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Foreword

A Special Volume Dedicated to Biswa Nath Datta

The Indian Institute of Technology-Kharagpur (IIT-KGP) hosted an international
workshop on ‘‘Numerical Linear Algebra in Signal, Systems, and Control’’, during
January 9–11, 2007. The conference was sponsored by IEEE Kharagpur Section,
Department of Electrical Engineering of IIT-KGP, and Systems Society of India-
IIT Kharagpur Chapter. The convener of the workshop was Professor Aurobinda
Routray of Electrical Engineering Department of IIT-KGP.

The workshop was interdisciplinary in nature blending linear and numerical
linear algebra with control and systems theory, and signal processing. Though a
few such conferences, such as the AMS conference on ‘‘Linear Algebra and its
Role in Systems Theory’’, and a series of four SIAM conferences on ‘‘Linear
Algebra in Signals, Systems, and Control’’, were held before in USA, this is the
first time an interdisciplinary conference of this type was held in India. About one
hundred mathematicians, computational scientists, and engineers from several
countries of the world, including Australia, Belgium, Brazil, Cyprus-Turkey,
Germany, Hong Kong, India, Sri Lanka, USA, and Venezuela, participated in this
workshop. The picture below shows the group of attendees.
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At the banquet of this workshop, Professor Biswa Nath Datta was honored by
the IEEE for his numerous contributions in the area of numerical linear algebra
with control and systems theory, and signal processing. The ceremony was pre-
sided by Professor N. Kishore, the-then President of the IEEE Kharagpur Chapter
and Profressor Rajendra Bhatia, an eminent India mathematician from Indian
Statistical Institute, was the principal banquet speaker. The other speakers were:
the late Gene Golub, Professor of Stanford University, and Professors Paul Van
Dooren of Universit́e Catholique de Louvain, Belgium, Volker Mehrmann of
Technische Universiẗat Berlin, Germany and V. K. Mohan of Indian Institute of
Technology, Kharagpur, India. It was also decided at the end of this meeting to
dedicate a special volume to Biswa Datta. This volume contains papers presented
at the workshop, as well as contributed and invited papers sent in by authors
working in this area. All of these papers went through a regular refereeing process.

As editors of this volume we are pleased to convey our best wishes to Biswa.
Shankar Bhattacharyya, Raymond Chan, Vadim Olshevsky, Aurobinda Routray

and Paul Van Dooren.

Biosketch of Biswa Nath Datta

Biswa Datta was born in the village of Bighira, West Bengal, India in 1941. After
completing his high school education from his village school and bachelor and
master degrees from Calcutta University in India, he moved to London, England to
pursue his higher studies in 1967. Primarily due to economic reasons, he could not
complete his studies in London and in 1968, moved to Hamilton, Ontario, Canada
from where he completed his masters degree in mathematics in 1970.

Based on his Masters Thesis, written under Joseph Csima, he published his first
paper, DAD Theorem for Nonnegative Symmetric Matrices in Journal of Combi-
natorial Theory in 1972.
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He then joined University of Ottawa, Canada and received his Ph.D. degree in
1972, under the direction of the late James H. Howland.

Immediately after his graduation from University of Ottawa, he got married to
Karabi Datta, who at that time was also a fellow graduate student in mathematics
at University of Ottawa and working under the direction of the late Professor
Howland.

Later that year, he met with Air Vice Marshal S. Roychoudhury, the-then
Director of Gas Turbine Research Establishment (GTRE), Bangalore, India, who
was visiting North America at that time with the mission of recruiting ‘‘Indian-
talents’’ from abroad. Mr. Roychoudhury offered both Biswa and Karabi the
positions as scientific officers at GTRE. Additionally, Datta was appointed as the
Head of the Computational Mathematics Group in that organization. They both
enthusiastically went back to India in 1973 with their new positions. Unfortu-
nately, this non-academic government job was not stimulating and challenging
enough for Datta and he decided to leave India again. After spending a few months
at Ahmadu Bello University, Zaria, Nigeria, as a lecturer (1974) and about four
years (1975–1980) at State University of Campinas, Campinas, Brazil as an
Associate Professor of Computational Mathematics, he finally moved back to
North America in 1980 as a visiting Associate Professor of Computer Science at
Pennsylvania State University.

Their two children, Rajarshi and Rakhi, both were born in Campinas, in 1976 and
1979, respectively. Biswa and Karabi now have two grandsons: Jayen(4) and
Shaan(2)—thier parents are Rajarshi and Swati. Datta joined Northern Illinois
University in 1981 as a Full Professor in Mathematical Sciences Department. He was
nominated by Hans Schneider and several other prominent mathematicians for this
position, There he, along with some of his colleagues, developed the current Com-
putational Mathematics Program at NIU. He also played a key role in the planning
and development of the Ph.D. Program in the Mathematical Sciences Department.
He also served as the acting director of the ‘‘Applications Involvement Component
(AIC)’’ of the Ph.D. Program in mathematical sciences from 1993 to 1996.

In 2001, he was appointed as a Presidential Research Professor at NIU and was
elevated to the position of ‘‘Distinguished Research Professor’’ in 2005, which he
currently holds. Datta has also held Visiting Professorship at University of Illinois
(1985) and University of California, San Diego (1987–1988) and numerous short-
term Visiting Professorship (including several Distinguished Visiting Professor-
ship) at institutes and research organizations in various countries around the world.
These include Australia, Brazil, Chile, China, England, France, Hong Kong, Greece,
India, Mexico, Malaysia, Portugal, Spain, Taiwan, and Venezuela.

Though Datta spent most of his academic career outside India, he maintained a
close scientific relationship with India. In 1993, he was appointed as a member of
overseas panel of scientists for the Council of Scientific and Industrial Research,
Government of India. During 1993–2003, he made many short-term scientific
visits to research laboratories and prominent institutes in India as a scientific
advisor. He also contributed to the development of the scientific software for
India’s first supercomputer ‘‘Param’’.
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In recognition of his contributions to science and engineering, Datta has
received several awards and honors. He was honored in a special IEEE sponsored
honoring ceremony during the banquet of the International Workshop on
Numerical Linear Algebra in Signals, Systems and Control, IIT-Kharagpur, 2007,
and more recently, in another honoring ceremony on the occasion of the First
International Conference on Power, Control, Signals and Computations, held at
the Vidya Academy of Science and Technology, Thrissur, India, 2010, where he
was awarded a Gold Medal of Honor. Datta was also recognized by some of the
world’s leading linear and numerical linear algebraists in a special banquet
honoring ceremony held during the IMA sponsored International Conference on
Linear and Numerical Linear Algebra: Theory, Methods and Applications, held at
Northern Illinois University, DeKalb, Illinois, August 12, 2009. Besides these
professional recognitions, Datta has also received several other important
professional awards and honors. He is an IEEE Distinguished Lecturer, an IEEE
Fellow, an Academician of the Academy of Nonlinear Sciences, and is a recipient
of NIU’s Presidential Research Professorship, International Federation of
Nonlinear Analysis Medal of Honor, Senior Fulbright Specialist award by US
State Department and several Plaques of Honor awarded by local IEEE chapters
of IIT-Kharagpur, India, and NIU. A special issue on ‘‘Inverse Problems in Sci-
ence and Industry’’ of the Journal Numerical Linear Algebra with Applications
will be published in his honor in 2011.

Datta has versatile research interests ranging from theoretical and computa-
tional linear algebra to control and systems theory and vibration engineering.

• Contributions to inertia, stability, and D-stability
In the early part of his research career, he worked on the stability, inertia, and
D-stability of matrices. He collaborated with several leading matrix theorists,
including David Carlson, Paul Fuhrmann, Charles Johnson and Hans Schneider
on this endeavor. In a series of papers published between 1976 and 1980, he
developed an unified matrix theoretic framework, via the historical Lypunov
stability theory, for many apparently diverse classical root-separation results for
polynomials, which were obtained by celebrated mathematicians in the early
twentieth century. In the process of doing so, he derived simple and elementary
matrix theoretic proofs of several of these classical root-separation criteria (e.g.,
proofs of the Routh–Hurwitz–Fujiwara root-separation criterion and stability
criterion of Lienard–Chipart via Bezoutian). Most of the original proofs were
based on function-theory and were too involved and long. A key result proved
by him in this context, was that the Bezoutian of two polynomials is a sym-
metrizer of its associated companion matrix.

In 1979, in a paper published in Numerische Mathematik, he and David
Carlson, developed a numerical algorithm for computing the inertia and stability
of a non-hermitian matrix and in 1980, along with David Carlson, and Charles
Johnson, developed a new characterization of D-stability for symmetric tridi-
agonal matrices. The concept of D-stability arising in economics was originally
formulated by Nobel Laureate, Kenneth Arrow. An effective characterization of
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D-stability still does not exist. Notably, their result is still one of the state-of-the-
art results on this problem in the literature.

• Contributions to Computational Control Theory
In the last two decades, Datta and several other prominent researchers, including
Paul Van Dooren, Alan Laub, Rajni Patel, Andras Varga, Volker Mehrmann,
and Peter Benner, and others have developed computationally effective algo-
rithms for control systems design and analysis using state-of-the-art numerical
linear algebra techniques. While there existed a high-level mathematical theory,
practically applicable algorithms were lacking in this area. These and other
previously existing algorithms have been the basis of one of Datta’s books,
Numerical Methods for Linear Control Systems Design and Analysis and two
software packages, MATHEMATICA based Control Systems Professional-
Advanced Numerical Methods and MATLAB Toolkit MATCONTROL. Datta has
delivered several invited workshops on Computer-aided Control Systems
Design and Analysis based on this book and the software packages, at some of
the leading IEEE and other conferences and at universities and research orga-
nizations around the world. His work on ‘‘Large-Scale Computations in Con-
trol’’ has been in the forefront of attempts made by him and several others to
develop parallel and high-performance algorithms for control systems design.
His paper Large-scale and Parallel Computations in Control, LAA, 1989, is one
of the early research papers in this area. A few other important papers authored/
co-authored by him in this area include, Arnoldi methods for large Sylvester-like
observer matrix equations and an associated algorithm for partial spectrum
assignment (with Youcef Saad), LAA (1991), A parallel algorithm for Sylves-
ter-observer equation (with Chris Bischof and A. Purkayastha), SIAM Journal
of Scientific Computing (1996), Parallel algorithms for certain matrix compu-
tations (with B. Codenotti and M. Leoncini), Theoretical Computer Science
(1997), Parallel Algorithms in Control, Proc. IEEE Conf. Decision and Control
(1991), and High performance computing in control, SIAM book on Parallel
Processing for Scientific Computing (1993). While parallel and high perfor-
mance algorithms were developed in many disciplines in science and engi-
neering, control engineering was lagging behind.

• Contributions to Quadratic Inverse Eigenvalue Problems
The quadratic inverse eigenvalue problem (QIEP) is an emerging topic of
research. Because of intrinsic mathematical difficulties and high computational
complexities, research on QIEP has not been very well developed. Datta, in
collaboration with several vibration engineers, numerical linear algebraists, and
optimization specialists, including Z.-J. Bai, Moody Chu, Eric Chu, Sien Deng,
Sylvan Elhay, Abhijit Gupta, Wen-Wei Lin, Yitshak Ram, Marcos Raydan,
Kumar V. Singh, Jesse Prat, Jenn Nan Wang, C.S. Wang, and some of his
former and current students, Sanjoy Brahma, Joao Carvalho, Joali Moreno,
Daniil Sarkissian, and Vadim Sokolov, have made some significant contribu-
tions to the development of numerically effective and practically applicable
algorithms and associated mathematical theory for several important QIEPs
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arising in active vibration control and finite element model updating. A new
orthogonality relation for the quadratic matrix pencil derived in the much cited
paper Orthogonality and partial pole assignment for the symmetric definite
quadratic pencil (with S. Elhay and Y. Ram), LAA (1997) has played a key role
in these works.

Effective and practically applicable solutions to these problems pose some
mathematically challenging and computationally difficult issues. The two major
constraints are: (i) the problems must be solved using only a small number of
eigenvalues and eigenvectors of the associated quadratic pencil which are
computable using the state-of-the-art computational techniques, and (ii) the no
spill-over phenomenon (that is keeping the large number of unassigned eigen-
values and eigenvectors of the original pencil unchanged) must be ascertained
by means of mathematical theory. Furthermore, solutions of the robust and
minimum-norm quadratic partial eigenvalue assignment and some practical
aspects of model updating problem lead to difficult nonlinear (some cases
nonconvex) optimization problems, which give rise to additional challenges for
computing the required gradient formulas with only a small part of computable
eigenvalues and eigenvectors. Most of the current industrial techniques are
adhoc and lack strong mathematical foundations. Datta and his collaborators
have adequately addressed some of these challenges in their work. One of the
important thrusts of their work has been to develop a mathematical theory
justifying some of the existing industrial techniques for which such a theory
does not exist. These results have been published in some of the leading
mathematics and vibration engineering journals, such as Journal of Sound and
Vibration, Mechanical Systems and Signal Processing (MSSP), AIAA Journal.
His recent joint paper (with Z.-J. Bai and J. Wang), Robust and minimum-norm
partial eigenvalue assignment in vibrating systems, MSSP (2010) is a significant
paper on the solution of robust and minimum-norm quadratic partial eigenvalue
assignment arising in active vibrating control.

Based on his current work on QIEP, Datta has delivered many plenary and
key-note talks (and several more are to be delivered this year) at interdisci-
plinary conferences blending mathematics, computational mathematics and
optimization with vibration and control engineering. He has also served on the
editorial board of more than a dozen of mathematics and engineering journals,
including, SIAM J. Matrix Analysis, Lin. Alg. Appl. (Special Editor), Num. Lin.
Alg. Appl., Computational and Applied Mathematics, Dynamics of Continuous,
Discrete and Impulsive Systems, Mechanical Systems and Signal Processing
(MSSP), Computational and Applied Mathematics (Brazil) and others. He also
edited/co-edited several special issues of these journals, the most recent one is
on ‘‘Inverse Problems in Mechanical Systems and Signal Processing’’ for the
Journal, MSSP (with John Mottershead as a co-editor), published in 2009.

For more than 25 years, Datta, through his research, books, and other academic
activities, has been actively contributing to promote interdisciplinary research
blending linear and numerical linear algebra with control, systems, and signal
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processing, which has been a primary mission in his career. He has authored more
than 110 research papers, two books, and three associated software packages, all of
which are highly interdisciplinary. His book, Numerical Linear Algebra and
Applications contains a wide variety of applications drawn from numerous dis-
ciplines of science and engineering. His other book, Numerical Methods for Linear
Control Systems Design and Analysis, describes how sophisticated numerical
linear algebra techniques can be used to develop numerically reliable and com-
putationally effective algorithms for linear control systems design and analysis.
This book provides an interdisciplinary framework for studying linear control
systems. The software packages, MATCOM and MATCONTROL are widely used
for classroom instructions and Control Systems Professional-Advanced Numerical
Methods is used for both industrial applications and classroom instructions.

Datta took a leading role in organizing a series of interdisciplinary conferences.
The first such conference, chaired by Datta, was the AMS Summer Research
Conference on the Role of Linear Algebra in Signals, Systems, and Control in
1984, which was participated by many leading researchers in linear and numerical
algebra, control and system theory and signal processing. Remarkably, this was the
first conference ever supported by the AMS in linear algebra. Subsequently, Datta,
on invitation by Edward Block, the-then managing director of SIAM, chaired and
organized the first SIAM Conference on Linear Algebra in Signals Systems, and
Control in 1986. The huge success of this conference led to three more SIAM
conferences in this series held, respectively, in San Francisco, Seattle and Boston,
in 1990, 1993, and 2001, which were chaired or co-chaired by Datta. He also
organized and co-chaired the interdisciplinary conference blending mathematics
with systems theory, Mathematical Theory of Networks and Systems (MTNS)
in 1996. He also served as a member of the international Steering Committee
of MTNS.

Datta has served as an editor of three interdisciplinary books that grew out of
some of these conferences: The Role of Linear Algebra in Systems theory, AMS
Contemporary Mathematics, volume 47, 1985; Linear Algebra in Signals, Systems
and Control, SIAM, 1988; and Systems and Control in the Twenty-First Century,
Birkhauser, 1997. He was also the editor-in-chief of the two books in the series:
Applied and Computational Control, Signals, and Circuits, vol I published by
Birkhauser in 1999, and vol II by Kluwer Academic Publisher, 2001. He also took
an initiative in founding the well-known SIAM J. Matrix Analysis and Applica-
tions, and served as one of the founding editors (with the late Gene Golub as the
first Managing Editor) of this journal. He served as the Vice-Chair of the SIAM
Linear Algebra Activity Group from 1993 to 1998, and chaired the award com-
mittee of the Best SIAM Linear Algebra Papers in 1994 and 1997. He has also
chaired or served as a member of several panels in linear algebra and control,
including the NSF Panel on Future Directions of Research and Teaching in
Mathematical Systems Theory, University of Notre Dame, 2002 of which he was
the chair.

So far, Datta has advised ten interdisciplinary Ph.D. Dissertations and numerous
masters theses. During their graduate studies, these students acquired
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interdisciplinary training by taking advanced courses from Datta on numerical
aspects of control and vibration engineering, and working on interdisciplinary
projects and dissertation topics. Almost all of these students picked up their dis-
sertation while taking the advanced interdisciplinary courses from him. Such
interdisciplinary expertise is in high demand in both academia and industries
worldwide, but is hard to find. Indeed, several of Datta’s former students are now
working as industrial mathematicians and researchers in research laboratories:
Samar Choudhury at IBM, Vadim Sokolov at Argonne National Laboratory, Avijit
Purkayastha at Texas Advanced Computing Center of University of Texas, Dan’l
Pierce, formerly of the Boeing Company and now the CEO of Access Analytics
International, and M. Lagadapati at Caterpillar.
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Chapter 1
The Anti-Reflective Transform
and Regularization by Filtering

A. Aricò, M. Donatelli, J. Nagy and S. Serra-Capizzano

Abstract Filtering methods are used in signal and image restoration to reconstruct
an approximation of a signal or image from degraded measurements. Filtering
methods rely on computing a singular value decomposition or a spectral factor-
ization of a large structured matrix. The structure of the matrix depends in part on
imposed boundary conditions. Anti-reflective boundary conditions preserve con-
tinuity of the image and its (normal) derivative at the boundary, and have been
shown to produce superior reconstructions compared to other commonly used
boundary conditions, such as periodic, zero and reflective. The purpose of this
paper is to analyze the eigenvector structure of matrices that enforce anti-reflective
boundary conditions. In particular, a new anti-reflective transform is introduced,
and an efficient approach to computing filtered solutions is proposed. Numerical
tests illustrate the performance of the discussed methods.
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Cagliari, Italy
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1.1 Introduction

In this paper we consider structured matrices that arise from the discretization of
large scale ill-posed inverse problems,

g ¼ Af þ g: ð1:1Þ

Given the vector g and matrix A, the aim is to compute an approximation of the
unknown vector f. The vector g represents unknown errors (e.g., measurement or
discretization errors and noise) in the observed data. These problems arise in many
applications, including image reconstruction, image deblurring, geophysics,
parameter identification and inverse scattering; cf. [2, 9, 11, 12, 19]. We are
mainly interested in problems that arise in spatially invariant signal and image
restoration, where the observed data is

gi ¼
X

j2Zd

fjhi�j þ gi;

and the dimension d ¼ 1 for signals (such as voice), and d ¼ 2 or 3 for images.
The d-dimensional tensor h ¼ ½hi� represents the blurring operator, and is called
the point spread function (PSF). Notice that we have an infinite summation
because a true signal or image scene does not have a finite boundary. However, the
data gi is collected only at a finite number of values, and thus represents only a
finite region of an infinite scene. Boundary conditions (BCs) are used to artificially
describe the scene outside the viewable region. The PSF and the imposed BCs
together define the matrix A.

Typically the matrix A is very ill-conditioned and the degenerating subspace
largely intersects the high frequency space: consequently regularization techniques
are used to compute stable approximations of f with controlled noise levels [9–11,
19]. Many choices of regularization can be employed, such as TSVD, Tikhonov,
and total variation [9, 11, 19]. Analysis and implementation of regularization
methods can often be simplified by computing a spectral (or singular value)
decomposition of A. Unfortunately this may be very difficult for large scale
problems, unless the matrix has exploitable structure. For example, if A is circulant
then the spectral decomposition can be computed efficiently with the fast Fourier
transform (FFT) [5]. In image deblurring, circulant structures arise when enforcing
periodic boundary conditions. Periodic boundary conditions are convenient for
computational reasons, but it is difficult to justify their use in a physical sense for
most problems.

Other boundary conditions, which better describe the scene outside the view-
able region have been proposed. For example, reflective boundary conditions
assume the scene outside the viewable region is a reflection of the scene inside the
viewable region. In this case the matrix A has a Toeplitz-plus-Hankel structure. If
the blur satisfies a strong symmetry condition, hi ¼ hjij for all i 2 Zd, then the
spectral decomposition of A can be computed very efficiently using the fast dis-
crete cosine transform (DCT) [14].

2 A. Aricò et al.



More recently, new anti-reflective boundary conditions (AR-BCs) have been
proposed [17] and studied [1, 7, 8, 15, 18], which have the advantage that con-
tinuity of the image, and of the normal derivative, are preserved at the boundary.
This regularity, which is not shared with zero or periodic BCs, and only partially
shared with reflective BCs, significantly reduces ringing artifacts that may occur
with other boundary conditions. The matrix structure arising from the imposition
of AR-BCs is Toeplitz-plus-Hankel (as in the case of reflective BCs), plus an
additional structured low rank matrix. By linearity of the boundary conditions with
respect to the PSF, it is evident that the set of AR-BC matrices is a vector space.
Unfortunately it is not closed under multiplication or inversion. However, if we
restrict our attention to strongly symmetric PSFs and assume that the PSF satisfies
a mild finite extent condition (more precisely hi ¼ 0 if jijj � n� 2; i ¼ ði1; . . .; idÞ
for some j 2 f1; . . .; dg), then any of the resulting AR-BC matrices belong to a d-

level commutative matrix algebra denoted byARðdÞ, see [1]. Certain computations

involving matrices in ARðdÞ can be done efficiently. For example, matrix–vector
products can be implemented using FFTs, and solution of linear systems and
eigenvalue computation involving these matrices can be done efficiently using
mainly fast sine transforms (FSTs), see [1].

The new contribution of this paper is the analysis of the eigenvector structure of

ARðdÞ matrices. The main result concerns the definition of the AR-transform,
which carries interesting functional information, is fast (Oðnd logðnÞÞ real opera-
tions) and structured, but it is not orthogonal. Then we use the resulting eigen-
vector structure to define filtering-based regularization methods to reconstruct
approximate solutions of (1.1).

The paper is organized as follows. In Sect. 1.2, we review the main features of
the AR matrix algebra that are essential for describing and analyzing AR-BC
matrices. In Sect. 1.3 we introduce AR-BCs and in Sect. 1.4 we discuss the
spectral features of the involved matrices and define an AR-transform. In Sect. 1.5
we describe an efficient approach to compute a filtered (regularized) solution of
(1.1). In Sect. 1.6 some 1D numerical results validate the theoretical analysis. A
concise treatment of the multidimensional case is given in Sect. 1.7, together with
a 2D numerical example.

In the rest of the paper we consider essentially only the one-dimensional
problem (that is, d ¼ 1), to simplify the notation and mathematical analysis.
However, the results generalize to higher dimensions, d [ 1; comments and results
for extending the analysis are provided in Sect. 1.7.

1.2 The Algebra of Matrices Induced by AR-BCs

This section is devoted to describing the algebra ARn � AR; n� 3. The notation
introduced in this section will be used throughout the paper, and is essential for the
description, given in Sect. 1.3, of the n� n matrices arising from the imposition of
AR-BCs.
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1.2.1 The s Algebra

Let Q be the type I sine transform matrix of order n (see [3]) with entries

½Q�i;j ¼
ffiffiffiffiffiffiffiffiffiffiffi

2
nþ 1

r
sin

jip
nþ 1

� �
; i; j ¼ 1; . . .; n: ð1:2Þ

It is known that the real matrix Q is orthogonal and symmetric ðQ�1 ¼ QT ¼ QÞ.
For any n-dimensional real vector v, the matrix–vector multiplication Qv (DST-I
transform) can be computed in Oðn logðnÞÞ real operations by using the algorithm
FST-I.

Let s be the space of all the matrices that can be diagonalized by Q:

s ¼ fQDQ : D is a real diagonal matrix of size ng: ð1:3Þ

Let X ¼ QDQ 2 s, then QX ¼ DQ. Consequently, if we let e1 denote the first
column of the identity matrix, then the relationship QXe1 ¼ DQe1 implies that the
eigenvalues ½D�i;i of X are given by ½D�i;i ¼ ½QðXe1Þ�i=½Qe1�i; i ¼ 1; . . .; n.
Therefore the eigenvalues of X can be obtained by applying a DST-I transform to
the first column of X and, in addition, any matrix in s is uniquely determined by its
first column.

Now we report a characterization of the s class, which is important for
analyzing the structure of AR-BC matrices. Let us define the shift of any vector

h ¼ ½h0; . . .; hn�1�T as rðhÞ ¼ ½h1; h2; . . .; hn�1; 0�T . According to a Matlab like
notation, we define TðxÞ to be the n-by-n symmetric Toeplitz matrix whose first
column is x and Hðx; yÞ to be the n-by-n Hankel matrix whose first and last
column are x and y, respectively. Every matrix of the class (1.3) can be written
as (see [3])

TðhÞ � Hðr2ðhÞ; Jr2ðhÞÞ; ð1:4Þ

where h ¼ ½h0; . . .; hn�1�T 2 Rn and J is a matrix with entries ½J�s;t ¼ 1 if sþ t ¼
nþ 1 and zero otherwise. We refer to J as a ‘‘flip’’ matrix because the multipli-
cation Jx has the effect of flipping the entries of the vector x in an up/down
direction. The structure defined by (1.4) means that matrices in the s class are
special instances of Toeplitz-plus-Hankel matrices.

Moreover, the eigenvalues of the s matrix in (1.4) are given by the cosine
function hðyÞ evaluated at the grid points vector Gn ¼ ½ kp

nþ1�
n
k¼1, where

hðyÞ ¼
X

jjj � n�1

hjexpðijyÞ; ð1:5Þ

i2 ¼ �1, and hj ¼ hjjj for jjj � n� 1. The s matrix in (1.4) is usually denoted by
sðhÞ and is called the s matrix generated by the function or symbol h ¼ hð�Þ (see
the seminal paper [3] where this notation was originally proposed).
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1.2.2 The AR-Algebras AR

Let h ¼ hð�Þ be a real-valued cosine polynomial of degree l and let skðhÞ �
Q diagðhðGkÞÞQ (note that skðhÞ coincides with the matrix in (1.4–1.5), when
l� k � 1). Then the Fourier coefficients of h are such that hi ¼ h�i 2 R with
hi ¼ 0 if jij[ l, and for k ¼ n� 2 we can define the one-level ARnð�Þ operator

ARnðhÞ ¼
hð0Þ

vn�2ðhÞ sn�2ðhÞ Jvn�2ðhÞ
hð0Þ

2
4

3
5; ð1:6Þ

where J is the flip matrix, vn�2ðhÞ ¼ sn�2ðð/ðhÞÞð�ÞÞe1 and

ð/ðhÞÞðyÞ ¼ hðyÞ � hð0Þ
2ðcosðyÞ � 1Þ: ð1:7Þ

It is interesting to observe that hðyÞ � hð0Þ has a zero of order at least 2 at zero
(since h is a cosine polynomial) and therefore /ðhÞ ¼ ð/ðhÞÞð�Þ is still a cosine
polynomial of degree l� 1, whose value at zero is �h00ð0Þ=2 (in other words the
function is well defined at zero).

As proved in [1], with the above definition of the operator ARnð�Þ, we have

1. aARnðh1Þ þ bARnðh2Þ ¼ ARnðah1 þ bh2Þ,
2. ARnðh1ÞARnðh2Þ ¼ ARnðh1h2Þ,

for real a and b and for cosine functions h1 ¼ h1ð�Þ and h2 ¼ h2ð�Þ.
These properties allow us to define AR as the algebra (closed under linear

combinations, product and inversion) of matrices ARnðhÞ, with h being a cosine
polynomial. By standard interpolation arguments it is easy to see that AR can be
defined as the set of matrices ARnðhÞ, where h is a cosine polynomial of degree at
most n� 3. Therefore, it is clear that dimðARÞ ¼ n� 2. Moreover the algebra
AR is commutative thanks to point 2, since h1ðyÞh2ðyÞ ¼ h2ðyÞh1ðyÞ at every y.
Consequently, if matrices of the form ARnðhÞ are diagonalizable, then they must
have the same set of eigenvectors [13]. This means there must exist an ‘‘anti-
reflective transform’’ that diagonalizes the matrices in AR. Unfortunately this
transform fails to be unitary, since the matrices in AR are generically not normal.
However the AR transform is close in rank to an orthogonal linear mapping.
Development of this transform is the main contribution of this paper, and is
discussed in detail in Sect. 1.4.

1.3 AR-BCs and the AR-BC Matrices

In this section we describe the anti-reflective BCs. We have already mentioned
that, in the generic case, periodic and zero Dirichlet BCs introduce a discontinuity
in the signal, while the reflective BCs preserve the continuity of the signal, but
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introduce a discontinuity in the derivative. Our approach is to use an anti-reflec-
tion: in this way, at the boundaries, instead of having a mirror-like symmetry
(reflective BCs), we impose a global symmetry around the boundary points. This
latter choice corresponds to a central symmetry around the considered boundary
point. If f1 is the left boundary point and fn is the right one, then the external points
f1�j and fnþj; j� 1, are computed as a function of the internal points according to
the rules f1�j � f1 ¼ �ðfjþ1 � f1Þ and fnþj � fn ¼ �ðfn�j � fnÞ. If the support of the
centered blurring function is q ¼ 2mþ 1� n, then for j ¼ 1; . . .;m; we have

f1�j ¼ 2f1 � fjþ1; fnþj ¼ 2fn � fn�j:

Following the analysis given in [17], if the blurring function (the PSF) h is
symmetric (i.e., hi ¼ h�i; 8i 2 Z), if hi ¼ 0 for jij � n� 2 (degree condition), and
if h is normalized so that

Pm
i¼�m hi ¼ 1, then the structure of the n� n anti-

reflective blurring matrix A is

A ¼

z0 0T 0
z1 zm

..

. bA ..
.

zm z1

0 0T z0

2

666664

3

777775
; ð1:8Þ

where A1;1 ¼ An;n ¼ 1; zi ¼ hi þ 2
Pm

k¼iþ1 hk; bA has order n� 2 and

bA ¼ TðhÞ � Hðr2ðhÞ; Jr2ðhÞÞ; ð1:9Þ

with h ¼ ½h0; h1; . . .; hm; 0; . . .; 0�T . According to the brief discussion of Sect. 1.2.1,

relation (1.9) implies that bA ¼ sn�2ðhÞ with hðyÞ ¼ h0 þ 2
Pm

k¼1 hk cosðkyÞ (see
(1.4) and (1.5)). Moreover in [1] it is proved that A ¼ ARnðhÞ.

1.4 Eigenvalues and Eigenvectors of AR-BC Matrices

In this section we first describe the spectrum of AR-BC matrices, under the usual
mild degree condition (that is, the PSF h has finite support), with symmetric,
normalized PSFs. Then we describe the eigenvector structure and we introduce the
AR-transform. In the next section, we will use these results to efficiently compute
filtered solutions of (1.1) when the blurring matrix A is in the AR algebra.

1.4.1 Eigenvalues of ARnð�Þ Operators

The spectral structure of any AR-BC matrix, with symmetric PSF h, is concisely
described in the following result.
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Theorem 1 [1] Let the blurring function (PSF) h be symmetric (i.e., hs ¼ h�s),
normalized, and satisfying the usual degree condition. Then the eigenvalues of the
n� n AR-BC blurring matrix A in (1.8), n� 3, are given by hð0Þ ¼ 1 with mul-
tiplicity two and hðGn�2Þ.

The proof can be easily derived by (1.6) which shows that the eigenvalues of
ARnðhÞ are hð0Þ with multiplicity 2 and those of sn�2ðhÞ, i.e. hðGn�2Þ, with
multiplicity 1 each.

1.4.2 The AR-Transform and Its Functional Interpretation

Here we will determine the eigenvectors of every matrix ARnðhÞ. In particular, we
show that every AR-BC matrix is diagonalizable, and we demonstrate indepen-
dence of the eigenvectors from the symbol h. With reference to the notation in

(1.2–1.5), calling q
ðn�2Þ
j the jth column of Qn�2, and yðn�2Þ

j the jth point of
Gn�2; j ¼ 1; . . .; n� 2, we have

ARnðhÞ
0

q
ðn�2Þ
j

0

2

64

3

75 ¼
hð0Þ

vn�2ðhÞ sn�2ðhÞ Jvn�2ðhÞ
hð0Þ

2

64

3

75
0

q
ðn�2Þ
j

0

2

64

3

75

¼
0

sn�2ðhÞqðn�2Þ
j

0

2

64

3

75 ¼ h yðn�2Þ
j

� � 0

q
ðn�2Þ
j

0

2

64

3

75; ð1:10Þ

since q
ðn�2Þ
j is an eigenvector of sn�2ðhÞ and h yðn�2Þ

j

� �
is the related eigenvalue.

Due to the centro-symmetry of the involved matrix, if ½1; pT ; 0�T is an eigenvector
of ARnðhÞ related to the eigenvalue hð0Þ, then the other is its flip, i.e.,
½0; ðJpÞT ; 1�T . Let us look for this eigenvector, by imposing the equality

ARnðhÞ
1
p
0

2

4

3

5 ¼ hð0Þ
1
p
0

2

4

3

5

which is equivalent to seeking a vector p that satisfies

vn�2ðhÞ þ sn�2ðhÞp ¼ hð0Þp:

Since vn�2ðhÞ ¼ sn�2ð/ðhÞÞe1 by definition of the operator vn�2ð�Þ (see (1.6) and
the lines below), and, because of the algebra structure of sn�2 and thanks to (1.7),
we deduce that the vector p satisfies the relation

sn�2ðh� hð0ÞÞ �L�1
n�2e1 þ p

� �
¼ 0 ð1:11Þ
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where Ln�2 is the discrete one-level Laplacian, i.e., Ln�2 ¼ sn�2ð2� 2 cosð�ÞÞ.
Therefore by (1.11) the solution is given by p ¼ L�1

n�2e1 þ r where r is any vector
belonging to the kernel of sn�2ðh� hð0ÞÞ. If sn�2ðh� hð0ÞÞ is invertible (as it
happens for every nontrivial PSF, since the unique maximum of the function is
reached at y ¼ 0, which is not a grid point of Gn�2), then the solution is unique.

Otherwise r will belong to the vector space generated by those vectors q
ðn�2Þ
j for

which the index j is such that hðyðn�2Þ
j Þ ¼ hð0Þ. However, the contribution con-

tained in r was already considered in (1.10), and therefore p ¼ L�1
n�2e1 is the only

solution that carries new information. Hence, independently of h, we have

ARnðhÞ
1
p Qn�2 Jp

1

2
4

3
5 ¼

1
p Qn�2 Jp

1

2
4

3
5

hð0Þ
diagðhðGn�2ÞÞ

hð0Þ

2
4

3
5:

Now we observe that the jth eigenvector is unitary, j ¼ 2; . . .; n� 1, because Qn�2

is unitary: we wish to impose the same condition on the first and the last eigen-
vector. The interesting fact is that p has an explicit expression. By using standard
finite difference techniques, it follows that pj ¼ 1� j=ðn� 1Þ so that the first
eigenvector is exactly the sampling of the function 1� x on the grid j=ðn� 1Þ for

j ¼ 0; . . .; n� 1. Its Euclidean norm is an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

j¼0 j2
q

=ðn� 1Þ	
ffiffiffiffiffiffiffiffi
n=3

p
, where,

for nonnegative sequences bn; cn, the relation cn	 bn means cn ¼ bnð1þ oð1ÞÞ. In
this way, the (normalized) AR-transform can be defined as

Tn ¼
a�1

n
a�1

n p Qn�2 a�1
n Jp
a�1

n

2
4

3
5: ð1:12Þ

Remark 1 With the normalization condition in (1.12), all the columns of Tn are
unitary. However orthogonality is only partially fulfilled since it holds for the
central columns, while the first and last columns are not orthogonal to each other,
and neither one is orthogonal to the central columns. We can solve the first
problem: the sum of the first and of the last column (suitably normalized) and the
difference of the first and the last column (suitably normalized) become ortho-
normal, and are still eigenvectors related to the eigenvalue hð0Þ. However, since

q
ðn�2Þ
1 has only positive components and the vector space generated by the first and

the last column of Tn contains positive vectors, it follows that Tn cannot be made
orthonormal just by operating on the first and the last column. Indeed, we do not
want to change the central block of Tn since it is related to a fast Oðn logðnÞÞ real
transform and hence, necessarily, we cannot get rid of this quite mild lack of
orthogonality.

Remark 2 There is a suggestive functional interpretation of the transform Tn.
When considering periodic BCs, the transform of the related matrices is the
Fourier transform: its jth column vector, up to a normalizing scalar factor, can be
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viewed as a sampling, over a suitable uniform gridding of ½0; 2p�, of the frequency
function expð�ijyÞ. Analogously, when imposing reflective BCs with a symmetric
PSF, the transform of the related matrices is the cosine transform: its jth column
vector, up to a normalizing scalar factor, can be viewed as a sampling, over a
suitable uniform gridding of ½0; p�, of the frequency function cosðjyÞ. Here the
imposition of the anti-reflective BCs can be functionally interpreted as a linear
combination of sine functions and of linear polynomials (whose use is exactly
required for imposing C1 continuity at the borders).

The previous observation becomes evident in the expression of Tn in

(1.12). Indeed, by defining the one-dimensional grid eGn ¼ ½0; GT
n�2; p�T ¼

½jp=ðn� 1Þ�n�1
j¼0 , which is a subset of ½0; p�, we infer that the first column of Tn is

given by a�1
n ð1� y=pÞjeGn

, the jth column of Tn; j ¼ 2; . . .; n� 1, is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn� 1Þ

p
ðsinðjyÞÞjeGn

, and finally the last column of Tn is given by a�1
n ðy=pÞjeGn

i.e.

Tn ¼ 1� y

p
; sinðyÞ; . . .; sinððn� 2ÞyÞ; y

p

h i			eGn

� Dn; ð1:13Þ

Dn ¼ diag a�1
n ;

ffiffiffiffiffiffiffiffiffiffiffi
2

n� 1

r
In�2; a

�1
n

 !
:

Finally, it is worth mentioning that the inverse transform is also described in
terms of the same block structure since

T�1
n ¼

an

�Qn�2p Qn�2 �Qn�2Jp
an

2
4

3
5: ð1:14Þ

Theorem 2 [ARnð�Þ Jordan Canonical Form.] With the notation and assumptions
of Theorem 1, the n� n AR-BC blurring matrix A in (1.8), n� 3, coincides with

ARnðhÞ ¼ Tn diagðhðbGnÞÞ T�1
n ; ð1:15Þ

where Tn and T�1
n are defined in (1.13) and (1.14), while bGn ¼ ½0;GT

n�2; 0�
T .

1.5 Filtering Methods for AR-BC Matrices

As mentioned in Sect. 1.1, regardless of the imposed boundary conditions, matrices
A that arise in signal and image restoration are typically severely ill-conditioned,
and regularization is needed in order to compute a stable approximation of the
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solution of (1.1). A class of regularization methods is obtained through spectral
filtering [11, 12]. Specifically, if the spectral decomposition of A is

A ¼ Tn diagðdÞ T�1
n ; Tn ¼ t1 t2 � � � tn½ �; T�1

n ¼

~t
T
1

~t
T
2

..

.

~t
T
n

2

66664

3

77775
;

with d ¼ hðbGnÞ, then a spectral filter solution is given by

freg ¼
Xn

i¼1

/i

~tT
i g

di
ti; ð1:16Þ

where /i are filter factors that satisfy

/i 

1 if di is large,
0 if di is small.




The small eigenvalues correspond to eigenvectors with high frequency compo-
nents, and are typically associated with the noise space, while the large eigen-
values correspond to eigenvectors with low frequency components, and are
associated with the signal space. Thus filtering methods attempt to reconstruct
signal space components of the solution, while avoiding reconstruction of noise
space components.

For example, the filter factors for two well known filtering methods, truncated
spectral value decomposition (TSVD) and Tikhonov regularization, are

/tsvd
i ¼ 1 if di� d;

0 if di\d



and /tik

i ¼
d2

i

d2
i þ k

; k[ 0; ð1:17Þ

where the problem dependent regularization parameters d and k must be chosen
[12]. Several techniques can be used to estimate appropriate choices for the reg-
ularization parameters when the SVD is used for filtering (i.e., di are the singular
values), including generalized cross validation (GCV), L-curve, and the discrep-
ancy principle [9, 11, 19].

In our case, the notation in (1.17) defines a slight abuse of notation, because the
eigenvalues di are not the singular values: in fact the Jordan canonical form (CF) in
(1.15) is different from the singular value decomposition (SVD), since the trans-
form Tn is not orthogonal (indeed it is a rank-2 correction of a symmetric
orthogonal matrix). Therefore note that the use of /tsvd

i in (1.16) defines the
filtering of the eigenvalues in the Jordan canonical form instead of the more
classical filtering of the singular values in the SVD. However, we note that in
general computing the SVD can be computationally very expensive, especially in
the multidimensional case and also in the strongly symmetric case. Moreover,
quite surprisingly, a recent and quite exhaustive set of numerical tests, both in the
case of signals and images (see [16, 18]), has shown that the truncated Jordan
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canonical form is more or less equivalent to the truncated SVD in terms of quality
of the restored object: indeed this is a delicate issue that deserves more attention in
the future.

Furthermore, also the so-called Tikhonov regularization needs a further dis-
cussion in this direction. Indeed its definition is related to the solution of the linear
system ðAT Aþ k2IÞf tik ¼ ATg, but the AR algebra is not closed under transpo-
sition. Hence we cannot use the Jordan canonical form for computing the solution
of this linear system in a fast and stable way. In [6] it was proposed to replace AT

by A: in such a way the associated Tikhonov-like linear system becomes
ðA2 þ kIÞfreg ¼ Ag, and now freg is the one in (1.16) with the filter factors /tik

i . In
[8] it has been shown that the considered approach, called reblurring, arises when
looking at the regularized solution of the continuous problem and then followed by
the anti-reflective approximation of each operator separately.

Our final aim is to compute (1.16) in a fast and stable way. We can follow two
strategies.

Strategy 1. This is the classic approach implemented for instance with periodic
BCs by using three FFTs. In our case we employ the AR-transform, its inverse, and
a fast algorithm for computing the eigenvalues.

Algorithm 1

1. ~g ¼ T�1
n g,

2. d ¼ ½hð0Þ; d̂T
; hð0Þ�T , where d̂ ¼ ½d2; . . .; dn�1�T are the eigenvalues of sn�2ðhÞ

that can be computed by a fast sine transform (FST),
3. ~f ¼ ð/:=dÞ:� ~g, where the dot operations are component-wise,
4. freg ¼ Tn

~f.

The product Tn
~f can be clearly computed in a fast and stable way by one FST.

Indeed for all x 2 Rn

Tnx ¼ a�1
n x1

1
p
0

2
4
3
5þ

0
Qn�2xð2 : n� 1Þ

0

2
4

3
5þ a�1

n xn

0
Jp
1

2
4

3
5;

where xð2 : n� 1Þ in Matlab notation is the vector x with components indexed
from 2 to n� 1. A similar strategy can be followed for computing the matrix–
vector product T�1

n g. Instead of a�1
n p there is u ¼ �Qn�2p and instead of a�1

n Jp

there is w ¼ �Qn�2Jp. Recalling that p ¼ L�1
n�2e1 the two vectors u, and w can be

explicitly computed obtaining ui ¼ ð2n� 2Þ�1=2
cotð ip

2n�2Þ, for i ¼ 1; . . .; n� 2 and

w ¼ diagi¼1;...;n�2ð�1Þiþ1u.
Strategy 2. Now we describe a slightly different approach for computing filtered

solutions. In particular, we see that the eigenvalues d1 ¼ dn ¼ hð0Þ have eigen-
vectors essentially belonging to the signal space (for more details, refer to the
subsequent Remark 4). Hence we set a priori /1 ¼ /n ¼ 1, and rewrite the filtered
solution as

1 The Anti-Reflective Transform and Regularization by Filtering 11



freg ¼
~tT

1 g

d1
t1 þ

~tT
n g

dn
tn þ

Xn�1

i¼2

/i

~tT
i g

di
ti:

Now observe that ~t1 ¼ e1;~tn ¼ en, and for i ¼ 2; 3; . . .; n� 1, ti ¼ ½0; qT
i�1; 0�

T ,
where qj are columns of the DST-I matrix Qn�2. Thus, the filtered solution can be
written as

freg ¼
1

hð0Þ g1t1 þ gntnð Þ þ
0

f̂reg

0

2

4

3

5:

Let g ¼ ½g1; ĝ
T ; gn�T , then

f̂reg ¼
Xn�1

i¼2

/i

~tT
i g

di
qi�1

¼
Xn�1

i¼2

/i

di
ð½�Qn�2p�i�1g1 þ qT

i�1ĝ� ½Qn�2Jp�i�1gnÞqi�1

¼ Qn�2y;

where

y ¼ diagi¼2;...;n�1
/i

di

� �
Qn�2ĝ� g1Qn�2p� gnQn�2Jpð Þ:

Therefore

f̂reg ¼ Qn�2 diagi¼2;...;n�1
/i

di

� �
Qn�2~g; where ~g ¼ ĝ� g1p� gnJp:

The algorithm can be summarized as following

Algorithm 2

1. ~g ¼ ĝ� g1p� gnJp,

2. f̂reg ¼ Qn�2 diagi¼2;...;n�1
/i
di

� �
Qn�2 ~g by three FSTs,

3. freg ¼ 1
hð0Þ

0
f̂reg

0

2

4

3

5þ g1

1
p
0

2

4

3

5þ gn

0
Jp
1

2

4

3

5

0

@

1

A.

We can compare the two strategies when /i are the two classic choices in
(1.17). Concerning the spectral truncation performed with /tsvd

i , for every choice

of d we have d� d1 ¼ dn ¼ maxi¼1;...;n di and then /tsvd
1 ¼ /tsvd

n ¼ 1. Therefore the
two strategies are exactly the same. On the other hand, for Tikhonov regularization

/tik
1 ¼ /tik

n ¼
hð0Þ2

hð0Þ2þk
6¼ 1 and the two strategies are slightly different as already

observed in [4]. Indeed the first one arises from the reblurring approach proposed
in [6], while the second one is the same as described in [4] (see Remark 5).
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We close this section with a few remarks.

Remark 3 The difference between the two strategies increases with k, hence it is
more evident when the problem requires a substantial amount of regularization,
while it is negligible for small values of k. Furthermore the second approach
imposes /1 ¼ /n ¼ 1 a priori. Hence, for the implementation, we can also use
Algorithm 1 where at step 3 we add /1 ¼ /n ¼ 1. In this way the same vector freg

is computed, as in Algorithm 2.

Remark 4 As discussed in Remark 2, there is a natural interpretation in terms of
frequencies when considering one-dimensional periodic and reflective BCs. The
eigenvalue obtained as a sampling of the symbol h at a grid-point close to zero, i.e.
close to the maximum point of h, has an associated eigenvector that corresponds to
low frequency (signal space) information, while the eigenvalue obtained as a
sampling of the symbol h at a grid-point far away from zero (and, in particular,
close to p), has an associated eigenvector that corresponds to high frequency
(noise space) information. Concerning anti-reflective BCs, the same situation

occurs when dealing with the frequency eigenvectors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn� 1Þ

p
ðsinðjyÞÞjeGn

;

j ¼ 2; . . .; n� 1. The other two exceptional eigenvectors generate the space of
linear polynomials and therefore they correspond to low frequency information:
this intuition is well supported by the fact that the related eigenvalue is hð0Þ, i.e.
the maximum and the infinity norm of h, and by the fact that AR-BCs are more
precise than other classical BCs.

Remark 5 The matrix Qn�2 diagi¼2;...;n�1ð/i=diÞQn�2 is the s matrix with eigen-
values /i=di, for i ¼ 2; . . .; n� 1. Therefore step 2 in Algorithm 2 is equivalent to
regularizing a linear system with coefficient matrix sn�2ðhÞ corresponding to the
inner part of A ¼ ARnðhÞ. It is straightforward that this strategy is exactly the
approach used in [4] with homogeneous AR-BCs. Obviously, as already discussed
in Remark 1, the two eigenvectors that complete the sine basis can be chosen in

several ways: for instance in [4], instead of ½1; pT ; 0�T and ½0; ðJpÞT ; 1�T , the
authors prefer to consider the first vector and the vector e with all components
equal to one, since

e ¼
1
p
0

2
4
3
5þ

0
Jp
1

2
4

3
5:

1.6 A Numerical Comparison of the Two Strategies

For Tikhonov regularization, a comparison between the two strategies described in
the previous section is already provided in [4] Sect. 1.6. However, we report an
example where, according to Remark 3, we explicitly compare both strategies
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varying k. Since from a computational point of view they are equivalent, we will
compare only the quality of the restored signals.

In our example we use the true signal and the out of focus PSF shown in
Fig. 1.1. The out of focus blurring is well-known to be severely ill-conditioned.

The two dotted vertical lines shown in the figure of the true signal denote the
field of view of our signal; that is, the signal inside the dotted lines represents that
part of the signal that can be directly observed, while the signal extending outside
the dotted lines represents information that cannot be directly observed, and which
must be approximated through boundary conditions. To the blurred signal we add
white Gaussian noise (i.e., normally distributed random values with mean 0 and
variance 1) with a percentage jjg2=jjfblurjj2, where fblur is the (noise free) blurred
signal and g is the noise. We consider two different levels of noise, 1 and 10%. The
observed signals are shown in Fig. 1.2.

Clearly the problem with 10% noise requires a stronger regularization than the
problem with 1% noise. For both strategies, in Fig. 1.3 we show the restored
signals, while in Fig. 1.4 we report the logarithmic plot of the relative restoration
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errors varying k. In the legends the first strategy is called ‘‘re-blurring’’ according
to the terminology of [6] where this idea was proposed, while the second strategy
is called ‘‘homogeneous AR’’ according to the terminology in [4], where this
variation of the theme was discussed. For this example, we note that for a low level
of noise, i.e. in our case 1%, the two strategies are equivalent. Indeed the two
restored signals are not distinguishable in Fig. 1.3. Moreover in Fig. 1.4 we
observe that the second strategy becomes superior with respect to the first only for
k[ 10�2, while the optimum is reached for k\10�2. On the other hand, for higher
levels of noise, i.e. for instance 10%, we need a more substantial regularization
and hence a larger value of k. From Fig. 1.4, by looking in a neighborhood of the
optimal value of k, we notice that the second procedure becomes more precise and
in fact the restored signal is computed with a lower error norm. However, in
Fig. 1.3 we can see that the quality of the restored signal is not sensibly improved.

Finally, we compare the two strategies by varying the noise level. Figure 1.5
shows in logarithmic scale the optimal relative restoration error changing the noise
level for both techniques. When the noise is lower than 10%, the two strategies

1% of noise
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Fig. 1.3 Restored signals for both strategies
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Fig. 1.4 Relative restoration errors vs k
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achieve about the same minimal restoration error. For a noise level greater than
10%, we observe a different minimum and the second proposal seems to be slightly
better.

In the previous example, the second strategy seems to be slightly superior with
respect to the first one, when the problem requires stronger regularization. On the
other hand, when the optimal value of k is small, the considered procedures are
essentially similar, according to the theoretical discussion in Sect. 1.5.

1.7 Multilevel Extension

Here we provide some comments on the extension of our findings to d-dimensional
objects with d [ 1. Note when d ¼ 1; h is a vector, when d ¼ 2; h is a 2D array,
when d ¼ 3; h is a 3D tensor, etc. For d ¼ 1 and with reference to the previous
sections, we have proved that, thanks to the definition of a (fast) AR-transform, it
is possible to define a truncated spectral decomposition. However we are well-
aware that the real challenge is represented by a general extension to the multi-
dimensional setting. This is the topic that we briefly discuss in the rest of the
section.

With reference to Sect. 1.2.2 we propose a (canonical) multidimensional
extension of the algebras AR and of the operators ARnð�Þ; n ¼ ðn1; . . .; ndÞ: the
idea is to use tensor products. If h ¼ hð�Þ is d-variate real-valued cosine polyno-
mial, then its Fourier coefficients form a real d-dimensional tensor which is
strongly symmetric. In addition, hðyÞ; y ¼ ðy1; . . .; ydÞ, can be written as a linear

combination of independent terms of the form mðyÞ ¼
Qd

j¼1 cosðcjyjÞ where any cj

is a nonnegative integer. Therefore, we define

ARnðmðyÞÞ ¼ ARn1ðcosðc1y1ÞÞ � � � � � ARnd ðcosðcdydÞÞ; ð1:18Þ

where � denotes Kronecker product, and we force
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10−0.8

10−0.7

10−0.6

10−0.5

10−0.4

10−0.3

homogeneous AR
reblurring
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ARnðah1 þ bh2Þ ¼ aARnðh1Þ þ bARnðh2Þ ð1:19Þ

for every real a and b and for every d-variate real-valued cosine polynomials
h1 ¼ h1ð�Þ and h2 ¼ h2ð�Þ. It is clear that the request that ARnð�Þ is a linear operator
(for d [ 1, we impose this property in (1.19) by definition) is sufficient for defining
completely the operator in the d-dimensional setting.

With the above definition of the operator ARnð�Þ, we have

1. aARnðh1Þ þ bARnðh2Þ ¼ ARnðah1 þ bh2Þ,
2. ARnðh1ÞARnðh2Þ ¼ ARnðh1h2Þ,
for real a and b and for cosine functions h1 ¼ h1ð�Þ and h2 ¼ h2ð�Þ.

The latter properties of algebra homomorphism allows to define a commutative
algebra AR of the matrices ARnðhÞ, with hð�Þ being a d-variate cosine polynomial.
By standard interpolation arguments it is easy to see that AR can be defined as the
set of matrices ARnðhÞ, where h is a d-variate cosine polynomial of degree at most
nj � 3 in the jth variable for every j ranging in f1; . . .; dg: we denote the latter

polynomial set by Pðd;evenÞ
n�2e , with e being the vector of all ones. Here we have to be

a bit careful in specifying the meaning of algebra when talking of polynomials.

More precisely, for h1; h2 2 Pðd;evenÞ
n�2e the product h1 � h2 is the unique polynomial

h 2 Pðd;evenÞ
n�2e satisfying the following interpolation condition

hðyÞ ¼ zy; zy � h1ðyÞh2ðyÞ; 8y 2 GðdÞn�2: ð1:20Þ

If the degree of h1 plus the degree of h2 in the jth variable does not exceed
nj � 2; j ¼ 1; . . .; d, then the uniqueness of the interpolant implies that h coin-
cides with the product between polynomials in the usual sense. The uniqueness

holds also for d� 2 thanks to the tensor form of the grid GðdÞn�2 (see [1] for more
details). The very same idea applies when considering inversion. In conclusion,
with this careful definition of the product/inversion and with the standard

definition of addition, Pðd;evenÞ
n�2e has become an algebra, showing the vector-

space dimension equal to ðn1 � 2Þ � ðn2 � 2Þ � � � ðnd � 2Þ which coincides with
that of ARn.

Without loss of generality and for the sake of notational clarity, in the following
we assume nj ¼ n for j ¼ 1; . . .; d. Thanks to the tensor structure emphasized in
(1.18–1.19), and by using Theorem 2 for every term ARnðcosðcjyjÞÞ; j ¼ 1; . . .; d,
of ARnðmÞ the d-level extension of such a theorem easily follows. More precisely,
if h is a d-variate real-valued cosine symbol related to a d-dimensional strongly
symmetric and normalized mask h, then

ARnðhÞ ¼ TðdÞn DnðTðdÞn Þ
�1; T ðdÞn ¼ Tn � � � � � Tn; ð1:21Þ

(d times) where Dn is the diagonal matrix containing the eigenvalues of ARnðhÞ.
The description of Dn in d dimensions is quite involved when compared with the
case d ¼ 1, implicitly reported in Theorem 1.
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For a complete analysis of the spectrum of ARnðhÞ we refer the reader to [1].
Here we give details on a specific aspect. More precisely we attribute a corre-
spondence in a precise and simple way among eigenvalues and eigenvectors, by

making recourse only to the main d-variate symbol hð�Þ. Let xn ¼ x
ð1Þ
n � x

ð2Þ
n �

� � � � x
ðdÞ
n be a column of T ðdÞn , with x

ðjÞ
n 2 fa�1

n ½1; pT ; 0�T ; a�1
n ½0; ðJpÞT ; 1�Tg or

x
ðjÞ
n ¼ ½0; qT

sj
; 0�T ; 1� sj� n� 2 and qsj

is the ðsjÞth column of Qn�2, for

j ¼ 1; . . .; d. Let

F xn
¼ fj j xðjÞn ¼ a�1

n ½1; pT ; 0�T or xðjÞn ¼ a�1
n ½0; ðJpÞT ; 1�Tg  f1; . . .; dg;

with xn being the generic eigenvector, i.e., the generic column of TðdÞn . The
eigenvalue related to xn is

k ¼ h yðnÞ1 ; . . .; yðnÞd

� �
ð1:22Þ

where yðnÞj ¼ 0 for j 2 F xn
and yðnÞj ¼

pvj

n�1 for j 62 F xn
. We define the d-dimensional

grid

bG
ðdÞ
n ¼ bGn ~� � � � ~�bGn d times; ð1:23Þ

as a vector of length nd whose entries are d-tuples. More precisely given two
vectors x and y of size p and q, respectively, whose entries are l-tuples and m-
tuples, respectively, the operation z ¼ x ~� y produces a new vector of size pq
containing all possible chains xi � yj; i ¼ 1; . . .; p; j ¼ 1; . . .; q: in this way the
entries of z are tuples of length lþ m and the ordering of the entries in z is the
same as that of the standard Kronecker product. In other words and shortly, we can
claim that the operation ~� is the same as � where the standard product between
elements is replaced by the chain operation between tuples. Hence we can evaluate

the d-variate function h on bG
ðdÞ
n since its entries are points belonging to the

definition domain of h. Using this notation the following compact and elegant
result can be stated (its proof is omitted since it is simply the combination of the
eigenvalue analysis in [1], of Theorem 2, and of the previous tensor arguments).

Theorem 3 [ARnð�Þ Jordan Canonical Form.] The nd � nd AR-BC blurring matrix
A, obtained when using a strongly symmetric d-dimensional mask h such that
hi ¼ 0 if jijj � n� 2 for some j 2 f1; . . .; dg ðthe d-dimensional degree condition),
n� 3, coincides with

ARnðhÞ ¼ TðdÞn diagðhðbGðdÞn ÞÞ ðT ðdÞn Þ
�1; ð1:24Þ

where TðdÞn and bG
ðdÞ
n are defined in (1.21) and (1.23).

This shows that the study of the anti-reflective transform is not only of interest
in itself both from theoretical and computational viewpoints, but it is also useful in
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simplifying the analysis and the interpretation of the eigenvalues studied in [1]: in
this sense compare the elegant result in Theorem 3 and the quite tricky combi-
natorial representation in [1].

It is finally worth observing that, except for more involved multi-index nota-
tions, both Algorithms 1 and 2 in Sect. 1.5 are plainly generalized in the multilevel

setting, maintaining a cost proportional to three d-level FSTs of size ðn� 2Þd, and
the key tool is the simplified eigenvalue–eigenvector correspondence concisely
indicated in Theorem 3. Indeed, for Algorithm 1 the only difficult task is the
computation in step 2, where we have to compute the eigenvalues in the right
order. For this task we refer to [1], where an algorithm is proposed and studied:
more specifically the related procedure in [1] is based on a single d-level FST of

size ðn� 2Þd plus lower order computations. For the second strategy in Sect. 1.5,
we can operate as suggested in Remark 3. We employ Algorithm 1 where we fix

a priori /k ¼ 1, when the corresponding grid point in bG
ðdÞ
n is equal to zero (notice

that, according to (1.23) and to the definition of bGn, there exist 2d of such points).
We conclude this section with an example illustrating the approach discussed

above for a two-dimensional imaging problem. We do not take an extensive
comparison of the AR-BCs with other classic BCs, like periodic or reflective, since
the topic and related issues have been already widely discussed in several works
(see e.g. [4, 6, 8]), where the advantage on some classes of images, in terms of the
restored image quality, of the application of AR-BCs has been emphasized. Here
we propose only a 2D image deblurring example with Gaussian blur and various
levels of white Gaussian noise.

The true and the observed images are in Fig. 1.6, where the observed image is
affected by a Gaussian blur and 1% noise. We compare the AR-BCs only with the
reflective BCs since for this test other BCs like periodic or Dirichlet do not
produce satisfactory restorations. In Fig. 1.7 we observe a better restoration and
reduced ringing effects at the edges for AR-BCs with respect to reflective BCs.

Fig. 1.6 Test problem with Gaussian blur and 1% white Gaussian noise
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Restored images in Fig. 1.7 are obtained with the minimum relative restoration
error varying several values of the regularization parameter k.

In the previous example, the choice between the two strategies for AR-BCs is
not important since, as already observed in Sect. 1.6, they provide different res-
torations only for a high noise level. This fact is evident in Table 1.1 where we
compare the minimum relative restoration errors for the reflective BCs and the two
strategies for AR-BCs. As already noted, the two approaches differ only for the
four values of the filter factors corresponding to the vertices of the image. We note
that for the 10% noise case, all of the approaches give comparable restorations. On
the other hand, decreasing the noise, i.e., passing to 1% and then to 0:1% noise, the
AR-BCs improve the restoration while the reflective BCs are not able to do that,
due to the barrier of the ringing effects.
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Chapter 2
Classifications of Recurrence Relations
via Subclasses of (H, m)-quasiseparable
Matrices

T. Bella, V. Olshevsky and P. Zhlobich

Abstract The results on characterization of orthogonal polynomials and Szegö
polynomials via tridiagonal matrices and unitary Hessenberg matrices, respec-
tively, are classical. In a recent paper we observed that tridiagonal matrices and
unitary Hessenberg matrices both belong to a wider class of ðH; 1Þ-quasiseparable
matrices and derived a complete characterization of the latter class via polyno-
mials satisfying certain EGO-type recurrence relations. We also established a
characterization of polynomials satisfying three-term recurrence relations via
ðH; 1Þ-well-free matrices and of polynomials satisfying the Szegö-type two-term
recurrence relations via ðH; 1Þ-semiseparable matrices. In this paper we generalize
all of these results from scalar (H,1) to the block (H, m) case. Specifically, we
provide a complete characterization of ðH; mÞ-quasiseparable matrices via poly-
nomials satisfying block EGO-type two-term recurrence relations. Further,
ðH; mÞ-semiseparable matrices are completely characterized by the polynomials
obeying block Szegö-type recurrence relations. Finally, we completely charac-
terize polynomials satisfying m-term recurrence relations via a new class of
matrices called ðH; mÞ-well-free matrices.
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2.1 Introduction

2.1.1 Classical Three-term and Two-term Recurrence Relations
and Their Generalizations

It is well known that real-orthogonal polynomials frkðxÞg satisfy three-term
recurrence relations of the form

rkðxÞ ¼ ðakx� dkÞrk�1ðxÞ � ck � rk�2ðxÞ; ak 6¼ 0; ck [ 0: ð2:1Þ

It is also well known that Szegö polynomials f/#
k ðxÞg; or polynomials orthogonal

not on a real interval but on the unit circle, satisfy slightly different three-term
recurrence relations of the form

/#
k ðxÞ ¼

1
lk
� xþ qk

qk�1

1
lk

� �
/#

k�1ðxÞ �
qk

qk�1

lk�1

lk
� x � /#

k�2ðxÞ ð2:2Þ

Noting that the essential difference between these two sets of recurrence relations
is the presence or absence of the x dependence in the ðk � 2Þth polynomial, it is
natural to consider the more general three-term recurrence relations of the form

rkðxÞ ¼ ðakx� dkÞ � rk�1ðxÞ � ðbkxþ ckÞ � rk�2ðxÞ; ð2:3Þ

containing both (2.1) and (2.2) as special cases, and to classify the polynomials
satisfying such three-term recurrence relations.

Also, in addition to the three-term recurrence relations (2.2), Szegö polynomials
satisfy two-term recurrence relations of the form

/kðxÞ
/#

k ðxÞ

� �
¼ 1

lk

1 �q�k
�qk 1

� �
/k�1ðxÞ
x/#

k�1ðxÞ

� �
ð2:4Þ

for some auxiliary polynomials f/kðxÞg (see, for instance, [18, 20]). By relaxing
these relations to the more general two-term recurrence relations

GkðxÞ
rkðxÞ

� �
¼ ak bk

ck 1

� �
Gk�1ðxÞ

ðdkxþ hkÞrk�1ðxÞ

� �
ð2:5Þ

it is again of interest to classify the polynomials satisfying these two-term
recurrence relations.

In [8], these questions were answered, and the desired classifications were given
in terms of the classes of matrices A ¼ ai;j

� �n
i;j¼1

related to the polynomials frkðxÞg
via

rkðxÞ ¼
1

a1;0a2;1 � � � akþ1;k
det xI � Að Þðk�kÞ; k ¼ 0; . . .; n; ð2:6Þ

where Aðk�kÞ denotes the k � k principal submatrix of A: Note that this relation
involves the entries of the matrix A and two additional parameters a1;0 and anþ1;n
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outside the range of parameters of A: In the context of this paper, these parameters
not specified by the matrix A can be any nonzero numbers1. These classifications
generalized the well-known facts that real-orthogonal polynomials and Szegö
polynomials were related to irreducible tridiagonal matrices and almost unitary
Hessenberg matrices, respectively, via (2.6). These facts as well as the classifi-
cations of polynomials satisfying (2.3), (2.5) and a third set to be introduced later,
respectively, are given in Table 2.1.

Furthermore, the classes of matrices listed in Table 2.1 (and formally defined
below) were shown in [8] to be related as is shown in Fig. 2.1.

While it is likely that the reader is familiar with tridiagonal and unitary Hes-
senberg matrices, and perhaps quasiseparable and semiseparable matrices, the
class of well-free matrices is less well-known. We take a moment to give a brief
description of this class (a more rigorous description is provided in Sect. 2.5.1). A
matrix is well-free provided it has no columns that consist of all zeros above (but
not including) the main diagonal, unless that column of zeros lies to the left of a
block of all zeros. That is, no columns of the form shown in Fig. 2.2 appear in the
matrix.

As stated in Table 2.1, it was shown in [8] that the matrices related to poly-
nomials satisfying recurrence relations of the form (2.3) are not just well-free, but
ðH; 1Þ-well-free; i.e., they are well-free and also have an ðH; 1Þ-quasiseparable
structure, which is defined next.

2.1.2 Main Tool: Quasiseparable Structure

In this section we give a definition of the structure central to the results of this
paper, and explain one of the results shown above in Table 2.1. We begin with the
definition of ðH; mÞ-quasiseparability.

Definition 1 (ðH; mÞ-quasiseparable matrices). Let A be a strongly upper Hes-
senberg matrix (i.e. upper Hessenberg with nonzero subdiagonal elements: ai;j ¼ 0

Table 2.1 Correspondence
between recurrence relations
satisfied by polynomials and
related subclasses of
quasiseparable matrices,
from [8]

Recurrence relations Matrices

Real-orthogonal
three-term (2.1)

Irreducible tridiagonal matrices

Szegö two-term (2.4)/
three-term (2.4)

Almost unitary Hessenberg
matrices

General three-term (2.3) ðH; 1Þ-well-free (Definition 4)
Szegö-type two-term (2.5) ðH; 1Þ-semiseparable (Definition 3)
EGO-type two-term (2.16) ðH; 1Þ-quasiseparable (Definition 1)

1 More details on the meaning of these numbers will be provided in Sect. 2.2.1.
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for i [ jþ 1; and aiþ1;i 6¼ 0 for i ¼ 1; . . .; n� 1). Then over all symmetric2 par-
titions of the form

(i) if max rank A12 ¼ m; then A is ðH; mÞ-quasiseparable, and
(ii) if max rank A12�m; then A is weakly ðH; mÞ-quasiseparable.

For instance, the rank m blocks (respectively rank at most m blocks) of a
5� 5 ðH; mÞ-quasiseparable matrix (respectively weakly ðH; mÞ-quasiseparable
matrix) would be those shaded below:

Fig. 2.1 Relations between subclasses of (H, 1)-quasiseparable matrices, from [8]

Fig. 2.2 Illustration of a well

2 A12 ¼ Að1 : k; k þ 1 : nÞ; k ¼ 1; . . .; n� 1 in the MATLAB notation.
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2.1.3 Motivation to Extend Beyond the (H, 1) Case

In this paper, we extend the results of these classifications to include more general
recurrence relations. Such generalizations are motivated by several examples for
which the results of [8] are inapplicable as they are not order ðH; 1Þ; one of the
simplest of such is presented next.

Consider the three-term recurrence relations (2.1), one could ask what classes
of matrices are related to polynomials satisfying such recurrence relations if more
than three terms are included. More specifically, consider recurrence relations of
the form

x � rk�1ðxÞ ¼ �ak;krkðxÞ � ak�1;krk�1ðxÞ � � � � � ak�ðl�1Þ;k � rk�ðl�1ÞðxÞ ð2:7Þ

It will be shown that this class of so-called l-recurrent polynomials is related via
(2.6) to ð1; l� 2Þ-banded matrices (i.e., one nonzero subdiagonal and l� 2 non-
zero superdiagonals) of the form

A ¼

a0;1 � � � a0;l�1 0 � � � 0

a1;1 a1;2 � � � a1;l
. .

. ..
.

0 a2;2
. .

.
0

..

. . .
. . .

. . .
.

an�ðl�1Þ;n

..

. . .
.

an�2;n�2
..
.

0 � � � � � � 0 an�1;n�1 an�1;n

2
66666666664

3
77777777775

: ð2:8Þ

This equivalence cannot follow from the results of [8] as summarized in Table 2.1
because those results are limited to the simplest ðH; 1Þ-quasiseparable case. As we
shall see in a moment, the matrix A of (2.8) is ðH; l� 2Þ-quasiseparable.

Considering the motivating example of the matrix A of (2.8), it is easy to see
that the structure forces many zeros into the blocks A12 of Definition 1 (the shaded
blocks above), and hence the ranks of these blocks can be small compared to their
size. It can be seen that in the case of an ð1;mÞ-banded matrix, the matrices A12

have rank at most m; and so are ðH; mÞ-quasiseparable.
This is only one simple example of a need to extend the results listed in

Table 2.1 from the scalar ðH; 1Þ-quasiseparable case to the block ðH; mÞ-quasi-
separable case.

2.1.4 Main Results

The main results of this paper are summarized next by Table 2.2 and Fig. 2.3,
analogues of Table 2.1 and Fig. 2.1 above, for the most general case considered in
this paper.
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Table 2.2 and Fig. 2.3 both mention ðH; mÞ-well-free matrices. It is not
immediately obvious from the definition of ðH; 1Þ-well-free matrices how one
should define an ðH; mÞ-well-free matrix in a natural way. In Sect. 2.5, the details
of this extension are given, but we briefly describe the new definition here. A
matrix is ðH; mÞ-well-free if

rank BðmÞi ¼ rank Bðmþ1Þ
i i ¼ 1; 2; . . . ð2:9Þ

where the matrices BðmÞi are formed from the columns of the partition A12 of
Definition 1, as

We show in this paper that ðH; mÞ-well-free matrices and polynomials satisfying

rkðxÞ ¼ ðdk;kxþ ek;kÞrk�1xþ � � � þ ðdkþm�2;kxþ ekþm�2;kÞrkþm�3ðxÞ;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mþ 1 terms

ð2:10Þ

provide a complete characterization of each other.

Table 2.2 Correspondence between polynomial systems and subclasses of ðH; mÞ-quasisepa-
rable matrices

Recurrence relations Matrices

Classical Real-orthogonal three-term (1) Irreducible tridiagonal
Szegö two-term (4)/three-term (2) Almost unitary Hessenberg

[8] General three-term (3) ðH; 1Þ-well-free (Definition 4)
Szegö-type two-term (5) ðH; 1Þ-semiseparable (Definition 3)
EGO-type two-term (16) ðH; 1Þ-quasiseparable (Definition 1)

This paper General l-term (45) ðH; mÞ-well-free (Definition 5)
Szegö-type two-term (32) ðH; mÞ-semiseparable (Definition 3)
EGO-type two-term (2.15) ðH; mÞ-quasiseparable (Definition 1)

Fig. 2.3 Relations between subclasses of (H, m)-quasiseparable matrices
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Next, consider briefly the m ¼ 1 case to see that this generalization reduces
properly in the ðH; 1Þ case. For m ¼ 1; this relation implies that no wells of width
m ¼ 1 form as illustrated in Fig. 2.2.

2.2 Correspondences Between Hessenberg Matrices
and Polynomial Systems

In this section we give details of the correspondence between ðH; mÞ-quasisepa-
rable matrices and systems of polynomials defined via (2.6), and explain how this
correspondence can be used in classifications of quasiseparable matrices in terms
of recurrence relations and vice versa.

2.2.1 A Bijection Between Invertible Triangular Matrices
and Polynomial Systems

Let T be the set of invertible upper triangular matrices and P be the set of
polynomial systems frkg with deg rk ¼ k: We next demonstrate that there is a
bijection between T and P: Indeed, given a polynomial system R ¼
fr0ðxÞ; r1ðxÞ; . . .; rnðxÞg 2 P satisfying deg ðrkÞ ¼ k; there exist unique n-term
recurrence relations of the form

r0ðxÞ ¼ a0;0; x � rk�1ðxÞ ¼ akþ1;k � rkðxÞ � ak;k � rk�1ðxÞ � � � � � a1;k � r0ðxÞ;
akþ1;k 6¼ 0; k ¼ 1; . . .; n ð2:11Þ

because this formula represents x � rk�1 2 Pk (Pk being the space of all polyno-
mials of degree at most k) in terms of rk; rk�1; rk�2; . . .; r0; which form a basis in
Pk; and hence these coefficients are unique. Forming a matrix B 2 T from these
coefficients as B ¼ ai;j

� �n

i;j¼0 (with zeros below the main diagonal), it is clear that

there is a bijection between T and P; as they share the same unique parameters.
It is shown next that this bijection between invertible triangular matrices and

polynomials systems (satisfying deg rkðxÞ ¼ k) can be viewed as a bijection
between strongly Hessenberg matrices together with two free parameters and
polynomial systems (satisfying deg rkðxÞ ¼ k). Furthermore, the strongly Hes-
senberg matrices and polynomial systems of this bijection are related via (2.6).
Indeed, it was shown in [24] that the confederate matrix A; the strongly upper
Hessenberg matrix defined by

A ¼

a0;1 a0;2 a0;3 � � � a0;n

a1;1 a1;2 a1;3 � � � a1;n

0 a2;2 a2;3
. .

. ..
.

..

. . .
. . .

. . .
.

an�2;n

0 � � � 0 an�1;n�1 an�1;n

2

6666664

3

7777775
; ð2:12Þ
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or in terms of B as

B ¼

a0;0 a0;1 a0;2 a0;3 � � � a0;n
0 a1;1 a1;2 a1;3 � � � a1;n

0 0 a2;2 a2;3
. .

. ..
.

..

. ..
. . .

. . .
. . .

.
an�2;n

..

.
0 � � � 0 an�1;n�1 an�1;n

0 0 � � � 0 0 an;n

2
666666664

3
777777775

¼

a0;0
0
..
.

A
0

0 0 � � � 0 an;n

2
66664

3
77775
;

ð2:13Þ

is related to the polynomial system R via (2.6). This shows the desired bijection,
with a0;0 and an;n serving as the two free parameters.

Remark 1 Based on this discussion, if R ¼ fr0; r1; . . .; rn�1; rng is related to a
matrix A via (2.6), then Ra;b ¼ ar0;

1
ar1; . . .; 1

arn�1; brn

� �
for any nonzero parame-

ters a and b provides a full characterization of all polynomial systems related to the
matrix A:

2.2.2 Generators of (H, m)-quasiseparable Matrices

It is well known that Definition 2, given in terms of ranks is equivalent to another
definition in terms of a sparse representation of the elements of the matrix called
generators of the matrix, see, e.g., [13] and the references therein. Such sparse
representations are often used as inputs to fast algorithms involving such matrices.
We give next this equivalent definition.

Definition 2 (Generator definition for ðH; mÞ-quasiseparable matrices). A matrix
A is called ðH; mÞ-quasiseparable if (i) it is upper Hessenberg, and (ii) it can be
represented in the form

ð2:14Þ

where b�ij ¼ biþ1 � � � bj�1 for j [ iþ 1 and b�ij ¼ 1 for j ¼ iþ 1: The elements

fpk; qk; dk; gk; bk; hkg;
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called the generators of the matrix A; are matrices of sizes

pkþ1qk dk gk bk hk

Sizes 1� 1 1� 1 1� uk uk�1 � uk uk�1 � 1
Range k 2 ½1; n� 1� k 2 ½1; n� k 2 ½1; n� 1� k 2 ½2; n� 1� k 2 ½2; n�

subject to maxk uk ¼ m: The numbers uk; k ¼ 1; . . .; n� 1 are called the orders of
these generators.

Remark 2 The generators of an ðH; mÞ-quasiseparable matrix give us an Oðnm2Þ
representation of the elements of the matrix. In the ðH; 1Þ-quasiseparable case,
where all generators can be chosen simply as scalars, this representation is OðnÞ:

Remark 3 The subdiagonal elements, despite being determined by a single value,
are written as a product pkþ1qk; k ¼ 1; . . .; n� 1 to follow standard notations used
in the literature for quasiseparable matrices. We emphasize that this product acts as
a single parameter in the Hessenberg case to which this paper is devoted.

Remark 4 The generators in Definition 2 can be always chosen to have sizes
uk ¼ m for all k by padding them with zeros to size m:

Also, the ranks of the submatrices A12 of Definition 1 represent the smallest

possible sizes of the corresponding generators. That is, denoting by AðkÞ12 ¼ Að1 :
k; k þ 1 : nÞ the partition A12 of the k-th symmetric partition, then

rank AðkÞ12 � uk; k ¼ 1; . . .; n:

Furthermore, if generators can be chosen such that

max
k

rank AðkÞ12 ¼ max
k

uk ¼ m;

then A is an ðH; mÞ-quasiseparable matrix, whereas if

max
k

rank AðkÞ12 � max
k

uk ¼ m;

then A is a weakly ðH; mÞ-quasiseparable matrix, following the terminology of
Definition 1. As stated above, we will avoid making explicit distinctions between
ðH; mÞ-quasiseparable matrices and weakly ðH; mÞ-quasiseparable matrices.

For details on the existence of minimal size generators, see [16].

2.2.3 A Relation Between Generators of Quasiseparable
Matrices and Recurrence Relations for Polynomials

One way to establish a bijection (up to scaling as described in Remark 1) between
subclasses of ðH; mÞ-quasiseparable matrices and polynomial systems specified by
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recurrence relations is to deduce conversion rules between generators of the
classes of matrices and coefficients of the recurrence relations. In this approach, a
difficulty is encountered which is described by Fig. 2.4.

The difficulty is that the relation (2.2) shown in the picture is one-to-one cor-
respondence but (2.1) and (2.3) are not. This fact is illustrated by the next two
examples.

Example 1 (Nonuniqueness of recurrence relation coefficients). In contrast to the
n-term recurrence relations (2.11), other recurrence relations such as the l-term
recurrence relations (2.45) corresponding to a given polynomial system are not
unique. As a simple example of a system of polynomials satisfying more than one
set of recurrence relations of the form (2.45), consider the monomials R ¼
f1; x; x2; . . .; xng; easily seen to satisfy the recurrence relations

r0ðxÞ ¼ 1; rkðxÞ ¼ x � rk�1ðxÞ; k ¼ 1; . . .; n

as well as the recurrence relations

r0ðxÞ ¼ 1; r1ðxÞ ¼ x � rk�1ðxÞ;
rkðxÞ ¼ ðxþ 1Þ � rk�1ðxÞ � x � rk�2ðxÞ; k ¼ 2; . . .;n:

Hence a given system of polynomials may be expressed using the same recurrence
relations but with different coefficients of those recurrence relations.

Example 2 (Nonuniqueness of ðH; mÞ-quasiseparable generators). Similarly,
given an ðH; mÞ-quasiseparable matrix, there is a freedom in choosing the set of
generators of Definition 2. As a simple example, consider the matrix

0 1
2 0 � � � 0

1
2 0 1

2
. .

. ..
.

0 1
2 0 . .

.
0

..

. . .
. . .

. . .
.

1
2

0 � � � 0 1
2 0

2
666666664

3
777777775

corresponding to a system of Chebyshev polynomials. It is obviously ðH; 1Þ-
quasiseparable and can be defined by different sets of generators, with either
gk ¼ 1; hk ¼ 1

2 or gk ¼ 1
2; hk ¼ 1:

Fig. 2.4 Relations between subclasses of (H, m)-quasiseparable matrices and polynomials
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Remark 5 To overcome the difficulties of the nonuniqueness demonstrated here,
we can define equivalence classes of generators describing the same matrix and
equivalence classes of recurrence relations describing the same polynomials.
Working with representatives of these equivalence classes resolves the difficulty.

We begin classification of recurrence relations of polynomials with considering
EGO-type two-term recurrence relations (2.15) in Sect. 2.3 and associating the set
of all ðH; mÞ-quasiseparable matrices with them. Section 2.4 covers the corre-
spondence between polynomials satisfying (2.32) and ðH; mÞ-semiseparable
matrices. In Sect. 2.5 we consider l-term recurrence relations (2.45) and
ðH; mÞ-well-free matrices.

2.3 (H, m)-quasiseparable Matrices and EGO-type Two-term
Recurrence Relations (2.15)

In this section, we classify the recurrence relations corresponding to the class of
ðH; mÞ-quasiseparable matrices. The next theorem is the main result of this
section.

Theorem 1 Suppose A is a strongly upper Hessenberg matrix. Then the following
are equivalent.

(i) A is ðH; mÞ-quasiseparable:
(ii) There exist auxiliary polynomials fFkðxÞg for some ak; bk; and ck of sizes

m� m; m� 1 and 1� m; respectively, such that the system of polynomials
frkðxÞg related to A via (2.6) satisfies the EGO-type two-term recurrence
relations

ð2:15Þ

Remark 6 Throughout the paper, we will not distinguish between ðH; mÞ-quasi-
separable and weakly ðH; mÞ-quasiseparable matrices. The difference is technical;
for instance, considering an ðH; 2Þ-quasiseparable matrix as a weakly ðH; 3Þ-quasi-
separable matrix corresponds to artificially increasing the size of the vectors FkðxÞ in
(2.15) by one. This additional entry corresponds to a polynomial system that is
identically zero, or otherwise has no influence on the other polynomial systems. In a
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similar way, any results stated for ðH; mÞ-quasiseparable matrices are valid for
weakly ðH; mÞ-quasiseparable matrices through such trivial modifications.

This theorem, whose proof will be provided by the lemma and theorems of this
section, is easily seen as a generalization of the following result for the ðH; 1Þ-
quasiseparable case from [8].

Corollary 1 Suppose A is a strongly Hessenberg matrix. Then the following are
equivalent.

(i) A is ðH; 1Þ-quasiseparable:
(ii) There exist auxiliary polynomials fFkðxÞg for some scalars ak; bk; and ck

such that the system of polynomials frkðxÞg related to A via (2.6) satisfies
the EGO-type two-term recurrence relations

F0ðxÞ
r0ðxÞ

� �
¼ 0

a0;0

� �
;

FkðxÞ
rkðxÞ

� �
¼ ak bk

ck dkxþ hk

� �
Fk�1ðxÞ
rk�1ðxÞ

� �
: ð2:16Þ

In establishing the one-to-one correspondence between the class of polynomials
satisfying (2.15) and the class of ðH; mÞ-quasiseparable matrices, we will use the
following lemma which was given in [7] and is a consequence of Definition 2 and [24].

Lemma 1 Let A be an ðH; mÞ-quasiseparable matrix specified by its generators
as in Definition 2. Then a system of polynomials frkðxÞg satisfies the recurrence
relations

rkðxÞ ¼
1

pkþ1qk
ðx� dkÞrk�1ðxÞ �

Xk�2

j¼0

gjþ1b�jþ1;khkrjðxÞ
" #

; ð2:17Þ

if and only if frkðxÞg is related to A via (2.6).

Note that we have not specified the sizes of matrices gk; bk and hk in (2.17)
explicitly but the careful reader can check that all matrix multiplications are well
defined. We will omit explicitly listing the sizes of generators where it is possible.

Theorem 2 (EGO-type two-term recurrence relations ) ðH; mÞ-quasiseparable
matrices.) Let R be a system of polynomials satisfying the EGO-type two-term
recurrence relations (2.15). Then the ðH; mÞ-quasiseparable matrix A defined by

�h1
d1
� 1

d2
c2b1 � 1

d3
c3a2b1 � 1

d4
c4a3a2b1 � � � � 1

dn
cnan�1an�2 � � � a3a2b1

1
d1

�h2
d2

� 1
d3
c3b2 � 1

d4
c4a3b2 � � � � 1

dn
cnan�1an�2 � � � a3b2

0 1
d2

�h3
d3

� 1
d4
c4b3

. .
.

� 1
dn
cnan�1 � � � a4b3

0 0 1
d3

�h4
d4

. .
. ..

.

..

. . .
. . .

. . .
. . .

.
� 1

dn
cnbn�1

0 � � � 0 0 1
dn�1

�hn
dn

2

666666666664

3

777777777775

ð2:18Þ
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with generators

corresponds to the system of polynomials R via (2.6).

Proof Considering EGO-type recurrence relations (2.15) we begin with

rkðxÞ ¼ ðdkxþ hkÞrk�1ðxÞ þ ckFk�1ðxÞ: ð2:19Þ

Using the relation Fk�1ðxÞ ¼ ak�1Fk�2ðxÞ þ bk�1rk�2ðxÞ; (2.19) becomes

rkðxÞ ¼ ðdkxþ hkÞrk�1ðxÞ þ ckbk�1rk�2ðxÞ þ ckak�1Fk�2ðxÞ ð2:20Þ

The Eq. (2.20) contains Fk�2ðxÞ which can be eliminated as it was done on the
previous step. Using the relation Fk�2ðxÞ ¼ ak�2Fk�3ðxÞ þ bk�2rk�3ðxÞ we get

rkðxÞ ¼ ðdkxþ hkÞrk�1ðxÞ þ ckbk�1rk�2ðxÞ þ ckak�1bk�2rk�3ðxÞ
þ ckak�1ak�2Fk�3ðxÞ:

Continue this process and noticing that F0 is the vector of zeros we will obtain the
n-term recurrence relations

rkðxÞ ¼ ðdkxþ hkÞrk�1ðxÞ þ ckbk�1rk�2ðxÞ þ ckak�1bk�2rk�3ðxÞ
þ ckak�1ak�2bk�3rk�4ðxÞ þ � � � þ ckak�1. . .a2b1r0ðxÞ; ð2:21Þ

which define the matrix (2.18) with the desired generators by using the n-term
recurrence relations (2.17).

Theorem 3 (ðH; mÞ-quasiseparable matrices ) EGO-type two-term recur-
rence relations.) Let A be an ðH; mÞ-quasiseparable matrix specified by the
generators fpk; qk; dk; gk; bk; hkg: Then the polynomial system R corresponding
to A satisfies

2 Classifications of Recurrence Relations 35



ð2:22Þ

with

ak ¼
pk

pkþ1
bT

k ; bk ¼ �
1

pkþ1
gT

k ; ck ¼
pk

pkþ1qk
hT

k ; dk ¼
1

pkþ1qk
; hk ¼ �

dk

pkþ1qk
:

Proof It is easy to see that every system of polynomials satisfying deg rk ¼ k
(e.g. the one defined by (2.22)) satisfy also the n-term recurrence relations

rkðxÞ ¼ ðakx� ak�1;kÞ � rk�1ðxÞ � ak�2;k � rk�2ðxÞ � . . .� a0;k � r0ðxÞ ð2:23Þ

for some coefficients ak; ak�1;k; . . .; a0;k: The proof is presented by showing that
these n-term recurrence relations in fact coincide with (2.17), so these coefficients
coincide with those of the n-term recurrence relations of the polynomials R: Using
relations for rkðxÞ and Fk�1ðxÞ from (2.22), we have

rkðxÞ ¼
1

pkþ1qk
ðx� dkÞrk�1ðxÞ � gk�1hkrk�2ðxÞ þ pk�1hT

k bT
k�1Fk�2ðxÞ

� �
: ð2:24Þ

Notice that again using (2.22) to eliminate Fk�2ðxÞ from the Eq. (2.24) will result
in an expression for rkðxÞ in terms of rk�1ðxÞ; rk�2ðxÞ; rk�3ðxÞ;Fk�3ðxÞ; and r0ðxÞ
without modifying the coefficients of rk�1ðxÞ; rk�2ðxÞ; or r0ðxÞ: Again applying
(2.22) to eliminate Fk�3ðxÞ results in an expression in terms of rk�1ðxÞ;
rk�2ðxÞ; rk�3ðxÞ; rk�4ðxÞ;Fk�4ðxÞ; and r0ðxÞ without modifying the coefficients of
rk�1ðxÞ; rk�2ðxÞ; rk�3ðxÞ; or r0ðxÞ: Continuing in this way, the n-term recurrence
relations of the form (2.23) are obtained without modifying the coefficients of the
previous ones.

Suppose that for some 0\j\k � 1 the expression for rkðxÞ is of the form

rkðxÞ ¼
1

pkþ1qk
½ðx� dkÞrk�1ðxÞ � gk�1hkrk�2ðxÞ

� � � � � gjþ1b�jþ1;khkrjðxÞ þ pjþ1hT
k ðb�j;kÞ

T FjðxÞ�: ð2:25Þ

Using (2.22) for FjðxÞ gives the relation

FjðxÞ ¼
1

pjþ1qj
pjqjb

T
j Fj�1ðxÞ � qjg

T
j rj�1ðxÞ

	 

: ð2:26Þ
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Inserting (2.26) into (2.25) gives

rkðxÞ ¼
1

pkþ1qk
ðx� dkÞrk�1ðxÞ � gk�1hkrk�2ðxÞ � � � � � gjb

�
j;khkrj�1ðxÞ

h

þ pjh
T
k ðb�j�1;kÞ

TFj�1ðxÞ
i
: ð2:27Þ

Therefore since (2.24) is the case of (2.25) for j ¼ k � 2; (2.25) is true for each
j ¼ k � 2; k � 3; . . .; 0; and for j ¼ 0; using the fact that F0 ¼ 0 we have

rkðxÞ ¼
1

pkþ1qk
ðx� dkÞrk�1ðxÞ � gk�1hkrk�2ðxÞ � � � � � g1b�1;khkr0ðxÞ
h i

: ð2:28Þ

Since these coefficients coincide with (2.17) that are satisfied by the polynomial
system R; the polynomials given by (2.22) must coincide with these polynomials.
This proves the theorem.

These last two theorems provide the proof for Theorem 1, and complete the
discussion of the recurrence relations related to ðH; mÞ-quasiseparable matrices.

2.4 (H, m)-semiseparable Matrices and Szegö-type
Two-term Recurrence Relations (2.32)

In this section we consider a class of ðH; mÞ-semiseparable matrices defined next.

Definition 3 (ðH; mÞ-semiseparable matrices) A matrix A is called ðH; mÞ-
semiseparable if (i) it is strongly upper Hessenberg, and (ii) it is of the form

A ¼ Bþ triuðAU ; 1Þ

with rankðAUÞ ¼ m and a lower bidiagonal matrix B; where following the
MATLAB command triu, triuðAU ; 1Þ denotes the strictly upper triangular por-
tion of the matrix AU :

Paraphrased, an ðH; mÞ-semiseparable matrix has arbitrary diagonal entries,
arbitrary nonzero subdiagonal entries, and the strictly upper triangular part of a
rank m matrix. Obviously, an ðH; mÞ-semiseparable matrix is ðH; mÞ-quasisepa-

rable. Indeed, let A be ðH; mÞ-semiseparable and n� n: Then it is clear that, if AðkÞ12
denotes the matrix A12 of the k-th partition of Definition 1, then

rank AðkÞ12 ¼ rank Að1 : k; k þ 1 : nÞ ¼ rank AUð1 : k; k þ 1 : nÞ�m;
k ¼ 1; . . .; n� 1;

and A is ðH; mÞ-quasiseparable by Definition 1.

Example 3 (Unitary Hessenberg matrices are ðH; 1Þ-semiseparable). Consider
again the unitary Hessenberg matrix
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H ¼

�q�0q1 �q�0l1q2 �q�0l1l2q3 � � � �q�0l1l2l3 � � � ln�1qn

l1 �q�1q2 �q�1l2q3 � � � �q�1l2l3 � � �ln�1qn

0 l2 �q�2q3 � � � �q�2l3 � � � ln�1qn

..

. . .
. . .

. . .
. ..

.

0 � � � 0 ln�1 �q�n�1qn

2
666664

3
777775
ð2:29Þ

which corresponds to a system of Szegö polynomials. Its strictly upper triangular
part is the same as in the matrix

B ¼

�q�0q1 �q�0l1q2 �q�0l1l2q3 � � � �q�0l1l2l3 � � � ln�1qn

�q1q
�
1

l1
�q�1q2 �q�1l2q3 � � � �q�1l2l3 � � � ln�1qn

�q1q
�
2

l1l2
�q2q

�
2

l2
�q�2q3 � � � �q�2l3 � � � ln�1qn

..

. ..
. ..

. . .
. ..

.

� q1q
�
n�1

l1l2���ln�1
� q2q

�
n�1

l2l3���ln�1
� q3q

�
n�1

l3l4���ln�1
� � � �q�n�1qn

2

66666664

3

77777775

:

ð2:30Þ

which can be constructed as, by definition,3 lk 6¼ 0; k ¼ 1; . . .; n� 1: It is easy to
check that the rank of the matrix B is one.4 Hence the matrix (2.29) is ðH; 1Þ-
semiseparable. Recall that any unitary Hessenberg matrix (2.29) uniquely corre-
sponds to a system of Szegö polynomials satisfying the recurrence relations

/0ðxÞ
/#

0 ðxÞ

� �
¼ 1

l0

1
1

� �
;

/kðxÞ
/#

k ðxÞ

� �
¼ 1

lk

1 �q�k
�qk 1

� �
/k�1ðxÞ
x/#

k�1ðxÞ

� �
: ð2:31Þ

The next theorem gives a classification of the class of ðH; mÞ-semiseparable
matrices in terms of two-term recurrence relations that naturally generalize the
Szegö-type two term recurrence relations. Additionally, it gives a classification in
terms of their generators as in Definition 2.

Theorem 4 Suppose A is a strongly upper Hessenberg n� n matrix. Then the
following are equivalent.

(i) A is ðH; mÞ-semiseparable:
(ii) There exists a set of generators of Definition 2 corresponding to A such that

bk is invertible for k ¼ 2; . . .; n:
(iii) There exist auxiliary polynomials fGkðxÞg for some ak; bk; and ck of sizes m�

m;m� 1 and 1� m; respectively, such that the system of polynomials frkðxÞg
related to A via (2.6) satisfies the Szegö-type two-term recurrence relations

3 The parameters lk associated with the Szegö polynomials are defined by lk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jqkj2

q
for

0� jqkj\1 and lk ¼ 1 for jqkj ¼ 1; and since jqkj � 1 for all k; we always have lk 6¼ 0:
4 Every i-th row of B equals the row number ði� 1Þ times q�i�1=q

�
i�2li�1:
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ð2:32Þ

This theorem, whose proof follows from the results later in this section, leads to
the following corollary, which summarizes the results for the simpler class of
ðH; 1Þ-semiseparable matrices as given in [8].

Corollary 2 Suppose A is an ðH; 1Þ-quasiseparable matrix. Then the following
are equivalent.

(i) A is ðH; 1Þ-semiseparable:
(ii) There exists a set of generators of Definition 2 corresponding to A such that

bk 6¼ 0 for k ¼ 2; . . .; n:
(iii) There exist auxiliary polynomials fGkðxÞg for some scalars ak; bk; and ck

such that the system of polynomials frkðxÞg related to A via (2.6) satisfies
the Szegö-type two-term recurrence relations

G0ðxÞ
r0ðxÞ

� �
¼ a0;0

a0;0

� �
;

GkðxÞ
rkðxÞ

� �
¼ ak bk

ck 1

� �
Gk�1ðxÞ

ðdkxþ hkÞrk�1ðxÞ

� �
: ð2:33Þ

2.4.1 (H, m)-semiseparable Matrices: Generator Classification

We next give a lemma that provides a classification of ðH; mÞ-semiseparable
matrices in terms of generators of an ðH; mÞ-quasiseparable matrix.

Lemma 2 An ðH; mÞ-quasiseparable matrix is ðH; mÞ-semiseparable if and only
if there exists a choice of generators fpk; qk; dk; gk; bk; hkg of the matrix such that
matrices bk are nonsingular5 for all k ¼ 2; . . .; n� 1:

Proof Let A be ðH; mÞ-semiseparable with triuðA; 1Þ ¼ triuðAU ; 1Þ; where
rankðAUÞ ¼ m: The latter statement implies that there exist row vectors gi and
column vectors hj of sizes m such that AUði; jÞ ¼ gihj for all i; j; and therefore we
have Aij ¼ gihj; i\j or Aij ¼ gib�ij hj; i\j with bk ¼ Im:

Conversely, suppose the generators of A are such that bk are invertible matrices
for k ¼ 2; . . .; n� 1: Then the matrices

5 The invertibility of bk implies that all bk are square m� m matrices.
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AU ¼

gib�i;jhj if 1� i\j� n
gib�1

i hi if 1\i ¼ j\n
giðb�j�1;iþ1Þ

�1hj if 1\j\i\n
0 if j ¼ 1 or i ¼ n

8
>><

>>:
B ¼

di if 1� i ¼ j� n
piqj if 1� iþ 1 ¼ j� n

0 otherwise

8
<

:

are well defined, rankðAUÞ ¼ m;B is lower bidiagonal, and A ¼ Bþ triuðAU ; 1Þ:

Remark 7 We emphasize that the previous lemma guarantees the existence of
generators of a ðH; mÞ-semiseparable matrix with invertible matrices bk; and that
this condition need not be satisfied by all such generator representations. For
example, the following matrix

1 1 1 1 1 0
1 1 2 2 2 0

1 1 3 3 0
1 1 4 0

1 1 0
1 1

2

6666664

3

7777775

is ðH; 1Þ-semiseparable, however it is obviously possible to choose a set of gen-
erators for it with b5 ¼ 0:

2.4.2 (H, m)-semiseparable Matrices. Recurrence Relations
Classification

In this section we present theorems giving the classification of ðH; mÞ-semisep-
arable matrices as those corresponding to systems of polynomials satisfying the
Szegö-type two-term recurrence relations (2.32).

Theorem 5 (Szegö-type two-term recurrence relations ) ðH; mÞ-semiseparable
matrices) Let R ¼ fr0ðxÞ; . . .; rn�1ðxÞg be a system of polynomials satisfying the
recurrence relations (2.32) with rankðaT

k � bkckÞ ¼ m: Then the ðH; mÞ-semi-
separable matrix A defined by

�h1þc1b0
d1

� 1
d2
c2ða1 � b1c1Þb0 � � � � 1

dn
cnðan�1 � bn�1cn�1Þ � � � ða1� b1c1Þb0

1
d1

�h2þc2b1
d2

. .
.
� 1

dn
cnðan�1 � bn�1cn�1Þ � � � ða2� b2c2Þb1

0 1
d2

. .
. ..

.

..

. . .
. . .

.
�hnþcnbn�1

dn

0 � � � 0 1
dn

2
6666666664

3
7777777775

ð2:34Þ
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with generators

corresponds to the R via (2.6).

Proof Let us show that the polynomial system satisfying the Szegö-type two-term
recurrence relations (2.32) also satisfies EGO-type two-term recurrence relations
(2.15). By applying the given two-term recursion, we have

GkðxÞ
rkðxÞ

� �
¼ akGk�1ðxÞ þ bkðdk þ hkÞrk�1ðxÞ

ckGk�1ðxÞ þ ðdk þ hkÞrk�1ðxÞ

� �
: ð2:35Þ

Multiplying the second equation in (2.35) by bk and subtracting from the first
equation we obtain

GkðxÞ � bkrkðxÞ ¼ ðak � bkckÞGk�1ðxÞ: ð2:36Þ

Denoting in (2.36) Gk�1 by Fk and shifting indices from k to k � 1 we get the
recurrence relation

FkðxÞ ¼ ðak�1 � bk�1ck�1ÞFk�1ðxÞ þ bk�1rk�1ðxÞ: ð2:37Þ

In the same manner substituting (2.36) in the second equation of (2.35) and
shifting indices one can be seen that

rkðxÞ ¼ ckðak�1 � bk�1ck�1ÞFk�1ðxÞ þ ðdkxþ hk þ ckbk�1Þrk�1ðxÞ: ð2:38Þ

Equations (2.37) and (2.38) together give necessary EGO-type two-term recur-
rence relations for the system of polynomials:

FkðxÞ
rkðxÞ

� �
¼ ak�1 � bk�1ck�1 bk�1

ckðak�1 � bk�1ck�1Þ dkxþ hk þ ckbk�1

� �
Fk�1ðxÞ
rk�1ðxÞ

� �
: ð2:39Þ

The result follows from Theorem 2 and (2.39).
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Theorem 6 (ðH; mÞ-semiseparable matrices ) Szegö-type two-term recurrence
relations) Let A bea ðH; mÞ-semiseparable matrix. Then for a set of generators
fpk; qk; dk; gk; bk; hkg of A such that each bk is invertible, the polynomial system R
corresponding to A satisfies (2.32); specifically;

ð2:40Þ

with ukðxÞ ¼ x� dk þ gkb�1
k hk; vk ¼ pkþ1qkbT

kþ1 � gT
kþ1hT

k ðbT
k Þ
�1:

Proof According to the definition of ðH; mÞ-semiseparable matrices the given
polynomial system R must satisfy EGO-type two-term recurrence relations (2.15)
with bk invertible for all k: For the recurrence relations

FkðxÞ
rkðxÞ

� �
¼ 1

pkþ1qk

pkqkbT
k �qkgT

k
pkhT

k x� dk

� �
Fk�1ðxÞ
rk�1ðxÞ

� �
; ð2:41Þ

let us denote pkþ1FkðxÞ in (2.41) as GkðxÞ; and then we can rewrite these equations
as

Gk�1ðxÞ ¼ bT
k Gk�2ðxÞ � gT

k rk�1ðxÞ;

rkðxÞ ¼
1

pkþ1qk
hT

k Gk�2ðxÞ þ ðx� dkÞrk�1ðxÞ
� �

:
ð2:42Þ

Using the invertibility of bk we are able to derive the Gk�2ðxÞ from the first
equation of (2.42) and inserting it in the second equation we obtain

rkðxÞ ¼
1

pkþ1qk
hT

k ðbT
k Þ
�1Gk�1ðxÞ þ ðx� dk þ gkb�1

k hkÞrk�1ðxÞ
h i

: ð2:43Þ

The second necessary recurrence relation can be obtained by substituting (2.43) in
the first equation of (2.42) and shifting indices from k � 1 to k:

GkðxÞ ¼
1

pkþ1qk
ðpkþ1qkbT

kþ1 � gT
kþ1hT

k ðbT
k Þ
�1ÞGk�1ðxÞ

h

� gT
kþ1ðx� dk þ gkb�1

k hkÞrk�1ðxÞ
i

ð2:44Þ

This completes the proof.

This completes the justification of Theorem 4.
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2.5 (H, m)-well-free Matrices and Recurrence
Relations (2.45)

In this section, we begin by considering the l-term recurrence relations of the
form

r0ðxÞ ¼ a0;0; rkðxÞ ¼
Xk

i¼1

ðdikxþ eikÞri�1ðxÞ; k ¼ 1; 2; . . .; l� 2;

rkðxÞ ¼
Xk

i¼k�lþ2

ðdikxþ eikÞri�1ðxÞ; k ¼ l� 1; l; . . .; n:

ð2:45Þ

As we shall see below, the matrices that correspond to (2.45) via (2.6) form a new
subclass of ðH; mÞ-quasiseparable matrices. As such, we then can also give a
generator classification of the resulting class. This problem was addressed in [8]
for the l ¼ 3 case; that is, for (2.3),

r0ðxÞ ¼ a0;0; r1ðxÞ ¼ ða1x� d1Þ � r0ðxÞ; ð2:46Þ

rkðxÞ ¼ ðakx� dkÞ � rk�1ðxÞ � ðbkxþ ckÞ � rk�2ðxÞ: ð2:47Þ

and was already an involved problem. To explain the results in the general
case more clearly, we begin by recalling the results for the special case when
l ¼ 3:

2.5.1 General Three-term Recurrence Relations
(2.3) and (H, 1)-well-free Matrices

In [8], it was proved that polynomials that satisfy the general three-term recurrence
relations (2.46) were related to a subclassf ðH; 1Þ-quasiseparable matrices denoted
ðH; 1Þ-well-free matrices. A definition of this class is given next.

Definition 4 (ðH; 1Þ-well-free matrices)

• An n� n matrix A ¼ ðAi;jÞ is said to have a well of size one in column 1\k\n
if Ai;k ¼ 0 for 1� i\k and there exists a pair ði; jÞ with 1� i\k and k\j� n
such that Ai;j 6¼ 0:

• A ðH; 1Þ-quasiseparable matrix is said to be ðH; 1Þ-well-free if none of its
columns k ¼ 2; . . .; n� 1 contain wells of size one.

Verbally, a matrix has a well in column k if all entries above the main diagonal
in the k-th column are zero, except if all entries in the upper-right block to the right
of these zeros are also zeros, as shown in the following illustration.
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The following theorem summarizes the results of [8] that will be generalized in
this section.

Theorem 7 Suppose A is a strongly upper Hessenberg n� n matrix. Then the
following are equivalent.

(i) A is ðH; 1Þ-well-free.
(ii) There exists a set of generators of Definition 2 corresponding to A such that

hk 6¼ 0 for k ¼ 2; . . .; n:
(iii) The system of polynomials related to A via (2.6) satisfies the general three-

term recurrence relations (2.46).

Having provided these results, the next goal is, given the l-term recurrence
relations (2.45), to provide an analogous classification. A step in this direction can
be taken using a formula given by Barnett in [4] that gives for such recurrence
relations a formula for the entries of the related matrix. For the convenience of the
reader, a proof of this lemma is given at the end of this section (no proof was given
in [4]).

Lemma 3 Let R ¼ fr0ðxÞ; . . .; rn�1ðxÞg be a system of polynomials satisfying the
recurrence relations (2.45). Then the strongly Hessenberg matrix

A ¼

a11 a12 a13 � � � a1n
1

d11
a22 a23 � � � a2n

0 1
d22

a33 � � � a3n

..

. . .
. . .

. . .
. ..

.

0 � � � 0 1
dn�1;n�1

ann

2
6666664

3
7777775

ð2:48Þ

with entries

aij ¼ �
1
djj

di�1;j

di�1;i�1
þ eij þ

Xj�1

s¼i

aisdsj

 !

d0j

d00
¼ 0; 8j; dij ¼ eij ¼ 0; i\j� lþ 2

ð2:49Þ

corresponds to R via (2.6).
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Remark 8 While Lemma 3 describes the entries of the matrix A corresponding to
polynomials satisfying the l-term recurrence relations (2.45), the structure of A is
not explicitly specified by (2.49). Indeed, as surveyed in this section, even in the
simplest case of generalized three-term recurrence relations (2.3), the latter do not
transparently lead to the characteristic quasiseparable and well-free properties of
the associated matrices.

2.5.2 (H, m)-well-free Matrices

It was recalled in Sect. 2.5.1 that in the simplest case of three-term recurrence
relations the corresponding matrix was ðH; 1Þ-quasiseparable, and moreover,
ðH; 1Þ-well-free. So, one might expect that in the case of l-term recurrence rela-
tions (2.45), the associated matrix might turn out to be ðH; l� 2Þ-quasiseparable,
but how does one generalize the concept of ðH; 1Þ-well-free? The answer to this is
given in the next definition.

Definition 5 (ðH; mÞ-well-free matrices)

• Let A be an n� n matrix, and fix constants k;m 2 ½1; n� 1�: Define the matrices

Bðk;mÞj ¼ Að1 : k; jþ k : jþ k þ ðm� 1ÞÞ; j ¼ 1; . . .; n� k � m:

Then if for some j;

rankðBðk;mþ1Þ
j Þ[ rankðBðk;mÞj Þ;

the matrix A is said to have a well of size m in partition k:
• A ðH; mÞ-quasiseparable matrix is said to be ðH; mÞ-well-free if it contains no

wells of size m:

One can understand the matrices Bðk;mÞj of the previous definition as, for con-
stant k and m and as j increases, a sliding window consisting of m consecutive
columns. Essentially, the definition states that as this window is slid through the
partition A12 of Definition 1, if the ranks of the submatrices increase at any point
by adding the next column, this constitutes a well. So a ðH; mÞ-well-free matrix is
such that each column of all partitions A12 is the linear combination of the m
previous columns of A12:

2 Classifications of Recurrence Relations 45



Notice that Definition 5 reduces to Definition 4 in the case when m ¼ 1: Indeed,
if m ¼ 1; then the sliding windows are single columns, and an increase in rank is
the result of adding a nonzero column to a single column of all zeros. This is
shown next in (2.50).

ð2:50Þ

In order for a matrix to be ðH; 1Þ-quasiseparable, any column of zeros in A12

must be the first column of A12; that is, in (2.50) j ¼ 1: Thus a well of size one is
exactly a column of zeros above the diagonal, and some nonzero entry to the right
of that column, exactly as in Definition 4.

With the class of ðH; mÞ-well-free matrices defined, we next present a theorem
containing the classifications to be proved in this section.

Theorem 8 Suppose A is a strongly upper Hessenberg n� n matrix. Then the
following are equivalent.

(i) A is ðH; mÞ-well-free.
(ii) There exists a set of generators of Definition 2 corresponding to A such that

bk are companion matrices for k ¼ 2; . . .; n� 1; and hk ¼ e1 for k ¼
2; . . .; n; where e1 is the first column of the identity matrix of appropriate size.

(iii) The system of polynomials related to A via (2.6) satisfies the general three-
term recurrence relations (2.45).

This theorem is an immediate corollary of Theorems 9, 10 and 11.

2.5.3 (H, m)-well-free Matrices: Generator Classification

Theorem 9 An ðH; mÞ-quasiseparable matrix is ðH; mÞ-well-free if and only if
there exists a choice of generators fpk; qk; dk; gk; bk; hkg of the matrix that are of
the form

bk ¼

0 0 � � � 0 nk;1

1 0 . .
. ..

. ..
.

0 1 . .
. ..

. ..
.

..

. . .
. . .

.
0 nk;m�1

0 � � � 0 1 nk;m

2
6666664

3
7777775
; k¼ 2; . . .;n�1; hk¼

1
0
..
.

..

.

0

2
666664

3
777775
; k¼ 2; . . .;n: ð2:51Þ
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Proof Let A ¼ ðaijÞ be an ðH; mÞ-well-free matrix. Then due to the low rank
property of off-diagonal blocks, its entries satisfy

aij ¼
Xj�1

s¼j�m

aisasj; if i\j� m: ð2:52Þ

It is easy to see that an ðH; mÞ-well-free matrix B with

dk ¼ akk; k ¼ 1; . . .; n; pkþ1qk ¼ akþ1;k; k ¼ 1; . . .; n� 1;

gk ¼ ak;kþ1 � � � ak;kþm

� �
; k ¼ 1; . . .; n� 1; hk ¼ ½1 0 � � � 0�T ; k ¼ 2; . . .; n;

bk ¼

0 0 � � � 0 ak�mþ1;kþ1

1 0 . .
. ..

. ..
.

0 1 . .
. ..

. ..
.

..

. . .
. . .

.
0 ak�1;kþ1

0 � � � 0 1 ak;kþ1

2
6666664

3
7777775
; k ¼ 2; . . .; n� 1: ð2:53Þ

coincides with A.
Conversely, suppose A is an ðH; mÞ-quasiseparable matrix whose generators

satisfy (2.51). Applying (2.14) from Definition 2 it follows that

aij ¼ gib
�
i;jhj ¼

mi;j�i i ¼ 1; . . .; n j ¼ i; . . .; iþ m;Pj�1
s¼j�m aisnj�m;s�jþmþ1 i ¼ 1; . . .; n j ¼ iþ mþ 1; . . .; n:

�

ð2:54Þ

This is equivalent to a summation of the form (2.52), demonstrating the low-rank
property, and hence the matrix A is ðH; mÞ-well-free according to Definition 5.

This result generalizes the generator classification of ðH; 1Þ-well-free matrices
as given in [8], stated as a part of Theorem 7.

2.5.4 (H, m)-well-free Matrices. Recurrence Relation
Classification

In this section, we will prove that it is exactly the class of ðH; mÞ-well-free
matrices that correspond to systems of polynomials satisfying l-term recurrence
relations of the form (2.45)

Theorem 10 (l-term recurrence relations ) ðH; l� 2Þ-well-free matrices) Let
A ¼ ðaijÞni;j¼1 be a matrix corresponding to a system of polynomials R ¼
fr0ðxÞ; . . .; rn�1ðxÞg satisfying (2.45). Then A is ðH; mÞ-well-free.
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Proof The proof is presented by demonstrating that A has a set of generators of
the form (2.51), and hence is ðH; mÞ-well-free. In particular, we show that

dk ¼ akk; k ¼ 1; . . .; n; pkþ1qk ¼
1

dkk
; k ¼ 1; . . .; n� 1;

gk ¼ ak;kþ1 � � � ak;kþl�2
� �

; k ¼ 1; . . .; n� 1;

hk ¼ ½1 0 � � � 0 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
l�2

�T ; k ¼ 2; . . .; n;

bk ¼

0 0 � � � 0 � dk;kþl�2

dkþl�2;kþl�2

1 0 . .
. ..

. ..
.

0 1 . .
. ..

. ..
.

..

. . .
. . .

.
0 �dkþl�4;kþl�2

dkþl�2;kþl�2

0 � � � 0 1 �dkþl�3;kþl�2

dkþl�2;kþl�2

2
666666664

3
777777775

; k ¼ 2; . . .; n� 1; ð2:55Þ

with dij

djj
¼ 0 if i [ n� lþ 2 forms a set of generators of A: We show that with this

choice, the entries of the matrix A coincide with those of (2.49). From Definition 2,
the choice of dk as the diagonal of A and choice of pkþ1qk as the subdiagonal entries
of (2.48) produces the desired result in these locations. We next show that the
generators gk; bk and hk define the upper triangular part of the matrix A correctly.

Consider first the product gibiþ1biþ2 � � � biþt; and note that

gibiþ1biþ2 � � � biþt ¼ ai;iþtþ1 � � � ai;iþtþl�2
� �

: ð2:56Þ

Indeed, for t ¼ 0; (2.56) becomes

gi ¼ ai;iþ1 � � � ai;iþl�2
� �

;

which coincides with the choice in (2.55) for each i; and hence the relation is true
for t ¼ 0: Suppose next that the relation is true for some t: Then using the lower
shift structure of the choice of each bk of (2.55) and the formula (2.49), we have

gibiþ1biþ2 � � � biþtþ1 ¼ ai;iþtþ1 � � � ai;iþtþl�2
� �

biþtþ1

¼ ai;iþtþ2 � � � ai;iþtþl�2

Xiþtþl�2

p¼iþtþ1

�aipdp;iþtþl�1

diþtþl�1;iþtþl�1

" #

¼ ai;iþtþ2 � � � ai;iþtþl�1
� �

: ð2:57Þ

And therefore

gib
�
ij hj ¼ aij � � � ai;jþs�1

� �
hj ¼ aij; j [ i

so (2.55) are in fact generators of the matrix A as desired.
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Theorem 11 (ðH; mÞ-well-free matrices ) ðmþ 2Þ-term recurrence relations)
Let A be an ðH; mÞ-well-free matrix. Then the polynomials system related to A via
(2.6) satisfies the l-term recurrence relations (2.45).

Proof By Theorem 9, there exists a choice of generators of A of the form

dk ¼ mk;0; k ¼ 1; . . .; n; pkþ1qk ¼ lk; k ¼ 1; . . .; n� 1;

gk ¼ mk;1 � � � mk;m

� �
; k ¼ 1; . . .; n� 1;

hk ¼ ½1 0 � � � 0 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
m

�T ; k ¼ 2; . . .; n;

bk ¼

0 0 � � � 0 nk;1

1 0 . .
. ..

. ..
.

0 1 . .
. ..

. ..
.

..

. . .
. . .

.
0 nk;m�1

0 � � � 0 1 nk;m

2

6666664

3

7777775
; k ¼ 2; . . .; n� 1: ð2:58Þ

We present a procedure to compute from these values the coefficients of (2.45).

1. Take

dij ¼
1
lj

i ¼ j;

�nj�m;i�jþmþ1

ljj
j ¼ mþ 2; . . .; n i ¼ j� m; . . .; j� 1:

(
ð2:59Þ

2. Calculate eij and dij for j ¼ 2; . . .;mþ 1; i ¼ 1; . . .; j� 1 as any solution of
the following system of equations:

mi;j�i ¼ �lj eij þ
Pj�1

s¼1 mi;s�idsj

	 

i ¼ 1;

j ¼ 2; . . .;mþ 1;

mi;j�i ¼ �lj di�1;jli�1 þ eij þ
Pj�1

s¼1 mi;s�idsj

	 

i ¼ 2; . . .;m;

j ¼ iþ 1; . . .;mþ 1:

8
>>><

>>>:

ð2:60Þ

3. Find the remaining eij-coefficients using

eij ¼

�m1;0

l1
i ¼ j ¼ 1;

�mj;0

lj
� dj�1;jlj�1 i ¼ j [ 1;

�mi;j�i

lj
� di�1;jli�1 �

Pj�1
s¼i mi;s�idsj j ¼ mþ 2; . . .; n

i ¼ j� m; . . .; j� 1:

8
>>><

>>>:
ð2:61Þ

The proof immediately follows by comparing (2.55), (2.58) and using (2.49). Note
that the coefficients of the l-term recurrence relations depend on the solution of the
system of equations (2.60), which consists of
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Xm

i¼1

i ¼ mðmþ 1Þ
2

equations and defines mðmþ 1Þ variables. So for the generators (2.58) of an
ðH; mÞ-well-free matrix there is a freedom in choosing coefficients of the recur-
rence relations (2.45) for the corresponding polynomials.

This completes the justification of Theorem 8 stated above. In the m ¼ 1 case,
this coincides with the result given in [8], stated as Theorem 7.

2.5.5 Proof of Lemma 3

In this section we present a proof of Lemma 3, stated without proof by Barnett in [4].

Proof (Proof of Lemma 3) The results of [24] allow us to observe the bijection
between systems of polynomials and dilated strongly Hessenberg matrices. Indeed,
given a polynomial system R ¼ fr0ðxÞ; . . .; rn�1ðxÞg; there exist unique n-term
recurrence relations of the form

x � rj�1ðxÞ ¼ ajþ1;j � rjðxÞ þ aj;j � rj�1ðxÞ þ � � � þ a1;j � r0ðxÞ; ajþ1;j 6¼ 0;
j ¼ 1; . . .; n� 1:

ð2:62Þ

and a1;j; . . .; ajþ1;j are coefficients of the j-th column of the correspondent strongly
Hessenberg matrix A:

Using dij ¼ eij ¼ 0; i\j� lþ 2; we can assume that the given system of
polynomials R ¼ fr0ðxÞ; . . .; rn�1ðxÞg satisfies full recurrence relations:

rjðxÞ ¼
Xj

i¼1

ðdijxþ eijÞri�1ðxÞ; j ¼ 1; . . .; n� 1 ð2:63Þ

The proof of (2.49) is given by induction on j: For any i; if j ¼ 1; it is true that
a11 ¼ �e11

d11
: Next, assuming that (2.49) is true for all j ¼ 1; . . .; k � 1: Taking j ¼ k

in (2.63) we can write that

xrk�1ðxÞ ¼
1

dkk
rkðxÞ �

ekk

dkk
rk�1ðxÞ �

1
dkk

Xk�1

i¼1

ðdikxþ eikÞri�1ðxÞ: ð2:64Þ

From the induction hypothesis and Eq. (2.62) we can substitute the expression for
xri�1 into (2.64) to obtain

xrk�1ðxÞ ¼
1

dkk
rkðxÞ �

ekk

dkk
rk�1ðxÞ �

1
dkk

Xk�1

i¼1

dik

Xiþ1

s¼1

asirs�1ðxÞ þ eikri�1ðxÞ
" #

ð2:65Þ
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After grouping coefficients in (2.65) we obtain

xrk�1ðxÞ ¼
1

dkk
rkðxÞ �

1
dkk

Xk

i¼1

di�1;k

di�1;i�1
þ eik þ

Xk�1

s¼i

aisdsk

" #
ri�1ðxÞ: ð2:66Þ

Comparing (2.62) and (2.66) we get (2.49) by induction.

2.6 Relationship Between These Subclasses
of (H, m)-quasiseparable Matrices

Thus far it has been proved that the classes of ðH; mÞ-semiseparable and ðH; mÞ-
well-free matrices are subclasses of the class of ðH; mÞ-quasiseparable matrices.
The only unanswered questions to understand the interplay between these classes
is whether these two subclasses have common elements or not, and whether either
class properly contains the other or not.

It was demonstrated in [8] that there is indeed a nontrivial intersection of the
classes of ðH; 1Þ-semiseparable and ðH; 1Þ-well-free matrices, and so there is at
least some intersection of the (weakly) ðH; mÞ versions of these classes. In the next
example it will be shown that such a nontrivial intersection exists in the rank m
case; that is, there exist matrices that are both ðH; mÞ-semiseparable and ðH; mÞ-
well-free.

Example 4 Let A be an ðH; mÞ-quasiseparable matrix whose generators satisfy

bk ¼

0 0 � � � 0 1

1 0 . .
. ..

.
1

0 1 . .
.

0 ..
.

..

. . .
. . .

.
0 1

0 � � � 0 1 1

2
6666664

3
7777775
2 C

m�m; hk ¼

1
0
..
.

..

.

0

2

666664

3

777775
2 C

m:

Regardless of the other choices of generators, one can see that these generators
satisfy both Lemma 2 and Theorem 9, and hence the matrix A is both ðH; mÞ-well-
free and ðH; mÞ-semiseparable.

The next example demonstrates that an ðH; mÞ-semiseparable matrix need not
be ðH; mÞ-well-free.

Example 5 Consider the ðH; mÞ-quasiseparable matrix

A ¼

1 0 0 0 1
1 1 0 0 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1

2

66664

3

77775
:
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Because of the shaded block of zeros, it can be seen that the matrix is not ðH; 2Þ-
well-free. However, one can observe that rankðtriuðA; 1ÞÞ ¼ 2; and hence A is
ðH; 2Þ-semiseparable. Thus the class of ðH; mÞ-semiseparable matrices does not
contain the class of ðH; mÞ-well-free matrices.

To see that an ðH; mÞ-well-free matrix need not be ðH; mÞ-semiseparable,
consider the banded matrix (2.8) from the introduction. It is easily verified to not
be ðH; mÞ-semiseparable (for m\n� l), however it is ðH; l� 2Þ-well-free.

This completes the discussion on the interplay of the subclasses of ðH; mÞ-
quasiseparable matrices, as it has been shown that there is an intersection, but
neither subclass contains the other. Thus the proof of Fig. 2.3 is completed.

2.7 Conclusion

To conclude, appropriate generalizations of real orthogonal polynomials and
Szegö polynomials, as well as several subclasses of ðH; 1Þ-quasiseparable poly-
nomials, were used to classify the larger class of ðH; mÞ-quasiseparable matrices
for arbitrary m: Classifications were given in terms of recurrence relations satisfied
by related polynomial systems, and in terms of special restrictions on the quasi-
separable generators.
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Chapter 3
Partial Stabilization of Descriptor Systems
Using Spectral Projectors

Peter Benner

Abstract We consider the stabilization problem for large-scale linear descriptor
systems in continuous- and discrete-time. We suggest a partial stabilization
algorithm which preserves stable poles of the system while the unstable ones are
moved to the left half plane using state feedback. Our algorithm involves the
matrix pencil disk function method to separate the finite from the infinite gen-
eralized eigenvalues and the stable from the unstable eigenvalues. In order to
stabilize the unstable poles, either the generalized Bass algorithm or an algebraic
Bernoulli equation can be used. Some numerical examples demonstrate the
behavior of our algorithm.

3.1 Introduction

We consider linear descriptor systems

E DxðtÞð Þ ¼ AxðtÞ þ BuðtÞ; t [ 0; xð0Þ ¼ x0; ð3:1Þ

where DxðtÞ ¼ d
dtxðtÞ; t 2 R, for continuous-time systems and DxðtÞ ¼ xðt þ 1Þ;

t 2 N, for discrete-time systems. Here, A;E 2 R
n�n;B 2 R

n�m. We assume the
matrix pencil A� kE to be regular, but make no assumption on its index. For
continuous-time systems, (3.1) is a first-order differential-algebraic equation (DAE)
if E is singular and an ordinary differential equation (ODE) if E is nonsingular. We
are particularly interested in the DAE case. In this case, xðtÞ 2 R

n is called a

P. Benner (&)
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106,
Magdeburg, Germany
e-mail: benner@mpi-magdeburg.mpg.de

P. Van Dooren et al. (eds.), Numerical Linear Algebra in Signals, Systems and Control,
Lecture Notes in Electrical Engineering, 80, DOI: 10.1007/978-94-007-0602-6_3,
� Springer Science+Business Media B.V. 2011

55



descriptor vector which is in general not a state vector as some components may be
chosen freely under certain conditions, see [30, Chap. 4]. The components of the
vector uðtÞ 2 R

m are considered to be forcing functions or controls. For further
properties of DAEs and descriptor systems see, e.g., [16, 19, 30] and references
therein.

Throughout this article we assume that the generalized eigenvalues of A� kE
(the poles of the system corresponding to (3.1)) are given by

KðA;EÞ ¼ K1 [ K2 [ f1g

with Kj � Cj; j ¼ 1; 2. Here, C1 ¼ C
�;C2 ¼ C

þ for continuous-time systems

(with C
� denoting the open left and right half planes) and C1 ¼ fjzj\1g;C2 ¼

fjzj[ 1g (the interior/exterior of the unit disk) for discrete-time systems. The case
that eigenvalues are on the boundary of the stability region C1 can be treated as
well, see Remark 2, but the dichotomy assumption with respect to oC simplifies
the presentation for now.

Descriptor systems arise in various applications including circuit simulation,
multibody dynamics, (semi-)discretization of the Stokes and Oseen equations
(linearizations of the instationary Navier–Stokes equations) or the Euler equations,
and in various other areas of applied mathematics and computational engineering,
see, e.g., [30, 33] and references therein.

The stabilization problem for (3.1) can be formulated as follows: choose u 2
L2ð0;1;RmÞ such that the dynamical system (3.1) is asymptotically stable, i.e.,
solution trajectories satisfy limt!1 xðtÞ ¼ 0. Large-scale applications include
active vibration damping for large flexible space structures, like, for example, the
International Space Station [18], or initializing Newton’s method for large-scale
algebraic Riccati equations (AREs) [37]. But also many other procedures for
controller and observer design make use of stabilization procedures [43].

For nonsingular E, it is well known (e.g., [20, 21]) that stabilization can be
achieved by state feedback u ¼ Fx, where F 2 R

m�n is chosen such that the
closed-loop system E DxðtÞð Þ ¼ ðA� BFÞx is asymptotically stable, i.e.,
KðA� BF;EÞ � C1 iff the matrix pair ðE�1A;E�1BÞ is stabilizable, i.e.,
rank ½A� kE;B�ð Þ ¼ n for all k 2 C n C1. (In the following, we will call KðA;EÞ
the open-loop eigenvalues and KðA� BF;EÞ the closed-loop eigenvalues.)

For singular E, the situation is slightly more complicated. Varga [43] distin-
guishes S- and R-stabilization problems. Both require the computation of a state
feedback matrix F such that the closed-loop matrix pencil A� BF � kE is regular.
S-stabilization asks for F such that KðA� BF;EÞ contains exactly r ¼ rank Eð Þ
stable poles while for R-stabilization, all finite poles are requested to be stable.
Both problems have a solution under suitable conditions (see [43] and references
therein). Here, we will treat the R-stabilization problem only for which the
assumption of stabilizability of the matrix triple ðE;A;BÞ, i.e., rank ½A� kE;B�ð Þ ¼
n for all finite k 2 C n C1 guarantees solvability [19]. Our procedure can be useful
when solving the S-stabilization problem as well: the R-stabilization is needed
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after a preprocessing step in the procedure for S-stabilization suggested in [43].
Also note that for the S-stabilization problem to be solvable, one needs to assume
strong stabilizability of the descriptor system (3.1) (see [43]), which is rarely
encountered in practice. E.g., none of the examples considered in this paper has
this property.

In the standard ODE case (E nonsingular), a stabilizing feedback matrix F can
be computed in several ways. One popular approach is to use pole assignment (see,
e.g., [20, Sect. 10.4]) which allows to pre-assign the spectrum of the closed-loop
system. There are several difficulties associated with this approach [25]. Also, for
fairly large-scale problems, the usual algorithms are quite involved [20, Chap. 11].
In many applications, it is not necessary to fix the poles of the closed-loop system,
in particular if the stabilization is only used to initialize a control algorithm or
Newton’s method for AREs. For this situation, a standard approach is based on the
solution of a particular Lyapunov equation (see Proposition 2 and Eq. (3.3)).
Solving this Lyapunov equation, the stabilizing feedback for standard state-space

systems (i.e., E ¼ In) is F :¼ BTXy for continuous-time systems and F :¼
BTðEXET þ BBTÞyA for discrete-time systems, where X is the solution of the
(continuous or discrete) Lyapunov equation and My is the pseudo-inverse of M,
see, e.g., [37]. This approach is called the Bass algorithm [2, 3]. For a detailed
discussion of properties and (dis-)advantages of the described stabilization pro-
cedure see [20, Sect. 10.2] and [37]. Both approaches, i.e., pole assignment and the
Bass algorithm are generalized in [43] in order to solve the R-stabilization prob-
lem. Here, we will assume that achieving closed-loop stability is sufficient and
poles need not be at specific locations, and therefore we will not discuss pole
placement any further.

For large-scale systems, often, the number of unstable poles is small (e.g., 5%).
Hence it is often more efficient and reliable to first separate the stable and unstable
poles and then to apply the stabilization procedure only to the unstable poles. For
standard systems, such a method is described in [26] while for generalized state-
space systems with invertible E, procedures from [43] and [8] can be employed.
The approach used in [8] is based on the disk function method and only computes
a block-triangularization of the matrix pencil A� kE which has the advantage of
avoiding the unnecessary and sometimes ill-conditioned separation of all eigen-
values required in the QZ algorithm for computing the generalized Schur form
A� kE which is employed in [43]. The main contribution of this paper is thus to
show how the disk function method can be used in order to generalize the method
from [8] to descriptor systems with singular E.

In the next section, we will give some necessary results about descriptor
systems and stabilization of generalized state-space systems with nonsingular
matrix E. Section 3.3 then provides a review of spectral projection methods and in
particular of the disk and sign function methods. A partial stabilization algorithm
based on the disk function method is then proposed in Sect. 3.4. In Sect. 3.5, we
give some numerical examples demonstrating the effectiveness of the suggested
approach. We end with some conclusions and an outlook.
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3.2 Theoretical Background

As we will only discuss the R-stabilization problem, we will need the following
condition.

Definition 1 Let ðE;A;BÞ be a matrix triple as in (3.1). Then the descriptor system
(3.1) is stabilizable if

rank ½A� kE;B�ð Þ ¼ n for all k 2 C n C1:

We say that the system is c-stabilizable if C1 ¼ C
� and d-stabilizable if

C1 ¼ fz 2 C j jzj\1g.
The following result from [19] guarantees solvability of the R-stabilization

problem.

Proposition 1 Let the descriptor system (3.1) be stabilizable, then there exists a
feedback matrix F 2 R

m�n such that

KðA� BF;EÞ � C1 [ f1g:
In the following, we will speak of (partial) stabilization and always mean R-
stabilization.

If E is nonsingular, any method for stabilizing standard state-space systems can
be generalized to this situation. Here, we will make use of generalizations of the
Bass algorithm [2, 3] and an approach based on the (generalized) algebraic
Bernoulli equation (ABE)

ATXE þ ET XA� ETXBBTXE ¼ 0: ð3:2Þ
The first approach is based on the following result which can be found, e.g., in [8, 43].

Proposition 2 Let ðE;A;BÞ as in (3.1) be stabilizable with E nonsingular. If

F :¼ BTE�T Xyc or F :¼ BTðEXdET þ BBTÞyA ð3:3Þ
for continuous- or discrete-time systems, respectively, where Xc and Xd are the
unique solutions of the generalized (continuous or discrete) Lyapunov equations

ðAþ bcEÞXET þ EXðAþ bcEÞT ¼ 2BBT or AXAT � b2
dEXET ¼ 2BBT ; ð3:4Þ

respectively, for bc [ maxk2KðA;EÞf�ReðkÞg; 0\bd\ mink2KðA;EÞnf0gfjkjg, then
A� BF � kE is stable.

An often used, but conservative upper bound for the parameter bc in the con-
tinuous Lyapunov equations above is kE�1Ak for any matrix norm. As we will
apply Proposition 2 in our partial stabilization procedure only to a matrix pencil
that is completely unstable, i.e., KðA;EÞ � C2, we can set bc ¼ 0 and bd ¼ 1.
Usually, it turns out to be more effective to set bc [ 0 as this yields a better
stability margin of the closed-loop poles. Note that bc (or bd in the discrete-time
case) serves as a spectral shift so that the stabilized poles are to the left of �bc (or
inside a circle with radius bd).
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Stabilization using the ABE (3.2) can be used for continuous-time systems and
is based on the following result [6].

Proposition 3 If ðE;A;BÞ is as in Proposition 2 and KðA;EÞ \ |R ¼ ;; then the
ABE (3.2) has a unique c-stabilizing positive semidefinite solution Xþ; i.e.,
KðA� BBTXþE;EÞ � C

�:
Moreover; rank Xþð Þ ¼ l, where l is the number of eigenvalues of A� kE in

C
þ and

KðA� BBT XþE;EÞ ¼ ðKðA;EÞ \ C
�Þ [ �ðKðA;EÞ \ C

þÞ
� �

:

Another possibility for stabilization of standard discrete-time systems (E invertible
in (3.1)) is discussed in [22]. An extension of this method to the case of singular E
would allow the stabilization of large-scale, sparse discrete-time descriptor
systems. This is under current investigation.

3.3 Spectral Projection Methods

In this section we provide the necessary background on spectral projectors and
methods to compute them. These will be the major computational steps required in
the partial stabilization method described in Sect. 3.4.

3.3.1 Spectral Projectors

First, we give some fundamental definitions and properties of projection matrices.

Definition 2 A matrix P 2 R
n�n is a projector (onto a subspace S � R

n) if
range Pð Þ ¼ S and P2 ¼ P.

Definition 3 Let Z; Y 2 R
n�n be a regular matrix pencil with KðZ; YÞ ¼ K1 [ K2,

K1 \ K2 ¼ ;, and let S1 be the (right) deflating subspace of the matrix pencil
Z � kY corresponding to K1. Then a projector onto S1 is called a spectral
projector.

From this definition we obtain the following properties of spectral projectors.

Lemma 1 Let Z � kY be as in Definition 3, and let P 2 R
n�n be a spectral

projector onto the right deflating subspace of Z � kY corresponding to K1. Then

a. rank Pð Þ ¼ jK1j :¼ k,
b. ker ðPÞ ¼ range I � Pð Þ; range Pð Þ ¼ ker ðI � PÞ,
c. I � P is a spectral projector onto the right deflating subspace of Z � kY cor-

responding to K2.

Given a spectral projector P we can compute an orthogonal basis for the cor-
responding deflating subspace S1 and a spectral or block decomposition of Z � kY
in the following way: let
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be a QR decomposition QR decomposition with column pivoting (or a rank-
revealing QR decomposition (RRQR)) [24], where P is a permutation matrix.
Then the first k columns of V form an orthonormal basis for S1. If we also know
an orthonormal basis of the corresponding left deflating subspace and extend this
to a full orthogonal matrix U 2 R

n�n, we can transform Z; Y to block-triangular
form

~Z � k~Y :¼ UTðZ � kYÞV ¼ Z11 Z12

0 Z22

� �
� k;

Y11 Y12

0 Y22

� �
; ð3:5Þ

where KðZ11; Y11Þ ¼ K1;KðZ22; Y22Þ ¼ K2.
Once V is known, the orthogonal matrix U can be computed with little effort

based on the following observation [42].

Proposition 4 Let Z � kY 2 C
n�n be a regular matrix pencil with no eigenvalues

on the boundary oC1 of the stability region C1. If the columns of V1 2 C
n�n1 form

an orthonormal basis of the stable right deflating subspace of Z � kY , i.e., the
deflating subspace corresponding to KðZ; YÞ \ C1, then the first n1 columns of the
orthogonal matrix U in the QR decomposition with column pivoting,

URPT ¼ U
R11 R12

0 0

� �
PT ¼ ZV1 YV1½ �; ð3:6Þ

form an orthonormal basis of the stable left deflating subspace of Z � kY .

The matrix U from (3.6) can then be used for the block-triangularization in (3.5).
The block decomposition given in (3.5) will prove extremely useful in what

follows. Besides spectral projectors onto the deflating subspaces corresponding to
the finite and infinite parts of the spectrum of a matrix pencil, we will also need
those related to the stability regions in continuous- and discrete-time.

Definition 4 Let Z; Y 2 R
n�n with KðZ; YÞ ¼ K1 [ K2;K1 \ K2 ¼ ;, and let S1

be the (right) deflating subspace of the matrix pencil Z � kY corresponding to K1.
Then S1 is called

a. c-stable ifK1 � C
� and c-unstable if K1 � C

þ;
b. d-stable if K1 � fjzj\1g and d-unstable if K1 � fjzj[ 1g.

3.3.2 The Matrix Sign Function

The sign function method was first introduced by Roberts [36] to solve algebraic
Riccati equations. The sign function of a matrix Z 2 R

n�n with no eigenvalues on
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the imaginary axis can be defined as follows: Let Z ¼ S
J� 0
0 Jþ

� �
S�1 denote the

Jordan decomposition of Z where the Jordan blocks corresponding to the, say, k
eigenvalues in the open left half plane are collected in J� and the Jordan blocks
corresponding to the remaining n� k eigenvalues in the open right half plane are
collected in Jþ. Then

sign Zð Þ :¼ S
�Ik 0
0 In�k

� �
S�1:

The sign function provides projectors onto certain subspaces of the matrix Z :

P� :¼ 1
2ðIn � sign Zð ÞÞ defines the oblique projection onto the c-stable Z-invariant

subspace along the c-unstable Z-invariant subspace whereas Pþ :¼ 1
2ðIn þ

sign Zð ÞÞ defines the oblique projection onto the c-unstable Z-invariant subspace
along the c-stable Z-invariant subspace. Therefore, the sign function provides a
tool for computing a spectral decomposition with respect to the imaginary axis. As
we will see in the following subsection, the sign function method can be applied
implicitly to Y�1Z so that also the corresponding spectral projectors for matrix
pencils Z � kY with invertible Y can be computed. This can be used for contin-
uous-time stabilization problems once the infinite eigenvalues of A� kE have
been deflated.

3.3.3 Computation of the Sign Function

The sign function can be computed via the Newton iteration for the equation
Z2 ¼ In where the starting point is chosen as Z, i.e.,

Z0  Z; Zjþ1  
1
2
ðZj þ Z�1

j Þ; j ¼ 0; 1; . . . ð3:7Þ

Under the given assumptions, the sequence fZjg1j¼0 converges to sign Zð Þ ¼
limj!1 Zj [36] with an ultimately quadratic convergence rate. As the initial con-
vergence may be slow, the use of acceleration techniques is recommended; e.g.,
determinantal scaling [17] adds the following step to (3.7):

Zj  
1
cj

Zj; cj ¼ j detðZjÞj
1
n; ð3:8Þ

where detðZjÞ denotes the determinant of Zj. For a summary of different strate-
gies for accelerating the convergence of the Newton iteration, see [28]. It should
be noted that eigenvalues close to the imaginary axis may defer convergence
considerably with stagnation in the limiting case of eigenvalues on the imaginary
axis.
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In our case, we will have to apply the sign function method to a matrix pencil
rather than a single matrix. Therefore, we employ a generalization of the matrix
sign function method to a matrix pencil Z � kY given in [23]. Assuming that Z and
Y are nonsingular, the generalized Newton iteration for the matrix sign function is
given by

Z0  Z; Zjþ1  
1

2cj
ðZj þ c2

j YZ�1
j YÞ; j ¼ 0; 1; . . .; ð3:9Þ

with the scaling now defined as cj  j detðZjÞj
j detðYÞj

� �1
n
. This iteration is equivalent to

computing the sign function of the matrix Y�1Z via the Newton iteration as given
in (3.7). If limj!1 Zj ¼ Z1, then Z1 � Y defines the oblique projection onto the
c-stable right deflating subspace of Z � kY along the c-unstable deflating sub-
space, and Z1 þ Y defines the oblique projection onto the c-unstable right
deflating subspace of Z � kY along the c-stable deflating subspace.

As a basis for the c-stable invariant subspace of a matrix Z or the c-stable
deflating subspace of a matrix pencil Z � kY is given by the range of any projector
onto this subspace, it can be computed by a RRQR factorization of the
corresponding projectors P� or Z1 � Y , respectively.

A formal description of the suggested algorithm for computing spectral pro-
jectors onto the c-stable and c-unstable deflating subspaces of matrix pencils is
given in Algorithm 1. The necessary matrix inversion is realized by LU decom-
position with partial pivoting and forward/backward solves. Note that no explicit
multiplication with the permutation matrix P is necessary—this is realized by
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swapping rows of X or columns of Y . Convergence of the iteration is usually based
on relative changes in the iterates Zj.

For block-triangularization related to spectral division with respect to the
imaginary axis, matrices U;V as in (3.5) can be obtained from a RRQR factor-
ization of P� and Proposition 4. An explicit algorithm for this purpose is provided
in [42]. As we will see later, for our purposes it is not necessary to form U
explicitly, just the last n� n1 columns of U need to be accumulated. We will come
back to this issue in the context of the disk function method in more detail; see Eq.
(3.10) and the discussion given there.

Much of the appeal of the matrix sign function approach comes from the high
parallelism of the matrix kernels that compose the Newton-type iterations [34].
Efficient parallelization of this type of iterations for the matrix sign function has
been reported, e.g., in [4, 27]. An approach that basically reduces the cost of the
generalized Newton iteration to that of the Newton iteration is described in [41].
An inverse-free version of the generalized sign function method which is about 1.5
times as expensive as Algorithm 1 is discussed in [10].

Unfortunately, the matrix sign function is not directly applicable to descriptor
systems. If Y (¼ E in our case) is singular, then convergence of the generalized
Newton iteration (3.9) is still possible if the index is less than or equal to 2 [41],
but convergence will only be linear. Moreover, as we do not want to restrict
ourselves to descriptor systems with low index, we will need another spectral
projection method that can be computed by a quadratically convergent algorithm
without restrictions on the index. The disk function method described in the fol-
lowing subsection will satisfy these demands.

3.3.4 The Matrix Disk Function

The right matrix pencil disk function can be defined for a regular matrix pencil
Z � kY; Z; Y 2 R

n�n, as follows: Let

Z � kY ¼ S
J0 � kIk 0

0 J1 � kN

� �
T�1

denote the Kronecker (Weierstrass) canonical form of the matrix pencil (see,

e.g., [30] and references therein), where J0 2 C
k�k; J1 2 C

ðn�kÞ�ðn�kÞ contain,
respectively, the Jordan blocks corresponding to the eigenvalues of Z � kY
inside and outside the unit circle. Then, the matrix (pencil) disk function is
defined as

disk Z; Yð Þ :¼ T
Ik 0
0 0

� �
� k

0 0
0 In�k

� �� 	
T�1 ¼: P0 � kP1:

Alternative definitions of the disk function are given in [9].
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The matrix pencil disk function can be used to compute projectors onto
deflating subspaces of a matrix pencil as P0 is an oblique projection onto the
right d-stable deflating subspace of Z � kY along the d-unstable one, and P1
defines an oblique projection onto the right d-unstable deflating subspace of
Z � kY along the d-stable one. Thus, the disk function provides a tool for
spectral decomposition along the unit circle. Splittings with respect to other
curves in the complex plane can be computed by applying a suitable conformal
mapping to Z � kY [5]. As we want to use the disk function in order to compute
a projector onto the deflating subspace corresponding to the infinite or finite
eigenvalues, we will need a curve enclosing all finite eigenvalues. We will come
back to this issue in Sect. 3.4.

In the next subsection we discuss how the disk function can be computed
iteratively without having to invert any of the iterates.

3.3.5 Computing the Disk Function

The algorithm discussed here is taken from [5], and is based on earlier work by
Malyshev [31]. This algorithm is generally referred to as inverse-free iteration. We
also make use of improvements suggested in [42] to reduce its cost.

Given a regular matrix pencil Z � kY having no eigenvalues on the unit circle,
Algorithm 2 provides an implementation of the inverse-free iteration which
computes an approximation to the right deflating subspace corresponding to the
eigenvalues inside the unit circle. It is based on a generalized power iteration (see
[7, 42] for more details) and the fact that (see [7, 31])

lim
j!1
ðZj þ YjÞ�1Yj ¼ P0; lim

j!1
ðZj þ YjÞ�1Zj ¼ P1:

Convergence of the algorithm is usually checked based on the relative change
in Rj. Note that the QR decomposition in Step 1 is unique if we choose positive

diagonal elements as YT
j ; �ZT

j


 �T
has full rank in all steps [24].

The convergence of the inverse free iteration can be shown to be globally
quadratic [5] with deferred convergence in the presence of eigenvalues very close
to the unit circle and stagnation in the limiting case of eigenvalues on the unit
circle. Also, the method is proven to be numerically backward stable in [5]. Again,
accuracy problems are related to eigenvalues close to the unit circle due to the fact
that the spectral decomposition problem becomes ill-conditioned in this case.

The price paid for avoiding matrix inversions during the iteration is that every
iteration step is about twice as expensive as one step of the Newton iteration (3.9)
in the matrix pencil case and three times as expensive as the Newton iteration (3.7)
in the matrix case. On the other hand, the inverse free iteration can be implemented
very efficiently on a parallel distributed-memory architecture like the sign function
method since it is based on matrix multiplications and QR factorizations which are
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well studied problems in parallel computing; see, e.g., [24, 35] and the references
given therein. Also, a recently proposed version yields a reduced cost per iteration
step which leads to the conclusion that usually, the inverse-free iteration is faster
than the QZ algorithm if less than 30 iterations are required—usually, convergence
can be observed after only 10–20 iterations. See [32] for details.

It should be noted that for our purposes, neither the disk function nor the
projectors P0 nor P1 need to be computed explicitly. All we need are the related
matrices Q; Z from (5). This requires orthogonal bases for the range and nullspace
of these projectors. These can be obtained using a clever subspace extraction
technique proposed in [42]. The main idea is here that a basis for the range of P0

can be obtained from the kernel of P1. This can be computed from Zs directly,
i.e., Zs þ Ys is never inverted, neither explicitly nor implicitly. The left deflating
subspace is then computed based on Proposition 4. The complete subspace
extraction technique yielding the matrices U;V as in (3.5) with KðZ22; Y22Þ being
the d-stable part of the spectrum of Z � kY can be found in Algorithm 3.

Note that the triangular factors and permutation matrices in Algorithm 3 are
not needed and can be overwritten. For our purposes, we can save some
more workspace and computational cost. It is actually sufficient to store V (which
is later on needed to recover the feedback matrix of the original system) and to
compute

Z22 ¼ UT
2 ZV2; Y22 ¼ UT

2 YV2: ð3:10Þ

This can be exploited if an efficient implementation of the QR decomposition like
the one in LAPACK [1] is available. Accumulation of U2 only is possible there, so
that only 4

3 nrðn� rÞ flops are needed rather than 4
3 n3 when accumulating the full

matrix U. Moreover, instead of 8n3 flops as needed for the four matrix products in
(3.5), the computations in (3.10) require only 4nrðnþ rÞ flops.
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3.4 Partial Stabilization Using Spectral Projection

For the derivation of our algorithm, we will assume that the descriptor system (3.1)
has nf finite and n1 infinite poles, i.e., KðA;EÞ ¼ Kf _[f1g with jKf j ¼ nf .
Moreover, we assume that there are n1 stable and n2 unstable poles, i.e.,
KðA;EÞ ¼ K1 _[K2, where K1 � C1, K2 � C n C1, and jK1j ¼ n1; jK2j ¼ n2 þ n1.
This yields the relations n ¼ nf þ n1 ¼ n1 þ n2 þ n1. Our partial stabilization
algorithm based on the disk function method will consist of the following steps:

1. Deflate the infinite poles of the system using a spectral projector onto the
corresponding deflating subspace of A� kE computed by the disk function
method. We call the resulting nf � nf matrix pencil A1 � kE1. Note that now,
E1 is nonsingular.
Transform B accordingly, yielding B1.

2. Deflate the stable finite poles of the system using a spectral projector onto the
deflating subspace of A1 � kE1. This can be computed by the disk (sign)
function method applied to ðA1;E1Þ in the discrete-time (continuous-time) case
or to the Cayley-transformed matrix pair ðA1 þ E1;A1 � E1Þ in the continuous-
time (discrete-time) case. We call the resulting n2 � n2 matrix pencil A2 � kE2.
Note that now, A2 � kE2 has only unstable eigenvalues.
Transform B1 accordingly, yielding B2.

66 P. Benner



3. Solve the stabilization problem for the generalized state-space system

E2 Dx2ðtÞð Þ ¼ A2xðtÞ þ B2uðtÞ; t [ 0; x2ð0Þ ¼ x2;0:

4. Assemble the stabilizing feedback for the original system (1) using either
Propositions 2 or 3.

A possible implementation, based only on the disk function method, is sum-
marized in Algorithm 4. An analogous implementation using the sign function
method in Step 2 can easily be derived replacing Algorithm 2 by Algorithm 1
there (and changing the order of the if-else conditions).
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The determination of the input parameter a in Algorithm 4 is in itself a
non-trivial task. Often, knowledge about the spectral distribution can be obtained
a priori from the physical modeling. It is an open problem how to determine a
directly from the entries of the matrices A;E. In principle, the generalized
Gershgorin theory derived in [38] provides computable regions in the closed
complex plane containing the finite eigenvalues. In practice, though, these regions
often extend to infinity and thus provide no useful information. Recent develop-
ments in [29] give rise to the hope that computable finite bounds can be obtained;
this will be further explored in the future.

The solution of the matrix equations needed in Step 3 of Algorithm 4 (either
one of the Lyapunov equations from (3.4) or the ABE (3.2)) can be obtained in
several ways, see, e.g., [20, 37] for a discussion of different Lyapunov solvers. As
we base our partial stabilization algorithm on spectral projection methods like the
sign and disk function methods under the assumption that these are particularly
efficient on current computer architectures, it is quite natural to also use the sign
function methods for the generalized Lyapunov and Bernoulli equations in (3.4)
and (3.2). Efficient algorithms for this purpose are derived and discussed in detail
in [6, 13, 15]. Note that the matrix pencils defining the Lyapunov operators in (3.4)
have all their eigenvalues in C2. Thus the methods from [13, 15] can be applied to
these equations. Our numerical results in Sect. 3.5 are all computed using these
sign function based matrix equation solvers.

Remark 1 Due to the usual ill-conditioning of the stabilization problem, it turns
out that sometimes the computed closed-loop poles are not all stable. In that case,
we suggest to apply Steps 2–3 of Algorithm 4 again to ðA2 � B2F2;E2Þ, resulting
in a feedback matrix

F :¼ 0; 0; F2 þ 0; F3½ �ZT
3


 �
ZT

2


 �
ZT

1 :

This is often sufficient to completely stabilize the system numerically, see
Example 2. Otherwise, Steps 2–3 should be repeated until stabilization is
achieved.

Remark 2 So far we have assumed spectral dichotomy with respect to the
boundary curve oC of the stability region. For Step 1 of Algorithm 4, this is not
necessary. It becomes an issue only in the following steps, but can easily be
resolved. For the spectral decomposition with respect to the boundary of the
stability region performed in Step 2, we can simply shift/scale so that the eigen-
values on oC are moved to C2. This may also be advisable if stable eigenvalues are
close to the boundary of the stability region and should be made ‘‘more stable’’.
This basic idea is implemented, for instance, in the Descriptor System and
Rational Matrix Manipulation Toolbox [44]. For Algorithm 4 this means that in
Step 2, the spectral decomposition is computed for ðA1 þ acE1;E1Þ (ac [ 0) in the
continuous-time case and for ðA1; adE1Þ (0\ad\1) in the discrete-time case. The
resulting matrix pencil ðA2;E2Þ will then again have eigenvalues on oC (or stable
ones close to it). This can be treated in Step 3 again with shifting/scaling: when
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applying Proposition 2, simply set bc [ 0 or bd\1 (as already advised in Sect.
3.2), while if Proposition 3 is to be used, it is applied to ðA2 þ acE2;E2;B2Þ with
ac [ 0. (Note that Proposition 3 applies only in the continuous-time case.)

In the following section, we will test the suggested partial stabilization method
as presented in Algorithm 4 for several problems, in particular for stabilization
problems for linear(ized) flow problems.

3.5 Numerical Examples

In order to demonstrate the effect of the partial stabilization method on the poles of
the system (3.1), we implemented the generalized Bass and Bernoulli versions of
Algorithm 4 as MATLAB functions. For the solution of the Lyapunov and Bernoulli
equations in (3.4) and (3.2) we employ MATLAB implementations of the sign
function based solvers described in detail in [6, 13, 15].

Note that there is no software for partial stabilization to compare to as even the
MATLAB function gstab from the Descriptor System and Rational Matrix
Manipulation Toolbox1 (Descriptor Toolbox for short) [44] only treats systems
with invertible E. Nevertheless, we compare our results with those obtained by
gstab applied to the projected problem resulting from Step 1 of Algorithm 4.
Moreover, we tried to apply the pole placement function gplace from the
Descriptor Toolbox on each level, i.e., for the full descriptor system and the
projected systems after Steps 1 and 2 of Algorithm 4. All computations were
performed using MATLAB release R2006a with IEEE double precision arithmetic
on Windows XP notebooks with Pentium M CPU and running either at 1.13 GHz
with 512 Mb of main memory or 2.13 GHz with 1 Gb of main memory.

Example 1 In order to be able to distinguish all eigenvalues in the plots, we first use
a small scale example with n ¼ 20;m ¼ 3. Therefor, a diagonal matrix pencil with
ten infinite eigenvalues and finite spectrum f�4:5;�3:5; . . .;�0:5; 5:5; . . .9:5g is
generated. Thus, five unstable poles have to be stabilized. Our algorithm computes
a feedback matrix with moderate norm: kFk2 � 148 using the generalized Bass
stabilization and kFk2 � 232 when using the algebraic Bernoulli equation. Thus,
the norm of the gain is quite reduced in the generalized Bass case as kF1k2 � 4; 490
if applied to the system described by ðA1;B1;E1Þ. Note that in the Bernoulli case,
there is no reduction in the norm of the gain matrix which can be expected as in an
appropriate basis, the solution X1 for the larger problem is zero except for the
diagonal block in the lower right corner which is the Bernoulli solution of the small
fully unstable system. The full-scale feedback matrix results from applying
orthogonal transformations only to the small-size feedback so that the 2-norm is not
changed. The function gplace from the Descriptor System and Rational Matrix

1 Available Version: 1.05, 1 October 2005.
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Manipulation Toolbox works in this example as well: if we aim at placing the poles
at the location of the Bernoulli stabilized ones, then the corresponding feedback
gain matrix has norm �204. The computed closed-loop poles are slightly less
accurate than in the Bernoulli approach, though, with relative errors in the com-
puted poles roughly four times larger.

The open- and closed-loop poles are displayed in Fig. 3.1. As usual for the Bass
algorithm, the stabilized poles are placed on a vertical line in the left half plane
while the stable open-loop poles are preserved. As expected from Proposition 3,
the Bernoulli approach reflects the unstable poles with respect to the imaginary
axis.

Example 2 Consider the instationary Stokes equation describing the flow of an
incompressible fluid at low Reynolds numbers:

ov

ot
¼ Mv�rqþ f ; ðn; tÞ 2 X� ð0; tf Þ;

0 ¼ div v; ðn; tÞ 2 X� ð0; tf Þ
ð3:11Þ

with appropriate initial and boundary conditions. Here, vðn; tÞ 2 R
2 is the velocity

vector, qðn; tÞ 2 R is the pressure, f ðn; tÞ 2 R
2 is a vector of external forces,

X � R
2 is a bounded open domain and tf [ 0 is the endpoint of the considered

time interval. The spatial discretization of the Stokes equation (3.11) by a finite
volume method on a uniform staggered grid leads to a descriptor system, where the
matrix coefficients are sparse and have a special block structure given by

E ¼ I 0
0 0

� �
and A ¼ A11 A12

AT
12 0

� �
;

see [40] and references therein. Here, A11 2 R
nv�nv corresponds to the discretized

Laplace operator while A12 and AT
12 represent discretizations of the gradient and

divergence operators in (3.11).

Fig. 3.1 Example 1. Open-loop and closed-loop poles computed using generalized Lyapunov
and Bernoulli equations
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The input matrix B can be obtained from several sources. Assuming volume
forces, we can write f ðn; tÞ ¼ bðnÞuðtÞ and the matrix B is obtained from the
discretization of bðnÞ. Another possibility is boundary control.

The descriptor system obtained in this way is stable and of index 2 [40]. We
de-stabilize the system by adding aInv to A11 so that the index is preserved. Such a
term arises, e.g., when the volume forces are also proportional to the velocity field,
f ðn; tÞ ¼ ~avðn; tÞ þ bðnÞuðtÞ (where we do not claim physical relevance of this
situation—a is then obtained from ~a by scaling related to the mesh size).

In all of the following computations, we consider a coarse 16� 16 grid,
resulting in nv ¼ 480 velocity and np ¼ 255 pressure variables so that n ¼ 735.
This results in n1 ¼ 510 infinite poles and 225 finite ones.

In the first setting, we mimic a situation where the volume forces are given by
the superposition of two different sources. Thus, m ¼ 2, where we choose the two
columns of B at random. Choosing a ¼ 100, 3 poles become unstable. Altogether,
the stabilization problem turns out to be ill-conditioned enough to make gplace
fail to stabilize the descriptor system as well as the system projected on the
subspaces corresponding to the finite eigenvalues (resulting from Step 1 of
Algorithm 4) with all pole assignments we tried (random assignment, equally
distributed from �1 to �nf ). Note that gplace returns with an error message
when applied to the full descriptor system while for the projected system, non-
stabilizing feedbacks are returned without a warning. The Descriptor Toolbox
function gstab stabilized the projected system with kFk2 � 85:5. Both our
approaches based on the generalized Bass algorithm and on the algebraic Bernoulli
equation succeed in stabilizing the system, where kFBassk2 � 170 and
kFABEk2 � 233. It appears that here, the stabilization of the fully unstable, small
system requires more effort than the stabilization of the larger projected system.
Open- and closed-loop poles for both approaches are shown in Fig. 3.2.

From the close-up (bottom row in Fig. 3.2) we can again see that the Bernoulli
approach reflects the unstable poles with respect to the origin. It should be noted,
though, that some of the computed closed-loop poles do not possess the desirable
property to come out as real eigenvalues (all finite poles are real in this example),
but the imaginary parts (which are zero in exact arithmetic) are rather small (of
order 10�12).

In our second set of tests we use an input matrix related to boundary control
similar to the version used in [39], i.e., we have m ¼ 64. To make the stabilization
problem more difficult, we set a ¼ 1; 000 for the de-stabilization, resulting in 105
unstable poles. Neither gplace (with assignment of random poles, mirrored
unstable poles, or f�‘;�‘þ 1; . . .;�1g where ‘ ¼ n1 þ n2 or ‘ ¼ n2) nor gstab
were able to stabilize any of the systems: both fail for the full descriptor system
with error messages, they compute feedback matrices for the generalized state-
space systems resulting from projecting onto the deflating subspaces correspond-
ing to finite eigenvalues and unstable poles, respectively. The best result
using gplace was obtained when applied to the projected fully unstable system
with poles assigned to f�105;�104; . . .;�1g. In this case, only 14 computed
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closed-loop poles remained unstable. But it should be observed that none of the
computed closed-loop poles is close to the assigned ones! In all other attempts and
also for gstab, the number of unstable computed closed-loop poles was much
larger.

On the other hand, both versions of our partial stabilization algorithms based on
the generalized Bass algorithm and the algebraic Bernoulli equation were able to
stabilize this system. A second stabilization step as described in Remark 1 was
necessary, though. For the generalized Bass algorithm with b ¼ 1, eight closed-
loop poles remain unstable after the first stabilization step while only two unstable
poles had to be treated in the second stabilization step when using the Bernoulli
approach. The resulting gain matrices show that a lot of effort is needed to stabilize
the system: kFBassk2 � 1:4 � 108 and kFABEk2 � 4:2 � 108. The plotted pole dis-
tributions shown in Fig. 3.3 demonstrate that the slightly higher effort of the
Bernoulli approach is worthwhile as there are no highly undamped closed-poles
(i.e., poles with relatively large imaginary parts compared to their real parts). The
close-ups in the bottom row of this figure also show again that unstable poles are
reflected with respect to the imaginary axis in the Bernoulli approach. It must be

Fig. 3.2 Example 2 with B related to volume force (m ¼ 2). Open-loop and closed-loop poles
computed using generalized Lyapunov and Bernoulli equations (top row) with close-up around
the origin (bottom row)
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noticed, though, that all closed-loop poles in the Bernoulli approach should the-
oretically be real which is obviously not true for the computed ones. This is due to
the fact that the closed-loop matrix pencil represents a highly non-normal eigen-
value problem and small perturbations may lead to large deviations in the
eigenvalues. Fortunately, the closed-loop poles with nonzero imaginary parts are
far enough from the imaginary axis so that in practice, the closed-loop pole dis-
tribution computed using the Bernoulli approach can be considered reasonable.

3.6 Conclusions and Outlook

The partial stabilization methods suggested in this paper use the disk function
method to first separate finite and infinite, and then the disk or sign function
method to separate stable and unstable poles of a stabilizable descriptor system.
The stable poles are preserved while the unstable ones are stabilized by state
feedback. The feedback gain matrix is computed using either the generalized Bass

Fig. 3.3 Example 2 with B related to boundary control (m ¼ 64). Open-loop and closed-loop
poles computed using generalized Lyapunov and Bernoulli equations (top row) with close-up
around the origin (bottom row)

3 Partial Stabilization of Descriptor Systems Using Spectral Projectors 73



algorithm as described in [8] (similar to [43]) or an approach based on the alge-
braic Bernoulli equation. In the latter case, the stabilized poles are the mirror
images of the unstable open-loop poles. Due to the ill-conditioning of the stabil-
ization problem, closed-loop poles may not be stable in contrast to expectation
raised by the theory. Often, applying the partial stabilization algorithm again to the
closed-loop system resolves this problem. The numerical examples demonstrate
that our algorithm can solve stabilization problems so far not treatable with
available software.

The disk function based stabilization method can be applied to fairly large
systems with up to several thousand state-space variables as it can be implemented
very efficiently on modern computer architectures. A parallel implementation of
the algorithm based on the matrix disk function and partial stabilization methods
for standard systems in generalized state-space form [11, 12] as implemented in
the Parallel Library in Control2 (PLiC, see [14]) is straightforward and is planned
for the future.
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Chapter 4
Comparing Two Matrices by Means
of Isometric Projections

T. P. Cason, P.-A. Absil and P. Van Dooren

Abstract In this paper, we go over a number of optimization problems defined on
a manifold in order to compare two matrices, possibly of different order. We
consider several variants and show how these problems relate to various specific
problems from the literature.

4.1 Introduction

When comparing two matrices A and B it is often natural to allow for a class of
transformations acting on these matrices. For instance, when comparing adjacency
matrices A and B of two graphs with an equal number of nodes, one can allow
symmetric permutations PTAP on one matrix in order to compare it to B, since this
is merely a relabelling of the nodes of A. The so-called comparison then consists in
finding the best match between A and B under this class of transformations.

A more general class of transformations would be that of unitary similarity
transformations Q�AQ, where Q is a unitary matrix. This leaves the eigenvalues of
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A unchanged but rotates its eigenvectors, which will of course play a role in the
comparison between A and B. If A and B are of different order, say m and n, one
may want to consider their restriction on a lower dimensional subspace:

U�AU and V�BV ; ð4:1Þ

with U and V belonging to St k;mð Þ and St k; nð Þ respectively, and where St k;mð Þ ¼
U 2 C

m�k : U�U ¼ Ik

� �
denotes the compact Stiefel manifold. This yields two

square matrices of equal dimension k� minðm; nÞ, which can again be compared.
But one still needs to define a measure of comparison between these restrictions

of A and B which clearly depends on U and V . Fraikin et al. [1] propose in this
context to maximize the inner product between the isometric projections, U�AU
and V�BV , namely:

arg max
U�U¼Ik
V�V¼Ik

U�AU;V�BVh i :¼ < tr U�AUð Þ�ðV�BVÞð Þ;

where < denotes the real part of a complex number. They show this is also
equivalent to

arg max
X¼VU�
U�U¼Ik
V�V¼Ik

XA;BXh i ¼ < tr A�X�BXð Þ;

and eventually show how this problem is linked to the notion of graph similarity
introduced by Blondel et al. [2]. The graph similarity matrix S introduced in that
paper also proposes a way of comparing two matrices A and B via the fixed point
of a particular iteration. But it is shown in [3] that this is equivalent to the
optimization problem

arg max
Sk kF¼1

SA;BSh i ¼ < tr ðSAÞ�BSð Þ

or also

arg max
Sk kF¼1

S;BSA�h i ¼ < tr ðSAÞ�BSð Þ:

Notice that S also belongs to a Stiefel manifold, since vec Sð Þ 2 St 1;mnð Þ.
In this paper, we use a distance measure rather than an inner product to compare

two matrices. As squared distance measure between two matrices M and N, we
will use

dist2 M;Nð Þ ¼ M � Nk k2
F ¼ tr ðM � NÞ�ðM � NÞð Þ:

We will analyze distance minimization problems that are essentially the coun-
terparts of the similarity measures defined above. These are

arg min
U�U¼Ik
V�V¼Ik

dist2 U�AU;V�BVð Þ;
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arg min
X¼VU�
U�U¼Ik
V�V¼Ik

dist2 XA;BXð Þ;

and

arg min
X¼VU�
U�U¼Ik
V�V¼Ik

dist2 X;BXA�ð Þ;

for the problems involving two isometries U and V . Notice that these three dis-
tance problems are not equivalent although the corresponding inner product
problems are equivalent.

Similarly, we will analyze the two problems

arg min
Sk kF¼1

dist2ðSA;BSÞ ¼ tr SA� BSð Þ� SA� BSð Þð Þ

and

arg min
Sk kF¼1

dist2ðS;BSA�Þ ¼ tr S� BSA�ð Þ� S� BSA�ð Þð Þ;

for the problems involving a single matrix S. Again, these are not equivalent in
their distance formulation although the corresponding inner product problems are
equivalent.

We will develop optimality conditions for those matrix comparison problems,
indicate their relations with existing problems from the literature and give an
analytic solution for particular matrices A and B.

4.2 Preliminaries on Riemannian Optimization

All those problems are defined on feasible sets that have a manifold structure.
Roughly speaking, this means that the feasible set is locally smoothly identified
with R

d, where d is the dimension of the manifold. Optimization on a manifold
generalizes optimization in R

d while retaining the concept of smoothness. In this
section, we recall the essential background on optimization on manifolds, and refer
the reader to [4] for details.

A well known and largely used class of manifolds is the class of embedded
submanifolds. The submersion theorem gives a useful sufficient condition to prove
that a subset of a manifoldM is an embedded submanifold ofM. If there exists a
smooth mapping F :M!N0 between two manifolds of dimension dm and
d0nð\dmÞ and y 2 N 0 such that the rank of F is equal to d0n at each point of
N :¼ F�1ðyÞ, thenN is a embedded submanifold ofM and the dimension ofN is
dm � d0n.
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Example The unitary group U nð Þ ¼ Q 2 C
n�n : Q�Q ¼ Inf g is an embedded

submanifold of Cn�n. Indeed, consider the function

F : Cn�n ! SHer nð Þ : Q 7! Q�Q� In

where SHer nð Þ denotes the set of Hermitian matrices of order n. Clearly,
U nð Þ ¼ F�1ð0nÞ. It remains to show for all Ĥ 2 SHer kð Þ, there exists an H 2 C

n�n

such that DFðQÞ � H ¼ Q�H þ H�Q ¼ Ĥ. It is easy to see that DFðQÞ�
ðQĤ=2Þ ¼ Ĥ, and according to the submersion theorem, it follows that U nð Þ is an
embedded submanifold of Cn�n. The dimension of Cn�n and SHer nð Þ are 2n2 and
n2 respectively. Hence U nð Þ is of dimension n2.

In our problems, embedding spaces are matrix-Euclidean spaces C
m�k � C

n�k

and C
n�m which have a trivial manifold structure since C

m�k � C
n�k ’ R

2mnk2
and

C
n�m ’ R

2mn. For each problem, we further analyze whether or not the feasible set
is an embedded submanifold of their embedding space.

When working with a function on a manifold M, one may be interested in
having a local linear approximation of that function. Let M be an element of M
and FMðMÞ denote the set of smooth real-valued functions defined on a neigh-
borhood of M.

Definition 1.1 A tangent vector nM to a manifold M at a point M is a mapping
from FMðMÞ to R such that there exists a curve c onM with cð0Þ ¼ M; satisfying

nMf ¼ df ðcðtÞÞ
dt

����
t¼0

; 8f 2 FMðMÞ:

Such a curve c is said to realize the tangent vector nx:

So, the only thing we need to know about a curve c in order to compute the
first-order variation of a real-value function f at cð0Þ along c is the tangent
vector nx realized by c. The tangent space to M at M, denoted by TMM, is the
set of all tangent vectors to M at M and it admits a structure of vector space
over R. When considering an embedded submanifold in a Euclidean space E,
any tangent vector nM of the manifold is equivalent to a vector E of the
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Euclidean space. Indeed, let f̂ be any a differentiable continuous extension of f
on E, we have

nMf :¼ df ðcðtÞÞ
dt

����
t¼0

¼ D f̂ ðMÞ � E; ð4:2Þ

where E is _cð0Þ and D is the directional derivative operator

D f̂ ðMÞ � E ¼ lim
t!0

f̂ ðM þ tEÞ � f̂ ðMÞ
t

:

The tangent space reduces to a linear subspace of the original space E.

Example Let cðtÞ be a curve on the unitary group U nð Þ passing through Q at t ¼ 0,
i.e. cðtÞ�cðtÞ ¼ In and cð0Þ ¼ Q. Differentiating with respect to t yields

_cð0Þ�Qþ Q� _cð0Þ ¼ 0n:

One can see from Eq. 4.2 that the tangent space to U nð Þ at Q is contained in

E 2 C
n�n : E�Qþ Q�E ¼ 0nf g ¼ QX 2 C

n�n : X� þ X ¼ 0nf g: ð4:3Þ

Moreover, this set is a vector space over R of dimension n2, and hence is the
tangent space itself.

Let gM be an inner product defined on the tangent plane TMM. The gradient of
f at M, denoted grad f ðMÞ, is defined as the unique element of the tangent plane
TMM, that satisfies

nMf ¼ gMðgrad f ðMÞ; nMÞ; 8nM 2 TMM:

The gradient, together with the inner product, fully characterizes the local first
order approximation of a smooth function defined on the manifold. In the case of
an embedded manifold of a Euclidean space E, since TMM is a linear subspace of
TME, an inner product ĝM on TME generates by restriction an inner product gM on
TMM. The orthogonal complement of TMM with respect to ĝM is called the

normal space to M at M and denoted by ðTMMÞ?. The gradient of a smooth

function f̂ , defined on the embedding manifold may be decomposed into its
orthogonal projection on the tangent and normal space, respectively

PMgrad f̂ ðMÞ and P?Mgrad f̂ ðMÞ;

and it follows that the gradient of f (the restriction of f̂ onM) is the projection on

the tangent space of the gradient of f̂

grad f ðMÞ ¼ PMgrad f̂ ðMÞ:

If TMM is endowed with an inner product gM for all M 2M and gM varies
smoothly with M, the M is termed a Riemannian manifold.
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Example Let A and B, two Hermitian matrices. We define

f̂ : Cn�n ! R : Q 7! < tr Q�AQBð Þ;

and f its restriction on the unitary group U nð Þ. We have

D f̂ ðQÞ � E ¼ 2< tr E�AQBð Þ:

We endow the tangent space TQC
n�n with an inner product

ĝ : TQC
n�n � TQC

n�n ! R : E;F 7! < tr E�Fð Þ;

and the gradient of f̂ at Q is then given by grad f̂ ðQÞ ¼ 2AQB. One can further
define an orthogonal projection on TQU nð Þ

PQE :¼ E � Q Her Q�Eð Þ;

and the gradient of f at Q is given by grad f ðQÞ ¼ PQ grad f̂ ðQÞ.

Those relations are useful when one wishes to analyze optimization problems,
and will hence be further developed for the problems we are interested in.

4.3 The Matrix Comparison Problems and Their Geometry

Below we look at the various problems introduced earlier and focus on the first
problem to make these ideas more explicit.

Problem 1 Given A 2 C
m�m and B 2 C

n�n, let

f̂ : Cm�k � C
n�k ! C : ðU;VÞ 7! f̂ ðU;VÞ ¼ distðU�AU;V�BVÞ;

find the minimizer of

f : St k;mð Þ � St k; nð Þ ! C : ðU;VÞ 7! f ðU;VÞ ¼ f̂ ðU;VÞ;

where

St k;mð Þ ¼ U 2 C
m�k : U�U ¼ Ik

� �

denotes the compact Stiefel manifold.

Let A ¼ ðA1;A2Þ and B ¼ ðB1;B2Þ be pairs of matrices. We define the fol-
lowing useful operations:

• an entrywise product, A � B ¼ ðA1B1;A2B2Þ,
• a contraction product, A H B ¼ A1B1 þ A2B2, and
• a conjugate-transpose operation, A� ¼ ðA�1;A�2Þ.
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The definitions of the binary operations, � and H, are (for readability)
extended to single matrices when one has to deal with pairs of identical matrices.
Let, for instance, A ¼ ðA1;A2Þ be a pair of matrices and B be a single matrix, we
define

A � B ¼ ðA1;A2Þ � B ¼ ðA1;A2Þ � ðB;BÞ ¼ ðA1B;A2BÞ
A H B ¼ ðA1;A2ÞH B ¼ ðA1;A2ÞH ðB;BÞ ¼ A1Bþ A2B:

The feasible set of Problem 1 is given by the cartesian product of two
compact Stiefel manifolds, namely M¼ St k;mð Þ � St k; nð Þ and is hence a
manifold itself (cf. [4]). Moreover, we can prove that M is an embedded
submanifold of

E :¼ C
m�k � C

n�k:

Indeed, consider the function

F : E ! SHer kð Þ � SHer kð Þ : M 7! M� �M � ðIk; IkÞ

where SHer kð Þ denotes the set of Hermitian matrices of order k. Clearly,
M¼ F�1ð0k; 0kÞ. It remains to show that each point M 2 M is a regular value of
F which means that F has full rank, i.e. for all Ẑ 2 SHer kð Þ � SHer kð Þ, there exists
Z 2 E such that DFðMÞ � Z ¼ Ẑ. It is easy to see that DFðMÞ � ðM � Ẑ=2Þ ¼ Ẑ, and
according to the submersion theorem, it follows that M is an embedded sub-
manifold of E.

The tangent space to E at a point M ¼ ðU;VÞ 2 E is the embedding space itself
(i.e. TME ’ E), whereas the tangent space to M at a point M ¼ ðU;VÞ 2 M is
given by

TMM :¼ _cð0Þ : c; differentiable curve on M with cð0Þ ¼ Mf g
¼ n ¼ ðnU ; nVÞ : Her n� �Mð Þ ¼ 0f g

¼ M �
XU

XV

� �
þM? �

KU

KV

� �
: XU ;XV 2 Ss�Her kð Þ

� �
;

where M? ¼ ðU?;V?Þ with U? and V? any orthogonal complement of respec-
tively U and V , where Herð�Þ stands for

Herð�Þ : X 7! X þ X�ð Þ=2;

and where Ss�Her kð Þ denotes the set of skew-Hermitian matrices of order k. We
endow the tangent space TME with an inner product:

ĝMð�; �Þ : TME � TME ! C : n; f 7! ĝMðn; fÞ ¼ < tr n�H fð Þ;

and define its restriction on the tangent space TMMð� TMEÞ :

gMð�; �Þ : TMM� TMM! C : n; f 7! gMðn; fÞ ¼ ĝMðn; fÞ:

4 Comparing Two Matrices by Means of Isometric Projections 83



One may now define the normal space to M at a point M 2M:

T?MM : ¼ n : ĝMðn; fÞ ¼ 0; 8f 2 TMMf g
¼ M � ðHU ;HVÞ : HU ;HV 2 SHerðkÞf g;

where SHer kð Þ denotes the set of Hermitian matrices of order k.

Problem 2 Given A 2 C
m�m and B 2 C

n�n, let

f̂ : Cn�m ! C : X 7! f̂ ðXÞ ¼ dist XA;BXð Þ
find the minimizer of

f :M! C : X 7! f ðXÞ ¼ f̂ ðXÞ;

where M¼ VU� 2 C
n�m : ðU;VÞ 2 Stðk;mÞ � Stðk; nÞf g.

M is a smooth and connected manifold. Indeed, let R :¼ Ik 0
0 0

	 

be an element

of M. Every X 2M is congruent to R by the congruence action ðð~U; ~VÞ;XÞ 7!
~V�X ~U, ð~U; ~VÞ 2 U mð Þ � U nð Þ, where U nð Þ ¼ U 2 C

n�n : U�U ¼ Inf g denotes the
unitary group of degree n. The setM is an orbit of this smooth complex algebraic Lie
group action of U mð Þ � U nð Þ on C

n�m and therefore a smooth manifold [5, App. C].
M is the image of the connected subset U mð Þ � U nð Þ of the continuous (and in fact
smooth) map p : U mð Þ � U nð Þ ! C

n�m; pð~U; ~VÞ ¼ ~V�X ~U, and hence is also
connected.

The tangent space to M at a point X ¼ VU� 2 M is

TMM :¼ _cð0Þ : c curve on M with cð0Þ ¼ Xf g
¼ nvU� þ Vn�U : Her V�nVð Þ ¼ Her U�nUð Þ ¼ 0k

� �

¼ VXU� þ VK�UU�? þ V?KV U� : X 2 Ss�Her kð Þ
� �

:

We endow the tangent space TXC
n�m ’ C

n�m with an inner product:

ĝXð�; �Þ : TXC
n�m � TXC

n�m 7! C : n; f! ĝXðn; fÞ ¼ < tr n�fð Þ;

and define its restriction on the tangent space TXMð� TXEÞ:

gXð�; �Þ : TXM� TXM 7! C : n; f! gXðn; fÞ ¼ ĝXðn; fÞ:

One may now define the normal space to M at a point X 2 M:

T?XM :¼ n : ĝXðn; fÞ ¼ 0; 8f 2 TXMf g
¼ VHU� þ V?KU�? : H 2 SHer kð Þ
� �

:

Problem 3 Given A 2 C
m�m and B 2 C

n�n, let

f̂ : Cn�m ! C : X 7! f̂ ðXÞ ¼ dist X;BXA�ð Þ
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find the minimizer of

f :M! C : X 7! f ðXÞ ¼ f̂ ðXÞ;
where M¼ VU� 2 C

n�m : ðU;VÞ 2 St k;mð Þ � St k; nð Þf g.

Since they have the same feasible set, developments obtained for Problem 2
hold also for Problem 3.

Problem 4 Given A 2 C
m�m and B 2 C

n�n, let

f̂ : Cn�m ! C : S 7! f̂ ðSÞ ¼ distðSA;BSÞ

find the minimizer of

f :M! C : X 7! f ðXÞ ¼ f̂ ðXÞ;

where M¼ S 2 C
n�m : kSkF ¼ 1

� �
.

The tangent space to M at a point S 2 M is

TSM¼ n : < tr n�Sð Þ ¼ 0f g:

We endow the tangent space TSC
n�m ’ C

n�m with an inner product:

ĝSð�; �Þ : TSC
n�m � TSC

n�m 7! C : n; f! ĝSðn; fÞ ¼ < tr n�fð Þ;

and define its restriction on the tangent space TSMð� TSEÞ:

gSð�; �Þ : TSM� TSM 7! C : n; f! gSðn; fÞ ¼ ĝSðn; fÞ:
One may now define the normal space to M at a point S 2 M:

T?S M :¼ n : ĝSðn; fÞ ¼ 0; 8f 2 TSMf g ¼ aS : a 2 Rf g

Problem 5 Given A 2 C
m�m and B 2 C

n�n, let

f̂ : Cn�m ! C : S 7! f̂ ðSÞ ¼ distðS;BSA�Þ
find the minimizer of

f :M! C : X 7! f ðXÞ ¼ f̂ ðXÞ;

where M¼ S 2 C
n�m : kSkF ¼ 1

� �
.

Since they have the same feasible set, developments obtained for Problem 4
also hold for Problem 5.

4.4 Optimality Conditions

Our problems are optimization problems of smooth functions defined on a compact
domain M, and therefore there always exists an optimal solution M 2M where
the first order optimality condition is satisfied,
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grad f ðMÞ ¼ 0: ð4:4Þ

We study the stationary points of Problem 1 in detail, and we show how the other
problems can be tackled.

Problem 1 We first analyze this optimality condition for Problem 1. For any
ðW ; ZÞ 2 TME, we have

D f̂ ðU;VÞ � ðW ; ZÞ ¼ 2<tr
W�AU þ U�AW � Z�BV � V�BZð Þ�

U�AU � V�BVð Þ

� �

¼ ĝðU;VÞ 2
AUD�AB þ A�UDAB

BVD�BA þ B�VDBA

� �
; ðW ; ZÞ

� �
; ð4:5Þ

with DAB :¼ U�AU � V�BV ¼: �DBA, and hence the gradient of f̂ at a point
ðU;VÞ 2 E is

grad f̂ ðU;VÞ ¼ 2
AUD�AB þ A�UDAB

BVD�BA þ B�VDBA

� �
: ð4:6Þ

Since the normal space T?MM is the orthogonal complement of the tangent space
TMM, one can, for any M 2M, decompose any E 2 E into its orthogonal pro-
jections on TMM and T?MM:

PME :¼ E � P?ME and P?ME :¼ M � Her M� � Eð Þ: ð4:7Þ

The gradient of f at a point ðU;VÞ 2 M is

grad f ðU;VÞ ¼ PMgrad f̂ Mð Þ: ð4:8Þ

For our problem, the first order optimality condition (4.4) yields, by means of
(4.6), (4.7) and (4.8)

AUD�AB þ A�UDAB

BVD�BA þ B�VDBA

� �
¼ U

V

� �
� Her

U�AUD�AB þ U�A�UDAB

V�BVD�BA þ V�B�VDBA

� �
: ð4:9Þ

Observe that f is constant on the equivalence classes

ðU;VÞ½ 	 ¼ ðU;VÞ � Q : Q 2 U kð Þf g;

and that any point of ðU;VÞ½ 	 is a stationary point of f whenever ðU;VÞ is.

We consider the special case where U�AU and V�BV are simultaneously
diagonalizable by a unitary matrix at all stationary points ðU;VÞ, i.e. eigende-
composition of U�AU and V�BV are respectively WDAW� and WDBW�, with
W 2 U kð Þ and DA ¼ diag hA

1 ; . . .; hA
k

� �
, DB ¼ diag hB

1 ; . . .; hB
k

� �
. This happens when

A and B are both Hermitian. Indeed, in that case, applying
U�

V�

� �
� on the lest of

(4.9) yields
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U�AU V�BV ¼ V�BV U�AU;

which implies that U�AU and V�BV have the same eigenvectors. The cost function

at stationary points simply reduces to
Pk

i¼1 hA
i � hB

i

�� ��2 and the minimization
problem roughly consists in finding the isometric projections U�AU, V�BV such
that their eigenvalues are pairwise as near as possible.

More precisely, the first optimality condition becomes

A
B

� �
� U

V

� �
�W � U

V

� �
�W � DA

DB

� �	 

� DA � DB

DB � DA

� �
¼ 0; ð4:10Þ

that is,

A
B

� �
�

�Ui
�Vi

� �
�

�Ui
�Vi

� �
� hA

i
hB

i

� �	 

� hA

i � hB
i

hB
i � hA

i

� �
¼ 0; i ¼ 1; . . .; k ð4:11Þ

where �Ui and �Vi denotes the ith column of �U ¼ UW and �V ¼ VW respectively.
This implies that for all i ¼ 1; . . .; k either hA

i ¼ hB
i or hA

i ;
�Ui

� �
and hB

i ;
�Vi

� �
are

eigenpairs of respectively A and B.

Definition 1.2 Let A and AU be two square matrices respectively of order m and k,
where m
 k. AU is said to be imbeddable in A if there exists a matrix U 2 St k;mð Þ
such that U�AU ¼ AU :

For Hermitian matrices, [6] gives us the following result.

Theorem 1.3 Let A and AU be Hermitian matrices and a1� a2� � � � � am and

hA
1 � hA

2 � � � � � hA
k their respective eigenvalues. Then a necessary and sufficient

condition for AU to be imbeddable in A is that

hA
i 2 ai; ai�kþm½ 	; i ¼ 1; . . .; k:

The necessity part of this theorem is well known as the Cauchy interlacing
theorem [7, p. 202]. The sufficiency part is less easy to prove cf: [6, 8].

Definition 1.4 For S1 and S2; two non-empty subsets of a metric space together
with the distance d; we define

ed S1; S2ð Þ ¼ inf
s12S1
s22S2

dðs1; s2Þ

When considering two non-empty subsets a1; a2½ 	 and b1; b2½ 	 of R; one can easily
see that

ed a1; a2½ 	; b1; b2½ 	ð Þ ¼ max 0; a1 � b2; b1 � a2ð Þ:

Theorem 1.5 Let a1� a2� � � � � am and b1� b2� � � � � bn be the eigenvalues
of Hermitian matrices respectively A and B. The solution of Problem 1 is
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Xk

i¼1

ed ai; ai�kþm½ 	; bi; bi�kþn

 �� �� �2

with d the Euclidean norm.

Proof Recall that when A and B are Hermitian matrices, U�AU and V�BV are
jointly diagonalizable by a unitary matrix at all stationary points ðU;VÞ. Since the
distance is invariant by joint unitary transformation, the value of the minimum is
not affected if we restrict ðU;VÞ to be such that U�AU and V�BV are diagonal.
Problem 1 reduces to minimize

f ðU;VÞ ¼
Xk

i¼1

hA
i � hB

i

�� ��2;

where U�AU ¼ diagðhA
1 ; . . .; hA

k Þ and V�BV ¼ diagðhB
1 ; . . .; hB

k Þ. It follows from
Theorem 1.3 that the minimum of Problem 1 is

min
hA

i ;h
B
i

min
p

Xk

i¼1

hA
pðiÞ � hB

i

� �2
ð4:12Þ

such that

hA
1 � hA

2 � � � � � hA
k ; hB

1 � hB
2 � � � � � hB

k ; ð4:13Þ

hA
i 2 ai; ai�kþm½ 	; hB

i 2 bi; bi�kþn

 �
; ð4:14Þ

and pð�Þ is a permutation of 1; . . .; k.
Let hA

1 ; . . .; hA
k , and hB

1 ; . . .; hB
k satisfy (4.13). Then, the identity permutation

pðiÞ ¼ i is optimal for problem (4.12). Indeed, if p is not the identity, then there
exists i and j such that i \ j and pðiÞ[ pðjÞ, and we have

hA
i � hB

pðiÞ

� �2
þ hA

j � hB
pðjÞ

� �2
� hA

j � hB
pðiÞ

� �2
þ hA

i � hB
pðjÞ

� �2
	 


¼ 2 hA
j � hiA

� �
hB

pðiÞ � hB
pðjÞ

� �
� 0:

Since the identity permutation is optimal, our minimization problem simply
reduces to

Xk

i¼1

min
ð4:13Þð4:14Þ

hA
i � hB

i

� �2
:

We now show that (4.13) can be relaxed. Indeed, assume there is an optimal
solution that does not satisfy the ordering condition, i.e. there exist i and j, i \ j

such that hA
j � hA

i . One can see that the following inequalities hold
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ai� aj� hA
j � hA

i � ai�kþm� aj�kþm:

Since hA
i belongs to aj; aj�kþm

 �
and hA

j belongs to ai; ai�kþm½ 	, one can switch i and
j and build an ordered solution that does not change the cost function and hence
remains optimal.

It follows that
Pk

i¼1 minð4:13Þð4:14Þ hA
i � hB

i

� �2
is equal to

Pk
i¼1 minð4:14Þ hA

i � hB
i

� �2
.

This result is precisely what we were looking for. h

Figure 4.1 gives an example of optimal matching.

Problem 2 For all Y 2 TXC
n�m ’ C

n�m, we have

Df̂ ðXÞ � Y ¼ 2< tr Y� XAA� � B�XA� BXA� þ B�BXð Þð Þ; ð4:15Þ

and hence the gradient of f̂ at a point X 2 C
n�m is

grad f̂ ðXÞ ¼ 2ðXAA� � B�XA� BXA� þ B�BXÞ: ð4:16Þ

Since the normal space T?XM is the orthogonal complement of the tangent space
TXM, one can, for any X ¼ VU� 2 M, decompose any E 2 C

n�m into its
orthogonal projections on TXM and T?XM:

PXE ¼ E � V Her V�EUð ÞU� � ðIn � VV�ÞEðIm � UU�Þ; and

P?X E ¼ V Her V�EUð ÞU� þ ðIn � VV�ÞEðIm � UU�Þ:
ð4:17Þ

For any Y 2 TXM, (4.15) hence yields

Df̂ ðXÞ � Y ¼ Df ðXÞ � Y ¼ gX PXgrad f̂ ðXÞ; Y
� �

;

and the gradient of f at a point X ¼ VU� 2 M is

grad f ðXÞ ¼ PXgrad f̂ Xð Þ: ð4:18Þ

Fig. 4.1 Let the ai and bi be the eigenvalues of the Hermitian matrices A and B, and k ¼ 3.

Problem 1 is then equivalent to
P3

i¼1 minhA
i ;h

B
i

hA
i � hB

i

� �2
such that hA

i 2 ai; aiþ3½ 	, hB
i 2 bi;biþ4

 �
.

The two first terms of this sum have strictly positive contributions whereas the third one can be
reduced to zero within a continuous set of values for hA

3 and hB
3 in a3;b7½ 	
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Problem 3 This problem is very similar to Problem 2. We have

Df̂ ðXÞ � Y ¼ 2< tr Y� X � B�XA� BXA� þ B�BXA�Að Þð Þ; ð4:19Þ

for all Y 2 TXC
n�m ’ C

n�m, and hence the gradient of f̂ at a point X 2 C
n�m is

grad f̂ ðXÞ ¼ 2ðX � B�XA� BXA� þ B�BXA�AÞ:

The feasible set is the same as in Problem 2. Hence the orthogonal decomposition
(4.17) holds, and the gradient of f at a point X ¼ VU� 2 M is

grad f ðXÞ ¼ PXgrad f̂ Xð Þ:

Problem 4 For all T 2 TSC
n�m ’ C

n�m, we have

Df̂ ðSÞ � T ¼ 2<tr T� SAA� � B�SA� BSA� þ B�BSð Þð Þ; ð4:20Þ

and hence the gradient of f̂ at a point S 2 C
n�m is

grad f̂ ðSÞ ¼ 2ðSAA� � B�SA� BSA� þ B�BSÞ: ð4:21Þ

Since the normal space, T?S M, is the orthogonal complement of the tangent space,
TSM, one can, for any S 2M, decompose any E 2 C

n�m into its orthogonal
projections on TSM and T?S M:

PSE ¼ E � S< tr S�Eð Þ and P?S E ¼ S< tr S�Eð Þ: ð4:22Þ

For any T 2 TSM, (4.20) then yields

Df̂ ðSÞ � T ¼ Df ðSÞ � T ¼ gS PSgrad f̂ ðSÞ; T
� �

;

and the gradient of f at a point S 2 M is gradf ðSÞ ¼ PSgrad f̂ Sð Þ.
For our problem, (4.4) yields, by means of (4.21) and (4.22)

kS ¼ ðSA� BSÞA� � B�ðSA� BSÞ

where k ¼ tr ðSA� BSÞ�ðSA� BSÞð Þ � f̂ ðSÞ. Its equivalent vectorized form is

kvec Sð Þ ¼ AT � I � I � B
� ��

AT � I � I � B
� �

vec Sð Þ:

Hence, the stationary points of Problem 4 are given by the eigenvectors of
AT � I � I � Bð Þ� AT � I � I � Bð Þ. The cost function f simply reduces to the

corresponding eigenvalue and the minimal cost is then the smallest eigenvalue.

Problem 5 This problem is very similar to Problem 4. A similar approach yields

kS ¼ ðS� BSA�Þ � B�ðS� BSA�ÞA

where k ¼ tr ðS� BSA�Þ�ðS� BSA�Þð Þ. Its equivalent vectorized form is
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kvec Sð Þ ¼ I � I � �A� Bð Þ� I � I � �A� Bð Þvec Sð Þ;

where �A denotes the complex conjugate of A.
Hence, the stationary points of Problem 5 are given by the eigenvectors of

I � I � �A� Bð Þ� I � I � �A� Bð Þ, and the cost function f again simply reduces to
the corresponding eigenvalue and the minimal cost is then the smallest eigenvalue.

4.5 Iterative Methods

The solutions of the problems mentioned above may not have a closed form
expression or may be very expensive to compute. Iterative optimization methods
build a sequence of iterates that hopefully converges as fast as possible towards the
optimal solution and eventually gives an estimate of it.

The complexity of classical algorithms can significantly increase according to
the number of variables to deal with. An interesting approach when one works on a
feasible set that has a manifold structure amounts to use classical methods defined
on Euclidean spaces and apply them to the tangent space to the manifold (see [4]).
The link between the tangent space and the manifold is naturally done using a
so called retraction mapping. Let M be a point of a manifold M, the retraction
RM is a smooth function that maps the tangent vector nM 2 TMM to a point on
M such that

• 0M (the zero element of TMM) is mapped onto M, and
• there is no distortion around the origin, which means that

DRMð0MÞ ¼ idTMM

where idTMM denotes the identity mapping on TMM.

Given a cost function f defined on a manifoldM, one can build a pullback cost

function f̂M ¼ f  RM on the vector space TMM. One can now easily generalize
methods defined on Euclidean space. A well known class of iterative methods are
line-search methods. In R

d, choose a starting point x0 and proceed through the
following iteration

xkþ1 ¼ xk þ tkzk;

where zk is a suitable search direction and tk a scalar called the step size. This
iteration can be generalized as follows on manifolds:

Mkþ1 ¼ RMk tknkð Þ;

where nk is a tangent vector. For minimization problems, one may choose the
opposite of the gradient as search direction

nk ¼ �grad f ðMkÞ:

4 Comparing Two Matrices by Means of Isometric Projections 91



This particular case is known as the steepest descent method. The step size can
further be set using the so-called Armijo Back-Tracking scheme, for example.

Some iterative methods, like Newton’s method, use higher-order derivatives of f .
We further plan to investigate several of these methods in order to solve the
problems mentioned above.

4.6 Relation to the Crawford Number

The field of values of a square matrix A is defined as the set of complex numbers

FðAÞ :¼ x�Ax : x�x ¼ 1f g;

and is known to be a closed convex set [9]. The Crawford number is defined as the
distance from that compact set to the origin

CrðAÞ :¼ min kj j : k 2 FðAÞf g;

and can be computed e.g. with techniques described in [9]. One could define the
generalized Crawford number of two matrices A and B as the distance between
FðAÞ and FðBÞ, i.e.

CrðA;BÞ :¼ min k� lj j : k 2 FðAÞ; l 2 FðBÞf g:

Clearly, CrðA; 0Þ ¼ CrðAÞ which thus generalizes the concept. Moreover this is a
special case of our problem since

CrðA;BÞ ¼ min
U�U¼V�V¼1

U�AU � V�BVk k:

One can say that Problem 1 is a k-dimensional extension of this problem.

Acknowledgments We thank the reviewers for their useful remarks and for mentioning refer-
ence [6].
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Chapter 5
A Framelet-Based Algorithm for Video
Enhancement

Raymond H. Chan, Yiqiu Dong and Zexi Wang

Abstract Video clips are made up of many still frames. Most of the times, the
frames are small perturbations of their neighboring frames. Recently, we proposed
a framelet-based algorithm to enhance the resolution of any frames in a video clip
by solving it as a super-resolution image reconstruction problem. In this paper, we
extend the algorithm to video enhancement, where we compose a high-resolution
video from a low-resolution one. An experimental result of our algorithm on a real
video clip is given to illustrate the performance.

5.1 Introduction

High-resolution images are useful in remote sensing, surveillance, military
imaging, and medical imaging, see for instances [4, 12, 14]. However, high-
resolution images are more expensive to obtain compared to low-resolution ones
which can be obtained from an array of inexpensive low-resolution sensors.
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Therefore, there has been much interest in reconstructing high-resolution images
from low-resolution ones that are small perturbation of each other, see [9, 11, 13,
15, 17, 20]. One approach is based on the maximum likelihood technique using the
expectation maximization algorithm to seek the high resolution image [3]. Another
approach is the regularization method in [10] which was based on the total squared
error between the observed low-resolution images and the predicted low-resolution
images. The predicted images are the results of projecting the high-resolution
image estimate through the observation model. The framelet algorithm proposed
in [5, 6] is different from these methods. It applies the unitary extension principle
in [16] to form a system of tight frame filters. In this approach, there is only
matrix-vector multiplication, and no need for solving a minimization problem.
Recently, it was shown that this framelet algorithm, which is an iterative algo-
rithm, indeed converges to a minimizer of a variational problem [2].

Video clips are made up of many still frames (about 25–30 frames per second),
and the scene usually does not change much from one frame to the next. Thus
given a reference frame, its nearby frames can be considered as its small pertur-
bations, and we can make use of them to get a high-resolution image of the

reference frame. More precisely, consider a sequence of frames ffkgK
k¼�K in a

video clip, where k increases with the time when the frame fk is taken. Let f0 be the
reference frame we want to enhance its resolution. The frames ffkgk 6¼0 can be
considered as small spatial perturbations of f0. Then, we can use the fram-
elet algorithm proposed in [5] to improve the resolution of f0. Such a still
enhancement algorithm is given in [7].

The goal of this paper is to extend the algorithm in [7] to video enhancement,
where high-resolution video streams are constructed from low-resolution ones.
The paper is organized as follows. In Sect. 5.2, we introduce the framelet algo-
rithm for the high-resolution image reconstruction given in [5]. In Sect. 5.3, we
describe the algorithm proposed in [7] for enhancing video stills. Then in Sect. 5.4,
we extend it to video enhancement and apply the resulting algorithm on a real
video to enhance the video resolution. Conclusion is given in Sect. 5.5.

In this paper, we use bold-face characters to indicate vectors. If f represents an
image f ðx; yÞ, f represents the column vector constructed by raster scanning of f
row by row.

5.2 High-Resolution Image Reconstruction

5.2.1 The Model

Here we briefly recall the high-resolution image reconstruction model introduced
in [1]. For more details, please refer to the paper. Let h be a piecewise continuous
function measuring the intensity of a scene. An image of h at sampling resolution
T can be modeled by the integral
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hðn1; n2Þ �
1

T2

Zðn2þ1
2ÞT

ðn2�1
2ÞT

Zðn1þ1
2ÞT

ðn1�1
2ÞT

hðx; yÞdxdy; n1; n2 2 Z: ð5:1Þ

Here ðn1; n2Þ are the pixel locations. High-resolution image reconstruction refers
to the construction of an image with sampling resolution T by using K2 low-
resolution images of sampling resolution KT , where K is a positive integer. In this
paper, we only consider K ¼ 2. Larger value of K can be considered similarly, but
with more complicated notations.

When K ¼ 2; we are given four low-resolution images, g0;0; g0;1; g1;0; g1;1 of
sampling resolution 2T; sampling at

gi;jðn01; n02Þ ¼
1

4T2

Zð2ðn02þ1
2ÞþjÞT

ð2ðn02�
1
2ÞþjÞT

Zð2ðn01þ1
2ÞþiÞT

ð2ðn01�
1
2ÞþiÞT

hðx; yÞdxdy; ð5:2Þ

where i; j ¼ 0; 1: The locations ð0; 0Þ, ð0; 1Þ, ð1; 0Þ and ð1; 1Þ are the sensor
positions.

A straightforward way to form an image g of sampling resolution T is to
interlace the four low-resolution images, i.e.

gðn1; n2Þ ¼ gi;jðn01; n02Þ; ð5:3Þ

where i ¼ n1 mod 2, j ¼ n2 mod 2, n01 ¼ bn1=2c; n02 ¼ bn2=2c, see Fig. 5.1. The
function g is called the observed high-resolution image.

Note that g isnot equal to the desired image h in (5.1) but is a good approxi-
mation of it. If we assume hðx; yÞ is constant in the sampling region

½ðn1 � 0:5ÞT ; ðn1 þ 0:5ÞTÞ � ½ðn2 � 0:5ÞT ; ðn2 þ 0:5ÞTÞ;

for all n1; n2 2 Z, (i.e. hðx; yÞ � hðn1; n2Þ there), then by (5.1)–(5.3), we can easily
prove that

Fig. 5.1 The model of
obtaining g by interlacing
pixels from gi;j

Open square g0;0 pixels;
�

filled square g0;1

pixels; filled triangle g1;0

pixels; Open triangle g1;1

pixelsÞ
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gðn1; n2Þ ¼
1
4

1
4

hðn1 � 1; n2 � 1Þ þ 1
2

hðn1 � 1; n2Þ þ
1
4

hðn1 � 1; n2 þ 1Þ
�

þ 1
2

hðn1; n2 � 1Þ þ hðn1; n2Þ þ
1
2

hðn1; n2 þ 1Þ

þ 1
4

hðn1 þ 1; n2 � 1Þ þ 1
2

hðn1 þ 1; n2Þ þ
1
4

hðn1 þ 1; n2 þ 1Þ
�
:

In matrix form, it is

g ¼ H0;0h; ð5:4Þ

where H0;0 ¼ H0 � H0 with H0 being the matrix representation of the discrete
convolution (i.e. Toeplitz form) with kernel h0 ¼ ½1=4; 1=2; 1=4�:

To obtain a better high-resolution image than g, one will have to solve h from
(5.4). It is an ill-posed problem where many methods are available. One approach
is the framelet method in [5] that we are going to describe next.

5.2.2 Framelet-Based HR Image Reconstruction

Here we briefly recall the algorithm in [5] and refer the reader to the paper for
more details. The convolution kernel h0 is a low-pass filter. By applying the
unitary extension principle in [16], h0 together with the following high-pass filters
form a tight framelet system:

h1 ¼
ffiffiffi
2
p

4
; 0;�

ffiffiffi
2
p

4

� �
; h2 ¼ �1

4
;
1
2
;�1

4

� �
: ð5:5Þ

Define

Hi;j ¼ Hi � Hj; 0� i; j� 2;

where Hi is the discrete convolution matrix with kernel hi. The perfect recon-
struction formula for the framelet systems gives

h ¼
X2

i;j¼0

H�i;jHi;jh;

see [5]. Based on (5.4) and substituting H0;0h by g, we have
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h ¼ H�0;0gþ
X2

i;j¼0
ði;jÞ6¼ð0;0Þ

H�i;jHi;jh: ð5:6Þ

Images are usually contaminated with noise, which are of high-frequency in
nature. Since except for H0;0 the others filter matrices are all high-pass, the noise is
magnified in the second term of (5.6). We can use a threshold operator Dk to
remove the noise. The iteration, in matrix terms, thus becomes

hðnþ1Þ ¼ H�0;0gþ
X2

i;j¼0
ði;jÞ6¼ð0; 0Þ

H�i;jDkðHi;jh
ðnÞÞ; n ¼ 0; 1; . . .;

where hð0Þ is the initial guess. Here we use Donoho’s soft thresholding operator
[8]:

DkðxÞ ¼ ðtkðx1Þ; . . .; tkðxLÞÞ>;

where tkðxÞ ¼ sgnðxÞmaxðjxj � k; 0Þ, k ¼ 2r
ffiffiffiffiffiffiffiffiffiffi
log L
p

, L is the length of the vector
x, and r is the variance of the noise estimated numerically by the method in [8].

However, to avoid too many high-frequency components being removed, we
use wavelet packets to further decompose the high-frequency components before
doing the thresholding. In essence, we replace the operator Dk by the recursively-
defined T v shown in Fig. 5.2. The operator T v will first decompose w until the
level v and then threshold all the coefficients except the low-frequency ones on
level v. In matrix terms, we have

hðnþ1Þ ¼ H�0;0gþ
X2

i;j¼0
ði;jÞ6¼ð0;0Þ

H�i;jT vðHi;jh
ðnÞÞ; n ¼ 0; 1; . . .: ð5:7Þ

Fig. 5.2 The operator T v defined recursively with T 0 ¼ I, the identity
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5.2.3 HR Reconstruction with Displacement Errors

Before we can apply the algorithm in Sect. 5.2.2 to improve video quality, there is
one problem we have to overcome. In enhancing videos, the frames in the video
may not be aligned exactly by length T as in (5.3) or in Fig. 5.1. For example,
relative to the reference frame, a nearby frame may have moved in the x-direction
by a distance of ‘T where ‘ ¼ nþ r, with n 2 Z and jrj\1. In that case, if we
want to apply the algorithm in the last section, we can first shift the frame back by
nT ¼ ðn=2Þð2TÞ and then consider the shifted frame as a displaced frame of the
reference frame with displacement error equals r=2. The displacement error can
then be corrected by framelet systems as follows. We refer the readers to [5] for
more details.

Define the 2D downsampling and upsampling matrices Di;j ¼ Dj � Di and
Ui;j ¼ Uj � Ui, where Di ¼ IM � e>i and Ui ¼ IM � eiði ¼ 0; 1Þ, IM is the identity

of size M, e0 ¼ ð1; 0Þ> and e1 ¼ ð0; 1Þ>. Here M-by-M is the resolution of the
low-resolution frame. Then we have

gi;j ¼ Di;jg and g ¼
X1

i;j¼0

Ui;jgi;j: ð5:8Þ

As mentioned above, in practice, what we obtained is a shifted version of gi;j,
i.e. we have ~gi;jð	; 	Þ � gi;jð	 þ �x

i;j; 	 þ �
y
i;jÞ, where 0� j�x

i;jj\0:5, 0� j�y
i;jj\0:5,

0� i; j� 1. The parameters �x
i;j and �y

i;j are called the displacement errors. As in
(5.4) and (5.8), the observed low-resolution image ~gi;j can be considered as the
down-sample of h after it has passed through a filter corresponding to the 2D
framelet filter matrix H ¼ Hð�y

i;jÞ � Hð�x
i;jÞ, where Hð�Þ denotes the 1D filter

1
2½12� �; 1; 1

2þ ��. More precisely, we have

~gi;j ¼ Di;jHh:

Then gi;j can be obtained from ~gi;j via

gi;j ¼ Di;jH0;0h ¼ Di;j½H � ðH � H0;0Þ�h ¼ ~gi;j � Di;jðH � H0;0Þh:

Hence we have

g ¼
X1

i;j¼0

Ui;jgi;j ¼
X1

i;j¼0

Ui;j½~gi;j � Di;jðH � H0;0Þh� ¼ ~g� ðH � H0;0Þh: ð5:9Þ

Substituting (5.9) into (5.7), we arrive at the 2D image resolution enhancement
formula:
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hðnþ1Þ ¼ H�0;0½~g� ðH � H0;0ÞhðnÞ� þ
X2

i;j¼0
ði;jÞ6¼ð0;0Þ

H�i;jT vðHi;jh
ðnÞÞ: ð5:10Þ

We depict this algorithm graphically in Fig. 5.3.

5.3 Resolution Enhancement for Video Clips

Video clips consist of many still frames. Each frame can be considered as per-
turbations of its nearby frames. Therefore, we may generate higher resolution
images of any frame in the video by exploiting the high redundancy between the

nearby frames. More precisely, consider a sequence of frames ffkgK
k¼�K in a given

video clip, where k increases with the time when the frame fk is captured. We aim
to improve the resolution of the reference frame f0 by incorporating information
from frames ffkgk 6¼0. Without loss of generality, we can assume that f0 is the low-
resolution image at the (0,0) sensor position without any displacement error.

An algorithm for video still enhancement is given in [7] which is an adaptation
of the algorithm in (5.10). Basically, we have to tackle the following issues:

1. for each frame fk, we have to estimate its sensor position and displacement
errors with respect to f0, and

2. it may be that not all low-resolution images at all sensor positions are available
in the video.
Here we recall the ways we handled these issues in [7].

5.3.1 Estimating the Motion Parameters

For computational efficiency, we assume that the frames ffkgk 6¼0 are related to f0
by an affine transform, i.e.

fkðRkx� rkÞ 
 f0ðxÞ; k 6¼ 0;

Fig. 5.3 Framelet-based resolution enhancement algorithm for 2D images, see (5.10)
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where x are the coordinates of the pixels in the region of interest. Denote

Rkx� rk �
cðkÞ0 cðkÞ1

cðkÞ3 cðkÞ4

" #
xþ cðkÞ2

cðkÞ5

" #
¼ cðkÞ0 cðkÞ1 cðkÞ2

cðkÞ3 cðkÞ4 cðkÞ5

" #
x
1

� �
: ð5:11Þ

Our task is to estimate the parameters fckg5
k¼0 that minimize the difference

between fk and f0, that is,

ðcðkÞ0 ; cðkÞ1 ; . . .; cðkÞ5 Þ ¼ argmin
X

j2I
½fkðRkxj � rkÞ � f0ðxjÞ�2;

where I is the index set of pixels in the region of interest, which may be the entire
image or part of the image. Many methods can be used to solve this minimization
problem, such as the Levenberg-Marquardt iterative nonlinear minimization
algorithm [18].

With Rk and rk, we can compute the sensor position ðsx
k; s

y
kÞ with sx

k; s
y
k 2 f0; 1g

and the displacement errors ð�x
k; �

y
kÞ for the frame fk with respect to f0. Since

fkðRkx� rkÞ ¼ fkðRkðx� R�1
k rkÞÞ, it can be viewed as a translation of f0 with

displacement vector �R�1
k rk. Our task is to write

R�1
k rk ¼ uk þ

1
2

sx
k

sy
k

� �
þ 1

2
�x

k
�y

k

� �
: ð5:12Þ

Then, f̂kðxÞ � fkðRkðx� ukÞÞ can be considered as the low-resolution image gsx
k ;s

y
k

with displacement errors ð�x
k; �

y
kÞ at sensor position ðsx

k; s
y
kÞ. The algorithm is as

follows.

Algorithm 1 ð f̂ ðxÞ; sx; sy; �x; �yÞ  ðf ; f0Þ: locate the frame f against the reference
frame f0:

Fig. 5.4 Resolve the horizonal displacement in Algorithm 1. First we compute the total
displacement ~r1. Then write ~r1 ¼ u1 þ d1 where d1 2 ½�1=4; 3=4Þ. Then the sensor location
sx ¼ b2d1 þ 1

2c and the displacement error �x ¼ 2d1 � sx
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1 Compute ½~r1;~r2� ¼ R�1r:

2 Let u � ½b~r1 þ 1
4c; b

~r2 þ 1
4c�
>, then ½d1; d2� � ½~r1;~r2� � u> has entries in ½� 1

4 ;
3
4Þ:

3 Let ½sx; sy� � ½b2d1 þ 1
2c; b2d2 þ 1

2c�, then sx; sy 2 f0; 1g:
4 Let ½�x; �y� � ½2d1 � sx; 2d2 � sy�, then j�xj; j�yj\ 1

2 and (5.12) holds.

5 f̂ ðxÞ � f ðRðx� uÞÞ:

We use Fig. 5.4 to illustrate how the algorithm resolves the displacement in the
horizonal direction. It is similar for the vertical direction.

5.3.2 The Video Still Enhancement Algorithm

After passing a frame f through Algorithm 1, we then have the ðsx; syÞth low-
resolution image with displacement error ð�x; �yÞ, i.e.

f̂ ð	Þ ¼ ~gsx;syð	; 	Þ ¼ gsx;syð	 þ �x; 	 þ �yÞ:

But in the algorithm for image enhancement (5.10) (see also Fig. 5.3), we assume

not one, but a complete set of low-resolution images f~gi;jg1
i;j¼0 at every sensor

position. To compensate for the missing low-resolution images, our idea is to
generate them by downsampling the current high-resolution approximation h of f0

with zero displacement error, i.e.

gi;j ¼
f̂ � Di;jðH � H0;0Þh; ði; jÞ ¼ ðsx; syÞ;
Di;jH0;0h; ði; jÞ 6¼ ðsx; syÞ:

�
ð5:13Þ

We use an alternate direction approach to obtain the high-resolution image h. In

the m-th outer iteration step, we let gsx;sy ¼ f̂ � Dsx;syðH � H0;0Þhð0Þm , where

Fig. 5.5 Inner iteration of Algorithm 2. Here, we fix the low-resolution image gsx ;sy , and

compensate the missing ones gi;j by downsampling H0;0hðnÞm . Then we have g ¼
P1

i;j¼0 Ui;jgi;j as

in (5.9) with gi;j substituted by (5.13). We iterate hðnÞm w.r.t. n until it converges; then we set

hm ¼ hðnÞm
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hð0Þm ¼ hm�1. Then, we iterate hðnÞm with respect to n as shown in Fig. 5.5, which is

in fact a modification of Fig. 5.3. When it converges, we set h
ð0Þ
mþ1 ¼ hm. Once we

get an update hm, we will go into the next outer iteration; see Fig. 5.6. The
complete alternate direction algorithm is as follows.

Algorithm 2 h Update ðh; f̂; sx; sy; �x; �yÞ : Update the high resolution image h

by a frame f̂ with parameters ðsx; sy; �x; �yÞ:

1 Initialize h0 ¼ h; and set m ¼ 0:

2 If PSNRðDsx;sy Hhm; f̂Þ\50 dB, set h
ð0Þ
mþ1 ¼ hm, and m ¼ mþ 1; otherwise,

output h ¼ hm, stop.
3 Iterate hðnÞm w.r.t. n until convergence (see Fig. 5.5):

(a) gi;j ¼
f̂ � Dsx;syðH � H0;0Þhð0Þm ; ði; jÞ ¼ ðsx; syÞ;
Di;jH0;0hðnÞm ; ði; jÞ 6¼ ðsx; syÞ:

�

(b) g ¼
P1

i;j¼0
Ui;jgi;j.

(c) hðnþ1Þ
m ¼ H�0;0gþ

P2

i;j¼0
ði;jÞ6¼ð0;0Þ

H�i;jT vðHi;jh
ðnÞ
m Þ:

Fig. 5.6 Outer iteration of Algorithm 2. We update the high resolution image h by a frame f̂ with
parameters ðsx; sy; �x; �yÞ

Fig. 5.7 Resolution enhancement for video clips (in the dotted-lined box it is used to determine
if f̂k is good enough to update h)
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4 Set hm ¼ hðnÞm after converge, and go back to step 2.

In Fig. 5.7, we give the algorithm for the video still enhancement. Given a

reference frame f0, we use a sequence of 2K frames ffkgK
k¼�K that are taken just

before and after the reference frame f0. The step in the dotted-lined box is to

determine if the shifted frame f̂k is close enough to f0 or else we discard the frame.
In the experiments, we set p ¼ 25dB. Initially, we estimate h by bilinear inter-
polation on f0, and then use the new information from good frames to update h.
The advantage of our algorithm is that based on the rule shown in the dotted-lined
box it only chooses the good candidate frames to enhance the resolution, and there
is no need to determine the number of frames to be used in advance.

5.4 Video Enhancement Algorithm

Since video streams are made up of frames, and we can now improve the reso-
lution of each frame in a video stream, we can compose these high-resolution
frames together to generate a higher resolution video of the given video stream.

More precisely, we can apply our algorithm in Fig. 5.7 to the frames ffkgK
k¼�K to

enhance f0, and then apply the algorithm again to frames ffkgKþ1
k¼�Kþ1 to enhance f1,

etc. Then, by combining the enhanced frames, we obtain a high-resolution video.
In this section, we test this idea for a video clip which is filmed by us by moving

our camera over a calendar. The video clip is in .avi format with size 520� 480,
and can be downloaded at [19]. We first try the video still enhancement algorithm

Fig. 5.8 a The reference frame f60, and b a part of f60
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in [7] to enhance the resolution of a frame in the video. In the seven seconds of the
video, we choose the 60th frame f60 as our reference frame, see Fig. 5.8a. In
Fig. 5.8b, we show a part of the reference frame f60 (the area enclosed by the box
in Fig. 5.8 (a)) that we try to improve the resolution on.

We let K ¼ 10, that is, we use the 50th to the 70th frames to improve the
resolution of f60. The alignment parameters for this clip are listed in Table 5.1,
which shows that frames f52 and f54 are discarded. Figure 5.9a gives the first guess
of the high-resolution image of f60 by the bilinear interpolation. The result from
our algorithm (i.e. Fig. 5.7) is shown in Fig. 5.9b. Clearly the calendar by our
method is much clearer than that by the bilinear interpolation. Moreover some
numbers, such as ‘‘16’’ and ‘‘18’’, which are clearly discernible now, are very
difficult to read from the video clip or just by bilinear interpolation.

The results clearly show that the video still enhancement algorithm (Fig. 5.7) is
working. Next we extend it to video enhancement. Our aim is to obtain a high-
resolution video for the image in Fig. 5.8b. We will use the video still enhance-

ment algorithm (Fig. 5.7) repeatedly to enhance all frames in ffkg63
k¼40. More

precisely, frames ffkg‘þ10
k¼‘�10 will be used to improve the resolution of frames f‘,

with 40� ‘� 63. The enhanced stills are put back together to get a higher-reso-
lution video with 24 frames. The original clip and the resulting clips are given in
[19]. Because the new one has higher resolution, it is 4 times in size and is much
clearer.

Table 5.1 Alignment results from our algorithm

Frame index ðsx; syÞ ð�x; �yÞ f0ðxÞ 
 f ðRxþ rÞ
61 (1,0) (0.119, 0.036) Yes
59 (1,0) (0.246, -0.066) Yes
62 (0,0) (0.368, 0.186) Yes
58 (0,0) (0.272, -0.126) Yes
63 (1,0) (-0.139, 0.086) Yes
57 (1,0) (0.334, -0.214) Yes
64 (1,0) (0.323, -0.194) Yes
56 (0,0) (-0.134, -0.381) Yes
65 (0,0) (-0.349, 0.164) Yes
55 (0,1) (0.454, 0.448) Yes
66 (0,0) (0.421, 0.181) Yes
54 – - No
67 (1,0) (-0.219, 0.236) Yes
53 (0,1) (-0.323, 0.323) Yes
68 (1,0) (0.313, 0.232) Yes
52 - - No
69 (0,0) (0.096, 0.204) Yes
51 (0,0) (0.292, -0.500) Yes
70 (0,0) (0.485, 0.186) Yes
50 (0,1) (0.062, 0.301) Yes
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5.5 Conclusion

In this paper, we give a short survey of the framelet algorithm proposed in [7] for
high-resolution still enhancement from video clips. We then extend it to video
enhancement. Simulation results show that our framelet algorithm can reveal
information that is not discernible in the original video clips or by simple inter-
polation of any particular frame in the video.

By modification of the motion estimation Eq. 5.11, our framelet algorithm can
also be extended to more complicated motions. So far, we have not yet make use
of the sparsity of the tight-frame coefficients across frames. How to make use of it
is an interesting topic for our future work.

Fig. 5.9 Reconstructed high-
resolution images: a using
bilinear interpolation, b using
our algorithm in Fig. 5.7
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Chapter 6
Perturbation Analysis of the Mixed-Type
Lyapunov Equation

Mingsong Cheng and Shufang Xu

Abstract This paper concerns the mixed-type Lyapunov equation X ¼ A�XBþ
B�XAþ Q; where A;B; and Q are n� n complex matrices and A� the conjugate
transpose of a matrix A:A perturbation bound for the solution to this matrix equation is
derived, an explicit expression of the condition number is obtained, and the backward
error of an approximate solution is evaluated by using the techniques developed in Sun
(Linear Algebra Appl 259:183–208, 1997), Sun and Xu (Linear Algebra Appl
362:211–228, 2003). The results are illustrated by using some numerical examples.

6.1 Introduction

Consider the mixed-type Lyapunov matrix equation

X ¼ A�XBþ B�XAþ Q; ð6:1Þ

where A;B;Q 2 Cn�n: Here Cn�n denotes the set of all n� n complex matrices, A�

the conjugate transpose of a matrix A: This kind of equation arises in Newton’s
method for solving the following matrix equation:

X � A�X�2A ¼ I; ð6:2Þ
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which are recently studied by Ivanov, Liu, etc. [2, 4, 5]. In Newton’s method, we
must solve the following equation in each iterative step:

Xkþ1 þ A�X�2
k Xkþ1X�1

k Aþ A�X�1
k Xkþ1X�2

k A ¼ I þ 3A�X�2
k A; ð6:3Þ

which is a mixed-type Lyapunov equation (see [1, 9] for more details).
The matrix equation (6.1) can be regarded as a generalization of the discrete

and continuous Lyapunov equations. In fact, when B ¼ 1
2A; the matrix equation

(6.1) is just the discrete Lyapunov equation

X ¼ A�XAþ Q; ð6:4Þ

when B ¼ I; eA ¼ A� 1
2I; it is just the continuous Lyapunov equation

eA�X þ XeA þ Q ¼ 0: ð6:5Þ

This shows why we call it mixed-type Lyapunov equation. The solvability for this
equation has been studied in our former paper [9]. In this paper, our main purpose
is threefold. To begin with, we derive a perturbation bound for the solution X:
Secondly, we apply the theory of condition developed by Rice [6] to define a
condition number of X; and moreover, we use the techniques developed in [8] to
derive its explicit expressions. Finally, we use the techniques developed in [7] to
evaluate the backward error of an approximate solution.

We start with some notations which we shall use throughout this paper. Define
the linear operator

LðXÞ ¼ X � A�XB� B�XA; X 2 Cn�n; ð6:6Þ

then the mixed-type Lyapunov equation (6.1) can be written as LðXÞ ¼ Q:
Throughout this paper we always assume that the mixed-type Lyapunov equation
(6.1) has a unique solution X; i.e., the linear operator L is invertible. We use Cn�n

(or Rn�n) to denote the set of complex (or real) n� n matrices. A� denotes the

conjugate transpose of a matrix A;AT the transpose of A;Ay the Moore–Penrose
inverse of A; and �A the conjugate of A: The symbols k � k; k � k2; and k � kF denote
a unitary invariant norm, the spectral norm, and the Frobenius norm, respectively.
For A ¼ ½a1; . . .; an� ¼ ½aij� 2 Cn�n and a matrix B;A� B ¼ ½aijB� is a Kronecker

product, and vecðAÞ is a vector defined by vecðAÞ ¼ ½aT
1 ; . . .; aT

n �
T :

6.2 Perturbation Bound

Let X be the unique solution of the mixed-type Lyapunov equation (6.1), and let
the coefficient matrices A;B; and Q be slightly perturbed to

eA ¼ Aþ DA; eB ¼ Bþ DB; eQ ¼ Qþ DQ;
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respectively, where DA;DB;DQ 2 Cn�n: In this section we consider perturbation
bounds for the solution X:

Let eX ¼ X þ DX with DX 2 Cn�n satisfy the perturbed matrix equation

eX ¼ eA�eX eB þ eB�eX eA þ eQ: ð6:7Þ

Subtracting (6.1) from (6.7), we have

LðDXÞ ¼ DQþ hðDA;DBÞ; ð6:8Þ

where L defined by (6.6) and

hðDA;DBÞ ¼ ðDAÞ�eXBþ ðDBÞ�eXAþ A�eXDBþ B�eXDAþ ðDAÞ�eXDB

þ ðDBÞ�eXDA:

Since the linear operator L is invertible, we can rewrite (6.8) as

DX ¼ L�1ðDQÞ þ L�1ðhðDA;DBÞÞ: ð6:9Þ

Define

kL�1k ¼ max
W2Cn�n

kWk¼1

kL�1Wk:

It follows that

kL�1Wk�kL�1kkWk; W 2 Cn�n: ð6:10Þ

Now let

a ¼ kAk; b ¼ kBk; d ¼ kDQk; l ¼ kL�1k�1; c ¼ kXk; ð6:11Þ

and define

� ¼ akDBk þ bkDAk þ kDAkkDBk: ð6:12Þ

Then we can state the main result of this section as follows.

Theorem 1.1 If 2�\l; then the perturbed matrix equation (6.7) has a unique

solution eX such that

keX � Xk� dþ 2c�
l� 2�

	 d�: ð6:13Þ

Proof Let

f ðDXÞ ¼ L�1ðDQÞ þ L�1ðhðDA;DBÞÞ:

Obviously, f ðDXÞ can be regarded as a continuous mapping from Cn�n to
Cn�n: Now define
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Sd� ¼ fDX 2 Cn�n : kDXk� d�g: ð6:14Þ

Then for any DX 2 Sd� ; we have

kf ðDXÞk� 1
l
kDQk þ 1

l
khðDA;DBÞk

� d
l
þ 2

l
ðkBkkDAk þ kAkkDBk þ kDAkkDBkÞðkXk þ kDXkÞ

� dþ 2�cþ 2�d�
l

¼ d�:

Thus we have proved that f ðSd�Þ 
 Sd� : By the Schauder fixed-point theorem,
there exists a DX� 2 Sd� such that f ðDX�Þ ¼ DX�; i.e., there exists a solution DX�
to the perturbed equation (6.8) such that

kDX�k� d�: ð6:15Þ

Let eX ¼ X þ DX�: Then eX is a solution of the perturbed matrix equation (6.7).
Next we prove that the perturbed matrix equation (6.7) has a unique solution.

Define two linear operators

HðYÞ ¼ ðDAÞ�YBþ ðDBÞ�YAþ A�YDBþ B�YDAþ ðDAÞ�YDBþ ðDBÞ�YDA;

and

eLðYÞ ¼ Y � eA�YeB � eB�YeA;

respectively, where Y 2 Cn�n: Then it is easily seen that

eLðYÞ ¼ LðYÞ �HðYÞ ¼ L FðYÞð Þ;

where

FðYÞ ¼ Y � L�1 HðYÞð Þ:

Note that

kFðYÞk� kYk � kL�1 HðYÞð Þk
� kYkð1� kL�1kkHkÞ

� 1� 2�
l

� �
kYk;

which guarantees that the linear operator F is invertible under the condition 2�\l;

and hence, the linear operator eL is invertible, which implies that the perturbed

matrix equation (6.7) has a unique solution eX : Thus, the inequality (6.15) implies
that the inequality (6.13) holds. The proof is completed.
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Remark 2.1 From Theorem 1.1 we get the absolute perturbation bound of first
order for the unique solution X as follows:

keX � Xk� 1
l
kDQk þ 2ac

l
kDBk þ 2bc

l
kDAk þ OðkðDA;DB;DQÞk2Þ;

ðDA;DB;DQÞ �! 0: ð6:16Þ

Combining this with (6.9) gives

DX ¼ L�1ðDQÞ þQðDA;DBÞ þ OðkðDA;DB;DQÞk2Þ; ðDA;DB;DQÞ �! 0;

ð6:17Þ

where

QðDA;DBÞ ¼ L�1 ðDAÞ�XBþ ðDBÞ�XAþ A�XDBþ B�XDAð Þ: ð6:18Þ

Remark 2.2 Noting that (6.1) implies that

kQk� ð1þ 2kAkkBkÞkXk;

from (6.16) we immediately obtain the first relative perturbation bound for the
solution X by

keX � Xk
kXk � 1þ 2ab

l

kDAk
kAk þ

kDBk
kBk þ

kDQk
kQk

� �
þ O kðDA;DB;DQÞk2

� �
;

ðDA;DB;DQÞ �! 0: ð6:19Þ

6.3 Condition Numbers

We now apply the theory of condition developed by Rice [6] to study condition
numbers of the unique solution X to the mixed-type Lyapunov equation (6.1).

Suppose that the coefficient matrices A;B;Q are slightly perturbed to eA; eB; eQ 2
Cn�n; respectively, and let

DA ¼ eA � A; DB ¼ eB � B; DQ ¼ eQ � Q:

From Theorem 1.1 and Remark 2.1 we see that if kðDA;DB;DQÞkF is sufficiently

small, then the unique solution eX to the perturbed matrix equation (6.7) exists, and

DX 	 eX � X ¼ L�1ðDQÞ þQðDA;DBÞ þ OðkðDA;DB;DQÞk2
FÞ; ð6:20Þ

as ðDA;DB;DQÞ �! 0; where Q is defined by (6.18).
By the theory of condition developed by Rice [6] we define the condition

number of the unique solution X by
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cðXÞ ¼ lim
d!0

sup
kDA

a ;
DB
b ;

DQ
q kF � d

kDXkF

nd
; ð6:21Þ

where n; a; b and q are positive parameters. Taking n ¼ a ¼ b ¼ q ¼ 1 in (6.21)
gives the absolute condition number cabsðXÞ; and taking n ¼ kXkF; a ¼ kAkF ;
b ¼ kBkF; q ¼ kQkF in (6.21) gives the relative condition number crelðXÞ:

Substituting (6.20) into (6.21) we get

cðXÞ ¼ 1
n

max
ðDA

a ;
DB
b ;

DQ
q Þ6¼0

DA;DB;DQ2Cn�n

kL�1ðDQÞ þQðDA;DBÞkF

kDA
a ;

DB
b ;

DQ
q kF

¼ 1
n

max
ðE;M;NÞ6¼0

E;M;N2Cn�n

kL�1ðGðE;M;NÞÞkF

kðE;M;NÞkF

; ð6:22Þ

where

GðE;M;NÞ ¼ qN þ aðE�XBþ B�XEÞ þ bðA�XM þM�XAÞ:

Let L be the matrix representation of the linear operator L: Then it follows from
(6.6) that

L ¼ I � I � BT � A� � AT � B�: ð6:23Þ

Let

L�1 ¼ Sþ iR;

L�1 I � ðB�XÞð Þ ¼ U1 þ iX1; L�1ððXBÞT � IÞP ¼ U2 þ iX2;

L�1 I � ðA�XÞð Þ ¼ V1 þ iC1; L�1ððXAÞT � IÞP ¼ V2 þ iC2;

ð6:24Þ

where U1;U2;X1;X2;V1;V2;C1;C2 2 Rn2�n2
; and P is the vec-permutation

matrix (see [3, p. 32–34]), i.e.,

vecðETÞ ¼ PvecðEÞ:

Moreover, let

Sc ¼
S �R
R S;

� �
; Uc ¼

U1 þ U2 X2 � X1

X1 þ X2 U1 � U2

� �
;Vc ¼

V1 þ V2 C2 � C1

C1 þ C2 V1 � V2:

� �

ð6:25Þ

Then the following theorem immediately follows from (6.22).

Theorem 1.2 The condition number cðXÞ defined by (6.21) has the explicit
expression

cðXÞ ¼ 1
n
kðaUc; bVc; qScÞk2; ð6:26Þ

where the matrices Uc;Vc and Sc are defined by (6.23)–(6.25).
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Remark 3.1 From Theorem 1.2 we have the relative condition number

crelðXÞ ¼
ðjjAjjFUc; kBkFVc; kQkFScÞ
�� ��

2

kXkF

:

6.4 Backward Error

Let eX 2 Cn�n be an approximation to the unique solution X of the mixed-type
Lyapunov equation (6.2), and let DA;DB; and DQ be the corresponding pertur-
bations of the coefficient matrices A;B; and Q in (6.1). A backward error of the

approximate solution eX can be defined by

gðeXÞ¼min
DA

a
;
DB

b
;
DQ

q

� �����

����
F

: DA;DB;DQ2Cn�n; eX�ðAþDAÞ�eXðBþDBÞ
	

�ðBþDBÞ�eXðAþDAÞ¼QþDQ


; ð6:27Þ

where a; b and q are positive parameters. Taking a ¼ b ¼ q ¼ 1 in (6.27) gives

the absolute backward error gabsðeXÞ; and taking a ¼ kAkF ; b ¼ kBkF ; q ¼ kQkF

in (6.27) gives the relative backward error grelðeXÞ:
Let

R ¼ Q� eX þ A�eXBþ B�eXA: ð6:28Þ

Then from

eX � ðAþ DAÞ�eXðBþ DBÞ � ðBþ DBÞ�eXðAþ DAÞ ¼ Qþ DQ;

we get

ðDAÞ�eXBþ ðDBÞ�eXAþ A�eXDBþ B�eXDAþ DQ

¼ �R� ðDAÞ�eXDB� ðDBÞ�eXDA; ð6:29Þ

which shows that the problem of finding an explicit expression of the backward

error gðeXÞ defined by (6.27) is an optimal problem subject to a nonlinear con-
straint. It seems to be difficult to derive an explicit expression for the backward

error gðeXÞ: In this section we only give some estimates for gðeXÞ:
Define

vecðDAÞ ¼ x1 þ iy1; vecðDBÞ ¼ x2 þ iy2; vecðDQÞ ¼ x3 þ iy3;

vecðRÞ ¼ r þ is; vec ðDAÞ�eXDBþ ðDBÞ�eXDA
� �

¼ aþ ib;

I � ðB�eXÞ ¼ U1 þ iX1; ðeXBÞT � I
� �

P ¼ U2 þ iX2;
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I � ðA�eXÞ ¼ V1 þ iC1; ðeXAÞT � I
� �

P ¼ V2 þ iC2;

Uc ¼
U1 þ U2 X2 � X1

X1 þ X2 U1 � U2

" #
; Vc ¼

V1 þ V2 C2 � C1

C1 þ C2 V1 � V2

" #
;

Tc ¼ ðaUc; bVc; qI2n2Þ;

g ¼ xT
1

a
;
yT

1

a
;
xT

2

b
;
yT

2

b
;
xT

3

q
;
yT

3

q

� �T

;

ð6:30Þ

where P is the vec-permutation. Using these symbols (6.29) can be rewritten as

Tcg ¼ �
r
s

� �
� a

b

� �
: ð6:31Þ

Since q[ 0; the 2n2 � 6n2 matrix Tc is of full row rank, and hence, TcT
y
c ¼ I2n2 ;

which implies that every solution to the equation

g ¼ �Tyc
r
s

� �
� Tyc

a
b

� �
ð6:32Þ

must be a solution to the equation (6.31). Consequently, for any solution g to the
Eq. (6.32) we have

gðeXÞ� kgk2: ð6:33Þ

Let

c ¼ Tyc
r
s

� �����

����
2

; s ¼ kTyc k
�1
2 ; l ¼ keXk2; ð6:34Þ

and define

LðgÞ ¼ �Tyc
r
s

� �
� Tyc

a
b

� �
: ð6:35Þ

Then we have

kLðgÞk2� cþ 1
s

a

b

� �����

����
2

¼ cþ ab
s

DA

a

� ��
eXDB

b
þ DB

b

� ��
eXDA

a

����

����
F

� cþ 2abl
s

DA

a

����

����
F

DB

b

����

����
F

� cþ abl
s

DA

a

����

����
2

F

þ DB

b

����

����
2

F

 !

� cþ abl
s
kgk2

2: ð6:36Þ
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Consider the equation

n ¼ cþ abl
s

n2: ð6:37Þ

It is easy to verify that if

c� s
4abl

; ð6:38Þ

then the Eq. (6.37) has the positive number

n1 ¼
2cs

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4ablcs

p ð6:39Þ

as its smallest positive real root. Thus, it follows from (6.36) that

kgk2� n1 ¼) kLðgÞk2� n1: ð6:40Þ

Therefore, by the Schauder fixed-point theorem, there exists a g� satisfying
kg�k2� n1 such that Lðg�Þ ¼ g�; which means that g� is a solution to the
Eq. (6.32), and hence it follows from (6.33) that

gðeXÞ� kg�k2� n1; ð6:41Þ

i.e., n1 is an upper bound for gðeXÞ: Next we derive a lower bound for gðeXÞ:
Suppose that DAmin

a ; DBmin

b ; DQmin

q

� �
satisfies

gðeXÞ ¼ DAmin

a
;
DBmin

b
;
DQmin

q

� �����

����
F

: ð6:42Þ

Then we have

Tcgmin ¼ �
r
s

� �
� amin

bmin

� �
; ð6:43Þ

where

amin þ ibmin ¼ vec ðDAminÞ�eXDBmin þ ðDBminÞ�eXDAmin

� �
;

x1;min þ iy1;min ¼ vecðDAminÞ; x2;min þ iy2;min ¼ vecðDBminÞ;
x3;min þ iy3;min ¼ vecðDQminÞ;

gmin ¼
xT

1;min

a
;
yT

1;min

a
;
xT

2;min

b
;
yT

2;min

b
;
xT

3;min

q
;
yT

3;min

q

 !T

:

Let Tc ¼ WðD; 0ÞZT be a singular value decomposition, where W and Z are
orthogonal matrices, D ¼ diagðd1; d2; . . .; d2n2Þ with d1� � � � � d2n2 [ 0: Substi-
tuting this decomposition into (6.43), and letting
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ZTgmin ¼
v
�

� �
v 2 R2n2

;

we get

v ¼ D�1WT � r
s

� �
� amin

bmin

� �� �

Then we have

gðeXÞ ¼ kgmink2 ¼
v

�

� �����

����
2

�kvk2

� D�1WT r

s

� �����

����
2

� D�1WT amin

bmin

� �����

����
2

� Tyc
r

s

� �����

����
2

� Tyc
amin

bmin

� �����

����
2

� c� kTyc k2kðDAminÞ�eXDBmin þ ðDBminÞ�eXDAminkF

� c� 2abl
s

DAmin

a

����

����
F

DBmin

b

����

����
F

� c� abl
s

DAmin

a
;
DBmin

b

� �����

����
2

F

� c� abl
s

n2
1; ð6:44Þ

in which the last inequality follows from the fact that

DAmin

a
;
DBmin

b

� �����

����
F

� DAmin

a
;
DBmin

b
;
DQmin

q

� �����

����
F

¼ gðeXÞ� n1:

Let now

lðcÞ ¼ c� abl
s

n2
1 ¼ c� abl

s
2cs

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4ablcs

p
 !2

:

If we can prove that lðcÞ[ 0; then (6.44) just gives a useful lower bound for gðeXÞ:
Therefore, we now devote to proving that lðcÞ[ 0: Since n1 is a solution to the Eq.
(6.37), we have

n1 ¼ cþ abl
s

n2
1;

and hence we have

lðcÞ ¼ c� abl
s

n2
1 ¼ 2c� n1 ¼

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4ablcs

p

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4ablcs

p [ 0:

In summary, we have proved the following theorem.
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Theorem 1.3 Let A;B;Q; eX 2 Cn�n be given matrices, gðeXÞ be the backward
error defined by (6.27), and let the scalars c; s; l be defined by (6.34). If c\ s

4abl;

then we have

0\lðcÞ� gðeXÞ� uðcÞ; ð6:45Þ

where

uðcÞ ¼ 2cs

sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4ablcs

p ; lðcÞ ¼ c� abl
s

u2ðcÞ: ð6:46Þ

Remark 4.1 The functions uðcÞ and lðcÞ defined by (6.46) have the Taylor
expansions

uðcÞ ¼ cþ abl
s

c2 þ Oðc3Þ

and

lðcÞ ¼ c� abl
s

c2 þ Oðc3Þ;

respectively. Consequently, when c is sufficiently small, we have

c� abl
s

c2
. gðeXÞ. cþ abl

s
c2: ð6:47Þ

6.5 Numerical Examples

To illustrate the results of the previous sections, in this section some simple
examples are given, which were carried out using MATLAB 6.5 on a PC Pentium
IV/1.7G computer, with machine epsilon � � 2:2� 10�16:

Example 5.1 Consider the mixed-type Lyapunov matrix equation (6.1) with
A ¼ aJ;B ¼ bJ;X ¼ 4I2 and Q ¼ X � A�XB� B�XA; where

J ¼ 2 �1
�1 2

� �
:

Take a ¼ b ¼ 0:5; and suppose that the perturbations in the coefficient matrices
are

DAk ¼ 10�k �
0:901 0:402

0:332 0:451

" #
; DBk ¼ 10�k �

0:778 0:231

�0:343 0:225

" #
;

DQk ¼ 10�k �
0:401 0:225

0:331 �0:429

" #
:
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In this case the relative condition number crelðXÞ ¼ 8:6603; which is computed by
the formula given as in Remark 3.1. By Theorem 1.1, we can compute perturbation

bounds dðkÞ� :

rðkÞ 	 kX � XðkÞk� dðkÞ� ;

where XðkÞ are the solutions of the mixed-type Lyapunov equation (6.1) with the
coefficient matrices Ak ¼ Aþ DAk;Bk ¼ Bþ DBk and Qk ¼ Qþ DQk; respec-
tively. Some results are listed in Table 6.1.

On the other hand, take a ¼ 0:5 and b ¼ 0:9998: In this case the relative
condition number is crelðXÞ ¼ 32396:61: This shows that the solution X is ill-
conditioned. However, we can still compute the perturbation bounds, which are
shown in Table 6.2.

The results listed in Tables 6.1 and 6.2 show that the perturbation bound given
by Theorem 1.1 is relatively sharp.

Example 5.2 Consider the mixed-type Lyapunov equation (6.1) with the coefficient
matrices A ¼ 1

2J;B ¼ bkJ;X ¼ I2 and Q ¼ X � A�XB� B�XA; where

bk ¼ 1� 10�k; J ¼ 0 1
1 0

� �
:

Suppose that the perturbations in the coefficient matrices are

DA ¼ 10�10 �
0:491 0:962

0:342 0:471

� �
; DB ¼ 10�10 �

0:478 0:232

0:413 �0:535

� �
;

DQ ¼ 10�10 �
0:128 0:625

0:331 �0:429

� �
:

Some numerical results on the relative perturbation bounds d�=kXk; r� and crelðXÞ
are shown in Table 6.3, where d� is as in (6.13), r� ¼ keX � Xk=kXk; and crelðXÞ is
given in Remark 3.1. The results listed in Table 6.3 show that the relative
perturbation bound d�=kXk is fairly sharp, even if in the case the solution X is
ill-conditioned.

Table 6.1

k 6 7 8 9 10

r(k) 1.854 9 10-5 1.854 9 10-6 1.854 9 10-7 1.854 9 10-8 1.854 9 10-9

dðkÞ� 5.313 9 10-5 5.313 9 10-6 5.313 9 10-7 5.313 9 10-8 5.313 9 10-9

Table 6.2

k 6 7 8 9 10

r(k) 5.261 9 10-2 5.201 9 10-3 5.195 9 10-4 5.194 9 10-5 5.194 9 10-6

dðkÞ� 2.154 9 10-1 2.056 9 10-2 2.046 9 10-3 2.045 9 10-4 2.045 9 10-5
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Example 5.3 Consider the mixed-type Lyapunov equation (6.1) with the coefficient
matrices

A ¼
1 0 1
�1 1 1
�1 �1 1

2

4

3

5; Q ¼ X � A�XB� B�XA;

where X ¼ diagð1; 2; 3Þ;B is a 3� 3 Hilbert matrix. Let now

eX ¼ X þ 10�j �
0:5 �0:1 0:2
�0:1 0:3 0:6
0:2 0:6 �0:4

2

4

3

5

be an approximate solution. Take a ¼ kAkF ; b ¼ kBkF and q ¼ kQkF in
Theorem 1.3. Some numerical results on lower and upper bounds for the backward

error gðeXÞ are displayed in Table 6.4.

From the results listed in Table 6.4 we see that the backward error of eX
decreases as the error keX � XkF decreases, and moreover, we see that for smaller c

(e.g., c\10�4) we can get a quite better estimate for the backward error gðeXÞ by
taking c as an approximation to uðcÞ or lðcÞ:

6.6 Conclusion

In this paper we first give a perturbation bound for the solution X to the mixed-type
Lyapunov equation (6.1). Then we derive an explicit expression of the condition
number for the solution X to the mixed-type Lyapunov equation (6.1). Moreover,

Table 6.3

k 1 2 3 4 5

d*/||X|| 2.667 9 10-9 2.792 9 10-8 2.805 9 10-7 2.806 9 10-6 2.806 9 10-5

r* 2.416 9 10-9 2.619 9 10-8 2.640 9 10-7 2.642 9 10-6 2.642 9 10-5

crel(X) 12.77 140.01 1.412 9 10-3 1.414 9 10-4 1.414 9 10-5

Table 6.4

j keX � XkF
c lðcÞ uðcÞ

1 0.1149 0.0149 0.0144 0.0154
3 0:1149� 10�2 0:1525� 10�3 0:1524� 10�3 0:1525� 10�3

5 0:1149� 10�4 0:1525� 10�5 0:1525� 10�5 0:1525� 10�5

7 0:1149� 10�6 0:1525� 10�7 0:1525� 10�7 0:1525� 10�7

9 0:1149� 10�8 0:1525� 10�9 0:1525� 10�9 0:1525� 10�9
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we give an upper and lower bounds of the backward error for an approximate
solution to the mixed-type Lyapunov equation (6.1). Numerical examples show
that our estimate is fairly sharp.
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Chapter 7
Numerical and Symbolical Methods
for the GCD of Several Polynomials

Dimitrios Christou, Nicos Karcanias, Marilena Mitrouli
and Dimitrios Triantafyllou

Abstract The computation of the Greatest Common Divisor (GCD) of a set of
polynomials is an important issue in computational mathematics and it is linked to
Control Theory very strong. In this paper we present different matrix-based
methods, which are developed for the efficient computation of the GCD of several
polynomials. Some of these methods are naturally developed for dealing with
numerical inaccuracies in the input data and produce meaningful approximate
results. Therefore, we describe and compare numerically and symbolically
methods such as the ERES, the Matrix Pencil and other resultant type methods,
with respect to their complexity and effectiveness. The combination of numerical
and symbolic operations suggests a new approach in software mathematical
computations denoted as hybrid computations. This combination offers great
advantages, especially when we are interested in finding approximate solutions.
Finally the notion of approximate GCD is discussed and a useful criterion esti-
mating the strength of a given approximate GCD is also developed.

D. Christou � N. Karcanias
School of Engineering and Mathematical Sciences, Control Engineering Research
Centre, City University, Northampton Square, London, EC1V 0HB, UK
e-mail: dchrist@math.uoa.gr

N. Karcanias
e-mail: N.Karcanias@city.ac.uk

M. Mitrouli (&) � D. Triantafyllou
Department of Mathematics, University of Athens, Panepistemiopolis,
15784 Athens, Greece
e-mail: mmitroul@math.uoa.gr

D. Triantafyllou
e-mail: dtriant@math.uoa.gr

P. Van Dooren et al. (eds.), Numerical Linear Algebra in Signals, Systems and Control,
Lecture Notes in Electrical Engineering, 80, DOI: 10.1007/978-94-007-0602-6_7,
� Springer Science+Business Media B.V. 2011

123



7.1 Introduction

The problem of finding the greatest common divisor (GCD) of a polynomial set
has been a subject of interest for a very long time and has widespread applications.
Since the existence of a nontrivial common divisor of polynomials is a property
that holds for specific sets, extra care is needed in the development of efficient
numerical algorithms calculating correctly the required GCD. Several numerical
methods for the computation of the GCD of a set Pm;n, of m polynomials of <½s� of
maximal degree n, have been proposed, [2–4, 11, 20, 24, 26, 28–30, 32, 33, 36]
and references therein. These methods can be classified as:

(i) Numerical methods based on Euclid’s algorithm and its generalizations.
(ii) Numerical methods based on procedures involving matrices (matrix based

methods).

The methods that are based on Euclid’s algorithm, are designed for processing
two polynomials and they are applied iteratively for sets of more than two poly-
nomials. On the other hand, the matrix-based methods usually perform specific
transformations to a matrix formed directly from the coefficients of the poly-
nomials of the entire given set.

The GCD has a significant role in Control Theory [15, 31]. A number of
important invariants for Linear Systems rely on the notion of Greatest Common
Divisor (GCD) of several polynomials. In fact, it is instrumental in defining system
notions such as zeros, decoupling zeros, zeros at infinity or notions of Minimality
of system representations. On the other hand, Systems and Control Methods
provide concepts and tools, which enable the development of new computational
procedures for GCD [16].

The existence of certain types and/or values of invariants and system properties
may be classified as generic or nongeneric on a family of linear models. Numerical
computations dealing with the derivation of an approximate value of a property,
function, which is nongeneric on a given model set, will be called nongeneric
computations (NGC) [16]. Computational procedures aiming at defining the
generic value of a property, function on a given model set (if such values exists),
will be called generic (GC). On a set of polynomials with coefficients taking values
from a certain parameter set, the existence of GCD is nongeneric [14, 35];
numerical procedures that aim to produce an approximate nontrivial value by
exploring the numerical properties of the parameter set are typical examples of
NGC computations and approximate GCD procedures will be considered subse-
quently. NG computations refer to both continuous and discrete type system
invariants. The various techniques, which have been developed for the computa-
tion of approximate solutions of GCD [19, 26] and LCM (Least Common
Multiple) [16, 21, 22], are based on methodologies where exact properties of these
notions are relaxed and appropriate solutions are sought using a variety of
numerical tests.
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The development of a methodology for robust computation of nongeneric
algebraic invariants, or nongeneric values of generic ones, has as prerequisites:

(a) The development of a numerical linear algebra characterization of the
invariants, which may allow the measurement of degree of presence of the
property on every point of the parameter set.

(b) The development of special numerical tools, which avoid the introduction of
additional errors.

(c) The formulation of appropriate criteria which, allow the termination of algo-
rithms at certain steps and the definition of meaningful approximate solutions
to the algebraic computation problem.

It is clear that the formulation of the algebraic problem as an equivalent
numerical linear algebra problem, is essential in transforming concepts of alge-
braic nature to equivalent concepts of analytic character and thus setup up the right
framework for approximations.

A major challenge for the control theoretic applications of the GCD is that
frequently we have to deal with a very large number of polynomials. It is this
requirement that makes the pairwise type approaches for GCD [1, 24, 28, 36] not
suitable for such applications [32]. However, because of the use of the entire set of
polynomials, matrix-based methods tend to have better performance and quite
good numerical stability, especially in the case of large sets of polynomials [2–4,
10, 20, 26].

The study of the invariance properties of the GCD [18] led to the development
of the ERES method [26], which performs extensive row operations and shifting
on a matrix formed directly from the coefficients of the polynomials. The ERES
method has also introduced for the first time a systematic procedure for computing
approximate GCDs [19] for a set of polynomials and extends the previously
defined notion of almost zeros [17]. The notion of almost zeros is linked to the
approximate GCD problem [19] and it is based on a relaxation of the exact notion
of a zero.

Another algorithm for the GCD computation based on Systems Theory and
Matrix Pencils, was introduced in 1994, [20], and a variant using generalized
resultant matrices was presented in 2006 [23].

The implementation of matrix-based methods computing the GCD in a pro-
gramming environment often needs a careful selection of the proper arithmetic
system. Most modern mathematical software packages use variable floating-point
or exact symbolic arithmetic. If symbolic arithmetic is used, the results are always
accurate, but the time of execution of the algorithms can be prohibitively high. In
variable precision floating-point arithmetic the internal accuracy of the system can
be determined by the user. Variable precision operations are faster and more
economical in memory bytes than symbolic operations, but if we increase the
number of digits of the system’s accuracy, the time and memory requirements will
also increase. An alternative approach is to combine symbolic with floating-point
operations of enough digits of accuracy in an appropriate way. Such combination
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will be referred as Hybrid Computations. This technique often improves the per-
formance of the matrix based algorithms.

In the following, we will be mainly concerned with the performance of the
ERES, Matrix Pencil, and Resultant ERE methods in a numerical-symbolical
computational environment. Also, a useful indicator for the quality of the GCD,
known as the strength of an approximate GCD [19], is described.

7.2 The ERES, Resultant ERE (RERE) and Modified RERE
(MRERE) Methods

In this section, we present the description of the two methods for computing the
GCD of several polynomials using Extended Row Equivalence (ERE) [16]. Their
corresponding algorithms are tested and compared thoroughly and representative
examples are given in tables.

Suppose that we have a set of m polynomials:

Pm;n ¼ aðsÞ; biðsÞ 2 <½s�; i ¼ 1; 2; . . .;m� 1 withf
n ¼ degfaðsÞg and p ¼ max

1� i�m�1
degfbiðsÞgf g� ng

with the following form:

aðsÞ ¼ ansn þ an�1sn�1 þ � � � þ a1sþ a0

biðsÞ ¼ bi;nsp þ bi;n�1sp�1 þ � � � þ bi;n�pþ1sþ bi;n�p

for i ¼ 1; 2; . . .;m� 1

and suppose that there is at least one i: bi;n 6¼ 0 but bi;j ¼ 0 for j [ n� p 8i, [2].
For any Pm;n set, we define a vector representative (vr) p

m
ðsÞ and a basis matrix

Pm represented as:

p
m
ðsÞ ¼ ½aðsÞ; b1ðsÞ; . . .; bm�1ðsÞ�t ð7:1aÞ

¼ ½p
0
; p

1
; . . .; p

n�1
; p

n
� � enðsÞ ¼ Pm � enðsÞ ð7:1bÞ

where Pm 2 <m�ðnþ1Þ, enðsÞ ¼ ½1; s; . . .; sn�1; sn�t.
The basis matrix Pm is formed directly from the coefficients of the polynomials

of the set.
Additionally, for any vector of the form:

rt ¼ ½0; . . .; 0; ak; . . .; ad� 2 <d; ak 6¼ 0
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we define the Shifting operation

shf : shf ðrtÞ ¼ ½ak; . . .; ad; 0; . . .; 0� 2 <d

In the following, without loss of generality, we suppose that the GCD of a given
set of polynomials has no zero roots.

7.2.1 The ERES Method

The ERES method is an iterative matrix based method, which is based on the
properties of the GCD as an invariant of the original set of polynomials under
extended-row-equivalence and shifting operations [18]. The algorithm of the
ERES method [26, 27] is based on stable algebraic processes, such as Gaussian
elimination with partial pivoting scaling, normalization and Singular Value
Decomposition, which are applied iteratively on a basis matrix formed directly
from the coefficients of the polynomials of the original set. Thus, the ERES
algorithm works with all the polynomials of a given set simultaneously. The main
target of the ERES algorithm is to reduce the number of the rows of the initial
matrix and finally to end up to a unity rank matrix, which contains the coefficients
of the GCD. The Singular Value Decomposition provides the ERES algorithm
with a termination criterion. The performance of the algorithm is better [5] if we
perform hybrid computations. The following algorithm corresponds to an imple-
mentation of the ERES method in a hybrid computational environment.

7.2.1.1 The ERES Algorithm

– Form the basis matrix Pm 2 Rm�ðnþ1Þ.
– Convert the elements of Pm to a rational format:

Pð0Þm :¼ convertðPm; rationalÞ

– Initialize k:= -1

Repeat k:= k ? 1
STEP 1: Let r := the row dimension of Pm

(k).
Specify the degree di of each polynomial row.

Reorder matrix PðkÞm : di�1� di; i ¼ 2; . . .; r:
If d1 ¼ d2 ¼ � � � ¼ dr then

Convert the elements of Pm
(k) to a floating-point format:

PðFÞm :¼ convertðPðkÞm ; floatÞ
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Normalize the rows of Pm
(F) using norm-2:

PðNÞm :¼ NormalizeðPðFÞm Þ

Compute the singular value decomposition:

PðNÞm :¼ V R Wt;R ¼ diagfr1; . . .; rrg;
r1 [ r2� � � � � rr and Wt ¼ ½w1; . . .;wnþ1�

t

If et-rank(Pm
(N)) = 1 then

Select the GCD vector g:

(g :¼ wt
1 or g :¼ any row of Pm

(k))
quit

STEP 2: Scale properly matrix Pm
(k).

Apply Gaussian elimination with partial pivoting to Pm
(k).

STEP 3: Apply shifting on every row of Pm
(k).

Delete the zero rows and columns.
until r = 1

The ERES algorithm produces either a single row-vector or a unity rank matrix.
The main advantage of this algorithm is the reduction of the size of the original
matrix during the iterations, which leads to fast data processing and low memory
consumption.

7.2.1.2 Complexity

For a set of m polynomials the amount of floating point operations performed in the

kth iteration of the algorithm depends on the size of the matrix PðkÞm . If the size of

PðkÞm is m0 � n0, the ERES algorithm requires Oðz3

3Þ; z ¼ minfm0 � 1; n0g operations
for the Gaussian elimination, Oð2m0n0Þ operations for the normalization and

Oðm0n02 þ n03Þ for the SVD process. The first iteration is the most computationally

expensive iteration since the initial matrix Pð0Þm has larger dimensions than any PðkÞm .
Unless we know exactly the degree of the GCD of the set we cannot specify from
the beginning the number of iterations required by the algorithm. Therefore, we
cannot express a general formula for calculating the total number of operations,
which are required by the algorithm.

7.2.1.3 Behavior and Stability of the ERES Algorithm

The combination of rational and numerical operations aims at the improvement of
the stability of the ERES algorithm and the presence of good approximate solu-
tions. The main iterative procedure of the algorithm and especially the process of
Gaussian elimination, is entirely performed by using rational operations. With this
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technique any additional errors from the Gaussian elimination are avoided. The
operations during the Gaussian elimination are always performed accurately and if
the input data are exactly known and a GCD exists, the output of the algorithm is
produced accurately from any row of the final unity rank matrix. Obviously,
rational operations do not reveal the presence of approximate solutions. In cases of
sets of polynomials with inexact coefficients, the presence of an approximate
solution relies on the proper determination of a numerical et-rank 1 matrix for a
specific accuracy et. Therefore, the singular value decomposition together with the

normalization process of the matrix PðkÞm are performed by using floating-point
operations. The polynomial that comes from the right singular vector that corre-
sponds to the unique singular value of the last unity rank matrix, can be considered
as a GCD approximation and represents the numerical output of the ERES
algorithm.

The normalization of the rows of any matrix PðkÞm (by the Euclidean norm) does
not introduce significant errors and in fact the following result can be proved [26]:

Proposition 7.1 The normalization PðNÞm of a matrix PðkÞm 2 <m0�n0 , computed by
the method in the kth iteration, using floating-point arithmetic with unit round-off
u, satisfies the properties

PðNÞm ¼ N � PðkÞm þ EN ; kENk1 � 3:003 � n0 � u

where N 2 <m0�m0 ¼ diagðd1; d2; . . .; dm0 Þ, di ¼ PðkÞm ½i; 1; . . .; n0�
���

���
2

� ��1
,

i ¼ 1; . . .;m0 the matrix accounting for the performed transformations and
EN 2 <m0�n0 the error matrix.

It is important to notice that the SVD is actually applied to a numerical copy of

the matrix PðkÞm and thus the performed transformations during the SVD procedure

do not affect the matrix PðkÞm when returning to the main iterative procedure. For
this reason, there is no accumulation of numerical errors. The only errors
appearing are from the normalization and the singular value decomposition [8, 12]

of the last matrix PðFÞm and represent the total numerical error1 of the ERES
algorithm.

The combination of rational-symbolic and floating-point operations ensures the
stability of the algorithm and gives to the ERES the characteristics of a hybrid
computational method.

1 The numerical error which occurs from the conversion between rational and floating-point data
is close to the software accuracy.
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7.2.2 The Resultant ERE (RERE) and Modified ERE (MRERE)
Methods

Another method to compute the GCD of several polynomials is to triangularize the
generalized Sylvester matrix S [2], which has the following form:

S ¼

S0

S1

..

.

Sm

2

6664

3

7775

where the block Si; i ¼ 1; . . .;m represents the Sylvester matrix of the i-th poly-
nomial. In [6] we have modified the huge initial generalized Sylvester matrix in
order to take advantage of its special form and modifying the classical procedures
(such as SVD, QR and LU factorization) we reduce the required floating point
operations from Oðn4Þ to Oðn3Þ flops making the algorithms efficient. More spe-
cifically the application of Householder or Gaussian transformations to the mod-

ified generalized Sylvester matrix requires only Oððnþ pÞ3ð2log2ðnÞ � 1
3Þþ

ðnþ pÞ2ð2mlog2ðnÞ þ pÞÞ flops and in the worse case where m ¼ n ¼ p the
required flops will be equal to Oð16log2ðnÞ � n3Þ or the half flops for the LU
factorization respectively. In practice the flops that demand the previous methods
are less because of the linear dependent rows which are zeroed and deleted during
the triangularization of the matrix.

7.2.2.1 Numerical Stability

In [6] we proved that the final error matrix in the modified QR method is

E ¼
Plog2ðnÞ

i¼1 Ei with

k E kF �/ðnÞl
ffiffiffiffiffiffiffiffiffiffiffi
nþ p
p

ðk S� kF þ k ððS�Þ
0
Þ kFÞ ð7:2Þ

where ððS�Þ
0
Þ is the last triangularized sub-matrix, / a slowly growing function of

n and l the machine precision and the final error in the modified LU method is

E ¼
Xlog2ðnÞ

i¼1

Ei ð7:3Þ

with k E k1 � ðnþ pÞ½log2n�pu k S� k1 þðnþ pÞ2pu k ððS�Þ
0
Þ k1Þ, where p is the

growth factor and u the unit round off.
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7.3 The Matrix Pencil Methods

7.3.1 The Standard Matrix Pencil Method (SMP)

The matrix pencil method [20, 23] is a direct method, which is based on system
properties of the GCD. The algorithm of the SMP method uses stable processes,
such as SVD for computing the right N r and left N l null spaces of appropriate
matrices. The SMP method requires the construction of the observability matrix

QðÂ; ĈÞ ¼ ½Ĉt; ÂtĈt; . . .; ðÂtÞðd�1ÞĈt�t of the companion matrix Â of the polyno-
mial of maximal degree and the left null space Ĉ of a matrix M1 as we will see
below. It is known that the computation of powers of matrices is not always stable.
As it is shown in [23], because of the special form of the companion matrix A and
the orthogonality of C, the powers of A and their product with C can fail only if it
holds very special formulas between the coefficients of the polynomials ([23]
example (8)). An alternative way is this computation to be done symbolically:
there will be no rounding off errors and because only an inner product must be
computed for the last column for every computation of a power of A (the other
columns are the columns of the previous power of A left shifted), the increase of
the computational time because of the rational representation of the coefficients
and the symbolical computation of the products is not very considerable. In this
manner we achieve to compute the observability matrix avoiding one of the main
disadvantages of the SMP method (the computation of the powers of A) without
significant surcharge of the required time.

Another stable way to compute the null space of Q is first to reduce the pair
(Â; Ĉ) to a block Hessenberg form without computing the observability matrix.

From the staircase algorithm [9], we take an orthogonally similar pair (H; eC), such

that: QðÂ; ĈÞ ¼ PT ½eB;HeB; . . .;Hðd�1ÞeB�, where P is an orthogonal matrix such
that PÂPT ¼ H. Because the matrix H has much more elements than the com-
panion matrix A, the computation of the powers of H demands more flops than
those of the powers of A and thus in our case it is better to use the first way for the
computation of the null space of Q.

The main target of the SMP algorithm is to form the GCD pencil ZðsÞ and
specify any minor of maximal order, which gives the required GCD. This speci-
fication can be done symbolically. Let Pm;d be the set of polynomials as defined in
Sect. 7.2.

7.3.1.1 The SMP Algorithm

STEP 1: Compute a basis matrix M for the right nullspaceN rðPmÞ using the SVD
algorithm.

STEP 2: Construct M1 by deleting the last row of M:

STEP 3: Compute the matrix Ĉ such that ĈM1 ¼ 0:
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STEP 4: Construct the observability matrix: QðÂ; ĈÞ ¼ ½Ĉt; ÂtĈt; . . .; ðÂtÞðd�1ÞĈt�t:
STEP 5: Compute the right nullspace W ¼ N rðQðÂ; ĈÞÞ using the SVD algorithm.
STEP 6: Construct the pencil ZðsÞ ¼ sW � ÂW . Any minor of maximal order of

ZðsÞ defines the GCD of set of the polynomials.

7.3.1.2 Complexity

The computation of the right nullspace of Pm requires Oðmn2 þ 11n3

2 Þ flops, of the

of the matrix C demands Oððr � 1Þn3 þ 11n3

2 Þ flops, where r ¼ qðPmÞ.
The computation of Ĉ such that ĈM1 ¼ 0 requires Oð4ld2 þ 8d3Þ flops

applying the SVD algorithm to Mt
1, where l ¼ d � r þ 1; r ¼ qðPmÞ (*). The

computation of any minor of maximal order of ZðsÞ can be done symbolically
using the LU factorization.

Totally the Standard Matrix Pencil method demands: Oð4md2 þ 4d3ðr � 1Þ þ
4ld2 þ 24d3 þ 3

2 d2rÞ flops. If the computation of Q is done symbolically the
required flops are diminished by the flops in (*) but the computational time is
increased slightly.

7.3.1.3 Numerical Stability

The Standard Matrix Pencil Method requires two SVD calls and the construction
of the observability matrix.

The numerical computation of the powers of A ðÂÞðkÞ is in practise stable. Of
course there are no errors in symbolically implementation of this step. Since the

matrix ðÂÞðkÞ is computed, the numerical computation of the product ðÂtÞðkÞĈt ¼
ðĈðÂÞðkÞÞt is stable because the matrix C is orthonormal. For the last matrix

multiplication it holds: flðĈðÂÞðkÞÞ ¼ ĈðÂÞðkÞ þ E, with kEk2� d2u1kCk2kAkk2 ¼
d2u1kAkk2, where flð�Þ denotes the computed floating point number and u1 is of
order of unit round off. The computation of the minor of maximal order of ZðsÞ is
done symbolically and so there are no rounding off errors.

7.3.2 The Modified Resultant Matrix Pencil Method (MRMP)

The modified matrix pencil method [23] is a similar with the MP method, which is
based to the modified Sylvester matrix S�, it constructs another GCD pencil ZðsÞ
and specify any minor of maximal order, which gives the required GCD. This
specification can also be done symbolically.
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7.3.2.1 The MRMP Algorithm

STEP 1: Define a basis eM for the right nullspace of the modified Sylvester matrix
S� using the modified QR factorization in first phase of SVD.

STEP 2: Define the Matrix Pencil eZðsÞ ¼ s eM1 � eM2 for the Resul-tant set, where
eM1, eM2 are the matrices obtained from eM by deleting the last and the

first row of eM respectively.

STEP 3: Compute any non-zero minor determinant dðsÞ of eZðsÞ and thus obtain
GCD = dðsÞ.

7.3.2.2 Complexity

The Modified Resultant Matrix Pencil method requires Oððnþ pÞ3ð2log2ðnÞ � 1
3Þþ

ðnþ pÞ2ð2mlog2ðnÞ þ pÞ þ 12kðnþ pÞ2Þ, where k is the number of the calls of the
SVD-step.

7.3.2.3 Numerical Stability

The computed GCD is the exact GCD of a slightly disrupted set of the initial
polynomials. The final error is E ¼ E1 þ E2, with kE1kF �uðnÞukSkF and
kEk2�ðuðnÞ þ cðm; nÞ þ cðm; nÞ � uðnÞ � uÞ � u � kSkF where u is the unit round
off error, k � kF the Frobenius norm and uðnÞ is a slowly growing function of n [8]
and cðm; nÞ is a constant depending on m, n.

7.3.3 Another Subspace-Based Method for Computing
the GCD of Several Polynomials (SS)

The subspace concept is actually very common among several methods for
computing the GCD of many polynomials, including those we described in the
previous sections. The SVD procedure applied to a generalized Sylvester matrix is
the basic tool for a subspace method. A representative and rather simple algorithm,
which approaches the GCD problem from the subspace concept, is presented in
[30] and we shall refer to it as the SS algorithm.

Given a set of univariate polynomials Pm;n, the first two steps of the SS
algorithm involves the construction of an mðnþ 1Þ � ð2nþ 1Þ generalized
Sylvester matrix Y from the input polynomials and the computation of the left null
space of the transposed Yt via SVD. If we denote by U0 2 <ð2nþ1Þ�k the basis
matrix for the computed left null space of Yt and C is the ð2nþ 1Þ � ð2nþ 1� kÞ
Toeplitz matrix of a degree K polynomial with arbitrary coefficients, then the GCD
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vector is actually the unique (up to a scalar) solution of the system Ut
0C ¼ 0, [30].

Obviously, the degree of the GCD is k ¼ colspanfU0g.
For the approximate GCD problem, an equivalent and more appropriate way to

compute the GCD vector with the SS algorithm is to construct k Hankel matrices
~Ui 2 <ðkþ1Þ�ð2nþ1�kÞ; i ¼ 1; . . .; k from the columns of U0, form the matrix ~U ¼
½~U1; . . .; ~Uk� 2 <ðkþ1Þ�kð2nþ1�kÞ and compute a basis matrix V0 for the left null
space of ~U by using the SVD procedure. The last column of V0, which corresponds
to the smallest singular value (expected to be zero), contains the k þ 1 coefficients
of the GCD. The yielded GCD can be considered as an approximate e-GCD for a
tolerance e equal to the machine’s numerical precision. However, for a different
tolerance e, we can select a singular value rj from the singular value decompo-
sition of Yt such that rj [ e � f ðh; nÞ and rjþ1� e, [7], and compute an e-GCD of
degree k0 ¼ 2nþ 1� j 6¼ k.

Although it is not mentioned in [30], the computational cost of the SS algorithm
is dominated by the SVD of the generalized Sylvester matrix Yt, which requires
Oð2m2n3 þ 5m2n2Þ flops, [12]. However, the stability and the effectiveness of the
algorithm in large sets of polynomials is not well documented in [30] and addi-
tionally there not any reference about the total numerical error of the algorithm.
Practically, the performance of the SS algorithm is good when using floating-point
operations of medium-high accuracy but becomes very slow in hybrid
computations.

7.4 Approximate Solutions

It is well known that, when working with inexact data in a computational envi-
ronment with limited numerical accuracy, the outcome of a numerical algorithm is
usually an approximation of the expected exact solution due to the accumulation of
numerical errors. In the case of GCD algorithms, the solution produced can be
considered either as an approximate solution of the original set of polynomials,
within a tolerance e, or as the exact solution of a perturbed set of polynomials. The
following definition is typical for the approximate GCD.

Definition 7.1 Let Pm;n ¼ faðsÞ; biðsÞ; i ¼ 1; . . .;m� 1g a set of univariate
polynomials as defined in (1) and e [ 0 a fixed numerical accuracy. An almost
common divisor (e-divisor) of the polynomials of the set Pm;n is an exact common
divisor of a perturbed set of polynomials P0m;n ¼ faðsÞ þ DaðsÞ; biðsÞ þ DbiðsÞ;
i ¼ 1; . . .;m� 1g, where the polynomial perturbations satisfy degfDaðsÞg�
degfaðsÞg, degfDbiðsÞg� degfbiðsÞg and

kDaðsÞk2 þ
Xm�1

i¼1

kDbiðsÞk2\e ð7:4Þ

An approximate GCD (e-GCD) of the set Pm;n is an e-divisor of maximum degree.
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The computation of the GCD of a set polynomials is nongeneric. Generally, in
most GCD problems the degree of the GCD is unknown and thus a numerical
algorithm can easily produce misleading results. An approach to this problem is to
certify and fix a maximum degree according to appropriate theorems and tech-
niques [11, 32] and proceed with the computation of a common divisor of this
particular degree. The evaluation of the strength of a given approximation is
another important issue here.

The definition of the approximate GCD as the exact GCD of a perturbed set has
led to the development of a general approach for defining the approximate GCD,
evaluating the strength of approximation and finally defining the notion of the
optimal approximate GCD as a distance problem [19]. In fact, recent results on the
representation of the GCD [13, 19], using Toeplitz matrices and generalized
resultants (Sylvester matrices), allow the reduction of the approximate GCD
computation to an equivalent approximate factorization of generalized resultants.
Specifically, for a given set of polynomials Pm;n and its GCD of degree k:

gðsÞ ¼ sk þ k1sk�1 þ � � � þ kk; kk 6¼ 0

it holds that [13]:

SP ¼ ½OkjSPc � � Ug ð7:5Þ

where SP is the ðmnþ pÞ � ðnþ pÞ Sylvester matrix of the set Pm;n, Ok is the
ðmnþ pÞ � k zero matrix, SPc is the ðmnþ pÞ � ðnþ p� kÞ Sylvester matrix of
the set Pc

m;n�k of coprime polynomials, obtained from the original set Pm;n after
dividing its elements by the GCD gðsÞ and, finally, Ug is the ðnþ pÞ � ðnþ pÞ
lower triangular Toeplitz-like matrix of the polynomial gðsÞ.

We now define the strength of an r-order approximate common divisor of a
polynomial set Pm;n [19]:

Definition 7.2 Let Pm;n and vðsÞ 2 <½s�; degfvðsÞg ¼ r� p. The polynomial vðsÞ
is an r-order approximate common divisor of Pm;n and its strength is defined as a
solution of the following minimization problem:

f ðP;PcÞ ¼ min
8Pc
fkSP � OrjSPc½ � � UvkFg ð7:6Þ

Furthermore, vðsÞ is an r-order approximate GCD of Pm;n if the minimum
corresponds to a coprime set Pc

m;n�r, or to a full rank SPc .

We prefer to use as a metric the Frobenius matrix norm [8] denoted by k � kF,
which relates in a direct way to the set of polynomials. However, the minimization
problem in Definition 7.2 cannot be solved easily, because it may involve too
many arbitrary parameters.
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Let us have a polynomial vðsÞ 2 <½s� of degree r given as a solution by a GCD
algorithm. We consider it as an exact GCD of a perturbed set of polynomials P0m;n
of the form:

P0m;n,Pm;n �Qm;n ð7:7aÞ

¼ p0iðsÞ ¼ piðsÞ � qiðsÞ :
�

degfqiðsÞg� degfpiðsÞg; i ¼ 1; . . .;mg ð7:7bÞ

where Qm;n denotes the set of polynomial perturbations [13]. The polynomials of
the set Qm;n have arbitrary coefficients, which pass to the polynomials of the set
P0m;n. If we use now the respective generalized resultants (Sylvester matrices) for
each set in Eq. (7.7a), the following relation appears:

SP0 ¼ SP � SQ ð7:8Þ

It is clear that the exact GCD of a set of polynomials yields SQ ¼ O) kSQkF ¼ 0.
Therefore, we may consider a polynomial as a good approximation of the exact
GCD, if kSQkF is close enough to zero. In the following, our intention is to find
some bounds for kSQkF.

If we use the factorization of generalized resultants as described in (6), we will
have:

SQ ¼ SP � ½OrjSP0c � � Uv ,
SQ � U�1

v ¼ SP � U�1
v � ½OrjSP0c �

ð7:9Þ

where U�1
v is the inverse of Uv. It is important to notice here that P0c contains

arbitrary parameters. We can select specific values for these parameters such as:

SP � U�1
v � ½OrjSP0c � ¼ ½SðrÞjOnþp�r� 	 bS ð7:10Þ

Therefore, from Eqs. (7.9) and (7.10) it follows:

SQ � U�1
v ¼ bS

SQ ¼ bS � Uv

and, since CondðUvÞ ¼ kUvkFkU�1
v kF � nþ p, [8], we conclude with the fol-

lowing inequality:

kbSkF

kU�1
v kF

�kSQkF �kbSkFkUvkF ð7:11Þ

If vðsÞ has the same degree as the exact GCD of the set, the properties

Sv ¼
kbSkF

kU�1
v kF

and Sv ¼ kbSkFkUvkF ð7:12Þ
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characterizes the quality of the proximity of vðsÞ to the exact GCD of the set Pm;n

and we shall refer to them as the minimum and maximum strength numbers of vðsÞ
respectively.

These strength numbers are useful indicators for the evaluation of the strength
of a given approximate GCD. More particularly, if Sv� 1, then the strength of the

given approximation is bad and the opposite holds if Sv\1. Normally, we prefer
solutions with maximum strength number Sv\\1 or better close to the numerical
software accuracy of the system. Otherwise, we have to solve the minimization
problem (7) to find the actual strength. The advantage is that the computation of
the strength numbers is straightforward and can give us information about the
strength of a GCD before we go to an optimization method.

7.4.1 Computational Examples

The previous methods have been applied to many sets of polynomials. The final
results using variable floating point, symbolic and hybrid operations are presented
in Tables 7.1, 7.2, 7.3, and 7.4. The following notation is used in the tables.

m: the number of polynomials
n: the maximum degree of the polynomials
p: the second maximum degree of the polynomials
d: the degree of the GCD
Tol : numerical accuracy e
Rel: the numerical relative error

Table 7.1 Comparison of algorithms: Tol ¼ 10�16

Example ERES RERE (LU) MRERE (LU) RERE (QR)

Hybrid Num Sym Num Sym Num Sym

I Dig 16 32 – 32 – 35 –
Rel 0 0:50� 10�24 0 0:50� 10�24 0 0:13� 10�24 0
Strength 0 0:20� 10�22 0 0:20� 10�22 0 0:37� 10�23 0
Time 1.842 0.020 0.120 0.081 0 0.060 0.270
Flops 162,140 14,400 – 9,790 – 32,400 –

II Dig 16 24 – 25 – 25 –
Rel 0 0:90� 10�21 0 0:12� 10�19 0 0:40� 10�21 0
Strength 0 0:21� 10�20 0 0:18� 10�19 0 0:24� 10�20 0
Time 1.342 0.260 2.190 0.161 1.432 0.881 4.513
Flops 112,437 176,000 – 87,529 – 362,667 –

III Dig 16 18 – 18 – 19 –
Rel 0 0:68� 10�17 0 0:68� 10�17 0 0:13� 10�17 0
Strength 0 0:32� 10�16 0 0:32� 10�16 0 0:66� 10�17 0

Time 2.794 0.010 0.340 0.007 0.234 0.030 0.793
Flops 162,140 6,912 – 4,759 – 16,128 –

Example I: m ¼ 2, n ¼ 16, p ¼ 14, d ¼ 4; Example II: m ¼ 11, n ¼ 17, p ¼ 17, d ¼ 3;
Example III: m ¼ 2, n ¼ 12, p ¼ 12, d ¼ 6
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Strength: the strength of the GCD
Dig: the digits of software accuracy
Time: the required time in seconds
Flops: the required flops
Num: numerical implementation
Sym: symbolical implementation
Hybrid: Hybrid implementation

In Tables 7.1 and 7.2 the results of the following example sets are presented:
Example I: Two polynomials of degree 16 and 14 with integer coefficients of 8

digits and GCD degree 4, [2].
Example II: Eleven polynomials of degree 17 with integer coefficients of 2

digits and GCD degree 3, [27].
Example III: Two polynomials of degree 12 and GCD degree 6, (example 1,

[36]). The roots of the polynomials spread on the circles of radius 0:5 and 1:5.
Comment: In Tables 7.1 and 7.2 the tolerance (Tol) is fixed and the digits are

variable. In Tables 7.3 and 7.4 both tolerance and digits are fixed.

7.5 Numerical, Symbolical and Hybrid
Behavior of the Methods

All the sets of polynomials have been tested numerically and symbolically. Exe-
cuting the programs symbolically, there are no floating point errors during the
processes and the final result is the exact GCD of the polynomials. But the time

Table 7.2 Comparison of algorithms: Tol ¼ 10�16

Example MRERE(QR) MRMP MP SS

Num Sym Hybrid Hybrid Num

I Dig 35 – 25 27 25
Rel 0:13� 10�24 0 0:26� 10�13 0:19� 10�13 2:9� 10�12

Strength 0:37� 10�23 0 0:31� 10�6 0:96� 10�11 0:2� 10�1

Time 0.050 0.169 0.050 0.060 0.985
Flops 19,580 – 267,080 121,314 91,898,532

II Dig 25 – 20 21 20
Rel 0:95� 10�21 0 0:25� 10�17 0:80� 10�17 6:0� 10�19

Strength 0:15� 10�20 0 0:56� 10�16 0:33� 10�16 5:51� 10�14

Time 0.381 2.178 3.395 0.861 5.360
Flops 175,058 – 761,725 56,664 4:1� 109

III Dig 19 – 19 21 20
Rel 0:13� 10�17 0 0:65� 10�12 0:59� 10�17 6:9� 10�19

Strength 0:66� 10�17 0 0:38� 10�11 0:28� 10�16 3:35� 10�18

Time 0.020 0.468 2.835 0.290 0.579
Flops 9,517 – 126,720 50,832 24,082,500

Example I: m ¼ 2, n ¼ 16, p ¼ 14, d ¼ 4; Example II: m ¼ 11, n ¼ 17, p ¼ 17, d ¼ 3;
Example III: m ¼ 2, n ¼ 12, p ¼ 12, d ¼ 6
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required for symbolical computations is considerable. On the other hand, the
floating-point operations and the accumulation of rounding errors force us to use
accuracies on which the GCD is dependent. Different accuracies may lead to
different GCDs. This is the main disadvantage of numerical methods. However,
the required time is less than the corresponding time of symbolical methods. The
use of the partial SVD [25, 34] can reduce the execution time of ERES, MRMP
and SMP methods.

Having tested thoroughly, the ERES, RERE, MRERE, SMP methods com-
puting the GCD of several sets of polynomials, we have reached the following
conclusions about the behavior of the methods:

(a) The ERES method behaves very well in Hybrid mode, since it produces
accurate results fast enough. The method becomes slower in the case of small
sets of polynomials of high degree.

(b) The MRERE methods behave very well in numerical mode for various kinds
of sets of polynomials and especially in large sets of polynomials of high
degree, but lose their speed, when using symbolic type of operations.

(c) The RERE methods demand significantly more flops in comparison with
MRERE methods and their complexity makes them inefficient methods.

(d) The MRMP method demands much more time and flops than the SMP method
without producing better results.

(e) It seems that for large sets of linearly depended polynomials the Hybrid ERES
and the Numerical MRERE yield better results in acceptable time limits,
number of digits, with negligible relative error and strength number.

A subtle point in the numerical calculations is that it is not always easy to
specify the exact accuracy to get numerically the correct GCD. This can be
overcome in symbolical implementation but the more polynomials and the higher
degrees we have, the more time we need to compute the GCD. Thus, a combi-
nation of the above implementations can lead to an improvement in the overall
performance of the algorithms. Of course the hybrid implementation depends on
the nature of the algorithm. Not all algorithms can be benefit from a hybrid
environment like ERES [5]. The conversion of the data to an appropriate type
often leads to more accurate computations and thus less numerical errors.

Table 7.5 Comparison of
algorithms: computation of
the GCD of polynomials

Method m n Stability Decision

ERES Two High Stable Not proposed
RERE Two High Stable Proposed
MRERE Two High Stable Proposed
SMP Two High Stable Not proposed
MRMP Two High Stable Not proposed
ERES Several High Stable Proposed
RERE Several High Stable Not proposed
MRERE Several High Stable Proposed
SMP Several High Stable Proposed
MRMP Several High Stable Not proposed
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In the following table we compare the algorithms computing the GCD of
polynomials. We propose the most suitable algorithm for the computation of the
GCD of two or several polynomials according to its stability, complexity and
required computational time. In the following table, m denotes the number of
polynomials and n the maximum degree (Table 7.5).

7.6 Conclusions

According to the comparison of algorithms that we made, we conclude with the
following:

1. Matrix-based methods can handle many polynomials simultaneously, without
resorting to the successive two at a time computations of the Euclidean or other
pairwise based approaches. Although the computation of the GCD of a pair of
polynomials, by using a Euclid-based algorithm, can be stable, it is not quite
clear if such method can be generalised to a set of several polynomials and how
this generalisation affects the complexity of the algorithm and the accuracy of
the produced results. The sequential computation of the GCD in pairs often
leads to an excessive accumulation of numerical errors especially in the case of
large sets of polynomials and obviously create erroneous results. On the other
hand, matrix-based methods tend to have better performance and numerical
stability in the case of large sets of polynomials.

2. The development of robust computational procedures for engineering type
models always has to take into account that the models have certain accuracy
and that it is meaningless to continue computations beyond the accuracy of the
original data set. Therefore, it is necessary to develop proper numerical ter-
mination criteria that allow the derivation of approximate solutions to the GCD
computation problem [20, 26]. In [19] the definition of the approximate GCD is
considered as a distance problem in a projective space. The new distance
framework given for the approximate GCD provides the means for computing
optimal solutions, as well as evaluating the strength of ad-hoc approximations
derived from different algorithms.

3. The combination of symbolic-numeric operations performed effectively in a
mixture of numerical and symbolical steps can increase the performance of a
matrix-based GCD algorithm. Generally, symbolic processing is used to
improve on the conditioning of the input data, or to handle a numerically ill-
conditioned subproblem, and numeric tools are used in accelerating certain
parts of an algorithm, or in computing approximate outputs. The effective
combination of symbolic and numerical operations depends on the nature of an
algebraic method and the proper handling of the input data either as rational or
floating-point numbers. Symbolic-numeric implementation is possible in soft-
ware programming environments with symbolic-numeric arithmetic capabili-
ties such as Maple, Mathematica, Matlab and others, which involve the efficient
combination of exact (rational-symbolic) and numerical (floating-point)
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operations. This combination gives a different perspective in the way to
implement an algorithm and introduces the notion of hybrid computations. The
nature of the ERES method allows the implementation of a programming
algorithm that combines in an optimal setup the symbolical application of rows
transformations and shifting, and the numerical computation of an appropriate
termination criterion, which can provide the required approximate solutions.
This combination highlights the hybridity of the ERES method and makes it the
most suitable method for the computation of approximate GCDs.

4. Most of the methods and algorithms, which were described in the previous
section, perform singular value decomposition (svd). The necessary informa-
tion that we need from the svd often has to do with the smallest or the greatest
singular value (ERES, MP). Therefore a partial singular value decomposition
algorithm [34] can be applied in order to speed up the whole process.

The paper is focused on the development of matrix-based algorithms for the
GCD problem of sets of several real univariate polynomials, which is considered a
part of the fundamental problem of computing nongeneric invariants.
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Chapter 8
Numerical Computation of the Fixed Poles
in Disturbance Decoupling for Descriptor
Systems

Delin Chu and Y. S. Hung

Abstract In this paper the algebraic characterizations for the fixed poles in the
disturbance decoupling problem for descriptor systems are derived. These alge-
braic characterizations lead to a numerically reliable algorithm for computing the
fixed poles. The algorithm can be implemented directly using existing numerical
linear algebra tools such as LAPACK and Matlab.

8.1 Introduction

Consider descriptor systems of the form

E _xðtÞ ¼ AxðtÞ þ BuðtÞ þ GqðtÞ; xð0Þ ¼ x0; t� 0

yðtÞ ¼ CxðtÞ;
ð8:1Þ

where E;A 2 Rn�n;B 2 Rn�m;G 2 Rn�p;C 2 Rq�n; and E is singular. The term
qðtÞ represents a disturbance, which may represent modelling or measuring errors,
noise or higher order terms in linearization. The existence and uniqueness of
(classical) solutions to system (8.1) for sufficiently smooth input functions and
consistent initial values is guaranteed if ðE;AÞ is regular, i.e., if detðaE � bAÞ 6¼ 0
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for some ða; bÞ 2 C2: The system (8.1) is said to have index at most one if the
dimension of the largest nilpotent block in the Kronecker canonical form of ðE;AÞ
is at most one, see Gantmacher [1]. It is well-known that systems that are regular
and of index at most one can be separated into purely dynamical and purely
algebraic parts (fast and slow modes), and in theory the algebraic part can be
eliminated to give a reduced-order standard linear time-invariant system. The
reduction process, however, may be ill-conditioned with respect to numerical
computation. For this reason it is preferable to use descriptor system models rather
than turning the system into a standard linear time-invariant model. For descriptor
systems, most numerical simulation methods work well for systems of index at
most one, and the usual class of piecewise continuous input functions can be used.
Also classical techniques for important control applications like stabilization, pole
assignment or linear quadratic control can be applied, see e.g., Bunse-Gerstner
et al. [2], and Dai [3]. If the index is larger than one, however, then impulses arise
in the response of the system if the control is not sufficiently smooth. This restricts
the set of admissible input functions and also impulses can arise due to the
presence of modelling, measurement, linearization and roundoff errors in the real
system. The usual way to deal with higher index systems in the context of control
systems is to choose an appropriate feedback control to ensure that the closed-loop
system is regular and of index at most one, whenever this is possible. Techniques
for the construction of such feedbacks have been developed in Bunse-Gerstner
et al. [2] based on orthogonal transformations, which can be implemented as
numerically stable algorithms.

The disturbance decoupling problem for standard linear time-invariant systems
(i.e., systems of the form (8.1) with E ¼ I) is well studied, see Syrmos [4],
Willems and Commault [5], and Wonham [6]. The disturbance decoupling prob-
lem for descriptor systems has been studied in Chu and Mehrmann [7], Ailon [8],
Banaszuk et al. [9], and Fletcher and Asaraai [10]. When a state feedback of the
form u ¼ Fx is applied to system (8.1), then the closed-loop system becomes

E _x ¼ ðAþ BFÞxþ Gd;

z ¼ Cx:
ð8:2Þ

Hence, the disturbance decoupling problem for system (8.1) can be stated as
follows:

Definition 1.1 Given descriptor system (8.1).

(i) Disturbance decoupling problem (DDP) is solvable if there exists a matrix
F 2 Rm�n such that ðE;Aþ BFÞ is regular and

CðsE � A� BFÞ�1G ¼ 0: ð8:3Þ

(ii) Disturbance decoupling problem with index requirement (DDPI) is solvable if
there exists a matrix F 2 Rm�n such that ðE;Aþ BFÞ is regular and of index at
most one, and (8.3) holds.
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For standard linear time-invariant systems, it was shown in Basile and Marro
[11], Chu [12], and Malabre and Martinez Garcia [13] that when the disturbance
decoupling problem is solvable, the closed-loop system is bound to have some
fixed poles after applying any disturbance decoupling state feedback. We would
expect this property to extend to the case of descriptor systems. However, for
descriptor systems, the fixed poles in the disturbance decoupling problem have not
been characterized yet in the literature.

The fixed poles are very important in the system design because they cannot be
shifted by any disturbance decoupling feedback and therefore they are related
directly to the stability of the closed-loop system. From a system design point of
view, all poles of the designed system except these fixed poles should be located
into the given stability region. Hence, the fixed poles are of high interest in
systems and control. In this paper we will show that when the DDP or DDPI is
solvable, there also exist fixed poles that are the closed-loop system poles, after
applying any disturbance decoupling state feedback. Now we give the definition of
the fixed poles in the DDP and DDPI.

Definition 1.2 Given descriptor system (8.1).

(i) Assume that the DDP is solvable. The set of the fixed poles for DDP is
defined as

rf :¼ \F2FrðE;Aþ BFÞ;

where

F ¼ fF 2 Rm�nj F solves the DDPg;

and rðE;Aþ BFÞ denotes the set of the finite eigenvalues of the pencil
ðE;Aþ BFÞ:
(ii) Assume that the DDPI is solvable. The set of the fixed poles for DDPI is

defined as

rfi :¼ \F2FIrðE;Aþ BFÞ;

where

FI ¼ fF 2 Rm�nj F solves the DDPIg:

We will extend the work in Chu [12] to descriptor systems and present alge-
braic characterizations for rf and rfi: These algebraic characterizations are
obtained using orthogonal transformations, which give a numerically reliable
algorithm to compute rf and rfi: This algorithm can be implemented using existing
numerical linear algebra tools such as LAPACK and Matlab. Furthermore, as a
direct consequence of the algebraic characterizations, the solvability conditions for
the DDP and DDPI with stability are obtained. To our knowledge, the present
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paper is the first one to get algebraic characterizations and develop a numerically
reliable algorithm for rf and rfi:

In this paper we use the following notation:

• S1ðMÞ denotes a matrix with orthogonal columns spanning the right nullspace
of a matrix M;

• rankg½��ðsÞ denotes the generic rank of a rational matrix function and rankðMÞ
denotes the standard rank of a matrix M;

• For any M;N 2 Rn�n;rðM;NÞ denotes the set of the finite eigenvalues of the
pencil ðM;NÞ:

8.2 Preliminaries

In this section we give some supporting results. The following lemma character-
izes the regular pencils with index at most one.

Lemma 1.3 [3] Given E;A 2 Rn�n: Then the following are equivalent:

(i) The pencil ðE;AÞ is regular and of index at most one;
(ii) rank E AS1ðEÞ½ �ð Þ ¼ n;

(iii) degðdetðsE � AÞÞ ¼ rankðEÞ:

If the system is not regular or not of index at most one then feedback can be
used to make the system regular (and of index at most one). Necessary and
sufficient conditions, when this is possible, are given in the following Lemma.

Lemma 1.4 [3] Given E;A 2 Rn�n; B 2 Rn�m:

(i) There exists F 2 Rm�n such that ðE;Aþ BFÞ is regular if and only if

rankg sE � A B½ � ¼ n:

(ii) There exists F 2 Rm�n such that ðE;Aþ BFÞ is regular and of index at most
one if and only if

rank E AS1ðEÞ B½ � ¼ n:

Let us now consider pole placement. The following lemma provides conditions
under which the set of the finite poles of the closed-loop system can be arbitrarily
placed.

Lemma 1.5 [3] Given E;A 2 Rn�n and B 2 Rn�m:

(i) If

rank sE � A B½ � ¼ n; 8s 2 C; ð8:4Þ
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then there is an integer k� 0 such that for any conjugate set K ¼ fk1; . . .; kkg,
there exists a F 2 Rm�n satisfying that ðE;Aþ BFÞ is regular and

rðE;Aþ BFÞ ¼ K: ð8:5Þ

(ii) If (8.4) is true and

rank E AS1ðEÞ B½ � ¼ n; ð8:6Þ

then for any conjugate set K ¼ fk1; . . .; krankðEÞg there exists a F 2 Rm�n such that
ðE;Aþ BFÞ is regular and of index at most one, and (8.5) holds.

The next lemma is a simple generalization of Lemma 1.5, so its proof is
omitted.

Lemma 1.6 Given matrices of the forms

l

sE � A ¼ sE1 � A1

�A2

� �
gl1

gl2

;
m

B ¼ B1

B2

� �
gl1
gl2

with l1� l and B2 being of full row rank.

(i) If

rank
sE1 � A1 B1

�A2 B2

� �
¼ l1 þ l2; 8s 2 C; ð8:7Þ

then there is an integer k� 0 such that that for any conjugate set K ¼ fk1; . . .; kkg
there exist a F 2 Rm�l and a nonsingular matrix Z 2 Rl�l such that

l1 l� l1

ðsE � A� BFÞZ ¼ sE11 �A11 �A12

0 0

� �
gl1
gl2

ð8:8Þ

with ðE11;A11Þ regular and rðE11;A11Þ ¼ K:
(ii) If (8.7) is true and

rank
E1 A1S1ðE1Þ B1

0 A2S1ðE1Þ B2

� �
¼ l1 þ l2; ð8:9Þ

then for any conjugate set K ¼ fk1; . . .; krankðE1Þg there exist a F 2 Rm�l and a
nonsingular matrix Z 2 Rl�l such that (8.8) holds, ðE11;A11Þ is regular and of
index at most one, and rðE11;A11Þ ¼ K:

The following two theorems, which characterize the solvability of the DDP and
DDPI, are slight modifications of Theorems 6, 11 and 13 in Chu and Mehrmann
[7], where their proofs can be found.

Theorem 1.7 Given descriptor system (8.1). Then there exist orthogonal matrices
U;V 2 Rn�n such that
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n1 n2 n3 n4

UðsE�AÞV ¼

sE11�A11 sE12�A12 sE13�A13 sE14�A14

sE21�A21 sE22�A22 sE23�A23 sE24�A24

�A31 sE32�A32 sE33�A33 sE34�A34

0 sE42�A42 sE43�A43 sE44�A44

0 0 sE53�A53 sE54�A54

0 0 0 sE64�A64

2
6666664

3
7777775

g~n1

g~n2

g~n3

g~n4

gn3

g~n6

;

UB ¼

B1

B2

B3

0
0
0

2
6666664

3
7777775

g~n1

g~n2

g~n3

g~n4

gn3

g~n6

; UG ¼

G1

0
0
0
0
0

2
6666664

3
7777775

g~n1

g~n2

g~n3

g~n4

gn3

g~n6

; ð8:10Þ

n1 n2 n3 n4

CV ¼ 0 C2 C3 C4½ � ;

where
X4

i¼1

ni ¼
X4

i¼1

~ni þ n3 þ ~n6 ¼ n;

G1;E21;B3 and E42 are of full row rank, E53 is nonsingular, and furthermore

rank
sE11 � A11 B1 G1

sE21 � A21 B2 0
�A31 B3 0

2
4

3
5 ¼ ~n1 þ ~n2 þ ~n3; 8s 2 C; ð8:11Þ

rankðsE42 � A42Þ ¼ ~n4; rankðsE64 � A64Þ ¼ n4; 8s 2 C; ð8:12Þ

rankg

sE42 � A42 sE43 � A43 sE44 � A44

0 sE53 � A53 sE54 � A54

0 0 sE64 � A64

C2 C3 C4

2

664

3

775 ¼ n2 þ n3 þ n4: ð8:13Þ

Theorem 1.8 Given descriptor system (8.1). Assume that orthogonal matrices U
and V have been determined such that ðUðsE � AÞV ;UB;UG;CVÞ are in the
condensed form (8.10).

(i) The DDP is solvable if and only if the following three conditions hold:

~n6 ¼ n4; ð8:14Þ

~n1 þ ~n2� n1; ð8:15Þ
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rankg

sE11 � A11 B1

sE21 � A21 B2

�A31 B3

2
4

3
5 ¼ ~n1 þ ~n2 þ ~n3: ð8:16Þ

(ii) The DDPI is solvable if and only if the conditions (8.14, 8.15) and the
following two conditions hold:

rank
E11

E21

� �
þ rank

E32

E42

� �
þ n3 ¼ rankðEÞ; ð8:17Þ

rank
E11 A11S B1

E21 A21S B2

0 A31S B3

2

4

3

5 ¼ ~n1 þ ~n2 þ ~n3; ð8:18Þ

here; S ¼ S1
E11

E21

� �� �
:

The main feature of the form (8.10) is that it is based on orthogonal transfor-
mations, which can be implemented as numerically stable algorithms, thus guar-
anteeing robust computation of the desired quantities, if this is possible.
Furthermore, the conditions (8.14, 8.15, 8.17, 8.18) can be verified very easily.
Now we show that the verification of the condition (8.16) can be done using the
following condensed form (8.19).

Theorem 1.9 Given descriptor system (8.1). Suppose orthogonal matrices U and
V have been determined such that UðsE � AÞV ;UB;UG and CV are in the form
(8.10).

(i) Then there exist orthogonal matrices P and Q such that

s1 s2 s3

P
sE11 � A11

sE21 � A21

�A31

2
4

3
5 Q ¼

sH11 � U11 sH12 � U12 sH13 � U13

sH21 � U21 sH22 � U22 sH23 � U23

0 sH32 � U32 sH33 � U33

0 0 sH43 � U43

2
664

3
775

g~s1

g~s2

gs2

g~s4

;

P
B1

B2

B3

2
4

3
5 ¼

W1

0
0
0

2

664

3

775

g~s1

g~s2

gs2

g~s4

; ð8:19Þ

where

X3

i¼1

si ¼ n1; ~s1 þ ~s2 þ s2 þ ~s4 ¼
X3

i¼1

~ni;

W1 and H21 are of full row rank, H32 is nonsingular, and
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rankðsH21 � U21Þ ¼ ~s2; rankðsH43 � U43Þ ¼ s3; 8s 2 C: ð8:20Þ

(ii) Furthermore, the condition (8.16) holds if and only if ~s4 ¼ s3:

Proof The form (8.19) is constructed in Appendix A, and (ii) follows directly
from that

~n1 þ ~n2 þ ~n3 ¼ ~s1 þ ~s2 þ s2 þ ~s4;

rankg

sE11 � A11 B1

sE21 � A21 B2

�A31 B3

2
4

3
5 ¼ ~s1 þ ~s2 þ s2 þ s3:

h

In Sect. 8.3 we will characterize rf and rfi using rðH32;U32Þ and rðE53;A53Þ in
the forms (8.10) and (8.19). In order to prove these characterizations, we need to
refine the form (8.19) by non-orthogonal transformations given in the following
lemma 8.10. However, we note here that the condensed form in Lemma 1.10 is
only required for analytically derivation of rf and rfi in Theorem 1.11 in the next
section. When it comes to the numerical computation of rf and rfi; there is no need
to determine the condensed form of Lemma 1.10. In other words, the use of non-
orthogonal transformations in Lemma 1.10 is purely for the purpose of exposition,
and has no implication on numerical reliability of the algorithm to be developed in
the next section.

Lemma 1.10 Assume that we have already had the condensed forms (8.10) and
(8.19) and in (8.19) ~s4 ¼ s3 (i.e., the condition (8.16) holds). Then there exist
nonsingular matrices X and Y such that

s2 ŝ1 ŝ3

XP
sE11 � A11

sE21 � A21

�A31

2
4

3
5 QY ¼

sH32 � U32 0 0
�Û12 sI � Û11 �Û13

�Û22 �Û21 �Û23

�Û42 �Û41 �Û43

2

664

3

775

gs2

gŝ1

gn2

gn4

;

XP
B1

B2

B3

2

4

3

5 ¼

0
Ŵ1

Ŵ2

Ŵ4

2
664

3
775

gs2

gŝ1

gn2

gn4

; XP
G1

0
0

2

4

3

5 ¼
Ĝ3

Ĝ1

Ĝ2

0

2
664

3
775

gs2

gŝ1

gn2

gn4

; ð8:21Þ

where

s2 þ ŝ1 þ ŝ3 ¼ n1; s2 þ ŝ1 þ n2 þ n4 ¼
X3

i¼1

~ni;

Ĝ2 and Ŵ4 are of full row rank, and
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rank
sI � Û11 �Û13 Ŵ1

�Û21 �Û23 Ŵ2

�Û41 �Û43 Ŵ4

2

4

3

5 ¼ ŝ1 þ n2 þ n4; 8s 2 C: ð8:22Þ

Proof See Appendix B. h

8.3 Main Results

We are ready to give the algebraic characterizations of rf and rfi:

Theorem 1.11 Given descriptor system (8.1). Suppose orthogonal matrices
U;V ;P and Q and the condensed forms (8.10) and (8.19) have been determined.

(i) Assume that DDP is solvable. Then

rf ¼ rðH32;U32Þ [ rðE53;A53Þ: ð8:23Þ

(ii) Assume that DDPI is solvable. Then

rfi ¼ rf ¼ rðH32;U32Þ [ rðE53;A53Þ: ð8:24Þ

Proof (i) Since DDP is solvable, the conditions (8.14, 8.15, 8.16) hold. In the
following we first show that rðH32;U32Þ [ rðE53;A53Þ � rf :

Let F 2 Rm�n be any matrix such that ðE;Aþ BFÞ is regular and CðsE � A�
BFÞ�1G ¼ 0: Denote

n1 n2 n3 n4

FV ¼ F1 F2 F3 F4:½ �

Then, using the form (8.10), we have that

n1 þ n2 þ n3 þ n4 ¼ n ¼ rankgðsE � A� BFÞ þ rankgðCðsE � A� BFÞ�1GÞ

¼ rankg
sE � A� BF G

C 0

� �

¼ n2 þ n3 þ n4 þ ~n1 þ rankg
sE21 � A21 � B2F1

�A31 � B3F1

� �
;

i.e.,

n1 ¼ ~n1 þ rankg
sE21 � A21 � B2F1

�A31 � B3F1

� �
: ð8:25Þ
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Compute the generalized upper triangular form of
sE21 � A21 � B2F1

�A31 � B3F1

� �
(see

Demmel and Kågström [14]) to get orthogonal matrices U and V such that

n̂1 n1 � n̂1

U sE21 � A21 � B2F1

�A31 � B3F1

� �
V ¼ sÊ21 � Â21 s~E21 � ~A21

0 s~E31 � ~A31

� �
gl2
g~n2 þ ~n3 � l2

;

where Ê21 is of full row rank and s~E31 � ~A31 is of full column rank for any s 2 C:
Set

n̂1 n1 � n̂1

ðsE11 � A11 � B1F1ÞV ¼ sÊ11 � Â11 s~E11 � ~A11;
� �

U B2

B3

� �
¼

~B2
~B3

� �
gl2
g~n2 þ ~n3 � l2

:

From (8.25) we obtain that

n1 ¼ ~n1 þ l2 þ ðn1 � n̂1Þ;

or equivalently,

n̂1 ¼ ~n1 þ l2:

Thus, sÊ11 � Â11

sÊ21 � Â21

� �
is square. From Theorem 1.8, ~n6 ¼ n4, and so we have

r Ê11

Ê21

� �
;

Â11

Â21

� �� �
[ rðE53;A53Þ � ðE;Aþ BFÞ: ð8:26Þ

Now we derive the relationship between rðH32;U32Þ and r Ê11

Ê21

� �
Â11

Â21

� �� �
:

Using the form (8.19) we know for a s0 2 C that

rank
s0E11 � A11 B1

s0E21 � A21 B2

�A31 B3

2
4

3
5\ rankg

sE11 � A11 B1

sE21 � A21 B2

�A31 B3

2
4

3
5 ð8:27Þ

if and only if s0 2 rðH32;U32Þ:
But, the property (8.11) gives that

rank s~E31 � ~A31 ~B3

� �
¼ ~n2 þ ~n3 � l2; 8s 2 C;

which yields that if s0 62 r Ê11

Ê21

� �
;

Â11

Â21

� �� �
then
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rank

s0E11 � A11 B1

s0E21 � A21 B2

�A31 B3

2

4

3

5

¼ rank

s0E11 � A11 � B1F1 B1

s0E21 � A21 � B2F1 B2

�A31 � B3F1 B3

2
4

3
5

¼ rank
s0Ê11 � Â11 s0 ~E11 � ~A11 B1

s0Ê21 � Â21 s0 ~A21 � ~A21 ~B2

0 s0 ~E31 � ~A31 ~B3

2
64

3
75

¼ ð~n1 þ l2Þ þ ð~n2 þ ~n3 � l2Þ

¼ ~n1 þ ~n2 þ ~n3 ¼ rankg

sE11 � A11 B1

sE21 � A21 B2

�A31 B3

2

4

3

5: ð8:28Þ

So, (8.27) and (8.28) imply that rðH32;U32Þ � r Ê11

Ê21

� �
;

Â11

Â21

� �� �
: Therefore,

(8.26) gives that rðH32;U32Þ [ rðE53;A53Þ � rðE;Aþ BFÞ; consequently, we have

rðH32;U32Þ [ rðE53;A53Þ � rf : ð8:29Þ

Next, let’s consider the form (8.21) and denote

XP
sE12 � A12

sE22 � A22

sE32 � A32

2

4

3

5 ¼
sÊ32 � Â32

sÊ12 � Â12

sÊ22 � Â22

sÊ42 � Â42

2
664

3
775

gs2

gŝ1

gn2

gn4

:

Since s2 þ ŝ1 þ ŝ3 ¼ n1; and

~n1 þ ~n2 ¼ rank
E11 G1

E21 0

� �
¼ rank

H32 0 Ĝ3

0 I Ĝ1

0 0 Ĝ2

2

4

3

5 ¼ s2 þ ŝ1 þ n2;

so, the condition (8.15) is equivalent to that n2� ŝ3: Note that (8.22) holds, by
Lemma 1.6(i), there is an integer k� 0 satisfying that for any conjugate set K1 ¼
fk1; . . .; kkg there exist matrices F̂1; F̂3 and a nonsingular matrix Z such that

ŝ1 n2 ŝ3 � n2

sI � Û11 � Ŵ1F̂1 �Û13 � Ŵ1F̂3

�Û21 � Ŵ2F̂1 �Û23 � Ŵ2F̂3

�Û41 � Ŵ4F̂1 �Û42 � Ŵ4F̂3

2
4

3
5Z ¼

sI � ~U11 �~Uð1Þ13 �~Uð2Þ13

�~U21 �~Uð1Þ23 �~Uð2Þ23
0 0 0

2

64

3

75
gŝ1

gn2

gn4

;

ð8:30Þ
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where
I 0
0 0

� �
;

~U11
~Uð1Þ13

~U21
~Uð1Þ23

" # !
is regular and

r
I 0
0 0

� �
;

~U11
~Uð1Þ13

~U21
~Uð1Þ23

" # !
¼ K1: ð8:31Þ

Additionally, Ŵ4 and E42 are of full row rank and the condition (8.14) gives that

n4 þ ~n4 ¼ ðŝ3 � n2Þ þ n2; so by Lemma 1.4, for any conjugate set K2 ¼

f~k1; . . .; ~k~kg with ~k ¼ rank Ê42

E42

� �
; there exist matrices ~F3;F2 such that

0 Ê42

0 E42

� �
;

Ŵ4 ~F3 Â42 þ Ŵ4F2

0 A42

� �� �
is regular, of index at most one, and

r 0 Ê42

0 E42

� �
;

Ŵ4 ~F3 Â42 þ Ŵ4F2

0 A42

� �� �
¼ K2:

Let F̂2 satisfy Û42 þ Ŵ4F̂2 ¼ 0: Set

F1 ¼ ð F̂2 F̂1 F̂3

� �
þ 0 ~F3

� �
ÞZ�1; F ¼ F1 F2 0 0½ �VT : ð8:32Þ

Then, we have

XP 0

0 I

� �
UðsE�A�BFÞV

QY 0

0 I

� � Is2 0 0

0 Z 0

0 0 I

2
64

3
75

¼

sH32�U32 0 0 	 	 	 	
I sI� ~U11 �~Uð1Þ13 	 	 	 	
I �~U21 �~Uð1Þ23 	 	 	 	
0 0 0 �Ŵ4 ~F3 sÊ42�Â42�Ŵ4F2 	 	
0 0 0 0 sE42�A42 	 	
0 0 0 0 0 sE53�A53 	
0 0 0 0 0 0 sE64�A64

2
6666666666664

3
7777777777775

:

ð8:33Þ

A simple calculation yields that ðE;Aþ BFÞ is regular,

rðE;Aþ BFÞ ¼ rðH32;U32Þ [ K1 [ K2 [ rðE53;A53Þ;
CðsE � A� BFÞ�1G ¼ 0:

This means that

rf � rðH32;U32Þ [ rðE53;A53Þ: ð8:34Þ
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Therefore,

(i) follows directly from (8.29) and (8.34).
(ii) Assume DDPI is solvable. Thus, the conditions (8.14, 8.15, 8.17, 8.18) hold.

Note that if F 2 Rm�n solves the DDPI then it also solves the DDP, so,

rðH32;U32Þ [ rðE53;A53Þ ¼ rf � rfi: ð8:35Þ
Moreover,

• the condition (8.18) gives that Û23 Ŵ2

Û43 Ŵ4

� �
¼ n2 þ n4; thus, by Lemma 1.6 (ii),

F̂1; F̂3 in (8.31) can be chosen such that
I 0
0 0

� �
;

~U11
~Uð1Þ13

~U21
~Uð1Þ23

" # !
is regular, of

index at most one, and (8.31) is true;

• it follows from the form (8.21) that rank
E11

E21

� �
¼ s2 þ ŝ1;

• because

rank

E11 E12 G1

E21 E22 0
0 E32 0
0 E42 0

2
664

3
775 ¼ rank

H32 0 Ê32 Ĝ3

0 I Ê12 Ĝ1

0 0 Ê22 Ĝ2

0 0 Ê42 0
0 0 E42 0

2
66664

3
77775
;

rank
E11 G1

E21 0

� �
¼ rank

H32 0 Ĝ3

0 I Ĝ1

0 0 Ĝ2

2
4

3
5;

and G1;E21; Ĝ2 are of full row rank, H32 is nonsingular, we have

rank
E32

E42

� �
¼ rank Ê42

E42

� �
:

Hence, the F in (8.32) satisfies that

degðdetðsE�A�BFÞÞ¼ degðdetðsH32�U32ÞÞþdeg det
sI� ~U11 �~Uð1Þ13

�~U21 �~Uð1Þ23

" # ! !

þdeg det
�Ŵ4 ~F3 sÊ42� Â42� Ŵ4F2

0 sE42�A42

� �� �

þdegðdetðsE53�A53ÞÞþdegðdetðsE64�A64ÞÞ

¼ s2þ ŝ1þ rank
Ê42

E42

� �
þn3

¼ rank
E11

E21

� �
þ rank

E32

E42

� �
þn3

¼ rankðEÞ:
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Hence, ðE;Aþ BFÞ is additionally of index at most one. This means that F
solves the DDPI, which and (8.33) give that

rfi � rðH32;U32Þ [ rðE53;A53Þ: ð8:36Þ
Therefore, (ii) follows from (8.35) and (8.36). h

Theorem 1.11 implies that when the DDPI is solvable, the fixed poles in the
DDP and DDPI are the same, although the index requirement in the DDP is not
imposed.

As a direct consequence of the proof of Theorem 1.11 we can obtain solvability
conditions for the DDP and DDPI with stability.

Corollary 1.12 Given descriptor system (8.1). Assume that orthogonal matrices
U;V ;P and Q and the condensed forms (8.10) and (8.19) have been determined.
Let C� denote the open left half complex plane.

(i) The DDP with stability is solvable, i.e., there exists a F 2 Rm�n such that
ðE;Aþ BFÞ is regular, stable and (8.3) holds if and only if the conditions
(8.14, 8.15, 8.16) hold and rf � C�:

(ii) The DDPI with stability is solvable, i.e., there exists a F 2 Rm � n such that
ðE;Aþ BFÞ is regular, of index at most one, stable and (8.3) holds if and
only if the conditions (8.14, 8.15, 8.17, 8.18) hold and rfi � C�:

Based on Theorems 1.8 and 1.11, we can compute rf and rfi via the following
algorithm.

Algorithm 3

Input: A 2 Rn�n;B 2 Rn�m;C 2 Rq�n;G 2 Rn�p:
Output: rf or rfi (if possible).
Step 1 Compute the condensed form (8.10) (see Chu and Mehrmann [7]). If

(8.14) or (8.15) is not true, print ‘‘DDP and DDPI are not solvable’’ and stop.
Otherwise, continue.

Step 2 Check (8.17) and (8.18). If (8.17) or (8.18) is not true, print ‘‘DDPI is not
solvable’’.

Step 3 Perform Algorithm 4 in Appendix A to compute the condensed form
(8.19). If ~s4 6¼ s3, print DDP and DDPI are not solvable’’ and stop. Otherwise,
continue.

Step 4 Compute rðH32;U32Þ and rðE53;A53Þ:
Step 5 If DDPI is solvable, set rf ¼ rfi ¼ rðH32;U32Þ [ rðE53;A53Þ; and

output rf and rfi: If only DDP is solvable, set rf ¼ rðH32;U32Þ [ rðE53;A53Þ, and
output rf :

Note that Algorithm 3 is only based on orthogonal transformations, hence, it
can be implemented in a numerically reliable manner via the existing numerical
algebra tools such as LAPACK and Matlab.

Now we present an example to illustrate the use of Algorithm 3. All calcula-
tions were carried out in MATLAB 5.0 with four decimal places display on a HP
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712/80 workstation with IEEE standard (machine accuracy � ffi 10�16). Since we
are only interested in the solvability conditions (8.14–8.18) and the eigenvalues of
the pencils sH32 � U32 and sE53 � A53; so we do not store orthogonal matrices
U;V ;P and Q in the forms (8.10) and (8.19).

Example 1.13 Given descriptor system (8.1) with

E¼

�0:7863 0:4021 0:2314 �0:2600 �0:7066 �0:1875 �1:1030

�0:1538 �0:2767 0:1409 �0:0918 0:0615 0:1701 �0:2873

2:0846 �1:7034 �0:5839 0:1624 0:8925 0:1831 0:5748

1:0141 �1:2203 �0:0836 �0:0557 0:5309 0:5997 0:1480

�0:0925 �0:0113 0:0298 0:0278 0:1035 �0:0039 0:0718

1:0492 �1:6596 �0:2188 0:1829 1:2403 0:1666 0:4429

�0:0987 0:1941 0:0184 0:0202 �0:0431 0:0044 0:1207

2
66666666666664

3
77777777777775

;

A¼

6:3555 �4:5744 �1:8617 2:0120 6:1926 1:8761 7:2305

0:56320 2:0114 �1:2514 1:2150 0:1732 �0:60900 2:4890

�14:319 11:934 3:8888 �1:5240 �6:5104 �1:7185 �3:8026

�7:2305 8:1554 0:68420 �0:13180 �3:7048 �4:2523 �1:2279

0:97910 �0:12010 �0:09360 �0:36710 �0:84600 0:04080 �0:45740

�77576 12:035 1:1888 �1:5432 �8:9678 �1:0801 �2:8889

0:25280 �0:61880 �0:17930 0:15880 0:17470 0:51260 �0:40620

2
66666666666664

3
77777777777775

;

B¼

0:4937 �0:2152

0:1761 �0:2545

�0:3581 �0:0736

�0:1451 �0:2297

0:0116 �0:0491

�0:0759 �0:5923

�0:0460 0:1003

2

66666666666664

3

77777777777775

; G¼

0:0655

0:1149

�0:0266

�0:0809

0:0932

�0:0935

0:0549

2

66666666666664

3

77777777777775

;

C¼
�0:2196 �0:5108 0:0312 0:3180 0:2294 0:1753 �0:2892

0:0506 0:0161 �0:1879 0:4957 �0:3728 0:2024 �0:2401

" #
:

Our purpose is to check if DDP and DDPI are solvable, and if so, to compute rf

and rfi:

First, we compute the condensed form (8.10). The computed ðUEV ;UAV ;UB;
UG;CVÞ and the parameters ni; ~ni; i ¼ 1; . . .; 4; and ~n6 are as follows:
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A simple calculation gives that the conditions (8.14, 8.15, 8.17, 8.18) hold. Hence,
by Theorem 1.8, the DDPI is solvable (and therefore DDP is also solvable).

Then we compute the condensed form (8.19) as follows:

Finally,

sH32 � U32 ¼ 0:0648sþ 0:02070; sE53 � A53 ¼ 0:7266sþ 4:3489;

by Theorem 1.11, we have

rfi ¼ rf ¼ rðH32;U32Þ [ rðE53;A53Þ ¼ f�0:31944;�5:9853g � C�:

Hence, both DDP and DDPI with stability are solvable.
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8.4 Conclusions

In this paper we have studied the fixed poles in disturbance decoupling for
descriptor systems. Algebraic characterizations for these fixed poles are derived
based on two condensed forms under orthogonal transformations. These algebraic
characterizations lead to a numerically reliable algorithm for computing the fixed
poles. This algorithm can be implemented directly using existing numerical linear
algebra tools such as LAPACK and Matlab.

Appendix A: Proof of Theorem 1.9(i)

Proof We prove Theorem (i) constructively by means of the following algorithm.

Algorithm 4

Input: Input E11;E21;A11;A21;A31;B1;B2 and B3 in the form (8.10).
Output: Orthogonal matrices P and Q and the form (8.19).

Step 1 Perform a QR factorization of
B1

B2

B3

2
4

3
5 to get orthogonal matrix P1 such

that

P1

B1

B2

B3

2
4

3
5 ¼:

W1

0

� � g~s1

g~sð1Þ2
;

where W1 being of full row rank. Set

P1

sE11 � A11

sE21 � A21

�A31

2

4

3

5 ¼:
sHð1Þ11 � Uð1Þ11

sHð1Þ21 � Uð1Þ21

" #
g~s1

g~sð1Þ2
:

Step 2 Compute the generalized upper triangular form of sHð1Þ21 � Uð1Þ21 (see
Demmel and Kågström [14]) to get orthogonal matrices P2 and Q such that

P2 sHð1Þ21 � Uð1Þ21

� 	
Q ¼:

s1 s2 s3

sH21 � U21 sH22 � U22 sH23 � U23

0 sH32 � U32 sH33 � U33

0 0 sH43 � U43

2
64

3
75
g~s2

gs2

g~s4

;

where H21 is of full row rank, H32 is nonsingular, and the property (8.20)
holds. Set

8 Numerical Computation of the Fixed Poles 161



s1 s2 s3

ðsHð1Þ11 � Uð1Þ11 ÞQ ¼: sH11 � U11 sH12 � U12 sH13 � U13½ �;

and

P :¼ I
P2

� �
P1:

Then P and Q give the form (8.19).

Appendix B: Proof of Lemma 1.10

Proof Since H32 is nonsingular and rankðsH43 � U43Þ ¼ s3 for any s 2 C; by
matrix pencil theory (see Gantmacher [1]), there exist matrices X 34 and Y23 such
that

sH33 � U33 þ ðsH32 � U32ÞY23 þ X34ðsH43 � U43Þ ¼ 0:

Note that s3 ¼ ~s4; so if we let

X1 ¼

0 0 Is2 0
I~s1 0 0 0
0 I~s2 0 0
0 0 0 Is3

2

664

3

775

I~s1 0 �H12H
�1
32 0

0 I~s2 �H22H
�1
32 0

0 0 Is2 X 34

0 0 0 Is3

2

664

3

775;

and

Y1 ¼
Is1 0 0
0 Is2 Y23

0 0 Is3

2

4

3

5
0 Is1 0
Is2 0 0
0 0 Is3

2

4

3

5;

then we have

s2 s1 s3

X1P

sE11 � A11

sE21 � A21

�A31

2
64

3
75 QY1 ¼

sH32 � U32 0 0
~U12 sH11 � U11 s ~H13 � ~U13

~U22 sH21 � U21 s ~H23 � ~U23

0 0 sH43 � U43

2
6664

3
7775

gs2

g~s1

g~s2

gs3

;

X1P

B1

B2

B3

2
64

3
75 ¼

0

W1

0

0

2
6664

3
7775

gs2

g~s1

g~s2

gs3

; X1P

G1

0

0

2
64

3
75 ¼

Ĝ3

~G1

~G2

~G4

2
6664

3
7775

gs2

g~s1

g~s2

gs3

:
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Because
E11 B1 G1

E21 B2 0
0 B3 0

2

4

3

5 is of full row rank, so,
H11

~H13 W1 ~G1

H21
~H23 0 ~G2

0 H43 0 ~G4

2

4

3

5 is also

of full row rank. Thus, there exist nonsingular matrices X22 and Y22 such that

ŝ1 ŝ3

X22

sH11 � U11 s ~H13 � ~U13

sH21 � U21 s ~H23 � ~U23

0 sH43 � U43

2

64

3

75 Y22 ¼
sI � Û11 �Û13

�Û21 �Û23

�Û41 �Û43

2

64

3

75
gŝ1

gn2

gn4

;

X22

W1

0

0

2
64

3
75 ¼

Ŵ1

Ŵ2

Ŵ4

2
64

3
75
gŝ1

gn2

gn4

; X22

~G1

~G2

~G4

2
64

3
75 ¼

Ĝ1

Ĝ2

0

2
64

3
75
gŝ1

gn2

gn4

;

where Ĝ2 and Ŵ4 are of full row rank. Considering that
sH11 � U11 W1

sH21 � U21 0

� �
and

sH43 � U43 are of full row rank for any s 2 C (note that s3 ¼ ~s4), so (8.22) holds.
Therefore, Lemma 1.10 is proved with

X ¼ I 0
0 X22

� �
X1; Y ¼ Y1

I 0
0 Y22

� �
; X22

~U12
~U22

0

2
4

3
5 ¼

Û12

Û22

Û42

2
4

3
5
gŝ1

gn2

gn4

:
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Chapter 9
Robust Control of Discrete Linear
Repetitive Processes with Parameter
Varying Uncertainty

Bła _zej Cichy, Krzysztof Gałkowski, Eric Rogers and Anton Kummert

Abstract Repetitive processes propagate information in two independent direc-
tions where the duration of one of these is infinite.

They pose control problems that cannot be solved by application of results for
other classes of 2D systems. This paper develops robust controller design algo-
rithms for discrete linear processes based on the poly-quadratic stability that
produce less conservative results than currently available alternatives.

9.1 Introduction

Repetitive processes are a distinct class of 2D systems of both system theoretic and
applications interest whose unique characteristic is a series of sweeps, termed passes,
through a set of dynamics defined over a fixed finite duration known as the pass
length. On each pass an output, termed the pass profile, is produced which acts as a
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forcing function on, and hence contributes to, the dynamics of the next pass profile.
This, in turn, leads to the unique control problem in that the output sequence of pass
profiles can contain oscillations whose amplitude in the pass-to-pass direction.

To introduce a formal definition, let the integer a\þ1 denote the number of
samples resulting from sampling the assumed constant pass length at a constant
rate. Then in a repetitive process the pass profile ykðpÞ; 0� p� a� 1; generated on
pass k acts as a forcing function on, and hence contributes to, the dynamics of the
next pass profile ykþ1ðpÞ; 0� p� a� 1; k� 0:

Physical examples of these processes include long-wall coal cutting and metal
rolling operations [17]. Also in recent years applications have arisen where
adopting a repetitive process setting for analysis has distinct advantages over
alternatives. An example of these algorithmic applications is iterative algorithms
for solving nonlinear dynamic optimal stabilization problems based on the maxi-
mum principle [16] where use of the repetitive process setting provides the basis for
the development of highly reliable and efficient iterative solution algorithms.
A second example is iterative learning control schemes which form one approach to
controlling systems operating in a repetitive (or pass-to-pass) mode with the
requirement that a reference trajectory rðpÞ defined over a finite interval
0� p� a� 1 is followed to a high precision—see, for example, [11]. In this case a
repetitive process setting for analysis provides a stability theory which, unlike many
alternatives, allows for design to meet pass-to-pass error convergence and control
of the along the pass dynamics. Also iterative learning control laws designed in this
setting have been experimentally verified [10] on a gantry robot with very good
correlation between simulation and actually measured performance.

Attempts to analyze repetitive processes using standard (or 1D) systems theory/
algorithms fail (except in a few very restrictive special cases) precisely because
such an approach ignores their inherent 2D systems structure, i.e. information
propagation occurs from pass-to-pass and along a given pass. Also the initial
conditions are reset before the start of each new pass and the structure of these can
be somewhat complex. For example, if the pass state initial vector is an explicit
function of the pass profile vector at points along the previous pass then this alone
can destroy the most basic performance specification of stability. In seeking a
rigorous foundation on which to develop a control/estimation/filtering theory for
these processes, it is natural to attempt to exploit structural links which exist with
other classes of 2D linear systems.

The case of 2D discrete linear systems recursive in the positive quadrant ði; jÞ :
i� 0; j� 0 (where i and j denote the directions of information propagation) has
been the subject of much research effort over the years using, in the main, the well
known Roesser and Fornasini Marchesini state–space models (for details on these
see, for example, the references given in [17]). More recently, productive research
has been reported on H1 and H2 approaches to filtering and control law design—
see, for example, [3, 19]. (Filtering of this general form is, of course, well
established in 1D linear systems theory, see, for example, [8, 13, 18]).

As noted above, the structure of the boundary conditions for linear repetitive
processes can cause problems which have no Roesser or Fornasini Marchesini
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state–space model counterparts. Moreover, there are key systems theoretic prop-
erties for repetitive processes that have no interpretation in terms of these (and
other) 2D systems models. An example here is pass profile controllability [17] that
is the physically motivated requirement that there exists a control input sequence
which will force the process to produce a pre-specified pass profile on a given pass.
This means that the systems theory for other classes of 2D discrete linear systems
is very often not applicable to repetitive processes.

As noted above, material, or metal, rolling is one of a number of physically
based problems which can be modeled as a linear repetitive process [17]. In this
paper, we use a material rolling process as a basis to illustrate the solution we
develop to a currently open robust stability and stabilization problem for discrete
linear repetitive processes. The design itself can be completed using Linear Matrix
Inequalities (LMIs) [4, 12].

In physical application terms, the system or process parameters are most often
not known exactly and only some nominal values or admissible intervals are
available. Hence, although the nominal process is most often time invariant,
the uncertain process can be time-varying. This will be the case here and to solve
the problem we generalize previously reported LMI based design algorithms for
uncertain discrete linear repetitive processes [5] and other classes of systems
[2, 9, 15] with polytopic uncertainty. These results are based on sufficient, but not
necessary, stability conditions.

The use of sufficient but not necessary stability conditions obviously creates a
potentially serious problem since the results obtained can be very conservative in
the sense that the range over which the admissible parameters can vary is very
small. Here we develop substantial new results on how this problem can be
overcome. The essential mechanism used is to allow a control law where the
entries in the defining matrices explicitly depend on the pass number k; and the
along the pass variable p; k� 0 and 0� p� a� 1: This is a form of adaptation
which allows the control law to follow or track the evolution of any uncertainty
present in the model used for control law design and evaluation. In addition to
reducing the conservativeness of the design, this will also allow the admissible
uncertainty set over which a satisfactory solution exists to be enlarged.

Throughout this chapter, the null matrix and the identity matrix with appro-
priate dimensions are denoted by 0 and I; respectively. Moreover, a real symmetric
positive definite matrix, say N; is denoted by N � 0: Next we describe the mod-
eling of the material rolling process used in this paper.

9.2 Material Rolling as a Linear Repetitive Process

Material rolling is an extremely common industrial process where, in essence,
deformation of the workpiece takes place between two rolls with parallel axes
revolving in opposite directions. Consider also the following differential equation
model of the metal rolling process shown schematically in Fig. 9.1 whose
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derivation is explained fully in [1] (see also [7] for other repetitive process based
analysis of this model)

€ykðtÞ þ a0ykðtÞ þ b2€yk�1ðtÞ þ b0yk�1ðtÞ ¼ c0ukðtÞ ð9:1Þ

where

a0 ¼
k1k2

Mðk1 þ k2Þ
; b2 ¼

�k2

k1 þ k2
; b0 ¼

�k1k2

Mðk1 þ k2Þ
; c0 ¼

�k1

Mðk1 þ k2Þ

and ukðtÞ ¼ FM;kðtÞ: Here ykþ1ðtÞ and ykðtÞ denote the thickness of the material on
two successive passes, M is the lumped mass of the roll-gap adjusting mechanism,
k1 is the stiffness of the adjustment mechanism springs and k2 is the hardness of
the material strip, and FM;kðtÞ is the force developed by the motor.

Applying the backward Euler discretization method with sampling period T to
(9.1) leads to the following state–space model which is a special case of that for
discrete linear repetitive processes

xkþ1ðpþ 1Þ ¼ Axkþ1ðpÞ þ Bukþ1ðpÞ þ B0ykðpÞ
ykþ1ðpÞ ¼ Cxkþ1ðpÞ þ Dukþ1ðpÞ þ D0ykðpÞ

ð9:2Þ

where

A ¼ 1
1þ a0T2

1 T

�a0T 1

� �
; B ¼ c0T

1þ a0T2

T

1

� �

B0 ¼
ð�b0 þ a0b2ÞT

1þ a0T2

T

1

� �
; C ¼ 1

1þ a0T2
1 T½ �

D ¼ c0T2

1þ a0T2
; D0 ¼

�b2 � b0T2

1þ a0T2

Fig. 9.1 Schematic of
material rolling
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and

xkðpÞ ¼
ykþ1ðp� 1Þ þ b2ykðp� 1Þ

ðykþ1ðp� 1Þ þ b2ykðp� 1Þ � ykþ1ðp� 2Þ � b2ykðp� 2ÞÞT�1

� �

In the general case on pass k; xkþ1ðpÞ is the n� 1 current pass state vector ykðpÞ is
the m� 1 pass profile vector and ukðpÞ is the l� 1 current pass input vector.

To complete the process description it is necessary to specify the initial, or
boundary, conditions, that is, the pass state initial vector sequence and the initial
pass profile. Here these are taken to be of the form

xkþ1ð0Þ ¼ dkþ1; k� 0
y0ðpÞ ¼ f ðpÞ; 0� p� a� 1

ð9:3Þ

where dkþ1 is an n� 1 vector with constant entries and f ðpÞ is an m� 1 vector
whose entries are known functions of p.

9.3 Stability and Stabilization of Discrete Linear
Repetitive Processes

The stability theory [17] for linear repetitive processes is based on an abstract
model in a Banach space setting that includes a wide range of such processes as
special cases, including those described by (9.2) and (9.3). In terms of their
dynamics it is the pass-to-pass coupling (noting again their unique feature) which
is critical. This is of the form ykþ1 ¼ Layk; where yk 2 Ea (Ea a Banach space with
norm jj � jj) and La is a bounded linear operator mapping Ea into itself. (In the case
of processes described by (9.2) and (9.3), La is a discrete linear systems convo-
lution operator.)

Asymptotic stability, i.e. bounded-input bounded-output (BIBO) stability over
the fixed finite pass length a[ 0; requires the existence of finite real scalars
Ma [ 0 and ka 2 ð0; 1Þ such that jjLk

ajj �Mak
k
a; k� 0; where jj � jj also denotes the

induced operator norm. For the processes described by (9.2) and (9.3) it has been
shown elsewhere (see, for example, Chap. 3 of Rogers et al. [17]) that this
property holds if, and only if, all eigenvalues of the matrix D0 have modulus
strictly less than unity—written here as rðD0Þ\1 where rð�Þ denotes the spectral
radius of its matrix argument.

Suppose that rðD0Þ\1 and the input sequence applied fukþ1gk converges
strongly as k !1 (i.e. in the sense of the norm on the underlying function space)
to u1. Then the strong limit y1 :¼ limk!1yk is termed the limit profile corre-
sponding to this input sequence and its dynamics are described by
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x1ðpþ 1Þ ¼ ðAþ B0ðI � D0Þ�1CÞx1ðpÞ
þ ðBþ B0ðI � D0Þ�1DÞu1ðpÞ

y1ðpÞ ¼ ðI � D0Þ�1Cx1ðpÞ
þ ðI � D0Þ�1Du1ðpÞ

x1ð0Þ ¼ d1;

ð9:4Þ

where (again a strong limit) d1 :¼ limk!1 dk: In physical terms, this result states
that under asymptotic stability the repetitive dynamics can, after a ‘‘sufficiently
large’’ number of passes have elapsed, be replaced by those of a 1D discrete linear
system. In particular, this property demands that the amplifying properties of the
coupling between successive pass profiles are completely damped out after a
sufficiently large number of passes have elapsed. This fact has clear implications in
terms of the control of these processes—see [17] for a detailed treatment of this
point.

The finite pass length means that the limit profile can have unacceptable
along the pass dynamics and, in particular, be unstable in the 1D linear systems
sense. A simple example here is the case when A ¼ �0:5;B ¼ 1;B0 ¼ 0:5þ b;
C ¼ 1;D ¼ D0 ¼ 0;where b [ 0 is a real scalar. Hence if jbj � 1 the limit profile is
unstable.

If we wish to avoid cases such as this example from arising, one route is to
demand the BIBO stability property for any possible value of the pass length
(mathematically this can be analyzed by letting a!1). This is the stability along
the pass property which requires the existence of finite real scalars M1[ 0 and
k1 2 ð0; 1Þ that are independent of a and are such that jjLk

ajj �M1kk
1; k� 0:

Numerous sets of necessary and sufficient conditions for stability along the pass
of (9.2) and (9.3) are known but here it is the following result which is the starting
point.

Theorem 1.1 [6]. A discrete linear repetitive process described by (9.2) and (9.3)
is stable along the pass if there exist matrices W1 � 0 and W2 � 0 such that

bAT WbA �W 	 0 ð9:5Þ

where W ¼ diagfW1;W2g � 0; and

bA ¼ A B0

C D0

� �
ð9:6Þ

Even though this condition is sufficient but not necessary it forms a basis of
control law design via a Lyapunov function interpretation. In particular, follow
[14] and introduce the candidate Lyapunov function as

Vðk; pÞ ¼ xT
kþ1ðpÞW1xkþ1ðpÞ þ yT

k ðpÞW2ykðpÞ ð9:7Þ

where W1 � 0;W2 � 0, with associated increment
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DVðk; pÞ ¼ xT
kþ1ðpþ 1ÞW1xkþ1ðpþ 1Þ þ yT

kþ1ðpÞW2ykþ1ðpÞ
� xT

kþ1ðpÞW1xkþ1ðpÞ � yT
k ðpÞW2ykðpÞ ð9:8Þ

Then it is easy to show that

DVðk; pÞ\0 ð9:9Þ

is equivalent to (9.5).
An extensively analyzed control law for processes described by (9.2) and (9.3)

(see, for example, [14]) has the following form over 0� p� a� 1; k� 0

ukþ1ðpÞ ¼ ½K1 K2�
xkþ1ðpÞ
ykðpÞ

� �
ð9:10Þ

where K1 and K2 are appropriately dimensioned matrices to be designed. In effect,
this control law is composed of a weighted sum of current pass state feedback and
feedforward of the previous pass profile.

The LMI of (9.5) extends in a natural manner to the design of (9.10) for
stability along the pass but here we will use the approach based on [2, 9, 15] and
first adopted for repetitive processes in [6]. This will prove to be of particular use
in the analysis of the case when there is uncertainty associated with the process
state–space model.

Theorem 1.2 Suppose that a control law of the form (9.10) is applied to a discrete
linear repetitive process described by (9.2) and (9.3). Then the resulting process
is stable along the pass if there exist matrices W ¼ diagfW1;W2g;W1 � 0;W2 � 0;
G; and

N ¼ N1 N2

N1 N2

� �
ð9:11Þ

such that

�G� GT þW ðbAGþ bBNÞT
bAGþ bBN �W

� �
	 0 ð9:12Þ

If this condition holds, stabilizing K1 and K2 in the control law (9.10) are given by

K ¼ NG�1 ð9:13Þ

where matrices K and bB are given by

K ¼ K1 K2

K1 K2

� �
; bB ¼ B 0

0 D

� �
ð9:14Þ
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In implementation terms, this control law requires that all elements of the
current pass state vector are available for measurement. If this is not true then an
observer will required.

Remark 1 The LMIs here are very similar to those known from the literature (see,
for example, [2, 9, 15]) for 1D linear systems. This does not, of course, mean that
repetitive processes can be analyzed by direct application of existing 1D linear
systems theory, merely that in some cases recourse can be made to tools from this
latter area. Even then, there are two major differences. The first of these is that the
decision matrices must be block-diagonal where the diagonal entries are of
dimensions n� n and m� m respectively (the first corresponds to the current pass
state vector and the second the previous pass profile—see the form of the
Lyapunov function). Secondly, even with no uncertainty, the Lyapunov based
stability analysis for linear repetitive processes only gives a sufficient condition
and hence there is always some conservativeness present.

9.4 Robust Stability and Stabilization of Discrete Linear
Repetitive Processes

In addition to Theorem 1.2 of the previous section, the design of control laws for
discrete linear repetitive processes has been the subject of much research effort—
see, for example, [5, 6, 7,14]. Here, we continue the development of this general
area by establishing new results related to the practical case where there is possibly
large uncertainty associated with the process (state–space model) description. In

particular, we consider the case when the model matrices bA and bB defined by (9.6)
and (9.14) respectively are not precisely known, but belong to a convex bounded
(polytope type) uncertain domain denoted here by D: This, in turn, means that any
uncertain matrix can be written as a convex combination of the vertices of D as
follows

D ¼
(
bAðnðk; pÞÞ; bBðnðk; pÞÞ
h i

: bAðnðk; pÞÞ; bBðnðk; pÞÞ
h i

¼
Xm

i¼1

niðk; pÞ bAi; bBi

h i
;

Xv

i¼1

niðk; pÞ ¼ 1; niðk; pÞ� 0; k� 0; 0� p� a� 1

)
ð9:15Þ

where v denotes the number of vertices. Note also that the uncertainty here is
variable in both independent directions of information propagation, i.e. along the
pass (p direction) and pass-to-pass (k direction).

At this stage, we can write the following linear parameter dependent state–
space model describing the process dynamics
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xkþ1ðpþ 1Þ ¼ Aðnðk; pÞÞxkþ1ðpÞ þ Bðnðk; pÞÞukþ1ðpÞ þ B0ðnðk; pÞÞykðpÞ
ykþ1ðpÞ ¼ Cðnðk; pÞÞxkþ1ðpÞ þ Dðnðk; pÞÞukþ1ðpÞ þ D0ðnðk; pÞÞykðpÞ

ð9:16Þ

Consider also the parameterized candidate Lyapunov function

Vðk; p; nðk; pÞÞ ¼ xT
kþ1ðpÞW1ðnðk; pÞÞxkþ1ðpÞ þ yT

k ðpÞW2ðnðk; pÞÞykðpÞ ð9:17Þ

with

W1ðnðk; pÞÞ ¼
Xv

i¼1

niðk; pÞWi1

W2ðnðk; pÞÞ ¼
Xv

i¼1

niðk; pÞWi2

ð9:18Þ

and Vð0; 0; nð0; 0ÞÞ\1; and associated increment

DVðk; p; nðk; pÞÞ ¼ xT
kþ1ðpþ 1ÞW1ðnðk; pþ 1ÞÞxkþ1ðpþ 1Þ

þ yT
kþ1ðpÞW2ðnðk þ 1; pÞÞykþ1ðpÞ � xT

kþ1ðpÞW1ðnðk; pÞÞxkþ1ðpÞ

� yT
k ðpÞW2ðnðk; pÞÞykðpÞ

ð9:19Þ

Then we can define so-called poly-quadratic stability (see [2, 9, 15] for the 1D
systems case) as follows.

Definition 1.3 A discrete linear repetitive process described by (9.2) and (9.3)
with uncertainty defined by (9.15) and Lyapunov function (9.17) and (9.18) is said
to be poly-quadratically stable provided

DVðk; p; nðk; pÞÞ\0 ð9:20Þ

for all k� 0; 0� p� a� 1:

The requirement of (9.20) can be written as

bAðnðk; pÞÞTWþbAðnðk; pÞÞ �W 	 0 ð9:21Þ

where W ¼ diagðfW1ðnðk; pÞÞÞ;W2ðnðk; pÞÞg is defined by (9.18)

Wþ ¼ diagfW1ðnðk; pþ 1ÞÞ;W2ðnðk þ 1; pÞÞg

¼
Xv

i¼1

diagfniðk; pþ 1ÞWi1; niðk þ 1; pÞWi2g

¼
Xv

i¼1

fiðk; pÞdiagfWi1;Wi2g

with
Pv

i¼1 fiðk; pÞ ¼ 1; fiðk; pÞ� 0; k� 0; 0� p� a� 1: We also require that

niðk; pþ 1Þ ¼ niðk þ 1; pÞ ¼ fiðk; pÞ and the matrix bA of (9.6) in this case becomes
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bAðnðk; pÞÞ ¼ Aðnðk; pÞÞ B0ðnðk; pÞÞ
Cðnðk; pÞÞ D0ðnðk; pÞÞ

� �
¼
Xv

i¼1

niðk; pÞbAi ð9:22Þ

where bAi are the polytope vertices (see 9.15).

Remark 2 When

diagfW1ðnðk; p þ 1ÞÞ;
W2ðnðk þ 1; pÞÞg ¼ diagfW1ðnðk; pÞÞ;W2ðnðk; pÞÞg ¼ W

and hence niðk; pÞ ¼ fiðk; pÞ; i ¼ 1; . . .; v; poly-quadratic stability reduces to sta-
bility along the pass (Theorem 1.1).

The following result (drawing on the work in [2]) aims to minimize the con-
servativeness present from the use of a sufficient, but not necessary, stability
condition.

Theorem 1.4 A discrete linear repetitive process described by (9.2) and (9.3)
with uncertainty defined by (9.15) is poly-quadratically stable if there exists block-
diagonal matrices Si � 0; i ¼ 1; . . .; v; i:e: Si ¼ diagfSi1; Si2g; and a matrix G
such that

Gþ GT � Si GT bA
T

i
bAiG Sj

" #
� 0 ð9:23Þ

for all i; j ¼ 1; . . .; v:

Proof Assume that (9.23) is feasible for all i; j ¼ 1; . . .; v: Then

Gþ GT � Si � 0

and, since G is full rank and Si � 0;

ðSi � GÞT S�1
i ðSi � GÞ 
 0

or, equivalently,

GTS�1
i G 
 GT þ G� Si

Hence if (9.23) holds

GTS�1
i G GT bAT

i
bAiG Sj

" #
� 0

or equivalently,

GT 0
0 Sj

� �
S�1

i
bAT

i S�1
j

S�1
j
bAi S�1

j

" #
G 0
0 Sj

� �
� 0
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Next, introduce the substitutions Wi ¼ S�1
i and Wj ¼ S�1

j to obtain

Wi
bAT

i Wj

Wj
bAi Wj

" #
� 0

for all i; j ¼ 1; . . .; v: Further, for each i, multiply the corresponding inequalities for
j ¼ 1; . . .; v by fjðk; pÞ and sum over j to obtain

Wi
bA

T

i

Pv
j¼1 fjðk; pÞWj

� �

Pv
j¼1 fjðk; pÞWj

� �
bAi

Pv
j¼1 fjðk; pÞWj

2
4

3
5 � 0

Also
Pv

j¼1 fjðk; pÞWj ¼ Wþ and multiplying the resulting inequalities by niðk; pÞ
for i ¼ 1; . . .; v; and summing over i gives

Pv
i¼1 niðk; pÞWi

Pv
i¼1 niðk; pÞbA

T

i

� �
Wþ

Wþ
Pv

i¼1 niðk; pÞbAi

� �
Wþ

2

4

3

5 � 0

or, equivalently,

W bAT nðk; pÞð ÞWþ
WþbA nðk; pÞð Þ Wþ
� �

� 0 ð9:24Þ

Finally, applying Definition 1.3, followed by an obvious application of the Schur’s
complement formula, to (9.24) gives

W � bAðnðk; pÞÞTWþbAðnðk; pÞÞ � 0 ð9:25Þ

which is equivalent to (9.21) and the proof is complete. h

Remark 3 Recall that the diagonal structure of Si in this last result arises directly
from the stability theory for discrete linear repetitive processes. As noted previ-
ously, this leads to only sufficient conditions and hence some conservativeness can
be present which is, however, lower than if the matrices Gi were also taken as
block-diagonal (these matrices only relate to the corresponding LMI construction).

With the control law (9.10) applied, (9.23) becomes

Gþ GT � Si GTðbAi þ bBiKÞT

ðbAi þ bBiKÞG Sj

� �
� 0 ð9:26Þ

where K is defined in (9.14), and the following result now gives a sufficient
condition for the existence of a poly-quadratically stabilizing control law of the
form (9.10).
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Theorem 1.5 Suppose that a control law of the form (9.10) is applied to a discrete
linear repetitive process described by (9.2) and (9.3) with uncertainty defined by
(9.15). Then the resulting process is poly-quadratically stabilizable if there exist
matrices Si � 0; i ¼ 1; . . .; v; i:e: Si ¼ diagfSi1; Si2g;G; and N (defined by (9.11))
such that

Gþ GT � Si GT bAT
i þ NT bBT

i
bAiGþ bBiN Sj

" #
� 0 ð9:27Þ

for all i; j ¼ 1; . . .; v: If this condition holds then stabilizing K1 and K2 in the
control law are given by (9.10) with

K ¼ NG�1 ð9:28Þ

where K was defined in (9.14).

Proof This result follows immediately from (9.26), on setting KG ¼ N. h

In the next section we consider parameter variable control laws in an attempt to
reduce the level of conservativeness associated with the results so far.

9.5 A Parameter Variable Control Law

To enlarge the admissible uncertainty range for which stabilization is still possible
(and hence reduce conservativeness), this section considers a parameter variable
control law of the form

ukþ1ðpÞ ¼ Kðnðk; pÞÞ
xkþ1ðpÞ
ykðpÞ

� �
¼ ½K1ðnðk; pÞÞ K2ðnðk; pÞÞ�

xkþ1ðpÞ
ykðpÞ

� �

¼
Xv

i¼1

niðk; pÞ Ki1 Ki2½ �
xkþ1ðpÞ
ykðpÞ

� �
ð9:29Þ

over 0� p� a� 1; k� 0 where the designed matrix Kðnðk; pÞÞ contains uncer-
tainty as defined in (9.15). In effect, this control law is composed of the weighted
sum of current pass state feedback and feedforward of the previous pass profile and
we have the following result (which can be interpreted as the generalization to the
repetitive process case of a well known result [2]).

Theorem 1.6 A discrete linear repetitive process described by (9.2) and (9.3)
with uncertainty structure of the form (9.15) is poly-quadratically stable, if there
exist matrices Si � 0; i:e: Si ¼ diagfSi1; Si2g � 0; and Gi; i ¼ 1; . . .v; such that

Gi þ GT
i � Si GT

i
bA

T

i
bAiGi Sj

" #
� 0 ð9:30Þ

for all i; j ¼ 1; . . .; v:
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Proof Assume that (9.30) is feasible for all i; j ¼ 1; . . .; v: Then

Gi þ GT
i � Si � 0

and, since Gi is full rank and Si � 0

ðSi � GÞTS�1
i ðSi � GiÞ 
 0

or, equivalently,

GT
i S�1

i Gi 
 GT
i þ Gi � Si

Hence if (9.30) holds

GT
i S�1

i Gi GT
i
bA

T

i
bAiGi Sj

" #
� 0

or equivalently,

Gi
T 0

0 Sj

� �
S�1

i
bAT

i S�1
j

S�1
j
bAi S�1

j

" #
Gi 0
0 Sj

� �
� 0

Next, introduce the substitutions Wi ¼ S�1
i and Wj ¼ S�1

j to obtain

Wi
bAT

i Wj

Wj
bAi Wj

" #
� 0

for all i; j ¼ 1; . . .; v: Further, for each i; multiply the corresponding inequalities
for j ¼ 1; . . .; v by fjðk; pÞ and sum over j to obtain

Wi
bA

T

i

Pv
j¼1 fjðk; pÞWj

� �

Pv
j¼1 fjðk; pÞWj

� �
bAi

Pv
j¼1 fjðk; pÞWj

2

4

3

5 � 0

Also
Pv

j¼1 fjðk; pÞWj ¼ Wþ and multiplying the resulting inequalities by niðk; pÞ
for i ¼ 1; . . .; v; and summing over i gives

Pv
i¼1 niðk; pÞWi

Pv
i¼1 niðk; pÞbA

T

i

� �
Wþ

Wþ
Pv

i¼1 niðk; pÞbAi

� �
Wþ

2
4

3
5 � 0

or, equivalently,

W bAT nðk; pÞð ÞWþ
WþbA nðk; pÞð Þ Wþ
� �

� 0 ð9:31Þ
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Applying Definition 1.3, followed by an obvious application of the Schur’s
complement formula, to (9.31) now gives

W � bAðnðk; pÞÞTWþbAðnðk; pÞÞ � 0 ð9:32Þ

which is equivalent to (9.21) and the proof is complete. h

Applying the control law (9.29) to (9.30) gives

Gi þ GT
i � Si GT

i ðbAi þ bBiKiÞT

ðbAi þ bBiKiÞGi Sj

" #
� 0 ð9:33Þ

where the matrix Ki; i ¼ 1; . . .; v; is given by

Ki ¼
Ki1 Ki2

Ki1 Ki2

� �
ð9:34Þ

The following result now gives a condition sufficient for the existence of a poly-
quadratically stabilizing control law of the form (9.29) together with a design
algorithm.

Theorem 1.7 Suppose that a control law of the form (9.29) is applied to a discrete
linear repetitive process described by (9.2) with uncertainty of the form (9.15).
Then the resulting process is poly-quadratically stable if there exist block-diag-
onal matrices Si � 0; i:e: Si ¼ diagfSi1; Si2g � 0;Gi; and

Ni ¼
Ni1 Ni2

Ni1 Ni2

� �
ð9:35Þ

i ¼ 1; . . .; v; such that

Gi þ GT
i � Si GT

i
bAT

i þ NT
i
bBT

i
bAiGi þ bBiNi Sj

" #
� 0 ð9:36Þ

for all i; j ¼ 1; . . .; v: If these conditions hold, the vertex matrices Ki1 and Ki2 in the
stabilizing control law of (9.29) are given by

Ki ¼ NiG
�1
i ð9:37Þ

where Ki is defined in (9.34).

Proof This follows immediately from (9.33) on setting KiGi ¼ Ni. h

Theorem 1.7 and (9.29) provides the setting for the construction of the control
law considered to stabilize the process with much wider uncertainty, or variability
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domains, than alternatives. However, the final control law is still not available at
this stage as only the vertex values of the required matrices are known. To complete
the task, we need to know the exact parameters niðk; pÞ; k� 0; 0� p� a� 1, and
i ¼ 1; . . .; v; which can be recovered from the process dynamics by using the
Matlab function ‘‘fmincon’’ (or any equivalent algorithm) to solve the following
problem:

Determine niðk; pÞ 2 Rþ; i ¼ 1; . . .; v such that

Xv

i¼1

niðk; pÞVi ¼ Pðk; pÞ ð9:38Þ

where

Xv

i¼1

niðk; pÞ ¼ 1; niðk; pÞ� 0; k� 0; 0� p� a� 1

and

Pðk; pÞ ¼ Aðk; pÞ;Bðk; pÞ;B0ðk; pÞ;Cðk; pÞ;Dðk; pÞ;D0ðk; pÞf g ð9:39Þ

where Vi denotes the convex domain vertices and Pðk; pÞ the process state–space
model matrix which is assumed to lie in the polytope constructed from them. (This
construction will be explained in detail for the material rolling example considered
in the next section).

Given niðk; pÞ; k� 0; 0� p� a� 1; i ¼ 1; . . .; v; and the vertex matrices of the
control law (9.29) from (9.37), we can complete the design using

Kðnðk; pÞÞ ¼ K1ðnðk; pÞÞ K2ðnðk; pÞÞ½ � ¼
Xv

i¼1

niðk; pÞ Ki1 Ki2½ � ð9:40Þ

9.6 Application to Material Rolling

In this section we illustrate Theorem 1.7 by application to the material rolling
model of Sect. 9.2 when the model parameters k1, k2 are uncertain and the rest of
parameters (i.e. T and M) are constant. Also we take T ¼ 0:2 s;M ¼ 100 kg; and
assume that the model parameters k1 and k2 satisfy

k1 2 ½k1; k1� ¼ ½0:216; 0:984�; k2 2 ½k2; k2� ¼ ½0:72; 3:28� ð9:41Þ

Note first that a control law of the form of Theorem 1.5 can be computed in this
case but requires that k1 and k2 satisfy
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k1 2 ½k1; k1� ¼ ½0:228; 0:978�; k2 2 ½k2; k2� ¼ ½0:76; 3:26�

i.e. this design comes at the price of a more restrictive range for the values of k1

and k2:
The fact that this problem has two variables that can vary means that there are

four uncertainty domain vertices. Also the uncertainty domain for the process
matrices is easily verified as convex with vertices as follows
vertex 1

A ¼ 0:9377 187:5361
�3:116 � 10�4 0:9377

� �
; B ¼ �0:0866

�4:3278 � 10�4

� �
; B0 ¼

0:0144
7:1907 � 10�5

� �

C ¼ 0:9377 187:5361½ �; D ¼ �0:0866; D0 ¼ 0:7836

vertex 2

A ¼ 0:7676 153:5191
�1:162 � 10�3 0:7676

� �
; B ¼ �0:0709

�3:5427 � 10�4

� �
; B0 ¼

0:0536
2:6816 � 10�4

� �

C ¼ 0:7676 153:5191½ �; D ¼ �0:0709; D0 ¼ 0:8229

vertex 3

A ¼ 0:8574 171:481
�7:1297 � 10�4 0:8574

� �
; B ¼ �0:198

�9:9024 � 10�4

� �
; B0 ¼

0:0823
4:1172 � 10�4

� �

C ¼ 0:8574 171:481½ �; D ¼ �0:198; D0 ¼ 0:5049

vertex 4

A ¼ 0:925 185:0033
�3:7492 � 10�4 0:925

� �
; B ¼ �0:0229

�1:143 � 10�4

� �
; B0 ¼ 4:6328 � 10�3

2:32 � 10�5

� �

C ¼ 0:925 185:0033½ �; D ¼ �0:0229; D0 ¼ 0:9428

The parameters k1; k2 vary with k and p and, since they are different on each pass,
we denote them by k1ðk; pÞ and k2ðk; pÞ; respectively. Also they are assumed to lie
in the fixed intervals given by (9.41) as shown in Fig. 9.2.

Theorem 1.7 in this case can provide a variety of possible control laws but it is
very difficult to select the one which will also satisfy the performance specifica-
tions. To overcome this problem, we use the following corollary of Theorem 1.7.

Corollary 1.8 Suppose that a control law of the form (9.29) is applied to a
discrete linear repetitive process described by (9.2) and (9.3) with uncertainty of
the form (9.15). Then the resulting process is poly-quadratically stable if there
exist block-diagonal matrices Si; i:e: Si ¼ diagfSi1; Si2g � 0; and matrices Gi and
Ni; i ¼ 1; . . .; v; (where Ni is defined in (9.35)), such that the following convex
optimization problem has a solution
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maximize F ¼
Pv

i¼1
traceðGiÞ

subject to

Gi þ GT
i � Si GT

i
bAT

i þ NT
i
bBT

i
bAiGi þ bBiNi Sj

" #
� 0

ð9:42Þ

Also we require that the matrices Gi and Si are diagonal for all i ¼ 1; . . .; v: The
control law matrix vertices are obtained as in Theorem 1.7.

For the case considered here, this last result gives the following control law
matrix vertices

K11 ¼ ½3:4741 2166:7�; K12 ¼ 0:0873
K21 ¼ ½4:4876 2166:7�; K22 ¼ 0:1504
K31 ¼ ½2:0452 865:8534�; K32 ¼ 0:0818
K41 ¼ ½10:6 8092:6�; K42 ¼ 0:215

Now we are in a position to develop the procedure by which the variable control
law matrices for a given k and point p are derived. Consider the matrix of (9.39)
for given T ;M; k1ðk; pÞ and k2ðk; pÞ; where Aðk; pÞ; . . .;D0ðk; pÞ denote the system
matrices A; . . .;D0 computed for T ¼ t;M ¼ m, and variable parameters k1 ¼
k1ðk; pÞ and k2 ¼ k2ðk; pÞ from (9.1)–(9.2) at given k; p. Having obtained Pðk; pÞ
for k; p we can now recover from (9.38) (by using an algorithm based on the
Matlab function ‘‘fmincon’’) the underling parameters niðk; pÞ; k� 0; 0� p� a� 1;
and i ¼ 1; . . .; v:Then, since the matrix vertices at ðk; pÞ are known, it is a simple task
to calculate the variable control law matrices at ðk; pÞ using (9.40). Next, we go to
pþ 1 if p\a� 1 with k unchanged or if p ¼ a� 1 we go to k þ 1 and set p ¼ 0; and
so on.

Without control action, the process here is unstable along the pass. Suppose
also that the task is to reduce the thickness of the workpiece by one unit in the case
when a ¼ 25: Then, since the process dynamics are assumed to be linear, we can
take the boundary conditions to be xkþ1ðpÞ ¼ 0; k� 0; and y0ðpÞ ¼ 1; 0� p� 24.

0
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pass to pass

λ1(k,p); number of passes: 25; number of points: 25
range: passes [0, 24]; points: [0, 24]

along the pass 0
5

10
15

20

0

10

20
0

1

2

3

4

pass to pass

λ2(k,p); number of passes: 25; number of points: 25
range: passes [0, 24]; points: [0, 24]

along the pass

(a) (b)

Fig. 9.2 a Values for k1ðk; pÞ; b values for k2ðk; pÞ
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Hence as k increases the sequence of pass profiles should approach zero. This is
confirmed by the plot of Fig. 9.3a and there are two other major issues which need
to be considered. These are the transient behavior in both p and k and the mag-
nitude of the control input signal respectively. If the transient performance is not
acceptable, the only option is to return and attempt to tune the design. For the
second, Fig. 9.3b shows the control input sequence required to apply the control
law in this case. If this is unacceptable, then further development is required and
again this is left as a subject for further work—the result here shows that the
control action is bounded and hence baseline acceptable.

Finally, note that the control action energy required (maximum absolute value
of the control signal) is much lower than that arising when Corollary 1.8 is not
applied. Now, however, more passes must be completed before the control
objectives are met.

9.7 Conclusions

This chapter has focused on the control of discrete linear repetitive processes in the
presence of uncertainty in the state–space model used for control law design. A
review of previous results in this area leads to the conclusion that the design of
practically relevant control laws is possible, but the uncertainty model which has
been used to obtain such results may be restrictive in the sense that there is little
margin for tuning the control law matrices to obtain stability plus desired perfor-
mance. The main objective in the work reported in this chapter is to develop control
laws which vary in both the pass number and along the pass variables. This has been
achieved by allowing the control law matrices to vary with both the pass number and
the along the pass variable. The result is an algorithm for basic selection of the
control law matrices without destroying the static nature of the control law.

(a) (b)

Fig. 9.3 a The process pass profile sequence for the controlled process; b the control input
sequence
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Chapter 10
Unique Full-Rank Solution
of the Sylvester-Observer Equation
and Its Application to State Estimation
in Control Design

Karabi Datta and Mohan Thapa

Abstract Needs to be found, is a classical equation. There has been much study,
both from theoretical and computational view points, on this equation. The results
of existence and uniqueness are well-known and numerically effective algorithms
have been developed in recent years (see, Datta [2]), to compute the solution.

10.1 Introduction

The Sylvester matrix equation

AX � XF ¼ R ð10:1Þ

where A;F and R are given and X needs to be found, is a classical equation. There
has been much study, both from theoretical and computational view points, on this
equation. The results of existence and uniqueness are well-known and numerically
effective algorithms have been developed in recent years (see, Datta [2]), to
compute the solution X. A variation of this equation called the Sylvester-observer
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particular to Sylvester-observer equation.
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Lecture Notes in Electrical Engineering, 80, DOI: 10.1007/978-94-007-0602-6_10,
� Springer Science+Business Media B.V. 2011
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equation (Luenberger [3], Datta [2]) arises in the design of Luenberger observer in
Control Theory. In this variation, the matrix A and partial informations of F and R
are known, the matrix X and the unknown parts of F and R are to be found. The
matrix F is required to have a pre-assigned spectrum and the matrix X must be a
full-rank matrix.

Several computationally viable algorithms have been developed in recent
years for the solution of the Sylvester-observer equation. These includes (i) the
observer-Hessenberg method of Van Dooren [4], (ii) generalization of the Van
Dooran method to the block case by Carvalho and Datta [5], (iii) a new block
algorithm by Carvalho et al. [6], (iv) the SVD-based algorithm by Datta and
Sarkissian [7], (v) the Arnoldi-based method for large-scaled solution by Datta
and Saad [8], Calvetti et al. [9] and a parallel and high performance algorithm by
Bischof et al. [10].

All the above methods implicitly construct a full-rank solution assuming that
such a solution exists. But, no systematic study has been done yet. The purpose of
this paper is to study the existence and uniqueness of a full-rank solution to the
Sylvester-observer equation, when the spectrum F is prescribed in advance. The
results are new and applicable in a computational setting to determine if such a
solution exists, when the matrix A and partial information on F and R are given.

10.2 Full-Rank Solution of the Sylvester Equation

Consider the Sylvester equation

AX � XF ¼ R; ð10:2Þ
where A;F;R are respectively, of order n� n; s� s; and n� s: Let X be a unique
solution of Eq. (10.2); that is, XðAÞ \ XðFÞ ¼ /: The following result on the
existence of a full-rank solution of (10.2) was proved by de Souza and Bhatta-
charyya [11].

Theorem 1 [11] Necessary conditions for the unique solution X of (10.2) to be of
full-rank are that ðA;RÞ is controllable and ðR;FÞ is observable. The condition is
also sufficient if R has rank 1.

A necessary and sufficient condition in the general case was obtained in Datta
et al. [12].

Theorem 2 [12] Let A;F and R be, receptively, the n� n; s� s and n� s
matrices. Then

AX � XF ¼ R ð10:3Þ
has unique a full-rank solution if and only if the matrix
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SkðRÞ ¼ R AR � � �AkR
� �

n;ðkþ1Þs

I a1I � � � akI
0 I � � � ak�1I

..

. ..
. . .

. ..
.

..

. ..
.

I a1I
0 � � � � � � 0 I

0
BBBBB@

1
CCCCCA

ðkþ1Þs;ðkþ1Þs

Fk

..

.

I

0

B@

1

CA

ðkþ1Þs;s

has full-rank s; where 0\ k þ 1� s is the degree of the minimal or the charac-
teristic polynomial of F; and ai’s are the coefficients of the characteristic (mini-
mal) polynomial of F:

Forming the matrix SkðRÞ and checking its rank numerically is a computa-
tionally prohibitive task. Below we now show how these computations can be
more effective and practical by taking advantage of results from control theory and
certain results exploiting the structures of the associated matrices.

it is well known (see, Datta [2]) that a controllable pair ðA;RÞ can be trans-
formed to a controller-Hessenberg form ðH; ~RÞ by an orthogonal similarity, where
H is a block upper-Hessenberg matrix and ~R has the special structure, as given
below. We will assume that ðA;RÞ has been given in that form; that is, A � H, and
R � ~R: thus

A � H ¼

H11 H12 � � � H1p

H21 H22 � � � H2p

..

. . .
. . .

. ..
.

0 Hpp�1 Hpp

0
BBB@

1
CCCA

n�n

;

R ¼ ~R ¼

ðR1Þn1�n1
� � � ð0Þn1�nr

ð0Þn2�n1
� � � ð0Þn2�nr

..

. ..
.

ð0Þnp�n1
ð0Þnp�nr

0

BBB@

1

CCCA

n�s

where r� p; s� n; ðn1 þ n2 þ � � � þ nrÞ ¼ s; ðn1 þ n2 þ � � � þ npÞ ¼ n; and ðHijÞ
is ni � nj where i ¼ 1 : np; j ¼ 1 : np: Let rank ðRÞ ¼ n1: Also, without any
loss of generality, let us assume that the matrix F has the block lower Hessenberg
form:

F ¼

ðF11Þn1�n1
F12 0 � � � ð0Þn1�nr

ðF21Þn1�n2
ðF22Þn2�n2

F23
..
.

� . .
. . .

.
0

..

.
Fr�1;r�1 Frr�1

� � � � � � � � ðFrrÞnr�nr

0
BBBBBBB@

1
CCCCCCCA

s�s

It is easy to see that the qth powers of H and F are given by ðq\pÞ
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Hq ¼ ðHq
ijÞ ¼

HðqÞ11 HðqÞ12 � � � � � � � � � HðqÞ1p

HðqÞ21 � � � � � � � �
..
. . .

. ..
.

HðqÞqþ1;1 � � � � � � � � � � ..
.

0 HðqÞqþ2;2
. .

. . .
.

� � � ..
.

..

.
� � � . .

. . .
. . .

. ..
.

0 � � � HðqÞp;p�q � � � HðqÞp;p�1 HðqÞp;p

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

where HðqÞqþ1;1 ¼ ðHqþ1;q � Hq�q�1 � � �H32H21Þnqþ1;n1
; and

Fq ¼ FðqÞij

� �
¼

FðqÞ11 FðqÞ12 FðqÞ13 � � � FðqÞ1qþ1 0 � � � � � � 0

� FðqÞ22 FðqÞ23 � � � FðqÞ2qþ2
. .

.
� � � 0

..

. . .
. . .

. . .
.

� � � . .
. ..

.

..

. . .
. . .

. ..
. . .

. . .
.

0

..

. . .
. . .

. ..
.

� � � � � � FðqÞr�q;r

..

. . .
. . .

. ..
.

� � � � � � ..
.

..

. . .
. . .

.
� � � . .

. ..
.

..

. . .
. . .

. . .
.

�
� � � � � � � � � � � � � � � � FðqÞrr

0

BBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCA

where Fq
1;qþ1 ¼ ðF12F23 � � �Fqqþ1Þn1;nqþ1

:

In the next theorem, we show that the full-rankness of the unique solution X of
the Sylvester equation

HX � XF ¼ R

can be checked only by knowing powers of certain block matrices of H and F:

Theorem 3 Let

HX � XF ¼ R; ð10:4Þ

where ðH;FÞ and R are as given above. Assume that ðH;RÞ is controllable, ðR;FÞ
is observable, R has full rank n1; and H and F do not have a common eigenvalue.
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Then Eq. (10.4) has a unique full-rank solution if and only if

rank

R1FðkÞ1kþ1 � � � � �

0 H21R1Fk�1
1k

..

.

..

. . .
. ..

.

..

.
Hðk�1Þ

k;1 R1F12 Hðk�1Þ
k;1 R1ðF11 þ a1IÞ

X þHk
k;1R1

0 Hk
kþ1;1R1

0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

n;s

¼ s

ð10:5Þ

where ðk þ 1Þ is the degree of the minimal or the characteristic polynomial of F
and ai’s are the coefficient of the characteristic (minimal) polynomial of F:

Proof Define ~H ¼ ðR; HR; � � �HkRÞ and

~F ¼

I a1I � � � akI

0 . .
. . .

. ..
.

..

. . .
.

a1I

0 � � � 0 I

0
BBBBB@

1
CCCCCA

Fk

Fk�1

..

.

I

0
BBBB@

1
CCCCA

Theorem 3 will then follow from Theorem 2 if we can show that rank
ð~H � ~FÞ ¼ s:

By direct computations, we have

~H ¼

R1 0 � � � H11R1 0 � � � Hk
11R1 0 � � � 0

0 0 � � � H21R1 0 � � � ..
. ..

. ..
.

..

.
� � � � � � � � � � � � � � � ..

. ..
.

..

.
� � � � � � 0 � � � Hk

kþ1;1R1 0 0

..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
.

0 � � � � � � � � � � � � 0 � � � 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

n�ðkþ1Þs
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and

~F ¼

I a1I a2I � � � akI

0 I a1I � � � ak�1I

..

.
� � � � � � � � � � � � � � � ..

.

0 � � � � � � 0 I

0
BBBBB@

1
CCCCCA

ðkþ1Þs;ðkþ1Þs

F1 ð10:6Þ

where

F1 ¼

Fk
11 Fk

12 � � � � � � � � � Fk
1kþ1

� Fk
22 � � � � � � � � � Fk

2kþ1

..

.
� � � � � � � � � � � � ..

.

� � � � � � � � � � � Fk
rr

Fk�1
11 Fk�1

12 � � � � � � � � � 0

� Fk�1
22 � � � � � � � � � Fk�1

2kþ1

..

.
� � � � � � � � � � � � ..

.

� � � � � � � � � � � Fk�1
rr

..

.
� � � � � � � � � � � � ..

.

..

.
� � � � � � � � � � � � ..

.

F11 F12 0 � � � � � � 0

� F22 F23 � � � 0 ..
.

..

.
� � � � � � � � � � � � 0

� � � � � � � � Fr�1r�1 Frr�1

� � � � � � � � � � � Frr

I 0 � � � � � � � � � 0

0 I � � � � � � � � � 0

..

.
� � � � � � � � � � � � ..

.

0 � � � � � � � � � 0 I

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

sðkþ1Þ;s

:

By direct multiplication of the two matrices ~F and ~H and deleting zero rows and
zero columns, we can write
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rankð~H � ~FÞ ¼ rank

R1 H11R1 � � � Hk
11R1

0 H21R1 � � � ..
.

..

. . .
. . .

. ..
.

0 0 . .
.

Hk
kþ1kR1

0 0 � � � 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

n;ðkþ1Þn1

2
666666666664

�

Pk

i¼0
Fk�i

11 ai
Pk�1

i¼0
Fk�i

12 ai � � � a1Fk�1
1k FðkÞ1kþ1

..

.
� � � � � � . .

. ..
.

..

.
� � � � � � . .

. ..
.

..

.
F2

12 þ a1F12 F2
13

..

.

F11 þ a1I F12 0 � � � � � � ..
.

I 0 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

3
77777777777777775

n1ðkþ1Þ;s

ð10:7Þ

The 2nd matrix of Eq. (10.7) after column permutations can be written as

FðkÞ1kþ1 Fk�1
1k þ a1Fk�1

1k � � � � � �
Pk

i¼0
Fk�i

11 ai

0 Fðk�1Þ
1k � � � � � �

Pk�1

i¼0
Fðk�iþ1Þ

11 ai

..

. . .
. . .

.
� � � ..

.

..

. . .
.

F12 F11 þ a1I

0 � � � � � � 0 I

0

BBBBBBBBBBBB@

1

CCCCCCCCCCCCA

ðkþ1Þn1;s

ð10:8Þ

Since rank of a matrix is not altered by multiplication with a permutation matrix,
from above, we then have
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rankð~H; ~FÞ ¼ rank

R1FðkÞ1kþ1 � � � � �

0 H21R1Fk�1
1k

..

.

..

. . .
. ..

.

..

.
Hk�1

k R1F12 Hðk�1Þ
k;1 R1ðF11 þ a1IÞ
þHk

k;1R1

..

. . .
.

0 Hk
kþ1;1R1

..

. ..
.

0 � � � � � � � � � 0

0

BBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCA

ð10:9Þ

The result of Theorem 3 now follows from (10.9).

10.3 Sylvester-Observer Equation

As stated in Introduction that a variation of the Sylvester equation (10.1) known as
the Sylvester-observer equation, arises in control theory in the context of con-
structing Lenenbuger observer. The Sylvester-observer equation has the form:

XA� FX ¼ GC;

where the matrix C is the output matrix of the linear control system:

_xðtÞ ¼ AxðtÞ þ BuðtÞ
y ¼ CxðtÞ

and given in advance, and the matrix X;F and G need to be computed under
certain assumption. In this section we consider the dual of this equation; namely

AX � XF ¼ CG ð10:10Þ

If G is chosen to be G ¼ ½I � � � 0� then Eq. (10.10) becomes

AX � XF ¼ R ¼ ðC; 0; . . .; 0Þ:

Since a necessary condition for the solution X to have full-rank is that ðA;RÞ is
controllable, we can assume that ðA;RÞ has been transformed into a controller-
Hessenberg form ðH; ~RÞ where H ¼ QAQT and ~R ¼ QR have the forms as before.
We therefore, concentrate on finding a full-rank solution of
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H~X � ~XF ¼

R1 0 � � � 0
0 � � � 0
..
. ..

.

0 � � � 0

0
BB@

1
CCA

n�s

¼ ~R; ð10:11Þ

where ~X ¼ QX:

If F is chosen as a block bidiagonal as given below

F ¼

F11 F12 0 � � � 0
..
.

F22 F23
. .

. ..
.

..

.
� � � . .

. . .
. ..

.

..

.
� � � � � � Fk;k Fk;kþ1

0 � � � � � � 0 Fkþ1;kþ1

0
BBBBBB@

1
CCCCCCA

s�s

where Fi;iþ1; i ¼ 1; . . .; k has full rank, and k þ 1 is the degree of the minimal
(characteristic) polynomial of F such that

rank HðkÞkþ1;1R1

� �
þ rank Hðk�1Þ

k;1 R1F12

� �
þ � � �

h

þ rank H21R1Fðk�1Þ
1k

� �
þ rank R1FðkÞ1kþ1

� �i
¼ s;

Then it follows from Theorem 3 that

Theorem 4 The Sylvester Observer equation (10.11)

H~X � ~XF ¼ ~R

has full-rank solution ~X if and only if

rankðHðkÞkþ1;1R1Þ þ rankðHðk�1Þ
k;1 R1F12Þ þ � � �

h

þ rankðH21R1Fk�1
1k Þ þ rankðR1FðkÞ1kþ1Þ

i
¼ s: ð10:12Þ

Derivation of the Result by de Souza and Bhattacharyya. If k ¼ p� 1; i.e.
rankð~RÞ ¼ 1; then the necessary and sufficient condition of de Souza and Bhat-
tacharyya [11], where ~R has rank 1 of (10.11) follows immediately as a special
case of Theorem 4.

Corollary 1 [11] Let ðH; ~RÞ be a controllable pair and rankð~RÞ ¼ 1: Then

HX � XF ¼
1 0 0

0 ..
. ..

.

0 0 0

0
@

1
A ð10:13Þ

has a unique full-rank solution if and only if rank ð~HÞ ¼ s:
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Proof

rankð~H ~FÞ ¼ rank

1 h11 � � � hk
11

0 h21 � � � ..
.

..

.
� � � � � � ..

.

0 � � � 0 hk
kþ1

0
BBBBB@

1
CCCCCA

n;s

1 � � � � � � �
0 1 � � � �
..
.
� � � � � � ..

.

0 � � � � � � 1

0
BBBB@

1
CCCCA

s�s

2
6666664

3
7777775

¼ rankð~HÞ ð10:14Þ

Since ðH; ~RÞ is controllable, there exists a k such that rankð~HÞ ¼ s. Thus by
theorem 3, Eq. (10.13) has a full-rank solution if and only if ðH; ~RÞ is controllable.

h

Corollary 2 If n1 and k are such that n1ðk þ 1Þ ¼ s and rankð~HÞ ¼ s; then Eq.
(10.11) has a unique full-rank solution if and only if ~F is nonsingular.

Proof Proof follows from Eq. (10.9).

Now observe that rank Hk
kþ1;1R1 ¼ rankðHkþ1;k � Hk;k�1 � � �H32H21 � R1Þ ¼

minðnkþ1; n1Þ:
If nkþ1	 n1 for k ¼ 1; . . .; p� 1; then we have the following result. h

Corollary 3 If nkþ1	 n1 ¼ s; k ¼ 1; 2; . . .; p� 1; then there always exists a
unique full-rank solution to the following equation

HX � XF ¼

R1

0
..
.

0

0
BB@

1
CCA ¼ ~R ð10:15Þ

Proof From Theorem 3 we know that X is a unique full-rank solution if and only if
rankð~H; ~FÞ ¼ s:
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In this case,

rankð~H; ~FÞ ¼ rank ð~Hn;ðkþ1Þn1
Þ �

Fk þ a1Fk�1 þ � � � þ akI
Fk�1 þ a1Fk�2 þ � � � þ ak�1I

..

.

I

0
BBB@

1
CCCA

n1ðkþ1Þ;n1

2
66664

3
77775

¼ rank

R1Fk þ ða1I þ Hð1Þ11 ÞR1Fk�1 þ � � � þ
Pk

i¼0
ak�iH

ðiÞ
11

� �
R1

Hð1Þ21 R1Fk�1 þ ða1Hð1Þ21 þ Hð2Þ21 ÞR1Fk�2þ

� � � þ
Pk�1

i¼0
ak�1�iH21

� �
R1

..

.

..

.

Hðk�1Þ
k;1 R1F þ a1Hðk�1Þ

k;1 þ HðkÞk;1

� �
R1

HðkÞkþ1;1R1

0
..
.

0

0

BBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCA

n;n1

ð10:16Þ

where n1 þ n2 þ � � � þ np ¼ n and a0 ¼ 1; 1� k þ 1 is the degree of the charac-

teristic or minimal polynomial of F; and rank ð~HÞ	 s ¼ n1; rank ðHðkÞkþ1;1 � R1Þ ¼
rank ðHkþ1;k � Hk;k�1 � � �H32 � H21 � R1Þ ¼ minðnkþ1; n1Þ:

From (10.16) it is clear that if nkþ1	 n1, then there always exists a unique full-
rank solution. h

10.3.1 Derivation of the Van Dooren Result
on Sylvester-Observer Equation

Van Dooren [4] proposed an algorithm for constructing a full-rank solution of a
Sylvester-observer equation using observer-Hessenberg form.

Using our result of Corollary 3 we will now explain why his algorithm always
yielded a full-rank solution.

Van Dooren considered the Sylvester-observer equation in the form:

XA� FX ¼ GC ð10:17Þ
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Using the observer-Hessenberg form of ðA;CÞ, the Eq. (10.17) reduces to

~XH � F~X ¼ Gð0; . . .;R1Þ ¼ ð0; . . .;R1Þ; ð10:18Þ

where R1 is an upper triangular matrix with full-rank nk;G ¼ ðIÞnk�nk
;H is in block

upper Hessenberg form and F is a block lower triangular form as described below:

H ¼

H11 H12 � � � H1k

H21 H22 � � � H2k

..

. . .
. . .

. ..
.

0 � � � Hkk�1 Hkk

0
BBBB@

1
CCCCA

n�n

and

F ¼

F11 0 � � � � � � 0

F21 F22 0 � � � 0

� � � � F33 � � � 0

..

. ..
. ..

. . .
. ..

.

� � � � � � Frr

0
BBBBBBB@

1
CCCCCCCA

nk�nk

In order to have a full-rank solution X, Van Dooren’s assumption was rank
ðR1Þ ¼ rankðHk;k�1Þ ¼ nk and ni� ni�1 for i ¼ 2; . . .; k: To put Eq. (10.18) in our
setting we first take the transpose of (10.18)

HT ~XT � ~XT

FT
11 FT

21 � � �
0 FT

22 � � �
..
.

0 . .
. ..

.

..

. ..
. . .

.
�

0 0 FT
rr

0
BBBBBB@

1
CCCCCCA
¼

0
..
.

0
RT

1

0
BB@

1
CCA ð10:19Þ

and then multiply both sides by a suitable permutation matrix to obtain the
following:

HT
kk HT

k�1k � � � HT
1k

HT
kk�1 HT

k�1k�1 � � � �
..
. . .

. . .
. ..

.

0 HT
21 HT

11

0

BBBB@

1

CCCCA
~~X

T � ~~X
T

FT
11 FT

21 � � � � �

0 FT
22 FT

23 � ..
.

..

. . .
. . .

. . .
. ..

.

..

.
� � � . .

. . .
. ..

.

0 0 � � � 0 FT
rr

0
BBBBBBBBB@

1
CCCCCCCCCA

nk�nk

¼

~R1

0

..

.

0

0
BBBB@

1
CCCCA

n�nk

ð10:20Þ
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According to the result of Corollary 3, this Eq. (10.20) has a full-rank solution if
and only if nk� n1. Thus in particular if nk ¼ n1, Eq. (10.17) always has a full-rank
solution.

10.4 Algorithm and Numerical Examples

Based on our above discussions, we now give an algorithm for choosing ‘‘k’’ and
the diagonal blocks of F so that the Sylvester observer equation

AX � XF ¼ ðC 0; . . .; 0Þ ð10:21Þ

has a full-rank solution.

Algorithm 1 Constructing a full-rank solution X and F

Input A 2 R
n�n; C 2 R

ðn;n1Þ; s ¼ size of F

Output A full-rank solution X 2 R
n�s and an upper block bi-diagonal matrix Fs;s:

Assumptions ðA;CÞ is controllable, rank ðCÞ ¼ n1:

Step 1 Transform ðA;CÞ to the controller-Hessenberg form ðH; R̂Þ;
where (i) the number of subdiagonal blocks of H ¼ p̂
(ii) Size of diagonal block Hi ¼ ni for i ¼ 1; . . .; ðp̂þ 1Þ;

(iii) R̂ ¼

R1

0
. . .
0

2
664

3
775

ðn;n1Þ

:

Step 2 Form ~R ¼ R̂. . .0
� �

ðn;sÞ
Step 3 Compute k :

set ŝ ¼ rankðR1Þ ¼ n1

if ŝ ¼ s then k ¼ 0; stop
for j ¼ 1 to p̂
sj ¼ minðnjþ1; n1Þ
ŝ ¼ ŝþ sj

If ŝ	 s; then k ¼ j; stop
end

Step 4 Construct the upper bidiagonal matrix F as described in Sect. 10.3 having
ðk þ 1Þ diagonal blocks such that the degree of the minimal (character-
istic) polynomial of F is k þ 1:

Step 5 Solve HY � YF ¼ ~R using a standard Sylvester equation solver such as
MATLAB function LYAP, based on the well-known Hessenberg-Schur
algorithm of Golub et al. [13].

Step 6 Construct X ¼ QY ; where Q is the orthogonal matrix used in Step 1 to
transform (A, C) to ðH; R̂Þ
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10.4.1 An Illustrative Numerical Example

We take illustrate our algorithm by taking a random matrix of order 20� 20 and C
a random matrix of order 20� 3; s ¼ 9

Step 1

H ¼

H11 H12 � � � H19

H21 H22 � � � � � �
0 . .

. . .
.

H87 H88

2
6664

3
7775

where block size of ðHiþ1;iÞ ¼ ð3; 3Þ; i ¼ 1; 6; block size Hð8; 7Þ ¼
ð2; 3Þ and the number of subdiagonal blocks of H ¼ p̂ ¼ 7:

Step 2 ~R ¼ R1 0
0 0

� �

20�9
where

R1 ¼
1:3064 �0:2114 �0:0485

0 �2:9505 �2:4689
0 0 �2:0061

0
@

1
A

Step 3 It is easy to see when k ¼ 2; sj ¼ 9 ¼ s:
Step 4 Choose F with degree of minimal polynomial ¼ 3

F ¼
2I I 0
0 3I I
0 0 4I

2
4

3
5

9�9

where k ¼ 2; 3; 4 are not the eigenvalues of H:
Step 5 Solve for X : HY � YF ¼ ~R: Verify rankðYÞ ¼ 9:

10.4.2 Results on Numerical Experiment

We now present results on our numerical experiment on a Benchmark Example
taken from Higham [14]. Here A is a pentadiagonal Toeplitz matrix, C is randomly
chosen and the eigenvalues of F are chosen such that they are disjoint from those
of A: Define Residual ¼ jjHY � YF � ~Rjj2:

Example 1 Pentadiagonal Toeplitz matrix (n = 100)

Rankð~RÞ s ¼ n� n1 Deg of minimal poly of F Rank(Y) Residual

13 87 7 87 2.466913e-014
14 86 7 86 1.740644e-014
15 85 6 85 3.041122e-014
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Example 2 Pentadiagonal Toeplitz matrix (n = 300)

Example 3 Pentadiagonal Toeplitz matrix (n = 500)

10.5 Conclusion

A necessary condition for the existence of a full-rank solution to a Sylvester
equation, and a necessary and sufficient condition when the right hand side matrix
is a rank one matrix, were known for long. However, the characterization of
full-rank solution in case the right hand matrix has a arbitrary rank, was an open
problem for a long time. In 1997 it was settled by Datta, Hong and Lee [15].
Unfortunately, that condition turned out to be of mostly theoretical interest and is
not readily applicable in a practical computational setting.

On the other hand, a variation of the Sylvester equation, called the Sylvester-
observer equation, AX � XF ¼ CG; arises in practical applications in the context
of designing Luenberger observer in control theory, where it is crucial that the
matrix X has full-rank.

A criterion for choosing the matrix F; based on the controller-Hessenberg
reduction of ðA;CÞ; which will guarantee that the solution matrix X has full-rank,
is presented in this paper and an associated algorithm is described.

It is hoped that these results will be of some practical value to the control
theorists and engineers.
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Chapter 11
On Symmetric and Skew-Symmetric
Solutions to a Procrustes Problem

Yuan-Bei Deng and Daniel Boley

Abstract Using the projection theorem in a Hilbert space, the quotient singular
value decomposition (QSVD) and the canonical correlation decomposition (CCD)
in matrix theory for efficient tools, we obtained the explicit analytical expressions
of the optimal approximation solutions for the symmetric and skew-symmetric
least-squares problems of the linear matrix equation AXB ¼ C. This can lead to
new algorithms to solve such problems.

11.1 Introduction

Certain least-squares problems of linear matrix equations are called Procrustes
problems [1, 13]. The unconstrained and constrained least squares problems have
been of interest for many applications, including particle physics and geology,
inverse Sturm–Liouville problem [11], inverse problems of vibration theory [6],
control theory, digital image and signal processing, photogrammetry, finite ele-
ments, and multidimensional approximation [8]. Penrose [2, 21] first considered
the linear matrix equation

AX ¼ B ð11:1Þ
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and obtained its general solution and least-squares solution by making use of the
Moore–Penrose generalized inverse, then Sun [22] obtained the least-squares
solution and the related optimal approximation solution of Eq. 11.1 when X is a
real matrix. The least-squares problems of Eq. 11.1 were discussed in 1988 by
Higham [13] and Sun [23] when the solution matrix X is constrained to be a real
symmetric matrix, and Sun also discussed the related symmetric optimal
approximation problem of Eq. 11.1 in [23]. This work was further extended by
Andersson and Elfving [1]. For more information about the linear matrix equa-
tions, see e.g. [12, 15, 16, 18].

In this paper, the least-squares problems

min
X2Q
kAXB� CkF ; ð11:2Þ

with Q symmetric or skew-symmetric cone or possibly the real matrix space, and the
related optimal approximation problems are considered. As it can be seen in the
following discussions, we can make sure that the least-squares problem (11.2)
always has a solution over the symmetric or skew-symmetric cone. Obviously if
the equation AXB ¼ C is consistent, then the least-squares problem (11.2) and the
equation AXB ¼ C have the same solution set. The general expressions for the
symmetric solution of the equation AXB ¼ C were obtained by using the generalized
singular value decomposition of matrices (GSVD) by Chu [4] in 1989 and Hua [5] in
1990 respectively. Fausett and Fulton [8] and Zha [25] considered the least-squares
problems (11.2) in the real matrix space, while the symmetric and the skew-sym-
metric least-squares solutions of (11.2) have been derived by Deng et al. [7].
Liao et al. [17] used the projection method first for finding the best approximate
solutions for the matrix equation AXBþ CYD ¼ E. But it remains unsolved about
the optimal approximation solutions for the symmetric and skew-symmetric Pro-
crustes problems of this equation. Therefore in the following, we will consider the
optimal approximation solutions of the constrained least squares problems related to
(11.2), we obtain the explicit analytical expressions of the optimal approximation
solutions for the symmetric and skew-symmetric least-squares problems of the form
(11.2). Of course, when the least-squares problem (11.2) has a unique solution, then
there is no need to discuss the related optimal approximation problems.

In this paper we always suppose that Rm�n is the set of all m� n real matrices,
SRn�n; ARn�n and ORn�n are the sets of all symmetric, skew-symmetric and
orthogonal matrices in Rn�n, respectively, A � B represents the Hadamard product
of A and B (cf. [14]), and kYkF denotes the Frobenius norm of a real matrix Y ,
defined as

kYk2
F ¼ hY ; Yi ¼

X

i;j

y2
ij;

here the inner product is given by hA;Bi ¼ traceðATBÞ, and Rm�n becomes a
Hilbert space with the inner product.

202 Y.-B. Deng and D. Boley



The specific problems treated in this paper are stated as follows.

Problem I Given matrices A 2 Rm�n, B 2 Rn�p, C 2 Rm�p and Xf 2 Rn�n, let

SE ¼ fXjX 2 SRn�n; kAXB� CkF ¼ ming: ð11:3Þ

Then find Xe 2 SE, such that

kXe � Xf kF ¼ min
X2SE

kX � Xf kF : ð11:4Þ

Problem II Given matrices A 2 Rm�n, B 2 Rn�p, C 2 Rm�p and Xf 2 Rn�n, let

SA ¼ fXjX 2 ARn�n; kAXB� CkF ¼ ming: ð11:5Þ

Then find Xa 2 SA, such that

kXa � XfkF ¼ min
X2SA

kX � Xf kF : ð11:6Þ

We first introduce some results about the quotient singular value decomposition
(QSVD) and the canonical correlation decomposition (CCD) of a pair of matrices,
and the projection theorem in a Hilbert space, which are essential tools for the
problems to be discussed, and then give a mechanical model as the practical
background of the above mentioned problems.

QSVD Theorem [3] Let A 2 Rm�n; B 2 Rn�p. Then there exist orthogonal
matrices U 2 ORm�m;V 2 ORp�p and a nonsingular matrix Y 2 Rn�n such that

A ¼ UR1Y�1; BT ¼ VR2Y�1; ð11:7Þ

where

R1 ¼
Ir0 0 0 0
0 S 0 0
0 0 0 0

0
@

1
A

r0 s0 t0 n�k0;

r0

s0

m�r0�s0
ð11:8Þ

R2 ¼
0 0 0 0
0 Is0 0 0
0 0 It0 0

0

@

1

A

r0 s0 t0 n�k0;

r0

s0

t0
ð11:9Þ

with

k0 ¼ rankðAT ;BÞ; s0 ¼ rankðAÞ þ rankðBÞ � k0;

r0 ¼ k0 � rankðBÞ; S ¼ diagðr1; . . .; rs0 Þ;
t0 ¼ k0 � rankðAÞ; ri [ 0 ði ¼ 1; . . .; s0Þ:

9
>=

>;
ð11:10Þ
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When A and BT are of full column rank, i.e. rðBÞ ¼ rðAÞ ¼ n, then r0 ¼ 0; s0 ¼ n;
k0 ¼ n, and

R1 ¼
S
0

� �

n

n

m�n
; R2 ¼

0
Is0

� �

n

p�n

n
ð11:11Þ

The QSVD as given above differs from the GSVD of ðA;BTÞ only in the way the
second block column of (11.8) and (11.9) are scaled. The diagonal matrices S in
(11.8) and identity matrix Is0 in (11.9) are scaled in the GSVD to be diagonal matrices
eS and eC such that eS2 þ eC2 ¼ I, and the Y is adjusted accordingly. This particular
scaling simplifies some of the later formulas in this paper. See details in [9, 20].

The canonical correlations decomposition of the matrix pair ðAT ;BÞ is given by
the following theorem.

CCD Theorem [10] Let A 2 Rm�n;B 2 Rn�p, and assume that g ¼ rankðAÞ;
h ¼ rankðBÞ, g� h. Then there exists an orthogonal matrix Q 2 ORn�n and
nonsingular matrices XA 2 Rm�m; XB 2 Rp�p such that

AT ¼ Q RA; 0½ �X�1
A ; B ¼ Q RB; 0½ �X�1

B ; ð11:12Þ

where RA 2 Rn�g and RB 2 Rn�h are of the forms:

RA ¼

Ii 0 0
0 Kj 0
0 0 0
0 0 0
0 Dj 0
0 0 It

0
BBBBBB@

1
CCCCCCA

i j t

i

j

t

n�g�j�t

j

t

; RB ¼
Ih

0

� �

h

h

n�h
; ð11:13Þ

with iþ jþ t ¼ g, RA having partitioned row dimensions i; j; t; n� g� j� t; j; t,
and RB having partitioned row dimensions h; n� h, and

Kj ¼ diagðkiþ1; . . .; kiþjÞ; 1 [ kiþ1� � � � � kiþj [ 0;

Dj ¼ diagðdiþ1; . . .; diþjÞ; 0\diþ1� � � � � diþj\1;

k2
iþ1 þ d2

iþ1 ¼ 1; . . .; k2
iþj þ d2

iþj ¼ 1; i:e:;K2
j þ D2

j ¼ I:

Here,

i ¼ rankðAÞ þ rankðBÞ � rank½AT ;B�;
j ¼ rank½AT ;B� þ rankðABÞ � rankðAÞ � rankðBÞ;
t ¼ rankðAÞ � rankðABÞ:
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Notice that the QSVD and the CCD are different. In QSVD, the matrix pair A
and BT have the same column dimensions, the right nonsingular matrices are the
same Y in (11.7), the left orthogonal matrices are U 2 ORm�m and V 2 ORp�p;
while in CCD, the matrix pair AT and B have same row dimensions, the right
nonsingular matrices are X�1

A and X�1
B in (11.12), the left orthogonal matrices are

the same Q.

The projection theorem in a Hilbert space is also important for the problems to
be solved.

Lemma 1 [19, Theorem 5.14.4, p. 286]. LetH be a Hilbert space, and letM be a
closed linear subspace of H. Let x0 2 H and define

d ¼ inffkx0 � yk : y 2Mg:

Then there is one (and only one) y0 2M such that

kx0 � y0k ¼ d:

Moreover, x0 � y0?M, that is ðx0 � y0; yÞ ¼ 0 for all y 2M. Furthermore, y0 is
the only point in M such that x0 � y0?M:

11.2 The Solution of Problem I

In this section, the explicit expression for the solution of Problem I is derived. Our
approach is based on the projection theorem in a Hilbert space, and also based on
QSVD and CCD of matrices. Specifically, it can be essentially divided into three
parts. First, we characterize the symmetric solutions X0 of the least-squares
problem (11.2) by using the QSVD; then by utilizing the general form of the
solution X0 and the projection theorem, we transform the least-squares problem
into a equation problem; and finally, we find the optimal approximate solution of
the matrix equation by making use of CCD.

Without loss of generality, we suppose that rankðAÞ� rankðBÞ. Instead of
considering the solution of Problem I directly, we will find a matrix C0, and then
transform Problem I into the following equivalent problem.

Problem I0 Given matrices A 2 Rm�n, B 2 Rn�p, C0 2 Rm�p and Xf 2 Rn�n, let

SE0 ¼ fXjX 2 SRn�n;AXB ¼ C0g: ð11:14Þ

Then find Xe 2 SE0 , such that

kXe � XfkF ¼ min
X2SE0

kX � Xf kF : ð11:15Þ

We use the projection theorem on Rm�p to prove the two problems are
equivalent in the following.
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Theorem 1 Given A 2 Rm�n;B 2 Rn�p;C 2 Rm�p, let X0 be any solution of (11.2)
with Q the symmetric cone, and define

C0 ¼ AX0B; ð11:16Þ

then the matrix equation

AXB ¼ C0; ð11:17Þ

is consistent in SRn�n, and the symmetric solution set SE0 of the matrix equation
(11.17) is the same as the symmetric solution set SE of the least-squares problem
(11.2).

Proof Let

L ¼ fZjZ ¼ AXB; X 2 SRn�ng: ð11:18Þ

Then L is obviously a linear subspace of Rm�p. Because X0 is a symmetric solution
of the least-squares problem (11.2), from (11.16) we see that C0 2 L and

kC0 � CkF ¼ kAX0B� CkF

¼ min
X2SRn�n

kAXB� CkF

¼ min
Z2L
kZ � CkF:

Then by Lemma 1 we have

ðC0 � CÞ?L or ðC0 � CÞ 2 L?:

Next for all X 2 SRn�n; AXB� C0 2 L. It then follows that

kAXB� Ck2
F ¼ kðAXB� C0Þ þ ðC0 � CÞk2

F

¼ kAXB� C0k2
F þ kC0 � Ck2

F :

Hence, SE ¼ SE0 , and the conclusion of the theorem is true. h

Now suppose A 2 Rm�n;B 2 Rn�p and the matrix pair ðA;BTÞ has the QSVD
(11.7), and partition UTCV into the following block matrix:

UTCV ¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

0
@

1
A

l0 s0 r0

r0

s0

m�r0�s0
; ð11:19Þ

where l0 ¼ pþ r0 � k0, with r0; k0 defined as in (11.10). Then the expression of C0

will be shown in the following theorem.

Theorem 2 Let A;B;C be given in Problem I, the matrix pair ðA;BTÞ have the
QSVD (11.7), and UTCV be partitioned by (11.19), then for any symmetric
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solution X0 of the least-squares problem (11.2), the matrix C0 determined by
(11.16) can be expressed by the following form:

C0 ¼ UC�VT ; C� ¼
0 C12 C13

0 SX̂22 C23

0 0 0

0

@

1

A

l0 s0 t0

r0

s0

m�r0�s0
; ð11:20Þ

where

X̂22 ¼ / � ðCT
22Sþ SC22Þ;

/ ¼ ðuklÞ 2 SRs0�s0 ; ukl ¼
1

r2
k þ r2

l

; 1� k; l� s0: ð11:21Þ

Proof From Theorem 2.1 in [7] we know that the symmetric solution of the least-
squares problem (11.2) can be obtained by using of the QSVD of matrix pair
ðA;BTÞ and the general form of the solution is

X0 ¼ Y

X011 C12 C13 X014
CT

12 X̂22 S�1C23 X024

CT
13 ðS�1C23ÞT X033 X034

X0T14 X0T24 X0T34 X044

2

664

3

775YT ; ð11:22Þ

where X̂22 is given by (11.21) and X011 2 SRr0�r0 ; X033 2 SRt0�t0 ; X044 2
SRðn�k0Þ�ðn�k0Þ; X014 2Rr0�ðn�k0Þ; X024 2Rs0�ðn�k0Þ; X034 2Rt0�ðn�k0Þ are arbitrary matrix
blocks.

Substituting (11.7), (11.22) into (11.16), we can easily obtain (11.20). h

Evidently, (11.20) shows that the matrix C0 in Theorem 2.2 is dependent only
on the matrices A;B and C, but is independent of the symmetric solution X of the
least-squares problem (11.2). Since C0 is known, from Theorem 2.1 we know that
Problem I is equivalent to Problem I0. In Problem I0, since SE0 6¼ ;, we can derive
the general expression of the elements of SE0 in the following theorem. In this
theorem, A 2 Rm�n; B 2 Rn�p are given, while C0 is expressed by (11.20), and
assume that g ¼ rankðAÞ; h ¼ rankðBÞ, the matrix pair ðAT ;BÞ has CCD (11.12).

We discuss Problem I in two cases.

Case I g ¼ h. Suppose X 2 SE0 , then partition the symmetric matrix X� 	 QTXQ
into the block matrix,

X� ¼ ðXklÞ6�6; ð11:23Þ

with the row dimensions (and the related column dimensions) of blocks are
i; j; t; n� g� j� t; j; t respectively, and Xkl ¼ XT

lk; k; l ¼ 1; 2; . . .; 6. Let E ¼
XT

AC0XB and also partition E into block matrix,

E ¼ ðEklÞ4�4; ð11:24Þ
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with the row dimensions of blocks are i; j; t;m� g and the column dimensions of
blocks are i; j; t; p� g respectively.

Theorem 3 In Problem I0, the general form of the elements of SE0 can be
expressed as

X ¼ QX�QT ¼ Q

E11 E12 E13 X14 Xð0ÞT51 ET
31

ET
12 X22 X23 X24 Xð0ÞT52 ET

32

ET
13 XT

23 X33 X34 Xð0ÞT53 ET
33

XT
14 XT

24 XT
34 X44 X45 X46

Xð0Þ51 Xð0Þ52 Xð0Þ53 XT
45 X55 X56

E31 E32 E33 XT
46 XT

56 X66

0

BBBBBBB@

1

CCCCCCCA

QT ð11:25Þ

where Xkk ¼ XT
kk; 2� k� 6, X14; X23; X24; X34; X45; X46 and X56 are arbitrary

matrices with the associated sizes, and Xð0Þ51 ¼ D�1
j ðE21 � KjET

12Þ;X
ð0Þ
52 ¼

D�1
j ðE22 � KjX22Þ;Xð0Þ53 ¼ D�1

j ðE23 � KjX23Þ.

Proof Suppose X 2 SE0 , then

AXB ¼ C0: ð11:26Þ

Substitute (11.12) into (11.26) to obtain

RT
A

0

� �
X�ðRB; 0Þ ¼ E; ð11:27Þ

then substitute (11.13), (11.23) and (11.24) into (11.27) to obtain

X11 X12 X13 0
KjX21 þ DjX51 KjX22 þ DjX52 KjX23 þ DjX53 0

X61 X62 X63 0
0 0 0 0

0

BB@

1

CCA ¼ ðEklÞ4�4: ð11:28Þ

Because the matrix equation (11.26) is consistent, therefore we can obtain some Xij

from (11.28) directly. Comparing with both sides of (11.28), the expression
(11.25) can be derived according to the symmetric property of X�. h

The following lemmas are needed for the main results.

Lemma 2 [24]. For given J1; J2; J3 and J4 2 Rm�n,

Sa ¼ diagða1; . . .; amÞ[ 0; Sb ¼ diagðb1; . . .; bmÞ[ 0;

Sc ¼ diagðc1; . . .; cmÞ[ 0; Sd ¼ diagðd1; . . .; dmÞ[ 0;

there exists a unique W 2 Rm�n, such that

kSaW � J1k2
F þ kSbW � J2k2

F þ kScW � J3k2
F þ kSdW � J4k2

F ¼ min

and W can be expressed as (where � denotes the Hadamard product)
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W ¼ P � ðSaJ1 þ SbJ2 þ ScJ3 þ SdJ4Þ;

where

P ¼ ðpklÞ 2 Rm�n; pkl ¼ 1=ða2
k þ b2

k þ c2
k þ d2

k Þ; 1� k�m; 1� l� n:

Lemma 3 For given J1; J2 and J3 2 Rs�s, Sa ¼ diagða1; . . .; asÞ[ 0, Sb ¼
diagðb1; . . .; bsÞ[ 0, Sc ¼ diagðc1; . . .; csÞ[ 0, there exists a unique symmetric
matrix W 2 SRs�s, such that

l 	 kSaW � J1k2
F þ kSbW � J2k2

F þ kScW � J3k2
F ¼ min;

and W can be expressed as

W ¼ w � ðSaJ1 þ JT
1 Sa þ SbJ2 þ JT

2 Sb þ ScJ3 þ JT
3 ScÞ; ð11:29Þ

where

w ¼ ð/klÞ 2 Rs�s; /kl ¼ 1=ða2
k þ a2

l þ b2
k þ b2

l þ c2
k þ c2

l Þ; 1� k; l� s:

Proof For W 2 SRs�s, the property wkl ¼ wlkð1� k; l� sÞ holds, and

l ¼
Xs

k¼1

½ðakwkk � J1kkÞ2 þ ðbkwkk � J2kkÞ2 þ ðckwkk � J3kkÞ2�

þ
X

1� k\l� s

½ðakwkl � J1klÞ2 þ ðalwkl � J1lkÞ2 þ ðbkwkl � J2klÞ2

þ ðblwkl � J2lkÞ2 þ ðckwkl � J3klÞ2 þ ðclwkl � J3lkÞ2�:

The function l is a continuous and differentiable quadratic convex function
of 1

2sðsþ 1Þ variables wkl, hence l obtains its minimum value at fwklg when
ol

owkl
¼ 0, i.e.,

wkl ¼
akJ1kl þ alJ1lk þ bkJ2kl þ blJ2lk þ ckJ3kl þ clJ3lk

a2
k þ a2

l þ b2
k þ b2

l þ c2
k þ c2

l

; 1� k� l� s:

Therefore W can be expressed by (11.29). h

Now we state the main theorem, here we still suppose that rankðAÞ ¼ rankðBÞ.

Theorem 4 Let matrices A;B;C and Xf be given in Problem I, suppose
rankðAÞ ¼ rankðBÞ, partition the matrix QTXf Q into block matrix

QTXf Q ¼ ðXðf Þkl Þ6�6; ð11:30Þ

with the same row and column dimensions as X� of (11.23). Then there is a unique
solution Xe in Problem I and Xe can be expressed as
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Xe ¼ Q

E11 E12 E13 fXðf Þ14 g Xð0ÞT51 ET
31

ET
12

�X22 �X23 fXðf Þ24 g �Xð0ÞT52 ET
32

ET
13

�XT
23 fXðf Þ33 g fX

ðf Þ
34 g �Xð0ÞT53 ET

33

fXðf Þ41 g fXðf Þ42 g fXðf Þ43 g fX
ðf Þ
44 g fXðf Þ45 g fXðf Þ46 g

Xð0Þ51
�Xð0Þ52

�Xð0Þ53 fXðf Þ54 g fXðf Þ55 g fXðf Þ56 g
E31 E32 E33 fXðf Þ64 g fXðf Þ65 g fXðf Þ66

0

BBBBBBBB@

1

CCCCCCCCA

QT ð11:31Þ

where (using the notation fXg to denote the symmetric part of X):

fXðf Þkl g 	
1
2
ðXðf Þkl þ Xðf ÞTlk Þ; ð11:32Þ

�X22 ¼ �W � ½Xðf Þ22 þ Xðf ÞT22 þ D�1
j KjðD�1

j E22 � Xðf ÞT25 Þ

þ ðD�1
j E22 � Xðf ÞT25 Þ

TKjD
�1
j þ D�1

j KjðD�1
j E22 � Xðf Þ52 Þ

þ ðD�1
j E22 � Xðf Þ52 Þ

TKjD
�1
j �; ð11:33Þ

�W ¼ ðwklÞ 2 Rj�j; wkl ¼
1

2 1þ kiþk

diþk

� �2
þ kiþl

diþl

� �2
� �; 1� k; l� j;

�X23 ¼ G � Xðf Þ23 þ Xðf ÞT32 þ D�1
j KjðD�1

j E23 � Xðf ÞT35 Þ þ D�1
j KjðD�1

j E23 � Xðf Þ53 Þ
h i

;

ð11:34Þ

G ¼ ðgklÞ 2 Ri�t; gkl ¼
1
2
d2

iþk; 1� k; � i; 1� l� t;

and

�Xð0Þ52 ¼ D�1
j ðE22 � Kj �X22Þ; �Xð0Þ53 ¼ D�1

j ðE23 � Kj �X23Þ:

Proof Suppose X 2 SE ¼ SE0 , by using (11.25) and (11.30), we have

kX � Xf k2
F ¼ kX� � QTXf Qk2

F

¼ ðkX33 � Xðf Þ33 k
2
FÞ þ ðkX44 � Xðf Þ44 k

2
FÞ þ ðkX55 � Xðf Þ55 k

2
FÞ

þ ðkX66 � Xðf Þ66 k
2
FÞ þ ðkX14 � Xðf Þ14 k

2
F þ kXT

14 � Xðf Þ41 k
2
FÞ

þ ðkX24 � Xðf Þ24 k
2
F þ kXT

24 � Xðf Þ42 k
2
FÞ þ ðkX34 � Xðf Þ34 k

2
F

þ kXT
34 � Xðf Þ43 k

2
FÞ þ ðkX45 � Xðf Þ45 k

2
F þ kXT

45 � Xðf Þ54 k
2
FÞ

þ ðkX46 � Xðf Þ46 k
2
F þ kXT

46 � Xðf Þ64 k
2
FÞ þ ðkX56 � Xðf Þ56 k

2
F

þ kXT
56 � Xðf Þ65 k

2
FÞ þ ðkX22 � Xðf Þ22 k

2
F
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þ kðD�1
j ðE22 � KjX22ÞÞT � Xðf Þ25 k

2
F

þ kD�1
j ðE22 � KjX22Þ � Xðf Þ52 k

2
FÞ þ ðkX23 � Xðf Þ23 k

2
F

þ kXT
23 � Xðf Þ32 k

2
F þ kðD�1

j ðE23 � KjX23ÞÞT � Xðf Þ35 k
2
F

þ kD�1
j ðE23 � KjX23Þ � Xðf Þ53 k

2
FÞ þ a0; ð11:35Þ

where a0 is a constant.

According to (11.35), kX � Xf k2
F ¼ min if and only if each of the brackets in

(11.35) takes minimum. Notice that Xkk ¼ XT
kk; k ¼ 3; 4; 5; 6 and by making use of

Lemmas 2 and 3, the results of this theorem can be derived easily. h

Case II In the case of g [ h, we first partition the symmetric matrix X� 	 QTXQ
into 8� 8 block matrix, X� ¼ ðXklÞ8�8; with the row dimensions (and the related
column dimensions) of blocks are i; j; t1 ¼ h� i� j; t2 ¼ g� h; n� g� j� t1 �
t2; j; t1; t2 respectively, and Xkl ¼ XT

lk; k; l ¼ 1; 2; . . .; 8 and let E ¼ XT
AC0XB, which

is partitioned into 5� 4 block matrix, E ¼ ðEklÞ5�4; with the row dimensions of
blocks are i; j; t1; t2;m� g and the column dimensions of blocks are i; j; t1; p� h
respectively, then by the similar discussion processes, we can obtain the similar
results of Theorems 3 and 4, therefore we omit the processes.

According to Theorem 2.4, we can obtain an algorithm for finding the solution
Xe of Problem I when g ¼ h.

Algorithm 1

1. Input A;B;C and Xf .
2. Make QSVD of matrix pair ðA;BTÞ by (11.7) and partition the matrix UTCV ¼
fCklg3�3 by (11.19).

3. Compute the matrix C0 by (11.20).
4. Make CCD of the matrix pair ðAT ;BÞ by (11.12) and partition the matrix

X� ¼ ðXklÞ6�6 and E ¼ ðEklÞ4�4 by (11.23) and (11.24) respectively.

5. Compute the matrix blocks fXðf Þkl g, �X22 and �X23 by (11.32), (11.33) and (11.34)
respectively.

6. Compute the solution Xe by (11.31).

11.3 The Solution of Problem II

The process to solve the Problem II is similar to the process to solve the Problem I.
Therefore we only present the main steps and main results when g 	 rankðAÞ ¼
rankðBÞ 	 h, while the proofs are omitted.

The first step is to transform Problem II into the following equivalent problem.
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Problem II0 Given matrices A 2 Rm�n;B 2 Rn�p;Ca 2 Rm�p and Xf 2 Rn�n, let

SA0 ¼ fXjX 2 ARn�n; AXB ¼ Cag ð11:36Þ

Then find Xa 2 SA0 , such that

kXa � Xf kF ¼ min
X2SA0

kX � XfkF : ð11:37Þ

Theorem 5 Given A 2 Rm�n;B 2 Rn�p;C 2 Rm�p, let Xs be any solution of (11.2)
with Q the skew-symmetric cone, and define

Ca ¼ AXsB; ð11:38Þ

then the matrix equation

AXB ¼ Ca; ð11:39Þ

is consistent in ARn�n, and the skew-symmetric solution set SA0 of the matrix
equation (11.39) is the same as the skew-symmetric solution set SA of the the least-
squares problem (11.2).

The second step is to find the expression of Ca by using QSVD theorem.

Theorem 6 Let A;B;C be given in Problem II, the matrix pair ðA;BTÞ has the
QSVD (11.7), and UTCV have partition (11.19), then for any skew-symmetric
solutions Xs of the least-squares problem (11.2), the matrix Ca determined by
(11.38) can be expressed by the following form:

Ca ¼ UC�V
T ; C� ¼

0 C12 C13

0 SX̂0 C23

0 0 0

0
@

1
A

ðpþr0�k0Þ s0 t0

r0

s0

m�r0�s0
; ð11:40Þ

where

X̂0 ¼ /̂ � ðSC22 � CT
22SÞ;

/̂ ¼ ðûklÞ 2 SRs0�s0 ; ûkl ¼
1

r2
k þ r2

l

; 1� k; l� s0:
ð11:41Þ

Now suppose X 2 SA0 , then partition the skew-symmetric matrix X� 	 QTXQ
into block matrix,

X� ¼ ðXklÞ6�6; ð11:42Þ

with the row dimensions (and the related column dimensions) of blocks
are i; j; t; n� g� j� t; j; t respectively, and Xkl ¼ �XT

lk; k; l ¼ 1; 2; . . .; 6. Let
F ¼ XT

ACaXB and also partition F into block matrix,

212 Y.-B. Deng and D. Boley



F ¼ ðFklÞ4�4; ð11:43Þ

with the row dimensions of blocks are i; j; t;m� g and the column dimensions of
blocks are i; j; t; p� g respectively.

The next step is to present the general form of the elements of SA0 by using
CCD theorem.

Theorem 7 In Problem II0, the general form of X 2 SA0 can be expressed as

X ¼ Q

F11 F12 F13 X14 �Y ð0ÞT51 �FT
31

�FT
12 X22 X23 X24 �Y ð0ÞT52 �FT

32

�FT
13 �XT

23 X33 X34 �Y ð0ÞT53 �FT
33

�XT
14 �XT

24 �XT
34 X44 X45 X46

Y ð0Þ51 Yð0Þ52 Yð0Þ53 �XT
45 X55 X56

F31 F32 F33 �XT
46 �XT

56 X66

0

BBBBBBB@

1

CCCCCCCA

QT ð11:44Þ

where Xkk ¼ �XT
kk; 2� k� 6, X14;X23;X24;X34;X45;X46 and X56 are arbitrary

matrices with the associated sizes, and Y ð0Þ51 ¼ D�1
j ðF21 þ KjFT

12Þ; Y
ð0Þ
52 ¼ D�1

j

ðF22 � KjX22Þ; Y ð0Þ53 ¼ D�1
j ðF23 � KjX23.

Finally we give a lemma about the skew-symmetric solution of a minimum
problem, and present the solution of Problem II.

Lemma 4 For given matrices J1; J2 and J3 2 Rs�s; Sa ¼ diagða1; . . .; asÞ[ 0;
Sb ¼ diagðb1; . . .; bsÞ[ 0; Sc ¼ diagðc1; . . .; csÞ[ 0, then there exists a unique
skew-symmetric matrix W 2 ARs�s, such that

l 	 kSaW � J1k2
F þ kSbW � J2k2

F þ kScW � J3k2
F ¼ min;

and W can be expressed as

W ¼ U � ðSaJ1 � JT
1 Sa þ SbJ2 � JT

2 Sb þ ScJ3 � JT
3 ScÞ; ð11:45Þ

where

U ¼ ð/klÞ 2 Rs�s; /kl ¼ 1=ða2
k þ a2

l þ b2
k þ b2

l þ c2
k þ c2

l Þ; 1� k; l� s:

Theorem 8 Let matrices A;B;Cand Xf be given in Problem II, suppose
rank Að Þ ¼ rank Bð Þ, and partition the matrix QTXf Qinto block matrix (11.30).
Then there is a unique solution Xain Problem II, and Xacan be expressed as

Xa ¼ Q

F11 F12 F13 Yðf Þ14 �Y ð0ÞT51 �FT
31

�FT
12 Ŷ22 Ŷ23 Yðf Þ24 �Ŷ ð0ÞT52 �FT

32

�FT
13 �ŶT

23 Yðf Þ33 Yðf Þ34 �Ŷ ð0ÞT53 �FT
33

Y ðf Þ41 Y ðf Þ42 Yðf Þ43 Yðf Þ44 Y ðf Þ45 Yðf Þ46

Yð0Þ51 Ŷ ð0Þ52 Ŷð0Þ53 Yðf Þ54 Y ðf Þ55 Yðf Þ56

F31 F32 F33 Yðf Þ64 Y ðf Þ65 Yðf Þ66

0

BBBBBBBB@

1

CCCCCCCCA

QT ð11:46Þ
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where

Y ðf Þkl ¼
1
2
ðXðf Þkl � Xðf ÞTlk Þ;

Ŷ22 ¼ W � ½Xðf Þ22 � Xðf ÞT22 þ D�1
j KjðD�1

j F22 þ Xðf ÞT25 Þ

� ðD�1
j F22 þ Xðf ÞT25 Þ

TKjD
�1
j þ D�1

j KjðD�1
j F22 � Xðf Þ52 Þ

� ðD�1
j F22 � Xðf Þ52 Þ

TKjD
�1
j �;

W ¼ ðwklÞ 2 Rj�j; wkl ¼
1

2 1þ kiþk

diþk

� �2
þ kiþl

diþl

� �2
� �; 1� k; l� j;

Ŷ23 ¼ G � Xðf Þ23 � Xðf ÞT23 þ D�1
j KjðD�1

j F23 þ Xðf ÞT35 Þ þ D�1
j KjðD�1

j F23 � Xðf Þ53 Þ
h i

;

G ¼ ðgklÞ 2 Ri�t; gkl ¼
1
2
d2

iþk; 1� k; � i; 1� l� t;

and

Ŷð0Þ52 ¼ D�1
j ðF22 � KjŶ22Þ; Ŷð0Þ53 ¼ D�1

j ðF23 � KjŶ23Þ:

11.4 Conclusions

Using the projection theorem in a Hilbert space, the quotient singular value
decomposition (QSVD) and the canonical correlation decomposition (CCD), we
obtained explicit analytical expressions of the optimal approximation solutions for
the symmetric and skew-symmetric Procrustes problems related to the linear
matrix equation AXB ¼ C. According to these new results, we can design new
algorithms to solve optimal approximation problems for the constrained linear
matrix equation and related least-squares problems, which can be applied to some
scientific fields, such as inverse problems of vibration theory, control theory, finite
elements, and multidimensional approximation and so on. In some aspects, we
have generalized the works of Higham [13], Sun [23], Chu [4] and Hua [5].
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Chapter 12
Some Inverse Eigenvalue and Pole
Placement Problems for Linear
and Quadratic Pencils

Sylvan Elhay

Abstract Differential equation models for vibrating systems are associated with
matrix eigenvalue problems. Frequently the undamped models lead to problems of
the generalized eigenvalue type and damped models lead to problems of the
quadratic eigenvalue type. The matrices in these systems are typically real and
symmetric and are quite highly structured. The design and stabilisation of systems
modelled by these equations (eg., undamped and damped vibrating systems)
requires the determination of solutions to the inverse eigenvalue problems which
are themselves real, symmetric and possibly have some other structural properties.
In this talk we consider some pole assignment problems and inverse spectral
problems for generalized and quadratic symmetric pencils, discuss some advances
and point to some work that remains to be done.

Dedicated with friendship and respect to Biswa N. Datta for his
contributions to mathematics.

S. Elhay 2008

12.1 Introduction: Linear and Quadratic
Eigenvalue Problems

The equation

Mv00ðtÞ þ Cv0ðtÞ þ KvðtÞ ¼ 0; ð12:1Þ
M;C;K 2 R

n�n and vðtÞ 2 R
n is used in many engineering applications to model

natural phenomena. In the context of the free vibrations of a linear, time-invariant

S. Elhay (&)
School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia
e-mail: sylvan.elhay@adelaide.edu.au

P. Van Dooren et al. (eds.), Numerical Linear Algebra in Signals, Systems and Control,
Lecture Notes in Electrical Engineering, 80, DOI: 10.1007/978-94-007-0602-6_12,
� Springer Science+Business Media B.V. 2011
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vibratory system M;C and K are the mass, damping and stiffness matrices,
respectively.

Separation of variables,

vðtÞ ¼ xekt

x 2 R
n a constant, leads to an eigenvalue problem for the quadratic pencil

QðkÞ ¼ k2M þ kC þ K: ð12:2Þ

When M is symmetric positive definite (spd) and C;K are symmetric we say
that Q is symmetric definite and throughout this paper we will assume, unless
stated otherwise, that (12.2) is real and symmetric definite.

Consider first the linear pencil

PðkÞ ¼ K � kM

which is a special case of Q(l) in which C ¼ O and we use the substitution
l2 ¼ �k. The scalar kj and the associated n-vector xj 6¼ 0 are called an eigenpair
of P if they satisfy

PðkjÞxj ¼ 0: ð12:3Þ

The pencil P has n real eigenvalues k1; k2; . . .; kn and n linearly independent,
real eigenvectors x1; x2; . . .; xn [29] because M is spd. We denote the spectrum,
fkjgn

j¼1; of P variously as

r PðkÞð Þ or r �M;Kð Þ:

We can assemble all the relations of the form (12.3) into a single matrix
equation

KX �MX ¼ O

if we define K ¼ diagfk1; k2; . . .; kng and X ¼ ½x1; x2; . . .; xn�. It is well known
[29] that the eigenvectors in X satisfy the orthogonality relations

xT
i Kxj ¼ 0

xT
i Mxj ¼ 0

�
i 6¼ j

and their scaling can be chosen so that

XTKX ¼ K and XTMX ¼ I: ð12:4Þ

Thus, X is the matrix which simultaneously diagonalizes the two matrices
M and K. The eigenvalues of P are given by the Rayleigh quotients,
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kj ¼
xT

j Kxj

xT
j Mxj

¼ xT
j Kxj

if the scaling (12.4) is used. The orthogonality of the eigenvectors has extensive
practical application in science and engineering (see [7, pp. 512–531, 23]).

The quadratic pencil (12.2) has 2n finite eigenvalues which are the zeros of the
degree 2n polynomial

det QðkÞ ¼ det Mk2n þ a2n�1k
2n�1 þ � � � ;

and we will assume, unless stated otherwise, that the spectrum of Q

r QðkÞð Þ ¼ r M;C;Kð Þ ¼deffkjg2n
j¼1

consists of 2n distinct eigenvalues. The pencil Q then has n linearly independent
eigenvectors and we can write the n� 2n system

MXK2 þ CXKþ KX ¼ O ð12:5Þ

in which X 2 Cn�2n; and K ¼ diag fk1; k2; . . .; k2ng 2 C2n�2n. Since M;C;K are
real and M is invertible, the eigenvectors and eigenvalues of Q are pairwise self-
conjugate in the sense that they are self-conjugate and xi ¼ �xj whenever ki ¼ �kj;
for all i and j.

Relation (12.5) is sometimes linearised into block companion form as

O I
�M�1K �M�1C

� �
X

XK

� �
¼ X

XK

� �
K;

or its symmetric, generalized eigenvalue problem equivalent

O K
K C

� �
X

XK

� �
¼ K

�M

� �
X

XK

� �
K:

There is [9] a set of three orthogonality relations1 for the quadratic pencil which
generalize the orthogonality relations (12.4) for the linear pencil:

KXT MXK� XTKX ¼ D1;
KXT CXKþ KXTKX þ XTKXK ¼ D2;
KXT MX þ XTMXKþ XTCX ¼ D3;

9
=

; ð12:6Þ

where the three diagonal matrices, D1;2;3; satisfy

D1 ¼ D3K; D2 ¼ �D1K and D2 ¼ �D3K
2:

1 In this paper a conjugate transpose is denoted by a superscript H while transposition, which is
denoted by a superscript T, does not mean conjugate transpose even for complex quantities.
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These relations, written componentwise, are

xT
i ðkikjM � KÞxj ¼ 0

xT
i ðkikjC þ ðki þ kjÞKÞxj ¼ 0
xT

i ððki þ kjÞM þ CÞxj ¼ 0

9
=

;; i 6¼ j:

Provided the denominators do not vanish, we can also write

kikj ¼ xT
i Kxj

xT
i Mxj

� kiþkj

kikj
¼ xT

i Cxj

xT
i Kxj

�ðki þ kjÞ ¼ xT
i Cxj

xT
i Mxj

9
>>>=

>>>;
; i 6¼ j

and the Rayleigh-quotient-like expressions

ki ¼ xT
i ðk

2
i M�KÞxi

xT
i ð2kiMþCÞxi

�ki ¼ xT
i ðk

2
i Cþ2kiKÞxi

xT
i ðk

2
i M�KÞxi

�k2
i ¼

xT
i ðk

2
i Cþ2kiKÞxi

xT
i ð2kiMþCÞxi

9
>>>=

>>>;
; i ¼ 1; 2; . . .; 2n:

Note that when C ¼ O; this last relation simplifies to the Rayleigh quotient
xT

j Kxj ¼ kj (recall the substitution �k2 ¼ l). Unlike the linear case, however,
there is in general no way to simultaneously diagonalize three symmetric matrices.

Table 12.1 shows information about the eigendata of quadratic pencils and is
drawn from the excellent survey of the quadratic eigenvalue problem by Tissuer
and Meerbergen [35]. As is pointed out in their survey, quadratic eigenvalue
problems arise in the dynamic analysis of structural mechanical, and acoustic
systems, in electrical circuit simulation, in fluid mechanics, signal processing and
in modeling microelectronic mechanical systems.

In this paper we describe some methods for the solution of certain inverse
eigenvalue and pole placement problems for the linear and quadratic pencils. Our
interest here is in the linear algebra although we will sometimes also make ref-
erence to the application of the problems we discuss in the study of vibrations.

The rest of the paper is organised as follows. In Sect. 12.2 we discuss an inverse
eigenvalue problem for a matrix pair that arises in the modelling of the axial
vibrations of a rod. The problem can be solved [33] by fixed point iteration and has
an interesting reformulation as either an inverse eigenvalue problem for a (sym-
metric, tridiagonal, unreduced) Jacobi matrix or an inverse singular value problem
for a bidiagonal, unit lower triangular matrix.

In Sect. 12.3 we briefly mention the solution [31] to an inverse eigenvalue
problem for the symmetric definite quadratic pencil which has application to the
study of damped oscillatory systems.
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In Sect. 12.4 we consider problems of partial pole assignment by single-input
control for the symmetric definite quadratic pencil. We describe an explicit and a
computational solution [9] which both derive from the orthogonality relations
(12.6).

In Sect. 12.5 we consider three methods [8, 32] for partial pole assignment by
multi-input control for the symmetric definite quadratic pencil. The first parallels the
computational solution for the single-input case. The second, not described in detail,
again uses the orthogonality relations (12.6) to construct a multi-step solution and the
last is based on the Cholesky factoring and the Singular value decomposition.

In Sect. 12.6 we describe a technique [10] for solving the problem of partial
eigenstructure assignment by multi-input control for the symmetric definite qua-
dratic pencil. This method is again based on the exploitation of the orthogonality
relations (12.6).

In Sect. 12.7 we describe two methods [17, 18] of pole assignment for the
symmetric definite quadratic pencil by affine sums and in Sect. 12.8 we describe an
explicit formula for symmetry preserving partial pole assignment to a symmetric
definite matrix pair.

Finally, we summarise in Sect. 12.9 and indicate some further worthwhile work.

Table 12.1 Some properties of the eigenvalues and eigenvectors of quadratic pencils
cðM;C;KÞ ¼ minkxk2¼1ðxHCxÞ2 � 4ðxH MxÞðxHKxÞ
Matrix Eigenvalues Eigenvectors

M nonsingular 2n finite eigenvalues
M singular Finite and infinite

eigenvalues
M, C, K real Finite eigenvalues are real or

conjugate pairs
If x is a right eigenvector of k then

�x is a right eigenvector of �k
M, C, K Hermitian Finite eigenvalues are real or

conjugate pairs
If x is a right eigenvector of k then

x is a left eigenvector of �k
M Hermitian positive

definite, C, K Hermitian
positive semidefinite

ReðkÞ� 0

M Hermitian positive
definite, C Hermitian, K
Hermitian negative
definite

Real eigenvalues Real eigenvectors

M, C symmetric positive
definite, K symmetric
positive semidefinite,
c(M, C, K ) [ 0
(overdamped)

k’s are real and negative, gap
between n largest and n
smallest eigenvalues

n linearly independent
eigenvectors associated with
the n largest (n smallest)
eigenvalues

M, K Hermitian, M positive
definite, C ¼ �CH

Eigenvalues are pure
imaginary or come in
pairs ðk;��kÞ

If x is a right eigenvector of k then
x is a left eigenvector of ��k

M, K real symmetric and
positive definite,
C ¼ �CT

Eigenvalues are pure
imaginary
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All the methods described in this paper are the result of work done variously
with Professors B.N. Datta, G.H. Golub and Y.M. Ram. The author tenders
grateful tribute to their contributions.

12.2 An Inverse Eigenvalue Problem for a Linear Pencil
Arising in the Vibration of Rods

To begin with we consider an inverse eigenvalue problem for a rather special
matrix pair. The problem arises in a discretization of the eigenvalue problem
ðEAy0Þ0 þ kqAy ¼ 0; 0\x\1; with boundary conditions y0ð0Þ ¼ 0; yð1Þ ¼ 0,
associated with the axial oscillations of a non-uniform rod. Here E; q and A are
problem parameters.

Denote the Kroenecker delta by dij and denote by I; S and E, respectively, the
n 9 n identity, shift, and exchange matrices

½I�ij ¼ dij; ½S�ij ¼ di;j�1; ½E�ij ¼ di;n�jþ1:

Further, denote by F ¼ I � S the finite difference matrix.

Problem 2.1 Given a set S ¼ fkjgn
j¼1 of real numbers such that

Qn
j¼1 kj ¼ 1 find a

diagonal matrix D ¼ diag fd1; d2; . . .; dng; di [ 0 such that the pencil PðkÞ ¼
FT DF� kD has spectrum S.

Note that if D is a solution to Problem 2.1 then aD; a scalar, is also a solution so
we can, without loss of generality, set d1 ¼ 1. Note also that rðPÞ ¼ rðD�1FTDFÞ
and, in view of the fact that detðFÞ ¼ 1 we know that the eigenvalues of this
system must therefore satisfy

Qn
k¼1 kk ¼ 1. Thus,

a. n� 1 eigenvalues uniquely determine the nth and
b. there exist a finite number, at most ðn� 1Þ!; different (generally complex)

solutions D even though only real positive solutions have a physical meaning in
the context of vibrations.

Define B ¼ D2SD�1ST � ST DS and D̂ ¼ dnED�1E. Interestingly, the three
systems

FT DF� kD; FT DFþ B� kD; and FT D̂F� kD̂;

are isospectral (see [33] for details).
We can recast Problem 2.1 into an interesting equivalent inverse standard

eigenvalue problem form. Denote by H the sign matrix ½H�ij ¼ ð�Þ
iþ1dij. Then the

matrix HD�1=2FTDFD�1=2H has the same eigenvalues as PðkÞ ¼ FT DF� kD and
the (symmetric, tridiagonal, unreduced) Jacobi matrix J ¼ HD�1=2FTDFD�1=2H � I
which has eigenvalues xi ¼ ki � 1 has the quite special structure
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J ¼

0 b1
b1 b2

1 b2

b2 b2
2 b3
� �

bn�1 b2
n�1

0
BBBB@

1
CCCCA
;

where

bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di=diþ1

p
; i ¼ 1; 2; . . .; n� 1:

Our problem is now to reconstruct J from its spectrum only. There are just
n� 1 free parameters to be found from n� 1 independent pieces of data: xi;

i ¼ 1; 2; . . .; n constrained by
Qn

k¼1ð1þ xkÞ ¼ 1. The equivalent singular value
assignment problem is

Problem 2.2 Find, if it exists, a unit lower bidiagonal matrix

L ¼

1
b1 1

b2 1
� �

bn�1 1

0

BBB@

1

CCCA

which has prescribed singular values r1; r2; . . .; rn constrained by
Qn

k¼1 rk ¼ 1.

L here is the Cholesky factor LLT ¼ J þ I.

It turns out [33] that the fbjgn�1
j¼1 satisfy a fixed point equation AXA�1b ¼ c

where X ¼ diagfx1;x2; . . .;xgn

A ¼

aT
1

aT
2

aT
3

..

.

aT
n

0

BBBBB@

1

CCCCCA
; b ¼

1
b2

1
b2

2

..

.

b2
n�1

0

BBBBB@

1

CCCCCA
; c ¼

0
b4

1
b4

2

..

.

b4
n�1

0

BBBBB@

1

CCCCCA

and each ai defines a diagonal scaling matrix that turns the first row of the
eigenvector matrix of J into the ith row. A linear convergence fixed point iteration
scheme for the solution of this problem is given in Ram and Elhay [33].

12.3 An Inverse Eigenvalue Problem for the Tridiagonal,
Symmetric Definite Quadratic Pencil

We now consider the system of monic, time differential equations

Iv00 þ Cv0 þ Kv ¼ 0;
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in which the matrices C;K 2 R
n�n are tridiagonal, symmetric,

C ¼

a1 b1 0 . . .; 0

b1 a2 b2 . . .; 0

0 b2 a3 . . .; 0

..

. ..
. . .

. . .
. ..

.

0 0 0 � � � an

0

BBBBBBB@

1

CCCCCCCA

; K ¼

c1 d1 0 . . .; 0

d1 c2 d2 . . .; 0

0 d2 c3
. .

.
0

..

. ..
. . .

. . .
. ..

.

0 0 0 � � � cn

0
BBBBBBBB@

1
CCCCCCCCA

;

I is an identity, and v ¼ vðtÞ. The corresponding quadratic pencil is

QðkÞ ¼ k2I þ kC þ K: ð12:7Þ

Our problem here is to find C and K from the spectrum of the full pencil and the
spectrum of the reduced pencil in which the last row and column have been
deleted. More precisely, we need to solve

Problem 3.1 Given two sets of distinct numbers fkkg2n
k¼1andflkg2n�2

k¼1 , Find tri-

diagonal symmetric C and K such that QðkÞ ¼ k2I þ kC þ K satisfies

detðQðkÞÞ has zeros fkkg2n
k¼1

and the matrix Q̂ðkÞ, obtained by deleting the last row and column of QðkÞ
satisfies,

detðQ̂ðkÞÞ has zeros flkg2n�2
k¼1 :

The problem of reconstructing one unreduced, symmetric, tridiagonal matrix
from its n eigenvalues and those of its leading principal submatrix of dimension
n� 1 is related to Problem 3.1 (it is a special case of (12.7) with K a Jacobi matrix
and C ¼ O and has received much attention in the literature (see eg., [3, 13, 21,
22]). In vibrations, this may be regarded as identifying the spring configurations of
an undamped system from its spectrum and the spectrum of the constrained
system where the last mass is restricted to have no motion. Problem 3.1 corre-
sponds to determining the spring and damper configurations of a non-conservative
vibratory system which has a prescribed spectrum and which is such that the
associated constrained system has a prescribed spectrum.

We have shown by construction [31] that this problem is always soluble over
the complex field, it has at most 2nð2n� 3Þ!=ðn� 2Þ! solutions and all solutions
can be found by a method that, aside from finding the roots of certain polynomials,
requires only a finite number of steps.

The solution matrices should (a) have positive diagonal elements, (b) have
negative off-diagonal elements and (c) be weakly diagonally dominant, for prac-
tical realizations in vibrations. Finding solutions that satisfy these constraints for
large, real problems remains a challenge.
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12.4 Partial Pole Assignment by Single-Input Control
for the Symmetric Definite Quadratic Pencil

Partial pole assignment by state feedback control for a system modeled by a set of
second order differential equations is used in the stabilization and control of
flexible, large, space structures where only a small part of the spectrum is to be
reassigned and the rest of the spectrum is required to remain unchanged.

In this problem the homogeneous differential equation (12.1) is replaced by an
equation with a forcing function buðtÞ, b 2 R

n a constant, and uðtÞ a scalar, by
which we want to control this system. Thus the differential equation is now

Mv00 þ Cv0 þ Kv ¼ buðtÞ ð12:8Þ

and we seek constant f ; g 2 R
n which define the control

uðtÞ ¼ f T v0ðtÞ þ gTvðtÞ ð12:9Þ

which will assign all, or part, of the spectrum of the system. Substituting for uðtÞ in
(12.8) with (12.9) leads to the closed loop system

Mv00 þ ðC � bf TÞv0 þ ðK � bgTÞv ¼ 0;

the dynamics of which are characterised by the eigenvalues of the closed loop
pencil

QcðkÞ ¼ Mk2 þ ðC � bfTÞkþ ðK � bgTÞ:

It is well known [27] that the system is completely controllable if and only if

rankfk2M þ kC þ K; bg ¼ n;

for every eigenvalue of Q. Complete controllability is a necessary and sufficient
condition for the existence of f and g such that the closed-loop pencil has a
spectrum that can be assigned arbitrarily. However, if the system is only partially
controllable, i.e., if

rankfk2M þ kC þ K; bg ¼ n;

only for m of the eigenvalues k ¼ kik ; k ¼ 1; 2; . . .;m;m\n; of the pencil, then
only those eigenvalues can be arbitrarily assigned by an appropriate choice of f
and g. The system (12.8) is partially controllable iff the vector b is not orthogonal
to fxikg

m
k¼1; the eigenvectors corresponding to the assignable eigenvalues fkikg

m
k¼1.

This problem can approached by using the block companion first order reali-

zation i.e. by finding f̂ such that the 2n� 2n matrix A� b̂f̂ T , where

A ¼ O I
�M�1K �M�1C

� �
; b̂ ¼ O

M�1b

� �
; f̂ ¼ �g

�f

� �
;
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has the desired spectrum. The first order realization solution, however, is not
always suitable since it does not respect structural properties such as sparsity,
bandedness or positive definiteness that are sometimes assets for this problem.

It is often also an important practical requirement that no spill-over, the
phenomenon in which eigenvalues not intended to be changed are modified by the
process, occurs [1, 2]. In fact, partial pole assignment without spillover is possible
[9] knowing only the eigenvalues k1; k2; . . .; km which are to be assigned and their
associated eigenvectors. Where n is large and only m � n eigenvalues are to be
assigned this can be a significant advantage. The eigendata can be found by
computation using a Krylov subspace methods [30], or by modal analysis mea-
surements when the physical structure is available [23] More precisely, the
problem we now have is:

Problem 4.1 Let (12.5), ki distinct, be an eigendecomposition of the quadratic
open loop pencil (12.2).

Given a self-conjugate set of m� 2n complex numbers l1; l1; . . .; lm and a
vector b 2 R

n,
Find f ; g 2 Cnwhich are such that the closed loop pencil

QcðkÞ ¼ Mk2 þ ðC � bfTÞkþ ðK � bgTÞ; ð12:10Þ

has spectrum fl1; l2; . . .; lm; kmþ1; . . .; k2ng.

Let us partition the n� 2n eigenvector matrix and 2n� 2n eigenvalue matrix as

X ¼ ðX1 X2Þ;
m 2n�m

K ¼ K1

K2

� �

m 2n�m:

m

2n�m
ð12:11Þ

The theorem that follows gives conditions on the vectors f ; g which ensure that
the eigenvalues not being assigned remain unchanged after the assignment, thus
avoiding spillover.

Theorem 4.1 Let

f ¼ MX1K1b; g ¼ �KX1b; b 2 Cm: ð12:12Þ

Then, for any choice of b we have

MX2K
2
2 þ ðC � bf TÞX2K2 þ ðK � bgTÞX2 ¼ O:

If there exists such a vector b; then there exist an eigenvector matrix Y 2 C n�m;

Y ¼ ðy1; y2; . . .; ymÞ; yj 6¼ 0; j ¼ 1; 2; . . .;m;
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and a diagonal matrix, D ¼ diagfl1; l2; . . .; lmg of the eigenvalues to be assigned,
which are such that

MYD2 þ ðC � bf TÞYDþ ðK � bgTÞY ¼ O:

So

MYD2 þ CYDþ KY ¼ bbTðK1XT
1 MYD� XT

1 KYÞ
¼ bbT ZT

1

¼ bcT ;

where Z1 ¼ DYTMX1K1 � YTKX1 and c ¼ Z1b is a vector that will depend on the
scaling chosen for the eigenvectors in Y. To obtain Y; we can solve in turn for each
of the eigenvectors yi using the equations

ðl2
j M þ ljC þ KÞyj ¼ b; j ¼ 1; 2; . . .;m:

This corresponds to choosing the vector c ¼ ð1; 1; . . .; 1ÞT , so, having computed

the eigenvectors we could solve the m-square system Z1b ¼ ð1; 1; . . .; 1ÞT for b,
and hence determine the vectors f ; g using Theorem 4.1. However, there exists an
explicit solution for this problem:

Theorem 4.2 Suppose the open loop quadratic pencil (12.2) has eigendecom-
position (12.5) and that f and g are as in (12.12) with the components bj of b

chosen as

bj ¼
1

bTxj

lj � kj

kj

Ym

i¼1
i 6¼j

li � kj

ki � kj
; j ¼ 1; 2; . . .;m: ð12:13Þ

Then, the closed loop pencil (12.10) has spectrum fl1; l2; . . .; lm; kmþ1; . . .; k2ng
and its first m eigenvectors can be scaled to satisfy ðl2

j M þ ljC þ KÞyj ¼ b:

Formula (12.13) reveals three conditions (for the existence of b) that apply to
the m eigenvalues which will be replaced, and their associated eigenvectors:

a. no kj; j ¼ 1; 2; . . .;m may vanish,
b. the fkjgm

j¼1 must be distinct, and
c. b must be not orthogonal to xj; j ¼ 1; 2; . . .;m.

We note that if all the fkjgm
j¼1 are real, then X1 is real as well. If, in addition, all

the fljg
m
j¼1 are real, then b and so f ; g are also real.

Furthermore, if the set of eigenvalues which are to be replaced is self-conjugate
then f and g are real and they specify a solution which can be physically realized.
Indeed, the whole calculation can be done in real arithmetic [9].

Finally, we note that any problem in which condition (a) is violated can be
handled with a shift of origin:
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Lemma 4.3 Let

QðkÞ ¼ k2U þ kV þW; U;V;W 2 Cn�n

U invertible, have spectrum fkjg2n
j¼1. Then, the pencil

Q̂ðkÞ ¼ k2U þ kV̂ þ Ŵ

with

V̂ ¼ V þ 2pU; Ŵ ¼ W þ pV þ p2U;

scalar p; has spectrum fkj � pg2n
j¼1. If, in addition, QðkÞ is symmetric definite, then

Q̂ðkÞ is also symmetric definite.

12.5 Partial Pole Assignment by Multi-Input Control
for the Symmetric Definite Quadratic Pencil

Although the pole assignment problem by single input control and its solution are
satisfactory from a theoretical standpoint, one may still encounter some difficulties
when using this solution in a practical vibrations context. It may happen that the
control force required to relocate the poles is so large that it cannot be imple-
mented in practice without causing an early structural fatigue. This practical dif-
ficulty may be overcome by using a multi-input control, one in which the vector b

of (12.8) replaced by a matrix B 2 R
n�m and the scalar uðtÞ is replaced be a vector

uðtÞ 2 R
m. Our differential equation is now

Mv00 þ Cv0 þ Kv ¼ BuðtÞ

and we seek F;G 2 R
n�m to assign part or all of the spectrum of (12.2).

In this section we describe methods that are applicable to two slightly different
problems. The first deals with the case where we make no extra assumptions about
the given matrices C;K and the second concerns that case where C and K have the
addtional property that they are non-negative definite. Recall that this extra
property ensures that all the eigenvalues of the pencil Q have non-positive real
part, something which is important in the stability of dynamic systems. The second
method achieves the assignment while ensuring that all the eigenvalues not
assigned, even though they may have been moved, still have non-positive real part.

For alternative treatments of this problem which also address the issue of
robustness see [4, 5].

12.5.1 Method 1

Problem 5.1 Given 2p� 2n self-conjugate numbers l1; l2; . . .; l2p; and B 2 R
n�m;
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Find F;G 2 R
n�m such that the closed-loop system

QcðkÞ ¼ Mk2 þ ðC � BFTÞkþ ðK � BGTÞ; ð12:14Þ

has spectrum
fl1; l2; . . .; l2p; k2pþ1; . . .; k2ng:

As before, the problem has a computational solution [32] that avoids spillover but
an explicit solution for this problem has yet to be found.

Let the eigenvalue and eigenvector matrices of Q be partitioned as in (12.11).
The following theorem is the matrix counterpart of Theorem 4.1 and gives con-
ditions on B which ensure that there is no spillover. The multi-input control form
(12.15) directly generalises the single-input form (12.12).

Theorem 5.1 Let

F ¼ MX1K1B; G ¼ �KX1B; B 2 C2p�m: ð12:15Þ

Then, for any choice of B we have

MX2K
2
2 þ ðC � BFTÞX2K2 þ ðK � BGTÞX2 ¼ O:

Any choice of B with F;G chosen thus guarantees that the last 2n� 2p
eigenpairs K2;X2ð Þ are also eigenpairs of the closed loop pencil.

In a development analogous to the vector case we can find [32] the matrix B and
from it F;G which solve the problem in one step. An alternative, multi-step solution,
is also available which uses the explicit solution (12.13) to the single input case. One
application of the method based on Theorem 4.1 leaves the pencil unsymmetric so
we cannot use that technique repeatedly. However, it is possible to use the orthog-
onality relations (12.6) to compute F and G which will do the job [32].

12.5.2 Method 2

We now consider multi-input control systems where the matrices C;K are non-
negative definite, thus ensuring that all eigenvalues of the pencil have non-positive
real part. The technique of this section [8] assigns part of the spectrum and avoids
spillover, not by preserving the eigenvalues which are not assigned, but by
ensuring only that the unassigned eigenvalues, even if they have been moved by
the assignment, have non-positive real part.

Problem 5.2 Given the pencil (12.2) with M spd, C;K non-negative definite,

B 2 R
n�mand a self-conjugate setflkg2p

k¼1 of 2p� 2n scalars, Find matrices F;

G 2 R
n�m such that the spectrum of the closed-loop pencil (12.14) contains the set

flkg2p
nk¼1and the complementary part of the spectrum has non-positive real part.
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We begin by constructing diagonal p� n matrices

Da ¼ D̂a O
� �

p n�p
; D̂b ¼ Db O;ð Þ

p n�p

which give k2I þ kDa þ Db the required eigenvalues. We then compute the
Cholesky and SVD factorings

LLT ¼ M; USVT ¼ L�1B;

U and V orthogonal and S diagonal. Since the spectrum of Q is invariant to
multiplication by an invertible matrix, we can write

rðM; C � BFT ; K � BGTÞ ¼ rðI; Ĉ � SF̂T ; K̂ � SĜTÞ;

where we have defined

Ĉ ¼def
UTL�1CL�T U; K̂ ¼def

UTL�1KL�T U

F̂T ¼def
VTFTL�T U; ĜT ¼def

VTGT L�T U:

To find F̂; Ĝ we note that, with the blocking

Ĉ ¼ Ĉ1

Ĉ2

� �

n

p

n�p
; K̂ ¼ K̂1

K̂2

� �

n

p

n�p
; S ¼ S1

O

� �

p

p

n�p
;

the choice F̂ ¼ ðĈT
1 � DT

a ÞS�1
1 makes the first block row of Ĉ � SF̂T ¼ ðD̂a OÞ

and leaves the other n� p rows unchanged. Similarly, the choice Ĝ ¼ ðK̂T
1 �

DT
bÞS�1

1 makes the first block row of K̂ � SĜT ¼ ðD̂b OÞ and leaves the other
n� p rows unchanged. Thus

Q̂cðkÞ ¼ k2I þ kðĈ � SF̂TÞ þ ðK̂ � SĜTÞ ¼ Q1 O
Q2 Q3

� �

p n�p

p

n�p

and rðQ̂cðkÞÞ ¼ rðQ1Þ [ rðQ3Þ. In addition Q1ðkÞ ¼ k2Ip þ kD̂a þ D̂b is diagonal
and has the assigned eigenvalues. It’s easy to show [8] that Q3 is a positive semi-
definite pencil and all its eigenvalues have real part that is non-positive.

12.6 Partial Eigenstructure Assignment by Multi-Input
Control for the Symmetric Definite Quadratic Pencil

We now consider the case where the problem is to find all three control matrices
F;G and B to replace some eigenpairs of the quadratic pencil (12.2). Assume we
have the eigendecomposition (12.5) and the partitioning (12.11).

230 S. Elhay



Problem 6.1 Given

a. Q as in (12.2) with eigen decomposition (12.5)
b. X1 and K1 pairwise self-conjugate and partitioned as in (12.11)
c. Y1 2 Cn�m; D1 2 Cm�m, pairwise self-conjugate such that with

Y Y1 X2ð Þ
m 2n�m

; D ¼ D1

K2

� �

m 2n�m

m

2n�m

the matrix
Y

YD

� �
is invertible,

Find B;F;G 2 R
n�m which satisfy

MYD2 þ ðC � BFTÞYDþ ðK � BGTÞY ¼ O: ð12:16Þ

The process of finding the F;G and B which will assign these m eigenvalues
and their associated eigenvectors is done in two stages:

a. First, determine matrices B̂; F̂ and Ĝ which are generally complex and which
satisfy

MYD2 þ ðC � B̂F̂TÞYDþ ðK � B̂ĜTÞY ¼ O: ð12:17Þ

b. Second, from B̂; F̂ and Ĝ find real B;F, and G such that BFT ¼ B̂F̂T and

BGT ¼ B̂ĜT .

The first stage proceeds as follows. Let W 2 Cm�p; p�m have pseudoinverse
Wþ 2 Cp�m such that WWþ ¼ I 2 R

m�m. If ~B; ~F and ~G is a solution of Prob-
lem 6.1 then

B̂ ¼ ~BW; F̂ ¼ ~FðWþÞT Ĝ ¼ ~GðWþÞT

is another solution because ~B~FT ¼ B̂F̂T and ~B~GT ¼ B̂ĜT . Now, if ~B; ~F and ~G is a
solution and satisfies (12.16) then

MY1D2
1 þ ðC � ~B~FTÞY1D1 þ ðK � ~B~GTÞY1 ¼ O

and it is evident that we can take B̂ and W as

MY1D2
1 þ CY1D1 þ KY1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B̂

¼ ~B ð~FTY1D1 þ ~GT Y1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

: ð12:18Þ

provided that W is invertible. Then for some F̂ and Ĝ this B̂ ¼ ~BW is an admi-
ssable solution. Equation (12.17) blocked as

12 Some Inverse Eigenvalue and Pole Placement Problems 231



MðY1;X2Þ þ D2
1

K2
2

� �
þ ðC � B̂F̂TÞðY1;X2Þ

D1

K2

� �
þ ðK � B̂ĜTÞY ¼ O

has first block row

MY1D2
1 þ CY1D1 þ KY1 � B̂F̂TY1D1 � ~B~GTY1 ¼ O

and, taking the definition of B̂from (12.18), this gives B̂ I � ~FTY1D1 � ~GTY1
� �

¼ O.

The full rank of ~B implies that

F̂TY1D1 þ ĜTY1 ¼ I: ð12:19Þ

The following theorem is a variation of Theorem 5.1.

Theorem 6.1 For any B 2 Cm�m, F̂ ¼ MX1K1B and ~G ¼ �KX1B satisfy

MX2K
2
2 þ ðC � B̂F̂TÞX2K2 þ ðK � B̂ĜTÞX2 ¼ O:

Putting these expressions for F̂; Ĝ into (12.19) gives

B ¼ ðK1XT
1 MY1D1 � XT

1 KY1Þ�1

from which F̂ and Ĝ can easily be found using the expressions in Theorem 6.1.

It is easy to show that although B̂; F̂; Ĝ are generally complex, the products

B̂F̂T and B̂ĜT are always pure real. The second stage of the solution, that of

finding real B;F;G from the generally complex B̂; F̂; Ĝ can be carried out using
any one of several factorings of the form LR ¼ H;L 2 R

n�m;R 2 R
m�2n of the

composite n� 2n product matrix

H ¼ B̂ F̂T jĜT
	 


:

We take B to be the L matrix, the first n columns of R to be FT and the last
n columns to be GT . The two factorings which immediately come to mind
are the truncated QR and compact SVD [15]. Details can be found in Datta
et al. [10].

12.7 Pole Assignment for the Symmetric Definite Quadratic
Pencil by Affine Sums

In this section we consider the pole assignment problem by means of linear
combinations of matrix sets which span the space of matrices in which our target
matrix lies. Two methods, in which the solutions are found by zeroing two
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different nonlinear functions, are described. We motivate the methods by first
considering the standard eigenvalue problem which arises from a set of first order,
time differential equations

x0 ¼ Ax; A ¼ AT 2 R
n�n; x 2 R

n:

This system’s behaviour is characterized by eigenpairs ðlk; xkÞ; kk scalar, 0 6¼
xk 2 R

n; which satisfy ðA� lIÞx ¼ 0. The Affine Inverse Eigenvalue Problem

requires us to determine the vector a ¼ ða1; a2; . . .; anÞT of coefficients, if they
exist, which define the matrix

A ¼ A0 þ
Xn

k¼1

akAk;

from its spectrum. The elements Ak 2 R
n�n; k ¼ 0; 1; 2; . . .; n in the linear com-

bination comprise the affine family. As an example, The eigenvalues of the matrix

j1 þ j2 �j2

�j2 j2 þ j3 �j3

�j3 j3 þ j4 �j4

. .
. . .

. . .
.

�jn jn

0

BBBBB@

1

CCCCCA

determine the natural frequencies of a certain n-degrees-of-freedom mass-spring
system with spring constants ji [ 0 and unit masses. An affine family suitable for
such a 4� 4 problem might consist of the set A0;1;2;3 defined by

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0

BB@

1

CCA;

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

0

BB@

1

CCA;

0 0 0 0
0 1 �1 0
0 �1 1 0
0 0 0 0

0

BB@

1

CCA;

0 0 0 0
0 0 0 0
0 0 1 �1
0 0 �1 1

0

BB@

1

CCA:

ð12:20Þ

We note that the matrices in the affine set are real and symmetric and tridi-
agonal. Hence the spectrum of A is real.

Friedland et al. [20] consider several Newton-based algorithms for solving the
affine inverse eigenvalue problem. Starting with some initial estimate of the

solution að0Þ ¼ að0Þ1 ; að0Þ2 ; . . .; að0Þn

� �T
; the methods find the zero a ¼

a1; a2; . . .; anð ÞT of f ðaÞ ¼ k1 að Þ � l1; k2 að Þ � l2; . . .; kn að Þ � lnð ÞT where
flkgn

k¼1 is the ordered target (real) spectrum, and kj aðmÞ
� �

is the j-th eigenvalue of
the similarly ordered spectrum of

A ¼ A0 þ
Xn

k¼1

aðmÞk Ak:

12 Some Inverse Eigenvalue and Pole Placement Problems 233



A correction vector nðmÞ to aðmÞ is found from JðmÞnðmÞ ¼ �f ðmÞ where the
Jacobian is

JðmÞ ¼

xT
1 A1x1 xT

1 A2x1 � � � xT
1 Anx1

xT
2 A1x2 xT

2 A2x2 � � � xT
2 Anx2

..

. ..
. ..

. ..
.

xT
n A1xn xT

n A2xn � � � xT
n Anxn

0

BBB@

1

CCCA ð12:21Þ

and xk is the eigenvector associated with kk aðmÞ
� �

. The next iterate is found from

aðmþ1Þ ¼ nðmÞ þ aðmÞ and the process continues until convergence or divergence
occurs.

For the quadratic problem we are interested in

Problem 7.1 Given

a. M 2 R
n�n spd

b. fCkgn
k¼0; fKkgn

k¼0, Ck;Kk 2 R
n�n; symmetric, linearly independent,

c. S ¼ flkg2n
k¼1, a self-conjugate set of scalars.

Define C ¼ C0 þ
Pn

k¼1 akCk and, K ¼ K0 þ
Pn

k¼1 bkKk.
Find real scalarsfak; bkgn

k¼1, if they exist, such that the pencil (12.2) has
spectrum S:

Affine methods are attractive because, unlike some other methods, they pre-
serve structural properties like symmetry, bandedness and sparseness. We now
describe two affine methods of pole assignment for the quadratic symmetric def-
inite pencil. In each a Newton method is used to solve the system of nonlinear
equations that give the affine coefficients which achieve the assignment.

12.7.1 Affine Method 1

Denote the vector of target eigenvalues by l ¼ ðl1; l2; . . .; l2nÞT and the vectors
of the unknown coefficients by a ¼ ða1; a2; . . .; anÞT and b ¼ ðb1; b2; . . .; bnÞT .
denote also the vector of open loop eigenvalues by kða; bÞ ¼
ðk1ða; bÞ; k2ða; bÞ; . . .; k2nða; bÞÞT . We will assume that

• the target spectrum S defines a solution,
• there exists an open neighbourhood of a, b where QðkÞ has eigenvalues and

eigenvectors which are analytic,
• the target eigenvalues and eigenvectors for the current a and b iterates have the

same number of reals and complex pairs.

Let us assume that the target real eigenvalues are ordered l1� l2� � � � � lr

and that 2n� r ¼ 2c complex eigenvalues are paired
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lrþ1 ¼ q1 þ ig1; lrþ2 ¼ q1 � ig1;
lrþ3 ¼ q2 þ ig2; lrþ4 ¼ q2 � ig2;

..

. ..
.

l2n�1 ¼ qc þ igc; l2n ¼ qc � igc:

:

Suppose also that the eigenvalues to be replaced are similarly ordered k1� k2�
� � � � kr

krþ1 ¼ /1 þ iw1; krþ2 ¼ /1 � iw1;
krþ3 ¼ /2 þ iw2; krþ4 ¼ /2 � iw2;

..

. ..
.

k2n�1 ¼ /c þ iwc; k2n ¼ /c � iwc

as are their pure real eigenvectors zi, i ¼ 1; 2; . . .; r and their complex eigenvectors

zrþ1 ¼ x1 þ iy1; zrþ2 ¼ x1 � iy1;
zrþ3 ¼ x2 þ iy2; zrþ4 ¼ x2 � iy2;

..

. ..
.

z2n�1 ¼ xc þ iyc; z2n ¼ xc � iyc:

A Newton method for a and b which parallels the method described earlier for
the inverse standard eigenvalue problem zeros the function

f ða; bÞ ¼

k1ða; bÞ � l1
k2ða; bÞ � l2

..

.

krða; bÞ0 � lr

/1ða; bÞ � q1
/2ða; bÞ � q2

..

.

/cða; bÞ � qc

w1ða; bÞ � g1
w2ða; bÞ � g2

..

.

wcða; bÞ � gc

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

We now derive the Jacobian for this function. Every eigenpair ki; zi satisfies

zT
i ðk2

i M þ kiC þ KÞzi ¼ 0: ð12:22Þ

Denote a derivative with respect to either aj or bj by a dot. Differentiating
(12.22) gives
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2_zT
i ðk2

i M þ kiC þ KÞzi þ zT
i ð2ki

_kiM þ _kiC þ ki
_C þ _KÞzi ¼ 0

which simplifies immediately to

zT
i ð _kið2kiM þ CÞ þ ki

_C þ _KÞzi ¼ 0:

Isolating _k we gives

_ki ¼ �
zT

i ðki
_C þ _KÞzi

zT
i ð2kM þ CÞzi

:

Since

oC

oaj
¼ Cj;

oC

obj
¼ oK

oaj
¼ O;

oK

obj
¼ Kj;

we get, provided the denominators do not vanish,

oki

oaj
¼ � kiz

T
i Cjzi

zT
i ð2kiM þ CÞzi

; and
oki

obj
¼ � zT

i Kjzi

zT
i ð2kiM þ CÞzi

:

The Newton method is now

J aðkÞ; bðkÞ
� �

aðkþ1Þ

bðkþ1Þ

� �
� aðkÞ

bðkÞ

� �� �
¼ �f aðkÞ; bðkÞ

� �
:

For details see [18].
Some simple examples illustrate the technique. All calculations here were

performed in Matlab with IEEE Standard Double Precision arithmetic ie. using
� 	 2� 10�16. All numbers are correctly rounded to the number of figures shown.

Example 7.1 Let n ¼ 5;M ¼ I, and let the affine family be

C0 ¼

10 �10 0 0 0
�10 18 �8 0 0

0 �8 12 �4 0
0 0 �4 12 �8
0 0 0 �8 11

0
BBBB@

1
CCCCA
; K0 ¼

10 �10 0 0 0
�10 18 �8 0 0

0 �8 12 �4 0
0 0 �4 12 �8
0 0 0 �8 11

0
BBBB@

1
CCCCA
:

together with the rank-2, symmetric, tridiagonal elements

a. Ck ¼ Kk ¼ ðek � ekþ1Þðek � ekþ1ÞT ; k ¼ 1; 2; . . .; n� 1;
b. Cn ¼ Kn ¼ eneT

n .

These elements are of the same type as those shown in (12.20). For

a ¼ �b ¼ �1; 1; �1; 1; �1ð ÞT ð12:23Þ
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the pencil Q has eigenvalues shown in Table 12.2. Using the starting values

a ¼ �b ¼ ð�1:2; 1:4;�1:6; 1:8; 2ÞT to assign the eigenvalues in Table 12.2, the
Newton method finds the solution (12.23) with the characteristic quadratic con-

vergence and after 9 iterations we get k k að9Þ; bð9Þ
� �

� k a; bð Þ k2 \10�14.

Table 12.3 shows a second starting value and solution (of the many possible). This
solution is obtained to the same accuracy as the first solution in 8 iterations.

12.7.2 Affine Method 2

A difficulty with the method in Sect. 12.7 is that it requires an uncomfortable
assumption: that the number of real and complex pairs of eigenvalues remain the
same throughout the iteration process. However, these can change from one
iteration to the next even though after some point close to convergence they will
remain the same.

The crucial element is the ordering of the eigenvalues. In the real, symmetric,
inverse standard eigenvalue problem there is a natural ordering of the (always real)
eigenvalues at every step. We are thus able to pair kk amð Þ to lk correctly in f mat
each iterative step.

In principle the algorithm described at the start of Sect. 12.7 for the real,
symmetric inverse standard eigenvalue problem above can be extended to solve

Table 12.2 Eigenvalues of
Q with a, b defined by
(12.23)

k(a, b)

-26.07397
-18.47433
-8.91370
-2.48789
-1.11603
-0.36370
-1.69234 - 2.43496i
-1.69234 ? 2.43496i
-0.09285 - 0.72845i
-0.09285 ? 0.72845i

Table 12.3 A second
solution which assigns the
eigenvalues in Table 12.2

a(0) b(0) a(8) b(8)

-0.54550 1.08070 -0.87850 1.11642
1.29810 -0.58530 0.89416 -1.08588

-0.83550 1.47810 -0.99899 1.05144
1.23910 -0.70220 0.99300 -1.16071

-0.70140 1.01440 -1.00968 1.01043
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affine inverse eigenvalue problems associated with non-symmetric matrices. The
Jacobian matrix elements of (12.21) are replaced by

oki aðmÞ
� �

oaj
¼ yT

i Ajxi

yT
i xi

where yi here is the ith left eigenvector of A. The algorithm now can frequently fail
however since the eigenvalues of this (real) A are generally complex and there is
no natural way to order the eigenvalues consistently throughout the iterations. A
simple example illustrates the problem. Consider the affine sum

A0 þ dA1 ¼

1 0 0 0
0 �1 0 0
0 0 2 0
0 0 0 �2

0
BB@

1
CCAþ d

�1 1 0 0
0 1 1 0
0 0 �2 1
�4 0 �5 2

0
BB@

1
CCA:

a. For d ¼ 0 this affine sum has eigenvalues 
1;
2.
b. For d ¼ 1 it has eigenvalues 
i;
2i.

The bifurcation point where the four real eigenvalues become two complex
conjugate pairs is at d ¼ 1=ð1þ

ffiffiffi
3
p
Þ. Any labelling scheme based on an ordering

which is used for the real eigenvalues when d\1=ð1þ
ffiffiffi
3
p
Þ has no natural

extension once d[ 1=ð1þ
ffiffiffi
3
p
Þ.

A technique for overcoming this problem [17] of ordering is based on zeroing
the function

fiðaÞ ¼ det
�

A0 � liIn þ
Xn

k¼1

akAk

�
; i ¼ 1; 2; . . .; n;

rather than fiðaÞ ¼ kiðaÞ � li; i ¼ 1; 2; . . .; n. Since no pairing of the eigenvalues is
needed, the method is applicable to

• non-symmetric affine inverse linear eigenvalue problems with complex
eigenvalues,

• non-symmetric inverse generalized eigenvalue problems, and
• inverse quadratic eigenvalue problems and higher order matrix polynomial

inverse eigenvalue problems.

The regular pencil PðkÞ ¼ kAþ B ðdet ðPðkÞÞ not identically 0) has as its
eigenvalues

a. the zeros of pkðkÞ ¼ detðPðkÞÞ and
b. 1 with multiplicity n� k if k\n.

If PðkÞ is regular, there is a generalized Schur decomposition [14] which gives
Q;R 2 Cn�n; unitary, such that
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QPðkÞR ¼ kTA þ TB;

TA;TB 2 Cn�n upper triangular. Quotients of the diagonal elements a1; a2; . . .; an

and b1; b2; . . .; bn of TA and TB, define the eigenvalues of the pencil. Importantly,
the matrices Q and R can be chosen so that

• ðai; biÞ are in any order on the diagonals of TA and TB and
• detðQÞ ¼ detðRÞ ¼ 1.

Now, detðPðkÞÞ ¼
Qn

j¼1ðkaj þ bjÞ: If ai 6¼ 0 6¼ bi then we can differentiate to
get

o

ok
detðkAþ BÞ ¼

Xn

i¼1

ai

Yn

j¼1
j6¼i

ðkaj � bjÞ:

Otherwise, if a1; a2; . . .; ar are nonzero and arþ1 ¼ arþ2 ¼ � � � ¼ an ¼ 0, then
we have (none of the bi can vanish by the assumption of regularity)

o

ok
detðkAþ BÞ ¼

Yn

i¼rþ1

bi

 !
Xr

i¼1

ai

Yn

j¼1
j 6¼i

ðkaj � bjÞ:

We can therefore use Newton’s method to solve for the coefficients fajgn
j¼1

which zero the function

fðaÞ ¼

f1ðaÞ
f2ðaÞ

..

.

fnðaÞ

0

BBB@

1

CCCA ¼

detðA0 � l1In þ
Pn

k¼1 akAkÞ
detðA0 � l2In þ

Pn
k¼1 akAkÞ

..

.

detðA0 � lnIn þ
Pn

k¼1 akAkÞ

0

BBB@

1

CCCA

because we can get the Jacobian elements ½J�ij ¼ ofiðaÞ=oaj by setting k ¼ aj;

A ¼ Aj and

B ¼ A0 � liIn þ
Xn

k¼1
k 6¼j

akAk:

This is consistent with kAþ B ¼ fiðaÞ.
These expressions appear computationally costly but in many situations the Aj

have rank one or perhaps two and this reduces the computational cost significantly.
In addition, there is no need to compute eigenvectors at each stage, as is normally
required [29].

A Newton method based on these results takes as input an affine set fAkgn
k¼0, an

initial estimate að0Þ and a target spectrum S ¼ flkgn
k¼1 and finds, if the process

converges, the affine coefficients a such that rðA0 þ
Pn

k¼1 akAkÞ ¼ S. We describe
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the algorithm only for the step in which the Jacobian matrix is computed (see [17]
for details).

a. For each i ¼ 1; 2; . . .; n

i. Compute detðHÞ, H ¼ A0 � liI þ
Pn

k¼1 aðmÞk Ak.
ii. for each k ¼ 1; 2; . . .; n

1. Compute B ¼ A0 � liIn þ
Pn

j¼1
j 6¼k

ajAj.

2. Use the QZ algorithm to get unitary Q;R, detðQÞ ¼ detðRÞ ¼ 1 which
simultaneously triangularize Ak;B

3. Reorder ðai; biÞ so that arþ1 ¼ arþ2 ¼ � � � ¼ an ¼ 0.

4. J amð Þ½ �ik¼
Qn

i¼rþ1 bi

� �Pr
i¼1 ai

Qn
j¼1
j 6¼i

aðmÞk aj � bj

� �
:

Remarks

• Any factoring from which the determinant can be easily computed will suffice.
• Matrix H changes only slightly between values of i so a factoring based on

updates would save considerable effort.
• The Jacobian calculation is well suited to parallel computation.
• Quite good heuristics for starting values exist.

12.7.2.1 Inverse Eigenvalue Problems for Higher Degree
Matrix Polynomials

The method of Sect. 12.7 is applicable to the solution of inverse eigenvalue
problems with higher degree matrix polynomials. To illustrate the technique we
show how it can be used on quadratic matrix polynomial problems.

We define fiða; bÞ; i ¼ 1; 2; 3; . . .; 2n by

fiða; bÞ ¼ det l2
i M þ li C0 þ

Xn

k¼1

akCk

 !
þ

 
K0 þ

Xn

k¼1

bkKk

!
:

The 2n� 2n Jacobian for fi has two 2n� n blocks J aðmÞ; bðmÞ
� �

¼ ðJ1 J2Þ
where J1 has partial derivatives of f ða; bÞ with respect to ðaÞ and J2 has the partial
derivatives of fða; bÞ with respect to b. We replace the matrix H of ðaÞið Þ by

H ¼ l2
i M þ li C0 þ

Xn

k¼1

akCk

 !
þ K0 þ

Xn

k¼1

bkKk
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and the matrix B of step ðaÞii:1: is replaced by

B ¼ l2
i M þ li C0 þ

Xn

j¼1
j6¼k

ajCj

0
BB@

1
CCAþ K0 þ

Xn

j¼1

bjKj

when computing J1 and by

B ¼ l2
i M þ li C0 þ

Xn

j¼1

ajCj

 !
þ K0 þ

Xn

j¼1
j 6¼k

bjKj

when computing J2.

Example 7.2 Construct a real symmetric, triple with prescribed real eigenvalues.
This is an example of Problem 7.1 and has application in the passive vibration
control of a mass-spring-damper system.

The system is M ¼ diagf1; 2; 3g,

C0 ¼
3 �2 0
�2 3 �1

0 �1 1

0

@

1

A K0 ¼
8 �4 0
�4 11 �7

0 �7 7

0

@

1

A

and the affine family elements

C1 ¼ K1 ¼
1 �1 0
�1 1 0

0 0 0

0

@

1

A; C2 ¼ K2 ¼
1 0 �1
0 0 0
�1 0 1

0

@

1

A;

C3 ¼ K3 ¼
1 0 0
0 0 0
0 0 0

0
@

1
A:

The method finds many real and complex solutions. Taking six steps from the
starting value

að0Þ ¼ 0 0 10ð ÞT ; bð0Þ ¼ 10 50 10ð ÞT :

the method finds the real affine coefficients

a ¼
�0:700525

0:128550
14:046055

0
@

1
A; b ¼

4:608802
70:160636
8:151792

0
@

1
A

which assign the eigenvalues �3
 i;�3
 2i;�3
 3i. Starting instead from

að0Þ ¼ 0 0 0ð ÞT ; bð0Þ ¼ 50 10 10ð ÞT :
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the method takes five steps to find a different solution

a ¼
�0:324894

0:367479
13:164036

0
@

1
A; b ¼

53:234508
13:732452

6:945330

0
@

1
A

which assigns the same eigenvalues.

Example 7.3 Finding the damping matrix. This example is a special case of
Problem 7.1 in which we are given the matrices M and K and we seek the damping
matrix C. More precisely we want to solve

Problem 7.2 Given a symmetric tridiagonal n� n matrix K and a set S ¼
flkg2n

k¼1 of self conjugate scalars such that detðKÞ ¼
Q2n

k¼1 lk; Find a symmetric,

tridiagonal C; n� n; such that rðk2I þ kC þ KÞ is S:

The necessity of detðKÞ ¼
Q2n

k¼1 lk follows from substituting k ¼ 0 in

detðk2I þ kC þ KÞ ¼
Q2n

k¼1ðk� lkÞ. The problem generalizes easily to diagonal
M replacing I.

We use C ¼
P2n�1

k¼1 akCk, with the affine family

Ci ¼ eie
T
i ; i ¼ 1; 2; . . .; n

Cnþi ¼ ðei � eiþ1Þðei � eiþ1ÞT ; i ¼ 1; 2; . . .; n� 1;



As before f ðaÞ is defined by fiðaÞ ¼ det l2
i I þ li

P2n�1
k¼1 akCk þ K

� �
;

i ¼ 1; 2; . . .; 2n� 1 and the Jacobian is now 2n� 1 square

J½ �ij¼
okiðaÞ
oaj

; i; j ¼ 1; 2; . . .; 2n� 1;

with

H ¼ l2
i I þ li

X2n�1

k¼1

akCk þ K and B ¼ l2
i I þ li

X2n�1

j¼1
j6¼k

ajCj þ K:

Example

K ¼
2 �2
�2 9 �4

�4 8

0

@

1

A; C1 ¼
1 0 0
0 0 0
0 0 0

0

@

1

A; C2 ¼
0 0 0
0 1 0
0 0 0

0

@

1

A

C3 ¼
0 0 0
0 0 0
0 0 1

0
@

1
A; C4

1 �1 0
�1 1 0

0 0 0

0
@

1
A; C5 ¼

0 0 0
0 1 �1
0 �1 1

0
@

1
A:
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The starting value að0Þ ¼ ð1; 1; 1; 1; 1ÞT ; finds

a ¼ 0:722105; 2:002012; 0:209320; 1:936412; 2:132404ð ÞT

to an accuracy of 10�15in eight steps. This solution a corresponds to the damping
matrix

C ¼
2:658517 �1:936412
�1:936412 6:070828 �2:132404

�2:132404 2:341724

0

@

1

A

which is such that rðk2I þ kC þ KÞ ¼ f�4
ffiffiffi
2
p

; �
ffiffiffi
2
p

; �1
 i; �1
 2ig.

12.8 Symmetry Preserving Partial Pole Assignment
for the Standard and the Generalized Eigenvalue
Problems

The problem of symmetry preserving pole assignment for the quadratic pencil has
received much attention [6, 11, 12, 24, 25, 26, 34] but remains a considerable
challenge. In this section we describe a pole assignment method for the general-
ized inverse eigenvalue problem which has an explicit solution and which pre-
serves symmetry.

Consider a system modelled by the differential equation

Bx0ðtÞ ¼ AxðtÞ þ buðtÞ; xðtÞ ¼ x0;

with A;B 2 R
n�n, symmetric and b 2 R

n. We seek a single input control uðtÞ ¼
f T xðtÞ � gT x0ðtÞ which is such that the closed loop system

Bþ bgT
� �

x0ðtÞ ¼ Aþ bf T
� �

xðtÞ

has prescribed frequencies. This leads to the linear algebra problem of finding
vectors f ; g which assign part or all of the spectrum of the modified pencil

Aþ bf T
� �

� k Bþ bgT
� �

:

Now, many finite element models lead to real symmetric A;B but rank-one
updates of the form bf T ; bgT destroy symmetry. Furthermore, sometimes (the
control of vibratory systems by passive elements is an example) we need the
closed-loop system to satisfy a reciprocity law: the force at x1 due to a unit
displacement at x2 should equal the force at x2 due to a unit displacement at x1. In
such a case we need to find symmetric controls such as

PcðkÞ ¼ Aþ auuT
� �

� k Bþ buuT
� �

: ð12:24Þ
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It is well known [29] that the eigenvalues k1� k2� � � � � kn, and eigenvectors of

• the symmetric matrix A 2 R
n�n are real and those of

• the real, symmetric definite (B spd) pair A;B are real.

In addition, the eigenvalues of A and those l1� l2� � � � � ln; of Aþ rvvT ;
r ¼ 
1; interlace:

kj� lj� kjþ1; if r ¼ 1 and lj� kj� ljþ1; if r ¼ �1 j ¼ 1; 2; . . .; n

ðknþ1 ¼ lnþ1 ¼ 1Þ. Similarly, the eigenvalues k1� k2� � � � � kn of A� kB and
those l1� l2� � � � � ln, of Aþ auuT � k Bþ buuTð Þ interlace [19]

a=b� l1� k1 if a=b� k1;

kj� lj� kjþ1 if kj� a=b;

kj� lj� a=b� ljþ1� kjþ1 if kj� a=b� kjþ1;

kj� ljþ1� kjþ1 if a=b� kj;

kn� ln� a=b if kn� a=b

9
>>>>>>=

>>>>>>;

j ¼ 1; 2; . . .; n: ð12:25Þ

Thus, only poles which interlace appropriately can be assigned.
Lowner [28] solved the symmetry preserving partial pole assignment for the

standard eigenvalue problem by showing that choosing

û2
i ¼ �

Qn
k¼1ðki � lkÞQn
k¼1
k 6¼i
ðki � kkÞ

; i ¼ 1; 2; . . .; n ð12:26Þ

where, û ¼ QTu, A ¼ QKQT , Q orthogonal, K ¼ diagfk1; k2; . . .; kng, assigns an
appropriately interlacing set of scalars fljgn

j¼1 to the spectrum of Aþ rvvT .
Similarly, there is an explicit formula [16] for the vector u which assigns part or

all of the spectrum of Aþ auuT � k Bþ buuTð Þ.
The method leaves unchanged the eigenvalues not to be replaced, again

ensuring no spillover and only those kj which are to be replaced need to be known.
Our problem is now stated as

Problem 8.1 Given

a. A;B 2 R
n�n, symmetric and B spd with the spectrum of A� kB labelled

k1� k2� k3� � � � � kn;
b. scalars a� 0; b[ 0, a=b 6¼ kj; 8j, and

c. fljg
r
j¼1, r� n which satisfy the interlacing property (12.25)

Find u 2 R
n such that the spectrum of Aþ auuT ;Bþ buuT is

fl1; l2; . . .; lr; krþ1; krþ2; . . .; kng.

Our method uses the secular equation for a symmetric pair of matrices [19]
which we briefly review here.
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Suppose that Y simultaneously diagonalizes A and B with the scaling
YT AY ¼ K ¼ diagfk1; k2; . . .; kng;YTBY ¼ I. If x; l is an eigenpair of (12.24)
then ðAþ auuTÞx ¼ lðBþ buuTÞx and using the substitution û ¼ YTu and Yx̂ ¼
x we quickly get

ðKþ aûûTÞx̂ ¼ lðI þ bûûTÞx̂: ð12:27Þ

Lemma 8.1 Suppose kj are distinct and assume also eT
j û 6¼ 0 and kj 6¼ a=b for

all j. Then, (a) ðlI � KÞ is invertible, (b) l 6¼ a=b; and (c) x̂T û 6¼ 0.

Multiplying (12.27) on the left by xT and rearranging yields a secular equation

for the symmetric pair ða� blÞûTðlI � KÞ�1û ¼ 1 which is sometimes written

componentwise as gðlÞ ¼ 1� ða� blÞ
Pn

j¼1
û2

j

l�kj
¼ 0. The zeros of g are the

eigenvalues of the pencil (12.24) and its poles are the eigenvalues of the pencil
A� kB. Figure 12.1 shows the example secular equation function

gðlÞ ¼ 1� 3 l� 7ð Þ 1=4
1� l

þ 1=9
2� l

þ 1=16
3� l

� �
: ð12:28Þ

The poles, at 1; 2; 3, are the eigenvalues of the original system and the zeros,
approximately 2:9233; 2:0913; 1:4196 are the eigenvalues of the system after rank-
one corrections are added to each of the matrices in the pencil.

Using the secular equation we can devise a symmetry preserving full and partial
pole assignment method for the symmetric definite matrix pair.

Suppose first that we wish to perform a full pole assignment with fljgn
j¼1

appropriately defined. The equations gðljÞ ¼ 0; j ¼ 1; 2; . . .; n can be assembled
into a matrix equation

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

4

6

8

10
λ1 λ2 λ3α/βFig. 12.1 The Secular

equation function gðlÞ of
(12.28)
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1
l1�k1

1
l1�k2

� � � 1
l1�kn

1
l2�k1

1
l2�k2

� � � 1
l2�kn

. . .
1

ln�k1

1
ln�k2

� � � 1
ln�kn

0

BBB@

1

CCCA

û2
1

û2
2

..

.

û2
n

0

BBB@

1

CCCA ¼

1
a�bl1

1
a�bl2

..

.

1
a�bln

;

0

BBBB@

1

CCCCA

in which the Cauchy matrix, C, on the left, has explicit inverse

½C�1�ij ¼
Qn

k¼1ðki � lkÞ
Qn

k¼1ðlj � kkÞ
ðki � ljÞ

Qn
k¼1
k 6¼i
ðki � kkÞ

Qn
k¼1
k 6¼j
ðlj � lkÞ

from which we can quickly get

û2
i ¼

Xn

j¼1

Qn
k¼1ðki � lkÞ

Qn
k¼1ðlj � kkÞ

ðki � ljÞða� bljÞ
Qn

k¼1
k 6¼i
ðki � kkÞ

Qn
k¼1
k 6¼j
ðlj � lkÞ

¼ �
Qn

k¼1ðki � lkÞQn
k¼1
k 6¼i

ðki � kkÞ
Xn

j¼1

Qn
k¼1
k 6¼i
ðlj � kkÞ

ða� bljÞ
Qn

k¼1
k 6¼j

ðlj � lkÞ

¼
Yn

k¼1

ðki � lkÞ
ðblk � aÞ

Yn

k¼1
k 6¼i

ðbkk � aÞ
ðki � kkÞ

; i ¼ 1; 2; . . .; n:

Thus, taking signs into account shows there are 2n different solutions. We note
that computing the û2

i by this explicit formula requires 6nðn� 1Þ�;� operations
and is more economical than the ðn3 þ 6n2 þ 2nÞ=3 operations required to solve
the system numerically. There are, however, numerical considerations which may
make the explicit formula undesirable for certain distributions of the kj and lj.

Partial pole assignment is now straightforward. Suppose that S ¼ fi1; i2; . . .; irg
is a subset of 1; 2; . . .; n; r� n; and that T is the complement of S. Let a; b; fkjgn

1;

and fljgn
1 satisfy the interlacing property (12.25). We set ûi ¼ 0 for all i 2 T and

compute

û2
i ¼

Y

k2S

ðki � lkÞ
ðblk � aÞ

Yn

k2S
k 6¼i

ðbkk � aÞ
ðki � kkÞ

; i 2 S: ð12:29Þ

For each component of û which is zero, the secular equation has one fewer term
and the Cauchy matrix has one fewer row and column.

The numerical properties of this method will be reported elsewhere. While the
tests conducted so far have not been exhaustive, it is clear that the method, even
applied to problems with n ¼ 1; 024 and with assigned eigenvalues placed very
close to the open loop system eigenvalues, can return assigned eigenvalues which
have lost no more than about four decimals of accuracy. However, the distribution
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of the existing and assigned eigenvalues and their respective condition numbers in
the problem will certainly play a important role in determining the accuracy of the
method in a particular case. Based on the test results obtained so far we believe
that the method will produce very accurate assignments for even quite large
systems provided that the point distributions are not pathological.

12.9 Conclusions

Our interest in most of the problems discussed in this paper was motivated by the
study of damped vibrating systems and the control of damped oscillatory systems.
The pole assignment and inverse problems for the symmetric definite linear pencils
have the very useful property that all the eigenpairs in the system are real. Thus,
we have described the solution to an inverse problem for a particular symmetric
definite pair and we have shown how to assign part or all of the spectrum of a
symmetric definite pair while preserving the system’s symmetry.

The eigenpairs of real, symmetric definite quadratic pencils may contain com-
plex elements. This fact considerably complicates the solution of inverse and pole
assignment problems for these pencils. We have described a solution for the inverse
problem of constructing a symmetric, tridiagonal, monic quadratic pencil with two
spectral sets prescribed. We have described methods for pole assignment and partial
eigenstructure assignment in symmetric definite quadratic pencils controlled by
either single or multi-input controls. We have also described symmetry preserving
pole assignment to symmetric definite quadratic pencils by affine methods.

Further work needs to be done on the characterization of those eigendata which,
when assigned, lead to symmetric definite quadratic pencils with the kind of
properties that can be realized in a physical system.
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Chapter 13
Descent Methods for Nonnegative Matrix
Factorization

Ngoc-Diep Ho, Paul Van Dooren and Vincent D. Blondel

Abstract In this paper, we present several descent methods that can be applied to
nonnegative matrix factorization and we analyze a recently developed fast block
coordinate method called Rank-one Residue Iteration (RRI). We also give a
comparison of these different methods and show that the new block coordinate
method has better properties in terms of approximation error and complexity. By
interpreting this method as a rank-one approximation of the residue matrix, we
prove that it converges and also extend it to the nonnegative tensor factorization
and introduce some variants of the method by imposing some additional con-
trollable constraints such as: sparsity, discreteness and smoothness.

13.1 Introduction

Linear algebra has become a key tool in almost all modern techniques for data
analysis. Most of these techniques make use of linear subspaces represented by
eigenvectors of a particular matrix. In this paper, we consider a set of n data points
a1; a2; . . .; an, where each point is a real vector of size m; ai 2 R

m. We then
approximate these data points by linear combinations of r basis vectors ui 2 R

m:
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ai �
Xr

j¼1

vijuj; vij 2 R; uj 2 R
m:

This can be rewritten in matrix form as A � UVT , where ai and ui are
respectively the columns of A and U and the vij’s are the elements of V . Optimal
solutions of this approximation in terms of the Euclidean (or Frobenius) norm can
be obtained by the Singular Value Decomposition (SVD) [11].

In many cases, data points are constrained to a subset of Rm. For example, light
intensities, concentrations of substances, absolute temperatures are, by their nat-
ure, nonnegative (or even positive) and lie in the nonnegative orthant R

m
þ. The

input matrix A then becomes elementwise nonnegative and it is then natural to
constrain the basis vectors vi and the coefficients vij to be nonnegative as well. In
order to satisfy this constraint, we need to approximate the columns of A by the
following additive model:

ai �
Xr

j¼1

vijuj; vij 2 Rþ; uj 2 R
m
þ:

where the vij coefficients and uj vectors are nonnegative, vij 2 Rþ; uj 2 R
m
þ.

Many algorithms have been proposed to find such a representation, which is
referred to as a Nonnegative Matrix Factorization (NMF). The earliest algorithms
were introduced by Paatero [23, 24]. But the topic became quite popular with the
publication of the algorithm of Lee and Seung in 1999 [18] where multiplicative
rules were introduced to solve the problem. This algorithm is very simple and
elegant but it lacks a complete convergence analysis. Other methods and variants
can be found in [15, 19, 20].

The quality of the approximation is often measured by a distance. Two popular
choices are the Euclidean (Frobenius) norm and the generalized Kullback–Leibler
divergence. In this paper, we focus on the Euclidean distance and we investigate
descent methods for this measure. One characteristic of descent methods is their
monotonic decrease until they reach a stationary point. This point maybe located in
the interior of the nonnegative orthant or on its boundary. In the second case, the
constraints become active and may prohibit any further decrease of the distance
measure. This is a key issue to be analyzed for any descent method.

In this paper, Rm
þ denotes the set of nonnegative real vectors (elementwise) and

½v�þ the projection of the vector v on R
m
þ. We use v� 0 and A� 0 to denote

nonnegative vectors and matrices and v [ 0 and A [ 0 to denote positive vectors

and matrices. A � B and ½A�½B� are respectively the Hadamard (elementwise) product

and quotient. A:i and Ai: are the ith column and ith row of A.
This paper is an extension of the internal report [14], where we proposed to

decouple the problem based on rank one approximations to create a new algorithm
called Rank-one Residue Iteration (RRI). During the revision of this report, we
were informed that essentially the same algorithm was independently proposed
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and published in [7] under the name Hierarchical Alternative Least Squares
(HALS). But the present paper gives several additional results wherein the major
contributions are the convergence proof of the method and its extensions to many
practical situations and constraints. The paper also compares a selection of some
recent descent methods from the literature and aims at providing a survey of such
methods for nonnegative matrix factorizations. For that reason, we try to be self-
contained and hence recall some well-known results. We also provide short proofs
when useful for a better understanding of the rest of the paper.

We first give a short introduction of low rank approximations, both uncon-
strained and constrained. In Sect. 13.3 we discuss error bounds of various
approximations and in Sect. 13.4 we give a number of descent methods for
Nonnegative Matrix Factorizations. In Sect. 13.5 we describe the method based on
successive rank one approximations. This method is then also extended to
approximate higher order tensor and to take into account other constraints than
nonnegativity. In Sect. 13.5 we discuss various regularization methods and in Sect.
13.6, we present numerical experiments comparing the different methods. We end
with some concluding remarks.

13.2 Low-Rank Matrix Approximation

Low-rank approximation is a special case of matrix nearness problem [12]. When
only a rank constraint is imposed, the optimal approximation with respect to the
Frobenius norm can be obtained from the Singular Value Decomposition.

We first investigate the problem without the nonnegativity constraint on the
low-rank approximation. This is useful for understanding properties of the
approximation when the nonnegativity constraints are imposed but inactive. We
begin with the well-known Eckart–Young Theorem.

Theorem 2.1 (Eckart–Young) Let A 2 R
m�nðm� n) have the singular value

decomposition

A ¼ PRQT ; R ¼

r1 0 . . . 0
0 r2 . . . 0
..
. ..

. . .
. ..

.

0 0 . . . rn

..

. ..
. ..

.

0 0 . . . 0

0

BBBBBBB@

1

CCCCCCCA

where r1� r2� � � � � rn� 0 are the singular values of A and where P 2 R
m�m

and Q 2 R
n�n are orthogonal matrices. Then for 1� r� n, the matrix
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Ar ¼ PRrQ
T ; Rr ¼

r1 0 . . . 0 . . . 0
0 r2 . . . 0 . . . 0
..
. ..

. . .
. ..

. ..
.

0 0 . . . rr . . . 0
..
. ..

. ..
. . .

. ..
.

0 0 . . . 0 . . . 0

0

BBBBBBB@

1

CCCCCCCA

is a global minimizer of the problem

min
B2Rm�n rankðBÞ� r

1
2
kA	 Bk2

F ð13:1Þ

and its error is

1
2
kA	 Bk2

F ¼
1
2

Xn

i¼rþ1

r2
i :

Moreover, if rr [ rrþ1 then Ar is the unique global minimizer.

The proof and other implications can be found for instance in [11]. The columns
of P and Q are called singular vectors of A, in which vectors corresponding to the
largest singular values are referred to as the dominant singular vectors.

Let us now look at the following modified problem

min
X2Rm�r Y2Rn�r

1
2
kA	 XYTk2

F; ð13:2Þ

where the rank constraint is implicit in the product XYT since the dimensions of X
and Y guarantee that rankðXYTÞ� r. Conversely, every matrix of rank less than r
can be trivially rewritten as a product XYT , where X 2 R

m�r and Y 2 R
n�r.

Therefore Problems (13.1) and (13.2) are equivalent. But even when the product
Ar ¼ XYT is unique, the pairs ðXRT ; YR	1Þ with R invertible, yield the same
product XYT . In order to avoid this, we can always choose X and Y such that

X ¼ PD
1
2 and Y ¼ QD

1
2; ð13:3Þ

where PT P ¼ Ir�r;QT Q ¼ Ir�r and D is r � r nonnegative diagonal matrix. Doing
this is equivalent to computing a compact SVD decomposition of the product
Ar ¼ XYT ¼ PDQT .

As usual for optimization problems, we calculate the gradient with respect to X
and Y and set them equal to 0.

rX ¼ XYTY 	 AY ¼ 0 rY ¼ YXTX 	 ATX ¼ 0: ð13:4Þ

If we then premultiply AT with rX and A with rY , we obtain

ðATAÞY ¼ ðAT XÞYTY ðAATÞX ¼ ðAYÞXTX: ð13:5Þ
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Replacing AT X ¼ YXTX and AY ¼ XYTY into (13.5) yields

ðATAÞY ¼ YXTXYTY ðAATÞX ¼ XYT YXTX: ð13:6Þ

Replacing (13.3) into (13.6) yields

ðAT AÞQD
1
2 ¼ QDPTPDQTQD

1
2 and ðAATÞPD

1
2 ¼ PDQTQDPTPD

1
2:

When D is invertible, this finally yields

ðAT AÞQ ¼ QD2 and ðAATÞP ¼ PD2:

This shows that the columns of P and Q are singular vectors and Dii’s are
nonzero singular values of A. Notice that if D is singular, one can throw away the
corresponding columns of P and Q and reduce it to a smaller-rank approximation
with the same properties. Without loss of generality, we therefore can focus on
approximations of Problem (13.2) which are of exact rank r. We can summarize
the above reasoning in the following theorem.

Theorem 2.2 Let A 2 R
m�nðm [ n and rankðAÞ ¼ t). If Arð1� r� t) is a rank r

stationary point of Problem (13.2), then there exists two orthogonal matrices
P 2 R

m�m and Q 2 R
n�nsuch that:

A ¼ PR̂QT and Ar ¼ PR̂rQ
T

where

R̂ ¼

r̂1 0 . . . 0
0 r̂2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . r̂n

..

. ..
. ..

.

0 0 . . . 0

0

BBBBBBBB@

1

CCCCCCCCA

; R̂r ¼

r̂1 0 . . . 0 . . . 0
0 r̂2 . . . 0 . . . 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . r̂r . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 . . . 0 . . . 0

0

BBBBBBBB@

1

CCCCCCCCA

and the r̂i’s are unsorted singular values of A. Moreover, the approximation
error is:

1
2
kA	 Ark2

F ¼
1
2

Xt

i¼rþ1

r̂2
i :

This result shows that, if the singular values are all different, there are n!
r!ðn	rÞ!

possible stationary points Ar. When there are multiple singular values, there will
be infinitely many stationary points Ar since there are infinitely many singular
subspaces. The next result will identify the minima among all stationary points.
Other stationary points are saddle points whose every neighborhood contains both
smaller and higher points.
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Theorem 2.3 The only minima of Problem (13.2) are given by Theorem 2.1 and
are global minima. All other stationary points are saddle points.

Proof Let us assume that Ar is a stationary point given by Theorem 2.2 but not by
Theorem 2.1. Then there always exists a permutation of the columns of P and Q,

and of the diagonal elements of R̂ and R̂r such that r̂rþ1 [ r̂r. We then construct
two points in the �-neighborhood of Ar that yield an increase and a decrease,
respectively, of the distance measure. They are obtained by taking:

Rrð�Þ ¼

r̂1 þ � . . . 0 . . . 0
..
. . .

. ..
.

. . . ..
.

0 . . . r̂r . . . 0
..
. ..

. ..
. . .

. ..
.

0 . . . 0 . . . 0

0

BBBBB@

1

CCCCCA
; Arð�Þ ¼ PRrð�ÞQT

and

Rrð�Þ ¼

r̂1 . . . 0 0 . . . 0
..
. . .

. ..
. ..

.
. . . ..

.

0 . . . r̂r �
ffiffiffiffiffi
r̂r
p ..

.
0

0 . . . �
ffiffiffiffiffi
r̂r
p

�2 . . . 0

..

. ..
. ..

. ..
. . .

. ..
.

0 0 . . . 0 . . . 0

0

BBBBBBBB@

1

CCCCCCCCA

; Arð�Þ ¼ PRrð�ÞQT :

Clearly Arð�Þ and Arð�Þ are of rank r. Evaluating the distance measure yields

kA	 Arð�Þk2
F ¼ 2r̂r�

2 þ ðr̂rþ1 	 �2Þ2 þ
Xt

i¼rþ2

r̂2
i

¼ �2½�2 	 2ðr̂rþ1 	 r̂rÞ� þ
Xt

i¼rþ1

r̂2
i

\
Xt

i¼rþ1

r̂2
i ¼ kA	 Ark2

F

for all � 2 ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr̂rþ1 	 r̂rÞ

p
Þ and

kA	 Arð�Þk2
F ¼ �2 þ

Xt

i¼rþ1

r̂2
i [

Xt

i¼rþ1

r̂2
i ¼ kA	 Ark2

F

for all �[ 0. Hence, for an arbitrarily small positive �, we obtain

kA	 Arð�Þk2
F\kA	 Ark2

F\kA	 Arð�Þk2
F

which shows that Ar is a saddle point of the distance measure. h
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When we add a nonnegativity constraint in the next section, the results of this
section will help to identify stationary points at which all the nonnegativity con-
straints are inactive.

13.3 Nonnegativity Constraint

In this section, we investigate the problem of Nonnegative Matrix Factorization.
This problem differs Problem (13.2) in the previous section because of the addi-
tional nonnegativity constraints on the factors. We first discuss the effects of
adding such a constraint. By doing so, the problem is no longer easy because of the
existence of local minima at the boundary of the nonnegative orthant. Determining
the lowest minimum among these minima is far from trivial. On the other hand, a
minimum that coincides with a minimum of the unconstrained problem (i.e.
Problem (13.2)) may be easily reached by standard descent methods, as we will
see.

Problem 1 (Nonnegative matrix factorization—NMF) Given a m� n nonnegative
matrix A and an integer r\ minðm; nÞ, solve

min
U2Rm�r

þ V2Rn�r
þ

1
2
kA	 UVTk2

F :

where r is called the reduced rank. From now on, m and n will be used to denote
the size of the target matrix A and r is the reduced rank of a factorization.

We rewrite the nonnegative matrix factorization as a standard nonlinear opti-
mization problem:

min
	U� 0 	V � 0

1
2
kA	 UVTk2

F :

The associated Lagrangian function is

LðU;V ; l; mÞ ¼ 1
2
kA	 UVTk2

F 	 l � U 	 m � V ;

where l and m are two matrices of the same size of U and V , respectively,
containing the Lagrange multipliers associated with the nonnegativity constraints
Uij� 0 and Vij� 0. Then the Karush–Kuhn–Tucker conditions for the nonnegative
matrix factorization problem say that if ðU;VÞ is a local minimum, then there exist
lij� 0 and mij� 0 such that:

U� 0; V � 0; ð13:7Þ
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rLU ¼ 0; rLV ¼ 0; ð13:8Þ

l � U ¼ 0; m � V ¼ 0: ð13:9Þ

Developing (13.8) we have:

AV 	 UVTV 	 l ¼ 0; ATU 	 VUTU 	 m ¼ 0

or

l ¼ 	ðUVTV 	 AVÞ; m ¼ 	ðVUTU 	 AT UÞ:

Combining this with lij� 0; mij� 0 and (13.9) gives the following conditions:

U� 0; V � 0; ð13:10Þ

rFU ¼ UVTV 	 AV � 0; rFV ¼ VUTU 	 ATU� 0; ð13:11Þ

U � ðUVTV 	 AVÞ ¼ 0; V � ðVUT U 	 AT UÞ ¼ 0; ð13:12Þ

where the corresponding Lagrange multipliers for U and V are also the gradient of
F with respect to U and V . Since the Euclidean distance is not convex with respect
to both variables U and V at the same time, these conditions are only necessary.
This is implied because of the existence of saddle points and maxima. We then call
all the points that satisfy the above conditions, the stationary points.

Definition 1 (NMF stationary point) We call ðU;VÞ a stationary point of the
NMF Problem if and only if U and V satisfy the KKT conditions (13.10), (13.11)
and (13.12).

Alternatively, a stationary point ðU;VÞ of the NMF problem can also be defined
by using the following necessary condition (see for example [4]) on the convex
sets R

m�r
þ and R

n�r
þ , that is

rFU

rFV

� �
;

X 	 U
Y 	 V

� �� �
� 0; 8 X 2 R

m�r
þ ; Y 2 R

n�r
þ ; ð13:13Þ

which can be shown to be equivalent to the KKT conditions (13.10), (13.11) and
(13.12). Indeed, it is trivial that the KKT conditions imply (13.13). And by
carefully choosing different values of X and Y from (13.13), one can easily prove
that the KKT conditions hold.

There are two values of reduced rank r for which we can trivially identify the
global solution which are r ¼ 1 and r ¼ minðm; nÞ. For r ¼ 1, a pair of dominant
singular vectors are a global minimizer. And for r ¼ minðm; nÞ; ðU ¼ A;V ¼ IÞ is
a global minimizer. Since most of existing methods for the nonnegative matrix
factorization are descent algorithms, we should pay attention to all local mini-
mizers. For the rank-one case, they can easily be characterized.
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13.3.1 Rank One Case

The rank-one NMF problem of a nonnegative matrix A can be rewritten as

min
u2Rm

þ v2Rn
þ

1
2
kA	 uvTk2

F ð13:14Þ

and a complete analysis can be carried out. It is well known that any pair of
nonnegative Perron vectors of AAT and ATA yields a global minimizer of this
problem, but we can also show that the only stationary points of (13.14) are given
by such vectors. The following theorem excludes the case where u ¼ 0 and/or
v ¼ 0.

Theorem 3.1 The pair ðu; vÞ is a local minimizer of (13.14) if and only if u and v
are nonnegative eigenvectors of AAT and AT A respectively of the eigenvalue

r ¼ kuk2
2kvk

2
2.

Proof The if part easily follows from Theorem 2.2. For the only if part we
proceed as follows. Without loss of generality, we can permute the rows and
columns of A such that the corresponding vectors u and v are partitioned as

ðuþ 0ÞT and ðvþ 0ÞT respectively, where uþ; vþ[ 0. Partition the corresponding
matrix A conformably as follows

A ¼ A11 A12

A21 A22

� �
;

then from (13.11) we have

uþvT
þ 0

0 0

� �
vþ
0

� �
	 A11 A12

A21 A22

� �
vþ
0

� �
� 0

and

vþuT
þ 0

0 0

� �
uþ
0

� �
	 AT

11 AT
21

AT
12 AT

22

� �
uþ
0

� �
� 0

implying that A21vþ � 0 and AT
12uþ � 0. Since A21;A12� 0 and uþ; vþ[ 0, we can

conclude that A12 ¼ 0 and A21 ¼ 0. Then from (13.12) we have:

uþ � ðkvþk2
2uþ 	 A11vþÞ ¼ 0 and vþ � ðkuþk2

2vþ 	 Aþ11uþÞ ¼ 0:

Since uþ; vþ[ 0, we have:

kvþk2
2uþ ¼ A11vþ and kuþk2

2vþ ¼ AT
11uþ

or

kuþk2
2kvþk

2
2uþ ¼ A11AT

11uþ and kuþk2
2kvþk

2
2vþ ¼ AT

11A11vþ:
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Setting r ¼ kuþk2
2kvþk

2
2 and using the block diagonal structure of A yields the

desired result. h

Theorem 3.1 guarantees that all stationary points of the rank-one case are
nonnegative singular vectors of a submatrix of A. These results imply that a global
minimizer of the rank-one NMF can be calculated correctly based on the largest
singular value and corresponding singular vectors of the matrix A.

For ranks other than 1 and minðm; nÞ, there are no longer trivial stationary
points. In the next section, we try to derive some simple characteristics of the local
minima of the nonnegative matrix factorization.

The KKT conditions (13.12) help to characterize the stationary points of the
NMF problem. Summing up all the elements of one of the conditions (13.12), we
get:

0 ¼
X

ij

U � ðUVT V 	 AVÞ
� �

ij

¼ U;UVTV 	 AV
	 


¼ UVT ;UVT 	 A
	 


: ð13:15Þ

From that, we have some simple characteristics of the NMF solutions:

Theorem 3.2 Let ðU;VÞ be a stationary point of the NMF problem, then
UVT 2 B A

2;
1
2kAkF

� �
, the ball centered at A

2 and with radius = 1
2kAkF.

Proof From (13.15) it immediately follows that

A

2
	 UVT ;

A

2
	 UVT

� �
¼ A

2
;
A

2

� �

which implies

UVT 2 B A

2
;
1
2
kAkF

� �
:

h

Theorem 3.3 Let ðU;VÞ be a stationary of the NMF problem, then

1
2
kA	 UVTk2

F ¼
1
2
ðkAk2

F 	 kUVTk2
FÞ:

Proof From (13.15), we have UVT ;Ah i ¼ UVT ;UVTh i. Therefore,

1
2

A	 UVT ;A	 UVT
	 


¼ 1
2
ðkAk2

F 	 2 UVT ;A
	 


þ kUVTk2
FÞ

¼ 1
2
ðkAk2

F 	 kUVTk2
FÞ:

h
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Theorem 3.3 also suggests that at a stationary point ðU;VÞ of the NMF prob-

lem, we should have kAk2
F �kUVTk2

F . This norm inequality can be also found in
[6] for less general cases where we have rFU ¼ 0 and rFV ¼ 0 at a stationary
point. For this particular class of NMF stationary point, all the nonnegativity
constraints on U and Vare inactive. And all such stationary points are also sta-
tionary points of the unconstrained problem, characterized by Theorem 2.2.

We have seen in Theorem 2.2 that, for the unconstrained least-square problem
the only stable stationary points are in fact global minima. Therefore, if the sta-
tionary points of the constrained problem are inside the nonnegative orthant (i.e.
all constraints are inactive), we can then probably reach the global minimum of the
NMF problem. This can be expected because the constraints may no longer pro-
hibit the descent of the update.

Let Ar be the optimal rank-r approximation of a nonnegative matrix A, which
we obtain from the singular value decomposition, as indicated in Theorem 2.2.
Then we can easily construct its nonnegative part ½Ar�þ, which is obtained from Ar

by just setting all its negative elements equal to zero. This is in fact the closest
matrix in the cone of nonnegative matrices to the matrix Ar, in the Frobenius norm
(in that sense, it is its projection on that cone). We now derive some bounds for the
error kA	 ½Ar�þkF .

Theorem 3.4 Let Ar be the best rank r approximation of a nonnegative matrix A,
and let ½Ar�þ be its nonnegative part, then

kA	 ½Ar�þkF �kA	 ArkF :

Proof This follows easily from the convexity of the cone of nonnegative matrices.
Since both A and ½Ar�þ are nonnegative and since ½Ar�þ is the closest matrix in that
cone to Ar we immediately obtain the inequality

kA	 Ark2
F �kA	 ½Ar �þk

2
F þ kAr 	 ½Ar�þk

2
F �kA	 ½Ar�þk

2
F

from which the result readily follows. h

The approximation ½Ar�þ has the merit of requiring as much storage as a rank r
approximation, even though its rank is larger than r whenever Ar 6¼ ½Ar�þ. We will
look at the quality of this approximation in Sect. 13.6. If we now compare this
bound with the nonnegative approximations then we obtain the following
inequalities. Let U
VT


 be an optimal nonnegative rank r approximation of A and
let UVT be any stationary point of the KKT conditions for a nonnegative rank r
approximation, then we have:

kA	 ½Ar�þk
2
F �kA	 Ark2

F ¼
Xn

i¼rþ1

r2
i �kA	 U
V

T

 k

2
F �kA	 UVTk2

F :

For more implications of the NMF problem, see [13].
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13.4 Existing Descent Algorithms

We focus on descent algorithms that guarantee a non increasing update at each
iteration. Based on the search space, we have two categories: Full-space search
and (Block) Coordinate search.

Algorithms in the former category try to find updates for both U and V at the
same time. This requires a search for a descent direction in the ðmþ nÞr-dimen-
sional space. Note also that the NMF problem in this full space is not convex but
the optimality conditions may be easier to achieve.

Algorithms in the latter category, on the other hand, find updates for each
(block) coordinate in order to guarantee the descent of the objective function.
Usually, search subspaces are chosen to make the objective function convex so
that efficient methods can be applied. Such a simplification might lead to the loss
of some convergence properties. Most of the algorithms use the following column
partitioning:

1
2
kA	 UVTk2

F ¼
1
2

Xn

i¼1

kA:;i 	 UðVi;:ÞTk2
2; ð13:16Þ

which shows that one can minimize with respect to each of the rows of V inde-
pendently. The problem thus decouples into smaller convex problems. This leads
to the solution of quadratic problems of the form

min
v� 0

1
2
ka	 Uvk2

2: ð13:17Þ

Updates for the rows of V are then alternated with updates for the rows of U in
a similar manner by transposing A and UVT .

Independent on the search space, most of algorithms use the Projected Gradient
scheme for which three basic steps are carried out in each iteration:

• Calculating the gradient rFðxkÞ,
• Choosing the step size ak,
• Projecting the update on the nonnegative orthant

xkþ1 ¼ ½xk 	 akrFðxkÞ�þ;

where xk is the variable in the selected search space. The last two steps can be
merged in one iterative process and must guarantee a sufficient decrease of the
objective function as well as the nonnegativity of the new point.
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13.4.1 Multiplicative Rules (Mult)

Multiplicative rules were introduced in [18]. The algorithm applies a block
coordinate type search and uses the above column partition to formulate the
updates. A special feature of this method is that the step size is calculated for each
element of the vector. For the elementary problem (13.17) it is given by

vkþ1 ¼ vk 	 ak � rFðvkþ1Þ ¼ vk � ½U
T a�

½UTUvk�

where ½ak�i ¼ vi
½UT Uv�i

. Applying this to all rows of V and U gives the updating rule

of Algorithm 1 to compute

ðU
;V
Þ ¼ argmin
U� 0 V � 0

kA	 UVTk2
F :

These updates guarantee automatically the nonnegativity of the factors but may
fail to give a sufficient decrease of the objective function. It may also get stuck in a
non-stationary point and hence suffer from a poor convergence. Variants can be
found in [20, 22].

13.4.2 Line Search Using Armijo Criterion (Line)

In order to ensure a sufficient descent, the following projected gradient scheme
with Armijo criterion [19, 21] can be applied to minimize

x
 ¼ argmin
x

FðxÞ:

Algorithm 2 needs two parameters r and b that may affect its convergence. It
requires only the gradient information, and is applied in [19] for two different
strategies: for the whole space ðU;VÞ (Algorithm FLine) and for U and V
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separately in an alternating fashion (Algorithm CLine). With a good choice of
parameters (r ¼ 0:01 and b ¼ 0:1) and a good strategy of alternating between
variables, it was reported in [19] to be the faster than the multiplicative rules.

13.4.3 Projected Gradient with First-Order Approximation (FO)

In order to find the solution to

x
 ¼ argmin
x

FðxÞ

we can also approximate at each iteration the function FðXÞ using:

~FðxÞ ¼ FðxkÞ þ rxFðxkÞ; x	 xk
	 


þ L

2
kxk 	 xk2

2;

where L is a Lipshitz constant satisfying FðxÞ� ~FðxÞ; 8x. Because of this
inequality, the solution of the following problem

xkþ1 ¼ argmin
x� 0

~FðxÞ

also is a point of descent for the function FðxÞ since

Fðxkþ1Þ� ~Fðxkþ1Þ� ~FðxkÞ ¼ FðxkÞ:
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Since the constant L is not known a priori, an inner loop is needed. Algorithm 3
presents an iterative way to carry out this scheme. As in the previous algorithm this
also requires only the gradient information and can therefore can be applied to two
different strategies: to the whole space ðU;VÞ (Algorithm FFO) and to U and V
separately in an alternating fashion (Algorithm CFO).

A main difference with the previous algorithm is its stopping criterion for the
inner loop. This algorithm requires also a parameter b for which the practical
choice is 2.

13.4.4 Alternative Least Squares Methods

The first algorithm proposed for solving the nonnegative matrix factorization was
the alternative least squares method [24]. It is known that, fixing either U or V , the
problem becomes a least squares problem with nonnegativity constraint.

Since the least squares problems in Algorithm 4 can be perfectly decoupled into
smaller problems corresponding to the columns or rows of A, we can directly apply
methods for the Nonnegative Least Square problem to each of the small problem.
Methods that can be applied are [5, 17], etc.
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13.4.5 Implementation

The most time-consuming job is the test for the sufficient decrease, which is also
the stopping condition for the inner loop. As mentioned at the beginning of the
section, the above methods can be carried out using two different strategies: full
space search or coordinate search. In some cases, it is required to evaluate
repeatedly the function FðU;VÞ. We mention here how to do this efficiently with
the coordinate search.

Full space search: The exact evaluation of FðxÞ ¼ FðU;VÞ ¼ kA	 UVTk2
F

need OðmnrÞ operations. When there is a correction y ¼ ðU þ DU;V þ DVÞ, we
have to calculate FðyÞ which also requires OðmnrÞ operations. Hence, it requires
OðtmnrÞ operations to determine a stepsize in t iterations of the inner loop.

Coordinate search: when V is fixed, the Euclidean distance is a quadratic
function on U:

FðUÞ ¼ kA	 UVTk2
F ¼hA;Ai 	 2hUVT ;Ai þ hUVT ;UVTi
¼ kAk2

F 	 2hU;AVi þ hU;UðVT VÞi:

The most expensive step is the computation of AV , which requires OðmnrÞ
operations. But when V is fixed, AV can be calculated once at the beginning of the
inner loop. The remaining computations are hU;AVi and hU;UðVT VÞi, which
requires OðnrÞ and Oðnr2 þ nrÞ operations. Therefore, it requires Oðtnr2Þ opera-
tions to determine a stepsize in t iterations of the inner loop which is much less
than OðtmnrÞ operations. This is due to the assumption r � n. Similarly, when U
fixed, Oðtmr2Þ operations are needed to determine a stepsize.

If we consider an iteration is a sweep, i.e. once all the variables are updated, the
following table summarizes the complexity of each sweep of the described algo-
rithms:

where t; t1 and t2 are the number of iterations of inner loops, which can not be
bounded in general. For algorithm ALS, the complexity is reported for the case
where the active set method [17] is used. Although Oð2rmnrÞ is a very high
theorical upper bound that count all the possible subsets of r variables of each

Algorithm Complexity per iteration

Mult OðmnrÞ
FLine OðtmnrÞ
CLine Oðt1nr2 þ t2mr2Þ
FFO OðtmnrÞ
CFO Oðt1nr2 þ t2mr2Þ
ALS Oð2rmnrÞ

IALS OðmnrÞ
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subproblem, in practice, the active set method needs much less iterations to
converge. One might as well use more efficient convex optimization tools to solve
the subproblems instead of the active set method.

13.4.6 Scaling and Stopping Criterion

For descent methods, several stopping conditions are used in the literature. We
now discuss some problems when implementing these conditions for NMF.

The very first condition is the decrease of the objective function. The algorithm
should stop when it fails to make the objective function decrease with a certain
amount:

FðUkþ1;Vkþ1Þ 	 FðUk;VkÞ\� or
FðUkþ1;Vkþ1Þ 	 FðUk;VkÞ

FðUk;VkÞ \�:

This is not a good choice for all cases since the algorithm may stop at a point
very far from a stationary point. Time and iteration bounds can also be imposed for
very slowly converging algorithms. But here again this may not be good for the
optimality conditions. A better choice is probably the norm of the projected gra-
dient as suggested in [19]. For the NMF problem it is defined as follows:

½rP
X�ij ¼

½rX�ij if Xij [ 0
minð0; ½rX �ijÞ if Xij ¼ 0

�

where X stands for U or V . The proposed condition then becomes

rP
Uk

rP
Vk

� �����

����
F

� � rU1

rV1

� �����

����
F

: ð13:18Þ

We should also take into account the scaling invariance between U and V .
Putting �U ¼ cU and �V ¼ 1

cV does not change the approximation UVT but the

above projected gradient norm is affected:

rP
�U

rP
�V

 !�����

�����

2

F

¼krP
�Uk

2
F þ krP

�Vk
2
F ¼

1
c2
krP

Uk
2
F þ c2krP

Vk
2
F

6¼
rP

U

rP
V

 !�����

�����

2

F

: ð3:19Þ

Two approximate factorizations UVT ¼ �U �VT resulting in the same approxi-
mation should be considered equivalent in terms of precision. One could choose
c2 :¼ krP

UkF=krP
VkF , which minimizes (13.19) and forces krP

�UkF ¼ krP
�VkF, but

this may not be a good choice when only one of the gradients krP
�UkF and krP

�VkF

is nearly zero.
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In fact, the gradient
rU

rV

� �
is scale dependent in the NMF problem and any

stopping criterion that uses gradient information is affected by this scaling. To
limit that effect, we suggest the following scaling after each iteration:

~Uk  UkDk ~Vk  VkD	1
k

where Dk is a positive diagonal matrix:

½Dk�ii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kV:ik2

kU:ik2

s

:

This ensures that k~U:ik2
F ¼ k~V:ik2

F and hopefully reduces also the difference

between krP
~U
k2

F and krP
~V
k2

F . Moreover, it may help to avoid some numerically
unstable situations.

The same scaling should be applied to the initial point as well ðU1;V1Þ when
using (13.18) as the stopping condition.

13.5 Rank-One Residue Iteration

In the previous section, we have seen that it is very appealing to decouple the
problem into convex subproblems. But this may ‘‘converge’’ to solutions that are
far from the global minimizers of the problem.

In this section, we analyze a different decoupling of the problem based on rank
one approximations. This also allows us to formulate a very simple basic sub-
problem. This scheme has a major advantage over other methods: the subproblems
can be optimally solved in closed form. Therefore it can be proved to have a strong
convergence results through its damped version and it can be extended to more
general types of factorizations such as for nonnegative tensors and to some
practical constraints such as sparsity and smoothness. Moreover, the experiments
in Sect. 13.6 suggest that this method outperforms the other ones in most cases.
During the completion of the revised version of this report, we were informed that
an independent report [9] had also proposed this decoupling without any con-
vergence investigation and extentions.

13.5.1 New Partition of Variables

Let the ui’s and vi’s be respectively the columns of U and V . Then the NMF
problem can be rewritten as follows:

Problem 2 (Nonnegative Matrix Factorization) Given a m� n nonnegative
matrix A, solve
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min
ui� 0 vi � 0

1
2

A	
Xr

i¼1

uiv
T
i

�����

�����

2

F

:

Let us fix all the variables, except for a single vector vt and consider the
following least squares problem:

min
v� 0

1
2
kRt 	 utv

Tk2
F; ð13:20Þ

where Rt ¼ A	
P

i 6¼t uivT
i . We have:

kRt 	 utv
Tk2

F ¼ trace ðRt 	 utv
TÞTðRt 	 utv

TÞ
 �

ð13:21Þ

kRt 	 utv
Tk2

F ¼ kRtk2
F 	 2vT RT

t ut þ kutk2
2kvk

2
2: ð13:22Þ

From this formulation, one now derives the following lemma.

Lemma 5.1 If ½RT
t ut�þ 6¼ 0, then v
 :¼ ½R

T
t ut �þ
kutk2

2
is the unique global minimizer of

(13.20) and the function value equals kRtk2
F 	

k½RT
t ut �þk

2
2

kutk2
2
:

Proof Let us permute the elements of the vectors x :¼ RT
t ut and v such that

Px ¼ x1

x2

� �
; Pv ¼ v1

v2

� �
; with x1� 0; x2\0

and P is the permutation matrix. Then

kRt 	 utv
Tk2

F ¼ kRtk2
F 	 2vT

1 x1 	 2vT
2 x2 þ kutk2

2ðvT
1 v1 þ vT

2 v2Þ:

Since x2\ 0 and v2� 0, it is obvious that kRt 	 utvTk2
F can only be minimal

if v2 ¼ 0. Our assumption implies that x1 is nonempty and x1 [ 0. Moreover

½RT
t ut�þ 6¼ 0 and ut � 0 imply kutk2

2 [ 0, one can then find the optimal v1 by
minimizing the remaining quadratic function

kRtk2
F 	 2vT

1 x1 þ kutk2
2vT

1 v1

which yields the solution v1 ¼ x1

kutk2
2
. Putting the two components together yields the

result

v
 ¼
½RT

t ut�þ
kutk2

2

and kRt 	 utv
T

 k

2
F ¼ kRtk2

F 	
k½RT

t ut�þk
2
2

kutk2
2

:

h
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Remark 1 The above lemma has of course a dual form, where one fixes vt but solves

for the optimal u to minimize kRt 	 uvT
t k

2
F . This would yield the updating rules

vt  
½RT

t ut�þ
kutk2

2

and ut  
½Rtvt�þ
kvtk2

2

ð13:23Þ

which can be used to recursively update approximations
Pr

i¼1 uivT
i by modifying

each rank-one matrix utvT
t in a cyclic manner. This problem is different from the

NMF, since the error matrices Rt ¼ A	
P

i 6¼t uivT
i are no longer nonnegative. We

will therefore call this method the Rank-one Residue Iteration (RRI), i.e. Algo-
rithm 5. The same algorithm was independently reported as Hierarchical Alter-
nating Least Squares (HALS) [7].

Remark 2 In case where ½RT
t ut�þ ¼ 0, we have a trivial solution for v ¼ 0 that is

not covered by Lemma 5.1. In addition, if ut ¼ 0, this solution is no longer unique.
In fact, v can be arbitrarily taken to construct a rank-deficient approximation. The
effect of this on the convergence of the algorithm will be discussed further in the
next section.

Remark 3 Notice that the optimality of Lemma 5.1 implies that kA	 UVTk can
not increase. And since A� 0 fixed, UVT � 0 must be bounded. Therefore, its
component uivt

iði ¼ 1. . .rÞ must be bounded as well. One can moreover scale the
vector pairs ðui; viÞ at each stage as explained in Sect. 13.4 without affecting the
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local optimality of Lemma 5.1. It then follows that the rank one products uivT
i and

their scaled vectors remain bounded.

13.5.2 Convergence

In the previous section, we have established the partial updates for each of the
variable ui or vi. And for a NMF problem where the reduced rank is r, we have in
total 2r vector variables (the ui’s and vi’s). The described algorithm can be also
considered as a projected gradient method since the update (13.23) can be
rewritten as:

ut  
½Rtvt�þ
kvtk2

2

¼
½ðA	

P
i 6¼t uivT

i Þvt�þ
kvtk2

2

¼
½ðA	

P
i uivT

i þ utvT
t Þvt�þ

kvtk2
2

¼
½ðA	

P
i uivT

i Þvt þ utvT
t vt�þ

kvtk2
2

¼ ut 	
1

kvtk2
2

rut

" #

þ

:

Similarly, the update for vi can be rewritten as

vt  vt 	
1

kutk2
2

rvt

" #

þ

:

Therefore, the new method follows the projected gradient scheme described in
the previous section. But it produces the optimal solution in closed form. For each
update of a column vt (or ut), the proposed algorithm requires just a matrix–vector
multiplication RT

t ut (or Rtvt), wherein the residue matrix Rt ¼ A	
P

i6¼t uivT
i does

not have to be calculated explicitly. Indeed, by calculating RT
t ut (or Rtvt) from

AT ut (or Avt) and
P

i6¼t viðuT
i utÞ (or

P
i 6¼t uiðvT

i vtÞ), the complexity is reduced from

Oðmnr þ mnÞ to only O mnþ ðmþ nÞðr 	 1Þð Þ which is majored by OðmnÞ. This
implies that the complexity of each sweep through the 2r variables ut’s and vt’s
requires only OðmnrÞ operations, which is equivalent to a sweep of the multipli-
cative rules and to an inner loop of any gradient methods. This is very low since
the evaluation of the whole gradient requires already the same complexity.

Because at each step of the 2r basic steps of Algorithm 5, we compute an
optimal rank-one nonnegative correction to the corresponding error matrix Rt the
Frobenius norm of the error can not increase. This is a reassuring property but it
does not imply convergence of the algorithm.

Each vector ut or vt lies in a convex set Ut � R
m
þ or Vt � R

n
þ. Moreover,

because of the possibility to include scaling we can set an upper bound for kUk
and kVk, in such a way that all the Ut and Vt sets can be considered as closed
convex. Then, we can use the following Theorem 5.1, to prove a stronger con-
vergence result for Algorithm 5.
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Theorem 5.1 Every limit point generated by Algorithm 1 is a stationary point.

Proof We notice that, if ut ¼ 0 and vt ¼ 0 at some stages of Algorithm 5, they
will remain zero and no longer take part in all subsequent iterations. We can divide
the execution of Algorithm 1 into two phases.

During the first phase, some of the pairs ðut; vtÞ become zero. Because there are
only a finite number (2r) of such vectors, the number of iterations in this phase is
also finite. At the end of this phase, we can rearrange and partition the matrices U
and V such that

U ¼ ðUþ 0Þ and V ¼ ðVþ 0Þ;

where Uþ and Vþ do not have any zero column. We temporarily remove zero
columns out of the approximation.

During the second phase, no column of Uþ and Vþ becomes zero, which
guarantees the updates for the columns of Uþ and Vþ are unique and optimal.

Moreover, 1
2kA	

Pr
i¼1 uivT

i k
2
F is continuously differentiable over the set

U1 � � � � � Ur � V1 � � � � � Vr, and the Ui’s and Vi’s are closed convex. A direct
application of Proposition 2.7.1 in [4] proves that every stationary point ðU
þ;V
þÞ
is a stationary point. It is then easy to prove that if there are zero columns removed
at the end of the first phase, adding them back yields another stationary point:
U
 ¼ ðU
þ 0Þ and V
 ¼ ðV
þ 0Þ of the required dimension. However, in this case,
the rank of the approximation will then be lower than the requested dimension r.

h

In Algorithm 5, variables are updated in this order: u1; v1; u2; v2; . . .. We can
alternate the variables in a different order as well, for example u1; u2; . . .; urv1;
v2; . . .; vr; . . .. Whenever this is carried out in a cyclic fashion, the Theorem 5.1
still holds and this does not increase the complexity of each iteration of the
algorithm.

As pointed above, stationary points given by Algorithm 5 may contain useless
zero components. To improve this, one could replace utvT

t ð 0Þ by any nonneg-
ative rank-one approximation that reduces the norm of the error matrix. For
example, the substitution

ut ¼ ei
 vt ¼ ½RT
t ut�þ; ð13:24Þ

where i
 ¼ argmaxik½RT
t ei�þk

2
2, reduces the error norm by k½RT

t ei�þk
2
2 [ 0 unless

Rt� 0. These substitutions can be done as soon as ut and vt start to be zero. If we
do these substitutions in only a finite number of times before the algorithm starts to
converge, Theorem 5.1 still holds. In practice, only a few such substitutions in
total are usually needed by the algorithm to converge to a stationary point without
any zero component. Note that the matrix rank of the approximation might not be
r, even when all ut’s and vt’s (t ¼ 1. . .r) are nonzero.

A possibly better way to fix the problem due to zero components is to use the
following damped RRI algorithm in which we introduce new 2r dummy variables
wi 2 Ui and zi 2 Vi, where i ¼ 1. . .r. The new problem to solve is:
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Problem 3 (Damped Nonnegative Matrix Factorization)

min
ui � 0 vi � 0
wi � 0 zi � 0

1
2
kA	

Xr

i¼1

uiv
T
i k

2
F þ

w
2

X

i

kui 	 wik2
2 þ

w
2

X

i

kvi 	 zik2
2;

where the damping factor w is a positive constant.

Again, the coordinate descent scheme is applied with the cyclic update order:
u1;w1; v1; z1; u2;w2; v2; z2; . . . to result in the following optimal updates for
ut; vt;wt and zt:

ut ¼
½Rtvt�þ þ wwt

kvtk2
2 þ w

; wt ¼ ut; vt ¼
½RT

t ut�þ þ wzt

kutk2
2 þ w

and zt ¼ vt ð13:25Þ

where t ¼ 1. . .r. The updates wt ¼ ut and zt ¼ vt can be integrated in the updates
of ut and vt to yield Algorithm 6. We have the following results:

Theorem 5.2 Every limit point generated by Algorithm 6 is a stationary point of
NMF Problem 2.

Proof Clearly the cost function in Problem 3 is continuously differentiable over
the set U1 � � � � � Ur � U1 � � � � � Ur � V1 � � � � � Vr � V1 � � � � � Vr; and the

Ui’s and Vi’s are closed convex. The uniqueness of the global minimum of the
elementary problems and a direct application of Proposition 2.7.1 in [4] prove that
every limit point of Algorithm 6 is a stationary point of Problem 3.

Moreover, at a stationary point of Problem 3, we have ut ¼ wt and
vt ¼ zt; t ¼ 1. . .r. The cost function in Problem 3 becomes the cost function of the
NMF Problem 2. This implies that every stationary point of Problem 3 yields a
stationary point of the standard NMF Problem 2. h

This damped version not only helps to eliminate the problem of zero compo-
nents in the convergence analysis but may also help to avoid zero columns in the
approximation when w is carefully chosen. But it is not an easy task. Small values
of w provide an automatic treatment of zeros while not changing much the updates
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of RRI. Larger values of w might help to prevent the vectors ut and vt ðt ¼ 1. . .r)
from becoming zero too soon. But too large values of w limit the updates to only
small changes, which will slow down the convergence.

In general, the rank of the approximation can still be lower than the requested
dimension. Patches may still be needed when a zero component appears. There-
fore, in our experiments, using the undamped RRI Algorithm 5 with the substi-
tution (13.24) is still the best choice.

13.5.3 Variants of the RRI Method

We now extend the Rank-one Residue Iteration by using a factorization of the type
XDYT where D is diagonal and nonnegative and the columns of the nonnegative
matrices X and Y are normalized. The NMF formulation then becomes

min
xi2Xi yi2Yidi2Rþ

1
2

A	
Xr

i¼1

dixiy
T
i

�����

�����

2

F

;

where Xi’s and Yi’s are sets of normed vectors.
The variants that we present here depend on the choice of Xi’s and Yi’s. A

generalized Rank-one Residue Iteration method for low-rank approximation is
given in Algorithm 7. This algorithm needs to solve a sequence of elementary
problems of the type:

max
s2S

yTs ð13:26Þ

where y 2 R
n and S � R

n is a set of normed vectors. We first introduce a per-
mutation vector Iy ¼ ði1 i2 . . . inÞ which reorders the elements of y in non-
increasing order: yik � yikþ1 ; k ¼ 1. . .ðn	 1Þ. The function pðyÞ returns the number
of positive entries of y.
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Let us first point out that for the set of normed nonnegative vectors the solution
of problem (13.26) is given by s
 ¼ yþ

kyþk2
. It then follows that Algorithm 7 is

essentially the same as Algorithm 5 since the solutions vi and ui of each step of
Algorithm 7, given by (13.23), correspond exactly to those of problem (13.26) via
the relations yi ¼ ui=kuik2; yi ¼ vi=kvik2 and di ¼ kuik2kvik2.

Below we list the sets for which the solution s
 of (13.26) can be easily
computed.

• Set of normed vectors: s ¼ y
kyk2

. This is useful when one wants to create fac-

torizations where only one of the factor U or V is nonnegative and the other is
real matrix.

• Set of normed nonnegative vectors: s ¼ yþ
kyþk2

.

• Set of normed bounded nonnegative vectors fsg: where 0� li� si� pi. The
optimal solution of (13.26) is given by:

s ¼ max l; min p;
yþ
kyþk2

� �� �
:

• Set of normed binary vectors fsg: where s ¼ b
kbk and b 2 f0; 1gn. The optimal

solution of (13.26) is given by:

½s
�it
¼

1ffiffiffiffi
k

p if t� k


0 otherwise

�
where k
 ¼ argmax

k

Pk
t¼1 yitffiffiffi

k
p :

• Set of normed sparse nonnegative vectors: all normed nonnegative vectors
having at most K nonzero entries. The optimal solution for (13.26) is given by
norming the following vector p


½p
�it
¼ yit if t� minðpðyÞ;KÞ

0 otherwise

�

• Set of normed fixed-sparsity nonnegative vectors: all nonnegative vectors s a
fixed sparsity, where

sparsityðsÞ ¼
ffiffiffi
n
p
	 ksk1=ksk2ffiffiffi

n
p
	 1

:

The optimal solution for (13.26) is given by using the projection scheme
in [15].

One can also imagine other variants, for instance by combining the above ones.
Depending on how data need to be approximated, one can create new algorithms
provided it is relatively simple to solve problem (13.26). There have been some
particular ideas in the literatures such as NMF with sparseness constraint
[15], Semidiscrete Matrix Decomposition [16] and Semi-Nonnegative Matrix
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Factorization [9] for which variants of the above scheme can offer an alternative
choice of algorithm.

Remark Only the first three sets are the normed version of a closed convex set, as
required for the convergence by Theorem 5.1. Therefore the algorithms might not
converge to a stationary point with the other sets. However, the algorithm always
guarantees a non-increasing update even in those cases and can therefore be
expected to return a good approximation.

13.5.4 Nonnegative Tensor Factorization

If we refer to the problem of finding the nearest nonnegative vector to a given
vector a as the nonnegative approximation in one dimension, the NMF is its
generalization in two dimensions and naturally, it can be extended to even higher-
order tensor approximation problems. Algorithms described in the previous section
use the closed form solution of the one dimensional problem to solve the two-
dimensional problem. We now generalize this to higher orders. Since in one
dimension such an approximation is easy to construct, we continue to use this
approach to build the solutions for higher order problems.

For a low-rank tensor, there are two popular kinds of factored tensors, namely
those of Tucker and Kruskal [2]. We only give an algorithm for finding approx-
imations of Kruskal type. It is easy to extend this to tensors of Tucker type, but this
is omitted here.

Given a d dimensional tensor T , we will derive an algorithm for approximating
a nonnegative tensor by a rank-r nonnegative Kruskal tensor S 2 R

n1�n2�����nd
þ

represented as a sum of r rank-one tensors:

S ¼
Xr

i¼1

riu1iHu2iH � � �Hudi

where ri 2 Rþ is a scaling factor, uti 2 R
nt
þ is a normed vector (i.e. kutik2 ¼ 1) and

aHb stands for the outer product between two vectors or tensors a and b.
The following update rules are the generalization of the matrix case to the

higher order tensor:

y ¼ ð. . .ðð. . .ðRku1kÞ. . .uðt	1ÞkÞuðtþ1ÞkÞ. . .Þudk ð13:27Þ

rk ¼ k½y�þk2; utk ¼
½y�þ
rk
; ð13:28Þ

where Rk ¼ T 	
P

i 6¼k riu1iHu2iH � � �Hudi is the residue tensor calculated without

the kth component of S and Rkuij is the ordinary tensor/vector product in the
corresponding dimension.
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We can then produce an algorithm which updates in a cyclic fashion all vectors
uji. This is in fact a direct extension to Algorithm 5, one can carry out the same
discussion about the convergence here to guarantee that each limit point of this
algorithm is a stationary point for the nonnegative tensor factorization problem
and to improve the approximation quality.

Again, as we have seen in the previous section, we can extend the procedure to
take into account different constraints on the vectors uij such as discreteness,
sparseness, etc.

The approach proposed here is again different from that in [8] where a similar
cascade procedure for multilayer nonnegative matrix factorization is used to
compute a 3D tensor approximation. Clearly, the approximation error will be
higher than our proposed method, since the cost function is minimized by taking
into account all the dimensions.

13.5.5 Regularizations

The regularizations are common methods to cope with the ill-posedness of inverse
problems. Having known some additional information about the solution, one may
want to imposed a priori some constraints to algorithms, such as: smoothness,
sparsity, discreteness, etc. To add such regularizations in to the RRI algorithms, it
is possible to modify the NMF cost function by adding some regularizing terms.
We will list here the update for ui’s and vi’s when some simple regularizations are
added to the original cost function. The proofs of these updates are straight-
forward and hence omitted.

• One-Norm k:k1 regularization: the one-norm of the vector variable can be added
as a heuristic for finding a sparse solution. This is an alternative to the fixed-
sparsity variant presented above. The regularized cost function with respect to
the variable vt will be

1
2
kRt 	 utv

Tk2
F þ bkvk1; b [ 0

where the optimal update is given by

v
t ¼ ½
RT

t ut 	 b1n � 1�þ
kutk2

2

The constant b [ 0 can be varied to control the trade-off between the

approximation error 1
2kRt 	 utvTk2

F and kvk1. From this update, one can see that
this works by zeroing out elements of RT

t ut which are smaller than b, hence
reducing the number of nonzero elements of v
t .
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• Smoothness regularization kv	 Bv̂tk2
F : where v̂t is the current value of vt and

the matrix B helps to calculate the average of the neighboring elements at each
element of v. When v is a 1D smooth function, B can be the following n� n
matrix:

B ¼

0 1 . . . . . . 0
1
2 0 1

2 . . . 0

..

. . .
. . .

. . .
. ..

.

0 . . . 1
2 0 1

2
0 . . . 0 1 0

0
BBBBB@

1
CCCCCA
: ð13:29Þ

This matrix can be defined in a different way to take the true topology of v into
account, for instance v ¼ vecðFÞ where F is a matrix. The regularized cost
function with respect to the variable vt will be

1
2
kRt 	 utv

Tk2
F þ

d
2
kv	 Bv̂tk2

F ; d [ 0

where the optimal update is given by

v
t ¼
½RT

t ut þ dBv̂t�þ
kutk2

2 þ d
:

The constant d� 0 can be varied to control the trade-off between the

approximation error 1
2kRt 	 utvTk2

F and the smoothness of vt at the fixed point.
From the update, one can see that this works by searching for the optimal
update v
t with some preference for the neighborhood of Bv̂i, i.e., a smoothed
vector of the current value v̂t.

The two above regularizations can be added independently to each of the
columns of U and/or V . The trade-off factor b (or d) can be different for each
column. A combination of different regularizations on a column (for instance vt)
can also be used to solve the multi-criterion problem

1
2
kRt 	 utv

Tk2
F þ

c
2
kvk2

2 þ
d
2
kv	 Bv̂tk2

F ; b; c; d[ 0

where the optimal update is given by

v
t ¼
½RT

t ut 	 b1n�1 þ dBv̂t�þ
kutk2

2 þ d
:

The one-norm regularizations as well as the two-norm regularization can be
found in [1, 3]. A major difference with that method is that the norm constraints is
added to the rows rather than on the columns of V or U as done here. However, for
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the two versions of the one-norm regularization, the effects are somehow similar.
While the two-norm regularization on the columns of U and V are simply scaling
effects, which yield nothing in the RRI algorithm. We therefore only test the
smoothness regularization at the end of the chapter with some numerical generated
data.

For more extensions and variants, see [13].

13.6 Experiments

Here we present several experiments to compare the different descent algorithms
presented in this paper. For all the algorithms, the scaling scheme proposed in
Sect. 13.4 was applied.

13.6.1 Random Matrices

We generated 100 random nonnegative matrices of different sizes. We used seven
different algorithms to approximate each matrix:

• the multiplicative rule (Mult),
• alternative least squares using Matlab function lsqnonneg (ALS),
• a full space search using line search and Armijo criterion (FLine),
• a coordinate search alternating on U and V , and using line search and Armijo

criterion (CLine),
• a full space search using first-order approximation (FFO),
• a coordinate search alternating on U and V , and using first-order approximation

(CFO)
• an iterative rank-one residue approximation (RRI).

For each matrix, the same starting point is used for every algorithm. We create
a starting point by randomly generating two matrices U and V and then rescaling
them to yield a first approximation of the original matrix A as proposed in Sect.
13.4:

U ¼ UD
ffiffiffi
a
p

; V ¼ VD	1 ffiffiffi
a
p

;

where

a :¼ A;UVTh i
UVT ;UVTh i and Dij ¼

ffiffiffiffiffiffiffiffiffi
kV:ik2
kU:ik2

q
if i ¼ j

0 otherwise

(
:

From (13.15), we see that when approaching a KKT stationary point of the
problem, the above scaling factor a! 1. This implies that every KKT stationary
point of this problem is scale-invariant.
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The algorithms are all stopped when the projected gradient norm is lower than �
times the gradient norm at the starting point or when it takes more than 45 s. The
relative precisions � are chosen equal to 10	2; 10	3; 10	4, 10	5; 10	6. No limit was
imposed on the number of iterations.

For alternative gradient algorithms CLine and CFO, we use different precisions
�U and �V for each of the inner iteration for U and for V as suggested in [19] where
�U and �V are initialized by 10	3. And when the inner loop for U or V needs no
iteration to reach the precision �U or �V , one more digit of precision will be added
into �U or �V (i.e. �U ¼ �U=10 or �V ¼ �V=10).

Table 13.1 shows that for all sizes and ranks, Algorithm RRI is the fastest to
reach the required precision. Even though it is widely used in practice, algorithm
Mult fails to provide solutions to the NMF problem within the allocated time. A
further investigation shows that the algorithm gets easily trapped in boundary
points where some Uij and/or Vij is zero while rUij and/or rVij is negative, hence
violating one of the KKT conditions (13.11). The multiplicative rules then fail to
move and do not return to a local minimizer. A slightly modified version of this
algorithm was given in [20], but it needs to wait to get sufficiently close to such
points before attempting an escape, and is therefore also not efficient. The ALS
algorithm can return a stationary point, but it takes too long.

We select five methods: FLine, CLine, FFO, CFO and RRI for a more detailed
comparison. For each matrix A, we run these algorithms with 100 different starting
points. Figures 13.1, 13.2, 13.3 and 13.4 show the results with some different
settings. One can see that, when the approximated errors are almost the same
between the algorithms, RRI is the best overall in terms of running times. It is
probably because the RRI algorithm chooses only one vector ut or vt to optimize at
once. This allows the algorithm to move optimally down on partial direction rather
than just a small step on a more global direction. Furthermore, the computational
load for an update is very small, only one matrix–vector multiplication is needed.
All these factors make the running time of the RRI algorithm very attractive.

13.6.2 Image Data

The following experiments use the Cambridge ORL face database as the input data.
The database contains 400 images of 40 persons (10 images per person). The size of
each image is 112� 92 with 256 gray levels per pixel representing a front view of
the face of a person. The images are then transformed into 400 ‘‘face vectors’’ in
R

10;304ð112� 92 ¼ 10; 304) to form the data matrix A of size 10; 304� 400. We
used three weight matrices of the same size of A (ie. 10; 304� 400). Since it was
used in [18], this data has become the standard benchmark for NMF algorithms.

In the first experiment, we run six NMF algorithms described above on this data
for the reduced rank of 49. The original matrix A is constituted by transforming
each image into one of its column. Figure 13.5 shows for the six algorithms the
evolution of the error versus the number of iterations. Because the minimization
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Table 13.1 Comparison of average successful running time of algorithms over 100 random
matrices

� Mult ALS FLine CLine FFO CFO RRI

ðm ¼ 30; n ¼ 20; r ¼ 2Þ

10	2 0:02ð96Þ 0:40 0:04 0:02 0:02 0:01 0:01

10	3 0:08ð74Þ 1:36 0:12 0:09 0:05 0:04 0:03

10	4 0:17ð71Þ 2:81 0:24 0:17 0:11 0:08 0:05

10	5 0:36ð64Þ 4:10 0:31 0:25 0:15 0:11 0:07

10	6 0:31ð76Þ 4:74 0:40 0:29 0:19 0:15 0:09

ðm ¼ 100; n ¼ 50; r ¼ 5Þ

10	2 45 
 ð0Þ 3:48 0:10 0:09 0:09 0:04 0:02

10	3 45 
 ð0Þ 24:30ð96Þ 0:59 0:63 0:78 0:25 0:15

10	4 45 
 ð0Þ 45 
 ð0Þ 2:74 2:18 3:34 0:86 0:45

10	5 45 
 ð0Þ 45 
 ð0Þ 5:93 4:06 6:71 1:58 0:89

10	6 45 
 ð0Þ 45 
 ð0Þ 7:23 4:75 8:98 1:93 1:30

ðm ¼ 100; n ¼ 50; r ¼ 10Þ

10	2 45 
 ð0Þ 11:61 0:28 0:27 0:18 0:11 0:05

10	3 45 
 ð0Þ 41:89ð5Þ 1:90 2:11 1:50 0:74 0:35

10	4 45 
 ð0Þ 45 
 ð0Þ 7:20 5:57 5:08 2:29 1:13

10	5 45 
 ð0Þ 45 
 ð0Þ 12:90 9:69 10:30 4:01 1:71

10	6 45 
 ð0Þ 45 
 ð0Þ 14:62ð99Þ 11:68ð99Þ 13:19 5:26 2:11

ðm ¼ 100; n ¼ 50; r ¼ 15Þ

10	2 45 
 ð0Þ 25:98 0:66 0:59 0:40 0:20 0:09

10	3 45 
 ð0Þ 45 
 ð0Þ 3:90 4:58 3:18 1:57 0:61

10	4 45 
 ð0Þ 45 
 ð0Þ 16:55ð98Þ 13:61ð99Þ 9:74 6:12 1:87

10	5 45 
 ð0Þ 45 
 ð0Þ 21:72ð97Þ 17:31ð92Þ 16:59ð98Þ 7:08 2:39

10	6 45 
 ð0Þ 45 
 ð0Þ 25:88ð89Þ 19:76ð98Þ 19:20ð98Þ 10:34 3:66

ðm ¼ 100; n ¼ 100; r ¼ 20Þ

10	2 45 
 ð0Þ 42:51ð4Þ 1:16 0:80 0:89 0:55 0:17

10	3 45 
 ð0Þ 45 
 ð0Þ 9:19 8:58 10:51 5:45 1:41

10	4 45 
 ð0Þ 45 
 ð0Þ 28:59ð86Þ 20:63ð94Þ 29:89ð69Þ 12:59 4:02

10	5 45 
 ð0Þ 45 
 ð0Þ 32:89ð42Þ 27:94ð68Þ 34:59ð34Þ 18:83ð90Þ 6:59

10	6 45 
 ð0Þ 45 
 ð0Þ 37:14ð20Þ 30:75ð60Þ 36:48ð8Þ 22:80ð87Þ 8:71

ðm ¼ 200; n ¼ 100; r ¼ 30Þ

10	2 45 
 ð0Þ 45 
 ð0Þ 2:56 2:20 2:68 1:31 0:44

10	3 45 
 ð0Þ 45 
 ð0Þ 22:60ð99Þ 25:03ð98Þ 29:67ð90Þ 12:94 4:12

10	4 45 
 ð0Þ 45 
 ð0Þ 36:49ð2Þ 39:13ð13Þ 45 
 ð0Þ 33:33ð45Þ 14:03

10	5 45 
 ð0Þ 45 
 ð0Þ 45 
 ð0Þ 39:84ð2Þ 45 
 ð0Þ 37:60ð6Þ 21:96ð92Þ
10	6 45 
 ð0Þ 45 
 ð0Þ 45 
 ð0Þ 45 
 ð0Þ 45 
 ð0Þ 45 
 ð0Þ 25:61ð87Þ

Time limit is 45 s. 0:02ð96Þ means that a result is returned with the required precision � within
45 s for 96 (of 100) matrices of which the average running time is 0:02 s. 45 
 ð0Þ: failed in all
100 matrices
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process is different in each algorithm, we will say that one iteration corresponds to
all elements of both U and V being updated. Figure 13.6 shows the evolution of
the error versus time. Since the work of one iteration varies from one algorithm to
another, it is crucial to plot the error versus time to get a fair comparison between
the different algorithms. In the two figures, we can see that the RRI algorithm
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behaves very well on this dataset. And since its computation load of each iteration
is small and constant (without inner loop), this algorithm converges faster than the
others.
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In the second experiment, we construct a third-order nonnegative tensor
approximation. We first build a tensor by stacking all 400 images to have a
112� 92� 400 nonnegative tensor. Using the proposed algorithm, a rank-142
nonnegative tensor is calculated to approximate this tensor. Figure 13.7 shows the
result for six images chosen randomly from the 400 images. Their approximations
given by the rank-142 nonnegative tensor are much better than that given by
the rank-8 nonnegative matrix, even though they require similar storage space:

Fig. 13.5 NMF: error vs. iterations

Fig. 13.6 NMF: error vs. time
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8 
 ð112 
 92þ 400Þ ¼ 85632 and 142 
 ð112þ 92þ 400Þ ¼ 85768. The rank-8
truncated SVD approximation (i.e. ½A8�þ) is also included for reference.

In the third experiment, we apply the variants of RRI algorithm mentioned in
Sect. 13.5 to the face databases. The following settings are compared:

Original: original faces from the databases.
49NMF: standard factorization (nonnegative vectors), r ¼ 49.
100Binary: columns of U are limited to the scaled binary vectors, r ¼ 100.
49Sparse10: columns of U are sparse. Not more than 10% of the elements of each

column of A are positive. r ¼ 49.
49Sparse20: columns of U are sparse. Not more than 20% of the elements of each

column of A are positive. r ¼ 49.
49HSparse60: columns of U are sparse. The Hoyer sparsity of each column of U

are 0:6. r ¼ 49.
49HSparse70: columns of U are sparse. The Hoyer sparsity of each column of U

are 0:7: r ¼ 49.

Fig. 13.7 Tensor factorization vs. matrix factorization on facial data. Six randomly chosen
images from 400 of ORL dataset. From top to bottom: original images, their rank-8 truncated
SVD approximation, their rank-142 nonnegative tensor approximation (150 RRI iterations) and
their rank-8 nonnegative matrix approximation (150 RRI iterations)
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49HBSparse60: columns of U are sparse. The Hoyer sparsity of each column of U
are 0:6. Columns of V are scaled binary. r ¼ 49.

49HBSparse70: columns of U are sparse. The Hoyer sparsity of each column of U
are 0:7. Columns of V are scaled binary. r ¼ 49.

For each setting, we use RRI algorithm to compute the corresponding factor-
ization. Some randomly selected faces are reconstructed by these settings as shown

Fig. 13.8 Nonnegative matrix factorization with several sparse settings
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in Fig. 13.8. For each setting, RRI algorithm produces a different set of bases to
approximate the original faces. When the columns of V are constrained to scaled
binary vectors (100Binary), the factorization can be rewritten as UVT ¼ ÛBT ,
where B is a binary matrix. This implies that each image is reconstructed by just
the presence or absence of 100 bases shown in Fig. 13.9.

Figures 13.10 and 13.11 show nonnegative bases obtained by imposing some
sparsity on the columns of V . The sparsity can be easily controlled by the per-
centages of positive elements or by the Hoyer sparsity measure.

Fig. 13.9 Bases from 100Binary setting
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Fig. 13.10 Sparse bases 49Sparse20 and 49Sparse10. Maximal percentage of positive elements
is 20% (a) and 10% (b)

Fig. 13.11 Hoyer sparse bases 49HSparse60 and 49HSparse70. Sparsity of bases is 0:6 (a) and
0:7 (b)
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Figure 13.12 combines the sparsity of the bases (columns of U) and the binary
representation of V . The sparsity is measured by the Hoyer measure as in
Fig. 13.11. Only with the absence or presence of these 49 features, faces are
approximated as showed in the last two rows of Fig. 13.8.

The above examples show how to use the variants of the RRI algorithm to
control the sparsity of the bases. One can see that the sparser the bases are, the less
storage is needed to store the approximation. Moreover, this provides a part-based
decomposition using local features of the faces.

13.6.3 Smooth Approximation

We carry out this experiment to test the new smoothness constraint introduced in
the previous section:

1
2
kRi 	 uiv

Tk2
F þ

d
2
kv	 Bv̂ik2

F ; d [ 0

where B is defined in (13.29).
We generate the data using four smooth nonnegative functions f1, f2; f3 and f4,

described in Fig. 13.13, where each function is represented as a nonnegative vector
of size 200.

We then generate a matrix A containing 100 mixtures of these functions as
follows

Fig. 13.12 Hoyer sparse bases 49HBSparse60 and 49HBSparse70. Sparsity of bases is (a) and
0.7 (b). V is binary matrix
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A ¼ maxðFET þ N; 0Þ

where F ¼ ½f1 f2 f3 f4�;E is a random nonnegative matrix and N is normally dis-
tributed random noise with kNkF ¼ 0:2kFETkF . Four randomly selected columns
of A are plotted in Fig. 13.14.
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Fig. 13.14 Randomly selected generated data
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We run the regularized RRI algorithm to force the smoothness of columns of U.
We apply, for each run, the same value of d for all the columns of
U : d ¼ 0; 10; 100. The results obtained through these runs are presented in
Fig. 13.15. We see that, without regularization, i.e. d ¼ 0, the noise is present in
the approximation, which produces nonsmooth solutions. When increasing the
regularizing terms, i.e. d ¼ 10; 100, the reconstructed functions become smoother
and the shape of the original functions are well preserved.

This smoothing technique can be used for applications like that in [27], where
smooth spectral reflectance data from space objects is unmixed. The multiplicative
rules are modified by adding the two-norm regularizations on the factor U and V to
enforce the smoothness. This is a different approach, therefore, a comparison
should be carried out.

We have described a new method for nonnegative matrix factorization that has
a good and fast convergence. Moreover, it is also very flexible to create variants
and to add some constraints as well. The numerical experiments show that this
method and its derived variants behave very well with different types of data. This
gives enough motivations to extend to other types of data and applications in the
future.
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Fig. 13.15 Original functions vs. reconstructed functions
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13.7 Conclusion

This paper focuses on the descent methods for Nonnegative Matrix Factorization,
which are characterized by nonincreasing updates at each iteration.

We present also the Rank-one Residue Iteration algorithm for computing an
approximate Nonnegative Matrix Factorization. It uses recursively nonnegative
rank one approximations of a residual matrix that is not necessarily nonnegative.
This algorithm requires no parameter tuning, has nice properties and typically
converges quite fast. It also has many potential extensions. During the revision of
this report, we were informed that essentially the same algorithm was published in
an independent contribution [7] and also mentioned later in an independent per-
sonal communication [10].
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Chapter 14
A Computational Method for Symmetric
Stein Matrix Equations

K. Jbilou and A. Messaoudi

Abstract In the present paper, we propose a numerical method for solving the
sparse symmetric Stein equation AXAT � X þ BBT ¼ 0: Such problems appear in
control problems, filtering and image restoration. The proposed method is a Krylov
subspace method based on the global Arnoldi algorithm. We apply the global
Arnoldi algorithm to extract low-rank approximate solutions to Stein matrix
equations. We give some theoretical results and report some numerical experi-
ments to show the effectiveness of the proposed method.

14.1 Introduction

In this paper, we present a numerical Krylov subspace method for solving the Stein
(discrete-time Lyapunov) matrix equation

AXAT � X þ BBT ¼ 0 ð14:1Þ

where A is an n� n real and sparse matrix, X 2 IRn�n and B 2 IRn�s with
rankðBÞ ¼ s and s� n:
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We assume throughout this paper that kiðAÞkjðAÞ 6¼ 1 for all i; j ¼ 1; . . .; n
(kiðAÞ denotes the ith eigenvalue of the matrix A) and this condition ensures that
the solution X of the problem (1) exists and is unique.

Lyapunov and discrete-time Lyapunov equation play a crucial role in linear
control and filtering theory for continuous or discrete-time large-scale dynamical
systems and other problems; see [3–5, 14, 15, 20, 23] and the references therein.
They also appear in each step of Newton’s method for discrete-time algebraic
Riccati equations [8, 13]. Equation (14.1) is also referred to as discrete-time
Lyapunov equation.

Direct methods for solving the matrix equation (14.1) such as those proposed in
[1] are attractive if the matrices are of small size. These methods are based on the
Bartels-Stewart algorithm [2] or on the Hessenberg-Schur method [7].

Iterative methods such as the squared Smith method [6, 16, 21] have been
proposed for dense Stein equations. All of these methods compute the solution in
dense form and hence require Oðn2Þ storage and Oðn3Þ operations. Notice that the
matrix equation (14.1) can be formulated as an n2 � n2 large linear system using
the Kronecker formulation ðA� A� In2ÞvecðXÞ ¼ �vecðBBTÞ where � denotes

the Kronecker product; ðF � D ¼ ½fi;jD�Þ; vecðXÞ is the vector of IRn2
formed by

stacking the columns of the matrix X and In is the identity matrix of order n� n:
Krylov subspace methods could be used to solve the above linear system. How-
ever, for large problems this approach is very expensive and doesn’t take into
account the low rank of the right hand side.

The observability Go and controllability Gg Gramians of the discrete-time linear
time-invariant (LTI) system

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ
yðkÞ ¼ DxðkÞ; k ¼ 0; 1; . . .

are the solutions of the Stein equations

ATGoA� Go þ DTD ¼ 0

and

AGgAT � Gg þ BBT ¼ 0

where the input uð�Þ 2 IRs and the output yð�Þ 2 IRq:
In many applications, n is quite large while the number of inputs s and outputs

q usually satisfy s; q� n:
The Gramians of LTI systems play an important role in many analysis and

design problems for LTI systems such as model reduction, the computation of the
Hankel norm or H2-norm of the system; see [4, 20, 23]. The problem of model
reduction is to produce a low dimensional LTI system that will have approxi-
mately the same response as the original system to any given input u:
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Recently, several schemes using Krylov subspace methods have been devel-
oped to produce low-rank approximate solution to Lyapunov and discrete-time
Lyapunov equations with low-rank right hand sides [9, 10, 12, 18, 22].

If the symmetric Stein equation (14.1) is Schur stable, that is if qðAÞ\1; where
qðAÞ denotes the spectral radius of A; then (14.1) has a unique solution X given by
[13]:

X ¼
X1

i¼0

AiBBTATi
:

In this paper, we present a new Krylov subspace approach to solve the prob-
lem (14.1). The proposed method takes advantage of the low-rank structure of
(14.1) to obtain low-rank approximate solutions in factored form. Our algorithm
uses a Galerkin projection method and is based on the global Arnoldi algorithm
[11].

The remainder of the paper is organized as follows: In Sect. 14.2, we review the
global Arnoldi algorithm. In Sect. 14.3, new expressions of the exact solution of
the matrix equation (14.1) are given. Section 14.4 is devoted to the Stein global
Arnoldi method. The new method is developed and some theoretical results are
given. In Sect. 14.5 we give some numerical examples to show the effectiveness of
the proposed method for large sparse problems.

Throughout this paper we use the following notations. For two matrices X and Y
in IRn�s; we define the inner product hX; YiF ¼ traceðXTYÞ: The associated norm
is the Frobenius norm or F-norm denoted by k:kF : A system of vectors (matrices)
of IRn�s is said to be F-orthonormal if it is orthonormal with respect to h:; :iF : The
matrices In and On will denote the n� n identity and the null matrices respec-
tively. Finally, for a matrix Z; kZk2 will denote the 2-norm of Z:

14.2 The Global Arnoldi Algorithm

The global Arnoldi algorithm [11] constructs an F-orthonormal basis
V1;V2; . . .;Vm of the matrix Krylov subspace KmðA;BÞ; i.e.,

hVi;VjiF ¼ 0 for i 6¼ j; i; j ¼ 1; . . .;m and

hVi;ViiF ¼ 1:

We recall that the minimal polynomial P (scalar polynomial) of A with respect to
B 2 IRn�s is the nonzero monic polynomial of lowest degree such that PðAÞB ¼ 0:
The degree p of this polynomial is called the grade of B and we have p� n:

The modified global Arnoldi algorithm is described as follows:
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Basically, the global Arnoldi algorithm is the standard Arnoldi algorithm
applied to the matrix pair ðA; bÞ where A ¼ Is � A and b ¼ vecðBÞ: When s ¼ 1;
Algorithm 1 reduces to the classical Arnoldi algorithm [17]. The global Arnoldi
algorithm breaks down at step j if and only if hjþ1;j ¼ 0 and in this case an
invariant subspace is obtained. However, a near breakdown may occur when a
subspace is A-invariant to machine precision (when, for some j; hjþ1;j is close to
zero). We note that the global Arnoldi algorithm generates an F-orthonormal basis
of the matrix Krylov subspace KmðA;V1Þ 	 Mn;s whereMn;s is the space of real
matrices having dimension n� s:

Let us now introduce some notations: Vm denotes the n� ms matrix Vm ¼
½V1; . . .;Vm�:~Hm is the ðmþ 1Þ � m upper Hessenberg matrix whose entries hi;j are
defined by Algorithm 1 and Hm is the m� m matrix obtained from ~Hm by deleting
its last row.

With Vm and Hm defined above, and using the Kronecker product �; the
following relation is satisfied [11]

AVm ¼ VmðHm � IsÞ þ hmþ1;mVmþ1ET
m ð14:2Þ

and
AVm ¼ Vmþ1ð~Hm � IsÞ ð14:3Þ

where ET
m ¼ ½0s; . . .; 0s; Is� and Vmþ1 ¼ ½Vm;Vmþ1�: Note that k Vi kF¼ 1; i ¼

1; . . .;m and k Vm kF¼
ffiffiffiffi
m
p

:
We have the following properties [11].

Proposition 1 Let pðp� nÞ be the degree of the minimal polynomial of A with
respect to V1; then the following statements are true.

1. The matrix Krylov subspace KpðA;V1Þ is invariant under A and KmðA;V1Þ is of
dimension m if and only if p is greater than m� 1:

2. The global Arnoldi algorithm will stop at step m if and only if m ¼ p:
3. For m� p; fV1;V2; . . .;Vmg is an F-orthonormal basis of the matrix Krylov

subspace KmðA;V1Þ:
4. AVp ¼ VpðHp � IsÞ:
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14.3 Expressions for the Exact Solution of the Stein Equation

In this section we will give new expressions for the solution X of the Stein
equation (14.1). If we assume that kiðAÞkjðAÞ 6¼ 1; for i ¼ 1; . . .; n and j ¼
1; . . .; n; where kiðAÞ denotes the ith eigenvalue of A; then the solution X of the Eq.
(14.1) exists and is unique. Let P be the minimal polynomial of A with respect to B
of degree p:

PðAÞB ¼
Xp

i¼0

aiA
iB ¼ 0; ap ¼ 1:

Associated with the polynomial P; we define the p� p companion matrix K

K ¼

0 1 0 . . . 0
..
. . .

. . .
. . .

. ..
.

..

. . .
. . .

.
0

0 . . . . . . 0 1
�a0 . . . . . . �ap�2 �ap�1

2
666664

3
777775
;

M denotes the following matrix

M ¼ ½B;AB; . . .;Ap�1B�:

Remark that, if Is denotes the identity matrix of IRs�s; then we have

AM ¼ MðKT � IsÞ: ð14:4Þ

Next, involving the minimal polynomial of A for B; we give a closed-form finite
series representation of the solution X of the Eq. (14.1).

Theorem 1.1 The unique solution X of (14.1) has the following representation

X ¼
Xp

j¼1

Xp

i¼1

ci;jA
i�1BBTðATÞj�1; ð14:5Þ

where the matrix C ¼ ðci;jÞ1� i;j� p is the solution of

KTCK � Cþ e1eT
1 ¼ 0; ð14:6Þ

and e1 denotes the first vector of the canonical basis of IRp:

Proof Remark first that since the eigenvalues of K are eigenvalues of A; we have
kiðKÞkjðKÞ 6¼ 1 for all i; j ¼ 1; . . .; p and this implies that equation (6) has a unique
solution. Let Y be the following matrix:
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Y ¼
Xp

j¼1

Xp

i¼1

ci;jA
i�1BBTðATÞj�1;

where C solves the low-order Stein equation (14.6). Then Y can also be expressed
as

Y ¼ ½B;AB; . . .;Ap�1B�ðC� IsÞ

BT

BT AT

..

.

BTðATÞp�1

2
66664

3
77775

¼ MðC� IsÞMT :

Let us show that the matrix Y is a solution of the Stein equation (14.1). Using the
relation (14.4) we obtain

AYAT ¼ AMðC� IsÞMTAT

¼ MðKT � IsÞðC� IsÞðK � IsÞMT

¼ MðKTCK � IsÞMT :

On the other hand, since

B ¼ ½B;AB;A2B; . . .;Ap�1B�½Is;Os; . . .;Os�T

we have

BBT ¼ ½B;AB; . . .;Ap�1B�ðe1 � IsÞðeT
1 � IsÞ½B;AB; . . .;Ap�1B�T

¼ Mðe1eT
1 � IsÞMT :

Then

AYAT � Y þ BBT ¼ MðKTCK � IsÞMT �MðC� IsÞMT þMðe1eT
1 � IsÞMT

¼ MðKTCK � IsÞ � ðC� IsÞ þ ðe1eT
1 � IsÞMT

¼ M½ðKTCK � Cþ e1eT
1 Þ � Is�MT :

Therefore, since C solves the low-order Stein equation (14.6), we obtain AYAT �
Y þ BBT ¼ 0: As the Eq. (14.1) has a unique solution it follows that X ¼ Y which
completes the proof.

The following result states that the solution X of (14.1) can be expressed in
terms of the blocks V1; . . .;Vp:

Theorem 1.2 Let p be the grade of B and let Vp be the matrix defined by
Vp ¼ ½V1; . . .;Vp�; where the matrices V1; . . .;Vp are constructed by the global
Arnoldi algorithm with V1 ¼ B= k B kF : Then the unique solution X of (14.1) can
be expressed as:

300 K. Jbilou and A. Messaoudi



X ¼ VpðĈ� IsÞVT
p ; ð14:7Þ

where Ĉ is the solution of the low-order Stein equation:

HpĈHT
p � Ĉþ kBk2

Fe1eT
1 ¼ 0: ð14:8Þ

Proof Notice that the eigenvalues of Hp are eigenvalues of A; then kiðHpÞkjðHpÞ 6¼ 1

for all i; j ¼ 1; . . .; p and this ensures that Eq. (14.8) has a unique solution Ĉ:Let Y be

the matrix defined by Y ¼ VpðĈ� IsÞVT
p : Then by substituting Y in (14.1) and using

the relations:

B ¼ kBkFVpðe1 � IsÞ; BBT ¼ kBk2
FVpðe1eT

1 � IsÞVT
p

and

AVp ¼ VpðHp � IsÞ;

we obtain

AYAT � Y þ BBT ¼ Vp½ðHpĈHT
p � Ĉþ kBk2

Fe1eT
1 Þ � Is�VT

p :

As Ĉ solves the low-order Stein equation (14.8), we get

AYAT � Y þ BBT ¼ 0:

Therefore, using the fact that the solution of (14.1) is unique, it follows that X ¼ Y:

14.4 The Stein Global Arnoldi Method

Following the results of Theorem 1.2, we will see how to extract low-rank
approximations to the solution X of (14.1). Since the exact solution is given by the
expressions (14.7) and (14.8), the approximate solution Xm that we will consider is
defined by

Xm ¼ VmðYm � IsÞVT
m ð14:9Þ

where Ym is the symmetric m� m matrix satisfying the low-dimensional Stein
equation

HmYmHT
m � Ym þ kBk2

Fe1eT
1 ¼ 0 ð14:10Þ

with e1 ¼ ð1; 0; . . .; 0ÞT 2 IRm:
From now on, we assume that for increasing m; qðHmÞ\1 which ensures that

(14.10) has a unique solution Ym: For the solution of the projected problem (14.10),
we have the following result
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Theorem 1.3 Assume that k A k2 \1; then 8m
 1; the projected Stein matrix
equation (14.10) has a unique solution.

Proof Notice first that if k A k2 \1 then qðAÞ\1 which implies that the Stein

matrix equation (14.1) has a unique solution. Let kðmÞ1 be the largest (in modulus)

eigenvalue of the matrix Hm and let aðmÞ1 denote it’s largest singular value. Then

using the Weyl’s inequalities [24], it is known that j kðmÞ1 j\aðmÞ1 : On the other

hand, it was shown in [19] that aðmÞ1 � k A k2 : Therefore as k A k2 \1; it follows
that qðHmÞ\1 which implies that the projected Stein matrix equation has a unique
solution.

The low-dimensional Stein equation (14.10) will be solved by a standard direct
method such as the Hessenberg-Schur method [1, 7]. Note that, at step m; the
method proposed in [10], which is based on the block Arnoldi algorithm, yields a
reduced order Stein equation of dimension ms� ms while the projected Eq.
(14.10) is of dimension m� m: In [10], it was addressed that rank degradation is
often observed in the block Arnoldi process and this leads to equations of
dimension strictly smaller than ms:

Next, we give an upper bound for the residual norm that can be used to stop the
iterations in the Stein global Arnoldi algorithm without having to compute extra
products involving the matrix A: We first give the following lemma to be used
later.

Lemma 1 Let Vm ¼ ½V1; . . .;Vm�; where V1; . . .;Vm are the matrices generated by
Algorithm 1. Let Z ¼ ½zi;j� be a matrix in IRm�r and let G ¼ ½gi;j� be a matrix of
IRms�q where r and q are any integers. Then we have

kVmðZ � IsÞkF ¼ kZkF ; ð14:11Þ

and

kVmGkF �kGkF : ð14:12Þ

Proof If z:;j; j ¼ 1; . . .; r; denotes the jth column of the matrix Z; we have

VmðZ � IsÞ ¼ Vm½z:;1 � Is; . . .; z:;r � Is�
¼ ½Vmðz:;1 � IsÞ; . . .;Vmðz:;r � IsÞ�:

As fV1; . . .;Vmg is F-orthonormal, it results that

k Vmðz:;j � IsÞ k2
F ¼k

Xm

i¼1

zi;jVi k2
F

¼
Xm

i¼1

j zi;j j2

¼k z:;j k2
2; j ¼ 1; . . .; r;
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and then

k VmðZ � IsÞ k2
F ¼

Xr

j¼1

Xm

i¼1

j zi;j j2

¼k Z k2
F :

We express the matrix VmG as VmG ¼ ½Vmg:1; . . .;Vmg:;q� where g:;j is the jth
column of G: For j ¼ 1; . . .; q; the vector Vmg:;j can be written as follows

Vmg:;j ¼
Xm

i¼1

Vi

gði�1Þsþ1;j

..

.

gis;j

0
B@

1
CA:

Now, since kVikF ¼ 1 for i ¼ 1; . . .;m; we obtain

kVmg:;jk2
F �

Xm

i¼1

gði�1Þsþ1;j

..

.

gis;j

0

BB@

1

CCA

��������

��������

2

2

¼ kg:;jk2
2; j ¼ 1; . . .; q:

Therefore

kVmGk2
F ¼

Xq

j¼1

kVmg:;jk2
2

�kGk2
F :

In the following theorem, we give an upper bound for the residual norm.

Theorem 1.4 Let Xm be the approximate solution obtained, at step m; by the Stein
global Arnoldi algorithm and let RðXmÞ ¼ AXmAT � Xm þ BBT be the corre-
sponding residual. Then

kRðXmÞkF � hmþ1;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kHm ~Ymk2

2 þ h2
mþ1;mð~Y

ðmÞ
m Þ2

q
; ð14:13Þ

where ~Ym is the last column of the matrix Ym and ~YðmÞm denotes the last component
of ~Ym:

Proof At step m; the residual RðXmÞ is written as

RðXmÞ ¼ AVmðYm � IsÞVT
mAT � VmðYm � IsÞVT

m þ BBT :
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Using the relations (14.2)–(14.3) and the fact that Em ¼ em � Is; we obtain

RðXmÞ ¼ Vmþ1
HmYmHT

m � Ym þ kBk2
Fe1eT

1 hmþ1;mHmYmem

hmþ1;meT
mYmHT

m h2
mþ1;meT

mYmem

� �
� Is

� �
VT

mþ1:

Invoking (14.10) it follows that

kRðXmÞk2
F ¼ Vmþ1

0 hmþ1;mHmYmem

hmþ1;meT
mYmHT

m h2
mþ1;meT

mYmem

� �
� Is

� �
VT

mþ1

����

����
2

F

:

Now, using the relation (14.12) of Lemma 1, we get

kRðXmÞk2
F �

0 hmþ1;mHmYmem

hmþ1;meT
mYmHT

m h2
mþ1;meT

mYmem

� �
� Is

� �
VT

mþ1

����

����
2

F

:

On the other hand, we set

Z ¼ 0 hmþ1;mHmYmem

hmþ1;meT
mYmHT

m h2
mþ1;meT

mYmem

� �
;

and

am ¼ ðZ � IsÞVT
mþ1

�� ��2

F
:

Note that am is also expressed as

am ¼ Vmþ1ðZ � IsÞk k2
F :

Then, setting G ¼ Z � Is and applying (14.11) we obtain

am ¼k Z k2
F

¼ 2 hmþ1;mHmYmem

�� ��2

2
þðh2

mþ1;meT
mYmemÞ2

¼ 2h2
mþ1;m HmYmemk k2

2þðh2
mþ1;meT

mYmemÞ2

¼ h2
mþ1;m 2 Hm ~Ym

�� ��2

2
þh2

mþ1;mð~Y ðmÞm Þ
2

h i
:

Therefore

kRðXmÞk2
F � h2

mþ1;mf2kHm ~Ymk2
2 þ h2

mþ1;mð~Y ðmÞm Þ
2g:

The result of Theorem 1.4 allows us to compute an upper bound for the residual
norm without computing the residual which requires the construction of the
approximation Xm and two matrix-matrix products. This provides a useful stopping
criterion in a practical implementation of the algorithm.
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The Stein global Arnoldi algorithm is summarized as follows:

Remarks As m increases, the computation of Ym becomes expensive. To avoid
this, the procedure above introduces a parameter k1; to be chosen, such that the
low-order Stein equation is solved every k1 iterations. Note also that, when con-
vergence is achieved, the computed approximate solution Xm is stored as the
product of smaller matrices. The next perturbation result shows that the approxi-
mation Xm is an exact solution of a perturbed Stein equation.

Theorem 1.5 Assume that, at step m; the matrix Vm is of full rank. Then the
approximate solution of (14.1) solves the following Stein equation:

ðA� DmÞXmðA� DmÞT � Xm þ BBT ¼ 0; ð14:14Þ

where Dm ¼ hmþ1;mVmþ1ET
mVþm and Vþm ¼ ðVT

mVmÞ�1VT
m is the pseudo-inverse of

the matrix Vm:

Proof Applying the Kronecker product to (14.10), we obtain

ðHm � IsÞðYm � IsÞðHT
m � IsÞ � ðYm � IsÞ þ kBk2

Fðe1 � IsÞðeT
1 � IsÞ ¼ 0: ð14:15Þ

Multiplying (14.15) on the right by VT
m; on the left by Vm and using (14.2) we get

½AVm � hmþ1;mVmþ1ET
m�ðYm � IsÞ½AVm � hmþ1;mVmþ1ET

m�
T � VmðYm � IsÞVT

m

þ kBk2
FVmðe1 � IsÞðeT

1 � IsÞVT
m

¼ 0:

Now, using the fact that Vmðe1 � IsÞ ¼ V1 and Xm ¼ VmðYm � IsÞVT
m; we obtain

ðA� DmÞXmðA� DmÞT � Xm þ BBT ¼ 0:

The next result gives an upper bound for the Frobenius norm of the error X � Xm

where X is the exact solution of (14.1).
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Theorem 1.6 Assume that m steps of Algorithm 2 have been run. Let Xm be the
obtained approximate solution of (14.1). If kAk2\1; then we have

kX � Xmk2� hmþ1;m
2kHm ~Ymk2 þ jhmþ1;m ~Y ðmÞm j

1� kAk2
2

;

where ~Ym is the last column of Ym (the solution of the low-order problem (14.10))

and ~Y ðmÞm denotes the last component of ~Ym:

Proof Remark first that kAk2\1 implies that qðAÞ\1 which insures that the Stein
matrix equation (14.1) has a unique solution. The matrix equation (14.14) can be
expressed as

AXmAT � Xm þ BBT ¼ Lm; ð14:16Þ

where

Lm ¼ AXmDT
m þ DmXmAT � DmXmDT

m:

Subtracting (14.16) from the initial Stein equation (14.1), we get

AðX � XmÞAT � ðX � XmÞ þ Lm ¼ 0:

Now, as qðAÞ\1; the error X � Xm can be written as

X � Xm ¼
X1

i¼0

AiLmðAiÞT :

Hence

k X � Xm k2 � k Lm k2

X1

i¼0

kAk2i
2

� k Lm k2
1

1� kAk2
2

:

Invoking (14.9) and (14.2), Lm is given by

Lm ¼ hmþ1;mVmðHmYmem � IsÞVT
mþ1

þ hmþ1;mVmþ1ðeT
mYmHT

m � IsÞVT
m

þ h2
mþ1;mVmþ1ðeT

mYmem � IsÞVT
mþ1;

therefore

k Lm k2 � k Lm kF

� 2hmþ1;m k VmðHmYmem � IsÞVT
mþ1 kF

þ h2
mþ1;m k Vmþ1ðeT

mYmem � IsÞVT
mþ1 kF :
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On the other hand, as Vmþ1 is F-orthonormal, we have k VT
mþ1 kF ¼ 1: Using the

relation (14.11), we get k VmðHmYmem � IsÞ kF ¼k HmYmem kF and finally, as
eT

mYmem is a scalar it follows that k Vmþ1ðeT
mYmem � IsÞ kF ¼j eT

mYmem j and then
the result follows.

In Table 14.1, we listed the major work, at each iteration m; used for the Stein
block and global Arnoldi algorithms. In addition to matrix-vector products the
Stein block Arnoldi algorithm requires the application of the modified Gram-
Schmidt process on matrices of dimension n� s and the solution of Stein equa-
tions of order at most ms:

14.5 Numerical Examples

All the experiments were performed on a computer of Intel Pentium processor at
1.6 GHz and 3 GBytes of RAM using Matlab 7.4. The matrix test A was divided
by k A k1 : The entries of the matrix B were random values uniformly distributed
on [0 1]. The starting block V1 is V1 ¼ B=k B kF :

Example 1 For the first experiment, we compared the effectiveness of the
Stein global Arnoldi algorithm with the fixed point iteration method defined as
follows:

X0 ¼ BBT ; A0 ¼ AXmþ1 ¼ AmXmAT
m þ Xm and Amþ1 ¼ A2

m; m ¼ 0; 1; . . . :

This method is known as the Squared Smith Method (SQSM) (see [6, 21]). For this
experiment, the matrix A was the matrix test PDE900 (n ¼ 900 and
nnzðAÞ ¼ 4380) from the Harwell Boeing collection. We used s ¼ 4 and k1 ¼ 1:

We compared the CPU-time (in seconds) used for convergence with the two
methods. For the SQSM method, the iterations were stopped when the F-norm of
the residual Rm ¼ AXmAT � Xm þ BBT is less than some tolerance tol ¼ 10�12 and
for the Stein global Arnoldi algorithm, the iterations were stopped when the upper
bound rm for the residual norm is less than 10�12: The results are reported in
Table 14.2.

Table 14.1 Costs for Stein global Arnoldi and Stein block Arnoldi algorithms

Cost Stein block Arnoldi Stein global Arnoldi

Matrix-vector sðmþ 1Þ sðmþ 1Þ
Mult. of blocks n� s and s� s m(m ? 1)/2
n-vector DOT mðmþ 1Þs2=2 mðmþ 1Þs=2
MGS on n� s blocks m
Solving low-order Stein equation Oðm4s3Þ Oðm4Þ
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Example 2 The matrix A is generated from the 5-point discretization of the
operator

LðuÞ ¼ Du� f1ðx; yÞ
ou

ox
� f2ðx; yÞ

ou

oy
� gðx; yÞu

on the unit square ½0; 1� � ½0; 1� with homogeneous Dirichlet boundary conditions.
We set f1ðx; yÞ ¼ x2; f2ðx; yÞ ¼ ey and gðx; yÞ ¼ xy: The dimension of the matrix A
is n ¼ n2

0 where n0 is the number of inner grid points in each direction.

Experiment 2.1 For this experiment, we set n ¼ 900 and s ¼ 4: In Fig. 14.1 (left),
we plotted the true residual norm (solid-line) and the upper bound (dotted-line)
given by Theorem 1.4, versus the number of iterations. We also plotted the norm
of the error (solid-line) and the corresponding upper bound (dashed-line) given by
Theorem 1.6. For this small example, the exact solution was computed by the
Matlab function ‘dlyap’.

Experiment 2.2 In the last experiment we compared the performance of the Stein
global and Stein block algorithms for different values of n and s: The iterations
were stopped when the relative residual norm was less than � ¼ 10�6 for the Stein
block Arnoldi algorithm and when the upper bound given in Theorem 1.4 was less
than �� kR0kF : In Table 14.3, we listed the obtained CPU-times (in seconds) and
also the total number of iterations in parentheses. For the two algorithms, the
projected Stein equations were solved every k1 ¼ 5 iterations.

As shown in Table 14.3, the Stein global Arnoldi algorithm is more effective
than the Stein block Arnoldi Solver. As A is a sparse matrix, the larger CPU times
needed for the Stein block Arnoldi solver [10] are attributed to the computational
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Fig. 14.1 Left The norm of the residual (solid) and the upper bound (dotted). Right The norm of
the error (solid) and the upper bound (dashed)

Table 14.2 n ¼ 900; s ¼ 4
and k1 ¼ 1

Stein global Arnoldi SQSM

Residual norms 3:5� 10�13 2:7� 10�13

CPU-time in sec. 4.4 59
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expenses of the block Arnoldi algorithm and to the computation of the solution of
the projected Stein equation of order at most ms for increasing m: In the Stein
global Arnoldi solver, the projected problem is of order m:

Example 3. In this experiment, we compared the performance of the Stein global
Arnoldi method for solving (14.1) with the restarted GMRES algorithm applied to
the n2 � n2 equivalent linear system ðA� A� In2ÞvecðXÞ ¼ �vecðBBTÞ: We
notice that the construction of the matrix A ¼ A� A� In2 is very expensive for
large problems. Therefore, using preconditioners such as the incomplete LU fac-
torization is not possible in this case. So in the GMRES algorithm, we computed
the matrix-vector products by using the relation w ¼ Av, W ¼ AVAT � V where
w ¼ vecðVÞ and w ¼ vecðWÞ: This formulation reduces the cost and the memory
requirements. The n� n matrix A was the same as the one given in Example 2 and
the n� s matrix B was chosen to be random with s ¼ 4: The iterations were
stopped when the relative residual norms were less than 10�8: We used different
medium values of the dimension n : n ¼ 400; n ¼ 900 and n ¼ 1600 correspond-
ing to N ¼ 1:6� 105; N ¼ 8:1� 105 and N ¼ 2:56� 106 unknowns, respec-
tively. We notice that for large values of n and due to memory limitation, it was
impossible to run the GMRES algorithm on our computer. Here also, the projected
Stein matrix equation (14.10) was solved every k1 ¼ 5 iterations. In Table 14.4,
we reported the CPU time (in seconds) obtained by the two approaches.

14.6 Summary

We presented in this paper a new Krylov subspace method for solving symmetric
Stein matrix equations. Some new theoretical results such as expressions of the
exact solution and upper bounds for the error and residual norms are given.
The numerical tests and comparisons with other known methods show that the

Table 14.3 CPU-time (in
seconds) and the total number
of iterations (in parentheses)

Stein global Arnoldi Stein block Arnoldi

n ¼ 22500; s ¼ 4 209(265) 399(215)
n ¼ 44100; s ¼ 3 572(350) 788(280)
n ¼ 52900; s ¼ 2 554(380) 853(355)
n ¼ 62500; s ¼ 2 639(395) 912(375)

Table 14.4 CPU-time (in
seconds) for Stein global
Arnoldi and GMRES(10)

Method Stein global
Arnoldi

GMRES(10)

n ¼ 400;N ¼ 1:6� 105

unknowns
10 52

n ¼ 900;N ¼ 8:1� 105

unknowns
18 85

n ¼ 1600;N ¼ 2:56� 106

unknowns
31 270
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proposed method is effective. In conclusion, global methods are competitive for
sparse matrices and should not be used for relatively dense problems. The block
Arnoldi algorithm is advantageous if a moderately low number of iterations
is accompanied by a high cost of matrix vector operations with the coefficient
matrix A:
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suggestions.
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Chapter 15
Optimal Control for Linear Descriptor
Systems with Variable Coefficients

Peter Kunkel and Volker Mehrmann

Abstract We study optimal control problems for general linear descriptor systems
with variable coefficients. We derive necessary and sufficient optimality conditions
for optimal solution. We also show how to solve these optimality systems via the
solution of generalized Riccati-differential equations. and discussed how a modi-
fication of the cost functional leads to better solvability properties for the opti-
mality system.

15.1 Introduction

We study the linear-quadratic optimal control problem to minimize the cost
functional

J ðx; uÞ ¼ 1
2

xðtf ÞTMxðtf Þ þ
1
2

Ztf

t0

ðxT Wxþ 2xT Suþ uT RuÞ dt; ð15:1Þ
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subject to a general linear differential-algebraic equation (DAE), sometimes also
called descriptor system, with variable coefficients of the form

E _x ¼ Axþ Buþ f ; ð15:2Þ

xðt0Þ ¼ x0: ð15:3Þ

In this system, x is the state vector and u is the input (control) vector. Denoting
by R

n;k the set of real n� k matrices and by ClðI;Rn;kÞ the l-times continuously
differentiable functions from an interval I ¼ ½t0; tf � to R

n;k; we assume for the
coefficients in the cost functional that W 2 C0ðI;Rn;nÞ; S 2 C0ðI;Rn;mÞ; R 2
C0ðI;Rm;mÞ: Furthermore, we require that W and R are pointwise symmetric and
also that M 2 R

n;n is symmetric. In the constraint descriptor system (15.2) we have
coefficients E 2 C0ðI;Rn;nÞ; A 2 C0ðI;Rn;nÞ; B 2 C0ðI;Rn;mÞ; f 2 C0ðI;RnÞ; and
we take x0 2 R

n:
Linear quadratic optimal control problems for and DAEs arise in the control of

mechanical multibody systems, Eich-Soellner [12] and Gerdts [14]; electrical
circuits, Günther and Feldmann [15]; chemical engineering, Diehl et al. [11] or
heterogeneous systems, where different models are coupled together [26]. They
usually represent local linearizations of general nonlinear control problems.

For ordinary differential equations, the theory of optimal control problems is
well established, see, e.g., Gabasov and Kirillova [13] and Vinter [29] and the
references therein. For systems where the constraint is a DAE, the situation is
much more difficult and the existing literature is more recent. Results for special
cases such as linear constant coefficient systems or special semi-explicit systems
were e.g. obtained in Bender and Laub [5], Cobb [9], Lin and Yang [24],
Mehrmann [25] and Pinho and Vinter [27].

A major difficulty in deriving adjoint equations and optimality systems is that
for the potential candidates of adjoint equations and optimality systems, existence
and uniqueness of solutions and correctness of initial contions cannot be guar-
anteed. See Refs. [1, 3, 10, 18, 23, 27, 28] for examples and a discussion of the
difficulties.

Due to these difficulties, the standard approach to deal with optimal control
problems for DAEs is to first perform some transformations, including regulari-
zation and index reduction. Such transformations exist. See Refs. [1, 22, 23].

There also exist some papers that derive optimality conditions for specially
structured DAE systems directly [1, 14, 23, 27, 28]. Here, we discuss general
unstructured linear systems with variable coefficients. We follow the so-called
strangeness index concept, see Kunkel and Mehrmann [20], and consider the
system in a behavior setting as a general over- or underdetermined differential-
algebraic system.
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15.2 Preliminaries

In this section we will introduce some notation and recall some results on dif-
ferential-algebraic equations and on optimization theory.

Throughout the paper we assume that all functions are sufficiently smooth, i.e.,
sufficiently often continuously differentiable. We will make frequent use of the
Moore–Penrose pseudoinverse of a matrix valued function A : I! R

l;n; which is
the unique matrix function Aþ : I! R

n;l that satisfies the four Penrose axioms

AAþA ¼ A; AþAAþ ¼ Aþ; ðAAþÞT ¼ AAþ; ðAþAÞT ¼ AþA ð15:4Þ

pointwise, see, e.g. Campbell and Meyer [8]. Note that if A 2 CkðI;Rl;nÞ and has
constant rank on I then Aþ 2 CkðI;Rn;lÞ:

We will generate our optimality conditions via some results from general
optimization theory, see, e.g., Zeidler [30]. For this consider the optimization
problem

J ðzÞ ¼ min ! ð15:5Þ

subject to the constraint

FðzÞ ¼ 0; ð15:6Þ

where

J : D! R; F : D! Y; D � Z open;

with real Banach spaces Z;Y: Let, furthermore,

z� 2M ¼ fz 2 D j FðzÞ ¼ 0g:

Then we will make use of the following theorem.

Theorem 1.1 Let J be Fréchet differentiable in z�and let F be a submersion in z�,
i.e., let F be Fréchet differentiable in a neighborhood of z�with Fréchet derivative
DFðz�Þ : Z! Y surjective and kernel DFðz�Þ continuously projectable:

If z� is a local minimum of (15.5), then there exists a unique K in the dual space
Y
� of Y with

DJ ðz�ÞDzþ KðDFðz�ÞDzÞ ¼ 0 for all Dz 2 Z: ð15:7Þ

The functional K in Theorem 1.1 is called the Lagrange multiplier associated
with the constraint (15.6).

In general we are interested in function representations of the Lagrange
multiplier functional K: Such representations are obtained by the following
theorem.
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Theorem 1.2 Let Y ¼ C0ðI;RlÞ � V with a vector space V � R
l and let

ðk; cÞ 2 Y: Then

Kðg; rÞ ¼
Z tf

t0

kðtÞTgðtÞdt þ cT r

defines a linear form K 2 Y
�; which conversely uniquely determines ðk; cÞ 2 Y:

A sufficient condition that guarantees that also the minimum is unique is given
by the following theorem, which, e.g., covers linear-quadratic control problems
with positive definite reduced Hessian.

Theorem 1.3 Suppose that F : Z! Y is affine linear and that J : Z! R is
strictly convex on M; i:e:;

J ðaz1 þ ð1� aÞz2Þ\aJ ðz1Þ þ ð1� aÞJ ðz2Þ for all z1; z2 2M

with z1 6¼ z2 for all a 2 ð0; 1Þ;

then the optimization problem (15.5) subject to (15.6) has a unique minimum.

For our analysis, we will make use of some basic results on DAE theory. We
follow [20] in notation and style of presentation.

When studying DAE control problems, one can distinguish two viewpoints.
Either one takes the behavior approach and merges the variables x; u into one
vector z; i.e. one studies

E _z ¼ Azþ f ; ð15:8Þ

with

E ¼ ½E 0�; A ¼ ½A B� 2 C0ðI;Rn;nþmÞ:

For the underdetermined system (15.8) one then studies existence and uniqueness
of solutions. The alternative is to keep the variables u and x separate. In this case
one has to distinguish whether solutions exist for all controls in a given input set U
or whether there exist controls at all for which the system is solvable, using the
following solution concept.

Definition 1.4 Consider system (15.2) with a given fixed input function u that is
sufficiently smooth. A function x : I! R

n is called a solution of (15.2) if x 2
C1ðI;RnÞ and x satisfies (15.3) pointwise. It is called a solution of the initial value
problem (15.2)–(15.3) if x is a solution of (15.2) and satisfies (15.3). An initial
condition (15.3) is called consistent if the corresponding initial value problem has
at least one solution.

In the sequel it will be necessary to slightly weaken this solution concept. Note,
however, that under the assumption of sufficient smoothness we will always be in
the case of Definition 1.4.
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Definition 1.5 A control problem of the form (15.2) with a given set of controls U
is called regular (locally with respect to a given solution ðx̂; ûÞ of (15.2)) if it has a
unique solution for every sufficiently smooth input function u in a neighborhood of
û and every initial value in a neighborhood of x̂ðt0Þ that is consistent for the system
with input function u:

In order to analyze the properties of the system, in Kunkel and Mehrmann
[19], Kunkel [22], hypotheses have been formulated which lead to an index
concept, the so-called strangeness index, see Kunkel and Mehrmann [20] for a
detailed derivation and analysis of this concept. Consider the constraint system in
the behavior form (15.8). As in Campbell [7], we introduce a derivative array,
which stacks the original equation and all its derivatives up to level ‘ in one
large system,

M‘ðtÞ_z‘ ¼ N‘ðtÞz‘ þ g‘ðtÞ; ð15:9Þ

where

ðM‘Þi;j ¼
i

j

� �
Eði�jÞ �

i

jþ 1

� �
Aði�j�1Þ; j ¼ 0; . . .; ‘;

ðN‘Þi;j ¼
AðiÞ for i ¼ 0; . . .; ‘; j ¼ 0;

0 otherwise;

(

ðz‘Þj ¼ zðjÞ; j ¼ 0; . . .; ‘;

ðg‘Þi ¼ f ðiÞ; i ¼ 0; . . .; ‘:

To characterize the solution set we require the following hypothesis which can be
proved for any linear system under some constant rank assumptions, see Kunkel
and Mehrmann [20].

Hypothesis 1.6 There exist integers l; d; a; and v such that the pair ðMl;NlÞ
associated with (15.9) has the following properties:

1. For all t 2 I we have rank MlðtÞ ¼ ðlþ 1Þn� a� v: This implies the existence
of a smooth matrix function Z of size ðlþ 1Þn� ðaþ vÞ and pointwise max-
imal rank satisfying ZTMl ¼ 0:

2. For all t 2 I we have rank ZT Nl Inþm 0 . . . 0½ �T¼ a: This implies that without
loss of generality Z can be partitioned as Z ¼ Z2 Z3½ �; with Z2 of size ðlþ 1Þ
n� a and Z3 of size ðlþ 1Þn� v; such that Â2 ¼ ZT

2 Nl½Inþm0. . .0�T has full

row rank a and ZT
3 Nl½Inþm0. . .0�T ¼ 0: Furthermore, there exists a smooth

matrix function T2 of size ðnþ mÞ � d; d ¼ n� a;and pointwise maximal rank
satisfying Â2T2 ¼ 0:

3. For all t 2 I we have rank EðtÞT2ðtÞ ¼ d: This implies the existence of a smooth
matrix function Z1 of size n� d and pointwise maximal rank satisfying rank

Ê1 ¼ d̂ with Ê1 ¼ ZT
1 E:
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The smallest l for which this hypothesis holds is called the strangeness-index
of the system and system (15.8) has the same solution set as the reduced system

Ê1ðtÞ
0
0

2

4

3

5_z ¼
Â1ðtÞ
Â2ðtÞ

0

2

4

3

5zþ
f̂1ðtÞ
f̂2ðtÞ
f̂3ðtÞ

2

4

3

5; ð15:10Þ

where Â1 ¼ ZT
1A; f̂1 ¼ ZT

1 f ; f̂i ¼ ZT
i gl for i ¼ 2; 3:

If in this reduced system f̂3 does not vanish identically, then the system has no

solution regardless how the input is chosen. If f̂3 � 0; however, then we can just
leave off the last v equations. For this reason, in the following analysis we assume
w.l.o.g. that v ¼ 0:

We can then rewrite the reduced system again in terms of the original variables
u; x and obtain the system

Ê _x ¼ Âxþ B̂uþ f̂ ; xðt0Þ ¼ x0; ð15:11Þ

where

Ê ¼ Ê1

0

� �
; Â ¼ Â1

Â2

� �
; B̂ ¼ B̂1

B̂2

� �
; f̂ ¼ f̂1

f̂2

� �
ð15:12Þ

with

Ê1 ¼ ZT
1 E; Â1 B̂1

� �
¼ ZT

1 A B½ �; f̂1 ¼ ZT
1 f ;

Â2 B̂2

� �
¼ ZT

2 Nl½Inþm0 � � � 0�T ; f̂2 ¼ ZT
2 gl:

By construction, in the reduced system (15.11), the matrix function Ê1 has full
row rank d and Â2T 02 B̂2

� �
has full row rank a with a matrix function T 02 sat-

isfying Ê1T 02 ¼ 0 and T
0T
2 T 02 ¼ Ia: Due to the fact that the solution set has not

changed, one can consider the minimization of (15.1) subject to (15.11) instead of
(15.2). Unfortunately, (15.11) still may not be solvable for all u 2 U ¼ C0ðI;RmÞ:
But, since Â2T 02 B̂2

� �
has full row rank, it has been shown in Kunkel et al. [22],

that there exists a linear feedback

u ¼ Kxþ w; ð15:13Þ

with K 2 C0ðI;Rm;nÞ such that in the closed loop system

Ê _x ¼ ðÂþ B̂KÞxþ B̂wþ f̂ ; xðt0Þ ¼ x0; ð15:14Þ

the matrix function ðÂ2 þ B̂2KÞT 02 is pointwise nonsingular, implying that the DAE
in (15.14) is regular and strangeness-free for every given w 2 U ¼ C0ðI;RmÞ:

If we insert the feedback (15.13) in (15.11), then we obtain an optimization
problem for the variables x;w instead of x; u; and (see Ref. [21]) these problems
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and the solutions are directly transferable to each other. For this reason we may in
the following assume w.l.o.g. that the differential-algebraic system (15.2) is reg-
ular and strangeness-free as a free system without control, i.e., when u ¼ 0:

Under these assumptions it is then known, see, e.g., Kunkel and Mehrmann
[20], that there exist P 2 C0ðI;Rn;nÞ and Q 2 C1ðI;Rn;nÞ pointwise orthogonal
such that

~E ¼ PEQ ¼
E1;1 0

0 0

� �
; ~A ¼ PAQ� PE _Q ¼

A1;1 A1;2

A2;1 A2;2

� �
;

~B ¼ PB ¼
B1

B2

� �
; ~f ¼ Pf ¼

f1
f2

� �
;

x ¼ Q~x ¼
x1

x2

� �
; x0 ¼ Q ~x0 ¼

x0;1

x0;2

� �
;

ð15:15Þ

with E1;1 2 CðI;Rd;dÞ and A2;2 2 CðI;Ra;aÞ pointwise nonsingular. To get solv-
ability of (15.2) for arbitrary u 2 C0ðI;RmÞ and f 2 C0ðI;RnÞ; in view of

E _x ¼ EEþE _x ¼ E
d

dt
ðEþExÞ � E

d

dt
ðEþEÞx;

we have to interpret (15.2) as

E
d

dt
ðEþExÞ ¼ ðAþ E

d

dt
ðEþEÞÞxþ Buþ f ; ðEþExÞðt0Þ ¼ x0; ð15:16Þ

which allows the larger solution space, see Kunkel and Mehrmann [17],

X ¼ C1
EþEðI;RnÞ ¼ x 2 C0ðI;RnÞ j EþEx 2 C1ðI;RnÞ

� 	
ð15:17Þ

equipped with the norm

kxk
X
¼ kxkC0 þ k

d

dt
ðEþExÞkC0 : ð15:18Þ

One should note that the choice of the initial value x0 is restricted by the
requirement in (15.16).

15.3 Necessary Optimality Conditions

In this section we derive necessary conditions for the linear quadratic optimal
control problem to minimize (15.1) subject to (15.2) and (15.3). Following Kunkel
and Mehrmann [17], we can use in (15.6) the constraint function

F : X! Y ¼ C0ðI;RnÞ � range Eþðt0ÞEðt0Þ
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given by

FðxÞ ¼ E
d

dt
ðEþExÞ � ðAþ E

d

dt
ðEþEÞÞx� Bu� f ; ðEþExÞðt0Þ � x0

� �
:

Then from (15.16) we obtain

PEQQT d

dt
ðQQT EþPT PEQQT xÞ

¼ PAQþ PEQQT d

dt
ðQQT EþPT PEQQTÞQ

� �
QTxþ PBuþ Pf ;

or equivalently

~EQT d

dt
ðQ~E

þ~E~xÞ

¼ ~Aþ PPT ~EQT _Qþ ~EQT d

dt
ðQ~E

þ~EQTÞQ
� �

~xþ ~Buþ ~f :

Using the product rule and cancelling equal terms on both sides we obtain

~EQT Q
d

dt
ð~Eþ~E~xÞ ¼ ~Aþ ~EQT _Qþ ~E

d

dt
ð~Eþ~EÞ þ ~E~E

þ~E _QT Q

� �
~xþ ~Buþ ~f :

Since by definition ~E~E
þ~E ¼ ~E and _QTQþ QT _Q ¼ 0; we then obtain

~E
d

dt
ð~Eþ~E~xÞ ¼ ~Aþ ~E

d

dt
ð~Eþ~EÞ

� �
~xþ ~Buþ ~f ; ð~Eþ~E~xÞðt0Þ ¼ ~x0; ð15:19Þ

i.e., (15.16) transforms covariantly with pointwise orthogonal P and Q: If we
partition P and Q conformably to (15.15) as

P ¼ Z 0T

ZT

� �
; Q ¼ T 0 T½ �;

then ZT E ¼ 0; ET ¼ 0; and we can write (15.19) as

E1;1 0
0 0

� �
_x1

_x2

� �
¼ A1;1 A1;2

A2;1 A2;2

� �
x1

x2

� �
þ B1

B2

� �
uþ f1

f2

� �
;

x1ðt0Þ
0

� �
¼ x0;1

0

� �
:

Since A2;2 is pointwise nonsingular, this system is uniquely solvable for arbi-
trary continuous functions u; f1; and f2; and for any x0;1; with solution components
satisfying

x1 2 C1ðI;RdÞ; x2 2 C0ðI;RaÞ

such that

x ¼ Q~x ¼ ½T 0T � x1

x2

� �
2 X:
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In particular, this construction defines a solution operator of the form

S : U� Y! X; ðu; f ; x0Þ 7! x; U ¼ C0ðI;RmÞ: ð15:20Þ

The Fréchet derivative DFðzÞ of F at z 2 Z ¼ X� U is given by

DFðzÞDz ¼ E
d

dt
ðEþEDxÞ � ðAþ E

d

dt
ðEþEÞÞDx� BDu; ðEþEDxÞðt0Þ

� �
:

For ðg; rÞ 2 Y; the equation DFðzÞ ¼ ðg; rÞ then takes the form

E
d

dt
ðEþEDxÞ � ðAþ E

d

dt
ðEþEÞÞDx� BDu ¼ g; ðEþEDxÞðt0Þ ¼ r:

A possible solution is given by u ¼ 0 and Dx ¼ Sð0; g; rÞ; hence DFðzÞ is
surjective. Moreover, the kernel is given by

kernelðDFðzÞÞ

¼ fðDx;DuÞ j E d

dt
ðEþEDxÞ � ðAþ E

d

dt
ðEþEÞÞDx� BDu ¼ 0;

ðEþEDxÞðt0Þ ¼ 0g
¼ fðDx;DuÞ j Dx ¼ SðDu; 0; 0Þ; Du 2 Ug � X� U:

Observe that kernelðDFðzÞÞ is parameterized with respect to Du and that

PðzÞ ¼ Pðx; uÞ ¼ Sðu; 0; 0Þ; uð Þ

defines a projection P : Z! Z onto kernelðDFðzÞÞ: Here,

k Sðu; 0; 0Þ; uð Þk
Z
¼ kSðu; 0; 0Þk

X
þ kuk

U
; and kSðu; 0; 0Þk

X
¼ kxk

X
;

where x is the solution of the homogeneous problem

E
d

dt
ðEþExÞ � ðAþ E

d

dt
ðEþEÞÞx� Bu ¼ 0; ðEþExÞðt0Þ ¼ 0: ð15:21Þ

Replacing again x ¼ Q~x as in (15.15), we can write (15.21) as

E1;1 0
0 0

� �
_x1

_x2

� �
¼ A1;1 A1;2

A2;1 A2;2

� �
x1

x2

� �
þ B1

B2

� �
u; x1ðt0Þ ¼ 0;

or equivalently

E1;1 _x1 ¼ ðA1;1 � A1;2A�1
2;2A2;1Þx1 þ ðB1 � A1;2A�1

2;2B2Þu; x1ðt0Þ ¼ 0; ð15:22Þ

x2 ¼ �A�1
2;2ðA2;1x1 þ B2uÞ: ð15:23Þ

The variation of the constant formula for the ODE in (15.22) yields the estimate
kx1kC0 þ k _x1kC0 	 c1kukU; with a constant c1; and thus kx2kC0 	 c2kukU with a
constant c2: Altogether, using (15.18) we then get the estimate
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kxk
X
¼ kxkC0 þ k

d

dt
ðEþExÞkC0 ¼ kQ~xkC0 þ k

d

dt
ðEþET 0x1ÞkC0

¼ kQ~xkC0 þ k
d

dt
ðEþET 0Þx1 þ ðEþET 0Þ _x1ÞkC0 	 c3kukU;

with a constant c3: With this we have shown that P is continuous and thus
kernelðDFðzÞÞ is continuously projectable. Hence, we can apply Theorem 1.2 and
obtain the existence of a unique Lagrange multiplier K 2 Y

�: To determine K; we
make the ansatz

Kðg; rÞ ¼
Ztf

t0

kTg dt þ cT r: ð15:24Þ

Using the cost function (15.1) we have

DJ ðzÞDz ¼ xðtf ÞT MDxðtf Þ þ
Ztf

t0

ðxTWDxþ xTSDuþ uT STDxþ uT RDuÞ dt;

and in a local minimum z ¼ ðx; uÞ we obtain that for all ðDx;DuÞ 2 X� U the
relationship

0 ¼ xðtf ÞTMDxðtf Þ þ cTðEþEDxÞðt0ÞÞ

þ
Ztf

t0

ðxTWDxþ xTSDuþ uTSTDxþ uT RDuÞ dt

þ
Ztf

t0

kT E
d

dt
ðEþEDxÞ � ðAþ E

d

dt
ðEþEÞÞDx� BDu

� �
dt ð15:25Þ

has to hold. If k 2 C1
EþEðI;RnÞ; then, using the fact that E ¼ EEþE ¼ ðEEþÞTE;

we have by partial integration

Ztf

t0

kT E
d

dt
ðEþEDxÞ dt ¼

Ztf

t0

kTðEEþÞTE
d

dt
ðEþEDxÞdt

¼
Ztf

t0

ðEEþkÞTE
d

dt
ðEþEDxÞ dt

¼ kTEEþEDx




tf

t0

�
Ztf

t0

d

dt
ðEEþkÞTE
� �

ðEþEDxÞdt

322 P. Kunkel and V. Mehrmann



¼ kTEDx




tf

t0

�
Ztf

t0

d

dt
ðEEþkÞTE þ ðEEþkÞT _E

� �
ðEþEDxÞ dt

¼ kTEDx




tf

t0

�
Ztf

t0

d

dt
ðEEþkÞTEDxþ ðEEþkÞT _EEþEDx

� �
dt:

Therefore, we can rewrite (15.25) as

0 ¼
Ztf

t0

xTW þ uTST � d

dt
ðEEþkÞTE � ðEEþkÞT _EEþE � kTA

�

� kT E
d

dt
ðEþEÞ

�
Dx dt þ

Ztf

t0

ðxTSþ uTR� kTBÞDu dt þ xðtf ÞTMDxðtf Þ

þ kTðtf ÞEðtf ÞDxðtf Þ � kTðt0ÞEðt0ÞDxðt0Þ þ cTðEþEDxÞðt0Þ:

If we first choose Dx ¼ 0 and vary over all Du 2 U; then we obtain the necessary
optimality condition

STxþ Ru� BTk ¼ 0: ð15:26Þ

Varying then over all Dx 2 X with Dxðt0Þ ¼ Dxðtf Þ ¼ 0; we obtain the adjoint
equation

Wxþ Su� ET d

dt
ðEEþkÞ � EþE _ETEEþk� ATk� d

dt
ðEþEÞETk ¼ 0: ð15:27Þ

Varying finally over Dxðt0Þ 2 R
n and Dxðtf Þ 2 R

n; respectively, yields the
initial condition

ðEþðt0ÞEðt0ÞÞTc ¼ ETðt0Þkðt0Þ; i.e., c ¼ Eðt0ÞTkðt0Þ ð15:28Þ

and the end condition

Mxðtf Þ þ Eðtf ÞTkðtf Þ ¼ 0; ð15:29Þ

respectively.
Observe that the condition (15.29) can only hold if Mxðtf Þ 2 cokernel Eðtf Þ:

This extra requirement for the cost term involving the final state was observed
already for constant coefficient systems in Mehrmann [25] and Kurina and März
[23]. If this condition on M holds, then from (15.29) we obtain that

kðtf Þ ¼ �Eþðtf ÞTMxðtf Þ:
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Using the identity

EEþ _EEþE þ E
d

dt
ðEþEÞ ¼ EEþð _EEþE þ E

d

dt
ðEþEÞÞ

¼ EEþ
d

dt
ðEEþEÞ ¼ EEþ _E;

we obtain the initial value problem for the adjoint equation in the form

ET d

dt
ðEEþkÞ ¼ Wxþ Su� ðAþ EEþ _EÞTk;

ðEEþkÞðtf Þ ¼ �Eþðtf ÞTMxðtf Þ:
ð15:30Þ

As we had to interpret (15.2) in the form (15.16) for the correct choice of the
spaces, (15.30) is the correct interpretation of the problem

d

dt
ðETkÞ ¼ Wxþ Su� ATk; kðtf Þ ¼ �Eþðtf ÞTMxðtf Þ: ð15:31Þ

Note again that these re-interpretations are not crucial when the coefficient
functions are sufficiently smooth.

For the adjoint equation and the optimality condition, we will now study the

action of the special equivalence transformations of (15.15). Using that ðEEþÞT ¼
EEþ; we obtain for (15.30) the transformed system

QET PTP
d

dt
ðPTPEQQTEþPTPkÞ

¼ QT WQQTxþ QT Su� ðQTAT PT þ QT _EPTPEQQTEþPTÞPk:

Setting

~W ¼ QT WQ; ~S ¼ QTS; ~k ¼ Pk; ~M ¼ Qðtf ÞTMQðtf Þ;
we obtain

~EP
d

dt
ðPT ~E~E

þ~kÞ ¼ ~W~xþ ~Su

� ~AT þ _Q
T
Q~ET þ QTðQ~ET _Pþ Q _~ET Pþ _Q~E

T
PÞPT ~E~E

þ� �
~k

or equivalently

~EP _P
T ~E~E

þ~kþ ~E
d

dt
ð~E~E

þ~kÞ ¼ ~W~xþ ~Su

� ~AT þ _Q
T
Q~ET þ ~ET _PPT ~E~E

þ þ _~ET ~E~E
þ þ QT _Q~E

T ~E~E
þ� �

~k:

Using the orthogonality of P;Q; which implies that _QTQþ Q _Q ¼ 0 and _PT Pþ
P _P ¼ 0; we obtain

~E
d

dt
ð~E~E

þ~kÞ ¼ ~W~xþ ~Su� ð~Aþ ~E~E
þ _~EÞT~k:
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For the initial condition we obtain accordingly

ð~E~E
þ~kÞðtf Þ ¼ ðPEQQTEþPT PkÞðtf Þ ¼ ðPEEþkÞðtf Þ

¼ �Pðtf ÞEþðtf ÞT Qðtf ÞQðtf ÞTMQðtf ÞQðtf ÞTxðtf Þ

¼ �~E
þðtf ÞT ~M~xðtf Þ:

Thus, we have shown that (15.30) transforms covariantly and that we may consider
(15.30) in the condensed form associated with (15.15). Setting (with comfortable
partitioning)

~k ¼ k1

k2

� �
; ~W ¼ W1;1 W1;2

W2;1 W2;2

� �
; ~S ¼ S1

S2

� �
; ~M ¼ M1;1 M1;2

M2;1 M2;2

� �
; ð15:32Þ

we obtain the system

ET
1;1k1 ¼ W1;1x1 þW1;2x2 þ S1u� ðA1;1 þ _E1;1ÞTk1 � AT

2;1k2;

k1ðtf Þ ¼ �E�T
1;1 ðtf ÞðM1;1x1ðtf Þ þM1;2x2ðtf ÞÞ;

0 ¼ W2;1x1 þW2;2x2 þ S2u� AT
1;2k1 � AT

2;2k2:

We immediately see that as a differential-algebraic equation in k this system is
strangeness-free, and, since A2;2 is pointwise nonsingular, this system yields a
unique solution k 2 C1

EEþðI;RnÞ for every ðx; uÞ 2 Z:

If ðx; uÞ 2 Z is a local minimum, then from (15.29) and (15.30) we can
determine Lagrange multipliers k 2 C1

EEþðI;RnÞ and c 2 cokernel Eðtf Þ: It has
been shown in Kunkel and Mehrmann [21] that this k also satisfies the optimality
condition (15.26).

It thus follows that the functional that is defined via (15.24), (15.30) and c ¼
Eðt0ÞTkðt0Þ as in (15.28) has the property (15.7) and is, therefore, the desired
Lagrange multiplier. Furthermore, it is then clear that ðz; kÞ ¼ ðx; u; kÞ is a local
minimum of the unconstrained optimization problem

Ĵ ðz; kÞ ¼ J ðzÞ þ KðFðzÞÞ

¼ 1
2

xðtf ÞTMxðtf Þ þ
1
2

Ztf

t0

ðxTWxþ 2xTSuþ uT RuÞ dt

þ
Ztf

t0

kT Eðd
dt
ðEþExÞ � ðAþ E

d

dt
ðEþEÞÞx� Bu� f

� �
dt

þ cT ðEþExÞðt0Þ � x0ð Þ ¼ min ! ð15:33Þ
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We can summarize our analysis in the following theorem.

Theorem 1.7 Consider the optimal control problem (15.1) subject to (15.2) with a
consistent initial condition. Suppose that (15.2) is strangeness-free as a behavior
system and that Mxðtf Þ 2 cokernel Eðtf Þ:

If ðx; uÞ 2 X� U is a solution to this optimal control problem, then there exists
a Lagrange multiplier function k 2 C1

EþEðI;RnÞ; such that ðx; k; uÞ satisfy the
optimality boundary value problem

(a) E d
dtðEþExÞ ¼ ðAþ E d

dtðEþEÞÞxþ Buþ f ; ðEþExÞðt0Þ ¼ x0;

(b) ET d
dtðEEþkÞ ¼ Wxþ Su� ðAþ EEþ _EÞTk;

ðEEþkÞðtf Þ ¼ �Eþðtf ÞTMxðtf Þ;
(c) 0 ¼ STxþ Ru� BTk:

ð15:34Þ

15.4 The Strangeness Index of the Optimality System

An important question for the numerical computation of optimal controls is
when the optimality system (15.34) is regular and strangeness-free and whether
the strangeness index of (15.34) is related to the strangeness index of the
original system. For other index concepts like the tractability index this
question has been discussed in Balla et al. [2], Balla and März [4] and Kurina
and März [23].

Theorem 1.8 The DAE in (15.34) is regular and strangeness-free if and only if

R̂ ¼
0 A2;2 B2

AT
2;2 W2;2 S2

BT
2 ST

2 R

2

4

3

5 ð15:35Þ

is pointwise nonsingular, where we used the notation of (15.15).

Proof Consider the reduced system (15.11) associated with the DAE (15.2) and
derive the boundary value problem (15.34) from this reduced system. If we carry
out the change of basis with orthogonal transformations leading to the normal form
(15.15), then we obtain the transformed boundary value problem

(a) E1;1 _x1 ¼ A1;1x1 þ A1;2x2 þ B1uþ f1; x1ðt0Þ ¼ x0;1

(b) 0 ¼ A2;1x1 þ A2;2x2 þ B2uþ f2;
(c) ET

1;1
_k1 ¼ W1;1x1 þW1;2x2 þ S1u� ðA1;1 þ _E1;1ÞTk1 � AT

2;1k2;

k1ðtf Þ ¼ �E1;1ðtf Þ�T M1;1x1ðtf Þ;
(d) 0 ¼ W2;1x1 þW2;2x2 þ S2u� AT

1;2k1 � AT
2;2k2;

(e) 0 ¼ ST
1 x1 þ ST

2 x2 þ Ru� BT
1 k1 � BT

2 k2:

ð15:36Þ

326 P. Kunkel and V. Mehrmann



We can rewrite (15.36) in a symmetrized way as

ð15:37Þ

Obviously this DAE is regular and strangeness-free if and only if the symmetric
matrix function R̂ is pointwise nonsingular. h

If (15.2) with u ¼ 0 is regular and strangeness-free, then A2;2 is pointwise
nonsingular. In our analysis we have shown that this property can always be
achieved, but note that we do not need that A2;2 is pointwise nonsingular to obtain
a regular and strangeness-free optimality system (15.34).

On the other hand for R̂ to be pointwise nonsingular, it is clearly necessary that
½A2;2 B2� has pointwise full row rank. This condition is equivalent to the condition
that the behavior system (15.8) belonging to the reduced problem satisfies Hypothesis
1.6 with l ¼ 0 and v ¼ 0; see [22] for a detailed discussion of this issue and also for
an extension of these results to the case of control systems with output equations.

Example 1.9 An example of a control problem of the form (15.2) that is not
directly strangeness-free in the behavior setting is discussed in Backes [1 p. 50].
This linear-quadratic control problem has the coefficients

E ¼
1 0 0

0 1 0

0 0 0

2

64

3

75; A ¼
0 0 0

0 0 �1

0 1 0

2

64

3

75; B ¼
1

1

0

2

64

3

75; f ¼
0

0

0

2

64

3

75;

M ¼
1 0 0

0 0 0

0 0 0

2

64

3

75; W ¼
0 0 0

0 0 0

0 0 1

2

64

3

75; S ¼
0

0

0

2

64

3

75; R ¼ 1;

and the initial condition x1ð0Þ ¼ a; x2ð0Þ ¼ 0: A possible reduced system (15.11)
is given by

Ê ¼
1 0 0
0 0 0
0 0 0

2

4

3

5; Â ¼ A; B̂ ¼ B:
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Observe that the corresponding free system of this reduced problem (i.e. with
u ¼ 0) itself is regular and strangeness-free. It follows that the adjoint equation
and the optimality condition are given by

1 0 0

0 0 0

0 0 0

2
64

3
75

_k1

_k2

_k3

2
64

3
75 ¼

0 0 0

0 0 0

0 0 1

2
64

3
75

x1

x2

x3

2
64

3
75�

0 0 0

0 0 1

0 �1 0

2
64

3
75

k1

k2

k3

2
64

3
75;

0 ¼ � 1 1 0½ �
k1

k2

k3

2

64

3

75þ u;

respectively, with the end condition k1ðtf Þ ¼ �x1ðtf Þ:
We obtain that the matrix function R̂ in (15.35) given by

is pointwise nonsingular, and hence the boundary value problem (15.34) is regular
and strangeness-free. Moreover, it has a unique solution which is given by

x1 ¼ að1� t

2þ tf
Þ; x2 ¼ k3 ¼ 0; x3 ¼ u ¼ �k2 ¼ �

a
2þ tf

; k1 ¼ �
2a

2þ tf
:

Example 1.10 In Kurina and März [23] the optimal control problem to minimize

J ðx; uÞ ¼
Ztf

0

ðx1ðtÞ2 þ uðtÞ2Þ dt

subject to

d

dt
0 t
0 1

� �
x1

x2

� �� �
¼ 0 1

0 0

� �
x1

x2

� �
þ 1

0

� �
u; x2ð0Þ ¼ x2;0

is discussed. Obviously, x1 does not enter the DAE and therefore rather plays the
role of a control than of a state. Consequently, the corresponding free system is not
regular. Rewriting the system as

0 t
0 1

� �
_x1

_x2

� �
¼ 1

0

� �
u; x2ð0Þ ¼ x2;0;
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and analyzing this system in our described framework, we first of all observe that
this system possesses a strangeness index and that it is even regular and strange-
ness-free as a behavior system. A possible reduced system (15.11) is given by

0 1
0 0

� �
_x1

_x2

� �
¼ 0

1

� �
u; x2ð0Þ ¼ x2;0:

The corresponding free system is not regular although it is strangeness-free.
Moreover, we can read off

R̂ ¼
0 0 1
0 1 0
1 0 1

2

4

3

5;

which is obviously pointwise nonsingular. Hence, the boundary value problem
(15.34) is regular and strangeness-free.

15.5 Sufficient Conditions and the Formal Optimality
System

One may be tempted to drop the assumptions of Theorem 1.7 and to consider
directly the formal optimality boundary value problem given by

(a) E _x ¼ Axþ Buþ f ; xðt0Þ ¼ x0

(b) d
dtðETkÞ ¼ Wxþ Su� ATk; ðETkÞðtf Þ ¼ �Mxðtf Þ;

(c) 0 ¼ STxþ Ru� BTk:
ð15:38Þ

But it was already observed in Backes [1], Kurina and März [23] and Mehrmann
[25] that it is in general not correct to just consider this system. First of all, as we
have shown, the cost matrix M for the final state has to be in the correct
cokernel, since otherwise the initial value problem may not be solvable due to a
wrong number of conditions. An example for this is given in Backes [1], Kurina
and März [23]. A further difficulty arises from the fact that the formal adjoint
equation (15.38b) may not be strangeness-free in the variable k and thus extra
differentiability conditions may arise which may not be satisfied, see the fol-
lowing example.

Example 1.11 Consider the problem

J ðx; uÞ ¼ 1
2

Z1

0

ðx1ðtÞ2 þ uðtÞ2Þdt ¼ min !

subject to the differential-algebraic system

0 1
0 0

� �
_x1

_x2

� �
¼ 1 0

0 1

� �
x1

x2

� �
þ 1

0

� �
uþ f1

f2

� �
:
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The reduced system (15.11) in this case is the purely algebraic equation

0 ¼ 1 0
0 1

� �
x1

x2

� �
þ 1

0

� �
uþ f1 þ _f2

f2

� �
:

The associated adjoint equation (15.30) is then

0 ¼ 1 0
0 0

� �
x1

x2

� �
� 1 0

0 1

� �
k1

k2

� �
;

and no initial conditions are necessary. The optimality condition (15.26) is given by

0 ¼ u� k1:

A simple calculation yields the optimal solution

x1 ¼ u ¼ k1 ¼ �
1
2
ðf1 þ _f2Þ; x2 ¼ �f2; k2 ¼ 0:

If, however, we consider the formal adjoint equation (15.38b) given by

0 0
1 0

� �
_k1
_k2

� �
¼ 1 0

0 0

� �
x1

x2

� �
� 1 0

0 1

� �
k1

k2

� �
; k1ð1Þ ¼ 0

together with the optimality condition (15.38c), then we obtain that

x1 ¼ u ¼ k1 ¼ �
1
2
ðf1 þ _f2Þ; x2 ¼ �f2; k2 ¼ �

1
2
ð _f1 þ €f2Þ

without using the initial condition k1ð1Þ ¼ 0: Depending on the data, this initial
condition may be consistent or not. In view of the correct solution it is obvious that
this initial condition should not be present. But this cannot be seen from (15.38).
Moreover, the determination of k2 requires more smoothness of the inhomogeneity
than in (15.34).

As we have demonstrated by Example 1.11, difficulties may arise by working
with the formal adjoint equations. In particular, they may not be solvable due to
additional initial conditions or due to lack of smoothness. If, however, the cost
functional is positive semidefinite, then one can show that any solution of the
formal optimality system yields a minimum and thus constitutes a sufficient
condition. This was, e.g., shown for ODE optimal control in Campbell [6], for
linear constant coefficient DAEs in Mehrmann [25], and in a specific setting for
linear DAEs with variable coefficients in Backes [1]. The general result is given by
the following theorem.

Theorem 1.12 Consider the optimal control problem (15.1) subject to (15.2) with
a consistent initial condition and suppose that in the cost functional (15.1) we have
that

W S
ST R

� �
; M
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are (pointwise) positive semidefinite. If ðx�; u�; kÞ satisfies the formal optimality
system (15.38) then for any ðx; uÞ satisfying (15.2) we have

J ðx; uÞ
J ðx�; u�Þ:

Proof We consider the function

UðsÞ ¼ J ðð1� sÞx� þ sx; ð1� sÞu� þ suÞ

and show that UðsÞ has a minimum at s ¼ 0: We have

UðsÞ ¼ 1
2

Ztf

t0

ð1� sÞ2
x�

u�

� �T W S

ST R

� �
x�

u�

� � 

þ 2sð1� sÞ
x�

u�

� �T W S

ST R

� �
x

u

� �

þ s2 x

u

� �T W S

ST R

� �
x

u

� �!
dt

þ 1
2
ð1� sÞ2x�T Mx� þ 2sð1� sÞx�T Mxþ s2xTMx
� �




t¼tf
;

and

d

ds
Uð0Þ ¼

Ztf

t0

 
x�

u�

� �T W S

ST R

� �
x

u

� �

�
x�

u�

� �T W S

ST R

� �
x�

u�

� �!
dt

þ
�

x�T Mx� x�T Mx�
�




t¼tf

:

If we consider (15.38b) for ðx�; u�Þ and multiply from the left by x�T ; then we
obtain

�x�T ET _k� x�T _ETkþ x�T Wx� þ x�T Su� � x�T ATk ¼ 0:

Inserting the transpose of (15.38a) yields

�x�T ET _k� x�T _ETkþ x�T Wx� þ x�T Su� � _x�T ETkþ u�T BTkþ f Tk ¼ 0:
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Finally, inserting (15.38c) gives

�d

dt
x�T ETk
 �

þ x�TWx� þ 2x�TSu� þ u�T Ru� þ f Tk

¼ � d

dt
x�T ETk
 �

þ
x�

u�

� �T W S

ST R

� �
x�

u�

� �
þ f Tk ¼ 0:

Analogously, for ðx; uÞ we obtain the equation

�d

dt
xTETk
 �

þ x
u

� �T
W S
ST R

� �
x�

u�

� �
þ f Tk ¼ 0:

Thus, we obtain that

d

ds
Uð0Þ ¼

Ztf

t0

�d

dt
xT ETk
 �

� d

dt
x�T ETk
 ��

dt þ
�

x�T Mðx� x�Þ
�




t¼tf

¼
�
ðx� x�ÞTETk

�



tf

t0
þ
�
ðx� x�ÞT Mx�

�



t¼tf
¼ 0;

since xðt0Þ ¼ x�ðt0Þ and ðETkÞðtf Þ ¼ �Mx�ðtf Þ: Due to the positive semidefinite-
ness of the cost functional we have

d2

ds2
Uð0Þ ¼

Ztf

t0

x� x�

u� u�

� �T W S

ST R

� �
x� x�

u� u�

� �
dt

þ
�
ðx� x�ÞT Mðx� x�Þ

�



t¼tf


 0

and this implies that U has a minimum at s ¼ 0; which may, however, not be
unique. h

We can summarize the results of this section as follows. The necessary opti-
mality condition for the optimal control problem (15.1) subject to (15.2) is given
by (15.34) and not by the formal optimality system (15.38). If, however, (15.38)
has a solution, then it corresponds to a minimum of the optimal control problem. If
no index reduction is performed, then a necessary condition for the DAE in (15.1)
to be regular and strangeness-free is that the DAE (15.2) itself is regular and
strangeness-free as a behavior system.

15.6 Differential-Algebraic Riccati Equations

One of the classical approaches to solve boundary value problems arising in the
linear-quadratic optimal control problem of ordinary differential equations is
the use of Riccati differential equations. This approach has also been studied in the
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case of differential-algebraic equations, See Refs. [5, 18, 25], and it has been
observed in Kunkel and Mehrmann [18] that the Riccati approach is not always
possible. If, however, some further conditions hold, then the Riccati approach can
be carried out.

Let us first consider the optimality boundary value problem (15.34) in its
symmetrized normal form (15.37). If R̂ is pointwise nonsingular, then

�k2

x2

u

2
4

3
5 ¼ �R̂�1

0 A2;1

AT
1;2 W2;1

BT
1 ST

1

2
4

3
5 �k1

x1

� �
þ

f2

0
0

2
4

3
5

0
@

1
A: ð15:39Þ

The remaining equations can be written as

E1;1 _x1

d
dt ðð�ET

1;1Þð�k1ÞÞ

" #
¼

0 A1;1

AT
1;1 W1;1

" #
�k1

x1

� �

þ
0 A1;2 B1

AT
2;1 WT

2;1 S1

" # �k2

x2

u

2

64

3

75þ
f1
0

� �
: ð15:40Þ

Inserting (15.39) and defining

a. F1 ¼ E�1
1;1 A1;1 � ½0 A1;2 B1�R̂�1½AT

2;1 WT
2;1 S1�T

� �

b. G1 ¼ E�1
1;1 ½0 A1;2 B1� R̂�1 ½0 A1;2 B1�T E�T

1;1

c. H1 ¼ W1;1 � ½AT
2;1 WT

2;1 S1� R̂�1 ½AT
2;1 WT

2;1 S1�T ;
d. g1 ¼ E�1

1;1 f1 � ½0 A1;2 B1� R̂�1 ½f T
2 0 0�TgÞ;



e. h1 ¼ � ½AT
2;1 WT

2;1 S1� R̂�1 ½f T
2 0 0�T ;

we obtain the boundary value problem with Hamiltonian structure given by

(a) _x1 ¼ F1x1 þ G1ðET
1;1k1Þ þ g1; x1ðt0Þ ¼ x0;1;

(b) d
dtðET

1;1k1Þ ¼ H1x1 � FT
1 ðET

1;1k1Þ þ h1; ðET
1;1k1Þðtf Þ ¼ �M1;1x1ðtf Þ:

ð15:41Þ

Making the ansatz

ET
1;1k1 ¼ X1;1x1 þ v1; ð15:42Þ

and using its derivative

d

dt
ðET

1;1k1Þ ¼ _X1;1x1 þ X1;1 _x1 þ _v1;

the Hamiltonian boundary value problem (15.41) yields

_X1;1x1 þ X1;1ðF1x1 þ G1ðX1;1x1 þ v1Þ þ g1Þ þ _v1 ¼ H1x1 � FT
1 ðX1;1x1 þ v1Þ þ h1;
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or
_X1;1 þ X1;1F1 þ FT

1 X1;1 þ X1;1G1X1;1 � H1
 �

x1

þ ð _v1 þ X1;1G1v1 þ FT
1 v1 þ X1;1g1 � h1Þ ¼ 0:

Thus, we can solve the two initial value problems

_X1;1 þ X1;1F1 þ FT
1 X1;1 þ X1;1G1X1;1 � H1 ¼ 0; X1;1ðtf Þ ¼ �M1;1; ð15:43Þ

and

_v1 þ X1;1G1v1 þ FT
1 v1 þ X1;1g1 � h1 ¼ 0; v1ðtf Þ ¼ 0; ð15:44Þ

to obtain X1;1 and v1 and to decouple the solution to (15.41).
In this way we have obtained a Riccati approach for the dynamic part of the

system. Ideally, however, we would like to have a Riccati approach directly for the
boundary value problem associated with (15.19), (15.30), and (15.26) in the ori-
ginal data, without carrying out the change of bases and going to normal form. If we
make a similar ansatz for the general situation, i.e., k ¼ Xxþ v; then we face the
problem that neither the whole x nor the whole k may be differentiable. To acco-
modate for the appropriate solution spaces, we therefore make the modified ansatz

(a) k ¼ XExþ v ¼ XEEþExþ v;

(b) d
dtðEEþkÞ ¼ d

dtðEEþXÞExþ ðEEþXÞ _EEþEx

þðEEþXÞE d
dtðEþExÞ þ d

dtðEþEvÞ; ð15:45Þ

where

X 2 C1
EEþðI;Rn;nÞ; v 2 C1

EEþðI;RnÞ: ð15:46Þ

In this way we have obtained an ansatz that fits to the solution spaces for x and k:
The disadvantage of this approach, however, is that XðI � EEþÞ now can be
chosen arbitrarily. Using again the transformation to normal form (15.15) and that

Pk ¼ PXPTPEQQTxþ Pv;

we obtain

~k ¼ k1

k2

� �
¼ ~X~E~xþ ~v;

with

~X ¼ PXPT ¼
~X1;1 ~X1;2
~X2;1 ~X2;2

� �
; ~v ¼ ~v1

~v2

� �
:

Comparing with (15.42) we obtain

X1;1 ¼ ET
1;1

~X1;1E1;1; v1 ¼ ET
1;1~v1:
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In particular, we obtain that ~X1;1 and ~v1 are continuously differentiable under
the assumption that (15.43) is solvable on the interval I: Furthermore, ~X1;1 is
pointwise symmetric. From (15.39) we then obtain

k2 ¼ ½I 0 0�R̂�1

0 A2;1

AT
1;2 W2;1

BT
1 ST

1

2

64

3

75
�ð~X1;1E1;1x1 þ ~v1Þ

x1

" #
þ

f2

0

0

2

64

3

75

0

B@

1

CA

¼ ~X2;1E1;1x1 þ ~v2;

with

~X2;1E1;1 ¼ ½I 0 0�R̂�1
0 A2;1

AT
1;2 W2;1

BT
1 ST

1

2
4

3
5 �~X1;1E1;1

I

� �
;

and

~v2 ¼ ½I 0 0�R̂�1
f2

�AT
1;2~v1

�BT
1 ~v1

2
4

3
5:

If we assume that R itself is pointwise nonsingular (which corresponds to the
assumption that all controls are weighted in the cost functional), then from (15.26)
we obtain that

u ¼ R�1ðBTk� ST xÞ

and thus from (15.30) and (15.21) we obtain

ET d

dt
ðEEþXÞExþ ETðEEþXÞ _EEþExþ ET d

dt
ðEEþvÞ þ ETðEEþXÞ

� Axþ E
d

dt
ðEþEÞxþ BR�1BTðXExþ vÞ � BR�1STxþ f

� �

¼ Wxþ SR�1BTðXExþ vÞ � SR�1STx� ðAþ EEþ _EÞTðXExþ vÞ;

or

�
ET d

dt
ðEEþXÞE þ ETðEEþXÞ _EEþE þ ETðEEþXÞE d

dt
ðEþEÞ

þ _ETðEEþXÞEEþE þ ETXAþ ET XBR�1BTXE þ ATXE

� ET XBR�1ST � SR�1BTXE þ SR�1ST �W
�

x

þ
�d

dt
ðEEþvÞ þ ETXBR�1BTvþ ETXf � SR�1BTvþ ATvþ _ETðEEþvÞ

�
¼ 0:
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Introducing the notation

(a) F ¼ A� BR�1ST ;

(b) G ¼ BR�1BT ;

(c) H ¼ W � SR�1ST ; ð15:47Þ

we obtain

d

dt
ðETðEEþXÞEðEþEÞÞ þ ETXF þ FTXE þ ETXGXE � H

� �
x

þ ET d

dt
ðEEþvÞ þ _ETðEEþvÞ þ ETXGvþ FTvþ ETXf

� �
¼ 0;

which yields the two initial value problems

d

dt
ðET XEÞ þ ETXF þ FTXE þ ETXGXE � H ¼ 0; ðETXEÞðtf Þ ¼ �M; ð15:48Þ

and
d

dt
ðET vÞ þ ET XGvþ FTvþ ET Xf ¼ 0; ðET vÞðtf Þ ¼ 0: ð15:49Þ

Note that we must have M ¼ Eðtf ÞT ~MEðtf Þ with suitable ~M and H ¼ ET ~HE

with suitable ~H as necessary condition for the solvability of (15.48). Note also
that (as already in the case of ODEs) the optimality boundary value problem
(15.34) may be solvable, whereas (15.48) does not allow for a solution on the
whole interval I:

The analysis in this section shows that we can obtain a Riccati approach if
the system (15.2) is strangeness-free in the behavior setting and if R is
invertible.

15.7 A Modified Cost Functional

In the previous sections we have derived necessary conditions for linear-quadratic
control problem and studied how these can be solved. In particular, we have seen
that extra conditions on the cost functional have to hold for the optimality system
or the associated Riccati equation to have a solution.

Since the cost functional is often a matter of choice one could modify it to
reduce the requirements. A simple modification is the following cost functional,
See Ref. [16] in the case of constant coefficients,

J ðx; uÞ ¼ 1
2

xðtf ÞT ~Mxðtf Þ þ
1
2

Ztf

t0

ðxT ~Wxþ 2xT ~Suþ uTRuÞ dt; ð15:50Þ

with ~M ¼ Eðtf ÞTMEðtf Þ; ~W ¼ ETWE; and ~S ¼ ETS:
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Assuming again that the original system (15.2) is strangeness-free as a behavior
system, the same analysis as before leads to the modified optimality boundary
value problem

(a) E d
dtðEþExÞ ¼ ðAþ E d

dtðEþEÞÞxþ Buþ f ; ðEþExÞðt0Þ ¼ x0;

(b) ET d
dtðEEþkÞ ¼ ETWExþ ETSu� ðAþ EEþ _EÞk;

ðEEþkÞðtf Þ ¼ �Eþðtf ÞT Eðtf ÞTMEðtf Þxðtf Þ;
(c) 0 ¼ ST Exþ Ru� BTk: ð15:51Þ

Considering the conditions that guarantee that the optimality system is again
strangeness-free, we obtain the following corollary.

Corollary 1.13 Consider the optimal control problem to minimize (15.50) subject
to (15.2) and assume that (15.2) is strangeness-free as a free system (with u ¼ 0).
Then the optimality system (15.51) is strangeness-free if and only if R is pointwise
nonsingular.

Proof Consider the system (15.2) in the normal form (15.15). By assumption, we
have that A2;2 is invertible and in the transformed cost functional (15.32) we obtain

that ~S2 ¼ 0 and ~W2;2 ¼ 0: The modified matrix R̂ then takes the form

R̂ ¼
0 A2;2 B2

AT
2;2 0 0

BT
2 0 R

2

4

3

5;

which is clearly pointwise nonsingular if and only if R is pointwise nonsingular.
h

The Riccati approach also changes when we use the modified cost functional.
In particular, we obtain

(a) ~F ¼ A� BR�1~ST ;

(b) ~G ¼ G ¼ BR�1BT ;

(c) ~H ¼ ~W � ~SR�1~ST ; ð15:52Þ

In this case one obtains the two initial value problems

d

dt
ðET XEÞ þ ETX~F þ ~FT XE þ ETX ~GXE � ~H ¼ 0; ðET XEÞðtf Þ ¼ � ~M;

ð15:53Þ
and

d

dt
ðETvÞ þ ETX ~Gvþ ~FTvþ ETXf ¼ 0; ðETvÞðtf Þ ¼ 0: ð15:54Þ

Observe that the necessary conditions for solvability as stated in the end of Sect.
15.6 for (15.48) are now trivially fulfilled.
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15.8 Conclusions

We have presented the optimal control theory for general unstructured linear
systems of differential-algebraic equations with variable coefficients. We have
derived necessary and sufficient conditions as well as a Riccati approach. We have
also shown how the cost function may be modified to guarantee that the optimality
system is regular and strangeness-free.

The presented results can be generalized to nonlinear control problems and
suitable numerical methods for the solution of the optimality system are presented
in Kunkel and Mehrmann [21].
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Chapter 16
Robust Pole Assignment for Ordinary
and Descriptor Systems via the Schur
Form

Tiexiang Li, Eric King-wah Chu and Wen-Wei Lin

Abstract In Chu (Syst Control Lett 56:303–314, 2007), the pole assignment
problem was considered for the control system _x ¼ Axþ Bu with linear state-
feedback u ¼ Fx: An algorithm using the Schur form has been proposed, pro-
ducing good suboptimal solutions which can be refined further using optimization.
In this paper, the algorithm is improved, incorporating the minimization of the
feedback gain kFk: It is also extended for the pole assignment of the descriptor
system E _x ¼ Axþ Bu with linear state- and derivative-feedback u ¼ Fx� G _x:
Newton refinement for the solutions is discussed and several illustrative numerical
examples are presented.

16.1 Introduction

Let ðA;BÞ denote the ordinary system

_x ¼ Axþ Bu ð16:1Þ
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with the open-loop system matrix A 2 R
n�n and input matrix B 2 R

n�mðn [ mÞ:
The state-feedback pole assignment problem (SFPAP) seeks a control matrix F 2
R

m�n such that the closed-loop system matrix Ac � Aþ BF has prescribed
eigenvalues or poles. Equivalently, we are seeking a control matrix F such that

ðAþ BFÞX ¼ XK ð16:2Þ

for some given K with desirable poles and nonsingular matrix X: Notice that K
does not have to be in Jordan form, and X can be well-conditioned even with
defective multiple eigenvalues in some well-chosen K:

The SFPAP is solvable for arbitrary closed-loop spectrum when ðA;BÞ is
controllable, i.e., when ½sI � A;B� ð8s 2 CÞ or ½B;AB; . . .;An�1B� are full ranked.
The problem has been thoroughly investigated; see [6, 7, 17], the references
therein, or any standard textbook in control theory. It is well known that the single-
input case ðm ¼ 1Þ has a unique solution, while the multi-input case has some
degrees of freedom left in the problem. A notable effort in utilizing these degrees
of freedom sensibly was made by Kautsky et al. [13], with the conditioning of the
closed-loop spectrum (including kX�1kF where X contains the normalized closed-
loop eigenvectors) being optimized.

When solving a pole assignment problem with a particular robustness measure
optimized, we call it a robust pole assignment problem (RPAP). It is important to
realize that there are many RPAPs, with different robustness measures. In this
paper, a weighted sum of the departure from normality and the feedback gain is
used as the robustness measure. For other possibilities and a comparison of dif-
ferent robustness measures, see [6, 7].

In [7], ðK;XÞ in Schur form is chosen together with the upper triangular part of
K (the departure from normality) minimized. The resulting non-iterative algorithm
SCHUR produces a suboptimal solution F for any given x1 (the first Schur vector in
X). In this paper, this original SCHUR algorithm is improved, minimizing a
weighted sum of the departure from normality and the feedback gain. The SCHUR
algorithm is also extended for the pole assignment of the descriptor system

E _x ¼ Axþ Bu ð16:3Þ

with linear state- and derivative-feedback u ¼ Fx� G _x; for the solvability and
other algorithms for the problem, see [5, 8, 12, 18]. Furthermore, a Newton
refinement procedure is implemented, using the suboptimal but feasible solution
produced by SCHUR as starting point. Note that a common problem with Newton’s
method is the lack of a feasible starting point which is close enough to the (locally)
optimal solution. This SCHUR-NEWTON algorithm will produce a better solution,
utilizing the freedom in x1:

The main contributions of this paper are as follows. For the RPAP, it is not
appropriate to compare different algorithms built on different robustness measures.
An algorithm is only ‘‘better’’ for a particular measure, which is unlikely to be the
sole consideration the control design. However, our algorithm is well-conditioned
in the sense that the Schur form, which is well-conditioned or differentiable even
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for multiple eigenvalues, is utilized. In addition, the robustness measure is a
flexible weighed sum of departure from normality and feedback gains.

After the introduction here, Sect. 16.2 quotes the theorems on the departure from
normality measures for ordinary and descriptor systems. Sections 16.3 and 16.4 present
the SCHUR-NEWTON algorithms for ordinary and descriptor systems. Section 16.5
contains some numerical examples and Sect. 16.6 some concluding remarks. The
(generalized) spectrum is denoted by rð�Þ and ðAÞij is the ði; jÞ entry in A:

16.2 Departure from Normality

Consider the Schur decomposition Ac ¼ Aþ BF ¼ XKX> with K ¼ Dþ N where N
is the off-diagonal part of K: The departure of normality measure DmðAÞ � kNkm was
first considered by Henrici [11] and the following perturbation result was produced:

Theorem 2.1 (Henrici Theorem [11]) Let A; dA 2 C
n�n; dA 6¼ 0; l 2 rðAþ dAÞ

and let k � km be any norm stronger than the spectral norm (with kMk2�kMkm
for all M). Then

min
k2rðAÞ

jk� lj � g
gðgÞ jjdAjjm; g ¼ DmðAÞ

jjdAjjm

where gðgÞis the only positive root of gþ g2 þ � � � þ gn ¼ gðg� 0Þ:

Other related perturbation results involving the departure from normality
measure DmðAÞ can be found in [1–4, 9, 15].

For generalized eigenvalue problems [16], we have this generalization [1, 9,
11, 15]:

Definition 2.1 Let fA;Eg define a regular matrix pencil and UfA;Eg be the set of
all pairs of transformations fZ;Ug which satisfy the following conditions:

1. Z;U 2 C
n�n; Z is nonsingular and U is unitary;

2. Z�1AU and Z�1EU are both upper triangular; and

3. jðZ�1AUÞiij
2 þ jðZ�1EUÞiij

2 ¼ 1 ði ¼ 1; . . .; nÞ:

Let ðZ;UÞ 2 UfA;Eg and diagðAÞ 2 C
n denote the diagonal matrix sharing the

diagonal of A: Denote

lðZ;UÞ � Z�1AU � diagðZ�1AUÞ; Z�1EU � diagðZ�1EUÞ
� ��� ��

2

and

D2ðA;EÞ � inf
fZ;Ug2UfA;Eg

lðZ;UÞ:

Then D2ðA;EÞ is called the departure from normality measure of fA;Eg:
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Definition 2.2 Let rðA;EÞ ¼ fðai; biÞg denote the spectrum of the pencil aA� bE
and let ða; bÞ 2 rð~A; ~EÞ: The spectral variation of ð~A; ~EÞ from ðA;EÞ equals

sðA;EÞð~A; ~EÞ � max
ða;bÞ
fsða;bÞg; sða;bÞ � min

i
fjabi � baijg

Theorem 2.2 (Henrici Theorem [16]) Let fA;Eg and f~A; ~Eg define regular
pencils of the same dimension, D2ðA;EÞ is the departure from normality measure

of fA;Bg; and suppose D2ðA;EÞ 6¼ 0: Let W ¼ ðA;EÞ and eW ¼ ð~A; ~EÞ; then

sðA;EÞð~A; ~EÞ� g
gðgÞ ½1þ D2ðA;EÞ� d2ðW ; eW Þ

where d2ðW ; eW Þ ¼ k sin HðW ; eW Þk2 denotes the distance between W and eW ;

g ¼ D2ðA;EÞ
½1þ D2ðA;EÞ� d2ðW ; eW Þ

;

and gðgÞ is the unique nonnegative root of gþ g2 þ � � � þ gn ¼ gðg[ 0Þ:

Based on Theorems 2.1 and 2.2, we shall minimize the departure from nor-
mality (as part of the robustness measure) of the closed-loop matrix pencil in the
effort to control the robustness of the closed-loop spectrum or system.

16.3 Ordinary System

Similar to the development in [7] we have

ðAþ BFÞX ¼ XK ð16:4Þ
assuming without loss of generality that the feedback matrix B has full rank and
possesses the QR decomposition

B ¼ Q1;Q2½ � R>B ; 0
� �>¼ Q R>B ; 0

� �>¼ Q1RB: ð16:5Þ

Pre-multiplying the eigenvalue equation (16.4) by By ¼ R�1
B Q>1 and Q>2 ; we obtain

Q>2 ðAX � XKÞ ¼ 0;

F ¼ R�1
B Q>1 ðXKX�1 � AÞ:

ð16:6Þ

For a given K; we can select X from

In 	 ðQ>2 AÞ � K> 	 Q>2
� �

vðXÞ ¼ 0

where 	 denote the Kronecker product [9] and vðXÞ stacks the columns of X
[which is different from Stkð�Þ defined later]. For the selected X; the solution to the
SFPAP can then be obtained using (16.6).
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16.3.1 Real Eigenvalues

First consider the real case when all the eigenvalues in K are real; i.e., let the real
X ¼ ½x1; . . .; xn� and K ¼ Dþ N where D ¼ diagfk1; . . .; kng;N is the strict upper

triangular part of K with columns ½g>j ; 0>�
> and gj 2 R

j�1ðj ¼ 1; . . .; nÞ: Equation
(16.4) and the properties of Schur decompositions imply

QT
2 ðA� kjInÞ � QT

2 X�j

XT
�j 0

� �
xj

gj

� �
¼ 0; j ¼ 1; . . .; n: ð16:7Þ

Let Sj � ½S>j1; S>j2�
> be a unitary basis of the above subspace, so that

xj ¼ Sj1uj; gj ¼ Sj2uj: ð16:8Þ

The Schur vectors xj can then be select from the subspaces defined in (16.8) with
kgjk (and thus kNkF) minimized using the GSVD [3, 4, 7]. When j ¼ 1; g1 is
degenerate and there will be no minimization to control x1; making it a free
parameter. To overcome this freedom, we can optimize some additional robustness
measure. The feedback gain kFk; which is of some importance in many engi-
neering applications, is then a natural choice. Making use of the orthogonality of X
in (16.6), we have

Y ¼ ½y1; . . .; yn� � FX ¼ ByðXK� AXÞ; kYk ¼ kFk

and

yj ¼ By½kjIn � A;X�j� x>j ; g
>
j

h i>
¼ Sj3uj

with

Sj3 � By kjIn � A;X�j

� �
Sj; X�j � ½x1; . . .; xj�1�:

Incorporating the departure from normality and feedback gain into one weighted

robustness measure rðX;NÞ � x2
1kFk

2
F þ x2

2kNk
2
F ; we have

rðX;NÞ ¼
Xn

j¼1

u>j x2
1S>j3Sj3 þ x2

2S>j2Sj2

� �
uj:

Other more sophisticated scaling schemes can be achieved in a similar fashion. For
example, different gj and yj can have different weights, or ðx1;x2Þ can be set to
ð1; 0Þ (thus ignoring kNk).

For j ¼ 1; . . .; n; the vectors xj and gj can then be chosen by minimizing rðX;NÞ
while scaling xj to be a unit vector, by considering the GSVD [3, 4] of ðSj1; Sj4Þ;
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with Sj4 � ½x1S>j2;x2S>j3�
>: Finally, a more direct and efficient way to construct

Sjkðk ¼ 1; 2; 3Þ will be to consider, directly from (16.4) and similar to (16.7),

A� kjIn B �X�j

X>�j 0 0

� � xj

yj

gj

2
4

3
5 ¼ 0

so that the columns of ½S>j1; S>j2; S>j3�
> form a (unitary) basis for the above subspace,

with the feedback matrix retrievable from F ¼ YX>: We are then required to
choose uj such that

min
uj

¼
u>j Ŝ>2jŜ2juj

u>j S>1jS1juj
; Ŝ2j ¼

x1Sj2

x2Sj3

� �
:

From the initial point obtained via the above SCHUR algorithm, we use New-
ton’s algorithm to optimize the problem. Note that the freedom in the order of the
poles remains to be utilized.

Optimization Problem 1

min x2
1kYk

2
F þ x2

2kNk
2
F s.t.

AX þ BY � XðDþ NÞ ¼ 0
X>X � I ¼ 0

	

where N is n� n strictly upper triangular and X is n� n orthogonal.

Optimization problem 1 is equivalent to:

min x2
1vðYÞ>vðYÞ þ x2

2StkðNÞ>StkðNÞ

s.t.
ðI 	 AÞvðXÞ þ ðI 	 BÞvðYÞ � ðD> 	 IÞvðXÞ � ðN> 	 IÞvðXÞ ¼ 0

d0ðXÞ>vðXÞ � StkðIÞ ¼ 0

	

where StkðNÞ ¼ g>2 ; . . .; g>n
� �>¼ g>12jg>13; g

>
23j. . .jg>1n; . . .; g>n�1;n

h i>
2 R

nðn�1Þ=2�p;

which stacks the nontrivial elements of gj ðj ¼ 2; . . .; nÞ: Here, we write C ¼
½c1; . . .; cn� 2 R

k�n; so

d0ðCÞ � c1 
 ½c1; c2� 
 � � � 
 ½c1; . . .; cn�½ � 2 R
kn�q:

We then consider the Lagrange function of the Optimization Problem 1:

L c; d; vðXÞ; vðYÞ; StkðNÞð Þ ¼ x2
1vðYÞ>vðYÞ þ x2

2StkðNÞ>StkðNÞ
þ c> ðI 	 AÞvðXÞ þ ðI 	 BÞvðYÞ � ðD> 	 IÞvðXÞ � ðN> 	 IÞvðXÞ

� �

þ d> d0ðXÞ>vðXÞ � StkðIÞ
h i

where c ¼ c1|{z}
>

n



 c2|{z}
>

n



 � � �


 cn|{z}
>

n

2
4

3
5
>

2 R
n2
;R ¼ c1; c2; . . .; cn½ �; and
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d ¼ d1|{z}
>

1



 d2|{z}
>

2



 � � �


 dn|{z}
>

n

2

4

3

5
>

¼ d11



d21; d22



 � � �


dn1; dn2; . . .; dnn

� �>

2 R
nðnþ1Þ=2�q:

The derivatives of L satisfy

f1 �
oL

oc
¼ ðI 	 A� D> 	 I � N> 	 IÞvðXÞ þ ðI 	 BÞvðYÞ ¼ 0;

f2 �
oL

od
¼ d0ðXÞ>vðXÞ � StkðIÞ ¼ 0;

f3 �
oL

ovðXÞ ¼ ðI 	 A> � D	 I � N 	 IÞcþ vðXDÞ ¼ 0;

ð16:9Þ

f4 �
oL

ovðYÞ ¼ ðI 	 B>Þcþ 2x2
1vðYÞ ¼ 0; ð16:10Þ

f5 �
oL

oStkðNÞ ¼ 2x2
2 StkðNÞ � d1ðXÞ>c ¼ 0 ð16:11Þ

where Dij ¼ dij ði 6¼ jÞ;Dii ¼ 2dii and

d1ðCÞ �
0 � � � � � � � � � � � � 0

c1 
 ½c1; c2� 
 � � � 
 ½c1; ; cn�1�

� �
2 R

kn�p:

We apply Newton’s method to f � ðf>1 ; . . .; f>5 Þ
> ¼ 0:

c>; d>; vðXÞ>; vðYÞ>; StkðNÞ>
h i>

new
¼ c>; d>; vðXÞ>; vðYÞ>; StkðNÞ>
h i>

�J�1
f f

ð16:12Þwith the symmetric

Jf ¼

0 0 I 	 A� D> 	 I � N> 	 I I 	 B �d1ðXÞ
0 d0ðXÞ> þ d2ðX>Þ 0 0

D	 I 0 �d3 ½c2; . . .; cn�ð Þ
2x2

1Imn 0
� 2x2

2 Ip

2

66664

3

77775
;

d2ðC>Þ �

c>1
c>2 
 c>2
c>3 
 c>3 
 c>3

..

.

c>n 
 � � � 
 c>n

2

66666664

3

77777775

2 R
q�kn; and

d3ðCÞ �
kf

c2c3 
 c3c4 
 c4 
 c4 � � � cn 
 � � � 
 cn

0 � � � � � � � � � 0

� �
2 R

kn�p:
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We can now present the algorithm for the RPAP with real eigenvalues:

Algorithm 1
1. Use the Schur Form to find the initial X0; Y0 and N0:
2. Substitute X0; Y0;N0 into (16.9), (16.10) and (16.11), we construct:

I 	 A> � D	 I � N0 	 I d0ðXÞ þ d2ðX>Þ>

I 	 B> 0

d1ðXÞ> 0

2

64

3

75
c0

d0

" #
¼

0

�2x2
1vðY0Þ

2x2
2StkðN0Þ

2

64

3

75

ð16:13Þ

Solve the over-determined system (16.13) in the least squares sense for
ðc>0 ; d

>
0 Þ:

3. Use ½c>0 ; d>0 ; vðX0Þ>; vðY0Þ>; StkðN0Þ>�> as the initial point and run Newton’s
iteration as in (16.12) until convergence to X; Y ;N:

4. Substitute the X;N into (16.6) to obtain the feedback matrix F:

16.3.2 Complex Eigenvalues

When some of the closed-loop eigenvalues are complex, we assume that the given
eigenvalues being L ¼ fk1; . . .; kn�2s; a1 � b1i; . . .; as � bsig; where s is the
number of complex eigenvalues, and ki; aj and bj are real.

As in the real eigenvalue case, using a modified real Schur form, the real
vectors xj; xjþ1 2 R

n; yj; yjþ1 2 R
m and gj; gjþ1 2 R

j�1 are chosen via

A xj; xjþ1
� �

þ B yj; yjþ1
� �

� xj; xjþ1
� �

Dj � X�j gj; gjþ1

� �
¼ 0;

with

Dj ¼ Uðaj; bjÞ �
aj bj

�bj aj

" #
: ð16:14Þ

Consequently, we have Mj½x>j ; x>jþ1; y
>
j ; y

>
jþ1; g

>
j ; g

>
jþ1�

> ¼ 0 where

ð16:15Þ

With QR to extract the unitary basis of the null space, we have

x>j ; x
>
jþ1; y

>
j ; y

>
jþ1; g

>
j ; g

>
jþ1

h i>
¼ S>1j; S

>
2j; S

>
3j

h i>
uj:
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We are then required to choose uj such that

min
uj

¼
u>j Ŝ>2jŜ2juj

u>j S>1jS1juj
; Ŝ2j ¼

x1I 0
0 x2I

� �
S2j

S3j

� �

where xk are some weights in the objective function, to vary the emphasis on the
condition of the the feedback gain (or the size of F) and closed-loop eigenvalues
(or the departure from normality). The minimization can then be achieved by the

GSVD of S � ðS1j; Ŝ2jÞ>; by choosing uj to be the generalized singular vector of S
corresponding to the smallest generalized singular value.

In the Real Schur Decomposition in (16.22) with aj; bj 2 R; a2j�1 þ a2j ¼
2aj; a2j�1a2j � b2j�1b2j ¼ a2

j þ b2
j for j ¼ 1; . . .; s; we have

D ¼ k1 
 � � � 
 kn�2s 

a1 b2

b1 a2

� �

 � � � 
 a2s�1 b2s

b2s�1 a2s

� �� �

and

N¼

g2 g3... gn�2s gn�2sþ1 gn�2sþ2 ... gn�1 gn

# # # # # # #
0 g1;2 g1;3 ... g1;n�2s g1;n�2sþ1 g1;n�2sþ2 ... g1;n�1 g1;n

0 g2;3 g2;n�2s g2;n�2sþ1 g2;n�2sþ2 ... g2;n�1 g2;n

0 ... ..
. ..

. ..
. ..

.

gn�2s�1;n�2s
..
. ..

. ..
. ..

. ..
.

0 gn�2s;n�2sþ1 gn�2s;n�2sþ2
..
. ..

. ..
.

0 0 ..
. ..

. ..
.

0 0 ..
. ..

. ..
.

gn�2;n�1 gn�2;n

0 0

0 0

2
6666666666666666666666664

3
7777777777777777777777775

ð16:16Þ

From the initial point, which is obtained from a modified real Schur form and is
not usually feasible, we use Newton’s algorithm to optimize the problem. We
arrive at the optimization problem for complex eigenvalues:

Optimization Problem 2

min x2
1kYk

2
F þ x2

2kNk
2
F s.t.

AX þ BY � XðDþ NÞ ¼ 0
X>X � I ¼ 0
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where D and N are as previously defined, and X is n� n orthogonal. Optimization
Problem 2 is equivalent to:

min x2
1vðYÞ>vðYÞ þ x2

2StkðNÞ>StkðNÞ

s:t:

ðI 	 A� D> 	 I � N> 	 IÞvðXÞ þ ðI 	 BÞvðYÞ ¼ 0

d0ðXÞ>vðXÞ � StkðIÞ ¼ 0

a1 þ a2 � 2a1 ¼ 0

..

.

a2s�1 þ a2s � 2as ¼ 0

2
664

3
775

a1a2 � b1b2 � ða2
1 þ b2

1Þ ¼ 0

..

.

a2s�1a2s � b2s�1b2s � ða2
s þ b2

s Þ ¼ 0

2
664

3
775

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

for which the Lagrangian function equals

Lðc;d;x;n;vðXÞ;vðYÞ;a;b;StkðNÞÞ ¼x2
1vðYÞ>vðYÞþx2

2StkðNÞ>StkðNÞ

þ c> ðI	A�D> 	 I�N> 	 IÞvðXÞþ ðI	BÞvðYÞ
� �

þ d> d0ðXÞ>vðXÞ�StkðIÞ
h i

þ
Xs

j¼1

xjða2j�1þ a2j� 2ajÞþ
Xs

j¼1

nj a2j�1a2j� b2j�1b2j� a2
j þb2

j

� �h i

where x ¼ x1;x2; . . .;xs½ �>; n ¼ n1; n2; . . .; ns½ �>; a ¼ a1; a2; . . .; a2s½ �>; b ¼ b1;½
b2; . . .; b2s�> and StkðNÞ ¼ g>2 ; . . .; g>n

� �>
:

The derivatives of L satisfy

f1 �
oL

oc
¼ ðI 	 A� D> 	 I � N> 	 IÞvðXÞ þ ðI 	 BÞvðYÞ ¼ 0;

f2 �
oL

od
¼ d0ðXÞ>vðXÞ � StkðIÞ ¼ 0; f3 �

oL

ox
¼

a1þ a2 � 2a1

..

.

a2s�1þ a2s � 2as

2

664

3

775;

f4 �
oL

on
¼

a1a2 � b1b2 � ða2
1 þ b2

1Þ ¼ 0

..

.

a2s�1a2s � b2s�1b2s � ða2
s þ b2

s Þ ¼ 0

2
6664

3
7775;

f5 �
oL

ovðXÞ ¼ ðI 	 A> � D	 I � N 	 IÞcþ vðXDÞ ¼ 0; ð16:17Þ
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f6 �
oL

ovðYÞ ¼ ðI 	 B>Þcþ 2x2
1vðYÞ ¼ 0; ð16:18Þ

f7 �
oL

oa
¼

x1

x1

..

.

xs

xs

2

666664

3

777775
þ

n1a2

n1a1

..

.

nsa2s

nsa2s�1

2

666664

3

777775
�

c>n�2sþ1

. .
.

c>n

2
64

3
75vð½xn�2sþ1; . . .; xn�Þ ¼ 0;

ð16:19Þ

f8 �
oL

ob
¼ �

n1b2

n1b1

..

.

nsb2s

nsb2s�1

2

666664

3

777775
�

c>n�2sþ1

. .
.

c>n

2
64

3
75Ps vð½xn�2sþ1; . . .; xn�Þ ¼ 0;

ð16:20Þ

f9 �
oL

oStkðNÞ ¼ 2x2
2 StkðNÞ � bd1ðX; sÞ>c ¼ 0; ð16:21Þ

where

Ps ¼
0 I
I 0

� �

 � � � 
 0 I

I 0

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s

; bd1ðC; sÞ �
0

Cr 
 Ci

� �gk

with Cr � c1 
 � � � 
 c1; . . .; cn�2s�1½ � and

Ci �
c1; . . .; cn�2s 0

0 c1; . . .; cn�2s

� �

 � � � 
 c1; . . .; cn�2 0

0 c1; . . .; cn�2

� �
:

We then obtain the symmetric gradient matrix of f � ½f>1 ; f>2 ; . . .; f>9 �
> :

Jf ¼

0000 X W � bd4ðX; sÞ �d4ðX; sÞ � bd1ðX; sÞ
000 N 0 0 0 0
00 0 0 d5ðeÞ 0 0
0 0 0 d5ðaÞ �d5ðbÞ 0

D	 I 0 � bd4ðR; sÞ �d6ðR; sÞ �d8ðR; sÞ>
2x2

1I 0 0 0
d7ðnÞ 0 0

� �d7ðnÞ 0
2 x2

2Ibp

2

66666666666664

3

77777777777775
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where X ¼ I 	 A� D> 	 I � N> 	 I;W ¼ I 	 B; bp ¼ ðn� 2sÞðn� 2s� 1Þ=2þ
2sðn� s� 1Þ; e ¼ ½1; 1; . . .; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

2s

�>;N ¼ d0ðXÞ> þ d2ðX>Þ;

d4ðC; sÞ �

0 . . . . . . 0
..
. ..

.

0 . . . . . . 0
cn�2sþ2

cn�2sþ1

� �

 � � � 
 cn

cn�1

� �

2

66664

3

77775

�
kðn� 2sÞ

�
kð2sÞ

;

bd4ðC; sÞ �

0 . . . . . . . . . . . . . . . 0
..
. ..

.

0 . . . . . . . . . . . . . . . 0
cn�2sþ1 
 cn�2sþ2 
 � � � 
 cn�1 
 cn

2

664

3

775

o
kðn� 2sÞ

gkð2sÞ

;

d5ðwÞ � d5ð½w1; . . .;w2s�
>ÞÞ ¼ ½w2;w1� 
 ½w4;w3� 
 � � � 
 ½w2s;w2s�1�;

d6ðC; sÞ �

0 . . . . . . 0
..
. ..

.

0 . . . . . . 0
0 cn�2sþ2

cn�2sþ1 0

� �

 � � � 
 0 cn

cn�1 0

� �

2

66664

3

77775

)
kðk � 2sÞ

�
kð2sÞ

;

d7ðwÞ � d7ð½w1; . . .;w2s�
>ÞÞ ¼ 0 w1

w1 0

� �

 0 w2

w2 0

� �

 � � � 
 0 ws

ws 0

� �
;

and

d8ðC; sÞ �

ðc2Þ> 0
ðc3Þ> 
 ðc3Þ> 0

ðc4Þ> 
 ðc4Þ> 
 ðc4Þ> 0

..

.

ðcn�2sÞ> 
 . . .
 ðcn�2sÞ> 0
ðcn�2sþ1Þ> 
 . . .
 ðcn�2sþ1Þ> 0
ðcn�2sþ2Þ> 
 . . .
 ðcn�2sþ2Þ> 0

..

.

ðcn�1Þ> 
 . . .
 ðcn�1Þ> 0
ðcnÞ> 
 . . .
 ðcnÞ> 0

2
66666666666666664

3
77777777777777775

gn� 2s� 1
gn� 2s
gn� 2s
gn� 2
gn� 2

Modifying Algorithm 1, we solve Optimization Problem 2 by Newton’s itera-
tion to obtain a real feedback matrix F:

Algorithm 2

1. Use SCHUR to find the initial X0 and N0:

2. Substitute X0; N0 into (16.17–16.20), we obtain ½c>0 ; d
>
0 ;x

>
0 ; n

>
0 �
>:
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3. Use ½c>0 ; d
>
0 ;x

>
0 ; n

>
0 ; vðX0Þ>; vðY0Þ>; a>0 ; b>0 ; StkðN0Þ>�> as the initial guess,

apply Newton’s iteration (16.12) until convergence to X; Y ;N:
4. Substitute the X; N and K into (16.6) to obtain the feedback matrix F:

Remarks At step 3, the initial point ½c>0 ; d>0 ;x>0 ; n>0 ; vðX0Þ>; vðY0Þ>; a>0 ; b>0 ;
StkðN0Þ>�> is sometimes far away from the optimal point. In such an event, we
apply the GBB Gradient method [10] to decrease the objective function suffi-
ciently, before Newton’s iteration is applied. At step 4, since the matrix X is
orthogonal, we can use X> in place of X�1:

16.4 Descriptor System

Multiplying the nonsingular matrix Z�1 and orthogonal matrix X on the both sides
of Aþ BF and E þ BG; we get

ðAþ BFÞX ¼ ZðDa þ NaÞ; ðE þ BGÞX ¼ ZðDb þ NbÞ; ð16:22Þ

where Da;Db are diagonal, and Na;Nb are straightly upper triangular.
From the QR decomposition in (16.5), we have Q>2 B ¼ 0 and By ¼ R�1

B Q>1 :

Pre-multiplying the equations in (16.22), respectively, by Q>2 and By; we obtain

Q>2 AX � Q>2 ZDa � Q>2 ZNa ¼ 0; Q>2 EX � Q>2 ZDb � Q>2 ZNb ¼ 0; ð16:23Þ

F ¼ R�1
B Q>1 ½ZðDa þ NaÞX�1 � A�; G ¼ R�1

B Q>1 ½ZðDb þ NbÞX�1 � E�: ð16:24Þ

For a given eigenvalue pairs fDa;Dbg; we can select Z;X from (16.23) then obtain
the solution to the pole assignment problem using (16.24).

Let Y � Y>1 ; Y
>
2

� �>� F>;G>½ �>X; when X and Y are chosen, the feedback

matrices can be obtained through H � F>;G>½ �>¼ YX�1: Furthermore, mini-
mizing the norm of Y is equivalent to minimizing the feedback gain kHk:

16.4.1 Real Eigenvalues

Let us first consider the case when all the closed-loop eigenvalues are real, with the
closed-loop system matrix pencil ðAc;EcÞ ¼ ðAþ BF;E þ BGÞ ¼ ðZKaX>; ZKbX>Þ
in Schur form. Here we have ðKa;KbÞ ¼ ðDa þ Na;Db þ NbÞ; with Da ¼ diag

fa1; . . .; ang;Db ¼ diagfb1; . . .; bng being real, Na ¼ ĝ1; ĝ2; . . .; ĝn½ �; Nb ¼

f̂1; f̂2; . . .;
h

f̂n� being straightly upper triangular and nilpotent, and gj ¼

½g1;j; . . .; gj�1;j�>; fj ¼ ½f1;j; . . .; fj�1;j�> are the vectors constructed from ĝj and f̂j with
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the zeroes at the bottom deleted (thus g1; f1 are degenerate and gj; fj 2 R
j�1). The

Schur vector matrix X is orthogonal.
Similar to Sect. 16.3.1, we seek X; Y1; Y2; Z; Na and Nb such that

AX þ BY1 � ZðDa þ NaÞ ¼ 0;EX þ BY2 � ZðDb þ NbÞ ¼ 0; X>X ¼ I:

Considering the jth column, we have

Mj x>j jy>1j; y
>
2j; g

>
j ; f

>
j jz>j

h i>
¼ 0 ð16:25Þ

with

With QR to extract the unitary basis of the null space, we have

x>j jy>1j; y
>
2j; g

>
j ; f

>
j jz>j

h i>
¼ S>1j; S

>
2j; S

>
3j

h i>
uj

We are then required to choose uj such that

min
uj

¼
u>j Ŝ>2jŜ2juj

u>j S>1jS1juj
; Ŝ2j ¼

x1I 0
0 x2I

� �
S2j

where xk are some weights in the objective function. The minimization can then

be achieved by the GSVD of S � ðS1j; Ŝ2jÞ>; by choosing uj to be the generalized
singular vector of S corresponding to the smallest generalized singular value.

Remarks In Definition 2.1, Z is only required to be nonsingular, but this will be
inconvenient to achieve in practice. If it is unconstrained, an ill-conditioned Z may
cause problems in the Schur–Newton refinement in the next section. Consequently,
we require in the calculations in (16.25) and (16.15) that Z is unitary with perfect
condition.

From the initial point, we use Newton’s algorithm to optimize the problem.

Optimization Problem 3

min x2
1kYk

2
F þ x2

2k½Na;Nb�k2
F s:t:

AX þ BY1 � ZðDa þ NaÞ ¼ 0
EX þ BY2 � ZðDb þ NbÞ ¼ 0
X>X � I ¼ 0

8
<

:

where Na;Nb are n� n strictly upper triangular, X is n� n orthogonal and Z is
nonsingular.

354 T. Li et al.



Optimization Problem 3 is equivalent to:

min x2
1vðFÞ>vðFÞ þ x2

2 StkðNaÞ>StkðNaÞ þ StkðNbÞ>StkðNbÞ
h i

s:t:

ðI 	 AÞvðXÞ þ ðI 	 BÞvðY1Þ � ðD>a 	 IÞvðZÞ � ðN>a 	 IÞvðZÞ ¼ 0

ðI 	 EÞvðXÞ þ ðI 	 BÞvðY2Þ � ðD>b 	 IÞvðZÞ � ðN>b 	 IÞvðZÞ ¼ 0

d0ðXÞ>vðXÞ � StkðIÞ ¼ 0

8
><

>:

where StkðNaÞ � g>12jg>13; g
>
23j � � � jg>1n; . . .; g>n�1;n

h i>
2 R

nðn�1Þ=2�p; StkðNbÞ �

f>12jf>13; f
>
23j � � � jf>1n; . . .; f>n�1;n

h i>
2 R

nðn�1Þ=2�p:

We then consider the Lagrangian function of Optimization Problem 3

L c; e; d; vðXÞ; vðY1Þ; vðY2Þ; vðZÞ; StkðNaÞ; StkðNbÞ
 �

¼ x2
1vðYÞ>vðYÞ þ x2

2 StkðNaÞ>StkðNaÞ þ StkðNbÞ>StkðNbÞ
h i

þ c> ðI 	 AÞvðXÞ þ ðI 	 BÞvðY1Þ � ðD>a 	 IÞvðZÞ � ðN>a 	 IÞvðZÞ
� �

þ e> ðI 	 EÞvðXÞ þ ðI 	 BÞvðY2Þ � ðD>b 	 IÞvðZÞ � ðN>b 	 IÞvðZÞ
h i

þ d> d0ðXÞ>vðXÞ � StkðIÞ
h i

where

e ¼ ½ e1|{z}
>

n

j e2|{z}
>

n

j � � � j en|{z}
>

n

�> 2 R
n2
; W ¼ e1; e2; . . .; en :

The derivatives of L satisfy

f1 �
oL

oc
¼ ðI 	 AÞvðXÞ þ ðI 	 BÞvðY1Þ � ðD>a 	 IÞvðZÞ � ðN>a 	 IÞvðZÞ ¼ 0;

f2 �
oL

oe
¼ ðI 	 EÞvðXÞ þ ðI 	 BÞvðY2Þ � ðD>b 	 IÞvðZÞ � ðN>b 	 IÞvðZÞ ¼ 0;

f3 �
oL

od
¼ d0ðXÞ>vðXÞ � StkðIÞ ¼ 0;

f4 �
oL

ovðXÞ ¼ ðI 	 A>Þcþ ðI 	 E>Þeþ vðXDÞ ¼ 0; ð16:26Þ

f5 �
oL

ovðY1Þ
¼ ðI 	 B>Þcþ 2x2

1vðY1Þ ¼ 0; ð16:27Þ

f6 �
oL

ovðY2Þ
¼ ðI 	 B>Þeþ 2x2

1vðY2Þ ¼ 0; ð16:28Þ
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f7 �
oL

ovðZÞ ¼ �½ðDa 	 IÞ þ ðNa 	 IÞ�c� ½ðDb 	 IÞ þ ðNb 	 IÞ�e ¼ 0; ð16:29Þ

f8 �
oL

oStkðNaÞ
¼ 2x2

2 StkðNaÞ � d1ðZÞ>c ¼ 0; ð16:30Þ

f9 �
oL

oStkðNbÞ
¼ 2x2

2 StkðNbÞ � d1ðZÞ>e ¼ 0: ð16:31Þ

We apply Newton’s method to f � ðf>1 ; f>2 ; . . .; f>9 Þ
> with respect to the variables

in c>; e>; d>; vðXÞ>; vðY1Þ>; vðY2Þ>; vðZÞ>; StkðNaÞ>; StkðNbÞ>
h i>

; where the

symmetric

Jf ¼

0 0 0I 	 A I 	 B 0 �D>a 	 I � N>a 	 I �d1ðZÞ 0
0 0I 	 E 0 I 	 B �D>b 	 I � N>b 	 I 0 �d1ðZÞ

0 d02 0 0 0 0 0
D	 I 0 0 0 0 0

2x2
1Imn 0 0 0 0

2x2
1Imn 0 0 0

0 �d3;c �d3;e

� 2x2
2 Ip 0

2x2
2 Ip

2
6666666666664

3
7777777777775

with d02 � d0ðXÞ> þ d2ðX>Þ; d3;c � d3 ½c2; . . .; cn�ð Þ and d3;e � ½e2; . . .; en�ð Þ:
Applying Newton’s method to Optimization Problem 3, we obtain Z;X then by

using (16.24), the feedback matrices F;G: Now, we can write down the Schur–
Newton Algorithm for the RPAP_DS with real eigenvalues:

Algorithm 3 (Real Schur–Newton)

1. Use SCHUR to find the initial X0; Z0; Y10; Y20;Na0 and Nb0:

2. Substitute X0; Z0; Y10; Y20;Na0 and Nb0 into (16.26–16.29) to construct:

I 	 A> I 	 E> d>02
I 	 B> 0 0

0 I 	 B> 0
U3 U4 0

d1ðZÞ> 0 0
0 d1ðZÞ> 0

2

6666664

3

7777775

c0
e0

d0

2

4

3

5 ¼

0
�2x2

1vðY1Þ
�2x2

1vðY2Þ
0

2x2
2StkðNaÞ

2x2
2StkðNbÞ

2

6666664

3

7777775
ð16:32Þ

with U3 � �ðDa 	 I þ Na 	 IÞ and U4 � �ðDb 	 I þ Nb 	 IÞ: Solve the
over-determined system (16.32) in the least squares for c0; e0 and d0:

3. Choose fc0; e0; d0; vðX0Þ; vðZ0Þ; Y10; Y20; StkðNa0Þ; StkðNb0Þg as the starting
values, run Newton’s iteration for f until convergence to X; Z;Na and Nb:

4. Substitute the X; Z; Y1; Y2;Na and Nb into (16.24) to obtain F;G:
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16.4.2 Complex Eigenvalues

Let fða1; b1Þ; . . .; ðan�2s; bn�2sÞ; ðl1 � im1; j1 � is1Þ; . . .; ðls � ims; js � issÞg be
the prescribed eigenvalues, where s is the number of complex eigenvalue pairs. We
seek feedback matrices F;G 2 R

m�n such that rðAþ BF;E þ BGÞ ¼ rðDa;DbÞ
where aj; bj; ll; ml;jl; sl 2 R; a2

j þ b2
j ¼ 1 ¼ l2

l þ m2
l þ j2

l þ s2
l ðj ¼ 1; . . .; n� 2s;

l ¼ 1; . . .; sÞ;Da � diagfa1; . . .; an�2s; l1 � im1; . . .; ls � imsg and Db � diagfb1; . . .;
bn�2s; j1 � is1; . . .; js � issg:

Consequently, we are required to choose X; Y1; Y2; Z;Na and Nb such that

AX þ BY1 � ZðDa þ NaÞ ¼ 0; EX þ BY2 � ZðDb þ NbÞ ¼ 0; X>X ¼ I:

Using a modified real Schur form, the real vectors xj; xjþ1; zj; zjþ1; gj; gjþ1; fj

and fjþ1 are chosen via

A xj; xjþ1
� �

þ B Y1j; Y1jþ1
� �

� zj; zjþ1
� �

Daj � Z�j gj; gjþ1

� �
¼ 0;

E xj; xjþ1
� �

þ B Y2j; Y2jþ1
� �

� zj; zjþ1
� �

Dbj � Z�j fj; fjþ1

� �
¼ 0;

XT
�j xj; xjþ1
� �

¼ 0;

where Daj ¼ Uðlj; mjÞ and Dbj ¼ Uðjj; sjÞ [using Uð�; �Þ defined in (16.14)]. So

Mj x>j ; x
>
jþ1; y

>
1j; y

>
1jþ1; y

>
2j; y

>
2jþ1; g

>
j ; g

>
jþ1; f

>
j ; f

>
jþ1; z

>
j ; z

>
jþ1

h i>
¼ 0;

where

With QR to extract the unitary basis of the null space, we have

x>j ; x
>
jþ1; y

>
1j; y

>
1jþ1; y

>
2j; y

>
2jþ1; g

>
j ; g

>
jþ1; f

>
j ; f

>
jþ1; z

>
j ; z

>
jþ1

h i>
¼ S>1j; S

>
2j; S

>
3j

h i>
uj

We are then required to choose uj such that

min
uj

¼
u>j Ŝ>2jŜ2juj

u>j S>1jS1juj
; Ŝ2j ¼

x1I 0
0 x2I

� �
S2j

where xk are some weights in the objective function. The minimization can be

achieved by the GSVD of S � ðS1j; Ŝ2jÞ>; by choosing uj to be the generalized
singular vector of S corresponding to the smallest generalized singular value.

16 Robust Pole Assignment for Ordinary and Descriptor Systems 357



In the Real Schur Decomposition (16.22), with aj; bj; cj; dj 2 R; a2j�1 þ a2j ¼
2lj; a2j�1a2j � b2j�1b2j ¼ l2

j þ m2
j ; c2j�1 þ c2j ¼ 2jj; c2j�1c2j � d2j�1d2j ¼ j2

j þ s2
j

for j ¼ 1; . . .; s; we have

Da ¼ a1 
 � � � 
 an�2s 

a1 b2

b1 a2

" #

 � � � 


a2s�1 b2s

b2s�1 a2s

" #" #
and

Db ¼ b1 
 � � � 
 bn�2s 

c1 d2

d1 c2

" #

 � � � 


c2s�1 d2s

d2s�1 c2s

" #" #
:

The upper triangular Na is identical to N in (16.16) and Nb shares the same
structure with f replacing all the g’s.

From the initial point, which are calculated from a modified real Schur form
and is usually infeasible, we can use Newton’s algorithm to optimize the problem.
We arrive at the optimization problem for complex eigenvalues:

Optimization Problem 4

min x2
1kYk

2
F þ x2

2k½Na;Nb�k2
F s:t:

AX þ BY1 � ZðDa þ NaÞ ¼ 0
EX þ BY2 � ZðDb þ NbÞ ¼ 0
X>X � I ¼ 0

8
<

:

where Da;Db;Na and Nb are as defined before, X is n� n orthogonal and Z is
n� n nonsingular.

Optimization Problem 4 is equivalent to:

min x2
1vðYÞ>vðYÞþx2

2½StkðNaÞ>StkðNaÞþStkðNbÞ>StkðNbÞ�

s:t:

ðI	AÞvðXÞþðI	BÞvðY1Þ�ðD>a 	 IÞvðZÞ�ðN>a 	 IÞvðZÞ¼0

ðI	EÞvðXÞþðI	BÞvðY2Þ�ðD>b 	 IÞvðZÞ�ðN>b 	 IÞvðZÞ¼0

d0ðXÞ>vðXÞ�StkðIÞ¼0

a1þa2�2l1¼0

..

.

a2s�1þa2s�2ls¼0

2
664

3
775;

c1þc2�2j1¼0

..

.

c2s�1þc2s�2js¼0

2
664

3
775

a1a2�b1b2�ðl2
1þm2

1Þ¼0

..

.

a2s�1a2s�b2s�1b2s�ðl2
s þm2

s Þ¼0

2

6664

3

7775;

c1c2�d1d2�ðj2
1þs2

1Þ¼0

..

.

c2s�1c2s�d2s�1d2s�ðj2
s þs2

s Þ¼0

2

6664

3

7775

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:
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for which the Lagrangian function equals

Lðc;e;d;x;h;n;r;vðXÞ;vðY1Þ;vðY2Þ;vðZÞ;a;b;c;d;StkðNaÞ;StkðNbÞÞ
¼x2

1vðYÞ>vðYÞþx2
2½StkðNaÞ>StkðNaÞþStkðNbÞ>StkðNbÞ�

þc>½ðI	AÞvðXÞþðI	BÞvðY1Þ�ðD>a 	 IÞvðZÞ�ðN>a 	 IÞvðZÞ�
þ e>½ðI	EÞvðXÞþðI	BÞvðY2Þ�ðD>b 	 IÞvðZÞ�ðN>b 	 IÞvðZÞ�

þd>½d0ðXÞ>vðXÞ�StkðIÞ�þ
Xs

j¼1

xjða2j�1þa2j�2ljÞþ
Xs

j¼1

hjðc2j�1þc2j�2jjÞ

þ
Xs

j¼1

nj½a2j�1a2j�b2j�1b2j�ðl2
j þm2

j Þ�þ
Xs

j¼1

rj½c2j�1c2j�d2j�1d2j�ðj2
j þs2

j Þ�

where h ¼ h1; h2; . . .; hs½ �>; r ¼ r1; r2; . . .; rs½ �>; c ¼ c1; c2; . . .; c2s½ �> and d ¼
d1; d2; . . .; d2s½ �>:

The derivatives of L are

f1 �
oL

oc
¼ ðI 	 AÞvðXÞ þ ðI 	 BÞvðY1Þ � ðD>a 	 IÞvðZÞ � ðN>a 	 IÞvðZÞ ¼ 0;

f2 �
oL

oe
¼ ðI 	 EÞvðXÞ þ ðI 	 BÞvðY2Þ � ðD>b 	 IÞvðZÞ � ðN>b 	 IÞvðZÞ ¼ 0;

f3 �
oL

od
¼ d0ðXÞ>vðXÞ � StkðIÞ ¼ 0;

f4 �
oL

ox
¼

a1 þ a2 � 2l1

..

.

a2s�1 þ a2s � 2ls

2
64

3
75; f5 �

oL

oh
¼

c1 þ c2 � 2j1

..

.

c2s�1 þ c2s � 2js

2
64

3
75;

f6 �
oL

on
¼

a1a2 � b1b2 � ðl2
1 þ m2

1Þ ¼ 0

..

.

a2s�1a2s � b2s�1b2s � ðl2
s þ m2

s Þ ¼ 0

2
64

3
75;

f7 �
oL

or
¼

c1c2 � d1d2 � ðj2
1 þ s2

1Þ ¼ 0

..

.

c2s�1c2s � d2s�1d2s � ðj2
s þ s2

s Þ ¼ 0

2

64

3

75;

f8 �
oL

ovðXÞ ¼ ðI 	 A>Þcþ ðI 	 E>Þeþ vðXDÞ ¼ 0; ð16:33Þ

f9 �
oL

ovðY1Þ
¼ ðI 	 B>Þcþ 2x2

1vðY1Þ ¼ 0; ð16:34Þ
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f10 �
oL

ovðY2Þ
¼ ðI 	 B>Þeþ 2x2

1vðY2Þ ¼ 0; ð16:35Þ

f11 �
oL

ovðZÞ ¼ � ðDa 	 IÞ þ ðNa 	 IÞ½ �c� ðDb 	 IÞ þ ðNb 	 IÞ
� �

e ¼ 0; ð16:36Þ

f12 �
oL

oa
¼

x1

x1

..

.

xs

xs

2

666664

3

777775
þ

n1a2

n1a1

..

.

nsa2s

nsa2s�1

2

666664

3

777775
�

c>n�2sþ1

. .
.

c>n

2
64

3
75v ½zn�2sþ1; . . .; zn�ð Þ ¼ 0;

ð16:37Þ

f13 �
oL

ob
¼ �

n1b2

n1b1

..

.

nsb2s

nsb2s�1

2
666664

3
777775
�

c>n�2sþ1

. .
.

c>n

2

64

3

75Ps v ½zn�2sþ1; . . .; zn�ð Þ ¼ 0;

ð16:38Þ

f14 �
oL

oc
¼

h1

h1

..

.

hs

hs

2
666664

3
777775
þ

r1c2

r1c1

..

.

rsc2s

rsc2s�1

2
666664

3
777775
�

e>n�2sþ1

. .
.

e>n

2

64

3

75vð½zn�2sþ1; . . .; zn�Þ ¼ 0;

ð16:39Þ

f15 �
oL

od
¼ �

r1d2

r1d1

..

.

rsd2s

rsd2s�1

2

666664

3

777775
�

e>n�2sþ1

. .
.

e>n

2
64

3
75Ps vð½zn�2sþ1; . . .; zn�Þ ¼ 0;

ð16:40Þ

f16 �
oL

oStkðNaÞ
¼ 2x2

2 StkðNaÞ � bd1ðZ; sÞ>c ¼ 0; ð16:41Þ

f17 �
oL

oStkðNbÞ
¼ 2x2

2 StkðNbÞ � bd1ðZ; sÞ>e ¼ 0: ð16:42Þ
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We can obtain the symmetric gradient matrix Jf ¼
0 J2

J>2 J3

� �
; where

J2¼

X1 W 0 U1 � bd4ðZ;sÞ �d4ðZ;sÞ 0 0 � bd1ðZ;sÞ 0
X2 0 W U2 0 0 � bd4ðZ;sÞ �d4ðZ;sÞ 0 � bd1ðZ;sÞ
N 0 0 0 0 0 0 0 0 0
0 0 0 0 d5ðeÞ 0 0 0 0 0
0 0 0 0 0 0 d5ðeÞ 0 0 0
0 0 0 0 d5ðaÞ �d5ðbÞ 0 0 0 0
0 0 0 0 0 0 d5ðcÞ �d5ðdÞ 0 0

2
666666664

3
777777775

;

J3 ¼
D	 I 0 0

0 2x2
1I 0

0 0 2x2
1I

2
4

3
5
 J4;

J4¼

0 � bd4ðR;sÞ �d6ðR;sÞ � bd4ðW ;sÞ �d6ðW ;sÞ �d8ðR;sÞ> �d8ðW ;sÞ>
d7ðnÞ 0 0 0 0 0

�d7ðnÞ 0 0 0 0
d7ðrÞ 0 0 0

�d7ðrÞ 0 0
� 2x2

2Ibp 0

2x2
2 Ibp

2
66666666664

3
77777777775

;

with X1 ¼ I 	 A;X2 ¼ I 	 E;U1 ¼ �D>a 	 I � N>a 	 I and U2 ¼ �D>b 	 I �
N>b 	 I: Similar to Algorithm 3, we solve Optimization Problem 4 by Newton’s

iteration for real F;G:

Algorithm 4 (Complex Schur–Newton)

1. Use SCHUR to find the initial X0; Y10; Y20; Z0;Na0;Nb0:
2. Substitute X0; Y10;Y20; Z0;Na0;Nb0 into (16.33–16.42), we obtain fc0; e0; d0;

x0; h0; n0; r0; a0; b0; c0; d0g:
3. Withfc0; e0; d0;x0; h0; n0; r0; a0; b0; c0; d0; vðX0Þ; vðY10Þ; vðY20Þ; vðZ0Þ; StkðNa0Þ;

StkðNb0Þg as starting values, run Newton’s iteration until convergence to
X; Y1; Y2; Z and Na;Nb:

4. Substitute X; Y1; Y2; Z and Na;Nb into (16.24) to obtain F;G:

Remarks
• At step 2, we set a; b; c; d being the same as the given eigenvalues, and obtain c0

by substituting Z0;Na0 into (16.41) and e0 by substituting Z0;Nb0 into (16.42).
Then from (16.33)–(16.40) we obtain d0;x0; h0; n0 and r0:

• The starting point fc0; e0; d0;x0; h0; n0;r0; a0; b0; c0; d0; vðX0Þ; vðY10Þ; vðY20Þ;
vðZ0Þ; StkðNa0Þ; StkðNb0Þg is often far away from being optimal. In such an

16 Robust Pole Assignment for Ordinary and Descriptor Systems 361



event, we apply the GBB Gradient method [10] to decrease the objective
function sufficiently, before Newton’s iteration is applied.

• At step 4, since the matrix X is orthogonal, we can use X> in place of X�1:

16.5 Numerical Examples

The examples are quoted from [7], some modified with the addition of a singular
E: The first two examples are for ordinary systems, with the second one (Ex 2)
containing a complex conjugate pair of closed-loop poles. The last two are for
descriptor systems with Ex4 containing a complex conjugate pair of poles. The
computations were performed using MATLAB [14] on a PC with accuracy eps

 2:2ð�16Þ (denoting 2:2� 10�16). Various weights ðx1;x2Þ ¼ ð0; 1Þ; ð1; 0Þ and
ð1; 1Þ have been tried to illustrate the feasibility of the algorithms. To save space,
only the solution matrices corresponding to the last sets of weights ðx1;x2Þ; with
both weights being distinct and nonzero, are included here. For each set of
weights, ObjSCHUR and ObjNewton; the values of the objective function from SCHUR
at the starting point and after Newton refinement respectively, are presented.

Example 1: n ¼ 4;m ¼ 2; k ¼ f�2;�3;�4;�1g; E ¼ I4;

A ¼

�65 65 �19:5 19:5
0:1 �0:1 0 0
1 0 �0:5 �1
0 0 0:4 0

2

664

3

775; B ¼

65 0
0 0
0 0
0 0:4

2

664

3

775;

x1 ¼ 0;x2 ¼ 1; ObjSCHUR ¼ 35:41; ObjNewton ¼ 20:67;

x1 ¼ 1;x2 ¼ 0; ObjSCHUR ¼ 13:02; ObjNewton ¼ 6:049;

x1 ¼ 1;x2 ¼ 1; ObjSCHUR ¼ 73:35; ObjNewton ¼ 32:16:

Example 2: n ¼ 4;m ¼ 2; k ¼ f�29:4986;�10:0922; 2:5201� 6:8910ig; E ¼
I4;

A ¼

5:8765 9:3456 4:5634 9:3520
6:6526 0:5867 3:5829 0:6534
0:0000 9:6738 7:4876 4:7654
0:0000 0:0000 6:6784 2:5678

2
664

3
775; B ¼

3:9878 0:5432
0 2:7650
0 0
0 0

2
664

3
775;

x1 ¼ 0;x2 ¼ 1; ObjSCHUR ¼ 13:07; ObjNewton ¼ 49:04;

x1 ¼ 1;x2 ¼ 0; ObjSCHUR ¼ 15:79; ObjNewton ¼ 14:71;

x1 ¼ 1;x2 ¼ 1; ObjSCHUR ¼ 20:65; ObjNewton ¼ 58:77:

Example 3: n ¼ 3;m ¼ 2; ka ¼ f1; 1; 1g; kb ¼ f�1;�2;�3g;

A ¼
0 1 0
0 0 1
�6 �11 �6

" #
; E ¼

1 0 100
0 0 0
0 0 1

" #
; B ¼

1 1
0 1
1 1

" #
;
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x1 ¼ 0;x2 ¼ 1; ObjSCHUR ¼ 186:9; ObjNewton ¼ 6:380;

x1 ¼ 1;x2 ¼ 0; ObjSCHUR ¼ 1:825; ObjNewton ¼ 0:833;

x1 ¼ 1; x2 ¼ 1; ObjSCHUR ¼ 23:36; ObjNewton ¼ 8:767:

Example 4: n ¼ 5;m ¼ 2; ka ¼ f1; 1; 1; 1; 1g; kb ¼ f�0:2;�0:5;�1;�1� ig;

A ¼

�0:1094 0:0628 0 0 0
1:306 �2:132 0:9807 0 0

0 1:595 �3:149 1:547 0
0 0:0355 2:632 �4:257 1:855
0 0:0023 0 0:1636 �0:1625

2
66664

3
77775
;

E ¼

1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 1
0 0 0 1 0

2

66664

3

77775
; B ¼

0 0
0:0638 0
0:0838 �0:1396
0:1004 �0:206
0:0063 �0:0128

2

66664

3

77775
;

x1 ¼ 0;x2 ¼ 1; ObjSCHUR ¼ 4:609; ObjNewton ¼ 4:012;

x1 ¼ 1;x2 ¼ 0; ObjSCHUR ¼ 8968; ObjNewton ¼ 66:84;

x1 ¼ 1;x2 ¼ 1; ObjSCHUR ¼ 1253; ObjNewton ¼ 78:46:

Comments

1. For Examples 2 and 3 with real eigenvalues, the starting vectors from SCHUR
fall within the domain of convergence for the Real SCHUR-NEWTON algo-
rithm. This coincides with our experience with other RPAP and RPAP_DS with
real eigenvalues. Newton refinement produces a local minimum which
improves the robustness measure substantially.

2. For the RPAP_DS with complex eigenvalues like Example 4, the starting
vectors from SCHUR are usually infeasible. Preliminary correction by Newton’s
iteration can be applied to the constraints in Optimization Problem 4, with
gradient J2: This produces a feasible starting vector for the Complex SCHUR-
NEWTON algorithm. However, the improvement in the robustness measure is
usually limited, as shown in Example 6. Apart from having an infeasible
starting vector far from a local minimum, the main difficulty lies in the choice
of finding accurate starting values for the Lagrange multipliers. However,
improvements are still possible theoretically and achieved in practice.

3. Similarly for the RPAP with complex eigenvalues like Example 2, the starting
vectors from SCHUR are often infeasible. The feasible Newton refined solutions
may then have objective function values greater than those for the infeasible
starting points from SCHUR.

4. The Newton method has been applied in his paper to optimize the robustness
measures under constraints. Other methods, such as the augmented Lagrange
method, may also be applied. Alternatives will be investigated elsewhere.
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5. The convergence of the Newton refinement is expected to be fast, assuming that
the associated Jacobian is well behaved or when the starting vector is near the
solution. Otherwise, the convergence will be slower. When the starting vector is
poor, the GBB Gradient method has been applied.

16.6 Epilogue

The algorithm SCHUR [7] for state-feedback pole assignment, based on the Schur
form, has been improved and extended for descriptor systems, minimizing a
weighted sum of the departure from normality and feedback gain. Similar to the
original SCHUR algorithm, the method appears to be efficient and numerically
robust, controlling the conditioning of the closed-loop eigensystem and the feed-
back gain. The method can be generalized further for second-order and periodic
systems, as well as systems with output feedback.
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Chapter 17
Synthesis of Fixed Structure Controllers
for Discrete Time Systems

Waqar A. Malik, Swaroop Darbha and S. P. Bhattacharyya

Abstract In this paper, we develop a linear programming approach to the syn-
thesis of stabilizing fixed structure controllers for a class of linear time invariant
discrete-time systems. The stabilization of this class of systems requires the
determination of a real controller parameter vector (or simply, a controller), K, so
that a family of real polynomials, affine in the parameters of the controllers, is
Schur. An attractive feature of the paper is the systematic approximation of the set
of all such stabilizing controllers, K. This approximation is accomplished through
the exploitation of the interlacing property of Schur polynomials and a systematic
construction of sets of linear inequalities in K. The union of the feasible sets of
linear inequalities provides an approximation of the set of all controllers, K, which
render Pðz;KÞ Schur. Illustrative examples are provided to show the applicability
of the proposed methodology. We also show a related result, namely, that the set of
rational proper stabilizing controllers for single-input single-output linear time
invariant discrete-time plants will form a bounded set in the controller parameter
space if and only if the order of the stabilizing cannot be reduced any further.
Moreover, if the order of the controller is increased, the set of higher order con-
trollers will necessarily be unbounded.
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17.1 Introduction

There is renewed interest in the synthesis of fixed-order stabilization of a linear
time invariant dynamical system. Surveys by Syrmos et al. [18], show that this
problem has attracted significant attention over the last four decades. Application
of fixed-order stabilization problem can be found in the work of Buckley [7],
Zhu et al. [19], and Bengtsson and Lindahl [2]. This problem may be simply stated
as follows: Given a finite-dimensional LTI dynamical system, is there a stabilizing
proper, rational controller of a given order (a causal controller of a given state-
space dimension)? The set of all the stabilizing controllers of fixed order is the
basic set in which all design must be carried out.

Given the widespread use of fixed-order controllers in various applications
(see Ref. [10], Chap. 6), it is important to understand whether fixed-order
controllers that achieve a specified performance exist and if so, how one can
compute the set of all such stabilizing controllers that achieve a specified per-
formance. Unfortunately, the standard optimal design techniques result in con-
trollers of higher order, and provide no control over the order or the structure of the
controller. Moreover, the set of all fixed order/structure stabilizing controllers
maybe non-convex and in general, disconnected in the space of controller
parameters, see Ref. [1]. This is a major source of difficulty in its computation.

A good survey of the attempts to solve the fixed order control problem and the
related static output feedback (SOF) problem is given in Syrmos et al. [18],
Blondel et al. [5], and Bernstein [3]. Henrion et al. [11] combine ideas from strict
positive realness (SPRness), positive polynomials written as sum of squares (SOS)
and LMIs to solve the problem of robust stabilization with fixed order controllers.
The LMI approach for synthesizing a static output feedback (SOF) controller is
also explored in Ghaoui et al. [9], and Iwasaki and Skelton [12].

Datta et al. [8] used the Hermite–Biehler theorem for obtaining the set of all
stabilizing PID controllers for SISO plants. Discrete-time PID controllers have
been designed by Keel et al. [13] using Chebyshev representation and the inter-
lacing property of Schur polynomial. They use root counting formulas and carry
out search for the separating frequencies by exploiting the structure of the PID
control problem. The interlacing property of real and complex Hurwitz polyno-
mials was used by Malik et al. [14, 16] to construct the set of stabilizing fixed
order controllers that achieve certain specified criterion.

In this paper, we focus on the problem of determining the set of all real
controller parameters, K ¼ ðk1; k2; . . .; klÞ; which render a real polynomial Schur,
where each member of the set is of the form:

Pðz;KÞ ¼ PoðzÞ þ
Xl

i¼1

kiPiðzÞ:

The paper is organized as follows: In Sect. 17.2, we describe the Chebyshev rep-
resentation of polynomials and we provide the characterization for a polynomial,
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PðzÞ; to be Schur in terms of its Chebyshev representation. Section 17.3, deals with
the generation of outer approximation So and inner approximation Si of the set of
controllers S; of a given structure, that stabilize a given linear time invariant
discrete-time system. It is seen that Si � S � So: Illustrative examples provided
here show how the inner and outer approximations of the set of fixed structure
stabilizing controllers may be constructed. Section 17.4 describes the boundedness
property of the set of stabilizing controllers. In Sect. 17.5, we provide concluding
remarks.

17.2 Chebyshev Representation and Condition
for a Polynomial to be Schur

Let PðzÞ ¼ anzn þ an�1zn�1 þ � � � þ a1zþ a0 denote a real polynomial, that is the
coefficients, ai are real numbers. We are interested in determining the root dis-
tribution of PðzÞ with respect to the unit circle. The root distribution of PðzÞ is
necessary in characterizing the set of stabilizing controllers for a discrete-time
control system. In such systems, PðzÞ could denote the characteristic polynomial of
the given discrete-time control system. Stability would require that all roots of
PðzÞ lie in the interior of the unit circle, i.e. PðzÞ must be Schur.

17.2.1 Chebyshev Representation of Polynomials

We need to determine the image of the boundary of the unit circle under the action
of the real polynomial PðzÞ.

PðzÞ : z ¼ ejh; 0� h� 2p
� �

:

As the coefficients, ai, of the polynomial PðzÞ are real, PðejhÞ and Pðe�jhÞ are
conjugate complex numbers. Hence, it is sufficient to determine the image of the
upper half of the unit circle:

PðzÞ : z ¼ ejh; 0� h� p
� �

:

By using, zk
��
z¼ejh¼ cos khþ j sin kh, we have

PðejhÞ ¼ ðan cos nhþ � � � þ a1 cos hþ a0Þ þ jðan sin nhþ � � � þ a1 sin hÞ:

cos kh and sin kh= sin h can be written as polynomials in cos h using Chebyshev
polynomials. Using u ¼ � cos h, if h 2 ½0; p� then, u 2 ½�1; 1�. Now,

ejh ¼ cos hþ j sin h ¼ �uþ j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

:
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Let cos kh ¼ ckðuÞ and sin kh= sin h ¼ skðuÞ, where ckðuÞ and skðuÞ are real poly-
nomials in u and are known as the Chebyshev polynomials of the first and second
kind, respectively. It is easy to show that,

skðuÞ ¼ �
1
k

dckðuÞ
du

; k ¼ 1; 2; . . . ð17:1Þ

and that the Chebyshev polynomials satisfy the recursive relation,

ckþ1ðuÞ ¼ �uckðuÞ � ð1� u2ÞskðuÞ; k ¼ 1; 2; . . . ð17:2Þ

Using (17.1) and (17.2), we can determine ckðuÞ and skðuÞ for all k.
From the above development, we see that

PðejhÞ
��
h¼cos�1ð�uÞ¼ RðuÞ þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

TðuÞ ¼: PcðuÞ:

We refer to PcðuÞ as the Chebyshev representation of PðzÞ. RðuÞ and TðuÞ are real
polynomials of degree n and n� 1 respectively, with leading coefficients of
opposite sign and equal magnitude. More explicitly,

RðuÞ ¼ ancnðuÞ þ � � � þ a1c1ðuÞ þ a0;

TðuÞ ¼ ansnðuÞ þ an�1sn�1ðuÞ þ � � � þ a1s1ðuÞ:

The complex plane image of PðzÞ as z traverses the upper half of the unit circle can
be obtained by evaluating PcðuÞ as u runs from �1 to þ1.

17.2.2 Root Distribution

Let /PðhÞ :¼ arg½PðejhÞ� denote the phase of PðzÞ evaluated at z ¼ ejh and let

Dh2
h1
½/PðhÞ� denote the net change in phase of PðejhÞ as h increases from h1 to h2.

Similarly, let /Pc
ðhÞ :¼ arg½PcðuÞ� denote the phase of PcðuÞ and Du2

u1
½/Pc
ðuÞ�

denote the net change in phase of PcðuÞ as u increases for u1 to u2.

Lemma 1 Let the real polynomial PðzÞ have i roots in the interior of the unit
circle, and no roots on the unit circle. Then

Dp
0 ½/PðhÞ� ¼ pi ¼ Dþ1

�1½/Pc
ðuÞ�:

Proof From geometric considerations it is easily seen that each interior root
contributes 2p to D2p

0 ½/PðhÞ� and therefore because of symmetry of roots about the
real axis the interior roots contribute ip to Dp

0 ½/PðhÞ�. The second equality follows
from the Chebyshev representation described above. h
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17.2.3 Characterization of a Schur Polynomial in Terms of Its
Chebyshev Representation

Let PðzÞ be a real polynomial of degree n. This polynomial will be said to be Schur
if all n roots lie within the unit circle. In this section, we characterize the Schur
property of a polynomial in terms of its Chebyshev representation, PðejhÞ ¼ ~RðhÞþ
j~TðhÞ ¼ RðuÞ þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

TðuÞ, where u ¼ � cos h.

Theorem 1 PðzÞ is Schur if and only if,

1. RðuÞ has n real distinct zeros ri, i ¼ 1; 2; . . .; n in ð�1;þ1Þ,
2. TðuÞ has n� 1 real distinct zeros tj, j ¼ 1; 2; . . .; n� 1 in ð�1;þ1Þ,
3. the zeros ri and tj interlace, i.e

�1\r1\t1\r2\t2\ � � �\tn�1\rn\þ 1:

Proof Let

tj ¼ � cos aj; aj 2 ð0; pÞ; j ¼ 1; 2; . . .; n� 1

or

aj ¼ cos�1ð�tjÞ; j ¼ 1; 2; . . .; n� 1;

a0 ¼ 0; an ¼ p

and let

bi ¼ cos�1ð�riÞ; i ¼ 1; 2; . . .; n; bi 2 ð0; pÞ:

Then ða0; a1; . . .; anÞ are the nþ 1 zeros of ~TðhÞ and ðb1; b2; . . .; bnÞ are the n zeros
of ~RðhÞ, the third condition means that ai and bj satisfy

0 ¼ a0\b1\a1\ � � �\bn�1\an ¼ p:

This condition means that the plot of PðejhÞ for h 2 ½0; p� turns counter-clockwise
through exactly 2n quadrants. Therefore,

Dp
0 ½/PðhÞ� ¼ 2n

p
2
¼ np:

and this condition is equivalent to PðzÞ having n zeros inside the unit circle. h

17.3 Synthesis of a Set of Stabilizing Controllers

In this section, we seek to exploit the Interlacing Property (IP) of Schur polyno-
mials to systematically generate inner and outer approximation of the set of sta-
bilizing controllers, S. This approach leads to sets of linear programs (LPs).
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Let Pðz;KÞ be a real closed loop characteristic polynomial whose coefficients are
affinely dependent on the design parameters K; one can define the Chebyshev rep-

resentation through Pðejh;KÞ ¼ Rðu;KÞ þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

Tðu;KÞ, where u ¼ � cos h.
Rðu;KÞ and Tðu;KÞ are real polynomials of degree n and n� 1, respectively and are
affine in the controller parameter K. The leading coefficients of Rðu;KÞ and Tðu;KÞ
are of opposite sign and are of equal magnitude.

17.3.1 Inner Approximation

The stabilizing set of controllers, S is the set of all controllers, K, that
simultaneously satisfy the conditions of Theorem 1. The problem of rendering
Pðz;KÞ Schur can be posed as a search for 2n� 2 values of u. By way of
notation, we represent the polynomials Rðu;KÞ and Tðu;KÞ compactly in the
following form:

Rðu;KÞ ¼ 1 u � � � un½ �DR
1
K

� �
; ð17:3Þ

Tðu;KÞ ¼ 1 u � � � un�1
� 	

DT
1
K

� �
: ð17:4Þ

In (17.3) and (17.4), DR and DT are real constant matrices that depend on the plant
data and the structure of the controller sought; they are respectively of dimensions
ðnþ 1Þ � ðlþ 1Þ and ðnÞ � ðlþ 1Þ, where, n is the degree of the characteristic
polynomial and l is the size of the controller parameter vector. For i ¼ 1; 2; 3; 4, let
Ci and Si be diagonal matrices of size 2n; for an integer m, the ðmþ 1Þst diagonal

entry of Ci is cos
ð2i�1Þp

4 þ mp
2


 �
and the corresponding entry for Si is

sin
ð2i�1Þp

4 þ mp
2


 �
. For any given set of 2n� 2 distinct values of u,

�1 ¼ u0\u1\ � � �\u2n�2\u2n�1 ¼ 1;

and for any integer m define a Vandermonde-like matrix,

Vðu0; u1; . . .; u2n�1;mÞ :¼

1 u0 . . . um
0

1 u1 . . . um
1

1 u2 . . . um
2

..

. ..
. ..

. ..
.

1 u2n�1 . . . um
2n�1

2

666664

3

777775
:

We are now ready to characterize the set of stabilizing controllers K.

Theorem 2 There exists a real control parameter vector K ¼ ðk1; k2; . . .; klÞ so
that the real polynomial Pðz;KÞ

372 W. A. Malik et al.



Pðz;KÞ :¼ P0ðzÞ þ k1P1ðzÞ þ � � � þ klPlðzÞ
¼ pnðKÞzn þ pn�1ðKÞzn�1 þ � � � þ p0ðKÞ

is Schur if and only if there exists a set of 2n� 2 values, �1 ¼ u0\u1\
u2\ � � �\u2n�2\u2n�1 ¼ 1, so that one of the following two linear programs
(LPs) is feasible:

LPs:

CkVðu0; u1; . . .; u2n�1; nÞDR
1

K

� �
[ 0;

SkVðu0; u1; . . .; u2n�1; n� 1ÞDT
1

K

� �
[ 0; for k ¼ 1; 3:

Proof The three conditions of Theorem 1 is equivalent to the existence of 2n� 2
values of u;�1\u1\u2\ � � �\u2n�2\1 such that the roots of the Chebyshev
polynomial Rðu;KÞ lie in

ð�1; u1Þ; ðu2; u3Þ; ðu4; u5Þ; . . .

while the roots of the other Chebyshev polynomial Tðu;KÞ lie in

ðu1; u2Þ; ðu3; u4Þ; ðu5; u6Þ; . . .

If Rð�1;KÞ[ 0; Tð�1;KÞ[ 0, then the placement of roots will require

Rðu1;KÞ\0;Rðu2;KÞ\0;Rðu3;KÞ[ 0; . . .

and

Tðu1;KÞ[ 0; Tðu2;KÞ\0; Tðu3;KÞ\0; . . .

In other words, the signs of Rðui;KÞ and Tðui;KÞ are the same as that of cosðp4 þ ip2Þ
and sinðp4 þ ip2Þ respectively. This corresponds to the LP for k ¼ 1. Similarly for
Rð�1;KÞ\0 and Tð�1;KÞ\0 we have the LP corresponding to k ¼ 3: h

The essential idea is that the plot of the polynomial PðejhÞ must go through 2n
quadrants in the counterclockwise direction as h increases from 0 to p. The con-
ditions given above correspond to the plot starting in the kth quadrant at h ¼ 0þ.

The procedure to find the inner approximation is to partition the interval ð�1; 1Þ
using more than ð2n� 2Þ points (either uniformly or by using appropriate
Chebyshev polynomial) and systematically searching for the feasibility of the
obtained set of linear inequalities. Every feasible LP, yields a controller K which
makes the polynomial Pðz;KÞ Schur. The union of all the feasible sets of the LPs
described above, for all possible sets of ð2n� 2Þ points in ð�1; 1Þ is the set of all
stabilizing controllers. With partitioning ð�1; 1Þ, however, one will be able to
capture only finitely many of the possible sets of ð2n� 2Þ points, u1; . . .; u2n�2.
The feasible sets of the LPs corresponding to these finitely many possible sets will
provide an inner approximation of the set of all stabilizing controllers. This
approximation can be made more accurate by refining the partition—i.e., if K is a
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stabilizing controller not in the approximate set, then there is refinement [which
will separate the roots of Rðu;KÞ and Tðu;KÞ] of the partition from which one can
pick 2n� 2 points so that one of the two LPs corresponding to these points is
feasible. This is the basic procedure for finding the inner approximation.

17.3.2 Outer Approximation

In the previous section, we outlined a procedure to construct LPs whose feasible
set is contained in S. Their union Si is an inner approximation to S. For com-
putation, it is useful to develop an outer approximation, So that contains S. In this
section, we present a procedure to construct an arbitrarily tight outer approxi-
mation So as a union of the feasible sets of LPs. We propose to use the Poincare’s
generalization of Descartes’ rule of signs.

Theorem 3 (Poincare’s Generalization) Let PðxÞ be a polynomial with real

coefficients. The number of sign changes in the coefficients of QkðxÞ :¼ ðxþ 1Þk
PðxÞ is a non-increasing function of k; for a sufficiently large k, the number of sign
changes in the coefficients equals the number of real, positive roots of PðxÞ.

The proof of the generalization due to Poincare is given in Polya and Szego [17].
For the discussion on outer approximation, we will treat the polynomials,

R̂ðk;KÞ and T̂ðk;KÞ, as polynomials in k obtained through the bijective mapping
k ¼ 1þu

1�u. This maps the interval ð�1;þ1Þ into the interval ð0;1Þ. This mapping is
applied in the following way:

ð1þ kÞnQ
k� 1
1þ k

� 
¼ Q̂ðkÞ:

The ith roots of R̂ðk;KÞ and T̂ðk;KÞ be represented as kr;i and kt;i respectively. Since

the polynomials R̂ and T̂ must have respectively n and n� 1 real, positive roots, an
application of Poincare’s result to the polynomials R̂ and T̂ yields the following:

Lemma 2 If K is a stabilizing control vector, then ðkþ 1Þk�1R̂ðk;KÞ and ðkþ 1Þk�1

T̂ðk;KÞ have exactly n and n� 1 sign changes in their coefficients respectively for
every k� 1:

The procedure in [4] corresponds to k ¼ 1 of the above lemma.
The following lemma takes care of the interlacing of the roots of two

polynomials:

Lemma 3 Let K render a polynomial Pðz;KÞ Schur. Then the polynomial,

~Qðk;K; gÞ ¼ kT̂ðk;KÞ � gð1þ kÞR̂ðk;KÞ;

has exactly n real positive roots for all g 2 R.
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Proof The roots of T̂ðk;KÞ and R̂ðk;KÞ are real and positive and they interlace if

and only if ~Qðk;K; gÞ has exactly n real positive roots for all g 2 R. To prove

sufficiency, we consider the graph of the rational function y :¼ kT̂ðkÞ
ð1þkÞR̂ðkÞ and con-

sider the intersections with y ¼ g (see Fig. 17.1). To prove necessity, we argue, via
a root locus argument, that if the interlacing of real roots condition is violated, then
for some value of g 2 <, polynomial ~Qðk;K; gÞ will have at least a pair of
complex conjugate roots. h

Lemmas 2 and 3 can be put together to show that an arbitrarily tight outer
approximation can be constructed.

Example 1 Consider the plant

GðzÞ ¼ z2 � 2zþ 1
1:9z2 þ 2:1

:

It is desired to calculate the complete set of first order controllers of the form

CðzÞ ¼ k1ðz� 1Þ
zþ k2

:

The characteristic equation is given by

ð1:9þ k1Þz3 þ ð1:9k2 � 3k1Þz2 þ ð2:1þ 3k1Þzþ ð2:1k2 � k1Þ:

Fig. 17.1 Graph of the rational function y :¼ kT̂ðkÞ
ð1þkÞR̂ðkÞ
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The Chebyshev polynomials are found to be:

Rðu;KÞ ¼ �ð7:6þ 4k1Þu3 þ ð3:8k2 � 6k1Þu2 þ 3:6uþ 2k1 þ 0:2k2;

Tðu;KÞ ¼ ð7:6þ 4k1Þu2 þ ð6k1 � 3:8k2Þuþ ð2k1 þ 0:2Þ:

These can be written in the compact form of (3) and (4) as:

Rðu;KÞ ¼ 1 u u2 u3
� 	

0 2 0:2

3:6 0 0

0 �6 3:8

�7:6 �4 0

2
6664

3
7775

1

k1

k2

2

64

3

75;

Tðu;KÞ ¼ 1 u u2
� 	 0:2 2 0

0 6 �3:8

7:6 4 0

2

64

3

75
1

k1

k2

2

64

3

75:

The above compact form allows the LPs to be formulated quite easily and the
interval ½�1; 1� is partitioned and a systematic search for 2n� 1 points in the
interval is carried out.

Figure 17.2 displays the inner and outer approximation of the set of stabilizing
controllers. The difference between outer approximation and inner approximation
is the black colored region. The inner approximation is an excellent approximation
of the complete set of stabilizing controllers.

−1 −0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

1.5

2

k1

k 2

Fig. 17.2 Set of stabilizing controllers—an inner and outer approximation
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Example 2 Consider the plant:

GðzÞ ¼ 1
z2 � 0:25

:

The controller is considered to be of the following PID structure:

CðzÞ ¼ k3z2 þ k2zþ k1

z2 � z
:

The characteristic polynomial is

z4 � z3 þ ðk3 � 0:25Þz2 þ ðk2 þ 0:25Þzþ k1:

The Chebyshev polynomials are:

Rðu;KÞ ¼ 8u4 þ 4u3 þ ð2k3 � 8:5Þu2 � ðk2 þ 3:25Þu� k3 þ 1:25þ k1;

Tðu;KÞ ¼ �8u3 � 4u2 � ð2k3 � 4:5Þuþ k2 þ 1:25:

In compact form, the Chebyshev polynomials can be represented as:

Rðu;KÞ ¼ 1 u u2 u3 u4
� 	

1:25 1 0 �1

�3:25 0 �1 0

�8:5 0 0 2

4 0 0 0

8 0 0 0

2
66666664

3
77777775

1

k1

k2

k3;

2

66664

3

77775

Tðu;KÞ ¼ 1 u u2 u3
� 	

1:25 0 1 0

4:5 0 0 �2

�4 0 0 0

�8 0 0 0

2

66664

3

77775

1

k1

k2

k3:

2

66664

3

77775

An inner approximation of the set of controllers is shown in Fig. 17.3. An inner
and outer approximation of the set of controllers are shown in Fig. 17.4. The inner
approximation obviously lies inside the outer approximation, which is depicted
using the lighter color.

17.4 On the Boundedness of the Set of Stabilizing
Controllers

It is a known fact that an nth order plant can be stabilized by a ðn� 1Þth order
controller [6]. The poles of the closed loop system can be freely assigned with such
a controller which can be obtained by using the inversion of the eliminant matrix
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of the plant. However for a given controller order r it is not clear if stabilization is
possible. A related question is the minimal order of a stabilizing controller for a
plant. In this section, we provide the first such characterization for discrete-time

Fig. 17.3 Solution for Example 2: an inner approximation

Fig. 17.4 Set of stabilizing controllers—an inner and outer approximation
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LTI system through the boundedness of the set of controllers of a given order. In
the previous section, we provided a systematic approach for synthesizing the inner
and outer approximations of the set of stabilizing controllers and such approxi-
mations can be brought to bear in the verification of the minimal order of sta-
bilization. We show that the set of rational proper stabilizing controllers for single-
input single-output linear time-invariant discrete-time plants will form a bounded
set in the controller parameter space if and only if the order of the stabilizing
cannot be reduced any further. Moreover, if the order of the controller is increased,
the set of higher order controllers will necessarily be unbounded. The continuous-
time counterpart of these results are presented in Malik et al. [15].

The following lemmas provide the key basis for the proposed characterization
of stabilizing controllers.

Lemma 4 If CrðzÞ ¼ NrðzÞ
DrðzÞ is a rth order rational, proper controller that stabilizes

PðzÞ ¼ NpðzÞ
DpðzÞ, then given any polynomials ~NrðzÞ and ~DrðzÞ of degree r, there is a

�	[ 0 such that the ðr þ 1Þth order proper, rational controller

Crþ1ðzÞ ¼
1
�zNrðzÞþ~NrðzÞ
1
�zDrðzÞþ~DrðsÞ

also stabilizes NpðzÞ
DpðzÞ for every 0\�� �	.

Proof Let DðzÞ :¼ NpðzÞNrðzÞ þ DpðzÞDrðzÞ. The characteristic polynomial,
Dpertðz; �Þ, associated with the perturbed controller, Crþ1ðzÞ; is
1
�zDðzÞ þ ~NrðzÞNpðzÞ þ ~DrðzÞDpðzÞ

� �
. If � is treated as a variable in the following

root locus problem,

1þ �
~NrðzÞNpðzÞ þ ~DrðzÞDpðzÞ

zDðzÞ ;

it follows that there is a �	[ 0 such that for all 0\�� �	, the polynomial,
Dpertðz; �Þ, is Schur. h

The following are consequences of Lemma 4:

1. If there is a rth order stabilizing controller, then there is a stabilizing controller
of order r þ 1. Therefore, there is no gap in the order of stabilization. Hence,
minimal order compensators can be synthesized by recursively reducing the
order of stabilizing controllers by one.

2. Let us consider a class of rational proper controllers of the form

CrðzÞ ¼
k0 þ k1zþ � � � þ krzr

1þ krþ2zþ � � � þ k2rzr�1 þ k2rþ1zr
;

and associate it with a vector

K ¼ ðk0; k1; . . .; kr; 1; . . .; k2r; k2rþ1Þ:
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Clearly, there is a one-to-one correspondence with K 2 <2rþ2 and a rational,
proper rth order controller CrðzÞ. Note that we have fixed the krþ1 entry to be
one. Without any loss of generality, we will use K and CrðzÞ interchangeably.

Let ~NrðzÞ ¼ ~k0 þ ~k1zþ � � � þ ~krzr, and ~DrðzÞ ¼ 1þ ~krþ2zþ � � � þ ~k2rzr�1þ
~k2rþ1zr, so that, by Lemma 4, there is a �	 such that for all 0\�� �	, the following
ðr þ 1Þth order controller, ~Crþ1ðzÞ, is also stabilizing:

~Crþ1ðzÞ ¼
~k0 þ ~k1 þ 1

�k0
� �

zþ � � � þ ~kr þ 1
�kr�1

� �
zr þ 1

�krzrþ1

1þ ~krþ2 þ 1
�

� �
zþ � � � þ ~k2rþ1 þ 1

�k2r

� �
zr þ 1

�k2rþ1zrþ1
:

Hence the associated vector, ~K 2 <2rþ4,

~Kð�Þ¼ ~k0;~k1þ
1
�
k0; . . .;~krþ

1
�
kr�1;

1
�
kr;1;~krþ2þ

1
�
krþ1; . . .;~k2rþ1þ

1
�
k2r;

1
�
k2rþ1zrþ1

� 
:

Define K0 :¼ ~Kð�	Þ; k :¼ 1
� � 1

�	, and let K1 be

K1 :¼ ð0; k0; k1; . . .; kr; 0; 1; krþ2; . . .; k2r; k2rþ1Þ:

Then, ~K ¼ K0 þ kK1 is stabilizing for every k� 0, by Lemma 4. Thus, ~K is a ray
originating at K0 and is in the direction of K1 in the space of parameters of (r ? 1)th
order proper stabilizing controllers. Two things can be inferred from the above:

(a) If an rth order stabilizing compensator exists, the set of ðr þ 1Þth order proper
stabilizing controller parameters is unbounded. In particular, the set of ðr þ 1Þth
order proper stabilizing controllers contains a ray of the form K0 þ kK1 in
<2rþ4 that is stabilizing for every k� 0. The converse is in general not true.

(b) If, by some means, one were to find a ray, fK0 þ kK1; k� 0g, of proper
ðr þ 1Þst order stabilizing controllers, with K1 having the first and ðr þ 2Þnd
entry to be zero and krþ1 ¼ 1, then it seems likely to recover a lower order
controller from K1 considering the correspondence between K1 and CðzÞ.

Note that the class of stabilizing controllers we consider, are controllers whose
denominators have a constant term (krþ1 entry) to be unity. If a stabilizing con-
troller CrðzÞ has a pole at 0, then one can always construct a stabilizing controller
of the same order without a pole at zero by a slight perturbation. For this reason,
there is no loss of generality in assuming that CrðzÞ has no poles at 0.

The following theorem provides the conditions for the existence of a lower-
order controller from the unboundedness of the set of higher-order controllers.

Theorem 4 A proper controller of order r stabilizing PðzÞ exists if there exists a
q 2 ð0; 1Þ and a ray of proper stabilizing controllers of order r þ 1, namely
fK0 þ kK1; k [ 0g, that place the closed loop poles inside the disk, Dq.

Proof A controller of order n� 1 always exists for a SISO plant of order n.
Hence, we will assume that r� n� 2.
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Necessity: Suppose an rth-order proper controller, CðzÞ stabilizes the plant, PðzÞ
and let pi be the roots of the closed loop polynomial. Define q0 :¼ maxð pij jÞ and

define q :¼ 1þq0
2 . By Lemma 4, there exists an �	, such that for all 0\�� �	, the

ðr þ 1Þth order controller,

Crþ1ðzÞ ¼
z

zþ �CðzÞ;

stabilizes the plant PðzÞ and places the poles of the closed loop inside the disk Dq:

If CðzÞ is of the form

CðzÞ ¼ c0 þ c1zþ � � � þ crzr

1þ d1zþ � � � þ dr�1zr�1 þ drzr
;

then

Crþ1ðzÞ ¼
z
� c0 þ c1zþ � � � þ crzrð Þ

z
� 1þ d1zþ � � � þ dr�1zr�1 þ drzrð Þ þ 1þ d1zþ � � � þ drzrð Þ:

In the parameter space of ðr þ 1Þth order controller, it is of the form, K0 þ kK1,
where

k :¼ 1
�
� 1
�	
;

K1 ¼ ð0; c0; c1; . . .; cr; 0; 1; d1; . . .; dr�1; drÞ;

K0 ¼
1
�	

K1 þ ð0; . . .; 0|fflfflffl{zfflfflffl}
rþ2 zeros

; 1; d1; . . .; dr�1; dr; 0Þ;

and this ray of controllers, fK0 þ kK1; k[ 0g stabilizes the plant PðzÞ and places
the closed loop poles inside the disk Dq.

Sufficiency: Consider a ray of controllers, of order r þ 1 as given below:

Cðz; kÞ ¼ kzNcðzÞ þ N	c ðzÞ
kzDcðzÞ þ D	cðzÞ

;

where,

NcðzÞ ¼ c0 þ c1zþ c2z2 þ � � � þ crz
r;

N	c ðzÞ ¼ e0 þ e1zþ e2z2 þ � � � þ erþ1zrþ1;

DcðzÞ ¼ d0 þ d1zþ d2z2 þ � � � þ drz
r;

D	cðzÞ ¼ f0 þ f1zþ f2z2 þ � � � þ frþ1zrþ1:

As shown above, we require DcðzÞ to be of order r. Suppose this ray of controllers
Cðz; kÞ of order r þ 1 stabilize the plant PðzÞ and place the closed loop poles inside

the disk Dq. for some q 2 ð0; 1Þ. If PðzÞ ¼ NpðzÞ
DpðzÞ, then, the closed loop characteristic
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polynomial for the plant PðzÞ with a controller from the ray (identified by k) may
be written as:

DðPðzÞ; kÞ ¼ kzD0ðzÞ þ D1ðzÞ;

where D0ðzÞ ¼ NpðzÞNcðzÞ þ DpðzÞDcðzÞ and D1ðzÞ ¼ NpðzÞN	c ðzÞ þ DpðzÞD	cðzÞ.
Since DðPðzÞ; kÞ is Schur for all k[ 0, it must be true that D0ðzÞ must be Schur.

Hence, CðzÞ ¼ NcðzÞ
DcðzÞ is a lower order controller stabilizing the plant PðzÞ. h

Example 3 Consider the plant:

GðzÞ ¼ z� 2
z3 � 8z2 þ 19z� 12

:

A first order controller of the following form is considered:

CðzÞ ¼ k1zþ k2

k3zþ 1
:

The characteristic polynomial is

k3z4 þ ð1� 8k3Þz3 þ ðk1 � 8þ 19k3Þz2 þ ð�2k1 þ 19þ k2 � 12k3Þz� 12� 2k2:

The Chebyshev polynomials are:

RðuÞ ¼ 8k3u4 þ ð�4þ 32k3Þu3 þ ð2k1 � 16þ 30k3Þu2

þ ð2k1 � k2 � 16� 12k3Þuþ ð�2k2 � k1 � 18k3 � 4Þ;
rTðuÞ ¼ �8k3u3 þ ð4� 32k3Þu2 þ ð16� 2k1 � 34k3Þuþ 18� 4k3 � 2k1 þ k2:

In compact form, the Chebyshev polynomials can be represented as:

Rðu;KÞ ¼ 1 u u2 u3 u4
� 	

�4 �1 �2 �18

�16 2 �1 �12

�16 2 0 30

�4 0 0 32

0 0 0 8

2
6666664

3
7777775

1

k1

k2

k3

2

6664

3

7775;

Tðu;KÞ ¼ 1 u u2 u3
� 	

18 �2 1 �4

16 �2 0 �34

4 0 0 �32

0 0 0 �8

2
6664

3
7775

1

k1

k2

k3

2
6664

3
7775:

Outer and inner approximations of the set of controllers are shown in Figs. 17.5
and 17.6 respectively. The outer approximation is bounded and hence the minimal
order of stabilizing controller for the given plant is one.

382 W. A. Malik et al.



Fig. 17.5 Solution for Example 3: an outer approximation

Fig. 17.6 Solution for Example 3: an inner approximation
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17.5 Conclusions

In this paper, we considered the problem of synthesis of fixed order and structure
controllers, where the coefficients of the closed loop characteristic polynomial are
linear in the parameters of the controller. A novel feature of this paper is the
systematic exploitation of the interlacing property of Schur polynomials and the
use of Poincare’s generalization of Descartes’ rule of signs to generate LPs in the
parameters of a fixed order controller. The feasible set of any LP generated for an
inner approximation of the set of all stabilizing controllers, can be indexed by a set
of 2n� 2 increasing values, �1 ¼ u0\u1\u2\ � � �\u2n�2\u2n�1 ¼ 1; in par-
ticular, any controller in the feasible set of LPs places the roots of the Chebyshev
polynomials of Pðz;KÞ alternately in the intervals ðui; uiþ1Þ; i ¼ 0; . . .; 2n� 1.
The problem of inner approximation of the set of stabilizing controllers is then
posed as the search for all sets of ordered 2n� 2-tuples of points for which the
associated LP is feasible; the union of all feasible LPs is an inner approximation
for the set of all stabilizing controllers. The proposed methodology naturally
extends to the computation of the set of simultaneously stabilizing controllers. We
also show that the set of proper stabilizing controllers of order r is not empty and is
bounded iff r is the minimal order of stabilization for the plant. We provide
examples to illustrate some of the results.
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Chapter 18
A Secant Method for Nonlinear Matrix
Problems

Marlliny Monsalve and Marcos Raydan

Abstract Nonlinear matrix equations arise in different scientific topics, such as
applied statistics and control theory, among others. Standard approaches to solve
them include and combine some variations of Newton’s method, matrix factoriza-
tions, and reduction to generalized eigenvalue problems. In this paper we explore the
use of secant methods in the space of matrices, that represent a new approach with
interesting features. For the special problem of computing the inverse or the
pseudoinverse of a given matrix, we propose a specialized secant method for which
we establish stability and q-superlinear convergence, and for which we also present
some numerical results. In addition, for solving quadratic matrix equations, we
discuss several issues, and present preliminary and encouraging numerical
experiments.

18.1 Introduction

The aim of this paper is to present a secant method for solving the following
matrix nonlinear problem:

given F : Cn�n ! C
n�n find X� 2 C

n�n such that FðX�Þ ¼ 0; ð18:1Þ
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where F is a Fréchet differentiable map. In what follows, we denote by F0 the
Fréchet derivative of F.

This problem appears in different applications. For instances, given the matrices
A;B; and C; the quadratic matrix equation AX2 þ BX þ C ¼ 0 arises in control
theory [1, 2, 5, 9]. Another application is to compute the inverse or the pseudo-
inverse of any given matrix A: Indeed, if we find the root of FðXÞ ¼ X�1 � A; we
obtain the inverse of A; and iterative schemes based on Newton’s method can be
applied for finding the inverse or the pseudoinverse of any matrix [13, 15]. For
additional applications and further results concerning nonlinear matrix problems
see [8, 11].

A useful tool for solving Eq. (18.1) is the well-known Newton’s method:

Note that we need F0 to find Sk in each step of Algorithm 1 and in order to
obtain F0 we can use the Taylor series for F about X;FðX þ SÞ ¼ FðXÞ þ
F0ðXÞSþ RðSÞ; where RðSÞ is such that

lim
kSk!0

kRðSÞk
kSk ¼ 0;

The Taylor series allows us to identify the application of F0ðXÞ on S which is
required to solve the linear equation of step 1 in Algorithm 1. In many cases,
solving that linear equation is computationally expensive (see, e.g., [16]).

As a general principle, whenever a Newton’s method is applicable, a suitable
secant method can be obtained, that hopefully has interesting features to exploit.
For example, in the well-known scalar case, the secant method does not require the
derivative, and only uses function evaluations. In that case ð f : C! CÞ; the secant
method can be written as follow:

xkþ1 ¼ xk �
f ðxkÞ

ak
;

where ak satisfies that f ðxkÞ ¼ f ðxk�1Þ þ akðxk � xk�1Þ for k� 0; and x�1; x0 2 C

are given.
Moreover, an extension for nonlinear systems of equations (F : Cn ! C

n), can
be written as

xkþ1 ¼ xk � AkFðxkÞ
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where Ak 2 C
n�n satisfies that FðxkÞ ¼ Fðxk�1Þ þ Akðxk � xk�1Þ for k� 1; and the

vector x0 and the matrix A0 are given. There are infinitely many options for
building the matrix Ak at every iteration. In particular, the Broyden’s family of
quasi-Newton methods avoids the knowledge of the Jacobian and has produced a
significant body of research for many different problems (see, e.g., [4, 12]).

In this work we develop secant methods for nonlinear matrix problems that
inherit, as much as possible, the features of the classical secant methods in pre-
vious scenarios (e.g., scalar equations, nonlinear algebraic systems of equations).
The rest of this document is organized as follows. In Sect. 18.2 we propose a
general secant method for matrix problems which is based on the standard secant
method, and we also describe some of its variations. In Sect. 18.3 we propose a
specialized secant method for approximating the inverse or the pseudoinverse of a
matrix. The global convergence and the stability are proved for this specialized
secant method. We present numerical experiments for computing the inverse of
some given nonsingular matrices, and for computing the pseudoinverse of a sin-
gular matrix. In Sect. 18.4 we consider the application of the general secant
algorithms for solving quadratic matrix equations, and we also present some
encouraging preliminary numerical results. Finally, in Sect. 18.5, we present some
conclusions and perspectives.

18.2 A Secant Equation for Matrix Problems

A general secant method for solving (18.1) should be given by the following
iteration

Xkþ1 ¼ Xk � A�1
k FðXkÞ; ð18:2Þ

where X�1 2 C
n�n and X0 2 C

n�n are given, and Akþ1 is a suitable linear operator
that satisfies

Akþ1Sk ¼ Yk; ð18:3Þ

where Sk ¼ Xkþ1 � Xk and Yk ¼ FðXkþ1Þ � FðXkÞ: Equation (18.3) is known as
the secant equation.

Once Xkþ1 has been obtained, we observe in (18.3) that Akþ1 can be computed
at each iteration by solving a linear system of n2 equations. Therefore, there is a
resemblance with the scalar case, in which one equation is required to find one
unknown. Similarly, we notice that one n� n matrix is enough to satisfy the
matrix secant Eq. (18.3). Hence, we force the operator Ak to be a matrix of the
same dimension of the step Sk and the map-difference Yk; as in the scalar case.
The proposed algorithm, and some important variants, can be summarized as
follows:
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We can generate the sequence Bk ¼ A�1
k ; instead of Ak; and obtain an inverse

version that solves only one linear system of equations per iteration:

Solving a secant method that deals with n� n matrices is the most attractive
feature of our proposal, and represents a sharp contrast with the standard extension
of quasi-Newton methods for general Hilbert spaces, (see e.g. [6, 14]), that in this
context would involve n2 � n2 linear operators to approximate the derivative of F.
Clearly, dealing with n� n matrices for solving the related linear systems sig-
nificantly reduces the computational cost associated with the linear algebra of the
algorithm.

In order to discuss some theoretical issues of the proposed general secant
methods, let us consider the standard assumptions for problem (18.1): F : Cn�n !
C

n�n is continuously differentiable in an open and convex set D � C
n�n. There

exists X� 2 C
n�n and r [ 0; such that NðX�; rÞ � D is an open neighborhood of

radius r around X�; FðX�Þ ¼ 0; and F0ðX�Þ is nonsingular, and F0ðXÞ 2
LipcðNðX�; rÞÞ; i.e., F0ðXÞ is a Lipschitz continuous function with constant c [ 0
in NðX�; rÞ.

We begin by noticing that the operator Ak does not approximate F0ðXkÞ as in

previous scenarios due to dimensional discrepancies. Indeed, F0ðXkÞ 2 C
n2�n2

and
Ak 2 C

n�n. However, fortunately, F0ðXkÞSk and AkSk both live in C
n�n; which

turns out to be the suitable approximation since, using the secant equation (18.3),
we have that
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Akþ1Sk ¼ Yk ¼ FðXkþ1Þ � FðXkÞ ¼ F0ðXkÞSk þ RðSkÞ: ð18:4Þ

Subtracting F0ðX�ÞSk in both sides of (18.4), and taking norms we obtain

kAkþ1Sk � F0ðX�ÞSkk�kF0ðXkÞ � F0ðX�ÞkkSkk þ kRðSkÞk;

for any subordinate norm k 	 k. Using now that F0ðXÞ 2 LipcðNðX�; rÞÞ; and
dividing by kSkk we have

kAkþ1Sk � F0ðX�ÞSkk
kSkk

� ckEkk þ
kRðSkÞk
kSkk

; ð18:5Þ

where Ek ¼ Xk � X� represents the error matrix.
From this inequality we observe that, if convergence is attained, the left hand

side tends to zero when k goes to infinity, and so the sequence fAkg; generated by
Algorithm 2, tends to the Fréchet derivative, F0ðX�Þ; when they are both applied to
the direction of the step Sk. Concerning local convergence, we have from Step 7 in
Algorithm 2 that

Ekþ1 ¼ Ek � A�1
k FðXkÞ

¼ Ek � A�1
k F0ðX�ÞEk � OðE2

kÞ;

which implies that

kEkþ1k�kEk � A�1
k ðF0ðX�ÞEkÞk þ OðkEkk2Þ: ð18:6Þ

Consequently, if Ak in our secant algorithms is such that A�1
k ðF0ðX�ÞEkÞ approx-

imates Ek in a neighborhood of X�; as expected, then kEkþ1k is reduced with
respect to kEkk. Inequalities (18.5) and (18.6), somehow, explain the convergence
behavior we have observed in our numerical results. In our next section, though,
we will establish formally the stability and also the local and q-superlinear con-
vergence of the proposed secant methods for the special case of computing the
inverse or the pseudoinverse of a given matrix.

18.3 Special Case: Inverse or Pseudoinverse of a Matrix

For computing the inverse of a given matrix A we will consider iterative methods
to find the root of

FðXÞ ¼ X�1 � A; ð18:7Þ

and for the sake of clarity let us assume, for a while, that A is nonsingular.
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Newton’s method from an initial guess X0; for solving (18.7), also known as
Schulz method [15], is given by

Xkþ1 ¼ 2Xk � XkAXk: ð18:8Þ

It has been established that if X0 ¼ AT

kAk2
2
; then Schulz method possesses global

convergence [7, 17]. Moreover, if A does not have an inverse, it converges to the
pseudoinverse (also known as the generalized inverse) of A [7, 8, 17].

First, let us consider the general secant method applied to (18.7)

Xkþ1 ¼ Xk � Sk�1ðFðXkÞ � FðXk�1ÞÞ�1FðXkÞ
¼ Xk � ðXk � Xk�1ÞðX�1

k � X�1
k�1Þ

�1ðX�1
k � AÞ: ð18:9Þ

Let us assume that A is diagonalizable; that is, there exists a nonsingular matrix V
such that

V�1AV ¼ K ¼ diagðk1; k2; . . .; knÞ;

where k1; k2; . . .; kn are the eigenvalues of A; and let us define Dk ¼ V�1XkV .
From (18.9) we have that

Dkþ1 ¼ Dk � ðV�1Xk � V�1Xk�1ÞVV�1ðX�1
k � X�1

k�1Þ
�1VV�1ðX�1

k V � AVÞ
¼ Dk � ðDk � Dk�1ÞðD�1

k � D�1
k�1Þ

�1ðD�1
k � KÞ: ð18:10Þ

Note that if we choose X�1 and X0 such that D�1 ¼ V�1X�1V and D0 ¼ V�1X0V
are diagonal matrices, then all successive Dk are diagonal too, and in this case
DiDj ¼ DjDi for all i; j. Therefore (18.10) can be written as

Dkþ1 ¼ Dk � ðDk � Dk�1ÞðD�1
k D�1

k�1Dk�1 � D�1
k�1D�1

k DkÞ�1ðD�1
k � KÞ

¼ Dk � ðDk � Dk�1ÞðD�1
k D�1

k�1Dk�1 � D�1
k D�1

k�1DkÞ�1ðD�1
k � KÞ

¼ Dk � ðDk � Dk�1ÞððDk�1DkÞ�1ðDk�1 � DkÞÞ�1ðD�1
k � KÞ

¼ Dk þ ðDk � Dk�1ÞðDk � Dk�1Þ�1ðDk�1DkÞðD�1
k � KÞ

¼ Dk�1 þ Dk � Dk�1KDk: ð18:11Þ

Motivated by (18.11) we now consider the specialized secant method for (18.7),

Xkþ1 ¼ Xk�1 þ Xk � Xk�1AXk; ð18:12Þ

that avoids the inverse matrix calculations per iteration associated with iteration
(18.9). Notice the resemblance between (18.12) and Schulz method for solving
the same problem. Therefore, in what follows (18.12) will be denoted as the
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secant-Schulz method. Our next result establishes that if A is diagonalizable and
the two initial guesses are chosen properly, then the secant-Schulz method con-
verges locally and q-superlinearly to the inverse of A.

Theorem 1.1 Let A 2 C
n�n be a nonsingular diagonalizable matrix, that is, there

exists a nonsingular matrix V such that

V�1AV ¼ K ¼ diagðk1; k2; . . .; knÞ;

where k1; k2; . . .; kn are the eigenvalues of A. Let X�1 and X0 be such that
V�1X�1V and V�1X0V are diagonal matrices. Then the secant-Schulz method
converges locally and q-superlinearly to the inverse of A.

Proof Let us define Dk ¼ V�1XkV for all k� �1. From (18.12) we have that

Dkþ1 ¼ Dk�1 þ Dk � Dk�1KDk: ð18:13Þ

Since D�1 and D0 are diagonal matrices, then all successive Dk are diagonal too,
and in this case DiDj ¼ DjDi for all i; j. Moreover, since Dk ¼ diagðd1

k ; d
2
k ; . . .; dn

k Þ
we see from (18.13) that

di
kþ1 ¼ di

k�1 þ di
k � di

k�1di
kki; for all 1� i� n; ð18:14Þ

where (18.14) represents n uncoupled scalar secant iterations converging to
1=ki; 1� i� n: Indeed, subtracting 1=ki in both sides of (18.14) and letting ei

k ¼
di

k � 1=ki we have that

ei
kþ1 ¼ di

k þ di
k�1 � di

k�1di
kki � 1=ki

¼ �kiðdi
kdi

k�1 � di
k=ki � di

k�1=ki þ 1=k2
i Þ

¼ �kiðdi
k � 1=kiÞðdi

k�1 � 1=kiÞ
¼ �kie

i
kei

k�1: ð18:15Þ

From (18.15) we conclude that each scalar secant iteration (18.14) converges
locally and q-superlinearly to 1=ki. Therefore, equivalently [4], there exists a
sequence fci

kg; for each 1� i� n; such that ci
k [ 0 for all k; limk!1 ci

k ¼ 0; and

jei
kþ1j � ci

kjei
kj: ð18:16Þ

Using (18.16) we now obtain in the Frobenius norm

kDkþ1 � K�1k2
F ¼

Xn

i¼1

ðei
kþ1Þ

2�
Xn

i¼1

ðci
kÞ

2ðei
kÞ

2

� nbc2
k

Xn

i¼1

ðei
kÞ

2� nbc2
kkDk � K�1k2

F ; ð18:17Þ

where bck ¼ max1� i� nfci
kg.
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Finally, we have that

kXkþ1 � A�1kF ¼ kVV�1ðXkþ1 � A�1ÞVV�1kF

¼ kVðDkþ1 � K�1ÞV�1kF

� jFðVÞkDkþ1 � K�1kF

� jFðVÞ
ffiffiffi
n
p
bckkDk � K�1kF

¼ jFðVÞ
ffiffiffi
n
p
bckkV�1VðDk � K�1ÞV�1VkF

� jFðVÞ2
ffiffiffi
n
p
bckkXk � A�1kF ; ð18:18Þ

where jFðVÞ is the Frobenius condition number of V . Hence, the secant-Schulz
method converges locally and q-superlinearly to the inverse of A. h

When A has no inverse, we can prove that the secant-Schulz method converges

locally and q-superlinearly to the pseudoinverse of A; denoted by Ay. For this case,
let A 2 C

m�n be a matrix of rank r; and let us assume that its singular value
decomposition is given by

A ¼ U
R 0
0 0

� �
V�; ð18:19Þ

where U 2 C
m�m;V 2 C

n�n are unitary matrices and R ¼ diagðr1; r2; . . .; rrÞ
where r1; r2; . . .; rr are the singular values of A.

Corollary 1.2 Let A 2 C
m�n be a matrix of rank r; and let X�1 and X0 be such

that V�X�1U ¼ D�1 0
0 0

� �
and V�X0U ¼ D0 0

0 0

� �
where V�;U are defined in

(18.19) and D�1;D0 2 C
r�r are diagonal matrices. Then the secant-Schulz method

converges locally and q-superlinearly to the pseudoinverse of A.

Proof From iteration (18.12) and defining
Dk 0
0 0

� �
¼ V�XkU; with Dk 2 C

r�r;

we have that

Dkþ1 0
0 0

� �
¼ Dk�1 þ Dk � Dk�1RDk 0

0 0

� �
: ð18:20Þ

Since X�1 and X0 are such that D�1 and D0 are diagonal matrices then, using the
same arguments as in the proof of Theorem 1.1, we obtain that

Dkþ1 ¼ Dk�1 þ Dk � Dk�1RDk;

represents r uncoupled scalar secant iterations that converges locally and
q-superlinearly to 1=ri; 1� i� r; that is,

kDkþ1 � R�1k2
F � rbc2

kkDk � R�1k2
F ; ð18:21Þ
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where bck ¼ max1� i� rfci
kg and the sequences fci

kg are such that ci
k [ 0 and

limk!1 ci
k ¼ 0 for each 0� i� r. Finally using the same arguments used for

obtaining (18.18) we have that

kXkþ1 � AykF ¼ kVV�ðXkþ1 � AyÞUU�kF

¼ kV Dk � R�1 0

0 0

 !
U�kF

�
ffiffiffiffiffiffi
mn
p

kDkþ1 � R�1kF

�
ffiffiffiffiffiffi
mn
p ffiffi

r
p
bckkDk � R�1kF

¼
ffiffiffiffiffiffi
mn
p ffiffi

r
p
bckkV�V

Dk � R�1 0

0 0

 !
U�UkF

�mn
ffiffi
r
p
bckkXk � AykF : h

It is important to note that Theorem 1.1 implies the well-known Dennis–Moré
condition [3, 4]

lim
k!1

kAkSk � F0ðX�ÞSkk
kSkk

¼ 0;

that establishes the most important property of the sequence fAkg generated by the
secant-Schulz method.

We now discuss the stability of our specialized secant method for the inverse
matrix. First, let us recall the suitable definition from [8]. The fixed point iteration
Ykþ1 ¼ GðYkÞ is stable in a neighborhood of a fixed point Y� if the Fréchet
derivative G0ðY�Þ has bounded powers.

Theorem 1.3 The secant-Schulz method generates a stable iteration.

Proof The secant-Schulz method, as a fixed point iteration, can be obtained
setting

Ykþ1 ¼
Xkþ1

Xk

� �
; Y� ¼ A�1

A�1

� �

and

GðYkÞ ¼ G
Xk

Xk�1

� �
¼ Xk�1 þ Xk � Xk�1AXk

Xk

� �
:

Therefore, the map we need to study is given by

G
W
Z

� �
¼ Z þW � ZAW

W

� �
;
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for W and Z in C
n�n. Now we will use Taylor series for identifying G0:

GðY þ PÞ ¼ GðYÞ þ G0ðYÞPþ RðPÞ; ð18:22Þ

where P ¼ ðE1;E2ÞT ; E1 and E2 are perturbation matrices, and R is such that

lim
kPk!0

kRðPÞk
kPk ¼ 0:

We have that

G
W þ E1

Z þ E2

� �
¼
ððZ þ E2Þ þ ðW þ E1ÞÞ � ðZ þ E2ÞAðW þ E1Þ

W þ E1

� �

¼
ðZ þW � ZAWÞ þ ðE1 þ E2 � ZAE1 � E2AWÞ � E2AE1

W þ E1

� �
:

ð18:23Þ

Comparing Eqs. (18.22) and (18.23) we conclude that

G0ðYÞP ¼ E1 þ E2 � ZAE1 � E2AW
E1

� �
: ð18:24Þ

When Y ¼ Y� ¼ ðA�1;A�1ÞT from (18.24) we obtain that

G0ðY�ÞP ¼
0

E1

� �
¼ 0 0

I 0

� �
E1

E2

� �
:

Therefore, G0ðY�Þ is an idempotent matrix, and the iteration is stable. h

We now present a set of experiments to compute the inverse of a given matrix

using the secant-Schulz iterative method. We choose as initial guesses X�1 ¼
aAT=kAk2

2 and X0 ¼ bAT=kAk2
2; with a; b 2 ð0; 1
. When A is symmetric and

positive definite we can also choose X�1 ¼ aI and X0 ¼ bI with a[ 0 and b [ 0.
For these initial choices global convergence can be established. Indeed, from
(18.12) we obtain that

kI � AXkþ1k2�kI � AX�1kak
2 kI � AX0kbk

2 ð18:25Þ

where ak [ 0 and bk [ 0. Note that the matrices I � AX�1 and I � AX0 are
symmetric, and for this case (18.25) can be written as

kI � AXkþ1k2� qðI � AX�1ÞakqðI � AX0Þbk

where qðBÞ represents the spectral radius of the matrix B. Finally using similar
arguments to the ones used to prove the global convergence of Schulz method
[7, 17], we can prove that qðI � AX�1Þ\1 and qðI � AX0Þ\1.
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In our implementation we stop all considered algorithms when

kXk � X�k=kX�k� 0:5D� 14:

All experiments were run on a Pentium Centrino Duo, 2.0 GHz, using Matlab 7.
We report the number of required iterations (Iter) and the relative error
(kXk � X�k=kX�k) when the process is stopped. For our first experiment we
consider the symmetric and positive definite matrix poisson from the Matlab
gallery with n ¼ 400. We compare the performance of the secant-Schulz method
with the Newton-Schulz method described in (18.8). For the secant-Schulz method

we choose X�1 ¼ 0:5 � I; and X0 ¼ AT=kAk2
2; and for the Newton-Schulz we

choose the same X0. We report the results in Table 18.1, and the semilog of the
relative error in Fig. 18.1.

For our second experiment we consider the nonsymmetric matrix grcar from
the Matlab gallery with n ¼ 200. For the secant-Schulz method we choose

Table 18.1 Performance of secant-Schulz and Newton-Schulz for finding the inverse of A ¼
gallery(‘poisson’,20) when n ¼ 400; X�1 ¼ 0:5 � I; and X0 ¼ AT=kAk2

2

Method Iter kXk � X�k=kX�k
Secant-Schulz 18 1.95e-15
Newton-Schulz 22 1.87e-15
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Fig. 18.1 Semilog of the relative error for finding the inverse of A ¼ gallery(‘pois-

son’,20) when n ¼ 400;X�1 ¼ 0:5 � I; and X0 ¼ AT=kAk2
2
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X�1 ¼ 0:2 � AT=kAk2
2; and X0 ¼ AT=kAk2

2; whereas for the Newton-Schulz we

choose X0 ¼ AT=kAk2
2. We compare the performance of the secant-Schulz method

with the Newton-Schulz. We report the results in Table 18.2.
As in the Newton-Schulz method, the secant-Schulz method also converges to

the pseudo-inverse of any given matrix. For our next experiment we consider the
rectangular matrix cycol from the Matlab gallery with n ¼ ½100 10
 to compute
its pseudoinverse, starting from the same initial choices of the previous experi-
ment. We report the results in Table 18.3.

In all the experiments we observe the typical q-superlinear behavior of the
proposed secant-Schulz method as compared with the q-quadratic behavior asso-
ciated with the Newton-Schulz method.

18.4 Quadratic Matrix Equation

We now consider the application of Algorithms 2 and 3 for solving quadratic
matrix equations of the form AX2 þ BX þ C ¼ 0; where A; B; and C are n� n
matrices. For a recent globalized implementation of Newton’s method see [10].
For our secant algorithms we set FðXÞ ¼ AX2 þ BX þ C and seek roots of F: For
this special case, the general secant algorithm can be simplified as follows:

Table 18.2 Performance of secant-Schulz and Newton-Schulz for finding the inverse of A ¼
gallery(‘grcar’,200) with X�1 ¼ 0:2 � AT=kAk2

2 and X0 ¼ AT=kAk2
2

Method Iter kXk � X�k=kX�k
Secant-Schulz 14 2.69e-15
Newton-Schulz 10 4.32e-16

Table 18.3 Performance of secant-Schulz and Newton-Schulz for finding the pseudo-inverse of
A ¼ gallery(‘cycol’,n,8) with X�1 ¼ 0:2 � AT=kAk2

2 and X0 ¼ AT=kAk2
2

Method Iter kXk � X�k=kX�k
Secant-Schulz 9 1.85e-15
Newton-Schulz 8 1.86e-15
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and the inverse version of the secant algorithm can be written as follows:

We now present some experiments to illustrate the advantages of using Algo-
rithms 4 and 5 for solving quadratic matrix equations. For that we choose two
examples already studied and described in [9, 10]. We choose as initial guesses
X�1 ¼ 0:1I and X0 ¼ bI; as in [2] for Newton’s method, where

b ¼ kBkF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBk2

F þ 4kAkFkCkF

q� �
=ð2kAkFÞ:

In our implementation we stop the algorithms when ResðXkÞ� n � eps; where

ResðXkÞ ¼ kFðXkÞkF=ðkAkFkXkk2
F þ kBkFkXkkF þ kCkFÞ and eps ¼ 2:2D� 16.

This stopping criterion is also suggested in [10]. These experiments were also run
on a Pentium Centrino Duo, 2.0 GHz, using Matlab 7. We report the number of
required iterations (Iter) and the value of ResðXkÞ when the process is stopped. For
our first experiment we consider the problem described by the following matrices
A ¼ I;

B ¼ �1 �1
1 �1

� �
;C ¼ 0 1

�1 0

� �
: ð18:26Þ

Problem (18.26) has a solvent at X� ¼ I.

Table 18.4 Performance of secant and inverse secant for solving problem (18.26)

X0 Method Iter ResðXkÞ
bI Secant 10 4.15e-17
bI Inverse secant 11 2.22e-17
10I Secant 13 2.22e-17
10I Inverse secant 14 3.14e-17

105I Secant 15 1.57e-17

105I Inverse secant 16 5.02e-19

1010I Secant 15 2.74e-19

1010I Inverse secant 16 2.22e-17
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We compare the performance of the direct secant method (Algorithm 3) with
the inverse secant method (Algorithm 3). We report the results in Table 18.4.

For our second experiment we consider the problem described in [9] which is
given by the following matrices A ¼ I;B ¼ tridiag½�10; 30;�10
 except
Bð1; 1Þ ¼ Bðn; nÞ ¼ 20; and C ¼ tridiag½�5; 15;�5
; for n ¼ 100. We compare
the performance of the direct secant method (Algorithm 4) with the inverse
secant method (Algorithm 5). We report the results in Table 18.5 and Fig. 18.2.
We observe in both experiments that the secant algorithms show a robust

Table 18.5 Performance of secant and inverse secant for solving our second quadratic
experiment

X0 Method Iter ResðXkÞ
bI Secant 12 1.62e-14
bI Inverse secant 18 9.93e-15
102I Secant 15 3.76e-15

102I Inverse secant 18 1.23e-14

105I Secant 17 1.92e-15

105I Inverse secant 17 2.2e-14

1010I Secant 18 1.71e-15

1010I Inverse secant 16 7.55e-15

1020I Secant 15 1.62e-14

1020I Inverse secant 17 2.05e-14
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Fig. 18.2 Semilog of the relative residual for solving our second quadratic experiment when
n ¼ 100 and X0 ¼ 105I
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behavior converging from initial guesses either close or far away from the
solution. In contrast, as reported in [10], Newton’s method requires an exact line
search globalization strategy to avoid the increase in number of iterations for
convergence.

18.5 Conclusions and Perspectives

Whenever a Newton’s method is applicable to a general nonlinear problem, a
suitable secant method should be obtained for the same problem. In this work we
present an interpretation of the classical secant method for solving nonlinear
matrix problems. In the special case of computing the inverse of a given matrix,
we present and fully analyze a specialized version, the secant-Schulz method, that
resembles the well-known Schulz method which is a specialized version of
Newton’s method.

For solving quadratic matrix problems, we explore the use of the direct and also
the inverse secant method. Our preliminary numerical experiments show the
expected q-superlinear convergence, and indicate that these secant schemes seems
to have interesting properties that remain to be established.

Finally, we hope that our specialized secant methods, for solving some simple
cases, stimulate further extensions and research for solving additional and more
complicated nonlinear matrix problems.
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Chapter 19
On FastICA Algorithms and Some
Generalisations

Hao Shen, Knut Hüper and Martin Kleinsteuber

Abstract The FastICA algorithm, a classical method for solving the one-unit
linear ICA problem, and its generalisations are studied. Two interpretations of
FastICA are provided, a scalar shifted algorithm and an approximate Newton
method. Based on these two interpretations, two natural generalisations of FastICA
on a full matrix are proposed to solve the parallel linear ICA problem. Specifically,
these are a matrix shifted parallel ICA method and an approximate Newton-like
parallel ICA method.

19.1 Introduction

In recent years, there has been an increasing interest in applying numerical linear
algebra tools to either analyse existing methods or develop new methods in signal
processing. In this paper, we present our recent results in analysing and general-
ising a classic algorithm for doing linear Independent Component Analysis (ICA),
which is now a standard statistical tool for the problem of Blind Source Separation
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(BSS), a challenging problem in signal processing. The tools we utilise in our
analysis are similar to the techniques in analysing the Rayleigh quotient iteration
(RQI), which is a well known method to the numerical linear algebra community
for computing an eigenvalue eigenvector pair of a real symmetric matrix.

Since the seminal paper by Comon [6], many ICA algorithms have been
developed by researchers from various communities. The FastICA algorithm,
proposed by the Finnish school, is a classic linear ICA algorithm with both good
accuracy and fast speed of convergence, see [12]. It solves the so-called one-unit
linear ICA problem, which extracts one signal per pass. Originally, FastICA was
developed as a Newton type method using a Lagrange multiplier approach together
with a heuristic approximation of Hessians.

The first contribution of this work is to give two new rigorous interpretations of
FastICA. First of all, FastICA can be easily considered as a scalar shifted version
of a simpler linear ICA algorithm. It can be shown that the scalar shift strategy
utilised in FastICA accelerates the simpler algorithm to achieve local quadratic
convergence. Alternatively, by using geometric optimisation techniques, we
develop an approximate Newton one-unit linear ICA method with a sensible
approximation of Hessians, which has a rigorous justification by statistical features
of the linear ICA problem. It can be shown that FastICA is indeed a special case of
our proposed approximate Newton ICA method.

Due to the great success of FastICA, a natural question one may raise is whether
it is possible to generalise FastICA to solve the problem of extracting all sources in
parallel. On one hand, by generalising the concept of a scalar shift strategy to a
matrix shift strategy, we develop a matrix shifted parallel linear ICA algorithm,
which is indeed a natural generalisation of FastICA to a full matrix. On the other
hand, following the same idea of approximating Hessians as in developing the
approximate Newton one-unit linear ICA method, we formulate an approximate
Newton-like parallel linear ICA method, which shares the significant property of
local quadratic convergence, in this case to a correct separation of all sources.

This paper is organised as follows. In Sect. 19.2, we give a brief statement of
the linear ICA problem. In Sect. 19.3, the FastICA algorithm is interpreted as
special cases of a scalar shifted one-unit linear ICA algorithm and an approximate
Newton one-unit linear ICA method. As natural generalisations of FastICA to a
full matrix, Sect. 19.4 presents two parallel linear ICA methods in the frameworks
of matrix shifted algorithm and approximate Newton-type method. Performance of
all presented linear ICA methods is demonstrated and compared by several
numerical experiments in Sect. 19.5. Finally, a conclusion is made in Sect. 19.6.

19.2 Problem Statement

In the literature, blind source separation (BSS) refers to the problem of recovering
signals only from linear mixtures of sources, in the absence of prior information
about either the sources or the mixing process. It has enormous applications in
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bioinformatics, telecommunications, speech recognition systems, and so on. We
refer to [5, 14, 20] and references therein for further details.

A noiseless linear BSS model is generally formulated as follows, refer to [12]
for more details,

z ¼ As; ð19:1Þ

where s ¼ ½s1; . . .; sm�> 2 R
m denotes an m-dimensional random vector repre-

senting m source signals, A 2 R
m�m is the mixing matrix of full rank and z 2 R

m

represents m observed linear mixtures. The task of linear BSS problem (19.1) is to
recover the source signals s by estimating the mixing matrix A or its inverse A�1

based only on the observations z via the demixing model

y ¼ Bz; ð19:2Þ

where B 2 R
m�m is the demixing matrix, an estimation of A�1 and y 2 R

m rep-
resents the corresponding estimated source signals.

It is clear that, without further constraints, there are infinitely many possibilities
of B for the demixing BSS model (19.2). Therefore, to allow a solution of the BSS
problem, one would have to impose certain prior assumptions about either the
mixing process or the features of sources. One most common assumption is the
concept of statistical independence, i.e.,

Assumption 1 All individual components of the sources s 2 R
m as in model

(19.1) are mutually statistically independent.

It then leads to the standard linear ICA approach for solving the linear BSS
problem (19.1), refer to [6] for details.

It is obvious that, for the linear model (19.1), any scaling factors of both the
columns of A and the components of the sources s are indeed interchangeable, i.e.,
the sign and amplitude of each source cannot be uniquely identified. Moreover, the
mean value of each source signal is irrelevant to the concept of statistical inde-
pendence. Therefore, without loss of generality, each component of the sources s
can be assumed to have zero mean and unit variance.

In practice, the observations z can always be whitened to simplify the problem
further. Usually by using principal component analysis (PCA), one computes a
matrix C 2 R

m�m such that

w ¼ Cz ¼ CAs; where E ww>
� �

¼ Im; ð19:3Þ

i.e., all components of the whitened mixtures w are uncorrelated and each com-
ponent of w has zero mean and unit variance as well. By denoting the product
CA ¼: V 2 R

m�m in (19.3), one observes
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E ww>
� �

¼ VE ss>
� �

V>

()
VV> ¼ Im;

ð19:4Þ

i.e., V 2 R
m�m is indeed an orthogonal matrix. The linear relation (19.3) is often

referred to as the whitened linear ICA model. Let OðmÞ denote the
orthogonal group, i.e.,

OðmÞ :¼ fX 2 R
m�mjX>X ¼ Img: ð19:5Þ

The whitened linear ICA demixing model is simply stated as follows

y ¼ X>w; ð19:6Þ

where X 2 OðmÞ is called the demixing matrix as an estimation of V 2 OðmÞ and y
now represents an estimation of the whitened sources s in (19.3).

In some applications, one might prefer to extract only one desired source, rather
than all sources. Let X ¼ ½x1; . . .; xm� 2 OðmÞ: Then a single source can be
recovered by simply the following

yi ¼ x>i w: ð19:7Þ

We refer to such a problem as the one-unit linear ICA problem, while we refer to
the parallel linear ICA problem for problems of simultaneous extraction of all
sources in the form of (19.6).

Now let V ¼ ½v1; . . .; vm� 2 OðmÞ be the mixing matrix in the whitened mixing
ICA model (19.3). Following Theorem 11 in [6], all correct solutions of the
parallel linear ICA problem (19.6) are given by

H :¼ fVDP 2 OðmÞg; ð19:8Þ

where D ¼ diagðe1; . . .; emÞ with ei 2 f�1g and P ¼ fesð1Þ; . . .; esðmÞg 2 OðmÞ a
permutation matrix with s: f1; . . .;mg ! f1; . . .;mg being a permutation.
Straightforwardly, all correct solutions for the one-unit linear ICA problem (19.7)
form the set

! :¼ fevi jV ¼ ½v1; . . .; vm� 2 OðmÞ and e 2 f�1gg: ð19:9Þ

One popular category of ICA methods is the so-called contrast-based ICA
method. A general scheme of such methods involves an optimisation procedure of
a contrast function, which measures the statistical independence between recov-
ered signals. Usually, correct separations of sources are expected to be obtained at
certain optimal points of contrast functions. A simple approach to designing ICA
contrasts is to construct their statistical independence measure by using some
parameterised families of functions, in accordance with certain hypothesis about
the distributions (probability density functions) of sources. The corresponding ICA
methods are usually referred to as parametric ICA methods.
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Let us define the m� 1 dimensional unit sphere by

Sm�1 :¼ fx 2 R
mj kxk ¼ 1g: ð19:10Þ

A generic parametric one-unit linear ICA contrast for the model (19.7) is usually
formulated as follows

f : Sm�1 ! R; f ðxÞ :¼ E½Gðx>wÞ�; ð19:11Þ

where E½�� denotes the expectation over the observation w and the function G:R!
R is a smooth non-linear function, which is chosen according to the specific
application. Additionally, G is often assumed to be even [12]. We stick to this
assumption throughout this paper. Simply, for the parallel linear ICA problem
(19.6), the corresponding parametric contrast function is given as follows, cf. [8],

F: OðmÞ ! R; FðXÞ :¼
Xm

i¼1

E½Gðx>i wÞ�: ð19:12Þ

The performance of corresponding linear ICA methods developed via optimising
the above contrast functions f and F is significantly dependent on choices of the
function G and statistical properties of the source signals s:

Note that in this paper, all computations regarding the one-unit ICA problem,
i.e., optimising the contrast function f , are performed using coordinate functions of
R

m; which is the embedding space of Sm�1: The tangent space TxSm�1 of Sm�1 at
x 2 Sm�1 is given by

TxSm�1 ¼ n 2 R
mj x>n ¼ 0

� �
: ð19:13Þ

For the parallel ICA problem (19.12), we consider the orthogonal group OðmÞ as
an embedded submanifold of R

m�m: The tangent space TXOðmÞ of OðmÞ at X 2
OðmÞ is given by

TXOðmÞ ¼ N 2 R
m�mjX>Nþ N>X ¼ 0

� �
: ð19:14Þ

Therefore, Sm�1 and TxSm�1 are considered as submanifolds of the embedding
space R

m; similarly, OðmÞ � R
m�m and TXOðmÞ � R

m�m: For an introduction to
differential geometry, we refer to [4, 26]. For an introduction to differential
geometry in relation to optimisation we refer to [1].

19.3 Two Interpretations of FastICA

The original FastICA algorithm was developed as an approximate Newton method
with a heuristic approximation of Hessians, which optimises the one-unit ICA
contrast function f (19.11) by using a standard Lagrange multiplier approach [11].
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Algorithm 1 The FastICA algorithm

Step 1: Given an initial guess xð0Þ 2 Sm�1 and set k ¼ 0:
Step 2: Compute xðkþ1Þ ¼ E½G0ðxðkÞ>wÞw� � E½G00ðxðkÞ>wÞ�xðkÞ:
Step 3: Update xðkþ1Þ  xðkþ1Þ

kxðkþ1Þk:

Step 4: If kxðkþ1Þ � xðkÞk is small enough, stop.
Otherwise, set k ¼ k þ 1 and go to Step 2.

Here, G0;G00 are the first and second derivatives of the nonlinear function G:
Each iteration of FastICA can be considered as the map

/f : Sm�1 ! Sm�1; x 7! E½G0ðx>wÞw� � E½G00ðx>wÞ�x
kE½G0ðx>wÞw� � E½G00ðx>wÞ�xk: ð19:15Þ

In this section, we will investigate two interpretations of FastICA, i.e. the algo-
rithmic map /f (19.15), in the framework of a scalar shift strategy and an
approximate Newton method.

19.3.1 Critical Point Analysis of the One-Unit ICA Contrast

We start with the analysis of the one-unit ICA contrast function f ; which plays an
important role in the subsequent development and analysis.

First of all, recall the definition of a great circle cx of Sm�1 at x 2 Sm�1 as

cx:R! Sm�1; cxðtÞ :¼ exp tðnx> � xn>Þ
� �

x

¼
x; knk ¼ 0;

x cos tknk þ n sin tknk
knk ; otherwise;

(
ð19:16Þ

where n 2 TxSm�1 and expð�Þ denotes matrix exponentiation. Obviously, cxð0Þ ¼ x
and _cxð0Þ ¼ n: As a matter of fact, great circles are geodesics on the unit sphere
with respect to the Riemannian metric induced by the Euclidean metric of the
embedding space R

m: Now let us compute the first derivative of f

D f ðxÞ: TxSm�1 ! R; ð19:17Þ

which assigns to an arbitrary tangent vector n 2 TxSm�1 the value

D f ðxÞn ¼ d
dt
ðf � cxÞðtÞ

����
t¼0

¼ E½G0ðx>wÞn>w�: ð19:18Þ

Thus, critical points of f can be characterised as solutions of

n> � E½G0ðx>wÞw� ¼ 0 ð19:19Þ
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for all n 2 TxSm�1: This is further equivalent to saying, that

E½G0ðx>wÞw� ¼ kx; ð19:20Þ

with k 2 R:
It is worthwhile to notice that the critical point condition for f depends sig-

nificantly on both the function G and the statistical features of the sources s: It
therefore appears to be hardly possible to fully characterise all critical points
respecting all, possibly unknown, statistical features. Here we at least show that
any x	 2 !; which corresponds to a correct separation of a single source, fulfills
the critical point condition (19.19).

Let us denote the left-hand side of (19.20) as follows

k: Sm�1 ! R
m; kðxÞ :¼ E½G0ðx>wÞw�: ð19:21Þ

For any x	 ¼ evi 2 !; one computes

kðx	Þ ¼ E½G0ðev>i VsÞVs�
¼ VE½G0ðesiÞs�
¼ eVE½G0ðsiÞs�; ð19:22Þ

following the fact that G is even, i.e., G0 is odd. Using the mutual statistical
independence and centering property (zero mean) of sources, the entries of the
expression E½G0ðsiÞs� are computed as

E½G0ðsiÞsj� ¼
E½G0ðsiÞsi�; j ¼ i;
E½G0ðsiÞsj� ¼ E½G0ðsiÞ�E½sj� ¼ 0; j 6¼ i;

	
ð19:23Þ

i.e.,

E½G0ðsiÞs� ¼ E½G0ðsiÞsi�ei; ð19:24Þ

where ei denotes the i-th standard basis vector of R
m: It is then clear that the

critical point condition for f (19.19) holds true at any x	 2 !; i.e.

kðx	Þ ¼ E½G0ðsiÞsi�x	: ð19:25Þ

Note, that there might exist more critical points of the contrast f ; which do not
correspond to a correct separation of sources.

Now, we compute the Riemannian Hessian of f ; i.e. the symmetric bilinear
form

Hf ðxÞ: TxSm�1 � TxSm�1 ! R; ð19:26Þ
given by

Hf ðxÞðn; nÞ ¼ d2

dt2
ðf � cxÞðtÞ

����
t¼0

¼ n> E½G00ðx>wÞww>� � E½G0ðx>wÞðx>wÞ�Im

� �
n: ð19:27Þ
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Note that cxðtÞ is a geodesic through x as defined in (19.16). Let us denote the first
summand of (19.27) by

H: Sm�1 ! R
m�m; HðxÞ :¼ E½G00ðx>wÞww>�: ð19:28Þ

For x	 2 !; we get

Hðx	Þ ¼ VE½G00ðesiÞss>�V>

¼ VE½G00ðsiÞss>�V>; ð19:29Þ

by the fact of G00 being even. Again, by applying mutual statistical independence
and whitening properties of the sources, the ðp; qÞ-th entry, for all p; q ¼ 1; . . .;m;
of the expression E½G00ðsiÞss>� can be computed as

(i) if p ¼ q 6¼ i; then

E½G00ðsiÞspsq� ¼ E½G00ðsiÞs2
p�

¼ E½G00ðsiÞ�E½s2
p�

¼ E½G00ðsiÞ�; ð19:30Þ

(ii) if p ¼ q ¼ i; then

E½G00ðsiÞspsq� ¼ E½G00ðsiÞs2
i �; ð19:31Þ

(iii) if p 6¼ q; without loss of generality, we can assume that q 6¼ i: Then

E½G00ðsiÞspsq� ¼ E½G00ðsiÞsp�E½sq�
¼ 0: ð19:32Þ

Thus the expression E½G00ðsiÞss>� is indeed a diagonal matrix with the i-th
diagonal entry equal to E½G00ðsiÞs2

i � and all others being equal to E½G00ðsiÞ�: A direct
calculation leads to

Hðx	Þ ¼ E½G00ðsiÞ�Im þ E½G00ðsiÞs2
i � � E½G00ðsiÞ�

� �
ðx	x	>Þ: ð19:33Þ

Hence, we compute

d2

dt2
ðf � cx	 ÞðtÞ

����
t¼0

¼ n>Hðx	Þn� E½G0ðev>i wÞðev>i wÞ�n>n

¼ E½G00ðsiÞ�n>n� E½G0ðesiÞðesiÞ�n>n

¼ E½G00ðsiÞ� � E½G0ðsiÞðsiÞ�ð Þn>n; ð19:34Þ

i.e., the Hessian Hf ðxÞ of f at the critical point x	 acts on a tangent vector n simply
by scalar multiplication

Hf ðx	Þn ¼ E½G00ðsiÞ� � E½G0ðsiÞsi�ð Þn: ð19:35Þ
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From a statistical point of view, refer to Theorem 1 in [11], it is usually assumed
that

Assumption 2 The nonlinear function G:R! R is even and chosen such that the
following inequality holds true for all sources in the parallel linear ICA problem
(19.3), i.e.,

E½G00ðsiÞ� � E½G0ðsiÞsi� 6¼ 0; ð19:36Þ

for all i ¼ 1; . . .;m:

Thus, the inverse of the Hessian of f can be ensured to exist at any x	 2 !: We
then conclude

Corollary 1.1 Let ! � Sm�1; defined as in (19.9), be the set of solutions of the
one-unit linear ICA problem (19.7) and G:R! R a smooth function satisfying
Assumption 2. Then any x	 2 ! is a non-degenerated critical point of the one-unit
linear ICA contrast f :

19.3.2 FastICA as a Scalar Shifted Algorithm

In this subsection, we will generalise the FastICA algorithm /f (19.15) in the
framework of a scalar shift strategy. The scalar shift strategy utilised in FastICA
accelerates a simpler one-unit linear ICA algorithm to converge locally quadrat-
ically fast to a correct separation.

Now, let x	 ¼ evi 2 !; i.e. x	 correctly recovers the i-th source signal si: Then
following Eq. 19.15, we get

/fðx	Þ ¼ sign
�
E½G0ðsiÞsi� � E½G00ðsiÞ�

�
x	: ð19:37Þ

It is easily seen that, if E½G0ðsiÞsi� � E½G00ðsiÞ�\0; i.e., /fðx	Þ ¼ �x	 and
/fð�x	Þ ¼ x	; the FastICA algorithm oscillates between neighborhoods of two
antipodes �x	 2 Sm�1; both of which recover the same single source up to sign. A
closer look at the FastICA map /f (19.15) suggests that the second term, i.e. the
expression E½G00ðx>wÞ�; in the numerator of /f can be treated as a scalar shift, i.e.,
x 7!E½G00ðx>wÞ�x: In other words, the FastICA map /f is simply a scalar shifted
version of the following one-unit ICA algorithmic map proposed in [19]

/: Sm�1 ! Sm�1; x 7! E½G0ðx>wÞw�
kE½G0ðx>wÞw�k: ð19:38Þ

Note that, any x	 2 ! is a fixed point of / simply because of Eq. 19.25. By
replacing the scalar term E½G00ðx>wÞ� in (19.15) by another smooth real-valued
function q: Sm�1 ! R; we construct a more general scalar shifted version of the
simple ICA map / as follows
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/s: Sm�1 ! Sm�1; x 7! E½G0ðx>wÞw� � qðxÞx
kE½G0ðx>wÞw� � qðxÞxk: ð19:39Þ

Let us denote the numerator in (19.39) as

p: Sm�1 ! R
m; pðxÞ :¼ E½G0ðx>wÞw� � qðxÞx; ð19:40Þ

and let x	 2 !; i.e, x	 is a correct separation point of the one-unit linear ICA
problem (19.7). Following the result (19.25), one gets

pðx	Þ ¼
�
E½G0ðsiÞsi� � qðx	Þ

�
x	: ð19:41Þ

Clearly, the map /s will still suffer from the sign flipping phenomenon as the
FastICA iteration does, when the expression E½G0ðsiÞsi� � qðx	Þ is negative. This
discontinuity of the map /s can be removed by considering the unique mapping on
the real projective space RP

m�1 induced by /s; refer to [23] for more details. In
this paper, however, we take an alternative approach of introducing a proper sign
correction term to tackle the discontinuity issue.

Let us define a scalar function by

b: Sm�1 ! R; bðxÞ :¼ x>pðxÞ
¼ E½G0ðx>wÞx>w� � qðxÞ; ð19:42Þ

which indicates the angle between two consecutive iterates produced by the map /s:
We construct the following algorithmic map

e/s: Sm�1 ! Sm�1; x 7! bðxÞpðxÞ
kbðxÞpðxÞk; ð19:43Þ

and further denote the numerator of e/s by

r: Sm�1 ! R
m; rðxÞ :¼ bðxÞpðxÞ: ð19:44Þ

The equation (19.41) easily leads to

rðx	Þ ¼ ðbðx	ÞÞ2x	; ð19:45Þ

thus e/sðx	Þ ¼ x	: Obviously, to make the map e/s (19.43) well defined around x	;
it requires that bðx	Þ 6¼ 0: Thus we just showed

Corollary 1.2 Let ! � Sm�1; defined as in (19.9), be the set of solutions of the
one-unit linear ICA problem (19.7). Let the smooth scalar shift q: Sm�1 ! R

satisfy the condition

qðx	Þ 6¼ E½G0ðsiÞsi�; ð19:46Þ

for any x	 ¼ evi 2 !: Then each point x	 2 ! is a fixed point the algorithmic

map e/s:
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In the following, we will investigate the conditions on the scalar shift q more
closely, so that the resulting scalar shifted algorithm converges locally quadrati-
cally fast to a correct separation point. Later on we will give an example for q to
show that such a scalar shift actually exists. According to Lemmas 2.7–2.9 in [15],

we only need to show under which conditions on q the first derivative of e/s

De/sðxÞ: TxSm�1 ! Te/sðxÞ
Sm�1 ð19:47Þ

will vanish at x	: Let krk2 ¼ r>r; one computes

De/sðxÞn
���
x¼x	
¼ DrðxÞnjx¼x	

krðx	Þk � rðx	Þr>ðx	ÞDrðxÞnjx¼x	

krðx	Þk3

¼ 1
krðx	Þk Im �

rðx	Þr>ðx	Þ
krðx	Þk2

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Pðx	Þ

DrðxÞnjx¼x	 : ð19:48Þ

By Corollary 1.2, we know that e/sðx	Þ ¼ x	: Therefore the expression Pðx	Þ is
an orthogonal projection operator onto the complement of spanðx	Þ: Consequently,

the algorithmic mapping e/s converges locally quadratically fast to x	; if and only
if the expression DrðxÞnjx¼x	 is equal to a scalar multiple of x	: A simple com-
putation shows

DrðxÞnjx¼x	¼ DbðxÞn
��
x¼x	

pðx	Þ þ bðx	ÞDpðxÞn
��
x¼x	

: ð19:49Þ

Following the fact that DbðxÞn
��
x¼x	

is a scalar and using Eq. 19.41, the first
summand in (19.49) is equal to a scalar multiple of x	: Now we compute

DpðxÞnjx¼x	¼ DE½G0ðx>wÞw�n
��
x¼x	
�qðx	Þn� DqðxÞnjx¼x	x

	: ð19:50Þ

Following Eq. 19.33, the first summand in (19.50) is computed as

DkðxÞnjx¼x	 ¼ DE½G0ðx>wÞw�n
��
x¼x	

¼ E½G00ðx	>wÞww>�n
¼ E½G00ðsiÞ�n: ð19:51Þ

Then, due to the fact that the third summand in (19.50) is already a scalar
multiple of x	; the expression DpðxÞnjx¼x	 ; as well as DrðxÞnjx¼x	 ; are both equal
to scalar multiples of x	; if and only if the following equality holds true

E½G00ðsiÞ�n� qðx	Þn ¼ kx	; ð19:52Þ

where k 2 R; i.e., qðx	Þ ¼ E½G00ðsiÞ�: Thus the convergence properties of the

map e/s can be summarised in the following theorem.

19 On FastICA Algorithms and Some Generalisations 413



Theorem 1.3 Let ! � Sm�1; defined as in (19.9), be the set of solutions of the
one-unit linear ICA problem (19.7). Let the smooth scalar shift q: Sm�1 ! R

satisfy the condition (19.46). Then the algorithmic map e/s is locally quadratically
convergent to x	 ¼ evi 2 ! if and only if

qðx	Þ ¼ E½G00ðsiÞ�: ð19:53Þ

Remark 1 Consequently, the scalar shift utilised in FastICA, i.e.,

qf: Sm�1 ! R; qfðxÞ :¼ E½G00ðx>wÞ� ð19:54Þ

is actually a simple choice of a scalar shift strategy, satisfying the condition

(19.53). It therefore accelerates the map e/s to converge locally quadratically fast
to a correct separation.

19.3.3 FastICA as an Approximate Newton Algorithm

As pointed out before, the original FastICA algorithm was developed by using
some heuristic approximation of the Hessian. In this subsection, we will develop
an approximate Newton one-unit linear ICA method by using geometric optimi-
sation techniques. The approximation of Hessians we employ here is rigorously
justified using the statistical features of the linear ICA problem. FastICA is shown
to be just a special case of our proposed method.

Let Sm�1 � R
m be endowed with the Riemannian metric induced from the

standard scalar product of the embedding R
m: The geodesics with respect to this

metric are precisely the great circles cx (19.16). Thus, according to Eq. 19.18, the
Riemannian gradient of f at x 2 Sm�1 can be computed as

rf ðxÞ ¼ ðIm � xx>ÞE½G0ðx>wÞw�: ð19:55Þ

Here, Im � xx> is the orthogonal projection operator onto the tangent space
TxSm�1: Computing the second derivative of f along a great circle, a Newton
direction n 2 TxSm�1 can be computed by solving the following linear system

Im � xx>
� �

E½G00ðx>wÞww>� � E½G0ðx>wÞx>w�Im

� �
n

¼ Im � xx>
� �

E½G0ðx>wÞw�: ð19:56Þ

Thus, a single iteration of a Riemannian Newton method for optimising the con-
trast f can be easily completed by projecting the above Newton step n back onto
Sm�1 along a great circle (19.16) uniquely defined by the direction n 2 TxSm�1:

However, there exists a serious drawback of such a standard approach. The
expression E½G00ðx>wÞww>� at the left-hand side of (19.56) is an m� m dense
matrix, often expensive to evaluate. In order to avoid computing the true Hessian,
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one would prefer to have certain approximations of the true Hessian with low
computational cost. Suggested by the property of the Hessian of f at critical points
x	 2 ! being scalar, it is sensible to approximate the expression E½G00ðx>wÞww>��
E½G0ðx>wÞx>w�Im at arbitrary x 2 Sm�1 within an open neighborhood Ux	 � Sm�1

around x	 by the following scalar matrix,

E½G00ðx>wÞ� � E½G0ðx>wÞx>w�
� �

Im; ð19:57Þ

which obviously gives the correct expression at x	: Thus, an approximate Newton
direction na 2 TxSm�1 for optimising the one-unit ICA contrast f can be computed
by solving the following linear system

Im � xx>
� �

E½G00ðx>wÞ� � E½G0ðx>wÞx>w�
� �

na

¼ Im � xx>
� �

E½G0ðx>wÞw�: ð19:58Þ

Note that by construction, E½G00ðx>wÞ� � E½G0ðx>wÞx>w�ð Þna lies in the tangent
space TxSm�1: The projection Im � xx> on the left-hand side of (19.58) is therefore
redundant. Thus, the solution of (19.58) in terms of na is simply given by

na ¼ �
ðIm � xx>ÞE½G0ðx>wÞw�

E½G00ðx>wÞ� � E½G0ðx>wÞx>w� 2 TxSm�1: ð19:59Þ

Although evaluating the great circle (19.16) is not too costly, we prefer to use the
orthogonal projection instead, which costs slightly less computations than cx

(19.16). Here, we specify the following curve on Sm�1 through x 2 Sm�1

lx: ð�j; jÞ ! Sm�1; t 7! xþ tn
kxþ tnk; ð19:60Þ

with j[ 0 and n 2 TxSm�1 arbitrary. Obviously, lxð0Þ ¼ x and _lxð0Þ ¼ n: A
similar idea of replacing geodesics (great circles) by certain smooth curves on
manifolds has already been explored in [3, 10, 24]. By substituting the approxi-
mate Newton direction na into (19.60), we end up with an approximate Newton
method for optimising the one-unit ICA contrast f : This leads to

e/n: Sm�1 ! Sm�1; x 7!
1

gðxÞ E½G0ðx>wÞw� � E½G00ðx>wÞ�xð Þ
k 1

gðxÞ E½G0ðx>wÞw� � E½G00ðx>wÞ�xð Þk
; ð19:61Þ

where

g: Sm�1 ! R; gðxÞ :¼ E½G0ðx>wÞx>w� � E½G00ðx>wÞ�: ð19:62Þ

Remark 2 If gðxÞ[ 0 holds always, it is easy to see that the map e/n is actually
the FastICA map /f :

Moreover, the map e/n is identical to the scalar shifted ICA map e/s (19.43)
when employing the FastICA shift qf (19.54). Straightforwardly following
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Theorem 1.3 and Remark 1, the local convergence properties of the algorithmic

map e/n can be summarised as follows

Corollary 1.4 Let ! � Sm�1; defined as in (19.9), be the set of solutions of the
one-unit linear ICA problem (19.7) and G:R! R a smooth function satisfying the

condition (19.36). Then the algorithmic map e/n is locally quadratically conver-
gent to x	 2 !:

19.4 Generalised FastICA for Parallel Linear ICA

In Sect. 19.3, FastICA is reinterpreted as special cases of a scalar shifted algorithm
and an approximate Newton method, respectively. A quite natural question is
whether it is possible to generalise FastICA to solve the parallel linear ICA
problem, i.e., to extract all sources simultaneously. Although, there exist several
other parallel linear ICA algorithms, e.g., fixed point Cayley ICA algorithm [8],
retraction based ICA algorithm [9], gradient based ICA algorithm [13], and geo-
desic flow based ICA algorithm [18], a thorough discussion about these algorithms
is certainly out of scope for this paper. We refer to [1, 3, 7, 10, 25] for further
reading on optimisation on manifolds and comparisons of different algorithms in
terms of performance and implementation. In this section, we generalise FastICA
using a matrix shift strategy and an approximate Newton method to solve the
parallel linear ICA problem.

19.4.1 Matrix Shifted QR-ICA Algorithm

First of all, let Z ¼ ZQZR be the unique QR decomposition of an invertible matrix
Z 2 R

m�m into an orthogonal matrix ZQ 2 OðmÞ and an upper triangular matrix
ZR 2 R

m�m with positive diagonal entries. We denote the two factors of the QR
decomposition by

Q:Rm�m ! OðmÞ;
X 7!XQ;

ð19:63Þ

and

R:Rm�m ! X 2 R
m�m j xii [ 0; xij ¼ 0 for all i [ j

� �
;

X 7!XR:
ð19:64Þ

We then construct a simple and direct generalisation of the basic ICA map (19.38)
to a full matrix as

U: OðmÞ ! OðmÞ; X 7! KðXÞð ÞQ; ð19:65Þ
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where

K: OðmÞ ! R
m�m; KðXÞ :¼ ½kðx1Þ; . . .; kðxmÞ�; ð19:66Þ

with k defined in (19.21).
Let X	 ¼ ½x	1; . . .; x	m� 2 H be a correct separation point of the parallel linear

ICA problem, i.e., x	i ¼ eivsðiÞ 2 Sm�1: Using Eq. 19.25, one gets

KðX	Þ ¼ kðx	1Þ; . . .; kðx	mÞ
� �

¼ X	K; ð19:67Þ
where

K ¼ diag E½G0ðssð1ÞÞssð1Þ�Þ; . . .;E½G0ðssðmÞÞssðmÞ�
� �

: ð19:68Þ

Due to the fact that every diagonal entry of K is positive, one has ðKðX	ÞÞQ ¼ X	;

i.e., any correct separation point X	 2 H is a fixed point of the map U (19.65).
Now, by generalising the concept of a scalar shift strategy to a matrix shift

strategy, we construct a matrix shifted version of U as follows,

Us: OðmÞ ! OðmÞ; X 7! KðXÞ � XLðXÞð ÞQ; ð19:69Þ

where

L: OðmÞ ! R
m�m; X 7! diag E½G00ðx>1 wÞ�; . . .;E½G00ðx>mwÞ�

� �
: ð19:70Þ

Here we choose a special shift, namely a diagonal matrix L (19.70). To discuss
more general (dense) matrix shifts is certainly a challenge. We consider such an
issue as an open problem for our future research.

Now each column of the matrix KðXÞ � XLðXÞ can be computed individually
by

pf : Sm�1 ! R
m; pfðxÞ :¼ E½G0ðx>wÞw� � E½G00ðx>wÞ�x; ð19:71Þ

i.e., the algorithmic map Us can be restated as

Us: OðmÞ ! OðmÞ; X 7! ½pfðx1Þ; . . .; pfðxmÞ�ð ÞQ: ð19:72Þ

Note that each column pf is indeed the numerator of the original FastICA map /f

(19.15) applied to each xi individually. In other words, the algorithm by iterating
Us is essentially a natural generalisation of FastICA to a full matrix. Unfortunately,
such a map Us is still not immune from the phenomenon of column-wise sign
flipping, which is caused by the same reason as for the original FastICA. Thus, by
using the function g (19.62) as a column-wise sign correction term, we construct

eUs: OðmÞ ! OðmÞ; X 7! ½rfðx1Þ; . . .; rfðxmÞ�ð ÞQ; ð19:73Þ

where

rf : Sm�1 ! R
m; rfðxÞ :¼ gðxÞpfðxÞ: ð19:74Þ
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Note that the first column of X 2 OðmÞ under the map eUs evolves exactly as the

column x 2 Sm�1 under the algorithmic map e/n (19.61). We refer to the algorithm

induced by iterating the map eUs as matrix shifted QR-ICA algorithm. This algo-
rithm is summarised as follows.

Algorithm 2 Matrix shifted QR-ICA algorithm

Step 1 Given an initial guess Xð0Þ ¼ ½xð0Þ1 ; . . .; xð0Þm � 2 OðmÞ and set k ¼ 0:
Step 2 For i ¼ 1; . . .;m; compute

Xðkþ1Þ ¼ rfðxðkÞ1 Þ; . . .; rfðxðkÞm Þ
h i

;

where rfðxÞ ¼ sign x>pfðxÞð ÞpfðxÞ; and

pfðxÞ ¼ E½G0ðx>wÞw� � E½G00ðx>wÞ�x:

Step 3 Update Xðkþ1Þ  Xðkþ1Þ� �
Q
:

Step 4 If kXðkþ1Þ � XðkÞk is small enough, stop.
Otherwise, set k ¼ k þ 1 and go to Step 2

Here, k � k is an arbitrary norm of matrices.

The convergence properties of the algorithmic map eUs are then summarised.

Lemma 1.5 Let H � OðmÞ; as defined in (19.8), be the set of solutions of the
parallel linear ICA problem (19.6) and G:R! R a smooth function satisfying

Assumption 2. Then any X	 2 H is a fixed point of the algorithmic map eUs:

Proof Let us denote

Ks: OðmÞ ! R
m�m; KsðXÞ :¼ rfðx1Þ; . . .; rfðxmÞ½ �: ð19:75Þ

According to the result (19.25), one computes that

rfðx	Þ ¼ ðgðx	ÞÞ2x	; ð19:76Þ

i.e.,

KsðX	Þ ¼ X	D; ð19:77Þ

where

D ¼ diag ðgðx	1ÞÞ
2; . . .; ðgðx	mÞÞ

2
� �

: ð19:78Þ

The result follows from the fact that eUsðX	Þ ¼ X	. h

To show the local convergence properties of the algorithmic map eUs; we need
the following lemma.

418 H. Shen et al.



Lemma 1.6 Let Z 2 R
m�m be invertible and consider the unique QR decompo-

sition of Z: Then the derivative of ðZÞQ in direction Y 2 R
m�m is given by

DðZÞQY ¼ ðZÞQ
��
ðZÞQÞ

>Y ðZÞR
� ��1�

skew
; ð19:79Þ

where Tskew denotes the skew-symmetric part from the unique additive decompo-
sition of T 2 R

m�m into skew-symmetric and upper triangular part, i.e.,

T ¼ Tskew þ Tupper; ð19:80Þ

where Tskew ¼ � Tskewð Þ> and Tupper

� �
ij
¼ 0 for all i [ j:

Proof See Lemma 1 in [16] for a proof. h

Theorem 1.7 Let H � OðmÞ; as defined in (19.8), be the set of solutions of the
parallel linear ICA problem (19.6) and G:R! R a smooth function satisfying

Assumption 2. Then the algorithmic map eUs is locally quadratically convergent to
X	 2 H:

Proof We will show that the linear map

DeUsðXÞ : TXOðmÞ ! TeUsðXÞ
OðmÞ; ð19:81Þ

at X	 is indeed the zero map. By exploiting the fact that eUsðX	Þ ¼ ðKsðX	ÞÞQ ¼ X	

and ðKsðX	ÞÞR ¼ D; one gets

DeUsðXÞNjX¼X	 ¼ DðKsðXÞÞQNjX¼X	

¼ ðKsðX	ÞÞQ ðKsðX	ÞÞQ
� �>

DKsðXÞNjX¼X	ð Þ ðKsðX	ÞÞR
� ��1

 �

skew

¼ X	 X	> DKsðXÞNjX¼X	ð ÞD�1� �
skew

: ð19:82Þ

Following Theorem 1.3, i.e., for all i ¼ 1; . . .;m;

DrfðxÞnjx¼x	i
¼ dix

	
i ; ð19:83Þ

with some di 2 R and denoting bD ¼ diagðd1; . . .; dmÞ 2 R
m�m; we have

DKsðXÞNjX¼X	 ¼ X	bD; ð19:84Þ

i.e.,

DeUsðXÞNjX¼X	 ¼ X	 bDD�1
� �

skew

¼ 0:
ð19:85Þ

Therefore the result follows. h
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19.4.2 Approximate Newton-Like Parallel ICA Method

Following the same idea of approximating Hessians as in developing the
approximate Newton one-unit linear ICA method, in this subsection, we develop
an approximate Newton type method for minimising the parallel contrast function
F (19.12).

19.4.2.1 Critical Point Analysis of Parallel ICA Contrast

Let soðmÞ ¼ X 2 R
m�mjX ¼ �X>

� �
be the vector space of skew-symmetric

matrices and denote X ¼ ½x1; . . .;xm� ¼ ðxijÞmi;j¼1 2 soðmÞ: By means of the
matrix exponential map, a local parameterisation lX of OðmÞ around X 2 OðmÞ is
given by

lX : soðmÞ ! OðmÞ; lXðXÞ :¼ X exp ðXÞ: ð19:86Þ

By using the chain rule, the first derivative of contrast function F (19.12) at
X 2 OðmÞ in direction N ¼ XX ¼ ½n1; . . .; nm� 2 TXOðmÞ; i.e., ni ¼ Xxi; is com-
puted by

DFðXÞN ¼ d
dt
ðF � lXÞðtXÞ

����
t¼0

¼
Xm

i¼1

E½G0ðx>i wÞðn>i wÞ�

¼
Xm

i¼1

x>i X>kðxiÞ

¼
Xm

1
 i\j
m

xij x>j kðxiÞ � kðxjÞ>xi

� �
: ð19:87Þ

The critical points X 2 OðmÞ of F are therefore characterised by

Xm

1
 i\j
m

xij x>j kðxiÞ � kðxjÞ>xi

� �
¼ 0: ð19:88Þ

Analogously to the one-unit linear ICA contrast f in (19.20), we are able to show
that any X	 2 H; which corresponds to a correct separation of all sources, is a
critical point of F: Let X	 ¼ ½x	1; . . .; x	m� 2 H; i.e., x	i ¼ eivsðiÞ 2 Sm�1: Recalling
Eq. 19.25, we compute

x	>j kðx	i Þ � kðxjÞ	>x	i ¼ 0; ð19:89Þ

for all i 6¼ j:

420 H. Shen et al.



Since the geodesics through X 2 OðmÞ with respect to the Riemannian metric
hXX1;XX2i :¼ �trX1X2 are given by lXðtXÞ; (left translated one parameter
subgroups), the Riemannian Hessian of F can be computed from

HFðXÞðXX;XXÞ ¼ d2

dt2
ðF � lXÞðtXÞ

����
t¼0

¼
Xm

i¼1

E G00ðx>i wÞðx>i X>wÞ2 � G0ðx>i wÞðn>i NXwÞ
h i

¼
Xm

i¼1

x>i X>E G00ðx>i wÞww>
� �

Xxi �
Xm

i¼1

x>i XX>E G0ðx>i wÞw
� �

¼
Xm

i¼1

x>i X>HðxiÞXxi þ tr X2X>KðXÞ: ð19:90Þ

Following Eq. 19.33, the first summand in (19.90) evaluated at X	 2 H is com-
puted as

Xm

i¼1

x>i X	>H eivsðiÞ
� �

X	xi

¼
Xm

i¼1

E½G00ðssðiÞÞ�x>i xi

¼
Xm

1
 i\j
m

x2
ij E½G00ðssðiÞÞ� þ E½G00ðssðjÞÞ�
� �

; ð19:91Þ

and the second summand in (19.90) is evaluated as

tr X2X	>KðX	Þ ¼ tr X2X	>X	K

¼
Xm

1
 i\j
m

�x2
ij E½G0ðssðiÞÞssðiÞ� þ E½G0ðssðjÞÞssðjÞ�
� �

: ð19:92Þ

Hence,

HFðX	ÞðX	X;X	XÞ ¼
Xm

1
 i\j
m

x2
ij E½G00ðssðiÞÞ� � E½G0ðssðiÞÞssðiÞ�
� ��

þ E½G00ðssðjÞÞ� � E½G0ðssðjÞÞssðjÞ�
� ��

¼
Xm

1
 i\j
m

�x2
ij gðx	i Þ þ gðx	j Þ
� �

: ð19:93Þ

Let Xij 2 soðmÞ be defined by xij ¼ �xji ¼ 1 and zeros anywhere else. We denote
the standard basis of soðmÞ by
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B ¼ Xij 2 soðmÞ
�� 1
 i\j
m

� �
: ð19:94Þ

It is obvious that HFðX	ÞðX	Xij;X	XpqÞ ¼ 0 for any distinct pair of basis matrices
Xij;Xpq

� �
� B; i.e., the Hessian of F at X	 2 H is indeed diagonal with respect to

the standard basis B: Moreover, to ensure that such a Hessian is invertible, it will
require the expression gðx	i Þ þ gðx	j Þ to be nonzero. According to specific appli-
cations, such a condition can be fulfilled by choosing the function G carefully.
A special example is given and discussed in Remark 3. We conclude our results as
follows.

Theorem 1.8 Let H � OðmÞ; as defined in (19.8), be the set of solutions of the
parallel linear ICA problem (19.6) and let G:R! R be a smooth even function
such that

E½G00ðsiÞ� � E½G0ðsiÞsi� 6¼ � E½G00ðsjÞ� � E½G0ðsjÞsj�
� �

; ð19:95Þ

for all i; j ¼ 1; . . .;m and i 6¼ j: Then any X	 2 H is a non-degenerated critical
point of F (19.12).

Remark 3 As pointed out before, the value of the expression E½G00ðsiÞ� �
E½G0ðsiÞsi� depends on both the function G and source signals s: It is hardly
possible to characterise the set of critical points in full generality. As a special
case, let us specify G by the following popular choice

G:R! R; GðxÞ :¼ 1
f

logðcoshðfxÞÞ; ð19:96Þ

where f 2 R is positive. According to the fact that the absolute values of entries of
whitened sources are bounded by the pre-whitening process, it can be shown that,
by choosing f carefully, the value of E½G00ðsiÞ� � E½G0ðsiÞsi� is ensured to be
positive for any signal. In other words, every point X	 2 H is a strict local min-
imum of the parallel ICA contrast F:

19.4.2.2 Approximate Newton-Like Parallel ICA Algorithm

Following the same strategy of developing the approximate Newton one-unit ICA

algorithm e/n (19.61) in Sect. 19.3, we now apply the idea of approximating the
Hessian of F to develop a Newton-like parallel ICA method. The approximation is
given as follows

HFðXÞðXX;XXÞ �
Xm

1
 i\j
m

�x2
ij gðxiÞ þ gðxjÞ
� �

: ð19:97Þ
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Clearly, this choice may seriously differ from the true Hessian. However, coin-
ciding at the critical points X	 2 H; it locally yields a good approximation.

Thus, by recalling Eq. 19.87, an approximate Newton direction XX 2 TXOðmÞ
with X ¼ ðxijÞmi;j¼1 2 soðmÞ is explicitly computed by

�
gðxiÞ þ gðxjÞ

�
xij ¼ x>i kðxjÞ � kðxiÞ>xj; ð19:98Þ

for all 1
 i\j
m: According to the condition (19.95), one computes directly

xij ¼
x>i kðxjÞ � kðxiÞ>xj

gðxiÞ þ gðxjÞ
: ð19:99Þ

The projection of XX onto OðmÞ by using lX (19.86) completes an iteration of an
approximate Newton-like parallel ICA method. It is known that the calculation of
the matrix exponential of an arbitrary X 2 soðmÞ requires an expensive iterative
process [17]. To overcome this computational issue, one can utilise a first order
approximation of the matrix exponential via a QR decomposition, which preserves
orthogonality. A similar idea has been explored in [3]. For a given X 2 soðmÞ; let
us compute the unique QR decomposition of the matrix Im þ X: Since the deter-
minant of Im þ X is always positive, the QR decomposition is unique with
detðIm þ XÞQ ¼ 1: We then define a second local parameterisation on OðmÞ as

mX: soðmÞ ! OðmÞ; mXðXÞ :¼ XðIm þ XÞQ: ð19:100Þ

Substituting the approximate Newton step as computed in (19.99) into mX leads
to the following algorithmic map on OðmÞ

Un: OðmÞ ! OðmÞ; X 7!XðIm þ eXðXÞÞQ; ð19:101Þ

where eX: OðmÞ ! soðmÞ is the smooth map consisting of the following entry-wise
maps

exij: OðmÞ ! R; exijðXÞ :¼ kðxiÞ>xj � x>i kðxjÞ
gðxiÞ þ gðxjÞ

; ð19:102Þ

for all 1
 i\j
m: Iterating the map Un gives an approximate Newton-like
parallel ICA algorithm as follows.

Algorithm 3 Approximate Newton-like parallel ICA algorithm

Step 1 Given an initial guess Xð0Þ ¼ ½xð0Þ1 ; . . .; xð0Þm � 2 OðmÞ and set k ¼ 0:

Step 2 Compute XðkÞ ¼ ðxðkÞij Þ
m
i;j¼1 2 soðmÞ with

xðkÞij ¼
fðxi; xjÞ � fðxj; xiÞ

gðxiÞ þ gðxjÞ
; for 1
 i\j
m;

where fðxi; xjÞ ¼ E½G0ðx>i wÞðx>j wÞ�; and
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gðxÞ ¼ E½G0ðx>wÞðx>wÞ� � E½G00ðx>wÞ�:

Step 3 Update Xðkþ1Þ  XðkÞðIm þ XðkÞÞQ:
Step 4 If kXðkþ1Þ � XðkÞk is small enough, stop.

Otherwise, set k ¼ k þ 1 and go to Step 2.

Remark 4 For the one-unit linear ICA problem, the scalar shifted algorithm and the
approximate Newton method are indeed identical as shown in Sect. 19.3. For the
parallel linear ICA problem, however, the two resulting algorithms, i.e. matrix shifted
QR -ICA algorithm (Algorithm 2) and approximate Newton-like parallel ICA algo-
rithm (Algorithm 3), are different. Experimental results can be found in Sect. 19.5.

19.4.2.3 Local Convergence Properties

Finally the local convergence properties of the algorithmic map Un are charac-
terised by the following two results.

Lemma 1.9 Let H � OðmÞ; as defined in (19.8), be the set of solutions of the
parallel linear ICA problem (19.6) and G:R! R be a smooth function satisfying
the condition (19.95). Then any X	 2 H is a fixed point of the algorithmic map Un:

Proof Following Eq. 19.95, one knows that the denominator in (19.102) is non-
zero. Therefore Eq. 19.89 yields

exijðX	Þ ¼ 0; ð19:103Þ
for all 1
 i\j
m: The result follows from ðImÞQ ¼ Im. h

Theorem 1.10 Let H � OðmÞ; as defined in (19.8), be the set of solutions of the
parallel linear ICA problem (19.6) and G:R! R be a smooth function satisfying
the condition (19.95). Then the algorithmic map Un is locally quadratically con-
vergent to X	 2 H:

Proof Following the argument in [15], Lemmas 2.7–2.9, we will show that the
first derivative of the algorithmic map Un

D UnðXÞ: TXOðmÞ ! TUnðXÞOðmÞ ð19:104Þ

vanishes at a fixed point X	:
Recall the results of Lemma 1 in [16], we compute

D UnðX	ÞN ¼ Nþ X	DeXðX	ÞN; ð19:105Þ
where N ¼ X	X 2 TX	OðmÞ: Thus, to show that the first derivative of Un vanishes
at X	 is equivalent to showing

DeXðX	ÞN ¼ �X; ð19:106Þ
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which indeed is equivalent to

DexijðX	ÞN ¼ �xij; ð19:107Þ

for all 1
 i\j
m: We compute the first derivative of exij (19.102)

Dex ijðX	ÞN ¼
d
dt
exijðX	 expðtXÞÞ

����
t¼0

¼ D
1

gðx	i Þ þ gðx	j Þ

 !
N � kðx	i Þ

>x	j � x	>i kðx	j Þ
� �

þ 1
gðx	i Þ þ gðx	j Þ

� D kðx	i Þ
>x	j � x	>i kðx	j Þ

� �
N: ð19:108Þ

It is clear that the first summand vanishes following the previous results, see
(19.89). By using (19.25) and (19.51), we compute

D kðx	i Þ
>x	j � x	>i kðx	j Þ

� �
N

¼ Dkðx	i ÞN
� �>

x	j þ kðx	i Þ
>nj � n>i kðx	j Þ � x	>i Dkðx	j ÞN

¼ E½G00ðssðiÞÞ�x>i X	>x	j þ E½G0ðssðiÞÞssðiÞ�x	>i X	xj

� E½G0ðssðjÞÞssðjÞ�x>i X	>x	j � E½G00ðssðiÞÞ�x	i X	xj

¼ E½G00ðssðiÞÞ�xij þ E½G0ðssðiÞÞssðiÞ�xji

� E½G0ðssðjÞÞssðjÞ�xij � E½G00ðssðiÞÞ�xji

¼ E½G00ðssðiÞÞ� � E½G0ðssðiÞÞssðiÞ� þ E½G00ðssðiÞÞ� � E½G0ðssðjÞÞssðjÞ�
� �

xij

¼ � gðx	i Þ þ gðx	j Þ
� �

xij: ð19:109Þ

Applying now Eq. 19.108 yields Eq. 19.107. The result follows. h

19.5 Numerical Experiments

In this section, the performance of all presented methods is demonstrated and
compared by using several numerical experiments. We apply all algorithms to an
audio signal separation dataset provided by the Brain Science Institute, RIKEN,
see http://www.bsp.brain.riken.jp/data. The dataset consists of 200 natural speech
signals sampled at 4 kHz with 20; 000 samples per signal.
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We know that the FastICA algorithm only recovers one single source. In
order to extract all source signals, a deflationary FastICA approach using the
Gram–Schmidt orthogonalisation has already been developed in [11]. In our
experiment, to avoid dealing with the sign flipping issue, we implement the map
e/n (19.61) instead of the FastICA map /f (19.15). Nevertheless, we still refer to
this method as FastICA-Defl. It is important to notice that, for a linear ICA
problem of extracting m sources, after computing the second last column xm�1 of
the demixing matrix X 2 OðmÞ; the last column xm is already uniquely determined
up to sign by the Gram–Schmidt process. In other words, one only needs to apply
m� 1 deflationary FastICA procedures to extract m signals. By the same reason, in

implementing the matrix shifted QR-ICA algorithm eUs (19.73), one can skip the
update on the last column, i.e., for each iteration, we do the following

bUf : OðmÞ ! OðmÞ; X 7! ½rfðx1Þ; . . .; rfðxm�1Þ; xm�ð ÞQ: ð19:110Þ

In the sequel, we call it QR-ICA, and refer to the approximate Newton-like parallel
ICA method Un (19.101) as ANPICA.

All methods developed in this paper involve evaluations of the functions k
(19.21) and qf (19.54) at certain columns of the demixing matrix X 2 OðmÞ: It is
then sensible to utilise the number of column-wise evaluations of k and qf as a
basic computational unit to compare these methods. Let us denote the sample size
of each mixture by n; which is usually much greater than the number of signals m:
In all our experiments, we fix the sample size to n ¼ 104: Obviously, the com-
putational burden of these methods is mainly due to the evaluations of k and qf ;

which depend on a huge data matrix W 2 R
m�n: For a given x 2 Sm�1; a recon-

struction of the corresponding estimated signal firstly involves m � n scalar mul-
tiplications and ðm� 1Þ � n scalar additions. Consequently, computing kðxÞ and
qfðxÞ requires n evaluations of G0 and G00 on the estimated signal together with
another m � n scalar multiplications and m � ðn� 1Þ þ n scalar additions. Finally,
the major computational cost for evaluating kðxÞ and qfðxÞ can be summarised in
the following Table 19.1.

Here the notations � and  represent the scalar multiplication and addition,
respectively. Thus by counting in the factor of the number of columns, the com-
plexity of all three methods is roughly of the same order, i.e., of Oðm2nÞ:

The task of our first experiment is to separate m ¼ 3 signals which are ran-
domly chosen out of 200 source speeches. All three methods are initialised by the
same point on OðmÞ: Figure 19.1 demonstrates the results from a single experi-
ment. It shows that all methods can successfully recover all source signals up to a

Table 19.1 Major computational costs of evaluating kðxÞ (19.21) and qfðxÞ (19.54).

Operation �  G0 G00

Times 2m � n 2m � n� m n n
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sign and an arbitrary permutation Fig. 19.1c–e. It is worthwhile to notice that the
first extracted signal by FastICA-Defl and QR-ICA, respectively, are always
identical, since the first column of QR-ICA evolves exactly as the first column of
FastICA-Defl does.
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Fig. 19.1 A simple example of three audio signals. c–e are estimated signals by FastICA-Defl,
QR-ICA and ANPICA
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Finally, we will compare the performance of all presented methods in terms of
both separation quality and convergence speed. The separation performance is
measured by the average signal-to-interference-ratio (SIR) index [21], i.e.,

SIRðZÞ :¼ 10
m

Xm

i¼1

log10

max
j

z2
ij

Pm

j¼1
z2

ij �max
j

z2
ij

; ð19:111Þ

where Z ¼ ðzijÞmi;j¼1 ¼ X>V; and V;X 2 OðmÞ are the mixing matrix and the
computed demixing matrix, respectively. In general, the greater the SIR index, the
better the separation. The convergence speed is measured by comparing
the elapsed CPU time required by each algorithm to reach the same level of error
kXðkÞ � X	kF\�: Here kXðkÞ � X	kF denotes the Frobenius norm of the difference
between the terminated demixing matrix X	 2 OðmÞ and the k-th iterate XðkÞ 2
OðmÞ: Since

XðkÞ � X	
�� ��2

F
¼
Xm

i¼1

xðkÞi � x	i

���
���

2
; ð19:112Þ

the column-wise stop criterion for FastICA-Defl is chosen to be kxðkÞ � x	k2\
�=m: In our experiments, we set � ¼ 10�10:
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Fig. 19.2 Comparison of performance (m ¼ 5 and n ¼ 104)

428 H. Shen et al.



We firstly apply all three algorithms to extract m ¼ 5 randomly chosen speech
signals. By replicating the experiment 100 times, the boxplots of the SIR index and
the elapsed CPU time (seconds) required by each algorithm are drawn in
Fig. 19.2a, b, respectively. Figure 19.2a shows that ANPICA outperforms both
FastICA-Defl and QR-ICA in terms of separation quality, and that both FastICA-
Defl and QR-ICA perform equally well. In terms of convergence speed shown in
Fig. 19.2b, it indicates that FastICA-Defl is the fastest algorithm to reach the pre-
chosen error level, while QR-ICA takes the longest time to converge. By counting
the total number of column-wise evaluations for each method until convergence as
shown in Fig. 19.2c, the average elapsed CPU time for evaluating each column in
each method are computed in Fig. 19.2d. It shows that ANPICA requires the most
amount of column-wise evaluations.

Finally, we further apply all methods to extract m ¼ 10; then 15; and finally 20
speech signals. Similar boxplots are produced in Figs. 19.3, 19.4, and 19.5. One
can see that, in term of separation quality, ANPICA outperforms the other two
methods consistently and the outperformance becomes more significant when the
number of singles increase. Both FastICA-Defl and QR-ICA perform constantly
equally well. By comparing the convergence speed, there is no surprise that
FastICA-Defl is still the fastest as well as the cheapest algorithm among all the
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Fig. 19.3 Comparison of performance (m ¼ 10 and n ¼ 104)
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Fig. 19.4 Comparison of performance (m ¼ 15 and n ¼ 104)
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three algorithms. We also observe that, when the number of signals is big enough,
QR-ICA requires more column-wise evaluations than ANPICA does, i.e., QR-ICA
becomes the slowest algorithm among all three, see Fig. 19.5c.

To summarise, FastICA-Defl is the most simple and fastest algorithm to solve a
linear ICA problem. However, it is not able to extract signals simultaneously.
Nevertheless ANPICA is the most superior method for solving the parallel linear
ICA problem in terms of separation quality at any circumstance.

19.6 Conclusions

In this paper, we study the FastICA algorithm, a classic method for solving the
one-unit linear ICA problem. After reinterpreting FastICA in the framework of a
scalar shift strategy and an approximate Newton method, we generalise FastICA to
solve the parallel linear ICA problem by using a matrix shift strategy and an
approximate Newton method. The work presented in this paper also demonstrates
similarities in terms of analysis and generalisations between the FastICA algo-
rithms and the RQI method in numerical linear algebra.

Recently, the present authors have successfully generalised FastICA to solve
the problem of independent subspace analysis (ISA) [22]. The key ideas are again
similar to developing the so-called Graßmann-RQI algorithm [2], a generalisation
of RQI for computing invariant subspaces.
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Chapter 20
On Computing Minimal Proper Nullspace
Bases with Applications in Fault Detection

Andras Varga

Abstract We discuss computationally efficient and numerically reliable algo-
rithms to compute minimal proper nullspace bases of a rational or polynomial
matrix. The underlying main computational tool is the orthogonal reduction to a
Kronecker-like form of the system matrix of an equivalent descriptor system
realization. A new algorithm is proposed to compute a simple minimal proper
nullspace basis, starting from a non-simple one. Minimal dynamic cover based
computational techniques are used for this purpose. The discussed methods allow a
high flexibility in addressing several fault detection related applications.

20.1 Introduction

Consider a p 9 m rational matrix G(k), where the indeterminate k is generally a
complex variable. If we interpret G(k) as the transfer-function matrix (TFM) of a
(generalized) linear time-invariant system, then according to the system type, k is
the s variable in the Laplace transform in the case of a continuous-time system or k
is the z variable in the Z-transform in the case of a discrete-time system. This
interpretation of k is relevant when system stability aspects are considered.

In this paper we address the following computational problem: For a given
p 9 m rational or polynomial matrix G(k) with normal rank r, determine a
(p - r) 9 p rational basis matrix Nl(k) of the left nullspace of G(k) such that

NlðkÞGðkÞ ¼ 0:
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Of special importance are minimal bases having the least achievable McMillan
degree. Moreover, depending on the underlying application, further properties may
be desirable, as for example, determining Nl(k) as a polynomial matrix or as a
proper rational matrix with specified poles.

The rigorous study of polynomial bases started with the theoretical works of
Forney [4], and followed by initial algorithmic developments by Kailath [7]. For
the computation of a minimal polynomial bases of a polynomial matrix G(k) there
are many algorithms, see [1] and the literature cited therein. Two main classes of
methods are the resultant methods, which determine the solution by solving
directly polynomial equations involving appropriate resultant matrices [1], and
pencil methods, which rely on matrix pencil reduction algorithms [2]. While
resultant methods can be a real alternative to the unreliable polynomial manipu-
lation based methods proposed in [7], their application to rational matrices defined
implicitly via state space system realizations requires, as a supplementary step,
bringing the system model into a polynomial representation. This involve factoring
G(k) as G(k) = N(k)M-1(k), where N(k) and M(k) are polynomial matrices, and
applying the method to N(k). The converse operation (e.g., proper rational fac-
toring of a polynomial matrix) could be also necessary, if the desired basis must be
a proper rational basis. Such computational detours are generally considered
highly unreliable for TFMs of large scale systems (which usually arise in a state-
space form).

The pencil methods works directly on the state space realization of G(k), and
are applicable to both polynomial and rational matrices. The main computational
tool is the reduction of a matrix pencil to a Kronecker-like form using orthogonal
transformations. The left Kronecker structure provides the complete information to
compute a polynomial basis via straightforward matrix and polynomial matrix
manipulations [2].

For many applications, proper rational bases are required. Such bases can be
immediately obtained from polynomial bases. However, to avoid potentially
unstable polynomial manipulations, it is of interest to compute proper rational
bases directly, without the unnecessary detour of determining first polynomial
bases. The theory of proper rational bases has been developed in [13], where the
main concepts have been also defined. Of special importance are proper bases
which are simple (see the exact definition in the next section), representing a direct
generalization of minimal polynomial bases. A first reliable numerical method to
compute proper rational bases has been proposed by the author in [20]. This
method belongs to the class of pencil methods and its main advantage is that a
minimal proper rational basis can be computed by using exclusively orthogonal
transformations. Note however, that the resulting basis is generally not simple.

In this paper we extend the algorithm of [20] to compute simple minimal proper
rational bases. The new algorithm can be seen as a post-processing method by
determining a simple basis starting from a non-simple one. Minimal dynamic
covers techniques are used for this purpose. The proposed new algorithm allows to
perform easily operations with the resulting basis, which are of importance to
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solve applications as those encountered in fault detection. For example, computing
linear combinations of basis vectors immediately leads to candidate solutions of
the fault detection problem with a least order detector. Several applications in
solving fault detection problems are discussed in a separate section.

20.2 Nullspace Bases

Since polynomial bases represent an important tool in defining the corresponding
concepts for the more general rational bases, we will recall shortly some of the
main results of [4]. Assume that Nl(k) is a polynomial basis of the left nullspace of
G(k). Let denote by ni, the ith index (or degree), representing the greatest degree of
the ith row of Nl(k). Then, the order of Nl(k) is defined as nd ¼

Pp�r
i¼1 ni, (i.e., the

sum of row degrees). A minimal basis is one which has least order among all
polynomial bases. The indices of a minimal basis are called minimal indices. The
order of a minimal polynomial basis Nl(k) is equal to the McMillan degree of Nl(k).

Some properties of a minimal bases are summarized below [4, 7]:

Theorem 1 Let Nl(k) be a minimal polynomial basis of the left nullspace of G(k)
with row indices ni, i ¼ 1; . . .; p� r. Then the following holds:

1. The row indices are unique up to permutations (i.e., if eNlðkÞ is another minimal

basis, then Nl(k) and eNlðkÞ have the same minimal indices).
2. The minimal indices are the left Kronecker indices of G(k).
3. Nl(k) is irreducible, i.e., has full row rank for all k 2 C (Nl(k) has no finite or

infinite zeros).
4. Nl(k) is row reduced, i.e., the leading row coefficient matrix (formed from the

coefficients of the highest row degrees) has full row rank.

If Ml(k) is a non-singular rational matrix, then eNlðkÞ :¼ MlðkÞNlðkÞ is also a left
nullspace basis. Frequently the matrices Ml(k) originate from appropriate left
coprime factorizations of an original basis Nl(k) in the form

NlðkÞ ¼ MlðkÞ�1 eNlðkÞ; ð20:1Þ

where the factors Ml(k) and eNlðkÞ can be chosen to satisfy special requirements
(e.g., have only poles in a certain ‘‘good’’ region of the complex plane).

The main advantage of minimal polynomial bases is the possibility to easily
build proper minimal rational bases. These are proper rational bases having the
least McMillan degree nd. A proper minimal rational basis with arbitrary poles can
be simply constructed by taking

MlðkÞ ¼ diag
1

m1ðkÞ
; . . .;

1
mp�rðkÞ

� �
; ð20:2Þ
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where mi(k) is a polynomial of degree ni, and forming eNlðkÞ :¼ MlðkÞNlðkÞ. The

resulting basis eNlðkÞ has the additional property that the order of any minimal state

space realization of eNlðkÞ is equal to the sum of orders of the minimal state space

realizations of the rows of eNlðkÞ. Furthermore, Dl :¼ limk!1 eNlðkÞ has full row
rank. Such a proper basis is termed simple [13] and is the natural counterpart of
minimal polynomial basis introduced in [4].

20.3 Computation of Minimal Proper Bases

For the computation of a rational nullspace basis Nl(k) a pencil method based on a
state space representation of G(k) has been proposed in [20]. In this section we
review this algorithm and give some of the properties of the resulting basis.
Although minimal, it appears that the resulting minimal basis is not simple. An
approach to obtain simple bases is presented in the next section.

The p 9 m rational matrix G(k) can be realized as a descriptor system

ð20:3Þ

which is an equivalent notation for

GðkÞ ¼ CðkE � AÞ�1Bþ D

We call this realization irreducible if the pair (A - kE, B) is controllable (i.e.,
rank½A� kE B� ¼ n for all k � C) and the pair (A - kE, C) is observable
(i.e., rank½AT � kET CT � ¼ n for all k � C) [12], where n is the order of the square
matrix A.

The computational method described in [20] exploits the simple fact that Nl(k)
is a left nullspace basis of G(k) if and only if for a suitable Ml(k)

YlðkÞ :¼ ½MlðkÞ NlðkÞ� ð20:4Þ

is a left nullspace basis of the system matrix

SðkÞ ¼ A� kE B
C D

� �
: ð20:5Þ

Thus, to compute Nl(k) we can determine first a left nullspace basis Yl(k) for
S(k) and then Nl(k) simply results as

NlðkÞ ¼ YlðkÞ
0
Ip

� �
:

Yl(k) and thus also Nl(k) can be computed by employing linear pencil reduction
algorithms based on orthogonal transformations. The main advantage of this
approach is that the computation of the nullspace can entirely be done by
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manipulating state space matrices instead of manipulating polynomial models.
The resulting nullspace is obtained in a descriptor system representation which can
be immediately used in applications. In what follows we give some details of this
approach.

Let Q and Z be orthogonal matrices (for instance, determined by using the

algorithms of [2, 17]) such that the transformed pencil eSðkÞ :¼ QSðkÞZ is in the
Kronecker-like staircase form

ð20:6Þ

where the descriptor pair ðAl � kEl;ClÞ is observable, El is non-singular, and
Ar � kEr has full row rank excepting possibly a finite set of values of k (i.e., the

invariant zeros of S(k)). It follows that we can choose the nullspace eYlðkÞ of eSðkÞ
in the form

eYlðkÞ ¼ 0 j ClðkEl � AlÞ�1 j I
� �

: ð20:7Þ

Then the left nullspace of S(k) is YlðkÞ ¼ eYlðkÞQ and can be obtained easily after
partitioning suitably Q as

Q ¼
bBr;l Br;l

bBl Bl
bDl Dl

2

4

3

5

where the row partitioning corresponds to the column partitioning of eYlðkÞ in
(20.7), while the column partitioning corresponds to the row partitioning of S(k) in
(20.5). We obtain

ð20:8Þ

and the nullspace of G(k) is

ð20:9Þ

To obtain this representation of the nullspace basis, we performed exclusively
orthogonal transformations on the system matrices. We can prove that all com-
puted matrices are exact for a slightly perturbed original system matrix. It follows
that the algorithm to compute the nullspace basis is numerically backward stable.

For an irreducible realization (20.3) of G(k), the full column rank subpencil
Al � kEl

Cl

� �
defines also the left Kronecker structure of G(k) [12]. In our case, for

p [ m this result can be relaxed asking only for controllability of the realiza-
tion (20.3). Indeed, it can be easily verified that all unobservable eigenvalues of
A - kE appear either as invariant zeros or in the right Kronecker structure and thus
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do not affect the left Kronecker structure of the system pencil S(k). This is not
anymore true in the case when the realization (20.3) is not controllable. In this case, a
part of uncontrollable eigenvalues may appear as invariant zeros, while the rest of
them enters in Al � kEl, thus affecting the left Kronecker structure.

It is possible to obtain the subpencil characterizing the left structure in an
observability staircase form

ð20:10Þ

where Ai;iþ1 2 R
li�liþ1 , with l‘þ1 ¼ 0, are full column rank upper triangular

matrices, for i ¼ 0; . . .; ‘. Note that this form is automatically obtained by using
the pencil reduction algorithms described in [2, 17]. The left (or row) Kronecker
indices result as follows: there are li�1 � li Kronecker blocks of size i 9 (i - 1),
for i ¼ 1; . . .; ‘þ 1. The row dimension of Nl(k) (i.e., the number of linearly
independent basis vectors) is given by the total number of Kronecker indices, thusP‘þ1

i¼1 ðli�1 � liÞ ¼ l0. Applying standard linear algebra results, it follows that l0

:= p - r.
We give now some properties of the computed rational basis.

Theorem 2 If the realization (20.3) of G(k) is controllable, then the rational
matrix Nl(k) defined in (20.9) is a minimal proper rational basis of the left null-
space of G(k).

Proof According to the definition of a minimal proper rational basis [4, 13], its
McMillan degree is given by the sum of row indices of a minimal polynomial
basis. The order of the computed basis in (20.9) is

nl :¼
X‘

i¼1

li

We have to show that this order is the same as that of an equivalent minimal
polynomial basis.

The controllability of the realization (20.3) ensures that the left Kronecker
structure of G(k) and of S(k) are characterized by the same Kronecker indices.

Instead of the rational basis eYlðkÞ in (20.7), we can directly compute a minimal
polynomial basis of the form

bYlðkÞ ¼ 0 j bNlðkÞ
h i

; ð20:11Þ

where bNlðkÞ is a minimal polynomial basis for the left nullspace of
Al � kEl

Cl

� �
.

For this purpose, we can exploit the staircase form (20.10). Using the staircase
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form (20.10), it is shown in [2] in a dual context that a minimal polynomial basis
can be computed by selecting li�1 � li polynomial basis vectors of degree i - 1,
for i ¼ 1; . . .; ‘þ 1. This basis can be used to construct a minimal rational basis by
making each row proper with appropriate order denominators (as shown in
Sect. 20.2). The total order of such a basis is

nl ¼
X‘þ1

i¼1

ðli�1 � liÞði� 1Þ

But this is exactly nl, since

nl ¼
X‘þ1

i¼1

li�1ði� 1Þ �
X‘þ1

i¼1

liði� 1Þ

¼
X‘

i¼1

lii�
X‘

i¼1

liði� 1Þ ¼
X‘

i¼1

li

To finish this part of the proof, we need to show additionally that the realization
(20.9) is minimal. The pair ðAl � kEl;ClÞ is observable, by the construction of the
Kronecker-like form (20.6). To show the pair ðAl � kEl;BlÞ is controllable,
observe that due to the controllability of the pair (A - kE, B), the sub-pencil
½A� kE B� has full row rank, and thus the reduced pencil

has full row rank as well. It follows that

rank½Al � kEl Bl� ¼ nl

and thus the pair ðAl � kEl;BlÞ is controllable.
Since, we also have that

rank
Al � kEl Bl

Cl Dl

� �
¼ nl þ p� r

for all k, it follows that Nl(k) has no finite or infinite zeros. Thus, Dl has full row
rank p - r and the computed basis is column reduced at k ¼ 1 [13]. h

In the case, when the realization of (20.3) of G(k) is not controllable, the
realization of Nl(k) is not guaranteed to be controllable. The uncontrollable
eigenvalues of A - kE enters partly either as invariant zeros (i.e., part of the sub-
pencil Ar � kEr) or are part of the sub-pencil Al � kEl. Therefore, in this case, the
resulting nullspace basis has not the least possible McMillan degree.
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Additionally the following important result holds:

Proposition 1 If the realization (20.3) of G(k) is controllable, then the realization
of Nl(k) defined in (20.9) is maximally controllable.

Proof According to a dual formulation of [10], we have to show that for an
arbitrary output injection matrix K, the pair ðAl þ KCl � kEl;Bl þ KDlÞ remains
controllable. Consider the transformation matrix

U ¼
I 0 0
0 I K
0 0 I

2
4

3
5 ð20:12Þ

and compute bSðkÞ :¼ UQSðkÞZ, which, due to the particular form of Cl, is still in
the Kronecker-like staircase form

If we form also

UQ
0
Ip

� �
¼

Br;l

Bl þ KDl

Dl

2
4

3
5

we obtain an alternative minimal proper rational basis in the form

We already have proven in Theorem 2 that such a nullspace basis is a minimal
realization. Thus, the pair ðAl þ KCl � kEl;Bl þ KDlÞ is controllable. h

Even if the above computed rational basis has the least possible McMillan
degree, and thus is minimal, still in general, this basis is not simple. In the next
section, we consider a postprocessing approach permitting to obtain a simple basis
from a non-simple one.

20.4 Computation of Simple Bases

The most obvious approach to determine a simple minimal proper rational basis
has been sketched in Sect. 20.2 and consists in computing first a minimal poly-

nomial basis Nl(k) and then to determine the rational basis as eNlðkÞ :¼ MlðkÞNlðkÞ,
where Ml(k) has the form (20.2).

ð20:13Þ

ð20:14Þ
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We discuss shortly the method to compute a polynomial basis proposed in
[2]. This method determines first a minimal polynomial basis W(k) for the left

nullspace of the sub-pencil
Al � kEl

Cl

� �
in (20.6). This computation can be

done by fully exploiting the staircase structure (20.10) of this pencil. The
details for a dual algorithm (for right basis) are presented in [2]. The degrees of
the resulting left basis vectors are equal to the left Kronecker indices, and this
information can be simply read out from the staircase structure. As already
mentioned, there are p - r basis vectors, of which there are li�1 � li vectors
of degree (i - 1).

The minimal polynomial nullspace basis of G(k) results as

NlðkÞ ¼ ½0 WðkÞ�Q 0
Ip

� �

Note that W(k) and Nl(k) have the same row degrees. Furthermore, it is shown in
[2] that the resulting Nl(k) is row reduced.

The approach to compute a simple proper minimal basis has been sketched in
Sect. 20.2 and additionally involves to determine M(k) of the form (20.2), where
mi(k) is an arbitrary polynomial of degree ni. The resulting simple proper minimal

basis is eNlðkÞ :¼ MðkÞNlðkÞ and has arbitrarily assignable poles. A state-space

realization of the resulting basis eNlðkÞ can be simply built by inspection,
exploiting the simpleness property. This realization is obtained by simply stacking

p - r minimal realizations of orders ni, i ¼ 1; . . .; p� r of each row of eNlðkÞ. The
resulting state matrix has a block diagonal structure. Although simple, this
approach is not always well suited for applications (e.g., in fault detection) for
reasons which will become apparent in Sect. 20.7.

We propose an alternative to this method which is based on minimum cover
techniques and, as will be shown later, directly supports the design of least order
fault detectors. Consider the proper minimal left nullspace (20.9) and denote with
cl,i and dl,i the ith rows of matrices Cl and Dl, respectively.

Theorem 3 For each i ¼ 1; . . .; p� r, let Ki be an output injection matrix such
that

viðkÞ :¼ cl;iðkEl � Al � KiClÞ�1ðBl þ KiDlÞ þ dl;i ð20:15Þ

has the least possible McMillan degree. Then, eNlðkÞ formed from the p - r rows
vi(k) is a simple proper minimal left nullspace basis.

Proof According to Proposition 1, the realization (20.9) of Nl(k) is maximally con-
trollable, i.e., the pair ðAl þ KiCl � kEl;Bl þ KiDlÞ is controllable for arbitrary Ki.
Therefore, the maximal order reduction of the McMillan degree of vi(k) can be
achieved by making the pair ðAl þ KiCl � kEl; cl;iÞ maximally unobservable via an

20 On Computing Minimal Proper Nullspace Bases with Applications 441



appropriate choice of Ki. For each i ¼ 1; . . .; p� r, the achievable least McMillan
degree of vi(k) is the corresponding minimal index ni, representing, in a dual
setting, the dimension of the least order controllability subspace of the standard
pair ðE�T

l AT
l ;E

�T
l CT

l Þ containing spanðE�T
l cT

l;iÞ. This result is the statement of

Lemma 6 in [29]. It is easy to check that vi(k)G(k) = 0, thus eNlðkÞ is a left
annihilator of G(k). Furthermore, the set of vectors fv1ðkÞ; . . .; vp�rðkÞg is linearly

independent since the realization of eNlðkÞ has the same full row rank matrix Dl as

that of Nl(k). It follows that eNlðkÞ is a proper left nullspace basis of least
dimension

Pp�r
i¼1 ni, with each row vi(k) of McMillan degree ni. It follows that

Nl(k) is simple. h

The poles of the nullspace basis can be arbitrarily placed by performing left
coprime rational factorizations

viðkÞ ¼ miðkÞ�1v̂iðkÞ

The basis bNlðkÞ :¼ ½v̂T
1 ðkÞ; . . .; v̂T

p�rðkÞ�
T obtained in this way, can have arbi-

trarily assigned poles.
Simple bases are the direct correspondents of polynomial bases, and therefore

each operation on a polynomial basis has a direct correspondent operation on the
corresponding simple rational basis. An important operation (with applications in
fault detection) is building linear combinations of basis vectors up to a certain
McMillan degree.

Consider the proper left nullspace basis Nl(k) constructed in (20.9). By
looking to the details of the resulting staircase form (20.10) of the pair
ðAl � kEl;ClÞ, recall that the full column rank matrices Ai�1;i 2 R

li�1�li have the
form

Ai�1;i ¼
Ri�1;i

0;

� �

where Ri-1,i is an upper-triangular invertible matrix of order li. The row dimen-
sion li�1 � li of the zero block of Ai-1,i gives the number of polynomial vectors of
degree i - 1 in a minimal polynomial basis [2, Section 4.6] and thus, also the
number of vectors of McMillan degree i - 1 in a simple basis. It is straightforward
to show the following result.

Corollary 1 For a given left nullspace basisNl(k) in the form (20.9), let
1� i\p� rbe a given index and lethbe a (p - r)-dimensional row vector having
only the lasticomponents non-zero. Then, a linear combination of the simple basis
vectors not exceeding McMillan degree ni can be generated as

vðkÞ :¼ hClðkEl � Al � KClÞ�1ðBl þ KDlÞ þ hDl ð20:16Þ

where K is an output injection matrix such that v(k) has the least possible
McMillan degree.
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This result shows that the determination of a linear combination of vectors of a
simple basis up to a given order ni is possible directly from a proper basis
determined in the form (20.9). As it will be shown in the next section, the matrix
K together with a minimal realization of v(k) can be computed efficiently using
minimal dynamic cover techniques. The same approach can be applied repeatedly
to determine the basis vectors vi(k), i ¼ 1; . . .; p� r, of a simple basis by using the
particular choices h = ei

T, where ei is the ith column of the (p - r)th order identity
matrix.

20.5 Minimal Dynamic Cover Techniques

Let Nl(k) be the (p - r) 9 p minimal proper left nullspace basis of G(k) con-
structed in (20.9). In this section we will address the following computational
problem encountered when computing simple proper bases or when computing
linear combination of basis vectors with least McMillan degree: given a row vector
h, determine the output injection matrix K such that the vector v(k) in (20.16) has
least McMillan degree. As already mentioned, minimal dynamic cover techniques
can be employed to perform this computation.

Computational procedures of minimal dynamic covers are presented in [22]
(see also Appendix A). The general idea of the cover algorithms is to perform a
similarity transformation on the system matrices in (20.9) to bring them in a
special form which allows to cancel the maximum number of unobservable
eigenvalues. In a dual setting, for the so-called Type I dynamic covers [8], two
nonsingular transformation matrices L and V result such that

ð20:17Þ

where the pairs ðbA11 � kE11; bC11Þ and ðbA22 � kE22; bc22Þ are observable, and the

submatrices bC11 and bA21 have the particular structure

bA21
bC11

� �
¼ 0 A21

0 C11

� �

with C11 having full column rank. By taking

K ¼ V
0
bK

� �
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with bK satisfying bKC11 þ A21 ¼ 0, we annihilate bA21, and thus make the pair
ðAl þ KCl � kEl; hClÞ maximally unobservable by making all eigenvalues of
bA11 � kE11 unobservable. The resulting vector v(k) of least McMillan degree,
obtained by deleting the unobservable part, has the minimal state space realization

ð20:18Þ

This is also the typical form of achieved realizations for the basis vectors (20.15)
of a simple basis. To obtain the above realization, the computation of the trans-
formation matrices L and V is not necessary, provided all transformations which
are performed during the reductions in the minimal cover algorithm are applied to
the input matrix Bl as well. In Appendix A we present a detailed algorithm for the
computation of Type I dynamic covers.

20.6 Computation of Proper Coprime Factorizations

We present a straightforward application of minimal proper nullspaces in deter-
mining proper fractional factorizations of improper rational matrices. This com-
putation is often a preliminary preprocessing step when designing residual
generator filters for solving the optimal fault detection problem involving improper
systems [25]. Let G(k) be a given p 9 m improper rational matrix for which we
want to determine a fractional representation in the form

GðkÞ ¼ M�1ðkÞNðkÞ; ð20:19Þ

where both M(k) and N(k) are proper. In applications, the stability of the factors is
frequently imposed as an additional requirement. For this computation, state space
techniques have been proposed in [18], based on stabilization and pole assignment
methods for descriptor systems. We show, that alternatively a conceptually simple
and numerically reliable approach can be used to obtain the above factorization.

The relation (20.19) can be rewritten as

½MðkÞNðkÞ� GðkÞ
�Im

� �
¼ 0:

It follows that the p 9 (p ? m) rational matrix ½MðkÞ NðkÞ� can be determined as a
minimal proper left nullspace basis of the full column rank matrix

GeðkÞ ¼
GðkÞ
�Im

� �
:
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The invertibility of M(k) is guaranteed by Lemma 2 of [28] by observing that
½MðkÞ NðkÞ�, as a nullspace basis, has full row rank.

Using the state-space realizations based algorithm described in Sect. 20.3, we
obtain the left nullspace basis ½MðkÞ NðkÞ� of Ge(k) in the form (20.9) with the
matrices Bl and Dl partitioned accordingly

ð20:20Þ

Since El is invertible, the resulting factors are proper. An important aspect of this
simple approach is that the state space realizations (20.20) of the factors of the
proper factorization (20.19) have been obtained using exclusively orthogonal
transformations to reduce the system matrix of Ge(k) to a Kronecker-like form as
that in (20.6). This contrasts with the algorithms of [18] which involve also some
non-orthogonal manipulations. The stability of the resulting factors can be
enforced, using instead (20.9), a representation of the form (20.14) for the left
nullspace. Here, K is determined to fulfill the stability requirements.

20.7 Operations Involving Nullspace Bases

Assume that besides the p 9 m rational matrix G(k), we have given also a
p 9 q rational matrix F(k), and the compound matrix ½GðkÞ FðkÞ� has the state
space realization

ð20:21Þ

Observe that the realizations of G(k) and F(k) share the same state, descriptor and
output matrices A, E, and C respectively. Let Nl(k) be a proper left nullspace basis
of G(k) which can be non-simple in the form in (20.9) or a simple basis formed
with vectors of the form (20.15). In several applications, besides the computation
of the nullspace basis, operations with the basis matrix are necessary. For example,

the left multiplications Nl(k)F(k) or eNlðkÞFðkÞ, where NlðkÞ ¼ M�1
l ðkÞeNlðkÞ is a

left coprime factorization, are often necessary in fault detection applications.
Important are also operations involving a linear combination of the basis vectors,
i.e., the computation of v(k)F(k), where v(k) has the form (20.16) or is in a
minimal form (20.18) as resulted from the application of the minimal cover
algorithm. This last operation is also important when computing Nl(k)F(k) with
Nl(k) a simple proper left nullspace basis formed from row vectors of the form
(20.15).

The determination of state space realizations of products like Nl(k)F(k),
eNlðkÞFðkÞ or v(k)F(k) can be done by computing minimal realizations of the state
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space realizations of these rational matrix products. The computation of a minimal
realization relies on numerically stable algorithms for standard or descriptor sys-
tems as those proposed in [14, 15]. However, these algorithms depend on inter-
mediary rank determinations and thus can produce results which critically depend
on the choice of threshold values used to detect zero elements. Since it is always
questionable that the resulting order is the correct one, this computational approach
can be categorized as a difficult numerical computation. Alternative ways relying
on balancing related model reduction are primarily intended for standard stable
systems. The application of this approach in the case when F(k) is unstable or not
proper leads to other types of numerical difficulties. For example, by assuming that
the unstable/improper part cancels completely out, a preliminary spectral splitting
of eigenvalues must be performed first, which is often associated with unnecessary
accuracy losses. For polynomial nullspace bases the only alternative to the above
approach is to manipulate polynomial matrices. However, as already mentioned, in
some applications this leads to unavoidable detours (state-space to polynomial
model conversions) which involve delicate rank decisions as well.

In what follows, we show that all these numerical difficulties to evaluate the
above products can be completely avoided and explicit state space realizations for
these products can be obtained as a natural byproduct of the nullspace computation
procedure. An important aspect of the developed explicit realizations is that both
Nl(k) and Nl(k)F(k) share the same state, descriptor and output matrices. Thus, the
developed formulas are also useful for performing nullspace updating and two
important applications of this techniques in the context of fault detection are
presented in the next section.

20.7.1 Left Multiplication with a Non-simple Basis

Let Nl(k) be a proper left nullspace basis of G(k) computed in the form (20.9) and
let Yl(k) be the left nullspace basis of S(k) in (20.4). It is easy to show that

and thus

NlðkÞFðkÞ ¼ YlðkÞ
Bf

Df

� �
¼ eYlðkÞQ

Bf

Df

� �
;

where Q is the orthogonal transformation matrix used in computing the Kronecker-

like form (20.6) and eYlðkÞ is defined in (20.7). We compute now
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ð20:22Þ

where the row partitioning of the right hand side corresponds to the column

partitioning of eYlðkÞ in (20.7). The realization of Nl(k)F(k) results as

ð20:23Þ

Note that to compute this realization, only orthogonal transformations have been
employed.

In assessing the properties of the resulting realization (20.23), two aspects are
relevant. The realizations of Nl(k) and Nl(k)F(k) are observable since they share
the same Al, El and Cl matrices. However, the realization in (20.23) may not be
minimal, because its controllability also depends on the involved Bf and Df. The
second aspect concerns the minimality of the proper left nullspace basis Nl(k)
itself. When computing Nl(k), we can freely assume that that the overall realization
of ½GðkÞ FðkÞ� is irreducible. According to Proposition 2, to obtain a minimal
proper basis for the left nullspace of G(k) using the proposed rational nullspace
procedure, the corresponding realization in (20.21) must be controllable. Although
this condition is usually fulfilled in fault detection applications (see Sect. 20.8.1),
still the realization of G(k) can be in general uncontrollable, and therefore the
resulting left nullspace basis Nl(k) may not have the least possible McMillan
degree. This can be also the case for the resulting realization (20.23) of Nl(k)F(k).
These two aspects are the reasons why the order of the resulting realization of
Nl(k)F(k) in (20.23) may exceed the least possible one (which can be obtained by
working exclusively with minimal realizations and employing the already men-
tioned minimal realization techniques).

20.7.2 Left Coprime Factorization

Assume Nl(k) be the left nullspace basis in (20.9). In several applications, this
rational basis must be stable, that is, to have in a continuous-time setting only poles
with negative real parts, or in a discrete-time setting poles inside the unit circle of
the complex plane. As already mentioned, instead Nl(k) we can freely use as left

nullspace basis eNlðkÞ, the denominator factor of the left fractional representation

NlðkÞ ¼ M�1
l ðkÞeNlðkÞ; ð20:24Þ
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where Ml(k) and eNlðkÞ are rational matrices with poles in appropriate stability

domains. A state space realization of ½eNlðkÞ MlðkÞ� is given by well known for-
mulas [32]

ð20:25Þ

where K is an appropriate output injection matrix which assigns the eigenvalues of
Al þ KCl � kEl in desired positions or in a suitable stability domain. Recall that
this is always possible, since the pair ðAl � kEl;ClÞ is observable. Numerically
reliable algorithms to determine a suitable K can be used based on pole assignment
or stabilization techniques [16]. Alternatively, recursive factorization techniques
as those proposed in [18] can be employed.

With U of the form (20.12), we can compute

UQ
Bf

Df

� �
¼

�
eBf þ K eDf

eDf

2

4

3

5

and in a completely similar way as in the previous subsection, we can obtain the

realization of eNlðkÞFðkÞ as

When employing the algorithms in [18], a supplementary orthogonal similarity
transformation is also implicitly applied to the resulting system matrices, such that
the resulting pencil Al þ KCl � kEl is in a quasi-triangular (generalized real Schur)
form. This computation can be seamlessly integrated into the evaluation of
eNlðkÞFðkÞ if we perform the left coprime factorization algorithm directly to the
compound matrix realization

In the case of a simple basis, this technique can be employed by considering
fractional representations of the form (20.24) with Ml(k) diagonal. In this case the
same algorithm can be applied to each row of ½NlðkÞ NlðkÞFðkÞ�, by exploiting the
block-diagonal structure of the underlying Al � kEl to increase the efficiency of
computations.
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20.7.3 Left Multiplication with a Simple Nullspace Basis

We show first how to compute v(k)F(k), where v(k) is given in (20.16). The same
formula applies for a vector of the form (20.15), with obvious replacements. By

observing that vðkÞ ¼ heNlðkÞ with eNlðkÞ having the form (20.25), it follows
immediately

In the case when K has been obtained from the cover algorithm, the minimal
realization of v(k) (after eliminating the unobservable part) is given in (20.18). The
corresponding realization of v(k)F(k) is

where we used

LeBf ¼
bBf ;1

bBf ;2

� �

with the transformation matrix L employed in (20.17) and the row partition cor-
responding to that of the input matrix LBl in (20.17). Note that the explicit
computation of transformation matrix L is not necessary, because the minimal
realization of the product v(k)F(k) can be directly obtained by applying the per-
formed transformations in the minimal cover algorithm (see Appendix A) to the
input matrices of the compound realization

To compute the products vi(k)F(k), for i ¼ 1; . . .; p� r, the same approach can be
used taking into account the particular form of h = ei

T.
If Nl(k) is a simple basis formed from row vectors of the form (20.16), then the

resulting state space realization for Nl(k)F(k) is obtained by stacking the realiza-
tions of vi(k)F(k) for i ¼ 1; . . .; p� r. Also in this case, Nl(k) and Nl(k)F(k) will
share the same state, descriptor and output matrices (i.e., Al, El, Cl), and the pole
pencil Al � kEl will have a block diagonal form, where the dimensions of the
diagonal blocks are the minimal indices ni.
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20.8 Applications to Fault Detection

We consider the linear time-invariant system described by input–output relations
of the form

yðkÞ ¼ GuðkÞuðkÞ þ GdðkÞdðkÞ þ Gf ðkÞfðkÞ; ð20:26Þ

where yðkÞ, uðkÞ, dðkÞ, and fðkÞ are Laplace- or Z-transformed vectors of the
p-dimensional system output vector y(t), mu-dimensional control input vector u(t),
md-dimensional disturbance vector d(t), and mf-dimensional fault signal vector f(t),
respectively, and where Gu(k), Gd(k) and Gf(k) are the TFMs from the control
inputs to outputs, disturbances to outputs, and fault signals to outputs, respectively.

In what follows we will address three applications of the techniques developed
in the previous sections.

20.8.1 Solving Fault Detection Problems with Least Order
Detectors

The following is the standard formulation of the Fault Detection Problem (FDP):
Determine a proper and stable linear residual generator (or fault detector) having
the general form

rðkÞ ¼ RðkÞ yðkÞ
uðkÞ

� �
ð20:27Þ

such that: (i) r(t) = 0 when f(t) = 0 for all u(t) and d(t); and (ii) rðtÞ 6¼ 0 when
fiðtÞ 6¼ 0, for i ¼ 1; . . .;mf . Besides the above requirements it is often required for
practical use that the TFM of the detector R(k) has the least possible McMillan
degree. Note that as fault detector, we can always choose R(k) as a rational row
vector.

The requirements (i) and (ii) can be easily transcribed into equivalent algebraic
conditions. The (decoupling) condition (i) is equivalent to

RðkÞGðkÞ ¼ 0; ð20:28Þ

where

GðkÞ ¼ GuðkÞ GdðkÞ
Imu 0

� �
; ð20:29Þ

while the (detectability) condition (ii) is equivalent to

RfiðkÞ 6¼ 0; i ¼ 1; . . .;mf ; ð20:30Þ
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where RfiðkÞ is the ith column of

Rf ðkÞ :¼ RðkÞ Gf ðkÞ
0

� �
: ð20:31Þ

Let GfiðkÞ be the ith column of Gf(k). A necessary and sufficient condition for the
existence of a solution is the following one [3, 11]:

Theorem 4 For the system (20.26) the FDP is solvable if and only if

rank½GdðkÞ GfiðkÞ�[ rank GdðkÞ; i ¼ 1; . . .;mf ð20:32Þ

From (20.28) it appears that R(k) is a left annihilator of G(k), thus one possibility
to determine R(k) is to compute first a left minimal basis Nl(k) for the left null-
space of G(k), and then to build a stable scalar output detector as

RðkÞ ¼ hðkÞNlðkÞ; ð20:33Þ

representing a linear combination of the rows of Nl(k), such that conditions (20.30)
are fulfilled. The above expression represents a parametrization of all possible
scalar output fault detectors and is the basis of the so-called nullspace methods.

The first nullspace method to design residual generators for fault detection has
been formally introduced in [5], where a polynomial basis based approach was
used. This approach has been later extended to rational bases in [20, 24]. The main
advantage of the nullspace approach is that the least order design aspect is naturally
present in the formulation of the method. In a recent survey [26], it was shown that
the nullspace method also provides a unifying design paradigm for most of existing
approaches, which can be interpreted as special cases of this method.

Consider a descriptor state space realization of (20.26)

EkxðtÞ ¼ AxðtÞ þ BuuðtÞ þ BddðtÞ þ Bf f ðtÞ
yðtÞ ¼ CxðtÞ þ DuuðtÞ þ DddðtÞ þ Df f ðtÞ;

ð20:34Þ

where kxðtÞ ¼ _xðtÞ or kx(t) = x(t ? 1) depending on the type of the system,
continuous or discrete, respectively. For convenience, in what follows we assume
the pair (A - kE, C) is observable and the pair ðA� kE; ½Bu Bd�Þ is controllable.
This latter condition is typically fulfilled when considering actuator and sensor
faults. In this case, Bf has partly the same columns as Bu (in the case of actuator
faults) or zero columns (in the case of sensor faults).

G(k) defined in (20.29) has the irreducible realization
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Using the method described in Sect. 20.3, we compute first a minimal proper
left nullspace basis Nl(k) of G(k). The state space realization of the (p - r) 9

(p ? mu) TFM Nl(k) is given by (20.9), where r is the rank of Gd(k).
To check the existence conditions of Theorem 4, we use (20.23) to compute

ð20:35Þ

where

Q
Bf

Df

0

2
4

3
5 ¼

�
eBf

eDf

2
4

3
5:

Since the pair ðAl � kEl;ClÞ is observable, checking the condition (20.30) is
equivalent to verify that

eBfi

eDfi

� �
6¼ 0; i ¼ 1; . . .;mf ;

where eBfi and eDfi denote the ith columns of eBf and eDf , respectively.
To address the determination of least order scalar output detectors, we can

compute linear combinations of the basis vectors of a simple proper basis of
increasing McMillan degrees and check the detectability condition (20.30) for the
resulting vectors (seen as candidate detectors). According to Corollary 1, this
comes down to choose an appropriate h and obtain the corresponding K such that

the row vector vðkÞ ¼ heNlðkÞ in (20.16) has the least possible McMillan order.
Note that in general, with a randomly generated h, one achieves a detector whose
order is ‘, the maximum degree of a minimal polynomial basis. Recall that ‘ is the
number of nonzero subdiagonal blocks in the Kronecker-like form (20.10) and
represents the observability index of the observable pair ðAl � kEl;ClÞ. In the case
when no disturbance inputs are present, this is a well know result in designing
functional observers [9].

Lower orders detectors can be obtained using particular choices of the row
vector h. Using Corollary 1, by choosing h with only the trailing i components
nonzero, the corresponding linear combination of i basis vectors has McMillan
degree ni. A systematic search can be performed by generating successive can-
didates for h with increasing number of nonzero elements and checking for the
resulting residual generator the conditions (20.30). The resulting detectors have
non-decreasing orders and thus the first detector satisfying these conditions rep-
resents a satisfactory least order design. To speed up the selection, the choice of
the nonzero components of h can be done such that for a given tentative order ni a
combination of all l0 � li intervening vectors of order less than or equal to ni is
built. In this way, repeated checks for the same order are avoided and the search is
terminated in at most ‘ steps.

452 A. Varga



For the final design, the resulting dynamics of the detector can be arbitrarily
assigned by choosing the detector in the form

RðkÞ ¼ mðkÞheNlðkÞ;

where m(k) is an appropriate scalar transfer function. Note that the resulting least
order at previous step is preserved provided m(k) is computed using coprime
factorization techniques [18].

20.8.2 Solving Fault Isolation Problems

The more advanced functionality of fault isolation (i.e., exact location of faults)
can be often achieved by designing a bank of fault detectors [6] or by direct design
of fault isolation filters [21]. Designing detectors which are sensitive to some faults
and insensitive to others can be reformulated as a standard FDP, by formally
redefining the faults to be rejected in the residual as fictive disturbances.

Let R(k) be a given detector and let Rf(k) be the corresponding fault-to-residual
TFM in (20.31). We define the fault signature matrix S, with the (i, j) entry Sij

given by

Sij ¼1; if the ði; jÞ entry of Rf ðkÞ is nonzero;

Sij ¼0; if the ði; jÞ entry of Rf ðkÞ is zero:

If Sij = 1, then we say that the fault j is detected in residual i and if Sij = 0, then
the fault j is decoupled (not detected) in residual i.

The following fault detection and isolation problem (FDIP) can be now for-
mulated: Given a q 9 mf fault signature matrix S determine a bank of q stable and
proper scalar output residual generator filters

riðkÞ ¼ RiðkÞ yðkÞ
uðkÞ

� �
; i ¼ 1; . . .; q ð20:36Þ

such that, for all u(t) and d(t) we have:

(i) ri(t) = 0 when fj(t) = 0, V j with Sij 6¼ 0;
(ii) ri(t) = 0 when fj(t) = 0, V j with Sij = 0.

In this formulation of the FDIP, each scalar output detector Ri(k) achieves the
fault signature specified by the ith row of the desired fault signature matrix S. The
resulting global detector corresponding to this S can be assembled as

RðkÞ ¼
R1ðkÞ

..

.

RqðkÞ

2
64

3
75 ð20:37Þ
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Let S be a given q 9 mf fault signature matrix and denote by G
i
f ðkÞ the matrix

formed from the columns of Gf(k) whose column indices j correspond to zero
elements in row i of S. The solvability conditions of the FDIP build up from the
solvability of q individual FDPs.

Theorem 5 For the system (20.26) the FDIP with the given fault signature matrix
S is solvable if and only if for each i ¼ 1; . . .; q, we have

rank½GdðkÞ G
i
f ðkÞ GfjðkÞ�[ rank½GdðkÞ G

i
f ðkÞ� ð20:38Þ

for all j such that Sij 6¼ 0.

The standard approach to determine R(k) is to design for each row i of the fault
signature matrix S, a detector Ri(k) which generates the ith residual signal ri(t), and
thus represents the ith row of R(k). For this purpose, the nullspace method of the
previous subsection can be applied with G(k) in (20.29) replaced by

GðkÞ ¼ GuðkÞ GdðkÞ G
i
f ðkÞ

Imu 0 0

� �

and with a redefined fault to output TFM eGi
f ðkÞ, formed from the columns of Gf(k)

whose indices j correspond to Sij 6¼ 0. The McMillan degree of the global detector
(20.37) is bounded by the sum of the McMillan degrees of the component
detectors. Note that this upper bound can be effectively achieved, for example, by
choosing mutually different poles for the individual detectors. It is to be expected
that lower orders result when the scalar detectors share their poles.

Using the least order design techniques described in this paper, for each row of
S we can design a scalar output detector of least McMillan degree. However, even
if each detector has the least possible order, there is generally no guarantee that the
resulting order of R(k) is also the least possible one. To the best of our knowledge,
the determination of a detector of least global McMillan degree for a given
specification S is still an open problem. A solution to this problem has been
recently suggested in [24] and involves a post processing step as follows.

Assume that the resulting least order scalar detector Ri(k) has McMillan
degree mi, for i ¼ 1; . . .; q. We can easily ensure that for mi� mj, the poles of Ri(k)
are among the poles of Rj(k). The resulting global detector R(k) according to
(20.37) has a McMillan degree which is conjectured in [24] to be the least
possible one.

We describe now an improved approach in two steps to design a bank of
detectors, which for larger values of q, is potentially more efficient than the above
standard approach. In a first step, we can reduce the complexity of the original
problem by decoupling the influences of disturbances and control inputs on the
residuals. In a second stage, a residual generation filter is determined for a system
without control and disturbance inputs which achieves the desired fault signature.
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Let Nl(k) be a minimal left nullspace basis for G(k) defined in (20.29) and
define a new system without control and disturbance inputs as

eyðkÞ :¼ Nf ðkÞfðkÞ; ð20:39Þ

where

Nf ðkÞ :¼ NlðkÞ
Gf ðkÞ

0

� �
: ð20:40Þ

The system (20.39) has generally a reduced McMillan degree and also a reduced
number of outputs p - r, where r is the normal rank of Gd(k). The state space
realization of the resulting Nf(k) is given in (20.35). Observe that Nl(k) and Nf(k)
share the same state, descriptor and output matrices in their realizations.

For the reduced system (20.39) with TFM Nf(k) we can determine, using the
standard approach, a bank of q scalar output least order detectors of the form

riðkÞ ¼ eRiðkÞeyðkÞ; i ¼ 1; . . .; q ð20:41Þ

such that the same conditions are fulfilled as for the original FDIP. The TFM of the
final detector can be assembled as

RðkÞ ¼
eR1ðkÞ

..

.

eRqðkÞ

2

64

3

75NlðkÞ ð20:42Þ

Comparing (20.42) and (20.37) we have

RiðkÞ ¼ eRiðkÞNlðkÞ; ð20:43Þ

which can be also interpreted as an updating formula of a preliminary (incomplete)
design. The resulting order of the ith detector is the same as before, but this two
steps approach has the advantage that the nullspace computation and the associ-
ated least order design involve systems of reduced orders (in the sizes of state,
input and output vectors). The realization of Ri(k) can be obtained using the
explicit formulas derived in Sect. 20.7.1.

The improved approach relies on the detector updating techniques which can be
easily performed using the explicit realizations of the underlying products. This
can be seen as a major advantage of rational nullspace based methods in contrast to
polynomial nullspace based computations.

The above procedure has been used for the example studied in [31, Table 2],
where a 18 9 9 fault signature matrix S served as specification. The underlying
system has order 4. Each line of S can be realized by a detector of order 1 or 2 with
eigenvalues {- 1} or {- 1, - 2}. The sum of orders of the resulting individual
detectors is 32, but the resulting global detector R(k) has McMillan degree 6.
Recall that the ‘‘least order’’ detector computed in [31] has order 14.
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20.8.3 The Computation of Achievable Fault Signature

An aspect apparently not addressed until recently in the literature is the generation
of the achievable complete fault signature specification for a FDIP. Traditionally
this aspect is addressed by trying to design a bank of detectors to achieve a desired
specification matrix S. The specification is achievable if the design was successful.
However, it is possible to generate systematically all possible specifications using
an exhaustive search. For this purpose, a recursive procedure can be devised which
has as inputs the p 9 m and p 9 mf TFMs G(k) and F(k) and as output the
corresponding signature matrix S. If we denote this procedure as FDISPEC(G,F),
then the fault signature matrix for the system (20.26) can be computed as

S ¼ FDISPEC
Gu Gd

Imu 0

� �
;

Gf

0

� �� �

Procedure S = FDISPEC(G,F)

1. Compute a left nullspace basis Nl(k) of G(k); exit with empty S if Nl(k) is
empty.

2. Compute Nf ðkÞ ¼ NlðkÞFðkÞ.
3. Compute the signature matrix S of Nf(k); exit if S is a row vector.
4. For i ¼ 1; . . .;mf

4.1 Form eGiðkÞ as column i of Nf(k).

4.2 Form eFiðkÞ from the columns 1; . . .; i� 1; iþ 1; . . .;mf of Nf(k).

4.3 Call eS ¼ FDISPECðeGi; eFiÞ.
4.4 Partition eS ¼ ½eS1

eS2� such that eS1 has i - 1 columns.

4.5 Define bS ¼ ½eS1 0 eS2� and update S S
bS

� �
.

As it can be observed, the efficient implementation of this procedure heavily
benefits of the state space updating techniques developed in Sect. 20.7.1. This
confers an increased efficiency during the recursive calls, because the dimensions
of the systems are decreasing during a full recursion. The current recursion is
broken each time an empty nullspace is encountered or when the last possible
recursion level has been attained (i.e., S at Step 3 is a row vector). The compu-
tation of structural information at Step 3 involves checking for zero columns in the

input and feedthrough matrices eBf and eDf of the realization of Nf(k) in (20.23).
Note that the whole recursive computations can be performed by using exclusively
orthogonal transformations.

The above procedure can be easily implemented such that it performs the
minimum number of nullspace computations and updating. The resulting fault
signature matrix S is obtained by stacking row-wise the matrices Si, i ¼ 1; . . .; k
computed at different recursion levels, where k denotes the number of calls of the
recursive procedure. This number is given by the combinatorial formula
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k ¼
Ximax

i¼0

mf

i

� �
;

where imax ¼ minðmf ; p� rÞ � 1 and r is the rank of the initial G(k). As it can be
observed, k depends of the number of basis vectors p - r and the number of faults
mf, and, although the number of distinct specifications can be relatively low, still
k can be a large number. For the already mentioned problem in [31],
k ¼ 1þ mf þ mf ðmf � 1Þ=2 ¼ 37, but only 18 of the determined specifications are
distinct. A detailed account of the computational aspects of the procedure FDISPEC
is done in [27].

20.9 Conclusions

In this paper we presented an overview of computational techniques to determine
rational nullspace bases of rational or polynomial matrices. Simple proper rational
bases are the direct correspondents of the polynomial bases and can be computed
using the proposed numerical algorithms based on minimal cover techniques.
Having in mind potential applications, we also developed explicit realizations for
several operation with nullspace bases or with a linear combination of vectors of a
nullspace basis. The computational techniques presented in this paper have been
implemented as robust numerical software which is now part of a DESCRIPTOR

SYSTEM Toolbox for MATLAB developed by the authors over the last decade [19].
The rational nullspace computation based techniques allow to solve important

applications as the solution of FDP or FDIP. A main feature of rational nullspace
based techniques is a full flexibility in addressing different aspects of these
problems, like computing least order detectors, checking existence conditions,
computing the achievable fault signature, or employing updating techniques to
design a bank of detectors to solve the FDIP. The underlying computations
extensively use orthogonal similarity transformations to perform the important
computational steps, as for example, to determine a proper nullspace basis or to
check the existence conditions of a solution. In contrast, methods based on
polynomial nullspace computations are less flexible, and involve computational
detours, which are highly questionable from a numerical point of view.

An interesting result of our studies is that although using simple proper rational
bases leads to a straightforward solution of the FDP with least order detectors, the
computation of the simple basis is not actually necessary. Since we need to compute
only linear combinations of simple basis vectors when solving the FDP with least
order detector, this computation can be directly performed starting with a minimal
proper basis which can be obtained using exclusively orthogonal pencil manipu-
lations. The linear combinations of basis vectors up to a given McMillan degree can
be computed using numerical algorithms based on minimal cover techniques. This
aspect is highly relevant for implementing robust and efficient numerical software
as those available in a recent FAULT DETECTION Toolbox for MATLAB [23].
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Appendix A: Computation of Minimal
Dynamic Covers

The computational problem which we solve in this section is the following: given
a descriptor pair (A - kE, B) with A;E 2 R

n�n, B 2 R
n�m, and B partitioned as

B ¼ ½B1 B2� with B1 2 R
n�m1 , B2 2 R

n�m2 , determine the matrix F 2 R
m2�n such

that the pair ðAþ B2F � kE;B1Þ is maximally uncontrollable (i.e., A ? B2F - kE
has maximal number of uncontrollable eigenvalues). A dual problem to be solved
in Sect. 20.5 deals with an observable pair (A - kE, C) with nonsingular E and
with a C matrix partitioned as

C ¼ C1

C2

� �

In this case, a matrix K is sought such that the pair ðAþ KC2 � kE;C1Þ is max-
imally unobservable. For convenience and in agreement with the assumptions of
the problem to be solved in Sect. 20.5, we will describe a computational method
which is suitable for a controllable pair (A - kE, B) with nonsingular E. However,
such an algorithm can be immediately applied to solve the above dual problem by
applying it to the controllable pair ðAT � kET ;CTÞ to determine KT.

The problem to determine F which makes the pair ðAþ B2F � kE;B1Þ maxi-
mally uncontrollable is equivalent [30] to compute a subspace V of least possible
dimension satisfying

ðAþ B2FÞV � V; spanðB1Þ � V; ð20:44Þ

where A ¼ E�1A, B1 ¼ E�1B1, and B2 ¼ E�1B2. This subspace is the least order
ðA;B2Þ-invariant subspace which contains spanðB1Þ [30]. The condition (20.44)
can be rewritten as

AV � V þ spanðB2Þ; spanðB1Þ � V; ð20:45Þ

which is the condition defining the subspace V as a Type I dynamic cover [8].
In this appendix we describe a computational method for determining minimal

dynamic covers, which relies on the reduction of the descriptor pair ðA� kE;
½B1;B2�Þ to a particular condensed form, for which the solution of the problem
(i.e., the choice of appropriate F) is simple. This reduction is performed in two
stages. The first stage is an orthogonal reduction which represents a particular
instance of the descriptor controllability staircase procedure of [15] applied to the
descriptor pair ðA� kE; ½B1;B2�Þ. This procedure can be interpreted as a gen-
eralized orthogonal variant of the basis selection approach underlying the
determination of Type I minimal covers in [8]. In the second stage, additional
zero blocks are generated in the reduced matrices using non-orthogonal trans-
formations. With additional blocks zeroed via a specially chosen F, the least
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order ðA;B2Þ-invariant subspace containing spanðB1Þ can be identified as
the linear span of the leading columns of the resulting right transformation
matrix. In what follows we present in detail these two stages as well as the
determination of F.

Stage I: Special Controllability Staircase Algorithm

0. Compute an orthogonal matrix Q such that QT E is upper triangular; compute
A QT A; E QTE; B1  QT B1; B2  QTB2:

1. Set j ¼ 1; r ¼ 0; k ¼ 2; mð0Þ1 ¼ m1; m
ð0Þ
2 ¼ m2;Að0Þ ¼ A;Eð0Þ ¼ E; Bð0Þ1 ¼ B1;

Bð0Þ2 ¼ B2; Z ¼ In:
2. Compute an orthogonal matrix W1 such that

with Ak�1;k�3 and Ak;k�2 full row rank matrices; compute an orthogonal matrix
U1 such that WT

1 Eðj�1ÞU1 is upper triangular.

3. Compute and partition

WT
1 Aðj�1ÞU1 :¼

Ak�1;k�1 Ak�1;k Ak�1;kþ1

Ak;k�1 Ak;k Ak;kþ1

BðjÞ1 BðjÞ2 AðjÞ

2

64

3

75

mðjÞ1 mðjÞ2 q

mðjÞ1

mðjÞ2

q

WT
1 Eðj�1ÞU1 :¼

Ek�1;k�1 Ek�1;k Ek�1;kþ1

O Ek;k Ek;kþ1

O O EðjÞ

2
64

3
75

mðjÞ1 mðjÞ2 q

mðjÞ1

mðjÞ2

q

4. For i ¼ 1; . . .; k � 2 compute and partition

Ai;k�1U1 :¼ ½Ai;k�1 Ai;k Ai;kþ1�
mðjÞ1 mðjÞ2 q

Ei;k�1U1 :¼ ½Ei;k�1 Ei;k Ei;kþ1�
mðjÞ1 mðjÞ2 q
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5. Q Q diagðIr;W1Þ; Z  Z diagðIr;U1Þ:
6. If mðjÞ1 ¼ 0 then ‘ ¼ j� 1 and Exit.

7. r  r þ mðjÞ1 þ mðjÞ2 ; if q ¼ 0 then l ¼ j and Exit;
else, j jþ 1; k  k þ 2; and go to Step 2.

At the end of this algorithm bA � kbE :¼ QTðA� kEÞZ; bB :¼ QT B; bE is upper

triangular, and the pair ðbA; bBÞ is in a special staircase form. For example, for ‘ ¼ 3

and r\n; ½bB bA� and bE have similarly block partitioned forms

In the special staircase form ½bB bA�; A2j�1;2j�3 2 R
mðjÞ1 �mðj�1Þ

1 and A2j;2j�2 2
R

mðjÞ2 �mðj�1Þ
2 are full row rank matrices for j ¼ 1; . . .; ‘: The trailing row blocks of

½bB bA� and bE are empty if r ¼ n: In the case when r\ n; the trailing diagonal

blocks A2‘þ1;2‘þ1;E2‘þ1;2‘þ1 2 R
ðn�rÞ�ðn�rÞ; and the pair ðA2‘þ1;2‘þ1 � kE2‘þ1;2‘þ1;

A2‘þ1;2‘Þ is controllable.
In the second reduction stage we use non-orthogonal upper triangular left and

right transformation matrices W and U; respectively, to annihilate the minimum

number of blocks in bA and bE which allows to solve the minimum cover problem.

Assume W and U have block structures identical to bE: The following procedure
exploits the full rank of submatrices A2j;2j�2 and E2j�1;2j�1 to introduce zero blocks

in the block row 2j of bA and block column 2j� 1 of bE; respectively.
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Stage II: Special reduction for Type I Covers

For the considered example, this algorithm introduces the following zero
blocks: A65; E45; A43; A45; E23; E25 (in this order).

Let eA :¼ W bAU; eE :¼ W bEU; and eB ¼ ½eB1 eB2� :¼ WbB be the system matrices

resulted at the end of Stage II. Define also the feedback matrix eF 2 R
m2�n par-

titioned column-wise compatibly with bA

eF ¼ ½F1 O F3 � � � O F2l�1 O�

where F2j�1 2 R
m2�mðjÞ1 are such that A2;0F2j�1 þ A2;2j�1 ¼ 0 for j ¼ 1; . . .; l:

For the considered example, we achieved with the above choice of F that

eA þ eB2eF ¼

A11 A12 A13 A14 A15 A16 A17

O A22 O A24 O A26 A27

A31 A32 A33 A34 A35 A36 A37

O A42 O A44 O A46 A47

O O A53 A54 A55 A56 A57

O O O A64 O A66 A67

O O O O O A76 A77

2
666666666666664

3
777777777777775

;
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eE ¼

E11 E12 E13 E14 E15 E16 E17

O E22 O E24 O E26 E27

O O E33 E34 E35 E36 E37

O O O E44 O E46 E47

O O O O E55 E56 E57

O O O O O E66 E67

O O O O O O E77

2

666666664

3

777777775

where the elements with bars have been modified after Stage I.
Consider now the permutation matrix defined by

If we define L ¼ PWQT ; V ¼ ZUPT and F ¼ eFV�1; then overall we achieved
that

where, by construction, the pairs ð�A1 � k�E1; �B1Þ and ð�A2 � k�E2; �B2Þ are in

controllable staircase form. Thus, by the above choice of F;we made n2 :¼
P‘

i¼1 mðiÞ2
of the n eigenvalues of the Aþ B2F � kE uncontrollable via B1: It is straightforward

to show that the matrix V1 formed from the first n1 :¼
P‘

i¼1 mðiÞ1 columns of V;
satisfies

AV1 ¼ V1 �E�1
1

�A1 � B2FV1; B1 ¼ V1 �E�1
1

�B1

Thus, according to (20.45), V :¼ spanðV1Þ is a dynamic cover of Type I of
dimension n1: It can be shown using the results of [8] that the resulting Type I
dynamic cover V has minimum dimension.
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For the considered example, we obtained the controllable staircase forms

The Stage I reduction of system matrices to the special controllability form can
be performed by using exclusively orthogonal similarity transformations. It can be

shown that the computed condensed matrices bA; bE; and bB are exact for matrices
which are nearby to the original matrices A; E; and B; respectively. Thus this part
of the reduction is numerically backward stable. When implementing the algo-
rithm, the row compressions are usually performed using rank revealing QR-
factorizations with column pivoting.

To achieve an Oðn3Þ computational complexity in Stage I reduction, it is
essential to perform the row compressions simultaneously with maintaining the
upper triangular shape of E during reductions. The basic computational technique,
described in details in [16], consists in employing elementary Givens transfor-
mations from left to introduce zero elements in the rows of B; while applying from
right appropriate Givens transformations to annihilate the generated nonzero
subdiagonal elements in E: By performing the rank revealing QR-decomposition
in this way (involving also column permutations), we can show that the overall
worst-case computational complexity of the special staircase algorithm is Oðn3Þ:
Note that for solving the problem in Sect. 20.5, the accumulation of Z is not even
necessary, since all right transformations can be directly applied to a third matrix
(e.g., a system output matrix C).

The computations at Stage II reduction to determine a basis for the minimal
dynamic cover and the computation of the feedback matrix F involve the solution
of many, generally overdetermined, linear equations. For the computation of the
basis for V it is important to estimate the condition numbers of the overall

transformation matrices. This can be done by computing kVk2
F ¼ kUk

2
F and

kLk2
F ¼ kWk

2
F as estimations of the corresponding condition numbers. If these

norms are relatively small (e.g., B10,000) then practically there is no danger for a
significant loss of accuracy due to nonorthogonal reductions. On contrary, large
values of these norms provide a clear hint of potential accuracy losses. In practice,
it suffices only to look at the largest magnitudes of elements of W and U used at
Stage II to obtain equivalent information. For the computation of F; condition
numbers for solving the underlying equations can be also easily estimated. A large
norm of F is an indication of possible accuracy losses. For the Stage II reduction, a
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simple operation count is possible by assuming all blocks 1� 1 and this indicates a
computational complexity of Oðn3Þ:
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Chapter 21
Optimal Control of Switched System
with Time Delay Detection of Switching
Signal

C. Z. Wu, K. L. Teo and R. Volker

Abstract This paper deals with optimal control problems governed by switched
systems with time delay detection of switching signal. We consider the switching
sequence as well as the switching instants as decision variables. We present a two-
level optimization method to solve it. In the first level, we fix the switching
sequence, and introduce a time scaling transformation such that the switching
instants are mapped into pre-assigned fixed knot points. Then, the transformed
problem becomes a standard optimal parameter selection problem, and hence can
be solved by many optimal control techniques and the corresponding optimal
control software packages, such as MISER. In the second level, we consider the
switching sequence as decision variables. We introduce a discrete filled function
method to search for a global optimal switching sequence. Finally, a numerical
example is presented to illustrate the efficiency of our method.

21.1 Introduction

A switched system is a special hybrid systems. It consists of several subsystems
and a switching law for assigning the active subsystem at each time instant. Many
real-world processes, such as chemical processes, automotive systems, and man-
ufacturing processes, can be modeled as such systems.

C. Z. Wu (&)
Department of Mathematics, Chongqing Normal University, Chongqing, P.R. China
e-mail: czwu@cqnu.edu.cn

K. L. Teo � R. Volker
Department of Mathematics and Statistics, Curtin University of Technology, Perth,
Western Australia, Australia

P. Van Dooren et al. (eds.), Numerical Linear Algebra in Signals, Systems and Control,
Lecture Notes in Electrical Engineering, 80, DOI: 10.1007/978-94-007-0602-6_21,
� Springer Science+Business Media B.V. 2011

467



There is a considerable interest among researchers in their study of optimal
control problems of switched systems. See, for example, [1–6]. In [5], a survey of
several interesting optimal control problems and methods for switched systems are
reported. Among them, a particularly important approach is the one based on the
parametrization of switching instants in [6] where the switching instants are
parameterized by some parameters. Then, the gradient formula of the cost func-
tional with respect to these parameters is derived. Thus, the original problem can
be solved by any efficient gradient-based optimization methods. This method is
similar to the transformation developed in [7]. It is very effective for computing
the optimal switching instants. However, the switching sequence is assumed fixed
in [4]. In [6], an optimal control problem governed by a bi-modal switched system
with variable switching sequence is considered. It is then shown that this switched
system is embedded into a larger family of systems and the set of trajectories of the
switched system is dense in the set of those of the embedded system. Then,
optimal control problem governed by the larger system is considered instead of the
original problem. Based on the relationship between the two optimal control
problems, it is shown that if the latter optimal control problem admits a bang–bang
solution, then this solution is an optimal solution of the original problem. Other-
wise, a suboptimal solution can be obtained via the Chattering Lemma. This
method is effective only for the bi-modal case. The extension to multi-modal cases
requires further investigation.

For all the optimal control problems considered above, they are based on the
assumption that the detection of the switching signal is instantaneous. However,
in practice, we may not be able to detect the change of the switching signal
instantly. We often realize such a change after a time period. In [8], the sta-
bilization of such systems is considered. In this paper, we consider an optimal
control problem governed by such a system. In our problem, the optimal control
is considered to be of feedback form; and both the switching instants and the
switching sequence are considered as decision variables. This optimal control
problem is to be solved as a two-level optimization problem. In the first level,
we fix the switching sequence and introduce a time scaling transformation to
map the switching instants into pre-assigned fixed knot points. Then, it can be
solved by some optimal control software packages, such as MISER. In the
second level, we introduce a discrete filled function method to search for an
optimal switching sequence.

The paper is organized as follows. We formulate the problem in Sect. 21.2 In
Sect. 21.3, we decompose the original problem into a two level optimization
problem. Then, a time scaling transformation is introduced to map the switching
instants into pre-fixed knot points. The transformed problem can be solved by
many optimal control software packages, such as MISER. In Sect. 21.4, we
introduce a discrete filled function method to determine the optimal switching
sequence. In Sect. 21.5, an illustrative example is presented. Section 21.6 con-
cludes the paper.
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21.2 Problem Formulation

Consider a switched system given by

_x tð Þ ¼ Ad tð Þx tð Þ þ Bd tð Þu tð Þ; t 2 0; T½ � ð21:1Þ

with initial condition

x 0ð Þ ¼ x0; ð21:2Þ

where x 2 R
n is the state vector, u 2 R

m is the control vector, the switching signal
d tð Þ 2 1; 2; . . .;Nf g is a right continuous function and its discontinuity points are
s1; s2; . . .; sM�1 such that

0 ¼ s0\s1\ � � �\sM�1\sM ¼ T : ð21:3Þ

while for each i 2 1; 2; . . .;Nf g;Ai 2 R
n�n and Bi 2 R

n�m; c tð Þ is the detection
function of d tð Þ, and s [ 0 is the time-delay, which is the time required to detect
which subsystem is active.

The control u is of a piecewise constant feedback form, i.e.,

u tð Þ ¼ Kc tð Þx tð Þ; ð21:4Þ

where

c tð Þ ¼ d t � sð Þ; t 2 0; T½ �; ð21:5Þ

Kc tð Þ ¼ ~K; t 2 0; s½ �; ð21:6Þ

and Ki 2 R
m�n; i 2 1; 2; . . .;Nf g , are to be designed.

To simplify the notation, let

d tð Þ ¼ ik; if t 2 sk�1; sk½ �; k ¼ 1; . . .;M: ð21:7Þ

For a given switching signal d tð Þ and the control expressed as a piecewise constant
feedback form given by (21.4), the evolution of the dynamical system (21.1) can
be described as in Fig. 21.1.

Let s ¼ s1; . . .; sM�1½ �>; K ¼ K1;K2; . . .;KN½ � 2 R
m�nN ; I ¼ i1; i2; . . .; iM½ �: The

optimal control problem dealt with in this paper can be stated as follows.

Problem 1 Consider the dynamical system (21.1) with the initial condition and
the piecewise constant control given by (21.4)–(21.6). Find a s;K; Ið Þ such that

J s;K; Ið Þ ¼ x> Tð ÞPx Tð Þ þ
ZT

0

x> tð ÞQx tð Þ þ u> Tð ÞRu Tð Þdt ð21:8Þ
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is minimized subject to the constraint (21.3), where P;Q; and R are matrices with
appropriate dimensions.

Note that the piecewise constant control given by (21.4) is determined by the
control switching points s1 þ s; s2 þ s; . . .; sM�1 þ s; where s1; s2; . . .; sM�1; are
sub-system switching time points which are decision variables to be optimized
over. Problem 1 cannot be solved directly using existing numerical optimal control
techniques. However, by using a time scaling transformation developed in [7, 9,
10], we shall show in the next section that Problem 1 is, in fact, equivalent to an
optimal parameter selection problem, where the varying switching points are being
mapped into pre-assigned knot points in a new time scale.

To proceed further, we assume that the following condition is satisfied:

Assumption 1 All the switching durations are larger than the delay time s; i.e.,

si � si�1 [ s; i ¼ 1; . . .;M: ð21:9Þ

21.3 Problem Reformulation

In this section, we will show that Problem 1 can be transformed into a standard
parameter selection problem.

We re-write (21.1) as follows:

_x tð Þ ¼
XN

j¼1

ji;j Ajx tð Þ þ Bju tð Þ
� �

; if t 2 si�1; si½ �; i ¼ 1; . . .;M; ð21:10Þ

where ji;j; i ¼ 1; . . .;M; j ¼ 1; . . .;N; are logical integer variables. Since only one
sub-system is active at each time point, ji;j; i ¼ 1; . . .;M; j ¼ 1; . . .;N; are
required to satisfy

S
ubsystem

 Index

Fig. 21.1 Evolution of the
system (21.1)
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XN

j¼1

ji;j ¼ 1; ji;j 2 0; 1f g; i ¼ 1; . . .;M; j ¼ 1; . . .;N: ð21:11Þ

Let j ¼ j1;1; . . .; j1;N; . . .; jM;N

� �>
: We introduce the following time scaling

transformation:

dt
ds
¼
XM

i¼1

niv i�1=2;ið � sð Þ þ
XM�1

i¼0

2sv i;iþ1=2ð � sð Þ; s 2 0;M½ �; ð21:12Þ

where

ni ¼ 2 si � sð Þ; i ¼ 1; . . .;M; ð21:13Þ

vI sð Þ is the indicator characteristic function defined by

vI sð Þ ¼ 1; if s 2 I;
0; else:

�

Let n ¼ n1; n2; . . .; nM½ �>. By (21.3) and (21.9), we have

XM

i¼1

ni þ sð Þ ¼ T ; ni [ 0; for i ¼ 1; . . .;M: ð21:14Þ

After this time scaling transformation, the sub-system switching points
s1; s2; . . .; sM�1; have been mapped into 1; 2; . . .;M � 1; and the control switching
points s1 þ s; s2 þ s; . . .; sM�1 þ s; have been mapped into 1=2; 3=2; . . .;M � 1=2:
Then, system (21.1) is transformed into

_x sð Þ ¼
XN

j¼1

ji;j Ajx sð Þ þ BjKc sð Þ
� �

x sð Þ niv i�1=2;ið � sð Þ
�

þ 2sv i�1;i�1=2ð � sð Þ
�
; if s 2 i� 1; i½ �; i ¼ 1; . . .;M; ð21:15Þ

that is,

_x sð Þ ¼

2s
PN

j¼1 j1;j Aj þ Bj ~K
� �

x sð Þ; if s 2 0; 1=2½ �;

n1
PN

j¼1 j1;j Aj þ BjKPN

j¼1
j1;j

	 

x sð Þ; if s 2 1=2; 1ð �;

. . .;

nM

PN
j¼1 jM;j Aj þ BjKPN

j¼1
jM;j

	 

x sð Þ; if s 2 M � 1=2;Mð �:

8
>>>>>><

>>>>>>:

ð21:16Þ

with initial condition

x 0ð Þ ¼ x0; ð21:17Þ

and the cost functional (21.8) is transformed into
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J n;K; jð Þ ¼ x> Mð ÞPx Mð Þ þ
ZM

0

x> sð ÞQx sð Þ þ u> sð ÞRu sð Þ
� �

�
XM

i¼1

niv i�1=2;ið � sð Þ þ
XM�1

i¼0

2sv i;iþ1=2ð � sð Þ
 !

ds; ð21:18Þ

that is

J n;K; jð Þ ¼ x> Mð ÞPx Mð Þ þ
Z1=2

0

2sx> sð Þ Qþ ~K>R~K
� �

x sð Þds

þ
XM�1

k¼1

Zk

k�1=2

nkx> sð Þ Qþ KPN

j¼1
jk;j

	 
>
R KPN

j¼1
jk;j

	 
 !
x sð Þds

þ
XM�1

k¼1

Zkþ1=2

k

2sx> sð Þ Qþ KPN

j¼1
jk;j

	 
>
R KPN

j¼1
jk;j

	 
 !
x sð Þds:

ð21:19Þ
where for the simplicity of the notation, we write x sð Þ ¼ x t sð Þð Þ; d sð Þ ¼
d t sð Þð Þ; c sð Þ ¼ c t sð Þð Þ. Now the transformed problem may be formally stated as:

Problem 2 Subject to system (21.16) with initial condition (21.17), find a triple
n;K; jð Þ such that the cost functional (21.19) is minimized subject to the constraint

(21.14) and (21.11).

For easy reference, the equivalence between Problem 1 and Problem 2 is stated
in the following as a theorem.

Theorem 3.1 Problem 1 is equivalent to Problem 2 in the sense that if
s�;K�; j�ð Þ is an optimal solution of Problem 1, then n�;K�; j�ð Þ is an optimal

solution of Problem 2, where the relation between s� and n� is determined by
(21.13), and vice versus.

Note that
min
n;K;jð Þ

J n;K; jð Þ ¼ min
j

min
n;Kð Þ

J n;K; jð Þ:

Thus, Problem 2 can be posed as a two-level optimization problem. The first
level is

J jð Þ ¼ min
n;Kð Þ

J n;K; jð Þ subject to ð21:14Þ; ð21:20Þ

and the second level is

min
j

J jð Þ subject to ð21:11Þ: ð21:21Þ
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For easy reference, let the optimization problem (21.20) be referred to as
Problem 3 and the optimization problem (21.21) be referred to as Problem 4. For
each j; Problem 3 is a standard optimal control problem and can be solved by
gradient-based optimization methods. The required gradient formulas can be
obtained from Theorem 5.2.1 in [11]. Thus, for each j; Problem 3 can be solved
by many available control software packages, such as MISER 3.3 [12].

Problem 4 is a discrete optimization problem. We will introduce a discrete
filled function method to solve it in the next section.

21.4 Determination of the Switching Sequence

In Sect. 21.3, we have shown that Problem 1 with fixed switching sequence can be
reformulated as an optimal parameter selection problem and hence is solvable by
many optimal control software packages, such as MISER 3.3. In this section, we
will introduce a method to determine its switching sequence.

Note that the determination of a switching sequence is equivalent to the
determination of the logical integer variables ji;j; i ¼ 1; . . .;M; j ¼ 1; . . .;N: It is a
discrete optimization problem. Here, we will introduce a modified discrete filled
function method developed in [13–15].

Let ei;�j be an element of RNM with the ith component 1, the jth component �1,
and the remaining components 0: Similarly, let e�i;j be an element of RNM with the
ith component �1, the jth component 1, and the remaining components 0:

Let D ¼ ei;�j; e�i;j; i; j ¼ 1; . . .;NM; i 6¼ j
� �

and P be the set of j which sat-
isfies (21.11).

Definition 4.1 For any j 2 P;N jð Þ ¼ jþ d: d 2 Df g \P denotes the neigh-
borhood of the integer point j:

Definition 4.2 A point j�2 P is said to be a discrete local minimizer of Prob-
lem 4 if J j�ð Þ� J jð Þ for any j 2 N j�ð Þ \P: Furthermore, if J j�ð Þ� J jð Þ for any
j 2 N j�ð Þ \P; then j� is said to be a strict discrete local minimizer.

Definition 4.3 A point j�2 P is said to be a discrete global minimizer if
J j�ð Þ� J jð Þ holds for any j 2 P:

Definition 4.4 A sequence ji
� �k

i¼1 is called a discrete path in P between j1;�2 P

and j2;�2 P if the following conditions are satisfied:

1. For any i ¼ 1; . . .; k; ji 2 P
2. For any i 6¼ j; ji 6¼ j j

3. j1 ¼ j1;�; jk ¼ j2;� and
4. jiþ1 � ji
  ¼ 2; i ¼ 1; . . .; k � 1:

We note that P is a discrete pathwise connected set. That is, for every two
different points j1; j2;we can find a path from j1 to j2 in P: Clearly, P is bounded.
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Algorithm 4.1 (Local search)

1. Choose a j0 2 P;
2. If j0 is a local minimizer, then stop. Otherwise, we search the neighborhood of

j0 and obtain a j 2 N j0ð Þ \P such that J jð Þ\J j0ð Þ:
3. Let j0 ¼ j; go to Step 2.

Definition 4.5 p j; j�ð Þ is called a discrete filled function of J jð Þ at a discrete
local minimizer j� if it satisfies the following properties:

1. j� is a strict discrete local maximizer of p j; j�ð Þ over P;
2. p j; j�ð Þ has no discrete local minimizers in the region

S1 ¼ j : J jð Þ� J j�ð Þ; j 2 P=j�f g;

3. If j� is not a discrete global minimizer of J jð Þ; then p j; j�ð Þ has a discrete
minimizer in the region

S2 ¼ j : J jð Þ\J j�ð Þ; j 2 Pf g:

Now, we give a discrete filled function which is introduced in [15].

F j; j�; q; rð Þ ¼ 1
qþ j� j�k kuq max J jð Þ � J j�ð Þ þ r; 0f gð Þ; ð21:22Þ

where

uq tð Þ ¼ exp �q=tð Þ; if t 6¼ 0;
0; if t ¼ 0;

�

and r satisfies

0\r\ max
~j�;j�2L Pð Þ;J ~j�ð Þ[ J j�ð Þ

J ~j�ð Þ � J j�ð Þð Þ; ð21:23Þ

L pð Þ denotes the set of discrete local minimizers of J jð Þ: Next, we will show
that for proper choice of q; r;F j; j�; q; rð Þ is a discrete filled function.

Theorem 4.1 Suppose that j� is a discrete local minimizer of J jð Þ: Then, for
proper choices of q [ 0 and r [ 0; j� is a discrete local maximizer of
F j; j�; q; rð Þ:

Proof The proof is similar to that given for Theorem 3.1 [15].

Let

Jup ¼ max
j1;j22P

J j1ð Þ � J j2ð Þf g:

Then, we have the following lemma.
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Lemma 4.1 Suppose that j� is a local minimizer of J jð Þ: For any j1; j2 2 P, let
the following conditions be satisfied:

1. J j1ð Þ� J j�ð Þ and J j2ð Þ� J j�ð Þ;
2. j2 � j�k k[ j1 � j�k k:

Then, when r [ 0 and q [ 0 are satisfactory small, F j2; j
�; q; rð Þ\F j1;ð

j�; q; rÞ:

Proof The proof is similar to that given for Theorem 3.4 [15].

Theorem 4.2 Suppose that j� is a local minimizer of J jð Þ: Then, F j; j�; q; rð Þ
has no discrete local minimizers in the region

S1 ¼ jjJ jð Þ� J j�ð Þ;j 2 P=j�f g

if r [ 0 and q [ 0 are chosen appropriately small.

Proof Suppose the conclusion was false. Then, there exists a ~j� 2 S1 such that for
all j 2 P \ N ~j�ð Þ; we have J jð Þ� J ~j�ð Þ� J j�ð Þ: We claim that there exists a
d 2 D such that ~j� � j� � dk k[ ~j� � j�k k and ~j� � d 2 P \ N ~j�ð Þ: To estab-

lish this claim, we note that ~j� � j�k k2¼
PNM

i¼1 ~j�i � j�i
� �2

: There are two cases to

be considered. (i) there exists some i; j such that ~j�i � j�i [ 0 and ~j�j � j�j \0: (ii)

~j�i � j�i � 0 or ~j�i � j�i \0 for all 1� i�NM: For case (ii), let i ¼
max1� k�NM ~j�k � j�k

�� �� and j ¼ min1� k�NM ~j�k � j�k
�� ��: Now choose d� ¼ ei;�j:

Since ~j� � d 2 N ~j�ð Þ; we have J ~j� � dð Þ� J j�ð Þ: By Lemma 4.1, we have
F ~j� � d; j�; q; rð Þ\F ~j�; j�; q; rð Þ: This is a contradiction as ~j� is a discrete local
minimizer.Thus, the conclusion of the theorem follows.

Theorem 4.3 Suppose that j� is a local but not a global minimizer of J jð Þ: Then,
F j; j�; q; rð Þ has a discrete minimizer in the region

S2 ¼ jjJ jð Þ\J j�ð Þ; j 2 Pf g:

Proof Since j� is a local but not a global minimizer of J jð Þ, there exists a point
~j� 2 P such that J ~j�ð Þ þ r\J j�ð Þ; where r is chosen according to (21.23).
Hence, F ~j�; j�; q; rð Þ ¼ 0: However, F j; j�; q; rð Þ� 0 for all j 2 P: This implies
that ~j� is a discrete minimizer and satisfies J ~j�ð Þ\J j�ð Þ:

By Theorem 4.1, Theorem 4.2 and Theorem 4.3, the function F j; j�; q; rð Þ is,
indeed, a discrete filled function if r [ 0 and q [ 0 are chosen appropriately small.
Now we present a numerical algorithm to search for a global minimizer of J jð Þ
over P based on the theoretical established above.

Algorithm 4.2

1. Take an initial point j1 2 P and initialize the tolerance e. Let
r ¼ 0:1; q ¼ 0:01.
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2. From j1, use Algorithm 4.1 to find a local minimizer j�1 of J jð Þ over P:
3. If r� e; stop. Otherwise, construct a discrete filled function

F j; j�1; q; r
� �

¼ 1

qþ j� j�1
 uq max J jð Þ � J j�1

� �
þ r; 0

� �� �
:

Use Algorithm 4.1 to find its local minimizer j�. In the process of minimizing
the discrete filled function F j; j�1; q; r

� �
; if we find an iterative point j such

that J jð Þ\J j�1
� �

; then let j1 ¼ j� and go to Step 1.

4. If J j�ð Þ\J j�1
� �

; let j1 ¼ j� and go to Step 1. Otherwise, set r ¼ r=10; q ¼
q=10 and go to Step 3.

21.5 Numerical Example

In this section, we will apply the method developed in Sect. 21.3 and Sect. 21.4 to
our test problems.

Example 5.1 The three sub-systems are given by

1:
_x1 ¼ x1 þ u1

_x2 ¼ 2x1 þ 3x2 þ u2

�
2:

_x1 ¼ x1 þ u1

_x2 ¼ x1 þ x2 þ u2

�
3:

_x1 ¼ x1 þ x2 þ u1

_x2 ¼ 2x1 � x2 þ u2

�

the switching detection delay is 0:01: Let d tð Þ be the switching function, c tð Þ be
the detection of the switching signal, i.e., c tð Þ ¼ d t � 0:01ð Þ. Let the maximum

switching times be 3: Our objective is to find a feedback law u tð Þ ¼ u1; u2½ �>¼
Kc tð Þx tð Þ; where Kc tð Þ 2 R; such that the cost functional

J d;Kc
� �

¼ x1 1ð Þð Þ2þ x2 1ð Þ � 1:0ð Þ2

is minimized subject to the following condition:

�3�Kc� 3:

For a given switching sequence j ¼ i1; i2; i3; i4ð Þ; we suppose that the switching
points are s1; s2; s3: First, we use the time scaling transformation (21.12) to map the
state switching points s1; s2; s3; and the control switching points 0:01; s1 þ 0:01;
s2 þ 0:01; s3 þ 0:01, into 1; 2; 3; and 1=2; 1þ 1=2; 2þ 1=2; 3þ 1=2; respectively.
Then, let the initial switching sequence be 1; 0; 0; 0; 1; 0; 0;f 0; 1; 1; 0; 0g: We
incorporate MISER 3.3 as a sub-program and set the lower bound of the switching
parameters to be 0:05: Using Algorithm 4.1 to search its local optimal switching
sequence, the obtained local optimal switching is 0; 0; 1; 1; 0; 0; 1; 0; 0; 1; 0; 0f g;
the corresponding parameters of switching instants and the constant of feedback
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are 0:38354; 0:05; 0:47646; 0:05;�2:603; �2:5069;�2:514;�2:4682; respectively.
The corresponding optimal cost is 0:1727: Thus, the 3 state switching instants are
0:39354; 0:45354; 0:94; the control switching instants are 0:01; 0:40454; 0:46354;
0:95: Then, we set the tolerance e ¼ 10�5 and use discrete filled function to find its
local minimizer. However, we cannot find any local minimizer of the corresponding
discrete filled function. The program stopped because of r ¼ e and the last obtained
switching sequence is 0; 1; 0; 0; 0; 1; 0; 0; 1; 0; 1; 0f g; the corresponding value of the
discrete filled function and the cost functional are 0:12497; 0:684409, respectively.
Thus, the local minimizer 1; 0; 0; 0; 1; 0; 0; 0; 1; 1; 0; 0f g is also a global optimal
switching sequence. The optimal state is depicted in Fig. 21.2.

21.6 Summary

In this paper, the optimal control problem governed by switched system with time
delay detection is considered. Considering the switching sequence as well as the
switching instants as decision variables, we developed a two-level optimization
method to solve it. In the first level, the switching sequence is fixed, thus it can be
transformed into a parameter selection problem. For this problem, we use MISER
3.3 to solve it. For the second level, the switching sequence is considered as
decision variables. For this discrete optimization problem, we introduced the filled
function method to solve it. At last, a numerical example is presented to show that
the efficiency of our method.
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