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René Eijkemans
Department of Public Health

Erasmus MC

University Medical Center Rotterdam

Rotterdam, The Netherlands

Arthur S. Elstein, PhD

Department of Medical Education

University of Illinois at Chicago

Chicago, Illinois, USA

Tom Fahey, MSc, MD, MFPH, FRCGP

Department of General Practice

Royal College of Surgeons in Ireland

Medical School

Dublin, Ireland

Constantine Gatsonis, PhD

Professor of Medical Science (Biostatistics)

Director, Center for Statistical Sciences

Brown University

Providence

Rhode Island, USA

Paul P. Glasziou, FRACGP, PhD

Director, Centre for Evidence-Based

Medicine

Department of Primary Health Care

University of Oxford

Oxford, UK

J. Dik F. Habbema, PhD

Professor, Department of Public Health

Erasmus MC—Erasmus University Medical

Centre

Rotterdam, The Netherlands

R. Brian Haynes, MD, PhD, FRCPC, FRSC

Michael Gent Chair

Department of Clinical Epidemiology and

Biostatistics

Professor, Department of Medicine

DeGroote School of Medicine

McMaster University Faculty of Health

Sciences

Hamilton,

Ontario, Canada

Les M. Irwig, MBBCh, PhD

Professor of Epidemiology

Screening and Test Evaluation Program

School of Public Health

vii



P1: SFK/XXX P2: SFK/XXX QC: SFK/XXX T1: SFK

BLBK040-Knottnerus.cls August 6, 2008 9:5

viii List of Contributors

University of Sydney

Sydney, Australia
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Preface

I consider much less thinking has gone into the theory underlying diagnosis, or
possibly one should say less energy has gone into constructing the correct model
of diagnostic procedures, than into therapy or prevention where the concept of
“altering the natural history of the disease” has been generally accepted and a
theory has been evolved for testing hypotheses concerning this.1

Although seeking an evidence base for medicine is as old as medicine itself,
in the past two decades the concept of evidence-based medicine (EBM) has
strongly stimulated the application of the best available evidence from clinical
research into medical practice.2 At the same time, this process has revealed the
need for a more extensive and more valid evidence base as input for EBM.3

Accordingly, investigators have been encouraged to intensify the production
and innovation of clinical knowledge, and clinical research has become more
successful in seeing its results implemented in practice more completely in a
shorter period.

In developing the evidence base of clinical management, more than 35 years
after Archie Cochrane wrote the words cited above, the theory and method-
ology of diagnostic research still lags substantially behind that of research into
the effectiveness of treatment. This is the more challenging because making
an adequate diagnostic process is a prime requirement for appropriate clini-
cal decision making, including prognostic assessment and the selection of the
most effective treatment options. The reason for this lagging behind of diag-
nostic research methodology is not only less invested energy and resources.
At least as importantly, diagnostic research is much more comprehensive and
complex than treatment research as it encompasses not only accuracy, but the
domains of prognosis and intervention as well.

In view of this apparent need for further methodological development of
the evidence base of clinical diagnosis, this book, which is now published
in its second edition, was initiated. The aim is to provide a comprehensive
framework for (future) investigators who want to do diagnostic research, and
for clinicians, practitioners, and students who are interested to learn more
about its principles, relevant methodological options, and pitfalls. In preparing
the work, the contributors were able to profit from the experience and insights
collected and reported by many leading clinical researchers in the field. For
those who wish to know more than could be described in this book, the
references in the chapters can be a useful guide. This second edition is not
only an update of the first version but is also enriched with some new chapters
on important issues that, in the light of recent progress, needed to be more
extensively covered.

xi
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xii Preface

First, a general outline of diagnostic research is presented. What are the key
objectives, the challenges, and the corresponding options for study design?
What should the architecture of diagnostic research look like to provide us
with an appropriate research strategy, yielding the clinical information we are
looking for, with a minimum burden for study patients and an efficient use of
resources? Second, important design features for studying the accuracy and
clinical impact of diagnostic tests and procedures are dealt with in more detail,
addressing the cross-sectional study, the randomized controlled trial, and the
before–after study. In addition, it is shown that the impact of diagnostic tests
varies with different clinical settings and target populations, and indications
are given as how to ensure that estimates of test accuracy will travel and be
transferable to other settings. Also, overviews are presented of the analysis
of data on the accuracy of diagnostic tests and of the principles of frequently
used multivariable approaches.

A diagnostic study should be reported in such a way that readers can get a
good impression of its research question, methodological quality, and added
value. To improve the practice of reporting, the STARD statement (Standards
for Reporting of Diagnostic accuracy studies) was initiated. Its development,
uptake, and effects are described. These standards can be also helpful in
prospectively planning a diagnostic accuracy study.

Nowadays, for both clinical investigators and readers of research articles,
it is not enough to understand the methodology of original clinical studies.
They must also know more about the techniques to summarize and synthesize
results from various clinical studies on a certain topic. Guidelines for systematic
reviews and meta-analysis of studies evaluating the accuracy of diagnostic tests
are therefore presented.

To aid evidence-based clinical decision making, clinical prediction rules
(CPRs) explicitly quantify the independent contribution from elements of the
clinical examination and available diagnostic tests. Accordingly, methodolog-
ical standards, construction, validation, implementation, and impact of CPRs,
and their integration into computerized clinical decision support systems and
decision aids for patients, are covered. Furthermore, as clinical research re-
sults can only be successfully incorporated into diagnostic decision making if
the way clinicians tend to solve medical problems is taken into account, an
overview of the domain of clinical problem solving is given. Eventually, we
have to recognize that improving test use in daily care needs more than clinical
research, and presenting insights, guidelines, and tools. Therefore, (cost) ef-
fective implementation of improved test ordering—which has become a field
of study in itself—is also highlighted.

Finally, an overview of the diagnostic research strategy is given and re-
lated to challenges for future development. Innovation is especially ex-
pected from four fields: progress in (bio)medical knowledge, information and
communication technology, the changing role of the patient, and continued
methodological exploration.
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Preface xiii

This book includes contributions from a number of authors. To allow each
chapter to keep a logical structure in itself, some key topics have been dealt
with more than once, albeit to a varying extent and in different contexts.
Instead of seeing this as a problem, we think this is an opportunity for readers
to see important issues considered from different perspectives.

The field of diagnostic research is developing strongly and an increasing
number of talented clinical investigators are working in (the methodology
of) diagnostic research. In view of this dynamic field, we welcome comments
from readers and suggestions for further improvement.

We wish to thank Richard Smith and Trish Groves from the British Medical
Journal, who have so positively welcomed the initiative for this book, and Mary
Banks and Simone Dudziak from Blackwell Publishing, who have encouraged
and supported the preparation of this second edition until the work was done.

J. André Knottnerus and Frank Buntinx
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CHAPTER 1

General introduction:
evaluation of diagnostic
procedures
J. André Knottnerus, Frank Buntinx, and Chris van Weel

Summary box� Whereas the development of diagnostic technologies has greatly
accelerated, the methodology of diagnostic research still lags behind
that of evaluation of treatment.� Diagnostic research appears to be more comprehensive and complex
than treatment research as it evaluates the connection between
diagnostic and prognostic assessment with choosing optimal
interventions.� Objectives of diagnostic testing are (1) detecting or excluding
disorders, (2) contributing to further diagnostic and therapeutic
management, (3) assessing prognosis, (4) monitoring clinical course,
and (5) measuring general health or fitness.� Methodological challenges include dealing with complex relations, the
“gold standard” problem, spectrum and selection bias, “soft” outcome
measures, observer variability and bias, optimizing clinical relevance,
appropriate sample size, and rapid progress of applicable knowledge
over time.� Choosing the appropriate study design depends on the research
question; the most important designs are the cross-sectional study (to
determine the accuracy and added discriminatory value of diagnostic
procedures) and the randomized controlled trial (to evaluate the
clinical impact of [additional] testing).� To synthesize the results of various studies on the same topic,
diagnostic systematic reviews and meta-analyses are powerful tools.

(continued)

The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research. 2nd edition.
Edited by J. André Knottnerus and Frank Buntinx. C© 2009 Blackwell Publishing,
ISBN: 978-1-4051-5787-2.
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2 Chapter 1

(continued)� To make the step from research to practice, clinical decision analysis,
cost-effectiveness studies, and quality-of-care research, including
implementation studies, are important.

Introduction

The development and introduction of new diagnostic technologies have ac-
celerated greatly over the past few decades. This is reflected in a substantial
expansion of research on diagnostic tests and of publications on diagnostic re-
search methodology. However, the evaluation of diagnostic techniques is far
from being as established as the evaluation of therapies.

Apart from regulations for obvious safety aspects, at present—unlike the
situation with regard to drugs—there are no widely accepted formal require-
ments for validity and effectiveness that diagnostic tests must meet to be ac-
cepted or retained as a routine part of health care. This is related to another
point: in spite of important early initiatives1,2 the methodology for evalua-
tion of diagnostics is not yet as crystallized as the deeply rooted principles of
the randomized controlled trial on therapeutic effectiveness1,3 and of etiologic
study designs.4,5 It is not surprising, then, that serious methodological flaws
are often found in published diagnostic studies.6,7,8

An additional challenge is the comprehensiveness of diagnostic research.
Diagnostic evaluation is the first crucial medical intervention in an episode of
illness, labeling symptoms and complaints as health problems, and indicating
possible disease and its prognosis. Effective and efficient therapy—also includ-
ing reassurance, “watchful waiting,” and supporting patient self-efficacy—
depends to a large extent on an accurate interpretation of (early) symptoms
and the outcome of the diagnostic process. Accordingly, as diagnosis covers
not only test accuracy but is also the basis for prognosis and appropriate treat-
ment choice, diagnostic research is in fact much more complex than treatment
research.

A special point of concern is that the funding of diagnostic evaluation studies
is not well organized, especially if the research is not focused on particular
body systems or disorders covered by strong research foundations. Rather
than being limited to a particular body system, diagnostic evaluation studies
frequently start from a complaint, a clinical problem, or certain tests.

Because the quality of diagnostic procedures is indicative for the quality
of health care as a whole, it is vital to overcome the shortfall in standards,
methodology, and funding. Accurate evaluation of diagnostic performance
will contribute to the prevention of unjustified treatment, lack of treatment or
mistreatment, and unnecessary costs. In this context, important steps forward
toward the professionalizing of diagnostic studies have already been made
with the work on the architecture of diagnostic studies9 (see also Chapters 1, 2,
and 14), the Standards for Reporting of Diagnostic Accuracy studies (STARD)10
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General introduction 3

(see Chapter 9), and QUADAS, a tool for the Quality Assessment of Diagnostic
Accuracy Studies included in systematic reviews.11 As a general background,
this introductory chapter presents an overview of the objectives of diagnostic
testing and evaluation research, important methodological challenges, and
research design options.

Objectives

Diagnostic testing can be seen as the collection of additional information in-
tended to (further) clarify the character and prognosis of the patient’s con-
dition and can include patients’ characteristics, symptoms and signs, history
and physical examination items, or additional tests using laboratory or other
technical facilities. A “test” not only must be considered but also the specific
question the test is supposed to answer. Therefore, the performance of tests
must be evaluated in accordance with their intended objectives. Objectives
may include:� Detecting or excluding disorders, by increasing diagnostic certainty as to their presence

or absence. This can only be achieved if the test has sufficient discrimination.
Table 1.1 shows the most common measures of discrimination. Most of these
can be simply derived from a 2 × 2 table comparing the test result with the
diagnostic reference standard, as demonstrated by the example of ankle
trauma. A more elaborate and comprehensive explanation of how to calcu-
late these and other measures from collected data is presented in Chapter 7.
Examples of tests for which such measures have been assessed are given in
Table 1.2. Such a representation allows various tests for the same purpose
to be compared. This can show, for example, that less invasive tests (such as
ultrasonography) may be as good as or even better diagnostically than more
invasive or hazardous ones (e.g., angiography). Also, it can be shown that
history data (e.g., change in bowel habit) may be at least as valuable as labo-
ratory data. What is important is not just the discrimination per se, but rather
what a test may add to what cheaper and less invasive diagnostics already
provided to the diagnostic process. This is relevant, for instance, in assessing
the added value of liver function tests to history taking and physical exam-
ination in ill-defined, nonspecific complaints. Finally, using the measures
defined in Table 1.1 allows the comparison of the value of a test in differ-
ent settings, for example, general practice versus the hospital emergency
department.12� Contributing to the decision-making process with regard to further diagnostic and
therapeutic management, including the indications for therapy (e.g., by deter-
mining the localization and shape of a lesion) and choosing the preferred
therapeutic approach.� Assessing prognosis on the basis of the nature and severity of diagnostic find-
ings. This is a starting point for planning the clinical follow-up and for in-
forming and—if justified—reassuring the patient
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Table 1.1 Commonly used measures of the discrimination of a diagnostic test T for
disease D, illustrated with physical examination for detecting a fracture in ankle
trauma, using x-ray film as the reference standard

D: (result of) x-ray

T: (conclusion of) physical examination Fracture No fracture Total

Fracture 190 80 270

No fracture 10 720 730

Total 200 800 1,000

The SENSITIVITY of test T is the probability of a positive (abnormal) test result in people with disease

D: P(T+|D+) = 190/200 = 0.95.

The SPECIFICITY of T is the probability of a negative (normal) test result in people without

D: P(T−|D−) = 720/800 = 0.90.

Note: Sensitivity and specificity together determine the discrimination of a test in a given situation.

The LIKELIHOOD RATIO (LR) of test result TX is the ratio of probability of test result TX in people with

D, and by the probability of TX in people without D.

The general formula for LRX is
P(TX|D+)
P(TX|D−)

For a positive result, LR+ is
P(T + |D+)
P(T + |D−)

which is equivalent to
Sensitivity

1 − specificity
= 190/200

1 − 720/800
= 9.5

For a negative result, LR− is
P(T − |D+)
P(T − |D−)

which is equivalent to
1 − Sensitivity

specificity
= 1 − 190/200

720/800
= 0.06

Note: LR is an overall measure of the discrimination of test result TX. The test is useless if LR = 1. The

test is better the more LR differs from 1, that is, greater than 1 for LR+ and lower than 1 for LR−.

For tests with multiple outcome categories, LRX can be calculated for every separate category x, as

the ratio of the probability of outcome category x among diseased and the probability of outcome

category x among nondiseased.

The PREDICTIVE VALUE of a test result TX is:

for a positive result, the probability of D in persons with a positive test result:

P(D + |T+) = 190/270 = 0.70.

for a negative result, the probability of absence of D in persons with a negative result:

P(D − |T−) = 720/730 = 0.99.

Note: The predictive value of a positive test result (posterior or post-test probability) must be com-

pared with the estimated probability of D before T is carried out (the prior or pretest probability).

For a good discrimination, the difference between the posttest and the pretest probability should

be large.

The (diagnostic) ODDS RATIO (OR), or the cross-product ratio, represents the overall discrimination of

a dichotomous test T, and is equivalent to the ratio of LR+ and LR−. OR= (190 × 720)/(80 × 10) = 171.

Note: If OR=1, T is useless. T is better the more OR differs from 1.

The receiver operating characteristic (ROC) curve graphically represents the relation between sen-

sitivity and specificity for tests with a variable cutoff point, on an ordinal scale (e.g., in case of 5

degrees of suspicion of ankle fracture; or cervical smear) or interval scale (e.g., if degree of suspicion

of ankle fracture is expressed in a percentage; or ST changes in exercise ECG testing). If the AUC

(area under the curve) = 0.5, the test is useless. For a perfect test, the AUC=1.0 (see Chapter 7).
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� Monitoring the clinical course of a disorder, or a state of health such as preg-
nancy, or the clinical course of an illness during or after treatment.� Measuring physical fitness in relation to specific requirements, for example,
for sports or employment.
The evaluation of a diagnostic test concentrates on its added value for the

intended application, taking into consideration the burden for the patient
(such as pain, cost, or waiting time) and any possible complications resulting
from the test (such as intestinal perforation in endoscopy). This requires a
comparison between the situations with and without the use of the test or a
comparison with the use of other tests.

Prior to the evaluation, one must decide whether to focus on maximizing the
health perspectives of the individual patient (which is usually the physician’s
aim) or on the best possible cost-effectiveness (as economists are likely to do).
The latter can be expressed in the amount of money to be invested per number
of life years gained, whether or not adjusted for quality of life. Between these
two approaches, which do not necessarily yield the same outcome, there is
the tension between strictly individual and collective interests. This becomes
especially obvious when policy makers have to decide which options would
be accepted as the most efficient in a macroeconomic perspective.

Another prior decision is whether one would be satisfied with a qualitative
understanding of the diagnostic decision-making process or would need a de-
tailed quantitative analysis.20 In the first case, one would chart the stages and
structure of the decision-making process in relation to the test to be evaluated.
This may already provide sufficient insight, for instance, if it becomes clear be-
forehand that the result will not influence the decision to be taken. Examples
of useless testing are (1) the value of the routine electrocardiogram in acute
chest pain for exploring the likelihood of a suspected myocardial infarction,
with the consequent decision whether to admit the patient to hospital; and
(2) the value of “routine blood tests” in general practice for deciding whether
to refer a patient with acute abdominal pain to a surgeon. In addition to qual-
itatively mapping the structure of the decision-making process, quantitative
analysis attempts to assess test discrimination and the (probability of the) ul-
timate clinical outcome, taking the risks (and the costs) of the test procedure
into account. The choice of a qualitative or a quantitative approach depends
on the question to be answered and the data available.

If a test has not yet been introduced in clinical practice, the prospects for a
good evaluation are better than if it is already in general use. It is then still
possible to define an appropriate control group the test is not applied to, so that
its influence on the prognosis can be investigated. In addition, at such an early
stage, the conclusion of the analysis can still be used in the decision regarding
the introduction. Furthermore, it is possible to prospectively plan a monitoring
procedure and an evaluation after the introduction. All of this emphasizes the
importance of developing an evaluation program before a test is introduced.

A common misunderstanding is that only expensive, advanced diagnos-
tic technology cause unacceptable increases in health care costs. Cheap but
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frequently used (routine) tests not only account for a major part of direct costs
but also greatly influence other costs, as they often preselect patients for more
expensive procedures. Yet the performance of such low-threshold diagnostics
has often not been adequately evaluated. Examples include many applications
of hematological, clinicochemical, and urine tests.21,22,23

Methodological challenges

In the evaluation of diagnostic procedures, a number of methodological chal-
lenges have to be considered.

Complex relations
Most diagnostics have more than one indication or are relevant for more than
one nosological outcome. In addition, tests are often not applied in isolation
but in combination, for instance, in the context of clinical protocols. Ideally,
clinical research should reflect the health care context,24 but it is generally
impossible to investigate all aspects in one study. One limitation is that the
inclusion of a large number of interacting variables calls for large sample sizes
that are not easy to obtain. Generally, choices must be made about which
issues are the most important. Multivariable statistical techniques are avail-
able to allow for the (added) value of various diagnostic data, both separately
and in combination, also in the form of diagnostic prediction rules.25,26,27 In
epidemiologic research, such techniques were earlier used for the purpose of
analyzing etiologic data, generally focusing on the overall etiologic impact of a
factor adjusted for covariables. Diagnostic analysis aims to specify test perfor-
mance in clinical subgroups or to identify the set of variables that yield the best
individual diagnostic prediction, which is a completely different perspective.
Much work remains to be done to improve the methodology of diagnostic
data analysis.

Diagnostic data analysis will be discussed further in Chapter 7 and multi-
variable analysis in Chapter 8.

The “gold” standard problem
To evaluate the discriminatory power of a test, its results must be compared
with an independently established standard diagnosis. However, a “gold” stan-
dard, providing full certainty on the health status, rarely exists. Even x-rays,
CT scans, and pathological preparations may produce false positive and false
negative results. The aim must then be to define an adequate reference stan-
dard that approximates the gold standard as closely as possible.

Sometimes one is faced with whether any appropriate reference standard
procedure exists at all. For example, in determining the discrimination of liver
tests for diagnosing liver pathology, neither imaging techniques nor biopsies
can detect all abnormalities. In addition, as a liver biopsy is an invasive pro-
cedure, it is unsuitable for use as a standard in an evaluation study. A useful
independent standard diagnosis may not even exist conceptually, for example,
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when determining the predictive value of symptoms that are themselves part
of the disease definition, as in migraine, or when the symptoms and func-
tionality are more important for management decisions than the anatomical
status, as in prostatism. Also, in studying the diagnostic value of clinical ex-
amination to detect severe pathology in nonacute abdominal complaints, a
comprehensive invasive standard screening, if at all possible or ethically al-
lowed, would yield many irrelevant findings while not all relevant pathology
would be immediately found. An option, then, is diagnostic assessment after a
follow-up period by an independent panel of experts, representing a “delayed
type” cross-sectional study.28 This may not be perfect but can be the most
acceptable solution.1

A further issue is the dominance of prevailing reference standards. For ex-
ample, as long as classic angiography is considered the standard when vali-
dating noninvasive vascular imaging techniques, the latter will always seem
inferior because perfect agreement is never attainable. However, as soon as a
new method comes to be regarded as sufficiently valid to be accepted as the
standard, the difference will, from then on, be explained in favor of this new
method. In addition, one must accept that two methods may actually mea-
sure different concepts. For example, when comparing advanced ultrasound
measurements in blood vessels with angiography, the first measures blood
flow, relevant to fully explain the symptoms, whereas the second reflects the
anatomical situation, which is important for the surgeon. Furthermore, the
progress of clinicopathological insights is of great importance. For instance, al-
though clinical pattern X may first be the standard to evaluate the significance
of microbiological findings, it will become of secondary diagnostic importance
once the infectious agent-causing X has been identified. The agent will then
be the diagnostic standard, as illustrated by the history of the diagnosis of
tuberculosis.

In Chapters 3 and 6, more will be said about reference standard problems.

Spectrum and selection bias
The evaluation of diagnostics may be flawed by many types of bias.1,29,30 The
most important of these are spectrum bias and selection bias.

Spectrum bias may occur when the discrimination of the diagnostic is as-
sessed in a study population with a different clinical spectrum (for instance,
in more advanced cases) than among those in whom the test is to be applied
in practice. This may, for example, happen with tests calibrated in a hospital
setting but applied in general practice. Also, sensitivity may be determined in
seriously diseased subjects, whereas specificity is tested in clearly healthy sub-
jects. Both will then be grossly overestimated relative to the practical situation,
where testing is necessary because it is impossible to clinically distinguish in
advance who is healthy and who is diseased.

Selection bias is to be expected if there is a relation between the test
result and the probability of being included in the study population in
which the test is calibrated. For example, subjects with an abnormal exercise
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electrocardiogram are relatively likely to be preselected for coronary angiogra-
phy. Consequently, if this exercise test is calibrated among preselected subjects,
a higher sensitivity and a lower specificity will be found than if this preselec-
tion had not occurred.31 Similarly, on the basis of referral patterns alone, it is
to be expected that the sensitivity of many tests is higher in the hospital than
in general practice and the specificity lower. Considering selection is especially
relevant given the nature of medical practice. If a patient enters the consul-
tation room, the physician immediately has information about the patient’s
gender, age, and general health. The patient can look tired or energetic, visit
the physician in his or her office or ask for a house call, or be rushed into
the emergency department by ambulance. Such characteristics are in fact re-
sults of previous “tests,” providing prior information before the physician asks
the first question or performs physical examination. This may influence not
only the prior probability of disease but also the discrimination of subsequent
diagnostic tests.12

Although spectrum and selection biases are often related, the clinical picture
is the primary point of concern with spectrum bias, whereas the mechanism of
selection is the principal issue with selection bias. These types of bias may affect
not only sensitivity and specificity but also all other measures of discrimination
listed in Table 1.1.32

Chapters 2 and 6 will further address the issue of dealing with spectrum and
selection phenomena.

“Soft” measures
Subjective factors such as pain, feeling unwell, and reassurance are important
in diagnostic management. Most decisions for a watchful waiting strategy in
the early phase of an episode of illness are based on the appraisal of such “soft”
measures. These often determine the indication for diagnostic examinations
and may themselves be part of the diagnostics (e.g., a symptom or complaint)
to be evaluated. Also, weighing such factors is generally indispensable in the
assessment of the overall clinical outcome and the related impact on quality
of life.33 Evaluation studies should, on the one hand, aim as much as possible
to objectify these subjective factors in a reproducible way. On the other hand,
interindividual and even intraindividual differences will always play a part34

and should be acknowledged in the clinical decision-making process.

Observer variability and observer bias
Variability between different observers, as well as for the same observer in
reading and interpreting diagnostic data, should not only be acknowledged
for “soft” diagnostics such as history taking and physical examination but also
for “harder” ones like x-rays, CT and MRI scans, and pathological slides. Even
tests not involving any human assessment show inter- and intra-instrument
variability. Such variability should be limited if the diagnostic is to produce
useful information.
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At the same time, researchers should beware of systematic observer bias
because of prior knowledge about the subjects examined, especially if subjec-
tive factors play a role in determining test results or the reference standard.35

Clearly, if one wishes to evaluate whether a doctor can accurately diagnose
an ankle fracture based on history and clinical examination, it must be certain
that the doctor is unaware of an available x-ray result; and a pathologist mak-
ing an independent final diagnosis should not have previous knowledge about
the most likely clinical diagnosis.36 In such situations, “blinding” is required. A
different form of observer bias could occur if the diagnosticians are prejudiced
in favor of one of the methods to be compared, as they may unconsciously put
greater effort into that technique. A further challenge is that the experience
and skill required should be equal for the methods compared, if these are to
have a fair chance in the assessment. In this respect, new methods are at risk
of being disadvantaged, especially shortly after being introduced.

Discrimination does not mean usefulness
For various reasons, a test with good discrimination does not necessarily in-
fluence management.

To begin with, a test may add too little to what is already known clinically
to alter management. Furthermore, the physician may take insufficient ac-
count of the information provided by the test. This is a complex issue. For
instance, studies of the consequences of routine blood testing have shown
that in some cases an unaltered diagnosis still led to changes in the consid-
ered policy.16 In a classic study on the clinical impact of upper gastrointestinal
endoscopy, a number of changes (23%) in management were made in the
absence of a change in diagnosis, whereas in many patients (30%) in which
the diagnosis was changed, management was not altered.37 A test may detect
a disorder for which no effective treatment is available. For example, the MRI
scan provides refined diagnostic information with regard to various brain con-
ditions for which no therapy is yet in prospect. Finally, as already discussed,
supplementary test results are not always relevant for treatment decisions.

For this reason, it is important that studies evaluating diagnostic tests in-
creasingly also investigate the tests’ influence on management.38,39,40

Indication area and prior probability
Whether a test can effectively detect or exclude a particular disorder is influ-
enced by the prior probability of that disorder. A test is generally not useful
if the prior probability is either very low or very high: not only will the re-
sult rarely influence patient management, but the risk of, respectively, a false
positive or a false negative result is relatively high. In other words, there is an
“indication area” for the test between these extremes of prior probability.2,20

Evaluation of diagnostics should therefore address the issue of whether the
test could be particularly useful for certain categories of prior probability. For
example, tests with a moderate specificity are not useful for screening in an
asymptomatic population (with a low prior probability) because of the high
risk of false positive results.
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Small steps and large numbers
Compared with therapeutic effectiveness studies, evaluation studies of diag-
nostic procedures have often neglected the question of whether the sample
size is adequate to provide the desired information with a sufficient degree of
certainty. A problem is that progress in diagnostic decision making often takes
the form of a series of small steps to gain in certainty, rather than one big
breakthrough. Evaluating the importance of a small step, however, requires a
relatively large study population.

Changes over time and the mosaic of evidence
Innovations in diagnostic technology may proceed at such a speed that a thor-
ough evaluation may take longer than the development of even more ad-
vanced techniques. For example, the results of evaluation studies on the clin-
ical impact and cost-effectiveness of the CT scan had not yet fully crystallized
when the MRI and PET scans appeared on the scene. So, the results of eval-
uation studies may already be lagging behind when they appear. Therefore,
there is a need for general models (scenarios) for the evaluation of particular
(types of) tests and test procedures, whose overall framework is relatively sta-
ble and into which information on new tests can be entered by substituting
the relevant pieces in the whole mosaic. It may be possible to insert new test
opportunities for specific clinical pathways or certain subgroups.41 The mo-
saic approach allows for a quick evaluation of the impact of new imaging or
DNA techniques with better discrimination on the cost-effectiveness of breast
cancer screening, if other pieces of the mosaic (such as treatment efficacy)
have not changed. Discrimination can often be relatively rapidly assessed by
means of a cross-sectional study, which may avoid new prospective studies.
The same can be said for the influence of changes in relevant costs, such as
fees for medical treatment or the price of drugs.

Research designs

Various methodological approaches are available to evaluate diagnostic tech-
nologies, including original clinical research, on the one hand, and system-
atically synthesizing the findings of already performed empirical studies and
clinical expertise, on the other.

For empirical clinical studies, there is a range of design options. The ap-
propriate study design depends on the research question to be answered
(Table 1.3). In diagnostic accuracy studies, the relationship between test re-
sult and reference standard has to be assessed cross-sectionally. This can be
achieved by a cross-sectional survey (which may also include the delayed
type cross-sectional design), but especially in early validation studies other
approaches (case–referent or test result–based sampling) can be most effi-
cient. Design options for studying the impact of diagnostic testing on clinical
decision making and patient prognosis are the “diagnostic randomized con-
trolled trial” (RCT), which is methodologically the strongest approach, and the
before–after study. Also, cohort and case–control designs have been shown to
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Table 1.3 Methodological options in diagnostic research in relation to study
objectives

Study objective Methodological options

Clinical studies

Diagnostic accuracy Cross-sectional study

—survey

—case–referent sampling

—test result–based sampling

Impact of diagnostic testing on prognosis or

management

Randomized controlled trial

Cohort study

Case–control study

Before–after study

Synthesizing findings and expertise

Synthesizing results of multiple studies Systematic review

Meta-analysis

Evaluation of most effective or cost-effective

diagnostic strategy

Clinical decision analysis

Cost-effectiveness analysis

Translating findings for practice Integrating results of the above

mentioned approaches

Developing clinical prediction rules

Expert consensus methods

Developing guidelines

Integrating information in clinical practice ICT support studies

Studying diagnostic problem solving

Evaluation of implementation in practice

ICT, information and communication technology.

have a place in this context. In Chapter 2, the most important strategic con-
siderations in choosing the appropriate design in diagnostic research will be
specifically addressed.

Current knowledge can be synthesized by systematic reviews, meta-
analyses, clinical decision analysis, cost-effectiveness studies, and consensus
methods, with the ultimate aim of integrating and translating research find-
ings for implementation in practice.

In the following sections, issues of special relevance to diagnostic evaluation
studies will be briefly outlined.

Clinical studies
A common type of research is the cross-sectional study, assessing the relation-
ship between diagnostic test results and the presence of particular disorders.42

This relationship is usually expressed in the measures of discrimination in-
cluded in Table 1.1. Design options are (1) a survey in an “indicated popu-
lation,” representing subjects in whom the studied test would be considered
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in practice; (2) sampling groups with (cases) and without disease (referents)
to compare their test distributions; or (3) sampling groups with different test
results, between which the occurrence of a disease is compared. It is advis-
able to include in the evaluation already adopted tests, as this is a direct way
to obtain an estimate of the added value of the new test. The cross-sectional
study will be dealt with in more detail in Chapter 3.

In an RCT, the experimental group undergoes the diagnostic procedure to
be evaluated, while a control group undergoes a different (for example, the
usual) or no test. This allows the assessment of not only differences in the
percentage of correct diagnoses but also the influence of the evaluated test
on management and prognosis. A variant is to apply the diagnostic test to all
patients but to disclose its results to the caregivers for a random half of the
patients, if ethically justified. This constitutes an ideal placebo procedure for
the patient. Not only the (added) value of single tests can be evaluated but also
different test strategies and even test-treatment protocols can be compared.
Although diagnostic RCTs are not easy to carry out and not always necessary
or feasible,43 several important ones have been carried out already some time
ago.44,45,46,47,48,49 Among the best known are the early trials on the effec-
tiveness of breast cancer screening, which have often linked a standardized
management protocol to the screening result.50,51 The randomized controlled
trial in diagnostic research is further discussed in Chapter 4.

If the prognostic value of a test is to be assessed and an RCT is not feasible,
its principles can serve as the paradigm in applying other methods, such as the
cohort study. The difference from the RCT is that the diagnostic information
is not randomly assigned, but a comparison is made between two otherwise
composed groups.52 It has the methodological problem that one can never
be sure, especially regarding unknown or unmeasurable covariables, whether
the compared groups have similar disease or prognostic spectra to begin with.
A method providing relatively rapid results regarding the clinical impact of
a test is the case–control study. This is often (although not necessarily) car-
ried out retrospectively, that is, after the course and the final status of the
patients are known, in subjects who have been eligible for the diagnostic
test to be evaluated. It can be studied whether “indicated subjects” show-
ing an adverse outcome (cases) underwent the diagnostic test more or less
frequently than indicated subjects without such outcome (controls). A basic
requirement is that the diagnostic must have been available to all involved
at the time. Well-known examples are case–control studies on the relation-
ship between mortality from breast cancer and participation in breast cancer
screening programs.53,54 This approach is efficient, although potential bias be-
cause of lack of prior comparability of tested and nontested subjects must be
considered.

The influence of a diagnostic examination on the physician’s management
can also be investigated by comparing the intended management policies
before and after test results are available. Such before–after comparisons
(management impact studies) have their own applications, limitations, and
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precautionary measures, as reviewed by Guyatt et al.55 The method has, for ex-
ample, been applied early in determining the added value of the CT scan and in
studying the diagnostic impact of hematological tests in general practice.56,57

The before–after study design will be outlined in Chapter 5.
Although appropriate inclusion and exclusion criteria for study subjects are

as important as in therapeutic research, in diagnostic research using and defin-
ing such criteria is less well developed. Appropriate criteria are indispensable
in order to focus on the clinical question at issue, the relevant spectrum of clin-
ical severity, the disorders to be evaluated, and the desired degree of selection
of the study population (e.g., primary care or referred population).58

Another issue that deserves attention is the external (clinical) validity of
results of diagnostic studies, as prediction models tend to perform better
on data from which they were derived than on data in other, comparable
populations.59,60 In addition, differences in settings often play an important
role.32,61 Deciding whether estimates of test accuracy are generalizable and
transferable to other settings depends on an understanding of the possible
reasons for variability in test discrimination and calibration across settings, as
will be highlighted in Chapter 6.

Synthesizing research findings and clinical expertise
Often the problem is not so much a lack of research findings but the lack
of a good summary and systematic processing of those findings. A diagnostic
systematic review and meta-analysis of the pooled data of a number of diag-
nostic studies can synthesize the results of those studies, which provides an
overall assessment of the value of diagnostic procedures62,63 and can also help
to identify differences in test accuracy between clinical subgroups. In this way,
an overview of the current state of knowledge is obtained within a relatively
short time. While until recently making diagnostic systematic reviews faced a
methodological backlog compared with systematic reviews of treatment, the
decision of the Cochrane Collaboration to include the meta-analysis of stud-
ies on diagnostic and screening tests has boosted methods development in
this field. As differences in spectrum, setting, and subgroups are quite usual
in the application and evaluation of diagnostics, between-study heterogene-
ity is a frequent phenomenon. This largely complicates the quantitative ap-
proach to diagnostic reviews and asks for hierarchical (sometimes also called
“multilevel”) methods. The methodology of systematically reviewing studies
on the accuracy of diagnostic tests is elaborated in Chapter 10.

Another important approach is clinical decision analysis, systematically
comparing various diagnostic strategies based on their clinical outcome or
cost-effectiveness, supported by probability and decision trees. If good esti-
mates of the discrimination and risks of testing, the occurrence and prognosis
of suspected disorders, and the “value” of various clinical outcomes are avail-
able, a decision tree can be evaluated quantitatively to identify the clinically
optimal or most cost-effective strategy. An important element in the deci-
sion analytic approach is the combined analysis of diagnostic and therapeutic
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effectiveness. In this context, a qualitative analysis can already be very use-
ful. For example, nowadays, noninvasive techniques show a high level of
discrimination in diagnosing carotid stenoses, even in asymptomatic patients.
These techniques allow improved patient selection (triage) for the invasive
and more hazardous carotid angiography, which is needed to make final de-
cisions regarding surgical intervention. But if surgery has not been proven to
influence the prognosis of asymptomatic patients clearly favorably compared
with nonsurgical management,64,65the decision tree is greatly simplified be-
cause it no longer would include either angiography or surgery and maybe
not even noninvasive testing.

Decision analysis does not always provide an answer. The problem may
be too complex to be summarized in a tree, essential data may be missing,
and often a lack of agreement on key assumptions regarding the value of out-
comes may occur. Therefore, consensus procedures are often an indispensable
step in the translational process from clinical research to guidelines for prac-
tice. In these procedures, clinical experts integrate the most recent state of
knowledge with their experience to agree on clinical guidelines regarding the
preferred approach of a particular medical problem, differentiated for relevant
subgroups.66

In the context of developing guidelines, clinical prediction rules (CPRs) can
be important to aid evidence-based clinical descision making.67 Chapter 11
will discuss CPRs in relation to the clinical context in which they are used and
will review methodological challenges in developing and validating them and
in assessing their impact.

Integrating information in clinical practice
To help clinical investigators harvest essential diagnostic research data from
clinical databases and to support clinicians in making and in improving di-
agnostic decisions, medical informatics, and ICT (information and commu-
nication technology) innovations are indispensable. Therefore, the issue of
implementation of CPRs in relation to ICT will be addressed in Chapter 11,
including future developments.

The information processing approaches outlined in the previous section
constitute links between research findings and clinical practice and can be
applied in combination to support evidence-based medicine. How such in-
put can have optimal impact on the diagnostic decision making of individual
doctors is, however, far from simple or straightforward. Therefore, given the
growing cognitive requirements of diagnostic techniques, studies to increase
our insight in diagnostic problem solving by clinicians is an important part of
diagnostic research. This topic is discussed in Chapter 12.

Information from good clinical studies, systematic reviews, and guideline
construction is necessary but in many cases not sufficient for improving rou-
tine practice. In view of this, during the past decade, implementation research
has been strongly developed to face this challenge and to facilitate the steps
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from clinical science to patient care. Accordingly, Chapter 13 deals with im-
proving test ordering and its cost-effectiveness in clinical practice.

Concluding remarks

Diagnostic technology assessment would be greatly stimulated if formal stan-
dards for the evaluation of diagnostics were to be adopted as a requirement for
admittance to the market. Health authorities could initiate assembling panels
of experts to promote and monitor the evaluation of both new and tradi-
tional diagnostic facilities as to effectiveness, efficiency, and safety, as a basis
for acceptance and retention of diagnostics in clinical practice. Furthermore,
professional organizations have a great responsibility to set, to implement, to
maintain, and to improve clinical standards. More effective international co-
operation would be useful, as it has proved to be in the approval and quality
control of drugs. In this way, the availability of resources for industrial, private,
and governmental funding for diagnostic research and technology assessment
would also be stimulated.

Regarding the feasibility of diagnostic evaluation studies, the required size
and duration must be considered in relation to the speed of technological
progress. This speed can be very great, for instance, in areas where molecular
genetic knowledge and information and communication technology play an
important part. Especially in such areas, updating of decision analyses, expert
assessments, and scenarios by inserting new pieces of the “mosaic” of evidence
may be more useful than fully comprehensive, lengthy trials. This may be, for
example, relevant for the evaluation of diagnostic areas where current tests
will be replaced by new DNA diagnostics in the years to come.
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CHAPTER 2

The architecture of diagnostic
research∗
R. Brian Haynes and John J. You

Summary box� Because diagnostic testing aims to discriminate between clinically
“normal” and “abnormal,” the definition of “normal” is a basic issue in
diagnostic research. Although “the normal range” has been typically
been defined according to the distribution of test results (the “bell
curve” or “Gaussian” distribution), the “therapeutic definition” of
normal (test result beyond which intervention does more good than
harm) is the most clinically relevant.� The diagnostic research question to be answered has to be carefully
formulated and determines the appropriate research approach. The
five most relevant types of question are:
– Phase I questions: Do patients with the target disorder have

different test results from normal individuals? The answer
requires a comparison of the distribution of test results among
patients known to have the disease and people known not to have
the disease.

– Phase II questions: Are patients with certain test results

more likely to have the target disorder than patients with

other test results? This can be studied in the same dataset that
generated the Phase I answer, but now test characteristics such as
sensitivity and specificity and predictive values are estimated.
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– Only if Phase I and Phase II studies, performed in “ideal
circumstances,” are sufficiently promising as to allow dependable
discrimination between diseased and nondiseased subjects, is it
worth evaluating the test under “usual” circumstances. Phase III and
IV questions must then be answered.

– Phase III questions: Among patients in whom it is clinically

sensible to suspect the target disorder, does the test result

distinguish those with and without the target disorder? To
get the appropriate answer, a consecutive series of such patients
should be studied. The validity of Phase III studies is threatened if
the reference standard or diagnostic test is lost, not performed, or
indeterminate.

– Phase IV questions: Do patients who undergo the diagnostic

test fare better (in their ultimate health outcomes) than

similar patients who do not? These questions have to be
answered by randomizing patients to undergo the test of interest or
some other (or no) test.

– Phase V questions: Does use of the diagnostic test lead to

better health outcomes at an acceptable cost? Answers to
these questions can also be obtained from randomized clinical trials.
The external validity, or generalizability, of the findings is
threatened if patients enrolled in the trials or the management
strategies used are importantly different from those in real practice.� Because of a varying patient mix, test characteristics, such as

sensitivity, specificity, and likelihood ratios may vary between different
health-care settings.

Introduction

When making a diagnosis, clinicians may not have access to reference or “gold”
standard tests for the target disorders they suspect. Even if they do have access,
they may often wish to avoid the risks, or costs, of these reference standards,
especially when they are invasive, painful, or dangerous. No wonder, then,
that clinical researchers examine relationships between a wide range of more
easily measured phenomena and final diagnoses. These phenomena include
elements of the patient’s history, physical examination, images from all sorts
of penetrating waves, and the levels of myriad constituents of body fluids and
tissues.

Alas, even the most promising phenomena, when nominated as diagnostic
tests, almost never exhibit a one-to-one relation with their respective target
disorders, and several different diagnostic tests may compete for primacy in
diagnosing the same target disorder. As a result, considerable effort has been
expended at the interface between clinical medicine and scientific methods in
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an effort to maximize the validity and usefulness of diagnostic tests. This book
describes the result of those efforts, and this chapter focuses on the specific
sorts of questions posed in diagnostic research and the study architectures
used to answer them.

As this book is being written, considerable interest is being directed to ques-
tions about the usefulness of the plasma concentration of B-type natriuretic
peptide in diagnosing left ventricular dysfunction.1 This interest is justified
on two grounds: first, left ventricular dysfunction is difficult to diagnose on
clinical examination; and second, randomized trials have shown that treating
it reduces its morbidity and mortality. Because real examples are far better
than hypothetical ones in illustrating not just the overall strategies but also
the down-to-earth tactics of clinical research, we will employ this one in the
following paragraphs. To save space and tongue twisting, we will refer to the
diagnostic test, B-type natriuretic peptide, as BNP and the target disorder it is
intended to diagnose, left ventricular dysfunction, as LVD. The starting point
in evaluating this or any other promising diagnostic test is to decide how we
will define its normal range.

What do you mean by “normal” and
“the normal range”?

This chapter deals with the strategies (a lot) and tactics (a little) of research
that attempt to distinguish patients who are “normal” from those who have a
specific target disorder. Before we begin, however, we need to acknowledge
that several different definitions of normal are used in clinical medicine, and
we confuse them at our (and patients’) peril. We know six of them2 and credit
Tony Murphy for pointing out five.3 A common “Gaussian” definition (fortu-
nately falling into disuse) assumes that the diagnostic test results for BNP (or
some arithmetic manipulation of them) for everyone, or for a group of presum-
ably normal people, or for a carefully characterized “reference” population,
will fit a specific theoretical distribution known as the normal or Gaussian distri-
bution. Because the mean of a Gaussian distribution plus or minus 2 standard
deviations encloses 95% of its contents, it became a tempting way to define
the normal many years ago, and came into general use. It is unfortunate that
it did, for three logical consequences of its use have led to enormous confusion
and the creation of a new field of medicine: the diagnosis of nondisease. First,
diagnostic test results usually do not fit the Gaussian distribution. (Actually,
we should be grateful that they do not; the Gaussian distribution extends to
infinity in both directions, necessitating occasional patients with impossibly
high BNP results and others on the minus side of zero.) Second, if the highest
and lowest 2.5% of diagnostic test results are called abnormal, then all the dis-
eases they represent have exactly the same estimated frequency, a clinically
nonsensical conclusion.

The third harmful consequence of the use of the Gaussian definition of
normal is shared by its more recent replacement, the percentile. Recognizing
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the failure of diagnostic test results to fit a theoretical distribution such as the
Gaussian, some laboratory specialists suggested that we ignore the shape of
the distribution and simply refer (for example) to the lower (or upper) 95% of
BNP or other test results as normal. Although this percentile definition does
avoid the problems of infinite and negative test values, it still suggests that
the underlying prevalence of all diseases is exactly the same, 5%, which is
silly and still contributes to the “upper-limit syndrome” of nondisease because
its use means that the only “normal” patients are the ones who are not yet
sufficiently worked up. This inevitable consequence arises as follows: if the
normal range for a given diagnostic test is defined as including the lower 95%
of its results, then the probability that a given patient will be called “normal”
when subjected to this test is 95%, or 0.95. If this same patient undergoes two
independent diagnostic tests (independent in the sense that they are probing
totally different organs or functions), the likelihood of this patient being called
normal is now (0.95) × (0.95) = 0.90. So, the likelihood of any patient being
called normal is 0.95 raised to the power of the number of independent diag-
nostic tests performed on them. Thus, a patient who undergoes 20 tests has
only 0.95 to the 20th power, or about 1 chance in 3, of being called normal; a
patient undergoing 100 such tests has only about 6 chances in 1,000 of being
called normal at the end of the workup.

Other definitions of normal, in avoiding the foregoing pitfalls, present other
problems. The risk factor definition is based on studies of precursors or statistical
predictors of subsequent clinical events. By this definition, the normal range
for BNP or serum cholesterol or blood pressure consists of those levels that
carry no additional risk of morbidity or mortality. Unfortunately, however,
many of these risk factors exhibit steady increases in risk throughout their
range of values; indeed, some hold that the “normal” total serum cholesterol
(defined by cardiovascular risk) might lie well below 3.9 mmol/L (150 mg%),
whereas our local laboratories employ an upper limit of normal of 5.2 mmol/L
(200 mg%), and other institutions employ still other definitions.

Another shortcoming of this risk factor definition becomes apparent when
we examine the health consequences of acting upon a test result that lies be-
yond the normal range: will altering BNP or any other risk factor really change
risk? For example, although obesity is a risk factor for hypertension, contro-
versy continues over whether weight reduction improves mild hypertension.
One of us led a randomized trial in which we peeled 4.1 kg (on average) from
obese, mildly hypertensive women with a behaviorally oriented weight re-
duction program (the control women lost less than 1 kg).4 Despite both their
and our efforts (the cost of the experimental group’s behaviorally oriented
weight reduction program came to US$60 per kilo), there was no accompa-
nying decline in blood pressure.

A related approach defines the normal as that which is culturally desirable,
providing an opportunity for what H. L. Mencken called “the corruption of
medicine by morality” through the “confusion of the theory of the healthy
with the theory of the virtuous,”5 Although this definition does not fit our
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BNP example, one sees such definitions in their mostly benign form at the
fringes of the current lifestyle movement (e.g., “It is better to be slim than
fat,”† and “Exercise and fitness are better than sedentary living and lack of
fitness”) and in its malignant form in the health care system of the Third
Reich. Such a definition has the potential for considerable harm and may also
serve to subvert the role of medicine in society.

Two final definitions are highly relevant and useful to the clinician because
they focus directly on the clinical acts of diagnosis and therapy. The diagnostic
definition identifies a range of BNP (or other diagnostic test) results beyond
which LVD (or another specific target disorder) is (with known probability)
present. This is the definition we focus on. The “known probability” with
which a target disorder is present is known formally as the positive predic-
tive value and depends on where we set the limits for the normal range of
diagnostic test results. This definition has real clinical value and is a distinct
improvement over the definitions described earlier. It does, however, require
that clinicians keep track of diagnostic ranges and cutoffs.

The final definition of normal sets its limits at the level of BNP beyond
which specific treatments for LVD (such as ACE inhibitors) have been shown
conclusively to do more good than harm. This therapeutic definition is attrac-
tive because of its link with action. The therapeutic definition of the normal
range of blood pressure, for example, avoids the hazards of labeling patients
as diseased unless they could benefit from treatment. Thus, in the early 1960s,
the only levels of blood pressure conclusively shown to benefit from antihy-
pertensive drugs were diastolic pressures in excess of 130 mmHg (Phase V).
Then, in 1967, the first of a series of randomized trials demonstrated the clear
advantages of initiating drugs at 115 mmHg, and the upper limit of normal
blood pressure, under the therapeutic definition, fell to that level. In 1970, it
was lowered further to 105 mmHg with a second convincing trial, and current
guidelines about which patients have abnormal blood pressures that require
treatment add an element of the risk factor definition and recommend treat-
ment based on the combination of blood pressure with age, sex, cholesterol
level, blood sugar, and smoking habit. These days one can even obtain evi-
dence for blood pressure treatment levels based on the presence of a second
disease: for example, in diabetes the “tight control” of blood pressure reduces
the risk of major complications in a cost-effective way, with the current rec-
ommendation being to intervene if the blood pressure exceeds 130/85 mmHg.
Obviously, the use of this therapeutic definition requires that clinicians (and
guideline developers) keep abreast of advances in therapeutics, and that is as
it should be.

In summary, then, before you start any diagnostic study you need to define
what you mean by normal, and be confident that you have done so in a
sensible and clinically useful fashion.

† But the tragic consequences of anorexia nervosa teach us that even this definition can do

harm.
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The question is everything

As in other forms of clinical research, there are several different ways in which
one could carry out a study into the potential or real diagnostic usefulness of a
physical sign or laboratory test, and each of them is appropriate to one sort of
question and inappropriate for others. Among the questions one might pose
about the relation between a putative diagnostic test (say, BNP) and a target
disorder (say, LVD), five are most relevant:� Phase I questions: Do patients with the target disorder have different test

results from normal individuals? (Do patients with LVD have higher BNP
than normal individuals?)� Phase II questions: Are patients with certain test results more likely to
have the target disorder than patients with other test results? (Are pa-
tients with higher BNP more likely to have LVD than patients with lower
BNP?)� Phase III questions: Among patients in whom it is clinically sensible to
suspect the target disorder, does the level of the test result distinguish those
with and without the target disorder? (Among patients in whom it is clin-
ically sensible to suspect LVD, does the level of BNP distinguish those with
and without LVD?)� Phase IV questions: Do patients who undergo this diagnostic test fare bet-
ter (in their ultimate health outcomes) than similar patients who do not? (Of
greatest interest in evaluating early diagnosis through screening tests, this
might be phrased: Do patients screened with BNP [in the hope of achieving
the early diagnosis of LVD] have better health outcomes [mortality, func-
tion, quality of life] than those who do not undergo screening?).� Phase V questions: Does use of the diagnostic test lead to better health
outcomes at an acceptable cost? (Are the health outcomes associated with
BNP testing worth the associated costs when compared to a conven-
tional diagnostic strategy? Or, does BNP testing represent good “value-for-
money”?)
At first glance, the first three questions may appear indistinguishable. They

are not, because the strategies and tactics employed in answering them are
crucially different and so are the conclusions that can be drawn from their an-
swers. The first two differ in the “direction” in which their results are analyzed
and interpreted, and the third differs from the first two in the fashion in which
study patients are assembled. The fourth question gets at what we and our
patients would most like to know: are they better off for having undergone
it? The conclusions that can (and, more importantly, cannot) be drawn from
the answers to these questions are crucially different, and there are plenty
of examples of the price paid by patients and providers when the answers to
Phase I or II questions are interpreted as if they were answering a Phase III
(or even a Phase IV) question. Finally, Phase V studies address the question
of most importance to managers and policy makers: is the test worth the cost,
compared with other uses of the available funds?
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Table 2.1 Answering a Phase I question: Do patients with LVD have higher BNP than
normal individuals?

Patients known to have the

target disorder (LVD) Normal controls

Average diagnostic test (BNP

precursor) result (and its range)

493.5, range from

248.9 to 909

129.4, range from

53.6 to 159.7

BNP, B-type natriuretic peptide; LVD, left ventricular dysfunction.

These questions also nicely describe an orderly and efficient progression of
research into the potential usefulness of a clinical sign, symptom, or laboratory
result, and we will use the BNP story to show this sequence.

Phase I questions: Do patients with the target disorder
have different test results from normal individuals?

Question 1 often can be answered with a minimum of effort, time, and ex-
pense, and its architecture is displayed in Table 2.1.

For example, a group of investigators at a British university hospital mea-
sured BNP precursor in convenience samples of “normal controls” and in
patients who had various combinations of hypertension, ventricular hyper-
trophy, and LVD.6 They found statistically significant differences in median
BNP precursors between patients with and normal individuals without LVD
and no overlap in their range of BNP precursor results. It was not surprising,
therefore, that they concluded that BNP was “a useful diagnostic aid for LVD.”

Note, however, that the direction of interpretation here is from known diag-
nosis back to diagnostic test. Answers to Phase I questions cannot be applied
directly to patients because they are presented as overall (usually average)
test results. They are not analyzed in terms of the diagnostic test’s sensitivity,
specificity, or likelihood ratios. Moreover, Phase I studies are typically con-
ducted among patients known to have the disease and people known not to
have the disease (rather than among patients who are suspected of having,
but not known to have, the disease). As a result, this phase of diagnostic test
evaluation cannot be translated into diagnostic action.

Why, then, ask Phase I questions at all? There are two reasons. First, such
studies add to our biologic insights about the mechanisms of disease, and may
serve later research into therapy as well as diagnosis. Second, such studies are
quick and relatively cheap, and a negative answer to their question removes
the need to ask the tougher, more time-consuming, and costlier questions
of Phases II–IV. Thus, if a convenience (or “grab”) sample of patients with
LVD already known to the investigators displays the same average levels and
distribution of BNP as apparently healthy laboratory technicians or captive
medical students, it is time to abandon it as a diagnostic test and devote scarce
resources to some other lead.
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Table 2.2 Answering a Phase II question: Are patients with higher BNP more likely to
have LVD than patients with lower BNP?

Patients known to have

the target disorder (LVD) Normal controls

High BNP 39 2

Normal BNP 1 25

Tests characteristics and their 95% intervals

Lower Upper

Sensitivity = 98% 87% 100%

Specificity = 92% 77% 98%

Positive predictive value = 95% 84% 99%

Negative predictive value = 96% 81% 100%

Likelihood ratio for an abnormal test

result = 13

3.5 50

Likelihood ratio for a normal test

result = 0.03

0.0003 0.19

BNP, B-type natriuretic peptide; LVD, left ventricular dysfunction.

Phase II questions: Are patients with certain test results
more likely to have the target disorder than patients
with other test results?

Following a positive answer to a Phase I question, it is logical to ask a Phase
II question, this time changing the direction of interpretation so that it runs
from diagnostic test result forward to diagnosis. Although the Phase II ques-
tions often can be asked in the same dataset that generated the Phase I answer,
the architecture of asking and answering them differs. For example, a second
group of investigators at a Belgian university hospital measured BNP in “nor-
mal subjects” and three groups of patients with coronary artery disease and
varying degrees of LVD.7 Among the analyses they performed (including the
creation of ROC curves; see Chapter 7) was a simple plot of individual BNP
results, generating the results shown in Table 2.2 by picking the cutoff that
best distinguished their patients with severe LVD from their normal controls.

As you can see, the results in Table 2.2 are extremely encouraging. Whether
it is used to “rule out” LVD on the basis of its high sensitivity (SnNout – a
Sensitive test that is Negative helps to rule out the diagnosis)2p83 or to “rule-
in” LVD with its high specificity (SpPin – a Specific test that is P ositive serves
to rule in the diagnosis),2p77 BNP looks useful, so it is no wonder that the
authors concluded: “BNP concentrations are good indicators of the severity
and prognosis of congestive heart failure.”

But is Table 2.2 overly encouraging? It compares test results between groups
of patients who already have established diagnoses (rather than those who
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are merely suspected of the target disorder) and contrasts extreme groups of
normals and those with severe disease. Thus, it tells us whether the test shows
diagnostic promise under ideal conditions for the test, not for usual practice. A
useful way to think about this difference between Phase II and Phase III studies
is by analogy with randomized clinical trials, which range from addressing
explanatory (efficacy) issues of therapy (Can the new treatment work under
ideal circumstances?) to management (pragmatic, effectiveness) issues (Does
the new treatment work under usual circumstances?). We have summarized
this analogy in Table 2.3.

As shown in Table 2.3, the Phase II study summarized in Table 2.2 is ex-
planatory in nature: preselected groups of normal individuals (“ducks”) and
those who clearly have the target disorder (“yaks”) undergo testing under the
most rigorous circumstances possible, with the presence or absence of the tar-
get disorder being determined by the same reference standard. No attempt is
made to validate these initial (“training set”) results (especially the cutoff used
to set the upper limit of normal BNP) in a second, independent “test” set of
ducks and yaks. However, and as with the Phase I study, this relatively easy
Phase II investigation tells us whether the promising diagnostic test is worth
further, costlier evaluation; as we have said elsewhere,2p57 if the test cannot
tell the difference between a duck and a yak it is worthless in diagnosing ei-
ther one. As long as the writers and readers of a Phase II explanatory study
report make no pragmatic claims about its usefulness in routine clinical prac-
tice, no harm is done. Furthermore, criticisms of Phase II explanatory studies
for their failure to satisfy the methodological standards employed in Phase III
pragmatic studies do not make sense.

Phase III questions: Among patients in whom it is
clinically sensible to suspect the target disorder, does
the level of the test result distinguish those with and
without the target disorder?

Given its promise in Phase I and II studies, it is understandable that BNP would
be tested in the much costlier and more time-consuming Phase III study, to
determine whether it was useful among patients in whom it is clinically sen-
sible to suspect LVD. An Oxfordshire group of clinical investigators reported
that they did just that by inviting area general practitioners “to refer patients
with suspected heart failure to our clinic.”8 Once there, these 126 patients un-
derwent independent, blind BNP measurements and echocardiography. Their
results are summarized in Table 2.4.

About one-third of the patients referred by their general practitioners had
LVD on echocardiography. These investigators documented that BNP measure-
ments did not look nearly as promising when tested in a Phase III study in
the pragmatic real-world setting of routine clinical practice and concluded that
“introducing routine measurement [of BNP] would be unlikely to improve the
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Table 2.4 Answering a Phase III question: Among patients in whom it is clinically
sensible to suspect LVD, does the level of BNP distinguish patients with and without
LVD?

Patients with LVD on

echocardiography

Patients with

normal echos

High BNP (>17.9 pg/mL) 35 57

Normal BNP (<18 pg/mL) 5 29

Prevalence or pretest probability of LVD 40/126 = 32%

Test characteristics and their 95% confidence intervals

Lower Upper

Sensitivity = 88% 74% 94%

Specificity = 34% 25% 44%

Positive predictive value = 38% 29% 48%

Negative predictive value = 85% 70% 94%

Likelihood ratio for an abnormal test result = 1.3 1.1 1.6

Likelihood ratio for a normal test result = 0.4 0.2 0.9

BNP, B-type natriuretic peptide; LVD, left ventricular dysfunction.

diagnosis of symptomatic [LVD] in the community.” However, their report of
the study also documented the effect of two other cut-points for BNP.

This led both to a counterclaim on the usefulness of BNP in the subsequent e-
mail letters to the editor, and to an opportunity for us to describe an alternative
way of presenting information about the accuracy of a diagnostic test: the
multilevel likelihood ratio (LR). The original report makes it possible for us to
construct Table 2.5.

By using multilevel likelihood ratios to take advantage of the full range of
BNP results, we can be slightly more optimistic about the diagnostic usefulness
of higher levels: the LR for BNP results >76 pg/mL was 5.1. These levels were
found in 29% of the patients in this study, and their presence raised the pretest
probability of LVD in the average patient from 32% to a posttest probability of
70%. This can be determined directly from Table 2.5 for this “average” patient

Table 2.5 Answering a Phase III question with likelihood ratios

Patients with LVD Patients with Likelihood ratio

on echocardiography normal echoes and 95% CI

High BNP (>76 pg/mL) 26 (0.650) 11 (0.128) 5.1 (2.8–9.2)

Mid BNP (10–75 pg/mL) 11 (0.275) 60 (0.698) 0.4 (0.2–0.7)

Low BNP (<10 pg/mL) 3 (0.075) 15 (0.174) 0.4 (0.1–1)

Total 40 (1.000) 86 (1.000)

BNP, B-type natriuretic peptide; CI, confidence interval; LVD, left ventricular dysfunction.
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Figure 2.1 Nomogram for converting pretest likelihoods (left column) to posttest
likelihoods (right column) by drawing a straight line from the pretest likelihood
through the likelihood ratio for the test result.

with a pretest probability of 32% and a high BNP: reading horizontally across
the top row, the result is 26/(26 + 11) = 70%.

However, if the patient has a different pretest likelihood, say 50%, then
either the table must be reconstructed for this higher figure, or the pretest
likelihood needs to be converted to a pretest odds (50% is a pretest odds of (1 −
0.5)/0.5 = 1), and then multiplied by the likelihood ratio for the test result
(5.1 in this case), giving a post test odds of 5.1, which then can be converted
back into a posttest percentage of 5.1/(1 + 5.1) = 84%. These calculations are
rendered unnecessary by using a nomogram, as in Figure 2.1.
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Table 2.6 The ideal Phase III study meets the real world

Reference standard

Target disorder Target disorder

The ideal study present absent

Diagnostic test result

Positive a b

Negative c d

Reference standard

Target disorder Lost, not performed, Target disorder

The real study present or indeterminate absent

Diagnostic test result

Positive a v b

Lost, not

perfomed, or indeterminate

w x y

Negative c z d

Threats to the validity of Phase III studies

Several threats to the validity of Phase III studies can distort their estimates
of the accuracy of the diagnostic test. The first batch is violations of the old
critical appraisal guide: “Has there been an independent, blind comparison
with a gold standard of diagnosis?”2p52 By independence we mean that all study
patients have undergone both the diagnostic test and the reference (“gold”)
standard evaluation and, more specifically, that the reference standard is ap-
plied regardless of the diagnostic test result. By blind, we mean that the reference
standard is applied and interpreted in total ignorance of the diagnostic test re-
sult and vice versa. By anticipating these threats at the initial question-forming
phase of a study, they can be avoided or minimized.

Although we prefer to conceptualize diagnostic test evaluations in terms of
2 × 2 tables such as the upper panel of Table 2.6 (and this is the way that most
Phase II studies are performed), in reality Phase III studies generate the 3 ×
3 tables shown in the lower panel of Table 2.6. Reports get lost, their results
are sometimes incapable of interpretation, and sometimes we are unwilling
to apply the reference standard to all the study patients.

The magnitude of the cells v–z and the method of handling patients who fall
into these three cells will affect the validity of the study. In the perfect study,
these cells are kept empty or so small that they cannot exert any important
effect on the study conclusion.

However, there are six situations in which they become large enough to
bias the measures of test accuracy. First, when the reference standard is ex-
pensive, painful, or risky, investigators will not wish to apply it to patients with
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negative diagnostic test results. Consequently, such patients risk winding up
in cell z. Furthermore, there is an understandable temptation to shift them to
cell d in the analysis. Because no diagnostic test is perfect, some of them surely
belong in cell c . Shifting all of them to cell d falsely inflates both sensitivity
and specificity. If this potential problem is recognized before the study begins,
investigators can design their reference standard to prevent such patients from
falling into cell z. This is accomplished by moving to a more pragmatic study
and adding another, prognostic dimension to the reference standard, namely,
the clinical course of patients with negative test results who receive no in-
tervention for the target disorder. If patients who otherwise would end up in
cell z develop the target disorder during this treatment-free follow-up, they
belong in cell c . If they remain free of disease, they join cell d. The result is an
unbiased and pragmatic estimate of sensitivity and specificity.

Second, the reference standard may be lost; and third, it may generate an
uninterpretable or indeterminate result. As before, arbitrarily analyzing such
patients as if they really did or did not have the target disorder will distort
measures of diagnostic test accuracy. If these potential biases are identified
in the planning stages, they can be minimized, a pragmatic solution such
as that proposed previously for cell z considered, and clinically sensible rules
established for shifting them to the definitive columns in a manner that confers
the greatest benefit (in terms of treatment) and the least harm (in terms of
labeling) to later patients.

Fourth, fifth, and sixth, the diagnostic test result may be lost, never per-
formed, or indeterminate, so that the patient winds up in cells w, x , or y. Here
the only unforgivable action is to exclude such patients from the analysis
of accuracy. As before, anticipation of these problems before the study begins
should minimize tests that are lost or never performed to the point where they
would not affect the study conclusion regardless of how they were classified. If
indeterminate results are likely to be frequent, a decision can be made before
the study begins about whether they will be classified as positive or negative.
Alternatively, if multilevel likelihood ratios are to be used, these patients can
form their own stratum.

In addition to the six threats to validity related to cells v–z, there are two
more. The seventh threat to validity noted in the previous critical appraisal
guide arises when a patient’s reference standard is applied or interpreted by
someone who already knows that patient’s diagnostic test result (and vice
versa). This is a risk whenever there is any degree of interpretation (even in
reading off a scale) involved in generating the result of the diagnostic test or
reference standard. We know that these situations lead to biased inflations of
sensitivity and specificity.

The eighth and final threat to the validity of accuracy estimates generated in
Phase III studies arises whenever the selection of the “upper limit of normal” or
cut-point for the diagnostic test is under the control of the investigator. When
they can place the cut-point wherever they want, it is natural for them to se-
lect the point where it maximizes sensitivity (for use as a SnNout), specificity
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(for use as a SpPin), or the total number of patients correctly classified in that
particular “training” set. If the study were repeated in a second, independent
“test” set of patients, employing that same cut-point, the diagnostic test would
be found to function a little or a lot worse. Thus, the true accuracy of a promis-
ing diagnostic test is not known until it has been evaluated in one or more
independent studies.

The foregoing threats apply whether the diagnostic test comprises a sin-
gle measurement of a single phenomenon or a multivariate combination of
several phenomena. For example, Philip Wells and his colleagues determined
the diagnostic accuracy of the combination of several items from the medi-
cal history, physical examination, and noninvasive testing in the diagnosis of
deep vein thrombosis.9 Although, their study generated similar results in three
different centers (two in Canada and one in Italy), even they recommended
further prospective testing before widespread use.

Limits to the applicability of Phase III studies

Introductory courses in epidemiology introduce the concept that predictive
values change as we move back and forth between screening or primary care
settings (with their low prevalence or pretest probability of the target disor-
der) to secondary and tertiary care (with their higher probability of the target
disorder). This point is usually made by assuming that sensitivity and speci-
ficity remain constant across all settings. However, the mix (or spectrum) of
patients also varies among these locations; for example, screening is applied
to asymptomatic individuals with early disease, whereas tertiary care settings
deal with patients with advanced or florid disease. No wonder, then, that sen-
sitivity and specificity often vary between these settings. Moreover, because
primary care patients with positive diagnostic test results (which comprise
false positive as well as true positive results) are referred forward to secondary
and tertiary care, we might expect specificity to fall as we move along the
referral pathway.

Very little empirical evidence addresses this issue, and we acknowledge our
debt to Dr. James Wagner of the University of Texas at Dallas for tracking
down and systematically reviewing diagnostic data from over 2000 patients
with clinically suspected appendicitis seen in primary care and on inpatient
surgical wards (J. Wagner, personal communication, 2000). The diagnostic
tests comprised the clinical signs that are sought when clinicians suspect ap-
pendicitis, and the reference standard is a combination of pathology reports
on appendices when operations were performed, and a benign clinical course
when they were not. The results for the diagnostic test of right lower quadrant
tenderness are shown in Table 2.7.

A comparison of the results in primary and tertiary care shows, as we might
expect, an increase in the proportions of patients with appendicitis (from 14%
to 63%). But, of course, this increase in prevalence occurred partly because
patients with right lower quadrant tenderness (regardless of whether this was
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Table 2.7 The accuracy of right lower quadrant tenderness in the diagnosis of
appendicitis

Primary care settings Tertiary care settings

Appendicitis Appendicitis

Yes No Yes No

(%) (%) (%) (%)

Right lower quadrant tenderness

Present 84 11 81 84

Absent 16 89 19 16

Totals 100 100 100 100

Frequency of appendicitis 14% 63%

Frequency of positive sign 21% 82%

Sensitivity 84% 81%

Specificity 89% 16%

LR+ 7.6 1

LR− 0.2 1

a true positive or false positive finding) tended to be referred to the next
level of care, whereas patients without this sign tended not to be referred
onward; this is confirmed by the rise in the frequency of this sign from 21%
of patients in primary care to 82% of patients in tertiary care. Although this
sort of increase in a positive diagnostic test result is widely recognized, its effect
on the accuracy of the test is not. The forward referral of patients with false
positive test results leads to a fall in specificity, in this case a dramatic one from
89% down to 16%. As a result, a diagnostic sign of real value in primary care
(LR+ of 8, LR− of 0.2) is useless in tertiary care (LR+ and LR− both 1); in
other words, its diagnostic value has been “used up” along the way.‡

This phenomenon can place major limitations on the applicability of Phase
III studies carried out in one sort of setting to another setting where the mix
of test results may differ. Overcoming this limitation is another bonus that
attends the replication of a promising Phase III study in a second “test” setting
attended by patients of the sort that the test is claimed to benefit.

Does specificity always fall between primary care and tertiary care settings?
Might this be employed to generate a “standardized correction factor” for
extrapolating test accuracy between settings? Have a look at the clinical sign
of abdominal rigidity in Table 2.8.

‡ Although not germane to this book on research methods, there are two major clinical

ramifications of this phenomenon. First, because clinical signs and other diagnostic tests

often lose their value along the referral pathway, tertiary care clinicians might be forgiven

for proceeding immediately to applying invasive reference standards. Second, tertiary care

teachers should be careful what they teach primary care trainees about the uselessness of

clinical signs.
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Table 2.8 The accuracy of abdominal rigidity in the diagnosis of appendicitis

Primary care settings Tertiary care settings

Appendicitis Appendicitis

Yes No Yes No

(%) (%) (%) (%)

Rigid abdomen

Present 40 26 23 6

Absent 60 74 77 94

Totals 100 100 100 100

Frequency of appendicitis 14% 47%

Frequency of positive sign 28% 14%

Sensitivity 40% 24%

Specificity 74% 94%

LR+ 1.5 5

LR− 0.8 0.8

In this case, a clinical sign that is useless in primary care (LR+ barely above
1 and LR− close to 1) is highly useful in tertiary care (LR+ of 5), and in
this case specificity has risen (from 74% to 95%), not fallen, along the refer-
ral pathway. The solution to this paradox is revealed in the frequency of the
sign in these two settings; it has fallen (from 28% to 14%), not risen, along
the pathway from primary to tertiary care. We think that the explanation is
that primary care clinicians, who do not want to miss any patient’s appen-
dicitis, are “overreading” abdominal rigidity compared with their colleagues
in tertiary care. At this stage in our knowledge of this phenomenon, we do
not think the “standard correction factors” noted in the previous paragraph
are advisable, and this paradox once again points to the need to replicate
promising Phase III study results in “test” settings attended by patients (and
clinicians) of the sort that the test is claimed to benefit. In this regard, we
welcome the creation of the CARE consortium of over 500 clinicians from
over 25 countries10 for their performance of web-based, large, simple, fast
studies of the clinical examination.11 It is hoped that this group, which can be
contacted at www.carestudy.com, can make a large contribution to determin-
ing the wide applicability of the diagnostic test information obtained from the
medical history and physical examination.

For clinicians who wish to apply the Bayesian properties of diagnostic tests,
accurate estimates of the pretest probability of target disorders in their locale
and setting are required. These can come from five sources: (1) personal ex-
perience, (2) population prevalence statistics, (3) practice databases, (4) the
publication that described the test, or (5) one of a growing number of primary
studies of pretest probability in different settings.12
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Table 2.9 Answering a Phase IV question: Do patients undergoing BNP testing fare
better than those who do not? (using improvement in the percentage of correct
diagnoses as a surrogate for improved health outcomes)

GP diagnosis at

initial visit

GP diagnosis at

next visit

BNP group, % correct diagnoses 49% 70%

Control group, % correct diagnoses 52% 60%

BNP, B-type natriuretic peptide; GP, general practitioners.

Phase IV questions: Do patients who undergo this
diagnostic test fare better (in their ultimate health
outcomes) than similar patients who do not?

The ultimate value of a diagnostic test is measured in the health outcomes
produced by the further therapeutic interventions it precipitates. Sometimes,
this benefit can be hinted at in Phase III studies if the reference standard
for the absence of the target disorder is a benign clinical course despite the
withholding of treatment. At other times, this benefit is self-evident, as in
the correct diagnosis of patients with life-threatening target disorders who
thereby receive life-saving treatments, and in these situations, demonstration
of an increased number of correct diagnoses using the diagnostic test may be
a suitable surrogate for “hard” clinical outcomes. Such a study of BNP testing
was performed by investigators in New Zealand, who enrolled 307 patients
presenting to their general practitioner (GP) with dyspnea and/or edema into
a randomized trial.13 The study results are summarized in Table 2.9.

Patients randomized to the BNP group had an initial diagnosis made by their
GP followed by measurement of BNP precursor levels. The GP’s initial diagno-
sis was correct in 49% of patients at the initial visit. At the subsequent visit,
after receiving the BNP results, the proportion of correct diagnoses improved
to 70%. In the control group, 52% of diagnoses were correct at the initial
visit and only improved to 60% at the next visit. Upon further examination
of their data, the investigators found that improved diagnostic accuracy in the
BNP group was mainly due to the GPs improved ability to correctly rule out
heart failure. Such studies of comparative accuracy, though rarely performed,
may provide very useful information. If the new diagnostic test is not more
accurate than existing diagnostic strategies, it would be difficult to envision
how the test would lead to an improvement in health outcomes, and further
investment in Phase IV studies that examine “hard” outcomes would not be
worth pursuing.

Most often, Phase IV questions about health outcomes are posed for diag-
nostic tests that achieve the early detection of asymptomatic disease and can
only be answered by the follow-up of patients randomized to undergo the
diagnostic test of interest or some other (or no) test. In a systematic review of
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Table 2.10 A systematic review of randomized trials of screening for colorectal cancer

Outcome

Unscreened

group

Screened

group

Relative risk

reduction

Absolute risk

reduction

Number needed to

screen to prevent

one more colorectal

cancer death

Colorectal cancer

mortality

0.58% 0.50% 16% 0.08% 1,237

several randomized trials of fecal occult blood testing,14 over 400,000 patients
were randomized to undergo annual or biennial screening or no screening,
and then carefully followed for up to 13 years to determine their mortality
from colorectal cancer. The results are summarized in Table 2.10.

In this example, patients were randomized to undergo or not undergo the
diagnostic test. Because most of them remained cancer free, the sample size
requirement was huge and the study architecture is relatively inefficient. It
would have been far more efficient (but unacceptable in this case) to random-
ize the disclosure of positive test results, and this latter strategy was employed
in a randomized trial of a developmental screening test in childhood.15 In this
study, the experimental children whose positive test results were revealed and
who subsequently received the best available counseling and interventions
fared no better in their subsequent academic, cognitive, or developmental
performance than control children whose positive test results were concealed.
However, parents of the “labeled” experimental children were more likely to
worry about their school performance, and their teachers tended to report
more behavioral problems among them. Indeed, the important warning that
diagnostic tests can harm as well as help those undergoing them is not often
stated in the literature. Potential harms include the anxiety caused by false
positive diagnosis; the downstream costs of the often invasive work-ups that
result from the discovery of “incidentalomas” (findings of uncertain signifi-
cance that are unrelated to the original reason the test was performed);16 and
the detection of pseudodisease (disease that never would become apparent to
patients during their lifetime had they not undergone the diagnostic test, but
once detected, may lead to treatment in situations where the risks outweigh
the benefits).17

Phase V questions: Does use of the diagnostic test lead
to better health outcomes at an acceptable cost?

Expenditures for diagnostic testing are spiraling upward,18 and accordingly,
assessing the cost-effectiveness of these technologies is becoming increasingly
important. While the architecture of cost-effectiveness studies can vary, their
findings are reported using a common metric, the cost-effectiveness ratio: the
additional cost (or cost savings) incurred for each additional unit of health
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More costly

Less costly

Less effective More effective

BA

C D

Figure 2.2 Four possible outcomes of a Phase V study: A, the test is more costly and
less effective (undesirable); B, the test is more costly, but more effective; C, the test is
less costly, but less effective; D, the test is less costly and more effective (most
desirable).

benefit that is gained (or lost) by using the diagnostic test, compared with a
conventional testing strategy. Figure 2.2 describes the four possible outcomes
of a Phase V study (the cost-effectiveness “plane”).

Given the encouraging findings of improved diagnostic accuracy in the
Phase IV study of BNP testing described above (and given the large num-
ber of patients with suspected heart failure encountered in clinical practice),
it would instructive to know whether BNP testing represents good “value-
for-money.” In a Phase V study of 452 patients presenting to the emergency
department with acute dyspnea, Swiss investigators randomized patients to
undergo either a diagnostic strategy that included rapid measurement of BNP
or a conventional diagnostic strategy.19 Their findings are summarized in
Table 2.11.

Although all-cause mortality was not significantly different at 180 days, test-
ing of BNP led to improvement in several health-related outcomes, including
hospitalization and the use of intensive care (providing answers to Phase IV
questions beyond improved accuracy). Total treatment cost was also signifi-
cantly reduced in the BNP group. To address the “value-for-money” question,
the investigators drew 5,000 random samples of their original data set (a tech-
nique known as bootstrapping) and plotted the outcome of each sample on
the appropriate quadrants of Figure 2.2. In 80.6% of the replications, BNP
testing was less costly and resulted in lower mortality; in 19.3% of the repli-
cations, BNP testing was less expensive and resulted in higher mortality; and
in less than 0.1% of the replications, BNP guidance was more expensive, and
resulted in either higher or lower mortality. Although the authors concluded
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Table 2.11 Answering a Phase V question: Are the health outcomes associated with
BNP testing worth the associated costs when compared to a conventional diagnostic
strategy?

BNP group Control group P value

Hospital admission rate 75% 85% 0.008

Intensive care unit admission rate 15% 24% 0.01

Days in hospital, median

(interquartile range)

8 (1–16) 10 (5–18) 0.002

Mortality at 180 days 20% 23% 0.42

Total treatment cost at 180 days $7,930 $10,503 0.006

that BNP testing was cost-effective, one might have been more confident in
reaching this conclusion had 95% or more of the samples fallen into the lower
mortality quadrants. Most often, promising diagnostic tests fall into quadrant
B, that is, more costly but also more effective, and the difficult question to
answer here is what one is willing to pay for a particular gain in health.

A limitation of Phase V studies that use a randomized design is that the
external validity, or generalizability, of the findings is threatened if the patients
enrolled in the trial and the management strategies used (which impact on
costs) are not representative of real-world practice. Decision analytic models
are often used as a substitute for, or to extrapolate the findings of, Phase V
studies, allowing the investigator to explore cost-effectiveness under a wide
range of assumptions. Because the findings from such exercises are only as
good as the model inputs, the importance of basing such models on well-
designed Phase I to V studies of diagnostic tests cannot be emphasized enough.
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CHAPTER 3

Assessment of the accuracy
of diagnostic tests: the
cross-sectional study
J. André Knottnerus and Jean W. Muris

Summary box� In determining the accuracy of diagnostic testing, the first step is to
specify the clinical diagnostic problem under study. Second, the
contrast to be evaluated must be appropriately defined. Options are to
evaluate one single test contrast; to compare two or more single tests;
to evaluate further testing in addition to previous diagnostics; and to
compare alternative diagnostic strategies. In addition, distinction
should be made between evaluating testing in “extreme contrast” or
“clinical practice” settings.� For accuracy studies, general design types are (1) a survey of the total
study population, (2) a case–referent approach, or (3) a test-based
enrollment. The direction of the data collection should generally be
prospective, but ambispective and retrospective approaches are
sometimes appropriate.� One should specify the determinants of primary interest (the test(s)
under study) and other potentially important determinants (possible
modifiers of test accuracy and confounding variables). As a matter of
principle, the reference standard procedure to measure the target
disorder should be applied on all included subjects, independently of
the result of the test under study. Applying a reference standard
procedure can be difficult because of classification errors, lack of a
well-defined pathophysiological concept, incorporation bias, or too
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invasive or too complex patient investigations. Possible solutions are
an independent expert panel and the delayed-type cross-sectional
study (clinical follow-up). Also, a prognostic criterion can be chosen to
define clinical outcome.� Inclusion criteria must be based on “the intention to diagnose” or
“intention to screen” with respect to the studied clinical problem.
Accordingly, the recruitment procedure is preferably a consecutive
series of presenting patients or a target population screening,
respectively. In the design phase, sample size estimation should
be routine. Both bivariate and multivariable techniques can be
used in the analysis, based on the evaluated contrast. Estimating
test accuracy and prediction of outcome require different
approaches.� External (clinical) validation should preferably be based on repeated
studies in other, similar populations. Also, systematic reviews and
meta-analysis have a role.

Introduction

While the ultimate objective of the diagnostic phase is to optimize the patient’s
prognosis by enabling the clinician to choose an adequate therapeutic strategy,
an accurate diagnostic assessment is a first and indispensable step in the process
of clinical management.

Making a useful clinical diagnosis implies classifying the presented health
problem of a patient in the context of accepted nosological knowledge. This
diagnostic classification may result in confirmation or exclusion of the pres-
ence of a certain disease, in the choice for one disease from a set of possibly
present diseases, or in the conclusion that a number of diseases are present
simultaneously.1 Also, it can be concluded that, given present knowledge, a
further diagnostic classification than the observed symptomatology cannot be
achieved. Sometimes a classification is not worthwhile, considering the bal-
ance between expected gain in certainty, the burden of making a definitive
diagnosis, and the relevance of therapeutic consequences.

Apart from making a diagnostic classification, the diagnostic process may
be aimed at assessing the clinical severity or monitoring the clinical course
of a diagnosed condition. Another very important clinical application is doc-
umenting the precise localization or shape of a diagnosed lesion to support
surgical, decision making.

A potential new diagnostic test must first go through a phase of pathophys-
iological and technical development, before its clinical effectiveness in terms
of diagnostic accuracy or prognostic impact can be evaluated.2,3 The method-
ology discussed in this book, focused on clinical effectiveness, is applicable to
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the further evaluation of tests that have successfully passed this early devel-
opment.

A basic question to be answered, then, is what is the probability that this
particular patient with this particular symptomatology or these test results
has a certain disorder or a combination of disorders? Obtaining an evidence-
based answer, using clinical epidemiological research data, requires an analysis
of the association between the presented symptomatology or test result and
the appropriate diagnostic classification, that is, the presence or absence of
certain diagnoses.

This chapter deals with principles, designs, and pitfalls of cross-sectional
diagnostic accuracy research. In this context, cross-sectional research includes
studies in which the measured test results and the health status to be diagnosed
essentially represent one point in time for each study subject.4

Diagnostic research on test accuracy: the basic
steps to take

All measures of diagnostic association5 (Chapters 1 and 7) can be derived
from appropriate research data on the relation between test results and a
reference standard diagnosis. A valid data collection on this relation is the
main point of concern,6 while the various measures can be calculated by
applying straightforward analytical methods. Research data for the purpose of
diagnostic discrimination are generally collected in cross-sectional research,
irrespective of the diagnostic parameters to be used.

As usual in research, a first requirement is to specify the research question.
Second, the most appropriate study design to answer this question has to
be outlined. A third step is to operationalize the determinants (test(s) to be
evaluated, relevant modifiers of diagnostic accuracy, and possible confounding
variables) and outcome (generally the presence or absence of the disorder to
be diagnosed). Further, the study population, the corresponding inclusion and
exclusion criteria, and the most appropriate recruitment procedure have to be
further specified. Finally, an adequate sample size and data analysis must be
planned and achieved.

The research question: contrast to be evaluated

In short, the diagnostic research question should define:
1 The clinical problem for which obtaining the diagnostic information is con-

sidered possibly relevant.
2 The test or test set to be evaluated.
3 Whether the planned study should evaluate (1) the potential of the test

procedure to discriminate between subjects with and without a target dis-
order in an ideal situation of extreme contrast, or (2) to what extent it
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could be useful in a daily practice clinical setting (where discrimination is,
by definition, more difficult).

Box 3.1 The research question

Define the clinical problem
Contrast to be evaluated

– single test
– comparing single tests
– additional testing
– comparing diagnostic strategies

Extreme contrast or practice setting

Regarding the clinical problem studied (a), it is important not only to define
the target disorder(s) to be diagnosed but also the clinical setting and clinical
spectrum (e.g., early or later in the development of the disorder and degree of
severity) at which one is primarily aiming. It is crucial whether the investigator
wants to evaluate the validity of a test for diagnosing a possible disease in its
early phase in a primary care setting or to diagnose more advanced disease in
an outpatient clinic or hospital setting, with patients selected by referral based
on suspect symptoms or previous tests.7,8 This is dealt with in more detail in
Chapters 2 and 6.

A key issue is the specific contrast to be evaluated (b). The question can
be, for example, what is the discriminative power of one specific test or test
procedure to be applied for a certain clinical diagnostic problem (single test)?
However, the focus may also be on the discriminative power of a new test com-
pared to the best test(s) already available for the clinical diagnostic problem
under study (comparing single tests). For clinical practice, it is often important
to determine the added value of further (e.g., more invasive) testing, given the
tests already performed (additional testing),9 or to evaluate the most accurate
or efficient diagnostic test set or test sequence (diagnostic strategy) for a certain
diagnostic problem. In general, we recommend that in studying a new, more
invasive or more expensive test, already available, less invasive or less expen-
sive tests with fewer adverse effects should be also included. This makes it pos-
sible to evaluate critically the new test’s net contribution, if any. A new test can
also be less invasive and therefore interesting to insert earlier in the process to
preselect for more invasive tests (e.g., using blood testing as a criterion to carry
out amniocentesis in prenatal screening). Such “triage” tests10 may be less ac-
curate than the existing more invasive ones, and it should then be evaluated
whether the probability of more false negatives is outweighed by better pres-
election for more invasive testing, for example, in terms of less complications.
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In general, it is informative to include the clinician’s diagnostic assessment
(without knowing the test result) as a separate test. The performance of new
approaches can then be evaluated as to its added value compared with the
doctor’s usual diagnostic performance or “black box.”

Regarding (c), critical appraisal of the state of current knowledge is im-
portant for defining an optimally efficient research strategy. For instance, if
nothing at all is known yet about the discriminative power of a test, it is more
efficient – in terms of reducing the burden for study patients, the sample size,
the resources, and the time needed for the study – first to evaluate whether the
test discriminates between clearly diseased and clearly nondiseased subjects.
If the test does not discriminate in such a Phase I study (Feinstein,4 Sackett
and Haynes,11 Chapter 2 of this book) any further, usually larger and longer,
studies evaluating a more difficult contrast between clinically similar study
subjects will be useless: the index test cannot be expected to add anything
valuable to clinical practice anyhow.

The specification of these three aspects of the research question is deci-
sive for designing the optimal study methodology. Aspect (c) was extensively
addressed in Chapter 2.

Outline of the study design

Because study questions on diagnostic accuracy generally evaluate the asso-
ciation between (combinations of) test results and health status (mostly the
presence or absence of a target disorder), a cross-sectional design is a natural
basic design option. However, this basic design has various modifications, each
with specific pros and cons in terms of scientific requirements, burden for the
study subjects, and efficient use of resources.

Box 3.2 Study design

General approach

– survey of total study population
– case–referent approach
– test-based enrolment

Direction of data collection

– prospective
– ambispective
– retrospective

General approach
The most straightforward approach of the cross-sectional design is a survey
of the study population to determine the test distribution and the presence of
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the target disorder simultaneously. Examples are a survey on the relationship
between intermittent claudication and peripheral arterial occlusive disease in
an elderly population12 and a study in a consecutive series of sciatica patients
to determine the accuracy of history and clinical examination.13

Another option is the case–referent approach, starting from an already
known disease status (e.g., present or absent) as the criterion for enrollment,
the test result being determined afterward in the study patients. This design
type may be more efficient or more acceptable when the disease under study
is infrequent or when the reference standard procedure is highly invasive to
the patient, as with pancreatic cancer, or expensive.

A further approach is test-based enrollment, where the available test result
(such as positive or negative) is the criterion for recruitment, with the disease
status being determined afterward. This modification may be preferable when
test results are easily available from routine health care. An example regarding
the latter is a study on the diagnostic value of “fatigue” for detecting anemia in
primary care, comparing patients presenting with fatigue and a control group
without fatigue as to hematological parameters.14

In the context of the cross-sectional design, efficient sampling of the stud-
ied distributions may be artificially facilitated at the determinant (test) or the
outcome (target disorder) side. For example, to achieve a balanced data col-
lection over the relevant categories, a stratified sample can be drawn from the
various test result levels or from various parts of the whole disease spectrum,
from clearly no disease to most severe disease. Also, the contrast between
the categories of the diseased and nondiseased subjects can be enhanced by
limiting the sampling to those who have been proved to be clearly diseased
and those proved to be completely healthy. The latter approach is applied
in planning a Phase I study (Chapter 2), which is essentially a case–referent
study. Because of a sharp contrast in disease spectrum between diseased and
nondiseased, sensitivity and specificity will be optimal. In addition, as by sam-
pling of cases and referents the “prevalence” in the study population can
be artificially optimized (with, for example, a disease prevalence of 50%),
Phase I studies generally need a relatively small number of subjects to be in-
cluded. Moreover, for a Phase I study, the subjects in the “case group” (the
diseased) and those in the reference group (the healthy or nondiseased sub-
jects) can be specifically selected from populations consisting of subjects who
have already undergone a “reference standard” procedure with maximum
certainty.

Direction of data collection
Whereas Phase I and Phase II studies (according to Sackett and Haynes, Chap-
ter 2) may be based on either retrospective or prospective identification of
subjects with a certain diagnostic or test status, Phase III studies must usually
be prospectively planned. The latter start from a study population of subjects
comparable with those who will be tested in clinical practice. In such studies,
it is not known in advance who is diseased and who is not, and the clinical



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:25

48 Chapter 3

characteristics of the two are therefore similar (which in fact, is the reason
that testing is clinically necessary at all). Because the clinical contrast is much
less pronounced, and as the prevalence of diseased subjects is usually much
lower than 50%, substantially larger sample sizes are generally needed than
in Phase I studies.

Also, when the subject selection is prospective, the data collection can be
partly retrospective (ambispective approach). For instance, if patient history
is an important element of the diagnostic test to be evaluated (such as when
studying the diagnostic value of rectal bleeding, palpitations, or psychiatric
symptoms in the preceding 6 months), information about the past is included
in the test result. Essential, however, is that the test result status, albeit based
on historical information, is evaluated and interpreted as to its diagnostic ac-
curacy when the patient “history” is taken.

The “direction” of the sampling and the data collection must be decided
on in advance. In addition, secondary to scientific considerations, practical
issues may play a role, such as the availability of data and the efficiency of
its collection. Prospectively planned data collections often take more time but
are generally more valid, as the procedure and the quality of the data collec-
tion can be optimized beforehand. But this is not always the case. Valid data
may be already available in a well-documented database of an appropriate
study population with an adequately described epidemiological (morbidity)
numerator and (population) denominator and with all relevant covariables
present. Especially when the clinical indication to perform the test is appro-
priately defined (e.g., coronary angiography in instable angina pectoris) and
recorded, and when all eligible patients can be assumed to be included, this is
an option. Also, a prospective data collection may sometimes imply a higher
risk of bias than a retrospective approach. For example, if participating clin-
icians can know that they are being observed in a study of the accuracy of
their usual diagnostic assessment compared with an independent standard or
panel, their behavior could be easily influenced in the context of a prospective
design (Hawthorne effect). However, in a retrospective design, the availabil-
ity of complete and well-standardized data and the controlling of the subject
selection process are often problematic.15

Operationalizing determinants and outcome

Determinants
As in any (clinical) epidemiological study, research questions on diagnostic
accuracy can be operationalized in a central “occurrence relation”16 between
independent and dependent variables.

The independent variable or determinant of primary interest is the test result
to be evaluated, and the primary dependent or outcome variable is (presence
or absence of) the target disorder. When evaluating a single test, the test
results in all study subjects are related to the reference standard. In fact, we
are then comparing testing (yielding the posttest probabilities of the disorder D,
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Box 3.3 The occurrence relation in diagnostic research

Determinant(s) of
primary interest:

Outcome parameter

test(s)
(posttest probability of)
target disorder

↑

modifiers of test accuracy

confounding variables

for example, for positive and negative test results) with not testing (expressed
in the pretest probability of D). When two or more tests are compared, we
have a number of separate determinants that are contrasted as to their dis-
criminatory power. In studying the value of an additional (more invasive) test,
given the tests already performed, the discrimination of applying all other tests
is compared with that of applying all other tests plus the additional one. And
to evaluate the most accurate or efficient diagnostic test set or strategy for a
certain clinical problem, the performances of all the considered test combina-
tions and sequences must be compared. To be able to make these comparisons,
all separate tests have to be performed in all study subjects.

The accuracy of diagnostic tests may vary in relation to subject character-
istics, such as gender, age, and comorbidity. For example, in studying the
diagnostic accuracy of mammography in the detection of breast cancer, it is
important to consider that this accuracy depends on age, gender, and the pos-
sible presence of fibroadenomatosis of the breasts. To evaluate the influence
of such modifiers of test accuracy, these have to be measured and included
in the analysis. In fact, we are dealing here with various subgroups in which
the diagnostic accuracy may be different. Effect-modifying variables can be
accounted for later in the analysis by stratified analysis (subgroup analysis)
of the measures of diagnostic association or by introducing interaction terms
in logistic regression analysis (Chapter 8).17–18 Because diagnostic assessment
can be seen as optimal discrimination between subgroups with a different
probability of disease, effect-modifying variables can also be considered as
additional diagnostic tests themselves.

Confounding variables are independent extraneous determinants of the
outcome that may obscure or inflate an association between the test and the
disorder. They are essentially related to both the test result and the outcome.
For example, in studying whether the symptom fatigue is predictive for a low
blood hemoglobin level, it is important to know which study subjects have
previously taken oral iron, as this can improve the fatigue symptoms and en-
hance the hemoglobin level as well. A confounder can only be controlled for if
it is considered beforehand and measured, which requires insight into relevant
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external influences. In diagnostic research, the term “confounding variable”
is used in a different, more pragmatic sense than in etiologic research, as con-
sistent diagnostic correlations do not need to be fully causally understood to
be useful.

Generally, according to Bayes’s theorem, the pretest probability of the target
disorder is seen as a basic determinant of the posttest probability, independent
of the accuracy of the applied tests. However, the clinical spectrum of the
disorder may be essentially different in high and low prevalence situations.
Because the clinical spectrum can influence test accuracy (Chapters 1, 2, and
6), it is then crucial to separately measure spectrum characteristics, such as
disease severity. Spectrum characteristics can then be analyzed as modifiers of
test accuracy.

Good test reproducibility is a requirement for good accuracy in practice.
Therefore, when the test under study is sensitive to inter- or intra-observer
variability, documentation, and, if possible, reduction of this variability is im-
portant. Documentation can be achieved in a pilot study or in the context of
the main study. For example, in a study of the accuracy and reproducibility of
erythrocyte sedimentation rate (ESR) measurements in general practice cen-
ters, for measuring an identical specimen a clinically relevant range between
practices from 4 to 40 mm/1 h was observed. The average coefficient of varia-
tion (CV: standard deviation as a percentage of the mean) was 37% between
practices and 28% within practices.19 Observer variability can be reduced by
training. In the same ESR study, the average inter- and intrapractice CVs were
reduced by training to 17% and 7%, respectively. The accuracy of a test can
be evaluated in relation to the achieved reproducibility. This reproducibility
must then, for practical purposes, be judged for its clinical acceptability and
feasibility.

Outcome: the reference standard

Principles

Establishing a final and “gold standard” diagnosis of the target disorder is gen-
erally more invasive and expensive than applying the studied diagnostic test.
It is exactly for this reason that good test accuracy (e.g., a very high sensi-
tivity and specificity) would be useful in clinical practice to make a satisfac-
tory diagnostic assessment without having to perform the reference standard.
However, in performing diagnostic research, the central outcome variable –
the presence or absence of the target disorder – must be measured, as it is
the reference standard for estimating the test accuracy. A real gold – that is,
perfect – standard test, with 100% sensitivity and specificity under all circum-
stances, is exceptional. Even pathological classification and MRI imaging are
not infallible, and may yield false positive, false negative, and uninterpretable
conclusions. Therefore, the term “reference standard” is nowadays considered
better than “gold standard.”



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:25

Accuracy of diagnostic tests 51

Box 3.4 The reference standard

Principles

– to be applied on all included subjects
– independent assessment of test and standard
– standardized protocol

Possible problems with the reference standard

– imperfect: classification errors
– pathophysiological concept not well defined (independent from

clinical presentation)
– incorporation bias
– too invasive
– too complex

Possible solutions

– pragmatic criteria
– independent expert panel
– clinical follow-up: delayed-type cross-sectional study
– tailor-made standard protocol
– prognostic criterion

The reference standard to establish the final diagnosis (outcome) should be
applied for all included subjects. Applying different standard procedures for
different patients may yield an inconsistent reference for the evaluated test,
as each of the “standards” will have its own idiosyncratic error rate.

As a matter of principle, the results of the test for each patient should be
interpreted without knowledge of the reference standard results. Similarly, the
reference standard result should be established without knowing the outcome
of the test under study. Where such blinding is not maintained, “test review
bias” and “diagnosis review bias” may occur: nonindependent assessment of
test and reference standard, mostly resulting in overestimation of test accuracy.
The principle of blinding is especially important if subjective factors play a role
in determining test results or the reference standard.20

The reference standard must be properly performed and interpreted using
standardized criteria. Also this is especially important when the standard di-
agnosis depends on subjective interpretations, for example, by a psychiatrist,
a pathologist, or a radiologist. In such cases, inter- and even intraobserver
variability in establishing the standard can occur. For example, in evaluating
the intraobserver variability of MRI assessment as the standard for nerve root
compression in sciatica patients, the same radiologist repeatedly scored the
presence of root compression as such consistently (κ: 1.0) but the site of root
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compression only moderately (κ: 0.60). In these situations, training sessions
and permanent documentation of performance are important.13

Problems and solutions

Apart from the limitations in reaching a 100% perfect standard diagnosis be-
cause of classification error, meeting the requirements for a reference standard
can be inherently problematic in various ways.

For many conditions, a reference standard cannot be measured on the basis
of a well-defined pathophysiological concept, fully independent of the clini-
cal presentation. Examples are sinusitis, migraine, depression, irritable bowel
syndrome, and benign prostatic hyperplasia.21 As, in such cases, information
related to the test result (e.g., symptom status) is incorporated into the diag-
nostic criteria, “incorporation bias” may result in overestimation of test accu-
racy. Furthermore, a defined reference standard procedure may sometimes be
too invasive for research purposes. For instance, when validating urinary flow
measurement it would be unacceptable to apply invasive urodynamic stud-
ies to those with normal flow results.22 And in studying the diagnostic value
of nonacute abdominal pain in primary care for diagnosing intra-abdominal
cancer, one cannot imagine that, as a definitive reference standard, all pa-
tients presenting with nonacute abdominal pain would be routinely offered
laparotomy.23 In addition, one may doubt whether such laparotomy, if it were
to be performed, could always provide an accurate final diagnosis in the very
early stage of a malignancy. Another problem can be that a complex reference
standard might include a large number of laboratory tests, so that many false
positive test results could occur by chance.

For these problems, practical solutions have been sought, as follows.

Pragmatic criteria

The absence of a well-defined pathophysiological concept can sometimes be
overcome by defining consensus-based pragmatic criteria. However, if apply-
ing such reference standard criteria (such as a cut-off value on a depression
questionnaire) is no more difficult than applying the test under study, evalu-
ating and introducing the test will not be very useful.

Independent expert panel

Another method is the composition of an independent expert panel that, given
general criteria and decision rules for clinical agreement, can assign a final di-
agnosis to each patient, based on the available clinical information. To achieve
a consistent classification, the panel must be well prepared for its task, and
a training session or pilot study using patients with an already established
diagnosis is recommended. The agreement of the primary assessments of the
individual panel members, before reaching to consensus, can be documented.
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Clinical follow-up: delayed-type cross-sectional study

When applying a definitive reference standard is too invasive or otherwise
inapplicable at the moment that the test should be predictive for the presence
of the target disorder, a good alternative can be follow up of the clinical course
during a suitable predefined period. Most diseases that are not self-limiting,
such as cancers and chronic degenerative diseases, will usually become clin-
ically manifest a period of months or a year or so after the first diagnostic
suspicion (generally the moment of enrollment in the study) was raised. The
follow-up period should not be too short to give early phase disorders the
chance to become manifest and therefore to have a minimum number of
“false negative” final diagnoses. Nor should it be too long to avoid the final
diagnosis after follow-up being related to a new disease episode started after
the baseline “cross section” (false positives).23,24 In addition, it would be ideal
to collect the decisive follow-up data for making the final diagnosis indepen-
dently from and blinded to the health status and test results at time zero and
also to blind the final outcome assessment for these test results.

One should take into account that “confounding by indication” can occur:
management decisions during follow-up are possibly related to the health
status at baseline and might therefore influence the clinical course and the
probability of detecting the target disorder. This is especially a point of concern
in studying target disorders with a rather variable clinical course, becoming
clinically manifest dependent on management decisions.

It has to be acknowledged that the described method of clinical follow-up
should not be considered as a “follow-up,” or “cohort” study, as the focus is
not on relating the time zero data to a subsequently developing (incident)
disorder. In fact, the follow-up procedure is aimed at retrospectively assessing
the (prevalent) health status at time zero, as a substitute for establishing the
reference standard diagnosis of the target disorder immediately at time zero.
Therefore, this design modification can be designated a “delayed-type cross-
sectional study” instead of a follow-up study.24,25

The expert panel and the clinical follow-up can be combined in a com-
posite reference standard procedure, in which the outcome after follow-up is
evaluated and established by the panel.23

Tailor-made reference standard protocol

In some situations, for example, in diagnostic research on psychiatric illnesses,
it can be difficult to separate test data at time zero (the presence of anxiety)
from the information needed to make a final assessment (anxiety disorder).
As mentioned earlier, in such situations, incorporation bias may be the result.
If test data are indeed an essential part of the diagnostic criteria, one cannot
avoid balancing a certain risk of incorporation bias against not being able to
perform diagnostic research at all, or making a final diagnosis while ignoring
an important element of the criteria. Often, one can find a practical compro-
mise in considering that for clinical purposes it is sufficient to know to what
extent the available diagnostic tests at time zero are able to predict the target
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disorder’s becoming clinically manifest during a reasonably chosen follow-up
period.25 There is also the option to ask the expert panel to establish the final
diagnosis first without the baseline test data and then to repeat it with these
data incorporated. This can be done while adding an extra blinding step, such
as randomly rearranging the order of anonymous patient records. If there then
appear to be important differences in the research conclusions, this should be
transparently reported and discussed as to the clinical implications.

When it is impossible to meet the principle that the reference standard
should be similarly applied to all study subjects irrespective of their health
or test result status, “next best” solutions can be considered. For example, to
determine the accuracy of the exercise electrocardiogram (ECG) in primary
care settings, it might be considered medically and ethically unjustified to
submit those with a negative test result to coronary angiography. For these test
negatives, a well-standardized clinical follow-up protocol (delayed-type cross-
sectional study) might be acceptable. This option is particularly important
when the focus is on the validity of exercise ECG in patients who have a
relatively low prior probability of coronary heart disease. For this spectrum of
patients, results of a study limited to those who would be clinically selected
for coronary angiography would be clearly not applicable.26,27,28 If so, one
would still prefer an identical standard procedure for primary care patients,
irrespective of previous test results, one could consider submitting all patients
to the clinical follow-up standard procedure. To have some validation of this
procedure, for the subgroup that had an angiography, one can compare the
standard diagnoses based on the follow up with the angiography results.

In summary, although an identical and “hard” reference standard for all
included study subjects is the general methodological paradigm, this is not
always achievable. In such situations, given the described limitations and the
suggested alternative approaches, a priori establishing a well-documented and
reproducible reference standard protocol – indicating the optimal procedure
for each type of patient – may be not only the best one can get but also
sufficient for clinical purposes.

Prognostic criterion

Diagnostic testing should ultimately be in favor of the patient’s health, rather
than just an assessment of the probability of the presence of disease. In view
of this, it is useful to incorporate prognosis or consequences for clinical man-
agement into the reference standard procedure.29,30 It is then a starting point
for further decision making (for example, whether treatment is useful or not)
rather than a diagnostic endpoint. This is especially relevant in situations in
which an exact nosological classification is impossible or not important, and
when management is based primarily on the clinical assessment (e.g., in de-
ciding about physiotherapy in low back pain or referral to a neurosurgeon in
sciatica13). Sometimes making a final diagnosis is less important than a prog-
nosis, in view of the clinical consequences (incidental fever) or the lack of a
solid diagnostic consensus (pyriformis syndrome).
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In establishing a “prognostic reference criterion,” a pitfall is that prognosis
can be influenced by interfering treatments. In this context, methods for un-
biased assessment of the impact of testing on patient prognosis are important
(Chapter 4). It is to be expected that with the progress of DNA testing for dis-
ease, prognostic relevance will increasingly be the reference standard, rather
than just classifying.31 Accordingly, “dia-prognostic” research, connecting di-
agnosis and prognosis as the basis for clinical decision making, will be high on
the future research agenda.32

Standard shift as a result of new insights

At certain moments during the progress of pathophysiological knowledge on
diagnosis, new diagnostic tests may be developed that are better than the
currently prevailing reference standards. If this possibility is systematically ig-
nored by reducing diagnostic accuracy research to just comparing new tests
with traditional standards, possible new reference standards would never be
recognized, as they would always seem less accurate than the traditional ones.
Therefore, pathophysiological expertise should be involved in the evaluation
of diagnostic accuracy. Examples of a shift in reference standard are the re-
placement of the clinical definition of tuberculosis by the identification of
Mycobacterium tuberculosis, and of old imaging techniques by new ones (see
also Chapter 1).

Specifying the study population

As in all clinical research, the study population for diagnostic research should
be appropriately chosen, defined, and recruited. The selection of patients is
crucial for the study outcome and its external (clinical) validity. As has already
been emphasized, it is widely recognized that diagnostic accuracy is much
dependent on the spectrum of included patients and the results of relevant
tests performed earlier and may differ for primary care patients and patients
referred to a hospital.7,8,28

After the test has successfully passed Phase I and Phase II studies (Chap-
ter 2), the starting point is the clinical problem for which the test under study
should be evaluated as to its diagnostic accuracy, taking the relevant health
care setting into account. For example, the study can address the diagnos-
tic accuracy of clinical tests for sciatica in general practice, the accuracy of
ECG recording in outpatients with palpitations without a compelling clinical
reason for immediate referral, or the diagnostic accuracy of the MRI scan in
diagnosing intracerebral pathology in an academic neurological center. The
study population should be representative for the “indicated,” “candidate,” or
“intended” patient population, also called the target population, being clini-
cally similar to the group of patients in whom the validated test is to be applied
in practice (intention to test).33,34 The “intention to diagnose” should be the
key criterion for the study of newly presented clinical problems. For the evalu-
ation of population screening of asymptomatic subjects, such as in the context
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of breast cancer screening or hypertension case finding, a study population
similar to the target population “intended to be screened” is required.

Box 3.5 Study population

– In accordance with studied clinical problem
– Intention to test: “Intention to diagnose” or “intention to screen”
– Inclusion criteria corresponding with “indicated” population
– (“Iatrotropic”) consecutive series or target population survey

The next step is generally straightforward: the specification of the relevant
process of selection of patients for the study (corresponding with the clinical
problem and the health care setting requirements), and the relevant inclusion
criteria (in accordance with the indicated population and the relevant patient
spectrum). Exclusion criteria may also be defined, identifying those patients
for whom the reference standard procedure is too risky or too burdensome.
The importance of explicitly formulated entry criteria is demonstrated by a
study on the diagnostic value of reported collapse for the diagnosis of clini-
cally relevant arrhythmias in general practice: if the inclusion was based on
presented symptoms the odds ratio (OR) was 1.9, whereas for an inclusion
based on coincidentally finding a pulse, <60 or >100 bpm or an irregular
pulse, the OR was 10.1.35 Investigators should include “indicated” patients,
as long as there is no compelling reason not to do so in order to avoid that
after the study a non-evidence-based testing practice will not be introduced
or maintained for relevant parts of the “real-life” patient spectrum. In this
context, it is emphasized that in the elderly, comorbidity in addition to the
possible presence of the target disorder is often an important aspect of clini-
cal reality.36 For the clinical applicability of the study, measuring comorbidity
and studying it as a modifier of diagnostic accuracy is the preferred approach,
instead of excluding it.

In the section on study design, we discussed the choice between population
survey and disorder- or test-oriented subject selection, covering the principal
starting point of patient recruitment. In addition, the pros and cons of the
various options for practical patient recruitment should be considered, as em-
phasized before. When problems presented to clinicians are studied, recruiting
(a random sample of) a series of consecutively presenting patients who meet
the criteria of the indicated population is most sensible for clinical validity
purposes. This should preferably be supported by a description of the patient
flow in health care before presentation. Sometimes, however, it may take too
long to await the enrollment of a sufficiently large consecutive series – when
the clinical problem or target disorder is very rare, or when a useful contri-
bution to rapidly progressing diagnostic knowledge can only be made within
a limited period. In such situations, active surveys of the target population or
sampling from a patient register can be alternatives. However, it should be
borne in mind that such methods may yield a population of study subjects
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with a different clinical spectrum. Also, for such subjects the indication to test
is less clear than for patients who experienced an “iatrotropic” stimulus4,37 to
visit a doctor at the very moment that they want their health problem to be
solved.

Of course, for validating test procedures to be used in population screening,
an active survey of a study population similar to the target population is the
best approach.

In order to enhance external validity, it is essential to measure key demo-
graphic and clinical characteristics of the identified study population, and to
evaluate nonresponse in relation to these characteristics. Furthermore, all im-
portant steps in the study protocol, with data on specific subgroups, including
subgroup nonresponse, should be documented. This can be supported by a
flow diagram.

Adverse effects of test and reference standard

Apart from its accuracy, the performance of a test has to be evaluated as
to its (dis)comfort to both patient and doctor. In particular, a test should be
minimally invasive and have a minimal risk of adverse effects and serious
complications. Measuring these aspects in the context of a diagnostic accuracy
study can add to the comparison with other tests as to their clinical pros and
cons.

For the research community, it is also important to learn about the invasive-
ness and risks of the reference standard used. For example, if in the evaluation
of the positive test results of hemoccult screening colonoscopy, sigmoidoscopy,
or double-contrast barium enema were to be used, one might expect compli-
cations (perforation or hemorrhage) once in 300–900 subjects investigated.38

Researchers can use the experience reported by colleagues studying similar
problems to make an optimal choice of reference standard procedure, taking
possible adverse events into consideration.

Statistical aspects

Box 3.6 Statistical aspects

– Sample size
– Bivariate and multivariable analysis
– Test accuracy or prediction of outcome
– Single test, comparing tests or strategies, additional testing
– Difference between diagnostic and etiologic data analysis

In the planning phase of the study, the required sample size is often not
considered, although it is not less important than in any clinical epidemiolog-
ical study.39 To evaluate the relationship between a dichotomous test and the
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presence of a disorder, one can use the usual programs for sample size estima-
tion. For example, for a case–referent study with equal group sizes, accepting
certain values for type I and type II errors (e.g., 0.05 and 0.20, respectively)
and using two-sided testing, one can calculate the number of subjects needed
per group to detect a minimum sensitivity (proportion of test positives among
the diseased, e.g., at least 0.60) assuming a certain maximum proportion of
test positives among nondiseased (e.g., 0.20, implying a specificity of at least
0.80). For this example, the calculation using the program EPI-Info would
yield a required number of 27 cases and 27 referents. Of course, when per-
forming a cross-sectional study prospectively in a consecutive series with a
low expected prevalence of the target disorder (i.e., unequal group sizes for
disease status), the required sample will be much higher. Also, if a number of
determinants is simultaneously included in the analysis, the required sample
size is higher: as a rule of thumb, for each determinant at least 10 subjects
with the target disorder are needed.40

Data analysis in diagnostic research follows the general lines of that in clini-
cal epidemiological research. For single tests the first step is a bivariate analysis
focused on one predictive variable only, for example in a 2 × 2 table in the
case of a dichotomous test. It is possible to stratify for modifiers of accuracy,
thereby distinguishing relevant clinical subgroups, and to adjust for potential
confounding variables. In addition to point estimates, confidence intervals for
the measures of diagnostic accuracy can be determined.41 Subsequently, there
are various options for multivariable analysis, taking multiple independent
and various outcome variables into account simultaneously. Multiple logistic
regression is especially useful for analyzing accuracy data.17,18,19,42 The data
analytical challenges in diagnostic research are discussed in detail in Chap-
ters 7 and 8.

It is important to distinguish the analytical approach focusing on the ac-
curacy of individual tests from the analysis where an optimal prediction of
the presence of the studied disorder in patients is at stake. In the first, the
dependent variable may even be test accuracy itself, as a function of various
determinants. In the latter, a diagnostic prediction model can be derived with
disease probability as the dependent variable, and with various tests, demo-
graphic, and clinical covariables as independent variables.43,44,45

When a number of tests are applied, there are various analytical options.
First, the accuracy of all tests can be determined and compared. Furthermore,
using multivariable analysis such as multiple logistic regression, the combined
predictive power of sets of test variables can be determined. Moreover, starting
from the least invasive and most easily available test (such as history taking),
it can be evaluated whether adding more invasive or more expensive tests
contributes to the diagnosis. For example, the subsequent contributions of
history, physical examination, laboratory testing, and more elaborate addi-
tional investigations can be analyzed, supported by displaying the ROC curves
(with areas under the curve) of the respectively extended test sets (see Chap-
ters 7 and 8).12,35,46
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It must be acknowledged that data analysis in diagnostic research is essen-
tially different from etiologic data analysis. The principal difference is that
etiologic analysis usually focuses on the effect of a hypothesized etiologic fac-
tor adjusted for the influence of possible confounders, thereby aiming at a
causal interpretation. In diagnostic research, the focus is on identifying the
best correlates of the target disorder irrespective of causal interpretations. It
is, in fact, sufficient if these correlates (tests) can be systematically and repro-
ducibly used for diagnostic prediction. Whereas in etiologic analysis there is a
natural hierarchical relation between the possible etiologic factor of interest
and the covariables to be adjusted for, such a hierarchy is absent for the possi-
ble predictors in diagnostic research. This implies that diagnostic data analysis
can be more pragmatic, seeking for the best systematic correlates.

External validation

Analyses of diagnostic accuracy in the collected data set, especially the results
of multivariable analyses, may produce too optimistic results that may not be
reproducible in clinical practice or similar study populations.47,48 Therefore,
while this is not always done,49 it is advisable to perform one or more separate
external validation studies in independent but clinically similar populations.

Box 3.7 External (clinical) validation

– Results based on study data may be too optimistic
– “Split-half” analysis is no external validation
– Repeated studies in other, similar populations are preferred
– First exploration: compare first included half with second half
– Role of systematic reviews and meta-analysis

Sometimes authors derive a diagnostic model in a random part of the re-
search data set and test its performance in the other part (e.g., split-half
analysis). However, this approach is not addressing the issue of external val-
idation: in fact, it only evaluates the degree of random error at the cost of
possibly increasing such error by reducing the available sample size, often by
50%.43 Also, other methods using one and the same database do not provide
a real external validation. An exploratory approximation, however, could be
to compare the performance of the diagnostic model in the chronologically
first enrolled half of the patients, with that in the second half. The justifica-
tion is that the second half is not a random sample of the total but rather a
subsequent clinically similar study population. However, totally independent
studies in other, clinically similar settings will be more convincing. In fact, over
time, various studies can be done in comparable settings, enabling diagnostic
systematic reviews and meta-analyses to be performed or updated. This may
yield a constantly increasing insight into the performance of the studied diag-
nostic tests, both in general and in relevant clinical subgroups (Chapter 10).
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Concluding remarks

Compared to research into etiology, pathophysiology, and treatment effects,
diagnostic accuracy research has relatively recently been established as a spe-
cific domain of scientific interest.50 This is an important development, as opti-
mizing clinical decision making, health care provision, and patients’ outcome
largely depends on the quality of diagnostic performance.

As in any research, investigating the accuracy of diagnostic testing starts
from the research question. It is based on the clinical problem under study,
the test contrast to be evaluated, and the current state of knowledge, and is the
key to the most appropriate research design. The elaborated research protocol
should include the design type; the relevant determinants, encompassing the
test(s) of interest, possible modifiers of test accuracy, and confounding vari-
ables; the reference standard procedure; inclusion criteria and a recruitment
procedure that matches the clinical problem and the target population; a well-
motivated sample size; and a suitably planned statistical analysis. These key
elements should also be clearly reflected in the reporting of diagnostic accuracy
studies in scientific journals, supported by the STARD guidelines (Chapter 9).51

External (clinical) validation will generally require a new study in one or more
independent, similar populations and justify separate publication, also to feed
systematic reviews and meta-analyses.52 Sometimes reviewers and editors do
not well understand this if they ask that the primary diagnostic accuracy re-
port should already include an external validation study, while they would
never require such a “double study” in the case of a randomized therapy trial.

In view of the close relation between diagnosis, prognosis, and clinical deci-
sion making, it is important to connect accuracy research with the evaluation
of prognostic impact. This will be further elaborated in the next chapter.

References

1. van den Akker M, Buntinx F, Metsemakers JF, et al. Multimorbidity in general
practice: prevalence, incidence, and determinants of co-occurring chronic and re-
current diseases. J Clin Epidemiol. 1998;51:367–75.

2. Feinstein AR. Misguided efforts and future challenges for research on “diagnostic
tests.” J Epidemiol Community Health. 2002;56:330–32.

3. van den Bruel A, Cleemput I, Aertgeerts B, et al. The evaluation of diagnostic tests:
various study designs are needed. J Clin Epidemiol. 2007;60(11):1116–22.

4. Feinstein AR. Clinical epidemiology: the architecture of clinical research. Philadelphia:
W.B. Saunders; 1985.

5. Sackett DL, Haynes RB, Guyatt GH, et al. Clinical epidemiology: a basic science for clinical
medicine. Boston: Little, Brown; 1985.

6. Lijmer JG, Mol BW, Heisterkamp S, et al. Empirical evidence of design-related bias
in studies of diagnostic tests. JAMA. 1999;282:1061–66.

7. Ransohoff DF, Feinstein AR. Problems of spectrum and bias in evaluating the effi-
cacy of diagnostic tests. N Engl J Med. 1978;299:926–30.

8. Knottnerus JA, Leffers P. The influence of referral patterns on the characteristics of
diagnostic tests. J Clin Epidemiol. 1992;45:1143–54.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:25

Accuracy of diagnostic tests 61

9. Moons KGM, Es GA van, Deckers JW, et al. Limitations of sensitivity, specificity,
likelihood ratio, and Bayes’s theorem in assessing diagnostic probabilities: a clinical
example. Epidemiology. 1997;8:12–17.

10. Bossuyt PM, Irwig L, Craig J, et al. Comparative accuracy: assessing new tests
against existing diagnostic pathways. BMJ. 2006;332:1089–92.

11. Sackett DL, Haynes RB. The architecture of diagnostic research. BMJ. 2002;
324:539–41.

12. Stoffers HEJH. Peripheral arterial occlusive disease: prevalence and diagnostic management
in general practice. PhD dissertation, Maastricht University, Maastricht: Datawyse;
1995.

13. Vroomen PCAJ. The diagnosis and conservative treatment of sciatica. PhD dissertation,
Maastricht University, Maastricht: Datawyse, 1998.

14. Knottnerus JA, Knipschild PG, Van Wersch JWJ, et al. Unexplained fatigue and
hemoglobin, a primary care study. Can Fam Physician. 1986;32:1601–164.

15. Oostenbrink R, Moons KG, Bleeker SE, et al. Diagnostic research on routine care
data: prospects and problems. J Clin Epidemiol. 2003;56:501–6.

16. Miettinen OS. Theoretical epidemiology: principles of occurrence research in medicine. New
York: John Wiley & Sons; 1985.

17. Spiegelhalter DJ, Knill-Jones RD. Statistical and knowledge-based approaches to
clinical decision support systems, with an application to gastroenterology. J R Stat
Soc. 1984;147:35–76.

18. Chan SF, Deeks JJ, Macaskill P, et al. Three methods to construct predictive models
using logistic regression and likelihood ratios to facilitate adjustment for pretest
probability give similar results. J Clin Epidemiol. 2008;61(1):52–63.

19. Dinant GJ, Knottnerus JA, Van Aubel PGJ, et al. Reliability of the erythrocyte
sedimentation rate in general practice. Scand J Primary Health Care. 1989;7:231–35.

20. Moons KG, Grobbee DE. When should we remain blind and when should our eyes
remain open in diagnostic studies? J Clin Epidemiol. 2002;55:633–36.

21. Spigt MG, van Schayck CP, van Kerrebroeck PE, et al. Pathophysiological aspects of
bladder dysfunction: a new hypothesis for the prevention of “prostatic” symptoms.
Med Hypotheses. 2004;62:448–52.

22. Wolfs GGMC. Obstructive micturition problems in elderly male, prevalence and
diagnosis in general practice. PhD dissertation, Maastricht University, Maastricht:
Datawyse, 1997.

23. Muris JW, Starmans R. Non acute abdominal complaints : diagnostic studies in general pra-
ctice and outpatient clinic. PhD dissertation, Maastricht University, Maastricht; 1993.

24. Warndorff DK, Knottnerus JA, Huijnen LG, et al. How well do general practitioners
manage dyspepsia? J R Coll Gen Pract. 1989;39:499–502.

25. Knottnerus JA, Dinant GJ. Medicine based evidence, a prerequisite for evidence
based medicine. BMJ. 1997;315:1109–10.

26. Green MS. The effect of validation group bias on screening tests for coronary artery
disease. Stat Med. 1985;4:53–61.

27. Begg CB, Greenes RA. Assessment of diagnostic tests when disease verification is
subject to selection bias. Biometrics. 1983:39:207–16.

28. Knottnerus JA. The effects of disease verification and referral on the relationship
between symptoms and diseases. Med Decis Making. 1987;7:139–48.

29. Hunink MG. Outcome research and cost-effectiveness analysis in radiology. Eur
Radiol. 1996;6:615–20.

30. Moons KGM. Diagnostic research: theory and application. PhD dissertation, Erasmus
Medical Centre, Rotterdam, 1996.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:25

62 Chapter 3

31. Ransohoff DF. Challenges and opportunities in evaluating diagnostic tests. J Clin
Epidemiol. 2002;55:1178–82.

32. Knottnerus JA. Challenges in dia-prognostic research. J Epidemiol Community Health.
2002;56:340–41.

33. Dinant GJ. Diagnostic value of the erythrocyte sedimentation rate en general practice. PhD
dissertation, Maastricht University, Maastricht; 1991.

34. van der Schouw YT, Verbeek AL, Ruijs SH. Guidelines for the assessment of new
diagnostic tests. Invest Radiol. 1995;30:334–40.

35. Zwietering P. Arrhythmias in general practice, prevalence and clinical diagnosis. PhD
dissertation, Maastricht University, Maastricht: Datawyse, 2000.

36. Schellevis FG, van der Velden J, van de Lisdonk E, et al. Comorbidity of chronic
diseases in general practice. J Clin Epidemiol. 1993;46:469–73.

37. Knottnerus JA. Between iatrotropic stimulus and interiatric referral: the domain
of primary care research. J Clin Epidemiol. 2002:55:1201–6.

38. Towler BP, Irwig L, Glasziou P, et al. Screening for colorectal cancer using the faecal
occult blood test, hemoccult. Cochrane Database Syst Rev. 2007;(1):CD001216.

39. Bachmann LM, Puhan MA, ter Riet G, et al. Sample sizes of studies on diagnostic
accuracy: literature survey. BMJ. 2006;332:1127–29.

40. Harrell FE, Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in devel-
oping models, evaluating assumptions and adequacy, and measuring and reducing
errors. Stat Med. 1996;15:361–87.

41. Guyatt GH, Sackett DL, Haynes RB. Evaluating diagnostic tests. In: Haynes RB,
Sackett DL, Guyatt GH, et al. Clinical epidemiology: how to do clinical practice research.
Philadelphia: Lippincott, Williams & Wilkins; 2006.

42. Biesheuvel CJ, Vergouwe Y, Steyerberg EW, et al. Polytomous logistic regres-
sion analysis could be applied more often in diagnostic research. J Clin Epidemiol.
2008;61(2):125–34.

43. Knottnerus JA. Diagnostic prediction rules: principles, requirements and pitfalls.
Prim Care. 1995;22:341–63.

44. Laupacis A, Sekar N, Stiell IG. Diagnosis: Clinical prediction rules: a review and
suggested modifications of methodological standards. JAMA. 1997;277:488–94.

45. McGinn T, Guyatt G, Wyer P, et al. Clinical prediction rules. In: Guyatt J. and
Rennie D. (eds.), Users’ guides to the medical literature, pp 471–83 Chicago: AMA
Press, 2004.

46. Hopstaken RM, Muris JW, Knottnerus JA, et al. Contributions of symptoms, signs,
erythrocyte sedimentation rate, and C-reactive protein to a diagnosis of pneumonia
in acute lower respiratory tract infection. Br J Gen Pract. 2003;53:358–64.

47. Starmans R, Muris JW, Fijten GH, et al. The diagnostic value of scoring models
for organic and non-organic gastrointestinal disease, including the irritable-bowel
syndrome. Med Decis Making. 1994;14:208–16.

48. Bleeker SE, Moll HA, Steyerberg EW, et al. External validation is necessary in
prediction research: a clinical example. J Clin Epidemiol. 2003;56:826–32.

49. Van den Bruel A, Aertgeerts B, Buntinx F. Results of diagnostic accuracy studies
are not always validated. J Clin Epidemiol. 2006;59:559–66.

50. Knottnerus JA, van Weel C, Muris JW. Evaluation of diagnostic procedures. BMJ.
2002;324:477–80.

51. Bossuyt PM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting
of studies of diagnostic accuracy: the STARD initiative. Clin Radiol. 2003;58:575–80.

52. Grobee DE, Hoes AW. Clinical Epidemiology. Principles, methods and applications
for clinical research. Boston: Jones and Barlett, 2008.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

CHAPTER 4

Diagnostic testing and
prognosis: the randomized
controlled trial in test
evaluation research
Jeroen G. Lijmer and Patrick M. M. Bossuyt

Summary box� Test evaluations should focus on the likelihood that tests detect clinical
events of interest and the effect that tests can have on these events by
the way in which test results affect subsequent management decisions.� Randomized controlled trails of medical tests are feasible and several
designs are possible.� Randomized controlled trails of medical tests can be made more
efficient by randomizing only patients with the test result of interest.� A randomized controlled trail of medical tests should incorporate a
prespecified link between test and treatment options to ascertain
validity and generalizability.� Sample-size calculations need special attention and have to include an
estimation of the discordance rate.

Why bother about the prognostic impact of a
diagnostic test?

For scientific purposes, it is worth knowing whether a result from a medical
test corresponds to the truth. Can this value be trusted? Is this test result truly
a sign of disease? These are the first questions that come to the mind in the
evaluation of medical tests.
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From a patient perspective, mere knowledge about the present, true state of
things is in most cases not enough. They want to get better. In relieving their
health problems, information will not always suffice. Patients mainly benefit
from medical testing if the information generated by that test is correctly used
in subsequent patient management decisions.

Medical tests can affect a patient’s health in multiple ways. First, undergoing
the test can have an impact. The adverse effects range from slight discomfort
and temporary unpleasantness to lasting side effects or death. On the other
side, undergoing an elaborate procedure can also have a nonspecific positive
effect on patient complaints—regardless of the information that results from
it. This can be called the “placebo” effect of testing. We know very little about
the magnitude and modifying factors of this context effect.

In addition to the effects from the diagnostic procedure, the information
generated by the test also influences patients. Providing information on the
likely cause of one’s health problems or other aspects of health status can
have both a positive and a negative effect, albeit limited. As patients, we want
to be informed about the origin of our complaints, even in the absence of
a cure. Such information may enable us to find better ways of coping with
the complaints, by developing strategies to limit their disabling impact on our
daily activities.

However, the main effects of medical tests on patient outcome will be in-
direct, as the result of subsequent clinical decisions based on the test results.
These results can lead to additional testing or to starting or withholding thera-
peutic interventions. In many cases, not only the present state of health that is
of interest but also the future course of disease. It then follows that the value of
information from diagnostic tests lies not only in the past (where did this come
from) or the present (how is it) but also in the future. Hence, the relevance of
diagnostic information is closely related to prognosis: the implications for the
future course of the patient’s condition.

The first section of this chapter discusses the evaluation of the prognostic
impact of a single test, starting from an evaluation of its prognostic value and
moving on to the consequences for treatment. It closes with a presentation of
randomized designs for evaluating test–treatment combinations. The second
section contains an elaboration of these methods for comparing and evaluating
multiple test strategies, also including randomized clinical trials. The chapter
ends with a discussion on practical issues.

How to measure prognostic impact of a test

A recent example of the assessment of the prognostic value of a test is an eval-
uation of the routine exercise treadmill testing after percutaneous coronary
intervention, which showed no use for routine tests. A more extensive studied
problem can be found in the literature on the management of carotid disease.
Several studies have examined the need to perform duplex ultrasonography
in patients with a cervical bruit without further symptoms of cerebrovascular
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Figure 4.1 Prognostic study.

disease. To answer this question, an assessment has to be made of the value
of duplex ultrasonography. Such an evaluation will often look at the amount
of agreement between the index test (duplex ultrasonography) and the refer-
ence test (the best available method to reveal the true condition of the carotid
arteries). In this case, the reference test will mostly likely be conventional
angiography. If properly conducted, a 2 × 2 table can be constructed after
the study is done and all indicators of diagnostic accuracy can be calculated.
Unfortunately, many of the evaluation studies in diagnostic techniques for
carotid stenosis performed so far did not meet the design requirements for an
unbiased and useful evaluation.1

From a patient perspective, one could successfully argue that it is not so
much the correspondence with “the truth” that should be of concern, espe-
cially not in asymptomatic patients. For these patients, the true value of the
information should come from the strength of the association between data
on the presence and the severity of carotid stenosis and the likelihood of vas-
cular events in the near future. The appropriate reference standard for such
an evaluation will not be an imaging procedure. Instead, one should look for
clinical information collected through a meticulous follow-up of all patients
subjected to the index test.

Figure 4.1 illustrates the general design of such a study. All patients with
cervical bruits without previous cerebrovascular disease are eligible for the
study. A duplex ultrasonography (US) of the right and left common and in-
ternal arteries is performed in all patients and the percentage of stenosis is
measured. Ideally, none of the patients receives treatment. Subsequently, pa-
tients are followed by regular outpatient visits and telephone interviews. The
following clinical indicators of poor outcome are recorded: transient ischemic
attack (TIA), stroke, myocardial infarction, unstable angina, vascular deaths,
and other deaths.

With data recorded in such a study, standard accuracy measures can be
calculated to express the prognostic value of a test. Table 4.1, based on data
published by Lewis et al.2 shows a positive and negative predictive value of
47% and 80%, respectively, in predicting a poor outcome for a stenosis ≥80%,
as detected on duplex. They also showed that the relative risk of a stenosis
≥50% for a TIA or stroke was 2.3. However, insufficient data were presented
to reconstruct the 2×2 table for this cutoff point.
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Table 4.1 Prognostic value of duplex ultrasonography

Poor outcome Favorable outcome

Stenosis ≥ 80% 63 (47%) 72 (53%) 135

Stenosis <80% 113 (20%) 451 (80%) 564

Total 176 523 699

The study in Figure 4.1 can provide an answer to the question whether or
not a test is able to discriminate between different risk categories for a specific
event. Such prognostic information, although valuable to patients and health
care professionals, does not answer whether there is an intervention that can
improve the prognosis of these patients. To respond to the latter question, it
is necessary to compare the prognosis for different treatment strategies.

Randomized designs for a single test
A slight modification of the design in Figure 4.1 allows us to measure the
prognostic value of a test within the context of subsequent clinical decision
making. Instead of treating all patients in an identical way, one can randomly
allocate patients to one of the two treatment strategies, establishing the prog-
nostic value of the test in each arm, in a way that is similar to the previous
example.

A straightforward comparison of patient outcome in the two treatment arms
provides an answer as to which treatment is the most effective for all patients
included in the trial. Moreover, an analysis stratified by test result offers the
possibility to compare the effectiveness of the treatment options for groups
with identical test results.

This type of design and analysis can be illustrated with another example
from the field of cerebrovascular disease. In the management of acute stroke
patients, the role of intravenous anticoagulation and duplex ultrasonography
of the carotid arteries is unclear. A large trial has been performed, with as
its primary objective to document the efficacy of unfractionated heparin in
the treatment of acute stroke. A secondary objective was an evaluation of the
role of duplex ultrasonography in selecting patients for anticoagulation.2–4 A
simplified version of the design of this trial is outlined in Figure 4.2. Patients

Figure 4.2 Basic RCT of a single diagnostic test.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

Diagnostic testing and prognosis 67

Table 4.2 Analysis of a RCT of a single diagnostic test

a Unfractionated heparin b Placebo

Poor Favorable Poor Favorable

outcome outcome outcome outcome

Stenosis 38 (32%) 82 (68%) 120 Stenosis 51 (47%) 58 (53%) 109

≥50% ≥ 50%

Stenosis 121 (23%) 400 (77%) 521 Stenosis 116 (22%) 409 (78%) 525

<50% <50%

Total 159 482 641 Total 167 467 634

c Stenosis larger than 50% or occlusion d Stenosis Smaller than 50%

Poor Favorable Poor Favorable

outcome outcome outcome outcome

Unfract. 38 (32%) 82 (68%) 120 Unfract. 121 (23%) 400 (77%) 521

heparin heparin

Placebo 51 (47%) 58 (53%) 109 Placebo 116 (22%) 409 (78%) 525

Total 89 140 229 Total 237 809 1046

e Comparison of strategies

Poor Favorable

outcome outcome

Duplex US 154 (24%) 491 (76%) 645

No duplex US 167 (26%) 467 (74%) 634

Total 321 958 1279

Duplex US: Decision whether to give UFH is based on duplex ultrasonography.

The odds ratios and their 95% CI (confidence interval) of a to e are 1.5 (0.99–2.4), 3.1 (2.0–4.8),

0.53 (0.31–0.90), 1.1 (0.80–1.4), and 0.88 (0.68–1.1). The relative odds ratio of a/b or c/d is 0.48.

with evidence of an ischemic stroke, with symptoms present for more than 1
hour but less than 24 hours, were eligible for the study. A duplex ultrasonog-
raphy of the right and left common and internal arteries was performed in all
included patients. Subsequently, patients were randomized to treatment with
an unfractionated heparin or placebo and followed for 3 months. A favorable
outcome after stroke was defined as a score of I (good recovery) or II (moder-
ate disability) on the 5-point Glasgow Outcome Scale and a score of 12 to 20
on the modified Barthel Index.

Tables 4.2a and 4.2b show the prognostic value of Duplex ultrasonography
in each trial arm. An odds ratio can be calculated for each table. These odds
ratios can be interpreted as measures of the natural prognostic value (Table 4.2b)
and the prognostic value with intervention (Table 2a), respectively. Another pre-
sentation of the same data gives us Tables 4.2c and 4.2d, which provide us
with information on the treatment effect in both test result categories.
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Figure 4.3 Randomizing abnormal test results.

We will call the odds ratios of the latter two tables treatment effect in test normals
and treatment effect in test abnormals. In case the test discriminates well between
patients that benefit from treatment and those that do not, the treatment effect
in test abnormals will differ from the treatment effect in test normals. The ratio
of the odds ratios of these two tables can therefore be used as a measure of
the prognostic impact of the test.

The study in Figure 4.2 provides information on the treatment effect in all
test result categories. In practice, it will not always be necessary or ethical to
randomize all patients, as uncertainty may exist only for patients with a spe-
cific, say, abnormal, test result. This will be the case when there is information
available that the prognosis for normal test results is good and that patients
with such results need no intervention. A logical translation of such a question
into a study design would be to randomize only patients with abnormal test
results between the different treatment options.

Consider the first example of duplex ultrasonography in patients with cer-
vical bruits. Such a trial could provide evidence that the natural history of
patients with a stenosis of less than 50% have a good prognosis.

The trial outlined in Figure 4.3 can subsequently answer the question if
therapy improves the prognosis of patients with a stenosis of 50% or more.
As in the first example, all patients with cervical bruits without previous cere-
brovascular disease are eligible for the study. A duplex ultrasonography of
the right and left common and internal arteries is performed in all patients
to measure the percentage of stenosis. Subsequently, if the stenosis is 50% or
more, patients are randomly assigned to receive either aspirin 325 mg a day or
placebo. The clinical endpoints, TIA, stroke, myocardial infarction, unstable
angina, vascular deaths, and other deaths are recorded during follow-up.

Coté and colleagues performed such a trial in 1995. They randomized 372
neurologically asymptomatic patients with a carotid stenosis of 50% or more
between aspirin and placebo. By comparing the outcomes in both treatment
arms the effectiveness of treating patients with a stenosis of 50% or more
with aspirin was evaluated (treatment effect in test abnormals). In 50 of the
188 patients receiving aspirin and 54 of the 184 patients receiving placebo
a clinical event was measured during follow-up, yielding an adjusted hazard
ratio (aspirin versus placebo) of 0.99 (95% confidence interval (CI), 0.67 to
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Table 4.3 Analysis of a RCT, randomizing only abnormal test results

b Treatment effect in case

a Natural prognostic value of ≥50% stenosis

Poor Favorable Poor Favorable

outcome outcome outcome outcome

Stenosis ≥50%* 54 (29%) 130 (71%) 184 Aspirin 50 (27%) 138 (73%) 188

Stenosis <50% 72 (22% ) 255 (78%) 327 Placebo 54 (29%) 130 (71%) 184

Total 126 385 511 Total 104 268 372

RCT, randomized controlled trial.

*Random sample of patients with a stenosis ≥50%.

1.46). The authors concluded that aspirin did not have a significant long-term
protective effect in asymptomatic patients with high-grade stenosis (more then
50%).

The trial in Figure 4.3 can also provide information on the accuracy of
Duplex US in predicting the outcomes of interest (natural prognostic value).
This can be done by comparing the outcome in patients in the placebo arm,
who all had an abnormal test result, with the outcome in patients with a nor-
mal test result. A prerequisite for this comparison is that patient management
in both of these arms is similar. Table 4.3a and 4.3b show the crude results and
possible comparisons. Note that to calculate the diagnostic accuracy of Duplex
US it is necessary to correct for the sampling rate of patients with a high-grade
stenosis.

Alternative randomized designs

An alternative to the design in Figure 4.3 would be to move the point of ran-
domization back in time, to the point where the test results are not yet known.
This comes down to the randomization of all patients to either disclosure or
nondisclosure of the results of the test.

The latter design was used to study the effect of MRI findings in patients
with low back pain on patient outcome and to evaluate Doppler ultrasonog-
raphy of the umbilical artery in the management of women with intrauterine
growth retardation (IUGR).5,6 In the latter study, 150 pregnant women with
IUGR underwent Doppler ultrasonography and were subsequently random-
ized to disclosure or nondisclosure of the test results (Figure 4.4a). In the
group in which the results of the test were revealed, women were hospital-
ized in case of abnormal flow and discharged with outpatient management
in case of normal flow. In the nondisclosure group, all patients received the
conventional strategy for women with IUGR of hospitalization, regardless of
their test results. The trial compared perinatal outcome, neurological devel-
opment, and postnatal growth between the two strategies. The trial design,
depicted in Figure 4.4, allows us to determine the natural prognostic value
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Figure 4.4 Alternative randomized designs.

and the treatment effect in test abnormals. Unfortunately, the authors did not
report sufficient data to reconstruct the necessary 2×2 tables.

One could move the point of randomization further back in time, to the
decision whether or not to perform the test. This was done in a large study
evaluating the use of immediate computed tomography in patients with acute
mild head injury.7 The study is outlined in Figure 4.4B. Patients with mild
head injury presenting at the emergency department were randomly allo-
cated to two strategies. The first strategy consisted of applying the head CT
scan in patients with mild head injury. In the case of a normal scan, patients
were discharged home. In the case of an abnormal scan, treatment depended
on the findings. In the second strategy, all patients were admitted for obser-
vation according to local standard practice guidelines. Subsequently, clinical
outcome was measured after 3 months with the extended Glasgow coma scale
questionnaire.

This design evaluates the effects of both the test and the treatment. It is not
possible to distinguish the treatment effect from the prognostic value of the
test. Similar outcomes in both arms will be observed if there is no difference in
outcome with either home-care or clinical management in all patients satisfy-
ing the inclusion criteria for this trial. Any differences in outcome cannot be
attributed to the test only. In case of a wrong choice of treatment, the outcome
of the CT scan arm can turn out to be inferior to the conventional strategy, no
matter how good or reliable the test actually is. This same line of reasoning
can also be applied in case of a superior outcome in the CT scan arm. If there
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is a (sub)group of patients that is better off with home care, then the expected
outcome in the patients allocated to immediate CT will always be superior,
regardless of the intrinsic quality or accuracy of the test. Even a random test
will then generate a benefit.

The study showed a slightly better outcome in the CT scan arm although
nonsignificant. As the authors extensively monitored all clinical decisions,
they concluded that this was due to early surgery in some patients with severe
injury in the CT-scan group.

How to compare test strategies

In many clinical situations, there are multiple tests available to examine the
presence of the target condition. When one wants to compare two competing
tests, the first three designs introduced earlier for the evaluation of a single
test have to be adapted slightly.

To compare the prognostic value of two tests, a straightforward translation
of Figure 4.1 is to perform both tests in all patients and monitor the outcome
of interest during a follow-up period. Such a design is outlined in Figure 4.5a.

Figure 4.5 Designs to compare diagnostic strategies.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

72 Chapter 4

Table 4.4 A 4×2 table of the results of two dichotomous tests

Outcome

A B + −
+ +
+ −
− +
− −
Total

The data of such a study can be used to calculate and compare the prognostic
value of each test, using conventional measures of test accuracy. One can
also analyze the data by stratifying the results according to the possible test
combinations. With two dichotomous tests, this will result in a 4×2 table
(Table 4.4). Note that each possible combination of results on test A and test
B is treated as a separate test result category, analogously to a single test with
four possible result categories.

Subsequently, the predictive value or the likelihood ratio of each result
category can be calculated as a measure of prognostic value.8

To examine both tests in the context of subsequent clinical decision making,
it is possible to randomize all patients between two treatment strategies, similar
to the design in Figure 4.2, regardless of their test results. Figure 4.5b shows
an example of such a design: both tests are performed and all patients are
randomly allocated to one of the two treatment options. This design allows
one to explore the prognostic value of both tests in each treatment arm. In
addition, the data of such a trial can be used to find the most effective treatment
for all patients included in the trial. If statistical power allows it, subgroup
analysis of the treatment effect in the four possible test result categories offers
the possibility to identify the most effective treatment option for patients in
the respective categories.

Although the previous design allows for a series of explorations, only some
are relevant from a clinical perspective. When two tests are compared, one
of them is often already used in clinical practice and decisions on subsequent
management are made based on this test. Let us assume that, in clinical
practice, test positive patients are treated and test negative patients are not. If
future decisions are to be made under the guidance of the new test, patients
who test positive on the new test will be treated and those who test negative
will not. This means that the only patients that will be managed differently
are the ones who test positive on the existing test but negative on the new
one, and those who test negative on the existing test but positive on the new
one.

As patients with concordant test results (++ or −−) will receive the same
management, it is unnecessary and in some circumstances even unethical to
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Table 4.5 Analysis of a RCT of two tests randomizing only discordant results

a Treatment effect A+B− b Treatment effect A−B+

Poor Favorable Poor Favorable

A+ B− outcome outcome A− B+ outcome outcome

Treatment I Treatment I

Treatment II Treatment II

Total Total

c Treatment d No treatment

Poor Favorable Poor Favorable

A B outcome outcome A B outcome outcome

+ − + −
− + − +

Total

e Strategy based on A f Strategy based on B

Poor Favorable Poor Favorable

A B outcome outcome A B outcome outcome

+ − + −
− + − +

Total

examine the treatment effect in these two subgroups. If a new test (B) is then
examined with a goal to substitute the old, possibly more invasive and/or
costly, test (A), the design in Figure 4.5c, randomizing only the discordant test
results, is more efficient. Subsequently the treatment effect and the predictive
values of the discordant result categories (A+B− and A−B+) can be examined
(see Tables 4.5a–4.5d).

In gray are the outcomes of a treatment decision based on the results of test
A, in white the outcomes based on test B.

By transposing these tables, it is possible to examine the effect of a clini-
cal pathway based on test A or test B for patients with discordant test results
(Tables 4.5e–4.5f). The difference in poor outcome rate between these two
tables is, after correcting for the frequency of discordant results, equal to ab-
solute risk difference of a clinical pathway based on test A compared to a
pathway based on test B. To calculate the relative risk or the total risk of each
strategy separately it is necessary to have information on the clinical event
rate in each concordant group.

An alternative design, using the random disclosure principle, is outlined in
Figure 4.6a. Both tests A and B are performed in all patients. Subsequently
patients are randomized between a clinical pathway based on test A without
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Figure 4.6 Alternative designs to compare diagnostic strategies.

disclosing the results of test B or a pathway based on test B with nondisclosure
of the results of test A. The same measures and tables can be obtained from
such a design as discussed for the design in Figure 4.5.

In some situations, one might want to let the point of randomization coin-
cide with that of the clinical decision to choose either test A or test B and to
act on the respective results. This design has to be chosen if there is a differ-
ence in the delay in obtaining the test results. An example is the evaluation
of rapid diagnostic blood tests versus classic microscopic blood slide evalua-
tion of outpatients suspected of malaria.9 Another trial used this design to
study two different diagnostic approaches for the management of outpatients
with dysphagia.10 Patients with dysphagia are at risk for aspiration pneumo-
nia. Modified barium swallow test (MBS) and flexible endoscopic valuation of
swallowing with sensory testing (FEESST) are supposed to distinguish patients
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who can benefit from behavioral and dietary management from those who
will need a percutaneous endoscopic gastrostomy (PEG) tube.

For the discussion, we consider a simplified design as outlined in Figure
4.6b. Outpatients presenting with dysphagia were randomly allocated to ei-
ther a strategy using MBS or a strategy using FEESST to guide subsequent
management. During one year of follow-up, the occurrence of pneumonia
was recorded in both trial arms. There were 6 cases of pneumonia in the
50 (12%) patients allocated to the FEEST strategy and 14 in the 76 (18%)
patients allocated to the MBS strategy. The absolute risk difference was not
significantly different from zero (risk difference 6%; 95% CI –6% to 19%). As
no patient received both tests, it is not possible to distinguish the treatment
effect from the prognostic value of the tests, nor is it possible to compare the
outcome in the subgroups with discordant test results.

Often a new test is introduced to complement rather than to replace existing
tests.11 One example is where the new test is to be added to the diagnostic
pathway before an existing test as a triage instrument. Patients with a par-
ticular test results (say, negative) on the new test will not be subjected to
the existing test. Alternatively, the new test is added after the existing tests,
making further refinement possible in diagnosis or treatment decisions.

If a test is added at the end of a diagnostic workup to further classify disease,
all the designs, presented in Figures 4.2 to 4.4 for the single test evaluation
can be used to evaluate this new classification. For example, to evaluate the
prognostic impact of a genetic test for the classification of women with breast
cancer in two different subgroups, one could use a design similar to the one
in Figure 4.3. Women suspected of breast cancer are evaluated with the con-
ventional diagnostic workup. Subsequently only women with breast cancer
are eligible for the trial. In all these women genetic tests are performed. De-
pending on tests results, they are subsequently randomly allocated to one of
the two types of treatment.

In case the goal of a new test is to limit the amount of people undergoing the
classic diagnostic workup (triage), designs in Figures 4.5b and 4.5c and 4.6a
can be used to evaluate the prognostic impact of such a strategy. Using the
principle that only patients with test results that will actually account for the
difference are randomized, one could also adapt the design of Figures 4.5b,
randomizing only patients with the pair of discordant test results that will be
treated differently if the new strategy is adopted. Another option is drawn in
Figure 4.7a.

As the difference between the two strategies comes from the group of pa-
tients who are not selected for the classic diagnostic workup, one can random-
ize only these patients to either the classic workup and treatment or manage-
ment based on the results of the new test.

Many studies to evaluate the use of a test as a triage instrument have ran-
domized all patients between the two different diagnostic workups.12–14 Lassen
et al. evaluating helicobacter pylori serology as a way to reduce the number of
patients subjected to endoscopy used the trial design outlined in Figure 4.7b.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

76 Chapter 4

Figure 4.7 Designs to evaluate triage.

Patients presenting in primary care with dyspepsia were randomly assigned
to either H Pylori and eradication therapy or prompt endoscopy. In case of a
negative Helicobacter Pylori test. patients were still subjected to endoscopy.
During a one-year follow-up, the symptoms were recorded on a Likert
scale.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

Diagnostic testing and prognosis 77

Table 4.6 Possible analyses of each randomized design

1, 5a 2 3, 4a 5b 5c, 6a 4b, 6b, 7a, 7b

Natural prognostic value X X X X

Prognostic value with intervention X X

Treatment effect test abnormals X X X

Treatment effect test normals X X

Treatment effect discordant tests X X

Strategy effect X X X X X

Choice of design

Each of the designs discussed in Figures 4.1 to 4.7 has its own advantages and
disadvantages. Depending on the clinical problem one wants to answer, the
type of information needed, and the costs of tests or follow-up, one design
can be preferred over another.

The outlined in Figures 4.2 to 4.4 can be used to evaluate a strategy with a
new test compared to a classic strategy without such a test. In case of an add-
on test, the classic strategy will consist of the classic diagnostic workup and
treatment. In case of a replacement problem, any of the trial designs outlined
in Figure 4.5b to 4.6b can provide an answer. The designs outlined in Figures
4.5b, 4.6a, 4.7a, and 7b can provide an answer in case of a triage problem.

Table 4.6 gives an overview of the information that can be deducted from
the different designs.

The designs in Figures 4.2 and 4.5b, testing all patients and randomizing
all between two treatment strategies, provide the most information. In addi-
tion to data on the effects of the two evaluated strategies, they can provide
information on the treatment effect and, in the case in which one of the arms
has no treatment (only follow-up), on the prognostic value of all possible test
result categories. Yet these designs are not always ethical, as there is often
evidence of one treatment being better for some of the test result categories.
In that case, a better alternative are the designs outlined in Figures 4.3, 4.5c,
and 4.7a in which only the group of patients are randomized: those for which
there is uncertainty in the subsequent management. The designs in Figures
4.4b, 4.6b, and 4.7b have frequently been used in the medical literature, prob-
ably because of their pragmatic attractiveness. In these designs the point of
randomization coincides with the decision to perform either test A or test B.
From a cost-perspective these designs can be more be economical than the
other designs, in case of an expensive test, as on average less patients receive
tests, as compared to the other designs. In case follow-up is expensive de-
signs randomizing only patients with the test category of interest (Figures 4.3,
4.5c, and 4.7) are more efficient, as less patients will be needed to achieve
the same amount of statistical precision.15 However, the latter designs are not
feasible in case tests are compared that influence each other’s performance.
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For example, it is not possible to compare two surgical diagnostic procedures,
mediastinoscopy and anterior mediastinomy, for the detection of mediastinal
lymphomas by performing them both in all patients as suspected lymph nodes
are removed.16

Practical issues

We have discussed the pros and cons of different designs to evaluate the prog-
nostic impact of a single test or to compare different test strategies. In the
design of a trial, there are several other issues that should be considered in
advance. In all of the examples we have presented here there was a prespeci-
fied link between test results and management decisions. Test positive patients
were to receive one treatment, test negative another. If such a link is absent,
and physicians are free to select therapy for each test result, it will remain
unclear to what extent poor results of the trial reflect deficiencies of the test
itself, ineffective treatment options or, alternatively, incorrect management
decisions. Detailed information on the treatment protocol is also necessary for
others to implement the possible findings of the study. A clear specification
of the treatment options and their relation with the different test results is an
absolute necessity for any diagnostic study.15

As for each randomized controlled trial, methods to preserve allocation con-
cealment and blinding deserve special attention. It has been shown empiri-
cally that inadequate concealment of allocation as well as inadequate blinding
can lead to exaggerated estimates of a strategy’s effectiveness.17 One way to
guard adequate allocation concealment is a central randomization procedure.
In some situations the use of sealed opaque envelopes with monitoring of the
concealment process may be more feasible.18 Blinding of the outcome mea-
surement for the randomization outcome is of greater importance for some
outcomes than for others, but can be implemented with the same methods
as developed for therapeutic trials. Blinding of the physician or patient to the
allocation is more difficult. In case two different strategies are randomized
(Figure 4.6b) one can imagine that the knowledge of the type of test influ-
ences subsequent management decisions of a physician, despite a prespecified
link. For example an obstetrician might be more reassured with the results of
a magnetic-resonance pelvimetry in breech presentation at term compared to
manual pelvimetry, which will influence subsequent decisions to perform an
emergency section.19 One could choose a design that randomizes test results
to overcome this problem. Alternatively, one could try to mask the physician
by only presenting standardized test results without any referral to the type
of test.

The a priori calculation of the necessary sample size for a randomized diag-
nostic study is not straightforward. When discussing Figure 4.5c, we showed
that the expected difference in outcome between the two test strategies re-
sults from the expected difference in the category with discordant test results
only. In trials in which patients are randomized to one of two test strategies
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Figure 4.8 Sample size calculation.

(Figure 4.6b), a large group of participants will also not contribute to the final
difference. Let us explain this with another randomized diagnostic trial from
the literature in which ultrasonography was compared with clinical assess-
ment for the diagnosis of appendicitis.20 The authors report a power of 80%
to detect a reduction in the nontherapeutic operation rate from 11% to 2%,
by randomizing 302 patients. What are the nominator and denominator of
these estimated rates?

Figure 4.8 shows the two trial arms. A large group of patients with abnormal
results in the ultrasound group, indicating operation, would also have been
detected at clinical examination. The same argument stands for a subgroup
of patients with a normal ultrasound. The sum of these two groups forms the
total with concordant test results. As patients with concordant test results will
receive the same management, their event rates will be identical except for
chance differences. The rate of 11% results from (X + N + O)/151. The rate
of 2% results from (Y + N + O)/151. The rate difference, 9%, solely results
from the events in the discordant group. By assuming a concordance rate
of ultrasonography with clinical assessment of 80%, one can calculate the
postulated rate difference in this discordant group: 9%/20% is 45%. This
could result from a rate of nontherapeutic operations of 55% in patients with
a positive clinical assessment and otherwise negative ultrasound, and a rate
of 10% in patients with a positive ultrasound and otherwise negative clinical
examination. (This implies that the event rate is 0% in the concordant group,
which is not very likely as the authors already discuss in their introduction that
15%–30% of all operations are nontherapeutic.) With some extra calculations,
we can show that the difference assumed by the authors implies a discordance
rate of at least 80%. It would be very strange to expect such a high discordance
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rate in advance. This example shows that it is important to incorporate the
discordance rate in sample size calculations of randomized trials of diagnostic
tests.

Conclusions

In this chapter, we discussed the evaluation of the prognostic impact of tests.
From a patient perspective, one could argue that it is not so much the cor-
respondence with “the truth” that should be the focus of a diagnostic test
evaluation but the likelihood that such a test detects events of clinical interest
and the possibilities that exist to let test results guide subsequent clinical deci-
sion making to reduce the likelihood of these events occurring. The latter can
be evaluated by evaluating a test–treatment combination in a clinical trial, for
which several possible designs were discussed.

The examples of published randomized diagnostic trials in this chapter show
that it is feasible to perform such a thorough evaluation of a diagnostic test.
Recent examples include the evaluation of different diagnostic techniques for
ventilation-assisted pneumonia and the comparison of multidetector row CT
with digital substraction angiography,21,22 additional examples can be found
evaluating mediastinoscopy, cardiotocography, and MRI12,23,24 and of a num-
ber of screening tests.25–27 These date even back to 1975.28

In most of these trials, the point of randomization coincided with the clinical
decision whether to perform the tests. This makes it impossible to differenti-
ate between the treatment effect and the prognostic value of the test. Power
analyses of any diagnostic trial should incorporate an estimation of the dis-
cordance rate, as differences in outcome can only be expected for patients
that have discordant test results. In this chapter, we have shown that a design
incorporating randomization of discordant test results is more efficient, pro-
vides more information, and is less prone to bias. Most important, all of these
designs require a prespecified test–treatment link. This allows for application
of study results in other settings and guards the internal validity of the study.
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CHAPTER 5

The diagnostic before–after
study to assess clinical impact
J. André Knottnerus, Geert-Jan Dinant, and Onno P. van Schayck

Summary box� The before–after design is more appropriate for evaluating the clinical
impact of single or additional testing than comparing the impact of
different diagnostic options.� Demonstrating an effect of diagnostic testing on the patient’s health
outcome is more difficult than showing a change in the doctor’s
assessment and management plan.� Whether and what specific blinding procedures have to be applied
depends on the study objective.� To optimize the assessment of the independent effect of the test
information, performance of the test or disclosure of the test result can
be randomized. This would change the before–after design in a
randomized trial.� The therapeutic consequences of the various test results can be
standardized in the research protocol, provided that such therapy
options are clinically rational and have a well-documented evidence
base. The study will then evaluate the impact of the test result
connected with a predefined therapeutic consequence, rather than the
impact of the test result per se.� If evaluating the doctor’s assessment is the primary study objective,
the assessment should preferably take place immediately after
disclosure of the test result, with a minimal risk of interfering factors
influencing the doctor’s judgment.� Because a rather long follow-up is mostly needed to estimate the
impact of testing on the clinical course, the risk of interfering
influences is substantial.

(continued)
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(continued)� Given that before–after studies can be carried out relatively fast,
largely embedded in daily care, while randomized controlled trials
(RCTs) are generally more complex or expensive, a well-designed
before–after study may sometimes be used to explore whether and
how a diagnostic RCT should be performed. If an RCT is impossible or
infeasible, or ethically unacceptable, a well-designed before–after
study can be the most suitable alternative.

Introduction

Apart from facilitating an accurate diagnosis, diagnostic testing is aimed at
causing change: starting from a baseline situation, applying the test and inter-
preting its outcome should result in a new situation. In fact, the most important
justification for diagnostic testing is that it is expected to make a difference, by
influencing clinical management and ultimately benefiting the patient’s well-
being. Accordingly, performing a diagnostic test can be seen as an intervention
that should be effective in bringing about a clinically relevant change.

In studying the clinical effect of a test result, the randomized controlled trial
(RCT) is the strongest methodological design option,1,2,3 as was dealt with in
Chapter 4. However, although it is the paradigm for effectiveness research, an
RCT cannot always be achieved.4 This is, for example, the case if randomly
withholding a test or test result from patients or doctors is considered medically
or ethically unacceptable. Difficulties may also arise if the diagnostic test is
integrated in the general skills of the clinician, so that performing it cannot
be randomly switched on and off in his or her head, nor simply assigned to
a different doctor. This is especially problematic if at the same time patients
cannot be randomly assigned to a doctor. This situation may, for instance,
occur in studying the impact of diagnostic reasoning skills in general practice.
Also, when an RCT is complex and expensive, or will last too long to still be
relevant when the results become available, one may wish to consider a more
feasible alternative.

One alternative that may be considered is the diagnostic before–after study.5

This approach seems attractive, as it fits naturally within the clinical process
and is generally easier to perform than the randomized trial. Therefore, this
chapter will discuss the potentials, limitations, and pitfalls of this design option.

The research question

Example
In a study to assess the diagnostic impact of erythrocyte sedimentation rate
(ESR) in general practice, 305 consecutive patients with aspecific symptoms
for whom general practitioners (GPs) considered ESR testing necessary were
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Pretest diagnostic
    interpretation

53/305 = 17.4%
severe pathology

→
↑

Posttest diagnostic
    interpretation

51/305 = 16.7%
severe pathology

ESR result

Figure 5.1 Pre- and posttest diagnostic assessment in studying the impact of ESR.

included.6 Before testing, the GPs were asked to specify the most likely di-
agnosis in each patient, and to assess whether this diagnosis was severe in
the sense of malignant or inflammatory disease for which further manage-
ment would be urgently needed. Subsequently, the ESR was independently
performed and the result was made available to the GPs, who then again spec-
ified their (revised) diagnostic assessment. After 3 months, based on all the
available medical information, a clinical assessment was carried out for each
patient by an independent clinician not knowing about the pre- and posttest
assessments for each patient, in order to establish a final diagnosis (reference
standard).7

In Figure 5.1 the percentage of patients most likely having severe pathology
according to the GP is presented before and after disclosure of the ESR result.
Overall, there seems to be no relevant pre- or posttest change. However, look-
ing at Table 5.1, it is clear that there was a change in 32 individual patients: 17
from severe pathology to “other,” and 15 from “other” to severe pathology.

Whether these changes had indeed resulted in a more accurate diagnostic
assessment could be determined after correlating the GPs’ pre- and posttest
findings with the reference standard procedure. It appeared that the pretest
accuracy of the GPs’ assessment was 69% (that is, 69% of cases were correctly
classified), whereas the posttest accuracy was 76%, implying an increase of
7%. Of the 32 patients with a diagnostic classification changed by the GP, nine
with a positive (severe) posttest diagnosis proved to be “false positives,” and
two with a negative (other) posttest diagnosis were “false negatives.”

The test characteristics of the ESR (cut-off value ≥27mm/1h) could be also
determined in relation to the reference diagnosis, yielding a sensitivity of 53%,

Table 5.1 Relation between pre- and posttest diagnostic assessments in studying the
impact of ESR

Posttest interpretation

Pretest interpretation Severe pathology Other Total

Severe pathology 36 17 53

Other 15 237 252

Total 51 254 305
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Pretest baseline
    Doctor’s assessment
    of clinical problem:

* diagnostic or
   prognostic
   interpretation

* clinical
   management

Patient:
* health status

→
↑

Posttest outcome
    Doctor’s assessment
    of clinical problem:

* diagnostic or
   prognostic
   interpretation

* clinical
   management

Patient:
* health status

Determinants
* test result
* effect
   modifiers

* confounding
   variables

Figure 5.2 General representation of the research question in a diagnostic
before–after study.

a specificity of 94%, a positive predictive value of 46%, and a negative pre-
dictive value of 91%.

The general model
The basic question in the diagnostic before–after study is whether applying a
certain diagnostic procedure favorably influences the doctor’s (a) diagnostic
or (b) prognostic assessment of a presented clinical problem; (c) the further
management; and, ultimately, (d) the patient’s health. It essentially comprises
the baseline (pretest) situation, a determinant (the test), and the outcome
(posttest situation) (Figure 5.2).

The point of departure can be characterized by a clinical problem, with the
doctor’s assessment regarding the possible diagnosis, prognosis, or the pre-
ferred management option, and the patient’s health status at baseline, without
knowing the information from the test to be evaluated. The patient’s health
status at baseline is important, not only as a starting point for possible outcome
assessment but also as a reference for generalizing the study results to similar
patient groups.

The determinant of primary interest is performing the diagnostic test and
disclosure of its result, which is in fact the intended intervention. Further-
more, it is often useful to consider the influence of effect modifying variables
such as the doctor’s skills and experience, and – as diagnostic classification
is essentially involved with distinguishing clinically relevant subgroups – the
patient’s age and gender, and preexisting comorbidity. In addition, the effect
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of possible confounding variables should be taken into account. For exam-
ple, extraneous factors such as reading publications or attending professional
meetings may affect the clinician’s assessment. But also the time needed to
do the test and obtain its result may be important, as it may be used to think
and study on the clinical problem, and this will independently influence the
assessment. Moreover, the patient’s health status may have changed as a re-
sult of the clinical course of the illness, by interfering comorbidity and related
interventions, by environmental factors, or by visiting other therapists. The
patient’s symptom perception may have been influenced by information from
family, friends, or the media, or by consulting the internet. Also, the patient
may claim to have benefited from a diagnostic intervention because he does
not wish to disappoint the doctor.

The key challenge for the investigator is now to evaluate the extent to which
applying the diagnostic test has independently changed the doctor’s diagnos-
tic or prognostic assessment of the presented clinical problem, the preferred
management option, or the patient’s health status. The latter will generally
be influenced indirectly, via clinical management, but can sometimes also be
directly affected, for example, because the patient feels himself being taken
more seriously by the testing per se. Moreover, patient self-testing,8 which is
becoming more common, can influence patient self-management.

At this point, two important limitations of the before–after design must be
emphasized. First, the design is more appropriate to evaluate the impact of a
single diagnostic procedures or “add on” technologies5,9 (adding a new test
to already existing tests) than to compare the impact of different diagnostic
technologies or strategies. For the latter purpose, one could, in principle, apply
both studied technologies, for example, colonoscopy and double-contrast bar-
ium enema, in randomized order, to all included patients, and then compare
the impact of disclosing the test results, again in random order, on the clini-
cians’ assessment. Another example would be to subject patients to both CT
and MRI head scanning to study their influence on clinicians’ management
plans in those with suspected intracranial pathology. However, such compar-
isons are unrealistic, as the two tests would never be applied simultaneously in
practice. Moreover, such studies are generally very burdensome for patients,
not to say ethically unacceptable, and would make it virtually impossible to
study the complication rate of each procedure separately.10 When the various
options are mutually exclusive, for example, when comparing diagnostic la-
parotomy with endoscopy in assessing intra-abdominal pathology as to their
adverse effects, a before–after design is clearly inappropriate. In such situa-
tions, a randomized controlled trial is by far the preferred option. Only when
the compared tests can be easily carried out together without any problem
for the patient, these can be applied simultaneously. This can be done, for
instance, when comparing the impact of different blood tests using the same
blood sample. However, when the disclosure of the results of the compared
tests to the clinicians is then randomized, which would be a good idea, we are
in fact in the RCT option.
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Second, demonstrating an effect of diagnostic testing on the patient’s health
outcome is much more difficult than showing a change in the doctor’s assess-
ment and management plan, as it usually takes quite some time to observe a
health effect that might be ascribed to performance of the test. Controlling for
the influence of the many possible confounders over time generally requires
a concurrent control group of similar patients not receiving the test. However,
a diagnostic before–after study could be convincing in case of: (1) studying a
clinical problem with a highly predictable or even unavoidable outcome in the
absence of testing (such as signs of an imminent rupture of an aneurysm of the
aorta); (2) while adding specific diagnostic information (an appropriate imag-
ing technique) leading to a specific therapeutic decision (whether and how to
operate) (3), which is aimed at a clearly defined short-term effect, such as pre-
vention of a rupture, and survival (followed by less specific long-term effects,
e.g., rehabilitation). However, such opportunities are extraordinary. Besides,
some clinicians would consider such clinical situations to be self-evident and
not needing evaluation by research, while others may still see room for dispute
as to what extent clinical events are predictable or unavoidable.

Working out the study

Pretest baseline
The study protocol follows the elements of the research question.

At baseline, the clinical problem and the study question are defined. The
clinical problem could be aspecific symptoms as presented in primary care,
for example, with the question being whether the ESR would contribute to
the doctor’s diagnostic assessment,6,7 or sciatica, in order to study whether
radiography would affect therapeutic decision making.

The health status of each patient to be included is systematically doc-
umented, using standardized measurement instruments for the presented
symptoms, patient history, physical examination, and further relevant clin-
ical data.

Overseeing all available patient data, the doctor makes a first clinical as-
sessment of the probability of certain diagnoses or diagnostic categories. In
primary care, for example, the probability of a severe organic malignant or
inflammatory disorder can be assessed. This can be done for one specified di-
agnostic category, for a list of specified diagnoses, or in an open approach, just
asking the differential diagnosis the doctor has in mind, with the estimated
probability of each specific diagnostic hypothesis being considered.

Furthermore, the doctor is asked to describe the preferred diagnostic or ther-
apeutic management plan, which can be done, again, according to a prepared
list of items or as an open question.

At baseline, as earlier emphasized, possibly relevant effect modifying vari-
ables should be considered. Often the general clinical experience of the clini-
cians and their specific expertise regarding the test under study are important.
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Furthermore, variables characterizing important clinical subgroups can be as-
sessed, and potential confounding factors have to be measured to be able to
take these into account in the data analysis. Recording of covariables is some-
times difficult, for example, for extraneous variables such as media exposure.
Moreover, it cannot be excluded that important or even decisive factors are
not identified or foreseen.

Diagnostic testing
In performing the diagnostic procedure under study and revealing its outcome
after the baseline assessment, different options can be considered, depending
on the specific study objective.� If one wishes to assess the specific effect of the test information on the out-

come, in addition to the pretest clinical information, the test result should be
determined independently from the pretest information. This is especially
relevant for test procedures with a subjective element in the interpreta-
tion of the result, such as patient interviews, auscultation, x-ray films, and
pathological specimens. Accordingly, those who interpret the test should
not be aware of the pretest information. However, when patient history
itself is the test to be evaluated, this will generally not be feasible.� If the investigator wishes to assess the diagnostic process as it is usually
embedded in clinical practice, the interpretation of the test result can be
carried out as usual without specific blinding procedures. However, partic-
ularly for tests with subjective elements in reading or interpretation of the
results, this will imply that the independent contribution of the test cannot
be determined.� When it is important to limit possible confounding effects of a preoccupa-
tion of participating doctors with the expected relevance of a certain test,
the investigator may wish to obscure the performing of the evaluated test
itself. This can theoretically be achieved by not telling the doctor in advance
about what specifically is being evaluated, and by disclosing the test result
while also providing information on a number of other items irrelevant for
the studied comparison. However, such masking is difficult and often not
feasible, or may be so much in conflict with clinical reality that the findings
will not be relevant for practice. Intentional obscuring of the specific re-
search question will need the explicit approval of the medical ethics review
board.� To optimize the assessment of the independent effect of the test information,
performance of the test or, even more precisely, disclosure of the test result,
can be randomized so that half of the participants would and half would
not get the result. In fact, this would change the before–after design into a
randomized trial, which is discussed in Chapter 4.

Because tests are almost never perfect, applying it may produce misclassifi-
cation. Even when most patients are more accurately classified if the clini-
cian uses the test information, some patients with a correct pretest diagno-
sis may be incorrectly classified after testing, for example, because of a false
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positive or false negative result as has been shown in the ESR example. As this
may have important negative consequences for those patients—for example,
when a false positive mammography would lead to unnecessary surgery—
it is recommended to include evaluation of the actual disease status in the
context of the before–after study. This also enables the investigator to deter-
mine test accuracy by relating the test result cross-sectionally to the disease
status, established according to an acceptable reference standard.10 (see also
Chapter 3)

Posttest outcome
The measurement of the final posttest outcome after disclosure of the test re-
sult (diagnostic assessment, preferred management plan, and/or patient health
status) should follow the same procedure as the baseline measurement. In do-
ing so, both the doctor and the patient will generally remember the baseline
status, implying that the posttest assessment of the doctor’s differential diag-
nosis and management options and the patient’s symptom perceptions cannot
be blinded for the pretest assessment. This has probably been the case in the
example of the diagnostic impact of the ESR measurement.

When one is evaluating the impact of adding the test information to already
known clinical information at baseline in order to make a comprehensive
assessment, lack of blinding is not always a principal problem. In fact, it is
clinically natural and supported by Bayes’s theorem to study the impact of the
test result in the light of the prior probability. However, when clinicians are
more or less “anchored” to their initial diagnostic assessment, they are biased
in that they do not sufficiently respond to the test information in revising their
diagnostic assessment (Chapter 12). But even this can sometimes be acceptable
for an investigator who deliberately aims to assess the impact of the test in
clinical reality, where such anchoring is a common phenomenon.11,12

When the posttest outcome is patient status, objective assessment of this
status independent of both pretest status and the doctor’s interpretations is
an important requirement. This is however not always easy to achieve, as has
been outlined in the section on ‘The research question.’

The clinical impact of testing will not be easily detected if there is no clear re-
lationship between revision of the diagnostic classification based on the test in-
formation, and the revision of the management plan.2 This relation can indeed
be unclear when doctors ignore the test information, or when the same test
result may lead to a variety of management decisions, including doing noth-
ing. The latter can, for example, be the case when laboratory tests are carried
out in asymptomatic patients. As a remedy, the therapeutic consequences of
the various test results can be standardized in the research protocol, provided
that such therapy options are clinically rational and have a well-documented
evidence base. Accordingly, the study will then evaluate the impact of the test
result connected with an already predefined therapeutic consequence, rather
than the impact of the test result per se. On the other hand, when there is
a lack of clarity beforehand as to the potential management consequences of
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Figure 5.3 Separate posttest measurements of doctor’s assessment (immediately) and
patient health outcome (later).

performing a test, we should ask ourselves whether such testing should be
evaluated or used at all.

If one evaluates a test which is already firmly accepted among the medi-
cal profession, the response of clinicians is in fact “programmed” by medical
education, continuing medical education, or clinical guidelines. In such cases
the investigator is studying the adherence to agreed guidelines rather than the
independent clinical impact of the test result.

The time factor
The interval between the pre- and posttest assessments should be carefully
chosen. Generally, the interassessment period should be short if evaluating
the doctor’s assessment is the primary study objective: the assessment should
preferably take place immediately after disclosure of the test result, with a min-
imal risk of interfering factors influencing the doctor’s judgment. Sometimes,
however, this may take some time (e.g., bacterial culture or pathological spec-
imen). As previously addressed, a rather long period until the final posttest
assessment is mostly needed if estimating the impact of testing on the clinical
course is the objective, although this longer period will be associated with an
increased risk of interfering interventions and influences during follow-up.
A combined approach can be chosen, with a pretest measurement, a posttest
measurement of the clinician’s assessment, and a longer follow-up period for
measuring patient health outcome, respectively (Figure 5.3). In the analysis,
then, the relation between the test’s impact on the clinician’s assessment and
patient outcome could be studied if extraneous factors and changes in the
clinical condition can be sufficiently controlled for. However, as outlined in
the section on the research question, this is often impossible in the context
of the before–after design. For the purpose of studying the test’s impact on
patient health, the randomized controlled trial is a more valid option.

Selection of the study subjects
Regarding the selection of the study subjects, similar methodological criteria
to those discussed in Chapter 3 should be met: the study patient population
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should be representative for the “indicated,” “candidate,” or “intended” pa-
tient population, or target population, with a well-defined clinical problem,
clinically similar to the group of patients in whom the diagnostic procedure
would be applied in practice. Accordingly, the healthcare setting from where
the patients come, the inclusion criteria, and the procedure for patient recruit-
ment must be specified. Regarding the selection of participating doctors, the
study objective is decisive. If the aim is to evaluate what the test adds to cur-
rent practice, the pre- and posttest assessments should be made by clinicians
representing usual clinical standards. However, if one wishes to ensure that
the test’s contribution is analyzed using a maximum of available expertise, top
experts in the specific clinical field must be recruited.

Generally, in clinical studies a prospectively included consecutive series of
patients with a clearly defined clinical presentation will be the most appropri-
ate option with the lowest probability of selection bias. If one were to retro-
spectively select patients who had already had the test in the past, one would
generally not be able to be certain whether those patients really had a similar
clinical problem, and whether all candidate patients in the source population
would have non-selectively entered the study population. Apart from this, a
valid before–after comparison of the doctors’ assessments (with the doctors
first not knowing and subsequently knowing the test result) is not possible
afterwards, as a change in diagnostic assessment and the planning of manage-
ment cannot be reliably reconstructed post hoc.

Sample size and analysis
Sample size requirements for the before–after study design need to be met
according to general conventions. Point of departure can be the size of the
before–after difference in estimated disease probability or other effectiveness
parameters (e.g., the decrease in the rate of [diagnostic] referrals) which would
be sufficiently relevant to be detected. If the basic phenomenon to be studied
is the clinical assessment of doctors, the latter are the units of analysis. When
the consequences for the patients are considered the main outcome, their
number is of specific interest.

The data analysis of the basic before–after comparison can follow the prin-
ciples of the analysis of paired data. In view of the relevance of evaluating
differences of test impact in various subgroups of patients, studying the effect
of effect modifying variables and adjusting for confounding factors using mul-
tivariable analytical methods, will add to the value of the study. When the
clinician and patient “levels” are to be considered simultaneously, multilevel
analysis is to be used.

As it is often difficult to reach sufficient statistical power in studies with
doctors as the units of analysis, and because of the expected heterogene-
ity in observational clinical studies, before–after studies are more appropri-
ate to test the hypothesis of a substantial clinical impact than to find subtle
differences.
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Modified approaches
Given the potential sources of uncontrollable bias in all phases of the study,
investigators may choose to use “paper” cases or clinical vignettes, audio- or
video-recorded patients, interactive computer-simulated cases, or “standard-
ized patients” especially trained to simulate a specific role consistently over
time. Standardized (simulated) patients can consult the doctor even without
being recognized as “non-real.”13,14 Furthermore, the pre- and posttest as-
sessments can also be done by an independent expert panel in order to ensure
that the evaluation of the clinical impact is based on best available clinical
knowledge. The limitations of such approaches are that they do not always
sufficiently reflect clinical reality, are less suitable (vignettes) for an interac-
tive diagnostic work up, cannot be used to evaluate more invasive diagnostics
(standardized patients), and do not allow additionally assessing diagnostic ac-
curacy.

A before–after comparison in a group of doctors applying the test to an in-
dicated patient population can be extended with a concurrent observational
control group of doctors assessing indicated patients, without receiving the
test information (quasi-experimental comparison). However, given the sub-
stantial risk of clinical and prognostic incomparability of the participating doc-
tors and patients in the parallel groups compared, and of possibly incorrect
able extraneous influences, this will often not strengthen the design substan-
tially. If a controlled design is considered, a randomized trial is to be preferred
(Chapter 4).

Concluding remarks

As Guyatt et al.3 have pointed out, in considering a before–after design to study
the clinical impact of diagnostic testing, two types of methodological problem
must be acknowledged. First, we have to deal with problems for which, in
principle, reasonable solutions can be found in order to optimize the study
design. In this chapter, some of these “challenges” have been discussed. Ex-
amples are appropriate specifications of the clinical problem to be studied and
the candidate patient population, and the concomitant documentation of test
accuracy. Second, the before–after design has inherent limitations that cannot
be avoided nor solved. If these are not acceptable, another design should be
chosen. The most important of these limitations are (1) the before–after de-
sign is especially appropriate for evaluating a single diagnostic procedure or
additional testing, rather than comparing two essentially different (mutually
exclusive) diagnostic strategies; (2) the reported pretest management options
may be different from the real strategy the clinicians would have followed if
the test had not been available, or if they would not have known that there is a
second (posttest) chance for assessment; (3) the pre- and posttest assessments
by the same clinicians for the same patients are generally not independent;
and (4) an unbiased evaluation of the impact of testing on the patients’ health
status can often not be achieved.
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Acknowledging the large number of difficulties and pitfalls of the before–
after design, as outlined in previous sections, we conclude that the design
can have a place especially if the pre- and posttest assessment interval can be
relatively short (evaluation of the test’s impact on the doctor’s assessment), and
if the relation between the diagnostic assessment, the subsequent therapeutic
decision making, and therapeutic effectiveness is well understood. If impact
on patient outcome is studied, it is important that the clinical course of the
studied problem in the absence of testing is well known and highly predictable.

Given the various limitations for studying the clinical impact of diagnostic
tests, the randomized controlled trial design, if feasible, will in most cases be
superior. However, given that before–after studies can be carried out relatively
fast, largely embedded in daily care, whereas RCTs are often more complex
or expensive, a well-designed before–after study may be useful to explore
whether a diagnostic RCT could be worthwhile, or how it should be performed.
In addition, if an RCT is impossible or infeasible, or ethically unacceptable, a
before–after study may be the most suitable alternative. Other options, which
could provide a more uniform clinical presentation and a better control of
interfering variables, are before–after studies using written patient vignettes,
interactive computer simulations, or standardized patients. The specific poten-
tials and limitations (e.g., representing less clinical reality and impossibility of
additional assessment of diagnostic accuracy) of these alternative approaches
will then have to be taken into account.
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CHAPTER 6

Designing studies to ensure
that estimates of test accuracy
will travel
Les M. Irwig, Patrick M. M. Bossuyt, Paul P. Glasziou,
Constantine Gatsonis, and Jeroen G. Lijmer

Summary box� There may be genuine differences between test accuracies in different
settings, such as primary care or hospital, in different types of hospital,
or between countries.� Deciding whether estimates of test accuracy are transferable to other
settings depends on an understanding of the possible reasons for
variability in test discrimination and calibration across settings.� The transferability of measures of test performance from one setting to
another depends on which indicator of test performance is to be used.� Real variation in the performance of diagnostic tests (such as different
test types, or a different spectrum of disease) needs to be distinguished
from artifactual variation resulting from study design features. These
features include the target condition and reference standard used, the
population and the clinical question studied, the evaluated
comparison, and the way the index test was performed, calibrated, and
interpreted.� In preparing studies on diagnostic accuracy, a key question is how to
design studies that carry more information about the transferability of
results.� To ensure that estimates of diagnostic accuracy will travel, before
starting to design a study the following questions must be answered:
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– How are the target condition and reference standard defined?
– Is the objective to estimate global test performance or to estimate

probability of disease in individuals?
– What is the population and clinical problem?
– Is the test being considered as a replacement or incremental test?
– To what extent do you want to study the reasons for variability of

the results within your population?
– To what extent do you want to study the transferability of the

results to other settings?� Designing studies with heterogeneous study populations allows
exploration of the transferability of diagnostic performance in different
settings. This will require larger studies than have generally been
carried out in the past for diagnostic tests.

Introduction

Measures of test accuracy are often thought of as fixed characteristics that
can be determined by research and then applied in practice. Yet even when
tests are evaluated in a study with adequate quality—including features such
as consecutive patients, a good reference standard, and independent, blinded
assessments of tests and the reference standard1—diagnostic test performance
in one setting may vary from the results reported elsewhere. This has been
explored extensively for coronary artery disease2,3,4,5 but has also been shown
for a variety of other conditions.6,7,8 This variability is not only due to chance.
There may be genuine differences between test accuracy in different settings,
such as primary care or hospital, different types of hospital, or the same type
of hospital in different countries. As a consequence, the findings from a study
may not be applicable to the specific decision problem for which the reader
has turned to the literature.

We suggest that deciding whether the estimates of test accuracy from studies
are transferable to other settings depends on an understanding of the possible
reasons for variability in test discrimination and calibration across settings.
Variability may be due to artifactual differences (e.g., different design features
of studies in different settings) or true differences (such as different test types,
or a different spectrum of disease). To decide on the transferability of test
results, we are concerned with true differences, after artifactual differences
have been addressed.9,10,11

This chapter is divided into two main sections. The first is concerned with
the reasons for true variability in accuracy; it explores conceptual underpin-
nings. The second section is a pragmatic guide for those interpreting and de-
signing studies of diagnostic tests. It is based on the view that value can be
added to studies of diagnostic tests by exploring the extent to which we can
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characterize the reasons for variability in diagnostic performance between
patients in different settings, and examining how much variability remains
unexplained.

Reasons for true variability in test accuracy:
conceptual underpinnings

Measures of diagnostic test performance: discrimination
and calibration
There are many measures of test accuracy. Broadly speaking, we can think of
them as falling into one of the following categories.

1 Global measures of test accuracy assess only discriminatory power. These mea-
sures assess the ability of the test to discriminate between diseased and nondis-
eased individuals. Common examples are the area under the receiver oper-
ating characteristic curve, and the odds ratio, sometimes also referred to as
the diagnostic odds ratio. They may be sufficient for some broad health policy
decisions, for example, whether a new test is in general better than an existing
test for that condition.

2 Measures of test performance to estimate the probability of disease in individuals
require discrimination and calibration. These measures are used to estimate prob-
abilities of the target condition in individuals who have a particular test result.
An example is the predictive value: the proportion of people with a particular
test result who have the disease of interest. To be useful for clinical practice,
these estimates should be accompanied by other relevant information. For ex-
ample, fracture rates in people with a particular result of a test for osteoporosis
differ between people depending on their age, sex, and other characteristics. It
is clumsy and difficult to estimate disease rates for all categories of patient who
may have different prior probabilities. Therefore, the estimation is often done
indirectly using Bayes’s theorem, based on the patient-specific prior proba-
bility and some expression of the conditional distributions of test results: the
distribution of test results in subjects with and without the target condition.
Examples are the sensitivity and specificity of the test, and likelihood ratios for
test results. These measures of test performance require more than the discrim-
ination assessed by the global measures. They require tests to be calibrated. As
an example of the difference between discrimination and calibration, consider
two tests with identical odds ratios (and ROC curves) which therefore have
the same discriminatory power. However, one test may operate at a threshold
that gives a sensitivity of 90% and a specificity of 60%, whereas the other op-
erates at a threshold that gives a sensitivity of 60% and a specificity of 90%.
Therefore, they differ in the way they are calibrated.

Features that facilitate transferability of test results
The transferability of measures of test performance from one setting to another
depends on which indicator of test performance is to be used. The possible
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Figure 6.1 Distribution of test results in individuals with the disease of interest (D)
and those without it (non-D). Numbers refer to assumptions for transferability of test
results as explained in the text and Table 6.1.

assumptions involved in transferability are illustrated in Figure 6.1. Table 6.1
indicates the relationship between these assumptions and the transferability
of the different measures of test performance.

The main assumptions in transferring tests across settings are as follows:
1 The definition of disease is constant. Many diseases have ambiguous defi-

nitions. For example, there is no single reference standard for heart failure,
Alzheimer’s disease, or diabetes. Reference standards may differ because con-
ceptual frameworks differ between investigators, or because it is difficult to
apply the same framework in a standardized way.

2 The same test is used. Although based on the same principle, tests may
differ—for example over time, or if made by different manufacturers.

3 The thresholds between categories of test result (e.g., positive and negative) are
constant. This is possible with a well-standardized test that can be calibrated
across different settings. However, there may be no accepted means of cali-
bration: for example, different observers of imaging tests may have different
thresholds for calling an image “positive.” The effect of different cut points is
classically studied by the use of an ROC curve. In some cases, calibration may
be improved by using category specific likelihood ratios, rather than a single
cut point.

4 The distribution of test results in the disease group is constant in shape and location.
This assumption is likely to be violated if the spectrum of disease changes: for
example, a screening setting is likely to include earlier disease, for which test
results will be closer to a nondiseased group (hence a lower sensitivity).

5 The distribution of test results in the nondisease group is constant in shape and
location. This assumption is likely to be violated if the spectrum of nondisease



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

100 Chapter 6

Table 6.1 Assumptions for transferring different test performance characteristics.
More important assumptions are marked X and those that are less crucial are
marked X

Assumption*
Measures of test

Discriminatory power 3 4 5 6 Comment

Odds ratio X X X Both of these measures are used for

global assessment of discriminatory

power and are transferable if the

assumptions are met. Neither of them is

concerned with calibration and therefore

cannot be used for assessing the

probability of disease in individuals.

Strictly speaking, assumptions 4 and 5 are

sufficient but not necessary for the

transferability of the area under the ROC

curve

Area under ROC X X

Measures of discriminatory

power and calibration

3 4 5 6

Predictive value X X X X Directly estimates probability of disease

in individuals

Sensitivity X X X

Specificity X X X These three measures can be used to

estimate the probability of disease in

individuals using Bayes’s theorem

Likelihood ratios for a

multi-category test

X X X

∗Assumptions are numbered as described in the text.

changes: for example, the secondary care setting involves additional causes of
false positives due to comorbidity, not seen in primary care.

6 The ratio of disease to nondisease (pretest probability) is constant. If this were
the case, we could use the posttest probability (“predictive” values) directly.
However, this assumption is likely to be frequently violated: for example, the
pretest probability is likely to be lowest in screening and greatest in referral
settings. This likely nonconstancy is the reason for using Bayes’s theorem to
“adjust” the posttest probability for the pretest probability of each different
setting.

All the measures of test performance need the first two assumptions to
be fulfilled. The extent to which the last four assumptions are sufficient is
shown in Table 6.1, although they may not be necessary in every instance;
occasionally the assumptions may be violated, but, because of compensating
differences, transferability is still reasonable.
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Lack of transferability and applicability of
measures of test performance
We need first to distinguish artifactual variation from real variation in di-
agnostic performance. Artifactual variation arises when studies vary in the
extent to which they incorporate study design features, such as whether con-
secutive patients were included, or whether the reference standard and the
index test were read blind to each other. Once such artifactual sources of
variation have been ruled out, we may explore the potential sources of true
variation.12 The issues to consider are similar to those for assessing interven-
tions. For interventions, we consider patient, intervention, comparator, and
outcome (PICO).13,14 For tests, the list is as follows, but with the target con-
dition (equivalent to outcome in trials) shifted to the beginning of the list: (1)
The target condition and reference standard used to assess it; (2) the popu-
lation/clinical question; (3) the comparison; and (4) the index test. We now
look at each of these in turn.

The target condition and the reference standard used to assess it

Test accuracy in any population will depend on how we define who has the
target condition(s) that the test aims to detect. Clearly, the stage and spec-
trum of the target disease will influence the accuracy of the index test, as
described later. However, even within a fixed spectrum and stage, there may
be different definitions of who is “truly” diseased or not. Depending on the
purpose of the study, the target conditions may be defined on grounds of clin-
ical relevance, oriented to management decisions or prognosis, or defined on
the grounds of pathological diagnosis. The definition of the target condition
is therefore an active choice to be made by the investigator and its relevance
interpreted by the reader of the study in the light of how they want to use the
information. For example, should myocardial infarction include (a) “silent”
myocardial infarction (with no chest pain)? (b) coronary thrombosis reversed
by thrombolytic treatment, which then averts full infarction? This issue of
the definition of the target condition and its method of ascertainment will
clearly affect the apparent accuracy of the index test. For example, in paral-
lel to considerations in clinical trials, the closer the reference standard is to
a patient-relevant measure, the more this will help decisions about clinical
applicability. Often reference standards that are considered objective and free
of error are surrogates for (predictors of) natural history, which could be mea-
sured directly. Consider the reference standard for a test for appendicitis. The
“objective” reference standard for a new test of appendicitis is often consid-
ered to be histology (arrow 2 on Figure 6.2.) In fact, conceptually, follow up of
natural history is a far more useful reference standard than histology (Figure
6.2, arrow 1). It is patient- relevant: those people who would have been found
to have abnormal histology but whose condition resolves without operation
can be considered false positives of the histological reference standard (Figure
6.2, arrow 3). In practice, the data for arrow 3 cannot be established, and we
need to use a combined reference standard that we would consider as natural
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Figure 6.2 Choosing a relevant
reference standard.

history when available and histology when not, rather than (as it is usually
conceptualized) histology when available and natural history when not.

The usual presentation deals with a dichotomous definition of the target
condition: it is either present or absent. In most cases, the possibility of multiple
conditions is more plausible. If these are known in advance, the polytomous
nature can be taken into account.15,16,17

Misclassification of the reference standard will tend to result in underes-
timation of test accuracy if the errors in the reference standard and test are
uncorrelated. The degree of underestimation is prevalence dependent in a
nonlinear way. Sensitivity is underestimated most when the prevalence of
the target condition is low, whereas specificity is underestimated most when
the prevalence of the target condition is high.18,19 The odds ratio is underes-
timated most when prevalence is at either extreme. Therefore, error in the
reference standard may cause apparent (rather than real) effect modifica-
tion of test discrimination in subgroups in which the target condition has
different prevalences.20,21 This is shown in Table 6.2 where the same hy-
pothetical test and reference standard are applied to a population in which
disease prevalence is 50% (top half of table) and about 9% (bottom half).
Sensitivity is reduced more in the population with 9% prevalence of disease,
and specificity more in the population at 50% prevalence. The odds ratio
is reduced most in the population at 9% prevalence. If errors in the refer-
ence standard are correlated with test errors, then the effect will be more
difficult to predict. Correlated errors may result in overestimation of test
accuracy.

The population and the clinical question

The population/clinical question are concerned not only with what disease
is being tested for, but with what presentation of symptoms, signs and other
information has prompted the use of the test. Test performance may vary in



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

Ensuring estimates of test accuracy 103

Table 6.2 Reference standard misclassification results in underestimation of test
accuracy and apparent effect modification of different prevalences

If reference standard has sensitivity = 0.9 and specificity = 0.8

True disease Reference standard

Test Present Absent Total Test Present Absent Total

Positive 80 30 110 Positive 78 32 110

Negative 20 70 90 Negative 32 58 90

Total 100 100 200 Total 110 90 200

Sensitivity = 0.80 OR = 9.3 Sensitivity = 0.71 OR = 4.4

Specificity = 0.70 Specificity = 0.64

If reference standard has sensitivity = 0.9 and specificity = 0.8

True disease Reference standard

Test Present Absent Total Test Present Absent Total

Positive 80 300 380 Positive 132 248 380

Negative 20 700 720 Negative 158 562 720

Total 100 1000 1100 Total 290 810 1100

Sensitivity = 0.80 OR = 9.3 Sensitivity = 0.46 OR = 1.9

Specificity = 0.70 Specificity = 0.69

different populations and with minor changes in the clinical question. There
are three critical concepts that help in understanding why this occurs. These
are the spectrum of disease, the referral filter, and the incremental value of
the test.� Spectrum of disease and nondisease. Many diseases are not on/off states, but
represent a spectrum ranging from mild to severe forms of disease.22 Tumors,
for example, start small, with a single cell, and then grow, leading eventually to
symptoms. The ability of mammography, for example, to detect a breast tumor
depends on its size. Therefore, test sensitivity will generally differ between
asymptomatic and symptomatic persons. If previous tests have been carried
out the spectrum of disease in tested patients may be limited, with patients
who have very severe forms of disease or those with very mild forms being
eliminated from the population. For example, in patients with more severe
urinary tract infection, as judged by the presence of more severe symptoms
and signs, the sensitivity of dipstick tests was much higher than in those with
minor symptoms and signs.6

Likewise, patients without the target condition are not a homogeneous
group. Even in the absence of disease, variability in results is the norm rather
than the exception. For many laboratory tests, normal values in women differ
from those in men. Similarly, values in children differ from those in adults,
and values in young adults sometimes differ from those in the elderly.
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Commonly, the “nondiseased” group consists of several different conditions,
for each of which the test specificity may vary. The overall specificity will de-
pend on the “mix” of alternative diagnoses: the proportion of people in each of
the categories that constitute the nondiseased; for example, prostate specific
antigen may have a lower specificity in older people or those with prostatic
symptoms, as it is elevated in men with benign prostatic hypertrophy.23 In
principle, patients without that target condition could represent a wide range
of other conditions. However, the decision to use a test is usually made because
of the presenting problem of the patient and the route by which they reached
the examining clinician. Hence, the actual range of variability in patients with-
out the target condition will depend on the mechanism by which patients have
ended up in that particular situation. As an example, consider a group of am-
bulant outpatients presenting with symptoms of venous thromboembolism
without having this disease compared to a group of inpatients suspected of
venous thromboembolism but actually having a malignancy. The specificity
of a d-dimer test in outpatients will be lower than that in inpatients.24� Referral filter. The discriminatory power of tests often varies across settings
because patients presenting with a clinical problem in one setting—for exam-
ple primary care—are very different from those presenting to a secondary care
facility with that clinical problem.25,26 Patients who are referred to secondary
care may be those with a more difficult diagnostic problem, in whom the usual
tests have not resolved the uncertainty. These patients have been through a
referral filter to get to the tertiary care center.

This concept can best be considered using the hypothetical results of a di-
agnostic test evaluation in primary care (Table 6.3). Imagine that patients are
referred from this population to a source of secondary care, and that all the
test positive patients are referred, but only a random half of the test negative
patients. As shown in Table 6.4, the overall test discrimination, as reflected
in the odds ratio, has not changed. However, there appears to be a shift in
threshold, with an increased sensitivity and a decreased specificity.

Of course, it is unlikely that test negatives would be referred randomly;
rather, it may be on the grounds of other clinical information that the practi-
tioner is particularly concerned about those test negatives. If the practitioner is

Table 6.3 Accuracy of a test in primary care

Disease

Test Present Absent Total

Positive 60 40 100

Negative 40 60 100

Total 100 100 200

Sensitivity = 0.60 OR = 2.25

Sensitivity = 0.60
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Table 6.4 Test accuracy if a random sample of test negatives are referred for
verification

Disease

Test Present Absent Total

Positive 60 40 100

Negative 20 30 50

Total 80 70 150

Sensitivity = 0.75 OR = 2.25

Specificity = 0.43

Table 6.5 Diagnostic performances vary by setting because of selective patient referral

Disease

Test Present Absent Total

Positive 60 40 100

Negative 25 25 50

Total 85 65 150

Sensitivity = 0.71 OR = 1.5

Specificity = 0.38

correct in identifying patients about whom there is an increased risk of disease,
the table could well turn out like Table 6.5.

In this case, because of the clinician’s skill and the use of other information,
the test threshold not only appears to be shifted but also the overall test perfor-
mance of the test in secondary care has been eroded, as shown by the reduced
odds ratio. The more successfully the primary care practitioner detects cases
that are test negative but which nevertheless need referral for management
of the disease of interest, the more the performance of the test in secondary
care is eroded.� To what prior tests is the incremental value of the new test being assessed? In
many situations, several tests are being used and the value of a particular test
may depend on what tests have been done before,27 or simple prior clinical
information.28,29 In Table 6.6, two tests are cross-classified within diseased and
nondiseased people. The sensitivity and specificity of each test is 0.6, and they
remain 0.6 if test B is used after test A, that is, the test performance character-
istics of B remain unaltered in categories of patients who are A positive and
those who are A negative.

However, if the tests are conditionally dependent or associated with each
other within diseased and nondiseased groups, for example because they both
measure a similar metabolite, then the overall test performance of B is eroded,
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Table 6.6 Incremental value when tests A and B are conditionally independent

Have disease No disease

A+ A− Total A+ A− Total

B+ 36 24 60 16 24 40

B− 24 16 40 24 36 60

Total 60 40 100 40 60 100

Notes: “Crude” sensitivity and specificity of both A and B = 0.6 and odds ratio = 2.25. If A is

+ or −, SnB = 0.6, SpB = 0.6, and OR = 2.25.

as judged by the OR changing from 2.25 to 2.00 (Table 6.7 and Figure 6.3).
In addition, there appears to be a threshold shift: the test is more sensitive
but less specific in patients for whom A is positive than in those for whom
A is negative. In other words, not only is the discrimination of the new test
(B) less if done after the existing test (A), as judged by the odds ratio, but the
calibration appears to differ depending on the result of the prior test. In fact,
the threshold has not altered but there has been a shift in the distribution of
test results in diseased and nondiseased groups, conditional on the results of
test A.

An example is provided by Mol and colleagues,30 who evaluated the perfor-
mance of serum hCG (human chorionic gonadotrophin) measurement in the
diagnosis of women with suspected ectopic pregnancy. Several studies have
reported an adequate sensitivity of this test.30 However, the presence of an
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Figure 6.3 Test characteristics for test B alone and in those with positive and negative
test A.
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Table 6.7 Incremental value when tests A and B are conditionally dependent

Have disease No disease

A+ A− Total A+ A− Total

B+ 40 20 60 20 20 40

B− 20 20 40 20 40 60

Total 60 40 100 40 60 100

Notes: “Crude” sensitivity and specificity of both A and B = 0.6. Odds ratio = 2.25. If A+,

SnB = 0.67, SpB = 0.50 and OR = 2.00. If A−, SnB = 0.50, SpB = 0.67 and OR = 2.00.

ectopic or intrauterine pregnancy can also be diagnosed with ultrasound. Mol
et al. reported the sensitivity of hCG to be significantly different in patients
with signs of an ectopic pregnancy (adnexal mass, or fluid in the pouch of
Douglas) on ultrasound, compared to those without signs on ultrasound. As
a consequence, an uncritical generalization of the “unconditional” sensitivity
will overestimate the diagnostic performance of this test if it is applied after
an initial examination with ultrasound, as is the case in clinical practice.30

Categories of patients for whom new tests are most helpful are worth inves-
tigating. For example, whole-body positron emission tomography (PET) con-
tributed most additional diagnostic information in the subgroup of patients in
whom prior conventional diagnostic methods had been equivocal.31

The comparison: replacement or incremental test

A new test may be evaluated as a replacement for the existing test, rather
than being done after the existing test, in which case the incremental value
is of interest. For assessment of replacement value, the cross-classification of
the tests is not necessary to obtain unbiased estimates of how the diagnostic
performance of the new test differs from that of the existing one. However,
information about how they are associated from a cross-classification will
provide extra useful information and improve precision.32

Readers may have noticed that the issue of incremental value and the de-
creased test performance if tests are conditionally dependent is related to the
prior issue of decreased test performance if the primary care clinician is acting
as an effective referral filter. In our previous example, imagine that the test
being evaluated is B. The clinician may be using test A to alter the mix of
A+ and A−s that get through to secondary care, and the test performance of
B reflects the way in which this mix has occurred.

The test� Discriminatory power. Information about the test is relevant to both discrim-
inative power and calibration. Discrimination may differ between tests that
bear the same generic name but which, for example, are made by different
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manufacturers. Tests may be less discriminatory when produced in “kit” form
than in initial laboratory testing.33 When tests require interpretative skill, they
are often first evaluated in near-optimal situations. Special attention is usually
devoted to the unambiguous and reproducible interpretation of test results.
This has implications for the interpretation and generalizability of the results.
If the readers of images are less than optimal in your own clinical setting, test
accuracy will be affected downward.34,35,36

The usual presentation deals with a two-way definition of test results, into
positive and negative. In many cases, multiple categories of test results is more
plausible. In addition, there may be a category of uninterpretable test results
that needs to be considered. The polytomous nature of tests should be taken
into account, for which several methods are available. Rather than a simple
positive–negative dichotomy and the associated characteristics sensitivity and
specificity, likelihood ratios for the multiple categories and ROC curves can be
calculated (see Chapter 7). In all cases, a more general n × n table can be used
to describe test characteristics, and several likelihoods can be calculated.16� Calibration. If the purpose of the study is clinical decision making, in which
information is being derived to estimate probabilities of disease, then a sec-
ond major issue is the calibration of test results. A continuous test may have
equivalent ROCs and diagnostic ORs in two different settings, but very differ-
ent likelihood ratios (LRs). For example, machine calibration may be different
in the two settings, so that one machine may show results considerably higher
than another. Likewise, even if two readers of radiographs have similar dis-
criminative power, as shown by similar ROCs, the threshold they use to differ-
entiate positive from negative tests (or adjacent categories of a multicategory
test) may vary widely.37,38,39,40,41

In summary, variability in the discriminative power and calibration of the
same test used in different places is the rule rather than the exception. When
we strive for parsimony in our descriptions, we run the risk of oversimplifi-
cation. In the end, the researcher who reports a study, as well as the clinician
searching the literature for help in interpreting test results, has to bear in mind
that test performance characteristics are never just properties of the test itself:
they depend on several factors, including prior clinical and test information,
and the setting in which the test is done.

Implications of variation in discriminative power and
calibration of tests: questions to ask yourself before you
start designing the study

1 What are the target condition and the reference standard?
2 Is the objective to estimate test performance using a global measure, or a

measure that will allow estimation of the probability of disease in individ-
uals?

3 What is the population and clinical problem?
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4 Is the test being considered as a replacement or incremental test?
5 To what extent do you want to study the reasons for variability of the results

within your population?
6 To what extent do you want to study the transferability of the results to

other settings?
In what follows, we assume that the usual criteria for adequate design of an
evaluation of a diagnostic test have been fulfilled. The issue is then: How do
we design a study which will also help to ensure that its transferability can be
determined? Based on the concepts in the first part of this chapter, we suggest
that investigators ask themselves the following questions to help ensure that
readers have the necessary information to decide on the transferability of
the study to their own setting. These considerations are also reflected in the
STARD checklist for reporting the results of diagnostic evaluation studies.42

What are the target condition and reference standard?
The target condition and reference standard need to be chosen to reflect the
investigator’s requirements. Is the choice appropriate to whether the inves-
tigator is doing the study to assist with predicting prognosis, deciding as the
need for intervention, or researching pathological processes? For example, in
a study of tests to assess stenosis of the carotid artery, it would be sensible to
choose the reference standard as angiographic stenosis dichotomized around
70%, if this is the level of angiographic abnormality above which, on cur-
rently available evidence, the benefits of treatment outweigh the harm. On
the other hand, if the study is being done by researchers whose interest is in
basic science, they may wish to compare the test with stenosis assessed on
surgically removed specimens at a different threshold, or across a range of
thresholds.

Error in the reference standard is a major constraint on our ability to estimate
test accuracy and explore reasons for variability of test characteristics.18,19,43

Therefore, researchers should consider methods of minimizing error in the
reference standard, for example, by using better methods or multiple assess-
ments. Any information about the test performance characteristics of the refer-
ence standard will help interpretation, as will several different measures of the
target condition, which can be combined. Multiple measures of the reference
standard or multiple different tests also allow the use of more sophisticated
analyses, such as latent class analysis, to minimize the potential for bias in
estimates of test accuracy or factors that affect it.21,44 Because the effects of
misclassification in the reference standard have different effects in populations
of different prevalence, as shown in Table 6.2, one may choose to assess a test
in a population where any residual effects of error in the reference standard
are minimized. For the odds ratio, this is at about 50% prevalence. For sensi-
tivity, it is when prevalence is high, and for specificity when prevalence is low.
However, when using this strategy, consider whether the spectrum of disease
may also vary with prevalence. If so, you will need to judge whether reference
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standard misclassification is a sufficiently important problem to outweigh the
potential for spectrum bias induced by choosing a study in a population with
specified prevalence.

Is the objective to estimate test performance using a global
measure (discrimination) or a measure that will allow estimation
of the probability of disease in individuals (discrimination and
calibration)?
Global assessment of the discriminatory power of the test requires measures
such as the area under the ROC curve, or the diagnostic odds ratio. These
may be sufficient for some purposes, for example if a policy decision needs to
be made about alternative tests of equivalent cost, or to decide whenever a
test has sufficient accuracy to warrant further calibration. For estimating the
probability of disease in individuals, likelihood ratios (or sensitivity and speci-
ficity) are needed, with additional information on how tests were calibrated.
Information about calibration should be provided in papers for readers to be
able to use the result of your study. Access to selected example material, such
as radiographs of lesions, will help readers understand what thresholds have
been used for reading in your study.

What is the population and clinical problem?
This question defines how the inception cohort should be selected for study,
although the breadth of the group selected will also be determined by the
extent to which you wish to address the following questions. For example, a
new test for carotid stenosis could be considered for all patients referred to a
surgical unit. However, ultrasound is reasonably accurate at quantifying the
extent of stenosis, and so investigators may choose to restrict the study of a
more expensive or invasive test to patients in whom the ultrasound result is
near the decision threshold for surgery. A useful planning tool is to draw a
flow diagram of how patients reach the population/clinical problem of interest.
This flow diagram includes what clinical information has been gathered and
what tests have been done, and how the results of those tests determine entry
into the population and clinical problem of interest. For example, in the flow
diagram in Figure 6.4 the clinical problem is suspected appendicitis in children
presenting to a hospital emergency service. The decisions based sequentially
on clinical evidence and ultrasonography are shown. The flow diagram helps
to clarify that computed tomography (CT) is being assessed only in patients in
whom those prior tests had not resolved the clinical problem. Also as shown
in the figure, in addition to being helpful at the design stage, publishing such
flow diagrams, with numbers of patients who follow each step, is very helpful
to readers.45

Is the test being considered as a replacement or incremental test?
As outlined earlier, the population and the clinical problem define the initial
presentation and referral filter. In addition, a key question is whether we are
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Figure 6.4 A flow diagram to formulate a diagnostic test research question. Study
profile flow diagram of patients with suspected appendicitis. (From Garcia Pena BM
et al. Ultrasonography and limited computed tomography in the diagnosis and
management of appendicitis in children. JAMA 1999;282:1041–46. Reproduced with
permission from the American Medical Association.45)

evaluating the test to assess whether it should replace an existing test (because
it is better, or just as good and cheaper) or to assess whether it has value when
used in addition to a particular existing test. This decision will also be a major
determinant of how the data will be analysed.46,47,48

To what extent do you want to study the reasons for variability
of the results within your population?

How much variability is there between readers/operators?

Data should be presented on the amount of variability between different read-
ers or test types and tools to help calibration, such as standard radiographs,39,40

or laboratory quality control measures. The extent to which other factors, such
as experience or training, affect reading adequacy will also help guide readers
of the study. Assessment of variability should include not only test discrimi-
natory power but also calibration, if the objective is to provide study results
that are useful for individual clinical decision making.
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Do the findings vary in different (prespecified) subgroups within

the study population?

Data should be analyzed to determine the influence on test performance char-
acteristics of the following variables, which should be available for each indi-
vidual.� The spectrum of disease and nondisease, for example by estimating “specificity”
within each category of “nondisease.” These can be considered separately by users
or combined into a weighted specificity for different settings. The same ap-
proach can be used for levels (stage, grade) in the “diseased” group.� The effect of other test results. This follows the approach often used in clinical
prediction rules. It should take account of logical sequencing of tests (simplest,
least invasive, and cheapest are generally first). It should also take account of
possible effect modification by other tests. In some instances people would
have been referred because of other tests being positive (or negative), so that
the incremental value of the new test cannot be evaluated. In this case, know-
ing the referral filter and how tests have been used in it (as in Figure 6.4) will
help interpretation. For example, a study by Flamen31 has shown that the
major value of PET for recurrent colorectal adenocarcinoma is in the category
of patients in whom prior (cheaper) tests gave inconclusive results. It would
therefore be a useful incremental test in that category of patients, but would
add little (except cost) if being considered as a replacement test for all patients,
many of whom would have the diagnostic question resolved by the cheaper
test. This suggests that PET is very helpful in this clinical situation.31� Any other characteristics, such as age or gender.

There are often a vast number of characteristics that could be used to define
subgroups in which one may wish to check whether there are differences in
test performance. The essential descriptors of a clinical situation need to be de-
cided by the researcher. As for subgroup analysis in randomized trials,49 these
characteristics should be prespecified, rather than decided at analysis stage.
The decision is best made on the basis of an understanding of the pathophys-
iology of the disease, the mechanism by which the test assesses abnormality,
an understanding of possible referral filters, and knowledge of which char-
acteristics vary widely between centers. Remember that variability between
test characteristics in subgroups may not be due to real subgroup differences
if there is reference standard misclassification and the prevalence of disease
differs between subgroups, as shown in Table 6.2. Modeling techniques can
be used to assess the effect of several potential predictors of test accuracy
simultaneously.50,51,52,53,54

To what extent do you want to study the transferability of the
results to other settings?
To address this question, you need to perform the study in several populations
or centers, and assess the extent to which test performance differs, as has been
done for the General Health Questionnaire55 and predictors of coma.56 The
extent to which observed variability is beyond that compatible with random
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sampling variability can be assessed using statistical tests for heterogeneity.
Predictors (as discussed above) should also be measured to assess the extent
to which within-population variables explain between-population variabil-
ity. Because of the low power of tests of heterogeneity, this is worth doing
even if tests for heterogeneity between centers or studies are not statistically
significant. The more the measured variables explain between-population
differences, the more they can be relied on when assessing the transfer-
ability of that study to the population in the reader’s setting. Between-site
variability can also be explored across different studies using meta-analytical
techniques.57,58,59

Sites for inclusion in the multicentered comparison should be selected as
being representative of the sorts of populations in which the results of the
diagnostic study are likely to be used. The more the variability in site features
can be characterized—and indeed taken account of in the sampling of sites for
inclusion in studies—the more informative the study will be. Data should be
analyzed to determine the influence on results of the within-site (individually
measured) patient characteristics mentioned above. They should also explore
the following sources of between-site variability that are not accounted for by
the within-site characteristics:� Site characteristics, for example primary, secondary, or tertiary care.� Other features, such as country.� Prevalence of the disease of interest.
Residual heterogeneity between sites should be explored to judge the extent
to which there is inexplicable variability that may limit test applicability.

Explanatory note about prevalence

The inclusion of “prevalence” in the above list may seem unusual, as it is
not obviously a predictor of test performance. However, there are many rea-
sons why prevalence should be included in the list of potential predictors,
in an analogous way to the exploration of trial result dependence on base-
line risk.60,61 First, many of the reasons for variation between centers may
not be easy to characterize, and prevalence may contain some information
about how centers differ that is not captured by other crude information, for
example whether the test is evaluated in primary, secondary or tertiary care
centers. Second, it is a direct test of the common assumption that test per-
formance characteristics such as sensitivity and specificity are independent
of prevalence. Third, non-linear prevalence dependence is an indication that
there is misclassification of the reference standard.

In summary, designing studies with heterogeneous study populations has
merit. This will allow exploration of the extent to which diagnostic perfor-
mance depends on prespecified predictors, and how much residual hetero-
geneity exists. The more heterogeneity there is in study populations, the
greater the potential to explore the transferability of diagnostic performance
to other settings, as shown in Table 6.8.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

114 Chapter 6

Table 6.8 The value of designing studies that enable the exploration of predictors of
heterogeneity of diagnostic accuracy

Heterogeneity in study population

Heterogeneity in diagnostic

accuracy

Yes No

Yes To what extent is Transferability limited

heterogeneity in accuracy

explained by predictors?

If not, transferability is

limited

No Highly transferable Design does not allow

exploration of transferability

Concluding remarks

There is good evidence that measures of test accuracy are not as transferable
across settings as is often assumed. This chapter outlines the conceptual un-
derpinnings for this and suggests some implications for how we should be
designing studies that carry more information about the transferability of re-
sults. Major examples are examining the extent to which test discrimination
and calibration depend on prespecified variables, and the extent to which
there is residual variability between study populations which is not explained
by these variables. This will require larger studies than have generally been
done in the past for diagnostic tests. Improvements in study quality and de-
signs to assess transferability are needed to ensure that the next generation of
studies on test accuracy are more able to meet our needs.
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CHAPTER 7

Analysis of data on the
accuracy of diagnostic tests
J. Dik F. Habbema, René Eijkemans, Pieta Krijnen, and
J. André Knottnerus

Summary box� Neither sensitivity nor specificity is a measure of test performance on
its own. It is the combination that matters.� The statistical approach for analyzing variability in probability
estimates of test accuracy is the calculation of confidence intervals.� The magnitude of the change from pretest to posttest probability
(predictive value) reflects the informativeness of the diagnostic test
result.� The informative value of a test result is determined by the likelihood
ratio: the ratio of the frequencies of occurrence of this result in
patients with and patients without the disease.� The odds ratio summarizes the diagnostic value of a dichotomous test
but does not tell us the specific values of sensitivity and specificity and
the likelihood ratios.� A measure of performance for a continuous test is the area under the
receiver operating characteristic (ROC) curve. This varies between 0.5
for a totally uninformative test and 1.0 for a test perfectly separating
diseased and nondiseased.� Bayes’s theorem implies that “posttest odds equals pretest odds times
likelihood ratio.”� One can derive the optimal cutoff from the relative importance of false
positives and false negatives.� A sensitivity analysis is important for getting a feeling for the stability
of our conclusions.
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� Bayes’s theorem can also be formulated as a logistic regression
equation. For the analysis of combination of tests, one needs multiple
logistic regression� When starting a data analysis, one must be confident that the research
data have been collected with avoidance of important bias and with
acceptable generalizability to the target population.

Introduction

After the painstaking job of collecting, computerizing, and cleaning diagnostic
data, we enter the exciting phase of analyzing and interpreting these data and
assessing the clinical implications of the results. It would be a pity if all the
effort put into the research were not to be crowned with a sound analysis and
interpretation. It is the purpose of this chapter to help readers to do so.

We will study the classic test performance measures introduced in Chapter
1: sensitivity, specificity, positive and negative predictive value, likelihood ra-
tio, and error rate, first for dichotomous tests and later for continuous tests,
including the possibility of dichotomization, with its quest for cutoff values.
Receiver operating characteristic (ROC) curves are part of this.

Next, Bayes’s theorem for the relationship between pretest and posttest
probability of disease is discussed, followed by decision analytical consider-
ations. For generalization of the one-test situation to diagnostic conclusions
based on many diagnostic test results, there will be a discussion on logistic
regression and its link with Bayes’s theorem.

The strengths and weaknesses of study designs, possible biases, and other
methodological issues have been discussed in previous chapters and will not
be repeated here, although the discussion will provide some links between
biases and analysis results.

We will refer to software for performing the analysis. Also, we will include
appendices with tables and graphs, which can support you in the analysis.

Clinical example

Renal artery stenosis in hypertension
We use data from a study on the diagnosis of renal artery stenosis (RAS).
In about 1% of all hypertensive patients, the hypertension is caused by a
constriction (stenosis) of the renal artery. It is worth identifying these patients
because their hypertension could be cured by surgery, and consequently their
risk of myocardial infarction and stroke could be reduced. Moreover, renal
failure could be prevented by relieving the stenosis. The definitive diagnosis
of renal artery stenosis is made by renal angiography. This diagnostic reference
test should be used selectively because it is a costly procedure that can involve
serious complications. Thus, clinicians need a safe, reliable, and inexpensive
screening test to help them select patients for angiography.
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Table 7.1 The first three and last three patients of 8 × 437 data array from a study on
diagnostics in possible renal artery stenosis (RAS)

Patient Atherosclerotic Abdominal Creatinine Abnormal RAS on

code Age Gender vascular disease bruit (micromole) renogram angiography

1 62 F No Yes 87 No Yes

2 52 M No No 146 Yes Yes

3 49 F No No 77 No No

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

435 36 M No No 84 No No

436 51 M Yes No 74 No No

437 55 M No No 83 No No

The diagnostic tests that we will use in this chapter are clinical characteristics
suggestive of renal artery stenosis, and renography; angiography serves as the
reference standard test for stenosis. The clinical characteristics used as exam-
ples are symptoms and signs of atherosclerotic vascular disease, the presence
of an abdominal bruit and the serum creatinine concentration. Renography
is a noninvasive test for detecting asymmetry in renal function between the
kidneys, which also is suggestive of renal artery stenosis.

The data, listed as indicated in Table 7.1, are from a Dutch multicenter study
aiming to optimize the diagnosis and treatment of renal artery stenosis. The
study included 437 hypertensive patients aged 18–75 years, who had been
referred for unsatisfactory blood pressure control or for analysis of possible
secondary hypertension.

Diagnostic questions and concepts

One can ask a number of questions concerning this diagnostic problem. Some
are mentioned below, with the diagnostic concept concerned in parentheses.� How good is my diagnostic test in detecting patients with RAS (sensitivity)?� How good is my diagnostic test in detecting patients without RAS (speci-

ficity)?� How well does a positive/abnormal test result predict the presence of RAS
(positive predictive value)?� How well does a negative/normal test result predict the absence of RAS
(negative predictive value)?� What is a reasonable estimate for the pretest probability of RAS (prevalence
of RAS)?� How many false conclusions will I make when applying the diagnostic test
(error rate)?� How informative is my positive/negative test result (likelihood ratio)?� How do I summarize the association between a dichotomous test and the
standard diagnosis (diagnostic odds ratio)?
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Table 7.2 A 2 × 2 table for analyzing the diagnostic value of renographic assessment
in predicting renal artery stenosis

Angiography

Renography Stenosis No Stenosis Total

Abnormal 71 33 104

Normal 29 304 333

100 337 437

� What is an optimal cutoff level when I want to dichotomize a continuous
test (ROC curve)?� To what extent does the test result change my pretest belief/probability of
RAS (Bayes’s theorem)?� How are the above concepts applied to a number of diagnostic tests simul-
taneously (logistic regression)?

Sensitivity and specificity for a dichotomous test

We will illustrate the dichotomous test situation by assessing how well renog-
raphy is able to predict arterial stenosis. Therefore, we construct from our
database the 2 × 2 table with, as entries for renographic assessment, “abnor-
mal/ normal,” and for angiography, “stenosis/no stenosis” (Table 7.2).

The generic table with the corresponding symbolism is given in Table 7.3,
with N = total number of patients, NT+ = number of patients with positive
test results, NT− = number of patients with negative test results,

Together, sensitivity (the probability of a positive test result in diseased sub-
jects, P(T+|D+) and specificity (the probability of a negative test result in nondis-
eased subjects, P(T−|D−), characterize the dichotomous test for the clinical
situation at hand. Neither is a measure of test performance on its own: it is
the combination that matters.1

Table 7.3 Generic 2 × 2 table representing possible classifications for the relationship
between a diagnostic test and a diagnosis (reference test)

Diagnosis

Test + −
+ TP FP NT+
− FN TN NT−

ND+ ND− N

ND−, number of patients without the disease, ND+, the number of patients with the disease,

TP, number of true positives, TN, number of true negatives, FP, number of false positives, and

FN, number of false negatives.
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For the example in Table 7.2, we can calculate:

Sensitivity = TP/ND+ = 71/100 = 71%

Specificity = TN/ND− = 304/337 = 90%

In the next section, we will see the degree of variability with which these
estimates are associated.

Sampling variability and confidence
intervals for probabilities

Confidence intervals
A main challenge in the analysis of diagnostic data is to assess how confident
we can be about the test characteristics as observed in our patients. This may
sound strange because an observed proportion, for example the sensitivity of
renography in Table 7.2 of 71%, is a fact. However, it is unlikely that we will
again find exactly 71% for sensitivity in a new series of 437 similar patients.
An indication of the limits of what can reasonably be expected is therefore
important (even when the same patients would have been reexamined in the
same or another setting, other data will be obtained because of inter- and
intraobserver variability).

The statistical method for analyzing the variability in estimates of sensitiv-
ity, and of all other probability estimates that we will discuss, is confidence
intervals.2 The probability level of the confidence interval can be chosen. A
higher level of confidence corresponds to a larger interval in terms of number
of percentiles covered. Throughout the chapter, we will – conventionally –
work with 95% confidence intervals. The interpretation of a 95% confidence
interval for an observed proportion, that is, a probability estimate, is as follows:
when the data sampling is repeated many times, the 95% confidence interval
calculated from each sample will, on average, contain the “true” value of the
proportion in 95% of the samples. Variability in sensitivity estimates is illus-
trated in Table 7.4. In part(a) of this table, the 100 stenosis patients of our
study are subdivided into four groups of 25 consecutive patients. It is seen
that the four subgroup sensitivities range enormously, from 48% to 88% (ta-
bles and formulas for the confidence interval will be discussed later). Part(b)
illustrates what sensitivities we would have obtained if we had finished the
study earlier, that is, after observing the first 5, 10, 25, 50, and 100 stenosis
patients of the present study.

As you see from Table 7.4(a), the 95% confidence intervals of the highest
and lowest estimates of sensitivity of 0.88 and 0.48 just touch each other.
Table 7.4(b) shows that the width and the confidence interval become smaller
with increasing sample size, as you would expect. For confidence intervals,
and more generally for the accuracy of statistical estimates, the square root
rule applies: when one makes the sample size A times as large, the confidence
interval will be a factor

√
A smaller. For example, for a two-times smaller

confidence interval one needs four times as many patients. You can check the
(approximate) validity of the square root rule in Table 7.4(b).
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Table 7.4 Analysis of diagnostic data of patients with possible renal artery stenosis
(RAS): confidence intervals for sensitivity of renography in diagnosing RAS; (a)
variability in sensitivity between equal numbers of RAS patients, and (b) smaller
confidence intervals with larger sample size, as cumulated during the study

TP ND1 Sensitivity 95% confidence interval

(a) 18 25 0.72 0.51–0.88

22 25 0.88 0.69–0.97

19 25 0.76 0.55–0.91

12 25 0.48 0.28–0.69

(b) 3 5 0.60 0.15–0.95

7 10 0.70 0.35–0.93

18 25 0.72 0.51–0.88

40 50 0.80 0.66–0.90

71 100 0.71 0.61–0.80

The confidence interval for the 71% sensitivity estimate for the total study
runs from 61% to 80% (bottom line in Table 7.4). Table 7.5 gives confidence
intervals for a number of confidence levels, with wider intervals for higher
levels.

For the specificity of renography in diagnosing RAS, we get the following
confidence interval around the 90% estimate for the total number of 337
nondiseased subjects: from 87% to 93%. As you can see, the confidence in-
terval is roughly half the size of the confidence interval for the sensitivity,
which reflects about four times as high the number of observations on which
the estimate is based (square root rule!).

Some theory and a guide to the tables in the Appendix

The theory of calculating confidence intervals for proportions is based on the
binomial distribution and requires complicated calculations. In general, the
confidence interval is asymmetrical around the point estimate of the sensitivity

Table 7.5 Confidence interval for the 71% (71 out of 100) sensitivity estimate of
renography in diagnosing RAS, for different confidence levels

Confidence level (%) Confidence interval (%)

50 67–74

67 66–76

80 64–77

90 63–78

95 61–80

99 58–82

99.9 54–84
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because of the “floor” and “ceiling” effects implied by the limits of 0 and 1 to
any probability.

Fortunately, when the numbers are not small the 95% confidence interval
becomes approximately symmetrical and the upper and lower limits can be
calculated by adding or subtracting 1.96 × standard error, with the standard
error calculated by:√

p̂ (1 − p̂)

N

where p̂ stands for the proportion or probability estimate, and N for the num-
ber of observations on which the proportion is based (in practice, multiplica-
tion by 2 instead of the more tedious 1.96 works well). Thus, the standard
error has to be multiplied by 4 to obtain the width of the 95% confidence
interval.

For other confidence levels, the multiplication factor 1.96 should be replaced
by other values (see Appendix A.3).

Appendix Tables A.1 and A.2 give confidence levels for situations with small
sample sizes where you need the tedious binomial calculations. Table A.3 gives
the confidence interval for a number of situations in which the above formula
for the standard error works well. In cases not covered by the tables, the
standard error can be calculated using the formula. The reader can now verify
the correctness of the confidence intervals presented in this section.

The formula can be used for calculating the required sample size in case
a desired width of the confidence interval can be specified, and the order of
magnitude of the value of the test characteristic can be quantified:

N = 16 p(1 − p)/w2

For example, when one would like to have a confidence interval of ±10%
and when it is estimated that the sensitivity could well be around 80%, the
study population should include about 270 persons with the disease (16 ×
0.8 × 0.2/0.01).

Positive and negative predictive value: pre- and posttest
probability of disease

The positive predictive value (PPV) is the probability that the patient has the dis-
ease when the test result is positive. This “posttest probability” is easily derived
from Table 7.2. For the probability of RAS in case of abnormal renography, it
is:

PPV = P(D+ |T+) = TP/NT+ = 71/104 = 68%

The confidence interval (CI) can be estimated using the formula on page 137
or Table A.3.: the 95% confidence interval for PPV runs from 59% to 77%.

The negative predictive value (NPV), that is, the probability that the patient
does not have the disease if the test result is negative, translates in our case to
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the probability of no stenosis in case of normal renography. We get:

NPV = P(D − |T−) = TN/NT− = 304/333 = 91%

with 95% CI from 88% to 94% (see Table A.3).
The probabilities of no stenosis for an abnormal renogram and of stenosis

for a normal renogram, and their CIs, are obtained as 100% minus PPV and
100% minus NPV, respectively because the probabilities of stenosis and no
stenosis have to add up to 100%:

P(D− |T1) = 1 − P(D+ |T+) = 32% (95% CI: 23% to 41%)

P(D+ |T2) = 1 − P(D− |T+) = 9% (95% CI: 6% to 12%)

The PPV and NPV are posttest probabilities, that is, they are the updated
probabilities given the information provided by the positive and negative test
results, respectively. Before the test, we have the pretest probabilities of pres-
ence and absence of disease, which for our RAS example are:

P(D+) = 100/437 = 23% (95% CI: 19% to 27%)

P(D−) = 337/437 = 77% (95% CI: 73% to 81%)

The magnitude of the change from pre- to posttest probability reflects the
informativeness of the diagnostic test result. In our case, the pretest probability
of stenosis of 23% changes to 68% in case of an abnormal renogram, and to
9% in case of a normal renogram.

Error rate

How well does our diagnostic test discriminate between patients with and
without stenosis, or, more generally, how well does the test discriminate be-
tween the two disease categories? So far, we have only looked at partial mea-
sures of performance, such as sensitivity, specificity, and predictive values.
None of these concepts on its own gives an assessment of the performance of
the test.

The most straightforward measure expresses how many errors we make
when we diagnose patients with an abnormal test result as diseased, and those
with a normal test result as nondiseased. This concept is known as the error rate.
For our example, the error rate is easily calculated from Table 7.1. There are
29 false negative results, as the test was negative when stenosis was present,
and 33 false positive results, with the test being abnormal when there was no
stenosis. Thus, in total there are 62 errors, from 437 patients.

This gives the following calculations for the error rate and its confidence
interval, the latter being derived from Table A.3 (the closest entry is 60 out of
500, with a half-CI size of 0.028; interpolation to 70 and 300 shows that ±3%
is indeed the correct CI):

Error rate(ER) = 62/437 = 14% (95% CI: 11% to 17%)
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The error rate is a weighted average of errors among persons with the disease
(the false negatives) and among those without the disease (the false positives),
as is seen from the following equation:

ER = P(T− |D+) × P(D+) + P(T + |D−) × P(D−)
For our stenosis example, we can easily verify this expression for the error rate:

ER = (29/100) × (100/437) + (33/337) × (337/437) = 62/437 = 14%

The weights in this formula are 23%, being the pretest probability of disease,
and 77% for the probability of no disease.

This equation enables us to investigate what the error rate would be if the
pretest probability of disease were different. For example, if the pretest proba-
bility of disease were 50% instead of 23%, the error rate would be calculated
as:

ER = 29/100 × 0.5 + 33/337 × 0.5 = 19.4%

Using this formula, we can speculate about the performance of the test in
situations that differ from the original context (the assumption is that false
positive and false negative rates do not change. This is unfortunately not al-
ways valid; see Chapters 1, 2, and 6).

Information in a diagnostic test result:
the likelihood ratio

The informative value, or weight of evidence, of a test result is determined by
the frequency of occurrence of this result in patients with the disease compared
to those without the disease. If, for example, a certain test result occurs twice
as often in patients with the disease, this result gives an evidence factor of
2 in favor of the disease. If, on the other hand, a test result occurs twice as
often in patients without the disease, it gives an evidence factor of 2 in favor
of nondisease, that is, a factor 2 against the disease (or a factor 1/2 in favor of
disease).

This important probability ratio is called the likelihood ratio (LR). Each test
result X has its own likelihood ratio LR(X) = P(X|D+)/P(X|D−).

For dichotomous tests, we have only two test results, T+ and T−, and there-
fore also only two likelihood ratios:

the LR of a positive test result: LR(T+) = P(T+ |D+)/P(T+ |D−)

= Se/(1 − Sp)

the LR of a negative test result: LR(T−) = P(T− |D+)/P(T− |D−)

= (1 − Se)/Sp

For our example of renal artery stenosis, we obtain the following values for
the likelihood ratio of an abnormal and a normal renogram, respectively:

LR(T+) = 0.71/0.10 = 7.1 with 95% CI: 5.1 to 10.3

LR(T−) = 0.29/0.90 = 0.32 with 95% CI: 0.24 to 0.44.
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Thus, an abnormal renogram provides a factor of 7 in favor of stenosis,
whereas a normal renogram yields a factor of 3 (i.e., 1/0.32) in favor of no
stenosis.

The following approximate formula has been used to calculate the 95%
confidence interval for the likelihood ratio:

exp

(
In

p1

p2
± 1.96

√
1 − p1

p1n1
+ 1 − p2

p2n2

)
in which p1 = P(X|D+) is based on sample size n1 and p2 = P(X|D−) on sample
size n2.

3

Diagnostic odds ratio

For a dichotomous test, it is possible to summarize the association between
the test and the diagnosis (reference standard) presented in the 2 × 2 table
in one measure: the diagnostic odds ratio (OR), which is equivalent to the
cross-product of the table. Looking at the example of renal artery stenosis
(Table 7.2):

OR=(71/33)/(29/304)=(71×304)/(33×29)=22.6, with 95% CI: 12.4 to 41.3

The OR is equivalent to the ratio of LR(T+) and LR(T−), as can be easily
checked in the table. The 95% confidence interval of the OR is provided by
the software recommended in the references with this chapter.

The advantage of the OR is that it summarizes in one figure the diagnostic
association in the whole table. However, this summary measure does not tell
us the specific values of the likelihood ratios of the two test results, nor those
of sensitivity and specificity. These measures have to be calculated as described
earlier.

Continuous tests and their dichotomization and
trichotomization

Another test for investigating the presence or absence of renal artery stenosis
is the serum creatinine concentration. This test has a continuous range of
possible test results. For analysis, results can best be grouped in classes of
sufficient size (Table 7.6). Each class has its own evidence for and against
stenosis, as expressed in the likelihood ratio.

The theory thus far has concerned only dichotomous tests, but the specific
concepts for the dichotomous test situation can be translated into more general
concepts for tests with an ordinal outcome scale or continuous tests, which
are subdivided into more than two categories. The probabilities of observing
a test result for stenosis and nonstenosis patients are given in Table 7.6. The
likelihood ratio is a concept linked to a specific test result, and so also applies
to multicategory tests. For example, the likelihood ratio for a test result in the
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Table 7.6 Probability of test results and diagnostic information of serum creatinine
concentration in relation to renal artery stenosis

Serum creatinine Likelihood

(micromoles/L) Stenosis No stenosis All ratio (95% CI)

≤ 60 1 (1%) 19 (6%) 20 (5%) 0.18 (0.02–1.31)

61–70 4 (4%) 36 (11%) 40 (9%) 0.37 (0.14–1.03)

71–80 13 (13%) 67 (20%) 80 (18%) 0.65 (0.38–1.13)

81–90 12 (12%) 71 (21%) 83 (19%) 0.57 (0.32–1.01)

91–100 17 (17%) 71 (21%) 88 (20%) 0.81 (0.50–1.30)

101–110 15 (15%) 41 (12%) 56 (13%) 1.23 (0.71–2.13)

111–120 7 (7%) 10 (3%) 17 (4%) 2.33 (0.92–6.04)

121–130 9 (9%) 9 (3%) 18 (4%) 3.33 (1.37–8.26)

131–150 11 (11%) 8 (2%) 19 (4%) 4.58 (1.92–11.20)

>150 11 (11%) 5 (1%) 16 (4%) 7.33 (2.64–20.84)

All 100 (100%) 337 (100%) 437 (100%)

category 61–70 micromoles can be calculated as the ratio of the likelihood of
this test result in diseased and the likelihood of this result in nondiseased, that
is: (4/100)/(36/337) = 0.37. As expected, the likelihood ratio increases with
higher serum creatinine levels. Values <100 are evidence against stenosis (LR
< 1) and values exceeding 100 are evidence for stenosis (LR > 1). The irreg-
ularity in this increasing trend in the 81–90 class reflects sampling variation,
and not an underlying biological phenomenon.

We will now analyze the relationship between the multicategory test of
serum creatinine described in Table 7.6 and its possible simplification to a
dichotomous test. Dichotomization can take place at any category boundary. This
is done in Table 7.7, which gives in each row the corresponding dichotomous
test data. For example, based on a cutoff level of 80 the number of patients
with and without stenosis over the value of 80 is 82 and 215, respectively,
resulting in a sensitivity of 82% and a specificity of 36%. Likelihood ratios
can again be calculated, now for the two results of the dichotomized test.
As can be seen, much information is lost by the dichotomization. All results
above and below the threshold are aggregated, and the likelihood ratio after
dichotomization becomes an average of the likelihood ratios of the individual
classes above and below this threshold. Also, the question of the choice of
the cutoff value is a difficult one, especially when patients require a different
amount of evidence in deciding for or against a certain further action. In
our case, it could well be that some patients with a history that more clearly
corroborates renal artery stenosis only need limited further evidence in order
to decide for surgical intervention, whereas others need high likelihood ratios
for the same decision.

The sensitivity–specificity pairs obtained for different cutoff values can be
connected in a graph, yielding the so-called ROC curve (Figure 7.1). The more
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Table 7.7 Probability of test results and diagnostic information of dichotomized serum
creatinine concentration values for nine possible cutoffs between high and low values

Serum creatinine Stenosis No stenosis

(Micromols) Se 1 − Sp All LR+ LR−
>60 99 (99%) 318 (94%) 417 (95%) 1.05 0.18

>70 95 (95%) 282 (84%) 377 (81%) 1.14 0.31

>80 82 (82%) 215 (64%) 297 (68%) 1.29 0.50

>90 70 (70%) 144 (43%) 114 (49%) 1.64 0.52

>100 53 (53%) 73 (22%) 126 (29%) 2.44 0.60

>110 38 (38%) 32 (9%) 70 (16%) 4.00 0.69

>120 31 (31%) 22 (7%) 53 (12%) 4.77 0.74

>130 22 (22%) 13 (4%) 35 (8%) 5.64 0.81

>150 11 (11%) 5 (1%) 16 (4%) 7.33 0.90

Total 100 (100%) 337 (100%) 437 (100%)

the ROC curve moves toward the left upper corner, which represents a per-
fect dichotomous test with 100% sensitivity and 100% specificity, the better
the test is. The steepness of the slope between two adjoining cutoff points
represents the likelihood ratio of an observation falling in between these two

Figure 7.1 Receiver operating characteristic (ROC) curve for serum creatinine
concentration in diagnosing renal artery stenosis. For each cutoff value of the serum
creatinine, the probability of finding a higher value in stenosis (Se) and in nonstenosis
patients (1 − Sp) is plotted. The area under the ROC curve is 0.70 (95% CI 0.64–0.76)
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Figure 7.2 Receiver operating characteristic (ROC) curve for serum creatinine
concentration in diagnosing renal artery stenosis, with the likelihood ratio for stenosis
for each class of serum creatinine values.

points. This is shown in Figure 7.2. The likelihood ratios in Figure 7.2 are the
same as those in Table 7.6.

A measure of performance for the test is the area under the ROC curve.4 This
varies between 0.5 for a totally uninformative test with a likelihood ratio of 1
for all its cutoff values (the diagonal of Figure 7.1), and 1 for a test that perfectly
separates diseased and nondiseased (Se = Sp = 1.0). The serum creatinine
has an area under the curve of 0.70 for differentiating between stenosis and
nonstenosis patients. The interpretation of the value of 0.70 is as follows.
Consider the hypothetical situation that two patients, drawn randomly from
the stenosis patients and the nonstenosis patients, respectively, are subjected
to the serum creatinine test. If the test results are used to guess which of
the two is the stenosis patient, the test will be right 70% of the time. The
confidence interval can be calculated using a computer program (see software
references).

If a continuous test such as serum creatinine has to be summarized in a few
classes for further condensation of the results or for further decision making, it
is often more useful to consider a trichotomization than a dichotomization. In
Table 7.8, we have divided the serum creatinine value into three classes, one
for values giving a reasonable evidence for stenosis (likelihood ratio greater
than 2.0), one for results giving reasonable evidence against stenosis (likeli-
hood ratio smaller than 0.5), and an intermediate class for rather uninforma-
tive test results. It is seen that serum creatinine gives informative test results
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Table 7.8 Probability of test results and diagnostic information of serum creatinine
concentration for a trichotomization of the test results

Serum creatinine Likelihood

(Micromoles/l) Stenosis No stenosis All ratio

≤ 70 5 (5%) 55 (16%) 60 (14%) 0.31

71–110 57 (57%) 250 (74%) 307 (70%) 0.77

>110 38 (38%) 32 (10%) 70 (16%) 4.00

All 100 (100%) 337 (100%) 437 (100%)

in about 30% of patients, whereas the test results are rather uninformative in
the remaining 70%.

From pretest probability to posttest probability:
Bayes’s theorem

The formula for calculating how the pretest probability changes under the
influence of diagnostic evidence into a posttest probability is known as Bayes’s
theorem. In words, this is as follows:

If disease was A times more probable than no disease before carrying
out a certain test, and if the observed test result is B times as probable
in diseased as in nondiseased subjects, then the disease is (A × B) as
probable compared to no disease after the test.

A, B and A × B are respectively the pretest odds, the likelihood ratio, and
the posttest odds, and a technical formulation of Bayes’s theorem is therefore:
“posttest odds (O(X)) equals pretest odds (O) times likelihood ratio (LR(X))”;
and in formula: O(X) = O × LR(X). An example: take the dichotomous renog-
raphy test (Table 7.2). The pretest odds (A) are 100:337, or 0.30. Assuming
a positive test result, the likelihood ratio B equals 7.1. Bayes’s theorem tells
us now that the posttest odds of disease are 0.30 × 7.1 = 2.13. This cor-
responds to a probability of 2.13/(2.13 + 1) = 0.68, because of the rela-
tionship between probability P and odds O: O = P/(1 − P), and therefore
P = O/(1 + O).

Another example: take the category 61–70 for serum creatinine (Table 7.6)
with a likelihood ratio of 0.37. In the posttest situation, stenosis is 0.30 ×
0.37 = 0.11 times as probable as no disease. This yields a probability of stenosis
of 0.11/1.11 = 0.10.

The formula of Bayes’s theorem for directly calculating the posttest proba-
bility is as follows:

P (D+ |X) = P (D+) × P (X|D+)

P (D+) × P (X|D+) + P (D−) × P (X|D−)
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Figure 7.3 Graphical presentation in which the result of Bayes’s theorem can be read
for a number of likelihood ratios. Each curve represents one likelihood ratio. For
example, a pretest probability of 0.7 and a likelihood ratio of 4 give rise to a posttest
probability of about 0.90.

For dichotomous test we can express this formula in terms of sensitivity (Se)
and specificity (Sp), and positive and negative predictive values (PPV and
NPV), as can also be easily derived from the (2 × 2) Tables 7.2 and 7.3:

PPV = P (D+) × Se

P (D+) × Se + P (D−) × (1 − Sp)
and

NPV = P (D−) × Sp

P (D−) × Sp + P (D+) × (1 − Se)

Figure 7.3 gives a graphical presentation of Bayes’s theorem and enables you
to directly calculate the posttest probability from pretest probability and like-
lihood ratio. The two examples described earlier can be graphically verified
with a pretest probability of stenosis of 23%: a likelihood ratio of 7.1 gives a
posttest probability of 68%, and a likelihood ratio of 0.37 gives a posttest prob-
ability of 10% (these posttest probabilities can only be read approximately in
the figure). For an alternative, nomogram type of representation of Bayes’s
theorem, see Chapter 2, Figure 2.1.
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Table 7.9 Decrease in false positives and increase in false negatives when increasing
the cutoff between high and low serum creatinine values by one class at a time.
Eleven possible cutoffs are considered

Serum creatinine FP decrease: Approximate

(micromoles/L) No stenosis Stenosis FN increase per step trade-off

>0 337 100 337:0

>60 318 99 19:1 20:1

>70 282 95 36:4 10:1

>80 215 82 67:13 5:1

>90 144 70 71:12 5:1

>100 73 53 71:17 5:1

>110 32 38 41:15 3:1

>120 22 31 10:7 1:1

>130 13 22 9:9 1:1

>150 5 11 8:11 1:1

“Very high” 0 0 5:11 1:2

Total 337 100

Decision analytical approach of the optimal
cutoff value

The error rate is a good measure of test performance, as it gives the number of
false positives and false negatives in relation to the total number of diagnostic
judgments made. It should be realized that the error rate implicitly assumes
that false positives and false negatives have an equal weight. This may not be
reasonable: for example, a missed stenosis may be judged as much more seri-
ous than a missed nonstenosis. Here we enter the realm of decision science,
where the loss of wrong decisions is explicitly taken into account. As an appe-
tizer to decision analysis, look at Table 7.9. This is based on Table 7.7, but now
with an indication of how many false positives are additionally avoided and
how many additional false negatives are induced by increasing the threshold
between positive and negative (“cutoff”) with one class of serum creatinine
values at a time.

With the (uninteresting) cutoff value of 0, we would have 337 false positives
(FP) and 0 false negatives (FN). Increasing the threshold from 0 to 60 would
decrease the FP by 19 and increase the FN by 1. A shift from 60 to 70 would
decrease the FP by 36 and increase the FN by four, and so on, until the last
step in cutoff from 150 to “very high” serum creatinine values, by which the
last five FP are prevented but also the last 11 stenosis patients are turned
into FN.

One can derive the optimal cutoff from the relative importance of false
positives and false negatives. For example, if one false positive is judged to
be four times more serious than a false negative, a good cutoff would be
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100, because all shifts in cutoff between 0 and 100 involve a trade-off of at
least five FN to one FP, which is better than the 4:1 judgment on the relative
seriousness of the two types of error. A further shift from 100 to 110 is not
indicated because the associated trade-off is three FN or less to one FP or more,
which is worse than the 4:1 judgment. Note that for different pretest values
of stenosis the FN:FP trade-offs will change, and therefore also the optimal
threshold. For example, if the pretest probability were two times higher, the
threshold would shift to 60 (calculations not shown).

For a further study of decision analytical considerations, the reader is re-
ferred to Sox et al.5

Sensitivity analysis

In a sensitivity analysis, we look at what would have happened to our conclu-
sions in case of other, but plausible, assumptions. This is important for getting
a feeling for the stability of the conclusions.

We saw an example of a sensitivity analysis in our discussion of the error
rate, when we looked what the error rate would have been if the pretest
probability of stenosis had been different from the 30% in the study.

Sensitivity analysis could also be conducted using Figure 7.3, the graphi-
cal representation of Bayes’s theorem. Using the confidence intervals for the
pretest probability and for the likelihood ratio, we can assess the associated
uncertainty in the posttest probability. For example, when we have a confi-
dence interval for the pretest probability between 0.5 and 0.7, and a confi-
dence interval for the likelihood ratio of our test results between 4 and 8, Fig-
ure 7.3 tells us that values for the posttest probability between 0.8 and 0.95 are
possible.

A third type of sensitivity analysis could be done using the relative serious-
ness of false positive and false negative results by checking how the threshold
between positive and negative test results will shift when different values for
this relative seriousness are considered.

The logistic regression formulation of Bayes’s theorem

The analysis of a combination of several diagnostic tests is more complicated
than the analysis of a single diagnostic test. There is, however, a standard
statistical method, logistic regression analysis, that can be applied in this situ-
ation. Logistic regression is, in fact, a representation of Bayes’s theorem, which
can easily be extended to many diagnostic tests applied simultaneously. It is a
general method for the analysis of binary outcome data, such as the presence
or absence of disease.6 The equivalence of the logistic formula and Bayes’s
theorem is best seen by using a logistic transformation, in order to have an
additive instead of a multiplicative formula. Thus “posttest odds equals pretest
odds times likelihood ratio,” becomes, after taking the logarithm, “log posttest
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odds equals log pretest odds plus log likelihood ratio.” Or, in formula form,
with the L indicating “logarithm”:

O(X) = O × LR becomes LO(X) = LO + LLR(X)

The corresponding logistic regression formula is as follows: the log odds of
disease, (also called logit (LO)), given test result X, is a linear function of the
test result:

LO(X) = b0 + b1X

Usually, the natural logarithm (Ln) is used, as we will do in the remain-
der of this section. We will illustrate logistic regression by applying it to the
renography test for renal artery stenosis, the results of which were depicted
in Table 7.2.

We start with the situation before performing the test: our best estimate
of stenosis is then the prior or pretest probability, based on the observation
that we have 100 patients with and 337 patients without stenosis. The logistic
formula in this case LnO = b0, and contains only a constant b0, because no
tests have been performed yet. Thus b0, the Ln pretest odds, which in this case
is Ln (100/337) = −1.21.

Next the renography test is performed. The test result is coded as X1 = 0
(normal) or X1 = 1 (abnormal), and the logistic formula is LnO(X1) = b0 +
b1X1. We will derive the coefficients b0 and b1 by applying the log odds form
of Bayes’s theorem to both the normal and the abnormal test results. The
logistic formula follows immediately from the results.

In case of a normal renogram (X1 = 0) there are 29 patients with and 304
patients without stenosis in Table 7.2. Bayes’s theorem tells that the log odds
on stenosis for result X1 = 0, LnO(X1 = 0) = Ln(29/304) = −2.35, equals the
Ln pretest odds of −1.21 plus the Ln likelihood ratio of a normal renogram,
which is −1.14.

In case of an abnormal renogram (X1 = 1) there are 71 patients with and
33 patients without stenosis, and LnO(X1 = 1) = Ln(71/33) = 0.77, being the
Ln pretest odds of −1.21 plus the Ln likelihood ratio 1.98 of an abnormal
renogram. Combining the two applications of Bayes’s theorem, we get:

LnO(X1) = −1.21 − 1.14 (when X1 = 0) + 1.98 (when X1 = 1).

This can be simplified to the logistic formula:

LnO(X1) = b0 + b1X1 = −2.35 + 3.12 X1.

Two remarks can be made: the coefficient b1 (3.12) is precisely the Ln of
the diagnostic odds ratio (22.6) of renography discussed earlier. And b0 in the
logistic formula can no longer be interpreted as a pretest log odds of stenosis,
but as the LnO(X1 = 0). This completes the logistic regression analysis of one
dichotomous test.
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When more than one test is involved the calculations are extensions of the
described single test situation, using the multiple logistic regression formula:

Ln(X1, X2, . . . , Xk) = b0 + b1X1 + b2X2 + . . . + bkXk. Using this approach,
the investigator can account for dependency and interaction between the var-
ious tests. However, such multivariable calculations are very troublesome to
do by hand. In general, when many tests, including continuous tests, are in-
volved, standard statistical software such as SPSS or SAS will have to be used.
This software also provides 95% confidence intervals for b0, b1, b2, . . . bk, and
the corresponding odds ratios (eb).

From multiple logistic regression analysis, one can not only learn about the
predictive value of a combination of tests, but also what a certain test adds to
other tests that have already been formed.

Concluding remarks

In this chapter, we have given an overview of the most important perfor-
mance measures of diagnostic tests, illustrated with a clinical example. Also,
the estimation of confidence intervals to account for sampling variability has
been explained. Furthermore, decision analytical considerations and sensitiv-
ity analysis, as methods to deal with value judgments and uncertainties, have
been introduced. Finally, the principles of logistic regression to analyze the
predictive value of multiple tests, when applied simultaneously, have been
outlined.

In applying the presented analysis techniques, it is presupposed that the re-
search data have been collected with the avoidance of important bias (affecting
internal validity) and with acceptable generalizability to the target population
where the diagnostic test(s) are to be applied (external validity). These issues
regarding the validity of the study design are dealt with in Chapters 1–6. In
general, in the analysis phase, one cannot correct for shortcomings of the
validity of the study design, such as bias resulting from an unclear or inappro-
priate process of selection of study subjects or from an inadequate reference
standard. However, if potential factors that may affect test performance are
measured during the study, these can be included as independent covariables
in the analysis. An example may be age as a potential effect modifier of the
performance of renography. The potential influence of other possible biases
can be explored using sensitivity analysis.

In the past decade, new data analytical challenges have resulted from the
need to synthesize a number of studies and to analyze the pooled data of those
studies (meta-analysis). Also, in such a pooled analysis, the usual performance
measures of diagnostic tests can be assessed, as is shown in Chapter 10. Fi-
nally, although it is always the aim to minimize the number of lost outcomes
or not-performed tests, in most studies these will not be totally avoided. Al-
though associated methodological problems are discussed in Chapter 2, there
are various options for the analytical approach to such “missing values” on
which professional biostatisticians can give advice.
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Software� For the analysis of test results, including logistic regression for single and
multiple tests and confidence intervals for the diagnostic odds ratio, standard
statistical software such as SPSS, SAS, Stata, S-plus, R, or BMDP may be
used. In SPSS, S-plus, R, and SAS analysis of the area under the ROC curve
(plus confidence intervals) can be performed.� Visual Bayes is a freely available program introducing basic methods for the
interpretation and validation of diagnostic tests in an intuitive way. It may
be downloaded from http://www.imbi.uni-freiburg.de/medinf.� Treeage-DATA is a decision analysis program in which diagnostic tests and
subsequent treatment decisions can be represented. Good opportunities for
sensitivity analysis.

Appendix: Tables for confidence intervals
for proportions

Tables A.1–A.2
Exact confidence intervals for proportions based on small N (Table A.1) or on
small n (Table A.2).

Table A.3
Half 95% confidence intervals for proportions.

For all tables
N = number of observations (denominator), n = number of successes (nu-
merator).

Table A.1
Example: In a group of five patients with renal artery stenosis, three were
positive on diagnostic renography. The estimated sensitivity of renography is
therefore 3/5, that is, 0.6 with 95% confidence interval (0.15–0.95).
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Table A.2
Exact confidence intervals for small n. Because the binomial distribution is
symmetric around p = 0.5, the table can also be used for small values of N − n:
when using N − n instead of n the resulting confidence interval changes to
(1-upper limit, 1-lower limit).

Example for small n: A new screening test for a disease is required to have a
very low false positive rate that is, high specificity. In a sample of 200 proven
nondiseased subjects, only one had a positive test result. The false positive
rate is estimated at 1/200 = 0.005 and the exact 95% confidence interval is
(0.000–0.028)

Example for small N − n: In the previous example, we can estimate the
specificity as 199/20050.995, with 95% confidence interval (0.972–1.000).

Table A.3
The half 95% confidence interval for proportions, based on the normal ap-
proximation to the binomial distribution for large numbers of observations.
With this approximation, the half 95% confidence interval for a proportion
p̂ = n/N is 1.96 × SE, with SE being the standard error. The 95% confidence
interval is constructed by subtracting (lower confidence limit) or adding (upper
confidence limit) the number from the table to the estimate p. By symmetry,
the values for n and for N − n are the same. When the values of n and N are
not given directly in the table, linear interpolation for n and/or N may be used.

Example

In a group of 333 patients with a negative renography, 29 nevertheless ap-
peared to suffer from renal artery stenosis. The estimated negative predictive
value (NPV) of renography is therefore (333–29)/333, that is, 0.91.

The value from the table is required for N = 333 and N − n = 29. We use
linear interpolation for N. At N = 300, the table gives a value of 0.0335 and
at N = 500 the value is 0.0205, for N = 29, taking the averages of the values
for n = 28 and 30.

Linear interpolation at N = 333 requires:

({Value at N = 333} − 0.0355):(0.0205 − 0.0335)=(333 − 300):(500 − 300).

Thus {Value at N = 333} = 0.03.

The 95% confidence interval becomes (0.91 − 0.03, 0.91 + 0.03) =
(0.88−0.94).

Note 1

Instead of interpolation, the formula for SE could have been used directly:

SE =
√

p̂ (1 − p̂)

N
, giving SE =

√√√√√ 304

333

(
1 − 29

333

)
333

= 0.0154

Multiplying by 1.96 gives a value of 0.03 for the half 95% confidence interval.
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Note 2

For other levels of confidence, the numbers in Table A.3 have to be multiplied
by a factor. The following table gives multiplication factors for a few commonly
used levels of confidence:

Confidence level (%) Multiplication factor

50 0.34

67 0.49

80 0.65

90 0.84

95 1

99 1.31

99.9 1.68



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:26

140 Chapter 7

Table A.1 Exact 95% confidence intervals for proportions n/N for N from 2 to 25

N P 95% CI N P 95% CI N P 95% CI

N = 2

0 0 0.00 0.78

1 0.5 0.01 0.99

2 1 0.22 1.00

N = 3

0 0 0.00 0.63

1 0.33 0.01 0.91

2 0.67 0.09 0.99

3 1 0.37 1.00

N = 4

0 0 0.00 0.53

1 0.25 0.01 0.81

2 0.5 0.07 0.93

3 0.75 0.19 0.99

4 1 0.47 1.00

N = 5

0 0 0.00 0.45

1 0.2 0.01 0.72

2 0.4 0.05 0.85

3 0.6 0.15 0.95

4 0.8 0.28 0.99

5 1 0.55 1.00

N = 6

0 0 0.00 0.39

1 0.17 0.00 0.64

2 0.33 0.04 0.78

3 0.5 0.12 0.88

4 0.67 0.22 0.96

5 0.83 0.36 1.00

6 1 0.61 1.00

N = 7

0 0 0.00 0.35

1 0.14 0.00 0.58

2 0.29 0.04 0.71

3 0.43 0.10 0.82

4 0.57 0.18 0.90

5 0.71 0.29 0.96

6 0.86 0.42 1.00

7 1 0.65 1.00

N = 8

0 0 0.00 0.31

1 0.13 0.00 0.53

2 0.25 0.03 0.65

3 0.38 0.09 0.76

4 0.5 0.16 0.84

N = 8 (cont.)

5 0.63 0.24 0.91

6 0.75 0.35 0.97

7 0.88 0.47 1.00

8 1 0.69 1.00

N = 9

0 0 0.00 0.28

1 0.11 0.00 0.48

2 0.22 0.03 0.60

3 0.33 0.07 0.70

4 0.44 0.14 0.79

5 0.56 0.21 0.86

6 0.67 0.30 0.93

7 0.78 0.40 0.97

8 0.89 0.52 1.00

9 1 0.72 1.00

N = 10

0 0 0.00 0.26

1 0.1 0.00 0.45

2 0.2 0.03 0.56

3 0.3 0.07 0.65

4 0.4 0.12 0.74

5 0.5 0.19 0.81

6 0.6 0.26 0.88

7 0.7 0.35 0.93

8 0.8 0.44 0.97

9 0.9 0.55 1.00

10 1 0.74 1.00

N = 11

0 0 0.00 0.24

1 0.09 0.00 0.41

2 0.18 0.02 0.52

3 0.27 0.06 0.61

4 0.36 0.11 0.69

5 0.45 0.17 0.77

6 0.55 0.23 0.83

7 0.64 0.31 0.89

8 0.73 0.39 0.94

9 0.82 0.48 0.98

10 0.91 0.59 1.00

11 1 0.76 1.00

N = 12

0 0 0.00 0.22

1 0.08 0.00 0.38

2 0.17 0.02 0.48

3 0.25 0.05 0.57

N = 12 (cont.)

4 0.33 0.10 0.65

5 0.42 0.15 0.72

6 0.5 0.21 0.79

7 0.58 0.28 0.85

8 0.67 0.35 0.90

9 0.75 0.43 0.95

10 0.83 0.52 0.98

11 0.92 0.62 1.00

12 1 0.78 1.00

N = 13

0 0 0.00 0.21

1 0.08 0.00 0.36

2 0.15 0.02 0.45

3 0.23 0.05 0.54

4 0.31 0.09 0.61

5 0.38 0.14 0.68

6 0.46 0.19 0.75

7 0.54 0.25 0.81

8 0.62 0.32 0.86

9 0.69 0.39 0.91

10 0.77 0.46 0.95

11 0.85 0.55 0.98

12 0.92 0.64 1.00

13 1 0.79 1.00

N = 14

0 0 0.00 0.19

1 0.07 0.00 0.34

2 0.14 0.02 0.43

3 0.21 0.05 0.51

4 0.29 0.08 0.58

5 0.36 0.13 0.65

6 0.43 0.18 0.71

7 0.5 0.23 0.77

8 0.57 0.29 0.82

9 0.64 0.35 0.87

10 0.71 0.42 0.92

11 0.79 0.49 0.95

12 0.86 0.57 0.98

13 0.93 0.66 1.00

14 1 0.81 1.00

N = 15

0 0 0.00 0.18

1 0.07 0.00 0.32

2 0.13 0.02 0.40

3 0.2 0.04 0.48
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Table A.1

N P 95% CI N P 95% CI N P 95% CI

N = 15 (cont.)

4 0.27 0.08 0.55

5 0.33 0.12 0.62

6 0.4 0.16 0.68

7 0.47 0.21 0.73

8 0.53 0.27 0.79

9 0.6 0.32 0.84

10 0.67 0.38 0.88

11 0.73 0.45 0.92

12 0.8 0.52 0.96

13 0.87 0.60 0.98

14 0.93 0.68 1.00

15 1 0.82 1.00

N = 16

0 0 0.00 0.17

1 0.06 0.00 0.30

2 0.13 0.02 0.38

3 0.19 0.04 0.46

4 0.25 0.07 0.52

5 0.31 0.11 0.59

6 0.38 0.15 0.65

7 0.44 0.20 0.70

8 0.5 0.25 0.75

9 0.56 0.30 0.80

10 0.63 0.35 0.85

11 0.69 0.41 0.89

12 0.75 0.48 0.93

13 0.81 0.54 0.96

14 0.88 0.62 0.98

15 0.94 0.70 1.00

16 1 0.83 1.00

N = 17

0 0 0.00 0.16

1 0.06 0.00 0.29

2 0.12 0.01 0.36

3 0.18 0.04 0.43

4 0.24 0.07 0.50

5 0.29 0.10 0.56

6 0.35 0.14 0.62

7 0.41 0.18 0.67

8 0.47 0.23 0.72

9 0.53 0.28 0.77

10 0.59 0.33 0.82

11 0.65 0.38 0.86

N = 17 (cont.)

12 0.71 0.44 0.90

13 0.76 0.50 0.93

14 0.82 0.57 0.96

15 0.88 0.64 0.99

16 0.94 0.71 1.00

17 1 0.84 1.00

N = 18

0 0 0.00 0.15

1 0.06 0.00 0.27

2 0.11 0.01 0.35

3 0.17 0.04 0.41

4 0.22 0.06 0.48

5 0.28 0.10 0.53

6 0.33 0.13 0.59

7 0.39 0.17 0.64

8 0.44 0.22 0.69

9 0.5 0.26 0.74

10 0.56 0.31 0.78

11 0.61 0.36 0.83

12 0.67 0.41 0.87

13 0.72 0.47 0.90

14 0.78 0.52 0.94

15 0.83 0.59 0.96

16 0.89 0.65 0.99

17 0.94 0.73 1.00

18 1 0.85 1.00

N = 19

0 0 0.00 0.15

1 0.05 0.00 0.26

2 0.11 0.01 0.33

3 0.16 0.03 0.40

4 0.21 0.06 0.46

5 0.26 0.09 0.51

6 0.32 0.13 0.57

7 0.37 0.16 0.62

8 0.42 0.20 0.67

9 0.47 0.24 0.71

10 0.53 0.29 0.76

11 0.58 0.33 0.80

12 0.63 0.38 0.84

13 0.68 0.43 0.87

14 0.74 0.49 0.91

15 0.79 0.54 0.94

N = 19 (cont.)

16 0.84 0.60 0.97

17 0.89 0.67 0.99

18 0.95 0.74 1.00

19 1 0.85 1.00

N = 20

0 0 0.00 0.14

1 0.05 0.00 0.25

2 0.1 0.01 0.32

3 0.15 0.03 0.38

4 0.2 0.06 0.44

5 0.25 0.09 0.49

6 0.3 0.12 0.54

7 0.35 0.15 0.59

8 0.4 0.19 0.64

9 0.45 0.23 0.68

10 0.5 0.27 0.73

11 0.55 0.32 0.77

12 0.6 0.36 0.81

13 0.65 0.41 0.85

14 0.7 0.46 0.88

15 0.75 0.51 0.91

16 0.8 0.56 0.94

17 0.85 0.62 0.97

18 0.9 0.68 0.99

19 0.95 0.75 1.00

20 1 0.86 1.00

N = 21

0 0 0.00 0.13

1 0.05 0.00 0.24

2 0.1 0.01 0.30

3 0.14 0.03 0.36

4 0.19 0.05 0.42

5 0.24 0.08 0.47

6 0.29 0.11 0.52

7 0.33 0.15 0.57

8 0.38 0.18 0.62

9 0.43 0.22 0.66

10 0.48 0.26 0.70

11 0.52 0.30 0.74

12 0.57 0.34 0.78

13 0.62 0.38 0.82

14 0.67 0.43 0.85

15 0.71 0.48 0.89

(continued)
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Table A.1 (continued )

N P 95% CI N P 95% CI N P 95% CI

N = 21 (cont.)

16 0.76 0.53 0.92

17 0.81 0.58 0.95

18 0.86 0.64 0.97

19 0.9 0.70 0.99

20 0.95 0.76 1.00

21 1 0.87 1.00

N = 22

0 0 0.00 0.13

1 0.05 0.00 0.23

2 0.09 0.01 0.29

3 0.14 0.03 0.35

4 0.18 0.05 0.40

5 0.23 0.08 0.45

6 0.27 0.11 0.50

7 0.32 0.14 0.55

8 0.36 0.17 0.59

9 0.41 0.21 0.64

10 0.45 0.24 0.68

11 0.5 0.28 0.72

12 0.55 0.32 0.76

13 0.59 0.36 0.79

14 0.64 0.41 0.83

15 0.68 0.45 0.86

16 0.73 0.50 0.89

17 0.77 0.55 0.92

18 0.82 0.60 0.95

19 0.86 0.65 0.97

20 0.91 0.71 0.99

21 0.95 0.77 1.00

22 1 0.87 1.00

N = 23

0 0 0.00 0.12

1 0.04 0.00 0.22

2 0.09 0.01 0.28

3 0.13 0.03 0.34

N = 23 (cont.)

4 0.17 0.05 0.39

5 0.22 0.07 0.44

6 0.26 0.10 0.48

7 0.3 0.13 0.53

8 0.35 0.16 0.57

9 0.39 0.20 0.61

10 0.43 0.23 0.66

11 0.48 0.27 0.69

12 0.52 0.31 0.73

13 0.57 0.34 0.77

14 0.61 0.39 0.80

15 0.65 0.43 0.84

16 0.7 0.47 0.87

17 0.74 0.52 0.90

18 0.78 0.56 0.93

19 0.83 0.61 0.95

20 0.87 0.66 0.97

21 0.91 0.72 0.99

22 0.96 0.78 1.00

23 1 0.88 1.00

N = 24

0 0 0.00 0.12

1 0.04 0.00 0.21

2 0.08 0.01 0.27

3 0.13 0.03 0.32

4 0.17 0.05 0.37

5 0.21 0.07 0.42

6 0.25 0.10 0.47

7 0.29 0.13 0.51

8 0.33 0.16 0.55

9 0.38 0.19 0.59

10 0.42 0.22 0.63

11 0.46 0.26 0.67

12 0.5 0.29 0.71

13 0.54 0.33 0.74

14 0.58 0.37 0.78

N = 24 (cont.)

15 0.63 0.41 0.81

16 0.67 0.45 0.84

17 0.71 0.49 0.87

18 0.75 0.53 0.90

19 0.79 0.58 0.93

20 0.83 0.63 0.95

21 0.88 0.68 0.97

22 0.92 0.73 0.99

23 0.96 0.79 1.00

24 1 0.88 1.00

N = 25

0 0 0.00 0.11

1 0.04 0.00 0.20

2 0.08 0.01 0.26

3 0.12 0.03 0.31

4 0.16 0.05 0.36

5 0.2 0.07 0.41

6 0.24 0.09 0.45

7 0.28 0.12 0.49

8 0.32 0.15 0.54

9 0.36 0.18 0.57

10 0.4 0.21 0.61

11 0.44 0.24 0.65

12 0.48 0.28 0.69

13 0.52 0.31 0.72

14 0.56 0.35 0.76

15 0.6 0.39 0.79

16 0.64 0.43 0.82

17 0.68 0.46 0.85

18 0.72 0.51 0.88

19 0.76 0.55 0.91

20 0.8 0.59 0.93

21 0.84 0.64 0.95

22 0.88 0.69 0.97

23 0.92 0.74 0.99

24 0.96 0.80 1.00

25 1 0.89 1.00
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CHAPTER 8

Multivariable analysis in
diagnostic accuracy studies:
what are the possibilities?
Frank Buntinx, Bert Aertgeerts, Marc Aerts, Rudi Bruyninckx,
J. André Knottnerus, Ann van den Bruel, and Jef van den Ende

Summary box� Diagnostic research requires multivariable analytical approaches to
take the contributions of different tests to a diagnosis simultaneously
into consideration.� Tree-building methods, logistic regression analysis, and neural
networks can provide solutions to this challenge. Latent class analysis
adds a method that can be used in situations without a normal
reference standard.� For each method, we provide a short description, an overview of
advantages and disadvantages, and a real-life example.� Researchers should concentrate on either logistic regression analysis or
classification and regression tree (CART) type methods, try to master it
in detail and consequently use it, always keeping in mind that
alternatives are available, each with their own advantages and
disadvantages.

Introduction

Individual signs, symptoms, or test results are seldom sufficient to reliably di-
agnose a disorder.1 In most situations, various parts of information are needed
and the diagnostic value of each part (each test) is not independent, but condi-
tional upon what is known already. Age may be a bad predictor of an urological

The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research. 2nd edition.
Edited by J. André Knottnerus and Frank Buntinx. C© 2009 Blackwell Publishing,
ISBN: 978-1-4051-5787-2.
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cancer. However, in patients with gross hematuria, age above 60 increased the
likelihood of an urological cancer (positive predictive value) from 17% (all
ages) to 34%.2

This is not addressed by classic bivariably analyzed diagnostic studies. The
analysis of the combined diagnostic value from a number of tests as well as
the diagnostic value of a test conditional on (a series of) previous test re-
sults needs a multivariable approach. A number of solutions for this type of
analysis are available. None of them, however, is perfect. Each has its own
strengths, weaknesses, and problems. In this chapter, we describe some of the
most appealing methods that have been used, in a way that is understand-
able for clinicians without formal statistical training. For more detailed and
technical information, we refer to the book of Pepe3 and to the papers that
are mentioned in the literature section. Six methods are described with their
advantages and their own problems: simple tree building and the more so-
phisticated classification and regression tree (CART) analysis as examples of
tree-building methods, classical and “manipulated” logistic regression analy-
sis, which are the most frequently used techniques, the less standard neural
networks, and finally latent class analysis as a method of dealing with situa-
tions where no reference standard is available. In the Appendix, we will show
one way of how the usual indicators of diagnostic accuracy can be calculated
from the standard output of a multiple logistic regression analysis. This also
narrows the distance between logistic regression analysis and the tree-building
methods.

For each method, we provide a short description, some advantages and
disadvantages (under characteristics) and a real life example.

Overview of the methods

Simple tree building
Sensitivity and specificity are calculated for all outcome categories of all rele-
vant tests. The test with the best results according to a predetermined criterion
(e.g., sensitivity) is retained. For each result of this first test, all remaining tests
are reexamined. This is repeated as long as necessary, resulting in a decision
tree. At each node of the tree sensitivity and specificity (or other indicators of
diagnostic accuracy) are calculated for the total tree, adding up all true or false
positives and negatives at that moment. This method is based on reaching a
predetermined goal in terms of one or more diagnostic indicators and nodes
visualize the different decisions. This goal can be, for example, further testing
until for the whole study population a specificity of 0.80 is reached, in which
case an endpoint is reached; or no further testing as soon as the sensitivity falls
below 0.80. Any (combination of) diagnostic indicators (sensitivity, specificity,
likelihood ratio, predictive value, or odds ratio) can be used as well as any cut-
point (for continuous results) as long as it is predetermined before the start of
the analysis.
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Characteristics

1 Calculations are straightforward and can be made by hand or using a simple
Excel file. Everybody can see and understand what is happening. There is
no black box phenomenon.

2 As the tree unfolds, interactions are taken into account.
3 In addition to the “prediction” of the presence or absence of one diagno-

sis (“this patient either has a myocardial infarction or not”), trees can be
produced that have more than two outcome categories (this patient has a my-
ocardial infarction or an unstable angina or something else). For practical
reasons, the number of possible endpoints will generally be restricted to a
maximum of two or three.

4 The choice of the indicators and cut-points can be based on the exact aims of the
tests that are studied. Are you most interested in the as complete as possible
detection of cases (maximize sensitivity) or in avoiding false positive cases
(maximize positive predictive value)? Based on the work of Connell and
Koepsell,4 it has been suggested to use the sum of sensitivity and specificity
as a general measure of gain in (additional) certainty.1 The asymmetry in the
diagnostic value of a positive and a negative test result (if a positive result
of test T is highly predictive for the presence of disease D, this does not
mean that a negative test result largely excludes the presence of disease D)
that is inherent to most diagnostic tests is simply addressed as positive and
negative test results are independently processed.

5 This technique is almost impossible with large numbers of tests, and for tests
with continuous outcomes it is only applicable if they are categorized. The
sequence of including test results can be manipulated. This permits taking
into account the cost of a test (financially, but even more in terms of pain,
threat or other type of burden for the patient), the use of common sense
and the normal progression of a clinical approach. “Easy” tests, for example,
age, sex, and initial complaint are used first. They can be followed by more
detailed results of history taking and the basic physical examination, next
by the answers to more difficult questions, questionnaires, or more complex
examinations, by the results of additional technological tests and finally by
the results of unpleasant, invasive or harmful examinations. Comparison
of the results of two subsequent nodes permits to study the incremental
gain of the additional test. The basic tree allows for each test to be used only
once in a sequence. Calculations are possible, however, that also allow a
test result that initially was rejected to be tested again and maybe included
in a subsequent stage of the sequence.

6 Patient records including missing values have to be excluded as soon as the
missing value has to be taken into account.

7 No measure of imprecision is generally used during tree building.
8 There is no way to control whether the rules are set previous to the analysis.

This permits the researcher to change the rules of the game during the
analysis, resulting in possible data dredging and overoptimistic fitting of the
models. The choice of the cut-points is arbitrary.
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Example

In a random sample of subsequent male patients visiting their GP, the GP’s
initial judgment, questionnaires, and laboratory tests were used to identify al-
cohol abusers, using the Diagnostic and Statistical Manual of Mental Disorders
(DSM) criteria as operationalized in the Composite International Diagnostic
Interview as the gold standard.5 In a secondary analysis of the same data,
all possible trees were constructed, allowing all combinations of tests except
those in which laboratory tests preceded clinical information or questionnaire
results. The repeated use of a test was not possible. At each node of the tree,
sensitivity and specificity of the total available model up to that node were
calculated, based on the results of all patients. The model searched for the
highest sensitivity combined with a specificity at or above the specificity of
the initial judgment of the GP.

Use of classification and regression tree (CART) software
This is a computationally strong extension of the first method in which a
number of choices are predetermined.6 Well-known examples are CART7 or
Quinlan’s C4.58 software. The CART program (Classification and Regression
Trees) produces decision trees using variables (coded signs and symptoms)
directing to diagnostic categories. At each node of the tree, the program calcu-
lates which variable is the “most discriminating” and constructs at that node
a bifurcation of two branches. In case of a continuous variable, an optimal
cut-point is calculated and the variable is dichotomized. For each resulting
branch, CART calculates the next most discriminating variable and continues
in this way until either the size of the subgroups or the discriminating power
become too small. A final statistical pruning technique results in an optimal
tree where optimality is measured by various criteria.

Characteristics

1 Complex and specific software is required and the statistical calculations
result in a black box phenomenon. However, CART software is freely available
on the Internet (e.g., the r part package in R, see http://cran.r-project.org/).
It is fully data driven and can handle complex high-dimensional datasets.
The result is an easily interpretable tree.

2 The sequence of including test results can be manipulated, be it not as simple
as in a hand written tree. Continuous test results are easily handled through
calculation of the “best” cut-point by the software.

3 Interactions are automatically taken into account.
4 In addition to the “prediction” of the presence or absence of one diagnosis,

trees can also result in more than two possible diagnostic outcomes.
5 Depending from the exact software package, most indicators of diagnostic accu-

racy are presented or can easily be calculated from the output. The asymmetry
in the diagnostic value of a positive and a negative test result is addressed,
as positive and negative test results are independently processed. Weights
can be attributed to false negative and false positive results.
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6 Procedures to deal with missing data are part of the CART software. One in-
teresting procedure is based on the use of surrogate splits. The surrogate split
approach attempts to utilize the information in the other predictors to assist
in making the decision to send an observation to the left or the right daugh-
ter node. One looks for the predictor that is most “similar” to the original
predictor in classifying the observations. Similarity is measured by a measure
of association. It is not unlikely that in one or more observations the predic-
tor that yields the best surrogate split may also be missing. Then we have to
look for the second best, and so on. In this way, all available information is
used.

7 As all possible interactions, for which patient information is available, are
tested, the required sample size may be high.

8 Relatively simple final decision rules may be related to quite complex trees.
In some software (e.g., CART), the complexity of a tree is penalized dur-
ing the tree-building process. The models also tend to result in redundant
branches of the tree, suggesting that some variables are important while
they are not.7

9 Both a split half and a cross-validation procedure are routinely available for
misclassification error estimation. However, an important disadvantage of
CART remains its variability. Different datasets from the same setting can
lead to quite different final trees. Methods which average different trees
based on bootstrap samples (bagging and random forests), solve this problem
at the cost of interpretability.9

Example

A group of general practitioners studied the diagnostic value of a list of signs
and symptoms in identifying children with a serious infection (n = 31; 0.8%)
out of a group of 3981 consecutive ill children. CART software provided a tree
with a sensitivity of 96.8%, specificity of 88.5%, and positive and negative pre-
dictive value of 6.2% and 100%, using six steps and five tests, respectively.10

Logistic regression analysis
Computer software builds a model with the presence or absence of the disease
as the dependent variable and all available diagnostic test results, with or
without interaction terms, as the independent variables.

Characteristics

1 It is a complex, but reasonably fast, technique, resulting in a black box phe-
nomenon. The required software is available in almost all standard statistical
software packages.

2 Continuous test results are easily handled, with or without categorization.
Categorization will be needed, however, to make it easier for clinicians
to use the final model in daily life. The variables can be entered into the
model building process together or they can be used one by one (stepwise
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procedure). In a forward stepwise procedure, the variable with the strongest
significance will be entered first, followed one by one by the others in order
of statistical significance, as far as they are still showing significance. An-
other option is the backward procedure, where the most complex model
is gradually simplified by deleting the most nonsignificant variables one by
one, until only significant variables are left in the model.

3 Interactions can be taken into account. If all possible interactions are taken
into account, this generally results in very complex models that are difficult
to explain to clinicians who have not been involved in the analysis. Inter-
action analysis is therefore usually only performed for a maximum of two
or three terms. It is of course possible to calculate all predictive values from
the computer output (see Appendix) and to present them as a tree.

4 In principle, logistic regression is restricted to the decision whether one spe-
cific diagnosis is present or not. Therefore, this is the use most people will be
familiar with. Nevertheless, some techniques for polytomous logistic regres-
sion analysis are available and progressively gaining interest in diagnostic
research.11

5 The diagnostic value of a test can be reported as an adjusted (or conditional)
odds ratio for the relation of a positive versus negative test result and the
presence or absence of the disease. The diagnosis can be predicted from
the model on the basis of all test results for a specific patient or a group of
patients with similar test results. The diagnostic value of the model can be
expressed as the area under the (ROC, or receiver operating characteristic)
curve (AUC). The AUC is the graphical representation of the sensitivity and
specificity of the prediction model as a function of the cutoff point of the
predicted posterior probability.

The use of an odds ratio for a test may suggest that the positive and
negative results of a test are of a symmetrical nature; that is, that a test is
equally strong for ruling in as for ruling out a diagnosis. Most tests, however,
are intrinsically asymmetrical. A modeling technique has been proposed
that enables the calculation of sensitivity and specificity in both one-test
and multiple-tests situations. Each test variable x is transformed to x −
x0 before model building with x0 being the (virtual) value of x for which
posterior disease odds = prior disease odds.1 In case of interaction, branch
specific test characteristics can be calculated. The method is described in
more detail in the Appendix. Alternative methods have been developed
by Albert12 and by Spiegelhalter and Knill-Jones.13,14 A comparison of the
three methods showed generally similar post-test probabilities.15

6 The presence of a missing value for one variable results in the exclusion of
the whole patient record, unless an imputation technique is used.

7 The required sample size depends on the number of variables, including
the number of interaction terms. As interactions are usually only partially
analyzed, the required sample size is far less, compared to the tree-building
methods.
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8 The use of statistical significance to decide whether a test is included into the
model is less intuitively understandable to clinicians. Results will therefore
be less appealing to them. However, given statistical significance, also other
criteria can be used, such as the maximal sum of sensitivity and specificity,
invasiveness or cost.1 This is highlighted in the next section.

Example

In their analysis on the diagnostic value of signs and symptoms for diagnos-
ing pneumonia, Hopstaken et al.16 identified three significant symptoms. They
used backward logistic regression analysis to identify the independently signif-
icant symptoms, including interaction terms if significant (which was not the
case). They reported both odds ratios and a prediction rule with the positive
predictive value for each combination of test results.

Manipulated logistic regression analysis
In this variant, the order of including test results is manipulated by the re-
searcher. This permits taking into account the cost of a test (financially, but
even more in terms of pain, fear or other type of burden for the patient), the use
of common sense and the normal progression of a clinical approach. Clusters
of “easy” tests are presented first (e.g., age, sex, and initial complaint). They
are followed by more results of additional history taking and the basic physical
examination, next by the answers to more difficult questions, questionnaires
or more complex examinations, by the results of additional technological tests
and finally by the results of clearly unpleasant, invasive or harmful examina-
tions. The researcher decides on the sequence of presenting the clusters to the
software. “Statistics” decide which tests of a cluster are entered or rejected.

Characteristics

1 Instead of entering all possible test results together in the model, or entering
them in a sequence dictated by statistical test results, the order in which
tests are included in the model is dictated by indicators that are considered
relevant by the researchers. However, this also means that the order in
which the test results are entered into the model building procedure is
more or less arbitrarily decided by the researcher or by a group advising
him or her. As a result, two groups doing a similar study or even another
analysis in the same dataset may use a different sequence and therefore
reach a different final model. It is then important that the indicators used
are specified and reported.

2 Other characteristics are similar to option 3.

Example

De Lepeleire et al. used this method to build a model for the early diagnosis of
dementia in community dwelling elderly. The sequence of presenting different
tests to the model was decided by a group of clinical experts. The final model
included four signs and symptoms and reached an AUC of 0.93. Complex tests
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with a high discriminative power in crude data analysis, did not add to this
basic model.17 Similarly, in a second part of their analysis on the diagnostic
value of tests for diagnosing pneumonia, Hopstaken et al. added laboratory
test results to the initial model including signs and symptoms only, as this
was considered a logical second step in diagnostic reasoning. The C-Reactive
Protein (CRP) proved to add significant information to the initial model.16

Neural networks
The central idea of the application of neural networks in diagnostic studies is
to extract linear combinations of all diagnostic test results (the inputs) as so-
called derived features, and then model the presence or absence of the disease
(the target) as a nonlinear function of these features.18

Advantages

1 Neural networks are powerful learning methods developed separately in arti-
ficial intelligence and statistics; they have good predictive power. Software is
readily available in statistical packages as S-PLUS (commercial) and its free-
ware counterpart R. A variety of additional commercial shareware and free-
ware software tools for neural networks are readily available at the Internet.

2 A neural network (for a binary target) can be seen as an extension of
logistic regression.9,19

3 Dealing with interactions and with diagnostic asymmetry is an intrinsic
part of the calculations.

4 Neural networks can easily deal with more than two diagnostic categories.
5 Neural networks have major difficulties in handling missing data.
6 Neural networks are especially effective in problems with a high signal-

to-noise ratio and settings where prediction without interpretation is the
goal. They are less effective for problems where the goal is to interpret the
process that generated the data. It is a black box method. There are many
variants and different implementations, making them hard to understand
for nonexperts. For this reason, neural networks have been less used in
medical applications.

Example

The presence of left bundle branch block (LBBB) in the electrocardiogram
(ECG) increases the difficulty in recognizing an acute myocardial infarction
(AMI). Various ECG criteria for the diagnosis of AMI have proved to be of
limited value. Five hundred and eighteen ECGs, recorded at an emergency
department, with an LBBB configuration, were used to compare the perfor-
mance of neural networks to that of six sets of conventional ECG criteria and
two experienced cardiologists. Of this sample, 120 patients had an AMI. Ar-
tificial neural networks of the feed-forward type were trained to classify the
ECGs as AMI or not AMI. The neural network showed higher sensitivities
than both the conventional criteria and the cardiologists when compared at
the same levels of specificity.20
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Latent class analysis
This is a method to be used when a real reference standard is absent. In this
way, the method differs from what was discussed before. In a ward, or a pop-
ulation, we observe patterns of symptoms. So we might see patients with
hemoptysis, fever and weight loss, patients with haemoptysis with no fever
nor weight loss, others with fever and weight loss but without hemoptysis, and
so on. We know that tuberculosis might, at least partly, account for these pat-
terns. Direct microscopy and culture can help, but are not sensitive enough:
we lack a reliable gold standard or “reference standard.” Latent class anal-
ysis hypothesizes a “hidden” disease or condition, which might explain the
“constellation” of symptom patterns.

The group of cases with a certain pattern would encompass both patients
with and without the disease. The proportion of tuberculosis (the hypothetical
condition) patients with all three symptoms would, in case of conditional
independence of symptoms, be given by: [Prevalence × sens (hemoptysis) ×
sens (fever) × sens (weight loss)], where “sens” stands for the (yet unknown)
sensitivity for each indicated symptom, while the proportion of patients, for
example, without tuberculosis presenting with hemoptysis and weight loss
but without fever would be given by:

[(1–prevalence) × (1–spec) (hemoptysis) × (1–spec) (weight loss) × spec
(fever)], where spec stands for the (yet unknown) specificity. The presence
of all possible combinations of test results in diseased and nondiseased can be
summed up. There would be 23 patterns, from which seven disease character-
istics are to be found: the prevalence, and the sensitivity and specificity of each
of the three symptoms. Latent class analysis intends to offer an explanation
for the “constellation of patterns” through the seven disease characteristics.
Consecutive values are substituted for the disease characteristics, until through
repetitive approximation the predicted distribution of the patterns comes close
to the observed in the ward or the population. The closer, the better the model
explains reality.

Characteristics

1 Results are given in sensitivity and specificity, allowing for asymmetry in
test interpretation.

2 Current programs provide several indicators of model fit, prevalence of the
condition, sensitivities and specificities of disease characteristics, Likelihood
ratios, and post-test probabilities for all patterns.

3 Early versions of the software required conditional independence, but mod-
ern versions allow controlling for it. Moreover, clinicians can judge about
the importance of a certain confounding/interaction term and correct for it
or not in the model.21

4 The concept of “latent class” is difficult to explain, which does not add to
trust in the methodology. Most explanations use quite complex formulas.
In the absence of a gold standard (a reliable reference test), sensitivity and
specificity can be estimated. However, the true nature of the latent condition
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is not known. While tuberculosis is relatively easy to identify, since micro-
scopy and culture strongly point to the disease, we might be identifying
AIDS instead of tuberculosis. For other conditions like alcoholism, it may
be even more difficult as no specific characteristic exists, hence doubt can
remain on the nature of the disease we are looking at. As an example, we
may be identifying depression in stead of alcoholism.

5 The number of variables is limited. As the number of combinations (pat-
terns) doubles with every additive variable, and since “empty” patterns (no
patients in this combination) should be avoided, the required sample size
almost doubles with every extra variable.

6 Different models can explain the same constellation, and give quite different
prevalences, sensitivities, and specificities.

Example

The true prevalence of tuberculosis in a certain population is unknown as
the culture, the classical reference standard, lacks sensitivity. In a 300-patient
cohort in Kigali, Rwanda, prevalence, sensitivity, and specificity of clinical and
paraclinical data were studied. The estimated prevalence was 20% higher than
predicted by culture, but the values for sensitivity and specificity were almost
the same, except for sensitivity of direct microscopy. Posttest probability was
given for different combinations of disease characteristics.

Additional methods
Experiments have been performed with Bayesian networks.22,23 These are
mathematically complex methods for which specific software is required. Most
clinical researchers are insufficiently familiar with the theory behind and with
the operationalization of the procedures. Also the translation of results into
routine clinical practice can therefore be expected to be problematic. The black
box problem is even larger than for regression modeling. Finally, the available
experience at this moment is rather scarce. These problems are even more
prominent with respect to support vector machines or boosting methods.

Problems shared by all methods

Validation
In all these procedures, the results that are reported are based on models or
trees that are built on a certain datasets. Although exceptions exist,24 mod-
els that are developed in one population, tend to behave worse as soon as
they are tested in another, even similar population.25,26,27 Before they gain
any clinical value they therefore have to be confirmed in at least one second
population. The optimal solution is to perform a validation study in which
exactly the same model is tested in a new and independent, but clinically
similar population.24,29,30 As the model or tree proves to be reliable in an in-
creasing number of independent populations, its generalizability and therefore
also its clinical relevance progressively increase. An “intermediate” option is a
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cross-validation procedure: The sample of patients is divided in two subsam-
ples. The first one (sometimes called the “learning sample”) is used to build
the model or tree. The second subsample (the validation sample) is then used
to confirm or validate the model or tree that was initially built. Such a pro-
cedure is routinely available, for example, in CART software.7 It can easily be
performed, however, in all situations that were discussed. This is heavily paid,
however, as the statistical power for each of both subsamples drops. More-
over, this method does not represent a real external validation in a new and
independent study population.

Performance of the final model
There is no formal rule to decide on how good a final model is. In case of a
dichotomous result of both the prediction model and the reference standard,
a classic 2 × 2 table can be constructed by using the diagnoses “predicted”
by the model as a test result and comparing this with the reference standard
result. Accuracy as well as the usual indicators of the diagnostic value of a
test (sensitivity, specificity, predictive values, and likelihood ratios) can then
be calculated for the model. Also ROC curves can be produced if different cut-
points of the predicted posterior probability are subsequently used. In case of
subsequent entering of various (clusters of) tests, the area under the curve
(AUC) can be calculated after each step that is been taken. The increase in
AUC after each step will teach you to what extent the model/tree is improving
while progressively becoming more complex (Figure 8.1). On the basis of this
increase in AUC and its statistical significance it can than be decided at which
moment to stop.16,17,30

Overlapping subgroups
Handling of overlapping subgroups is only possible if the shared test charac-
teristic comes first in the tree-building procedure. For example, patients with
retrosternal chest pain (opposed to another localization on the chest) and no
pain at palpation may be at high risk for myocardial infarction.31 Another
high-risk group may consist of patients with retrosternal chest pain and ir-
radiation of the pain to the neck and mouth. The diagnostic value of pain
localization is easily detected if the localization of the pain is addressed first by
the tree-building procedure. It may be difficult to detect, however, whether
the localization is only relevant after inclusion of one or both of the two other
symptoms. Which of the symptoms comes first during tree building may de-
pend on the results in a small number of patients and the consequences may
be important as the second symptom may totally disappear from the model
unless both symptoms are fixed to each other and commonly handled on
the basis of pre-existing information. A related problem is the following: If
two tests give results that are very near to each other, the first one (i.e., the
test with the highest degree of statistical significance) will be selected and
entered into the model. The second test will probably loose all additional sig-
nificance (conditional upon the result of the first test) and be rejected by the
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Figure 8.1 ROC curves of the four multiple logistic regression models for diagnosing
peripheral arterial occlusive disease (N = 4,310 legs), evaluating the diagnostic value
of four models with increased clinical complexity with inclusion of added variables
with each step. Areas under the curve AUCs are, respectively, for model 1: 0.69; for
model 2: 0.72; for model 3: 0.86; and for model 4: 0.87. Each subsequent logistic
model was shown to be a significant improvement on its predecessor using likelihood
ratio tests.30

model although it may be a very relevant test if used without the first one,
for example if information is only available on the second and not on the first
symptom.1,29 As a medical example, one might think of the competition be-
tween the hemoglobin level and the hematocrit to be included in a predictive
model, although each of these can have an important contribution especially
in the absence of the other. The decision which test is the strongest may be
based on the result in a small number of patients only.

Number of tests to be included
Some authors use a criterion for the maximal number and the choice of tests
to be included in the multivariate model to be tested.17 For example, it has
been suggested that a total number of 1,000 subjects in the study would be
sufficient to examine a three-test situation with all interactions.1 Such rules
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can be helpful in a specific situation, but they are more or less arbitrary and
do not provide robust guidance. In logistic regression analysis, not all possi-
ble interactions tend to be analyzed and the required sample size will then
generally be less.

Selection of tests to be included
If a large number of test results are available, the resulting model may be
very complex and very difficult to interpret. However, selecting possible tests
on the basis of their behavior in bivariate analysis does not solve this prob-
lem: a test may be very effective in an unselected population, but fail to
add relevant information if the results of previous tests are already available.
However, this can be sorted out in the multivariable analysis. More prob-
lematic is the opposite: an initially weak test may be a strong confirmation
test in a (by previous testing) highly selected population, and this will be
missed in case of preselection by bivariate statistical significance. It has been
suggested that tree building should be used for selecting the relevant tests.
In a second stage, the model should then be refined by logistic regression
analysis.8

Meta-analysis
Meta-analysis of the results of this kind of studies is at the moment practically
impossible unless exactly the same models or trees are fit in different studies.
Probably only methods based on individual patient data pooling will be able
to do the job.32 In the future, one could imagine different researchers that are
studying the same problem to collect a common set of test results and final
diagnostic categories (possible endpoints) in a similar way and to share their
data for analysis.

Recommendations

Multiple logistic regression is currently the most popular technique for the
analysis of diagnostic studies including multiple tests, especially in the case
of dichotomous test results and disease outcomes. The most rewarding ap-
proach is to start with a simple one-test model and progressively adding other
tests together with the relevant interactions. Both efficiency and clinical rele-
vance may increase if tests are entered in the model as clusters, starting with
“easy” or less costly tests or following the normal progression of a clinical
approach (see option 4). The main alternative in current research practice
is the use of CART-type tree-building methods (see option 2). Comparisons
have not provided clear indications that one or the other approach would be
more valid. We suggest that researchers should concentrate on one of these
methods, try to master it in detail and consequently use it, always keeping
in mind that alternatives are available, each with their own advantages and
disadvantages.
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test result 
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test result 
negative x1 = 0
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= 0.25
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probability of 
posttest

disease 0.09

Figure 8.2 Decision/probability tree for the application of test x1 (see data in
Table 8.2).
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Appendix: Deriving test characteristics from a logistic
regression analysis

To show how test characteristics can be derived from logistic regression anal-
ysis we use a single test example based on a simple 2 × 2 table.1 Table 8.2
summarizes data for a study population of 900 subjects investigated with a
dichotomous test x to diagnose or exclude disease D. We would speak about
x1 if data on more test variables (x2, x3, . . . , xi) would be available. The prior
probability of D, P(D), is 225/900 = .25. Values of other relevant diagnostic
measures such as sensitivity, specificity, likelihood ratios, odds ratio and pos-
terior probabilities are presented in the table. A simple one test prediction rule
for disease D, based on these data for this study population with prior disease
probability .25, can be formulated as follows:

Apply test x:

– if x is positive (x = 1), then the posterior probability of D, P(D|x = 1), is
180/405 = .44;

– if x is negative (x = 0), then the posterior probability of D, P(D|x = 0), is
45/495 = .09.

Figure 8.2 summarizes this in a simple decision and probability tree.
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The data in Table 8.1 can be expressed in a basic logistic regression function:

Ln (posterior odds), which is equivalent to Ln (P(D|x)/(1 − P(D|x)),
= −2.30 + 2.08∗ x

where, as is known for logistic regression, the left term is the logit of D: the
natural logarithm of the posterior disease odds given the test result for x1.

Furthermore, −2.30 is the intercept, equivalent to the natural logarithm of
the posterior disease odds for a negative test result (= Ln (.09/(1 − .09)).

In addition, 2.08 is the logistic regression coefficient for independent vari-
able x (that is, the test), and represents the natural logarithm of the odds ratio
for the relationship between x and D in Table 8.1 (= Ln 8.0). This quantity
contains full information on the discrimination of the test since—as can be
easily shown in a 2 × 2 table—the odds ratio is the ratio of the likelihood ratio
of the positive test result (LR+) and the likelihood ratio of the negative test
result (LR−): OR = LR+/ LR−, so Ln OR = Ln (LR+/ LR−) = 2.08.

If one wants to include directly the information of the prior disease odds,
one can, again, use an equivalent expression (1):

Ln (P(D|x)/(1 − P(D|x)) = −1.10 + 2.08 × (x − 0.58)

The intercept value −1.10 is equivalent to the natural logarithm of the prior
disease odds (= Ln(.25/(1 − .25)). The value .58 is representing the (virtual)
indifferent value of x, (designated as x0) for which posterior odds = prior odds.
The general formulation of the regression equation is then: Ln (posterior odds)
= Ln (prior odds) + B(x − x0), with for x = x0, Ln(prior odds)= Ln(posterior
odds).

It can be shown (1) that:

x0 = Ln(prior odds) − Ln(posterior odds|x = 0)

B
,

in which B is the logistic regression coefficient representing Ln OR.
The advantage of this representation,in fact being a logistic expression of

Bayes’s formula, is that the relationship with the prior odds of the study pop-
ulation has clearly been retained and that the test information is added to it.
In addition, in contrast to the usual representation of logistic regression, all
test characteristics can be directly derived from this function:

LR+ = eB(1−x0) = 2.7182.08×(1−0.58) = 2.4

B(−x0)LR− = e = 2.7182.08×(−0.58) = 0.30

Sensitivity = e−B x0 − 1

e−B − 1
= 2.718−2.08×0.58 − 1

2.718−2.08 − 1
= 0.80

Specificity = e−B(1−x0) − 1

e−B − 1
= 2.718−2.08×(1−0.58) − 1

2.718−2.08 − 1
= 0.66
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Table 8.2 Example: relation between the result of test and the presence or absence of
disease D

Disease Status

Test Result D+ D− Total

positive: x = 1 180 225 405

negative: x = 0 45 450 495

Total 225 675 900

prior probability = 225/900 = .25

posterior probability of a positive test result (positive predictive value) = 180/405 = 0.44

posterior probability of a negative test result (1 − negative predictive value) = 45/495 = 0.09

sensitivity = 180/225 = .80

specificity = 450/675 = .67

likelihood ratio positive (LR+) = sensitivity
1 − specificity

= 2.4

likelihood ratio negative (LR−) = 1 − sensitivity
specificity

= .30

odds ratio (= cross product) = 180 × 450
225 × 45

= 8.0

Also confidence intervals can be computed.1 A practical problem is that at
this moment no software is available in the standard statistical packages to
routinely perform these calculations.

In applying a logistic regression function for diagnostic prediction to an
individual subject with certain characteristics (that is, specific values for x
variables), we can substitute the individual values for the x variables. This
yields the natural logarithm of the estimated posterior disease odds for this
subject. Then, using some elementary algebra we can calculate the posterior
probability P(D|x). For the single test situation of Table 8.2, this will give
the following results for subjects with positive and negative test outcomes,
respectively:

P(D|x = 1) = 1

1 + e−(−1.10+2.08∗(1−.58))
= .44

and

P(D|x = 0) = 1

1 + e−(−1.10+2.08∗(−.58))
= .09

These latter two outcomes are equivalent to the predictive value of a positive
test and 1− the predictive value of the negative test respectively.

Of course, the same results would have been found by substitution into the
usual logistic regression function. In Table 8.3, computer output for the logistic
regression analysis for the Table 8.2 data is given, also including standard errors
of the coefficients.
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Table 8.3 Results of logistic regression analysis for a single test situation, including
standard errors of the coefficients, for the usual approach and the approach using
(x − x0) instead of x (Basic data in Table 8.2)

Ordinary Proposed

Variable coefficient (SE) coefficient (SE)

Intercept X −2.30 (.16) −1.10 (.09)

(X − .58) 2.08 (.19) 2.08 (.19)

Analogous to the one test example, also multiple test situations can be
worked out using multiple logistic regression analysis with x1, x2, x3, . . . ,
xi representing test 1, test 2, test 3, and test i, respectively, and with x10, x20,
x30, . . . , xi0 representing the respective indifferent x-values for these tests. The
general elaboration for the regression function for a two-test situation, tak-
ing also possible interactions between the test results into consideration, is as
follows:

Ln(posterior odds), equivalent to Ln(P(D|x1,x2)/(1 − P(D|x1,x2))

= Ln(prior odds) + B1(x1 − x10) + B21x1(x2 − x210) + B20(1 − x1)(x2 − x200)

in which B1 is the regression coefficient for x1, and B21 and B20 are the regres-
sion coefficients for x2 if x1 = 1 and x1 = 0, respectively; x10, x210, and x200

are the indifferent values of x1 and of x2 in case of x1 = 1, and of x2 in case
of x1 = 0, respectively.

This implies that in the two-test situation the impact of x2 may be different
depending on whether the first test is positive (with x1 = 1) or negative (with
1 − x1 = 1).

In Figure 8.3, the two-test situation with interaction between tests is rep-
resented in a diagnostic probability tree. When there are more than two test
variables, the preferred sequence of the test can vary between the various
“branches” of the diagnostic tree. 1

The relationship between Bayes’s rule and logistic regression has also been
pointed out by Spiegelhalter en Knill-Jones:13,14 the natural logarithm of the
likelihood ratio, Ln LR, can be used as “weight of evidence” in a additive logistic
model starting from the Ln (prior disease odds). For a positively discriminating
test this weight of evidence has a positive value, and for a negatively discrim-
inating test the weight is negative.
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CHAPTER 9

Standards for reporting on
diagnostic accuracy studies
Patrick M. M. Bossuyt and Nynke Smidt

Summary box� In the evaluation of new and existing medical tests, establishing a test’s
diagnostic accuracy is an essential step.� Accuracy studies with shortcomings in study design can produce
biased results.� Evidence accumulates that many published research articles fail to
include key elements about study methods and findings.� Standards for the Reporting of Diagnostic accuracy studies (STARD)
were developed by an international group to improve the reporting of
diagnostic accuracy studies.� The STARD statement and the 25-item checklist have been published
and adopted by major clinical and subspecialty journals.� A similar initiative has been organized for prognostic tumor markers in
oncology.

Introduction

In recent decades, the number of medical tests has been increasing at a rapid
pace. New tests are developed at a fast rate and the technology of existing tests
is continuously being improved.

As for all new medical technologies, new diagnostic tests should be thor-
oughly evaluated prior to their introduction into daily practice. A rigorous
evaluation process of diagnostic tests before introduction into clinical practice
could not only reduce the number of unwanted clinical consequences related
to misleading estimates of test accuracy but also limit health care costs by
preventing unnecessary testing.

The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research. 2nd edition.
Edited by J. André Knottnerus and Frank Buntinx. C© 2009 Blackwell Publishing,
ISBN: 978-1-4051-5787-2.

167The Evidence Base of Clinical Diagnosis: Theory and methods of diagnostic researc, 2nd Edtion,
Edited by J. A. Knottnerus  F. Buntinx © 2009 Blackwell Publishing Ltd,  ISBN: 978-1-4051-5787-2
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Unfortunately, the evaluation of medical tests is less advanced than that
of treatments.1–3 Exaggerated and biased results from poorly designed and
reported diagnostic studies could trigger their premature dissemination and
lead physicians into making incorrect treatment decisions.

In the evaluation of new and existing medical tests, establishing a test’s
diagnostic accuracy is an essential step. Diagnostic accuracy studies evaluate
a test’s ability to identify patients with disease, or, more generally, the target
condition, among those suspected for it. In studies of diagnostic accuracy,
results from one or more tests are compared with the results obtained with
the reference standard on the same subjects who are suspected of having a
particular target condition.

The accurate and transparent reporting of research has become a matter
of increasing concern as evidence accumulates that many published research
articles fail to include key information about the study methods and findings.
This concern has in turn led to efforts to try to identify which aspects of a
study should be reported.

The STARD statement (Standards for the Reporting of Diagnostic accuracy
studies) has been developed to improve the reporting of diagnostic accuracy
studies. In this chapter we first summarize a series of sources of bias and var-
iability in diagnostic accuracy studies, and the evidence about their effects. In
the next section we describe the development of the STARD statement. The
final section summarizes the uptake and effects of the STARD statement.

Sources of bias and variability in diagnostic accuracy
studies

In studies of diagnostic accuracy, the results of one or more tests are compared
with the results of the reference standard in the same patients. In such studies,
the term test can refer to any method for obtaining additional information
on a patient’s health status. It includes information from history and physical
examination, laboratory tests, imaging tests, function tests and histopathology.

Test accuracy applies to tests selected for other purposes than diagnosis.
The target condition in testing can be a particular disease, a disease stage but
also any other identifiable condition that may prompt clinical actions, such
as further testing, or the initiation, modification or termination of treatment.
While the term disease describes a state that is often tightly defined based on
microbiological, pathological, or histological findings, a target condition is a more
general term, that groups subjects similar in clinical history, examination and
test results, and prognosis, and known to be better off with a particular course
of medical management.

The reference standard is the best available method for establishing the
presence or absence of the target condition in the tested patients. The reference
standard can be a single method, or a combination of methods, to establish the
presence of the target condition. It can include laboratory tests, imaging tests,
pathology, but also dedicated clinical follow-up of subjects. In most cases, the
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test under evaluation, also called the index test, is a less invasive, quicker test
than the reference standard.

The term diagnostic accuracy refers to expressions of the agreement be-
tween the index test and the reference standard, obtained from a comparison
or cross-classification of the index test results and the results of the reference
standard. Diagnostic accuracy can be expressed in many ways, including sen-
sitivity and specificity, likelihood ratios, diagnostic odds ratio, and the area
under a receiver operator characteristic (ROC) curve.

There are several potential threats to the internal and external validity of
a study of diagnostic accuracy. Poor internal validity will produce bias: the
estimates do not correspond to what one would have obtained using better
methods. In other words, there is systematic error. Poor external validity limits
the generalizability of the findings. The results of a study with poor general-
izability, even if unbiased, do not correspond to the data needs for decision
making.

As measures of diagnostic accuracy express the behavior of a test under
particular circumstances, test behavior will differ depending on the group of
patients that undergoes testing. Test evaluations should therefore include an
appropriate spectrum of patients in whom the target condition is suspected in
clinical practice. The ideal study takes a consecutive series of patients, inviting
all patients suspected of the target condition within a specific period and spec-
ifying the amount of prior testing these patients have received. These patients
then undergo the index test and all are subjected to the reference test. This
resembles the cohort design, as it is known in epidemiology.

The word consecutive is heavily misused in the literature and has almost
lost its meaning. It refers to total absence of any form of selection, beyond
the a priori definition of the criteria for inclusion and exclusion, and explicit
efforts to identify patients qualifying for inclusion. Not inviting consecutive
patients can lead to spectrum or selection bias.4

Alternative designs are possible. Some studies first select patients known
to have the target condition, and then contrast the results of these patients
with those from a control group. These designs are similar to case-control de-
signs in epidemiology, yet they differ from them in a number of ways. For
that reason, the label ‘two-gate designs’ has been proposed. These “two-gate”
accuracy studies use two sets of inclusion criteria, one for the diseased, and a
second set for those without the target condition.5 The selection of the control
group in “two-gate” designs is critical. If the control group consists of healthy
participants, diagnostic accuracy will be overestimated.6,7 Patients suspected
for the target condition who have negative test results on the reference stan-
dard usually have other signs, complaints, and conditions that prompted the
ordering of the tests. These conditions are bound to give some false positive
results. Healthy volunteers are usually without such complaints and are less
likely to obtain false positive results.

In an accuracy study, the reference standard may not always be applied to all
patients tested with the index test. This may happen if the reference standard is
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an invasive procedure, but it could also be due to negligence, or other factors.
If not all patients are verified with the reference standard, verification bias may
occur. We make a distinction between two forms of verification bias, partial
verification bias and differential verification bias.

Partial verification applies when not all patients are tested. It will lead to
bias if the selection is not purely random but is associated with the results of
the index test and the strength of prior suspicion. Partial verification can result
in workup bias, when patients with positive or negative diagnostic test results
are preferentially referred to receive verification of diagnosis by the reference
standard procedure.

Even if all patients are verified, a different form of verification bias can
happen if more than one reference standard is used, and the two reference
standards correspond to different manifestations of disease. This can lead to
differential verification bias.

The timing of the reference standard can be critical. Larger intervals between
test and verification by the reference standard may lead to disease progression
bias. In that case, the disease is at a more advanced stage when the reference
standard is performed and clear cases appear to have been missed by the index
test. As the time interval grows larger, the actual condition of the patient may
change, leading to more expressed forms of alternative conditions.

Review bias occurs when interpretation of the index test or reference stan-
dard is influenced by knowledge of the results of the other test. Diagnostic
review bias occurs when the results of the index test are known while inter-
preting the reference standard. Analogously, test review bias can be present
when results of the reference standard are known while interpreting the re-
sults of the index test.

In some cases, it may be inevitable or preferable to use a panel of experts
to assign a final diagnosis, and to disclose the index test results to that panel,
in addition to data on follow-up and other procedures. When the result of
the index test is used in establishing the final diagnosis, incorporation bias
may occur. Using the index test results as part of the reference standard is
likely to increase the amount of agreement between index test results and the
reference standard, leading to an overestimation of the various measures of
diagnostic accuracy.8

These and other sources of bias and variability in diagnostic accuracy studies
have been systematically reviewed by Whiting and collaegues, based on the
available literature.8 Lijmer and colleagues gained further empirical support
for the baising effect of design deficiencies by collecting and re-analyzing a
series of 18 meta-analyses of a wide range of medical tests.6 Within each meta-
analysis, they retrieved the original studies in the respective systematic review
and scored their design features. Then, using multivariable meta-regression
modeling, they evaluated whether studies with particular design deficiencies,
such as partial verification, produced more optimistic estimates of the accuracy
of studies than studies of the same test, for the same purpose, without such
design deficiencies.
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The results of the 218 test evaluations confirmed the prior suspicions. Tests
with design deficiencies, in particular those using healthy controls and differ-
ential verification, found higher accuracy estimates.

The results of Lijmer et al. were replicated by the same research group. Rut-
jes and colleagues evaluated a larger set of different meta-analyses (n = 31),
covering 487 primary accurracy studies, and evaluated more design feature
(n = 15) with even more refined statistical methods.7 Their results confirmed
that shortcomings in study design can affect estimates of diagnostic accuracy,
but Rutjes also observed that the magnitude of the effect may vary from one
situation to another.

Developing the STARD statement

In this era of evidence-based medicine, clinicians and other decision makers
turn to the scientific literature for high-quality evidence about the usefulness,
precision, and accuracy of diagnostic tests. Such evidence is needed more
than ever as the list of diagnostic tests grows exponentially, while even more
biomarkers, proteomics and applications of gene expression profiling will be
added in the years to come.

The reviews of Lijmer and Rutjes did not only show the biasing effects
of design deficiencies, they also showed that essential information on key
elements of design, conduct and analysis of diagnostic studies was often not
reported. Rutjes and collaegues found that about half the studies failed to
report the dates of the includion period, almost 20% did not report the sex and
age of the study participants. Design features were also often not mentioned,
or described in a confusing way.

These results confirmed previous findings. A survey of studies of diagnostic
accuracy published in four major medical journals between 1978 and 1993
revealed that the methodological quality was mediocre at best.9 Smidt and
colleagues found that reporting of diagnostic accuracy in 124 papers in major
clinical journals was less than optimal, even in journals with high impact
factors.10 The absence of critical information about the design and conduct
of diagnostic studies has also been confirmed and lamented by many other
authors of systematic reviews.

This is a reason for great concern, as complete and accurate reporting would
allow the reader to detect the potential for biases in a study and to judge the
generalisability and applicability of the results.

At the 1999 Cochrane Colloquium meeting in Rome, the Diagnostic and
Screening Test Methods Working Group within the Cochrane Collaboration
discussed the low methodological quality and substandard reporting of diag-
nostic test evaluations. The working group felt that the first step to correct
these problems was to improve the quality of reporting of diagnostic studies.
The objective of the then formed Standards for Reporting of Diagnostic Accu-
racy (STARD) initiative became the improvement of the quality of reporting
of diagnostic accuracy studies. Following the successful CONSORT initiative,
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the STARD initiative aimed at the development of a checklist of items that
should be included in the report of a study of diagnostic accuracy.

A STARD steering committee started with an extensive literature search and
extracted a list of 75 potential items. This search included the Medline, EM-
BASE, BIOSIS, and the methodological database from the Cochrane Collabo-
ration up to July 2000. In addition, the steering committee members exam-
ined reference lists of retrieved articles, searched personal files, and contacted
other experts in the field of diagnostic research. They reviewed all relevant
publications and extracted an extended list of potential checklist items.

Two general considerations help to shape the content and format of the
checklist. First, the STARD group believes that one general checklist for stud-
ies of diagnostic accuracy, rather than different checklists for each field, was
likely to be more widely disseminated and accepted by authors, peer review-
ers, and journal editors. Although the evaluation of an imaging test differs
from that of test in the laboratory, these differences may be more in degree
than of kind. The second consideration was the development of a checklist
specifically aimed at studies of diagnostic test accuracy. The STARD group
did not include general issues in the reporting of research findings, like the
recommendations contained in the Uniform Requirements for Manuscripts
submitted to Biomedical Journals (see www.icmje.org).

Subsequently, the STARD steering committee convened a two-day consen-
sus meeting on September 16 and 17, 2000, in Amsterdam for invited experts
from the following interest groups: researchers, editors, methodologists, and
professional organizations. During the consensus meeting, participants elimi-
nated and consolidated items to form a final 25-item checklist (Table 9.1).

In addition, the STARD group put considerable effort in the development of
a flow diagram prototype for test accuracy studies. The flow diagram provides
information about the method of patient recruitment, the order of test exe-
cution, the number of patients undergoing the test under evaluation and the
reference test, the number of patients with positive and negative test results
and number of patients with indeterminate test results. Such a flow diagram
has the potential to communicate vital information about the design of a study
and the flow of participants in a transparent manner (Figure 9.1).

Potential users field-tested the first version of the checklist and flow di-
agram. The checklist was placed on the CONSORT website with a call for
comments. The STARD group received valuable remarks during the various
stages of evaluation and assembled the final, single-page checklist. Table 9.1
shows the STARD checklist and Figure 9.1 shows a prototypical flow diagram
of a diagnostic accuracy study.

Uptake of STARD

The STARD statement was published in the first issues in 2003 of seven leading
general and specialty journals, including Annals of Internal Medicine, Radiology,
BMJ, and Clinical Chemistry, and, subsequently, in several other journals.11–24.
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Table 9.1 STARD checklist for reporting of studies of diagnostic accuracy

Section and topic

Item

no.

On page

no.

TITLE/ABSTRACT/

KEYWORDS

1 Identify the article as a study of diagnostic accuracy

(recommend MeSH heading “sensitivity and

specificity”).

INTRODUCTION 2 State the research questions or study aims, such as

estimating diagnostic accuracy or comparing

accuracy between tests or across participant groups.

METHODS

Participants 3 The study population: The inclusion and exclusion

criteria, setting, and locations where data were

collected.

4 Participant recruitment: Was recruitment based on

presenting symptoms, results from previous tests,

or the fact that the participants had received the

index tests or the reference standard?

5 Participant sampling: Was the study population a

consecutive series of participants defined by the

selection criteria in item 3 and 4? If not, specify

how participants were further selected.

6 Data collection: Was data collection planned

before the index test and reference standard were

performed (prospective study) or after

(retrospective study)?

Test methods 7 The reference standard and its rationale.

8 Technical specifications of material and methods

involved including how and when measurements

were taken, and/or cite references for index tests

and reference standard.

9 Definition of and rationale for the units, cutoffs

and/or categories of the results of the index tests

and the reference standard.

10 The number, training, and expertise of the persons

executing and reading the index tests and the

reference standard.

11 Whether or not the readers of the index tests and

reference standard were blind (masked) to the

results of the other test and describe any other

clinical information available to the readers.

(continued )



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 9:6

174 Chapter 9

Table 9.1 (continued )

Section and topic

Item

no.

On page

no.

Statistical methods 12 Methods for calculating or comparing measures of

diagnostic accuracy, and the statistical methods

used to quantify uncertainty (e.g., 95% confidence

intervals).

13 Methods for calculating test reproducibility, if

done.

RESULTS

Participants 14 When study was performed, including beginning

and end dates of recruitment.

15 Clinical and demographic characteristics of the

study population (at least information on age,

gender, spectrum of presenting symptoms).

16 The number of participants satisfying the criteria

for inclusion who did or did not undergo the index

tests and/or the reference standard; describe why

participants failed to undergo either test (a flow

diagram is strongly recommended).

Test results 17 Time-interval between the index tests and the

reference standard, and any treatment

administered in between.

18 Distribution of severity of disease (define criteria)

in those with the target condition; other diagnoses

in participants without the target condition.

19 A cross tabulation of the results of the index tests

(including indeterminate and missing results) by

the results of the reference standard; for

continuous results, the distribution of the test

results by the results of the reference standard.

20 Any adverse events from performing the index

tests or the reference standard.

Estimates 21 Estimates of diagnostic accuracy and measures of

statistical uncertainty (e.g., 95% confidence

intervals).

22 How indeterminate results, missing data and

outliers of the index tests were handled.

23 Estimates of variability of diagnostic accuracy

between subgroups of participants, readers or

centers, if done.

24 Estimates of test reproducibility, if done.

DISCUSSION 25 Discuss the clinical applicability of the study

findings.
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Figure 9.1 Prototypical flow diagram of a diagnostic accuracy study.

The STARD Statement was accompanied by a separate explanatory docu-
ment, explaining the meaning and rationale of each item and briefly sum-
marizing the available evidence.25,26 The documents are also available on sev-
eral websites, including that of Clinical Chemistry, CONSORT, and STARD (see
www.stard-statement.org). Publication of the STARD documents was accom-
panied by several editorials, with statements of endorsement from editors and
their boards.27–42

An early evaluation of 265 diagnostic accuracy studies published in 2000
(pre-STARD) and in 2004 (post-STARD) in high-impact journals revealed
that the quality of reporting in articles on diagnostic accuracy has improved
after the publication of the STARD statement, but there is still room for
improvement.43 Papers published in 2004 reported on average 14 of the 25
essential STARD items.

A possible reason for the slow uptake could be the way the STARD state-
ment is used within the editorial process. Smidt and colleagues identified the
top 50 journals that frequently publish studies on diagnostic accuracy, and
examined the instructions for authors on each journal’s website, extracting
all text mentioning STARD or other text regarding the reporting of diagnostic
accuracy studies. They found variable language in journals that had adopted
the STARD statement. Most adopting journals refer to the STARD statement,
without describing their expectations regarding the use of the STARD state-
ment.
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The STARD group plans new initiatives to improve the quality of reporting of
accuracy studies, and intends to release updates of STARD when new evidence
on sources of bias or variability becomes available. So far, no such updates have
been deemed necessary.

Other Initiatives

The STARD initiative was followed by other initiatives aimed at strengthening
the reporting of clinical and biomedical research.

Over many years, thousands of reports on tumor markers in oncology have
yielded very few markers that have emerged as clinically useful. A major
recommendation of the NCI-EORTC First International Meeting on Cancer
Diagnostics (From Discovery to Clinical Practice: Diagnostic Innovation, Im-
plementation, and Evaluation) held in Nyberg, Denmark, in July 2000, was
the development of guidelines for the reporting of tumor marker studies. That
meeting identified poor study design and analysis, assay variability, and inad-
equate reporting of studies as some of the major barriers to progress in the
field. The Statistics Subcommittee was then charged with addressing statis-
tical issues of poor design and analysis, and the reporting of tumor marker
prognostic studies. Reporting guidelines were agreed to be the first priority.

The resulting REMARK recommendations were published simultaneously
in September 2005 in five cancer journals: British Journal of Cancer, European
Journal of Cancer, Journal of Clinical Oncology, Journal of the National Cancer Insti-
tute, and Nature Clinical Practice Oncology.44–50

Based on the evidence collected in the development of STARD, Whiting and
colleague developed a quality appraisal instrument, to be used by authors of
systematic reviews of test accuracy. The resulting QUADAS instrument con-
tains 14 items, including patient spectrum, reference standard, disease pro-
gression bias, verification bias, review bias, clinical review bias, incorporation
bias, test execution, study withdrawals, and indeterminate results.51–53.

If medical journals, authors, editors, and reviewers more widely adopt the
STARD checklist and the flow diagram, the quality of reporting of studies of
diagnostic accuracy should improve to the advantage of the clinicians, re-
searchers, reviewers, journals, and the public.
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CHAPTER 10

Guidelines for conducting
systematic reviews of studies
evaluating the accuracy of
diagnostic tests
Frank Buntinx, Bert Aertgeerts, and Petra Macaskill

Summary box� A systematic review should include all available evidence from
computerized databases and other sources.� The search strategy must be based on an explicit description of the
subjects receiving the reference test, the diagnostic test of interest, its
accuracy estimates, and the study design. Titles and abstracts of the
identified citations should be screened using prespecified inclusion
criteria.� Two reviewers should independently assess the methodological quality
of each selected paper and extract the required information.� Sources of heterogeneity should be examined. If this is based on a
priori existing hypotheses, subgroup analyses can be performed.� Whether meta-analysis with statistical pooling can be conducted
depends on the number and methodological quality of the primary
studies. The use of random effect models for obtaining summary
estimates of diagnostic test performance is recommended, even if there
is no apparent heterogeneity.� Statistical methods for the meta-analysis of diagnostic test
performance include recently developed hierarchical models such as
the hierarchical SROC model and the bivariate model.

The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research. 2nd edition.
Edited by J. André Knottnerus and Frank Buntinx. C© 2009 Blackwell Publishing,
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Introduction

Systematic reviews and meta-analyses of studies evaluating the accuracy of
diagnostic and screening tests (in this chapter, we will refer to them generi-
cally as diagnostic systematic reviews) are appearing more often in the medical
literature.1,2 The decision of the Cochrane Collaboration to include diagnostic
systematic reviews has boosted methods development in this field, which has
its own difficulties in addition to the more general problems associated with
reviews of trials. Diagnostic accuracy studies generally report two outcome
measures (e.g., sensitivity and specificity) instead of one (e.g., relative risk)
as is usual in trials. Additionally, these two measures are negatively corre-
lated. The common occurrence of between study heterogeneity in diagnostic
reviews and the likely presence of a threshold effect add to the list of issues
to address. This largely complicates the quantitative approach to diagnostic
reviews and dictates the need for hierarchical (also referred to as multilevel)
methods.

We present a set of practical guidelines based on evidence and recent work
within the Cochrane Collaboration to facilitate the understanding of and ap-
propriate adherence to methodological principles when conducting diagnostic
systematic reviews. We reviewed reports of systematic searches of the litera-
ture for diagnostic research,3–8 methodological criteria to evaluate diagnostic
research,1,9–12 and explore heterogeneity,13–18 and added recent methods for
statistical pooling of data on diagnostic accuracy.19–23

Guidelines for conducting diagnostic systematic reviews are presented in a
stepwise fashion and are followed by comments providing further informa-
tion.

How to search the literature for studies evaluating the
accuracy of diagnostic tests

Introduction
Conducting a comprehensive, objective, and reproducible search looking for
all the available evidence is one of the cornerstones of a systematic review.
Identifying all relevant studies and documenting the search for studies with
sufficient detail so that it can be reproduced is largely what distinguishes a
systematic review from a traditional narrative review. The reviewer has to
design a search strategy based on a clear and explicit description of terms for
the target condition and the index test. These elements are usually specified
in the criteria for inclusion of primary studies in the review. The aim of the
search strategy is to find all relevant primary studies from the literature. The
literature encompasses several types of published material, including articles,
dissertations, editorials, conference proceedings, and reports. Sources of and
methods by which these publications can be found vary from the efficient
electronic databases to time-consuming procedures of hand searching and
contacting experts. A search strategy will focus on sensitivity rather than on
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precision. Sensitivities of more than 90% are feasible, whereas precisions of
less than 10% have to be accepted.24

Developing a search strategy is an elaborative process in which terms that
are used could be changed and other terms could be added. Additionally,
searches with these terms have to be performed in different databases, and
these databases have different search boxes. Sometimes MeSH terms can be
used (MEDLINE, EMBASE), but sometimes they cannot (CENTRAL). Because
of the specificity of different databases, close collaboration with an information
specialist is an advantage to gather all the relevant information.

Search strategy
The search terms should at least include the index test and the clinical condition
of interest. If the sensitivity of the search is too large, one can restrict the search
by using additional terms (e.g., terms for the reference test, year of publica-
tion), using title words, excluding case reports, or using methodology filters.
Search strategies have been developed through PubMed for MEDLINE.6,24–25

Nevertheless, these “quick and dirty” strategies appear to be useful in clin-
ical situations to obtain the most relevant information but are not sensitive
enough to obtain all relevant information needed for a systematic review. The
search terms could be used solely or in combination using either OR, AND, or
NOT Booleans. Once a search strategy has been established, the formulation
of the search can be stored and repeated later. Not only primary diagnostic
studies have to be searched but also previous narrative reviews or systematic
reviews and meta-analyses on the topic.

Afterward researchers should check the reference list of all relevant articles
obtained. The reference list should be checked even from included and ex-
cluded papers, editorials, conference proceedings, and reviews (narrative or
systematic reviews). This is what we call backward tracking of citations. The
next step is forward tracking via citation indices and related articles. Examples
are the ISI Citation Indices list paper and Google Scholar. PubMed now also of-
fers a “related articles” option based on comparison of text words. Unpublished
or ongoing studies also need to be detected. As a producer of a systematic review,
you should look for authors of important reviews about that topic or contact
experts in the field. In contrast to the register of ongoing trials, there is not
yet such a database of ongoing diagnostic studies. In some cases, conference
proceedings and grey literature must also be checked to avoid publication bias.

Databases
A search for relevant studies generally begins with health-related electronic
bibliographic databases. Searches of electronic databases are generally the eas-
iest and least time-consuming way to identify an initial set of relevant papers.
When working with databases, it is crucial that the relevant databases are
identified and that adequate combinations of search terms are used. Of the
large number of electronic databases, authors should choose at least MEDLINE
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and EMBASE, combined with Medion and DARE. Authors should also search
within other relevant databases specific for the subject of the review.

Hundreds of electronic bibliographic databases exist. A comprehensive on-
line guide Gale Directory of Online Portable and Internet Databases is accessible
through Dialog file 230 (www.dialog.com). Some databases, such as MED-
LINE and EMBASE, cover all areas of health care and index journals pub-
lished from around the world, mostly in English. Pascal covers several French
journals. Other databases, such as the Australasian Medical Index, the Chi-
nese Biomedical Literature Database, the Latin American Caribbean Health
Sciences Literature (LILACS), and the Japan Information Centre of Science
and Technology File on Science, Technology and Medicine (JICST-E) index
journals, are published in specific regions of the world. Others, such as the
Cumulative Index of Nursing and Allied Health (CINAHL), focus on specific
areas of health, or on special document types (MEDICONF focus on medical
conferences).

A few databases are specific for review articles focused on diagnostic
accuracy studies: The MEDION database of the university of Maastricht
(www.mediondatabase.nl) contains more than 1,000 references of published
diagnostic reviews and methodological papers; the Database of Abstracts of
Reviews of Effects (DARE), a database produced by the NHS Centre for
Reviews and Dissemination in York, United Kingdom, contains a consider-
able number of abstracts of systematic reviews, including diagnostic reviews
(www.nhscrd.york.ac.) and the database of the International Federation of
Clinical Chemistry (IFCC) that consists of diagnostic reviews in clinical chem-
istry (www.ifcc.org).

An overview of the most important databases is indexed in Box 10.1.

Documenting the search strategy
The search strategy for each electronic database should be described in suf-
ficient detail so that the process can be duplicated. The title of the databases
searched (e.g., MEDLINE, EMBASE), name of the provider (OVID, Silverplat-
ter), date the search was run, years covered by the search, the complete search
strategy used in that particular database, and a one or two sentence summary
of the search strategy, indicating which lines of the search strategy were used
to identify the records related to the health condition and test should be pro-
vided. A flowchart (see Appendix 1) should be provided to give an overview
of the obtained articles from the different databases or search methods (hand
searching, citation tracking, etc.).

Retrieving the articles and inclusion criteria
Once the search is completed, two independent reviewers should screen the
titles and abstracts of the identified citations using specific prespecified inclu-
sion criteria. These can be pilot tested on a sample of articles. If disagreements
cannot be resolved by consensus, or if insufficient information is available, a
third reviewer and/or the full papers should be consulted.
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� Reference test: The accuracy of a diagnostic or screening test should be evalu-
ated by comparing its results with a “gold standard,” criterion standard, or
reference test accepted as the best available by content experts. The refer-
ence test may be a single test, a combination of different tests, or the clinical
follow-up of patients.26 The publication should describe the reference test,
as it is an essential prerequisite for the evaluation of a diagnostic test.� Population: Detailed information about the participants in diagnostic re-
search is often lacking. Participants should be defined explicitly in terms of
age, gender, complaints, signs, and symptoms, and their duration. At least
a definition of participants with and without the disease, as determined by
the reference test, should be available.� Outcome data: Information should be available to allow the construction of
the diagnostic 2 × 2 table with its four cells: true positives, false negatives,
false positives, and true negatives.� Language: If a review is limited to publications in certain languages, this
should be reported.

Comments
As the patient mix (spectrum of disease severity) is different at different levels
of care, a diagnostic review may focus on a specific setting (primary care, etc.)
or include all levels. This information may be important for subgroup analyses
in case of heterogeneity. All evidence available should be reviewed, regardless
of the language of publication. However, it is not easy to identify non-English
publications, as they are often not indexed in computerized databases. In the
field of intervention research, there is some evidence of bias when exclud-
ing non-English publications.27–28 Although large samples are no guarantee
against selection bias, small samples seldom result from a consecutive series
of patients or a random sample. Small studies are very vulnerable to selection
bias. Minima of 20 and 50 participants have been used but may even be too
low, depending on the type of study, the estimates of diagnostic accuracy, the
resulting precision,29 and the prevalence of the disease.

Methodological quality

The methodological quality of each selected paper should be assessed indepen-
dently by at least two reviewers having sufficient knowledge of both method-
ological and content-specific issues. Chance-adjusted agreement should be
reported, and disagreements solved by consensus or arbitration. To improve
agreement, reviewers should pilot their quality assessment tools in a subset
of included studies or studies evaluating a different diagnostic test. Exter-
nal validity criteria provide insight into the generalizability of the study and
judge whether the test under evaluation was performed according to accepted
standards. Internal and external validity criteria, describing participants, diag-
nostic test, and target disease of interest, and study methods may be used in
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Box 10.1 Most important databases for diagnostic accuracy
studies: according to the Cochrane Manual, chapter 5.

Name DARE

Database of Abstracts of Reviews of Effects

Producer NHS Centre of Reviews and Dissemination, York, UK

http://nhscrd.york.ac.uk/welcome.htm

Years of coverage 1994–present (incl. some records having an earlier

publication date)

Journals covered

Document types Journal articles, reports, conference papers

Producer’s information

on scope

Reviews of potentially high methodological quality on

effects of therapeutic interventions and diagnostic tests.

Update frequency Quarterly

Growth rate 350 annually

Controlled terms MeSH

Special fields Systematic reviews

Special features Free access (through NHS CRD, DIMDI)

Quality assessment and summary is added to most

references.

Compared to MEDLINE Only systematic reviews

Available Most complete version: directly from NHS CRD

http://nhscrd.york.ac.uk/welcome.htm

Cochrane Library, Datastar, DIMDI, OVID Online

Name CINAHL

Cumulative Index of Nursing and Allied Health Literature

Producer Cinahl Information Systems, Glendale USA

www.cinahl.com

Years covered 1982–present

Journals covered >1,200 (nursing, allied health)

Document types Journal articles, books, dissertations, conference

proceedings, standards of professional practice, educational

software, audiovisual materials

Scope ”Authoritative coverage of the literature related to nursing

and allied health. Virtually all English-language publications

are indexed. . . ”

Update frequency Online weekly; Local monthly

(continued)
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Box 10.1 (continued )

Controlled terms >10,000 subject headings. Approximately 70% of these

headings also appear in MEDLINE. CINAHL supplements

these headings with more than 2.000 terms designed

specifically for nursing and allied health.

Special fields Instrumentation; example: Nursing Home Behavior Problem

Scale (NHBPS

Special Interest Category; examples: Critical Care,

Gerontologic Care

Special features Cited References (added to selected publications in 1994);

contain the bibliographic details of publications cited by the

author.

Backward and forward citation tracking.

Compared to MEDLINE Additional publications on nursing and allied health

subjects

More document types as sources

More controlled terms (index terms) for nursing and allied

health subjects

Cited publications searchable as of 1994.

Available Directly through database producer: CinahlDirect

www.cinahl.com/cdirect/cdirect.htm

Online: OCLC FirstSearch (1982–), Datastar (1982–),

ProQuest (1982–, incl. linking to 250 e-journals full text),

EBSCO Publishing (1982–), OVID Online (1982–)

Cdrom/local: OVID, SilverPlatter.

Name EMBASE and EMBASE ALERT

Excerpta Medica Database

Producer Elsevier Science bv, Amsterdam, the Netherlands

www.elsevier.com

Years covered 1974–present EMBASE

most recent 8 weeks EMBASE ALERT

Journals covered +3,750−+4,000 (biomedical)

Document types Journal articles, conference papers published in journals

Scope “The most current database today on (bio)medical,

pharmacological and drug-related subjects. Indexing terms

added within 10 working days (on average) upon the

receipt of the original journal.”

Update frequency Online weekly (embase.com more often?), tapes monthly

Growth rate 400–450,000 annually
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Box 10.1

Controlled terms Controlled vocabulary EMTREE (polyhierarchically

structured thesaurus) 38–39,000 terms + 150–170,000

synonyms

Classification codes EMCLASS

CAS Registry Numbers

No indexing terms in EMBASE ALERT

Special fields Pharmacology, drug research, health economics, hospital

management, public health, occupational health,

environmental medicine and pollution control, toxicology

and drug dependence, forensic sciences.

Special features Qualification of controlled terms by “links” (subheadings):

14 disease links to modify (qualify) EMTREE disease terms,

17 drug links, plus 47 special links on routes of drug

administration since 2000, to qualify EMTREE drug terms.

Embase.com integrates EMBASE and MEDLINE databases

Compared to MEDLINE Additional non-U.S.A. and non-U.K. publications. Less focus

on English-language sources. Faster assignment of indexing

terms.

Better coverage of drug research and pharmacology, more

indexing terms for drug related subjects. More preclinical

research.

Original titles searchable (not possible in PubMed)

Available Directly from Elsevier (http:/embase.com).

Datastar (1974–), Dialog (1993–), DIMDI (1974–), OVID

Online (1980–)

Tapes for local use: OVID Technologies (incl. SilverPlatter)

(1980)

Name JICST-Eplus

Japan Science

Producer Japan Science and Technology Corporation (JST)

www.jst.go.jp/en

Years covered 1985–present

Journals covered +6,000 (science, technology, medicine)

Document types Journals, serials, conference proceedings, technical reports,

governmental publications.

Scope “JICST-EPLUS covers Japanese literature on chemistry and

the chemical industry, engineering, pharmacology, the life

sciences, and medical science. Additionally, it contains a

‘previews’ section of unindexed records that appear

approximately four months earlier than the fully indexed

records.”

(continued)
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Box 10.1 (continued )

Update frequency Weekly

Growth rate 12,300 weekly

Controlled terms Thesaurus (controlled terms) and Classification Codes

Special fields Multidisciplinary

Special features 35% English

Compared to MEDLINE Additional publications of Japanese origin

Available Datastar (1985–), Dialog (1985–), STN International (1985–)

Name MedionDatabase

Producer Maastricht University and Leuven University, Departments

of General Practice www.mediondatabase.nl

Years of coverage ? –present

Journals covered – (depending of databases and other sources searched)

Document types Systematic reviews, methodological studies

Producer’s information

on scope

Overview of published systematic reviews on diagnostic

studies. Methodological studies on systematic reviews of

diagnostic studies, systematic reviews of diagnostic studies,

systematic reviews of genetic diagnostic tests. No real

quality requirements have been used.

Update frequency “as much as possible,” generally around 5 times a year

Growth rate ?

Controlled terms List of keywords; ICPC codes

Special fields Diagnostic tests, diagnosis.

Special features

Compared to MEDLINE Preselection of interesting category of systematic reviews

Available Directly through database producer:

www.mediondatabase.nl

Name MEDLINE and OLDMEDLINE

Producer U.S. National Library of Medicine (NLM), Bethesda, U.S.A.

www.nlm.nih.gov

Years covered 1950–1965 OLDMEDLINE

1966-present MEDLINE

Journals covered +4,600 (basic biomedical and clinical sciences)

Document types Journal articles, conference papers published in journals
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Box 10.1

Scope NLM’s premier bibliographic database containing references

to journal articles covering basic biomedical research and

the clinical sciences.

Update frequency Daily (PubMed, OCLC), weekly (other online vendors, DVD

SilverPlatter), monthly (CD SilverPlatter)

Growth rate 500,000 annually

Controlled terms Controlled vocabulary MeSH (Medical Subject Headings)

(polyhierarchically structured thesaurus) 22,500 terms +
130.000 “additional entries” (synonyms etc)

No MeSH indexing in OLDMEDLINE, MEDLINE records in

process (‘PREMEDLINE’), and (in PubMed only) records with

status qualification “PubMed”.

Special fields Nursing, dentistry, veterinary medicine, history of science,

bioethics, complementary medicine

Special features Qualification of controlled terms by 83 subheadings,

organized in 19 searchable groups.

Subject and Journal subsets. Clinical Queries and Related

Articles search (through PubMed only)

Free access (through NLM—PubMed and NLM Gateway, and

through DIMDI).

Compared to other

databases

Extensive coverage of dentistry.

Available Directly from NLM (OLDMEDLINE, MEDLINE plus additional

PubMed content) via PubMed (http://pubmed.gov ) or the

NLM Gateway (http://gateway.nlm.nih.gov/gw/Cmd)

Datastar (1966–), Dialog (1966–), DIMDI (OLDMEDLINE,

MEDLINE 1966–), OCLC FirstSearch (1966–), OVID Online

(1966–)

CD-ROM: DialogOnDisk (1966–), SilverPlatter (1966–), OVID

(1966–)

Name PASCAL

Producer Institut de l’Information Scientifique et Technique du Centre

National de la Recherche Scientifique (INIST-CNRS), France

www.inist.fr

Years covered 1973–present

Journals covered +6,000 (science, technology, medicine)

Document types Journal articles, books, dissertations, conference

proceedings, reports, patents

(continued)
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Box 10.1 (continued )

Scope Multilingual, multidisciplinary database that covers the core

scientific literature science, technology, and medicine (31%

medicine).

Update frequency Online weekly (except Dialog: monthly), CD-ROM monthly

(OVID) or quarterly (DialogOnDisc)

Growth rate 14,600 references/week

Controlled terms Controlled vocabulary and classification codes (ex.

002B08J002B08J; Life sciences; Medical sciences;

Dermatology)

In English, French, and Spanish

Special fields Interdisciplinary topics

Special features Titles in original language and translated to French and/or

English

Priority given to French and European literature

Compared to MEDLINE Additional European publications

More document types as sources

Controlled terms (index terms) not only in English but also

in French and Spanish

Available Directly through INIST ConnectSciences Portal (last 3 months

free http://connectsciences.inist.fr)

Datastar (1984–), Dialog (1973–), OCLC/PICA (1984–),

Questel.Orbit (1973–).

CD-ROM: OVID Technologies (1987–), DialogOnDisc (1990–)

Name PsycINFO (previously PsycLIT)

Producer American Psychological Association, Arlington U.S.A.

www.apa.org

Years covered 1887– (non-English 1978–)

Journals covered +1,900

Document types Journal articles, conference papers, books, book chapters,

dissertations, reports

Scope An abstract database of the international literature in

psychology and related behavioral and social sciences,

including psychiatry, sociology, anthropology, education,

pharmacology, and linguistics. Clinical, nonclinical and

experimental psychology.

Update frequency Weekly (monthly on DIMDI and SilverPlatter CD)

Growth rate 75,000 annually
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Box 10.1

Controlled terms Controlled vocabulary in records from 1967: Thesaurus of

Psychological Index Terms. More than 7,000 controlled

terms and cross-references. Also a classification system

comprising 22 major categories and 135 subcategories.

Special fields

Special features 99–100% of records have abstracts. From 2,000 cited

references added to records of journal articles and books.

Compared to MEDLINE More on psychology, psychiatry. Older literature. More

records have abstract.

Available Directly through APA during a 24-hour period at a time

(payable by credit card only) www.psycinfo.com

Datastar (1887–), Dialog (1887–), DIMDI (1887–), OCLC

FirstSearch (1887–), OVID Online (1887–)

CD-Rom/local: SilverPlatter (1887–), OVID (1887–)

Name SCIENCE CITATION INDEX (SCI)

SOCIAL SCIENCES CITATION INDEX (SSCI)

Producer Institute of Scientific Information (ISI), Philadelphia U.S.A.,

London U.K.

www.thomsonisi.com

Years covered 1945–

Journals covered SCI 5,900

SSCI 1,700 (plus selected, relevant items from 5,800)

Document types Journal articles

Scope SSI: covers worldwide literature in the fields of science,

technology, and biomedicine

SSCI: covers worldwide literature from all areas of social

sciences, including social medicine, psychology, and

psychiatry.

Update frequency Weekly

Growth rate SCI: 650,000 annually

SSCI: 120,000 annually

Controlled terms None

Special fields Multidisciplinary

Special features Forward citation tracking. Related Records search.

Compared to MEDLINE Older literature. Citation tracking.

Available Directly from ISI as part of Web of Science (1945– ) through

Web of Knowledge (www.isiwebofknowledge.com).

Datastar (SCI/SSCI 1972–), Dialog (SCI/SSCI 1972–), DIMDI (SCI

1974–/SSCI 1973–)
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meta-analysis to assess the overall “level of evidence” and in sensitivity and
subgroup analyses (see “Data extraction” and “Data analysis” sections).

It is important to remember that studies may appear to be of poor method-
ological quality because they were either poorly conducted or poorly reported.
Methodological appraisal of the primary studies is frequently hindered by lack
of information. In these instances, reviewers may choose to contact the stud-
ies’ authors or to score items as “don’t know” or “unclear.”

The assessment of the methodological quality is the last step before col-
lecting data and analyzing the results from the selected studies. Recently, the
QUADAS tool was published to assess the methodological quality of diagnostic
accuracy studies30 (see Box 10.2). Reviewers should assess all recommended
QUADAS items and consider whether there are additional items that should
be included in their assessment. Reviewers should produce a document with
clear details on how to score each item. At least two reviewers should perform
the quality assessment and an explicit procedure to solve disagreement (dis-
cussion or arbitrage or both) should be described. The results of the quality
assessment should also be presented in a table, on an item-by-item basis.

A modified version of the QUADAS that contains 11 items is proposed as the
starting point for quality assessment of primary diagnostic accuracy studies.

Each item is scored as “yes,” “no,” or “unclear” based on all the information
that is retrieved from the original paper or information from the authors. If
there is insufficient information to judge a particular item, this item should be
scored as “unclear.”

The first item of the modified QUADAS tool refers to the generalizability or
applicability of results (spectrum bias) based on the health care setting where
the study was conducted, the study design and the inclusion/exclusion criteria
applied in the study.

The second item concerns the use of an appropriate reference test, that is,
could the reference test correctly identify the target condition? Because the
apparent accuracy of a test depends upon the reliability of the reference test,
this is an important step in the quality appraisal of a diagnostic accuracy study.

The time frame between the reference test and the index test is the third
QUADAS item. This is important because of possible progression or regression
of the disease. Ideally, both tests should be performed on the same patients at
the same time. Nevertheless, the importance of this item will depend on the
target disease (e.g., chronic conditions, infectious diseases).

(Partial) verification or workup bias (item 4) occurs when not all of the sub-
jects are verified by the reference test. This occurs sometimes if an expensive
or invasive reference test is indicated. Although researchers could avoid bias
by testing a random selection of patients with the reference test, the selection
is not usually random. Item 5 investigates differential verification bias, that is,
did patients receive the same reference standard regardless of the index test
result? This usually occurs when patients testing positive on the index test
receive a more accurate, often invasive, reference standard than those with a
negative test result. Information about the numbers of participants receiving
different tests needs to be provided by the authors of the original studies.
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Box 10.2 The original QUADAS tool (14 items).

BMC Medical Research Methodology 2003, 3: http://www.biomedicentral.com/1471-2288/3/25

Table 10.2 The QUADAS tool

Item Yes No Unclear

1. Was the spectrum of patients representative of the

patients who will receive the test in practice?

() () ()

2. Were selection criteria described? () () ()

3. Is the reference standard likely to correctly classify the

target condition.

() () ()

4. Is the time period between reference standard and index

test short enough to be reasonably sure that the target

condition did not change between the two tests?

() () ()

5. Did the whole sample or a random selection of the

sample, receive verification using a reference standard of

diagnosis.

() () ()

6. Did patients receive the same reference standard

regardless of the index test result?

() () ()

7. Was the reference standard independent of the index

test (i.e., the index test did not form part of the

reference standard)?

() () ()

8. Was the execution of the index test described in

sufficient detail to permit replication of the test?

() () ()

9. Was the execution of the reference standard described in

sufficient detail to permit its replication?

() () ()

10. Were the index test results interpreted without

knowledge of the results of the reference standard?

() () ()

11. Were the reference standard results interpreted without

knowledge of the results of the index test?

() () ()

12. Were the same clinical data available when test results

were interpreted as would be available when the test is

used in practice?

() () ()

13. Were uninterpretable/intermediate test results reported? () () ()

14. Were withdrawals from the study explained? () () ()

Item 6 assesses the independence of the reference and the index tests. If the
index test was part of the reference standard, the resulting incorporation bias
will tend to increase the amount of agreement and hence overestimate the
measures of diagnostic accuracy of the index test.

Items 7 and 8 are similar to the blinded outcome assessment in random
controlled trials. This review bias will be avoided if the interpretation of the
index test is blinded from the interpretation of the reference test and vice
versa.
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Studies have shown that the availability of clinical information could affect
the accuracy of the index test in a positive way. Item 9 assesses the availability
of clinical data during the interpretation of results within the study compared
to the same clinical situation in real life.

Item 10 checks whether uninterpretable or intermediate test results were
reported. This item is difficult to assess because the required information is not
always reported. Finally, item 11 evaluates the withdrawals from the study.
This is comparable with loss to follow-up within random controlled trials, and
the approach to handling losses has great potential for biasing the results.

Data extraction

Two reviewers should independently extract the required information from
the primary studies. Detailed information must be extracted about the partici-
pants included in the study and about the testing procedures. The cutoff point
used in dichotomous testing, reasons for the choice of cut-point, and the num-
ber of participants excluded because of indeterminate results or infeasibility,
are required.

Accuracy may be presented in different ways. For the meta-analysis of di-
chotomous tests (see statistical pooling) it is necessary to construct the diag-
nostic 2 × 2 table: absolute numbers in the four cells are needed. Totals of
“diseased” and “nondiseased” participants are needed to estimate prior prob-
ability (pretest probability) and to reconstruct the 2 × 2 table. These data
are used to compute sensitivity, specificity, likelihood ratios, predictive val-
ues and/or receiver operator characteristic (ROC) curves. If possible, the 2 ×
2 table should be generated for all relevant subgroups. Further information
to extract includes year of publication, setting, and country or region of the
world where the study was performed.

Comments
A standardized data extraction form may be used simultaneously with, but
separately from, the quality assessment form. This approach facilitates data
extraction and comparison between reviewers. The form should be piloted to
ensure that all reviewers interpret data in the same way. As in other steps of
the review where judgments are made, disagreements should be recorded and
resolved by consensus or arbitration.

Lack of details about test results or cutoff points, inconsequential round-
ing of percentages, and data errors require common sense and careful data
handling when reconstructing 2 × 2 tables. Details can be requested from the
authors of the studies, but these attempts are often unsuccessful, as the raw
data may no longer be available.

Example
In a review of the accuracy of the CAGE questionnaire for the diagnosis of
alcohol abuse, sufficient data were made available in only nine of the 22
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studies selected, although the authors of the review tried to contact the original
authors by all possible means.31

Data analysis

Whether a meta-analysis—statistical analysis and calculation of summary es-
timates of diagnostic test performance—can be conducted depends on the
number and methodological quality of primary studies included and the de-
gree of heterogeneity between them. Because diagnostic accuracy studies are
often heterogeneous and present limited information it is typically difficult to
complete a meta-analysis. If heterogeneity is identified, important informa-
tion is obtained from attempts to explain it. For instance, the effect that each
validity criterion has on the estimates of diagnostic accuracy and the influence
of previously defined study characteristics should be explored as potential ex-
planations of the observed study to study variation.13–17 If meta-analysis is
not possible or advisable, the review can be limited to a qualitative descriptive
analysis of the diagnostic research available (best evidence synthesis).32

For the analysis, we recommend the following steps: (1) presentation of the
results of individual studies; (2) searching for the presence of heterogeneity
in accuracy and/or threshold effect; (3) dealing with heterogeneity; (4) decid-
ing if statistical pooling is appropriate; and (5) statistical pooling. Appropriate
methods to be used in each of these steps are described and discussed below.

Describing the results of individual studies

Reporting the main results of all included studies is an essential part of each
review. It provides the reader with the outcome measures and gives an insight
into their heterogeneity. In one or two tables, each study is presented with
some background information (year of publication, geographical region, num-
ber of diseased and nondiseased patients, setting and selection of the patients,
methodological characteristics) and a summary of the results. In view of the
asymmetrical nature of most diagnostic tests (some tests are good to exclude a
disease, others to confirm it), it is important to report pairs of complementary
outcome measures, that is, both sensitivity and specificity, or likelihood ratio
of a positive and of a negative test, or a combination of these. Predictive val-
ues are less generally reported as they are influenced by the prior probability,
which differ markedly between populations. The diagnostic odds ratio (DOR)
can be added as an overall measure of discrimination of the test. However, on
its own, the DOR is less informative for the readers as the same odds ratio can
relate to different combinations of sensitivity and specificity.

DOR = sensitivity/(1 − sensitivity)

(1 − specificity)/specificity

Main outcome measures should all be reported with their 95% confidence
intervals (95% CI).
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Searching for heterogeneity

The degree of heterogeneity (as against homogeneity) between studies is a
measure of the differences between the studies. A set of diagnostic studies are
perfectly homogeneous if they are similar with respect to their design, disease
prevalence, disease spectrum, setting, and characteristics of the populations.
They should also report similar inclusion, selection and referral patterns and
previous testing that influenced the presence of the patients in the study pop-
ulation, and all details of the measurements of both the test to be studied
and the reference test, analysis, and reporting. Sometimes such differences
are not apparent from the methods sections of the individual papers, thereby
limiting your ability to detect the presence of heterogeneity from the available in-
formation. The information may not be reported in the methods section of the
paper because of limitation of space and readability requirements, or because
the authors of the original studies have not reported the operationalization
in sufficient detail. In such situations, differences in the accuracy measures
between individual study results may indicate the presence of heterogeneity
without information on its possible causes. Some people call this statistical
heterogeneity, although it is of course only one way to detect the presence
of heterogeneity as such. Identifying the presence of such statistical signs of
heterogeneity can be straightforward.

In some cases, just looking at the data—the “eyeball test”—will enable the
meta-analyst to judge whether a relation between an accuracy parameter and
a study characteristic is both present and clinically relevant. Summarizing the
study results in a forest plot (separately for each accuracy parameter) will make
the overview easier. Ideally, the forest plot will comprise two parts showing
both sensitivity and specificity side-by-side for each study. The data should
also be displayed as a scatter plot of sensitivity plotted against 1-specificity for
each study to assess whether the heterogeneity mainly relates to sensitivity,
specificity, or both. However, from such displays, it is difficult to determine
visually whether the variation between studies is due predominantly to ran-
dom (sampling) error, or whether there is also true heterogeneity. Rigorous
analysis of these data must take proper account of the within and between
study variability, as described later in this chapter.

Another graphical approach that may be useful in assessing heterogeneity
is a Galbraith plot33 of the log odds ratio (or another measure of accuracy)
of each study divided by its standard error (z statistic) plotted against the
reciprocal of the standard error. A regression line through zero represents
the overall log odds ratio. Parallel lines starting two units above and below
this line define the region in which approximately 95% of studies should
lie if there is no heterogeneity, hence outliers should closely be examined.
However, as noted earlier, variation between studies can result from random
error, heterogeneity, or both. Although a χ2 test for homogeneity of diagnostic
accuracy measures34 is sometimes used, the power of such tests tends to be
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low. Consequently, these tests have limited value for diagnostic studies where
heterogeneity is very likely to be present in sensitivity and/or specificity. It is
generally advisable to assume that heterogeneity is present when conducting
a meta-analysis of diagnostic studies.

Threshold (cut-point) effect
Clearly, the choice of the cut-point in a test with an outcome on a continu-
ous scale will influence the diagnostic characteristics of the test. If a higher
test result indicates a higher likelihood of the disease (indicated by a posi-
tive reference test result), increasing the cut-point will result in an increased
specificity and a decreased sensitivity. Review-based estimates of diagnostic
accuracy such as sensitivity, specificity and likelihood ratios will differ if not
all studies use the same cut-point for a positive test result (or for the reference
standard).

In many tests with a dichotomous test result, however, the decision whether
the result is positive or negative partly results from interpretation by the test
observer. Some observers will find it easier than others, for example, to detect
a color change in a dipstick test, a cellular nucleus that is too large under
microscopy, or a tumor to be present on a chest radiography. This situation is
similar to differences in cut-point used for test results on a continuous scale
and should be taken into consideration in a similar way when analyzing study
results. It is sometimes called an implicit (because it is not measurable) cut-
point effect. Aspects other than inter-observer variation such as between-study
differences in testing operationalization, disease spectrum, and background
characteristics such as age or co-morbidity patterns may also have the same
effect.

A threshold (cut-point) effect will generally result in heterogeneity in both
sensitivity and specificity, and a negative correlation between them across
studies. However, a strong correlation between both parameters will often
result in a homogeneous diagnostic loge odds ratio (lnDOR).

Example
Box 10.3 shows a scatter plot of (1-specificity, sensitivity) pairs for 14 stud-
ies that evaluated peak systolic velocity (PSV) (Doppler ultrasound) to detect
renal artery stenosis. Each study is denoted by an ellipse centered on the
(1-specificity, sensitivity) pair for that study. The horizontal and vertical di-
mensions of each ellipse are proportional to the number of nondiseased and
diseased respectively for that study. The display serves to highlight variation
in both test positivity (threshold) and accuracy between studies. Variation re-
sulting from an explicit or implicit cut-point effect, will result in the points
appearing to be scattered about an underlying ROC curve.19,35 Studies using a
lower cut-point for test positivity (showing high sensitivity and low specificity)
will be shown in the right upper quadrant of the figure.
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Box 10.3 Variation in test performance of 14 studies that
evaluated peak systolic velocity (PSV) to detect renal artery
stenosis.
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Dealing with heterogeneity

Interpretation of heterogeneity is often the most fascinating and productive
part of a meta-analysis. In the presence of heterogeneity, the meta-analyst
should start with assessing its clinical relevance. This is essentially a matter of
clinical judgment. If the degree of heterogeneity is considered to be relevant,
the reviewer can proceed in different ways.

One option is to restrict the review to a (homogeneous) subset of studies
using strict inclusion and exclusion criteria. Of course, such a decision should
be taken as soon as the (probable) presence of heterogeneity and its reasons
become clear, that is, after studying the methodological characteristics of the
individual studies or even before.

Example
In a review of the diagnostic value of macroscopic hematuria for the diagnosis
of urological cancers in primary care, the positive predictive values (PPV)
indicated a homogeneous series of five studies with a pooled PPV of 0.19 (95%
CI 0.17–0.23) and one other with a PPV of 0.40.36 The reason for this high PPV
was mentioned in the original study: “GPs’ services in the region are extremely
good and cases of less serious conditions are probably adequately shifted out
and treated without referral,”36a leading to a highly selected study population
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with a high prior probability. In this situation, the outlier can be excluded and
the analysis continued with the homogeneous group of remaining studies.

Another option is to conduct subgroup analyses, ideally using subgroups de-
fined in the protocol. The reviewer should search for causes of heterogeneity,
stratify the studies according to categories for such causes, and pool results of
homogeneous subgroups. For instance, in the same review on the diagnostic
value of macroscopic hematuria for the diagnosis of urological malignancies,36

sensitivity results were very heterogeneous. As could be expected, the degree
of heterogeneity could largely be reduced after examining bladder, ureter, and
kidney tumors separately (see Box 10.4). Of course, this is only possible if suf-
ficient subgroup analyses are reported in the original publications or can be
retrieved from the authors.

Box 10.4 Subgroup analysis resulting in homogeneous
subgroups.

Pooled sensitivity of macroscopic hematuria

for the diagnosis of urological cancer

subgroup analysis

Pooled sensitivity

Localization No. of studies x2 homogeneity (P) (95% CI)

BLADDER

All 7 0.62 0.83 (0.80–0.85)

<40 years only 4 0.77 0.82 (0.74–0.88)

URETER

All 4 0.01 0.66 (0.53–0.77)

Painless 2 0.39 0.55 (0.45–0.65)

With pain 1 0.20 (0.07–0.34)

Kidney

All 3 0.03 0.48 (0.36–0.60)

When feasible, this is a rewarding way of dealing with heterogeneity as it
provides you with the opportunity to find new things that are clinically rele-
vant, that is, differences in the diagnostic accuracy of a test according to patient
subsets. For example, you may detect that a test is helpful in younger people,
but not in the elderly or vice versa. This is the case for screening mammogra-
phy that has a far higher sensitivity in women above age 50 compared with
younger women.37

If subgroup characteristics are detected during the analysis stage of the re-
view (and not prestated in the protocol), there is a net risk of data dredging. If a
sufficient number of subgroups are examined you will most likely find homo-
geneous ones, possibly with clinically irrelevant results. When heterogeneity
can be expected on the basis of the individual studies’ methods description,
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the decision about which subgroups are to be analyzed separately should be
made before looking at the study results. In the case of unexplained (statis-
tical) heterogeneity, this is of course impossible. The post hoc nature of such
choice should be mentioned in the report of the review. Such subgroup re-
sults should be considered with caution and subsequent studies should try to
confirm or refute the findings.

If sufficient studies are available, statistical modeling can be used to explore
heterogeneity by including study and patient characteristics as possible co-
variates in the model. Multivariate models are used to assess the independent
effect of study characteristics, adjusted for the influence of other variables.

Deciding on the statistical model to be used

Fixed effect versus random effects models
A fixed effect model assumes that all studies represent a random sample of one
large (hypothetical) common study, and that differences between study out-
comes only result from random (sampling) error. Pooling is relatively simple
as it only requires calculation of a weighted average of the individual study
results. Studies are weighted by the inverse of the variance of the parameter
of test accuracy, or by the number of participants.

A random effects model assumes that in addition to the presence of random
error, differences between studies can also result from real differences between
study populations and procedures. Both sources of variability are taken into
account when computing the weighting factor for each study. The method of
Der Simonian and Laird, initially published for the meta-analysis of trials, is a
simple example of a random effects model.38

Homogeneous studies
If parameters are homogeneous, and they show no threshold effect, their
results can be pooled and a fixed effect model used.39 However, if there is
evidence of a threshold effect, Summary ROC (SROC) analysis is appropriate.

Heterogeneous studies
If heterogeneity is present, the reviewer has the following options:
1 Refrain from pooling and restrict the analysis to a qualitative overview.
2 Conduct subgroup analysis based on prior factors and pool within homoge-

neous subgroups.
3 Analyze the data using a random effects model. (Note: such an analysis

should be preceded by descriptive subgroup analyses.)
In view of the poor methodological quality of most of the diagnostic studies

that have been carried out, heterogeneity in test performance is to be expected
in systematic reviews of diagnostic studies.18 Hence, it is advisable to use ran-
dom effects models for the meta-analysis of diagnostic studies, even if there is
no apparent heterogeneity. Distinguishing between sources of variability also
serves to ensure the validity of statistical testing and confidence intervals.
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Statistical pooling

Pooling of proportions assuming homogeneous
sensitivity and/or specificity
Separate pooling of sensitivity and specificity is not generally recommended
as these two measures are usually correlated and so should be analyzed
jointly.40,41 However, in the absence of a threshold effect, and clear evidence
of homogeneity in sensitivity and/or specificity across studies, it may be ac-
ceptable to use fixed effect pooling.42

Threshold effect: SROC curve
At present, SROC analysis provides the most general approach for the meta-
analysis of diagnostic studies as it allows for a threshold effect between studies,
and takes account of both sensitivity and specificity for each study. The most
commonly used method is that of Littenberg and Moses19,35 (see Appendix
3), which uses linear regression to model the natural logarithm of the DOR
(D = lnDOR) of each study as a function of a proxy for the test threshold
for that study. This proxy for test threshold (denoted by S) is based on the
proportion of diseased and nondiseased subjects who test positive (see Ap-
pendix 3) The model is given by D = a + bS where a represents the intercept
(interpreted as the mean lnDOR when S = 0) and b represents the slope. A
nonzero slope indicates that test accuracy increases (or decreases) systemat-
ically as the threshold varies. The model is usually fitted by unweighted or
weighted (using the inverse of the variance of D as the weighting factor) least
squares, and both a and b are assumed to be fixed effects. Inverse transfor-
mation is required to generate the estimated SROC curve, and the curve is
usually restricted to lie within the range of the observed data.

This method is very useful for descriptive analyses to obtain an SROC curve
based on all studies and within subgroups. However, the method does not take
separate account of the within and between study variability in test accuracy.
In addition, the explanatory variable (S) is subject to sampling error thereby
violating an important assumption of the least squares method.22 Because of
these limitations, the use of covariates in this model to test for differences in
test accuracy across subgroups of studies could be unreliable and is not rec-
ommended. This is also the case when comparing the accuracy of two or more
tests, which is a frequent reason to perform a diagnostic meta-analysis. The
more recent development of hierarchical models that do not suffer from these
limitations provides a more appropriate approach for statistical inference.

Hierarchical models

Two hierarchical models have been adopted for the meta-analysis of diag-
nostic studies: the hierarchical SROC (HSROC) model22,43 and the bivariate
model.20,21,44 Although the models have been shown to be mathematically
equivalent,45 they nevertheless approach the analysis somewhat differently.
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HSROC model
The HSROC model can be conceptualized as a two-level (multilevel) model
that focuses on the estimation of a summary ROC curve. At the first level, the
within-study sampling error is taken into account by assuming a binomial er-
ror distribution for the sensitivity and 1-specificity for each study. Each study
provides an estimate of test accuracy (lnDOR) and a proxy for threshold which
are both taken to be random effects that follow a normal distribution at level
2 (see Appendix 3). Test accuracy, threshold, and the dependence between
them (shape of the SROC) can be modeled as a function of study-level covari-
ates. Hence, the model can be used to assess whether the expected accuracy,
threshold, and/or shape of the summary ROC curve vary across subgroups.
An expected operating point (expected sensitivity and specificity) and corre-
sponding 95% confidence region can be obtained for each fitted curve. The
estimated likelihood ratios for a positive and negative test, and their 95% con-
fidence intervals, can then be obtained at this expected operating point. The
model may be fitted in SAS46 using PROC NLMIXED to obtain the required
estimates.47 A more complex, fully Bayesian analysis can also be conducted.22

Bivariate model
The bivariate method directly models the logit(sensitivity) and
logit(specificity), while accounting for the correlation between them
(see Appendix 3). It can also be conceptualized as a two-level model that
assumes a binomial error distribution for the sensitivity and specificity for
each study at level one. At level two, the logit(sensitivity) and logit(specificity)
are assumed to be normally distributed, correlated random effects. For this
model, the focus is on using study level covariates to model systematic
variation in sensitivity or specificity. Although the main output from this
method is the expected operating point and corresponding 95% confidence
region, the estimated likelihood ratios at the expected operating point(s) and
the summary ROC curve(s) can also be derived.45 It is best to fit the model
taking account of the binomial error distribution by using PROC NLMIXED
in SAS,46 or GLLAMM in STATA.48

The choice between the HSROC and bivariate models is largely governed
by whether the meta-analyst is more concerned with how the position and
shape of the SROC curve varies with study and patient characteristics, or
how the expected sensitivity and specificity vary with these factors. Software
availability may also influence the choice of method.

Pooling of ROC curves
The results of diagnostic studies with a dichotomous gold standard outcome,
and a test result that is reported on a continuous scale, are generally presented
as an ROC curve with or without the related area under the curve (AUC)
and its 95% CI. To pool such results, the reviewer has three options: to pool
sensitivities and specificities for all relevant cutoff points using the methods
described above assuming that sufficient raw data are available to construct
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the 2 × 2 tables; to pool the AUCs; or to model and pool the ROC curves
themselves.

Comments
Although methods have been developed for pooling AUCs,49 the AUC like all
one-dimensional measures provides no information about the asymmetrical
nature of a diagnostic test. It cannot distinguish between curves with a high
sensitivity at moderate values of the specificity and those with a high specificity
at moderate values of the sensitivity.

Where data are available at multiple test thresholds for each study, an ROC
curve can be obtained for each study. Ideally, we would want to perform
a meta-analysis that utilizes all available information from the ROC curves
across studies to obtain a summary ROC curve. A Bayesian model has been
developed to implement this approach.23 However, a high level of statistical
expertise is required to fit the model because of its complexity.

A method has also been developed to enable direct pooling of ROC curves
that requires only the published curves and the number of positive and nega-
tive participants on the gold standard test as input.50 Once again, the approach
is complex to implement requiring often complex data extraction, estimation
of parameters and corresponding standard errors for the study of specific ROC
curves, and the use of random effects modeling to obtain summary estimates
for these parameters. These summary estimates are then used to obtain the
summary ROC.

In addition to causing calculation problems in specific situations, pooling
published ROC curves50 also hides the test values from the picture. Although
this is not a problem when evaluating a test method, or when comparing
different methods, it limits the possible use of the pooled curve for evaluating
the diagnostic value of each specific test result. Moreover, a published curve
can be a fitted estimate of the real curve based on the initial values, and any
bias or imprecision resulting from this estimation will be included in the pooled
estimates.

Data presentation

All results should include a scatter plot of (1–specificity, sensitivity) pairs for
each study plotted in ROC space. Subgroups may be denoted by different
colors or symbols to highlight important patterns in the data. If SROC curves
have been estimated, these can be superimposed on the scatter plot and the
expected (“average”) operating point for a test can be marked on the SROC
with a 95% confidence region displayed for that point. Predicted sensitivity at
a given specificity (or vice versa) can also be estimated from the SROC.

Example
Box 10.5 shows the same 14 studies depicted in Box 10.3 that evaluated PSV
for the detection of renal artery stenosis. Different symbols have been used to
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denote the 10 studies that excluded occluded arteries from their evaluation,
and the 4 studies that did not. HSROC analysis was used to assess whether test
performance differed between these subgroups of studies. The results showed
no evidence that accuracy (lnDOR) depended on threshold, but despite the
small number of studies, there was evidence that the expected accuracy of
studies that excluded occluded arteries was higher than those that did not
(relative DOR 4.4, 95% CI 1.1 − 17.1, P = 0.034). The expected operating
point and corresponding confidence region was computed for each subgroup
as shown in Box 10.5. For studies that excluded occluded arteries, the expected
sensitivity and specificity were 0.87 (95% CI 0.81, 0.93) and 0.95 (95% CI
0.92, 0.98), respectively. The corresponding estimates for the remaining four
studies were 0.76 (95% CI 0.63, 0.89) and 0.89 (95% CI 0.83, 0.96). These
estimates can also be obtained from the bivariate model.

Box 10.5 Estimated SROC and expected operating point with
corresponding 95% confidence region for subgroups of
studies that did, and did not, exclude occluded arteries.
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The expected sensitivity and specificity can be used to obtain the predicted
positive and negative likelihood ratios at that point on the SROC, and both
the HSROC and bivariate models can provide confidence intervals for these
To make the results more accessible to clinicians, these likelihood ratios can
be used to obtain the predictive values by using the mean or median prior
(pretest) probabilities of each subgroup. Alternatively, likelihood ratios could
be reported so that users can calculate posttest probabilities based on the
pretest probabilities applicable to their patients. However, the generalizability
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of the results to populations with pre-test probabilities outside the range of
the studies used to generate the SROC may be questionable.

Discussion

Although the methodology to conduct a systematic review and meta-analysis
of diagnostic research is developed to a certain extent, at least for dichotomized
tests, the exercise itself remains quite a challenge. Systematic reviews have to
meet high methodological standards and the results should always be inter-
preted with caution. Several complicating issues need careful consideration:
(1) it is difficult to discover all published evidence, as diagnostic research is
often inadequately indexed in electronic databases; (2) the studies are often
poorly reported and a set of minimal reporting standards for diagnostic re-
search has only recently been discussed; (3) the methodological quality and
validity of diagnostic research reports is often limited (i.e., no clear definition of
“diseased” participants, no blinding, no independent interpretation of test re-
sults, insufficient description of participants); (4) accuracy estimates are often
very heterogeneous, yet examining heterogeneity is cumbersome and the pro-
cess is full of pitfalls; (5) quantitative analysis of diagnostic reviews has become
complex, requiring expert statistical input and sophisticated software that is
not found in the current “simple” meta-analysis packages; (6) nevertheless,
results have to be translated into information that is clinically relevant, taking
into account the clinical reality at different levels of health care (prevalence
of disease, spectrum of disease, available clinical and other diagnostic infor-
mation). Even in a state of the art systematic review, the reviewers have to
make many subjective decisions when deciding on the inclusion or exclusion
of studies, on quality assessment and the interpretation of limited informa-
tion, on the exclusion of outliers, and on choosing and conducting subgroup
analyses. Subjective aspects have to be assessed independently by more than
one reviewer, with tracking of disagreements and resolution by consensus or
arbitration. These subjective decisions should be explicitly acknowledged in
the report to allow the readers some insight into the possible consequences of
these decisions on the outcomes of the review and the strength of inference
derived from it.

Whereas some researchers question the usefulness of pooling the results of
poorly designed research or meta-analyses based on limited information,51,52

we think that examining the effects of validity criteria on the diagnostic ac-
curacy measures and the analysis of subgroups adds valuable evidence to the
field of diagnostic accuracy studies. The generation of a pooled estimate and/or
SROC provides clinicians with useful information until better-conducted stud-
ies are published. The reader should remember that evidence about the in-
fluence of validity of studies on diagnostic accuracy is still limited.2,11,53 Con-
sequently, it is difficult to recommend a strict set of methodological criteria,
recognizing that any minimum set of methodological criteria is largely ar-
bitrary. The development of guidelines for systematic reviews of tests with
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continuous or ordinal outcomes, reviews of the (incremental) value of series
of subsequent tests and reviews of comparisons between more than one test,
remains another challenge, as the methodology is still limited or even nonex-
istent. It is possible that only individual patient meta-analyses will be able to
fully address all these issues.

Appendix 1: A flowchart of the searching and
selection process.

This flowchart has been adapted from: Pai M, et al. Systematic reviews of diagnostic test evaluations: 

what is behind the scenes? Evid Based Med. 2004––reproduced with permission from the BMJ  

Publishing Group. 

Frame a focused diagnostic review question 

Run searches on all relevant databases and sources

Save all citations (titles/abstracts) in a reference manager 
Document search strategies that were employed 
These citations are ready for first screen (N0)

Reviewer 1 screens all titles/abstracts and 
makes selections for second screen 

Reviewer 2 screens all titles/abstracts and 
makes selections for second screen

Reviewers meet and resolve disagreements on citations they do not agree on 
The final number (N) selected after this process is ready for second screen 

(review of full text articles)

Get full texts of all articles identified for 
second screen (N) 

Articles considered eligible after full-text review (by two 
reviewers) is the final set of studies for inclusion (n0)

Studies included in the final analysis (ni)
Each article gets a unique ID number 

Excluded from the final 
analysis (ne)

Excluded after 
second screen 

Software suggestions: 
EndNote, Reference 
Manger, ProCite 

Software 
suggestions:

EndNote, 
Reference
Manger, 
ProCite

Identify appropriate databases and sources of diagnostic studies

Prepare a protocol with clear inclusion and exclusion criteria 

PubMed, Embase, 
BIOSIS,Web of 

Science, CINAHL,Biosis, 
MEDION, DARE,Pascal, 
Chemical Abstracts,and 
others;Contact authors, 

experts,companies; citation 
tracking 

Use sensitive filters for
diagnostic studies 
(see table onfilters) 

if the search is
unmanageable

Search directly or via
reference manager 
software; avoid language
restrictions;
involve a librarian    

Need clear inclusion &
exclusion criteria  

Screen via reference 
manager software; 
avoid printing citations 
at this stage 

Keep a log of 
excluded studies

with reasons 
for exclusion

Use many overlapping 
approaches to get full 
articles; request authors via 
email 



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:27

Studies evaluating diagnostic accuracy 207

Appendix 2: Other databases of significance to
reviewers

Database Why interesting? Available

Allied and

Complementary Health

(AMED)

Additional content Datastar, DIMDI, Ovid

Australasian Medical

Index (AMI) producer

Nat. Library of Australia

www.nla.gov.au/ami

Geographic focus Australia

1968—

100 journals not in MEDLINE

Subscribing

institutions/libraries

For subscriptions contact

www.RMITPublishing.com.au

BIOSIS, BIOSIS/RRM

(Biological Abstracts)

Conference proceedings,

reports

Biomedicine 1969–, total

>15 billion records

Datastar, Dialog, DIMDI, Ovid

Chemical Abstracts (CA)

producer Chemical

Abstracts Service,

Am.Chem.Soc.

Conference proceedings,

reports

Search with CAS Registry

numbers

Pharmacology, clinical

chemistry 1907–, total >22

billion records

STN, Datastar, Dialog, Scifinder

Conference Papers Index

(CONFSCI) producer

Cambridge Scientific

Abstracts

Conference proceedings

Life sciences 1973–, total >2

billion records

STN

Computer Retrieval of

Information on Scientific

Projects (CRISP)

Ongoing research projects

U.S.A.

Unpublished research

(free) http://crisp.cit.nih.gov

Digital Dissertations

(Dissertation

Abstracts)—producer

ProQuest Information &

Learning

Doctoral dissertations and

master’s theses. 1860–.

Mainly U.S.A.

http://www.lib.umi.com/

dissertations (2 most current

years free).

OCLC FirstSearch, ProQuest

German Medical Science

Meetings

Conference proceedings,

medical

DIMDI

Health Services Research

Projects in Progress

(HSRPROJ)—producer

U.S. Academy Science

Ongoing research

USA—data from leading

federal and private funders

(free) NLM Gateway

http://gateway.nlm.nih.gov

(continued)
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Appendix 2 (continued )

Database Why interesting? Available

ISI Proceedings (ISTPB, as

of 1998 ISTP/ISSHP)

Conference proceedings

1978–.

80% with abstract.

>60,000 meetings since

1990

DIMDI, Web of Knowledge

www.webofknowledge.com

Literatura

Latinoamericana y del

Caribe en Ciencias de la

Salud (LILACS; Latin

American Health Sciences

Literature.

Geographic focus Latin

America and Caribbean.

Bibliotheca Virtual en Salud

www.bvs.org.ar

www.bireme.br/bvs/E/ebd.htm

MEDICONF—producer

Fairbase Database Ltd

Germany

Conference data. Directory,

1993–2007. Medical,

pharmaceutical

Dialog, STN, (partly free at)

producer’s site

www.mediconf.com

National Research

Register U.K.

Ongoing research projects

2000– U.K.

Unpublished research

(free) Update Software Ltd

http://www.update-

software.com/National/

SIGLE—producer Eur.

Assoc. for Gray Lit.

Exploitation, in

cooperation with FIZ

Karlsruhe

Grey literature 1976– mainly

dissertations, reports. FTN

(Germany) database

included.

Ovid, STN

Appendix 3

Notation
TP = true positives, FP = false positives, TN = true negatives, FN = false
negatives, i = study number, k = total number of studies, logit represents the
log odds, exp represents the exponential function.

SROC method of Littenberg and Moses:
For each study compute:

log diagnostic odds ratio D = ln

[
sensitivity

1 − sensitivity

]
− ln

[
1 − specificity

specificity

]
, and

proxy for test threshold S = ln

[
sensitivity

1 − sensitivity

]
+ ln

[
1 − specificity

specificity

]
.

The fit the model D = a + bS using either unweighted least squares regression,
or weight each study by the inverse variance of the lnDOR (i.e., D), where
var(D) = 1

TP + 1
FP + 1

TN + 1
FN (Note: 0.5 may be added to all counts in each
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2 × 2 table to avoid division by zero.) After fitting the model, the SROC curve
can be generated using the estimated values of a and b.35

HSROC model

Level 1

For each study (i , i = 1, . . . , k), the number testing positive (yij) for both the
diseased ( j = 1) and nondiseased ( j = 2) groups is assumed to follow a bino-
mial distribution (B(πij, nij), where πij represents the probability of a positive
test result in group j , and nij represents the number of subjects in group j).
The model takes the form log i t(πij) = (θi + αi di sij) exp(−βdisij) where disij

is coded as −0.5 for the nondiseased and 0.5 for the diseased; θi are random
effects for test threshold; αi are random effects for accuracy for each study;
and β is a fixed effect for dependence between accuracy and threshold.

Level 2

The θi are assumed to be normally distributed with mean � and variance τ 2
θ ,

and the αi are assumed to be normally distributed with mean 	 and variance
τ 2
α . The two distributions of random effects are assumed to be uncorrelated.
After fitting the model, the SROC curve can be generated from the estimated

values of β, �, and 	.47

Bivariate model

Level 1

For each study (i , i = 1, . . . , k), the number correctly diagnosed (yij) for both
the diseased ( j = 1) and nondiseased ( j = 2) groups is assumed to follow
a binomial distribution (B(πij, nij), where πij represents the probability of a
correct diagnosis in group j , and nij represents the number of subjects in
group j). Hence, the observed sensitivity in study i is yi1/.ni1 and specificity is
yi2/.ni2. Both sensitivity and specificity are taken to be random effects.

Level 2

The distribution of logit(sensitivityi ) is assumed to follow a normal distribution
with mean μA and variance σ 2

A. Similarly, the distribution of logit(specificityi )
is assumed to follow a normal distribution with mean μB and variance σ 2

B .
The two distributions are assumed to be correlated. After fitting the model,
the expected sensitivity and specificity are computed using the estimates of
μA and μB .44
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6. Devillé WLJM, Bezemer PD, Bouter LM. Publications on diagnostic test evalu-
ation in family medicine journals: an optimal search strategy. J Clin Epidemiol.
2000;53:65–69.
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CHAPTER 11

Producing and using clinical
prediction rules
Tom Fahey and Johan van der Lei

Summary box� Clinical prediction rules (CPRs) are tools that quantify the contribution
of symptoms, clinical signs and available diagnostic tests, and in doing
so stratify patients according to the probability of having a target
disorder.� CPRs can be used across the range of clinical decision-making
diagnosis, prognosis, or therapy.� A further distinction relates to “prediction” versus “decision” rules.
Prediction rules stratify patients according to the probability of a target
disorder either in terms of diagnosis or prognosis; decision rules
additionally recommend a clinical course of action.� Application of CPRs is based on Bayesian reasoning and the threshold
diagnostic approach.� Three phases of development of a CPR are necessary before it can be
used in clinical practice: development, validation, and clinical impact
analysis of the rule.� There are recognized methodological standards that should be adhered
to when developing and validating CPRs.� At present, most CPRs are at the stage of initial development, fewer
have been validated in different populations of patients and fewer still
have been subject to impact analysis in broad clinical settings.� Increasingly decision rules are being linked to computer-based clinical
decision support systems (CDSSs) and other Information and
Communication Technology (ICT) tools.� When considering implementation a CPR, clinicians should consider
system, physician and patient-related barriers.
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Introduction

Clinical prediction rules (CPRs) are tools that quantify the contribution of
symptoms, clinical signs and available diagnostic tests, and in doing so stratify
patients according to the probability of having a target disorder.1 The outcome
of interest can be diverse and range across the diagnostic, prognostic, and ther-
apeutic spectrum. Furthermore, CPRs have been developed, validated, and
used across the primary, secondary, and tertiary care settings. Their value in
helping clinicians to “rule in” or “rule out” a target disorder may well depend
on the clinical setting in which the CPR is being used. In primary care, rul-
ing out a disorder, providing reassurance, or adopting a “watchful waiting”
strategy is more common than in a hospital setting where the emphasis is
usually on establishing a firm diagnosis and commencing appropriate treat-
ment. Developing and validating a CPR is a particular form of observational
epidemiological research that requires reference to specific methodological
standards.2,3 Conventionally CPRs go through three distinct stages prior to full
implementation in a clinical setting: (1) development of the CPR—establishing
the independent and combined effect of explanatory variables that can include
symptoms, signs or diagnostic tests; (2) narrow and broad validation—where
the explanatory variables or clinical predictors in the derivation CPR set are
assessed in separate populations; and lastly (3) impact analysis of the CPR—
assessed by means of a randomized controlled trial (RCT) where the impact of
applying the CPR in a clinical setting is measured either in terms of patient out-
come, health professional behavior, resource use or any combination of these
outcomes.1,3 In this chapter, we will discuss CPRs in relation to the clinical
context in which they are being used; we will provide a brief clinical overview
of selected CPRs summarizing their method of presentation and implemen-
tation; we will review the general analytical approach when developing a
CPR alongside the methodological challenges of developing, validating and
assessing the impact of CPRs; lastly, we will make some tentative suggestions
about implementation of CPRs in relation to information and communication
technology (ICT) by means of computerized clinical decision support systems
(CDSSs) and decision aids (DAs) through the medium of the Electronic Pa-
tient Record (EPR). More specific reference to examples of CPRs developed,
validated, and implemented in the clinical area of primary prevention of car-
diovascular disease will also be made.

Clinical context

The diagnostic framework
Use and application of CPRs is firmly based on probabilistic or Bayesian diag-
nostic reasoning.4,5 With this approach, a clinician identifies a plausible target
disorder that could be responsible for causing a patient’s illness, and then
quantifies the uncertainty by going through three cognitive steps: first, esti-
mating the probability of the target disorder being present before any other
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additional diagnostic information is elicited, an estimation of the pretest prob-
ability of the target disorder; secondly, as new clinical information is obtained
(from the history and physical examination), it raises or lowers the probability
of the target disorder depending on the discriminatory power of each element
of the finding from the history and physical examination, quantified in con-
ditional probability terms, usually as a likelihood ratio; thirdly, the revised
probability or posttest probability is interpreted in relation to diagnostic prob-
ability thresholds. By explicitly quantifying the contribution of an element
of the history, physical examination or diagnostic test, CPRs can be readily
applied to this diagnostic process.1,4

Observational studies have established that by eliciting key findings from
the history and physical examination a substantial impact on subsequent di-
agnosis and management of patients can be made.6 A rational approach to the
clinical examination encourages clinicians to view symptoms and signs as lab-
oratory tests with measurable sensitivities, specificities and predictive powers.7

CPRs are explicit extensions of this process. The Rational Clinical Examina-
tion series, running in JAMA since 1992, has produced nearly 60 articles that
summarize the literature on various aspects of the clinical examination and
draw attention to areas where there is a paucity of evidence. Many of these
articles contain summaries of CPRs. Alongside this mapping and summary of
the clinical examination literature, the Clinical Assessment of the Reliability
of the Examination (CARE) interest group has formed to design and run large,
simple studies of the accuracy and precision of the clinical examination (see
recommended websites).8

Error in the heuristics of decision making and
their influence on CPRs
Heuristics are strategies that people learn or adopt when making decisions,
coming to judgments, or solving problems, typically when facing complex
problems or incomplete information. Heuristics work well under most cir-
cumstances, but in certain cases lead to systematic cognitive biases. These
biases have been studied in the context of diagnostic decision making, so also
influence diagnostic decision making when CPRs are being used as part of
the diagnostic process. These biases may affect the use and implementation of
CPRs in the following ways:� Pretest probability—Estimates of pretest probability are dependent on pre-

vious clinical experience and the setting of clinical care that a clinician has
been working in. Patients in secondary or tertiary care have higher propor-
tions of more serious disease or more uncommon disease than in primary
care settings, and this clinical experience influences the pretest probability
estimates of clinicians.9 However, when asked, clinicians can have surpris-
ingly divergent estimates of pretest probability for the same patient, for ex-
ample estimates of pretest probability for pulmonary embolism in a single
patient varied from 5% to 80% in a group of hospital clinicians.10 Explana-
tions for divergent estimates may relate to clinician experience or expertise
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though recent studies show that medical expertise was not associated with
closer estimates of pretest probability.11 It is more likely that divergence
in pretest probability relates to known errors in estimation of probability.
These errors include availability bias—overestimating the frequency of vivid
or easily recalled events; representativeness bias—estimating the probability
of disease by judging how similar it is to a diagnostic category thereby con-
fusing test sensitivity with posttest probability. For instance the symptom of
cough is often present with pneumonia but the probability of pneumonia
with cough as the only symptom is not high; support bias—overestimating
probability in case of more explicit and detailed descriptions of a patient.12

In the context of clinical encounters in primary care, pretest probability
estimates have been published for common presenting symptoms such as
cough, shortness of breath, general weakness/tiredness based on “reasons
for encounter” in a Dutch national study of 267,897 patient encounters.13

Knowledge and usage of such pretest probability estimates would avoid
some of the cognitive biases in pretest probability estimation.� Integrations and estimation of posttest probability errors in revision of prob-
ability can occur in several ways: anchoring and adjustment—posttest prob-
abilities being sensitive to the starting point and the shift in probability
needed to reach diagnostic certainty; order—when diagnostic information
given later is given more weight; as well as errors in data interpretation.
CPRs have the potential to overcome these heuristic biases, particularly if
integrated and implemented by means of computerized clinical decision
support systems (CDSSs).14

Thresholds approach to diagnosis
As part of the clinical application of CPRs the probabilistic approach to di-
agnostic reasoning is combined with the threshold approach to diagnosis.15

Further action in relation to the posttest probability estimates depends on
whether or not the posttest probability is above two different thresholds- the
test-treatment threshold or the test threshold (Figure 11.1).15 If the posttest
probability is above the test-treatment threshold, a diagnosis is made and a
management plan, including an assessment of the risks and benefits of treat-
ment, for the target condition can be started. If the posttest probability falls
below the test threshold, the patient is either reassured, alternative diagnoses
are pursued, or a “watchful waiting” practice adopted. If the posttest proba-
bility falls between these thresholds into an intermediate range, then further
diagnostic testing is continued until the posttest probability is revised and is
either above the test-treatment threshold or below the test threshold (Fig-
ure 1.11).9,15,16 In the context of using clinical prediction rules, a key issue
relates to the value placed on what is felt to be a clinically important and cost
effective intermediate testing range.17 This is not a statistical issue but a matter
of clinical judgment that relates to the seriousness of the target condition, the
treatment options available, as well as the cost, availability and side effects of
diagnostic tests.17 Once diagnostic thresholds have been quantified, it is then
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Test threshold

Probability of disease
Further diagnostic testing

Reassurance/seek alternative 
diagnostic possibilities 

Diagnose/Prognosis/Refer/Treat100%

0%

Test-treatment threshold

Figure 11.1 Threshold approach to diagnosis.

possible to recognize situations in terms of pre-test probability where testing
is useful (intermediate range of probability) or less useful (very low or very
high pre-test probability).17 As a further reflection on the inherent nature of
diagnostic uncertainty, it has been shown that overreliance on the value of ap-
plying tests that are highly sensitive (Sensitive test that is Negative helps to rule
out the diagnosis, or SnNout) or tests that are highly specific (Specific test that
is P ositive serves to rule in the diagnosis, or SpPin) symptoms, signs or diag-
nostic tests may not be as reliable as initially assumed.5,18 Ideally, uncertainty
when applying apparently highly sensitive or specific tests and converting to
posttest probabilities should be conveyed by estimating post test probability
with a 95% confidence interval around the estimate. The subsequent step of
applying the estimated posttest probability and its 95% confidence interval is
then judged against diagnostic thresholds (Figure 11.1).

When making clinical diagnoses it is likely that clinicians implement differ-
ent but complementary approaches simultaneously: applying the probabilistic
approach alongside consideration of all potential diagnoses on a differential
diagnosis list (the possibilistic approach) as well as considering more serious
conditions that if left untreated would have a major impact on a patient’s prog-
nosis (the severity approach).9 Indeed the approach of matching probability
with severity underpins the more formalized approach of decision analysis.19

Furthermore, application of diagnostic tests depend on whether a clinician is
attempting to definitively “rule in” a diagnosis—choosing a diagnostic test of
high specificity / positive likelihood ratios much greater than one—often the
case in secondary or tertiary care settings or whether the clinician is more
concerned about “ruling out” a diagnosis—choosing a diagnostic test with
high sensitivity / negative likelihood ratio much smaller than one—often the
case in primary care settings.9 Application of diagnostic tests is always context
specific;20 for instance, in low prevalence settings or in situations of screening,
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ideal diagnostic tests would be highly sensitive—those patients testing nega-
tive could be confidently assured that they are without disease but would also
be highly specific—low false positive rate with avoidance of iatrogenic harm
from further diagnostic testing in healthy patients. Unfortunately, few single
diagnostic tests perform with simultaneous high sensitivity and specificity.21

A further word of caution is required in the context of applying the results
of diagnostic tests developed in different clinical settings to which they are
applied. Spectrum bias (population with a different clinical spectrum, usually
more advanced cases) or selection bias (population of patients included on
the basis of a prior positive or negative test result) can produce diagnostic test
estimates of higher sensitivity and specificity, biased measured of test accu-
racy. These biases are particularly apparent in diagnostic tests developed in
secondary care and applied to patients in primary care.21,22 Last, aside from
diagnostic or prognostic considerations, other contextual issues in relation to
the application of CPRs will influence clinical behavior. Patient related fac-
tors, such as the acceptability and side effects of the diagnostic test; physician
related factors, such as fear of litigation; and organizational factors, such as
availability of diagnostic tests, will all influence clinical decision making and
may modify the use, application and interpretation of CPRs.20

Description and coverage of clinical prediction rules

Identification of CPRs is a challenge for several reasons Firstly, there are rel-
atively few CPRs in quantity when compared to other types of study designs
posted in major online clinical literature databases, with only a fraction being
of high quality. Secondly, there is a plurality of terminology associated with
CPRs and there is a lack of standardized controlled indexing vocabulary as-
signed to CPR studies which makes extraction from large clinical literature
databases difficult.23,24 Fortunately, search filters have been developed for the
retrieval of higher quality CPRs when searching the MEDLINE and EMBASE
clinical literature databases.23–25

CPRs have been developed across a broad range of health care areas. Three
reviews have summarized the CPRs published in four general medical journals
(New England Journal of Medicine, Journal of the American Medical Association,
British Medical Journal, and Annals of Internal Medicine) in three separate time
periods—1981–1984,26 1991–1994,2 and 2000–2003.27 During this time, the
absolute number of CPRs has not substantially increased, though there is a
greater number of studies reporting on validation rather than derivation of a
rule.27 Table 11.1 provides some examples of CPRs, showing the stage of their
development and the clinical area covered.

Most CPRs function at the level of providing probabilistic information for
a target disorder usually in the form of a risk score or clinical algorithm that
stratifies individuals into different categories of risk.27 As will be discussed,
implementation of CPRs involves transformation from prediction estimates
in the format of probability calculations, to decision rules in the format of
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categorized clinical recommendations.27 Table 11.1 shows that CPRs at the
stage of development or validation usually frame their recommendations in
probabilistic terms.

Methodological challenges

Analytical approach
A multivariable approach, usually in the form of logistic regression analysis
assessing the presence of absence of the target disorder, enables the develop-
ment of CPRs that take into account different sources of diagnostic or prognos-
tic information: general patient characteristics (age, gender, social class), past
medical history, presenting symptoms, physical examination findings, labora-
tory or other diagnostic data and in some clinical situations medication data.17

The independent “weights” of these sources of data—in the form of logistic
regression coefficients as the natural logarithms of the odds ratios for the pres-
ence of each predictor in the CPR—allow the calculation of post-probabilities
for a target disorder when applied to individual patients.3,17 Predicted posttest
probabilities on the scale of 0% to 100% are generated. In terms of assessment
of the performance of the CPR, these predicted posttest probabilities (equiva-
lent to the test–treatment threshold in Figure 11.1) are compared against the
observed classification according to the diagnostic or gold standard applied to
the study population. This allows the CPR to be assessed like a conventional di-
agnostic test, generating the sensitivity, specificity, likelihood ratios and odds
ratios at a particular disease threshold. By varying the disease threshold a
receiver operating characteristic (ROC) curve for a CPR can be generated, al-
lowing comparison between different combinations of symptoms, signs and
diagnostic tests, using the area under the curve (AUC) as a summary mea-
sure for the overall predictive power of each CPR.17 The cut-point chosen
for a disease threshold is condition and context-specific and depends on the
consequence of possible classification errors.

Methodological standards and levels of evidence

There is a recognized hierarchy of evidence when developing, validating, and
evaluating the clinical impact of clinical prediction rules. Figure 11.2 shows
these three stages and links these stages to four levels of evidence to the ap-
plication of a CPR in clinical care.1,3 A recent reviews suggest that impact
analysis should be divided into narrow and broad impact, making five levels
of evidence before a clinical prediction rule can be used with confidence in di-
verse clinical settings (Figure 11.2).27 Currently, there is a dichotomy between
the recommended level of evidence and the actual number of CPRs that have
reached the highest level of evidence. Three review papers have mapped out
the number of CPRs published in the same four general medical journals over
the last 21 years,2,26.27 the absolute number of CPRs has not changed sub-
stantially, 36 in 1985 up to 41 in 2006. In 1985, 55% of published CPRs were
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Level of Evidence 

1 2 3 4

Step 2. Validation 

Evidence of reproducible accuracy

Narrow Validation Broad Validation

Application of a rule in a 
Similar clinical setting and 
Population as Step 1

Application of rule in 
multiple clinical settings 
and varying prevalence 
and outcomes of disease

Step 3. Impact Analysis 

Evidence that rule change 
physician behaviour and 
improves patient outcomes 
and/or reduces costs

Step 1. Derivation

Identification of factors 
with predictive power

Figure 11.2 Stages in the development, validation and impact analysis of a Clinical
Prediction Rule, with corresponding levels of evidence. Adapted from McGinn et al.3

still at Level 1 (derivation), while in 2006, 63% of published CPRs were con-
cerned with narrow or broad validation (Levels 2 and 3).27 Clinicians can still
extract clinically relevant messages from developed CPRs, noting the most im-
portant predictors and consider giving less importance to variables that show
less predictive power.3 For example, in a CPR developed but not validated in
children with acute cough, presence of fever and chest signs raised the prob-
ability of future reconsultation or complications. These predictors might play
a role in differentiating those children who require more careful follow-up or
who might benefit from antibiotic treatment to prevent complications,28 but
caution is required in uncritically applying these clinical predictors without
broad validation of the CPR. External validation of a CPR for the presence of
serious bacterial infection in children that initially showed good discrimina-
tion, area under the receiver-operating characteristic curve (AUROC) 0.83 fell
on external validation to 0.57. In terms of calibration, prediction of low risk
categories in the development model corresponded poorly with the observed
level of risk in the validated model.29

Derivation
Diagnostic studies with methodological flaws tend to overestimate the accu-
racy of diagnostic tests.30 Examples of biases associated with diagnostic ac-
curacy studies include: spectrum bias, where the selection of patients is not
representative of patients seen in usual clinical care, leading to exaggeration
of sensitivity (test is developed in patients with serious or advanced disease)
or specificity (test is developed in healthy subjects);21 partial verification bias,
where a reference test is not applied consistently to confirm the negative
findings of the symptom, signs, or index test, leading to overestimation of
sensitivity and underestimation of specificity or overestimation of both sensi-
tivity and specificity; and incorporation bias, when the test under evaluation
is also part of the reference standard, leading to overestimation of test accu-
racy as the experimental and reference test are no longer independent.18,30
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Table 11.2 Methodological standards for Derivation and Validation of a Clinical
Prediction Rule3

Derivation

1. Were all important predictors included in the derivation process?

2. Were all predictors present in a significant proportion of the study population?

3. Were all the outcome events and predictors clearly defined?

4. Were those assessing the outcome event blinded to the presence of the predictors and

those assessing the presence of predictors blinded to the outcome event?

5. Was the sample size adequate (including adequate number of outcome events)?

6. Does the rule make clinical sense?

Validation

1. Were the patients chosen in an unbiased fashion and do they represent a wide spectrum

of severity of disease?

2. Was there a blinded assessment of the criterion standard for all patients?

3. Was there an explicit and accurate interpretation of the predictor variables and the actual

rule without knowledge of the outcome.

4. Was there 100% follow-up of those enrolled?

The methodological standards applied in the derivation of a CPR (Table 11.2),
incorporate checks that address these and other biases. Like diagnostic test
methodological standards,30,31 failure to adhere to these criteria are likely to
introduce biases that inflate the diagnostic accuracy of a developed CPR.3

Validation
Validation is the next key component when translating a CPR into clinical
practice.27 In the best circumstances, broad validation of a CPR (Level 3) in-
volves application of the CPR to a new population with a different prevalence
and spectrum of disease. However, in many instances because of constraints
in time, opportunity and funding, narrow validation (Level 2) of applying the
CPR in a similar clinical setting might be the best that can be achieved. Key
issues include making sure that the CPR performs similarly in different popu-
lations when used by different clinicians who apply the CPR in routine clinical
care in similar clinical settings.3 Methodological standards for validation en-
able stronger inference concerning the robustness of the validation procedure
to be made;3 these standards are summarized in Table 11.2.

Reasons why validation is unsuccessful may be due to several underlying
reasons. Chance effects can occur in smaller studies where a different set
of predictor variables emerge in a different population of patients.3 Several
different forms of bias can occur. Selection in terms of the population may
result in predictors being idiosyncratic to each selected population. More subtle
biases occur in relation to CPRs that incorporate or involve prior diagnostic
testing or referral procedures. Interaction bias occurs when CPRs developed
in one setting, for instance secondary care are validated in another setting,
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such as primary care.17 The methodological standards adopted for validation
studies address these issues of chance, blinding of predictors and outcome as
well adequate follow-up in the validation population.3,17

Predictive accuracy of a derived CPR can be assessed in two complementary
ways: calibration and discrimination.32 Calibration refers to whether the pre-
dicted probabilities agree with the observed probabilities. In terms of assessing
calibration, if the predicted risk of an individual or a group of individuals is
the same as the observed risk, then the model is perfectly calibrated or 100%
reliable. Calibration is usually quantified by the ratio of predicted to observed
outcome. Calibration can be graphically displayed with a calibration curve
that plots predicted versus observed outcomes at pre-determined categories of
risk and is assessed by the Hosmer–Lemeshow goodness-of-fit test.32–34 Dis-
crimination describes how well the CPR separates individuals who have or
will get the disease outcome from with those that remain disease-free. Dis-
crimination is typically measured by using the area under the AUROC. This
area ranges from 1 (100%) representing perfect discrimination to 0.5 (50%)
representing discrimination being no better than chance. For binary outcomes
(which is how CPRs are usually represented as having or not having the tar-
get disorder), a validation model is evaluated by measuring the C statistic,
which in this situation is identical to the AUROC (larger values indicate better
discrimination).32–34

Clinical example-validation studies of primary prevention of
cardiovascular disease
Assessment of cardiovascular disease (CVD) risk, based on the Framingham
risk function was initially proposed in the early 1990s in response to the un-
reliability of preventing cardiovascular disease by means of single risk fac-
tor assessment.35 In this instance, prognosis concerning future cardiovascular
events (stroke or myocardial infarction) is quantified and estimated by means
of multivariable risk assessment—a form of dia-prognostic research.22 Mul-
tivariable risk assessment methods enables clinicians to combine risk factor
information from their patients and calculate the risk that their patient will
have a cardiovascular event within a specified time period.36 This is impor-
tant as the relative benefit of a risk-reducing treatment is generally equivalent
across levels of risk, meaning the absolute benefit of the intervention is pro-
portional to the absolute risk of the individual.35 If the absolute risk of the
patient is high, then the absolute benefits of risk reduction are also going to
be high. If the absolute risk of disease is low, then any extra benefit from risk-
reducing interventions will also be low and possible harms of the treatment
may out-weight these small benefits. Consequently, effective targeting of re-
sources is enhanced by identifying individuals at higher levels of absolute risk.
The absolute risk charts developed from the multivariable risk functions are
developed CPRs whereby each individual’s predicted absolute risk can be cal-
culated and treatment recommendation be made. Examples of three different
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cardiovascular risk functions are provided in the appendix, each being derived
from different populations of patients.

In the context of levels of evidence, the Framingham risk is the currently
recommended CPR used for the primary prevention of cardiovascular disease
in the United Kingdom. Like any CPR, this derived rule requires narrow and
broad validation.3,27 The initial study assessed narrow validation by applying
the Framingham risk function to a representative sample of 7735 men aged
40–59 years (at entry in 1978–1980) in 24 U.K. towns—the British Regional
Heart Study (BRHS).33 The risk of coronary heart disease (CHD) mortality over
a 10-year period for each of the BRHS men free of cardiovascular disease and
with complete risk factor information were calculated using the appropriate
Framingham equations. The men were categorized into groups defined by
quintiles of Framingham risk, systolic blood pressure, total to HDL cholesterol
ratio and age. The average predicted event risk within each quintile for both
endpoints was compared with the observed 10-year rates.33

Applying the CHD mortality equation to each of the men in the BRHS,
the predicted number of CHD deaths within 10 years was 270 (4.1%) com-
pared with an observed CHD death rate of 183 (2.8%) over the first 10 years
of follow-up. Figure 11.3 shows predicted and observed CHD mortality rates
across a range of risk factor levels (according to the quintiles of Framingham
risk, systolic blood pressure, total to HDL cholesterol and age). The relative
overprediction of CHD mortality risk by 47% (was similar for individuals at
all baseline risk levels so that overprediction of absolute risk was greatest
for individuals at highest risk. The relative overprediction was approximately
constant at all levels of risk so it was possible to recalibrate and correct the
predicted Framingham scores by dividing the calculated score for each indi-
vidual by the amount of relative overprediction. Recalibrated probabilities of
CHD death were obtained from the 10-year CHD predictions by dividing the
final score by 1.47. After this correction the predicted risk became very close to
the observed at all levels of risk with a substantial decrease in the chi-squared
statistic for goodness-of-fit from 30.2 to 3.4.33

On the basis of this single, narrow validation study which represents Level 2
evidence, a systematic review of 27 other validation studies of the Framingham
risk function in 71,727 patients was performed in order to assess the issue of
broader validation.37 Figure 11.4 summarizes the finding of predicted versus
observed 10-year risk for CHD or CVD when the Framingham risk function
is applied to different populations by means of an overall ratio of predicted
to observed risk. Over or under-prediction is clearly related to the baseline or
background risk of CHD or CVD in each population studied. CHD predicted
to observed ratios ranged from an under-prediction of 0.43 (95% confidence
interval 0.27 to 0.67) in a high risk population to an overprediction of 2.87
(95% confidence interval 1.91 to 4.31) in a lower risk population (Figure
11.4).37

These two examples of narrow (level 2 evidence) and broad (level 3 ev-
idence) validation of the Framingham risk function shows that uncritical
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Figure 11.3 Narrow validation (Level 2 evidence) of the Framingham risk function in
the British Regional Heart Study cohort. Adapted from Brindle et al.33

Ten-year predicted (black) versus observed CHD death rates (white) by quintile of
(a) Framingham risk, (b) systolic blood pressure, (c) total to HDL cholesterol ratio and
(d) age.

application without reference to the background level of CHD or CVD risk
is likely to produce over or under estimation of the true cardiovascular risk
for an individual patient. Recalibration is worthwhile but requires knowledge
of the background CVD/CHD risk in the population to which the CPR is to be
applied. Background risk can also vary within a country as well as between
countries.33 More recent CPRs for the primary prevention of cardiovascular
disease are based on larger, more representative populations,38,39 or have fo-
cused on specific sub-groups of patients such as women.34

Impact analysis

Despite these efforts to summaries the literature on the value of the clini-
cal examination, use, and application of CPRs in clinical practice is not well
developed. Though the discriminatory power of symptoms and signs are iden-
tified as key components of effective clinical care, relatively little research has
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Study Predicted Observed RR (random)

or sub-category n/N n/N 95% CI Score 10yr risk%

Framingham CHD calibration by observed risk
Germany Augsburg women 82/2925 32/2925 Anderson 1

Germany Munster women 89/3155 31/3155 Anderson 1

France PRIME 463/7359 197/7359 Wilson 5

Germany Augsburg men 292/2861 146/2861 Anderson 5

Germany Munster men 544/5527 307/5527 Anderson 5

Europe INSIGHT 285/4127 124/4127 Anderson 8

UK Caerphilly & Speedwell 1979 343/3213 276/3213 Anderson 9

Northern Ireland PRIME 161/2399 120/2399 Wilson 10

Scotland WOSCOPS Pravastatin 103/1803 81/1803 Anderson 10

UK Caerphilly & Speedwell 1982 325/2467 238/2467 Anderson 10

UK BRHS 1062/6643 677/6643 Anderson 10

USA Los Angeles 115/1029 84/1029 Wilson 12

USA Normative Aging Study 222/1393 206/1393 Anderson 15

Scotland WOSCOPS control 95/1251 88/1251 Anderson 16

UK Whickham 401/1700 529/1700 Anderson 16

USA Johns Hopkins 2 64/736 95/736 Wilson 20

USA Johns Hopkins 1 24/256 56/256 Wilson 22

Germany angiography 6/42 10/42 Wilson 24

UK diabetic women 31/396 67/396 Anderson 42

UK diabetic men 52/542 105/542 Anderson 48

Total (95% CI) 49824 49824

Total events: 4759 (Predicted), 3469 (Observed)

Test for heterogeneity: Chi2 = 366.84, df = 19 (P < 0.00001), I2 = 94.8%

Framingham CVD calibration by observed risk
Australia women 94/1045 87/1045 Wilson 8

New Zealand women 79/1716 86/1716 Anderson 10

Australia men 115/755 105/755 Wilson 14

New Zealand men 277/4638 325/4638 Anderson 14

Europe INSIGHT 601/4127 231/4127 Anderson 15

N Europe/USA LIFE 410/9194 479/9194 Anderson 52

UK diabetics 64/428 96/428 Anderson 53
Total (95% CI) 21903 21903

Total events: 1640 (Predicted), 1409 (Observed)

Test for heterogeneity: Chi2 = 172.37, df = 6 (P < 0.00001), I2 = 96.5%

0.2 0.5 1 2 5

Under prediction Over prediction

Figure 11.4 Broader validation* (Level 3 evidence) of the Framingham risk function
in cohort studies. Adapted from Brindle et al.37

Predicted to observed ratio of Framingham risk scores, ordered by increasing observed
10-year risk (%) in the validation populations.

CHD, fatal and nonfatal coronary heart disease; CVD, cardiovascular disease;
composite of fatal and nonfatal stroke or myocardial infarction.

reported on the use and application of CPRs in real-time clinical practice. For
instance, several CPRs have been developed and validated using the presence
of group A β-hemolytic streptococcal pharyngitis (sore throat) as the reference
standard.40 These CPRs include symptoms and signs such as history or mea-
sured fever, absence of cough, presence of tender cervical lymphadenopathy,
tonsillar exudate and age of the patient.40 Impact analysis of this rule in the
context of a randomized controlled trial using chart stickers that prompted
use and scoring of a sore throat CPR made no difference to the prescribing of
unnecessary antibiotics or overall antibiotic use.41
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The lack of impact analysis studies has been attributed to the fact that a
transition is needed when assessing a CPR’s impact on clinical care: changing
a rule from estimates about the likely probability of a target disorder to rec-
ommendations about clinical care.27 In addition, the methodological approach
of impact analysis—experimental research requiring randomized comparison
groups, differs from the methodological approach for derivation and valida-
tion of a prediction rule—observational research assessing and validating the
independent predictive effects of clinical and diagnostic variables.17,27 Lastly,
clarity about the purpose of applying a CPR in clinical practice is required.
Modifying practitioner performance is an intermediate step in relation to a
change in patient outcome. Clear linkage is required between the probability
estimates generated from a CPR and subsequent recommendations concern-
ing management and therapy. Evidence from RCTs assessing the impact of
the Framingham risk function illustrates the importance of linkage between
probability estimates and clinical recommendations.

Current evidence from impact analysis studies of primary
prevention of cardiovascular disease
A systematic review identified four randomized controlled trials that assessed
the impact of the using the Framingham risk function in the primary preven-
tion of cardiovascular disease.37 In all RCTs, the intervention was formatted
as paper-based cardiovascular risk charts categorizing individuals into 5-year
cardiovascular risk categories. None of the RCTs translated this probabilistic
information into clinical recommendations concerning treatment. One RCT
compared two intervention arms—card-based and computer-based cardio-
vascular risk information—but only in terms of probabilistic information and
not in terms of decision recommendations.42 For all RCTs, the objective was
to improve the intermediate outcomes of either lowering blood pressure or
cholesterol, or increasing the intensity of drug therapy. All four RCTs did not
show significant improvements in blood pressure or cholesterol, or in the in-
tensification of drug treatment as a consequence of using the Framingham
risk function in a chart format.37

For successful implementation of CPR, consideration should be given to
several factors. First, framing of the rule requires transformation from pre-
diction estimates framed as probability calculations, to a decision rule framed
as categorized clinical recommendations.27 The format in which the CPR is
implemented—in an electronic format, ideally as part of a CDSS, requires
integration with the electronic patient record (EPR). Lastly, several physician-
related barriers have been identified that occur before, during and after the
establishment of a CPR that require ongoing monitoring and performance as-
sessment of the CPR in usual clinical practice.27 Examples of these concerns
include skepticism concerning recommendations of the CPR, medicolegal, and
patient safety concerns, and lack of understanding and poor infrastructure to
maintain the use of the CPR. What is clear is that simple provision of the CPR
without adequate integration and ongoing support is likely to be insufficient
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Table 11.3 Barriers and strategies to the effective implementation of clinical
prediction rules (Adapted from Reilly et al. and Kawamoto et al.27,43)

Barrier Strategy

Physician related

Introduction phase: skepticism, distrust, or

disinterest

Enable discretionary use of CPR but involve

physicians in development and validation,

and collect data on how CPR could facilitate

and aid physician’s tasks

During use: failure to use CPR consistently

and accurately

Track usage and provide feedback about

impact on patient outcomes

After establishment of CPR: complaints not

easy to use or poorly integrated

Develop as a CDSS, monitor usage and

modify as appropriate involving users

System related

Framing: probability estimates Provide linkage to explicit clinical

recommendation according to strata of risk

based on CPR

Format: paper-based format Integrate with electronic patient record;

provide patient-specific advice as part of

usual clinical activity

Usage Provide as a CDSS or as a PDA, monitor

usage and provide information on patient

outcome

Patient related

Concerns about lack of input from patient’s Modify CDSS to incorporate patient

preferences in the form of a decision aid

to change clinical practice and alter patient outcome. Strategies to ensure on-
going implementation need to be considered and addressed (Table 11.3).27

Future implementation of CPRs—the electronic patient record
and computerized clinical decision support systems (CDSSs)
CDSSs are information systems designed to improve clinical decision mak-
ing. The underlying structure of a CDSS requires electronic, patient-specific
data linked to a computerized knowledge base that provides patient-specific
treatment recommendations via an algorithm.14 Some CDSSs may require
interaction between the system and the clinician. The clinician initiates a di-
alogue with the system and provides it with data by entering symptoms or
answering questions. This has been the usual way in which the predictors for
a CPR are entered into a CDSS to produce the probabilistic information on
diagnosis or prognosis. Unfortunately, experience has shown that the accep-
tance of this type of CDSS by clinicians can be relatively low. Other systems are
integrated with electronic medical records, and use the data in them as input.
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In such settings, receiving decision support requires little or no additional data
input on the part of the clinician. Some of the information generated for the
Framingham risk equations operates at this level. Finally, some systems are
directly connected to the devices that generate the data, for example, systems
that interpret ECGs or laboratory data.

By applying the medical knowledge to the patient data, the CDSS gener-
ates patient-specific advice. Some CDSSs, especially those integrated with the
electronic medical record; provide advice independent of a clinician’s request
for it—unsolicited advice. Examples are reminding systems that continuously
screen patient data for conditions that should be brought to the clinician’s
attention (e.g., the patient’s kidney function is decreasing, or the patient is el-
igible for preventive screening). Other systems, such as critiquing systems, may
monitor the decisions of the clinician and report deviations from guidelines.
The previously mentioned RCTs of CPRs using the Framingham risk function
did generate patient-specific information concerning cardiovascular risk but
did not translate this information into categorized clinical recommendations
concerning drug treatment.37

Evidence from a systematic review of 64 RCTs of CDSSs shows improve-
ments in practitioner performance compared to usual clinical care in terms
of diagnostic systems, reminder systems, disease management systems and
drug-dosing or monitoring systems. The effects on patient outcome are less
well studied with current results being inconsistent.14 A further review cri-
tiqued the elements of clinical decision support systems that were more likely
to improve clinical practice.43 They found several features that were closely
linked to decision support systems’ ability to improve patient care: automatic
provision of decision support as part of clinical workload; provision of recom-
mendations rather than just assessments; provision of decision support at the
time and location of decision making; and computer based decision support.43

CPRs are well suited to integration into a computer-based format with link-
age to patient-specific advice using evidence-based clinical algorithms. In-
deed, many of the Rational Clinical Examination Series guides summarize
their recommendation as an algorithm with categorized clinical recommen-
dations linked to risk categories. Figure 11.5 illustrates this approach in the
management of urinary tract infection.

If a CDSS platform is used to implement a CPR, important methodological
standards have been developed that relate to the validity of the CDSS in re-
lation to integration and implementation of a CPR.44 Particular attention is
focused on the function of the CDSS with a range of possibilities that include
prediction and diagnosis which may or may not be linked to assisting (tailoring
recommendations) or suggesting (generating suggestions) roles. Also impor-
tant is the application of a CDSS into the clinical setting it is to be used.44

Future developments
In the future, integration of CPRs into CDSSs or into personal digital assis-
tants (PDAs) will require explicit linkage of probabilistic information into
evidence-based clinical recommendations. Information and communication
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Woman with >1 symptoms of UTI

Risk factors for complicated infection?

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes Consider urine culture to establish diagnosis
consider initiating empirical treatment

Probability of UTI moderate (~60%) and
probability of pyelonephritis unknown

Consider urine culture to establish diagnosis
consider emprical treatment

Low to intermediate probability of UTI (~20%)

Pelvic examination (including cervical cultures
when appropriate) and urine culture

to establish diagnosis

High probabililty of UTI (~90%)
Consider empirical treatment without urine culture

High probabililty of UTI (~80%)
Consider empirical treatment without urine culture

Perform dipstick urinalysis

Back pain or fever?

Vaginal discharge?

Most elements of the history
(and physical examination ) positive?

Dipstick results positive?

Low to intermediate probability of UTI (~20%)

Consider urine culture or close clinical
follow-up and pelvic examination (including

cervical cultures when appropriate)

Figure 11.5 Probability estimates of UTI translated into clinical recommendations for
the management of UTI. Adapted from Bent et al.51

technology (ICT) is increasingly popular amongst medical students and many
medical schools deliver their curriculum through a virtual learning environ-
ment (VLEs). The next generation of doctors will be using ICT largely in daily
clinical practice. Already PDAs program CPRs so as to estimate the proba-
bility of adverse events or complications for specific clinical conditions, for
instance the risk of life-threatening complications or death in patients with
acute pancreatitis.45

Alongside technological developments, an increase in morbidity coding will
lead to a larger database of CPRs. For instance, a CPR could be triggered
by entry of a specific morbidity code, prompting the health professional to
input key elements of history, clinical examination finding and diagnostic
test and producing recommendations concerning the prior probability and
posttest probability for a target disorder. As previously discussed, probabilistic
diagnostic information can be incorporated with patient-specific therapeutic
recommendations in the form of a CDSS. Application of CPRs in clinical prac-
tice will require more flexible modeling for alternative differential diagnoses
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as well as for specific patient profiles or subgroups of patients.17 Other analyt-
ical approaches such as “neural networks” will require evaluation, measured
alongside conventional regression modeling and evaluation of usual clinical
practice.17 Lastly, patient’s preferences concerning the optimal level of diag-
nostic certainty as well as the trade-offs between further diagnostic investi-
gation versus iatrogenic harm, will require more sophisticated modelling of
individual preferences using ICT. Decision analysis has the potential to model
preferences alongside individualized probabilities derived from CPRs. For ex-
ample a decision analysis decision aid (DA) was able to quantify cardiovascu-
lar risk and integrate patients’ values so that individual treatment preferences
about anti-hypertensive drug therapy could be made.46 It is possible to pro-
duce patient-specific recommendations, incorporating each patient’s individ-
ual preferences, into a format so that patients can become co-decision makers
with health professionals. All these developments will require more powerful
and sophisticated ICT tools embedded in each patient’s EPR.

Conclusions

High-quality CPRs remain relatively uncommon in the medical literature.27

However, we appear to be at the start of a new era in diagnostic research,47

and progress in relation to the development, validation and impact analy-
sis assessment of CPRs should be viewed within the broader context of this
expanding field (Figure 11.2). The Cochrane Collaboration now includes sys-
tematic reviews of diagnostic accuracy studies in the Cochrane Library. This is
likely to drive further methodology standards adopted in the conduct and re-
porting of individual diagnostic accuracy studies,48 and in systematic reviews
of diagnostic accuracy studies.49

Key issues to consider when putting a CPR to use in a clinical setting relate
to the stage of development in its use and corresponding level of evidence
(Figure 11.2). Knowledge of the required standards in terms of development
and validation of a CPR is thus required (Table 11.2). Few CPRs have been
broadly validated in relation to their impact on clinical care,27 so wide dissem-
ination and usage of CPRs is unlikely to occur in the near future. However,
with developments in ICT, integration of CPRs into clinical databases is likely
to be more commonplace and knowledge of the stages of CPR development
alongside the level of evidence is becoming core clinical knowledge for health
professionals. Implementation of CPRs is likely to take place alongside modi-
fication and refinements in CDSSs for health professionals and decision aids
for patients. Unless practicing clinicians understand the methodological issues
involved in the development, validation, and impact analysis of CPRs, they
are likely to be misled by apparently simple but potentially biased CPRs, which
have been integrated uncritically into ICT software programs. Last, if CPRs are
to be used in clinical practice, developers of CPRs need to be aware of the bar-
riers and solutions to the full implementation of CPRs in terms of clinicians,
patients and the healthcare system involved (Table 11.3).
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Recommended key references

Books� Black ER, Bordley DR, Tape TG, et al., eds. Diagnostic strategies for common
medical problems. Philadelphia: American College of Physicians; 1999.� Ebell MH. Evidence-based diagnosis: a handbook of clinical prediction rules. New
York: Springer-Verlag; 2001.� Guyatt GH, Rennie DR. Users’ guides to the medical literature: a manual for
evidence-based clinical practice. Chicago: American Medical Association Press;
2002.

Websites� Clinical Assessment of the Reliability of the Examination (CARE):
http://www.carestudy.com/CareStudy/Default.asp� Centre for Evidence Based Medicine:
http://www.cebm.net/� Mount Sinai site for clinical prediction rules:
http://www.mssm.edu/medicine/general-medicine/ebm/#cpr� Rational Clinical Examination series—1998 to present:
http://jama.ama-assn.org/cgi/collection/rational clinical exam

Examples of Cardiovascular risk functions� Cardiovascular risk score based on the Framingham risk function:
http://www.nhlbi.nih.gov/about/framingham/index.html� Cardiovascular risk score based on the Framingham risk function and mod-
ified as the Joint British Societies Cardiovascular Disease Risk Prediction
Chart:
http://www.bhsoc.org/Cardiovascular Risk Charts and Calculators.stm� Cardiovascular risk score based on eight randomized controlled trials of
antihypertensive treatment in North American and Europe:50

http://www.riskscore.org.uk/� Cardiovascular risk score based on 12 European cohort studies: the SCORE
risk charts:38

http://www.escardio.org/initiatives/prevention/prevention-tools/SCORE-
Risk-Charts.htm

A more recent review article suggests that Impact analysis should be further
sub-divided into:27� Narrow impact analysis: prospective demonstration in one setting that use

of CPR improves physician behaviour, patient outcome and/or reduces costs
(Level 4)� Broad impact analysis: prospective demonstration in varied settings that use
of CPR improves physician behaviour, patient outcome and/or reduces costs
for a wide spectrum of patients (Level 5).
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CHAPTER 12

Clinical problem solving and
diagnostic decision making: a
selective review of the
cognitive research literature
Alan Schwartz and Arthur S. Elstein

Summary box� Research on clinical diagnostic reasoning has been conducted chiefly
within two research paradigms, problem solving and decision making.� The key steps in the problem-solving paradigm are hypothesis
generation, the interpretation of clinical data to test hypotheses,
pattern recognition, and categorization.� The decision-making paradigm views diagnosis as updating opinion
with imperfect information; the normative rule for this process is
Bayes’s theorem. In practice, diagnosticians are susceptible to
well-documented errors in probability estimation and revision.� Problem based learning and ambulatory clinical experiences make
sense from the viewpoint of cognitive theory because students
generalize less from specific clinical experiences than educators have
traditionally hoped.� In residency training, both practice guidelines and evidence-based
medicine are seen as responses to the psychological limitations of
unaided clinical judgment.

Introduction

This chapter reviews the cognitive processes involved in diagnostic reason-
ing in clinical medicine and sketches our current understanding of these

The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research. 2nd edition.
Edited by J. André Knottnerus and Frank Buntinx. C© 2009 Blackwell Publishing,
ISBN: 978-1-4051-5787-2.
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principles. It describes and analyses the psychological processes and mental
structures employed in identifying and solving diagnostic problems of varying
degrees of complexity, and reviews common errors and pitfalls in diagnostic
reasoning. It does not consider a parallel set of issues in selecting a treatment
or developing a management plan. For theoretical background, we draw on
two approaches that have been particularly influential in research in this field:
problem solving1,2,3,4,5,6 and decision making.7,8,9,10,11

Problem-solving research has usually focused on how an ill-structured prob-
lem situation is defined and structured (as by generating a set of diagnostic
hypotheses). Psychological decision research has typically looked at factors af-
fecting diagnosis or treatment choice in well-defined, tightly controlled prob-
lems. Despite a common theme of limited rationality, the problem-solving
paradigm focuses on the wisdom of practice by concentrating on identifying
the strategies of experts in a field to help learners acquire them more effi-
ciently. Research in this tradition has aimed at providing students with some
guidelines on how to develop their skills in clinical reasoning. Consequently,
it has emphasized how experts generally function effectively despite limits
on their rational capacities. Behavioral decision research, on the other hand,
contrasts human performance with a normative statistical model of reasoning
under uncertainty, Bayes’s theorem. This research tradition emphasizes posi-
tive standards for reasoning about uncertainty, demonstrates that even experts
in a domain do not always meet these standards, and thus raises the case for
some type of decision support. Behavioral decision research implies that con-
trasting intuitive diagnostic conclusions with those that would be reached by
the formal application of Bayes’s theorem would give us greater insight into
both clinical reasoning and the probable underlying state of the patient.

The psychological study of reasoning has been profoundly influenced by
the “two-system” or “dual-process” theories of cognition.12,13,14 Dual-process
theories posit two distinct systems of judgment: one fast, automatic, and in-
tuitive (System 1), and the other slow, effortful and analytic (System 2). A
two-system viewpoint integrates research findings from the problem-solving
and decision-making traditions and provides a useful set of educational im-
plications that have received recent attention with promising results.

Problem solving: diagnosis as hypothesis selection

To solve a clinical diagnostic problem means, first, to recognize a malfunction
and then to set about tracing or identifying its causes. The diagnosis is ideally an
explanation of disordered function – where possible, a causal explanation. The
level of causal explanation changes as fundamental scientific understanding
of disease mechanisms evolves. In many instances, a diagnosis is a category
for which no causal explanation has yet been found.

In most cases, not all of the information needed to identify and explain
the situation is available early in the clinical encounter, and so the clinician
must decide what information to collect, what aspects of the situation need
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attention, and what can be safely set aside. Thus, data collection is both se-
quential and selective. Experienced clinicians execute this task rapidly, almost
automatically; novices struggle to develop a plan.

The hypothetico-deductive method

Early hypothesis generation and selective data collection
Difficult diagnostic problems are solved by a process of generating a limited
number of hypotheses or problem formulations early in the workup and us-
ing them to guide subsequent data collection.2 Each hypothesis can be used
to predict what additional findings ought to be present, if it were true, and
then the workup is a guided search for these findings; hence, the method
is hypothetico-deductive. The process of problem structuring via hypothesis
generation begins with a limited data set and occurs rapidly and automati-
cally, even when clinicians are explicitly instructed not to generate hypotheses.
Given the complexity of the clinical situation and the limited capacity of work-
ing memory, hypothesis generation is a psychological necessity. It structures
the problem by generating a small set of possible solutions—a very efficient
way to solve diagnostic problems. The content of experienced clinicians’ hy-
potheses are of higher quality; some novices have difficulty in moving beyond
data collection to considering possibilities.3

Data interpretation
To what extent do the data strengthen or weaken belief in the correctness of
a particular diagnostic hypothesis? A Bayesian approach to answering these
questions is strongly advocated in much recent writing15,16 and is clearly a
pillar of the decision making approach to interpreting clinical findings. Yet it
is likely that only a minority of clinicians employ it in daily practice and that
informal methods of opinion revision still predominate. In our experience,
clinicians trained in methods of evidence-based medicine17 are more likely to
use a Bayesian approach to interpreting findings than are other clinicians.

Accuracy of data interpretation and thoroughness of data collection are sep-
arate issues. A clinician could collect data thoroughly but nevertheless ignore,
misunderstand, or misinterpret some findings. In contrast, a clinician might be
overly economical in data collection, but could interpret whatever is available
accurately. Elstein et al.2 found no significant association between thorough-
ness of data collection and accuracy of data interpretation. This finding led
to an increased emphasis upon data interpretation in research and education,
and argued for studying clinical judgment while controlling the database. This
strategy is currently the most widely used in research on clinical reasoning.
Sometimes clinical information is presented sequentially: the case unfolds in
a simulation of real time, but the subject is given few or no options in data
collection.18,19,20 The analysis may focus on memory organization, knowl-
edge utilization, data interpretation, or problem representation.3,20,21 In other
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studies, clinicians are given all the data simultaneously and asked to make a
diagnosis.22,23

Pattern recognition or categorization

Problem-solving expertise varies greatly across cases and is highly dependent
on the clinician’s knowledge of the particular domain. Clinicians differ more in
their understanding of problems and their problem representations than in the
reasoning strategies employed.2 From this point of view, it makes more sense
to consider reasons for success and failure in a particular case than generic
traits or strategies of expert diagnosticians.

This has been called case or content specificity. It challenged the
hypothetico-deductive model of clinical reasoning for several reasons: both
successful and unsuccessful diagnosticians used hypothesis testing, and so it
was argued that diagnostic accuracy did not depend as much on strategy as
on mastery of domain content. The clinical reasoning of experts in familiar
situations frequently does not display explicit hypothesis testing5,24,25,26 but
is instead rapid, automatic, and often nonverbal. The speed, efficiency, and
accuracy of experienced clinicians suggest that they might not even use the
same reasoning processes as novices, and that experience itself might make
hypothesis testing unnecessary.5 It is likely that experienced clinicians use a
hypothetico-deductive strategy only with difficult cases.27,28 Much of the daily
practice of experienced clinicians consists of seeing new cases that strongly re-
semble those seen previously, and their reasoning in these situations looks
more like pattern recognition or direct automatic retrieval. The question then
becomes, what is retrieved? What are the patterns?

Pattern recognition implies that clinical reasoning is rapid, difficult to verbal-
ize, and has a perceptual component. Thinking of diagnosis as fitting a case into
a category brings some other issues into clearer view. How is a new case cate-
gorized? Two somewhat competing accounts have been offered, and research
evidence supports both. Category assignment can be based on matching the
case either to a specific instance—so-called instance-based or exemplar-based
recognition—or to a more abstract prototype. In instance based recognition
a new case is categorized by its resemblance to memories of instances previ-
ously seen.5,25,29,30 For example, acute myocardial infarction (AMI) is rapidly
hypothesized in a 50-year-old male heavy smoker with severe crushing, sub-
sternal chest pain because the clinician has seen previous instances of similar
men with very similar symptoms who proved to have AMI. This model is sup-
ported by the fact that clinical diagnosis is strongly affected by context (e.g.,
the location of a skin rash on the body), even when this context is normatively
irrelevant.30 These context effects suggest that clinicians are matching a new
case to a previous one, not to an abstraction from several cases, because an
abstraction should not include irrelevant features.

The prototype model holds that clinical experience—augmented by teach-
ing, discussion, and the entire round of training—facilitates the construction
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of abstractions or prototypes.4,31 Differences between stronger and weaker
diagnosticians are explained by variations in the content and complexity of
their prototypes. Better diagnosticians have constructed more diversified and
abstract sets of semantic relations to represent the links between clinical fea-
tures or aspects of the problem.3,32 Support for this view is found in the fact
that experts in a domain are more able to relate findings to each other and to
potential diagnoses, and to identify the additional findings needed to complete
a picture.27 These capabilities suggest that experts utilize abstract representa-
tions and do not merely match a new case to a previous instance.

One memory model that has received some attention in cognitive psychol-
ogy and been successfully applied to clinical reasoning is fuzzy-trace theory.33

According to fuzzy-trace theory, people simultaneously encode two kinds of
representations in memory. The first, called the “verbatim” representation, is
a precise encoding of the features of experience. The second, called the “gist”
representation is a less precise (hence “fuzzy”) trace that captures the es-
sential meaning of the experience without the detailed features. Fuzzy-trace
theory argues that while memory tasks assess the verbatim representation,
most reasoning tasks in fact operate with the gist representation.34 Better di-
agnosticians take more advantage of gist representations in their reasoning,
and accordingly appear to gather and use less information than inexperienced
diagnosticians.

The controversy about the methods used in diagnostic reasoning can be
resolved by recognizing that clinicians, like people generally, are flexible in
approaching problems: the method selected depends upon the perceived char-
acteristics of the problem. There is an interaction between the clinician’s level
of skill and the perceived difficulty of the task.35 Easy cases can be solved by
pattern recognition or by going directly from data to diagnostic classification
(forward reasoning).24 Difficult cases need systematic hypothesis generation
and testing. Whether a diagnostic problem is easy or difficult is a function of
the knowledge and experience of the clinician who is trying to solve it. When
we say that a diagnostic problem is difficult, we really mean that a signifi-
cant fraction of the clinicians who encounter this problem will find it difficult,
although for some it may be quite easy.

Errors in hypothesis generation and restructuring

Neither pattern recognition nor hypothesis testing is an error-proof strategy,
nor are they always consistent with statistical rules of inference. Errors that
can occur in difficult cases in internal medicine are illustrated and discussed by
Kassirer and Kopelman.20 Another classification of diagnostic errors is found
in Bordage.36 The frequency of errors in actual practice is unknown, and
studies to better establish the prevalence of various errors are much needed.

Many diagnostic problems are so complex that the correct solution is not
contained within the initial set of hypotheses. Restructuring and reformu-
lating occur as data are obtained and the clinical picture evolves. However,
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as any problem solver works with a particular set of hypotheses, psychologi-
cal commitment takes place and it becomes more difficult to restructure the
problem.37

A related problem is that knowledge stored in long-term memory may not
be activated unless triggered by a hypothesis or some other cognitive structure
that provides an access channel to the contents of memory. This phenomenon
has been demonstrated experimentally in a nonclinical context: recall of the
details of the layout of a house varies depending on whether one takes the
perspective of a burglar or a potential buyer.38 We are unaware of an experi-
mental demonstration of this effect in medical education, presumably because
of the difficulty of ensuring that an experimental trigger has been effective.
However, the complaint of many medical educators that students who can
solve problems in the classroom setting appear to be unable to do so in the
clinic with real patients, illustrates the role of social context in facilitating or
hampering access to the memory store. On the other side of this equation,
there are students who struggle academically but are competent clinicians,
presumably because the clinical context facilitates their thinking. These ob-
servations are all consistent with Bartlett’s39 classic proposal that memory is
organized schematically, not in the storage of unconnected bits. Stories help
us to remember the details and provide guidance as to what details “must be
there.” This phenomenon has been demonstrated in medical students6 and
may contribute to continuing interest in medical case studies and narrative
medicine.40,41

Decision making: diagnosis as opinion revision

Bayes’s theorem
From the point of view of decision theory, reaching a diagnosis involves up-
dating an opinion with imperfect information (the clinical evidence).10,11,15,42

The normative mathematical rule for this task is Bayes’s theorem. The pretest
probability is either the known prevalence of the disease or the clinician’s
subjective probability of disease before new information is acquired. As new
information is obtained, the probability of each diagnostic possibility is contin-
uously revised. The posttest probability—the probability of each disease given
the information—is a function of two variables, pretest probability and the
strength of the evidence. The latter is measured by a “likelihood ratio,” the
ratio of the probabilities of observing a particular finding in patients with and
without the disease of interest.

If the data are conditionally independent, each posttest probability becomes
the pretest probability for the next stage of the inference process. Using Bayes’s
theorem becomes hopelessly complicated and impractical when this assump-
tion is violated and more than two correlated cues are involved in a diagnostic
judgment, as is often the case in clinical medicine. In these situations, linear
and logistic regression techniques are commonly used to derive an equation
or clinical prediction rule. A review of these methods is beyond the scope of
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this chapter. We simply point out that the coefficients (weights) in a regres-
sion equation depend on the composition of the derivation sample. Bayes’s
theorem distinguishes the effect of disease prevalence and the strength of
the evidence on the diagnostic judgment, but ordinary regression analytical
methods confound these variables in the regression coefficients. (For alter-
native regression approaches that address this problem, see43). If the index
disease is overrepresented in the derivation sample, a prediction rule should
be applied cautiously to populations where the prevalence of that disease is
different. Despite this limitation, these rules are useful. Clinical applications of
statistically derived prediction rules can outperform human judgment;44 this is
the rationale for a range of clinical prediction rules that have been developed
during the past two decades. Reports of the accuracy of such rules and the
reasons for their success have been available in the psychological literature
on judgment for over 40 years,45 but application in clinical practice has been
slow because of continuing concerns about:� whether a rule derived from a particular population generalizes accurately

to another� eroding the professional authority and responsibility of clinicians, and� whether guidelines (at least in the United States) are intended more to
ration care and contain costs than to improve quality.46,47

Both evidence-based medicine (EBM) and decision analysis are efforts to in-
troduce quantification into the diagnostic process and still leave a substantial
role for clinical judgment.48,49 EBM leaves the application of research results,
including a clinical guideline, up to the clinical judgment of the clinician, who
should be guided by canons for interpreting the literature. Decision analysis
proposes to offer the clinician insight into the crucial variables in a decision
problem, together with a recommended strategy that maximizes expected
utility (e.g., see Col et al.50). Both attempt to avoid quasi-mandatory prescrip-
tive guidelines and to leave room for professional discretion.

Bayes’s theorem is a normative rule for diagnostic reasoning: it tells us how
we should reason, but it does not claim that we use it to revise opinion. It
directs attention to two major classes of error in clinical reasoning: in the
assessment of either pretest probability or the strength of the evidence. The
psychological study of diagnostic reasoning from the Bayesian viewpoint has
focused on errors in both components.51

Errors in probability estimation

Availability
People are prone to overestimate the frequency of vivid or easily recalled
events and to underestimate the frequency of events that are either very or-
dinary or difficult to recall.52,53 Diseases or injuries that receive considerable
media attention (e.g., injuries due to shark attacks) are often considered more
probable than their true prevalence. This psychological principle is exemplified
clinically in overemphasizing rare conditions. Unusual cases are more memorable
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than routine problems. The clinical aphorism “When you hear hoof beats,
think horses, not zebras” calls attention to this bias.

Representativeness
Earlier, clinical diagnosis was viewed as a categorization process. The strategy
of estimating the probability of disease by judging how similar a case is to a
diagnostic category or prototype can lead to an overestimation of the proba-
bility of a disease in two ways. First, posttest probability can be confused with
test sensitivity.54,55 For example, although fever is a typical finding in menin-
gitis, the probability of meningitis given fever alone as a symptom is quite
low. Second, representativeness neglects base rates and implicitly considers
all hypotheses as equally likely. This is an error, because if a case resembles
disease A and disease B equally well, and there are 10 times as many cases of
A as of B, then the case is more likely an instance of A. This heuristic drives
the “conjunction fallacy”: incorrectly concluding that the probability of a joint
event (such as the combination of multiple symptoms to form a typical clinical
picture) is greater than the probability of any one of those events alone. The
joint event may be more representative (typical) of the diagnostic category,
but it cannot be more probable than a single component.

Probability distortions
Normative decision theory assumes that probabilities are mentally processed
linearly; that is, they are not transformed from the ordinary probability scale.
Because behavioral decision research has demonstrated several violations of
this principle, it has been necessary to formulate descriptive theories of risky
choice that will better account for choice behaviour in a wide range of situa-
tions involving uncertainty.

One of the earliest of these theories is prospect theory (PT),56 which was
formulated explicitly to account for choices involving two-outcome gambles
(or one two-outcome gamble and a certain outcome). Cumulative prospect
theory (CPT)57 extends the theory to the multi-outcome case. Both PT and
CPT propose that decision makers first edit the decision stimulus in some
way, and then evaluate the edited stimulus. Options are evaluated by using
an expected-utility-like rule, except that a transformation of the probabilities,
called decision weights, are multiplied by subjective values and summed to
yield the valuation of a lottery. Probabilities are transformed by a function
that is sensitive to both the magnitude of each probability and its rank in the
cumulative probability distribution. Hence, it is a rank-dependent utility theory.

In general, small probabilities are overweighted and large probabilities un-
derweighted. This “compression error”58 results in discontinuities at probabil-
ities of 0 and 1, and permits this model to predict “certainty effect” violations
of expected utility theory (in which the difference between 99% and 100%
is psychologically much greater than the difference between, say, 60% and
61%). Cumulative prospect theory and similar rank-dependent utility the-
ories provide formal descriptions of how probabilities are distorted in risky
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decision making. The distortions are exacerbated when the probabilities are
not precisely known,59 a situation that is common in clinical medicine.60 It
should be stressed that cumulative prospect theory does not assert that indi-
viduals are in fact carrying out mentally a set of calculations that are even
more complex than those required to calculate expected utility. Rather, the
theory claims that observed choices (that is, behaviour) can be better modeled
by this complex function than by the simpler expected-utility rule.

Support theory
Several probability estimation biases are captured by support theory,61,62

which posits that subjective estimates of the frequency or probability of an
event are influenced by how detailed the description is. More explicit descrip-
tions yield higher probability estimates than compact, condensed descriptions,
even when the two refer to exactly the same events (such as “probability of
death due to a car accident, train accident, plane accident, or other moving
vehicle accident” versus “probability of death due to a moving vehicle acci-
dent”). This theory can explain availability (when memories of an available
event include more detailed descriptions than those of less available events)
and representativeness (when a typical case description includes a cluster of
details that “fit,” whereas a less typical case lacks some of these features). Clin-
ically, support theory implies that a longer, more detailed case description will
be assigned a higher subjective probability of the index disease than a brief
abstract of the same case, even if they contain the same information about
that disease. Thus, subjective assessments of events, although often necessary
in clinical practice, can be affected by factors unrelated to true prevalence.63

Errors in probability revision

Errors in interpreting the diagnostic value of clinical information have been
found by several research teams.2,6,64,65

Fixedness
Several different but related errors result in diagnosticians being overly resis-
tant to change in their diagnoses. These include conservatism, pseudodiag-
nosticity, and biased interpretation.

In clinical case discussions, data are commonly presented sequentially, and
diagnostic probabilities are not revised as much as is implied by Bayes’s the-
orem. This phenomenon has been called “conservatism” and was one of the
earliest cognitive biases identified.66 One explanation of conservatism is that
diagnostic opinions are revised up or down from an initial anchor, which is
either given in the problem or formed subjectively. Final opinions are sensitive
to the starting point (the “anchor”), the shift (“adjustment”) from it is typically
insufficient, so the final judgment is closer to the anchor than is implied by
Bayes’s theorem.47 This bias in processing information leads to the collection
of more information than is normatively necessary to reach a desired level of
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diagnostic certainty. The common complaint that clinicians overuse laboratory
tests is indirect evidence that these biases operate in clinical practice.

“Pseudodiagnosticity”67 or “confirmation bias”58 is the tendency to seek
information that confirms a hypothesis rather than the data that facilitate ef-
ficient testing of competing hypotheses. For example, in one study, residents
in internal medicine preferred about 25% of the time to order findings that
would give a more detailed clinical picture of one disease, rather than findings
that would allow them to test between two potential diagnoses.58 Here, the
problem is knowing what information would be useful, rather than overesti-
mating the value (likelihood ratio) of the information, or failing to combine
it optimally with other data.59

A third related error is interpreting information as consistent with hypotheses
already under consideration.2,6,68 Where findings are distorted in recall, it is
generally in the direction of making the facts more consistent with typical
clinical pictures.2 Positive findings are overemphasized and negative findings
tend to be discounted.2,69 From a Bayesian standpoint these are all errors in
assessing the diagnostic value of information, that is, errors in subjectively
assessing the likelihood ratio. Even when clinicians agree on the presence
of certain clinical findings, wide variations have been found in the weights
assigned in interpreting cues,23 and this variation may be due partly to the
effect of the hypotheses being considered.64

As a result of these biases, new information that might disconfirm a hypoth-
esis is less often sought, less often recognized, and less often given enough
weight in revising a diagnosis than is normatively appropriate.

Confounding the probability and value of an outcome
It is difficult for everyday judgment to keep separate accounts of the prob-
ability of a particular disease and the benefits that accrue from detecting it.
Probability revision errors that are systematically linked to the perceived cost
of mistakes demonstrate the difficulties experienced in separating assessments
of probability from values.70,71 For example, there is a tendency to overesti-
mate the probability of more serious but treatable diseases because a clinician
would hate to miss one.61

Order effects
Bayes’s theorem implies that clinicians given identical information should
reach the same diagnostic opinion, regardless of the order in which the in-
formation is presented. However, final opinions are also affected by the order
of presentation: information presented later in a case is given more weight
than that presented earlier.18,72 This may partly explain why it is difficult to
get medical students to pay as much attention to history and the physical
examination as their teachers would wish. High-tech laboratory tests tend to
have very high likelihood ratios, and they are obtained late in the diagnostic
work up.
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Figure 12.1 Attributes of the two judgmental systems as well as the perceptual
system. Reproduced from Kahneman’s Nobel prize lecture (2003), with permission of
The Nobel Foundation.

Two-system theories of cognition

The psychological study of reasoning has been profoundly influenced by the
“two-system” or “dual-process” theories of cognition.12,13,14 Dual-process the-
ories posit two distinct systems of judgment, both of which operate in parallel.

The first, designated System 1, is an intuitive judgment system that shares
many features with perception. System 1 is fast and automatic, and underlies
pattern recognition, prototypicality, and heuristic processing. It is also influ-
enced by the emotional state of the judge and the emotional content of the
judgment. In contrast, System 2 is a slow, effortful, and analytic mode of judg-
ment that applies rules in an emotionally neutral manner. When appropriate
data are available, System 2 yields the most normatively rational reasoning but
is easily disrupted by high cognitive load. Figure 12.1, reproduced from Kah-
neman’s Nobel Prize lecture, illustrates the attributes of the two judgmental
systems as well as the perceptual system.13 Indeed, it has been suggested that
our perceptual system tacitly and automatically encodes such information as
the frequency of events and associations between co-occurring events.14

Kahneman (2003) points out that in making judgments, the two systems
interact in one of four ways. If no intuitive response is evoked from System
1, the judgment is produced by System 2. On the other hand, if an intuitive
response is evoked, System 2 operates on the intuitive response, and may
endorse it as evoked, use it as an anchor and adjust the judgment based on
other features of the situation, or identify it as incompatible with a subjectively
valid rule and block it from overt expression.13 A key feature of this description
is the notion that both systems operate together; System 1 processing cannot be
suppressed, although the intuitive responses it generates may be. Gigerenzer
and colleagues have argued extensively for the adaptive nature of “fast and
frugal” System 1 heuristics.73 Fuzzy-trace theory, discussed earlier, specifically
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argues that gist processing (a System 1 function) represents the apex of the
development of reasoning.34

A two-system viewpoint integrates research findings from the problem-
solving and decision-making traditions and explains several of the findings
about individual and contextual differences in reasoning reviewed above.
Moreover, it provides a useful set of educational implications that have re-
ceived recent attention with promising results and are discussed below.

Educational implications

Two recent innovations in undergraduate medical education and residency
training, problem-based learning and evidence-based medicine, are consistent
with the educational implications of this research.

Problem-based learning (PBL)74,75,76 can be understood as an effort to intro-
duce formulating and testing clinical hypotheses into a preclinical curriculum
dominated by biological sciences. The cognitive–instructional theory behind
this reform was that, because experienced clinicians use this strategy with
difficult problems, and as practically any clinical situation selected for instruc-
tional purposes will be difficult for students, it makes sense to call this strategy
to their attention and to provide opportunities to practice it, first using case
simulations and then with real patients.

The finding of case specificity showed the limits of a focus on teaching a gen-
eral problem solving strategy. Problem solving expertise can be separated from
content analytically, but not in practice. This realization shifted the empha-
sis toward helping students acquire a functional organization of content with
clinically usable schemata. This became the new rationale for problem-based
learning.77,78,79

Because transfer from one context to another is limited, clinical experience is
needed in contexts closely related to future practice. The instance-based model
of problem solving supports providing more experience in outpatient care
because it implies that students do not generalize as much from one training
setting to another as has traditionally been thought. But a clinician overly
dependent on context sees every case as unique, as all of the circumstances
are never exactly replicated. The unwanted intrusion of irrelevant context
effects implies that an important educational goal is to reduce inappropriate
dependence on context. In our opinion, there are two ways to do this:
1 Emphasize that students should strive to develop prototypes and abstrac-

tions from their clinical experience. Clinical experience that is not subject
to reflection and review is not enough. It must be reviewed and analyzed so
that the correct general models and principles are abstracted. Most students
do this, but some struggle, and medical educators ought not to count upon
its spontaneous occurrence. Well-designed educational experiences to fa-
cilitate the development of the desired cognitive structures should include
extensive focused practice and feedback with a variety of problems.5,80 The
current climate, with its emphasis on seeing more patients to compensate
for declining patient care revenues, threatens medical education at this
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level because it makes it more difficult for clinical preceptors to provide
the needed critique and feedback, and for students to have time for the
necessary reflection.73

2 A practical Bayesian approach to diagnosis can be introduced. EBM17,81 may
be viewed as the most recent—and, by most standards, the most successful—
effort to date to apply these methods to clinical diagnosis. EBM uses like-
lihood ratios to quantify the strength of the clinical evidence, and shows
how this measure should be combined with disease prevalence (or prior
probability) to yield a post-test probability. This is Bayes’s theorem offered
to clinicians in a practical, useful format! Its strengths are in stressing the
role of data in clinical reasoning, and in encouraging clinicians to rely on
their judgment to apply the results of a particular study to their patients. Its
weaknesses, in our view, are that it does not deal systematically with the
role of patient preferences in these decisions, or with methods for quantify-
ing preferences, and that it blurs the distinction between probability-driven
and utility-driven decisions.
In our experience teaching EBM, residents soon learn how to interpret stud-

ies of diagnostic tests and how to use a nomogram82,83 to compute posttest
probabilities. The nomogram, or a 2 × 2 table, combines their prior index of
suspicion (a subjective probability) and the test characteristics reported in the
clinical literature. It has been more difficult to introduce concepts of deci-
sion thresholds (at what probability should management change?) and the
expected value of information (should a test that cannot result in a change
in action be performed at all?). Lloyd and Reyna, however, have recently
discussed a fuzzy-trace theory approach for designing EBM educational inter-
ventions that may simplify instruction around these concepts.84

Recently, Norman and Eva have championed the view that clinicians
apply multiple reasoning strategies as necessary to approach diagnostic
problems.85,86 Their research suggests that training physicians in multiple
knowledge representations and reasoning modes, including both “analytic”
(System 2) and “nonanalytic” (System 1) approaches, may yield the best over-
all performance. They emphasize flexibility as a key feature of expertise, and
argue for teaching around examples that mimic the way problems would ac-
tually be encountered.

Methodological guidelines

1 Psychological research on clinical reasoning began in a thinking-aloud tradi-
tion, which remains attractive to many investigators. It seems quite natural
to ask a clinician to articulate and discuss the reasoning involved in a par-
ticular case, and to record these verbalizations for later analysis. Whatever
its shortcomings, this research strategy has high face validity. Because the
clinicians involved in these studies frequently discuss real cases,2,20 content
validity on the clinical side is assured.

The problems of this approach are easily summarized: first, it is labor
intensive, and therefore most studies have used small samples of both
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clinicians and cases. Therefore, they lack statistical power and are best
suited for exploratory analysis. But to demonstrate statistically significant
differences between experts (senior attending clinicians) and novices (med-
ical students or junior house officers), researchers must take into account
two facts: (1) within any group of clinicians at any level of clinical experi-
ence, or within any speciality, there is a great amount of variation, both in
reasoning and in practice. With small samples, within-group variance will
make it difficult to demonstrate significant between-group differences; and
(2) the performance of clinicians varies considerably across cases. These
two features imply that research on diagnostic reasoning must use adequate
samples of both clinicians and cases if there is to be any hope of reaching
generalisable conclusions. Most research to date has not paid adequate at-
tention to issues of sample size (of both cases and research participants) and
statistical power.

2 Many important cognitive processes are not available to consciousness and
are not verbalized. Indeed, the more automatic and overlearned a mental
process is (the more it relies on System 1), the less likely is it that one can
verbalize how the process works. Once a person has lived for some time at
a given address, it becomes impossible to tell how one knows that address:
it is simply “known.” Closer to our concerns, participants do not report that
a subjective probability is overestimated because of the availability bias:
the existence of the bias is inferred by comparing estimates with known
frequencies. For these reasons, much recent work has shifted toward a re-
search paradigm modeled on experimental cognitive psychology: research
participants are presented with a task and their responses are recorded.
Their verbalizations are one more source of data, but are not treated as a
true account of internal mental processes. Instead, the “true account” (at an
appropriate level of abstraction) is inferred from the relationship between
task and subject variables and responses, which is often characterized by a
mathematical model that provides falsifiable predictions. This research has
yielded many of the findings summarized in this chapter, but it is at times
criticized for using artificial tasks (lack of face validity) and, consequently,
not motivating the participants adequately. The generalizability of the re-
sults to real clinical settings is then questioned.

3 More attention should be given, in general, to the operation and interaction
of dual cognitive processes (i.e., System 1 and System 2) in the study of
diagnostic reasoning. The two-system account offers an intriguing set of
predictions about how expertise might be manifest (e.g., that experts may
develop both stronger System 1 intuitions and have a more powerful set of
System 2 analytical tools at their disposal). At the same time, it provides a
methodological caution against conducting research that ignores the parallel
operation of the two systems.

4 Selection bias is a potential threat to the validity of both types of studies
of clinical reasoning. Senior clinicians in any clinical domain can decline to
participate in research far more easily than can medical students or house
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officers in the same domain. Therefore, the more experienced participants in
a study are usually volunteers. Attention should be paid to issues of selection
bias and response rate as potential limitations; thought should be given to
their possible effects on the validity and generalizability of the results of the
study.

5 Behavioral decision research conducted to date has been concerned primar-
ily with demonstrating that a particular phenomenon exists, for example
demonstrating biases in probability estimation, such as availability and rep-
resentativeness. Statistical tests of significance are used to demonstrate the
phenomena. From an educational standpoint, we ought to be more inter-
ested in identifying how prevalent these biases are and which are most
likely to affect treatment and management. Thus, more research is needed
to assess the prevalence of these errors and to determine how often treat-
ment choices are affected by diagnostic errors caused by these biases. If
these facts were known, a more rational, systematic curriculum could be
developed that could focus on preventing or managing the most prevalent
errors.

Conclusion

This chapter has selectively reviewed 30 years of psychological research on
clinical diagnostic reasoning, focusing on problem solving and decision making
as the dominant paradigms of the field. This research demonstrates the lim-
itations of human judgment, although the research designs employed make
it difficult to estimate their prevalence. Work in cognitive psychology sug-
gests that both a fast, automatic judgmental system and a slow, deliberative
judgment system operate simultaneously, and the interaction of these sys-
tems explains a considerable number of limitations in judgments as well as
predicting successful performance in many tasks. Problem based learning and
evidence-based medicine are both justified by the psychological research about
judgment limitations, violations of Bayesian principles in everyday clinical rea-
soning, and the finding of limited transfer across clinical situations, although
we do not believe that these innovations were initially directed by an aware-
ness of cognitive limitations. Within graduate medical education (residency
training), the introduction of practice guidelines based on evidence has been
controversial because guidelines may be perceived as efforts to restrict the
authority of clinicians and to ration care. The psychological research helps to
explain why formal statistical decision supports are both needed and likely to
evoke controversy.
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CHAPTER 13

Improving test ordering
and its diagnostic
cost-effectiveness in clinical
practice—bridging the gap
between clinical research and
routine health care
Ron Winkens, Trudy van der Weijden, Hans Severens,
and Geert-Jan Dinant

Summary box� In recent decades, the number of diagnostic tests ordered by doctors
has increased enormously, despite the often absent or disappointing
results from studies into their accuracy.� Evidence-based clinical guidelines are needed to formalize optimal
diagnostic performance. Both disease-specific and complaint-specific
guidelines will be needed, but guidelines will not affect practice unless
implemented properly.� In applying a guideline recommendation to a unique individual,
doctors will frequently have strong patient- or context-related
arguments to deviate from the guideline. It is not known what optimal
mean guideline adherence scores are for a group of professionals and
for different diagnostic guideline recommendations.� Interventions ideally provide both knowledge on what to do and
insight into one’s own performance. Such interventions are
dissemination of guidelines and (computerized) reminders combined
with audit, individual feedback, and peer review.
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� There is no “one and only ideal implementation strategy.” Although
the evidence is somewhat conflicting, educational strategies,
comparative feedback followed by peer group review, and
(computerized) reminders seem to be promising strategies for
optimizing test-ordering behavior. There is no evidence that
multifaceted strategies are more effective than single strategies.� In the selection of the implementation strategy, insight in modifiable
barriers to change should play a role.� Although the randomized controlled trial remains the “gold standard”
for evaluation studies, inherent methodological challenges, such as the
required randomization of doctors, need special attention.� More attention must be paid to the perpetuation of interventions once
they have been started and to the measurement and scientific
evaluation of their effects over time.� More research into the ways to improve test ordering is urgently
needed, in particular for patients suffering from recurrent non-specific
or unexplained complaints.

Introduction

An important part of making a proper diagnosis is using diagnostic tests, such
as blood and radiographic investigations. In recent decades, the number of di-
agnostic tests ordered by doctors has increased substantially, despite the (often
disappointing) results from studies into their diagnostic accuracy. Apparently,
arguments other than scientific ones for test ordering are relevant. Further-
more, it might be questioned to what extent current knowledge, insights into
a correct use of diagnostic tests, and results from research have been properly
and adequately implemented in daily practice. This chapter discusses how to
bridge the gap between evidence from research and routine health care.

The need to change

For several reasons, there is a need to improve test-ordering behavior. The use
of medical resources in western countries is growing annually and consistently.
In the Netherlands, for example, there is a relatively stable growth in the
nationwide use of health care resources of approximately 7% per year. An
annual growth in expenditure for diagnostic tests is also visible.

The following factors may be responsible for the increasing use of diagnostic
tests:
1 The mere availability and technological imperative of more test facilities

is an important determinant. In view of the interaction between supply
and demand in health care, the simple fact that tests can be ordered will
lead to their actual ordering. This applies especially to new tests, which are
sometimes used primarily out of curiosity.
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2 Another factor is the increasing demand for care, caused partly by the ageing
of the population and an increasing number of chronically ill people.

3 Also, new insights from scientific evidence and guidelines often provide
recommendations for additional diagnostic testing.

4 Doctors might wish to perform additional testing once an abnormal test
result is found, even in the absence of clinical suspicion, while ignoring
that a test result outside reference ranges may generally be found in 5% of
a healthy population. A cascade of testing may then be the result.

5 Furthermore, over the years, higher standards of care (adopted by the pub-
lic, patients, and health care professionals) and defensive behaviors from
doctors have contributed to the increased use of health care services, one
of them being diagnostic testing.

6 Because of recent changes in tasks of primary care, more patients with
chronic disorders are monitored in primary care, causing a further increase
in the numbers of tests.

Factors influencing test ordering

Despite the introduction of guidelines focusing on rational use of diagnostic
tests, there are many factors that influence test-ordering behavior. All these
factors make it difficult for doctors to adhere to guidelines. Such determinants
of test-ordering behavior include doctor-related, patient-related, and context-
related factors.

Doctor-related factors
In daily practice, reasons for doctors to ignore evidence-based recommen-
dations are numerous and hard to grasp. The interdoctor variation in test-
ordering behavior is higher than can be explained by differences in case mix
between doctors.1 Differences are not only seen between individual doctors
but also between groups of doctors. For example, high users of imaging tests
ordered more than four times more tests than low users, even after adjusting
for practice size and working time factor.2 On a group level, in one region the
median number of tests ordered proved to be more than twice compared with
a region with low numbers of tests ordered.1

According to diagnostic decision-making theories, the decision to order a
test should at least be based on the pretest probability for a disorder and the
seriousness of the suspected disorder. Other important considerations include
the diagnostic value of the test, the consequences of the test result for further
decision making and the risk or financial costs for the society and the patient.

Applying a guideline recommendation to an individual patient is com-
plex and far from easy. Doctors will frequently have strong patient-related
arguments to deviate from a guideline. This translation from a guideline
recommendation to the individual patient may also be hampered because
many guidelines are disease specific instead of symptom specific. In daily
practice, diagnostic decision making may also be influenced or biased by
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professional-related determinants of test-ordering behavior, such as
(in)tolerance of diagnostic uncertainty, bias toward action, the desire to end
the consultation during high workload, personal routines, and working in a
group practice.1,3,4.

Patient-related factors
Barriers for adherence to guidelines may also be found in the interaction of the
professional with the direct environment such as pressure by patients, lead-
ing to tactical motives for test ordering. The general practitioner (GP) may
experience pressure from the patient or may assume that the patient needs
reassurance by testing. In several studies, patient expectations on test ordering
were assessed; percentages of patients desiring laboratory tests ranged from
14 to 22%.5–8 In a cohort of patients presenting with medically unexplained
symptoms, tests were ordered more often for patients who, before the con-
sultation, expected that the GP would order one or more tests compared with
patients without these expectations.8 Complying with needs of the patient
for reassurance through testing is seen as an easy, cost- and time-effective
strategy.3 While doing so, doctors should, however, keep in mind that pa-
tients tend to overestimate the qualities of diagnostic tests and appear to have
high hopes for testing as a diagnostic tool. They expect diagnostic certainty
without errors and consider a normal test result as a proof of good health.9

Context-related factors
Apart from doctor- and patient-related determinants of test-ordering behav-
ior, also context-related factors play a role, such as the organization of how
to order tests (problem-based order form, making thresholds or barriers for
restricted tests), the remuneration system and its impact on supplier-induced
demand, and, finally, financial incentives or regulatory sanctions. All these fac-
tors may explain differences in the volume of tests ordered between regions
or countries, or even between university and nonuniversity hospitals.1,2

Can we make the change?

In terms of quality, improvement, and cost containment, there are sufficient
arguments for attempting to change test-ordering behavior. Overall, the de-
cision to order laboratory tests is the result of a complex interaction of often-
conflicting considerations. Better knowledge of the professional’s motives for
ordering laboratory tests in the case of diagnostic uncertainty may steer in-
terventions directed at improving compliance with guidelines or reducing un-
necessary testing. Designers of interventions meant to improve test ordering
should be aware of the numerous determinants and take contextual variables
into account. It is recommended that certain steps be taken, from orientation
to perpetuation. The individual steps are described in the implementation
cycle.10 Following this implementation cycle, we first need insight into the
problem under study. Also, an assessment of actual performance (the level of
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Analysis of
bottle necks for

change

Introduction and
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Develop strategies
to implement
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Figure 13.1 The implementation cycle.10

actual care) is needed. The problem needs to be well defined and must be made
clear to those whose performance we wish to change. Next, the optimal—
“gold standard”—situation should be determined and communicated as such.
Usually this means the development and dissemination of guidelines. Then,
the desired changes need to be determined and a guideline implementation
strategy must be set up to achieve the actual change. After this, the results
should be monitored. The outcome of this monitoring can be used as new in-
put for further improvement and for defining new goals for quality assurance,
thereby reentering the implementation cycle. These general rules apply not
only to test-ordering behavior but also to other actions (such as prescribing
drugs and referring to hospital care). Figure 13.1 highlights a number of steps
in the implementation cycle.

Guideline development and implementation

Guidelines, protocols, and standards are needed to formalize the optimal prac-
tice situation. In the past, there have been various moves toward guideline de-
velopment. Mostly, these guidelines are problem oriented and address clinical
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problems as a whole, such as taking care of diabetes patients, or diagnosing
and managing dyspepsia. The diagnostic workup of a clinical problem and
the resulting recommendations for specific tests—if necessary—are then im-
portant aspects to be dealt with. A good example of a comprehensive set of
guidelines is the development of standards for Dutch GPs by the Dutch College
of General Practitioners.11 Starting in 1989, the college has set up more than
80 guidelines on a variety of common clinical problems. In the meantime,
many of these standards have been revised in line with new evidence from
scientific research. One of the guidelines specifically addresses the principles
of rational ordering of blood tests.12

The development of guidelines does not automatically lead to the desired
behavioral change, especially when their dissemination is limited to the distri-
bution of written material. In other words, simply publishing and mailing the
guidelines does not make clinicians act accordingly. Implementation strate-
gies are needed to bring about change. Implementation includes a range of
activities to stimulate the compliance with guidelines as shown in the imple-
mentation cycle.

Systematic development seems necessary to improve the effectiveness of
interventions on implementation. Interventions should be targeted at barri-
ers and stimulating conditions for working according to professional guide-
lines. The reasons that professionals have for noncompliance, be it profes-
sional or context related, should be thoroughly known. Possible methods for
collecting these barriers can be both qualitative and quantitative. Unfortu-
nately, in literature, little has been published so far on how to systemat-
ically translate knowledge on barriers and stimulating conditions into the
contents of such quality improvement strategies.13 The next section gives an
overview of the experience so far with most of the guideline implementation
strategies.

For obvious reasons we should seek and apply methods that both improve
the rationality of test ordering and can stop the increase in the use of tests.
Ideally, such instruments combine a more rational test-ordering behavior with
a reduction in requests. To determine these, a closer look at the performance
of the specific implementation strategies is needed.

However, not all of these instruments have been used on a regular basis.
Some have been regularly applied on a variety of topics (such as changing test
ordering), whereas others have been used only incidentally. Most implemen-
tation strategies try to change doctors’ behavior. Although evidence showing
relevant effects is required to justify their implementation in practice, because
of the nature of the intervention it is not always possible to perform a proper
effect evaluation. Especially in large-scale interventions, such as changes in
the law or health care regulations (nationwide), it is virtually impossible to
obtain a concurrent control group. Nevertheless, a number of (randomized)
trials have been performed, albeit predominantly on relatively small-scale im-
plementation strategies.
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Is a change feasible?

Implementation strategies
A variety of implementation strategies is available. However, not all of them
are successful: some strategies were effective, but others have been disap-
pointing. There have been a number of published reviews focusing on the
effectiveness of implementation strategies. Although their conclusions vary,
some consensus can be observed: there are some implementation strategies
that seem to fail and some that are at least promising.

Many different approaches have been adopted to improve doctors’ per-
formance. In 2004, a large systematic literature review was on effectiveness
of guideline implementation strategies among medically qualified health care
professionals with objective measures of doctor behavior or patient outcome.14

Two hundred and thirty-five studies published before 1999 were included. The
majority of the included studies (87%) observed improvements in care. The
median absolute improvement in performance from the highest levels of evi-
dence (cluster randomized controlled trials [RCTs]) is 8% for dissemination of
educational materials, 7% for audit and feedback, 14% for reminders, and 6%
for multifaceted strategies. The improvements are generally modest to mod-
erate and there was no clear relationship between number of interventions
and effect size.

Another systematic review focused on the effectiveness of strategies aiming
at influencing test ordering.15 In total, 98 studies published until 2001 were in-
cluded; these included RCTs, quasi-experiments, controlled before–after stud-
ies, and interrupted time-series analyses of any intervention to influence the
test-ordering behavior of any type of health care professional. Overall, results
were heterogeneous due to differences in the type or intensity of the inter-
vention, in the setting, or due to methodological differences between studies
(such as differences in measurement periods). It was concluded that there is
no overall rule for choosing the best intervention to influence test-ordering
behavior, apart from the generally accepted rule to tailor the intervention to
the barriers for change. In addition to professional-oriented interventions, it
seems important to consider the use of interventions focusing on organiza-
tional factors. Moreover, it is not clear if multifaceted strategies have more
impact than single strategies, but it seems important to focus the intervention
at both the professional and the context.

There is a range of interventions that combine the provision of knowledge
with giving more specific insight into one’s own performance. Such interven-
tions include audit, individual feedback, peer review, and computer reminders.
Some examples follow.

Among the most frequently used basic interventions are the distribution of
written material (such as protocol manuals) and educational meetings (such
as training sessions or postgraduate education). Distribution of educational
materials and educational meetings should be looked on as (necessary) parts
of a multifaceted intervention.
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Implementation strategies that have been used and studied regularly in
the past are audit, peer review, and feedback. To that end, tests ordered are
reviewed and discussed by (expert) peers or audit panels. Audit represents a
monitoring system on specific aspects of care. It is often rather formal, set up
and organized by colleges and regional or national committees.16 The subject
and the intensity of the related interventions of an audit system may vary
strongly. The results of the audit are to be fed back to the professionals. In
peer review, expert colleagues review actual performance.

Within this group of interventions, there is a huge variation in what is
reviewed and discussed, in how often and to whom it is directed, and in
the way the review is presented. Audit and feedback, both with and without
information transfer, show consistent and sometimes even strong effects on
both changing the absolute rate of test use (“modifying overuse”) as well as
on improving appropriateness of test use (“improving quality”). There is no
clear trend toward a specific content of the feedback given, but feedback seems
more effective when the information provided can be used directly in daily
practice, when the doctor is individually addressed, and when the expert peer
is generally respected and accepted.15 An intervention with substantial effects,
also proven in a randomized trial, was feedback given to individual general
practitioners, focusing on the rationality of tests ordered.17 After 9 years, there
was a clear and constant reduction in test use, mainly due to a decrease in
nonrational requests.18

Small-group quality improvement, including peer review, seems reasonably
effective (median absolute improvement in performance about 10%).19 Out-
reach visits and patient-mediated interventions seem promising but deserve
more research.

An increasingly popular implementation strategy is through computer re-
minders. The use of computer reminders is stimulated by the explosive growth
in the use of computers in health care. Having the same background and inten-
tions as audit and feedback, reminders do not generally involve the monitoring
of the performance of specific groups or individual doctors. Here the computer
may take over, but the intention is still to make doctors comply with guide-
lines and to give insight into one’s own performance. From the viewpoint of
the observed clinician, “anonymous” computer reminder systems may appear
less threatening: there are no peers directly involved who must review the
actions of those whose behavior is monitored.

The results of computer reminders are promising. It appears to be a po-
tentially effective method requiring relatively little effort. Reminders have
significant but variable effects in reducing unnecessary tests, and seem to im-
prove compliance with guidelines.8,20 To date, there are relatively few studies
on computer reminders. It may be expected, however, that in the near future
more interventions on the basis of computer reminders will be performed as
a direct spin-off of the growing use of computer-supported communication
facilities in health care.
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One reason for the increasing use of tests is that tests are both available
and accessible. Organizational interventions are focused on facilitating desired
behavior or reducing undesired or restricted (diagnostic) behavior. Conse-
quently, a simple strategy would be to reduce the availability of tests on forms
or to request an explicit justification for the test(s) ordered. Such interven-
tions have by and large proved to be effective, with a low input of additional
costs and effort: Zaat and Smithuis found reductions of 20–50%.21,22 A draw-
back of these interventions, however, is that they risk a possible underuse of
tests when the test order form is reduced too extensively and unselectively.
Therefore, the changes to the form should be selected and designed carefully.
Regulations include interventions where financial incentives or penalties can
be easily introduced. Reimbursement systems by health insurance companies
or the government may act as a stimulus to urge clinicians to move in the
desired direction. Combinations of regulatory steps and financial changes are
also conceivable. In several western countries, the health care system includes
payment for tests ordered by doctors, even if the tests are performed by an-
other professional or institution. Adaptation of the health care regulations
could change this payment system, which might reduce the ordering of too
many tests, thereby directly increasing clinicians’ income. Even negative in-
centives for nonrational test ordering can be built in, acting more or less as a
financial penalty. Little is known about the effect of financial interventions,
but the three studies were not promising in their results.

Perpetuation and continuation
One aspect that needs more attention in the future is the perpetuation of
interventions once they have been started. There is no assurance that effects,
when achieved, will continue when the intervention has stopped. In most
studies, the effects after stopping the intervention are not monitored. As one
of the exceptions, Tierney performed a follow-up after ending his intervention
through computer reminders on test ordering.23 The effects of the intervention
disappeared 6 months after stopping. On the other hand, Winkens found that
feedback was still effective after being continued over a 9-year period.17 This
argues in favor of a continuation of an implementation strategy once it is
started.

Evaluating the effects
There is a growing awareness that the effects of interventions are by no means
guaranteed. Consequently, to discriminate between interventions that are suc-
cessful and those that are not, we need evidence from scientific evaluations.
However, after a series of decades where many scientific evaluations of im-
plementation strategies have been performed and a number of reviews have
been published, many questions remain and conclusions cannot yet be drawn.
In a dynamic environment such as the (para)medical profession, it is almost
inevitable that the effects of interventions are dynamic and variable over time
too. Hence, there will always be a need for scientific evaluation.
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As in all scientific evaluations, there are quality criteria that studies should
meet.24 Regarding these criteria, evaluation studies on implementation strate-
gies do not essentially differ from other evaluations. The randomized con-
trolled trial still remains the gold standard. However, there are some circum-
stances that need special attention, such as the risk of a Hawthorne effect due
to a certain awareness. Especially in the field of implementation strategies, the
nature of the intervention can cause some awareness among professionals, and
therefore cause some effects, merely by the knowledge that one’s behavior is
monitored. Informed consent may cause such an awareness and situations
where informed consent is not required can be beneficial.25 Although it is
impossible to blind doctors for participating in a RCT, alternative designs such
as the balanced incomplete block design may assist in optimizing the exper-
imental conditions and control for the Hawthorne effect.26 Another striking
issue is the following. In most studies on improving test-ordering behavior,
the doctor is the one whose decisions are to be influenced. This automati-
cally means that the unit of randomization, and hence the unit of analysis,
is the individual doctor. As the number of doctors participating in a study is
often limited, this may have a considerably negative effect on the power of
the study. A potential solution to this problem may be found in multilevel
analyses.27

Cost-effectiveness of implementation
As far as the cost-effectiveness of intervention strategies is concerned, those
that combine good effects with the least effort and lowest costs are to be
preferred. On the other hand, we may question whether strategies that so far
have not proved to be effective should be continued. Should we continue to
put much effort into CME, especially in single training courses or lectures?
Whom should we try to reach through scientific and educational papers: the
clinicians in daily practice or only the scientist and policy maker with special
interest? Should we have to choose the most effective intervention method,
regardless of the effort that is needed? If we start an intervention to change
test ordering, does this mean it has to be continued for years? There is no
general answer to these questions, although the various reviews that have
been published argue in favor of tailor-made interventions and combinations
of strategies focusing on the professional and the process and organization of
care. How such a combination is composed depends on the specific situation
(such as local needs and healthcare routines, and the availability of experts and
facilities). General recommendations for specific combinations are therefore
not possible or useful. However, if we look at costs in the long term, computer
interventions look quite promising.

Studying costs of implementation strategies is only one side of the picture.
For a full economic evaluation, two criteria are relevant: (1) Is an explicit
comparison made between two strategies or between a strategy and usual
care? (2) Are both costs and consequences of these strategies evaluated (Figure
13.2)?28,29
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Outcomes and costs taken into consideration?

Outcomes only Costs only Both outcomes and costs

Alternatives No Description of cost effects

compared? Yes Evaluation of outcomes Evaluation of costs Economic evaluation

Description of outcomes Description of costs

Figure 13.2 Criteria for a complete economic evaluation (based on Drummond et al.
2005).29

It can only be determined whether an implementation strategy, such as
educating doctors on test ordering, is value for money when this implemen-
tation strategy is compared with another strategy or when it is compared to
usual care. In most cases of implementation of strategies to improve test-
ordering behavior of doctors, a comparison will be made with usual care (no
implementation strategy). This can either be done in a prospective study or
by using a retrospective historical control. Apart from a comparison with care
as usual, different implementation strategies for improving test-ordering be-
havior can be compared to determine which one offers best value for money
(Figure 13.3). Obviously, a prospective study is the only option then.

The second prerequisite stated that both investment and result should be
part of a full economic evaluation. This seems logical because it is impossible
to define the efficiency of any activity in health care if investment expressed
as costs is not explicitly related to the effects realized. Five types of economic
evaluations can be identified.
1 The cost-minimization analysis: Only studying costs will offer a rather lim-

ited scope although this might be considered as one of the methods of a
full economic evaluation. This is the so-called cost-minimization analysis.
A cost-minimization analysis requires the knowledge or the evidence-based
assumption that patient outcome will be equal in the compared strategies,
irrespective of the fact that the implementation strategy is compared to an-
other strategy or to care as usual. However, this situation is hardly ever the
case. When an implementation strategy is effective, these effects are likely

Consequences of A compared to B

A is worse than B A is better than B

Higher A inferior compared to B Better outcome worth the higher costs?Costs of A

Compared
to B

Lower Worse outcome acceptable,
considering the lower costs?

A is dominant compared to B

Figure 13.3 Classification of the outcomes of economic evaluations comparing two
alternatives.28



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:28

Improving test ordering 267

to lead to improvement of patient care as well. Therefore, most situations
require an economic evaluation that includes measurement of the conse-
quences or effectiveness. The consequences of implementation strategies to
improve test-ordering behavior can be expressed in several ways. Process
parameters and patient outcome can be distinguished. Process parameters
can described as any parameter that values the process of the doctors’ ac-
tions, for instance, the number of adequately ordered test per 1,000 patients,
or the number of doctors who order tests properly. In fact, the ways to define
a relevant process parameter are numerous and in a full economic evalu-
ation this will lead to the so-called cost-effectiveness ratio that expresses
efficiency of a strategy to improve test ordering: the extra costs per extra
adequately ordered test, per doctor who ordered tests properly, per patient
tested according to the recommendations in the guideline, and so. Because
of the fact that any economic evaluation is an explicit comparison between
several strategies, the cost-effectiveness ratio between strategies expresses
the investment that is needed to achieve a higher effectiveness. Of course,
in case one strategy is both cheaper and better than any other, this strategy
is considered dominant and should be stimulated without any doubt.

2 Cost-effectiveness analysis: Using process parameters in an economic evalua-
tion is based on one important, major assumption: the process parameter
is positively correlated to patient outcome. Thus, for example, the higher
the number of adequately ordered tests, the higher the patient outcome;
more specifically, the patients that do not need to be tested are not both-
ered with the burden of testing or the consequences of false positive test
results and the patients that need to be tested are indeed tested and benefit
from the correct consequence of the test result, namely to treat or to refrain
from treatment. Sometimes, however, the relationship between a process
parameter and actual patient outcome is not known or uncertain. In that
case, it is useful to determine patient outcome in evaluating strategies to im-
prove test-ordering behavior. Patient outcome is, as can be expected, usually
not influenced by a diagnostic test as such, but more clearly by the conse-
quences of the test result. In this situation, the health status of a patient
should be defined. In case this health status is defined in so-called disease
specific values (e.g., blood pressure or diabetic regulation), these in fact
reflect intermediate patient outcome. The efficiency of an implementation
strategy in this situation is expressed as cost per blood pressure reduction
or cost per adequately treated diabetic patient. An evaluation relating cost
to a process parameter or to an intermediate patient outcome is called a
“cost-effectiveness analysis.”

3 Cost–utility analysis: Here, patient outcome is measured in quality of life, more
specifically, in the utility or value that society gives to a patient’s health sta-
tus. For this measurement, several standardized instruments exist such as
the EuroQol-5D or the Short Form 36. In this way the cost per QALY (qual-
ity adjusted life year) can be determined, an evaluation outcome that is
hardly seen in implementation research.30 A more convenient method to
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determine the cost–utility of improving test-ordering behavior of doctors is
to use the Mason model.31 In this model, the previously mentioned pro-
cess parameters are mathematically combined with cost per QALY data that
might reflect proper test-ordering behavior and subsequent correct treat-
ment of patients. This model shows that multiple factors of influence deter-
mine whether effort to achieve behavioral change is worthwhile. Of course,
using the Mason model is only possible when the full economic conse-
quences and patient outcome of proper test use or the compliance with the
clinical guideline for test use are known from previous research.

Relevant behavioral change, at least from the viewpoint of policy makers,
demands an implementation strategy that does not load test-treatment cost-
effectiveness to such an extent that normal bounds of cost-effectiveness are
exceeded.31 An estimation of overall policy costs and benefits can be ex-
pressed in the following equation on policy cost effectiveness:

�CEp = 1

d.np.pd.�bt
�CEi + �CEt = LCE + �CEt

Here (slightly adapted from Mason) �bt,�ct, and �CEt are the net health
gain, cost of diagnostic and therapeutic care and test-treatment cost-
effectiveness per patient (�ct/�bt); �ci, �bi, and �CEi are the net cost,
the proportion of patient care changed, and the implementation cost-
effectiveness per practice (�ci/�bi); d is the duration of effect of the imple-
mentation method; np and pd are the average practice size and population
prevalence of the targeted condition; LCE is the loading factor on treatment
cost effectiveness.31

This formula shows the case when a change in health care is valued as a
cost-effectiveness ratio and the performance indicator is the simple propor-
tion of patients getting appropriate care. Where the loading is small, treat-
ment and policy cost-effectiveness are very similar. If the loading is large,
advanced use of a cost effective treatment may not be worth encouraging
as a policy goal using the available implementation strategies.

4 Cost-benefit analysis: This is hardly used in evaluating activities in health care.
In essence, patient outcome is expressed here in monetary units, something
that is considered both difficult and unethical.

5 Cost-consequence analysis: The cost-consequence analysis has recently been
introduced as an alternative economic evaluation. In the cost-consequence
analysis, costs are not explicitly related to any process or patient outcome pa-
rameter using a cost-effectiveness ratio, but costs and consequences are sim-
ple listed, leaving the decision maker to make the balance between positive
and negative consequences.32

In the economic assessment of treatment of patients, cost analysis is rather
simple: just estimate or, when possible, determine the costs of treatment, costs
of possible side effects, longer-term costs, possibly cost outside the health care
sector such as expenses by patients (depending of the perspective used in an
evaluation) or productivity costs due to a patients (in)ability to work.
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In evaluating test-ordering behavior, things become more complicated. Of
course, the costs of testing are relevant, but the costs of false negative and
false positive test results are also relevant. When evaluating implementation
strategies to improve test-ordering behavior, the complexity of the costing
study increases. Consequently, the costs of implementation strategies can be
split for different phases of the implementation process.33 First, there are costs
related to thedevelopment of an implementation strategy. For example, when im-
plementing a computer system to improve test-ordering behavior, the com-
puter software must be developed. Such costs are usually nonrecurrent and
can therefore be considered fixed costs. Next, the costs of the actual execution
of the implementation strategy are not relevant until the moment the strategy
is executed. Such costs can be considered fixed (e.g., installing the computer
system) or variable (the time of the doctor being trained or using the com-
puter system). Finally, costs are sometimes associated with a change in health
care delivery because of using an implementation strategy. These are the afore-
mentioned costs of testing and treating patients.

In short, analyzing the full cost and consequences of strategies to im-
prove test-ordering behavior of doctors requires an extensive analysis of
a full range of costs and actual patient outcome. In case rational test or-
dering is—without any doubt—also efficient in terms of both subsequent
treatment costs and patient outcome, such extensive analysis is not neces-
sary. Otherwise, economic evaluation, from mathematical modeling of cost-
effectiveness of process outcome to cost-effectiveness of patient care can be of
help.

From scientific evidence to daily practice

An important objective in influencing test-ordering behavior is the change in
the rationality and volume of tests ordered, thereby reducing costs or achiev-
ing a better relation of costs and effects. However, the ultimate goal is to
improve the quality of care for the individual patient. To what extent are
patients willing to pay for expensive diagnostic activities, weighing the possi-
bility of achieving better health through doing (and paying) the diagnostics,
versus the risk of not diagnosing the disease and staying ill (or getting worse)
because of not doing so? In other words, how is the cost–utility ratio of diag-
nostic testing assessed by the patient? In this context the specific positive or
negative (side) effects of (not) testing on the health status of the individual
patient are difficult to assess independently of other influences. On the other
hand, a reduced use in unnecessary, nonrational tests is not likely to cause
adverse effects for the individual. An upcoming trend, predominantly in west-
ern societies, is the actual use of self-tests by consumers. It is not known yet
what consequences this phenomenon will have on availability of facilities,
cost-effectiveness of diagnostics in health care, and diagnostic performance by
health care professionals.

Despite the increasing research evidence showing the need for changes
in test-ordering behavior, doctors will always decide on more than merely
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scientific evidence when the question whether to order a test for a certain
patient is at stake.34 Low diagnostic accuracy or high costs of testing may con-
flict with a patient’s explicit wish to have tests ordered or with the doctor’s
wish to gain time, the fear of missing an important diagnosis, his or her feel-
ing insecure, and the wish of both patient and doctor to be reassured. These
dilemmas are influenced by a variety of doctor and patient related aspects.
Regarding the doctor, one could think of the way in which they were trained,
how long they have been active in patient care, the number of patients on
their list, their relationship with their patients, and their personal experience
with “missing” relevant diseases in the past. The patient might suffer from
a chronic disease, or from recurrent vague or unexplained complaints, mak-
ing them question the skills of the doctor. For this latter category of patients
in particular, doctors might order more tests than are strictly necessary. Re-
search into the ways of improving test ordering in these situations is urgently
needed.

References

1. Verstappen WHJM, ter Riet G, Dubois WI, et al. Variation in test ordering be-
haviour of general practitioners: professional or context-related factors? Fam Pract.
2004;21:387–95.

2. Verstappen WHJM, ter Riet G, Weijden T van der, et al. Variation in requests for
imaging investigations by general practitioners: a multilevel analysis. J Health Serv
Res Policy. 2005;10:25–30.

3. Van der Weijden T, Bokhoven MA, Dinant GJ, et al. Understanding laboratory
testing in diagnostic uncertainty: a qualitative study in general practice. Br J Gen
Pract. 2002;52:974–80.

4. Bugter-Maessen AMA, Winkens RAG, Grol RPTM, et al. Factors predicting differ-
ences among general practitioners in test ordering behaviour and in the response
to feedback on test requests. Fam Pract. 1996;13:254–58.

5. Marple RL, Kroenke K, Lucey CR, et al. Concerns and expectations in patients
presenting with physical complaints: frequency, physician perceptions and actions,
and 2-week outcome. Arch Intern Med. 1997;157:1482–88.

6. Cohen O, Kahan E, Zalewski S, et al. Medical investigations requested by patients:
how do primary care physicians react? Fam Med. 1999;31:426–31.

7. Froehlich GW, Welch HG. Meeting walk-in patients’ expectations for testing: effects
on satisfaction. J Gen Intern Med. 1996;11:470–74.

8. van der Weijden T, van Velsen M, Dinant GJ, et al. Unexplained complaints in
general practice: prevalence, patients’ expectations, and professionals’ test-ordering
behavior. Med Decis Making. 2003;23:226–31.

9. van Bokhoven MA, Pleunis-van Empel M, Koch H, et al. Why do patients want
to have their blood tested? a qualitative study of patient expectations in general
practice. BMC Fam Pract. 2006:7;75.

10. Grol RPTM, van Everdingen JJE, Casparie AF. Invoering van richtlijnen en veranderin-
gen. Utrecht: De Tijdstroom; 1994.

11. Wiersma TJ, Goudzwaard AN. NHG Standaarden voor de huisarts. Houten: Bohn,
Stafleu, van Loghem; 2006.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:28

Improving test ordering 271

12. Dinant GJ, van Wijk MAM, Janssens HJEM, et al. NHG-Standaard Bloedonderzoek.
Huisarts Wet. 1994;37:202–11.

13. van Bokhoven MA, Kok G, van der Weijden T. Designing a quality improve-
ment intervention: a systematic approach. Qual Safety Health Care. 2003;12:215–
20.

14. Grimshaw JM, Thomas RE, MacLennan G, et al. Effectiveness and efficiency
of guideline dissemination and implementation strategies. Health Technol Assess.
2004;8(6).

15. Verstappen WHJM. Towards optimal test ordering in primary care. Thesis Maas-
tricht University; 2004. pp. 33–56.

16. Smith R. Audit in action. London: BMJ Publishers;1992.
17. Winkens RAG, Pop P, Bugter AMA, et al. Randomised controlled trial of routine

individual feedback to improve rationality and reduce numbers of test requests.
Lancet. 1995;345:498–502.

18. Winkens RAG, Pop P, Grol RPTM, et al. Effects of routine individual feed-
back over nine years on general practitioners’ requests for tests. BMJ. 1996;312:
490.

19. Verstappen W, van der Weijden T, Sijbrandij J, et al. Effect of a practice-based
strategy on test ordering performance of primary care physicians: a randomized
trial. JAMA. 2003;289:2407–12.

20. Buntinx F, Winkens RAG, Grol RPTM, et al. Influencing diagnostic and preventive
performance in ambulatory care by feedback and reminders: a review. Fam Pract.
1993;10:219–28.

21. Zaat JO, van Eijk JT, Bonte HA. Laboratory test form design influences test ordering
by general practitioners in the Netherlands. Med Care. 1992;30:189–98.

22. Smithuis LOMJ, van Geldrop WJ, Lucassen PLBJ. Beperking van het laboratorium-
onderzoek door een probleemgeorienteerd aanvraagformulier [abstract in English].
Huisarts Wet. 1994;37:464–66.

23. Tierney WM, Miller ME, McDonald CJ. The effect on test ordering of inform-
ing physicians of the charges for outpatient diagnostic tests. N Engl J Med.
1990;322:1499–504.

24. Pocock SJ. Clinical trials: a practical approach. Chichester: John Wiley & Sons;
1991.

25. Winkens RAG, Knottnerus JA, Kester ADM, et al. Fitting a routine health-care
activity into a randomized trial: an experiment possible without informed consent?
J Clin Epidemiol. 1997;50:435–39.

26. Verstappen WHJM, van der Weijden T, ter Riet G, et al. Block designs in quality
improvement research enable control for the Hawthorne effect. J Clin Epidemiol.
2004;57:1119–23.

27. Campbell MK, Mollison J, Steen N, et al. Analysis of cluster randomized trials in
primary care: a practical approach. Fam Pract. 2000;17: 192–96.

28. Sculpher MJ. Evaluating the cost-effectiveness of interventions designed to increase
the utilization of evidence-based guidelines. Fam Pract. 2000;S26–S31.

29. Drummond MF, Sculpher MJ, Torrance GW, et al. Methods for the economic eval-
uation of health care programmes. 3rd ed. Oxford: Oxford Medical Publications;
2005.

30. Schermer TR, Thoonen BP, Boom Gvd, et al. Randomized controlled economic
evaluation of asthma self-management in primary health care. Am J Resp Crit Care
Med. 2002;166:1062–72.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:28

272 Chapter 13

31. Mason J, Freemantle N, Nazareth I, et al. When is it cost-effective to change the
behaviour of health professionals? JAMA. 2001;286:2988–92.

32. Mauskopf JA, Paul JE, Grant DM, et al. The role of cost-consequence analysis in
health care decision making. Pharmacoeconomics 1998;13:277–88.

33. Severens JL. Value for money of changing healthcare services? economic evaluation
of quality improvement. Qual Saf Health Care. 2003;12:366–71.

34. Knottnerus JA, Dinant GJ. Medicine-based evidence, a prerequisite for evidence-
based medicine. BMJ. 1997;315:1109–10.



P1: SFK/UKS P2: SFK

BLBK040-Knottnerus.cls August 6, 2008 0:28

CHAPTER 14

Epilogue: overview of
evaluation strategy and
challenges
J. André Knottnerus, Ann van den Bruel, and Frank Buntinx

Summary box� The first phase in the evaluation of diagnostic procedures consists of
(1) specifying the clinical problem, the diagnostic procedures(s), and
the research question, and (2) a systematic search and review of the
literature, to decide whether the question can already be answered or
whether a new clinical study is necessary.� In preparing a new clinical study, the investigator must decide about
the need for evaluation of (1) test accuracy in circumstances of
maximum contrast or, as a further step, in the “indicated” clinical
population; (2) the impact of the test on clinical decision making
(3) prognosis; or (4) cost-effectiveness. The answers to these questions
are decisive for the study design.� Systematic reviews and meta-analysis, clinical decision analysis,
cost-effectiveness analysis, and expert panels can help to construct and
update clinical guidelines.� Implementation of guidelines should be professionally supported and
evaluated, in view of what is known about how clinicians approach
diagnostic problems.� Further developments in four fields are especially important: progress
and innovation of (bio)medical knowledge relevant for diagnostic
testing and its impact; the development of information and
communication technology in relation to clinical research and
practice; the changing role of the patient; and further exploration of
methodological challenges in research on diagnostic problems.

The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research. 2nd edition.
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Introduction

The chapters in this book speak for themselves and there is no need to repeat
them or summarize their contents. However, a compact overview of important
steps in the evaluation of diagnostic procedures may be useful. In addition,
challenges for future work are outlined.

Important steps

Test development
As indicated in Chapter 3, any new test must first go through a phase of tech-
nical development and assessment.1 This will often encompass basic biological
and pathophysiological research. In this phase, candidate tests are being eval-
uated on whether and to what extent they can produce usable information
under laboratory conditions. That is, the ability to detect a specified quantity
of a certain component present in a sample (analytical sensitivity), to indicate
its absence where appropriate (analytical specificity), and to obtain the same
test result on repeated testing or observations (reproducibility). The phase of
early development and assessment may also consist of behavioral research if
psychological phenomena are to be diagnosed.

This book was focused on tests that are assumed to have successfully passed
this early development and assessment phase, and then have to be evaluated
as to their clinical and health care impact. In this context, the most important
steps are represented in a flow diagram of the evaluation strategy (Figure 14.1),
with reference to chapters in the book.

Clinical problem and research question
The first step is to specify the clinical problem and the diagnostic procedure(s)
to be evaluated and the aim and research question of the study. Are we look-
ing for the (added) diagnostic value of the procedure, or the impact of the
procedure on clinical management, on prognosis and patient’s health, or on
cost-effectiveness?

As to diagnostic value, in Chapter 2 and 3, the importance of defining the
research question and the contrast to be evaluated was emphasized, which
is also crucial for the choice of the study design.2 The following situations
were distinguished: (1) single test: assessing the value of inserting a new test
compared with not testing; (2) comparing tests: the (performance of a) new
test with the best ones already available for the same diagnostic problem; (3)
additional testing: estimating the value of further (e.g., more invasive) testing,
given the tests already performed; and (4) comparing diagnostic strategies: to
evaluate the most accurate or efficient diagnostic test set or test sequence
for a certain diagnostic problem. A new test can also be less invasive, and
therefore interesting to be inserted earlier in the process to preselect for more
invasive tests. In line with this approach, three roles of new tests have been
defined: (1) replacement, (2) triage, and (3) add-on.3 A new test may replace
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Specify aim(s) of the evaluation study: evaluation of
- (added) diagnostic value of the procedure
- impact of the procedure on prognosis/patient’s health
- impact of the procedure on clinical management
- cost-effectiveness of the procedure

Search and systematic review of the literature (Chapters 1 and 10)

Sufficient data to answer research question?Yes No: → clinical study

Evaluation of accuracy of test
procedure a in ideal circumstances of
maximum contrast (still) necessary?

Evaluation of accuracy of test
procedure in  “indicated” clinical
population (still) necessary?

No

Evaluation of impact of test
procedure on prognosis or clinical
decision making (still) necessary?

No

YesDiagnostic RCT (still)
appropriate and possible?

No
Observational study: before-
after study, cohort study, case-
control study (Chapters 1, 5)

Yes

Perform Phase IV study:
Diagnostic Randomised trial
(Chapters 2, 4)

YesPerform PhaseI/II
study (Chapters 2,7)

Perform Phase III study
(Chapters 2, 3, 6, 7)

Yes

RCT still relevant and
possible?

Yes

No

No

Report results of clinical study, and consider external
(clinical) validity (Chapters 1–9)

Systematic review
(update), meta-
analysis, (Chapters
1, 10)

Clinical decision analysis, cost-effectiveness analysis, expert consensus,
construction or update of clinical guidelines, ICT support (evaluation of)
implementation, guided by insight in clinical problem solving (Chapters
1,11,12,13)

Formulate the research question (Chapters 2 and 3)

Specify clinical problem and diagnostic procedure(s) to be evaluated

Figure 14.1 Important steps in the evaluation of diagnostic procedures.
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an existing test if it is more accurate, less invasive for the patient, cheaper,
easier to interpret, or yields quicker results. To be able to decide on this, the
new test will need to be compared on these aspects with the existing test. Triage
tests typically exclude the disease in a proportion of patients who no longer
enter the further clinical pathway. However, triage tests may also be used to
increase the proportion of patients entering the clinical pathway, by picking
up cases that otherwise would have been missed. Triage tests are especially
attractive if they are noninvasive for patients, simple to perform and cheap.
Finally, a new test may be placed as add-on after an existing clinical pathway,
if it is not only more accurate but also more invasive or expensive. It may then
be only applied in a subgroup of patients.

The ultimate goal of health care is to improve patient outcome: expected
harm of testing, such as burden, pain, and risk, should be weighed against ex-
pected benefit, such as improved life expectancy, quality of life, and avoidance
of other test procedures. In addition, for policy decisions, weighing effects and
benefits against costs, is important. As properly and directly evaluating these
aspects (in the context of a randomized trial or otherwise in an appropriate
observational study) is not always possible, studying the test’s influence on
the physician’s thinking and management decisions may serve as a proxy.
After all, in general, a patient’s outcome cannot be influenced by diagnostic
testing unless the physician is led to do something different than he would
have done without the test result. The focus is then on change in diagnosis or
treatment decision by the physician, by comparing the intended management
before and after the test result is known. We have to consider, however, that
change in management does not necessarily lead to an improved patient out-
come: patients may not benefit from the change in therapy or even experience
harm.

Cost-effectiveness goes beyond the individual risks and benefits. It addresses
whether the cost of using a given test is acceptable to society and allows
to make comparisons across a broader range of health interventions. Cost-
effectiveness studies estimate a cost per unit of the effect measure, for exam-
ple, cost per surgery avoided, cost per appropriately treated patient, cost per
life year gained, or cost per quality adjusted life year (QALY) gained. Final
outcomes, such as life years or QALYs gained, are preferred over intermedi-
ate outcomes. As data on outcomes and costs of diagnostic and subsequent
therapeutic pathways are not always available from empirical observations,
cost-effectiveness is often assessed on the basis of (additional) assumptions.
The correctness of such assumptions of course determines the validity of the
conclusions.

Systematic review
After having formulated the research question, we must search and system-
atically review the literature and decide whether sufficient research data—
meeting appropriate quality requirements—are already available to answer
the question. If this is the case, additional clinical research efforts are not
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needed nor justified. If sufficient data are not yet available, a new clinical
study should be considered if this is to be expected to add to the evidence base
for giving a better answer.

Study design
To evaluate the diagnostic and clinical value of diagnostic procedures in rela-
tion to the defined contrast and test role, a variety of study designs, includ-
ing observational and experimental approaches, are available. As emphasized
before, choosing the most appropriate approach depends primarily on the re-
search question. In preparing a clinical study, in summary, to choose the appro-
priate approach the following questions need to be answered: (1) is evaluation
of accuracy of the test procedure in ideal circumstances of maximum contrast
(still) necessary or (2) has this already been successfully achieved and should
accuracy still be established in the “indicated” clinical population? (3) Is the
impact of the diagnostic procedure on clinical decision making or prognosis
yet unknown? (4) Should cost-effectiveness be evaluated? The answers to
these questions lead to the appropriate study type, as shown in Figure 14.1.
It is sometimes possible to include more than one type of design in one study.
For example, test accuracy may be determined in the context of a randomized
trial or a before–after study.

From results to practice
In preparing and reporting the results of a clinical study, the generalizability
or external (clinical) validity should be carefully considered. In connection to
this, additional evaluations in other populations representative of the target
group to be tested are often important.4 Especially in those cases where mul-
tivariable prediction rules or tests are derived, validation in an independent
similar population of patients is necessary. If the study is unique with regard to
clinical applicability, the results represent an important evidence base them-
selves. More often they contribute to a broader knowledge base and can be
included in (an update of) a systematic review or meta-analysis. Clinical de-
cision analysis, cost-effectiveness analysis, and expert panels are helpful in
constructing or updating clinical predition rules5 and clinical guidelines. The
implementation of guidelines in clinical practice should be professionally sup-
ported and evaluated, in view of the acquired insights into the way clinicians
approach diagnostic problems.

Challenges

Throughout this book, a comprehensive range (“architecture”) of method-
ological options has been described. At the same time, it has become clear
that there are important challenges for future work.

Developments in four fields are especially important. First, (bio)medical
knowledge will continue to be expanded, cumulated, and refined. Second,
information and communication technology (ICT) will further develop and
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its use in daily practice will be more and more facilitated. Third, the patient’s
role is an increasingly active one, with important implications for patient–
doctor communication and the decision-making process. Finally, in research
on diagnostic problems and procedures, methodological requirements, and
innovations are to be further explored.

Biomedical progress and clinical epidemiological quality
Innovation of biomedical knowledge and understanding of pathophysiological
processes are the principal requirements for the development and evaluation
of better diagnostic tests. A clear example is the current work to develop
DNA tests in various clinical fields. Increasingly, these will not only support
genetic counseling and perinatal screening but also clinical diagnosis, prog-
nostic assessment, targeting and dosing of therapeutics (“pharmacogenetics”),
and targeting of interventions in the field of prevention, public health, and
nutrition.6,7,8

A small number of people have specific genetic characteristics that make
the chances to be or become diseased very high (e.g., trisomy 21 for Down’s
syndrome or BCRA polymorphisms for breast cancer). In such cases, individual
genetic tests can provide substantial diagnostic information or even be the gold
standard. Of many frequent diseases such as diabetes, cardiovascular disorders,
and most malignancies, however, the risk increases or decreases according to
the presence of genetic polymorphisms interacting with other polymorphisms
and with environmental factors.9 Much work in this field is being done, for
example, in cardiovascular medicine,10 oncology,11,12 and psychiatry.13

Genetic characteristics can relate to the person (i.e., all his or her cells),
the pathological cells only (e.g., tumor tissue), or a causing organism (e.g., a
virus). Both in genetic patient testing and in DNA (or RNA) testing of causal
agents, considerable efforts are still needed, not only in the laboratory but also
in clinical research. Regarding the latter, the clinical epidemiological quality
of many molecular genetic studies is generally poor and needs substantial
improvement and development.14,15,16 Furthermore, long-term follow-up to
clinically validate diagnostic and prognostic predictions needs much more at-
tention. At the same time, the methodology of using shorter-term intermediate
outcomes must be better developed in a time of increasingly fast progress of
knowledge and technology.17 In addition, in view of the ambition to develop
more targeted, perhaps even individualized, diagnostic and intervention pro-
cesses, studies in large study populations will be increasingly unsatisfactory.18

Research methodology will therefore be challenged to strengthen its tools for
small group and even n = 1 studies. Also, ethical issues regarding the privacy
of genetic information and the right to (not) know have to be dealt with.19

In this context, doctors and patients, traditionally battling to reduce diag-
nostic and prognostic uncertainty, must also learn to cope with approaching
certainty.20
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ICT and the methodological agenda
Although until now computer decision support systems seem to have
had more impact on the quality of drug prescriptions—avoidance of drug
interactions, and high-risk group-targeted preventive care—than on diagno-
sis, the growing body and complexity of knowledge enhances the need for
(online) diagnostic decision support systems. The development and evalua-
tion of such systems will therefore remain an important challenge, as was
outlined in Chapter 11. The same applies to the provision and maintenance
of appropriate input, that is, valid and up to date diagnostic and prognostic
knowledge.

Performing especially designed and organized diagnostic studies in large
study populations is expensive and will necessarily always cover only a limited
part of diagnostic management. Moreover, such studies may produce results
with rather limited generalizability in place and time. Consequently, ways are
sought to more efficiently and permanently harvest clinical knowledge and
experience. It is worth considering whether and under what conditions ac-
curacy studies, randomized controlled trials, quasi-experimental studies, and
before–after studies can be more embedded in routine health care.21 In view
of continuity, up-to-date results, and (external) clinical validity, much can be
expected from standardized clinical databases, with even international con-
nections, also to be used as sampling frames for research. As these databases
are closely related to or even integrated into routine health care, additional
efforts are required to meet basic quality and methodological standards and
to avoid biases.22 In the context of such an integrated approach, also the im-
plementation of new findings can be studied and monitored in real practice.

ICT progress has opened new ways of health care provision such as
telemedicine and e-health. These innovations bring also new opportunities
and challenges for dia-prognostic research. For instance, in addition to evalu-
ating the quality and validity of diagnostic and prognostic triage by phone,23,24

also the validity of telemedicine and e-mail assessments are now research top-
ics. New methodological challenges in this context are related to the expecta-
tion that patients will increasingly have e-health consultations with physicians
independent of distance, in principle without geographical limitations. This
will, for example, have important implications for how to define the epidemi-
ological numerators and denominators for such contacts, and, accordingly, for
how to deal with spectrum and selection phenomena. Obviously, these devel-
opments are creating a new generation of research questions with a related
methodological agenda.

Role of the patient, and self-testing
The role of the patient in diagnostic management is becoming more active.
People want to be optimally informed and involved in the decision about
what diagnostics are performed for what reason and want to know what the
outcome means to them. Patient decision support facilities, at the doctor’s
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office and at home, using e-health (e-mail or other Internet) services, are
receiving increasing attention. Clinicians have to think about their possible
role—interactively with the patient—in sifting, explaining, and integrating
information via these facilities. Which level of certainty is worth which diag-
nostic procedures is not always similarly answered by patients and doctors.
Patients’ perceptions, preferences, and responsibilities should be respected and
supported, not excluded, in clinical research and guidelines.25 However, these
features are not easily measurable and may show substantial inter- and intra-
subject variability. A good patient–doctor dialogue therefore remains the core
instrument of individual decision making.26 Integrating patient preferences in
diagnostic research and guidelines implies specific methodological challenges
which only have begun to be appropriately addressed.

A phenomenon that increasingly comes forward is self-testing, as the market
for so-called self-tests is growing fast, thereby responding to the wish of many
people to be able to test themselves before or even without visiting a doctor.
A substantial number of products and services have been introduced and are
offered to the public via, e.g., pharmacies, drugstores, supermarkets, check-up
centers, and the Internet, supported by television and newspaper commercials.
Manufacturers claim not only that such tests enable users to detect disease in
an early phase but also that this will benefit health. However, a recent analy-
sis by the Health Council of the Netherlands27 showed that only 3 out of 20
available self-tests represented a potentially useful addition. The other 17 did
not meet general criteria of diagnostic validity, clinical utility, a favorable risk–
benefit ratio, and cost-effectiveness. Given the developments in biomedical
research, commercial interests, and market developments, it is to be expected
that the increase in offered self-tests will continue. Accordingly, in the inter-
est of the public and patients and their well-informed decision making, it is
necessary formally to require an appropriately documented and convincing
evidence base from manufacturers to justify their claims, to optimally inform
the public, to monitor test follow-up, and to explore how useful self-tests can
best be connected with state-of-the-art health care when needed. Also in this
domain, there are various methodological challenges, such as evaluating test
validity when applied by nonexperts in the context of daily life.

Other methodological challenges to keep us busy

In addition to the new issues mentioned in the two previous sections, also diag-
nostic research methodology in general must be further refined with respect to
strategy, spectrum and selection effects, prognostic reference standards,28 and
the assessment of the clinical impact of testing. Data analysis needs progress in
many aspects,29 for example, with regard to “diagnostic and dia-prognostic ef-
fect modification” (which implies the study of factors influencing the diagnos-
tic value of tests and interactions between tests), multiple test and disease out-
come categories,30 and estimation of sample size for multivariable problems.
In addition, more flexible modeling is needed to identify alternative, clinically
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and pathophysiologically equivalent, but more comprehensive models, to op-
timally classify subgroups with varying sets of clinical characteristics.31,32 For
example, when using conventional statistical techniques, an infrequent symp-
tom may not survive the selection process for the overall prediction model,
while for the small subgroup where it is present it could be highly predictive.
And, as another example, in the case that hemoglobin level would not be
statistically selected for a prediction model because the strongly correlated
hematocrit pushed it out, the model might not be applicable to patients with
a missing value for hematocrit although the hemoglobin value may be avail-
able. More flexibility, for instance, by analyzing both pathways and integrating
them in a more flexible model presentation, can help.

Better methods to improve and to evaluate external clinical validity, for ex-
ample, in the context of daily practice, are also required. Furthermore, one
must neither forget nor underestimate the diagnostic power of “real-life doc-
tors’ assessment”: at least, the performance of proposed diagnostic innovations
should be compared with the achievements of experienced clinicians, before
such innovations are recommended as bringing new possibilities. We also need
more understanding of the “doctor’s black box” of diagnostic decision making,
using cognitive psychological methods (Chapter 12). This can help in more ef-
ficient diagnostic reasoning and in the development of custom-made support
systems.33,34

Efficiency and speed in the evaluation of the impact of diagnostic procedures
can be gained if new data on a specific aspect (e.g., a diagnostic test) can be
inserted into the mosaic of available evidence on a clinical problem (e.g., on
the most effective treatment in case of a positive test), rather than studying
the whole problem chain again whenever one element has changed. For this
purpose, flexible scenario models of current clinical knowledge are needed.35

Systematic review and meta-analysis of diagnostic studies must not only be
further improved36,37,38 but also become a permanent routine activity of pro-
fessional organizations producing and updating clinical guidelines. To increase
comparability and quality, and to overcome publication bias, meta-analysis
should not only be performed on already reported data but increasingly on
original and even prospectively developing databases allowing individual pa-
tient data analysis. Such databases can originate from specific (collaborative)
research projects, but sometimes also from health care (e.g., from clinics where
systematic workups for patients with similar clinical presentations are routine,
and where the population denominator is well defined). Accordingly, meta-
analysis, evaluation research, and health care can become more integrated.

Although the methodology of diagnostic research is still lagging behind (and
is even more complex) as compared to that of treatment research, in the past
decades a lot of fundamental work has been done. Accordingly, important
steps can now be made in the development of standards for the evaluation
of the validity, safety, and impact of diagnostics, which is also necessary to
control acceptance, maintenance, and substitution in the health care market.
An important basic requirement is high quality and transparency of diagnostic
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research reports. The international agreement on Standards for the Report-
ing of Diagnostic Accuracy studies (STARD), described in Chapter 9, therefore
deserves full support from the scientific and health care community39 and,
together with the tool for the quality assessment of studies of diagnostic ac-
curacy included in systematic reviews (QUADAS),38 also provides important
input for standards for performing diagnostic research and for the evaluation
of diagnostics for the health care market.
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study

candidate, 55
indicated, 55, 56

intended, 55
“intention to diagnose,” 43, 55–56,

56

“intention to screen,” 43, 56, 56

intention to test, 43, 56

“reference,” 22
subgroups within, 112
survey of total, 42, 46, 46–48

variability of results within, 111
positive predictive values (PPVs),

124–25, 137, 142–44

posterior probability, 4
see also posttest probability

posttest outcomes, 90–91, 91
posttest probability, 4, 216

basic determinant of, 50
of disease, 124–25, 137, 142–44

ESR and, 85, 85, 85–86
see also Bayes’s theorem; negative

predictive values; positive
predictive values; posterior
probability; predictive values

PPVs see positive predictive values
pragmatic criteria

for cross-sectional studies, 52–55
clinical follow-up in, 53
independent expert panel and,

52
prognostic criterion for, 54–55
standard shift and, 55

tailor-made reference standard
protocol and, 53–54

predictive values, 4, 34
calculation of, 72

calibration, discrimination and, 98,
100

see also Bayes theorem; negative
predictive values; positive
predictive values; posterior
probability; posttest probability

pregnancy, 6
pretest baseline, diagnostic before–after

study and, 88–89
pretest probability, 30, 30–31

assessments and ESR, 85, 85, 85–86
of disease, 124–25, 137, 142–44

estimates of, 215–16
probability of target disorders and,

50
see also Bayes Theorem

prevalence, 113, 114

primary care, 35, 35, 36

probability, 15
distortions, 244–45
estimation of

of disease, 98
errors in, 243–45

“known,” 24
prior, 10–11
revision

errors, 245–46
fixedness in, 245–46

values of outcomes and confounding,
246

see also posttest probability; pretest
probability

problem solving, 238–39
diagnostic decision making and

clinical, 274–76
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and, 240–41
conclusions on, 249–51
educational implications for,

248–49
errors in hypothesis

generation/restructuring and,
241–42

errors in probability estimation and,
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hypothetico-deductive method and,

239–40
introduction to, 237–38
methodological guidelines for,

249–51
as opinion revision, 242–43
two-system theories of cognition

and, 247–48, 248
prognosis

assessment of, 3
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prognostic value with intervention, 67,
67

prospective data collection, 46, 47–48
prospect theory (PT), 244
prostatic hyperplasia, benign, 52
proteomics, 171
pseudodiagnosticity, 246
psychiatric illnesses, 53
PsycINFO, 185b–191b
PT see prospect theory
PubMed, 182

QALY (quality adjusted life year), 276
QUADAS (Quality Assessment of

Diagnostic Accuracy Studies), 3,
192, 193b, 282

quality adjusted life year see QALY
Quality Assessment of Diagnostic

Accuracy Studies see QUADAS
quality-of-care research, 2

Radiology, 171
random disclosure principle, 71, 73–74,

74
random effects model, 200
randomized controlled trials (RCTs), 1,

12, 13, 21
achievement of, 84
diagnostic testing and, 94

alternative randomized designs and,
69–71, 70

comparison of test strategies and,
71, 71–76, 72, 73, 74, 76

conclusions on, 80

design choices for, 77, 77–78
measurement of, 64–69, 65, 66, 66,

67, 68, 69

practical issues regarding, 78–80, 79
prognostic impact of, 63–64
research on, 2
technical developments for, 42–43

principles of, 2
review of, 230
in test evaluation research, 63

RAS see Renal Artery Stenosis
Rational Clinical Examination, 215
RCTs see randomized controlled trials
receiver operating characteristic curve

(ROC), 6, 98, 119
pooling of, 202–3
serum creatinine concentration,

128–30, 129, 130, 131

for tests, 106, 106

red eye, 219–20

reference standard, 21–22
accuracy of, 32–34
adverse effects of, 56, 57
errors in, 109
independent, 32, 32

invasiveness and risks of, 57
misclassification of, 102
outcome of target disorders, 42,

50–52, 51

possible problems, 51, 52
possible solutions for, 51, 52
principles of, 50–52, 51

procedures, application of, 42–43
prognostic, 280–81
protocol, tailor-made, 53–54
target conditions and, 101–2, 102,

109–10
timing of, 170
see also “gold standard”

referral filter, 104, 104–5, 105

reformulation, 241–42
regression line, 196–97
REMARK, 176
renal angiography, 119, 121

Renal Artery Stenosis (RAS)
Confidence Intervals tables for, 137,

138–40

detection of, 120, 203–5, 204b
diagnosis of, 123, 123
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reproducibility, 50
research designs, 11–16, 12
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diagnostic before-after study and

concluding remarks on, 93–94
diagnostic testing and, 89–90
example of, 84–86, 85, 85
general model of, 86, 86–88
limitations of, 87, 93
modified approaches to, 93
posttest outcome and, 90–91, 91
pretest baseline and, 88–89
sample analysis/size and, 92
selection of study subjects and,

91–92
time factor with, 91, 91

restructuring, 241–42
retrospective data collection, 46,

47–48
ROC see receiver operating characteristic

curve
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analysis, 92
size, 1, 57, 57–58, 151

estimation of, 43
requirements, 92

sampling
direction of, 48
groups, 13
variability, 121, 122–23, 123

SCI see Science Citation Index
Science Citation Index (SCI), 185b–191b
search

selection process with, 206
strategy for conducting systemic

reviews of diagnostic accuracy
studies, 182

terms, 182
selection

biases, 1, 250–51
evaluation of, 4, 8–9

effects, 280
sensitivity, 9, 21, 118, 132

calculation of, 147, 161
combinations of, 195

data analysis of accuracy of diagnostic
tests, 121, 121–22, 132, 133,

134
determination of, 9
homogenous, 201
overestimation of, 222
tests, 3, 4, 5, 6
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serum creatinine concentration

RAS and, 127–31, 128, 129, 129, 130,

131

ROC and, 128–30, 129, 130, 131

values, 133, 133–34
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gonadotrophin), 106, 106

sex, 24
simple tree building, 160

calculations with, 148
characteristics of, 148
cut-points, indicators and, 148
example of, 149
imprecision and, 148
interactions and, 148
overview of, 147
problems shared with, 155–58

sinusitis, 52
small steps, 11
smoking, 24
Social Sciences Citation Index (SSCI),

185b–191b
“soft” outcome measures, 1, 9
software, 136–37
specificity, 3, 4, 5, 6, 21, 118, 132, 161

calculation of, 147
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in data analysis of accuracy of

diagnostic tests, 121, 121–22
homogenous, 201
overestimation of, 222
study population and accuracy of

diagnostic tests/
cross-sectional studies, 55–57,
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spectrum, 280
bias, 1, 222

evaluation of, 4, 8–9
characteristics, 50
of disease groups, 103–4
of nondisease groups, 103–4
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curve, 201
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SSCI see Social Sciences Citation Index
Standards for the Reporting of Diagnostic
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STARD (Standards for the Reporting of

Diagnostic accuracy studies),
2–3, 282

development of, 168, 171–72, 173–74,

175
objective of, 171–72
steering committee, 172, 173–74, 175
uptake of, 172–76

statistical models, 200
statistical pooling, 201–3
stenosis, 65–66, 66, 127, 128

strategy of evaluation, overview, 273–77
stroke, 65, 219–20, 224

duplex ultrasonography and, 66, 66,

66–68
intravenous anticoagulation and, 66,

66, 66–68
studies

case-control, 13
clinical, 4, 13–14
cohort, 13
cost-effectiveness, 2, 6, 11–12, 12

see also cross-sectional studies
Summary ROC see SROC
support theory, 244
systemic reviews, 273, 276–77

diagnostic, 1, 12, 14, 29

of diagnostic accuracy studies
databases for conducting, 182–83,

185b–191b
other, 207–8

of diagnostic accuracy studies,
conducting, 180, 273

bivariate model for, 180, 209
comments on, 183–84
data analysis for, 195
data extraction for, 192, 194
data presentation for, 185b–191b,

203–5, 204b
discussion of, 205–6
documentation of, 183
heterogeneity for, 196–97,

198–200, 199b

HSROC model for, 209
introduction to, 181
literature search for, 181–82
methodological quality of, 184–94
notation and, 208
results of individual studies and,

195
retrieval of articles and inclusion

criteria in, 183–84
search and selection process with,

206
search strategy for, 182
SROC and, 180, 208–9
statistical pooling and, 201–3
threshold (cut-point) effect in, 197,

198b
usage of statistical models and, 200

target conditions, 101–2, 102, 109–10
target disorder(s)

“gold standard” of, 50
Phase I questions and, 20, 25–27,

26

Phase II questions and, 20, 25, 27,

27–28, 29

Phase III questions and, 21, 25, 28–31,
30, 31

pretest probability of, 50
as primary dependent or outcome

variable, 42, 48–50, 49

reference standard outcome of, 42,
50–52, 51

technologies see diagnostic technologies
tertiary care, 35, 35, 36

test(s), 1
application of, 89–90
based enrollment/cross-sectional

studies, 46, 46–47
blood, 5, 6, 10
calibration of, 98, 100, 106, 106–7
clinical impact of, 90–91, 93, 280
clinicochemical, 7
continuous

dichotomization of, 127–31, 128,

129, 129, 130, 131

trichotomization of, 127–31, 128,

129, 129, 130, 131

cutoff points, 5
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d-dimer, 104
development, 274, 275
dichotomous, 72, 72, 121, 127
evaluation of, 43, 168

research, 63
hazardous/invasive, 3
hematological, 7
Hosmer-Lemeshow goodness-of-fit,

224
incremental, 107–8, 110–11
less invasive, 3
liver function, 3
management and, 10
medical

main effects of, 64
prognostic impact of, 63–64

negatives, 105–6, 106

new
less expensive/invasive with fewer

adverse side effects, 45, 45–46
more expensive/invasive, 45,

45–46
number of, 157, 167
ordering

changes in, 257–58, 259–60, 260,

262–70, 266
continuation and perpetuation of,

264
factors influencing, 258–59
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development/implementation
and, 259–62

implementation of, 262–64,
265–70, 266

improving, 256–57
introduction to, 257

performance of, 83
applicability and transferability of,

101–7, 102, 103, 104, 105, 106,

106, 107, 112–13
measures of, 98

reference, 184
replacement, 107–8, 110–11
reproducibility, 50
results

concordant, 72–73, 79
disclosure of, 89
discordant, 72–73, 73, 79
distribution of, 99

interpretation of, 89
multiple categories of, 107–8
thresholds between categories, 99

results and informative value of LR,
118

ROC for, 106, 106

selection of, 157–58
self-testing, 279–80
single, 45, 45, 57

diagnostic before-after study and,
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evaluation of, 48–49
randomized designs for, 66, 66,

66–69, 67, 68, 69

triage, 45
as triage instrument, 75–76, 76
two or more, 49
types of, 11
urine, 7
value of, 3, 4

see also diagnostic tests
test accuracy, 32–33, 42, 50, 118

evaluation of, 273
transferability of, 96–97, 112–13

concluding remarks on, 114
discrimination and, 98, 100, 106,

106, 110
features that facilitate, 98–100, 99,

100

introduction to, 97–98
main assumptions in, 99, 99–100,

100

referral filter and, 104, 104–5, 105

true variability in, 98–108, 99, 100,
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therapeutics, 3, 24
therapies, eradication, 76
threshold(s)

approach to diagnosis and Clinical
Prediction Rules, 216–18, 217

between categories, 99
(cut-point) effect, 197, 198b

TIA see transient ischemic attack
transient ischemic attack (TIA), 65,

219–20

treatment(s)
effect

in all test categories, 66, 68
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treatment(s) (cont.)
in test abnormals, 67, 68
in test normals, 67, 68

evaluation of, 1
for LVD, 24
research, 1

Treeage-DATA, 137
Triage, 75
trichotomization, 127–31, 128, 129, 129,

130, 131

tuberculosis, 154–55

ultrasonography, 3, 5

duplex
accuracy of, 68, 69
acute strokes and, 66, 66, 66–68
cervical bruit and, 68, 68
performance of, 65–66
prognostic value of, 66

outcomes in
abnormal, 78–79, 79
normal, 78–79, 79
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unstable angina, 65
urinary tract infection, 231

vaginal birth, after previous cesarean
section, 219–20

validation
Clinical Prediction Rules, 223, 223–24
external, 43, 59, 96–117

variability
in diagnostic accuracy studies, 50,

96–117, 168–71
observer, 1, 10, 50
of results within population, 111
sampling, 121, 122–23, 123

true, 98–108, 99, 100, 102, 103, 104,

105, 106, 106, 107

venous thromboembolism, 104
virtual learning environment (VLEs), 231
Visual Bayes, 137
VLEs see virtual learning environment

weight loss/reduction, 5, 23
Wells, Philip, 34
women, 23

with breast cancer, 75
diagnosis of, 106

workup biases, 192

x-rays, 7–8, 10, 120




