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Preface 

This monograph presents a thorough description of the mathematical theory of robust 
Unear stochastic control systems. The interest in this topic is motivated by the variety 
of random phenomena arising in physical, engineering, biological, and social pro­
cesses. The study of stochastic systems has a long history, but two distinct classes of 
such systems drew much attention in the control literature, namely stochastic systems 
subjected to white noise perturbations and systems with Markovian jumping. At the 
same time, the remarkable progress in recent decades in the control theory of deter­
ministic dynamic systems strongly influenced the research effort in the stochastic area. 
Thus, the modem treatments of stochastic systems include optimal control, robust sta­
bilization, and H^- and //^-type results for both stochastic systems corrupted with 
white noise and systems with jump Markov perturbations. 

In this context, there are two main objectives of the present book. The first one is 
to develop a mathematical theory of linear time-varying stochastic systems including 
both white noise and jump Markov perturbations. From the perspective of this gener­
alized theory the stochastic systems subjected only to white noise perturbations or to 
jump Markov perturbations can be regarded as particular cases. The second objective 
is to develop analysis and design methods for advanced control problems of linear 
stochastic systems with white noise and Markovian jumping as linear-quadratic con­
trol, robust stabilization, and disturbance attenuation problems. Taking into account 
the major role played by the Riccati equations in these problems, the book presents this 
type of equation in a general framework. Particular attention is paid to the numerical 
aspects arising in the control problems of stochastic systems; new numerical algo­
rithms to solve coupled matrix algebraic Riccati equations are also proposed and 
illustrated by numerical examples. 

The book contains seven chapters. Chapter 1 includes some prerequisites con­
cerning measure and probability theory that will be used in subsequent developments 
in the book. In the second part of this chapter, detailed proofs of some new results, 
such as the Ito-type formula in a general case covering the classes of stochastic sys­
tems with white noise perturbations and Markovian jumping, are given. The Ito-type 
formula plays a crucial role in the proofs of the main results of the book. 
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Chapter 2 is mainly devoted to the exponential stability of linear stochastic sys­
tems. It is proved that the exponential stability in the mean square of the considered 
class of stochastic systems is equivalent with the exponential stability of an appropri­
ate class of deterministic systems over a finite-dimensional Hilbert space. Necessary 
and sufficient conditions for exponential stability for such deterministic systems are 
derived in terms of some Lyapunov-type equations. Then necessary and sufficient 
conditions in terms of Lyapunov functions for mean square exponential stability are 
obtained. These results represent a generalization of the known conditions concerning 
the exponential stability of stochastic systems subjected to white noise and Markovian 
jumping, respectively. 

Some structural properties such as controllability, stabilizability, observability, 
and detectability of linear stochastic systems subjected to both white noise and jump 
Markov perturbations are considered in Chapter 3. These properties play a key role 
in the following chapters of the book. 

In Chapter 4 differential and algebraic generalized Riccati-type equations arising 
in the control problems of stochastic systems are introduced. Our attention turns to the 
maximal, minimal, and stabilizing solutions of these equations for which necessary 
and sufficient existence conditions are derived. The final part of this chapter provides 
an iterative procedure for computing the maximal solution of such equations. 

In the fifth chapter of the book, the linear-quadratic problem on the infinite hori­
zon for stochastic systems with both white noise and jump Markov perturbations is 
considered. The problem refers to a general situation: The considered systems are 
subjected to both state and control multiplicative white noise and the optimization is 
performed under the class of nonanticipative stochastic controls. The optimal control 
is expressed in terms of the stabilizing solution of coupled generalized Riccati equa­
tions. As an application of the results deduced in this chapter, we consider the optimal 
tracking problem. 

Chapter 6 contains corresponding versions of some known results from the deter­
ministic case, such as the Bounded Real Lemma, the Small Gain Theorem, and the 
stability radius, for the considered class of stochastic systems. Such results have been 
obtained separately in the stochastic framework for systems subjected to white noise 
and Markov perturbations, respectively. In our book, these results appear as partic­
ular situations of a more general class of stochastic systems including both types of 
perturbations. 

In Chapter 7 the y-attenuation problem of stochastic systems with both white 
noise and Markovian jumping is considered. Necessary and sufficient conditions for 
the existence of a stabilizing /-attenuating controller are obtained in terms of a system 
of coupled game-theoretic Riccati equations and inequalities. These results allow one 
to solve various robust stabilization problems of stochastic systems subjected to white 
noise and Markov perturbations, as illustrated by numerical examples. 

The monograph is based entirely on original recent results of the authors; some 
of these results have been recently published in control journals and conferences 
proceedings. There are also some other results that appear for the first time in this 
book. 



Preface xi 

This book is not intended to be a textbook or a guide for control designers. We had 
in mind a rather larger audience, including theoretical and applied mathematicians 
and research engineers, as well as graduate students in all these fields, and, for some 
parts of the book, even undergraduate students. Since our intention was to provide 
a self-contained text, only the first chapter reviews known results and prerequisites 
used in the rest of the book. 

The authors are indebted to Professors Gerhard Freiling and Isaac Yaesh for fruitful 
discussions on some of the numerical methods and applications presented in the book. 

Finally, the authors wish to thank the Springer publishing staff and the reviewer 
for carefully checking the manuscript and for valuable suggestions. 

October 2005 



Preliminaries to Probability Theory and 
Stochastic Differential Equations 

This first chapter collects for the readers' convenience some definitions and funda­
mental results concerning the measure theory and the theory of stochastic processes 
which are needed in the following developments of the book. Classical results con­
cerning measure theory, integration, stochastic processes, and stochastic integrals 
are presented without proofs. Appropriate references are given; thus for the measure 
theory, we mention [27], [43], [55], [59], [95], [110]; for the probability theory we 
refer to [26], [55], [96], [104], [110] and for the theory of stochastic processes and 
stochastic differential equations we cite [5], [26], [55], [56], [69], [81], [97], [98]. 
However several results that can be found only in less accessible references are proved. 

In Section 1.10 we prove a general version of the Ito-type formula which plays a 
key role in the developments of Chapters 3-5. The results concerning mean square 
exponential stability in Chapter 2 may be derived using an Ito-type formula which 
refers to stochastic processes that are solutions to a class of stochastic differential 
equations. This version of the Ito-type formula can be found in Theorem 39 of this 
chapter. Theorem 34, used in the proof of the Ito-type formula and also in Lemma 22 
in Chapter 6 to estimate the stability radius, appears for the first time in this book. 

1.1 Elements of measure theory 

1.1.1 Measurable spaces 

Definition 1. A measurable space is a pair (Q, T), where Q is a set and T is a 
G-algebra of subsets ofQ; that is, T is a family of subsets A C ^ with the properties 

(i) ^ e T; 
(ii) if A G J^, then Q- AeT; 

(iii) if An eJ=',n>l, then U^^ A„ e T. 

\iT\ and T2 are two a-algebras of subsets of ^ , by T\ v^2 we denote the smallest 
cr-algebra of subsets of ^ which contains the a-algebras T\ and T2-

By i3(R") we denote the a-algebra of Borel subsets of R'̂ , that is, the smallest 
(J-algebra containing all open subsets of R'̂ . 
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For a family C of subsets of ^ , a (C) will denote the smallest a-algebra of subsets 
of Q containing C; a(C) will be termed the a-algebra generated by C. 

If (Q\,G\) and (^2, G2) are two measurable spaces, by Qi (g) Q2 we denote the 
smallest a-algebra of subsets of ^1 x ^2 which contains all sets A x B, A e Qi, 
Be 02. 

Definition 2. A collection C of subsets ofQ is called a TT-system if 
(i) 0 e C, and 

(ii) if A, B eC, then AH B e C. 

The next result proved in [118] is frequently used in probability theory. 

Theorem 1. IfC is a n-system and Q is the smallest family of subsets ofQ such that 
(i) C c G; 

(ii) if A e G, then Q- AeG; 
(iii) An e G,n > I, andAiHAj = (t)fori 7̂  j implies iJ"^^^ e G, then a (C) = G-

Proof Since a{C) verifies (i), (ii), and (iii) in the statement, it follows that 
Gca(C). 

To prove the opposite inclusion, we show first that ^ is a TT-system. 
Let A G e and define G(A) = {B; B e G stnd AH B e 0}. 
Since A - B = Q - [(A n B)U (Q - A)], it is easy to check that G(A) verifies 

the conditions (ii) and (iii), and if A € C, then (i) is also satisfied. Hence for A G C 
we have G(A) = G\ consequently, if A G C and B e G, then AHBeG- But this 
implies G{B) D C and therefore G{B) = G for any B e G- Hence 5 is a jr-system 
and now, since G verifies (ii) and (iii), it is easy to verify that ^ is a a-algebra and the 
proof is complete. D 

1.1.2 Measures and measurable functions 

Definition 3. (a) Given a measurable space {Q, T), a function ii'.T^^ [0, 00] is 
called a measure if: 

(i) n (0) = 0; 
(ii) if An e T,n >\, and A, H Aj = (p for i ^ j , then 

l^{^T=X^n) = Y.^^^^-^-

(b) A triplet (^, ^ , /x) is said to be a space with measure. 
(c) If/ji(Q) — I, we say that /JL is a probability on T, and in this case the triplet 

(^, T, /JL) is termed a probability space. 
A measure p. is said to be a-finite if there exists a sequence An,n > I, An e. T 

with A/ n Aj = (j)for i 7̂  j and Q. = U^j A,, and /x(A„) < oofor every n. 
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Definition 4. Given a measurable space (Q,T), a function f: Q i—> R is said 
to be a measurable function if for every A e B{R) we have f~^(A) e T, where 
/ - i (A) = { a ; G ^ ; / M G A } . 

It is easy to prove that/ : ^ I—> R is measurable if and only if/~^((—oo, a)) G T 
for every of G R. 

Remark 1. It is not difficult to verify that \i{Q.\,T\) and (^2, ^1) are two measurable 
spaces and if / : ^1 x ^2 -^ R is Ĵ i (^^2 measurable, then for each 002 e ^2 
the function (0\ 1—> f{(jo\, 0)2) is T\ measurable and for each oox e Q\ the function 
CL>2 I—> f{cjO\, C02) is J^2 measurable. 

Definition 5. A measurable function f : Q 1—> R is said to be a simple measurable 
function if it takes only a finite number of values. 

We shall write a.a. and a.e. for almost all and almost everywhere, respectively; 
f = g a.e. means /x(/ ^ g) = 0. 

Definition 6. Let (Q, T, \i) be a space with measure /„ : ^ -> R, /i > 1, and 
f : Q ^^ R be measurable functions. 

(i) We say that fn converges to / for a.a. co eQor equivalently lim„_^oo fn = f 
a.e. (fn ^ ' / ) if 

fi Ico; lim f„(co) 7̂  f(co) = 0. 

(ii) We say that the sequence /„ converges in measure io f (fn -^ f) if for every 
6 > 0,we have lim^^oo M{< ;̂ \fn((^) — /(<^)I > 5} = 0. 

Theorem 2. Assume that\imn-^oo fn = f (^-e. and that ii(Q) < 00. Then fn -^ / . • 

Tfieorem 3. (Rieszs theorem) If fn -> / , then there exists a subsequence fn,^ of the 
sequence fn such that lim _̂>oo fik — f •̂̂ - ^ 

Corollary 4. Let (^, JF, /x) be a space with measure such that ii(Q) < 00. Then the 
following assertions are equivalent: 

(i) fn ^ / ; 
(ii) any subsequence of fn contains a subsequence converging a.e. to f. D 

As usual, in the measure theory two measurable functions / and g are iden­
tified if f = g a.e. Moreover, if f : Q -^ R = [—00, 00] is measurable, that is, 
f~\[-oo,a))eT for every a G R and if MCI/I = 00) = 0, then / will be 
identified with a function ^ : ^ -> R defined as follows: 

I f(co) if \f(a))\ < 00, and 
^("^=1 0 if | /M|=oc. 

Theorem 5. If (Qi, J^\, /xi) and (^2, ^2^ M2) <^^^ two spaces with a-finite mea­
sures, then there exists a unique measure ji : J-\^J-2 -^ [0, 00] such that 
/x(A xB) = p^i (A) iX2(B) for all A e T\ and B G ^2- This measure /x will be denoted 
by ii\ X /X2. • 
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1.1.3 Integration 

Theorem 6. Let f >0 be a measurable function. Let us define 

I — 1 
fn{(0)= Y^ - — - X A , „ M , 

where 

A/,„ = \o)'/—— < f(co) < ;;^ ,/ = 1,2, . . . ,2"« , 

and XA(^) is the indicator function of the set A; that is, XA{^) = lif(i>eA and 
XA((^) = 0 if CO e Q — A. Then we have: 

(i) 0< f„ < fn+i andlim„^oo fn((^)^ = f{co), co e Q\ 
(ii) 0 < fl„ < fl«-fi, where a^ = X]?J!^^ ^TTMC^/.^) (^ith the convention that 

0 . oo = Oj. D 

Definition 7. (i) Let f > 0 be a measurable function on a space with measure 
(Q, T, IJL) and fn, a^, n > I be the sequences defined in the statement of Theorem 6. 
By definition an = f^ fnd/x and f^ fd/x = lim„^oo (^n-

(ii) A measurable function f :Q -^ K is called an integrable function if 
f^\f\dfi<oo, and in this case, 

f fdn = f f^dfi - f f-di^, 
JQ JQ JQ 

where 

r = \i\f\ + f); r-^d/l-/)-
(iii) We say that the integral of a measurable function f exists if at least one of 

the integrals f^ f^dfi or f^ f~dfi is finite; if f^ f^djx = oo and f^ f'd/x < oc, 
then by definition, f^ fdii = oo, and if f^ f'^dfx < oo and f^ f~dfi = oo, by 
definition, f^ fdji = —oo. 

Remark 2. It can be proved that the definition of the integral /^ fd^i in Definition 7(i) 
is not dependent upon the choice of the particular monotonic increasing sequence of 
simple measurable functions fn converging to / . If / is a simple measurable function 
with values ci, C2,.. . , c,̂ , then by definition 

/ fdii = y^Ciiiiico; f((o) = c/}). 

It is known that 
(i)\fnfd(,\<f^\f\dn; 
(ii) If / = ^ a.e., then /^ fdfx = f^ gd/i; if A € JF, by definition /^ fdfi 

f^XAfdfi. 
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By LP{Q), /? > 1, we denote the space of all measurable functions / : ^ ^ R 
w i t h / ^ | / | ^ J / x < o o . 

Let us define 

,p-y j^fl'dflY i f / G L ^ 

Regarding the integrable functions we recall the following useful results. 

Theorem?. (Holder's inequality) If f e LP(Q), p > 1, and g e L^(^) with 
1 + 1 = Ithenfg e 0{Q)and 

ll/^lll <ll/ll;,ll^ll,. • 
Taking, in the above theorem, p = ̂ -^ f = \hW g = \, one obtains the following 

result. 

Corollary 8. If iJi{Q) < oo and I < r < s, then h e L^(^) implies h e U(Q) and 
iflJiiQ) = 1, we have \\h\\r < \\h\\s. • 

LP 

Definition 8. Let fn, f e L^.We say that fn-^f in L^ or fn -> f if 

n->oo 
f \fn-lim \fn-f\Pdn = 0, 

Theorem 9. If fn ^ f then fn^f D 

1.2 Convergence theorems for integrals 

Let (Q, T, /x) be a space with measure. The following results are well known in 
measure theory. 

Theorem 10. (Fatou's Lemma) Let fn ^ 0,n > I, be a sequence of measurable 
functions. Then 

/ (lim/«)^M < lim / fndii. D 

Theorem 11. (Lebesgue 's Theorem) Let fn, f be measurable functions and | /„ | < g, 

n > I, a.e. where g is an integrable function. If lim„^oo fn = f ci.e., then fn -^ / , 
and therefore lim„^oo JQ fndli = /^ fdji. • 

Theorem 12. Let fn, f be measurable functions. //" | /„ | < g, « > 1, for some 
IJL O 

integrable function g and fn -^ / , then fn ^^ f- ^ 
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Theorem 13. [26], [55], [106] Let fn, f be integrable functions. Suppose that 
li{Q) < oo and there exists a > 1 such that 

sup / | /„r^/x < oo. 
n JQ 

V fn -^ / , then fn^ f and therefore lim^^oo JQ fndfi = J^ fd/x. O 

Theorem 14. [43], [95] Iff : [a, b] ^^ R is an integrable function, then 

1 f 
lim - / f{s)ds = fit) a.e., t e [a, b]. O 

h^0+ h Jmax{t-h,a} 

Definition 9. Let ii\ and /X2 be two measures on the measurable space {Q,T)\ we 
say that /xi is absolutely continuous with respect to /X2 (and we write /xi <^ /X2) if 
/i2(A) = 0 implies /xi(A) = 0. 

Theorem 15. (Radon-Nicodym Theorem) IfX<^/ji, X(Q) < 00, fji(Q) < 00, then 
there exists a unique (mod fi) integrable function f such that X(A) = f^ f dpi for all 
AeT, D 

Theorem 16. (FubinVs Theorem) Let (Sl\,T\,p\), (^2. ^1^ M2) be two spaces with 
a-finite measures /xi and /X2, respectively. Then we have: 

(d) If f : Q\ y. Q2 -^ ^+ is a measurable function (with respect to T\ 0 ^ 2 A 
then the function (02 \—> JQ f{a)\,(jL>2)dp\ is T2 measurable, the function 
co\ I—> f^ f{oL>\, co2)dp2 is T\ measurable, and 

/ fdipx X M2) = / ( / fi(Ouco2)dp2 ) dpi 

= / ( / f((i)ua)2)dpi]dp2-

(b) A measurable function f : ^1 x ^2 -^ ^ Is integrable (on the space 
(Qi X ^2,^1 (8)^2, Ml X P2)) if and only if 

/ ( / \f(couO)2)\dp2 ] dpi < 00. 
/Q2 

(c) If f : Qi X Q2 -^ R is an integrable function, then: 
(i) For a.a. coi e Qi the function (pi((i)i) = f^ f{co\, <̂ 2)̂ M2 is well defined, 

finite, and measurable and integrable on the space {^1, ^ 1 , /xi}. 
(ii) For a.a. (D2 G ^2 the function (p2{o)2) = f^ f{o)i, (jL>2)dpi is well defined, 

finite, and measurable and integrable on the space {^2. •?̂ 2, l^i}-

(iii) /fiix^2 ^^^^1 ^ ^2) = /^, (pxdpi = f^^ ndl^i^ • 
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1.3 Elements of probability theory 

Throughout this section and throughout this monograph, {Q,J^,P} is a given 
probabiHty space (see Definition 3(c)). 

In probabiHty theory a measurable function is called a random variable and the 
integral of a random variable / is called the expectation of f and is denoted by Ef 
orE{f)Ah^iis,Ef = f^fdP. 

A random vector is a vector whose components are random variables. All random 
vectors are considered column vectors. In probability theory the words almost surely 
(a.s.) and with probability 1 are often used instead of almost everywhere. 

As usual, two random variables (random vectors) x, j are identified if x = y a.s. 
With this convention the space L^(Q, P) of all random variables x with 

£"1x̂ 1 < oc is a real Hilbert space with the inner product (x, y) = E(xy). 
If Xa.aeA is a family of random variables, by a(jc«,QfGA) we denote 

the smallest a-algebra Q C T with respect to which all functions jCa,Qf G A are 
measurable. 

1.3.1 Gaussian random vectors 

Definition 10. An n-dimensional random vector x is said to be Gaussian if there exist 
m G R" and K an n x n symmetric positive semidefinite matrix such that 

for all w G R", where u* denotes the transpose ofu and i := >/—T. 

Remark 3. The above equality implies 

m = Ex and K = E(x — m)(x — m)*. (1.1) 

Definition 11. A Gaussian random vector x is said to be nondegenerate if K is a 
positive definite matrix. Ifx is a nondegenerate Gaussian random vector, then 

P(x eA) = 1 [ ^-iO--')*^"^()^--^)jj 
((27r)^detA:)2 J A 

for every A e 6(R"). 

1.4 Independence 

Definition 12. (i) The cr-algebras T\,T2,... ,Tn,Ti <zT are independent if 

for all Aj G Tj, I < j < n. 
(ii) The random variables (random vectors) JCi, JC2, . . . , JC„ are independent if the 

a-algebras a(x\),a(x2), .. • ,cr(Xn) are independent. 
(iii) The set{x\, X2, ... ,Xn] of random variables (random vectors) is independent 

of the (7-algebra Q, Q d T if the a-algebra cj{xi,\ <i <n) is independent ofQ. 
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Theorem 17. (i) If x\,X2, . •., x„ are independent random variables and if Xi are 
integrable, I < i < n, then the product x\X2 . . . x,j is integrable and E{x\X2- - .Xn) = 
n^Eixi). 

(ii) If the random vectors JCi, JC2, . . . , Jc„, n > 2, are independent, then 
cr(x\, ... ,Xk) is independent ofa{xk+\, . . . , Xn) for every 1 < /: < AZ — 1. D 

1.5 Conditional expectation 

Let ^ C ^ be a cr-algebra and x an integrable random variable. By the Radon-
Nicodym Theorem (Theorem 15) it follows that there exists a unique (mod P) random 
variable y with the following properties: 

(a) J is a measurable with respect to Q, 
(b) £"1̂ 1 < 00, and 
(c) /^ ydP = f^ xdP for all AeQ. 
The random variable y with these properties is denoted by £[x|5] and is called 

the conditional expectation of x with respect to the a-algebra Q. 
By definition, for all A G ^ 

P{A\g)'.= E[xAm and 

£[x |y i , . . . ,y„] := £ [ x | a ( y i , . . . , y j ] , 

where XA denotes the indicator function of A. 
Ifx is an integrable random variable and A G JFwithP(A) > 0, then by definition 

-L E[x\A] := ; xdPA, 
In 

where 

PA-.J"^ [0, oo) by PA(B) = ^ ^ ^ / ^ ^ ^ Vfi e j ^ . 

E[x\A] is called the conditional expectation of x with respect to the event A. 
Since 

PiA) JB 

we have 

E[x\A] = / {xxA)dP = / xdP. 

P(A) J^' ^ '̂ P(A) A 

By definition, 

P(B\A) := PA{B), AeT.B eT. P{A) > 0. 

Obviously, P[B\A]^ E{XB\A). 
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Theorem 18. Let x, y be integrable random variables and Q,H C T, a-algebras. 
Then the following assertions hold: 

(i)E(E[x\G])=Ex; 
(ii) E[E[x\g]\n] = E[x\n] a.s. ifQ D H; 
(iii) E[(ax + Py)\g] =aE[x\g] + PE[x\g] a.s. if a, ^̂  e R; 
(iv) £'[x>'|^] = ^^[xl^] a.s. if y is measurable with respect to g and xy is 

integrable; 
(v) ifx is independent of g, then E[x\g] = Ex\ 

(vi) X > 0 implies E[x\g] > 0 a.s. D 

Remark 4. It is easy to verify that: 
(i) If X is an integrable random variable and y is 3. simple random variable with 

values cu ... ,Cn, then 

Elx\y] = J2 Xy=CjE[x\y = Cj], 
jeM 

where M = {j e {1,2,..., n}; Piy = cj) > 0}. 
(ii) If A e T,gA = [<^,Q, A,Q — A], and x is an integrable random variable, 

then 
F\r\G ^ - 1 X A ^ U I A ] + X^-AE[X\Q - A] if 0 < P(A) < 1, 
^ L X I ^ A J - I Exif P(A) = 0 or P(A) = 1. 

Therefore £'[X|5A] takes at most two values. 

1.6 Stochastic processes 

In this section 7 c R is an interval. Let us first introduce the following definition. 

Definition 13. An m-dimensional stochastic process is a function x : J x Q -^ R^ 
with the property that x(t, •) is a random vector for each t e J. 

Usually we denote a stochastic process by {jc(0, ^ € J},x = {x(t)}tej or x(t), 
t € 7, the dependence upon the second argument co being omitted. The functions 
t ^^ x{t, CO) (with CO fixed) are called the sample paths of the process. 

If m = 1, we shall simply say that jc is a stochastic process. 

Definition 14. (i) We say that the process x = {x{t)]t^j is continuous if for a.a. co 
the functions x{-,co) are continuous on J. 

(ii) X is called to be right continuous if for a.a. co the functions x{',co) are right 
continuous on J. 

(iii) The process x = {x{t)}tej is continuous in probability if tn -> ô ^Ith 
p 

tn,to e J implies x(tn) -> x{to). 
(iv) X is called to be a measurable process if it is measurable on the product space 

with respect to the a-algebra B(J) 0 ^ , I3{J) being the a-algebra ofBorel sets in J. 
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Remark 5. (i) Every right continuous stochastic process is a measurable process. 
(ii) From the Fubini theorem it follows that if jc : 7 x ^ -> R is a measurable 

process and E fj \x(t)\dt < oo, then for a.a. co, fj x{t)dt is a random variable. 

Definition 15. Two stochastic processes x\ = [x\{t)}tej, -̂ 2 = {-̂ 2(0}rey <^re called 
stochastically equivalent if P[x\it) ^ xiit)] = Ofor all t e J. We then say that X2 
is a version 6>/jci. 

Now let us consider a family M = {Mt}tej of a-algebras MtC T with the 
property that t\ < ti implies Mt^ C Mt^-

Definition 16. We say that the process x = [x{t)]t^j is nonanticipative with respect 
to the family M, if 

(i) X is a measurable process; 
(\i)for each t e J,x{t, •) is measurable with respect to the a-algebra Mf. 
When (ii) holds we say that x{t) is A i r adapted. 

As usual by LP{J X Q, R ^ ) , p > 1, we denote the space of all m-dimensional 
measurable stochastic processes jc : 7 x ^ -^ R'". By L^(J) we denote the space 
of all jc G LP (J X ^ , R"") which are nonanticipative with respect to the family 
M = (Mr), t e 7. 

Theorem 19. If for every t e 7, the a-algebra Mt contains all sets M e T with 
P(M) = 0, then L%^(J) is a closed subspace ofLP{J x ^ , R'"). 

Proof Let Xn e L^(J), n > l ,bea sequence which converges tox € L^(7 x 
^ , R^). We have to prove that there exists x e Lj^{J) such that x„ converges to x 
in the space L^(7 x ^ , R^). Indeed, since 

lim / E\x„(t)-x{t)\Pdt = 0, 
»oo 

by Theorem 9 the sequence of functions E\Xn{t) - x(t)\P converges in measure to 
zero. Hence by virtue of Riesz's Theorem there exists a subsequence x„̂  and a set 
N c J with fi(N) = 0 (/x being the Lebesgue measure) such that 

lim E\xn(t) - x(t)\P =0 
n-^oo 

for all ^ G J — N. Let t e J — N be fixed. Again applying Theorem 9 and Riesz's 
Theorem, one concludes that the sequence jc„^(r), A: > 1, has a subsequence which 
converges a.e. to x(t). But x„ .̂(r) are A^^adapted and Mt contains all sets M e T 
with P(M) = 0. Therefore jc(0 is measurable with respect to Mt for each t e J — N. 
Now, define x : J x Q -^ R^ as follows: 

_ |-^(^<^) if t e J - N, CO e ^, 
x{t,(o)-^ 0 ifr G A^and(i;G ^ . 

Obviously x G L^j^(J) and Mnin-^oo fj E\Xnit) - x{t)\Pdt = 0. The proof is 
complete. • 

The next result is proved in [81, Chap. 4, Section 2]. 
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Theorem 20. L r̂ M = {Mt}te[a,b] be an increasing family of a-algebras with 
the property that for each t, Mt contains all sets M e T with P{M) = 0. If 
X = {x(t)}te[a,b] ^s a nonanticipative process with respect to the family Ai and if 
•^ fa 1-̂ (01^^ < cxD, then the process 

y = {y(t)}te[a,bh yW = / x{s)ds 
J a 

is nonanticipative with respect to the family M. • 

1.7 Stochastic processes with independent increments 

Definition 17. An r-dimensional stochastic process x{t), t G [0, oo), is said to have 
independent increments if for all 0 < to < t\ < • • • < t^, the random vectors 
x(to)y x(ti) — x(to), . . . , x(tk) — x(tk-i) are independent. 

Theorem 21. Ifx(t), t >0, is an r-dimensional stochastic process with independent 
increments, then a(x(t) — x{a), t e [a, b]) is independent ofa(x(b -{- h) — x(b), 
h > 0) for alio < a < b. 

Proof Let M be the family of all sets of the form nf^j(jc(r/) — x(a))~\Ai) 
where a < tt < b and A/ e B(W), 1 < / < p, and let J\f be the family of all sets 
of the form H'H^ixib + hi) - x(b))-\Bi), where 0 < /z,, 5/ e B(W), I <i <m. 
Obviously M and J\f are TT-systems and 

a{M) = a{xit) - x(a), t e [a, b]), a(Af) = a{x{b + h) - x(b), h > 0). 

First, we prove that P{M r\N) = P{M) - P{N)\i M e M and N eN. Indeed, let 
M = n^^^(xiti)-x(a))-\Ai), N = nll^(x(b -\- hi) - x(b))-\Bi) with 

a < ti < "' < tp < b, 0 < hi < ' •' < hn, Ai e B(R'), Bi e B(R'). 

Since 

cr(x(ti) - x(a), I <i < p) 

= a(x{ti) - x(a), x(t2) - x(ti),..., x{tp) - x{tp.x)) 

and 

o{x{b + hi) - x{b), I <i <m) 

= cr(x(b + hi) - x(b), x(b + /z2) - x(b -h hi), . . . , 

x{b + hm) - x(b + hm-i)) 

from Theorem 17(ii) it follows that P{M HN) = P(M) - P(N). Further, by using 
Theorem 1 and the equality A — B = A — (AHB) one can prove that P(M H B) = 
P(M) . P(B) if M e M and B e a{x{b + h) - x(b), h > 0). Then, applying 
Theorem 1 again, we prove that P(A n B) = P(A) • P{B) if A € G{M) and 
B 6 G{M). The proof is complete. D 
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Theorem 22. [106] Ifx{t), t > 0, is a continuous r-dimensional stochastic process 
with independent increments, then all increments x{t2) — ^(^i) cire Gaussian random 
vectors. • 

1.8 Wiener process and Markov chain processes 

In the following definitions, / is the interval [0, oo). 

Definition 18. A continuous stochastic process fi = {P(t)]tei is called a standard 
Brownian motion or a standard Wiener process if: 

(i)y^(0) = 0; 
(ii) P(t) is a stochastic process with independent increments; 

(iii) E^it) =0j e I, E\P(t) - p{s)\^ = \t-s\ with t,s e I. 

Definition 19. An r-dimensional stochastic process w{t) = (w\(t),..., Wr(t))*, 
t e /, is called an r-dimensional standard Wiener process if each process Wt (t) 
is a standard Brownian motion and the a-algebras cf{Wi(t), t e I),l < i < r, are 
independent. 

For each r > 0, by Tj we denote the smallest a-algebra which contains all sets 
M e T with P{M) = 0 and with respect to which all random vectors {w{s)}s<t are 
measurable. 

Forr >OMt =cx(w(t-^h)-w(t),h > 0). 
From Theorem 21 it follows that for each t e I,J^t ^^ independent ofUf. 

Remark 6. (i) Since w(t) — w(s) is independent of ^^ if ̂  > 5 (see Theorem 21), 
from Theorem 18(v) it follows that 

E[(w{t)-w(s))\Ts]=0, (1.2) 

E[iw(t) - w(s)){w{t) - w(s)y I Ts] = Irit -s), t > s, a.e. 

(ii) The increments w(t) — w(s), t ^ s art nondegenerate Gaussian random 
vectors (see Theorem 22 and (1.1)). 

The converse assertion in (i) is also valid. 

Theorem 23. [52], [81] Let w(t), t > 0, be a continuous r-dimensional stochastic 
process with w(0) =0 and adapted to an increasing family of a-algebras J^t^t > 0, 
such that (1.2) hold. Then w(t),t > 0, is a standard r-dimensional Wiener process 
and all increments w(t2) — w (̂̂ i), 2̂ # ti, are nondegenerate Gaussian random 
vectors. D 

Theorems 22 and 23 will not be used in this book, but they are given because they 
are interesting by themselves and they give a more detailed image of the properties 
of these stochastic processes. 
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Definition 20. A family P{t) = [pij{t)], t e (0, oo), ofd x d matrices is said to be 
a transition semigroup if the following two conditions are satisfied: 

(i) For each t>0, P(t) is a stochastic matrix, that is, 0< pij{t) <l and 

Ei= iA7(0 = l, l<i<d. 
(ii) P(t+s) = P(t)P(s)forallt > 0, ^ > 0. 
The equality (ii) is termed the homogeneous Chapman-Kolmogorov relation. 

Definition 21. A stochastic process r]{t),t e [0, oo), is called a standard homoge­
neous Markov chain with state-space the set D = {1, 2 , . . . , J} and the transition 
semigroup P(t) = [pij{t)], t > 0, if: 

(i) r]{t, 0)) e Vfor all t > 0 and co e Q; 
(ii) P[r](t + h = j)\r](s),s < t] = Pr^(t)j(h) a.s.forallt >0,h>OJe V; 
(iii) lim/^^o+ ^ ( 0 = h^h is the identity matrix of dimension (d x d); 
(iv) r]{t),t > 0 is a right continuous stochastic process. 

In fact, the above definition says that a standard homogeneous Markov chain is a 
triplet {r](t), P(t), V) satisfying (i)-(iv), P{t), t > 0, being a transition semigroup. 

The next result is proved in [26]. 

Theorem 24. The standard homogeneous Markov chain has the following properties: 
(i) P{r](t + h) = j\rj(t) = i] = pijQi) for all ij e V,h > 0,t > 0 with 

P{ri(t) = i] > 0. 
(ii) P{ri(t + h) = j\r]is),s < t} = P[r](t + h) = j\r]{t)lt >0,h>0, 

j e V, a.s. 
(iii) Ifx is a bounded random variable measurable with respect to the a-algebra 

crirjis), s > t), then E[x\r]{u), u <t] = E[x\r]{t)], a.s., t > 0. 
(iv) r](t) is continuous in probability. 
(v) Pii(t) > Ofor all i eV,t >0. 
(vi) limt^ooP{t) exists. 

(vii) There exists a constant matrix Q such that P{t) = e^^, t > 0, Q = [qij] is 

a matrix with qtj >Oifi ^ j and Xlj=i ^ij = 0 - ^ 

In fact (ii) follows from (iii) since Xr){t+h)=j is measurable with respect to the 
(J-algebra a(^(w), u > t). 

The assertion (iii) in Theorem 24 is termed the Markov property of the process r]{t). 
The fact that a transition semigroup P{t)t > 0, with the property that lim _̂̂ o+ 

P(t) = I^ admits an infinitesimal generator Q {P(t) = e^\t > 0) follows from the 
general theory of semigroups in Banach algebras [63], but in the theory of Markov 
processes a probabilistic proof is given in [16], [26], [55]. 

We assume in the following that TTI := P[r]{0) = /} > 0 for all / e V. 

Remark 7. From the above assumption and from the equality 

d 

P{r]it) = i] = ^7 r ,P{^ ( r ) = i\r]iO) = j}, 
7 = 1 

we deduce that P{r]{t) = i} > TCipait) > Oj >0J eV. 
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In the following developments ^r, ^ > 0, denotes the family of a-algebras Qt = 
(j(r](s)', 0 < s <t) and Vr, r > 0 is the family of a-algebras Vt = (j{r]{s), s > t). 

1.9 Stochastic integral 

Throughout this section and throughout the monograph we consider the pair 
(w(t),r]{t)),t > 0, where w(t) is an r-dimensional standard Wiener process and 
ri(t) is a standard homogeneous Markov chain (see Definitions 19, 21). Assume that 
the (J-algebra J^t is independent of Qt for every r > 0, where Tt and Qt have been 
defined in the preceding section. 

Denote by Ht :=Tt'^GtJ > 0. 
Letg = a(r]{t),t > 0). 

Theorem 25. For every t > 0, J^t is independent of Q and Ut is independent of 
Tt V Q. Therefore, Ut and Ht are independent a-algebras for every t > 0. 

Proof First one proves that J^t is independent of Qs for alU > 0, s > 0. Indeed, 
ift < ^ we have Tt C Ts and since JF̂  is independent of Qs it follows that Tt and Ts 
are independent a-algebras. Similarly one proves that t > s. 

Now let Mo be the family of all sets of the form Piĵ ĵ {̂ (f̂ ) = ik), with tk > 0, 
tk y^te,ifky/^i and ik ^^A <k <m, 

M = {A; A e Mo or A = &}, Xt = {G n F; G e g, F e Tt}, 

and St be the family of all sets of the form nf^|(u;(r + hi) — w{t))~\Bi) with 
hi > 0, Bi e B(W), I < i < p. Obviously M, Aft, and St are jr-systems and 
cr(M) = g, a{Nt) = TtVg, and a(St) = Ut. 

Define g(F) = [G e §; P(G n F) = P(G)P(F)} for each F e Tt. Since Tt 
is independent of ^^ for all ^ > 0, it follows that M C g(F). By using the equality 
F — G = F — (FOG) one verifies easily that g(F) satisfies conditions (ii) and (iii) 
in Theorem 1. Thus, by virtue of Theorem 1, 5(F) = ^ for all F e Tt and thus the 
first assertion in the theorem is proved. 

further, if 5" eSt,H eAft, H = Gr\F, G eg, F e J^„ since j ; is independent 
of g for every u >0 and Ut is independent of Tt (see Theorem 21), we have 

p(S n //) = P(5 n G n F) = P(G)P(S n F) 

== P(G)P(S)P(F) = P{S)P(H). 

Therefore, by using Theorem 1, one gets P{U (1 H) = P(U)P(H) for all U eUt, 
H e Aft and applying Theorem 1 again, one concludes that P{UnV) = PiU)P{V) 
if U eUt, V e TtV g. The proof is complete. D 

If [a,b] C [0, oo) we denote by L̂ f̂ ĵ ,[fl, Z?] the space of all nonanticipative 
processes f(t), t e [a, b], with respect to the family H = (Ht), t e [a, b], with 
Ef^'f'P(t)dt<oc. 
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Let ^ G { 1 , . . . , r} be fixed and let p{t) = Wk{t), t > 0. 
Since the family of a -algebras Ht,t e [a,b], has the properties used in the theory 

of the ltd stochastic integral, namely: 
(ei)Hty C nt2 ifti < t2\ 
(b) G{p{t + h)- ^ (0 , /z > 0) is independent of ? ,̂ (see Theorem 25); 
(c) ^{t) is measurable with respect to Ht\ 
(d) H t contains all sets M e T with P(M) = 0 for every t > 0, 

we can define the Ito stochastic integral f^ f(t)dp(t) (see [52], [55], [81], [97], [98]) 
wi th / eLlJa,b]. 

Definition 22. A stochastic process f(t), t e [a, b], is called a step function if there 
exists a partition a = to < t\ - • - < t^ = b of [a,b] such that f{t) = f(ti) if 
t e [tiJi^i), I <i <m - I. 

If f is a nonanticipative step function, by definition 

f{t)d^{t) = Y. /(^/)()^te+i) - i^(^'))-

Further, let us remember some properties of the integral /^ f(t)dp(t) that are 
proved in [52]. 

Theorem 26. If f e L^ ^[a, b] we have the following properties: 

(i) There exists a sequence fn of step functions in L^^[a,b] such that 

^ fa \fn(0 — f(t)\^dt -> 0 and the sequence f^ fn(t)dP(t) is convergent in 

probability; its limit is by definition f f(t)dfi(t). 

(ii) E [f^ f(t)dp(t)\Ha] = 0 and therefore E [/j^ f(t)dp(t)\ri(a) = /] = 0, 
V. 
(iii) E [(f^ f(t)dp(t))^\na] = E [fl; f\t)dt\na] and therefore 

i eV. 

rb \ 2 
(j f{t)dp{t)\ L{a) = i\=E\J fHt)dt\r](a) = i J eV. 

(iv) If^ is a bounded random variable measurable with respect to Ha, then 

f ^f(t)dp(t)=^ [ f(t)dPit). 
J a J a 

(v) The process x(t) = f^ f{t)d^{t), t G [a, b\ admits a continuous version 
and x(t) is Ht adapted. D 

Theorem 27. Let f e Lr^%[a, b] where p is a positive integer Then 

E(J f(t)dfi{t)\ < p(2p - inb - ay-'E (j fiDdtV • 
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Remark 8. (i) Since almost all sample paths of a Brownian motion have infinite vari­
ation on any finite interval (see [52]) the stochastic Ito integral cannot be defined 
in the usual Lebesgue-Stieljes sense, with co fixed; therefore the assertion (iv) in 
Theorem 26 is not trivial and it must be proved. 

(ii) The stochastic Ito integral can be defined for nonanticipative functions / with 

the property /^ \f{t)\dt < oo a.s., but the equalities in (ii) and (iii) of Theorem 26 

hold if ^ / j '1 / (01^^^ <oo. 

Remark 9. The proof of assertion (i) in Theorem 26 shows (see also Lemma 6.2, 
Chapter 4, in [52]) that if / G L^([a , b]) where the increasing family M of a-
algebras has the property in Theorem 19, then there exists a sequence /„ of step 
functions /„ e L]^([a, b]) such that lim^^oc E f^ \fn - f\^Pdt = 0. 

The next result has been proved in [80]. 

Theorem 28. / / / e LlJa, b] we have E [xnib)=^i fa fiOdPiOlHa] = Ofor every 

i e V. 

Proof. We prove first that if / 6 L^ ^[«,/?] is a step function, then 

(/„.,=,/ b 

fit)dpit))=0. 

Indeed, let f(t) = ^ ^ ^ J f{tk)X[tkJk+ih fih) being measurable with respect to W^̂ . 
Since Ht,^ v a(r](b)) C J;^ v ^ b y Theorem 25, it follows that yS(r̂ +i) - P(tk) is 
independent of the a-algebra 7Y/̂  v a(ri(b)), and thus by Theorem 18(v) one gets 

E[W(tk^i) - m))\nr, va(r](b))] = Emu^x) - Pit,)) = 0. 

Hence, by using the properties of the conditional expectation (see Theorem 18), one 
can write 

/

b w - 1 

f{t)dp{t) = J2 Ex,ib)=i f(k)mh^i) - m)) 
k=\ 
m-\ 

= J2 E{E[x,ib)=if{k){p{t,^x) - Pitk)) k=i 

\nr,vcj(r](b))]) 
m-\ 

= J2 E(x,^,^=if(tk)E[(Pitk+,) - P(tk)) 
k=\ 

\nkVcr(r]{b))]) 

= 0. 
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Further, by Theorem 26, let f„ be a sequence of step functions in L'^^[a, b] with 

E fa \fn(t) - f{t)?-dt -^ 0. We have by virtue of Corollary 8 and Theorem 26 

E(xm=ij f(Odp(o)\ = \E\x,ib)=i(j f(t)dp(t)-j fn(t)dp(tyj 

<E\ (Mt)-f(t))dm\ 
\Ja I 

'(f (Mt)-f(t))dpi 

= IEJ (MO-fiOfdt 0 for n -> oo. 

Hence 

Ex 
J a 

f(t)dfi(t)=0. (1.3) 

Let § be a bounded random variable measurable with respect to Ha. 
Then it follows that ^ / e L^ ^[a, b] and hence (1.3) gives 

EXriib) 
J a 

^f{t)dfi{t) = 0. 

But, according to Theorem 26(iv), we can write 

EXn(b)=i^ I f{t)dHt) = Exn(b)=i f ^f(t)dp{t) = 0. 
Ja J a 

Hence, by Theorem 18 we have 

El$E 
Ja 

f(t)dfi(t)\na ^E(E Uxnib)=i j ^ f{t)d^{t)\nA\ 

= E Uxn(b)=i I f(t)dm 
L ^a 

Taking in the above equality § = XA. ^ ^ '^a, we get that 

xm=i f f(t)dm\na]=o a.s., 

= 0. 

and the proof is complete. D 

Further, let a = {a^i) be an n x r matrix whose elements are in L'^ ^[a, b]. Then 

the stochastic integral f^ o(t)dw{t) is an n-column vector whose /:'s component is 
given by 

rb 

ou{t)dwt{t), \ <k <n, 
t=\ 

where the integral /^ Okt{t)dwi{t) is the Ito integral for P = we with respect to the 
family of a-algebra Hf. 

Here w(t) = (w\(t),..., Writ))*. 

f ob 

E/ ̂ « 



Preliminaries to Probability Theory and Stochastic Differential Equations 

Remark 10. From Theorem 26 it follows directly that if ^ is a bounded random variable 
measurable with respect to Ha, then 

§ / G{t)dw{t) = / ^G{t)dw{t) a.s., 
J a J a 

the elements of (7(0 being in Lt ^[a, b]. 

The next result follows from Theorem 26 and it can be found in all books 
containing the theory of the stochastic Ito integral. 

Theorem 29. If the elements ofa(t) are in L^ri.uX^^ ^ 1 ' ^^^^ 

J a 

h |2 /? 

f cr(t)dw(t)\ ^E f \\a 
J a I J a 

where 

(t)dw(t) = 0 and E / a(t)dw(t) 

\\ait)f = J^'^kA^^ = Tr{G\t)a{t)). 
k,t 

r{t)fdt^ 

D 

Theorem 27 implies the following result directly. 

. 2 / 7 
Theorem 30. If all elements of the matrix a {t) are in Lr^ u)[a, b], p being a positive 
integer, then 

/

b \^P nb 

G{t)dw{t)\ <nr[p(2p-l)]P(b-ay-^J2^ ol^^{t)dt. D 
Applying Theorems 29 and 30 for Xri{a)=i • ô  and taking into account Remark 10, 

one gets the following results. 

Theorem 31. Under the assumption of Theorem 29 we have 

\J a 

{t)dw{t) I riia) = i 

(t)dw(t) rjia) = i 

= 0, 

= E (t)fdt\r](a) = i 

for all i e V. 

Theorem 32. Under the assumption of Theorem 30 we have 

D 

(t)dw(t) ri(a) = i 
\ " 
\J a 

< nr\p{lp - \)Y{b - ay-' Y^E\{ a^^,(t)dt \ r]{a) = (1 
I. p Ua J 

for all i € T>. D 
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Definition 23. Letx{t), t e [̂ o, T\ be an n-dimensional stochastic process verifying 

x{t) — x{tQ) = I a(s)ds + / a(s)dw(s), a.s. if [t{)T], 
JtQ JtQ 

where a = {a\,..., anT, o = (cfki) with l<k<n,l<l<r, andak, ou being in 
L^^[^, T]for all k and i. Then we say that x{t) has a stochastic differential dx{t) 
given by 

dx(t) = a{t)dt + a{t)dw(t), t e [to, T]. (1.4) 

Obviously if x{to) is measurable with respect to HtQ and E\x(to)\^ < oo, the 
above stochastic process x = (x(t)),t e [to, T], is a. continuous process and x e 

LlJto, n 
Theorem 33. (ltd's formula) Let v{t, x) be a continuous function in (t, x) e [0, T] x 
R" together with its derivatives Vt,Vx, Vxx- Jfx(t) verifies (1.4), then 

[dv /dv Y 
dv{t,x{t))= •^(^'•^(^))+l ^(^'•^(^))) ^W 

+ -Trcr%t)-^(t, x{t))(j(t) dt 
2 dxax J 

+ f^(t,xit))\ a(t)dw(t), 

a.s., ift e [to, T]. D 

1.10 An Ito-type formula 

We are interested in the following to obtain an Ito-type formula for (1.4) with functions 
v(t,xj),i eV, rather than v{t,x), namely for functions depending upon the states 
/ of the Markov process r](t). 

Since Ht incorporates properties of r;(0, we would like to exploit the properties 
of both w(t) and r](t). This fact will be more clear in the following developments 
when stochastic differential equations with Markovian jumping will be investigated. 

A strong argument for considering functions v(t,x,i) instead of v(t,x) is that 
the Ito formula for the function v{t,x) (Theorem 33) does not retain the fundamental 
elements of the process r]{t) as pijit) and qtj. 

We must emphasize the fact that by contrast with the Ito formula given in Theorem 
33, which is valid for a.a. co e Q, when considering functions v(t, x, i) we cannot 
expect to obtain a similar formula for i;(f, x(t), r](t)) holding a.s. This is due to the fact 
that the coefficients qij are strongly related by considering the conditional expectation 
with respect to the events {r](t) = i). 

In order to prove an Ito-type formula for functions i; (r, x, /), we need the following 
result, which is interesting by itself. 

Let us denote 7̂ ? = Z//? v Vr, r > 0, where the a-algebras Ut and H are as defined 
in Section 1.8. 
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Theorem 34. If^ is an integrable random variable measurable with respect to IZt, 
that is, ^ e L^Q.Ur, P), then Ei^lHt] = E[^\ii{t)]a.s. 

Proof. The proof is made in two steps. In the first step we show that the equality 
in the statement holds for ^ = XB for all B elZt, and in the second step we consider 
the general situation when ^ is integrable. 

Step 1 Define z = E[^\r](t)]. We must prove that 

EizxA) = E(^XA)^Aenr. (1.5) 

First we shall prove that (1.5) holds in the particular case when ^ = XMXN, 

M eUt,N eVt. 
Let M be the family of all sets A e J^ verifying (1.5). It is obvious that M verifies 

(ii) and (iii) in Theorem 1. 
Let C = {F n G; F G J?>, G e Qt); it is easy to check that C is a TT system. We 

show now that C C Al.Indeed, let F e Tt,G eQt\ we must prove that £'(ZXFXG) = 
E(^XFXG)' But since XM is independent of {XN,r)(t)} (see Theorem 25) we can write 

[ E(xM)E[xN\ri(t)]dP = EixM) [ E[xN\ri(t)]dP 
J{r]it)=i} J{T]U)=i} 

= E(XM)E(XNXrj{t)=i) = E(XMXNXm=i) 

= / XMXNdP. 
Ar](t)=i} 

Hence z = F(XM)F[XA^ 1^(01 (in our case z = E[xMXN\r]{t)]). 
From Theorem 24(iii) we have E[xN\r](t)] = EIXNIGI]' 

Further, since XM is independent of {XF.XCXN} and XF is independent of 
(XG. E[xN\^(t)]} (see Theorem 25), we can write, applying Theorems 17 and 18, 
that: 

E(^XFXG) = E(XMXNXFXG) = E(XM)E(XNXFXG) 

= E(XM)E(XF)E{XNXG). 

E(ZXFXG) = E(xM)E(xFXGE[XN\r]{t)]) 

= E(xM)E(xF)E(xGE[xN\ri(t)]) 

= EixM)E{xF)E(xGE[xN\Gt]) 

= (ExM)iExF)E(E[xGXNm) 

= E{XM)E{XF)E{XNXG)' 

Thus we proved that C <Z M. Hence by Theorem \o{C) (Z M. But a(C) = 'H ,̂ 
thus EixMXNmt] = E[xMXN\r]{t)] for all M eU,,N e H. 

Now let A/" be the family of^5 € J* with F[xfi|W,] = ElxBlrjiO]^ 
We know that Af contains C = {Mr)N,Mel/(t,Ne H}. C is a TT system and 

since J\f verifies (ii) and (iii) in Theorem 1 it follows that Af D cr (C) = IZt. 
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Step 2 First assume that § > 0; by Theorem 6 there exists a sequence of simple 
random variables ̂ „ {co) with the properties 0 < §„ < §,j+i; Hm„^oo §« (<̂ ) = ?(< )̂ and 
§„ are measurable with respect to 7^/. For each « > 1 wehave£'[§„|Wr] = E[^n\^(t)]. 

Applying Theorem 11, the equality in the statement is valid in the case when § is 
nonnegative, integrable, and measurable with respect to IZt. 

In the general case we can write ^ = ^+ — §~, where §"̂  = |(l?l + ?) and 
^ - z= 1(1^1 - §), §+ > 0, ^" > 0, and thus the equality in the statement takes place 
for "̂̂  and ^" and therefore, according to Theorem 18, the proof is complete. D 

Theorem 35. (Ito-type formula) Let us consider a = (^ i , . . . , (2„)* with au e L^^ x 
(ltoT]),l<k<n, (j = [(Jij]i<i<nA<j<r ^ith GijeL]^{[tQ,T]) and ^ an 
n-dimensional random vector HtQ measurable with E\^\^ < oo and let the function 

vit, X, i) = x*K(t, i)x + 2A:*(r, i)x + ^o(^ 0, 

where K : [̂ o, T] x P ^ R"^«,/^ = K\k: [/Q, T] x P ^ R \ ô : [^, r ] x i : > ^ R 
are C^-functions with respect to t. Then the following equality is true: 

(v(t,. x{t),r](t))-vitQ,^,i)]\il(to) 

= E (s, x{s), r]{s)) + a {s)^—(s, x{s), T]{S)) 
ax [{IS' 

+Tr{a*(s)K{s, r](s))a(s)) + ^ v{s, x(s), j)qn(s).j \ds\T](to) 

(1.6) 

for all i e V and for the stochastic process x(t), t e [to, T], verifying 

dx{t) = a{t)dt -{-o{t)dw{t),t e [to, T], andx{to) = §. 

Proof The proof consists of three steps. 
Step 1 Assume that §, a, a satisfy the assumption in the statement and additionally 

§ is a bounded random vector a, a are bounded on [̂ o, T] x ^ , and a(t),a(t) are, 
with probability 1, right continuous functions on [ro, T]. 

Under these assumptions, applying Theorem 30, we deduce that 

sup E\x{t)\^'' < 00 

for aWk eN,k > 1. We can write 

v(t + h, x(t + /z), r](t + h)) - v(t, jc(r), rj(t)) 

= vit + h, x(t + h), r]{t + h)) - v{t, x{t), r]{t + h)) 

-\-v(t, x(t), r](t + h)) - v(t, x(t), r](t)) 
d 

= J2 Xri(t+h)=j(v(t + /i, x(t -h h), j) - v(t, x(t), j)) 
7 = 1 

+l;(^ x(t), r]{t + h)) - v{t, x(t), r](t)), 

where XM is the indicator function of the set M. 
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For each fixed j e V, we can apply the ltd formula (Theorem 33) and obtain 

v{t + /z, x{t + h), j) - v(t, jc(0, j) 

mj(s)ds -f 2 / (jc*(5)/^(5, 7) + r ( 5 , j))ais)dw{s), 

where 

mj{s) = xHs)k(s, j)x(s) + 2k*{s, j)x{s) + ko{s, j) + 2x*(s)K(s, j)a(s) 

+ 2 r (5, j)a(s) + rr(a*(5)/^(^, j)a(s)). 

j e V. Using Theorem 28, we deduce that 

r c^^^ 
Xrj(t+h)=j / [ [xHs)K(s^ j) + r ( ,̂ 7)]or(5Mu;(5)|H, = 0. 

Hence 

Xr]{t+h): 

nt+h 

-1. ' {x\s)K{s. j) + r ( 5 , j))G{s)dw{s)\r]{to) = i = 0, 

and finally we deduce 

E[{v{t + h, x{t + /z), r?(r + h)) - v(t, jc(r), r]it + /i))h(ro) = /] 

mj(s)ds\ri(to) = i 
7 = 1 -

(1.7) 

mj{s)ds = nijit), t e [to, T), j e V. 

It is obvious that mj(s) is, with probability 1, right continuous, and hence we 
have 

lim -
h\Qh 

Since iri{t) is right continuous we can write 

1 r'+^ 

^\o /z 7̂  

On the other hand, since sup̂ ^̂ ^̂  ̂ ĵ £'|jc(OI^ < 00 we obtain that there exists 
^ > 0 (not depending upon t,h) such that: 

-^Xr]{t+h)= 

nt+h 

(s)ds <iS. 

Thus, from (1.7) and (1.8) and Theorem 13, it follows that 

lim -rE[(v(t + /z, x{t + h), r](t + h)) - v(t, x(t), rj(t + h)))\r](to) = i] 
h\0 h 

r 

^^E[x„(,)=jmj(t)\r]{to) = i] = E[mit)\ri(to) = i]. (1.9) 
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t e [to, r ) , / G V, where 

m(t) = x\t)k{t, r]{t))x{t) + 2k{t, r]{t))x{t) + ^o(^ ^7(0) 

+2{x\t)K{t, r]{t)) + r (r, ry(r))]fl(0 + Tr(aHt)K(t, ri(t))a(t)), 

where A'Cr, ri(t)) = fjK(t, r]{t)). Further, by using Theorem 18, we can write 

E[(v(t, x(0, ri(t + h)) - v(t, x(t), r](tmr](to) = i] 

= E J2 Xri(t+h)=jV(t, x(t), j) - u(r, x(t), r](t)) \r]{to) = i 
KJ=^ 

(1.10) 

7 = 1 

-E[v{t,x{t),r]{t))\r]{to) = il 

By virtue of Theorem 34 we have 

E[Xr^i^t+h)=j\Ht] = E[Xr^(^t+h)=j\ri{t)] = Pr^(t)j(h). 

Hence from (1.10) and (1.11) we have 

E[(vit, xit), r]it + h)) - v(t, x(0, r](t)))\r]ito) = i] 

(1.11) 

J2 (^(^ ^ (0 , 7) - v(t, x(t), rj(t)))pr^^r)jih)\r]{to) = i 

Recall that P{h) = [pij(h)] = e^\h >0, with ^^^ j qij = 0. Applying Lebesgue's 
Theorem we obtain that 

lim yE[(v(t, x(t), r](t + h)) - v(t, x(t), r](tmr)(to) = i] (1.12) 
h\0 h 

a 

= ^ E[v(t, xit), j)qrj(t)j\r](to) = / ] . 
7 = 1 

Combining (1.9) with (1.12) we conclude that 

1 
lim -E[(v(t + h), x(t + /i), r](t + h)) - v{t, x(t), r](t)))\r](to) = i] 

d 

h\0 h 

= E m (t) + J2 ^(^ -^(0' J)^n(t)j I l̂ (̂ o) = i 
7 = 1 

Denote 
Gi(t) = E[v{t, xit), ii(t))\r](to) = / ] , / e V, 
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hiit) m{t) + Y^ v(t, x(t), j)qrj(r)j \r](to) = i 

y=i 

Since sup̂ f̂̂ ĵ̂ j E{m{t)-\-Y!.^^ v{t,x(t), j)qr]{t)j)^ < oo, it follows by Theorem 13 
that hi(t) is right continuous and therefore 

/ • 

1 r^ 
lim - / hi{s)ds = hi{t), t e [to, T). 
h\o h 

Hence 

\im-[G^{t + h)-Gi(t) 
h\0 h * 

-j h,{s)ds\ hi(s)ds ) =0,t e [to, T), i e V. (1.13) 

Since the process r]{t) is continuous in probability (see Theorem 24) it follows by 
using Corollary 4 that v{t, x{t), r]{t)) is continuous in probability. 

Having sup̂ ^̂ ^̂  ŷj E\v{t,x(t), ri(t))\^ < oo it follows from Theorem 13 that 
Gi(t), i G 2 ,̂ is a continuous function, and thus from (1.13) we conclude that 

G.(0 ^/(^o)= / hi {t)dt,t G [to,Tli eV, 

and so the equality (1.4) holds. 
Step 2 Assume that § is 7Y/Q-measurable; £"1̂ 1̂  < oo; a, cr are bounded on 

[to, T] X Q\ and a(t), a(t) are 7^;-adapted. Let 

akit) 

Ok{t) 

= k I a 

t/maxjr-T./Of 

{s)ds, 

is)ds. 

It is obvious that a^ and a^ are continuous (with probability 1), bounded on [to, T]xQ, 
and H/-adapted (see Theorem 20). From Theorem 14 and from Lebesgue's Theorem 
it follows that 

lim [ {\ak{t)-a(t)\^^\\ak(t)-a(t)f)dt = 0 (1.14) 
^^~ J to 

and applying Lebesgue's Theorem again we have 

lim £ f {\ak(t)-a(t)\^ + \\ak(t)-a(t)f)dt=0. 
^ ^ ^ J to 

From Lebesgue's Theorem it follows that 

lim E\^k-^r=0. 
k-^oo 
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It is easy to verify by using Theorem 29 that sup,̂ ^̂ ĵ̂ j E\x(t)\^ < oo and 

sup E\xk(t) - x(t)\^ < 3E 
te[to,T] 

l?^-?r + (r -to) I \ak{t)-a{t)\^dt 

^\\ak{t)-G{t)rdt\,k> 1, 

where 

Xk=^k-\-l ak(s)ds + I cfk(s)dwis). / ak(s)ds + / 
JtQ JtQ 

Applying the result of Step 1 for each /: > 1 we obtain 

E[ivit, Xk(t), r](t)) - v(to, ^k. i))\r]{tQ) = i] (1.15) 

= E f 
JtQ 

x;(s)K{s, r]{s))xk{s) + 2k*{s, r](s))xk{s) + ko(s, r](s)) 

+ 2 {x;is)K(s, r](s)) + k%s, r](s))) a,(s) + Tr(a^(s)K(s, rj(s))ak(s)) 

d "I ^ 
+ ^ v(s, Xk(s), j)qr^(s)j ds\r](to) = i 

Taking the limit fork ^^ oo we conclude that (1.4) holds. 
Step 3 Now consider that ^, «, a verify the general assumptions in the statement. 

Define 
hit) = a{t)x\a{t)\<k. 

dk{t) =G{t)X\ait)\<k' 

Applying Lebesgue's Theorem it follows that Uk and dk verify an equality of type 
(1.14). On the other hand it can be proved by using Theorem 29: 

sup E\xk{t) - Jc(Or < 2E [/>- to)\ak{t)-a{t)\' + \\dk{t)-G{t)rdt 

where 

/ ak{s)ds + / ( 
JtQ JtQ 

Xk(t) = ? + / cik{s)ds + / Gk{s)dw{s) 

Now, applying the results from Step 2 for §, ak, G^, Xk we obtain an equality of 
type (1.15) with ^ ,̂ ak, Gk, x^ replaced by §, ak, G^, Xk. 

Taking again the limit for ^ ^^ oo we conclude that (1.4) holds and the proof is 
complete. D 

Remark 11. (i) The proof of Theorem 35 has been performed in several steps, since 
only poor information is available concerning a and G, namely that their elements are 
inL^^([/o,r]) . 
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(ii) The particular form for i;(r, jc, /) is essentially used when making /: ^- oo in 
Steps 2 and 3 of the proof. 

(iii) The proof shows that the result is true for functions v(t,x,i) in C^ with 
respect to t and in C^ with respect to x; the functions v(t, x, /), |^(r, x, /), and 
^(t,x,i) have increments with respect to x of the same type as the increments of 

the quadratic function used in the theorem. Moreover, ^ ^ ( ^ ^ , 0 niust be bounded 
on [to, r ] X R" X D. 

1.11 Stochastic differential equations 

Stochastic differential equations depending on the pair {w{t),r]{t)) with the above 
properties are considered in [60], [80], and [83], where stability and control problems 
are investigated. 

In [117], Wonham emphasizes the importance of the differential equations sub­
jected to the white noise perturbations w(t) and Markovian jumping r](t) for control 
problems. 

Consider the system of stochastic differential equations 

dx(t) = [fit, x(t), rj(t)) + a(t)]dt + [Fit, xit), rjit)) + ait)] dwit), (1.16) 

where the processes wit) = iw\ it),..., Writ))* and r]it), t > 0, have the properties 
in Section 1.9. Assume that a, o, / , and F satisfy the following conditions: 

(Cl)(3 : R + x ^ -> R",a : R+xQ -^ R"^^ and their elements are in L^ ^[0, T], 
for all r > 0; 

(C2) / : R+ X R" X P ->R^ F : R+ x R" x P -^R"^^ and for each / G V, 
fi', •, /)andF(-, •, /) are measurable with respect to S(R+xR"), where ;B(R+xR") 
denotes the a-algebra of Borel sets in R+ x R"; 

(C3) For each 7 > 0 there exists yiT) > 0 such that 

\fit,xx,i)- fit,X2,i)\^\\Fit,x,,i)-Fit,X2^i)\\ <YiT)\x,-X2\ (1.17) 

for all t e [0, T], jci, JC2 e R^ / e P , and 

\fit, X, i)\ -f \\Fit, X, i)\\ < yiT)il + \x\), (1.18) 

foralU e [0,T],x eR",i eV. 

Using the same technique as in the proof of Theorem 1.1 from [52, Chap. 5], one 
can prove the following result. 

Theorem 36. Assume that a,a, f, and F satisfy the conditions (CI) -̂  (C3). Then 
for all ^ > 0 and $ measurable with respect to Ht^ and E\^\^ < oo there exists a 
unique continuous solution xit) = xit, XQ, ^),t > to, o/(1.16), verifying xito) = ^ 
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and which components belong to L^ ^ [to, T]for all T > to. Moreover we have 

sup E[\x(t)\^\rj(to) = i] 
tO<t<T 

<K(I + E U\^\^ + j {\a{t)\^ + lla(Oll') dt) \ri(to) = iVj , 

where K depends on T and T — to. The uniqueness must be understood in the sense 
that ifx\{t) andxiit) are two solutions o/(1.16) satisfying x\{to) = ^2(̂ 0) = § ^^d 
whose components are in L^ ^̂ [̂ 0, T], then E\x\ (t) — X2(0I = 0, r € [̂ o. T\ D 

For the particular case when a(t) — ^ and a{t) = 0, one obtains the following 
result. 

Theorem 37. Assume that f and F satisfy (C2), (C3), and a(t) = 0, cf(t) = 0, for 
all t >0. Then for all to >0 and ^ measurable with respect to TLt^ with E\^\^ < 00, 
the system (1.16) has a unique continuous solution x{t), t > 0̂. verifying x{to) = § 
whose elements are in L^^^[to, T] for all T > to. Moreover, ifE\^\^P < 00, then we 
have 

sup E[\x(t)\^P\r](to) = i] < K(\ + E[\^\^P\rjito) = /]), (1.19) 
to<t<T 

i e V, where K depends onT,T — to, and p. 

Proof Consider the sequence of successive approximations defined by 

xo{t) = ^j e[to.T\ 

Xm+\(t)=^-\- f(s,xUs),T]is))ds -\- F(s,x^(s),r](s))dw(s),m>0. 
Jtf) Jta 

Using (1.17), (1.18), and Theorem 32 it is easy to verify by induction that 

,{t-tor^'~ 
E[\x^^,{t)\'P\r^{to) = i]< 

(m + 1)! 

x ( l + £ [ | § | 2 n ^ ( / o ) = / ] ) , 

to< t <TJ eV,m>0, 

where c > 0 depends only on T, 7 — ^, and p. Hence 

E[\x^^dt)\^P\ri(to) = i] < ce'^'-'^W + E[\^\^P \ r]{to) = /]). 

Since Xmit)-^ x(t) a.s. uniform on [̂ o, T] (see [52]) from Fatou's Lemma it 
follows that 

E[\x(t)\^P\r](to) = i] < K{1 + E[\^\^P\r](to) = /]), t e [to, T], i e V 

and the proof is complete. D 
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With the same proof used for stochastic differential Ito systems (see [97], [111]) 
one can prove the following result. 

Theorem 38. Under the assumptions of Theorem 37, suppose that f and F are 
continuous functions for each i e V. Then the function 

(r, x) e [to, oo) X R"" -^ x{t, to, x) 

is a.s. continuous for each to > 0, hence x(t,to, •) defined on R^ x ^ is measurable 
with respect to i3(R") (g) Ht^j, t > to, where 

'HtQj = cr(w(s) - w(to), r](s); s e [to, t]). 

Based on the inequality (1.19) one can obtain an Ito-type formula for the solution 
of the system (1.16) in case a = 0,a = 0 and in more general assumptions for the 
functions v{t,x,i) than the ones used in Theorem 35. 

The result giving such a formula has been proved in [80]. 

Theorem 39. Assume that the hypotheses of Theorem 37 are fulfilled and additionally 
/ ( • , •, /), F(', -, i) are continuous on R+ x R", for all i e V. Let v :R+ xW xV 
he a function which for each i € V is continuous together with its derivatives Vt^v^ 
and Vxx. 

Assume also that there exists y > 0 such that 

\v(t,x,i)\ + 
dv 
Tt 

it,x,i) -h 
dv_ 

(t,x, i) 
dxdx 

<KTil + \x\n.t e[0,T],x G R ^ / eV, 

where KT > 0 depends on T, Then we have: 

E [v {s, x{s), r](s)) \r](to) = i] - v(to, xo, i) 

dv 
= E 

JtQ dt 

/dv_ 
(t, x(t), r](t)) + — (^ x(t), r](t)) f(t, x(t), r](t)) 

+ ]-TrF' (t, xit), rjit)) ^ (t, x(t), r]{t)) 
2 dxdx 

(1.20) 

X F(t, x(t), r](t)) -^-Y^vit, x(t), r](t)) qr^uy 

x(t) = X (t, to, Xo), Xo eR"", t >to> 0, 

for all s > to, i G V. 

dt\r](to) = i 
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Proof. From Theorem 37 it follows that for all positive integers p we have 

sup E[\x{t)\'P\r^{t^) = i]<K{\ + \x^\'P). 

Therefore using Theorem 13 for a = 2 it follows that it is possible to take the 
limits in the integrals from the first step in the proof of Theorem 35, obtaining that 

lim -E 
h^0+ h 

v{(t + h),x{t + h),r]{t + h)) 

t+h 

(1.21) 

-vit,x(t),r]it)) — I m{s)ds \ m{s)ds\\r](to) = / = 0 

where 

m{t) = ^(t, xit), rj(t)) + (^(t, x(0, ri(t)) ] f(t, x(0, ^(0) 
' ) • 

+ l-TrF*{t, x(t), r](t))^(t, x{t), W)) 
2 axdx 

d 

xF(t, x(t), riit)) + ^ v(t, x(t), r]{t))qr^^t)j' 

Taking into account that r]{t) is continuous in probability and again using 
Theorems 37 and 13 for of = 2, it follows immediately that 

\v{t,x{t),r]{t))- / m{s)ds\\r]{tQ) = i\ 

is a continuous function, and therefore from (1.21) it results that (1.20) holds and the 
proof is complete. D 

Remark 12. (i) The proof of the previous theorem shows that the result in the statement 
is also valid for random initial conditions §, TY^Q-measurable and £'[|§|^^] < oo for 
P>y+2. 

(ii) From Theorems 36 and 37, for the system (1.16), Theorem 39 is not applicable, 
while in the case when a(t) = 0 and a{t) = 0 we can use Theorem 39 due to the 
estimate (1.19). 

(iii) In many cases, in the following developments we shall consider the system 
(1.16) with a(t) / 0 and a ( 0 7̂  0, being thus obliged to use Theorem 35. 

1.12 Stochastic linear differential equations 

Since the problems investigated in this book refer to stochastic linear controlled sys­
tems we recall here some facts concerning the solutions of stochastic linear differential 
equations. 
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Let us consider the system of linear differential equations 

r 

dxit) = Ao(r, r]{t))x{t)dt + ^ Ak{t, r](t))x(t)dwk{t), (1.22) 

where / -^ Ak(t, /) : R+ -^ R"^^\ i e V, are bounded and continuous matrix-
valued functions. 

The system (1.22) has two important particular forms: 
(i) Akit, /) = 0, ^ = 1 , . . . , r, / > 0. In this case (1.22) becomes 

x{t) = A(r, r^{t))x{t), t > 0, (1.23) 

where A (^ r]{t)) stands for Ao(^ ^^(0) and it corresponds to the case when the system 
is subjected only to Markovian jumping. 

(ii) D = {1}; in this situation the system (1.22) becomes 

r 

dx(t) = Ao(t)x{t)dt + J2 Ak{t)x(t)dwk{t), t > 0, (1.24) 
k=i 

where A;t(0 '•= ^A:(^ 1), ^ = 0, . . . , r, r > 0, representing the case when the system 
is subjected only to white noise-type perturbations. 

Definition 24. We say that the system (1.22) is time invariant (or it is in the stationary 
case) if Ak(t, i) = A^(/) for all k = 0,..., r, t e R+ and i e V. In this case the 
system (1.22) becomes 

r 

dxit) = Ao{ri(t))x(t)dt + J2 Mri(t))x(t)dwk(t). (1.25) 
k=\ 

Applying Theorem 37, it follows that for each ô > 0 and each random vec­
tor §, Tî Q-measurable and E\^\^ < +oo, the system (1.22) has a unique solution 
x(t; to, ̂ ) which verifies x{to; to, ?) = §. Moreover, if £"1^^^ < +oo, p > I, then 

sup E[\xit, to, ̂ )\^P I r](to) = i] < cE[\^\^P \ r](to) = H 
te[to,T] 

i eV,c > 0 depending upon T,T — to, and p. For each /: e {1, 2 , . . . , «} we denote 
^j^(t, to) = x{t, to, ek) where ^̂  = (0, 0 , . . . , 1, 0, . . . , 0)* and set 

O ( r , r o ) = {^\{t,to) ^2{t,to)'"^n{t,to)). 

^{t,to) is the matrix-valued solution of the system (1.22), which verifies 
O(ro, to) = In- If § is a random vector W^-measurable with E\^\^ < oo, we denote 
x(t) = 0 ( ^ to)^- By Remark 10 it is easy to verify that x{t) is a solution of the 
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system (1.22) verifying x(t) = ^. Then, by uniqueness arguments, we conclude that 
x{t) = x(t, to, ^) a.s., / > ^0. Hence we have the representation formula 

x(tJo,^) = ^it,to)^ a.s. 

The matrix ^{t,to),t > to >0, will be termed iht fundamental matrix solution of the 
system of stochastic linear differential equations (1.22). By the uniqueness argument 
it can be proved that 

^(t, s)<t>(s, to) = 0(r, ô) a.s., t > s >to>0. 

Proposition 40. The matrix 0 ( ^ ô) is invertible and its inverse is given by 

0)-^ (r, ô) = 0*(r, to) a.s., t >to>0, 

where 0 ( ^ to) is the fundamental matrix solution of the stochastic linear differential 
equation: 

dyit) 

r 

-Y,Al{t,r){t))y{t)dwk{t). 

y(t)dt (1.26) 

k=\ 

Proof. Applying Ito's formula (Theorem 33) to the function 

v{t, X, y) = y*x, t >to, x,y e R"" 

and to the systems (1.22) and (1.26), we obtain 

y*$*(^ to)^{t, to)x - y*x =0 a.s., t >to>0, x,y e R"; 

hence 0*(^ to)^(t, to) = In a.s., t > to, and the proof is complete. D 
Let us consider the affine system of stochastic differential equations: 

dx(t) = [Ao(t, r](t))x(t) + fo(t)]dt (1.27) 
r 

+ ^ [A , ( f , ri(t))x(t) + fkit)]dwk{t), 
k=\ 

t > 0, where /^ : R+ x ^ —> R'̂  are stochastic processes with components in 
L^^([0, T]) for all T > 0. Using Theorem 36 we deduce that for all ro > 0 and 
for all random vectors ^, W^^-measurable with E\^\^ < oo, the system (1.27) has a 
unique solution Xf(t,to,^), f — (/o, / i , • • •, / r ) - Additionally, for all T > to, there 
exists a positive constant c depending onT,T — to such that 

sup E\\xfit,to.^)f I ̂ (^ ) = / l 
te[to,T] L J 

J2 I \fk(s)\^ds]\r](to) 
k=o •̂ ô / 

(1.28) 

l§l' + ds 

Let ^(t,to), t > to >0, be the fundamental matrix solution of the linear system 
obtained by taking fk=Om (1.27) and set z(t) = 0~^(r, to)xfit, to, ^ ) . Applying 
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Ito's formula (Theorem 33) to the function v{t,x,y) = y*x , x,y e R", and to the 
systems (1.26) and (1.27), we obtain 

j*z(0 = y"z(to) + y /o(5)-^A,(^,r / (^)) /fc(5) 
k=\ 

ds 

k=\ "̂ 0̂ 

t >tQ,y eW. Since y is arbitrary in R '̂ we may conclude that 

(̂0 (̂ , ^) 
JtQ k=\ 

)fk(s)dwk(s) a.s., 

ds 

k=\ -^^0 

t > to. Thus we obtained the following representation formula: 

Xf(t,to,^) = O(r,ro) 

Ms) -Y^Ak(s, r](s))fk(s) ^<^{tJo) f <^~\s, 
JtQ 

^X^'^^^'^o) / ^~\sJo)fk{s)dwk{s) a.s., 

(1.29) 

ds 

t ^to, which extends the well-known constant variation formula from the 
deterministic framework to the case of stochastic affine system (1.27). D 



Exponential Stability and Lyapunov-Type 
Linear Equations 

In this chapter the problem of mean square exponential stability of the zero solution 
to the stochastic differential equations of type (1.22) is studied. The stabilization of a 
steady-state is one of the main tasks appearing in many design problems of controllers 
with prescribed performances. 

In the case of stochastic systems there are several possibilities to define the concept 
of stability of a steady-state. Among them, one of the most popular is the so-called 
exponential stability in mean square (ESMS). The exponential stability in mean square 
has the advantage that it may be characterized by some conditions that are easy to 
check. Moreover, in some particular cases, such as the time-invariant case or the 
periodic case, the exponential stability in mean square is equivalent with other types 
of stability in mean square. From the representation formula proved in Theorem 4 
in Section 2.2 one obtains that the ESMS to the zero solution of (1.22) is equivalent 
with the exponential stability of the zero solution of a deterministic linear differential 
equation on a finite-dimensional linear space adequately chosen. The deterministic 
differential equations are defined by the so-called Lyapunov-type operators acting on 
a space of symmetric matrices. Since criteria concerning the exponential stability of 
the zero solution of Lyapunov differential equations provide criteria for exponential 
stability in mean square of the zero solution to the stochastic equation of type (1.22), 
a great part of this chapter is devoted to studying the Lyapunov-type differential 
equations. In the first part of the chapter, we make a detailed investigation of the 
properties of the linear evolution operators and of the exponential stability for a class of 
Lyapunov-type differential equations. The results concerning the exponential stability 
in Section 2.4 are derived for a class of differential equations which contains as a 
particular case the Lyapunov-type equations arising in connection with the stochastic 
differential equation (1.22). A reason to consider the more general case when the 
Lyapunov operators (2.8) satisfy only condition (2.7) may be found later, in the 
following chapters. This allows us to simplify some proofs by using the so-called 
dual systems. In this case the matrix Q of the rates of the probability transition matrix 
will be replaced by its transpose g*, the entries of which verify only condition (2.7). 
In the last section of the chapter some useful estimates of the solutions of affine 
equations are derived. Some aspects concerning the exponential stability in mean 
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square of the zero state equilibrium for nonlinear stochastic differential equations of 
type (1.16) will be discussed in Chapter 6. 

2.1 Linear positive operators on the Hilbert space of 
symmetric matrices 

Let Sn C R" '̂̂  be the subspace ofnxn symmetric matrices, that is, S e Sn,if and 
only if 5 = 5*. We denote by S^ the direct product 

S^ =Sn X '•' xSn 

Then S e S^ if and only if 5" = (5(1) , . . . , S(d)). 
In the following we shall use either notations S = {S{1),..., S(d)) or 5 = 

It is easy to prove that S^ is a finite-dimensional real Hilbert space with respect 
to the inner product: 

d 

(5, H) = J2 7>(5(/)//(/)), 5, // € S'^, (2.1) 

We introduce on S^ the following norm: 

\S\ =max|5( / ) | , (2.2) 
ieV 

where \S(i)\ is the norm induced by the Euclidean norm on /?", that is: 

\S(i)\ = sup |5(/)x| = max |A,| = sup \x*S(i)x\, 
\x\<\ AeA(5(/)) |; .̂|<i 

where A (A) is the spectrum of the matrix A. The norm defined by (2.2) differs from the 
norm provided by the inner product (2.1). The space S^ together with the norm (2.2) 
becomes a finite-dimensional Banach space. 

It is not difficult to check that 

\H\ < {H.H)^ <V^\H\ (2.3) 

for a l l / / eS^. 
If T: S^ -^ S^ is a. linear operator, then | |r | | stands for the operatorial norm 

induced by the norm (2.2), that is, 

liril = sup \TS\. (2.4) 
\s\<\ 
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Remark 1. If T"": S^ -^ S^ is the adjoint operator of T with respect to the inner 
product (2.1), then ||r*|| is not equal to | |r| |. However, based on (2.3), we obtain 
that there exist the positive constants c\ and C2 such that 

c , i i r i i< i i r i i<c2i i r i i . (2.5) 

For S e S^, S = (5(1) , . . . , S{d)), we write S > 0 if S{i) > 0, for all / e V. 
Similarly, we write 5 > 0 if S(i) > 0, for all / e V. 

We denote 
Si^ = {Se Si'. S > 0}. 

Si_^ is a convex cone and it induces an order relation on 5^, namely S > H if and 
onlyifS-HeS^^. 

By J^ we denote the element of Sf^ defined by 

y^ = /„ X . •. X / , . 

Obviously, 7^ € S^^. 

Definition 1. We say that a function H: I C R ^^ S^ is uniform positive and we 
write H ^ 0 if there exists a constant c > 0 such that H{t) > cJ^ for all t eX. We 
shall also write H <^0 if and only if — H{t) > 0. 

Definition 2. A linear operator T: S^ ^^ Sf^ is said to be positive and we write 
T>OifTSl^^Si^. 

Lemma 1. The inner product (2.1) has the following properties: 
(i) If{S, H) > 0 for all H e S^^, then S e Sf^^. 

(ii) IfH,Se Si.^, then (5, //) > 0. 

Proof (i) Let x eW and /Q G D be fixed. Set / / = ( / / ( I ) , . . . , H{d)) by 

H{i) = 
XX* if/ = io, 

0 i f / 7 ^ / 0 . 

Obviously, / / G 5f _̂ . We have 

0 < {S, H) = Tr[S{io)Hiio)] = x*5(/o)x. 

Since x and I'o are arbitrarily chosen in R'' and V, respectively, we conclude that 
S>0. 

(ii) From (2.1), it is sufficient to show that if 5, M e 5̂ , with 5 > 0, M > 0, 
then Tr[SM] > 0. Since 5 > 0, there exist the orthogonal vectors ^ 1 , . . . , „̂ and the 
nonnegative numbers Xi , . . . , A,„ such that 

Y^XiCie 
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(see, e.g., [7]). Then we have 

Tr[SM] = ^XiTr[eie';M] = J^^i^i^^i ^ ^ 
i = \ i = \ 

and the proof is complete. D 

Proposition l.IfT e S^ -^ Sf^ is a linear and positive operator then the adjoint 
operator T* : Sf^ -> S^ is positive too. 

Proof. Let S eSf^, 5 > 0. We show that 7*5 > 0. Indeed, if H eS^,H >0, 
ihenTH > 0 and hence, according to Lemma l(ii), we obtain (5, TH) > 0. Therefore 
{r*5, //) > 0 for all H e S^^. Invoking part (i) in Lemma 1 we conclude that 
r*5 > 0 and the proof ends. D 

The result stated in the next theorem provides a method for determining || T || for 
a positive operator T. 

Theorem 3.//" r : <Ŝ  -> <S,f is a linear positive operator then \\T\\ = \TJ^\. 

Proof. From (2.4) one can see that I ry^ I < UriKLet^" e 5^^with|5| < l,thatis, 
1 (̂01 < 1 for all / G V. Hence -!„ < 5(1) < /„ for all / e V and - 7 ^ < S < J"^. 
Since T is a positive operator it follows that - 7 7 ^ <TS < TJ"^ for all S e S^ with 
|5| < 1. Further we have 

-(Tj'm < (TS)(i) < (Tj'm 

for all / e P , which leads to 

\(TS)(i)\ < \(Tj'm\ 

for all / e V and 

\TS\ < iry^i 
for all S G Si with \S\ < \. Invoking (2.4) again, we conclude that | |r | | < |ry^|, 
which completes the proof. D 

Remark 2. If T : Sf^ -^ Sf^ is a linear and positive operator, then 

(77^)(/)<l(7y^)(/) |- / . 

for all / € P , which leads to 
77^ < F l iy^ . (2.6) 

Now we introduce another finite-dimensional Banach space which will be used 
in this book. 

Let 
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Therefore 

X ^ ^ = {M; M = ( M ( l ) , . . . , M(d)), M(i) e R"^'", / e V}. 

On M^^ we introduce the norm 

\M\ =max|M(/) | , 
ieV 

where 

\M(i)\ = sup \M(i)x\ = xL(M%i)M(i)). 
\x\<l 

In the particular case when m = nv^t shall write A4^ instead of M^^. It is obvious 
that S^ is a Banach subspace of the Banach space M^. 

In this monograph (R")^ stands for the direct product 

(R'^)^ := R^ X • • • X R^ 

d 

that is, J e (R«)^ if andonly if j = (y(\),..., y(d)), y(i) G R", / eV. 
On (R")^ we consider the inner product 

d 

{y,z) = J2y*(i)^(^^ 
i=\ 

for all y = ( j d ) , . . . , y(d)) and z = ( z ( l ) , . . . , z(d)) in (R")^. 
By IIJII we denote the norm defined by 

{y.y) = J2\y(n\'^ 
i=\ 

If T : (R'^)^ -^ iWY is a linear operator, then | |7| | stands for the operational norm 
induced by the considered norm in (R")^. 

2.2 Lyapunov-type differential equations on the space S^ 

Let J c R be an interval and A^ :1 ^^ M^, /: = 0 , . . . , r, be continuous functions 

AM = (A,(r, 1 ) , . . . , A,(r, J)), k e {0,... ,r}, t el. 

Denote by Q eK^^^ a. matrix whose elements qij verify the condition 

qij>0 if/ ^ 7 . (2.7) 
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For each r G T we define the linear operator C(t) : S^ -> S^ by 

(C(t)S)(i) = Ao(t, i)S(i) + SiOA^it, i) (2.8) 
r d 

+ ^ A,(r, /)5(/)A*(r, /) + ^ ^ , , 5 0 ' ) , 
k=\ j=\ 

i e V, S e S^, It is easy to see that t i—> L{t) is a continuous operator-valued 
function. 

Definition 3. The operator C(t) defined by (2.8) is called the Lyapunov operator 
associated with AQ, . . . , Â  and Q. 

The Lyapunov operator C{t) defines the following linear differential equation 
on Si: 

-S{t) = C{t)S{t), tel, (2.9) 
dt 

For each to el and H e S^, S(t, to, H) stands for the solution of the differential 
equation (2.9) which verifies the initial condition S{to, to, H) = H. 

Let us denote by T(t, to) the linear evolution operator on S^ defined by the 
differential equation (2.9), that is 

T{t, to)H = S(t, to, H)\ t,toeI, H e S^. 

It is said that T{t, to) is the evolution operator associated with the system 
(Ao,. . . ,A,;e). 

We have 

-T{tJo) = C{t)T{tJo). dt 
T{t,to) = j \ 

where J^ : S^ ^^ S^ is the identity operator. 
It is easy to check that T{t, s)T(s, r) = T(t, r) for all t,s,T e I. For all pairs 

t,T eX, the operator T(t, z) is invertible and its inverse is T~^ (t, z) = T(z, t). 
If T*{t,z) denotes the adjoint operator of r(r , r) , the following hold: 

r{tJo) = T'(s,to)T'{t,s), (2.10) 

r(t,s) = (THz,s))rit,z), (2.11) 

^T\t,s) = r{t,s)L\t), (2.12) 
dt 

4-r*(5, 0 = -C\t)T\s, t). (2.13) 
dt 

It is not difficult to see that the adjoint operator C{t) \ S^ -^ S^ is given by 

{C\t)S){i) = A*(r, i)S{i) + 5(/)Ao(r, /) (2.14) 
r d 

+ Y, A*(/, i)S{i)A,{t, i) + Y, qijS(j), 
k=\ j=\ 

i eV, S e St 
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Remark 3. (i) If Ak(t,i),k = 1 , . . . , r, do not depend on t, then the operator C defined 
by (2.8) is independent on t. More precisely, if Ajc = (A^(l) , . . . , A^(J)), then 

r 

(CSm = Ao(/)5(/) + S(i)Al{i) + J2 Akii)S{i)Alii) (2.15) 

d 

+ ^ ^ , , 5 ( 7 ) , 

i e V, S e S^.ln this situation the evolution operator defined by the differential 
equation 

^S{t) = CS{t) 
at 

is given by 
T(t,to)=e^^'-'''\ (2.16) 

where 

e-:=E 
Ct _ ^ 

kl 
k=0 

(the above series being uniform convergent on every compact subset of the real axis). 
C^ stands for the k-iteration of the operator C and C^ = J^, 

(ii) If A^ :I ^ X ^ are 6>-periodic functions, then T{t + Ojo + 0) = T(t, to) 
for all tJo el such that t -\-0,to-\-0 el. 

In order to motivate the definition of the Lyapunov operator C(t) and its 
corresponding evolution operator T(t,to), we shall prove the following result 
which establishes the relationship between the evolution operator T(t, to) and the 
fundamental matrix solution of a system of stochastic linear differential equations of 
type (1.22). 

Theorem 4. Assume that J = R+ and that the elements of Q satisfy (2.7) and the 
additional condition X!/=i ^U — ̂ ' ^ ̂  ̂ - Under these assumptions we have 

(r*(r, to)H)ii) = £[0*(r, to)H(r](t))<P(t, to)mo) = i] 

for all t > to >0, H e S^,i eV, where cl>(r, to) is the fundamental matrix solution 
of the system (1.22). 

Proof Let U(t, to) : S^ -^ S^ be defined by 

(U(t, to)iH))(i) = £[0*(r, to)H(rj(t))<t>(t, to)\r](to) = H 

H e Si, ieVj> to. 
Taking H e 5^, we define v{t, jc, /) = JC*//(/)JC, X eWJ eV,t> 0. 
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Applying Theorem 35 of Chapter 1 to the function v{t,x,i) and to the equation 
(1.22), we obtain 

7'' 
JtQ 

jc*(W(r,ro)(//))(/)jc-x*//(/)jc = x * / (U(sJo)(C%s)H))ii)dsx. 

Hence 

at 
Since Uito, to) = T*(to, to) and using (2.12) it follows that 

U(t,s) = T*(t,s), 

t > s, and the proof is complete. D 

As we shall see in Section 2.5, the above result allows us to reduce the study of 
the exponential stability for the linear stochastic system (1.22) to the problem of the 
exponential stability for a deterministic system of type (2.9). 

Remark 4. (i) If in the system (1.22) we have Ak(t -i-O) = Ak(i), t >0, i eV, then 
from Theorem 4 and Remark 3(ii) we deduce that 

E[\<^(t + Ojo + 0)xo\^\r](to-hO) = i] 

= E[\<t>(t,to)xo\^\r](to) = i] 

for all t >to>0, i eV, xoe R\ 
(ii) If the system (1.22) is time invariant, then according to Theorem 4 and 

Remark 3(i), we have 

E[\<t>{t,to)xo\^\r](to) = i] 

= E[\cP(t-to,0)xo\^\r](0) = i] 

for all t >to>0, i eV, xoe R\ 

Theorem S, If Tit, to) are linear evolution operators on S^ defined by the linear 
differential equation (2.9), then the following hold: 

(i) T{t, to) > 0, T*(t, to) > 0 for all t > to. r, ô G I; 
(ii) ift -> Ak(t) are bounded functions, then there exist 8 > 0,y > 0 such that 

T(t, to)J'^ > 5^-^^^-'oV^ T*{t, to)J'^ > Se-^^'-'^^J"^ 

for all t > to, ^ to e T. 

Proof To prove (i) we consider the linear operators C\{t) : S^ ^^ S^, C{t) : 
S^ -^ S^ defined by 

(C,(t)H)ii) = Uoit, i) + ^quln) H(i) + H(i) (AOO, i) + ^qulnj , 

r d 

{C(t)H)(i) = J2^k(t,i)H(i)Al(tJ)+ J2 ^JiHU)J^^^ 

H = (//(I), / / ( 2 ) , . . . , H{d)) e 5,^ t e I. 
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It is easy to see that for each t e J , the operator C(t) is a positive operator on S^. 
Let us consider the linear differential equation 

^Sit) = Cdt)Sit) (2.17) 
at 

and denote Ti(t, to) the linear evolution operator on S^ defined by (2.17). By direct 
calculation, we obtain that 

(r i (^ to)Hm = <Piit, to)H{i)<t>;{t, to) 

for Sillt > toJ eV, H e S^, where O/ (r, to) is a fundamental matrix solution of the 
deterministic differential equation on R", 

d 1 
xit). 

It is clear that for each t > to,T\{t, to) > 0. Since the linear differential equation 
(2.9) is written as 

^S(t) = Cdt)S(t)^C(t)S(t), 
at 

we may write the following representation formula: 

T{t,to)H = Ti(tJo)H+ f Tdt,s)C(s)T(sJo)Hds 
JtQ 

for all H eS^,t > to, t, to e I. 
Let H e S^, H >Ohc fixed. We define the sequence of Volterra approximations 

Sk(t),k>0,t>to,hy 

Soit) = Ti(t,to)H, 

Sk+iit) = T,(t,to)H+ f Tdt,s)L(s)Sk(s)ds, k=l,2,..., 
JtQ 

Since ^l(^ to) is a positive operator on 5^, we get inductively that Skis) > 0 for 
all 5 > to,k = 1,2, Taking into account that Hm _̂̂ oo Sk(t) = T{t, to)H we 
conclude that T(tJo)H > 0, hence T(t, to) > 0. By using Proposition 2 we get that 
the adjoint operator T*(t, to) is positive. 

(ii) First, we show that there exist 5 > 0, y > 0, such that 

\T(t,to)H\ >8e-^^'-'^^\H\, (2.18) 

|r*(/ ,ro)// | >8e-^^'-'^^\H\ 

for all H eS^,t > to, ^ to e I. 
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Let us denote 

v(t) - ^\\\T{t, to)H\\\^ = ^{T{t, to)H, T(t, to)H}, 

where 111 • | {| denotes the norm induced by the inner product, that is, 11 
By direct calculation, we obtain 

d 

• | l i : = ( - , - ) 2 -

dt 
v(t) - {C{t)T(t, to)H, Tit, to)H), t > to. 

Under the considered assumptions there exists y > 0 such that 

d 

d 

<Y\\\T{tj^)H\\\\ 

< 2yv(t), t > to. 

Further, we have 

or equivalently 

— v(t) > -2yv(t), t > to, 
at 

- r i ; ( / ) ^ 2 K ( r - r o ) 1 > o 
dt^ -• 

for all t > to. Hence the function t -^ v{t)e'^^^^~^^^ is not decreasing and v(t) > 
-̂2K(r-ro)̂ (̂ Q) Considering the definition of v{t) and using (2.3), we conclude that 

there exists 8 > 0 such that 

\T(t,to)H\ >8e-^^'-''^^\H\, 

which is the first inequality in (2.18). 
To prove the second inequality in (2.18), we consider the function 

1 o ^ 
v(s) = - | | | r*( / ,5) / / | | |2 , H eS^,s <t,s,t el. 

By direct computation we obtain 

^v{s) = - ( £ * ( 5 ) r (r, s)H, r (r, s)H), 
as 

Further, we have 

and 

d . 
ds 

< 2yv(s) 

ds^ -• 
Thus we obtain that the function s -^ i;(5)̂ ^^ '̂~^^ is not increasing and therefore 
vis)e^^^^~'^ > v{t) for all s <t, and hence 

\\\T''(t,s)H\\\ >e-^^'-'^\\\H\\\. 

Using again (2.3) we obtain the second inequality in (2.18). 
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Let X eW, i eV,bc fixed; consider H e S^ defined by 

0 if j ^ i . 
•̂  ' JCJC* if J = I. 

We may write successively 

xHT(t, to)J'^)(nx = Tr[xx'(T(t, to)J'^m] = {H, T(t, to)J'^) 
d 

= {r(t, to)H, j') = J2 Tr[r(t, to)H]{i) 
i = \ 

d 

> V \{T*{t, to)Hm\ > max \{T*it, to)H){i)\ 

= |r*(r,ro)H| ^u-^^'-'^\x\!-. 

Since x G R'̂  is arbitrary we get 

(r(r, h)J%i) > 8e-^^'-'^'>In, (V)/ eVj>to>0, 

or equivalently \T(t,to)J^\ > 8e~^^^~^^^J Wt > ro. The second inequality in (ii) may 
be proved in the same way. D 

Remark 5. Combining the result in Theorem 5 with Remark 1 we obtain that 

T(tJo)j' <\\T(tJo)\\j'. (2.19) 

T'(t,to)j' <\\THtJo)\\j' 

for all t, to e I. If the dependence t i—> ||>C(OII is a bounded function, we deduce 
easily that there exists y > 0 such that 

foralU > 0̂, t,to e I, 

Corollary 6. Suppose that Ak,0 < k < r, are continuous and bounded functions. 
Then there exist 5 > 0 and y > 0 such that 

Se-y^'-^o)jd < j(^^ f^^^jd ^ ey(t-to)jd^ (2.20) 

Se-y^'-'o)jd < T*it,to)J'^ < e^^'-'^^J"^ 

for all t > 0̂, t, to eX. D 
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Let us close this section with two important particular cases: 
(a) Ak(t) = 0 , k = 1 , . . . , r; in this case the linear operator (2.8) becomes 

{C(t)S)(i) = Ao(t, i)S{i) + 5(/)A*(r, /) (2.21) 
d 

7 = 1 

/ eV,SeS^.lt is easy to check that the evolution operator T(t, to) defined by (2.9) 
has the representation 

T(t, to) = f (/, ô) + / T(t, s)C2(s)T(s, to) ds, (2.22) 
JtQ 

t > to, t, to e I, where T(t, to) is the evolution operator on S^ defined by the 
differential equation 

^S{t) = C{t)S{t) 
dt 

and £2(0 :S^ ^ S^ is defined by 
r 

{C2(t)H){i) = J2 ^k(t, i)H{i)Al(t, i), 
k=\ 

t el, H eS^, i e V. 

Remark 6. Since T{t, to) > 0, f (r, ro) > 0, r > 0̂, and £2(0 > 0, t e I, from 
(2.22) it follows that T(t, to) > f(t, to) for all t > ô, t, to e J , and hence, using 
Theorem 3, we get 

\\TitJo)\\ > \\f(t,to)l t>to, tjoel. 

The evolution operator T{t, to) will be called the evolution operator on the space 
S^ defined by the pair (AQ, Q). If additionally Q verifies the assumptions in Theorem 
4, then (2.21) is the Lyapunov-type operator associated with the system (1.23). 

(b) D = {1} and q\\ = 0 . In this case S^ reduces to Sn and the operator C{t) is 
defined by 

r 

C{t)S = Ao(t)S + SA*(t) + Yl MOSAlit), (2.23) 
k=\ 

t eX, S e Sn, where we denoted Ak(t) := Ak(t, 1). The evolution operator T(t,to) 
will be called the evolution operator on Sn defined by the system (AQ, . . . , A^). The 
operator (2.23) corresponds to the stochastic linear system (1.24). 

Proposition 7. If I = R+ and T(t, to) is the linear evolution operator on Sn defined 
by the Lyapunov operator (2.23), then we have the following representation formulae: 

T(t,to) = E[<P(t,to)<i>\t,to)l 

r(t,to) = E[<P'{t,to)^(tJo)] 

for all t>to>0, ^(t,to) denoting the fundamental matrix solution of the 
system (1.24). 
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Proof. The second equality follows directly from Theorem 4 and the first follows 
from the second one and the definition of the adjoint operator. D 

Remark 7. Although in Theorem 4 we established a representation formula for the 
adjoint operator r*(r, ^o), a representation formula for T{t, to) can be also be given, 
namely, 

d 

(T(tJo)H)ij) = Y,E[<P(t,to)Hi<l>*(t,to)xm=j I ̂ ^0) = ^-], (2.24) 

t >to>OJ eV,H e S^. Indeed, we have for T = T(t, to), 

{TH,G) = {H,T''G) 
d 

= J2TrHiE[<^''(tJo)G{r](t))<^{tJo) I r]{to) = i] 
i=l 

d d 

/ = 1 j=l 

d d 

= Y,J^E[Tr(Hi<^*(t,to)GU)<^(tJo))Xm=J I ̂ (̂ o) = ^ 

d d 

from which (2.24) directly follows. 

2.3 A class of linear differential equations on the space (R'̂ )̂  

Let A: R+ -^ M'^ be a bounded and continuous function, that is, A(t) = 
(A(^ 1 ) , . . . , A(r, J)), r e R+. For each r > 0 we define the linear operator 
M(t) : (R")^ -> (R«)^ by 

d 

(M(t)y)(i) = A(r, i)yii) + ^ ^ ^ . j O ' ) , / e V, (2.25) 
7 = 1 

y = ( j ( l ) , . . . , y(d)) e (R")"^, Q = (qij) e R^^^ satisfies the conditions qij > 0 
for / 7̂  j and Ylj=i ^U = ^- It is easy to check that for each t > 0, M{t) is a linear 
and bounded operator on the Hilbert space (R'')'^ and t i—> ||M(OII is a bounded 
function, || • || denoting the operatorial norm induced by the norm in (R")"^. 
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Let us consider the linear differential equation on (R")"^: 

^y{t) = M{t)y{t). (2.26) 
at 

Let R (t, ô) be the linear evolution operator associated with the equation (2.26), that is, 

-R(t, to) = M(t)R(t, to), R(to, to)y = y 
at 

foralU,ro >0, y e (R'^)^. 
By M*(t) and /?*(^ to) we denote the adjoint operators of M(t) and R(t, to), 

respectively, on (R^)" .̂ One can easily see that 

r 

(M*(OJ)( / ) = A*(^ i)y{i) + J2 "^'jyU)^ ieV^ye (R")^ 

^R\tJo) = R\tJo)M^{t), (2.27) 
at 
d 
— R\sj) = -M*(0/?*(5,r) 
dt 

for alU, 5 G /?+. The operator R(t, to) will be termed the evolution operator on (R^)^ 
defined by the pair (A, Q). 

The next result provides the relationship between the evolution operator R{t, to) 
and the fundamental matrix solution ^(t,to) of the stochastic system (L23). 

Proposition 8. Under the assumptions given at the beginning of the section, the 
following equality holds: 

(/?*(/, to)y)ii) = E[<t>%t, to)y(r](t)) \ r](to) = H t>to>0, 

ieV,y = (y(l),...,y{d))e(R")'. 

Proof Lett >to>0 and the operator V(r, ô) : (R")^ -> (R'^)^ be defined by 

(V(t, to)y)(i) = £[0*(r, to)y(riit)) I ̂ ?(̂ o) = H 

i e T), y = (_y(l), . . . , y(d)) e (R'^)^. Let y be fixed and consider the function 
i; : R'̂  X P ^ R by 

v(x,i) =x*y(i). 

Applying the Ito-type formula (Theorem 35 of Chapter 1) to the function v and to the 
system (1.23), we obtain: 

E[vix(t)^r](t))\r](to) = i]-x^y(i) 

/ x*is) A*(5, r](s))y(r](s)) + X^^,(.))>^(7) ds \ r](to) = i 
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where x(s) = 0(5, ^)JCO. Further, we write 

x'o(yit,to)ym-x'oy(i)=x', [ {VisJo)M'is)y)(i)ds 
JtQ 

for all t > to >0,xo eR^, i eV. Therefore, we may conclude that 

V(tJo)y-y= f V(s,to)MHs)yds 
JtQ 

foralU >tomdy e (R^'Y. 
By differentiation, we deduce that 

^V(t,to)y = VitJo)M''(t)y 
at 

for all y e (R")^, and hence 

— VitJo) = V{t,to)M'(t), t>to. 
at 

Since V{to, to) = R*ito, to), from (2.27), V(t, to) = R*(t, to) for all t > to > 0, and 
the proof ends. • 

2.4 Exponential stability for Lyapunov-type equations on S^ 

In this section J C R denotes a right-unbounded interval. Consider the Lyapunov 
operator (2.8) on S^, where Q satisfies (2.7) and A^ are continuous and bounded 
functions. Let T(t, to) be the linear evolution operator on S^ defined by (2.9). 

Definition 4. We say that the Lyapunov-type operator C(t) generates an exponen­
tially stable evolution, or equivalently, the system (AQ, . . . , A^-; Q ) is stable if there 
exist the constants j6 > 1, a > 0 such that 

\\T{t, to)\\ < Pe-^^'-'^\ t > to, to e I. (2.28) 

Remark 8. From Remark 6 immediately follows that if (AQ, . . . , A^; 2) is stable, 
then there exists fi > I and a > 0 such that 

\\f(t,to)\\ <Pe-^^'~'^^ 

for diWt >toJ,to el, where T{t, to) is the evolution operator on S^ defined by the 
pair (Ao, Q). 

As usual we denote 

/ T\sj)H{s)ds\= Mm I T\sj)H{s)ds 

each time when the limit in the right-hand side exists. In this case we say that the 
integral in the left-hand side is convergent. 

The result stated in the next lemma will be used several times in this section. 
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Lemma 9. Let H : I -> S^ be a continuous function. Assume that the integral 
fj T*{s,t)H(s)ds is convergent for all t eX. Set 

Ki,y.= l 
oo 

T\s,t)H{s)ds. 

Then K(t) is a solution of the affine differential equation 

^K(t) + C{t)K{t)-\-H(t) = 0. 
dt 

Proof Let z > t be fixed. Then we have 

/

r /*cx̂  

r*(5, t)H(s) ds-h T*(s, t)H(s) ds. 

Based on (2.11) we get 

K{t) = r*(r, t)K(T) + r*(r, t) j T*(s, T)H(S) ds. 

Using (2.12) we obtain that Kit) is differentiable and 
^K(t) = -C*(t)K(t)-H(t), 
dt 

and the proof ends. D 
The next lemma shows that the integrals used in this section are absolutely 

convergent. 

Lemma 10. Let H : X ^^ S^ be a continuous function such that H(t) > 0 for all 
t e L Then the following are equivalent: 

(i) The integral J^ \T*{s, t)H(s)\ds is convergent for all t e X. 
(ii) The integral J^ T'^is, t)H(s) ds is convergent for all t eX. 

Proof, (i) => (ii) follows immediately, 
(ii) =^ (i) Let 

y(t) = / T*(s,t)H(s)ds\, t eX. 
\Jt I 

We have 

/
oo 

T''(s,t)H(s)ds < y{t)j\ t G X , 

which leads to 

/

oo 

{T\s,t)H{s)){i)ds < y(t)In, i eV, t eX. 

Hence 

/
oo 

Tr{T*(s, t)H(s))ii)ds < nyit), i eV,t el. 
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from which we deduce that 

j Tr{T\s, t)H{s)){i) ds < ny(t), T >t. 

The above inequality gives 

j \{T\sj)H{s)m\ds<ny{t), 

which leads to 

Since 

d 

\{T\s,t)H{s)){i)\ds <dny{t). 
i = \ i = l ^^ 

d 

\T\sj)H{s)\ <Y,\iT\s.t)H{sm)l 
i=\ 

we get 

j \(nsj)H(s))\ds<ndy{t) 

for all r > r and the proof is complete. • 

The following result provides necessary and sufficient conditions ensuring 
exponential stability of the considered class of differential equations. 

Theorem 11. The following are equivalent: 
(i) The system (AQ, . . . , A^; Q) is stable. 
(ii) There exists 8 > 0 such that 

f 
J to 

\T(t,s)\\ds <8 

for all t > to, t, to e I. 
(iii) There exists a constant 8 > 0 such that 

I T{t, 
JtQ 

s)r ds <8r 

for all t > to, tJo e ^^ 

Proof (i) => (ii) From (2.28) it follows that 

JtQ 

T(t,s)\\ds < -
a 

for all t > to. 
(ii) zz> (iii) immediately follows from (2.6) and Theorem 5. 
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(iii) =^ (i) Let / / : J -> 5f be a continuous and bounded function. It follows that 
the real constants 8i, 82 exist such that 81J^ < H(s) < 82 J^ for all s el. 

Since T(t,s) is a positive operator defined on 5f, we deduce 8\T{t,s)J^ < 
T(t, s)H(s) < 82Tit, s)J'^ for all r > 5 > ro, to e I. Hence 

81 I T{t,s)jUs< I T(t,s)H(s)ds <82 j T{t,s)jUs 
JtQ JtQ JtQ 

81J"^ < / T(t,s)H(s)ds <527^ 

for all t > to, to el. Thus, if (iii) holds we deduce that the real constants 81,82 exist 
such that 

/ • 
JtQ 

for all t > to, to e J , which shows that t -^ f! Tit, s)H{s)ds is bounded on [to, 00) 
uniformly with respect to ^ G X for all continuous and bounded functions H{s). 

Applying Perron's theorem (see [58]) we deduce that the constants yS > 1, of > 0 
exist such that 

\\T{t, 5)11 < ^e"'^'-'\ Wt>s> to, to e I, 

that is, the system (AQ, . . . , A^; Q) is stable and thus the proof is complete. D 

Theorem 12. The following are equivalent: 
(i) The system (AQ, . . . , A^; Q) is stable. 
(ii) There exist the constants fii > I, a > 0 such that 

\\T'(t,to)\\<fiie-''^'-''^ 

for all t > to, t, to e X. 
(iii) There exists a constant 8 > 0 such that 

[ \T\s,t)\\ds<8 

for all t eX. 
(iv) There exists 8 > 0 such that 

f T\s,t)J'^ds <8J'^ 

for all t e X. 
(v) The afftne differential equation 

d , 
— K(t) + C\t)K{t) + y^ = 0 (2.29) 
dt 

has a bounded and uniform positive solution on X. 
(vi) For each H: X ^^ S^ continuous, bounded, and uniform positive function, 

the affine differential equation on S^, 

— Kit) + C(t)K(t) + Hit) = 0, (2.30) 
dt 

has a bounded and uniform positive solution defined on X. 
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(vii) For each H\X -^ S^ continuous, bounded, and uniform positive function, 
there exists a C^-function K . X ^^ S^, K ^ Q, bounded with bounded derivative, 
solving the following differential inequality on S^: 

^K(t) + C{t)K(t) + H(t) « 0, r G J . (2.31) 
dt 

(viii) There exists a C^-function K : I ^^ S^, bounded with bounded derivative, 
K ^ 0 solving the differential inequality 

— K(t)-hC{t)K{t)^0, t e l . 
dt 

Proof (i) ^^=^ (ii) immediately follows from (2.5) 
(ii) =^ (iii) From (ii), 

\T*(s,t)\\ds<^ 
a f 

for all t e I. 
(iii) =^ (iv) immediately follows from (2.6) and Theorem 5. 
(iv) =^ (v) Define 

,̂„=/ 00 
d T\sj)r dsj el. 

From Theorem 5(ii), there exists (5i > 0 such that K{t) > 8\J^ for all t e l , hence 
K{t) > 0. On the other hand the function t i—> K{t) is differentiable, and based on 
(2.13) (see Lemma 9), we get that K{t) is a solution of the equation (2.29). 

(v) =^ (iv) Let K \X ^^ S^ht the bounded and uniform positive solution of the 
equation (2.29). Therefore there exist the constants ii\ > 0, /X2 > 0 such that 

lixJ"^ <K{t) <M2./^, t el. 

Using (2.13) and the constant variation formula we deduce that 

K{t) = T\T,t)K{T)+ \ T\sj)J^ds 

for diWt <T\t,T el. Since the operator r*(r, 0 is positive, we can write 

-f T\s,t)jUs < K(t) < fi2J'^. 

Therefore the integral 

/»00 /»T 

/ T\s,t)J'^ds= \\m \ T\sj)J'^ds 
Jt ^ ^ ^ Jt 

is well defined and 
/»OC 

T\sj)J'^ds <^i2J^. t el. I 
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(iv) => (vi) Let H: I -^ 5,f be a function with the properties in the statement; 
that is, there exist the constants vi > 0 and V2 > 0 such that 

yjy^ < H(t) < V2y ,̂ t el. 

Since the operator r*(5, r) is positive, we have 

viT^s, t)]"^ < T*(s, t)H{t) < V2T*(s, t)]"^ (2.32) 

ioxdiWs >t, s, t eX, which leads to 

j T*(s,t)H(s)ds <V2 I T\sj)J'^ds 

for allr < T. Further, we obtain 

/ • 
T\sj)H{s)ds < V25/^ 

for allr < r, ^ r el, which gives 

T''(sj)H(s)ds < V28J\ t el. I 
On the other hand, from (2.32) together with (2.20) we deduce that there exists 

8 > 0 such that 
poo 

jd 
/

oo 

T\sj)H{s)ds < V28r 

for all t e X. 
We define 

K(t) = I T\sj)H{s)ds. = / 

Based on (2.13) we obtain that K(t) defined above is a solution of (2.30). 
(vi) =^ (vii) From vi) it follows that the affine differential equation 

— K(t) -h C\t)K{t) + H{t) + 7^ = 0 
at 

has a uniform positive and bounded solution which also solves (2.31). 
(vii) ̂  (viii) It is obvious that any solution of (2.31) is a solution of 

— K{t) + C\t)K{t)^0. (2.33) 
dt 



2.4 Exponential stability for Lyapunov-type equations onS^ 53 

(viii) => (iv) Let A' : J ^- 5f be a bounded and uniform positive solution of 
(2.33) with bounded derivative. We define M(r) = (M(t, 1 ) , . . . , M(r, d)) by 

M(t) = Y -C\t)K. 
dt 

Therefore, there exists the constants /Ii > 0 and jli > 0 such that 

Ai/^ <M{t) <^2J\ (2.34) 

t G X. Based on (2.13) and the constant variation formula we obtain that 

r,t)K(T)^ j K(t) = r*(r, t)K(T) + / r*(5, t)M(s) ds 

for all r < r, r, r G J . 
Since the operator r*(5, t) is positive, we deduce that 

/ • 
T\sj)M{s)ds < K(t) SsuplKiOlJ"^. 

tel 

Therefore, there exists 8 > 0 such that 

i: T%sj)Mis)ds <8r, (2.35) 

t G J . From (2.34) and (2.35) we deduce that 

/»00 1 /»00 

/ r*(5, OJ'^ds < — / r*(5, t)M{s)ds < 
Jt Ml Jr 

(5 

Ml 

for all t e l . 
(iv) ^ (ii) Let 

T\s,t)J^ds. 

Then we have K(t) < 8J^, and as in the proof of (iv) =^ (v) we have 

SiJ"^ < Kit) <8J'^. (2.36) 

For t > to, to G J , we define G(t) := r*(r, ro)^(r). Using (2.10) we get 

/

oo 

r*(5,0^'^^^. 

Therefore 

^G(o = -r(/,ro)y^ 
at 

for all ? > 0̂. Since r*(r, ô) is a positive operator, from (2.36) we obtain that 

1 5i 1 /S 

T*(t, to)J'' > -G(t) > -T*(t, tQ)j\ (2.37) 
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which leads to 

at 0 

from which it follows that 

^GitJ)<--G(tJ),ieV. 
at 0 

Let jc G R" be arbitrary and set gi(t) = x*G(t, i)x. Then we have 

for all t > to.or equivalently 

d 

Jt 

which shows that the function 

f{g^{t)e^'-^^^)<0. 

is not increasing. Hence we obtain 

G{tJ)<e-''^'-'^^G{toJ) 

for all t > to, i e V, where « = | , and with (2.36), 

Git) <(5^-"^'-'o^/^. 

From (2.37) we get 

for all t > to, hence 

(r{t,to)j'm<Y^'''^'~''^in-

The above inequality leads to 

\(T*(t,to)j'Ki)\<^e-^^'-'^^ 

and therefore 

\T'^{tJo)j'\<T'-''^'~''^-

Using Theorem 3 we obtain that 

l i r ( r , r o ) l l< r^ - "^ ' " ' ' ^ t>toJo^:^. 

and the proof is complete. • 
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Proposition 13. Assume that there exists a bounded uniform positive and continuous 
function H. X ^ S^, for which the affine Lyapunov-type function (2.30) has a 
bounded solution Ko(t) = (Ko(t, 1 ) , . . . , Ko(t, d)) with Ko(t, i) > 0, t e I. Then 
the system (AQ, . . . , A^; Q) is stable. 

Proof lfKo:I^S^is^bounded solution of (2.30) and Ko(t) > 0, then 

Ko(t) = r*(r, t)Ko{T) + I T*(s. t)His) ds 

for all t <T, t,T el. Since r*(r, t)Ko(r) > 0, we get 

T*(s,t)H{s)ds < Ko(t) <cJ^ l 
for all r < r, ^ r G J and for some positive constant c. 

On the other hand, / / ^ 0 implies that there exists a positive constant c such that 
cJ^ < H(s) for all s el, which leads to 

T\s,t)J'^ < -T*{sj)H{s) 
c 

and therefore 

poo I nOO ^ 

/ r*(5, t)J'^ds < - / r*(5, t)H{s)ds < - / ^ , 
Jt c Jt c 

and from Theorem 12 we conclude that the system (AQ, . . . , A^; Q)'\S stable and the 
proof is complete. D 

Remark 9. From the proof of Theorem 12 and of Proposition 13, we remark that if 
/ / : J -> «Ŝ  is a bounded and continuous function H{t) > 0, then the differential 
equation 

^K(t) + C(t)K{t) + H{t) = 0 (2.38) 
dt 

has a bounded solution K{t) >0{i and only if there exists y > 0 such that 

T\sj)H{s)ds <yJ^ (2.39) 

for all t el. Moreover, if (2.39) is accomplished, then 

/
oo 

T\s,t)H{s)ds 

is a bounded and semipositive solution of (2.38). 

f 
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Proposition 14. If the system (AQ, ..., Ar\ Q) is stable, then for all hounded and 
continuous functions / / : J -> <Ŝ , the corresponding Lyapunov-type equation (2.30) 
has a unique bounded solution given by 

*:(„ = ] T\sj)H{s)ds. 

Moreover, ift i—> Ak(t), k = 0, ..., r, t i—> H(t) are 0-periodic functions, then 
the unique bounded solution of (230) is a 0-periodic function too. 

If Aic(t) = Ak, k = 0, . . . , r, and H(t) = H, t e X, then the unique bounded 
solution of (2.30) is constant and it solves the algebraic equation 

CK^-H = 0. 

Proof. From Theorem 12 and Lemma 9 it follows directly that K(t) = 
J^ T*(s, t)H(s) ds, r G X, is a bounded solution of (2.30). Further, \ci K: I ^ S^ 
be a bounded solution of (2.30). By the constant variation formula we obtain 

K(t) = T*(T,t)K(T)+ I T''(s,t)H(s)ds (2.40) 

for all t < T, t,T e I. Since the system (AQ, ..., Ar, Q) is stable and ^ ( r ) is 
bounded, it follows that 

lim T*(T,t)K(T) = 0, 

/»r /»oc 

lim / T*(sj)H(s)ds = / T''(sj)H(s)ds. 

Hence, if in (2.40) we take the limit for r —> oo, then we obtain 

T\sj)H(s)ds, 
K i O ^ l 

which shows that K(t) = K(t). Assume now that t i—> Ak(t), k = 0,... ,r, t 
H(t) are ^-periodic functions. In this case we have 

K(t + 0)= I r*(5, t -\- 0)H(s) ds. -f 
Invoking Remark 3(ii) we may write 

/

oo POO 

r*(5, t)H(s +0)ds= / r*(^, t)H(s) ds. 
Thus we proved that K(t -^ 0) = K(t) for all t e Z, which shows that the unique 
bounded solution of equation (2.30) is a ^-periodic function. 
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If the functions Ak,k e {0 , . . . , r}, and H are constant functions, based on 
Remark 3(i) we obtain that 

K{t) 
/

CO /»00 

which shows that K{t) = K{Qi) for all t G J ; that is, in the time-invariant case, the 
unique bounded solution of the equation (2.30) is constant. It is obvious that it solves 
the algebraic equation CK -\- H = 0 and the proof is complete. D 

In the time-invariant case we have the following theorem. 

Theorem 15. A55wm^ that the system (1.22) is in the stationary case. Then the 
following are equivalent: 

(i) The system (AQ, . . . , A^; Q) is stable. 
(ii) For all H = ( / / ( I ) , . . . , H(d)) e S^, H{i) >0J e V, the algebraic linear 

equation on S^, 
CK-\-H = 0, (2.41) 

has a unique solution K = (Kil),..., K(d)) e S^, K{i) > 0, / G V. 
(iii) For each H = ( / / ( I ) , . . . , / / ( J ) ) G S^,H(i) > 0, / G P, the linear 

inequality 
C*K + H <0 (2.42) 

has a solution K = ( ^ (1 ) , . . . , K(d)), K(i) > 0, / G V. 
(iv) There exists K >0 satisfying C*K < 0. 
(v) For each H e S^, H > 0, the linear equation on S^, 

CK-j-H = 0, (2.43) 

has a unique positive solution K = (K(\),..., K(d)). 
(vi) For each H e S^, H >0, the linear inequality 

CK + H <0 (2.44) 

has a solution K > 0. 
(vii) There exists K >0 satisfying CK < 0. 

Proof, (i) =^ (ii). From the equivalence (i) 4=> (vi) in Theorem 12 we get that 
the equation 

4-K(t)-\-C*K(t)-\-H = 0 
dt 

has a unique bounded and uniform positive solution K(t). Moreover, K(t) is given by 

/

oo 
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We have ^ ( 0 = f^ e^*'Hds = K{0) for all t > 0. Hence K{t) is constant and 
it verifies the equation (2.41). 

(ii) =^ (iii). Indeed (ii) implies that the equation £*/f + / / + 7"̂  = 0 has a solution 
^ > 0. Hence K verifies (2.42). 

(iii) =^ (iv) follows immediately (taking H = J^). 
(iv) =^ (i) follows from Proposition 13. 
(i) =^ (v) Let / / > 0. Therefore fiiJ"^ < H < fix 7^ and with ŷ i > ft > 0. Since 

Ik^'ll < fie-'^^t > 0, for some y6 > l , a > 0 the integral K = f^e^'Hdt 
convergent, and since e^^ is a positive operator we have according to (2.20) 

poo o 

^ ft7^ < ft / e^'jUt <K< -fixJ^. 
Jo oi 

Further, we can write 

CK = / —(e^'H)dt = -H, 

IS 

r^ d =1 ^' 
and thus ^ is a solution of (2.43). To prove the uniqueness, one observes that if K 
verifies (2.43), then K is a. constant solution of the equation 

^K(t) = CK(t) + H, 
dt 

hence 

Jo Jo 

Since lim _̂̂ oo ̂ ^̂  = 0 , taking r-> oo in the above inequality, one gets K = 
f^ e^^Hds = K and thus the proof of (i)=>(v) is complete. 

(v) => (vi) follows by using the same reasoning as in the proof (ii) => (iii). 
(vi) =^ (vii) follows immediately (taking H = J^). 
(vii) ^ (i) Let H = -CK. Thus CK + H = 0 with / / > 0 and /^ > 0. Since K 

is a constant solution of the equation jjK{t) = CK{t) + / / we have 

JtQ 
K = e^^'-'^^K + / e^^'-'^Hds, t > to. 

Since e^^ is a positive operator and H > yj^ with some y > 0 we can write 

y f e^^'-'^jUs < [ e^^'-'^Hds <K< 57^. 
JtQ JtQ 

Thus, by Theorem 11 the proof is complete. • 
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Remark 10. The affine differential equation (2.30) is the compact version of the 
following system of matrix linear differential equations: 

— K{t, i) + Uo(r , /) + - ^ / , / J K{t, i) + K{t, i) Uo(r , /) + - ^ , / / J 

r d 

+ ^ Al(t, i)K(t, i)Ak(t, i) + Y.qijK{t, j) + //(r, /) (2.45) 
k=\ 

= 0, / eV. 
7 7^/ 

In the time-invariant case the algebraic equation £* AT + / / = 0 is the compact form 
of the following system of linear equations: 

Ao(/) + ^quln) K{i) + KH) (AOH) + ^quln) 

r d 

+ J^Al{i)K(i)Ak{i) ^Y.'^ijKU) + H(i) = 0. (2.46) 
k=\ j=[ 

A consequence of Theorem 12 and Proposition 14 is the following corollary. 

Corollary 16. If the system (AQ, ..., Ar\ Q) is stable, then for all i e V the system 
of linear differential equations on R", 

j^yi{t) = Uoit, i) + ^qiil,^ yi(t), t e I, (2.47) 

defines an exponentially stable evolution. 
In the invariant case, if the system (AQ, . . . , A^; Q) is stable, then for all i e V, 

the eigenvalues of the matrices Ao(/) + \qiiln «^^ located in the half plane C" = 
[zeC\ Re(z) < 0}. 

Proof Since the system (AQ, . . . , A ;̂ Q) is stable, from Theorem 12 it 
follows that (2.45) has a uniform positive and bounded solution K{t) = 
{K{t, 1 ) , . . . , K{t, d)). For each / G X> we can write 

d ^ ( 1 \ * --
-K{t^ i) + ( Ao(f, /) + -qulnj K(t, i) 

+ K(t, i) Uoit, i) + ^quln) + H(t, i) = 0, 

where 

H(^ /) := Hit, i) + ^ Al(t, i)K(t, /)A,(r, /) + ^ ^ , y ^ ( ^ j). 
k^\ j=] 

It is obvious that //(?,/):$> 0 for all t eX.By standard Lyapunov function arguments 
we conclude that the system (2.47) is exponentially stable and the proof ends. D 
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The next result shows that the bounded solution of (2.30) can be obtained as a 
limit of a sequence of bounded solutions of some Lyapunov equations. 

Proposition 17. Assume that the system (Ao, . . . , A;-; Q) is stable. Let H \X ^^ S^ 
be a bounded and positive semidefinite continuous function, H(t) = (H(t, I),..., 
H(t, d)). For each i eVwe define the sequence {K^{t)}p^^, where t i—> Kf{t) is 
the unique bounded solution of the differential equation: 

- ^ f ( 0 + (Ao(r,/) + - ^ / , / J Kj'it) 

+ ^ f (0 Uoit, i) + ^uln) + H.'it) = 0, ie V, (2.48) 

with 
r d 

H.'it) := H{t, i) + Y. ^^*( '̂ i)Kr\t)Ak{t^ i) + ^ ^ y y ^ J ' ^ O , 
k=\ j=\ 

p = l,..,,t el and Kf(t) = 0 . 

The sequences {Kl^{t)}p^^, i e V, are increasing and bounded. If we denote 

K^(t, i) = lim /^f (r), i eVj el, 

then K'^it) = (K'^it, 1 ) , . . . , K'^it, d)) is the unique bounded solution of the 
equation (2.30). 

Proof Let K{t) = {K(t, 1 ) , . . . , K(t, d)) be the unique bounded solution of 
equation (2.30). From Proposition 14 it follows that ^ > 0; then we have 

— K{t, i) + (̂ Ao(r, /) + - ^ / / / J K{t, i) + K{t, i) (^Ao(r, /) + -^/ / / . j 

r d 

+ Y, A*(r, i)K{t, i)Ak{t, i) + ^ ^ , y ^ ( f , j) 
k=\ j=\ 

+ H(t, i) = 0 , i eVj el. 

By direct calculations we obtain 

1 / 1 \ * 

- {K{t, i) ~ K!'it))+ Uoit, i) + -quiA (Kit, i) - Kfit)) 

+ [Kit, i) - Kf{t)) (Aoit, i) + \qiil)j + Af (0 = 0, / e V, (2.4 

r a 

Af (0 = Y. ^^*( '̂ '^ (^(^' '^ - ^ r ' ( O ) A,{t, i) + ^ ^ . 7 (K{t, j) - K'r\t)) , 
k=\ j=\ 
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i eV, p >2, and for /? = 1 we have 

r d 

k=\ 7=1 

Since for each / e P , Ao(t, i) + ^<?///„ defines an exponentially stable evolution, 
from (2.49) for /? = 1 we deduce that K(tJ)- K](t) > 0, i eV,t el. Further, 
by induction with respect to p we obtain that Af~\t) > 0, which shows together 
with (2.49) that K(tJ)- Kf{t) > 0 for all /? > 1, / G P , r G J ; that is, the sequence 
[Kf{t)}p^^ is bounded. On the other hand, for each /? > 1, (2.48) gives: 

j^K^'it) - Kfit}) + (^Ao(t, i) + \qulnj {Kr\t) - Kf(t)) 

+ (Kf*\t) - K^it)) Uoit, i) + ^-qul^ + Af (/) = 0, / e V, (2.50) 

where 

r 

Af (0 = Y^Ala, i) {Kf(t) - Kr\t)) Akit, i) 
k=l 

+J2qij{Kf{t)-Kr\t)), 

7 / / 

i eV, p >2, and for /? = 1 

r d 

l]{t) = J2K(^^ 0 KliOAkit, i) + Y.'iijKi(t) > 0. 
k=\ j=l 

By induction with respect to p, one can easily show that Af (0 > 0, which implies 
that Kf''\t) - Kf{t) > 0, / G P , /7 > 0; that is, the sequence {Kf{t)}p^^ is 
increasing and therefore the sequence is convergent. Let K^(t, i) = lim^^oo ^ f (0-
By standard arguments based on the Lesbegue Theorem (Chapter 1) we deduce that 
11—> K'^it, i), i G P , is a solution of the system (2.45). Since /^^(r, /) is bounded 
with respect to t, it follows that K^{t, i) = K(t, i) and the proof ends. D 

Remark 11. (i) In the time-invariant case the unique bounded solution of (2.48) is 
constant and it solves the standard Lyapunov equation 
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where 

r d 

Hi' := ̂  A*(0 Kr'A,{i) + ^^/./^r' + ^̂ '̂)' ' ^ ^' 
k=\ 7=1 

(ii) If t I—> Ak(t), t I—> H(t) are ^-periodic functions, then for each p and 
/ e V, the unique bounded solution on X of the Lyapunov differential equation (2.48) 
is a ̂ -periodic function. Therefore, it is sufficient to compute only the values of Kf (t) 
on the interval [ro, ô + ^]- We have 

cD*(̂ , t)Hl'{s)<l>i{s, t)ds, t<to + 0, 

^i(s, t) denoting the fundamental matrix solution of the equation (2.47). The peri­
odicity condition Kj^it) = Kj^it -f 0) shows that Kj'ito + 6>) is a solution of the 
following algebraic discrete-time Lyapunov equation: 

Xi = <t>;{to + 0,to)Xi<t>i(to + 0,to) 

+ / <^;(s,to)Hl(s)<^i(sJo)ds, i e V. (2.51) 
JtQ 

The eigenvalues of the matrices 0/(/o -\-0,to) which are the Floquet multipliers [58] 
of the system (2.47) are inside the unit disk \X\ < I, X e C and therefore (2.51) has 
a unique positive semidefinite solution. 

2.5 Mean square exponential stability 

In this section we introduce the concept of mean square exponential stability of the 
zero solution of the stochastic linear differential equations of type (1.22) and we also 
give necessary and sufficient conditions ensuring this kind of stability. The results 
proved in this section extend to a more general case, the existing results corresponding 
to the particular cases referring to the system (1.23) and (1.24), respectively. 

Definition 5. We say that the zero solution of the linear system (1.22) is exponentially 
stable in mean square (ESMS), or equivalently, that the system (1.22) defines an ESMS 
evolution if there exist fi > I and a > 0 such that 

E [|cD(r, to)xo\^ I Wo) = i] < Pe-^^'-''^\xo\^ (2.52) 

for all t > to >0,i e V, JCQ G R", where 0(r, ô) is the fundamental matrix solution 
of{\22). 
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Proposition 18. The following are equivalent: 
(i) The system (1.22) defines an ESMS evolution. 
(ii) There exist ŷ  > 1, a > 0 such that 

E [|cD(r, ^o)|' I ̂ (^o) = /] < Pe-^^'-''\ t>to>0, ieV. 

(iii) There exist Pi > I, oti > 0 such that 

E [|cD(r, to)\^ I r]ito)] < y6,^-«'̂ ^-^o\ a.s., t>to>0. 

(iv) There exist 6̂ > 1, a > 0 such that 

E [\<t>(t, to)^\^ I n(to)] < ^e-^^'-''^E [|§|2 I r]{to)], 

t > to >0, i eV, and ^ is any random vector HtQ-measurable and E[\^\^] < oo. 

Proof, (i) ^^F==^ (ii), (iii) => (ii), and (iv) =^ (i) are obvious. 
We now prove the implication (i) =^ (iii) Let e\, ... ,en be the canonical basis 

in R", that is, ^̂  = ( 0 , . . . , 0, 1, 0 , . . . , 0)*, with 1 being the ^th element. From the 
inequality 

n 

l^(^^o)l'<^l^(^^o)^^l^ 

we deduce that 
n 

E[\<t>(t, to)\^ I rjito)] < J2 [ l^(^ ^o)ek\^ I rjito)]. 
k=\ 

Since r]{to) takes a finite number of values we have 

n d 

£[ |0( / , ro) | ' I ̂ (ro)] < ^ ^ x , ( / o ) = 7 ^ [ l ^ ( ^ ^ o ) ^ ^ l ' I ̂ (^o) = j] a.s. 
k=\ j=\ 

Using (2.52) we can write 

n d 

£[ |0(r , ro) | ' I r]{to)\ < ^^X]x , ( roW^""^ ' "^^Vd ' 
k=\ j=\ 

= Pnde-''^'-'^^ a.s. 

(iii) => (iv) Let ̂  be an arbitrary random vector 7^^^-measurable and £^[|? |̂ ] < oo. 
From the inequality 

|0(r,ro)?|2<|0(r,ro)|'|?|' 

we deduce that 

£[|0(f, to)^\^ I Hr,] < i^[|4>(r, fo)l'l?l' I Wro] 

= \^\'E[\<^{t,to)\^\nt,l 

Since the components of 4>(r, ô) are measurable with respect to r]{s), Wj(s), to < 
s < t, j = 1 , . . . , r, it follows that we may apply Theorem 34 from Chapter 1 and 
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get 
£[lcDU, ro)§p I Hr,] < \H?E[\nt. ro)l' I ̂ M a.s. 

Using (iii) we deduce that 

£ [ |Oa , ro)§|' I W,o] < iSi^~"'^'~^^^l?l', a.s., r > ro > 0, 

from which one easily deduces that 

£[|cD(r, ro)§|2 I r/(ro) = /] < Pxe-^^^'-''^E[\H\^ I r7(ro) = /] 

for all / > ^ > 0, / € r>, and the proof is complete. D 

Remark 12. (i) In the particular case of the considered system of stochastic differen­
tial equations of type (1.24), the definition of the mean square exponential stability 
reduces to 

E[\<t>it,to)xo\']<Pe-^^'-''^\xo\' (2.53) 

for all t > to, XQ e R^. Let us remark that it is possible to define the mean square 
exponential stability for systems subjected to Markovian jumping of type (L22) and 
(L23), using (2.53) instead of (2.52). However, we can notice that in the presence of 
Markovian perturbations in the system, if (2.52) is fulfilled, then (2.53) also holds, 
but the reverse implication is not true. 

(ii) In the time-invariant case, based on Remark 4(ii) we obtain that the system 
(1.25) defines an ESMS evolution if and only if there exist ^ > 1, a > 0 such that 

E[mt, 0)xo\' \ ri(0) = i] < Pe-^'\xo\^ 

for all t >0,i eV, xo e R^ Since P{r]{0) = i) > 0, / G V, we obtain that the 
system (1.25) defines an ESMS evolution if and only if there exist )S > 1, a > 0 
such that 

E[\<P{t, 0)xo|^] < Pe-^'^lxot t>0,xoe R\ 

Based on Theorems 4 and 12 and Proposition 13 we get the following theorem. 

Theorem 19. The following are equivalent: 
(i) The system (1.22) defines an ESMS evolution. 
(ii) There exists 8 > 0 such that 

/

oo 

forallt >0andXQ € R". 

< 5Uol' 
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(ill) The system of linear differential equations 

^^K(t, i) + A*(r, i)K{t, i) + K(t, /)Ao(r, /) 

+ ^ A * ( r , / ) / ^ ( r , / ) A , ( r , / ) 
k=\ 

d 

7 = 1 

i eV,t >0, has a bounded solution K ^ 0: 

K{t) = {K{tA),...^K{t^d)). 

(iv) There exists a bounded uniform positive and continuous function / / : R+ -> 
5^, H(t) = (H{t,l), ..., H(t,d)), such that the system of linear differential 
equations 

— Kit, i) + A*a, i)K{t, i) -f K{t, OAoa, 0 

+ ^A*(r , / ) /^(r , / )A,a , / ) 
k=\ 

d 

^-Y^^ijKit, j) + / / (^ /) = 0 (2.54) 

has a bounded and uniform positive solution K{t) = (K(t, 1), . . . , K(t, d)). 
(v) For every bounded uniform positive and continuous function / / : R+ —> 5^, 

the system (2.54) has a bounded and uniform positive solution. 
(vi) For each H(t) as above, there exists a C^ function A :̂ R+ ^ 5^, bounded 

with bounded derivative K ^0, which solves the following system of linear differen­
tial inequalities: 

-Kit, i) + A*(r, i)Kit, i) + Kit, DA^it, i) 
at 

+ ^A*(^/)/^(r,/)A,(r,/) 
k=\ 

d 

+ Y,qijKitJ) + Hit,i)<{) 
y=i 

i eV, uniformly with respect to t, with t > 0. 
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(vii) There exists a C ̂ function K :R^ -^ S^, bounded with bounded derivative 
K ^ 0, which solves the following system of linear differential inequalities: 

— Kit, i) -h A*(r, i)K(t, i) H- Kit, i)Aoit, i) 
dt 

r 

^Y,Alit,i)Kit,i)Akit,i) 
k=\ 

d 

+ J2^ijKitJ)<0, 

i eV, uniformly with respect to t, with r > 0. • 

Combining the results of Theorems 4 and 15 we obtain the following result for 
the time-invariant case. 

Theorem 20. The following are equivalent: 
(i) The system (1.25) defines an ESMS evolution. 
(ii) The system of linear matrix equalities (LMEs) 

r d 

AliDXii) + xiDA^H) + Y. A^*(0 (̂OA,(/) + ^ ^ / , z a ) + /n = 0, 
k=\ j=\ 

i e V, has a solution X = (Z(l), . . . , Xid)) with X(/) > 0, / € V. 
(iii) There exists / / = ( / / ( ! ) , . . . , Hid)) € S^ with Hii) > 0 such that the system 

ofLMEs 

r d 

AliDXii) + XiDA^ii) + ^ Alii)Xii)Akii) + ^^o-XO") + Hii) = 0, 

(2.55) 

/ G V, has a positive solution X = (X(l), . . . , Xid)). 
(iv) Eor every H = (//(I), . . . , Hid)) e Sf^ with / / > 0, the system ofLMEs 

(2.55) has a positive solution X = (X( l ) , . . . , Xid)). 
(v) For each H = ( / / ( I ) , . . . , Hid)) e S^ with H > 0, the system of linear 

matrix inequalities (LMIs) 

r d 

A*(/)X(/) + XiDAoii) + X] Alii)Xii)Akii) + ^^oZ(y) + //(/) < 0 
k=\ j=i 

has a positive solution X = (X(1) , . . . , Xid)). 
The system of LMIs 

r d 

AliDXii) + X(/)Ao(/) + Y. ^^*(OX(/)A,(/) + Y "iU^U) < 0 
k=\ j=i 

has a positive solution X = (X(l), . . . , Xid)). • 
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Similarly we have the following theorem. 

Theorem 21. The following are equivalent: 
(i) The system (1.25) defines an ESMS evolution. 
(ii) The system ofLMEs 

r d 

Ao(/)F(/) + Y{i)Al{i) + Y, Ak{i)Y{i)Al{i) + ^^^,T0*) + / , = 0, 
k=\ j=\ 

i e V, has a solution Y = (7 (1) , . . . , Y{d)) with Y(i) > 0, / G V. 
(iii) Thereexists H == ( / / ( I ) , . . . , H{d)) e S^ with H{i) > 0 such that the system 

ofLMEs 

r d 

A^{i)Y{i) + Y{i)Al{i) + Y. Ak{i)Y{i)Al{i) + X]^i/^0') + ^ ( 0 = 0, 
k=\ 7=1 

(2.56) 

/ G P , has a positive solution F = ( F ( l ) , . . . , Y{d)). 
(iv) Eor every H = ( / / ( I ) , . . . , H{d)) G 5^ w/r/z / / > 0, r/?̂  ̂ j^r^m ofLMEs 

(2.56) has a positive solution F = ( F ( l ) , . . . , F(^)). 
(v) For each / / = ( / / ( ! ) , . . . , / / (J)) G S^ with H > 0, the system ofLMIs 

r d 

Ao(/)F(/) + F(/)AS(/) + Y. Ak{i)Y{i)Al{i) + ^ ^ , , F ( y ) + H{i) < 0 
/:=! j=\ 

has a positive solution Y = ( F ( l ) , . . . , Y{d)). 
The system ofLMIs 

r d 

Ao(i)Y(i) + Yd)Alii) + Y Mi)Y(i)Al(i) + ^ ^ , , F ( 7 ) < 0 
k=\ j=l 

has a positive solution Y = ( F ( l ) , . . . , Y{d)). D 

The following result shows that in the time-invariant case the ESMS is equivalent 
to a type of attractivity of the zero solution. 

Theorem 22. The following assertions are equivalent: 
(i) The system (1.25) defines an ESMS evolution 

(ii) 
lim £r|jc(r)n = 0 

for any solution x{t) of the system (1.25) with x{0) = JCQ, XQ G R". 
(iii) 

lim E\x(t)x*(t)] = 0 

for all solutions x{t) of (1.25) as above. 
(iv) 

lim E\^*(t,0)^(t,0)] =0 . 
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Proof, (i) =^ (ii) directly follows from Remark 12(ii). 
(ii) =^ (iii) follows from the inequality 

^<x{t)x\t)<\x{t)\'h. 

(iii) zẑ  (ii) follows from 

|x(Ol' = Tr[x{t)x\t)l 

(ii) =^ (iv) easily follows using the identity 

£[x*c|>*(r, 0)cD(^ 0)j] = ^{£[ |0 ( / , 0)(x + y)\'] - E[\<l>{t^ 0)(x - y)\']] 

(2.57) 

for all jc, y e VC. 
(iv) =^ (i) Since P{rj(0) = i) > 0, i eV, then from (iv) we have 

lim E[^*(t, 0)4>(r, 0) | r]{0) = i] = 0, i e V. 

Based on Theorem 4 and Remark 3(i), the above equality gives 

lim (^^*'y^)(/)=0, / G P , 

and therefore lim -̂̂ oo k^*^-^ l̂ = 0. Applying Theorem 3 we conclude that 
lim.^oo lk^*'ll = 0, and from (2.5) we obtain that 

lim Ik^'11=0. (2.58) 

Since £ is a linear operator on a finite-dimensional Hilbert space, from (2.58) we 
deduce that the eigenvalues of the operator £ are located in the half-plane C~, and 
hence there exists yS > 1, a > 0 such that \e^^ \ < fie'^K Combining Theorems 15 
and 21 we deduce that the system (1.25) defines an ESMS evolution and the proof is 
complete. D 

In the case of periodic coefficients we obtain the following analogous result. 

Theorem 23. Assume that t i—> Ak{tJ), k = 0 , . . . , r, are 0-periodic and conti­
nuous functions. Then the following are equivalent: 

(i) The system (1.22) defines an ESMS evolution. 
(ii) 

lim E\\xipO)\^] =0 

for all solution x(t) of (1.22) with x(0) = JCQ, XQ e R". 
(iii) 

lim E\xipO)x''(pe)] =0 
p-^oo ^ -" 

for any solution x(t) of (1.22) as above. 
(iv) 

lim E\^*(pe,0)^ipe,0)] = 0 . 
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Proof, (i) =^ (ii) and (ii) <^=^ (iii) are similar to the proof of Theorem 22. 
(ii) =^ (iv) immediately follows from (2.57) and Remark 4(i). 
(iv) =^ (i) If (ii) is fulfilled, then 

lim £rO*(/7^, 0)cD(/7^, 0) | ^(0) = /] = 0, / G V. 

Using Theorem 4 we obtain 

lim {T\pO,0)J'^){i) = 0, / G P , 

and therefore 

which leads to 

lim |(r*(/7^,0)y^)(/)| = 0 , / eV, 
p^-oo 

lim r*(/7i9,0)r = 0 . 
p^-oo 

Based on Theorem 3 we deduce that 

Using (2.5) we get 

which is equivalent to 

lim IIr*(/?6>, 0)11 = 0 . 
p—^oo 

lim \\T{p0,O)\\ = 0 , 
p-^oo 

lim 11(7(0,0)K||=0, (2.59) 
p-^oo 

T(0,0) being the monodromy operator associated with the differential equation (2.9). 
From (2.59) we deduce that the eigenvalues of 7 (^, 0) are inside the unit disk | A, | < 1. 
Applying a result in [58], we may conclude that the zero solution of (2.9) is expo­
nentially stable, which implies via Theorem 4 that (1.22) defines an ESMS evolution, 
and therefore the proof is complete. D 

In the following we consider the cases when the stochastic system (1.22) is 
subjected only to either Markov jumping or multiplicative white noise. Thus, in the 
case of system (1.23), Theorem 19 becomes the following. 

Theorem 24. The following assertions are equivalent: 
(i) The system (1.23) defines an ESMS evolution. 

(ii) The system of linear differential equations 

d 
— K{t, i) + A*(/, i)K{t, i) + K(t, i)A(t, i) 
dt 

d 

7 = 1 

i e V, t > 0, has a bounded and uniform positive solution 

K(t) = (K(t, \),...,K(t,d)). 

(iii) There exists a bounded uniform positive and continuous function H : R+ —> 
S^, H(t) = (H{t, 1), . . . , //(r, d)) such that the system of linear differential 
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equations 

— K(t, i) + A*(r, i)K{t, i) + K(t. i)A(t, i) 
at 

d 

+ Y,qijK(tJ) + H(tJ)=0 (2.60) 
7 = 1 

has a bounded and uniform positive solution K(t) = (K(t, 1 ) , . . . , K(t, d)). 
(iv) For every bounded uniform positive and continuous function / / : R+ ^- 5^, 

the system (2.60) has a bounded and uniform positive solution. 
(v) For each H(t) as above, there exists a C^ function K : R^-> S^, bounded 

with bounded derivative K ^0, which solves the following system of linear 
differential inequalities: 

— K(t, i) + A*(^ i)K(t, i) + K(t, i)A(t, i) 
dt 

d 

^J2qijK(tJ) + H(tJ)<0^ 
j=i 

i e V, uniformly with respect to t, with t > 0. 
(vi) There exists a C ̂  function K : R^ ^^ S^ bounded with bounded derivative 

K ^ 0, which solves the following system of linear differential inequalities: 

d "^ 
— K(t, i) + A*(r, i)K(t, i) + K{t, i)A{t, i) + ^^ / ,A : ( r , j) < 0, 

i eT>, uniformly with respect to t, with f > 0. D 

Remark 13. If the system (1.23) is in the time-invariant case, that is A(t, i) = A(i) 
for all t >0J eV, similar results in Theorems 20 and 21 can also be formulated. In 
this case one obtains the well-known results concerning the ESMS of linear systems 
with jump Markov perturbations. 

Theorem 25. Assume that the system (1.23) defines an ESMS evolution; then there 
exist P > 1 and a > 0 such that \\R(t,to)\\ < fie'""^^'^^^ for all t > ^ > 0, R(t,to) 
being the linear evolution operator on (R")^ defined by the differential equa­
tion (2.26). 

Proof Let y = (y(l),..., yid)) e (R")^; then we have 

\E[^\t,to)y(ri(t))\r](to) = i]\' (2.61) 

< £[|cD*(r, ro)l' I n(to) = i]E[\yirj(t))\' \ r]{to) = / ] , 



2.5 Mean square exponential stability 71 

^ > ^ > 0. On the other hand, 

d 

E[\y{r){t))\^ I /^ao) = /] = ^ ^ [ x , ( / w I r){t^) = i]\y(j)\^ 
7 = 1 

d d 

7=1 7=1 

Thus (2.61) leads to 

|£[cD*(r, to)yir](t)) I ̂ ^o) = /]|2 < £[|cD*(r, to)\' \ r]{to) = if\\yf. 

Because the system (1.23) defines an ESMS evolution and \^*{tJo)\ = \^{t,to)\, 
there exist yS > 1, of > 0 such that 

E[\<t>'itJo)\^ \ r](to) = if < Pe-^'^'-'^K 

Therefore 
|£[0*(r, to)y(rj(t)) \ rj(to) = i]\^ < Pe-^^'-''^\\yf 

for all t > to >0. Based on Proposition 8 we deduce that 

\(R*(tJo)y){i)\^<Pe-^^'-''^\\yf 

and hence 

\R%t, to)yf = J2 l(^*(^ fo)y)(i)\' < dfie-^^' -«(^-^0) | |vl |2 

/ = 1 

which gives 
||r(r,ro)||<y^^-?^'-^«^ 

for all t >to>0. Since \\R*(t, to)\\ = \\R(t, to)\\ we conclude that 

l|/̂ (^ro)||<y^^-t^^-^o) 

and the proof is complete. D 

Corollary 26. If the system (1.23) defines an ESMS evolution, then for all /z : R+ ^ 
(R")^ continuous and bounded, the affine differential equation 

^y(t) + M%t)y{t) + h(t)=0 
dt 

has a unique bounded-on-R^ solution, M{t) being defined by {2.15). 

Combining the results in Theorems 19 and 24, we obtain the following corollary. 
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Corollary 27. If the system (1.22) defines an ESMS evolution, then the linear system 

x(t) = Ao(t,r](t))x(t), 

obtained by ignoring the white noise perturbations in (1.22), defines an ESMS 
evolution, too. D 

Let us now consider the case when the system (L22) is subjected only to white 
noise perturbations, that is, when the system under consideration is of form (1.24). 
In this case, from Theorem 19 one obtains some known results concerning the 
exponential stability of linear systems described by Ito differential equations [74]. 
Theorem 28. The following assertions are equivalent: 

(i) The system (1.24) defines an ESMS evolution. 
(ii) The affine differential equation over the space of symmetric matrices 

-X{t) + A*(OX(0 + X{t)Ao{t) + Y. K^t)X{t)Ak{t) + 4 = 0 
k=\ 

has a bounded and uniform positive solution X(t). 
(iii) There exists an / / : R+ -> 5„ bounded and continuous function, H(t) ^ 0, 

such that the affine differential equation 

1 r 

-X(t) 4- A*(OX(0 + X(t)Ao(t) + J2 ^l(OXit)Ak(t) 4- Hit) = 0 (2.62) 
k=i 

has a bounded and uniform positive solution X(t). 
(iv) For each / / : R+ -> 5^ bounded, continuous and H ^ 0, the affine 

differential equation (2.62) has a bounded solution X ^ 0. 
(v) For each / / : R+ —> Sn bounded, continuous function, H ^ 0, the linear 

differential inequality 

j^Xit) + Al{t)X{t) + X(OAo(r) + Y.K(t)X{t)Ak{t) + H{t) < 0, 
k=\ 

uniformly with respect tot > 0, has a solution X(t) bounded with bounded derivative 
X » 0 . 

(vi) The linear differential inequality 

1 r 

-X(t) + A*(OX(r) + X(t)Ao(t) + J2 ^l(OX(t)Akit) < 0, 
k=\ 

uniformly with respect to t > 0, has a C^ solution X : R+ —> Sn, which is bounded 
with bounded derivative and X(t) ^ 0. D 

Remark 14. If the system (1.24) is in the time-invariant case, similar results to those 
in Theorems 20 and 21 can also be stated. 

The next result is proved in a more general situation in [79]. 
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Theorem 29. The linear system of stochastic differential equations 

dx(t) = Ax{t)dt + bc^'xdwxit), b,ce R\ (2.63) 

has an ESMS evolution if and only if A is stable and J^ \c''e^^b\^dt < 1. 

Proof From Theorem 28 and Remark 14 it follows that (2.63) has an ESMS 
evolution if and only if there exists X > 0 such that 

A*X + XA + crx/7c* = -In. 

or equivalently, 
A*X + XA + cZ7*XZ?c* + /„ = 0. (2.64) 

Assume that (2.64) is fulfilled for X > 0. Then it follows that A is stable, and therefore 
we can define the linear operator ^ : 5„ ^- 5„ by 

g{G) = I e^^'Ge^\ 
poo 

Jo 

and H = Q{G) is the unique solution of the Lyapunov equation 

A*// + //A = - G . (2.65) 

If G > 0 then Q{G) > 0; applying the operator Q to the matrix from the left side 
of (2.64) and using (2.65), we obtain that 

-x + b*xbg(cc')-\-g(in) = o. 

Hence 
-b*Xb + (b''Xb)b*g(cc'')b + b''g(In)b = 0 

and therefore 
b^'Xbil - b*g(cc'')b) = b''g(In)b, 

which implies that 1 — b'^g(cc*)b > 0, since if b = 0 the inequality is obvious, and 
if Z? 7̂  0 we have b*Xb > 0, b*g{In)b > 0. Taking into account that 

poo 

b'g{cc'^)b= / \c*e^'b\^dt, 

the inequahty in the statement directly follows. 
The condition in the statement is sufficient. Indeed, assume that A is stable and 

that f^ \c''e^'b\^dt < 1, namely b*g(cc*)b < 1. Let 

1 — b*y{cc*)b 

It is obvious that X > 0 and a direct calculation using (2.65) shows that X verifies 
(2.64) and the proof is complete. D 
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Remark 15. From Parseval's formula one easily obtains that 
/»00 1 /*00 

/ {c^e'^'bl^dt = — / |c*(A - iXInr^bl^dk. 
Jo 27r y_oo 

For each / e P we can consider the following system subjected only to white 
noise perturbations: 

dXiit) = (Ao(tJ)'\--qiiIn]xi(t)dt-{-J2^k(tJ)Xi(t)dwk(t), (2.66) 

t >0,i eV.ln this case one obtains the following corollary. 

Corollary 30. If the system (1.22) defines an ESMS evolution, then 
(i) The system (2.66) defines an ESMS evolution for each i e V. 
(ii) For each i e V the deterministic system 

Xi(t) = (Ao{t,i) + -qiilAxi{t) 

defines an exponentially stable evolution, D 

At the end of this section we prove the following result. 

Theorem 31. Assume that there exists a bounded and uniform positive function K : 
R4. -^ S^, K(t) = {Kit, I), . . . , K{t, d)), and the constants r > 0, 5 e (0, 1) such 
that 

{T\t -f r, t)K{t -f r))(/) < 8K(t, /), r > 0, i G P 

for all t >0, i eV. Then the system ( AQ, A \ , ..., Ar, Q) is stable. 

Proof From the statement of the theorem it follows that 

T*(t + r, t)K(t + r) < 8K(t), t > 0. 

Let ^ > 0 be fixed; since T*(t,to) is a positive operator, we obtain by 
induction that 

r*(^o + mr, to)K(to + mz) < r/^(^o) 

for all m > L Taking into account that 

leads to 

|r*(/o + mr,/o)^^l <PS'^,m > L 

Based on Theorem 3 we obtain 

| | r ( ro + mr,ro)^^ll<y^5". 

Since sup^>o ||^*(OII < 00, we easily deduce (using (2.13)) that | | r*(^^) | | < P\ 
for all 0 < / - 5 < r. Using (2.11) we deduce that ||r*(r, ro)|| < ^62^"" '̂"'̂ ^ for all 
^ ^ ^ ^ 0 for some P2 > 0 and a = — - In 5, and by virtue of Theorem 4 the proof 
is complete. D 
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2.6 Numerical examples 

Example 1. Let us consider the particular case n = \ m which situation the system 
(1.24) reduces to the linear differential equation 

r 

dx(t) = a(r](t))x(t)dt + ^^;t(^7(0)^(0^w^it(0, t > 0. (2.67) 
k=\ 

We shall prove that if 

r 

k=\ 

then (2.67) defines an ESMS evolution. 
Indeed, taking AT = ( 1 , . . . , 1) and using the fact that Ylj=\ ^U — ^' ^^ 8̂ ^ 

r d d 

i € V. Since the left side in the above equation coincides with L*^ and ^ > 0, 
from Theorem 20 it follows that if (2.68) is fulfilled then the system (2.67) defines an 
ESMS evolution. 

Remark 16. (i) The above example shows that (2.68) are sufficient conditions under 
which (2.67) defines an ESMS evolution. As we shall see in the next example, these 
conditions are not necessary. 

(ii) Using Theorem 28 and Remark 14, it is easy to check that (2.68) is a necessary 
and sufficient condition for ESMS for the Ito equation 

r 

dx{t) = a{i)x{t)dt -\-Y^gk{i)x{t)dwk{t), 
k=\ 

with / e V fixed. 

Example 2. Assume that in (2.67) we have J = 2, r = 1, and 

—a oi 
a —a 

with a > 0. From Theorem 15, (2.67) defines an ESMS evolution if and only if there 
exists K = {Ku K2), Kt > 0, such that 

2 

2ai Ki -f gfKi + Y^ q,j Kj =-a, / = 1, 2, 
7-1 
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where we denoted at = a{i), gi = g{i), and Ki = K{i), i = 1,2. Then, from the 
above equation, we obtain 

(2fli + g^ _ ^^^^ ^ ^^2 ^ _^^ (2.69) 

(2^2 + ^2 - ^)^2 + a/^i = - a , 

from which result the necessary conditions for stability: 

2fl/ -i-gf -a <0, i = 1,2. 

Further, solving (2.69) we get 

a{2a2-\- gj -2Qf) 
K^ 

K2 = 

a{2ai + g2 + 2fl2 + 2̂̂ ) - {2ai + ^2) (2^2 + gj)' 

a(2fli +gf -la) 

a{2ax +g\ + 2a2 + gl) - (2«i + ^?)(2fl2 + ^2)' 

Since 2a/ + gf - 2Qf < 0, it follows that 

ot{2ax +g] + 2a2 + gl) - {2a, + ^?)(2a2 + gj) < 0. (2.70) 

Then the following cases can occur. 
Case 1 If 2^1 + g^ + 2^2 + g^ < 0 the condition (2.70) is accomplished for 

^ ^ {2ai+g^,){2a2 + gj) 

2ai+g}-h2a2 + gl ' 

Case 2 If 2ai + gj-\- 2a2 + g^ > 0, then (2.70) holds for 

. < (^-^^f(^-^^^f. (2.71) 
2ax-\-g] + 2a2-\-gl 

Case 2 implies 2^/ -^ gf > 0^ i = \^ 2. Then (2.71) contradicts the necessary 
condition a > 2a\ -\- ^^ Therefore, we conclude that Case 2 must be excluded. 

Summarizing, the stochastic system (2.67) with d = 2 and r = 1 considered in 
this example defines an ESMS evolution if and only if 

2ai + ^^ < 0 and 2^2 + gj < 0 

(situation considered in Example 1) or if 

2ai + g^ + 2^2 + g2 < 0 and 

f {2a,+g^,){2a2 + gj) 
a > max ] 2a\ + ^ j , 2^2 + gi 

2ax +g^ +2^2 + ^1 
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Example 3. Consider the stochastic system with jump Markov perturbations in which 
n = d = 2: 

dx{t) 
= A(ry(0)x(0, t > 0, 

where 

dt 

Ax :=A{\) = 

A2 := A(2) = 

(2.72) 

—aa 
a 

—aa 
0 

0 
—aa 

a 
—aa 

with a > 0 and 

Q 
—a a 
a —a 

with Of > 0. Then, according to Theorem 15 and Remark 13, (2.72) defines an ESMS 
evolution if and only if there exist 

•̂ 1 y\ 

y\ zi 
and X2 := X(2) = 

X2 yi 

yi zi 
X i : = X ( l ) 

such that Xi > 0, X2 > 0 and 

2 

2 

A*X2 + X2A2 + ^ ^ 2 i X , - = -C./2, 

7 = 1 

which are equivalent to 

^x\ -lyx - X 2 = 1, 

?>y\ - Zi - >'2 = 0, 

y^^i - Z 2 = 1, 

^JC2 — X\ — 1, 

^6^2 - X2 - >'l = 0, 

P>zi -lyi - z i = 1, 

where we denoted ^ :=2a + l. By solving the above system of algebraic equations, 

ŷ  + 1 Zl 
( ^ 3 _ ^ 2 _ ^ _ l ) ( ^ 3 + ^ 2 _ ^ + l ) -

Then for a ^ - 0 one obtains that zi -^ —\. This shows that although A(l) and A(2) 
have their eigenvalues in C~, that is, they are stable in the deterministic sense, the 
stochastic system (2.72) defines an unstable evolution. 
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Example 4. We now consider the case n = d = 2 and r = I, namely the situ­
ation when the stochastic system is subjected to both Markovian jumping and to 
multiplicative noise: 

where 

dxiO = Ao(r]{t))x{t)dt -h Aiirj(t))x(t)dwi(t), t > 0, 

Ao(l) = 

Ai(l) = 

(2.73) 

" - 1 0 ' 

L 1 - 1 . 
Ffl 0" 
[o o_ 

, Ao(2) = 

, Ai(2) = 

• - ] 

_ 0 

' 0 0" 
0 a 

1 
-IJ 

' 

and 

e = 
- 1 1 
1 - 1 

According to Theorem 20, the necessary and sufficient condition such that (Ao, A i; Q) 
defines an ESMS evolution is that the equations 

A*(/)X(/) + Z(/)Ao(/) + A\{i)X{i)A^{i) ^Y^q^jXU) = -h, 
7 = 1 

= 1,2, have the solution X(i) > 0 with 

X{i) = 
yi Zi 

i = 1,2. 

The above equation leads to 

(3 — a )x\ — 2yi — ^2 = 1, 

3yi -z\-y2=0, 

3Zi - Z2 = 1, 

3j2 -X2- y\ =0, 

(3 -a^)z2 -2y2 - z\ = I, 

from which we deduce that 

(24 - 9a^)x2 + {3a^ - I0)zi = 8 - 2a\ 

{3a^ - 10)x2 + (24 - 9a^)z\ = 8 - 2a^. 

(2.74) 

(2.75) 

For (2̂  = ^ we obtain that X2-\- Z\ = — y , which is not admissible since X{i) > 0, 
/ = 1,2, imply that X2 > 0 and zi > 0. 
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On the other hand, if a^ = | , the system (2.75) is incompatible, and if a^ ^ ^ 
and fl^ 7̂  | , this system has the unique solution 

'' = '' = 3a^r 

which gives in (2.74) 

xx=Z2 = - - - r — - and yi = yi 
a^ -4 

Therefore, Z( l ) > 0 and X(2) > 0 if and only if a^ < | , from which we conclude 
that (Ao, Ai, Q) defines an ESMS evolution if and only if a^ < | . 

2.7 Affine systems 

Consider the system 

r 

dxit) = [Ao(r, r]{t))x(t) + /o(OW^ + Yl^Akit, r]it))x{t) + A(Oyw;^(0, 

(2.76) 
where A^(r,/),0 < /: < r, are bounded on R^ and continuous matrix-valued 
functions. Denote 

«(o = (/o(o, /r(o,...,/;(o)*. 
If 0̂ > 0, xo G R" and fk e Ll^iUo, Tl R''), 0 < ^ < r for all T > ro by 

Theorem 36 of Chapter 1, it follows that there exists a unique solution Xu(t, to, XQ) 
of the system (2.76) with XuUo, /Q, ^O) = ^o and x«(-, to, XQ) e Z.^^([fo, T], R"), 
T > to; that is, all components of the vector Xu are in L^^([to, T]). 

Unfortunately the representation formula (1.29) cannot be used to obtain some 
useful estimates for solutions of system (2.76) as in the deterministic case. Such 
estimations are obtained in an indirect way using some techniques based on Lyapunov 
functions. 

Theorem 32. Assume that the system (Ao, A i , . . . , A ;̂ Q) is stable. 
(i) There exist c > 1, a > 0 such that 

E[\Xuit,to,xo)hr](to) = i] 

< c (^-«('-^o^|xo|2 + ^ £ [ r^-«^^-^^|/,(5)|2 j5|r;(ro) = i 

for all t >to >0,xo E R " , / eVandall fk e Ll^([to,oo),R''),0 < k < r. 
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(ii) There exists fi > 0 such that 

r r'^ 
xo)r\ri(to) = i 

< fi ixor + 
k=o L /̂o 

\Ms)\^ds\ri(to) = i 

for all to > 0, xo G R^ fk e L] ^([^O, OO), R " ) , 0<k<r,i eV. 
(iii) 

\imE\Xu(t,to,xo)\^ = 0 

for all to > 0, xo € R^ /^ G ̂ ^^([ro, oo), R"), 0 < /c < r. 

Proof Since (AQ, A I , . . . , A^; 2 ) is stable, then by Theorem 12 the Lyapunov-
t ^ e equation (2.29) has a unique bounded-on-R+ and uniformly positive solution 
K(t) = (K(t, 1 ) , . . . , K(t, d)). Therefore, there exist ofi > 0, Qf2 > 0 such that 

otxJ"^ <K(t) < a 2 ^ ^ t > 0 . 

Let Xu(t) = Xu{t,to,0),t > 0̂- Applying the Ito-type formula (L16) to the 
function v(t, x, i) =^ x*K(t, i)x and to the system (2.76), taking into account the 
equation (2.29) for ^ ( 0 , we obtain 

K(s, r](s))fo(s) E[v(t,xM, ri(t))\r](to) = i] = E\ j j - \x,{s)\^ ^Ix^is) 

r 

k=\ 

+ ^ f:{s)Kis, r]is))Ms) j dsMto) = i 
k=l 

Denote 

hiit) = E[vit, x„(f), r](t))\r]ito) = / ] , / e V, 

niiit) - ^El\x,(tW\r](to) = il i e V, 

giit) ^£[IA(OPl'?(?o) = / ] , ' € P. 
•\J * :=0 

Then we may write 

h'At) 

\-\x,(t)\^+2x:(t) Kit, r,{t))fo(t) + J2 Kit' rjit))K(t, r](t))Mt) 
k=l 

+ J2 f:(t)Kit, r,(t))Mt) \n(to) = i 

a.e. t > to, i e V. 
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Since Ak, K are bounded, there exist y > 0,8 > 0 such that 

Kit) < -m^it) + y[mi(t)gi{t)+gf(t)] < -^-m^(t) ^ 8g^it). 

Taking into account that a\In < Kit, r](t)) < a2ln it follows that 

Qfim (̂r) <hi(t) <a2m]{t). 

Hence h\{t) < -j-hiit) + 8gf(t). Since hi(to) = 0 we obtain 
2^2 

2 
oi\mj(t) < h iit)<8 f e-^ 

Jto 

-aits) 2 gf{s)ds, t>to,i eV (2.77) 

with a = 2^. On the other hand, 

Xu(t, to, xo) = Xuit, to, 0) + 0(r, to)xo. (2.78) 

Combining (2.77) and (2.78), (i) is proved. Part (ii) follows from (i) and the Fubini 
Theorem. We now prove (iii). Since 

E^ 
/ = 1 

poo ^ 

/ S Mt)\^dt\r](to) = i < 0 0 , 

^'0 k=0 

it follows that for every s > 0 there exists tg > to such that 

d " /»oo 

J2 8f(t)dt<s. 

For each t > te we have 

J tQ J tQ J ts 

< e 
•00 

-ait-te) / ^2 / gf{s)ds-\-s. 

From this inequality and (2.77) we conclude 

limE[\x,(t,to,0)\^\ri{to) = i]=0. 

Finally, using (2.78) we obtain 

\imE[\Xu(t,to,xo)\^\riito) = i]=0 

and the proof is complete. D 
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Remark 17. If we do not know that the system (AQ, A i , . . . , A^ ; <2) is stable, then the 
estimation from Theorem 32(i) is not uniform with respect to r, fo ^ R+- In general 
we may prove that for any compact interval [ro, ̂ i] there exists a positive constant c 
depending upon t\ — to such that 

E[\xAt, to, xo)\^\ri(to) = i]<cl \xo\^ + I ] ^ [ T lAWl ' ^^l^(^o) = i 

for all t e [to, til xo e R^ / e V and all fj, e LlJ[to, til R''), 0<k<r. 

To this end we notice that since Ak{t, i),0 < k < rj e T>, are bounded on R+, 
from (2.76) and Theorem 31 of Chapter 1 it follows easily that there exists an absolute 
constant y > I such that for all t e [to,ti],i eV v/c have 

E[\Xu(t,to,xo)\^\r](to) = i] 

<\y\xo\' + E 

r r pt 

k=Q ' -^ /o 

/ \Xu{s,to, Xo)| ^^l^(^) = / {{ti - to) + 1) 

\Ms)\'ds\r]{to) = i ( ^ 1 - ^ ) + !) . 

By using the Gronwall Lemma we get 

sup E[\Xu(tJo.xo)\^r]{to) = i] 
tQ<t<tl 

< c(\xo\' + J^E\ r \Ms)\^\ri{to) = i\ 

/ e V, where c > 0 depends only on ti — to-

Notes and references 

In the control literature one can find a large number of papers devoted to the stability 
of Ito-type differential equation systems. For this reason it is impossible to give an 
exhaustive bibliography for this subject. We shall limit ourselves to pointing the 
reader to the monographs [5], [6], [11], [74], [77], [78], [21], which contain many 
references concerning this subject. Theorem 29 has been proved in [79] for a larger 
class of systems of linear stochastic differential equations. 

The ESMS for stochastic systems of differential equations with Markov per­
turbations has been introduced and studied for the first time in [73], in which 
characterizations using Lyapunov-type equations are given. 

The results in this chapter concerning time-varying linear differential systems with 
jump Markov perturbations have been proved in [89]. The mean square exponential 
stability for time-invariant differential systems with jump Markov perturbations has 
been investigated in [86], [84], [48], [70], [49], [82], [85]. 
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The ESMS problem for differential equations subjected to both Markov pertur­
bations and multiplicative white noise has been also considered in [83]. In that paper 
sufficient conditions for stability are given in terms of some M-matrices, and it is 
proved that ESMS implies almost sure stability. Results concerning the stabihty and 
the boundedness of solutions of nonlinear Ito differential systems subjected to Markov 
perturbations can be also found in [80]. 

Most of the results included in Sections 2.1-2.5 have been proved in [33]. 



structural Properties of Linear Stochastic Systems 

In this chapter we present the stochastic version of some basic concepts in control 
theory, namely stabilizability, detectability, observability, and controllability. All these 
concepts are defined in terms of both Lyapunov operators and stochastic systems. 
The definitions given in this chapter extend the corresponding definitions from the 
deterministic time-varying systems. Some examples will show that the stochastic 
observability does not always imply stochastic detectability, and stochastic control­
lability does not necessarily imply stochastic stabilizability. As in the deterministic 
case the concepts of stochastic detectability and observability are used in some criteria 
ofESMS. 

3.1 Stabilizability and detectability of stochastic linear systems 

Let us consider the following stochastic input-output system: 

dx(t) = [Ao(r, r](t))x{t) + ^0^ , r](t))u(t)]dt 
r 

+ J^[Ak(t, r](t))x(t) + Bkit, r](t))u(t)]dwk(t), (3.1) 
k=l 

yit) = Co(t, r]{t))x(t), 

f G R+, with the inputs u e R^ and the outputs j G R^, and denote A = (AQ, 
A i , . . . , Ar) and B = (^o, ^ i , • • •, Br). 

Definition 1. (i) We say that the system (3.1) is stochastically stabilizable or equiv-
alently, the triple (A, B; Q) is stabihzable if there exists F : R+ ^- ^m,n i^ounded 
and continuous function such that the zero solution of the system obtained by taking 
u(t) = F(t, r](t))x(t), namely 

dx(t) = [Ao(t, t](t)) + 5o(^ r](t))F(t, r](t))]x(t)dt 
r 

+ ^[Ait(r , r]{t)) + Bk{t, r]{t))Fit, r]{t))]x{t)dwk{t), 
k=\ 

t > 0, is ESMS. 
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(ii) We say that the system (3.1) is stochastically detectable, or equivalently, that 
the triple (Co, A; Q) is detectable if there exists K: R+ 
bounded function such that the zero solution of the system 

Alf „ continuous and 

dx(t) = [Ao(r, r](t)) + K(t, r](t))Co(t. r](t))]x(t) dt-\-J2 "^kit, r](t))x(t)dwk(t) 
k=\ 

is ESMS. 

Remark 1. (i) The above definition of the stochastic detectability would also be stated 
if the output of the system (3.1) is of the form 

dy(t) = Co(r, r](t))x(t)dt + ^ Q ( r , rj(t))x(t)dwk{t). 
k=l 

(ii) The function F(t) = (F(t, 1), F(t, 2 ) , . . . , Fit, d)) and the function K{t) = 
(K{t, \), K{t,2),..., Kit,d)) from the above definition will be termed stabilizing 
feedback gain and stabilizing injection, respectively. 

The concepts of stochastic stabilizability and stochastic detectability in the par­
ticular cases when the system (3.1) is subjected only to either Markovian jumping 
(i.e., Ak = 0, Bk = 0, I < k < r) or multiplicative white noise (i.e., V = {1}) are 
obviously defined in the same way. In the case of Markovian jumping systems, we 
shall say that (Ao, ^o; Q) is stabilizable and (Co, Ao; Q) is detectable, and in the case 
of Ito systems we shall say that (A, B) is stabilizable and (Co, A) is detectable. 

Remark 2. If the system (3.1) is in the stationary case, then the stabilizing 
feedback gain and the stabilizing injection are supposed to be of the form 
F = (F(l), . . . , F(d)), H = ( / / ( I ) , . . . , H(d)), 

In the next chapter we shall show that in the case when the coefficients of the sys­
tem (3.1) are ̂ -periodic functions with respect to their first argument, then this system 
is stochastically stabilizable (stochastically detectable) if and only if there exists a 
^-periodic stabilizing feedback gain (a ^-periodic stabilizing injection, respectively). 
Moreover, if the system (3.1) is in the time-invariant case, then it is stochastically 
stabilizable (stochastically detectable) if and only if there exists a stabilizing feedback 
gain F = (F(1)F(2). . . F{d)) (a stabilizing injection K = (K(l)K(2)... K(d)), 
respectively). 

Let us consider the following numerical example with n = 2, d = 2, and r = 1, 
where 

Q = 

Ai(l) = 

- 1 
1 -

'a 0" 
0 0_ 

1 
-1 

' 

Ao(l) 

A, (2) 

- 1 
a 

0 0" 
0 a 

0 
, Ao 

, B(l) = 

(2) 

"0" 
1_ 

= r s 
0 - ] 

, B{2) = 

' 

"r 
_0_ 
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withfl^ < 7/3 and a, p,y,8 e R. The system (AQ, A \ , Q\ B) is stabilizable. Indeed, 
let 7 (̂1) = [\-a - I - ^ \ F(2) = [-1 - y 1 - 5 ] . Then 

Ao(l) + B(l)F(l) 
- 1 0 
1 - 1 

andAo(2) + B(2)F(2) = 
- 1 1 
0 - 1 

from which we deduce, according to Example 4 of Section 2.6 that ( AQ -\-BF, A\\ Q) 

is stable. Let us remark that the pairs (Ao(l), B{\)) and (Ao(2), ^(2)) are not control­
lable. One can also remark that if jS > 1/2 or y > 1/2, then the system {AQ, A \ \ Q) 
is not stable since it does not satisfy the necessary conditions of stability, namely the 
matrices Ao(/) + {quh, / = 1, 2 being stable. 

The next result immediately follows. 

Proposition 1. (i) The system (3.1) is stochastically stabilizable if and only if there 
exists a continuous and bounded function F : R .̂ ^- -^m,n ^^^^ ^^^^ ^^^ system 
(Ao + BQF, AI + J5IF, . . . , A , + BrF; Q) is stable. 

(ii) The system (3.1) is stochastically detectable if and only if there exists a 
continuous and bounded function K: R+ -^ A4^ such that the system (AQ + 
KCQ, A I , . . . , A^; Q) is stable. D 

From Theorems 19, 24, and 28 of Chapter 2, the following result can be obtained. 

Proposition 2. (i) If the system (3.1) is stochastically stabilizable (stochastically 
detectable, respectively), then the system with Markovian jumping, 

x(t) = Ao(r, r]{t))x(t) + Boit, ti(t))u(t), 

y(t) = Co(t, ri(t))x(t), 

is stochastically stabilizable (stochastically detectable, respectively). 
(ii) If the system (3.1) is stochastically stabilizable (stochastically detectable, 

respectively), then, for each i e V, the system described by the ltd differential 
equations, 

dxiit) = [Ao(r, i)xi(t) + ^o(^ i)u(t)]dt 
r 

+ X![A^(r, i)Xi{t) + Bj,{t, iMt)]dwk(t), 
k=\ 

yi(t) = Co{t,i)xi(t), 

is stochastically stabilizable (stochastically detectable, respectively) where AQ (^ /) = 
Ao(^0 + ^^///n. • 

Remark 3. It is not difficult to see that the definition of the stochastic stabilizabil­
ity and stochastic detectability can be stated for triplets (A, B; Q) and (C, A; Q) 
in the case when the elements of the matrix Q verify only condition (2.7); C = 
(Co, Ci,... ,Cr) and A^, B^, Ck are continuous matrix-valued functions on a right 
unbounded interval J c R. 
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More precisely, we have the following definition. 

Definition 2. (i) The triple (A, B; Q) is stabilizable if there exists a bounded and 
continuous function F : J -> Alf,^ such that 

\\TF{t,s)\\ <Pe-''^'-'\Wt>s el 

fa > 0, yS > 0 being constants); Tf{-, •) is the linear evolution operator defined by 
the linear differential equation over S^: 

^S(t) = Cf(t)S(t), 
dt 

where CFit) : S^ -> S^ by 

(CF(t)S)(i) = [Ao(t, i) + Boit, i)F{t, i)]S{i) + S(i)[Ao(t, i) + ^o^ , i)F(t, /)]* 
r 

+ ^ [ A , ( r , /) + B,(t, i)F(t, i)]S(i) (3.2) 
k=\ 

d 

x[A,a, 0 + Buit. i)F(t, /)]* + J2qjiSU), 

i eV,Se S^. 
(ii) The triple (C, A; Q) is detectable if there exists a bounded and continuous 

function K :I ^ Mi^^, such that \\T^(t,s)\\ < ^e'"'^'-'^ Wt > s e I, ^ > 0, 
Of > 0 being constants. T^(t,s) is the linear evolution operator defined by the linear 
differential equation 

^S{t) = C^(t)S(t), 
dt 

where C^ it) : S^-^ S^ by 

[£^(05](/) = [Aoa, /) + Kit. i)Coit, i)]Sii) + Sii)[Aoit, i) + Kit, i)Coit, /)]* 
r 

+ J2[Akit, i) + Kit, i)Ckit, i)]Sii)[Akit, i) + Kit, i)Ckit, /)]* 

d 

+ J^qj,Sij), (3.3) 

7 = 1 

i eV,S e S^. 

The next result easily follows from Theorem 21 of Chapter 2. 

Proposition 3. Assume that the system (3.1) is in the time-invariant case. Then the 
following are equivalent: 

(i) The system (3.1) is stochastically stabilizable. 
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(ii) There exists F = {F{\), F{2),..., F{d)) e M^ ^ such that the affine 
Lyapunov equation over S^, 

CFX + y^ = 0, 

has a solution X > 0. 
(ill) The linear matrix inequalities 

C(x,r)ii) P(x,r)(/) 
v*ix, r)(o mxm <o (3.4) 

have a solution (X, F) e 5^ x A1^ „, X > 0, where 

d 

C{x, r)(o = AoiDXH) + x{i)Ai{i) + Bo{i)r(i) + r*ii)B*(i) + J^^jiXU), 

p(x,r)(o = (Ai(/)X(/) + B,(/)r(/) 
A2(/)X(/) + e20)ro) • • • Ar(i)X{i) + BAoru)), 

n(X)ii) 

-X{i) 0 0 
0 -X( / ) 0 
0 0 -X(() 

0 0 0 

0 
0 
0 

-X(i) 

^ <^rn-

Moreover, if(X, V) e S^ x Mi is a solution of the linear matrix inequalities (3.4) 
with X > 0, then F = (F(l), F ( 2 ) , . . . , F{d)), with 

F(i) = r(i)X(i)-\ 

i eV is a stabilizing feedback gain. 

(3.5) 

D 

In the particular case with Bk=0,k = l,2,... ,r we have the following 
proposition. 

Proposition 4. Assume that the system (3.1) is in the time-invariant case and Bk (i) — 
0, / e V,k = 1, . . . , r; then the following are equivalent: 

(i) The system (3.1) is stochastically stabilizable. 
(ii) The system of linear matrix equations 

Ao(i)X(i) + x(/)A*(/) + Bo(i)r(i) + r*(/)5*(0 

+ J2 Ak(i)X{i)Al(i) + J2^Ji^U^ + ln=0, 
7 = 1 

(3.6) 
k=\ 

i e V, has a solution (X, T) e S^xM^,^, X > 0. Moreover, if{X, T) e S^xMi,^ 
is a solution of the system (3.6) with X > 0, then a stabilizing feedback gain may be 
obtained as in the previous proposition. • 
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The next result follows easily from Theorem 20 of Chapter 2. 

Proposition 5. Assume that the system (3.1) is in the time-invariant case; then the 
following are equivalent: 

(i) The system (3.1) is stochastically detectable. 
(ii) The system of linear matrix equations 

A*(/)y(/) + y(/)Ao(/) + A(/)Co(/) + Co(/)*A*(/) 
r d 

+ Y.Al{i)Y{i)Ak{i) + X]̂ 'V (̂̂ '̂  + 4 - 0 , (3.7) 
k=\ j=\ 

i e V, has a solution (F, A) e S^ x M"^ ̂ ,7 > 0. Moreover, if{Y, A) is a solution 
of the system (3.7), then K = {K{\),..,, K{d)), with 

K{i) = Y-\i)A(i), (3.8) 

/ e Vy being a stabilizing injection. 
(iii) The system of linear matrix inequalities 

A*(/)F(/) + Y(i)Ao(i) + A(/)Co(/) + C*(/)A*(/) 
r d 

+ ^A*( / )F( / )A, ( / ) + ^ ^ , , y ( y ) < 0 , (3.9) 
k=\ j=\ 

i e V, has a solution (F, A) e 5^ x M^^ ^, F > 0. Moreover, if(Y, A) is a solution 
of the system (3.9) with F > 0, then a stabilizing injection is obtained as in (3.8). D 

Based on Remark 3 we can establish a duality relationship between the 
stabilizability and detectability in this stochastic framework. 

Proposition 6. Assume that: 
(i) Ayt : R -> M^, Bjc : R -^ ^ t m ̂ ^^ continuous and bounded functions, 

^ = 0, l , . . . , r . 
(ii) The elements of the matrix Q verify (2.7). 
Then the triple (A, B; Q) is stabilizable if and only if the triple (B^ A^; g^) ̂ ^ 

detectable, where 

A« ^{AlA\,...,A% 5» = « 4 . . . , B » ) , 

Alit) =(A»(r, 1), Al{t,2),...,Ai{t,d)), 

Bfit) = {Bl(t, 1), Blit, 2 ) , . . . , Bl{t, d)), 

Al{t,i):=Al{-t,i), 

Bl{t,i):=Bl{-t,i), ^ 

Q^ - Q*, 
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Proof. If (A, B; Q) is stabilizable, then there exists a bounded and continuous 
function F : R -> Â f̂  „ such that 

\\Tf{t,s)\\<Pe-^^'-'^ (3.10) 

for allr > s,t,s e R, P > 0, a > 0 being positive constants, Tf{-, •) being the 
linear evolution operator defined by linear differential equation over S^, 

^Sit) = Cf{t)S{t)^ (3.11) 
at 

and Lf(t) being defined as in (3.2). 
It is easy to see that S{t) is a solution of the equation (3.11) if and only ift -^ S{—t) 

is a solution of the equation 

^X(t) + (CHt)rX(t)=0, (3.12) 
at 

where C^t) : S^ ^ S^ is defined by 

{C\t)S){i) = [Al(t, i) + K\t, i)Bl(t, i)]Sii) 

-hS(i)[Al(t,i) + K\t,i)Bl(tJ)Y 

+ ^ [ A ^ ( r , / ) + /^Hr,/)5,^(r,/)]5(/) 
k={ 

[Al(tJ) + KHtJ)Bl{tJ)Y 
d 

+ J2^'j.Sij)JeV,SeS',, 

where AJ, BI were defined in the statement and K^(t, i) = F*(—^ /), qj- = qtj, 
/, j e V. If r^(^ s) stands for the linear evolution operator over S^ defined by the 
differential equation 

^S{t)^C\t)S{t)^ 
at 

then we obtain from (3.12) that 5 ( - 0 = {T^{s,t)YS{-s)iox^\\t < 5,hence5(0 = 
{TH-s,-t)yS(s) for 2i\\t >s. 

On the other hand, S(t) = Tf{t, s)S{s), t > s. Hence we have T\t, s) = Tp{-s, 
—t)^t>s. Finally, invoking (3.10), we deduce that 

\\THt,s)\\ <Pe-"^'-'\ Vr > 5 , 

which shows that (B^ A^; Q^) is detectable and the proof is complete. D 
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Remark 4. (i) In the same way we may prove that (C, A; Q) is detectable, if and only 
if(A«,C«; e^) is stabilizable. 

(ii) From Proposition 6 it follows immediately that in the time-invariant case, 
(A, B; Q) is stabilizable if and only if the triple (B*, A*; 2*) is detectable. 

Now we prove the following theorem, which extends a well-known result from 
the deterministic framework. 

Theorem 7. Suppose the following. 
(i) (Co, A; Q) is stochastically detectable. 

(ii) The differential equation 

— K(t)-{-CHt)K(t)-\-C(t) = 0 
dt 

(3.13) 

has a bounded solution K: R+ -> <S,f, K(t) = {K(t, 1), . . . , K(t,d)), K(t, i) > 0, 
t >0,i eV, where C(t) = {C{t, 1), . . . , C(/, d)), C{t, i) = C*(^ i)Co(t, i). 

Then the solution of the system (1.22) is mean square exponentially stable (or 
equivalently, the system ((AQ, A \ , . . . , Ar)\ Q) is stable). 

Proof Consider u: R+ x R" x P ^ R, v{t,x, i) = x^'Kit, i)x. Let x{t) = 
x(t, to,xo) be a solution of the system (1.22). Applying the identity (1.6) to the 
function v and to the system (1.22) and taking into account the equation (3.13) we 
get for all t > to and / e V 

E[v{t, x(0, r]{t))\ri{to) = i] - x^K(to, i)xo 

= -E [f \Co(s,ri(s))x(s)\^ds\r]{to) = i 

Hence 

\Co(t^r](t))x(t)\'dt\ri(to) = i XQK(toJ)xo < y\xo\ (3.14) 

0̂ > 0,jco eR\i eV. 
We may write 

dx(t) = {[Ao(t, nit)) + Hit, r](t))Coit, riit))]xit) + foit)} dt 
r 

^-Y,Akit,r]it))xit)dWkit), 
k=\ 

where /o(0 = -Hit, rjit))Coit, r]it))xit). 
Since the system (AoH-//Co, Ai . . . A ;̂ g) is stable and since/o eL'^^Hto, oo)x 

R") (see (3.14)) we may use Theorem 32(ii) of Chapter 2 to obtain 
• poo 

/ 1$ (t,to)xo\ dtlnito) < S[\xo\' + E 

< PlxoV 

• /»oo 

/ I/O {t)\'dt\ii{h) = i 

for all/o >0,xo e R " , / e P . 
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Using Theorem 19 of Chapter 2 we conclude that (AQ, AI , . . . , A^; 2) is stable 
and the proof is complete. D 

Remark 5. If (C, A; Q) is detectable, then it follows based on a similar proof that the 
result remains valid if one replaces C{t) with C{t,i) = Yl[=o ^^ (^ 0 Q ( ^ 0-

3.2 Stochastic observability 

Definitions. We say that the system (3.1) is stochastically uniformly observable 
(or equivalently, that (Co, A; Q) is uniformly observable) if there exist r > 0, j6 > 0 
such that 

t + T 

T''{sj)C(s)ds > ^ y ^ (3.15) 
/ 

Vr > 0, where Cis) = {C(s, 1), C(s, 2 ) , . . . , C(5, J)), C{s, i) = C*(s, i)Co(s, /), 
i e V, s > 0. In the time-invariant case we shall say that the system (3.1) is 
stochastically observable, or the triple (Co, A; 2) is observable. 

Remark6. (i) If in the system (3.1) we have i4^(r, i) = 0, k = \,... ,r,V = {l},then 
the Lyapunov operator (2.8) is the Lyapunov operator of deterministic framework. In 
this case (3.15) becomes 

/ 

t + T 

^1(S, OCo*(5)Co(5)Oo(^, t)ds > pin, ^t > 0, 

where Oo(-, •) is the fundamental matrix solution of the differential equation x{t) = 
Aoit)xit). 

This shows that the above definition of stochastic uniform observability is a natural 
extension of the uniform observability used for linear time-varying deterministic 
systems (see [72]). 

(ii) If the system (3.1) is subjected only to Markovian jumping, then the condition 
(3.15) becomes //"^' f%s, t)Cis)ds > /g/^. If this is fulfilled we shall say that the 
triple (Co, Ao; Q) is uniformly observable. 

(iii) If the system (3.1) is subjected only to multiplicative white noise and the cor­
responding inequaliy (3.15) is fulfilled, then we shall say that (Co, Ao, A i , . . . , Ar), 
or more briefly (Co, A), is uniformly observable. 

The following result follows immediately from Theorem 4 of Chapter 2. 

Proposition 8. The system (3.1) is stochastically uniformly observable if and only if 
there exist yS > 0, r > 0 such that 

• rt+T 

t)Q(s, r]is))Co{s, Tj(s))<t>{s, t)ds\ri(t) = i >PIn 

for all t > 0,i e V, <!>(•, •) being the fundamental matrix solution of the 
system (1.22). CI 
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The proof of the next result is based on some preliminary results that develop the 

ones presented in Section 2.2. First, remark that since 

where 0/(^ to) is defined in the proof of Theorem 5 of Chapter 2 and ^((t, to) is the 
fundamental matrix solution for fixed i e V of the linear deterministic system 

dx 
— = Ao(t, i)x(t), 
at 

it follows that for each / e V the pair (Co(., /), Ao(., /)) is uniformly observable if 
and only if the pair (Cot, 0^ ^o(-. 0) is uniformly observable, where 

AoitJ) = Ao(tJ) + -quln-

Further, for each / e V, let 

C'(t):Sn->Sn 

be the Lyapunov-type linear operator defined by 

r 

C(t)M = Aoit, i)M + MA*(r, /) + ̂  Aj{t, i)MA)it, /), M e Sn, 

and let T^(t, to) be the linear evolution operator on Sn associated with the opera­
tor £'(^)^ 

Let C(t) : S^ -^ S^ be defined by 

(C(t)H)(i) = d(t)H(i), H e si. i e V, 

and let T{t, to) be the linear evolution operator on S^ associated with the linear 
operator C(t).liis easy to prove that 

(T(t, to)H)(i) = r(t^ to)H(i). H € Si, i e V. 

From the definitions T{t, to), Ti{t, to) (see Section 2.2) easily follow 

T(t,to)>f(t,to)>Ti(tJo), (3.16) 

T(t, to) > Tit, to). 

From (3.16), the next proposition immediately follows. 

Proposition 9. We make the following assumptions. 
(i) If for each i e T>, the pair (Co(-, /), Ao(-, /)) is uniformly observable, then 

the triple (Co, AQ; Q) is uniformly observable. 
(ii) If (Co, Ao; Q) is uniformly observable, then (Co, A; Q) is uniformly 

observable. 
(iii) If for every i 6 V, the system (Co(., /), Ao(., /), A](., /), . . . , A^(., /)) is 

uniformly observable, then the system (Co, A; Q) is uniformly observable, too. D 
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Proposition 10. Assume that the system (3.1) is in the time-invariant case. Then the 
following are equivalent: 

(i) The system (3.1) is stochastically observable. 
(ii) There exists r > 0 such that 

f e^*'Cds > 0. 
JO 

(iii) There exists r > 0 such that Xo(r) > 0, where Xo{t) is the solution of the 
problem with initial value: 

^Xoit) = CXoit) + C, Xo(0) = 0. 
at 

Proof (i) 4=^ (ii) follows from (2.16). 
Since Xo{t) = f^ e^'^'-'^Cds = f^ e^^'Cds, t > 0, it follows that (iii) ^^=^ (ii). 

The proof is complete. • 

Proposition 11. Assume that the system (3.1) is in the time-invariant case. Let Xo(0 
be the solution of the Cauchy problem on S^, 

-Xo(t) = /:*Xo(0 + C, r > 0, Xo(0) = 0. 
at 

If there exists r > 0, such that Xo(r) > 0, then Xo(t) > 0 for all t > 0. 

Proof. For each r > 0, we write the representation 

Xo(t) = (Xo(tA), Xo(t,2),...,X(t.d))= [ e^'^'-'^Cds. 

Since e^*^^~^^ : 5^ -> 5^ is a positive operator, we deduce that Xo(t) > 0 for all 
t > 0. Moreover if r > r we have Xo(t) > XO(T); therefore, if Xo(r) > 0, we 
have Xo(t) > 0 for all r > r. It remains to show that Xo(t) > 0,0 < t < r. 
To this end we show that detXo(t, /) > 0, 0 < r < r, i e V. Indeed, since 
detXoit, i) = det[ /J e^*^^~^'^Cds){i)], we deduce that t -^ detXo(t, i) is an analytic 
function. 

The set of its zeros on [0, r] has no accumulation point. In this way it will follow 
that there exists ii > 0 such that detXo(t, i) > 0 for all t e (0, ri]. Invoking again 
the monotonicity of the function t -^ Xo(0 we conclude that Xo(t) > 0 for all 
r > ti , and the proof is complete. • 

Remark 7. From Propositions 10 and 11 it follows that the stochastic observability 
for a system (3.1) in the time-invariant case may be checked by using a numerical 
procedure to compute the solution Xo(t) through a long enough interval of time. 

The following two results can be considered as Barbashin-Krasovskii-type 
theorems [58]. 
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Theorem 12. Assume that (Co, A; Q) is uniformly observable and the affine differ­
ential equation 

— X(t) + CHt)X(t) + C(t) = 0 (3.17) 
at 

has a bounded and semipositive solution X(t),t >0. Then 
(i) The system {AQ, AI , . . . , A^.; Q) is stable. 
(ii) X(t) » 0. 
(iii) Equation (3.17) has only one bounded solution that is uniform positive. 

Proof From (2.12) it follows that 

X(t) = T*{s,t)Xis)+ T*(u,t)C(u)du, s>t. (3.18) 

Since 0_< X{s) <^PoJ'^ with some ŷo > 0 and T(s, t) > 0, one gejts 0 < 
/ / r*(w, t)C{u)du < X(t) < PoJ"^ for all 5 > / > 0. Hence the integral X(t) = 
j ^ T*(s, t)C(s)ds is convergent and 0 < X{t) < ^QJ"^, t > 0. 

By (2.12) it follows directly that X is a solution of the equation (3.17). 
Since ( Q ; AQ, . . . , A^, 2 ) is uniformly observable it follows that X is uniformly 

positive. Since T*(t -\- T, t)T*{s, t -\- r) = T*{s, t) we have 

T\t + r, t)X{t + r) = / r*(5, t)C{s)ds = X{t) - I T\s, t)C(s)ds. 
Jt+T Jt 

Hence r*(^ + T)X{t + r) < X{t) - fiJ"^ < (l - ^)X(t), t > 0. Thus by Theorem 
31 of Chapter 2 it follows that the system (AQ, . . . , A^, g ) is stable. Hence by 
Theorem 12(ii) of Chapter 2, ||r*(^, Oil < y^~"^^'\ ^ > ^ 

Taking 5 -^ oo in (3.18) one gets X{t) = X(t),t > 0, and thus the proof is 
complete. D 

Corollary 13. Suppose that A^(r, /) = Ak(i), Co(r, /) = C(/), t > OJ e V, 0 < 
k < r. Assume that (Co; Ao, . . . , Â -, Q) /5 observable and the algebraic equation 
on Si, 

/:*X-hC = 0, (3.19) 

has a solution Z > 0. 
Then: 
(i) The system (Ao, A\, ..., Ar, Q) is stable. 
(ii) Z > 0. 

(iii) The equation (3.19) has a unique positive semidefinite solution. D 

The next result gives sufficient conditions concerning the observability of the 
system (Co; Ao, . . . , A ,̂ Q). 
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Theorem 14. Under the assumption of Proposition 10 if the system (Co; AQ, . . . , 
Ary Q) is not observable, then there exist XQ e R ' ' , XQ # 0, and /Q € I> 5wc/i ?/z<2f 

(i) Co(/o)-̂ o = 0. 
(ii) ^/Q/CO(I)XO = ^for all i G V. 

(iii) Co(/o)(AoOo)r^o = ^ for all m > 1. 
(iv) qiQiqijCoij)xo = 0 for all i ^ /Q, j ^ ^• 
(v) Co(/o)A)t(/o)^o = 0, I <k <r. 

Proof Suppose that (Co; Ao, . . . , A ,̂ g) is not observable. From Proposition 10 
it follows that there exist jco G R", JCO 7̂  0, and /o ^ ^ such that XQ /Q (^^*^C) 

(/o)^^xo = 0. Hence jc*(^^*'C)(/o)JCo = 0 for all r G [0, 1]. Since e^*' > e^*' > 
e^*' (see(3.16)andRemark3ofChapter2)onegets;c*(^^*'C)(/o)^o = 0, jc*(^^t^C) 
(/o)jco = 0, ^ G [0, 1]. From the last equality we get Co(/o)̂ ^° '̂° '̂-̂ o = 0,t e [0, 1). 

Hence differentiating successively we have 

jc*((£*)"C)(/o)xo = 0, m > 0, (3.20) 

Co(/o)(Ao(/o))"^o = 0, m > 0, (3.21) 

x*((f*)"Q(/o)xo = 0, x*((>Ct)"C)(/o)^o = 0 (3.22) 

for all m > 0. 
Thus (i) and (iii) follow from (3.21) 
Now, from (3.20) and (3.22) we have 

0 = x*(/:*C)(/o)^o = x*(£^C)(/o)xo + x * ( r C)(/o)xo 
r 

= xo(C2C)(io)xo =x^Y^ Aliio)CQ{io)Co(io)Ak(io)xo, 
k=\ 

and thus (v) follows. 
Further, by (3.22) we can write 

0 = jc*(r C)(/o)xo = Jc*(£tC)(/o)xo + x;{ClC)(io)xo 

= x;{ClC)iio)xo = X* J2 ^/o7Q*0*)QO')^o, 

where C,C,C\ are defined in Section 2.2 and C2 = C — C and £3 = C — C\. Then, 
since qij > 0, if / ^ j one gets (ii). 

Also from (3.22) it follows that 

0 = x*((r) 'c)( /o)xo 

= 4 {[((>ct)' + ^ ^ + A*^t + (^3f) S] 0*0)} ^0 

= X* [m^c){io) + (/:3*£too'o) + ((/:3*)'0(/o)]^o. 
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But, by using (ii) we can write 

XQmC*^C)(io)xo = 2XQ ^oO'o) + ::^ioio^n Y^qiQiCQ(i)Co(i)xo = 0, 
'>'0 

x^mC\C)(io)xo = 2x* ^ ^ / o ' (KH) + \^ii^n) C*(/)Co(/)xo = 0. 

Hence one gets 

and since ^/QJ^/J > 0 for / 7^/0, 77^/, one obtains qiQiqijC{j)xo = 0 for all / 7 /̂0 
and 77^/, and thus by (ii) it follows that (iv) holds and hence the proof is 
complete. D 

Corollary 15. Under the assumption of Proposition 10, if for every i eV, rank 
M(i) = n, where 

M(i) = [C*(/), AS(/)C*(/),..., (A*(/)r-^C*(/), 

^/iC*(l), . . . , qidQi^), At(/)C*(/), . . . , A ; ( / ) C * ( / ) ] , 

then the system (Co; AQ, Ai, ..., Ar, Q) is observable. D 

In the following examples, the stochastic observability used in this paper is com­
pared with other types of stochastic observability, for example, the one introduced 
in [70] and [86]. We also show that the stochastic observability used in this paper 
doesn't imply the stochastic detectability as we would have expected. 

Example 1. Letusconsiderthecaseof a system with Markovian jumping with J = 2, 
n = 2, p = I. Take 

Ao(l) = Ao(2) = ' ^ ^ 

Co(l) = [l 0],Co(2) = [0 1], G 

0 a 

-q q 
q -q 

,aeR,q>0. 

It is obvious that the pairs (Co(l), Ao(l)), (Co(2), Ao(2)) are not observable. 
Therefore, this system is not stochastically observable, in the sense of [86]. We shall 
show that this system is stochastically observable in the sense of Definition 3. 

To this end we use the implication (iii) = ^ (i) in Proposition 10. We show that 
there exists r > 0 such that X\(r) > 0, X2(r) > 0, where X/(0, / = 1, 2, is the 
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solution of the Cauchy problem: 

d ^ 
-Xi(t) = A*(/)X,(0 + Xy(r)Ao(/) + ^ ^ / , X , ( 0 + C*(/)Co(/), (3.23) 

7 = 1 

XKO) = 0, / = 1,2. 

From the representation formula 

Jo 
(Xi{t),X2it)) = I e'-o^'-'^Cds 

it follows that X/ (0 > 0 for all t > 0. 
Therefore it is sufficient to show that there exists r > 0 such that detXiir) > 0. 
Set 

and obtain from (3.23) the following system of affine differential equations: 

x[{t) = (2a ~ q)xi(t) -i- qx2{t) ^ 1, 

X2(t) =qxx{t)-\-{2(x-q)x2{t), 

y[(t) = (2a-q)yi(t)^qy2(t), 

/^(t) = aydt) + (2a - q)y2(t), 

z[(t) = (2a-q)zi(t)-hqZ2(t), 

Z2(t) = qzi(t) + (2a - q)z2(t) -\- h 

Xi(0) = yi(0) = Zi(0) = 0,i = l2. 

Hence yi(t) = y2(t) = 0, r > 0. 
From the uniqueness of the solution of a Cauchy problem it follows that x\(t) = 

Z2(t) = x(t) and X2(t) = Zi(t) = z(t), where t -^ (x(t), z(t)) is the solution of the 
problem 

—x(t) = (2a - q)x(t) + qz(t) + 1, 
dt 

d 
—z(t)=qx(t) +(2a-q)z(t), 
dt 

i(0) = 2(0) = 0. 

Wehave J^rX/(0 = Xi(t)zi(t) - yf(t) = Xi(t)zi(t) = x(t)z(t), t > 0. 
But 

^(0 = ̂  = 1 1 [e"' +e^^''-'^^']ds, 
2 Jo 

It is easy to see that for every a € R, ^ > 0 we have \\mt^oo^(t)z(t) > 0. 
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G = 

Remark 8. Let us consider the system of type (3.1) with n = 2,d = 2, p = l,r = 1, 
andAo(l) = Ao(2) = a/2, Co(l) = [1 0], Co(2) = [0 1], Ai{i) 2x2arbitrary 
matrix, 

•"-^ q ' 
q -q 

Of G R, ^ > 0. Combining the conclusion of Example 1 with Proposition 9 it follows 
that the system (Co, (AQ, A \ ) \ Q) is observable. 

Example 2. The stochastic observability does not always imply stochastic detectabil-
ity. Let us consider the system with Markovian jumping with d = 2,n = 2, p = \, 

AO(1) = Ao(2) = | / 2 , Cod) = [1 0], Co(2) = [0 1], Q = -q q 
q -q 

(3.24) 

From the previous example we conclude that the system (Co, Ao; Q) is observable. 
Invoking (i) <^ (ii) from Proposition 5 we deduce that if the system (3.24) would be 
stochastically detectable, then there would exist the matrices X{i) > 0, and 

A(/) 
^ i ( / ) 

^2(0 
/ = 1,2, 

which verify the following system of linear equations: 

A*(/)X(/) + X(/)Ao(/) + A(/)Co(/) 

+ C*(/)A*(/) + ^ qijX(j) + /2 = 0, i = 1, 2, 
7 - 1 

which implies 

h + 
2Xi(l) ^2(1) 
^2(1) 0 <o, 

which is a contradiction. 

Example 3. Let us consider the stochastic system 

dx(t) = Ao(r](t))x(t)dt + Aiir](t))x(t)dwi(t), 

y(t) = Co(ri(t))xit) 

(3.25) 

with n = 2, d = 2, r = 1, /? = 1, Ao(l) = Ao(2) = ah, Co(l) = 
[1 0], Co(2) = [0 1], Ai(l) = y /̂2. A,(2) is a 2 X 2 arbitrary matrix, 

Q = -q 
q -q 

Of G R, yS G R, ^ > 0, which satisfy 2a-q^ fi^ = 0. 
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From Remark 8 it follows that the system described by (3.25) is stochastically 
observable. We show that it is not stochastically detectable. If, on the contrary, the 
system (3.25) is stochastically detectable, then, again using Proposition 5, we deduce 
that there exist matrices 

X(i) >0 ,A( / ) = ^ i ( / ) 

^2(/) 
,h(i)eR, 

which verify the following system of linear equations: 

Al{i)X(i) + X{i)Ao(i) + A(OCo(/) + C*(/)A*(0 
2 

+ A\(i)X(i)A,(i) ^Y^q^jXU) + /2 = 0, 
7 = 1 

which leads to the same contradiction as in the previous example. 

Remark 9. It can be remarked that the system 

r 

dx{t) = Ao{r](t))x(t)dt + J2 Ak{r]it))x(t)dwk(t), (3.26) 
k=\ 

yit) = Co(ry(r))x(0, 

with Ao(i), Co(i) as in (3.24) and Ak(i), A: = 1, 2, . . . , r, 2 x 2 arbitrary matrices, 
is stochastically observable, but it is not stochastically detectable. If, on the contrary, 
(3.26) would be stochastically detectable, then by Proposition 2 (i) it could follow that 
the system described by (3.24) would be stochastically detectable, which contradicts 
the conclusion of Example 2. 

From the representation formula in Theorem 4 in Chapter 2, the next result follows. 

Proposition 16. Assume that the system (3.1) is in the time-invariant case. Then the 
triple (Co, A; Q) is observable if and only ifx > 0, / G V, and XQ ^ 0 do not exist 
such that 

E[\y(t,0.xo)\^\r]m = i]=0 

Vt € [0, r], with y{t, 0, XQ) = Co{r](t))xit, 0, XQ), x(t, 0, XQ) being the solution of 
(3.1) for u(t) = 0 and having the initial condition x(0, 0, XQ) = -̂ o- ^ 

In the deterministic framework the analogue of the above statement is one of the 
usual definitions of observability. 

Remark 10. In Definition 3 of observability, no condition on Q is imposed. All the 
results proved above except Propositions 8 and 16 require only the condition qtj > 0 
for / j^ j . The additional condition Xl1=i ^ij = ^ is used only in the proof of the two 
mentioned propositions. 
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3.3 Stochastic controllability 

In this section the controllability of stochastic systems will be introduced. For 
simplicity we shall consider only the time-invariant case. 

Let Ak(i) e R'̂ ^", 0 <k <r,i eV, B{i) e R"^'", Q = [qtjl i, j eV with 
qij > 0 for i^j. 

Definition 4, We say that the system (AQ, A \ , ..,, Ar, B\ Q) is controllable /fr > 0 
exists such that 

I e^'Bdt > 0, 
Jo 

where C is defined by (2.15) and B e 5^, B(i) = B(i)B*(i), i e V. 

Remark 11. One can easily see that in the deterministic case, namely if P = {!}, 
q\\ = 0 , and A^(l) = 0, 1 < A: < r, the above definition reduces to the definition of 
controllability of the pair (Ao(l), ^(1)). 

The following result can be directly proved. 

Proposition 17. The system (AQ, A \ , ..., Ar, B\ Q) is controllable if and only if the 
system (5*, AQ, Ap . . . , A*; g*) is observable. D 

From the above proposition and from Propositions 10 and 11 and Remark 11, the 
next proposition immediately follows. 

Proposition 18. The following assertions are equivalent: 
(i) The system {AQ, A \ , ..., Ar, B\ Q) is controllable. 
(ii) There exists r > 0 such that KQ{T) > 0 where Ko(t) denotes the solution of 

the affine equation in the space S^: 

-Ko(t) = CKo(t)-^B 
dt 

with Ko(0) = 0. 
(iii) For any t > 0, Ko(t) > 0. D 

In the following we shall consider the situation when the system is subjected only 
to white noise perturbations, namely i f P = {l},^ii = 0, A^(l) = Ak, B(l) = B. 
The inequality in Definition 4 becomes 

/ ' 
Jo 

e^'Bdt > 0, 

where £ denotes the linear operator defined on Sn by (2.23) and B = BB*. If this 
inequality is fulfilled for some r > 0 we shall say that the system (AQ, AI , . . . , A;., ^) 
is controllable. Therefore, in the case of systems with multiplicative white noise, the 
proposition above becomes the following proposition. 
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Proposition 19. The following assertions are equivalent: 
(i) The system (AQ, A \ , ..., Ar, B) is controllable. 

(ii) There exists r > 0 such that K(T) > 0, where 

d ^ 
— K{t) = AoK{t) + K(t)A% + V AkK{t)Al + jgB* w/r/z ^(0) = 0. (3.27) 
dt ^-^ 

k=\ 

(iii) K{t) >Oforallt > 0. D 

From Remark 7 of Chapter 2 it immediately follows that 
e^'H = E[^(t, 0)//(I>*a, 0)], t>0, H eSn, 

where cl>(r, fo), ^ > ^, denotes the fundamental matrix associated with the linear Ito 
system 

r 

dx{t) = Aox(t)dt + y^Akx{t)dwk{t). 
k=\ 

Therefore the next result directly follows. 

Proposition 20. The system (AQ, A \ , ..., Ar, B) is controllable if and only ifr > 0 
exists such that E /J[(^(r, 0)5^*O*(r, 0)]dt > 0. D 

We shall now give another characterization, in stochastic terms, of the controlla­
bility of the system (AQ, AI , . . . , A;-, B). Consider the affine Ito system 

r 

dx{t) = Aox(t)dt + ^ Akx(t)dWk(t) + Bdv(t), t > 0, (3.28) 
k=\ 

where (M;(0, f(0)* is a standard (r+m)-dimensional Wiener process. Let X ( 0 , t >0, 

be the solution of (3.28) with jc(0) = 0. Using the Ito formula (Theorem 33 of 
Chapter 1), one can easily verify that K(t) = E[x(t)x*(t)], K being defined in 
Proposition 19. Then the following result is immediately obtained. 

Proposition 21. The system (AQ, A I , . . . , A;-, JB) is controllable if and only if 
E[x(t)x'^{t)] > 0 for all t > 0. D 

The above characterization has been considered as a definition of controllability 
of the system (AQ, AI , . . . , A^, 5) in [10]. 

The next result proved in [10] characterizes the controllability of the system 
(Ao, Ai,..., Ar, B) in terms of invariant subspaces as in the deterministic case 
(A^ = 0, 1 < ^ < r). 

Theorem 22. The system (AQ, AI , . . . , A^, B ; Q) is controllable if and only if no 
invariant subspace exists with the dimension less than n of the collection A^, 0 < 
k <r, containing all columns of B. 
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For the proof of the above theorem we need the following lemma. 

Lemma 23. The following two assertions are equivalent: 
{i)An invariant subspace exists with dimension less than n of the matrices Aŷ , 0 < 

k <r, containing all columns of B. 
(ii) ? € R \ ^ 7̂  0, exists such that ^""MB = 0 for all M = A'^A'^ . . . A'f, 

where 0 < ij < r, and Sj>0, \<j<p, p>\ are natural numbers. 

Proof (i) => (ii) Let S be an invariant subspace of the matrices A ,̂ 0 < /: < r, 
with dimension less than n containing all columns of B. Denote by S-^ the orthogonal 
subspace of S. Since S-^ ^ {0}, consider ^ e S^ such that § / 0. Since all the 
columns of the matrices MB with M as in the statement are included in 5, it follows 
that§*M5 = 0. 

(ii) z^ (i) Assume that ̂  7̂  0 exists, satisfying (ii). Let S be the subspace generated 
by the columns of all matrices MB, M being defined as in the statement. Since § ^ 0 
it follows that 5 ^ R'̂ . On the other hand, it is easy to check that if x e S, then 
AicX € 5* for all 0 < /c < r. Thus the proof is complete. • 

Proof of Theorem 22. Necessity. Assume that the system (AQ, AI , . . . , A^, 5) is con­
trollable. It follows that B ^0, and therefore, ifn = l the condition in the statement is 
automatically accomplished. We now consider the case n >2 and that there exists a 
subspace 5", 5 ^ {0}, 5 7̂  R^ invariant of A;(:, 0 < k < r, containing all columns of 5 . 
Then it follows that a basis in R" exists with respect to which the matrices A^ have 
the structure 

" A U A2k 
0 A3, 

A,= 0 < /: < r, 

and B has the form 

B = Bo 
0 

where A^ are 5 x s matrices with 1 < s < n. Let K{t),t > 0, be the solution of 
equation (3.27) corresponding to the matrices A/, and B and ^(0) = 0. It is easy to 
check that if _ 

" ^ n ( 0 ^12(0" 
K2l(t) K22it) 

K{t) 

then ^22(0 verifies a Hnear equation. Since A (̂0) = 0 it follows that AT22(0 = 0 
for all t > 0, and therefore K22(t) is not positive definite for all t > 0. Taking into 
account that K(t) — TK{t)T* with T nonsingular it follows that K{t) is not positive 
definite, which contradicts the assumption (see Proposition 19). 

Sufficiency. We prove that K{t) > 0 for all r > 0. Indeed, assume that r > 0 and 
^ eW, ^ ^0, exist such that ^""Kit)^ = 0. Then one can easily check that 

K(t) ,Ao(t-s) AkK(s)Ay A^it-s) ds -\-f 
Jo 

e^^'BB^'e^^ds. (3.29) 



3.3 Stochastic controllability 

Since K(t) > 0, from (3.29) we successively obtain 

K(t) > [ e'^^'BB^e^o'ds. 
Jo 

105 

i\ = l' 

K(t)> Y / / / . . . / e^^^'-'p^Aiy^^'p-'p-^^Ai^_, 
. . . Jo Jo Jo Jo 
lp,lp-\,...,l\ 

...A^^e'^o^^-'p^dso'-'dsp, 

Therefore, ^"e'^^'B = 0 for all 0 < 5 < r and 

for all T > Sp > Sp-\ > " ' > S2 > s\ > ô ^ 0 and for all 1 < ij < r, I < j < p. 
It follows that §* A^B = 0, )̂  > 0, and 

? ^ 0 ^ip^O ^ip~l • * • ^M ^ 0 ^ = 0 

for all I < ij < r, I < j < p 2ind ks > 0, 0 < s < p. Therefore, ^*MB = 0 for 
all M as in the statement of Lemma 23, and according to this lemma, we obtained a 
contradiction. Thus the proof of the theorem is complete. D 

From the above theorem a corollary immediately follows. 

Corollary 24. If a pair (A^, B) is controllable for a certain /: G {0, 1 , . . . , r}, then 
the system (AQ, A \ , ..., Ar, B) is controllable. • 

We shall show below that the converse of the corollary is not usually true. How­
ever, in the case n = 2, m = l,r = \ such an implication is valid; namely one can 
prove the following. 

Proposition 25. Ifn = 2, m = I, r = I and the pairs (AQ, B) and (A\, B) are not 
controllable, then the system (AQ, Ai, B) is not controllable. 

Proof Let 

Ao = 
a b 
c d A, = 

Y 8 
mdB 

^1 

b2 

such that (Ao, B) and {A\, B) are not controllable, that is 

bib2id -a)= bbl - b]c and Z?iZ?2(5 - a) = ^bl - b^^y. (3.30) 
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According to Proposition 19 the considered system (AQ, / B) is controllable if and 
only if K(t) > 0 for all t > 0, where K verifies (3.27) written for this particular case. 
Taking 

""x y' 
y z 

K = 

(3.27) gives 

dx 

dt 
= (2a + a^)x + 2(b + aP)y + fi^z + b], 

dy 
- ^ = (c + ay)x + (a+d-\-yfi+ a8)y + (b + P8)z + ^1^2, (3.31) 
at 

- i = y2^ + 2(c + y8)y + (2J + 8^)z + ^2-

Ifbi = 0 and Z72 = 0, it immediately follows that x(0 = y(t) = z(t) = 0 for all 
t G R . 

Ifbi 7̂  0 and Z?2 = 0, from (3.30) one obtains that c = 0 and y = 0, and therefore 
z(t) =OforalU e R. 

Ifbx =0 and Z?2 7̂  0, then (3.30) gives b = ^ = 0 md hence x(t) = 0 for all 
r G R . 

Assume that b\ ^0 and /72 7̂  0. Using (3.30) one can easily check that (x, y, z) 
verifies (3.31) where 

x(t) = ^y(t), z(t) = ^y(t), 
bi bx 

and y(0 is the solution of the equation 

j y 

dt 
{c + ay)-^ + {a^d + yP^ a8) -h (Z? + P8)-^ 

bi b\ 
y -\-bxb2 

andy(O) = 0. From the uniqueness of the solution it follows that x(r) =jc(0, y{t) = 
y(t), z(t) = z(t) and therefore x(t)z(t) - {y(t))^ = 0 for all t e R, and therefore 
by Proposition 19 (AQ, AI , B ) is not controllable. D 

The next example shows that the converse of Corollary 24 is not generally true; 
namely it is possible to have a controllable system (AQ, Ai, B) but with the pairs 
(Ao, B) and (Ai, B) not controllable. 

Example. Consider the case AX = 3, m = 1, and r = 1 in which 

Ao = 
1 
0 
0 

0 0 
- 1 3 
0 2 

, A, = 
3 0 
2 1 
0 0 

0 
0 

- 1 
,B ^ 

1 
1 
1 
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It is easy to check that (AQ, B) and {A\, B) are not controllable. In this case (3.27) 
gives for 

K = 
X y z 
y u V 
z V q 

dx 
— = 11^ + 1, 
dt 
di 
dt 
d^ 
dt 
du 
— = _i^ + 6i; + 4jc+4j+ 1, 
dt 

= 3 j + 6x + 3z-f 1, 

= 1, 

dv 

~dt 
= 3 ^ - 2 z + l , 

with jc(0) = j(0) = z(0) = w(0) = i;(0) = ^(0) = 0. One can directly check that 
the solution of the above system is given by 

y^" 44 ^ 12 33' 
z(t) = t, 

v{t) = ^{e"-l)-t' + jt, 

and u(t) has the form 

17 
w(0 = TTj^^^' + ^1^^ ' + ^2^^' + 0(3e~' + Qf4̂^ + Cist + c>f6. 

Then it follows that lim^^oo det ^ ( 0 = oo, which implies that ^ ( 0 > 0 for some 
t>0, and therefore, according to Proposition 19, the system (Ao,A\,B) is 
controllable. 

Remark 12. We have previously shown that by contrast with the deterministic case, 
the stochastic controllability of Markovian systems does not imply their stochastic 
stabilizability. A similar affirmation is valid for the stochastic systems subjected to 
Ito multiplicative noise. 
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Indeed the system (AQ, A I , B ) in the above example is controllable, but it is not 
stabilizable, since in such a situation, according to Proposition 4 applied in this case 
(D = {1}, qn = 0), there exists (X, A), X > 0, 

X = 

such that 

Therefore 

X y z 

y u V 

_Z V q _ 

and A = 
"2/i / 1 + / 2 / 1 + / 3 

/ 1 + / 2 2/2 /2 + /3 
/ 1 + / 3 /2 + /3 2/3 

AoX + XAl + AxXA\ + /3 + A =: 0. 

11JC + 1 + 2 / 1 = 0 , 

3 J + 6x + 3z -h / i + /2 = 0, 

/ i + /3 = 0, 
-w + 61; + 4x + 4>; -h 1 + 2/2 = 0, 

3^ - 2z + /2 + /3 = 0, 

5^ + 1 + 2/3 = 0. 

Since jc > 0 and ̂  > 0 it follows that f\ < 0, /3 < 0, which contradicts f\-\- fs = 0. 
Hence (AQ, AI , ^) is not stabilizable. 

Notes and references 

Stochastic controllability for ltd differential equations was introduced in [10]. 
Theorem 22 can also be found in [10]. The numerical example and Remark 12 appear 
for the first time in this book. 

Other concepts of stochastic controllability have been studied in terms of control 
which generalize recurrence notions of stochastic processes (see, e.g., [120], [75], 
[76], [47], [12], [13], [105] for Ito systems and [70] for jump linear Markovian 
systems). In the present book the concept of stochastic controllability is not used, and 
therefore a reduced space is devoted to this concept. 

The stochastic uniform observability was defined in [88] for Ito systems and in 
[89] for systems with jump Markovian perturbations. These concepts have been used 
to solve the linear quadratic problem with infinite horizon for these corresponding 
systems. The results in this chapter devoted to stochastic stabilizability, detectability, 
and observability can be found in [33], [31], and [34]. 



The Riccati Equations of Stochastic Control 

In many control problems, in both the deterministic and stochastic framework, a 
crucial role is played by a class of nonlinear matrix differential equations or nonlinear 
matrix algebraic equations known as matrix Riccati equations. 

In this chapter we deal with a class of systems of matrix differential equations as 
well as systems of nonlinear algebraic equations arising in connection with the solu­
tion of several control problems, such as linear quadratic optimization, H^ control, 
and / / ^ control problems for stochastic systems. These will be called stochastic gen­
eralized Riccati differential equations (SGRDEs) or stochastic generalized Riccati 
algebraic equations (SGRAEs). It is easy to see that the systems of matrix Riccati 
differential equations considered in this chapter contain as particular cases many 
types of matrix Riccati equations that are known in both the deterministic and the 
stochastic framework. The results derived in this general framework are also applica­
ble to these particular cases. These kinds of SGRDEs are regarded as mathematical 
objects of interest in themselves, and the proofs avoid any connection with an opti­
mization problem. The proofs are mainly based on positivity properties of linear 
evolution operators defined by the Lyapunov differential equations. We provide con­
ditions that guarantee the existence and the uniqueness of some global solutions of 
SGRDEs as maximal solution, minimal solution, and stabilizing solution. We prove 
that if the coefficients of SGRDEs are periodic functions, then the maximal solu­
tion, the minimal solution, and the stabilizing solution are also periodic functions. 
Moreover, if the coefficients of the SGRDEs do not depend on the parameter t, then 
the above-mentioned special solutions are constant and they solve the corresponding 
SGRAE. The necessary and sufficient conditions that guarantee the existence of the 
maximal solution, the minimal solution, and of the stabilizing solution, respectively, 
are expressed in terms of solvability of a class of suitable systems of linear matrix 
inequalities. Finally we shall provide an iterative procedure that allows us to compute 
these special solutions to the SGRDE and to the SGRAE. 
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4.1 Preliminaries 

In this chapter we study systems of nonlinear matrix differential equations of the 
following form: 

— X{t, i) + A*(r, i)X(t, i) + X(r, i)Ao(t, i) 
at 

r d 

+ Y, A,*(r, /)X(r, /)A,(r, /) + JZ^oXa, j) 
k=\ j=\ 

- [X{t, i)Bo(t. i) + Yl ^̂ *(̂ ' •̂̂ (̂̂ ' '̂)̂ (̂̂ ' '^ + ^̂ '̂ '̂̂ ) 
\ )t=i / (4.1) 

R{t, i) + Y Ki^^ '̂)̂ (̂ ' '̂)̂ (̂̂ '') 
\ k=\ J 

X ( 5*a, i)X(t, i) + ^ ^^(r, i)X{t, i)Ak(t, i) + L*a, /) j 

+ M(r, /) = 0. 

where t -^ Ak(t, i) : I -^ R"^", t -> Bk{t, i) : X -^ R"^^, 0 < k < r, t ^ 
M(t, i) : I -^ Sn, t -^ L(t, i) : I ^ R''^^, t -^ R(t, i) \ 1 -> Sm, i e V, 
are bounded, and continuous matrix-valued functions. T C R is a right unbounded 
interval. The elements qij of the matrix Q verify only the weaker assumption qtj > 0 
for / 7̂  7. The assumption J2j=\ ^ij = ^ ^i^l t)e used only for the results referring to 
stochastic observability and detectability. \f Ak{t, i) = Q, Bk{t, i) = 0, 1 < k < r, 
(t,i) e I X V, the system (4.1) becomes the system of Riccati-type equations 
intensively investigated in connection with the linear quadratic problem for linear 
stochastic systems with Markovian jumping. In the particular case P = {1}, the system 
(4.1) reduces to 

^ X ( 0 + A*(t)X(t) + X{t)Ao{t) + Y K(OX(t)Ak(t) 
k=\ 

- IxiOBoit) + Y ^l(OX(t)B,(t) + L(t)] 
\ k=i / (4.2) 

X lR(t) + Y^k(OX{t)Bk(t)\ 

X lB^(t)X(t) + Y^k(OX(t)Ak(t) + L*(t)\-\-M(t)=0. tel, 

where we denoted Ao(r) = Ao(r, l)-\-^quIn, Ak(t) = Ai,(t, 1), I < k < r, Bk{t) — 
Bk(t, l),0 <k < r,M{t) = Mit, 1), L{t) = L(t, 1), R(t) = R(t, 1). If A;t(0 = 0 , 
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Bk(t) = 0, I < k < r, t e X, the equation (4.2) becomes the well-known matrix 
Riccati differential equation intensively investigated in connection with various types 
of control problems in the deterministic framework. 

In this book the system (4.1) and its particular form (4.2) will be called the 
SGRDE. The system of differential equations (4.1) will be written in compact form 
as a nonlinear differential equation on the space S^. To this end we make the following 
convention of notation: if C e M^^ , B e Mi^, C = (C(l), C(2) , . . . , C(d)), B = 
(5(1), B(2),..., B{d)), then by D = CB we understand the following element of 
><^ ^, D = (D(l), D(2),..., Did)), D(i) = Cii)B(i), i eVAfAe Mi, A = 
(A(l), A(2) , . . . , A(d)), by A~^ we denote the element of M^ defined as follows: 
A-^ = (A-^ l ) , ^ - ^ 2 ) , . . . , A-^id)) if all matrices A(i), i e V, are invertible. If 
B e Mi^,B = (5(1), B(2),..., Bid)), then B* e Mi ,,, and it is defined by 
5* = (5*(1),5*(2), . . . ,5*(J)) . 

With these conventions the system (4.1) can be written as 

— X(t) + C(t)X(t) - V\t, X(t))n-\t, X(t))V(t, X(t)) + Mit) = 0, (4.3) 
dt 

C'it) being the adjoint operator of C{t) defined as in (2.8): 

V{t,x) = (Vdt,x), r2it,x),...,VAt,x)), 
r 

Vi{t, X) = Blit, i)X(i) + J2 fi^(^ i)X{i)Ak{t, i) + L*{t, i), 
k=l 

X ^ n(t, X) : S'„ ^ S'„ by, 

nit,x) = ('Riit,x), n2(t,x),...,TZAt,x)), 
r 

IZiit^X) = R(tJ)-^J2^k(t,i)X(i)Bk(tJ), 
k=\ 

M(t) = (M(t, 1), M{t, 2 ) , . . . , Mit, d)) e S^. 

If the coefficients of (4.1) do not depend on t, then the operators C, V, IZ do not 
depend on ^ In this case we shall use the following algebraic nonlinear equation 
over S^ : 

CX - V\X)n-\X)V{X) + M = 0. (4.4) 

Let us remark that equation (4.3) is defined on the set 

r = {(̂  X) G J X 5̂^ I det 7 /̂(̂  x) ^ o, v/ e v]. 

Definition 1. A C^ function X : 1\ ^^ S^ {X\ ^ X being an interval). X(t) = 
(X(t, 1), . . . , X(t, d)) is said to be a solution of the equation (4.3) if for every t eXi 
and i e V the matrix lZi{t, X{t) is invertible and the relations (4.1) hold for all 
t eX\ and i e V. 
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As we can see, SGRDE (4.3) is associated to a quadruple!; = (A, B, V, 2)where, 
as usual, A - (AQ, A i , . . . , A,), B = (^o, ^ i , • • •, ^r), V: X ^ Si^^,V{t) = 
(V(M) , . . . ,V( r , J ) ) , 

V{tJ) 

If X: X ̂ ^ 5f is a C ̂  function we denote 

M(r,/) L{tJ) 
L^tJ) R{tJ) 

(4.5) 

M(t.X(t)) = 
^ X ( r , /) + q(t)(X(t)) + M(r, /) V;it, X(t)) 

Vi(t,x(t)) 7^,•(^x(0)J 

which will be called the dissipation matrix, where 

q(t)(x(t)) = {cHt)x(t))(i), 

C*(t) being the adjoint operator associated with the Lyapunov operator as in 
Section 2.2, and Vi, IZi are defined above related to equation (4.3). We shall also 
denote 

N{t, X{t)) = (A/'Kr, X(r ) ) , . . . , MAt, X(t))) e S^ 'd 
+m' 

To a quadruple E = (A, B, V, Q) we associate the following two sets of C^ functions, 
which will play an important role in subsequent developments: 

r ^ = {XeC^(J,5,^)1 A/;(r, X(0) > 0 , 7 ^ / ( ^ X ( 0 ) » 0 , telJeV] (4.6) 

and 
f'' = {XeC^(J , 5,̂ )1 A / ; ( ^ X ( O ) » 0 , teI,ieV}, (4.7) 

where C^(J, S^) = {X e C\l,Sr^)\X, jjX are bounded functions}. It is obvious 

that r ^ D r . One can also see that the set T^ contains all bounded solutions 
Z : J -^ 5f of SGRDE (4.1), which verify the condition 

7^/(^ X{t)) » 0, t e T, i eV. (4.8) 

Remark L With the exception of some particular cases that will be discussed later, 
we do not make any assumption concerning the signature of the matrices V{t,i) in 
(4.5) and R{t,i). 

As we shall see in subsequent developments, the sign of the expression plays an 
important role in the characterization of SGRDE (4.1): 

r 

7̂ K̂  x{t)) = R(t, i) + J2 ^k(^^ oxit, i)Bk(t, i). 
k=\ 

Then in this chapter we consider only the case 7Zi{t, X(t)) > 0, since this is the case 
required by the quadratic optimization problem. In Chapter 6 the case Tit (t, X (t)) < 0 
will be considered in connection with some Bounded Real Lemma-type results. 

At the end of this section we prove an auxiliary result that will used several times 
in the following developments of this chapter. 
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Lemma 1. (i) IfX(t) — {X(t, 1 ) , . . . , X(t, d)) is a solution of equation (4.3), then 
t \-^ X{t) solves the following equation on Sf^: 

-X{t) + Cl{t)X{t) 
at 

- (Fit) - G(t)r n(t, X(t)) (Fit) - Git)) + Mcit) = 0 (4.9) 

for an arbitrary G :X ^^ ^m^* ^^^^^ ^ G ^ O is the adjoint operator of the operator 
Ccit) : S^ -^ S^ defined as in (3.2) and 

Fit) = iFit, 1), ...,Fit,d)), with 

Fitj) = -n;\t,xit))mt^xit)), 
Mcit) = iMcit, 1), . . . , Mcit, d)) with 

Mcit, i) = Mit, i) + Lit, i)Git, i) + G*(r, /)L*(r, /) (4.10) 

+ G*(r,/)/?(^/)G(r,/), 

t e R+, / e V, 
(ii) IfX: I -> S^ is a solution (9/(4.3), then Xit) solves the following Lyapunov-

type equation: 

dt 
Xit) + Cpit)Xit) ^ Mpit) = Q. 

(iii) Xit)\l ^ S^ is a solution of the SGRDE (4.3) if and only if Xit) is a 
solution of the following modified SGRDE: 

dt 
Xit) + CUt)Xit) - 7̂ * (r, X(0)7^-' (r, X ( 0 ) 7 ^ G ( ^ Xit)) + Mdt) = 0 

(4.11) 

for arbitrary G\l\-> Mi„, where X h^ Vcit. X): 5,f \-^ Mi,,, by 

Vcit, X) = iVcAt, X),... ,VG.At, X)) 

with 
r 

Pciit, X) = B*(t, i)X(i) + J2 Kit, i)X(i)(Ak(t, i) + Bkit, i)G(t, /)) 

+ L*(t,i) + R(t,i)G(t,i). 

Proof, (i) It is easy to check that Xit) = iX(t, \),..., X(t, d)) is a solution of 
the SGRDE (4.3) if and only if {X(t), Fit)) solves the system 

Mit, Xit)) 

Taking into account that the matrix 

FitJ) 

In F*it,i) 
0 /„, 

0, (• e V. (4.12) 
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is invertible it follows that (4.12) is equivalent to 

In F%t,i) 
0 L 

In 
F(t,i) 

= 0, 

or equivalently 

In G'(t,i)-^(F(t,i)-G{tJ)r 
0 Im 

In 

Mi(t,X{t)) 

= 0, 
G(t,i)-hF{t,i)-G{t,i) 

from which by direct calculations one obtains (4.9). 
(ii) directly follows, taking in (4.9) G(r, /) = F ( ^ / ) . 

(iii) follows from (i), taking into account that 

F(t, i) - G(t, i) = -n;\t, x(tmVi(t, x(t)) + 7 /̂(̂  x(t))G(t, /)) 
= -7^^l(/,x(0)7^G,/(^^(0), 

and hence the proof is complete. D 

M = 

4.2 The maximal solution of SGRDE 

In the following developments one will frequently use the next well-known result in 
connection with Schur complements (see, e.g., [9]). 

Lemma 2. Consider the symmetric matrix 

Mil ^12 
.Mi*2 M22. 

where M22 > 0. Then the following are equivalent: 
(i) M > 0, (M > 0); 

(ii) Mil - Mi2M22^Mi*2 > 0 (Mil - Mi2M22^M*2 > 0). 

With the notations from the previous section we introduce the following. 

Definition 2. We say that a solution X: I -^ S^ of the SGRDE (4.1) is^a maximal 
solution with respect to the setY^, or the maximal solution for short, ifX(t) > X(t) 
for arbitrary X(') € T^. 

Theorem 3. Assume that (A, B; Q) is stabilizable. Then the following are equivalent: 
(i) The set Y ̂  is not empty. 

(ii) The SGRDE (4.1) has a bounded maximal solution X : I -> S^ which 
verifies (4.8). 

Moreover, if the coefficients of the system (4.1) are 0-periodic functions, then 
the maximal solution X(t) is a 0-periodic function too. If the coefficients of the 
system (4.1) do not depend upon t, then the maximal solution X{t) is constant and it 
solves (4.4). 

Proof, (ii) ̂  (i) is obvious since if the SGRDE (4.1) has a maximal solution X{t) 
verifying (4.8), then X(.) e T^. 
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(i)=^(ii) Since (A, B; Q) is stabilizable there exists a feedback gain F: X ^^ 
M^f^ bounded and continuous function such that the system (AQ + ^o^ , ^ i + 
BxF,...,Ar + BrF; Q) is stable. Let X() e T^. Then by a Schur complement 
argument, X{t) is a solution of the following differential inequation on S^\ 

—X{t) + C{t)X(t) - P*(r, X{t))n-\t, X(t))V(t, X(t)) + M(t) > 0. (4.13) 
at 

Set 

M(t) = P\t, X(t))n-\t, X(t))V(t, X(t)) - M(t) - C{t)X{t) - —X(t). 
at 

Obviously M{t) <0j el and 

— Xit, i) + A*a, i)X(t, i) + X(t, i)Ao(t, i) 
at 

r d 

+ Y, ^̂ (̂  0 Ja, /)A,a, /) + ^^,-,xa, y) 
i t= l 7 = 1 

- (Z(r, /)5oa, 0 + Y.^k(t^ 0 % , O^^a, 0 + L(t, /) j 

X - 1 

/?(^/) + ^5;(^/ )X(^/ )5 , (^/ ) ) 

X (s^it^ i)X(t, i) + Y ^k(t. i)X{t. /)A,(r, /) + L*(r, /)") 

+ M(r,/) + M(r,/) = 0 , (4.14) 

/ G P , r G T. 
Let £ > 0 be fixed and we define (see Proposition 14 of Chapter 2) XQ(0 = 

(Xg(r, I),..., X^it^d)) as the unique bounded solution of the system of linear 
equations 

- X ( ^ /) + (Ao(r, /) + Bo(t, i)F(t, /))*X(r, /) + X(r, /)(Ao(r, /) 

r 

k=i 

d 

+ 5,(r, i)F{t, i)) + ^^,^.X(r , 7) + F*(^ /)/?(^ /)F(/, /) 
7 = 1 

+ F*(r, /)L*(^ /) + L(r, / )F(^ /) + M(r, /) + ein = 0, (4.15) 

/ eV,t eX. We show that there exists /i > 0 such that 

X g ( ^ / ) - X ( r , / ) > / x / „ 

for all (r,/) eX xV. 
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Indeed, by Lemma 1 the system (4.14) will be written 

— X(t, i) + {Ao(t, i) + Bo(t, i)F{t, nyXit, i) + X(t, i){Ao(t, i) 

r 

+ So(f, i)F{t, i)) + Y, {Akit, i) + Bk{t, i)F{t, i)YX(t, i){Ak{t, i) 
k=\ 

d 

+ Bk(t, i)Fit, /)) + Y,qijXit, j) + M{t, i) + M(f, /) (4.16) 

+ F*(f, i)L*{t, i) + La , i)F{t, i) + F*(t, i)R{t, i)F{t, i) 

- {Fit, i) - Fit, i))* Uit, i) + J2 Kit, i)Xit, i)Bkit, /) J 

X {Fit, i) - Fit, 0) =0 , i e V, 

where Fit, i) = -TljHt, Xit))Vit, Xit))ii), with / e P and / e I . Subtracting 
(4.16) from (4.15), we obtain 

^[X^(f, 0 - Xit, i)] + [Aoit, i) + Boit, i)Fit, i)Y[X'^it, i) - Xit, i)] 

+ [Xlit, i) - Xit, /)][Ao(r, /) + Bait, i)Fit, /)] 
r 

+ Y, [^kit. i) + B,{t^ i)F(t, /)]*[Xg(r, /) - X(t, i)] 
k=i 

d 

X [A,a, /) + Bk{t. i)F{t^ i)] + ^^y,[Xg(r , j) - X(t, j)] + sin - M(t, i) 

+ {F(t, i) - F(t, i))ni{t, X(t)){F{t, i) - F(t, /)) = 0, / G P , r e X, 

which leads to the fact that t -^ XQ(0 — X(t) verifies the following linear differential 
equation on 5^: 

^ [ Z ^ ( 0 - X(t)] + r^(r)[Xg(0 - X(t)] + 8J' + Ao(r) = 0, t e l , (4.17) 

where 

Ao(0 = (Ao(M) , . . . ,Ao(^^) ) , 
Ao(r, 0 = {F(t, i) - F(t, nyiZiit, X(t)){F(t, i) - F(t, /)) - M(t, i) > 0, 

i e T>,t e I. Since X^it) — X{t), t e I,is a bounded function, F is a stabilizing 
feedback gain and e/"^ +Ao(r) > 0; then by Theorem 14 of this chapter and Theorem 
12(i)-(vi) of Chapter 2 it follows that it exists /x > 0 such that 

Xg(0 - X(t) > iiJ"^, Vr € I. (4.18) 

Combining (4.18) with (4.8) we conclude that 7^/(r, Xg(r)) > y/^ > 0 Vr e J , 
/ e V for some positive constant v. 
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Set F^{t, i) = -nr\t, X'^{t))Vi{t, Xg(r)),withr G Zand/ G P . We prove that 
F^{t) = (F^(t, 1), F^{t, 2 ) , . . . , F^(t, d)) is a stabilizing feedback gain. 

We rewrite the systems (4.15) and (4.14) as 

^xg(r, /) + [Ao(^ /) + Bo(^ i)F^{t. /)]*xg(r, /) 

+ Xg(^/)[Ao(r,/) + 5o(r,/)Fo^(r,/)] 

+ Y, {{A,{t, i) + B,(f, i)F^{t, ()]*Xg(r, /)[A,(r, 0 + B,(t, i)F^{t, 0] 

+ Y,qijXl{t, j) + M{t, i) + el„ + (F^(t, nrRit, i)F^(t, i) 
7 = 1 

+ Lit, i)F^{t, i) + (F^it, i)rL*(t, i) + [F^(t, i) - Fit, i)X 

x7^,(^xg(0)[Fo^(^/)-F(f,/)]-o, 

t el,i eV, 

-X{t, i) + [Aoit, i) + Bo(t, i)F^{t, i)YX{t, i) 

+ X{t,i)[Ao{tJ) + B^{tJ)F^{t,i)\ 
r 

+ Y, [Akit, i) + B,{t, i)F^(t, i)YX(t, i)[Ak(t, i) + Bk(t, i)F^(t, i)] 
k=\ 

d 

+ ^ 9 „ X ( f , j) + M(t, i) + M{t, i) + (F^(t, DYRit, i)F^(t, i) 
; = i 

+ Lit, i)F^{t, i) + (F^it, i))*L*{t, i) 
- [F^it, i) - Fit, i)]*ni{t, X'Q(t)}[F^(t, i) - Fit, i)] = 0. 

We get 

^[Xg(f, /) - Xit, 0 ] + [Aoit, i) + Boit, i)F^it, /)]*[Xg(f, /) - Xit, 0 ] 

+ [X'^it, i) - Xit, i)][Aoit, i) + Boit, i}F^it, /)] 
r 

+ Y [Akit, i) + B,it, i)F^it, i)]*[X'^it, i) - Xit, /)] 
k=\ 

d 

X [A,it, i) + Bkit, i)F^it, i)] + ^^,v[Xg(/, j) - Xit, j)] 
>=i 

+ ein - Mit, i) + [F^it, i) - Fit, /)]*7^,(r, X'^it))[F^it, i) - Fit, /)] 

+ [F^it, i) - Fit, nYUiit, X'oit))[F^it, i) - Fit, /)] =0,ieV,teI. 
(4.19) 
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From (4.18) and (4.19) we deduce that t -^ Xg(r) — X{t) is the bounded and uniform 
positive solution of the differential inequality on <Sf: 

— X{t) + C}s{t)X{t) + 8J'^<0. 
dt 0̂ 

Applying Theorem 12(viii)-(i) of Chapter 2 we deduce that the system (AQ + 
BoF^, Ax + 5lFo^ . . . , A, + BrF^\ Q) is stable. 

Using (XQ(r), FQ (f)) as an initial step we shall construct iteratively bounded func­
tions X^it) = (Xlit, 1), . . . , X^it, d)), F;(t) = (F^it, 1), . . . , F^it, d)), p = 0, 
1,2... with the following properties: 

(a) 
X ^ ( 0 » X ( 0 , tel; 

(b) the system (AQ + BQF'^, AI + ^ I F ^ , . . . , A, + J5,F^; Q) is stable for all 
P = 0 , l , 2 . . . ; 

(c) 
x;_x(t) > X'^it), t e l . 

If the system (AQ + ^oF^_p Ai + ^ i F ^ _ i , . . . , A, + BrF'p_^; Q) is stable we 
construct (see Proposition 14 of Chapter 2) X^(r) = (X^(r, 1 ) , . . . , X^(f, J)) as the 
unique bounded-on-T solution of the following system of linear differential equations: 

^ z ; ( r , /) + [Ao(r, /) + Bo(t, nF;_,(t, /)]* X^(f, /) 

r 

+ X;(t, i) [Aoa, /) + B^it, i)F;_,(t, /)] + J2 [Akit, i) + B,{t, i)F;_,{t, i)X 
k=\ 

d 

X X (̂f, /) [Au{t, i) + B,(t, i)F;_^(t, /)] +J2^uK^t, j) + M(f, /) + £/„ 

+ (F;_,(;, i)yR{t, i)F;_,{t, i) + L(f, /)F;_,(r, o + (F;_,(r, /))*r(f, o = o, 
(4.20) 

t el,i eV. We show that Xp(r) - X(t) > iJ.pJ„ Wt GI for positive constant ^ip. 
By Lemma 1, the system (4.14) may be rewritten as 

— X{t, i) + [Ao(t, i) + Bo(t, i)F;_i(t, nyXit, i) + X(t, i){Aoit, i) 

r 

+ B^it, i)F;_,{t, i)) + ^ [Akit, i) + B,{t, i)F;_,{t, i)]*X(t, i) 
k=\ 

d 

X [Akit, i) + BAt, i)Fl_,{t, /)] + ^ ^ „ X ( / , j) + M(t, i) + M(t, i) 
j=\ 

+ (F;_,(f, i)yR(t, i)F;_,{t, i) + L(t, /)F;_,(r, /) + (F;_,(r, o) V(r , o 

- (F;_,(; , /) - Fit, i))Tii{t, X(O)(F;_|(?, i) - Fit, 0) = 0. (4.21) 
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Subtracting (4.21) from (4.20) we get 

^[X^(/, 0 - X{t, i)] + [Ao(/, /) + Bait, i)F;_,it, i)X 

X [X'^it, i) - X(t, /)] + (x;,(f, /) - X(t, i))[Ao(t, i) + Bo(t, i)Fl_,{t, /)] 
r 

k=\ 

d 

7=1 

+ [F;_i(r, /) - Fa, /)]%(r, x(o)(F;_,a, /) - ^a, /)) = 0, 

Hence r -> X!, (0 — ^ ( 0 is a bounded-on-J solution of the linear equation on <Ŝf: 
i eV,t el. 

— X(0 + £* .̂ (OX(0 + £y '̂ + A p - i ( 0 = 0 , (4.22) 
at p-^ 

where 
A^_i(0 = (Ap_,(r, l ) , . . . ,A^_i ( r , J ) ) , 

A^_ia, 0 = -Ma, /) + (F;_I(r, /) - F(r, /))X-(^ xco)(F;_,(r, /) - Pit, /)); 

A;,_i(/,/) >0V/ ^ P , t el. 
Since X^(0 — ^ ( 0 , t G X, is a bounded function, F^_j is a stabilizing feedback 

gain and eJ^ + A^_i (r) > 0, / G X, based on Theorems 14 and 12 of Chapter 2, we 
conclude that there exists y > 0 (possible depending upon p) such that 

X'p(t)-X(t)>yj' (4.23) 

V? e l . 
Therefore we showed that Xpit) satisfies condition (a). 
From (4.23) and (4.8) it follows that 

ni{t,Xl{t))>yj" 

'it € I , for some y > 0. 
Define F^it) = ( F ; ( ? , 1 ) , . . . , F^it, d)) by 

F;{t,i) = -nj\t,x'^(t))Vi{t,x'^{t)). 

Then Fp{t) is a stabilizing feedback gain. Indeed, we have to check that the system 

(AO + J5oF^,..., Â  + Br^^; Q) is stable. To this end we rewrite the systems (4.20) 
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and (4.21): 

£ x ; ( r , /) + [Aoit, i) + Bo(t, i)F;(t, i}]*x;it, i) 

+ Xl(t,i)[Ao{t,i) + Bo(t,i)F;it,i)] 

+ ^ [Akit, i) + Bk(t, i)F'p(t, /)]*X^(/, i)[Ak{t, i) + Bk(t, i)F;(t, i)] 
k=l 

d 

+ J2I'JK^'^ 7) + £/« + M(t, i) + {Flit, i))*R{t, i)F;it, i) 
j=i 

+ L{t,i)Fl{t,i) + {F;{t,i))*L*itJ) 

+ {Flit, i) - Fl_,it, i)yni{t, X;it)){Flit, i) - Fl_,it, i)) = 0, 

i eV,t el. 

j^Xit, i) + [Ao(f, /) + Boit, i)Flit, i)XXit, i) 

+ Xit,i)[AQit,i) + Boit,i)Flit,i)] 
r 

+ ^ [Akit, i) + Bkit, i)Flit, i)YXit, i)[Akit, i) + Bkit, i)Flit, /)] 
k=\ 

d 

+ Y,q,jXit, j) + Mit, i) + Mit, i) + {Flit, i))*Rit, i)Flit, i) 
7 = 1 

+ Lit,i)Flit,i) + {Flit,i))*L\t,i) 

- {Flit, i) - Fit, i)Yni{t, Xit)){Flit, i) - Fit, i)) = 0; 

hence 

j^iKit, i) - Xit, /)] + [A^it, i) + Boit, i)Flit, i)X{X'pit, i) - Xit, i)) 

+ {X'pit, i) - Xit, /))(Aoa, /) + Boit, i)Flit, 0) 
r 

+ Y, {Akit, i) + Bkit, i)Flit, i))*{X'^it, i) - Xit, 0) 
k=\ 

d 

X (A,(f, 0 + B^it, i)Flit, i)) + J2l'j{K^t' J) - ?(f' i)) + ŝ « 

- Mit, i) + {Flit, i) - Fi_,it, i)yni{t, x;it)){Fiit, i) - Fi_,it, i)) 

+ {Flit, i) - Fit, i))ni{t, Xit)){Flit, i) - Fit, /)) = 0,ieV,teI. 
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Hence t -^ ^^ (0 — ^ ( 0 is a solution of the linear differential inequality: 

— X(t)-\-C],s{t)X{t)^eJ^<0. 
dt p 

Taking into account (4.23) and Theorem 12 of Chapter 2 we obtain that the system 
{Ao + BoF'p, Ai + BiF'p,..,, Ar + BrF'p', Q) is stable. Thus we have shown that (b) 
is fulfilled. 

Writing the system of linear differential equations corresponding to X^ -^{t, i) in 
the form 

j^K-i(t, i) + [Aoit, i) + Bo(t. i)F;_,(t, /)]*X^_i(/, /) 

+ Z^_i(r, i)[Ao{t, i) + Bo(t^ i)F;_,(t^ /)] 
r 

+ J ] [Akit, i) + Bkit, i)Fl_,(t, i)]*X'^_,{t, i){Ak{t, i) + B,,{t, i)Fl_,{t, i)] 
k=i 

d 

+ L-^'v^p-i^^' ^^+^^'' + ^ ( ' ' '•> + (^P-i('' '))*'^(^' o^;_,(?, 0 
7 = 1 

+ Lit, i)F;_^{t, i) + {F;_^(t, /))*L*(f, 0 + {F;_^(t, o - F^.^H, n)* 

X TZiit, X^_,(r))(/^;_,(/, /) - f;_2(r, /)) = 0, / 6 V, 

we deduce 

^[X^_,( r , /) - x;(t, /)] + [Aoit, i) + Bait, i)F;_,{t, /)]* 

X [x^_i(?, 0 - x^it, 0] + [x^_,(/, 0 - x;{t,i)] 
r 

X [Aoit, i) + Boit, i)Fl_^it, /)] + ^ [A,(f, /) + B^it, i)F;_^it, i)]* 
k=\ 

X [X;_^it, i) - X'pit, i)][Akit, i) + Bkit, i)F;_,it, i)] 

d 

X (F;_i(r, /) - F;_2(r, /)) =0. ieV^tel. 

Since the system (AQ + 5o/^^_i, Ai + ^ i F ^ _ i , . . . , A, + 5,F^_i; Q) is stable, it 
follows by Proposition 14 of Chapter 2 that X^_j (r, /) - X^(r, /) > 0 V/ eVj el, 
and (c) is fulfilled. 

From (a) and (c) it follows that the sequence {X^(^ /)} is convergent. 
StiX'{tJ)=\imp^ooX'{tJ). 
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By standard arguments we now obtain that f -^ X^(t) = (X^(t, 1 ) , . . . , X^(r, d)) 
is a bounded solution of the system of differential equations: 

7 r 

-Xit, i) + Ao(t, i)X(t, i) + X(t, i)Ao(t. i) + Y Al{t, i)X(t, i)Akit, i) 
at ^̂—' 

k=\ 

d r r 

+ Y,qijX{t, j) - X(t, j)Bo(t. i) + J2 ^^(^' ^')^(^' '̂)^^( '̂ '̂) + ^(^' '̂̂  
7=1 L ^=1 k=\ 

1 - 1 

(4.24) 

(4.25) 

R{tJ) + J2B;{t,i)X(t,i)Bk{tJ) 
k=\ 

~ r 

B^(t, i)X(t, i) + Y. ^k(t^ 0X(^ i)Ak(t, i) + L*(^ / 
k=\ 

•i-M(tJ)+£ln = 0 , 

i eV. Moreover we have 

X'{t, i) > X(r, 0 , i eV,t el,£>0. 

Since the construction of X^ (t, i) does not depend upon the choice of X we conclude 

that (4.25) still holds if X{t) is replaced by any bounded solution in F^. 
From (4.25) we obtain that 7^/(r, X^{t)) > 0, and therefore the feedback gain 

F'{t) = {F'{t, 1 ) , . . . , F^(r, d)) is well defined by 

F^(r, 0 = -7^- ' (r , r{t))Vi{t. X'{t)){i). 

We prove that s -^ X^{t) is an increasing function. Take £\ < £2- By Lemma 1 
we obtain that the system (4.24) for ̂  = ei may be written 

j^x'^ (r, /) -f [Ao(r, /) + 5o(^ 0/^;ii (̂  /)]*x'' (̂  0 

+ z î (r, /)[Ao(r, /) + ^o(^ OF;il(^ /)] 
r 

+ ^ [A,(f, /) + Bk(t, i)Fll,{t, i)]*r^ {t, i){Ak(t, i) + B,{t, i)F;i,it, i)] 
k=l 

d 

+ ^^,,•X^^(^ 7) + (F;ij(r, /))*/?(^ /)F;ij(r, /) -f L(r, /)F;ii(r, /) 
7 = 1 

7^2 + F;ii(r, /)*L*(r, /) - (F;ii(r, /) - F^i (r, /))7^K^ X^KO) 

X (F ; i l (^ /) - F^U^ 0) + M(r, /) + ^ i / . = 0, / G p . (4.26) 
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From (4.26) and (4.20), for e = 62 we obtain 

^[X^2(/, 0 - X^'{t, i)] + [Ao(r, /) + Bo{t, i)Fll,(t, /)]*[X^2(r, /) - X'^{t, /)] 

+ [r^Ht, i) - r^(t, i)][Ao(?, /) + Bo(t, i)F';-_,{t, o] 
r 

+ ( £ 2 - ^ 1 ) 4 = 0 , / G P , / ? = 1 , 2 , . . . , 

which leads to X^H^ 0 - X'^ (t, i) > 0,i e V,t e I, p eN, Taking the Hmit for 
p -^ oowc get 

X'HtJ) >X'^(tJ),Vt elj eV. (4.27) 

Let £k,keN be a sequence of positive real numbers, £k>Sk+i and 
limyt->oo ̂ )t = 0. _ 

From (4.25) and (4.27) we have X'^(tJ) > X"^+>(r,0 > X(^/) V̂  G J , 
/ e P , î  G N. 

Therefore the function X{t, i) is well defined by X{t, i) = lim t̂-̂ oo X^^{t, /), 
t el,i eV. 

By a standard argument we can show that X(t) = {X(t, 1) X(r, 2 ) . . . X(t, d)) 
is a bounded solution of the equation (4.3) and the proof of the impUcation (i) =^ (ii) 
is complete. 

According to Proposition 14 of Chapter 2 it follows that for each p = 
0,1,2,... ,t -> X^p(t) considered in the proof of the implication (i) => (ii) are 
^-periodic functions. Hence X^(t) = Hmp_^oo^n(0 is a ^-periodic function, and 
finally X(t) = lim^-^o ^^(0 is a ^-periodic function and the proof of Theorem 3 is 
complete. D 

Corollary 4. Assume the following. 
(i) (A, B; Q) is stabilizable; 

(ii) R{t, i) > p^In, (t, i) el X V. 
(iii) M{t, i) - Lit, i)R~\t, i)L*{t, i) > 0, (t, i) el xV. 
Under these conditions the equation (4.3) has a bounded solution X(t) > 0. 

Moreover, X{t) > X(t) for any bounded and semipositive solution X(t) of the 
equation (4.3). 

Proof. Under the considered assumptions, X{t) = 0 solves the differential 
inequality Afi(t,X(t)) > 0, (t,i) e I x V ^nd condition (4.8), and thus the 
assumptions of Theorem 3 are fulfilled. n 
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With the same technique as in Theorem 3 we may prove the following dual result: 

Theorem 5. Assume that 
(i) (A, B; Q) is stabilizable; 
(ii) the differential inequality 

Afit,X(t)) < 0 , 

mt,X{t)) = dt 
X{t)^C\t)X{t) P%t,X(t)) 

V{t,X(t)) 

has a bounded solution X{t), which verifies 

n(t, X{t)) « 0. 

7^(^x(0) 

(4.28) 

(4.29) 

Under these conditions the dijferential equation (4.3) has a bounded solution X(t) 
which verifies X(t) < X{t) for any bounded solutions X(t) of the inequality (4.28), 
which verifies (4.29). • 

4.3 Stabilizing solution of the SGRDE 

In this section we investigate some aspects concerning the stabilizing solution of the 
SGRDE (4.1). First we show that the SGRDE (4.1) has at most one bounded and 
stabilizing solution. The uniqueness of the stabilizing solution is proved without any 
assumption concerning the sign of IZt (t, X{t)). Further, we provide a necessary and 
sufficient condition which guarantees the existence of the bounded and stabilizing 
solution of (4.1) satisfying the additional condition (4.8). 

Definition 3. A solution X: X -^ S^ of the equation (4.1) is called a stabilizing 
solution if it has the following properties: 

(i) 

inf 
tel 

\det 

(ii) The system 

R(t,i)^J2^^k(t^nX(tJ)B,(tJ) 
k=\ 

> 0, i e V. 

(Ao + BoF, Ai + Bi F, . . . , A, + B,F; Q) 

is stable in the sense of Definition 4 of Chapter 2, where 

F(r) = (F(r, l ) ,F(r ,2) , . . . ,F(r ,J) ) , (4.30) 

F(tJ) = - /?(^/) + ^ .^ ; (^ / )X(^ / )B, (^ / ) 
k=\ 

r 

Bo(t, i)X(t, i) + J2 Kit, i)Xit, i)Ak{t, i) + L*(t, i) 
k=\ 
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Remark 2. (i) The condition (i) in Definition 3 is assumed in order to be sure that the 
stabilizing feedback gain in (4.30) is bounded. 

(ii) The solution X(t) of the system (4.1) is a stabilizing solution if the control 
u(t) = F(t, ri(t))x(t) stabilizes the system 

dx(t) = [Ao(r, r](t))xit) -f- ^o(^ ri(t))u(t)]dt 
r 

+ ^ [Ak{t. r](t))x{t) + Bk(t, r]it))u(t)] dwk(t). 
k=\ 

Theorem 6. (i) The system of generalized matrix Riccati differential equations (4.1) 
has at most one stabilizing and bounded-on-X solution. 

(ii) If the coefficients of the system (4.1) are 0-periodic functions, then the 
stabilizing and bounded solution X(t) (if it exists) is a 6-periodic function too. 

(iii) If the coefficients of the system (4.1) do not depend upon t, then its stabilizing 
and bounded solution X(t) is constant and solves the following system of nonlinear 
algebraic equations: 

Al(i)X(i) + X(i)A^(i) + Y. Kii)^(i)^k{i) 
k=\ 

+ Y,qijX(j) - X(i)Bo(i) + Yl ^l(OX(i)B,(i) + L(i) 
j=i \ k=\ } 

X (/?(/)+ ^5,*(/)X(05,(/) J 
k^\ 

Bl(i)X(i) + Y Bkii)X(i)Ak(i) + L'(i) ] + M(i) = 0, i e V. (4.31) 
k=\ 

Proof (i) Let us suppose that the differential equation (4.3) has two bounded and 
stabilizing solutions, Xi : I -^ S^, / = 1, 2; hence the systems (AQ + BQFI, Ai + 
B\Fi,..., Ar -\- BrFi\ Q)J = 1, 2, are stable, the stabilizing feedback gain being 
defined as in (4.30). By direct computation we obtain that 

— X/(r, /) + [Ao(r, /) + 5o(^ /)F, (r, /)]*X/(r, /) + X/(r, /) 

r 

X [Ao(r, /) + 5o(^ i)F2(t^ /)] + Y K ' ( ^ ' ' ) + ^^(^' ^')^i^^' '^Y 
k=\ 

d 

X Xi(t, i)[Ak(t. i) + Bk(t. i)F2(t, i)] + ^ ^ , , X / ( r , j) 
7 = 1 

+ F*(^ i)R(t, i)F2(t, i) + M(r, /) + L(r, i)F2(t. i) + F,*(^ /)L*(r, /) - 0, 

/ = 1,2, i eV, t el. 
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Set X(t, i) = Xi(t, i) - X2it, /), i eV, t el, and obtain that 

X(0 = ( X ( M ) , . . . , X ( r , J ) ) 

is a bounded solution of the system 

-X(t, i) + [Ao(t, i) + ^0^ , i)Fx{t, i)XX{t, i) + X(f, /) 
at -• 

< [AoCr, 0 + 5o(r, i)F2{t, /)] + Y, [^kit. i) + Bk{t, i)Fdt, /)]* 
k=\ 

d 

< Xit, i)[Ak{t, i) + Bk(t, i)F2{t, /)] + ^ ^ / y X ( r , 7) = 0, (4.32) 
7 = 1 

i eV, t el. It is easy to see that (4.32) is equivalent to the following linear equation 

d 
on Si: 

dt 
X,(r) + / :* (OX,(0=0, (4.33) 

where £ , (0 : S^ -> S^. i eV,t el. 

Ak(tJ)-{-Bk(t,i)FdtJ) 0 
0 Ak(t,i) + Bk(t,i)F2(tJ) 

)̂  = 0, l , . . . , r . 

XeitJ) 
0 X(r,/) 

X(r, /) 0 

From Theorem 12 of Chapter 2 we deduce that there exist the C^ functions Kj : 
I -^ S^, Kj{t) ^ 0 which are bounded on I and verify the linear differential 
equations 

^^Kj(t) + q(t)Kj(t) + J'=0, j = 1, 2, 

where Cj are the Lyapunov operators associated with ( AQ+BQFJ, ..., Ar+BrFj; Q), 
7 = 1,2. Set 

/ ^ , ( r ) 0 \ 
^ ^ ^ ^ ^ - ^ 0 K2(t))' 

It is easy to see that Ke(t) is a solution of the linear differential equation on S^: 

-Ke(t) + C:(t)KAt) + J^' = 0. (4.34) 

From Theorem 12(v)-(i) of Chapter 2 we conclude that the augmented system 
(Ao,^,..., Ar^e\ Q) is stable. Applying Proposition 14 of Chapter 2 we deduce that 
equation (4.33) has a unique bounded solution. Therefore Xe(t) = 0 and hence 
X[(t,i) = X2(t,i) for all (r, /) el x V, and the proof of part (i) is complete. 
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(ii) Let X(t) = (Z(^ 1 ) , . . . , X(t, d)) be the bounded and stabilizin^solution 
of the equation (4.3). Let X{t) = (X(r, 1 ) , . . . , X{t, d)) be defined by X{t, i) = 
X{t-\-0, i). It is easy to see that t -^ X{t) is a bounded solution of the equation (4.3). 

Let F{t) = {F(t, 1 ) , . . . , F(t, d)), F{t) = {F{t, 1 ) . . . F(^ d)) defined by 

F(tJ) = -n-'{t,X(t))Vi{t,X(t))(i). 

F(t, i) = -nr\t, Xit))Vi{t, X(t)){i), i eV, t el. 

Denote T(t, to) and T(t, to), respectively, by the linear evolution operators over S^ 
defined by the linear differential equations 

^S(t) = Cp(t)S{t), 
at 

^Sit) = Cp(t)Sit), 
dt 

respectively, where the operators Cf(t) and Cf(t) are defined as in (3.2). 
By uniqueness arguments we get 

f(t,to) = f(t + 0,to-hO) (4.35) 

for all t > to, ̂  0̂ ^ ^. Since X{t) is a stabilizing solution of the equation (4.3) we 
have \\T(t, to)\\ < fie-''^'-'^^ for all t > ô, tJo^l with some ŷ  > 1, a > 0. 

From (4.35) we deduce that 

\\f{t,to)\\<Pe-^^'-'^\ t>to, 

which shows that t ^^ X(t) is also a stabilizing solution of the equation (4.3). 
Using part (i) we get that X(r) = X(t) for all t e I, hence X{t +0) = X(t). 
(iii) From part (ii) it follows that in the time-invariant case the stabilizing and 

bounded solution is periodic with any period ^ > 0 and therefore it is constant. D 

A result concerning the existence of a stabilizing solution of SGRDE (4.1) is given 
by the next theorem. 

Theorem 7. The following are equivalent: 
(i) The triple (A, B; Q) is stabilizable and there exists a C^ function X: X -> S^ 

bounded, with bounded derivative such that differential inequality 

A r ( r , X ( O ) » 0 . (4.36) 

(ii) The differential equation on S^ (4.3) has a bounded-on-X and stabilizing 
solution X(t) which verifies TZ(t, X(t)) > 0, r € T. 

Proof (i) => (ii) Let X be a bounded-on-J solution of (4.36). Hence X eT C 
r ^ . Based on Theorem 3 we deduce that the equation (4.3) has a bounded solution 
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X'.l^^Sf^ which verifies X{t) > X(t). We show that X(t) is a stabilizing solution 
of the equation (4.3). 

Set 

M(t) = p*(r, x(o)7^-^(^ x(t))v{t, x(t)) - M(t) - C{t)X{t) - —x(t) 

and F (0 = -n-\t\ X(t))V(t, X(t)). It is obvious that M(t) « 0. 
By direct calculation we get 

^ X a , /) + [Ao(^ /) + ^0^ , i)F{t, /)]* X(t, i) 

r 

+ X(t, i) [Ao(t, i) + Bo(t, i)F(t, n] + Yl [̂ (̂̂ ' *̂) + ^̂ ^̂ ' ̂ ')^( '̂ *̂)]* 
k=\ 

d 

X za, /) [A,(/, /) + 5,(r, /)F(r, /)] + ^^,,X(r, 7) + F*(r, /)/?(/, /)F(r, /) 
7 = 1 

+ L(r, /)F(f, /) + F(r, /)L*(r, /) + M(r, /) = 0. 

Since X verifies (4.16) one gets 

- [x(r, /) - x(r, /)] + [Ao(̂  /) + 5o(̂  0^(^ O]* (^(^ 0 - J(^ 0) 

+ (X(r, /) - X(r, /)) [Ao(r, /) + Bo(r, /)F(r, /)] 

+ ^ [A,(r, /) + 5,(r, /)F(r, /)]* (X(r, /) - X(f, /)) 
^=1 

X (A,(r, /) + 5,(^ /)F(r, /)) + ^^ /y (X( r , j) - X(r, j)) 
7 = 1 

+ (F(r, /) - F(r, 0)* 7^/(/, X(r))(F(r, /) - F(r, /)) - M(r, /) = 0. (4.37) 

Since (F(r, /) - F(r, /))*7^,(^ 2(0)(F(r , /) - F(f, /)) - M(r, /) » 0 from 
Proposition 13 of Chapter 2, we deduce that the system (AQ + ^ O ^ , AI + ^i F , . . . , 
Ar + ^r^ ; Q) is Stable, hence X(r) is a stabiUzing solution of equation (4.3). 

(ii) -^ (i) If the equation (4.3) has a stabilizing solution X{t), then the triple 
(A, B; Q) is stabilizable. Let X : X ^> S^ h^ the bounded stabilizing solution of 
(4.3), which verifies ll(t, X{t)) » 0, r € J . Let F{t) be the stabilizing feedback 
gain defined by F{t) = -7^-^(r, X{t))V{t, X{t)). Define 'PF(^ X): 5^ -> A^^ „ 
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by 

r 

Vpit, X){i) = B*(t, i)X(i) + J2 Ki^^ i)X{i){Ak{t^ i) + 5,(^ /)F(r, /)) 

and 

Mpit) = (Mfit, 1 ) , . . . , Mpit, d)), 

Mpit, i) = M(t, i) + L(t, i)F{t, i) + F*(r, /)L*a, /) + F*a, i)R{t, i)F(t, /), 

/ G P , ^ G J , whereF(r,/) = F ( 0 ( / ) . 

Let Tf{t, to) be the linear evolution operator defined by the equation 

-S(t) = Cf(t)S(t). 
at 

Since F is a stabiHzing feedback gain we have 11T/̂  (r, ô) 11 S fie~"^^~^^^ for all t > to, 
to G X, with some Q? > 0, ^ > 1. Let C (T, «S,f) be the Banach space of all bounded and 
continuous functions defined on I with values in S^. Since 7l{t, X(t)) > 0, / G J , 
there exists an open set U <zC(l, S^) such that X G ZY and ll{t, X{t)) > 0, ^ G J , 
for all X eU. 

Consider the operator ^ : ZY x R ^^ C{X,Sf^) defined by 

/

oo 

T;{s,t)[MF{s)^&J'' 

-r*f{s, Xis))1l-\s, Xis))VF{s, X{s))]ds - X{t), 

r e I . 

We shall apply the implicit function theorem to the equation 

^(X,S)^0 (4.38) 

to show that there exists a function Xs eU such that 

/

oo 

T;(S, t) [MF(s)-^8j'-V;is, Xs(s))n-\s, X8is))Vf(s, Xsis))] ds 

for I (51 small enough. 
It is easy to verify that (Z, O) is a solution of (4.38). 
We show that dx^{X, O): C(J, <Ŝ ) -^ C(I, S^) is an isomorphism, di^ being 

the derivative of ^ with respect to the first argument. 
Since di^{X, 0)Y = lim,_,o ^-{^{X + EY, O) -^{X, O)) andP/r(^ X{t)) = 0, 

one can easily verify that di^{X,0)Y = - F and therefore di^{X,0) = -Jn,Jn 
being the identity operator on Sf^. Also d\^(X,S)is continuous. Applying the implicit 
function theorem [103] we deduce that there exist 8 > 0 and a continuous function 
8 ^^ Xs : { — 8,S) -^ U which solves ^(X^, 8) = 0. It is easy to see that for 
8 G (— 5, O), X5 (0 will be a solution of the inequality (4.36) with required properties, 
and the proof is complete. D 
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Corollary 8. If the equation (4.3) has a stabilizing and bounded-on-X solution X 
which verifies (4.8), then X(t) is the maximal solution with respect toY^ of {A3). 

Proof Suppose that (4.3) has a stabilizing and bounded-on-X solution X. Then 
by Theorem 7 it follows that the assumptions of Theorem 3 are fulfilled. Therefore 
there exists a bounded solution X of (4.3) with the maximality property in Theorem 
3. From the proof of Theorem 7 it follows that X is stabilizing. Hence by Theorem 6 
we have Z = X, and thus the proof is complete. D 

The counterpart of the above theorem for the periodic case is as follows. 

Theorem 9. Assume that the coefficients of {A3) are 0-periodic functions. Then the 
following are equivalent: 

(i) (A, B; Q) is stabilizable and the differential inequality (4.36) has a 0-periodic 
solution. 

(ii) The equation (4.3) has a stabilizing 0-periodic solution X{t) which 
verifies (4.8). 

Proof, (i) -> (ii) Applying Theorem 7(i)-(ii) we deduce that the equation (4.3) 
has a stabiUzing and bounded-on-J solution X{t) which verifies (4.8). Using Theorem 
6(ii) we conclude that X{t) is a ^-periodic function too. 

(ii) -^ (i) If the equation (4.3) has a stabilizing solution, it follows that the triple 
(A, B; Q) is stabilizable. From the proof of Theorem 7(ii)-(i) it follows that there 
exists 5 < 0 such that 

— X{t) 4- C{t)X{t) - P*(r, X{t))n-\t, X{t))V{t. X{t)) -f M{t) + 5/^ = 0 
dt 

has a bounded-on-T solution verifying (4.8). Further, again applying Theorem 7(i)-(ii) 
for the equation 

—x{t) + c\t)X{t) - vHt, x{t))n-\t, x{t))V{t, x{t)) + M{t) + -7^ = o, 
dt 2 

we deduce that the above equation has a bounded and stabilizing solution X{t) 
verifying (4.8). Then by Theorem 6 this solution is periodic. It is not difficult to 
see that X{t) verifies (4.36) and the proof is complete. D 

With the same proof as in the previous theorem we get the time-invariant 
counterpart of Theorem 7. 

Theorem 10. Assume that the coefficients of (4.1) do not depend upon t. Then the 
following are equivalent: 

(i) The triple (A, B; Q) is stabilizable and there exists X e S^ such that 
Af{X) > 0. 

(ii) The system of generalized Riccati algebraic equations (4.31) has a stabilizing 
solution X which verifies IZi (X) > Ofor all i eV. • 
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Let us consider the following system of nonlinear matrix differential equations: 

dt 
Xit, i) + A*a, i)X(t, i) + Xa, i)Ao(t, i) + Yl ^̂ *(̂ ' ̂ ')^(^' ̂ ^^k(t, i) 

k=\ 

^J^qijXitJ)-
7-1 k=\ 

- 1 

x(t, i)Bo{t, i) + J2 Â*(̂  OX(t, i)B,{t, i) 

r 

B^it. i)X{t, i) + ^ 5 ; a , /)X(r, /)/l,(r, /) 
/t=i 

+ /. = 0. (4.39) 

A^(r, /), 5Jt(^ /), /: = 0, 1 , . . . , r are continuous and bounded functions. The system 
(4.39) is a particular case of the system (4.1) taking M(t,i) = /„, L(t,i) = 0, 
R(t,i) = Im- Obviously, in this case X{t,i) = 0 verifies (4.36), and therefore 
by Theorems 7 and 6 it follows that the next result holds. 

Corollary 11, Assume that (A, B; Q) is stabilizable. Then the system (4.39) has a 
bounded and stabilizing solution X{t) = {X(t, 1), . . . , X(r, d)), X(r, /) > 0. More­
over, if Ak(',i), Bk{-,i) are 0-periodic functions, then X(-) is a 0-periodic function 
too, and if AkitJ) = Ak(i), Bk(t, i) = 5A(/) , (r, /) G X x P , ^ G {0, 1 , . . . , r], 
then X(t, i) = X(/), (t, i) el xV. D 

Remarks, (i) From the above corollary we conclude that if Âf (•, /), 5^(-, /), k = 
0, 1, . . . , r, are continuous ^-periodic functions and the triple (A, B; Q) is stabiliz­
able, then there exists a stabihzing feedback gain F(t) = [F{t, I),..., F{t,d)) 
which is a ^-periodic function. Also, if A^it, i) = Ai,(i), B^it, i) = B^ii), k = 
0, 1 , . . . , r, (t,i) el xV, and (A, B,; Q) is stabilizable, then there is a stabihzing 
feedback gain, F = (F{1),..., F(d)). Therefore we may conclude, without loss of 
generality, that in the case of periodic coefficients the triple (A, B; Q) is stabilizable 
if and only if there exists a stabilizing feedback gain F(t) which is a ̂ -periodic func­
tion; in the time-invariant case the triple (A, B; Q) is stabilizable if and only if there 
exists a stabilizing feedback gain F = ( F ( l ) , . . . , F((i)) not depending upon t. 

(ii) Combining the result in Corollary 11 and Remark 4 of Chapter 3, we may 
conclude that if A^(-, /), Ĉ^ (•,/),/: = 0, 1 , . . . , r, are ̂ -periodic functions defined on 
R X P , then the triple (C, A; Q) is detectable if and only if there exists a stabilizing 
injection K{t) which is a continuous ^-periodic function, and in the time-invariant 
case the triple (C, A; Q) is detectable, if and only if there exists a stabilizing injection 
^ = (^(1), K(2),...,K(d))eMi^p. 

We point out that Corollary 11 and Remark 3 hold when the elements of the matrix 
Q verify only the condition qij > 0 for / j^ j . 
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4.4 The case 0 € T^ 

In the following we focus our attention on the case when the coefficients of the system 
(4.1) (and equivalently of the equation (4.4)) satisfy the additional conditions: 

R(t,i) > pin > 0 , (4.40) 

M(t, i) - L{t, i)R-\t, i)L*(t, i) > 0 

for all (t,i) e I X V, p > 0 not depending upon (r, /). From (4.6) we see that 
conditions (4.40) are equivalent with the fact that X{t) = 0 belongs to T^. 

Lemma 12. Assume that (4.40) holds. Then 
(i) Let X : Xi ^ I ^^ S^ be a solution of the equation (4.3). If there exists 

T ell such that X(r, /) > 0, / e V, then X(t, i) > 0 for all t e I\ 0 (-oo, r]. 
(ii) Let X : Ii C I ^ Sf^.X : Ii C I ^ Sf^ be two solutions of the 

equation (4.3). 
If there exists r e 1\ such that X{T) > X(r) > 0, then X(t) > X{t) for all 

t elid {-oo, r]. 

Proof (i) Let F(t) = (Fit, 1), F(t, 2 ) , . . . , F(t, d)), 

F{t,i) = -n;\t,X{t))Vi{t,X{t)), t elx,i eV. 

From Lemma 1 one obtains that the equation (4.3) verified by X(t) may be written 
as follows: 

^X(t) + C,(t)X(t) + M(t) = 0, (4.41) 
at 

t e J i , where M(t) = {M{t, 1 ) . . . M{t, d)), 

M(t, i) = M(t, i) - Lit, i)R-Ht, i)L\t, i) + [R{t, i)F{t, i) + L\t, /)]* 

xR-\t, i)[R(t, i)F(t, i) + L*(r, /)], (t, i) elixV. 

From (4.40) it follows that M{t) > 0,t G J i . If Tf(t, to) is a linear evolution 
operator over S^ defined by the linear differential equation 

^S(t) = Cr(t)S(t), 
dt 

then we obtain from (4.41) and (2.13) that 

z(o = r;(r, t)X(T) + f T;(S, t)M(s)ds 

"it e I\ D (—00, r ] . Since Tp{s, t) \ S^ -^ Sf^ is a positive operator we conclude 
thatX(0 >0,t<T. 
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(ii) Set F(t) = {F(t, 1), F(r, 2 ) , . . . , F(t, d)) and 

F(0 = ( F ( M ) F a , 2 ) . . . F ( r , J ) ) , 

where 
F ( ^ / ) - - 7 ^ ^ ^ ( r , X ( 0 W ( ^ X ( 0 ) 

and 
F{tj) = -n-'{t^x{t))Pi{t,x(t))(i), 

Let F(0 be defined by 7(0 = X(t) - X{t), t G Xi. By using Lemma 1, one 
concludes that Y{t) is a solution of the affine differential equation on 5^: 

— Y{t) + C%{t)Y{t) + M{t) = 0, ? G Xi, 

where M{t) = (M(r, 1 ) . . . M(^ J)), 

M(^ 0 = [F{t, i) - F(t, nfniit, X(0)[F(r, /) - F(t, /)], (r, /) elixV. 

Based on part (i)ofthis lemma, we deduce that X(0 > 0, and hence 7^/(^ X(t)) > 
0, r G Ji n (-CX), r ] , / G P , and therefore M(t) > 0. Let i(t, to) be the linear 
evolution operator on S^ defined by the linear differential equation 

d 

Jt 
-S(t) = C^(t)S(t). 

We obtain the representation formula 

Y{t) = f\Tj)Y{T)-V j T(s,t)M{s)ds. 

The conclusion follows taking into account that T(s,t) is a positive operator 

For each r G T we denote be X^ (•) the solution of the equation (4.3) that verifies 
the condition X-^T, i) = 0, / G V. 

Proposition 13. Assume that (A, B; Q) is stabilizable and (4.40) is fulfilled. Then: 
(i)for each r G J, the solution X^ (•) is defined onIn(—oo,T]. Moreover there 

exists c > 0, such that 0 < X^(t) < cJ"^ Wt <T,t e I; 
{n)X,^(t)<X,^(t)Wt<T, <T2.teI. 

Proofi (i) Let I-^ C (—oo, T] H J be the maximal interval on which X^i-) is 
defined. 

From part (i) of Lemma 12 we have that Xj(t) > Oj e Ij. Since (A, B; Q) is 
stabilizable, there exist F^ : X ^^ A1^ „ a continuous and bounded function, such 
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that the system (AQ + ^o^^, Ai + ^i F ° , . . . , A, + BrF^\ Q) is stable. Let X^{t) be 
the unique bounded-on-J solution of the affine Lyapunov-type differential equation: 

j^X\t) + C'p,{t)X\t) + M\t) = O, 

where M^(t) = (M^(t, 1), M^r, 2 ) . . . M^r, d)), 

M^(t, i) = M{t, i)+L(t, i)F\t, /)-f (F^r , /))*L*(r, /)-h(F^r, /))*/?(f, / )F^r , 0-

Since (4.40) is fulfilled, we obtain that M^{t) > 0, r e X. Hence by Proposition 14 
of Chapter 2 there exists c > 0 such that 0 < X^(t) < cJ"^ for all r G J . By direct 
computation we obtain that X^{t) — Xj{t) verifies the affine differential equation of 
Lyapunov type: 

j^{X\t) - X,{t)) + C^,{t){X\t) - XAt)) + M\t) = 0, (4.42) 

t e Ir where M^(t) = (M^(t, 1), M^r, 2 ) , . . . , M^r, J)) 

MO(r, /) = (F^r, /) - F,(r, /))*7^K^ X,(r))(F^r, /) - F,(r, /)), 

(^ i) elx V, Since X,(0 > 0 we get M^(0 > 0, r € J , . 
From (4.42) we deduce that 

X\t)-XAt) >0 (4.43) 

for all t e J , which leads to 0 < XAO < X^{t) < cJn ^t eir. 
Thus t -> X^(t) is bounded and we conclude that Ij = (—oo, r] H J . 
(ii) follows immediately from Lemma 12 and the proof is complete. D 

Now we are able to prove the following theorem. 

Theorem 14. Assume that (A, B; Q) is stabilizable and the condition (4.40) is 
fulfilled. Under these assumptions the equation (4.3) has two bounded solutions 
X : I ^ S^, X : I -^ S^ with the property X{t) > X{t) > X(t) > 0 for all 
t el, X(t) being any bounded and semipositive solution of the equation (4.3). 

Proof The existence of the maximal solution X(t) is guaranteed by Corollary 4. 
It remains to prove the existence of the minimal solution X(t), To this end we shall 
use the results of Proposition 13. We define X(t) = lim -̂̂ oo ^ r ( 0 , ^ ̂  X- Invoking 
the result of Proposition 13 we obtain that this limit exists. 

Since X^(0 is a bounded solution of (4.3), by the standard argument based on 

Lebesgue's Theorem we conclude that X{t) is a solution of the equation (4.3). 
To check the minimality of X{t) in the class of semipositive solutions of the 

equation (4.3) we shall use Lemma 12. If X() is a semipositive and bounded solution 
of the equation (4.3), then for each r G J we have X(T) > 0 = ^^(r) . Therefore 
XAt) <X(Oforal l r <TJ el. 

Taking the limit for r -> oo, we deduce that X(t) < X(t),t e I, and the 
proof ends. D 
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To solve the linear quadratic problems, a crucial role is played by the minimal 
solution stabilizing solution, respectively, of the following system of matrix nonlinear 
differential equations: 

dt 
X(t, i) + A*(r, i)X(t, i) + X(t, i)Aoit, i) + Yl ^^(^' ^•)^( '̂ '')^^(^' '^ 

k=\ 

7 = 1 k=\ 

X(t, i)Bo{t, i) + J2 ^̂ *(̂ ' •̂)̂ (̂ ' ̂ ')̂ ^^ '̂ '̂̂  

R(tJ) + J2^k(^^i)X(tJ)Bk(t,i) 
k=\ 

r 

B*a, / )Z(^ 0 + ^ ^ ; a , /)X(r, i)Ak(t, i) 

(4.44) 

)t=i 
+ C*(r,/)Coa,/) 

= 0, 

t > 0,i e V, where /?(r, /) = D^it, i)Do(t, /), which is a particular form of (4.1) 
obtained for M(^/ ) = C*(^/)Co(r,/), L(r,/) = 0, R{t,i) = D^(tJ)Do(tJ), 

We have the following lemma. 

Lemma 15. Assume the following. 
(i) There exists p > 0 such that D^it, i)Do{t,i) > pl^ for all t >0, i eV. 
(ii) The triple (Co, A; Q) is detectable. 

(iii) The elements of matrix Q verify qij > 0, / 7̂  7, X!/=i ^0 = 0, / € V. 
Under these assumptions any semipositive and bounded solution of the system 

(4.44) is stabilizing. 

Proof Let X{t) = (X(t, 1), X(t, 2), . . . , X(t, d)) be a bounded and semiposi­
tive solution of the system (4.44). By direct calculation we obtain: 

d ^ 

dt 
X(t, i) + [Aoit, i) + 5o(^ i)F{t, /)]* X(r, /) 

r 

+ X(/, /) [Ao(r, 0 + Boa, i)F{t, i)] + J^ i^kit, i) + Bk{t, i)F{t, i))* 
k=l 

d 

X Kit, ()(A^(r, /) + Buit, i)F(t, /)) + ^9,vX(f, j) + Clit, nCoit, i) 

+ F*{t, i))R{t, i)F(t, i) = 0, (4.45) 

Fit, i) = -nr\t, Xit))Vi{t, X{t)){i), it, i)elx V, 

or, in compact form, as a Lyapunov-type equation on <Ŝ : 

j^Xit,i) + Cfit)Xit) + Cit)=0, (4.46) 



136 4 The Riccati Equations of Stochastic Control 

where C% is defined as in Lemma 1, with F instead of G, and 
r 

C(0 = ( C ( M ) , . . . , C ( r , J ) ) 

with 
C(/, /) = C*a, OCoa, /) + F*a, i)R{t, i)F{t, i). 

With the same reasoning as in Theorem 7 of Chapter 3 applied to (4.46), we deduce 
that there exists y > 0 such that 

f \C^{t.r^{t))x{t)\'dt\r){to) = i < y \xo\ (4.47) 

and 

< y \xo\ Elf \F(t,r](t))x{t)\^dt\r]{to) = i 

for all to > 0, / e V, and XQ G R", where x(t) is the solution of the problem 

r 

dx(t) = Ao (t, r](t))x(t)dt + ^ A^ (^ rj(t))x(t)dwk(t) 
k=\ 

X (to) = Xo, 

where 
Ak(t, i) = Ak(t, i) + Bk(t, i)F(t, /), /: = 0, 1 . . . , r. 

According with assumption (ii) it exists H{t,i) such that the system 

(Ao + / /Co ,A i , . . . ,A , ;G) 

is stable. We may write 

dx(t) = {[Ao(t, r](t)) + H(t, r](t))Coit, r^(t))]x(t) + Mt)} dt 
r 

+ J2[A,(t, r](t))x(t) + Mt)]dwk(t), 

(4.48) 

k=\ 

where 

and 

Mt) = [-H (t, ri(t)) Co (^ riit)) + ^o (^ r](t)) F (r, r](t))] x(t) 

Mt) = Bk (t, rj(t)) F (r, r]{t))x(t), k = h ,.., r. 

Since the system (AQ + //Co, A i , . . . , A .̂; Q) is stable, based on (4.47), (4.48), and 
Theorem 32(ii) of Chapter 2, we deduce that there exists P > 0 (independent of ̂ o 
and xo) such that 

f \x{t)\Ut\r){tQ) = i /3|xol 

for all fo > 0, / e V, and XQ e R". Therefore, from Theorem 19 of Chapter 2 we 
conclude that (AQ, . . . , A^; 2 ) is stable and the proof is complete. D 
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Proposition 16. Suppose that the assumptions (i) and (iii) in Lemma 15 hold and that 
(Co, Ao, A i , . . . , A ;̂ Q)is uniformly observable. Then ifK is a positive semidefinite 
and bounded-on-K^ solution of system (4.44) we have that 

(i) K is uniform positive; 
(ii) K is a stabilizing solution. 

Proof. Let ^ be a positive semidefinite and bounded-on-R+ solution of system 
(4.44). Set 

FK(tj) = -n;' (t, K(t))ri (t, K(t)), 

Ak(t, i) = Akit, i) + B^t, i)FK(t, /), 0 < /c < r, 

and X(t, to) be the fundamental matrix solution associated with the linear system 

r 

dx(t) = Ao(r, r]{t))x(t)dt + ^ A^(r, r]{t))x{t)dwk{t). 
k=\ 

We have to prove that (AQ, AI , . . . , A^-; Q ) is stable. 
Let r > 0 and yS > 0, verifying the inequality in Proposition 8 of Chapter 3. 

Define 

G{tJ) = E I Z*(5, t)[Q(s, r]{s))Co{s, r](s)) + F* ( ,̂ ri(s))R(s, rj(s)) 

FK(s,r]{s))]Xis,t)ds\r](t) ,r > 0, / eV). 

We shall prove inf {x*G(^ /)JC; \X\ = l,t > OJ e V} > 0. Suppose on the 
contrary that for every e > 0 there exist jĉ  G Z?"̂ , IJĈ I = 1, r̂  > 0, and i^ e V such 
that jc*G(^e, ie)xs < 8. 

LetX£(0 = X{t,te)Xe andw,(r) = Fj^(/, r]{t))x,{t). 
We can write 

8 > X*G(tsJe) > E 

> 8E 

/ u;(t)Rit, r]{t))us{t)dt\r]{t,) = is 
Jtc 

/ I". 
Jts 

it)\^dt\r](ts) = is 

with some 8 > 0. But Xs{t) = <t>(t, ts)xs + Xs(t), t > t^, where %{ts) — 0 and 

d7s{t) = (Ao(r, r]it))Z(t) 4- 5o(^ r](t))us(t))dt 
r 

+ X ! t̂ -̂ ^ '̂ ^7(0)^.(0 + Bk (r, ^?(0) "^(0] ^u;^(0. 
k=l 

Hence, by Remark 17 of Chapter 2 there exists yo > 0 such that 

E [\Z(t)\^\r]its) = is] <yoE\ f' \us{t)\^dt\r]{ts) = i, <8i8. 
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Further, we can write 

£ > X*G(ts,is)Xe > E 

fte+T 

\Co{t,r]it))xAt)rdt\r](te) = ie 

= E 

1 

f 
r pte+T 

Uts 

Jts 

ICo^, ^?(0)^a, te)x, + Co(r, r]{t))xe{t)\'dt\r]{te) = is 

|Co(r, r){t))^{t, ts)xsrdt\ii(te) = is 

\Co(t,rj(t))Z(t)rdt\ii(ts) = is 

> -P - 826, £ >0, 

and thus we get a contradiction, since ^ > 0. Hence, there exists P\ > 0 such 
that G(t,i) > Piln, t > OJ e V. Applying the identity (1.6) to the function 
V (t,x, i) = x'^Kit, i)x and to the system 

r 

dx(t) = Ao (/, rj(t))x(t)dt -\-J2^'' ^̂ ' V(0)x(t)dwk(t) 
k=\ 

and taking into account the equation (4.44) for Ar(r, /), we get 

x^E [X*(? + r, t)K(t + r, ri(t + r))X(r + r, 01^(0 = 0 -̂ o " -^o^(^ O-̂ o 

= -x^Git, i)xQ, t >0, xoe R\ i e V. 

Therefore 

PX\XQ\^ < x^K(t, i)xo < ftkol^ r > 0, / € P , jco e R\ 

Thus ^ is a uniform positive function and 

E [rit + r, 0^(^ + r, r7(̂  + T))X(t + r, 01^(0 = i] < (1 - ^ ) K(t, i). 

By virtue of Theorems 31 and 4 of Chapter 2, it follows that (AQ, AI , . . . , A^; Q ) 
is stable and thus the proof is complete. • 

Theorem 17. Assume the following. 
(i) Assumptions (i) and (iii) of Lemma 15 /̂ (̂ /J. 
(ii) r/z^ triple (A, B; 2) /̂  stabilizable. 

(iii) r/7^ system (Co; AQ, Ai, . . . , Â -, Q) /̂  ^/r/i^r detectable or uniformly 
observable. 

Then the Riccati-type system (4.44) has a unique positive semidefinite and 
bounded-on-K^ solution. Moreover, this solution is stabilizing. 

Proof The proof follows immediately from Theorem 14, Proposition 16, 
Lemma 15, and Theorem 6. D 
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In the particular case when 2̂  = {1}, the system (4.44) becomes 

d 
X(t) + Al(t)X{t) + X(t)Ao(t) + J2 Al(t)X(t)Ak(t) 

k=\ 
P r 

Xit)Bo(t) + J^Al(t)X(t)B,(t) 
k=i 

(4.49) 

- 1 

R(t) + J2^k(0X(t)B,(t) 

r 

B',it)X(t) + J2^k(0X{t)AM 
k=\ 

+ C*(r)Co(r)-0. 

A direct consequence of Theorem 17 is the following corollary. 

Corollary 18. Assume the following. 
(i) There exists p > 0 such that DQ{t)Do(t) > plm far all t >0. 

(ii) The pair (A, B) is stabilizable. 
(iii) The pair (Co, A) is either detectable or unifarmly observable. 
Then the Riccati-type equation (4.49) has a unique positive semidefinite and 

bounded-on-R^ solution. Moreover, this solution is stabilizing. D 

Remark 4. Based on Theorem 14 one obtains that under the assumption that (A, B; Q) 
is stabilizable, the SGRDE (4.44) has two remarkable semipositive definite solutions. 
We refer to the maximal solution X(t) and to the minimal solution Z, respectively. If 
additionally (Co, A; Q) is either detectable or uniformly observable, then these two 
solutions coincide, namely X(t) = X(t). 

However, in the absence of detectability and uniform observability, X(t) does not 

always coincide with X. This can be seen in the following numerical example. 
Numerical example. Consider n = 2, d = 1, r = I, p = l,m = l .In this case 

(4.44) reduces to 

dt 
X(t) + Al(t)X{t) + X(t)Ao{t) + A\(t)X{t)Ai{t) 

- [X{t)Boit) + AUt)X(t)Bdt)][R(t) + B;(t)X(t)Bdt))Y' 

X [B'o(t)X(t) + B*,(t)X{t)A,(t)] + C*(OCo(0 = 0. 

(4.50) 

Choose 

Aoit) = 
1 0 
0 3 , Ai(0 = /2, ^o(0 = Bi(t) 

Co(0 = [ l 0],R(t) = l. 

One can see (see Propositions 5 and 25 of Chapter 3) that in the stochastic case the 
pair (Co; Ao, Ai) is neither detectable nor observable. The maximal solution of the 
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equation (4.50) is 

^(0 
8 -21 
-21 63 

> 0 

and the minimal solution is 

X(t) 
1 0 
0 0 

>0. 

Indeed, by Theorem 15(iv) of Chapter 2, X is the stabilizing solution of (4.50), and 
based on Corollary 8 it coincides with the maximal solution. 

On the other hand, if X^ (•) is the solution of (4.50) with the given final condition 
^^^(r) = 0, one obtains that 

where 

Therefore, 

^(0 

X{t) 0 
0 0 

1 +4^-5(r-/) 
for all t < r. 

lim XAO 
1 0 
0 0 

X, 

and thus one obtains that X is the minimal semipositive definite solution of (4.50). 

Obviously in this case X ^ X. 

4.5 The filtering Riccati equation 

In this section we focus our attention on the so-called stochastic generalized filtering 
Riccati equation (SGFRE) for stochastic systems. We shall restrict our investigation 
only to the time-invariant case. 

Consider the SGFRE: 
r d 

Ao(i)Y(i) + y(/)A*(/) + J2 Mi)Y(i)Al{i) + J2qjiY(j) 
k=\ j=\ 

- (y(/)c*(/) + J2 ^k(i)y(i)c;ii) + L*(/) J 

X U(/) + ^c,(/)y(/)c,*(/)J 

X (r(/)C*(/) + Yl ^k{i)Y(i)C;(i) + L^i)] + M(i) = 0 (4.51) 
k=\ 

with the unknown variables (7 (1) , . . . , Y(d))eS^ and A;t(0 eR"^^ Q( / ) €R^^^ 
^ = 0, . . . , r , L{i) e R«^^, R{i) € Sp, M{i) e Sn. If P = {1},A^(/) = 0, 
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Q ( 0 = 0, k = 1,2, . . . , r , then (4.51) reduces to the well-known Bucy-
Kalman [117] filtering algebraic Riccati equation. 

The system (4.51) can be rewritten in compact form as a nonlinear equation in 
S^ as follows: 

CY - P{Y)n-^ (Y)V*(Y) + M = 0, (4.52) 

where C is the Lyapunov operator defined by the system (AQ, A I , . . . , A^; g ) , 
r:S'„^ M% by 

V{Y)^{Vx{Y),...,Vd(y)), 
r 

Vi{Y) = Y{i)Cl{i) + ^ Ak{i)Y{i)Cl{i) + L(/), / e V, 

n : Si^ Sp by 
n{Y) = {ndY),...,nAY)), 

r 

^/(F) = ^(/) + ^Q( / )y( / )q*( / ) , / G P , 
k=\ 

M = (M(1) , . . . ,M(J ) ) . 

Equation (4.52) is defined on a subset of 5^ consisting of F = (^(1), • • •, Y(d)) 
suchthatdet'R/(y) / 0. 

The dissipation matrix corresponding to the filtering Riccati equation under 
investigation is defined as follows: 

M{Y) = {Afi(Y),...,AfAY)), where 

'(CYm + M(i) Vi(Y) 

Vi\Y) UiiY) 
Mi{Y) = 

for ally eS^J eV. 

Definition 4. A solution Y = ( F ( 1 ) , . . . , Y{d)) of (4.52) is a stabilizing solution 
if the system (AQ -\- CQK, A[ + C\K, ..., Ar -\- CrK; Q) is stable in the sense of 
Definition 4 of Chapter 2, where K = (^(1), . . . , Kid)), 

K{i) = -Vi{Y)n-\Y), i e V. (4.53) 

Recalling that A = (AQ, . . . , Ar) and C = (Co, . . . , Cr) we prove the following 
result. 

Theorem 19. The following are equivalent. 
(i) (C, A; Q) is detectable and there exists Y = {Y(l),... ,Y(d)) e S^ satisfying 

Af(Y) > 0. 
(ii) The equation (4.52) has a stabilizing solution Y which verifies TZiiY) > 0. 
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Proof. It is easy to see that equation (4.52) is an equation of type (4.3) associated 
with the triple (A^ 0\ Q^), where A^ = {A^ . . . , A^), 0 = {C^ . . . , d ) , and 

Q« = Q*, AI = (A*(i),..., A*(j)), q = ( q ( i ) , . . . , q ( j ) ) , /c = o, . . . , r. 
From Remark 4 of Chapter 3 it follows that (A", C^; Q^) is stabilizable if 

and only if (C, A; Q) is detectable. The result in the statement follows then from 
Theorem 7. D 

4.6 Iterative procedures 

In the first part of this section we present an iterative procedure to compute the 
maximal solution X(t) of the equation (4.3), or equivalendy the maximal solution of 
the system (4.1). This procedure may also provide a proof of the implication (i) -^ (ii) 
in Theorem 3. 

We have the following lemma. 

Lemma 20. Assume that the system (4.1) is stochastically stabilizable. Let Fo(t) = 
(Fo(t, 1), Fo(^ 2), . . . , Fo(t, d)) be a stabilizing feedback gain and let Xo(t) = 
{Xo{t, 1), . . . , Xo(^ d)) be a bounded with bounded derivative solution of the linear 
differential inequality on S^: 

j^Xoit) + C\(t)Xo(t) + Mo(t) < 0, (4.54) 

where Mo{t) = (Mo(^ 1), Mo(t, 2 ) , . . . , Mo(t, d)), Mo(r, /) = M(r, /) + sin + 
L(t, /)Fo(^ /) + F^(t, i)L\t, i) + Fo(r, i)R{t, i)Fo(t, /), s > 0fixed. 

Under the considered assumptions, we have 

Xo(t) - X(t) » 0 (4.55) 

for arbitrary X(t) e T^ of (4.36), which verifies the condition (4.8). 

^ Proof. If X(t) G T'̂  is a bounded solution of (4.36) that verifies (4.8), we define 
M(t) = {M(t, 1), M(t, 2 ) , . . . , M(r, d)) by 

M(t) = —X(t)-{-C(t)X{t)-V*{t, X(t))n-^{t, X(t))V(t, X(0)H-M(0, t e R+. 

(4.56) 
Clearly M{t) > 0. By Lemma 1 we verify that 

-X(t) + C\(t)X(t) + M{t) + L{t)Fo(t) + F*(t)L(t) + F^(t)R(t)Fo{t) 

- M{t) - {F(t) - Fo(r))*7^(r, X(t))(F(t) - Fo(0) = 0, (4.57) 

where F{t) = {F(t, 1), F(t, 2 ) , . . . , F{t, d)) with 

F(^ 0 = -n;\t, X{t))Vi{t, X{t)), t el, l eV. (4.58) 
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From (4.57) and (4.54) we get 

^ ( Z o ( 0 - X(t)) + £ t (0(Xo(0 - X(t)) + (Fo(0 - F(0)*7^(^ X(t)) 

X (Fo(0 - F(t)) + £7^ + M(r) < 0, r > 0. 

This allows us, by Proposition 14 of Chapter 2, to conclude that Xo{t) — X(t) > Y(t), 
where t -^ Y(t) = (Y(t, 1), Y{t, 2 ) , . . . , Y(t, d)) is the unique bounded solution of 
the Lyapunov-type equation 

^Y{t) + C\ {t)Y{t) + eJ"^ = 0. (4.59) 
at '̂ o 

Let ^o(^ ^) be the linear evolution operator on S^, defined by the linear differential 
equation: 

d 
Jt' 
-S{t) = Cf^{t)S{t). 

Since F^it) is a stabilizing feedback gain, then there exist positive constants ^Q, OCQ 
such that ||^o(^ '̂ )ll < )̂ ô ~"̂ ^̂ ~'̂  Vr > 5, r, 5 G J . Therefore the unique bounded 
solution of (4.59) is uniform positive, and the proof is complete. D 

Remark 5. Based on Remark 3 it follows that if the coefficients of system (4.1) are 
^-periodic functions, then a stabilizing feedback gain that is a ^-periodic function 
may be chosen. Therefore in the periodic case the inequality (4.54) has a periodic 
solution with the same period as the coefficients. Moreover, if the coefficients of the 
system (4.1) do not depend upon t, we may choose constant solutions of (4.54), XQ = 
(Xo(l), Xo(2),. . . , Xo(d)). Detailing (4.54) in the time-invariant case, it follows that 
Xo may be obtained as a solution of the following LMI system: 

[Ao(i) + Bo(i)Fo(i)YXo(i) + Xo(i)[Aoii) + Bo(i)Fo(i)] 
r 

+ Y, [^k{i) + Bk{i)Mi)YXQ{i)[Ak{i) + Bk{i)Fo{i)] 
k=\ 

d 

+ ^ ^ , y X o ( i ) + M{i) + eln + L(/)Fo(/) + F;{i)L\i) 

+ F^(i)R(i)Fo(i) < 0, / G V. (4.60) 

Based on (4.55) we deduce that there exists /XQ > 0 such that 7^/(r, Xo(t)) > 
jioln, teXJeV. Hence the feedback gain Fo(0 = (^o(^ 1), • • •, ^o(^ d)) is well 
defined by 

Fo(^ /) = -n;\t, XoiOmit, Xo(0), teVjel. (4.61) 

We will show that Fo(t) is a stabilizing feedback gain for the triple (A, B; Q). 
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To this end we consider X(t) e F^. By direct computation and using (4.56) and 
(4.61) we get 

^ X ( r ) + C}^(t)X(t) + M(t) + L(r)Fo(r) + F^(t)mt) + F*(t)R(t)Fo(t) 

- (F(0 - Fo(0)*7^(^ X{t)){F{t) - Fo(0) - M{t) = 0. (4.62) 

Further, (4.54) may be rewritten as 

-Xo(t) + C}^(t)Xo(t) + M(t) + L(t)Fo(t) + F^iOLHt) + F^(t)R(t)Fo(t) 

+ (Fo(0 - Fo(0)*7^(^ Xo(0)(Fo(r) - Fo(r)) + eJ' < 0. (4.63) 

From (4.62), (4.63), and (4.55) we deduce that t -^ Xo(t) - X(t) is a bounded and 
uniform positive solution of the linear differential inequation on S^: 

^^X{t) + C,^it)X(t) + '-J' ^0. 

Using Theorem 12(vii) -> (i) of Chapter 2 we deduce that the system (AQ + 
^0^0, A i + ^ i F o , . . . , Ar + BrFo; g ) is stable, which shows that Fo(0 is a stabilizing 
feedback gain. As a consequence we deduce that for each i e V, the zero state 
equilibrium of the linear differential equation on R^, 

^ X ( 0 = Uoit, i) + ^quln + Bo(^ i)Fo{t, i)\ X(t), 

is exponentially stable. 
Particularly in the time-invariant case it follows that the eigenvalues of the 

matrices Ao(/) + {qaln + Bo(i)Fo(i) are located in the half-plane Rek < 0. 
Taking Xo(t), Fo(t) as a first step, we iteratively construct the sequences 

{X/(^ /)}/>o, {Fi(t, /)}/>o, / e P , as follows: t -> X/+i(r, /) is the unique bounded 
solution of the Lyapunov equation 

-X/+i ( r , /) + [Ao(t, i) + 5o(r, i)Fi(t, /)]* X/+i(r, /) 

+ X/+i(r, /) [Ao(r, /) + Boit, i)Fiit, /)] + M/+i(r, /) = 0, (4.64) 

where M/+i(0 = (M/+i(r, 1 ) , . . . , M/+i(r, J)) with 

M/+i(r, /) = M(t, i) + ^ / , + L(r, /)F/(r, /) + F^it, i)L\t^ i) 

r 

+ F;(?, o/f(?, OF/a, 0 + Y. [̂ *('' '̂  + '̂ 't̂ '̂ '̂ '̂(̂ ' ')]* 
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1 
Ao(t,i) = Ao(^/) + -qaln 

- 1 

F^it, 0 = - I R(t, i) + J2 ^^(^ 0^/^, i)Bk(t, i) J (4.65) 

X (B^H, /)X/+i(r, /) + J2 ^k(t^ OXiit, /)A,(r, /) + L*(r, /)Y 
^ k=i ^ 

I >0J eV. 

Further, we show that ^ 
_ (a) Xiit,J) - Xit, i) > fiiln > 0 for all integers I >0J eV,t el, X(t) = 

(X(t, I).. .X(t,d)) being an arbitrary bounded function in T^and /x/ is a positive 
constant that does not depend upon X{t). 

(b) The zero state equilibrium of the linear differential equation on R'̂ , 

—x(t) = [Ao(r, /) + ^0^ , i)Fi(t, i)]x(t), 

is exponentially stable for each i eVJ >0. 
(c) X/(r, /) > X/+1 (t, i) V/ > 0, (r, i) elx V. We remark that the properties (a) 

and (b) have been proved for / = 0. We shall verify by induction that (a), (b), (c) are 
fulfilled for every / > 0. 

Let us assume that (a), (b), (c) are fulfilled for the first / — 1 terms of the sequences 
defined by (4.64) and (4.65). By direct computation we obtain that if Z (0 ^ F^, then 

jl{t, i) + [Ao(̂  /) + fio(^ i)Fi-x{t, /)]*x(^ /) 

+ X{t, /)[Ao(r, /) + Bo(r, /)F/_i(r, /)] 
r 

+ Yy^it, i) + Bkit, i)Fi_y{t, i)TX(t, i)[A,(t, i) + Bkit, i)F,_,{t, i)] 
k=\ 

d 

+ Y, qijX(t,j) + Mit,i) + L(t,i)F,.dt,i) + F;_y{t,i)L*it,i) 

+ F;_yit, i)R(t, i)Fi-i(t, i) - M(t, i) 

- [Fit, i) - F,_y(t, /)]*7^,(^ X(t))[Fit, i) - Fi^dt, /)] = 0, 

M{t, i), F{t, i) being defined in (4.56) and (4.58), respectively. 
Using (4.64) with / replaced by / - 1 we get 

-[Xiit, i) - X{t, i)] + [Ao(f, /) + Bo(?, i)F,-x(t, i)X{X,{t, i) - X{t, i)] 
dt' 

+ [Xiit, i) - X{t, i)][Ao(t, i) + Bo(t, i)F,_x{t, /)] 

+ ^ 4 + A,(?,/) = 0, (4.66) 
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where 
r 

A/(r, /) = ^ [ A , a , /) + Bk{t. OFi.dt, OnXi-iit, i) - X{t, i)] 
k=\ 

d 

x [ A , a , / ) + ^^a, / )F/_i( r , / ) ]+ Yl qij[Xi-x{tJ)-X{tJ)\ 

+ Ma, /) + [Fa , /) - F/_,(r, / ) ] % ( / , X{t))[F(t, i) - Fi-dt, /)]• 

Since X/_i(r, /) - X(t, i) > ixi-\In we get A/(r, /) > 0. Taking into account 
that Ao(^ /) + ^o(^ 0^/-i (^ 0 generates an exponentially stable evolution, we may 
conclude that the equation (4.66) has a unique, bounded solution which is uniform 
positive definite. Hence there exists /x/ > 0, such that X/(/,/) — Z(r, / ) > /x//„ and 
thus (a) is fulfilled. Further we have that 7^/(r, X/(r)) > v//^ > 0. 

Using (4.65) we write 

- Z / ( ^ /) + [Ao(f, /) + ^o(^ i)Fi{t, /)]*X/(r, /) 

r 

+ Xi(t, i)[Ao(t, i) + Bo(t, i)F,{t, /)] + J2 [^k(f^ '•) + -BH^ i)F,(t, i)]* 
k=\ 

d 

X X,^iit,i)[Ak(t,i) + Bkit,i)Fi(t,i)]+ J2 ciijXi-i(tJ) + M(t,i) 

s 

iTi 
+ [F,it, i) - F,.dt, nmiit, xi.,itmFi(t, n - F,^,{t, />] = o. (4.6?) 

It is easy to see that / -^ X{t,i) verifies 

-X(t, i) + [Ao(f, /) + Bo(/, i)F,(t, i)YX(t, i) 
r 

+ X(t, /)[Ao(f, /) + fioa, i)F,{t, /)] + Y^iAkit, i) + B,(t, i)F,{t, i))* 
k=] 

d 

xX(t,i){Ak(t,i) + B,,(t,i)Fiit,n)+ J2 (]ijX(tJ) + M(t,i) 

+ F;(t, i)L*(t, i) + Lit, i)F,{t, i) + F;{t, i)R(t, i)F,{t, i) - M{t, i) 

- [Fit, i) - F,it, / ) ] % ( ? , X{t))[Fit, i) - F,(t, /)] = 0. 

Thus we obtain that for each / e V,t -^ Xi(t,i) — X(t,i) is a bounded and 
uniformly positive definite solution of the linear differential inequality 

"^•Yit, i) + [Ao(t, i) + Bo(t, i)F,(t, i)YY(t, i) 

+ ^T-r/n + Ut, i)F,{t, i) + F;a, i)L*(t, i) + F;(r, i)R{t, i)Fi(t, i) 

dt 

+ Y(t, i)[M{t, i) + B^it, i)F,(t, i)] + ^ ^ /„ < 0, 
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which allow us to conclude that the zero state equilibrium of the linear differential 
equation 

j^x{t) = {Ao(t, i) + Bo{t, i)Fi(t, i))x(t) (4.68) 

is exponentially stable and (b) is fulfilled. 
Subtracting (4.64) from (4.67) we get that t -> Xi(t, i) - Z/+i (/, /) is a bounded 

solution of the equation 

- (X / ( r , /) - Z/+i(r, /)) + {Ao(t, i) + ^o(^ OFiit. /))*(X/(r, /) - Z/+i(r, /)) 

+ (Xi(t, i) - XM(t, i)){Ao(t, i) + Bo(t, i)F,(t. /)) + Ai(t, i) = 0, (4.69) 

where 

r 

X [F/(^ /) - F/_i(r, /)] + ^ [ A , ( r , /) + B,{t, i)Fi{t, /)]* 
k=\ 

X (X/_i(r, /) - Xi(t, /))[A,(r, /) + ^ , ( / , i)Fi{t, /)] 

+ ^ qij(Xi.dtJ)-Xi(tJ)) 

for / > 1 and 

A/(r, /) > ^In + (Fo(r, /) - Fo(r, /))*7^,(^ Xo(0)(Fo(r, /) - Fo(t, i)) 

for / = 0. _ 
Since Ao(^ /) > 0 and the zero state equilibrium of (4.68) for / = 0 is exponen­

tially stable, it follows from J4.69) for / = 0 that Xo(tJ)-Xi(tJ)>0, and further, 
by induction, we obtain that A/ > Ofor/ > 1, which leads to X/(r, /) —X/+i(r, /) > 0; 
thus (c) is fulfilled. 

From (a) and (c) we conclude that the sequences {X/(r,/)}/>o, / e V are 
convergent. More precisely we have the following theorem. 

Theorem 21. Assume that 
(i) the system (A^B; Q) is stabilizable, and 

(ii) There exists X(t,i) e T^, (t,i) e I x V. Then for any choice of a sta­
bilizing feedback gain Fo(t) = (Fo(t, 1), Fo(^ 2), . . . , Fo(^ d)), the sequences 
{Xi(t,i)}i>o,i e V, constructed as solutions of (4.64) (the first terms Xo(t,i) 
obtained by solving (4.54) j are convergent. If 

X(t, i) = lim Xi(t, /), (r, /) G J X P , (4.70) 

then X(t) = (^X(t, \), X(t,2), ..., X(t, d)) is the maximal bounded solution of the 
system (4.1) verifying (4.^). D 



148 4 The Riccati Equations of Stochastic Control 

Remark 6. (i) If condition (i) of Theorem 7 is fulfilled, the solution X{t) provided by 
(4.70) is just the stabilizing solution of the system (4.1). 

(ii) Excepting the first step, when to obtain Xo(/, i) we need to solve a system of 
linear inequalities of higher dimension, namely (4.54), to obtain the next terms of the 
sequences {X/(r, /)}/>i, / G V, we need to solve a system oid uncoupled Lyapunov 
equations. We remark that to compute the gains F/(r, /) in (4.65) we need both the 
value of X/(r, /) and the value of X/_i(r, /). 

(iii) Based on the uniqueness of the bounded solution of a Lyapunov equation, 
it follows that if the coefficients of the system (4.1) do not depend upon r, then the 
matrices Xi and F/ do not depend upon t. In this case (4.64) and (4.65) become 

[Ao(/) + ^o(OF/_,(/)]*X/(/) 

+ X/(/)[Ao(/) + 5o(0^/- i(0] + Mi{i) = OJe P , (4.71) 

Mid) - M(i) + - ^ I , + L(/)F/_i(/) + F ; _ I ( / ) L * ( 0 + F ; _ I ( / ) / ? ( O F / _ I ( / ) , 

r 

+ J2[Ak(i) + ^^(/)F/_i(/)]*X/_,(/)[A,(/) + B,{i)Fi^di)] 
k=\ 

Ao(i) = Ao(/) + -qaln, 

Fid) = - R(i) + J2^k(0Xi-i(i)B,(i) 
k=\ 

r 

B*(i)Xi(i) + J2 B;ii)X,_di)Ak(i) + L*{i) 

(4.72) 

*=i 

, / > 1, 

while Xo(/) is obtained solving the following system of LMIs: 

[Ao(0 + Bo(/)Fo(/)]*Xo(/) + Xo{i)[AQ{i) + fio(OFo(/)] 
r 

k=\ 
d 

+ ^ ^ , 7 ^ 0 ( 7 ) + M(i) + el„ + L(/)Fo(0 + F^{i)L*{i) 

+ Fo*(0/?(OFo(/)<0, / e P , (4.73) 
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and 

Fod) = 

- 1 

R(i) + J2^k(OXo{i)B,ii) 
k=l 

r 

k=\ 

(iv) In addition, from the uniqueness of the bounded solution of a Lyapunov 
equation, we deduce that if the coefficients of the system (4.1) are ̂ -periodic functions 
defined on R, then the bounded solutions of (4.64) are ̂ -periodic functions too. Hence 
it is sufficient to compute the values of Xi(t, /), Fi(t, i) on the interval [0, 0]. At each 
step /, the initial condition X/(0, /) is obtained by solving the hnear equation 

X/(0, /) = CD;.(^, 0 ) X / ( 0 , / )CD/ , (^ , 0) + 
Jo 

{s,0)Mi(sJ)<^iAs,0)ds, 

^ij(t, s) being the fundamental matrix solution of (4.68). For the first step, Xo(t, i) 
is chosen as a periodic solution of the Lyapunov-type equation on 5„: 

- X o ( 0 + C}^(t)Xo(t) + Mod) = 0, 

where Mo(t) = (Mo(t, 1), Mo(^ 2 ) , . . . , Mo(t, J)), 

Mod, i) = Md, i) + sl„ + L(^ i)Fod, 0 + F^d, i)L\t, i) 

+FSdJ)RdJ)FodJ)-

If Tod, to) is the linear evolution operator defined by the linear differential 
equation on 5^: 

j^Sd) = Cf^d)Sd), (4.74) 

then the initial condition Xo(0) = (Xo(0, 1), Xo(0, 2 ) , . . . , Xo(0, d)) is given by 

Zo(0) = [ 7 - T^(e, 0)]~' / T^{s, 0)Mo(s)ds, 
Jo 

where J is the identity operator on <Ŝ ; 7 — TQ (0, 0) is invertible due to the exponential 
stability of the evolution defined by the differential equation (4.74). 

In the final part of this section we present a procedure to compute the minimal 

semipositive solution Xd)-

First, we recall that the minimal solution Xd) is obtained as 

Xd) = hm Xrd), (4.75) 

where X^d) = (^^(^ 1), ^zd, 2), . . . , X^(r, d)) is the solution of the system (4.44) 
with the terminal condition Xj-ir, i) = 0, i eV (see the proof of Theorem 14). 
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Let us consider the following systems of Ito differential equations: 

dxi(t) = [Ao(r, i)Xi{t) + Boit, i)ui(t)]dt 
r 

(4.76) 

k=\ 

yi(t) = Co(t,i)xi(t), ieV, 

where 
1 

AoitJ) = Ao(tJ)-\--qiiIn. 

For each / e V, we consider the Riccati-type differential equation 

d 

dt 
Xi(t) + A*(r, i)Xi(t) + Xi(t)Ao(t, i) + J2 ^^*(̂  nXi(t)Ak(t, i) 

k=\ 

r 

Xi(t)Bo{t, i) + ^ Alit, i)Xi{t)B,{t, i) 
k=\ 

r 

R(t,i)^J2^k(f^nXi(t)B,itj) 
k=\ 

r 

B'^(t, i)Xiit) + J2 ^k(f^ i)Xi(t)A,(t, i) 
k=\ 

+ Co*a,/)Co(r,/) = 0. 

(4.77) 

If for each / e V, the system (4.76) is stochastically stabilizable and stochastically 
detectable or stochastically uniformly observable, then invoking Corollary 18 we 
obtain that the equation (4.77) has a bounded, stabilizing, and semipositive definite 
solution X^(t). 

Taking X^{t) as a first step, we construct the sequences {X-(0}/>o, i ^ ^^ where 
for each /, r -> X-(0 is the unique bounded semipositive and stabilizing solution of 
the Riccati differential equation: 

- 1 

-Xlit) + A*(r, /)Z|(0 + Xl(t)Ao(t. i) + Y. ^^^ '̂ OX!(OA,(t, 0 
k=\ 

Xl{t)Bo(t, i) + J2 ^̂ *(̂ ' nxl(t)B,{t, i) 
k=\ 

~ r 

R(t,i) + J2^k(tJ)Xl(t)B,(t,i) 
k=\ 

r 

B^it, i)Xl(t) + J2 Blit, i)X\{t)A,{t, i) 
k=\ 

Where M,(f, /) = C*{t, OCo(f, /) + Ey=i,y ,̂- ^^^" ' (O. 

+ M;(r,/)=0, (4.78) 
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Remark 7. Clearly, for each fixed / e V, the equation (4.78) is just the Riccati 
equation (4.49) associated with the following controlled system with multiplicative 
white noise: 

where 

dxiit) = [Ao(^ i)xi(t) + Bo(t, iMt)]dt 
r 

+ Yy^k{t. i)xiit) + Bk(t, i)u(t)]dwk(t), 
k=\ 

yi(t) = Ci(tJ)xi(t), 

(4.79) 

Ao(^/) = Ao(r,/) + -quln, 

Qitj) Ci(tJ) = 

It is easy to see that if the system (4.76) is stochastically detectable, then the 
system (4.79) is stochastically detectable, and if the system (4.76) is stochastically 
uniformly observable, then (4.79) is stochastically uniformly observable too. 

Proposition 22. Assume that for each i e V, 
(a) the system (4.76) is stochastically stabilizable, 
(b) the system (4.76) is stochastically detectable or stochastically uniformly 

observable. 
Under these assumptions we have that 
(i) X\-^\t) > Xl(t) > 0 that I >0,i eV, t e R+; 

(ii) Xlit) < X(t, /), (^ 0 e R+ X P , / > 0 VX(0 = (X{t, 1 ) , . . . , X(t, d)) 
semipositive and bounded solution o/(4.44). 

Proof Combining Remark 7 with Corollary 18 we deduce that (4.78) has a 
stabilizing semipositive and bounded solution X\{t)J > 0, / G V. By induction 
we obtain that M/(r, /) > 0, which leads to X\{t) > 0. 

For each / > 0, / G D, consider the stabilizing feedback gain defined as follows: 

F!(t) = -

- 1 

R(t,i) + J2^k(f^i)Xl(t)Bkit,i) 
k=\ 

r 

Bl(t, i)X\{t, i) + Y, Blit, i)X\(t)Ak{t, i) 

(4.80) 

k=\ 
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By direct calculation using (4.78) and (4.80) (for / replaced by / + 1) we obtain 

^X,'+'(f) + [Aoit, i) + Bo(t,i)Fl+'(t, /)]*X;+' 

+ X'+'[Ao(t,i) + Bo{t,i)Fl+'(t)] 
r 

+ J2 [Akit, i) + Bkit, i)F!+'it)Yx'+\t)[Akit, i) + Bkit, DF'+Ht)] 

+ Mz+,(f, /) + {F'+\t)YR(t, i)F'+\t) = 0, 

dt 
X\{t) + [Aoit, i) + Boa, i)F'+\t)Xx\{t) + X'.it)[Ao{t, i) + Bait, i)Fl+\t)\ 

r 

+ Y, [A,{t, i) + Bk(t, i)Fl+'it)Yxl(t)[A,(t, i) + B,(t, i)F'+\t)\ 
k=\ 

+ M,(r, 0 + {F'+\t)TR{t, i)Fl+\t), 

- {F'+\t) - Fjit))* hit, i) + J2 B^it, i)X'.it, i)Bk(t, i)) 

x{Fl+'(t)-Fl(t))=0, 
k=l 

which leads to the fact that t -^ X'^'^^t) - A''(/) is the bounded solution of the 
Lyapunov equation on S„: 

^K(f, /) + [Aoit, i) + Bo(t, i)F'+\t)XYi{t) 

r 

+ Yi{t)[Ao(t, i) + Boit, i)Fl+\t)] + J2 [^k(t, i) + Bkit, i)Fl+\t)]* 
k=\ 

X Yi{t)[Akit,i) + B,it,i)Fl+\t)] + A,{t, 0^0, (4.81) 

where 

A/(r,/)= J2 qij[x)(t)-X^-\t)] + {Fl^\t)-F!(t)y 
j^ij=^ 

/?a,/) + ^^;(r,/)x|(05^a,/) 
k=\ 

{Fl^'(t)-Fl(t)). 

Let Ti+ii(t,s) be the linear evolution operator on «S„ defined by (4.81) with 

Since X^'^^t) is the stabilizing solution of (4.78), we have \\Ti+ij(t,s)\\ < 
Pi^ije~"'+^^'^^~^^ for some positive constants yS/+i/, a/+i./. 
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From the uniqueness of the bounded solution of the equation (4.81) we deduce that 

/

oo 

Til,,{s,t)Ai(sJ)ds. 

Since Ti*^^{s,t) is a. positive operator on 5„, from the above equality we obtain that 

{xl^'(t)-xl(t))>o 

if A/(^, /) > 0. This can be checked easily by induction. 
For / = 0 we have 

d 

Ao(s, i) = J2qijX^(s) + {F.\s) - Fj'is))* 
jy^i 

R(s, i) + J2 K(^^ i)X^(t)B,(s. i) I (F/(s) - Ff{s)) > 0. 
\ k=\ / 

Thus assertion (i) in the statement is completely proved. 
To prove (ii) we recall that 

Xl(t)= lim X[.(t) (4.82) 

(see the proof of Theorem 14), where X[ -(t) is the solution of the equation (4.78) 
with the terminal condition X|^(r) = 0. Let X(t) = (X(t, 1) X(r, 2 ) . . . X(^ d)) be 
a bounded and semipositive solution of the system (4.44) and let F(r) = (F(f, 1) x 
F(t, 2 ) . . . F(t, d)) be the corresponding feedback gain, i.e., F(r, /) = —7^~ (f, 
X{t))Vi{t,X{t)). i eVj>0. 

By direct calculation we get: 

- X ( r , /) + [Ao(f, /) + Boit. /)F(r, /)]*X(f, /) 

+ x(r,o[Ao(^/) + Bo(^OF(^o] 
r 

k=l 

Xit, i)[Ak(t, i) + Bk(t, i)F(t, /)] + [Co(r, 0 + Do(t, i)F{t, /)]* 
k=\ 

X 

d 

x[Co(^/) + Do(r,/)F(r,/)]+ Y. qijntj) = 0 
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^ X ^ ( 0 + [Ao(t, i) + Bo(t, i)F(t, i)Xx[,{t) 

r 

+ X', ,.(f)[Ao(f, /) + Bo(f, /)F(r, /)] + ^ [At(f, /) + Bk(t, i)F(t, i)]* 
k=] 

cl 

X xi^it)[A,it, i) + Bkit, i)Fit, n] + J2 ^uK:l(t) 

-[F(t,i)-F[j{t)X R{tJ) + J2B;(t,i)X[,it)Bkit,i) 
k=l 

X [F{t, i) - F[,(t)\ + Cl(t, i)Co(t, i) + F*(t, i)R(t, i)F(t, i) = 0, 

where F[,.(f) is as in (4.80), with X,̂ (0 replaced by X[j(t). 

We obtain in this way that t —* X{t, i) - X[ ̂ (1) is the solution of the problem 

dt 
Yi{t) + C*U)Yi(t) + Ai{t.i)=0, (4.83) 

Yjir) = X(z, i) > 0, where £*(f) is the adjoint operator of the linear Lyapunov 
operator on S„ defined by 

Ciit)Y = [Aoit, i) + Bo(t, i)F(t, i)]Y + Y[Aoit, i) + Bo(t, i)F(t, /)]* 
r 

+ J2 [Ak(t, i) + Bkit, i)F(t, i)\Y[A^(t, i) + Bkit, i)F(t, i)]* 
k=\ 

and 

A,(f,o= Yl iij{^('j)-K:J(')) + {^('^o-F^j(tj))* 
J=Ujjti 

R{t,i) + J^B*^it,i)X[,(t)Bk(t,i) 
/t=i 

( F ( f , / ) - F ^ ( f ) ) . 

If Ti(t,s) is the linear evolution operator on S„ defined by the linear differential 
equation 

dt 
Y(t) = Ci(t)Y{t), 

then from (4.83) we have the representation formula 

X{t,i)-X[jit) = T*{r,t)X{z,i) + ['-''• t)Ai(s, i)ds, 0 <t <T. 

Since 7^*(̂ , 0 is a linear positive operator on <S„, then from the above equality we 
deduce that X(t, i) - X[.(t) > 0 VO < r < r, / e P if A/(5, /) > 0. This last 
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condition may be checked by induction. To this end, we remark that if / = 0, we have 

d 

J=^J^i 

/?(5,0 + ^B,*(5, /)X?,( . )B,(5, /) 
k=l 

{FisJ)-F^-is)) 

and it is obvious that Ao(5, i) >0,0 < s < z < oo,i e V, which leads to X(t, i) — 
Xl- (t) > 0; further, invoking (4.82) with / = 0 we conclude that X(r, /) - Xf (0 > 0 
and the proof is complete. D 

Theorem 23. Assume that: 
(i) (A, B; Q) is stabilizable; 

(ii) for each i e V, the system (4.76) is either stochastically detectable or 
stochastically uniformly observable. 

Let be the sequences {Xj(0}/>o. i ^ ^> where X\{t) is the unique bounded and 
stabilizing solution of the equation (4.78). Under the considered assumptions these 
sequences are convergent, and if we define X{t,i) = lim/_>oo ^,-(0. (r, /) G R+ x P, 
then X(t) = (X(t, I).. .X(t,d)) is the minimal semipositive and bounded solution 
of the system (4.44). 

Proof. If (A, B; Q) is stabilizable, then for each / e V, the system (4.76) is 
stochastically stabilizable. Therefore the assumptions of Proposition 22 are fulfilled 
and the sequences [X\{t)]i>\ ,ieV are well defined and monotonically increasing. 

On the other hand, if assumption (i) is fulfilled, then applying Theorem 14 we 
obtain that the set of semipositive and bounded solutions of the system (4.44) is 
not empty. From Proposition 22(ii) we deduce that the sequences {X-(0}/>i, i ^ 
P , are bounded above. Then the functions X{t,i) are well defined by X(^ /) = 
lim/_^oo X\{t). By a standard method (based on the Lebesgue Theorem) we obtain 
that X{t) = (X(/, 1 ) . . . X(r, d)) is a semipositive and bounded solution of (4.44). 

Applying Proposition 22(ii) again, we obtain that X is the minimal semipositive and 
bounded solution of (4.44) and the proof is complete. D 

Remark 8. (i) In the particular case A^(r, /) = 0, Bk{t,i) = 0,k = 1, 2 , . . . , r, 
and the system is in the time-invariant case, the iterative procedure proposed in the 
previous theorem was used in [1] to compute the stabilizing solution of a system of 
coupled algebraic Riccati equations associated with a linear system with Markovian 
jumping. 

(ii) If for each / e V the system (4.76) is stochastically uniformly observable, 
then the system (Co, AQ, ..., Ar', Q) is uniformly observable (see Proposition 9(iii) 
of Chapter 3), and in this case the solution X(t) obtained in the previous theorem is 
just the stabilizing, bounded, and semipositive solution of the system (4.44). 

(iii) At each step / > 0 the stabilizing solution X{(r) of (4.77) and (4.78), 
respectively, can be computed using the procedure provided by Theorem 21. 
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Numerical examples We shall illustrate the above iterative numerical procedures 
considering the linear time-invariant stochastic system of order n = 2, subjected to 
both multiplicative noise and Markovian jumps with r = 1 and P = {1, 2} having: 

Ao(l) = 

A,(l) = 

• - 1 

1 

• - 1 

_ 0 

0 1 
- 1 

1 
- 2 

, Ao(2) = 

, A, (2)=: 

[•-1 

L 0 
• - 2 

1 

1 
- 1 

1 1 
- i j 

^o(l) = 

U{1) = 

Mod) = 

- 1 

1 1 
1 2 

, Bo(2) = 

, Loi2) = 

, Mo(2) = 1 1 
1 4 

R(l) = 1, R(2) = 2. 

Our purpose is to solve the SGRDE (4.1) corresponding to the above numerical values 
using the iterative procedure indicated in the statement of Theorem 21. Three distinct 
cases have been considered: the case when the system is subjected only to Markov 
jumps, the case when the system is subjected only to multiplicative white noise, 
and the case when the system is perturbed with both multiplicative white noise and 
Markovian jumps. 

Case a. The Markovian jumping case: A\(i) = 0, ^i(/) = 0, / G V. Using 
Proposition 3 in Chapter 3 we determined for the numerical values above that 

Foil) = [0.5923 -0.7004], Fo(2) = [-0.0330 0.0653]. 

Then, solving (4.60), we obtained 

^o(l) 

Xo(2) 

10̂  
-0.0524 
1.7776 

10̂  

1.5519 
-0.0524 

1.1139 0.2680 
0.2680 1.3970 

The solution of (4.1) for this case was determined solving (4.60) iteratively. For an 
imposed level of accuracy ||X/+i(/) — X/(/)|| < 10~^ we obtained after 69 iterations: 

X(l) = 

X(2) = 

30.7868 24.3960 
24.3960 26.2218 

21.5504 -11.7226 
-11.7226 19.2254 

Case b. The multiplicative white noise perturbations case: V = {1}, A/ = A/(l); 
Bi = Bi(l),i = 0 , 1. 
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In this case we obtained the initial values 

Fo = [-0.4094 0.8482], 

292.8945 163.9337 
163.9337 140.9240 Xo = 

and after 202 iterations, the solution of (4.1): 

X = 1.0782 1.0307 
1.0307 0.5878 

Case c. The case when the system is subjected to both Markovian jumps and 
multiplicative white noise: In this situation we obtained the initial values: 

Fo(l) = [-0.3852 0.8594], FQ (2) = [-0.9000 0.5763], 

Xo(l) = 10' 

Xo(2) = 10' 

5.8005 -4.5733 
-4.5733 -3.7733 

-0.7123 -0.5110 
0.5110 -4.8453 

The solution of (4.1) was obtained after 133 iterations solving (4.60); thus we obtained 

X{\) = 
2.1893 2.0159 
2.0159 2.0998 

, X{2) 
0.7940 -0.4088 
-0.4088 3.3714 

Notes and references 

The Riccati equations of stochastic control were generally studied in connection with 
the linear quadratic problem either for controlled linear stochastic systems with state-
dependent noise or for systems with Markov perturbations. For references concerning 
linear quadratic problems in the stochastic framework, see Chapter 5. Most of the 
results contained in this chapter were published for the first time in [30]. The iterative 
procedure to compute the stabilizing solution of SGRDE was also pubUshed in [31] 
and in [35]. Classes of nonlinear matrix differential equations which contain as par­
ticular cases Riccati differential equations arising in control problems for stochastic 
systems with multiplicative white noise have been studied in [23], [24], [28], [50], 
[51]. Iterative procedures for computation of the stabilizing solution of the algebraic 
Riccati equations associated with the linear stochastic systems with multiplicative 
white noise may be found in [57]. Iterative procedures to compute the stabilizing 
solution of systems of Riccati equations involved in the linear quadratic problem for 
stochastic systems with Markov parameters can be found, for example, in [1], [53]. 
Several aspects concerning the algebraic Riccati equations arising in the control of 
linear stochastic systems may be found in [22], [2] where rich lists of references 
dealing with symmetric and nonsymmetric Riccati equations may be found. 



Linear Quadratic Control Problem for Linear 
Stochastic Systems 

In this chapter as well as in the next two chapters one shows how the mathematical 
results derived in the previous chapters are involved in the design of stabilizing con­
trollers with some imposed performances for a wide class of linear stochastic systems. 
The design problem of some stabilizing controls minimizing quadratic performance 
criteria is studied. The first two sections of this chapter deal with the so-called linear 
quadratic optimization problem. It will be seen that, depending on the class of admis­
sible controls, the corresponding optimal control is obtained either with the stabilizing 
solution or with the minimal solution of a corresponding system of generalized Riccati 
differential equations. We also consider the case when the weights matrices do not 
have definite sign. Such situations may occur in a natural way in economy, ecology, 
and financial applications. A tracking problem is considered in Section 5.3. 

In the last part of the chapter, the stochastic H^ control problem is considered 
and solved in two significant cases: the full state access and the output feedback case, 
respectively. 

5.1 Formulation of the linear quadratic problem 

The linear quadratic optimization problem (LQOP) has received much attention in 
the control literature due to its wide area of applications. A more detailed overview 
of the main results obtained for stochastic and Markovian systems can be found in 
the "Notes and References" of this chapter. The main objective of the theoretical 
developments presented in the following consists in providing a unified approach to 
solving the LQOP for systems subjected both to multiplicative white noise and to 
Markovian jumping, the dynamics of which is described by the state-space equation: 

dx{t) = [Ao(r, r](0)x(t) + ^0^ , r](t))u{t)]dt 
r 

-h J2 [^^(^' ^(O)x(t) + Bkit, r](t))u(t)]dwkit), (5.1) 
k=\ 

where ? E R+, with the state vector jc 6 R" and with the control inputs u eR^. 
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Let us consider the cost function 
/»oo 

71^0,^0, w) = E I [xl{t)M{t, r]{t))x,{t)+xl{t)L{t, r]{t))u{t) 
Jto 

+ u'(t)L*it, r](t))Xu(t) + u'{t)R(t, r](t))u(t)]dt, (5.2) 

whereM(r, /) = M*(r, /); R(t, i) = R*(t, /), (/, /) G R + x P ; and jc«(0 denotes the 
solution of the system (5.1) corresponding to the input w(.) with the initial condition 
{to,xo)eR+xR\ 

Two problems will be treated in the present chapter: the first one consists in 
determining the optimal state-feedback control: 

u{t) = F{t,r]it))x{t), (5.3) 

which stabilizes (5.1) and minimizes the cost function (5.2). The class of admis­
sible controls for this problem is the set U{to,xo) of stochastic processes u{t) e 
L^ ^([^0, r ] , R"") for all r > ô, with the additional properties that /i(^o, xo,u) 
exists, and it is finite and lim,_^oo E\Xu{t)\^ = 0. The fact that ^1(̂ 0, -̂ o, ") exists 
means that there exists 

lim E [ [x:(t)M(t,r](t))x,(t)+x:(t)Lit,ri(t))u(t) 

+ u\t)L\t, r](t))x,(t) + M*(r)^(r, r]it))u(t)]dt e R. 

An important feature specific to the systems subjected to multiplicative white 
noise is the one related to the well-posedness of the problem. Indeed, it will be shown 
that in contrast with the deterministic case, where the matrix 

L\tJ) R(t,i) 

must be positive semidefinite, in the stochastic case this condition is not necessary. 
In this chapter the optimization problem described by the controlled system (5.1), the 
cost functional (5.2), and the set of admissible controls Uito, XQ) will be called the 
first linear quadratic optimization problem (LQOPl). 

The second problem treated in the present chapter requires us to find the control 
of the form (5.3) such that the cost function 

J2(to,xo,u) = E / \yu{t)\^dt (5.4) ,u) = E 
Jto 

is minimized in the class U{to, XQ) of all stochastic processes 

ueLl^,{[to,TlR"') 

for all T > to, J2(to, JCQ, U) < 00, where 

yu(t) = yu (r, to, xo) = Co(r, r]{t))x,(t) + Do(r, r]{t))u{t) (5.5) 

is an output in R^ This problem will be termed the second linear quadratic 
optimization problem (LQ0P2). 
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In order to simplify the expressions involved in the solution of this problem we 
make the following assumption. 

Assumption A (a) There exists p > 0 such that DQ{t, i)Do(t,i)> pim V(r, /) e 
R+ X V. 

(b) Z)*a, i)Coit, i) = ova, /) e R+ X D. 

Remark 1. If the system (5.1) with the output (5.5) verifies (a), then without loss of 
generality, (b) is fulfilled. Indeed, if (a) is fulfilled, then by the change of control 
variables described by 

u(t) = -[/)o*a, r](t))Doit, ^(0)]''z)o*(^ r](t))Co(t, r](t))xit) + u(t), 

we may replace the given system (5.1)-(5.5) by the following modified system: 

dx{t) = [Ao(r, r]{t))xit) + Bo(t, r](t))u(t)]dt 
r 

+ J2 [Mt, ri(t))x(t) + Bkit, r](t))u(t)]dwk(t), 
k=\ 

y(t) = Co(t, r](t))x{t) + Do(r, r?(0)«(0, 

where 

Ak(t. i) = Ak(t, i) - Bk(t, i)R-\t, i)Dl{t, i)Co(t, /), /: = 0, 1, . . . , r, 

Co(r, 0 = [Ip - Doit, i)R-\t, /)D*(r, /)]Co(r, /), 

R(t, i) = D^(t, i)Do(t, /), (r, /) eR+xV. 

Clearly, this new system verifies both (a) and (b) of Assumption A. 

5.2 Solution of the linear quadratic problems 

In this section we shall present solutions of the optimization problems stated in 
Section 5.1. First, we recall several results which will be used repeatedly in subsequent 
developments. 

For each quadruple (to, z, XQ, i), 0 < to < r < oo, xo e R", i e V,V^Q consider 
the auxiliary cost functions J (to, r, xo, i, •) : O y^XVh^ "̂ l. R"^) -> R by 

J {to, T, Xo, i',u) — E it) u*{t)]M{t,r]{t)) 
x(t) 
uit) dt\n(to) = i 

(5.6) 
where 

A^/ -x (M{t,i) L(t,i)\ . , , , X 

^^'''^-[mtj) R(,,i)) "̂'̂  m = xAt,to,x,) 
is the solution of the system (5.1) corresponding to the input u(t) and having the 
initial condition (̂ o, xo). 
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Applying the Ito-type formula (Theorem 35 of Chapter 1) we obtain the following 
lemma. 

Lemma 1. If t ^^ K(t J) : R^ -^ Sn, i e V, are C^-functions, then we have 

J(to, r, xo, i; u) = x^Kito, i)xo - E[X*{Z)K{T, r]{T))x{T)\r](to) = i] 

+ £ U{t) 
dt\r](to) = i 

(V) 0 < ro < r < oo, XQ e R\ i eV, u e Ll^XUo. T], R ^ ) , where 

M^{tJ) = 

with 

Mf^it, i) = —K(t, i) + A*(r, i)K(t, i) + K(t, i)Ao(t, i) 
at 

r d 

+ ^ A*(r, i)K{t. /)A,(r, /) + ^ ^ y , ^ ( r , j) + Ma, /) 
k=\ 7 = 1 

-K{tJ) + [C\t)K{t)m^M{tJ)^ 
at 

A^f2a, /) = K{t, i)Bo(t, i) + ^ A*a, /)^(r, /)5^a, /) + L(t, i) 
k=\ 

= v;{t,K{t)), 
r 

Mf2(^ i) = Rit, i) + J2 ^k(t^ OK(t, i)Bk(t, i) 

= niit,K{t)). a 

Corollary 2. IfX{t) = (X(^ 1), X(t, 2 ) , . . . , Xit, d)) is a solution of the system 
(4.1) defined on[tQ,T\ then we have 

J(to, r, xo, i\ u) = x^XitQ, i)xo - £:[x*(r)X(r, r]{T))x(z)\r](to) = /] 

r {u{t)-F\t,ri(t))x(t)) 
.J to 

r 

+ ^ Blit, r](t))X{t, r,{t))Bk(t, nit)) 

R(t, nit)) 

iuit) 
k=\ 

F''it,nit))x(t))dt\r](to) = i 

VM e Ll^ilto, z], R"), xo e R", / € V, where 

F^(f,/) = -7er ' ( r ,X( f )W(/ ,X(0) , 

(?, i) € [fo, T] X D, and xit) =x„(r, fo>-»̂ o)-

(5.7) 

(5.8) 

D 
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5.2.1 Solution of LQOPl 

In the following, we investigate the LQOP described by the cost function (5.2) and 
the system (5.1). As is shown in [4] and [14], while the cost functions of type (5.4) are 
always bounded below, the cost function J\ may have values that approach — oo. The 
same thing is expected to happen in the case of systems subjected both to multiplicative 
white noise and Markovian jumping. 

For each (̂ o. JCQ) G R+ x R" we denote 

V{tQ,XQ)= mi J\(to,xo,u), 
ueUitQ.XQ) 

the value function associated with the optimization problem. 

Definition 1. We say that the optimization problem described by the cost function 
(5.2) and the system (5.1) is well posed if—oo < V(to, XQ) < oo for all (^, XQ) e 
R+ X R". 

With the notations introduced in the previous chapter we have the following 
theorem. 

Theorem 3. Assume that 
(i) the system (5.1) is stochastically stabilizable; 

(ii) the set F^ defined in (4.6) is not empty. 
Under the above conditions, the linear quadratic optimization problem described 

by the cost function (5.2) and the system (5.1) is well posed. Moreover, 

Vito.xo) = Y^ni(to)xQX(to, i)xo, (5.9) 
ieV 

where 7ti(to) = V (r](to) = i) and X(t) = {X(t, 1 ) . . . X{t, d)) is the maximal 
bounded solution of the system (4.1), which verifies 

7^/(^X(r)) >pln > 0 . (5.10) 

Proof. Let us remark that the assumption (i) implies U{to, XQ) ^ 0 for all ^ > 0 
and XQ e R". Based on Theorem 3 of Chapter 4 we deduce that the system (5.1) 
has a maximal solution X{t) which verifies (5.10). Applying Corollary 2 for X(t, i) 
replaced by X(^ /), we get 

7(^0, r, xo, /, u) = x^Xito, i)xo - E[X*{T)X(T, T](r))x(T)\r]{to) = i] 

f {u(t) - F(t, r](t))x(t)yn,^,^{t, X(t)) 
JtQ 

X {uit) - F{t,r]{t))x(t))dt\r](to) = i (5.11) 

for all u e Umito, JCQ), Ô < r, XQ € R'', / e V, where F{t, i) is defined as in (5.8). 



164 5 Linear Quadratic Control Problem for Linear Stochastic Systems 

Since X(t) is a bounded solution, it follows that there exists c > 0 such that 
\X(t,i)\ <cW{t,i) eR^ xV. Then, from the inequality 

|£[x*(r)X(r, rj{T))x(T)\ri(to) = i] < dE[\xiT)\^mo) = / ] , 

we obtain 
lim E[xHr)X(T, r]{T))x(T)\r]ito) = i] = 0. 

T - > 0 0 ^ -• 

Taking the limit in (5.11) we get 

•^1(^0. -^0. w) = Y,7Ti(to)x^X{to, i)xo + ^7r / ( ro)£ 
ieV ieV 

• /»oo 

/ {u{t) - Fit, r/(0)x(0)*7^,(o(^ X{t))(u 
.JtQ 

-F(t,r](t))x{t))dt\r]{to) = i 

(0 

(5.12) 

for all u e U(to, XQ), XQ eR'',to e R+. Combining (5.12) with (5.10) we obtain that 

J\(to, XQ, U) > J2iev ^i(^o)xQX(to, i)xo Vw € U(to, xo), which leads to 

ieV 

This last inequality shows the well-posedness of the considered optimization problem. 
It remains to show that (5.9) holds. 

To this end let us consider the following perturbed differential equations on S^: 

dt x(t) + c%t)X(t) - r*(t, x(t))n-\t, x(t))V{t, x(t)) + M(O + sir = o, 
(5.13) 

where {£/}/>o is a monotonically decreasing sequence with lim/_^oo /̂ = 0-
Applying Theorem 7 of Chapter 4 (one uses the assumptions (i) and (ii)) we deduce 

that the equation (5.13) has a bounded and stabilizing solution Xs^it). Reasoning as 
in the proof of Theorem 3 of Chapter 4 we deduce that the sequence {Zĝ  (0}/>o is 
convergent and Hm/_>oo ̂ e/(0 = ^ ( 0 . where X(t) is the maximal solution of the 
system (4.1) which verifies (5.10). 

For each / > 0 we associate the cost function 

J'^(to,xo,u) = E / {X* (t)(Mit, r](t)) -h 6ilrr)x(t) + x*(OL(^ r](t))u(t) 

+ u\t)V{t, r){t))x{t) + u\t)R{t, r](t))u(t)}dt 

u e U(tQ,XQ). Clearly, 

J^^{tQ,Xo,u) = Ji(to,Xo,u) -\-8iE [f \x{t)Y-dt (5.14) 
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Reasoning as in the first part of the proof we obtain the analogue of (5.12) for the 
perturbed cost function 7^' (to,xo,u): 

J'^(to, Xo, U) = ^7Ti{to)XQXs,(to, i)Xo 

ieV 

r r'^ 
+ J2^i(to)E / {u(t) - F„{t, r]{t))x(t))*Tl^(,)(t, X,,{t)){u{t) 

ieV 

FsAt,r](t))x(t))dt\r]{to) = i (5.15) 

Vw G U(to, XQ). 

Let us consider the control 

w./(0 = Fsi(t,r](t))xsi(t), 

where 

and Xsj(t) is the solution of system (5.1) corresponding to the control We;(0 and 
-^e/(^) = -̂ O-

Since ^^^(0 is a stabilizing solution of the system (5.13), it follows that Us^ e 

^mOo, XQ). Hence, from (5.15), with u{t) replaced by Us,(t), we obtain 

J'^(to,Xo, Usi) = ^7Ti{to)XQXsi(to, i)Xo. 

ieV 

Therefore, 

^7Ti{to)XQXsi(to,i)Xo = J''(to,Xo,Us,) > J\(to,Xo,Usi) 

> V(to,xo) > J27Ti(to)x^X(toJ)xo, 

ieV 

and taking the limit for / -> oo, we obtain that (5.9) holds and the proof is 
complete. D 

Definition 2. A/7a/r (x(t),u(t)), where u(t) e Uito,xo) and x(t) = Xu(t,to,xo) 
is the solution o/ (5.1) corresponding to the input u{t), is called optimal pair if 
y(ro, XQ) = Ji(to, XQ, U). In this case the control u{t) is termed the optimal control. 

Corollary 4. Assume that the system (4.1) has a bounded and stabilizing solution, 
X(t) = ( Z ( M ) . . . X ( ^ J ) ) , which verifies (5.10). Set uit) = F(t, r]{t))xit), 
F(t, i) = -1Z~\t, X(t))Vi{t, X(t)), and let x(t) be a solution of system (5.1) cor­
responding to the control it, x(to) = XQ. Under these assumptions (x(t), ii(t)) is an 
optimal pair for the optimization problem described by (5.1)-(5.2). 
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Proof. From Corollary 8 of Chapter 4 it follows that the bounded and stabilizing 
solution of (4.1), if it exists, is just the maximal bounded solution X{t) which verifies 
(5.10). Now, the conclusion of this corollary follows in an obvious way, from (5.9), 
since u e U(to,xo). D 

Theorem 5. Assume that the assumptions of Theorem 3 hold. Then the linear 
quadratic optimization problem described by (5.1)-(5.2), has an optimal pair 
( i (0 , u{t))for some (ro, JCQ) if and only if 

lim jc*[n(r, ro)^^](0-^o = 0 (5.16) 

V/ e T>, where Tp(t, to) is the linear evolution operator on Sf^ defined by the linear 
differential equation 

^S(t) = Cp(t)S(t); (5.17) 
dt 

F(t) = [F(t, 1 ) . . . F(t, d)) is associated by (5.8) to the maximal bounded solution 
6)/(4.1), which verifies (5.10). 

Proof. Let {x{t), u{t)) be an optimal pair. Using (5.12) we may write 

d 

V{tQ, XQ) = Ji(to, xo, u) = ^7r/(ro)xoX(ro, /)^o 

r r^^ 
+ £ / {u{t)-F{tMt))x{t)yn,it){tJ{t)){u{t) 

-F{tMt)mt))dt\. 

Taking into account the value of V(ro, -̂ o) given in Theorem 3, we get 

I (w(0 - F(r, ^;(0)i(0)*7^,(o(^ X{t)){u{t) - F(t, r){t))x{t))dt 
Jto 

E 

which leads to 

= 0, 

u(t) - F(t, ii(t))x(t) = 0, a.e. 

By the uniqueness arguments we deduce that x(0 coincides a.s. with the solution 
x(t) of the problem: 

dxit) = [Ao(f, ^(0) + Boit, r](t))F(t, n(t))]x(t)dt (5.18) 
r 

+ J2 [^k(t, nit)) + Bk(t, ri(t))F(t, r](t))]x(t)dwk(t), 
k=\ 

t > tQ, X{tQ) =XQ. 



5.2 Solution of the linear quadratic problems 167 

Hence u(t) coincide a.s. with u(t) given by u{t) = F(t, r](t))x(t). 
Let <^(t, to) be the fundamental matrix solution of the stochastic differential 

equation (5.18), hence 
x(t) = ^(t,to)xo. 

Since the optimal control u(t) e Km (to, JCQ), it follows that 

lim E[m, to)xo\^\r]{to) = i] =0,i e V. 

Based on the representation formula given in Theorem 4 of Chapter 2, we obtain 
(5.16). The converse implication follows in a similar way. D 

Corollary 6. Suppose that the assumptions of Theorem 3 are fulfilled. Then the 
following are equivalent: 

ii) For each {to, xo) G R+xR'^ the optimization problem described by {5.\)-{5.2) 
has an optimal control u^^^'^^\ that is, 

V(to,xo) = Ji{to,xo,u^'''''^^). 

(ii) 
lim \\Tp{t,to)\\=0, Vro>0, (5.19) 

and Tp{t, to) is the linear evolution operator defined by the differential equation 
(5.17). 

If(i) or (ii) holds, then ŵ ô-̂ o)(̂ ) = f{^f^ r](t))x(t), where x(t) is the solution of 
(5.18). 

Proof The proof follows immediately, taking into account that (5.16) is fulfilled 
for all 0̂ > 0, / e V, xo e R", and 

\\T^(t,to)\\ = \T^(t,to)j'\=max sup {\x',[T^{t,to)j'](i)xo\}, 

and the norms of the operators r~(r, ô) and Tp(t, to) are equivalent. D 

Remark 2. The property of the evolution operator Tp(t, to) stated in (5.19) shows 
that the maximal solution X(t) of the system (4.1) has an additional property which 
consists in the attractively of the zero solution of the corresponding closed-loop system 
(5.18), that is, 

lim E[mt, to)xo\^\T](to) = i] =0,i e V, to > 0, XQ G R^ 

It must be remarked that, in general, this property is not equivalent to the ESMS 
of the zero solution of the system (5.18), hence condition (5.19) does not imply that 
the maximal solution X{t) coincides with the stabilizing solution of the system (4.1). 

However, if the coefficients of the system (4.1) are ^-periodic functions, then 
(5.19) implies that the maximal solution X{t) is just the stabilizing solution of the 
system (4.1). 



168 5 Linear Quadratic Control Problem for Linear Stochastic Systems 

This fact is stated in the following theorem. 

Theorem 7. Assume that the coefficients of the system (4.1) are 0-periodic functions 
and the assumptions of Theorem 3 are fulfilled. Then the following are equivalent: 

(i) For all (to, XQ) e R + X R" there exists a control M̂ Ô-̂ ô  e Umito, XQ) which 
verifies 

V(to,xo) = Ji{to,xo,u^'0''^^). 

(ii) The system of differential equations (4.1) has a stabilizing and bounded 
solution X{t) which verifies (5.10). 

Proof From Corollary 6 we deduce that (i) is equivalent to (5.19). In particular, 

lim 11 r^(/6>, 0)11 = 0 . (5.20) 

Based on the identity Tp(t + Ojo -^ 0) = Tp(t, to) V/, ô > 0, we may show by 
induction that Tp(lO, 0) = (Tp(0, 0))^ Hence (5.20) is equivalent to 

lim | | ( r^(^,0))^ | |=0. (5.21) 
l-^oo 

Since Tp(6, 0) : S^ -> <Ŝ  is a linear operator acting on a finite-dimensional Banach 
space, we obtain from (5.21) that all eigenvalues of Tp{0, 0) are located in the inside 
of the unit disk \X\ < 1. But Tp(0, 0) is the monodromy matrix of the equation (5.17); 
then, applying a well-known result concerning the uniform asymptotic stability of the 
zero state equilibrium of a linear differential equation with periodic coefficients (see 
[58]), we conclude that the zero solution of the equation (5.17) is exponentially stable. 
This means that the solution X(t) is just the stabilizing solution of the system (4.1), 
and thus the proof of the implication (i) =^ (ii) is complete. The implication (ii) =^ (i) 
follows from Corollary 4. D 

Corollary 8. Assume the following. 
(a) The system (5.1) and the cost function (5.2) are in the time-invariant case. 
(b) (A, B; 2) is stabilizable. 
(c) The inequality C'X - P*(X)7^-' ( A : ) P ( X ) -\-M > 0 has a solution 

X = {Xi\), X(2) , . . . ,X(J) ) , 

which verifies the conditions 7^/(X) > 0, / G T>. Then the following are equivalent: 

(i) For all XQ e R" there exists an optimal control u^^ e Um (0, XQ), that is, 
V(0,xo) = /i(0,xo,w^o). 

(ii) The system of algebraic equations (4.31) has a stabilizing solution 

X = (X(1), X(2) , . . . ,X(J) ) , 

which verifies IZi (X) > 0, i e V. 
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(iii) The system of linear matrix inequalities 

(iC*x)ii) + M(i) r*ix)\ 

has solutions in S^. Under these conditions u^^{t) = F(r]{t))x(t), where 

F(i) = -R7\X)Pi(X), ieV, 

X being the stabilizing solution of (431) and x{t) being a solution of the corres­
ponding closed-loop system (5.18). 

Proof (i) 4^ (ii) follows from the previous theorem and (ii) <^ (iii) follows 
from Theorem 9 of Chapter 4. D 

5.2.2 Solution of LQOP2 

Since the cost functional (5.4) is a particular case of the cost functional (5.2), it follows 
that the solution of the optimization problem described by the controlled system (5.1), 

the cost functional (5.4), and the corresponding set of admissible controls U(to, XQ) is 
obtained from the results derived in the previous section. The optimal control of this 
optimization problem is constructed with the stabilizing solution of SGRDE (4.44). 

In this subsection we derive the solution of the optimization problem described 
by the controlled system (5.1), the cost functional (5.4), and the set of admissible 
controls U(to, XQ). Let X(t) be a semipositive solution of the system (4.44) and let 

F^(t) = {F^{t, 1) F^(r, 2 ) . . . F^it, d)) 

be the corresponding feedback gain defined by (5.8). Set 

u^{t) = F^(t,r](t))x^(t), t > 0 , 

where x^(t) is the solution of the system 

dx(t) = [Ao(t, r](t)) + Bo(t, r](t))F''(t, r](t))]x(t)dt (5.22) 
r 

+ J2 [^k(t, r](t)) + Bk(t, rj(t))F''(t^ r](t))]x(t)dwk(t), 
k=i 

t > to,x(to) =xo. 

Lemma 9. For each bounded and semipositive solution X(t) of the system (4.44) the 
control u^(t) belongs to U(to, XQ), t >0, XQ e R". 

Proof Obviously the control u^(t) e L^^ ^([ti,t2],R^) for every compact 
interval [̂ i, 2̂] C [to, 00). Applying Corollary 2 for 

M(^/ ) = c*(^/)Co(^/) , 

L(tJ) = 0, 

R{t, i) = Dl{t, i)Do{t, /), u(t) = u\t), 
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we obtain 

f \Co(t, r]{t))x''{t) + Do(r, r]it))u''it)\^dt\r](to) = i 

= x^Xito. i)xo - E [x*(r)X(r, r]{x))x{x)\r]{tQ) = i], 

(5.23) 

V̂ o < r, xo G R", / e V, x(t) = x^{t). 
Taking into account that X(t)is3. semipositive and bounded solution of the system 

(4.44) it follows that there exists a positive constant c, such that 

r]it))x(t) + Do(r, r](t))u\t)\'dt\ri(to) = i <xlX{toJ)xQ < c\xo\ , 

Vr > 0̂, -̂ 0 G R^^' e V. 
Hence 

[f |Co(r, r){t))x{t) + Z)o(/, r]{t))u^{t)\'dt\r]{tQ) = i < XQX{to,i)xo, 

which shows that J2ito,xo,u^) is well defined, and we have 

J2(to,xo,u^) < Y^7Tj{to)xQX{toJ)xo; 

thus the proof is complete. 

(5.24) 

D 

Theorem 10. Assume that the system (A, B; Q) is stahilizable. Then the optimization 
problem LQ0P2 has a solution given by 

u(t) = F(t, r](t))x(t), t > to, 

where F(t,i) is defined as in (5.8)/or X replaced by the minimal semipositive and 
bounded solution X{t) of the system (4.44) and x is the solution of the problem 
(5.22), where F^{t, i) is replaced by F{t, i). Moreover the optimal value of the cost 
function is 

d _ 

Jiik, xo, u) = ^Tri(to)xQX{to, i)xo. 
i=\ 

Proof Let X^it) = (X^(r, 1 ) . . . ^^(r, d)) be the solution of the system (4.44) 
which verifies the terminal condition X^ir, i) = 0. 

Based on Proposition 13 and Theorem 14 in Chapter 4 it follows that the solution 
X^(0 is defined for all t e [0, r] and 

lim Xr(t) = X(t). 
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Applying Corollary 2 for X(t,i) replaced by Xj{t,i), we obtain 

flCo (r, r]{t))x{t) + DoU, r){t))u{t)\'dt\r]{t^) = i 

= XnX^(ro,/)xo + E f [u{t)-FAt, r](t))x(t)rn,^r)(t,XAt)) 

X [u{t) - FAt, r]{t))x(t)]dt\r](to) = i 

^2 

Hence 
VweL2^([ro,T],R-). 

f \yu {t)\'dt\r]{to) = i > XQX^(to,i)xo 

(5.25) 

(5.26) 

and equality is possible if u(t) = Fj{t, ri{t))x-c{t), t e [to, r ] , Xr(t) being the solu­
tion of the problem (5.22) for F^(t^i) replaced by Fr(t,i) = -nj\t,Xr{t)) 
Vi(t, Xj(t)). From (5.26) for u(t) = M(r), we obtain easily that 

J2(to,xo,u) > ^ni{to)xQX(toJ)xo. (5.27) 
ieV 

Combining (5.24) with (5.27) we get 

J2(to,Xo,ll) = ^7Ti{to)XQX{to,i)Xo. 

ieV 

Let u e bl(to,xo)bQ arbitrary. Applying (5.25) to the restriction of u to the interval 
[̂ 0, r] and taking the limit for r -^ oo, we obtain 

f \yu{t)rdt\r]{tQ) = i 

= x^Xito, i)xo + E 
• / ' O O 

(t) - F(t,ri(t))x(t)yn,^r){t,X(t)) 

X (M(0 - F(r, r](t))x(t))dt\tj(to) = i 

which leads to 

J2(t, xo, u) = Y^Tri{to)xQX(to, i)xo 
ieV 

+ J2^i(^o)E\ / ( w ( r ) - F ( r , ^ ( r ) ) x ( r ) ) X ( o ( ^ ^ W ) 

X (w(0 - F{t, r](t))x(t))dt\r](to) = i 

VM eU{tQ,XQ), which completes the proof. D 
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Remark 3. From (5.23) and (5.26) for u(t) = «(/), we obtain 

lim E \T(T)X(T, ri(T))x(T)\r]{to) = i] = 0, 

which is the single item of information concerning the behavior of the optimal 
trajectory of the system for t -^ oo. 

Theorem 11. Assume that the assumptions in Theorem 17 of Chapter A are fulfilled. 
Under these conditions the solutions of the optimization problems LQOPX and LQ0P2 
described by the cost function (5.4) and the controlled system (5.1) coincide, and they 
are given by 

uit) = F(t,ri(t))x(t), (5.28) 

where F(t,i) is defined as in (5.8), with X(t) replaced by the stabilizing and bounded 
solution X(t) of the system (4.44), and x(t) is the solution of the problem (5.22), 
with F^(t, i) replaced by F(t,i). Moreover the optimal value of the cost function is 
given by 

J2(to,Xo,u) = Y^7Ti{to)XQX(toJ)Xo. 

ieV 

Proof Under the considered assumptions, the system (4.44) has a unique bounded 
and semipositive solution, and that solution is a stabilizing one. Therefore the control 
ii(t) given by (5.28) coincides with u(t) and hence the conclusion of the theorem 
follows immediately. D 

Remark 4. Since U(to, XQ) C U{to, XQ) it follows that 

Jiito^ -̂ 0, «) = min J2(to, JCQ, U) > min J2(to, -̂ o, ") 

= J2{to.xo,u). (5.29) 

On the other hand, from Theorem 11 and Corollary 4 it follows that if the system 
(5.1) is stochastic stabilizable and the system 

r 

dxit) = Ao(r, r}it))x(t)dt + ^ A^(r, r](t))x{t)dwk{t), 
k=\ 

y(t) = Co(t,rj(t))x(t) 

is either stochastic detectable or stochastic uniformly observable, then in (5.29) we 
have equality, and additionally w = w (a.s.). 

The next numerical example shows that in the absence of the properties of 
detectability and observability in (5.29), the equality does not always take place. 
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Numerical example. Consider the system (5.1) in the particular case n = 2,r = 1, 
d = I, m = l.ln this case the system becomes 

dx(t) = (Aox(t) + Bou(t))dt H- (Aijc(0 + Bxu{t))dwx{t), (5.30) 

Xx e R^ uit) e R, 

and the coefficient matrices are those from the numerical example at the end of 
Section 4.4. The cost functional is 

r r̂  
72 (0, xo,u) = E\ / (jcf (0 + u^(t))dt (5.31) 

From Corollary 4 one obtains that the solution of the optimization problem described 
by the system (5.30), the cost functional (5.31), and the set of admissible controls 
W(0, xo) is constructed with the stabilizing solution of the SGRAE (4.50), and the 
optimal value is given by 

J2(0,Xo,u) = [xxo X2o] 
-21 

-21 63 
-^10 

-^20 
(5.32) 

where XQ = [xio ^20] -On the other hand, from Theorem 10 it follows that the 
solution of the optimization problem described by the system (5.30), the cost function 
(5.31), and the set of admissible controls U(0, JCQ) is constructed with the minimal 
solution of the SGRAE (4.50). The optimal value is 

1 0 
0 0 

•^10 

•^20 
72(0,^0, w) = [xxo X20] 

From (5.32) and (5.33) one sees that ^2(0, XQ.U) / ^2(0, XQ, U) 

(5.33) 

5.3 The tracking problem 

Consider the stochastic system (5.1) with the output (5.5) together with Assump­
tion A (a) and (b) stated at the beginning of this chapter. Then, if r ^ r (0 = 
(r{t,l),r{t,2), ,.. ,r{t,d)) : R+ -> (R^)^ is a continuous and bounded function, 
the tracking problem consists in finding a control M(-) G Umito, XQ) which minimizes 
the cost function 

1 
J(u) = lim 

T->ooT — to f \y,{t,to,Xo)-r(t.r]{tWdt (5.34) 

in the class of all stochastic processes Um{to, -̂ 0). where Umito, XQ) is the set of all 
stochastic processes M : [̂ o, 00) x ^ -^ R^ with the properties M G L^^^ {[to, T], R'^) 
for all T > to and sup E \xu (^ 0̂, -̂ o)l̂  < oo,t > to. 
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For each (̂ o, r, JCQ, 0 G R+ x R+ x R'' x D with 0 < ô < r, we consider the 
auxiliary cost functions 

yV(to, T,xo, i, u) — E 
UtQ 

(t,to,xo)-rit,ri(tWdt\r](to) = i 

for all u e L^ w(^^o^ "̂ l, R'̂ O- Based on Ito-type formula given in Theorem 35 of 
Chapter 1 we obtain the following lemma. 

Lemma 12. Let t -> K{t, /) : R+ ^ 5„, r -> g{t, i) : R̂  
R+ -^ R, / G P Z?̂  C^-functions, and let 

R ^ r -> h{t,i) : 

v{t, X, /) = x*A:(r, i)x + 2g*(r, i)x + h{t, i). 

Then: 

W(^, r, xo, /, u) = v{to, XQ, i) - E [V(T, x(r), r]ir))\rj{to) = i] 

+E j {u*(o w*(o)A^''a,^?a))(^jJj 

+ 2 
ar g*a,̂ 7(0) + ^*a,r;(o)Ao(r,^7(o) 

+ I]^r,(07g*a, j) - r\t, r](t))Co(t, v(t)) 
7 = 1 

X(t) 

+ 2 [g*a, r]{t))Bo(t, r]{t)) - r\t. r](t))Do(t, r](t))] u(t) 
pi 

Ot 

d 

^J2^W)jh(tJ)}dt\r](to) = i 
>-i 

for all to, 0 < to < T, xo e R\ i e V, u e L^^([^, r ] , R""), where x(t) = 
Xu{t,to,xo), M^{t,i) being as in Lemma 1, with M(t,i) = C^it, i)Co(t,i), 
L{t, i) = 0, R(t, i) = D^{t, i)Do(t, /). D 

Let X{t) be the stabilizing and bounded solution of the system (4.44). Set 
F(t) = (Fit,!), F a , 2 ) , . . . , F ( r , J ) ) , F ( r , / ) = -nr\t,X{t))Vi{t,X{t))b^ 
the stabilizing feedback gain. This means that the zero state equilibrium of the cor­
responding closed-loop system (5.18) is ESMS. Then, by Corollary 27 in Chapter 2, 
the zero solution of the differential equation with Markovian jumping 

-x(t) == [Ao(t, r](t)) + Bo(t, r](t))F(t, rj(t))]x{t) 

is ESMS. 
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Now, applying Theorem 25 of Chapter 2 we deduce that the zero state equilibrium 
of the linear differential equation on (R'^)^: 

d "^ 
-ytit) = [Ao(r, /) + Bo(t, i)F(t, i)]yi{t) + ^ ^ , / y , ( 0 , i e V, 

7 = 1 

is exponentially stable. 
Let g(t) = {g(t, 1) g(t, 2 ) . . . g(t, d)) (see Corollary 26 of Chapter 2) be the 

unique bounded solution on R+ of the affine differential equations 

j^yiit) + [AoCr, /) + ^0^ , i)F(t. i)Xyi{t) (5.35) 

d 

+ I^^oO'yCO - [Co(r, /) + z)o(^ i)F{t, /)]V(^ /) 

= 0, 

/ € V. From the previous lemma we have the following corollary. 

Corollary 13. Assume that the system (4.1) has a bounded and stabilizing solution 
X(t). Let g(t) be the unique bounded solution of the equations (5.35) and h(t, i) 
be arbitrary C^-functions as in the previous lemma. If v(t,x,i) = x*X(t,i)x + 
2g*(/, i)x + h(t, i), we have 

W(ro, r, xo, /, u) = v(to, XQ, /) - E[V(T, X(T), ri(T))\r](to) - /] 

+ £ \ {\u(t) - F(r, r?(0)x(0]*7^,(o(^ X{t))\u{t) - F(t, r)(t))x{t)\ 

+ 2 [ r ( ^ ^y(0)^o(^ r?(0) - r\t. r](t))Do(t. r](t))][u(t) - F(t, ri(t))x(t)] 

+—/2(r, r]{t)) + Ylqr^^t)jhit, j) + r*(r, r]{t))rit, r]{t))}dt\r](to) = / 

(5.36) 

for all to, 0 <to < T,xo eR,i eV,u e L^^([ro, r] ,R'^),x(0 = Xu(t,to,xo). D 

Remark 5. If X is a bounded and stabilizing solution of the system (4.44) then we 
may write 

^ Z ( 0 + C}(t)X(t) + [Co(r) + Do(r)F(r)]* [Co(0 + /)o(OF(0] = 0, 

which shows that the stabilizing and bounded solution of the system (4.44), if it 
exists, is always semipositive. Therefore, the condition 7Zi(t, X{t)) > pim > 0 is 
fulfilled. 
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For each r > 0 set hr{t) = (h^it, 1 ) . . . h^it, J))*, the solution of the system of 
affine differential equations 

—h(t)-\-Qh(t)+m(t)=0, 
at 

with the terminal condition h^iT) = 0 , where 

m(t) = (mi(0 rhiit) ...rhdit))* 

rhjit) = r\t, j)r{t, j) - [g\t. j)Bo(t. j) - r\t, j)Do{t, j)] 

X nj'{t, Z ( 0 ) K ( ^ 7)^a, j) - Dl{t. j)r(t. j)l (5.37) 

i eVj >Q, Q — [qij}ijev- Let v^it, x, i) be defined by 

Vrit, X, i) = x*X{t, i)x 4- 2g*(/, i)x + /^^(^ 0-

From Corollary 13 we get 

W(ro, r, xo, /, u) = Vj{tQ, xo, /) - E[V-C{T, x(r), A7(r))|r7(ro) = /] 

/ (f̂ (0 - Fa, r/(r))x(0 - V̂ (r, r7(r)))*7^,(o(^ X(0)(w(0 

- F a , r](t))x(t) - fit, r](t)))dt\rj(to) = i (5.38) 

for all 0̂, 0 < to < T,xo e R^ i eV,u e L^Jito, r ] , R^), x(t) = Xu(t, to, xo), 
where 

if it, i) = -n;\t, XitmB^it, Ogit, i) - Dlit, i)rit, /)]. (5.39) 

Now we are able to prove the main result of this section. 

Theorem 14. Assume that the system of differential equations (4.44) has a bounded 
and stabilizing solution Xit). Let git) = igit, 1), git, 2), ..., git, d)) be the unique 
bounded on R+ solution of the equations (5.35) and ^f it, i) defined by (5.39). Under 
these conditions we have 

J d d 

min Jiu) = Jiu) = lim — / ^ ^ niito)pijmjit)dt, 

for all i e V,to > 0, XQ e R", where uit) = Fit, r]it))xit) -f fit, r]it)), xit) 
being the solution of the problem 

dxit) = [{Aoit, riit)) + Boit, r)it))Fit, r^it)))xit) + Boit, r]it))fit, r]it))] dt 
r 

+ Yl [{^k(t, /?(?)) + Bkit, ri(t))F{t, r]it)))x(t) (5.40) 
k=l 

+Bk(t, WMit, ri{t))\dwk{t), 

t > to, x(to) = xo and 

P = iPuYijeV - lim P(t) = lim e^'. 
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Proof. Applying Theorem 32 of Chapter 2 to the system (5.40) we deduce that 
ŝ Pr>ro ^1-^(^)1^ ^ ^^ ^^^ therefore u{t) belongs to Um{to, XQ). It is easy to see that 
for each u eUm (̂ o. -̂ o) we have 

1 ^ 
J{u) = limsup y_'^/(^o)W(^o, T, XQ, i, u). 

T^oo T -to 
i=\ 

Then from (5.38) we have for u etim {to, xo) 

1 ^ 
J(u) > limsup ^7Ti{to){vT(to,xo,i) - E[VT{T, x{T), r]{T))\r]{to) = / ] } 

T^oo ^ " " ^0 ~^ j 

1 ^ 
= l imsup- V 71/(ro)/z 7(^0,0 = J{u). 

T̂  . _ _ / tr\ ' ' r->oo T — to .̂ ^ 

But 

Therefore 

hT{t)= e^^'-'^m{s)ds=: i P{s - t)m(s)ds. 

hrito) = / [P(s - to) - P] m{s)ds + / Pm{s)ds. 

JtQ JtQ 

Since lim _̂̂ oo P(t) = P and m(t) is a continuous and bounded function we have 

1 
lim 

r^oo T -to jtQ 
/ {P(s -to)- P)m(s)ds = 0. 

Jtn 

Hence 

1 ' 
lim s u p - y^^Tti{to)hT(to,i) 

T-^oc T -to ^ i = l 

^j d d 

T-to 
= \imT-^oc- r / '^^7ri(to)Pijmj(t)dt 

r,T d d 

= l imr^oo- / y^y^7Ti{to)pijmj{t)dt. 

The last equality follows since Yl1=i Yli={ ^i(^o)Pijf^jiO is a bounded function on 
R+. Thus the proof is complete. D 
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Remark 6. Concerning the feasibility aspects of the control u(t) = F(t, ri(t))x(t) + 
V (̂̂  v(t)), which is the solution of the above tracking problem, we distinguish two 
important situations: 

(i)Ifthe system (5.1), (5.5) is in the time-invariant case and the signal r (0 satisfies 
r(r, /) = r(i), (t, i) e R+ x P , then the stabilizing solution of the system (4.44) is 
constant and solves the system of algebraic equations. This solution may be computed 
applying the iterative procedure described in Section 4.6. 

By uniqueness arguments it follows that the bounded solution of the system (5.35) 
is constant, and it solves the system of linear equations 

d 

[Ao{i) + B^{i)F{i)Yg{i) ^Y,q.jg{j) - [Co(/) + Do(/)F(/)]V(/) = 0, / G V. 
7 = 1 

(ii) If the coefficients of the system (5.1), (5.5) are ^-periodic functions, then 
the stabilizing solution of the system (4.44) is a ^-periodic function, and it can be 
computed with the iterative procedure given in Section 4.6. From the uniqueness 
arguments the bounded solution of the system (5.35) is a ̂ -periodic function, and its 
initial conditions can be obtained by solving a linear system of algebraic equations. 

(iii) Under the assumptions of Theorem 14 it follows that the optimal value of the 
tracking problem does not depend upon XQ. 

5.4 Stochastic H^ controllers 

In this section we assume that the controlled system (5.1) is also subjected to an 
additive white noise perturbation. For this perturbed system we shall introduce a 
norm extending the well-known H^ norm from the deterministic framework. 

The optimization problem that we address in this section consists in finding a 
stabilizing output feedback controller which minimizes the H^ norm of the resulting 
system. 

In the following we shall focus our attention only on the time-invariant case. 

5.4.1 Stochastic H^ norms 

Consider the linear stochastic system G described by 

r 

dx(t) = Aoir](t))x(t)dt + J2 Mr](t))x(t)dWk(t) (5.41) 
k=\ 

+ B,{r](t))dv(t), 

z(t) = C(ii(t))x(t) 

with jc G R^ z G R^,A^(/) e R''^^ k = 0 , . . . , r, B,{i) e R«x^^ C(i) e 
R^^", / € V,Wk(t), t > 0 being a scalar Wiener process and 1 (̂0, t > 0, 
being an mi;-dimensional Wiener process. As in the previous sections w{t) = 
(w\(t),..., WriOy and T](t) are a standard Wiener process and a Markov process, 
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respectively, with the properties in Section 1.8; v(t),t > 0, is an m^-dimensional 
standard Wiener process independent of the pair (w(t), r](t)), t > 0. Throughout this 
section, J^t, Gt^ ^t are the a-algebras defined in Chapter 1 related to the processes 
w(t) and r](t), and Ht is the smallest a-algebra containing Ht and the a-algebra 
generated by v(s),0 < s < t. Denoting by ^{t,s) the fundamental matrix solution 
of the system 

r 

dx{t) = Ao{r](t))x(t)dt + J2 Ak(ri(t))x(t)dwk(t), (5.42) 
k=\ 

according to (1.29) the solutions of (5.41) have the following representation: 

O(r,0) / O-
Jo 

x{t) = 0(r, 0)jco + 0(r, 0) / O-i (s, 0) B,(r]{s))dv{s). (5.43) 

In particular, the solution of (5.41) with zero initial conditions is 

xo(t) = cD(r, 0) / O-^ (5, 0) B,(r]{s))dv(s). (5.44) 

Jo 

We prove the following lemma. 

Lemma 15. For each r > 0 and j eV we have 

E [xoiT)x^(T)x,(r)=j] = E\ f 0 ( r , s)B,(r](s))B:Xri(s))<^Hr, s)x,ir)=jds 
Uo 

(5.45) 

Proof. Set 
^\f{s) = <^-'{s^O)BAr]{s)). (5.46) 

It is obvious that the components of ^ belong to L^^u;[0, r] for all integers p > 1, 
and in particular for /? = 2. 

We prove that 

EU>{T^Q) j ^{t)dv{t)U(T,0) j\(t)dv(t)] XMr)=j] 

= E [ O(r,0)vl/(0vl/*(00*(r,0)x,(rw^r. (5.47) 

To this end we prove (5.47) for the case when the elements of ^ are step functions 
in L;5^[0,r]. Indeed, let 

k-\ 

i=0 
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^(ti) being Ŵ . measurables,0 < i < k, E \^(ti)\ < oo. We have 

= E cD(r, 0) J2 ^a)(i^a+i) - vitimviti^,) - v{ti)r^\ti) 
ij 

xO*(r,0)x,(r)=, I W J (5.48) 

= ci>(r, 0) Y, ^(ti)E [(ua+i) - v(ti))iv(tM) - viti)r I Hr] 
iJ 

xvl/*(r,)(D*(r,0)x,(r)^,-

= cD(r,0) (^vi/(r,)xi/*(r,.)(r,^i - r , ) J c|>*(r, 0)x,(r)^). 

The last equality above has been obtained by taking into account that the a-algebra 
generated by {v(t) — v(s), t,s e [0, r]} is independent ofHj and therefore 

E [iviU^l) - V{timv(ti^0 - V(ti)r I Hr] 

= E [(ua+i) - v(ti))(v{ti^^) - v{ti)r] = 8u(ti+, - ti)im,, 
where 8ij are the Kronecker coefficients. Hence, by taking expectation in (5.48), one 
concludes that (5.45) holds if the elements of ^ are step functions in L^^([0, r]). 
Now, based on Remark 9 of Chapter 1, take a sequence {^k(0}k=OA,...of step functions 
inL^^([0, r]) such that 

lim E 
^0 

it)\Ut = 0. (5.49) 

Writing (5.47) for each ^k, one obtains 

E\U(r,0)J ^kit)dvit)\U(r,0) f ^kit)dv{t}\ XnM=j 

Jo 

Using Theorem 27 of Chapter 1 and (5.49) above, it follows that 

'<t>ir,0)j ^k(t)dv{t)]UiT,0)f ^kiOdviOJ Xr,(r)=j 

=^E\U(Z,0)J ^{t)dv(t)\U{z,0)j ^{t)dv{t)\ XnM 

(5.50) 

lim E 
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and 

lim E [ <t>(r,0)^k(t)^*{t)<P*{T,0)x,(r)=jdt 

= E f (D(r, 0)vI/(OvI/*(r)cD*(r, 0)x,(r)=;^^ 
Jo 

Combining the last two equalities with (5.50), one obtains (5.47). By replacing ^ ( 0 
in (5.47) with (5.46), (5.45) directly follows since cl>(r, 0)0"^ {s, 0) = 0( r , s) a.s., 
and thus the proof is complete. D 

Remark 7. If we consider the particular case when A/:(/) = 0, 1 < /: < r, / G V, the 
proof of the above lemma does not become simpler. This is due to the fact that in the 
representation formula (5.44) we cannot write 

x o ( r ) = / ^(x,s)B,{r]{s))dv{s), (5.51) 
Jo 

since the expression under the integral is random, and it is measurable with respect 
to Hx. On the other hand, the integral in (5.51) is well defined if the function under 
the integral is measurable with respect to 

W, = W , Va( i ; (O ,0<r <5) 

for all s < X. 

Let us introduce the following notations 

7ti{t) = P[ri{t) = i], (5.52) 

P = lim P{t) with elements 3//, (5.53) 
r-^oo 

7r,=P(^(0) = /) = ;rK0), (5.54) 

d 

^ioo = 22,^jPj'' (5.55) 

It is obvious that 

and hence 

Set 

It is clear that 

7r/(0 = Y^7ZjPji{t) 
7 = 1 

lim TTiit) =7r/oo. 

BAs,i) = Ms)B,(i)By), (5.56) 

%(i) = 7Ti^BAi)B:(i). (5.57) 

lim B^is, i) = B„(i) for all / € V. (5.58) 
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With these notations we prove the following lemma. 

Lemma 16. With xo(t) defined by (5.44), we have 

E[xo(T)x*(T)x,ir)=j] = f {e'^^'-'^BAs)) U)ds, 
Jo 

where B^is) = {By(s, 1 ) , . . . , By(s, d)) with B^is, i) given by (5.56) and C is the 
Lyapunov operator defined by the system (AQ, A i , . . . , A^; Q). 

Proofi Based on Lemma 15 we may write successively: 

E[xQ{z)XQ{T)Xr^{z)^j] 

= f E[<t>{r,s)BArjis))B:(rj(s))<t>*(T,s)x,ir)=j]ds 
Jo 

r ^ 
= / Y7Xi{s)E[^{x,s)BAr]{s))Bl{r){s))<^\x.s)x,^,^=j I r){s) = i]ds 

Jo r r 
d 

= [ TE[<t>{r,s)B,{r]{s))<t>HT.s)x,(r)=j\r}(s) = i]ds 

= f {T{T,s)B,{s))U)ds. 
Jo 

For the last equality above we used the representation formula (2.24) of the evolution 
operator T{t,s). 

The conclusion follows since in the time-invariant case, T(t,s) = ^̂ ^̂ ~̂ ^ (see 
Remark 3 of Chapter 2). D 

Lemma 17. Assume that the system (AQ, A I , . . . , A;.; Q) is stable. Then we have 

\\m^ E [xo(T)x;iT)Xn(r)=j] = Pdj). (5.59) 

where Pc = yPd^),..., Pdd)) is the unique semipositive solution of the Lyapunov-

like equation CP +By =0 with By = {Bd^),...,Bdd)), By being defined by (5.51). 

Proofi Based on Lemma 16 we have 

E[xo(T)x*(T)Xn(r)=j] = t\e'^^'-'^By{s))U)ds 
Jo 

= f{e''^^-^\%{s)-By)){j)ds+ f{e^^'-'^%)U)ds. 
Jo Jo 

By a simple change of integration variable we get 

^h(r);c*(r)x,(r)=;] = f {e^^'"^ {By(s) - By)) {j)ds 
Jo 

+ r {e'^'By)(j)ds. (5.60) 
^0 
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Since the system (AQ, AI , . . . , A^; Q) is stable, there exist ^ > 1, a > 0 such that 
II ̂ ^^ II < Pe~^^ for all ^ > 0. Further, we have 

I f (^^(^-> {%{s) - B,)) U)ds\ < I r (^^(^-^^ {B,(s) - B,))ds\ 
\Jo \ \Jo I 

<P r e-"^'-'^\B,(s)-B,\ds. 
Jo 

Taking r -> oo, one obtains from (5.58) by standard arguments 

lim p [ ^-«(^-^) \By(s) -BJds=0, 
^-^^ Jo 

which leads to 

lim [ {e'^^'-'^B,(s)-B,))(j)ds = 0, 

and hence from (5.60) we get 

/»oo 

lim E [xo(r)4(r)x,(r)=,] = / {e'^'B,) U)ds = PAj). 

The last equality follows from the proof of Theorem 15 of Chapter 2. Thus the proof 
is complete. D 

Remark 8. From the representation formulae (5.43) and (5.44) and from Lemma 17 
it follows that if the system (AQ, AI , . . . , A;.; Q) is stable, then 

\w^E[x(t)x*(t)Xnit)=j] = lim^E[xo(t)x;^(t)xm=j] = ^cU) 

for all j eV and for any solution x(t) of the system (5.41). 

Theorem 18. Assume that the system (AQ, AI , . . . , A^; 2) '-̂  stable. Then 

d 

Îhn £k(Ol' = J2'^r{C(j)PAj)C*(j)) 
^^"^ 7 = 1 

d 

= J2''JooTr{B:U)Po{j)BAj)) 
7 = 1 

where PQ = {^Po{\), - - >, Poid)) is the unique positive semidefinite solution of the 
equation 

CPo + C = 0 

with C = ( C ( l ) , . . . , C(J)), C(j) = C*(j)CU). J e V. 
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Proof. First we shall prove the result in the statement for ZQ = C(r](t))xo(t). To 
this end we have 

lim E\zo{t)\^ = lim Tr EhoiOz^t)] 

= l̂im TrE [C(rj(t))xo(t)x*{t)C\rj{t))] 

= }}^ L ^^ ^ [Ciri(t))xo(t)x'o(Oxm=jC"(^(0)] 

d 

= /nn ^ Tr C{j)E [JCQCO^O (Ox.co^)] <^*0')-
7 = 1 

Then, based on Lemma 17, we get 

d 

Ûm E\zoit)\^ = T.^r' {CiJ)PcU)C'U)) • (5.61) 
"̂̂ "̂  j=i 

Taking into account the definition of the inner product in S^ and the representation 
formulae of Pc and Po, we have 

d d 

J2 Tr {CU)PcU)CHj)) = J2^r {Pc{j)C* {])€(])) 
7 = 1 7 = 1 

poo 

Jo 
/»oo 

Jo 
d 

J2Tr{BAj)Po{j)) 
7 = 1 

d 

7 = 1 

Finally we remark that, based on the representation formula (5.43), it follows that for 
any output z(t) we have 

lim E\z(t)\^= lim E\zo{t)\\ 

and the proof is complete. D 
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For the system G defined by (5.41), under the assumption of Theorem 18 we 
introduce the following norm. 

Definition 3. We call the H^ norm of the system (5.41).-

\\im E\z{t)\'Y . 
L/-^oo J 

(5.62) 

Remark 9. The result in Theorem 18 shows that the right-hand side of (5.62) is well 
defined, and a characterization of the H^ norm can be given in terms of the controlla­
bility and observability Gramians Pc and PQ, respectively, which extends to the case 
of stochastic systems of type (5.41) the well-known results from the deterministic 
setting. 

Further we prove Theorem 19. 

Theorem 19. Under the assumption of Theorem \%we have 

lim —E [f \z(s)\^ds \ rjiO) = i = J2Tr {B:(J)POU)BVU)) Pir (5-63) 

Proof Applying the Ito-type formula (Theorem 35 of Chapter 1) for the system 
(5.41) and for the function f (jc, /) = jc*Po(0-^. x eW, i eV, one obtains 

= E 

\y{s)\'ds\n{Q) = i (5.64) 

But 

/ Tr {B:(n{s))Po(r^{s))B,(n{s))) ds \ ;j(0) = /1 
yo J 

+ XO*FO(OJCO - E [x*{T)Po{r}{T))x{T) \ /?(0) = i]. 

f Tr {B:{r]is))Po{7i(s))B,{,i(s})) ds | rj{0) = i] 
Jo J 

/ T Tr {B:U)Poij)BAj)x,is)=j) ds I rj(0) = i 

^YTK ( B : 0 - ) ? „ 0 ) B „ 0 ) ) f E [x,(.)=; I 11(0) = /] ds 
7=1 J' 

d ^T 

= T'^r{B:{j)PoU)ByU)) / Pij(s)ds. 

= E (5.65) 
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Since lim _̂̂ oo Pij(s) = Pij we obtain from (5.65) that 

lim —E 
T-^oo T 

U Tr {B:(riis))Po(ri(s))BAr](s)))ds \ r){0) = i\ 

= TTr{B:(j)PoU)BAj))}im ^ / pijis)ds 
^ r->oo I JQ 

d 

= Y,Tr{B:iJ)P,{j)BAj))pij-
7 = 1 

Based on Lemma 17 it follows that 

lim l{x*P.(/)xo - E [x*(r)*P,(r/(r))x(r) I r/(0) = /] } 

1 

(5.66) 

= lim I x*,Po(i)xo -J2^r {PoU)) E [x(T)x*iT)x,iT)=j I ^(0) = /] 
; = i 

= 0. (5.67) 

Finally, from (5.64) combined with (5.66) and (5.67), we get (5.63), and the proof is 
complete. D 

Evidently, the next result holds. 

Corollary 20. Under the assumption of Theorem 18 the following hold: 

T-yoo T Jo 
\z(t)\^dt= lim E\z(T)\^ = \\G\\i. D 

Theorem 21. Assume that the system (AQ, AI , . . . , A^; Q) is stable. Then 

d r /»T 

lim 1:TE\ f \z(s)\^ds \ T,(0) = i] 

d 

= J^8jTr{B:{j)Po{j)B^j)) 
7 = 1 

d 

= J2^r{CU)PcU)C*U)). 
7 = 1 

where 

and 

^j = J2pij 
i=\ 

Pc = {Pc(l),...,Pc(d)) 

is the unique positive semidefinite solution of the equation CP + M = 0, with M{i) = 
8iB,ii)B*{i). 
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Proof. From Theorem 19 we have 

d 

lim - V I / \z{s)\'ds\r){0) = i 
/ = 1 m 

d 

= J2Tr{B:(j)Poij)B,(j))pij 

d 

= J^8jTr{B:(j)PoU)BAj)) 
7 = 1 

/»00 

Jo 
d 

7 = 1 

and hence the proof is complete. D 

Using the result in the above theorem, one can introduce a new norm for the 
system G given by Theorem 21. 

Definition 4. If the zero solution of the system (5.41) in the absence of the additive 
noise v{t) is ESMS, then define 

|G|||?=: lim ^ E ^ [ / \z(s)\^ds\ri(0) = i]. 

Remark 10. (i) Based on the results in Theorems 18 and 21 it follows that while ||G||2 
depends on the initial repartition n = (TTI, . . . , TZd) of the process rj(t), the norm 
11 |G| 112 does not depend on the initial repartition of r](t). 

(ii) In the particular case when the system (5.41) is subjected only to white noise 
perturbations, the two norms defined above coincide. The difference between them 
is due to the Markov jump perturbations. 

(iii) It is obvious that 
l |G||2<|| |G|| |2. 

5.4.2 Stochastic H^ optimal control: the state full access case 

In this subsection we shall state and solve the design problem of a stabilizing controller 
that minimizes the H^ norm of a controlled system whose states are accessible for 
measurement. 
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Consider the system G described by 

dx(t) = [Ao(r](t))x(t) + Bo(r]{t)Mt)]dt 
r 

+ J2 \^^k{ri{t))x{t) + Bk(r](t))u{t)] dw^it) (5.68) 
k=\ 

-hB,(r](t))dv(t), 

z(t) = C(r](t))xit)^D{r]{t)Mt), 

where jc G R" is the state vector, u eR"^ denotes the vector of control variables, z e 
R^ is the regulated output, and A^(/),^;t(0, 0 < k < r, C(i), D{i), By{i), i e Pare 
constant matrices of appropriate dimensions with real elements. The stochastic pro­
cesses {w(t)]t>o = (w^i(0, • • •, ^r(0)*^ { (̂0}f>o ^^^ { (̂0}f>o have the properties 
stated in the preceding subsection. 

Consider the following family of controllers Gc described by 

Xc(t) = Ac(rj(t))xc{t) + Bc(r](t))Uc(t), 

ydt) = Cc{r]{t))Xc(t) + Dc{r](t))uc(t), 

(5.69) 

where Xc e R"s Uc e R"^, yc e R"". Let us remark that the controller G^ of form 
(5.69) is completely determined by the set of parameters (ric, Adi), Bdi), 
Cc(i), Dc{i), i e V) where ric > 0 denotes the controller order. In the particular 
case Wc = 0 the controller (5.69) reduces to 

ydt) = Dc(r](t))Uc(t), 

which shows that the zero order (state-feedback) controllers are included in the set 
of controllers (5.69). 

The resulting system G /̂ obtained by coupling a controller of form (5.69) to the 
system (5.68) by taking udt) = x(t) and u(t) = ydt) is 

r 

dxciit) = Aoci(r](t))Xci(t)dt -\-J2Akci(r](t))Xci(t)dWk(t) 
k=\ 

where 

+B,ci(r](t))dv{t), 

[t) = Cci(r](t))xci(t), 

Xcl — 

Aociii) = 

Akciii) = 

Bvciii) = 

X 

_Xcl _ : 

'Ao{i) + Bo{i)Dc{i) 

Bed) 

'Ak{i) + Bdi)Dc(i) 
0 

'B,( 
0 

0" 
; 

Bo(i)Cc(i) 

AAi) 

Bk(i)Cc(i} 
0 

(5.70) 

Cci(i) = [C(0 + Dii)D,{i) DiDCcii)]. 
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Definition 5. A controller Gc of form (5.69) is called stabilizing/or r/i^ system (5.68) 
if the zero solution of the closed-loop system (5.70) (in the absence of the noise v) is 
ESMS. 

By ICs(G) we denote the set of all stabilizing controllers G^ of the form (5.69). 
Then two optimization problems will be formulated and solved as follows. 

(OPl) Find a stabilizing controller of the form (5.69) minimizing ||Gc/ lb-
(0P2) Find a stabilizing controller of the form (5.69) minimizing 11 |Gc/11 b-
For the sake of simplicity we shall unify the notation, writing ||.||2,£, ^ = 1,2, 

where ||.||2,i stands for ||.||2 and ||.||2,2 stands for |||.|||2- Thus, from Theorems 18 
and 21 we have 

d 

WGciWle = X^^.Tr {B:^i(i)Pociii)Byci{i)), (5.71) 
/ = i 

where 

£j = Ttioo for £ = 1, 

£/ = 8i for 1 = 2, 

(5.72) 

and Poci(i) = (^od(l), . . •, Poci(d)) is the unique positive semidefinite solution of 
the Lyapunov-type equation on 5̂ _̂ „ , with nc denoting the order of the controller: 

r 

Al,i{i)Poci{i) + Poci{i)AQci{i) + J2^*kci(0Pociii)Akci{i) 
k=\ 

-{-J^'iu^ociij) + C* (/)Q/(/) - 0, / 6 V. 
7 = 1 

One can associate with the system (5.68) the following SGRAEs: 

r 

A*(/)X(/) + X{i)Ao(i) + J2 Al(i)Xii)Ak(i) 
k=\ 

r 

X{i)Boii) + Yl K(i)X{i)Bk{i) + C*(/)D(/) 

r 

D*(/)D(/) + ^5 ,*( / )Z( / )B, ( / ) 
k=\ 
r 

Bl{i)X{i) + ^ Bl{i)X{i)Ak{i) + D\i)C{i) 

(5.73) 

7 = 1 

- 1 

k=\ 

+ C*(/)C(/) = 0, (5.74) 

/ G V, which can be written in compact form as 

cx - v\x)n-\x)V{X) + c = 0, 



190 5 Linear Quadratic Control Problem for Linear Stochastic Systems 

where L is the Lyapunov operator defined by the system (AQ, A \ , ..., A/, Q) and 

P(Z) = (7>i(X),...,P^(X)) 

with 
r 

Vi(X) = B^(i)Xii) + J2^k(i)X(i)Ak(i) + D*(/)C(/) 
k=i 

and 
7^(X) = (7^l(X),... ,7^^(X)) 

with 
r 

TliiX) = D*{i)Dii) + Y^ Bl(i)X{i)B,{i). 
k=\ 

Denote by 
M(X) = (A/-, W , . . .Md(X)) e S'„^„ 

the generalized dissipation matrix, where 

A/;(x) = (£*X)(/) + C(/) V*{X) 
Vi(X) IZiiX) 

Assume that the following conditions are fulfilled. 
HI. The system (A, B; Q) is stabilizable, where as usual, A = (AQ, Ai, 

. . . , A , ) , B = ( ^ o , ^ i , . . . , ^ r ) . 
H2. There exists X = ( Z ( l ) , . . . , X(d)) such that A/*(X) > 0. 
Applying Theorem 9 of Chapter 4, we deduce that the SGRAE (5.74) has a 

stabilizing solution X. Now defining the gains 

F(i) = -nj' (X) Vi (X), / € P , (5.75) 

it results that the control 
u = F{r){t))x{t) 

stabilizes the system (5.68) in the absence of the additive noise v{t). 
The corresponding closed-loop system G /̂ is 

dxciit) = [Ao(r](t)) + Bo(r](t))F{ri{t))]x(t)dt 
r 

+ ^ [A,(77(0) + Bk{r){t))F{r){t))\ x(t)dwk(t) + B,{r]{t))dv{t). (5.76) 

z(0 = {C{r){t)) + D(r7(0)F(/7(r))]x(r). 

Then the following result is valid. 

Proposition 22. Under the assumptions HI and H2 w^ /z^ve 

d 

W^cill, = ^ ^ , T r {B:(j)X(j)BAj)). 



5.4 Stochastic H^ controllers 191 

Proof, By direct algebraic manipulations (see also Lemma l(ii) of Chapter 4) we 
obtain that the SGRAE (5.74) verified by X can be written in a Lyapunov form as 
follows: 

[Ao(/) + B^{i)F(i)Y X(i) + X(i)[Ao{i) + Bo(i)Fii)] 
r 

+ Y, [^k{i) + ^^(0^(0]* X(/)[Ao(/) + 5o(/)F(/)] 
k=\ 

r 

+ Y,q,jX{j) + [C{i) + D{i)F{i)X [C(/) + D{i)F{i)] = 0, 
7 = 1 

which shows that the observability Gramian Pod associated with the closed-loop 
system (5.76) coincides with the stabilizing solution X of the SGRAE (5.74). The 
conclusion in the statement follows from Theorems 18 and 21. D 

The main result of this subsection is the following theorem. 

Theorem 23. Assume that HI and H2 are fulfilled. Under these conditions we have 

G.^f(G)"^^'"^'^ = Y,ejTr{B:{j)X{j)BAJ)) 
; = i 

and the optimal control is 
u{t) = Fir]{t))x(t), 

where X is the stabilizing solution of SGRAE (5.74), F = ( F ( 1 ) , . . . , F{d)), is the 
stabilizing feedback gain defined by (5.75) and e, are as defined in (5.72). 

^ Proof Let G^ € /Ĉ  (G) and G /̂ be the corresponding closed-loop system and 
Pociii) denote the observability Gramian. Let 

^ii(/) Unii) 
^1*2(0 U22(i) 

be a partition of PodiO conformably with the partition of the state matrix of the 
resulting system. Partitioning (5.73) according with the partition of Pod(i)^ we get 

(Ao(/) + Bo(i)Dc(i)rUu(i) + B*{i)U^^(i) 

+ UndKAod) + Bod) DAD) + Un{i)Bc(i) 
r 

+ ^ ( A , ( / ) + Bkii)Dc(i)rUu(iKA,(i) + B,(i)DAi)) 
k=l 

d 

+ ^^ ,y t / i i (7 ) + (C(/) + D(/)D,(/))*(C(/) + D{i)Dc(i)) = 0, (5.77) 
7 = 1 
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(AoH) + Bo{i)DAi)rUnii) + B^iDUjid) + Un{i)Boii)CAi) 
r 

+ Un{i)Ac(i) + ^ ( A , 0 ) + Bkii)DAi)rUu{i)Bkii)CAi) 
k=l 

d 

+ ^qijUnU) + (CO) + D(i)DAi)rD{i)CAi) = 0, (5.78) 
7 = 1 

C*ii)B;(i)Ui2(i) + A*(i)U22(i) + U;2Bo(i)Ccii) 
r 

k=\ 

d 

+ ^ ^ / y ^ 2 2 a ) + C;(/)D*(/)D(/)Q(/) = 0. (5.79) 
7 = 1 

Using Lemma l(i) of Chapter 4, SGRAE (5.74) for the stabilizing solution X can be 
written as follows: 

(Ao(/) + Bo(i)DAi)rXii) + X(i)(Ao(i) + Bo{i)D,{i)) 
r 

+ ^ ( A , ( / ) + Bk{i)Dc{i)rX{i){Ak{i) + Bk(i)DAi)) 
k=i 

d 

^J^'^uXj + (C(i) + D(i)Dc{i)r (C(i) + D{i)Dc(i)) 

- (DAi) - F(/))* n (Z) {Dc(i) - F(i)) = 0. (5.80) 

Denoting by 
Un(i) = Uu{i)-X{i) 

and subtracting (5.80) from (5.77), one easily obtains that the triplet {Uu(i), 
UniO, ^22(0) solves the following system of algebraic equations: 

(Ao(/) + Bo(i)Dc(i)rUn{i) + L^ii(/)(Ao(/) + Bo(/)D,(/)) 
r 

+B;(0^r2( ' ) + UniOBcii) + J^iA.d) + B,{i)Dc{i))* 
k=\ 

d 

cf/n(0(At(0 + B,,ii)DM)) + ^qijUuU) 
y=i 

+ (DcU) - FH))* n (X) (DAi) - F(i)) = 0, (5.81) 
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(AoCO + Bo{i)Dc{i)rUn{i) + B*{i)U22{i) + Uu{i)Bo{i)Ccii) 
r 

+ UniDAcd) + J^iAkH) + Bk{i)Dcii)rUn{i)Bdi)Cc{i) 

d 

k=\ 

+ Y,qijUn{j) + {DAD - FH))*^(X) CAi) = 0, 
7 = 1 

C*{i)B;{i)Un{i) + Al{i)U22{i) + u;:2(i)Boii)Cc(i) 
r 

+ U22{i)AAi) + Yl^c(0B;{i)Uu(i)Bk{i)Cc(i) 

d 

(5.82) 

k=\ 

+ ^ ^ / y ^ 2 2 a ) + C;0•)7^(X) CAi) = 0. 
7=1 

(5.83) 

Setting 

.^1*2(0 ^22(0. 

equations (5.81)-(5.83) can be written in compact form as follows: 

U(i) = 

Ali(i)U{i) + U{i)Aociii) + J^Al,{i)U(i)Akci(i) 
k=\ 

where 

+ J2^^J^^'^ + G)*(07e (X) 0( / ) = 0, 
;=i 

e{i) = [DAi)-F{i) Q ( / ) ] . 

Since the system (AQC/, Ai^/, . . . , Arci\ Q) is stable, it follows that U(i) > 0. Further, 
we have 

d 

W^ciWle = X^^.Tr {B:^i(i)Poci(i)B,ci(i)) 
i=\ 
d d 

= J2^i^^ iB:{i)X{i)BAi)) + ^ ^ / T ^ ^ {B:^i{i)U(i)B,ci{i)), 

Since U(i) is positive semidefinite it follows that 
d 

l|Ge/||^, > J2^iTr {B:(i)X(i)BAi)) 
i = \ 

for all stabilizing controllers Gc. Using Proposition 22 the conclusion in the statement 
immediately follows. D 
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Remark 11. From Theorem 23 it follows that both optimization problems (OPl) 
and (0P2) have the same optimal solution given by the controllers with the set of 
parameters ric = 0, A^i) = 0, Bdi) = 0, QO) = 0, Ddi) = F(i), i e V. 

The theoretical results derived in this subsection are illustrated by the following 
numerical example. 

Consider the stochastic linear system subjected both to Markovian jumps and to 
multiplicative noise of form (5.1) with n = 2,V = [\, 2}, and r = 1, where 

Ao(l) = Ao (2) = 
- 1 1 
0 - 1 

-1 0 1 
1 -ij' 

«,(1) =[-/]-«. (2) = [ f ] . 

"̂̂ '̂  = [-2]'^"^^^^[3]' 
C(l) = [l 3], C(2) = [2 
D(l) = l, £»(2) = 3, 

1]. 

Q = - . ' - . ] . 
and the initial distribution (0.5 0.5). Applying the iterative algorithm presented above 
for a precision of 10"^, after 205 iterations the following solution has been obtained: 

F(l) = [-0.2863 -1.5672], 

F(2) = [-0.8547 0.2353], 

providing the optimal H^ norm of the resulting system, which equals 4.4028. 

5.4.3 Stochastic H^ optimal control: the output feedback control 

Consider the system G described by 

dx{t) = [Ao(rj(t))x{t) + Bo(r](t)Mt)]dt 
r 

+ J^Ut('?(0)J^(?) + Bk{il{t))u{t)]dwk{t) 
k=l 

+ B,(n(t))dv(t), (5.84) 

dy(t) = Co{ri(t))x(t)dt + J2Ck{Tlit))x{t)dwk(t) 
k=l 

+ D,(rjit))dv(t), 

zit) = C(j](t})x(t) + D(r]{t)Mt), 
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where jc G R" denotes the state, M 6 R'" is the control variable, y G R^ is the 
measured output, and z 6 R^ denotes the regulated output; ri{t), w{t),v(t), t > 0 
are stochastic processes with the properties given in the previous subsection. 

Associate with the system (5.84) the following class of controllers Gc of the form 

r 

dxcit) = Ac{iiit))xc{t)dt + J2 ^kc iriit)) Xc{t)dwk(t) (5.85) 
k=l 

+ BAr]{t))dyit), 

u{t) = Cc(t]it))x,(t). 

By coupling Gc to G one obtains the resulting system Gc/ with the state equations 

r 

dxciit) = Aociir](t))Xci(t)dt + '^Akci(r]{t))Xci(t)dWk(t) 
k=\ 

+ B,ci(r](t))dv(t), 

z(t) = Cciir}{t))xciit). 

(5.86) 

where 

Xcl = 

Aociii) = 

Akciii) = 

X 

Xc 

Ao(/) B^{i)Cc{i) 
Bc(i)Co(i) Ac(i) 

AkH) BkiDCAi) 
Bc{i)Ck(i) Akc(i) 

. k = l,..,,r, 

\ BAD 1 
[ B , ( / ) D , ( / ) J ' 

Bycld) 

Cciii) = [C{i) D(i)Cc(i)], ieV. 

Definition 6. The controller G^ is said to be the stabilizing controller ofG if the zero 
solution of the closed-loop system (5.86) in the absence of the white noise v{t) is 
ESMS. The set of all stabilizing controllers will be denoted by /C(G). 

A controller in /C(G) is determined by the set of the following parameters: nc > I, 
Ac{i) e R'^^^^s Bc(i) e R"^^^, Cdi) e R'"^"^ The controller order nc is not a 
priori fixed. For a stabilizing controller Gc, consider the norms ||Gc/ lb and 11 |Gc/1112 
corresponding to the closed-loop system. Then two optimization problems will be 
formulated and solved in the following. 

(OPr) Find a stabilizing controller minimizing ||Gc/ lb-
(0P2') Find a stabilizing controller minimizing 11 |Gc/11 b-
It is expected that the solutions of the two problems formulated above will be 

different. In the particular case when the whole state vector is available for measure­
ments, the solutions of (OPT) and (0P2') coincide, and they are given by a stabilizing 
state feedback. 
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Consider the associated SGRAE: 
r d 

Ao{i)Y{i) + ni)Al{i) + Y. ^k{i)Y{i)Al{i) + ^ ^ , , 7 ( 7 ) 
k=\ j=\ 

~ r 

Y{i)ci{i) + ^ A,(/)y(/)c;(/) + ^ / ^ . ( / ) D : ( / ) 
k=\ 

" r ~ 

6iD,(i)D:(i) + ^C , ( / ) y ( / )C*( / ) 
k=l 

r 

Coii)Y(i) + ^ C;{i)Y{i)Alii) + SiD,(i)B:ii) 

+ SiB^ii)B*{i)^0, ieV, 

where £, have been introduced in the previous section. Recall that 

Y = {Y{l},...,Y(d))eS'„, 

is a stabilizing solution of (5.87) if the system 

(Ao + KCo, Ai + KCu-..,Ar + KC/, Q) 

is stable, where 

(5.87) 

K{i) = - Y(i)Q(i) + ^ A,(i)Y(i)C*^ii) + SiB,ii)Dlii) 
k=l 

e,D„(0£>:(0 + J^Ck{i)Yii)C;{i) 
k=l 

- I 

, i eV. (5.88) 

A necessary and sufficient condition which guarantees the existence of the stabilizing 
solution of (5.87) is proved by Theorem 18. To this end we introduce the corresponding 
generalized dissipation matrix: 

M{Y) = {K(Y),...,JVAY)), 

Kr tY, - r ^^^^ ('•) + ^'BviDBld) Vi (Y) 1 

r 

Vi (Y) = y(/)C*(/) + J2Ak(i)Y(i)Cl(i) + eiB,ii)D:(i) 
k=\ 

r 

ni{Y) = eiD,{i)Dl{i) + Y,Ck{i)Y{i)Cl{i). ieV, 
k=\ 

for all Y = (7 (1) , . . . , Y(d)) e S^. From Theorem 19 of Chapter 4 it follows that 
the SGRAE (5.87) has a stabilizing solution if and only if the triplet (C, A; Q) is 

where 

with 

and 



5.4 Stochastic H^ controllers 197 

detectable and there exists Y e S^ such that J\f{Y) > 0. Further, if G /̂ is the closed-
loop system obtained by coupling a stabilizing controller of the set /C(G) to the system 
(5.84), then according to Theorems 18 and 21 we have 

d 

WGcihi = Y.^iTr {B:^i(i)Poci(i)Byci(i)), (5.90) 

where 

is the observability Gramian of the closed-loop system and it verifies the Lyapunov-
type system: 

r 

d 

+ J2'iiJ^oci(i) + C* Q/ = 0. (5.91) 
Since (Aod, Ai^/, . . . , A^c/) is stable, the system (5.91) has a unique positive 
semidefinite solution Podii)-

Let X = (X( l ) , . . . , X(d)) be the stabilizing solution of SGRAE (5.74). Denote 
by 

~X{i) 0" 
u(i) = Pocid) i eV. 

0 0_ 

By direct calculation one obtains as in the proof of Theorem 23 that 

is the solution of the Lyapunov-type equation 

r 

A;,i(i)U(i) + U(i)Aoci(i) + J2^*kciinUii)Akci(i) 
k=\ 

d 

-^J^^U^^J^ + C*(/)Q/(/) = 0, ie V, (5.92) 
7 = 1 

where 

with 

Ccid) = [-n(i)F(i) n(/)Q(/)] 

n(/) = (D*(/)D(/) + ^ B , * ( / ) X ( / ) ^ , ( / ) J . 

Since the system (AQC/ , A i^/,..., A^ci; 2 ) is stable, it follows that the unique solution 
of (5.92) is semipositive. As in the proof of Theorem 23, the equality (5.90) can be 
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written as 

l|Gc/||2,̂  = ^ £ , T r ( B : ( / ) X ( 0 5 . ( / ) ) 

d 

^Y^SiTr {B:^i{i)U{i)B,ci{i)) • 
/= i 

On the other hand, since 
^ = ( [ / ( ! ) , . . . , [/(J)) 

is the observability Gramian associated with the triplet 

(Q/,(Aoc/,. . . , A,c/); 2 ) , 

then according to the results in Theorems 18 and 21, we get 

d d 

/ = i 

where 

/) = •- PcclU) -
'Y(i) 
0 

'Yu(i) YnU)' 
Jud) Y 22(0. 

o" 
0_ 

(5.93) 

(5.94) 

(5.95) 

(5.96) 

Pccl = iPccl(l),-..,Pccl(d)) 

is the unique solution of the Lyapunov equation on <Ŝ +„̂ : 

r 

k=\ 

d 

From (5.93) and (5.94) one obtains: 

d 

WGciWle = J^sJr {B:(i)Xii)BAi)) 
i=\ 

d 

i = \ 

Let 
y = ( y ( i ) , . . . , F ( j ) ) 

be the stabilizing solution of SGRAE (5.87) and define 

Let 

be the partition of PcdiO according to the partition of the state matrix of the closed-
loop matrix of the closed-loop system. It is easy to see that (5.95) can be partitioned 
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(5.97) 

5.4 Stochastic H^ controllers 

as follows: 

Ao(/)yii(/) + Yn{i)Al{i) + 5o(/)Q(/)rr2(0 + YxiiDC^^iDB^H) 
r 

+ lk{i)YnC*SiWk(i) + Bkii)CAi)Yri(i)C*{i)Bl{i)) 
d 

AoiDYnii) + Bo(i)Ccii)Y22{i) + Yn(i)C^(i)B*(i) + Fi2(/)A*(/) 
r 

+ J2{Mi)Ynii)C:ii)B:{i) + B,(/)C,0-)l'r2(OQ*(/)B,*0) 

+ Ak(i)Yn(i)Al(i) + Bk(i)CAi)Y22ii)Al{i)) 
d 

+ Y,qjiYnU) + eiBAi)Dl{i)B*(i) = 0, 

B,(OCo(/)y,2(/) + A,(/)y22(0 + Yl^{i)Cl{iWc{i) 
r 

+ F22(/)A:(/) + ^ (5,(/)Q(/)yn(/)c,*(/)B;(/) 
^ A^SWn(i)Cl(i)Bl(i) + B,(/)Q(/)yi2(/)A*^(/) + A,,(/)y22(0A^,(/)) 

d 

+ J2^jiY22U) + £iBc{i)D,(i)D:{i)B:(i) = 0. 
7 = 1 

By direct calculations based on (5.97) and (5.87), we deduce that V = 
(V( l ) , . . . , V(t/)) is a solution of the following Lyapunov-type equation on 5^+„^: 

r 

AociHWH) + V{i)Al,ii) + Y,A,c,ii)V{i)AlJi) 
k=\ 

+ Yl'ii'^^}'> + B^ADKiii) = 0, ie V, (5.98) 

where 

with 

Bvci(i) 
-K(i) 
Bed) nn) 

n(0 = f £,D„(0£>:(0 + ^ C i ( / ) ? ( / ) c ; ( 0 

Since the system 

/ eV. 
k=l 

(Aod,.. . , Arc/; Q) 
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is stable, the equation (5.98) has a unique solution V(i) > 0. Furthermore (5.96) can 
be rewritten in the form 

d 

W^ciWli = ^^/rr(^;( /)X(/)5,( /)) 

d 

+ ^ r r ( n ( / ) F ( / ) f (/)F*(/)n(/)) (5.99) 
/ = 1 

d 

+ ^rr(Q/(/)V(/)C*(/)) . 

Now we are able to prove the main result of this subsection. 

Theorem 24. Assume the following. 
(i) The triplet (A, B; Q) is stabilizable and (C, A; Q) is detectable. 

(ii) There exists X e S^ verifying 

J\f{X) >0, 

where J\f denotes the generalized dissipation matrix. 
(iii) There exists Y e S^ verifying 

Af{Y) >0, 

where Kf is defined by (5.89). 
Under the above conditions we have 

d 

min ||G,/||^,, = YeiTr{B:{i)X{i)B,{i)) 
G C G / C ( G ) 

/ = 1 

d 

^Y^^r (n(/)F(/)?(/)F*(/)n(/)) , 

and this minimum is attained by the optimal controller 

dxcit) = Aoc(T]{t))Xc(t)dt 
r 

+ Y,^kc(ri{t))Xc{t)dwk{t) (5.100) 
k=\ 

+ BAr]{t))dy{t), 

u(t) = Cc(ri{t))Xc{t), 

with 

AkcH) = A^O) + K{i)Ck(i) + Bkii)F(i), k^O,...,r, 

B,{i) = -K(i), 

Cc(i) = Fii), i e V, 

where K{i) and F(i) are defined by (5.88) and (5.75), respectively. 
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Proof. From (5.99) and from the positivity of the solution V of (5.98), it follows 
that 

d 

WGciWl, > Y^SiTr {Bl{i)X{i)B,{i)) (5.101) 

d 

+ ^rr(n(/)F(/)F(/)F*(/)n(/)) 

for all stabilizing controllers Gc € /C (G). We show now that the controller given by 
(5.100) belongs to the class of stabilizing controllers /C(G), and for this controller 
(5.101) becomes equality. The closed-loop system corresponding to the controller 
(5.100) is 

dx{t) = {Ao(r](t))x(t) 4- Bo{r](t))F{r](t))xAt))dt 
r 

+ Y, {Au{r]{t))x(t) + Bk{r)(t))F(r](t))xAt)) dw^t) 
k=\ 

+ B,{r]{t))dv(t), 

dxAt) = {-Kir](t))Co(ilit))x{t) (5.102) 

+ (Aoirjit)) + Boivit))F(r]{t)) + K{r]it))Co{r](t))) Xc) dt 
r 

+ J2i- K(r](t))Ck(ri(t))x(t) + ( A , ( ; ? ( 0 ) + Bk{ri(t))F(ri(t)) 
k=l 

+Kir](t))Ck(nit)))xAt)) 

xdwdt)-K(Ti{t))DAri{t))dv{t), 

zit) = C(r](t})x{t) + D(t]{t))F(ri{t))xAt). 

If [x*(t) x*{t)Y is a solution of (5.102) in the absence of the additive noise u(r), 
define 

Ht)=xit)-xAt), t>0. 

Then, by direct computations, it follows that the stochastic process [x*(t) ^*{t)]* 
verifies the system 

dxit) = ((Ao(/7(f)) + Bo(ii(t))F(r](t)))x(t) 

-Bom))F(riit)mt))dt 
r 

+ ^ {iyAAriit)) + BAr}(t))F{r](t))) x{t) 
k=\ 

- BAr](t))F{ii(m{t)) dwAt), (5.103) 

dUt) = {Ao(ri(t)) + K(r](t))Co(ri{t)))Ht)dt 

+ J^ {AkiW)) + K{r](t))CAr](t))) ^(t)dwk(t). 
k=l 
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Since Y is the stabilizing solution of SGRAE (5.87), from the second equation (5.103) 
one obtains 

E [|§(0l' I ̂ (0) = /] < ^e-"' \H0)\^ , r > 0, / G P , (5.104) 

for some a > 0 and P > I. Further, the first equation (5.103) can be rewritten as 
follows: 

dx{t) = ((Ao(r/(0) + Bo(r](t))F(rj(t)))x(t) + Mt))dt 
r 

+ Y, {{Ak{r){t)) + Bk{r){t))F{r^{t))) x{t) + / , ( 0 ) dw^it) 

with 
Mt) = -Bk(r]it))F(r]itm(t). r > 0, /: = 0, 1 , . . . , r. 

Applying Theorem 32(i) of Chapter 2, one deduces that there exist ^ > I and a > 0 
such that 

E [\x(t)\^ I ri(0) = i] < Pe'^' {\x{0)\^ + |§(0)|2). (5.105) 

From (5.104) and (5.105) we get 

E [\xc{t)\^ I rj(0) = i] < Pe-^' (|x(0)|2 + |§(0)|2) , 

where a = min(Qf, a ) , p = max () ,̂ )^), and therefore we conclude that the 
controller (5.100) is a stabilizing controller. On the other hand, we may write with 
this controller: 

d 

^ r r ( Q / ( / ) V ( / ) C * ( / ) ) (5.106) 
/=i 

d 

= Y,Tr (n(/)F(/) (Vn(0 - VnH) - V,\(i) + V22(/)) F*(/)n(/)) , 

where 
rVn(/) Vnd)' 
[v,Mi) V22(/). 

is the partition of the solution V(i) of equation (5.98) corresponding to the controller 
(5.100). 

Partitioning the equation (5.98) we obtain the following system: 

AodWuii) + Bo(i)F{i)V,\ii) + Vii(/)A*(/) + Vn{i)F(i)B^{i) 
r 

+ ^ (A,(/)VnO)A:(0 + Bdi)F{i)V*2{i)Alii) 
k=l 

+ Ak{i)Vn{i)F*ii)B;{i) + Bt(i)F0)V22(i)F*0)Bi*(O) 
d 

+ I]9y/^iiO) + K{i)nHi)K*ii) = 0, 
7 = 1 
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Ao(/)Vi2(0 + BQ{i)F(i)V22{i) - Vn{i)Cl(i)K*{i) + VniDK^H) 

r 

d 

+ L^y/^nO') + K(i)n'Ci)K\i) = 0, 
J = l 

- ^(/)Co(OV^12(() + Aoc{i)V22(i) - V,%(i)QK*(i) + ^22(0^2,(0 
r 

+ ^ (^(/)Q(/)Vn(/)q*(/)^*(/) - A,,(/)Vi*2(/)Q*(/)^*(/) 

- Kii)Ck(i)Vn(i)Al(n + A,,(/)V22(0A,*,(/)) 

+ X]^y/^22a) + K(i)n\i)K''(i) = 0. 
7 = 1 

By summing the first and the third equations of (5.107) and by then subtracting the 
second equation (5.107) and its transpose, one obtains that 

WH) = Vnii) - Vnd) - V^^ii) + Vii(i) 
verifies the equation 

(Ao(/) + ^(/)Co(/)) W(/) + W(/)(Ao(/) + ^(/)Co(/))* 
r 

+ X] (A (̂0 + ^(/)Q(/))W(/)(A,(/) + ^(/)Q(/))* 

d 

7 = 1 

Since the system 

(Ao + ^Co, Ai 4- ̂ C i , . . . , A, + KCr\ Q) 

is stable, the above equation has a unique solution from which we deduce that 
W(i) = 0 , / G r . Based on (5.105) this shows that 

d 

Err(Q/(/)V(/)C*(/))=0, 
/= i 

and therefore 

i=\ 
d 

^Yl'^r (n(/)F(/)y(/)F*(/)n(/)), 
/=1 
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where G /̂ is the closed-loop system corresponding to the controller (5.100) and thus 
the proof is complete. D 

Remark 12. In the particular case when V = {I}, Ak = 0, B^ = 0, Ck = 0, k = 
1, 2 , . . . , r, the controller (5.100) reduces to the well-known Kalman-Bucy filter 
which solves the classic H^ optimization problem. Therefore, it is natural that in the 
general framework considered here, the solution of the H^ optimization problem has 
a form similar to the Kalman-Bucy filter. Unfortunately, in the general case, when 
the nominal plant is corrupted with multiplicative white noise, the solution of the H^ 
optimization problem is a stochastic system with multiplicative noise, which leads to 
implementation difficulties. This fact leads us to consider an H^ optimization problem 
in the class of controllers with AkdO = 0, A: = 1 , . . . , r, which still remains an open 
problem. 

At the end of this section we focus our attention on the strictly Markovian case, 
namely J > 1, A^(/) = 0, Bk(i) = 0, Q( / ) = 0, Akdi) = 0, I < k < r, i eV. 
Therefore, the controlled system is in this case: 

dxit) = (Ao(r](t))x(t) + Bo(r](t)Mt))dt -f B,{ri{t))dv{t), 

dy(t) = Co(r](t))x{t)dt + DAr]it))dvit)^ (5.108) 

zit) = C{r]{t))x{t) + D{n(t))u{t). 

In this particular case Theorem 24 leads to the following corollary. 

Corollary 25. Assume the following. 
(i) The triplet (AQ, BQ; Q) is stabilizable and (Co, AQ\ Q) is detectable. 

(ii) There exists X = ( X ( l ) , . . . , X{d)) e S^ satisfying the LMI 

where 

C* (X) (0 + C*(i)C{i) Xii)Bo(i) + C*(i)D(i) 

B*{i)X(i) + D*{i)C{i) D*{i)D{i) 
>0 , 

C* (X) (i) = A*o(i)X{i) + XiDAod) + ^quXU). 

(iii) There exists ? = ( ? ( ! ) , . . . , Yid)) e Sf, satisfying the LMI 

N:= 
C (f) (/) + eiBAi)B*(i) Y(i)Co{i) + SiBAi)D;(i) 

Q{i)Y{i) + £ , Z ) „ ( / ) B ; ( 0 £ , D „ 0 ) D : ( / ) 
> 0 , 

where £, are either ;r,oo or 5, introduced in Section 5.4.1. Then the controller 

dxcit) = AAr](t))xAt)dt + Bc(T}{t))dy{t), (5.109) 

u{t) = Cciil{t))xc{t), 
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with 

AAi) = AoH) + Bo(i)F(i) + Kii)Co(i), 

Bed) = -KH), 

Ccd) = F(i) 

stabilizes the system (5.108) and 

d 

l|Gc/||2,, = E^'^'*(^*^^')^('*)^^(^')) 
/ = 1 

d 

+ J2^r({DHi)D(i)yF(i)Y(i)F*(i){D*(i)Dii))'A 
i=l ^ ^ 

where G /̂ is the closed-loop system obtained by coupling the controller (5.109) 
to the system (5.108); X and Y are the stabilizing solutions of the Riccati-type 
equations: 

d 

Al{i)X{i) + X(/)Ao(/) + Y,qijX{j) - {X(i)Bo(i) + C*(/)D(/)) 

X (D*(/)D(/))-^ {B^{i)X(i) + D*(/)C(/)) + C*(/)C(/) = 0; 

Ao(i)Y(i) + Y(i)Al(i) + J^qjJ(j) - (r(/)Co(/) + ^ / B , ( / ) D : ( / ) ) 

7 = 1 

X {si DAD Did))-' {Q(i)Y(i)-^8iD,(i)B:(i))^8iB,{i)B:(i) = 0; 

and F and K are given by 

F(i) = - (D*(/)D(/))'^ (^o*(OX(/) + D*(/)C(/)), 
K(i) = - {Y(i)Co(i) + 8iBy(i)D:(i)) {siDADDlii))-' . D 

In order to illustrate the above results we shall present a numerical example. 
Consider a helicopter dynamics having the state-space equations 

x(t) = A(r])xit) -h B(T]{t))u(t) + Ew(t), 

z(t) = Cix(t)-hDMt), 

y(t) = C2x{t) + D2wit), 
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where r]{t) indicates the airspeed and the state variables are the horizontal velocity 
x\, the vertical velocity X2, the pitch rate JC3, and the pitch angle X4. The matrices in 
the above state-space representation have the form (see [25]) 

A(i) = 

B(i) = 

[L 

-0.0366 
0.0482 
0.1002 

0 

0.4422 
^21 (0 

-5.5200 
0 

4x4 04x1 

0.0271 0.0188 
-1.01 0.0024 
032(0 -0 .707 

0 1 

0.1761 " 
-7.5922 
4.4900 

0 

], c, -

' 

^4x4 

02x4 

-0.4555 
-4.0208 

fl34(0 
0 

, D,= 04x2 

^2x2 

C = [0 1 0 0] , D2 = [0 0 0 0 1 ] , / = 1,2,3, 

where 3̂2 (•) ^ 3̂4 (•)» ^nd Z?2i (•) are given in Table 5.1 as a function of the airspeed. 
The behavior of r]{t) is modelled as a Markov chain with three states corresponding 
to the three values of the airspeed: 135, 60, and 170 knots. 

Airspeed (knots) 

135 

60 

170 

«32 

0.3681 

0.0664 

0.5047 

«34 

1.4200 

0.1198 

2.5460 

hi 

3.5446 

0.9775 

5.1120 

Table 5.1. 

The following three transition matrices have been considered: 

Qi = 
-0.0907 
0.0671 
0.0236 

0.0671 
-0.0671 

0 

0.0236 
0 

-0.0236 

22 = 

Q3 = 

-0.0171 0.0007 0.0164 
0.0013 -0.0013 0 
0.0986 0 -0.0986 

-0.0450 0.0002 0.0448 " 
0.0171 -0.0171 0 
0.0894 0 -0.0894 

The initial assumed distributions are (0.333 0.333 0.333), (0.6 0.3 0.1), and 
(0.6 0.1 0.3), respectively. The optimal H^ corresponding norms obtained using 
the method described in this section are presented in Table 5.2. 
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Q 

Qi 

Qi 

23 

Optimal //^ norms computed by the method 
in the present paper 

l|G,/||2.i - 4.6735; ||G,/||2.2 = 8.0988 

||G,/||2.i = 4.5196; ||G,/||2.2 = 7.8264 

||G,/||2.i =4.8113; ||G,/||2.2 = 8.3333 

Table 5.2. 

Here only the optimal H^ controller for the case Q 
is the following: 

Q\ is given. Its realization 

Ac(l) = 

Cc(l) 

Ac(2) = 

Cc(2) 

Ac(3) = 

Ce(3) = 

-0.4431 0.3328 
-3.4133 -10.3798 
5.3252 5.2657 

0 1.7630 

0.4106 0.0327 
4.8501 6.3131 

-6.8663 -9.4439 
1 0 

-0.9282 0.0139 0.9616 1.3881 
0.0226 0.8442 -0.1896 -0.7131 

-0.4133 0.4164 0.3727 -0.0675 
-2.0379 -9.7852 3.6641 4.2692 
5.8528 3.3426 -7.5378 -10.9517 

0 1.3828 1 0 

-0.9144 0.1586 0.9440 1.2483 
0.1570 0.8317 -0.3607 -0.9312 

-0.4517 0.2545 
-4.3958 -11.1936 
5.0354 6.8942 

0 2.2062 

0.4437 0.1318 
5.5719 7.2984 

-6.4680 -7.9318 
1 0 

-0.9240 -0.0573 0.9882 1.5154 
-0.0368 0.8507 -0.0682 -0.4705 

Bc{\) = 

BciX) = 

BcO) = 

-0.1509 
3.0100 

-1.1841 
-1.7630 

-0.1727 
2.6160 

-0.4174 
-1.3828 

-0.1030 
3.4319 

-2.2534 
-2.2062 

Let us finally remark that no ill-conditioned computations occurred when the 
iterative procedure described in this section was applied. 

Notes and references 

The results presented in this chapter are mainly based on the papers [30], [31], [94]. 
The linear quadratic problem in the stochastic case has been investigated starting with 
[117]. For stochastic linear systems with multiplicative noise we mention [77], [8], 
[67], [116], [14], [88], [3], [4], and for the infinite-dimensional case we cite [18]-[20] 
and [111]. In the case of stochastic systems subjected to Markovian perturbations, the 
linear quadratic problem has been addressed in [86], [70], [89]. As concerns the H^ 
control problem for stochastic systems with multiplicative white noise, we cite [19] 
and [39], and for systems with Markovian jump we mention [15], [25], where subop-
timal solutions of the same order as the order of the nominal system are considered. 



stochastic Version of the Bounded Real Lemma 
and Applications 

The main goal of this chapter is to investigate the robustness properties of a stable 
linear stochastic system with respect to various classes of uncertainties. 

A crucial role in determining a lower bound of robustness radius will be played by 
the norm of a linear bounded operator associated with the given plant. This operator 
will be called the input-output operator and it will be introduced in Section 6.1. In 
the next section a stochastic version of the so-called Bounded Real Lemma will be 
proved. This result provides an estimation of the norm of the input-output operator in 
terms of feasibility of some linear matrix inequalities (LMIs) or in terms of existence 
of stabilizing solutions of a generalized algebraic Riccati-type equation. 

Further, the stochastic version of the so-called Small Gain Theorem will be proved. 
This result will be used to derive a lower bound of robustness with respect to linear 
structural uncertainties. Then we shall investigate the stability robustness with respect 
to a wide class of nonlinear uncertainties. 

As in the previous chapters a unitary approach will be used for systems subjected 
both to multiplicative white noise disturbances and to Markovian switching. In order 
to simplify the developments in this chapter we restrict our attention to the systems 
in the time-invariant case. 

6.1 Input-output operators 

Consider the linear system described by 

dx(t) = [Aoir](t))x(t) + Bo{rj(t))u(t)]dt 
r 

+ ^[A,(r / ( r ) )x(0 + Bk{ri{t))u{t)]dWk{t), (6.1) 
k=\ 

y{t) = C{r]{t))x{t) + D{r){t))u{t), 

with the state x{t) e R", the input u(t) e R'", and the output y(t) e RP. Ak(i), 
Bkii), k = 0, 1 , . . . , r, C(/), D(/), / € V, are constant matrices of appropriate 
dimensions. The stochastic processes r](t),t > 0, w(t) = (wi(t),... ,Wr(t))t>o 
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have the properties given in Chapter 1. If M(r), ^ > 0, is a stochastic process having 
the components in L^^[0, oo), ^^^(0, t > 0 stands for the solution of (6.1) with 
the initial condition Xu(0) = 0. According to the results derived in Section 1.12, 
the components of the process Xu{t), t > 0, are in L^ ^[0, r] Vr > 6. Moreover, 
if the system (AQ, . . . , A^; 2) is stable, then based on Theorem 32 of Chapter 2, 
with fk(t) = Bk(r](t))u(t), it follows that jc^(.) is in Z^ ,̂̂ ([0, oo), R") . On the other 
hand, by uniqueness arguments one easily obtains that the map u \-^ Xui.) is linear. 
Therefore, if the system (AQ, . . . , A^-; Q) is stable, we may consider the operator 
T defined on the space of stochastic processes L^ ^,([0, oo), R'") with values in 
L 2 ^ ( [ 0 , 00), R^), as follows: 

where 

(Tum^yM. 

yu(t) = C(r](t))xAt) + D(r](t))u(t). (6.2) 

From Theorem 19 of Chapter 1 it follows that L^ ^X[^^ ^^ R^) is a closed subspace 
of the Hilbert space L^([0, oo), R^). Therefore, 

L2^^([0 ,OO),R^) 

is a real Hilbert space with the usual inner product: 

/»oo /»oo 

(w, v) = E u*(t)v(t)dt = / Eu*(t)v(t)dt. 
Jo Jo 

The norm induced by this inner product will be denoted by || • ||. 
Obviously 

= (E j IziOl^dtV = lY,^jE\r\z(t)\'dt I rj(0) = j (6.3) 

for all z e L^^([0, oo), R^), where Ui = P{r](0) = /}. Again invoking Theorem 32 
of Chapter 2, it immediately follows that there exists c > 0 not depending on u such 
that 

\xM\Ut \ ri(0) = j 

d r poo 1 
<CT7TJE\ / \u(t)\'dt\r](0) = j\=c\\u\ 

~] Uo J 

This allows us to conclude that the operator T defined by (6.2) is linear and bounded. 
The operator T introduced above will be termed the input-output operator associated 
with the system (6.1), and the system (6.1) will be a state-space realization of the 
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operator T. As in the deterministic case the state-space realization of the input-output 
operator is not unique. The set of operators 

r : LlJ[0, 00), R'") ^ L 2 ^ ( [ 0 , OO), R ^ 

which admits state-space realizations is a subspace of the Banach space 

C {LlJ[0, oo), R-) , LljlO, oo), R O ) . 

Indeed, one can easily check that if 

Te : LlJ[0, oo), R-) ^ LIJ[0, OO), RO, ^ = 1,2, 

(6.4) 

have the state-space realization 

dxe(t) = [Aoe(r]it))xdt) + Bodr](t)Mt)]dt 
r 

+ Y)-^kt{ri{t))xdt) + Bu{r}{t))u{t)]dwk{t), 

ytit) = Ct(r]it))xeit) + De(r]{t)Mt), 1=1,2, 

then the operators ajTi + a 2 ^ will have the state-space realization of form (6.1) with 

Akii) = 

Bkii) = 

Akdi) 0 
0 Ak2{i) 

Bki(i)~ 
Bn{i)_ 

C(() = [a,Ci(/) a2C2(0], 

DO) = aiDiO) + ci2D2{i), and 

•^1 
X = 

xi 

Remark 1. For every T > 0, the system (6.1) defines a linear operator 

Z : Ll,„{[0,T],R'") ^ Ll^{[0,T],R'') 

by y = %u with 

y{t) = C(r](t))xM + D(t)u(t), t e [0, r ] , Vw e L^^ ([0, r ] , R " ) . 

Based on Remark 17 of Chapter 2, one immediately deduces that 7^ is a bounded oper­
ator. One expects that the norm ||7^ || depends on r. Moreover, for any 0 < ri < 12, 
we have 

\\T II < I I T II 
II -^T II _ II "^^2 II • 

If the system (AQ, A I , . . . , A^; 2) is stable, then 

l |T | |=sup| |T, | | . 
r>0 
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The last assertion in the above remark is also true if the linear operator T defined 
by (6.2) on the space L^^([0, oc), R'") is a bounded operator with values in the space 

Concerning the product and the inversion of the input-output operators we have 
the following proposition. 

Proposition 1. (i) If 

T^ : Ll^{[0,r],R'">) ^ Ll^{[0,rlR'") 

have the state-space realizations as in (6.4) with Au{i) e R''^^"^ Bk\{i) e R"!^'", 
Bkiii) e R"2xmî  0 < ^ < r, Cx(i) e R^^"^ C2(/) e R^x'̂ i^ Oi(i) e R^^'", 
D2(i) G R^^'"!, / G P, then the product 

has the state-space realization of form (6.1), where 

Bkii) = 0<k<r, 

0 Ak2ii) 

Bkdi)D2(i) 
BkiH) 

C(i) = [C,(/) D,(/)C2(/)], 

D(/) = D,0)D2(/), ieV. 

(ii) Assume that in (6.1) we have p = m and det D(i) ^ 0, i € P . Then for 
every r > 0, the input-output operator % : i-^ „ (̂[0, T], R"") -^ J^^,„,([0, T], R " ) is 
invertible, and its inverse T~^ has the state-space realization 

d^it) = [Aoinitmit) + Bo(r](t))y(t)]dt 
r 

+ Y. [^t('?(0)^(0 + Bk{r){t))y{t)\ dwkit), (6.5) 

u{t) = Ciri{t))m + D(T,it))yit), 

where 

Ak(i) = Ak(i)-Bk(i)D-\i)C(i). 

Bkii) = Bk{i)D-\i), 

C(i) = -D-\i)C(i), 

D{i) = D-\i), i e D. 

Moreover, if the systems (AQ, A \ , ..., A/, Q) and (AQ, A \ , ..., A/, Q) are stable, 
then the input-output operator T associated with (6.1) is invertible and its inverse 
T~^ has the realization given by {6.5). 
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Proof. Part (i) of the statement immediately follows by the uniqueness of the 
solution Xu(.) of the^linear system (6.1). 

(ii) Denote by % the input-output operator defined by (6.5) on [0, r] . Applying 
the result of part (i) one can easily check that 

where I^i ([O,T],R'") ^̂  ̂ ^̂  identity operator on L^^^ ([0, r ] , R""). The last assertion 
follows in the same way as above. D 

In the following we shall prove a result that will play an important role in the proof 
of the Bounded Real Lemma in the next section. For each continuous function F : 

type equation on S^: 

-K(t^ i) + (Ao(i) + Boii)F(t, DTKit, i) + (Aod) + Bo(i)F(t^ i))K(t, i) 
at 

r 

+ ^ ( A , ( / ) + B,(/)F(r, DTKit. i){Ak{i) + 5,(/)F(/, /)) 
k=\ 

d 

+ Y, qtjKit. j) + (C(/) + D(/)F(f, i)nC(i) + D(i)F{t, /)) 

- y V*(r, i)F(t, i) = 0, i e V. (6.6) 

For each y > 0, denote by 

the solution of equation (6.6) verifying the condition Ky(T, i) = 0, / e V. 

Lemma 2. Assume that for a fixed x > ^ we have \\%\\ < y. Then for all SQ such 
thatO < si < y^ - WT^f, we have 

r 

y^Im - D\i)D{i) -J2^k(nKy(tJ)Bk(i) > slim (6.7) 
k=\ 

for all t e [0, r], / eV. 

Proof Denoting 

r 

Ty{t^ i) = y^Im - D\i)D{i) - ^ B;(i)Ky{t, /)5,(/), 
k=\ 

(6.7) can be written as Vyit, i) > e^Ifn Vt e [0, r] , / e V. The proof, then, has two 
stages. 
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Stage 1 We first prove that for each y satisfying the condition y > || 7^ ||, we have 

r ^ a , 0 > 0, Wt e (0, r) , / e V. (6.8) 

If (6.8) does not hold, then it follows that there exist ô ^ (0, r) , /Q e V, U e R"" 
with |wo| = 1 such that ulFyito, io)uo < 0. Since the function t -^ u^Vyit, io)uo is 
continuous, it follows that there exist 5o > 0, v > 0 such that 

ulFy (r, /o) Wo < -V < 0, Vr G Uo, to + So], (6.9) 

with to + So < T. Let S e (0, So) be arbitrary but fixed and define the stochastic 
process 

j o ifr^[ro,ro + 5o], 
^ l«oX/y(r)=/o lit e[to,to^So]. 

It is obvious that v^ 6 L^^ ([0, r ] , R'"). Let xs{t), t e [0, r ] , be the solution of the 
following problem with initial conditions: 

dx(t) = l[Ao(r](t)) + Bo(r](t))F(t, r](t))]x{t) + Bo{r](t))v8(t)} dt 
r 

+ Y. ^^^kinit)) + Bk{r]it))F{t, r](t))]x{t) 
k=\ 

+B,{T,(t))vs{t)}dwk(t), te[0,T], xs(0) = 0. (6.10) 

Define us(t) = vs(t) + Fit, r](t))xsit), t e [0, r ] . Since 

ua(f)eL2,,([0,T],R'") , 

from (6.10 ) one deduces that 

Xusit) = xs{t), f e [ 0 , T]. 

Let ya =TrUs. Therefore 

ys(t) = C(n(t))xs{t) + Dir]it))usit), t e [0, r ] . 

By direct computation, taking into account the definition of us(t), we obtain that 

\ys(t)f - y^\us(t)\^ = x;miC(r](t)) + Dir]it))F(t, rjit)))* 
X (dnit)) + D(r,it))F(t, /?(?))) 

- y^F*{t, nit))F{t, r^{t))]x,{t) + 2xl{t) 

X [(C(/?(0) + D{nit))F{t, n{t))TD(rj(t)) 

4 Y^F*{t,i,)(t))]vs{t) + vl{t) (6.11) 

X {D*{ri(t))D{n{t)) - Y'Uvs(t). 
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Using the Ito-type formula for the function 

v{t, X, i) = x*Ky{t, i)x 

and for the process xs(t), t e [0, r ] , based on (6.6) and (6.11), one obtains that 

\f\\y8(t)\^-y^\us\^)dt\r]{0) = i\ 

= E [ {2x;(t)Vy(t, r](t))vs(t) - v^iOVyit, rj(t))vs(t)} dt \ r/(0) = / 
Jo 

for all / € V, where Vyit, i) is defined as 

r 

Vy{t, i) = Kyit, i)Bo{i) + J2(Ak{i) + Bk(i)F(t, OTKyit, i)Bk{i) 

+ (C(/) + D{i)F{i)rD{i) - Y^F*{t, i). 

Taking into account the definition of Hj, we further can write: 

E\I (|}'^(Ol'-y'Nl')^?l'?(0) = (| 
Uo J 

= E\\ {2xl{t)Vy{t, n{t))uQ - ulTy(t, r;(?))Mo} Xm^i^dt I /?(0) = i 

= 2_, £ / {2x;{t)Vy{t, j)uo - ulFyit, j)uo] xm=jXm=iodt I riiO) -^ i 

Since Xr,(i)=iXm=io = ^forj ^ k ^nd Xn(i)=i Xn(t)=io = Xr)(0=<o for/ - «o, we obtain 

ys{t)\^-Y^\usndt\r]iO) = i 

lo+s 
= £ / {2x;it)Vy {t, io) Mo - KTy {t, k) Mo} Xm=iod( I ViO) =i\, 

(6.12) 

i e v. Based on (6.9) one immediately obtains that 

.Jo 

r rto+8 

|-^5*(0^y (t, h) wo| Xnit)=iodt \ r](0) = i 

Xri{t)=i^dt I ?7(0) - ] 
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and therefore 

/ {\y8it)\^-y^\u5\')dt\ri(0) = i\ 
Jo J 

r fto+s 
> - 2 E / \x;it)Vy{t, io)uo\ Xm-i,dt I r7(0) = / 

rto+8 

+ ^ / Pi, M)dt, i € V. (6.13) 

Based on Remark 17 of Chapter 2 one deduces that there exists c\ > 0 depending on 
r such that 

sup E [\xs(t)f I rj(0) = i] <ciE\ [ \vs{t)\^ dt \ r](0) = i 
0<t<T \_J0 

On the other hand, we have 

^ / |4(07^y (^ io) wo| XriU)=iodt I ̂ 7(0) = / 

< [ {E[\xs(t)\^dt\ri{0) = i]y\Vyit,io)\dt. 
Jo 

Hence, using (6.14) we obtain 

f^to+8 

2E' 
rto+d 

/ l^siOVy (^ /o) Wo I Xr^io^iodt I ̂ ?(0) = i 
JtQ 

where C2 > 0 is a constant depending on r. Then we have 

E r {\y8(t)\^-y'\u8\^)dt 
Jo 

= J^^iE \j {MOl^ - y' \U8\') dt I 7̂(0) = i 

pto+8 

> / h(t)dt -C28V8, 
Jtn 

where we denoted 

h{t) = vJ^KiPij^it). 

(6.14) 

< C2SVS, (6.15) 

(6.16) 

Since /?,Q/^(r) is a continuous function, it follows that there exists 8 e (0, 80) such 
that 

Ao,/o(0 > :̂ Ao,/o(̂ o) > 0 yto<t <to-\-8. 
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Then, for 5 > 0 small enough, (6.16) becomes 

Wysf - y ' ll^^ll' = E r {\ys(t)\' - y' \us\')dt 
Jo 

> -SvTti^PiQjQito) - C28V8 > 0. 

This contradicts the assumption in the statement ||T^ || < y. It follows, then, that (6.8) 
is accomplished for t e (0, r). From the continuity with respect to t it results that 
(6.8) is accomplished for t e [0, r] . 

Stage 2 Let SQ be such that 

0<8l<y'-\\Zf. 

Then, for y = (y^ — ^0)^' ^̂  ̂ ^ obvious that ||7^|| < y. According to Stage 1 we 
have 

ry{t,i) >0, t e [0, r ] , / eV. 

This leads to 

r 

y^Irr, - D*ii)Dii) - J2 B;(i)Kyit, i)Bk{i) > Solm- (6.17) 
( = 1 

On the other hand, one can immediately check that 

J^ [Kyit, i) - Ky{t, i)] + lAoii) + BoiOFit, or [Kyit, i) - Ky(t, i)] 

r 

+ [K^(t^ i) - Kyit, i)] [Ao(i) + Bo(i)F(t, /)] + Yl [̂ (̂̂ ') + Mi)F(t, /)]* 
k=\ 

d 

X [Kyit, i) - Kyit, /)] [Akii) + BkiOFit, /)] + ^ ^ 0 [Ky(t, i) - Kyit, /)] 

+ £^F*(r,/)F(r,/) = 0, 

from which it follows that K^it,i) - Kyit,i) > 0. Therefore, from (6.17), we 
deduce that 

r 

y^Im - D\i)Dii) - J2 BliDKyit, i)B,ii) > e^Im. 
i=\ 

and hence the proof is complete. D 

Corollary 3. 7/"r/ẑ r̂  exists r > 0 such that \\%\\ < y, then D*ii)Dii) < y^Im> 
i eV. D 

Remark 2. Ifthesystem(Ao, A i , . . . , A .̂; Q) is stable and if ||T|| < }/,then||7^|| < y 
for all r > 0. 
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6.2 Stochastic version of the Bounded Real Lemma 

In the present section we shall derive necessary and sufficient conditions under which 
the norm of the input-output operator is less than a prescribed level of attenuation y. 
These conditions extend at the stochastic systems of form (6.1) the well-known condi­
tions given by the Bounded Real Lemma in the deterministic framework. The results 
proved in this section include as particular cases the results separately proved for 
stochastic systems with multiplicative white noise and for systems with Markovian 
jumps, respectively. 

Consider the following system of generalized Riccati algebraic equations: 

Al(i)X(i) + X(i)Ao(i) + ^ A*(/)X(/)A,(/) 
k=\ 

+ J2 qij^U) + X{i)Bo{i) + ^ Al{i)X{i)Bk{i) + C\i)D{i) 
j=\ \ k=\ I 

X (y^lm - D\i)D(i) - ^^;(/)Z(/)B,(/) J 

X ( ^o*(0 (̂/) + J2 K(OX{i)Ak{i) + Z)*(/)C(/) J 

+ C*(/)C(/) = 0, / eV. (6.18) 

One can notice that in the particular case when Ak{i) = 0 , Bk{i) = 0, I < k < r, 
V = {1}, the SGRAE (6.18) reduces to the well-known algebraic Riccati equation 
used in the deterministic framework in order to determine the H^ norm of a linear 
system. With the notations introduced in Section 3.2, the SGRAE (6.18) can be written 
as the following nonlinear equation on S^: 

£*X - V*iX)n-\X)V{X) -h C^C = 0, (6.19) 

C : S^ -^ S^ being the Lyapunov-type operator defined by the system 
(Ao,v4 i , . . . ,A , ; e ) , 

with 

where 

V{X) = {Vx{X)^..,^Vd{X))^ 

Vi(X) = B^(i)X(i) + J2 B;(i)X(i)Ak(i) + C*(/)D(/), 
k=\ 

7^(Z) = (7^l(X),...,7^J(X)), 

IZiiX) = -y^lm + D\i)D{i) + Yl B;{i)X(i)Bk(i), i € P, 
k=\ 
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and X = ( X ( l ) , . . . , X(J)). We shall also use the following differential equations 
on5„^: 

d 
—X{t) + £*X(r) - V\X)Tl-\X)V{X) + ac = 0, (6.20) 
at 

— Kit) = CKit) - V\K{t))n-\K{t))V{K{t)) + ac = 0. (6.21) 
at 

Remarks, (i) Both the algebraic equation (6.19) and the differential equations 
(6.20) and also (6.21) are defined on the subset Uy C S^ with the elements 
X = (X( l ) , . . . , X{d)) for which detUtiX) ^ OJ e V. From Corollary 3 it fol­
lows that if r > 0 exists such that ||7^ || < y, then the null element (0, 0 , . . . , 0) G S^ 
isinUy. 

(ii) A C^-function X : [0, r] -^ Uy is a. solution of equation (6.20) if and only if 
K : [0, r] -^ Uy defined as K{t) = X(T - 0 is a solution of (6.21). 

For every r > 0, JCQ G R", y > 0, i e P , consider the following cost functions: 

Hy (T^xo J,.): Ll^{[0,T];R^) -^R, 

ny{r,xo..):Ll^{[O.T];R^)-^R, 

defined by 

and 

HyiT, jco, /, ") = ^ [ / {\yu(t. xo)\^ - y^\u(t)\^) dt I r](0) = / 

ny(T,xo,u) = E f {\yuit.xo)\^-y^\u(t)\^)dt, 
Jo Jo 

where 
yuit, xo) = Cir]{t))Xu(t, XQ) + D(r](t))u(t), t e [0, r ] , 

Xuit, Xo) being the solution of the system (6.1) determined by the input u(t) and the 
initial condition ^^(0, XQ) = XQ. It is obvious that 

d 

Hy {T,XO, U) = 2_^7r/Wy(r, jco, /, u). 
i = \ 

From Corollary 2 of Chapter 5 and from Remark 3(ii) one directly obtains the 
following Lemma. 

Lemma4. / /X: [0, r] -^ 5^, X{t) = (X{t,l),..., X(t,d)) is a solution of 
equation (6.20) and K{t) = X{T — t), then 

Hy{T, JCO, /, u) = JCo*X(0, i)xo - E [jc*(r)X(r, r](T))x(T) \ r](0) = i] 

- E \ J {u(t)-F''(t,ri(t))x(t)y 

X ly^Im - D*(r](t))D{r]{t)) - J^ K(^1 (t))X{t, r](t))Bk(r](t)) 
•- k=i 
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X (M(0 - F^(t, r}{t))x{t))dt I /7(0) = i 

= X;K{T, i)xo - E [x*{x)K (0, r){t)) x(x) \ r?(0) = (] 

-E\J {u{t)-F''{t,n{t))x(t))* 

Y^im - D*(n(t))D(n(t)) 

r 

- ^ Bl(ri(t))K (T - r, nit)) Bkinit)) 
k=l 

X (uit) - F^it, r](t))xit))dt I ;?(0) = i 

V xo e R", ieV, ue Ll^ ([0, r ] , R " ) , x{t) = x^{t, XQ), r],w ' 

F^'itJ) = -\R{i)-^Y.Bl{i)X{tJ)Bk{i)\ 

X f B;{i)X(t, i) + ^ Bl{i)X{t, i)Ak(i) + D\i)C{i) J , 

F^(r, /) = - {RH) + ̂  ^;(/)/^(r - r, /)5,(/) J 

X ( B^(i)K{T - t, i) + ^ Bl{i)K{T - t, i)Ak(i) + D*(/)C(/) 
A : = l 

w/z r̂̂  /?(/) = -y^Im + D*{i)Dii). 

We prove now the following useful result. 

Lemma 5. Assume that the system (AQ, A \ , ..., A,.; Q) is stable and \\T\\ < y. In 
these conditions there exists a constant p > 0 such that 

ny{T,xoJ.u)<p\xo\^ V T > 0 , X O G R " , ueLlJ[0,TlR'^), 

Proof. Let Xu(t,xo) be the solution of the system (6.1) corresponding to the 
arbitrary control weL^j^([0,r] , R^). Then one can write 

Xu(t,Xo) =Xo{t,Xo) -\-Xu{t,0), 

where xo{t, XQ) is the solution of the system (6.1) for w = 0 satisfying jco(0, XQ) = XQ. 
Therefore xo(t,xo) = ^(t,0)xo. As in the preceding subsection the process 
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Xu(t) = Xu(t, 0) is the solution of the system (6.1) satisfying the initial condition 
Xu{0,0) = 0 . Denoting 

yoit, xo) = C(r](t))xo(t, XQ) and 

yu(t) = C(r](t))x,(t) -\- DitMt), 

one obtains that 
yuit, Xo) = yo(t, Xo) + yu(t). (6.22) 

Since the system (AQ, AI , . . . , A^; <Q) is stable there exists p\ > 0 not depending on 
Xo, such that 

E / \yo(t,xo)\^dt < p^\xo\\ VXQ e R". (6.23) 
L^o J 

On the other hand, from the inequalities 

l | T , | | < | | T | | < K 

it follows that there exists v > 0 not depending on u(t) such that 

E f {\yu(t)\^ - y^\u(t)\^)dt < -v^E [ \u(t)\^dt (6.24) 
Jo Jo 

Vw G L^ j^ ([0, r] , R^). Using the decomposition (6.22) of yu, one obtains that 

ny(r,xo,u) = E \yo(t,xo)\^dt-\-2E y^(t,xo)yu(t)dt 
Jo Jo 

+ £ [ {\yu{t)\^-y^\u(t)\^)dt. 
Jo 

Taking into account (6.23) and (6.24), one immediately obtains 

Hyir^xo^u) < p^\xo\^ ^2p,y\xo\\\u\\ - v^Wuf (6.25) 

Vw G L^^([0, r ] , R^), where ||w|| = {E / J \u{t)\^dty. Since the right-hand side of 
(6.25) is a second degree polynomial with respect with || M ||, one immediately deduces 
that 

ny(T,xo,u)<p^\xo\\ (6.26) 

where p = piv ^ ̂ y'^ + v^, and therefore the proof is complete. D 

In the following we shall denote by X-^ (t) = (X^ (r, 1 ) , . . . , X^ (r, J)) the solution 
of the equation (6.20) satisfying the condition X^iz, i) = 0 , i e V. Let Jr(y) C 
[0, r] be the maximal interval on which the solution X^{.) is defined. From Remark 
3(i) it follows that if ||7^ || < y, then Tj{y) is nonempty. Then from Lemma 2 one 
obtains the following Lemma. 
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Lemma 6. 7/"sup̂ >Q ||7^ || < y then 

r 

y^Im - D\i)D{i) - Y, BliDXAt. i)B,(i) > ep^, t e l,{y). (6.27) 

i e V, T > 0, where SQ > 0 does not depend upon r. 

Proof. Let ô > 0 such that el < y^ — sup^^o 11'̂  Ĥ - Let r > 0 and t\ e Iy(r), 
ti < T. Obviously [̂ i, r] C Xy(r). Denote 

Frit, i) = ly^Im - D\i)D{i) - ^ Bl{i)XAt. i)Bkm (6.28) 

X ( 5*(0^r(r, /) + Y. ^kiOXrit, i)A,(i) + D*(/)C(/) J , 

t e [ti.r], i eV. With Lemma 1 of Chapter 4 one immediately obtains that (6.20) 
verified by X-^{.) can be written in a Lyapunov form on Sf^ as follows: 

— X,{t, i) + [Ao(/) + BoiOFAt, /)]* Xr(t, i) + XAt. i) [Ao(/) + Bo(i)FAt, i)] 
dt 

r 

+ Y [^^(0 + BkiOFAt, /)]* X,(r, /) [Ao(i) + Bo(i)FAt, /)] 
k=\ 

d 

+ ^ ^ / , X , (f, j) - y^F^it, i)FAt, i) 

+ [C(0 + D{i)FAt, /)]* [C(/) + D(/)F,(r, /)] - 0, (6.29) 

t e [tur], i e V. 
Let F : [0, r] -^ Mi^ be defined as 

F (0 = (F(r, l ) , . . . , F ( r , J ) ) , (6.30) 

^^^''^ ' FAtui), r € [ 0 , r , ] , / e P 

and let X{t) = {X(t, 1 ) , . . . , X(/, J)), with A:(r) = 0 the solution of the equa­
tion (6.6) corresponding to the feedback F(.) defined as in (6.30). Then, from (6.29) 
and (6.30), it follows that X(t) = Xr(t), t e [t\, r ] . Applying Lemma 2 one obtains 
that (6.27) is true for all t e [ti, r] and the proof is complete. D 

In the following we shall denote by/i:^(r) = {K^(t, 1 ) , . . . , /^^(r, t/)) the solution 
of the equation (6.21) satisfying the initial condition K^ (0, /) = 0 , i e V. We also 
denote by [0, tf) the maximal interval on which this solution is defined. The next 
lemma summarizes some properties of the solution ^^(0-
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Lemma 7. Assume that the system (AQ, AI , . . . , A;-; Q) is stable and \\T\\ < y. Then 
the solution K^(t) of equation (6.21) has the following properties. 

(i) 
r 

y^Im - D\i)D{i) - J2 Bl{i)K\t^ i)Bk{i) > s^I^ 
k=\ 

Vr G [0, tf), So independent of t. 
(ii) 

XQK^{T, i)xo = Hy (r, XQ, /, Wr) > Wy(r, XQ, i, u) 

Vr G (0 , r / ) , jco G R", / G P , w G L ^ ^ ([0, r ] , R ^ ) , where u^t) = 
Frit, r](t))xT:{t) and 

FAt, i) = ly^Im - D'^iDDH) - J2 Bl{i)K\T - r, /)^^(/) J 

X iBl{i)K\T - t, i) + J2 B:(i)K\T - r, i)Ak(i) + D\i)C(i) j 

and x-cit), t G [0, r], is the solution of the equation 

dx(t) = [Ao(r](t)) + Bo(r](t))FAt, r](t))]x(t)dt 
r 

+ ^ [Ak{r]{t)) + Bk{r^{t))FAt,r^{t))]x{t)dwk{t) 
k=\ 

with the initial condition xo(0) = XQ. 

(iii) There exists p > 0 not depending on x such that 

0 < K^{T, i) < pin, Vr G [0, tf), i G V, 

(iv) 
^ ^ r i , /) < /<:^r2, /), VO < ri < r2 < tf. 

Proof, (i) Let r G (0, f/) be arbitrary but fixed and denote 

X,(0 = ( X , ( M ) , . . . , X , ( r , J ) ) 

defined by 
X,(t) = K^(T - r, /), t G [0, r ] , / G P . 

Then Xj(t) is the solution of equation (6.20) with the final condition ^^(r) = 0. 
Based on Lemma 6 and Remark 1 one obtains 

r 

y^Im - D\i)D{i) - Y, B^iDXAt, i)Bk(i) > SIL, t e [0, r ] . (6.31) 
k=\ 

Since ô does not depend on r, based on (6.31) and on the definition of Xj the proof 
of part (i) is complete. 
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(ii) Applying Lemma 4 for K^(t) = X^ (r - t) one obtains 

= X*K\TJ)XO-E\ f (u(t)-FAt,r]it)x,{t,xo)T (6.32) 
I Jo 

X ly^I^ - DHri(t))D(r](t)) - ^ B;{r](t))XAt, rj(t))Bk(ri(t))\ 

X (u(t) - FAt, r]{t)Xu(t.xo))dt \ r]iO) = i 

VJCO G R " , i e V, U e L^ ,̂ ([0, r] , R'"). From (6.32 ) and (i) it immediately 
follows that 

Hy{T, xo, /, u) < x*K\r, i)xo, (6.33) 

and for 
u(t) = Frit, r](t))x,(t,xo) = Frit, riit))xit) 

the inequality (6.33) becomes an equality. 

(iii) From (6.33) one immediately deduces that 

0<ny (r, jco, /, 0) < x^K^iT, i)xo. (6.34) 

On the other hand, for every / e V one can write 

d 

TTiX^K^ir, i)Xo < ^^7Tj'HyiT,Xo, j , U) = HyiT,Xo, U). 

7 = 1 
From Lemma 5 we have 

nyiT,xo,u)<p^\xQ\\ (6.35) 

Then from (6.34) and (6.35) it follows that (iii) is satisfied for 

p = max —. 

(iv) Let Q < T\ < T2 < tf and consider the stochastic process u^^, t e [0,12], as 
follows: 

UrJt) = 
_ . w,,(r), t e [0, r , ] , 

It is obvious that Ur2 e L^rj,w (W' "^2], R""). Let Xr2it), t e [0,12], be the solution of 
the system (6.1) determined by the input variable ^^2(0 and by the initial conditions 
x^2(0) = XQ. One can easily check that Xr2it) = x^^ it) for t e [0, ri] and 

Tiy {r\,x, i, Uj^) < Hy (12,^0, /, w r̂j . 

Invoking again the maximality properties in (ii), one obtains 

XQK^ ill, i)xo = Hy (ri,xo,/, Wr,) S Hy (12, XQ, /, W^J 

< JCo*A:̂ r2, i)xo Vxo € R^ / 6 P , 

and therefore the proof is complete. D 
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Remark 4. From (i) and (iii) of Lemma 7 it follows that the solution K^{') is defined 
on [0, oc), that is, tf = oo. 

Consider the following subsets of S^ : 

n = {x = (X(i),..., x(d)) e s^„ I c*x - vHX)n-\x)ViX) 

+ C*C <0, 7̂ (X) <0} (6.36) 

and 

n = {x = (x(i),..., xid)) e s^^ I cx - v\x)n~\x)V{X) 
+ ac <0, 7 (̂Z) <0} . (6.37) 

Remarks, (i) fl c n . 
(ii) If the system (AQ, Ai, . . . , A;.; g ) is stable, then FI C <Ŝ +. 

(iii) Let us introduce the generalized dissipation matrix 

Ar(X) = (M(X,) / ) , . . . ,Ar^(X,K)) 

associated with the system (6.1) and with the scalar y, as follows: 

Mi (X, y) = 

where 

Xi, (X, y) N{^ (X, y) 

A/]'i (X, y) = A*(/)X(/) + X(/)Ao(/) + ^ A*(/)X(/)A,(/) 

+ ^ ^ , , X ( 7 ) + C*(/)C(/), 

r 

A/]2 (^' y) = X(i)Boii) + X ] Al(i)X(i)B,{i) + C*(/)D(/) = P*(X), 
k=\ 

r 

M'22 (X, y) = -y^Im + D\i)D{i) + ^ Bl{i)X{i)Bk{i) = 7^(X). 

It is easy to check that 

n = {X eS^^\ A/'(X) < 0, 7^(X) < 0} 

and 
n = {X 6 <S„̂  I Af(X) < 0} . 

From the above inequalities one easily deduces that both FI and n are convex sets. The 
set n includes the solutions of the equation (6.19) for which the condition Tl(X) < 0 
is accomplished. 
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Proposition 8. Assume that the system (AQ, . . . , A^; Q) is stable and n 7̂  0. Then 
for all 

X = (x( i ) , . . . ,x ( j ) ) G n, 

we have 
K^(t)<X V /e [0 , r / ) , 

K^ denoting the solution of equation (6.21) verifying the initial condition K^(0) = 0. 

Proof Under the above assumptions, by Remark 5(ii) it follows that there exists 
Z > 0 with 7^(Z) < 0. Therefore y^/^, - D*(i)D(i) > 0, i e D. Thus we may 
conclude that the solution K^(t) is defined on an interval [0, r ] , r > 0. Let X = 
(X( l ) , . . . , X{d)) e n arbitrary but fixed. Define 

M = (M(1) , . . . ,M(J)) 

by 
M = -CX + 7̂ * (X) 7^-^ (X) V {X) - C*C. 

From the definition of M it follows that X verifies the algebraic equation 

CX - -p* (X) 7^-' (X) V (X) + ac -h M = 0. (6.38) 

Let r e (O, tf) and let X,(0 = ( X , ( M ) , . . . , X,(r, J)) be defined as 

X,(t, i) = K^{T - t, /), t e [0, r] , / e V. 

Thus one deduces that Xj{') is the solution of equation (6.20) satisfying the terminal 
condition X-^{T) = 0. Define 

F,(0 = (F,(r, l ) , . . . , F , ( r , J ) ) , 

F , (^ / ) = - 7 ^ ^ l ( X , ( 0 ) P , ( X , ( 0 ) , / G P , r G [ 0 , r ] . 

By direct computations, similar to the proof of Lemma 1 of Chapter 4, one obtains that 
X verifying (6.38) is also a solution of the equation parameterized with respect to t\ 

C^P^{t)X - y^F:{t)FAt) + (C 4- DFAt)^ (C + DF^t)) 

-hM-{F,(t)-F)"n{X){Fr(t)-F)=0, te[0,Tl (6.39) 

where, Cf^ (t) denotes, as usual, the Lyapunov-type operator defined by the system 
(Ao + BoF,,..., A, + BrFr; Q) and 

F = ( F ( 1 ) , . . . , F ( J ) ) , 

F(/) = -7^^^(X)P , (X) , ieV. 

On the other side, based on (6.29), one obtains that equation (6.20) verified by X^{-) 
can be rewritten as 

j^XAt) + C%{t)X,{t) - y'F:(t)Fr(t) 

+ (C + DFAt)r (C -h DFAO) = 0. (6.40) 
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Let Y(t) = X - Xrit), t e [0, r ] . From (6.39) and (6.40) one obtains that 

dt 

where 

-Y(t) + C}^(t)Y{t) + M(t) = 0, (6.41) 

M(t) = -{FAt) - F)*7^(X) {FAt) -F) + M, 

and it immediately follows that M(t) > 0. Based on Remark 5(ii) it follows that 
F(r) = X >0. Based on the constant variation formula, we have 

Y(t) = Tr (r, 0 Y(T) + f T; (S, t) M(s)ds, t e [0, r ] , (6.42) 

where Tj {t,s) is the linear operator of evolution on S^ defined by the differential 
equation 

--=CfAt)Y(t). 
dt 

Since T* {s, t) is a positive operator on S^ for any s > t from (6.42) it follows that 
Y{t) > 0 for all t e [0, r] , which leads to X^it) <Xje [0, r] , or equivalently, 

K^(t) <X, Wt e [0, r ] . (6.43) 

Since r has been arbitrarily chosen in [0, tf) it follows that (6.43) is verified for 
my t e[0,tf). D 

Before proving the main result of this section we revisit the following known 
result from the theory of differential equations. 

Lemma 9. Let F \ X ^^ X be a continuous function defined on the Banach space 
X. If^ : [0, oo) ^^ X is a solution of the differential equation ^(t) = F{^{t)) with 
the property lim^^oo ?(0 = I 6 A', then F ( | ) = 0. 

Proof Let cp: X ^^ Rhea, linear and continuous functional. Then t -> (p(^{t)) 
verifies 

^cp(^(t))=cp(F{Ht))) 
dt 

and 

Since 

it follows that 

\im<p(^(t)) = cp{l). 

lim / cp{F{^(s)))ds=(p{l)-<p(Hto))&'R-
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Then the integral /^^ (p (F{^(s))) ds is convergent. On the other hand, 

\im<p{F{^{t))) = <p{F{k)). 

From the convergence of the above integral it follows that ( ^ ( F ( | ) ) = 0. Since cp is 
an arbitrary linear and continuous functional we deduce that F ( | ) = 0 and hence the 
proof is complete. D 

The main result of this section is the following theorem. 

Theorem 10. (Bounded Real Lemma) The following assertions are equivalent: 
(i) The system (AQ, A \ , ..., Ar\ Q) is stable and, \\T\\ < y. 

(ii) There exists X = {X(l),,,., X(d)) e S^, X(i) > 0 satisfying the following 
LMlonSU^: 

M{X,y) < 0 , 

A/* (X, y) denoting the generalized dissipation matrix associated with the system (6.1) 
and with the parameter y. 

(iii) The SGRAE (6.18) has a stabilizing solution X = {X(l), ... ,X(d)) 
satisfying X(i) > 0 and 

r 

y^Im - D\i)D{i) - Y, Bl{i)X{i)Bk{i) > 0, / G P . (6.44) 
k=\ 

Proof (i) =^ (ii). For every 5 > 0 consider the linear and bounded operator 

% : Ll^ ([0, ^ ) , R-") -> L^.,, ([0, oo), R"+'') 

defined by 
%u = yu,8 

where 

yuAO = 
C(ri(t)) 

Sin 
XuiO-^ 

D(r](t)) 
0 

u(t) 

and where Xĵ  (0 isthesolutionof the system (6.1) with the initial condition jCĵ (O) = 0. 
Then 

r«oo 

E 
/•oo /'OO /»00 

/ lyuAOl^dt = E / \yAt)\^dt^8^E / \x,(t)\^dt. 
Jo Jo Jo 

Applying Theorem 32(ii) of Chapter 2, one deduces that there exists c > 0 not 
depending on u such that 

/•oo /»oo /•oo 

E / \yuAt)\^dt < E / \y,{t)\^dt + 8^cE / \u{t)\^dt 
Jo Jo Jo 

/•oo 

<{\\Tf + S^c)E \u{t)\^dt 
JO 
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Vw G LlJ[0, oo), R'"). Hence we obtained that WTsf < \\rf + 8^c. Therefore, 
there exists 80 > 0 such that 

sup IIT̂ II <y. (6.45) 
0<8<8o 

For 0 < 5 < 5o let us denote by K^(t) the solution of the differential equation 

^K(t) = CK{t) - V\K{t))ll-\K{t))V{K{t)) (6.46) 
at 

satisfying the initial condition ^^(0) = 0. Since the system (AQ, AI , . . . , Ar\ Q) is 
stable and ||7^|| < y it follows that one can apply Lemma 7 and Remark 4 to the 
solution Kg(t), 8 e (0, 80]. Therefore, there exists p > 0 such that 

0 < K^(t, i) <pln, t>0,ie V, (6.47) 

K^s (^1' 0 < K^8(^2, 0 , VO < n < 12, (6.48) 
r 

y^lm - D\i)D{i) - Y, B;(i)K^(t, i)Bk(i) > slim. (6.49) 
k=\ 

where ô > 6. 
From (6.47) and (6.48) it also follows that 

with 
Ks(i) = lim K^(t, i), i e V, (6.50) 

is well defined. 
From Lemma 9 it follows that Ks is a stationary solution of the differential 

equation (6.46) and hence it verifies 

C'Ks - P* {Ks) n-' (Ks) V {Ks) + C'C + 8^Jd = 0. (6.51) 

Using (6.49) one also obtains that Ks defined by (6.50) verifies 

n{Ks)<-slln,, ieV. (6.52) 

Since (AQ, AI , . . . , A^; Q) is stable, one easily obtains the following representation: 
/»oo 

Ks = / ^̂ *^ [C'C + 8^Jd - V {Ks) n-' {Ks) V {KS)\ ds. 
Jo 

Taking into account the positivity of the operator e^*^ and the inequality (6.52) it 
follows that 

/•oo 

Ks>8^ \ e^^'Jdds. (6.53) 

From Remark 2 of Chapter 2 it follows that there exists y > 0 such that e^ ^ Jd > 

e'"'^Jd- Therefore (6.53) reduces to Ks > —Jd > 0. Finally, notice that for all 
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8 e (0, 5o), Ks verifies 

CKs - V (Ks) 7^-^ (Ks) V (Ks) + C^C < 0. 

This shows, together with (6.52), that Ks verifies A/'( Â )̂ < 0 and therefore (ii) is true. 
^ (ii) =^ (iii) From Remark 5(iii) it follows that X e U. Therefore C*X < 0 and 
X > 0. By using Theorem 15(iv) of Chapter 2 one concludes that (AQ, . . . , A;-; |2) is 
stable. Hence (A, B; Q) is stabilizable. Now, by virtue of Theorem 10 of Chapter 4, 
where 

Mil) = -C*(/)C(/), 

L(i) = -C*{i)Dil), 

R(i) = y^lm - D\i)D{i). i e D, 

we may conclude that the SGRAE (6.18) has a stabilizing solution X = 
(X( l ) , . . . , Xid)) verifying 7^(X) < 0. It remains only to show that X >0. Indeed, 
since the system (AQ, . . . , A^; 2) is stable and Tl{X) < 0, from (6.19) for X and 
Proposition 14 of Chapter 2, it follows directly that X > 0. _ 

(iii) ^ (i) Assume that the SGRAE (6.18) has a stabilizing solution X > 0 veri­
fying (6.44). To prove that the system (AQ, . . . , A;^; 2) is stable we write the SGRAE 
(6.18) verified by X in the equivalent form: 

/ : * X - h C * C = : 0 , (6.54) 

where 

C = (C(1) , . . . ,C(J ) ) , C(i) 

with 

C i ( 0 
Cid) 

Cid) = ly^Im - D\i)D{i) -Y,Bl{i)X{i)B,{i)\ 

X lBl{i)X{i) + Y. Bl{i)X{i)Ak{i) + D\i)Cm , 

C2(0 = C(/), / 6 V. 

Further, take 
// , = ( / / , ( ! ) , . . . , / / , ( J ) ) , /: = 0, l , . . . , r , 

where 

With the above notations, one obtains that 

(Ao + //oC, ...,Ar + HrC; Q) = {AQ + BQF, . . . , A, + B,F; Q) 



6.2 Stochastic version of the Bounded Real Lemma 231 

is stable. If x{t), t > 0, is an arbitrary solution of the equation 

r 

dx{t) = Ao(r](t))x(t)dt + ^ Ai,(r]{t))x(t)dwk(t), 
k=\ 

then we can write 

dx{t) = [{Ao(r](t)) + Ho(r]{t))C(ri(t))) x(t) + MO] dt (6.55) 
r 

+ L {{^k{r]{t)) + //,(r;(r))C(r7(r))) x{t) + / , ( 0 ] t/K;,(0. 

Based on similar reasoning as in the proof of Lemma 15 in Chapter 4 one deduces that 
the null solution of the equation (6.55) is ESMS. It remains to prove that ||T|| < y. 
Applying the Ito-type formula for the function x*X{i)x and to the system (6.1) one 
obtains that 

/•OO 

E / {\yu{t)\'-y^\u{t)\'dt] (6.56) 
Jo 

' / (-7^,(o(x))^(«(o-F(^(0)x.(o) 
^ 0 I I 

= -E 
2 

dt 

for any u e Z.^^([0, oo), R'"), Xu{t), t > 0, denoting the solution of (6.1) with 
the input u(t), t > 0, and with zero initial conditions. The equality (6.56) can be 
rewritten as follows: 

\\Tuf-y'\\uf = -\\gj\ (6.57) 

where 

gu(t) = ly^Im - D'(i)D(i) -J2B"k(nX(i)Bk(i)\ (6.58) 

x{u(t)-F(r](t))xAt)). 

From (6.57) it follows that 
l|T|| < y. (6.59) 

It remains to prove that the equality cannot take place in (6.59). Indeed, if ||T|| = y 
itic processes M/, / > 0, {w/} C L^^ ([0, oo), R") 

Ilw/ll = 1, V / > 0 , (6.60) 

there exist a sequence of stochastic processes M/, / > 0, {w/} C L^^ ([0, oo), R") 
with 

and 
lim \\Tui\\=y. (6.61) 

Let xi(t), ^ > 0, be the solution of the system (6.1) determined by the input ui (t) and 
having the initial conditions JC/(0) = 0, / > 0. We also denote by gi{t) the process 
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defined by (6.58) in which u has been replaced by M/. Using (6.60), the equality (6.57) 
becomes 

\\Tuif-y' = -\\gif. 

Then, taking into account (6.61), one obtains 

l im | | g , | |=0 . (6.62) 

Further, from (6.58) and (6.44) it results that 

lim \\gi\\=0, (6.63) 

where we denoted gi(t) = ui{t) - F(ri(t))xi(t), t > 0. The differential equation 
verified by xi can be rewritten as 

dxiit) = {[Aoinit)) + Bo(r](t))F(ri(t))]xi(t) + Bo(r](t))gi(t)}dt 
r 

+ Y, [[^k{r]{t)) + B,{r]{t))F{r){t))\xi{t) + Bk{r){t))gi{t)]dwk{t). 
k=\ 

Since the system (AQ + ^o^ , ..., Ar -\- BrF\ Q) '\^ stable, combining the result in 
Theorem 32 in Chapter 2 and (6.63), we obtain that lim/_^oo Ik/ II = 0, and then, again 
using (6.63), it immediately follows that lim/_^oo 11"/ II = 0, which contradicts (6.60), 
and thus the proof is complete. • 

Remark 6. (i) From the above theorem it follows that 

JITJI = inf {}/ > 0, for which it exists X = (X( l ) , . . . , X(d)) e S^,. 
X > 0 such that A/; (X) < 0} 

= inf {y > 0, SGRAE (6.18) has the stabilizing solution. 
X = (X( l ) , . . . , X(d)) verifying X(i) > 0, 7^/(X) < 0, / e V}. 

(ii) Let us notice that in contrast with the H^ norms associated with a stochastic 
linear system that can be directly computed by the results in Theorems 18 and 21 of 
Chapter 5, the norm of the input-output operator associated with a stochastic linear 
system cannot be directly computed. This norm can be estimated using a y-procedure 
as in the deterministic case. 

(iii) From the numerical point of view, the equivalence (i)<:^(ii) is more effective 
for computing ||T|| since for every y it reduces to testing the feasibility of an LMI 
system. The equivalence (i) ^ (iii) of Theorem 10 is useful for developing mixed 
H^/H"^ procedures for robust stabilization. 

(iv) In the particular case when there exists ri > 1, such that Ak(i) = 0 , ry < 
k <r, and Bk{i) = 0, 0 < k < n - \, C\i)D{i) = 0 , i eV, SGRAE (6.18) 
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reduces to the following Lyapunov-type equation: 

A*(OX(/) + X(i)Ao(i) -f J2 ^l(i)X(i)Ak(i) 
k=\ 

d 

^Y.'iijXU) + C*(/)C(/) = 0, ie V. (6.64) 
7 = 1 

By convention, if ri = 1, the first sum in (6.64) is missing. If the system 
(AO, . . . , A;.J_I; Q) is stable, then the equation (6.64) has a unique solution X = 
(X( l ) , . . . , X{d)) > 0. Moreover, if Theorem 10(i) is fulfilled, then the solution of 
the equation (6.64) verifies the condition 

r 

D*(/)D(/) + ^ B;{i)X(i)B,ii) < y^Im. i e V. 

Remark 7. L^^([0, oo), R'") can also be organized as a real Hilbert space, taking the 
inner product 

^ r /»oo 

{u,v) = y^E\ / u\t)v{t)dt I 77(0) = / 

The corresponding induced norm will be denoted by 111 • 111. 

Proposition 11. Suppose that (AQ, . . . , A^; g) is stable. Then \\T\\ = | | | T |||. 

Proof. It is easy to see that all preceding results and remarks hold if the norm || • || 

is replaced by 111 • 111. In this case the performance index //y (r, XQ, w) is replaced by 

5Z/=i ^y(^' -̂ 0. h u). Therefore, taking into account Remark 6(i), we have 

llinil = inf [Y > 0, SGRAE (6.18) has a stabilizing solution 

X >0 with Ri{X) < 0 , / eV}. 

Hence ||| T | | |= ||T||, and thus the proof is complete. D 

From Theorem 10 and Remark 6(i) one immediately obtains the following 
corollary. 

Corollary 12. Consider the system 

n - i 

dx(t) = Ao{ri{t))x(t)dt + ^ Ak{r]{t))x{t)dwkit) 
k=\ 

r 

^-Y,Bk{r]{t))u{t)dwk{t), (6.65) 
k=rx 

y(t) = C(r](t))x{t) -^ D{r](t)Mt) 

with C*{i)D{i) = 0, i e V. Assume that the system (AQ, . . . , A^J_I; Q) is stable 
and denote by 

T : Ll^ ([0, ^ ) ; R") ^ L^,, ([0, oo); R") 
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the input-output operator associated with the system (6.65). Then 

\\T\\ =maxVA.max(0, 

where Amax(0 is the largest eigenvalue of the matrix 

r 

D\i)D{i) + Y. Bl{i)X{i)Bk{i). i e V, 

X = (^X{1),..., X{d)) being the unique solution of (6.64). D 

Proposition 13. L^r D : L^^ ([0, oo); R^) -^ Ll^([0,ooy,RP) be the linear 
bounded operator defined by 

(DM) (0 = D{r){t))u{t)^ u e Ll^ ([0, oo); R " ) . 

Then 
||D|| = |D|=max{|D(/ ) | , ieV). 

Proof Since D*(i)D{i) < |D|2/^, we have 

WDuf = E / uHt)DHr](t))D(W)Mt)dt 
Jo 

POO 

<\DfE / \uit)\^dt = \Df\\uf 
Jo 

for every u e L\^ ([0, oo); R^). Hence ||D|| < \D\. 
Further, let i eV, u eW arbitrary but fixed. Take 

-(t^^\^X,U)=i i f rG[0, 1], 
^ ^ ~ [ 0 i f r > l . 

Obviously M e L] ([0, oo); R^) and therefore M e L]^ ([0, oo); R'"). The inequality 

\\mf <\m^\\uf 
becomes 

/ E{\D{r^{t))u\' Ex,it)=.)dt smi" i \u\'Ex,it)=idt. 
Jo Jo 

I \D{i)u\' Exm=idt <\\Dt\u\^ I Ex,it)=idt. 
Jo Jo 

/ Exrj(t)=idt = y^^jE [xm=i I ̂ (0) = j]dt 
Jo Jo ~[ 

d p\ f^ ' 
"^Yl njpji(t)dt> niPii{t)dt >0. 

Tl Jo Jo 

Therefore 

But 
»1 d 

7 = 1 
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Thus we may conclude that 

|/)(0«l<l|/)||l«l 

which leads to |D| < ||Z)|| and thus the proof is complete. D 

Remark 8. (i) Evidently, if w G L^^ ([0, oo); R'"), then DM e L^ ([0, oo); R^). The 
proof of Proposition 13 shows that | |D|| = \D\ = ||D||, where D is the restriction of 
the operator D to the subspace L^ ([0, oo); R'") C L^^ ([0, oo); R'"). 

(ii) The conclusion of Proposition 13 can be obtained directly from Corollary 12. 
Indeed, if we take C{i) = 0, / e V, it follows that X(i) = 0, / e V, and therefore 
||D||2 = max,-ep|D(/)|2. 

The following result allows us to increase the number of relations of equivalence 
in Theorem 10, and it is useful in some applications. 

Proposition 14. Let N{X) = (J\f\ (X), . . . , Md{X)) be the generalized dissipation 
matrix associated with the matrices A^(/), B^ii), C(i), D{i), and with the scalar 
y > 0. Then the following assertions are equivalent: 

(i) There exists X = ( X ( l ) , . . . , Xid)) e S^, X > 0, such that JVi(X) < 0 
V/ e V. 

(ii) There exists Y = ( F ( l ) , . . . , Y{d)) eS^, Y > 0, such that 

•Wo,o(F, /) 

Wo*i(>^,/) 
m,i(Y,i) 
Wi, i (y , / ) 

i G V, where 

WoAY,i) yVo,r+iiY,i) >Vo..+2(i',0 
Wur(Y,i) Wl,r+l(Y,i) W,,r+2iY,i) 

WrAY,i) Wr.r+l(Y,0 Wr.r+liYJ) 
W:,^,(Y,i) Wr+l.r+\(Y,i) Wr+l,r+2iY,i) 
yV:r+2(YJ) W;+,,+2(y,/) Wr+2.r+2{Y,i)_\ 

<o, 

(6.66) 

m.o(Y, i) = Uo(i) + ^-quln) Yd) + Yd) (AOU) + ^quln 

= Y{i)Al(i) + Boii)B;(i), k=l,...,r, 

= Yii)C*ii) + Bo(i)D*ii), 

~ Y(i)^q-^Yii),..., 

mAY, i) 
m,r+dY,i) 

m,r+2iY, i) 

Wi.k(Y,i) 
w,.,(y, /) 

Wl,r+i{Y,i) 

Wr+l,r+l{Y,i) 

Wl,r+2{Y, i) 

Wr+2.r+2iY, 0 

= {VqriY(i),...,^,,.,. ,., ^^,, 
= Bid)Bid), l<l,k<r, Ij^k, 

= Bid)Bid) - Yd), 1 < / < ^ 

= Bid)D*d), ! < / < / - , 

= Dd)D*d)-y^ip, 
= 0, 1 < / < r + l , 

= diag i~Y{l), ...,-Yd- 1) - Yd + 1), 

+ Bod)B^d), 

qidYd)), 

-Y{d)). 
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Proof. It is easy to see that the existence of X = (X(\),..., X{d)) > 0 such that 
NiiX) < 0 is equivalent to the existence ofX = (X{\),..., X(d)) > 0 such that 

Vn(X,/) V,2(A: , / ) V | 3 ( X , / ) 

Vr^CX,/) V22iX,i) V2i(XJ) 
V*3(X,/) V^,(X,i) Vi.iXJ) 

<o, (6.67) 

where Vii(X, /) is an (n + m) x (n + m) matrix given by 

I / 4 I I I X I I I —I- X I I I ^ ^ I I I - L - > 

Vn{X,i)^ 
A*ii)X{i) + X(i)Aoii) + ZU "lU^iJ) X(i)Boii) 

V\2(X, i) is an (n + w) x (r • n) matrix 

V,2(X, 0 = 

Vi3(X, /) is an{n+m) X p matrix defined by 

Vn{XJ) = 

A\(i)X{i) ... A*{i)X{i) 
B;(i)X(i)... B;(i)X(i) 

D*(i) 

V22(>'̂ , 0 is an (M • r) x (n • r) matrix 

V22{X,i)=diag(-X(i),...,-X{i)). 

V23(X, () is an (n • r) X /7 matrix given by 

V23(X,/)=0, 

and 

Let us introduce 

V33(X,0 = - / p -

^{i)=diag{X-\i) /„, ~V^^(X,i) Ip). 

It is obvious that ^(i) = ^*(i) > 0. Through pre- and postmultiplication of (6.67) 
by ^(i), one obtains that there exists X = ( X ( l ) , . . . , X(d)) > 0, such that 

V„(X,0 
BJH) 
K(X,i) 
C(/)X-'(0 

So(/) V,3(X,/) X-'(/)C*(/) ' 
-y^L V23(X,/) D*(i) 
V*^(X,i) Vii{X,i) Vu(XJ) 
D{i) v;,(xj) -ip 

<o, (6.68) 

where 

VuiX,i) ^ Ao(i)X-\i) + X-'ii)A;ii) + J2luX~'(0X(j)X-\i), 

Vi3(x,i) = [x- '( /)At(() . . . x- '(/)/i;(i)], 

V23(x,/) = [B*(o ... B ; ( / ) ] , 



6.2 Stochastic version of the Bounded Real Lemma 237 

V33(X, /) is an rn x rn matrix defined by 

V33(X, /) = diag {-X-'{i), . . . , -X-'(i)), 

and V34(X, /) is sjirnx p matrix, V34(X, /) = 0 . Denoting Z(i) = X"^ (i) one imme­
diately obtains that (6.68) is equivalent to the existence of Z = ( Z ( l ) , . . . , Z(d)) > 0 
satisfying 

Vii(Z,/) Vu(ZJ) Z(/)C*(/) Vi4(Z,/) Bod) 
V'n(ZJ) V22(Z,/) V23(Z,/) V24(Z,0 V25(Z,0 
C(i)Z(i) V23(Z,/) - / ; , V34(Z,/) D(i) | < 0 , (6.69) 
Vi*4(Z'0 V2*4(^'0 %(Z,i) V44(Z,/) V45(Z,/) 

.5*( / ) V*5(Z,/) /)*( /) V4*5(Z,/) - y 2 4 J 

where 

Vii(Z, /) = ( Ao(/) + -quln I Z(/) + Z(i) f Ao(/) + -qaln 

Vi2(z,/) = [z(/)At(/)... Z( /)A;( / ) ] , 

Vi4(Z, /) = \^fq~xZ{i) . . . ,/q~^Zii) .Jqi~^Z(i) . . . ^/qidZ(i)] 

is 2in n X (d — \)n matrix, 

V22(Z,i)=diag{-Z(i) . . . - Z ( / ) ) 

has the dimensions rn x rn, V23(Z, /) = 0 is SLU nr x p matrix, V24(Z, /) = 0 is an 
nr X (d — l)n matrix, 

[^1(0" 

V25(Z,/)= : 

1^.(0. 
is annr X m matrix, V34(Z, 0 = 0 has the dimensions p x (d — l)n, 

V44(Z, /) = diag ( -Z( l ) . . . - Z (/ - 1) - Z (/ + 1) . . . - Z{d)) 

is a (J — l)n x(d— l)n matrix, and V45(Z, /) = 0 has the dimensions (r — l)n xm. 
Taking the Schur complement of the block —y^Im of (6.69) it follows that this 

condition î  accomplished if and only if there exists Z = (Z(l),..., Z(d)) > 0 such 
that 

Wu(Z,/ ) Wi2(Z,/) Z{i)C*{i)^y-'Bo(i)D*ii) VVi4(Z,/)' 
W,*2(Z,/) miiZJ) W23(Z,/) W24(Z,/) 

C(i)Z(i)J- y-^D(i)B*ii) W*3(Z, /) -Ip +j^-^D(i)D*(i) W34(Z, /) 
WU(Z,i) W*4(Z,/) W3*4(Z,/) W44(Z,/) 

<o, 

(6.70) 
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where 

1 1 . - 2 I Wii(Z, /) = ( Ao(/) + -qiiln\ Z(i) + Z(i) ( Ao(/) + -qulnj + y-'^oCO^oO'), 

Wn(Z, i) = [Z(i)A\ii) + y-^B,(i)B;{i)... Z(i)A;(i) + y-^Br(i)B;(i)] , 

Wi4(Z, /) = Vi4(Z, /), W22(Z, /) = V22(Z, /), 

>V23(Z, /) = V23(Z, /), W24(Z, /) = V24(Z, /), 

>V34(Z, /) = V34(Z, 0 , W44(Z, /) = V44(Z, /). 

Consider the (2n {r + d) -\- p) x (2n (r -\- d) -{- p) matrix 

r = diag {yln, yhn. yip. yh{d-\)) • 

By pre- and postmultiplication of (6.70) with F and denoting Y{i) = y^Z{i), i G V, 
one obtains (6.66) and therefore the proof is complete. D 

At the end of this section we consider the particular cases when the system (6.1) 
is subjected either only to Markov perturbations or to white noise multiplicative 
perturbations. 

Assume that in (6.1) we have Ak{i) = 0, Bk{i) = 0 , /c = 1 , . . . , r, i eV. Then 
(6.1) becomes 

x(t) = Ao(ri{t))x{t) + 5o(^(0)«(0, 

yit) = C{r](t))x{t) + D{r]it))u{t). 

The generalized dissipation matrix is in this case 

with 

A*(/)X(/) + X(/)Ao(/) 

(6.71) 

M(X) = 
iB^(i)X(i) 4- D*(/)C(/) - y 2 / ^ 4- D*(/)D(/) J 

(6.72) 

for any X = ( X ( l ) , . . . , X(d)) e <S,f, / e V. The SGRAE (6.17) becomes in this 

case 

AS(/)X(/) + X{i)Ao(i) 4- J2 ^ijXU) + [X(i)Bo(i) + CHi)D(i)] 
7 = 1 

X [y^I^ - DHi)D(i)Y' [B*o(nX(i) + Z)*(/)C(/)] + C*(/)C(/) = 0, 

(6.73) 

/ e V, Combining Theorem 10 and Proposition 14 one directly obtains the Bounded 
Real Lemma in the case of systems subjected to Markov perturbations. 
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Corollary 15. For the system (6.71) and for A y > 0 the following assertions are 
equivalent: 

(i) The pair (AQ; Q) is stable and the input-output operator T defined by the 
system (6.71) satisfies 

\\T\\<y. 

(ii) There exists X = ( X ( l ) , . . . , X(J)) > 0 such that Mi (X, y) < 0 V/ G V. 
(ill) y^Im — D''{i)D{i) > 0 and the SGRAE (6.73) has a stabilizing solution 

X = ( X ( 1 ) , . . . , X ( J ) ) > 0 . 
(iv) There exists Y — (F(l), . . . , Y(d)) > 0 satisfying the following system 

ofLMIs: 

>Vo,o(F,/) >Vo,.+i(y,/) Wo^r^iiY.i) 

Wo%+i(y,/) w.+i,.+i(r,/) w.+K.+2(F,/) 
L>^o,r+2( '̂0 w;^i,^2(>^'0 w.+z.+iO^^oj 

w/i^r^ Wi7(F, /) are the same as in (6.66). 

< 0, i e V, 

D 

In the following we assume that D = {1}, ^n = 0, and r > 1. In this case the 
system (6.1) becomes 

dx(t) = [Aox(t) + Bou(t)] dt + Y^ ^^kx(t) + Bku(t)] dwkit) 
k=\ 

y(t) = Cx(t)-\-Du(t). (6.74) 

Then the generalized dissipation matrix is 

MiX) 

for any X G 5„. The SGRAE (6.18) becomes in this case 

A*X + XAo + ^ A * X A ^ + 
it=i ^=1 =1 

r 

^=1 jt=i 

(6.75) 

Again applying Theorem 10 and Proposition 14, one directly obtains the Bounded 
Real Lemma for systems subjected only to multiplicative white noise perturbations. 

Corollary 16. For the system {6.1 A) and for a y > 0, the following are equivalent: 
(i) The system (AQ, . . . , Ar) is stable and the input-output operator T associated 

with the system (6.74) satisfies the condition \\T\\ < y. 
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(ii) There exists a matrix X > 0 satisfying A/'(X) < 0. 
(ill) The SGRAE (6.75) has a positive semidefinite stabilizing solution X satisfying 

y^Irn - D-'D - ELi K^^k > 0. 
(iv) There exists Y > 0, Ye S^, verifying the following LMI: 

A ' + YAI + BQB; 

A^Y + BiB* 

ArY + BrB* 
CY + D*Bo 

YA\ + BOB; •• 
-Y + BIB; •• 

BrB* 
DB* 

• YAr + BQB; 

BIB: 

• -Y + BrB; 
DB; 

YC* + BQD* 1 

B\D* 

BrD* 
-Y^lp + DD* _ 

<0. 

Remark 9. It is easy to see that in the case D = {1}, Â^ = 0, Bk =0, k = \,.,. ,r, 
the results stated in Corollaries 15 and 16 reduce to the well-known version of the 
Bounded Real Lemma of the deterministic case. 

6.3 Robust stability with respect to linear structured uncertainty 

At the beginning of this section we shall prove the stochastic version of the so-called 
Small Gain Theorem (SGT). As is known from the deterministic framework, this is 
a powerful tool in analyzing the robust stabilization with respect to different classes 
of linear perturbations. 

6.3.1 Small gain theorem 

We first prove the following result. 

Theorem 17. Assume the following. 
(a) The system (AQ, . . . , A^; Q) is stable. 
(b) The system (6.1) has the same number of inputs and outputs. 
(c) The input-output operator T defined by the system (6.1) satisfies the condition 

\\r\\ < 1. 
Then we have the following. 
(i) The matrices 1^ •^D{i),i e V are invertible. 

(ii) The system (AQ, ..., A \ \ Q) is stable, where 

A,(/) = A,{i) ± Bk{i) dm T D(i))-' C(/), /: = 0, 1, . . . , r. 

Proof, (i) Using Corollary 3 and Remark 2 for the case y = I one obtains 
that Im — D*(/)Z)(/) > 0, / G V. It follows that all eigenvalues of the matrices 
D(i), i e V, are inside the unit circle, and therefore det (/^ ± D(i)) 7̂  0, which 
shows that I^ ^ D(i),i e V, are invertible. 

(ii) From the implication (i) => (ii) of Theorem 10 for y = 1 we deduce that there 
exists X = ( X ( l ) , . . . , X{d)) > 0 satisfying 

Afi {X, 1) < 0, / e V. (6.76) 
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Using the Schur complement of the block (2,2) one obtains that (6.76) is equivalent 
to the condition 

cx - p* (z) 7̂ -̂  (X) V (X) + c*c -f M = 0, 7̂  (X) < 0 (6.77) 

for a certain M > 0, M = ( M ( 1 ) , . . . , M(J)) G 5^. By direct computations similar 
to those in Lemma 1 of Chapter 4 one obtains that (6.77) can be rewritten as 

C%X - C'G + (C + DGf (C + DG) 

-{G-F)*n{X){G-F) + M = 0, (6.78) 

where 

G - (G( l ) , . . . , G(d)), G{i) = ±{I^T D(i)r' C(/), 

F = ( F ( l ) , . . . , F(^)) , F{i) = -nr' (X) Vi (X), / G P . 

Then one obtains 

(C(i) + Z)(/)G(/))* (C(/) + D{i)G{i)) - G*(/)G(/) 

= C*(/) [/^ ± (/^ =F /)*(0)~' /)*(0] [/m ± ^( / ) dm T D(i))-'] C(i) 

- G\i)G{i) 

= C*(/) (/^ T D%i))-' Um T /)(/))"^ C(/) - G*(/)G(/) 

= G\i)G{i) - G\i)G{i) = 0. 

Thus it follows that (6.78) reduces to 

£^X - (G - F)* 7^ (X) (G - F) + M = 0. 

Since M - {G - F)*7^(X)(G - F ) > 0 and X > 0, using Theorem 20 of Chapter 
2 one obtains that the system (AQ + ^o^^, . . . , Â  + BrG', Q) is stable. But Ak(i) + 
Bk(i)G(i) = Ak(i) and thus the proof is complete. • 

Theorem 18. (The first small gain theorem) Assume that the assumptions in 
Theorem 17 hold. Then the operators 

/ T r : L̂ , , {[0, (^), R-} ^ L^,, {[0, oo), R-} 

are invertible and the operators 

( / T T ) - ' : L 2 J [ 0 , O O ) , R ' " } ^ L ^ , , { [ 0 , O O ) , R ' " } 

have the following state-space realization: 

dx(t) = ['Aoiri{t))x{t) + ^o(r,it))y(t)] dt (6.79) 
r 

+ E [Akir](t))x{t) + B,(/?(0)y(0] dwkit), 
k=l 

u{t) = Cir]{t))x{t) +'D{n{t))y{t), 
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A(i) being defined as in Theorem 17, B,{i) = B^d) (L T D(i))-\ Ck(i) 
= ±(ImT D(i)r' C(i), D(i) = Um T D{i))-' , 0 < /: < r, / € p . 

The proof immediately follows using Theorem 17 and part (ii) of Proposition 1. 
D 

Remark 10. If ||T|| < 1 then the invertibility of the operators / =F ^ can also be 
obtained by a well-known result from the theory of linear and bounded operators on 
a Banach space. Theorem 18 additionally shows that the operators (/ =F ^ ) ^ have 
realizations in the state space. 

Consider the following systems: 

dxxit) = [Aoi(^(0)-^i(0 + BQx{r]{t))ux{t)]dt 
r 

+ Y,[Ak^(r]{t))x,(t) + Bu{1lit))u^{t)]dwdt), (6.80) 
k=\ 

dxjit) = [Ao2(r](t))x2(t) + Bm{il(t))u2(t)]dt 
r 

+ Y, [Ak2{r]{t))x2{t) + Bk2m))u2{t)] dwk{t) (6.81) 

yiit) = C2(ri(t))x2(t) + D2(ri(t))u2(t), 

with the states xi e R""', I = \,2; the output variables yi e R^, y2 eR""; and the 
inputs u\ eR^, U2 eRP. When coupling (6.80) and (6.81) by taking U2 = yi and 
u\ = y2 one obtains the following resulting system: 

r 

d^(t) = Ao,i(ri(tmit)dt + J2 Akciir](tm(t)dwk(t), (6.82) 
k=\ 

where 

AkcliO = 
Akiii) + Bkx{i)D2{i)Cx{i) Bkiii)C2(i) 
Bk2(i)Ci(i) A,2(i) 

, k = 0,\, 

Then another consequence of Theorem 17 is as follows. 

Theorem 19. (The second small gain theorem) Assume that the following assumptions 
hold: 

(i) The systems (AQ/, . . . , Ari; Q), / = 1, 2 are stable. 
(ii) ||7i|| < y, \\T2\\ < y~^ for a certain y > 0, where 

7i : Ll^ {[0, 00), R-} -> Ll^ {[0, oo), R ^ , 

T2 : Ll^ {[0, oo), RP) -^ L]^ {[0, oo), R-} 

are the input-output operators defined by the systems (6.80) and (6.81), respectively. 
In these conditions the zero solution of the system (6.82) is ESMS. 
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Proof. From Proposition 1 one deduces that a state-space realization of the 
operator Ti 72 is 

dx{t) = [Ao(r](t))x(t) + Bo(r](t))u{t)]dt 
r 

+ Y, [Ak(ri{t))x(t) + B,(r]it)Mt)] dw^it), (6.83) 
k=\ 

y{t) = C{r](t))x{t), 

where Ak('), Bk{-) are defined as in Proposition 1 and 

C(/) = [Ci(/)0], x = 

It is easy to see that 

Akcid) = Ak(i) + Bk(i)C(i) = Akd), k = 0,...,r, i eV, 

Ak(i) being the ones in Theorem 17 with D{i) = 0. The conclusion in the statement 
follows, applying Theorem 17 to the system (6.83). We show now that the assumptions 
in this theorem are fulfilled. Thus, from assumption (a) in the statement and from the 
triangular structure of the matrices Aj^ii), using Theorem 32 of Chapter 2 one deduces 
that the zero solution of the system (6.83) for u(t) = 0 is ESMS. From assumption 
(b) we have ||Ti7^|| < ||Ti || ||7^|| < 1, and hence the proof is complete. D 

Remark 11. Without important changes, the result in Theorem 19 also remains valid 
in the case when the output equation of (6.80) has the form 

yi(t) = Cdr](t))xi{t) + Ddr](t))uiit). 

From Theorem 19(ii), it immediately results that 1^ — D\ (i)D2{i) is invertible for all 
/ G V. The coefficients of the closed-loop system will be changed accordingly. We 
shall not detail them since they will be not used in the following developments. 

An interesting case is the one when in the system (6.80) we have n\ > 0, and in 
(6.81) «2 = 0. In this situation the resulting system obtained by coupling (6.80) with 
(6.81) reduces to 

dxiit) = [Aoi{r](t)) + Bo,{r]{t))D2(r]it))Ci(r]it))]xdt)dt (6.84) 
r 

+ J2\^Ai,driit)) + Bkdri(t))D2(ri(t))Ci{ii(tmxdt)dwk{t). 
k=l 

The input-output operator T2 associated with the system (6.81) becomes 

(T2M2) (0 = D2{r](t)Mt), f > 0 VM e LljlO, 00), R"). 
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From Proposition 13 it follows that ||7^|| = \D\ = max{|D(/)|, / e V]. Consider 
the system 

dx{t) = [Ao(r](t))x{t) + Bo(ri(t)Mt)]dt 
r 

+ ^ [Ak{r]{t))x{t) + Bk{W))i^{t)] dwkit). (6.85) 
k=\ 

y(t) = C{rj(t))x(t). 

Then we have the following corollary. 

Corollary 20. Assume as follows. 
(i) The system (AQ, . . . , A;.; Q) is stable. 
(ii) ||T|| < y and \D\ < y~\ where 

T : L̂^ ,,([0, (^), R'") ^ Ll^XiO. oo), RO 

denotes the input-output operator associated with the system (6.85) and D = 
(D{\),...,D(d))eMip. 

Then the zero solution of the system 

dx{t) = [Ao{r){t)) + Bo{r^{t))D{ri{t))C{r](t))\x{t)dt 
r 

+ ^ [A^(r7(r)) + B^{r]{t))D{y]{t))C{r]{t)\x(t)dw^{t) 
k=\ 

is ESMS. 

6.3.2 Robust stability with respect to linear parametric uncertainty 

It is a known fact that the exponential stability of a solution of a linear deterministic 
system is not essentially influenced when the coefficients of the equation describing 
the system are subjected to "small perturbations." Taking into account the equiva­
lence between the ESMS of a zero solution of a stochastic differential equation and 
the exponential stability of the zero solution of a Lyapunov-type linear differential 
equation, one expects the ESMS not to be affected by the small perturbations of the 
coefficients in the given equation. When analyzing the robustness of the solution of a 
system of stochastic differential equations we refer to the preservation of the stability 
property when the system is subjected to coefficient variations that are not necessar­
ily small. Such variations or uncertainties are due to the inaccurate knowledge of the 
system coefficients or to some simplifications of the mathematical model. One must 
take into account that a controller designed for the simplified model will be used for 
the real system subjected to perturbations. 

In the present section the robust stability with respect to a class of linear uncertainty 
will be investigated. Consider the linear system described by 

dxit) = [Ao(ri(t)) + Bo(r]{t))A(r](t))C(r](t))]x(t)dt (6.86) 
r 

+ J2^Ak{r](t) + Bk{r}it))Mriit))C(riitmx(t)dWk(t), 
k=l 
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where Akii) e R'̂ ^", 0 < k < r, Bk{i) e R"^^, 0 < k < r, C(i) e R^^", / e V, 
are assumed known and A(/) 6 R"^^ are unknown matrices. Thus the system (6.86) 
is the perturbed system of the nominal one: 

r 

dxit) = Ao{r](t))x(t)dt + YlAk ir]{t)x{t)dwk(t), (6.87) 
k=\ 

and the matrices Bk(i), C(i) determine the structure of the uncertainty. If the zero 
solution of the nominal system (6.87) is ESMS we shall analyze if the zero solu­
tion of the perturbed system (6.86) remains ESMS for A(/) ^ 0. This is a primary 
formulation of the robust stability with respect to structured linear uncertainty for a 
stochastic system. For a more precise formulation we shall introduce a norm in the 
set of uncertainties. If A = (A( l ) , . . . , A{d)) e M^^p, one defines 

|A| =max{|A(/) | , / e V] = mdi\ yjX^^^{i), 
ieV 

where Xmaxii) is the largest eigenvalue of the matrix A*(/)A(/). 
As a measure of the stability robustness we introduce the stability radius with 

respect to linear structured uncertainty. 

Definition 1. The stability radius of the pair (AQ, . . . , A^; Q) with respect to the 
structure of linear uncertainty described by (BQ, ..,, Br, C) is the number 

PL (A, e I B, C) = inf {p > 0 I 3 A = (A( l ) , . . . , A(d)) e Mi^ 
with I A| < pfor which the zero solution of the corresponding 
system of type (6.86) is not ESMS\. 

The result stated in Corollary 20 allows us to obtain a lower bound of the stability 
radius defined above. To this end, let us introduce the fictitious system: 

dx{t) = [Ao(r7(0)x(0 + BQ{r){t))u{t)]dt 
r 

+ Y, V^k (r](t)x(t) + Bk(rj(t))u{t)] dwk(t), (6.88) 
k=\ 

y(t) = C(r](t)x(t)) 

with the known matrices of the perturbed system (6.86). 

Corollary 21. Assume that the zero solution of the nominal system (6.87) is ESMS. 
Let 

T : LlJlO, (X)), R'^) ^ LlJ[0^ (X)), RO 

be the input-output operator associated with thefictious system (6.88). Then 

p ^ ( A , e | B , C ) > | | T | r ^ (6.89) 
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Proof. Let p < ||T||~^ be an arbitrarily fixed number. We show that for any 
A G M^^p with |A| < p the zero solution of the perturbed system (6.86) is ESMS. 
Let A with I A| < p < ||T||~^ Denoting y = p"\wehave ||T|| < }/and|A| < y~^. 
Applying the result of Corollary 20 one deduces that the zero solution of the system 
(6.86) is ESMS for the considered perturbation A. Therefore pi (A, g | B, C) > p. 
Since p is arbitrary it follows that (6.89) holds and thus the proof is complete. D 

At the end of this subsection we shall show that certain structures of the linear 
uncertainty frequently used in the literature can be embedded in the general form of 
the system (6.86). 

Consider first the perturbed system 

dx{t) = [Ao(r7(0) + %{r]{t))^^{r]{t))C{r]{t))\ x{t)dt (6.90) 
r 

+ Y. [^^ (^(^) + %{r]{t))^,{r){t))C{r]{t))] x(t)dwk(t), 
k=\ 

where Ak{i) e R"^^ S^(/) e R"^^^ 0 < k < r, i e V, are known and Ak(i) e 
^mkxp^ 0 < k < r, i e V, are assumed unknown. In order to show that the system 
(6.90) is in fact a particular case of the system (6.86), we define Bk{i) e R"^^, m = 
Ylk=o ^k as follows: 

Bod) = [Bod) 0 . . . 0 ] , 

Bk(i) = [0 0 '"B.ii) . . . 0 ] , (6.91) 

"Ao(/)' 

I <k <r, i eV, A(/) = 

A.(/) 

With these notations the system (6.90) can be rewritten in the equivalent form (6.86). 
Further we have 

r ^ 

Lk=0 

Another interesting structure of perturbations is the situation when 

dx(t) = [AoiW)) + Bo{r,{t))Aoiri(t))Co{r]{t))] x{t)dt (6.92) 
r 

+ Y, [Aum)) + %{r){t))Ak{ri{t))Cu{r^{t))\x{t)dwk{t). 
k=\ 

where A^(/) e R"^^ %{() e R^><^^ Q(/ ) e R^̂ ><^ 0 < k < r, i e V, are 
assumed known and A^d) e R^^^^^, 0 < k < r, i e V, are unknown matri­
ces describing the modeling uncertainty. Define Bi^ii) G R"^^, m = Yl^k=o^k as 
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in (6.91): 

^Co(/)" 

C(i) G R ^ ^ " , p = J2Pk^ ^(0 
k=0 

and A(0 = diag (AQ, . . . , A;.(/)). 
Crii). 

With these notations the system (6.92) can be written in (6.86) form. Obviously 
we have 

|A(/)| ' = n̂.ax [A*(/)A(/)] = max 1^.. [ A * ( / ) A , ( / ) ] 

= max | A ^ ( / ) p . 
0<k<r 

6.3.3 Robust stability with respect to a class of nonlinear uncertainty 

In this section we shall consider the case when a stochastic linear system is subjected 
to a class of nonlinear uncertainty. We shall also define the stability radius and provide 
an estimation of its lower bound. 

Consider the system 

dx(t) = [Ao{r]{t))x(t) + Bo(r]{t))Ait, y(t), r]{t))] dt (6.93) 
r 

+ Y. [̂ ^ (^(0-^(0 + Bk(r](t))Ait, yit), ry(0)] dwk(t), 
k=i 

y(t) = C(ri(t))x(t), 

where Ak(i) e R"^^ Bk(i) e W"^, 0 < k < r, C{i) e R^^^ are assumed known 
and A : R+ X R^ X D -^ R^ are functions with the following properties: 

(i) For any / e V, (^ y) -> A(r, j , /) is a continuous function on R+ x R^ and 
A(r,0, 0 = 0 for all/ > 0. 

(ii) For every r > 0 there exists y(r) > 0 such that 

|A( r , } ; i , / ) -A( r , j2,OI < v{x)\yx -y2\ 

foralU e [0, r ] , yx.yi eRP ,i eV. 
(iii) There exists 5 > 0 such that |A(r, j , / ) | < ^\y\ y{t, y, i) eR+xRP xV. 
In this section we shall denote by A the set of all functions A : R+ x R^ x P -> R^ 

satisfying the above conditions. Let us notice that both constants v(r) and 8 in (ii) 
and in (iii) depend on the function A (•, •) e A. 

For every A in A denote 

||A|| = s u p | J — ^ ^ ^ ; r > 0 , y^O, i e v\ . (6.94) 
I \y\ J 

Let XtQ be the set of all random «-dimensional TYrg-measurable vectors § which 
additionally satisfy E\^\^ < do. It is obvious that R"̂  C ^to Vfo > 0. For every 
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^ > 0, § € A'̂ Q, and A G A, denote by x^it Jo, ^) the solution of the perturbed 
system (6.93) satisfying the initial condition x^(to,to,^) = ?• Applying Theorem 
36 of Chapter 1, one deduces that JCA (•, ô, ?) ^ L^^^ (Uo, T], R"̂ ) for every T > to. 
Moreover, if E\^\^^ < oo, b > I, then 

sup {E [\xA(t, to, ?)|^' I Wo) = i]}<K{\ + E [\^\^' I r](to) = i]), 
to<t<T 

where K depends on T and on 7 — ^Q. 

Definition 2. The zero solution of the perturbed system (6.93) is called exponentially 
stable in mean square (ESMS) if there exist of > 0 and P > I such that 

E[\x^(t,to,xo)\^ I rj(to) = i]<Pe-^^'-''^\xo\^ 

for any t >to>0, JCQ € R", / G D. 

The constant a, fi of the above definition may depend on the perturbation A G A, 
but they do not depend on r, to, JCQ. 

In order to characterize the robustness of the nominal system (6.87) with respect 
to the nonlinear perturbations A G A, we introduce the following definition. 

Definition 3. The robustness radius with respect to nonlinear stochastic uncertainty 
which structure is determined byB = (Bo, ..., Br) and C, is given by 

PNL (A, e I B , C ) = inf {p > 0 I 3 A G A with || A|| < p 
for which the zero solution of the 
system (6.93) is not ESMS}. 

Remark 12. Since the class of uncertainty A also includes the functions A(t, y, i) = 
A{i)y modeling the linear uncertainty considered in the previous section, it is easy 
to check that 

PML (A, e I B, C) < p^ (A, Q\B,C). 

In order to prove the main result of this section, two additional results are required. 

Lemma 22. Let cp '.R"^ x Q ^^ R^ be measurable with respect to B (R^) 0 IZt and 
g :Q ^^ R^ be measurable with respect toHt, t >0, being fixed, where IZt and Tit 
are as defined in Chapter 1. Let 

h(x,i) = E[(p(x,')\r]{t)=:i] WxeR\ i e V, and ^(co) = (p (g{co), co). 

If<p{-) and (p{x, •) are integrable, then 

h (g(co), ri(t, CO)) = E[<^\ Ht] (CO) a.s. (6.95) 

Proof We first prove (6.95) for the case when (p(x,co) = (pi(X)(p2(co),with 
(Pi(^) ^ 0 measurable with respect to B(R^) and bounded and (p2(-) > 0, IZj-
measurable and bounded. From Theorem 34 of Chapter 1 one obtains 

E[(p2 \Ht] = E[cp2 \r](t)] a.s. 
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Therefore 

E[ip\Ht]{(o) = E{ip,{g)ip2\nt]{co) 

= iPx{g{co))E[n\nMcD) 
= ipx{g{cD))E[ip2 I r]{t)]{a)). 

On the other hand 

h (x, r]{t, CO)) = E [cpx (x)(p2 \ r](t)] (co) 

= (pi(x)E[(p2 I r](t)](co), 

and then 
h (g(co), r](t, co)) = (fx {g{oo)) E [(p2 \ ri(t)] (co) a.s., 

which shows that (6.95) is true for the special considered case. 
Further, let 

M = {AeB {R") 0 7 ;̂ I XA verifies (6.95)}, 

C = {U xS\ U eB{R"), S e K] • 

Since Xuxs(x,co) = XuMxs(<^) it follows that C C M. One can easily verify 
that C is a :7r-system and M satisfies the conditions (i), (ii), (iii) of Theorem 1 of 
Chapter 1. Thus it results that M contains o[C],a [C] denoting the smallest a-algebra 
containing C, namely a [C] = B (R") (g) 7^/. It results that (6.95) is verified by any 
A e i3(R") (g) IZf. Further, let 0 < (pk < cpk+i < (f, (Pk(x,co) being a measurable 
function with respect to B (R") ^ IZt, (pk{x, co) -> (p{x,co)'ix, co. Since (6.95) is 
true for (pk, from Legesgue's Theorem (see Theorem 11 of Chapter 1) one obtains that 
this relation is also true for a function (p verifying the assumptions in the statement, 
and therefore the proof is complete. D 

Now consider the nonlinear system of stochastic nonlinear differential equations: 
r 

dx(t) = Foit, x(0, r]it))dt + ^ Fk(t, x(t), r]{t))dwk(t), (6.96) 
k=\ 

where the functions F^ : R4. x R" x P ^- R^ have the following properties: 
(i) (t,x) -> Fk(t,x,i) : R+ x R'̂  -> R'̂  are continuous functions and 

Fk(t, 0, /) = 0, t >0J eV, 0<k< r. 
(ii) For any r > 0 there exists v(r) > 0 such that 

\Fk(t,xui) - Fk{t,X2J)\ < V(T)|JCI -JC2I, i eV, 0 < k < r, 

Vxi, X2 G R " , r € [0, r] . 
(iii) There exists 8 > 0 such that 

\Fk(t, jc, /) | < 8\x\, Vr > 0, jc G R^ i eV, 0<k <r. 

It is obvious that for any A G A the perturbed system (6.93) satisfies the conditions 
(i), (ii), and (iii). Applying Theorem 36 of Chapter 1 it follows that for any 0̂ ^ 0 
and § G ^to the system (6.96) has a unique solution x{t,to,^), t > 0, such that 
X (to, to, §) = ?o. 



250 6 Stochastic Version of the Bounded Real Lemma and Applications 

Definition 4. The zero solution of the system (6.96) is ESMS if there exist a > 0, 
^ > 0 such that 

E[\x{tJo.H)\^\ri{to) = i]<^e-^^'-'^^\^\\ 

Vr >ro > 0 , ^ GR^ i eV. 

The next result extends to the nonlinear case some results proved in Chapter 2 for 
the linear case. 

Theorem 23. The following assertions are equivalent: 
(i) The zero solution of the system (6.96) is ESMS. 

(ii) There exists c > 0 such that 

/

oo 

E[\x(sj,^)\^\r]it) = i]ds<c\^\^ (6.97) 

V̂  > 0, § e R", the constant c being independent oft and §. 
(iii) There exist of > 0 and ^ > 1 such that 

E [\x(t, to, §)|2 I ri(to) = i] < fie-^^'-'^^E [\^\' \ r](to) = i], 

Vr > 0̂ > 0, § e A;^, / eV. 

Proof (i) =^ (ii) and (iii) => (i) are obvious. We prove that (ii) => (iii). Define 

v{t, X, /) =r h(s, r, X, i)ds, 

where 
h(s, t, X, i) = E [|jc(5, t, X, 01^ I ̂ (0 = i] 

with s > t > 0, X e R", i e V.By virtue of Theorem 38 of Chapter 1 we can 
apply Lemma 22 for the function (̂ (jc, 6t>) = \x{s,t,x,(jo)\^y(x,co) e R " x ^ , where 
s > t SiTt fixed and for the function g(a)) = x(t,to,^,(jo) with t > to, ^ e A!tQ fixed. 
Therefore one obtains that 

h {s, t, x(t, to, §, co), r](t, co)) = E [\x (s, t, x{t, to, ?, co), co)\^ \ Ht] 

= E[\x{s,to,^,co)\^\nt]. (6.98) 

In the following we shall omit to write the argument co explicitly. Define 

Vi(t) = E[v (t, x{t, to, ?), r](t)) I r](to) = i]. 

From (6.97) one deduces 

Viit) < cE [\x(t, to, ? ) | ' I Wo) = i]. (6.99) 

Further, from (6.98) one obtains 

r r^^ 
Viit) = E\ his,t,x(t,to,^),r]it))ds \ r](to) = i 

r r^^ 1 
= E\J £[U(5,fo,f)l ' I n,]ds I i](to) = i\ 
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from which, using the properties of conditional mean values, it immediately follows 
that 

/
oo 

E[\x(s,to.^)\^\ri(to) = i]ds, (6.100) 

Vr > 0̂ > 0, ^ G ^tQ, i e V. From (6.100) it follows that the function t \-^ Vtit) 
is absolutely continuous on [to, oo), and therefore it is derivable a.e. on [̂ o, oo), and 
then from (6.100) one obtains that 

-Vi(t) = -E[\x(t,to,^)\^ \ r](to) = i]. 
dt 

Based on (6.99) it results that 

d 1 
— Vi{t) < —Vi(t) a.e. t >to. 
dt c 

(6.101) 

Applying Theorem 35 of Chapter 1 to the function \x\^ and to the system (6.96), one 
obtains 

E[\x(t, to, ? ) | ' I ri(to) = i] - E[\^\^ I r](to) = i] 

= E\ j \2x'{sJo,^)Fo{s,x{s,to,^),ri(s)) 

r 

+ ^ |F,(5,x(5,ro,§) ,r7(^)) | ' 

^^^r^is),j \x{s,to,H)?' \ds I r]{to) = i I 7 = 1 

Taking into account (jjj) one obtains that 

I ^ I 
2x*Fo(r, jc, /) + J2 \^k{t, X, i)\A < 8o\x\\ 
I k=\ I 

where 8o = 8(2-\- r8). Hence 
r 

2x*Fo{t, X, i) + J2 \Fkit, X, i)\^ > -So\x\\ 
k=l 

Denoting 

gi(t) = E[\x{t,to,^)f\nito)=i], 

from (6.102), g,() is an absolute continuous function on [to, oo) and 

(6.102) 

(6.103) 

dt 
giit) = E 2x*(t, to, f )Fo it, x(t, to, ?), r?(0) + J^grj^ojlxit, to, ?)|^ 

r 

+ J2 \Fk it, x(t, to, ?), /?(0)l' I nik) = '• 
k=\ 
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Using (6.103) one obtains that there exists 5i > 0 such that 

d 
-rSiiO > -S^giit) a.e., t > to, 
at 

which is equivalent to 

which leads to 

E [\x(t, to, ? ) | ' I riito) = i] > e-'^^'-'^^E [\^\^ \ r](to) = i], 

t >to >0, ^ e XtQ, i eV. From the last inequality one immediately obtains 

h(s,t,x,i) >e-^'^'-'^\x\^ 

for all 5 > t > 0, X e R", i e P . Therefore, v{t,xj) > 8;^\x\^, ^ > 0,x G R", 
/ G D , 

Vi(t)>8;'E[\x(tJo,^)\^\r](to)=i]. 

From the above inequality and from (6.99) and (6.101) one obtains directly 

E [\x(t, to, ? ) | ' I r](to) = i] ds < fie-^^'-'^^E [\^\' \ r){to) = i] 

with p = 8ic and a = 1/c, and thus the proof is complete. D 

Before proving the main result of this section, let us notice that using the known 
constant matrices Ak(i), Bk(i), and C(/) of the realization of the perturbed system 
(6.93), one can associate the following auxiliary system: 

dx(t) = [Ao(r](t))x(t) + Bo(ri(t))u(t)]dt 
r 

+ Y, [Ak{r){t))x{t) + B,{r]{t))u{t)] dwk(t), (6.104) 
k=\ 

y(t) = C{r](t))x(t). 

Then we have the following theorem. 

Theorem 24. Assume that the system (AQ, . . . , A^; Q) is stable. Then 

p ^ t { A ; e | B , C } > | | T | | - ' , 

where 
T : L^^([0, oo), R") -> L^,,([0, cx)), R") 

is the input-output operator associated with the auxiliary system (6.104) defined by 
the matrices A^(/), Bkii), and C(i), 0 < k < r, i eV. 
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Proof. We show that for every p < \\T\\~^ and for all A G A with || A|| < p, the 
zero solution of the perturbed system (6.93) is ESMS. Denoting y — p'^ it follows 
that ||T|| < yand ||A|| < }/"^ or 

supV-^^^lIl^-t>Q,y^O,ieV\<y-K 
\ \y\ 

Using the implication (i) =^ (iii) of Theorem 10 one deduces that the equation 

r d 

(6.105) 

k=\ 7 = 1 

+ 
k=\ 

+ C*(/)C(0=0 

X(/)5o(/) + X]^^*(OX(/)B,(/) 
k=\ 

r 

k=\ 

has a stabilizing solution X = (X(l), . . . , X(d)) > 0 such that 

r 

y^L-J2Bk(i)X(i)Bdi)>0 

(6.106) 

(6.107) 
k=\ 

for any / e V. Applying the Ito-type formula for the function x*X(/)x and for the 
process x{t) = x/^(t,to, XQ), one obtains, using (6.106), that 

[/'I \yit)\^ - y^ \A(t, y(t), r,{t))\^] dt \ r,(to) = i 

x*Xii)xo - E [x*ir)X {rj(r))x{r) \ r,{to) = i] 

t,yit),ri(t))-F(n(t))x(t)y (6.108) 

X \y 'l^ -J^B;{r]{t))X(ri{t))Bkm)) 
k=\ 

X (A(r, ^(0 , ri(t)) - F(riit))x(t)) dt \ rjito) = i 

where y{t) = C{r]{t))x{t), t > ô, and F{i) denotes the stabilizing feedback 
associated with the solution X (/), i eV. Taking into account (6.107), it follows that: 

E I t {\y{t)\' - y^ IA(r, y(0, r^{t))\^]dt \ r](to) = i] < x*X(/)xo, 

for any r > to >0, XQ eR", i e V, which leads to 

E 

<5|JCo|^ Vro >0, X e R ^ / eV. 

• poo 

/ {1^(01' - y ' |A(r, y{t), r,{t))\^}dt | rjUo) = i 
•J'o 

(6.109) 
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But 
\A(t,y(t)^r]it))\<\\A\\\y{t)l 

"it >0, i eV,y e RP. On the other hand, (6.105) gives 1 - y^\\Af > 0, and then 
we deduce from (6.109) that 

f \y{t)\'dt \ r](to) = i 
LJto (1 -}/2) | |A|p 

V̂ o > 0, xo G R", / G V. Finally, applying Theorem 32 of Chapter 2 and using 
(6.110) one obtains 

00 
2 XA(t,to,xo)rdt I r]{to) = i < c\xo\\ 

V̂ o > 0, XQ e R", i e V,c > 0, being independent of to, XQ, i. Applying The­
orem 23 we obtain that the zero solution of the perturbed system (6.93) is ESMS. 
Therefore PNL {A; 2 | B, C} > p. Since p < \\T\\~^ is arbitrary, it follows that 
PNL {A; G I B, C} > ||T||~^ and thus the proof is complete. D 

At the end of this section we show that in a particular case of the system (6.93) 
we can obtain the exact value of the stability radius p^i {A; Q \B, C}.TobQ more 
precise, consider the perturbed system 

r\-\ r 

dx(t) = Aox(t)dt + ^ Akx(t)dwi,{t) -h ^ B^Ait, y(t))dwk(t), (6.111) 
k=\ k=ri 

y(t) = Cx(t). 

The system (6.111) is a perturbation of the nominal system 

/ - i - i 

dx{t) = Aox(t)dt -f Y^ Akx{t)dwk{t) (6.112) 

and it represents a particular case of the system (6.93), namely P = {1}, A/̂  = 0, 
r\ < k < r, Bk = 0, 1 < /: < ri — 1, ^n = 0. In this particular case, instead of 
PNL {A; Q \ B, C}, we shall denote the stability radius by p^i {A | B, C}. Then the 
stability radius is given by the following result. 

Theorem 25. Assume that the zero solution of the nominal system (6.112) is ESMS. 
Then 

pyvL{A|B,C} = X-2, (6.113) 

where X denotes the maximal eigenvalue of the matrix X!lt=r B^^Bk, X > 0, 
denoting the unique solution of the linear Lyapunov-type equation 

r\-\ 

A*X + XAo -h ^ AlXAk + C'C = 0. (6.114) 
k=\ 
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Proof. From Corollary 12 with V — [\] one obtains that A,2 = ||T||, where 

T : L^,([0, 00), R'") ^ L2,([0, 00), RO 

is the input-output operator associated with the auxiliary system: 

r\-\ r 

dx(t) = Aoxit)dt + ^ Ai,x{t)dwk{t) + ^ Bku{t)dwk{t), (6.115) 

> (̂0 = Cx(0. 

From Theorem 24 it follows that 

pyvL{A|B,C}>A-2. (6.116) 

It order to prove (6.113) it is sufficient to show that for any e > 0 there exists A^ e A 

with IIAell < X~2 -\- e for which the zero solution of (6.111) is not ESMS. Let 

Ag G (A.~2 , X~2 -\- e). Since A.7̂  < X there exists ŵ  e R^ with Iŵ l = 1 and 

< ym-^lY. ^k^^^ 1 ". < 0. (6.117) 

Let 
AAy) = Kus\yl (6.118) 

Then it is obvious that Ag G A and || Â H = X .̂ We show that the zero solution of 
the system 

dx{t) = Aox(t)dt + ^ Akx{t)dwk{t) -h ^ 5jt A^(r, y(t))dwk{t), (6.119) 

y(t) = Cx(t) 

is not ESMS. If the zero solution of (6.119) is ESMS, then there exists 8 > 0 such 
that 

poo 

E \Cx(t,to.xo)\^dt <8\xo\^, yto>0, XQ G R^ (6.120) 
JtQ 

On the other hand, applying the Ito-type formula to the function x*Xx and to the 
system (6.119) and using (6.114), one obtains that 

E y" j 1̂ (01' - J2 K(y(0)B;XB,AAyit)) j dt (6.121) 

= x;Xxo- E[x^(T)Xx(r)] 
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Vr > 0, x(t) = x(t, XQ) being the solution of (6.119) verifying x(0, XQ) = XQ and 
y{t) = Cx{t, xo). If the zero solution of (6.119) is ESMS, then (6.121) gives 

E I I \y(t)\^ - J2 K(y(0)B:XB,AAy{t)) I dt = x^Xxo (6.122) 

VXQ e R". Taking into account (6.118) one obtains that (6.122) becomes 

\y(t)\^dt = x'^Xxo, VXOGR" , KUm-^lY.^k^^n''^^ f 

which contradicts (6.117), taking JCQ 7̂  0 such that XQXXQ > 0 (since X >0, (6.117) 
implies that there exists XQ e R" such that XQXXQ > 0). Thus the proof is complete. 

D 

Notes and references 

The theoretical developments presented in this chapter are new. They provide a unified 
approach of the stochastic version of the Bounded Real Lemma and stability radius for 
systems subjected both to multiplicative white noise and to Markovian jumping. The 
stochastic version of the Bounded Real Lemma for systems with multiplicative white 
noise has been studied in [64], [99], [93], [9], and for stochastic systems subjected 
to Markov perturbations we cite [92]. For the case of stochastic systems subjected to 
both multiplicative white noise and Markovian jumping, a stochastic version of the 
Bounded Real Lemma was proved in [33]. The stochastic counterpart of the Small 
Gain Theorem for systems with multiplicative white noise is given in [40] and [41] 
for systems subjected to Markov perturbations. As concerns the stability radius for 
systems with multiplicative white noise, we cite [44], [65], [93], [90], [91], and for 
systems with Markovian jumping, see [92]. Some estimations for the stability radius 
in the case of stochastic systems with state multiplicative white noise and Markov 
jump perturbations are given in [33]. A different approach to estimating the stability 
radius for systems subjected both to multiplicative white noise and to Markovian 
jumping can be found in [46]. 



Robust Stabilization of Linear Stochastic Systems 

In the present chapter we consider the robust stabiHzation problem of systems sub­
jected to both multipUcative white noise and Markovian jumps with respect to some 
classes of parametric uncertainty. As is already known, a wide variety of aspects of 
the robust stabilization problem can be embedded in a general disturbance attenu­
ation problem which extends the well-known H^ control problem in the case of 
deterministic invariant linear systems. Special attention will be paid in this chapter 
to the attenuation problem of exogenous perturbations with a specified level of 
attenuation. At the same time, some particular robust stabilization problems, the 
solutions of which are derived using the results in the preceding chapter, will be 
presented. The solution of the general attenuation problem will be given in terms of 
some linear matrix inequalities, which provide necessary and sufficient solvability 
conditions. 

7.1 Formulation of the disturbance attenuation problem 

As shown in the preceding chapter, a measure of the robustness radius of stabilization 
with respect to a wide class of static or dynamic uncertainty can be characterized using 
the norm of the input-output operator associated with the nominal system. Based on 
this fact it follows that in order to achieve a certain level of robustness of stability, 
one can design a stabilizing controller such that the norm of the input-output operator 
associated with the resulting system is less than the inverse of the imposed robustness 
radius. 

The design problem of a stabilizing controller such that the norm of the input-
output operator is less than a given level of attenuation is usually called in the literature 
the disturbance attenuation problem. In this section the formulation of this prob­
lem will be given for the case of the stochastic linear systems considered in the 
present book. 
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Consider the following stochastic linear system: 

dx(t) = [Ao(r](t))x(t) -f Go(r]{t))vit) -h Bo(r](t))u(t)]dt 
r 

+ X ] [Ak{r){t))x{t) + Gk{r]{t))v{t) + Bk{r){t))u{t)] dwk(t), 
k=\ 

z(t) - C,(r](t))x(t) + D,,(r](t)Mt) + D,,(r7(0)«(0, 

y(0 = Co(r](t))x{t) + Do(^(0)i^(0, 

(7.1) 

with two inputs, namely v(t) e R""!, u(t) e R'"^ and two outputs, z(t) e R^^ 
y(t) e R^2 xhe input variable v{t) denotes exogenous signals, u(t) includes 
the control variables, z(t) is the regulated output, and y(t) denotes the measured 
output. As usual, the state vector x(t) e R". The coefficients Ak(i), Gk(i), Bk(i), 
0 < k < r, C^ii), D^yii), D.^iO, Co(/), Do(i), i e P , are known matrices with 
real coefficients with appropriate dimensions. The stochastic processes {ri(t)}t>o, 
{w(t)}t>o, w(t) = {w\{t),..., Wr{t)T are defined as in the preceding chapters. The 
class of admissible controllers is described by the following equations: 

dxcit) = [A,{ri{t))x,{t) + Bc{r]{t))y{t)]dt 

u{t) = Cc(ri(t))Xc(t) + Dc(r]it))y(t)^ 

(7.2) 

where Xc e R"^ In fact, the controller (7.2) is characterized by the set of param­
eters {ric, Acii), Bc(i), Cdi), Ddi), i e P}, where ^c > 0 is an integer number 
denotingtheorderof the controller and Ac(/) G R^^^^S B^i) e R«-^^^ Q ( 0 e 
R^2x«c^ Z)c(/) G R 2̂x/72̂  I ^ J) When coupling the controller (7.2) at the system 
(7.1) one obtains the following resulting system: 

dxci{t) = [Aoci(r](t))Xci(t) + Goci(r]{t))v(t)]dt 
r 

(7.3) 

k=l 

z{t) = Cci{vit))Xci{t) + D,i(r]{t))v{t), 

where 

Akci(i) = 

Gociii) = 

Gkci = 

Ao(i) + Bo(i)DAi)Co(i) Bo(/)C,(0 
BAi)Co(i) AAi) 

Akii) + Bkii)DAi)Co(i) Bk{i)CAi) 
0 0 

Go(/) + Bo(i)DAi)Doii) 
Bc(i)Doii) 

I < k <r, 

(7.4) 

Gk(i) + Bk(i)DAi)Do(i) 
0 

, 1 < A: < r, 

CciH) = [C(/) + DanDAOCoii) D-Ai)Cc(i)]. 

Dci(i) = D,,(i) + D,,(i)DAi)Do{i), i € V. 
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Definition 1. A controller in the class (7.2) is a stabilizing controller of the system 
(7.1) if the zero solution of the system 

r 

d^t) = Aociir](tm(t)dt + ^ A,,/(r7(r))?(0t/u;^(0 

is ESMS. 

For every stabilizing controller, define by 

%, : Ll^ ([0, ^ ) ; R™') ^ L̂ , „, ([0, ^ ) ; R"') 

the input-output operator defined by the closed-loop system (7.3), namely: 

{T,iv) (r) = Cci{r){t))Xci{t. V) + D,i{r){t))v{t)^ t > 0, 

Vu e L^ j^ ([0, oo); R^i), where Xci(t, v) denotes the solution of the system (7.3) 
with the initial condition Xc/(0, i;) = 0. As shown in Section 4.1 the input-output 
operator Td is a linear and bounded operator. We are now in the position to formulate 
the disturbance attenuation problem (DAP) for the system (7.1) with an imposed level 
of attenuation y > 0. 

Problem formulation. Given y > 0, find necessary and sufficient conditions for 
the existence ofa stabilizing controller for (7.1) such that ||7^/|| < y. If such conditions 
are fulfilled, give a procedure to determine a controller with the required properties. 

Remark 1. Based on the definition of || Td \\ it follows that the y-attenuation problem 
formulated above is equivalent to 

Ikll 
sup FT ^ •̂ 

.GL2.„,([0.OC);R'"1) II 1̂1 

7.2 Robust stabilization of linear stochastic systems. 
The case of full state access 

7.2.1 The solution of the disturbance attenuation problem 
in the case of complete state measurement 

Consider the linear stochastic system described by 

dx(t) = [Ao(r]it))xit) + Go(r](t))v(t) + BoiniOMt)] dt (7.5) 
r 

+ J2 [^k(ri(t))x(t) -f GkiniOMt) + B^(r](t)Mt)] dwk(t), 
k=\ 

z{t) = C,(r]{t))x(t) + D,,{r](t)Mt) + D,Ari(t))u(t), 

where x(t) e R"", v(t) e R""', u(t) e R"^^, and z(t) e R^i have the same meaning 
as in the system (7.1). Assume that the whole state vector is available for measurement. 
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In fact, the system (7.5) is a particular case of (7.1) with/72 = n,Co(i) = In, Do(i) = 
0, / G V. The class of admissible controllers is given by (7.2). We shall first solve 
the disturbance attenuation problem in the case when zero-order controllers are used, 
namely ric = 0. In this case (7.2) reduces to 

u(t) = DAr](t))x(t) 

or, with standard notation, u(t) = F(r](t))x(t), where F(i) e R 2̂X«̂  i ^ p jhe 
closed-loop system obtained with this controller is 

dx(t) = [[Ao(r](t)) + Bo(ri(t))F(ri(t))]x{t) 

^Go(r]{t)Mt)}dt 
r 

+ E {[^kinit)) + B,(r){t))F{r,{t))\x(t) (7.6) 
k=\ 

+ Gk(r]{t))v{t)]dwu{t), 

z{t) = [C,iii(t)) + D,Ari(t)}F(ri(t))]x{t) + D,,{r^{t))v(t). 

If F — ( F ( l ) , . . . , F(J)) is a stabilizing state feedback for the system (7.5) we denote 
by 

TF : Ll^ ([0, ^ ) ; R™') ^ L^ „_ (̂ Q^ ^ ^ . R P , ) 

the input-output operator associated with (7.6). Therefore the control u{t) = 
F{r](t))x(t) solves the disturbance attenuation problem with the level of attenuation 
y if ||7}r II < y. The following result provides necessary and sufficient conditions for 
the existence of such state feedback control. 

Theorem 1. For a given y > 0 the following are equivalent: 
(i) There exists a control u(t) = F(rj(t))x(t) that stabilizes the system (7.5) and 

\\TF\\<y. 
(ii) There exist Y = (F(l), . . . , y(J)) e S^ and T = ( r ( l ) , . . . , r ( J ) ) e 

M^^^y Y > 0 satisfying the following system ofLMIs: 

rWcoO^, /) Wo,i(y, /) .. • WoAY. /) WO..+I(F, /) Wo^r+iiY, i) 
\^o,i{y,i) W u ( F , / ) . . . W^AYJ) >Vi..+i(y,/) m,r+2(Y,i) 

^Or(Y, i) W i % ( y , 0 . . . WrAY, i) W. , . + l ( y , / ) Wr,r+2iY, i) 

Wo%+i(F,/) Wi%^i(y,/)... >v,Vi(F,/) w.+i,.+i(r,/) w,+i,.+2(>^,0 i 
W o V + 2 ( ^ ' 0 ^lr^2(Y,i)-" K,r+2(YJ) K+Ur+2(YJ) >V.+2,.+2(F, / ) J 

i € T>, where 

Wo,oiY, 0 = Ao{i)Y(i) + Yd)Aid) + quY(i) + BoHWd) 

+ r*ii)B*ii) + Go(i)G*o(i), 

WoAY, i) = Y{i)Al{i) + V*{i)Bl{i) + Go{i)Gl{i), \<k<r, 

<o, 

(7.7) 
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Wo,.+i(/) = F(/)C*(/) + r*(/)D*,(/) + Go(/)/)!,(/), 
>Vo,.+2 = [v^Y{i)... ,/q-r,Y{i) ./^-T'lYd)... v^nn] 

Wi,k = Gi(i)Gl(i), 1 </,/:< r, / ^ ^ , 
W/,/ = G / ( / ) G ; ( / ) - F ( / ) , 1 < / < r , 

>V/,,+i(/) = G/(/)D!,( / ) , l < / < r , 

W/,,+2(0 = 0 , 1 < / < r + l, 

>V.+i,.+i(/) = D , , ( / ) D * , ( / ) - y 2 / ^ , , 

Wr+2,r+2(/) = diag ( - F ( l ) . . . - y (/ - 1) - 7 (/ + 1 ) . . . - y ( J ) ) . 

Moreover, if(Y, V) e S^ x M^^ „ is a solution of (1.1) with F > 0, then the control 

u(t) = F{rj{t))x{t) with F(i) = r(i)Y~\i) solves the y-attenuation problem for 

the system (7.5). 

Proof The proof immediately follows applying Theorem 10 together with 
Proposition 14 of Chapter 6 to the system (7.6). D 

In the following we display the particular cases when the system (7.5) is subjected 
only to Markovian jumping or to multiplicative white noise, respectively. Consider 
the linear stochastic system described by 

i ( 0 = A^{r]{t))x{t) + G^{r^{t))v{t) + B^{r]{t))u{t), (7.8) 

z{t) = C,(ri{t))xit) + D,Ari{t))v(t) + D,Ari(t)Mt) 

obtained from (7.5), with A^(/) = 0, G^(/) = 0, Bk(i) = 0, 1 < /: < r, and 
/ e V. For the control u{t) = F(ri(t))x(t) one obtains the resulting system: 

x{t) = [Ao(r](t)) + Bo(ri(t))F(rj(t))]x(t) + Goir](t))vit), (7.9) 

z{t) = [C,(ri(t)) + D,u{r]{t))Fir](t))]x{t) + D,Ari(t))v(t). 

Applying Corollary 5 of Chapter 6 for the system (7.9) we get the following corollary. 

Corollary 2. For a given y > 0 the following are equivalent: 

(i) There exists a control u(t) = F{r]{t))x{t) stabilizing the system (7.8) such 

that the input-output operator Tf associated with (7.9) verifies \\Tf\\ < y. 

(ii) There exist Y = (Y(\), ... ,Y(d)) e S^,Y{i) > 0, and V = 

( r ( l ) , . . . , r(d)) e A^^2,«' ^^^^fy^^8 the following system ofLMIs: 

•Wo,o(F,/) Wo,.+i(y, /) Wo..+2(F,/) 

Wo%+i(F,/) W.+K.+i(F,/) W,+K.+2(>^,/) 

Wo%+2(>^'0 y\^:+Xr^2iY.i) W,+2.+2(>^,/)J 

< 0 , (7.10) 

where >V/j(F, /) are the same as in (1.1). Moreover, if the pair (F, F) e S^ x M^^^^ 
is a solution of(l.\0) with Y(i) > 0, then the control u{t) = F(r](t))x(t) with 
F(i) = r ( / )F~^ (/) solves the y-attenuation problem for the system (7.8). D 
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In the case when V = [1} and ^n = 0 the system (7.5) becomes 

dxit) = [Aox{t) -f Govit) -h Bou(t)]dt 
r 

+ X ] [^kx(t) + GkV{t) + Bku{t)\dwk{t), (7.11) 
k=\ 

z(t) = C,x(t) + D,,v(t) + D,,u(t). 

Assuming that the whole state is available for measurement and taking u(t) = Fx(t), 
one obtains the closed-loop system 

dx(t) = [ (Ao + BoF)x(t) + Gov(t)]dt 
r 

+ ^ [ (A, + BkF)x{t) + GkV{t)\dwk{t), (7.12) 
k=\ 

z{t) = (Q + D,uF)x{t) + D,Mt). 

Using Corollary 16 of Chapter 6 for the system (7.12) one obtains the following 
corollary. 

Corollary 3. For a given y > 0 the following are equivalent: 
(i) There exists F stabilizing the system (7.11) such that \\Tf\\ < y, where Tj 

denotes the input-output operator associated with (7.12). 
(ii) There exists Y eS„,Y >0,r e R^^x" solving the following LMI: 

Wo*,(r) >v,,,(y) 

>Vo%(i') w;^(Y) 

WoAY) m.r+i(Y) 
W,AY) W,.,+,(F) 

WrAY) Wr.r+^Y) 
yvUi(Y) w,+,.,+i(y) 

<o, (7.13) 

where 

m.oiY) = AoY + YA; + BoV + r*B^ + GQG;, 

WoAY) = YAl + r * s ; + GoGl l<k<r, 

Wo,.+,(y) = YC* + r*D!„ + Go£>!„, 

WiAY) = GIG;, I <l,k <, I j^k, 

•WijiY) = GiG* -Y, \<l <r, 

W,,r+^(Y) = G,Dl„ \<1 <r. 

Moreover, if the pair {Y, V) e S,, x R^JX"^ Y > Q, is a solution o/(7.13), then the 
control u(t) = TY~^x(t) solves the y-attenuation problem for the system (7.11). D 
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Now consider a controller in the set (7.2) defined by 

(A2„ A , ( / ) , B , ( / ) , Q ( / ) , Dc(i); i e V) 

withwc > 0, Ac{i) e R^-x'^s Bdi) e R" ' -^ \Q(/) € R^2xnc^/)^(/) ^ Rm2xn̂  
/ e V. When coupling the controller to the system (7.5), one obtains a resulting 
system of form (7.3) with the matrix coefficients given by 

Aoc/(0 = 

Akci(i) = 

Gkciii) — 

Ao(i) + Bo(i)DAi) Bo(i)Cc(i) 
BciO AAi) 

Ak{i) + Bk(i)DAi) B,(i)CAi) 
0 0 

I <k <r, 

Gkd) 
0 

, 0<k <r, (7.14) 

Ccid) = [C(/) + D,u(i)Dcii) D,,{i)Cc(i)l 

Dciii) = D,,(i), i e V. 

The next result shows that if the y-attenuation problem can be solved with a 
dynamic controller (i.e., ric > 0), then the same problem also has a solution expressed 
as a state feedback (i.e., ric = 0). 

Theorem 4. For ay > 0 the following are equivalent: 
(i) There exists a dynamic controller (7.2) with nc > 0 solving the DAP with the 

level of attenuation y. 
(ii) There exists a zero-order controller solving the DAP with the same level of 

attenuation y. 

Proof (i) =^ (ii). Assume that there exists a dynamic controller of order ^c > 0 
solving the y-attenuation problem for the system (7.5). Therefore this controller 
stabilizes the system (7.5) and the input-output operator Td associated with the closed-
loop system verifies the condition ||7^/1| < y. Applying Theorem 10 and Proposition 
14 of Chapter 6 for the system (7.3) with the coefficients (7.14), we deduce that there 
exists y = (7(1) , . . . , Y{d)) e <Ŝ +„̂ , Y(i) > 0, / G P , satisfying the following 
system of LMI: 

Wo,o(?,0 >Vo.i(?,0 
Wo*i(?'0 Wi,,(?,/) 

>Vo.r(?,0 m.r+l{Y,i) Wo.r+2(?,0 

W,.,(?,/) >Vl.,+ l (? , / ) >Vl,.+2(?,/) 

Wr.r (?, /) Wr.r+l (?, /) W..+2 (?, 0 

W,*,+ , (?,/) Wr+Ur+l{Y,i) Wr + Ur+2{Y,i) 

W;.+2 (?''•) W;+l..+2(?'0 >V.+2,.+2(?,/) 

<o, 

(7.15) 
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where 

Wo.o (?, i 

m.k {Y, i 

Wo.r+l (?, / 

m.r+2 {Y, i 

Wl.k (Y, i 

m.i {Y, i 

Wl,r+i {Y, i 

W,+,,.+, {Y, i 

Wl,r+2 {Y, i 

Wr+2,r+2 {Y, i 

= Aoci(i}Yii) + Y{i)Al,(i) + quYH) + Goci{i)Gl,{i), 

- Y(i)Al,ii) + Goci(i)Gl,ii), I < k < r, 

= y(/)C*(/) + GorfO-)£>:,(/), 

= [VmY(i)... V^iJ^Y(i) ^^q~iriY(i)... V^?( / ) ] , 

= GM(i)Gl,{i) - Yd), 1 < / < r, 

- G,ri(/)D* {/), 1 < / < r, 

= DAi)D*,{i)-y^lp,, 

= 0, 1 < / < r + l , 

- diag ( - y ( l ) . . . - F ((• - 1) - y (/ + 1) . . . - Y(d)). 

Let 

Y(i) = 
Yu(i) Ynd) 

L?r2(') ?22(/)J 
, ieV, 

be the partition of Y(i) conformably with the partition of the matrix coefficients in 
(7.14), that is, fiiO) e S„, 7220) e <S„,. Define vy eR"x«,n = nir + d) + pu n = 
(n +nc)ir + d) + pi: 

** = diag I >I'o,..., 4/0, /pi, *o, • •., *o 

r + 1 times d — 1 times 

where 4'o = [/„ 0„x«£.]- By pre- and postmultiplication of (7.15) by ** and ^, 
respectively, one obtains the following system of LMIs: 

Vo.o(?,/) Vo.i(?.0 
Vi.,(y,0 

^(y,/) 

Vur{Yj) V,.,+, (Y, i) 
V0..+2 (?, 0 
V1..+2 (?. 0 

V,. (y, /) v,,+, (?,_() v,,+2 (y,|) 

v;.+2 (?. '•) v^Lr^i (?• '•) H+2,.+2 (y. 0 . 

<o, 

(7.16) 

where 

Vo,o{Y,i) = Ao(/)y,,(0 + Yn(i)A*o(i)+quYnii) 

+ Bo(i){DAi)Yn{i) + CAimi)) 

+ {DAi)Yu(i) + CAi)Yt2ii)y B*(i) 

+ Go(OGS(0, 
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Vo,^(F,/) = Fn(/)A*(/) + (D,(/)yn(/) + C,(/)F*2(/))*5;(0 

+Go(/)G*(/), \<k<r, 

Vo,.+i (? , /) = Yu(i)C:ii) + {DAi)Yu(i) + Q(0?,*2(0)* ^:«(0 

+ Go(/)/);(/), 

Vo,r+2(?,0 = [V^?ii(0...V^7r7?ii(0 V^;7^?ii(0...V^Yud)], 
V a ( r , / ) = G/(/)G*(/), l < / 7 ^ / : < r , 

V/,/ (y, /) = G / ( / ) G ; ( / ) - yn(/), i < / < r, 

V/,,+, (? , / ) = G / ( / ) D ; ( / ) , l < / < r , 

V,+i,,+i (F, /) = D,,{i)D:^{i) - Y^Ip,. 

Vi,r+2{y.i) = 0 , 1 < / < r + l, 

Vr+2,r+2 ( ? , 0 = diug ( - F n d ) . . . - ? ! , (/ - 1) " ? 11 (/ + ! ) . . . - ? i l ( J ) ) • 

One can see that the LMI system (7.16) coincides with the LMI system (7.7) in 
Theorem 1, with Y replaced by Y\\ and r( / ) replaced by Dc(i)Y\\{i) -\-
Cc{i)Y^2^i), i e V. Applying Theorem 1 it follows that there exists a control 
u{t) = F(r](t))x(t) solving the y-attenuation problem for the system (7.5). More 
precisely, 

F(i) = [DAD + Q(/)y,*2(0]?n'(/), / e V. 

Hence the first part of the proof is complete. 
(ii)=>(i) Assume that there exists a stabilizing control state feedback u(t) = 

F(r](t))x(t) solving the DAP with the level of attenuation y for (7.1). Let /i^ > 0 be 
a fixed integer and let Adi) e R"̂ "̂̂  be such that the zero solution of the system 

Xc(t) = Acir](t))x,(t) 

is ESMS. Then consider the controller [ric, Adi), O^̂ xn, ^mxnc^ ^ ( 0 ; i ^ ^ ) - It is 
easy to check that this controller is stabilizing and the input-output operator associated 
with the closed-loop system coincides with the input-output operator given by the 
state feedback control. Thus the proof is complete. D 

Remark 2. The smallest y can be obtained by solving a semidefinite programming 
problem. Indeed, considering y^ as a new positive variable, the LMI (7.7) can be 
seen as a linear constraint in the minimization of y^. 

7.2.2 Solution of some robust stabilization problems 

Consider the system described by 

dx{t) = {[Ao(ri(t)) + Go(riit))A,(ri(t))C(r](t))]x(t) 

+ [Bo(r](t)) + Bo(r](t))A2(ri(t))D(r](t))] u(t)} dt 
(7.17) 

+ ^ {[A,(^(0) + Gdr^{t))Ax{r){t))C{r^{t))\x{t) 
k=\ 

+ [Bdr]{t)) + B,{r){t))A2{r){t))D{r]{t))\ u{t)]dwk{t). 
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where jc(0 e R"" is the state, w(r) e R'" is the control variable, A^(/) e R'^''", Bk(i) e 
R"^^,Git(0 € R"^'^, Bkii) e R"^^, C(i) e R^^",D(/) e R^^^, 0 < k < r, 
i e V are assumed known. The matrices Ai(/) e R'"^^, A2(/) e R^^^ are 
unknown and they describe the magnitude of the system (7.17). It is assumed that 
the whole state vector is accessible for measurement. The robust stabilization prob­
lem considered here can be stated as follows: For a given p > 0 determine a 
control u(t) = F(rj(t))x(t) stabilizing (7.17) for any Ai = (A i ( l ) , . . . , Ai(d)) 
and A2 = (A2(l ) , . . . , A2{d)) such that 

where 

max(|A]| , IA2I) < p, 

\Ak\ =maxXLx(A^(OA^(/)). 
ieD ^ ' 

The closed-loop system obtained with u{t) = F(r](t))x(t) is given by 

dx(t) = [Aoir](t)) + Bo(ri(t))F(r](t)) + Go(r](t))Adr](t))C(r](t)) 

+Bo(r](t))A2(ri(t))D(riit))F(r](t))]xit)dt (7.18) 

+ J2 [Mriit)) + Bk{r]{t))F{r]{t)) + Gk{r){t))A,{r]{t))C{r]{t)) 

+Mr]it))A2iriit))D(r](t))Fir]{t))]x(t)dwk(t). 

k=\ 

Denoting by 

Gdi) = 

CO) = 

^(0 = 

A(/) = 

[Gkd) 
'C(i)' 

0 

0 

"A,(/) 
0 

Bkin], 

' 

' 

0 
A2(0 

the system (7.18) can be rewritten as 

dx{t) = {Ao(r]{t)) + Bo(r]{t))F{T,(t)) + Go{r,{t))Airjit)) 

X [CiW)) + Dir,it))F(r,{t))]}xit)dt 
r 

+ ^ {A,(/?(0) + Bdr]{t))F(ri(t)) + G,(r?(0)A(;?(0) 
k=i 

x[C(n(t}) + Dm))F(r](t))]}x{t)dWk{t). 

Assume that F{i) is such that the zero solution of the system 

dxit) = [Ao(/?(r)) + Bo(r,it))F (r,{t)) ]x{t)dt 
r 

+ J2 [Akirjit)} + B,{r](t))Fir]it))]x(t)dw,,(t) 
k=l 

(7.19) 
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is ESMS. Then, applying Corollary 21 of Chapter 6, it follows that the zero solution 
of (7.19) is ESMS for all A with | A| < p if the input-output operator Tp associated 
with the system 

dx{t) = [(Ao(rj(t)) + Boir](t))F{r]{t)))x{t) + Go{r]{t))v{t)]dt 
r 

+ J2^iAi,{r]{t)) + Bk{W))F{r](t)))x{t) + Gk(W)Mt)]dwk(t), 
k=\ 

Z{t) = (C(W)) + D(rj(t))F(r]{t)))x(t) 

satisfies the condition ||7f || < 1/p. Further, notice that 

I A| = max A L ( A * ( / ) A ( 0 ) = max (| A, | , | AI2). 
ieD 

Therefore, F is a robust stabilizing state feedback with the robustness radius p if it 
is a solution of the DAP with level of attenuation y = \/ p for the following system: 

dx{t) = [Ao{r](t))x{t) + Go{r](t))v{t) + Bo(r]{t))u(t)]dt 
r 

+ 2 [Ai ( r? (0 )x (0 + Gu(il{t))v(t) + Bk{r](t))u(t)]dwkit), 
k=i 

y{t)=x(t), 

z{t) = Cm))x(t) + D{r]{t))u(t), 

withG^O), CO), D(i), i e P defined above. 
Applying Theorem 1 we obtain the following theorem. 

Theorem 5. Suppose that there exist Y = (Y{\),... ,Y{d)) e S''„, Y{i) >0, T = 
( r ( l ) , . . . , T(d)) e A^^ „ verifying the following system ofLMIs: 

'WoAYJ) Woj{Y,i) ••• WoAYJ) Wo,+i(K,/) Wo.r+iiYJ) 
Wl.iYJ) WudYJ) ••• WuriYJ) W|.,+i(K,/) Wur+2{Y,i) 

W*^{Y,i) W , % ( y , 0 ••• WrAYJ) Wr.r+dY,i) W^.r+liY, i) 

Wo%+,(y,/) wr,+,(}',/) ••• w:,^,(Y,i) w,+,.,+i(y,/) w.+,.,+2(y,/) 
.Wo%+2(>'.0 Wr.+2(>'.') ••• W:,^,iY.i) W;^|,+2(K,/) W,+2..+2(l',0. 

<o, 

(7.20) 

where 

Wo,o(Y, i) = Ao(i)Yii) + Yd)Alii) + quY(i) + fio(/)r(0 + T*(i)B;{i) 

+ Go(/)GS(0 + Bo(/)Bo('), 

Wo.kiY, i) = YiDAlii) + r*{i)B;(i) + GoiDGlU) + Bo(i)B;(i), l<k<r, 

>Vo,.+,(r, 0 - [Yii)C*{i) r*(/)D*(/)], 

Wo,r+2{Y, i) = [y/qTxYii)... ./qiJ^YH) ^/qUTlYii)... V ^ F ( / ) ] , 

Wi,k{Y, i) = G,{i)Gl(i) + B,ii)B;(i), l<lc^l<r. 
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w,,,(Y,i) = G,O)G;( / ) + B,{i)B;{i)-ni), \<i<r, 
W/.,+i(r,/) = 0, 1 < / < r , 

Wr+\.r+\{Y,i) = -p-^lp+p, 

Wr+2.r+2iY, 0 = diag(-Y{l)... - y(/ - 1) - Yd + 1 ) . . . - Y(d)). 

Then the state feedback gain F(i) = r(i)Y~\i), i G V, is a solution of the robust 
stabilization problem. D 

Now consider the system described by 

dx{t) = [Ao(r](t))x(t) + Go{ri{t))A(cp(t)^i^(t)) + Bo{r](t))u(t)]dt (7.21) 
r 

+ ^ [Akir]it))x(t) + GkiniO)^ ((Pit). r](t)) + Bk(r](t))u(t)] dwk(t), 
k=\ 

cp{t) = C(^y(r))x(0, 

where x{t) e R" is the state, u(t) e R'" is the control variable, and Ak(i) e R«^", 
Bk(i) e R"^^, Gk(i) e R^^^i, 0 < ^ < r, C(i) e R^l^^ / e V are assumed to 
be known. The maps y -> A(j , /) are unknown functions including the uncertainties 
determined either by parameter variations or by truncation of nonlinear terms in the 
dynamic model. Denote by A the class of admissible uncertainty 

A = (A(>^ , l ) , . . . ,A (y , J ) ) , 

where J -^ l^{y, i) : R^' -> R̂ î are Lipschitz continuous functions with A (0, /) = 
0, / G V. In the following it is assumed that in (7.21) the whole state is available for 
measurement. The robust stabilization problem considered can be stated as follows: 
For a given p > 0 find a control law w(r) = F(r7(r))jc(0 stabilizing the system (7.21) 
for all A G A with || A|| < p. Recall that 

l|A|| = sup I — — — 

Let u{t) = F(r](t))x(t) be such that the zero solution of the system 

dx(t) = [AoiW)) ^ Bo(r](t))F (ri(t))]x(t)dt 
r 

+ Y.^Au{ri(t)) + B,(rj(t))FWmx(t)dwk{t) 
k=\ 

is ESMS. When coupling this state feedback to (7.21) one obtains 

dx{t) = {[Ao(/?(0) + BQ{n{t))F{r]{t))]x{t) 

+ Go(?;(r))A(^(f),;?(?))}J/ (7.22) 
r 

+ Y. {['4i('?(')) + B,{r](t))F{r](mx{t) 
k=\ 

+ Gk{r](t))A((p{t),r,{t))}dWkit), 

(Pit) = C(r](t))x(t). 
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Applying Theorem 24 of Chapter 6, we deduce that the zero solution of (7.22) is 
ESMS for arbitrary A G A with || A|| < p if the input-output operator Tp associated 
with the system 

dx{t) = [[Ao(ri(t)) + Bo{r](t))F(ri(t))]x{t) + Go(r](t)Mt)}dt 
r 

+ ^ {[A^(^7(0)^ (0 + ^^(^(O)F(^(O)] x(0 + G^(^?(0)^(0} ^^^ (0 , 

z{t) = C(rj(t))xit) 

satisfies the condition \\Tf \\ < 1/p. Therefore, in order to obtain a robust state 
feedback control with a given robustness radius p > 0 it is sufficient to solve the 
DAP with the level of attenuation y = \/p for the following auxiliary system: 

dx{t) = [Ao{r]{t))x{t) + Bo{r]{t))u{t) + Goir](t)Mt)]xit) (7.23) 
r 

+ J2 \-Akir]it))x{t) + Bk(rj{t)Mt) + Gk(r}{t))v(t)]dwk{t), 
k=l 

z(t) - C{ri(t))x(t). 

From Theorem 1 applied for the system (7.23) one obtains the following theorem. 

Theorem 6. Assume that there exist Y = {¥(1),..., Y{d)) e S^, Y{i) > 0, T = 
( r ( l ) , . . . , r(d)) e Mi„ satisfying the following LMIs: 

W o , o ( y , 0 W o , , ( y , / ) • •• m.r{Y,i) Wa.r+l{Y,i) Wo.r+2(Y,i) 

WSj(Yi) WudYJ) ••• Wur(YJ) >V,.,+i(y.O Wur+2(Y,i) 

Wl,(Yi) WliYi) • •• WrAY,i) Wr.r+dY,i) Wr.r+2(Yi) 

Wo%+,(r,o >v,%+,(y./) ••• w:,^,(Yn >v.+i..+,(y,() w.+,..+2(y,o 
.^lr^2iYJ) Wl^,(Yi) ••• W;,^,(K,/) W:^,,,^,{Yi) Wr^2.r^2{Y,i), 

i e V, where 

Wo,o{Y, i) = AoiDYU) + Y(i)A;{i) + qaY{i) + Bo(i)r{i) 

+ r*0)Bo*(0 + GoO)GS(0, 

WoAY, i) = Y{i)Al{i) + r*ii)B*(i) + GoiDGld), I < k < r, 

Wo,r+i(i) = Y(i)C*{i), 

m.r+2 = [V¥iYii) • •. ^/q~iYii)^/q-:^Y(i)... ^/^Y(i)], 

Wi.k = GiiDGlU), \<l,k<r, Ij^k, 

W,,i - G , 0 ) G ; ( 0 - Yd), 1 < / < r, 

W,,,+,( / )=0, l<l<r, 

Wi,r+2ii) = 0 , 1 < / < r + l, 

W,+2,r+2(0 = diag ( - y ( l ) . . . - K(/ - 1) - Y{i + 1 ) . . . - Y(d)). 

<0 , 

(7.24) 
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Then the control u(t) = F(r](t))x(t) with F(i) = r(i)Y~\i), i € D, provides a 
robust stability feedback gain. D 

Remark 3. In order to maximize the robustness radius one can use the idea presented 
in Remark 2 but with the constraint (7.24) instead of (7.7). 

7.2.3 A case study 

In order to illustrate the theoretical developments concerning the DAP in the case 
when the state is measurable, we present in the following a case study for which some 
comparative aspects with the results provided by deterministic design approaches will 
be discussed. 

Air-launched unmanned air vehicles (UAVs) are typically released with their 
wings folded in order to achieve a safe separation with respect to the launching 
aircraft. The vehicle's wings are deployed after several seconds when a glide slope 
maneuver is required. The wing deployment determines a "jump" of the aerodynamic 
coefficients leading to a transient of the angle of attack which must be minimized in 
order to prevent the loss of stability. The longitudinal short-period motion of the UAV 
has the following state-space equations: 

where the state vector is 

X = Ax -{- B8e^ + Gv, 

z = Cx + D8e,, 

w 

(7.25) 

with w denoting the vertical component of the true airspeed, q is the pitch rate, 8e 
is the internal state of the actuator, and ^ denotes the state of the integral action 
^ = a^ — a^^ introduced in order to obtain zero steady-state tracking error of the 
normal acceleration a^ with respect to its commanded piecewise constant value a^^. 
The control variable is the elevon command Sg^ and the input vector v includes the 
external reference a^^ and disturbances, namely: 

dw 

q denoting the disturbances in w and q, respectively. The quality output z duj and d^ 
has two components 

where p and p are positive given weights. The matrix coefficients in (7.25) depend on 
the two flight conditions mentioned above, namely the situation when the UAV has 
the wings folded and the case when the wings are deployed, respectively. Therefore, 
in this case the Markov chain has two states, that is, P = {1, 2}. The numerical values 
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corresponding to these two states are [108]: 

271 

A(l) = 

A (2) = 

-0.1077 718.5340 -31.3672 0 
-0.0219 -0.7209 -19.5316 0 

0 0 -30 0 
0 2.8870 64.7283 0 

-0.4628 717.1890 -16.7139 O' 
-0.0333 -0.7522 -11.3638 0 

0 0 -30 0 
-0.2990 2.8210 39.1960 0 

0 

B(1) = B(2) = 
0 
30 
0 

G(l) = 

C(l) = 

£>(!) = 

= G (2) = 

= C (2) = 

= D{2) = 

"0 1 Ol 

0 O i l 
0 0 0 

[-1 0 oj 
' 0 0 0 20 
0 0 0 0 

• 0 • 

100 . 

j6 = 20, p = 100. The transition rate matrix is 

Q = 
- 1 1 
0.01 -0.01 

The problem consists in determining a state feedback control 8e^(t) = F(r}(t))x(t) 
such that the closed-loop system obtained when coupling it to (7.25), namely 

x{t) = [A{r]{t)) + B{rj(t))F{ri{t))]x(t) + G(^(0)i^(0, 

z{t) = [C(r](t)) + D{rj(t))F{r]it))]x{t), 

is ESMS, and its associated input-output operator has norm less than a given y > 0. 
Applying Corollary 2 we obtained for y = 20, 

F(l) = [0.0290 - 2.7269 

F(2) = [0.0110 -0.7722 

1.1120 -1.5065] , 

0.4793 -0.2112]. 

(7.26) 

In order to compare these results with those provided by other standard design meth­
ods, we solved the same problem using two deterministic alternative approaches. 
The first one is the robust control (RC) design consisting in determining a unique 
"quadratically stabilizing" controller which stabilizes both systems corresponding 
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to folded and unfolded wings situations. In this design we obtained, using again an 
LMI-based approach [9], 

FRC = [10.57 - 425.6 - 180.7 - 305.7] 

for the minimum closed-loop disturbance attenuation level y — 33.43. 
The second deterministic method consists in designing separate H^ state feed­

back zero-order controllers corresponding to each flight condition. This design will 
be abbreviated SDH, and it gives for y = 18.1 and for y = 12.9, respectively, the 
following gains corresponding to the two flight conditions considered: 

FSDH(I) = [0.0040 

FsDH (2) = [o.un 
-0.0825 -0.7510 -0.4253], 

1.2540 -1.7674 -1 .6579] . 

Two comparison approaches have been used: the first is completely deterministic 
and the second is entirely stochastic. In the first method, the H^ norm of the closed-
loop system for i = 1 and / = 2 has been determined for all three solutions obtained 
above. The results are presented in Table 7.1. 

II T 11^ 
/ = 1 

/ = 2 

MJC 

18.3 

15.7 

RC 

32.9 

22.5 

SHD 

18.1 

12.9 

Table 7.1. Deterministic comparison approach 

One can see that for MJC and SHD design, the achieved H^ norms of the closed-
loop system are very close to and much lower than those of the RC-feedback gain. 

In the second method we computed the levels of attenuation corresponding to the 
three solutions using the stochastic framework. To this end, we determined the closed-
loop system with the corresponding feedback gains. Regarding these systems as 
stochastic systems with Markov jumps, we applied Theorem 10 of Chapter 6 to 
computing the corresponding level of attenuation. The obtained results are presented 
in Table 7.2. 

Method 

I I T I I 
MJC 

20 

RC 

32.4 

SHD 

76.7 

Table 7.2. Stochastic comparison approach 

The fact that in the stochastic design case (MJC) the level of attenuation is signif­
icantly lower is expected since the deterministic design (RC and SDH) does not take 
into consideration the parameter jumps. 

The elements Pu(t) and Pnit) of the transition probability matrix P(t) = e^^ 
as functions of time are illustrated in Figure 7.1a. In Figures 7.1b and 7.1c the time-
responses of the angle of attack and of the elevon command to unit step acceleration 
are plotted. Inspecting these figures one can see that the angle of attack is similar for 
all three methods, but the MJC uses considerably less control effort than either RC 
or SDH design. 
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7.3 Solution of the DAP in the case of output measurement 

In this section we consider the DAP with an imposed level of attenuation y > 0 
in the case when the output is available for measurement. Our approach is based 
on an LMI technique and it extends to this framework the well-known results in 
the deterministic context. As in the deterministic case the necessary and sufficient 
conditions guaranteeing the existence of a y-attenuating controller are obtained using 
the following result (see [9]). 

Lemma?. (Projection Lemma) Let Z e R"^^ Z = Z\ U e R"'^^ and V e 
W^^^, with V, vi, V2 positive integers. Consider the following basic LML 

Z-hZ^*0V + V*0 *^<O, (7.27) 

with the unknown variable 0 G R î ^̂ 2 Then the following are equivalent: 
(i) there exists 0 G R"i^^2 solving (727); 

(ii) 
^NlZ^Nu < 0 (7.28) 

and 
W{;ZWv < 0, (7.29) 

where Wu cind >Vv denote any bases of the null spaces KerU and KerV, 
respectively. D 
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Remark 4. It is known that if VV is a basis of KerM where M is a given matrix, then 
any other basis of KerM can be expressed as W = WF with det F ^ 0. This shows 
that it is sufficient to check the conditions (7.28) and (7.29) for some suitable bases 
Wu and Wv. 

Lemma 8. LetX, Y eSn. N e R"^"- and S e S^, with X >Oand 

> 0 . Y N 
A *̂ S 

Then the following are equivalent: 
(i) 

X = {Y - NS~^N*) ^ 

(ii) 
. ^ / . 0 

rank 

(iii) 

In Y N 
0 A *̂ 5 

Y N 
A *̂ S 

= n -\- nc\ 

X * 
• • 

where * denotes irrelevant entries. 

The next result provides necessary and sufficient conditions for the existence of 
a controller of type (7.2), solving the DAP for the system (7.1). 

Theorem 9. For a y > 0 the following are equivalent: 
(i) There exists a controller of order nc > 0 which solves the DAP with the level 

of attenuation y > Ofor the system (7.1). 
(ii) There exist X = ( X ( l ) , . . . , X(J)) e S^, X{i) > 0, i e V, Y = 

( F ( l ) , . . . , Y(d)) G 5„^ Y{i) >0, S = (5(1) , . . . , S{d)) 6 S^, S(i) > 0, N e 
(N(l),..., N{d)), N eMi^^ such that 

[Voin v;(/)]A/;(x) 

no.o(0 no.i(/) -u*{i)N{i) 
n*^(/) -y'L, 0 

-A^*(/)^i(/) 0 -S(i) 

VoU) 
Vdi) <o, (7.30) 

-N*{i)Ur{i) 
L ns,.+i(0 

rank 
X(i) In 0 
/„ Yd) N{i) 
0 N*ii) SH) 

u:{i)N{i) 
0 
0 

-S{i) 
0 

= n-{-nc 

no,r+i(0 
0 
0 

0 

nr+l,r+l(0_ 

' 

<o, 

(7.31) 

(7.32) 
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where 

isabasisofKer[Co(i) Do{i)], 

Vo(/) 
V,(i) 

Uod) 

isabasisofKer[B*{i) •••B^ii) £>*„(/)], 

MuiX,i) Mn(X,i) 
N'*2(X,i) N22{X,i) 

Mn {X, i) = Alii)X{i) + X(OAo(0 + ^ A^*(J)X(/)A,(/) 

d 

+ Y,qijX{j) + C:{i)C,(i), 

r 

Mn (X, /) = XO-)GoO-) + Y, Alii)Xii)G,{i) + C:{i)D,Ai), 
k=i 

M2 (X, i) = -Y^Irr,, + D%(i)DUi) + Y. Glii)X(i)G,{i), 
k=\ 

no,o(0 = l/o (0 [Ao{i)Y{i) + Y(i)Al(i) + quYH)] UoH) 
r 

+ Y.U;{i)Y{i)Al{i)Uk{i)-^U;{i)Y{i)Cl{i)Ur+x{i) 
k=\ 

k=\ 
r 

-J2u^{i)Yii)U,(i) - U:^,{i)Ur+,(i), 
k=i 

r 

no.i(0 = ^t/;(OGt(o + t/;+,(()a„(o, 
k=0 

no,.+i(/) = u*(i) [i„ 0] [v^ro) • • • v^~Ty(/)V5~Tr?0) • • • V^?(0], 
n,+i.,+i(/) = -diag (Yd) • • • y (/ - 1), ?(/ +1) • • • r(c()), 

Yd) Nny 
Y{i) = 

^*(0 5(0 / eV. 
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Proof. The outline of the proof is similar to the one in the deterministic frame­
work. The stochastic feature of the considered system does not appear explicitly in 
the following developments of the proof. This feature appears only in the specific 
formulae of the Bounded Real Lemma. Therefore the proof is also accessible for 
readers who are not very familiar with stochastic systems. 

(i) =>• (ii) Assume that there exists a controller of form (7.2) stabilizing the system 
(7.1) such that ||7^/|| < y. Using the implication (i) => (ii) of Theorem 10 (Bounded 
Real Lemma) of Chapter 6 for the closed-loop system, we deduce that there exist 

such that 

where 

Xci = (Xri(l),..., XM)) e S'„+„^, X,i(i) > 0 

A/; (X„, y) < 0, 

M(x, v^-\(^*'^^')('^ + Q(')Q,(/) V*(Xw) 
M.{Xc,,y)-U^^^,) 7e,(x,,) 

(7.33) 

(CliX,,) ii) = Al,ii)X,,(i) + XAOAAi) 
r d 

k=\ 7 = 1 

Pi (Xci) = GliiOXAi) + J2'^*kci(nXctAkciii) 
k=i 

+ D*,(i}Cci(i), 

ni {X,i) = -Y^I^^ +Y.^kci(i)^ci(i)Gkci{i). 
k=\ 

Based on Schur complements arguments it is easy to see that (7.33) is equivalent to 

'{ClXa){i) XdiOGociH) Al,(i)Xc,(i) 
Gl,ii)Xc,{i) -Y^I„, Gl,ii)X,i(i) 
X,,(i)Auiii) Xc,{i)Gxci(i) -XAi) 

Xclii)Arcl{i) XAOGrcld) 0 
Cciii) DAi) 0 

A*Ai)Xci{i) Q ( 0 
G;,,(/)Xri(0 £»:,(/) 
0 0 

-XAi) 
0 'Pi J 

<o, 

(7.34) 
where 

{CIX,,) (i) = Al,ii)X„(i) + X,,(/)Aoc/(0 + Y.qijXAj). 
y=i 
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Let us introduce the following notations: 

AkU) = 

BoH) = 

Cod) = 

D,u(i) = [0 

©c(0 = 

AkU) 
0 

0 
0_ 

0 Bod) 
In, 0 

0 
Cod) 

In. 
0 

Gkii) 
0 , Gkii) = 

BkU) = 

Q(/) = [Q( 0 

0 BkU) 
0 0 

D,u(i)], DoU)^ 
0 

DoO) 

0 < /t < r, 

0] , 

i eV, 

AcU) BAD 
Ccii) DAi) 

Using (7.4) one obtains 

AkciU) = Ak(i) + Bkii)&cii)Co(i), 

GkciU) = Gkii) + Bkii)eAi)Doii), 0 < k < r, 

CAi) = CAi) + D,uii)@Ai)Coii), 

DciU) = D,Ai) + DUi)®cii)Doii), i e !>• 

With the above equations one can easily see that (7.34) can be written in the basic 
LMI form: 

Zii) + U*ii)@Ai)Vii) + V*(i)©*(/)W(i) < 0, / e P , (7.35) 

where 

Zii) = 

[ClXc,)ii) Xciii)GAi) A\ii)XAi) 

G*ii)Xc,ii) -Y^L, G*ii)X,,ii) 

Xciii)Aiii) XAi)Gdi) -Xciii) 

XAi)AAi) X,,ii)GAi) 0 

CAi) D,Ai) 0 

Uii) = [B*ii)Xc,ii) 0,„,+„,)x^, B;ii)X,,ii) 

V(() = [Co(i) Doii) 0(p2+„,)xip,+r(«+«,)]], ieV, 

A*Ai)Xciii) q ( 0 

G;ii)Xc,ii) D*Ai) 

0 0 

-Xciii) 0 

B;(OX„(/) 5*„(/)], 
(7.36) 

with 
d 

(ClXci) ii) = Al,ii)X„ii) + X„ii)AocAi) + Y,qu^ciiJ). 

Therefore the existence of a stabilizing y-attenuation controller for (7.1) is equivalent 
to the solvability of (7.35). Based on Lemma 7, (7.35) is solvable if and only if 
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there exist 

w;„.)Z(/)Wv„-, < 0, / 6 V, 

{131) 

(7.38) 

where V\>u(i)y VVv(0 denote bases of the null spaces of U{i) and V(i), respectively. 
It is easy to see that a basis of the null space of U(i) is 

Wuio = X-\i)Wauy 

where 
A'(/) = diag {X,i In, Xcid)' • • XAi) Ip,) 

and >V (̂,) is a basis of the null subspace of the matrix 

A basis of the null subspace of hi{i) is 

m,, = 

0 0 Toil) 
0 

r,(/) 0 L 
/m, 0 

Trii) 0 0 
f/r+lO) 0 0 

where 

and 

TkH) = 
Ukii) 

0 
,0<k<r, L = 

• f/o(0 

Ur+di), 

is a basis of the null subspace of the matrix 

[B*(i) B*(r) ••• S;(/) D*„(/)]. 

A suitable choice for Wv(/) is the following: 

>Vv(o = 

VoU) 0 
0 0 

v ,0) 0 

where 

0 / 

Vo(i) 
V,{i) 

P[+r(n-\-Hc) J 

is a basis of the null subspace of the matrix [Co(/) Doii)]. 

(7.39) 

(7.40) 

(7.41) 
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Consider the partition of Xdii): 

Xcid) = 
X(i) M(i) 
M*{i) X(i) 

with X{i) e R"* "̂. Then by direct computations one obtains 

W^(,)Z(/)Wv(,-) = 

where we denoted 

*o,o(0 *o.i(/) 
%,{i) -XAi) 

*o%(/) 0 

*o.r(/) *0.r + l{0 ' 
0 0 

-XAi) 0 
• 0 -h 

(7.42) 

*o,o(0 = Vo*(0 Vo(/) Al(i)X(i) + X{i)Ao{i) + J^qij^(J) 
j=' 

+V*(i)X(i)Goii)V,{i) + V*{i)G;(i)X(i)Vo(i) - y2y*(/)V,(/), 

*o,^(0 = ([Vo*(0 0] Alii) + V*(i)Gl{i)) Xci, \<k<r, 

*o,r+i(o = Vo*(ocr(o + v*{i)Di{i). 
Again using Schur complement arguments, it follows that condition (7.38) together 
with (7.42) is equivalent to 

r 

*o,o(0 + J2'^oAi)x;i'{i)%i,{i) + %.,+,(/)**,+,(/) < 0. 

Detailing the coefficients in the above inequality, (7.30) directly follows. 
In order to detail the condition (7.37), one first computes 

X-'(i)Z(i)X-\i) (7.43) 

'(C.;Y)(i) GoU) Y{i)A*,(i) ••• ? ( / ) A ; ( 0 YiDCHi)' 
G*oii) -y ' /m, G\{i) 

Adi)Y{i) G*{i) -Y(i) 

AAi)Y(i) Grii) 0 
C,(i)Y(i) D,,{i) 0 

G;(/) D:„(/) 

0 0 

-Y{i) 0 

where 

(£S?) (0 = AO(/)?(0 + ?( / )A*(/) + ^^,- ,T(0?- ' (y)?(0, (7-44) 

Y{i) = X-\i). (7.45) 
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We also introduce the notation 

Yd) = 
Y(i) N(i) 
N*(i) S(i) 

Y(i) 6 R" 

Using (7.40), (7.43), (7.44), and (7.39), one obtains that (7.37) becomes 

no,o(0 no,,(/) -u*(i)N{i) 
ns,i(0 -y'/m, 0 
-N*(i)Ui{i) 0 -5(0 

where 

-N*(i)Ur(i) 0 

no,o(0 = C/o(0 

-u;(i)N(i) 
0 
0 

-S(i) 

< 0, (7.46) 

Ao(i)Y(i} + Y{i)A;{i) 

Y{i) 
N*(i) Uo(i) + J2'luiY{i) N{i)]Y-\j) 

• ' • = ' 

r 

+ J2^o(OY(i)Al(i)U,(i) + U^(i)ni)C;(i)Ur+iii) 
k=l 

r 

+ f/;^i(/)Q(/)y(/)^o(/) + Y. U'k(i)Ak(i)Y(i)Uoii) 
k=l 

r 

-J2u;;(i)Y(i)udi) - u:^,{i)Ur^di), 
k=\ 

r 

no,i(/) = Y,^k(OGk(i) + U:^,(i)D,Ai)-
k=0 

By Schur complement arguments one can see that (7.46) is equivalent to an extended 
LMI which coincides with (7.31). Taking into account that 

rank 
X(i) I 0 

/ Y(i) N(i) 
0 A^*(/) S(i) 

= rank 
'X(i) - {Y(i) - Nii)S-\i)N*ii)) 0 0 

0 Y{i)-N(i)S-\i)N''(i) 0 
0 0 5(/)J 

and S(i) > 0 , Y(i) - N(i)S-Hi)N^i) > 0, it follows that (7.45) gives 

X(i) = {Y(i) - N(i)S-\i)N\i))~' 

from which (7.32) follows directly. 
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( i i )^( i ) Assume that there exist X(i), F(/), A^(/), and S(i) verifying (7.30)-
(7.32). From (7.31) it follows that n;-+i,;.+i(/) < 0 and therefore 

Y{i) = 
Y(i) N(i) 
N%i) S(i) 

>0 . 

Hence Y{i) is invertible. From Lemma 8 it results that Y ^(i) has the structure 

where by * we denoted the irrelevant entries. From the developments performed to 
prove the implication (i) =^ (ii), it follows that (7.37) and (7.38) are verified by 

and hence (7.35) has a solution that guarantees the existence of a stabilizing and 
/-attenuating controller. Thus the proof is complete. D 

Remark 5. In the case of the static output feedback {ric = 0), in the above theorem 
we have to remove all variables ric, N(i), and S(i), i e V. 

Remark 6. According to the proof of the above result, the algorithm to determine a 
solution of the DAP is the following: 

Step I Solve the system of LMI (7.30) and (7.31) with the constraint (7.32). 
Step 2 Compute Z{i), U{i), and V(/), / G V, according to (7.36). 
Step 3 Solve the basic LMI (7.35) with respect to 0^. Then the solution of the 

DAP is given by the partition 

ec(0 
Ac{i) Bed) 
Cc(i) Dc(i) 

Obviously, if ric = 0. then 0c(/) = Ddi). 

In the following we shall emphasize the important particular cases when the 
system (7.1) is subjected only to Markovian jumping or to multiphcative white noise. 

In the situation when A^(/) = 0, Bk(i) = 0, G^(/) = 0, 1 < ^ < r, / G V, the 
system (5.1) becomes 

x{t) = Ao{r]it))x{t) -h Go(r]{t)Mt) + Bo{r](t))u(t), 

z(t) = C,(rj(t))x(t) + D,,(r](t))v(t) + D,u(r](t))u(t), 

y(t) = Co(r](t))x(t) + Do(r](t)Mt). 

(7.47) 

The closed-loop system obtained by coupling a controller of form (7.2) to the system 
(7.47) has the following state-space realization: 

Xciit) = Aoci{r](t))Xci{t) + Goci(r](t))v{t), 

z(t) = Cci(ri(t))xci(t) + Dci(r](t)Mt), 

(7.48) 
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where the matrix coefficients are defined as in (7.4). The results in the preceding 
theorem lead for the particular system (7.47) to the following theorem. 

Theorem 10. For ay > 0 the following are equivalent: 
(i) There exists a controller of order nc > 0 of type (7.2) which stabilizes the 

system (7.47) such that the input-output operator associated with the system (7.48) 
verifies WZiW < y. 

(ii) There exist X = iX(l),..., X(d)) e S^,Y = {Y(l),... ,Yid)) e S^, 
S = (5(1) , . . . , S(d)) e Si, N e (Nil),..., N{d)), N e X f „̂  such that 

A;{i)X{i) + X{i)Ao(i) 
+E^=i*7^0') + c:(/)c,(/) 

lG*Q(i)X(i) + D*^(i)C,in 
x[Vo(0 Vi(O]<0, 

Vi(i) 
X{i)Go(i) + C*^ii)D,Ai) 

-y^I^, + D*^(i)D,Ai) . 

no,o iy, i) rio.r+i (y, i) 
Ur+l.r+l {y, i) <o, 

rank 
X{i) 

I 
0 

/ 
Yd) 

N*{i) 

0 
^(0 
S{i) 

— n +nc, i e T>, 

(7.49) 

(7.50) 

(7.51) 

where 

no.o (y, i) 

• A^{i)Y{i) + Y{i)Al(i) 
+qiiX{i) + y-^Go{i)Gl(i) 

CS)Y{i) + y-^D,,(i)Gl{i) 

x[t/o(i) f/.+i(/)], 

Y(i)C:{i) + y-'Go(i)D*^ii) 

- / p , + y-^D,Ai)D*,{i) 

Ho.r+i (y. 0 and Ilr+i.r+i (y, /) are as in Theorem 9, 

Uo(i) 
Ur+Ai) 

is a basis of the null subspace O/[BQ (/) £)*„(/)], and 

v,(/) 

is a basis of the null subspace of[Co(i) £*o(0]- n 
Remark 7. From the above theorem one can see that the necessary and sufficient con­
ditions guaranteeing the solvability of the DAP involve the same unknown variables, 
namely X(0, ^ ( 0 . •5(0. N{i), i e 2?, as in the general case of the system (7.1). It 
seems that this is the price paid to obtain a controller of order nc < n. In the particular 
case when a full-order controller (n^ = n) is required, the rank condition (7.32) in 
the statement of Theorem 5 is removed (see Theorem 14 in Section 5.4). 
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Now consider the case when P = {1}. Then the system (7.1) becomes 

dxit) = [Aox(t) + Gov(t) + Bou(t)]dt 
r 

+ J2 [^kx(t) + GkV(t) + Bku{t)] dwkit), 

z{t) = C,x(t) + D,Mt) + D,Mt), (7.52) 

y(t) = Cox(t) + Dov(t), 

where the matrices A^, B^, Gk, 0 < k < r, Q , D^u^ D^v, Q , DQ are given 
matrices of appropriate dimensions. The class of admissible controllers consists in 
deterministic controllers of the form 

Xcit) = AcXcit) + Bcy(t), 

u(t) = CcXc(t)-\-Dcy(t). 

(7.53) 

The closed-loop system obtained when coupling (7.53) to (7.52) is 

r 

dxc(t) = [AociXciit) 4- Gociv(t)] dt-\-J2 i^kciXciiO + GkdV(t)] dwk(t), (7.54) 
k=i 

Z{t) = CclXcl(t) + DclV(t), 

where the matrix coefficients are as in (7.4) with d = I. 
The next result provides a version of Theorem 9 for the particular case of the 

system (7.52). 

Theorem 11. For a given y > 0 the following are equivalent: 
(i) There exist an {nc > 0)-order controller stabilizing (7.53) such that the 

input-output operator associated with the system (7.54) verifies ||7^/|| < y. 
(ii) There exist X,Y e Sn, S e Sn,. N e R"^"^ satisfying X > 0, Y > 0, 

S > 0, such that 

* 
• A*X + XAo 

X [Vo Vi] < 0, 

'UoMY) no,, 

-N*U, 0 

_-N*Ur 0 

rank 
'X 

I 
0 

-U;N 
0 

-s 

0 

/ 0 " 
Y N 

Â * S 

. . . - [ / ; A ^ " 

0 
0 

-s _ 

= n -hncy 

<o, 

(7.55) 

(7.56) 

(7.57) 
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where 

and 

Uo 

Ur+X 

are bases of the null subspaces 6>/[Co DQ] and [5Q 5* • • • B^ Z)* ]̂, respectively, 
and 

no,o(>^) = ^0 [^0^ + FA*] ^0 + ^ UlA.YUo 
k=\ 

r 

k=\ 
r 

k=\ 
r 

no,i = ^ ^ ; G , + f/;^,D,,. 

r + l . 

/t=0 

The next result is well known in the deterministic case; however, for the sake of 
completeness, we shall briefly present it in the following lemma. 

Lemma 12. Let Xd e R'̂ ''''̂  be partitioned as 

Xrl = 
X M 
M* X 

X G 5 „ XeSn,, 

where nc > I. Assume that Xd > 0 and consider the following partition ofX^i^: 

Y N 
Â * S Y eSn. SeSn,. 

Then we have 

X > Y-' > 0 , 

rank{X -Y-^) < nc 

(7.58) 

(7.59) 

Conversely, if there exist X e Sn, Y e Sn verifying conditions (7.58) and (7.59), 
then there exist M e R"^"s X eS^^., N e R^^^s S e Sn, such that 

and 

L 

* X 

X M 
M* X _ 

\Y N 
N* S 

> 0 

= 
• / 0 

0 / 
(7.60) 
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Proof. From Xd > 0 it follows that X > 0, X > 0, 5 > 0. From the condition 
c/X^^ = / one obtains that 

x-y-^ = y-^NXN'^Y-^ 

and therefore (7.58) immediately follows. The above conditions also leads to 

rank [X -y-^) = rank(N) < ric 

and hence (7.59) results. 
Conversely, let X,y eSn satisfying (7.58) and (7.59). Define M e R"''"^ as the 

Cholesky factor: 
X - y-^ = MM'' 

and 

Then it follows that 

Â  = - K M , 

S = /„. -i-M'^YM. 

x-Mx-^M"" = y-^ > 0, 
s- N'^y-^N = In, > 0. 

Then (7.60) follows by direct computations and thus the proof is complete. D 

The next result shows that it is possible to remove the unknown variables N and 
S, but in this case the condition (7.56) in Theorem 11 becomes nonlinear. 

Theorem 13. For a given y > 0 the following are equivalent: 
(i) There exists a stabilizing controller with n^ > 0 of form (7.53) solving the 

DAP for the system (7.52). 
(ii) There exist X, F e <S„, X > 0, 7 > 0 satisfying the following conditions: 

> 0, "x 
I 

[x 
[/ 

/ • 

y 

I' 
y 

Vo 

rank 

A*X + XAo 

Go^ + EUi GIXA, 

x[Vo V | ] < 0 , 

U*A(Y,y)U < 0 , 

+ nc. 

+ Jl'k=\GlXGk 

0, 

(7.61) 

(7.62) 

(7.63) 

(7.64) 
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where 
Vo 

Vi 
is a basis of the null subspace of [Co DQ\ , 

U 

Uo 

is a basis of the null subspace of [ 5Q 5* 

rAo,o 

A = • 
A * 

A * 

B:D*,\and 

Ao,/- Ao,r+l 

Ar,r A^+i,;. 

A*+i,, A,+i,,+i 

2/ Ao,o = AoF + YAl + y-'GoGl 

Ao,^ = yA* + y-2GoG*, \<k<r, 

Ao,.+i = F C ; + }/-2Goa*„ 

A a = y~^GiGl l<ly^k<r, 

Aij = y-^GiG;-X-\ 

A/,.+i =y-2G/Z) ; , 1 < / < r , 

A,+i,,+i = - /^ , +y-2D,,D*, . 

Proo/ (i) => (ii) If (i) in the statement is fulfilled, then using the implication 
(i) =^ (ii) of Theorem 11 we deduce that there exist X,Y e Sn, S e Sn,, N e R'̂ "̂̂  
such that (7.55)-(7.57) are satisfied. One can see that (7.55) is just (7.63). On the 
other hand, (7.57) leads to 

X = {Y -NS-^N"^) 

This means that X is the (1,1) block of the matrix 

- 1 (7.65) 

Y 
AT* 

Applying Lemma 12 for 

it follows that 

^cl = 

N 
S 

Y N 
N* S 

- 1 

- 1 

X-Y-' >0 (7.66) 
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and 
rank{X-Y-^) < n .̂ (7.67) 

It is obvious that (7.66) is equivalent to (7.61) and (7.67) is equivalent to (7.62). But 
(7.56) leads to 

r r 

U; (AoF + YAl) ^0 + ^ ^ y-^U:GkG]Uk 
k=0 1=0 

r 

k=\ 
r 

k=0 
r 

- [/;+, (/p, - y-'D,,D*J Ur+^ - J2 ^k {Y - NS-'N*) U, < 0. (7.68) 
^=1 

Using (7.65), (7.68) becomes (7.64). Therefore there exist X, Y e Sn, X > 0, Y > 0 
verifying (7.61)-(7.64). Suppose now that (ii) holds. From (7.61) one deduces that 
X > Y~^ > 0 and rank {X — Y~^) < ric. Then, according to Lemma 12, there exist 
Â  e R"^"S M E R'̂ ^^S X e R^^-^^s S e R"^^"^ such that 

and therefore 

X 
_M* 

M 
X 

Y 
_N* 

N 
S 

0, 

X-^ = Y - NS~^N\ 

(7.69) 

(7.70) 

Thus (7.64) becomes (7.68) and therefore (7.56) holds. Moreover, (7.69) and (7.70) 
imply (7.57). Taking into account that (7.63) is just(7.55), we conclude that if (ii) in 
the statement holds, then the condition (ii) in Theorem 11 is also verified. Then the 
implication (ii) =^ (i) in Theorem 11 shows that (i) in the statement is fulfilled, and 
hence the proof is complete. D 

Remark 8. In order to solve the system (7.61)-(7.64), one can suggest the following 
algorithm: 

Step 1 Solve (7.63) with respect to X. 
Step 2 Introduce X determined at Step 1 in (7.61), (7.62), and (7.64), and solve 

the obtained LMI system with respect to Y. 

Now consider the particular case when in (7.52), /̂̂  = 0, /: = 1 , . . . , r. In this 
situation the base U becomes 

U = 
'Uo 0 
0 In> 
Ur^X 0 
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where _ _ 
" ^ 0 1 

Ur+l J 

is abasis of the null subspace of the matrix [BQ Z)*^]. Then condition (7.64) becomes 

"no.o 
ff* 
"o,i 

n* 
L'^O.r 

no.i • 
ni.i • 

fi* 

• Uo.r 

• n,,. 

<o, (7.71) 

where 

no,o = 
Ur+^ 

AQY + YA* y q 

c.y -/ pi 

- 2 Go 

no,, = U;YA* + y-
Uo Go 

+ K [Gi o;] 
Ur+l 

ho,k = y-^GiGl \<l^k<r, 

fiij = y-^GiG* - X-\ l<l<r. 

By Schur complement arguments, (7.71) is equivalent to the extended inequality 

Ao.od'.n 
AiYUo 

U^YA* 

ArYUo 0 
lG*Uo + D*^Ur+i G\ 

U;YA; t/*Go + f/;+,r>,/ 
0 G, 

G! 
Gr 

-Y^L 

<0, 

where 

Ao,o(i', r ) = Uo AoY + YAl YC* 
C.Y -I P] 

f/o 
Ur+l 

Taking the Schur complement of diag[—X \ ..., —X ') in the above inequality, 
one obtains 

"Ao,o(>',r) U*Go + U;^,D,, 

+ ELi UoYA;XAkYUo + EUi U^YAlXGk 

+ EUl GtXA.YUo ^ "̂" + ^^=' ^'^^'. 

The above inequality together with (7.61), (7.62), and (7.63) are the necessary and 
sufficient conditions derived in [65]. 

In the final part of this section we shall discuss two problems of robust stabilization 
with respect to parametric uncertainty. 
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Consider the system described by 

dx{t) = {[AoiW)) + Go{ri(t))^dri(t))C(ri(t))]x(t) (7.72) 

+ [BoiW)) + Bo{r,{t))A2ir]{t))D{r](t))] u(t)}dt 
r 

+ ^ {[A^(^(0) + Gk(ri(t))Adri(t))C{r](t))]x(t) 
k=l 

+ [Bk(r](t)) + Bk(r](t))A2(r](t))D{r]{t))] u(t)}dwk{t), 

y(t) = Co(r](t))x(t), 

where x(t) e R" denotes the state, u(t) e R^ is the control variable, and y e R^^ 
is the measured output. The matrices A^(/) e R''^", Bk(i) e R'̂ '̂", G^(/) e 
R"^^i, Bkii) e R^x'^i, 0<k <r, C(i) e R^^^", D(i) e R^i^^, Co(/) € R 2̂X« 
are known matrices and Ai e R^i ^^^, A2 G R^i ^^' are unknown matrices describ­
ing the parametric uncertainty. The robust stabilization problem we address has the 
following statement: Find a stabilizing controller of form (7.2) for the system (7.72) 
for arbitrary Ai, A2 with max (|Ai|, IA2I) < p for a prescribed p > 0, where 
|A/| = max/ep |A/(/)|, / = 1,2. The closed-loop system obtained when coupling 
the controller (7.2) to (7.72) has the following state-space representation: 

dx(t) = {[Ao(rj(t)) + Bo(r](t))DAr](t))Co(r]it))]x(t) 

+Bo(r]{t))Cc(r](t))Xc(t) + [Go{ri(t))Ai(rj(t))C(rj(t)) 

+Jo(r;(0)A2(r7(0)S(^(0)/)c(^(0)Co(r7(0)]^(0 

+ Bo(r]it))A2{r]{t))D(ri(t))Cc(r](t))Xc(t)}^ (7.73) 
r 

X J2 {[MW)) + Bt{r]{t))DAT}{t))Co(T,{tmxit) 
k=\ 

+Bkirj{t))CAriit))Xc{t) + [Gk{r,{t))Ai{ri(t))C{W)) 

+B,{riit))A2(r](tymriit))Dc{r,it))Coiriit))]x{t) 

+Bk{r]{t))A2ir}it))D{r](t))Cciriit))Xc(t)}dWk{t), 

dxcit) - [B,{n{t))CQ{r]{t))x(t) + A,(r]it))Xc{t)]dt. 

Denoting 

GkH) - [Gk{i) m)] e R"x("i+-i), 0 <k<r, 

cs) = 

\u{i) = 

A = 

L.{1) 

0 

0 • 

_D{i)_ 

"Ai(0 
0 

g R(PI+PI)X" 

g ^{p\+p\)^"> 

0 
A2(0. ' 

(7.74) 
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the system (7.73) can be rewritten in compact form as follows: 

d^t) = [AociiriiO) + Goci(ri(t))Mri(t))Cci(rj(t))]Ht)dt (7.75) 
r 

+ Y. [AkciiW)) + Gkci(riit))A(ri(t))Cci(r](t))] ^{t)dwk{t). 
k=\ 

where Akci{i) ^^^ defined as in (7.4) and 

Gkciii) = 
Gk(i) 

0 

CciH) = [C,(i) + D,,(i)DAi)Coii) D,,(i)CAi)] 
'C{i) 0 
D(i)DAi)Coii) D(i)CAi) 

,i eV. 

Therefore, the closed-loop system can be viewed as a perturbation of the system 

r 

d^{t) = Aoci(r](tm(t)dt + ^ A;t,/(r/(0)?(0^w;^(0 
k=\ 

obtained by coupling the controller (7.2) to the nominal system (7.72) obtained 
with Ai = 0, A2 = 0. Applying Corollary 21 of Chapter 6 to the system (7.75), 
it follows that a controller of type (7.2) stabilizes (7.72) for any Ai, A2 with 
max (I Ai I, IA2I) < yO if the input-output operator Td associated with the fictitious 
system 

d^ciit) = [Aocimmit) + GociimMmdt 
r 

+ Y.^Akci{il{m{t) ^ Gkci{r]{t))v{t)]dWk{t), 
k=\ 

z{t) = commit) 
verifies the condition ||7^/|| < 1/p. Then a stabilizing controller (7.2) providing 
the robustness radius p can be obtained as a solution of the DAP with y = p~~^ 
corresponding to the two-input, two-output generalized system: 

dxit) = [Ao(r](t))x(t) + Go(r](t))v(t) + Bo(T](t))u(t)]dt 
r 

+ ^ {Ak{r]{t))x{t) + Gk{r]{t))v{t) + Bk{r]{t))u{t)] dwk(t), 
k=\ 

z(t) = C,{r]{t))x{t) + D,,{r]{t))u{t)^ (7.76) 

y{t) = Co(r](t))x(t), 

where G^(/), 0 < k < r, C,{i), D,^,{i), i e V are defined as in (7.74). Then a 
robust stabilizing controller with the robustness radius p may be obtained, applying 
Theorem 9 to the system (7.76) for y = p~^ 
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The second robust stabilization problem with respect to parametric uncertainty 
considered in the final part of this section is the following: Find a stabilizing controller 
of type (7.2) for the system: 

dx(t) = [Ao{r]it))x{t) 4- Go(r]{t))A {(p(t), r](t)) + Bo(r](t))uit)] dt 
r 

+ ^ [A,(r?(0)x(r) + G,(r?(r))A ((/?(0, ^?(0) 

+5,(^(0)w(r)]Ju;,(r), (7.77) 

y{t) = C^(r](t))x(t) ^ D^(r]{t))v{t). 

where ip(t) — C{r]{t))x(t) and A are unknown Lipschitz functions with A (0, /) = 0 
and 

|A(z, / ) | , _ _ 
sup — — — < p. (IJ^) 

When coupling a controller of type (7.2) to the system {1.11), the closed-loop system 
has the following state-space equation: 

dxci{t) = [Aoci(r](t))Xci(t) + Goci(r](t))A (cp(t), riit))]dt (7.79) 
r 

+ J2 [Akci{n(t))xci(t) + GA,7(^?(0)A {(fit), r]{t))] dwkit), 
k=\ 

where Aj^ciii), Gkci(i) are defined as in (7.4), 0 < k < r. Invoking Theorem 24 
of Chapter 6 for the system (7.79), it follows that a controller (7.2) stabilizes (7.77) 
for any nonlinear perturbation A satisfying (7.78) if p < 1/ ||7^/||, where Td is the 
input-output operator of the system 

d^(t) = [Aoci(ri(tm(t) + Goci(r]it))v(t)]dt (7.80) 
r 

z(t) = [C iW) 0]t(f). 

Hence a robust stabilizing controller for (7.77) can be obtained by solving the DAP 
for y = l/p for the system 

dx{t) = [Ao{r](t))x(t) + Go(ri{t))v(t) + Bo(r]{t))u{t)]dt 
r 

+ Y. \^Ak(r]{t))x(t) + G*(^(0)i'(0 +Bk{il{t))u{t)] dwkit), (7.81) 
k=\ 

z(t) = C(n{t))x{t), 

y(t) = Co{r](t))x(t) + Do(r,{t))v{t). 

Solvability conditions for this DAP are provided by Theorem 9. 
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7.4 DAP for linear stochastic systems with Markovian jumping 

In this section we shall investigate the y-attenuation problem for linear stochastic 
systems of form (7.47) looking for strictly proper n-order controllers with Dc (i) —0, 
i e v. More precisely, the class of considered controllers is given by 

xAt) = AAilit))Xc{t) + BAW)}y(t), 

u(t) = CAri(t))Xc(t), 

(7.82) 

where Adi) € R"""", 5^(0 e R"*'''^, CAi) e R'"2X«, / e p . when coupling the 
controller (7.82) to the system (7.47), one obtains 

XciiO = Ac,(r](t))Xci(t) + GciinOMt), 

z(t) = CAr](t))xAt) + Dci(r]{t))v{t), 

where 

Aci(i) 

Gciii) 

AoH) BoiDCcH) 
BAnCoii) Acii) 

God) (7.83) 
BAi)Do(i) 

Cc/(/) = [Q(/) D,„(/)Q(/)], 

DciH) = D,Ai)-

The following result provides necessary and sufficient conditions that guarantee the 
existence of a solution of form (7.82) of the DAP. 

Theorem 14. For y > 0 the following are equivalent: 
(i) There exists a controller of form (7.82) stabilizing (7.47) and solving the DAP 

with the level of attenuation y. 
(ii) There exist X = {X(l),..., X(d)) e S^, Y = (Y(l),.. .,Y(d)) e S^, 

F = ( F ( l ) , . . . , F{d)) e Mi^„, K = {K{\),..., K{d)) e Mi^^, which verify 

X(i) > 0 

V(i) -

W(i) -

V„(0 VuU) 
Vt*2{i) Vjiii)} 

<0 , 

Wud) Wnd) Wu(i) 
W^2(') W22(i) 0 
WrM) 0 

Y(i) In 
In X(i) 

1^33(0. 

> 0 , 

<0 , 

(7.84) 

(7.85) 

(7.86) 
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and 

VuH) = A;(i)X{i) + XiOAoii) + K{i)Coii) + Q(i)K*{i) 

d 

7=1 

Vnii) - X(OGoO) + K{i)Do{i) + c;{i)D,,(i), 

Viid) = -Y^L, + D*ii)D,,{i), 

Wnii) = Aoii)Y(i) + K0)A*(O + Bo(i)F{i) + F*(i)B;ii) 

+qnY{i) + Y-^Go{i)G*o(i), 

Wnii) = Y(i)C;{i) + F*ii)Dl(i) + y-^GoiDD^^H), 

Wnii) = iV^iYH)... ^/^—^Yii)^/^-^Y{i)... V ^ F O ' ) ] , 

1^22(0 - - / p , + y^D,Ai)D:,ii), 

^33(0 = -diag (Yd) ... Y{i - 1) Y(i + l}... Yid)). 

Moreover, i/'(7.84)-(7.86) are feasible, then a controller of form (7.82) is given by 

AAi) = [Xii)-Y-\i)Y Alii) + Xii)Aoii)Yii) + Xii)Boii)Fii) 

+K{i)Coii)Yii) + c;ii)[C,{i)Yii) + D,„(OF(/)] 

+ [X(OGoO) + Kii)Doii) + C!(/)D,„(0] [y'/m, - D;^ii)D,,ii)Y' 

X [GS(0 + D;^ii)C,ii)Yii) + D*„(/)D,„(OF(/)] 

+ J2^uYii)Y~'iJ)\Y-'ii), (7.87) 

BAi) = [Y-\i)-Xii)Y' KH), 
CcU) = Fii)Y-Hi). 

Proof, (i) ̂  (ii) Assume that there exists a controller of form (7.82) such that 
the zero solution of the system (7.83) for vit) = 0 is ESMS and ||X;|I < K. 
where Td denotes the input-output operator associated with ( 7.83). Applying 
Corollary 15 in Chapter 6 for the system (7.83), we deduce that there exists 
Xci = iXciil),..., Xciid)) e Si, Xciii) >0,ieV such that 

n,- ix„) = 
n,-,n(Xe,) UijjiXci) 

n*,2(x„) n,-,22(Xc,) 
0, (7.88) 
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where we denoted 

d 

Oui (^d) = Ali{i)Xci{i) + XciiDAciH) + ^^o-X./O') 
7 = 1 

+C*(/)C,/(/), 

n u 2 (Xc/) - X,/(/)G,/(/) + C* (/)D,/(/), 

n/,22(Xc/) = - y ' 4 . + D * ( / ) D , / ( / ) . 

By a Schur complement reasoning, (7.88) leads to the following two conditions: 

d 

Ali{i)XAi) + X,i{i)AAi) + ^^o-X./O') + C* (/)Q/(/) 
7 = 1 

+ [Xci{i)Gci{i) + c:,{i)DAi)] [y^hn, - DliiDDciiDl' 
X [G:;(OX,/(/) + D;/( / )C, /( / ) ] < 0, 

K^/,, -D*(/)D,/(/)>0. 

Consider the following partition of Xci(i): 

(7.89) 

(7.90) 

and 

XciH) = 

^c7(0 = 

XO) 
M*{i) 

YU) 
N*ii) 

M(i)' 
X(i) _ 

^ ( / ) 1 
S{i) J 

where X{i), Y{i) e S^ and M{i), N(i) e R"^". Without losing generahty, one can 
assume that M{i) is invertible for every / € V. Indeed, if M(i) is not invertible for 
some / G V, then one can replace Xd by 

XE = Xcl + 
0 sl„ 
sl„ 0 

with some e > 0 

such that Xg > 0, 0 , (Xg) < 0 for all / e V, and in addition Mgii) — M(i) + sl„ is 
invertible for every / e V. Since X(i)N(i) + M(i)S(i) = 0 it follows that A (̂/) = 
—X'\i)M(i)S{i), and then N(i) is invertible, too. Let us define 

T{i) = 

It is obvious that T{i) is invertible and 

r-'(o 

Then we have 

Yd) l„ 
N*{i) 0 

0 (/V-'(/))* 
[/„ -ro-)(A'-'(/))*J 

T*(i)x,i(n 
In 0 

X(i) M(i) 
(7.91) 
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T*(i)XAi)T(i) (7.92) 

A(0 = T*{i)ni {Xci) TH) = 

and 
'Y(i) I„ 
. In X{i) 

From (7.91) together with Xdii) > 0 one gets (7.86). By pre- and postmultiplication 
of (7.89) by T*ii) and T{i), respectively, one obtains 

r*(/)n, (X,,) T(i) < 0, (7.93) 

where n, (Xd) is the left-hand side of the inequality (7.89). Let 

• A „ ( / ) A * , ( / ) ' 

A2 i ( / ) A 2 2 ( / ) _ 

where by direct computations, based on (7.89)-(7.92), we have 

Au(/) = Ao(i)Y{i) + Boii)CAi)M*(i) + Y{i)Al{i) + A^(OC(/)B*(0 

+ [God) + {Y{i)C:ii) + Nii)C:{i)Dlii)) D,Ai)] 

X [y2/„, - D*„(/)D,,(/)]"' 
X [G;(i) + Dt^d) (C( / )y (0 + D,Ai)CAi)N*(i))] 

+ [Y(i)C*{i) + yV(/)C;(/)£)*„(/)] [C,(i)Yii) + D,,{i}Cc{i)N*(i)] 
d 

+ ^ ^ , y [Y{i)X(j)Y(i) + N(i)M*{j)Y{i) + Y(i)M{j)N*{i) 

7=1 

+N{i)X{i)N*{i)], 

A2i(0 = Alii) + X{i)A^(i)Y{i) + X{i)Bo{i)Cc{i)N*{i) + M{i)BAi)Co(i)Y{i) 

+M(i)AAi)N*(i) + [X(i)Go{i) + M(/)B,(/)D*(/) + C!(/)£),„(/)] 

X [Y^I„^ - D*„(/)D,„(/)]~' 

X [GS(0 + D:Ai)CAi)Y{i) + D*Ai)D,M)CAi)N*(i)] 

+C;ii) [C,{i)Y{i) + D,Ai)Cc{i)N*{i)] 

d 

+ Yiqij[Y{i)X{j) + N{i)M*{j)\, 
7 = 1 

A22(0 = Al{i)X{i) + X(/)Ao(/) + M(/)B,(/)Co(/) + Cl{i)B;{i)M{i) 

+ [X(OGo(/) + Mii)BAi)D*{i) + c:(i)D,Ai)] 

[K^/^, - D*A')Dzv(i)Y' 
[GUnXii) + Do(i)B*{i)M*{i) + DIADCS)] 

d 

+q(/)Q(/) + ^^,,X(i). 

Let us introduce the following notation: 

K{i) = M(i)BAi), 

F(i) = CAi)N*ii). 

X 

X 
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Thus one obtains 

AnO') = Ao(i)Y(i) + Y(i)A*Qii) + Bo{i)F{i) + F*(i)B;{i) (7.94) 

+ [Go(0 + {Y(i)C*(i) + F*ii)D:ji)) D,Ai)] 

X [Gl(i) + Dt^ii) {C,(i)Y{i) + D,„(/)F(/))] 

+ [Y{i)C;{i) + F*(/)D!„(/)] [C,ii}Y{i) + D,,(i}F{i)] 
d 

+ Y.1'J [yii)^U)Y{i) + N(i)M*(j)Y{i) + Y{i)MUW{i) 

j=i 

+N(i)XU)N*(i)], 

A2i0-) = Alii) + X{i)Ao{i)Y{i) + Xii)Boii)F{i) + K {i)Co{i)Y (i) 

+M(i)AAi)N*ii) + [XiDGoiO + K(i)DUi) + C:(i)D,Ai)] 

X [y2/^_ _ D : „ ( / ) D , , ( / ) ] " ' (7.95) 

X [GS(/) + D*^ii)C,(i)Y(i) + Z)!„(/)D,„(/)F(0] 

+C;ii)[C,(i)Yii) + D,Ai)Fii)] 
d 

+ Y.1U [^(O^O) + N{i)M\j)\, 
7 = 1 

A22(0 = Al{i)X{i) + X(OAo(/) + K{i)CQ{i) + Co*(/)/i:*(0 (7.96) 

+ [X(/)Go(/) + K{i)Dl{i) + C(0O^t,(0] 

X [y^/^^ _ D:^{i)DUi)Y' 

X [GS(/)X(/) + DO(OA:*(/) + D*„(/)Q(/)] 

rf 

+ J]^„X(y) + C!(/)Q(0. 
y=i 

The condition (7.93) leads to 

A „ ( i ) < 0 , (7.97) 

A22(/) < 0. (7.98) 

Using (7.96) and (7.98), by a Schur complement argument (7.84) directly follows. 
On the other hand, we may write 

Y{i)X{j)Y{i) + N{i)M*{j)Y(i) + Y(i)M{j)N*(i) + N{i)Xij)N*{i) 

- Y{i) [X{j) - M{j)X-\j)M\j)] Y{i) + Y(i)M{j)X-\j)M*{j)Y{i) 

+ N{i)M*(j)Y{i) + Y(i)M{i)N*{i) + N(i)X(j)N*(i) 

= Y{i)Y-\j)Y{i) + [Y(i)M{j) + NiDXij)] X-\j) 

X [M*(;)K(/) + X(j)N*{i)\. 
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Then (7.97) and (7.94) lead to 

Aoii)Y{i) + Yii)A*oii) + Bo(i)F(i) + F^iDB^d) 

+ [God) + {Y(i)C;(i) + F*{i)D:^(i)) D,Ai)] [x'/m, - £>!„(/)£>z„(/)]"' 

X [Gl(i) + £)*„(/) (C( / )y (0 + D,„(/)F(0)] 

+ [Y(i)C;ii) + F * ( / ) D : „ ( / ) ] [C,ii)Y(i) + D,„(/)F(0] 
d 

Again using Schur complement arguments, one can easily see that the above inequality 
together with (7.90) implies (7.85) in the statement. Thus the implication (i) =^ (ii) is 
proved. 

(ii)=^(i) Assume that there exist X(i) > 0, Y(i) > 0, F(i), K{i), i e V 
verifying (7.84)-(7.86). From (7.86) we obtain that X{i) - Y'^i) > 0. Consider 

Xcid) = 
X{i) Y-Hi)-X(i) 

Y-'{i)-X{i) Xii)-Y-'{i) 

Then we have 

x{i) - (Y-Hi) - xn)) {xii) - r-'(/)) ' (y-'(o - x(o) 
= Xii) + r-'(i) - x(i) = Y-\i) > 0. 

Therefore Xci{i) > 0. Using (7.87), one obtains the closed-loop system 

Xciit) ^ Aci{r]it))Xci{t) + Gci{r}it))v{t), 

zit) = Cc,ir](t))Xci(t) + D,i(r](t))v(t) 

with the coefficients defined as in (7.83). Let 

n,- (x„) = 

where 

n, ,n(X„) n,,i2(Xc/) 
ihi^iXc) n,,22(Xd) 

R/.n (Xrf) = A*,(i)X,,(i) + Xc,(i)AAi) + J^^'J^ciU) + C,(OCri(0, 

n,,i2 (Xci) = Xc,ii)GAi) + c;,(/)5,,(/), 
n,-,22 (Xc) = -Y^L, + 5;,(/)Dri(/). 

Then for 
T{i) 

Y(i) In 
Yd) 0 
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direct computations give 

r(on/(x,/)r(/) = 

where 

Aii(/) 0 
0 A22(0 

n,- {x,i) = fiui (Xci) + ni,i2 (Xci) {y^im, - D^iinoAOy' ni,n (Xd), 
An(/) = Ao(i)Y(i) + Y(i)Al(i) + Bo(i)Fii) + F*{i)B',{i) 

+ [God) + (F(/)C;(/) + F*(/)D;(/)) D,,( /)] 

X [7^4^ - D*,(Oa.(/)]~' 
X [G*(/) + D: ,(0 (Q(/)F(/) + a,(/)F(/))] 
+ [V(/)C;(/) + F*(/ )D;( / ) ] [Q(/)F(/) + D,,(/)F(/)] 

d 

7 = 1 

and A22(/) = A22(0 as defined in (7.96). From (7.84) and (7.85), by Schur 
complement arguments, it follows that 

Aii(/) < 0 , 

A22(/) < 0, 

respectively, and therefore 11/ {Xd) < 0. Moreover, from (7.84) y^Imi — 
D*^(i)Dzy(i) > 0, which coincides with the condition y^Imi — F>*i(i)Dci(i) > 0. 
This last condition together with FI/ (Xd) < 0 leads to an inequality of form (7.88) 
for 11/ (Xd), which shows that the controller (7.87) is a solution of the DAP and thus 
the proof is complete. D 

7.5 An ^^-type filtering problem for signals corrupted with 
multiplicative white noise 

In this section we consider a particular filtering problem in which the measured 
output is subjected to multiplicative white noise. Its solution is derived via an Z/^-
type method based on the Bounded Real Lemma version proved in Theorem 10 of 
Chapter 6. 

Consider the following linear stable system: 

dx(t) = [Ax(t) + Bu(t)] dt, (7.100) 

dyi(t) = Cix(t) (dt + adw(t)), 

y2(t) = C2x(t), 
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where x(t) e R" denotes the state, u(t) e R^ is an input variable, yi e R^i^" 
denotes the measured output, y2 € R 2̂X« [^ a quality output, a 6 R, and w(t) is a 
scalar standard Wiener process. Given y > 0, the problem consists in determining an 
«/-order deterministic filter where nf > 0 is given, with the input yi and the output 
yf e RP^, having the state-space equations 

Xfit) = AfXf{t)-\-Bfydt), 

yf(t) = CfXfit), 

(7.101) 

such that the resulting system obtained by coupling it to (7.100) is ESMS, and the 
input-output operator 

T : Ll ([0, oo), R-) -^ LI ([0, oo), R^^) 

from w i-> z, where z(t) = y2(0— y/iO^ has the norm less than y. 
The solution of this problem is provided by the following result. 

Theorem IS.^he filtering problem has a solution if and only if there exist the matrices 
P,X eSn, X e Snr, P > 0, X > 0, X > 0, and M e R"^"/, such that 

where 

A*P-\- PA-hcr^C*^U*XUCi 
B^P 

A*X -h XA + MUCi -h C^V'M* 
-fa2c*^*Xf/Ci+C*C2 

B*X 

PB 

XB 

-y'l 

rank 

X M 
M* X 

P -X M 
M* -X 

<0 , 

<0 , 

> 0 , 

/ r p - x M i \ 
V[ M* -x\) 

U 
L («/ -Pi)xpi J 

X(/71-AI 

f)]ifnf<p,. 

(7.102) 

(7.103) 

(7.104) 

(7.105) 

(7.106) 

Proof When coupling the filter (7.101) to the system (7.100) one obtains the 
resulting system: 

dx{t) = [Ax(t) -f- Bu(t)]dt, 

dxf(t) = [AfXfit) + Cixit)] dt + oBfC\x{t)dw{t), 

Z(t) = C2X(t)- CfXfit), 
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or equivalently 

d 
• x(t) ' 

_Xf(t)_ <[ 
+ 

A 0 1 
BfC, Af\ 

0 0] 
aBfCi o j 

z{t) - [C2 - Cf] 

r x{t)' 

r x(r) ' 
lXfit)_ 

" xit) ' 
_Xf(t)_ 

+ _oJ 
L/ii;(0, 

Let us introduce the following notation: 

AQ = 

Bo--

' A 0 " 
BfC, Af_ 

'Bo 
_ 0 

. - 4 , -

1, C - [C; I -C 

0 0 
cr5/Ci 0 

/]• 

u{t) \dt 

(7.107) 

(7.108) 

Applying Theorem 10 of Chapter 6 for the resulting system (7.107), it follows that 
it is ESMS and its associated input-output operator has the norm less than y if and 
only if there exists X > 0 such that 

AIX -h XAQ + A\XAx + C'C XBo 
BIX 

Further, consider the partition of X\ 

X ^ 

<0. (7.109) 

X M 
M* X 

where X eW\'X e R"/^^/, and M e R"^^/. Then using (7.108), the condition 
(7.109) becomes 

Af{X,M,X,Af,Bf,Cf) 

^fn 
M:. 

•A/TJ 
0 

^ 2 

AA2 
Mr, 
Ml 

Mn 
M2, 
-y^L 
0 

0 
M24 
0 

-Ip 

< 0, (7.110) 

where 

Mu = A*X + XA + MBfCi + C*,B*fM* - I " / ' 

(7.111) 

+ or^C*B*Xi5/C| +CIC2, 

Mn = A*M + C\B*fX + MAf - C^Cf, 

Mn = XB, 

M22 = A}X + XAf, 

Mii = M*B, 

^ 4 = - C } . 

Assume that Bf is full rank. This is not a restrictive assumption since in the case when 
the filtering problem stated above has a solution with Bf non-full rank, then one can 
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always find a small enough perturbation of Bf such that the perturbed matrix Bf is 
full rank and verifies (7.110). Then, there exists a nonsingular transformation T such 
that 

TBf 

L ifnf>p,c 
L (^/-pijxpi J 

where S and ^ are nonsingular. It follows that applying to Bf the nonsingular 
transformation 

E-^ 0 
0 / 

T if rif > p\ or 

^~^T if/2/ < pu 

one obtains that Bf = U with U given by (7.106). Therefore, without losing 
generality, one can choose Bf = U. 

The condition (7.110) can be expressed as 

2: + P*^Q + Q*^*7^ < 0 , (7.112) 

we denoted 

Z = 

v = 

Afu 
M*A + XBfCi 

0 

'M* X 0 0 
_-C2 0 0 -

A*M + C*B} 
0 

0 

IP2. 
, Q = [o 

X 

In, 

Nn 

-Y^Im 
0 

0 0 ] , 

0 
0 
0 

-h P2 J 

Q = ^f 
C f 

(7.113) 

Using the Projection Lemma (Lemma 7), it follows that (7.112) has a solution Q if 
and only if 

w;,ZWr < 0, 

W^ZWQ < 0, 

(7.114) 

(7.115) 

where W-p and WQ denote bases of the null subspaces of V and Q, respectively. 
Further, perform the partition of A'"^ according to the partition of A': 

x-' = 
Y N 
Â * Y 
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With these notations, one obtains that 

wi = 

WQ 

'Y 
0 

[/„ 
0 
0 
0 

N 
0 

0 
0 
In, 
0 

0 
- / „ , 

0 " 
0 
0 

lp-> 

-YCl' 
0 

Direct algebraic computations using Y~^ — X = MN*Y~^ show that (7.114) is 
equivalent to (7.102), where P = y~^ and (7.115) is equivalent to (7.103). The rank 
condition (7.105) follows directly from the relationship between A' and A'~\ and it 
shows that Y~^ = X — MX~^M*. Thus the proof is complete. D 

If the necessary and sufficient conditions in Theorem 15 are fulfilled, then a 
solution of the filtering problem can easily be obtained by solving the basic LMI 
(7.112) with respect to Q. 

In the following, we present a numerical example illustrating the above result. 
The Instrumental Landing System (ILS) is radioelectronic equipment that provides 
aircrafts with on-board, on-line information concerning the aircraft's position relative 
to some glideslope references in the landing phase of the flight. The glideslope signal 
is expressed as 

igs = Kio, (7.116) 

where the multiplicative factor K depends on the glideslope sensitivity and io denotes 
the nominal signal. The offset in the glideslope sensitivity depends on the perfor­
mance category of the ILS. If a denotes the mean square deviation of K, then 
P (\K(t) — Ko\ < 3(7) > 0.997, where KQ denotes the nominal value of the mul­
tiplicative factor. This probability increases when a ^- 0. Then, taking a — 0.06, 
for which 3(7 =0.18, one can obtain a maximum deviation from the ghdeslope sen­
sitivity of 18%, in conformance with international standards (Category II of ILS). 
Therefore, the multipHcation factor K in (7.116) can be replaced by 

/r = /^0+Or$, (7.117) 

where § is a white noise with unitary covariance. If the altitude dynamics is approx­
imated by i = AJC + i5w with /Q = Cx, then according to (7.116) and (7.117), the 
ghdeslope measured signal is i^s = (Ko-\-cr^)Cx. Thus one obtains a stochastic 
system of form (7.100) with the output subjected to multiplicative white noise, for 
which a deterministic filter is designed. For A = —1/30, B = 50/30, Ci = C2 = 1, 
and KQ = I, using the result stated in Theorem 15, we obtained for the level of atten­
uation y = 5, the following solution of the system of inequalities (7.102-7.105): 
X = 1.9457; M = -0.6692; X = 0.3132; P = 0.5161. Solving the LMI (7.112), 

Q = 
-0.4073 
0.4450 
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filtered 
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Fig. 7.2. 

and therefore the solution of the filtering problem is given by 

Xf = -0 .4073JC/ + >^I, 

yf = 0.4045JC/. 

In Figure 7.2a the unfiltered and the filtered signals are plotted. For comparison, we 
further determined a Kalman filter for the attitude dynamics by tuning the covariance 
matrices go and RQ corresponding to the control and to the output additive white noise 
perturbations. For Qo = 100 and RQ = 0.1, the resulting Kalman filter provides 
the results shown in the Figure 7.2b, where the filtered and unfiltered signals are 
represented. 

Analyzing the numerical results illustrated in the above figure, one concludes, 
as is expected, that a filter designed using the specific multiplicative feature of the 
stochastic perturbation provides better results with respect to those given by Kalman 
filters that are suitable in the case of additive stochastic perturbations. 

Notes and references 

Most of the results derived in this chapter are presented for the first time. State 
feedback H^ control for linear systems with multiplicative white noise has been 
studied in several works. Among them we cite [99], [9], and the references therein. 
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For the time-varying case, corresponding results can be found in [29]. In the Marko-
vian systems situation, the problem has been addressed in [41], [108], and [32] for 
the time-varying case. The design problem of a stabilizing y-attenuating controller 
for systems with state-dependent white noise is given in [64]. The result derived in 
Section 5.4 is inspired from [25]. The H^ type filtering problem presented at the end 
of this chapter has been considered in [109] based on the formulation in [54], where 
deterministic filters with the same order as the generator systems are derived. 
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exponentially stability in mean square 

(ESMS), 62 
exponentially stable evolution, 47 

Fatou's Lemma, 5 
Floquet multipliers, 62 
Fubini's theorem, 6 
fundamental matrix solution of a 

stochastic system, 31 

Gaussian random vectors, 
nondegenerate, 7 

Holder's inequality, 5 
homogeneous Chapman-Kolmogorov 

relation, 13 

independent a-algebras, 7 
independent random variables, 7 
indicator function of a set, 4 
inner product, 7 
input-output operator, 210 
integrable function, 4 
inverse of an input-output operators, 212 
Ito formula, 19 
Ito stochastic integral, 15 
Ito-type formula, 19 

/^-iteration of the operator, 39 

Lebesgue space L^(Q), 5 
Lebesgue space Z.̂  ^ [̂a, b], 14 
Lebesgue's Theorem, 5 
linear matrix equalities (LMEs), 66 
linear matrix inequalities (LMIs), 66 
linear quadratic optimization problem 

(LQOP), 159 
well-posedness, 160 

Lyapunov operator, 38 

maximal solution of SGRDE, 134 
measurable function, 3 
measurable space, 1 
measure, 2 
minimum solution of SGRDE, 134 

nonlinear uncertainty, 247 

observability Gramian, 185 
operational norm, 37 
optimal control, 165 
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positive linear operator, 35 
probability, 2 
probability space, 2 
projection lemma, 273 

Radon-Nicodym Theorem, 6 
Riesz's Theorem, 3 
robust stabilization, 259 

sample paths of a process, 9 
Schur complements, 114 
simple measurable function, 3 
small gain theorem (first), 241 
small gain theorem (second), 242 
space with measure (Q, JT, /x), 2 
stability radius, 245 
stabilizing controller, 189 
stabihzing solution of SGRDE, 124 
standard Brownian motion (standard 

Wiener process), 12 
standard homogeneous Markov chain, 13 
step function, 15 
stochastic controllability, 102 
stochastic detectability, 86 

of a triple, 88 
stochastic differential equations, 19 

in time-invariant case, 30 
stochastic generalized filtering Riccati 

equation (SGFRE), 140 
stochastic generalized Riccati algebraic 

equation (SGRAE), 189 

stochastic generalized Riccati differential 
equation (SGRDE), 110 

stochastic H^ norms, 178 
stochastic H~ optimal control, 187 

the output feedback case, 194 
the state full access case, 187 

stochastic observability, 93 
uniform, 93 

stochastic process 
A i r adapted, 10 
continuous, 9 
continuous in probability, 9 
with independent increments, 11 
measurable, 9 
nonanticipative, 10 
right continuous, 10 

stochastic stabilizability, 85 
of a triple, 88 

tracking problem, 173 
transition semigroup, 13 

uniform positive function, 35 

:T-system, 2 
cr-algebra, 1 

generated by a family of subsets, 2 
of Borel subsets, 1 

cr-finite measures, 3 


