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Preface

This monograph presents a thorough description of the mathematical theory of robust
linear stochastic control systems. The interest in this topic is motivated by the variety
of random phenomena arising in physical, engineering, biological, and social pro-
cesses. The study of stochastic systems has a long history, but two distinct classes of
such systems drew much attention in the control literature, namely stochastic systems
subjected to white noise perturbations and systems with Markovian jumping. At the
same time, the remarkable progress in recent decades in the control theory of deter-
ministic dynamic systems strongly influenced the research effort in the stochastic area.
Thus, the modern treatments of stochastic systems include optimal control, robust sta-
bilization, and H?2- and H*-type results for both stochastic systems corrupted with
white noise and systems with jump Markov perturbations.

In this context, there are two main objectives of the present book. The first one is
to develop a mathematical theory of linear time-varying stochastic systems including
both white noise and jump Markov perturbations. From the perspective of this gener-
alized theory the stochastic systems subjected only to white noise perturbations or to
jump Markov perturbations can be regarded as particular cases. The second objective
is to develop analysis and design methods for advanced control problems of linear
stochastic systems with white noise and Markovian jumping as linear-quadratic con-
trol, robust stabilization, and disturbance attenuation problems. Taking into account
the major role played by the Riccati equations in these problems, the book presents this
type of equation in a general framework. Particular attention is paid to the numerical
aspects arising in the control problems of stochastic systems; new numerical algo-
rithms to solve coupled matrix algebraic Riccati equations are also proposed and
illustrated by numerical examples.

The book contains seven chapters. Chapter 1 includes some prerequisites con-
cerning measure and probability theory that will be used in subsequent developments
in the book. In the second part of this chapter, detailed proofs of some new results,
such as the Ito-type formula in a general case covering the classes of stochastic sys-
tems with white noise perturbations and Markovian jumping, are given. The Itd-type
formula plays a crucial role in the proofs of the main results of the book.
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Chapter 2 is mainly devoted to the exponential stability of linear stochastic sys-
tems. It is proved that the exponential stability in the mean square of the considered
class of stochastic systems is equivalent with the exponential stability of an appropri-
ate class of deterministic systems over a finite-dimensional Hilbert space. Necessary
and sufficient conditions for exponential stability for such deterministic systems are
derived in terms of some Lyapunov-type equations. Then necessary and sufficient
conditions in terms of Lyapunov functions for mean square exponential stability are
obtained. These results represent a generalization of the known conditions concerning
the exponential stability of stochastic systems subjected to white noise and Markovian
jumping, respectively.

Some structural properties such as controllability, stabilizability, observability,
and detectability of linear stochastic systems subjected to both white noise and jump
Markov perturbations are considered in Chapter 3. These properties play a key role
in the following chapters of the book.

In Chapter 4 differential and algebraic generalized Riccati-type equations arising
in the control problems of stochastic systems are introduced. Our attention turns to the
maximal, minimal, and stabilizing solutions of these equations for which necessary
and sufficient existence conditions are derived. The final part of this chapter provides
an iterative procedure for computing the maximal solution of such equations.

In the fifth chapter of the book, the linear-quadratic problem on the infinite hori-
zon for stochastic systems with both white noise and jump Markov perturbations is
considered. The problem refers to a general situation: The considered systems are
subjected to both state and control multiplicative white noise and the optimization is
performed under the class of nonanticipative stochastic controls. The optimal control
is expressed in terms of the stabilizing solution of coupled generalized Riccati equa-
tions. As an application of the results deduced in this chapter, we consider the optimal
tracking problem.

Chapter 6 contains corresponding versions of some known results from the deter-
ministic case, such as the Bounded Real Lemma, the Small Gain Theorem, and the
stability radius, for the considered class of stochastic systems. Such results have been
obtained separately in the stochastic framework for systems subjected to white noise
and Markov perturbations, respectively. In our book, these results appear as partic-
ular situations of a more general class of stochastic systems including both types of
perturbations.

In Chapter 7 the y-attenuation problem of stochastic systems with both white
noise and Markovian jumping is considered. Necessary and sufficient conditions for
the existence of a stabilizing y -attenuating controller are obtained in terms of a system
of coupled game-theoretic Riccati equations and inequalities. These results allow one
to solve various robust stabilization problems of stochastic systems subjected to white
noise and Markov perturbations, as illustrated by numerical examples.

The monograph is based entirely on original recent results of the authors; some
of these results have been recently published in control journals and conferences
proceedings. There are also some other results that appear for the first time in this
book.



Preface X1

This book is not intended to be a textbook or a guide for control designers. We had
in mind a rather larger audience, including theoretical and applied mathematicians
and research engineers, as well as graduate students in all these fields, and, for some
parts of the book, even undergraduate students. Since our intention was to provide
a self-contained text, only the first chapter reviews known results and prerequisites
used in the rest of the book.

The authors are indebted to Professors Gerhard Freiling and Isaac Yaesh for fruitful
discussions on some of the numerical methods and applications presented in the book.

Finally, the authors wish to thank the Springer publishing staff and the reviewer
for carefully checking the manuscript and for valuable suggestions.

October 2005
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Preliminaries to Probability Theory and
Stochastic Differential Equations

This first chapter collects for the readers’ convenience some definitions and funda-
mental results concerning the measure theory and the theory of stochastic processes
which are needed in the following developments of the book. Classical results con-
cerning measure theory, integration, stochastic processes, and stochastic integrals
are presented without proofs. Appropriate references are given; thus for the measure
theory, we mention [27], [43], [55], [59], [95], [110]; for the probability theory we
refer to [26], [55], [96], [104], [110] and for the theory of stochastic processes and
stochastic differential equations we cite [5], [26], [55], [56], [69], [81], [97], [98].
However several results that can be found only in less accessible references are proved.
In Section 1.10 we prove a general version of the Ito-type formula which plays a
key role in the developments of Chapters 3—5. The results concerning mean square
exponential stability in Chapter 2 may be derived using an It6-type formula which
refers to stochastic processes that are solutions to a class of stochastic differential
equations. This version of the Ito-type formula can be found in Theorem 39 of this
chapter. Theorem 34, used in the proof of the Itd-type formula and also in Lemma 22
in Chapter 6 to estimate the stability radius, appears for the first time in this book.

1.1 Elements of measure theory

1.1.1 Measurable spaces

Definition 1. A measurable space is a pair (2, F), where Q is a set and F is a
o -algebra of subsets of QQ; that is, F is a family of subsets A C Q2 with the properties
1) Qe F;
() ifAeF thenQ—-AeF;
(i) if A, € Fon > 1, then UX A, € F.

n=1

If 7| and JF; are two o -algebras of subsets of Q, by F; v F> we denote the smallest
o -algebra of subsets of €2 which contains the o-algebras F; and F;.

By B(R") we denote the o-algebra of Borel subsets of R”, that is, the smallest
o -algebra containing all open subsets of R".
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For a family C of subsets of 2, o (C) will denote the smallest o -algebra of subsets
of Q containing C; o (C) will be termed the o -algebra generated by C.

If (21, G1) and (£2,, G») are two measurable spaces, by G; ® G, we denote the
smallest o-algebra of subsets of ©2; x €, which contains all sets A x B, A € G,
B e gz.

Definition 2. A collection C of subsets of S2 is called a m-system if
(i) ¢ €C, and
(i)ifA,BeC, then ANB eC.

The next result proved in [118] is frequently used in probability theory.

Theorem 1. If C is a w-system and G is the smallest family of subsets of 2 such that
®mCccg:
() ifAe G thenQ—Aeg;
(i) A, e G,n > Land AiNA; = ¢ fori # jimpliesUS, € G, thena(C) = G.

n>1

Proof. Since o (C) verifies (i), (i), and (ii1) in the statement, it follows that
G co(C).

To prove the opposite inclusion, we show first that G is a m-system.

Let A € G and define G(A) = {B; Be Gand AN B € G}.

Since A — B=Q —[(AN B)U (2 — A)], itis easy to check that G(A) verifies
the conditions (ii) and (iii), and if A € C, then (i) is also satisfied. Hence for A € C
we have G(A) = G; consequently, if A € C and B € G, then AN B € G. But this
implies G(B) D C and therefore G(B) = G for any B € G. Hence G is a w-system
and now, since G verifies (ii) and (iii), it is easy to verify that G is a o -algebra and the
proof is complete. ]

1.1.2 Measures and measurable functions

Definition 3. (a) Given a measurable space (2, F), a function p: F — [0, 00] is
called a measure if:

D u@)=0

(iYif A, e Fon=1,and A;NA; = ¢ fori # j, then

u(U,O,c:1An) = ZM(AM)

n=1

(b) A triplet (2, F, u) is said to be a space with measure.

(©) If u(2) = 1, we say that u is a probability on F, and in this case the triplet
(82, F, ) is termed a probability space.

A measure [ is said to be o -finite if there exists a sequence A,,n > 1, A, € F
with AiNA; =¢ fori # jand Q =UX A, and u(A,) < oo for every n.

n=I
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Definition 4. Given a measurable space (2, F), a function f: Q@ —— R is said
to be a measurable function if for every A € B(R) we have f~'(A) € F, where
7' (A) ={we Q; f(w) € A}

Itis easy to prove that f: Q —> R is measurableif and only if f~'((—o00, @)) € F
for every a € R.

Remark 1. Itis not difficult to verify thatif (2, F}) and (2,, F>) are two measurable
spaces and if f : Q) x €, — R is F| K F> measurable, then for each w, € Q
the function w; —— f (w1, w,) is F| measurable and for each w, € 2, the function
wy —> f(wy, wn) is F> measurable.

Definition 5. A measurable function f : Q —> R is said to be a simple measurable
function if it takes only a finite number of values.

We shall write a.a. and a.e. for almost all and almost everywhere, respectively;
f =gae means u(f #g)=0.

Definition 6. Let (2, F, 1) be a space with measure f, : 2 — R, n > 1, and
[ : 2 = R be measurable functions.
(i) We say that f, converges to f for a.a. w € Q or equivalently lim, . fn = f

ae (fu 55 f)if
ulos lim fu@) # f@)] =0.

(ii) We say that the sequence f, converges in measure to f ( f, A f) if for every
§ > 0, we have lim,_, o p{w; | fu(w) — f(w)| > §} = 0.

Theorem 2. Assume that lim,,_, o, f, = [ a.e. and that £(2) < oo. Then f, Y f.0

Theorem 3. (Riesz’s theorem) If f, 5 [, then there exists a subsequence f,, of the
sequence f, such that limy_, f,, = f a.e. g

Corollary 4. Let (2, F, u) be a space with measure such that (2) < oco. Then the
following assertions are equivalent:
Q) fo = f;

(i1) any subsequence of f, contains a subsequence converging a.e. to f. O

As usual, in the measure theory two measurable functions f and g are iden-
tified if f =g ae. Moreover, if f Q- R =[—00, oo] is measurable, that is,
f ' ([—o0,a)) € F for every @ € R and if u(Jf| = oo) = 0, then f will be
identified with a function g : 2 — R defined as follows:

_ | f@)if | f(w)] < oo, and
“@‘{0 if | ()] = oo

Theorem 5. If (2), Fy, iy) and (2, F>, i2) are two spaces with o -finite mea-
sures, then there exists a unique measure u : F1QF, — [0, 00] such that
UW(AXBY = pu\(A)ua(B) forall A € Fyand B € F,. This measure p will be denoted
by w1 x pa. a
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1.1.3 Integration

Theorem 6. Let f > 0 be a measurable function. Let us define

i+l .

—1
Sulw) = Z LE,,—XA,;,,(CU),

i=1

where

1 )
Ai.nz{w;l Sf(w)<-l—},i:1,2,...,2"n,

2n 2n
A2”n+l.n == {a)v f(w) > n},
and xa(w) is the indicator function of the set A; that is, xa(w) = V ifw € A and
xa(w) =0 ifw € Q— A. Then we have:

)0 = fi < fayr andlim,_, o f,(w) = f(w), w € Q;

1) 0 < a, < a,y, where a, = Zfl’;“ iz_,,l w(A; ) (with the convention that
0-00=0). ]

Definition 7. (i) Let f > 0 be a measurable function on a space with measure
(2, F, n)and f,, a,, n > 1 be the sequences defined in the statement of Theorem 6.
By definition a, = [, fudp and [ fdu = 1im, o a,.

(i) A measurable function f.Q — R is called an integrable function if
fQ | fldu < 00, and in this case,

/Q fdu = /Q frdp - fQ fdu.

1 _ 1
f+=5(|fl+f): fo=50=0.

(iii) We say that the integral of a measurable function f exists if at least one of
the integrals [o frdu or [, f~du is finite; if [, fdpu = ocoand [, f~du < oo,
then by definition, [, fdu = oo, and if [, f*du < oo and [, f~dp = oo, by
definition, [ fdu = —oo.

where

Remark 2. It can be proved that the definition of the integral [, fdu in Definition 7(i)
is not dependent upon the choice of the particular monotonic increasing sequence of
simple measurable functions f, converging to f.If f is a simple measurable function
with values ¢y, ¢, .. ., ¢,, then by definition

fodﬂ =Y cule; f@) =)
i=1

It is known that

()| Jo faul < fo | fldu;

(ii) If f = g ae., then [, fdu = [, gdu;if A € F, by definition [, fdu =
fQ XAfd/L
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By LP(Q), p > 1, we denote the space of all measurable functions f : @ — R
with [ | f17du < oo.

Let us define |

|Uﬂp=(LLﬂmu)waeLe

Regarding the integrable functions we recall the following useful results.

Theorem 7. (Holder’s inequality) If f € LP(2), p > 1, and g € L9(QQ) with

% + é =1, then fg € L'(Q) and

gl < Hfllpllglly- O

s

Taking, in the above theorem, p = 2, f = |h|", g = 1, one obtains the following
result.

Corollary 8. If u(2) < coand 1 <r < s, then h € L*(R2) implies h € L"(2) and
if () = 1, we have (A, < ||h|s. U

Definition 8. Let f,, f € L”. We say that f, — f in L? or fu 5> f if
lim [ £, — flPdu =0,
Q

Theorem 9. If f, 5> f then f, 55 f. 0

1.2 Convergence theorems for integrals

Let (2, F, ) be a space with measure. The following results are well known in
measure theory.

Theorem 10. (Fatou’s Lemma) Let f, > 0,n > 1, be a sequence of measurable
functions. Then

‘ﬁMMMSM/ﬂW- 0
Q Q

Theorem 11. (Lebesgue’s Theorem) Let f,, f be measurable functions and | f,| < g,

i
n > 1, a.e. where g is an integrable function. If lim,_,, f, = f a.e., then f, L £
and therefore im, _, o [, fudp = [, fdu. O

Theorem 12. Let f,, f be measurable functions. If |f,| < g,n > 1, for some

1
integrable function g and f, 5 f, then f, L f. O
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Theorem 13. [26], [55], [106] Let f,, f be integrable functions. Suppose that
w(82) < 00 and there exists « > 1 such that

SHP/ [ fal®dp < 0.
n Q

1
Ff,5 f then f, L f and therefore lim, o [ fodu = [o fdp. O

Theorem 14. [43], [95] If f : [a, b] — R is an integrable function, then

m l[ f(s)ds = f(@) ae,t€la,b] O

1
h—04 h max{t—h,a)

Definition 9. Let 1y and u; be two measures on the measurable space (2, F); we
say that p, is absolutely continuous with respect to u, (and we write 1y <K @2) if
U2(A) = Oimplies p(A) = 0.

Theorem 15. (Radon—Nicodym Theorem) If A < p, A(2) < 00, u(2) < 00, then
there exists a unique (mod ) integrable function f such that A\(A) = f 4 fdu forall
AeF O

Theorem 16. (Fubini’s Theorem) Let (R, Fi, iy), (0, F, 2) be two spaces with
o -finite measures 1 and o, respectively. Then we have:

@) If f : Q x Q; = Ry is a measurable function (with respect to Fi Q F3),
then the function wy;+——> le [y, w)dp, is F, measurable, the function
W] —> sz f (w1, w)du, is F| measurable, and

/ fd(ur x up) =/ < f(wl,wz)d/tz) du
Qyx£2y Q (923

=]( f(wuwz)d,ul)duz-
Q0 Q

(b) A measurable function f : Q; x Q, — R is integrable (on the space
(Qy x Q2, F1 Q F, 1 X p2)) if and only if

/ ( lf(wl,wz)ldm)dm < 00.
2, \Ja,

©If f: Q) x 2 — Ris an integrable function, then:
(1) For a.a. wy € Q) the function ¢i(w)) = sz [y, w)du, is well defined,
finite, and measurable and integrable on the space {21, F1, i1}.
(ii) For a.a. an € 2 the function ¢;(w;) = le [y, o)dpy is well defined,
finite, and measurable and integrable on the space {22, F7, pa}.
(iii) leXQZ fd{uy x pp) = fQ‘ pduy = fQZ padiLy. u
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1.3 Elements of probability theory

Throughout this section and throughout this monograph, {2, F, P} is a given
probability space (see Definition 3(c)).

In probability theory a measurable function is called a random variable and the
integral of a random variable f is called the expectation of f and is denoted by Ef
or E(f), thatis, Ef = [, fdP.

A random vector is a vector whose components are random variables. All random
vectors are considered column vectors. In probability theory the words almost surely
(a.s.) and with probability 1 are often used instead of almost everywhere.

As usual, two random variables (random vectors) x, y are identified if x = y a.s.

With this convention the space L*(Q2, P) of all random variables x with
E|x?| < oo is a real Hilbert space with the inner product (x, y) = E(xy).

If x4, €A is a family of random variables, by o(x,,a € A) we denote
the smallest g-algebra G C F with respect to which all functions x,,® € A are
measurable.

1.3.1 Gaussian random vectors

Definition 10. An n-dimensional random vector x is said to be Gaussian if there exist
m € R" and K an n x n symmetric positive semidefinite matrix such that

Eeiu*x — eiu*m—%u*Ku
forallu € R", where u* denotes the transpose of u and i := +/—1.
Remark 3. The above equality implies
m=~FExand K = E(x -~ m)(x —m)*. (1.1

Definition 11. A Gaussian random vector x is said to be nondegenerate if K is a
positive definite matrix. If x is a nondegenerate Gaussian random vector, then

! / e 30 K mm gy
A

PxeA)=——
((2m)*det K)2

for every A € B(R").

1.4 Independence

Definition 12. (i) The o -algebras F\, F>, ..., Fn. Fi C F are independent if
P (n;l':lAj) =T}, P(A))

forall Aje F;,1 <j<n.

(i) The random variables (random vectors) xy, xa, . . . , X, are independent if the
o-algebras o (x1), 0(x2), ..., 0(x,) are independent.
(iii) The set {xy, x2, . . ., x,} of random variables (random vectors) is independent

of the o-algebra G, G C F if the o-algebra o (x;, 1 < i < n) is independent of G.
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Theorem 17. (i) If xi, x2, ..., x, are independent random variables and if x; are
integrable, | <i < n, thenthe product x\x; . .. x, is integrable and E(x\x; . . . x,) =
7 E(x;)-

(1) If the random vectors xi,x3,...,X,, n > 2, are independent, then
o(x1, ..., xy) is independent of 0 (xp41, ..., x,) forevery ] <k <n—1. 0

1.5 Conditional expectation

Let G C F be a o-algebra and x an integrable random variable. By the Radon-
Nicodym Theorem (Theorem 15) it follows that there exists a unique (mod P) random
variable y with the following properties:

(a) y is a measurable with respect to G,

(b) Ely| < o0, and

() f,ydP = [, xdPforall A € G.

The random variable y with these properties is denoted by E[x|G] and is called
the conditional expectation of x with respect to the o -algebra G.

By definition, for all A € F

P(A|G) := E[xalg] and
E[xlylv ---vyn] = E[X!O'()/l» -'-ayn)]v

where x, denotes the indicator function of A.
If x is an integrable random variable and A € F with P(A) > 0, then by definition

E[x|A] :=/XdPA,
Q

where P(ANB)
Py F —> [O,w)byPA(B):—WVBG}'.

E[x|A] is called the conditional expectation of x with respect to the event A.

Since |
Pi(B) = —— dP,
4(B) P(A)fBXA

1 1
Q A

By definition,

we have

P(B|A) := Ps(B),Ae F,Be F,P(A) > 0.

Obviously, P[B|A] = E(xl|A).



1.6 Stochastic processes 9

Theorem 18. Ler x, y be integrable random variables and G, H C F, o-algebras.
Then the following assertions hold:

(i) E(E[x|G]) =Ex;

(ii) E[E[x|Gl/H] = E[x|H] a.s. ifG D H;

(i) E[(ex + By)|G] =a E[x|G] + BE[x|G] a.s. ifa, B € R;

(iv) E[xy|G] = yE[x|G] a.s. if y is measurable with respect to G and xy is
integrable;

(v) if x is independent of G, then E[x|G) = Ex;

(vi) x > O implies E[x|G] > O a.s. O

Remark 4. It is easy to verify that:
(i) If x is an integrable random variable and y is a simple random variable with
values ¢y, ..., ¢, then

Elxlyl =) xy=c; Elxly = ¢51,
jeM

where M = {j € {1,2,...,n}; P(y=c;) > 0}.

M IfA e F, Gy ={D,Q2, A, Q— A}, and x is an integrable random variable,
then
XaElx|A]l + xa_aE[x|2 — A]if 0 < P(A) < 1,

E[x|Gal = { Exif P(A)=0or P(A) = 1.

Therefore E[x|G,4] takes at most two values.

1.6 Stochastic processes

In this section J € R is an interval. Let us first introduce the following definition.

Definition 13. An m-dimensional stochastic process is a function x 1 J x @ — R”
with the property that x(t, -) is a random vector for each t € J.

Usually we denote a stochastic process by {x(#),7 € J},x = {x(t)};es or x(2),
t € J, the dependence upon the second argument w being omitted. The functions
t = x(t, w) (with w fixed) are called the sample paths of the process.

If m = 1, we shall simply say that x is a stochastic process.

Definition 14. (i) We say that the process x = {x(t)},e; is continuous if for a.a. @
the functions x(-, w) are continuous on J.

(ii) x is called to be right continuous if for a.a. w the functions x(-, w) are right
continuous on J.

(iii) The process x = {x(t)};cy is continuous in probability if t, — ty with
tas to € J implies x(t,) > x(to).

(iv) x is called to be a measurable process if it is measurable on the product space
with respect to the o -algebra B(J) ® F, B(J) being the o -algebra of Borel sets in J.
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Remark 5. (1) Every right continuous stochastic process is a measurable process.
(i1) From the Fubini theorem it follows that if x : J x € — R is a measurable
process and E fj |x(£)|dt < oo, then for a.a. w, fj x(t)dt is a random variable.

Definition 15. Two stochastic processes x1 = {x\(t)};cs, x2 = {x2(t)};ey are called
stochastically equivalent if P{x\(t) # x2(t)} = O for all t € J. We then say that x,
is a version of x.

Now let us consider a family M = {M,},c; of o-algebras M,C F with the
property that #; < t; implies M, C M,,.

Definition 16. We say thar the process x = {x(1)},e, is nonanticipative with respect
to the family M, if
(i) x is a measurable process;
(ii) for each t € J, x(¢, -} is measurable with respect to the o -algebra M,.
When (ii) holds we say that x(t) is M,-adapted.

As usual by LP(J x Q,R™), p > I, we denote the space of all m-dimensional
measurable stochastic processes x : J x & — R™. By Lﬁ,[(J )} we denote the space
of all x € LP?(J x ©,R™) which are nonanticipative with respect to the family

M=(M,),t€].

Theorem 19. If for every t € J, the o-algebra M, contains all sets M € F with
P(M) =0, then Lﬁ,l(J) is a closed subspace of LP(J x §2,R™).

Proof. Letx, € Lf\A(J), n > 1, be a sequence which converges to x € L?(J x
2, R™). We have to prove that there exists x € Lj’w(J ) such that x,, converges to x
in the space L”(J x Q, R™). Indeed, since

H— 00

lim ]Elx,,(t) —x(0)|Pdt =0,
J

by Theorem 9 the sequence of functions E|x,(t) — x(t)}? converges in measure to
zero. Hence by virtue of Riesz’s Theorem there exists a subsequence x,, and a set
N C J with u(N) = 0 (u being the Lebesgue measure) such that

lim Elx,(t) —x()|” =0

nH—0oC
foralilt € J — N.Lett € J — N be fixed. Again applying Theorem 9 and Riesz’s
Theorem, one concludes that the sequence x,, (1), k > 1, has a subsequence which
converges a.e. to x(r). But x,, (1) are M,-adapted and M, contains all sets M € F

with P(M) = 0. Therefore x(¢) is measurable with respect to M, foreacht € J —N.
Now, define x : J x 2 — R"™ as follows:

x(t,w)ifte J — N, w € ,

x(”‘“)z{ 0 ifreNandwe Q.

Obviously £ € L% (J) and lim,_ [, E|x,(r) — x(1)|’dt = 0. The proof is
complete. g

The next result is proved in {81, Chap. 4, Section 2].
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Theorem 20. Let M = {M,};ciap) be an increasing family of o-algebras with
the property that for each t, M, contains all sets M € F with P(M) = 0. If
x = {x(t)}ie(a,p) Is a nonanticipative process with respect to the family M and if
E fab |x(®)|dt < oo, then the process

y ={yO}ieta,1, y() =[ x(s)ds

is nonanticipative with respect to the family M. a

1.7 Stochastic processes with independent increments

Definition 17. An r-dimensional stochastic process x(t), t € [0, 00), is said to have
independent increments if for all 0 < ty < t; < --- < I, the random vectors
x(ty), x(t1) — x(to), ..., x(tx) — x(tx_1) are independent.

Theorem 21. If x(t), t > 0, is an r-dimensional stochastic process with independent
increments, then o (x(t) — x(a), t € [a, b]) is independent of o (x(b + h) — x(b),
h>0)forall0<a <b.

Proof. Let M be the family of all sets of the form ﬂf’ (@) — x(@) " (A)

wherea < f; < band A; € B(R"), 1 <i < p, and let N be the family of all sets
of the form N, (x(b + h;) — x(b))"'(B;), where 0 < h;, B; € B(R"), 1 <i <m.
Obviously M and AV are -systems and

o(M)=0(x({)—x(a), t €la,b]), c(N) =c(x(b+h)—x(b), h > 0).

First, we prove that P(M N N) = P(M) - P(N)if M € M and N € V. Indeed, let
M =n?_ (x(n) —x(@) ' (A), N =0 (x(b + hy) — x(b)) "' (B;) with

a<ty<---<t,<b 0<h <---<h, A € BR"), B; ¢ BR").
Since
ox(#)—x(a),1 <i <p)
=o(x(t) —x(a), x(t2) — x(t1), ..., x(t,) — x(tp-1)
and
ox(b+h;))—x(b), 1 <i <m)
=c(x(b+h)—xB), x(b+hy) —x(b+hy),...,
x(b+hy) —x(b+hp_1))

from Theorem 17(ii) it follows that P(M N N) = P(M) - P(N). Further, by using
Theorem 1 and the equality A — B = A — (A N B) one can prove that P(M N B) =
PM)-P(B)if M € Mand B € o(x(b+ h) — x(b), h > 0). Then, applying
Theorem 1 again, we prove that P(A N B) = P(A) - P(B)if A € o(M) and
B € o (N). The proof is complete. O
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Theorem 22. [106] If x(t), t > 0, is a continuous r-dimensional stochastic process
with independent increments, then all increments x (t;) — x(t,) are Gaussian random
vectors. .

1.8 Wiener process and Markov chain processes

In the following definitions, / is the interval [0, 0o).

Definition 18. A continuous stochastic process B = {B(t)};1e; is called a standard
Brownian motion or a standard Wiener process if:
(1) B0y =0;
(ii) B(¢) is a stochastic process with independent increments;
(iii) EB(t) =0,t e I, E[B(t) — B(s)|?> = |t — s| witht,s € 1.

Definition 19. An r-dimensional stochastic process w(t) = (wi(t), ..., w,(?))*,
t € 1, is called an r-dimensional standard Wiener process if each process w;(t)
is a standard Brownian motion and the o-algebras o (w;(t),t € 1),1 <i <r, are
independent.

For each 1 > 0, by F; we denote the smallest o -algebra which contains all sets
M € F with P(M) = 0 and with respect to which all random vectors {w(s)}s<, are
measurable.

Fort > 0, U, = o(w(t + h) — w(t), h > 0).

From Theorem 21 it follows that for each ¢ € I, F; is independent of 4;.

Remark 6. (i) Since w(z) — w(s) is independent of F; if ¢ > s (see Theorem 21),
from Theorem 18(v) it follows that

El(w(t) —w(s)) | F5] =0, (1.2)
Ef(w(t) — wis)(w() —ws)* | Fl =1Lt —s), t > 5, ae.

(ii) The increments w(t) — w(s), ¢ # s are nondegenerate Gaussian random
vectors (see Theorem 22 and (1.1)).

The converse assertion in (i) is also valid.

Theorem 23. [52], [81] Let w(t),t > 0, be a continuous r-dimensional stochastic
process with w(0) = 0 and adapted to an increasing family of o -algebras F;,t > 0,
such that (1.2) hold. Then w(t),t > 0, is a standard r-dimensional Wiener process
and all increments w(t,) — w(t)), &, # t,, are nondegenerate Gaussian random
vectors. (]

Theorems 22 and 23 will not be used in this book, but they are given because they
are interesting by themselves and they give a more detailed image of the properties
of these stochastic processes.
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Definition 20. A family P(t) = [p;; ()], t € (0, 00), of d x d matrices is said to be
a transition semigroup if the following two conditions are satisfied:
(i) For each t >0, P(t) is a stochastic matrix, that is, 0< p;;(t) <1 and
Yo ) =1, 1<i<d.
(i) Pt +s) = P(t)P(s) forallt >0, s > 0.
The equality (ii) is termed the homogeneous Chapman—Kolmogorov relation.

Definition 21. A stochastic process n(t),t € [0, 00), is called a standard homoge-
neous Markov chain with state-space the set D = {1, 2, ..., d} and the transition
semigroup P(t) = [p;;(O)],t > 0, if:
W) nit,w)eDforallt > 0and w € Q;
@) Pin(t +h = j)In(s), s <t] = pyw;h) as. forallt =0,h >0, j € D;
(iii) limy_,0, P(t) = Iy, 1, is the identity matrix of dimension (d x d);
(iv) n(t), t = 0 is a right continuous stochastic process.

In fact, the above definition says that a standard homogeneous Markov chain is a
triplet {n(t), P(t), D} satisfying (i)—(iv), P(t), ¢t > 0, being a transition semigroup.
The next result is proved in {26].

Theorem 24. The standard homogeneous Markov chain has the following properties:
) Pln(t + h) = jin(t) =i} = pijth) foralli,j € D,h > 0,t > 0 with
P{n(®) =i} > 0.
(i) P{nt +h) = jinGs),s <t} = Pln(t +h) = jinO],t = 0,h > 0,
jeD, as.
(iii) If x is a bounded random variable measurable with respect to the o -algebra
o(n(s),s > t), then E[x|n(u),u <t) = Elx|n(®)], a.s.,t = 0.
(iv) n(t) is continuous in probability.
(V) pii(t) > Qforalli € D,t > 0.
(vi) lim;_ oo P(t) exists.
(vii) There exists a constant matrix Q such that P(t) = e? r>00= lgi;]is
a matrix with q;; > 0 if i #jandZ?zlq,-jzo. O

In fact (ii) follows from (iii) since y,(4+n)=; is measurable with respect to the
o-algebra o (n(u), u > t).

The assertion (iii) in Theorem 24 is termed the Markov property of the process n(t).

The fact that a transition semigroup P(f)t > 0, with the property that lim,_.q,
P(t) = I; admits an infinitesimal generator Q (P(t) = 2"t > 0) follows from the
general theory of semigroups in Banach algebras [63], but in the theory of Markov
processes a probabilistic proof is given in [16], [26], [55].

We assume in the following that ; := P{n(0) =i} > Oforalli € D.

Remark 7. From the above assumption and from the equality

d
Pin@) =i} =Y 7;P{n(t) = iln(0) = j},

j=1

we deduce that P{n(t) =i} > m;p;; (1) > 0,t > 0,i € D.
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In the following developments G,, ¢ > 0, denotes the family of o-algebras G, =
o(n(s); 0 <s <t)and V,,t > 0is the family of g-algebras V, = o (n(s),s > t).

1.9 Stochastic integral

Throughout this section and throughout the monograph we consider the pair
(w(t), n(t)),t = 0, where w(¢) is an r-dimensional standard Wiener process and
n(t) is a standard homogeneous Markov chain (see Definitions 19, 21). Assume that
the o -algebra F; is independent of G, for every ¢+ > 0, where F, and G, have been
defined in the preceding section.

Denote by H, := F; v G, t > 0.

LetG =o(n(t),t > 0).

Theorem 25. For every t > 0, F, is independent of G and U, is independent of
Fi: v G. Therefore, U, and H, are independent o -algebras for every t = 0.

Proof. First one proves that F; is independent of G, forall r > 0, s > 0. Indeed,
ift < s we have F, C F; and since F; is independent of G; it follows that F, and F;
are independent o -algebras. Similarly one proves that ¢ > s.

Now let M be the family of all sets of the form N, {n(#) = i}, with f; > 0,
 #t,ifk#Landip € D, 1 <k <m,

M={A;AeMyorA=0), N, ={GNF; GeG, FelF

and S, be the family of all sets of the form N/_,(w(t + h;) — w(1))~'(B;) with
hi > 0, B; € B(R"), 1 < i < p. Obviously M, N, and S, are m-systems and
oM)=G,oN) =F VG ando(S) =U.

Define G(F) = {G € G; P(GN F) = P(G)P(F)} for each F € F,. Since F,
is independent of G; for all s > 0, it follows that M C G(F). By using the equality
F — G = F ~ (F N G) one verifies easily that G(F) satisfies conditions (ii) and (iii)
in Theorem 1. Thus, by virtue of Theorem 1, G(F) = G for all F € F; and thus the
first assertion in the theorem is proved. -

Further,if S € §;, H e N;, H=GNF, G € G, F € F;,since F, isindependent
of G for every u > 0 and 4, is independent of F; (see Theorem 21), we have

PSNHY=PSNGNF)=PG)PSNF)
= P(G)P(S)P(F) = P(S)P(H).

Therefore, by using Theorem 1, one gets P(U N H) = P(U)P(H) forall U € U,
H € N, and applying Theorem 1 again, one concludes that P(UNV) = P(U)P(V)
ifU el, Ve F, vG. The proof is complete. il

If [a,b] C [0,00) we denote by L%,”u,[a, b] the space of all nonanticipative
processes f(t),t € [a, b}, with respect to the family H = (H,),t € [a, b], with
E [P fr@dr < oo.
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Letk € {1,...,r} be fixed and let B(¢) = wi(r),t > 0.

Since the family of o -algebras H,, r € [a, b], has the properties used in the theory
of the 16 stochastic integral, namely:

(a) Hfl C H,z if 11 < 1

(b) o (B(t + h) — B(2), h > 0) is independent of H, (see Theorem 25);

(c) B(¢) is measurable with respect to H,;

(d) H , contains all sets M € F with P(M) = O forevery t > 0,
we can define the It6 stochastic integral fab F()dB(t) (see [52], [55], [81], [97], [98])
with f € L2 [a,b].

Definition 22. A stochastic process f(t), t € [a, b), is called a step function if there
exists a partition a = ty < ty--- < t,, = b of [a, b] such that f(t) = f() if
telt,tiv), l<i<m-—1

If f is a nonanticipative step function, by definition

m—1

b
f FWdp@) =Y f&) Btz — B).
a i=1

Further, let us remember some properties of the integral f‘ Ib f(t)dB(t) that are
proved in [52].

Theorem 26. If f € Lf]'w[a, b] we have the following properties:

(1) There exists a sequence f, of step functions in Lf,‘w[a,b] such that
Efab Lfut) — F(O)12dt — 0 and the sequence fab [»(1)dB(t) is convergent in
probability; its limit is by definition [* f(1)dB(t).

(i) E [ I f(t)dﬁ(t)iHa] — 0 and therefore E [ [" f@0dp@)inta) = i] —0,
ieD.

(iii) E [( I f(t)dﬂ(t))lea] —E [ % fz(r)dtlHa] and therefore

b b
E {(/ f(t)dﬂ(t)> n(a) = i} =E U Frt)dt|n(a) = ii|,i eD.

(iv) If & is a bounded random variable measurable with respect to H,,, then

2

b b
f&f(t)dﬁ(t)=€/ f(B)ds@).

(v) The process x(t) = fa’ f(®)dB(t),t € [a, b, admits a continuous version
and x(t) is H, adapted. O

Theorem 27. Let f € L,27p wla, b] where p is a positive integer. Then

b 2p b
E (/ f(t)dﬁ(t)) <pQp-1P(b—-a)'E (/ fz”(t)dt>. O
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Remark 8. (i) Since almost all sample paths of a Brownian motion have infinite vari-
ation on any finite interval (see [52]) the stochastic It integral cannot be defined
in the usual Lebesgue-Stieljes sense, with w fixed; therefore the assertion (iv) in
Theorem 26 is not trivial and it must be proved.

(11) The stochastic It6 integral can be defined for nonanticipative functions f with
the property fa b |f(ldt < o0 a.s., but the equalities in (ii) and (iii) of Theorem 26
hold if E [ | f(1)2dt < oo.

Remark 9. The proof of assertion (i) in Theorem 26 shows (see also Lemma 6.2,
Chapter 4, in [52]) that if f € Li’/’(([a, b1]) where the increasing family M of o-
algebras has the property in Theorem 19, then there exists a sequence f, of step
functions f, € L’/ ({a, b]) such that lim, o E [ | f, — f1??dt = 0.

The next result has been proved in [80].

Theorem 28. If f € L2 [a, b} we have E [Xn(b)=i fab f(t)dﬂ(t)[Ha] = 0 for every
ieD.

Proof. We prove first that if f € L2 [a, b] is a step function, then

n.w
b
E (Xn(b):i/ f(l)dﬂ(f)> =0.
Indeed, let f(t) = Z:ol £ X1 f (1) being measurable with respect to H,, .

Since H,;, v o(n(b)) C F, v G by Theorem 25, it follows that B(fry1) — B(%) is
independent of the o-algebra H,, v o (1(b)), and thus by Theorem 18(v) one gets

E[(B(tx+1) — B Hy, v o (nd)] = E(B(ter1) — B(t)) = 0.

Hence, by using the properties of the conditional expectation (see Theorem 18), one
can write

b m—1
EXn(b)=i/ f(®dp@) = Z Exny=i ft)(Btirr) — B(e))
a k=1

m—1

= Y E(ElUm=i f @) Bis1) — B#))
k=1
[Hy, v o (n(b)])
m—1

=Y E(ttr=i f G EIB 1) — B10)

k=1
[Hi v o(ndb)D
= 0.
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Further, by Theorem 26, let f, be a sequence of step functions in L%\w[a, b] with
E fab | £ (1) — F()|?dt — 0. We have by virtue of Corollary 8 and Theorem 26

b b b
‘E (Xn(b)=i[ f(t)dﬁ(f))l = ‘E [Xn(b):i (/ f(dp() —/ fn(t)dﬂ(t))}l

b
/ (fu(t) = f()dB(1)

b 2172
=< [E (/ (fu(t) — f(f))dﬂ(t)> :|

b 1/2
= (E/ (fult) — f(t))2d1> — 0 forn — oo.

<FE

Hence ,
EXyw=i f ftdp(r) =0. (1.3)

Let £ be a bounded random variable measurable with respect to H,,.
Then it follows that £ f € Lfl_w[a, b] and hence (1.3) gives

b
E Xty / £ (NdB(H) = 0.

But, according to Theorem 26(iv), we can write
b

b
Exam=i& | fOdB(t) = EXn(b):if £f ()dp(r) = 0.

a

Hence, by Theorem 18 we have

b b
E (&E [Xn(b):i/ f(f)dﬂ(f)IHa:D =E (E {sxm}:i[ f(l‘)dﬂ(f)lHa])

b
=E [éxn(b):i/ f(t)dﬁ(t)i| = 0.

Taking in the above equality £ = x4, A € H,, we get that

b
E |:Xr)(b)=i/ f(t)dﬂ(t)lHa} =0 as,

and the proof is complete. g

Further, let 0 = (o)) be an n x r matrix whose elements are in L;w[a, b}. Then

the stochastic integral fab o (t)dw(t) is an n-column vector whose k’s component is

given by
r b
Z[ o (dwe(t), 1 <k <n,
=1 a

where the integral fab oke(1)dwy(t) is the 110 integral for § = w, with respect to the
family of o -algebra H,.
Here w(t) = (w(t), ..., w.(£))*.
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Remark 10. From Theorem 26 it follows directly that if £ is abounded random variable
measurable with respect to H,,, then

b b
5/ a(t)dw(t)zf Ea(t)dw(t) as.,

the elements of o (¢) being in L%}.w [a, b}.

The next result follows from Theorem 26 and it can be found in all books
containing the theory of the stochastic It6 integral.

Theorem 29. f the elements of o (t) are in L}, [a, b, then

b b 2 b
E/ o(t)dw(t) =0 and E / o ()dw(t) :Ef Ha(t)]lzdt,
where
loI* =" ol o(t) = Tr(a* (o (1)). O
k.t

Theorem 27 implies the following result directly.

Theorem 30. If all elements of the matrix o (t) are in Lip wla, bl, p being a positive
integer, then

b
/ o(t)ydw(t)

a

2p
E

b
Snr[p(Zp—l)]”(b—a)”_IZE/ RAG
k.t a

Applying Theorems 29 and 30 for x,,)-; - ¢ and taking into account Remark 10,
one gets the following results.

Theorem 31. Under the assumption of Theorem 29 we have

b
E {/ o(dw() | nla) = t} =0,

2 b
E{ | n(a) = z} =E U llo ()11°dt | na) = z}

b
/ o()dw(r)
foralli € D. O

a

Theorem 32. Under the assumption of Theorem 30 we have

b 2p
E [ / o(t)dw(t)| |nla) = 1}

b
<nrip@p = DI G-y Y E U orb(ndt | n(a) = z}

k.t

foralli € D. 0
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Definition 23. Let x(1), t € [ty, T, be an n-dimensional stochastic process verifying

1 !
x(t) — x(tp) =/ a(s)ds +/ o(s)dw(s), a.s.if {8, T],
Iy ]

wherea = (ay,...,a,)",0 = (o) withl <k <n,1 <{ <r, and ay, oxg being in

L,z,,w[fo, T for all k and €. Then we say that x(t) has a stochastic differential dx ()
given by

dx(t) = a@)dt + o (t)dw(t), t € [ty, T]. (1.4)

Obviously if x(f) is measurable with respect to H,, and E|x(f)|> < oo, the

above stochastic process x = (x(t)),t € [ty, T], is a continuous process and x €
L} 6, T]

Theorem 33. (It6’s formula) Let v(t, x) be a continuous function in (t, x) € [0, T] x
R” together with its derivatives v,, vy, vyy. If x(t) verifies (1.4), then

9 9 *
dv(t, (1)) = [a—’:(t,x(t)) n (%(r,x(r))) a(t)

+ ey 22
—1ro
2 dxox

(t, x(t))o(t)] dt

+ (a—v(I,X(t))) o(t)dw(t),
ox

a.s., ift € [ty, T1. I

1.10 An It6-type formula

We are interested in the following to obtain an Ité-type formula for (1.4) with functions
v(t, x, i), i € D, rather than v(z, x), namely for functions depending upon the states
i of the Markov process 7(t).

Since H, incorporates properties of n(t), we would like to exploit the properties
of both w(z) and n(t). This fact will be more clear in the following developments
when stochastic differential equations with Markovian jumping will be investigated.

A strong argument for considering functions v(t, x, i) instead of v(¢, x) is that
the It6 formula for the function v(z, x) (Theorem 33) does not retain the fundamental
elements of the process n(t) as p;;(t) and g;;.

We must emphasize the fact that by contrast with the [t6 formula given in Theorem
33, which is valid for a.a. v € Q, when considering functions v(¢, x, i) we cannot
expect to obtain a similar formula for v(z, x(¢), n(¢)) holding a.s. This is due to the fact
that the coefficients g;; are strongly related by considering the conditional expectation
with respect to the events {n(¢) = i}.

In order to prove an It6-type formula for functions v(¢, x, i), we need the following
result, which is interesting by itself.

Letusdenote R, = U, vV, t > 0, where the o-algebras I, and V), are as defined
in Section 1.8.
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Theorem 34. If & is an integrable random variable measurable with respect to R,
thatis, & € L'(Q, R,, P), then E[€|H,] = E[£|n()] as.

Proof. The proof is made in two steps. In the first step we show that the equality
in the statement holds for § = xp for all B € R, and in the second step we consider
the general situation when £ is integrable.

Step 1 Define z = E[£|n(7)]. We must prove that

E(zxa) = E(Exa) VA€ H,. (1.5)

First we shall prove that (1.5) holds in the particular case when & = xu xw,
Mel, NeV,.

Let M be the family of all sets A € F verifying (1.5). Itis obvious that M verifies
(ii) and (iii) in Theorem 1.

LetC ={FNG; F eF,G € G}, itis easy to check that C is a w system. We
show now thatC C M. Indeed,let F € F,, G € G,; we must prove that E(zxrx¢) =
E(& xrxc). Butsince xy is independent of { xn n(¢)} (see Theorem 25) we can write

/ E(xm)ElxnIn()]dP = E(xM)/ E[xnIn()ld P
{n(r)=i} {n(t)=i}

= EG)E(xXwn Xpin=i) = EQta Xn Xney=i)

= / XmxnNdP.
(n(ny=i}

Hence z = E{xp)E[xnIn(t)] (in our case z = E{xpxnIn()].
From Theorem 24(iii) we have E[xy|n(t)] = E{xn|G:].
Further, since xj is independent of {xr xc.xv} and xg is independent of

{xc. ElxnIn(t)]} (see Theorem 25), we can write, applying Theorems 17 and 18,
that:

EExrxc) = EGmxnxrxc) = EG)E(XNXFXG)
= E(xm)E(Xr)E(XnXG),
EGzxrxe) = EGm)E(XFxc Elxnin(®)])
= E(xm)E(Xr)E(XcElxnIn()])
= EGEXR)E(XcElxnIG])
= (Exm)(Exr)E(E[xcxn1G:])
= E(m)E(XF)E(XnXG)-

Thus we proved that C C M. Hence by Theorem 1 ¢ (C) € M. Buto (C) = H,,
thus E{xpxn|H:]l = Elxpxnn@)) foral M e U, N € V,.

Now let A be the family of B € F with E{x|H,] = E[Xglﬁ(t)].

We know that A contains C = {(MNN Mel, NeV}.C is a 7 system and
since A verifies (ii) and (iii) in Theorem 1 it follows that N’ O o (C) = R,.
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Step 2 First assume that & > 0; by Theorem 6 there exists a sequence of simple
random variables &, (w) with the properties 0 < &, < &,41;1im,_, o &, (@) = &(w) and
&, are measurable with respect to R,. Foreachn > 1 we have E[§,|H,] = E[§,in(t)].

Applying Theorem 11, the equality in the statement is valid in the case when & is
nonnegative, integrable, and measurable with respect to R,.

In the general case we can write § = &+ — &, where &+ = J(|§| + &) and

T = %(]SI —£),£7 >0, > 0, and thus the equality in the statement takes place
for &7 and £~ and therefore, according to Theorem 18, the proof is complete. a
Theorem 35. (It6-type formula) Let us consider a = (ay, ..., a,)* with a, € L%,w X
([to. T, 1<k <n, o =[0jjlicicni<j<r With 0j; € L,z,,w([fov T)) and § an
n-dimensional random vector H,, measurable with E|§ |> < oo and let the function

v, x, ) =x K@, Dx +2k7(t, Dx + ko(e, D),

where K : [to, TIxD — R"™" K = K*, k : [t5, T]xD —=R" ko : [tp, T]xD =R
are C'-functions with respect to t. Then the following equality is true:

E[(U(I,X(t), n(1) — v, §, i))ln(to) = l}

" av v
= E[/ [a—(s,X(S),n(S))+a*(S)—(s,x(S), n(s))
I t 8x

d
+Tr(c*(s)K (s, n(s))o(s)) + Z v(s, x(s), j)CIz;(s),j}d5|77(t0) = i]
j=!
(1.6)

for alli € D and for the stochastic process x(t), t € [ty, T], verifying
dx(t) = a(t)dt + o (t)dw(t),t € [ty, T], and x(ty) = &.

Proof. The proof consists of three steps.

Step 1 Assume that £, a, o satisfy the assumption in the statement and additionally
& is a bounded random vector a, o are bounded on [fy, T] x 2, and a(?), o (¢) are,
with probability 1, right continuous functions on {fg, T].

Under these assumptions, applying Theorem 30, we deduce that

sup Elx()|* < o0
tety. T

forall k € N, k > 1. We can write
v(t+h, x(t+h),n(t + k) —v(t, x(t), n(t))
=v(t+h,x(t+h),nt+h)—v(t,x@),n(t+h)
+U(t,x(t), 77(f + h)) - U(t, X(t)v 7](’))
d
=Y Xnwsi=s (00 +hox( + h). J) = v(, x(0), ))
j=1
+u(t, x (1), n(t + h)) — v, x(£), n(1)),

where yxjs is the indicator function of the set M.
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For each fixed j € D, we can apply the 1td formula (Theorem 33) and obtain
vt +h,x(t+h), j)—v(t, x(@), j)
t+h t+h
:f m;(s)ds +2/ (x*(s)K (s, j) + k*(s, JHo(s)dw(s),
! !
where

m;(s) = x*()K (s, )x(s) + 2k*(s, j)x(s) + ko(s, j) + 2x*(s)K (s, j)a(s)
+ 2k (s, pa(s) + Tr(c*(s)K (s, j)o(s)),

J € D. Using Theorem 28, we deduce that

t-+h
E[Xn(ﬂ—h):j f [x*(s)K(s,j)+k*(s,j>]o<s>dw<s)m,] =0.

Hence

1+h
E I:Xn(t+h):j/ (x*($)K (s, j)+k*(s, jNo(s)dw(s)|n(ty) = i:l =0,
!
and finally we deduce

E[((t + h, x4+ h), n(t + h)) — v, x(®), n(t + h))n(to) = i]
1+h
=>E [x,,<,+h>:j / m;(s)ds | (to) = i]. (1.7)
j=1 !
It is obvious that m ;(s) is, with probability 1, right continuous, and hence we

have

ENO
Since 7n(z) is right continuous we can write

1 1+h
lim —/ mj(s)yds =m;(t), t €10, T), j €D.
t

1

t+h
}li\f% EXn(r+h>=j/[ mj(s)ds = Xpuy=jm;(1). (1.8)

On the other hand, since sup, ., 7| E|x(1)]* < 0o we obtain that there exists
B > 0 (not depending upon ¢, k) such that:

2

<P

1

r+h
E ‘Exn(wh):j/ m;(s)ds
!

Thus, from (1.7) and (1.8) and Theorem 13, it follows that

1
}lli\flr(l) ZE[(U(I +h, x(t + 1), n(t + h)) — v(t, x(0), nt + M) In(w) = i]

= ZE[Xn(:)=jmj(f)|n(to) = i] = E[m(t)In(t) = i], (1.9)

j=1
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telt, T),i €D, where

m(t) = x* (DK (1, n()x(t) + 2K (8, n())x (1) + ko(t. n (1))
2O K, n(®) + K (¢, n(t)]at) + Tre* (O K, n()o 1)),

where K(t, n(t)) = %K(t, n(t)). Further, by using Theorem 18, we can write

Ef(w(, x(0), n(t + b)) — v(t, x(1), n()))In(t0) = i]

d
=E |:(Z Xnt+my=0(t, x(1), j) — v, x(1), n(f))) In(to) = l} (1.10)

j=1

d
Y EW(t, x(0), EXyuem=iHiIn(to) = i]
j=1

—E[v(r, x(), n()In{to) = i].

By virtue of Theorem 34 we have

EXnu+m=jHi] = E[Xnasn=; 1001 = pyay. (h). (111

Hence from (1.10) and (1.11) we have

E[(w(t, x(®), n(t + h)) — v(t, x(&), n(t))In(te) = i]

=E { 3" . x (@), ) = vt x(@0), n0) pyey; (W) In(t0) = 11 .

J#EN)

Recall that P(h) = [p;;(h)] = 2", h > 0, with Z(;:I gi; = 0. Applying Lebesgue’s
Theorem we obtain that

;@)%E[(vu,x(r),n(wh))—v(r,x<r>,n<z>>>|n(ro>=i] (1.12)
d
=Y EW(t, x(0), )gqn;Intto) = il.
j=1

Combining (1.9) with (1.12) we conclude that

;1'1{1(1) %E[(v(t +h), x(t + k), n(t + b)) — v, x (@), n(ONIn(te) = i]

d
=E [(,;,(,) + ) vt x(0), j)qw) In(to) = i] :
j=1

Gi(1) = Elv(t, x(1), n())In(to) = i, i € D,

Denote
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and

d
hi(t) = E | | (6 + Y v(t, x(1), Pgnn; | InCto) =i

j=1

Since sup, ¢, 77 E(m(1) + Z;zl u(t, x(t), })gnw;)? < 00, it follows by Theorem 13
that &, (¢) is right continuous and therefore

1 1+h
lim —/ hi(s)ds = h;(t),t € [t, T).
nNO R,

Hence

1 t+h
lim — (Gi(t +h)—G;(t) - / h,-(s)ds) =0,t€(t,T),ieD. (113)
N0 A ;

Since the process n(¢) is continuous in probability (see Theorem 24) it follows by
using Corollary 4 that v(z, x(¢), n(t)) is continuous in probability.

Having Sup; e,y Elv(t, x(1), n(t)> < oo it follows from Theorem 13 that
G;(t),i € D, is a continuous function, and thus from (1.13) we conclude that

t
Gi(t) —Gi{ty) = / hi(t)dt,t € [0, T1,i € D,
o
and so the equality (1.4) holds.
Step 2 Assume that & is H,,-measurable; E|§ 2 < o0; a,o are bounded on
[to, T] x €25 and a(t), o (¢) are H,-adapted. Let

& = & Xje <k
1
ap(t) = k/ a(s)ds,
max {1— 7o
t .
or(t) = o (s)ds.
maxl!—{:.lo

Itis obvious that a; and oy are continuous (with probability 1), bounded on [#, T]x €2,
and H,-adapted (see Theorem 20). From Theorem 14 and from Lebesgue’s Theorem
it follows that

T
lim f (lae() — a()P + o) — o(0)]) dt =0 (114)

k—00 1
and applying Lebesgue’s Theorem again we have

T
lim E/ (lax(®) — a@) + flow(r) = o (D)) di = 0.

Iy

From Lebesgue’s Theorem it follows that

Jlim Eg — £2 =0.
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It is easy to verify by using Theorem 29 that sup, ¢(,, Elx(t)> < oo and

T
sup Elxi(r) — x(t)|* < 3E [m —€|2+(T—f0)/ lay (t) — a(t)|*dt
o

telty, T)

+ llow(t) — o(t)llzdt] k> 1,

where , .
o= &+ f a(s)ds + / o1(5)dw(s).
o to

Applying the result of Step 1 for each k > 1 we obtain

E[(t, xi(0), n(1)) — v(to, &, D)) n(to) = i] (1.15)

=F f xZ(s)I?(s,n(S))xk(s)+2k'*(s,n(s))xk(s)+150(s,n(S))
10
+ 2 (xF()K (s, n(s)) + k*(s, n())) a(s) + Tr(ay (s)K (s, n(s))or(s))
d

+ )00, xk(8), Dy | dslnlte) = i
j=1

Taking the limit for k — oo we conclude that (1.4) holds.
Step 3 Now consider that &, a, o verify the general assumptions in the statement.
Define

ax(t) = a(t) Xjaw)|<k»
or(t) = o () Xjor)i<k-

Applying Lebesgue’s Theorem it follows that a; and o, verify an equality of type
(1.14). On the other hand it can be proved by using Theorem 29:

T
sup E|xx(t) — x(1))* < 2E [ / (T — to)|ar(t) — a(®)|* + n&k(t)—o(t)nzdt]
p

tefty, T1

where . .
() =4§+ / ar(s)ds + / o (s)dw(s).
fo 1))
Now, applying the results from Step 2 for &, a;, &%, X we obtain an equality of
type (1.15) with &, a, oy, x; replaced by &, a;, oy, xg-
Taking again the limit for k — oo we conclude that (1.4) holds and the proof is
complete. O

Remark 11. (i) The proof of Theorem 35 has been performed in several steps, since
only poor information is available concerning a and o, namely that their elements are
in L, ([to, T1).



26 1 Preliminaries to Probability Theory and Stochastic Differential Equations

(i1) The particular form for v(z, x, i) is essentially used when making k — oo in
Steps 2 and 3 of the proof.

(iii) The proof shows that the result is true for functions v(¢, x, i) in C I with
respect to ¢ and in C? with respect to x; the functions v(¢, x, i), %(t,x, 1), and
g—;(r, x, i) have increments with respect to x of the same type as the increments of

. . . 2
the quadratic function used in the theorem. Moreover, Bax;x

onft, T} x R" x D.

(t, x, i) must be bounded

1.11 Stochastic differential equations

Stochastic difterential equations depending on the pair (w(¢), n(¢)) with the above
properties are considered in {60], [80], and [83], where stability and control problems
are investigated.

In [117], Wonham emphasizes the importance of the differential equations sub-
jected to the white noise perturbations w(t) and Markovian jumping n(¢) for control
problems.

Consider the system of stochastic differential equations

dx(t) =[f(t, x(),n(1) + a(®)ldt + [F(z, x(1), n()) + o (D] dw(), (1.16)

where the processes w(t) = (w(¢), ..., w,(¢))* and n(¢), t > 0, have the properties
in Section 1.9. Assume that g, o, f, and F satisfy the following conditions:

(ChHa: R xQ — R", 0 : R xQ — R and theirelements are in L%qw[O, T],
forall T > O,

C2) f Ry xR"XD->R" F:R, xR" xD —R" and foreachi € D,
f(, - i)yand F(-, -, [) are measurable with respect to B(R . xR"), where B(R; xR")
denotes the o -algebra of Borel sets in R, x R”;

(C3) For each T > 0 there exists y(T) > 0 such that

[f(tx, 1) = f, x, DI HINF @, x,0) — Ft, oDl < y(D)xy — x2f  (1.17)
forallz € (0, T], x;,x; € R",i € D, and
[ x, DI+ FEx, DI < y(MA+ |x]), (1.18)

forallt € [0,T],x e R",i € D.
Using the same technique as in the proof of Theorem 1.1 from [52, Chap. 5], one
can prove the following result.

Theorem 36. Assume that a, o, f, and F satisfy the conditions (C1) = (C3). Then
Sor all ty > 0 and & measurable with respect to 'H,, and E|§ [ < oo there exists a
unique continuous solution x(t) = x(t, xg, £), t > to, of (1.16), verifying x(ty) = &
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2

and which components belong to L; .,

[tg, T) for all T > ty. Moreover we have

sup E [|x()*In(to) = i]

to<t<T

.
<K (1 +E [(mz +f (la* + o (1) dr) In(to) = z]) :

where K depends on T and T — ty. The uniqueness must be understood in the sense
that if x1(t) and x,(t) are two solutions of (1.16) satisfying x,(tp) = x2(tp) = & and
whose components are in wa[to, T, then E|x1(t) — x2(t)| = 0,1t € [ty, T]. il

For the particular case when a(t) = 0 and o (t) = 0, one obtains the following
result.

Theorem 37. Assume that f and F satisfy (C2), (C3), and a(t) = 0,0(t) = 0, for
allt = 0. Then for all ty > 0 and & measurable with respect to H,, with E|E)? < o0,
the system (1.16) has a unique continuous solution x(t), t > ty, verifying x(ty) = &
whose elements are in L%‘w[to, T forall T > ty. Moreover, if E|E|*? < oo, then we
have

sup E[|x(0)[*In(to) = i1 < K(1 + E[IE]*"n(to) = iD), (1.19)

to<t<T

i € D, where K dependson T, T — ty, and p.
Proof. Consider the sequence of successive approximations defined by
xo(t) =§,1 € 1o, T},

Xmy1(t) = § +/ fGs, xm(s), n(s))ds +/ F(s, xn(s), n(s))dw(s), m = 0.
0

o

Using (1.17), (1.18), and Theorem 32 it is easy to verify by induction that

m-+2 (t — IO)m_H :|

E (om0 In(t0) = ] < [C“Z("“’H'”“ m o+ D1

x (1+ E[IE1” | n(to) = i]),
th<t<T,ieDm=0,

where ¢ > 0 depends only on 7', T — ¢y, and p. Hence
E[xms1 (D17 In(to) = i1 < ce ™0 (1 + E[IE]* | n(to) = i]).

Since x,,(t) = x(t) a.s. uniform on [y, T] (see [52]) from Fatou’s Lemma it
follows that

E[lx()*"In(to) = i1 < K(1 + E[IE1*P|n(to) = i]), t € [to, T],i € D

and the proof is complete. a
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With the same proof used for stochastic differential [td systems (see [97], [111])
one can prove the following result.

Theorem 38. Under the assumptions of Theorem 37, suppose that f and F are
continuous functions for each i € D. Then the function

(z,x) € [ty, 00) x R" — x(, tg, x)

is a.s. continuous for each ty > 0, hence x(t, ty, ) defined on R" x Q is measurable
with respect to B(R") @ Hy, ,, t > to, where

Higr = a(w(s) ~ w(t), n(s); s € [, 1]).

Based on the inequality (1.19) one can obtain an Ité-type formula for the solution
of the system (1.16) in case @ = 0, 0 = 0 and in more general assumptions for the
functions v(z, x, [) than the ones used in Theorem 35.

The result giving such a formula has been proved in [80].

Theorem 39. Assume that the hypotheses of Theorem 37 are fulfilled and additionally
fC,- D), F(, -, i) are continuous on Ry x R, foralli € D. Letv : Ry x R* x D
be a function which for each i € D is continuous together with its derivatives v, vx
and V.

Assume also that there exists y > 0 such that

v 3%
t, ’. — 1z, 7. —(, ’.
[v(z, x t)|+‘at( x,i) +”8x8x( x, i)

T
—(t, x,1i
dox

<Kr(1+|x{"),t €0, T],xeR",i €D,
where Ky > O depends on T. Then we have:

E [v (s, x(s), n(s)) [n(to) = i] — v(to, X0, i)

S| ov v *
=E / i (t, x(), n(t)) + (‘— (t, x(2), 77(’))) [, x@),n())
t ox

[0)]

2

0°v
1ok (t, x(1), n(1) (1.20)

+%TrF* (1, x(1), n())

d
X F(t, x(0), (1) + Y v (b, x(0), 1) goary; ¢ dtln(o) =i |,

j=1
x(t) z-x(tat()vxo)s X0 ER"a =t 209

foralls > ty,i € D.
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Proof. From Theorem 37 it follows that for all positive integers p we have

sup E[Ix(D1*In(t0) = i] < K(1 + |x0l*").

rg<t<T

Therefore using Theorem 13 for ¢ = 2 it follows that it is possible to take the
limits in the integrals from the first step in the proof of Theorem 35, obtaining that

hlinol ;Z—E[{v((t+h),x(t+h),n(t+h)) (1.21)

t+h
—v(t,x(f),n(f))—/ m(S)dS}In(to) =i] =0

where

d a *
m(t) = —a” (t, x(1), n(0)) + (—“ (t. x(1), n(t))> £t x(). n(1))
1 ox

9%v

0xdx

1
+§TrF*(l,X(f)J)(f)) (1, x(1), (1))

d
X F (1, x(0), 1(1) + Y v(t, (1), n())gyan; -

J=1

Taking into account that #n(¢) is continuous in probability and again using
Theorems 37 and 13 for @ = 2, it follows immediately that

E [(v (t, x(1), (1)) —/ m(S)dS) in(to) = i]
19

is a continuous function, and therefore from (1.21) it results that (1.20) holds and the
proof is complete. |

Remark 12. (1) The proof of the previous theorem shows that the result in the statement
is also valid for random initial conditions &, H,,-measurable and E[|§ |2P] < oo for
pzy+2

(ii) From Theorems 36 and 37, for the system (1.16), Theorem 39 is not applicable,
while in the case when a(t) = 0 and o (t) = 0 we can use Theorem 39 due to the
estimate (1.19).

(iii) In many cases, in the following developments we shall consider the system
(1.16) with a(r) # 0 and o(¢) # 0, being thus obliged to use Theorem 35.

1.12 Stochastic linear differential equations

Since the problems investigated in this book refer to stochastic linear controlled sys-
tems we recall here some facts concerning the solutions of stochastic linear differential
equations.
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Let us consider the system of linear differential equations

dx(t) = Ao(t, n(1)x(t)dt + Z At n(D)x (Ddwe(r), (1.22)
k=1

where t — Ai(r,i) : Ry — R"", [ € D, are bounded and continuous matrix-
valued functions.

The system (1.22) has two important particular forms:

1) Ax(£, i) =0, k=1,...,r, t > 0. In this case (1.22) becomes

x(t) = A, nt)x@), t =0, (1.23)

where A(t, n(1)) stands for Ay(¢, n(t)) and it corresponds to the case when the system
is subjected only to Markovian jumping.
(i1) D = {1}; in this situation the system (1.22) becomes

dx(t) = Ag()x(t)dr + ZAk(t)x(t)dwk(t), t >0, (1.24)
k=1
where A (1) := A (1, 1), k =0, ....r, t > 0, representing the case when the system

is subjected only to white noise—type perturbations.

Definition 24. We say that the system (1.22) is time invariant (or if is in the stationary
case) if Ap(t,1) = Ax() forallk =0,...,r,t € Ry andi € D. In this case the
system (1.22) becomes

dx(t) = AnO)x (Ot + 3 AcGrO)x(Ddwi (o). (125)
k=1

Applying Theorem 37, it follows that for each fp > 0 and each random vec-
tor &, H,;,-measurable and E|§ I> < 400, the system (1.22) has a unique solution
x(t; to, €) which verifies x(to; 19, £) = £. Moreover, if E|£|*”? < 400, p > 1, then

s[upTJEnx(r,ro, E)P | n(te) = i] < cE[|E|* | n(to) = i1,
rely.

i € D, ¢ > 0depending upon T, T — 1y, and p. Foreachk € {1, 2, ..., n} we denote
O, (1, tg) = x(t, fy, e;) where ¢, = (0,0,...,1,0,...,0)* and set

O(1,19) = (P2, 1g) Pa(t, 1) -+ P,(t, 10)).

d(t, 1) is the matrix-valued solution of the system (1.22), which verifies
d(ty, t9) = I,. If £ is a random vector H,-measurable with E|€]> < oo, we denote
X(t) = ®(z,1)&. By Remark 10 it is easy to verify that ¥(¢) is a solution of the
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system (1.22) verifying X(¢) = &. Then, by uniqueness arguments, we conclude that
X(t) = x(t,1, &) as., t > tg. Hence we have the representation formula

x(t, 10, &) = ®(t,10)§ as.

The matrix ® (¢, to), t > 15 > 0, will be termed the fundamental matrix solution of the
system of stochastic linear differential equations (1.22). By the uniqueness argument
it can be proved that

P, )0, 10) = P, 1) as., t >5 > 1y > 0.
Proposition 40. The matrix ®(t, ty) is invertible and its inverse is given by
O~ (t, 1) = B (t. 10) a5, t = 1 > 0,

where ®(t, 1) is the fundamental matrix solution of the stochastic linear differential
equation:

dy(1) = {—A;;(r, )+ 3 (A n(t)))*} y(tydt (1.26)

k=1

=Y AL @)y dwi(e).
k=1
Proof. Applying I[t6’s formula (Theorem 33) to the function
v(t,x,y)=y*x, t>15, x,y € R"
and to the systems (1.22) and (1.26), we obtain

y*5*(t, )@, 1)x —y*'x =0 as,t > >0, x,y e R";

hence 5*(t, )P (1, t0) = I, a.s., t > 1y, and the proof is complete. O
Let us consider the affine system of stochastic differential equations:
dx(t) = [Ao(t, n(t)x (1) + fo(n)]dt (1.27)

+ Z[Ak(t’ n()x(0) + fiO)ldw (1),

k=1
t > 0, where f; : Ry x  — R”" are stochastic processes with components in
L?W([O, T] forall T > 0. Using Theorem 36 we deduce that for all £, > 0 and
for all random vectors &, H,,-measurable with E|& |2 < oo, the system (1.27) has a
unique solution x,(t, ty, §), f = (fo. fi...., fr). Additionally, for all T > 1,, there
exists a positive constant ¢ depending on 7', T — 1y such that

sup E [ |70t 10, &) 1 m(t0) = 1] (1.28)

tely, T

r T
<c [E [(mz + Z/ lfk<s>12ds) | n(to) = ,} ds} :
k=0 Y0

Let (¢, 1y), t > tg > 0, be the fundamental matrix solution of the linear system
obtained by taking f; = 0in (1.27) and set z(z) = ®~'(z, fo)x (2, to, &). Applying
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Itd’s formula (Theorem 33) to the function v(¢, x, y) = y*x, x, y € R", and to the
systems (1.26) and (1.27), we obtain

yrz(t) = y*z(to) + y*/ & (s, 1) lifo(s) - ZAk(Sﬁ TI(S))fk(S):l ds
k=1

o

+ ny D7 (s, to) fi(s)dwi(s) as.,
k=1 fo

t > ty, y € R Since y is arbitrary in R” we may conclude that

o) = £+ f @~ (s, 10) [fo(s)—ZAk(s, n(S))fk(S)] ds
‘o k=1

+Z/ O (s, 1) fu(s)dwi(s) as.,
k=170

t > ty. Thus we obtained the following representation formula:
xp(t 10, 8) = P, 10) (1.29)

+ &, fo)f ®~ (s, 1) [fo(s) - Z Ag(s, U(S))fk(s)} ds
Iy

k=1

+Z<D(z,t0)f (s, 1) fu(s)dwi (s) as.,
1y

k=1

t > 19, which extends the well-known constant variation formula from the
deterministic framework to the case of stochastic affine system (1.27). O



2

Exponential Stability and Lyapunov-Type
Linear Equations

In this chapter the problem of mean square exponential stability of the zero solution
to the stochastic differential equations of type (1.22) is studied. The stabilization of a
steady-state is one of the main tasks appearing in many design problems of controllers
with prescribed performances.

In the case of stochastic systems there are several possibilities to define the concept
of stability of a steady-state. Among them, one of the most popular is the so-called
exponential stability in mean square (ESMS). The exponential stability in mean square
has the advantage that it may be characterized by some conditions that are easy to
check. Moreover, in some particular cases, such as the time-invariant case or the
periodic case, the exponential stability in mean square is equivalent with other types
of stability in mean square. From the representation formula proved in Theorem 4
in Section 2.2 one obtains that the ESMS to the zero solution of (1.22) is equivalent
with the exponential stability of the zero solution of a deterministic linear differential
equation on a finite-dimensional linear space adequately chosen. The deterministic
differential equations are defined by the so-called Lyapunov-type operators acting on
a space of symmetric matrices. Since criteria concerning the exponential stability of
the zero solution of Lyapunov differential equations provide criteria for exponential
stability in mean square of the zero solution to the stochastic equation of type (1.22),
a great part of this chapter is devoted to studying the Lyapunov-type differential
equations. In the first part of the chapter, we make a detailed investigation of the
properties of the linear evolution operators and of the exponential stability for a class of
Lyapunov-type differential equations. The results concerning the exponential stability
in Section 2.4 are derived for a class of differential equations which contains as a
particular case the Lyapunov-type equations arising in connection with the stochastic
differential equation (1.22). A reason to consider the more general case when the
Lyapunov operators (2.8) satisfy only condition (2.7) may be found later, in the
following chapters. This allows us to simplify some proofs by using the so-called
dual systems. In this case the matrix Q of the rates of the probability transition matrix
will be replaced by its transpose Q*, the entries of which verify only condition (2.7).
In the last section of the chapter some useful estimates of the solutions of affine
equations are derived. Some aspects concerning the exponential stability in mean
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square of the zero state equilibrium for nonlinear stochastic differential equations of
type (1.16) will be discussed in Chapter 6.

2.1 Linear positive operators on the Hilbert space of
symmetric matrices

Let S, C R™*" be the subspace of n x n symmetric matrices, thatis, § € S,, if and
only if § = §*. We denote by S¢ the direct product

SI=8, x--x8,

n

S————
d
Then S € 8% if and only if § = (S(1), ..., S(d)).
In the following we shall use either notations S=(S5(1),...,S5(d)) or §=
(S1, ..., 8.

It is easy to prove that S is a finite-dimensional real Hilbert space with respect
to the inner product:

d
(S, H) =) _Tr(S)HG)). S, H € S} @2.1)

i=1
We introduce on S¢ the following norm:

|S| = max |S(@@)|, 2.2)
ieD

where |S(i)] is the norm induced by the Euclidean norm on R”, that is:

|S()| = sup |S()x| = max |A] = sup [x*S()x|,
x|<1 AEA(S(D) x|l

where A (A} is the spectrum of the matrix A. The norm defined by (2.2) differs from the
norm provided by the inner product (2.1). The space S¢ together with the norm (2.2)
becomes a finite-dimensional Banach space.

It is not difficult to check that

|H| < (H, H)? <</nd|H] (2.3)

forall H € 8.
If T: 8¢ — &Y is a linear operator, then ||T|| stands for the operatorial norm
induced by the norm (2.2), that is,

[Tl = sup [TS]. (2.4)
MBI
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Remark 1. If T*: 8¢ — S? is the adjoint operator of T with respect to the inner
product (2.1), then ||7*|| is not equal to ||T|. However, based on (2.3}, we obtain
that there exist the positive constants ¢; and ¢; such that

alT*Il = ITH < 20Tl (2.5)

For S € 84, 8 = (S(1),.... S(d)), we write S > 0if S(i) > 0, forall i € D.
Similarly, we write § > 0if S(i) > 0, foralli € D.
We denote
S, ={SeSi s >0l
8¢, is a convex cone and it induces an order relation on 8¢, namely S > H if and
onlyif S - H € S,‘f‘+.
By J¢ we denote the element of 8¢ defined by

Ji=1, x-x1,.
———

d
Obviously, J4 € 8¢ .

Definition 1. We say that a function H: £ C R — 87 is uniform positive and we
write H > 0 if there exists a constant ¢ > 0 such that H(t) > c¢J? forallt € T. We
shall also write H < 0 if and only if —H (t) > 0.

Definition 2. A linear operator T: S¢ — 8¢ is said to be positive and we write
T>0ifTS!, c&?,.

Lemma 1. The inner product (2.1) has the following properties:
() If(S,H) > Oforall He 8¢, then S € 8¢

n.+’ n.+-

(i) IfH,S € 8¢, then (S, H) > 0.
Proof. (i) Letx € R" and i € D be fixed. Set H = (H(1), ..., H(d)) by

o [xxifi =o,
H@y=1"9 ifi # i

Obviously, H € 87 , . We have
0<(S,H)=Tr[S(ip)H (ig)] = x*S(ip)x.

Since x and iy are arbitrarily chosen in R” and D, respectively, we conclude that
S>0.

(i1) From (2.1), it is sufficient to show thatif S, M € S, with § > 0, M > 0,
then Tr[SM] > 0. Since S > 0, there exist the orthogonal vectors e, . . ., e, and the
nonnegative numbers Ay, ..., A, such that

n

*

S= E Aieje;
i=1
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(see, e.g., [7]). Then we have
TriSM1 =Y MTrleefM] =) kiefMe; > 0
i= i=1

and the proof is complete. ]

Proposition 2. If T € S — 8% is a linear and positive operator then the adjoint
operator T* : 8¢ — S% is positive too.

Proof. Let S € 89, S > 0. We show that T*S > 0. Indeed, if H € S, H > 0,
then 7 H > Oand hence, according to Lemma 1(ii), we obtain (S, T H) > 0. Therefore
(T*S,H) > Oforall H ¢ S,‘,’_+. Invoking part (i) in Lemma 1 we conclude that
T*S > 0 and the proof ends. H

The result stated in the next theorem provides a method for determining || || for
a positive operator 7.

Theorem 3. [f T: S¢ — S is a linear positive operator then | T|| = |TJ|.

Proof. From (2.4) one can see that |TJ9| < | T|.Let S € Sg with | S| < 1, that is,
[S(i)| < 1 foralli € D.Hence —1, < S(i) < I, foralli e Dand —J¢ < § < J9,
Since T is a positive operator it follows that —7J¢ < TS < TJ? for all S € S¢ with
|S| < 1. Further we have

—(TT9) (i) < (TS)(i) < (TJ9)(i)
for all i € D, which leads to

(TS) (D] < [(TT)))
for alli € D and
TS| < |77
forall S € ij with [S] < 1. Invoking (2.4) again, we conclude that ||T|| < |TJ4],
which completes the proof. 0
Remark 2. 1f T: 8¢ — 8¢ is a linear and positive operator, then
(TID@ < [(TIHD)| - 1,

for all i € D, which leads to
TJ¢ < |T|J°. (2.6)

Now we introduce another finite-dimensional Banach space which will be used
in this book.

Let
Md = R™™M % ... x R™™

n.m
d
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Therefore .
ML ={(M; M=M(),..., M), M(i) e R™", i € D}.
On M, we introduce the norm
|M| = max |M (D),
where

1
IM@)| = sup |M@i)x| = haax (M* ()M ().

[xl=1

In the particular case when m = n we shall write M instead of M? , It is obvious
that S¢ is a Banach subspace of the Banach space M¢.
In this monograph (R")¢ stands for the direct product

RH? :=R" x --- x R”
——
)’ )
thatis, y € (R")? if and only if y = (y(1), ..., y(d)), y(i) e R", i € D.
On (R")? we consider the inner product

d
(y,2) =Y y*(i)z(d)
i=1

forall y = (y(1),..., y(d))and z = (z(1), ..., z(d)) in (R")%.
By | y|| we denote the norm defined by

d
U7 =y, ) =Y _ Iy@)
i=I

If T : (R")Y — (R™) is a linear operator, then || T || stands for the operational norm
induced by the considered norm in (R")“.

2.2 Lyapunov-type differential equations on the space S,‘f
LetZ C Rbeaninterval and Ay : 7 — Mﬁ, k=0,...,r,be continuous functions
Ar(®) = (A, D), .. At d)), kef0,...,r}, teZ.
Denote by Q € R¥* a matrix whose elements g;; verify the condition
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For each t € T we define the linear operator £(t) : S¢ — S¢ by

(L) = Aolt, DSE) + SHAGE, 1) (2.8)

r d
+ YA DSHALE D+ S,
k=1 =1
i € D, S e &4 Itis easy to see that t —> L(t) is a continuous operator-valued
function.

Definition 3. The operator L(t) defined by (2.8) is called the Lyapunov operator
associated with Ag, ..., A, and Q.

The Lyapunov operator L£(¢) defines the following linear differential equation
on &¢:

%S(I) = L()S(t), teTI. (2.9)

Foreachty e Tand H ¢ S,‘f , S(t, 1y, H) stands for the solution of the differential
equation (2.9) which verifies the initial condition S(tg, tg, H) = H.

Let us denote by T(¢, ) the linear evolution operator on S¢ defined by the
differential equation (2.9), that is

T(t,10)H = S(t,10, H); t,1pe I, H e S°.

It is said that T(z,1y) is the evolution operator associated with the system
(Ag, ..., Ar; Q).
We have

iT(t o) = L(OT (1, ty)
d[ £ 0 - k) 0 E)
T(t, ) = JO,

where J7 : S — S is the identity operator.

It is easy to check that T (¢, s)T (s, t) = T(t, v) for all ¢, s, T € Z. For all pairs
t, T € I, the operator T (¢, T) is invertible and its inverse is T ' (¢, 7) = T'(t, ).

If T*(¢, ) denotes the adjoint operator of T (¢, ), the following hold:

T*(t,t0) = T*(s, 10)T™(t, 5), (2.10)
T*(t,s) = (T*(z, s)NT* (1, 7), (2.11)
%T*(l‘, s)=T*(t,s)L* (1), (2.12)
%T*(S,t) = =L*"OT*(s,1). (2.13)
It is not difficult to see that the adjoint operator £L*(r) : S¢ — 89 is given by
(L 1)S)() = A, DSE) + SE)Aolt, i) (2.14)

r d
+Y AL DSOA D+ Y g S,
k=1 Jj=1

ieD, Ses&
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Remark 3. ) If Ax(t, i),k =1, ..., r,donot depend on ¢, then the operator £ defined
by (2.8) is independent on z. More precisely, if Ay = (Ax(1), ..., Ai(d)), then

(L)) = Ap()S() + SHAGE) + Z Ap(@)SE)AL () (2.15)
k=1

d
+Y4;iSU),
j=1

i € D, S € 8 In this situation the evolution operator defined by the differential
equation

d
— S = LS
ar ) )
is given by
T(t, 1) = “17), (2.16)
where
[o 0]
L:ktk
L,
=2
k=0

(the above series being uniform convergent on every compact subset of the real axis).
L* stands for the k-iteration of the operator £ and L° = J¢.

(iIfA, : 7 — .Mﬁ are @-periodic functions, then T(t + 6,1y + 08) = T (2, t)
forallz,tg € Tsuchthatt +6,104+60 € 7.

In order to motivate the definition of the Lyapunov operator £(z) and its
corresponding evolution operator 7T'(z,15), we shall prove the following result
which establishes the relationship between the evolution operator T (¢, #o) and the
fundamental matrix solution of a system of stochastic linear differential equations of
type (1.22).

Theorem 4. Assume that T = R and that the elements of Q satisfy (2.7) and the
additional condition Zj:] gij =0, i € D. Under these assumptions we have

(T*(t, o) HY(i) = E[Q*(t, to) H(n(1))D (1, o) [n(tp) = i]

forallt > t,>0,H ¢ S,‘f, i € D, where ®(t, ty) is the fundamental matrix solution
of the system (1.22).

Proof. LetU(t, tp) : S,‘f — S,‘f be defined by
U, 1) (H)) (i) = E[®*(t, t0) H(n(2)) D (2, 10)|n(to) = i],

HeSdieD,t>1.
Taking H € 8¢, we define v(t, x,i) = x*H(i)x,x e R*,i € D,t > 0.
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Applying Theorem 35 of Chapter 1 to the function v(z, x, i) and to the equation
(1.22), we obtain

x*UCE, )Y (H)(Dx —x*H()x = x* / UG, )L (YH) @) ds x.
o

Hence 4
EZ/{(I, 1) = U, o) L*(¢).
Since U(ty, ty) = T*(ty, ty) and using (2.12) it follows that
U, s) = T*(, s),
t > s, and the proof is complete. a

As we shall see in Section 2.5, the above result allows us to reduce the study of
the exponential stability for the linear stochastic system (1.22) to the problem of the
exponential stability for a deterministic system of type (2.9).

Remark 4. (i) If in the system (1.22) we have A;(t +6) = A;(i),t = 0, i € D, then
from Theorem 4 and Remark 3(ii) we deduce that

E[19(t +6,10+ 0)xol* | nto +6) =]
= E[|®(t, to)x0l* | n(to) = i]

forallr > 4% >0,i €D, xp € R".
(i1) If the system (1.22) is time invariant, then according to Theorem 4 and
Remark 3(i), we have

E[|®(, to)xol* | n(to) = i]
= E[|®(t — 1o, 0)xol* | n(0) = i]
forallt >4 >0,i €D, xp € R".

Theorem 5. If T(t, to) are linear evolution operators on S¢ defined by the linear
differential equation (2.9), then the following hold:
@) T, to) >0, T*(t, 1) =0 forallt > 1y, t, 19 € I;
(i1) if t — Ay (2) are bounded functions, then there exist § > 0, y > 0 such that
T, t) 7 = 877V T* (1, 1) ] > 87770 g4
forallt > 1y, t, 1y € L.

Proof. To prove (i) we consider the linear operators £(z) : S,’f — S,‘,’ , Z(t) :
8¢ — 84 defined by

1 *
(LiH)G) = (Ao(t, i)+ %qnln) H(i) + H(i) (Ao(t, )+ EQiiln) ,
r d
(COH)@) =Y A, DHOA D+ Y qiH(j).i €D,

k=1 j=1Lji

H=(H(), HQ2),...,Hd) e &8, teT.
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It is easy to see that for each t € Z, the operator E(t) is a positive operator on S¢.
Let us consider the linear differential equation

d
ES(t) = L1(0)S() (2.17)

and denote 77 (¢, fp) the linear evolution operator on 8,‘,1 defined by (2.17). By direct
calculation, we obtain that

(Ti(t, 1) H)(Q) = ®: (¢, 1) H() D] (2, £o)

forallt > ty,i €e D, H € S,‘f , where ®; (1, 1p) is a fundamental matrix solution of the
deterministic differential equation on R”,

d 1
‘—i;x(t) = [Ao(f, i)+ EQiiln] x(1).

It is clear that for each t > 1o, T1(¢, fp) > O. Since the linear differential equation
(2.9) is written as

d ~
ES(I) = Li()S@) + L@)S@),

we may write the following representation formula:

t
T(t,00)H =T,(t,10)H +/ Ty (1, $)L()T (s, 10) H ds
o
forall H € 8¢, t > ty,t, 19 € T.

Let H € 8%, H > 0 be fixed. We define the sequence of Volterra approximations
Se(t), k = 0,1 = 1, by

So(t) =T(¢t, to)H,

t
Sk+1() =T (¢, t0)H +/ TV(t, sYL(s)Si(s)ds, k=1,2,....

o

Since Ti(¢, tp) is a positive operator on 8,‘,1 , we get inductively that S;(s) > O for
alls > 5,k = 1,2,.... Taking into account that limy_, ., S;y(t) = T(t,1)H we
conclude that T'(t, to) H > 0, hence T (¢, to) > 0. By using Proposition 2 we get that
the adjoint operator T*(¢, to) is positive.

(ii) First, we show that there exist § > 0, y > 0, such that

IT(t, t0)H| > 8e 7" "0|H]|, (2.18)
|T*(t, to)H| > 87| H|

forall H € 8%t > t9,t,10 € T.



42 2 Exponential Stability and Lyapunov-Type Linear Equations
Let us denote

1 1
v(t) = EIHT(I’ wHI| = §<T(t, 10)H, T(t,10)H),

where ||| - ||| denotes the norm induced by the inner product, that is, ||{ - ||} := {, o)%.
By direct calculation, we obtain

d
d—;v(t) =(LOT @, 10)H, T(t, 10)H), =1
Under the considered assumptions there exists y > 0 such that

<yIIT @, ) H|I]%

b
dtv(

d
\Ev(t) <2yu(t), t=>1p.

Further, we have
d
—u(t) = —2yv(t), t>1t,
T v(t) = =2yv(t), =1
or equivalently
d 2
ZJun)e?r¢—1] > 0
dt[ (t)e ]=
for all ¢+ > to. Hence the function t — v(¢)e? "~ is not decreasing and v(t) >

e~2rt=1)y(1,). Considering the definition of v(¢) and using (2.3), we conclude that
there exists § > 0 such that

IT(t,t0)H| > 877" H|,

which is the first inequality in (2.18).
To prove the second inequality in (2.18), we consider the function

1
B(s) = E[I]T*(t,s)H[llz, HeS%s<tstel.

By direct computation we obtain

;—sﬁ(s) = —(L*)T*(t,s)H, T*(t,s)H).

Further, we have

l d .
EU(S)

< 2y0(s)
and

%[ﬁ(s)ezy('_”] < 0.

Thus we obtain that the function s — (s)e?”“~*) is not increasing and therefore
9(s)e2r¢=s) > (1) for all s < t, and hence

IT*@, s)HII| = e[| H]]|.

Using again (2.3) we obtain the second inequality in (2.18).
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Let x € R", i € D, be fixed; consider H S? defined by

S [0 i) #i
H(j)_{xx*ifj-—_i.

We may write successively

(T, 10)IN)x = Tr[xx* (T, 10)J)G0)] = (H, T2, 10)J%)

d
= (T, 10)H, J) = > T[Tt 1) H](i)

i=1
d ~ ~
> ; (T 1) )@ 2 max [(7 (1, ) H) D)
= |T*(t, 10)H| = 87700 |x 2.
Since x € R” is arbitrary we get
(T, 10)J)(i) = 877", (V)i € D,t > 15> 0,

or equivalently [T(t, 1) J4 l > 8¢ 7=%) J ¥t > 3. The second inequality in (ii) may
be proved in the same way. [

Remark 5. Combining the result in Theorem 5 with Remark 1 we obtain that

T(t,10)J% < |T(t, t)1J7, (2.19)
T*(t, t0)J4 < ||IT*(t, to) | J?

for all 7, ty € I. If the dependence r — |[L(¢)]| is a bounded function, we deduce
easily that there exists y > 0 such that

IT(t, )] < e,
IT*(t, to)]} < e’

forallt > 1y, t, 10 € 7.

Corollary 6. Suppose that Ay,0 < k < r, are continuous and bounded functions.
Then there exist § > 0 and y > 0 such that

eI < T(t,19)J¢ < 704, (220)
8eTV U0 I8 < TH(z, 1) J4 < &7~ g4

forallt > to,t, 15 € 1. O
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Let us close this section with two important particular cases:
(a) Ay (t) =0, k=1, ..., r; in this case the linear operator (2.8) becomes

(L()S)() = Aolt, )S() + SG)AY, i) (2.21)

d
+4;iSU),
j=1

ieD,Se S,‘,’ . Itis easy to check that the evolution operator 7T (z, 1y} defined by (2.9)
has the representation

. t

T, ) =T(, 1) +/ T(t,s)Lr(s)T (s, tg) ds, (2.22)
g

t >ty t,tg € I, where ’T\(t, ty) is the evolution operator on 8,‘1’ defined by the

differential equation

d .
—S8(t) = L(OHYS()
dt

and L,(1) : 8¢ — S¢ is defined by

(Lo H)) =) Agt, DH DAL, D),

k=1
teZ, HeS%, ieD.

Remark 6. Since T(t, ty) > 0, Tg,to) >0,t > 1, and Lo(t) > 0, t € T, from
(2.22) it follows that T (¢, 1)) > T(t, 1) forallt > 1y, t,ty € Z, and hence, using
Theorem 3, we get

1T 1)l = [T, 1)

The evolution operator /T\(r, to) will be called the evolution operator on the space
S? defined by the pair (Ao, Q). If additionally Q verifies the assumptions in Theorem
4, then (2.21) is the Lyapunov-type operator associated with the system (1.23).

(b) D = {1} and g;; = 0. In this case Sf reduces to S, and the operator L£(¢) is
defined by

| t>1, t,1gel.

L()S = Ag(1)S + SA;(1) + Z Ar(NSAL(@), (2.23)
k=1
te€Z,S e S,, where we denoted A;(t) := A;(¢, 1). The evolution operator T (¢, ty)
will be called the evolution operator on S, defined by the system (Ay, ..., A,). The
operator (2.23) corresponds to the stochastic linear system (1.24).
Proposition 7. I[f T = R, and T (¢, ty) is the linear evolution operator on S, defined
by the Lyapunov operator (2.23), then we have the following representation formulae:

T(t, tp) = E[®(t, tg) D™ (¢, t0)],
T*(t,10) = E[®*(t, 1) D (1, to)]

for all t>1>0, ®(t,1)) denoting the fundamental matrix solution of the
system (1.24).
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Proof. The second equality follows directly from Theorem 4 and the first follows
from the second one and the definition of the adjoint operator. tl

Remark 7. Although in Theorem 4 we established a representation formula for the
adjoint operator T*(t, to), a representation formula for T'(z, #p) can be also be given,
namely,

d

(T(t,00)H)(j) = Z E[®(t, 1) Hi ®*(t, 10) Xpin=j | nt0) = i], (2.24)
i=1 ‘

t>1>0,j€D, He & Indeed, we have for T = T(t, tp),

(TH,G) = (H, T*G)
d
= ZTrHiE[‘D*(t, 10)G () D1, 10) | 1(t0) = i]
i=1
d d

= ZZTrHE (1, 10)G ()Pt 10) =) | N(to) = i]

i=1

I
Mn I}

Il
—_
-
Il

E[Tr(H;®*(t, 1)) G () D (1, 10)) Xny=j | n(to) = i
=1

E[Tr(G(j)y®(t, o) Hi ®* (2, 10)) Xni=j | nt0) = i]

Il
AM&
M=

I
.
Il

il
Mm

d
(Z E[®(t, 1) Hi®* (1, 10) Xyr=j | n(t0) = l]) .
i=1

.
It

from which (2.24) directly follows.

2.3 A class of linear differential equations on the space (R4

Let A: Ry — Mﬂ be a bounded and continuous function, that is, A(f) =
(AL, 1),..., A(t,d)), t € R,. For each + > 0 we define the linear operator
M) - RH? > (R")? by

d
(M@©)Y)(0) = A, DY) + Y q;iy(). i €D, (225)
j=1

y = (),....yd) € R, Q= (g;;) € R¥ satisfies the conditions g;; > 0
fori # j and le‘:l gij = 0. It is easy to check that for each t > 0, M(¢) is a linear
and bounded operator on the Hilbert space (R")¢ and ¢t > ||M(¢)]} is a bounded
function, || - | denoting the operatorial norm induced by the norm in (R"4.
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Let us consider the linear differential equation on (R"):
d
—y(t) = M@)y(®). (2.26)
dt
Let R(t, to) be the linear evolution operator associated with the equation (2.26), that is,
d
ER(I’ o) = M(t)R(t, ), R(to,0)y =y
forallt, 2, > 0, y € (R")%.

By M*(t) and R*(t, ty) we denote the adjoint operators of M (¢) and R(z, fp),
respectively, on (R"). One can easily see that

(M* ()9 @) = A*(1,)y() + Y qiy(j), i € D,y € RM,
j=1

%R*(r, o) = R*(¢, tg)M* (1), 2.27
%R*(s, 1)y =-—-M*(O)R*(s, 1)

forallt, s € R, .The operator R{(t, t5) will be termed the evolution operator on (R" )d
defined by the pair (A, Q).

The next result provides the relationship between the evolution operator R(¢, t5)
and the fundamental matrix solution ®(z, #y) of the stochastic system (1.23).

Proposition 8. Under the assumptions given at the beginning of the section, the
following equality holds:

(R*(t, 10)y)(1) = E[®*(t, 10)y(n(1)) I nto) = i), 1 = 10 = 0,

ieD,y=0),...,y(d) e RYH.

Proof. Lett >ty > 0 and the operator V (1, 1p) : (R")¢ — (R")“ be defined by
(V(t, 10)y)(i) = E[®*(, 1) y(n(1)) | nlte) = i],
ieD, y=@1),...,yd) e RH. Let y be fixed and consider the function
v:R"xD — Rby
vix, i) = x*y(i).

Applying the It6-type formula (Theorem 35 of Chapter 1) to the function v and to the
system (1.23), we obtain:

Elv(x (1), n(1)) | n(to) = i] — x5y(i)
d

=& | [ 20 | A3 60306 + 3 aary() | ds 1ntw =i |

to j:l
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where x(s) = ®(s, to)xo. Further, we write

xo(V(t, ) y) (i) — x5y (i) =x5‘/ (V(s, )M (s)y)(i) ds

o
forallt > t5 > 0, xop € R", i € D. Therefore, we may conclude that

t

Vi, )y —y= / Vs, 1)) M™(s)yds

o

forallt > tgand y € (R")?.
By differentiation, we deduce that

d
5V o)y =V, to)M*(t)y
forall y € (R")?, and hence

d
d—;V(t,to) =V, 1)M*(1), t = 1.

Since V(tg, tg) = R*(t, ty), from (2.27), V (1, tg) = R*(t, 1) forall t > 5 > 0, and
the proof ends. il

2.4 Exponential stability for Lyapunov-type equations on 8,‘,’

In this section Z C R denotes a right-unbounded interval. Consider the Lyapunov
operator (2.8) on S,‘f , Where Q satisfies (2.7) and A; are continuous and bounded
functions. Let T (¢, 7p) be the linear evolution operator on S,‘f defined by (2.9).

Definition 4. We say that the Lyapunov-type operator L(t) generates an exponen-
tially stable evolution, or equivalently, the system (Ay, - .., A,; Q) is stable if there
exist the constants 8§ > 1, a > 0 such that

1T, to)]] < Be @0t >14, 15 € T. (2.28)

Remark 8. From Remark 6 immediately follows that if (Ao, ..., A,; Q) is stable,
then there exists 8 > 1 and ¢ > O such that

|7 1)) < et
forallt > 1y, 1,1 € I, where ?(I, to) is the evolution operator on Sr‘f defined by the
pair (Ao, Q).
As usual we denote

/ T*(s, HYH(s)ds = lim[ T*(s,)H(s)ds

t
each time when the limit in the right-hand side exists. In this case we say that the
integral in the left-hand side is convergent.
The result stated in the next lemma will be used several times in this section.
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Lemma9. Let H : T — S¢ be a continuous function. Assume that the integral
[ T*(s, t)H(s) ds is convergent for all t € T. Set

o
K(t):= / T*(s,t)H(s) ds.
1
Then K (t) is a solution of the affine differential equation

%K(l) + LK)+ H(iy =0.

Proof. Let t > t be fixed. Then we have

K@) = /‘r T*(s,)H(s)ds + /‘00 T*(s,)H(s)ds.
t T
Based on (2.11) we get
K@)=T*(t,)K(t)+ T*(t, 1) /t T*(s, T)H(s)ds.
t
Using (2.12) we obtain that K (¢) is differentiable and

d .
E[((z) =LK — H(@),

and the proof ends. g

The next lemma shows that the integrals used in this section are absolutely
convergent.

Lemma 10. Let H : T — 8¢ be a continuous function such that H(t) > 0 for all
t € 1. Then the following are equivalent:

(1) The integral ftoo |T*(s,t)H (s)|ds is convergent for all t € T.

(i1) The integral ftoo T*(s,tYH(s)ds is convergent forall t € T.

Proof. (i)= (ii) follows immediately.
(ii) = (i) Let

f T*(s,)H(s)ds|, teT.

I

y{t) =

We have o
f T*(s,)H(s)ds < y()J¢, t € T,
t

which leads to‘
o0
/ (T*(s, )H(s))(DNds <y@®),,i €D, t el
!

Hence o
/ Tr(T*(s, ) H(s)()ds <ny(t),i €D, t €1,
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from which we deduce that
/r Tr(T*(s, H)H(s))()ds <ny(t), T > 1.
t
The above inequality gives
/{T (T*(s, DH($))(D)ds < ny (1),

which leads to

d T
Z[ I(T*(s, O H () ()| ds < dny ().
i=1 !

Since .
IT*(s, )H (s)] < Z [(T*(s, HH (s) (D],
we get . -
/ (T*(s,0)H(s))ds < ndy (1)
forall T > ¢ and the prooftis complete. g

The following result provides necessary and sufficient conditions ensuring
exponential stability of the considered class of differential equations.

Theorem 11. The following are equivalent:
(i) The system (Aq, ..., A,; Q) is stable.
(ii) There exists § > 0 such that

/t (T, 5)ds <6

forallt > 1, t, 1 € 1.
(ii1) There exists a constant § > 0 such that

t
f T(t, s)Jds <8J¢
o

forallt > ty, t, 1y € T.
Proof. (1) = (ii) From (2.28) it follows that

f i s <P
to o
for all t > .

(ii) = (iii) immediately follows from (2.6) and Theorem 5.
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(iy)=>0) LetH: T — S,‘f be a continuous and bounded function. It follows that
the real constants 8;, 8, exist such that 8, J¢ < H(s) < & J% foralls € 7.

Since T'(t, s) is a positive operator defined on S,‘f, we deduce 8, T(¢,s)J¢ <
T(t,s)H(s) < 8,T(t,s)J forallt > s > 1, t; € 7. Hence

t t t
81/ T(t,5)J%ds 5/ T(t,s)H(s)dsf(Sz/ T(t,s)J%s

Iy 19 [

forall r > 1y, to € 7. Thus, if (iii) holds we deduce that the real constants 5 L 52 exist
such that ,
§;J4 < / T(t,s)H(s)ds < 8,J¢
4]

forallt > 1y, ty € Z, which shows that r — f,; T (¢, s)H (s)ds is bounded on [#, o0)
uniformly with respect to fy € 7 for all continuous and bounded functions H (s).

Applying Perron’s theorem (see [58]) we deduce that the constants 8 > [, > 0
exist such that

IT(,9)] < Be ™Vt =5 > 10,10 € T,

that is, the system (Ag, ..., A,; Q) is stable and thus the proof is complete. O

Theorem 12. The following are equivalent:
(1) The system (Aq, ..., A,; Q) is stable.
(i) There exist the constants 8y > 1, a > 0 such that

IT*(t, to)|| < Bre @~

forallt > ty,t, 1€ 1.
(iii) There exists a constant § > 0 such that

/OC IT(s,Dllds <8

forallt € T.
(iv) There exists & > 0 such that

00
/ T*(s,)J%ds < 8J¢
t

forallt € T.
(v) The affine differential equation
d
EK(t)+£*(t)K(t)+J" =0 (2.29)

has a bounded and uniform positive solution on I.
(vi) Foreach H: T — S,‘f continuous, bounded, and uniform positive function,
the affine differential equation on S¢,

%K(t) + LYK (1) + H(t) =0, (2.30)

has a bounded and uniform positive solution defined on I.
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(vii) Foreach H: T —_ S" continuous, bounded, and uniform positive function,
there exists a C! -function K : I — Sd, K > 0, bounded with bounded derivative,
solving the following differential inequality on S¢:

%K(z)+£*(r)K(t)+H(t) <0, rel. (2.31)

(viii) There exists a C'-function K : T — S,‘f , bounded with bounded derivative,
K > 0 solving the differential inequality

d
EK(I) + LK) <0, tel.

Proof. (i) <= (ii) immediately follows from (2.5)
(ii) = (iii) From (ii),

foo VTG, Ol ds < P
\ o

forallz € T.
(iii) = (iv) immediately follows from (2.6) and Theorem 5.
(iv) = (v) Define

o0
K@) = / T*(s,t)J%ds,t € T.
t

From Theorem 5(ii), there exists §; > 0 such that _ K (r) = 8,J¢ for all t € Z, hence
K (1) > 0. On the other hand the function 7 —> K (¢) is differentiable, and based on
(2.13) (see Lemma 9) we get that K () is a solution of the equation (2.29).

(v) = (iv) Let K:T—> Sd be the bounded and uniform positive solution of the
equation (2.29). Therefore there exist the constants g > 0, u; > 0 such that

wl < K@) <l 1 el
Using (2.13) and the constant variation formula we deduce that
T
K@t)=T*(z,)K (1) + / T*(s, 1)J%ds
!
forall r < r;¢, v € 7. Since the operator T*(z, t) is positive, we can write
T
0< / T*(s,)J%s < K(t) < ppJO.
t
Therefore the integral
o0 T
/ T*(s,1)J%ds = lim / T*(s,1)J%ds
t T—=>00 t

is well defined and
o0

T*(s,t)J%ds < ppJ%, t € 1.
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Wy=wWhlLet H: T — Sl‘f be a function with the properties in the statement;
that is, there exist the constants v; > 0 and v, > 0 such that

nwJi<H@m <l el
Since the operator T*(s, t) is positive, we have
nT*(s, )] < T*(s,NH(@) < v T*(s,1)J¢ (2.32)

foralls > ¢, s, t € 7, which leads to

T T

/ T*(s,1)H(s)ds < v2/ T*(s,1)J%ds
t H
for all + < 1. Further, we obtain
T
/ T*(s, 1) H(s)ds < v,8J¢
t
forallt < t,1, t € I, which gives
oC
/ T*(s,t)H(s)ds < v,8J9, t e I.
t

_ On the other hand, from (2.32) together with (2.20) we deduce that there exists
§ > 0 such that

o0
579 < / T*(s,)H(s)ds < v,8J°
t
forallt e 7.
We define
o
K@) = / T*(s,t)H(s)ds.
t

Based on (2.13) we obtain that K () defined above is a solution of (2.30).
(vi) = (vii) From vi) it follows that the affine differential equation

%K(t) + LMK +HO+J=0

has a uniform positive and bounded solution which also solves (2.31).

(vil) = (viii) It is obvious that any solution of (2.31) is a solution of

%K(r) + LK (1) «0. (2.33)
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(vii)=({v) Let K : T — S,‘f be a bounded and uniform positive solution of
(2.33) with bounded derivative. We define M(¢t) = (M (2, 1),..., M(¢,d)) by

M@) = —%E - LK.
Therefore, there exists the constants ji; > 0 and ji, > 0 such that
Jt < M@t) < @aJd?, 234
t € 7. Based on (2.13) and the constant variation formula we obtain that
K@) =T*(,H)K (1) + / T*(s, )M (s) ds
1

forallt <1, 1,7 el
Since the operator T*(s, ) is positive, we deduce that

f T*(s, )M (s)ds < K(r) < sup|K(£)|J.
t tel

Therefore, there exists 8 > 0 such that
0 o~
f T*(s,)M(s)ds < 8J¢, (2.35)
t

t € 7. From (2.34) and (2.35) we deduce that

o0 1 [ 5
f T*(s, t)J%ds < ~—/ T*(s, )M(s)ds < —
t M1 Jr M1

forall t € 7.
(iv) = (ii) Let

—~ o0
K(t) = / T*(s,1)J%ds.
!
Then we have K () < 8J9, and as in the proof of (iv) = (v) we have
§1JT < K@) <8J9. (2.36)
Fort > 1y, to € Z, we define G(¢) := T*(¢, to)l?(t). Using (2.10) we get
o0
G(t) = f T*(s,1)J%ds.
t
Therefore

d
—G(t) = =T*(t, t5)J?
o ) (t, 1)

for all + > 1o. Since T*(z, ;) is a positive operator, from (2.36) we obtain that

1 s
T*(t, )T > 500 = EIT*(t,to)Jd, (2.37)
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which leads to 4 i
——Gt<——Gt,t€I,
R 1 =< 5 (£

from which it follows that

d 1
EG(I’ i) < _EG(t’i)’ i eD.

Let x € R" be arbitrary and set g;(t) = x*G (¢, i)x. Then we have

d 1
—gi(t —-g:() <0
dtg()+8g()

for all ¢ > 1, or equivalently

% (g,-(t)e%“"“)) <0,
which shows that the function
> gi(es
is not increasing. Hence we obtain
G(t,i) < e G1g, i)

forall t > 1y,i € D, where @ = £, and with (2.36),

1
g,
G(t) < §e 1) Jd,

From (2.37) we get

T*([, t()).]d S ;e—(x(l—fo)
1

for all £ > t3, hence

)
(T*(t, 1) JY(i) < a—e—a(r_t[))]m
1
The above inequality leads to
)
(T* (1) I D0 < e
1

and therefore 5
IT*(¢, tO)Jd| < S_e_a(t_m)'
1

Using Theorem 3 we obtain that
* 8 —a(t—1g)
”T (f»fO)”Ss—e O) IEIOvtOEI’
i

and the proof is complete.
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Proposition 13. Assume that there exists a bounded uniform positive and continuous
function H: I — 8¢, for which the affine Lyapunov-type function (2.30) has a
bounded solution Ko(t) = (Ko(t, 1), ..., Ko(t,d)) with Ky(t,i) > 0, t € Z. Then
the system (Ao, ..., A,; Q) is stable.

Proof. If Kg: T — Sfl’ is a bounded solution of (2.30) and K(t) > 0, then

Ko(t) = T*(7, ) Ko(r) + /f T*(s,)H(s)ds

t

forallt <7, t,t € 7. Since T*(7, t) Ko(T) > 0, we get

/ T*(s,)H(s)ds < Ko(t) < cJ?

t

forallt < t, ¢, 7 € 7 and for some positive constant c.
On the other hand, H >> 0 implies that there exists a positive constant ¢ such that
&J?% < H(s) for all s € 7, which leads to

1

T*(s,)J¢ < =T*(s, ) H(s)

e

and therefore
o0 1 [ c
/ T*(s, 1) J%s < :/ T*(s, )H(s)ds < =J9,
' c J; c

and from Theorem 12 we conclude that the system (Ay, ..., A,; @) is stable and the
proof is complete. g

Remark 9. From the proof of Theorem 12 and of Proposition 13, we remark that if
H:7T - Sff is a bounded and continuous function H(¢) > 0, then the differential
equation

%K(t) + LK@+ H(@) =0 (2.38)

has a bounded solution K (¢) > 0 if and only if there exists y > 0 such that
oo
/ T*(s,t)H(s)ds < yJ¢ (2.39)
t
for all + € 7. Moreover, if (2.39) is accomplished, then
o0
K@) = / T*(s,)H(s)ds
!

is a bounded and semipositive solution of (2.38).
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Proposition 14, If the system (Aq. ..., A,: Q) is stable, then for all bounded and
continuous functions H : T — S, the corresponding Lyapunov-type equation (2.30)
has a unique bounded solution given by

K(@t) = / T*(s, t)H(s)ds.

Moreover, ift +—> Ar(t), k =0,...,r, t —> H(t) are 0-periodic functions, then
the unique bounded solution of (2.30) is a 8-periodic function too.

IfA(t) = A, k=0,...,r,and H(t) = H, t € I, then the unique bounded
solution of (2.30) is constant and it solves the algebraic equation

LK +H=0.
Proof. From Theorem 12 and Lemma 9 it follows directly that K (t) =

f,oo T*(s,t)H(s)ds,t € T, is a bounded solution of (2.30). Further, let K : 7 — S,‘f
be a bounded solution of (2.30). By the constant variation formula we obtain

K@t)y=T*r,nHK(t) + /r T*(s,t)H(s)ds (2.40)

forall t < 1,1, € Z. Since the system (Ao, ..., A,; Q) is stable and K (1) is
bounded, it follows that

lim T*(t,)K (1) =0,

T—>00

T oC
lim / T*(s,)H(s)ds :/ T*(s, t)H(s) ds.
T—>00 t t

Hence, if in (2.40) we take the limit for t — o0, then we obtain
[o.0]
K(t) = / T*(s,H)H(s)ds,
T

which shows that K (1) = g(t).Assume nowthatt —> A (?), k=0,....r, t —>
H (1) are 6-periodic functions. In this case we have
~ xX
K(it+6)= / T*(s,t +0)H(s)ds.
t+6

Invoking Remark 3(ii) we may write
~ o 00
K(t+96) =/ T*(s,)H(s +6)ds =f T*(s,n)H(s)ds.
t !

Thus we proved that K t+6) = K (t) for all t € Z, which shows that the unique
bounded solution of equation (2.30) is a 8-periodic function.
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If the functions A;,k € {0,...,r}, and H are constant functions, based on
Remark 3(i) we obtain that

~ o0 * o *
K@) = / e HAs = / e Hds,
t 0

which shows that K 1) = K (0) for all r € Z; that is, in the time-invariant case, the
unique bounded solution of the equation (2.30) is constant. It is obvious that it solves
the algebraic equation £*K + H = 0 and the proof is complete. 0

In the time-invariant case we have the following theorem.

Theorem 15. Assume that the system (1.22) is in the stationary case. Then the
following are equivalent:
(i) The system (Aqg, ..., A,; Q) is stable.
(i) Forall H = (H(1), ..., H(d)) € 8¢, H(i) > 0,i € D, the algebraic linear
equation on Sf,
LK+ H =0, (2.41)

has a unique solution K = (K(1), ..., K(d)) € 8¢, K(i) > 0,i € D.
(iii) For each H = (H(1),..., H(d) € S H(i) = 0.i € D, the linear
inequality
LK +H <0 (2.42)

has a solution K = (K(1),...,K({d)),K({) > 0,i € D.
(iv) There exists K > 0 satisfying L*K < 0.
(v) Foreach H € 8¢, H > 0, the linear equation on S¢,

LK+ H=0, (2.43)

has a unique positive solution K = (K (1), ..., K(d)).
(vi) Foreach H € S,‘f, H > 0, the linear inequality

LK+H<0 (2.44)

has a solution K > 0.
(vii) There exists K > 0 satisfying LK < O,

Proof. (1) = (ii). From the equivalence (i) <= (vi) in Theorem 12 we get that
the equation

d
EK(I)+£*K(I)+H=O

has a unique bounded and uniform positive solution K (t). Moreover, K () is given by

~ 00 *
K@) = / e~ S Hds.

!



58 2 Exponential Stability and Lyapunov-Type Linear Equations

We have IZ(t) = fooc e Hds = I?(O) forallt+ > 0. Hence I?(t) is constant and
it verifies the equation (2.41).

(ii) = (iii). Indeed (ii) implies that the equation L*K + H + J? = (O has a solution
K > 0. Hence K verifies (2.42).

(iii) = (iv) follows immediately (taking H = J).

(iv) = (i) follows from Proposition 13.

(iy= (v) Let H > 0. Therefore g,J¢ < H < B;J¢ and with 8, > B, > 0. Since
le“ | < Be™™,t > 0, for some B > 1, > O the integral K = fooo e Hdr is
convergent, and since e’ is a positive operator we have according to (2.20)

i A B
: 531d§52/ e“Jddt < K <

ZBJe.
0 (04

Further, we can write
o ® d
LK :/ —(e“"H)dt = —H,
0 dt

and thus K is a solution of (2.43). To prove the uniqueness, one observes that if K
verifies (2.43), then K is a constant solution of the equation

d
EK(I) =LK(t)+H,

hence

1 1
K =e"'K -+-/ eFUTIVHds = +/ e““Hdu.
0 0
Since lim,_, gf‘ =0, taking r— oo in the above inequality, one gets K =
fooo e“SHds = K and thus the proof of (i)=>(v) is complete.

(v) = (vi) follows by using the same reasoning as in the proof (ii) = (iii).

(vi) = (vii) follows immediately (taking H = J9).

(vi)=> (@) Let H = —LK.Thus LK + H =0 with H > 0and K > 0. Since K
1s a constant solution of the equation %K (r) = LK(t) + H we have

'
K = eut_ro)K +f e‘c([_‘y)HdS,[ > 1.

0]

Lt

Since e*' is a positive operator and H > y J¢ with some y > 0 we can write

t I
y/ LU= yd go S/ LU Hds < K < 84,

fo ty

Thus, by Theorem 11 the proof is complete. O
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Remark 10. The affine differential equation (2.30) is the compact version of the
following system of matrix linear differential equations:

d 1 * 1
—K(t,0)+ (Ao(l, i)+ EQiiln) K. i)+ K(¢,i) (Ao(t, i)+ 5%‘&)

dt
r d
+ Y AL DK DAL D + Y ayK (@, )+ Hit i) (2.45)
k=1 jo=
7
=0,ieD.

In the time-invariant case the algebraic equation £*K + H = ( is the compact form
of the following system of linear equations:

1 * 1
(Ao(i) + zq:'iln) K+ K@) (Ao(i) + 5%‘&)

r d
+ Y ALOKOA) + Y g K () + H(i) =0. (2.46)
k=1 =1
J#i
A consequence of Theorem 12 and Proposition 14 is the following corollary.

Corollary 16. If the system (Aq, ..., A,; Q) is stable, then for all i € D the system
of linear differential equations on R",

i)’i(t) = (Ao(t‘ i)+ lqiﬂn) yi(t), tel, (2.47)
dt 2
defines an exponentially stable evolution.

In the invariant case, if the system (Aq, ..., A,; Q) is stable, then for alli € D,
the eigenvalues of the matrices Ao(i) + %q,-,-]n are located in the half plane C~ =
{z € C|Re(z) < 0).

Proof. Since the system (Ag,...,A,; Q) is stable, from Theorem 12 it
fo~llows that (~2.45) has a uniform positive and bounded solution K(t) =
(K, 1),...,K(t,d)). Foreach i € D we can write

d ~ 1 s
EK(I’ iy + (Ao(t, i)+ 5gii1n> K, i)

~ 1 ~
+K(t,i) (Aoa, D+ Eqﬁln) +H@.i) =0,
where
~ r d ~
H(t, i) = H(t, i)+ ) AL DK@ DA D + ), K@, ).
k=1 j=1
J#

Itis obvious that H (t,i) > Oforallt € 7. By standard Lyapunov function arguments
we conclude that the system (2.47) is exponentially stable and the proof ends. ]
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The next result shows that the bounded solution of (2.30) can be obtained as a
limit of a sequence of bounded solutions of some Lyapunov equations.

Proposition 17. Assume that the system (Ao, ..., A,; Q) is stable. Let H : T — S¢
be a bounded and positive semidefinite continuous function, H(t) = (H(t, 1), ...,
H(t,d)). Foreachi € D we define the sequence {Kip(t)}peN, where t —> Kip(t) is
the unique bounded solution of the differential equation:

d » . I i P
KO+ (A D)+ 5qul ) KV ®)

1
+ KF (1) (Ao(t, i)+ 5q,-,»l,,) +HP(1)=0, i €D, (2.48)

with

r d
HP @) := H(t, i)+ Y At DK™ At D) + )i KP7 (@),
k=1 i=1
j#i
p=1..,tel and K’()=0.
The sequences {K ip ()} pen, i € D, are increasing and bounded. If we denote
K®(@t,i)= lim KF (), ieD,t e,
p—oo
then K®(t) = (K®({,1),...,K*(t,d)) is the unique bounded solution of the
equation (2.30).

Proof. Let K(t) = (K(t,1), ..., K(t,d)) be the unique bounded solution of
equation (2.30). From Proposition 14 it follows that K > 0; then we have

d ~ 1 ¥ ~ 1

r d
+ DAL DK (DA D) + Y gy K, )
k=1 j=1
J#E
+ H(t,i)=0, ieD,rel.

By direct calculations we obtain

diit- (K@, i) — KP(0) + (Ao(t, i)+ %q,ﬂ,,) (K@, i) — K2 ()
+(K@, i) — K (m) (Ao(t, i)+ éq,-,»l,,) +AP(1) =0, i €D, (2.49)

where

, d
ar =Y aiw i) (Ko - k7o) ae.n+ Yy (R p - k07 0),

k=1 , j=1

J#
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i €D, p>2, andfor p = 1 we have

r d
ALty =Y AN D) Kt DA D) + ) q;K(t,j) 20, ieD,t el
k=1 f=1
jRi
Since for each i € D, Ay(¢, i) + %q,-,-[,, defines an exponentially stable evolution,
from (2.49) for p = 1 we deduce that K (¢, i) — K (t) >0, i € D,t € I. Further,

by induction with respect to p we obtain that AP l(t) > 0, which shows together
with (2.49) that K(t i)— Kp(t) > Oforall p > 1,i € D, t € I;thatis, the sequence
{K? ()} pen is bounded. On the other hand, for each p > 1, (2.48) gives:

i p+1 p . 1 * +1 P
— (ko - kI 0) + (Ao<t, i)+ Eq“’") (k70 - K 0)

+ (K,-”“(t) - Ki”(t)) (Ao(t, i)+ %q.-.-l,,) +A21)=0, ieD, (2.50)

where

By =3 ap 0 (K2 @ = KI7'0) At i)

k=1

d

+Yai (k' - k7' 0),
j=1
J#

ieD, p>2andforp=1

r d
Al =) AR ) K (DA, 1) + ) gy Kit) = 0.

k=1 i=1

i
By induction with respect to p, one can easily show that le (¢) = 0, which implies
that Kf“(t) — KP(t) = 0,i € D, p > 0; that is, the sequence {K/ (1)} pen is
increasing and therefore the sequence is convergent. Let K°(¢, i) = lim,_, o K ip (1).
By standard arguments based on the Lesbegue Theorem (Chapter 1) we deduce that
t —> K®(t,i), i € D, isasolution of the system (2.45). Since K (t, i) is bounded
with respect to ¢, it follows that K*°(¢, i) = K (¢, i) and the proof ends. ]

Remark 11. (i) In the time-invariant case the unique bounded solution of (2.48) is
constant and it solves the standard Lyapunov equation

N T . p
AO(’)+‘2‘C]1'iIn K +K; A0(1)+§qii1n + H =0,



62 2 Exponential Stability and Lyapunov-Type Linear Equations

where

r d
HP =Y " Aj) K7 Ay + ) qyK!™ + H(i), i€eD.

k=1 j=1

j#i
(i) If t = Ai(1), t —— H(z) are 8-periodic functions, then for each p and
i € D, the unique bounded solution on Z of the Lyapunov differential equation (2.48)
is a #-periodic function. Therefore, it is sufficient to compute only the values of K/ (¢)

on the interval [1g, 1o + ]. We have

K/ () = ®j(to+6,0)K (19 + 0)D; (10 + 6, 1)

to+6
+/ O (s, )H (s)®i(s,t)ds, t<1t+0,
H

®; (s, t) denoting the fundamental matrix solution of the equation (2.47). The peri-
odicity condition K/ (t) = K7(t + 0) shows that K/ (o + 6) is a solution of the
following algebraic discrete-time Lyapunov equation:

Xi =@ (to +6,10)X; i (10 + 0, 1)

19+6
+/ Q7 (s, 1) H (s)®; (s, to)ds, i €D. (2.5

g

The eigenvalues of the matrices ®;(fp + 6, 1) which are the Floquet multipliers [58]
of the system (2.47) are inside the unit disk [A] < 1, A € C and therefore (2.51) has
a unique positive semidefinite solution.

2.5 Mean square exponential stability

In this section we introduce the concept of mean square exponential stability of the
zero solution of the stochastic linear differential equations of type (1.22) and we also
give necessary and sufficient conditions ensuring this kind of stability. The results
proved in this section extend to a more general case, the existing results corresponding
to the particular cases referring to the system (1.23) and (1.24), respectively.

Definition 5. We say that the zero solution of the linear system (1.22) is exponentially
stable in mean square (ESMS), or equivalently, that the system (1.22) defines an ESMS
evolution if there exist 8 > 1 and a > O such that

E {10, to)xol* | nlto) = i] < Be™ " 0|xg[? (2.52)

forallt > 1ty > 0,i € D, xy € R", where O(t, 1) is the fundamental matrix solution
of (1.22).
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Proposition 18. The following are equivalent:
(i) The system (1.22) defines an ESMS evolution.
(i1) There exist B > 1, a > 0 such that
E[19@, 1) | n(to) =i] < B, 1 21920, i € D.
(iii) There exist B > 1, a1 > O such that
E[|1®(, 1) | n(t)] < Bre™ ™ a5, t > 10 = 0.

(iv) There exist B > 1, & > O such that

E (100, 0)§* | n()] < pe™ " E[1£1° | n(t0)],
t >t >0,i €D, and& is any random vector H,,-measurable and E[IE]*] < oo.

Proof. (i) < (ii), (iil) = (i1), and (iv) = (i) are obvious.

We now prove the implication (i) = (iii) Let ey, ..., ¢, be the canonical basis
in R", thatis, e, = (0,...,0,1,0,...,0)*, with 1 being the kth element. From the
inequality

D1, 1) < Y |01, to)esl?,
k=1
we deduce that

n

E[|J0(. ) | n(t0)] < Y_[I®¢, w)exl® | nto)]-

k=1

Since n{ty) takes a finite number of values we have

n d
E[|9¢, )7 1n0)] <D xnug=  E[19(, 0)ex | n(to) = j] as.

k=1 j=1
Using (2.52) we can write

n d

E[|0¢, ) | n(0)] < BY D xnup=je "7 lel’

k=1 j=1
= Bnde V"1 g5,

(iii) = (iv) Let £ be an arbitrary random vector H,,-measurable and E[|§ 2] < 0.
From the inequality

|D(1, 10)E* < |2, 1)]|E|?
we deduce that
E[|®(1, 10)&1* | Hyy] < E[19, t)IIE]* | Hyg
= [EPE[|®(, 1)) | Hy -

Since the components of ®(t, #y) are measurable with respect to n{s), w;(s), fp <
s <t,j=1,...,r,it follows that we may apply Theorem 34 from Chapter 1 and



64 2 Exponential Stability and Lyapunov-Type Linear Equations

get
E[I0G, )£ | Hyy] < 1EPE[1OG, 1) | n(t0)] as.
Using (iii) we deduce that

E[|®(t, 10)E)* | Hyy] < Bre™PIE)% s, 1 219 =2 0,

from which one easily deduces that

E[|1®(, 10)E1* | n(tg) = i] < Bre™ O E[IE7 | nlte) = i]
forallt >ty > 0, € D, and the proof is complete. O

Remark 12. (i) In the particular case of the considered system of stochastic differen-
tial equations of type (1.24), the definition of the mean square exponential stability
reduces to

E[10(r, t0)x0|*] < Be "~ |xo|? (2.53)

for all r > fy, xo € R". Let us remark that it is possible to define the mean square
exponential stability for systems subjected to Markovian jumping of type (1.22) and
(1.23), using (2.53) instead of (2.52). However, we can notice that in the presence of
Markovian perturbations in the system, if (2.52) is fulfilled, then (2.53) also holds,
but the reverse implication is not true.

(i) In the time-invariant case, based on Remark 4(ii) we obtain that the system
(1.25) defines an ESMS evolution if and only if there exist 8 > 1, « > 0 such that

E[|®(. 0)xol* | n(0) = i] < Be™'|x0|®

forallt > 0,i € D, xo € R". Since P(n(0) = i) > 0, i € D, we obtain that the
system (1.25) defines an ESMS evolution if and only if there exist 8 > 1, @ > 0
such that

E[|1®(1,0)x0]°] < Be ™ |xo/*, t 2 0, xo € R".
Based on Theorems 4 and 12 and Proposition 13 we get the following theorem.

Theorem 19. The following are equivalent:
(1) The system (1.22) defines an ESMS evolution.
(i1) There exists 8 > 0 such that

E U [D(s, )xo* ds | n(t) = i] < 8lxpl?

forallt > 0and xo € R".
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(iii) The system of linear differential equations
d . . . : .
d—tK(t, D+ A, DK@, i)+ K(t,i)Ao(t, 1)

+) A DK DAL )

k=1

d
+> Kt j)+1,=0,
=1

i €D, t >0, has a bounded solution K > 0:
Kit)y=(K@,1),..., K@, 4ad)).

(iv) There exists a bounded uniform positive and continuous function H: R, —
St H(t)y=(H(t,1),...,H(t,d)), such that the system of linear differential
equations

%K(z, D)+ A, DK@, i)+ K, i) Ao(t, i)

+ Y AN DK@ DA D)
k=1
d

+ Y qK(t, j)+ H(t,i)=0 (2.54)
j=1

has a bounded and uniform positive solution K(t) = (K(t, 1), ..., K(, d)).

(V) For every bounded uniform positive and continuous function H: Ry — 89,
the system (2.54) has a bounded and uniform positive solution.

(vi) For each H(t) as above, there exists a C' function K : R, — S,‘f, bounded
with bounded derivative K >> 0, which solves the following system of linear differen-
tial inequalities:

%K(I, D+ A DK@, D)+ K(¢t, i) Ao(t, D)

+ ) AN DK@ DA D)
k=1
d

+> K@ )+ H@i) <0

j=1

i € D, uniformly with respect to t, witht > 0.
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(vii) There exists a C'function K : R, — 89, bounded with bounded derivative
K > 0, which solves the following system of linear differential inequalities:

%K(r, i)+ AL DK (D) + K(t, D) Aot §)

+ D AL DK (DA, )
k=1
d
+Y gk, j) <0,
j=1
i € D, uniformly with respect to t, with t > Q. il

Combining the results of Theorems 4 and 15 we obtain the following result for
the time-invariant case.

Theorem 20. The following are equivalent:
(1) The system (1.25) defines an ESMS evolution.
(i1) The system of linear matrix equalities (LMEs)

r d
AfDXE) + X @) Ao + Z Ay(DX ()AL + Zq,-jX(j) + I, =0,
k=1 j=1
i € D, has a solution X = (X(1),..., X({d) with X (i) > 0,i e€D.
(i1i) There exists H=(H (1), ..., H(d)) € S,‘f with H (i) > O such that the system
of LMEs

r d
AFOX ) + X (DA + Y ATOX DA + Y g, X () + HG@) =0,
k=1 j=1

(2.55)

i € D, has a positive solution X = (X (1), ..., X(d)).

(iv) Forevery H = (H(1),..., H()) € S" with H > 0, the system ofLMEs
(2.55) has a positive solution X = (X(l) ., X(d)).

(v) For each H = (H(1), .. H(d)) € S with H > 0, the system oflznear
matrix inequalities (LMIs)

r d
ASDX @) + X DA + Y ALOX DA + Y gy X () + HG) <0
k=1 j=1
has a positive solution X = (X (1), ..., X(d)).
The system of LMIs

r d
Ag@)X (@) + X (i) Ao(i) + ZAZ(i)X(i)Ak(i) + ZCIij(j) <0

k=1 j=1

has a positive solution X = (X (1), ..., X(d)). O
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Similarly we have the following theorem.

Theorem 21. The following are equivalent:
(i) The system (1.25) defines an ESMS evolution.
(i1) The system of LMEs

r d
Ao(DY () + Y AE) + ZAk(i)Y(i)AZ(i) + qu,-Y(j) +1,=0,
k=1 j=1
i € D, has asolutionY = (Y(1),...,Y(d) withY (@) >0, i € D.
(iii) Thereexists H=(H(1), ..., H(d)) € S,‘," with H (i) > O such that the system
of LMEs

r d
AdDY (D) + YDA + Y ADYDAL + Y g Y () + H(@) =0,
k=1 j=1
(2.56)

i € D, has a positive solution Y = (Y (1),...,Y(d)).

(iv) Forevery H = (H(1),..., H(d)) € S,‘f with H > 0, the system of LMEs
(2.56) has a positive solution Y = (Y (1), ..., Y(d)).

(v) Foreach H = (H(1),..., H(d)) € S,‘f with H > 0, the system of LMIs

r d
Ap(HY () + Y () AG() + ZAk(i)Y(i)A:(i) + ZCIti(j) +H(@i) <0
k=1 j=1
has a positive solutionY = (Y (1), ..., Y(d)).
The system of LMIs

r d
AOY ) + YDA + 3 AOY DAL + 3 ¥ (j) <0
k=1 j=1

has a positive solution Y = (Y (1), ..., Y(d)). O

The following result shows that in the time-invariant case the ESMS is equivalent
to a type of attractivity of the zero solution.

Theorem 22. The following assertions are equivalent:
(i) The system (1.25) defines an ESMS evolution
ey
lim E[jx(0)*] =0
=00
for any solution x(t) of the system (1.25) with x(0) = xg, xo € R™.
(ii1)
lim E[x()x*(1)] =0
>0
for all solutions x(t) of (1.25) as above.
(iv)
lim E[(D*(t, 0P (z, 0)] =0.
>0
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Proof. (i) = (ii) directly follows from Remark 12(ii).
(i1) = (iii) follows from the inequality

0 < x(O)x*(t) < Ix()* 1.
(i11) = (i1) follows from
lx()]* = Trix(®Ox*®)].

(i1) = (iv) easily follows using the identity

1
Elx"®"(1, 0)(1,00y] = Z{E[|9(, 0)(x + MIF] = E[1o¢. 0)(x — »*]}

(2.57)
forall x, y € R".
(iv) = (1) Since P(n(0) =) > 0, i € D, then from (iv) we have
tlim E[®*(r,0)0®(1,0) | n(0) =i]1=0,ieD.
— 0
Based on Theorem 4 and Remark 3(i), the above equality gives
lim (¢“7J9) (i) =0, i € D,
1—=>00
and therefore lim,_ o, |¢“7"J9 = 0. Applying Theorem 3 we conclude that
lim,_, o |e“"|| = 0, and from (2.5) we obtain that
lim [le“| = 0. (2.58)
—oc

Since L is a linear operator on a finite-dimensional Hilbert space, from (2.58) we
deduce that the eigenvalues of the operator £ are located in the half-plane C~, and
hence there exists § > 1, a > 0 such that “e‘:’ “ < Be~*'. Combining Theorems 15
and 21 we deduce that the system (1.25) defines an ESMS evolution and the proof is
complete. O

In the case of periodic coefficients we obtain the following analogous result.

Theorem 23. Assume that t —> A (t,i), k =0, ...,r, are 8-periodic and conti-
nuous functions. Then the following are equivalent:
(1) The system (1.22) defines an ESMS evolution.
(ii)
lim E[|x(p6)]*] =0
p— o0
Sor all solution x(t) of (1.22) with x(0) = xg, xg € R".
(ii1)
lim E[x(p6)x*(p)] =0
p—> 00
Jor any solution x(t) of (1.22) as above.

@iv)
lim E[®*(pf, 0)®(ph,0)] = 0.
p—>00
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Proof. (i)=> (ii) and (ii) <= (iii) are similar to the proof of Theorem 22.
(1) = (iv) immediately follows from (2.57) and Remark 4(i).
(iv) = (i) If (ii) is fulfilled, then

lim E[®*(p6,0)®(p6,0) | n(0) =i| =0, i € D.
p—>00

Using Theorem 4 we obtain
lim (T*(p6,0)J*)(i) =0, i € D,
p—>0oC
and therefore
lim [(T*(pd,0)J) ()| =0, i € D,
p—>o0
which leads to
lim |T*(p6,0)J¢| =0.
f2mge]
Based on Theorem 3 we deduce that

lim |T*(p6, 0)|| = 0.
p—>00

Using (2.5) we get
lim |T(p8,0)|| =0,
p—>00

which is equivalent to
lim [(T(6,0)?| =0, (2.59)
p—>00

T (9, 0) being the monodromy operator associated with the differential equation (2.9).
From (2.59) we deduce that the eigenvalues of T (6, 0) are inside the unitdisk |1} < 1.
Applying a result in [58], we may conclude that the zero solution of (2.9) is expo-
nentially stable, which implies via Theorem 4 that (1.22) defines an ESMS evolution,
and therefore the proof is complete. g

In the following we consider the cases when the stochastic system (1.22) is
subjected only to either Markov jumping or multiplicative white noise. Thus, in the
case of system (1.23), Theorem 19 becomes the following.

Theorem 24. The following assertions are equivalent:
(i) The system (1.23) defines an ESMS evolution.
(ii) The system of linear differential equations

%K(r, DA+ A DK@, D+ K@, DAG@, D)

d
+3 K@ )+ 1, =0,

j=1
i € D,t >0, has a bounded and uniform positive solution
K@®)y=(K(@t,1),...,K(t,d).

(iil) There exists a bounded uniform positive and continuous function H : R, —
S,‘f, H({ty=(H(t,1),...,H(t,d)) such that the system of linear differential
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equations

%K(I, DH+ A DK@, D)+ K@, AR, D)

d
+Y gkt )+ H(,i)=0 (2.60)

j=l

has a bounded and uniform positive solution K(t) = (K (t, 1), ..., K, d)).

(iv) For every bounded uniform positive and continuous function H: R, — S84,
the system (2.60) has a bounded and uniform positive solution.

(v) For each H(t) as above, there exists a C' function K : R, — S,‘f, bounded
with bounded derivative K >0, which solves the following system of linear
differential inequalities:

%K(r, DH+AY DK@ DK@, DA@E, )

d
+ aK@, )+ H@,i) <0,

Jj=l1

i € D, uniformly with respect to t, witht > Q.
(vi) There exists a C' function K - R, — S,‘,’ bounded with bounded derivative
K > 0, which solves the following system of linear differential inequalities:

d
d
—K(t,i) + A*(t, DK (1, 1) + K(t. D) At i) + ) qi;K (¢, j) <0,
dr =

i € D, uniformly with respect to t, with t > Q. d

Remark 13. If the system (1.23) is in the time-invariant case, that is A(t, i) = A()
foralls > 0,7 € D, similar results in Theorems 20 and 21 can also be formulated. In
this case one obtains the well-known results concerning the ESMS of linear systems
with jump Markov perturbations.

Theorem 25. Assume that the system (1.23) defines an ESMS evolution; then there
exist B > 1 and o > O such that ||R(t, 1p)]| < Be %"~ forallt >ty > 0, R(z, to)
being the linear evolution operator on (R")? defined by the differential equa-
tion (2.26).

Proof. Lety = (y(1), ..., y(d)) € (R")?; then we have

E[®*(t, t0)y(n(1)) | n(te) = i1 (2.61)
< E[19*(t, 1) > | n(to) = i |E[ly(()I* | ko) = i],
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t >ty > 0. On the other hand,

M=

E[lym)* I ntt) =i] =Y E[xn=j | nlte) = i]ly()HI?

i

~.
Il

d
pist = )ly(DIF < D Iy = lIyl*.

i=1 j=1

]
M=

~
Il

Thus (2.61) leads to

|E[D* (1, 10)y(n(1)) | n(to) = i11* < E[J®* (1, 1)1 | n(to) = i1 IylI%.

Because the system (1.23) defines an ESMS evolution and |®*(z, 1p)| = | D (¢, 10)|,
there exist 8 > 1, a > 0 such that

E[19%(t, 10)]* | nto) = i]’ < Be™@0—).
Therefore

for all + > #; > 0. Based on Proposition 8 we deduce that

[(R*(z, 10)y)(D)]* < Be =0y

and hence

d
IR* (¢, 1)y 17 = D IR, 1)) (D) < dBe™ |y,

i=1

which gives

IR, )]l < Vdpe 3

forall t > 1ty > 0. Since || R*(¢, 1p) || = |R(¢, tp) || we conclude that
IR, 10)]| < y/dpe™ 30—
and the proof is complete. O

Corollary 26. If the system (1.23) deﬁnes an ESMS evolution, then forallh : R, —
(R")? continuous and bounded, the affine differential equation

d
g;y(t) +M*(Dy@)+h(t)=0

has a unique bounded-on-R . solution, M (t) being defined by (2.25).

Combining the results in Theorems 19 and 24, we obtain the following corollary.



72 2 Exponential Stability and Lyapunov-Type Linear Equations
Corollary 27. [f the system (1.22) defines an ESMS evolution, then the linear system

x(t) = Ao(t, n(1)x(1),

obtained by ignoring the white noise perturbations in (1.22), defines an ESMS
evolution, too. U

Let us now consider the case when the system (1.22) is subjected only to white
noise perturbations, that is, when the system under consideration is of form (1.24).
In this case, from Theorem 19 one obtains some known results concerning the
exponential stability of linear systems described by 1t6 differential equations [74].
Theorem 28. The following assertions are equivalent:

(1) The system (1.24) defines an ESMS evolution.
" (ii) The dffine differential equation over the space of symmetric matrices

d r
ZX(t) +A;OX(E) + X () Ap(t) + Z AAOXNOAM + 1, =0
k=1

has a bounded and uniform positive solution X (t).
(iii) There exists an H : Ry — S, bounded and continuous function, H(t) > 0,
such that the affine differential equation

d r
X (1) + ALOX O+ XO A + Y AOXOAWO+HEO =0 (262)
k=1

has a bounded and uniform positive solution X (t).

(iv) For each H : Ry — S, bounded, continuous and H > 0, the affine
differential equation (2.62) has a bounded solution X > 0.

(v) For each H : Ry — S, bounded, continuous function, H >> 0, the linear
differential inequality

d r
EXO) + A X 1) + X (1) Ao(t) + Z A;OX D A@) + H@) <0,
k=1

uniformly with respect tot > 0, has a solution X (t) bounded with bounded derivative
X >0
(vi) The linear differential inequality

d r
S XOFAZOX (@) + X (D) Ao() + ; AFOX DA <0,

uniformly with respect to t > 0, has a C' solution X : Ry — S,, which is bounded
with bounded derivative and X (t) > 0. O

Remark 14. If the system (1.24) is in the time-invariant case, similar results to those
in Theorems 20 and 21 can also be stated.

The next result is proved in a more general situation in [79].
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Theorem 29. The linear system of stochastic differential equations
dx(t) = Ax(t)dt + bc*xdw (1), b,c € R", (2.63)
has an ESMS evolution if and only if A is stable and fooo [c*e?'b)?dt < 1.

Proof. From Theorem 28 and Remark 14 it follows that (2.63) has an ESMS
evolution if and only if there exists X > 0 such that

A* X+ XA+ cb*Xbe* = -1,

or equivalently,
A*X 4+ XA+ cb*Xbe* + 1, =0. (2.64)

Assume that (2.64) is fulfilled for X > 0. Then it follows that A is stable, and therefore
we can define the linear operator G : S, — S, by

o0 *
g(G)Z/ eA tGeAt,
0
and H = G(G) is the unique solution of the Lyapunov equation

A*"H+ HA = -G. (2.65)

If G > O then G(G) > 0; applying the operator G to the matrix from the left side
of (2.64) and using (2.65), we obtain that

X +b*XbG{ccH) + G(I,) =0.
Hence
—b*Xb + (b*Xb)b*G(cc™)b + b*GU,)b =0

and therefore
b*Xb(1 — b*G(cc*)b) = b*G(I,)b,

which implies that 1 — b*G(cc*)b > 0, since if b = 0 the inequality is obvious, and
if b # 0 we have b*Xb > 0, b*G(1,)b > 0. Taking into account that

b*Q(cc*)b:/ lc*e? bi2dt,
0

the inequality in the statement directly follows.
The condition in the statement is sufficient. Indeed, assume that A is stable and
that [° |c*e*'b|?dt < 1, namely b*G(cc*)b < 1. Let

b*G(1,)b
X =G, _ ).
G+ TG s Y
It is obvious that X > 0 and a direct calculation using (2.65) shows that X verifies
(2.64) and the proof is complete. O
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Remark 15. From Parseval’s formula one easily obtains that
/ lc*e™'b|"dt = —/ [c*(A —irL,) " bI2dA.
0 2 —o0

For each i € D we can consider the following system subjected only to white
noise perturbations:

dx;(t) = (Ao(t, i)+ %qi,-l,,) xi(t)dt + Z Ap(t, Dx; (8)dwi(t), (2.66)

k=1
t > 0,1 € D. In this case one obtains the following corollary.

Corollary 30. If the system (1.22) defines an ESMS evolution, then
(i) The system (2.66) defines an ESMS evolution for each i € D.
(ii) For each i € D the deterministic system

. . 1
xi(t) = (Ao(f, i)+ 5%‘0) x;(1)
defines an exponentially stable evolution. g

At the end of this section we prove the following result.

Theorem 31. Assume that there exists a bounded and uniform positive function K :
R, —» S,‘f, K@) =(K(t,1),..., K, d)), and the constants T > 0, § € (0, 1) such
that

(T*¢+ . HK@E +NE) <8K(t,i), t>0,ie€D

forallt = 0, i € D. Then the system (Ag, Ay, ..., Ay; Q) is stable.
Proof. From the statement of the theorem it follows that
T*t+1,0K(t+1) <8K(@), t >0.

Let 1o > 0 be fixed; since T*(z,1) is a positive operator, we obtain by
induction that

T*(tg +m7, 1)K (tg + mz) < 8" K (t0)
for all m > 1. Taking into account that
T*(to +mrt, t5)J? < Bs™J¢
leads to
IT*(to + mt, 10)J| < B&",m > 1.
Based on Theorem 3 we obtain
IT*(to + mt, 10)J°|| < B&".

Since sup,.o [[L*()]] < oo, we easily deduce (using (2.13)) that |T*(z, s)|| < B
forall 0 <t —s < r. Using (2.11) we deduce that [ T*(¢, to)[| < Bre™*“~" for all
t >ty > 0Qforsome B > Oandx = —% In 8, and by virtue of Theorem 4 the proof
is complete. a
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2.6 Numerical examples

Example 1. Let us consider the particular case n = 1 in which situation the system
(1.24) reduces to the linear differential equation

dx(t) = a(n(t))x(n)dt + ng(n(t))X(f)dwk(t), 1 =0. (2.67)
k=1

We shall prove that if

2a(i) + Y gii) <0, i €D, (2.68)
k=1

then (2.67) defines an ESMS evolution.
Indeed, taking K = (1, ..., 1) and using the fact that Z?;l qij = 0, we get

r d d
2aDK @)+ Y g OKE + Y g, K () =2ad) + ) _ &),
k=1 j=1 j=1
i € D. Since the left side in the above equation coincides with L*K and K > 0,

from Theorem 20 it follows that if (2.68) is fulfilled then the system (2.67) defines an
ESMS evolution.

Remark 16. (i) The above example shows that (2.68) are sufficient conditions under
which (2.67) defines an ESMS evolution. As we shall see in the next example, these
conditions are not necessary.

(i1) Using Theorem 28 and Remark 14, it is easy to check that (2.68) is a necessary
and sufficient condition for ESMS for the Itd equation

dx(t) = a(Dx(Ddt + ) giHx (dwi (1),

k=1

with i € D fixed.

Example 2. Assume that in (2.67) we haved =2, r = 1, and

—a
o-[7 5]
with ¢ > 0. From Theorem 15, (2.67) defines an ESMS evolution if and only if there
exists K = (K, K3), K; > 0, such that

2
261,'K[ +g12K, +Zqinj = —q, i = 1,2,

j=I
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where we denoted a; = a(i), g = g(i), and K; = K (i), i = 1, 2. Then, from the
above equation, we obtain

(2a1 + g7 —a)K| + oK, = —a, (2.69)
(2a2 + g% — oz)Kz +aK| = —«,

from which result the necessary conditions for stability:
2a,~+g,-2—a <0, i=1,2

Further, solving (2.69) we get

K = oe(2a2 + gz2 - 201)
a(2a) + g8 + 2a, + g3) — (2a1 + g1) (2a2 + g3)
Ky = 01(2a1 + 812 — 2(x) '
a(2a; + g2+ 2a; + g2) — (2a; + g7)(2a2 + £3)

Since 2a; + g7 — 2 < 0, it follows that
o(2a; + g +2a; + 3) — (2a1 + 1) (242 + g3) < 0. (2.70)

Then the following cases can occur.
Case 1If 2a; + 812 +2a; + g% < 0 the condition (2.70) is accomplished for

(201 + &) (202 + &3)
201 + gt +2a+ g5

o >

Case 21f 2ay + g% + 2a; + g% > 0, then (2.70) holds for

2a; + ¢2)(2a> + g2
o< Lt g)0otas) @71)
2a1 + g7 +2a, + g3

Case 2 implies 2q; + gi2 > 0, i = 1,2. Then (2.71) contradicts the necessary
condition o > 2a; + gf. Therefore, we conclude that Case 2 must be excluded.

Summarizing, the stochastic system (2.67) with d = 2 and r = 1 considered in
this example defines an ESMS evolution if and only if

2a; + g2 <0and2a, + g7 <0
(situation considered in Example 1) or if

2a; + g +2a; + g5 < Oand

(Zal + glz)(Zaz + g%)

o > max {2a; + g2, 2a, + g2, ;
&1 &2 2a, +g12+2a2+g§
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Example 3. Consider the stochastic system with jump Markov perturbations in which

n=d=2
dx(t)

dt

= A(m)x(t), t =0, (2.72)

where

A= A(l) = [_a“ 0 }

(07 —aau
Ay = AQQ) = [”g“ _‘;a]

with a > 0 and

- o
o-[5]
with o > 0. Then, according to Theorem 15 and Remark 13, (2.72) defines an ESMS
evolution if and only if there exist

X1 V1 X2 Y2
X, = X() = d X, =XQ2) =
H= XM [ym]an =X [ym]

such that X; > 0, X, > Oand

2
ATX 4+ XA+ ) qX; = —al,
=1
2
ArXs + XaA, + 2(12ij = —al,
i

which are equivalent to

Bxi =2y —x2 =1,
By —z1 —y2 =0,
Bu—z=1,
Bxz —x1 =1,
By —x2—y1 =0,
Bz —2y—z1 =1,

where we denoted 8 := 2a + 1. By solving the above system of algebraic equations,

p+1
B—B-B-D(B+B-p+1)
Then for a — 0 one obtains that z; — —%. This shows that although A(1) and A(2)

have their eigenvalues in C~, that is, they are stable in the deterministic sense, the
stochastic system (2.72) defines an unstable evolution.

1 =
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Example 4. We now consider the case n = d = 2 and r = 1, namely the situ-
ation when the stochastic system is subjected to both Markovian jumping and to
multiplicative noise:

dx(t) = Ag(n())x(t)dt + A (n())x(t)dw(f), t = 0, (2.73)
where
aniy = [ _01],Ao(2)=[‘01 _11],
a 0 0 0
A](l)z[o O]vAl(z):[O a]v
and

-1 1
o[ 4]
According to Theorem 20, the necessary and sufficient condition such that (A, Ay; Q)

defines an ESMS evolution is that the equations

2
AFHX (@) + X (DA + ATOX DA + Y ;X () = —D,
j=1

i = 1, 2, have the solution X (i) > 0 with
. Xi Vi .
X)) = Ji=1,2.
® |:}’i Zi } :
The above equation leads to

B—a)x =2y —x =1, (2.74)
3yi—z1—y» =0,
3Z1 — 22 = l,
3x; —x1 =1,
3y—x2—y1 =0,
B-adz =2y, —2 =1,

from which we deduce that
(24 - 9a%)x2 + (3a* — 10)z; = 8 — 24, (2.75)
(3a* ~ 10)x; + (24 — 9a%)z; = 8 — 2a°.

For a® = I we obtain that x; + z; = — 2, which is not admissible since X (i) > 0,
3 5

i = 1,2, imply that x, > O and z; > 0.
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On the other hand, if a? = %, the system (2.75) is incompatible, and if a* # 1—67-
and a? # %, this system has the unique solution

_ _a2—4
NEAT3a
which gives in (2.74)
d a*—4
X1 =2p=— an =y=——"+".
v T O T )

Therefore, X (1) > 0 and X(2) > 0 if and only if a? < %, from which we conclude

that (Ag, A1; Q) defines an ESMS evolution if and only if a* < %

2.7 Affine systems

Consider the system

dx(t) = [Ao(z, n(0))x(t) + fo(t)ldr + Z[Ak(t, nENx () + fi(H)]ldwi(r),
k=1
(2.76)
where Ay(t,i),0 < k < r, are bounded on R, and continuous matrix-valued
functions. Denote

u@®) = (fg@®). fr@O,.... ;N

Iftp > 0,x0 € R" and f; € L%'w([to, TL,RY),0 <k <rforall T > t, by
Theorem 36 of Chapter 1, it follows that there exists a unique solution x, (¢, fy, xo)
of the system (2.76) with x,(fy, tp, xo) = xp and x, (-, ty, xg) € L%,w([to, T1,R"),
T > 1y; that is, all components of the vector x, are in Lf)'w([to, Th.

Unfortunately the representation formula (1.29) cannot be used to obtain some
useful estimates for solutions of system (2.76) as in the deterministic case. Such
estimations are obtained in an indirect way using some techniques based on Lyapunov
functions.

Theorem 32. Assume that the system (A, Ay, ..., A,; Q) is stable.
(1) There exist ¢ > 1, @ > 0 such that

E[|x,(t, to, x0) P In(to) = i]
<c (e—““—'°>|xo|2 +) E [ f e ()P dsln(te) = z])
k=0 ‘o

forallt > 15> 0,xg e R*,i e Dandall f, € L%qw([to, 00), R, 0<k <r.
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(i1) There exists B > 0 such that

E |:/ lxu (2, 2o, x0)*[n(to) = i:|

o

<B ({inz +Y E U | fe($)1* dsin(to) = zD
k=0 ‘o

forallty > 0,x0 € R, f; € Li‘w([’()’ ), R, 0<k=<rieD.
(iii)
lim Elx,(t, to, x0)]? = 0
=0
forallty = 0, xg € R", fr € L2 ([t5,00),R"), 0 <k <.

Proof. Since (Ag, A1, ..., A,; Q) is stable, then by Theorem 12 the Lyapunov-
type equation (2.29) has a unique bounded-on-R, and uniformly positive solution
K@#)=(K@1D,...,K(,d)). Therefore, there exist «; > 0, @y > 0 such that

arJt < K@) <apJ?, t>0.

Let x,(1) = x,(t,2,0),7 > 1. Applying the Itd-type formula (1.16) to the

function v(t, x, i) = x*K(z,i)x and to the system (2.76), taking into account the
equation (2.29) for K (¢), we obtain

E[v(t, x,(1), n(t)Inte) = i] = E[/ { — x> + 2x:(S)[E(S, n(s)) fo(s)
1o

+ Z Af(s, (DK (s, U(S))fk(s)j|

k=1
+Y R©KG, n(S))fk(S)} ds|n(to) = z}.
k=1
Denote
hi(t) = E[v(t, x,(t), n(t)In(te) = i1,i € D,
mi(t) = v Ellx, (") PIn(to) = i), i € D,

gi(t) = J Y ENA®PIn(to) =il,i € D.
k=0
Then we may write
hi (1)
=E H—lxu(t)lz +2x3(0) [l?a, N folt) + Y At n)K @, n(t))fka)}

k=1
+Y froka, n(t))fka)] In(to) = ,}
k=1

ae.t >1,i €D.
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Since Ay, K are bounded, there exist y > 0, § > 0 such that
1
Bi(1) < =) + v [mi@)gi () + g](0] < —5mi®) + 8/ (0).

Taking into account that | I, < K(t n(t)) < a1, it follows that

aym?(t) < hi(t) < aami(t).

Hence k(1) < —ihi(t) + Sgiz(t). Since h;(ty) = 0 we obtain

aym?(t) < hi(t) 55/ = el(s)ds, t > ty,i €D 277

o

witha = % On the other hand,
2
X, (t, tg, x0) = x, (1, 19, 0) + (¢, to)xo. (2.78)

Combining (2.77) and (2.78), (i) is proved. Part (ii) follows from (i) and the Fubini
Theorem. We now prove (iii). Since

d
Y E [/ Z FAGIRAVICE ,} < 00,
i=1 o

it follows that for every ¢ > 0 there exists 7, > fp such that

d o0
> / g (nydt <e.
i=1 Yl

For each ¢t > t, we have

t te
/ —a(t—s) 2(S)dS — e —a(r— tg)/ —a(t; —s) Z(S)ds-{—/ —a(r—s) 2(s)ds
Ty

) Ie

o0
< e_"(""')/ giz(s) ds +¢.
Io

From this inequality and (2.77) we conclude

lim Ef]x,(t, to, 0)*n(t0) = i] = 0.

=0
Finally, using (2.78) we obtain

Jim E[lx,(z, o, x0)*In(t0) = i] = 0

and the proof is complete. O
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Remark 17. 1f we do not know that the system (Ag, Ay, ..., A,; Q) is stable, then the
estimation from Theorem 32(i) is not uniform with respect to ¢, f, € R,. In general
we may prove that for any compact interval [#y, #;] there exists a positive constant ¢
depending upon ¢; — fy such that

r ]
E[lx,(t, 10, x0)*In(o) = i] < ¢ (|X0|2 +> E [/ | fi(s)I” ds|n(to) = ,D
k=0 0

forallt € [ty, ), xo € R*,i e Dand all f; € L2 ([tp, 1], R"),0 <k <.

now

To this end we notice that since Ai(¢,i),0 < k < r,i € D, are bounded on R,
from (2.76) and Theorem 31 of Chapter 1 it follows easily that there exists an absolute
constant y > 1 such that forall r € [#, 1;],i € D we have

E[lxu(t, to, x0) P (to) = i]

< [)’I)Col2 + E[/ |xu (s, 0, x0)|* ds|n(t0) = i:l((tl —)+ 1D
o

r 1
+y EU | fe($)1* ds|nto) = i]((n — 1) + 1)}.
k=0 !

0

By using the Gronwall Lemma we get

sup E[Ix,(t, to, x0)*n(to) = i]

h<r=<t

r n
< c(|xo|2 +)° EU | fe()PInto) = ,D
k=0 ‘o

i € D, where ¢ > 0 depends only on #; — 7.

Notes and references

In the control literature one can find a large number of papers devoted to the stability
of Ito-type differential equation systems. For this reason it is impossible to give an
exhaustive bibliography for this subject. We shall limit ourselves to pointing the
reader to the monographs [5], [6], [11], [74], [77], [78], [21], which contain many
references concerning this subject. Theorem 29 has been proved in {79] for a larger
class of systems of linear stochastic differential equations.

The ESMS for stochastic systems of differential equations with Markov per-
turbations has been introduced and studied for the first time in [73], in which
characterizations using Lyapunov-type equations are given.

The results in this chapter concerning time-varying linear differential systems with
jump Markov perturbations have been proved in [89]. The mean square exponential
stability for time-invariant differential systems with jump Markov perturbations has
been investigated in [86], [84], [48], [70], [49], [82], [85].
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The ESMS probiem for differential equations subjected to both Markov pertur-
bations and multiplicative white noise has been also considered in [83]. In that paper
sufficient conditions for stability are given in terms of some M-matrices, and it is
proved that ESMS implies almost sure stability. Results concerning the stability and
the boundedness of solutions of nonlinear It6 differential systems subjected to Markov
perturbations can be also found in {80].

Most of the results included in Sections 2.1-2.5 have been proved in [33].
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Structural Properties of Linear Stochastic Systems

In this chapter we present the stochastic version of some basic concepts in control
theory, namely stabilizability, detectability, observability, and controllability. All these
concepts are defined in terms of both Lyapunov operators and stochastic systems.
The definitions given in this chapter extend the corresponding definitions from the
deterministic time-varying systems. Some examples will show that the stochastic
observability does not always imply stochastic detectability, and stochastic control-
lability does not necessarily imply stochastic stabilizability. As in the deterministic

case the concepts of stochastic detectability and observability are used in some criteria
of ESMS.

3.1 Stabilizability and detectability of stochastic linear systems

Let us consider the following stochastic input—output system:

dx(t) = [Ao(t, n(0))x () + Bo(r, n(1)u(r)1dt

+ Z[Ak(h n(0)x(t) + Bi(t, n(e)u(t)] dwi (1), 3.1

k=1
y(1) = Colt, n(£))x (1),

t € Ry, with the inputs # € R” and the outputs y € R?, and denote A = (A,
Ay,...,A)and B = (By, By, ..., B,).

Definition 1. (i) We say that the system (3.1) is stochastically stabilizable or equiv-
alently, the triple (A, B; Q) is stabilizable if there exists F: R, — M,dn‘,, bounded
and continuous function such that the zero solution of the system obtained by taking
u(t) = F(t, n(t))x(t), namely

dx(t) = [Ao(t, n(1)) + Bo(t, n(t)) F(t, n(t))1x(t)dt

+ Z[Ak(t, n() + Bi(t, n() F (1, n(N]x()dwy (1),

k=1
t >0, is ESMS.
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(i1) We say that the system (3.1) is stochastically detectable, or equivalently, that
the triple (Co, A; Q) is detectable if there exists K: Ry — Mﬂ. » continuous and
bounded function such that the zero solution of the system

dx(t) = [Ao(t, n(1)) + K (1, n(1))Co(t, n(1)))x(t) dt + }: Ar(t, n(1)x () dw(t)
k=1

is ESMS.

Remark 1. (i) The above definition of the stochastic detectability would also be stated
if the output of the system (3.1) is of the form

dy(t) = Co(t, n(t)x(t)dt + Y Celt, n(0)x (O)dwy ().
k=1

(i1) The function F(¢t) = (F(r, 1), F(t,2), ..., F(z, d)) and the function K (t) =
(K(t,),K(,2),..., K(t,d)) from the above definition will be termed stabilizing
feedback gain and stabilizing injection, respectively.

The concepts of stochastic stabilizability and stochastic detectability in the par-
ticular cases when the system (3.1) is subjected only to either Markovian jumping
(e, Ay =0, By =0, 1 <k < r) or multiplicative white noise (i.e., D = {1}) are
obviously defined in the same way. In the case of Markovian jumping systems, we
shall say that (Ag, By; Q) is stabilizable and (Cy, Ag; Q) is detectable, and in the case
of Itd systems we shall say that (A, B) is stabilizable and (Cy, A) is detectable.

Remark 2. If the system (3.1) is in the stationary case, then the stabilizing
feedback gain and the stabilizing injection are supposed to be of the form
F=(F(),...,F@d),H=(H(),..., H(d)).

In the next chapter we shall show that in the case when the coefficients of the sys-
tem (3.1) are 6-periodic functions with respect to their first argument, then this system
is stochastically stabilizable (stochastically detectable) if and only if there exists a
#-periodic stabilizing feedback gain (a 8-periodic stabilizing injection, respectively).
Moreover, if the system (3.1) is in the time-invariant case, then it is stochastically
stabilizable (stochastically detectable) if and only if there exists a stabilizing feedback
gain F = (F(1)F(2)... F(d)) (a stabilizing injection K = (K(1)K(2)... K(d)),
respectively).

Let us consider the following numerical example withn = 2,d =2, and r = 1,

where
—1 1 — )
Q=[1 _1],Ao<1)=[al 2},/&0(2):[{) _1],

A1) = [8 8], A1(2) = [8 2} B(l) = [(1)] B(2) = [(])]
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witha? < 7/3anda, B, v, 8 € R. The system (Ag, A1, Q; B) is stabilizable. Indeed,
et F(l)=[l-a —1-8], F@Q)=[-1—y 1—35]. Then

Ao(1) + B(DF(1) = ['11 _OIJ and Ao(2) + BQ)F(2) = [_01 _11] ’

from which we deduce, according to Example 4 of Section 2.6 that (A¢+ BF, A1; Q)
is stable. Let us remark that the pairs (A¢(1), B(1)) and (Ag(2), B(2)) are not control-
lable. One can also remark that if 8 > 1/2 or y > 1/2, then the system (Ag, 41; Q)
is not stable since it does not satisfy the necessary conditions of stability, namely the
matrices Ag(i) + %q,-,-lz, i = 1, 2 being stable.

The next result immediately follows.

Proposition 1. (i) The system (3.1) is stochastically stabilizable if and only if there
exists a continuous and bounded function F: Ry — an’n such that the system
(Ag+ BoF,A{+ BiF,..., A, + B, F; Q) is stable.

(ii) The system (3.1) is stochastically detectable if and only if there exists a
continuous and bounded function K: Ry — Mf' p Such that the system (Ao +
KCy, Ay, ..., A; Q) is stable. g

From Theorems 19, 24, and 28 of Chapter 2, the following result can be obtained.

Proposition 2. (i) If the system (3.1) is stochastically stabilizable (stochastically
detectable, respectively), then the system with Markovian jumping,

x(1) = Ao(r, n(t)x () + Bo(t, n(1)u(1),
y(t) = Colt, n(1))x (1),

is stochastically stabilizable (stochastically detectable, respectively).

(i) If the system (3.1) is stochastically stabilizable (stochastically detectable,
respectively), then, for each i €D, the system described by the Ito differential
equations,

dx;(t) = [Ao(t, )xi(t) + Bo(r, Hu(n)]dr

+ ) LA, Dxi(0) + Bi(t, Du()]dwi(0),
k=1

yi(t) = Colt, H)x; (1),

is stochastically stabilizable (stochastically detectable, respectively) where Zo (t,i)=
Ao(t, 1) + 3giil,. u

Remark 3. 1t is not difficult to see that the definition of the stochastic stabilizabil-
ity and stochastic detectability can be stated for triplets (A, B; Q) and (C, A; Q)
in the case when the elements of the matrix Q verify only condition (2.7); C =
(Cy, Cy,...,C,) and Ay, By, Cy are continuous matrix-valued functions on a right
unbounded interval 7 C R.
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More precisely, we have the following definition.

Definition 2. (i) The triple (A, B; Q) is stabilizable if there exists a bounded and
continuous function F : T — MY such that

UTe(t, $)|| < pe ™D Ve>sel

(¢ > 0, B > 0 being constants); Tr(-, ) is the linear evolution operator defined by
the linear differential equation over S¢:

d
—S8@) = Lp()SO),
dt
where Lp(t) : Sr‘f — S,‘f by
(Lr@)$)E) = [Ao(t, i) + Bo(t, i)F(t, )1S(i) + S Ao(t, i) + Bo(t, i) F (¢, D]

+Z[Ak(t’i)‘*‘Bk(t»i)F(tsi)]S(i) (3.2)
k=1
d

x[Aut, i) + Be(t, DF (1,01 + ) 45 S()),
j=l
ieD,Sese
(i1) The triple (C, A; Q) is detectable if there exists a bounded and continuous

Sfunction K : T — M‘,f‘p, such that |ITX(t,5)]] < Be @9Vt >se€I,8 >0,

a > 0 being constants. TX (¢, s) is the linear evolution operator defined by the linear
differential equation

d _ rK
50 =LEDOS®,
where L5 (1) Sf — S,‘f by
(L5 (1)S]G) = [Ao(r, i) + K (1, )Co(t, D)IS() + S Ao(t, i) + K (2, HCo(t, i)]*

+Z[Ak(f, D)+ K(t, HC(t, DISHIA (2, §) + K (2, 1) Cie(t, D))"
k=1

d
+3 4580, (3.3)
j=I
ieD,Ses

The next result easily follows from Theorem 21 of Chapter 2.

Proposition 3. Assume that the system (3.1) is in the time-invariant case. Then the
Sfollowing are equivalent:
(1) The system (3.1) is stochastically stabilizable.
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(i) There exists F=(F(1), F(2),...,F(d))eM!

C.n Such that the affine
Lyapunov equation over S,‘f ,

LrX+J4=0,

has a solution X > (.
(iii) The linear matrix inequalities

LKD) PX.T)G)
[P*(x, DG REOG) ] <0 34
have a solution (X, T') € 8¢ x M4 . X > 0, where
d
LT = AoX () + XDALD + BT + T OB + Y a5 X (),
j=1

PX, D)) = (AOXE + Bi(OIE)
A2 (DX (@) + B ()T (@) - -+ A (DX (@) + B (DT (D),

-X@) 0 0 ... 0
0 -XG@ 0 ... 0
RX)i)=| O 0 —X@ ... 0 |eSn.
00 0 ... —X()

Moreover, if (X,T') € 8¢ x MY is a solution of the linear matrix inequalities (3.4)
with X > 0, then F = (F(1), F(2), ..., F(d)), with

F(i)=TMHX3GE™, (3.5
i € Dis a stabilizing feedback gain. O
In the particular case with By =0,k=1,2,...,r we have the following

proposition.

Proposition 4. Assume that the system (3.1) is in the time-invariant case and By (i) =
0,i e D,k=1,...,r; then the following are equivalent:

(1) The system (3.1) is stochastically stabilizable.

(i) The system of linear matrix equations

Ap(NX () + X () AG(E) + Bo(HT () + () By (i)

r d
+ ) ADXDALD) + Y g X () + 1 =0, (3.6)
k=1 j=1
i € D, has asolution (X, T') € 8¢ x M4, .. X > 0. Moreover, if (X, T) € SIx M,
is a solution of the system (3.6) with X > 0, then a stabilizing feedback gain may be
obtained as in the previous proposition. g
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The next result follows easily from Theorem 20 of Chapter 2.

Proposition 5. Assume that the system (3.1) is in the time-invariant case; then the
Jfollowing are equivalent:

(1) The system (3.1) is stochastically detectable.

(1i) The system of linear matrix equations

AGDY (D) + Y (@) Ao () + A Coli) + Co(i) AT (D)

r d
+ Y AIOYDAD + YYD+ 1, =0, 3.7

k=1 j=1

i € D, has a solution (Y, A) € S,‘f X M‘rf‘p, Y > 0. Moreover, if (Y, A) is a solution
of the system (3.7), then K = (K (1), ..., K(d)), with

K@) = Y U OHA®G), (3.8)

i € D, being a stabilizing injection.
(iii) The system of linear matrix inequalities

AGDY (D) + Y () Ao () + A Coi) + Cgi)A™ (D)

r d
+ Y AL OY DA + Y gy Y () <0, (3.9)

k=1 j=l

i € D, has a solution (Y, A) € 8¢ x M‘,f‘p, Y > 0. Moreover, if (Y, A) is a solution

of the system (3.9) with Y > 0, then a stabilizing injection is obtained as in (3.8).O

Based on Remark 3 we can establish a duality relationship between the
stabilizability and detectability in this stochastic framework.

Proposition 6. Assume that:
(@) Ar : R — M?, B : R - MY are continuous and bounded functions,
k=01,...,r.
(i1) The elements of the matrix Q verify (2.7).
Then the triple (A, B; Q) is stabilizable if and only if the triple (B*, A%; Q%) is
detectable, where
A" = (A}, AL, ... AY), B* = (B}, B}, ...,B}),
AL = (AL, D, A(1,2), ..., Aj(t,d)),
Bi(t) = (Bjt, 1), B{(t,2),..., Bl(t,d)),
A, i) == Aj (=1, 1),
B, i) = Bi(—1,0),
0 =0,
teR,ieD k=01,...,r.
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Proof. If (A, B; Q) is stabilizable, then there exists a bounded and continuous
function F : R — MY such that

1 Tr(r,5)]] < Be @™ (3.10)
forallt > s,7,s € R, B8 > 0,a > 0 being positive constants, Tr(-, -) being the

linear evolution operator defined by linear differential equation over S¢,

d
Zl_;S(t) = Lp()S(1), (3.1D)

and L ¢(¢) being defined as in (3.2).
Itis easy to see that $(r) is a solution of the equation (3.11) if and only ift — S(—17)
is a solution of the equation

d
X0+ (LP)* X (1) =0, (3.12)
where L*(t) : S¢ — 87 is defined by

(L0)S) () = [Aj(t, i) + K*(2, i) B (t, )] SG)
+SH[AG, 1) + K* (¢, DBE(t, D]
+ > [Af i) + KF( D) B, )]S ()
k=1
x[AL(t, i) + K*(t, D) B{ (1, D]

d
+Y q4S().ieD, Sest,
j=1
where Ai, B,’f were defined in the statement and K*(t,i) = F*(—t,1i), q?i = qij,

i, j € D.If T, s) stands for the linear evolution operator over S,‘f defined by the
differential equation

d e
50 =LMSO),

then we obtain from (3.12) that S(—1) = (T3(s, t))*S(—s) forallr < s, hence S(¢) =
(TH(—s, —1))*S(s) forall > s.

On the other hand, S(z) = Tr(t, 5)S(s), t > s. Hence we have T%(z, s) = TF(—s,
—t) VYt > 5. Finally, invoking (3.10), we deduce that

NTE(@, 5)|] < Be™ ™), Vi > 5,

which shows that (Bﬁ, Al Q“) is detectable and the proof is complete. O
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Remark 4. (i) In the same way we may prove that (C, A; Q) is detectable, if and only
if (A%, C*; Q") is stabilizable.

(i1) From Proposition 6 it follows immediately that in the time-invariant case,
(A, B; Q) is stabilizable if and only if the triple (B*, A*; O*) is detectable.

Now we prove the following theorem, which extends a well-known result from
the deterministic framework.

Theorem 7. Suppose the following.
(1) (Cyp, A; Q) is stochastically detectable.
(ii) The differential equation

:—IK(t)+£*(t)K(t)+5(t) =0 (3.13)

has a bounded solution K : R, — S¢, K@) = (E(z, D,..., E(t,d)), K@, i) >0,
t>0,i €D, where C(t) = (C(t,1),...,C(t,d)), C(t,i) = C3(t,)Co(t, i).

Then the solution of the system (1.22) is mean square exponentially stable (or
equivalently, the system ((Ag, A1, ..., A,); Q) is stable).

Proof. Consider v: R, x R" x D — R, v(t,x,i) = x*E(z,i)x. Let x(1) =
x(t, 1, xo) be a solution of the system (1.22). Applying the identity (1.6) to the
function v and to the system (1.22) and taking into account the equation (3.13) we
getforallt > fpandi € D

Efv(t, x(t), n())In(to) = i1 = x; K (15, )0
=-E U ICo(s, n(s)x(s))dsIn(t) = i] :
Hence 0
E U:O |Cot, n(@)x (1)) d1n(ty) = z} < xjK(to. Dxo < vlxol’,  (3.14)

to>0,x0€R",i € D.
We may write

dx(t) = {[Ao(z, n(0)) + H(t, n(1))Colr, n(t)1x (1) + fo()}dt

+ 2 At n()x (i),

k=1

where fo(t) = —H(t, n(t))Colt, n(1))x(1).
Since the system (Ag+H Cy, A; ... A,; Q)isstableandsince fy € Lf,.w([lo, 00) X
R") (see (3.14)) we may use Theorem 32(ii) of Chapter 2 to obtain

E U | (2, t)xo0l*dt|n(to) = ,} < 8[lxl* +E U | fo(t)2dtIn(to) = i]

) Lie]
2
< Blxol

forallzy > 0,x0 € R",i € D.



3.2 Stochastic observability 93

Using Theorem 19 of Chapter 2 we conclude that (Ag, A, ..., A,; Q) is stable
and the proof is complete. O

Remark 5. If (C, A; Q) is detectableﬁ,vthen it follows based on a similar proof that the
result remains valid if one replaces C(¢) with C(¢,i) = Z;zo Cr(e, D)Ci(z, 1),

3.2 Stochastic observability

Definition 3. We say that the system (3.1) is stochastically uniformly observable
(or equivalently, that (Cy, A; Q) is uniformly observable) if there exist T > 0, 8 > 0
such that

t+T
/ T*(s,1)C(s)ds > BJ? (3.15)

V1 > 0, where C(s) = (C(s, 1), C(s,2),...,C(s,d)), C(s,i) = C5(s,1)Co(s, i),
i € D,s > 0. In the time-invariant case we shall say that the system (3.1) is
stochastically observable, or the triple (Cy, A; Q) is observable.

Remark 6. (i) If inthe system (3.1) wehave Ai(¢,i) =0,k = 1,...,r,D = {1},then
the Lyapunov operator (2.8) is the Lyapunov operator of deterministic framework. In
this case (3.15) becomes

t+7
/ D5 (s, YT (s)Co(s)Do(s, t)ds > Bl,, ¥t > 0,
t

where ®g(-, -) is the fundamental matrix solution of the differential equation x(¢) =
Ao()x(2).

This shows that the above definition of stochastic uniform observability is a natural
extension of the uniform observability used for linear time-varying deterministic
systems (see [72]).

(ii) If the system (3.1) is subjected only to Markovian jumping, then the condition
(3.15) becomes |/ T T(s, 1)C(s)ds > BJ9. If this is fulfilled we shall say that the
triple (Co, Ag; Q) 1s uniformly observable.

(iii) If the system (3.1) is subjected only to multiplicative white noise and the cor-
responding inequaliy (3.15) is fulfilled, then we shall say that (Cy, Ag, A1, ..., As),
or more briefly (Cy, A), is uniformly observable.

The following result follows immediately from Theorem 4 of Chapter 2.

Proposition 8. The system (3.1) is stochastically uniformly observable if and only if
there exist B > 0, T > 0 such that

I+t
E [/ % (s, NCG(s, n(s))Cols, n(s)P(s, Nds|n(t) = t} = Bl

Jor all t = 0,i € D,®(., ) being the fundamental matrix solution of the
system (1.22). |



94 3 Structural Properties of Linear Stochastic Systems

The proof of the next result is based on some preliminary results that develop the
ones presented in Section 2.2. First, remark that since

(1. 10) = 2% VD, (1, 1),
where ®; (¢, ty) is defined in the proof of Theorem 5 of Chapter 2 and $i (t, o) is the
fundamental matrix solution for fixed i € D of the linear deterministic system

D ot Dx(1)
—_— = , 1 ,
dt 0 *

it follows that for each i € D the pair (Co(., i), Aol i )} is uniformly observable if
and only if the pair (Co(., i), Ag(., {)) is uniformly observable, where

~ 1
Ag(t,1) = Ao(t, 1) + Eqiiln-
Further, foreach i € D, let ‘
L) : Sy — S,
be the Lyapunov-type linear operator defined by

LM = Ao(t, DM + MAS(t, 1)+ Y Aj(t. DMAT(@, i), M €S,
j=1
and let Ti(t, 1) be the linear evolution operator on S, associated with the opera-
tor £/ (z).
Let £() : 8¢ — S84 be defined by

(CHH)) = L'HG), HeS?, ieD,

and let T(z, t5) be the linear evolution operator on S,‘f associated with the linear
operator L(t). It is easy to prove that

(T, t)H)(i) =T (t,10)H(i), He S?, i e D.
From the definitions ?(t, to), Ti (¢, tp) (see Section 2.2) easily follow

T(t,t0) = T(t, 1) > Tu(t, o), (3.16)
T, 10) > T, 1g).

From (3.16), the next proposition immediately follows.

Proposition 9. We make the following assumptions.
(i) If for each i € D, the pair (Cy(-, i), Ao(-, 1)) is uniformly observable, then
the triple (Co, Ag; Q) is uniformly observable.
(1) If (Cqy, Ag; Q) is uniformly observable, then (Cy, A; Q) is uniformly
observable. ~
(iii) If for every i € D, the system (Co(., i), Ag(., 1), A1, D), oy ALC i)) is
uniformly observable, then the system (Cq, A; Q) is uniformly observable, too. [
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Proposition 10. Assume that the system (3.1) is in the time-invariant case. Then the
following are equivalent:

(1) The system (3.1) is stochastically observable.

(i1) There exists T > O such that

T
/ eF5Cds > 0.
0

(iii) There exists T > 0 such that Xo(t) > 0, where Xo(1) is the solution of the
problem with initial value:

d ~
EXO(Z) =L*Xo(t) + C, Xo(0) =0.

Proof. (i) <= (ii) follows from (2.16).

Since Xo(t) = f; "1 Cds = [, e£’*Cds, t > 0, it follows that (iii) <= (ii).
The proof is complete. O

Proposition 11. Assume that the system (3.1) is in the time-invariant case. Let X(t)
be the solution of the Cauchy problem on S¢,

d ~
EXO(t) =L'Xe()+C, t =0, Xo0)=0.

If there exists T > 0, such that Xo(t) > O, then Xo(t) > Oforallt > 0.

Proof. For eacht > 0, we write the representation

t
Xo(t) = (Xo(t, 1), Xo(t,2),...,X(t,a’))=/ X9 Cs.
0

Since "= : §¢ — S? is a positive operator, we deduce that Xo(t) > O for all
t > 0. Moreover if t > t we have Xo(t) > Xo(1); therefore, if Xo(r) > 0, we
have Xo(#) > O for all + > 7. It remains to show that Xo(t) > 0,0 < 1 < 1.
To this end we show that detXo(t,i) > 0, 0 <t < 7, { € D. Indeed, since
detXo(t, i) =det| N eﬁ*("”Cds)(i)}, we deduce that 1 — det X (¢, i) is an analytic
function.

The set of its zeros on [0, 7] has no accumulation point. In this way it will follow
that there exists r; > 0 such that derXy(r, i) > O forallt € (0, ;). Invoking again
the monotonicity of the function t — Xg(¢) we conclude that Xq(¢) > 0O for all
t > 1), and the proof is complete. O

Remark 7. From Propositions 10 and 11 it follows that the stochastic observability
for a system (3.1) in the time-invariant case may be checked by using a numerical
procedure to compute the solution Xo(¢) through a long enough interval of time.

The following two results can be considered as Barbashin—Krasovskii-type
theorems [58].
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Theorem 12. Assume that (Cy, A; Q) is uniformly observable and the affine differ-
ential equation

d ~
d—tX(t)+£*(t)X(t)+C(t) =0 3.17
has a bounded and semipositive solution X 1), t>0. Then
i) The system (Ao, Ay, ..., Ay Q) is stable.

(i) X(r) > 0.
(i11) Equation (3.17) has only one bounded solution that is uniform positive.

Proof. From (2.12) it follows that

i(z) =T*(, t)i(s) + /S T*(u, t)E(u)du, s>t (3.18)

t

Since 0_< i(s) _<_~[30]d with some By > 0 and T(s,#) > 0, one gets 0 <
LT, DCwydu < X(t) < foJ? forall s > t > 0. Hence the integral X (1) =
[ T*(s,1)C(s)ds is convergent and 0 < X (1) < foJ?, 1 = 0.

By (2.12) it follows directly that X is a solution of the equation (3.17).

Since (Cy; Ag, - .., Ay, Q) is uniformly observable it follows that X is uniformly
positive. Since T*(t + 7, )T*(s, t + t) = T*(s, t) we have

o

T*t+1,0)X(t +1) = /

1+

_ - +1 ~
T*(s,)C(s)ds = X(t) — / T*(s, HC(s)ds.

Hence T*(r + D)X(1 + 1) < X (1) — BJ4 < (1 — ﬂ’io)p?(z),t > 0. Thus by Theorem
31 of Chapter 2 it follows that the system (Ao, ..., A4,, Q) is stable. Hence by
Theorem 12(ii) of Chapter 2, |T*(s, t)|| < ye“"(f’), s>1

Taking s — oo in (3.18) one gets 5(’(1) = X(#),t > 0, and thus the proof is
complete. O

Corollary 13. Suppose that A (t, 1) = Ag(Q), Co(t,i) = Ci),t > 0,i € D, 0 <

k < r. Assume that (Cy; Ao, ..., A, Q) is observable and the algebraic equation
on 8¢,
LX+C =0, (3.19)

has a solution X > Q.

Then:

(1) The system (Ag, Ay, ..., A,, Q) is stable.
(i) X > 0.
(iit) The equation (3.19) has a unique positive semidefinite solution. O

The next result gives sufficient conditions concerning the observability of the
system (Cy; Ag, ..., A,, Q).
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Theorem 14. Under the assumption of Proposition 10 if the system (Cy; Ao, .. .,
A,, Q) is not observable, then there exist xo € R", xg # 0, and iy € D such that
(1) Colig)xg = 0.
(i1) 45 Co(idxp = O forall i € D.
(i) Co(ip)(Ag(ip))"xo = O forallm > 1.
(%) digidi Co(j)x0 = O for all i # io, j € D.
(V) Colip)Ar(ip)xo =0, 1 <k <.

Proof. Suppose that (Co; Ag, ..., A,, Q) is not observable. From Proposition 10
it follows that there exist xo, € R",xy # 0, and iy € D such that x; fol (ef*' c )
(io)dtxo = 0. Hence x3(e“'C)(ip)xp = O for all 1 € [0, 1]. Since eL > oL >
e*1" (see (3.16) and Remark 3 of Chapter 2) one gets x; (£ C) (i) xo = 0, x5 (€17 C)
(io)xo = 0,¢ € [0, 1]. From the last equality we get Cq(ig)e0 0 xq = 0,1 € [0, 1).

Hence differentiating successively we have

XL C)io)xo =0, m >0, (3.20)
Co(ig)(Ap(ig))"xo =0, m >0, (3.21)
xE(L"C(io)xo = 0, xE (L™ C)(ig)xo = 0 (3.22)

forallm > 0.
Thus (i) and (iii) follow from (3.21)
Now, from (3.20) and (3.22) we have

0 = x3(£*C)io)xo = x§(L3C) (io)xo + x3(LC ) (io)xo
= x0(L3C)i0)x0 = x§ Y Af(i0)C5 (i0)Colio) A (io)xo,
k=1

and thus (v) follows.
Further, by (3.22) we can write

0 = x3(L*C)(io)xo = xg (L3 C)io)xo + x5 (L3C) (io)xo
= X; ([:;5) (io)xo = x5 Z Gio; Co (J)Col(j)x0,
J#i0o

where L, E, L are defined in Section 2.2 and £, = £ — £ and L3 = - L. Then,
since g;; > 0,1if i # j one gets (i1).
Also from (3.22) it follows that
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But, by using (ii) we can write

~. N 1 . .
x();(,CTE;C)(lo)XQ = 2)(0 [Ao(l()) + Eqi()iﬂln} Zqi()iCO (l)C()(l))CQ = 0,
i
10 Y Y * * e 1 % . .
XLSLICY o)xo = 245 Y iy (Aom + 34 1,,> C3()Coli)xo = 0.
i#ig

Hence one gets

0 = x5 (L3 Chio)xo = x5 Y Y Gigigi; C3 () Col ),
iig j#i

and since g;,q;; >0 for i #iy, j #i, one obtains ¢;,iq;;C(j)xo=0 for all i #ij
and j#i, and thus by (ii) it follows that (iv) holds and hence the proof is
complete. O

Corollary 15. Under the assumption of Proposition 10, if for every i € D, rank
M) = n, where

M) = [CE(), AJDHCH), . ..., (A" CE ),
an(")‘(l), AU q,»dC{;(d), AT(i)Cg(i), e, Aj(i)C(;(z’)} s

then the system (Cy; Ag, Ay, ..., A,, Q) is observable. g

In the following examples, the stochastic observability used in this paper is com-
pared with other types of stochastic observability, for example, the one introduced
in [70] and [86]. We also show that the stochastic observability used in this paper
doesn’t imply the stochastic detectability as we would have expected.

Example 1. Let us consider the case of a system with Markovian jumping withd = 2,
n=2,p=1.Take

Ao() = Ao = [‘g 2}

Co)=[1 OLCo=[0 1], Q= {*qq _qq] ,eR,q>0.

It is obvious that the pairs (Co(1), Ag(1)), (Co(2), Ap(2)) are not observable.
Therefore, this system is not stochastically observable, in the sense of [86]. We shall
show that this system is stochastically observable in the sense of Definition 3.

To this end we use the implication (iii) == (i) in Proposition 10. We show that
there exists t > O such that X;(r) > 0, X5(r) > 0, where X;(¢),i = 1,2, is the
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solution of the Cauchy problem:

d 2
Exi(t) = A Xi(1) + Xi (1) Ao(i) + unxj(t) + C()Co(i), (3.23)

X:i(0)=0, i=1,2.

j=1

From the representation formula

t y ~
(X1(2), X2(1)) :/ L0 Cds,
0

it follows that X;(t) > O forall t > 0.
Therefore it is sufficient to show that there exists T > 0 such that det X;(t) > 0.

Set
o X)) yidr) .
X’(t)_<y,~(t) z,-(r))’ i=12

and obtain from (3.23) the following system of affine differential equations:

X1 (1) = R ~ @)xi(1) + gx2(t) + 1,
X (1) = gx1 (1) + Qo — @)xa (1),
(0 = Qa = @)yi(t) +gy2(t),
¥ (1) = ayi(t) + Qo — @) y2(1),
21 (1) = Qo — )z (1) + q22(1),
(1) = qz21(t) + Qo — @)z2() + 1,
xi(0) = y:(0) =z(0)=0,i =1,2.
Hence y;(t) = y2(t) = 0,1 > 0.
From the uniqueness of the solution of a Cauchy problem it follows that x; (t) =

z2(t) = x(t) and x,(t) = z;(¢) = Z(¢), where t — (x(¢), Z(¢)) is the solution of the
problem

%i(t) = Qa —q)x(t) +qz(t) + 1,

d . - .
EZ(I) = gx(f) + Qo — g)z(1),
%(0) = 2(0) = 0.
We have det X; (1) = x;(t)z; (1) — y2(t) = x;(1)z; (1) = X(1)z(2), t > 0.

But

1

t
x(t) = —f [e‘” +e(2a—q)s]ds’
2 0

1 t
HOES —f [ez‘” - ez(a_")s]ds.
2 Jo

It is easy to see that for every a € R, g > 0 we have lim,_, o, X(#)z(¢) > 0.
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Remark 8. Let us consider the system of type 3. 1) withn =2, d =2, p=1,r =1,
and Ag(1) = Ap(2) = aly, Co(1) =[1 0], Co(2) =[0 1], A|(i) 2 x 2 arbitrary

matrix,
|9 4
0 [q _q],

a € R, g > 0. Combining the conclusion of Example 1 with Proposition 9 it follows
that the system (Cp, (Ag, A}); Q) is observable.

Example 2. The stochastic observability does not always imply stochastic detectabil-
ity. Let us consider the system with Markovian jumping withd =2,n =2, p =1,

Ap(1) = Ap(2) = %Iz, Co(l)=[1 0], Ge2)=1[0 1}, @= [—qq _qq]
(3.24)
From the previous example we conclude that the system (Cy, Ag; Q) is observable.

Invoking (i) < (ii) from Proposition 5 we deduce that if the system (3.24) would be
stochastically detectable, then there would exist the matrices X (i) > 0, and

NIRRT L
A(z)_[lz(i):l, i=1,2,

which verify the following system of linear equations:

AGDHX () + X (i) Ao() + A Co(i)
2
+CEOAY) + ) g X(N+h=0, i=12,

j=1

which implies

201(1) A
12+[}»2(1) 0 :|<Os

which is a contradiction.

Example 3. Let us consider the stochastic system

dx(t) = Ao(n(0)x()dt + A (n(ENx(D)dwi (1), (3.25)
y(#) = Coln(1)x(1)

withn =2, d =2, r=1, p =1, Ag(l) = Ay(2) = al, Co(l) =
[1 0], Co(2) =[0 1], A;(1) = BL, A(2)is a2 x 2 arbitrary matrix,

|77 4
o=[ 2]

a€R, BeR, q>O,whichsatisfy2a—q+ﬂ2=0.
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From Remark 8 it follows that the system described by (3.25) is stochastically
observable. We show that it is not stochastically detectable. If, on the contrary, the
system (3.25) is stochastically detectable, then, again using Proposition 5, we deduce
that there exist matrices

A (i)

X(@{)>0,A0)= [Az(i)

:l , Me(i) € R,

which verify the following system of linear equations:

AFOX @) + X (DA + ADColi) + CHIA™ ()
2
+ATOXDAD + Y g X))+ L =0,

j=1
which leads to the same contradiction as in the previous example.

Remark 9. 1t can be remarked that the system

dx(1) = Ao(n(®))x(t)dr + Z A (@) x () dw(t), (3.26)
k=1
y(@) = Co(n())x (1),

with Ag(Q), Co(i) as in (3.24) and Ay(i), k = 1,2,...,r, 2 x 2 arbitrary matrices,
is stochastically observable, but it is not stochastically detectable. If, on the contrary,
(3.26) would be stochastically detectable, then by Proposition 2 (i) it could follow that
the system described by (3.24) would be stochastically detectable, which contradicts
the conclusion of Example 2.

From the representation formula in Theorem 4 in Chapter 2, the next result follows.

Proposition 16. Assume that the system (3.1) is in the time-invariant case. Then the
triple (Cy, A; Q) is observable if and only if t > 0,i € D, and xy # 0 do not exist
such that

E[ly(, 0, x0)I*In(0) = i] = 0

vVt € [0, t], with y(, 0, xg) = Co(n(t))x(t,0, xg), x(¢,0, xo) being the solution of
(3.1) for u(t) = 0 and having the initial condition x(0, 0, xg) = xo. U

In the deterministic framework the analogue of the above statement is one of the
usual definitions of observability.

Remark 10. In Definition 3 of observability, no condition on Q is imposed. All the
results proved above except Propositions 8 and 16 require only the condition g;; > 0
fori # j.The additional condition Z‘;zl gi; = Ois used only in the proof of the two
mentioned propositions.
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3.3 Stochastic controllability

In this section the controllability of stochastic systems will be introduced. For
simplicity we shall consider only the time-invariant case.

Let Ay(i) € R"™", 0 <k <r,ieD, B(i) e R"", Q =gl i,j € D with
qij = 0 fori 75]

Definition 4. We say that the system (Ag, Ay, ..., A,, B; Q) is controllable if r > 0
exists such that

T
/ e“' Bdt > 0,
0

where L is defined by (2.15) and B € 8¢, B(i) = B(i)B*(i),i € D.

Remark 11. One can easily see that in the deterministic case, namely if D = {1},
g = 0,and Ay (1) =0, 1 < k < r, the above definition reduces to the definition of
controllability of the pair (Ag(1), B(1)).

The following result can be directly proved.

Proposition 17. The system (Ag, A1, ..., A, B; Q) is controllable if and only if the
system (B*, AL AT, AT Q*) is observable. O

From the above proposition and from Propositions 10 and 11 and Remark 11, the
next proposition immediately follows.

Proposition 18. The following assertions are equivalent:

(1) The system (Ag, Ay, ..., A, B; Q) is controllable.

(i1) There exists T > 0 such that Ky(1) > 0 where Ko(¢) denotes the solution of
the affine equation in the space S°:

d ~
—Ko(t) = LK B
77 Ko(©) = LKo(1) +

with Ky(0) = 0.
(iii) Forany t > 0, Ko(z) > 0. O

In the following we shall consider the situation when the system is subjected only
to white noise perturbations, namely if D = {1}, g;; = 0, Ax(1) = Ai, B(1) = B.
The inequality in Definition 4 becomes

LR -~
/ e“' Bdt > 0,
0

where £ denotes the linear operator defined on S, by (2.23) and B = BB*. If this
inequality is fulfilled for some 7 > O we shall say that the system (Ag, Ay, ..., A,, B)

is controllable. Therefore, in the case of systems with multiplicative white noise, the
proposition above becomes the following proposition.
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Proposition 19. The following assertions are equivalent:
(1) The system (Ag, Ay, ..., Ay, B) is controllable.
(ii) There exists T > 0O such that K(t) > 0, where

d ~ ~ ~ S ~
— K0 =AK®) + Knas+ 3" AK (1) A; + BB with K(0) =0.  (327)
k=1

(iii) K (¢) > O forall t > 0. O
From Remark 7 of Chapter 2 it immediately follows that
¢S H = E[®(t,0)Hd*(t,0)], t >0, H € Sy,

where ® (1, ty), t > 1, denotes the fundamental matrix associated with the linear It6
system

dx(1) = Aox(t)dr + ) Agx(t)dwy (0).
k=1

Therefore the next result directly follows.

Proposition 20. The system (Ay, A1, ..., A,, B) is controllable if and only if T > 0
exists such that E fot[<1>(t, 0)BB*®*(t, 0)]dr > 0. O

We shall now give another characterization, in stochastic terms, of the controlla-
bility of the system (Ag, A1, ..., A,, B). Consider the affine 1td system

dx(t) = Aox(dt + 3 Agx(t)dwi(r) + Bdv(t), 1 > 0, (3.28)

k=1

where (w(?), v(?))* is astandard (r +m)-dimensional Wiener process. Let x(¢), t > 0,
be the solution of (3.28) with x(0) = 0. Using the It6 formula (Theorem 33 of
Chapter 1), one can easily verify that K(t) = E[X(¢:)X*(r)], K being defined in
Proposition 19. Then the following result is immediately obtained.

Proposition 21. The system (Ag, Ay, ..., A,, B) is controllable if and only if
E[x(0)x*(t)] > Oforallt > 0. O

The above characterization has been considered as a definition of controllability
of the system (Ag, Ay, ..., A,, B) in[10].

The next result proved in [10] characterizes the controllability of the system
(Ao, A1, ..., A,, B) in terms of invariant subspaces as in the deterministic case
(Ay=0,1<k<r).

Theorem 22, The system (Ag, Ay, ..., A,, B; Q) is controllable if and only if no
invariant subspace exists with the dimension less than n of the collection A;, 0 <
k <r, containing all columns of B.
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For the proof of the above theorem we need the following lemma.

Lemma 23. The following two assertions are equivalent:

(i) An invariant subspace exists with dimension less than n of the matrices Ay, 0 <
k < r, containing all columns of B.

(ii)) &€ € R", & # 0, exists such that £*MB = 0 forall M = Afl‘ A;z e Af:
where 0 <i; <r,ands; > 0,1 < j < p, p > 1 are natural numbers.

Proof. (i) = (ii) Let § be an invariant subspace of the matrices Ay, 0 < k <r,
with dimension less than n containing all columns of B. Denote by S+ the orthogonal
subspace of S. Since S+ # {0}, consider £ € S such that & # 0. Since all the
columns of the matrices M B with M as in the statement are included in S, it follows
that E*M B = 0.

(ii) = (i) Assume that & # 0 exists, satisfying (ii). Let S be the subspace generated
by the columns of all matrices M B, M being defined as in the statement. Since £ # 0
it follows that § # R". On the other hand, it is easy to check that it x € §, then
Arx € S forall 0 < k < r. Thus the proof is complete. O

Proof of Theorem 22. Necessity. Assume that the system (Ag, Ay, ..., A,, B) is con-
trollable. It follows that B # 0, and therefore, if # = 1 the condition in the statement is
automatically accomplished. We now consider the case n > 2 and that there exists a
subspace S, S # {0}, S # R"invariantof A;, 0 < k < r, containing all columns of B.
Then it follows that a basis in R” exists with respect to which the matrices Ay have
the structure 4 B
T Ik A
Av = [0 Az

B[]

where A, are s x s matrices with 1 <5 < nf.vLet fg),r 2_0, be the solution of
equation (3.27) corresponding to the matrices A; and B and K (0) = 0. It is easy to
check that if

]Osksr,

and B has the form

X)) = [KII(I) KIZ(I)] ’

K>i(t) Knl)

then K ,(¢) verifies a linear equation. Since K (0) = 0 it follows that K2,(t) = 0
forallt > 0, Nand therefore K »» (1) is not positive definite for all > 0. Taking into
account that K (1) = TK(1)T* with T nonsingular it follows that K (¢) is not positive
definite, which contradicts the assumption (see Proposition 19).

Sufficiency. We prove that K (1) > 0O for all 7 > 0. Indeed, assume that 7 > 0 and
& e R", & # 0, exist such that £* K ()& = 0. Then one can easily check that

r t '
K(t) = Z / e ALK (s)ALe0 " ds + / e* BB*e?0°ds. (3.29)
k=170 0
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Since K (t) = 0, from (3.29) we successively obtain

t
K(t) > f e’ BB*e0%ds.
0

~ ! 51 .
K(t) > Z/ (/ eAO('S‘)A,'IeAOSOBB*A;‘IeAO(t_‘”)dSo> dsi,
0 0

i1=1

~ ’ topsp o pSpol 5 4 4

K@) > Z / / / f e 0(’“fp)Aipe O(SP_‘YP*I)AilFl
P . J0 JO 0 0
Prlp—1s-l]

Ap(s2—51) 4. ,A0S0 * A4k A*(.Yz—,?])
e Ay e BB A7 %

* _Ar(t—sp)
-~Aipe 0t dsg - dsp.

Therefore, £*¢4°B = O forall 0 < s < 7 and

S*EAO(T_SP)AipeA()(sp_Sp_l) . er(sz—xl)A’_]ersoB =0

forallt > s, >sp_1> - >sm >s51>s >0andforalll <i; <r, 1 £j<p.
It follows that §*Af B = 0, k > 0, and

EAL A ARA, - AL AB =0

ip—1

foralll <ij <r,1<j <pandk, >0, 0 <s < p. Therefore, &*M B = 0 for
all M as in the statement of Lemma 23, and according to this lemma, we obtained a
contradiction. Thus the proof of the theorem is complete. O

From the above theorem a corollary immediately follows.

Corollary 24. If a pair (Ag, B) is controllable for a certain k € {0, 1,...,r}, then
the system (Ay, Ay, ..., A,, B) is controllable. g

We shall show below that the converse of the corollary is not usually true. How-
ever, in the case n = 2, m = 1, r = 1 such an implication is valid; namely one can
prove the following.

Proposition 25. If n = 2, m = 1, r = | and the pairs (Ag, B) and (A, B) are not
controllable, then the system (Ao, A\, B) is not controllable.

Aoz[‘c' 2],/4,:[3 g],and8=|:2]

such that (Ag, B) and (A, B) are not controllable, that is

Proof. Let

biby(d — a) = bb} — b’c and by by(8 — a) = Bb; — biy. (3.30)
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According to Proposition 19 the considered system (A, .= B) is controllable if and
only if K(¢) > Qforallt > 0, where K verifies (3.27) written for this particular case.

Taking
I’E - [x y] ’
y <z

(3.27) gives

dx 2 2 2

E:(Za-{—a Yx +2(b+af)y + Bz + by,

d

d_i) =(ct+ay)x+(a+d+yB+ad)y+(b+B8z+biby, (331
& S

=7 x4+2(c+y8y+ 2d +8)z +b;.

If b = 0and b; = 0, it immediately follows that x(¢) = y(¢) = z(¢t) = 0 for all
t e R.

If b; 3 0and b, = 0, from (3.30) one obtains that c = 0 and y = 0, and therefore
z(t) =0forallt € R.

If by = 0 and b, # 0, then (3.30) gives b = 8 = 0 and hence x(¢) = O for all
teR.

Assume that b, # 0 and b, # 0. Using (3.30) one can easily check that (x, y, 7)
verifies (3.31) where

= P,z Py
x(t) = ;);)(1), Z(r) = bly(t),

and y(r) is the solution of the equation

dy by byl _
— =|(ct+ay)—+@+d+yB+ad) +(b+BS—|y+bib
dt b,y b

and y(0) = 0. From the uniqueness of the solution it follows that x () = X(¢), y(t) =
¥(t), z(t) = Z(t) and therefore x(t)z(r) — (y(t))*> = 0 for all # € R, and therefore
by Proposition 19 (A, Ay, B) is not controllable. 0

The next example shows that the converse of Corollary 24 is not generally true;
namely it is possible to have a controllable system (Ag, Aj, B) but with the pairs
(Ao, B) and (A4, B) not controllable.

Example. Consider the case n = 3, m = 1, and r = 1 in which

I 0 0 30
Ap=10 -1 3], Ai=12 1 0 |,B=]1
00
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It is easy to check that (Ag, B) and (A, B) are not controllable. In this case (3.27)
gives for

- Xy z

K=y u v|,
z v g

S x+1

o 11x ,

dt

dy

— =3 6 3 1,

7 y+o6x+3z+

d

e _ |

dt

du

— = —u+6v+4x+4y+1.

dt

AT VU S

ar 4T T

dq

— =35 1,

dt q+

with x(0) = y(0) = z(0) = u(0) = v(0) = ¢(0) = 0. One can directly check that
the solution of the above system is given by

x(t) = i(e“’ - 1),

11
3 11z 5 31 16
1) = — —_ -t - —,
YO =g¢ TRt 33
() =1,
3 5t 2 2
H=—{e" —1)—-1t"+ -t,
v(t) 25(e ) + 5
1
q(r) = g(esf —1),

and u(¢) has the form

17
u(t) = Biem +051€51 +012€3[ + aze”" + C(4tz + ast + op.
Then it follows that lim,_, o, det K (t) = 00, which implies that K (t) > 0 for some

>0, and therefore, according to Proposition 19, the system (Ag, A|, B) is
controllable.

Remark 12. We have previously shown that by contrast with the deterministic case,
the stochastic controllability of Markovian systems does not imply their stochastic

stabilizability. A similar affirmation is valid for the stochastic systems subjected to
[t6 multiplicative noise.
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Indeed the system (Ag, A, B) in the above example is controllable, but it is not
stabilizable, since in such a situation, according to Proposition 4 applied in this case
(D = {1}, g1 = 0), there exists (X, A), X > 0,

X y z 2fi fivtf i+ f
X=|y u v|iandA=| fi+fr 2/ L+ f
z v q h+6 HA+6 2f
such that
AgX + XA+ A1 XAT+ L+ A=0.
Therefore

Nx+14+2f =0,
3y+6x+3z4+ f1i+ =0,

H+ f3=0,
—u+6v+4x+4y+14+2£H=0,
3g-2z+ L+ f3=0,
Sg+14+2f;=0.

Since x > Oand g > Oitfollowsthat f| < 0, f3 < 0, which contradicts f1+ f3 = 0.
Hence (Ag, A}, B) is not stabilizable.

Notes and references

Stochastic controllability for 1t6 differential equations was introduced in [10].
Theorem 22 can also be found in [10]. The numerical example and Remark 12 appear
for the first time in this book.

Other concepts of stochastic controllability have been studied in terms of control
which generalize recurrence notions of stochastic processes (see, e.g., [120], [75],
[76], [47], [12], [13], [105] for It6 systems and [70] for jump linear Markovian
systems). In the present book the concept of stochastic controllability is not used, and
therefore a reduced space is devoted to this concept.

The stochastic uniform observability was defined in [88] for Itd systems and in
[89] for systems with jump Markovian perturbations. These concepts have been used
to solve the linear quadratic problem with infinite horizon for these corresponding
systems. The results in this chapter devoted to stochastic stabilizability, detectability,
and observability can be found in [33], [31], and [34].
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The Riccati Equations of Stochastic Control

In many control problems, in both the deterministic and stochastic framework, a
crucial role is played by a class of nonlinear matrix differential equations or nonlinear
matrix algebraic equations known as matrix Riccati equations.

In this chapter we deal with a class of systems of matrix differential equations as
well as systems of nonlinear algebraic equations arising in connection with the solu-
tion of several control problems, such as linear quadratic optimization, H? control,
and H* control problems for stochastic systems. These will be called stochastic gen-
eralized Riccati differential equations (SGRDEs) or stochastic generalized Riccati
algebraic equations (SGRAEs). It is easy to see that the systems of matrix Riccati
differential equations considered in this chapter contain as particular cases many
types of matrix Riccati equations that are known in both the deterministic and the
stochastic framework. The results derived in this general framework are also applica-
ble to these particular cases. These kinds of SGRDEs are regarded as mathematical
objects of interest in themselves, and the proofs avoid any connection with an opti-
mization problem. The proofs are mainly based on positivity properties of linear
evolution operators defined by the Lyapunov differential equations. We provide con-
ditions that guarantee the existence and the uniqueness of some global solutions of
SGRDESs as maximal solution, minimal solution, and stabilizing solution. We prove
that if the coefficients of SGRDEs are periodic functions, then the maximal solu-
tion, the minimal solution, and the stabilizing solution are also periodic functions.
Moreover, if the coefficients of the SGRDEs do not depend on the parameter ¢, then
the above-mentioned special solutions are constant and they solve the corresponding
SGRAE. The necessary and sufficient conditions that guarantee the existence of the
maximal solution, the minimal solution, and of the stabilizing solution, respectively,
are expressed in terms of solvability of a class of suitable systems of linear matrix
inequalities. Finally we shall provide an iterative procedure that allows us to compute
these special solutions to the SGRDE and to the SGRAE.
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4.1 Preliminaries

In this chapter we study systems of nonlinear matrix differential equations of the
following form:

%X(z, D+ AL DX, 0) + X8, DA, D)

r d
+ Y AL DX DAL D+ Y gy X )
k=1 j=1

k=1

- (X(t, i)Bo(t, i) + Z AX(t, D)X (1, )Bi(t, i) + L(t, i))
.10

, -1
x (R(t, D+ Y B )X, DB, i))

k=1

x (B;;(t, DX D)+ Y B DX, DAL ) + L7, i))
k=1
+ M(t,i) = 0.

where t — Ap(t,i):Z - R™ t - B(t,i) : T - R, 0 <k <rt —>
M@, iy : LT - S,,t > Lt,i): T - R t - R(t,i) : T - S,,i € D,
are bounded, and continuous matrix-valued functions. Z C R is a right unbounded
interval. The elements g;; of the matrix Q verify only the weaker assumption g;; > 0
fori # j.The assumption Z‘;zl gi; = 0 will be used only for the results referring to
stochastic observability and detectability. If A,(z,i) =0, By (¢,i) =0, 1 <k <,
(t,i) € I x D, the system (4.1) becomes the system of Riccati-type equations
intensively investigated in connection with the linear quadratic problem for linear
stochastic systems with Markovian jumping. In the particular case D = {1}, the system
(4.1) reduces to

d r
EX(I) + AS(OX (1) + X (D A1) + ; AL (X () A (D)

- (X(f)Bo(f) + 3 AL OX (D B(1) + L(r))

=1 4.2)

, -1
x (R(t) +) B,:mX(z)Bm))

k=1

x (Ba‘(t)X(t) + ) BIOX (DAL + L*(t)) +M@) =0, t e,

k=1

where we denoted Ag(t) = Ao(r, 1)+ 3qu1 1Ly, Ax(t) = Ac(t, 1), 1 <k <r, Bi(t) =
Bit,), 0 <k <r,Mt)=M(1,1), Lt)=L(t, 1), Rt)=R(,1). If Ax(t)=0,
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Bi(t) = 0,1 <k <r, t €, the equation (4.2) becomes the well-known matrix
Riccati differential equation intensively investigated in connection with various types
of control problems in the deterministic framework.

In this book the system (4.1) and its particular form (4.2) will be called the
SGRDE. The system of differential equations (4.1) will be written in compact form
as a nonlinear differential equation on the space S¢. To this end we make the following
convention of notation: if C € M‘Z,_,,, B e Mﬁ‘m, C=C),C2),...,Cd),B=
(B(1), B(2), ..., B(d)), then by D = C B we understand the following element of
M’I’,‘m, D = (D(1),D(2),..., D)), D(i) = C()B(i), i e D.If A e MI A=
(A1), A(2), ..., A(d)), by A" we denote the element of M defined as follows:
At = (A7), A7), ..., A" (d)) if all matrices A(i), i € D, are invertible. If
B e Mff,m, B = (B(1l), B(2), ..., B(d)), then B* € an,n’ and it is defined by
B* = (B*(1), B*(2), ..., B*(d)).

With these conventions the system (4.1) can be written as

%X(t) + LA X (1) — P(t, X(t))R“ &, XEOPE, X)) +M(@)=0, 4.3)

L*(t) being the adjoint operator of L(r) defined as in (2.8):

X—>73(I,X):S,‘,1—>Md

m,n’

P, X) = (Pi(t, X), P, X), ..., Palt, X)),

Pit, X) = By(t, DX () + Y Bi(t. X ()ALt i) + L*(1. i),
k=1

X - R(t, X) :S,‘f — 851 by,
R, X) = (Ri(t, X), Ra(t, X),.... Ra(t, X)),

Ri(t, X) = Rt i)+ Y By(t, )X (i) Be(t, 1),
k=1

M@) = (M@, 1), M(1,2),...,M(t,d)) € S°.

If the coefficients of (4.1) do not depend on ¢, then the operators £, P, R do not
depend on ¢. In this case we shall use the following algebraic nonlinear equation
over §¢ :

LX —PXORYUX)PX)+ M =0. (4.4)

Let us remark that equation (4.3) is defined on the set
I={(,X)eIxS8|det Ri(t, X)#0, Vi e D}.

Definition 1. A C' function X : I, — S,‘f (Z\, € I being an interval). X(t) =
(X(t, 1), ..., X(t,d)) is said to be a solution of the equation (4.3) if for everyt € T,
and i € D the matrix R;(t, X(t) is invertible and the relations (4.1) hold for all
teZyandi €D.
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Aswe cansee, SGRDE (4.3) is associated to aquadruple ¥ = (A, B, V, Q) where,
as usuals A = (A01 Alv tery AV)! B = (BO’ Bl» M) Br)s V: I - ‘Syllj+m’ V(t) =
Ve, ),...,V({, ),

(4.5)

V(. i) = [M(t,i) L(t, i)].

L*(t,i) R(t, i)

If X: T — S¢isaC! function we denote

d : * ; *
Nt X (1) = {EX(L D4 LX)+ M@, i) Pr, X(t)):|’
Pi(t, X (1)) Ri(e, X(1))

which will be called the dissipation matrix, where
LIOX @) = (ﬁ*(f)X(t)) (i),

L*(t) being the adjoint operator associated with the Lyapunov operator as in
Section 2.2, and P;, R; are defined above related to equation (4.3). We shall also
denote

N, X (1) = N, X)), ..., Na(t, X (1)) € 82,

Toaquadruple T = (A, B, V, Q) we associate the following two sets of C! functions,
which will play an important role in subsequent developments:

% ={XeClZ SHIN:(t, X)) >0, Ri(t, X(1)) >0, r € Z,i € D} (4.6)
and o R _

I"={XeCyZ.SHIN:(t,X1)) »0, teI,iecD} 4.7

where C(Z,8¢) = {X € C'(Z, 8| X, £X are bounded functions}. It is obvious

that T* > f}:. One can also see that the set I'Z contains all bounded solutions
X: I — S¢ of SGRDE (4.1), which verify the condition

Ri(t, X(1)) >0, 1 €Z, i € D. (4.8)

Remark 1. With the exception of some particular cases that will be discussed later,
we do not make any assumption concerning the signature of the matrices V(t, i) in
(4.5) and R(z, ).

As we shall see in subsequent developments, the sign of the expression plays ‘an
important role in the characterization of SGRDE (4.1):

Ri(t, X)) = R, i)+ Z Br(t, )X (1, i)Bi(1,i).
k=1

Then in this chapter we consider only the case R; (¢, X (¢)) > 0, since this is the case
required by the quadratic optimization problem. In Chapter 6 the case R; (¢, X (t)) < 0
will be considered in connection with some Bounded Real Lemma-type results.

At the end of this section we prove an auxiliary result that will used several times
in the following developments of this chapter.
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Lemma 1. ) If X (1) = (X (¢, 1), ..., X(t,d)) is a solution of equation (4.3), then
t > X (1) solves the following equation on S¢:

d
EXU) + LG X (1)
—(FO)—=Gt)Y' R, X)) (F(1) —G(1)) + Mg(t) =0 (4.9)

for an arbitrary G : T — M where L5 (t) is the adjoint operator of the operator

Lo : S,‘f — S,f defined as’;ﬁ"(3.2) and
F(@t)y=(F@, D, ..., F@,d), with
F@,iy=-R7' . X)Pi(t, X (1)),
Mg(t) = (Mg(t, 1), ..., Ms(t,d)) with
Mg, D) =M@, i)+ L, )G, i)+ G @, )L (1,1) 4.10)
+G*(t, DR, DHG(t, i),
treRy, ieD.

() If X : T — S%isasolution of (4.3), then X (t) solves the following Lyapunov-
type equation:

d
EX(I) + L)X @)+ Mp(t) = 0.

(i) X(0): 7 — S,‘f is a solution of the SGRDE (4.3) if and only if X (t) is a
solution of the following modified SGRDE:
d
5;X0)+£20)XU)—¢%0,X0»R7WnXanﬁbO.X0»4—Mca)=0
4.11)
for arbitrary G: T +— M4 where X — Pg(t, X): 8¢ — M

m.n’ mun’ by
Pot, X) = (Pg.a(t, X), ..., Pcalt, X))
with
Pe.it, X) = Bo*(t, X))+ Z B,f(t, DX (A, i)+ Be(t,0)G(t, 1))
k=1
+ L*(t, 1)+ R(t, )G (1, 1).

Proof. (i) It is easy to check that X () = (X (r, 1),..., X(t,d)) is a solution of
the SGRDE (4.3) if and only if (X (¢), F (1)) solves the system

IH

M(r,X(r))[F(, ;

)]za ieD. (4.12)

Taking into account that the matrix

I, F*(¢, i)
0 1]71
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is invertible it follows that (4.12) is equivalent to

I, F*(t.i) _
[0 I ]N(’ X(”)[F(r )] 0.

or equivalently

In G*(t, l) + (F(f, l) — G(t, l))*
[ 0 I ]N,-(t, X ()
X L =0
G, D+ Fu, -G, |
from which by direct calculations one obtains (4.9).
(i1) directly follows, taking in (4.9) G(t,i) = F(t,i).
(iii) follows from (i), taking into account that
F(t,i)y— Gt i) = =R (t, X(1)(P;(t, X)) + Ri(t, X(1)G (1. 1))
= —R;'(t. X(1)P.i(t, X(1)),

and hence the proof is complete. O

4.2 The maximal solution of SGRDE

In the following developments one will frequently use the next well-known result in
connection with Schur complements (see, e.g., [9]).

Lemma 2. Consider the symmetric matrix

My M
M = . ,
[MIZ MZ?]

where My > 0. Then the following are equivalent:
M =0, (M=>0)
(i) Miy — MiuMy,' MY, > 0 (M — MipMy,' MY, > 0).
With the notations from the previous section we introduce the following.

Definition 2. We say that a solution X:T > Sd of the SGRDE (4.1) is a maximal
solution with respect to the set TZ, or the maxzmal solution for short, if X (t) > X (1)
for arbitrary X( yeT?E,

Theorem 3. Assume that (A, B; Q) is stabilizable. Then the following are equivalent:

(i) The set T'* is not empry. N

(i) The SGRDE (4.1) has a bounded maximal solution X : T — S,‘,j which
verifies (4.8).

Moreover, if the coefficients of the system (4.1) are 6-periodic functions, then
the maximal solution X(t) is a -periodic function too. If the coefficients of the
system (4.1) do not depend upon t, then the maximal solution X (t) is constant and it
solves (4.4).

Proof. (i1) = (i)i is obvious since if the SGRDE (4.1) has a maximal solution X (t)
verifying (4.8), then X( yeTlZ.
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(1) => (i1) Since (A, B; Q) is stabilizable there exists a feedback gain IE I -
Mfﬁjn bounded and continuous function such that the system (Ag + BoF, A; +

B\F,..., zi, + B,F; Q) is stable. Let 5(\(-) € T'Z. Then by a Schur complement
argument, X (7) is a solution of the following differential inequation on S¢:

%X(t) +LXOX @) = P, XE)R™ (1, X ()P, X)) + M(t) > 0. (4.13)
Set
M@) = P*¢t, X()R™' ¢, X1))P(1, X (1)) — M(t) — L)X (1) — %)?(:).
Obviously M(f) < 0,t € T and

%)?(z, i)+ AL, DX (D) + X(t, D) Aolt, i)
r d
+ Y AN DX (DA D + Y g X, )

k=1 j=1

- <)?(t, DBo(t, i)+ Y Ap(t. DX (1, ) Bi(t, i) + L(t, i))

k=1

r ~1
x <R(t, D+ BH DX D) B, i))

k=1

x (Bg(z, DX D)+ Y B DX DA D) + Lt i))
k=1
+ M@, D)+ M@, i)=0, (4.14)
ieD,tel.
Let ¢ > 0 be fixed and we define (see Proposition 14 of Chapter 2) Xg(t) =

(X5, 1), ..., X5(t,d)) as the unique bounded solution of the system of linear
equations

%X(t, i)+ (Ao(t, i) + Bo(t, i)F(t, DY X(t, i)+ X(t,i)(Ap(t, i)

+ Bot. DF (D) + Y (A, i) + Bi(e, DF (1, )" X (1, (At )

k=1
~ d ~
+ B, (1 0)) + Y gy X (1, j) + F ()R, DF (2, 1)
j=1
+ F*(, iYL*(t, i) + L(t, D F(t,i) + M(z, i) + I, = 0, (4.15)

i € D,t € 7. We show that there exists i > 0 such that
X5, i) = X(t,0) = ul,
forall (t,i) € T x D.
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Indeed, by Lemma 1 the system (4.14) will be written

d - ~ e -
XD+ (Ao(t, i) + Bolt, DF (1, 1)) X (2, i) + X (2, 1) (Ao(1, 1)

+ Bo(t, DF (1, D) + Y (At i) + Be(t, DF (. )" X (¢, 1) (At 1)
k=1
d

+ Bt DF (1, D) + ) qi X (1, j) + M. i) + M(2, 1) (4.16)
=1

+ F*(, )L, i) + jL(t, DVE(t, i)+ F*(t ))R(t, D)F (2, 1)

—(Fa,h—Fa,n) (R(t, i)+ Z Br(t, )X (t, DBt i))

x (F(t,i) — F(t,i)) =0, ie 1;,:1

where F(1,i) = =R (t, X(1))P(t, X(1))(i), with i € D and ¢ € Z. Subtracting
(4.16) from (4.15), we obtain
d . < . . N N TF . < .
E[XS(t, i) = X(t, )] + [Ao(t, i) + Bolt, DF (¢, D] [X5(, 1) — X (1. 1)]

+ [X5(, i) — X, ][ Ao(t, i) + Bot, ) F(t, )]

+ > [Aw, i) + Be(t, DF (e, D] [ X5, 1) — X (2, D))

k=1
d
x [Ae(t. i) + Be(t. OF (1, 0)] + Y qiy[ X5, j) — X2, )] + el — M, )
j=1

+(F@t,i) — F@t, D))Ri(t, X)) (F(t,i) = F(t,)) =0, i e D,1 € 1,
which leads to the fact thatt — X§(t) — X (1) verifies the following linear differential

equation on §¢:

%[xg(t) —XO]+ L5O[X50) — XO] +eJ? + Ao(1) =0, 1L, (17

where
Ao(t) = (Ao(t, 1), ..., Ag(r, d)),
Aot, i) = (F(t, i) = F(t, D)) Ritt, XO)(F @, i) — F(t, D)) — M(1,i) = 0,
i € D,t €I Since Xj(t) — f(t),t € 7, is a bounded function, Fisa stabilizing

feedback gainand £ J9 4+ Ag(r) > 0; then by Theorem 14 of this chapter and Theorem
12¢i)—(vi) of Chapter 2 it follows that it exists i > O such that

X)) — X(t) > uJ?, Viel. (4.18)

Combining (4.18) with (4.8) we conclude that R; (¢, X§(z)) = v, > 0Vr € T,
i € D for some positive constant v.
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Set FE(t, i) = =R (t, X§())YPi(t, X§(1)), witht € T and i € D. We prove that
Fo@) = (Fg(t, 1), F§(t,2),..., F§(t,d)) is a stabilizing feedback gain.
We rewrite the systems (4.15) and (4.14) as

%XS(I, i)+ [Ao(t, i) + Bo(t, ) F{ (1, )] X§(t, i)
+ X5, D[ Ao(t, i) + Bo(t, i) F§ (1, 1)]

+ Z [(Ac(t, i) + Be(t, Y FS(t, D] X5, D[ Ax(, i) + Bi(t, D) F§ (2, )]
k=1

d

+ ) qiXe(. )+ M, i) + el + (FE (L D) R, D FS (2, 0)
j=1

+ L, DFS(t, i) + (FE(, D) LA, i) + [F @) = F, D]
x Ri(t, Xe () [Fer, i) — F(1,)] = 0,
tel,ieD,

%f((z, i)+ [Ao(e, i) + Bott, D FS (1, D] X (1, 1)
+ X(1, D[ Ao(t, i) + Bolt, D) Fe (2, )]

+ > [Ae(t, i) + Be(e, DFS (e, D] X (1 D[ Ax(t, D) + Bit, DF§ (2, 1)]
k=1

d
+ Zq,-jf(z, J)+ M@, i)+ M@, D)+ (FE( D) R(, D FE(, D)
j=1
+ Lt DF; @, D)+ (F§ @, )L™, i)
— [F§@t. i)y = F(t, D] Ri(t, X§uN[FE (e, i) — F(t, )] = 0.

We get

d £ . e . . . S TF £ . v .
E[Xo(t, D)= X(t, )] + [Ao(t, ) + Bot, ) FE(t, D] [ XG5, i) — X(1,1)]
+ [X5@, i) — X (0, D][Aot, i) + Bot, ) FE (1, )]

+ 3 [Ak( D) + Be(e, DFg (D] [X5, 1) — X0, )]

k=1

d
x [Ax(t, i) + Bet, DF ()] + Y g [ X5 ) = X2, )]
j=1

el — M, i)+ [F, i) — F, D] R, XD [Fe@, i) — F(t,D)]
+ [Fe@ i) — F, D] " Rie, Xs)[FE(t, i) — F(t,)] =0,i € Dt e L.
(4.19)
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From (4.18) and (4.19) we deduce thatr — X{(r) — X () is the bounded and uniform
positive solution of the differential inequality on S:

d *
X0+ L OX 0+ eJ? <0.

Applying Theorem 12(viii)—(i) of Chapter 2 we deduce that the system (A +
BoF{, A+ B\F{, ..., A, + B,F¢; Q) is stable.

Using (X§(t), F§(1)) as an initial step we shall construct iteratively bounded func-
tions X3 (1) = (X3(t, D), ..., X3 (t,d)), Fy(t) = (Fo(t, 1), ..., Fp(t,d)), p =0,
1,2 ... with the following properties:

(a) R

X,0>» X1, tel;

(b) the system (Ag + BoFS, Ay + BiFS, ..., A + B, Fs; Q) is stable for all
p=012..;

(©

X;_,(t) > Xf,(t), tel.

If the system (Ao + BoF, |, A1+ BiF;_|,..., A + B F,_j; Q) is stable we
construct (see Proposition 14 of Chapter 2) X% (1) = (X5(1, 1), ..., X5(1, d)) as the
unique bounded-on-7 solution of the following system of linear differential equations:

d . .
EX;(t,i)—}—[Ao(t,i)JrBo(t,i)F;_l(t,i)] X (t, i)

+ X5t 1) [Aot, i) + Bo(t, ) F5_ (1. )] + Y _ [A(t, i) + Bi(t, D) F5_, (1, D)]
k=1

d
X X5, 1) [Ar(t, i) + Bielt, DFS_ (1, D] + Y gy X5(t, j) + M (2, i) + &1,
j=1
+(F;_ (@, i) R, DFy (i) + L@, DF, (1,0) + (F5_, (@2, i) L*(t,i) =0,
(4.20)

t € Z,i € D. We show that Xf}(t) - S(\(I) > upJy VYt € 1 for positive constant pi .
By Lemma I, the system (4.14) may be rewritten as

d o PN -
SX@ D+ [Ao(, i) + Bo(t, DF5_ (1, )] X (1, 1) + X (2, ) (Ao, 0)

+ Bo(t, DF_ (1. D)) + Y [Awlt. i) + Be(t, DF5_ (1, )] X (2, 1)
k=1

d
x [Ae(t, i) + Boe, DFS_ ()] + Y g Xt ) + M. i) + M2, 1)
j=1
+ (Fo_ (0. D) R DFS_((t,0) + L(t, DYFE_ (. 0) + (F5_, (2, D)L, i)
— (F2_,(t.)) = F(.D)R:(t. X)) (Fe_ (1, D) = F(1,)) = 0. (4.21)
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Subtracting (4.21) from (4.20) we get

d P . v . €
E[X[‘](t,l)—X(t,t)] [Ao(r. i) + Bo(t. i) Fe_ (1. )]
x [X5(t, 1) = X(1,0)] + (X5 ) — X0, ) [Ao(t, i) + Bole, i) Fo_ (1. D)]

+ 3 (At D) + Bl D F_ (D) (X5 (e, 1) — X(1.1))

B

x (Ax(t, i)+ Bet, OF5_ (1.D) + Y qi[ X5 ) = X(¢, )] + el — M2, i)

j=1

+[FE_ (i) = F(, D] Ri(t. XO)(Fi_ (i) — F(1.1) =

ieD,tel.
Hencet — X7 (1) — X(¢) is abounded-on-Z solution of the linear equation on S¢:

d
=X+ Ly OX(0) + e+ A, (1) =0, (4.22)
where
Ap () =(Api(t. D), Ap_ (2, d)),
Api(t, i) =—A?(r,i)+(F;_1(z,i)—F(x,i))* (0 XO)Fo_ (i) = Fe.d);

Api(t,0)20VieD, tel
Since X;(z) — X(t), t € 7, is a bounded function, F;_, is a stabilizing feedback

gainand e J¢ 4+ A,_1(t) » 0, t € 7, based on Theorems 14 and 12 of Chapter 2, we
conclude that there exists y > 0 (possible depending upon p) such that

XE(t) ~ X(t) = yJ¢ (4.23)

vtel.
Therefore we showed that X ,(7) satisfies condition (a).
From (4.23) and (4.8) it follows that

Rift, X5(0) = pJ¢

vt € T, for some y > 0.
Define F3(t) = (F&(t, 1), ..., Fi(t,d)) by

Foe,i) = =R 1, X5)Pi(t, X5(1)).

Then F ; (t) is a stabilizing feedback gain. Indeed, we have to check that the system
(Ao + ByF;,..., A, + B, F; Q) is stable. To this end we rewrite the systems (4.20)
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and (4.21):

d . .
EX;(t,i) + [Aot, i) + Bo(t, i) F5 (1, )] X5, 0)

+ X5, Y[ Ao, i) + Bo(t, ) Fy(t, )]

+ Y Akt i) + Bl i) FEe, D)) X5t D[ Ae(t i) + Bi(t, D) F (1, 8)]
k=1
d

+ g Xot, ) + el + Mt i) + (Fa(e, ) R(, D F5(t, )

j=1

+ L@, DFL, i) + (F(, ) L (1)

+ (Fp@ i) = oy, D) R, X5 0)(Fo@t, i) — Fy_y(1,1)) =0,
ieD,tel.

d = e
SX@ D+ [Ao(t. i) + Bo(t, i) F3(t, )] X (2, 0)
+ X, D[ Ao(t, 1) + Bo(t, ) FE(1, 1))
+ Z [Ax(t, 1) + Be(t, Y F5 (1, DX, DA, i) + Bi(t, ) F5 (2, )]

k=1
d

+ gy X, )+ M@ i) + M) + (Fo(e, D) R(, D FE( 1)
j=1

+ LG, D Fp () 4+ (F5@, ) L (2, 0)
— (Fi(e, i) = Fe. D)) Ri(r. X(O) (Fot.1) = F(r.)) = 0;

hence

d £ . v . . . £ L £ . ke .
E[X”(t’ i) = X (6, 0)] + [Ao(t, 1) + Bo(t, ) Fy (1, )] (X5 (2, 8) — X(1, 1))
+ (X80, 1) = X (1. D) (Ao(t. 1) + Bo(t, ) FE(2, 1))

) (Al D) + Bile Y FEe, D) (X5, 1) — X (8, 1))

k=1

d
x (Ax(t, 1)+ Be(t, DFE(, D) + ) qij (X5t ) - X(t, )) +el,
j=1
— M(t, i) + (FE(, 1) — Fo_ (0, ) Ry (1, XEO)(FE(t. i) — Fi_y(1.1))
+(Fe(, i) = Fe, D)Ri(t, X(O) (Fit, i) = F(1,)) =0,i e D,t € T
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Hencer - X ; (t) — X (1) is a solution of the linear differential inequality:

d * d
EX(Z) + [:Fﬁ(t)X(t) +eJ% <0.

Taking into account (4.23) and Theorem 12 of Chapter 2 we obtain that the system

(Ao+ ByFy, Ay + B F5,..., A, + B, F; Q) is stable. Thus we have shown that (b)
is fulfilled.

Writing the system of linear differential equations corresponding to X7, (¢, i) in
the form

d . . . £ 3 * £ ;
EX;‘I(t, i)+ [Ao(r, i) + Bo(t, i) F_ (1, )" X5 (1, 0)

+ X5, D[ Ao, i) + Bo(t, i) Fo_ (2, 1)]

+Z Ar(t, i) + Bt D F5_ (0, D) X5 _ (D[ At i) + B, i) Fj_ (2,1)

d
+ ) gy Xe_ () F el + Mt i)+ (Fo_ (1, D) R D FE_ (1, 1)
j=1
+ Lt DFE_ () + (FE_ (¢, i)) Lt i)+ (Fo_y(t.0) — Fi_y(t, D))"
X Ri(t, Xo () (F;_ (i) — Fi_,(t,i)) =0, i € D,
we deduce

X D) = X5, D] + [Ao(t. i) + Bo(t, DY F_ (0, D]
Xo y(6,0) = X0, D]+ [X5_ (1,0) = X5, 0)]

X

X
— —

Ao(t, i) + Bo(t, i) F5_ l(z‘,z')]ﬁuz A(t, D)+ Bi(t, DY Fi_y (¢, )]

X [X5_1(t, i) — X5, D] [Act, t)+Bk(t DFS_((t,1)]

&

+ 3 [X5_ 0 ) = X5 )]+ (Foo (i) = Fooy(t, ) Ri(t, X5, ()
1

j:

><(F () = Fy 5, ))=0,ieD, tel.

Since the system (4 + BoF; |, At + BiF,_\,....,A, + B, F}_; Q) is stable, it
follows by Proposition 14 of Chapter 2 that X‘;_l(t, - X,@,i0)=0Vie D,t e,
and (c) is fulfilled.

From (a) and (c) it follows that the sequence {X f,(t, i)} is convergent.

Set X%(1,1) = limp_ X5@,0).
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By standard arguments we now obtain thatt — X*(¢) = (X°(z, 1), ..., X°(t, d))
is a bounded solution of the system of differential equations:

%X(t, D)4+ Ag(t, DX, D)+ X1, D)Ao(t, i) + ;Az(t, DX, DA, Q)

d r
+ Z‘Iin(f, D= |iX(I, D Bolt, i) + Z Ap(t, D)X (@, D)Be(t, i) + L2, i):l
j=1

k=1

k=1

, ~1
x I:R(t, i)+ Y Byt )X (1, DBt i):|

x [Bg;(z, DX+ Y BE DX (1, ) Ar,i) + L7, i)]
k=1
+M(t,i)+el, =0, (4.24)

i € D. Moreover we have
Xe(t,i) > X(t,i),i e D,t €T, e > 0. (4.25)

Since the construction of X, (7, i) does not depend upon the choice of X we conclude
that (4.25) still holds if X (t) is replaced by any bounded solution in rer.

From (4.25) we obtain that R; (¢, X°(¢)) > 0, and therefore the feedback gain
Fe(ty = (F®(t, 1), ..., Fo(t, d)) is well defined by
Fe(r,iy = =Ry (1. X*O)Pi(r, X (1)) ().

We prove that ¢ — X*(¢) is an increasing function. Take €, < &;. By Lemma 1
we obtain that the system (4.24) for ¢ = &; may be written

d € . . . £ NT1*Fve .
X+ [Ao(t, i) + Bo(r, D F,2 (1, )] X (2, i)
+ X7 (1, D)[ Aoz, i) + Bo(t. iYF,2, (2, 1)]

+ Z (A, i) + Bi(e, DY F,2 (1, D] XN @, DA, i) + Belt, Y F,2 (1, 1)]
k=1

d
+ D @ X )+ (F e D) R DF (6,0) + Lt DR (2, 0)

j=1
FE (DL, ) = (FL (2, 0) — Fo (1, D)Ri (8, XU (1)
X (F2, (i) = FO'(t,i)) + M(t,i) + &1, =0, i € D. (4.26)
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From (4.26) and (4.20), for ¢ = &, we obtain

d * :
E[xgza, i) = XU, D] + [Ao(t, i) + Bot, i) F,2 (1, D] [X52(2,8) — X1 (1, )]

+[X52@, ) — X510, D] [Ao(t, i) + Bolt, ) F}2(2,1)]

+Z Ar(, i) + Be(t, DF2 (6, D) [ X520, 1) — X511, 1))

d
x [At, D) + Be(t, DF2 (6, 0)] + ) qi[ X202, j) = X1, )]
ji=1

+(F20 0 = FU D) Rilt, XV 0) (B2, 0.0 = FO )
+(&—enl, =0, ieD, p=12...,

which leads to Xf,z(t, i)y — X°(t,i) > 0,i € D,t € T, p € N. Taking the limit for
p — 00 we get
Xe2(t, i) > X' (t,i),VteZ,i € D. 4.27)

Let &,keN be a sequence of positive real numbers, &, > &y and
Iimyg 00 g, = 0.

From (4.25) and (4.27) we have X*®(t,i) > X%+1(t,i) > f(t,i) vVt € T,
ieD,keN ~ _

Therefore the function X(¢, i) is well defined by X(¢,i) = lim;_, e X (2, i),
teZ,ieD. _ _ ~ N

By a standard argument we can show that X (1) = (X(t, 1y X(@,2)...X({, d))
is a bounded solution of the equation (4.3) and the proof of the implication (i) = (it)
is complete.

According to Proposition 14 of Chapter 2 it follows that for each p=
0,1,2,...,t — X (r) considered in the proof of the implication (i) = (i) are
0- penodlc functlons Hence X*(r) = lim,_, o X},(t) is a 6-periodic function, and
finally X (t) = lim, ¢ X®(¢t) is a O-periodic funct1on and the proof of Theorem 3 is
complete. il

Corollary 4. Assume the following.
(i) (A, B; Q) is stabilizable;
(i) R(t,i) = p°I,, (1, i) el xD.
(i) M(t, i) — L, DR (¢, HL* (1, i) = 0, (r, i) e T x D.
Under these conditions the equation (4.3) has a bounded solution X )y = 0.
Moreover, X (t) > X (t) for any bounded and semipositive solution X (t) of the
equation (4.3).

Proof. Under the considered assumptions, X (t) = 0 solves the differential
inequality N;(t, X(t)) > 0, (t,i) € T x D and condition (4.8), and thus the
assumptions of Theorem 3 are fulfilled. ([
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With the same technique as in Theorem 3 we may prove the following dual result:

Theorem 5. Assume that
() (A, B; Q) is stabilizable;
(11) the differential inequality

N, X)) <0, (4.28)

d *
N, X)) = {EX(fHE nxm P (t,X(t))il
P, X(1) R(t, X (1))

has a bounded solution X (1), which verifies
R(1, X(1) < 0. 4.29)

Under these Condztzons the differential equation (4.3) has a bounded solution X )
which verifies X (1) < X(t) for any bounded solutions X(t) of the inequality (4.28),
which verifies (4.29). O

4.3 Stabilizing solution of the SGRDE

In this section we investigate some aspects concerning the stabilizing solution of the
SGRDE (4.1). First we show that the SGRDE (4.1) has at most one bounded and
stabilizing solution. The uniqueness of the stabilizing solution is proved without any
assumption concerning the sign of R;(z, X (¢)). Further, we provide a necessary and
sufficient condition which guarantees the existence of the bounded and stabilizing
solution of (4.1) satisfying the additional condition (4.8).

Definition 3. A solution X: T — 8¢ of the equation (4.1) is called a stabilizing
solution if it has the following properties:

)

inf ieD.
tel

det [:R(t, D+ Bi( DX DB, i):| >

k=1

(1i) The system
(Ao + BoF, A1 + B\F,..., A, + B,F; Q)
is stable in the sense of Definition 4 of Chapter 2, where
Fy=(Fu, 1), Ft,2), ..., F(t,d)), (4.30)

, -1
F,i)=~ [R(r, D+ B DX DB, i)}

k=1

x I:Bo(t, DX D+ Bi, DX DAL D + LG, i):l :

k=1
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Remark 2. (1) The condition (1) in Definition 3 is assumed in order to be sure that the
stabilizing feedback gain in (4.30) is bounded.

(1) ’l;he solution X (1) of the system (4.1) is a stabilizing solution if the control
u(t) = F(t, n(t))x(t) stabilizes the system

dx(t) = [Ao(t, n(1))x (1) + Bo(t, n(t)u(1)] dt

+ 3 [Au(e, n()x(t) + Be(r. n()u(n)] dwi ().

k=1

Theorem 6. (i) The system of generalized matrix Riccati differential equations (4.1)
has at most one stabilizing and bounded-on-1I solution.
(i) If the coefficients of the system (4.1) are 0-periodic functions, then the
stabilizing and bounded solution X (t) (if it exists) is a 6-periodic function too.
(iii) If the coefficients of the system (4.1) do not depend upon t, then its stabilizing
and bounded solution X (t) is constant and solves the following system of nonlinear
algebraic equations:

AgDX (@) + X () Ao() + Z AL XA (D)
k=1

d r
+3 g X () - (X(i)Bo(i) + 57 ALOX (Bl + L(i))

i=1 k=1

, —1
x (R(i) +Y B,:(i)Xa)Bk(i))

k=1

x (Bg(i)X(i) + Y BIO)X ()AL + L*(i)) +M(i)=0,ieD. (431)

k=1

Proof. (i) Let us suppose that the differential equation (4.3) has two bounded and
stabilizing solutions, X; : Z — S,‘{,l = 1, 2; hence the systems (Aq + BoFj, Ay +
BiF,..., A, + B, F;; Q),] = 1, 2, are stable, the stabilizing feedback gain being
defined as in (4.30). By direct computation we obtain that

d .
d_zX’(” i)+ [Ao(t, i) + Bo(t, YF (1. D] X2, 1) + X, (1,1)

x [Ao(t.i) + Bo(t, i) Fa(t, )] + Z [Ac(t, i) + Be(t, ) Fi (e, )]
k=1
d
x Xi(6, D[Ak(t, i) + Be(t, DF(6. D] + Y g X2, j)
j=1

+ FP(t, DR, DF(e, i) + M(t, i) + L(t, OYFa(t, i) + Ff (¢, )L*(t,i) = 0.

l=1,2,ieD,tel
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Set X(t,i) = X,(t,i) — Xa(t,i), i € D, t € T, and obtain that
Xt)y= (X, ), ..., Xt d)

is a bounded solution of the system
d -~ . . . G T S . ) .
XD+ [Ao(t D)+ Bolt, HF (1, D] X (1, 1) + X (1, )

x [Ao(t, i) + Bo(t, i) Fa(t, )] + Z [Ax(t, i) + Bi(e, i) Fi(1, )]
k=1

d
x X(t, D[ Ax(t, 1) + Bt DFa(t. D] + ) qi X (1, j) =0, (4.32)
j=1

i € D, t € I Itiseasy tosee that (4.32) is equivalent to the following linear equation
on Sgn:

d ~ .
a—tXe(t) + L3 X,. (1) =0, (4.33)
where £(1) : 8§ — 8¢ .ieD,t e,
o | Ar(t D) + Bt D) Fi(2,0) 0
Arelt, i) = [ 0 At i) + Bk(t,i)Fz(t,i)]
k=0,1,...,r.
s [ 0 X
Xelt, 1) = [X(t,i) 0 ]

From Theorem 12 of Chapter 2 we deduce that there exist the C' functions K ;
I — 87, K;(t) » 0 which are bounded on T and verify the linear differential
equations

d .
KO+ LOK;(0) + J=0 j=12

where £ ; are the Lyapunov operators associated with (Ag+BoF;, ..., A,+B, F;; Q),

Jj=1,2. Set
(K1) 0
K. (1) = ( 0 Kz(t)> .

It is easy to see that K,(¢) is a solution of the linear differential equation on Sgn:

d

EKe(t) + LXK () + T =0. (4.34)
From Theorem 12(v)—(i) of Chapter 2 we conclude that the augmented system
(Age, ..., Are; Q) is stable. Applying Proposition 14 of Chgpter 2 we deduce that
equation (4.33) has a unique bounded solution. Therefore X .(t) = O and hence
Xi(t, i) = Xo(t,i) forall (#,i) € T x D, and the proof of part (i) is complete.
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(ii) Let X ) = (5(' it 1),.. X (t d)) be the bounded and stablhzlng solution
of the equation (4.3). Let )?(t) (X(t 1),. X(t d)) be defined by X(t i)y =
X (t+6,0). Itis easy to see that 7 — X (t) isa bounded solution of the equation (4.3).

Let F(t) = (F(t 1),. F(t d)) F(t) = (F(t .. F(t d)) defined by

Ft,i) = R, X0)Pi(t, X)),

Fu,iy= =R, X0)Pi(t, X)), ieD, rel.

Denote T(t, tp) and T(t, to), respectively, by the linear evolution operators over S,‘f
defined by the linear differential equations

d
T80 = LFOSW),

d
ZJ?S(I) = Le()S(),

respectively, where the operators £z(¢) and Lz(¢) are defined as in (3.2).
By uniqueness arguments we get

Tt 1) =T(t+6,10+6) (4.35)

for all !> 1,800 € Z. Since X (t) is a stabilizing solution of the equation (4.3) we
have ||T (¢, o)|] < Be~*¢~™ forall t > 15, 1, to € T with some 8 > 1, > 0.
From (4.35) we deduce that

T, t)l| < B~ 1 >,

which shows that 1 — X (7) is also a stabilizing solution of the equation (4.3).
Using part (i) we get that X(t) = X(t) forallt € Z, hence X(t +6) = X(t).
(ii1) From part (ii) it follows that in the time-invariant case the stabilizing and
bounded solution is periodic with any period > 0 and therefore it is constant. [J

Aresult concerning the existence of a stabilizing solution of SGRDE (4.1) is given
by the next theorem.

Theorem 7. The following are equivalent:
(i) The triple (A, B; Q) is stabilizable and there exists a C' function X:T— Sd
bounded, with bounded derivative such that differential inequality

N (1, X®) > 0. (4.36)

(i) The differential equation on Sd (4.3) has a bounded-on-I and stabilizing
solution X(t) which verifies R(t, X(t)) >0,rel

Proof. (1) = (ii) Let X be a bounded-on-7 solution of (4.36). Hence Xe fz C
I'". Based on Theorem 3 we deduce that the equation (4.3) has a bounded solution
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X: T Sf which verifies X () = X (t). We show that X (¢) is a stabilizing solution
of the equation (4.3).
Set

~ ~ - N - d ~
M@ =P (t, XO)YR(t, X(O))P(r, X (1)) — M(t) — LX) — EX(t)

and F(1) = —R™'(t, X(1))P(t, X(1)). Tt is obvious that M (1) < 0.
By direct calculation we get

d ~ ~ e

d—t-X(t, i)+ [Ao(t, i) + Bo(t, )F (1, )] X(t,1)

+ Xt 0) [Aot, i) + Bo(t, DF (1, )]+ [Ak(i, i)+ Bi(t, ) F(t, D]
k=1

-~ ~ d ~ ~ —~

x X(1,0) [Ae(t, i) + Be(t, YF (1, )] + Y qiy X (1, j) + F* (6, DR, DF (8, 0)
j=1

+ L@t D)F(t, i)+ F(t, DL*(t, 1) + M(t,i) = 0.

Since X verifies (4.16) one gets

d = - ~ . -
7 [X(t, i) — X, )]+ [Ao(t, i) + Bo(t, DF (1, )] (X1, i) — X(2, 1))

+(X(t,1) ~ X0, 1) [Aole, D) + Bot, DF(t, )]

+ 3 [Awlt, D) + Bt DF(t, D] (X (2, i) = X(1, 1))
k=1
~ d ~ -~
x (At, i) + Be(t, DF (6, D)) + ) qij (X (2, J) — X, )
j=t
+(F@, i) = Fu,D) Ri(t, X)) (Ft, i) — F(t,)) — M(1,i) = 0. (4.37)

Since (F(t,i) — F(t, 1)) Ri(t, X(O)(F(t, i) — F(t,1)) = M(t,i) > 0 from
Proposition 13 of Chapter 2, we deduce that the system (Ao + ByF, A + B, F,...,
A, + B, F ; Q) is stable, hence X (1) is a stabilizing solution of equation (4.3).

(i) — (i) If the equation (4.3) has a stabilizing solution X (), then the triple
(A, B; Q) is stabilizable. Ift X:7-—> S,‘f be the bounded stabilizing solution of
(4.3), which verifies R(r, X(2)) > 0,1 € Z. Let F(?) be the stabilizing feedback
gain defined by F(1) = ~R~(t, X(1))P(t, X(1)). Define Pr(r, X): S¢ — M¢,,
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by

Pr, X)) = Bg(t, DX+ Z B,f(t, DX (A@, )+ Be(t,D)F(2,1))
k=1
+L @, 0y + R, DF(t,i), i € D,

and

MF(I) = (MF(t7 1)’ e MF(t»d))?
Mp(t, i) = M@, i)+ L(t, )F (¢, ) + F*(@t, DL*(t, i) + F*(¢, )R(t, i) F (2, i),

ieD, t e, where F(t,i) = F(t)(i).
Let Tr(t, 1) be the linear evolution operator defined by the equation

d
ESO) = ,CF(I)S([)

Since F is a stabilizing feedback gain we have || Tr (1, to)|| < Be™*~0) forallt > 1,
to € I,withsomea > 0,8 > 1.Let C(Z, S,‘f ) be the Banach space gf all bounded and
continuous functions defined on Z with values in S7. Since R(t, X (1)) > 0,1 € Z,

there exists an open set i C C(Z, §¢) such that Xeldand R(t, X)) > 0,t € L,
forall X € Y.
Consider the operator ¥ : I x R — C(Z, S,‘f ) defined by

(X, 8)() =/ TE(s, ) [Mp(s) + 877

—Pr(s, X(&NHR (s, X(s))Pr(s, X(s))ds — X (1),

tel.
We shall apply the implicit function theorem to the equation

v(X,8)=0 (4.38)

to show that there exists a function X5 € U such that
o
Xs(t) = f Ti(s, 1) [Mp(s) + 8% = Pr(s, Xs()IR (s, Xs()Pris, Xs(s))] ds
!

for |8| small enough.

It is easy to verify that (X, 0) is a solution of (4.38).

We show that 81\11()?, 0): C(Z,8%) — C(Z, 8Y) is an isomorphism, 3, ¥ being
the derivative of W with respect to the first argument. _

Since 9;W (X, 0)Y = lims—o + (W(X +¢Y,0) — (X, 0)) and P (z, X(1)) =0,
one can easily verify that 81\11(?, 0)Y = —Y and therefore qw(X,0 =T, 7,
being the identity operator on S¢. Also 3; W (X, 8) is continuous. Applying the implicit
function theorem [103] we deduce that there exist § > 0 and a continuous function
§ - X5 ( - 5,5) — U which solves W(X;,8) = 0. It is easy to see that for
8 € (—4,0), X5(r) will be a solution of the inequality (4.36) with required properties,
and the proof is complete. [
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Corollary 8. If the equation (4.3) has a stabilizing and bounded-on-1 solution X
which verifies (4.8), then X (t) is the maximal solution with respect to I'% of (4.3).

Proof. Suppose that (4.3) has a stabilizing and bounded-on-Z solution X. Then
by Theorem 7 it follows that the assumptions of Theorem 3 are fulfilled. Therefore
there exists a bounded solution X of (4.3) with the maximality property in Theorem
3. From the proof of Theorem 7 it follows that X is stabilizing. Hence by Theorem 6
we have X = X, and thus the proof is complete. O

The counterpart of the above theorem for the periodic case is as follows.

Theorem 9. Assume that the coefficients of (4.3) are 8-periodic functions. Then the
following are equivalent:

(1) (A, B; Q) is stabilizable and the differential inequality (4.36) has a 6-periodic
solution. ~

(ii) The equation (4.3) has a stabilizing 9-periodic solution X(t) which
verifies (4.8).

Proof. (i) — (ii) Applying Theorem 7(i)~(ii) we deduce that the equation (4.3)
has a stabilizing and bounded-on-Z solution X (¢) which verifies (4.8). Using Theorem
6(11) we conclude that X (1) is a B-periodic function too.

(ii) — (i) If the equation (4.3) has a stabilizing solution, it follows that the triple
(A, B; Q) is stabilizable. From the proof of Theorem 7(ii)—(i) it follows that there
exists § < 0 such that

%X(z) + LOXE) — P, XEYR™ ¢, X)PU, X(@) + M) +8J4 =0

has a bounded-on-7 solution verifying (4.8). Further, again applying Theorem 7(i)-(ii)
for the equation

%X(t) + LX) =P, XE)R e, X@)P(t, X (1)) + M(t) + g]d =0,

we deduce that the above equation has a bounded and stabilizing solution X ()
verifying (4.8). Then by Theorem 6 this solution is periodic. It is not difficult to
see that X (r) verifies (4.36) and the proof is complete. U

With the same proof as in the previous theorem we get the time-invariant
counterpart of Theorem 7.

Theorem 10. Assume that the coefficients of (4.1) do not depend upon t. Then the
following are equivalent: .

A(i) The triple (A, B; Q) is stabilizable and there exists X € S,‘f such that
N(X) > 0.

(i1) Th~e system of generalizgd Riccati algebraic equations (4.31) has a stabilizing
solution X which verifies R;; (X) > Oforalli € D. O
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Let us consider the following system of nonlinear matrix differential equations:

d . o . . . S . .
EX(:,IHAO(r,z)X(z,z)+X(z,1)A0(z,z)+§Ak(z,z)X(z,z)Ak(z,z)

d r
+ 3 quX, ) - [xa, DByt )+ 3 AL DX (L DB, i)]
j=1

k=1

r -1

x [lm +) B DX (i) Bi(e, i)}
k=1

X |:B(’;(t, DX (i) + ) Bi(t DX (1, ) At i):| +1,=0. (4.39)

k=1

Ap(t, i), Be(t, i),k =0,1, ..., r are continuous and bounded functions. The system
(4.39) is a particular case of the system (4.1) taking M(z. i) = I, L(t,i) = 0,
R(t,i) = I,. Obviously, in this case 5(\(1‘, i) = 0 verifies (4.36), and therefore
by Theorems 7 and 6 it follows that the next result holds.

Corollary 11. Assume thar (A, B: Q) is stabilizable. Then the system (4.39) has a
bounded and stabilizing solution X (1) = (i(t, 1),..., )?(t, d)), X(t, iy > 0. More-
over, if Ay(-, 1), Bx(-, i) are 8-periodic functions, then i(-) is a O-periodic function
too, alzd ifAk(tLi) = A (i), Bi(t,i) = By(i), (t,1) e I x D,k € {0,1,...,r},
then X(t,i) = X)), (t,i) €T x D. O

Remark 3. (i) From the above corollary we conclude that if A(-, i), By(-, i), k =
0,1,....,r are continuous #-periodic functions and the triple (A, B; Q) is stabiliz-
able, then there exists a stabilizing feedback gain f(t) = (f(t, n,..., F(t, d))
which is a 8-periodic function. Also, if Ag(t,1) = Ag(Q), Bi(t,i) = Bi(i), k =
0,1,...,r, (t,i) €T xD,and (A, B, ; Q) is stabilizable, then there is a stabilizing
feedback gain, F = (F(1), ..., F(d)). Therefore we may conclude, without loss of
generality, that in the case of periodic coefficients the triple (A, B; Q) is stabilizable
if and only if there exists a stabilizing feedback gain F(¢) which is a 8-periodic func-
tion; in the time-invariant case the triple (A, B; Q) is stabilizable if and only if there
exists a stabilizing feedback gain F = (F(1),..., F(d)) not depending upon ¢.

(ii) Combining the result in Corollary 11 and Remark 4 of Chapter 3, we may
conclude thatif Ag(-, i), Cx(-, i),k =0, 1, ..., r,are 8-periodic functions defined on
R x D, then the triple (C, A; Q) is detectable if and only if there exists a stabilizing
injection K () which is a continuous #-periodic function, and in the time-invariant
case the triple (C, A; Q) is detectable, if and only if there exists a stabilizing injection
K=(KW), KQ),...,K(d) e M

n.p*

We point out that Corollary 11 and Remark 3 hold when the elements of the matrix
Q verify only the condition g;; > 0 fori # j.
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4.4 Thecase0 e TZ

In the following we focus our attention on the case when the coefficients of the system
(4.1) (and equivalently of the equation (4.4)) satisfy the additional conditions:

R(t, i) > pl, > 0, (4.40)
M(t,i)— L(t,i))R™ N, i)L*(t,i) > 0

for all (r,i) € T x D,p > 0 not depending upon (¢, ). From (4.6) we see that
conditions (4.40) are equivalent with the fact that X(¢) = 0 belongs to |

Lemma 12. Assume that (4.40) holds. Then

WDLlet X -1, CT — Sd be a solution of the equation (4.3). If there exists
T el suchthatX(r iy=>0,i e D, then X(1,1) = Oforallt € I; N (—o0, 7]

(i1) Let X LT T —» Sd X Iy I - S‘I be two solutions of the
equation (4.3).

If there exists T € I such that X(r) > X(r) > 0, then X(t) > X(t) for all
teZyN(—o0, 1l

Proof. (i) Let F(1) = (F(t, 1), F(1,2), ..., F(t,d)),
F(t,i)=—-R;'(t, X(1)YPi(t, X (1)), teTy,ieD.

From Lemma 1 one obtains that the equation (4.3) verified by X (¢) may be written
as follows:

diX(t) +LEOX@O) + M) = (4.41)
t €Ty, where M(1) = (M(1, 1) ... M(1,d)),

A?(t, iy = M(t, i)~ L@, OR™ (¢, YL*(t, i) + [R(t, i) F(t, i) + L*(, i)]*
xRV, DR, D)F(t, i) + L*(t,i)], (t,i) €T, x D.

From (4.40) it follows that M (t) > 0,t € I,. If Te(t, tp) is a linear evolution
operator over S¢ defined by the linear differential equation

d
d—S(t) =Lp)SQ),
!
then we obtain from (4.41) and (2.13) that
X(1) = Tr(r, )X (1) + f Tr(s, 1)M(s)ds
4

¥t € Iy N (~oo, T]. Since Tj(s, t) : Sd — 87 is a positive operator we conclude
that X (1) > 0,1 < 1.
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(i) Set F(r) = (F(t, 1), F(t,2), ..., F(t,d)) and
Fy=(Fu, 1) F,2)...Ft,d)),

where

F(t,i) = —R;' (1, X)) Pi(t, X (1))

and _ R R
F(t,iy==R7'(t, X(O)P:(r, X)) (D).

Let Y(¢) be defined by Y (t) = )V((t) - )?(t), t € 7y. By using Lemma 1, one
concludes that Y (¢) is a solution of the affine differential equation on S,‘f:

d . .
EY(I) + Cﬁ(t)Y(t) +M)y=0, rel,
where M(t) = (M(,1)... M(1,d)),

M@, i)=[F@, i)~ F@, D] Rit, Xa)[Ft,i) — F@t, )], (t,i) € Iy x D.

Based on part (i) of this lemma, we deduce that X () > 0, and hence R; (1, X () =

0, r e Z;N(—00, 1],i € D, and therefore M(t) > 0. Let T(t, ty) be the linear
evolution operator on S? defined by the linear differential equation

d
ES(I) = Lz()S().

We obtain the representation formula

Y(1) = T*(r, )Y () + / T (s, t)M(s) ds.

t

The conclusion follows taking into account that T(s,1) is a positive operator
d
on &7, O

For each 7 € 7 we denote be X, (-) the solution of the equation (4.3) that verifies
the condition X, (7,i) =0, € D.

Proposition 13. Assume that (A, B; Q) is stabilizable and (4.40) is fulfilled. Then:
(1) for each T € 1, the solution X (-) is defined on T N (—o0, T]. Moreover there
exists ¢ > 0, such that 0 < X, (t) < cJivi<t,tel;
(i) Xo,() = X,(OVt <1y <1y, €l

Proof. (1) Let I, C (—o0, t] N T be the maximal interval on which X.(-) is
defined.

From part (i) of Lemma 12 we have that X,(¢) > 0,1 € Z;. Since (A, B; Q) is
stabilizable, there exist F* : 7 — an_n a continuous and bounded function, such
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that the system (A + BoF°, A\ + B1F°, ..., A, + B, F*; Q) is stable. Let X°(¢) be
the unique bounded-on-7 solution of the affine Lyapunov-type differential equation:

d
X O+ LX)+ M) =0

where MO(t) = (M°@t, 1), MO(t,2) ... MOz, d)),
MO, iy = M@, D+L(@, DYFO(t, D+(FO @, )*L*(t, )+ (FO(r, i) R(t, DY FO(t, i).

Since (4.40) is fulfilled, we obtain that M°(z) > 0,t € Z. Hence by Proposition 14
of Chapter 2 there exists ¢ > 0 such that 0 < X°(t) < ¢J¢ for all t € Z. By direct
computation we obtain that X°(r) — X, (¢) verifies the affine differential equation of
Lyapunov type:

%(Xom ~ Xo (1) + L (O(X0(0) — X)) + M°(t) =0, (4.42)

t € T, where MO(r) = (M(¢, 1), M°(¢,2), ..., M°(t, d))
M°@, i) = (FO(, i) — Fo(t, D) Rt X () (FO(1, i) — Fo(1, 1)),

(t,i) € T x D. Since X. (1) > 0 we get MO(1) > 0.1 € .
From (4.42) we deduce that

Xt - X.(1) >0 (4.43)

forall r € 7, which leads to 0 < X, () < X%(1) < ¢J, ¥t € T,.
Thus ¢t — X, (¢) is bounded and we conclude that 7, = (—o0, t] N 7.
(ii) follows immediately from LLemma 12 and the proof is complete. O

Now we are able to prove the following theorem.

Theorem 14. Assume that (A, B; Q) is stabilizable and the condition (4.40) is
fulﬁlled Under these assumptions the equation (4 3) has two bounded solutions
X: 7T - Se, X 7 — Sd with the property X(t) > X(t) > X(t) > 0 for all
tel, X (t) being any bounded and semipositive solution of the equation (4.3).

Proof. The existence of the maximal solution X (t) is guaranteed by Corollary 4.

It remains to prove the existence of the minimal solution X (1). To this end we shall

use the results of Proposition 13. We define i(r) = lim;_ o X (), ¢ € Z. Invoking
the result of Proposition 13 we obtain that this limit exists.

Since X.(¢) is a bounded solution gf (4.3), by the standard argument based on
Lebesgue’s Theorem we concludg that X (1) is a solution of the equation (4.3).

To check the minimality of X (¢) in the class of semipositive solutions of the
equation (4.3) we shall use Lemma 12. If X (-)isa sem1pos1t1ve and bounded solution
of the equation (4.3), then for each t € 7 we have X () > 0 = X, (7). Therefore
X(t)<X(t)f0rallt§rteI N

Taking the limit for T — oo, we deduce that )N((t) < S(\(t),t € 7, and the
proof ends. ]
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To solve the linear quadratic problems, a crucial role is played by the minimal
solution stabilizing solution, respectively, of the following system of matrix nonlinear
differential equations:

d r
EX(t, i)+ AN DX, D)+ X (2, DA, i) + ;AZ(L DX, DA, D)

d r
+3 g Xa, ) - I:X(t,i)Bo(t, D+ AL DX (DB, i)} (4.44)

Jj=1 k=1

, ~1
x [R(t, D+ Y Bt )Xt DBt i)}

k=1

X {Bg(t, DXt i)+ Z By (1, )X (2, ) A(2, i)} + Co(t, HCo(t, 1)
k=1
=0,

t > 0,i € D, where R(t,i) = Dj(z,i)Do(t, i), which is a particular form of (4.1)
obtained for M(¢,i) = Cj(t,i)Co(t, i), L(t,i) = 0, R(t,i) = Dj(t,)Do(t, i),
I = R+.

We have the following lemma.
Lemma 15. Assume the following.

(i) There exists p > 0 such that D§(t,i)Do(t,i) > ply forallt >0, i € D.
(i) The triple (Co, A; Q) is detectable.
(iii) The elements of matrix Q verify q;; = 0,1 # j, Z‘;:l gi; =0,i €D.

Under these assumptions any semipositive and bounded solution of the system
(4.44) is stabilizing.

Proof. Let X(t) = (X(z, 1), X(¢,2), ..., X(¢, d)) be a bounded and semiposi-
tive solution of the system (4.44). By direct calculation we obtain:

d ~ ~ s
=X+ [Ao(t, i) + Bot, D F(t, )] X(1, 1)

+X(t,0) [Ao(t, i) + Bolt, DF(1,1)] + Z (A(t, i) + Bi(t, DF (2, D))"
k=1

d
x X(t, D) (Ax(t, D) + Be(t, DF (6, ) + Y _qiy X1, ) + C3t, )Co(t, )
j=1

+ F*(t,i)R@, )F(1,i) = 0, (4.45)

Fa,i) =R (1, X0O)P: (1, X)), (1,i) €T x D,

or, in compact form, as a Lyapunov-type equation on S¢:

do o~
XD+ LX) + T =0, (4.46)
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where Lf} is defined as in Lemma 1, with F instead of G, and

Cy=(Ca,1),...,Cu )
with ~ _ _
C(1,i) = C3(t, )Colt, i) + F*(t, YR, D F (1, 1).

With the same reasoning as in Theorem 7 of Chapter 3 applied to (4.46), we deduce
that there exists ¥ > 0 such that

E [ / |Co (¢, n(t)) x(t)[*dt | n(to) = i] <y Ixol? (4.47)

Iy

and

E U \F (t.n@) x> dt [ n (o) = z} <y lxl? (4.48)

1o
foralltg > 0, i € D, and xy € R”, where x(¢) is the solution of the problem

dx(t) = Ao (t, (@) x(0)dt + Y Ay (1, 9(0)) x(O)dwi (1)
k=1
x (t0) = xo,
where _ ~
Ap(t, i) = Ac(t, D))+ B (e, HF(t,1), k=0,1...,r.

According with assumption (ii) it exists H (¢, i) such that the system
(Ag+ HCy, Ay, ..., A Q)
is stable. We may write

dx(t) = {[Ao(t, n(1)) + H(t, n(1)Co(t, n(t)1x (1) + fo(t)} dt

+ D LA )X () + feld)]dwi(2),

k=1

where

folt) = [—H (t, (1)) Co (1, n(1)) + Bo (t, n(t)) F (1, n(t))] x()

and _
Se@) =B (t,n(0)) F(t,n() x(1), k=1,...,r.

Since the system (Ag + HCy, Ay, ..., A,; Q) is stable, based on (4.47), (4.48), and
Theorem 32(ii) of Chapter 2, we deduce that there exists 8 > O (independent of £
and xg) such that

E U x()*dt | n(to) = i] < B lxol?

Iy

forall fp > 0, i~e D, axld xo € R”. Therefore, from Theorem 19 of Chapter 2 we
conclude that (Ao, oL AR Q) is stable and the proof is complete. O
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Proposition 16. Suppose that the assumptions (1) and (iil) in Lemma 15 hold and that
(Co, Ag, Ay, ..., A, Q) is uniformly observable. Then if K is a positive semidefinite
and bounded-on-R solution of system (4.44) we have that

(i) K is uniform positive;

(ii) K is a stabilizing solution.

Proof. Let K be a positive semidefinite and bounded-on-R, solution of system
(4.44). Set

Fr(t,i) = —R;' (t. KW) P (1, K(1)),
Ap(t, i) = A(t, i) + Bu(t, Y Fi(t,i), 0<k<r,

and X (¢, 1) be the fundamental matrix solution associated with the linear system
dx(r) = Ag(t, nO)x(D)dr + Y Ae(t, n(e)x (0w ().
k=t

We have to prove that (;fo, Al A Q) is stable.

Let T > 0 and B > 0, verifying the inequality in Proposition 8 of Chapter 3.
Define

T
Gt i) = E[/ X*(s, D[C5 (s, 1()Cols, n(s)) + Fg (s, n(s))R(s, n(s))

Fi (s, n(s))]X (s, 1)dsln(t) = z},t >0, i e D).

We shall prove inf{x*G(t,i)x;|x| = 1,t > 0,i € D} > 0. Suppose on the
contrary that for every £ > O there exist x, € R", |x.| = 1,1, > 0, and i, € D such
that x; G (¢, ie)xe < €.

Let x.(t) = X(t, t.)x. and u.(t) = Fy (t, n(£))x.(¢).

We can write

te+1
&> x,G(te,ic) 2 E [/ u (R, n())u(Ndt|n(t:) = is]

fe+T
> §E U lue ()2 dt|n(t:) = ig]

with some § > 0. But x,(t) = ® (1, t,)x, + X, (¢), t > t,, where X, (t,) = 0 and
dx.(t) = (Ao(t, n(1)Xe(t) + Bolt, n(t))uc(t))dt

+ Z [Ak(t, n()xe (1) + Be (£, n(1)) ue (1)) dwy ().
k=1

Hence, by Remark 17 of Chapter 2 there exists ¥y > 0 such that

te+1
E[x®PIn) = i.] < wE [/ lue(t)*dt|n(t:) = ig] < 8i€.
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Further, we can write

fe+1
€ > x:G(ts’ ig)xg > E |:/ |Colt, n(’))xs([)lzd”n(ts) = is:|

te+1
E [/ Colt, n())D(t, 1.)xs + Cot, n(NF (D) *deIn(te) = is]

z

e+t
E [/ ICo(t, n(1) D1, 1)xe [Pdt|n(te) = is]

N[ =

—E U |Co(t, n()T: ()P dtIn(t;) = ig]

1
> —f — &, 0,
2ﬁ 26, € >

and thus we get a contradiction, since 8 > 0. Hence, there exists i > 0 such
that G(¢,i) > Bil,, t+ = 0,i € D. Applying the identity (1.6) to the function
v(t,x,i) = x*K(t, i)x and to the system

dx(t) = Ao (t, n(t) x(dr + Y Ay (¢, n(0) x()dw (1)
k=1

and taking into account the equation (4.44) for K (z, 1), we get

GE[X* ¢+ 1, 0K+ 1,00 + )Xt + 7,000 = i]x0 — ;K (¢, i)x0
=—XSG([,I'))CO, t>0, xge R",i € D.

Therefore
Bilxol* < x3K(t,i)xo < Palxol’, t>0,i€D,xp€eR".

Thus K is a uniform positive function and

E [i*(t +r,)K(t + 1,00+ X+ 1, Hin(t) = i] < (1 — %) K, i).
2
By virtue of Theorems 31 and 4 of Chapter 2, it follows that (Xo, Al Ay Q)
is stable and thus the proof is complete. ]

Theorem 17. Assume the following.
(i) Assumptions (i) and (iii) of Lemma 15 hold.
(ii) The triple (A, B; Q) is stabilizable.
(iii) The system (Cg; Ag, Ay, ..., A,, Q) is either detectable or uniformly
observable.
Then the Riccati-type system (4.44) has a unique positive semidefinite and
bounded-on-R . solution. Moreover, this solution is stabilizing.

Proof. The proof follows immediately from Theorem 14, Proposition 16,
Lemma 15, and Theorem 6. )
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In the particular case when D = {1}, the system (4.44) becomes

d r
d—tX(t) + AG(OX (1) + X () Ao(1) + ; AL (DX (D A1)

— | X®)Bo(t) + ) A,‘:(r)XmBk(r)] (4.49)

L k=1

~1
x LR(r) + Z B} (r)X(z)Bkm]

x | By X0+ B;:(t)X(t)Ak(t)il + G () Co(r) = 0.

L k=1
A direct consequence of Theorem 17 is the following corollary.

Corollary 18. Assume the following.
(i) There exists p > O such that D} (t)Dy(t) = pl, forallt > 0.
(ii) The pair (A, B) is stabilizable.
(ii1) The pair (Cy, A) is either detectable or uniformly observable.
Then the Riccati-type equation (4.49) has a unique positive semidefinite and
bounded-on-R . solution. Moreover, this solution is stabilizing. d

Remark 4. Based on Theorem 14 one obtains that under the assumption that (A, B; Q)
is stabilizable, the SGRDE (4.44) has two remarkable semipositive geﬁnite solutions.

We refer to the maximal solution X (#) and to the minimal solution X, respectively. If
additionally (Cy, A; Q) is either detsctable or uniformly observable, then these two

solutions coincide, namely X ) = X ().

However, in the absence of detectability and uniform observability, X (1) does not

always coincide with X. This can be seen in the following numerical example.
Numerical example. Considern =2, d =1, r =1, p = 1, m = 1. In this case
(4.44) reduces to

d
EX(I) +AYOX )+ X (1) A(t) + AT X(DA (1) (4.50)

— [X1)Bo(1) + ATOX D BI(D][R@) + BF ()X OB (1))]
x [B()X (1) + B} ()X (1) A1(1)] + C§(1)Colr) = 0.

Choose

Ao(t) = [é 2]’ A1) =5, Bo(t) = l:?il* Bi(t) = [8]’

Co(ry=[1 0], R()=1.

One can see (see Propositions 5 and 25 of Chapter 3) that in the stochastic case the
pair (Cy; Ag, A1) is neither detectable nor observable. The maximal solution of the



140 4 The Riccati Equations of Stochastic Control
equation (4.50) is

o g8 =21

and the minimal solution is

§(t)= [(1) 8] > 0.

Indeed, by Theorem 15(iv) of Chapter 2, X is the stabilizing solution of (4.50), and
based on Corollary 8 it coincides with the maximal solution.

On the other hand, if X, (-) is the solution of (4.50) with the given final condition
X.(t) = 0, one obtains that

X 0
where
1 — e—S(r—t)
X([) = m for all ¢ <T.
Therefore,

. I 0 =
Jim X- (1) = [o 0] =X,
and thus one obtains that X is the minimal semipositive definite solution of (4.50).
Obviously in this case X #X.

4.5 The filtering Riccati equation

In this section we focus our attention on the so-called stochastic generalized filtering
Riccati equation (SGFRE) for stochastic systems. We shall restrict our investigation
only to the time-invariant case.

Consider the SGFRE:

r d
MDY () + YDA + D ADY DAL + 3 4, Y ()
k=1 j=1
- (Y(i)cg(i) +3 " ADY(OCG) + Z*(i))
k=1

, -1
x <§<z‘) +3° Ck(i)Y(i)CZ(i))

k=1
x (Y(i)cg(i) + Y ADY D) + Z*(i)) +M@)=0 (451)
k=1

with theunknow~n variables (Y(ll, L YY) gS,‘f and A, (i) e R Cr(i) e RP*",
k=20,...,r, L) € R, R@i) € S, M(i) € §,. f D = {1}, A (i) = 0,
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Cei) = 0, k = 1,2,...,r, then (4.51) reduces to the well-known Bucy-
Kalman [117] filtering algebraic Riccati equation.

The system (4.51) can be rewritten in compact form as a nonlinear equation in
8¢ as follows:

LY — PR (P (Y)+ M =0, (4.52)

where L is the Lyapunov operator defined by the system (Ag, Ay, ..., A; Q),
P8I — Ml by

PY) = (P(Y),..., PuY)),

PiY) = Y(HOC) + Y AYDC; (@) + L(i), i €D,
k=1
R S!— S, by
R(Y) = (Ri(Y), ..., Ra(Y)),

Ri(Y) =R+ Y )Y ()T (), i €D,
k=1
M= (M(),...,Md).

Equation (4.52) is defined on a subset of S,?' consisting of ¥ = (Y(1),...,Y(d))
such that det R;(Y) # 0.

The dissipation matrix corresponding to the filtering Riccati equation under
investigation is defined as follows:

Ny = (Ni(¥), ..., Ny(Y)), where
~ Y)() + M(@) P
./\/,-(Y)=|:(E*)(l)+ M) P >}

Pi (Y) Ri(Y)
forallY € 8¢,i e D.

Definition 4. A solution Y = (Y(1), ..., Y(d)) of (4.52) is a stabilizing solution
if the system (AO + CoK, A+ CiK,...,A + C.K; Q) is stable in the sense of
Definition 4 of Chapter 2, where K = (E(l), K@),

K@) =-P(Y)R7'(Y), i e D. (4.53)

Recalling that A = (Aq, ..., A,) and C = (Cy, ..., C,) we prove the following
result.

Theorem 19. The following are equivalent. R
_ (W(C, A; Q)isdetectable and thereexists Y = (Y(1),...,Y(d)) € S,‘f satisfying
NY) > 0. ~ o

(i1) The equation (4.52) has a stabilizing solution Y which verifies R;(Y) > 0.
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Proof. ltis easy to see that equation (4.52) is an equation of type (4.3) associated
with the triple (A, C%; QF), where A* = (45, ..., AY), C* = (C§, ..., C}), and
QF = Q" AL = (Af(D), ..., A@), C; = (C;(D),....C;@), k=0,...,r.

From Remark 4 of Chapter 3 it follows that (A:, CF; Q:) is stabilizable if
and only if (C, A; Q) is detectable. The result in the statement follows then from
Theorem 7. O

4.6 Iterative procedures

In the first part of this section we present an iterative procedure to compute the
maximal solution X(z) of the equation (4.3), or equivalently the maximal solution of
the system (4.1). This procedure may also provide a proof of the implication (i) — (ii)
in Theorem 3.

We have the following lemma.

Lemma 20. . Assume that the system (4.1) is stochastically stabilizable. Let Fo(t) =
(Fo(t 1), Fo(t 2),. Fo(t d)) be a stabilizing feedback gain and let Xo(t) =
(Xo(t, 1), ..., Xo(t, d)) be a bounded with bounded derivative solution of the linear
differential inequality on S%:

d
27 X0 + L () Xo(1) + Mo(r) <0, (4.54)

where M()(t) = (M()(f 1), My(t, 2) ., Moz, d)) My(t,i) = M(@t,i) +¢el, +
L, I)F()(t t)+F*(t DL, z)+Fo(t z)R(t z)Fo(t i), &€ > 0 fixed.
Under the considered assumptions, we have

Xo(t) — X(1) >0 (4.55)
for arbitrary i(t) € T'F of (4.36), which verifies the condition (4.8).

Proof. If X (1) €] I¥isa bounded solution of (4.36) that verifies (4.8), we define
M@= (M@, 1), M@t,2),..., M(t,d)) by

~ d ~ ~ ~ ~ ~
M(@t) = EX(t)+£*(t)X(t)—73*(1, XO)YR (1, X())P(t, Xe)+M (1), 1 € Ry

- (4.56)
Clearly M(z) > 0. By Lemma 1 we verify that

d - - ~ ~ ~ ~
EX(I) + ﬁ}o(l)X(f) + M(t) + L(t) Fo(r) + Fg (1) L(t) + F5(t)R(t) Fo(z)
— M(t) — (F(t) — Fo)) " R(1, XO)(F (1) — Fo(1)) =0, (4.57)
where F(1) = (F(1, 1), F(t,2), ..., F(t,d)) with

Fa,) = -R(t, X0O)Pi(t, X (1)), 1€Z, ieD. (4.58)
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From (4.57) and (4.54) we get

d - -~ ~ - * -~
E(Xo(t) -X()+ L}O(z)(xom ~ X)) + (Fo(t) — F)) " R(1, X(1))

x (Fo(ty = F() + eJ! + M(1) <0, 1>0.

This allows us, by Proposition 14 of Chapter 2, to conclude that Xo(¢) — X (1 =Y),
wheret — Y (1) = (Y(t, 1), Y(¢,2), ..., Y(¢,d)) is the unique bounded solution of
the Lyapunov-type equation

d * d __
EY(I) + E;O(t)Y(t) +eJ9=0. (4.59)

Let Ty(z, 5) be the linear evolution operator on S

¢, defined by the linear differential
equation;

d
ZI_tS(t) = L;O(t)S(t).

Since Fo(t) is a stabilizing feedback gain, then there exist positive constants g, g
such that || Tp(z, 5)|| < Boe ®U=%) ¥t > s, t, s € T. Therefore the unique bounded
solution of (4.59) is uniform positive, and the proof is complete. O

Remark 5. Based on Remark 3 it follows that if the coefficients of system (4.1) are
6-periodic functions, then a stabilizing feedback gain that is a #-periodic function
may be chosen. Therefore in the periodic case the inequality (4.54) has a periodic
solution with the same period as the coefficients. Moreover, if the coefficients of the
system (4.1) do not depend upon ¢, we may choose constant solutions of (4.54), Xo =
(Xo(1), Xo(2), ..., Xo(d)). Detailing (4.54) in the time-invariant case, it follows that
X may be obtained as a solution of the following LMI system:

[A0(i) + Boli) Fo())]" Xo(i) + Xo()[Ao(i) + Bo(i) Foi)]

+ 3 " [A) + B Fo)] Xo()[Acli) + Be(i) Fo(i)]
k=1
d ~ ~
+ unXo(j) + M (i) +el, + L(i)Fo(i) + Fy ()L™ (i)
j=1
+ E}()RG)Fo()) <0,i € D. (4.60)
Based on (4.55) we deduce that there exists o > 0 such that R;(z, Xo(z)) >
woln,t € T,i € D.Hence the feedback gain Fy(r) = (Fy(t, 1), ..., Fo(t, d)) is well
defined by
Fo(t, iy = =R7\(t, Xo(0))Pi(t, Xo(1)),i € D, t € T. (4.61)

We will show that Fyy(¢) is a stabilizing feedback gain for the triple (A, B; Q).
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To this end we consider X (¢) € I'E. By direct computation and using (4.56) and
(4.61) we get

%?(t) + L3, (DX (1) + M) + L) Fo(r) + F§(OL* (1) + F(OR() Fo(t)
—(Ft) = R R(t, X)) (F (1) = Fot)) — M(1) = 0. (4.62)

Further, (4.54) may be rewritten as

d
EXOU) + Lk () Xo(t) + M (1) + L(t) Fo(t) + Fg (L™ (1) + FG@)R(1) Fo(2)

+ (Fo(t) — Fo()) R(t, Xo))(Fo(r) — Fo(t)) + eJ¢ < 0. (4.63)

From (4.62), (4.63), and (4.55) we deduce that t — Xo(t) — )?(t) is a bounded and
uniform positive solution of the linear differential inequation on S

d £
—X()+ L (X)) + =] «0.
7 X+ LX)+ 5] <
Using Theorem 12(vii) — (i) of Chapter 2 we deduce that the system (Ag +
ByFy, A|+BFy, ..., A+ B, Fy; Q)isstable, which shows that Fp(¢) is a stabilizing
feedback gain. As a consequence we deduce that for each i € D, the zero state
equilibrium of the linear differential equation on R”,

d
EX(I) = (Ao(t, i+ %qiiln + Bo(t, 1) Folz, i)) X(),

is exponentially stable.
Particularly in the time-invariant case it follows that the eigenvalues of the
matrices Ag(i) + %qiiln + By(i) Fo(i) are located in the half-plane ReA < O.
Taking Xo(t), Fo(t) as a first step, we iteratively construct the sequences
{Xi(t, DYiso, {Fi(t, D}is0,1 € D, as follows: t — X;1(z, ) is the unique bounded
solution of the Lyapunov equation

d ~ . T :
Z XD+ [Ao(t. i)+ Bolt, DFi(t. )] Xpgi(2,0)

+ X310, ) [Ao(t, 1) + Bolt, DFi(t, )] + My (£,0) =0, (4.64)

where My 1 (1) = (My41(t, 1), ..., M3, (1, d)) with

Myi(n i) = M@, i) + 1%21” L D E D)+ Fr, DL (2 0)

+ Fr(t, i)R(t, i) Fi(t, i) + Z[Ak(h i)+ Be(t, Y F (¢, D]
k=1
x Xp(t, i) [Ap(t, i)y + Be (e, DE (D] + Z%‘jX/(l‘s 7).
A
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- o
Ag(t, i) = Ap(t, i) + i%ln

, -1
Fro(,i) = — (R(t, i+ Z By (t, DX (1, 1) By (t, i)) (4.65)

k=1

X (BS(I, DXi1(r, 1) + Z Bi(t, D)X (t, DAL, 1) + L7, i)>,
k=1
[1>0,ieD.

Further, we show that N
@ Xy(t,) = X(t,i) = L, > Oforall integers | > 0,i € D,1 € T, X(t) =
(X(t,1)...X(¢t, d)) being an arbitrary bounded function in I'*and y; is a positive
constant that does not depend upon X ().
(b) The zero state equilibrium of the linear differential equation on R”,

d ~ . . .
2XO = [Aot, ) + Bolt, D, i) ]x (),

is exponentially stable foreachi € D, > 0.

©) X(t,i) = X;41(t, i)Vl = 0, (¢t,i) € T x D. We remark that the properties (a)
and (b) have been proved for /| = 0. We shall verify by induction that (a), (b), (c) are
fulfilled for every [ > 0.

Let us assume that (a), (b), (¢) are fulfilled for the first/ — 1 terms g\f the sequences
defined by (4.64) and (4.65). By direct computation we obtain that if X (¢) € I'Z, then

d - ~ s
X i)+ [Ao(t, 1) + Bo(t, iYFr_i (t, )] X (1, 0)
+ X (2, )[Ao(t, ) + Bot, ) Fr-1(1, )]

+ 3 A 0) + Belt, DF_y (1, D X (1 DIA, §) + Bi(t, D Fii (2, 1))
k=1

d
+ > quX(@ )+ M)+ L D) Fog () + (DL, )
J=1J#
+ Ff (6, DR, DFio () — M2, 0)
~[Ft, i) = Ry, D] Rit, XO)[Ft, i) — Fioa (1, )] = 0,

Mz, i), F(t, i) being defined in (4.56) and (4.58), respectively.
Using (4.64) with [ replaced by [ — 1 we get

d - ~ . ~
E[x,(t, i) = X(t, )] + [Ao(t, i) + Bolt, DFy (1, D] [Xi(r. i) — X (2, 1)]

+ (X0, 0) = X2, )][Ao(t, i) + Bolt, ) Frei (2, 1)]

£
— I, + Ai(2,1) =0, 4.66
+ 1 + Ai(t, i) =0 ( )
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where

A1) = [A(t, i) + Bt D) Froy (DT [Xi-a (1, 1) — X (2, )]
k=1
d -~
X [Ac(t, D) + Be(t, DF (6, D)+ Y qi[ X, ) = X0, )]
j=lj#i
F M@, )+ [Fa, iy — Fo, D] Ri(e, X0O)[Fe, i) — Foy 0, 9)].

Since X;-,(t,i) — 5(\(1, i) = w1, we get Ay(t,i) = 0. Taking into account
that Ao(t, i) + Bo(t, i) F;_; (¢, i) generates an exponentially stable evolution, we may
conclude that the equation (4.66) has a unique, bounded solution which is uniform
positive definite. Hence there exists @; > 0, such that X, (¢, i) — X(t i) > w1, and
thus (a) is fulfilled. Further we have that R; (¢, X;(t)) > v, > O.

Using (4.65) we write

d ~ *
EX,(:, i)+ [Ao(t, i) + Bo(t, D) Fi(t. )] Xi(1, 1)

+ X,(t, D[ Ao(t, i) + Bo(e, DFi(t, )] + Z [Ax(t, i) + Be(t, i) Fy (1, )]
k=1
d
x X (t, D[Ac(t, i) + Be(t, DF (6 D]+ D qip X, ) + M@, i)
j=1lj#

+ I—I——II + L@, ))Fi(t, i)+ F(t, )L (1. i) + F*(t, HR(, i) Fi(¢, i)

+F(t, 1) = Fio (DR (8, X O)F (2,0 — Frog (,0)]) = 0. (4.67)

It is easy to see that t — 5(\(1, i) verifies

d = - e
EX(t,i)+[Ao(t,i)+Bo(t,i)F[(t,i)] X(t, 1)

+ X (¢, )[Ao(t, 1) + Bo(t, D) Fi(e, D] + Y (Ae(r. i) + Bt D) Fit, i))*
k=1

d
x X(6, DAkt D) + Bt DF (D) + Y i X(t, )+ M2, i)
J=lj#i
+ F(t, )L (e, i)+ LG, DYF(t, i) + Fr (e, DR, DF (8, 0) — M(l, i)
—[F, iy = R, D] Ri(t, X)) [F @, i) — Fit, )] = 0.
Thus we obtain that for eachi € D,t — X;(t,i) — )?(t, i) is a bounded and
uniformly positive definite solution of the linear differential inequality

d ~ *
d—tY(t,i)+[Ao(t,i)+BO(t,i)F,(t,i)] Y(t,i)

+ Y@, D[Ao(t, i) + Bolt, i) (2, )] +

’

_i_ln <
21+ 1)
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which allow us to conclude that the zero state equilibrium of the linear differential
equation

d ~
Ex(t) = (Ao(t, i) + Bol(t, ) Fi(t,i))x(t) (4.68)

is exponentially stable and (b) is fulfilled.
Subtracting (4.64) from (4.67) we get thatr — X, (¢, i) — X;+1(¢, i) is a bounded
solution of the equation

d ~ * . .
E(Xz(t, i) = Xp (8, 1) + (Ag(t, i) + Bo(t, i) Fi(r, 1)) (X (2, 8) — Xp4a (2, 0))
+ (Xi(t, ) = Xpar (t, D) Ao(t, D) + Bo(t, iYFi(e, D)) + Ay, i) =0, (4.69)

where

~ o € . R
At i) = mln +[Fi(t, i) — Fo (8, DR (8, X1 (1)

x [Fi(t,1) = By (6, D]+ Y _[Ae(t, i) + Be(t, DF, D
k=1
X (Xpo1(t, 6) = Xyt ) Ax(t, ) + Belt, ) Fy(1, )]

+ Y g (Xm ) = Xt )

J=lj#i

for! > 1 and
IN(GDHE %1,, + (Fo(r, i) — Fo(t, D) Ri(t, Xo) (Folt, i) — Fo(r. 1))

forl = 0.

Since Ko(t, i) > 0 and the zero state equilibrium of (4.68) for | = 0 is exponen-
tially stable, it follows from (4.69) for I = 0 that Xo(¢, 1) — X, (¢, i) > 0, and further,
by induction, we obtain that ZI > Ofor/ > 1, whichleadsto X;(¢, i) — X;+(t, 1) > 0;
thus (c) is fulfilled.

From (a) and (c) we conclude that the sequences {X;(t,i)};>0.i € D are
convergent. More precisely we have the following theorem.

Theorem 21. Assume that

(1) the system (A, B; Q) is stabilizable, and

(11) There exists X(t )€ re, _(t,i) € I x D. Then for any choice of a sta-
bilizing feedback gain Fo(t) = (Fo(t 1), Fo(t 2),. Fo(t d)), the sequences
{Xi(t, D)}i50.1 € D, constructed as solutions of (4.64) (the first terms X(t, 1)
obtained by solving (4.54)) are convergent. If

X(t,i) = lim X(,i), (r.1) €T x D, (4.70)

then i(t) = (i(t, 1), i(t, 2),..., i(t, d)) is the maximal bounded solution of the
system (4.1) verifying (4.8). a
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Remark 6. (1) If condition (i) of Theorem 7 is fulfilled, the solution X (1) provided by
(4.70) is just the stabilizing solution of the system (4.1).

(i) Excepting the first step, when to obtain X(#, i) we need to solve a system of
linear inequalities of higher dimension, namely (4.54), to obtain the next terms of the
sequences {X;(¢, i)}i>1,i € D, we need to solve a system of d uncoupled Lyapunov
equations. We remark that to compute the gains F;(¢, i) in (4.65) we need both the
value of X;(z, ) and the value of X;_(zr, i).

(iii) Based on the uniqueness of the bounded solution of a Lyapunov equation,
it follows that if the coefficients of the system (4.1) do not depend upon ¢, then the
matrices X; and F; do not depend upon ¢. In this case (4.64) and (4.65) become

[Ao(i) + Bol)) Fim1 (D] X, (i)
+ X;()[Ao(i) + Boli) Fi-1 ()] + My(i) = 0,i € D, 4.71)

M) = M(@i) + l%lln + L F_1G) + Fr (DL () + Ff (ORG) Fiy (i),

+ Z[Ak(i) + Be () Fi—1 (D Xi—1 (DA (@) + Be (D) F-1(1)]
k=1

d
+ Y giXiaG), =1,
j=Lj#

~ o1
Ap(i) = Ao(i) + ’2'qii1n,

. -1
F@) =- |:R(i) + ZBZ(i)X/—1(i)Bk(i):| (4.72)

k=1

i [Bg(i)xl(i) + ZB,Z‘(i)Xz—l(i)Ak(i) +L*(i)} =1,

k=1

while X (i) is obtained solving the following system of LMIs:
[Ao(i) + Bo(l')Fo(i)]*Xo(i) + Xo(D[Ao(i) + Bo(i) Fo(i)]

+ 3" [Arl) + B Fo(i)]" Xo(i)[ Ak (i) + Be() Fo(i)]
k=1

d
+ 3 qiXo()) + MG) + e, + LG Foli) + F ()L (i)
j=1
+ FXDR(DHFo(i) <0, i €D, (4.73)
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and

, -1
FMU=—[M0+§2$0M«U&U%

k=1
X |:Ba‘(i)X0(i) + Z B () Xo(D) A (i) + L*(i)i| .
k=1
(iv) In addition, from the uniqueness of the bounded solution of a Lyapunov
equation, we deduce that if the coefficients of the system (4.1) are 6-periodic functions
defined on R, then the bounded solutions of (4.64) are 6-periodic functions too. Hence

it is sufficient to compute the values of X, (¢, i), Fi(¢, i) on the interval [0, 6]. At each
step [, the initial condition X;(0, i) is obtained by solving the linear equation

]
X1(0,i) = ®7,(6,0)X,(0, i)d;;(6,0) + / O (s, 0OM; (s, i)Yy, (s, 0)ds,
0

@, ; (¢, s) being the fundamental matrix solution of (4.68). For the first step, Xo(z, i)
is chosen as a periodic solution of the Lyapunov-type equation on S,:

d *
EXO(I) + L (1) Xo(1) + Mo(t) =0,
where Mo(t) = (Mo(z, 1), Mo(1,2), ..., My(r,d)),
Moz, i) = M(1, i) + ely + L(t, D) Fo(t, i) + Fg (6, DL™(2, 1)
+FE (@, DR, D Fo(t, ).
If Ty(t,ty) is the linear evolution operator defined by the linear differential
equation on 8%

d
ES(I) = Lz, 0)S0), (4.74)

then the initial condition Xo(0) = (X(0, 1), Xo(0,2), ..., Xo(0, d)) is given by
6
Xo(0) = [J - TO*(e,O)]"/ Ty (s, 0) Mo (s)ds,
0

where J is the identity operatoron S¢; J— T; (8. 0) isinvertible due to the exponential
stability of the evolution defined by the differential equation (4.74).

In the final part of this section we present a procedure to compute the minimal
semipositive solution X (z).
First, we recall that the minimal solution X (¢) is obtained as

X)) = lim X, (1), (4.75)

where X, () = (X, (¢, 1), X.(z,2), ..., X (¢, d)) is the solution of the system (4.44)
with the terminal condition X, (z,i) =0, i € D (see the proof of Theorem 14).
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Let us consider the following systems of It6 differential equations:

dxi(t) = [Ao(t, i)x;(t) + Bo(t, i)us(t)]dt (4.76)

+ 3 [Ae Dxit) + Bilt, Dus () ]dwi(2),

=1
yi(t) = Co(t, D)xi(t), i €D,

where :
Aolt, i) = Aolt, i) + it

For each i € D, we consider the Riccati-type differential equation

d N N r
EXi(t) + Ap(t, DX (1) + Xi (D) Ao(t, i) + kX:I: Ap(t, DX (D) Arlt, 1)

- |:Xi(l)30(f’ D+ Y AL DXI(DB, i)]

k=1

. —1
x [R(t, i)+ Bi(t. DXi(D) B, i)}

k=1

X [BS(L DXi() + E By (1, i) X (1) Ax(t, i)} + Cp(t,i)Coft, i) = 0.
k=1
4.77)

Ifforeachi € D, the system (4.76) is stochastically stabilizable and stochastically
detectable or stochastically uniformly observable, then invoking Corollary 18 we
obtain that the equation (4.77) has a bounded, stabilizing, and semipositive definite
solution X?(2).

Taking X?(t) as a first step, we construct the sequences {X f ()}1>0, i € D, where
foreach/,t - X f (1) is the unique bounded semipositive and stabilizing solution of
the Riccati differential equation:

iXI.(t)+X*(t DX + X Ayt i)+2r:A*(t DX AL, D)
dr’ ! o\t i i [VALA) e K\ i k\L,
— | XI(O)Bo(t, i) + Y Ax(t, X[ Bi(t, i)J

L k=1

, -1
x | RG, i)+ Y Bi(t, DXNNB(, i)jl

L k=1

x | By, DXID) + Y Br(t, HXHD AL, i)} + M(t,i) =0, (478)
L k=1

where M(t, i) = C5(t. )Colt, i) + Y0, i iy X' @).
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Remark 7. Clearly, for each fixed i € D, the equation (4.78) is just the Riccati
equation (4.49) associated with the following controlled system with multiplicative
white noise:

dx;(t) = [Ao(t, Dxi(t) + Bo(t, Du(n)] dt (4.79)

+ D Tt D)xi(0) + Bi(e, Du())dwy (1),

k=1
3i(0) = Ci(t, DHxi (1),

where

. o
Ag(t, i) = Aplt,i) + qu‘iln,

~ . Colt,i _~ B
G, i) = (6?((t,l.l))>,C1(t,l)= ;%Xi- ")
J#£i

It is easy to see that if the system (4.76) is stochastically detectable, then the
system (4.79) is stochastically detectable, and if the system (4.76) is stochastically
uniformly observable, then (4.79) is stochastically uniformly observable too.

Proposition 22. Assume that for each i € D,
(a) the system (4.76) is stochastically stabilizable,

(b) the system (4.76) is stochastically detectable or stochastically uniformly
observable.

Under these assumptions we have that

() X{*'() = X!(t) > Othat1 > 0,i € D, t € Ry; R

(ii) X’(t) < X(t,0), (t.i) € R, xD,l > 0VX(t) = (X1, 1),....X(t, d))
semipositive and bounded solution of (4.44).

Proof. Combining Remark 7 with Corollary 18 we deduce that (4.78) has a
stabilizing semigositive and bounded solution X ,’ (t),! = 0,i € D. By induction
we obtain that M, (¢, i) > 0, which leads to X!(t) > 0.

Foreach ! > 0,i € D, consider the stabilizing feedback gain defined as follows:

- -1
Fl(t)=— |:R(t, D+ Brt DX Bt i):| (4.80)
k=1

x [B(’)‘(t, DX i)+ Y B DX A, i):l :

k=1
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By direct calculation using (4.78) and (4.80) (for I replaced by / + 1) we obtain

d ~ *
Ex§+'(t) + [Aot. i) + Boe, iYFI M ()] X!

+ X[ [Ao(t, D) + Bot, ) FI ()]
+ Z [Axt, i) + Be(e. HF T O] X (O] A, ) + Bt i) FH ()]

k=1
+ Mi (1, 0) + (F7'@0) R, D FP () =0,

%Xﬁ (0 + [Ao(t, D) + Bo(t, HF ' ()] X1ty + XD [ Aot i) + Bot, D F ™ (1)]

+ ) [Au(t. i) + Be(e, DT O] XIO[Ax e, i) + Bt ) F ()]
k=1

+ My, i) + (FY @) R, D FH @),
— (17i1+1(t) _ Fwil(t))* (R(f, l) + Z B;(t, I)X’[([, l.)Bk(t, l))
k=1

x (F*'@) - Fl0) =0,

which leads to the fact that t — X ,’-“ n—-X ,’.(t) is the bounded solution of the
Lyapunov equation on S,:

%Y(t, i) + [Ao(t, i) + Bo(t, DF T ()] Y1)

+ Y[ Ao(t, i) + Bolt, DFIT' )] + Y [Actr. i) + Be(t, HFH (0]

k=1
x Yi(O[Ax(t, i) + Bi(t, DFH (0] + Ai(t, i) = 0, (4.81)
where
N d
Aiy= Y q[Xi0 - X' 0]+ (0 = Flo)
J#L =1

x |:R(t, D+ Y B HXOB, i):l (E[*' (1) — Fl(0)).

k=1

Eet Ti41,:(t,5) be the linear evolution operator on S, defined by (4.81) with
A, i) =0.

Since Xf“(t) is the stabilizing solution of (4.78), we have ||Tj4y;(f, 5)|| <
Bii1,€”+1i075) for some positive constants B4y, .-
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From the uniqueness of the bounded solution of the equation (4.81) we deduce that
o ~
Xt - Xl = / T (s, DA(s, ) ds.
!
Since T}% (s, t) is a positive operator on S,, from the above equality we obtain that
(X' - xln) =0

if Z,(s, i) > 0. This can be checked easily by induction.
For [ = 0 we have

d
Ao(s,i) = Y gy XP(s) + (F(s) = F(9))”
J#

X (R(s, i)+ Bi(s, DX](1)Bi(s, i)) (Fls) = F(s)) = 0.

k=1

Thus assertion (i) in the statement is completely proved.
To prove (i1) we recall that

Xty = lim XL, (4.82)

(see the proof of Theorem 14), where X ’m‘(t) is the solution of the equation (4.78)
with the terminal condition X! (r) = 0. Let X(r) = (X(t, 1) X (s, 2. )?(t d)) be
a bounded and semipositive solutlon of the system (4.44) and let_ F ) = (F (r, 1) x
F t,2).. F (t, d)) be the corresponding feedback gain, i.e., F (t,i) = 'l(t
X(t)) (1, X(t)) ieD,t>0.

By direct calculation we get:

d = ~ “ e
=X, 1) + [Ao(t, 1) + Bota. DF (. D] X (1. 1)
+ X (1, )[Agt, i) + Bot, D F(t, )]

+ ) [A( D) + Belt, DF (1, )]
k=1
x X(t, D[Ac(t, i) + Bi(t, iYF (2, )] + [Co(t, i) + Do(t, DE(t, )]
d
x [Colt, i) + Dot OF (e, )]+ > gy X(t, /) =0
j=lj#i



154 4 The Riccati Equations of Stochastic Control

d i " . T, Tyl
EXM.(I) + [Ao(r, i) + Bo(t, D) F(t, )] XL (1)

+ XL ([ Ao(t, 1)+ Bo(t. )F (1, D]+ Y [Au(t. i) + Bu(t, DF (1, )]
k=1

d
x X (O[A@ ) + Bt DF D))+ Y giXi @)
J=1 i

~[Fa,n - FL,n]" |:R(t. D+ Y Bt DXL (DB, i)]

k=1
x [F(t,i) = FL )] + €5, )Colt, i) + F*(t, )R, )F(1,i) = 0,

where Ft"i(t) is as in (4.80), with Xf(t) replaced by X[r.i(r)'
We obtain in this way that r — X(z,i) — X[m-(t) is the solution of the problem

%Yf(t) + LHOY (0 + Dyl i) =0, (4.83)

Y:i(r) = X (tr,i) > 0, where Ei*(t) is the adjoint operator of the linear Lyapunov
operator on S, defined by

L)Y = [Ao(t, i) + Bo(t, YF (e, D)]Y + ¥ [Aog(tr, i) + Bot, VF (1, )]
+ Y [Aclt. D) + Bu(t. D F (. DY [A(r i) + Bu(t, ) F (2, )]
k=1
and

d
A=Y qy(X@, )= XS 0) + (Fe, i) — FLa, )
j=lj#

X |:R(t, B+ Y Brt D)X, (0Bt i):| (F(, iy — FL(0).

k=1

If ﬁ(t, s) is the linear evolution operator on S, defined by the linear differential
equation

d Y(t) = Zi(t)Y ()
d[ - il E}
then from (4.83) we have the representation formula
X, i) — XL, (0) =Tz, )X (. i) +/ Tr(s,0)Ai(s.i)ds, 0 <1 <T.
t

Since T}* (s,1) is a linear positive operator on S,, then from the above equality we
deduce that X(z,i) — X (1) = 0V0 <t < t,i € Dif Ai(s,i) > 0. This last
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condition may be checked by induction. To this end, we remark that if / = 0, we have

d
Ao(s, i)=Y qiX(s, )+ (Fis, i) = F2,(9)"
j=lj#i

x |:R(s, D+ Y Bi(s. DX () Bils, i):| (F(s, i) — FO,(5))

k=1

and it is obvious that Zo(s, i)>0,0<s<1<00,i €D, whict)\leads to 5(\(t, i)—
X(r),i(t) > 0; further, invoking (4.82) with ! = 0 we conclude that X (¢, i) — X?(t) >0
and the proof is complete. O

Theorem 23. Assume that:

(1) (A, B; Q) is stabilizable;

(i) for each i € D, the system (4.76) is either stochastically detectable or
stochastically uniformly observable.

Let be the sequences {Xf(f)}]z(), i € D, where X,’-(t) is the unique bounded and
stabilizing solution of the equation (4.78). Under the considered assumptions these
sequences are E:Vonvergent,ﬁvand if we define %(1‘, i)y = limy_, 5 Xf (), (t,i) e R. xD,

then ?(t) = (i(t, ... f(r, d)) is the minimal semipositive and bounded solution
of the system (4.44).

Proof. If (A, B; Q) is stabilizable, then for each i € D, the system (4.76) is
stochastically stabilizable. Therefore the assumptions of Proposition 22 are fulfilled
and the sequences {X f (t)}i>1, i € D are well defined and monotonically increasing.

On the other hand, if assumption (i) is fulfilled, then applying Theorem 14 we
obtain that the set of semipositive and bounded solutions of the system (4.44) is
not empty. From Proposition 22(ii) we deduce that the sequences {Xf (tl}lz S

D, are bounded above. Then the functions X (z, i) are well defined by X (t,i) =
limy_, 00 X f(t). By a standard method (based on the Lebesgue Theorem) we obtain

that i(t) = (i(t, I)... i(t, d)) is a semipositive and bounded solution of (4.44).

Applying Proposition 22(ii) again, we obtain that X is the minimal semipositive and
bounded solution of (4.44) and the proof is complete. (]

Remark 8. (i) In the particular case Ai(¢,i) = 0, Bi(r,i) = 0,k = 1,2,....r,
and the system is in the time-invariant case, the iterative procedure proposed in the
previous theorem was used in [1] to compute the stabilizing solution of a system of
coupled algebraic Riccati equations associated with a linear system with Markovian
jumping.

(ii) If for each i € D the system (4.76) is stochastically uniformly observable,
then the system (Cy, Ag, ..., A,; Q) is unifgrmly observable (see Proposition 9(iii)
of Chapter 3), and in this case the solution X (1) obtained in the previous theorem is
just the stabilizing, bounded, and semipositive solution of the system (4.44).

(ii1) At each step | > O the stabilizing solution Xﬁ(l) of (4.77) and (4.78),
respectively, can be computed using the procedure provided by Theorem 21.
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Numerical examples We shall illustrate the above iterative numerical procedures
considering the linear time-invariant stochastic system of order n = 2, subjected to
both multiplicative noise and Markovian jumps with » = 1 and D = {1, 2} having:

- -1 1
mm=[fﬂ,Awn{0_J,

A1) = [_01 _12 LA =

Bo(1) = 1,&®=[
Lo(l) = [

Mo(1) =

11] 11
_12_7M0(2)= ]S

R(I)=1, R(2)=2.

Our purpose is to solve the SGRDE (4.1) corresponding to the above numerical values
using the iterative procedure indicated in the statement of Theorem 21. Three distinct
cases have been considered: the case when the system is subjected only to Markov
jumps, the case when the system is subjected only to multiplicative white noise,
and the case when the system is perturbed with both multiplicative white noise and
Markovian jumps.

Case a. The Markovian jumping case: Ay(i) = 0, B(i) = 0, € D. Using
Proposition 3 in Chapter 3 we determined for the numerical values above that

fo(l) =[0.5923 -0.7004], Fo(z) = [-0.0330 0.0653].
Then, solving (4.60), we obtained
1.5519 ~0.0524}

—_ 103
Xo(l) =10 [—0.0524 1.7776

1.1139 0.2680]

— 3
Xo(2) =10 [0.2680 1.3970

The solution of (4.1) for this case was determined solving (4.60) iteratively. For an
imposed level of accuracy || X4 (i) — X;(i)|| < 107 we obtained after 69 iterations:

30.7868  24.3960
X(”:[zm%o 26.2218]

21.5504  —11.7226
X<2)=[—11.7226 19.2254 ]

Case b. The multiplicative white noise perturbations case: D = {1}, A; = A;(1);
B;=B;(1),i =0,1.



Notes and references 157
In this case we obtained the initial values

Fo = [-0.4004  0.8482],

Yo — 292.8945 163.9337
0= 1163.9337 140.9240 |

and after 202 iterations, the solution of (4.1):

x _ [10782 1.0307
= 1.0307 0.5878 |

Case c. The case when the system is subjected to both Markovian jumps and
multiplicative white noise: In this situation we obtained the initial values:

Fo(1) = [-0.3852 0.8594], Fo(2) = [—0.9000 0.5763],

_ e[ 58005 —4.5733
Xo(1) =10 [—4.5733 —3.7733 |

_ e[ —0.7123  —0.5110
Xo2) =10 [0.5110 —4.8453 |

The solution of (4.1) was obtained after 133 iterations solving (4.60); thus we obtained

2.1893 2.0159 0.7940  -0.4088
X(D = [2.0159 2.0998j| » XQ) = {—0.4088 3.3714 }

Notes and references

The Riccati equations of stochastic control were generally studied in connection with
the linear quadratic problem either for controlled linear stochastic systems with state-
dependent noise or for systems with Markov perturbations. For references concerning
linear quadratic problems in the stochastic framework, see Chapter 5. Most of the
results contained in this chapter were published for the first time in [30]. The iterative
procedure to compute the stabilizing solution of SGRDE was also published in [31]
and in [35]. Classes of nonlinear matrix differential equations which contain as par-
ticular cases Riccati differential equations arising in control problems for stochastic
systems with multiplicative white noise have been studied in [23], [24], [28], [50],
[51]. Iterative procedures for computation of the stabilizing solution of the algebraic
Riccati equations associated with the linear stochastic systems with multiplicative
white noise may be found in [57]. Iterative procedures to compute the stabilizing
solution of systems of Riccati equations involved in the linear quadratic problem for
stochastic systems with Markov parameters can be found, for example, in [1], [53].
Several aspects concerning the algebraic Riccati equations arising in the control of
linear stochastic systems may be found in [22], [2] where rich lists of references
dealing with symmetric and nonsymmetric Riccati equations may be found.
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Linear Quadratic Control Problem for Linear
Stochastic Systems

In this chapter as well as in the next two chapters one shows how the mathematical
results derived in the previous chapters are involved in the design of stabilizing con-
trollers with some imposed performances for a wide class of linear stochastic systems.
The design problem of some stabilizing controls minimizing quadratic performance
criteria is studied. The first two sections of this chapter deal with the so-called linear
quadratic optimization problem. It will be seen that, depending on the class of admis-
sible controls, the corresponding optimal control is obtained either with the stabilizing
solution or with the minimal solution of a corresponding system of generalized Riccati
differential equations. We also consider the case when the weights matrices do not
have definite sign. Such situations may occur in a natural way in economy, ecology,
and financial applications. A tracking problem is considered in Section 5.3.

In the last part of the chapter, the stochastic H? control problem is considered
and solved in two significant cases: the full state access and the output feedback case,
respectively.

5.1 Formulation of the linear quadratic problem

The linear quadratic optimization problem (LQOP) has received much attention in
the control literature due to its wide area of applications. A more detailed overview
of the main results obtained for stochastic and Markovian systems can be found in
the “Notes and References” of this chapter. The main objective of the theoretical
developments presented in the following consists in providing a unified approach to
solving the LQOP for systems subjected both to multiplicative white noise and to
Markovian jumping, the dynamics of which is described by the state-space equation:

dx(t) = [Ao(t, n(1))x(t) + Bo(t, n(t))u(t)]dt

+ ) [Alt, n(0)x () + Bet, n(0)u(®)]dwi (1), (5.1)

k=1

where 1 € R, with the state vector x € R” and with the control inputs u € R™.
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Let us consider the cost function

Ji(to, xo, u) = E/ (x5 (M (2. n(1))x, (1) + x; (DL, n())u(?)

i

+u*@)L*(t, n(t))x, (t) + u* () R(2, n(t))u(t)]dt, (5.2)

where M(t,1) = M*(t,i); R(t,i) = R*(t,i), (t,i) € Ry xD;and x,(¢) denotes the
solution of the system (5.1) corresponding to the input u(.) with the initial condition
(to, x0) € Ry x R".

Two problems will be treated in the present chapter: the first one consists in
determining the optimal state-feedback control:

u(t)y = F(t, n(t)x(), (5.3)

which stabilizes (5.1) and minimizes the cost function (5.2). The class of admis-
sible controls for this problem is the set U (to, xo) of stochastic processes u(t) €
Lf,'w([to, T],R™) for all T > to, with the additional properties that J;(t, xo, u)

exists, and it is finite and lim,_, o E|x,(2)]> = 0. The fact that J,(f, xo, u) exists
means that there exists

T
Jim E [ [ OM@ 10w 0 + 50 L0 n@)ut)

Iy

+ u (L, n())x (1) + u* (R, n(1))u()]dt € R.

An important feature specific to the systems subjected to multiplicative white
noise is the one related to the well-posedness of the problem. Indeed, it will be shown
that in contrast with the deterministic case, where the matrix

M(t, i) L(t,i)
L*(t,i) R(t, i)

must be positive semidefinite, in the stochastic case this condition is not necessary.
In this chapter the optimization problem described by the controlled system (5.1), the

cost functional (5.2), and the set of admissible controls U (ty, xo) will be called the
first linear quadratic optimization problem (LQOPI).

The second problem treated in the present chapter requires us to find the control
of the form (5.3) such that the cost function

Jo(to, x0,u) = E f lya (O dt (5.4)

0

is minimized in the class U/ (g, xg) of all stochastic processes
well, (lo. T, R™)
forall T > ty, Jo(ty, x0, u) < 00, where
Yult) = yu (£, 1, x0) = Co(t, n(1))x,(t) + Do(t, n(t))u(r) (5.5

is an output in R” This problem will be termed the second linear quadratic
optimization problem (LQOP2).
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In order to simplify the expressions involved in the solution of this problem we
make the following assumption.

Assumption A (a) There exists p > 0 such that Dj(z,i)Do(t,i) > pl, ¥(t,i) €
R, xD.

(b) Di(t, H)Colt,i) =0¥(t,i) e Ry x D.

Remark 1. If the system (5.1) with the output (5.5) verifies (a), then without loss of
generality, (b) is fulfilled. Indeed, if (a) is fulfilled, then by the change of control
variables described by

u(t) = —[Dy(t, n() Do(t, n()] ™' Dy, n())Colt, n()x (1) + W(1),
we may replace the given system (5.1)—(5.5) by the following modified system:

dx (1) = [Ao(t, n()x(t) + Bo(t, n(t))i(1)] dt

+ D [Aute n@)x () + Bilr, n()iE) Jdwe (),

k=1
y(1) = Colt, n(t))x(t) + Dolt, n(t)i(t),

where

At i) = Ac(t, 1) — Be(t, DR (0, YDt DYColt, D), k=0,1,....7,
Co(t,i) = [I, — Do(t, DR~ (¢, i) Di(t, )] Co(t, i),
R(t,i) = Di(t,i)Dy(t,i), (t,i) € Ry x D.

Clearly, this new system verifies both (a) and (b) of Assumption A.

5.2 Solution of the linear quadratic problems

In this section we shall present solutions of the optimization problems stated in
Section 5.1. First, we recall several results which will be used repeatedly in subsequent
developments.

For each quadruple (7, 7, x0,1),0 < 1ty < T < 00, x9 € R",i € D, we consider

the auxiliary cost functions J (fo, 7, xo.4,-) : L} (%0, 7], R") — R by

J(to,r,xo,i;u):E[/ [0 u*(f)]M(f,ﬂ(t))[zg;]d”ﬂ(fo)=i:|,
o
(5.6)
where ) ‘
M(t,i):(ﬁ{((tt”ll.)) 223) and  x(t) = x,(t, 1o, Xo)

is the solution of the system (5.1) corresponding to the input #(#) and having the
initial condition (g, xg).
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Applying the It6-type formula (Theorem 35 of Chapter 1) we obtain the following
lemma.

Lemmal. [ft - K(,i): Ry — S,,i € D, are Cl-functions, then we have

J(to, T, X0, 13 ) = xg K (to, D)xo — E[x* (D) K (z, n(x)x(D)In(t) = i]

+E [ [ @ w@nmEe [ﬁgﬂ diln(to) = i] ,
o

MO0<ity<t<oo, xo€R", i €D, uell, ([t 1], R"), where

ME @, i) Mﬁ(t,i)}

MR, i) =
.0 {(M{g(t,i))* ME (@, i)

with

d
ME @, i) = EK(t, i)+ AL, YK (2, i) + K(t, i)Ao(t, i)

r d
+Y AL DK@ DA D+ Y qiK () + M2, D)
k=1 j=1

- %K(r,i) + [L(O)KDOIE) + M2, 1),

M@, i) = K@, )Bo(t, i) + Z ALt YK (2, ) Bi (1, 1) + L(t, 1)
k=1
=PI, K1),

ME (i) = R(t, i)+ Y Bi(t. YK (1, i) Bi(t, 1)
k=1
=R (1, K(1)). a

Corollary 2. If X(t) = (X(t, 1), X(1,2),...,X(t,d)) is a solution of the system
(4.1) defined on [ty, T], then we have
J(to, T, x0, 85 u) = x5 X (to, i)xo — E[x" (1) X (7, n(x))x()|n(t0) = i]

+ E[/ (u(t) — F*(, n(t))X(t))*[R(ts n(t))

0

+ Y Bt n()X (¢, n(1) Be(t, n(r))}(um

k=1
— FX(t, n(1))x(1))dtn(to) = i] (5.7

Yu e L?Lw([t(), 7], R™), xo € R",i € D, where

FX(t,i) = =R '(t, X(0))Pilt, X (1)), (5.8)
(t,1) €lty, ] x D, and x(t) = x,(t, tg, xp). i
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5.2.1 Solution of LQOP1

In the following, we investigate the LQOP described by the cost function (5.2) and
the system (5.1). As is shown in [4] and [14], while the cost functions of type (5.4) are
always bounded below, the cost function J; may have values that approach —oo. The
same thing is expected to happen in the case of systems subjected both to multiplicative
white noise and Markovian jumping.

For each (1, x¢) € Ry x R” we denote

V(to,x0) = inf  Ji(to, xg, 1),
ueld(ty.xp)

the value function associated with the optimization problem.

Definition 1. We say that the optimization problem described by the cost function
(5.2) and the system (5.1) is well posed if —oo < V(ty, x9) < o0 for all (ty, xo) €
R, x R™.

With the notations introduced in the previous chapter we have the following
theorem.

Theorem 3. Assume that

(1) the system (5.1) is stochastically stabilizable;

(ii) the set T'* defined in (4.6) is not empty.

Under the above conditions, the linear quadratic optimization problem described
by the cost function (5.2) and the system (5.1) is well posed. Moreover,

V(to, x0) = D mi(t0) x5 X (to, )0, (5.9)
ieD

where mi(ty) = P (n(ty) =1i) and i(t) = ()?(t, I)... )?(t, d)) is the maximal
bounded solution of the system (4.1), which verifies

Ri(t, X(1)) = pl, > 0. (5.10)

Proof. Let us remark that the assumption (i) implies u (t9, x0) £ ¢ foralltg >0
and xo € R". Based 0n~Theorem 3 of Chapter 4 we deduce that the system (5.1)
has a maximal solution X (r) which verifies (5.10). Applying Corollary 2 for X(z, i)
replaced by X (¢, i), we get

J(t9. 7, x0. i, 1) = x§ X (to, 1)x0 — E[x*(0)X (7, n(x))x(D)|n(to) = i]

+E [/ (u(t) = F(t, n(0)x(0)) Ry (1, X(0))

0

x (u(t) = F(t, n(0)x(0))dtin(t0) = i] (5.11)

forall u € U, (ty, Xo), fo < T, xo € R",i € D, where F(z, ) is defined as in (5.8).
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_ Since X (t) is a bounded solution, it follows that there exists ¢ > 0 such that
[X(t, i) < &V(1,i) € RT x D. Then, from the inequality

|EL ()X (1, n(0)x (D)0 (to) = i1 < E[x() P (o) = i,

we obtain N
lim E[x*(1)X(z, n(0)x(D)In(t) = i] = 0.

Taking the limit in (5.11) we get

Ji(to, x0, u) = Zﬂi(to)xgi(im )Xo + Zm(lo)E

ieD ieD

x [ f () = Ft, n(e)x()) Ry . X)) (@)

To

— F(t, n()x())dt|n(to) = i] (5.12)

forallu € a(to, x0), xo € R", 5 € Ry. Combining (5.12) with (5.10) we obtain that
T (to, x0, 1) = Y, 7 (t0)xg X (f0, 1) x0 Yu € U(ty, x0), which leads to

Vto, x0) = milto)xy X (to, i)x.
ieD

This last inequality shows the well-posedness of the considered optimization problem.
It remains to show that (5.9) holds.
To this end let us consider the following perturbed differential equations on S?:

%X(t) +LOXE) =P, XOYR @, X)P, X)) + M) +J¢ =0,

(5.13)

where {g};>0 is a monotonically decreasing sequence with lim;_, . & = 0.

Applying Theorem 7 of Chapter 4 (one uses the assumptions (i) and (ii)) we deduce
that the equation (5.13) has a bounded and stabilizing solution X, (¢). Reasoning as
in the proof of Theorem 3 of Chapter 4 we deduce that the sequence {X,, (£)};50 is
convergent and lim;_, o X, (t) = X (1), where X (t) is the maximal solution of the
system (4.1) which verifies (5.10).

For each | > 0 we associate the cost function

JE (b0, X0, u) = E [[ XM (@, n(2) + erd)x(2) + x* ()L, n()u(t)
1o
+ut(OL(t, n()x(t) +u* OR(, n(t))u(t)}dt:l ,

u € Ulty, xo). Clearly,

Jé (19, x0, u) = Jy(to, X0, u) + &1 E U lx(t)lzdt:| X (5.14)
0



5.2 Solution of the linear quadratic problems 165

Reasoning as in the first part of the proof we obtain the analogue of (5.12) for the
perturbed cost function J% (¢y, xg, u):

T (1o, x0, 1) = Y _ mi(t0)x; Xe, (t0. i) xo

ieD
+ Zm (1) E [[ (u(t) — Fo (¢, n(0)x () Rpey (¢, X (1)) ((2)
ieD ; o

— Fo (1, n(0)x(@))dtn(to) = l} (5.15)

Yu € Ultg, xp).
Let us consider the control

ué‘[ (1) = FS](t» T](t))xsl(t),

where
Foy(t,0) = =R (1, Xey 0)Pi(t, X (8))
and x,,(¢) is the solution of system (5.1) corresponding to the control u,,(¢) and
Xe, {(fo) = Xo.
Since X, (¢) is a stabilizing solution of the system (5.13), it follows that u,, €

ﬁm (fo, xp). Hence, from (5.15), with u(t) replaced by u,,(¢), we obtain

J (ty, X0, Ug) = Z mi(to)xy X, (t0, )xo.
ieD

Therefore,

Zm(to)xa‘Xgl (to, )xo = J (19, x0, ug,) = Ji(to, X0, Ug,)
ieD
> Vg, x0) 2 Y mi(to)x X (1o, i) %o,
ieD
and taking the limit for / — oo, we obtain that (5.9) holds and the proof is
complete. U

Definition 2. A pair (X(1), @(t)), where u(t) € Ulty, o) and 7(t) = xa(t, to, xo)
is the solution of (5.1) corresponding to the input u(t), is called optimal pair if
V(to, x0) = J1(to, x0, u4). In this case the control i(t) is termed the optimal control.

Corollary 4. Assume that the system (4.1) has a bounded and stabilizing solution,
X(@t) = (X, 1)...X(t,d)), which verifies (5.10). Set a(t) = F(t,n(t))Z(1),
F(Z, )= -—’Ri_l (t, i(t))'Pi (t, i(t)), and let X(t) be a solution of system (5.1) cor-
responding to the control u, x(ty) = xo. Under these assumptions (x(t), u(t)) is an
optimal pair for the optimization problem described by (5.1)—(5.2).
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Proof. From Corollary 8 of Chapter 4 it follows that the bounded and stabilizing
solution of (4.1), if it exists, is just the maximal bounded solution X (¢) which verifies
(5.10). Now, the conclusion of this corollary follows in an obvious way, from (5.9),

since i € U(ty, xo). Ll

Theorem 5. Assume that the assumptions of Theorem 3 hold. Then the linear
quadratic optimization problem described by (5.1)—(5.2), has an optimal pair
(X(2), a(2)) for some (ty, xo) if and only if

r13130x;;[TFff(r, t0)](i)x0 = 0 (5.16)

Vi € D, where Tx(t, ty) is the linear evolution operator on S,‘f defined by the linear
differential equation

d
d_ts(t) = Lp)S@); (5.17)

F(t) = (F(t, 1)... I::(t, d)) is associated by (5.8) to the maximal bounded solution
of (4.1), which verifies (5.10).

Proof. Let (X(1), 4(t)) be an optimal pair. Using (5.12) we may write

d
V(to, x0) = Jy(to, Xo, &) = D _ mi(to)xg X (t0, i)xo

i=1

+ EU ()= F(t,n()E () Ry (1, X (0)) (1)
fy

—F(t,n(t)))?(t))dt].

Taking into account the value of V (#y, x¢) given in Theorem 3, we get
00 ~ ~ ~
E [/ (a(t) — F@t, n(t)£()) Ry (t. X (1)) (a(t) — Ft, r](t)))?(t))dl] =0,
o

which leads to ~
u(t) — F(t,n(t))H)x() =0, a.e.

By the uniqueness arguments we deduce that x(r) coincides a.s. with the solution
X(t) of the problem:

dx(t) = [Ao(t, n(0)) + Bo(t, n(t) F (2, n(1))]x (1)dr (5.18)

+ Y [Aclt n() + Be(e. n@) F it n(0) [x (0w (1),

k=1

t > tg, x(tp) = xp.
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Hence i(t) coincide a.s. with &(r) given by i(t) = F(l, n(t))x(1).
~ Let &3(1, tg) be the fundamental matrix solution of the stochastic differential
equation (5.18), hence
f(f) = 5(t, 1o)Xo.

Since the optimal control u(t) € Z/~(,,,(t0, Xg), it follows that

lim E[19(. t0)xo’[n(t0) = i] = 0,i € D,

Based on the representation formula given in Theorem 4 of Chapter 2, we obtain
(5.16). The converse implication follows in a similar way. O

Corollary 6. Suppose that the assumptions of Theorem 3 are fulfilled. Then the
following are equivalent:

(i) Foreach (ty, xp) € R xR" the optimization problem described by (5.1)—(5.2)
has an optimal control u0-* | that is,

V (1o, x0) = Ji(to, x0, u09).

(i)
rlilglc TE(, 1)l =0, Y = 0, (5.19)

and Tx(t, to) is the linear evolution operator defined by the differential equation
(5.17).

If (i) or (i) holds, then u'o-*0)(t) = F (¢, n(1))X(t), where X(t) is the solution of
(5.18).

Proof. The proof follows immediately, taking into account that (5.16) is fulfilled
forallzp > 0,i € D, xg € R", and

HTE, t0)]] = |TE( 10)J] = max sup {|x3[TE(t. 1)) ()xol},

€D Jxpl=1

and the norms of the operators T»Fl"(t, to) and Tx(t, tp) are equivalent. U

Remark 2. The property of the evolution operator Tz(#, fy) stated in (5.19) shows
that the maximal solution X (¢) of the system (4.1) has an additional property which

consists in the attractively of the zero solution of the corresponding closed-loop system
(5.18), that is,

lim E[19(, to)xo*In(to) = i] = 0,i € D, 19 = 0, xp € R".
— 00

It must be remarked that, in general, this property is not equivalent to the ESMS
of the zero solution of the system (5.18), hence condition (5.19) does not imply that
the maximal solution X () coincides with the stabilizing solution of the system (4.1).

However, if the coefficients of the system (4.1) are B-periodic functions, then
(5.19) implies that the maximal solution X (¢) is just the stabilizing solution of the
system (4.1).
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This fact is stated in the following theorem.

Theorem 7. Assume that the coefficients of the system (4.1) are 8-periodic functions
and the assumptions of Theorem 3 are fulfilled. Then the following are equivalent:
(i) For all (to, xo) € R™ x R” there exists a control uto*0) ¢ ﬁm (to, xo) which
verifies
Vtg, x0) = Ji (I(), Xg, MUO‘XO)).

(ii) The system of differential equations (4.1) has a stabilizing and bounded
solution X (t) which verifies (5.10).

Proof. From Corollary 6 we deduce that (i} is equivalent to (5.19). In particular,

Jim (17706, 0)|] = 0. (5.20)

Based on the identity T#(t 4+ 8,15 + 6) = Ty(t, to) Vt,tp > 0, we may show by
induction that T#(/6, 0) = (T#(8, 0)). Hence (5.20) is equivalent to

Jim J[(T7(8, 0))'1] = 0. (5.21)

Since T#(6, 0) : 8¢ — 87 is a linear operator acting on a finite-dimensional Banach
space, we obtain from (5.21) that all eigenvalues of Tz (8, 0) are located in the inside
of the unit disk |A| < 1. But T#(8, 0) is the monodromy matrix of the equation (5.17);
then, applying a well-known result concerning the uniform asymptotic stability of the
zero state equilibrium of a linear differential equation with periodic coefficients (see
[58]), we conclude that the zero solution of the equation (5.17) is exponentially stable.
This means that the solution X () is just the stabilizing solution of the system (4.1),
and thus the proof of the implication (i) = (ii) is complete. The implication (ii) = (i)
follows from Corollary 4. O

Corollary 8. Assume the following.
(a) The system (5.1) and the cost function (5.2) are in the time-invariant case.
(b) (A, B; Q) is stabilizable.
(¢) The inequality L*X — P*(X)R™UX)YP(X) + M > 0 has a solution

X = (X(1), X2),..., X(@),

which verifies the conditions ’Ri(y ) > 0, i € D. Then the following are equivalent:

(i) For all xo € R" there exists an optimal control u™ € U, (0, xo), that is,
V(0, xo0) = J1(0, xo, u™).
(i1) The system of algebraic equations (4.31) has a stabilizing solution

X = (X, XQ)....,X@),

which verifies 72;(’)?) >0, ieD.
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(1i1) The system of linear matrix inequalities

((E*X)(i)+M(i) PHX)

P.xX) R,-(X)> >0, ieD,

has solutions in S,‘f . Under these conditions u*0(t) = F (n(£))x(t), where
F(iy=-R7'X)P(X), ieD,

X being the stabilizing solution of (4.31) and x(t) being a solution of the corres-

ponding closed-loop system (5.18).

Proof. (1) < (ii) follows from the previous theorem and (ii) < (iii) follows
from Theorem 9 of Chapter 4. ]

5.2.2 Solution of LQOP2

Since the cost functional (5.4) is a particular case of the cost functional (5.2), it follows
that the solution of the optimization problem described by the controlled system (5.1),

the cost functional (5.4), and the corresponding set of admissible controls U (to, xo) 18
obtained from the results derived in the previous section. The optimal control of this
optimization problem is constructed with the stabilizing solution of SGRDE (4.44).
In this subsection we derive the solution of the optimization problem described
by the controlled system (5.1), the cost functional (5.4), and the set of admissible
controls U(ty, xo). Let X (¢) be a semipositive solution of the system (4.44) and let

FX(t) = (FX(t, 1) F¥(1,2) ... F¥(t, d))
be the corresponding feedback gain defined by (5.8). Set
W () = FXa.nm)x*@). 120,
where x* (1) is the solution of the system

dx () = [Ao(t, 1(1)) + Bo(t, n(t)) FX (¢, n(0)) ]x(¢)dr (5.22)

+ ) [Aete, n() + Bete, @) F* (£, n(0) Jx ()dwy (1),

k=1
t > tg, x(ty) = xgp.
Lemma 9. For each bounded and semipositive solution X (t) of the system (4.44) the

control u*(t) belongs to U(ty, xp), t = 0, xy € R".

Proof. Obviously the control u*(1) € Lf}.u,([tl, ], R™) for every compact
interval (¢, £2] C [2, o0). Applying Corollary 2 for
M(t,i) = Cy(t,i)Co(t, i),
L, 1)=0,
R(1,i) = Dg(t,)Do(t, i), u(t) = u* (1),
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we obtain
E [ f [Co(t, nNx*(£) + Dot, n())u™ (1) *dtn(to) = z} (5.23)
o]

= x;X (tg, ))x0 — E [x*(0)X (1, n(0)x(D)Into) = i],

Vi < T,x0 € R", i € D, x(t) = x*X(1).
Taking into account that X (¢) is a semipositive and bounded solution of the system
(4.44) it follows that there exists a positive constant ¢, such that

E [ f [Co(t, n(1))x(t) + Dolt, n(e))u™ (1) |2dt|n(te) = z} < x3 X (to, i)x0 < clxol?,
4]

YT >1y, xg € R, i eD.
Hence

E [ f |Co(t, n(1))x(t) + Do(t, n(t))u* ()2 dtIn(ty) = i] < x5 X (to, i)x0,

0

which shows that J»(ty, xo, u¥) is well defined, and we have

Jato, x0, u¥) <Y 7 (10)x5 X (to, j)Xo; (5.24)
jeD

thus the proof is complete. |

Theorem 10. Assume that the system (A, B; Q) is stabilizable. Then the optimization
problem LOQOP?2 has a solution given by

W = Fa, ge)Fo. 1=,

where F (¢, 1) is defined as in (5.8) for X replaced by the minimal semipositive and
bounded solution X (1) of the system (4.44) and X is the solution of the problem

(5.22), where F*(t, i) is replaced by F (t,1). Moreover the optimal value of the cost
Junction is

d
Tato, %0, #) = Y mi(10)x3 X (fo, 1)%o.

i=l

Proof. Let X, (t) = (X.(¢t,1)... X, (¢, d)) be the solution of the system (4.44)
which verifies the terminal condition X (1,{) = 0.

Based on Proposition 13 and Theorem 14 in Chapter 4 it follows that the solution
X, (1) is defined for all r € [0, 7] and

Iim X, (t) = §(t).
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Applying Corollary 2 for X (¢, i) replaced by X (r, i), we obtain
E [/ |Colt, n(1)x(t) + Do(t, n(t))u(t)|*dt|n(te) = i]
fo

= xo X (to, i)x0 + E [/ [u () — Fo (¢, n()x (DI Ry (£, X (1))
o

X [u(t) — Fe(t, n()x())dtn(to) = i] N CA

Vu € L2, ([t, 7], R™).
Hence

E U |yu ()2 dtn(t0) = ,} > x5 X (to, Dxg (5.26)
fo

and equality is possible if u(z) = F (¢, n(t))x.(t),t € [t, t], x;(¢) being the solu-
tion of the problem (5.22) for FX({V,i) replaced by F;(t,i) = —Ri'l(t, X ()
P (1, X, (1)). From (5.26) for u(t) = u(t), we obtain easily that

Ity x0, 1) = Y 7;(t0)x3 X (19, i)%o. (5.27)
ieD
Combining (5.24) with (5.27) we get -
Dato, X0, i) = Z m(to)xa‘?(to, i)xg.
ieD

Let u € U(ty, xo) be arbitrary. Applying (5.25) to the restriction of u to the interval
[#9, 7] and taking the limit for T — o0, we obtain

E [/ lyu(O12dtIn(te) = ,}
)

— x:X (10, )x0 + E U (u(t) = Et. n(0)x(0)) Ry (1. X (1))

)
x (u(r) — Fa, n()x(1))dt|n(t) = i] ,
which leads to

Dot x0, ) = Y mi(to)xg X (10, 1)xo

ieD
+ Zﬂi(fo)E[/ (u(t) - F, n()x(1) Ry (t, f(t))
ieD o

x (u(r) — ?(t, n(0)x(1))dtn(to) = i]

Yu € U(ty, x9), which completes the proof. O
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Remark 3. From (5.23) and (5.26) for u(t) = i(t), we obtain

lim £ [¥' (00X, n@)F0lnto) =i =0,
T—=>00

which is the single item of information concerning the behavior of the optimal
trajectory of the system for 1t — oc.

Theorem 11. Assume that the assumptions in Theorem 17 of Chapter 4 are fulfilled.
Under these conditions the solutions of the optimization problems LQOP1 and LQOP2
described by the cost function (5.4) and the controlled system (5.1) coincide, and they
are given by ~

u(t) = Ft,n(t)x(), (5.28)

where f(b i) is defined as in (5.8), with X (t) replaced by the stabilizing and bounded
solution X(t) of the system (4.44), and x(t) is the solution of the problem (5.22),
with FX(t, i) replaced by F(t, i). Moreover the optimal value of the cost function is
given by
a(to, xo. ) =y _ i (to)x3 X (to, i) Xo.
ieD

Proof. Under the considered assumptions, the system (4.44) has a unique bounded
and semipositive solution, and that so}ytion is a stabilizing one. Therefore the control
i(t) given by (5.28) coincides with u(t) and hence the conclusion of the theorem
follows immediately. ()

Remark 4. Since U(ty, xo) € Ulty, xo) it follows that

Jo(to, xo, 4) = min  Jo(fp, xo, u) =  min  Jr(1o, Xo, u)
uel](/o.xo) uel (ty.xp)
= J2 (to, X0, ) - (5.29)

On the other hand, from Theorem 11 and Corollary 4 it follows that if the system
(5.1) is stochastic stabilizable and the system

dx(t) = Ao(t. n())x(D)dt + Y Ag(t, () x(D)dwi(t),
k=1
() = Colt, n(t)x (1)

is either stochastic detectable or stoghastic uniformly observable, then in (5.29) we
have equality, and additionally # = u (a.s.).

The next numerical example shows that in the absence of the properties of
detectability and observability in (5.29), the equality does not always take place.



5.3 The tracking problem 173

Numerical example. Consider the system (5.1) in the particularcasen = 2,r =1,
d = 1, m = 1. In this case the system becomes

dx(t) = (Agx(t) + Bou(t))ydr + (A1x(t) + Biu(t)) dw, (1), (5.30)

x = ["'} € R, u(r) eR,
X2

and the coefficient matrices are those from the numerical example at the end of
Section 4.4. The cost functional is

J> (0, x0,u) = E Ux (xf(t) + uz(t))a't:| : (5.31)
0

From Corollary 4 one obtains that the solution of the optimization problem described
by the system (5.30), the cost functional (5.31), and the set of admissible controls

27 (0, xo) is constructed with the stabilizing solution of the SGRAE (4.50), and the
optimal value is given by

~ 8 -21 X10
J2 (0, x0, 1) = [x10 x20] |:__21 63 :' [xzo] , (5.32)
where xo = [x10 x20 ]T. On the other hand, from Theorem 10 it follows that the
solution of the optimization problem described by the system (5.30), the cost function
(5.31), and the set of admissible controls 24(0, xg) is constructed with the minimal
solution of the SGRAE (4.50). The optimal value is

D(0, x0,%) = [x10 x20] [(1) 8] [x‘o} : (5.33)

X20

From (5.32) and (5.33) one sees that J,(0, xo, &) # J2(0, x0, ).

5.3 The tracking problem

Consider the stochastic system (5.1) with the output (5.5) together with Assump-
tion A (a) and (b) stated at the beginning of this chapter. Then, if t — r(t) =
(r@t, D, r,2),....rt,d)) Ry - R”)?isa continugus and bounded function,
the tracking problem consists in finding a control i(-) € U,, (to, xo) which minimizes
the cost function

— | r
J(u) = TILHQOT — IOE [/ [y (, 10, x0) — 7 (1, n(t))lzdt] (5.34) .

Iy

in the class of all stochastic processes ﬁm(to, Xp), where ﬁm (to, xp) is the set of all
stochastic processes u : [fy, 00) X 2 — R™ with the properties u € Lf,'w ([ts, T1,R™)

forall T > ty and sup E |x, (1, to, xo)|2 < 00, t > 1.
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For each (fy, 7, x0,1) € Ry x R, x R" x D with 0 < #9 < t, we consider the
auxiliary cost functions

T
Wilto, T, xo, i, u) = E [/ [y (2, 10, x0) — r(t, n())|*dtIn(10) = i} .
0
for all u € L%,w([to? 7], R™). Based on Ité-type formula given in Theorem 35 of

Chapter 1 we obtain the following lemma.

Lemma 12. Lett — K(t,i) : Ry — S,,t = g(t,i) : R. — R",t — h{(t,i):
R, — R,i € D be C'-functions, and let

v(t,x, ) = x"K@, i)x +2g%(t, )x + h(z,i).
Then:

Wi(to, T, x0, 1, u) = vllo, X0, 1) — E [v(z, x(), n(x)In(ty) = i]

’ * * K X([)
+E /,(){(x 0 ut(HM (nn(r))(u(,))

9
+2 Eg*(” n()) + g*(t, n(1))Ao(t, n(1))

d
+ Y quni8 (1. ) = r*(t, n®)Colt, n(®) | x(1)

j=1

+2[g*(t, n(1) Bo(t, n(1)) — r* (2, n(0)) Do(t, n()) ] u(t)

3
+ i @), n() + gh(t, n(t))

d

+ ) qunsht, DYdtint) =i |,
j=1

forall tp, 0 <ty < 1,x5 € R",i € D, u € Lf"w([to, 7], R™), where x(t) =
x,(t, 1o, x0), MK, 1) being as in Lemma 1, with M(1,i) = Cj(t,i)Co(t, i),
L(t,i)y =0, R(t,i) = Dj(t, iy Do(t, ). O

_ Let X (1) be the stablhzmg and bounded solution of the _System 4. 44) Set
F(t) = (Ft,1), F(t,2),...,F(t,d)), F(t,i) = R e, X()Pitt, X (1)) be
the stabilizing feedback gain. ThlS means that the zero state equilibrium of the cor-
responding closed-loop system (5.18) is ESMS. Then, by Corollary 27 in Chapter 2,
the zero solution of the differential equation with Markovian jumping

d ~
X = [Ao(t, n(1)) + Bo(t, n()) F(t, n(t) Jx(1)

is ESMS.
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Now, applying Theorem 25 of Chapter 2 we deduce that the zero state equilibrium
of the linear differential equation on (R")4:

d

d ~
(O = [Ao(t, i) + Bo(t, HF (1. D]y (1) + Z;q,-,-ym), ieD,
Jj=

is exponentially stable.
Let g(t) = (§(1,1) §(t.2)...&(s,d)) (see Corollary 26 of Chapter 2) be the
unique bounded solution on R of the affine differential equations

d = *
E)’i(t) + [Aot, i) + Bo(t, D) F (1, D] i (1) (5.35)

d
+> " qijy;(0) = [Cott. i) + Dott, HF (1, D] "r (2, i)
j=1
=0,

i € D. From the previous lemma we have the following corollary.

Corollary 13. Assume that the system (4.1) has a bounded and stabilizing solution
X(t). Let g(t) be the unique bounded solution of the equations (5.35) and h(t,1)
be arbitrary C1~functi0ns as in the previous lemma. If v(t, x,i) = x*X(t,i)x +
2g*(t, i)x + h(t, i), we have

W(to, T, x0, i, u) = v(to, x0, i) — E[v(t, x(1), n(1))In(to) = i]
+E / () = Ft, nt)x ()] Ry (1, X)) () — F(1, n(0)x(1)]
1o
+2[*(t, n())Bo(t, n(t)) — r*(t, n(0)) Do(t, n@)][u(®) = F(t, n(1)x(t)]

3 d
+Eh(t’ n(t) + anwh(h D+ i n@)r @, n()}diin(io) =i |,
j=1

(5.36)
forallyy, O0<ty<rt,xg€R,icD,uec Lf,'w([to, 7], R™), x(t) = x,(t, tg, x0). O

Remark 5. If X is a bounded and stabilizing solution of the system (4.44) then we
may write

d ~ - o o
X0+ LEOX @) +[Cot) + Do) FO] [Co) + Dy()F(1)] =0,

which shows that the stabilizing and bounded solution of the system (4.44), if it
exists, is always semipositive. Therefore, the condition R; (¢, X(¢t)) > pl, > 0is
fulfilled.
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For each t > O set h, (1) = (h. (¢, 1)... h (¢, d))*, the solution of the system of
affine differential equations

;jd—th(t) + Qh(ty +m(t) =0,
with the terminal condition 2, (1) = 0, where
m(t) = (M1(1) ma(t) .. g (D))
mit) =r*(t, jr(t, j) — [g°¢, HBot, j) = r*(t, j)Do(t, )]
x R (1, X(O)[B (¢, g, j) = Dy, pra, j], (537)
i€D,t >0, Q=1qi)ijep- Let v (z, x, i) be defined by
ve(t, x,0) = x*X (1, D)x + 28*(t, )x + ho (2, 0).

From Corollary 13 we get

Wito, T, X0, i, ) = v (to, X0, i) — E[ve(z, x(1), n()In(to) = i]

+E U (u(0) — F(t, n@)x @) = ¥ (0, n(1)) Ry (1, X)) u (1)
fo

— F(t,n()x(t) — (¢, n())dt In(zo) = i] (5.38)

forallgy, 0 <t <1, € R",i € D,u € Lf,vw([to, 7], R™), x(t) = x,(t, tg, x0),
where -

Yit, i) = =Ry, X(O)[By(t, )g(t, i) — Di(e, i)r(e, i)]. (5.39)
Now we are able to prove the main result of this section.

Theorem 14. Assume that the system of differential equations (4.44) has a bounded

and stabilizing solution X (t). Let g(t) = (g(t, 1), g(t,2), ..., g(t, d)) be the unique

bounded on R solution of the equations (5.35) and ¥ (t, i) defined by (5.39). Under

these conditions we have

- - 1 T
min  Ju) = Ju) = lim —

ue€ldm (tg,x0) t—ooT 0

d d
YD mit)pymy )t

i= j=l
forall i € Dty > 0,xg € R", where u(t) = f(t, n(Nx() + ¥, n(t)), x()
being the solution of the problem

dx(t) = [(Ao(t, (1)) + Bo(t, n()) F (1, n(0)))x(t) + Bo(t, n(t) ¥ (¢, n(t))] dt

+ 37 [(Actt. n@) + Be(t. n@) F(e, () x (1) (5.40)

k=1
+Bi(t, n(O)W (1, n(1)) |dwe (1),
t > ty, x(ty) = x¢ and

P = (pij)ijep = lim P(r) = lim ®'.
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Proof. Applying Theorem 32 of Chapter 2 to the system (5.40) we deduce that
sup;s. E|x(t)|2 < oo and therefore u(t) belongs to L{ (0, xg). It is easy to see that

foreachu € L[ (to, xo) we have .

f(u) = lim sup

T—o

d
1
= > Tt Wi, T, %o, 4, w).
0o

Then from (5.38) we have foru € Z/N{,,, (ty, x0)

J(u) > lim sup
T

d
_— Y mito){vr (to, x0, i) — Efvr(T, x(T), n(T))In(to) = i1}
i=1

= lim sup
T—o00

d

1 -~ _
; E i (to)hr(to, i) = J(a).

T

But

T T
hy(t) =/ 2" 5(s)ds =/ P(s — t)m(s)ds.

Therefore

T T
hr(ty) =/ [P(s — 1) — ]m(s)ds +/ Fﬁl(s)ds.

fo o

Since lim, o, P(t) = P and m(t) is a continuous and bounded function we have

Tliw 7 tOT (P(s —ty) — )m(s)a’s =0.
Hence
d
Jim e — ;m(to)hr(to, i)
T d
= llmT_,oo T / Zn, (to) pijm ;(t)dt

=l j=I
o d
= limT—»oo—f ZZ i (to) pijhnj (£)dt.

The last equality follows since Z;j:l Z?:l 7; (tp) pij#j(¢) is a bounded function on
R... Thus the proof is complete. O
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Remark 6. Concerning the feasibility aspects of the control u(f) = F (t, neNx@) +
¥ (t, n(r)), which is the solution of the above tracking problem, we distinguish two
important situations:

(i) If the system (5.1), (5.5) is in the time-invariant case and the signal r (¢) satisfies
rt, i) = r(i), (t,i) € Ry x D, then the stabilizing solution of the system (4.44) is
constant and solves the system of algebraic equations. This solution may be computed
applying the iterative procedure described in Section 4.6.

By uniqueness arguments it follows that the bounded solution of the system (5.35)
is constant, and it solves the system of linear equations

d
[Ao()) + Bo)F()]"8G) + Y 41 (j) = [Coli) + Do) F(D]'r() =0, i € D.

j=l

(ii) If the coefficients of the system (5.1), (5.5) are 8-periodic functions, then
the stabilizing solution of the system (4.44) is a 6-periodic function, and it can be
computed with the iterative procedure given in Section 4.6. From the uniqueness
arguments the bounded solution of the system (5.35) is a f-periodic function, and its
initial conditions can be obtained by solving a linear system of algebraic equations.

(iii) Under the assumptions of Theorem 14 it follows that the optimal value of the
tracking problem does not depend upon xg.

5.4 Stochastic H? controllers

In this section we assume that the controlled system (5.1) is also subjected to an
additive white noise perturbation. For this perturbed system we shall introduce a
norm extending the well-known H? norm from the deterministic framework.

The optimization problem that we address in this section consists in finding a
stabilizing output feedback controller which minimizes the H? norm of the resulting
system.

In the following we shall focus our attention only on the time-invariant case.

5.4.1 Stochastic H? norms

Consider the linear stochastic system G described by

dx(t) = Ao(n(n)x(t)dt + Z A (@) x (t)dwy (1) (5.41)
k=1
+ B, (n(t))dv(t),

(1) = C(n())x (1)

with x € R", z € R?, A (i) ¢ R"™", k = 0,...,r, B,(i) € RV (C(i) €
R77 i € Dyw(t), t > 0 being a scalar Wiener process and v(t), ¢t > 0,
being an m,-dimensional Wiener process. As in the previous sections w(t) =
(wi(t), ..., w,(2))* and n(r) are a standard Wiener process and a Markov process,
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respectively, with the properties in Section 1.8; v(t),t > 0, is an m,-dimensional
standard Wiener process independent of the pair (w(t), n(z)), t > 0. Throughout this
section, F;, G,, H, are the o -algebras defined in Chapter | related to the processes
w(t) and n(t), and H, is the smallest o-algebra containing *, and the o-algebra
generated by v(s), 0 < s < t. Denoting by ®(¢, s) the fundamental matrix solution
of the system

dx(t) = Ag(n(@))x()dr + Z Ar(m(D)x ()dwy (1), (5.42)
k=1

according to (1.29) the solutions of (5.41) have the following representation:
T
x(t) = ®(t, 0)xg + &(1,0) / &~ ! (s, 0) Bu(n(s))dv(s). (5.43)
0

In particular, the solution of (5.41) with zero initial conditions is

xo(t) = &1, O)/ &' (5,0) B,(n(s))dv(s). (5.44)
0

We prove the following lemma.

Lemma 15. For each t > 0 and j € D we have

E [xo(O)x5 (D) Xy0)=j] = E [/ O(1.5)Bu (1()) By (n(s) (7, S)X"m_jds] '
0
(5.45)

Proof. Set
W(s) = &' (5,0) B,(n(s)). (5.46)

It is obvious that the components of W belong to Lf,,p w0, 7] for all integers p > 1,
and in particular for p = 2.

We prove that
E |:<b(r, 0) | WP(r)dv(t) (@(r, 0) W(t)dv(t)) x,]m:j}
0 0
=E/ (7, OV OV (1) D* (1, 0) y(r)=, dt. (5.47)
0

To this end we prove (5.47) for the case when the elements of ¥ are step functions
in L‘,‘,‘w[O, 7]. Indeed, let

k—1

W)=Y W) Mgy 0= o <1 <o <l <B =T,
i=0



180 5 Linear Quadratic Control Problem for Linear Stochastic Systems
W (1;) being H, measurables,0 <i <k, E l\l/(t,')l4 < 00. We have
T T *
E[Q(T,O)/ W(n)dv(t) (CD(T, 0)/ l1’(f)dv(f)> Xn(r=j | Hr:l
0 0
=F |:<D(L 0) Z W) ((tin) — v(t) (V1) — o) W (@)
il
x ®*(1, 0) Xpr)=; | Hr:| (5.48)

= O(1,0) Y W(I)E [(v(ti1) — v(t)(0(t11) = v(8)* | He]
il
X W ()P (1, 0) xyir)=j

k=1
= ®d(7,0) (Z W)W (1)t — fi)) O* (1, 0) Xyr)=j-

i=0

The last equality above has been obtained by taking into account that the o -algebra
generated by {v(r) — v(s), t, s € [0, t]} is independent of H, and therefore

E[(tis) = v @ten) — v())* | He]
= E [(v(ti1) = v(t:) 0 Wsr) — v(t))*] = 81 (tisr — t) D,

where §; ; are the Kronecker coefficients. Hence, by taking expectation in (5.48), one
concludes that (5.45) holds if the elements of W are step functions in L‘,‘],w([O, 7]).
Now, based on Remark 9 of Chapter 1, take a sequence {W; (¢) }x—o.1.... of step functions
in L} ([0, r]) such that

Jim E /0 ' W, (1) — ¥ ()*dr = 0. (5.49)
Writing (5.47) for each Wy, one obtains
E [<¢>(r, 0) /OT Wk(t)dv(t)) <<I>(r, 0) for ‘I'k(t)dv(t))* Xﬂ(r)=j]
=E fo (T, YW (W] (1) D*(T, 0) )0yt (5.50)

Using Theorem 27 of Chapter 1 and (5.49) above, it follows that

klim E [<(I>(r, O)/ l111\-(t)dv(t)> <<I>(r, O)/ \Uk(t)dv(l)> Xn(r)zj]
-0 0 0
- E[(@(r, 0)/ \Il(t)dv(t)) (@(‘L’,O)/ \I/(t)dv(t)) X,,(r)zj]
0 0
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and
T
klim E/ (7, )W ()W () D™ (1, 0) ()= A2
—>0C 0

= E/ O (1, YF ()Y (1) D (T, 0) Xp(r)=;dt.
0

Combining the last two equalities with (5.50), one obtains (5.47). By replacing W (¢)
in (5.47) with (5.46), (5.45) directly follows since ®(t, 0)®~! (5, 0) = ®(z, s) ass.,
and thus the proof is complete. 0

Remark 7. If we consider the particular case when Ay (i) =0, 1 <k <r, i € D, the
proof of the above lemma does not become simpler. This is due to the fact that in the
representation formula (5.44) we cannot write

xo(T) = f B (z, 5) By (n())du(s), (5.51)
4]

since the expression under the integral is random, and it is measurable with respect
to H,. On the other hand, the integral in (5.51) is well defined if the function under
the integral is measurable with respect to

H, = H, vo(u(t),0<t<s)
foralls < 1.

Let us introduce the following notations

7 (t) = P{n(t) =i}, (5.52)
P = 11_12)10 P(t) with elements p;;, (5.53)
7 = P(n(0) = i) = =;(0), (5.54)
d
Tico = I 7 Pii- (5.55)
j=1

It is obvious that

d
mi(t) =Y 7;pi(0)

j=1
and hence
Yl_l)r& T (1) = Tioo-
Set
By(s, i) = m;(s) B,(i) B (i), (5.56)
B,(i) = 7ioo By (i) BX (). (5.57)

It 1s clear that _ N
lim B,(s,i) = B,(i) foralli € D. (5.58)
$—>00
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With these notations we prove the following lemma.

Lemma 16. With x((t) defined by (5.44), we have
T
E[x0(t)x3 (D) tncor=s] = / (e““=B,(9)) (j)ds,
0

where By(s) = (By(s, 1), ..., By(s, d)) with B, (s, i) given by (5.56) and L is the
Lyapunov operator defined by the system (Ag, Ay, ..., Ar; Q).

Proof. Based on Lemma 15 we may write successively:
E[x0(T)x5 (D) Xn(e)=;]

- /O E[® (2, 5) B, (n(5)) B ()" (2, $) Xoey—s s

/ Zm(s)E O (1, 5) By ((5)) By (n(5) ®*(T, ) Xniry=j | 1(s) = i]ds

/ E[®(z, 5)B,(1(s)D* (T, ) Xn(o)=j | n(s) = i]ds

= fo (T(r, 5)B,(5))(j)ds.

For the last equality above we used the representation formula (2.24) of the evolution
operator T (z, 5).

The conclusion follows since in the time-invariant case, T (7, s) = e~ (see
Remark 3 of Chapter 2). O

Lemma 17. Assume that the system (Ag, A1, ..., A,; Q) is stable. Then we have

lim E [xo()x3 (0 tncor=;] = Peli). (5.59)

where P = (P D, . P (d)) is the unique semtposmve solution of the Lyapunov-
like equation L P + Bv =O0withB, = (B (1),...,B,d ), B, being defined by (5.57).

Proof. Based on Lemma 16 we have
T
B[] = [ (£B) s
0

- f (e~ (Bu(s) — B.)) (j)ds + f (¢“*™B,) (j)ds.

0

By a simple change of integration variable we get
E[xo(D)x3 (") Xnny=j] = f (€5 (B,(s) — B,)) (j)ds
0

+ / ‘ (¢“°B,) (j)ds. (5.60)
0
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Since the system (Ag, Ay, ..., A,; Q) is stable, there exist 8§ > 1, @ > 0 such that
e~ H < Be for all s > 0. Further, we have

/ (5 (Bu(s) - B.)) ds

0

<8 /r e |§v(s) — §v| ds.
0

<

f (e“) (B,(s) — B,)) (j)ds

0

Taking t — 00, one obtains from (5.58) by standard arguments

lim ,B —alr=s) |§v(s) — §v| ds =0,

T—=>0
which leads to

lim ( £e=9) (B,(s) — B,)) (j)ds =0,

T—=>00 0

and hence from (5.60) we get
R - -
lim E [x0(t)x5(0) Xnn)=;] = / (e“B,) (j)ds = P.(j).
T 0

The last equality follows from the proof of Theorem 15 of Chapter 2. Thus the proof
is complete. m

Remark 8. From the representation formulae (5.43) and (5.44) and from Lemma 17
it follows that if the system (Ag, A4, ..., A,; Q) is stable, then

lim E [x()x" (0 xn0=j] = lim E [x0(0)x3 () Xno=s] = Pe)
for all j € D and for any solution x(¢) of the system (5.41).

Theorem 18. Assume that the system (Ag, Ay, ..., A,; Q) is stable. Then

d

lim Ejz()|* = Z (CHPHC()

d
Z 7jooTT (B () Po(/)Bu())

where B, = (i’;( n,..., }?o(d)) is the unique positive semidefinite solution of the
equation N
LP,+C =0

with C = (C(1), ..., C(d)), C(j) = C*(j)C(j), j € D.
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Proof. First we shall prove the result in the statement for zg = C(n(t))xo(z). To
this end we have

lim Elzo(r)|* = lim Tr E [z0(t)z5(1)]
t—>00 t—>00

= lim TrE [C)xox5)C* ()]

d
= lim Y Tr E [C(7(t))x0(t)x3 (1) Xnoy=; C*(n(1))]

>0
j=1

d

= lim } " Tr C()HE [x0(t)x5 (1) Xyr=1] C* (-
j=1

Then, based on Lemma 17, we get

d
Jim ElzoI* =Y Tr (CGHPGIC()) (5.61)
j=1

Taking into account the definition of the inner product in &4 and the representation
formulae of P and Po, we have

d
r(COHP(HC* () = Y Tr (P(HC*(HC))

H'Mn

d
= 10 Tr (By(NP(DBu())) -

Finally we remark that, based on the representation formula (5.43), it follows that for
any output z(t) we have

lim E|z(t)]* = lim E|zo(t))?,
t—00 =00

and the proof is complete. 0
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For the system G defined by (5.41), under the assumption of Theorem 18 we
introduce the following norm.

Definition 3. We call the H? norm of the system (5.41):

1
IG I = [ tim Elz)P]*. (5.62)

Remark 9. The result in Theorem 18 shows that the right-hand side of (5.62) is well
defined, and a characterization of the H 2 norm can be given in terms of the controlla-
bility and observability Gramians P and Pg, respectively, which extends to the case
of stochastic systems of type (5.41) the well-known results from the deterministic
setting.

Further we prove Theorem 19.

Theorem 19. Under the assumption of Theorem 18 we have
1 T 4
Jim —E [ /0 |z(s)[*ds | n(0) = i] = Z} Tr(B;(j)Po())Bu())) Bij.  (5.63)
j:

Proof. Applying the It6-type formula (Theorem 35 of Chapter 1) for the system
(5.41) and for the function v (x, i) = x*Py(i)x, x € R", i € D, one obtains

T
E [ fo ly(s)|%ds | n(0) = i] (5.64)

T
= F |;/(; Tr (B:(U(S))Po(n(s))Bv(n(s))) ds ! T}(O) — l]
+x3 Poi)xo — E [x"(T) B (n(T))x(T) | n(0) =1].
But

E

— 1

T
fo Tr (B;(n(9) B, () Bo(n(s))) ds | n(0) = ,-]

T d
fZ r (B (D Pol)Bo(iD X7} ds | @) =i | (5.65)
d

T
= Z (By S()P,()B, (1))/ E [xn=j | n(0) = i]ds

d T
Z (B; SN P(j)B, (J))/O Ppij(s)ds.
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Since lim,_, « p;j(s) = p;; we obtain from (5.65) that

T->00

d T
~ 1
= Y Tr (Bi()RDB)) lim = /0 pij(s)ds
j=!

Il

Tr (B;()Po()Bu(1)) ij-

Il
[]=

~.
Il
—_

Based on Lemma 17 it follows that
R P . .
Jim — (x5 Py(i)xo = E [x*(1)" Bo(n(T)x(T) | n(0) =]}

d

1 T -
lim —E [/0 Tr (B} (1n()) Po(n(5)) B, (1(s))) ds | n(0) = l}

(5.66)

1 -~ -~
= lim — 15 Po(ixo = ) Tr (Bo() E [x(T)x* (Dxyry=; | 1(0) = ]

j=1
=0.

(5.67)

Finally, from (5.64) combined with (5.66) and (5.67), we get (5.63), and the proof is

complete.

Evidently, the next resuit holds.

Corollary 20. Under the assumption of Theorem 18 the following hold:

1T 2 . 2 2
TILH;OF[O lz(t)|"dt = TILH;O Elz(T)|* = IG5 .

Theorem 21. Assume that the system (Ag, Ay, ..., A,; Q) is stable. Then

I T .
Jlim — glE UO |z(s)[?ds | n(0) = z}

8;Tr (BX()P,(/)Bu(j))

I
M=

j=1
d ~
=Y Tr(CHPE(DC(K)),
Jj=1
where
d
8= P
i=1
and

P. = (P.(1),..., P.(d))

O

is the unique positive semidefinite solution of the equation LP + M = 0, with M i) =

8B, (i) BX(i).
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Proof. From Theorem 19 we have

d

1 T
Jim =3 [ | s 1@ = z}

i=1

= > Tr (Bi(DP()Bu()) B

and hence the proof is complete. (]

Using the result in the above theorem, one can introduce a new norm for the
system G given by Theorem 21.

Definition 4. If the zero solution of the system (5.41) in the absence of the additive
noise v(t) is ESMS, then define

1< r
HIGIII; = lim — D E [[0 |2(s)I*ds | n(0) = i]
i=l

Remark 10. (i) Based on the results in Theorems 18 and 21 it follows that while |G|,
depends on the initial repartition & = (74, ..., 7y) of the process 7(¢), the norm
[[IG]]{; does not depend on the initial repartition of n(z).

(ii) In the particular case when the system (5.41) is subjected only to white noise
perturbations, the two norms defined above coincide. The difference between them
is due to the Markov jump perturbations.

(i11) It is obvious that

IGli2 < [IG]H]2.

5.4.2 Stochastic H? optimal control: the state full access case

In this subsection we shall state and solve the design problem of a stabilizing controller
that minimizes the H? norm of a controlled system whose states are accessible for
measurement.
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Consider the system G described by
dx(t) = [Ao(n(t))x(t) + Bo(n())u(r)]dt

+ Z (A E)x(t) + Bi(n())u ()} dwi(r) (5.68)

k=1
+ By (n(1))dv (1),
z(t) = C(n)x () + D()u(r),

where x € R” is the state vector, u € R™ denotes the vector of control variables, z €
R? istheregulated output, and A, (i), Bx(i), 0 < k <r, C(i), D(i), B,(i),i € Dare
constant matrices of appropriate dimensions with real elements. The stochastic pro-
cesses {w(t)};o = (Wi (), ..., w, (1), {n(®)},50 and {v(1)};5o have the properties
stated in the preceding subsection. B

Consider the following family of controllers G, described by

Xc(t) = Ac(n(t)xc(t) + Bo(n(t)u (1), (5.69)
Ye(t) = Co(plt)xc(t) + De(n())u(t),
where x. € R u. € R”, y. € R™. Let us remark that the controller G, of form
(5.69) is completely determined by the set of parameters (n., A.(i), B.(i),

C.:(i), D(i),i € D) where n, > 0 denotes the controller order. In the particular
case n. = 0 the controller (5.69) reduces to

Ye(t) = Dc(n())uc(t),

which shows that the zero order (state-feedback) controllers are included in the set
of controllers (5.69).

The resulting system G; obtained by coupling a controller of form (5.69) to the
system (5.68) by taking u.(t) = x(¢) and u(t) = y.(¢) is

dxg(t) = Ao (n(t)xc(t)dt + Z Ara(m(@))xq(t)dwi (2)
=1
+ B (n(t)dv(t), (5.70)

)701(1) = Ccl(n(t))xcl(t)y

Xel = * ;
cl = xd ’

where

+ — [ Ao + Bo() D) Bo(i)Celi) ]
AOcl(l) = [ BC(I) Ac(l) ] ,
A (i) = [Ak(i)'f'%k(i)Dc(i) Bk(i)OCC(i)];

Bma>=[3§”];

Ca) =[CE) + D)D) DOC )]
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Definition 5. A controller G, of form (5.69) is called stabilizing for the system (5.68)
if the zero solution of the closed-loop system (5.70) (in the absence of the noise v) is
ESMS.

By K:(G) we denote the set of all stabilizing controllers G, of the form (5.69).
Then two optimization problems will be formulated and solved as follows.

(OP1) Find a stabilizing controller of the form (5.69) minimizing ||G|l2.

(OP2) Find a stabilizing controller of the form (5.69) minimizing |||G|||2-

For the sake of simplicity we shall unify the notation, writing |.|l2¢, £ = 1, 2,
where ||.||2,; stands for |||, and ||.||5> stands for [||.||]2. Thus, from Theorems 18
and 21 we have

d
1G5 =D &Tr (Bl (i) Poct (i) Boct (i) , (5.71)
i=1
where
E = TMixo for £ =1, (572)
& =4 for £ =2,
and P, (i) = (ﬁ,el(l), ... Py (d)) is the unique positive semidefinite solution of

the Lyapunov-type equation on S¢

-+ With n. denoting the order of the controller:

A Poct (1) + Poct (D Aoct () + Y Apey (1) Poct (D) Agar (i)
k=1

d
+3 i Poc(j) + C4()Cali) = 0, i €D, (5.73)
j=1
One can associate with the system (5.68) the following SGRAES:

A X (@) + X (D) Ao(i) + ZAZ(i)X(i)Ak(i)
k=1

d r
+ ZQin(j) - I:X(i)Bo(i) + Z AF @)X (@) By (i) + C*(i)D(i):|

j=1 k=1

; -1
x [D*(i)D(i) +y° B,f(i)X(i)Bk(i)}

k=1

X |:B(’)‘(i)X(i) + Z Bl (DX ()Ax(i) + D*(i)C(i):| +C*OCWEH) =0, (5.74)

k=1

i € D, which can be written in compact form as

LX —-P*X)R'X)PX)+C =0,
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where L is the Lyapunov operator defined by the system (Ag, A1, ..., 4,; Q) and
PX) = (Pu(X),.... Pa(X))

with
Pi(X) = By()X (i) + Y Bf()X(i)Ae(i) + D*()C (i)
k=1
and
R(X) = (Ri(X), ..., Ra(X))
with .
Ri(X) = D*()D() + Y B{()X () B (i)
k=1
Denote by

NX) = MX), ..., NyX)) e &¢

n+m

the generalized dissipation matrix, where

_[w@x)@+Co Prx)
Ni(¥) = [Pi(X) R,-(XJ'

Assume that the following conditions are fulfilled.
H1. The system (A, B; Q) is stabilizable, where as usual, A = (Ao, A1,
.oy A), B=(By, By,..., B). _ R
H2. There exists X = (X(1), ..., X(d)) such that N'(X) > 0.
Applying Theorem 9 of Chapter 4, we deduce that the SGRAE (5.74) has a
stabilizing solution X. Now defining the gains
Fi)=-R7Y(X)P:i (X), ieD, (5.75)
it results that the control -
u=FneNx@)

stabilizes the system (5.68) in the absence of the additive noise v(z).
The corresponding closed-loop system G is

dx(t) = [Ao(n(t)) + Bo(n(t) F(n(1))] x(1)dt

+ > [Ac @) + Ben@) F(n()] x () dwe(t) + By (n(0))dv (@), (5.76)
k=1

2(1) = [C(®) + D) F ()] x ().
Then the following result is valid.
Proposition 22. Under the assumptions H1 and H2 we have

d
1Gulls, =Y &,Tr (Bi(HX (B

j=1
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Proof. By direct algebraic manipulations (see also Lemma 1(ii) of Chapter 4) we
obtain that the SGRAE (5.74) verified by X can be written in a Lyapunov form as
follows:

[A0(i) + Bo()F()]" X (i) + X()[Ao(i) + Bo()) ()]

r
+ 3[4 + Bl FH] X[ Ao(i) + Bo()) F(i)]
k=1
+3 ;X () +[ci) + DOHF O] [C@) + DOF D] =0,
j=1
which shows that the observability Gramian ﬁod associated with the closed-loop

system (5.76) coincides with the stabilizing solution X of the SGRAE (5.74). The
conclusion in the statement follows from Theorems 18 and 21. O

The main result of this subsection is the following theorem.

Theorem 23. Assume that H1 and B2 are fulfilled. Under these conditions we have

1
d 2

Gcgg?(G)”Gd”z,ez lejTr(B:(j)X(j)Bv(j)) ,
]:

and the optimal control is -

u(t) = F(n(1)x(1),
where X is the stabilizing solution of SGRAE (5.74), F= (1::(1), R f(d)), is the
stabilizing feedback gain defined by (5.75) and ¢; are as defined in (5.72).

__ Proof. Let G, € K (G) and G, be the corresponding closed-loop system and
P, (i) denote the observability Gramian. Let

[U11(i) Uiz(l'):l
Uiy Un()

be a partition of I/’\(,C,(i ) conformably with the partition of the state matrix of the
resulting system. Partitioning (5.73) according with the partition of P, (i), we get

(Ao(@) + Bo())Dc(i))*Un (i) + B (U, (D)
+ Un(i)(Ao(@) + Bo(i) Dc (D)) + Ura (i) B (i)

+ Z(Ak(i) + Bi())De(i))"Un () (Ar (i) + By () D (i)
k=1

d
+ 3 45Un(j) + (C(i) + DHD)*(CG) + DHD) =0, (5.77)
j=1
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(Ao(i) + Bo(i) Dc(i))* Una(i) + B ())Un (i) + Un (i) Bo(i)C. (i)

+ Un()A() + Z(Ak(i) + Bi())Dc(i))* Un (i) By (1) Cc (i)
k=1
d

+ Zqij Ur2(j) + (CQ) + D) D ()" DHC (i) =0, (5.78)

j=1

CX) By (HUn() + AL U (i) + Uy Bo()Ce (i)

+Un()AG) + Z Cr()By(HUn (i) Br(i)Ce (i)
k=1

d
+ Y ijUn(j) + C2()D*() DG)C. (i) = 0. (5.79)
j=1

Using Lemma 1(i) of Chapter 4, SGRAE (5.74) for the stabilizing solution X can be
written as follows:

(Ao()) + Bo() De(i))* X (i) + X (i)(Ao(i) + Bo(i) De(i))

+ Z(Ak(i) + Bi()) De(D))* X ())(Ak (i) + Be(i) De(i))
k=1

d
+ Zqij)?j + (CW) + D) D))" (C() + D(E)Dc(i))
j=1
~ (D) = F())" R(X) (D)) — F(©)) = 0. (5.80)
Denoting by _ ~
Un @) =Un@) — X(@)

and subtracting (5.80) from (5.77), one easily obtains that the triplet ((711(1'),
Upp(D), Uxp(i )) solves the following system of algebraic equations:

(Ao() + Bo() De(0))* Uni (i) + Un (1) (Ao(i) + Bo(i) De (i)

+BZ ()UK () + U2 (i) B (i) + Z(Ak(i) + Be()) D ()"
k=1
~ d ~
xUn (D) (Ac(@) + Be(i) Dc(i)) + Zqilel(j)

j=1

+(De(i) — F)) R (X) (De(i) — F(D)) =0, (5.81)
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(Ao(@) + Bo())Dc(0)*Ur2(i) + B ()HUxn (i) + Ejll(i)BO(i)Cc(i)

+Un()A) + Z(Ak(i) + Bi(i) Do (1)) Uny (1) B (1) Ce (i)
k=1
d

+ 4 Un() + (De(i) = F(i))" R (X) Cc(i) =0, (5.82)

j=1
CXDBs(DHU(0) + A7 () Uz (i) + U (1) Bo() Ce(i)

FUnAG) + 3 CHOBLO T () Be)Coli)
k=1
d

+°qiUn(j) + CHOR (X) Ce(i) = 0. (5.83)
j=1
Setting N
~on L Un() Un)
v = [U,*z(i) Uzz(i)]’

equations (5.81)—(5.83) can be written in compact form as follows:

AbOU @) + U Aoa() + Y Afy (U () Arar (i)
k=1
d

+ qu;U6) + 0" ()R (X)©() =0,
j=1
where _
O() =[D.()— F(i) C.0)].
Since the system (Ag.s, A1, . . -, Are; Q) is stable, it follows that U (i) = 0. Further,
we have

d
1Getll}, =D &iTr (Bl (i) Poci (i) Byt (1))

i=1
d

(B:)X(HB,(M)) + Y &iTr (Bly@)T () Buar(i))

i=1

H‘Mn

Since U (i) 1s positive semidefinite it follows that

d

IGall3, > Z (B ()X (i) B, (D))

for all stabilizing controllers G.. Using Proposition 22 the conclusion in the statement
immediately follows. O
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Remark 11. From Theorem 23 it follows that both optimization problems (OP1)
and (OP2) have the same optimal solution given by the controllers with the set of
parameters n. =0, A.(i) =0, B.(i) =0, C.(i) =0, D.(i) = F(@i), i € D.

The theoretical results derived in this subsection are illustrated by the following
numertcal example.

Consider the stochastic linear system subjected both to Markovian jumps and to
multiplicative noise of form (5.1) withn = 2, D = {1, 2}, and r = 1, where

Ao = | _01],Ao(2>=["01 _11],
am=|" _’2], A1<2)=[‘12 _11],
1

By(1) =

)
Bl(l>=[“11],31<2)=[‘1 ]
2]

B,() = ,Bv(2)=[;],

cy=[13], CQ=[2 —1],
D()=1, D@2 =3,

-1 1
o-[7 4]

and the initial distribution (0.5 0.5). Applying the iterative algorithm presented above
for a precision of 1075, after 205 iterations the following solution has been obtained:

F()=1[-0.2863 —1.5672],
F(2) =1-0.8547 0.2353],

providing the optimal H? norm of the resulting system, which equals 4.4028.

5.4.3 Stochastic H? optimal control: the output feedback control
Consider the system G described by
dx(t) = [Ao(n())x(t) + Bo(n(1))u(®)ldt

+ Y [AE)x () + Be(n(e)u(®)ldwi (1)
k=1
+ B,(n(t))dv(2), (5.84)

dy(1) = Co(n(t))x(t)dt + ZCk(n(t))X(f)dwk(t)
k=1
+ Dy(n(0))dv(2),

() = C(n()x(®) + D(n(t)u(t),
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where x € R" denotes the state, 1 € R™ is the control variable, y € R? is the

measured output, and z € R® denotes the regulated output; n(), w(t), v{t), t = 0

are stochastic processes with the properties given in the previous subsection.
Associate with the system (5.84) the following class of controllers G, of the form

dx.(t) = Ac(n(0))xc(r)dt + Z Age (N(1)) xc(1)dwi (1) (5.85)
k=1
+ B:(n(1))dy(1),

u(t) = Cc(’](t))xc(t)-
By coupling G, to G one obtains the resulting system G,; with the state equations
dx(t) = Ao (n()xa(t)dr + Z Ay (n(#))xe1 (£)dwi (t)

k=1
+ Bua(n(1))dv (1), (5.86)

Z(t) = Ccl(n(t))xcl @),

where

x_x
cl xc’

L[ Ay By)Co)
Ao = p i)Cot)  AG) }
~_ [ Ay BiHCH] ,
Ak(_‘l(l) - _Bc(i)Ck(i) Akc(l) }, k —_ 1, R

T B
Bvcl(l) - _Bc(l)Dv(l)} '

Ca@) =[CH) DHCMH), ieD.

Definition 6. The controller G, is said to be the stabilizing controller of G if the zero
solution of the closed-loop system (5.86) in the absence of the white noise v(t) is
ESMS. The set of all stabilizing controllers will be denoted by K(G).

Acontroller in (G) is determined by the set of the following parameters: n, > 1,
Ac(i) € R™ B.(i) € R™*P C.(i) € R™ ", The controller order »n. is not a
priori fixed. For a stabilizing controller G, consider the norms |G|, and [[|G|l|2
corresponding to the closed-loop system. Then two optimization problems will be
formulated and solved in the following.

(OP1’) Find a stabilizing controller minimizing {|G||».

(OP2’) Find a stabilizing controller minimizing |||G .

It is expected that the solutions of the two problems formulated above will be
different. In the particular case when the whole state vector is available for measure-
ments, the solutions of (OP1°) and (OP2’) coincide, and they are given by a stabilizing
state feedback.
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Consider the associated SGRAE:

r d
AOY () + YDA + 3 AY DALD + Y 4 Y ()

k=1 j=1

- [ YO0 + ZAk(i)Y(i)CZ(i) + eti(i)DZ(i)}

L k=1

~ , —1
x | &Dy())Dy () + ZCk(i)Y(i)CI(i):|

L k=1

x| Co()HY () + ZCZ(i)Y(i)AZ(i) +8iDv(i)BJ(i):l
L k=1
+&B,()BI()=0, ieD, (5.87)

where ¢; have been introduced in the previous section. Recall that
Y=Q),....Y(@)eS,
is a stabilizing solution of (5.87) if the system
(Ao+ KCo, A, + KCy,..., A, + KC,; Q)
is stable, where

K@y =- [’f(i)c(’;(i) + 3 ADYOCLG) + & Bv(i>D:(i)}

k=t

, -1
><|:s,-Dv(i)D;‘(i)+ZCk(i)Y(i)C,f(i)J , ieD. (588)

k=1

A necessary and sufficient condition which guarantees the existence of the stabilizing
solution of (5.87) is proved by Theorem 18. To this end we introduce the corresponding
generalized dissipation matrix:

N =N@),....Na(vy),

where ' L
7 (Y)=[(ﬁY)(w%*s(if;o)B:(o 712((1;))} (5.89)
with
P (Y) = YHCH6) + Z AHY ()CEG) + & B,() DL (i)
and -

Ri (Y) = &:D,()D3() + Y Cu()Y (HCi (), i €D,
k=1
foralY = (Y (1),...,Y(d)) € S,‘f . From Theorem 19 of Chapter 4 it follows that
the SGRAE (5.87) has a stabilizing solution if and only if the triplet (C, A; Q) is
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detectable and there exists ¥ € S,‘f such that A/ (ﬂ > 0. Further, if G is the closed-
loop system obtained by coupling a stabilizing controller of the set X'(G) to the system
(5.84), then according to Theorems 18 and 21 we have

d
1Getllae =Y &iTr (Bloyi) Poct(i)Buat (1)) (5.90)

i=1
where _ R R
Py = (Pocl(l)v sy Pocl(d))

is the observability Gramian of the closed-loop system and it verifies the Lyapunov-
type system:

Aot () Poct (i) + Poct (D) Aoct + Y, At (1) Poct (1) A
k=1
d

+ ) qijPoct(i) + C;Ca = 0. (5.91)

i=1

Since (Ao, Ate, - ., Arq) is stable, the system (5.91) has a unique positive
semidefinite solution Pp;(i).

Let X = (X Im,.... X (d)) be the stabilizing solution of SGRAE (5.74). Denote
by

UGi) = Pouli) — [(’)((’) 8] ,ieD.
By direct calculation one obtains as in the proof of Theorem 23 that

U=@UQ),....U@) eS8,

is the solution of the Lyapunov-type equation

Ag (DU @) + U ) Apa (i) + Z Ap DU ) Akt (0)

k=1
d
+Y_q;U() + Ch()Cul) =0, ieD, (5.92)
j=1
where R _
Ca() =[-IIOFGE) MEHC)]
with
r - 2
Gy = (D*(i)D(i) + Z Bf(i)X(i)Bk(i)) .
k=1

Since the system (Agc, Aicls - - - » Ara; Q) is stable, it follows that the unique solution

of (5.92) is semipositive. As in the proof of Theorem 23, the equality (5.90) can be
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written as

d
1Gal3, = Y &iTr (BI()X()B,()) (5.93)

i=1
d
+ Y & Tr (Bl (HU ) Bua (D)) .
i=1
On the other hand, since
U=W(Q1),....U@))
is the observability Gramian associated with the triplet

(6C[7 (AOClv e Ard); Q) s

then according to the results in Theorems 18 and 21, we get

d d
D &Tr (Biy(HU@D)Bua()) = Y Tr (Cad)Pea(HCH()) (5.94)
i=1 i=1
where R R R

P = (Pccl(l)v cey Pccl(d))
is the unique solution of the Lyapunov equation on S¢ et

Aoct (1) Pect (i) + Pect () Ay (1) + Y Ager(i) Pecr (i) Ay ()

k=1
d
+ ) qji Pect(J) + £ Bua (i) Bl (i) = 0. (5.95)
j=1 )
From (5.93) and (5.94) one obtains:
d
IGals, =Y &Tr (Bj()HX(H)B.(D)) (5.96)

i=1
d - ~
+ 377 (Cai) Bea) (D)) .
i=1
Let ~ N 3
Y =(Y(l),...,Y(d)
be the stabilizing solution of SGRAE (5.87) and define
N Yi@) o
V(i) = Peali) — [0(1) O:l .

Let

Y56 Yao()
be the partition of Fccz(i) according to the partition of the state matrix of the closed-
loop matrix of the closed-loop system. It is easy to see that (5.95) can be partitioned

[Yll(i) le(i):'
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as follows:
Ao(D)Y11(0) + Yii(DAGE) + Bo()C (DY) 4+ Yi2(D)CE(E) By (i)

+ ) (AOYuDALG) + Bi(IC() Y AT

k=1
+ AV 12C2 ) BY Q) + Br(i)Celi) Y () CE (1) B (1))
d
+3 g Yu()) + &:By () BL() =0,
j=1

Ao(D)Y12(0) + Bo(DCe(D)Y22(i) + Y (HCH(D) B (D) + Y12 () AZ (D)

+Z (Ae@Yu()CE)BE() + Be()C()Y () Ci () B (i)
k=1
+ A Y12(D A () + Bi()Ce () Y (i) A} (D))
d
+3 450 + & B ()DL BIG) =0,
j=1

B.()Co()Y12()) + Ac(D Y22 () + Y5()C5 () BX (i)

(5.97)

+ Y AZG) + Z (B Y1 ()CE () B (i)
k=1
+ A (DY CE ) B () + Bo()Cr() Y12 () AL () + Are (DY) Af ()
d
+ ZqﬁYzz(j) + & B.() D, (1) D (i) BZ (i) = 0.
j=1

By direct calculations based on (5.97) and (5.87), we deduce that V =
v,..., V(d)) is a solution of the following Lyapunov-type equation on S¢

n+ne*

Apt DV @) + V() Ag, () + ZAkcz(i)V(i)A?:cz(i)

k=1
d -~ o~
+4iiV() + Bua()By (i) =0, ieD, (5.98)
j=1
where -
=~ - [-K@®]=,.
Bm(o—[ B.() ]H(z)
with

1
r 2
M) = (siD.,mD::(i) + ch(i)’fmck*(i)) , ieD.
k=1
Since the system
(AOCI ’’’’’ Arels Q)
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is stable, the equation (5.98) has a unique solution V (i) > 0. Furthermore (5.96) can
be rewritten in the form

d
IG5, =Y &Tr(B;(HX()B,(i))

i=1

d

+Y Tr(DOFOY O F()TG) (5.99)
i=l
d —_ -~

+ Y Tr(CaHV i)y )).

i=1
Now we are able to prove the main result of this subsection.
Theorem 24. Assume the following.
() The triplet (A, B; Q) is stabilizable and (C, A; Q) is detectable.
(i1) There exists X € S,‘f verifying
N (? ) >0,
where N denotes the  generalized dissipation matrix.
(i) There exists Y € S¢ verifying
N (?) > 0,
where N is defined by (5.89).

Under the above conditions we have

d
min 1Gallz, = ;s,-Tr (B ()X (1) B, (1))
d o~ ~ ~
+ 3 Tr (MO FOHYOFOG),
i=1

and this minimum is attained by the optimal controller

dx(t) = Apc(n(0))xc(t)dt

+ 3 Aec(n(0)x(t)dwy(2) (5.100)

k=1
+ B.(n(0))dy (1),
u() = Co(n(0)x. (1),

with

Areli) = A() + K(@i)Cili) + BeQ)F@), k=0,...,r,

B.(i) = —K(i),

C.() = F(i), i e D,

where E(i) and F(i) are defined by (5.88) and (5.75), respectively.
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Proof. From (5.99) and from the positivity of the solution V of (5.98), it follows
that

d
IGal3, = > &Tr (B ()X ()B,()) (5.101)
i=1

d
+ ) Tr (MO FOY () F*()HT1GE))

i=l

for all stabilizing controllers G, € K (G). We show now that the controller given by
(5.100) belongs to the class of stabilizing controllers K(G), and for this controller

(5.101) becomes equality. The closed-loop system corresponding to the controller
(5.100) is

dx(t) = (Ao(()x (1) + Bo(n(t) F(n(t)xc(1)) dt

+ 3 (A @)x(0) + Ben(®) F)xe (1)) dw (1)

k=1
+ By(n(1))dv(),
dx.(t) = (=K (n(t)Co(n(1)x(1) (5.102)
+ (Ao(1(1)) + Bon(t) F(n(1)) + K (n(1)Co(n(1))) x.) dt

+3 (= K@@)Ce)x(®) + (Ac(n() + Be () F (1)
k=1

+K (1) Ce(n(1))) % (1))
x dwy(t) — K (n(1)) Dy (n(0)dv (1),
2(t) = C((1)x(t) + D) F((1))xc(1).

If [x*(t) x:(t)]* is a solution of (5.102) in the absence of the additive noise v(t),
define

E() =x(t) —x.(1), t = 0.
Then, by direct computations, it follows that the stochastic process [x*(t) &*(1)]*
verifies the system
dx(t) = ((Ae(n(1) + Bo(n() F(n(1))) x(1)
- Bo(ﬂ(f))F(n(f))é(T)) dt

+ > (A @) + Bin() F () x(1)

k=1
— Bi(n(t) F (e )E()) dwy (1), (5.103)
de0) = (Ao(n(1)) + K (1)) Co(n(1))) £(1)dt
+ ) (A (0)) + K@) Cen(1)) () dwy (1),

k=1
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Since Y is the stabilizing solution of SGRAE (5.87), from the second equation (5.103)
one obtains

E[IEWI 1 n0) =i] < e [EO), 120, i €D, (5.104)

for some o > 0 and B > 1. Further, the first equation (5.103) can be rewritten as
follows:

dx(t) = (Ao () + Bom) F (1)) x(t) + fo(®)) dt
+) (M) + Ben)F (1)) x(0) + fi()) dwi (1)

k=1
with _
Je(@) = =B F(n)§), t 20, k=0,1,...,r

Applying Theorem 32(i) of Chapter 2, one deduces that there exist 8 > 1 and @ > 0
such that

E[lx®)F | n(0) = i] < Be™™ (Ix(0)]* + [£(0)]?). (5.105)
From (5.104) and (5.105) we get
E[lx®* | n(0) = i] < Be™ (Ix(O)* + |E©O)),

where @ = min(a, &), B = max (ﬂ, ﬁ), and therefore we conclude that the
controller (5.100) is a stabilizing controller. On the other hand, we may write with
this controller:

ZTr CaVHITHG)) (5.106)

i=1

au

}: (TOFG) (Vi () = Via@) = V() + Vaa () F*HHTIH))

where
{ V@) Via(d) ]
Vi) Va(i)
is the partition of the solution V (i) of equation (5.98) corresponding to the controller
(5.100).
Partitioning the equation (5.98) we obtain the following system:

Ao(l)V11(l)+ Bo()F () V(i) + Vit () AF() + Via() F () B3 (i)
+Z A Vi ()AL + B F () V() ALG)
k=1

+ Ae(D) Vi () F* (D) BY (i) + B () F (i) Vaa (1) F* (1) B (1)
d

+Y g V() + KOTOHK* @) =0,
j=1
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Ao Vi (i) + BoG) F (i) Var (i) — Vi ()DCLHK* () + Via () AL ()
+ Z (A VuOCOK* () = BuD)FOVHHCTHDK6)

k=1 + A Vi) AL G) + B (D) F (i) Vi () A7, (1) (5.107)

+) giiVin(j) + KOO K*() =0,

M-~

j=1

]

~

— K()Co(i)Via (i) + Aac()) Var(i) — Vi (CEK* () + Vaa (i) A, (i)

+ Y (KOCHVIHOC{OK*E) ~ A (D) Vi () CEHK™ ()
k=1 - - ~ ~
~ K Cui)Via (1) Af (i) + Are (i) Vaa (i) AR (1))
d

+Y q;iVa() + KOTHK*G) = 0.

j=1

By summing the first and the third equations of (5.107) and by then subtracting the
second equation (5.107) and its transpose, one obtains that

W(i) = V(i) — Via() — V)530) + Va2 i)
verifies the equation

(Ao(i) + K ()Co)) W (i) + W(i)(AoG) + K () Co(i))"

+) (A + KOC@O)WO (A) + KOCe())
k=1

d
+> q;W(j) =0.
j=1
Since the system
(Ao +KCo, A\ +KCy,..., A, +KC,; Q)

is stable, the above equation has a unique solution from which we deduce that
W(@) =0, i € D. Based on (5.105) this shows that

d
Y Tr (Calh)V(H)CH()) =0,
i=1

and therefore

d
1Gals, = Y &Tr (B:()X()B.()

i=]

d
+ 3 Tr (MOFOY OHF(OTE))

i=1
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where écl is the closed-loop system corresponding to the controller (5.100) and thus
the proof is complete. 0

Remark 12. In the particular case when D = {1}, A, = 0, B, =0, C, =0, k =
1,2,...,r, the controller (5.100) reduces to the well-known Kalman-Bucy filter
which solves the classic H? optimization problem. Therefore, it is natural that in the
general framework considered here, the solution of the H? optimization problem has
a form similar to the Kalman—Bucy filter. Unfortunately, in the general case, when
the nominal plant is corrupted with multiplicative white noise, the solution of the H?
optimization problem is a stochastic system with multiplicative noise, which leads to
implementation difficulties. This fact leads us to consider an H? optimization problem
in the class of controllers with A, (i) =0, k = 1, ..., r, which still remains an open
problem.

At the end of this section we focus our attention on the strictly Markovian case,
namelyd > 1, Ay(i) =0, Be(i) =0, Cr(i) =0, A (i) =0, 1 <k <r, i €D.
Therefore, the controlled system is in this case:

dx(t) = (Ao(n(®))x(t) + Bo(n(t))u(t)) dt + B,(n(t))dv(t),
dy(t) = Co(n())x(2)dt + Dy(n(1))dv(1), (5.108)
z(t) = C(n@Nx(®) + D(n()u().

In this particular case Theorem 24 leads to the following corollary.

Corollary 25. Assume the following.
(1) The triplet (Ao, Bo; Q) is stabilizable and (Cy, Ao; Q) is detectable.
(ii) There exists X = (X(I), ceh X(d)) € S,‘f satisfying the LMI
_ X o +cmca Xa)Bo) + C*G)DG) 20
' Bi ()X (i) + D*(i)C() D*(i)D(i) ’
where
-~ —~ -~ d —
£ (X) (i) = Ay X @) + XD Aol) + Y 4i;X ().
j=1

(iii) There exists Y = (Y(1), ..., Y(d)) € 8¢ satisfying the LMI

oo L) O +&B,OBG)  THCo6) +eB,ODIG) | _ o
| CEOY () + & Dy(i)BLG) £ D, () D) ’

where &€; are either 1, or 8; introduced in Section 5.4.1. Then the controller
dx (1) = Ac(n(t)x.(1)dt + B.(n(0))dy(2), (5.109)
u(t) = Ce(n(0)x(1),
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with

AcG) = Ao(i) + Bo()F (i) + K () Coli),
B.(i) = —K (i),
C.(iy=F@)

stabilizes the system (5.108) and

d
1Gals, = &iTr (B:()X (1) B, ()

i=1
d 1 ~ ~ ~ 1
+ Z Tr ((D*(i)D(i))2 FOYF*() (D*(i)D(i))f)

G )
G ICG” cl”zz

where Gcl is the closed-loop system obtained by coupling the controller (5.109)
to the system (5.108); X and Y are the stabilizing solutions of the Riccati-type
equations:

d
AZDXG) + X AG) + Y 4i;X () = (X (@) Boli) + C*)D())
j=1

x (D*()D)) ™" (B3 ()X (i) + D*()C(H)) + C*()HCG) = 0;

d
Ap(DY (@) + Y () AG() + ZjSY(j) — (Y()Co(i) + & B, (i) D} (i)
j=1

x (:D,()YD2()) ™ (Co)Y (i) + & Dy(i)B2(0)) + & B, (i) BX() = 0;
and F and K are given by
F@i) = —(D*)DM) ™ (Be )X () + D*()C (),
K@) = = (Y()Coli) + & B,() D)) (: Dy () D) . O

In order to illustrate the above results we shall present a numerical example.
Consider a helicopter dynamics having the state-space equations

x(t) = A(mx(t) + B(n(1)u(t) + Ew(t),
z(t) = Cix(t) + Dyu(z),
y() = Cox(t) + Dow(t),
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where 7(t) indicates the airspeed and the state variables are the horizontal velocity
x1, the vertical velocity x, the pitch rate x3, and the pitch angle x4. The matrices in
the above state-space representation have the form (see [25])

[ —0.0366 0.0271 0.0188 —0.4555
AG) = 0.0482 —1.01 0.0024 —4.0208
T 01002 azpG) —0.707  a()
| o 0 1 0
[ 04422  0.1761
| buG)  —=7.5922
B =\ _§so00 44900 |
.0 0
Ly, Oux
E =[I4ixa O4a], C1=|:O‘; i:l, D1=|:1;1 jjl,

cC=10 1 0 0], D;=[0 0 0 0 1],i=1,23,

where a3, (1), asq (+), and by (+) are given in Table 5.1 as a function of the airspeed.
The behavior of n(z) is modelled as a Markov chain with three states corresponding
to the three values of the airspeed: 135, 60, and 170 knots.

Airspeed (knots) as asg ba)
135 0.3681 | 1.4200 | 3.5446
60 0.0664 | 0.1198 | 0.9775
170 0.5047 | 2.5460 | 5.1120
Table 5.1.

The following three transition matrices have been considered:

[ —0.0907 0.0671  0.0236 ]
0= 00671 —0.0671 0 ,
| 0.0236 0 —0.0236 |

[ —0.0171  0.0007  0.0164 W

0, =1 00013 —0.0013 0 ,
| 0.0986 0 —0.0986 |
(—0.0450 0.0002  0.0448 ]

0;=| 00171 —0.0171 0

| 0.0894 0 —0.0894 |

The initial assumed distributions are (0.333 0.333 0.333), (0.6 0.3 0.1), and
(0.6 0.1 0.3), respectively. The optimal H* corresponding norms obtained using
the method described in this section are presented in Table 5.2.



Notes and references 207

Optimal H° norms computed by the method
in the present paper

Q1| 1Gallz1 =4.6735; [|Gyll,, = 8.0988
0> Gl = 4.5196; [|Gyll,, = 7.8264
Qs | 1Gullzy =4.8113; [Gyll2; = 8.3333

Table 5.2,

Here only the optimal H? controller for the case Q = Q) is given. Its realization
is the following: .

[ —0.4431 0.3328 0.4106 0.0327 ] —0.1509 ]
A1) = —3.4133 —10.3798 4.8501 6.3131 B.(1) = 3.0100
T 53252 5.2657  —6.8663 —9.4439 [° T T I —1.1841 |
.0 1.7630 1 0 | —1.7630 |
Cu(l) = [—0.9282 0.0139 0.9616 1.3881
77 0.0226 0.8442 —0.1896 —0.7131 |
[ —~0.4133 0.4164 0.3727 —0.0675 | [ —0.1727]
—2.0379 —9.7852 3.6641  4.2692 2.6160
Ac(2) = 5.8528 3.3426 —7.5378 —10.9517 |’ B.(2) = —0.4174 |’
0 1.3828 1 0 | | —1.3828
C.2) = [ —0.9144 0.1586 0.9440 1.2483
<7 01570 0.8317 —0.3607 —0.9312 |
[—0.4517 0.2545 0.4437 0.1318 [ —0.1030 ]
—4.3958 —11.1936 5.5719 7.2984 3.4319
AcQ) = 5.0354 6.8942 —6.4680 —7.9318 |’ B.(3) = —2.2534 |’
|0 2.2062 ] 0 | —2.2062 |
C.3) = [ —0.9240 —0.0573 0.9882 1.5154
77| -0.0368 0.8507 —0.0682 —0.4705 |

Let us finally remark that no ill-conditioned computations occurred when the
iterative procedure described in this section was applied.

Notes and references

The results presented in this chapter are mainly based on the papers [30], [31], [94].
The linear quadratic problem in the stochastic case has been investigated starting with
[117]. For stochastic linear systems with multiplicative noise we mention [77], {8],
[671,[116], [14], [88], [3], [4]. and for the infinite-dimensional case we cite [18]-{20]
and [111]. In the case of stochastic systems subjected to Markovian perturbations, the
linear quadratic problem has been addressed in [86], [70], [89]. As concerns the H?
control problem for stochastic systems with multiplicative white noise, we cite [19]
and [39], and for systems with Markovian jump we mention [15], [25], where subop-
timal solutions of the same order as the order of the nominal system are considered.
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Stochastic Version of the Bounded Real Lemma
and Applications

The main goal of this chapter is to investigate the robustness properties of a stable
linear stochastic system with respect to various classes of uncertainties.

A crucial role in determining a lower bound of robustness radius will be played by
the norm of a linear bounded operator associated with the given plant. This operator
will be called the input—output operator and it will be introduced in Section 6.1. In
the next section a stochastic version of the so-called Bounded Real Lemma will be
proved. This result provides an estimation of the norm of the input—output operator in
terms of feasibility of some linear matrix inequalities (LMIs) or in terms of existence
of stabilizing solutions of a generalized algebraic Riccati-type equation.

Further, the stochastic version of the so-called Small Gain Theorem will be proved.
This result will be used to derive a lower bound of robustness with respect to linear
structural uncertainties. Then we shall investigate the stability robustness with respect
to a wide class of nonlinear uncertainties.

As in the previous chapters a unitary approach will be used for systems subjected
both to multiplicative white noise disturbances and to Markovian switching. In order
to simplify the developments in this chapter we restrict our attention to the systems
in the time-invariant case.

6.1 Input—output operators

Consider the linear system described by
dx(t) = [Ao(n()x(t) + Bo(n(r))u(t)ids

+ Z[Ak(n(t))X(t) + Be(n(£))u(t)ldwi (1), (6.1)

k=1
y(t) = C(n)x () + D(n)u(t),

with the state x(¢) € R”, the input u(t) € R™, and the output y(t) € R”. Az (i),
Bi(i), k = 0,1,...,r, C(i), D(i), i € D, are constant matrices of appropriate
dimensions. The stochastic processes n(t),t > 0, w(t) = (w1 (f), ..., w ())r>0
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have the properties given in Chapter 1. If u(zr), t > 0, is a stochastic process having
the components in quw[o, 00), x,(t), t > 0 stands for the solution of (6.1) with
the initial condition x,(0) = 0. According to the results derived in Section 1.12,
the components of the process x,(z), t > 0, are in Lf’_w [0,7] VT > 0. Moreover,
if the system (Ao, ..., A,; Q) is stable, then based on Theorem 32 of Chapter 2,
with f,(t) = By(n(t))u(t), it follows that x,(.) is in L%_w([O, 0), R") . On the other
hand, by uniqueness arguments one easily obtains that the map u +— x,(.) is linear.
Therefore, if the system (Ag, ..., A,; Q) is stable, we may consider the operator
T defined on the space of stochastic processes L%.w([O, o0), R™) with values in

Lf]‘w([O, 00), RP), as follows:

(Tu)(t) = yu(1),

where
Yu () = C(n()x. (1) + D(n(t))u(?). (6.2)

From Theorem 19 of Chapter 1 it follows that L2 ([0, 00), R¢) is a closed subspace
of the Hilbert space L?([0, oo), RY). Therefore,

L} ([0, 00), RY)

is a real Hilbert space with the usual inner product:

oo x
(u, v) = E/ u*(Hv()dr = / Eu*(t)v(t)dt.
0 0
The norm induced by this inner product will be denoted by || - ||.
Obviously

1

0 3 d % :
uz||=<EfO |z<r>|2dz> = Zn,ﬁ[/ |z<r>|2dr|n<0):j] (63)
j=1 0

forall z € L%‘w([o, 00), RY), where 7; = P{n(0) = i}. Again invoking Theorem 32
of Chapter 2, it immediately follows that there exists ¢ > 0 not depending on u such
that

d o
llx, |I* = anE U Ix.()|* dt | n(0) = j]
j=1 0
d oC
_<_CZNjE|:f lu([)lzd[|n(0)=jj|=c|lu"2.
0

This allows us to conclude that the operator 7 defined by (6.2) is linear and bounded.
The operator 7 introduced above will be termed the input—output operator associated
with the system (6.1), and the system (6.1) will be a state-space realization of the
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operator 7 . As in the deterministic case the state-space realization of the input—output
operator is not unique. The set of operators

T:12,(10,00),R") - L2 ({0, o0), R?)
which admits state-space realizations is a subspace of the Banach space
L(L},(10,00),R™), L2 ([0, 00),R")).
Indeed, one can easily check that if
T.: L}, ([0,00),R™) — L} ([0,00),R?), £ =1,2,
have the state-space realization
dxe(t) = [Aoe(n(1))x¢(t) + Boe(n(1))u(r)ldt (6.4)
+ Z[Au(n(t)m(t) + Bre(n(@))u(t)ldwi (),
k=1
yet) = Ce(n(®))xe(t) + De(n())u(r), £ = 1,2,

then the operators o} 77 + ;7> will have the state-space realization of form (6.1) with

 TAu® 0
Ak(l)—l: 0 Akz(i)j|’
o _[But)
Bl = [Bkz(i)}’

CO) =a1Ci1 (1) aCr(D)],
D(i) = a1 D1(i) + a2 D2 (i), and

-]
x = .
x2
Remark 1. For every T > 0, the system (6.1) defines a linear operator
T.: L, (10,7],R") - L2, (10, 7], R?)
by y = 7,u with
y(®) = Ct)x,(t) + Du(t), t € (0,7}, Yue L}, ([0, ],R™).

Based on Remark 17 of Chapter 2, one immediately deduces that T; is a bounded oper-
ator. One expects that the norm || 7; ]| depends on . Moreover, for any 0 < 7| < 13,
we have

| 72) < [ 7= -
If the system (Ag, Ay, ..., A,; Q) is stable, then

171 = sup | 7|l .

>0
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The last assertion in the above remark is also true if the linear operator 7 defined
by (6.2) on the space L%iw ([0, o0), R™) is a bounded operator with values in the space
L%!w([o, o0), RP).

Concerning the product and the inversion of the input—output operators we have
the following proposition.

Propeosition 1. (i) If
T}: Ly, (0.7).R") — L7, (0, ], R?),
T2 : L, (0.7, R™) — L7, (0. 7], R™)

have the state-space realizations as in (6.4) with Age(i) € R"™ By (i) € RM*™,
Bia(i) € R"™2™ 0 < k < r, C() € RP™M, Ca(i) € R™"2, Di(i) € RP*™,
D;(i) e R™™ | € D, then the product

)T L7, (10, 7). R™) — L], ([0. 7). R?)
has the state-space realization of form (6.1), where

[Au@ Bah)C:0)
Ak(’)’[ 0 Awd) ]

o _ | Bu@D2(@0)
B"(’)‘[ Bua(i)
Ci)=[C1()  Di(HCD],
D(@) = D)D), ieD.

] O<k=<r,

(1) Assume that in (6.1) we have p = m and det D(i) £ 0, i € D. Then for
every T > 0, the input—output operator T - Lfl‘w([O, 7], R™) —> Lf]_w([O, ], R") is
invertible, and its inverse T,”' has the state-space realization

dE(t) = [Ao()E() + Bo(n(2))y ()] dt

+ ) [A@)EE) + Bn)y()] dwi (1), (6.5)

k=1

u(t) = C((N)E) + D) y(),

where

Ac() = Ay() — Be()D ' (HC (D),
By(i) = B«(i)D™' (i),
C@i) = =D '()C®),
D(i)= DY), i e D.
Moreover, if the systems (Ag, Ay, ..., Ar; Q) and (Avo, Kl, e K,; Q) are stable,

then the input—output operator T associated with (6.1) is invertible and its inverse
T ! has the realization given by (6.5).
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Proof. Part (i) of the statement immediately follows by the uniqueness of the
solution x, (.) of the linear system (6.1).
(ii) Denote by 7, the input—output operator defined by (6.5) on [0, t]. Applying
the result of part (i) one can easily check that
T.T. = Iz Lqocrm = T.T.,
where [ 12,,([0.7].R™) is the identity operator on Lf,vw ([0, t], R™). The last assertion
follows in the same way as above. [

In the following we shall prove a result that will play an important role in the proof
of the Bounded Real Lemma in the next section. For each continuous function F :
[0, 7] —» an'n, F@t) =(F(t,1),..., F(t,d)), consider the following Lyapunov-

type equation on S¢:

d
EK(t’ 1)+ (Ao(i) + Bo() F (1, )" K (1, i) + (Ao(i) + Bo() F (1, 1)K (2, 1)

+ Z(Ak(i) + Be(D)F (1, )" K (1, i)(Ae(i) + Bk () F (2, )

k=1
d
+ Z%;K(h D+ €W+ DEF(, i) (CE) + DEF(t,0))
j=1
—Y2F*(t,))F(t,i) =0, i € D. (6.6)

For each y > 0, denote by
K,()= (K, 1),...,K, @ d)
the solution of equation (6.6) verifying the condition K, (7,i{) =0, i € D.

Lemma 2. Assume that for a fixed t > 0 we have ||T;|| < y. Then for all gy such
that 0 < ag < y2 — || T1||I%, we have

¥y — D*()DG) — Y By()K, (1, ) Bi(i) > ell,, 6.7)
k=1
forallt € [0,7],i € D.
Proof. Denoting
Ty (t,1) = y2In — D*()D() = Y By ()K, (¢, D) Be(i),
k=1

(6.7) can be written as ', (¢, i) > e31, ¥t € [0, 7], i € D. The proof, then, has two
stages.
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Stage 1 We first prove that for each y satisfying the condition y > |77 ||, we have
I(t,i)>0, Vie(0,1),i e D. 6.8)

If (6.8) does not hold, then it follows that there exist to € (0, 1),ip € D, u € R"
with |ug| = 1 such that ufT", (t9, io)up < 0. Since the function ¢t — ulT', (¢, io)ug is
continuous, it follows that there exist 8, > 0, v > 0 such that

ugly (t,ig)ug < —v < 0, V€ 1y, to + 8o, (6.9)

with 75 + 8o < t. Let § € (0, §) be arbitrary but fixed and define the stochastic
process

0 ift ¢ {to, 1o + 8o,

vs(t) = {uoxnm=io if 1 € [1, o + 8ol -

It is obvious that vs € L%},w (10, 1, R™). Let x;5(¢), t € [0, 1], be the solution of the
following problem with initial conditions:

dx(t) = {[Ao(n (@) + Bo(n() F (&, n(1)]x (1) + Bo(n(2))vs ()} dt
+ i {{AkM () + Be(n() F (£, ()] x(2)
- +Bi(n(®))vs(t)}dw(t), te€][0,1], x5(0)=0. (6.10)
Define us(t) = vs(t) + F(t, n(t)xs(t), t € [0, t]. Since
us(ry € L}, (10, 71, R™),
from (6.10 ) one deduces that
Xy (1) = x5(t), t [0, 7]
Let y5 = T u;s. Therefore
ys(t) = C(n(t)xs(t) + D(n()us(r), 1 € [0, 7].

By direct computation, taking into account the definition of uz(r), we obtain that

s (1P = y*lus()F = x5 (OIC (1) + D) F(t, n(t))*
x (C(n(1)) + D)) F(t, n(1)))
— Y F*(t, n(O)YF (1, n(0))]xs(t) + 2x5(t)
x [(C(n(1)) + D) F(t, n()))* D(n(1))
— Y2F*(t, n())s(t) + v} (1) (6.11)
x [D*(n()D (1)) — ¥ 1nlvs (D).
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Using the It6-type formula for the function
v(t, x,i) =x"K,(t,i)x

and for the process x5(t), t € [0, 7], based on (6.6) and (6.11), one obtains that

E UO (Iys* — ¥*lusl?) dt | n(0) = i]
=E [ f [2x3 ()P, (2, n(1))vs(t) — v ()T, (¢, n(t))vs(r)} dt | n(0) = i]
0

foralli € D, where P, (¢, i) is defined as

Py(t,i) = K, (t,i)Bo(i) + Z(Ak(i) + By())F(£,i))* K, (¢, i) B (i)
k=1
+(C() + DOF () D) — y*F*(t,0).

Taking into account the definition of vs, we further can write:

E[ s )17 = ¥Mus)?) di [ n(0) = i]

(
0
to+4
E [/ {2x3@)Py (2, n(@))uo — ugTy (1, (1o} Xny=ipd? | 1(0) = i]

4]

Ii

d to+4
Y E [ / {265 ()P, (1, jouo — u§Ty (8, o} Xnw=j Xnw=iod? | N(0) = i].
j=1 o
Since Xp)=i Xnwy=io = 0fori 3= io and xp)=i Xn@)=ip = Xn()=io fOr i = ip, we obtain

E UO (lys@)* = y? lusl?) dt | n(0) = i]

to+8
=E [f [2x; )P, (1, i0) uo — ugT, (¢, i0) uo} Xnwy=id? | 1(0) = i] ,
fo

(6.12)

i € D. Based on (6.9) one immediately obtains that

E UO (Iys@)* — y? lusl?) dt | n(0) = i]

to+8
> —2E [ / |x3 (P, (¢, i0) uo| Xnry=ipd? | n(0) = i]
I

0

to+8
+VE [ / Kottrmiodt | 1(0) = i] ,
1

0
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and therefore

E U (lys(O1F = ¥ lusl?) dt | n(0) = ,}
0
to+8
> —2E U x5 (1)Py (2. ioYuo| Xny=ipdt | 1(0) = i]
o

10+8
+v/ piig (e, i €D. (6.13)
I

0

Based on Remark 17 of Chapter 2 one deduces that there exists ¢; > 0 depending on
7 such that

Sup E [Ixs P | n(0) =i] < c|E U lus(DI* di | n(0) = i]
<t<t 0
< ¢)8. (6.14)

On the other hand, we have
T
E [/ x5 ()P, (1. i0) uo| Xnwy=idt | n(0) = i:|
0

T I
5/0 (E [ de | n0) = i])? | P, (¢, )| .

Hence, using (6.14) we obtain

to+8
2FE U x5 (P (¢, i0) o| Xnery=iodt | n(0) = i} < 028+/8, (6.15)
1

0

where ¢; > 0 is a constant depending on 7. Then we have

E./o (Iys)* = y? usl?) dt
d T
=ZmEU (|y5(1)12—)/2|ua|2)d1|n(0)=i] (6.16)
i=1 0

to+8
z/ h(t)dt — c28+/3,

fo
where we denoted
d
h(t) = v )" 7 piig 1),
i=1

Since pj, i, (t) is a continuous function, it follows that there exists § € (0, 8¢) such
that

1
Pig.ig (1) = Epio,i()(to) >0 Vi <t=<in+d
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Then, for § > 0 small enough, (6.16) becomes
lysl? = v? llusl = E/ (Iys®1F — ¥* lus\?) dt
0

1
> §8vniop,~oy,~0(to) - 628«/5 > 0.

This contradicts the assumption in the statement || 7; || < y. It follows, then, that (6.8)
is accomplished for ¢ € (0, 7). From the continuity with respect to ¢ it results that
(6.8) is accomplished for r € [0, T].

Stage 2 Let &y be such that

0<ef <y’ —ITI°.

1
Then, for y = (y* —¢f)?, it is obvious that | T;|| < 7. According to Stage 1 we
have

T;(,i)>0, tef0,7], i €D.

This leads to

Y2l — D*()DG) = Y By ()Ky(t, 1) Bi) > eolm. (6.17)

i=1
On the other hand, one can immediately check that

d
T IR0 0) = Ky (1] + [Ao) + BoF (1, DY [Ky 0.1 = K (1,

+[K(t,1) = Ky (6, D] [Ag(i) + Bo() F (e, D] + Y [Au(@) + Be()F (2, )"
k=1
d

x [Kp(t, 1) = Ky (6, D] [AL() + BeF (1. D1+ ) qij [Ky (2, 0) — K, (1,)]

j=1
+ &2 F*(1,i)F(t,i) =0,

from which it follows that K;(t,i) — K, (r,i) > 0. Therefore, from (6.17), we
deduce that

Y2 — D*()DG) = Y Bf()K, (1, i) Beli) = €0,
i=1
and hence the proof is complete. U

Corollary 3. If there exists T > O such that | T;|| < v, then D*(())D(i) < y*I,,
i eD. U

Remark 2. Ifthe system (Ao, A1, ..., A,; Q)isstableandif | 7] < y,then |7, || <y
forallt > 0.
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6.2 Stochastic version of the Bounded Real Lemma

In the present section we shall derive necessary and sufficient conditions under which
the norm of the input—output operator is less than a prescribed level of attenuation y.
These conditions extend at the stochastic systems of form (6.1) the well-known condi-
tions given by the Bounded Real Lemma in the deterministic framework. The results
proved in this section include as particular cases the results separately proved for
stochastic systems with multiplicative white noise and for systems with Markovian
jumps, respectively.
Consider the following system of generalized Riccati algebraic equations:

AGDX () + XD Ao() + Z Ap (DX @A)
k=1

d r
+3 X+ (X(i)Boa) + Y AL OXOB) + C*(i)D(i))

j=1 k=1

, -1

x (yzlm O LIOES Y B,:a)X(i)Bk(i))

k=1
% (Bg(i)X(i) + Z By(HX@)A:() + D*(i)C(i))
k=1

+C*()C@i)=0, i €D. (6.18)
One can notice that in the particular case when A, (i) =0, B(i) =0, 1 <k <7,
D = {1}, the SGRAE (6.18) reduces to the well-known algebraic Riccati equation
used in the deterministic framework in order to determine the H° norm of a linear

system. With the notations introduced in Section 3.2, the SGRAE (6.18) can be written
as the following nonlinear equation on S¢:

X - PHXORN(X)P(X) +C*C =0, (6.19)

L : 8 — &9 being the Lyapunov-type operator defined by the system
(AO’Alv"'vAr;Q)a

PX) = Pi(X),..., Pa(X)),
with
Pi(X) = By()X (i) + ZBZ(i)X(i)Ak(i) + C*(i)D(P),
k:l
R(X) = (Ri(X), ..., Ra(X)),
where

Ri(X) = —y*ln + D*(HDG) + ) Bi(OX)B(i), i €D,
k=1
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and X = (X(1),..., X(d)). We shall also use the following differential equations
on 84:

j—tX(t) + L*X (1) = P*X)R™UX)P(X) + C*C =0, (6.20)

%K(r) =LK@) = PEKO)R NEKO)PED)+C*C=0. (621

Remark 3. (i) Both the algebraic equation (6.19) and the differential equations
(6.20) and also (6.21) are defined on the subset U, C S,‘f with the elements
X =(X@1),...,X(d)) for which detR;(X) # 0,i € D. From Corollary 3 it fol-
lows that if T > O exists such that || 7; || < y, then the null element (0,0, ...,0) € Sf
isinlf,.

(ii) A C!-function X : [0, 7] — U, is a solution of equation (6.20) if and only if
K : [0, 7] — U, defined as K (1) = X(t — t) is a solution of (6.21).

Foreveryt > 0, xo € R?, ¥ > 0, i € D, consider the following cost functions:
H,y (t,x0.i,.) : L} , ([0, T; R™) — R,
H, (T, x0,.) ¢ L?],w ([0, t]; R'") — R,
defined by

H, (1, x0,i,u) = E [/ (Iyu(t, x0)* = y*|u(@)?) dt | n(0) = i]
4]

and .
H, (z, %0, ) = E /0 (vt x)P = 2 lu() ) dt.
where
Yt x0) = COENx(t, o) + D), 1 € [0, 7,

x, (2, xo) being the solution of the system (6.1) determined by the input u(¢) and the
initial condition x,, (0, xo) = xo. It is obvious that

d
H, (T, x0,u) = ZmHy(r, X0, 1, ).

i=1

From Corollary 2 of Chapter 5 and from Remark 3(ii) one directly obtains the
following Lemma.

Lemmad. If X: [0,7] — S,‘f, X)) = (X@ ,..., X, d) is a solution of
equation (6.20) and K (t) = X (1 — t), then

H, (T, x0, i, u) = x5 X (0, )x0 — E [x*(1)X (x, n(r)x(1) | n(0) = i]

—E [ /0 (u(t) — FX(t, n()x(n))"

x [yzlm — D*(e)DM®) — Y By ()X (¢, n(r))Bk(na))]

k=1



220 6 Stochastic Version of the Bounded Real Lemma and Applications

x (u(t) — FX(t, n(t)x (1)) dt | n(0) = i]
= xjK (z,i)x0 — E [x"(1)K (0, n(t)) x(t) | n(0) =]
—-E [ f (u() — FX@, ne)x ()"
0
x [yzlm — D*(n(1))D(n(1))
=Y B{(n)K (r —1,7(1) Bk<n(r)>}

k=1

x (u(t) = FX(t, n()x(0)) dt | n(0) = t},

VxeR" ieD, uel], ([0,7],R™), x(1) = x,(, x0),

, -1
FX(t,i) = — (R(i) + Y BIO)X(t, i)Bk(i))

k=1

X (Bg(i)X(t, i)+ Z BI(DHX(t, )ALG) + D"(i)C(i)) ,

k=1

- -1
F@t, i)y = — (R(i) + Z Bf()H)K(t -1, i)Bk(i))

k=1

x (Bg(i)K(r —-t,i)+ Z Bi(DK(r —t,)Ac(Q) + D*(i)C(i)) ,

k=1
where R(i) = —y?1,, + D*(i)D(i).
We prove now the following useful result.

Lemma 5. Assume that the system (Ag, Ay, ..., A,; Q) is stable and |T|| < y. In
these conditions there exists a constant p > O such that

H,y (1, x0,i,u) < pixo|> VT >0, xo € R™, u e L2 ([0, 7], R™).

Proof. Let x,(¢, x9) be the solution of the system (6.1) corresponding to the
arbitrary control u € L%,w([O, 7], R™). Then one can write

xu(ts X()) = -xo(t7 xO) + xu(t’ 0)9

where x((t, xp) is the solution of the system (6.1) for u = 0 satistying x¢(0, xp) = xo.
Therefore xo(t, x0) = ®(¢,0)xo. As in the preceding subsection the process
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x,(t) = x,(t,0) is the solution of the system (6.1) satisfying the initial condition
x,(0, 0) = 0. Denoting

yo(t, x0) = C(n(t))xo(t, xg) and
yu(t) = Cn()x,(t) + D()u(t),

one obtains that

Yult, x0) = yolt, x0) + yu(1). (6.22)
Since the system (Ag, A1, ..., Ar; Q) is stable there exists p; > 0 not depending on
Xg, such that
o0
E U lyo(t, xo)lzdt} < p?lxol?, Vxo € R™. (6.23)
0

On the other hand, from the inequalities
170 <17} <vy

it follows that there exists v > 0 not depending on u(¢) such that
T T
E f (I3 ®F = @) dr < —*E / lu(r)|2dt (6.24)
0 0

Yu € Lf,’w ([0, 1, R’"). Using the decomposition (6.22) of y,, one obtains that

H, (7, x0, u) =E/ lyo(t,xo)izdt+2Ef Yo (t, x0) yu(t)dt
0 0
+E [0 (151 = ¥ u(®))?) dz.

Taking into account (6.23) and (6.24), one immediately obtains

H, (T, X0, u) < p2)xol? + 2017 |xol ] — v |uel? (6.25)

1
Vu € L2 ([0, 7], R™), where |lu|| = (E [y {u(t)|*dt)?. Since the right-hand side of
(6.25) 1s a second degree polynomial with respect with [ u||, one immediately deduces
that

M, (2, x0,4) < p*lx0f?, (6.26)

where p = pjv~!y/y2 + 12, and therefore the proof is complete. O

In the following we shall denote by X, (t) = (X, (t, 1), ..., X, (¢, d)) the solution
of the equation (6.20) satisfying the condition X,(z,i) =0, i € D.LetZ,(y) C
[0, 7] be the maximal interval on which the solution X, (.) is defined. From Remark
3(1) it follows that if || 7;|| < y, then Z,(y) is nonempty. Then from Lemma 2 one
obtains the following Lemma.



222 6 Stochastic Version of the Bounded Real Lemma and Applications

Lemma 6. [fsup, ., | 7:l| < y then

Y2 In = D*ODG) = Y BIDX (1, ) Be(i) = &51m, 1 € Te(y), (6.27)
k=1

i €D, t >0, where sy > 0 does not depend upon .

Proof. Let ey > O such that &2 < y2 —sup,_o [ 7;1I>. Let T > Oand t; € T, (7),
t; < 7. Obviously [t), 7] C Z, (7). Denote

, -1
Fo(t,i) = (yzlm — D*()D(i) - Z Bl ()X (1, i)Bk(i)) (6.28)

k=1
X (Bg(i)X,(t, i)+ Z B ()X (1, )A (D) + D*(i)C(i)) ,
k=1

t €[, t], i € D. With Lemma 1 of Chapter 4 one immediately obtains that (6.20)
verified by X, (.) can be written in a Lyapunov form on &¢ as follows:

d
EXr(tv D +[Ac() + Bo()Fo (1, D]* X (t, i) + X (¢, 1) [Ao(i) + Bo(D) F (¢, 1)]

+ Z[Ak(i) + Be() Fo (2, DT X (2, i) [Ao(i) + Bo(i) F: (2, )]
k=1

d
+ gy Xo () — Y FI D Fe (2, 0)

j=1

+ICE) + DO F: (1, DI [C) + DO Fo (1, H] =0, (6.29)

tely, ], i eD.
Let F:[0, 7] —» ann be defined as

F(t) = (F@t, 1), ..., F@t,d), (6.30)
N FD), te(n, T,
P, 5 = {F,(tl,i), tel0,n],ieD,

and let X(#) = (X, 1),..., X(¢,d)), with X(r) = O the solution of the equa-
tion (6.6) corresponding to the feedback F(.) defined as in (6.30). Then, from (6.29)
and (6.30), it follows that X (¢t) = X, (¢}, t € [¢#), T]. Applying Lemma 2 one obtains
that (6.27) is true for all ¢ € [#1, 7] and the proof is complete. O

Inthe following we shall denote by K°(r) = (K°(1, 1), ..., K°(, d)) the solution
of the equation (6.21) satisfying the initial condition K° (0,i) = 0, i € D. We also
denote by [0, 77) the maximal interval on which this solution is defined. The next
lemma summarizes some properties of the solution K 9.
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Lemma 7. Assume that the system (Ag, Ay, ..., A;; Q) isstableand || T|| < y. Then
the solution K°(t) of equation (6.21) has the following properties.
6y

¥, — D*()DG) — > By()K (1, D) Be(i) > £} L,
k=1
vt € [0,t5), & independent of 1.
(ii)
x KOt iyxo = H, (T, X0, i, ;) > H, (T, X0, i, )

VT € (O,tf), xo € R, i € D, u € Lf,.w([O,r],R'”), where U.(1) =
Fo(t, n(t)x.(t) and

; —1
Fe(t,i) = <y21m - D*()DG) ~ Y Bi()HK (x —1, i)Bk(i))

k=1
X (Bg(i)KO(r —ti)+ Y B{OK(r — 1, D)AG) + D*(i)C(i))
k=1

and x.(t), t € [0, t], is the solution of the equation
dx(t) = [Ao(m(t)) + Bo(n(t)) F(t, n(t))] X (t)dt

+ Z (A () + Bi(n(D)) Fr (¢, n())] X (1) dwi (1)

k=1

with the initial condition x¢(0) = xo.
(i1i) There exists p > O not depending on t such that

0<K°r.i)<pl, VT €[0,t7), i €D.
@iv)
K%t i) < K%mp, i), YO <1 <10 < 1ty.
Proof. (i) Let T € (0, tf) be arbitrary but fixed and denote
X ()= (X:(t,1),...,X:(¢t,d))

defined by
X.(0) =K%z —1,i), t €[0,7], i €D.

Then X, (¢) is the solution of equation (6.20) with the final condition X, () = 0.
Based on Lemma 6 and Remark 1 one obtains

v, — D*())D@) — Z By ()X, (1, ))Be(i) = &2l t €0, 7). (6.31)
k=1

Since g does not depend on 7, based on (6.31) and on the definition of X the proof
of part (i) is complete.
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(ii) Applying Lemma 4 for K°(t) = X, (t — t) one obtains

Hy (‘E, Xo, 1, U)

= ngO(‘c, i)xg — E[/O (u(t) — Fo(t, n(£)x, (¢, xo))* (6.32)

x (yzlm = D)D) — Y By ()X« (t, n(t))Bk(n(t))>

k=1
X (u(t) = Fr(r, n(t)x, (1, x0)) dr | n(0) = l}

Vxo € R", i € D, u € L%iu, ([0, =1, R™). From (6.32 ) and (i) it immediately
follows that
H, (T, xo, i, u) < x; KOz, i)xo, (6.33)
and for
u(t) = Fe(t, n(0)x, (1, x0) = F (¢, n(1))x (1)
the inequality (6.33) becomes an equality.
(ii1) From (6.33) one immediately deduces that

0 <M, (t,x,i,0) < x3K°(t, )xo. (6.34)

On the other hand, for every i € D one can write
d
mixgKO(z, ixo < )M, (7, x0, j. it) = M, (T, X0, D).
j=I
From Lemma 5 we have
H, (v, x0, ) < p*lxol*. (6.35)
Then from (6.34) and (6.35) it follows that (iii) is satisfied for

2

£ = max —.
ieD m;

(iv) Let 0 < 1) < 13 < 1 and consider the stochastic process u-,, t € [0, 12], as

follows:
I;Tl (t)v t e [07 Tl] tl

urz(t) = 0, e (‘[], Tz].

It is obvious that u,, € L2, ([0, ©2], R™). Let x, (), t € [0, 72], be the solution of

n.w
the system (6.1) determined by the input variable u,, (t) and by the initial conditions

X, (0) = xo. One can easily check that x,, () = ¥, (¢) fort € [0, ;] and
Hy (v, x, i) < My (12, %0, 1, uy,) -
Invoking again the maximality properties in (ii), one obtains
x(’)‘KO (t1,i)xo =H, (rl,xo, i ﬁ,,) <H, (‘L’z, X0, I, L?,z)
< x(’)‘KO(rz, Dxg YxoeR", 1 €D,

and therefore the proof is complete. O
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Remark 4. From (i) and (iii) of Lemma 7 it follows that the solution K°(-) is defined
on [0, 00), that is, t; = o0.

Consider the following subsets of S¢ :
M= {X=(X0,....X(d) eS| L*X -~ P*X)R "(X)P(X)
+C*C <0, R(X) < 0} (6.36)
and

M={X=X®D,...,Xd) eS| LX - P*X)R(X)P(X)
+C*C <0, R(X) <0}. (6.37)
Remark 5. (i) T C TI.

(i) If the system (Aq, Ay, ..., A,; Q) is stable, then 1 C S,
(iii) Let us introduce the generalized dissipation matrix

NX) =N X, y), ... Na(X, y)

associated with the system (6.1) and with the scalar y, as follows:

NL(X,y) N (X,)’)}
(X, y) = RS 12 ’
NeXo) [( D) (Xy) N (X.p)

where

(X, y) = AS)X () + XD AG) + Y AFDXOAG)
k=1
d

+ X () + CTHCH),
j=1

b (X, ) = XW)Bol) + Y A{()HX (1) Be(i) + C*()) D) = PH(X),
k=1

Ny (X, ) = =y?L + D*()D@) + Y Bi (DX (1) Bi(i) = R(X),
k=1

It is easy to check that
M={XeS |INX <0, R(X) <0}

and
M={X eS8 |N(X)<0}.

From the above inequalities one easily deduces that both IT and 1 are convex sets. The
set IT includes the solutions of the equation (6.19) for which the condition R(X) < 0
is accomplished.
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Proposition 8. Assume that the system (Ay. ..., A,; Q) is stable and 11 # &. Then
SJorall R _ _
X = (X(l),...,X(d)) e I,

we have R
K%ty <X Vrel0,tp),

KO denoting the solution of equation (6.21) verifying the initial condition K°(0) = 0.

Proof. Under the above assumptions, by Remark 5(ii) it follows that there exists
X > 0 with R(X) < 0. Therefore y%1,, — D*(i{)D(i) > 0, i € D. Thus we may
cgnclude thgt\ the solution K°(¢) is defined on an interval [0, 7], T > 0. Let X =
(X(1), ..., X(d)) € TN arbitrary but fixed. Define

M= (M), ..., M)
by _ R R R _
M=-'Xx+P(X)R'(X)P(X) - C*C.
From the definition of M it follows that X verifies the algebraic equation
LX~P(X)R(X)P(X)+C*C+M=0. (6.38)
Lett € (0,t) and let X, (1) = (X(t, 1), ..., X;(t,d)) be defined as
X (t,i) =K%t —1,i), 1[0, 1], i €D.

Thus one deduces that X, (-) is the solution of equation (6.20) satisfying the terminal
condition X, (t) = 0. Define

Fo(t) = (F @, D), ... FR (1. d)),
Fo(t,i) = —Ri_l (X ()P (X:(1)), ieD, tel0,1]

1/3\y direct computations, similar to the proof of Lemma 1 of Chapter 4, one obtains that
X verifying (6.38) is also a solution of the equation parameterized with respect to ¢:

Li ()X = y>FX(OF(t) + (C + DF(1))* (C + DF: (1))
+M—(F,() - F)'R(X)(F() —F)=0, te[0,7], (639

where, L, (¢) denotes, as usual, the Lyapunov-type operator defined by the system
(Ag+ BoF;,..., A, + B, F;; Q) and

F=(F),...,F@),
Fi)=-R"(X)P; (X), i eD.

On the other side, based on (6.29), one obtains that equation (6.20) verified by X, (-)
can be rewritten as

d
X+ L (DX (D) =y F(OF (1)
+(C+ DF,(t))*(C+ DF.(t))=0. (6.40)
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LetY(¢) = X - X.(t), t €10, t]. From (6.39) and (6.40) one obtains that

%Y(t) + L5 Y1)+ M) =0, (6.41)

where . _ _
M(t) = — (F:(t) = F) R (X) (F.(t) — F) + M,

and it im/{nediately follows that M(r) > 0. Based on Remark 5(ii) it follows that
Y(r) = X > 0. Based on the constant variation formula, we have

Y(t) =T: (r,0) Y (1) + /T T (s, t) M(s)ds, t € [0, t], (6.42)

t
where T; (¢, 5) is the linear operator of evolution on S¢ defined by the differential
equation

dy
i L (Y ().

Since T (s, t) is a positive operator on S¢ for any s > t from (6.42) it follows that
Y(t) > Oforallt € [0, 7], which leads to X, (¢r) < X, t € [0, t], or equivalently,
K°r) <X, Vre[0,1]. (6.43)

Since 7 has been arbitrarily chosen in [0, t) it follows that (6.43) is verified for
any t € [0, 1f). O

Before proving the main result of this section we revisit the following known
result from the theory of differential equations.

Lemma9. Let F : X — X be a continuous function defined on the Banach space
X.If§:]0,00) > Xisa sqlution of the diﬁerential equation §(t) = F(E(1)) with
the property lim,_, o £E(t) = &€ € X, then F(§) = 0.

Proof. Let ¢: X — R be alinear and continuous functional. Then t — ¢(£(¢))
verifies 4
Ew(é(t)) =@ (F(§(1)))
and
lim @(&(1) = ¢(£).
—0oC
Since

PED) — p(E (1) = / ¢ (F(E(s))) ds.

0]

it follows that

,li'&f ¢ (FEs)) ds = ¢(§) — 9(E(t)) € R.
)
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Then the integral ftso ¢ (F(&(s))) ds is convergent. On the other hand,
lim ¢ (FE) = o(F(§)).

From the convergence of the above integral it follows that ¢(F (£)) = 0. Since ¢ is

an arbitrary linear and continuous functional we deduce that F (é ) = 0 and hence the
proof is complete. )

The main result of this section is the following theorem.

Theorem 10. (Bounded Real Lemma) The following assertions are equivalent:

(1) The system (Ao, Ay, ..., Ay, Q) is stable and 7 <y.

(i1) There exists X = (X(l), ey X(a’)) € Sf,’, X(i) > Osatisfying the following
IMIonSY,

N (5(\ , y) <0,

N (X, y) denoting the generalized dissipation matrix associated with the system (6.1)
and with the parameter y . ~ N -

(1) The SGRAE (6.18) has a stabilizing solution X = (X(l), e, X(d))
satisfying X (i) > Oand

y?l, — D*(()D(G) — Y By ()X (D) Bili) > 0, i €D. (6.44)
k=1

Proof. (1) = (ii). For every § > 0O consider the linear and bounded operator
T5: L, , ([0, 00),R") — L2 ([0, 00), R"*?)
defined by
7:5“ = Yu.5»
where

u(t)

Yuslt) = [C?,(’”}

x(1) + [D(%(’))]

and where x, () is the solution of the system (6.1) with the initial condition x,(0) = 0.
Then

E / lyus(t)?dt = E f N lya(D2dt + 8°E f h b, (D1 dr.
0 0 0

Applying Theorem 32(ii) of Chapter 2, one deduces that there exists ¢ > 0 not
depending on u such that

E f [yus(t)*dt < E f lya(D]dt + 8*cE f |lu())dt
[4] 0 4]

< (1T + 6%) E fo " Pds
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Yu € Lf,’w([O, o0), R™). Hence we obtained that ||T5[|> < || 7(|? + &%c. Therefore,
there exists 8o > 0 such that
sup || Tl < y. (6.45)
0<8<8y

For 0 < § < & let us denote by K g(t) the solution of the differential equation

d
EK(I) =LK(@) - PHEOYR UK®)PK @) (6.46)
+C*C + 8%y
satisfying the initial condition K(?(O) = 0. Since the system (Ag, A, ..., A,; Q) is

stable and ||7;|| < y it follows that one can apply Lemma 7 and Remark 4 to the
solution Kg(t), § € (0, 8y]. Therefore, there exists o > 0 such that

0<K)t,i)<pl,, t >0,i€eD, (6.47)
K (r1,i) < KX(12,1), YO<1 <13, (6.48)
y?ln — D*()DG) = Y Bi (YKt D Bei) = &5 1, (6.49)

k=1
where g5 > 0.
From (6.47) and (6.48) it also follows that
Ks = (K5(1),.... K5(d),
with ~
Ks(i) = lim K}, i), i €D, (6.50)

—0C

is well defined.

From Lemma 9 it follows that K; is a stationary solution of the differential
equation (6.46) and hence it verifies

L*Ks — P (K5) R™ (K5) P (K5) + C*C + 820, = 0. (6.51)

Using (6.49) one also obtains that K s defined by (6.50) verifies
R (Ks) < —€21., i € D. (6.52)
Since (Ao, A1, ..., A,; Q) is stable, one easily obtains the following representation:

K= / e [CTC + 870, = P (Ks) R (Ks) P (Ks) ] ds.
0

Taking into account the positivity of the operator e£™* and the inequality (6.52) it
follows that

o0
Ks > 82 / e 1,ds. (6.53)
0

From Remark 2 of Chapter 2 it follows that there exists v > 0 such that e<™5J; >
e~ Y5 J;. Therefore (6.53) reduces to 1?5 > %Jd > 0. Finally, notice that for all
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8 € (0, 8p), Eg verifies
L:*Ea - P (12:5) R_l (E(g) P (1?5) + C*C <0.

This shows, together with (6.52), that ﬁ; verifies N(Ea) < O and therefore (ii) is true.

(i) = (iii) From Remark 5(iii) it follows that X € I1. Therefore £*X < 0 and
X > 0.By using Theorem 15(iv) of Chapter 2 one concludes that (Ag, ..., A,; Q) is
stable. Hence (A, B; Q) is stabilizable. Now, by virtue of Theorem 10 of Chapter 4,
where

M(i) = —C*(HC (),
L@) = —C*(1)D(),
R() = y*L, — D*()D(i), i € D

we may conclude that the SGRAE (6.18) has a stabilizing solution X =
(X(]) X(d)) verifying R(X ) < 0. It remains only to show that X > 0. Indeed,
since the system (Ag, ..., A,; Q) is stable and R( ) < 0, from (6.19) for X and
Proposition 14 of Chapter 2, it follows directly that X > 0.

(iii) = (i) Assume that the SGRAE (6.18) has a stabilizing solution X > 0 veri-
fying (6.44). To prove that the system (A, ..., A,; Q) is stable we write the SGRAE
(6.18) verified by X in the equivalent form:

LX+CC=0, (6.54)

where

= — — .. _[cu
=(C(),....C@). Ch)= [62(1‘)]

with

Bh—

Ci() = (yzlm ~ D*()DG) - ) B:(tﬁ(i)Bk(i))
k=1
x (B;(:’)?i(i) + 3 BIHX () Al) + D*(i)C(i)) :
k:l
Cy(i) =C(), ieD.
Further, take
= (H(),...,H(d)), k=0,1,...,r,
where
HG) = | B0 (<R, ()} 0], i€D.

With the above notations, one obtains that

(Ao + HoC, ..., A, + H,C; Q) = (Ao + BoF, ..., A, + B,F; Q)
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is stable. If x(¢), ¢ > 0, is an arbitrary solution of the equation

dx(t) = Ao(n())x(1)dr + ZAk(n(t))x(t)dwk(t)»
k=1

then we can write
dx(t) = [(Ao(n(1)) + Hon(1)C(n(1))) x(t) + fo(1)]dt (6.55)

+ > [(Acn @) + Hp))T W) x(t) + fit)] dw (1),

k=1

Based on similar reasoning as in the proof of Lemma 15 in Chapter 4 one deduces that
the null solution of the equation (6.55) is ESMS. It remains to prove that |7 || < y.
Applying the It6-type formula for the function x*X (i)x and to the system (6.1) one
obtains that

E fo {3 ®F = y?u)dr} (6.56)

2

= —E/O 1(—72,,(,) (3('))% (u(t) - F(n(t))xu(t)) dt

for any u € LZ‘,’w([O, oo), R™), x,(t), t > 0, denoting the solution of (6.1) with
the input u(¢), ¢+ > 0, and with zero initial conditions. The equality (6.56) can be
rewritten as follows:

ITull® = y?ul? = = lgul?, (6.57)

where

1
r 2
gu(t) = (yzlm - D)D)~ Y Bz(iﬁawk(i)) (6.58)
k=1
x (u(r) = F(n(t)x.(1)).
From (6.57) it follows that
170 <vy. (6.59)

It remains to prove that the equality cannot take place in (6.59). Indeed, if | 7| = y
there exist a sequence of stochastic processes u;,[ > 0, {u;} C L,zww ([0, c0), R™)
with

lusll =1, vl =0, (6.60)
and
lim | Tu| =y. (6.61)
I—>o00

Letx;(t), t > 0, be the solution of the system (6.1) determined by the input #;(¢) and
having the initial conditions x;(0) = 0, [ > 0. We also denote by g,(¢) the process
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defined by (6.58) in which u has been replaced by u;. Using (6.60), the equality (6.57)
becomes
17wl —y* ==&l

Then, taking into account (6.61), one obtains

Jim flg:ll = 0. (6.62)

Further, from (6.58) and (6.44) it results that

lim g1l = O, (6.63)
o0

where we denoted g; () = u;(t) — F (n())x;(¢t), t = 0. The differential equation
verified by x; can be rewritten as

dxi (1) = {[As((0)) + By F (1)) 1 () + Bo(n(0))§(1) }dt

+ Y {[Acn(1) + Bep@) Fape) xi(6) + Be(n(t) @) fdwi (o).

k=1

Since the system (Ao + Bof, ..., A, + B, F Q) is stable, combining the result in
Theorem 32 in Chapter 2 and (6.63), we obtain that lim,_, », |x;]| = 0, and then, again
using (6.63), it immediately follows that lim,_, » [J#;]| = 0, which contradicts (6.60),
and thus the proof is complete. a

Remark 6. (i) From the above theorem it follows that

IT| = inf{y > 0, for which it exists X = (X(1),..., X(d)) € 8¢, .
X > O such that N;(X) < 0}

= inf{y > 0, SGRAE (6.18) has the stabilizing solution.
X =(XQ),..., X(d)) verifying X(i) > 0, R;(X) <0, i € D}.

(ii) Let us notice that in contrast with the H? norms associated with a stochastic
linear system that can be directly computed by the results in Theorems 18 and 21 of
Chapter 5, the norm of the input—output operator associated with a stochastic linear
system cannot be directly computed. This norm can be estimated using a y -procedure
as in the deterministic case.

(iii) From the numerical point of view, the equivalence (i)<>(ii) is more effective
for computing || 7| since for every y it reduces to testing the feasibility of an LMI
system. The equivalence (i) < (iii) of Theorem 10 is useful for developing mixed
H?/H®™ procedures for robust stabilization.

(iv) In the particular case when there exists r; > 1, such that Ay(i) =0, r| <
k<r,and B(i) =0,0<k <r -1, C*i)D(@@) =0, i € D, SGRAE (6.18)
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reduces to the following Lyapunov-type equation:
ri—1

AGDX (@) + X () Ao() + Z Ap(DX (D) Ax (i)
k=1

d
+) i X(j)+CT(HCH) =0, i €D. (6.64)

j=I
By convention, if r; = 1, the first sum in (6.64) is missing. If the system
(Ao, ..., A, _1; Q) is stable, then the equation (6.64) has a unique solution X =

(i m,..., X (d)) = 0. Moreover, if Theorem 10(i) is fulfilled, then the solution of
the equation (6.64) verifies the condition

D*()D() + Y BY()X()Be(i) < y*ln. i €D,

k=ry

Remark 7. Lg.w([O, 00), R™) can also be organized as a real Hilbert space, taking the

inner product
d 0
,V) = E *(Hv()dr | n(0) =1i|.
wn=3 [/0 W (Ot | 7(0) z]

The corresponding induced norm will be denoted by ||| - [||.
Proposition 11. Suppose that (A, . .., A,; Q) is stable. Then |T|| =||| T |-

Proof. ltis easy to see that all preceding results and remarks hold if the norm || - ||
is replaced by ||| - |{|. In this case the performance index H, (t, xo, u) is replaced by
Z?: | H, (7, xo, i, u). Therefore, taking into account Remark 6(i), we have

W7 = inf {y > 0, SGRAE (6.18) has a stabilizing solution
X >0with R; (X) <0, i € D}.

Hence ||| 7 {||= || 7|, and thus the proof is complete. d

From Theorem 10 and Remark 6(i) one immediately obtains the following
corollary.

Corollary 12. Consider the system

ri—1

dx(t) = Ag(m(D)x(t)dt + Z Ar(()x()dwi (1)

k=1

+ ) Ben@)u)dwy (o), (6.65)

k=r)
y(@) = C(n(e)x(t) + D{n(e))u(t)
with C*(i)D(i) = 0, i € D. Assume that the system (AO, AL Q) is stable
and denote by
T:L}, ([0,00);R") — L} ({0, 00); R?)
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the input—output operator associated with the system (6.65). Then
170 = n'ézg( v Amax ()5

where Amax (i) is the largest eigenvalue of the matrix
D*()DG) + ) Bi()X()Bi(i). i € D,
k=ry
X = (g(l), R X(d)) being the unique solution of (6.64). 0

Proposition 13. Let D L%.w ([0, 00); R™) — Lf,.w ([0, 00); R?) be the linear
bounded operator defined by

(Du) (1) = D(n(t)u(t), u € L? , ([0, 00); R™) .

n.w

Then
ID|| = |D| = max {| D(i)], i € D}.

Proof. Since D*(i)D(i) < |D|*I,,, we have
IDu|? = E / u* () D* (1) D(n (1)) u()dr
0
< IDle/ lu(t)|*dt = |D|*|Jul?
0

forevery u € L, ([0, 00); R™). Hence |D|| < |D.
Further, leti € D, u € R™ arbitrary but fixed. Take

n _JUXnny=i ift €0, 1],
u(t)_{ 0 itr > 1.

Obviously i € L} ([0, o0); R”) and therefore i € L}

now

([0, 00); R™). The inequality

[pa* < joy? fa]*
becomes
/01 E (ID((t))ul® E Xyy=i) dt < IIDII2/0l |u|* E Xpn=idt.
Therefore | ]
/0 IDG)ul? E Ypy=idt < D] |uf? fo E Xyw=idt.
But

1 1 d
/0 Exyn=idt =/ ZﬂjE[Xnm=f | n(0) = j]dt
0 A
j=1

1

d 1 .
= E / ﬂjpj[(t)dtZ/ ﬂ[p,','(f)dt>0.
o Jo 0
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Thus we may conclude that
[D@)ul < |[D]f |ul,
which leads to | D| < || D}l and thus the proof is complete. O

Remark 8. (i) Evidently, if u € L2 » ([0, 00); R™), then Du € L2 ([0, 00); R?). The
proof of Proposition 13 shows that “D“ = | D} = ||D]], where D is the restriction of
the operator D to the subspace L? ([0, 00); R™) C L2 , ([0, 00); R™).

(i) The conclusion of Proposition 13 can be obtained directly from Corollary 12.
Indeed, if we take C(i) = 0, i € D, it follows that X (i) = 0, i € D, and therefore
IDJ? = max;ep | D)1,

The following result allows us to increase the number of relations of equivalence
in Theorem 10, and it is useful in some applications.

Proposition 14. Let N'(X) = (N (X), ..., Ny(X)) be the generalized dissipation
matrix associated with the matrices Ay(i), By (i), C(i), D(i), and with the scalar
y > 0. Then the following assertions are equivalent:

(i) There exists X = (X(1),..., X)) € S,‘,’, X > 0, such that Ni(X) < 0
Vi € D.

(i1) There exists Y = (Y (1), ..., Y({d)) € Sf, Y > O, such that

Woo(Y, ) WoulY,i) - Wo,(Y.i) Worn(Y,i) Wo,na(Y, i)
Wo (¥, ) Wiy, iy - Wi (Y, i) Wi,n(Y, i) Wi i)
: : L : : <0,
W, Y, o) Wi (Yi) .- WrAr(Yvi) Wern (Y, i) Wi (Y, 0)
We (L0 W (Y0 - W (Y,0) Wr+1 rt (Y D) Wi 020, 0)
WV VD) WY, (Y, 0) oo W (Y0 Wi o (YD) Weao (Y, 0) |
(6.66)
i € D, where

1 1 *
WoolY, i) = (Ao(i) + qu11n> Y()+Y@) (Ao(i) + thiln) + Bo(i) B3 (i),

Wou(Y, i) = YDA () + By B (i), k=1,....r,
Wors1(Y, i) = Y()C* (i) + Bo(i) D™ (i),
Woraa(Y, i) = (V@Y (), ..., JZaa Y () /G Y (), ... VqidY (D),
WY, i)y =B)B{(i), 1 <l k=<r | #k,
WY, i) = B))B (i) =Y (i), 1 <l <,
Wir1(Y, i) = Bi(i)D*(i), 1 <1 <,
W, sirn1(Y, i) = DOD*G) = y21,,
Wirsa(Y,i) =0, 1 <l <r+1,
Wiiari2(Y i) =diag (=Y (1), ..., =Y (i —1) =Y@+1),..., =Y(d)).
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Proof. Itis easy to see that the existence of X = (X(1), ..., X(d)) > Osuch that
N;:(X) < Ois equivalent to the existence of X = (X (1), ..., X(d)) > 0 such that

V(X iy VX, i) Vis(X,i)
VX, i) V(X i) Via(X, i) | < 0, (6.67)
VEX, D) V(XD Vss(X. i)

where Vi1 (X, i) is an (n + m) x (n + m) matrix given by

VX 1) [A;E({)X(z'_) + XD Ao + X5 4y X () X<i2)Bo<i)] 7
B ()X (i) ~¥ iy

Vip(X,i)isan (n + m) x (r - n) matrix

ATHX ) ... A:‘(i)X(i):l

Via(X, i) = |:B,*(i)X(i) ... B D)X ()

Vi3(X, i) isan (n + m) x p matrix defined by

vk = 5o |
Via(X, i) isan (n - r) x (n - r) matrix
Vi (X, i) = diag (=X (i), ..., =X (D)),
Vo3(X,i)isan (n - r} X p matrix given by
Vn(X, i) =0,

and
Vi(X, i) = —1,.
Let us introduce
(i) =diag (X~'G) I, —V3R'(X.i) 1,).

It is obvious that W (i) = W*(i) > 0. Through pre- and postmultiplication of (6.67)
by W (i), one obtains that there exists X = (X (1), ..., X(d)) > 0, such that

VX, Boli) Vis(X. 1) X~')C* (@)

Bj (i) v, Vu(X.i) D*(0)

9 ~ ~ ~ 6.68
Vah  Vhh Pwih wen | <0 (68
CHX'G) D) Vi(X.i) =1,

where

d
VX, i) = 40X ') + X DA + Y g X OXHX @),

j=1
Vis(X, i) = [XT'DATG) ... XT'(DHAD)],
Vos(X, i) = [BfG) ... Br(D)].
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1333 (X, i) is an rn x rn matrix defined by
Vis(X, i) = diag (=X~ (i), ..., —X~'()),
and §34(X, i)isanrn X p matrix, 1734(X, i) = 0. Denoting Z(i) = X' (i) one imme-
diately obtains that (6.68) is equivalent to the existence of Z = (Z(1), ..., Z(d)) > 0

satisfying

Vi(Z,i) Vi(Z,i) Z0)C*G) Vie(Z,1) Boti)
VR(Z.0) V(Z,i) Vu(Z,i) Vaul(Z,i) Vas(Z.0)

CHOZE) Vn(Z,i) —Ip Vau(Z,1) D) <0, (669
VIAZ, 1) V3(Z, 1) Vi(Z,i) Vu(Z,i) Vas(Z.1)
B3 (i) Vis(Z,i) D*(i) Vis(Z,i) —y?l,

where

~ 1 *
Vn(z,i) = (Ao(i) + %qi,-ln) Z(i) + Z() (Ao(i) + Eqiizn) :
ViaZ, i) = [ZDATG) ... Z(H)AID],

VieZ,1) = [VTAZG) .. VTG ZG) @i ZG) ... JaaZ()]

is an n x (d — 1)n matrix,

Von(Z, ) = diag (=Z(i) ... — Z(i))

has the dimensions rn x rn, ]723(2, i) = 01is an nr X p matrix, \724(2, i) =01is an
nr x {(d — 1)n matrix,
B (i)

Vas(Z,i) = :
B,(i)
Is an nr X m matrix, 934(2, i) = 0 has the dimensions p x (d — )n,

1744(Z,i)=diag(—Z(1) o= Z-D -ZG+ 1D ... = Zd))

isa (d — 1)n x (d — 1)n matrix, and 1745(2, i) = 0 has the dimensions (r — 1) n x m.

Taking the Schur complement of the block —y21,, of (6.69) it follows that this
condition is accomplished if and only if there exists Z = (Z(1), ..., Z(d)) > Osuch
that

Wi(Z, 1) WilZ,D) ZHC* () +y 2 Be()D* (D) Wia(Z, i)

WHZ, i) Wa(Z, i) Wan(Z, 1) Wa(Z, 1) -0
CHZGH) +yTIDOBIG) Wi(Z,i))  —L,+y?DODE)  Wa(Z,i) |~

Wi(Z, 1) Wi (Z, 1) Wi(Z,1) Wu(Z, i)

(6.70)
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where

-~ 1 1 *
Wn(Z,i) = (Ao(i) + 541’[111) ZH)+ Z3G) (Ao(i) + §Qii1n> + ¥ 2 Bo(i) B (i),

WiaZ, i) = [ZATG) + y 2 Bi() B () ... ZDAXG) + y B, () BF (D],
Wil(Z, i) = Via(Z, i), Wn(Z,i) = Vn(Z, i),
Was(Z, i) = Vos(Z, i), Wa(Z, i) = Vas(Z, i),
Wis(Z, 1) = Vaa(Z, 1), Wa(Z,1) = Vis(Z, D).

Consider the 2n (r +d) + p) x 2n (r + d) + p) matrix

= dlag (yln, y[rm y[p- yln(d——l)) .
By pre- and postmultiplication of (6.70) with I and denoting Y (i) = y%Z(i), i € D,

one obtains (6.66) and therefore the proof is complete. O

At the end of this section we consider the particular cases when the system (6.1)
is subjected either only to Markov perturbations or to white noise multiplicative
perturbations.

Assume that in (6.1) we have A (i) =0, By(i) =0, k=1,...,r, i € D.Then
(6.1) becomes

x(t) = Aog(n(t)x (1) + Bo(n(t)u(t), (6.71)
y() = C(n())x(t) + D(n())u(t).

The generalized dissipation matrix is in this case

N(X) = N(X), ..., Na(X))

with
Ag(i)X(i)_+X(i)Ao(i) . . . .
NiX) = | + 20, gux () + Cr ey T OROTCOPO N 6,
B} ()X (i) + D*()C (i) —y2L + D*()D(i)

for any X = (X(1),...,X(d)) € 8¢, i € D. The SGRAE (6.17) becomes in this
case

d
ASDX (@) + X DA + Y gi X () + [X (D) Bo(i) + C* () D()]
j=1
x [y, — D*ODW] ' [By()X (i) + D*()CH] + C*HC ) =0,
(6.73)

i € D. Combining Theorem 10 and Proposition 14 one directly obtains the Bounded
Real Lemma in the case of systems subjected to Markov perturbations.
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Corollary 15. For the system (6.71) and for a y > 0 the following assertions are
equivalent:

(1) The pair (Ag; Q) is stable and the input—output operator T defined by the
system (6.71) satisfies
ITI <.

(ii) There exists X = (X (1), ..., X(d)) > O such that N; (X, y) < 0Vi € D.
() v, — D*({)D(i) > 0 and the SGRAE (6.73) has a stabilizing solution
X=(X(),...,X@) >0

(iv) There exists Y = (Y(1),...,Y(d)) > O satisfying the following system
of LMIs:

WooY, i) Wo,ni(Y, i) Woraa(Y,i)
Weran (VD) Weprenn (Y, D) W2V i) | <0, i €D,
W())k,r.{_z(yv l) W:+1‘r+2(Y7 l) Wr+2,r+2(Y7 l)

where W;;(Y, i) are the same as in (6.66). O

In the following we assume that D = {1}, ¢q;; = 0, and r > 1. In this case the
system (6.1) becomes

dx(t) = [Apx(t) + Bou(t)]dt + Z [Arx(t) + Bu(t) dw (2)
k=1
y(t) = Cx() + Du(z). (6.74)

Then the generalized dissipation matrix is

N(X)
C[ASX +XAo+ Y, AIXAc+C*C XBo+Y ;| AlXBy+C*D
TUBIX+ Y., Bi XA+ D*C —y*l,+D*D+ 3% ,_, BfXBx

for any X € S,. The SGRAE (6.18) becomes in this case

ASX + XAo+ ) ALX A+ [XBO + > AIXB + C*Djl
k=1 k=1
r -1 r
x |:y21,,, —D*D-ZB;;XBk] [B§X+ZB;XAk+D*CJ
k=1 k=1
+C*C=0. (6.75)

Again applying Theorem 10 and Proposition 14, one directly obtains the Bounded
Real Lemma for systems subjected only to multiplicative white noise perturbations.

Corollary 16. For the system (6.74) and for a y > 0, the following are equivalent:
(i) The system (Aq, . . ., A,) is stable and the input—output operator T associated
with the system (6.74) satisfies the condition |T|| < y.
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(ii) There exists a matrix X>0 satisfying N(f(\) < Q.

(ii1) The SGRAE (6.75) has a positive semidefinite stabilizing solution X satisfying
y*, — D*D =Y _, B XB; > 0.

(iv) There exists Y > 0, Y € 8%, verifying the following LMI:

A)Y + YA, + BoB; YA} + BoBf --- YA, + BoB' YC;+ ByD*
AY + BB} ~-Y + BB} .- B/ B! B, D*
: : E : <0.
A.Y + B, B} B, B} .- —Y+ BB B,D*
CY + D*By DBy e DB; ~-y*l, + DD*

Remark 9. Itis easy to see that inthe case D = {1}, A, =0, By =0, k=1,...,r,
the results stated in Coroilaries 15 and 16 reduce to the well-known version of the
Bounded Real Lemma of the deterministic case.

6.3 Robust stability with respect to linear structured uncertainty

At the beginning of this section we shall prove the stochastic version of the so-called
Small Gain Theorem (SGT). As is known from the deterministic framework, this is
a powerful tool in analyzing the robust stabilization with respect to different classes
of linear perturbations.

6.3.1 Small gain theorem

We first prove the following result.

Theorem 17. Assume the following.

(a) The system (A, ..., A,; Q) is stable.

(b) The system (6.1) has the same number of inputs and outputs.

(c) The input—output operator T defined by the system (6.1) satisfies the condition
170 < L.

Then we have the following.

(1) The matrices I, = D(i), i € D are invertible.

(ii) The system (Ao, ..., Ay; Q) is stable, where

Ay = A() £ Be() U, FDG) ' CUY, k=0,1,...,7

Proof. (i) Using Corollary 3 and Remark 2 for the case y = 1 one obtains
that I,, — D*({)D(i) > 0, i € D. It follows that all eigenvalues of the matrices
D(i),i € D, are inside the unit circle, and therefore det (1,, = D(i)) # 0, which
shows that 1, £ D(i), i € D, are invertible.

(ii)AFrom the implica’t\ion (i) = (ii) of Theorem 10 for y = | we deduce that there
exists X = (X(1),..., X(d)) > O satisfying

Ni(X,1)<0,i€D. (6.76)
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Using the Schur complement of the block (2,2) one obtains that (6.76) is equivalent
to the condition

LCX-P(X)R(X)P(X)+C"C+M=0, R(X)<0 (677

foracertain M > 0, M = (1\7(1), s A?(d)) € S¢. By direct computations similar
to those in Lemma 1 of Chapter 4 one obtains that (6.77) can be rewritten as

L:X — G*G + (C + DG)* (C + DG)
—(G-F)'R(X)(G-F)+M=0, (6.78)
where
§= (g(l), ., G@), Gli) =% (1, FDGE)) ™' CG),
F=(F(),....,F@), Fi) = -R"(X) P, (X), i € D.
Then one obtains
(C(@) + DEHGE)* (CGE) + D(HG () — G*()HG(i)
— C*(i) [Im + (I 7 D*())) ™ D*(i)] [ + D() (I £ D) ™'] CG)
~ G*(i)G(i)
=C*(i)(In F D*(i))_l (I, ¥ D)™ C(i) — G*()G (i)
= G*()G(i) — G*()G(i) = 0.
Thus it follows that (6.78) reduces to
X —(G-F)'R(X)(G-F)+M=0.

Since M — (G- ﬂ*R(i) (G - F) > 0and X > 0, using Theorem 20 of Chapter
2 one obtains that the system (Ag + BoG, ..., A, + B, G; Q) is stable. But A (i) +
B (i)G (i) = Ay (i) and thus the proof is complete. O

Theorem 18. (The first small gain theorem) Assume that the assumptions in
Theorem 17 hold. Then the operators

I+7T:L;,{[0,00),R"} > L}, {[0, 00), R"}
are invertible and the operators
(IFT)": L, {0,00),R"} > L., {[0, 00), R™}
have the following state-space realization:

dx(t) = [ Ao(n(t)x(t) + Bo(n(®)y(1)] dt (6.79)

+ 3 [A)x(®) + Be(n()y ()] dwi (),

k=1
u(t) = C(n)x() + D(1))y(@),
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A(i) being defined as in Theorem 17, By(i) = Bi(i) (L, F D))", Crli)
=+, ¥FDE)' Ci). DO) =, F D)™, 0<k<r, ieD.

The proof immediately follows using Theorem 17 and part (ii) of Proposition 1.
O

Remark 10. 1If | T|| < 1 then the invertibility of the operators I F 7 can also be
obtained by a well-known result from the theory of linear and bounded operators on
a Banach space. Theorem 18 additionally shows that the operators (I + 7T )~} have
realizations in the state space.

Consider the following systems:
dxi (1) = [Aor (n(@)x1 (1) + Bor (n(#))u, ()] dt

+ Z (A (m(E)x1 () + Ba(n)u(D)dw (1), - (6.80)

k=1
yi(t) = Ci(n())x (1),
dxz(t) = [Apx(n()x2(t) + Boa(n(t))ua(r)] dt

+Z (A2 () x2(t) + Bia(n(0)uz(1)] dwy (1) (6.81)

. k=1
y2(2) = Ca(n())x2(t) + Da(n(#))uz(t),

with the states x; € R", [ = 1, 2; the output variables y; € R”, y, € R™; and the
inputs #; € R™, u, € R?. When coupling (6.80) and (6.81) by taking u, = y; and
u; = y, one obtains the following resulting system:

d&(t) = Ao (n(t)E(t)dt + Z A (n())E()dwy (1), (6.82)
k=1
where
A + Ba@D(DHC1 () B (DHC2(d) _
Akcl(l)—[Bkz(l-)Cl(i) A (i) ], k=0,1,...,r.

Then another consequence of Theorem 17 is as follows.

Theorem 19. (The second small gain theorem) Assume that the following assumptions
hold:

(i) The systems (Aqgj, ..., A @), | = 1,2 are stable.
@) |71l < v, 1) < vy~ for a certain y > 0, where

T : L}, {[0,0), R"} — L2, {[0, 00), R},
T : L}, {10,00), R?} — L2 {[0, 00), R"}

n.w

are the input—output operators defined by the systems (6.80) and (6.81), respectively.
In these conditions the zero solution of the system (6.82) is ESMS.
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Proof. From Proposition 1 one deduces that a state-space realization of the
operator 7,7, is

dx(t) = [Ao(n())x(t) + Bo(n(1)u(r)ldt

+ D [AO)x (1) + Bi(n(0)u(t)] dw (6), (6.83)

k=1
y() = C(n)x(1),

where Ay (-), Bi(-) are defined as in Proposition | and
Ci)=1C1() 0], x= [’” } :
X2

It is easy to see that
Ara(i) = A(i) + By()C (i) = Ax(Q), k=0,...,r, i €D,

A being the ones in Theorem 17 with D(i) = 0. The conclusion in the statement
follows, applying Theorem 17 to the system (6.83). We show now that the assumptions
in this theorem are fulfilled. Thus, from assumption (a) in the statement and from the
triangular structure of the matrices A (i), using Theorem 32 of Chapter 2 one deduces
that the zero solution of the system (6.83) for u(¢) = 0 is ESMS. From assumption
(b) we have | Ty 2|l < [|711l |721l < 1, and hence the proof is complete. ([l

Remark 11. Without important changes, the result in Theorem 19 also remains valid
in the case when the output equation of (6.80) has the form

yi(t) = Ci(n(#))x1(t) + Dy(n(t))u(1).

From Theorem 19(ii), it immediately results that 7, — D} (i) D, (i) is invertible for all
i € D. The coefficients of the closed-loop system will be changed accordingly. We
shall not detail them since they will be not used in the following developments.

An interesting case is the one when in the system (6.80) we have n; > 0, and in
(6.81) ny = 0. In this situation the resulting system obtained by coupling (6.80) with
(6.81) reduces to

dxi(t) = [Ao1 (1)) + Bo1 (n(1)) D2(n(1))Cr(n(2))] x1 (1)dt (6.84)

+ Z (At (n (@) + Bii (n(2)) D2(n())Cr(n(1))] x1 (£)dwy (7).
k=1

The input—output operator 7, associated with the system (6.81) becomes

(Touz) (1) = Da(p())u(t), t =0 Vu € L; ([0, 00), R?).
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From Proposition 13 it follows that |7;|| = |D| = max {|D(i)|, i € D}. Consider
the system

dx(t) = [Ao(n(1))x(t) + Bo(n(n))u(t)ldt

+ 3 [A@)x (1) + Ben()u(n)] dwy (¢), (6.85)

k=1
y()y = Cn()x(@).
Then we have the following corollary.

Corollary 20. Assume as follows.
(i) The system (Ao, ..., A,; Q) is stable.
(i) |T)| <y and |D| < y~', where

T:L},([0.00).R") > L} (0. 00),R?)

denotes the input-output operator associated with the system (6.85) and D =

(D(1), ..., D(d)) e MH4

mp*
Then the zero solution of the system

dx(t) = [Ao(n(1)) + Bo(n(1))D(n(1))C(n(2))] x(r)dt

+ Z [Ak(n () + Br(n(t) D((1)C ()] x (H)dwi (1)

k=1
is ESMS.

6.3.2 Robust stability with respect to linear parametric uncertainty

It is a known fact that the exponential stability of a solution of a linear deterministic
system is not essentially influenced when the coefficients of the equation describing
the system are subjected to “small perturbations.” Taking into account the equiva-
lence between the ESMS of a zero solution of a stochastic differential equation and
the exponential stability of the zero solution of a Lyapunov-type linear differential
equation, one expects the ESMS not to be affected by the small perturbations of the
coefficients in the given equation. When analyzing the robustness of the solution of a
system of stochastic differential equations we refer to the preservation of the stability
property when the system is subjected to coefficient variations that are not necessar-
ily small. Such variations or uncertainties are due to the inaccurate knowledge of the
system coefficients or to some simplifications of the mathematical model. One must
take into account that a controller designed for the simplified model will be used for
the real system subjected to perturbations.

Inthe present section the robust stability with respect to a class of linear uncertainty
will be investigated. Consider the linear system described by

dx(t) = [Ao(n(1)) + Bo(n(1) A(n())C(n(t))] x(1)dr (6.86)

+ Y LA (1) + Bu(n(t) A C ()] x (6)dw (1),

k=1
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where A (i) e R, 0 <k <r, B(i) e R, 0 <k <r, Ci) e RP*" i eD,
are assumed known and A (i) € R"*? are unknown matrices. Thus the system (6.86)
is the perturbed system of the nominal one:

dx(t) = Ao(n())x(r)dr + Z A (n(@) x(Ndwi (1), (6.87)
k=1

and the matrices By (i), C(i) determine the structure of the uncertainty. If the zero
solution of the nominal system (6.87) is ESMS we shall analyze if the zero solu-
tion of the perturbed system (6.86) remains ESMS for A(i) # 0. This is a primary
formulation of the robust stability with respect to structured linear uncertainty for a
stochastic system. For a more precise formulation we shall introduce a norm in the
set of uncertainties. If A = (A(1),..., Ad)) € anp, one defines

|Al = max {|A(D)I. i € D} = max y'Amax (D),

where Ay (1) is the largest eigenvalue of the matrix A*(i) A(f).
As a measure of the stability robustness we introduce the stability radius with
respect to linear structured uncertainty.

Definition 1. The stability radius of the pair (Aq, ..., Ar; Q) with respect to the
structure of linear uncertainty described by (By, ..., B,; C) is the number

pL(A,Q|B,C)=inf{p>0]3 A=(A(l).....A(d)) e MY,
with |A| < p for which the zero solution of the corresponding
system of type (6.86) is not ESMS}.

The result stated in Corollary 20 allows us to obtain a lower bound of the stability
radius defined above. To this end, let us introduce the fictitious system:

dx(t) = [Ao(n(1))x(t) + Bo(n()u(r)]di

+Z [Ax (n(1) x (1) + Be(n())u()] dwi (1), (6.88)

k=1

(@) = C (n(t)x(®))
with the known matrices of the perturbed system (6.86).

Corollary 21. Assume that the zero solution of the nominal system (6.87) is ESMS.
Let
T:L},(0,00),R™) — L ({0, 00),R?)

be the input—output operator associated with the fictious system (6.88). Then

pL (A, Q|B,C)=|TII"". (6.89)
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Proof. Let p < ||7}|~! be an arbitrarily fixed number. We show that for any
A€ anp with |A| < p the zero solution of the perturbed system (6.86) is ESMS.
Let Awith|A| < p < [|[T]|~!. Denotingy = p~!,wehave ||7|| < yand|A| < y~1.
Applying the result of Corollary 20 one deduces that the zero solution of the system
(6.86) is ESMS for the considered perturbation A. Therefore p; (A, Q | B, C) > p.
Since p is arbitrary it follows that (6.89) holds and thus the proof is complete. O

At the end of this subsection we shall show that certain structures of the linear
uncertainty frequently used in the literature can be embedded in the general form of
the system (6.86).

Consider first the perturbed system

dx(t) = [Ac(n(1)) + Bo(n(1) Ao (n (1) C (n(0))] x(t)dt (6.90)

+ 3" [Ae (1) + Be(n(e) Aeln(@)C (1)) x (i (1),

k=1

where A (i) € R"*", gk(i) e R O <k <r, i €D,areknownand Ar(i) €
R™>P O <k <r, i €D, are assumed unknown. In order to show that the system
(6.90) is in fact a particular case of the system (6.86), we define B, (i) € R"™, m =
> ko Mk as follows:

Bo(i) = [Bo(i) 0 --- 0],
Bi(@i)=[0 0 ---B(Gi) ---0], (6.91)
Aoli)
l<k=<r ieD, Ali)= :
A(i)
With these notations the system (6.90) can be rewritten in the equivalent form (6.86).
Further we have

k=0

|G = Amax [A"()AG)] = Amax [Z A:(i)Ak(i)} :

Another interesting structure of perturbations is the situation when
dx(t) = [Ao(n(1)) + Bo(n(1)) Ao(n(t))Con(t))] x(t)dt (6.92)

+ Y [Ac(®) + Betn() Ac(n (@) Cac(n() ] x (1) dwie (),

k=1

where A, (i) € R**", §k(i) e R/ Mk 6,((1') € Ri¥" 0 <k <r,ieD,are
assumed known and Ay(i) € R™*Pk, 0 < k < r, i € D, are unknown matri-
ces describing the modeling uncertainty. Define B (i) € R, m = Zi:o my as
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in (6.91):
, Coli)
Ci) e R, p=Y"p. CiH=| : |,
k=0 C.(i)
and A(i) = diag (Ao, ..., A(D)).

With these notations the system (6.92) can be written in (6.86) form. Obviously
we have

IADI = dmax [AT D AG)] = MaxX Amax [ALD A(D]

= max {Ak(i)l2 .
O<k<r

6.3.3 Robust stability with respect to a class of nonlinear uncertainty

In this section we shall consider the case when a stochastic linear system is subjected
to a class of nonlinear uncertainty. We shall also define the stability radius and provide
an estimation of its lower bound.

Consider the system

dx(t) = [Ao(n(1)x (1) + Bo(n(1) A(r, (1), n(1))]dt (6.93)

+ Y TAc ) x() + Ben@) A, y(0), n(t))] dwi(6),

k=1

y(1) = Cn(n)x (1),

where Ay (i) € R™", B;(i) e R"™, 0 <k <r, C(i) € RP*" are assumed known
and A : Ry x R? x D — R™ are functions with the following properties:

(i) Foranyi € D, (t,y) — A(t, y, i) is a continuous function on R, x R” and
A(t,0,i)y=0forallt > 0.

(i1) For every T > 0 there exists v(t) > 0 such that

[A(, y1, i)~ A, y2, D) < v(T) [y1 — y2

forallt € [0,7], y;,y2 € RP,i €D.

(iii) There exists § > O such that |A(r, v, )} < 8|y| V(t, y,i) e Ry x R? x D.

In this section we shall denote by A the setof all functions A : Ry xR?xD — R”
satisfying the above conditions. Let us notice that both constants v(r) and § in (ii)
and in (iii) depend on the function A (-, -) € A.

For every A in A denote

[AG, y, DI

IIAII:sup{ O t>0, y#£0, ieD}. (6.94)

Let X, be the set of all random n-dimensional H,,-measurable vectors & which
additionally satisfy E|£]?> < oo. It is obvious that R” C &, ¥Yto = 0. For every
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tp > 0,& € &), and A € A, denote by x(, 10, §) the solution of the perturbed
system (6.93) satisfying the initial condition xa (%, ty, §) = &. Applying Theorem
36 of Chapter 1, one deduces that x (-, ty, &) € Lf,‘w ([to, T],R™) forevery T > 1.
Moreover, if E|£]?” < 00, b > 1, then

sup {E [Ixa(t, 10, ) | n(to) =]} < K (1 + E[IE1% | n(ro) = i]),

to<t<T
where K dependson 7 andon T — 1.

Definition 2. The zero solution of the perturbed system (6.93) is called exponentially
stable in mean square (ESMS) if there exist o > 0 and B > 1 such that

E[lxa (t. t0. x0)|* | n(to) = i] < Be 0 |xo|?
foranyt >ty >0, xo e R", i € D.

The constant «, S of the above definition may depend on the perturbation A € A,
but they do not depend on ¢, £y, xo.

In order to characterize the robustness of the nominal system (6.87) with respect
to the nonlinear perturbations A € A, we introduce the following definition.

Definition 3. The robustness radius with respect to nonlinear stochastic uncertainty
which structure is determined by B = (By, ..., B,) and C, is given by

one (A, Q| B, C)=inf{p>0]3 AcAwith|A| <p
for which the zero solution of the
system (6.93) is not ESMS} .

Remark 12. Since the class of uncertainty A also includes the functions A(¢, y, i) =
A(i)y modeling the linear uncertainty considered in the previous section, it is easy
to check that

pve (A, QB C)<p (A, QB C).
In order to prove the main result of this section, two additional results are required.

Lemma 22. Let ¢ : R” x Q — R, be measurable with respect to B(R") ® R, and
g : 2 — R" be measurable with respect to H,, t > 0, being fixed, where R, and 'H,
are as defined in Chapter 1. Let

h(x,i) =E[p(x,) | nt)=i] Vx eR", i € D, and ¢(v) = ¢ (g(w), w).
If 9(-) and ¢ (x, -) are integrable, then
h(g(w), n(t,w)) = E[¢ | H] (@) a.s. (6.95)

Proof. We first prove (6.95) for the case when ¢(x, w) = ¢1(X)g2(w), with
¢1(X) > 0 measurable with respect to B (R") and bounded and ¢,;(-) > 0, R,-
measurable and bounded. From Theorem 34 of Chapter 1 one obtains

Elg: | Hil = Elg2 | n(1)] as.
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Therefore
E[¢|H] (@) =Elpi ()¢ | Hil(w)

= ¢ (g{w)) E [¢2 | H,] (@)

= @1 (g(w)) E g2 | n(t)] (w).
On the other hand

h(x,n(t, ) = E[p1(x)g2 | n(t)] (w)
=) E g2 | n()] (w),

and then

h(g(w), n(t, w)) = ¢ (g(w)) E[¢2 | n(1)](w) a.s.,

which shows that (6.95) is true for the special considered case.
Further, let

M={AeB(R")®R, | xa verifies (6.95)} ,
C={UxS|UeB(R"), SeN}.

Since xyxs(x, w) = xy(x)xs(w) it follows that C C M. One can easily verify
that C is a mw-system and M satisfies the conditions (i), (ii), (iii) of Theorem 1 of
Chapter 1. Thus it results that M contains o [C], o [C] denoting the smallest o -algebra
containing C, namely o [C] = B(R") ® R,. It results that (6.95) is verified by any
A € B(R") ® R,. Further, let 0 < ¢ < @ry1 < @, @r(x, o) being a measurable
function with respect to B(R") ® R;, ¢r(x, w) = @(x, w) Yx, w. Since (6.95) is
true for ¢y, from Legesgue’s Theorem (see Theorem 11 of Chapter 1) one obtains that
this relation is also true for a function ¢ verifying the assumptions in the statement,
and therefore the proof is complete. O

Now consider the nonlinear system of stochastic nonlinear differential equations:

dx(t) = Fo(t, x(t), n(t))dr + Z Fi (¢, x(t), n(t))dw (1), (6.96)
k=1

where the functions Fy : Ry x R" x D — R" have the following properties:

1) (¢, x) — Fi(t,x,i) : Ry x R" — R” are continuous functions and
F(t,0,i)=0,1r>0,ieD, 0<k<r.

(ii) For any t > 0 there exists v(t) > 0 such that

|Fidt, x1,0) — Fe(t, x2, D) < v(@)|xi —x2|, i €D, 0<k <,

Vxi, x2 € R", t €0, 7].
(iii) There exists § > 0 such that

|[Fr(t, x, i) <8lx|, Vi >0, xeR", ieD, 0<k<r.

It is obvious that for any A € A the perturbed system (6.93) satisfies the conditions
(1), (1), and (iii). Applying Theorem 36 of Chapter 1 it follows that for any #; > 0
and & € A&;, the system (6.96) has a unique solution x(¢, 1o, §), t > 0, such that

x (to, to, &) = &o.
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Definition 4. The zero solution of the system (6.96) is ESMS if there exist a > 0,
B > 0 such that

E[Ix(t, 10, ) | nto) = i] < pe *“ g2,
Vi>1t>0,¢£e€R", ieD.

The next result extends to the nonlinear case some results proved in Chapter 2 for
the linear case.

Theorem 23. The following assertions are equivalent:
(1) The zero solution of the system (6.96) is ESMS.
(i1) There exists ¢ > 0 such that

/ Elx (5.0, O)F | n(t) = i]ds < clél? 6.97)

vVt > 0, & € R”, the constant ¢ being independent of t and &.
(iii) There exist &« > QO and B > 1 such that

E{lx(t, 10, &)1 | nto) = i] < Be*" " E[IE | nao) = i],
Vizt>0,8ed), ieD.

Proof. (i)=>(ii) and (iii) = (i) are obvious. We prove that (ii) = (iii). Define

ox
v(t,x,i):/ h(s,t,x,i)ds,
1
where
h(s,t,x,i) = E [Ix(s,t,x,)* | n(r) = i]

with s >t > 0, x € R", i € D. By virtue of Theorem 38 of Chapter 1 we can
apply Lemma 22 for the function ¢ (x, @) = |x(s, 1, x, w)|> V(x, w) € R" x Q, where
s > ¢ are fixed and for the function g(w) = x(z, ty, §, w) witht > 15, & € A}, fixed.
Therefore one obtains that

s, t,x(t, to, & @), n(t, ) = E [Ix (s, 1, x(1, 10, &, ), ®)|* | H,]
= E[Ix(s, 0. &, o)* | H,]. (6.98)

In the following we shall omit to write the argument w explicitly. Define

vi(t) = E v (t, x(t, 10, &), n(0)) | n(to) = i].
From (6.97) one deduces

vi(t) < cE [Ix(t, 10, )7 | n(ro) = i]. (6.99)

Further, from (6.98) one obtains
vi(t) =E [/ hs,t,x(t, 10, 8), n(1))ds | nto) = i]
t

—E [/ E [Ix(s, 10, P | H,]ds | n(to) = ,},
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from which, using the properties of conditional mean values, it immediately follows
that

u) = [ E[IxGs.10.OF | n() =] ds, (6.100)

Vit >ty >0,§ €&, i €D.From (6.100) it follows that the function ¢ > v;(f)
is absolutely continuous on [tq, 00), and therefore it is derivable a.e. on [z, 00), and
then from (6.100) one obtains that

d
U0 =—E[lxtn, | nlto) =i].

Based on (6.99) it results that

d 1
— v (1) < ——v;(r) ae. t>1. (6.101)
dt c

Applying Theorem 35 of Chapter 1 to the function |x|? and to the system (6.96), one
obtains

E[lx(t, 10, )" | n(t0) = i] — E[I€1* | n(t0) = i]

= E[/ {ZX*(s,to,E)Fo(s,x(s, 10, £), 1(s))
Iy

+ D |Fls, x(s, 10, £), ()P

k=1

d

+ Y Griors XG0, 6 }ds | n(t0) = i]. (6.102)
j=1

Taking into account ( jjj) one obtains that

2 Folt, x, 1) + ) _ | Felt, x, DI
k=1

< 8olx|?, (6.103)

where 8o = §(2 + r8). Hence

27 Folt, x, i) + Y 1Fe(t, x, D = —dolx .
k:l

Denoting
gi(t) = E[Ix(t. 10, €)1” | nlto) = i].
from (6.102), g; (-) is an absolute continuous function on [zy, 00) and

d d
&) = E | 2010, 6 Fo (1, x4, 10, €, (1) + ) oo 15 10, )

j=1

+ Y 1R, x (10, 8) 1) | 1(t0) = z} .

k=1
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Using (6.103) one obtains that there exists §; > 0 such that

d
Egi(t) > —48,g:(t) ae., t>1,

which is equivalent to

% [g:(e"] =0,

which leads to
E[lx(t, 10, )P | n(to) = i] = e E | [ n(to) = i],
t>19>0,% ek, i €D. From the last inequality one immediately obtains
his,t,x,i) > e 1670 x?

foralls > ¢ > 0,x € R", i € D. Therefore, v(t, x,i) > §7'|x|?, t = 0,x € R,
ieD,
vit) = 87 E [Ix(t, 10, ©)* | nto) = i].
From the above inequality and from (6.99) and (6.101) one obtains directly
E[lx(t, 10, )1 | n(to) = i]ds < Be " E [|£]7 | n(10) = i]

with 8 = é;c and a = 1/c, and thus the proof is complete. |

Before proving the main result of this section, let us notice that using the known
constant matrices Ay (i), By(i), and C(i) of the realization of the perturbed system
(6.93), one can associate the following auxiliary system:

dx(t) = [Ao(n(1)x(t) + Bo(n(n)u()ld:

+ Z [(Ax(n(1)x (@) + Bi(n()u(t)] dwi (1), (6.104)

k=1
y(t) = C(n()x(1).

Then we have the following theorem.
Theorem 24. Assume that the system (Ay, ..., A,; Q) is stable. Then
pve (A Q|B,CY= T,

where
7 : L ,([0,00),R™) > L2 ([0, 00), R?)

is the input—output operator associated with the auxiliary system (6.104) defined by
the matrices Ay (i), By(i), and C(i), 0 <k <r, i € D.
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Proof. We show that for every p < || 7|~ and for all A € A with |A|| < p, the

zero solution of the perturbed system (6.93) is ESMS. Denoting y = p~! it follows
that [7]) < y and JJA| <y~ ', or
A, y,i
sup{l(—|y|—’)—’;tzo, y;éo,ieDl <y (6.105)
}7

Using the implication (i) = (iii) of Theorem 10 one deduces that the equation

r d
ASDX @) + X (DA + ) ALDX DA + )i X ()
k=1 j=I

r r -1
+ l:X(i)Bo(i) +y A:(i)XU)Bk(i)] [ﬂm -3 B:(i)X(i)Bk(i)}

k=1 k=1
X I:Bg(i)X(i) + Z B,f(i)X(i)Ak(i)j| + C*)C() =0 (6.106)
k=1
has a stabilizing solution X = (i(l), R )~((d)) > 0 such that
v, — Z BI(HX()B(i) >0 (6.107)
k=1

for any i € D. Applying the Itd-type formula for the function x*X (i)x and for the
process x(t) = xp (¢, ty, xg), one obtains, using (6.106), that

E U {Ily@OF = y? 1A, y(0). n@) P} dt | n(ty) = i]
fy
= ;X (D)xo — E [x*(0)X (n(1) x(@) | (o) =]

- E[f (A, y(1). n(1) = F(n()x(n)” (6.108)

o

k=1

x <y2lm -3 BE(n(z))i(na))Bk(n(r)))

x (A, (1), (1) — Fp()x(0)) dr | n(to) = i],

where y(t) = Cn(n)x(t), t > 1y, and f(i) denotes the stabilizing feedback

associated with the solution X (i), ¢ € D. Taking into account (6.107), it follows that:
E U {yOF =y 1A y@), n)P}dt | (o) = i] < x; X (i)xo,
0
forany t > 1 > 0, xg € R”, i € D, which leads to
E [/w {IlyOF =y 1A, y (@), ne)P}dt | () = i] (6.109)
0

<8lxl*, V1p=0, xeR", ieD.
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But
[A(e, y(£), n(O)] < [Allly(O)],

¥t >0, i € D,y € R?. On the other hand, (6.105) gives 1 — y2[|A[?> > 0, and then
we deduce from (6.109) that

TP ) PO R 6.110
E[/ ly(t)ldtln(to)—z}f(l_yz)“A“zlel, (6.110)

Vip = 0, xo € R", i € D. Finally, applying Theorem 32 of Chapter 2 and using
(6.110) one obtains

o0
E U lxa (1, t0, x0)|* d1 | n(to) = ,} < clxol?,
0

Vo = 0, xo € R", i € D,c > 0, being independent of #g, x¢, . Applying The-
orem 23 we obtain that the zero solution of the perturbed system (6.93) is ESMS.
Therefore pyz {A; Q | B,C} = p. Since p < [T is arbitrary, it follows that
one {A; Q| B,C} > | T||~! and thus the proof is complete. O

At the end of this section we show that in a particular case of the system (6.93)
we can obtain the exact value of the stability radius py; {A; @ B, C } To be more
precise, consider the perturbed system

ry—1
dx(t) = Aox(D)dt + Y Aux(dwy (1) + Z BLA(, y()dwe (1),  (6.111)
k=1 k=r)
y() = Cx(0).

The system (6.111) is a perturbation of the nominal system

ry—1
dx(t) = Aox(t)dt + Y Apx(t)dwy(t) (6.112)
k=1

and it represents a particular case of the system (6.93), namely D = {1}, Ay = 0,
ri<k<r, Bp=0,1<k<r —1,q = 0. In this particular case, instead of
one {A; Q| B, C}, we shall denote the stability radius by py; {A | B, C}. Then the
stability radius is given by the following result.

Theorem 25. Assume that the zero solution of the nominal system (6.112) is ESMS.
Then

onL{A | B, C) =112, (6.113)

where X denotes the maximal eigenvalue of the matrix Y ker, BiXBr, X > 0,
denoting the unique solution of the linear Lyapunov-type equation

rp—1
AJX + XAg+ ) AfXA, +C*C =0. (6.114)
k=1
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Proof. From Corollary 12 with D = {1} one obtains that i = 71, where
T : L ([0, 00), R™) — L2 ([0, 00), R?)

is the input—output operator associated with the auxiliary system:

ri—1 r

dx(t) = Acx(Ddt + Y Ax(Ddwi(t) + Y Bu(dwi(t).  (6.115)
k=1 k=ry

y(t) = Cx(z).
From Theorem 24 it follows that
ovL A |B,C} > 2. (6.116)
It order to prove (6.113) it is sufficient to show that for any & > O there exists A, € A

with |A, | < i1 + ¢ for which the zero solution of (6.111) is not ESMS. Let

As € (i_%, AT+ g). Since A% < X there exists u, € R” with |u,| = 1 and

i | In =22 ) BiXBy |u, <0 (6.117)
k=ry
Let
Ag(y) = Aouelyl. (6.118)

Then it is obvious that A, € A and ||A,|| = A.. We show that the zero solution of
the system

ri—1 r
dx(t) = Agx(t)dr + Z Arx(Ddwi (1) + Z B A (t, y@t))dwe (1), (6.119)
k=1 k=rj

y(@) = Cx(®)
is not ESMS. If the zero solution of (6.119) is ESMS, then there exists § > 0 such
that
[o.¢]
Ef |Cx (1, tg, xo)|> dt < 8|xo]%, Vtg >0, xo € R™ (6.120)
fo

On the other hand, applying the It6-type formula to the function x*Xx and to the
system (6.119) and using (6.114), one obtains that

E f YO = D" A BIXBiA(y(0) | dr - (6.121)
0

k=r

= xa‘)?xo - E [x*(r)ix(r)]
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VY7 > 0, x(¢) = x(t, xo) being the solution of (6.119) verifying x(0, xg) = x¢ and
y(t) = Cx(t, xo). If the zero solution of (6.119) is ESMS, then (6.121) gives

E / YO = AL ) Bi X B (v(0) | di = x3 Xz (6.122)
0

k=ry

Vxo € R". Taking into account (6.118) one obtains that (6.122) becomes

r x
i | In —22)_ B{XBy uE/O Iy()Pdt = xtXxo, ¥xo € R",

k=r1

which contradicts (6.117), taking xo # O such that x(’;ixo > 0 (since X >0, (6.117)
implies that there exists xy € R” such that xj Xxo > 0). Thus the proof is complete.
0

Notes and references

The theoretical developments presented in this chapter are new. They provide a unified
approach of the stochastic version of the Bounded Real Lemma and stability radius for
systems subjected both to multiplicative white noise and to Markovian jumping. The
stochastic version of the Bounded Real Lemma for systems with multiplicative white
noise has been studied in [64], [99], [93], [9], and for stochastic systems subjected
to Markov perturbations we cite [92]. For the case of stochastic systems subjected to
both multiplicative white noise and Markovian jumping, a stochastic version of the
Bounded Real Lemma was proved in [33]. The stochastic counterpart of the Small
Gain Theorem for systems with multiplicative white noise is given in [40] and [41]
for systems subjected to Markov perturbations. As concerns the stability radius for
systems with multiplicative white noise, we cite [44], [65], [93], [90], [91], and for
systems with Markovian jumping, see [92]. Some estimations for the stability radius
in the case of stochastic systems with state multiplicative white noise and Markov
Jjump perturbations are given in [33]. A different approach to estimating the stability
radius for systems subjected both to multiplicative white noise and to Markovian
jumping can be found in [46].



7

Robust Stabilization of Linear Stochastic Systems

In the present chapter we consider the robust stabilization problem of systems sub-
jected to both multiplicative white noise and Markovian jumps with respect to some
classes of parametric uncertainty. As is already known, a wide variety of aspects of
the robust stabilization problem can be embedded in a general disturbance attenu-
ation problem which extends the well-known H control problem in the case of
deterministic invariant linear systems. Special attention will be paid in this chapter
to the attenuation problem of exogenous perturbations with a specified level of
attenuation. At the same time, some particular robust stabilization problems, the
solutions of which are derived using the results in the preceding chapter, will be
presented. The solution of the general attenuation problem will be given in terms of
some linear matrix inequalities, which provide necessary and sufficient solvability
conditions.

7.1 Formulation of the disturbance attenuation problem

As shown in the preceding chapter, a measure of the robustness radius of stabilization
with respect to a wide class of static or dynamic uncertainty can be characterized using
the norm of the input—output operator associated with the nominal system. Based on
this fact it follows that in order to achieve a certain level of robustness of stability,
one can design a stabilizing controller such that the norm of the input—output operator
associated with the resulting system is less than the inverse of the imposed robustness
radius.

The design problem of a stabilizing controller such that the norm of the input-
output operator is less than a given level of attenuation is usually called in the literature
the disturbance attenuation problem. In this section the formulation of this prob-
lem will be given for the case of the stochastic linear systems considered in the
present book.



258 7 Robust Stabilization of Linear Stochastic Systems
Consider the following stochastic linear system:
dx(t) = [Ao(n(@)x(t) + Go(n()v(t) + Bo(n(t)u(r)]dt

+ D [A@)x (1) + Gen())u(1) + Be(n(e))u(n)] dwi (1),

k=1
z(£) = C.(n(1Nx () + D, (n(t)v(t) + D (n(2))u(r), (1.1
y(#) = Co(n(tNx(t) + Do(n(2))v(t),

with two inputs, namely v(z) € R, u(t) € R™, and two outputs, z(t) € R”!,
y(t) € RP2. The input variable v(s) denotes exogenous signals, u(f) includes
the control variables, z(¢) is the regulated output, and y(z) denotes the measured
output. As usual, the state vector x(z) € R”. The coefficients A,(i), G (i), Bi(i),
0<k<r C\), D), D.,(i), Co(i), Do(i), i € D, are known matrices with
real coefficients with appropriate dimensions. The stochastic processes {1(?)};o0,
{w(®)}is0, wt) = (wi(t), ..., w,(r))" are defined as in the preceding chapters. The
class of admissible controllers is described by the following equations:

dxc(t) = [Ac(n()xc(t) + B-(n(0)y(t)l dt (1.2)
u(t) = Ccm(t))xc(t) + Dc(n(0)) y(1),

where x, € R". In fact, the controller (7.2) is characterized by the set of param-
eters {n., A.(I), B.(i), C.(i), D.(i),i € D}, where n, > 0 is an integer number
denoting the order of the controller and A (i) € R"*" B (i) € R"*P2, C.(i) €
R72x7¢ D.(i) € R™2>*P2 | € D. When coupling the controller (7.2) at the system
(7.1) one obtains the following resulting system:

dxei(t) = [Aoct (1)) Xet (1) + Gour (n(D) V(1)) dt (7.3)
+ 3 [Aka M (1) + Grar (1) 0()] duwe (1),

k=1
() = Ca)xa(t) + Du(n()v(2),

where
Aoy (i) = [ Ao(i) + Bo(i)D.(i)Co(i) Bo(i)C.(i)
0 =1 B.(i)Co(i) A ]
Ay = Ar(i) + B (i) D (i)Co(i) Bk(i)Cc(i)], l<k<r
I 0 0
Gy = | GO+ Bk((g)Dc(i)Do(”], l<k<n

Dy (i) = Dy (i) + Do (i) D.(1) D, (i), i € D.
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Definition 1. A controller in the class (7.2) is a stabilizing controller of the system
(7.1) if the zero solution of the system

d&(t) = Ao ((EWDAL + Y Ak (n(O)E(O)dwi(2)

k=1
is ESMS.

For every stabilizing controller, define by

Ty L2

n.aw

([0, 00); R™) — L3 ([0, o0); R”")

nae

the input—output operator defined by the closed-loop system (7.3), namely:
(Tav) (1) = Ca))xa(t, v) + Da(n(t)v@), 1 =0,

Yv € L%,w ([0, c0); R™!), where x (¢, v) denotes the solution of the system (7.3)
with the initial condition x.(0, v) = 0. As shown in Section 4.1 the input-output
operator 7, is a linear and bounded operator. We are now in the position to formulate
the disturbance attenuation problem (DAP) for the system (7.1) with an imposed level
of attenuation y > 0.

Problem formulation. Given y > 0, find necessary and sufficient conditions for
the existence of a stabilizing controller for (7.1) suchthat || 7| < y.Ifsuchconditions
are fulfilled, give a procedure to determine a controller with the required properties.

Remark 1. Based on the definition of || T, it follows that the y -attenuation problem
formulated above is equivalent to

Izl
sup el
veL  (10.001:R™1) flull
v#£Q

7.2 Robust stabilization of linear stochastic systems.
The case of full state access

7.2.1 The solution of the disturbance attenuation problem
in the case of complete state measurement

Consider the linear stochastic system described by

dx(t) = [Ao(n(1)x (1) + Go(n(1)v(t) + Bo(n(t))u(r)] dt (7.5)

+ Z [Ax(n())x (@) + G (n()v(1) + Br(n(t)u(r)] dwy (1),

k=1
z(t) = C.(n(@)x(t) + Doy (n(t)v(t) + Do, (n(1))ult),

where x(t) € R", v(t) € R™, u(t) € R™, and z(t) € R”! have the same meaning
asinthe system (7.1). Assume that the whole state vector is available for measurement.
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In fact, the system (7.5) is a particular case of (7.1) with py = n, Co(i) = I, Do(i) =
0, i € D. The class of admissible controllers is given by (7.2). We shall first solve
the disturbance attenuation problem in the case when zero-order controllers are used,
namely n. = 0. In this case (7.2) reduces to

u(t) = Dc(n(t))x (1)

or, with standard notation, u(r) = F(n(t))x(t), where F(i) € R"2*" | € D. The
closed-loop system obtained with this controller is

dx(t) = {[Ao(n(2)) + Bo(n(®)) F(n(t))] x(1)
+ Go(n(@)v(1)} dt

+Z {[A @) + Be(() F(n(1))]x (1) (7.6)

k=1
+ G (n())v(0) Jdwi (1),
2(t) = [C.(n(1)) + Do () F(n(1)) |x (1) + Dy (n(2))v(2).

If F = (F(),..., F(d))is astabilizing state feedback for the system (7.5) we denote
by
Tr: L}, (10,00); R™) — L} ([0, 00); R”")

now

the input—output operator associated with (7.6). Therefore the control u(r) =
F(n(#))x(t) solves the disturbance attenuation problem with the level of attenuation
y if | 7¢|| < y. The following result provides necessary and sufficient conditions for
the existence of such state feedback control.

Theorem 1. For a given y > 0 the following are equivalent:
(i) There exists a control u(t) = F(n(t))x(t) that stabilizes the system (7.5) and
I7Fll < y.
(i) There exist Y = (Y(1),...,Y(d)) € S?and T = (T'(1),...,T(d)) €
anzm’ Y > 0 satisfying the following system of LMIs:
[ WoolY, i) Woa(Y,i) - Wo, (Y. i) Worn(Y, i) Wo,na(Y,i)
Wo ¥, ) WYy - Wi (Y ) WiV ) Wit i)

: . . . : <0,
We, (X, Wi (X0 - W, (YD) Wern (YD) Wera(Y, D)
W&y.{.](y’i) WT',»_*_](Yvi) W:r+1(Ys l) Wr+1.r+1(Y7i) Wr+1,r+2(Y’i)
[ WiriaV ) Wi ap(Fad) - Wi (e WD) Wy Y, D)
1.7)

i € D, where
Wo.oY, i) = Ag(D)Y (i) + Y (D) AG() + gi Y (i) + Bo(DHI' (D)
+T*@)BJ () + Go()GH(i),
Wou(Y, i) = Y()AL() +T7(@) By (i) + Go()G(i), 1 <k <r,
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Wo.r1(i) = Y())CI(i) + T*() DI, (i) + Go(i) D, (i),
Worsz = [Van Y (@) ... V@i Y () V@i Y Q) .. JqiaY (D]
Wi =G()GL), 1<lk<r | #k,
Wi =Gi()Gii) - Y@, 1<l=r,
Wirs1()) = G())D: (i), 1 <l <,
Wirn2) =0, 1<l <r+1,

Wettr1()) = Do) D2, () — ¥y,

W, ri2li) =diag (=Y (1)...-Y (@ —-D=Y(@+1)...—Y(d).
Moreover, if (Y,T) € 8¢ x Mj’nz.n is a solution of (1.7) with Y > 0, then the control
u(t) = F(n()x(t) with F(i) = T@@)Y ' () solves the y-attenuation problem for
the system (7.5).

Proof. The proof immediately follows applying Theorem 10 together with
Proposition 14 of Chapter 6 to the system (7.6). a

In the following we display the particular cases when the system (7.5) is subjected
only to Markovian jumping or to multiplicative white noise, respectively. Consider
the linear stochastic system described by

x(t) = Ao(n())x (1) + Go(n(t))v(t) + Bo(n(t))u(t), (7.8)
(1) = C.(n(N)x(t) + D, (n())v(t) + Do, (n())u(t)

obtained from (7.5), with Ax(/) = 0, G;(i) = 0, By(i) =0, 1 <k < r,and
i € D. For the control u(z) = F(n(t))x(t) one obtains the resulting system:

x(t) = [Ao(n(1)) + Bo(n(1) F(n(t)] x(t) + Go(n(t)v (1), (7.9)
2(t) = [C:(n(1)) + Do (@) F(n(e)] x(2) + Do (n()v(2).

Applying Corollary 5 of Chapter 6 for the system (7.9) we get the following corollary.

Corollary 2. For a given y > 0 the following are equivalent:
(1) There exists a control u(t) = F(n(t))x(t) stabilizing the system (7.8) such
that the input—output operator Tr associated with (7.9) verifies | T¢|| < y.
(ii) There exist Y = (Y(1),....Y(d) € S8, Y(@) > 0 and I' =
(ray,...,. ') Miz‘n, verifying the following system of LMIs:
WooY, i) Worn(Y, i)  Wo,rpa(Y, i)
W, (VD) Werirat (YD) Weaa(X. ) | <0, (7.10)
W(;H_Z(Y, l) W:+1.r+2(ys l) Wr+2.r+2(Ya l)

where W;;(Y, i) are the same as in (7.7). Moreover, if the pair (Y,T') € Sf X M‘f,,z_,,
is a solution of (71.10) with Y (i) > O, then the control u(t) = F(n(t))x(t) with
F(@) =T Y 1G) solves the y-attenuation problem for the system (7.8). ([l
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In the case when D = {1} and ¢;; = O the system (7.5) becomes
dx(t) = [Aox(t) + Gov(t) + Bou(t)]dt

+ 2 [Ax () + Gro®) + B )] dwi (1), (7.11)
k=1
z(t) = Cox(t) + Doyv(t) + Do u(t).

Assuming that the whole state is available for measurement and taking u(z) = Fx(f),
one obtains the closed-loop system

dx(t) = [ (Ao + BoF) x(t) + Gov(1)]dt

+ 2 [ (Ac+ BeF) x(0) + G Jdwi (), (7.12)
k=1
72(t) = (C. + Dy F)x(t) + D, v(1).

Using Corollary 16 of Chapter 6 for the system (7.12) one obtains the following
corollary.

Corollary 3. For a given y > 0 the following are equivalent:

(i) There exists F stabilizing the system (7.11) such that | T| < y, where Tr
denotes the input—output operator associated with (7.12).

(i) There exists Y € S,, Y > 0, I' € R™2*" solving the following LMI:

Woo(Y)  Wou(Y) - Wo, (YY)  Wo,ra(Y)
WYy W)y - Wi ()  Wp,n(Y)
: : ST : < 0, (7.13)
We, () WYYy - W (Y) W, ()
W, () W () - WXL (Y) Wi (Y)
where

WooY) = AgY + YA] + BoI' + T*Bj + GoGy,
Woux(YY =YA; +T*B; + GoGi, 1 <k <,
Wors1(Y) =YCI +T*D!, 4+ GoD?,,
Wiu(Y) =G,Gy, 1 <l k<, | #k,
Wau(¥)=GGr—Y, 1<l<r,
WYy =G/DI,,1<l<r,
Wittr1(Y) = Do D3, = v21,,.

Moreover, if the pair (Y, ') € S, x R™*" 'Y > 0, is a solution of (7.13), then the
control u(t) = T'Y "' x(¢) solves the y -attenuation problem for the system (7.11). O
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Now consider a controller in the set (7.2) defined by
(ne, Ac(i), B.(i), Cei), Dc(i); i € D)
with n, > 0, A (i) € R"*", B (i) € R**" C.(i) € R™2*" D.(i) € R"*",

i € D. When coupling the controller to the system (7.5), one obtains a resulting
system of form (7.3) with the matrix coefficients given by

[ Ao(D) + Bo(i)D.(i)  Bo(i)Cc(i)
i X0 o]
Apa (i) = Ax(@) + %"(i)DC(i) B"(i)oc"(i)] , 1 <k<r,
Gruli) = G’;)(i)} 0<k<r (7.14)

Ca(i) = [Co) + Dou)Deli) Do (HCe()),
Dy(i) = Dyu(i), i €D.

The next result shows that if the y-attenuation problem can be solved with a
dynamic controller (i.e., n, > 0), then the same problem also has a solution expressed
as a state feedback (i.e., n. = 0).

Theorem 4. For a y > 0 the following are equivalent:

(i) There exists a dynamic controller (7.2) with n. > 0 solving the DAP with the
level of attenuation y.

(ii) There exists a zero-order controller solving the DAP with the same level of
attenuation y.

Proof. (1) = (ii). Assume that there exists a dynamic controller of order n, > 0
solving the y-attenuation problem for the system (7.5). Therefore this controller
stabilizes the system (7.5) and the input—output operator 7., associated with the closed-
loop system verifies the condition || 7,|| < y. Applying Theorem 10 and Proposition
14 of Chapter 6 for the system (7.3) with the coefficients (7. 14), we deduce that there
exists ¥ = (Y(l) LY(d) e S, ,Y(i) > 0, i € D, satisfying the following
system of LMI:

[Woo (F.0)  Woa (Vi) Wo, (Vi) Worn (F) Wossa (V.)
Wi, (V) WiV - Wi (Y Wi (P Wi (V)
: : Co : : <0,
wg, (F)y  owr (Y 0 W (V) W (T) W (Y.)
Wit (g Wi (Y 0o Wi (Z i) Wriirn ({ i) Wriiri2 (g i)
L Wera (Vo) W, (Y iy o WhLL (V) WL (Y i) Weazra2 (Vi) |

(7.15)
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where
Woo (Y, i) = A ()Y (i) + Y (D) Al (i) + g1 Y (i) + Gou ()G (),
Wou (Y. 1) = Y(i) AL () + Goa (DG (i), 1<k<r,
Worst (Y, i) = Y()C4G) + Goa i) D),
Wors2 (Y,0) = [Van ¥ () ... V@i Y () @i Y G) ... JaGa? 1],
Wi (Y, i) = Gla()Gly (i), 1 <1 #k <,
Wi (Y, i) = Gia()GrL() — Y@, 1<l <r,
Wit (Y. 1) = Ga()D(i), 1 <1 <,
Wit (Y, i) = Da()D5G) — v,
Wi (Vi) =0, 1<l <r+1,
Wita,s2 (Y,i) =diag (=Y(1) ... =Y (i =) =Y (i + 1) ... = ¥(d).
Let

< Yu) Y] .
7 Yo@) | e p,
O = [Y*zo) Yzz(i)] Le

be the partition of Y(z) conformably with the partmon of the matrix coefficients in
(7.14),thatis, Y1, (i) € S, Yu(i) € S, . Define W € R f=n(r+d+p, i=
(n+n)(r+dy+pp:

\I/* =diag<\l-'0,...,lllo, IPI’ ‘IJQ,...,\I/()),

r + 1 times d — 1 times

where Wo = [I, 0,xn.|. By pre- and postmultiplication of (7.15) by ¥* and W,
respectively, one obtains the following system of LMIs:

Voo ()Z, i) Vo1 ()Zy i) o Voo (Z i) Vo.r+i (Z i) Vort2 (Z ) ]
Ve (Y. i) V(Y)Y (Yii) Vi (Vi) Vi (Y.0)
S S G
Vgr (Y’i) V* (Ywi) e vr.r (Y’,\I,) Vr.r+l (Ysi) Vr,r+2 (Y’i)
Vo (V1) Vi (Vi) - V., (Y1) Vewrrnr (Y1) Veerrs (¥, 1)
-Vo,r+2 (Y* i) Vl*.r+2 (Y’ i) o Vr*.r+2 (Y~ i) Vr*+l.r+2 (Y’ i) Vesarsz (Y’ i) R
' (7.16)
where

Voo (Y, i) = Ao()Y 11 () + Y (DASG) + qii Y11 ()
+ Bo(i) (De(DY11() + Co() Y1)
+ (DY) + C.D)Y D) B(i)
+Go()GH),
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Vou (Y, i) = Yi()ALG) + (D) Y1 () + Ce(i) V()" BEG)
+Go()GiG), 1 <k <r,
Vo (Y,i) = Vi ()CH@) + (Do) Y11 (i) + Ce(D) YD) DX ()
+ Go(i) DX, (i),

Vors2 (V,0) = [Van i) ... V@ PG am i) ... Jagafn®].
Vi (Vi) = GG (), 1<l #k=<r,
VY, i) = GGG — V(). L <l <,
Vi (Y,i) = Gi)DLG), 1 <l <,
Vet (}7, i) = D, (()DI, (i)~ 1[,1,
Vi (Y,i)=0,1<l<r+1,
Vsar2 (Vi) =diag (<Y ... =¥y =) =Yy i+ 1)... = V1 (d)).

One can see that the LMI system (7.16) coincides with the LMI system (7.7) in
Theorem 1, with Y replaced by Y, and I'(i) replaced by D.(i)Y11(i) +
o (z)Y (i), i € D. Applying Theorem 1 it follows that there exists a control
u(t) = F(n(£))x(t) solving the y-attenuation problem for the system (7.5). More
precisely, _ ~
F@) = [Dc(i) + Cc.(i)Y{‘Z(i)]Y,‘l'(i), ieD.

Hence the first part of the proof is complete.

(i1) = (i) Assume that there exists a stabilizing control state feedback u(t) =
F(n(t))x(¢) solving the DAP with the level of attenuation y for (7.1). Let n, > O be
a fixed integer and let A.(i) € R"<>*"< be such that the zero solution of the system

Xc(t) = Ac(n(1))x(1)

is ESMS. Then consider the controller ('lc- Ac(), 0n xns Omxne, F)50 € D). It is
easy to check that this controller is stabilizing and the input—output operator associated
with the closed-loop system coincides with the input—output operator given by the
state feedback control. Thus the proof is complete. O

Remark 2. The smallest y can be obtained by solving a semidefinite programming
problem. Indeed, considering y? as a new positive variable, the LMI (7.7) can be
seen as a linear constraint in the minimization of y2.

7.2.2 Solution of some robust stabilization problems
Consider the system described by

dx(t) = {[Ac(1) + Go(t) A (1)) C ()] x(1)

+[Bon(1) + Bo(n(t) Ax (1) D(n(1))] u()} dt a1

+ 3 {[A1@) + G A1) C ((e)] x (1)

k=1
+[Ben() + Bu(r(t) Aa(n(0) Dn()] u(0)} dwn (o),
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wherex(t) € R"isthe state, u(r) € R™ 1sthecontrol varlable A(iy e R, Bi(i) €
R™™ G (i) € R, Bi(i) € R™* C(i) € RP", D(z) e RP™ 0 <k <r,
i € D are assumed known. The matrices A;(i) € R™*?, Ay(i) € R™7 are
unknown and they describe the magnitude of the system (7.17). It is assumed that
the whole state vector is accessible for measurement. The robust stabilization prob-
lem considered here can be stated as follows: For a given p > 0O determine a
control u(t) = F(n(t))x(z) stabilizing (7.17) for any A, = (A(1), ..., A (d))
and A, = (Ay(1), ..., A5(d)) such that
max (|Af, 1Az2]) < p,

where
|Ay] = max M (AL AG)) -
The closed-loop system obtamed with u(r) = F(n(t))x(t) is given by
dx(t) = [Ao(n(1)) + Bo(() F(n(0)) + Go(n(0)) A1 (n(1)C(n(t))
+Bo(n(0)) A2 (n(1)) D(n(1)) F(n(1))] x(1)dr (7.18)
+ Y [A®) + Bart) F(1 (1) + Ge(n(t) A1 (ne)C (1))
k=1
+Bu((1) Ay (1) D)) F (1) ] x () dwy (1).
Denoting by

G(i) = [Gi()) Bu()],

ci) = Cé”].

DG) = 5%.)]

L _[aG 0
A=1"9 Az(l’)}’

the system (7.18) can be rewritten as

dx(r) = {Ao(n(®)) + Bo(n() F(n(1)) + Go(n(t)) A (1))

x [C@) + D@@)F ()] }x(0)dr
(7.19)

+ Z {Acm@®) + Be() F (D) + Ge () A1)

k=1
x[C(0)) + DM@ F () }x (@) dwy (0).

Assume that F (i) is such that the zero solution of the system

dx(1) = [Ao(n(1)) + Bo(n() F (n(1)) Jx()d1

+ 3 [A(®) + B F (1) [x (0 dwi (1)

k=]
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is ESMS. Then, applying Corollary 21 of Chapter 6, it follows that the zero solution
of (7.19) is ESMS for all A with |A] < p if the input—output operator T associated
with the system

dx(t) = [(Ao(n (@) + Bo(n(t) F (n(1))) x(1) + Go(n(t)Hv(r)] dt

+ Z [(Ax((D)) + Bc(n)YF (n(1)) x (1) + Gr(n()v ()] dwy (1),

k=1
z2(t) = (CH@) + D)) F(n(t))) x(t)

satisfies the condition ||7¢| < 1/p. Further, notice that
1
Al = max Amax (A* (D) AG)) = max (A, |A]) .

Therefore, F is a robust stabilizing state feedback with the robustness radius p if it
is a solution of the DAP with level of attenuation y = 1/p for the following system:

dx(t) = [Ac(n(1))x(t) + Go(n()v(r) + Bo(n(t))u(r)]dt

+ Z [Ax(n(@))x (@) + Gr(n(@)v(t) + Bi(n(D))u(®)] dwy (1),

k=1
y@) = x(1),
2(t) = Cn()x (1) + D(n(1)u(t),

with G (i), C(i), D(i), i € D defined above.
Applying Theorem 1 we obtain the following theorem.

Theorem 5. Suppose that there exist Y = (Y(1),...,Y(d)) € S,‘j', Y(i)>0, T =
(C(1), ..., T(d) € M2 verifying the following system of LMIs:

m.n

WoolY, i) Wo (Y, i) - Wy, (Y. 1)  We,nY.i) WY, i)
Wi (Y i) Wiy, i) - Wi (Y0 Wealri) Wi

s z o s s o
Wg‘,(y, l) Wrr(Y,l) e Wr.r(y~ I) WrAr+l(Yvi) WrAr+2(Y7i)

W, iy Wi (i - WL (YD) W,V WD)
Woralli) Wiia(Hai) - Wh (Vi) Wiy a(feD) Wozaa(Y,i)

(7.20)
where

WoolY, i) = Ag()Y (i) + Y ()AL + ¢i Y (i) + BoG)T (i) + I* () B3 ()
+ Goli)Gy(i) + Bo() By (i),
WoulY, i) = YE)ALG) + T BEG) + Go()GLG) + Bo() B, 1 <k <r,
Worni (Y, i) = [Y()T*() T*@)D*)],
Wors2(Y, 1) = [VGi Y (D) ... JGi Y () JGini Y () ... @Y (D],
WY, i) = Gi()GL() + Bi)BrG), 1<k #1<r,
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WY, i) = Gi()Gr () + Bi()BrG) — Y(i), 1 <I<r,
Wia(Y,)=0, 1 <l <,
Wit (Vi) = =p L5,
Wiir,2Y, i) =diag(—=Y(1)...=Y{i—-1)—-YG+1)...—Y(d)).

Then the state feedback gain F(i) = ()Y ~'(i), i € D, is a solution of the robust
stabilization problem. 0

Now consider the system described by

dx(t) = [Ao(n(1)x(1) + Go(n(1) A (p(1), n(1)) + Bo(n(t))u(t)] dt (7.21)

+ Z [Ar(n(@))x (@) + Gr(n() A (@(1), (1)) + Bi(n(0)u@)]dwi (1),
k=1

@(1) = C(n()x (),

where x(f) € R” is the state, u(r) € R is the control variable, and A, (i) € R**",
Bi(i) e R Gp(iy e R™*™ O <k <r, C(i) e RP"*" | €D are assumed to
be known. The maps y — A(y, i) are unknown functions including the uncertainties
determined either by parameter variations or by truncation of nonlinear terms in the
dynamic model. Denote by A the class of admissible uncertainty

A=A D,...., Ay, d),

where y — A(y, i) : R?t — R™! are Lipschitz continuous functions with A (0, i) =
0, i € D. In the following it is assumed that in (7.21) the whole state is available for
measurement. The robust stabilization problem considered can be stated as follows:
Foragiven p > 0 find a control law u(t) = F(n(t))x(t) stabilizing the system (7.21)
for all A € A with ||[A]| < p. Recall that

Ay,i
A= sup {Qy—’)‘}
v£0.veRP ieD Iyl

Let u(r) = F(n(t))x(z) be such that the zero solution of the system

dx(t) = [Ao(n(1)) + Bo(n()) F (n(t))] x(¢)dt

+ Y [AM®) + Be(n(t) F(n(0)] x (Ddwi (1)

k=1

1s ESMS. When coupling this state feedback to (7.21) one obtains

dx(t) = {{Ao(n(1)) + Bo(()) F(n(1))] x (1)
+ Go(n() A (p(1), n(1)) }dt (7.22)

+ 3 { LA + Be(t) F ()] x(r)

k=1
+ G A (p(1), n(1)) Jdw (),
p@) = Cn()x ().
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Applying Theorem 24 of Chapter 6, we deduce that the zero solution of (7.22) is
ESMS for arbitrary A € A with [|A]] < p if the input—output operator 7 associated
with the system

dx(t) = {{[Ao(n(®)) + Bo((D)) F(n(t)]x (@) + Go(n(1))v(1)} dt

+Z {{A(@)x () + Bi(n() F (N x(1) + Gr(n(0)v(0)} dwi (1),

k=1

z(t) = C(n(£)x(1)

satisfies the condition |7¢ | < 1/p. Therefore, in order to obtain a robust state
feedback control with a given robustness radius p > 0 it is sufficient to solve the
DAP with the level of attenuation y = 1/p for the following auxiliary system:

dx(t) = [Ao(n(1))x (1) + Bo(n(1))u(t) + Go(n())v()] x(1) (7.23)

+ Z LA (@))x (1) + Bi(n(0)u(t) + Gr(n(0)v()] dwy (1),

k=1

z(t) = C(n(1))x(1).
From Theorem 1 applied for the system (7.23) one obtains the following theorem.

Theorem 6. Assume that there exist Y = (Y(1),...,Y(d)) € S,‘f, Yi@)>0, I'=
(r'(1),...,Id) € Mfm satisfying the following LMIs:

F WoolY, 1) Wo (Y, i) - Wo (Y, i) WY)Wy, i) T
Wi Y, ) WY, i) o WiV Wiea(Yi) o Wi Y, D)
: : .o : . <0,
Wgr(y?l) Wikr(le) Wr.r(Yyi) Wr.r+I(Yvi) Wr.r+2(Ysi)
We,a (0 W (0 o WL (Y0 WY i) WD)
LWE, (Y 0y WE, L0 o W (YD) Wr L LD WY, 0) |
(7.24)
i € D, where

Woo(Y, i) = Ao(D)Y (i) + Y () Ap (i) + qi Y (i) + Bo(H)T' (i)
+ (i) By (i) + Go(i) Gy (i),
Wour(Y, i) = YDA () + T B () + Go()G(i), 1 <k =<,
Wor+1() = Y(HC* (@),
Woriz = [VGTY () .. Gt Y DGt Y () . JaaY (O],
Wix = Gi()Gy(i), 1 <L k<r |#k,
Wi = Gi(O)Gii)=Y(@), 1<l<r,
Wira(@) =0, 1<l <, '
W) =0, 1 <l<r+41,
Wistrs1G) = =y21,,,
Witsra(i) =diag(Y()... =Y -1 -=-Y@i@+1...—-Y{d).
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Then the control u(t) = F(n(t))x(t) with F(i) = T()Y~'(i), i € D, provides a
robust stability feedback gain. O

Remark 3. In order to maximize the robustness radius one can use the idea presented
in Remark 2 but with the constraint (7.24) instead of (7.7).

7.2.3 A case study

In order to illustrate the theoretical developments concerning the DAP in the case
when the state is measurable, we present in the following a case study for which some
comparative aspects with the results provided by deterministic design approaches will
be discussed.

Air-launched unmanned air vehicles (UAVs) are typically released with their
wings folded in order to achieve a safe separation with respect to the launching
aircraft. The vehicle’s wings are deployed after several seconds when a glide slope
maneuver is required. The wing deployment determines a “jump” of the aerodynamic
coefficients leading to a transient of the angle of attack which must be minimized in
order to prevent the loss of stability. The longitudinal short-period motion of the UAV
has the following state-space equations:

X = Ax + B§,. + G, (7.25)
z=Cx+ Dé,,,
where the state vector is
w
| 4g
X = 5, |
§

with w denoting the vertical component of the true airspeed, g is the pitch rate, &,
is the internal state of the actuator, and & denotes the state of the integral action
£ = a, — a,, introduced in order to obtain zero steady-state tracking error of the
normal acceleration a, with respect to its commanded piecewise constant value a;,..
The control variable is the elevon command §,, and the input vector v includes the
external reference a,, and disturbances, namely:

dy, and d; denoting the disturbances in w and g, respectively. The quality output z
has two components
_| B¢
=]

where 8 and p are positive given weights. The matrix coefficients in (7.25) depend on
the two flight conditions mentioned above, namely the situation when the UAV has
the wings folded and the case when the wings are deployed, respectively. Therefore,
in this case the Markov chain has two states, thatis, D = {1, 2}. The numerical values
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corresponding to these two states are [108]:
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[ —0.1077 718.5340 —31.3672 0]
-0.0219 -0.7209 —19.5316 0
Aly=1 "y 0 ~30 0
|0 2.8870  64.7283 0 |
—0.4628 717.1890 —16.7139 0]
—0.0333 —0.7522 —11.3638 0
AD= 0 0 -30 0
| —0.2990 2.8210  39.1960 O |
0
0
B)=B@) = |, |-
K
[0 1 0
0 0 1
Gl)=GQ2) = o o ol
-1 00
0 0 0 20
cm—cm=h()00}
py=p@ =]’
- ~[100]°

B = 20, p = 100. The transition rate matrix is

-1 1
Q= [0.01 —0.01] '
The problem consists in determining a state feedback control 8, (t) = F(n(t))x(t)
such that the closed-loop system obtained when coupling it to (7.25), namely
x(t) =[A@®) + Bn@)F ()] x(@) + G(n(1)v(2),
z2(t) =[C@®) + DN F N x (1),

is ESMS, and its associated input—output operator has norm less than a given y > 0.
Applying Corollary 2 we obtained for y = 20,

F(1) =10.0290
F (2) =[0.0110

—2.7269
—-0.7722

- 1.1120
—0.4793

— 1.5065],
- 0.2112].

(7.26)

In order to compare these results with those provided by other standard design meth-
ods, we solved the same problem using two deterministic alternative approaches.
The first one is the robust control (RC) design consisting in determining a unique
“quadratically stabilizing” controller which stabilizes both systems corresponding
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to folded and unfolded wings situations. In this design we obtained, using again an
LMI-based approach [9],

Fre =[1057 —4256 —180.7 —305.7]

for the minimum closed-loop disturbance attenuation level y = 33.43.

The second deterministic method consists in designing separate H> state feed-
back zero-order controllers corresponding to each flight condition. This design will
be abbreviated SDH, and it gives for y = 18.1 and for y = 12.9, respectively, the
following gains corresponding to the two flight conditions considered:

Fspu (1) =[0.0040 —0.0825 —0.7510 —0.4253],

Fspp (2) = [0.1212 1.2540 —1.7674 —1.6579].
Two comparison approaches have been used: the first is completely deterministic
and the second is entirely stochastic. In the first method, the H* norm of the closed-

loop system for i = 1 and i = 2 has been determined for all three solutions obtained
above. The results are presented in Table 7.1.

| 7 ll~ | MIC | RC | SHD
i=1 | 183329 18.1
i=2 1157 1225|129

Table 7.1. Deterministic comparison approach

One can see that for MJC and SHD design, the achieved H* norms of the closed-
loop system are very close to and much lower than those of the RC-feedback gain.

In the second method we computed the levels of attenuation corresponding to the
three solutions using the stochastic framework. To this end, we determined the closed-
loop system with the corresponding feedback gains. Regarding these systems as
stochastic systems with Markov jumps, we applied Theorem 10 of Chapter 6 to
computing the corresponding level of attenuation. The obtained results are presented
in Table 7.2.

Method | MIC | RC | SHD
W7 20 | 324 | 767

Table 7.2. Stochastic comparison approach

The fact that in the stochastic design case (MJC) the level of attenuation is signif-
icantly lower is expected since the deterministic design (RC and SDH) does not take
into consideration the parameter jumps.

The elements Py((¢) and P);(¢) of the transition probability matrix P(¢) = e?
as functions of time are illustrated in Figure 7.1a. In Figures 7.1b and 7.1c¢ the time-
responses of the angle of attack and of the elevon command to unit step acceleration
are plotted. Inspecting these figures one can see that the angle of attack is similar for
all three methods, but the MJC uses considerably less control effort than either RC
or SDH design.
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Fig. 7.1.

7.3 Solution of the DAP in the case of output measurement

In this section we consider the DAP with an imposed level of attenuation y > 0
in the case when the output is available for measurement. Our approach is based
on an LMI technique and it extends to this framework the well-known results in
the deterministic context. As in the deterministic case the necessary and sufficient
conditions guaranteeing the existence of a y -attenuating controller are obtained using
the following result (see [9]).

Lemma 7. (Projection Lemma) Let Z € RV, Z = Z*, U € R"*", and V €
RY2*Y with v, v, v, positive integers. Consider the following basic LMI:

Z4+UBYV+VOU <0, (7.27)
with the unknown variable © € R"'*"2. Then the following are equivalent:
(i) there exists ©® € RV %2 solving (7.27);
(1)
WHZWy <0 (7.28)
and
WHLZWy <0, (7.29)

where Wy and Wy, denote any bases of the null spaces Kerld and KerV,
respectively. a
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Remark 4. 1t is known that if W is a basis of Ker M where M is a given matrix, then
any other basis of Ker M can be expressed as W = WI" with detI" # 0. This shows
that it is sufficient to check the conditions (7.28) and (7.29) for some suitable bases
Wy and Wy,

Lemma8.Ler X, Y €S,, Ne R and S € S, with X > 0 and

[;* g] > 0.
Then the following are equivalent:
@) :
X=(Y-NS'N");
(i)
X I, 0
rank { I, Y N | =n+n.
0O N S
(iif)

Y N -l X o«
N* S IR
where x denotes irrelevant entries.

The next result provides necessary and sufficient conditions for the existence of
a controller of type (7.2), solving the DAP for the system (7.1).

Theorem 9. For a y > 0 the following are equivalent: -

(i) There exists a controller of order n. > 0 which solves the DAP with the level
of attenuation y > 0 for the system (7.1).

(i1} There exist X = (X(1),...,X(d)) € S,‘f, X(i) > 0,i e DY =
(Y(1),...,Y(@) € S Y(@) >0, S =(5(1),...,5@) € 8%, SG@) >0, N €
(N(),...,Nd)), N e Mg.nc such that

* ke g VO(I) 7 30
[Vo) ViH]N (X) |:V|(i)] <0, (7.30)
Mo.o(i) oty —UF@NG@) - =Ur@ONGE)  Torp@) ]
Iy, (i) —y2I,, 0 . 0 0
—N* (DU () 0 —5() e 0 0
. . . . . <0,
—N*()U, (i) 0 0 e —8(@) 0
I, ) 0 0 S 0 Myit1 ()
(7.31)
X)) I, 0
rank | I, Y@y NG |=n+n. (7.32)

0 N*(i)y S(i)



7.3 Solution of the DAP in the case of output measurement

where
[Vo(i)jl
Vi(i)
is a basis of Ker [Co(i) Dp(i)],
Uo (i)
Uri ()

is a basis of Ker [B§(i) --- B} (i) D% ()],

N (X) = [Nn(X,i) le(x,i)]’

Nl*z (X,i) Np(X,i)

M (X, 1) = A5OX G + XD A + ) A X O AG)
k=1

d
+> X () + CHHC:(0),
j=1

N2 (X, i) = X(i)Goli) + ZAZ(i)X(i)Gk(i) + CI(0) Dy (i),
k=1

Noy (X, i) = =y ? I, + D3,() D, (i) + Z GrHX ()G (),
k=1

Too(i) = Ug () [Ao)Y (i) + Y (A + qii Y ()] Uo ()

+Z Us (DY DAL DU () + Ug )Y ()CI (D) Ur 4 ()
k=1

+ U (DCY (DU + Z U DAY (DU ()
k=1

- Z UgDY (DU = Ul (DU (),

k=1

Mo (i) = Y UF)Gr(i) + U,y () Dy (i),
k=0
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Mos1()) = Ug@) (L 01[/a@n ¥ (i) G YD) Guir Y (D) -+~ /@Y ()],

Oyy1410) = —diag (Y)Y (i = 1), Y (i +1)--- Y (@),

=Y NGO .
Y(l)—[N*(i) S(i):\’ ieD.
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Proof. The outline of the proof is similar to the one in the deterministic frame-
work. The stochastic feature of the considered system does not appear explicitly in
the following developments of the proof. This feature appears only in the specific
formulae of the Bounded Real Lemma. Therefore the proof is also accessible for
readers who are not very familiar with stochastic systems.

(i) = (ii) Assume that there exists a controller of form (7.2) stabilizing the system
(7.1) such that || 7| < y. Using the implication (i) = (ii) of Theorem 10 (Bounded
Real Lemma) of Chapter 6 for the closed-loop system, we deduce that there exist

X = Xaq(1), ..., Xa(d)) € Sty Xali) >0
such that
Ni (X, v) <0, (7.33)
where

' (€8 Xa) @+ CHi)Cal)  Pr(Xa)
-/\[l (X(‘Iv )’) - [P] (IXC[) ! Ri (Xc[) ’

(L5Xa) () = A5y DX () + X () Aa (i)

r d
+ Y AL OXa DA D) + )i Xa (),

k=1 j=1

Pi (Xa) = Goy (D Xa (D) + Z Gra (DXt Ager ()
k=1
+ D () Ca (i),

Ri (Xet) = =¥2m + D Gy () X () Grar (i)
k=1

Based on Schur complements arguments it is easy to see that (7.33) is equivalent to

(LX) () Xa()Goa(D)  Al,(DXqG) -+ A (DXa() CH()T
GoyDXa(i) —y?ln, G, OXq@) -+ Gy OXa@) DLG)
Xa(@D A1) Xa()Grai) —-Xa() - 0 0
. ) ) . ) ) <0,
X (D) Are(i)  Xa()Grq(i) 0 e —Xg(@) 0
_Ccl(i) Dcl(i) 0 0 —Ipl _
(7.34)
where ;

(L5Xa) () = AL (DX () + Xa(i)Aoa (i) + Z%‘jxcz(j)-

j=1
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Let us introduce the following notations:

O P RO R T

0 0
B[y o) Bo=[) ¢V rsk<n
s [0 L) m e
& =g o] Eo=tco o
Bu)=10  Du@, Bo(i)=[Df(l.)], i€,

C[AD BG)
W”‘[Q(z‘) Dcm]‘

Using (7.4) one obtains
Ara () = Ar(i) + Be(i)O.()Coli),
Gra(i) = Gili) + Bi(i)®. () Doi), 0 <k <r,
Cali) = C.() + Dou()O()Coli),
Da(i) = Do,y (i) + Doy (). (1) Do), i € D.

With the above equations one can easily see that (7.34) can be written in the basic
LMI form:

ZO+UOO.HOV3E) + V*(@OOLHUG) <0,i € D, (7.35)
where
[ (L5Xa) ) Xa()Goli) ATDXa() - ArHXal) C1() 7
GiDXal) =L, GiOXal) --- GHDXali) D3,0)
20) .Xcz(i)Ax(i) &(z‘)&(i) '—Xdu) 8 0 0 |
Xa()A @) Xa)G, (@) 0 o —Xal) 0
_Cz(i) Dzv(i) 0 - 0 —Ipl .
UG = [BEDOXa@)  Opmytnoyxm Bi)Xa(@) - Bri)Xa@) Dr)],
V() = [Coli) Doli) Opytnoyxipysrminon]s i €D, (7.36)
with
- N - d
(LoXa) (1) = Apy (DX () + Xer() Aoer () + Y i Xet ()
j=1

Therefore the existence of a stabilizing y -attenuation controller for (7.1) is equivalent
to the solvability of (7.35). Based on Lemma 7, (7.35) is solvable if and only if
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there exist

Wiy 2(OWuay < 0, (7.37)
Wi Z2(iMWyiy <0, i €D, (7.38)

where Wiy, Wy, denote bases of the null spaces of /(i) and V(i), respectively.
It is easy to see that a basis of the null space of /(i) is

Wuiy = X~ OWe» (7.39)

where
X(l) =dlag (X(‘l Irm Xcl(l)Xcl(l) Ipl)

and Wy, is a basis of the null subspace of the matrix
Ui) = [ B3 () Owmyanrem Bi()) -+ BXD) D]

A basis of the null subspace of U (i) is

[ To(i) 0 0 0
0 L., O 0
T () 0 L 0
Wai, = : : : . S (7.40)
T.(i) 0 0 --- L
LUy 0 0 - 0]
where .
Tk<i>=[Uk0(’) 0<k=r, L=[,° }
and _
Uo(i)
L Uri (D)
is a basis of the null subspace of the matrix
[B3G) BiG) --- BrG) Di()].
A suitable choice for W;, is the following:
Vo(i) 0
0 0
Wy = 0 0 ; (7.41)

0 1p1+r(n+m-)

[Vo(i):l
410

is a basis of the null subspace of the matrix [Co(i) Do(i)].

where
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Consider the partition of X (i):

L [x6) MG
Xcl(l)—|:M*(l-) X(l)]’

with X (i) € R™*". Then by direct computations one obtains

Wo.0(i) Yo (i) -+ Wo,) Wo,s1()
Vi) —Xa@() -+ 0 0
Whin ZOWya = : RS : . (742)
Wi, () 0 e =X 0
0r+1(’) 0 0 _Im
where we denoted
d
Wooli) = Vi () | Ag)X () + X (1) Ae(i) + Zqin(j) Vo(i)
j=1

+V5 X DGo()HVi() + V(DG X (Vo) — v Vi) Vi),
Wox(i) = ([V§() O] Af()) + Vi ()G5()) X, 1<k <r,
Wor41(0) = V5 @)CIG) + ViDL ().

Again using Schur complement arguments, it follows that condition (7.38) together
with (7.42) is equivalent to

Wo0(i) + Z Wo (D)X, (W5 () + Wo 1 (WG, 4, () < 0.
k=1

Detailing the coefficients in the above inequality, (7.30) directly follows.
In order to detail the condition (7.37), one first computes

X'HzoHxo) (7.43)
(L) () Goth  TMOAIG) - YDA YOCIO) ]
Gyi)  —yw, G0 - GI) DLW
B Al(i)Y(i) Gi(iy ~YG - 0 0
A:(:)Y(i) G 0 SO
| C:(OY@) D@ 0 - 0 — I, i
where

d

(L37) () = Ap(DY () + Y(DAG() + Y g YOY (DY (@), (7.44)
j=1

Y() = X5'0). (7.45)
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We also introduce the notation

(i) = [Y(i) N(i)], Y(i) € R"™*".

N*(i) S@)
Using (7.40), (7.43), (7.44), and (7.39), one obtains that (7.37) becomes
Moo (i) Mo(i) —UF@ONG) - —Ur@N®)
I3, (i) —y*l,, 0 0
—N*(OHU, (i) 0 —5(i) - 0 <0, (7.46)
_N*OULG) 0 0 sk
where

Too(i) = U3 (i) { Ao()Y (i) + ¥ (1) A} (i)

- ~ Y(@)
+)_ai Y@ NOIYT'() [N*(,.)} Uo (i)
j=1

+ Z Us ()Y (DAL (DU () + Ug ()Y (D C; D Up11 (1)
k=1

+ UL (DC(DY O Uo(i) + Z U (D A(DY (HUp(i)
k=1

- Z U @Y (DU = U DU (),
k=1

o1 (1) = Y UF()Ga(i) + U7y, () Doy ().
k=0

By Schur complement arguments one can see that (7.46) is equivalent to an extended
LMI which coincides with (7.31). Taking into account that

X 1 0
rank I Y(@) N(@)
0 N*(i) S3U)

X(@)—(Y() - N(i)S‘](i)N*(i))_l 0 0
= rank 0 Y(@) - N@OST'GON G 0
0 0 S@@)

and S(i) > 0, Y(i) — NS~ @HN*(i) > 0, it follows that (7.45) gives
X(@) = (Y() = NS ON* ()
from which (7.32) follows directly.
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(ii) = (i) Assume that there exist X (i), Y (i), N(i), and S(i) verifying (7.30)—
(7.32). From (7.31) it follows that 1, ,.1 (i) < O and therefore

. [Y@) NG
Y(z)_[N*(i) S(i)]>0.

Hence )7(1') is invertible. From Lemma 8 it results that ¥ ! (i) has the structure

X(@{)
* x|’

where by * we denoted the irrelevant entries. From the developments performed to
prove the implication (i) = (ii), it follows that (7.37) and (7.38) are verified by

Xq() =Y (),

and hence (7.35) has a solution that guarantees the existence of a stabilizing and
y-attenuating controller. Thus the proof is complete. » O

Remark 5. In the case of the static output feedback (n, = 0), in the above theorem
we have to remove all variables n., N(i), and §(i), i € D.

Remark 6. According to the proof of the above result, the algorithm to determine a
solution of the DAP is the following:

Step 1 Solve the system of LMI (7.30) and (7.31) with the constraint (7.32).

Step 2 Compute Z(i), U(i), and V(i), i € D, according to (7.36).

Step 3 Solve the basic LMI (7.35) with respect to &,.. Then the solution of the
DAP is given by the partition

CTAD B
W”‘[Cc(i) Dc(i)}'

Obviously, if n, = 0, then ®.(i) = D.(i).

In the following we shall emphasize the important particular cases when the
system (7.1) is subjected only to Markovian jumping or to multiplicative white noise.

In the situation when Ax(i) =0, By(i) =0, G (i) =0, 1 <k <r,i € D, the
system (5.1) becomes

x(1) = Ag(n(1)x (1) + Go(n(1))v(t) + Bo(n(t))u(r),
2(t) = C:(n()x (1) + Doy (n(D)v(t) + Do (n(0))ul?), (7.47)
y(#) = Co(n(®))x(t) + Do(n(t))v(?).

The closed-loop system obtained by coupling a controller of form (7.2) to the system
(7.47) has the following state-space realization:

X (1) = Aot () xei (1) + Goa (n(@)v (1), (7.48)
2(t) = Ca(m)xa(t) + Da(nt)v(r),
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where the matrix coefficients are defined as in (7.4). The results in the preceding
theorem lead for the particular system (7.47) to the following theorem.

Theorem 10. For a y > 0 the following are equivalent:

(i) There exists a controller of order n, > 0 of type (7.2) which stabilizes the
system (1.47) such that the input—output operator associated with the system (7.48)
verifies | 7|l < y.

(ii) There exist X = (X(1),...,X(d)) € S4, Y = (Y(1),...,Y(d) € S,
S=(S),...,5@) €S, Ne(N1),...,Nd), Ne MZ, suchthat

L | AGDOX )+ X)) A() . : . .
[508;] L Z?:l G X () + CHOC ) X(@)Go(i) + CF @)D, (D)
! Gy X (@) + DI, (HC.(i) ~y*ln, + D}, () Dy (1)
x Vo)) Vi()] <0, (7.49)
Hoo(y.i) Moy (¥, 1)
[nam (i) nr+1.,+l(y,i)] =<0 (7:30)
X@) I 0
rank| 1 YG) NG) | =n+4n., ieD, (7.51)
0 N*G) SG)
where
N

Ao)Y () + Y (DAR(D) L
| +aa X () +y2GolyGay T DCD +yTCe®OD D)

C.OY ) +y 7’ Doy()GH()  —1p + ¥ 2 Du(i) D}, (1)
x [UoG)  Urpa (D],

Mo,s1 (y, i) and 1,41 r41 (v, i) are as in Theorem 9,

[ Uo(i) ]
Ur—H(i)

is a basis of the null subspace of [B}(i) D7, (i)], and

Vo()
ViQ)
is a basis of the null subspace of [Co(i) Dgy(i)]. O

Remark 7. From the above theorem one can see that the necessary and sufficient con-
ditions guaranteeing the solvability of the DAP involve the same unknown variables,
namely X (i), Y (i), S}, N(i), i € D, as in the general case of the system (7.1). It
seems that this is the price paid to obtain a controller of order n, < n.In the particular
case when a full-order controller (n, = n) is required, the rank condition (7.32) in
the statement of Theorem 5 is removed (see Theorem 14 in Section 5.4).
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Now consider the case when D = {1}. Then the system (7.1) becomes
dx(t) = [Aox(t) + Gov(t) + Bou(t)] dt

+ Y [Aex(t) + Go(t) + Beu(t)] dw (0),
k=1
2(t) = Cox(t) + Doyv(t) + Dyu (), 7 (7.52)

y(@) = Cox () + Dou(2),

where the matrices Ay, By, Gy, 0 < k < r, C,, Dy, D;,, Cy, Dy are given
matrices of appropriate dimensions. The class of admissible controllers consists in
deterministic controllers of the form

xc(t) = Acxc(t) + Bey(t), (7.53)
u) = Cexc (1) + Dcy(t)

The closed-loop system obtained when coupling (7.53) to (7.52) is

dx(t) = [Agcixei(t) + Goav ()] dr + Z [Akcixer(t) + Grav(®)] dwi (1), (7.54)
k=1
2(t) = Caxa(t) + Dav(t),

where the matrix coefficients are as in (7.4) withd = 1.
The next resuit provides a version of Theorem 9 for the particular case of the
system (7.52).

Theorem 11. For a given y > 0 the following are equivalent:

(i) There exist an (n. > 0)-order controller stabilizing (7.53) such that the
input—output operator associated with the system (7.54) verifies || 7, < y.

(ii) There exist X,Y € S,, S € S,,, N € R"" satisfying X > 0, Y > 0,
S > 0, such that

[ AsX + x4 XGo+ Y, ALXGy
Vo + 2t AfX A+ CIC. +CI Dy,
Vi G X + ZZ:I Gi XA —yzl,,,] + D}, Dy,
+DZ,C: +2 ke GiX Gy
x[Vo Wl<O, (1.55)
Moo(Y)y Moy -UN .-~ =UN
0, v, 0 - 0
-NU 0 =S 0 |y, (1.56)
—N*U, 0 )
X I 0
rank | I Y N |=n+n, (7.57)
0O N* S
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Vo
[ v, j| and

are bases of the null subspaces of [Cy Dy and [Bék Bf --- B} D;‘u], respectively,
and

where
Uy

Ur-H

Moo(Y) = U [AoY + YA;] Uo + Y Uf ArY Us
k=1

+Y U AYUp + UGYClU 1 + Uy, CY Up
k=1

=Y UiYUe = U} Urs,
k=1

Moy = »_ Ui G+ U}y Day.
k=0

The next result is well known in the deterministic case; however, for the sake of
completeness, we shall briefly present it in the following lemma.

Lemma 12. Let X; € R"*"¢ be partitioned as

X M >
XL‘I—[M* ’)Zjl,XGSn,XGSn(.,

where n. > 1. Assume that X4 > 0 and consider the following partition of XC'IL:

XZzl:[zYv* ﬂ YeS, SES..

Then we have

X>v'>0, (7.58)
rank (X = Y') < n,. (7.59)

Conversely, if there exist X € S,, Y € S, verifying conditions (7.58) and (7.59),
then there exist M € R"*", X € S, ., N e R"" S € S, such that

X M
[M* §}>0

x My N 10
[M* S('HN S}:{O 1]' (7.60)

and
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Proof. From X > 0 it follows that X > 0, X > 0, S > 0. From the condition
X X;,l = [ one obtains that

X-y "=y 'NXNYT!,
and therefore (7.58) immediately follows. The above conditions also leads to
rank (X — Y™') = rank(N) < n,

and hence (7.59) results.

Conversely, let X, Y € S, satisfying (7.58) and (7.59). Define M € R"*" as the
Cholesky factor:

X-Y'= MM

and

-YM,
1,1(,,
I, +M*YM.

i

N
X
S

il

Then it follows that

X-MX'M*=Y"'>0,
S—-NY'N=1, >0.

Then (7.60) follows by direct computations and thus the proof is complete. U

The next result shows that it is possible to remove the unknown variables N and
S, but in this case the condition (7.56) in Theorem 11 becomes nonlinear.

Theorem 13. For a given y > 0 the following are equivalent:

(i) There exists a stabilizing controller with n. > 0 of form (7.53) solving the
DAP for the system (7.52).

(ii) There exist X, Y € §,, X > 0, Y > 0 satisfyving the following conditions:

X I
[1 Y] >0, (7.61)
X I
rank [1 Y] <n+n., (7.62)
. AX + XA XGo+ Y 1| A X Gy
Vo + D i AfX A+ C3C. +CED,
Vi GiX + 3 GI X A —yz(,nl + D2, D.,
+D7,C. + Y41 GIXGi
x[Vo Vi} <0, (7.63)

U*A(Y, y)U <0, (7.64)
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where l: KO] is a basis of the null subspace of [Cy Dy],
1
Uo
U,
U= .
Ur+l

is a basis of the null subspace of [B} B} --- B} D},], and

Aoo -+ Aor  Aors
A=]|" B . ,
*
AO.r M Ar,r Ar—H,r
* *
A0.r+1 e Ar—H,r Ariir

Aoo = AY + Y AL+ y2GoG,
Aox =YA; +y72GoG;, 1 <k <r,
Aor+1 =YCF+y2GoD?,
Ax=yGIG}, 1<l #k<r,
A =y7*GGr - X7,
Ay =y 2GIDY, 1 <1<,

Ar+1,r+1 = _[p1 + yﬁzD:UD:v'
Proof. (1)= (i1) If (i) in the statement is fulfilled, then using the implication
(i) = (ii) of Theorem 11 we deduce that there exist X,V € §,, S € S,,, N ¢ R"%

such that (7.55)—(7.57) are satisfied. One can see that (7.55) is just (7.63). On the
other hand, (7.57) leads to

1

X=(Y-NST'N*) . (7.65)

This means that X is the (1,1) block of the matrix

vy N1
N* S|

Applying Lemma 12 for

it follows that
X-Y'>0 (7.66)
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and
rank (X —Y7') < n,. (7.67)

It is obvious that (7.66) is equivalent to (7.61) and (7.67) is equivalent to (7.62). But
(7.56) leads to

U (AY +YAD) Uo + DYy 2U GG U
k=0 1=0

+ ) (UsY ALUi + UF AY Up) + USY C2 Uiy + Ur i C:Y Up
k=1

+ )y (UFGiD},Urss + Ul D2, G U)
k=0

,
— U (I, =y DD} U — D _UF (Y = NSTIN*) Uy < 0. (7.68)
k=1

Using (7.65), (7.68) becomes (7.64). Therefore thereexist X, Y € S,, X >0, Y >0
verifying (7.61)~(7.64). Suppose now that (ii) holds. From (7.61) one deduces that
X >Y"! > Oand rank (X — Y~!) < n,. Then, according to Lemma 12, there exist
N e R M ¢ R™ne X e Riexne | § e RPexne guch that

X M y N7
[M* ;5}:[1\,* 5] >0, (7.69)

X '=vY-NS'N" (7.70)

Thus (7.64) becomes (7.68) and therefore (7.56) holds. Moreover, (7.69) and (7.70)
imply (7.57). Taking into account that (7.63) is just(7.55), we conclude that if (ii) in
the statement holds, then the condition (ii) in Theorem 11 is also verified. Then the
implication (ii) = (i) in Theorem 11 shows that (i) in the statement is fulfilled, and
hence the proof is complete. O

and therefore

Remark 8. In order to solve the system (7.61)—(7.64), one can suggest the following
algorithm:

Step 1 Solve (7.63) with respect to X.

Step 2 Introduce X determined at Step [ in (7.61), (7.62), and (7.64), and solve
the obtained LMI system with respect to Y.

Now consider the particular case when in (7.52), B = 0, k = 1,...,r. In this
situation the base U becomes
Uy ©
U=1]0 Inr s
Ur+1 0



288 7 Robust Stabilization of Linear Stochastic Systems

o]
Ur+l

is a basis of the null subspace of the matrix [Bg D:fu]. Then condition (7.64) becomes

where

T:Io,o I:-IO.I E ij().r
g, Iy - My,
. . < 0, 770
i, i, o i

where

~ [ Uy 1" (TAY +Y4; YC: Y e Ty
oo = [Ur+1] ([CZY —1p, } ty D, [GO DZU] Ut ]’
™ Iy * - ﬁO : GO *

Mo, = UjYA] +v 2[5r+1] [D;U]G” l<i<r,

Hox =y GG}, 1<l#k<r,
ﬁ“ = )/_26167 — X_l, l<i<r.

By Schur complement arguments, (7.71) is equivalent to the extended inequality

~
*

Aoo(Y.T) UiYAr - UYAr UiGo+Ur, Dy
A YUy -x! o 0 G
: : R : <0,
AYUy, 0 o X' G,
GoUo + D Uri GY - G} ~ 2,
where ~ -
Uy AoY + Y AZ YC?‘] [ Uy ]
MooV, T) = | ~ o Y&} Yo |
oolt. 1) [U,+1] [ et —ip ||
Taking the Schur complement of diag(—X~", ..., —X~') in the above inequality,
one obtains
Apo(Y.T) _ UiGo+ U Dy
+ 0 oY ALXAY Uy + 3 UsY A;X G “0

GSUO + D; Ur+l 2 r
0 v ~ —y?Il, _GIXG
The above inequality together with (7.61), (7.62), and (7.63) are the necessary and
sufficient conditions derived in [65].
In the final part of this section we shall discuss two problems of robust stabilization
with respect to parametric uncertainty.
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Consider the system described by

dx(t) = {[Ac1(®)) + Gon(1) A () C ()] x(1) (1.72)
+ [Bo0 (D)) + Bon(1) Ax(n()) D(n(1) ] u()} dt

+ 3" {[A0®) + G A1 DT @) x(1)

k=1
+ [Be(®)) + Be(n(t) Aa(n@) D(p(t)] u(t) } dwi (1),
y() = Co(n(r))x (1),
where x(r) € R" denotes the state, u(t) € R™ is the control variable, and y € R??
is the measured output. The matrlces A(i) € R"X" B (i) € R™>™ Gk(l) €
R™*71 Bk(z) eR™1 Q0 <k<r, C(z) € RP1x", D(z) € RPI*™MCy(i) € RP2X"
are known matrices and A; € R™1*P1 A, € R™1*P1 gre unknown matrices describ-
ing the parametric uncertainty. The robust stabilization problem we address has the
following statement: Find a stabilizing controller of form (7.2) for the system (7.72)
for arbitrary Ay, A, with max (JA|,|A;z|) < p for a prescribed p > 0, where

[A;] = max;ep |A;(0)], I = 1, 2. The closed-loop system obtained when coupling
the controller (7.2) to (7.72) has the following state-space representation:

dx(t) = { [Ao(n(1)) + Bo(n()) Do(n(t)) Co(n())1 x(2)
+Bo((1)Ce(n()x.(t) + [Gotnt) AL (1)) C(n (1))
+Bo(n(t) A2 (1) D(n(1)) Do (n(1)) Co(n(2))] x (1)
+ Bo( (@) A2 (n(1) D((£)) Ce (1) xc(1) ) (1.73)

X Z {TA( (1)) + Be((1)) De(n(1))Co(n ()] x (1)

k=1
+B(n(1)Ce(nt)xc(t) + [Gen@) A () C(n(t))
+Be (1)) A2(n()) D(n (1)) D (1)) Co(n (1)) ] x (1)
+Be((0) Do (1) D)) Ce(n(0)x () }dun (1),
dxc(t) = [B-(n())Co(n())x(t) + Ac(n(0)xc(D)] 1.

Denoting
Gud) = [Gi(i) B e R 0 <k <,

C.() = C(()i)] e R{Pr#p)xn (7.74)

0
L DG)

a0
A=l o Az(i)]’

D, (i) = ] c R(ﬁ1+131)><m’
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the system (7.73) can be rewritten in compact form as follows:
d&(1) = [Aot (1) + Goa (M) A (1)) Cur (n(1))1 §(1)d1 (7.75)
+ Zr: [Aket (1)) + Gt () A () Car (1) E (D) dwy (1),
k=1

where A (i) are defined as in (7.4) and

Giqli) = [Glb(i)] ,
Cu(i) = [C.(0)) + Dy (i)D(1)Co(i) Do, ()Ce(i)]

Ca) 0 .
= [D(i)Dc(i)Co(i) B(i)cca)] ieb

Therefore, the closed-loop system can be viewed as a perturbation of the system

dE() = Ao (N(EWDt + Y Ara (n()E(D)dwi (1)

k=1

obtained by coupling the controller (7.2) to the nominal system (7.72) obtained
with Ay = 0, A, = 0. Applying Corollary 21 of Chapter 6 to the system (7.75),
it follows that a controller of type (7.2) stabilizes (7.72) for any A, A, with
max (|A;|, |Az]) < p if the input—output operator 7; associated with the fictitious
system

d&ei(t) = [Aogar (N ()5 (@) + Gou(n(1))v(1)]dr

+ Y [AaEED) + Gra (D)0 ()] dw (1),

k=1

2(t) = Ca(n()&(1)

verifies the condition || 7|l < 1/p. Then a stabilizing controller (7.2) providing
the robustness radius p can be obtained as a solution of the DAP with y = p~!
corresponding to the two-input, two-output generalized system:

dx(t) = [Ao(n(1)x (1) + Go(n()v(r) + Bo(n(t))u(r)]dt

+ Z [A(@)x () + Gr(n()v(t) + Be(n()u(t)] dwy (1),
k=1

z(1) = C.(n(e)x () + Do (n(0)u(t), (7.76)
y(#) = Co(n(t))x(1),
where G (i), 0 < k < r, C(i), D.,(i), i € D are defined as in (7.74). Then a

robust stabilizing controller with the robustness radius p may be obtained, applying
Theorem 9 to the system (7.76) for y = p~'.
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The second robust stabilization problem with respect to parametric uncertainty
considered in the final part of this section is the following: Find a stabilizing controller
of type (7.2) for the system:

dx(t) = [Ag((D)x (1) + Go(n(t)H A (1), n(1)) + Bo(n(t))u(t)] dt

+ 3 [AO)x (1) + GO A (p(t), n(1))
k=1
+Bi(n(t)u(D)]dwi (1), (7.77)

y(@) = Co(n(t))x (1) + Do(n(1))v(2),
where (1) = C(n(t))x(t) and A are unknown Lipschitz functions with A (0,i) =0

and Al
lA@hl_ (7.78)
ieD.zeRPl c20 12|

When coupling a controller of type (7.2) to the system (7.77), the closed-loop system
has the following state-space equation:

dxei(t) = [Aoct (M) xcr (1) + Goa () A (1), n(2))] dt (1.79)

+ Z LAkt () xe () + Gra (@) A (@(t), n(1)]dwy (1),

k=1

where Ag(i), Ggq (i) are defined as in (7.4), 0 < k < r. Invoking Theorem 24
of Chapter 6 for the system (7.79), it follows that a controller (7.2) stabilizes (7.77)
for any nonlinear perturbation A satisfying (7.78) if p < 1/ |7, where 7, is the
input—output operator of the system

d&(1) = [Aoa (n())§ (1) + Goc(n(1))v(r)] dt (7.80)

+ Y LA (MEED) + Gra (()v ()] dwy (1),

k=1

) =[C(n(t) OJ&®).

Hence a robust stabilizing controller for (7.77) can be obtained by solving the DAP
for y = 1/p for the system

dx(t) = [Ao(n(1))x (1) + Go(n(1))v(t) + Bo(n(t))u(r)ldt

+Z[Ak(n(t))X(l) + Gi(n)v(t) +Bi(n@)u()]dwi(r),  (7.81)
k=1

z(t) = C(n()x (1),
y(@) = Co(n(@)x(t) + Do(n(1)v(z).

Solvability conditions for this DAP are provided by Theorem 9.
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7.4 DAP for linear stochastic systems with Markovian jumping

In this section we shall investigate the y-attenuation problem for linear stochastic
systems of form (7.47) looking for strictly proper n-order controllers with D, (i) = 0,
i € D. More precisely, the class of considered controllers is given by

xc(t) = Ac((0))x (1) + B:(n())y (1), (7.82)
u(t) = Cc(n(t))-xc(t)v

where A (i) € R"*", B.(i) € R"™P2, C.(i) € R™*", | € D. When coupling the
controller (7.82) to the system (7.47), one obtains

X (1) = Aa(m()xa (1) + Ga(n(D))v(),
2(t) = Ca(n()xe(t) + Da(n(t))v(),

where
L Al Bo)C()
AC’(’)*[BCG)CO(:') Acli) ]
. Go(i)
Gui) = [ B Do(l.)] , (7.83)

Cali) = [C.(i) D ()Cc(i)],
D,(i) = Dzv(i)-

The following result provides necessary and sufficient conditions that guarantee the
existence of a solution of form (7.82) of the DAP.

Theorem 14. For y > 0 the following are equivalent:

(1) There exists a controller of form (7.82) stabilizing (7.47) and solving the DAP
with the level of attenuation y.

(ii) There exist X = (X(1),...,X(d)) € 8¢, Y = (Y(1),...,Y(d) € 8,
F=(F(),...,Fd)eMi K=(K(Q1),... 6 K(@d)eM?  whichverify

man? npy’
X@{) >0,
[V Vi)
v =[ e 0] <o (7,84

W) Wp() Wis@)
W@ = | W) WnG) 0 | <o, (7.85)
W) 0 Wi (i)

Y@y I,
[In X(i)] > 0, (7.86)
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where
Vi) = A§)X () + X (i) Ao(i) + K ())Coli) + C)K* (i)
d
+3 " qi; X (j) + CHHC0),
j=1
Via(i) = X()Go(i) + K () Do(i) + C2 () D (i),
Vaali) = —y*Ln, + D5, () D, (i),
and

Wi (i) = Ao()Y (i) + Y () AG () + Bo(i) F (i) + F*(i) By (i)
+4i:Y () + y 2 Go() G} (),

Wip(i) = Y()CEi) + F*(i) D}, () + v > Go(i) D3, (i),

Wis() = [V Y () ... VG YD) /qin Y () - . VT Y ()],

Wa(i) = =1, + y? D, (i) D}, (i),

Wis3(i) = —diag (Y1) ... Y(i -1 Y({+1)...Y(d).

Moreover, if (7.84)—(7.86) are feasible, then a controller of form (7.82) is given by

Ac() = [X() - Y_l(i)]_1 {Aé(i) + X () Ao(D)Y (i) + X () Bo(0) F (i)

+K()Co()Y (i) + CH[C. ()Y () + D) F ()]

+[X@Goli) + K (i) Do) + C2 (1) Dey ()] [y I, — DL () Do ()] ™
x [G3(i) + D3,()C,(DY (i) + D2,(1) Do (i) F(i)]

d
+Zq,-jY<i>Y—‘(j)} Y1), (7.87)
j=1
B.() = [r'() - X)) KG),

C.(i) = FOYL(4).

Proof. (1) = (ii) Assume that there exists a controller of form (7.82) such that
the zero solution of the system (7.83) for v(r) = 0 is ESMS and || 7, < vy,
where 7 denotes the input—output operator associated with ( 7.83). Applying
Corollary 15 in Chapter 6 for the system (7.83), we deduce that there exists
Xa=Xa(l),...,Xa(d)) € S&, X,(i) > 0, i € D such that

iy (Xe) Tz (Xer)
M (Xa) = [n;i p(X) T (Xd)} <0 (7.8%)
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where we denoted

d
Mo (Xea) = A (DX () + Xa (@A) + Y qijXa(j)
j=1
+C5H)Cali),
M 12 (Xa) = Xer(D)Geli) + C (i) D (i),
Min (Xa) = =y In, + DY) Dt ().

By a Schur complement reasoning, (7.88) leads to the following two conditions:

d
AL DX () + Xa(DA() + Y gy Xa(j) + Ch(DCali)
j=1
+ [Xa DG (D) + CL) Dt (D] [y Iy = D)D)
x [G5()X () + D5G)Ca()] < 0, (7.89)
Y21, — D) Dyi) > 0. (7.90)

Consider the following partition of X (i):

L | X MG)

and
S | YGY O NG
Xa )= [N*(i) s |
where X (i), Y(i) € S,‘,’ and M (i), N(i) € R"". Without losing generality, one can
assume that M (i) is invertible for every i € D. Indeed, if M (i) is not invertible for
some i € D, then one can replace X by

0 el,

X, = .
: X"+[51,, 0

] with some ¢ > 0

such that X, > 0, T1; (X,;) < Oforalli € D, and in addition M. (i) = M) +¢l, is
invertible for every i € D. Since X ()N (i) + M(i)S(i) = 0 it follows that N(i) =
—X"())M()S(i), and then N (i) is invertible, too. Let us define

vy 1,
T(’)_[N*(i) 0]‘

It is obvious that T (i) is invertible and
o (V@Y
T ! = * .
© [1,, —Y () (N~'(0))
Then we have

T*()Xuli) = [xlgn M(zi)] (7.91)
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and

(7.92)

T*)Xa T (i) = [Y(i) I }

L, X
From (7.91) together with X (i) > 0 one gets (7.86). By pre- and postmultiplication
of (7.89) by T*(i) and T (i), respectively, one obtains
T+ (X)) TG) <0, (7.93)
where ﬁi (X ) is the left-hand side of the inequality (7.89). Let
A A;.(z’)]
Ay Axn() ]’
where by direct computations, based on (7.89)—(7.92), we have
An(i) = Ag(D)Y (i) + Bo()C.(D)N™ (i) + Y (D) AG(E) + N CI () By (i)
+ [Goli) + (Y()CEG) + N(@CEE) D2, (1)) Do) ]
X [V Iny = DY (D]
x [G5) + D7, (1) (C-(DY () + Do ()C(DHN* ()]
+[Y()CHE) + NGCIG) D2, ()] [C-()Y (i) + Do ()C(N* ()]
d
+Z‘b’j [YOX(HY )+ NOM*(HY @)+ YOMGIN* ()
j=t
+NOXGIN()].
Axi (i) = Ag(i) + X (@D Ao()Y () + X (1) Bo())C ()N (i) + M (i) B(i)Co(i) Y (i)
+M@OAN* () + [XHGoli) + M) Be(i) D} (i) + C2(i) D1y ()]
x [V 1, — D) D2 ()]
x [G3(0) + D}, ()C.()Y (i) + DY, () Doy () Ce(DHN* ()]
+C (@) [C.(DY () + Doy ()CA(HN* ()]
d

+ ai [YOXG)+ NOM*(j)].

j=1
An(i) = A§()X (@) + X (D) Ao(i) + M(i)B.(i)Co(i) + C () B ()M (i)
+[X)Goli) + M) B.() DG (i) + CE(i) D2y (i)
% [¥2Im, — DD ()]
x [G3)X () + Do(i)BI()YM*(i) + D, (1)C-(i)]

AG) = T (Xa) TG) = [

d
+CIHOC) + Y g X ().
j=1

Let us introduce the following notation:
K (i) = M()B.(i),
F(i) = C.(i)N*(i).
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Thus one obtains

An(i) = Ag(HY (i) + Y()AG() + Bo(i)F (i) + F*(i) B3 (i) (7.94)
+[Goli) + (Y()CHG) + F*(i) D2, (1)) D2y ()]
x [y ln, = D2 ()Do(D)]
x [G§(i) + D2, () (C.()HY (i) + D ()F(i))]
+[rHcro) + F*()D2, ()] [C.(HY () + Do () F ()]
d
+Zqij [YOX()HY @)+ NOM*()HY )+ YOMGIN*()
j=l1
+NHX(HN*D],
Az (i) = Ag() + X () Ae(DY (i) + X () Bo())F (i) + K()Co()Y (i)
MO AN (@) + [X()Goli) + K@) D) + Cr i) D2y ()]
x [y2hn, = D5 Dy ()] (7.95)
x [G() + D}, ()C.(DHY (i) + DX, (i) D (i) F (i)]
+C7 () [C.(DHY (@) + D, () F(i)]
d
+2a; [YOXG) +NOM ()],
j=1
An() = Ag()X (@) + X () Ao(i) + K (@) Co(i) + C5()K™ (i) (7.96)
+ [X()Goli) + K () Dy (i) + CH(i)Dy ()]
x [V I, — D5 D ()]
x [GH() X (i) + Do())K* (i) + D2, (i))C,(i)]
d
+Y g X () + CHHC ().
j=1

The condition (7.93) leads to

An() <0, (7.97)
Ap(i) < 0. (7.98)

Using (7.96) and (7.98), by a Schur complement argument (7.84) directly follows.
On the other hand, we may write

Y@OX()HY @)+ NOM*(HY @) + Y OMGN* G + NOXGIN* (@)
=Y [X(G) - MWOX ' GHM (D] Y + Y OMGDX T GHM*G)Y ()
+ NOM* ()Y () + YOMGN*@) + NOXGIN*(0)
=YOY ' DY+ [YOMGP +NOXNH] X' G)
x [M*(HY @)+ XGHN*(D)] .
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Then (7.97) and (7.94) lead to

AoY (@) + YW AG(G) + Bo()F(i) + Fg‘(i)Bg(i)
+[Goli) + (Y()CG) + F*() D%, () Dy (D] [¥2 Ly = D)D)
x [G4(i) + D2, (i) (C:()Y (i) + D= (i) F(i))]
+[Y(O)CHG) + F*()D%, ()] [C.()Y (i) + D (i) F ()]

d
+> g YOY ()Y () <0. (7.99)

j=1

Again using Schur complement arguments, one can easily see that the above inequality
together with (7.90) implies (7.85) in the statement. Thus the implication (i) = (ii) is
proved.

(ii) = (i) Assume that there exist X({) > 0, Y(i) > 0, F(@i), K@), i € D
verifying (7.84)—(7.86). From (7.86) we obtain that X (i) — Y ~'(i) > 0. Consider

o X (i) Y='() - X@)

Then we have
X0 — (Y6 = X0) (X)) = Y'®) " (Y'6) — X))
=XO+Y'O-X@)=r"G>0.
Therefore X (i) > 0. Using (7.87), one obtains the closed-loop system

et (1) = Ag(m(1))xe (1) + @(n(r))v(r),
2(t) = Ca(m(®))xa(t) + Dy ((t)v()

with the coefficients defined as in (7.83). Let

- O (Xe) i (Xa)
H,’ XC — ~*' ol ’
(Xer) |:H,‘_12(XC1) IT; 2 (Xcl)]

where

d
i (Xa) = A5 (DX () + XaDAa) + Y gi;Xa () + ChHCali),
j=1
o (Xe) = X ()G () + CLG) D),
;2 (Xat) = =21y + D) D).

~ . [y I,
T(z)—[y(l.) 0],

Then for
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direct computations give

An() 0 ]

T*(OTL (X)) T = {0 A i)

where

T (Xe) = Tyt (Xe) + T2 (Xet) (P, = D3 D)™ flin (X,
AnG) = Ao)Y (i) + Y () A3(0) + Bo(i)F (i) + Fy (1) By (i)
+[Goi) + (Y()CZ (i) + F*() DL (1)) D2u(D)]
x [y I, = D5 Do ]
x [G() + DX, (C.(DY (i) + Do) F(i))]
+[Y()CHG) + F*()) DL, ()] [C.()Y (i) + Dy (i) F(0)]

d
+) @YY (HY ),

j=1

and 7\22(1’) = Ay (i) as defined in (7.96). From (7.84) and (7.85), by Schur
complement arguments, it follows that

An(i) <0,
An(i) <0,

respectively, and therefore I; (X,) < 0. Moreover, from (7.84) ;/21,,,1 —
D, (i)D,, (i) > 0, which coincides with the condition )/21,,,1 — D4()Dy(i) > 0.
This last condition together with TI; (X&) < 0 leads to an inequality of form (7.88)
for IT; (X.;), which shows that the controller (7.87) is a solution of the DAP and thus
the proof is complete. U

7.5 An H*°-type filtering problem for signals corrupted with
multiplicative white noise

In this section we consider a particular filtering problem in which the measured
output is subjected to multiplicative white noise. Its solution is derived via an H*-
type method based on the Bounded Real Lemma version proved in Theorem 10 of
Chapter 6.

Consider the following linear stable system:

dx(t) = [Ax(¢) + Bu(t)] dt, (7.100)

dyi(t) = Cix(1) (dt + odw(1)),
y(t) = Cox(1),
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where x(¢) € R” denotes the state, u(¢z) € R™ is an input variable, y; € RP1*"
denotes the measured output, y, € RP2*" is a quality output, 0 € R, and w(¢) is a
scalar standard Wiener process. Given y > 0, the problem consists in determining an
n g-order deterministic filter where n s > 0 is given, with the input y; and the output
yr € RP2, having the state-space equations

Xp(t) = Agxs(t) + Byy (1), (7.101)
yrt) = Crxp(t),

such that the resulting system obtained by coupling it to (7.100) is ESMS, and the
input-output operator

T : L2 ([0, 00), R™) — L2 ([0, 00), RP2)

from u > z, where z(t) = y2(¢)— y(r), has the norm less than y.
The solution of this problem is provided by the following result.

Theorem 15. The filtering problem has asolution if and only if there exist the matrices

P.XeS,, XGSnf,P>O X >0, X>0andMeR”X"f such that

A*P + PA +02C*U*XUC, PB ]
[ AT S R (7.102)
A*X + XA+ MUC, + C{U*M* XB ]
+0?CrU*XUC, + C3Cy <0, (7.103)
B*X —y*
X M]
% > 0, (7.104)
rank ([PA;*X _A%D =ny, (7.105)
where
I
[0 . :l if ng > pyand
U= (ny=p)xpr (7.106)

[Inf Onfx(p1~nf)] if ny < p.
Proof. When coupling the filter (7.101) to the system (7.100) one obtains the
resulting system:
dx(t) = [Ax(t) + Bu(t)] dt,
dxs(t) = [Afxp(t) + Cix ()] dt + o By Cix(t)dw(t),
z(t) = Cox(t) — Crxp(1),
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or equivalently

X(t) _ A 0 X([) B
d[Xf(f)] - <[BfC1 Af} [Xf(t):l + [O]M(t)) dt

0 0 x(t)
+ LB.fcl 0] [xf([)]dw(t), (7.107)
i =[C; ¢ [X"f((’t))} .

Let us introduce the following notation:

AO-_—|:BfC1 Af]’ Al:I:O'BfCl 0}’ (7108)

30:[%"},0:[@ —c].

Applying Theorem 10 of Chapter 6 for the resulting system (7.107), it follows that
it is ESMS and its associated input—output operator has the norm less than y if and
only if there exists X > 0 such that

[A(’;X+XA0+ATXA| +C*C  XBo ] -0

e iy (7.109)
0

Further, consider the partition of A’
X M
X - [M* ; } ’

where X € R™*", X e R/ and M € R"/, Then using (7.108), the condition
(7.109) becomes

N Nia N 0

= N5 Ny Ny N
N(X, M, X, A; By, Cp)=|"02 % <0, (7110
( /> Bf f) . N23 —yzl,,, 0 ( )
0 N 0 -,
where
Ni=A*X +XA+MB.C\ +C{BM*
+02CIB}XBCi + C3Cy,
Nia =AM+ C}BIX + MA; - C3Cy, (7.111)
N3 = XB,
No = A%X + XAg,
Noy = M*B,
Noy = ~C7.

Assume that B is full rank. This is not a restrictive assumption since in the case when
the filtering problem stated above has a solution with B non—full rank, then one can
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always find a small enough perturbation of B such that the perturbed matrix B ¢ is
full rank and verifies (7.110). Then, there exists a nonsingular transformation T such

- 1
(”f pl)xpl f

[w O x(mny)] ifr < P1

where £ and W are nonsingular. It follows that applying to B ¢ the nonsingular
transformation

b0 .
|:O I]T ifny > pjor
T ifny < py,

one obtains that B ¢ = U with U given by (7.106). Therefore, without losing
generality, one can choose By = U.
The condition (7.110) can be expressed as

Z4+PQRO+ Q*Q*P <0, (7.112)
where we denoted

I Ml, A*M +CT37§ Nis 0

Z = M*A+XBfCl 0 Na3 0
N N 2, 0 |’

N 0 0 0 —1p,

M* X 0 0
P=l-c; 0 0 _1,,2] Q=[0 &, 0 0], (7.113)

_[Ar

= _Cf].

Using the Projection Lemma (Lemma 7), it follows that (7.112) has a solution € if
and only if

W5ZWp < 0, (7.114)
W5ZWg <0, (7.115)

where Wp and Wg denote bases of the null subspaces of P and Q, respectively.
Further, perform the partition of X! according to the partition of X’:

L[y N
e[l Y]
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With these notations, one obtains that

. _|Y N 0 -vC]
WP‘_O 0 -, 0 }
1, 0 0
0 0 0
Wo=19 1, o
L0 0 I,

Direct algebraic computations using Y~ — X = MN*Y~! show that (7.114) is
equivalent to (7.102), where P = Y~!, and (7.115) is equivalent to (7.103). The rank
condition (7.105) follows Qrectly from the relationship between X and X -1 and it
shows that Y~! = X — M X~ M*. Thus the proof is complete. O

If the necessary and sufficient conditions in Theorem 15 are fulfilled, then a
solution of the filtering problem can easily be obtained by solving the basic LMI
(7.112) with respect to €2.

In the following, we present a numerical example illustrating the above result.
The Instrumental Landing System (ILS) is radioelectronic equipment that provides
aircrafts with on-board, on-line information concerning the aircraft’s position relative
to some glideslope references in the landing phase of the flight. The glideslope signal
is expressed as

igs = Kio, (7.116)

where the multiplicative factor K depends on the glideslope sensitivity and i, denotes
the nominal signal. The offset in the glideslope sensitivity depends on the perfor-
mance category of the ILS. If o denotes the mean square deviation of K, then
P (|IK{t) — Kol < 30) > 0.997, where K; denotes the nominal value of the mul-
tiplicative factor. This probability increases when 0 — 0. Then, taking o = 0.06,
for which 30 = 0.18, one can obtain a maximum deviation from the glideslope sen-
sitivity of 18%, in conformance with international standards (Category II of ILS).
Therefore, the multiplication factor K in (7.116) can be replaced by

K =Ky + o0&, 7.117)

where § is a white noise with unitary covariance. If the altitude dynamics is approx-
imated by x = Ax + Bu with iy = Cx, then according to (7.116) and (7.117), the
glideslope measured signal is i,; = (Ko + 0&) Cx. Thus one obtains a stochastic
system of form (7.100) with the output subjected to multiplicative white noise, for
which a deterministic filter is designed. For A = —1/30, B = 50/30, C; = C, =1,
and Ko = 1, using the result stated in Theorem 15, we obtained for the level of atten-
uation y = 5, the following solution of the system of inequalities (7.102-7.105):
X =1.9457;, M = —0.6692; X =0.3132; P = 0.5161. Solving the LMI (7.112),

—0.4073
= [ 0.4450 }
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and therefore the solution of the filtering problem is given by

&g = —0.4073x; + i,
Yr 04045)Cf

InFigure 7.2a the unfiltered and the filtered signals are plotted. For comparison, we
further determined a Kalman filter for the attitude dynamics by tuning the covariance
matrices Oy and Ry corresponding to the control and to the output additive white noise
perturbations. For Q¢ = 100 and Ry = 0.1, the resulting Kalman filter provides
the results shown in the Figure 7.2b, where the filtered and unfiltered signals are
represented.

Analyzing the numerical results illustrated in the above figure, one concludes,
as is expected, that a filter designed using the specific multiplicative feature of the
stochastic perturbation provides better results with respect to those given by Kalman
filters that are suitable in the case of additive stochastic perturbations.

Notes and references
Most of the results derived in this chapter are presented for the first time. State

feedback H* control for linear systems with multiplicative white noise has been
studied in several works. Among them we cite [99], [9], and the references therein.
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For the time-varying case, corresponding results can be found in [29]. In the Marko-
vian systems situation, the problem has been addressed in [41], [108], and [32] for
the time-varying case. The design problem of a stabilizing y-attenuating controller
for systems with state-dependent white noise is given in [64]. The result derived in
Section 5.4 is inspired from [25]. The H type filtering problem presented at the end
of this chapter has been considered in [109] based on the formulation in [54], where
deterministic filters with the same order as the generator systems are derived.
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