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Preface

It should be emphasised at the start that this book does not claim to be an ex-
haustive treatise on either linear operators or linear systems, but it presents an
introduction to the common ground between the two subjects, one pure mathe-
matical and one applied, by regarding a linear system as a (causal) shift-invariant
operator on a Hilbert space such as £*(Z,) or L*(0,00). It therefore includes ma-
terial on Hardy spaces, shift-invariant operators, the commutant lifting theorem,
and almost-periodic functions, which might traditionally be regarded as “pure”
mathematics, and is suitable for those working in analysis who wish to learn more
advanced material on linear operators.

At the same time, it is hoped that students and researchers in systems and
control will find the approach taken attractive, including as it does much re-
cent material on the mathematical side of systems theory, which cannot easily
be found elsewhere: these include recent developments in robust control, power
signal spaces, and the input—output approach to time-delay systems. Parts of
this book have been expounded in graduate courses and other lectures at that
level and could be used for a similar purpose elsewhere.

Chapter 1 begins with a review of basic operator theory without proofs. All
this material can be found in any introductory course and many textbooks, and
so is included mostly for reference. The other main topic of this chapter, which
is treated in considerably more detail, is that of Hardy spaces, which are Banach
spaces of analytic functions on the disc or half-plane. Our treatment covers the
essential ideas (in particular inner and outer functions) that will be needed later.

In Chapter 2 we begin with material that will be unfamiliar to many readers,
namely, the study of unbounded closed operators. The approach is to study an
operator by means of its graph, and we also introduce semigroups and the gap
metric. Most of the material is fairly standard, although its approach is slanted
towards the applications to be encountered later. We also include a brief dis-
cussion of admissibility, a topic of active research that has not yet reached the
standard textbooks.

vii
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Chapter 3 establishes the link between linear systems and shift-invariant op-
erators. The standard Beurling-Helson-Lax—Wiener theorems on invariant sub-
spaces are presented, with the most elementary proofs available; then we go on
to shift-invariant operators, which can be thought of as operators with shift-
invariant graphs. The other property that distinguishes a linear system is the
idea of causality, and we include a discussion of the now-notorious Georgiou—
Smith paradox. We conclude with a gentle treatment of the commutant lifting
theorem, an abstract theorem in operator theory with many attractive applica-
tions.

Chapter 4 brings together the ideas of the previous chapter to discuss robust
control (i.e., stabilization by feedback) from a graph point of view using coprime
factorizations. This is by no means a new idea, but the mathematical develop-
ments of the 1990s that link it with the idea of shift-invariance have put this on
a much more rigorous footing, and it is time to present the material in a more
operator-theoretic way. We also discuss the chordal metric, originating in com-
plex analysis, which under the name “pointwise gap metric” provides another
useful way of measuring the distance between linear systems.

Chapter 5 presents the topic of spaces of persistent signals. These interest
engineers greatly, but the subject is a minefield, in that several errors are re-
produced in the literature. We start conventionally with an easy introduction
to almost-periodic functions, presented as the simplest persistent signals; there
are many accounts of these, but no recent ones seem to be as clear as the origi-
nal ones of Bohr and Besicovitch; these in turn suffer from using what is now a
rather old-fashioned notation. After that we move on to bounded-power signals,
where we draw largely on papers written within the last five years. We conclude
with non-stochastic approaches to white noise, correlation, and parts of Wiener’s
generalized harmonic analysis, all treated from an operator-theory viewpoint.

Chapter 6 begins with a brief discussion of finite-dimensional systems, but the
main topic is that of delay systems, which we may think of as the simplest and
most important example of an infinite-dimensional system, having the greatest
interest from an analytic point of view. The four themes of this chapter are the
classification of delay systems into retarded, neutral and advanced types; sta-
bility, a question that resolves itself into asking when delay systems represent
operators of multiplication by bounded functions, and how to locate the poles of
their transfer functions; rational approximation, which can now be presented in
an elementary fashion using shift operators; and finally stabilization, where we
apply the ideas of Chapter 4 to this concrete situation. In all cases we give a
presentation with the minimum of unnecessary technical detail.

The book includes approximately 100 exercises, which are mostly intended to
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be quite easy and to give further practical illustrations of the main results in the
text.

Since this book’s theme is the link between operator theory and systems the-
ory, we deliberately omit certain topics that do not fit into this approach, for
example, the spectral theory of non-compact operators. The reader wishing to
learn more advanced functional analysis and operator theory is recommended to
consult the books [25, 67, 117, 146], for example. Likewise, most treatments of
systems theory tend to concentrate on the finite-dimensional case and then go
into more details of control design. Of these, the texts [37, 49, 66, 75, 132] may
be recommended.

We take the opportunity to mention some other interesting books that take
an operator-theoretic approach to linear systems, for example, [31, 32, 38]. These
seem to be pitched at a more advanced level, and their selection of material is
rather different. This last comment is appropriate for the monographs [20, 151],
which we may expect to become classics.

[ am grateful to Birgit Jacob, Romesh Kumar, Pertti Makila, Denis Matignon
and Martin Smith for their helpful comments on the first draft of this manuscript.
Some of the book was written when I was visiting the University of Lyon I, and
I thank Isabelle Chalendar and Monique Gaflier for their help in making this
possible. I also wish to thank Roger Astley and Elise Oranges for their advice
on the production of this book. Finally, this book is dedicated affectionately to
Andrew, Chris and Kate, who between them have put up with me for more than
a century.






Chapter 1

Operators and Hardy spaces

In this chapter we begin by reviewing the main definitions and theorems from
the basic theory of linear operators that will be needed. This material is very
standard and likely to have been met in any basic course on functional analysis,
and so we give just the essentials of the subject, without proofs.

We then move on to a discussion of the Hardy spaces, which are Banach spaces
of functions that can be defined either in the unit disc D or the right half-plane
C, and extended, respectively, to the unit circle T or the imaginary axis :R. Here
we give a fairly elementary account of those parts of the subject that are most
useful in applications, including the concepts of inner and outer functions. There
are many more detailed treatments available, and we refer the interested reader
to the notes at the end of the chapter.

1.1 Banach spaces and bounded operators

We shall work with normed spaces, which can be real or complex, and write
K for the field of scalars (R or C) when it is not important which we take. A
complete normed space is called a Banach space. An inner product on a vector

/2 and a complete

space induces a norm by means of the formula ||z| = (z,z)
inner-product space is called a Hilbert space.
A linear operator T from a normed space A to a normed space ) is just a

linear mapping, that is, it satisfies
T(a1z1 + azz3) = a1Tz1 + a1z, for all z;,2, € X and a;,a; € K.

The operator T' is said to be bounded, if there is a constant K > 0 such that
|ITz|| < K||z|| for all vectors z in X'. The least such K that holds for all z is the

norm of T', written

I T=| _

|T|| = sup = sup ||Tzl],
z#0 ||zl je)=1

1
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where the last equality holds because ||T'z||/||z| = ||T(z/||z|])|| and z/||z| is a
vector of norm 1. The boundedness condition implies that | Tz —Ty|| < K|z —y||
for all z, y € X', and hence T is continuous. Conversely, continuous operators are
always bounded (see the exercises).

The bounded operators from A to ) form a normed space, with the norm
defined as above, which we shall denote by £(X', ). If ) is a Banach space, then

so is L(X,)). Two special cases are of interest:

1. We denote L(AX',X) by L(X'). Apart from being a normed space, this is
also an algebra, since we can define the product ST of two operators S and

T by (ST)(z) = S(Tz) for z € X; then ||ST| < ||S]||T]|-

2. The space L(AX, K) is the dual space of X', denoted by X'*. Its elements are
the linear functionals on X.

In particular, the dual space of a Hilbert space H can be identified with the
space itself, because every linear functional f : H — K is given by the formula
f(z) = (z,y) for some unique y € H. Moreover, ||f|| = |ly||. This is the Riesz—
Fréchet theorem.

Now let X' be a complex Banach space. For T' € L(X'), the spectrum of T is
the set
o(T)=4{X € C: T — X is not invertible}.

It is known that o(7') is a non-empty compact subset of C and that, letting r(7")
denote the spectral radius, sup{|A| : A € o(T')}, we have

r(T) = lim HT”Hl/n = inf{HTnHUn cn > 1}

In particular, 7(T) < ||T'||. We also have o(T") O 0,(T), where o,(T") denotes
the point spectrum of 7', the set of eigenvalues of 7. If A" is finite-dimensional,
these two sets coincide and are finite and non-empty; however, in the infinite-
dimensional case, they can be very different (see the exercises).

The resolvent set, p(T'), is the complement of o(T") in C, that is, the set
of points A € C for which (T — A)™! exists. We also refer to (T — AI)™*

as the resolvent of T', which can be regarded as an operator-valued function

R:p(T)— L(X), with R(A\) = (T — XI)™*.

For a bounded operator T' : H — K between Hilbert spaces H and X, the
adjoint T* : K — H is defined by the equation
(Th,k) = (h,T"k) for all h € H and k € K. (1.1)

The following properties are well known and not difficult to prove. They hold for
all T, Ty and T3 in L(H,K) and aq, a3 in C:
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o (aiTh + a1%)* = a1y + a3 15
o (T =T,
o [T =|IT[;

o (1) =T5Ty.

Now three special classes of operator are of interest to us:
1. The operator T' is Hermatian, or self-adjoint, if T = T™.
2. T is unitary, if T* = T, that is, TT* = T*T = I.

3. T is normal, if TT* = T*T. Clearly both Hermitian and unitary operators
are normal.

If T is Hermitian, then o(T") C R; whereas, if T is unitary, then o(7) C T =
{zeC: |z| =1}.

Suppose that K is a closed subspace of a Hilbert space H. Then H has an
orthogonal decomposition H = K &K1, where K, the orthogonal complement of
K, is the closed subspace K+ = {z € H : (z,k) = 0 for all k € K}. Thus every
vector y € ‘H decomposes uniquely as y = k + k', where & € K and &’ € K+, and
one has [ly]* = I + |

If we now define Px : H — H by P(k+ k') = k, then P is a linear operator
on H, the orthogonal projection onto K, and it satisfies Px = P, Pc = P2 and
|Pc|| = 1 (unless K = {0}, when of course Px is the zero operator). Moreover,
P¢ + Pr1 = 1, the identity operator.

An operator T' € L(X,)) between Banach spaces is said to be compact if T
maps bounded subsets of X’ into relatively compact subsets of ) (that is, sets
with compact closure). In particular, finite-rank operators are compact. Equiva-
lently, T' is compact if, whenever (z,) is a bounded sequence in &, the sequence
(T'z,) has a convergent subsequence in ).

The spectrum of a compact operator is particularly simple. It consists of a
finite or countably infinite number of points; and if there are infinitely many,
they form a sequence tending to zero. All non-zero points of the spectrum are
eigenvalues, and the eigenspaces are finite-dimensional.

Suppose now that T' € L('H), where H is a Hilbert space. If T' is both compact
and normal, then T' can be decomposed in terms of its non-zero eigenvalues (Az)
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and eigenvectors (e;), which can be taken to be an orthonormal sequence as
follows:

Tz = Z Ae(z, er)er, (z € H).
k

The eigenvalues tend to zero if there are infinitely many of them. Indeed, all
operators of this form are both compact and normal.

A general compact operator T' € L(’H) has the following singular value de-
composition;
Tz = Zak@:, ex) fr, (z € H), (1.2)
k
where now (e;) and (fx) are two orthonormal sequences, possibly finite, the
Schmidt pairs of T', and the constants o are positive real numbers, the sin-
gular values of T', and form a decreasing sequence: if there are infinitely many,
they tend to zero. Indeed, (c}) are the eigenvalues of the compact operator T*T.
In particular, every compact operator on a Hilbert space is the norm limit of a
sequence of finite-rank operators — just truncate the sum in (1.2).

1.2 Hardy spaces on the disc and half-plane

We begin by defining the Hardy spaces as Banach spaces of analytic functions on
the disc D = {z € C: |z| < 1} and then see them in another light as spaces of
functions defined on the unit circle T = {z € C : |z| = 1}, which we equip with
normalized Lebesgue measure.

Definition 1.2.1 For 1 < p < oo, the Hardy space H? is defined as the space of
all analytic functions f in the disc D for which the norm

1 2w _ 1/p
151, =sup (5= [ Irer ao)
T 0

15 finite. The space H*® consists of all bounded analytic functions f wn the disc
with norm

[flleo = sup | f(2)].

lz|<1

It is not hard to see that for p < q we have H? O H?; thus H* C H* C H'.

The following result holds, although we shall not require its full power and
will prove slightly simpler results for p = 2 and p = .

Theorem 1.2.2 For functions f in H? with 1 < p < oo, the radial limat
F(e) = tim f(re®)

ezists almost everywhere in t, and indeed f € LP(T), with || f||ge = HfHLP
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We normally identify f with f and can thus regard H? as a closed subspace
of L?(T), and hence a Banach space.

It is also possible to start by defining H? directly as the subspace of those
LP(T) functions for which the negative Fourier coeflicients vanish, that is,

-~

1 m .
f(n) = g/o f(e)e™ dw =0 (n <0).

Then a function f with f(ei‘”) ~> f(n)em‘” can be naturally identified with
the power series f(z) = . f(n)z", defining an analytic function f in D.

Proof of part of Theorem 1.2.2: We begin with p = 2. For a function
fiz— 7 a,z", it is easily verified that we have

1 27 ) o
|f(re“")|2 dw = Zr2n|an|2’

2
0 n=0

and thus f € H? if and only if ||f]|3 = > 07, |ax|* < co. It is also clear that the
functions f, € L*(T) defined by f.(e™) = f(re™”) converge in the L? norm as
r — 1 to the function f with Fourier coefficients (@n)n>0, and hence a subsequence
converges pointwise almost everywhere. Conversely, any function fe L*(T)
whose Fourier coefficients of negative index all vanish corresponds in an obvious
way to a function f in H?Z.

For the case p = co, we note that H> C H?, and thus a function f € H* also
corresponds to a boundary function f € L*(T). Because a subsequence of (f,)
tends pointwise almost everywhere to f, we may conclude that Hf”oo < |l oo-
However, one can obtain the extension from f to f by integrating with the Poisson
kernel K,, namely,

. 1 [2= .
fret) =5 [ Kult - @)f(e*) do,

where
1 — 72

e?:w_l_reit
=Re| ——= . 1.3
1—|—7“2—2rcos(t—w) e<elW_rezt> ( )

1 £lleo < sup || Flleoll EKrllr = | Flloos
0<r<1

K,(t—w)=

This implies that

since the Poisson kernel is a positive function and

1 27
1K, |1 = —/ K{)dt=1 (0<r<1).
2m Jq
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We thus have H]EHoo = || f1|oo- O

The Poisson kernel above provides a harmonic extension to the disc for any
function in L'(T): the function is in the Hardy class if and only if this extension
is actually an analytic function in .

We see that H? is a Hilbert space, being a closed subspace of the Hilbert space
L*(T), and we shall use Pz to denote the orthogonal projection from L*(T) onto
H?, so that

)
o0

oo
P2 g a, e — 5 ane’™
n=—0oo n=0

There is a natural isometric isomorphism between the sequence space £*(Z)
and the function space L*(T), given by associating the sequence (an) _., with

n=—oo
the function whose Fourier series is > oo a,e™. Under this correspondence,

the sequence space £*(Z ) maps to the Hardy space H?, for we may regard £*(Z )
as embedding into £*(Z) as the subspace of all (a,)2__ with a, = 0 for n < 0.

— Qo0

The space H? is also a reproducing kernel Hilbert space on the disc D. What
this means is that the evaluation functional f — f(a) is bounded for each a € D.
By the Riesz—Fréchet theorem given in Section 1.1, we can find a function k, €
H?, the reproducing kernel, such that

fla) = £,k 2W/f“ﬂ Fa(e) do

and in fact in this case k,(z) = 1/(1 — az)

Another useful result is the following, which describes the boundary behaviour
of an H? function. We shall omit the proof, although in Chapter 3 we shall
see that the final statement can be proved using the theory of shift-invariant
subspaces (see Exercise 6 of Chapter 3).

Theorem 1.2.3 Suppose that f € H? for some p > 1, and that f s not identi-
cally zero. Then

1 27 )
o | loglf(e)ldo >~
21 Jg

and hence f(€*) # 0 almost everywhere.

We now present the analogous results for Hardy spaces defined on the right

half-plane C; = {z € C: Rez > 0}.

Definition 1.2.4 For 1 < p < oo, the Hardy space H?(C,) of the right half-
plane C; may be defined as the set of all analytic functions f : C, — C such
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that

o0 1/p
Hpr=<sup / |f(:n+iy)|pdy) < oo,

z>0

Likewise, the space H®(C,. ) consists of all analytic and bounded functions in C;,
and the norm s given by

[flleo = sup [f(2)]

ZE(C+

Again these functions have boundary values f(zy) = lim, 04+ f(z +1ty) almost
everywhere, and the boundary function f lies in LP(3R) and satisfies HfHLp =
| ||zz2. We may identify f and f, and thus H?(C, ) can naturally be regarded as
a closed subspace of L?(:R) and hence a Banach space.

As in the case of the disc, a Poisson kernel formula can be used to provide
harmonic extensions to the right half-plane of functions lying in L?(:R) for some
1 < p < o0, and the H? functions are those whose harmonic extensions are
analytic. The formula in this case is

flz+y) = / K y—t (1t) dt, for z > 0,

where K, is the Poisson kernel for C; and is given by

T

Ko(y—1t) = et

The Laplace transform L : L*(0,00) — H?*(C; ) plays an important role here.
It is given by

(Lg)(s) = / Tetg(ydt (seCy)

and up to a constant factor gives an isometric isomorphism between the two
spaces, since it is bijective and satisfies ||Lg|lg> = v/27||g|lz>. What is even
more remarkable is the content of the Paley—Wiener theorem, namely, that up
to a change of variable we may use the bilateral Laplace transform (which is
the Fourier transform with a change of variable) to decompose L*(iR) into the
orthogonal sum of Hardy spaces on the left and right half-planes. Explicitly, if
we now write

(o)) = [ eglt)a

()

for s € iR and g € L'(R), this extends by continuity to a linear isomorphism L :
L*(R) — L*(iR) with ||Lg||z: = v/27||g||z2, and applying L to the decomposition

IAR) = L*(—o0,0)® L*(0,00)

gives
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L*(R) = H(C.)a& HY(Cy),

where C_ and C, are, respectively, the left and right half-planes. We identify
functions with their harmonic extensions, as before.

We note that H?(C, ) is again a reproducing kernel Hilbert space, in that, for
s € Cy and f € H*(C,), we have

£(s) = (fi k) = / " fy)k()dy,

where k;(z) is the reproducing kernel for H*(C, ).

_ 1

- 27(z+3)
There is a natural isometric isomorphism between Hardy spaces on the disc

and half-plane, which is induced by the self-inverse bijection M : D — C, , given

by M(z) = (1—2)/(1+z). The following relation is given in [57, 97], for example.

Theorem 1.2.5 The mapping V : H*(D) — H?*(C, ), defined by

1

(VF)(s) = Jr01s)

F(M(s)),

1S an isometric 1somorphism.

1.3 Inner and outer functions

In this section we are concerned with the multiplicative structure of the Hardy
spaces, in that we want to factorize a general Hardy class function as the product
of two somewhat simpler functions, an inner factor and an outer factor. Here
are their definitions (a simpler characterization of outer functions appears as a
corollary of Beurling’s theorem, in Corollary 3.1.4).

Definition 1.3.1 An inner function is an H*® function that has unit modulus
almost everywhere on T. An outer function is a function f € H' that can be
written in the form

() = aexp <2i /0% vtz k(e”)dw) (z €D), (1.4)

i ew — 2

where k is a real-valued integrable function and |a| = 1.
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If f is an outer function satisfying (1.4), then log|f(e®)] = k(e") almost
everywhere, since log | f(re")| = Relog f(re*) gives the Poisson extension of k to
the disc by virtue of (1.3). Clearly, an outer function can have no zeroes in the
disc, since it is the exponential of something.

Example 1.3.2 Ezamples of outer functions include all invertible functions in
H* (for ezample, polynomials whose zeroes all lie outside D). In fact it can be
shown that all polynomials whose zeroes lie in C\D are outer functions, although
they are not invertible in H* if they have zeroes on the unit circle.

Ezamples of inner functions include functions such as z — 12—_6(1:2’ where

a € D, and, more generally, Blaschke products (see Definition 1.3.4 below); these
have zeroes in the disc, but there are also inner functions without zeroes, such as
exp((z — 1)/(z 4+ 1)). This last function is just e=*, where s = (1 — z)/(1 + z);
the mapping from z to s takes D to the right half-plane C, and T\ {—1} to the
tmaginary azis 1R.

Once we have a complete characterization of inner functions and outer func-
tions, we have a full description of all Hardy class functions, because of the
following factorization theorem, which decomposes an arbitrary function into the
product of inner and outer factors.

Theorem 1.3.3 (Inner—outer factorization) Let f be a nonzero function in
H'. Then f has a factorization f = 6 - u, where 8 is inner and u is outer. This
factorization is unique up to a constant of modulus 1.

Sketch proof:  Since f € H*', the function log |f| lies in L*(T), by virtue of
Theorem 1.2.3. We can thus define the outer factor u corresponding to f by the
formula

w) =ew (o [ S Zloglf(e o), (D)

27 ew — z

after which 6 = f/u is analytic in D with boundary values of modulus 1 almost
everywhere, and thus € is inner. The uniqueness of the decomposition follows on
observing that a unimodular outer function is necessarily constant. O

We are going to see a complete description of the class of inner functions, and
we begin with those that have zeroes in .

Definition 1.3.4 A finite Blaschke product is a function of the form

Z—Zj

B(z):aH 1-zz2’

1=

where |a| =1 and |z;| <1 forg=1,...,n.



10 CHAPTER 1. OPERATORS AND HARDY SPACES

It is easy to verify that B is analytic in D and continuous in D, that B is
inner, and that B has zeroes at zi, ..., z, only and poles at 1/z;,...,1/Z, only.

Next we want to break the inner part into two factors, an inner function with
zeroes (which will be an infinite Blaschke product) and an inner function without
zeroes (a so-called singular inner function). To do this we need to understand
the properties of the zero set of a function in H?.

Theorem 1.3.5 (G. Szegd) Let f € H* be such that f is not identically zero.
Then the zeroes (z,) of f are countable in number and satisfy the Blaschke con-

dition -

D (1= |za]) < oo (1.5)

1

Proof: By considering z — f(z)/2?, if necessary, we may suppose without loss
of generality that f(0) # 0. Now take 0 < r < 1 and let z,..., 2, be the zeroes
of fin {z € C: |z| < r}, choosing r so that there are none on {|z| = r}. Write
g9(z) = f(rz)/B(z), where B is a Blaschke product with zeroes z1 /7, ..., zn/r.
Since log g 1s harmonic, we have the identity

1 27 )
log g(0) = g/ log g(€™) dw,
0

which, on taking real parts, reduces to

1 [ :
log 7O+ Y log(r/|z0]) = 5 [ log re®)] o < og | 1.

|zn|<7

by Jensen’s inequality [ ¢(f(z))dz < ¢ | f(z)dz holding for concave functions
¢ — in this case ¢(y) = log(y)

Letting 7 — 1, we see that ) log(1/|z,|) < co, which, by the comparison
test, is easily seen to be equivalent to > (1 — |z,|) < oco. O

For a Hardy class function f we can construct a Blaschke product B whose
zeroes are precisely the zeroes of f; then f/B has no zeroes at all and can be
analysed further.

Theorem 1.3.6 Let f € H'. Then the infinite Blaschke product

o, H Zn zn—z
2al 1 -

zn[#0

where (z,) are the zeroes of f, of which m are at 0, converges uniformly on
compact sets to an H® function, the only zeroes of which are the (z,), with the
correct multiplicities. Moreover, |B(z)| <1 and |B(e™)| =1 almost everywhere.
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Proof:  We write b, for the factor corresponding to z, in the infinite product
formula for B. Note that

(1 = |zn|) [Zn2 + |24]] 1+ |z
= < (1 - |Zn|) )
|2n| |1 — Zn 2] 1— |z

1= bnu(2)| =

which, combined with the Blaschke condition (1.5), guarantees local uniform con-
vergence of the infinite product to a function B with the required zeroes.

It now remains to verify that B is also inner. Clearly |B(e*)| < 1 for all
w € [0, 27]; further, letting B, = B/(b;...b,), which is also a Blaschke product,
we have

1 27 " 1 27 "
B.(0)] < g/ Bu(e)] dw = o [ |B(e)] de
and letting n — co we see that
1 27 )
— ‘B(e“")‘ dw =1,
21 Jg
so that |B(e*)| = 1 almost everywhere. O

Removing the Blaschke factor leaves a function without zeroes and does not
change the H? norm, since the boundary values of an inner function are unimod-
ular almost everywhere. We thus obtain the following factorization result.

Corollary 1.3.7 (F. Riesz) Let f € H?, f #£ 0, and let B(z) be the (possibly in-
finite) Blaschke product formed using the zeroes (z,) of f. Then f(z) = g(z)B(z)
for some g € H? with || fll, = ||g]|p- It follows that any nonzero function f € H*
can be written as f = B - S - u, where B s a Blaschke product, S s a singular in-
ner function (one without zeroes), and u is an outer function. This factorization
1S unique up to constants of modulus 1.

The next result explains why an inner function without zeroes is called a sin-
gular inner function. Formula (1.6) below is very similar to (1.4), except that the
integral is now taken with respect to a singular measure, that is, one supported
on a set of Lebesgue measure 0, rather than k(w) dw.

Theorem 1.3.8 Let g be an inner function without zeroes. Then there is a
unique positive measure p, singular with respect to Lebesque measure, and a con-
stant a of modulus 1, such that

o(2) = aexp <— /0% vtz dﬂ(w)> . (z€D). (1.6)

ew —z
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Sketch proof: Choose a branch of h = —log g in D, since g has no zeroes: we
see that Reh = —log|g| > 0 in D. We now use the theorem of Herglotz, which
asserts that any non-negative harmonic function ¢ in D is the Poisson integral
of a positive measure y on T; indeed, we can identity du(w) as the weak-* limit
point as 7 — 1 of a sequence of measures -¢, dw, where ¢,(e*) = @(re™). It
follows that ¢ = e™", where

h<z>=w+/o“w+ du(w),  (z€D),

el

and [ is a real constant. The fact that y is a singular measure follows from the
fact that ¢ is inner, and thus the radial limits of Re h, which (up to a constant)

equal 3—5, are zero almost everywhere. O

A similar inner—outer factorization holds for the Hardy spaces of the right
half-plane. The Blaschke condition on the zeroes (s, ) of an H?(C, ) function is

now the following:
Z Re Sn <
—— < 0
— 1+ 5,2 ’
and the corresponding Blaschke product has the form
s—1 11— 5,28 — s,
B(s) = .
(3) <s—l—1> H 1—3 s+ 35,
A non-zero inner function is again represented by a measure supported on the

boundary, but in this case the measure can have mass “at infinity”, which mani-
fests itself as an extra factor e **. The general form of a singular inner function

1s thus: .
—Xs ys+1
— - g :
g(s)=e eXP( /}P ——y M(y)>

where 4 is now a measure on R. For example, e"/* is an inner function, corre-

sponding to a point mass at the origin.

Outer functions in H?(C, ) have the form

o) =aenp ([~ B 1), (L7

w Y +is 14y

where |a| = 1, the function k is real valued, and

k(3 .
/_Oo |k(y)] T 42 converges

For such a function f we have log|f(iy)| = k(zy) almost everywhere.
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1.4 Vector-valued Hardy spaces

It is possible to define Hardy spaces of functions taking values in arbitrary Ba-
nach spaces, but this introduces certain complications when we come to look at
integration. However, in the case of finite-dimensional Banach spaces, there is
no such difficulty, and we shall restrict ourselves to these. From a linear systems
point of view, this is the most interesting case, since this is a suitable framework
for modelling systems with a finite number of inputs and outputs.

A function F' with values in an n-dimensional complex vector space V clearly
has the form F(z) = fi(z)vi+ fa(2z)va+. . .+ fu(2)vys, where f1,..., f, are ordinary
complex-valued functions and vy,...,v, is a basis for V. We then say that F' is
analytic if and only if each of fi,..., f, is analytic. The definition is easily seen
to be independent of the choice of basis.

In fact, there are two vector-valued Hardy spaces that principally interest us
here. For the first, we consider functions with values in C*, which we provide
with the standard Euclidean norm.

Definition 1.4.1 The space H*(D, C™) consists of all analytic functions F : D —
C"*, such that the norm given by

1 27 ) 1/2
171 = (sup o [P o)
™ Jo

0<r<1
18 finate.

It is easily seen that this embeds in a linear and isometric fashion into L*(T,C"),
much as in the scalar case. Indeed, if F' = (f1,..., f.), then

IF1* = 1A+ + I fall

The other important example is a matrix-valued version of H*. Recall that
if m and n are positive integers, then we may identify £(C™,C*) with the vector
space of all n x m matrices. To do this, we associate the operator T" with the
matrix (a;x) by the formula Te; = Y ,_, ax;e}, where eq,..., e, and €],..., €,
are the usual orthonormal bases of C™ and C", respectively. The operator norm
of T' is given by

|IT|| = max{o1,...,0m},

where 01, ..., 0, are the singular values of T', as in Section 1.1, that is, o,..., 02

are the eigenvalues of the non-negative self-adjoint matrix 7*7". Sometimes we
write o1(T") for ||T'|| to avoid a proliferation of norm symbols, as in the following
definition.
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Definition 1.4.2 The space H* (D, L(C™,C")) consists of all bounded analytic
functions F : D — L(C™,C"), with the norm given by

|71l = sup oy (F()).

Again, we may embed H*®(L(C™,C")) linearly and isometrically into the space
L=(T, £(C™,C)).

Similarly, vector-valued Hardy spaces on the right half-plane may be defined,
such as H*(C,,C*) and H*(C,,L(C™,C")). We leave the reader to write down

the analogous definitions when required.

Notes

The elementary theory of Hilbert spaces can be found in [9, 48, 117, 118, 149,
146] and in many other places.

The basic ideas in the theory of Hardy spaces are also standard and can be
found in various forms in [2, 24, 26, 39, 57, 97, 100, 116], for example.

The inner—outer factorization should be compared with related decomposi-
tions occurring elsewhere in analysis: for example, any bounded operator A has
a polar decomposition A = V|A|, where |A| = (A*A)*/? is a positive operator

and V is a partial isometry (an operator that is an isometry from (ker A)* onto

(ker A*)L and zero on ker A).

Exercises

1. Prove that if 7' is a linear operator that is continuous at 0, then there is a
number § > 0 such that ||Tz|| < 1 whenever ||z|| < 6, and deduce that T is
bounded with ||T']| < 1/6.

2. Show that if S and T are elements of L(X'), then ||ST| < [|S]||T]|-

3. The Volterra operator V : L?(0,1) — L*(0,1) is defined by

(VF)(z) = / Cfd (f € I(0,1)).
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Use the Cauchy—Schwarz inequality to show that [(V f)(z)| < vz f]|2-
Deduce that ||V]| < 1/4/2.

Let R : ¢* — (2 denote the right shift, that is,
R(al, ag, .. ) = (0, ap, A, .. )
Prove that ||R|| = 1, so that o(R) C D. Verify that o,(R) = 0, that is, R

has no eigenvalues. Show, however, that o(R) = D.

Let (An)22, be a fixed bounded sequence of complex numbers, and define an
operator on £*(Z,) by T((z,)) = ((y»)), where y,, = Az, for each n. Verify
that 7' is a bounded operator and ||T']| = ||(An)]|eo- Let A = {A1,A2,...}.
Prove that each Ay is an eigenvalue of T', and hence is in o(7'), and that
if A € A, then the inverse of T — AI exists and is bounded. Deduce that
o(T)=A.

Find the adjoint of the rank-one operator 7', defined by Tz = (z,y)z,
(z € H), where y and z are fixed elements of a Hilbert space H.

Let U € L(H) be a unitary operator. Show that (Ue,) is an orthonormal
basis of H whenever (e,) is.

Let f € CJa,b], the space of continuous functions on an interval [a, b], and
let M; be the multiplication operator on L*(a,b), given by (Msg)(t) =
f(t)g(t), for g € L*(a,b). Find a function f € Cla, b] such that M; = M;.
Show that M/ is always a normal operator. When is it Hermitian? When
is it unitary?

Let T € L(H). Show that o(T*) = {}: X € o(T)}.

Let R be as in Exercise 4. Prove that R* : /2 — (* is given by the left
shift R*(b1,bz,...) = (b2,b3,...). Show that o,(R*) = D. Deduce that

o(R*) = D. Finally, show that R is not a normal operator.

Show, using the Cauchy-Schwarz inequality, that H* C H? C H', and
give examples to show that the inclusions are strict.
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13.

14.

15.

16.

17.

18.

19.
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Suppose that f € L?(T) has the Fourier series > 2 __ a,e"™. Show that

its harmonic extension to the disc is given by f(re®) = 32 __ a,rl*le™t,

n=—oco

Let f(z) = log((1 — 2)/(1 + 2z)) for z € D. Is Re f bounded in D? Is Im f
bounded in D? Show that f lies in H? but not in H*.

For a € D, let k, : z — 1/(1 — @z) be the reproducing kernel. Verify that
(f ko) = f(a) for all f € H®. What is ||kg]|2?

For )\ € C,, calculate the Laplace transform of the function f(t) = e™** in
L?*(0,00) and verify that HLfHHz(@Jr) = V27erHL2(o,oo)-

Verify that the function s — e™*/(s — 1) is in L*(4R). Calculate its orthog-
onal projection onto H*(C; ).

Find necessary and sufficient conditions on a rational function f(z) =
c[lii(z = a;)/ [Tj=1(z — i) for it to be in H*®(D) and (a) inner and
(b) outer.

For the inner function 6(s) = e™* in H*(C, ), show that § H*(C, ) consists
of all functions that are Laplace transforms of functions in L?*(1, o), and

that H*(C,) & 6 H?*(C, ) corresponds to L*(0,1) in the same way.

Fill in the details of the sketched proofs in Section 1.3.



Chapter 2

Closed Operators

The main theme of this chapter is the study of unbounded operators by means of
their graphs, that is, sets of pairs (z,T'z). Unbounded operators occur in many
applications: for example, the integral operator,

which models a component of so many physical systems, sometimes by means of
the first-order differential equation

W_uw,  w0=0,

is unbounded on L?(0,00) and can be successfully studied by these techniques.

More glamorous examples of unbounded operators occur in the theory of
semigroups (for example, the heat semigroup), and we study these in greater
detail. The gap metric is introduced here, and it will play a fundamental role in
the control-theoretic ideas of Chapter 4.

2.1 The graph of an operator

In order to treat unbounded operators using methods of analysis, rather than
purely algebraic techniques, we now introduce the graph of an operator. Note
that the term is being used in the elementary sense of the graph of the function
y = 4z, rather than as a branch of graph theory [8].

Definition 2.1.1 Let T : X — )Y be a mapping between sets. Then its graph is
the subset G(T) C X x Y given by

G(T)=A{(z,Tz): z € X}.

17
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If X and )Y are vector spaces and T' is linear, then it is straightforward to
verify that G(T') is a linear subspace of the vector space X' x ) (see the exercises).

Let us now look at the case when X" and ) are normed spaces and T is linear.
Then X x ) is naturally a normed space, with the topology given by a number
of possible norms; for example, for 1 < p < co we may define

Iz, 9)ll = lell? + [ly[7)"'* (2.1)

(the case p = 2 will be convenient when X' and ) are inner-product spaces,
because then X' x ) is also an inner-product space in a natural way). Another
possible norm is given by

1, )l = max (], [ly]])-

An operator is then said to be closed if its graph is closed. This is equivalent to
the condition that, whenever (z,) is a sequence in X" and z, y are vectors in X,
Y, respectively, such that z, — = and Tz, — y, then we have y = T'z. Clearly
any continuous (i.e., bounded) operator is closed, and the following closed graph
theorem of Banach gives a partial converse in the case when A and ) are Banach
spaces (i.e., complete normed spaces). A proof can be found in many books, e.g.,

[116, 146].

Theorem 2.1.2 (Closed graph theorem) Let T : X' — ) be a linear mapping
between Banach spaces such that G(T') is a closed subspace of X x Y. Then T s
bounded.

When we come to look at unbounded operators, there is one complication that
needs to be tackled. Although it is possible to show the existence of everywhere-
defined unbounded operators between Banach spaces (see the exercises), the proof
is not constructive, and the operators that one encounters in applications are nor-
mally defined only on an incomplete subspace of a Banach space.

Let X and ) be normed spaces; if T' is an operator defined on a subspace of
A, then we call that subspace the domain of T' and denote it by D(T"). However,
it 1s still common to talk about an operator between A and ), even though it is

not defined on the whole of X.

It is easy to see that a linear subspace & C &' x ) is the graph of an operator T
(defined on some subspace D(T') C &) if and only if, whenever we have (z,21) € §
and (z,22) € S, we necessarily have z; = 2z, or, equivalently, if the only vector

(0,y) lying in S is (0, 0).
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[ee]

Example 2.1.3 Let ‘H be a Hilbert space with orthonormal basis (e,)>, and
define an operator T by T : > >  anen, — » o nane,. Then T is unbounded,
since T'e, = ne,, and T 1s not defined on the whole of H, indeed

D(T) = {i ane, € H: inanen € 7‘(} ,

n=1 n=1

so that > . ane, € D(T) if and only if Y-, n?la,|®* < co. Thus D(T) is a
dense subspace of H (since it includes all finite linear combinations of the vectors

en) but not the whole of H.

Now, even though D(T') is not closed in Example 2.1.3, it turns out that the
graph of T' is closed. This subspace is given by

G(T)=A{(z,Tz): 2 € D(T)},

and it is this definition that will apply in general. To see that the graph is closed,
suppose that (z(¥))2 . and z lie in D(T), with z(¥) — z and Tz®) — y, for some
vector y € H. (This superscript notation for sequences is ugly but is convenient
here.) Let ¢ = > 7  ane, and y = >~ bne,. Then for each n the nth coor-
dinate of z(®) tends to a, and the nth coordinate of Tz(®) tends to b,. Hence
b, = na, and thus y = T'z.

If T:D(T) — Y is an operator with a closed graph G(T') C X' x ), where
D(T) C X, and X and Y are Banach spaces, then D(T) itself becomes a Banach

space with the graph norm,
lzlly = (ll* + | T2 )*)"?

and a Hilbert space if X and ) are Hilbert spaces. This follows because then
D(T) is isometrically isomorphic to G(T') under the mapping z — (z,Tz), if we
take p = 2 in (2.1). Note that G(T') is a Banach space because it is a closed
subspace of the Banach space X' x ).

It sometimes happens that the graph of an operator 7' is not closed, but
that its closure is still the graph of an operator. In this case we say that T is
closable and define its closure, T, to be the operator such that G(T) = G(T).
The following result tells us when an operator is closable.

Proposition 2.1.4 Let T be an operator with domain D(T) C X' and range ).
Then T is closable if and only if, whenever (z,) is a sequence in D(T) and y a
vector wn Y with z, — 0 and Tz, — y, we have y = 0.



20 CHAPTER 2. CLOSED OPERATORS

Proof:  Clearly the condition is necessary, since if (0,y) lies in the closure of
the graph of 7', and if m is itself a graph, then y = 0. Conversely, if the
condition is satisfied, then G(T') is a linear subspace, since the closure of a linear
subspace is always a linear subspace, and it satisfies the necessary and sufficient
condition given above for a subspace to be the graph of an operator, namely, that

it contains no vector (0,y) with y # 0. O

In particular, any bounded operator is closable, since it is continuous. Let us
see an example of a non-closable operator.

o0

Example 2.1.5 In a Hilbert space H with orthonormal basis (e,)2 ,
(en), together with an extra vector v = Y .. ex/k, form a linearly independent
set (i.e., no finite linear combination vanishes). Let S denote its linear span, and
define T : S — H by Te, =0 for all n and Tv = v, extending to S by linearity.
Now the vectors u, = v — > ;_, ex/k satisfy u, — 0 but Tu,, = v for all n, and
hence T' s not closable.

the vectors

We discussed earlier the adjoint of a bounded operator on a Hilbert space, as
defined in (1.1). It will now be useful to see the extent to which we can make
such a definition for unbounded operators, which may not be defined on the whole
space.

Definition 2.1.6 Let H and K be Hilbert spaces, and let T : D(T) — K be a
linear operator with domain D(T) C H. Then T" : D(T') — H is said to be an
adjoint to T' if D(T") C K and

(Th,k) = (h,T'k) for all h € D(T') and k € D(T").

As it stands, there will be many adjoints; indeed, the definition is satisfied if we
define D(T") = {0} and 77(0) = 0. However, suppose now that D(T') is dense
and let us define 7" as follows. Take D(T") to be the set of all k for which there
actually exists an hg € ‘H with (T'h, k) = (h, ho) for all A € D(T'). Such an hg is
unique, since D(T') is dense; thus (h, hq) is completely determined once we know
its values on D(T').

Accordingly, we define T'k = hy; it is easily verified that this makes 7" into a
linear operator adjoint to 7', and that it is maximal, in the sense that all other
operators adjoint to 7" are restrictions of 7" to a subdomain. We now write 7™
for T" and call it the adjoint of T'. It is not hard to verify that this definition
produces the usual adjoint, in the case that 7' is bounded and defined on the
whole of H.



2.1. THE GRAPH OF AN OPERATOR 21

Remark 2.1.7 Even if T' is not a prior: closed, it is closable as soon as it has a
densely-defined adjoint 7". For if v, — 0 and Tu, — y, then

(y,w) = im (Tu,,w) = lim (u,, T'w) =0

n— oo n— oo

for all w € D(T") and so y = 0.

A further relevance of the adjoint to our discussion of graphs is explained in
the next result. Note that G(T) C H x K and G(T*) C K x H; for convenience
we write G'(T™) for the reversed graph of T*, that is,

G'(T*) = {(h,k) e H x K : k € D(T*), h = Tk}

Theorem 2.1.8 Let’H and K be Hilbert spaces, and let T : D(T') — K be a closed
linear operator with dense domain D(T) C 'H. Then G'(—T7) is the orthogonal
complement of G(T') in H x K.

Proof: = We note that a vector (A1, k;) is orthogonal to the whole of G(T') if
and only if ((h,Th),(h1, k1)) = 0 for all h € D(T'). This gives the condition

(h, hy) + (Th, k1) = 0. (2.2)

Now if hy = —T*k;, then we certainly have (h, ki) = —(T'h, k;) for all h € D(T),
and so (2.2) holds. On the other hand, if (2.2) does hold, then k; is in the domain
of T*, because we can define T'k; = —h; to satisfy the criterion in Definition 2.1.6.

Thus T*kl = —hl. O

Noting that orthogonal complements are themselves closed subspaces, the
duality between T and T can clearly be expressed in a more symmetrical form,
as follows.

Corollary 2.1.9 Let H and K be Hilbert spaces, and let T : D(T) — K be a
closed densely-defined operator with domain D(T) C H. Then T* is a closed
densely-defined operator with domain D(T*) C K.

Proof: It is clear from Theorem 2.1.8 that 7" has a closed graph. Moreover, T*
is densely defined, as otherwise there would exist a vector k # 0 with £ L D(T™);
but then (0, k) € G'(—T*)*, which is G(T). This is impossible, since G(T') is the
graph of an operator. O

We leave the reader to verify (by looking at graphs) that the identity (7*)* =T
still holds in this case.
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2.2 Semigroups

A very important class of closed unbounded operators arises in the theory of
semigroups of operators, which itself has strong links with the theory of linear
systems. Accordingly, we discuss some of the basic results here.

Definition 2.2.1 Let X' be a Banach space. Then a strongly continuous semi-
group (or Cqy semigroup) (T'(t)) is a collection of bounded operators {T'(t) : t €
R, ¢t > 0}, satisfying the following conditions:

1. T(0) = I, the identity operator on X.
2. T(s)T'(t)=T(s+t) for every s, t > 0.

3. The mapping from R into X defined by t — T'(t)z is continuous for every
zeX.
One important and easy example is obtained by defining 7'(t) = e, where
A is a fixed bounded operator on A'. In this case the mapping ¢t — T(t) is even
continuous in the norm topology (see the exercises). The following useful result
shows that the operators T'(¢) cannot grow in norm faster than exponentially.

Lemma 2.2.2 Let (T(t)) be a Cy semigroup. Then there exist constants M,
a > 0 such that | T(t)|| < Me** for all t > 0.

Proof:  Consider first the operators T'(t) for 0 < ¢t < 1. These are uniformly
bounded in norm, since if (¢;) is any sequence in [0, 1], then it has a conver-
gent subsequence, (tx()) say, converging to a point u € [0,1]. Then (T'(tzq))z)
converges to T'(u)z for each z € X. By the Banach—Steinhaus (uniform bounded-
ness) theorem [9, 117] the subsequence (1'(t(;))) is uniformly bounded in norm,
and this implies that there is a constant K > 0 such that ||T'(¢)|] < K for
0 <t < 1. But now, given any real number ¢t > 0, we write ¢ = n 4+ r, where n is
a non-negative integer and 0 < r < 1. Then

IT@) < ITQ) T < E™ < Me®*  with M=K and € =K.

0

We shall now see that for any Cy semigroup, even one not given a prior: as
T(t) = e#, an analogous operator A exists, although it will not in general be

bounded.

Definition 2.2.3 Let (T(t)) be a Co semigroup on a Banach space X'. Then its
infinitesimal generator is the linear operator A : D(A) — X defined by
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Az = lim M,
h—0+ h
with domain D(A) C X' given by
T(h)z —

DA)={z € X : lim

exists}.
h—0+

It is not hard to verify that D(A) is a linear subspace and that A is linear
(see the exercises). The domain of A is also invariant under each T'(t), as the
next result shows.

Proposition 2.2.4 Let A be the infinitesimal generator of a Co semigroup (T'(t))
defined on X, and let D(A) denote its domain. Then for z € D(A) one has
T(t)z € D(A), and AT(t)z = T(t)Az for allt > 0.

Proof: Checking the condition in Definition 2.2.3 gives, for A > 0,

T(h)T(t)z—T(t)z _ T(t)T(h)z —z
h h
For z € D(A) this tends to T(t)Az as h — 0+. Thus T(t)z € D(A) and
AT(t)z = T(t)Az, as asserted. O

The following example will be of interest to us later.

Example 2.2.5 Let H = L?(0,00), and let (T(t)) denote the right shift semi-
group, defined by
0 for s < t,

(T()f)(s) = { f(s—=1t) fors>t.

Then, when it exists,

(Af)(s) = tim LETRZIE) gy

h—0+ h

so that
D(A) = {f € L*(0,0) : f € AC, f' € L*(0,00)},

where AC denotes the absolutely continuous functions (those that can be ez-
pressed as indefinite integrals of L' functions). By means of the Laplace trans-
form we may pass to the unitarily equivalent semigroup (T(t)) on the Hardy
space K = H?*(C,) of the right half-plane, defined by (T(t)F)(s) = e *'F(s) for
F € H*(Cy). Its infinitesimal generator is A, which is defined on its domain by
(AF)(s) = —sF(s).
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Even though the infinitesimal generator need not be a bounded operator, it
is fairly well behaved, as the next result shows.

Theorem 2.2.6 Let A be the infinitesimal generator of a Co semigroup (T'(t))
defined on X'. Then A is a closed operator, and D(A) is dense in X.

Proof: To show that D(A) is dense, take z € X; the approximants to z that
we shall use are given by

1

t
azt:—/ T(s)zds, t>0,
t Jo

where in general the integral of a continuous Banach space valued function ¢ :
[a,b] — X can be simply defined as a limit of Riemann sums:

/gb(s ds = lim — Zgba—l—kb—a)/n)

n—oo 1

It is clear that z; — z as ¢ — 0; moreover, if 0 < h < ¢, we have

W - L (/HhT( )a:ds—/tT(s)mds>

([ e

as h — 0. Thus z; € D(A), with

(2.3)
and so D(A) is dense.

Now suppose that (z,) is a sequence in D(A) with z, — z and Az, — y as
n — oo. We need to show that z € D(A) and y = Az. The first observation
is that for z € D(A) the derivative of the function t — T'(t)z exists and equals
T(t)Az; indeed

T(t+ h)z —T(t)z
h

— T(t)Az as h — 0+,

and for £ > 0 we have

T(t—k)z—T(t)z T(t—Fk)(z—T(k)z)
—k —k

since
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T(t—k)(z—T(k)z) z—T(k)z
— —T(t)Az = (T(t—Fk)—T()) <T>
+T(2) (# - Az> ,

and both terms tend to zero as k£ — 0+.

Thus, for A > 0 we have

% = %/OhT(t)Az dt,  for z € D(A). (2.4)

Putting z = z,, in (2.4) and letting n — oo, we obtain

% = %/0 T(t)y dt.

Finally we let A — 0+ to conclude that Az exists and equals y. g

We can also invert A — AT for A in a suitable right half-plane, as the following
result shows.

Proposition 2.2.7 Let (T(t)) be a Cy semigroup on a Banach space X with
infinitesimal generator A, and suppose that |T(¢)|| < Me** for allt > 0. Then
A — M s invertible for Re A > «, in the sense that there is a bounded operator
B with (A— M )Byz =z for allz € X and By\(A— M)z =z for allz € D(A) =
D(A — AI).

Proof: Equation (2.3) with 7'(¢) replaced by e *T(t) shows that
h
e T (h)z —z = (A — )\I)/ e MT(t)z dt,
0

for z € X and h > 0. (Note that A — AI is the infinitesimal generator of the
semigroup (e 7T'(t)), as is easily verified.) Letting A — oo and using the fact
that A is closed, we see that

rz=—(A- )\I)/ e MT(t)z dt.
0
Similarly, for z € D(A) we obtain

T = — /00 e_MT(t)(A — M)z dt
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by (2.4), and thus (A — AI)~! exists and is given by
(A- D)z = —/ e MT(t)z dt, (Re X > a),
0

which we recognise as an operator-valued Laplace transform. a

When we work in a Hilbert space, rather than a general Banach space, Cy
semigroups behave well under taking adjoints. The following result is perhaps
not very surprising.

Theorem 2.2.8 Let (T'(t)) be a Co semigroup on a Hilbert space H with in-
finitesimal generator A. Then (T(t)*) is also a Co semigroup, and its infinitesimal
generator is A*.

Proof: We know by Corollary 2.1.9 that whenever A is a closed operator with
dense domain, then A* has the same property. Suppose that ||T(t)|| < Me** for
all t > 0. Let us choose z € D(A*) and y € H, and take a real number A\ with
A > a. Then

(eMT(h) = Dz,y) = (z,(e7"T(h) —I)y)
= <(A*—)\I):U,/O e_MT(t)ydt>,

as in Proposition 2.2.7. Therefore, taking the supremum over ||y|| < 1, we obtain
(e T(h)* — Dz|| < ||(A* — A)z||Mh — 0 as h — 0.

It follows easily that 7'(¢)* is also a Cy semigroup. Moreover,

<(e‘AhT(Z)* — I)$7y> _ <(A* B AI)m,%/Oh e T (t)y dt> — ((A* = ADz,y)

as h — 0, showing that A* — Al is the infinitesimal generator of the semigroup

(e=™T'(t)*), and hence A* generates (T'(t)*). O

An operator T is said to be a contraction if | T|| < 1, and a semigroup (7'(¢))
of operators is said to be a contraction semigroup if each T'(t) is a contraction.
The following celebrated theorem, for which we merely sketch the proof, gives
a necessary and sufficient condition for (7'(¢)) to be a contraction semigroup, in
terms of the operator A.

Theorem 2.2.9 (Hille-Yosida) Let A be an unbounded operator on a Banach
space X, with domain D(A). Then A is the infinitesimal generator of a Co
contraction semigroup if and only if the following conditions hold:

1. A is a closed operator with dense domain.
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2. {zeR:z>0}Cp(A) and ||(A— M) <1/X for all A > 0.

Proof: The idea is to define A, = —n*(A —nl)™' —nl = —nA(A —nl)™* for
n € N. These are bounded operators and generate semigroups (7,,(¢)), defined
by T,.(t) = et for ¢ > 0.

It is then possible to verify that A,z — = as n — oo for each z € D(A) and
that T'(¢t)z := lim,—c Tn(t)z exists and defines a Cy semigroup whose infinitesi-
mal generator is A.

Finally,
ITo(t)]] < e exp([[n*(A — nI)7Ht) < e™e™ =1

for each n and ¢, showing that (7'(¢)) is a contraction semigroup. O

Consider now the following differential equation on an interval [0, 00) (it is
also possible to consider a smaller interval [0, 7] instead):

dz(t)
i Az(t), t>0,
z(0) = zo. (2.5)

If A is the infinitesimal generator of the Cy semigroup (7'(¢t)) on &', then the func-
tion ¢ +— z(t) is said to be a mild solution to (2.5) if zg € A and z(t) = T'(¢)zo.

Note that, as shown above, the derivative of t — T'(t)zo is indeed T'(t)Azo,
which is the same as AT(t)zg, whenever zo € D(A). Thus t — z(t) is a clas-
sical solution to (2.5) if zo € D(A) and z(t) = T(t)zo. Again the special case
z(t) = eftzy for A € L(X) clarifies what is going on here.

We digress now to introduce the concept of an admissible observation operator,
since this, together with the associated Weiss conjecture, has stimulated a great
deal of very recent research. To do this, we consider the following differential

equation:
dz(t)
i Az(t), z(0) = zo,
y(t) = Cuz(t), t>0. (2.6)

In (2.6) we shall take A to be the infinitesimal generator of a Uy semigroup (7'(¢))
on a Hilbert space H and zo € D(A). The operator C : D(A) — K maps into
another Hilbert space K (even the case K = C is of interest here) and is called an
observation operator, producing the output y. We may think of it as providing an
observation of z(t), the state of the evolving system. From the previous example,
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we know that the solution is y(¢) = CT(¢t)zo, provided that this expression makes
sense. It is not necessary for C' to be bounded with respect to the norm on H
(if it was, it would even have a continuous extension to the whole of H): it is
sufficient that C' be bounded with respect to the graph norm, and we can express
this most clearly by requiring that there exist constants K;, K5 > 0 such that

|Cz]| < Ki|z|| + K:||Az]| for all z € D(A).

The operator C is said to be (infinite-time) admissible, if, informally, the output
y 1s always square-integrable; more precisely, if there exists a constant M > 0
such that

o0

|CT(t)zol||? dt < M||zo]? for all zo € H. (2.7)

Now, checking whether a given observation operator C is admissible is not by
any means straightforward: if, for example, A is given as a differential operator,
then we may not be able to write down T'(¢) very explicitly. However, if (2.7)
is satisfied, then, taking the inner product of the function ¢t — CT(t)zo with
the function ¢ — e for s € C; (i.e., s € C with Res > 0) and using the
Cauchy-Schwarz inequality |(f,g)| < ||f]| ||g]|, we obtain the resolvent condition
that there exists a constant M’ > 0 such that

M/
vRes

The Weiss conjecture was that (2.7) and (2.8) were equivalent. It turns out

|C(sI — A)7Y < for all s € Cy. (2.8)

that for many semigroups, for example semigroups in which 7'(¢) is a normal
operator for each ¢, and for all contraction semigroups, the conjecture holds for
finite-dimensional K. However, the conjecture does not hold for the class of all
bounded semigroups and finite-dimensional K'; it also fails in general for infinite-
dimensional K. One of the features of this conjecture is that the cases in which it
is known to be valid provide a simultaneous generalization of several celebrated
results in the theory of Hardy spaces, Carleson measures, and Hankel operators.
We do not go into further details here.

Example 2.2.10 As a further example of a (s semigroup, we consider the heat
semigroup, which has been studied from a variety of points of view: analysis,
probability, and of course applied mathematics and physics. We begin with the
heat equation for a temperature distribution z(r,t) on [0, 00), namely,

oz 0%z

5" a2 z(r,0) = zo(r) given. (2.9)

Here r denotes position and ¢ time, and we assume for the purposes of this exam-
ple that the function r — z(r,t) lies in L?(0, co) for each ¢ > 0. Comparison with
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equation (2.5) suggests consideration of a semigroup (7'(¢)) with its infinitesi-
mal generator A taken to be the differential operator 9*/dr?: there are natural
analogues in RY, where A becomes the Laplacian A given by

N a2
k=1 J

Again it is easier to analyse this situation in the Laplace domain, where we work

on H*(C,) and the semigroup (7'(t)) defined by (T'()F)(s) = exp(ts?)F(s), with
infinitesimal generator A satisfying (AF)(s) = s*F(s). A solution to (2.9) is given
by convolution with the heat kernel, that is,

(T(t)zo)(r) = x(r,t) = /om wiﬁ

which corresponds to T(t) by the Laplace transform.

e_(T_Z)z/‘”:co(z) dz, (2.10)

The following final example is taken from [20].

Example 2.2.11 The displacement of a simply supported undamped beam may
be modelled by the equation

0%y _ oy
ot2  fz¥
with initial conditions on the position and velocity,

y(:c, 0) = yl(m) and yt(wa 0) = y2($)a

given, and boundary conditions

y(0,t) = y(1,t) = y2(0,t) = yu(1,2) = 0,
indicating that the beam is fixed at the endpoints.

0<z<1, t>0, (2.11)

2
We introduce the operator B = _ 4" with domain

dz?
5 dz d*z )
D(B) ={z € L*(0,1) : z, Ia abs. cont., 12 € L*(0,1),2(0) = z(1) = 0}.
T T
We can then re-express (2.11) in the form

dz
& _ Q4
dt z

z = <dyy>, and
dt
0 I
(b

where z lies in D(A), a subspace of the Hilbert space Z = D(B) & L*(0,1),
equipped with the norm ||(21, z2)||* = || Bz||* + ||22]|*.

, where
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This concludes our brief survey of semigroup theory, and we now introduce a
technique for studying closed subspaces and closed operators on a Hilbert space.

2.3 The gap metric

We start by defining the notion of distance between two closed subspaces of a
Hilbert space. Then, by using graphs, we shall be able to define the distance
between two closed operators.

Definition 2.3.1 Let V and W be closed subspaces of a Hilbert space H. Then
the gap between V and W, denoted by 6(V, W), is given by

s(V,W) = ||Py — Pwl|,

where Py and Py denote the orthogonal projections from H onto V and W,
respectively.

With this definition it is easy to see that § is a metric (see the exercises). However,
some writers define the gap by a different formula, and we shall now show that
the two are equivalent.

Theorem 2.3.2 For two closed subspaces V and W of a Hilbert space H one has
6(V, W) = max{||( — Pw)Pv|, [[(I — Pv)Pwl|}.
In particular, 0 < 6§(V, W) <1 for all V and W.

Proof: = We begin with the following matrix identity, which is easily verified,
bearing in mind that Py and Py are projections:

<vaPv> (Pv=Pw)(I =Py Fy)= (PV(I(;PW) (I—ng)PW>'
(2.12)

The first factor on the left-hand side of (2.12) represents an isometric isomorphism
between V x V* and H and the third an isometric isomorphism between H and

WL x W. Hence

Py(I— Pw) 0
e |
H H 0 (I — PV)PW LWL xw,vxvi)

= max{||Py(I — Pw)||, ||(I — Py)Pwl|},

which is equivalent to the required result, since the adjoint of Py(I — Py) is
(I — Pw)Py. O
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—

We write 6(V, W) = ||(I — Pw)Py|| and call it the directed gap between V and
W. Since ||[(I — Pw)z|| is just the distance from z to W, we see that

g(V,W)z sup dist(Pyz, W)= sup dist(v, W), (2.13)

zeH,||z||=1 veV,||v||=1

at least when V # {0}. Similar formulae hold with V and W interchanged.

There are problems when we attempt to define the gap for subspaces V,
W of a general Banach space &', because there is no guarantee that bounded
projections Py and Py exist (and certainly we cannot make sense of the idea of an
orthogonal projection, such as we employ in a Hilbert space). We could still define

- — —

6(V, W) = max{6(V, W), (W, V)}, with §(V, W) = sup,cy,j =1 dist(v, W), but

this is not always a metric. Instead we may use
sV, W) = max{6;(V,W),6(W,V)},  where
S5(V,W) = sup  dist(v, Sy),

vew,||vl|=1
writing Sy = {w € W : ||w|| = 1} for the unit sphere of W. This is indeed a
metric on the non-zero closed subspaces of X'. Further details can be found in [67].

It is perhaps a little hard to visualize what it means for the gap to be small,
except in two or three dimensions (see the exercises for an example involving lines
in the plane). However, we note that §(V, W) = 1 as soon as either space contains
a vector orthogonal to the whole of the other space, for example, whenever one
is a proper subspace of the other. We shall see some more interesting examples
appear when we come to look at subspaces determined by operators.

It should now be clear from our previous discussions how to define the gap
between two Hilbert space operators A : D(A) — K and B : D(B) — K when
their domains D(A) and D(B) are subspaces of a common space H and their
graphs G(A) and G(B) are closed subspaces of H x K.

Definition 2.3.3 Let A and B be as above. Then the gap between A and B,
denoted 6(A, B), is defined by

(4, B) = 8(9(4),9(B)).

Although 6 is being used in two different senses, as a distance between subspaces
and as a distance between operators, no confusion is likely. The analogous result
for subspaces shows immediately that é§ provides a metric on the set of closed
operators between H and K and defines the gap topology.

For simplicity, we shall use Pr to denote the orthogonal projection onto the
graph G(T') of T. When T is bounded, this can be written down explicitly, as
follows.
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Theorem 2.3.4 Let T : ' H — K be a bounded operator; then the orthogonal
projection Pr : H x K — G(T') is given by

PT<Z>:<1{>(I+T*T)‘1(I T*)(Z) (heH, kek).

Proof: By Theorem 2.1.8, we may write
(h, k) = (z,Tz)+ (=T y,y),
uniquely, where (z,Tz) € G(T) and (—T*y,y) € G(T)*. Thus we have

h = z—T"y,
k = Tz+y.

Hence h + T*k = (I + T*T)z, and the result is now clear. Note that I + 7T is

a self-adjoint operator and if ||z|| = 1, then
(2 + 7Tl > (1 + TT),2)| = 2l + Tl > 1,

so that the inverse does indeed exist. O

A slight generalization of this result can be found in Exercise 16.

Corollary 2.3.5 The gap topology restricted to L(H,K) gives the norm topology.

Proof:  Since both topologies are given by metrics, it is sufficient to check that
a sequence converging in one metric also converges in the other (and vice versa).
If (T,,) is a sequence in L(H,K) such that ||T,, — T'|| — 0 for some T' € L(H,K),
then it is clear from Theorem 2.3.4 that ||Pr, — Pr| — 0, so that the operators
also converge in the graph metric.

Conversely, if |Pr, — Pr|| — 0, then, taking & = 0 in Theorem 2.3.4, we
have (I + T*T,)™' — (I + T*T)™! in norm, and hence I + TT,, — I + T*T in
norm. We also have T,,(I+T*T,)"! — T(I+T*T)™! in norm and so, multiplying

convergent sequences, we see that 7,, — 7" in norm. U

Notes

Some standard introductory texts in this area of operator theory are [9, 116,

117, 146).
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Closed operators are discussed further in [25, 67, 146], for example.

More advanced accounts of the theory of semigroups can be found in the
monographs [22, 23, 25, 30, 56, 67, 106]. For the ideas of admissibility and the
Weiss conjecture we refer the reader to the articles [63, 60, 65, 141, 143].

Our proof of the formula for the gap metric is adapted from [40], which treats
a special case. See also [31]. There are other, longer, proofs in the literature, for
example, that in [67].

Exercises

1. Show that if T': X — ) is a linear mapping between vector spaces, then
G(T) is a linear subspace of the vector space X' x ).

2. Let H and K be complex inner-product spaces, and for vectors v; = (hq, k1)
and vy = (ha, k2) in H x K define (v1,v2) = (h1, ha) + (k1, k2). Show that
this makes H x K into an inner-product space and that the induced norm
is given by (2.1) with p = 2.

3. Let X be an infinite-dimensional normed space, and suppose that S = {z; :
A € A} is a Hamel basis of X, that is, a maximal set of vectors such that
all finite subsets are linearly independent (these can be shown to exist by
using Zorn’s lemma). Show that every vector is a linear combination of
vectors in S in a unique way, and that for any vector space ) we can de-
fine a unique linear mapping 7' : X — ) by specifying T'z, arbitrarily for
z) € S. Suppose now that )} # {0} is any normed space. Show that there
are unbounded but everywhere-defined linear mappings from A" to ).

4. Let T be the operator given in Example 2.1.3, which i1s densely defined and
unbounded. Calculate its adjoint T* and specify D(T™).

5. Verify that the infinitesimal generator of a Cy semigroup is a linear operator
and that its domain of definition is a linear subspace.

6. Let A be a bounded operator on a Banach space X'. Show that we may
define T'(t) = exp(At) by means of a norm-convergent power series, that
(T'(¢)) is a semigroup such that ¢ — T'(¢) is norm-continuous, and that A is
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10.

11.

12.

13.

14.

CHAPTER 2. CLOSED OPERATORS

the infinitesimal generator of the semigroup (7'(¢)).

Let (A.)22, be a sequence of complex numbers and define a semigroup
(T'(t)) on a Hilbert space H with orthonormal basis (e,)2>; by

n=1
[ee) [ee)
Ant
T(t) g Ape, = g e an,en,
n=1 n=1

where 7> | a,e, is a vector in H. Show that, provided the sequence (Re A,,)
is bounded above, the operators T'(¢) are bounded and form a Cy semigroup.
What is its infinitesimal generator?

Suppose that (T'(t)) is a Co semigroup with infinitesimal generator A. Take
) € C. Show that (e=7T(¢)) is also a C semigroup and that its infinitesi-
mal generator is A — A[.

Let H be a Hilbert space with orthonormal basis (e,), and let (T'(¢)) be the
(o semigroup on H with infinitesimal generator A satisfying Ae, = a,e,
for each n, where (a,) is an arbitrary real sequence. Show that (7'(¢)) is
a normal semigroup, so that the resolvent condition (2.8) is equivalent to
admissibility. Suppose that the observation functional C' : D(A) — C is
given by Ce, = c,, where (c,) is also a real sequence. Write down (2.8)
explicitly in terms of (a,) and (c,).

Verify directly that (2.10) satisfies the heat equation.

Check that the gap metric 6 is indeed a metric on the collection of closed

subspaces of H. (Note that P, = Py if and only if V = W. Why?)
Prove that §(V, W) = §(V*+, W) for all subspaces V, W C 'H.

Give a non-matricial proof of Theorem 2.3.2, starting from the identity

Py — Py = (I — Py)Py — Py(I — Py).

Let p € C\ {0} be fixed. Calculate the gap between the one-dimensional
subspaces Vo = {(z,0) : z € C} and V,, = {(z,pz) : = € C} of the

two-dimensional Hilbert space C?, sometimes written £2. This can be done
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either by writing down the projections explicitly and using the definition of
the gap or, alternatively, by calculating the two directed gaps §.

Show that the Banach space gap 6; is a metric. Repeat the calculation of
Exercise 14 using 6; in place of é.

Suppose that T': H — H is a closed densely-defined operator with graph
G(T) = {(Ah,Bh) : h € H} for a pair A, B of commuting bounded
operators on H. Find an explicit formula for the orthogonal projection

PTHXHHQ(T)

Given T, T as in the proof of Corollary 2.3.5, derive explicit upper bounds
for | Pr, — Pr|| in terms of ||T5, — T'||, and vice versa.






Chapter 3

Shift-invariance and causality

Our philosophy is to regard a linear system as a linear operator with the two addi-
tional properties of shift-invariance (also known as time-invariance) and causality
— in fact, time-varying systems are also of importance, but we shall concentrate
on the time-invariant case. Such an operator will have a graph that is a shift-
invariant subspace, and so, apart from their general importance in operator the-
ory, it is important for us to understand the nature of these subspaces.

Let us first present an example. The operator of multiplication by the function

s se—l——sa (with @ € R and h > 0) on the Hardy space H?(C, ) can be naturally
identified with the delay-differential equation

Z—Z—I—ay:u(t—h),

a so-called dead-time system (see [88]), which occurs in a variety of contexts,
including, for example, the catalytic convertor in a car engine [12]. We shall see
a more detailed treatment of delay equations in Chapter 6, but meanwhile we
shall see in this chapter that in some sense “all” linear time-invariant systems
correspond to operators of multiplication.

3.1 Invariant subspaces

Suppose that 7' is a bounded linear operator on a complex Hilbert space H; then
an invariant subspace for T is a linear subspace KX C H such that Tk € K for
all k € K. Tt is a very old question, unsolved at the time of writing, whether
T necessarily possesses any closed invariant subspaces, apart from the obvious
examples {0} and H itself (see [16] for a recent survey of this question). The
corresponding question for Banach spaces is known to have a negative answer in
general, even on the space £' [3, 29, 113, 114].

37
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A fundamental operator that will be of interest to us is the right shift, R :
X(Zy) — £*(Zy), defined by

R(ao,al,...) = (O,Go,al,...), (an)go € EZ(Z+)

(We shall reserve the letter S for an equivalent Hardy space operator, to be
defined shortly.) This operator has a natural extension to £*(Z), which we shall
also denote by R, defined by

R(a,)>, = (b,)% where b, = a,_1, n € Z.

— 00 —0o0)?

Note that R is a unitary operator on £(Z), but that R is not even a normal oper-
ator on £%(Z,) (see Exercise 10 of Chapter 2). For these two operators a complete
and very elegant classification of their closed invariant subspaces is known, which
we shall now derive. We then look at the analogous results on L?(0,00) and
L*(R), as well as vector-valued cases. Part of our motivation in all this is to un-
derstand linear shift-invariant systems, which we shall regard as operators with
closed shift-invariant graphs (usually there will also be a causality condition, to
be discussed later).

By means of the unitary correspondence between ¢*(Z) and L*(T), under
which ¢*(Z,) corresponds to the Hardy space H? = H?*(D) (see Chapter 1), we
may consider the problem as one of determining the closed invariant subspaces
of the operator S of multiplication by z on L?*(T), given more precisely by the
formula

(SF)(e*) = e“f(e¥),  feLX(T),

and its restriction to H?2.

It is convenient here to refer to operators on £%(Z) and £*(Z.) as acting in
the time domain and in discrete time. The equivalent operators on L*(T) and
H?*(D) then act in the frequency domain.

There are two types of closed invariant subspaces that we may encounter. If
SK C K, we may have either (i) SK # K or (ii) SK = K. In the first case, £
is called 1-invariant, or simply invariant. In the second case, K is 2-tnvariant or
doubly invariant, and it is clear that S7'K = K as well.

Let us begin by classifying the 2-invariant subspaces. For a subset E of T, we
write xg for the characteristic function of F, so that

0 otherwise.

Then xgL*(T) = {f € L*(T): f = 0 a.e. on T\ E}. These functions occur in

the following classification theorem.
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Theorem 3.1.1 (Wiener) A closed subspace K of L*(T) satisfies SK = K of
and only if K = xgL*(T) for some measurable subset E C T.

Proof: Write ¢ for the orthogonal projection of the constant function 1 on K.

Since 1 — ¢ € K+ and S™¢ € K for all n € Z, we have (S"¢,1 — ¢) = 0 for all n;
but this says that

27
1 (p(e™) — |p(e*)*)e™ dw = 0 for all n € Z,
2m Jq
and hence ¢ = |¢|? almost everywhere, and ¢(e*’) = 0 or 1 a.e. Let E be the set
on which ¢ = 1, so ¢ = xg. We need to show that K = xgL?*(T). Clearly we
already have xgL*(T) C K.
Consider any function f € K with f L xgL?(T); this implies that

1 2 . . .
—/ f(e)xr(e)e™™ dw =10 for all n € Z,
21 J

and we conclude that fxg = 0. Now $”f € K and 1 — xg € K, and so

1 27

emwf(em)(l — XE(eW)) dw =10 for all n € Z.

2 Jo

Thus f(1 — xg) =0 a.e., and finally f = 0. Thus K = xgL?*(T), as asserted. O

Note that no non-trivial subspace xgL*(T) can be contained in H? by The-
orem 1.2.3. This agrees with the easy observation that H? has no 2-invariant
subspaces for §.

The classification of 1-invariant subspaces of L*(T) is slightly more compli-
cated and is given by the Beurling—Helson theorem, which now follows. In this
case, the result for H? is rather more interesting.

Theorem 3.1.2 A closed subspace K of L*(T) satisfies SK C K with SK # K,
if and only if K = ¢H? for some measurable function ¢ satisfying |$(e)| = 1
almost everywhere, unique to within a constant factor of modulus 1.

Proof: We leave the reader to verify that if [¢| = 1 a.e. on T, then K = ¢H?
is a closed subspace of L*(T) and that SK C K, SK # K.

Let us now establish the uniqueness. If ¢; and ¢, are two functions, unimod-
ular on the circle, such that ¢, H? = ¢, H?, then ¢, = f¢, and ¢, = g¢; for two
functions f, ¢ € H?, which must themselves be unimodular, and hence inner. By
the maximum principle, |f| < 1 in D, and the same holds for |g|, and we conclude
that f and g are constant.
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Now, given such a l-invariant subspace K, we have K # SK, and so we can
find a function ¢ € X, which we may take to have unit norm, such that ¢ L SK.
In particular ¢ 1L S™¢ for n =1, 2,.... This gives

1 27

|p(e™)|Pe™™ dw = 0 for all n > 1; (3.1)

2 Jo

but, by conjugation, this will also hold for all » < —1, and hence |¢|? is a constant,
and the constant is 1, because ||¢|| = 1.

We may now exploit Theorem 3.1.1 and note that the sequence (S"¢)necz is
orthonormal and that its closed linear span is the whole of L?*(T), since there
is no non-trivial subset of the circle on which all the functions vanish. Now the
closed linear span of (S"$)>,, which is ¢ H?, is contained in K. Moreover, for
k € K and n > 1, we have

(57", k) = (6,5"k) = 0,

since ¢ L SK by construction. Thus S~™¢ € K*. We have thus established that
$H?* C K and (¢H?)* C K*, and so we have equality in both cases. O

The following corollary, the classical Beurling theorem, is immediate.

Corollary 3.1.3 (Beurling) Let K be a non-zero subspace of H* that is invari-
ant under S. Then K = ¢H? for some inner function ¢, which is unique to
within a constant of modulus 1.

This in turn allows us, given the inner—outer factorization described in Theo-
rem 1.3.3, to find a much more user-friendly characterization of outer functions.

Corollary 3.1.4 A function u € H*® is outer if and only if uH? is dense in H?.

Proof: For any u € H*, the closure of uH? is a closed subspace of H?, and
hence of the form ¢H? for some inner function ¢. Evidently u = ¢v for some
v € H*. Now, if u is outer, it has no nontrivial inner divisors, and so ¢ is a
constant and uH? is dense in H?. Conversely, if u is not outer, then uH? C ¢ H?,
where ¢ is a non-constant inner function dividing u, and so uH? is not dense in

H?. O

Returning to our general discussion of invariant subspaces for bounded oper-
ators, it is easy to see that if T' € L(H) and z € H, then the closed linear span of
(T"z)>, is a closed T-invariant subspace of H. If this is the whole of H, then z
is said to be a cyclic vector, and the invariant subspace problem is equivalent to
the question of whether every non-zero vector is cyclic. We have just seen that
the cyclic vectors for S € L£L(H?) are the outer functions.
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Before moving onto the vector-valued case, let us prove what is commonly
known as the Beurling-Laz theorem about invariant subspaces of L?(0,00) in-
variant under the set {R, : A > 0} of all right shifts:

(Baf)(2) = {f(t— A) ift >

0 otherwise.

By means of the (up to a constant) unitary equivalence L : L*(0,00) — H?*(C;)
induced by the Laplace transform L (see Chapter 1), which satisfies L(R, f)(s) =
e **(Lf)(s), we may reduce the problem to finding the shift-invariant subspaces
of H*(C,), that is, those invariant under the operators S of multiplication by
the function s — e=** for all X > 0.

Again, we think of operators on L*(R) and L?*(0,0) as acting in the time
domain and their equivalents on L?(:R) and H?*(C, ) as acting in the frequency
domain. This is now the continuous-ttme situation.

Theorem 3.1.5 A non-zero closed subspace K C H?*(C, ) satisfies SaK C K for
all A > 0 if and only if K = ¢H?*(C,.) for some inner function ¢ € H*(C;).

Proof: Clearly every such subspace ¢H?*(C;) is indeed closed and shift-
invariant.

Let V : H*([D) — H?*(C;) denote the isometric isomorphism described in
Theorem 1.2.5; V is induced by the conformal bijection M defined by M(s) =
(1 —35)/(1 + s). It is sufficient to show that the closed subspace V~!K of H? is
invariant under S. Since (VSV ! f)(s) = M(s)f(s) for f € H*(C,), it is enough
to show that X is invariant under multiplication by the function

1—s 2

= -1 .
S'_)l—l—s +1—|—3

But the operator S of multiplication by 1/(1 + s) can be approximated by com-
binations of the §,. Specifically,

Lo / e gt = fim [ 0 gy
0

]_—|—3 n—oo Jq

uniformly in s. On approximating this last integral by Riemann sums, we see
that 1/(1 4 s) is a bounded pointwise limit of linear combinations of functions
e~*. This, combined with Lebesgue’s bounded convergence theorem, shows that
for all f € K we have Sf = lim,,_ o Simf, where each S, is a finite combination
of the ;. Hence Sf € K, and this completes the proof. O

We now move on to a discussion of the vector-valued case and will prove just
two more theorems here. One is a generalization of the Wiener theorem on 2-
invariant subspaces of L*(T,C™), and the other is a generalization of the Beurling
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theorem on 1l-invariant subspaces of H*(ID, C™). To avoid a proliferation of very
similar results, we shall not derive the analogous half-plane results explicitly, but
they are similar.

Instead of a function taking values in the set {0, 1} almost everywhere, we now
need to deal with functions whose values are orthogonal projections. Accordingly,
we say that P : T — L(C™) is a measurable projection-valued function if it
satisfies the following:

e P(e")is the orthogonal projection onto some closed subspace J (€“) of C™
for almost all e € T.

e The mappings w — (P(e*)z,y) are measurable for every z, y € C™.

Since P(e*) can be regarded as an m X m matrix-valued function, the second
property just says that P € L*(T,L(C")). We can equally regard P as a pro-
jection operator on L?*(C™,T), by pointwise multiplication. Note that

ImP = {f € L*(T,C"): f(e¥) € J(e¥) a.e.}.

In the case m = 1, an orthogonal projection on C is just a mapping z — pz,
where p? = p, that is, p = 0 or 1. It will thus be easy to recover Theorem 3.1.1
from its vectorial counterpart, which we now give.

Theorem 3.1.6 A closed subspace K of L*(T,C™) satisfies SK = K if and only
if K = PL*(T,C™) for some measurable projection-valued function P : T —
L(C™), which is unique to within sets of measure 0.

Proof: It is easily verified that any subspace XK = PL*(T,C") is shift-
invariant; it is also closed, since if a sequence in PL?*(T,C™) converges to f
in norm, then it has a subsequence converging almost everywhere, and we easily

conclude that f(e™) € J(e™) a.e.

Given such a closed shift-invariant subspace K, let P¢ : L*(T,C™) — K
denote the orthogonal projection onto it. Let {ei,..., e, } denote the canonical
basis of C™, and for r € Z and 1 < k < m let ¢, denote the vector-valued
function defined on T by z + 2"e;. For each w € T let J(e*) denote the linear
span (which is necessarily closed) of the set of vectors

{(P;cgbr,k)(ei‘“) cr€Z,1<k<m}

in C™. This is well defined to within a set of measure 0. Define P(ei‘*’) to be the
orthogonal projection from C™ onto J(e*). It is clear that

K C{fe L*T,C"): f(e*) e J(e*“) a.e.}.
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If the two spaces were unequal, then there would exist f € L*(T,C™) such that
f(ev)e J(e*) a.e. but f L S"Pcd,p,=0foralln e Z,r € Zand 1 <k < m.
Thus

1 27

or ), (F(), €™ guu(e)) dw = 0

for each n and so (f(e™), ¢.1(e™)) = 0 a.e. Thus f(e*) = 0 a.e., because it is a
vector in J(e*) that is orthogonal to a spanning set of J(e*).

Finally, P is indeed measurable since if v € C™ and we write 0 for the function
constantly equal to v, then Pco € K C L*T,C"), and so w — P(e™)v is
measurable. O

In order to state the Beurling—Lax theorem on H?*(C™) we need the concept
of an operator-valued inner function. This is a function ¢ € H*(T,L(C,C™))
satisfying the additional condition that ¢(e*”) is an isometry a.e. on T.

Theorem 3.1.7 Let K be a non-zero subspace of H*(C™) that is invariant under
S. Then there is an r with 0 < r < m and an inner function ¢ belonging to

H>(T,L(C",C™)) such that K = $H*(C").

Proof: Asin the proof of Theorem 3.1.2, we look at the difference between K
and SK, writing W = K & SK. Since K C H?(C™), we see by elementary linear
algebra that the dimension of W is at most m. Note that the subspaces W, SW,
S2W, ... are pairwise orthogonal, since S is an isometry and so (S?w, S*w') =
(w, $*~Iw') = 0 whenever k > j and w, w’ € W. Indeed, we claim that K is the
orthogonal direct sum,

K=WaSWwa SWwe...; (3.2)
forifzeKandz LWHSWSS* WS ..., then
e z | W, soz e SK, and z = Sz, for some z; € K.

e z =Sz, L SW,soz; LW, soz; € SK, and z; = Sz, for some z, € K.
o z=25%, 1L S*W,soz; LW, ....

Continuing in this way, we see that z can be written as z = S™z,,, with z, € K,
for each n € N. Since z € H*(C™), we must have z = 0.

Any function w € W has constant modulus a.e., since w L S™w, for n > 1,

so that
1 27

o /. (w(e™), e™w(e™)) dw = 0,

and, by conjugation, we see that all the non-zero Fourier coefficients of w +—
(w(e™),w(e™)) are zero. (It is instructive at this point to compare Equation

(3.1).)
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Suppose that dim W =r < m, let v : C" — W be an isometric isomorphism,
and for z € D define ¢(z) € L(C",C™) by

d(z)v = v(v)(2), for all v € C7;

this is analytic as a function of z. Any function in H*(C") can be written as
f(z) = Y02, vkz", where vy, € C and 357 |Jvk]|* < co. We see that ¢f is the

same, pointwise, as Yoo, S*y(vi), and since

AP =D lloell® = Y- 1185 v(w)l1* = 16717
k=0 k=0
by (3.2), we conclude finally that ¢ € H*(D, L(C",C™)) is inner. O

Remark 3.1.8 Probably the most general form of the Beurling-Lax theorem
can be found in [115], which defines a shift operator on a general Hilbert space H
as an operator S such that S is an isometry and ||S*"z|| — 0 for all z € H. (This
includes the usual shift on H*(D) but not the shift on L*(T), which is unitary.)
An operator A is said to be S-inner if SA = AS and A is a partial isometry
(which means that H splits as H = K & K+, where K = ker A and A is isometric
on K*). Then it turns out that the closed S-invariant subspaces of H all have
the form AH, where A is S-inner. The reader will see better how this fits in with
Theorems 3.1.2 and 3.1.7 after we have looked at shift-invariant operators in the
next section.

3.2 Invariant operators

In this section we are interested in linear shift-invariant operators, by which we
mean operators whose graphs are closed shift-invariant subspaces. Note that if
T is a bounded operator on ¢*(Z,) such that RT = TR, then if (z,Tz) € G(T),
we have

R(z,Tz)=(Rz,TRz) € G(T),

and thus G(7T') is a closed shift-invariant subspace of £*(Z,,C?). The converse
also holds, for if (Rz, RT'z) ¢ G(T) for some z € (*(Z,), then we do not have
RT = TR.

Thus it makes sense to discuss closed shift-invariant operators on ¢*(Z,) and
L?*(0,00) (and, briefly, the analogous operators on Z and R) by means of their
graphs; by virtue of the results in Section 3.1, we shall find it simpler to pro-
ceed by transforming to the equivalent spaces, which are, respectively, H*(D),

H?*(Cy), L*(T) and L*(iR). As before, we shall also look at the vector-valued

CcaseEs.
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One important property of linear operators, which is a natural requirement in
systems theory, is causality, namely, the condition that if u(¢) = 0 for all ¢ < ¢,
then (Tu)(t) = 0 for all ¢t < 5. We may summarise this as “we cannot influence
the past”, or “it’s all water under the bridge now”. Note that if A is a bounded
shift-invariant operator defined on the whole of £3(Z ), then A(R™u) = R%(Au),
which easily implies the causality condition. Similar results hold on L?*(0, c0),
assuming now that A commutes with all right shifts R, for A > 0. However, it is
easy to see that the left shift R* : £>(Z) — £*(Z) is not causal and to write down
a similar example on L*(R). We study causality in more detail in Section 3.3.

When we use the term linear system, we shall in general mean a closed, causal,
shift-invariant operator defined on one of the above spaces. We begin by studying
bounded operators, for which the results we want can be derived directly in a
very simple way.

Theorem 3.2.1 Let T : H*(D,C™) — H?*(D,C?) be a bounded linear operator
that commutes with the right shift operator S. Then there is a function G €
H*(D, L(C™,C?)) such that we have

(Tu)(z) = G(2)u(z) for all u € H*(D,C™).
Moreover ||T|| = ||G||oo-

Proof:  We begin with the scalar case, m = p = 1. Let G(z) = (T'eg)(z), where
eo 1s the function constantly equal to 1. Clearly GG is an analytic function of z. If
we let e, denote the function S§™eq for n = 0, 1,..., then, since T'S™ = ST, we
have (Te,)(z) = (S"Teo)(z) = 2"G(z) = G(z)e,(z). Now the linear span of the
(e,) is dense in H?, and so it follows by continuity that (T'u)(z) = G(z)u(z) for
all u € H?.

For each w € D let k,, € H? denote the reproducing kernel z — (1 —wz)™?,
so that (f, k,) = f(w) for all f € H?. Now

(U, T"ky) = (Tu, ky) = G(w)u(w) = (u, G(w)ky)
for all w € H?, and hence T*k,, = G(w)k,, for all w € D. Hence |G(w)| < ||T*|| =
IT|, and so ||G|lec < ||T||]. We already have (Tu)(w) = G(w)u(w), and so we
can deduce that ||Tu|| < ||G||eo||u||, which gives ||T|| = ||G||co-

We may reduce the vector-valued case to the scalar case as follows. By looking
at individual components of the vectors, we may regard H*(D, C™) as (H*(D))™,
and similarly for H*(ID, C?), in which case T' = (T;);_, 7~ is given as a p X m ma-
trix of shift-invariant operators and thus corresponds to an H* (D, C**™ )-valued

function. That is, we have (Tu)(z) = G(z)u(z), where u(z) and (Tu)(z) are
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vectors and G(z) is a matrix, for each z € D. We clearly have ||T|| < |G|, and
it remains to show the converse inequality.

For each v € CP, consider the function
ky @v:z i (1 —wz) .

Now, for f € HA(D,C™) we have (f, T*(kw ®v)) = (G(w)f(w),v), and so
T*(ky @) = ky ® G(w)"v.

Letting w vary in D and v on the unit sphere of CP, we deduce finally that
IT| = IT*]| > |G|, and so we have equality. O

The function G in the above theorem, as well as the ones that follow, is
commonly called a transfer function.

Corollary 3.2.2 Any bounded operator T on (*(Z,) that commutes with the
right shift R has the form of a convolution operator y = Tu, where

(Tu)(k) = Y h(5)ulk - 7).

J=0

Moreover, h(0), h(1),... are the Fourter coefficients of an H* transfer function
G with |Gn = 1T

Proof: Thisis a direct translation of Theorem 3.2.1, using the standard unitary
correspondence between ¢*(Z,) and H?, which associates (a,)3® with > >  a,2".

O

Analogous results hold for H?(C, ), as follows. Recall that for A > 0, the shift
operator S, is defined on a (possibly vector-valued) Hardy space by the formula
(S2G)(s) = e *G(s).

Theorem 3.2.3 Let T : H*(C;,C™) — H?*(C,,C?) be a bounded linear operator
that commutes with all shift operators S, for A > 0. Then there is a function
G € H*(Cy, L(C™,CP)) such that we have

(Tu)(s) = G(s)u(s) for all uw € H*(C,,C™).
Moreover ||T|| = ||G||o-

Proof: = We consider only the scalar case and leave the vectorial case as an
exercise. Let é denote the H*(Cy) function é(s) = —1, which is the Laplace
transform of the function e : ¢t — e in L?(0,00). Note that the closed linear

span of all the translates Rye is dense in L?*(0,00), since if ¢ € L?(0,00) and
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(9,Rxe) = 0 for all A >0, then e* ;" g(t)e*dt = 0 for all A > 0, and so g = 0.

Let G(s) = (T'€)(s)/é(s) for each s € C;. Clearly G is analytic in C; and we

see also that
T(Sxé)(s) = SaTe, = e_ASG(s)é(s) = G(s)(Sxré)(s)

for each A > 0. A similar formula is now true for any v € H*(C; ), since u is
in the closed linear span of the S,é; explicitly, we can find a sequence u, — u
with Tu,(s) = G(s)un(s), from which we have (Tu)(s) = G(s)u(s), since the

evaluation mapping is continuous.

As in the proof of Theorem 3.2.1, we see that the reproducing kernel functions
ks are eigenvectors of T, since

(u, T"ks) = G(s)u(s) = (u, G(s)ks)
for every s € C; and u € H*(C;). Thus |Gllee < ||T||; again, (Tu)(s) =
G(s)u(s), 50 [Tulls < |G]nllu]z, and s0 we have |T]] = |G]l.n. =

To transfer this back to a characterization of shift-invariant operators on
L?(0, 00) is not entirely straightforward. The problem is that it is hard to describe
the inverse Laplace transform of a general H*°(C, ) function. The following class
is often used in practice. Suppose that g € L'(0,00), that 0 <7 <7, < ..., and
that (h;){° are scalars with » 322, |h;| < co. Then we can define a convolution

operator T}, associated with the impulse response h, and expressed by the formula

h(t) =g(t)+ E;; h;6(t — 1;), by

¢
(Thu)(t) = / g(ryu(t —r)dr+ > hju(t—t)). (3.3)

r=0 {j:7;<t}
Taking Laplace transforms, we see that (LThu)(s) = G(s)(Lu)(s) for s € Cy,

where
[ee)

G(s) = (Lo)(s) + 3 aze™™,
7=1
and G € H*(C, ). This idea will recur later when we discuss delay systems in
Chapter 6.

One fairly immediate consequence of the previous results is a characterization
of the bounded causal shift-invariant operators on £?(Z) and L*(R).

Corollary 3.2.4 Let T be a causal bounded shift-invariant operator on £*(Z) or
L*(R), corresponding in the usual way to a shift-invariant operator T' on L*(T),
respectively L*(iR). Then there is a function G € H*(D), respectively H*(C, ),
such that (T'u)(z) = G(2)u(z) for all uw € L*(T), respectively L*(:R), and z in
the appropriate domain. Moreover, ||T| = ||T"|| = |G|l -
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Proof:  The result for £2(Z) can be seen as follows. Since 7' is causal, the oper-
ator T has £*(Z ) as an invariant subspace, and thus 7" has H*(D) as an invariant
subspace. Now by Theorem 3.2.1 we have the formula (T"u)(z) = G(z)u(z) for all
u € H?*(D); but the shift-invariance of 7" implies the same formula on S~ H*(D)
for any n, since T'S™ = S™T". Now | J.2, S~ H?*(D) is dense in L*(T), and so we
deduce the result for the whole of L*(T).

The result for L?*(R) follows similarly, using Theorem 3.2.3. O

Now we wish to look at a more general situation, when a shift-invariant oper-
ator is no longer bounded, and it is here that our work on graphs and subspaces
bears fruit.

The following theorem, given in [42], characterizes the closed operators with
shift-invariant graphs on H?. We give the full vector-valued case, but we do not
specify whether we are discussing H?(D) or H?(C, ), as there is no difference.

Theorem 3.2.5 (Georgiou—Smith) Let T : D(T') — H?*(C?) be a closed shift-
invariant operator with D(T) C H*(C™). Then there exist r < m, a nonsingular
function M € H®(L(C,C™)), and N € H*(L(C",C?)) such that

M
g(T) = <N> H*(C') = OH*(C), (3.4)
MY . : 2
where © = N | 18 mner, that is, ||Oul|| = ||ul| for all w € H*(C").

Proof:  Since the graph G(T') is a closed shift-invariant subspace of H*(C™*?),
the vectorial form of the Beurling-Lax theorem above, Theorem 3.1.7, shows that
G(T') has the required form. The condition that M is non-singular (and hence
r < m) is there because we need Mw = 0 to imply that w = 0 in order that G(T')
be a graph. O

We also mention the analogous result for closed shift-invariant systems on LZ.

Theorem 3.2.6 Let T : D(T) — L*(T,C) be a closed shift-invariant opera-
tor with D(T) C L*(T,C™). Then there exists a measurable projection-valued
function © : T — L(C™*?) such that

M

G(T) = OL¥(T,C™*7) = (N

) L*(T,C™?),  say.

Moreover, if Mw = 0 for some w € L*(C™*?), then Nw = 0 also.
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This follows immediately from Wiener’s theorem 3.1.6, the last condition being
there to guarantee that G(T') is indeed a graph.

In the case m = p = 1, this can be expressed more transparently as follows;
an analogous expression for the multivariable case, which we do not need, is given

in [58].

Theorem 3.2.7 Let T : D(T') — L*(T) be a closed shift-invariant operator with
D(T) C L*(T). Then we have

G(T) = GLA(T),

where G = <g1> € L=(T,C?) with |G(e™)|? € {0,1} a.e. and |ga(e™)| # 1 a.e.

g2

Proof:  As in Theorem 3.2.6, G(T') = ©L*(T,C?), for some projection-valued
O. Let J(e™) denote the image of ©(e*). Then, since G(T') is a graph, we have
J(e™) # C? a.e., so that for almost all w we see that J(e™) is either the zero

subspace or one-dimensional. In the case when it is zero, we take G(e) = <0 >;

0
otherwise we may select a unit vector G(e*) = (5152“’;) with 0 < g;(e™) < 1.
2
The projection ©(e) is given by

O(e“) = (v, <gl(eiw)>> <gl(eiw)> . e (3.5)

CVARNZIC))

It remains to prove that ¢g; and g, are measurable functions on T. Using the fact
that vTOw is a measurable function for every v,w € C? and (3.5), it is easy to
see that g and g;g, are measurable. Since g;(e™) € [0,1], it now follows that g;
and «, given by

= e e >0

0 otherwise,

are measurable. Thus G € L*(T,C?), which concludes the proof. O

3.3 Causality

Systems theorists normally take their signal spaces to be based on either (0, c0)
or Zy; if one does not, then certain paradoxes arise. In this section we present
various examples of troublesome behaviour. We shall give our examples in dis-
crete time (i.e., on Z or Z,), but the continuous-time case (i.e., R or (0,00)) is
similar.
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Example 3.3.1 Writing z = €, take D(T) to be the subspace of L*(T) consist-
wng of all functions u represented as

u(z) = plz,1/2) + 4(z, 1/2) exp(1/2),

with p, q polynomials in z and 1/z. This is dense in L*(T). Define the operator
T on D(T) by (Tu)(z) = p(z,1/2).

In the above example, T' is causal, since if u(z) = > . v 4(n)z", then it is
easily seen that the ¢ term must be zero. Hence T'u = u for such functions. Now
T is a causal linear shift-invariant operator, but clearly 7' has no convolution
representation of the form

(Tw)(n) = i h(k)i(n — k), forallne€Z, (3.6)

k=0

since T' is the identity on all finitely-supported sequences. It can be shown di-
rectly that this operator is not closable (see Exercise 17).

We now give a characterization of the graphs of causal shift-invariant systems
defined on H?. The vectorial case is more complicated, requiring some ring-
theoretic technicalities, and can be found in [42], where the result is expressed in
terms of the greatest common divisors of the minors of the analytic matrix-valued
functions involved.

Theorem 3.3.2 Let T : D(T) — H?*(D) be a closed operator with D(T') C H*(D)
and graph G(T') = <Aj\{> H?*(D), where M and N lie in H*®, as in Theorem 3.2.5.
Then T is causal if and only if, whenever z™ divides M(z) in H*(D) for some
m > 0, then 2™ also divides N(z). For operators T on H*(C,), with the same
notation, T is causal if and only if, whenever e=*" divides M(s) in H*(C, ) for
some 7 > 0, then e=*" also divides N(s).

Proof: Since the function (]\]\{

divisibility condition is necessary.

> lies in the graph of 7', it is clear that the

The condition is also sufficient, since if m is the maximal integer such that z™
divides M(z) in H*, and 2" divides M(z)u(z) for some r > m, then necessarily
z"~™ divides u(z) and so z” divides N(z)u(z): this is precisely what we need to
establish causality.

The proof for the continuous-time case, where we work on C, , is similar, and
we omit 1t. g
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We now turn our attention back to L*(T). When closed shift-invariant opera-
tors have graphs of the form <§1> L3*(T), as in Theorem 3.2.7, then it is natural
2

to think of g2/¢1 as the transfer function (so that u = g;h is mapped to y = g2h),
but this may only make sense on the unit circle, however.

Here is a characterization of causality for

closed shift-invariant systems on ¢*(Z), which as usual we reformulate using
the equivalence with L?(T). To characterize causality, we may assume without
loss of generality that D(T') actually contains some functions u with 4(k) = 0 for
k < 0. That is, we assume that D(7') N H*(D) # {0}.

We need to introduce the Smirnoff class N'*, consisting of those analytic
functions f : D — C that can be written as f = f;/f, with f;, fo € H* and f;
outer. This is bigger than H*, for example, the function z — 1/(z — 1) is in the
class.

Theorem 3.3.3 Let T be a closed shift-invariant system on L*(T) with graph

g(T) = (:31) L*(T), as in Theorem 3.2.7. Suppose that D(T) N H*(D) # {0}.
2

Then T is causal if and only if g2/ g1 lies in the Smirnoff class N'*.

Proof:  Take an arbitrary non-zero v € D(T) N H*(D), and let v € L*(T)
satisfy v = g1v and Tu = gov. If g2/g1 € N1, then v = (g2/¢1)u is analytic in
the disc, and hence it lies in H*(D). Thus T is causal.

For the converse, let 8 be the inner factor of u, and let

(Z:) = @:) v/6 € G(T).

Now hy = u/0 € H*(D) and is outer, and hy = Thy € H*(D). Hence hy/hy € N'T;
but this is the same as g2/g;. O

Example 3.3.1 above alerted us to the fact that not all causal systems on
{*(Z) are closable. Fortunately, the situation is more satisfactory for convolu-

tion systems, as the following result shows. In this case we do not even require
causality.

Theorem 3.3.4 Let T : D(T) — (*(Z) be a convolution system, defined on
D(T) C £*(Z) by the convolution equation

o0

(Tu)(t)= > g(k)u(t—k),  for ue D(T).

k=—00

If D(T) ts dense, then T is closable. In particular, if D(T)N£*(Zy) # {0}, then

T is closable.
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Proof:  We see that an adjoint of T', namely T™* : D(T*) — £3(Z), is given by

()

(T*u)(t) = Y g(—mu(r —m),

m=—00

and its domain includes all u € £*(Z) such that the sequence (u(—n)) lies in
D(T), which is dense. Since T* has a dense domain, it follows by Remark 2.1.7
that T is closable.

It remains to show that D(T') is dense whenever it contains a non-zero vector
u € L*(Z4). Now it is convenient to work in the frequency domain. We shall
show that the linear span of the functions (§™h),ez in L*(T) is dense whenever
h € H*{D) \ {0}. So suppose that g € L*(T) and (g,S™h) = 0 for all n € Z.
Thus

1 2r

g(e“)e ™ h(e) dw = 0 for all n € Z.

2 Jo
We deduce that g - h, the pointwise product, is zero almost everywhere. Since
h € H?, we know that  # 0 a.e. on T by Theorem 1.2.3; hence g = 0 a.e. This
establishes the result. d

Example 3.3.5 It is possible to define a shift-invariant (necessarily causal) op-
erator with non-trivial domain in £*(Z) but trivial domain in (*(Zy), although
physically this seems rather implausible.! Let

G(z) = exp(—((1 - 2)/(1 + 2))*).
Then it can be verified that G = 1/Gy, where Go € L*(T), but that it is not
possible to write G = g2/g1 with g1 € H*(D) and g, € L*(T).

We conclude this section with a discussion of the Georgiou-Smith paradox
of 1995 [43], which showed that the closure of a simple convolution system need
no longer be causal. We present a discrete-time version of their very instructive
example. As usual, (e,)*, is the standard orthonormal basis of £*(Z).

Example 3.3.6 Define the system T : D(T') — (*(Z) with D(T) C £*(Z) by

(Tu)(t) = Y 2"u(t—n)

= u(t)+2u(t—1)+4u(t—2)+....
We take D(P) = {u € £*(Z): Tu € {*(Z)}.

The operator T is causal, and it will be closable, by Theorem 3.3.4, since the
vector u = eg — 2e; € D(T'). Indeed, we have Tu = eg. However, the closure of
the system is no longer causal.?

Tt seems to correspond to a scientific experiment that can only take place if it is already
taking place.
2We can build an approximate time machine, even if we cannot build a genuine one.
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To see this, let u, = 27"e_,, — eg for n € N. Now

In the limit, as n — oo, we have a non-causal extension, since

-1
U, — —€p and Tu, — Z 2jej.
j=—c0

We know from Theorem 3.3.3 why this paradox can occur. The transfer function
g2/91 does not lie in the Smirnoff class. Indeed, it is not hard to see from the
previous results that a causal convolution system of the form (3.6) on £3(Z) whose
domain contains non-trivial sequences in ¢*(Z.) has causal closure and only if
the function

G(z) = Zg(n)zn lies in N'F.
n=0

In our example, G(z) = 1/(1 — 2z), which is not in N't.

Another superficially similar example, which does indeed have causal closure,
is given by

(Tw)(t) =) (n+1)u(t —n),

where now G(z) = 1/(1 — z)?, which lies in N't.

Note that defining transfer functions by power series begins to appear a little
misleading here. The function G(z) = 1/(1—2z) has two power series expansions,
namely,

oo 2k 2" if |z] < 1/2,
G(z) =
— S 2Rk if 2] > 1/2.
These are different aspects of the same system, even though one is apparently
causal and the other is not.

This last example was included, not in order to confuse the reader, but at
least to highlight some pitfalls in this subject. We shall not need to lose further
sleep on this.

3.4 The commutant lifting theorem

The theorem that we shall now present, although stated in the language of ab-
stract Hilbert space operators, has many applications in approximation and inter-
polation problems in Hardy classes. We shall need it in a systems theory context
in Chapter 4, but for the moment we shall look at some of its other corollaries.
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Definition 3.4.1 Let T' : H — H be an operator. A lifting of T' is an operator
U:H — H, defined on a Hilbert space H' 2O 'H, such that PoU = T Py;

here Py 1is the orthogonal projection from H' onto H. Thus, in matriz notation

U= <§; }0,> acting on H' = H& (H' & 'H).

T 0
> k=
Note that for £ > 1, one has U (Xk v

thus U* is a lifting of T'*.

) for some operator Xj, and

If T is a contraction, then it possesses an isometric lifting U (see Exercise 21);
for example, the unilateral left shift S* : H?> — H? has the bilateral left shift
U*: L*(T) — L*(T) as an isometric (even unitary) lifting.

The following result is one powerful form of the commutant lifting theorem.

Theorem 3.4.2 Let T : H — H be a contraction and V : K — K an isometry.
Let A: K — H be a bounded operator such that TA = AV. Let U : H' — H' be

an isometric lifting of T'. Then there is an operator B : K — H' such that
1. A= PHB,'
2. ||All = [|B|l; and
3. UB =BV.

Proof: We may assume without loss of generality that ||A| = 1. Write £ =
(U—-T)H =XHC H SH. The first step is to consider operators B of the form

B=A+) U*B,
k=0
with By, : K — L and the relations B,V = By_; for k > 0, where B_; = (U-T)A.
Note that Condition 1 follows because U* B), maps into H'©H. Also, Condition 3
(assuming convergence of the sum, which we shall establish later) follows because

UB—-BV = UA+ Y U*'B,—(AV+)» U*B.V)

= (TA—AV)+B_i+» (U*"'B, - U*Bi_y)
k=0

= 0.

The convergence of the expression for B and the norm condition on B will follow
by an inductive choice of (By). Note that, for £ > m,

(U*Byz,U™Bpz) = (U™ Bz, Bpz) = 0,
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since, for y, z € H and r > 1, we have

(U (U-T)y,(U-T)z) = (U'y,z)— <UT_1Ty,z> — <UT+1y,Tz> +(U'Ty,Tz)
= <UTy,Z> - <TT_1TyaZ> - <TT+1yaTz> + <TTTyaTZ>
= 0’

and also (Ay,U*Byz) = 0 for k > 0. Hence

|Bz|* = || Az|* + ) || Bel|*. (3.7)
k=0
Suppose now that for some N > 0 we have constructed B_y,..., By_; satisfying

the algebraic relations BV = By_q for 0 < k < N —1 and B_; = (U — T)A,
such that

N-1

sn(z) = ||Az|]® + Z | Brz||®> < ||z||? forall z e K.

k=0

(This is clearly possible for N = 0.) The operator Ry =1 — A*A — Ziv:_ol B; By,
is therefore positive (i.e., (Ryz,z) > 0 for all z € K), and so we let Dy : K — K
denote its positive square root — see Exercise 20 for a proof of the existence of
such a square root. Note that D2 = Ry =1 — A*A.

Now
N-1 N-2
sv(Va) = |AVa|® + ) |BVa|* = |AVa|® + | Boaz|® + ) || Bezll,
k=0 k=0

since BV = Bj_1, and also
IB_az||* + [[AVz|* = |[(U — T)Az|* + | T Az||* = || Az|?,
since (U — T)Az L T Az. Therefore

sv(Va) = sn(z) — | By-az|® < |lz|* — || By-sz||".

Thus
N-1
IBy1a|* < [|z]* = sw(Va) = [Va|® - |AV]® = Y | BsVz|* = | Dy Va|?.
k=0

The same inequality holds for N = 0, since

IB-az|* < [ Az|® — [AVa|* < ||2||* - [[AV=|* = [V — | AVa|® = || DoV a||*.
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We therefore have the inequality || By_1z|| < ||DnVz| for all z € K. This implies
that there is a contraction Ey : K — L such that By_; = EyDnV (see Exercise
22 for more details).

Now let By = EnDy, so that we have ByV = By_; and
N-1
IBvz|® < | De|* = ||2])* — [|Az|* = ) || Bez|?,
k=0
that is, syy1(z) < ||z||?, for z € K. Thus, by induction on N we may choose

(Bn) such that, on letting N — oo, we have |B|| < 1, and this completes the
proof of the theorem. a

We shall now see some applications of the commutant lifting theorem to
vector-valued Hardy spaces. In fact, the analogous results hold in operator-valued
Hardy spaces (appropriately defined), with almost identical proofs, at least if all
the Hilbert spaces involved are separable.

Theorem 3.4.3 Let F € H®(L(C™,C?)) and let © € H®(L(C*, 7)) be inner
(so that ©(e) is an isometry for almost all € € T ). Then

inf{||F — 0G| : G € H*(L(T™,C"))} = || Py M|, (3.8)

where Py 1is the orthogonal projection from H*(CP) onto X = H*(CP)&©H?*(C")
and Mr : H*(C™) — H?*(C?) is the operator of multiplication by F. Moreover,

the infimum s attained.

Proof: The easy part of the theorem is the fact that “>” holds in (3.8): for if
u € H*(C™), then

PxMF’U, = P/\{(F’u,) = P/\{((F — @G)u)

for any G € H*®(L(C™,C")), and thus ||PxMp|| < ||F — OG||e. Now take the

infimum over G.

For the converse inequality, we shall apply the commutant lifting theorem
with H = X, H' = H*(C?) and K = H?*(C™). Write S for the unilateral shift
(“multiplication by 2”) on H*(C™), H*(C*) or H*(C?), according to context. Let
A=PyMp:H*(C") - X, T =PySx: X > X and V =S, and note that

TA=PySPyMp = PySMp = PyMpS = AV,
since if u € H*(C?), then

P/'\{SP/'\(MF’U, — PXSMFu = P/'\{SQ’U
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for some v € H*(C™); however, Py®Sv = 0.

Note that 7' has an isometric lifting U : H*(CP) — H?*(C?), given by U = S,
since S maps Hz(@’) OXx = @Hz(C’L) into itself.

We now apply Theorem 3.4.2 to deduce the existence of an operator B :
H?*(C™) — H?*(C?) such that A = Py B, ||A|]| = ||B|| and UB = BV. The last
identity shows that B = My for some @ € H*(L(C™,C?)) with ||Q|l = || B|| =
||A|| (see, for example, Theorem 3.2.1).

Now A = PyMg = PyMp, and so PyMp_g = 0. Thus (F — Q)u € ©H?*(C")
for every u € H?*(C™). It is easily verified that the mapping u +— v defined
by (F — Q)u = Ou is linear and bounded from H?*(C™) to H*(C*). It is also
shift-invariant, since (F — Q)Su = SOv = OSv, and thus v = Gu for some
G e H=(L(C™,C)).

We conclude that FF — Q = OG, that is, F — OG = Q, with ||Q||. = || 4], as
required. O

We now mention a related application that links the ideas of distance and
operator norm. Again, an analogous version holds in the operator-valued context.
The following result is known as Nehari’s theorem.

Theorem 3.4.4 Let ¢ be a function in L=(L(C™,CP)), let X' denote the space
L*(CP)eH?*(C?), and let My : H*(C™) — L*(CP) be the operator of multiplication
by ¢ and Py the orthogonal projection from L*(CP) into X'. Then

inf{|l¢ — Glloo : G € HZ(L(C™,C))} = [|PxMy|| = d,  say. (3.9)

The infimum is attained, and Py My = Py My for a function ¢ € L= (L(C™,C?))
with || = d.

Proof: Note that if v = ¢ — G, with G € H*(L(C™,C?)), then

[Plleo = [ Px My || = |[Px My]|,

since Py Mg = 0; that is, we easily obtain “>” in (3.9).

To see the converse, we shall again apply the commutant lifting theorem with
H =X, H = L*CP), and K = H*(C™). Let A = PyM,, and note that
TA = AV, where V is the unilateral shift § on H?(C™) and T = PxS|x, the
compression of the shift to X'. The (bilateral) shift operator U : L*(C?) — L*(C?)
is an isometric lifting of 7'. Hence, by the commutant lifting theorem, Theorem

3.4.2, there is an operator B : H*(C™) — L*(C?) such that A = PyB,UB = BV,
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and || B| = [|A]|

The operator B will clearly be an operator of multiplication by some function
P € L*(L(C™,CP)), and ||d]|lo = ||B]| = ||A4]]. (To see this, one can adapt the

proof of Theorem 3.2.1. We leave it as an exercise.) Moreover,
PyMy = A= PyB = PyM,y,

so that G = ¢ — ¢ lies in H*(L(C™,?)). O

The operator T'y = PyMy : H*(C™) — X is known as the Hankel operator
with symbol ¢, and Nehari’s theorem asserts that

ITy|| = dist(¢, H=(L(C™, C?))).

Indeed there is a minimal norm symbol ¢ € L*®(L(C™,C?)) such that T'y =T
and [Ty = [[]eo-

We shall encounter Hankel operators again rather briefly in Section 6.3, in
the context of rational approximation.

Notes

There is a strong link between the study of the invariant subspace problem and
the properties of operators on H2. For example, it was shown in [93] that the prob-
lem can be reduced to a study of the invariant subspaces of the composition op-

erator Oy : H?> — H? given by (C4f)(z) = f(#(2)), where ¢(2) = (2+2)/(1+22).

The Beurling-Helson, Wiener and Beurling-Lax theorems can be found in
many places; the accounts in [55, 57] are particularly elementary, but [90, 92, 115]
are also recommended. The simplest proofs now available are due largely to Hel-
son and Srinivasan [125, 126]. Lax’s original work is in [72].

There is a well-developed theory of graphs of systems in the time domain,
due principally to Willems. This is known as the behavioural approach. We are
studying different questions and use different tools, but the interested reader may
consult [110].

The elementary discussion of bounded shift-invariant operators draws on [105],
and also the remarkable paper [142], which shows that all shift-invariant opera-
tors on LP(0,00) for 1 < p < oo are represented as multiplication operators by
transfer functions. The results go back to [36, 53] in the case of L?, and the link
between causality and analyticity seems to date from this time. As [142] shows by
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means of a complicated example, the analogous result is not valid for L*°(0, o),
and this corrects assertions made elsewhere in the published literature (e.g., [52]).

Theorem 3.2.7 is taken from [61].

Some attempts to discuss the graphs of linear systems in a non-Hilbertian
case were made in [78], but no fully satisfactory theory has yet been developed.

Section 3.3 is based largely on [61], which in turn was much influenced by
[42, 43]. Further results, especially the vectorial case, may be found in [58].

There are other problems with the full time-axis approach to linear systems,
namely, since an unstable convolution operator is not closed on £*(Z), certain sta-
bilization results, to be discussed more fully in Chapter 4, do not apply. Moreover,
if we look at an interval of the form (—o0,T'), to consider an experiment that has
already happened, then the corresponding operators are not even closable. We
refer to [76, 77] for more on this problem.

More information on the Smirnoff class can be found in [26].

The commutant lifting theorem appears first in [127] and the monograph
[128]. It provides a powerful generalization of the results of Sarason [120], who
gave applications to interpolation in H*.

The more recent literature devoted to this subject is vast, and we mention
only the recent books [33, 34].

Nehari’s theorem is due to Nehari [89] in the scalar case m = p = 1 and Page
[96] in the vector case. Many books contain expositions of this result; see for

example [92, 97, 107, 111, 91, 108].

Exercises

1. Let H be a finite-dimensional complex Banach space of dimension at least
2; by considering eigenspaces, show that every T' € £L(’H) has a non-trivial
closed invariant subspace.

2. Give an example of a real finite-dimensional Hilbert space H and an oper-
ator T' € L('H) with no non-trivial invariant subspaces.
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10.

11.

12.
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Give an example of a subspace of L*(T) that is invariant under S? but not
invariant under §.

Show directly that no subspace of the form ¢H? with |¢| =1 a.e. on T can
be 2-invariant for the shift S.

Show that #H? is a closed subspace of L*(T), whenever |¢| =1 a.e. on T,
as was asserted in the proof of Theorem 3.1.2.

Suppose that f € H? and that f vanishes on a subset of T of positive
Lebesgue measure. By considering the smallest shift-invariant subspace of
H? containing f and using Beurling’s theorem, derive a contradiction.

Let K be a closed shift-invariant subspace of H?*(T,C™). Show by lin-
ear algebra that dimK & SK < m, and give an example of a subspace of
H?*(T,C*) for which dimK & SK = 1.

. Suppose that ¢ € H? is an inner function and #(0) = 0. Show that the

sequence (¢"),>0, where ¢° = 1, is orthonormal, and deduce that the com-
position operator Cy4 : H*> — H?, with Cy4f = f o ¢, is an isometry.

Taking ¢(z) = 2% in Exercise 8, show how to interpret C as a shift operator

(note that dim(H? & Cy,H?) = o).

Suppose that 7' € £L(H). Show that K is an invariant subspace for 7' if and
only if K1 is an invariant subspace for T*. Hence, find all the invariant
subspaces of §*, the adjoint of the shift on H?.

Fix a > 0. Verify that L?(a, 00), regarded as a closed subspace of L*(0, c0),
is invariant under all the operators (R»)x>o. To which inner function does
it correspond in the Beurling-Lax theorem?

Find a description of the closed subspaces of H*(C, ) invariant under the
operator S; of multiplication by e™®. In particular, find a subspace invari-
ant under S; that is not invariant under all (S )x>o0.
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13.

14.

15.

16.

17.

18.

19.

20.
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Take 1 < p < co. Show that any shift-invariant operator T' on ¢#(Z, ) has a
convolution representation as in Corollary 3.2.2, where now ||T'|| > ||G||co-
Prove that the ezact norm of T' in the case p =11s > ., |h(k)|.

Let B : {*(Z) — C denote a generalized limit (Banach limit), sometimes
written Blim,_,_o, u(n), which agrees with the usual notion of limit when
it exists and is shift-invariant (for the existence of such limits see [9]). Let
T :£2(Z) — £*(Z) be defined by (Tu)(k) = Bu for all k € Z. Show that
T is a causal shift-invariant operator on £*°(Z) such that T'e,, = 0 for all n
(where e, has its usual meaning). In particular, 7' cannot be represented
as a convolution.

Fill in the details of the proof of the vectorial case of Theorem 3.2.3.

For the convolution equation (3.3) verify the relation
(LThu)(s) = G(s)(Lu)(s)

and the formula for G(s).

Consider the operator 7' in Example 3.3.1. By finding an explicit sequence
u, converging to 0 such that Tu, — y with y # 0, show that T is not
closable.

Determine which of the following functions of z, analytic in D, lie in the
Smirnoff class: 1/(22—1), exp((1—2)/(1+2)), (1 —az)/(1+az) for various

real values of a.

Define an operator 7' on H? with D(T') equal to the set of all functions
expressible as p(z) + ¢(z) exp(z), with p and ¢ polynomials, by

T(p(z) + q(z) exp(z)) = q(z) exp(2).

Show that 7' is a linear shift-invariant operator that cannot be represented
by a convolution on £*(Z.).

Let A be a positive self-adjoint operator with spectrum contained in [0, M],
say. Show that p(A) is also self-adjoint for any real polynomial p. Let (p,)
be a sequence of polynomials tending uniformly to the function ¢t — /2 on
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[0, M] (such sequences exist by the Weierstrass approximation theorem).
Show that (p,(A)) is a Cauchy sequence of self-adjoint operators tending
in norm to a positive self-adjoint operator B such that B% = A.

Let T : ' H — H be a contraction and B the square root of the positive
operator I — T*T, as constructed in Example 20. Show that ||Tz|?* +
| Bz||? = ||z||* for all z € H. Let J = BH,andlet K=HOa T T ...,
the £2? direct sum. Show that the operator U : K — K defined by

T 0 0 0
B 0 0 0
0 I 0 0
U=lo 01 0
0 0 0 I

is an isometric lifting of 7.

Suppose that B : K — £ and D : K — K are Hilbert space operators such
that ||Bz| < ||Dz|| for all z € K. Prove that there exists a contraction
E : K — L such that B = ED (it is clear how to define E on J = DK;
define it to be 0 on K & J, and show that this gives a contraction on the
whole of ).

Adapt the proof of Theorem 3.2.1 to show that any shift-invariant oper-
ator B : H*(C™) — L?*(C?) is given by multiplication by a function in
L=(L(Cm, ).

Apply Nehari’s theorem to calculate the distance of the function z +—
327! 4 2273 from H®. (The Hankel operator can be represented by a
3 x 3 real symmetric matrix.)



Chapter 4

Stability and stabilization

The theme of this chapter is control theory. We discuss what it means to say
that a linear system is stable, and then present some of the themes of H* control
theory, presented from an operator-theoretic point of view.

One of the main aims of modern control theory is to achieve robustness, that
is, the stabilization of a system subject to perturbations, measurement errors,
and the like. In order to study this we require a measure of the distance be-
tween systems, and it turns out that the operator gap is the “correct” one to
use. Another way of measuring distances, the so-called chordal metric between
meromorphic functions, turns out to be closely related.

4.1 Stability theory

The basic signal spaces in this chapter are vector-valued L?*(0,00) or £*(Z)
spaces, and we are concerned with shift-invariant input—output operators 7. Our
first result shows that, if the domain of such an operator is the whole space, then
it is necessarily bounded (a result in automatic continuity theory).

Theorem 4.1.1 Let T : L*(0,00; C™) — L*(0, 00; C?) be an operator commuting
with the right shift Ry for some A > 0. Then T s bounded.

Proof: It is sufficient to prove the result for m = p = 1, since in general T'
may be represented by a p x m matrix of shift-invariant operators from L*(0, o)
to itself.

If T is unbounded, then there is a sequence of inputs (u) in L?*(0, 00) such
that ||ug|| = 1 but || Tug|| > 2*. We shall find integers 0 = n; < ny < ... such that
the input w = Y 77, R*ux/2%, which clearly lies in L?(0, 00), does not produce
an output Tu lying in L?(0, c0).

63
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To do this, we choose strictly positive integers my, ms, ... such that
oo 1/2
(/ |(Tuk)(t)|2dt) <ok for k=1,2,....
m

and define n; = 7, .m; (so that ng = 0). For each j > 1, we may write
u = v; +w;, where v; = Y _; Ry*uz/2% and w; = 3777 . Ry*uy /2. In particu-
lar, Tw; vanishes almost everywhere on the interval (0,n;111), since T' commutes
with R, and hence Tu = T'v; a.e. on (0,n;41)).

Now, for ¢t € (n;A,n;41), we have

(Tu)(t) = (Tv;)(t ZR"TU t)/2".

But for k = j the L?*(n;A,n;11\) norm of the restriction of R}*T'ux/2" is at least
(28 —27%)/2% =1 — 47% while for k < j the corresponding L? norm is at most
47% Hence, by the triangle inequality, the L*(n;\, nj41A) norm of the restriction
of Tuis at least 1 — > 7_. 4% which is greater than 2/3.

Thus
g1 A 4
/ [(Tw)(t)?dt > -, for 7=1,2,...,
nyA 9
which proves that Tu ¢ L?(0,00), as asserted. O

The discrete-time version of Theorem 4.1.1 is easier (see the exercises).

We say that a linear system (which from now on we take to be a closed, causal,
shift-invariant operator 7' : D(T') — L*(0, 00; C?) with D(T) C U = L*(0, 00; C™)
or, in the discrete case, T : D(T') — £*(Z,CP) with D(T) CU = £*(Z,C™)) is
input—output stable or just stable if D(T') = U. From the above we see that, if
this happens, then 7' is a bounded operator. The term gain is sometimes used to
mean ||T'||. Note that a bounded shift-invariant operator is unitarily equivalent to
a multiplication operator (by a transfer function) between vector-valued Hardy
spaces, by Theorems 3.2.1 and 3.2.3, and we shall often use this equivalent form
without further comment.

Example 4.1.2 Take U = L*(0,00) and let T : D(T) — L*(0,00) be defined
by (Tu)( fo . Clearly D(T) = {u € L*(0,00) : Tu € L*(0,00)} # U:
for example the functlon u:t— 1/(¢t+1)isin L*(0,00), whereas its integral
t+— In(t + 1) is not.

It is also easy to see directly that 7' is unbounded on its domain, since for
M > 0 the operator T' maps X(0,m)(t) — X(a,20)(t), which has norm +/2M, into
tx(0,00)(t) + (2M — t)x(a,200)(t), which has L? norm equal to \/2M?3/3.
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U1 €1

(] —I_ U2

Figure 4.1: A standard feedback configuration.

Unstable systems are inconvenient from an engineering point of view, and we
shall now consider the problem of stabilization. Consider the “standard feedback
configuration” of Figure 4.1. By this we mean that the quantities u;, e; € H*(C™)
and ugz, ez € H*(CP) are related by the (in general densely defined) operators P
(the plant) and K (the controller), according to the equations

er = Key+u,
€y = P61—|—’U,2 (4:].)

(2) N (—IP _f{> (2) (4.2)

The terminology that is commonly used refers to e; and e; as errors and u; and
uy as inputs. Note that if K = 0 (i.e., no controller), then e; = wuy, and so

or, in matrix notation,

ey = Puq + us.

We say that the feedback system [P, K] is stable if the mapping from (uq, u2) to
(e1, e2) has a bounded extension to H*(C™*?). Elementary algebraic calculations
(see the exercises) show that, formally,

e1r ([ (I-KP)* K(I-PK)! Uy (4.3)

e2z) \P(I-KP)' (I-PK)! uy ) '
It is clear that the stability of the “open-loop” system P is equivalent to the
stability of the “closed-loop” feedback system obtained by taking K = 0. The
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plant P is stabilizable, if there is controller K (usually taken to be shift-invariant
but not necessarily bounded) such that the feedback system [P, K] given by (4.3)
is stable.

For instance, continuing with Example 4.1.2, the unitarily equivalent operator
P of multiplication by 1/s, defined on a subdomain of H?(C, ), can be stabilized
by the negative of the identity operator, K = —I, on H?*(C,.). For the closed-loop
operator is given by the multiplication operator

e\ Uq _(s/(s+1) —s/(s+1)
<e2)—MG <u2)’ where G(s)_<1/(3+1) (s +1) )
and the matrix of G consists of four functions that are all in H*(C, ).

The following observation explains why we may assume by definition that
linear systems all have closed graphs.

Proposition 4.1.3 Let P : D(P) — H?*(CP) with D(P) C H*(C™) be a lin-
ear mapping such that, for some linear K : D(K) — H?*(C™) with D(K) C
5 ] ([ (I-KP)' K({I-PK)?

H?*(Cr), the closed-loop operator H(P,K) = (P(I— KPy! (I— PK)™
has a bounded extension to the whole of H*(C™?). Then P and K are closable.

Proof:  Suppose that we have vectors v, w and a sequence (v, ) with v, — v
and Pv, — w. Then, taking u; = v, and uy; = —Pv,, we have the solution to
(4.1) given by e; = v,, and e; = 0. Since the mapping from (u1,uz2) to (€1, e2) has
a bounded extension, we see that, taking u; = v and u; = —w, we must obtain
the solution e; = v and e; = 0. This implies that e; = Pe; + uy, or 0 = Pv — w,
as required.

The proof of the fact that K is closable is similar (swap the roles of P and
K). O

Recalling Theorem 3.2.5, we know that any linear system P (i.e., causal,
closed, shift-invariant) has a graph of the following form: there exist r < m,

M € H*(L(C,C™)) nonsingular and N € H*(L(C",CP)) such that

G(P) = (%) HY(C) = OHX(C), (4.4)

N

spaces are defined on D or C,, according to context.

where © = M> is inner, that is, ||Qu|| = ||u|| for all w € H*(C"). The function

To analyse the above result further, we discuss isometries (operators such that
|Tu|| = ||u|| for all u) in more detail.



4.1. STABILITY THEORY 67

Lemma 4.1.4 (i) Let T : H — K be a bounded linear operator between Hilbert
spaces. Then T s an isometry if and only if T*T = 1.

(ii) A function G € H*(D, L(C",C")) is inner if and only if G(e*)*G(e™) =
I for a.e. w € [0,27]. An analogous result holds for C, .

Proof: (i) Clearly, if T*T = I, then (Tu,Tu) = (T*Tu,u) = (u,u) for all
u € 'H, so that T is an isometry. Conversely, if T' is an isometry, then we have
(T*T — Iu,u) = 0 for all u, but now A = T*T — I is Hermitian, and, by the

polarization identity,

> i (A(u+ 7v),u+ ) =0 (4.5)

(Au,v) =

AN

J=1

for all w, v € H, and hence A is the zero operator.

(i1) We see that G is inner if and only if (Gu, Gv) = (u,v) for allu, v € H*(C").

In the case of the disc, this can be rewritten as

/0 (G Yul(e™), G () duw = / (), (™)) do,

and, by a similar reasoning to part (i), we see that this holds if and only if
G(e™)*G(e*) = I a.e. The analogue for the half-plane is now obvious. O

In some sense a linear system with graph G(P) given by (4.4) has the transfer
function NM ™!, since an input v = Mwv is mapped to an output y = Nv =
NM™u. Let us take this discussion a little further, although for simplicity of
exposition we shall later restrict to the case m = p = 1. Let F denote the field of
fractions of the integral domain H* (to be defined on the disc or right half-plane,
according to the context). That is, F consists of all formal quotients f/g with
f, g € H*® and g # 0, where we regard f;/g; to be equivalent to f,/g, whenever
f192 = f291. Then, to say that P has F' € F as its transfer function means that

G(P)={(u,Fu): u,Fue H*}.

By a convenient abuse of notation we shall often identify P (an operator) with
its transfer function. A matricial factorization F' = NM ™' over H* is said to be
strongly (right) coprime if there exist matrix-valued H* functions X and Y of
the appropriate sizes such that the Bézout identity XM — YN = I is satisfied.
We then call NM ™! a right coprime factorization of F (or P). For example, the
transfer function F'(s) = 1/s arising in Example 4.1.2 has a coprime factorization
given by M(s) = s/(s+ 1) and N(s) = 1/(s + 1) , since the Bézout identity is

satisfied with X =1 and ¥ = —1.
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The celebrated corona theorem (due to Carleson) implies that two functions
f, g in H*(D) are strongly coprime if and only if the corona condition condition

inf [£(2)] + lg(=)] > 0 (46)

holds. We shall not give the proof of this theorem (which is technical, despite
simplifications by various authors, notably Hormander and Wolff), but it can be
found, for example, in [2, 39, 92]. The analogous result holds for H*(C, ).

The following result is elementary, but appealing.

Proposition 4.1.5 Let a linear system P have a strongly right coprime factor-
ization F = NM™! in terms of matrices over H*. Then G(P) = {(Mu, Nu) :
u € H*(C™)}.

Proof: If v € D(P), then both v = MM~'v and NM~'v have entries in H>.
Then u = M~ 'v = XMM™ v — YNM~'v is also defined over H? and clearly
(v, Pv) = (Mu, Nu).

Conversely, if u € H*(C™), then (Mu, Nu) is easily seen to lie in the graph
of P. O

Theorem 4.1.6 (Smith) Let a linear system have the transfer function P € F,
and suppose that it is stabilizable by a controller with the transfer function K € F.
Then P has a coprime factorization over H*.

Proof: Recall that if f, g, h € H*, then h is said to be a greatest common
divisor (GCD) of f and g if it is a common divisor of f and ¢g and a multiple of
every other common divisor. We claim first that every two non-constant func-

tions in H* have a GCD.

To see this, let f and g be such functions, and recall from Section 1.3 that
they have factorizations f = fgf,f, and ¢ = ¢gBgs9,, where fg is a Blaschke
product, fs is a singular inner function (without zeroes), and f, is outer (likewise

for g). We construct h = GCD(f,g) as h = hphsh,, where

1. The Blaschke factor hp has a zero set (counted according to multiplicity)
equal to the intersection of the zero sets of fg and gg. (Of course, if this is
empty, we take hg = 1.)

2. The singular measure pj, occurring in the expression

) 1 27 _iw it
hs(re”) = exp (——/ gi dph(w)> (4.7)
0

o ew — pett
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is the maximal measure such that u(E) < ps(E) and pn(E) < po(E) for
all Borel sets £ C T (here ps and p, are the measures defining f, and g,
respectively). The fact that such a p, exists can be shown by using the
Radon-Nikodym theorem (see the exercises).

3. The outer factor h, is determined pointwise a.e. by

|ho(€)| = max{|f.(e*)], lg.(e™)|} = max{|f(e*)], |g(e™)[}.
Note that this implies that A,, f,/h, and g,/h, all lie in H*.

It is now clear that A = hghh, is a common divisor of f and g, and it is easily
verified that any common divisor k of f and ¢ has a factorization k = kgk,k, with

kg a common divisor of fg and gg, and similarly for k; and k,. It is now straight-
forward to verify that kg divides hp, and similarly for &k, and k,. Thus k divides h.

Now write P = N/M and K = Y/X with N, M, X and Y in H*. By
the above, we may suppose that N and M have no non-trivial common factors,
and similarly for X and Y. The closed-loop stability implies that the following
functions all lie in H*:

XM YM XN YN
and

XM —-YN’ XM —-YN’ XM —-YN’ XM —-YN’

Since XM — YN divides XM and Y M, it divides their GCD, namely, M, so
M/(XM —YN) € H*®, and likewise, N/( XM —YN) € H*.

Now XM — Y N divides both M and N, , SO 1t divides the constant functions,
that is, 1/(XM —YN) € H*. Thus XM — YN = I, where X = X/(XM - YN)
and Y = Y/(XM —YN) lie in H*. O

An extension of Theorem 4.1.6 to the matricial case can be found in [124].

Definition 4.1.7 A doubly coprime factorization of a matriz-valued function P
with entries in the field of fractions of H*® is an identity P = M~'N = NM™!,

where

(5 7)) 3)-(00 D5 7)-G5) e

with M, N, M, ]v, X,Y, )Z, Y all being matriz-valued with H* entries and
M and N having the same number of columns, with M and N having the same
number of rows.
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In particular we have the Bézout identities XM —-YN=Tand MX — NY =1.

From now on we shall assume that our plants and controllers all have doubly
coprime factorizations. We next proceed to derive the Youla parametrization of
all stabilizing controllers of P.

Theorem 4.1.8 Let P have the doubly coprime factorization given in Definition
4.1.7. Then P s stabilizable, and the set of stabilizing controllers K can be
parametrized in terms of a right coprime factorization

K=Y +MQ)(X+NQ)™"'
and by a left coprime factorization
K =(X+QN)(Y + QM)

where in each case () is an arbitrary matriz of the appropriate size with entries

in H™.

Proof: Tt is easy to verify that K = (Y + MQ)(X + NQ)™! is a stabilizing

controller for P.

Now let K be a stabilizing controller with a right coprime factorization K =

VU over H® and write D = MU — NV.

Now stability implies that (I — PK)~! has entries in H* and
(I-PEK)'=(I—-M*'NVU ) '=(M*MU-NV)U ) =UD"'M.
Also, K(I — PK)™! has entries in H*, and this is VD M. Next,
(I-KP)y™ =1+K(I—PK)'P,
and so K(I — PK)™'P has entries in H*; but this is just VDN, Finally,
P(I-KP)™' =(I-PK)'P=UD"'N,

and this has entries in H*. ~ ~ _ _

Thus all four functions UD*M, VDM, UD !N and VD™ 'N lie in H®.
Using the right coprimeness of U and V (say AU + BV = I), we conclude that
DM = A(UD_lﬁ) + B(VD_lj\Z) has entries in H*°, and similarly for D_lﬁ;

using the left coprimeness of M and N, we see that D™! has entries in H>.

We define Q) = ()?V — ?U)D‘l, another matrix over H*. Then

(Y + MQ)D =Y (MU — NV)+ M(XV —YU) =V,
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since YM — MY =0 and MX — YN = I, by (4.8). Similarly,
(X + NQ)D = X(MU — NV)+ N(XV - YU) =T,

since XM — NY =] and —XN + NX = 0, again by (4.8). Thus K = VU™ =
(VD Y)Y UD ) ' =Y +MQ)X +NQ)™.

The proof of the left coprime factorization is similar, and we leave it as an
exercise. O

There is an attractive geometric way of interpreting feedback stabilization in
terms of the graphs of the plant P and its controller K. Recall that the reversed
graph of an operator T': H — K is defined by G'(T') = {(z,y) € KxH : z = Ty}.

Theorem 4.1.9 Let P and K be linear systems, as defined above. Then K
stabilizes P if and only if

G(P) & G'(K) = H*(C™*r).

Proof: The feedback system [P, K| is stable when the operator on H?*(C™*?)

. ) I —-K
with matrix ( _p 7

can be decomposed uniquely in the form

(5)=(% 7)) =(8)+ (ar):

with g1 € D(P) and g € D(K). The minus signs are not important, as we may
change the sign of f;; thus

<_f}2> = (;’;1) + (‘_ij?) € G(P) +g'(K).
I —-K
-P 1

least algebraically. Its graph G(T') has four components, which we may write as
a column vector,

has a bounded inverse; thus every vector in H*(C™?)

Conversely, if (4.1.9) holds, then the operator 7' = < > is invertible, at

€1
€2
€1 — K62

62—P61

Q(T) = e € D(P), €y € D(K)

Since G(P) and G(K) are closed, by hypothesis, we conclude that G(T') is closed,
and hence G(T!) is closed, and 7! is bounded by the closed graph theorem. O
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4.2 Robustness

In this section we look at various ways of measuring the distance between two
linear systems. In Section 2.3 we introduced the gap metric between two possibly
unbounded operators A and B in terms of the gap between their graphs, namely,

6(A, B) = 6(G(A),9(B)),
where, for two closed subspaces V, W of a Hilbert space, we have
S(V, W) =||Pyv — Pw|l.

Our first aim is to show that the gap topology is the appropriate topology to use
in the theory of linear systems. For closed operators P that are not necessarily
shift-invariant, it still makes sense to talk about coprime factorizations. It is
enough to suppose that D(P) is dense and G(P) = {(Mw,Nu) : u € H}, where
M and N are bounded operators that are strongly right coprime in the sense that
XM — YN = I for some operators X and Y. We continue to write P = NM 1.

Proposition 4.2.1 Suppose that P = NM™ is a right coprime factorization of
an operator; then there exists € > 0 such that, if || N1 —N|| < € and ||M;—M|| <,
then P = Ny M is still a right coprime factorization.

Proof: We suppose that XM -YN = I; then
(XMy — YN, —I) < (J|X|| + |[Y])e < 1
for sufﬁcieiltly small €. TheIlW = )?]\41 - ?Nl is invertible, and XlMl - }71N1 =
I, where X; = WX and Y7 = W™1Y. O
We now want to look at the gap metric distance between P and P;.

Proposition 4.2.2 Let P = NM~! and P, = N1 M; " be as in Proposition 4.2.1.
Then 6(Py,P) — 0 as € — 0. Conversely, for any € > 0 there is an n > 0 such
that any P, with §(Py, P) < n possesses a coprime factorization P, = Ny M’
with ||[N1 — N|| < € and |M; — M|| < e.

Proof:  Suppose that (Mu, Nu) € G(P) with ||(Mu, Nu)|| = 1. Then u =
XMu — Y Nu, and so l|lu|| < max(H)?H, H?H) = (C, say. Now

dist((Miu, Niuw),G(P)) < |[(Myu, Niu) — (MuNuw)|| < \/506,

and thus E(g(Pl), G(P)) < V2Ce (see (2.13)). A similar inequality holds with P
and P; interchanged, provided that we obtain a bound on max(||X;||, | ¥1]|). But
if |W —1I|| <5 <1, then

W< YO IW = DF) < 1/(1 =),

k=0
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and thus maX(H)A(:lH, H}ZH) < C/(1 —+). It now follows from Theorem 2.3.2 that
6(Py,P) — 0 as e — 0.

Conversely, if V and W are any two closed subspaces of a Hilbert space with
6(V,W) < 1, then the operator T = PyPy)y is an isomorphism from V onto
itself since ||/ — T'|| < 1. Thus Py is injective and Py, is surjective. Likewise,
Py Py is an isomorphism of W onto itself. We conclude that the operator U =
Py provides an isomorphism from V onto W. Thus, writing 7' : G(P) — G(P;)
for the isomorphism from G(P) onto G(P;), we see that

G(P)={T(Mu,Nu):u € H} = {(Myu, N1u) : v € H}, say.

Now M; and N; are still coprime since
> Syvmo1 (M1
(X -Y)T < N )= 1.

O

There is a particular form of coprime factorization that will be of use to us,
and that is the following.

Definition 4.2.3 A right coprime factorization P = NM™! is said to be norm-
alized of (%) 1s an wsometry, that s, M*M + N*N = 1.

In the case when M and N are H* functions, regarded as inducing multipli-

cation operators on H?, this just means that <N> 1s 1nner.

For example, the factorization (in terms of H*°(C; ) functions) 1/s = NM ™1,
where N(s) = 1/(s+ 1) and M(s) = s/(s + 1) is normalized, because if f €
H?*(Cy), then the H? norm of the function s — (f(s)/(s+ 1), f(s)s/(s + 1)) is

given by
(@) - [ ()
= II£IP

Clearly this holds because for s = 1y we have

IN(s)P + [M(s)P = L.

Recall that, by Theorem 3.2.5, any closed shift-invariant operator P : D(P) —
H?*(C?) with D(T') C H*(C™) satisfies

G(P) = (AA{) HY(C) = OHX(C)
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for some r < m, M € H®(L(C",C™)) non-singular, and N € H®(L(C ,C?))
such that |Ou|| = ||u|| for all w € H*(C"). Here © = (M

N is a graph symbol
for P.

The following theorem shows that the calculation of the gap metric can be
expressed as an H* optimization problem. For clarity, we suppress the notation
C™, and so on, from now on, although everything is potentially vector-valued.

Theorem 4.2.4 Let P, and P; be closed shift-invariant systems with the same
number of inputs and outputs and normalized right coprime factorizations P; =
Nij_l and graphs G; with graph symbols ©; for 7 =1,2. Then

5(P P = max{ inf_ 101~ 0:Qlley inf 10:-0:Qlaf . (49)

Proof: We know from Theorem 2.3.2 that
6(P1,P2) = ma‘X{H(I - sz)Pngv H(I - Pgl)szH}'

Now, by Theorem 3.4.3 (an application of the commutant lifting theorem), we
know that

St (101~ 0:Q]leo = | Pr Mo,

where Py = I — Pg, and Mg, is the usual multiplication operator. This is easily
seen to be the same as the norm of I — Py, restricted to ©; H*(C"), which is the
same as ||(I — Pg,)Pg,||. A similar identity holds when we exchange ©; and 0.,
and this completes the proof. O

The following alternative metric was introduced by Vidyasagar [134].

Definition 4.2.5 Let P, and P, be closed shift-invariant systems with the same
number of inputs and outputs and graph symbols ©; for 3 =1, 2. Then the graph
metric d( Py, P2) is defined by

d(Pl,Pg) :max{ inf H®1 _®2QHOO, inf H®2_®1QHOO}

QEH>,[|Qleo<1 QEH™,[|Qleo<1

It is somewhat easier to prove that d is a metric than to prove that § is, starting
from (4.9) as a definition of §. However, the actual computation of § in specific
examples is a simpler problem, and as a result d is less frequently used these days.
In fact, the two metrics are uniformly equivalent.

Theorem 4.2.6 We have §( Py, Py) < d(Py, P») < 26(P1, Py) for all Py and P;.
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Proof:  The first inequality is obvious, from (4.9), as it is a question of mini-
mizing over larger sets of functions ().

Suppose now that Q € H* and ||©; — 02Q||ec = @. Then
1@l < 10301 — Qo + 103010 < a+1,
since ©30, = I. Hence

101 = 0:Q/(1+ a)lc = [[01—0:Q+a0:Q/(1 + o)l
< 81 = 0:2Q] 0 + [[20:Q/(1 + )| < 2a.

Since ||Q/(1 + @)||eo < 1, we see that d(P1, Py) < 2[[0; — ©3Q)||c0, and the result
follows by taking the infimum over @) (and using the corresponding inequality
with ©; and ©, interchanged). O

Let us now look briefly at robust stabilization. The idea here is that, if a
system P is stabilized by a controller K, then we should hope that K would
also stabilize systems that were close to P in the gap metric. We have seen in
Proposition 4.2.2 that if P is expressed by means of a right coprime factorization
P = NM™! over H*, then the nearby systems in the gap metric all have right
coprime factorizations of the form P, = Ny M; ! with | Ny — N||o, and | My — M| o
small.

N

We shall keep this discussion at an elementary level; for fuller details and
multivariable generalizations, we refer the interested reader to the texts cited in
the notes. Accordingly, let us work in the single-input single-output (SISO) case,
as follows. At this point it may be helpful for the reader to recall Theorem 4.1.8,
which explains the context of the following result.

Theorem 4.2.7 Let P be the transfer function of a SISO linear system, with a
coprime factorization P = NM™! over H®. Let K be a stabilizing controller
of the form VU™ = (Y + MQ)(X + NQ)™ ', where X, Y and Q lie in H®
and XM — YN = 1. Let b > 0. Then K stabilizes every perturbed plant P =
NiM;' = (N 4+ AN)M + AM)™* with ||[(AM,AN)||s < b if and only if

G <5 a0

Proof:  We have seen already that the stability of [Py, K| is equivalent to the
invertibility of

Dy := MiU—-N,V = (M+AM)X +NQ)—(N+AN)(Y + MQ)
= 1+(AM)(X + NQ) — (AN)(Y + MQ).

Clearly, if ||(AM,AN)||e < b and (4.10) holds, then
1+ (AM)(X + NQ) — (AN)(Y + MQ)
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remains invertible. On the other hand, supposing that (4.10) fails to hold, then
we can find a point s € C; for which

(Y + MQ)(s)I” + (X + NQ)(s)* > 1/07,

and we can make D;(s) = 0 by a suitable scalar choice of (AM,AN) with
|AMJ* + |AN|? < b?%; this destabilizes [P, K]. O
This indicates that the gap topology is the appropriate topology in which to

consider feedback stabilization. The largest b for which [P;, K] is stable whenever
I(AM,AN)||e < bis called the robustness margin, and we shall write it bopt.

Corollary 4.2.8 Suppose that the hypotheses of Theorem 4.2.7 hold and that, in
addition, the coprime factorization P = NM™! is normalized. Then the optimal
robustness margin by ts given by

(3)+(¥)e| -a+mapr,

where T'g : H*(C,) — H?(C_) is the Hankel operator given by u — Pg2(c_y(R.u),
foru € HY(C,), with R = M"Y + N*X € L®(iR).

Proof: All that remains to be shown is the final identity involving I'g. Let

M* N
=5 )

ICvlL =l Gl ="

The result now follows from Nehari’s theorem, Theorem 3.4.4, in its half-plane

so that

version (see the exercises). O
It can be shown (see [41]) that the optimal robustness margin in the gap

metric is also equal to bop, that is, that the following theorem holds.

Theorem 4.2.9 Let P = NM™! have a normalized coprime factorization, and
let K be a stabilizing controller. For a real number b € (0, 1] the following condi-
tions are equivalent:

1. [Py, K] is stable for all P, = (N +AN)(M + AM)™" with AM, AN € H®
p AM
an anv )|

2. [P, K] is stable for all P; with §(P, P;) < b.

< b;
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We shall omit the proof of Theorem 4.2.9 and continue with an example.

1
Example 4.2.10 Let P(s) = 7> an unstable system since P ¢ H*(C,).
S J—

The function P has coprime factorizations P = NM~! over H*, for example,

1 —1
o and M(s)zs .
s+1 s+ 1

N(s) =

To parametrize all the stabilizing controllers, we do not need to normalize the
factorization, and we shall work directly with N and D and the Bézout identity
XM — YN =1, where

X(s) =1, and Y(s)= -2, for all s.

Thus the Youla parametrization of all stabilizing controllers gives

_Y+MQ 2+ 5:00) o
K(S)—m(s)—m, Q € H*(Cy).

There are virtues in simplicity, especially when we are doing worked examples,
so let us take @ = 0, giving K(s) = —2 (“constant negative feedback”, in the
control jargon), so that the closed-loop operator H(P, K) given in Proposition
4.1.3 is given by

'3

H P = (BN BP0 = (1 7,

s+1 s+1

all of whose entries are in H*(C; ). The robustness margin b is given by

= Gave) L)L

and to see how this applies, consider the perturbed system Ny M; ' where
21
(3, 1)(6) = (1)) - (.3,

where the perturbation has ||(AN,AM)|| = 1/v/5. We find that

1

Pl(S) — s+1

s+

and (I — KP;)(s) =0, so the feedback system [Py, K| is unstable.

[S1 %)

0
Jary

o=

To find the optimal robustness margin, we repeat some of the calculation
using normalized coprime factorizations. At this point our calculations will be
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simplified by the observation that if F' is a real rational function, then F*(s) =

F(—s) for s € iR, since F(iy) = F(—1y) for y € R. Thus, in our original coprime
factorization, we have

_2—32

1 — g2’

(N*N + M*M)(s)

from which it is not hard to see that a normalized coprime factorization is given
by P = NM™!, where
1 -1
and M(s) = ® :
s+2
From now on we work with this choice of N and M; the Bézout identity is satisfied

if we take X(s) =1 and Y(s) = —1 — v/2. To calculate the robustness margin
bopt We calculate R = M*Y + N*X, or

(V24 1)s +(2+V2)
V2 —s .
Using the fact that constant functions lie in H* and that for a > 0 the distance

of 1/(s —a) to H®(Cy ) is 1/(2a) (see the exercises), it is not hard to verify that
ITg|| = dist(R, H*(C;)) =1+ V2. We conclude that bopt = (4 + 2\/5)_1/2.

R(s) =

We have so far ignored two basic practical questions:
1. How can we construct Bézout identities? and
2. How can we construct normalized coprime factorizations?

The first of these is rather difficult in general. We present a construction for
delay systems in Section 6.4, but even this is fairly complicated; for the moment
we shall discuss the case of rational functions. Recall that P is proper, if the
degree of its denominator is greater than or equal to the degree of its numerator.

Proposition 4.2.11 Let P be a proper rational function. Then it has a coprime
factorization P = N/M in terms of rational H*(C, ) functions.

Proof: Let P = p/q, where p and ¢ are polynomials with no common factor
such that degg =n > 1 and deg p < n. Choose any polynomial r of degree n such
that » has no zeroes in the closed right half-plane, for example, r(s) = (s + 1)".
Our coprime factors will be N = p/r and M = ¢/r, but to show that they are
coprime we need to establish a Bézout identity.

By means of the Euclidean algorithm it is possible to find polynomials u and
v such that up + vg = 1. Indeed we may suppose without loss of generality that
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u and v both have degree at most n — 1, since, if not, we may write u = wq + ¢
with w, ¢t polynomials and degt < n; then tp + (v + wp)g = (wg+t)p+vg =1
and deg(v + wp) + deg ¢ = degt + deg p, so that ¢t and v + wp both have degree
at most n — 1.

Now 7? = zq + y for polynomials z and y with degz = n and degy < n.
Now y too can be written as ap + bg for polynomials a, b with dega < n and
degb < n, for y = (uy)p + (vy)g, and, repeating the argument of the previ-
ous paragraph, we have uy = cqg + d, where degec < (2n —2) —n = n — 2 and
degd < n; thusy = dp+(vy+cp)q and degvy +cp < n—1, since degdp < 2n—1.

We arrive at the identity r* = (z + vy + cp)g + dp, and thus

§(£>+W(g>:1,

r \r 7 7
and all four fractions are in H*(C, ). O

Example 4.2.12 Let P(s) = s/(s—1)?, and take N(s) = s/(s+1)* and M(s) =
(s —1)?/(s + 1)?. The Euclidean algorithm (or inspection) gives us
—(s—=2)s+1(s—1)>=1,
and division gives
(s+1)* = (s*+ 65+ 17)(s*> — 25 + 1) + 32s — 16,

from which we arrive directly at

(s+1)* = (s*+38s+1)(s — 1)* — 16(2s* — 5s + 2)s,
indicating that XM — YN =1, where

2 2 _
X(s) = s24+38s+1 and  Y(s) = 16(2s 5s + 2)
(s+1) (s+1)

In general, such calculations are best left to a computer.

While in a practical frame of mind, let us consider the second problem: how to
construct a normalized coprime factorization. Again, we shall restrict discussion
to the scalar rational case. The key is in the following result, which is a version
of the classical Fejér—Riesz theorem.

Theorem 4.2.13 Let N and M be rational functions in H*(C, ) such that

inf [N (iy)? + [M(ig)P > 0.

yEiR
Then there is a rational function F € H®(C;) with 1/F € H*®(C,) such that
|F(2y)|? = |[N(y)|* + |[M(2y)|* fory € R. Moreover, (N/F),(M/F) is a norm-

alized coprime factorization.
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Proof: Let R(s) = N(s)N(—3) + M(s)M(—3). This is a rational function of
s, and it is positive and bounded both above and below on the imaginary axis.
We may assume without loss of generality that R is in its lowest terms.

Now the zeroes and poles of R occur in pairs symmetric about the y-axis, since
R is identical with the rational function R(s) = R(—3), because they coincide
on the imaginary axis. Thus if w € C and R(w) = 0, then R(—w) = 0 too (and
similarly for poles). We may therefore write R(s) = F(s)G(s), where

s — 2 s+ 7
F(s)ch z and G(s)ch —I__j,
=18 P j:13+pj
for some ¢ > 0, with 2q,..., 2, and p1, ..., pn, respectively, the zeroes and poles

of F' in the left half-plane (it is easy to see that their numbers are equal). Thus
R(s) = F(s)F(—3), and on the imaginary axis

[N (iy)|” + |M(iy)|* = R(iy) = |F(iy)[".

It is now clear that N/F and M/F give a normalized coprime factorization. O

Example 4.2.14 Let us take N(s) = s/(s + 1)? and M(s) = (s — 1)?/(s + 1)?,
as in Example 4.2.12. We need only work with the numerators and calculate
(s)(—s)+ (s — 1)2(—3 — 1)2 = s*—3s2+1
= (32 +6s 4+ 1)(32 —/5s + 1),
and the roots of s2 + v/5s + 1 both lie in the left half-plane. We therefore have

the following normalized coprime factors:
S s —1)2
B Cld ) S
s2+bs+1 s2++/5s+1
The above process is known as a spectral factorization of R. More generally,
the inner—outer factorization of an H* function allows one to construct (or at

least give a formula for) a spectral factorization of an arbitrary positive invertible
function on L*(:R), as follows.

Theorem 4.2.15 Let R € L*(:R) be such that R > 0 a.e. and 1/R € L™(iR).
Then there is a function F € H*(C;) with the property that |F(iy)|* = R(iy)
a.e. Thus, if N and M are functions in H*(C, ) with

ess inf |N(sy)|* + |M(zy)|* > 0,
yEiR
then there ezists a function F € H*(C,) with 1/F € H*(C, ) such that

|F(iy)* = [N(iy)l® + |M(iy)[?

a.e. fory € R. Moreover, (N/F),(M/F) is a normalized coprime factorization
over Ho,(Cy).
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Proof: It follows from Equation (1.7) that the function F', defined by

1 [T ys+z2 . dy
F(s) = exp <g/ Y TS log | R(zy)| 1+y2>,

is an outer function in H*(C,) such that log |[F(iy)| = log|R(iy)| almost ev-
erywhere. The remaining deductions are straightforward. O

This is an existence theorem, and the formula above is not normally used in
explicit calculations. It may be remarked at this point that spectral factorization,
and the construction of coprime factorizations in general, presents various tech-
nical difficulties. For example, Treil [131] gave an example to show that functions
with continuous boundary values need not have continuous spectral factors. This
implies that the process of spectral factorization is discontinuous in the uniform
norm, and some care has to be exercised in working with approximate coprime
factorizations. We refer to [18] and [62] for further details.

4.3 The chordal metric

We now turn our attention to a topic with its roots in classical complex analysis,
which allows one to apply function-theoretic methods to robust control.

Figure 4.2. The Riemann sphere and stereographic projection

Recall that the process of stereographic projection provides a way of identi-
fying the extended complex plane C U {co} with the sphere of unit diameter S
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in R? (the Riemann sphere). In Figure 4.2, the point z = 0 corresponds to the
south pole O of the sphere of unit diameter, and the point z = oo corresponds
to its north pole N. We then identify points ) in the plane with points P on
the sphere whenever N, P and ) lie on a straight line. It is not hard to see that
this correspondence is continuous, at least between C and S\ {N}, and indeed
it induces a natural metric on CU {0}, as follows.

We define the chordal distance between two points in CU {oo} by measuring
the length of the chord between the corresponding points on the Riemann sphere.

For two complex numbers w; and ws, the chordal distance between them on
the Riemann sphere is

|w1 —w2|

VI [wiP)(L + Jwal?)’

k(wy,ws) =

with k(w,00) = 1/4/1 + |w|%.

Definition 4.3.1 For two meromorphic functions Py, P, in the open right half-
plane, the chordal distance k between P; and P s defined by

k(P1, Py) = sup{k(Pi(s), P»(s)) : Res > 0}.

The chordal metric is sometimes referred to as the pointwise gap metric, and
this is because

k( Py, Py) = sup{6(Pi(s), P2(s)) : Res > 0},

where we interpret Pi(s) and Px(s) as linear operators from C to C. (This leads
to an obvious multivariable generalization.) Note that, with this convention,

{(a,P(s)a): a € C} if P(s) is finite,
G(P(s)) = { {EO, b)(: )b )E C} if Pgsg = oo,

and the computation of the gap between two one-dimensional subspaces of C? is
an easy exercise (indeed, it was Exercise 14 of Chapter 2).

The following straightforward inequality will be useful to us.

). (4.11)

Proposition 4.3.2 Let w; and w, be points in C. Then

1 1

%1 Ws

k(w1, w2) < min <|w1 — wy,
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Proof: This is elementary, given that x(w;,ws) = &(1/wy,1/w>) for all w; and
wy 1n C. O

In some ways, this metric is a more intuitive one to consider than the graph
and gap metrics: one can see at once that two functions P and P’ are close if
at each point either |P(s) — P'(s)| is small or |1/P(s) — 1/P'(s)| is small — this
latter case handles poles of P and P’. It is also useful to have a lower bound for
k, which acts as a partial converse to Proposition 4.3.2.

Lemma 4.3.3 For any two complex numbers w; and ws, and for any a with

0<ax<l,
,1—a2}.

Proof: Consider the following three cases, which are collectively exhaustive:
(a) |lwi| <1/a and |wz| < 1/q;
(b) |w1| > @ and |wy| > q;
(c) either |wi| < a and |wz| > 1/a, or vice versa.
In case (a), the formula for & shows that w(wi,ws) > |w; — wa|/(1 + 1/a?);
in case (b), the same applies with w; and w; replaced by 1/w; and 1/wy; and in

case (c), kw1, wz) > k(a,1/a) = (1 —a?)/(1 + a?). O

El-Sakkary [28] gave some early robustness results for the chordal metric, of
which the following is typical: if 1/(1 + P) is stable and

1
(L4 [T+ P(s)][7H )2

1 1

%1 Ws

k(wy,wy) >

T a min{a2|w1 — wy|, a®
a

&(P(s),P'(s)) < 3

then 1/(1 + P’) is also stable (and there is a bound on

corresponds to stabilizing P by a constant controller K.

1—}—11:'(5) - 1+;/(s) ) This

Using Lemma 4.3.3, we can now prove some new robustness results in the
chordal metric. In order to keep the calculations at an elementary level, we shall
work with a SISO plant P and a fixed controller K € H*. Note that the stability
requirement is therefore simply that P/(1 + KP) lie in H*, since this implies
successively that PK/(1 + KP), 1/(1 + KP) and K/(1 + KP) are also in H*.
Such systems are called strongly stabilizable, but in fact this notion coincides with
stabilizability (see [130] for this rather deep result, which can be regarded as a
generalization of the corona theorem).

Theorem 4.3.4 Suppose that Py and Py are SISO transfer functions and K is
a stable controller such that the closed-loop transfer function Go = Po/(1 + K F)
lies in Hoo. Write k = || K||oo and g = ||Golloo- If

#(Po, P1) < (1/3)min{1,¢7 ", k7' (1 + kg) ™'},
then P; is also stabilized by K, that is, G; = P1/(1+ KP,) € H,.
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Proof:  Suppose that s is a point such that Gi1(s) = oo but |Go(s)| < g =
|Golleo < 0. We may estimate the chordal distance of Fy(s) from Pi(s) by using
Lemma 4.3.3. Let a be any number with 0 < @ < 1. Then

1 1
@ R = B = G0 K@a@)| ~ Wik’
(b) ‘ 1 _ 1 _ ‘ 1 S l
Po(s)  Ps)| |Gols)| ~ g

(Po, P) > —— mi LA .

K{ Lo, L1 _1+a2m1n k(l_l_kg),g, a .

An easy limiting argument shows that the same is true if G; is merely unbounded,
rather than having a pole in the right half-plane.

The result now follows on taking a = 1/4/2. O

Given k = |K|| and g = ||Gol|, it is in general possible to choose a in order
to obtain tighter estimates, but we do not do this here.

We can improve upon the above result and show that if Py is close to P;, then
Gy 1s close to G; in H,, norm, as follows.

Theorem 4.3.5 Under the hypotheses of Theorem 4.3.4, let € > 0 be given.
Then, if

#(Po, Pr) < (1/3) min {1’ (14 kg)(1+k(g+e) glg+ 6)} ’

then ||Go — Gil|eo < €.
Proof: Again we use Lemma 4.3.3 and the estimates

B |Go(s) — Ga(s)]
o) = Bl = TR () Go() 1 — K(5)Ga (o)

and
‘ L1 | |Go(s) = Gi(s)|
Po(s)  Pu(s)|  |Go(s)[|G1(s)]
to bound & from below, under the hypothesis that |Go(s) — Gi(s)| = e. O

Systems that are close in the gap topology are also close in the chordal metric,
as the following result shows.

Lemma 4.3.6 Suppose that Py(s) and Pi(s) have coprime factorizations over

H,,, namely, Po(s) = No(s)/Mo(s) and Pi(s) = Ni(s)/Mi(s). Then
k(Fo, Pr) < Amax(||No — M|, [| Mo — M),

where A is a constant that can be taken to depend only on Py, not on P;.
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Proof: Since Ny and M are coprime, they satisfy a Bézout identity
X(8)Mo(s) —Y(s)No(s) =1

with X, Y € H®. Let 2z = || X and y = ||Y]||lcc. Then certainly for each
s we have that z|Moy(s)| + y|No(s)| > 1, and hence if |[My(s)| < 1/2z, then
|No(s)| > 1/2y. We can thus estimate x(No/Mo, N1/M;): when |My(s)| > 1/2z,

&<& &) o |No _ Ni| _ [Nol| My — Mo| + | Mo||No — Ny
Mo M)~ Mo Mi|” | Mo]| My | !

which will be at most a constant times max(||No — N1||co, || Mo — M1]|c0) provided
that | Mo — Mi||eo < 1/4z; alternatively, when |My(s)| < 1/2z and |No(s)| >
1/2y,

| Mo|| N1 — No| + [No|| Mo — M|
B | No|| V1| ’

Ny N < M, M,
i My’ My) — | No M

using Proposition 4.3.2, and this is bounded by a constant times
max([|No — Nil|eo, [[ Mo — Mi[ss)
provided that ||Ng — N:|| < 1/4z. O

To avoid technical complications we give the next result in its simplest form
only.

Theorem 4.3.7 The chordal metric gives the gap topology when restricted to the
set of proper rational functions.

Proof: By Proposition 4.2.2 and Lemma 4.3.6, a sequence (P,) of proper ra-
tional transfer functions that converges to another one, P, in the gap metric will
also converge in the chordal metric.

Conversely, if P, — P in the chordal metric, then, letting p;, ..., p, be the
poles of P in {Res > 0}, the following is a coprime factorization of P:

S — Pj
s+1°

N(s)=G(s)[] 33_+p1j’ and  M(s) = [

i=1

and any function P, sufficiently close to P in the chordal metric will have precisely
m poles pn1, ..., Pnm With p, ; close to p; for each 7, by Rouché’s theorem, since
P! — P~! uniformly on a neighbourhood of each p; and P, — P uniformly
on the complement of the union of these neighbourhoods. We now have P, =

N, /M,, where

m m

8 = Pn,j S — Pn;
Na(s) = Ga(s) [] 3+1j’ and Mn(s):HTJ.

i=1 i=1
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It is clear that | M, — M||s — 0, and it follows easily that ||N,, — N||cc — 0 as
well. Hence we have convergence in the gap metric, by Proposition 4.2.2. O

There is a multivariable version of the chordal metric, the v-gap metric, de-
scribed in [138]. By imposing an additional winding number condition it is pos-
sible to reduce the calculation of the chordal metric to an optimization over the
imaginary axis, rather than the entire half-plane, which is clearly a computational
advantage.

Notes

The literature on the automatic continuity of shift-invariant operators and
casual operators on various spaces is extensive, and we refer the reader to [21,

71, 74, 85, 123).

Theorem 4.1.6 is taken from [124], where it answers a question posed in [137].
The result holds in the matrix-valued case, too, and one obtains strongly coprime
left and right factorizations. See also [135] for more on the link between stabi-
lization and coprime factorization.

Carleson’s original proof of the corona theorem is in [15].

The Youla parametrization may be found in many places, for example [20, 37,
135, 151]. The original sources are [147, 148].

The link between feedback stability and the structure of the graphs of the
plant and controller was discovered almost simultaneously by several authors.

See [35, 42, 94, 153].

For our discussion of the gap metric and robustness margins, we have drawn

on [41, 86, 94, 121, 122, 136].

Theorems 4.2.4 and 4.2.6 are due to Georgiou [40]. Theorem 4.2.7 is due to
Vidyasagar and Kimura [136], whereas Corollary 4.2.8 is from Glover and Mc-
Farlane [86].

More on the chordal metric can be found in the book of Hayman [54].

Some papers developing properties of the chordal metric (pointwise gap met-
ric) are [27, 28, 98, 99, 112, 150]. Theorem 4.3.4 and related results are taken
from [99].
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It has been asserted that the chordal metric actually coincides with the gap
metric when restricted to systems with no unstable zeroes or poles (cf. [27]),
although in fact this is not always the case [41].

Exercises

1. Prove the discrete-time version of Theorem 4.1.1, namely, that any linear
shift-invariant operator on £*(Z, ) is bounded.

2. Verify that the operator of multiplication by 1/s (defined on a subdomain
of H*(C,)) is unitarily equivalent to the operator 7' in Example 4.1.2.

3. Verify that Equation (4.2) has solutions given by Equation (4.3) when all
the necessary inverse operators exist.

4. Prove the polarization identity (4.5).

5. Let ps and p, be positive Borel measures, as in the proof of Theorem 4.1.6.
By using the Radon—-Nikodym theorem to write duy = Fdp and dp, = Gdy,
where = py + pg, show that there is a maximal Borel measure p; such

that pp(E) < min{us(E), p(E)} for all Borel sets E.

6. Derive the formula for the left coprime Youla parametrization, as given in

Theorem 4.1.8.
7. Prove that the graph metric is indeed a metric.

8. Deduce Nehari’s theorem for H*(C, ), either directly from the commutant
lifting theorem or from the analogous version for the disc (Theorem 3.4.4).

9. Show that if @ > 0 and f,(s) = 1/(s — a), then dist(f,, H*(C;)) = QL’
a

and that a closest point is the constant function —1/2a.
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10

11.

12.

13.

14.

15.

16.
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Calculate an optimally robust controller for Example 4.2.10 by solving the
appropriate Nehari problem, using Exercise 9.

Repeat the calculations of Example 4.2.10 for the unstable system

Calculate coprime factorizations, with corresponding Bézout identities, for

the systems Pi(s) = and Ps(s) =

s2+1 s2 —4°
Calculate normalized coprime factorizations for the systems P, and P, given
in Exercise 12.

The model matching problem for a plant P is to minimize the quantity
|P(I — KP)™' — R||0, where R € H* is given, over all choices of stabiliz-
ing controllers K. Use the Youla parametrization to reformulate this as an
H* minimization problem in terms of the free parameter ).

Repeat the calculation of Exercise 14 for the sensitivity minimization prob-
lem, where now it is required to minimize ||(I — K P)™}||co.

Show that any function of the form

: b
_ az +

() —bz+a’

with a, b € C and 6 € R, is a conformal isometry of the Riemann sphere,
that is, it satisfies k(7(w1),7(w2)) = K(w1,ws) for all wy, wy. Show also
that any point w; can be mapped to any other point w, by using these maps.



Chapter 5

Spaces of persistent signals

So far we have worked almost entirely with signal spaces of the form ¢*(Z,)
or L?(0,00) and their full-axis analogues; in physical terms, these are spaces of
finite-energy signals, which die away in some sense at infinity. In this chapter
we shall work with what may loosely be described as finite-power signals or, still
more loosely, as persistent signals.

Persistent signals include classes of signals with some regularity properties,
such as periodic and almost-periodic signals, as well as much more general spaces
of signals in which the notion of “power” is less clearly defined. In particular,
we are are able to discuss concepts such as the idea of a white noise signal in a
rigorous and largely non-stochastic framework. Persistent signals in general can
be taken as the inputs and outputs of linear systems (the term filter is commonly
used here), as we shall see.

5.1 Almost-periodic functions

Almost-periodic functions defined on the real line form a class of functions that
has been much studied since the 1920s. Our aim in this section is to derive
their fundamental properties and to bring out their similarities with the theory
of periodic functions.

We begin by recalling the basic properties of 27-periodic functions on R.
These are totally standard results and may be found in [69, 149, 155] and many
other places. If F : R — C is 2w-periodic (i.e., F(t) = F(t+ 2n) for all t € R)
and Lebesgue integrable over finite intervals, then it may also be regarded as a
function in L*(T) by means of the correspondence

fle)=F(t), (teR).

89
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It corresponds to a complex sequence of Fourier coefficients given by

1 2 . .
n) = g/o f(eh)e ™ dt, (n € Z).

If f € L*(T), then we have

= Z F(n)e™, (5.1)

n=—oco

where convergence is interpreted in the L?(T) norm. We also have Parseval’s

identity: if f € L*(T), then

1 27

_ lt 2 dt
o o Z f(n
If f € C(T), then we cannot guarantee pointwise convergence of the Fourier series

(5.1), let alone uniform convergence, but we can recover f by means of its Fejér
sums, namely,

fale®) =Y (1 - ﬂ) FR)eR,  (n=1,2,...), (5.2)

= n+1

which converge uniformly to f whenever f is continuous. If 3 | f (n)] < oo,
then the Fourier series is said to be absolutely convergent, and it converges uni-
formly to a continuous function. Returning to the real line, we see that every
continuous 27-periodic function is the uniform limit of a sequence of trigonomet-
ric polynomials. (Sometimes one plays this game with the functions sinnt and
cos nt rather than ™ but there is no essential difference.)

Let us now mimic the above results, working with the full set of functions
{ex: A € R} given by _
ext)=e™,  (teR),
whereas previously we restricted A to lying in Z. The definition we give now is

not totally standard (although it has been used elsewhere, e.g., [19]), but, as we
shall see later, it is equivalent to Bohr’s original definition.

Definition 5.1.1 The class AP(R) of (uniformly) almost-periodic functions is
the closed linear span in L= (R) of the set of functions (e))ck.

Since the uniform limit of continuous functions is continuous, we see that
AP(R) C Cy(R), the space of continuous bounded functions on R. However, an
almost-periodic function is not, in general, periodic (see the exercises).

For example, Figure 5.1 shows a plot of the function 2sint + cos v/2t.
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3 I I
-50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 5.1. The almost-periodic function 2sint + cos V2t

Recall that the linear space L _(R) consists of all Lebesgue-integrable func-
tions f : R — C such that

B
/ |f(t)|*dt < o0 for all A, B € R.
A

We introduce the following inner-product-like notation for a pair of functions

fyge L (R)and T > 0:

loc

ool =5 [ foaoae (53)

and, when the limit exists,

[£,9] = lim [f, g]7. (5.4)
Then we have the following orthogonality relation:
1 i A=y,

[e)\ae#-] - {0 it A ?é 1, (55)

as the reader is invited to verify.

Remark 5.1.2 It is possible to define a Hilbert space by taking the completion
of the set of trigonometric polynomials under the norm [f, f]*/2. This yields a
space that is sometimes called AP>(R), which has an uncountable orthonormal
basis (e))rer. However, although AP(R) embeds continuously into this space,
AP5(R) is not a space of functions defined on R. We leave the reader to consider
what interpretation, if any, can be given to the formal series > 57, 1 exp(it/k),
which represents an object in AP>(R) but where the sum diverges for every ¢ € R.
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To give an intrinsic definition of the class AP(R), we shall make use once

more of the right shift R, defined for any f: R — C by (Rxf)(z) = f(z — X).

Definition 5.1.3 Let € > 0 and a continuous function f : R — C be given. A
number A € R ts called an e-translation number of f if

B f = fllo <6
that is, if |[f(z —A)— f(z)| < e forallz € R. A set S C R is said to be relatively

dense if there exists an L > 0 such that every interval of length L contains an
element of S.

We now study the class of functions satisfying the following properties, which
will turn out to be equivalent to belonging in AP(R).

Definition 5.1.4 We say that a function f : R — C is a Bohr function if f is
continuous and for every € > 0 the set of e-translation numbers of f s relatively
dense. The function f : R — C satisfies Bochner’s condition f it s continuous
and bounded and the set of translates {Ryf : A € R} is relatively compact (i.e.,
totally bounded) in Cy(R).

For example, if f is a 7-periodic function for some 7 > 0, then n7 is an e
translation number for any € > 0 and n € Z, and so f is a Bohr function. We
are working towards showing that the two conditions above are equivalent, and
that the class of functions satisfying them coincides with the class AP(R) defined
earlier.

Theorem 5.1.5 The class of Bohr functions is the same as the class of functions
satisfying Bochner’s condition.

Proof:  We show first that the Bohr functions are bounded. For given such a
function f, let L be such that every interval of length L contains a 1-translation
number of f. Let M = max{|f(t)] : t € [0,L]}, and let z € R be given.
Then there is a 1-translation number A for f in the interval [A — L, A]. Now
|f(z)] < |f(z—A)|+1< M+ 1, as required.

Moreover, every Bohr function is uniformly continuous. For given such an
f and € > 0, let L > 0 be such that every interval of length L contains an -
translation number of f. Since f is uniformly continuous on [0, L + 1], we may
find 6 with 0 < 6§ < 1 such that |f(z1) — f(z2)| < €/3 whenever z1, z; € [0, L +1]
and |z; — 23| < §. Given any y;, y2 € R with |y; — y2| < 6, we may find an
%—tra,nslation number 7 € R such that the points z; = y; — 7 and z; =y, — 7 lie

in [0, L 4+ 1]. Now
[F(y2) = F(y2)l < [F(y2) = Fyr=7)[+|F (1 —7) = fly2—7) [+ (42— 7) = F(32)| <€



5.1. ALMOST-PERIODIC FUNCTIONS 93

It follows that we have ||R,, f — R.f||cc — 0 whenever (z;) is a real sequence with
2p — 2.

Now suppose, if possible, that f is a Bohr function that is not a Bochner
function. Then for some € > 0 we have a sequence (M) such that ||Ry, f —
Ry, flleo > € for all 7 # k. However, there is a number L such that every interval
of length L contains an -translation number of f. Write A\, = 7 + 6%, where
Ty is an §-translation number and 0 < &, < L. Thus |[R), f — Rs, f|| < €/4 for
each k. By passing to a subsequence and relabelling, we may suppose that the
sequence (6;) converges, with limit §, say, and by uniform continuity we may

suppose further that |Rs, f — Rsf||eo < €/4 for all k. Thus, if 7 # k, we have

|Bs,f — Roufllee < B, f — Ba flloo + | Bs, f — Rifllo
‘|‘”R5f - R5ka00 + ||R5kf - R)\kaOO <€

which is a contradiction and shows that “Bohr implies Bochner”.

Conversely, if f is not a Bohr function, there exists an ¢ > 0 for which the
set S, of e-translation numbers of f is not relatively dense. Take ¢; = 1 and let
(az,b2) be an interval of length greater than 2 containing no element of S.. Let
c2 = (az + b2)/2. Inductively, define (a,, b,) as intervals of length greater than
2(|e1| + |ea] + ... 4 |en-1|) containing no element of S, and let ¢, = (a, + b,)/2.
If1 <k<n,thenc, —cx € S.. Now

[Benf = Ry flloo = [ Ren—ci f = Il > ¢,

and so f does not satisfy the Bochner condition. O

Using the Bochner condition allows us to see easily that the AP(R) functions
lie in the class of Bohr functions.

Corollary 5.1.6 The Bohr functions form a closed linear subspace of Cy(R),
and hence every function in AP(R) ts a Bohr function.

Proof: If f; and f, are Bohr functions, ¢; and c; are complex constants, and
(Ax) is a real sequence, then, by passing to a subsequence and relabelling, we
may suppose without loss of generality that (R, f1) and (R, f2) are convergent
sequences in Cp(R). It now follows easily that (Rx,(c1f1 + c2f2)) is a convergent
sequence, and this establishes that ¢; f; + c3 f2 is a Bohr function.

Moreover, the class of Bohr functions is closed, since, if A is an £-translation
number for f and ||f — g||e < €/3, then

1829 = glleo < [[Brg — Baflloo + [[Baf = flloo + If — glleo <,
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and so A is an e-translation number for g. Thus, if ¢ is in the closure of the set of
Bohr functions, we can find a relatively dense set of e-translation numbers for ¢
by taking a relatively dense set of €/3 translation numbers for any Bohr function
f with ||f — g||ec < €/3. Thus g is also a Bohr function.

We have seen already that every function ey is a Bohr function, since it is
periodic. Hence AP(R), the closed linear span of the e,, consists entirely of Bohr
functions. O

Remark 5.1.7 It is easily verified, in addition, that the Bohr functions form
a closed subalgebra of Cp(R). All that remains is to show that the pointwise
product f; - fo of two Bohr functions is a Bohr function. The proof proceeds
as in the first part of Corollary 5.1.6), using the observation that if (R,, f1) and
(R», f2) are norm-convergent, then so is (R, (f1.f2))-

We now wish to prove a rather deep result, namely, that every Bohr function
is a limit of trigonometric polynomials, that is, finite linear combinations of the
functions e). To do this, we need to identify which frequencies are present in an
almost-periodic oscillation, and here the indefinite inner-product formulae [f, g]7
and [f, g] defined in (5.3) and (5.4) are required once more.

Proposition 5.1.8 Let f be a Bohr function. Then

= gim o [ 5

exists. Hence

o T—co 2T _T
15 well defined for all Bohr functions f and g.

Proof:  Suppose that T > 0 and let M = ||f||co. Given € > 0, let L be such

that every interval of length L contains an e-translation number of f. Write

(k+1)T
2nT/ F(t)dt = Zn/w F(¢) dt, (5.6)

and suppose that 7' > max{L, ML/e}. Then, if 7 is an e-translation number of
fin [T, kT + L], we have

(k+1)T T T
/k fydt = / F(t)dt + / (F(t+7) — £(1)) dt

T
T TH+1
; / FOLS /(kﬂ)Tf(t)dt,
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and we may bound the second, third and fourth terms on the right-hand side,
using the “size of function” times “length of interval” rule, by 7', ML and ML,
respectively. Hence, adding up the 2n terms in (5.6) we obtain

ML

|[f71]7LT_[f7 ]T|<€+#+7_36

In particular, [f,1],r remains bounded. For U > 0 sufficiently large, choose n
such that n7T < U < (n+ 1)T. Then

1)~ 1, el < [f,l]U—%f,unT

‘ 1, Ur

1

< —2MT + — 11,

< 57 + I[f,]TI
M 1

< — 4 =l ezl <€
V) 7

if U is sufficiently large. Thus

I[fy o — [f, 1l]r| < 4e

if U is sufficiently large. This gives |[f, 1]y — [f,1]v| < 8¢ when U and V are
sufficiently large, implying the existence of the limit [f, 1].

Note also that [f,g] = [f9g, 1] is defined for all Bohr functions f and g, since
the product f-g is also a Bohr function, by Remark 5.1.7. g

The mapping from R to C defined by A — [f, e,] is sometimes called the Bohr
transform. The numbers [f, e,] are called the Fourier coefficients of f.

We shall find it useful to introduce an auxiliary function, the correlation or
covariance function of two Bohr functions f; and f;. This is defined for z € R

by

stl,fz(x) _[ mf17f2 = hm _/ fl 33‘|‘t ) (57)

We shall see more of this idea in Section 5.3.

Proposition 5.1.9 Let f; and f; be Bohr functions; then so is the covariance
function ¢ = ¢y, 5,. Moreover, [R_.f1, falr — ¢4 .5,(2) uniformly in z as T —

oo. Also, [R_.f1, f2] = [f1, Rz f2].

Proof: Since

a3 = #(e) = Jim 5 [ (file+t =) - Ao+ )ED i
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we see easily that

[Bx¢ — ¢lleo < [[Brf1 — filloo| f2]loo,

from which we conclude that ¢ is also a Bohr function, since a é-translation num-
ber for f; is an e-translation number for ¢ as soon as 6| f2]|ce < €.

For any fixed z, the convergence of [R_. f1, f2]r to ¢(z) is clear from Propo-
sition 5.1.8. Now, given € > 0, we may use the Bochner property of f; to find
z1,...,2, € Rsuch that for each z € R thereis a k with |R_, fi — R_z, f1]|co < €.
Thus

[Bof1, folr — [Boo, f1, falz| < €]l fo]les

for all 7' > 0. Moreover, there is a number 7 such that

|[R—1'kf17f2]T - [R—kahf?” <€

for all T' > Ty, for all the finite collection k = 1,...,n. Now the triangle inequality
implies that if T' > Tp, then

[RB—cf1, folr — [R-cf1, fa]| < €(1 + 2| f2]l)

for all z.
Note that
1 /T S
R_:fi, f2 = 57 1\ T 2(t) d
Reofiuflr = o7 [ Ale+ @
1 T4z
- 5 [, HERG- o)
= [f1, R folr + 6(T),
where |6(T)| < |z||| filloo || f2]|co /T, and so [R_z f1, f2] = [f1, Rz f2]- O

Since the convergence of [R_. f, 1|7 to [f, 1] is uniform in z, the quantity [f, 1]
can be estimated by integrating over any sufficiently long interval [T+ z, T + z],
or, what is the same, using [R_, f, 1|7 for large T'.

Using these tools, we are now ready to perform some harmonic analysis on the
class of Bohr functions, which will lead to a proof that it coincides with AP(R).

Note that the mapping (f,g) — [f,g] satisfies all the axioms for an inner
product on the class of Bohr functions except possibly the positive definiteness
condition (in fact, it satisfies this too, but we shall defer this to later and merely
use semi-definiteness for now). This enables us to develop an inner-product space
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theory of almost-periodic functions in a simple manner. Recall that, in any inner-
product space, if uy,us,...,u, is an orthonormal sequence and z is any vector,
then setting

n

U = Z(m,uk>uk,

k=1

we have that z — w is orthogonal to every wug, and hence it is orthogonal to u
itself. Pythagoras’s theorem now gives

I2]1* = lle = ull® + [ull® = lull® = Y [z, u)l?, (5.8)
k=1
which is Bessel’s inequality. Moreover, if v is an arbitrary linear combination of
Uy ..., Uy, then (z —u) L (v —v), and so
lz —vll* = ll(z — u) + (u = 0)|* = |z — ull® + [lu — v]|* > ||lz -«

which is the “best approximation” property of w.

Theorem 5.1.10 Let f be a Bohr function. Then Bessel’s inequality holds, in
the following form

[f7f] > Z|[f7e>\k]|2

for all distinct Ay,..., A, in R. Hence [f,e;] # 0 for at most a countable set of
AeR.

Proof:  We obtain Bessel’s inequality directly from (5.8), writing f for z and
ey, for ux. This implies that, for any N > 1, we have |[f,e;]| > 1/N for at most
finitely many A. Hence the total number of non-zero Fourier coefficients [f, e,] is
at most countable. d

We can now prove that (f,g) — [f, g] is a genuine inner product on the Bohr
functions, that is, it is positive definite.

Theorem 5.1.11 Let f be a Bohr function that is not identically zero. Then
£, 71> 0.

Proof: If f is not identically zero, then there is an € > 0 and an ¢ € R such
that |f(a)| > e. By continuity, we may find § > 0 such that |f| > ¢/2 on the
interval (a — 6,a + ).
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Let L be such that every interval of length L contains an z-translation number
of f. Then for n > 1 we have

1 nL 5 2
P | f@)Pdt = —
2nL 16L°

since each interval [kL — a, (k + 1)L — a] contains a §-translation number 7; of
f, implying that |f| > ¢/4 on (a + 7% — 6,a + 7 + 6) N [KL, (k + 1)L]; this has
length at least § since a + 7 € [kL,(k+ 1)L]. Hence [f, f] > 5 as required. O

16L7

Remark 5.1.12 Suppose that (fi) is a sequence of Bohr functions for which
[fe — f, fx — f] — 0 for some Bohr function f. If an additional property holds,
namely, that for each € > 0 every e-translation number of f is an e-translation
number of all the functions f;, then it follows by the same argument as above
that (fx) tends to f wniformly. For if |(f — fi)(ax)| > €, then we still obtain
|f — fx| > €/2 on some interval (ar — 6, ar + 6), where § is independent of k, since
sufficiently small numbers are €/4-translation numbers for f, and hence for fj.
Now we can find many intervals on which |f — fi| > €/4 and estimate an integral
once more.

At last we are ready to prove the fundamental uniqueness theorem, stating
that the Fourier coefficients determine the function uniquely, that is, if [f,e;] = 0
for all A, then f is identically zero. To do this we need a preliminary lemma.

Lemma 5.1.13 Suppose that f is a Bohr function such that [f,e;] = 0 for all
A €R. Then [f,ex|lr — 0 as T' — oo uniformly in A.

Proof: = We shall suppose the contrary and derive a contradiction. So suppose
that |[f, ex,]7.| > € > 0 for sequences (\,) C R and T, tending to co. Observe
that, for every A # 0,

frer = / F(t)e dt

T+xr/2

_ F (t _ _) e~ M=) g
2T —T+4x /X A

which implies that
1 /T

frolr=gg | (F@ - F(e=F)) ™ a+50),

where the first term tends to zero uniformly in T' as |A| — oo, by the uniform
continuity of f, and

§()) = % (/_Zm +/TT+W> f (t - ;) et dt = O(T~A7).
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It follows that the given sequence (), ) must remain bounded and has a conver-
gent subsequence. By relabelling we may suppose without loss of generality that

A — A. Write A\, = A + 6, where 6, — 0.

By Proposition 5.1.9, [R_.f,ex]lu — [R_sf,e5] = [f, Rsex] = 0 uniformly in s
as U — o0, so we can find a number Uy > 0 such that |[R_,f, e)|u| < €/2 for all
U > Uy and for all s € R. Now, given T,, > Uy, we may write T;, = NU for some
U with Uy < U < 2Uy and N € N, both depending on n. Therefore

N-1 U
1 (21— L - —iXt_—ibnt
[faeAn]Tn:szge ! U _Uf(t—l-(Qj—l—l—N)U)e e dt.

But e~ — 1 as n — oo uniformly for ¢t € [—2Uy, 2Up), so that |[f,ex,|7.| < €
for sufficiently large n. This is a contradiction, and the result follows. a

Theorem 5.1.14 (Uniqueness theorem) Let f be a Bohr function such that
[f,ex] =0 for all A € R. Then [ is identically zero.

Proof: = We begin by defining for each 7" > 0 an auxiliary function fr that
equals f on the interval (—7,T') and is 27-periodic. Thus fr has a Fourier series

fT(t)N Z akeiwkt/T,
k=—o00
and Parseval’s identity gives us
1 [T S
2 2
o [ e = 3 jal

The proof now proceeds by working with the quantity > ;- _ |ax|*, which de-
pends on T'; we note that, given ¢ > 0, we have for sufficiently large 7' that
lak| = |[f, exr/7]7| < € for all k, by Lemma 5.1.13. Thus

dolalt <& D Jal® < €% (5.9)
k=—00 k=—oc0

We now construct a new 27 -periodic function gr (an autocorrelation function)

defined by

gr(t) = % /_T fr(t+ s)fr(s)ds. (5.10)
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We leave the reader to verify that the Fourier coefficients of g7 are equal to
lax|?>. This can be done by a simple change of order of integration or by an
approximation argument based on the relation for finite sums:

N N N

17 : . _
ﬁ ( Z a/kez'/rk(t—l—s)/T> ( Z a—le—z'/rls/T> ds = Z |ak|2e”kt/T.
-T

[=—N k=—N

To obtain a function with coefficients |ax|*, it is clearly enough to repeat the
construction and define

hr(t) = %/ gr(t + s)gr(s) ds. (5.11)

-T

Now hr(0) = > 12 |ak|*, because the Fourier series of hr converges absolutely
and hence pointwise. This tends to zero as T' — oo, by (5.9), and so [gr, g9r]r — 0
as T' — oo by (5.11). Now take T}, — oo such that T, is a %—tra,nslation number
of f and note that, for 0 < ¢ < T,,, we have

1 T,—t _ 1 Tn -
o) = g [ SO st g [ S+ s - T ds
1 ™ —

= ﬁ _Tnf(t—l—s)f(s)ds+5n,

where [6,] < ||f|leo/n. Clearly the same estimate holds for —7,, < ¢ < 0.

Recall from Proposition 5.1.9 that the function ¢ : R — C defined by

olt) = [R-ef, fl = Jim o [ e+ o)) s (5.12)

is also a Bohr function and that the convergence of the right-hand side of (5.12)
to ¢(t) as U — oo is uniform in ¢.

We see therefore that

Nn = supd|gr,(t) —g(t)| : [t| < T,} — 0 as n — oo.

Moreover,
ﬁ _T:('QT““)' +19(8)]) (|lgm.(t) — g(B)]) at

< 20127,

which tends to zero as n tends to infinity. Thus [g,g] = 0, and so g is identically
zero by Theorem 5.1.11. But ¢(0) = [f, f], and we finally conclude that f is
identically zero. O
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Thus for Bohr functions the Fourier coefficients [f, e;] determine the function
f uniquely. We have already seen from Bessel’s inequality (Theorem 5.1.10) that
[f,ex] # 0 for at most a countable set of A € R.

Theorem 5.1.15 (Parseval’s identity) Let f be a Bohr function. Then one
has [fv f] = ZAE]R |[f, eA”Z'

Proof: We work once more with the almost-periodic covariance function g =
¢+ ¢ and note that

T—o00 X —0c0

I
g,ex] = lim lim —/ e *[R_.f, flr dz,
9, €] ox / [ Iz

since [R_.f, flr — g¢(z) uniformly on R, by Proposition 5.1.9. Using Fubini’s
theorem, this gives

Y e N .
g, = Eﬁoéiﬂoﬁ/ Xﬁ/ eI+ 4)f(E) de do

1 [T e
= lim — ey e dt = ex]|?.
/_ el F@dt = [If, ]

Now . cr |[f,ex]|* < oo, by Theorem 5.1.10, and so the series Y, 5 |[f, ex]|?ex
converges uniformly to a Bohr function A whose Fourier coeflicients satisfy [, e,] =

|[f, ex]|* for all A (because of the uniform convergence), and hence ¢ = h by
the uniqueness theorem, Theorem 5.1.14. Evaluating at = 0, we see that
Yoaee lfs ex]|? = g(0) = [f, f], as required. 0

It remains to show that every Bohr function is in AP(R), the closed linear
span of the functions e). To do this, we take an arbitrary Bohr function f and
consider the set A = {A € R : [f,es] # 0}. If this set is finite, then there is
no problem, since we form the trigonometric polynomial 2 =}, ,[f, exles. It
is clear that A has the same Fourier coeflicients as f, and so, by the uniqueness
theorem, f = h. We may therefore suppose without loss of generality that A is
countably infinite, say

A - {)\1,)\2, .. }

The first step in our approximation procedure is to reduce A to a maximal subset
B = {f1,0s, ...} (possibly finite) that is linearly independent over Q. This can
be done recursively, by successively deleting A if it is a linear combination with
rational coeflicients of A, for 5 < k. Alternatively, some form of Zorn’s lemma can
be used. We shall assume without loss of generality that B is countably infinite
(if not, we extend it to a countably infinite independent set by adding in new
members).
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For a fixed positive integer n, let E, be the finite set consisting of all numbers

of the form .
mg
A= 2_1 F/Bkn

where my € Z and |mg| < n.n! for each k. It is not hard to see that A C E =
U.—, E., simply because any rational coeflicient p/q can be written as m/n! with
|m| < n.n!if n is sufficiently large.

Definition 5.1.16 Given a countable set B = {f31, (2, . ..}, linearly independent
over Q, and a positive integer n, the Fejér—Bochner kernel K/ corresponding to
B is given by

= H K- (Brt/nt),
k=1

where K denotes the “standard” Fejér kernel, defined for p € Zy and w € R by

the formula
l( — 1 _ 'me.
)= 2 < pt 1) ’

m=—p—1
We may write K, (t) = 3, .5 kn(A)e, in which case we see the following:
1. K/(t) > 0 for all t € R, since K], is a product of “standard” Fejér kernels;

2. kn(A) = kp(—2) for each A, and hence K/ (t) = K] (—t) for all t € R; also,
kn(0) =1,

3. for each A € E, we have 0 < k,()) < 1 for all n, and k,(A) — 1 as n — oo.
Part 3 holds because, if A = >, _, mBi/7! € E,, then

- T1(1-122)

if n > r, and this tends to 1 as n — oo.

Using this kernel, we are now able to prove the approximation theorem we
wanted.

Theorem 5.1.17 Given a Bohr function f, let (f,)22, denote the sequence of
trigonometric polynomauals defined by

fa(z) = [R_zf, K| = |f, R:K,]| = hm —/ fOK.(t—z)dt (z € R).

Then || f — fulleo — 0 as n — oo and thus f is almost-periodic.
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Proof: We observe first that for z € R we have

f(@) = Y [fi k(N Reer] = Y ka(V)[fs erer(@).

AEE, AEER

Using Parseval’s identity (Theorem 5.1.15), it is clear by the dominated conver-
gence theorem that [f — f,.,f — f.] — 0, since [f — fn,ex] — 0 for all A and
|[f - fnae)\” < |[fa 6)” for each A.

We observe that any e-translation number 7 pertaining to f is also an e-
translation number for f,, since

1 , B
fola = 1) = fa(e) = [Ref — L ReK S e lim oo | Ki(t—o)dt=c,

using the positivity of K] and the fact that k,(0) = 1.

The proof is now completed by using Remark 5.1.12. O

We have now completed the circle of ideas that identifies the Bohr functions
with the almost-periodic functions, that is, the uniform limits of trigonometric
polynomials. Let us now consider these from the point of view of linear systems
and, in particular, convolution operators.

Theorem 5.1.18 Suppose that g € L'(0,00). Then the convolution operator T,
given by

(Tt = [ ot —r)dr
0
defines a bounded operator on AP(R), with norm given by || Tyl = ||g/z1(0,00)-
Moreover, T, extends by continuity to a bounded operator on the Hilbert space

AP (R) with norm equal to ||Lg||ge(c,), where L denotes the Laplace transform.

Proof: It is clear that 7, is bounded, even on C3(R), since

(Tu)(t)] < / o)l dr = gl o
Note also that
(Tyes)(t) = / " () dr = (Lg)(iN)ea(t)

Thus T, maps the space of trigonometric polynomials to itself; hence, by conti-
nuity, it maps AP(R) to itself. It still remains to compute the norm.
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Without loss of generality, we may assume that ||g||; = 1. Given € > 0, let
A > 0 be chosen such that

A o
/ lg(t)|dt > 1 —¢ and / lg(t)| dt < e.
0 A

We begin by finding a polynomial p such that

A|aw—moww<e

This we may certainly do because the continuous functions are dense in the
L'(0,A), and any continuous function is the uniform limit (and hence L' limit)
of polynomials. Next, we define

v(t) = { Ip(A—1t)|/p(A—1) ifp(A—1t)#0,
so that

/Op(t)v(A—t)dtz/o |p(t)|dt>/0 g(8)|dt — e > 1 — 2.

Now v is continuous except at any zeroes of p in [0, A]. If there are any such
zeroes, say i,...,ZTN, then we may modify v by linear interpolation on intervals
centred at z1, ..., zy whose total length is at most €/(2]|p||s ) to obtain a function
u € C[0, A] such that ||u|le <1, in which case

/OAp(t)u(A—t)dt' > /OAp(t)v(A—t)dt‘—HpHOOHv_qu

> (1-2¢)—e=1-3e

(All norms above apply to functions restricted to [0, A], of course.) Hence

/OAg(t)U(A— t)dt‘ > /OAp(t)u(A —t)dt‘ — /OA p(t) — g(t)| dt > 1 — 4e

Finally we may extend u to a continuous 2A-periodic function with ||ul|e < 1,
in which case

1Tyl c0 > > 1 — Be,

| sttta -

and the result follows.

The situation for APy(R) is formally rather simpler. The e) form an ortho-
normal basis of eigenvectors, and the eigenvalues are (Lg)(¢A). Hence the operator
T, extends by continuity to a normal operator on the Hilbert space AP;(R), with
norm equal to || Lg||- O

As we have seen, almost-periodic functions give an attractive class of persis-
tent signals that behave well in the context of systems theory. In the next section
we look at some larger spaces of functions. As will be seen, we lose a little in
structure while at the same time gaining in generality.
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5.2 Power signal spaces

When we looked at so-called finite-energy signal spaces, there were four natural
choices, namely, the discrete-time spaces £3(Z) and ¢*(Z,) and the continuous-
time spaces L?*(R) and L?*(0,00). A similar problem arises when we look at
finite-power spaces: do we use continuous time or discrete time? Do we work on
the whole time axis, or just the non-negative half?

Here we shall work with signal spaces in continuous non-negative time only,
mentioning the discrete case only briefly. Note first that the following orthogo-
nality formula still holds for A, p € R:

: e it _—iAp 1 it A=y,
%EEOT/O €A =0 ifA£p, (5.13)
and hence, if f(t) = Eivzl aret, with aj,as,...,ay € C and distinct real
numbers Aj, Az, ..., An, then

.17
g [ 1506~ 3 o
as in the double-sided case.

By the above remarks, we are motivated to define the limit power of a function
f e L} _(0,00), when it exists, by the formula

T 1/2
I = (Jim 7 [ 1roPar) (5.14)

This formula has been used extensively by engineers but is of limited analytic
value because of the following result, given by Mari and others.

Proposition 5.2.1 The set P of functions in Li_ for which the limit power
exists is not a linear space.

Proof: = We construct two functions f, g € P such that f + ¢g ¢ P. Take f(¢)
to be equal to 1 for all t and

g(t)=(=1)" for 2771 <t < 2", (n € Z).

It is clear that || f||p = ||g|lp = 1. However, for M € N,

22M

M
8
2—2M/ t t 2dt — 2—2M 4 22k—1 — =
[ 150 +ot0) > axant=

k=—oc0

whereas
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2—2M—1 /
0

92M+1

M
oM o, 4
f(t)+g(t))Pdt = 27M71 Y 42 1=§,

k=—c0
and so no limiting value of the power of f + g exists. a
Thus, as it stands, ||.||p is not even a seminorm, let alone a norm, as it is

not defined on a linear space. To get round this problem, there are three possible
notions of power with which it is convenient to work.

Definition 5.2.2 The lim sup power seminorm s defined for all functions f €
L2 _ for which the quantity ezists by the formula

. 1 [T )
1fll» = (11?131)?/0 £ ()| dt)

The power norms ||f||go and || f||s1 are defined by

| T . 1/2
Ifleo= (sup 3 [ 156007 )

1 T 5 1/2
Ifls = (sup 7 [ 150007 )

The sets of functions in L (0,00) for which these quantities are finite are written

P, BO and B1, respectively.

1/2

and

We defined ||.||p earlier, by Equation (5.14), and our definition of the P
semi-norm extends the old one to a larger class of functions, which is now a
linear space. The B1 norm is sometimes preferred to the B0 norm, since it avoids
problems near zero. In particular, we would like an L?*(0, c0) function to have
finite power; however, the example f(t) = t_1/4x(0,1)(t) gives, for 0 < T < 1,

1 T

T/ IF())2dt = T~ x (2TY?) = o
0

as T'— 0.

The following proposition collects a few useful facts about these spaces.

Proposition 5.2.3 The spaces P, B0 and B1 are linear spaces. Moreover, || .||»
is a seminorm and || . ||go and ||.||s1 are norms. The quantity ||f||» is finite if
and only if || f||s1 is finite.
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Proof:  We leave most of this as an exercise, reminding the reader that one
always has the following L? triangle inequality:

(f o)™ ([ sorae) " ([ sorer)

For the final part, note that if f € L} (0,00), then the function

loc

1 [T )
e IO

is well defined and continuous for 7" > 1, and it will have a finite lim sup if and
only if it is bounded. O

In the discrete-time case, we work with a collection of sequences (a,)2, and
make the analogous deﬁnltlons.

1/2
I(an)llp = <hmsup ZI n|2>

and

1/2
I(an)lls = (sup ZI n|2) :

noting that in this case there is no need to 1ntroduce B0 and B1. Life is rather
easier here, as the set of sequences for which || .|| is well defined coincides with
the set for which || .|| is finite.

Our aim now is to show that the bounded causal shift-invariant operators on
the power signal spaces defined by ||.||», || . ||so and || . ||s1 are the same as those
on L*(0,00) and thus correspond to H*°(C; ) transfer functions, as we saw in
Theorem 3.2.3. Thus the methods of H* control can be applied in this context
as well.

Note that all the operators in which we are interested, if they are bounded on
L?(0, 00) or one of the power spaces, must map L _into itself, since if A is a causal
operator, then the restriction of Au to an interval (0,7") is always determined by
the restriction of u to (0,7"). Note that, in the following, whenever we write a
norm symbol without a suffix, then for a function it is the L? norm, and for an
operator it is the operator norm when it acts on LZ.

Theorem 5.2.4 A causal linear time-invariant operator A satisfies ||Aullr <
M||ul|p for all w € P, for some M > 0 independent of u, if and only if A acts
as a bounded operator on L*(0,00). Moreover, the induced operator norm ||Alp
of A acting on P is the same as its operator norm ||A|| when it is regarded as
acting on L*(0,00). The same result holds if we replace P by B0 or B1.
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Proof:  Suppose that A is bounded on L?*(0,00) and u € L _. Write y = Au.
Then, since A is causal, by considering uxor € L*(0,00) we see that

1 T T
p [ wera <A [ e,
0 0

By taking the lim sup as 7' — oo, we see that ||Au|lp < ||A||||v||p when this is
finite; by taking suprema instead, we obtain the corresponding result for B0 and

B1.

The converse is more complicated. Suppose that A is bounded on P and that
u € L*(0,T) for some T > 0. For each sequence (€(t))2, € {—1,1} of signs,
consider the function defined for ¢ > 0 by

o0

Ze u(t — kT).

k=0

At each point ¢ at most one term in the sum can be non-zero. Observe that
|uf||p = ||u||2/v/T. Now, looking at each interval of length T'in turn, we see that
Au has the form

= i f: €xYm—r(t — mT) i zm(t —mT), say,
m=0 k=0 m=0

for a sequence of functions (yx)%2, in L?(0,T). Note that yo is just the restriction
of Au to (0,T).

Since we always have the triangle inequality ||[v + w|| + || — v + w|| > 2||v||
in any normed space, we may inductively choose a sequence (€(t)) of signs such
that the L?(0,T') norm of each term z,, is at least as great as ||yo||. Hence

4l ol
[l = Tl

For a fixed u of compact support, we may regard it as lying in L*(0,7') for suf-
ficiently large T', and thus, by letting 7' — oo, we see that ||Aul|/||u| < ||4|7;
and since the functions of compact support are dense in L*(0, 00), we have the
required result for P.

Similarly, if A is bounded on B0, then, given v € L*(0,00) and 7 > 0, we
have

1 [ 1 [T
—/ I(Au)(t)l2dt§HAH%osupT/ |u(t)[? dt.
0 T>0 0

T
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Now consider the effect of the operator on the shifted function Ryu for A > 0.
We then have

17 1 T
— | awere < HAHBOWT+A | tuteya

HAHEOXIIUIV-

Hence

| I

Now, letting first A — oo and then 7 — oo, we conclude that || Aul|* < || A]|%lu||?,
as required.

The proof for B1 is almost identical; all that is required is to take 7 > 1 and
T > 1, which makes no difference. O

Our conclusion is that the operator norm corresponds to the L?(0, co) operator
norm, that is, an H* norm, in a variety of situations. In the final section, we
shall give another interpretation of this fact under more restrictive hypotheses.

5.3 Spectral distribution functions

We now wish to study the autocorrelation (covariance) function, introduced in
(5.7), in more detail. The notation is slightly simpler if we work with functions
defined on the whole time-axis, and the autocorrelation of an L (R) function f

loc
will be defined by

b) = Bfifl= pim ot [ o4 0fDa @em),

provided that the limit exists. In fact, we are mostly interested in Wiener’s
class &', which is the set of functions f for which ¢¢(z) exists for all z, defining
a continuous function of z. The following proposition simplifies some of our
calculations.

Proposition 5.3.1 For f € 8" and for all a, b, z € R, we have

¢s(z) = lim L/ ' flz +)f(¢)dt.

T—co 2T —T+a

Proof: Since

] 1 T+b 5 ] 1 T )
Jim o [ IR = ,0) = Jim o [ AR
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we see that

and similarly

1 T
lim —— t)]? dt = 0.
Jim o [ If)P =0
A change of variable shows that the same holds when we replace ¢ by = + ¢, and
finally the Cauchy—Schwarz inequality implies that

. 1 -T T+b
gim o ([ 4 [) 1+ ool de=o

which gives the required result. d

Note that the following extension of Proposition 5.2.1 applies, which shows
that the methods of linear analysis must be used with caution.

Proposition 5.3.2 Let f and g be as in Proposition 5.2.1, extended to be iden-
tically 0 on the negative time-azis. Then f, g € S, but f+ g ¢ S'.

Proof: Recall that f(¢) =1 for all ¢ > 0 and
g(t)=(-1)" for 2"t <t < 2", (n €Z).

It is clear that

Bmge o [0 dt if 2 >0,
M7 00 57 f_z dt ifz <0,

so that ¢¢(z) = ; for all z. Moreover, g(z +t) = g(t) unless ¢ lies either in
[—|z]|,|z|] or in some interval [2¥ — |z|,2V + |z|] for 2 > |z|. Thus if 2* < T <
2%+1 and k is large, we have

I N
oT T(g(l‘ +1) — g(t))g(t) dt = O(k|z[/2%),

which tends to 0 as ¥ — oo and implies that

.17 1
ba(@) = Jim o [ oo+ 000 dt = 4,0) = ;
for all z € R. Since ¢5,,(0) does not exist, as in Proposition 5.2.1, it is clear that

f+g9¢sS. O

This indicates that the autocorrelation is an inappropriate tool to analyse
multi-input systems such as the following:

y(t) = wa(t) + ua(?),

where y is the output and wu;, u; are the inputs. Nevertheless, it is still possible to
perform some calculations using this concept. Let us begin with some examples.
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Example 5.3.3 1. Let f € AP(R) have a formal Fourier series ), 5 axes,
where a) = [f, es] = 0 except for countably many A and ), 5 [ax|* < oco.

Then
$5(z) = laa*e?,

AER

which is continuous, since the series converges absolutely and uniformly on

R.

2. If f € L*(R), then ¢¢(z) = 0 for all z. Thus, in general, the autocorrelation
does not uniquely determine the function.

3. Probabilists sometimes work with white noise, which would ideally be rep-
resented by a function f for which ¢¢(z) = 0 for all z # 0, but ¢;(0) # 0.
There are such functions, for example, f(t) = e (see the exercises), but
they do not have the unpredictability one associates with random noise.
The following example gives something rather more appropriate.

4. Fix 6§ > 0 and let f(t) be piecewise constant on intervals [né, (n + 1)é) for
n € Z,taking values £1 independently on each such interval. Then we have

$5(0) =1 and ¢;(k6) =0 for all k € Z \ {0}, by virtue of the independence
(a probabilistic argument shows that the average value of f(k6 4 t)f(¢t) is
0). For general z we have (if it exists)

as is easily seen using the boundedness of f. Thus, for z € [k6, (k + 1)é]
with k£ > 0, we have

1 N-1 (m+1)8
m@>::;g;ﬁﬁ-§%[; Fo + ) f(ms) dt
. 1 ml\;—l (m+k+1)6—=z
=:§g;ﬁﬁ-§%l; F((m + £)6) f(ms) dt

[T s ks 09 s
(

m+k+1)6—z
. 1 N-1
= lim mm:_N((l‘fZ +1)6 — ) f((m + k)§) f(mé)

+(z — k8)f((m + k + 1)8) f(ms)
((k+1)6 —z)¢s(k6) + (2 — k6)$5((k + 1))
5
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A similar calculation holds for £ < 0, and we conclude that

$5(z) = { 1= el <6, (5.15)

0 otherwise.

Let us return to part 1 of Example 5.3.3. In this case one has the following
expression for ¢y:
1 “ AT
b1(0) =5 [ ), (5.16)
T J-o
where y is a positive discrete measure with atoms of size 27|[f, e;]|* at the points
where [f,e;] # 0. Thus ¢; is represented as the inverse Fourier transform of a
finite measure. We would like to obtain a similar expression in general, and it is

convenient to use the notation of Riemann—Stieltjes integrals.

Definition 5.3.4 Let G : R — R be a bounded monotonically increasing right-
continuous function and f : R — R a bounded function. Let G(+o0) denote the
limits of f(t) ast — +oo. Then the upper Riemann—Stieltjes sum of f associated
with a dissection D = {zg,z1,...,Tn}, where 29 < T1 < ... < T,, 15 the quantity

Sp(f) = (G(zo) — G(—o0)) sup f(?) Z G(zj-1)) sup  f(2)

t<zg t€(z5—1,74]

+(G(o0) — G(zn)) sup f( );

t>z,

and the lower Riemann-Stieltjes sum sp(f) is defined similarly, using infima
rather than suprema. If supp sp(f) = infp Sp(f), then their common value I is
called the Riemann—Stieltjes integral of f with respect to G and written

J:/_:fda.

The Riemann-—Stieltjes integral has many properties similar to those of the
classical Riemann integral, which is a special case, in that

/abf(t)dtz/_:fdG,

0 ft<a
G(t)Z{t—a fa<t<b
b—a ift>h.

on taking

Y

Now formula (5.16) becomes

ds(z) = % /_00 e® dos(N), (5.17)

[ee]
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where o is a monotonic increasing step function jumping by an amount 27 |[ f, es]|?
at each point A such that [f,e,] # 0. It is common to refer to the function oy
appearing in (5.17) as the spectral distribution function of f. In Wiener’s termi-
nology, o is the spectrum of f, but this latter term has other meanings and we
prefer to avoid it.

Note that (5.17) implies the following formula:

810 = 5 [ doytr) = A= 2=2)

:g 27

— 00

The fact that, in general, some o exists satisfying (5.17) follows from the follow-
ing property of ¢, observed by Bochner.

Definition 5.3.5 A continuous bounded function ¢ : R — C is said to be positive
definite if ¢(—z) = ¢(z) for all z and

DD dla;—mi)z7 > 0

7=1 k=1
forall zi,...,z, in R and z1,...,2, in C.
The relevance of this concept is explained by the following result.

Proposition 5.3.6 Suppose that f € S'. Then ¢y is positive definite.

Proof: By assumption, ¢y is continuous, and we also have

[#5(2)] = | lim o

. | T . 1/2 . | T . 1/2
< (Jimgp [ 1erora) (pm o [ 1rora)
= stf(o)’

and so ¢y is bounded.

lim — /_:;f(:c + t)mdt‘

Further,
1 [T —
b(~2) = Jim o [ fcorifDa
1 T—z
— Jim o [ @)t e)du
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Also,

ZZQZSJ‘ k)ZiZk = jll_)nolo%/ ZZf( —:Bk—l—t)f()zjzkdt

j=1 k=1 —Tj:1 k=1

— zll_{iloﬁ/ Zfa:]—l—w szfazk—l—w )Zx, dw

The same property holds for functions expressed as Fourier integrals of spec-
tral distributions, as in (5.17).

Proposition 5.3.7 Suppose that ¢(z) = = [ €?*dG()). Then ¢ is positive
definite.

Proof:  The continuity of ¢ follows because

1 [ .
< Ay Az d A
80) - #@) < 3 [ 1™ = a6,
and given € > 0 we may find an interval [a, b] such that G(co) — G(b) < €/6 and
G(a) — G(—o0) < €/6. Then

/ |ei)\y z)\:c| dG( ) § 4+ (G(b) - G(a)) S[ug |ei)\y . eiAa:| + %7

o0

which is less than € if |y — z| is sufficiently small. The boundedness is proved
similarly, but more simply.

Since G is real, it is clear that ¢(—z) = ¢(z), and finally
3ot o= [ (et ) (L) oo
j=1 k=1 % \j=1 k=1
which is the integral of a non-negative function and hence is non-negative. O

What is more remarkable is the converse implication.

Theorem 5. 3 8 A bounded continuous function ¢ : R — R can be written in the
form ¢(z) = 5= [T e A dG(N) if and only if it is positive definite. In particular,
if fed, then its autocorrelation has a representation

1 [ .
bi(@) =5 [ = doih),
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Proof:  We shall sketch the proof, leaving the reader to check any details which
do not appear obvious.

Suppose first that ¢ € L'(R). For a given continuous g € L'(R)N L*R) form
the convolution

B(t) = / T+ - y)e(—a)g(—y)da dy,

which is continuous, lies in L'(R) and satisfies ®(0) > 0, as we see on approxi-
mating it by Riemann sums and using the positive definiteness condition.

We now make use several times of Fourier’s inversion theorem (see, for exam-
ple, [69]), which asserts that

f0 = e [ e Flw) o

2 J_ o

whenever f and ]/[\are continuous functions in L!(R).

By standard properties of Fourier transforms,

HH)

) = [ B it = )il

o0

Since § € L*(R), we have ® e L'(R), so we may conclude that

®(0) = N $(w)[3(w)|* dw > 0.

-~

It now follows that ¢(w) > 0 for all w, since g may be chosen so that g is contin-
uous, positive and supported on any small interval that we wish.

Now the conditions that ¢ is continuous, L' and bounded, together with
¢ > 0, imply that ¢ € L*(R). This can be seen by applying Fourier’s inversion

—m2z?

theorem, for if we take ¢,, to be the convolution of the functions ¢ and %e
form=1,2,3,..., then

and so
1 *® A~
ém(0) = %/_ m(w) dw.

In the limit (by the monotone convergence theorem) we have

60) = 5 [ Bw)dw,
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and so ¢ € L'(R).

Now Fourier’s inversion theorem applies in general to ¢ and ;5\, which are both
continuous L' functions, and so we have the desired result for ¢ € L'(R).

The remaining part of the proof requires us to approximate ¢ by functions in
L'(R); for example, we may define ¥,,(t) = e_tz/ngb(t) form=1,2,3,.... This
gives us a sequence of expressions involving integrals against measures ¥,,(w) dw,
and the proof is accomplished by observing that these have a limit measure g,
such that | e

(z) = —/ e du()) for all z € R.
21 J_ oo
The last integral can also be expressed as a Riemann—Stieltjes integral by defining
of(a) = p((—oo,al) for all a € R.

The final observation follows from Proposition 5.3.6. g

We finish with a result of Wiener, which shows that the action of a convolu-
tion operator on a function in &’ will under some circumstances translate into a
multiplication operator on the spectral density. Since it is not known what is the
best possible result in this direction, we shall just calculate formally and refer
the reader to [145] for the rigorous justification, which is surprisingly difficult.

Theorem 5.3.9 Suppose that f € S’ and that k is a function on (0,00) such
that t — tk(t) lies in L'(0,00) and t — (1 + t)k(t) lies in L*(0,00). Let

ole) = [ k)@t

Then

2

ag(y)zA—{—/ / k(t)e ™ dt| dog()), for veER,
0 0

where A is a constant. In particular, ¢,(0) < HLk”ftIOO(CJr)QZSf(O); where L denotes
the Laplace transform.

Proof: As explained above, we give just a formal calculation:

bo(z) = lim — / oz + 1)g(t) dt

T—o0 2T _T

_ %ﬂ%/:ﬁ </u:)k(u)f(w—|—t—u)du>

. (/“WQ gt
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= / / <;5f z—u+v)dvdu
0 Jvu=0

_ / / / B(0)e ) 4o (X) do du
©=0 Jv=0 =—00

2
/ k(u)e A oy
4=0

e do(),
which gives the desired formula. Finally observe that

= e

o

A=—o00

8,000 = oo [ IEREN oy

1 (o)
< Lkl [ dos() = |LkIE65(0)

g

Thus we have finally recovered part of Theorem 5.2.4 by a very roundabout
route, having “explained” it in terms of multiplication operators.

Notes

There are many books which treat almost-periodic functions in greater detail,
for example [1, 5, 7, 19, 145]. The classical treatments in [5, 7] are probably the
closest to the approach given in the text, although modern topological arguments
have simplified some of the demonstrations.

Some discussion of linear systems with almost-periodic inputs can be found
in [73]. Theorem 5.1.18, at least for AP,(R), is essentially contained in [59].

Our discussion of power signal spaces and shift-invariant systems is a synthe-

sis of the articles [64, 79, 82, 103].

Mari’s result [83] was published in 1996, although it was known earlier (see,
for example, [70] and the commentaries by Masani in [144]). In any case, it was
necessary to draw it to the attention of the engineering community. Our example

is derived from [79].

We draw on [6, 82, 145] for the material of Section 5.3. Proposition 5.3.2 may
be new. Other relevant papers in the engineering literature are [95, 152]. The
Riemann—Stieltjes integral is presented in [6, 68]. For the spectral analysis of
stochastic processes, we refer to [14].
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Exercises

1. Verify the orthogonality formulae (5.5) and (5.13).

2. Show directly that the function f(t) = cost + cos+/2t is not periodic, by
finding all real solutions to the equation f(¢) = 2 and using the fact that
V2 is irrational.

3. Suppose that f € AP(R). By approximating f with trigonometric polyno-
mials, prove that the limit defining [f, f] exists.

4. Give a direct proof of Parseval’s identity [f, f] = >, cx [[f, ex]|* for func-
tions f € AP(R).

5. By evaluating a double integral, prove that, if fr is a 27-periodic func-
tion with Fourier coefficients (aj), then the function gr given by (5.10) has
Fourier coefficients |ax|?.

6. Use Zorn’s lemma to show that any subset A C R contains a maximal sub-
set that is linearly independent over QQ.

7. Show that, for a periodic function g € Cy(R), all the numbers A € R for
which [g, e5] # 0 are integer multiples of some particular real number.

8. A function f € Cy(R) is said to be limit-periodic if it is the uniform limit of
a sequence of periodic functions. Assuming the result of Exercise 7, show
that f is limit-periodic if and only if it is almost-periodic and all the non-
zero numbers A € R for which [f, e)] # 0 are rational multiples of each other.

9. Suppose that f is a Bohr function for which the numbers A with [f, e;] # 0
are all independent over Q. Use the Fejér—-Bochner approximants to show
that the Fourier series of f must converge uniformly.

10. Prove in detail the results on P, B0 and B1 given in Proposition 5.2.3.
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11.

12.

13.
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Let f(¢) = eilt"’”?  Prove that ¢s(z) =1 for all z.
Let f(¢) = ', Prove that
1 ifz=0,
¢5z) = {o if z # 0.
Thus ¢ exists, but f ¢ S'.

Calculate the spectral distribution function oy in the case that ¢y, as given
in (5.15), represents an approximation to white noise.






Chapter 6

Delay systems

In this chapter the main aim is to consider an important class of infinite-di-
mensional systems for which the transfer functions are irrational and finite-
dimensional linear algebra no longer provides an appropriate framework in which
to proceed. After a brief resumé of the theory of finite-dimensional systems,
we give the standard classification theorem for delay systems and then discuss
questions of stability, approximation by finite-dimensional systems, and finally
stabilization by feedback control.

The methods of this chapter are mostly complex analytical (including the
study of poles of meromorphic functions and a certain amount of interpolation
theory), but operator-theoretic methods and ideas from approximation theory
are also to the fore.

6.1 Background and classification

Finite-dimensional systems can be expressed in matrix terms by the equations

z(t) = Az
y(t) = Cz

~~

t) + Bu(t),
t)+ Du(t), t>0, (6.1)

~~

where z(t) € R™ is the state of the system at time ¢; u(¢) € R™ denotes the input
and y(t) € R? is the output; and A, B, C, D are matrices of sizes n X n, n x m,
p X n and p X m, respectively. (We could work over C rather than R, but for
physical reasons this is not usually desirable.)

For convenience, and to re-affirm the connection with shift-invariant opera-
tors, we shall suppose that z(0) = 0, that is, zero initial conditions. Let us write
U = Lu, the Laplace transform of w, and ¥ = Ly, similarly. Note that the

121
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Laplace transform of z is given by
(Lz)(s) = / e *'z(t)dt
0
= [e7%z(t)]2, + 3/ z(t)e "t dt = s(Lz)(s)

0
for Res > 0. It is then easy to verify that the input—output relation between U
and Y is given by Y (s) = G(s)U(s) in some right-hand half-plane, where

G(s)= D+ C(sI — A)"'B,

the transfer function, a matrix-valued function with rational entries, since det(sI—
A) is a polynomial in s.

One important example of a finite-dimensional system is given by a differential

equation of the form

> ay®(e) = 3 b)),
k=0 k=0
which has a transfer function given by

G(s) = Zheo B2
D oo brs*
It is well known, and easy to see, that this can be re-expressed equivalently
in the state space form (6.1) by working with vectors whose components are
v, 9,9,...,y" and u, 4, 4, . .., ul™. For example, § +w?y = u can be replaced by
the equivalent set of equations

a(2)= (o) (2)+(5)

Moving on to infinite-dimensional systems, which are ones for which the state
of the system cannot be specified by a finite number of parameters, the simplest
class of such systems is the class of delay systems. Many physical systems involve
delays: these can be of the order of a fraction of a second for an electrical compo-
nent to respond, or they can be several hours in the case of complex engineering
processes involving the transport of chemicals in pipes. In either case, delays may
need to be taken into account.

Let us begin with an example. For calculating transfer functions, note that
the Laplace transform of the right shifted function Ryz : t — z(¢t — h) is given by

(LRpz)(s) = / e *z(t — h)dt
h
= / e Mz (7) dr, witht =7 + A,
0

= e_Sh(L:B)(s).



6.1. BACKGROUND AND CLASSIFICATION 123

Example 6.1.1 The following ideas were presented briefly at the start of Chapter
3, but now we give more details. We begin with the first-order differential equation

2(t) + 2(t) = u(?),

and we take the output equal to the state, that s, y = z. By an easy calculation,
this system corresponds to the transfer function G(s) = 1/(s + 1), which lies in
H*(C,).

Now suppose that the input arrives after a delay h, that is, the new equation

#(1) + o(t) = u(),

and suppose that u(t) =0 on [—h,0]. The new transfer function is then

18

and this is still in H*(C, ).

Finally, suppose that the delay occurs in the state, so that we have
z(t) + z(t — h) = u(t).
The transfer function is now

1
s—l—e_sh7

G(s) =

and it can be verified that this is no longer in H*(C,) when h = 7 /2, as there
are then poles of G at s = +z1.

A general way of expressing delay equations in matrix terms is the following
(it is not the only possibility):

J

3(t) = Aox(t)+ ) Ajz(t— h;)+ Bou(t —|—ZBut—
7=1
J

y(t) = Com(t)—l—ZCj:n( h;) 4+ Dou(t —I—ZD u(
7=1

together with suitable initial conditions on z and u. In this case it can be veri-

fied that the transfer function (if it exists) is now a matrix-valued function with

meromorphic entries that are in the ring generated by the functions s and e™*,

fory=1,...,J.
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Thus, whereas the study of finite-dimensional systems may be regarded as
the study of rational functions (quotients of polynomials), the study of infinite-
dimensional systems may be regarded as the study of quotients of polynomials
in s and functions e~*".

There is one elementary case that needs to be discussed before we consider
the general question of classifying the transfer functions of delay systems, and

that is when G has the form

n

G(s) =Y e ™ Rys),

k=1

where A1, Aa,..., A, > 0 and each Ry is a rational function of s. For G to lie in
H*(C;) it is clearly sufficient that each Rj be proper (that is, with the degree
of the denominator at least as big as the degree of the numerator) and to have
no poles in the closed right half-plane. However, degenerate examples such as
G(s) = 1_2_5 can occur, so that some of the singularities of the Ry may not be
poles of G. In any case, there are only finitely many to check. The fact that each
Ry, must be proper if G is to lie in H*(C; ) follows easily from the observation

that any function F(s) = E;n:l c;e”H° satisfies

: e N2 . 2
dim o [ RGP o= Y e

i=1

and thus lim supy,|_,, [F(sw)| > 0. (Such results were discussed in greater detail
in Section 5.1, in the context of almost-periodic functions.)

A key to the classification of delay systems in the general case, when the
number of poles is infinite, lies in the following lemma. (For convenience we
assume that the principal value of the argument of a complex number s is chosen
to satisfy —m < args < «.)

Lemma 6.1.2 Let o € C\ {0}. Then the equation se® = a has infinitely many
solutions, which for large values of |s| have the form s = z + 1y with

z = —log2nm +logl|al + o(1),
y = +2nm Fw/2+4 arga+ o(l),

with n a large positive integer.
Proof: By considering the equations

ot loglo+iy] = loglal,
y+arg(z +1y) = arga+ 2km,
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we see that for any given 6 > 0 all solutions to the given equation with n sufhi-
ciently large lie in a double sector

Ss={seC:7m/2—-6<|args| <7/2+ 6}

centred on the imaginary axis. Moreover, for R sufficiently large, the mapping
u = s+ logs takes Ssr = S5 N {s € C: |s| > R} bijectively to a region in such a
way that points (7 cos§,rsin ) are mapped to points (r cos 8 + logr,rsin 6 + 6)
with asymptotically the same arguments as s (or u) tends to infinity.

It is now clear that for large n there are solutions u to e* = a of the form
u = log a + 21k or, equivalently, solutions s to se® = a of the required form,
lying in Ss g. O

Note that asymptotic expressions for the solutions of s™e* = a for m € N
and A # 0 follow immediately, since they are obtained by setting z = As/m and
solving ze* = B\ /m for each B with ™ = a.

We now consider three examples, which illustrate the possible types of be-
haviour we may encounter.

1. Let G1(s) =1/(14+€~*). Then the poles of G lie on the imaginary axis, at
the points (2k + 1)7%, k € Z. More generally, if the poles of a delay system
lie in a strip centred on the imaginary axis, then the system is said to be
of neutral type.

2. Let Ga(s) = 1/(s — e™®). Although G,, like Gy, does not lie in H*(C;)
(there is a real pole lying between 0 and 1), its poles have the asymptotic
form (—log2nm,+2nm F 7 /2), by Lemma 6.1.2, and thus there are only
finitely many in any right half-plane Re s > a. Such a system is said to be
of retarded type. The first few poles of G3(s) are shown in Figure 6.1.

3. Let Gs(s) = 1/(se™® — 1). The poles now have the asymptotic form
(log 2nm, F2nm + 7/2), again by Lemma 6.1.2, and thus there are only
finitely many in any left half-plane. Such a system is said to be of advanced

type.
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Figure 6.1. Poles of the function 1/(s — ™)

It is the case that for every delay system with infinitely many poles the poles
can be arranged in chains of neutral, retarded or advanced type. In order to
determine these chains, we need some notation.

Definition 6.1.3 Let h(s) = >.7_, pr(s)e 7%, where po, ..., p, are polynomials
of degrees dg, . ..,d,, with leading coefficients cg,...,c,, and with 0 =Ty < ... <
T,.. Then the distribution diagram or Newton diagram of h is the polygonal line
joining the points Py = (To,do), Pr = (T1,d1),... P, = (Th,d,) with vertices at
some of the points Py, which is such that no points Py lie above it (thus it forms
a concave polygonal curve).

For illustration, Figure 6.2 shows the distribution diagram corresponding to
the function

h(s) =s— 45%¢7° 4+ 3572 + 6s%e 3 — sS4+ (235 — 33)6_65 + 9253778, (6.2)
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O 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Figure 6.2. A distribution diagram

Theorem 6.1.4 Let h(s) and its distribution diagram be as given in Definition
6.1.3. Then zeroes of h(s) for large values of |s| are asymptotic to the zeroes of
the functions ck(l)sd’c(l)e_Tk(l) + ...+ ck(m)sd’“(m)e_Tk(m), where Py ... Pym) 15 an
edge of the distribution diagram.

Thus, in the example given in (6.2), to find approximations to the zeroes of
large modulus we need only solve each of the following equations independently:

s —4s%e7° +35%°e7?° = 0;
3s°e7% —5s"e™® 425%™ = 0;

2356—65 _I_ 2336—75 —

These reduce easily to the equations:

1
s’e™® = lor =

3
e ?* = lor §;

2
e = —1.

These in turn can be solved using Lemma 6.1.2, and we see that the first equa-
tion gives four advanced chains of zeroes corresponding to se=*/% = +1,+1/+/3,
whereas the second gives two neutral chains, and the third gives two retarded

chains, corresponding to se¥/? = +i.

Proof: = We sketch the proof. The key lies in the observation that a large zero
of h can only arise if two or more terms are of the same order of magnitude and
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able to cause cancellation. This implies that, at a sufficiently large zero, we have
|s*¢*| bounded away from zero and infinity by absolute constants independent
of s, where A is the gradient of the line segment L passing through two points P;
and P,.

Now, if P, is also on the line L, then the term corresponding to P, is of the
same order of magnitude and must be taken into account. If P, is above the line
L, then cancellation between the terms corresponding to P; and P is irrelevant,
as the term corresponding to P, dominates both. Finally, if P, is below the line,
then it corresponds to terms of lower order and is not relevant.

The above argument (which can be written down in more detail, at the ex-
pense of totally obscuring the essential idea) shows that the only possible zeroes
are asymptotic to the zeroes of various simpler functions, which can be read off
the distribution diagram. It remains to show that there really are zeroes near the
points specified. This can be done by an argument based on Rouché’s theorem: let
s = 8o be a zero of the equation f(s) = ck(l)sdk(l)e_Tk(l) +.. .—I-ck(m)sdk(m)e_Tk(m) =
0, which corresponds, as above, to the zero of an equation

m

o(s) = [[(%e™* —a) = 0,

7=1

with sje™* = a,, say. In the simplest case, there are no repeated a;, and we find
that

g(s0) = (g7 —sp)e ™ [[(ar — )
it
= —(a, +0(1/s) [ [(ar = a3),
I#T
with similar bounds on higher derivatives. Note that

|9(s0 +w) — wg'(s0)] < %Supﬂg”(% + O ¢ €] < Jwl},

as may be seen by integration, using the fact that g(so) = 0. We may therefore
conclude that |h(s) — f(s)| < |f(s)| on a small circle centred at so with radius
independent of sg (for large so), and then Rouché’s theorem guarantees the exis-
tence of a zero inside this circle.

Similar but more complicated arguments can be used in the case of multiple
ZEeroes. O

The above result enables us to characterize the retarded delay systems, namely,
those proper transfer functions that have only finitely many poles in each right
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half-plane. It is also possible for the denominator of a delay system to be
of neutral type while the transfer function is still in H*(C,), for example,
G(s) =1/(2 4+ e°) (see the exercises), but the robust control of such systems is
a more delicate matter.

Corollary 6.1.5 Let h(s) be as in Definition 6.1.3. A necessary and sufficient
condition for all the zero chains of h to be of retarded type is that dg > dj, for all
kE>1.

Proof: By Theorem 6.1.4, a necessary and sufficient condition for the presence
of only retarded zero chains is that the line segments forming the distribution
diagram all have a strictly negative gradient; this is the same as saying that the
leftmost point has the largest y-coordinate. O

6.2 Stability

To motivate this section, let us begin with a simple question. For which positive
gy in H*(C,)? An equivalent

way of posing this question is to ask when the system

values of h is the transfer function G(s) =
s

y(t) +y(t—h)=u(t), y(0)=0,

is stable, in the sense that its solution defines a bounded shift-invariant operator
(from u to y) on L?(0, c0).

Since |Gr(s)| — 0 as |s| — oo for s € Cy, it is clear that G € H*(C,) if
and only if GG, has no poles in the closed right half-plane. In what follows we
shall explain how to decide such questions.

Let us begin with the finite-dimensional (rational) case. Suppose that G(s) =
p(s)/q(s), where p and g are polynomials (which we suppose to have no common
factors — this can be checked using the Euclidean algorithm). Then it is clear
that for G to lie in H*(C, ) it is necessary and sufficient that degp < degg¢ and
that ¢ has no zeroes in the closed right half-plane. This latter condition can be
checked using the Routh—Hurwitz test, which follows.

For physical reasons, we shall work with polynomials over R. It will be conve-
nient to write ¢(s) = gos™ + 18" ! +. ..+ ¢y, contrary to the usual convention for
labelling coeflicients. We say that such a polynomial is stable if it has no roots
in the closed right half-plane.
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One immediate observation, which we shall not use, is that a real stable monic
polynomial factors into real quadratic factors (z —a)(z —@) and real linear factors
(z + b), all of whose coeflicients are positive; thus, for any stable polynomial, all
the coefficients have the same sign. This is not a sufficient condition, and the
next result tells us why.

Theorem 6.2.1 (Routh—Hurwitz test) A real non-constant polynomial
q(s) = qos" + @™+ ... + g,

with qo # 0, ts stable if and only if go and ¢1 have the same sign (in particular
q1 # 0), and the degree-(n — 1) polynomial

r(s) = q(s) — Z_O(QISn 438”2 4 gss™ T 4L )
1

15 also stable.

Proof: If we factor g as q(s) = go [[5=1(s — A&), then go > r_; A = —q1, which
shows immediately that ¢go and ¢; must have the same sign if ¢ is stable. Now
consider the family of polynomials

ri(s) = q(s) — t(q1s" + g3" 2 + gss" T +.),

where ¢t € R. Note that ro = ¢, and for ¢ = ¢o/q; we have r, = r.

We claim first that all the functions ¢; have the same set of imaginary zeroes,
including multiplicity. To see this, suppose first that n is even, and write ¢ =
q' + ¢", where ¢’ contains the terms of odd degree and ¢” those of even degree.

Then
'rt — (q// _ tsq/) _I_ q/,

where the first term is an even polynomial and the second is odd. Now, on
the imaginary axis the even part takes only real values and the odd part purely
imaginary values. Thus, if r; vanishes at ww with multiplicity at least &, then the
same is true for its even and odd parts, and thus the same is true for ¢’ and ¢”.
Thus this property holds independently of ¢. A similar argument holds when n
is odd, on decomposing r; into even and odd parts as

re = q// _I_ (q/ _ tsq//).

As we vary t between 0 and ¢o/q1, the zeroes vary continuously and cannot
cross the imaginary axis, as we have seen. One zero of r:(s) = (g0 — tq1)s" +
q18"" 1 +... is asymptotic to —q;/(go —tq1), which tends to infinity, and the other
zeroes converge to the zeroes of r. The condition that ¢y and ¢; have the same
sign is what guarantees that the “lost” zero lies in the right half-plane. O
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Example 6.2.2 Suppose that ¢(s) = s* + 25 + 3s® + 25 + 2. Then the corre-
sponding polynomial 7(s) is given by

1
r(s) = st + 25 +3524+25+2 — 5(234 + 232) =25+ 257 + 25 +2,
and we may repeat the procedure to obtain a new polynomial
2
7(s) = 25% + 252 + 25 +2 — 5(233 +2s) = 252 + 9.

This is not a stable polynomial; indeed, its two roots are both on the imaginary
axis, which tells us that two of the roots of ¢ are purely imaginary. Indeed,

q(s) = (s* +1)(s* + 25 + 2).

Consider now the polynomial ¢(s) = s* + 6s® + 15s% + 18s + 10. The Routh—

Hurwitz test leads us to
r(s) = st + 65+ 15s% +18s + 10 — %(634 + 1832) = 65> + 12s% + 185 + 10,
and then to
7(s) = 6s° + 12s% 4+ 18s + 10 — %(1233 + 10s) = 12s% 4+ 13s + 10,
and finally (if we wish) to
125* 4135 4+ 10 — %(1332) = 13s + 10,

which is undeniably stable. Indeed, in this case, q(s) = (s*+2s+2)(s* + 45+ 5).

For a cubic polynomial, the first non-trivial case, the Routh—-Hurwitz test says
that gos® + q18% + g25 + g3 is stable if and only if the coefficients all have the same
sign and ¢2¢1 > ¢ogs. We leave the reader to see why this is so. Higher order
examples can be analysed by means of a Routh table, which is a systematic way
of writing down the reduction algorithm that follows by applying Theorem 6.2.1
iteratively.

Let us now discuss the stability of delay systems. We begin with an analysis
of functions of the form P,(s) = A(s) + B(s)e™*", where A and B are polyno-
mials; here, h > 0 and is allowed to vary. Normally, the most interesting case
is when deg A > deg B and we are looking at retarded delay systems (most of
the zeroes lie in the left half-plane). The object of our discussion is to decide
whether such functions have zeroes in the right-hand half-plane. It is easy to
see, using Rouché’s theorem, that the zeroes, which are infinite in number, vary
continuously with h, except at h = 0, where only finitely many remain. The
important issue, therefore, is to determine where they cross the imaginary axis,
and in which direction. A key to the analysis is the following result.
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Proposition 6.2.3 Let A(s) and B(s) be real polynomials. If Py(s) = A(s) +
B(s)e™*" has a zero at a point s € iR, and A(s) and B(s) are not zero there,
then such an s satisfies the equation

A(s)A(—s) = B(s)B(—s). (6.3)
Moreover, at such a point s we have

ds 1
sgnRe% = sgnReg [

B(s) Als)
B(s) A<3)] ' (64)

Proof:  From the equation A(s) + B(s)e™** = 0 with s € iR, we obtain
A(—s)+ B(—s)e*" = 0 by conjugation, and (6.3) follows easily on eliminating the
exponential term from the two equations. By elementary calculus we now have

(A'(s) + B'(s)e_Sh — hB(s)e_Sh)j—Z — sB(s)e_Sh =0,

which, in conjunction with e™** = —A(s)/B(s), gives

T _SA(S)a

rs

giving

dh | A(s)

-2

Now sgn Reu = sgn Reu™? for any v € C\ 0, and h/s is purely imaginary, so the
result follows easily. a

Note that the expression for sgn Re Z—}SL does not depend on h, which simplifies
the discussion. Let us illustrate these ideas by examples.

Example 6.2.4 Consider P,(s) = s + e~*", which for A = 0 has no right half-
plane zeroes. Equation (6.3) indicates that imaginary axis zeroes can occur only
if —s? = 1; that is, if s = £4. It is only necessary to consider one of the conjugate
pair, say s = ¢, and solving for A we have

i4+e =0, that is, h:g—|—2n7r, n > 0.

Further we have
ds 1
sgnRe%:sgnRe 2 >0,

indicating that zeroes cross from left to right. We may deduce that P,(s) is stable
(has no right half-plane zeroes) if and only if 0 < h < 7/2.



6.2. STABILITY 133

Example 6.2.5 Consider Py(s) = s* + s> +2s +1 + e *". When h = 0, this
reduces to (s + 1)(s® + 2), which is unstable, with zeroes on the imaginary axis.
This time Equation (6.3) becomes

(33—|—32—|—23—|—1)(—33—|—32—23—|—1):1
or, equivalently,
32(32 + 1)(32 +2)=0.
It 1s not possible to have a zero at s = 0, for any h, so there are two cases

remaining.

1. s = 2: this gives h = <2n + %) 7, with n > 0. We then calculate (6.4), to
obtain
3s% + 25+ 2 —1+2

= — R 0
s(s®+s2+2s5+1) sgn e 1.9 <%

—sgn Re

indicating that the zeroes cross from right to left.

2. s =+/2i: this gives h = nmy/2 with n > 0. The expression now becomes

—6 + 2421 + 2 221
—sgn Re =

—sgn ——— >
V2i(=2v/2i — 2 + 24/2i + 1) &

corresponding to a crossing from left to right.

0,

We begin with two unstable zeroes at A = 0, moving to the right as & increases. At
h = 7/2, they cross back to the left and the system becomes stable immediately
afterwards. All is calm until ~ = 71/2, when two zeroes cross to the right and
we lose stability. The next significant value of h is at 57 /2, when there is again
a crossing from right to left, resulting in stability. This persists until 2 = 27+/2,
after which two zeroes cross to the right half-plane once more. From now on,
zeroes arrive in the right half-plane faster than they leave it: indeed, there are
new arrivals when A = 374/2 and no new departure until 4 = 97/2. Accordingly,
the stability regions are 7 < h < /2 and 57” < h < 27V2.

We mention two refinements of this method. First, it is possible for Re Z—Z
to vanish at a crossing point, when higher derivatives need to be considered to
determine the behaviour of the zeroes.

Second, the method is also applicable to expressions involving more than one
delay. Rather than attempt to write down general formulae, which are not very
illuminating, let us consider a representative example.
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Example 6.2.6 Let Pu(s) = s + e " + 72" which for A = 0 reduces to the
stable polynomial s + 2. Suppose now that A > 0 and that s is a point on the
imaginary axis such that

st+e hpe @ = 0, and hence

_S_I_esh_l_e2sh — 0’

by complex conjugation. As before, we wish to eliminate the exponential terms
from these equations. A simple way to do this is to multiply the second one by

e~?*" and eliminate the e™?** term using the first equation to produce

(1+ 32) +(1+ s)e_Sh = 0, and hence
(1+ 32) +(1- s)eSh = 0,

and finally the polynomial equation
(1+5%) = (1+9)(1-s),

which reduces to s?(s* + 3) = 0. Again, it is not possible for zeroes to cross the
imaginary axis at s = 0, so we consider s = iy/3.

We leave the reader to verify that there are now crossings from left to right

whenever e** = %, and so the system is stable for 0 < h < 3”%

6.3 Rational approximation

The theme of this section is how to approximate a delay system by a finite-
dimensional system in an efficient and numerically straightforward way. We
shall confine our attentions to delay systems with transfer functions of the form
H(s) = e*TR(s), where T' > 0 and R is a scalar rational function, and we shall
suppose that H lies in H*(C, ), because we wish to approximate it in the H*
norm. It is easy to see that we should therefore make an additional assump-
tion, namely, that H is strictly proper (the denominator degree of R exceeds
the numerator degree), because otherwise H is not in the closure of the rational
functions.

Before beginning a detailed analysis, we make two remarks. First, many
unstable systems can be approximated efficiently in the gap topology by tak-
ing a coprime factorization and approximating the factors individually, a tech-
nique described in [98, 102]. For example, to approximate the system with the
transfer function e=*/2/(s — e=*), we form the coprime factors e=*/2/(s + 1) and
(s — e ®)/(s + 1) and then approximate them separately.
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Second, more complicated delay systems can be approximated in various ways,
for example, by partial fraction expansions [154] (which, however, converge rather
slowly, if they do converge at all) or by decomposition techniques as outlined in

(45, 46).

One of the keys to the rational approximation of linear systems is the Hankel
operator. It has many equivalent definitions, so we shall choose one that is well
suited to our purposes. (A different, but unitarily equivalent, definition was given
in Section 3.4.)

Definition 6.3.1 Let H € L*°(iR). Then the Hankel operator I' = T'gy : H*(C_) —
H?*(Cy) 1s defined by

' = PHz(@_I_)(H . U), Ue H2((C_),
where the product H - U s regarded as a function in L*(iR).

In fact we shall be mostly concerned with the Hankel operators with an ana-

lytic symbol H € H*(C;.).

By using the (inverse) bilateral Laplace transform, and writing U = Lu and
H = Lh, when appropriate, we may obtain a unitarily equivalent form of the
operator, namely, I' : L?*(—o00,0) — L?(0, c0), defined by

(Tw)(t) = /000 h(t — 7)u(—T1)dr, t>0, (6.5)

at least for h € L*(0,00) and u € L?(0,00). This is sometimes regarded as a
convolution mapping from past inputs, u(t), ¢t < 0, to future outputs, (I'u)(¢),
t > 0. We leave this equivalence as an exercise.

The following proposition collects together the results on Hankel operators
that we shall need.

Proposition 6.3.2 Let I' be the Hankel operator defined in Definition 6.5.1.
Then

o Tl < [[Hlleo

o if H e H®(C,) is a rational function of finite degree n, then I' has rank
equal to n (Kronecker’s theorem);

o if H € H*(C,) is the uniform limit of rational functions, then the operator
I’ 2s compact.
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Proof:  The estimate for the norm of I' is immediate, since it is the composi-
tion of a multiplication and a norm-one projection.

Next, if a € C,, then, taking U,(s) = 1/(s — a), we have

(Pasces (B - U)(s) = T2
s—a
and this has poles at the same places as H, with (at most) the same multiplicities.
It therefore lies in the n-dimensional space consisting of rational functions with at
most these pre-assigned poles. Thus, since the closed linear span of the functions
U, is all of H*(C_) (as the reader may easily check), we conclude that the rank
of ' is at most n. On the other hand, if a4,...,a, € C, satisfy

m

H(s)— H
Z AL (s) (ax) —0
—1 S — Qg
for constants Aq,..., A, not all zero, and for all s € C,, then
HOY =)
S — ag S — ag
k=1 k=1
for some constants pq,..., m, and we conclude that m > n. Thus the rank of T'

is exactly n.

Finally, if (H,) is a sequence of rational functions in H*°(C, ) such that |H, —
H||eo — 0, then the results above show that the corresponding Hankel operators
satisfy ||I', — T'|| — 0, and so I' is compact. O

We recall now the singular value decomposition (1.2) of a compact operator
T :'H — K, which in our applications will be taken to be the Hankel operator T’
corresponding to a function H:

Tz = Zak<m, ex) fr, (z € H).

k

The following result shows why the singular values are sometimes called approz-
imation numbers. Recall that they are arranged in decreasing order.

Lemma 6.3.3 The singular values (o) satisfy
Opp1 =min{||T = T'|| : T': H — K, rank(T") < n}.

Proof: Taking T'z = > ;_, ox(z, ex) fr defines an operator of rank at most &,
and (T —T")z = >, 0r{z, ex) fr, which implies that | T' — T"|| = opy1.
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On the other hand, if 7" is an arbitrary operator of rank at most n, let us write
L = lin{es,...,enr1}. Now 77 : L — K is not injective, since dim £ > rank 7",
and so we can find a vector v € L such that |[v|]| = 1 and T'v = 0. Then
Tv = ZZI; ok{v,ek) fr, and so

n+1

ITo|* > ) " oflv, en)* > o2 |Io]l* = 0244,
k=1

and hence || — T'|| > opq1. O

The following observation is now immediate.

Corollary 6.3.4 Let H € H*(C; ) induce a compact Hankel operator I'. Then

inf{||H — R||co : R € H®(C,), R rational, deg R =n} > 0,.1(T).

An exact expression for the Hankel singular values (o) is quite complicated
in general, even for a function such as e *T R(s), and involves the solution of a
transcendental equation (cf. [45]). Let us do an example, the simplest possible.

Example 6.3.5 Let H(s) = e~*T /(s + a), where a and T are positive real num-
bers. To calculate the singular values of the Hankel operator, we work with the
unitarily equivalent operator IV : L?(0,00) — L?*(0, c0) given by

(T'u)(t) = /000 h(t + 7)u(r)dr,

where

_J0 for0 < T < T,
Mt) = { e=ot=T) for¢ > T.

(Note that the Laplace transform of h is just H.) It is easily verified that I" is
a self-adjoint operator, because h is a real-valued function, and so its singular
values are the absolute values of the eigenvalues. The following equation holds
fort < T:

Mu(t) = (Tu)(t) = /°° e_“(t_T‘H)u(T) dr, (6.6)

T—t

which implies that A\u(t) = —adu(t) + u(T —t). By differentiating again we soon
arrive at the equation

Na(t) + (1 — a®M)u(t) = 0.
Let w satisfy w? = (1 — a?A?)/A?, or A\? = 1/(a? 4+ w?). We see that

u(t) = Ae™t + Be~t (6.7)
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on [0,T], where A and B are constants. Also, for ¢t > T,
Au(t) = / e_“(t_T‘H)u(T) dr = e_“(t_T))\u(T).
0

We now substitute the expression (6.7) for u(t) into (6.6) and equate coefficients
of e*™!. After some manipulation, we find

w(3a? — w?)

a(a? — 3w?) ’

(6.8)

tanw? = —

and there is an infinite number of solutions, asymptotic to wT = (n + 1/2)m,
n € Z, as can be seen by noting that the right-hand side is approximately
—w/(3a) for large w. Thus the Hankel singular values |)\,| are approximately

T/(nm).

For example, Figure 6.3 shows a plot of the functions y = tan7w and y =

—w(3 — w?)/(1 — 3w?), corresponding to H(s) = e ™ /(s +1).

10 i T T T T T T T T T

8+

10 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Figure 6.3. Solution of Equation (6.8) with 7'=7 and a = 1

Although an explicit formula for the singular values is rather complicated, a
very transparent asymptotic formula can be given, as follows.
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Theorem 6.3.6 Let H(s) = e *TR(s) be a strictly proper function in H*(C, ),
where R is a rational function of degree n. Let the set {|R(2nrem/T)|: m € Z} be
ordered in monotonic decreasing order as {a, ay,...}. Then the singular values
of the associated Hankel operator I' satisfy

Qk—_2n, (k Z 2n + 1))
Akt on, (k 2 1)

O

IV IA

O

Thus if R(s)s? — a # 0 as |s| — oo, then the singular values satisfy

Ko — al (%)p (6.9)

Proof: The method of proof is to show that I' is a finite-rank perturbation of
an operator A whose singular values we already know. We decompose the domain

into an orthogonal direct sum H?*(C_) = OH*(C_) & (@Hz(C_))L, where O is
the inner function given by O(s) = €T € H*(C_).
For a function u = Ov € O H*(C_), we see that

Tu = Prae,) [e T R(s)e’ v(s)] = Pra(c, ) [R(s)v(s)] = Trv,

where I'g 1s the Hankel operator corresponding to R. This therefore lies in the
image of I'g, an n-dimensional space.

For m € Z, let u,(s) be the bilateral Laplace transform of the function
e mt/Ty (T, 0)(t), namely,

1—eT
4= Grim s

The (u,,) form an orthogonal basis of (O H?(C_))*; indeed, they all have the

same norm. Further,

(TCum)(s) = Precy) R(S)ﬁ = R(8)u_m(—s)
R(s) — R(2mim/T)

(2mim/T) — s (

= R(2mim/T)u_m(—s)+ _ —sT)

Y

of which the second expression lies in a fixed n-dimensional space, namely, the
space of functions (1 — e~*7)Q(s), where Q is rational with its set of poles con-
tained in the set of poles of R (including multiplicities).

Thus T' itself is a finite-rank perturbation of a compact operator A whose
singular values are the absolute values of the numbers |R(2mim/T)|, m € Z,
namely the operator that is zero on ® H*(C_) and maps u,, to the function

s — R(2mim/T)u_n(—s) in H*(Cy).
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The perturbation I' — A has rank at most 2n, and it follows from Corollary
6.3.4 that

o(k+2n)(A) < ok(T) < op—2.(4),
which gives the result. O

One way of achieving the optimal convergence rate for rational approximants
to e *TR(s) is by means of Padé approzimants. We shall briefly outline their
construction and basic properties.

Definition 6.3.7 Let F' be a function that is analytic in a neighbourhood of
zero, with F(0) # 0. Then an [n,n] Padé approximant to F' is a function G =
P.(3)/Qn(s), where P, and Q, are polynomials of degree at most n, such that
@-(0) =1 and
P,(s)
F(s) = + O(s*t1 as s — 0.
RO R

This is an alternative to truncating the Taylor expansion of F' (taking a poly-
nomial approximation), and in many cases it is a better behaved method of
approximation. Note that having chosen @),(0) = 1 we must determine the re-
maining 2n + 1 coeflicients of P, and @), in order to solve the 2n + 1 simultaneous
equations implied by the identity

F(s)Qn(s) — Pu.(s) = O(s*1) as s — 0.
Our aim now is to calculate the Padé approximants to the function e™*T, where
T > 0 is fixed. If we take n = 1, and consider the functions P,(s) = 1 — sT/2,
Qn(s) =1+ sT/2, then

= (1—sT/2)(1 —sT/2+ s°T*/4 — s°T°/8 +...)

= 1- 3T—|—32T2/2 +...=T 4 0(33),

so that we do indeed have a [1,1]-Padé approximant. The following theorem gives

an expression for the [n,n]-approximant to e®, and it is clear that by replacing s

by —sT we obtain the same for e=*7.

Theorem 6.3.8 Forn > 1, the [n,n]-Padé approzimant to e° is given by G(s) =

P(s)/P(—s), where
= n\(2n— k),
P =2 (1) S

k=0
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Proof: Let f denote the function f(¢) = t"(1 —¢)". Then integration by parts
gives

[ essmar = (e [ errma
= _%/01 e f'(t) dt,

and, continuing, we obtain

/01 e f(t)dt = (_S—i)n /01 et f(™)(t) dt.

From now on the derivatives of f no longer vanish at the endpoints, and further
integration by parts produces

/01 e f(t)dt = sTCmM [e(fOM(1) — fEI(1)s 4L+ (1) FM(1)s)
= (F8(0) = f&I(0)s + ...+ (-1)"FP(0)s™)]
since f(?**1) is identically zero. Thus
e (fE(1) = fED(D)s + ..+ (-1 FU(1)s)
—(F@(0) — fED0)s + ... 4 (=1)*f(I(0)s™) = s+ /0 s F(t) dt.

Thus the [n,n|-Padé approximant to e* is P(s)/Q(s), where

P(s) = az f(2n k) (0)s", and

Qs) = aZ 1)F fe=R)(1)s*

with o chosen to make Q(0) = 1, that is,
&= 1/£C0(1) = (~1)"/(2n).

Leibniz’s formula gives
T - r n! n—m T—m n! n—ro-+m
$0 = Y1) ot ey

= \m n—m)! (n—7r+m)!

where the sum only includes terms for which m < n and r —m < n. We therefore
see that for n < r < 2n we have

£0) (<1 (;) n'@nni_'r)l — (—1)y ! <2nn_ r) .



142 CHAPTER 6. DELAY SYSTEMS

Thus
(-1 70) = (-1yn - 1),

which gives the formula for P(s). It is easy to see directly that f(™)(1) =
(—1)"f0™)(0) for all m, and thus Q(s) = P(—s), and this completes the proof.
0

Thus, for example, the first three [n,n]-Padé approximants to e*

by G.(s) = P.(s)/P.(—s), where

are given

S
}%(3) = 1'— 5,
2
S S
}5(3) = 1'— §'+'I§,
S 32 33
Pus) = 15,5 _°%5
5(3) 5710 120

It is easily checked using the Routh-Hurwitz test (Theorem 6.2.1) that these G,
lie in H*°(C, ); indeed, they are inner functions. Such behaviour holds for all the
[n,n]-Padé approximants to e° (see, for example, [133]), although we shall not

prove this fact. We also assume without proof the following error bound, which
can be found in [46].

Theorem 6.3.9 Forn =1,2,..., let G, denote the [n,n|-Padé approzimant to
the function e=°. For s = w with w € R, we have

|w| 2n+1
7 — G(iw)] < {2 (B) forlol <
2 for |w| > ¢¥n,

where 1 = 2(v/2/e)}/? ~ 1.443.

Assuming this bound, we can deduce that the Padé method gives an opti-
mal convergence rate for the rational approximation of functions of the form
H(s) = e*TR(s) in H*(C, ). Note that, for such a function, the low-frequency
approximation is taken care of by Theorem 6.3.9, and at high frequencies both
the original function and its approximant go to zero.

Theorem 6.3.10 Suppose that R € Hy,(C;) and that M > 0 and p > 1 are
constants such that |R(iw)| < M/|w|? for all w € R. For n > 1, let G,, denote
the [n,n|-Padé approzimant to e=°. Then, if 2n + 1 > p, we have

le T Ro(s) — Gou(sT)R(s)]eo < 2M (f—n)

where = 2(v/2/e)'/? x 1.443.
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Proof: Let w, = ¥n/T. Then, by Theorem 6.3.9, for |w| < w, we have

2n+1
le™™T R, (1w) — Gn(iwT)R(iw)| < 2 <M> M < %

W, lwlP T wn
since 2n + 1 — p > 0, while for |w| > w, we have

le™“T R, (iw) — Gn(iwT)R(iw)| < M _2M

<ok =

and hence the result follows. O

In practice, there are alternative methods for approximating delay systems,
and we now outline a very transparent approach based on shift operators. In
Chapter 3 we considered the shift operator S, : H*(Cy) — H?*(C,) given by
multiplication by the function © : s — e™*°. For A > 0, this is a shift of infinite
multiplicity, in the sense that H*(C, )& 0, H?(C; ) is infinite-dimensional; indeed,
it consists of all functions that are Laplace transforms of functions in L?(0, \).
We now think of the approximation procedure as that of approximating S, by
a shift of finite multiplicity, corresponding to multiplication by a rational inner
function.

Let
u(s) = f(—s)/f(s),

where f is a real polynomial with no zeroes in the closed right half-plane, satisfy-
ing f(0) = 1. Examples include f(s) = 1+s/2 and f(s) = 1+s/2+ s%/12, which
arise in Padé approximations; another example is the so-called Kautz formula
f(s) =1+ s/2+ s*/8. It is then clear that the function u,, given by

un(s) = (u(s/n))", (6.10)

is inner, and indeed the operator of multiplication by wu, is a shift operator of
finite multiplicity (see the exercises). It turns out that the best approximations
are obtained when u(s) ~ e~ near s = 0, so let £ > 1 denote the index such

that, for some constants A, B, C' > 0, we have
Alwl* < |e™ — u(iw)| < Blw|* for |w| <C. (6.11)

For the three examples above, we have k = 3, £ = 5 and k = 3, respectively. We
now have an analogue of Theorem 6.3.9 that holds for u,.

Lemma 6.3.11 Under the hypotheses above, we have the error bound

BT*|wl|*

le™™T — u,(1wT)| < e

for |w| < nC/T. (6.12)
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Proof: We write " — 8" = (a — b)(a™ '+ a" 20+ ...+ ab" 2 + b"1), with
a = e T/ and b = u(iwT/n). Now |a — b| < B|wT/n|* for |wT/n| < C and
la] = |b] = 1, which gives the result. O

It now follows immediately from the dominated convergence theorem that,
provided u satisfies (6.11) with & > 1, we have strong convergence to St of the
shift operators associated with u,. That is,

|un(sT)F(s) — e *TF(s)||]a — 0  forevery F & H*(C,).
We now analyse the rate of convergence.

Theorem 6.3.12 Suppose that R € H,(C,), and that M > 0 and k > p are
constants such that (6.11) holds and |R(iw)| < M/|w|P for allw € R. Let w, >0
satisfy BT*w” /n*~1 = 2 and suppose that w, < nC/T. Then

. 2M
€™ R(s) = un(sT)R(s)| < —.
Proof:  This follows immediately from (6.12), on considering the following

regions:
o |w| < w,, where the bound BT*|w|*"? M /n*~! holds, and

¢ |w| > w,, where the bound 2M/|w|? holds, since we have |e*“T —u,,(1wT)| <
2 for all w € R.

In each case the upper bound is at most BT*wf?M/n*~! = 2M/w}. O

Thus, for example, if k£ = 3, then w, grows as n?/®, and the achievable errors
for approximating delay systems with p = 1, 2 and 3 are, respectively, O(n=%/%),
O(n~=*3) and O(n~?). By taking k = 5, we have w, growing as n*/°, and the re-
spective errors for p = 1,2,...,5 are improved to O(n=%/%), O(n=%/%), O(n=1%/%),
O(n~'%/%) and O(n~*), which, although not optimal, are quite satisfactory in
practice, especially since no complicated computations are required. It can be
shown that these error estimates are sharp.

6.4 Stabilization

We saw in Theorem 4.1.8 that the question of finding stabilizing controllers for a
linear system P could be reduced to that of constructing a coprime factorization
P=M"N=NM" over H*(C, ) and finding Bézout factors X, Y, X and Y
such that

(5 @) X)=-(V X)) (5 w)=( 1) v
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In this case, the set of stabilizing controllers K is parametrized by
K=(Y+MQ)X+NQ)™,

and by left coprime factorization

K =(X+QN)(Y +QM),
with @ an H*(C, ) matrix-valued function of the appropriate dimensions. We
also saw in Proposition 4.2.11 a constructive algebraic procedure for finding these
Bézout factors in the case when P is scalar and rational. We shall now give a

somewhat more complicated construction valid for scalar retarded delay systems
(where we know that there are at most finitely many unstable poles).

Let us begin with an illustrative example, before writing down more general

formulae.
Example 6.4.1 Let G(s) = %, where 0 > 0. For our coprime factorization
we take G = N/M, where
e ? s—o
(5)=777 oo (s) =713

In order to have XM — YN = 1, we want to find Y € H*®(C,) such that
X =M Y(1+4YN) also lies in H*(C, ). Given that M has a zero at o, we need
to ensure that 1 + YN also has a zero at o, that s, that Y(o)N(o) = —1. The
simplest way to do this is to take Y(s) = —e?(oc + 1) € H*(C,) and then
e~* s+1—(0c+41)"*

= H*(C,y).
s+ 1) € H*(Cy)

S — 0

s+1

S — 0O

X(s) = <1 — (o +1)

For the general retarded delay system, the transfer function can be written as
G(s) = ha(s)/hi(s), where hi(s) = D7, pr(s)e T+ (cf. Definition 6.1.3), with
Po, - - - , Pn. polynomials such that degpo > degp, for all £ > 0 and with 0 <7 <
Ti,... < T,. The numerator has a similar form, say hy(s) = Z;‘n:o q;(s)e Y,
now the system should be proper (G(iy) should remain bounded as y — +o0),
so degq; < degpg for each 7, and finally 0 < Uy < Uy,... < U,,. We write
6 = deg po. To avoid uninteresting complications, we shall assume that A; and h,
have no common unstable zeroes. If h; has no unstable zeroes at all, then hy/h;
is already in H*(C; ), and so we may assume without loss of generality that h;
has r unstable zeroes with » > 1.

Theorem 6.4.2 Let hy and hy be as above. Then a coprime factorization of

G = hy/hy is obtained by taking G = N/M, where

ha(s)

M) = o1y

and N(s)=
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Corresponding Bézout factors are given by

s _ 14 Y(s)N(s) _ (s+1)°+ £
Y(s)= W and X(s)= M(s) = ) ,

where 15 a polynomeal of degree exactly r — 1 chosen such that the function

p(s)ha(s)

(8+1)5+W

vanishes at every unstable zero of hy (and, in the case of multiple zeroes, vanishes
according to the appropriate multiplicity).

Proof:  There are three things that need to be verified, namely, that X and
Y lie in H*(C, ), and that the Bézout identity XM — YN =1 is satisfied. It is
obvious that Y isin H*(C; ). Now X is analytic in C;, because every singularity
of h; is removed; and since hy(s) is asymptotic to a non-zero multiple of s° as
|s| — oo, we see that X is bounded in C,. Finally, the Bézout identity follows
by construction. O

Although algebraic methods can be effective for constructing coprime factor-
izations and Bézout identities for delay systems (cf. [47]), it seems that they are
not always appropriate for finding normalized coprime factorizations [104], and
approximation techniques are more effective.

Notes

Most books on linear systems and control concentrate on the finite-dimension-
al case, where the methods required are somewhat more algebraic than analytical.
Among books in this area we mention [37, 49, 66, 75, 132, 151].

The classic treatise on delay systems is by Bellman and Cooke [4], on which
we have drawn, with some simplifications, for the classification theorem. The
asymptotic formulae for poles are used in [154] to construct partial fraction ex-
pansions for delay systems, and we also draw on this approach.

The simple proof of the Routh—Hurwitz test is based on the paper of Mein-
sma [87]. The material on the stability of delay systems is taken mostly from the
work of Walton and Marshall [84, 139], although we have also drawn on papers
of Chen, Gu and Nett, and Thowsen [17, 129].

The basic properties of Hankel operators may be found in many places, for

example [91, 92, 97, 107, 108, 111].
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Some approximation techniques are described in [44, 45, 46, 50, 51].

For our discussion of Padé approximants to the exponential function, we refer
to [109] for the basic formulae, [119] for more recent analysis, and [46] for detailed
error estimates.

The discussion of shift-operator based approximations to the exponential func-
tion is based largely on [80, 81].

The formulae in Section 6.4 are based on slightly more general results in [10].
Brethé and Loiseau [13] earlier gave an algorithm for the calculation of Bézout
factors in the case when all delays are commensurate. The interpolation method
presented here can be generalized to other classes of systems occurring in par-
tial differential equations, such as the heat equation [20, p. 186], and also in the
theory of transmission lines [140] (see Exercise 12 below, which is taken from [11]).

Some of the difficulties in studying systems of neutral type are explained in

101].
Exercises

1. Write down determinant equations of the form det F(s) = 0 whose roots are
the poles of the transfer functions (from u to y) of the following systems:

()9 = Ay + Bz,z = u — Ky;
(ii) y = Aoy + A1(y — 1) + Bu.
Here A, B, K, Ag and A; are matrices of the appropriate sizes.

2. Classify the zero chains of the following:
(1) (3 + 2) + (4:32 + 3)6_5 + 336_45;

(i1) (s + 2) + (s + 6)e™* + se~?;
(iil) s 4 se™* — be™2¢;
(iv) (8* +438) + (25 + 5)e™ + 3e~3.

1

€

3. Show that the transfer function G(s) =
and |b] > 1.

; lies in H*°(Cy ) if b is real
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10.

11.
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Apply the Routh—Hurwitz test to decide which of the following polynomials
have all their zeroes in the open left half-plane:

(1) 8* + 3s% + 4s + 2;

(i1) s* + 4s® + 8s% + 8s + 4;

(iil) s* + 25° + 3s% + 38s + 10.
Analyse the following delay expressions to find the range of values of A > 0
for which they have no zeroes in the closed right half-plane:

(i)s—1+ e sk

(ii) s — % + ek

(i) s* + 1 + se %k,

Prove that an H*(C, ) function e *T R(s), with 7' > 0 and R rational, lies
in the closure of the rational functions if and only if it is strictly proper.

Prove the equivalence of the two forms of Hankel operators given in Defi-

nition 6.3.1 and (6.5).

Calculate the [4,4]-Padé approximant to e~°, and use the Routh-Hurwitz
test to show that it is an inner function.

Prove that the operator A, : H*(Cy) — H?*(C,) of multiplication by the
inner function w, defined in (6.10) is a shift of finite multiplicity, by calcu-
lating dim H*(C; ) & v, H*(C}).

Adapt the proof of Theorem 6.3.12 to show that, if £ < p, then the same
method produces rational approximants of error O(n~(:=1)),

Calculate H*(C, ) coprime factorizations and some corresponding Bézout
factors for the following transfer functions:

(i) —L=;

S — €

—S

(ii) 62 )

S

(i) (1) — 3 16)(3 —5y
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12. Let G(s) = w (a fractional system). Adapt the methods of Section

6.4 to construct an H*°(C, ) coprime factorization and some corresponding
Bézout factors for G.
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d( Py, Py), 74
l-invariant, 38
2-invariant, 38

absolute convergence, 90
absolutely continuous, 23
adjoint, 2, 20, 21, 52
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adjoint semigroup, 26
admissibility, 28, 33

admissible observation operator, 27
advanced delay system, 125
algebra, 2, 94

almost-periodic function, 89, 90
approximation, 97, 134
approximation number, 136
asymptotic formula, 138
autocorrelation, 99, 109, 111, 114
automatic continuity, 63, 86

Banach limit, 61

Banach space, 1

Banach—Steinhaus theorem, 22

beam, 29

behaviour, 58

Bessel’s inequality, 97

best approximation, 97

Beurling’s theorem, 40, 42, 60

Beurling-Helson theorem, 39, 58

Beurling-Lax theorem, 41, 43, 44, 48,
58, 60

Bézout factor, see Bézout identity

Bézout identity, 67, 70, 78, 85, 88,
144-149

bilateral Laplace transform, 7, 135,
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bilateral shift, 54, 57

Blaschke condition, 10, 12

Blaschke product, 9-12, 68

Bochner’s condition, 92

Bohr function, 92, 94, 95, 97-99, 101,
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Bohr transform, 95

bounded operator, 1



INDEX

bounded-power signal, see finite-power
signal

car engine, 37

Carleson measure, 28

catalytic convertor, 37

Cauchy—-Schwarz inequality, 15, 28,
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causality, 37, 45, 49, 50, 52, 53, 58,
86

chordal distance, 82

chordal metric, 81, 83-86

classical solution, 27

closable operator, 19, 21, 51, 61, 66

closed graph theorem, 18

closed operator, 18, 33

closed-loop, 65

closure of an operator, 19

commutant lifting theorem, 54, 56,
57, T4, 87

commutant of shift, 45, 46

compact Hankel operator, 135

compact operator, 3

composition operator, 58, 60

concave function, 10

conformal bijection, 41

continuous time, 41

contraction, 26, 54

contraction semigroup, 26

controller, 65

convolution, 29, 46, 47, 50, 51, 61,
103, 116, 135

coprime factorization, 67, 68, 72, 78,
84, 134, 144, 145, 149

corona theorem, 68, 83, 86

correlation, 95

covariance, 95, 109

cyclic vector, 40

dead-time system, 37

delay system, 37, 121, 123

delays in physical systems, 122

differential equation, 17, 27, 37, 121-
123
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directed gap, 31

discrete time, 38

distribution diagram, 126, 127
domain of an operator, 18
doubly coprime, 69

doubly invariant, 38

dual space, 2

error, 65

Euclidean algorithm, 78, 79, 129

feedback, 65, 77

Fejér kernel, 102

Fejér sum, 90

Fejér-Bochner approximant, 118

Fejér—Bochner kernel, 102

Fejér—Riesz theorem, 79

field of fractions, 67

filter, 89

finite-dimensional system, 121

finite-energy signal, 89, 105

finite-power signal, 89, 105

Fourier coeflicient, 5, 43, 46, 90, 95,
98, 100

Fourier series, 6, 16, 90, 111

Fourier transform, 7, 112, 115

Fourier’s inversion theorem, 115, 116

fractional system, 149

frequency domain, 38, 41

Fubini’s theorem, 101

gain, 64

gap between operators, 31
gap between subspaces, 30
gap metric, 33, 72, 76

gap topology, 31, 32, 84, 85, 134
GCD, 68

Georgiou—Smith paradox, 52
Georgiou—Smith theorem, 48
graph, 17, 48

graph metric, 74, 87

graph norm, 19

graph symbol, 74

greatest common divisor, 68



164

Hamel basis, 33

Hankel operator, 28, 58, 62, 76, 135,
137, 139, 146, 148

Hardy space, 4, 6, 14

harmonic extension, 6, 8, 12, 16

heat equation, 28, 34, 147

heat kernel, 29

heat semigroup, 28

Herglotz’s theorem, 12

Hermitian operator, 3

Hilbert space, 1

Hille-Yosida theorem, 26

infinite-time admissibility, 28

infinitesimal generator, 22, 24, 34

inner function, 8, 9, 11, 16, 40, 43,
56, 73, 139, 142, 148

inner product, 1, 91, 96, 97

inner—outer factorization, 9, 12, 14,
40, 68, 80

inner-product space, 1

input, 65, 121

input—output stability, 64

integral domain, 67

integral operator, 17, 64

interpolation, 59

invariant subspace, 37, 40, 59

isometric isomorphism, 8, 30, 41, 44

isometry, 43, 44, b4, 56, 57, 60, 62,
66, 67

Jensen’s inequality, 10

Kautz formula, 143
Kronecker’s theorem, 135

Laplace transform, 7, 16, 26, 29, 41,
46, 103, 121, 122, 143

Laplacian, 29

left shift, 15

Leibniz’s formula, 141

lifting, 54, 57, 62

lim sup power, 106, 107

limit power, 105
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limit-periodic function, 118
linear functional, 2

linear mapping, 1

linear operator, 1

linear system, 45, 64

matrix-valued function, 13
maximum principle, 39

mild solution, 27

model matching, 88
multiplication operator, 15, 37, 56

Nehari’s theorem, 57-59, 62, 76, 87
neutral delay system, 125, 147
Newton diagram, 126, 127

norm of an operator, 1

normal operator, 3

normalized coprime factorization, 73,

74, T7-80, 146

observation operator, 27

open-loop, 65

operator-valued inner function, 43, 67
optimal robustness, 76, 77
orthogonal complement, 3
orthogonal decomposition, 3
orthogonal projection, 3

outer factor, 9, 69

outer function, 8, 9, 16, 40

output, 27, 121

Padé approximant, 140, 142, 143, 147,
148

Paley—Wiener theorem, 7

Parseval’s identity, 90, 101, 103, 118

partial differential equation, 28, 29,
147

partial fraction expansion, 135

partial isometry, 14, 44

periodic function, 89

persistent signal, 89

perturbed plant, 75

plant, 65

pointwise gap, 34, 82
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Poisson kernel, 5

Poisson kernel for Cy, 7
polar decomposition, 14
polarization identity, 67, 87
pole chain, see zero chain
positive definite, 113

power norm, 106, 107
power series, 5

power signal space, 105
projection-valued function, 42, 48, 49
proper, 78

Pythagoras’s theorem, 97

radial limit, 4

Radon-Nikodym theorem, 69, 87

rational approximation, 134

relatively compact, 3

relatively dense, 92

reproducing kernel, 6, 8, 16, 45, 47

reproducing kernel Hilbert space, 6,
8

resolvent, 2

resolvent condition, 28

resolvent set, 2

retarded delay system, 125, 129, 145

reversed graph, 21, 71

Riemann integral, 112

Riemann sphere, 81, 82, 88

Riemann sum, 24, 41, 115

Riemann—Stieltjes integral, 112, 116,
117

Riemann—Stieltjes sum, 112

Riesz’s theorem, 11

Riesz—Fréchet theorem, 2, 6

right coprime, 67, 72

right half-plane, 6

right shift, 15, 38, 41, 63, 92, 122

right-shift semigroup, 23

robust stabilization, 75

robustness, 63, 72, 83

robustness margin, 76, 77

Rouché’s theorem, 128, 131

Routh table, 131
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Routh-Hurwitz test, 129-131, 142, 146,
148

Schmidt pairs, 4

self-adjoint operator, 3

semigroup, 22, 33

sensitivity minimization, 88

shift of infinite multiplicity, 143

shift operator, 44, 46, 143, 147, 148

shift-invariance, 37, 41, 44, 47-49, 63,
86, 107, 129

simply invariant, 38

single-input single-output, 75

singular inner function, 10-12, 68

singular measure, 11, 68

singular value, 4, 13, 136, 137, 139

singular value decomposition, 4, 136

SISO, 75

Smirnoff class, 51, 53, 59, 61

spectral distribution, 109, 113, 119

spectral factorization, 80, 81

spectral radius, 2

spectrum of a signal, 113

spectrum of an operator, 2

square root, 55, 62

stability, 64, 65, 129, 146

stabilization, 66, 68, 144

stable polynomial, 129

standard feedback configuration, 65

state, 27, 121

state space, 122

stereographic projection, 81

stochastic process, 117

strictly proper, 134

strongly continuous semigroup, 22

strongly coprime, 67

strongly stabilizable, 83

symbol, 58

Szego’s theorem, 10

temperature distribution, 28
time domain, 38, 41
time machine, 52



166

time-invariance, see shift-invariance

transcendental equation, 137

transfer function, 46, 53, 58, 107, 122,
123, 145

translate, 92

translation number, 92

transmission line, 147

trigonometric polynomial, 94, 102

unbounded operator, 17, 19
undamped beam, 29

uniform boundedness theorem, 22
uniformly almost-periodic function, 90
uniqueness theorem, 98, 99

unitary operator, 3
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vector-valued function, 13
Volterra operator, 14

Weierstrass approximation theorem,
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Weiss conjecture, 27, 28, 33

white noise, 111, 119

Wiener’s theorem, 39, 41, 49, 58

Youla parametrization, 70, 77, 86, 87

zero chain, 126, 129, 147
zero set, 10, 68
Zorn’s lemma, 33, 101, 118
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