclassis
unknown, you will get aruntime error when this snippet is executed, telling you that the class can’ t
be located. Obviously, runtime errors are much harder to debug than compile-time errors, because
they rely heavily on the state of the program, the current values of all the variables, the procedure
call stack, and so on. Make sure to have some good exception handling around your RTTI code to
appropriately handle errors that might occur.

49: Versioning and the End of DLL Hell

The versioning code can be found in folder prjVersioning.

The original purpose of the dynamic link library (DLL) was to provide a means for many
applications to share the same code. Without DLLSs, every application would have to have the Win32
APl libraries statically linked into the EXE. Thisisimpractical, especialy in a multitasking
environment. Pretty much every Windows program hasto call the CreateWindow API call, as an
example. If there were no DLLs, every program would have the code for this function loaded in their
own little part of RAM. If the user is running 10 different programs, then this function is sitting in
RAM in 10 different places. And thisis only the first of the hundreds of shared functions that make

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 140 of 180

up the Win32 API.

So the DLL provides an important function. Now, only one copy of the CreateWindow code is taking
up RAM, leaving more available RAM for your own program code.

DLL Hell refersto a situation where acommonly used DLL gets replaced and is not backward
compatible. This seems to have become afrequent problem in newer releases of Internet Explorer,
for example. A new install of Internet Explorer replaces a shared DLL, and suddenly the accounting
package doesn’t work on the PC. Careful diagnosis reveals the problem to be a bad version of
SHAREME.DLL, but one cannot go back to the old version because the new version of Internet
Explorer requires the latest DLL. This forces the end user (or the company’s IS department) to make
a choice between two programs.

The .NET Framework alows for alternativesto DLL Hell through the use of assembly versioning.
We can now instruct certain applications to use certain versions of ashared DLL if we deem that
conflicts might exist. As developers, we know that an application will use DLLs only if they are the
exact same version of the DLL that we built and tested the application against. However, if we
choose, we can override this action and instruct our application that it’s OK to use a newer version.
This should give us the best of both worlds and the end of DLL Hell.

What'sa Version?

Versions are assigned at the assembly level. An assembly isablock of code that provides for
deployment, security, reuse, and version control. Single file assemblies are usually DLL or EXE
files, but you can create multifile assemblies as well.

Each assembly is given aversion number. The complete version number has four components and is
written like the following:

1.0.0.0
1.2.2034.1

The four components of the version number are known as the major number, the minor number, the
build number, and the revision number. In the second example just shown, the assembly in question
iIsmajor version 1, minor version 2, build number 2034, and revision number 1.

These numbers can mean anything you want them to mean, and it’ s up to you as the devel oper to
version all of your assembliesin an intelligent manner to alow the assemblies in your application to
play nicely together. Forgetting to change the version number between releases of your assemblies
can cause disastrous results. For example, suppose you release an application that uses a shared
component library, and both assemblies start off at version 1.0.0.0. Then, you decide to make some
changes to the component library. Depending on the changes you make, you may or may not be able
to ssmply upgrade the component library without releasing a new version of the executable. If thisis
true, but you fail to change the version number on your library, then the executable will load the new
library without problems (since it was tested against version 1.0.0.0) and possibly fail to recognize
the changes you have made.

Setting the Version

When you create anew project in Visual Studio, afile named AssemblyInfo.vb is created as part of
the project. Here are the contents of thisfilein one of my projects (with comments removed):

| mports System Refl ection
I mports System Runtinme. | nteropServices

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 141 of 180

<Assenbly: Assenbl yTitle("nyProgressBar")>

<Assenbly: Assenbl yDescription("Progress Bar version 1.0")>
<Assenbly: Assenbl yCompany("")>

<Assenbly: Assenbl yProduct("")>

<Assenbl y: Assenbl yCopyright("")>

<Assenbly: Assenbl yTrademark("") >

<Assenbly: CLSConpliant (True)>

<Assenbly: Guid("3359E44B- 034D- 4C14- 8204- CAEB12CB9539") >
<Assenbly: Assenbl yVersion("1.0.0.0")>

Several attributes have been assigned to this assembly, including the version number. Setting the
assembly version is simple as changing this attribute and recompiling your application.

A Version Example

To demonstrate .NET Framework versioning, | decided to create a component that acted like the
ProgressBar component that comes as a built-in .NET class. No, | didn’t fail to realize that such a
component already existed, but | wanted to seeif | could create adightly different visual look to my
progress bar. Here’s what | came up with:

| nports System Conponent Mode

<Tool boxl tem True) > _
Publ i c Cl ass nyProgressBar
I nherits Pane

Sub New()

MyBase. New()

Me. Border Styl e = Border Styl e. Fi xed3D
End Sub

‘properties for Mninmm Maxinmm and Val ue
Private FM n As Integer = 0
Property Mn() As Integer
Get
Return FM n
End GCet
Set (ByVal Val ue As | nteger)
FM n = Val ue
I nval i dat e()
End Set
End Property

Private FMax As |Integer = 100
Property Max() As Integer
Get
Ret urn FMax
End GCet
Set (ByVal Val ue As |nteger)
FMax = Val ue
I nval i dat e()
End Set
End Property

Private FvValue As Integer = 0
Property Val ue() As Integer
Get
Return FVal ue
End Get
Set (ByVal iVal ue As Integer)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 142 of 180

If iValue <= FMax Then
Fval ue = i Val ue
El se
FVval ue = FMax
Throw New Over fl owExcepti on(_
"Cannot set nyProgressBar Value" & _
"to greater than Max.")
End | f
I nval i dat e()
End Set
End Property

‘override Onpaint and paint the progress rectangle
Protected Overrides Sub Onpaint(ByvVal e As _
Syst em W ndows. For ns. Pai nt Event Ar gs)

Call MyBase. OnPaint (e)

Dimi Ri ght As |nteger

Dimb As Brush = Brushes. Navy

Try
i Rl ght = Fvalue * Me.Wdth / FMax
e. Graphics. Fill Rectangl e(b, _
New Rect angl e(0, 0, iRight, M. Height))

Catch oEx As Exception
‘neverm nd

End Try

End Sub
End Cl ass

This component inherits from a standard Panel control, and adds the Min, Max, and Value integer
properties to mimic the functionality of the standard panel. The Onpaint method is overridden to
draw afilled navy rectangle in proportion to the percentage that the progress bar isto display. Any
type of exception (like divide by zero) isignored.

After coding my progress bar, | dutifully set the version number to 1.0.0.0, compiled it intoaDLL,

then created a new Windows Forms project to test it out. After adding my new component to the
toolbar, | created a simple app that incremented the new progress bar off of atimer. The end result

looks something like this:
-[olx]

Finally, to test out the*XCOPY Install” ability of .NET projects, | copied the EXE from my test
program and the DLL that contains the progress bar into afolder named C:\TEMP and re-ran the
program from there. Copying the EXE and DLL to their own folder simulates an installation version
of my application.

Version 2 (Actually, 1.1.0.0)

My progress bar was pretty good, but after awhile afew ideas for enhancements came to mind:

e The ability to change the color of the progress meter

¢ Displaying the percentage astext in the center of the bar

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 143 of 180

Because | was being mindful of my versions, | created a new folder for my progress bar project and
left the old one. (Yes, | could be using SourceSafe, but I’m not.) After changing the version number
to 1.1.0.0, | made the following changes(duplicate code from previous example omitted):

Private FProgressCol or As Col or = Col or. Maroon
Property ProgressColor() As Col or
Get
Ret urn FProgressCol or
End Get
Set (ByVal Val ue As Col or)
FProgressCol or = Val ue
End Set
End Property

‘override Onpaint and paint the progress rectangle
Protected Overrides Sub Onpaint(ByVal e As _
Syst em W ndows. For ms. Pai nt Event Ar gs)

Call MyBase. OnPai nt (e)

Dimi Ri ght As |nteger
Dimb As New Sol i dBrush(FProgressCol or)

Try

i Rlght = Fvalue * Me.Wdth / FMax

e. Graphics. Fill Rectangl e(b, _

New Rectangl e(0, 0, iRight, M. Height))
Catch oEx As Exception

‘neverm nd
End Try

Dimi Pct As |nteger

Try
i Pct = Fvalue / Fvax * 100
If i Pct < 48 Then
b = Brushes. Bl ack
El se
b = Brushes. Wite
End | f

e. Graphics. Drawstring(i Pct & "%, _
Me. Font, b, (Me.Wdth / 2) - 10, 4)
Cat ch oEx As Exception
‘never m nd
End Try

Asyou can see, | added the property ProgressColor, which | defaulted to maroon (this made it really
easy to tell which version of the control was being used), and | changed the Onpaint procedure to use
this color when painting. | aso drew the text that represents the percentage in roughly the center of
the progress bar and used either black or white for this text depending on the position of the bar.

The next thing | had to decide was if my original project would require arecompile due to changesin
this component. For example, if | had changed the VValue property to something like Position or
CurrentValue, then any reference to the old property name would fail. However, | hadn’t made any
changes of this nature. My two changes involved adding a property, which can't cause errorsin the
old application since it never knew about the property to begin with, and changing what was drawn
on the control, which again shouldn’t require any coding changes in the application.

Now, to prove that assembly versioning is working, | took my compiled version 1.1.0.0 DLL, copied
it to the C:ATEMP folder (thereby overwriting the 1.0.0.0 version of the same DLL), and re-ran my
test application. As expected, | received an error which read "An exception

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 144 of 180

System.| O.FileL oadException has occurred in prjVersioning.exe", and the application halted.
Version Control

To alow version 1.1.0.0 of my component to work with a program compiled against version 1.0.0.0
of that assembly, | need to place some instructions in an application configuration file. Thisfileisan
XML -format file that can contain several different commands concerning assemblies.

Before | can set up the application configuration file, however, | must do one more thing to my
component, and that is to set up a strong name for the assembly in which the component resides. A
strong name incorporates the assembly’s simple name and version number, along with a
public/private key crypto-pair, which guarantees uniqueness for your assembly name as you install it
on other machines.

Generating a strong name for an assembly is done in the project properties. To access these
properties, right-click the project name in the Solution Explorer and select Properties. Under Strong
Name, check the Generate Strong Name Using check box, then click the Generate button. This will
create a strong name key file for you; add that file to your project, as shown here:

frovbogrest PropertyPoges =
[=1 T
- =l I =
i Common Propares An grsenitdy redh & ST Naree b b weraled inbs e glotesl Cactes o 10 e wsnd frvs &
Gerar s shared inosbor st sde of the sepicston dreciory

skt
fegons
Bferdnie Patfy i way b
¥ ErngNeme [ririg rabat et k. =]
Desgrer D ity »
) Corfiprston Fropectes _ lrarate iy] [_|

 Gararatn v fome sing

(fy, Wring: Ky Hies v chucied the project. s alley contarer prevents
madvertently tharre vour bey e

™ My conbmres

™ Beserse wpace [ir e o o later dilw

[Cor] coma | | w |

Next, you need to find out what the public key for your assembly is. To do this, compile your project
toaDLL, go to acommand line, and run the following:

sn -Tp myProgressBar. dl

The sn.exe program is located in the Bin folder of the .NET Framework—you may have to change to
that directory to get the program to run. The results of that program look something like the
following:

M crosoft (R) .NET Framework Strong Nanme Utility Version 1.0.2914. 16
Copyright (C) Mcrosoft Corp. 1998-2001. All rights reserved.

Public key is
00240000048000009400000006020000002400005253413100040000010
00100f db965f 524e287575eb66aed705a7cab5242f 2b7¢c9690b61lecf 1168
2c9edd3527baf 3bcbaa5c4bd67f e495061231a6177b512cchf f 4248d22f
0248bd0d8977237a3556847a38919dc3f 1750564d9474f f d868c2d042f 7
bb70ce35491cf 22794f 479536279e23f f 4b88f 97abdcb213475854f
cc98

d5bf f alc1d5b962ca7198b2b2

Public key token is 5274ff09512bfcf5

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 145 of 180

The value that we re interested in is the Public Key Token value. | saved this value in a convenient
spot and then created a file named prjVersioning .exe.config that had the following contents:

<?xm version="1.0"?7>
<confi guration>
<runtime>
<assenbl yBi ndi ng xm ns="urn: schemas-m crosoft-comasmvl">
<dependent Assenbl y>
<assenbl yldentity nanme="nyProgressBar" publicKeyToken="5274ff09512bfcf5" |
<bi ndi ngRedi rect ol dVersi on="1.0.0.0" newersion="1.1.0.0" />
</ dependent Assenbl y>
</ assenbl yBi ndi ng>
</runtine>
</ configuration>

The values | needed to customize were the name and publicKeyToken values (under
assemblyldentity). The name is the name of my component assembly, and the publicKeyToken isthe
value that was the result of me running the sn utility. The other values that require changing are

the oldVersion and newVersion values, which, as you can see, instruct the .NET Framework to
allow the 1.1.0.0 version of this assembly to replace the 1.0.0.0.

This application configuration file is placed into the C\TEMP folder along with the EXE and the

component DLL. Oncethisisall in place, my program runs with the new DLL, as seenin the
following illustration:

=TS

50: The New Security M odel

The security model code can be found in folders prjCodeAccessSecurity and
prjCodeAccessSecurity?2.

It's a brave new world in code development, or rather, it will beif the Microsoft .NET strategy is
adopted and widely used. (Are you going to be against Microsoft? Nah, me neither.)

The .NET strategy relies heavily on modular code, either built into units called assemblies that exist
as DLLson the end user’s system, or as web services that send data across HTTP. No matter the
source, the evil Microsoft schemeis to have developers writing modular code and sharing these
modulesin order to save work. Why write a binary tree class for the fiftieth time in your career (not
including a dozen times in college) when someone’s already written one that you can snap into your
program?

A common concern in this brave new world is security. If I’'m going to rely on someone else’s code
module, can | really be sure of everything that module does? Could a module actually appear to
perform its published task and at the same time gather up my Microsoft Money backup file for
upload to some strange ftp site?

The .NET Framework attempts to deal with these issues through a new concept called code access

security. Code access security allows you as the developer to publish the permissions that your
program will require and to establish trust relationships between your code and modules that your

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 146 of 180

program will use, even if those modules are from unknown or unreliable sources.
Permissions

The first sample in the example program denies the program access to the C:\WINNT folder, a pretty
common security permission that you might want to deny. (I'm sure most of us have trashed our PC
by nuking something in the Windows folder at one time or another.) The following code setsup a
PermissionSet object instance that includes all access permissions to the C:\WINNT folder:

Private Sub SetupApplicationPerm ssionSet ()

Dimofp As New _
Fil el OPerm ssion(Fil el OPerm ssi onAccess. Al | Access, _
"c:\winnt")

oPS = New Perni ssi onSet (Perm ssi onSt at e. None)
oPS. AddPer ni ssi on(of p)
End Sub

Note that a specific object instance of class FilelOPermission is created, and this object is added to
the PermissionSet object through the use of the AddPermission method. This syntax allows us to add
several different types of permissions to asingle permission set (which is exactly what the final
version of the sample program does).

Once this permission set is created, we can do several things with it. We can call the Demand method
against it, for example, to request all of the enclosed permissions. Based on the security policy
established on the end user’ s PC, the Demand will succeed or fail with an exception. (Most usersin a
networked environment don’t have local write access to the Windows folders, for example, so the
Demand would fail.) We can aso call the Deny method on the PermissionSet, which would prevent
our code any access to the resources described.

The sample program calls the Deny method and then goes right ahead and attempts to copy atext file
into the C:\WINNT folder. This copy fails with a SecurityException.

Now, why would we ever set up a security permission and then deny it? If our intention isto never
write to the C:\WINNT folder on a computer, why go through all the trouble of setting up a
permission to deny it?

The answer becomes clear when you go back to the fact that our application may rely on code that
isn’t ours, and we’re not exactly sure what it does. If we're going to use third-party modules, we can
set up and deny various security permissions before we call that module. If that module attempts to
do anything against our PermissionSet, it too will be denied.

There are other permission types besides the Filel OPermission. The sample program adds four
different types of permissions to the PermissionSet, as seen here:

Private Sub SetupApplicationPermn ssionSet ()

Dimofp As New Fil el OPerm ssion _
(Fi | el OPerm ssi onAccess. Al | Access, "c:\winnt")

Dimors As New Regi stryPerm ssion _
(Regi stryPerm ssi onAccess. Al | Access, _
" HKEY_LOCAL_MACHI NE\ SOFTWARE")

Dimorf As New ReflectionPerm ssion _
(Perm ssionState. Unrestrict ed)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 147 of 180

Di m oev As New Environnment Per m ssion _
(Perm ssionState. Unrestricted)

oPS = New Perni ssi onSet (Perm ssi onSt at e. None)
oPS. AddPer m ssi on(of p)
oPS. AddPer m ssi on(ors)
oPS. AddPer m ssi on(orf)
oPS. AddPer m ssi on(oev)
End Sub

Each additional permission can be described as follows:

RegistryPermission This permission describes access to a Registry key. Permission can be given
(or removed) to create keys or to read or write Registry values. The previous code setsup a
permission for full accessto the HKEY _LOCAL_MACHINE\SOFTWARE Registry key.

ReflectionPermission This permission sets up access to perform reflection on a .NET Framework
assembly. Without specific permission, only public members are available for reflection. The sample
program shows that only 107 classes are counted viareflection if the permission is denied, while 158
classes are counted if the permission is granted.

EnvironmentPermission This permission allows access to read or write system environment
variables.

Declar ative Security

The type of permission checking in the sample program is called imperative security—it is
performed at runtime. A second type of code access security can be employed called declarative
security. Thistype of security is defined by using security attributes (metadata) at the assembly level.

Thistype of security offers different types of benefits. For one, a program could be written that scans
an assembly and lists exactly what types of permissions that assembly is defined as having. This
might have the effect of making the assembly more trusted to other users because the permissions
you've granted to your own code are verifiable.

The second sample program, prjCodeA ccessSecurity2, gives a solid example of declarative security
using the StrongNamel dentityPermission attribute. This permission, when used with the
LinkDemand security action asis done in this example, denies access of this class by any assembly
except the one with the strong name key described by the long hex string shown. (See "Versioning
and the End of DLL Héll" for information on the strong name.)

I nports System
| nports System Security. Perm ssions
| nports System Refl ection

<assenbly: Assenbl yKeyFileAttribute("friend. keys")>

< StrongNarel denti tyPerm ssion(SecurityAction.Li nkDemand, _
Publ i cKey: ="0024000004800000940000000602000000240
public class Utility
public shared sub Work()
Console. WiteLine("Uility.Wrk")
end sub
end cl ass

This has the effect of locking down a class so that only one assembly can call it. A situation like this

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 148 of 180

would allow a developer to put up aweb service on the Internet to take advantage of that technol ogy
but to have the appropriate security so that unauthorized users can't access the potentially sensitive
code or the data it exposes.

Note The project in folder prjCodeA ccessSecurity2 was graciously donated by Mike Woodring, who
maintains a coding website at http://staff.devel op.com/woodring. This project was not created
using the Visual Studio IDE, as| found out that the beta 2 version of Visual Studio could not
successfully parse Visual Basic modules using declarative security attributes. Mike helped me
diagnose this problem by converting this example from the original C# example he had written.
The end result was a great little example of using a declarative attribute, which prompted me to
request its addition to the book. | later found this bug to be already known by Microsoft and
reported fixed for the final version.

Beyond Visual Basic

51: Expanding Your Horizons: Mixing Languages
The mixed languages code can be found in folders clHover Button and prjMixingLanguages.

I” ve already read (and even participated in) some online debate on which language is “ better,” Visual
Basic.NET or C#. The arguments range from interesting to inane to inaccurate. The VB versus C++,
or VB versus Delphi, or VB versus anything wars have been raging on and on since the rel ease of
our favorite language.

| have the feeling, though, that this latest incarnation of the VB warswon’t last long. After all, both
VB and C# are built on top of the same framework, and there really isn’t any important thing you can
do in one language that you can’t do in the other. This means that the answer to the VB versus C#
guestion really boils down to personal preference. What’ s the point in arguing about that?

In all truthfulness, I’ m thinking it might be a good idea to become proficient in both VB.NET and
C#. Being ableto call myself a.NET guru in either language will probably look good on the resume.
But I’ m pretty sure that my own personal preference will always be the Basic syntax over the C
syntax.

The point is, we really don’t have to choose one or the other, even within the same project. The
language you choose must be the same across each assembly, but you can have a project with
multiple assemblies, like an EXE calling aDLL, for example. And these two assemblies can bein
different .NET languages.

Trying It Out

To test out the language mixing abilities of the NET Framework, | decided to create a component in
C# and then useit in aVB project. My C# component is called a HoverButton—it’ s ssimply a button
that highlights its caption when the mouse moves over the button.

nanmespace cl Hover Button

{
usi ng System
usi ng System W ndows. For s
usi ng System Drawi ng;

public class HoverButton: Button

{

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 149 of 180

Col or FChangedFor eCol or = Col or. Red;
Col or FSaveForeCol or;
publ i ¢ Col or ChangedFor eCol or

{
get { return FChangedForeCol or; }

set { FChangedForeCol or = value; }
}

protected override void OnMbuseEnt er (Syst em Event Args e)

{
base. OnMbuseEnt er (e);

FSaveFor eCol or = ForeCol or;
For eCol or = FChangedFor eCol or;

}

protected override void OnMbuselLeave(System Event Args e)

{

base. OnMbuselLeave(e);
For eCol or = FSaveFor eCol or;

}

Looks pretty alien, no? Y ou should have seen me trying to write it. All those curly braces and such,
yuck (just kidding)! Anyway, this button descendant has a new property named ChangedForeColor
that represents the color that the caption turns to when the button is hovered over. The hover code is
accomplished in the OnMouseEnter and OnM ousel eave methods. These methods save the original
color, set the ForeColor to the value of the new property, and then set the original color back when
the mouse |eaves the control.

Mixing It Up

After compiling my new control, | started up a new Visual Basic project and wrote some code to put
aton of hover buttons on my form. This double loop creates 64 hover buttons in an 8X8 grid and
reports which button is clicked.

Dimi As Integer

Dimj As Integer

Di m aB As Hover Button

For i =0 To 7

For j =0 To 7

aB = New HoverButton()
aB. Text "Button " & ((i * 8) + j)
aB. Si ze New Si ze(64, 32)
aB. Location = New Point(4 + (i * 68), 4 + (j * 36))
aB. Visible = True
AddHandl er aB. Cick, AddressOf ClickMe
control s. Add(aB)

Next
Next

Not being completely satisfied with this, however, | stumbled across a new idea: | wanted my new
control’ s caption to change to still another color when clicked (to summarize, it would be one
ForeColor when the control isidle, a second when the mouse is hovering over, and a third when the
button is in the down state). Now, | had two different ways of adding this new functionality: | could
either modify the original control or | could create a new descendant control that inherits off of the
origina HoverButton and adds this new functionality. To further show off the abilities of mixing
languages, | chose the latter solution, and created the new descendant HoverButton in my "native"
Visual Basic:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 150 of 180

Cl ass NewHover Button
I nherits HoverButton

Private FSaveCol or As Col or
Private FDownCol or As Col or = Col or. Navy
Property DownCol or () As Col or
Get
Ret ur n FDownCol or
End GCet
Set (ByVal Val ue As Col or)
FDownCol or = Val ue
End Set
End Property

Protected Overrides Sub OnMouseDown(ByVal e As _
syst em W ndows. For ns. MouseEvent Ar gs)

MyBase. OnMbuseDown(e)

FSaveCol or = Me. ForeCol or

Me. For eCol or = FDownCol or
End Sub

Protected Overrides Sub OnMuseUp(ByVval e As _
syst em W ndows. For ns. MouseEvent Ar gs)

MyBase. OnMbuseUp(e)

Me. For eCol or = FSaveCol or
End Sub

End Cl ass

Pretty cool, no? | created a control in C# and inherited off it in Visual Basic. This type of power
might come in handy in larger development shops (by larger, | mean larger than one), where a new
hire might be more fluent in one .NET language over the other and wouldn’t be forced to switch
right away before she became productive.

Note When you load up the priMixingL anguages sample project in Visua Studio, you might be
faced with severa errors about not being able to find the clHoverButton assembly. Thisis
because the clHoverButton assembly resides in a different folder from this project, and Visual
Studio is having trouble finding this folder depending on where you installed the sample
projects to on your hard drive. To correct the error, go to the Solution Explorer, right-click
References, select Add Reference, and then navigate to and select clHoverButton .dil. Adding
this reference should remove al of the errorsin the project.

52: The Joy of Console Applications

The code accompanying this section can be found in folder prjConsoleApp.

| write agreat deal of utility type programsin my current job. These programs usually run
unattended at some ghastly hour and perform one or more tasks, like taking al the data over here,
summing it up, and putting the results over there. For these types of applications, user interfaceisn’t
important, obviously—there’ s usually nobody around to watch the program when it’s running

anyway.

VB.NET allows you to write a new kind of application known as a console application. Actually,
calling it anew kind of application is not really correct—console applications are really “old school ”
apps from back in the pre-Windows days of DOS (ask your grandfather or that 38-year-old senior
developer in your company about those days). All of the input and output in a console app happens
in asimple console command line, similar to a DOS prompt.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 151 of 180

Creating a Console App

Creating a console application is a simple task. When you create a new project in Visual
Studio.NET, the first thing you' [l want to do is get rid of the default Form1 that’s created as part of
the application. Next, you’ [l want to add a new code module. Inside the code module, make sure you
have a subroutine named Main. Thiswill be the first sub that the application runs.

Next, you'll need to go into the properties for this project and set up afew settings. To access the
project properties, right-click the project name in the Solution Explorer and choose Properties from
the pop-up menu. A dialog similar to this will appear:

]
o
Progsetpokdee 'y Diocumariy'ithint Cornolaling
Projesct il Cormoinig s
Outpud narer Covadiadog soe
[Tor | cuca | | ww |

There are two important settings, both under the General section of Common Properties. Thefirst is
to set the Output Type drop-down list to Console Application (the default is Windows Application).
The second isto set the Startup Object to Sub Main (you'll need an existing Sub Main in your
project first).

Once you have set the properties like this, your console app is ready to go.

Producing Input/Output in a Console App

The Console class handles most of the features of your console app. Y ou don’t have to create an
instance of the Console class, either: an instance is created automatically as part of the application.

To produce aline of output in your console application, use the WriteLine method of the Console
class:

Console. WiteLine("Here is sone Qutput")

The WriteLine method will output whatever you specify and follow that up with a carriage return
and line feed, so that the next output will start on anew line. If you want to output only part of aline
and have subsequent output on the same line, use the Write method:

Console. Wite("Here is sone Qutput..)
Console. Wite("and sone nore output")

If your application needs to query the user for some information, use the ReadLine method. The

following snippet of code asks the user for his age and stores the result into a string variable named
SResult.

Console. Wite("Enter your Age: ")

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 152 of 180

sResult = Consol e. ReadLi ne()

OK, you might have noticed something a bit odd. | mentioned that console apps are often used for
creating unattended jobs. If that were the case, why would there be a need for writing output to the
screen or asking a user for input—there’ s supposedly no user around to read the output or answer the
prompts.

Ah, good point, number one. As usual, Microsoft anticipated this exact question and designed the
Consoleclass in a somewhat unique way to handle input from types of sources other than user input.
The Consoleclass has a property named IN that represents the current stream of input to the
program. By default, the input stream is the console input itself (where you can type entries). Say, for
example, that you wanted to write a program that processed the contents of atext file. One way to
handle this would be to change the Console.In property to be an instance of the text stream which
contained the desired program input.

Output is handled in asimilar way. There might not be anybody around to read the output of your
program, but you could write the results to atext file log, which could be examined in the morning.
There is aConsole.Out property which holds a StreamWriter object that serves as the destination to
all console application output.

The Console.In and Console.Out properties are read-only and therefore cannot be changed directly.
There are methods named Console.Setln and Console.SetOut that accomplish this, however.

The ConsoleApp project included on the CD isasilly little program that can run two different types
of programs. The first function of the program demonstrates simple user interaction by playing a
number guessing game with the user. Y ou will be prompted to guess a number between 1 and 100
and will be told whether your number is too high or too low, until you get the number correct.

The second part of the program takes a command line that represents the name of avalid text file
(the text file must be in the same folder as the ConsoleA pp executable). This part of the program
redirects console input to that text file and console output to a second, new text file, and then writes
the contents of the source file into the destination file, converting all the text to uppercase along the
way. Thereading and writing of the two text filesis done using the Console.ReadLine and
Console.WriteLine methods. The procedure that accomplishes this function is shown next:

Private Sub MakeFil eCont ent sUpper Case(ByVal clnputFile _
As String)

Dimtln As StreanmReader
DimtQut As StreanWiter

Di m bDone As Bool ean = Fal se
DimcLine As String
DimcQutputFile As String

Di m oSavel n As Text Reader
Di m oSaveQut As TextWiter

If Not File.Exists(clnputFile) Then
Console.WiteLine(clnputFile & " does not exist")
Exit Sub

End If

cQutputFile = Application. StartupPath & _
"\ Text Qut put . t xt"

Consol e. WiteLine("processing file " & clnputFile)

Console. WiteLine("output filenane is " & cQutputFile)
tIn = New StreanReader (clnputFile)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 153 of 180

tOQut = New StreanWiter(cQutputFile)

oSaveln = Console.In
oSaveQut = Consol e. Qut
Call Console.Setln(tln)
Cal | Consol e. Set Qut (t Qut)

Try
VWi | e Not bDone
cLi ne = Consol e. ReadLi ne()
If cLine Is Nothing Then
bDone = True
El se
Call Console. WiteLi ne(UCase(cLine))
End | f
End While
Finally
Call tlIn.C ose()
Call tQut.Cl ose()

Cal | Consol e. Set | n(oSavel n)
Call Consol e. Set Qut (0SaveQut)
End Try

End Sub

Note that TextReader and TextWriter objects are instantiated and set to console input and output
using the Setln and SetOut methods. Also note that the original input and output streams are saved to
variables so they can be restored later. This step isn’t necessary except that | wanted to write a
message to the consol e that the program was complete, and | couldn’t write to the console once | had
redirected output to the text file.

The loop itself is not extraordinary. Console.Readlineis called in aloop, which retrieves one line of
the input text file at atime. The uppercase version of that string iswritten to the console (again,
redirected to an output text file) using Console.WriteLine. This continues until the end of the input
fileisreached. When that happens, the input and output streams are closed, and the console streams
are restored to their original state. Theloop is enclosed in a Try..Finally block to make sure that the
streams are closed and the console streams are restored, no matter what errors we might encounter
during the loop.

53: Getting Entangled in Some Web Development

The web devel opment code can be found in folder prjWebApp.

Developing browser-based apps instead of “fat” Visual Basic clients has both advantages and
disadvantages to the user community and to the developer. The browser app can be deployed over
the Internet, meaning your users can sit on their home PCs and use your application without having
to install anything. In addition, new types of wireless handheld devices are being invented seemingly
every day (things like WAP phones, PDAS, portable instant messengers, and so on), and browser -
based applications are a good choice for designing applications to run on these devices. The
downsides to browser-based applications include the requirement for an Internet connection (no
running your app on alaptop while flying in a plane, for example), and the lack of therich client
interface you can provide your user basein aVB front- end. On the developer side, | find web
development much more difficult than Visual Basic coding, mainly because the development tool set
is much more primitive.

Still, both types of applications fill a need given the application requirements, and to be awell-

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 154 of 180

rounded developer, it’ s probably a good ideato be able to throw at least alittle web development
experience on your resume. Fortunately, in the .NET world, web development and VB development
have gotten much closer to each other in both coding style and development tool usage.

An ASP.NET Primer

Browser-based development is done using ASP+, or ASP.NET (they keep renaming it, but | think
ASP.NET isthe name that’ s sticking now). ASP, for the uninitiated, stands for Active Server Pages,
and it represents a set of code built to interact with web pages. This code runs on the web server (as
opposed to VBScript or JavaScript code that runs on the client machine). The purpose of most ASP
code isto render HTML pages for the user to view. If the end user were to select View Sourcein his
browser, the ASP code isn’ t there—it runs on the web server, creates the final web page, and sends
that to the browser.

In Visual Studio.NET, an ASP.NET application uses something called Web Forms, which are
collectively the set of user interface controls that you can use to design your web pages. Thisis much
closer to designing a Visual Basic application than previous web development environments.
Controls are dragged onto Web Forms and positioned along a grid. When a control is double-clicked
in the design environment, a code window comes up for you to edit the event code behind that
control. After designing a simple web page with atext box, a button, and alabel, the result HTML
page looks as follows:

<%@ Page Language="vb"
Aut oEvent W reup="f al se" Codebehi nd="Cust Lookup. aspx. vb"
I nherits="prjWbApp2. WebFor nlL" %
<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.0 Transitional //EN'>
<HTM_>
<HEAD>
<title>customer |ookup</title>
<link rel ="styl esheet" href="Styles.css">
<met a name=" GENERATOR"
content="M crosoft Visual Studio.NET 7.0">
<met a nanme=" CODE_LANGUAGE" content="Visual Basic 7.0">
<nmeta nanme="vs_defaultClientScript" content="JavaScript">
<nmeta nanme="vs_t ar get Schemn"
content="http://schemas. m crosoft.conmintellisense/ie5">
</ HEAD>
<body MS_POSI TI ONI NG="Gri dLayout ">
<form i d="aFornt
nmet hod="post"
runat ="server"
action="Cust Li st. aspx">
<p>
Enter the Last Nanme of the Custoner
to Look up (partial nane ok)
</ p>
<asp: Text Box i d="t bName"
styl e="Z-1 NDEX: 100;
LEFT: 8px; POSI TI ON: absol ute;
TOP: 38px"
runat ="server"
W dt h="208px"
Hei ght =" 24px" ></ asp: Text Box>
<asp: Label id="IbMessage"
styl e="Z-1 NDEX: 102;
LEFT: 13px; POSITI ON: absol ute;
TOP: 83px"
runat ="server"
W dt h="207px"
Hei ght =" 17px" ></ asp: Label >

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 155 of 180

<asp: Button id="cbSearch”
styl e="Z-1 NDEX: 103;
LEFT: 232px;
PCOSI TI ON: absol ut e;
TOP: 40px" runat ="server"
Text =" Sear ch" ></ asp: But t on>
</fornp
</ body>
</ HTML>

Thislooks like pretty standard HTML, with afew new elements. There are several <asp:something>
tags, which represent the Web Forms controls | added to the page. The top line refersto a*code
behind" file, which pointsto a standard Visual Basic.NET (or C#) file that will contain the event
code for the controls on the web page. Listed next are the contents of the code behind file for this

page:
| mports System Data. Sql Cli ent

Public Cl ass WebFor m
I nherits System Web. Ul . Page
Protected WthEvents tbName _
As System Web. Ul . WebCont r ol s. Text Box
Protected WthEvents cbhSearch _
As System Web. Ul . WebControl s. Button
Protected WthEvents | bMessage _
As System Web. Ul . WebCont r ol s. Label

Private Sub cbSearch_Click(ByVal sender As _
System Obj ect, ByVal e As _
System Event Args) Handl es chSearch. Click

Dim cNane As String

t bNanme. Text
cName. Tri m

cName
cName

If cNane.Length > 0 Then
Response. Redirect ("custlist.aspx?Nanme=" & cNane)
End | f
End Sub
End Cl ass

This chunk of code shouldn’t intimidate anyone who has some VB.NET experience: it’ s the exact
same VB.NET code you’ d put in a non-web project. The only thing that might be new to you is
Response.Redirect command. This command tells the browser to load up a new page, and were
adding something called a query string to the end of the web page (a query string islike passing a
parameter as part of the URL).

Creating Page 2

The second page in our web application contains a empty datagrid and a label control. The code-
behind file looks as follows:

I nports System Data. Sql Cli ent

Public C ass CustLi st
I nherits System Web. Ul . Page
Protected WthEvents | bMessage _
As System Web. Ul . WebCont r ol s. Label
Protected WthEvents aDataGrid _

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 156 of 180

As System Web. Ul . WebControl s. Dat aGri d

Private Sub Page_Load(ByVal sender As _
System Obj ect, ByVal e As _
Syst em Event Args) Handl es MyBase. Load

Const CONNECTI ONSTRING As String = _ " DATABASE=Nor t hwi nd; SERVER=I ocal host ; |

Di m aDR As Sql Dat aReader

Di m aConn As Sqgl Connecti on
Di m aCrd As Sql Comrand
Dim SQ. As String

Dim cName As String

cNane
cNane

= Request. QueryString("Name") & ""

= cName. Trim

| bMessage. Text = "names matching ‘" & cName & "*"

SQL "Sel ect Custonerl| D, ConpanyNane,

SQL SQ & " ContactName from Custoners "

SQL SQ & " where ContactNane like ‘% & cNane & "% "

aConn = New Sgl Connecti on(CONNECTI ONSTRI NG
aCnd = New Sqgl Command(SQL, aConn)

aConn. Open()
Try
aDR = aCnd. Execut eReader
aDat aGri d. Dat aSour ce = aDR
aDat aGri d. Dat aBi nd()
Cat ch oEX As Exception ‘no records
aDataGid. Visible = Fal se
| bMessage. Text &= " (none)"
Finally
aConn. Cl ose()
End Try

End Sub

End Cl ass

Again, this code is syntactically just like any other VB.NET code you’ ve worked on to this point.
Note one of thefirst linesin the Page Load event isto pull the parameter off the current URL by
using Request.QueryString. This allows usto retrieve whatever the user typed into the text box on
the previous page. Then, a DataReader is opened and filled with all of the customersin the
Northwind database that contain the typed-in string. Finally, the datagrid is bound to that datareader.
The end result is the web page shown in the following illustration:

- | il theevg Eufbamaer records - Microsol Entrrrd Ephorrer

ASP.NET programming can (and will) be the subject of many books by itself, so we can’t do it full

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 157 of 180

justice in this chapter. The point to understand is that once you become a.NET Framework and
VB.NET syntax expert, your path to also becoming aweb developer is much shorter than it used to
be because you’ll be able to use most of the techniques and code from your VB.NET projects. In
fact, you’ll most likely be able to use many of your actual classes (at |east the nonvisual classes) in
both VB and ASP projects.

Internet Topics
54. XML Speed Reading

The XML Reader code can be found in the folder prjSashdotReader.

XML has been amajor topic of conversation lately, commanding attention from books and articles
and websites and the like. The .NET strategy uses XML as akey part of its communication, though
in many casesthisis an “under the hood” technology, so you as the developer need never know it.
However, many websites and third-party sources are starting to make their data available via the web
as XML, and it’s probably agood ideato learn how to directly parse XML. The prjSlashDotReader
project introduced earlier takes advantage of the fact that the SlashDot news site makes their current
news pages an XML document. Let’ s see how | retrieved this document and parsed it out so that the
current news became menu itemsin my project.

The Classto K now

The XMLDocument classin the .NET Framework will give you everything you’ll need for parsing
valid XML datafor your own purpose. This class contains members for creating and reading all of
the different types of XML data (and, since the XML spec seemsto grow and morph on a weekly
basis, I’ m sure we' || be seeing some changes to this class as well).

If you have avalid XML document URL, you can load that XML file into an XMLDocument object
instance using the following code:

Di m doc As New Xml Docunent ()

Dimw As WebRequest

Dimws As WebResponse

Dim sr As StreanReader

Try

wo=
WebRequest . Creat e("i mages/ ww. sl ashdot . or g/ sl ashdot . xm ")
ws = wr. Get Response()
sr = New StreanReader (ws. Cet ResponseStrean(), _
Encodi ng. ASCI |)

‘Read entire document
cLi ne = sr. ReadToEnd()

‘Load the text into the xm docunent
doc. LoadXm (cLi ne)

Cat ch oEX As Exception
MsgBox(oEX. ToSt ri ng)

Finally
sr.close()
ws. Cl ose()

End Try

The location for the SlashDot news XML document is images/'www.slashdot.org/slashdot.xml. This
document is retrieved by first opening a WebRequest class, retrieving the response off that

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 158 of 180

WebRequest, and then converting that response into a stream. Finally, the complete contents of the
stream are loaded into a single string variable named cLine.

Once the document content has been loaded into alocal string, the XMLDocument instance can
import it using the LoadXml method. Now we have our document loaded into the object and we're
ready to parse. A small portion of this XML code has been reproduced here so that you may refer to
it as | describe how the code parsesit.

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>
- <backsl ash xm ns: backsl ash=
"http://slashdot. org/backsl ash. dtd">
- <story>
<title>Sl ashback: Mno, Nanes, Locking Up</title>
<url|l >http://slashdot.org/article.pl?sid=01/07/09/136208</ url >
<ti me>2001-07-09 23:59: 34</ti nme>
<aut hor >t i not hy</ aut hor >
<depart nent >goi n’ - sout h- agai n</ depart nment >
<t opi c>sl ashback</t opi c>
<coment s>118</ comrent s>
<section>articl es</section>
<i mage>t opi csl ashback. gi f </ i nage>
</story>
- <story>
<title>Canada Post Kills Free
Internet-For-Life Progrank/title>
<url>http://slashdot.org/article.pl?
d=01/07/ 09/ 2223227</ ur| >
<ti me>2001-07-09 22: 44:48</ti me>
<aut hor >t i not hy</ aut hor >
<depart nent >onl y- ki ddi ng</ depart nent >
<t opi c>i nt er net </ t opi c>
<comment s>124</ comrent s>
<section>articl es</section>
<i mage>t opi ci nternet. gi f</i mage>
</story>

S

Scanning the XML Document

The highest level in the XML just shown appearsto be a collection of <story> elements. Within
these elements are several different nodes, the most important of which are the <title> and <url>
nodes. We are going to use the <title> nodes as our menu text, and we also want to save the URLs
that correspond to each title.

If you’ll recall from “System Traysin Their Full, Upright Position,” | created a descendant class
from a standard Menultem that contained an extra string property named URL for the purpose of
storing the URL for each story right in the menu item that the user will select when he wantsto read
that story. That class, the MenultemWithURL , is used in the parsing code:

Dimnl Stories As Xnml NodeLi st = _
doc. Get El ement sByTagNane("story")
Di m oNode As Xm Node
Di m oChild As Xml Node

For Each oNode In nl Stories
cTitle = ""
cURL = ""
For Each oChild I n oNode. Chil dNodes
If oChild.Name = "title" Then
cTitle = oChild. I nnerXm
El self oChild.Name = "url" Then

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 159 of 180

cURL = oChild. I nnerXm
End If
Next

If cTitle.Length > 0 And cURL. Length > 0 Then
aUMenul tem = New MenultemW thURL(cTitle, cURL)
AddHandl er aUMenultem Click, AddressOf MenuC ick
aMenu. Menul t ens. Add(aUMenul t em)

End | f

Next

What we re doing hereisloading all of the <story> nodes into a collection known as an
XMLNodelList, in order to iterate through them. Each item in an XMLNodeL.ist is of type
XMLNode. XMLNode objects themselves can have an XMLNodeList collection under them
(remember that an XML document isafully recursive structure).

For each XML node that represents a story, we loop through all the child nodes. We' re looking for
the <title> tag and the <url> tag, and, if we find each, we store their values into a string variable. If
we end up finding both tags, then a MenultemWithURL object instance is created, and it is added to
our menu.

Writing code to rip through an XML document is really easy in theory—in practice, however, you
usually have to have some idea of exactly what you'’ re looking for as you rip through it. In this case,
we knew we wanted to load up the <title> and <url> tag for each <story> node in our document. Of
course, XML documents can get infinitely complex, and your parsing logic will have to grow more
complex as you try and extract data out of such documents.

55: Producing XML

The XML writing code can be found in folder prjDataset and prj- Manual XML.

I”’m sure that sooner or later, some outside party will ask you to make the data from your application
availablein an XML format so that they might import it into their own applications. There are
several ways of doing this.

Database XML

If your application uses database data and you’ ve aready implemented the 1/0 by using the DataSet,
then creating XML is about as trivial as you can get. Once your DataSet is defined and popul ated,
you can use the GetXml method to return the XML representation of that dataset as a string variable:

t bXML. Text = aDat aset . Get Xni

A sample of the XML produced by the sample project and the GetXml method is shown here:

<NewDat aSet >
<Pr oduct s>

<Pr oduct | D>1</ Pr oduct | D>
<Pr oduct Name>Chai </ Pr oduct Name>
<Supplier| D>1</ Supplierl D>
<Cat egoryl D>1</ Cat egor yl D>
<QuantityPerUnit>10 boxes x 20 bags</ QuantityPerUnit>
<UnitPrice>18</UnitPrice>
<Uni t sl nSt ock>39</ Uni t sl nSt ock>
<Uni t sOnOr der >0</ Uni t sOnOr der >
<Reor der Level >10</ Reor der Level >
<Di scont i nued>f al se</ Di sconti nued>

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 160 of 180

</ Pr oduct s>
<Pr oduct s>
<Pr oduct | D>2</ Pr oduct | D>
<Pr oduct Name>Chang</ Pr oduct Name>
<Supplier| D>1</ Supplierl D>
<Cat egoryl D>1</ Cat egor yl D>
<QuantityPerUnit>24 - 12 oz bottles</QuantityPerUnit>
<UnitPrice>19</UnitPrice>
<Uni t sl nSt ock>17</ Uni t sl nSt ock>
<Uni t sOnOr der >40</ Uni t sOnOr der >
<Reor der Level >25</ Reor der Level >
<Di scont i nued>f al se</ Di scont i nued>
</ Pr oduct s>

If you'reinterested in writing a DataSet’s XML to afile, you can use the WriteXml method in one of
its many incarnations:

Call abDataset.WiteXM.("c:\fred.xm")

DataSets can export their schemaas XML aswell. The schema of an XML document isalist of the
nodes and their relationships, just as the schema of a database is alisting of the tables, columns, and
relationships between them. The tricky part isthat an XML schemaisitself an XML document. The
schema document describes the structure of the data document, if you will.

The GetX ml Schemamethod on the DataSet class is used to create the schema. Shown next is an
example of the DataSet schema from the sample project prjDataset:

<xsd: schenma i d="NewDat aSet" t ar get Nanespace=
xm ns="" xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schem"
xm ns: nmedat a="ur n: schemas- m crosoft-com xm - nedat a" >
<xsd: el ement nanme="NewDat aSet" nsdat a: | sDat aSet ="t rue" >
<xsd: conpl exType>
<xsd: choi ce maxQccur s="unbounded" >
<xsd: el ement name="Products">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el emrent name="Product| D"
type="xsd:int" mnOccurs="0" />
<xsd: el emrent name="Product Nane"
type="xsd:string" mnCccurs="0" />
<xsd: el ement nanme="Supplierl D’
type="xsd:int" mnQOccurs="0" />
<xsd: el enrent nanme="Cat egoryl D'
type="xsd:int" mnOccurs="0" />
<xsd: el erent nanme="QuantityPerUnit"
type="xsd:string" mnCccurs="0" />
<xsd: el ement name="UnitPrice"
type="xsd: deci mal" m nOccurs="0" />
<xsd: el ement nanme="Uni t sl nSt ock"
type="xsd:short" m nOccurs="0" />
<xsd: el enent nanme="Uni tsOnOrder"”
type="xsd: short" m nQOccurs="0" />
<xsd: el enrent nanme="ReorderLevel "
type="xsd: short" m nOccurs="0" />
<xsd: el emrent nanme="Di sconti nued"
t ype="xsd: bool ean" m nOccurs="0" />
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

Note how the schema defines an element named Products and a bunch of elements under it named

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 161 of 180

Productl D, ProductName, SupplierlD, and so on. Thisis equivalent to describing a SQL Server table
named Products with fields named ProductI D, ProductName, SupplierID, and so on.

Manual XML

If your goal isto manually produce an XML file on disk, then the XML Text- Writer classiswhat
you'll probably use. This class contains methods for creating nodes structures of any complexity
level. Shown next is a code fragment and the resultant XML from that code:

Private

Sub WiteTheFile()

Dim oW As New Xm Text Witer(cXMFil ename, Not hi ng)

Try
oW Formatting = System Xml . Formatti ng. | ndent ed
oW W iteStart Docunent (Fal se)
oWWiteComent ("This file represents another " & _
"fragnment of a book store inventory database")
oWW iteStartEl ement ("order")
oWW iteStartEl enent("custoner"”, Nothing)
OWWiteAttributeString("custid", "123456-Q")
oWW iteEl ement String("firstnane", Nothing,
"mat t hew")
oW W iteEl ement String("lastnanme", Nothing,
"tagliaferri™)
oW Wit eEndEl ermrent ()
oWWiteStartEl enent("ItenList”, Nothing)
oWWiteStartEl enent("Itent, Nothing)
OWWiteAttributeString("ltem D', "XD 1267")
oW W iteEl ement String("Description", "PowerBar")
OWW iteEl enent String("Quantity", "2")
OWW iteEl enmentString("Price", "2.99")
oW W it eEndEl erment ()
oWWiteStartEl enent("Itent, Nothing)
oOWWiteAttributeString("ltem D', "DE-2322")
oW W iteEl enent String("Description", "G ape-Ade")
oWW iteEl enentString("Quantity", "1")
oWW iteEl ementString("Price", ".89")
oW Wit eEndEl enment ()
oW W it eEndEl erment ()
oW W it eEndEl erment ()
‘Wite the XML to file and close the witer
oW Fl ush()
oW Cl ose()

Finally
oW Cl ose()

End Try

End Sub

<?xm version="1.0" standal one="no"?>
<I—This file represents another fragment of a
book store inventory database—

<order >

file:///E:\Books\dotNET\Visua %20Basi c%20.NET %201 %20Didn't%20K now%20Y ou...

15/03/2002

Page 162 of 180

<cust omer custid="123456-Q'>
<firstname>matthew</firstname>
<l astnane>t agli aferri </I| ast name>
</ cust oner >
<ltenList>
<ltemItem D="XD 1267" >
<Descri pti on>Power Bar </ Descri ption>
<Quantity>2</Quantity>
<Price>2.99</Price>
</ltenw
<Item I tem D="DE-2322">
<Descri pti on>Gr ape- Ade</ Descri pti on>
<Quantity>1</Quantity>
<Price>. 89</Price>
</ltenwr
</ltenlist>
</ order>

Asyou can see, actually writing out the XML is pretty easy. Aswith any set of structured data, the
hard part is the organization of the data in a coherent manner that is understandable by whomever or
whatever needsto read it.

56: Special Delivery: Sending E-mail
The code accompanying this section can be found in the folder prjEmail.

| write quite afew programs that run unattended at night, and one way | use to report on their success
(or failure) isto have the program send me an e-mail that | can read in the morning. The contents of
the e-mail tells me if everything ran smoothly or—in the most dire cases—the failure to receive said
e-mail tells me something ran less than smoothly.

Sending an e-mail in Visual Basic.NET takes only afew lines of code, but getting those few linesto
work takes a bit of background work. E-mail sending is done using the SMTP services in Windows
NT or 2000, and therefore this service must be installed and running on your server to send the mail.
Adding this service isdone in Control Panel, under the Add/Remove Programs section and then
under the Windows Components section. Under Internet Information Services (11S), you should find
the SMTP malil service. Get thisinstalled and running and you’ll be able to send e-mail from your
PC using the .NET Framework.

Sending mail is done using two classes, the SMTPMail class and the MailMessage class, both of
which are found in the System.web.Mail namespace. Following is the sample code that sends atest

message:

Private Sub cbSend_Click(ByVal sender As System Obj ect
ByVal e As System Event Args) Handl es chSend. Cick

Dim m As New Mi | Message()

| bSt at us. Text = "Sendi ng Message"
Appl i cation. DoEvent s()

m From = "nobody @onewhere. net"
m To = tbTo. Text

m Subj ect = tbSubj ect. Text

m Body = tbMessage. Text

m BodyFor mat = Mai | For mat . Text

Try
Call SmtpMail . Send(m

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 163 of 180

| bSt at us. Text = "Message Sent"
Cat ch oEx As Exception

| bSt at us. Text = oEx. Message
End Try

End Sub

This code takes the mail recipient, the subject, and the body from Textboxes found on the following
form, and sends the mail message off. The sender is the made-up address nobody @somewhere.net. |
implemented some simple exception handling because, as | mentioned, my first attempts at sending
e-mail were not successful (because | didn’t have the SMTP service installed), and | wanted as much
information as possible about why the e-mail wasn’t being sent properly.

EETTEVEEN—— =10l x|
] khibdaddiiload. com
El o Ferye—
ithe: paty b o B0, See o there]

57. Messagefor You, Sir

The message queue code can be found in the folder prjMessageQueues.

A few years back, Microsoft introduced message queuing technology as part of their Microsoft
Message Queue 1 product (called MSMQ for short). This product worked pretty well, assuming you
could get the thing installed on your NT 4 client machinesin order to use it (oh, the horror stories|
could tell...).

Message Queuing is atechnology that allows a client machine to send asynchronous messages back
to a server without the need to worry about the current connectivity state. The client application
doesn’ t have to contact the server to check if it’s up, establish a connection, or anything of that
nature. In fact, the destination server in question need not even be up and running at the time the
message is sent. The best analogy for message queuing isto think of it ase-mail for code. The client
application can create an object instance, package it up in amessage, and send it off. If the client is
connected to the server and all iswell, the message flows to the server at that time. If the client
machine and server are currently not in contact (perhaps the client smply isn’t dialed in), the object
is stored in the client queue and shipped off automatically when connectivity is established.

The release of Windows 2000 made message queuing part of the operating system asa Windows NT
service, so theinstall woes of MSMQ version 1 pretty much vanished. They aso removed the
requirement that the client machine be attached to the message queue server when configuring the
client service, which made client machine rollout a much simpler proposition. And now, with the
advent of the .NET Framework, Microsoft has introduced some readymade classes for taking
advantage of this technology in your applications.

The sample program acts as both the sender and receiver, so you might have to study it for a minute
or two to assure yourself that it is really two distinct processes communicating with one another.
Let’ s see how to send things from a client perspective first.

Sending a M essage

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 164 of 180

The most obvious thing that you might want to send along in a message queue is a string. The code
behind the Send String button in the application performs that task with under a dozen lines of code:

Private Sub cbSendString Cick(ByVal sender As _
System Obj ect, ByVal e As System Event Args) _
Handl es cbSendString. Cick

Try
Dim nmg As MessageQueue = New MessageQueue(QUEUEPATH)
ng. Formatter = New Bi naryMessageFor matter ()
Call ny. Send(tbQut. Text, "StringMessage")

Cat ch oEX As Exception
MsgBox(oEX. Message)

End Try

End Sub

First, a MessageQueue object instance is created, with the name of the queue as the parameter into its
constructor (a message queue server can communicate via any number of queues. These queues can
be split up by application, type of message, or function). The message is set to be a binary format by
attaching a BinaryFormatter instance to the message. Then, the message is sent. The first parameter
in this example is the contents of a Textbox control on the main form of the application, but the data
type of this parameter can be any object instance (remember, simple strings are also inherited from
Object). The second parameter is known as the label of the message. Thisis equivalent of the subject
of the e-mail, to further that analogy.

Sending a more complex object isn’t much more difficult than sending a simple string. First, you
need to make sure that the object you want to send is marked as serializable, which is done using an
attribute. The following code shows the beginning of a simple class definition with the attribute
attached:

<Serializable()> _
Publ i ¢ Cl ass Pol ygonDescri ptor

Private FNunSi des As | nteger
Private FNane As String

Sub New()
MyBase. New()

FName = "Undefi ned"
FNuntSi des = 0
End Sub

Eﬁd Cl ass

Now that our class definition is marked as such, we can send it off in an MSMQ message, the same
way we sent a string:

Private Sub cbSendObject _Click(ByVval sender As _
System Obj ect, ByVal e As System Event Args) _
Handl es cbSendCObj ect. Cick

Dimp As New Pol ygonDescri ptor("Square", 2)

Sel ect Case iCtr Mdd 3

Case O
p. Name = "Triangl e"
p. NuntSi des = 3

Case 1
p. Name = "Rectangl e"

p. NuntSi des = 4

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 165 of 180

Case El se
p. Name = "Pentagon"
p. NuntSi des = 5
End Sel ect
icr += 1

Try

Dim nmg As MessageQueue = _
New MessageQueue(QUEUEPATH)
ng. Formatter = New Bi naryMessageFor matter ()
Call nyg. Send(tbQut. Text, "StringMessage")

Catch oEX As Exception
MsgBox(oEX. Message)

End Try

End Sub

The bottom of this procedure isidentical to the string-sending code, with the exception of the send
method. The first parameter is the object instance we’ re sending, and the second parameter is again
the label. In this implementation, we re going to use the label to determine what type of object the
message contains.

The top of the procedure just sets up a simple iterative loop so that the object’s properties are
different each time you send an object into the queue (with three different variations on the object).

Get the M essage (?)

WE' ve got code to send the message; now we need to receive them on the server side. Thisisaso
done using the M essageQueue object:

If (Not MessageQueue. Exi st s(QUEUEPATH)) Then
MessageQueue. Cr eat e(QUEUEPATH)
End | f

oMsMQ = New MessageQueue(QUEUEPATH)
oMsMQ. Formatter = New Bi naryMessageFor matter ()

AddHandl er oMSMQ. Recei veConpl et ed, New _
Recei veConpl et edEvent Handl er (Addr essOF
Recei veConpl et ed)

oMSMQ. Begi nRecei ve()

Thefirst part of this code checks to see if a queue exists and createsit if not. Note that both the test
and queue creation is done using the static functions MessageQueue.Exists, and

M essageQueue.Create, as opposed to creating an instance of the MessageQueue class and then
calling methods off the instance.

Now that the queueis set up, we can open it up and start looking for messages. This program uses a
form-level variable named oMSMQ. This object is instantiated, the formatter attached (make sure to
use the same formatter class as the client programs are using), and then code is attached to the
ReceiveCompleted event of this object using the AddHandler statement. This event fires whenever a
message comes into the queue. Once that event is set up, the MessageQueue variable isinstructed to
start listening for messages using the BeginReceive method. All we need to see now is the contents
of that ReceiveCompleted event so we know what the program does with the message when it
receivesit:

Protected Sub Recei veConpl et ed(ByVal sender _
As Object, Byval args _
As Recei veCompl et edEvent Ar gs)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 166 of 180

Dim nmg As MessageQueue = CType(sender, MessageQueue)
ng. Formatter = New Bi naryMessageFor matter ()

Dim m As System Messagi ng. Message = _

ng. EndRecei ve(args. AsyncResul t)

Dim p As Pol ygonDescri ptor
DimcLine As String = Format (Now, "hh:mmss") & " - "

Try
If mLabel = "StringMessage" Then
cLine = cLine & CStr(m Body)

El se
p = CType(m Body, Pol ygonDescri ptor)
cLine = cLine & p.ToString

End | f

| bQut put. I tens. Add(cLi ne)

Catch oEX As Exception
Cal | MsgBox(oEX. Message)
Finally
ng. Begi nRecei ve()
End Try
End Sub

First, we have the message queue responsible for firing this event resolved to alocal MessageQueue
object, since it comes through as a parameter having data type Object. Then, the EndReceive method

isissued on the queue, which retrieves the actual message sent.

Next, the label of the message object (named simply min the code) is checked to see if astring or

PolygonDescriptor object was sent (these are the only two things this program sends, your client app
would have to be smarter if different objects were being passed in the queue). Depending on what’ s
being sent, the message is extracted from the body of the message and reported on using the Listbox

on the form.

Thelast part is very important: the BeginReceive isreissued inside a Finally block. This method
must be reissued to make sure that the queue resumes looking for messages, no matter what

happened while processing this current message. Without this call, further messages would never be
extracted from the queue. Issuing the command inside afinally block guarantees that it is called.

The following illustration shows the program after sending afew of each message type:

i

rireg by send:

| Send String I [Tast Mersage - wasmp?
Serud Olrject

Ci02I5D - Test Massags

(N 0258 - Teat Massagn - bl there
06301253 - Trignghy, 3

£63: 012 155 « Ppctares, 4

30255 - Pentagan, 5

D000 D5 - Teat Massage - wassup?

58: Remoting Control

The remoting code can be found in the folder prjRemotingServer.

The computing universe is ever expanding, and our programs are expected to communicate over

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 167 of 180

ever-widening boundaries. Point of sale systems are expected to be able to send data to the home
office retail system and retrieve information on an ad hoc basis from that same system. Never mind if
the home office and the retail outlet are in different cities, states, or countries. A remote sales force
requires instant access to up-to-the-second inventory information. If the company just filled a order
this morning and emptied the warehouse out of a hot item, the remote salesman needs to know.

Remoting is aterm used to describe .NET Framework objects talking to each other across application
domains. The two domains might be on the same computer or on computers with an ocean or two
between them.

Developing applications using remoting concepts in the .NET Framework can be very powerful.

Y our all-important business logic can be coding into objects that stay close to home and in asingle
place and require remote users to access from their own location. Changes or new functionality to
these classes don'’ t require distribution of new code to the entire remote force (a pretty daunting task
for a250-storeretail chain or asalesforce of 100+).

A remoting framework requires three parts. a server-based class, a server-based “listener” program to
wait for requests, and a client program to request instances of the server class. This section will
demonstrate the two server side components.

The Server Class

The server class that will be used to create remote instances from a client has but one requirement:
that it be a descendant of the MarshalByRef- Object class. This class uses the Northwind database to
report on the total amount spent by a customer, given the customer ID:

| nports System

I mports System | O

I mports System Dat a

I nports System Data. Sql Cli ent

Public Cl ass OrderServant Cl ass
I nherits Marshal ByRef Obj ect

Const CONNECTI ONSTRING As String = _
DATABASE=Nor t hwi nd; SERVER=| ocal host ; U D=sa; PV\D=; "

Publ i c Function Test() As Integer
Return 41
End Function

Publ i ¢ Function Get Cust Spent Anount _
(Byval cCustID As String) As Single

Dim SQ. as String

SQ = " SELECT | SNULL(SUM Ext endedPrice),0) "

SQL = SQL & " as Total Spent "

SQL = SQL & "FROM [Order Details Extended] OD "

SQL = S & "INNER JON Orders O ON "

SQL = SQ & "OOderlID=0D.OderlD"

SQL = SQ & "WHERE O CustonerID = ‘" & cCustID & """

Di m oConn As New Sql Connecti on(CONNECTI ONSTRI NG)
Di m oCrd As New Sql Conmmand(SQL, oConn)
oCmd. ConmandType = CommandType. Text

DimiSpent As Single = 0
Di m oRD As Sql Dat aReader

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 168 of 180

oConn. Open()
Try
oRD = _
oCnd. Execut eReader (CommandBehavi or . Cl oseConnecti on)
If oRD. Read() Then
i Spent = oRD.Iten("Total Spent™")
End | f
Finally
oRD. Cl ose()
End Try

Ret urn i Spent
End Function

End Cl ass

This class should ook no different from any other VB.NET class you’ ve seen so far, except for it
being a descendant of the MarshalByRefObject class. The Test classis used purely as a debugging
placeholder—it provides something to call that returns a given value when making sure that the
remoting itself isworking, rather than trying to track down a bug in the larger functions. The real
function, GetCustSpentAmount , takes the passed-in customer 1D and runsit up against aview in the
Northwind database to see how much that customer spent. Exception handling is used to make sure
the remote object doesn’ t behave poorly for the client application in the case of an error.

This object is compiled into its own assembly named OrderServant.DLL. Now that we have an
object ready to be called remotely, we need a simple "listener” program to load up that class and
prepare it to receive requests.

Listen Up!

The purpose of the listener program is to register the server class on either an HTTP channel or a
TCP channel. This program uses an HTTP channel for purposes we || examine | ater.

| nports System

I nports System | O

I mports System Runti nme. Renoti ng

I mports System Runtime. Renoti ng. Channel s

I mports System Runtinme. Renoting. Channels. Http
| mports Order Servant

Cl ass Order ServerCl ass
Shared Sub Mai n()

Const PORT As Integer = 5001
Const URI As String = "Orders”

Channel Servi ces. Regi st er Channel (New Ht t pChannel (PORT))
Di m oAsm As System Refl ection. Assenbly

DimoTyp As Type

DimcMsg As String

0Asm = System Refl ecti on. Assenbl y. Load(" Order Servant")
oTyp = oAsm Cet Type(" Order Servant . Order Servant Cl ass")

Renot i ngConfi guration. Regi st er Wel | KnownSer vi ceType(_
oTyp, URI, Well KnownObj ect Mbde. Si ngl eCal |)

System Consol e. WiteLine("")

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 169 of 180

System Consol e. WiteLine("")

cMsg = "server '" & URI

cMsg = cMsg & "' active on port " & PORT

cMsg = cMsg & Environment. NewLi ne

cMsg = cMsg & "to test in browser:

cMsg = cMsg & "http://local host:" & PORT

cMsg = cMsg & "/" & URI & "?WBDL" & Environnment. NewLi ne
cMsg = cMsg & "hit <enter> to stop"

Syst em Consol e. Wi teLi ne(cMsQ)
Syst em Consol e. ReadLi ne()

End Sub

End Cl ass

The channel you choose (5001 in this example) will need to be known by clients designed to use the
remote object. The channel isregistered in the first line of the listener program. Then the server class
that is to serve as the remoting object is registered using the RegisterWellKnownServiceType
method. This method takes the type of the class asits first parameter (the type of aclass can be
described using aclassitself. Thisclassis called Type and is part of the reflection abilities of

the NET Framework). The second parameter is the name that the class will be known as by clients.
In this case, the more common name Ordersis used instead of the actual name of the class,
OrderServantClass. The third parameter specifies that the each object created from the clients will be
adistinct object (SingleCall), rather than each client call sharing asingle, global object instance
(Singleton). The latter type of remoting might be useful when objects have to share amongst
themselves and the remote object is brokering that object sharing.

Running the previous listener program gives the following results:

server ‘Orders’ active on port 5001
to test in browser: http://local host: 5001/ Or der s?WSDL
hit <enter> to stop

The URL displayed here can be entered into your favorite browser to test if the server isworking.
The results you see in the browser represent the WSDL (web services description language) of the
remoted class. The WSDL isan XML description that describes the class.

<?xm version="1.0" encodi ng="UTF-8" ?>
- <definitions name="Order Servant Cl ass" target Nanespace=
"http://schemas. m crosoft.conifclr/nsassen Order Servant/
Order Servant” xm ns="http://schemas. xm soap. or g/ wsdl /"
xm ns:tns="http://schemas. xm soap. org/ wsdl /"
xm ns: xsd="http://ww. w3. org/ 2001/ XM-Schema"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: suds="http://ww. w3. or g/ 2000/ wsdl / suds"
xm ns: wsdl =" http://schemas. xnml soap. org/ wsdl /"
xm ns: soapenc="http://schemas. xm soap. or g/ soap/ encodi ng/ "
xm ns: ns2="http://schemas. m crosoft.com clr/nsassem
Or der Servant . Or der Ser vant Cl ass/ Or der Ser vant "
xm ns: nsO="http://schemas. m crosoft.com clr/nsassem
Or der Servant / Or der Ser vant "
xm ns: nsl="http://schemas. m crosoft.conm clr/ns/Systent
xm ns: soap="http://schemas. xnm soap. or g/ wsdl / soap/ " >
- <types>
<schenm target Nanmespace="http://schemas. m crosoft.com
cl r/ nsassenf Or der Servant / Or der Servant "
xm ns="http://ww. w3. org/ 2001/ XM_Schena"
el ement For mDef aul t =" unqual i fi ed" attri but eFornDef aul t
="unqual i fied" />
</types>

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 170 of 180

<nessage nane="Order Servant Cl ass. Test | nput" />
- <nessage nanme="Order Servant Cl ass. Test Qut put " >
<part name="return" type="xsd:int" />
</ message>
- <message nanme="Or der Servant Cl ass. Get Cust Spent Anount | nput " >
<part name="cCust|D' type="xsd:string" />
</ nessage>
- <nessage nanme="Order Servant Cl ass. Get Cust Spent Anount Qut put " >
<part name="return" type="xsd:float" />
</ message>
- <portType nanme="0Order Servant Cl assPort Type" >
- <operation nane="Test">
<i nput nanme="Test Request"

message="ns0: Or der Servant Cl ass. Test | nput" />
<out put nane="Test Response"
message="ns0: Or der Servant Cl ass. Test Qut put"” />
</ operation>
- <operation name="Get Cust Spent Anount ">
<i nput nane="Get Cust Spent Anbunt Request "
message="ns0: Or der Servant Cl ass. Get Cust Spent Anount | nput* />
<out put name=" Get Cust Spent Anount Response"
nmessage="ns0: Or der Servant Cl ass. Get Cust Spent Anpunt Qut put" />
</ operati on>
</ port Type>
- <bi ndi ng name="Or der Servant Cl assBi ndi ng"
type="ns0: Order Servant Cl assPort Type" >
<soap: bi ndi ng style="rpc"
transport="http://schemas. xm soap. org/ soap/ http" />
<suds: cl ass type="ns0: Order Servant Cl ass”
r oot Type="Mar shal ByRef Obj ect” />
- <operation nane="Test">
<soap: operati on soapAction=
"http://schemas. m crosoft.com clr/nsassen!
Or der Servant . Or der Ser vant Cl ass/ Or der Ser vant #Test" />
- <input nane="Test Request">
<soap: body use="encoded"
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="http://schemas. m crosoft.com clr/nsassen
Or der Servant . Or der Ser vant Cl ass/ Or der Servant" />
</input>
- <out put nanme="Test Response">
<soap: body use="encoded"
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://schemas. m crosoft. com clr/nsassen
Or der Servant . Or der Ser vant Cl ass/ Or der Servant" />
</ out put >
</ operation>
- <operation nanme="CGet Cust Spent Anount " >
<soap: operati on soapAction=
"http://schemas. m crosoft.com clr/nsassen!
Or der Servant . Or der Ser vant Cl ass/
Or der Ser vant #Get Cust Spent Anount " />
- <input nanme="Get Cust Spent Anbunt Request " >
<soap: body use="encoded"
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="http://schemas. m crosoft.com clr/nsassen
Or der Servant . Or der Ser vant Cl ass/ Or der Servant" />
</input>
- <out put name="Get Cust Spent Anbunt Response" >
<soap: body use="encoded"
encodi ngStyl e="http://schenmas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://schemas. m crosoft. com clr/ nsassenf
Or der Servant . Or der Ser vant Cl ass/ Or der Servant" />

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 171 of 180

</ out put >

</ operation>

</ bi ndi ng>
- <service name="Order Servant Cl assServi ce" >
- <port name="Order ServantCl assPort"

bi ndi ng="ns0: O der Servant Cl assBi ndi ng" >

<soap: address | ocati on=
"http://24.51.177.153: 5001/ Orders" />
</ port>

</ service>

</definitions>

When beginning with remoting, | recommend using the HTTP protocol to test out your objects
because it gives you the benefit of being able to test the communication in abrowser as just shown.
You can’t perform atest like this when using the TCP protocol. However, once you’re confident in
the new technology, you might consider switching to the binary (and therefore faster) TCP protocol.

Now that you've got aremote class and alistener, you’'re ready to write aclient that callsit.

59: Remoting Control Calling

The code accompanying this section can be found in the folder prjRemotingClient.

To write aclient application that calls your remote object, you can test the client application on the
same PC or adifferent PC that has connectivity to the server PC. Setting up the remoting call and
using the remote object instance is done as follows:

| nports System

I mports System Runtinme. Renoti ng

| mports System Runtime. Renoti ng. Channel s

I mports System Runtinme. Renoti ng. Channels. http
| mports Order Servant

Public Class OrderCient
Shared Sub Mai n()
Channel Servi ces. Regi st er Channel (New Htt pChannel ())
Di m oObj As Order Servant Cl ass
Di m oAsm As System Refl ection. Assenbly
DimoTyp As Type
DimcMsg As String

0Asm = System Refl ecti on. Assenbl y. Load(" Order Servant")
oTyp = oAsm Cet Type(" Order Servant . Order Servant Cl ass")

(s]0 o] CType(Acti vator. Get Obj ect (0Typ,
"http://1ocal host: 5001/ Orders"),
Or der Servant Cl ass)

If oObj Is Nothing Then

System Consol e. WiteLi ne("Could not | ocate server")
El se

DimcCust As String

Dimi Spent As Single

Consol e. WiteLine("")
Console. Wite("Enter a valid Customer ID ")

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 172 of 180

cCust = Consol e. ReadLi ne()

Try
i Spent = oObj . Get Cust Spent Amount (cCust)
If i Spent = 0 Then
Consol e. WiteLine("custonmer " &
"IDinvalid or spent $0.00")

El se
Consol e. WitelLi ne("custoner spent $" & _
i Spent)

End |f

Catch oEX As Exception
Consol e. WiteLi ne(oEX. Message)
End Try
Consol e. WiteLine("")
Consol e. WiteLine("")
End | f
Console. WiteLine("hit enter key to end")
Consol e. ReadLi ne()

End Sub

End Cl ass

The key call in the client program is the Activator.GetObject call. This object creates an instance of
the remote object using the port and URL defined by the listener application and then typecasts that
object to the appropriate type for use in this application.

Remoting is alarge topic that can warrant an entire book in its own right. There are many design
issues to consider such as what type of connection the end user might have to the remote server, or
how much datawill be sent back and forth. A remoting solution won't work in cases where a
network or Internet connection is not 100 percent available (how can the client create the remote
object instance without a connection to the server?). Do you want your application to “hang” while it
makes instantiates the remote object, or is there something it can do in the meantime? All of these
design issues will influence the design of your application and whether remoting is the correct
solution in your environment.

60: Web Service Creation

The web service code can be found in folder prjRemotingClient and prj\WebService.

Remoting represents one way for client applications to access components on remote servers. This
method of object invocation is powerful and easy to use, but it is not open-ended. Only .NET clients
can invoke .NET remote objects. Microsoft was |ooking to provide a means of remote object
invocation using standard Internet protocols like HTTP and XML, aswell as a means of creating
objects from any source. This was the idea that gave rise to web services.

Web services are defined strictly in terms of the functions that communicate with the outside world.
In that respect, they are not “complete” objects like regular .NET objects—you don’t create web
services with properties or events. Instead, the set of methods exposed by the object define the web
service.

To demonstrate that most .NET Framework classes can be exposed as aweb service, | decided to

take the same server class used in the remoting samples and modify them for use as aweb service.
Hereis part of the code to describe the new server class:

| nports System

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 173 of 180

I nports System | O

I nports System Dat a

| mports System Data. Sql Cli ent
I mports System Web. Servi ces

Public C ass OrderServant Cl ass
I nherits Marshal ByRef Obj ect

<WebMet hod() > _

Public Function Test() As I|nteger
Return 41

End Function

<WebMet hod() > _
Publ i ¢ Function Get Cust Spent Anount (ByVal cCustID _
As String) As Single

<stuff del eted>
Ret urn i Spent
End Functi on

End Cl ass

| removed much of the guts of the GetCustSpentAmount method so we can focus on the details of
setting up the web service itself. After some study, you' Il discover that the only difference between
this object and the remoting server is the addition of the WebMethod attribute at the start of each of
the methods. This attribute tells the .NET Framework to expose this method as part of the web
service.

Could that beit? In short, yes. You use the VB.NET you already know to create the class, and then
signify which methods make up the web service with the WebMethod attribute. Time for testing.

Testing, Testing...

To test your web service, create anew application in I1S. Take your compiled DLL and placeit into
aBIN folder underneath the 1S application virtual directory. Then, create afile named orders.asmx
that contains the following line of text:

<%@ WebServi ce Cl ass="Order Servant. Order Servant Cl ass" %

The name in the quotes should match the assemblyname.classname of the .NET class created in the
last step (the assembly isthe DLL name, and the class name is just that: the name of the class
created). The actual name of the .asmx file can be anything, you just need to know it when you want
to test or use the web service.

WEe' ve got the service all configured, so we can go to our browser and type the following URL to test
it al out:

http://1ocal host/prjwebservi ce/orders. asnx
The prjwebservice component of the URL isthe virtual directory we created in 1S, and the

orders.asmx component is the name of the file we just created. If all isworking correctly, you should
see something resembling the following description:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 174 of 180

Bl OrderSereant Cless Web Servioe - Microsoft Inkemmet Daplorer
Fis Edt Yew Favortes Took He

back = = - @[22 [Ereerdty fisesch (areors o3| - B S H B 3

Lbdreess [I.!:'I.m; _'_r.-‘:na-n;:ﬁ;;mv;-wo;vd-u m

OrderServantClass

The fofawing operations are supported, Far 3 fermal defintion, please reveaw the

Note how the two web methods we defined in the class have been exposed in this sample web page.
Clicking each method in the browser will alow you to enter any necessary parameters and test the
functionality of the web service, al without the need to set up a client application before testing. This
allows agreat division of labor. The web service component devel opers don’t have to mess around
with writing client code to test their services, and the client devel opers can see an exact description
of the available services by typing the URL.

Note that all of thisfancy DLL-to-browser communication is happening via XML over standard
HTTP on plain old HTTP port 80. The object is described using an XML specification named SOAP,
which you can see if you add AWSDL to the end of the URL in the browser. Because the
communication is happening over standard HTTP port 80, communications problems due to pesky
firewalls are eliminated. Aslong as your client can see your server over a standard Internet
connection, web services are a viable way to have the two communicate.

61: Web Service Usage

The web service client code can be found in folder prjWebServiceClient.

Microsoft’s vision of the future is that every online business and programmer will want to expose
business functionality viathe Internet and web services. If thisistrue, our client applications will
link to and use all of these web services al over the world. Our remote salesman with alaptop may
dia up, check inventory levels using aweb service we wrote, enter the order using another web
service, look up an address using a U.S Postal web service, and then check shipping schedules and
rates at using yet another web service provided by UPS.

If al this comes true, we client-side developers will have to become expertsin linking to and
consuming web services, both our own and those from third parties. Fortunately for us, doing so
couldn’t have been made any easier.

To add aweb service to your current project, go to the Solution Explorer and right-click the Web
Referencesitem in the Treeview. Select Add Web Reference. A dialog box will come up that allows
you to enter a URL. Simply add the exact URL that you entered to test the web servicein the
previous step. The lower half of the dialog box will show the same browser output we saw when
testing our service. If all looks well, click Add Reference, and the web serviceis ready for our use.

Hereisthe code for a simple client to consume the customer order totals web service:

| nports System
I mports prjWbServiceCient.l|ocal host

Public Cl ass WebServiced i ent
Publ i ¢ Shared Sub Min()

DimcCust As String
Dimi Spent As Single

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 175 of 180

Di m oObj As Order Servant Cl ass

Consol e. WiteLine("")
Console. Wite("Enter a valid Customer ID: ")
cCust = Consol e. ReadLi ne()

o0Obj = New Order Servant Cl ass()
i Spent = oObj . Get Cust Spent Anount (cCust)
If iSpent = 0 Then
Consol e. WiteLine("custoner ID" & _
“invalid or spent $0.00")
El se
Consol e. Wi teLine("custoner spent $" & i Spent)
End If
Consol e. WiteLine("")
Consol e. WiteLine("")
Console. WiteLine("hit enter key to end")
Consol e. ReadLi ne()
End Sub
End Cl ass

Note that this code can declare a variable of class OrderServantClass directly, because the SOAP
description of the service tells our application that this class (and all of its methods) are part of that
service. In order to most easily use this class, the Imports section at the top of the project includes a
reference to the projectname.referencename displayed in the solution explorer.

Once adl the linkage is done, the OrderServantClass can be used as easily as a class built right into
our application.

62: Talking to Microsoft TerraServer

The TerraService code can be found in folder prjTerraService.

One of the largest parts of the Microsoft vision of the future, and therefore a big part of the NET
initiative, isthe concept of the web service. The web serviceis a piece of code that doesits job over
the Internet. This job could be anything from calculating a monetary exchange rate, returning a credit
history or package status, to locating and/or retrieving files.

In this new vision, Internet accessis built into almost every program, not just programs that use the
browser as the interface. Regular desktop programs will call upon code across the world viathe
Internet to provide their functionality as well.

An early example of a program that works in this brave new world is Gnutella. This program
attaches viathe Internet to other Gnutella users and provides alist of shared fileson al of those
users’ hard drives. These files can be MP3s (which makes Metallica et a. nervous), pictures, or any
file deemed sharable by a group of people. These types of programs provide all the power of the vast
world-encompassing network that the Internet has become, but not at the expense of the slimmed-
down, wizard-like smplicity of a browser-based application.

As aprogrammer in this new world, Microsoft hopes that we’ll al play nice with their new toys and
share. If we write a useful piece of code from which other programmers would benefit, we can use
the .NET technology to expose that code as a web service. Once installed as such, other

programmers can call our code over the Internet, have it do its job, and return information back to the
caller.

Accessing a Web Service

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 176 of 180

Web services use the common framework of XML to send the required information back and forth
across the .NET. However, you don’t need to be an XML expert to call an existing web service. In
fact, you may write an entire application that talks to a web service and not know that XML was
involved at all.

One of the first interesting, nontrivial web services to spring up isthe .NET version of Microsoft
TerraServer, which is a huge database of aerial and satellite images of the earth, stored in a SQL
Server database, available online.

Thefirst glimpses into the vast quantity TerraServer information came via the browser-based
interfaces at www.terraserver.com. One could use the supplied programs to look at a map by
latitude/longitude, famous place name, city name, or several other interfaces.

Close to the timethat Visual Studio.NET beta 1 was released, a .NET- programmed web service
version of TerraServer was announced, called the TerraService. This exposes the enormous
collection of TerraServer datato the programmer. After licking my chops for afew seconds, |
decided to dive in and try to grab some data for my own little program: a TerraServer ballpark
viewer.

To use aweb service in your program, you need to know its URL. The file extension at the end of
the URL isaways .asmx. To add the web service to your project, go into the Solution Explorer and
right-click the Web References line in the Treeview. The first menu option will be Add Web
Reference. Selecting this option brings up the following dialog box:

Addmmbidomen . A
o 0 e | SR >, |

= S sl e ol
TerraService e

e

The Add Web Reference dialog box works just like a mini-web browser application. In the Address
field at the top of the dialog, enter the web service URL (the one that endsin .asmx). This begins the
communication process between Visual Studio.NET and the web service. If the communication
works properly, the large box on the left side of the dialog will be populated with the available
interfaces available to you as the user of this web service. Once everything appears to be working,
simply click the Add Reference button on the dialog and the connection has been made.

At this point, you might want to rename the web reference in the Solution Explorer to match your
own naming scheme. | decided to leave my name asit was defined: net.terraservice The name you
select for the service isimportant in the next step.

To expose all of the classes described by the web reference, you should also include the full
namespace of the web reference in the Imports section of your main form. The full namespace isthe
project name of the current project, a period, and then the web reference name you used in the
previous step. The Imports section of my project is shown next:

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 177 of 180

I nports System | O
| nports System Drawi ng. | magi ng
| mports prj NewTerraservice. net. TerraService

Using the Web Services Classes

Once the web service has been added to your project and the namespace has been added to the
Imports section of your main form, Visual Studio.NET has al the information it needs to help you to
program using the new web service classes. They will appear in Intellisense along with all of the
other .NET Framework classes you have exposed to your project.

My ballpark viewer project leverages the fact that Microsoft TerraServer has thousands of “famous
places” stored in it by name and the ability to display the geographic region surrounding that famous
place. | selected a dozen baseball ballparks throughout the Major L eagues and included their names
in aListbox on the left side of the form. Once the user selects one of the ballparks and hits the View
button, the display routines kicks in. That routine is reproduced next:

Protected Sub Creat Bi t mapBasedOnPl aceNane(By Val
cPl aceName As String)

Const | WDTH As I nteger = 600
Const | HEI GHT As Integer = 400

Dimtheme As Thenme = New Thene()
Dim scal e As Scale = New Scal e()
Dimts As TerraService

Di m abb As AreaBoundi ngBox
Dimilmge As | mage

Dim pfs() As PlaceFacts

Me. Cursor = Cursors. Wit Cursor
| bWait.text = "retrieving i nage data"
appl i cation. DoEvent s()

Try
ts = New TerraService()
pfs = ts. Get Pl aceLi st (cPl aceNane, 1, Fal se)
If pfs.Length = 0 Then Exit Sub

If rbAerial.Checked Then
t heme = Thene. Phot o
El se
theme = Thene. Topo
End | f

scal e = Scal e. Scal e2m

abb = ts. Get AreaFronPt (pfs(0).center,
theme, scale, |IWDTH, |HElI GHT)

Di m pf As Pi xel Format = Pi xel For mat. For mat 32bppRGB
Di m conmposi tel mage As | mage = _
New Bi t map(| W DTH, | HEI GHT, pf)

Di m conposi teG aphics As Graphics = _
Gr aphi cs. From mage(conposi t el mage)

Dim xStart As |nteger abb. Nort hWest . Ti l eMeta. 1 d. X

DimyStart As Integer = abb. NorthWest. TileMeta.ld.Y
Dimx, y As |nteger

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 178 of 180

For x = xstart To abb. NorthEast. TileMeta.ld. X
For y = ystart _
To abb. Sout hWest . Til eMeta.ld.Y Step -1

Dmtid As Tileld
Dimtileimge As | nmage

abb. Nort hWest . Til eMeta. I d

= X

=y

tilelmage = | mage. Fronttream New _

MenmoryStream(ts. GetTile(tid)))

conmposi t eG aphi cs. Draw mage(til el mage, _

(x - xStart) * tilelmage.Wdth - _
abb. Nort hWest . O f set . xOF f set, _
(yStart - y) * tilelmge.Height - _
abb. Nort hWest . O fset. yOf fset, _
tilelmage. Wdth, tilelnmge. Hei ght)

oo0o
< X1l

— o~ —+

Next
Next

Conposi t ei mage. Save(DUMMYNAME, i magef or mat . BMP)
Finally
Me. Cur sor = Cursors. Arrow
| bWait.text = ""
End Try
End Sub

The name of the famous place to display is passed in as the sole para- meter. The first statement after
the TRY statement initializes the Terra- Service class. Thisisthe "main” classin the web service,
and you must create an instance of it to use any TerraServer functionality in your project. The second
line after the TRY statement retrieves what' s known as a PlaceFacts object, based on the passed in
place (ballpark) name. The PlaceFacts classis a Collection class that contains within it some number
of PlaceFact classes. The GetPlacelist method allows you to specify the maximum number of
PlaceFact objects to return in the collection.

Note Places like Cleveland or Los Angeles could have thousands of PlaceFact objects associated
with them in TerraServer. My program chooses to return only one PlaceFact object, since |
know that each ballpark is at the most granular level of place datain TerraServer.

Working with the Graphics

The hardest part about working with TerraServer image dataisthat it is returned in 200X200 pixel
tiles. Usually, asingle tile does not display enough visual information by itself to be useful to an end
user, so the programmer will almost always have to "stitch together” several adjacent tilesto display
amap with meaningful value.

The stitching process in the previous procedure takes up most of the routine. My final output picture
is 600X400, or three tiles across by two down. | have set up constants at the top of the routine to
specify thisimage size—the final routine can be changed to output different size pictures by
changing these constants.

The next important TerraServer-related line in the routine is the following:

abb = ts. Get AreaFronPt (pfs(0).center, _
theme, scale, |IWDTH, |HElI GHT)

Thisline passes in the PlaceFact object we received about our ballpark, along with the intended

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 179 of 180

width and height of the final image, and returns another structure known as an AreaBoundingBox
structure. This structure contains the four geographic corner coordinates, as well as the center, of the
PlaceFact we passit. We now have enough info to begin stitching our final image together. The next
three lines set up the destination bitmap in memory:

Di m pf As Pi xel Format = Pi xel For mat. For mat 32bppRGB
Di m conposi tel mrage As | mage = _
New Bi t map(| W DTH, | HEI GHT, pf)

Di m conmposi teGraphics As Graphics = _
Gr aphi cs. From mage(composi t el mage)

The object that we are going to draw into is an instance of the Graphics class. This classisthe
encapsulation of a GDI+ drawing surface. We set up both aGraphics instance from a Bitmap
instance. The Bitmap instance is created by specifying the intended height and width, aswell asa
Pixel - Format (number of colorsin the bitmap).

Finally, the stitching loop begins (shown next). Actualy, there are two loops, one side the other.

Both loops begin in the northwest corner of our map. The x loop travels east, and the y travels south.
For each tile, the GetTile method is called off the TerraService object instance. Thetile image datais
loaded into a MemoryStream instance and in turn into an Image instance. Finally, thissingleimage is
drawn into the composite- Graphics instance. Some reasonably tricky math has to be done to turn the
coordinates of thetile into the bitmap coordinates that we draw into.

For x = xstart To abb. NorthEast.TileMeta.ld. X
For y = ystart To abb. SouthWest. TileMeta.ld.Y Step -1

Dmtid As Tileld
Dimtileimage As | nmage

tid = abb. NorthWest. TileMeta. ld
tid. X = x

tid.Y =y

tilelmage = | mage. Frontt ream New _

MenmoryStream(ts. GetTile(tid)))

conposi t eGraphi cs. Drawm nage(til el mage, _
(x - xStart) * tilelmage. Wdth - _

abb. Nort hWest . O f set . xOf f set, _

(yStart - y) * tilelnmge.Height - _

abb. Nort hWest . O f set . yOF f set, _
tilelmage. Wdth, tilelnmge. Hei ght)

Next
Next

Once the loop is complete, our compositeGraphics instance contains the completed image.

The next step isto save thisimage to disk asa BMP file so we can load it into the form:

Conposi t ei mage. Save(DUMMYNAME, i nagef or mat . BMP)

The constant DUMMY NAME is atemporary filename that | used just for the life of this application.
The routine to load the BMP file into the PictureBox pbimage isfairly smple:

Publ i ¢ Sub LoadAndDel et eTheDi skFil e()

Dmf As file
Dims As New Fil eStream{ DUMMYNAME, Fil eMode. Open)

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

Page 180 of 180

pbl mage. | mage = system Drawi ng. i mage. FrontSt rean(s)
s. Cl ose()

Try
f = New Fi | e(DUMMYNAME)
f.delete()

Catch ert As Exception
nsgbox(ert. Message)

End Try

End Sub

This code loads the BMP file into a FileStream object, and the pblmage object uses a method known
as FromStream to copy that stream datainto itself for display, which can be seen in the following
figure. The dummy fileisthen deleted. | wrapped the file delete routine around a simple Try..Except
block because my first pass at this program was written in VB.NET beta 1, and | had uncovered a
small bug in the language that prevented the file from being deleted in all cases. | decided to leave
the handler in for the final version, asit helps warn the user if the program is going to leave the
dummy bitmap file on disk.

file://E:\Books\dotNET\Visual %620Basi c%20.NET %201 %20Didn't%20K now%20Y ou... 15/03/2002

