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Preface

It is well known that there is an increasing demand for modern systems to become
safer and reliable. This real world’s development pressure has transformed fault
diagnosis, initially perceived as the art of designing a satisfactorily safe system,
into the modern science that it is today.

Indeed, the classic way of fault diagnosis boils down to controlling the limits of
single variables and then using the resulting knowledge for fault-alarm purposes.
Apart from the simplicity of such an approach, the observed increasing com-
plexity of modern systems necessitates the development of new fault diagnosis
techniques. Such a development can only be realised by taking into account the
information hidden in all measurements. One way to tackle such a challenging
problem is to use the so-called model-based approach. Indeed, the application
of an adequate model of the system being supervised is very profitable with re-
spect to gaining the knowledge regarding its behaviour. A further and deeper
understanding of the current system behaviour can be achieved by implementing
parameter and state estimation strategies. The obtained estimates can then be
used for supporting diagnostic decisions.

Although the majority of industrial systems are non-linear in their nature, the
most common approach to settle fault diagnosis problems is to use well-known
tools for linear systems, which are widely described and well documented in
many excellent monographs and books. On the other hand, publications on fault
diagnosis for non-linear systems are scattered over many papers and a number
of book chapters.

Taking into account the above-mentioned conditions, the book presents se-
lected modelling and estimation strategies for fault diagnosis of non-linear sys-
tems in a unified framework. In particular, starting from the classic parameter
estimation techniques through advanced state estimation strategies up to mod-
ern soft computing, the discrete-time description of the system is employed. Such
a choice is dictated by the fact that the discrete-time description is easier and
more natural to implement on modern computers then its continuous-time coun-
terpart. This is especially important for practicing engineers, who usually are
not fluent in complex mathematical descriptions.
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The book results from my research in the area of fault diagnosis for non-linear
systems that has been conducted since 1998. The only exception is Part I, which
presents general principles of fault diagnosis and outlines frequently used ap-
proaches. The remaining part of the book is organised as follows: Part II presents
original research results regarding state and parameter estimation-based fault di-
agnosis. Part III is devoted to the so-called soft computing techniques. In partic-
ular, a number of original fault diagnosis schemes that utilise either evolutionary
algorithms or neural networks are presented and carefully described.

This book is primarily a research monograph which presents, in a unified
framework, some recent results on modelling and estimation techniques for fault
diagnosis of non-linear systems. The book is intended for researchers, engineers
and advanced postgraduate students in control and electrical engineering, com-
puter science as well as mechanical and chemical engineering.

Some of the research results presented in this book were developed with the
kind support of the Ministry of Science and Higher Education in Poland under
the grant 4T11A01425 Modelling and identification of non-linear dynamic sys-
tems in robust diagnostics. The work was also supported by the EC under the
RTN project (RTN-1999-00392) DAMADICS.

I would like to express my sincere gratitude to my family for their support and
patience. I am also grateful to Prof. Józef Korbicz for suggesting the problem,
and for his continuous help and support. I also would like to express my spe-
cial thanks to Mr Przemys�law Prȩtki and Dr Wojciech Paszke for their help in
preparing some of the computer programmes and simulations of Part III and II,
respectively. I am very grateful to Ms Agnieszka Rożewska for proofreading and
linguistic advise on the text. Finally, I wish to thank all my friends and colleagues
at the Institute of Control and Computation Engineering of the University of
Zielona Góra, who helped me in many, many ways while I was preparing the
material contained in this book.

October 2006 Marcin Witczak
Zielona Góra
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1. Introduction

A continuous increase in the complexity, efficiency, and reliability of modern in-
dustrial systems necessitates a continuous development in the control and fault
diagnosis [16, 27, 84, 98, 96] theory and practice. These requirements extend
beyond the normally accepted safety-critical systems of nuclear reactors, chem-
ical plants or aircrafts, to new systems such as autonomous vehicles or fast rail
systems. An early detection and maintenance of faults can help avoid system
shutdown, breakdowns and even catastrophes involving human fatalities and ma-
terial damage. A modern control system that is able to tackle such a challenging
problem is presented in Fig. 1.1 [181]. As can be observed, the controlled system

Fault DiagnosisController re-design

Information about faults

Controller

yref

yu

Unknown Inputs

Faults

Process

Model

Analytic redundancy Sensors

Actuators

Act Senso

Fig. 1.1. Modern control system

is the main part of the scheme, and it is composed of actuators, process dynam-
ics and sensors. Each of these parts is affected by the so-called unknown inputs,
which can be perceived as process and measurement noise as well as external

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 1–7, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



2 1. Introduction

disturbances acting on the system. When model-based control and analytical
redundancy-based fault diagnosis are utilised [16, 27, 96], then the unknown in-
put can also be extended by model uncertainty, i.e., the mismatch between the
model and the system being considered.

The system may also be affected by faults. A fault can generally be defined
as an unpermitted deviation of at least one characteristic property or para-
meter of the system from the normal condition, e.g., a sensor malfunction.
All the unexpected variations that tend to degrade the overall performance of
a system can also be interpreted as faults. Contrary to the term failure, which
suggests a complete breakdown of the system, the term fault is used to de-
note a malfunction rather than a catastrophe. Indeed, failure can be defined as
a permanent interruption of the system ability to perform a required function
under specified operating conditions. This distinction is clearly illustrated in
Fig. 1.2. Since a system can be split into three parts (Fig. 1.1), i.e., actuators,
the process, and sensors, such a decomposition leads directly to three classes of
faults:

• Actuator faults, which can be viewed as any malfunction of the equipment
that actuates the system, e.g., a malfunction of the electro-mechanical ac-
tuator for a diesel engine [15]. This kind of faults can be divided into three
categories:

Region of danger - safety system is activated

Region of unacceptable performance

Region of required

performance

Recovery

Fault

Region of degraded performance

Failure

Fig. 1.2. Regions of system performance
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Lock-in-place: the actuator is locked in a certain position at an unknown
time tf and does not respond to subsequent commands:

ui,k = ui,tf
= const, ∀k > tf . (1.1)

Outage: the actuator produces zero force and moment, i.e., it becomes inef-
fective:

ui,k = 0, ∀k > tf . (1.2)

Loss of effectiveness: a decrease in the actuator gain that results in a deflec-
tion that is smaller than the commanded position:

ui,k = kiu
c
i,k, 0 < ki < 1 ∀k > tf , (1.3)

where uc
i,k stands for the required actuation;

• Process faults (or component faults), which occur when some changes in the
system make the dynamic relation invalid, e.g., a leak in a tank in a two-tank
system;

• Sensor faults, which can be viewed as serious measurements variations. Sim-
ilarly to actuator faults, two sensor fault scenarios can be considered:
Lock-in-place: the sensor is locked in a certain position at an unknown time

tf and does not provide the current value of the measured variable:

yi,k = yi,tf
= const, ∀k > tf . (1.4)

Loss of measurement accuracy: a degradation of the measurement accuracy
of the sensor:

yi,k = kiy
c
i,k, ∀k > tf , (1.5)

while yc
i,k stands for the true value of the measured variable and ki is

significantly different from 0.

The role of the fault diagnosis part is to monitor the behaviour of the system
and to provide all possible information regarding the abnormal functioning of
its components. As a result, the overall task of fault diagnosis consists of three
subtasks [27](Fig. 1.3):

Fault detection: to make a decision regarding the system stage – either that
something is wrong or that everything works under the normal conditions;

Fault isolation: to determine the location of the fault, e.g., which sensor or ac-
tuator is faulty;

Fault identification: to determine the size and type or nature of the fault.

However, from the practical viewpoint, to pursue a complete fault diagnosis the
following three steps have to be realised [56]:

Residual generation: generation of the signals that reflect the fault. Typically,
the residual is defined as a difference between the outputs of the system and
its estimate obtained with the mathematical model;



4 1. Introduction

Detection

Isolation

Identification

Fig. 1.3. Three-stage process of fault diagnosis

Residual evaluation: logical decision making on the time of occurrence and the
location of faults;

Fault identification: determination of the type of a fault, its size and cause.

The knowledge resulting from these steps is then provided to the controller re-
design part, which is responsible for changing the control law in such a way as
to maintain the required system performance. Thus, the scheme presented in
Fig. 1.1 can be perceived as a fault-tolerant one.

Fault-Tolerant Control (FTC) [16] is one of the most important research di-
rections underlying contemporary automatic control. FTC can also be perceived
as an optimised integration of advanced fault diagnosis [96, 179] and control [16]
techniques.

Finally, it is worth to note that the word symptom denotes a change of an
observable quantity from normal behaviour.

The main objective of this part is to present a general description of the
state-of-the-art regarding analytical and soft computing-based Fault Detection
and Isolation (FDI). It should also be noted that the material of this part is
limited to the approaches that can be extended or directly applied to non-linear
systems.

1.1 Introductory Background

If residuals are properly generated, then fault detection becomes a relatively
easy task. Since without fault detection it is impossible to perform fault isolation
and, consequently, fault identification, all efforts regarding the improvement of
residual generation seem to be justified. This is the main reason why the research
effort of this book is oriented towards fault detection and especially towards
residual generation.
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There have been many developments in model-based fault detection since the
beginning of the 1970s, regarding both the theoretical context and the applica-
bility to real systems (see [27, 96, 138] for a survey). Generally, the most popular
approaches can be split into three categories, i.e.,

• parameter estimation;
• parity relation;
• observer-based.

All of them, in one way or another, employ a mathematical system description
to generate the residual signal. Except for parameter estimation-based FDI, the
residual signal is obtained as a difference between the system output and its
estimate obtained with its model, i.e.,

zk = yk − ŷk. (1.6)

The simplest model-based residual generation scheme can be realised in a way
similar to that shown in Fig. 1.4. In this case, the design procedure reduces to
system identification, and fault detection boils down to checking the norm of
the residual signal ‖zk‖. In such a simple residual generation scheme, neural
networks seem to be especially popular [96, 139].

u y

ŷ

z

+

−

SYSTEM

Model

Fig. 1.4. Simple residual generation scheme

Irrespective of the identification metod used, there is always the problem of
model uncertainty, i.e., the model-reality mismatch. Thus, the better the model
used to represent system behaviour, the better the chance of improving the re-
liability and performance in diagnosing faults. This is the main reason why the
fault detection scheme shown in Fig. 1.4 is rarely used for maintaining fault di-
agnosis of high-safety systems. Indeed, disturbances as well as model uncertainty
are inevitable in industrial systems, and hence there exists a pressure creating
the need for robustness in fault diagnosis systems. This robustness requirement
is usually achieved at the fault detection stage, i.e., the problem is to develop
residual generators which should be insensitive (as far as possible) to model un-
certainty and real disturbances acting on a system while remaining sensitive to
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faults. In one way or another, all the above-mentioned approaches can realise
this requirement for linear systems.

Other problems arise from fault detection of non-linear systems. Indeed, the
available non-linear system identification techniques limit the application of fault
detection. For example, in the case of observer-based FDI non-linear state-space
models cannot be usually obtained using physical considerations (physical laws
governing the system being studied). Such a situation is usually caused by the
high complexity of the system being considered. This means that a model which
merely approximates system-input behaviour (no physical interpretation of the
state vector or parameters) should be employed.

The process of fault isolation requires usually more complex schemes than
the one of fault detection. Indeed, this very important task of FDI is typically
realised by either the so-called dedicated or generalised schemes [27, 84]. In the
case of the dedicated scheme, residual generators are designed in such a way
that each residual zi, i = 1, . . . , s is sensitive to one fault only while it remains
insensitive to others. Apart from a very simple fault isolation logic, which is
given by

|zi,k| > Ti ⇒ fi,k �= 0, i = 1, . . . , s, (1.7)

where Ti is a predefined threshold, this fault isolation design procedure is usually
very restrictive and does not allow achieving additional design objectives such
as robustness to model uncertainty. Irrespective of the above difficulties, the
dedicated fault isolation strategy is frequently used in neural network-based FDI
schemes [96].

On the contrary, residual generators of the generalised scheme are designed
in such a way as each residual zi, i = 1, . . . , s is sensitive to all but one faults.
In this case, the fault detection logic is slightly more complicated, i.e.,

|zi,k| > Ti

|zj,k| > Tj, j = 1, . . . , i − 1, i + 1, . . . , s

⎫
⎬

⎭
⇒ fi,k �= 0, i = 1, . . . , s, (1.8)

but it requires a less restrictive design procedure than the dedicated scheme, and
hence the remaining design objectives can usually be accomplished.

As has already been mentioned, the material presented in this book is limited
to discrete-time systems, and hence all the approaches that cannot be applied
to this class of systems are omitted.

1.2 Content

The remaining part of this book is divided into three main parts:

Principles of fault diagnosis: This part is composed of two chapters. Chapter 2
presents the most popular analytical approaches [27, 84, 96] that can be used
for fault diagnosis. In particular, three main approaches are discussed, i.e.,
parameter estimation, the parity relation and observers. The application of
the above approaches is discussed for both linear and non-linear systems.
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Finally, the main advantages and drawbacks of the discussed techniques are
portrayed. Chapter 3 presents soft computing techniques [96, 140, 151, 153,
154, 165] that can be used for fault diagnosis[96, 95, 97, 140, 181]. The at-
tention is limited to the so-called quantitative soft computing approaches. In
particular, neural networks and evolutionary algorithms [96, 140, 151, 181]
are considered. The chapter portrays a short introduction to these computa-
tional intelligence methods and presents a bibliographical review regarding
their application to fault diagnosis. Similarly as in Chapter 2, the advan-
tages and drawbacks of the soft computing techniques being considered are
discussed.

State and parameter estimation strategies: This part is also composed of two
chapters. Chapter 4 presents original observer-based solutions [183, 184, 186,
187] that can be used for fault diagnosis of non-linear systems. In particular,
this chapter is concerned with three different observer structures that are
based on the general idea of an unknown input observer [27]. Chapter 5 in-
troduces the idea of an active fault diagnosis approach. The general principle
of such an approach is to actively use the input signal to enhance the knowl-
edge about the current system behaviour. In the context of this technique,
the theory of experimental design for parameter estimation of non-linear sys-
tems is introduced [7, 167, 170]. The remaining part of this chapter shows
how to employ such a strategy for the estimation and fault detection of an
impedance [180].

Soft computing strategies: Similarly as in the case of the preceding part, this one
is composed of two chapters, too. Chapter 6 presents original evolutionary
algorithm-based approaches to fault diagnosis [114, 181, 183, 187]. In partic-
ular, it is shown how to use evolutionary algorithms for model design. An-
other development presented in this chapter concerns the application of the
evolutionary algorithms to increasing the convergence rate of the selected ob-
servers presented in Chapter 4. Chapter 7 presents also original developments
regarding neural network-based robust fault diagnosis [181, 182, 185, 188].
One objective of this chapter is to show how to describe modelling uncer-
tainty of neural networks. Another objective is to show how to use the result-
ing knowledge about model uncertainty for robust fault detection. It is also
worth noting that this chapter presents experimental design strategies that
can be used for decreasing model uncertainty of neural networks [182, 188].



2. Analytical Techniques-Based FDI

The main objective of this chapter is to present the main principles regarding
fault detection and isolation with analytical techniques. The chapter is organised
as follows: Section 2.1 presents the most popular approaches that are used for
FDI of linear systems. Starting from parameter estimation strategies through the
parity relation up to observers, general principles are described and commonly
used algorithms are outlined. A similar scenario is implemented in Section 2.2,
with non-linear systems considered instead. Section 2.3 is devoted to the robust-
ness issues in modern FDI.

2.1 Approaches to Linear Systems

The main objective of this section is to present an introduction to the most pop-
ular FDI approaches for linear systems. In particular, each of them is presented
and then its application to residual generation is discussed. Finally, it is shown
how to use them for fault isolation.

2.1.1 Parameter Estimation

As has already been mentioned parameter estimation is one of the three most
popular ways of FDI (see [84]). This section presents general rules of parameter
estimation-based FDI for linear-in-parameter systems.

Let us consider a linear-in-parameter system described by

yk = rT
k p + vk, (2.1)

where rk is the so-called regressor vector, e.g., rk = [yk−1, yk−2, uk, uk−1]T .
Assuming that the parameter vector p has physical meaning, the task consists

in detecting faults in a system by measuring the input uk and the output yk,
and then estimating the parameters of the model of the system (Fig. 2.1). Thus,
the fault can be modelled as an additive term acting on the parameter vector of
the system, i.e.,

p = pnom + f , (2.2)

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 11–30, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 2.1. Principle of parameter estimation-based residual generation

with pnom standing for the nominal (fault-free) parameter vector. Therefore,
the problem boils down to on-line parameter estimation, which can be solved
with various recursive algorithms, such as the celebrated recursive least-square
method [170], the instrumental variable approach [161] or the bounded-error
approach [116]. Irrespective of the parameter estimation method employed, the
fault detection logic boils down to checking if the residual norm is greater than
a predefined threshold, i.e.,

‖zk‖ > T ⇒ fk �= 0, (2.3)

and zk = pnom − p̂k, where p̂k is the parameter estimate.
The main drawback of this approach is that the model parameters should have

physical meaning, i.e., they should correspond to the parameters of the system.
In such situations, the detection and isolation of faults is very straightforward,
i.e., it is given by

|zi,k| > Ti ⇒ fi,k �= 0, i = 1, . . . , s = np. (2.4)

If this is not the case, it is usually difficult to distinguish a fault from a change
in the parameter vector p resulting from time-varying properties of the system.
Moreover, the process of fault isolation may become extremely difficult because
model parameters do not uniquely correspond to those of the system. It should
also be pointed out that the detection of faults in sensors and actuators is possible
but rather complicated [138]. Indeed, sensor and/or actuator faults may influence
the input and output data in the same way as the process (parameter) faults.
Indeed, in [169] the authors proposed an FDI approach for sensors and actuators
based on the parameter estimation framework. In particular, they employed the
Extended Kalman Filter (EKF) for estimating parameter values associated with
sensor and actuator faults.

Finally, it should be pointed out that the typical limitation regarding para-
meter estimation-based approaches is related to the fact that the input signal
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should be persistently exciting [67]. This condition is satisfied if the input sig-
nal uk provides enough information to estimate p. Many industrial systems,
however, may not allow feeding such (persistently exciting) signals as inputs.

2.1.2 Parity Relation

In the case of linear systems, the following state-space description (it is possi-
ble to use different descriptions [65, 84]) can be employed (in a deterministic
configuration):

xk+1 = Axk + Buk + L1fk, (2.5)
yk = Cxk + Duk + L2fk. (2.6)

The redundancy relation can analytically be specified as follows: Combining
together (2.5)–(2.6) from the time instant k − s up to k yields

⎡

⎢
⎢
⎢
⎣

yk−S

yk−S+1
...
yk

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Y k

= H

⎡

⎢
⎢
⎢
⎣

uk−S

uk−S+1
...
uk

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Uk

= Wxk−S + M

⎡

⎢
⎢
⎢
⎣

fk−S

fk−S+1
...
fk

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
F k

, (2.7)

whereas

H =

⎡

⎢
⎢
⎢
⎣

D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAS−1B CAS−1B · · · D

⎤

⎥
⎥
⎥
⎦

, W =

⎡

⎢
⎢
⎢
⎣

C
CA

...
CAS

⎤

⎥
⎥
⎥
⎦

, (2.8)

and

M =

⎡

⎢
⎢
⎢
⎣

L2 0 · · · 0
CL1 L2 · · · 0

...
...

. . .
...

CAS−1L1 CAS−1L1 · · · L2

⎤

⎥
⎥
⎥
⎦

. (2.9)

The residual signal can now be defined as [31]:

zk = V [Y k − HUk] = V Wxk−S + V MF k. (2.10)

In order to make (2.10) useful for fault detection, the matrix V should make
the residual signal insensitive to system inputs and states, i.e., V W = 0. On
the other hand, to make fault detection possible, the matrix V should also satisfy
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the condition V M �= 0. It can be shown that for appropriately large S (see [27]
for how to obtain the minimum order S), it follows from the Cayley-Hamilton
theorem that the solution to V W = 0 always exists. Finally, fault detection
boils down to checking the norm of the residual, i.e., ‖zk‖.

The fault isolation strategy can relatively easily be realised for sensor faults.
Indeed, using the general idea of the dedicated fault isolation scheme, it is pos-
sible to design the parity relation with the ith, i = 1, . . . , m, sensor only. This
means that yi and ci (being the ith row of C) should be used instead of y and C
in (2.6). Consequently, D should also be replaced by its ith row in (2.6). Thus, by
assuming that all actuators all fault free, the ith residual generator is sensitive to
the ith sensor fault only. This form of parity relation is called the single-sensor
parity relation and it has been studied in a number of papers, e.g., [113, 141].

Unfortunately, the design strategy for actuator faults is not as straightforward
as that for sensor faults. It can, of course, be realised in a very similar way but,
as is indicated in [27, 113], the isolation of actuator faults is not always possible
in the so-called single-actuator parity relation scheme.

2.1.3 Observers

The basic idea underlying observer-based (or filter-based, in the stochastic case)
approaches to fault detection is to obtain the estimates of certain measured
and/or unmeasured signals. Then, in the most usual case, the estimates of the
measured signals are compared with their originals, i.e., the difference between
the original signal and its estimate is used to form a residual signal zk = yk −
ŷk (Fig. 2.2). To tackle this problem, many different observers (or filters) can
be employed, e.g., Luenberger observers, Kalman filters, etc. From the above
discussion, it is clear that the main objective is the estimation of system outputs
while the estimation of the entire state vector is unnecessary. Since reduced-order
observers can be employed, state estimation is significantly facilitated. On the
other hand, to provide an additional freedom to achieve the required diagnostic
performance, the observer order is usually larger than the possible minimum one.

The admiration for observer-based fault detection schemes is caused by the
still increasing popularity of state-space models as well as the wide usage of
observers in modern control theory and applications. Due to such conditions, the
theory of observers (or filters) seems to be well developed (especially for linear
systems). This has made a good background for the development of observer-
based FDI schemes.

Luenberger observers and Kalman filters

Let us consider a linear system described by the following state-space equations:

xk+1 = Akxk + Bkuk + L1,kfk, (2.11)

yk+1 = Ck+1xk+1 + L2,k+1fk+1. (2.12)
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Fig. 2.2. Principle of observer-based residual generation

According to the observer-based residual generation scheme (Fig. 2.2), the resid-
ual signal can be given as

zk+1 =yk+1 − ŷk+1 = Ck+1[xk+1 − x̂k+1] + L2,k+1fk+1

=Ck+1[Ak − Kk+1Ck+1][xk − x̂k] + Ck+1L1,kfk

− Ck+1Kk+1L2,kfk + L2,k+1fk+1. (2.13)

To tackle the state estimation problem, the Luenberger observer can be used,
i.e.,

x̂k+1 = Akx̂k + Bkuk + Kk+1(yk − ŷk), (2.14)

and Kk stands for the so-called gain matrix and should be obtained in such a way
as to ensure asymptotic convergence of the observer, i.e., limk→∞(xk − x̂k) = 0
[134]. If this is the case, i.e., x̂k → xk, the state estimation error xk − x̂k

approaches zero and hence the residual signal (2.13) is only affected by the fault
vector fk.

A similar approach can be realised in a stochastic setting, i.e., for systems
which can be described by

xk+1 = Akxk + Bkuk + L1,kfk + wk, (2.15)
yk+1 = Ck+1xk+1 + L2,k+1fk+1 + vk+1, (2.16)

where wk and vk are zero-mean white noise sequences with the covariance matri-
ces Qk and Rk, respectively. In this case, the observer structure can be similar to
that of the Luenberger observer (2.14). To tackle the state estimation problem,
the celebrated Kalman filter can be employed [4]. The algorithm of the Kalman
filter can be described as follows:
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1. Time update:

x̂k+1/k = Akx̂k + Bkuk, (2.17)

P k+1/k = AkP kAT
k + Qk. (2.18)

2. Measurement update:

x̂k+1 = x̂k+1/k + Kk+1[yk+1 − Ck+1x̂k+1/k], (2.19)

Kk+1 = P k+1/kCT
k+1

[
Ck+1P k+1/kCT

k+1 + Rk+1

]−1
, (2.20)

P k+1 = [I − Kk+1Ck+1]P k+1/k. (2.21)

Finally, the residual signal can be given as

zk+1 =Ck+1Zk+1Ak[xk − x̂k] + Ck+1Zk+1L1,kfk (2.22)
+ Mk+1L2,kfk+1 + Ck+1Zk+1wk + Mk+1vk+1,

where Zk+1 = [I − Kk+1Ck+1] and Mk+1 = [I − Ck+1Kk+1]. Since the state
estimate x̂k approaches the real state xk (in the mean sense) asymptotically,
i.e., E(x̂k) → xk, the residual signal is only affected by faults and noise.

In both the deterministic (the Luenberger observer) and stochastic (the Kalman
filter) cases, fault detection can be performed by checking that the residual norm
‖zk‖ exceeds a prespecified threshold, i.e., ‖zk‖ > TH . In the stochastic case, it
is also possible to use more sophisticated, hypothesis-testing approaches such as
Generalised Likelihood Ratio Testing (GLRT) or Sequential Probability Ratio
Testing (SPRT) [13, 101, 178].

Observer-based fault isolation can, similarly to the parity relation approach
described in Section 2.1.2, be implemented with the dedicated fault isolation
scheme [84]. The main limitation of such an approach is related to the fact that
by using a single output for sensor fault isolation the reduced system may not
be observable. A similar limitation exists in the case of actuator fault isola-
tion. A more efficient way of isolating faults is to use the generalised observer-
based scheme [27]. Thus, by replacing the output vector yk by yk = [y1,k, . . . ,
yi−1, yi+1, . . . , ym,k]T in (2.12) (or in (2.16)), it is possible to design an observer
that is sensitive to all but the ith sensor fault. A similar strategy can be im-
plemented for actuator faults with the so-called unknown input observers (see
Section 2.3) or eigenstructure assignment [27]. However, similarly as is indicated
in Section 2.1.2, the isolation of actuator faults is not always possible.

2.2 Approaches to Non-linear Systems

The main objective of this section is to present an introduction to the most
popular FDI approaches for non-linear systems. Most techniques presented here
constitute direct extensions of the approaches described in Section 2.1. Thus,
FDI schemes based on these techniques are not described because they are the
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same as their linear counterparts. This means that the material of this section is
reduced to the description of the heart of model-based FDI, which is a residual
generator. There are, of course, some exceptions from this rule, but in such cases
the FDI procedure is carefully described.

2.2.1 Parameter Estimation

Similarly as in the case of linear-in-parameter systems, the FDI problem boils
down to estimating the parameters of the model of the system (Fig. 2.1). The
system can be generally described by

yk = g(φk, pk) + vk, (2.23)

while φk may contain the previous or current system input uk, the previous
system or model output, and the previous prediction error. The approach pre-
sented here inherits all the drawbacks and advantages of its linear counterpart
presented in Section 2.1.1. The FDI scheme is also the same. Another prob-
lem arises because g(·) is non-linear in its parameters. In this case, non-linear
parameter estimation techniques should be applied [170]. For complex models,
this may cause serious difficulties with a fast reaction on faults; consequently,
fault detection cannot be performed effectively and reliably. Irrespective of the
above difficulties, there are, of course, some studies in which such an approach
is utilised, e.g., [169].

2.2.2 Parity Relation

An extension of the parity relation to non-linear polynomial dynamic systems
was proposed in [70]. In order to describe this approach, let us consider a system
described by the state-space equations

xk+1 = g (xk, uk, fk) , (2.24)
yk = h(xk, uk, fk), (2.25)

where g (·) and h(·) are assumed to be polynomials. The equations (2.24)–(2.25)
can always be expressed on a time window [k − S, k]. As a result, the following
structure can be obtained:

yk−S,k = H
(
xk−S , uk−S,k, fk−S,k

)
, (2.26)

with uk−S,k = uk−S , . . . , uk and fk−S,k = fk−S , . . . , fk. In order to check the
consistency of the model equations, the state variables have to be eliminated.
This results in the following equation:

Φ(yk−S,k, uk−S,k, fk−S,k) = 0. (2.27)

Since g (·) and h(·) are assumed to be polynomials, elimination theory can be
applied to transform (2.26) into (2.27). Knowing that the Φi(·)s are polynomials
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and therefore they are expressed as sums of monomials, it seems natural to split
the expression (2.27) into two parts, i.e.,

zk = Φ1(yk−S,k, uk−S,k), (2.28)

zk = Φ2(yk−S,k, uk−S,k, fk−S,k). (2.29)

The right-hand side of (2.28) contains all the monomials in yk−S,k and uk−S,k

only, while (2.29) contains all the monomials involving at least one of the com-
ponents of fk−S,k. The above condition ensures that zk = 0 in the fault-free
case. Since the fault signal fk−S,k is not measurable, only the equation (2.28)
can be applied to generate the residual zk and, consequently, to detect faults.

One drawback of this approach is that it is limited to polynomial models
or, more precisely, to models for which the state vector xk can be eliminated.
Another drawback is that it is assumed that a perfect model is available, i.e.,
there is no model uncertainty. This may cause serious problems while applying
the approach to real systems.

Parity relation for a more general class of non-linear systems was proposed
by Krishnaswami and Rizzoni [104]. The FDI scheme considered is shown in
Fig. 2.3. There are two residual vectors, namely, the forward zf,k residual vec-
tor and the backward zb,k residual vector. These residuals are generated using
the forward and inverse (backward) models, respectively. Based on these resid-
ual vectors, fault detection can (theoretically) be easily performed, while fault
isolation should be realised according to Tab. 2.1. The authors suggest an exten-
sion of the proposed approach to cases where model uncertainty is considered.

Table 2.1. Principle of fault isolation with the non-linear parity relation

Fault location Non-zero element of zf,k Non-zero element of zb,k

ith sensor zi
f all elements dependent on yi

ith actuator all elements dependent on ui zi
b

+

+

-

-

u y

ŷf

ŷb

zf

zb

SYSTEM

Forward model

Inverse model

Fig. 2.3. Non-linear parity relation-based FDI
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Undoubtedly, strict existence conditions for an inverted model as well as pos-
sible difficulties with the application of the known identification techniques
make the usefulness of this approach for a wide class of non-linear systems
questionable.

Another parity relation approach for non-linear systems was proposed by
Shumsky [159]. The concepts of the parity relation and parameter estimation
fault detection techniques are combined. In particular, the parity relation is used
to detect offsets in the model parameters. The necessary condition is that there
exists a transformation xk = ξ(uk, . . . , uk+S , yk, . . . , yk+S), which may cause
serious problems in many practical applications. Another inconvenience is that
the approach inherits most drawbacks concerning parameter estimation-based
fault detection techniques.

2.2.3 Observers

Model linearisation is a straightforward way of extending the applicability of
linear techniques to non-linear systems. On the other hand, it is well known
that such approaches work well when there is no large mismatch between the
linearised model and the non-linear system. Two types of linearisation can be dis-
tinguished, i.e., linearisation around the constant state and linearisation around
the current state estimate. It is obvious that the second type of linearisation usu-
ally yields better results. Unfortunately, during such a linearisation the influence
of terms higher than linear is usually neglected (as in the case of the extended
Luenberger observer and the extended Kalman filter). One way out from this
problem is to improve the performance of linearisation-based observers. Another
way is to use linearisation-free approaches. Unfortunately, the application of such
observers is limited to certain classes of non-linear systems.

Generally, FDI principles of non-linear observer-based schemes are not differ-
ent than those described in Section 2.1.3. Apart from this similarity, the design
complexity and feasibility of such FDI schemes is usually far more sophisticated.

Extended Luenberger observers and Kalman filters

Let us consider a non-linear discrete-time system described by the following
state-space equations:

xk+1 = g (xk, uk) + L1,kfk, (2.30)
yk+1 = h(xk+1) + L2,k+1fk+1. (2.31)

In order to apply the Luenberger observer presented in Section 2.1.3, it is neces-
sary to linearise the equations (2.30) and (2.31) around either a constant value
(e.g., x = 0) or the current state estimate x̂k. The latter approach seems to be
more appropriate as it improves its approximation accuracy as x̂k tends to xk.
In this case, the approximation can be realised as follows:

Ak =
∂g (xk, uk)

∂xk

∣
∣
∣
∣
xk=x̂k

, Ck =
∂h(xk)

∂xk

∣
∣
∣
∣
xk=x̂k

. (2.32)
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As a result of using the Luenberger observer (2.14), the state estimation error
takes the form

ek+1 = [Ak+1 − Kk+1Ck]ek + L1,kfk − Kk+1L2,kfk+
+ o(xk, x̂k), (2.33)

where o(xk, x̂k) stands for the linearisation error caused by the introduction
of (2.32).

Because of a highly time-varying nature of Ak and Ck as well as the lineari-
sation error o(xk, x̂k), it is usually very difficult to obtain an appropriate form
of the gain matrix Kk+1. This is the main reason why this approach is rarely
used in practice.

As the Kalman filter constitutes a stochastic counterpart of the Luenberger
observer, the extended Kalman filter can also be designed for the following class
of non-linear systems:

xk+1 = g (xk, uk) + L1,kfk + wk, (2.34)
yk+1 = h(xk+1) + L2,k+1fk+1 + vk+1, (2.35)

while, similarly to the linear case, wk and vk are zero-mean white noise se-
quences. Using the linearisation (2.32) and neglecting the influence of the lin-
earisation error, it is straightforward to use the Kalman filter algorithm described
in Section 2.1.3. The main drawback of such an approach is that it works well
only when there is no large mismatch between the model linearised around the
current state estimate and the non-linear behaviour of the system.

The EKF can also be used for deterministic systems, i.e., as an observer for
the system (2.30)–(2.31) (see [19] and the references therein). In this case, the
noise covariance matrices can be set almost arbitrarily. As was proposed in [19],
this possibility can be used to increase the convergence of an observer.

Apart from difficulties regarding linearisation errors, similarly to the case of
linear systems, the presented approaches do not take model uncertainty into
account. This drawback disqualifies those techniques for most practical applica-
tions, although there are cases for which such techniques work with acceptable
efficiency, e.g., [100].

Observers for Lipschitz systems

Let us consider a class of non-linear systems which can be described by the
following state-space equations:

xk+1 = Axk + Buk + h(yk, uk) + g (xk, uk) , (2.36)
yk+1 = Cxk+1, (2.37)

and g (xk, uk) satisfies

‖g (x1, u) − g (x2, u) ‖2 ≤ γ‖x1 − x2‖2, ∀x1, x2, u, (2.38)

where γ > 0 stands for the Lipschitz constant. Many non-linear systems can be
described by (2.36), e.g., sinusoidal non-linearities satisfy (2.38), even polynomial
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non-linearities satisfy (2.38) assuming that xk is bounded. This means that
(2.36)–(2.37) can be used for describing a wide class of non-linear systems, which
is very important from the point of view of potential industrial applications.

The first solution for state estimation of the continuous-time counterpart of
(2.36)–(2.37) was developed by Thau [166]. Assuming that the pair (A, C) is
observable, Thau proposed a convergence condition, but he did not provide
an effective design procedure for the observer. In other words, in light of this
approach, the observer has to be designed with a trial-and-error procedure that
amounts to solving a large number of Lyapunov equations and then checking
the convergence conditions. Many different authors followed a similar proce-
dure but they proposed less restrictive convergence conditions (see, e.g., [155]).
Finally, in [1, 149, 150] the authors proposed a more effective observer design.
In particular, in [150] the authors employed the concept of the distance to the
unobservability of the pair (A, C), and proposed an iterative coordinate trans-
formation technique reducing the Lipschitz constant. In [1] the authors employed
and improved the results of [150], but the proposed design procedure does not
seem straightforward. In [149], the author reduced the observer design problem
to a global optimisation one. The main disadvantage of this approach is that
the proposed algorithm does not guarantee obtaining a global optimum. Thus,
many trial-and-error steps have to be carried out to obtain a satisfactory so-
lution. Recently, in [142] the authors proposed the so-called dynamic observer
with a mixed binary search and the H∞ optimisation procedure.

Unfortunately, the theory and practice concerning observers for discrete-time
systems (2.36)–(2.37) are significantly less mature than those for their continuous-
time counterparts. Indeed, there are few papers only [22, 172] dealing with
discrete-time observers. The authors of the above works proposed different para-
meterisations of the observer, but the common disadvantage of these approaches
is that a trial-and-error procedure has to be employed that boils down to solving
a large number of Lyapunov equations. Moreover, the authors do not provide
convergence conditions similar to those for continuous-time observers [155, 166].

Coordinate change-based observers

Another possible approach can be implemented by a suitable non-linear change
of coordinates to bring the original system into a linear (or pseudo-linear) one.
Let us consider the following non-linear system:

xk+1 = g (xk, uk) + L1,kfk, (2.39)
yk+1 = h(xk+1) + L2,k+1fk+1. (2.40)

For design purposes, let us assume that fk = 0. The basic idea underlying
coordinate-change-based observers is to determine the coordinate change (at
least locally defined) of the form

s = φ(x),
ȳ = ϕ(y), (2.41)
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such that in the new coordinates (2.41) the system (2.39)–(2.40) is described by:

sk+1 = A(uk)sk + ψ(yk, uk), (2.42)
ȳk+1 = Csk+1, (2.43)

where ψ(·) is a non-linear (in general) function. There is no doubt that the
observer design problem is significantly simplified when (2.42)–(2.43) are used
instead of (2.39)–(2.40). The main drawback of such an approach is related to
strong design conditions that limit its application to particular classes of non-
linear systems (for an example regarding single-input single-output systems, the
reader is referred to [23]).

Observers for bilinear and low-order polynomial systems

A polynomial (and, as a special case, bilinear) system description is a natural
extension of linear models. Designs of observers for bilinear and low-order polyno-
mial systems have been considered in a number of papers [6, 75, 81, 92, 158, 191].
Let us consider a bilinear system modelled by the following state space equations:

xk+1 = Akxk +
r∑

i=1

Aiui,kxk + Buk + L1fk, (2.44)

yk+1 = Cxk+1 + Duk + L2fk+1. (2.45)

Hou and Pugh [81] established the necessary conditions for the existence of the
observer for the continuous-time counterpart of (2.44)–(2.45). Moreover, they
proposed a design procedure involving the transformation of the original sys-
tem (2.44)–(2.45) into an equivalent, quasi-linear one. An observer for systems
which can be described by state-space equations consisting of both linear and
polynomial terms was proposed in [6, 158].

2.3 Robustness Issues

Irrespective of the linear (Section 2.1) or non-linear (Section 2.2) FDI technique
being employed, FDI performance will be usually impaired by the lack of ro-
bustness to model uncertainty. Indeed, the model reality mismatch may cause
very undesirable situations such as undetected faults or false alarms. This may
lead to serious economical losses or even catastrophes.

Taking into account the above conditions, a large amount of knowledge on de-
signing robust fault diagnosis systems has been accumulated through the litera-
ture since the beginning of the 1980s. For a comprehensive survey regarding such
techniques, the reader is referred to the excellent monographs [27, 65, 96, 138].
Thus, the subject of this section is to outline the main issues of robust fault
diagnosis.

Let us start with the parameter estimation techniques described in Sections
2.1.1 and 2.2.1. The main assumption underlying the FDI approaches presented
in these sections, was the fact that perfect parameter estimates can be obtained.
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This is, of course, very hard to attain in practice. Indeed, the fact that the mea-
surements used for parameter estimation can be corrupted by noise and distur-
bances contributes directly to the so-called parameter uncertainty. This means
that there is no unique p̂ that is consistent with a given set of measurements,
but there is a parameter set P that satisfies this requirement. This parameter set
is usually called the confidence region or the feasible parameter set [116, 170].
Such a set can be determined on-line for linear-in-parameter systems using either
statistical [170] or bounded-error approaches [116, 170, 173]. In both the cases,
fault diagnosis tasks can be realised in two different ways. The first one boils
down to

pnom /∈ Pk ⇒ fk �= 0, (2.46)

where Pk is the parameter confidence region associated with k input-output mea-
surements. The second approach is implemented in such a way as the knowledge
regarding Pk is used to calculate the so-called output confidence interval:

yN
k ≤ yk ≤ yM

k . (2.47)

This confidence interval is then used for fault detection, i.e.,

yk < yN
k or yk > yM

k ⇒ fk �= 0. (2.48)

The advantage of (2.48) over (2.46) is that no knowledge regarding the nominal
(fault-free) parameter vector pnom is required.

In the case of fault isolation, the feasible parameter set P can be used for
calculating the parameter confidence intervals:

pN
i,k ≤ pi ≤ pM

i,k, i = 1, . . . , np. (2.49)

These intervals can then be employed for fault isolation:

pi,nom < pN
i,k or pi,nom > pM

i,k ⇒ fi,k �= 0, i = 1, . . . , s = np. (2.50)

In order to extend the above strategies for non-linear-in-parameter systems, it
is necessary to use various linearisation strategies, which usually impair the
reliability and effectiveness of FDI.

An alternative approach to robust parameter estimation-based fault diagnosis
was proposed in [135, 193]. The authors considered the continuous-time coun-
terpart of the following system:

xk+1 = g (xk, uk) + h(xk, uk, k) + L(k − k0)φ(xk, uk), (2.51)

while L(k − k0) is a matrix function representing the time profiles of the faults
(with k0 being an unknown time), and h(xk, uk, k) is the modelling error
satisfying

|hi(xk, uk, k)| ≤ h̄, i = 1, . . . , n, (2.52)
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where h̄ is a known bound. A change in the system behaviour caused by the
faults is modelled by φ(xk, uk), which belongs to a finite set of functions:

F =
{
φ1(xk, uk), . . . , φs(xk, uk)

}
. (2.53)

Each fault function φi(xk, uk), i = 1, . . . , s is assumed to be a parametric fault,
i.e., a fault with a known non-linear structure but with unknown parameter
vectors. To tackle parametric fault detection, the authors proposed the so-called
detection and approximation observer while fault isolation was realised with
a bank of non-linear adaptive observers.

As can be observed in the literature [27, 65, 96, 138], the most common
approach to robust fault diagnosis is to use robust observers. This is mainly
because of the fact that the theory of robust observers is relatively well developed
in the control engineering literature. Indeed, the most common approaches to
representing model uncertainty in robust observers for linear systems can be
divided into five categories:

Norm-bounded model uncertainty: it corresponds to a system description whose
matrices are modelled in the form of a known matrix M 0 and an additive
uncertainty term ΔM satisfying ‖ΔM‖ ≤ 1. Thus the matrices describing
the system are of the following form:

M = M0 + ΔM = M0 + HFE, (2.54)

where F and E are known constant matrices, and

F T F 	 I. (2.55)

Polytopic model uncertainty: it corresponds to a system description whose ma-
trices are contained in a polytope of matrices, i.e.,

M ∈ Co (M1, . . . , MN ) , (2.56)

or, equivalently, M ∈ M with

M =

{

X : X =
N∑

i=1

αiM i, αi ≥ 0,

N∑

i=1

αi = 1

}

. (2.57)

Affine model uncertainty: it corresponds to a system description whose matrices
are modelled as a collection of fixed affine functions of varying parameters
p1, . . . , pnp , i.e.,

M (p) = M0 + p1M1 + · · · + pnpMnp , (2.58)

whereas M i, i = 0, . . . , np are known matrices, and

p
i
≤ pi ≤ p̄i, i = 1, . . . , np. (2.59)
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Interval model uncertainty: it corresponds to a system description whose matri-
ces M are not known precisely but their elements are described by known
intervals, i.e.:

mi,j ≤ mi,j ≤ m̄i,j . (2.60)

Unknown input model uncertainty: it corresponds to the system description in
which model uncertainty is modelled by an unknown additive term, i.e.,

xk+1 = Axk + Buk + Edk, (2.61)

where dk is an unknown input, and E denotes its distribution matrix which
is known, i.e., it can be efficiently estimated with one of the approaches
described in [27, 96].

As can be found in the literature [27, 65, 84, 96, 138], the most popular approach
is to use unknown input model uncertainty. The observer resulting from such an
approach is called the Unknown Input Observer (UIO).

Although the origins of UIOs can be traced back to the early 1970s (cf. the
seminal work of Wang et al. [171]), the problem of designing such observers is
still of paramount importance both from the theoretical and practical viewpoints.
A large amount of knowledge on using these techniques for model-based fault
diagnosis has been accumulated through the literature for the last three decades
(see [27, 96] and the references therein). Generally, design problems regarding
UIOs can be divided into three distinct categories:

Design of UIOs for linear deterministic systems:
Apart from the seminal paper of Wang et al. [171], it is worth noting a few
pioneering and important works in this area, namely, the geometric ap-
proach by Bhattacharyya [14], the inversion algorithm by Kobayashi and
Nakamizo [93], the algebraic approach by Hou and Müller [79] and, finally,
the approach by Chen, Patton and Zhang [29]. The reader is also referred to
the recently published developments, e.g., [82].

Design of UIOs for linear stochastic systems:
Most design techniques concerning such a class of linear systems make use
of ideas for linear deterministic systems along with the Kalman filtering
strategy. Thus, the resulting approaches can be perceived as Kalman filters
for linear systems with unknown inputs. The representative approaches of
this group were developed by Chen, Patton and Zhang [27, 29], Darouach and
Zasadzinski [37], Hou and Patton [80] and, finally, Keller and Darouach [91].

A significantly different approach was proposed in [179]. Instead of us-
ing the Kalman filter-like approach, the author employed the bounded-error
state estimation technique [109], but the way of decoupling the unknown
input remained the same as that in [91].

Design of UIOs for non-linear systems:
The design approaches developed for non-linear systems can generally be
divided into three categories:
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non-linear state-transformation-based techniques: apart froma relatively large
class of systems to which they can be applied, even if the non-linear trans-
formation is possible it sometimes leads to another non-linear system and
hence the observer design problem remains open (see [2, 157] and the ref-
erences therein).

linearisation-based techniques: such approaches are based on a similar strat-
egy as that for the extended Kalman filter [96]. In [179, 187], the author
proposed an Extended Unknown Input Observer (EUIO) for non-linear
systems. He also proved that the proposed observer is convergent under
certain conditions.

Observers for particular classes of non-linear systems: for example, UIOs for
polynomial and bilinear systems [6, 75] or UIOs for Lipschitz systems
[94, 142].

To illustrate the general principle of the UIO, let us consider a linear system
described by the following state-space equations:

xk+1 = Akxk + Bkuk + Ekdk + L1,kfk, (2.62)
yk+1 = Ck+1xk+1 + L2,k+1fk+1, (2.63)

where the term Ekdk stands for model uncertainty as well as real disturbances
acting on the system, and rank(Ek) = q. The general structure of an unknown
input observer can be given as follows [27]:

sk+1 = F k+1sk + T k+1Bkuk + Kk+1yk, (2.64)
x̂k+1 = sk+1 + Hk+1. (2.65)

If the following relations hold true:

Kk+1 = K1,k+1 + K2,k+2, (2.66)
T k+1 = I − Hk+1Ck+1 (2.67)
F k+1 = Ak − Hk+1Ck+1Ak − K1,k+1Ck, (2.68)

K2,k+1 = F k+1Hk, (2.69)

then (assuming the fault-free mode, i.e., fk = 0 ) the state estimation error is

ek+1 = F k+1ek + [I − Hk+1Ck+1]Ekdk. (2.70)

From the above equation, it is clear that to decouple the effect of an unknown
input from the state estimation error (and, consequently, from the residual), the
following relation should be satisfied:

[I − Hk+1Ck+1]Ek = 0. (2.71)

The necessary condition for the existence of a solution to (2.71) is rank(Ek) =
rank(Ck+1Ek) [27, p. 72, Lemma 3.1], and a special solution is

H∗
k+1 = Ek

[
(Ck+1Ek)T Ck+1Ek

]−1
(Ck+1Ek)T . (2.72)
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The remaining task is to design the matrix K1,k+1 so as to ensure the con-
vergence of the observer. This can be realised in a similar way as it is done in
the case of the Luenberger observer. Finally, the state estimation error and the
residual are given by

ek+1 = F k+1ek + T k+1L1,kfk

− Hk+1L2,k+1fk+1 − K1,k+1L2,kfk, (2.73)
zk+1 = Ck+1ek+1 + L2,k+1fk+1. (2.74)

Since the Kalman filter constitutes a stochastic counterpart of the Luenberger
observer, there can also be developed a stochastic counterpart of the UIO [27],
i.e., an observer which can be applied to the following class of systems:

xk+1 = Akxk + Bkuk + Ekdk + L1,kfk + wk, (2.75)
yk+1 = Ckxk+1 + L2,k+1fk+1 + vk+1. (2.76)

Apart from the robustness properties, another reason why UIOs are very popular
in fault diagnosis schemes is the fact that they can be effectively applied to sensor
and actuator fault isolation. First, the sensor fault isolation scheme is described.
In this case, the actuators are assumed to be fault-free, and hence, for each of
the observers, the system can be characterised as follows:

xk+1 = g (xk) + h(uk) + Ekdk, (2.77)

yj
k+1 = Cj

k+1xk+1 + f j
k+1, j = 1, . . . , m, (2.78)

yj,k+1 = cj,k+1xk+1 + fj,k+1, (2.79)

where, similarly as it was done in [27], cj,k ∈ R
n is the jth row of the matrix

Ck, Cj
k ∈ R

m−1×n is obtained from the matrix Ck by deleting the jth row,
cj,k, yj,k+1 is the jth element of yk+1, and yj

k+1 ∈ R
m−1 is obtained from the

vector yk+1 by deleting the jth component yj,k+1. Thus, the problem reduces
to designing m UIOs (Fig. 2.4). Therefore, each residual generator (observer) is
driven by all inputs and all outputs but one. When all sensors but the jth one
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are fault-free and all actuators are fault-free, then the residual zk = yk − ŷk will
satisfy the following isolation logic:

{
‖zj

k‖ < T H
j

‖zl
k‖ ≥ T H

l , l = 1, . . . , j − 1, j + 1, . . . , m,
(2.80)

while T H
i denotes a prespecified threshold.

Similarly to the case of the sensor fault isolation scheme, in order to design
the actuator fault isolation scheme it is necessary to assume that all sensors are
fault free. Moreover, the term h(uk) in

xk+1 = g (xk) + h(uk) + Ekdk, (2.81)
yk+1 = Ck+1xk+1 (2.82)

should have the following structure:

h(uk) = B(uk)uk, (2.83)

where the ith column of B(uk) is a non-linear function of the form bi(ui
k), and

ui
k ∈ R

r−1 is obtained from uk by deleting its ith component, ui,k.
In this case, for each of the observers the system can be characterised as

follows:

xk+1 = g (xk) + hi(ui
k + f i

k) + hi(ui,k + fi,k) + Ekdk

= g (xk) + hi(ui
k + f i

k) + Ei
kdi

k, (2.84)
yk+1 = Ck+1xk+1, i = 1, . . . , r, (2.85)

with

hi(ui
k + f i

k) = Bi(uk)(ui
k + f i

k), (2.86)

hi(ui,k + fi,k) = bi(ui
k)(ui,k + fi,k), (2.87)

while Bi(uk) is obtained from B(uk) by deleting its ith column, and

Ei
k = [Ek bi(ui

k)], di
k =

[
dk

ui,k + fi,k

]

. (2.88)

Thus, the problem reduces to designing r UIOs (Fig. 2.5). When all actuators
but the ith one are fault-free, and all sensors are fault-free, then the residual
zk = yk − ŷk will satisfy the following isolation logic:

{
‖zi

k‖ < T H
i

‖zl
k‖ ≥ T H

l , l = 1, . . . , i − 1, i + 1, . . . , r.
(2.89)

The idea of an unknown input has also been employed in parity relation-based
robust fault diagnosis for linear systems [42]. A robust parity relation method
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for non-linear systems was proposed by Yu and Shields [192]. In particular, the
bilinear class of non-linear systems was considered, which can be described as
follows:

xk+1 = Axk +
r∑

i=1

Aiui,kxk + Buk + Edk + L1fk, (2.90)

yk+1 = Cxk+1 + Duk + L2fk+1. (2.91)

By including bilinear terms into the system matrix, a linear time-varying model
of the following form is obtained:

xk+1 = Akxk + Buk + Edk + L1fk, (2.92)
yk+1 = Cxk+1 + Duk + L2fk+1. (2.93)

where

Ak = A +
r∑

i=1

Aiui,k. (2.94)

Yu and Shields proposed a recursive algorithm for calculating the matrices in
the parity equation, which makes it possible to reduce the computational time
significantly. They also showed how to perform an effective fault isolation with
the singular value decomposition-based approach.

2.4 Concluding Remarks

The main objective of this chapter was to present the main principles of mod-
ern model-based fault diagnosis. Starting from elementary concepts and defini-
tions, an outline of the most popular schemes for linear systems was presented
(Section 2.1). In particular, three most popular approaches were considered, i.e.,
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parameter estimation, parity relation and observers. The same line of presen-
tation was realised for non-linear systems (Section 2.2). Important robustness
issues of modern fault diagnosis were discussed in Section 2.3. In particular,
it was shown how the robustness problem is tackled in the case of parameter
estimation, observers, and the parity relation. It was also shown that the most
popular way to settle such a challenging problem is to use the so-called unknown
input model uncertainty. Indeed, this strategy has received a considerable at-
tention in the fault diagnosis literature. This popularity can be explained by the
fact that such an approach can be successfully used for robust fault detection
and isolation. As was shown in Section 2.3, an appropriate configuration of the
unknown input makes it possible to design a fault isolation scheme.

As can be observed in the literature, the most popular approach that uses
unknown input model uncertainty is the so-called unknown input observer. Tak-
ing into account the presented state-of-the-art regarding observers and unknown
input observers for non-linear systems, the number of real world applications
(not only simple simulated systems) of non-linear observers should proliferate.
Unfortunately, this is not the case. The main reason for such a situation is the
relatively high design complexity of non-linear observers [2, 198]. This does not
encourage engineers to apply those in industrial reality. Indeed, apart from the
theoretically large potential of observer-based schemes, their computer imple-
mentations cause serious problems for engineers that, who usually are not fluent
in the complex mathematical description involved in theoretical developments.

Taking into account the above problems, there are several tasks that has to
be solved in order to make the unknown input observer for non-linear systems
easier to implement in industrial reality:

Improve the convergence of linearisation-based techniques: it is an obvious fact
that linearisation-based observers are almost as easy to implement as their
linear counterparts. On the other hand, such approaches usually suffer from
the lack of convergence. Thus, improving their convergence abilities is of
paramount importance both from the theoretical and practical viewpoints.

Simplification of linearisation-free techniques: As was mentioned in Sections 2.2
and 2.3, there is a number of observers that can be used for particular classes
of non-linear systems, e.g., Lipschitz systems, without the use of linearisa-
tion. Unfortunately, the design strategies of such observers are usually very
complex, which limits their practical applications.
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Challenging design problems arise regularly in modern fault diagnosis systems.
Unfortunately, the classic analytical techniques often cannot provide acceptable
solutions to such difficult tasks. Indeed, as has already been mentioned, the de-
sign complexity of most observers for non-linear systems does not encourage
engineers to apply those in practice. Another fact is that the application of ob-
servers is limited by the need for non-linear state-space models of the system
being considered, which is usually a serious problem in complex industrial sys-
tems. This explains why most of the examples considered in the literature are
devoted to simulated or laboratory systems, e.g., the known two- or three-tank
system, the inverted pendulum, etc. [27, 96, 198]. Another serious difficulty is
that there are examples for which fault directions are very similar to that of an
unknown input. This may lead to a situation in which the effect of some faults is
minimised and hence they may be impossible to detect. Other approaches that
make use of the idea of an unknown input also inherit these drawbacks, e.g., the
robust parity relation (see Section 2.3).

The above problems contribute to the rapid development of soft computing-
based FDI [96, 132, 151, 148]. Generally, the most popular soft computing tech-
niques that are used within the FDI framework can be divided into three groups:

• Neural networks;
• Fuzzy logic-based techniques;
• Evolutionary algorithms.

There are, of course, many combinations of such approaches, e.g., neuro-fuzzy
systems [96, 99]. Another popular strategy boils down to integrating analytical
and soft computing techniques, e.g., evolutionary algorithms and observers [183,
187] or neuro-fuzzy systems and observers [168].

The material of this book is limited to the so-called quantitative soft com-
puting techniques, namely, neural networks and evolutionary algorithms [181].
Because of the fact that fuzzy logic-based approaches can be perceived as quali-
tative soft computing tools, they are beyond the scope of this book. For a com-
prehensive description regarding such techniques, the reader is referred to [96].

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 31–46, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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The chapter is organised as follows: Section 3.1.1 presents an elementary back-
ground regarding neural networks. In particular, starting from simple neural net-
works for static systems up to complex structures used for non-linear dynamic
systems, the advantages and drawbacks of neural networks are discussed. Sec-
tion 3.1.2 presents a bibliographical review regarding the application of neural
networks to FDI.

A similar line of presentation is realised for evolutionary algorithms. In par-
ticular, Section 3.2 presents an elementary background regarding evolutionary
algorithms while Section 3.2.2 presents a bibliographical review regarding their
application to FDI.

3.1 Neural Networks

Generally, neural networks [73] can be perceived as a conveniently parameterised
set of non-linear maps. In the last fifteen years, neural networks have been suc-
cessfully used for solving complex problems in modelling and pattern recogni-
tion (see [73] and the references therein). In the case of pattern recognition, a fi-
nite set of input-output pairs is given, where the inputs represent the objects to be
recognised while the outputs stand for the pattern classes to which they belong.
Thus, the role of a neural network is to approximate the map between these two
spaces. In the case of modelling, it is assumed that the input-output relation is
formed by a non-linear system, and the role of a neural network is to approximate
the behaviour of this system. In both cases, the application of neural networks is
justified by the assumption that there exists a non-linear input-output map. The
key theoretical result behind both applications is the fact that neural networks
are universal approximators [73]. There are, of course, many different properties
(see, e.g., [25]) which make neural networks attractive for practical applications.

One objective of the subsequent part of this section is to present the most
frequently used structures of neural networks and to outline their advantages
and drawbacks (Section 3.1.1). Another objective is to present a general view on
the problem of using neural networks in fault diagnosis schemes. In particular,
Section 3.1.2 presents a bibliographical review regarding the application of neural
networks to FDI.

3.1.1 Basic Structures

This section reviews the well-known and frequently used Artificial Neural Net-
works (ANNs), which can be employed to the identification of static non-linear
systems. In particular, the so-called feed-forward networks such as the Multi-
Layer Perceptron (MLP) and Radial Basis Function (RBF) networks are
considered.

Multi-layer perceptron

Artificial neural networks consist of a number of sub-units called neurons. The
classic neuron structure (Fig. 3.1) can be described by
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Fig. 3.1. Classic neuron structure

yM = g

(
r∑

i=0

piui

)

= g(pT u), with u0 = 1, (3.1)

where g(·) stands for the so-called activation function, and, as usual, p is the
parameter (or weight) vector to be estimated. It is obvious that the behaviour
of the neuron (3.1) depends on the activation function g(·). There are, of course,
many different functions which can be employed to settle this problem. The
simplest choice is to use a linear activation function resulting in the so-called
Adaline neuron [76]. Nevertheless, real advantages of neural networks can be
fully exploited when activation functions are non-linear. Typically, the activation
function is chosen to be of the saturation type. The common choice is to use
sigmoidal functions such as the logistic

g(x) = logistic(x) =
1

1 + exp(−x)
(3.2)

and the hyperbolic tangent

g(x) = tanh(x) =
1 − exp(−2x)
1 + exp(−2x)

= 2logistic(2x) − 1 (3.3)

functions. As can be seen from (3.3), the functions can be transformed into each
other. Moreover, these two functions share an interesting property, namely, that
their derivatives can be expressed as simple functions of the outputs. As long as
a gradient-based algorithm is used to obtain parameter estimates, this property
leads to a significant decrease in the computational burden, thus making the
network synthesis process more effective.

The multi-layer perceptron is a network consisting of neurons divided into
the so-called layers (Fig. 3.2). Such a network possesses an input layer, one or
more hidden layers, and an output layer. The main tasks of the input layer are
data preprocessing (e.g., scaling, filtering, etc.) and passing input signals into the
hidden layer. Therefore, only the hidden and output layers constitute a “true”
model. The connections between neurons are designed in such a way that each
neuron of the former layer is connected with each element of the succeeding one.
The non-linear neural network model (cf. Fig. 3.2) can symbolically be expressed
as follows:

yM = g3 (g2 (g1 (u))) , (3.4)
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Fig. 3.2. Exemplary multi-layer perceptron with 3 layers

where g1(·), g2(·), and g3(·) stand for operators defining signal transformation
through the 1st, 2nd and output layers, respectively.

One of the fundamental advantages of neural networks is their learning and
adaptational abilities. An MLP network is a universal approximator [78]. This
means that the MLP can approximate any smooth function with an arbitrary de-
gree of accuracy as the number of hidden layer neurons increases. From the tech-
nical point of view, the training of neural networks is nothing else but parameter
estimation. Indeed, once the structure of a network is known, the remaining task
is to obtain the parameter vector p. To tackle this problem, the celebrated back-
propagation algorithm [43, 76] can be employed. Other possibilities involve the
application of various stochastic [137, 170] or evolutionary algorithms [43]. These
approaches should be adapted when the classic gradient-based algorithms fail to
converge to satisfactory results. This is, however, a common situation, owing to
the multimodal character of the optimisation index. Another problem may occur
because of a large number of parameters to be estimated. This is especially true
for neural networks with many hidden layers.

The main drawback of neural networks arises from model structure selection.
There are, of course, many more or less sophisticated approaches to this problem,
and they can be divided into three classes:

1. Bottom-up approaches: starting with a relatively simple structure, the num-
ber of hidden neurons is increased.

2. Top-down approaches: starting from a relatively complex structure, which
seems to be sufficient to solve an identification problem, the “excessive”
neurons are removed.

3. Discrete optimisation methods: with each network structure, an evaluation
value is associated and then the network structure space is explored to find
an appropriate configuration.

Unfortunately, the efficiency of those algorithms is usually very limited. As
a result, neural networks with very poor generalisation abilities are obtained.
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Another drawback of neural networks is the fact that models resulting from this
approach are not in a “human readable” form. This means that the structure
of such a network is not able to provide any practical knowledge about that of
a real system. In fact, according to the literature, neural networks are called
black boxes.

Radial basis function networks

Radial basis function networks as rivals of arduously learning multi-layer percep-
trons have received considerable research attention in the recent years [43, 123].
This kind of networks requires many nodes to achieve satisfactory results. The
problem is somewhat similar to that of selecting an appropriate structure of
a multi-layer perceptron. The RBF network (Fig. 3.3) consists of three layers,
namely, the input layer, one hidden layer, and the output layer. The output φi

of the ith neuron of the hidden layer is a non-linear function of the Euclidean
distance from the input vector u to the vector of centres ci, and can be expressed
as follows:

φi = g (‖u − ci‖2) , i = 1, . . . , nh, (3.5)

where ‖ · ‖2 stands for the Euclidean norm and nh is the number of neurons
in the hidden layer. The jth network output is a weighted sum of the hidden
neurons’ output:

yM,j =
nh∑

i=1

pjiφi. (3.6)

yM,1u1

yM,2

yM,2

u2

ur

Fig. 3.3. Exemplary radial basis function networks
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The activation function g(x) is usually chosen to possess a maximum at x = 0.
Typical choices for the activation function are the Gaussian function,

g(x) = exp
(

−x2

ρ2

)

, (3.7)

and the inverse multi-quadratic function,

g(x) =
1

√
x2 + ρ2

, (3.8)

where ρ signifies an additional free parameter.
The fundamental task in designing RBF networks is the selection of the num-

ber of hidden neurons and the activation function type. Then, function centres
and their positions should be chosen. In this context, it should be pointed out
that too small a number of centres may result in poor approximation properties.

On the other hand, the number of exact centres increases according to the di-
mension of the input space. For the sake of this, the application of RBF networks
is rather restricted to low-dimensional problems.

A typical strategy for RBF network training consists in exploiting the linear-
ity of the output layer parameters (weights) and geometric interpretability of
the hidden layer parameters. The hidden layer parameters are determined first
and, subsequently, the output layer parameters are obtained by means of some
well-known approaches for linear parameter estimation, e.g., by the least-square
algorithm. There are, of course, many more or less sophisticated approaches to
selecting the centres and the widths of the basis function. The simplest one
consists in randomly selecting these parameters; however, this is not a really
practical approach. More efficient and, of course, more sophisticated approaches
rely on the application of clustering, grid-based and subset selection techniques,
as well as non-linear optimisation (see [123] for a survey).

Dynamic Neural Networks

Neural networks can also be modified in such a way that they can be useful to
identify a dynamic system [86, 96, 123]. This can be achieved by introducing

yM,k

uk

yM,k−ny
yM,k−1yM,k−2uk−1 uk−2 uk−nu

q−1q−1q−1q−1q−1q−1

Neural network

Fig. 3.4. Neural network with tapped delay lines
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Fig. 3.5. Recurrent neural network developed by Williams and Zipser
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Fig. 3.6. Partially recurrent Elman neural network

tapped delay lines into the model (Fig. 3.4). The multi-layer perceptron or the
radial basis function network can be employed as the main part of the overall
model. A recurrent network developed by Williams and Zipser [177] consists of
n fully connected neurons, r inputs and m outputs (Fig. 3.5). As can be clearly
seen, such a network has no feed-forward architecture. The main disadvantages
of such networks are caused by the slow convergence of the existing training
algorithms as well as stability problems of the resulting model.

Contrary to the above-mentioned fully recurrent structures, partially recur-
rent networks are based on feed-forward multi-layer perceptrons containing the
so-called context layer, as in the case of the Elman neural network (Fig. 3.6) [123].
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In such a network, feedback connections are realised from the hidden or output
layers to the context neurons. The recurrency is more structured, which leads to
faster training. As in the case of recurrent networks and most other approaches,
the disadvantages of partially recurrent neural networks arise from model order
selection as well as stability.

Locally recurrent globally feed-forward networks

In the case of fully or partially recurrent neural networks, either all or selected
connections are allowable. All neurons are similar to those of static networks,
i.e., they are static (no feedback within a neuron). Those global connections
cause various disadvantages, e.g., the lack of stability. An alternative solution
is to introduce dynamic neurons into the feed-forward network. There are, of
course, many different neuron models which can be employed for that purpose.
The best known architectures are the following:

• Neurons with local activation feedback [48]:

yM,k = g (yl,k) , yl,k =
r∑

i=1

piui,k +
ny∑

i=1

pr+iyl,k−i. (3.9)

• Neurons with local synapse feedback [10]:

yM,k = g

(
r∑

i=1

Gi(q)ui,k

)

, Gi(q) =

∑nu

j=0 bjq
−1

∑ny

j=0 ajq−1
. (3.10)

• Neurons with output feedback [68] :

yM,k = g

(
r∑

i=1

piui,k +
ny∑

i=1

pr+iyM,k−i

)

. (3.11)

• Neurons with an Infinite Impulse Response (IIR) filter [9, 137, 139]:

yk = g (yl,k) , yl,k =
nu∑

i=0

bisk−1 +
ny∑

i=1

aiyl,k−1,

sk =
r∑

i=1

piui,k. (3.12)

The main advantage of locally recurrent globally feed-forward networks is that
their stability can be proven relatively easily. As a matter of fact, the stability
of the network depends only on the stability of the neurons. In most cases the
stability conditions of a neuron boil down to checking the stability of a linear sub-
model. The feed-forward structure of such networks seems to make the training
process easier. On the other hand, the introduction of dynamic neurons enlarges
the parameter space significantly. This drawback together with the non-linear
and multi-modal properties of an identification index implies that parameter
estimation (or training) becomes relatively complex.
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3.1.2 Neural Networks in FDI

At the beginning of the 1990s, neural networks were proposed for identification
and control (see, e.g., [122]). The rapid development concerning applications of
neural networks to control engineering resulted in a vast number of publications
related to this subject. In 1992, Hunt et al. [83] confirmed the fast development
of this research area by publishing a survey on neural networks in control en-
gineering. In 1995, a similar work was published by Sjoberg et al. [160] in the
context of system identification with neural networks. Nowadays, the vast num-
ber of applications has increased significantly. Fault diagnosis constitutes one of
the thrusts of the research effort on neural networks for control [96].

The main objective of the subsequent part of this section is to present the de-
velopment of this particular research area. Rather than providing an exhaustive
survey on neural networks in fault diagnosis, it is aimed at providing a compre-
hensive account of the published work that exploits the special nature of neural
networks. Indeed, it is impossible to count all publications on fault diagnosis in
which neural networks are used as models of the systems being diagnosed. The
strategy underlying such an approach boils down to generating the residual with
the system and neural network output according to the simple residual gener-
ation scheme presented in Fig. 1.4. Examples of using such an approach with
the classic multi-layer perceptron are leakages detection in an electro-hydraulic
cylinder drive in a fluid power system [174], the diagnosis of non-catastrophic
faults in a nuclear plant [175], and process valve actuator fault diagnosis [89].
Similar examples, but with dynamic neural networks, are the diagnosis of a chem-
ical plant [58], the diagnosis of a valve actuator [96, 137], and the diagnosis of
a steam evaporator [86]. Neural networks are also immensely popular in control
and fault diagnosis schemes for induction motors [90, 64, 129, 148]. Finally, there
are works that deal with fault diagnosis of transmission lines [131] and analog
circuits [130].

There is a number of works concerning observer design with neural net-
works [3, 72]. Thus, when non-linear state-space models are available, then these
approaches can be utilised for residual generation and fault diagnosis. Moreover,
robustness with respect to model uncertainty can also be realised by using the
concept of an unknown input. As has already been mentioned, when the direc-
tion of faults is similar to that of an unknown input, then the unknown input
decoupling procedure may considerably impair fault sensitivity. If the above-
mentioned approach fails, then describing model uncertainty in a different way
seems to be a good remedy. One of the possible approaches is to use statistical
techniques [7, 170] (for an example regarding different approaches, the reader
is referred to [40]) to obtain parameter uncertainty of the model and, conse-
quently, model output uncertainty. Such parameter uncertainty is defined as the
parameter confidence region [7, 170] containing a set of admissible parameters
that are consistent with the measured data. Thus it is evident that parameter
uncertainty depends on measurement uncertainty, i.e., noise, disturbances, etc.

The knowledge about parameter uncertainty makes it possible to design the
so-called adaptive threshold [57]. The adaptive threshold, contrary to the fixed
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one (cf. Fig. 3.7), bounds the residual at a level that is dependent on model
uncertainty, and hence it provides a more reliable fault detection. Contrary to
the typical industrial applications of neural networks that are presented in the
literature [27, 89, 96], Witczak et al. [185] defined the task of designing a neural
network in such a way as to obtain a model with a possibly small uncertainty.
Indeed, the approaches presented in the literature try to obtain a model that
is best suited to a particular data set. This may result in a model with a rela-
tively large uncertainty. A degraded performance of fault diagnosis constitutes
a direct consequence of using such models. To tackle this challenging problem,
the authors adapted and modified the GMDH (Group Method of Data Han-
dling) approach [85, 96]. They proposed a complete design procedure concerning
the application of GMDH neural networks to robust fault detection. Starting
from a set of input-output measurements of the system, it is shown how to es-
timate the parameters and the corresponding uncertainty of a neuron using the
so-called bounded-error approach [116, 170]. As a result, they obtained a tool
that is able to generate an adaptive threshold. The methodology developed for
parameter and uncertainty estimation of a neuron makes it possible to formulate
an algorithm that allows obtaining a neural network with a relatively small mod-
elling uncertainty. All the hard computations regarding the design of the GMDH
neural network are performed off-line, and hence the problem regarding the time-
consuming calculations is not of paramount importance. The approach can also
be extended for dynamic systems by using the dynamic neuron structure [136].
The above-mentioned technique will be clearly detailed in Section 7.2.

It is well known that the reliability of such fault diagnosis schemes is strongly
dependent on model uncertainty, i.e., the mismatch between a neural network
and the system being considered. Thus, it is natural to minimise model uncer-
tainty as far as possible. This can be realised with the application of Optimum
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Experimental Design (OED) theory [7, 167, 170]. Some authors have conducted
active investigations in this important research area. White [176], MacKay [108],
and Cohn [35] showed the attractiveness of the application of OED to neural net-
works. Fukumizu [59, 61] developed the so-called statistical active learning tech-
nique, which is based on the general theory of OED. Recently, Witczak and Prȩtki
[188] developed a D-optimum experimental design strategy that can be used for
training single-output neural networks. They also showed how to use the obtained
network for robust fault detection with an adaptive threshold. In [182], the author
showed how to extend this technique to multi-input multi-output neural networks.
He also proposed a sequential experimental design algorithm that allows obtain-
ing a one-step-ahead D-optimum input. This algorithm can be perceived as a hy-
brid one since it can be used for both training and data development. Section 7.1
presents all the details regarding the above-described design methodology.

Finally, there is also a large number of approaches that use neural networks
as pattern classifiers [96] to tackle the FDI problem. Instead of using neural net-
works as the models of the systems being diagnosed, the networks are trained
to recognise different modes of the system, i.e., both faulty and non-faulty
ones. Examples of using such an approach are FDI in hydraulic fluid power
systems [105, 106], FDI in machine dynamics and vibration problems [190], sen-
sor fault diagnosis [194], fault diagnosis of chemical processes [197], and fault
diagnosis of a two-tank system [96].

3.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a broad class of stochastic optimisation al-
gorithms inspired by some biological processes, which allow populations of or-
ganisms to adapt to their surrounding environment. Such algorithms have been
influenced by Darwin’s theory of natural selection, or the survival of the fittest
(published in 1859). The idea behind it is that only certain organisms can sur-
vive, i.e., only those which can adapt to the environment and win the compe-
tition for food and shelter. Almost at the same time that Darwin’s theory was
presented (1865), Mendel published a short monograph about experiments with
plant hybridisation. He observed how traits of different parents are combined into
offspring by sexual reproduction. Darwinian evolutionary theory and Mendel’s
investigations of heredity in plants became the foundations of evolutionary search
methods and led to the creation of the neo-Darwinian paradigm [53].

One objective of the subsequent part of this section is to present the main princi-
ples of evolutionary algorithms and to describe their typical forms (Section 3.2.1).
Another objective is to present a general view on the problem of using evolutionary
algorithms in fault diagnosis schemes. In particular, Section 3.2.2 presents a bib-
liographical review regarding the application of evolutionary algorithms to FDI.

3.2.1 Introduction to Evolutionary Computation

In order to give a general outline of an evolutionary algorithm, let us introduce
a few different concepts and notations [115].



42 3. Soft Computing-Based FDI

An evolutionary algorithm is based on a collective learning process within a
population of npop individuals, each of which represents a genotype (an under-
lying genetic code), a search point in the so-called genotype space. The environ-
ment delivers quantitative information (the fitness value) regarding an individ-
ual based on its phenotype (the manner of response contained in the behaviour,
physiology and morphology of an organism). Thus, each individual has its own
phenotype and genotype.

The general principle of an evolutionary algorithm can be described as follows:
At the beginning, a population is randomly initialised and evaluated, i.e., based
on a phenotype, the fitness of each individual is calculated. Next, randomised
processes of reproduction, recombination, mutation and succession are iteratively
repeated until a given termination condition is reached. Reproduction, called also
preselection, is a randomised process (deterministic in some algorithms) of parent
selection from the entire population, i.e., a temporary population of parent indi-
viduals is formed. The recombination mechanism (omitted in some algorithms)
allows mixing parental information while passing it to the descendants. Muta-
tion introduces an innovation into the current descendants. Finally, succession,
called also post selection, is applied to choose a new generation of individuals
from parents and descendants. All the above operations are repeated until the
termination condition is reached.

This is, of course, a general principle, and it can be more or less modified for
various types of evolutionary algorithms.

The duality of genotype and phenotype suggests two main approaches to
simulated evolution [115]. In genotypic simulations, the attention focuses on
genetic structures. This means that the entire searching process is performed in
the genotype space. However, in order to calculate the individual’s fitness, its
chromosome must be decoded to its phenotype. Nowadays, two kinds of such
algorithms can be distinguished, i.e.,

• Genetic Algorithms (GAs) [77];
• Genetic Programming (GP) [103].

In phenotypic simulations, the attention focuses on the behaviour of candi-
date solutions in a population. All operations, i.e., selection, reproduction, and
mutation are performed in the phenotype space. Nowadays, three main kinds of
such algorithms can be distinguished, i.e.,

• Evolutionary programming [54];
• Evolutionary strategies [115];
• Evolutionary Search with Soft Selection (ESSS) [63, 126].

Special attention in this section is focused on the genetic programming strategy
as this is one of the main tools employed in Part III. First, let us introduce some
elementary background on genetic algorithms.

Genetic algorithms are computation models that approach the natural evo-
lution perhaps most closely. Many works confirm their effectiveness and recom-
mend their application to various optimisation problems.
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A genetic algorithm processes a population of individuals whose DNA is rep-
resented by fixed-length binary strings. Inside a computer programme, an indi-
vidual’s fitness is calculated directly from the DNA, and so only the DNA has
to be represented. The population of such individuals is evolved through suc-
cessive generations; individuals in each new generation are bred from the fittest
individuals from the previous generation.

The breeding of a new parent is inspired by natural processes, i.e., either
asexual or sexual reproduction can be employed. In asexual reproduction, the
parent individual is simply copied (possibly with some random changes within
a genotype). This process is called mutation (Fig. 3.8). In sexual reproduction,
couples of parents are randomly chosen and new individuals are created by alter-
nately copying sequences from each parent. This process is known as crossover
(Fig. 3.9).

The main difference between GAs and genetic programming is that in GP
the evolving individuals are parse trees rather than fixed-length binary strings
(cf. Fig. 3.10). Genetic programming applies the approach of GAs to a pop-
ulation of programs which can be described by such trees. Such an approach
has demonstrated its potential by evolving simple programs for medical signal
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filters, or by performing optical character recognition, target identification, sys-
tem identification, fault diagnosis, etc. [47, 69, 103, 183, 187].

3.2.2 Evolutionary Algorithms in FDI Schemes

Although the origins of evolutionary algorithms can be traced back to the late
1950s (see [11] for a comprehensive introduction and survey on EAs), the first
works on evolutionary algorithms in control engineering were published at the
beginning of the 1990s. In 2002, Fleming and Purshouse [51] tackled a challenging
task of preparing a comprehensive survey on the application of evolutionary
algorithms to control engineering. As is indicated in [51], there are relatively
scarce publications on applications of evolutionary algorithms to the design of
FDI systems.

This section, rather than providing an exhaustive survey on evolutionary al-
gorithms in fault diagnosis, is aimed at providing a comprehensive account of the
published works that exploit the special nature of EAs [181]. This means that
the works dealing with EAs applied as alternative optimisers, e.g., for training
neural and/or fuzzy systems are not included here. In other words, the main
objective is to extend the material of [51] by introducing the latest advances in
fault diagnosis with evolutionary algorithms.

As was mentioned in Section 2.3, many approaches have been proposed to
tackle the robustness problem. Undoubtedly, the most common approach is to
use robust observers, such as the UIO [27, 96, 179], which can tolerate a degree of
model uncertainty and hence increase the reliability of fault diagnosis. In such
an approach, the model-reality mismatch can be represented by the so-called
unknown input. Hence the state estimate and, consequently, the output estimate
are obtained taking into account model uncertainty. Unfortunately, when the
direction of faults is similar to that of an unknown input, then the unknown input
decoupling procedure may considerably impair the fault sensitivity. In order to
settle this problem, Chen et al. [28] (see also [27]) formulated an observer-based
FDI as a multiobjective optimisation problem, in which the task was to maximise
the effect of faults on the residual, whilst minimising the effect of an unknown
input. The approach was applied to the detection of sensor faults in a flight
control system. A similar approach was proposed by Kowalczuk et al. [102],
where the observer design is founded on a Pareto-based approach, in which the
ranking of an individual solution is based on the number of solutions by which
it is dominated. These two solutions can be applied to linear systems only.

In spite of the fact that a large amount of knowledge on designing observers
for non-linear systems has been accumulated through the literature since the be-
ginning of the 1970s, a customary approach is to linearise the non-linear model
around the current state estimate, and then to apply techniques for linear sys-
tems, as is the case for the extended Kalman filter [96]. Unfortunately, this strat-
egy works well only when linearisation does not cause a large mismatch between
the linear model and the non-linear behaviour. To improve the effectiveness of
state estimation, it is necessary to restrict the class of non-linear systems while
designing observers. Unfortunately, the analytical design procedures resulting
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from such an approach are usually very complex, even for simple laboratory
systems [198]. To overcome this problem, Porter and Passino proposed the so-
called genetic adaptive observer [144]. They showed how to construct such an
observer where a genetic algorithm evolves the gain matrix of the observer in
real time so that the output error is minimised. Apart from the relatively sim-
ple design procedure, the authors did not provide the convergence conditions
of the observer. They did not consider robustness issues with respect to model
uncertainty. A solution that does not possess such drawbacks was proposed by
Witczak et al. [187]. In particular, the authors showed the convergence condition
of the observer and proposed a technique for increasing its convergence rate with
genetic programming. This approach will be detailed in Section 6.2.

It should be strongly underlined that the application of observers is limited by
the need for non-linear state-space models of the system being considered, which
is usually a serious problem in complex industrial systems. This explains why
most of the examples considered in the literature are devoted to simulated or
laboratory systems, e.g., the celebrated three- (two- or even four-) tank system,
an inverted pendulum, a travelling crane, etc. To tackle this problem, a ge-
netic programming-based approach for designing state-space models from input-
output data was developed in [114, 179, 187]. This approach will be detailed
in Section 6.1. A further development of this technique related to input-output
models can be found in [114].

Evolutionary algorithms have also been applied to FDI methods that are
not based on the concept of residuals. Marcu [110] formulated FDI design as
a feature selection and classifier design problem. EA has also been applied to
the generalised task of determining the fault from a collection symptoms [117].
The method relied upon the availability of a priori probabilities that a particu-
lar fault caused a particular symptom. In [30], the authors employed a genetic
algorithm-based evolutionary strategy for fault diagnosis-related classification
problems, which includes two aspects: evolutionary selection of training sam-
ples and input features, and evolutionary construction of the neural network
classifier. Finally, Sun et al. [162] used the bootstrap technique to preprocess
the operational data acquired from a running diesel engine, and a genetic pro-
gramming approach to find the best compound feature that can discriminate
among four kinds of commonly operating modes of the engine.

3.3 Concluding Remarks

The main objective of this chapter was to present quantitative soft computing ap-
proaches to fault diagnosis. In particular, elementary neural network structures for
both static and dynamic non-linear systems were presented (Section 3.1.1). More-
over, their application to FDI was discussed based on the bibliographical review
presented in Section 3.1.2. A similar line of presentation was realised for evolution-
ary algorithms in Sections 3.2 and 3.2.2.

There is no doubt that soft computing techniques can be very attractive tools
for solving various problems related to modern FDI. On the other hand, their
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application usually involves a high computational burden. This means that soft
computing techniques should be used only in justified situations. Such a situation
usually takes place when the classic analytical techniques cannot be employed
or they do not provide satisfactory results.

Apart from the variety of different FDI applications of soft computing meth-
ods, two general approaches deserve special attention, namely,

Integration of analytical and soft computing FDI techniques: there is a number
of design strategies for analytical techniques, e.g., [27, 96, 187] whose perfor-
mance can be significantly improved by the use of soft computing techniques.

Robust soft computing-based FDI techniques: this mainly concerns artificial
neural networks. Contrary to the industrial applications of neural networks
that are presented in most of the published books and papers, the task of
designing a neural network is defined in such a way as to obtain a model
with a possibly small uncertainty. Indeed, the approaches presented in the
literature try to obtain a model that is best suited to a particular data set.
This may result in a model with a relatively large uncertainty. The degraded
performance of fault diagnosis constitutes a direct consequence of using such
models. Another advantage of such approaches is the fact that they provide
knowledge regarding model uncertainty that can be used to obtain the so-
called adaptive threshold. Such a threshold enhances the performance of FDI
and makes it robust to model uncertainty.



4. State Estimation Techniques for FDI

The main objective of this chapter is to present three different observer struc-
tures that can be used for non-linear discrete-time systems with unknown inputs.
As was pointed out in Chapter 2, there are two general tasks that have to be
fulfilled while developing novel observer structures. The first one concerns the de-
velopment of linearisation-based techniques and its main objective is to improve
the convergence of such schemes. In order to solve this challenging problem,
Section 4.1 introduces the concept of the so-called Extended Unknown Input
Observer (EUIO) [96, 187]. This section presents a comprehensive convergence
analysis of the EUIO with the Lyapunov method. Based on the achieved results,
a complete design procedure is proposed and carefully described. Section 4.2
portrays further development of the EUIO. In particular, it exposes less restric-
tive convergence conditions than those proposed in Section 4.1. The achieved
results are then used for the development of a new EUIO design procedure.

The second task underlined in Chapter 2 is related to the simplification of
linearisation-free design procedures. Following this general requirement, Sec-
tion 4.3 presents three alternative design procedures for observers and unknown
input observers for Lipschitz non-linear discrete-time systems. In particular, the
main objective is to present effective and simple to implement design procedures.

4.1 Extended Unknown Input Observer

As was mentioned in Section 2.3, the UIO can also be employed for linear sto-
chastic systems. Although the primary purpose of the subsequent part of this
section is to present an extended unknown input observer [183, 187], the informa-
tion exhibited below is necessary to explain clearly the results of [187]. Following
a common nomenclature, such an UIO will be called an Unknown Input Filter
(UIF).

Let us consider the following linear discrete-time system:

xk+1 = Akxk + Bkuk + Ekdk + L1,kfk + wk, (4.1)
yk = Ckxk + L2,k+1fk+1 + vk. (4.2)

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 49–83, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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In this case, vk and wk are independent zero-mean white noise sequences. The
matrices Ak, Bk, Ck, Ek are assumed to be known and have appropriate di-
mensions. To overcome the state estimation problem of (4.1)–(4.2), an UIF with
the following structure can be employed:

sk+1 = F k+1sk + T k+1Bkuk + Kk+1yk, (4.3)
x̂k+1 = sk+1 + Hk+1yk+1, (4.4)

where

Kk+1 = K1,k+1 + K2,k+1, (4.5)
Ek = Hk+1Ck+1Ek, (4.6)

T k+1 = I − Hk+1Ck+1, (4.7)
F k+1 = T k+1Ak − K1,k+1Ck, (4.8)

K2,k+1 = F k+1Hk. (4.9)

The above matrices are designed in such a way as to ensure unknown input
decoupling as well as the minimisation of the state estimation error:

ek+1 = xk+1 − x̂k+1. (4.10)

As was mentioned in Section 2.3, the necessary condition for the existence of
a solution to (4.6) is rank(Ck+1Ek) = rank(Ek) = q [27, p. 72, Lemma 3.1],
and a special solution is

H∗
k+1 = Ek

[
(Ck+1Ek)T Ck+1Ek

]−1
(Ck+1Ek)T . (4.11)

If the conditions (4.5)–(4.8) are fulfilled, then the fault-free, i.e., fk = 0 state
estimation error is given by

ek+1 = F k+1ek − K1,k+1vk − Hk+1vk+1 + T k+1wk. (4.12)

In order to obtain the gain matrix K1,k+1, let us first define the state estimation
covariance matrix:

P k = E
{
[xk − x̂k][xk − x̂k]T

}
. (4.13)

Using (4.12), the update of (4.13) can be defined as

P k+1 =A1,k+1P kAT
1,k+1 + T k+1QkT T

k+1 + Hk+1Rk+1H
T
k+1

− K1,k+1CkP kAT
1,k+1 − A1,k+1P kCT

k KT
1,k+1

+ K1,k+1

[
CkP kCT

k + Rk

]
KT

1,k+1, (4.14)

where

A1,k+1 = T k+1Ak. (4.15)
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To give the state estimation error ek+1 the minimum variance, it can be shown
that the gain matrix K1,k+1 should be determined by

K1,k+1 = A1,k+1P kCT
k

[
CkP kCT

k + Rk

]−1
. (4.16)

In this case, the corresponding covariance matrix is given by

P k+1 =A1,k+1P
′
k+1A

T
1,k+1 + T k+1QkT T

k+1 + Hk+1Rk+1H
T
k+1, (4.17)

P ′
k+1 =P k − K1,k+1CkP kAT

1,k+1. (4.18)

The above derivation is very similar to that which has to be performed for the
classic Kalman filter [4]. Indeed, the UIF can be transformed to the KF-like form
as follows:

x̂k+1 = Akx̂k + Bkuk − Hk+1Ck+1[Akx̂k + Bkuk]
− K1,k+1Ckx̂k − F k+1Hkyk

+ [K1,k+1 + F k+1Hk]yk + Hk+1yk+1, (4.19)

or, equivalently,

x̂k+1 = x̂k+1/k + Hk+1εk+1/k + K1,k+1εk, (4.20)

with

x̂k+1/k = Akx̂k + Bkuk, (4.21)
εk+1/k = yk+1 − ŷk+1/k = yk+1 − Ck+1x̂k+1/k, (4.22)

εk = yk − ŷk. (4.23)

The above transformation can be performed by substituting (4.4) into (4.3) and
then using (4.7) and (4.8). As can be seen, the structure of the observer (4.20)
is very similar to that of the Kalman filter. The only difference is the term
Hk+1εk+1/k, which vanishes when no unknown input is considered.

4.1.1 Convergence Analysis and Design Principles

As has already been mentioned, the application of the EKF to the state esti-
mation of non-linear deterministic systems has received considerable attention
during the last two decades (see [19] and the references therein). This is mainly
because the EKF can directly be applied to a large class of non-linear systems,
and its implementation procedure is almost as simple as that for linear systems.
Moreover, in the case of deterministic systems, the instrumental matrices Rk

and Qk can be set almost arbitrarily. This opportunity makes it possible to use
them to improve the convergence of the observer, which is the main drawback
of linearisation-based approaches. This section presents an extended unknown
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input observer for a class of non-linear systems which can be described by the
following equations [187]:

xk+1 = g (xk) + h(uk) + Ekdk + L1,kfk, (4.24)
yk+1 = Ck+1xk+1 + L2,k+1fk+1, (4.25)

where g (xk) is assumed to be continuously differentiable with respect to xk. Sim-
ilarly to the EKF, the observer (4.20) can be extended to the class of non-linear
systems (4.24)–(4.25). The algorithm presented below though can also, with mi-
nor modifications, be applied to a more general structure. Such a restriction is
caused by the need for employing it for FDI purposes. This leads to the following
structure of the EUIO:

x̂k+1/k = g (x̂k) + h(uk), (4.26)
x̂k+1 = x̂k+1/k + Hk+1εk+1/k + K1,k+1εk. (4.27)

It should also be pointed out that the matrix Ak used in (4.15) is now defined by

Ak =
∂g (xk)

∂xk

∣
∣
∣
∣
xk=x̂k

. (4.28)

4.1.2 Convergence of the EUIO

In this section, the Lyapunov approach is employed for convergence analysis
of the EUIO. The approach presented here is similar to that described in [19],
which was used in the case of the EKF-based deterministic observer. The main
objective of this section is to show that the convergence of the EUIO strongly
depends on an appropriate choice of the instrumental matrices Rk and Qk.
Subsequently, the fault-free mode is assumed, i.e., fk = 0.

For notational convenience, let us define the a priori state estimation error:

ek+1/k = xk+1 − x̂k+1/k. (4.29)

Substituting (4.24)–(4.25) and (4.26)–(4.27) into (4.10), one can obtain the fol-
lowing form of the state estimation error:

ek+1 = ek+1/k − Hk+1εk+1/k − K1,k+1εk. (4.30)

As usual, to perform further derivations, it is necessary to linearise the model
around the current state estimate x̂k. This leads to the classic approximation:

ek+1/k ≈ Akek + Ekdk. (4.31)

In order to avoid the above approximation, the diagonal matrix αk = diag(α1,k,
. . . , αn,k) is introduced, which makes it possible to establish the following exact
equality:

ek+1/k = αkAkek + Ekdk, (4.32)



4.1 Extended Unknown Input Observer 53

and hence (4.30) can be expressed as

ek+1 = ek+1/k − Hk+1Ck+1ek+1/k − K1,k+1Ckek

= [I − Hk+1Ck+1][αkAkek + Ekdk] − K1,k+1Ckek

= [T k+1αkAk − K1,k+1Ck]ek. (4.33)

As can be observed in (4.33), the convergence of the EUIO depends strongly on
αk. Thus, the purpose of further deliberations is to determine conditions relating
the convergence of the EUIO with αk.

Let us start with the following assumptions:

Assumption 4.1. Following [27] and, then [19], it is assumed that the system
is locally uniformly rank observable. This guarantees (see [19] and the references
therein) that the matrix P ′

k is bounded, i.e., there exist positive scalars θ̄ > 0
and θ > 0 such that:

θI � P ′−1
k � θ̄I. (4.34)

Assumption 4.2. The matrix Ak is uniformly bounded and there exists A−1
k .

Theorem 4.1. If

σ̄ (αk) ≤ γ1 =
σ (Ak)
σ̄ (Ak)

⎛

⎝
(1 − ζ)σ (P k)

σ̄
(
A1,kP ′

kAT
1,k

)

⎞

⎠

1
2

, (4.35)

and

σ̄ (αk − I) ≤ γ2

=
σ (Ak)
σ̄ (Ak)

⎛

⎝
σ
(
CT

k

)
σ (Ck)

σ̄
(
CT

k

)
σ̄ (Ck)

σ (Rk)

σ̄
(
CkP kCT

k + Rk

)

⎞

⎠

1
2

, (4.36)

where 0 < ζ < 1, then the proposed extended unknown input observer is locally
asymptotically convergent.

Proof. The main objective of further deliberations is to determine conditions
under which the sequence {Vk}∞k=1, defined by the Lyapunov candidate function

Vk+1 = eT
k+1A

−T
1,k+1[P

′
k+1]

−1A−1
1,k+1ek+1, (4.37)

is a decreasing one. It should be pointed out that the Lyapunov function (4.37)
involves a very restrictive assumption regarding an inverse of the matrix A−1

1,k+1.
Indeed, from (4.15) and (4.7), (4.6) it is clear that the matrix A1,k+1 is singular
when Ek �= 0. Thus, the convergence conditions can be formally obtained only
when Ek = 0. This means that the practical solution regarding the choice of the
instrumental matrices Qk and Rk is to be obtained for the case when Ek = 0
and generalised to other cases, i.e., Ek �= 0.
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First, let us define an alternative form of K1,k and the inverse of P ′
k+1.

Substituting (4.18) into (4.17) and then comparing it with (4.14), one can obtain

A1,k+1K1,k+1CkP kAT
1,k+1 = K1,k+1CkP k. (4.38)

Next, from (4.38), (4.18) and (4.16), the gain matrix becomes

K1,k+1 = A1,k+1P
′
k+1C

T
k R−1

k . (4.39)

Similarly, from (4.38) and (4.18), the inverse of P ′
k+1 becomes

[P ′
k+1]

−1 = P−1
k + CT

k R−1
k Ck. (4.40)

Substituting (4.33), and then (4.39) and (4.40) into (4.37), the Lyapunov candi-
date function is

Vk+1 =eT
k [AT

k αkA−T
k P−1

k A−1
k αkAk

+ AT
k αkA−T

k CT
k R−1

k CkA−1
k αkAk

− AT
k αkA−T

k CT
k R−1

k Ck − CT
k R−1

k CkA−1
k αkAk

+ CT
k R−1

k CkP ′
k+1C

T
k R−1

k Ck]ek. (4.41)

Let

G = A−1
k αkAk, L = CT

k R−1
k Ck, (4.42)

then

GT LG − GT L − LG =
[
GT − I

]
L [G − I] − L. (4.43)

Using (4.43) and (4.16), the expression (4.41) becomes

Vk+1 =eT
k

[
AT

k αkA−T
k P−1

k A−1
k αkAk

+
[
AT

k αkA−T
k − I

]
CT

k R−1
k Ck

[
A−1

k αkAk − I
]

−CT
k R−1

k

[

I − CkP kCT
k

[
CkP kCT

k + Rk

]−1
]]

ek. (4.44)

Using the identity in (4.44),

I =
[
CkP kCT

k + Rk

] [
CkP kCT

k + Rk

]−1
, (4.45)

the Lyapunov candidate function can be written as

Vk+1 =eT
k

[
AT

k αkA−T
k P−1

k A−1
k αkAk

+
[
AT

k αkA−T
k − I

]
CT

k R−1
k Ck

[
A−1

k αkAk − I
]

−CT
k

[
CkP kCT

k + Rk

]−1
Ck

]

ek. (4.46)
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The sequence {Vk}∞k=1 is a decreasing one when there exists a scalar ζ, 0 < ζ < 1,
such that

Vk+1 − (1 − ζ)Vk ≤ 0. (4.47)

Using (4.46), the inequality (4.47) becomes

Vk+1 − (1 − ζ)Vk = eT
k Xkek + eT

k Y kek ≤ 0, (4.48)

where

Xk =AT
k αkA−T

k P−1
k A−1

k αkAk − (1 − ζ)A−T
1,k [P ′

k]−1A−1
1,k, (4.49)

Y k =
[
AT

k αkA−T
k − I

]
CT

k R−1
k Ck

[
A−1

k αkAk − I
]

− CT
k

[
CkP kCT

k + Rk

]−1
Ck. (4.50)

In order to satisfy (4.48), the matrices Xk and Y k should be semi-negative
defined. This is equivalent to

σ̄
(
AT

k αkA−T
k P−1

k A−1
k αkAk

)
≤ σ

(
(1 − ζ)A−T

1,k [P ′
k]−1A−1

1,k

)
, (4.51)

and

σ̄
([

AT
k αkA−T

k − I
]
CT

k R−1
k Ck

[
A−1

k αkAk − I
])

≤ σ

(

CT
k

[
CkP kCT

k + Rk

]−1
Ck

)

. (4.52)

The inequalities (4.51) and (4.52) determine the bounds of the diagonal matrix
αk, for which the condition (4.48) is satisfied. The objective of further deliber-
ations is to obtain a more convenient form of the above bounds. Using the fact
that

σ̄
(
AT

k αkA−T
k P−1

k A−1
k αkAk

)
≤ σ̄2 (Ak) σ̄2 (A−1

k

)
σ̄2 (αk) σ̄

(
P−1

k

)

=
σ̄2 (Ak)
σ2 (Ak)

σ̄2 (αk)
σ (P k)

, (4.53)

the expression (4.51) gives (4.35). Similarly, using

σ̄
([

AT
k αkA−T

k − I
])

= σ̄
(
AT

k [αk − I] A−T
k

)

≤ σ̄ (Ak)
σ (Ak)

σ̄ (αk − I) , (4.54)

and then

σ̄
([

AT
k αkA−T

k − I
]
CT

k R−1
k Ck

[
A−1

k αkAk − I
])

≤ σ̄2 (Ak)
σ2 (Ak)

σ̄
(
CT

k

)
σ̄ (Ck)

σ (Rk)
σ̄2 (αk − I) (4.55)
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and

σ

(

CT
k

[
CkP kCT

k + Rk

]−1
Ck

)

≥
σ
(
CT

k

)
σ (Ck)

σ̄
(
CkP kCT

k + Rk

) , (4.56)

the expression (4.52) gives (4.36).
Thus, if the conditions (4.35) and (4.36) are satisfied, then {Vk}∞k=1 is a de-

creasing sequence and hence, under Assumption 4.1, the proposed observer is
locally asymptotically convergent.

Bearing in mind that αk is a diagonal matrix, the inequalities (4.35)–(4.36) can
be expressed as

max
i=1,...,n

|αi,k| ≤ γ1 and max
i=1,...,n

|αi,k − 1| ≤ γ2. (4.57)

Since

P k = A1,kP ′
kAT

1,k + T kQk−1T
T
k + HkRkHT

k , (4.58)

it is clear that an appropriate selection of the instrumental matrices Qk−1 and
Rk may enlarge the bounds γ1 and γ2 and, consequently, the domain of attrac-
tion. Indeed, if the conditions (4.57) are satisfied, then x̂k converges to xk.

Unfortunately, analytical derivation of the matrices Qk−1 and Rk seems to
be an extremely difficult problem. However, it is possible to set the above ma-
trices as follows: Qk−1 = β1I, Rk = β1I, with β1 and β1 large enough. On
the other hand, it is well known that the convergence rate of such an EKF-like
approach can be increased by an appropriate selection of the covariance matrices
Qk−1 and Rk, i.e., the more accurate (near “true” values) the covariance matri-
ces, the better the convergence rate. This means that in the deterministic case
(wk = 0 and vk = 0), both matrices should be zero ones. Unfortunately, such
an approach usually leads to the divergence of the observer as well as other com-
putational problems. To tackle this, a compromise between the convergence and
the convergence rate should be established. This can easily be done by setting
the instrumental matrices as

Qk−1 = β1ε
T
k−1εk−1I + δ1I, Rk = β2ε

T
k εkI + δ2I, (4.59)

with β1, β2 large enough, and δ1, δ2 small enough.

4.1.3 Illustrative Example

The purpose of this section is to show the reliability and effectiveness of the pro-
posed EUIO. The numerical example considered here is a fifth-order two-phase
non-linear model of an induction motor, which has already been the subject of
a large number of various control design applications (see [19] and the references
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therein). The complete discrete-time model in a stator-fixed (a,b) reference frame
is

x1,k+1 =x1,k + h

(

−γx1k +
K

Tr
x3k + Kpx5kx4k +

1
σLs

u1k

)

, (4.60)

x2,k+1 =x2,k + h

(

−γx2k − Kpx5kx3k +
K

Tr
x4k +

1
σLs

u2k

)

, (4.61)

x3,k+1 =x3,k + h

(
M

Tr
x1k − 1

Tr
x3k − px5kx4k

)

, (4.62)

x4,k+1 =x4,k + h

(
M

Tr
x2k + px5kx3k − 1

Tr
x4k

)

, (4.63)

x5,k+1 =x5,k + h

(
pM

JLr
(x3kx2k − x4kx1k) − TL

J

)

, (4.64)

y1,k+1 =x1,k+1, y2,k+1 = x2,k+1, (4.65)

while xk = [x1,k, . . . , xn,k]T = [isak, isbk, ψrak, ψrbk, ωk]T represents the currents,
the rotor fluxes, and the angular speed, respectively, while uk = [usak, usbk]T is
the stator voltage control vector, p is the number of the pairs of poles, and TL is
the load torque. The rotor time constant Tr and the remaining parameters are
defined as

Tr =
Lr

Rr
, σ = 1 − M2

LsLr
, K =

M

σLsLr
, γ =

Rs

σLs
+

RrM
2

σLsL2
r

, (4.66)

while Rs, Rr and Ls, Lr are stator and rotor per phase resistances and induc-
tances, respectively, and J is the rotor moment inertia.

The numerical values of the above parameters are as follows: Rs = 0.18 Ω,
Rr = 0.15 Ω, M = 0.068 H, Ls = 0.0699 H, Lr = 0.0699 H, J = 0.0586 kgm2,
TL = 10 Nm, p = 1, and h = 0.1 ms. The input signals are

u1,k = 350 cos(0.03k), u2,k = 300 sin(0.03k). (4.67)

The initial conditions for the system and the observer are xk = 0 and x̂k =
[200, 200, 50, 50, 300]T , and P 0 = 103I.

Moreover, the following two cases concerning the selection of Qk−1 and Rk

were considered:

Case 1: Classic approach (constant values), i.e., Qk−1 = 0.1I, Rk = 0.1I,
Case 2: Selection according to (4.59), i.e.,

Qk−1 = 103εT
k−1εk−1I + 0.01I,

Rk = 10εT
k εkI + 0.01I. (4.68)

The results shown in Fig. 4.1 confirm the relevance of appropriate selection of the
instrumental matrices. Indeed, as can be seen, the proposed approach is superior
to the classic technique of selecting the instrumental matrices Qk−1 and Rk.
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Fig. 4.1. State estimation error norm ‖ek‖2 for Case 1 and Case 2

Apart from the relatively good results presented in Fig. 4.1, it can be shown
that the application of soft computing techniques [96, 187] makes it possible to
increase the convergence rate further. The details regarding such an approach
are presented in Section 6.2.

4.2 Extended Unknown Input Observer Revisited

The first objective of this section is to present two different approaches that can
be used for state estimation of a non-linear discrete-time system described by

xk+1 = g (xk) + h(uk) + Ekdk, (4.69)
yk+1 = Ck+1xk+1. (4.70)

The second and main objective is to show that the schemes being presented are
equivalent. This property is then employed in the subsequent part of this work
to form a novel UIO structure and to prove its convergence under less restrictive
assumptions than those used in [187]. Finally, it should be pointed out that the
research results portrayed in this section were originally presented in [189].

In the existing approaches, the unknown input is usually treated in two dif-
ferent ways. The first one (see, e.g., [27]) consists in introducing an additional
matrix into the state estimation equation, which is then used for decoupling the
effect of the unknown input on the state estimation error (and, consequently, on
the residual signal). In the second approach (see, e.g., [91]), the system with an
unknown input is suitably transformed into a system without it. In both cases,
the necessary condition for the existence of a solution to the unknown input
decoupling problem is (see Section 4.1):

rank(Ck+1Ek) = rank(Ek) = q, (4.71)
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(see [27, p. 72, Lemma 3.1] for a comprehensive explanation). If the condi-
tion (4.71) is satisfied, then it is possible to calculate Hk+1 = (Ck+1Ek)+ =
[
(Ck+1Ek)T Ck+1Ek

]−1 (Ck+1Ek)T , where (·)+ stands for the pseudo-inverse
of its argument. Thus, by multiplying (4.70) by Hk+1 and then inserting (4.69),
it is straightforward to show that

dk = Hk+1
[
yk+1 − Ck+1 [g (xk) + h(uk)]

]
. (4.72)

Substituting (4.72) into (4.69) gives

xk+1 = ḡ (xk) + h̄ (uk) + Ēkyk+1, (4.73)

where

ḡ (·) = Ḡkg (·) , h̄ (·) = Ḡkh(·), Ḡk = I − EkHk+1Ck+1, Ēk = EkHk+1.

Thus, the unknown input observer for (4.69)–(4.70) is given as follows:

x̂k+1 = ḡ (x̂k) + h̄ (uk) + Ēkyk+1 + Kk+1(yk − Ckx̂k). (4.74)

Now, let us consider the first of the above-mentioned approaches, which can be
used for designing the UIO [27]. This approach was used in Section 4.1. For
notational simplicity, let us start with the UIO for linear discrete-time systems:

xk+1 = Akxk + Bkuk + Ekdk,

yk+1 = Ck+1xk+1, (4.75)

which can be described as follows [27] (see also Section 2.3):

sk+1 = F k+1sk + T k+1Bkuk + K1,k+1yk, (4.76)
x̂k+1 = sk+1 + H1,k+1yk+1, (4.77)

where

K1,k+1 = Kk+1 + K2,k+1, (4.78)
Ek = H1,k+1Ck+1Ek, (4.79)

T k+1 = I − H1,k+1Ck+1, (4.80)
F k+1 = T k+1Ak − Kk+1Ck, (4.81)

K2,k+1 = F k+1H1,k. (4.82)

By substituting (4.77) into (4.76) and then using (4.80), (4.81) and (4.82), it can
be shown that

x̂k+1 =Akx̂k + Bkuk − H1,k+1Ck+1[Akx̂k + Bkuk]+
− Kk+1Ckx̂k − F k+1H1,k+1yk+
+ [Kk+1 + F k+1H1,k+1]yk + H1,k+1yk+1, (4.83)
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or, equivalently,

x̂k+1 = x̂k+1/k + H1,k+1(yk+1 − Ck+1x̂k+1/k) + Kk+1(yk − Ckx̂k), (4.84)

and

x̂k+1/k = Akx̂k + Bkuk. (4.85)

Substituting the solution of (4.79), i.e., H1,k+1 = EkHk+1 into (4.84) yields

x̂k+1 =[I − EkHk+1Ck+1]x̂k+1/k+
+ EkHk+1yk+1 + Kk+1(yk − Ckx̂k). (4.86)

Thus, in order to use (4.86) for (4.69)–(4.70) it is necessary to replace (4.85) by

x̂k+1/k = g (x̂k) + h(uk). (4.87)

Finally, by substituting (4.87) into (4.86) and then comparing it with (4.74) it can
be seen that the observer structures being considered are identical. On the other
hand, it should be clearly pointed out that they were designed in significantly
different ways. Following the above results, it is clear that the observer proposed
in Section 4.1 can be designed in two alternative ways.

As was mentioned in Section 4.1, the convergence conditions exposed in The-
orem 4.1 were developed under very restrictive assumptions. It seems that one
possible approach to overcome the above-mentioned restrictive assumptions is to
use a different strategy for convergence analysis. An approach alternative to the
one presented in Section 4.1 and in [19, 187] was proposed by Guo and Zhu [72].

For the sake of simplicity, let us assume that Ek = 0. Instead of using (4.32),
Guo and Zhu proposed the following approach (as was the case in [72])

ek+1/k = g (xk) − g (x̂k) = Akek, (4.88)

where

Ak =
∂g (x)

∂x

∣
∣
∣
∣
x=x̂k+Δk

. (4.89)

where Δk ∈ R
n, and x̂k + Δk is between xk and x̂k. This means that there

exists a scalar λ ∈ [0, 1] such that x̂k + Δk = λxk + (1 − λ)x̂k.
Unfortunately, in general, the above approach is incorrect as can be demon-

strated by a counterexample. Namely, let us consider the following structure of
g (x):

g (x) =
[
x2

1, ex1+x2
]T

, (4.90)

with xk = 0 and x̂k = 1 for which

g (xk) = g (0) = [0, 1]T , and g (x̂k) = g (1) = [1, e2]T . (4.91)

Thus
g (xk) − g (x̂k) = [−1, 1 − e2]T , (4.92)
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and
Akek = [−2(1 − λ), −2e2(1−λ)]T . (4.93)

This means that there should exist a scalar λ ∈ [0, 1] such that

[−1, 1 − e2]T = [−2(1 − λ), −2e2(1−λ)]T . (4.94)

From the first equation of the above set of equations it is clear that λ = 1
2 , which

is not valid for the second equation, i.e., 1 − e2 �= −2e.
This counterexample clearly shows that the observer convergence conditions

described in [72] are invalid.

4.2.1 Convergence Analysis and Design Principles

Taking into account all the above-exposed difficulties, the main objective of this
section is to propose an alternative structure of the EUIO and to derive its
convergence conditions.

As has already been shown, the state equation (4.69) can be transformed into
(4.73), but instead of using the observer structure (4.74) it is proposed to use
its minor modification that can be given as

x̂k+1 = x̂k+1/k + Kk+1(yk+1 − Ck+1x̂k+1/k), (4.95)

where
x̂k+1/k = ḡ (x̂k) + h̄ (uk) + Ēkyk+1. (4.96)

As a consequence, the algorithm used for state estimation of (4.69)–(4.70) is
given as follows:

x̂k+1/k = ḡ (x̂k) + h̄ (uk) + Ēkyk+1, (4.97)

P k+1/k = ĀkP kĀk
T + Qk, (4.98)

Kk+1 = P k+1/kCT
k+1

(
Ck+1P k+1/kCT

k+1 + Rk+1

)−1
, (4.99)

x̂k+1 = x̂k+1/k + Kk+1(yk+1 − Ck+1x̂k+1/k), (4.100)
P k+1 = [I − Kk+1Ck+1] P k+1/k, (4.101)

with

Āk =
∂ḡ (xk)

∂xk

∣
∣
∣
∣
xk=x̂k

= Ḡk
∂g (xk)

∂xk

∣
∣
∣
∣
xk=x̂k

= ḠkAk. (4.102)

The main objective of the subsequent part of this section is to present the con-
vergence conditions of the proposed EUIO. In particular, the main aim is to
show that the convergence of the EUIO strongly depends on the instrumental
matrices Qk and Rk. Moreover, the fault-free mode is assumed, i.e., fk = 0.

Using (4.100), the state estimation error can be given as

ek+1 = xk+1 − x̂k+1 = [I − Kk+1Ck+1] ek+1/k, (4.103)
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while

ek+1/k = xk+1 − x̂k+1/k = ḡ (xk) − ḡ (x̂k) = αkĀkek, (4.104)

where αk = diag(α1,k, . . . , αn,k) is an unknown diagonal matrix. Thus, using
(4.104), the equation (4.103) becomes

ek+1 = [I − Kk+1Ck+1] αkĀkek. (4.105)

It is clear from (4.104) that αk represents the linearisation error. This means that
the convergence of the proposed observer is strongly related to the admissible
bounds of the diagonal elements of αk. Thus, the main objective of further
deliberations is to show that these bounds can be controlled with the use of the
instrumental matrices Qk and Rk.

First, let us start with the convergence conditions, which require the following
assumptions:

Assumption 4.3. Following [19], it is assumed that the system given by (4.73)
and (4.70) is locally uniformly rank observable. This guaranees (see [19] and
the references therein) that the matrix P k is bounded, i.e., there exist positive
scalars θ̄ > 0 and θ > 0 such that

θI � P−1
k � θ̄I. (4.106)

Assumption 4.4. The matrix Ak is uniformly bounded and there exists A−1
k .

Moreover, let us define

ᾱk = max
j=1,...,n

|αj,k|, αk = min
j=1,...,n

|αj,k|. (4.107)

Theorem 4.2. If

ᾱk ≤

⎛

⎝α2
k

σ
(
Āk

)2
σ (Ck+1)

2
σ
(
ĀkP kĀk

T + Qk

)

σ̄
(
Ck+1P k+1/kCT

k+1 + Rk+1

) +

+
(1 − ζ)σ

(
ĀkP kĀk

T + Qk

)

σ̄
(
Āk

)2
σ̄ (P k)

⎞

⎠

1
2

, (4.108)

where 0 < ζ < 1, then the proposed extended unknown input observer is locally
asymptotically convergent.

Proof. The main objective of further deliberations is to determine conditions for
which the sequence {Vk}∞k=1, defined by the Lyapunov candidate function

Vk+1 = eT
k+1P

−1
k+1ek+1, (4.109)
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is a decreasing one. Substituting (4.105) into (4.109) gives

Vk+1 = eT
k Āk

T
αk·

·
[
I − CT

k+1K
T
k+1

]
P−1

k+1 [I − Kk+1Ck+1] αkĀkek. (4.110)

Using (4.101), it can be shown that
[
I − CT

k+1K
T
k+1

]
= P−1

k+1/kP k+1. (4.111)

Inserting (4.99) into [I − Kk+1Ck+1] yields

[I − Kk+1Ck+1] = P k+1/k·

·
[

P−1
k+1/k − CT

k+1

(
Ck+1P k+1/kCT

k+1 + Rk+1

)−1
Ck+1

]

. (4.112)

Substituting (4.111) and (4.112) into (4.110) gives

Vk+1 = eT
k Āk

T
αk·

·
[

P−1
k+1/k − CT

k+1

(
Ck+1P k+1/kCT

k+1 + Rk+1

)−1
Ck+1

]

αkĀkek. (4.113)

The sequence {Vk}∞k=1 is decreasing when there exists a scalar ζ, 0 < ζ < 1, such
that

Vk+1 − (1 − ζ)Vk ≤ 0. (4.114)

Using (4.109) and (4.113), the inequality (4.114) can be written as

eT
k

[

Āk
T
αk

[

P−1
k+1/k − CT

k+1

(
Ck+1P k+1/kCT

k+1 + Rk+1

)−1
Ck+1

]

αkĀk

−(1 − ζ)P−1
k

]
ek ≤ 0. (4.115)

Using the bounds of the Rayleigh quotient for X � 0, i.e., σ (X) ≤ eT
k Xek

eT
k ek

≤
σ̄ (X), the inequality (4.115) can be transformed into the following form:

σ̄
(
Āk

T
αkP−1

k+1/kαkĀk

)
+

− σ

(

Āk
T
αkCT

k+1

(
Ck+1P k+1/kCT

k+1 + Rk+1

)−1
Ck+1αkĀk

)

+

− (1 − ζ)σ
(
P−1

k

)
≤ 0. (4.116)

It is straightforward to show that

σ̄
(
Āk

T
αkP−1

k+1/kαkĀk

)
≤ σ̄ (αk)2 σ̄

(
Āk

)2
σ̄
(
P−1

k+1/k

)
, (4.117)
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and

σ

(

Āk
T
αkCT

k+1

(
Ck+1P k+1/kCT

k+1 + Rk+1

)−1
Ck+1αkĀk

)

≥

σ (αk)2 σ
(
Āk

)2
σ
( ¯Ck+1

)2
σ

((
Ck+1P k+1/kCT

k+1 + Rk+1

)−1
)

=

σ (αk)2 σ
(
Āk

)2
σ
( ¯Ck+1

)2

σ̄
(
Ck+1P k+1/kCT

k+1 + Rk+1

) . (4.118)

Applying (4.117) and (4.118) to (4.116) and then using (4.98) gives

σ̄ (αk)2 ≤σ (αk)2
σ
(
Āk

)2
σ (Ck+1)

2
σ
(
ĀkP kĀk

T + Qk

)

σ̄
(
Ck+1P k+1/kCT

k+1 + Rk+1

) +

+
(1 − ζ)σ

(
ĀkP kĀk

T + Qk

)

σ̄
(
Āk

)2
σ̄ (P k)

, (4.119)

which is equivalent to (4.108).
Thus, if the condition (4.108) is satisfied, then {Vk}∞k=1 is a decreasing

sequence and hence, under Assumption 4.3, the proposed observer is locally
asymptotically convergent.

Remark 4.3. The convergence condition (4.108) is less restrictive than the solu-
tion obtained with the approach proposed in [19], which can be written as

ᾱk ≤

⎛

⎝
(1 − ζ)σ

(
ĀkP kĀk

T + Qk

)

σ̄
(
Āk

)2
σ̄ (P k)

⎞

⎠

1
2

. (4.120)

However, (4.108) and (4.120) become equivalent when Ek �= 0, i.e., in all cases
when an unknown input is considered. This is because of the fact that the matrix
Āk is singular when Ek �= 0, which implies that σ

(
Āk

)
= 0. Indeed, from

(4.102):

Āk = ḠkAk

=
[
I − Ek

[
(Ck+1Ek)T Ck+1Ek

]−1
(Ck+1Ek)T Ck+1

]
Ak, (4.121)

and, under Assumption 4.4, it is evident that Āk is singular when

Ek

[
(Ck+1Ek)T Ck+1Ek

]−1
(Ck+1Ek)T Ck+1 (4.122)

is singular. The singularity of the above matrix can be easily shown with the use
of (4.71), i.e.,

rank
(
Ek

[
(Ck+1Ek)T Ck+1Ek

]−1
(Ck+1Ek)T Ck+1

)
≤

min [rank(Ek), rank(Ck+1)] = q. (4.123)
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Remark 4.4. It is clear from (4.108) that the bound of ᾱk can be maximised by
suitable settings of the instrumental matrices Qk and Rk. Indeed, Qk should be
selected in such a way as to maximise

σ
(
ĀkP kĀk

T + Qk

)
. (4.124)

To tackle this problem, let us start with a solution similar to the one proposed
in [72], i.e.,

Qk = γĀkP kĀk
T + δ1I, (4.125)

where γ ≥ 0 and δ1 > 0. Substituting (4.125) into (4.124) and taking into
account the fact that σ

(
Āk

)
= 0, it can be shown that

(1 + γ)σ
(
ĀkP kĀk

T
)

+ δ1I = δ1I. (4.126)

Thus, this solution boils down to the classic approach with constant Qk = δ1I. It
is, of course, possible to set Qk = δ1I with δ1 large enough. On the other hand,
it is well known that the convergence rate of such an EKF-like approach can
be increased by an appropriate selection of Qk and Rk, i.e., the more accurate
(near ”true“ values) the covariance matrices, the better the convergence rate.
This means that, in the deterministic case, both of the matrices should be zero
ones. Unfortunately, such an approach usually leads to the divergence of the
observer as well as other computational problems. To tackle this, a compromise
between the convergence and the convergence rate should be established. This
can be easily done by setting Qk as

Qk = (γεT
k εk + δ1)I, εk = yk − Ckx̂k, (4.127)

with γ > 0 and δ1 > 0 large and small enough, respectively. Since the form of
Qk is established, then it is possible to obtain Rk in such a way as to minimise

σ̄
(
Ck+1P k+1/kCT

k+1 + Rk+1

)
. (4.128)

To tackle this problem, let us start with the solution proposed in [19, 72]:

Rk+1 = βCk+1P k+1/kCT
k+1 + δ2I, (4.129)

with β ≥ 0 and δ2 > 0. Substituting (4.129) into (4.128) gives

(1 + β)σ̄
(
Ck+1P k+1/kCT

k+1

)
+ δ2I. (4.130)

Thus, from (4.130) is clear that Rk+1 should be set as follows:

Rk+1 = δ2I, (4.131)

with δ2 small enough.
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4.2.2 Illustrative Examples

Let us reconsider the example with an induction motor presented in Section 4.1.3.
Using the same parameters and settings, the following two cases concerning the
selection of Qk−1 and Rk were considered:

Case 1: Classic approach (constant values), i.e., Qk−1 = 0.1I, Rk = 0.1I
Case 2: Selection according to (4.127) and (4.131), i.e.,

Qk−1 = 1010εT
k−1εk−1I + 0.001I,

Rk = 0.01I, (4.132)

The results shown in Fig. 4.2 confirm the relevance of an appropriate selection
of the instrumental matrices. Indeed, as can be seen, the proposed approach is
superior to the classic technique of selecting the instrumental matrices Qk−1
and Rk. Moreover, by comparing the results presented in Figs. 4.2 and 4.1 it is
evident that the EUIO presented in Section 4.2 is superior to the EUIO presented
in Section 4.1.

Apart from the relatively good results presented in Fig. 4.2, it can be shown
that the application of stochastic robustness measures and evolutionary algo-
rithms makes it possible to increase the convergence rate further. The details
regarding such an approach as well as experiments regarding unknown input
decoupling and fault diagnosis are presented in Section 6.3.
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Fig. 4.2. State estimation error norm ‖ek‖2 for Case 1 and Case 2

4.3 Design of Observers and Unknown Input Observers
for Lipschitz Systems

As was mentioned in Chapter 2, one way to improve the effectiveness of state
estimation is to restrict the class of non-linear systems while designing observers.
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Such an assumption makes it possible to avoid linearisation, which is the main
tool used for the observer design purposes described in Sections 4.1 and 4.2.
Section 2.2.3 presents one of such approaches, namely, observers for non-linear
Lipschitz systems. Unfortunately, most of the works presented in the literature
deal with continuous-time Lipschitz systems. Thus, the theory and practice con-
cerning observers for discrete-time Lipschitz systems are significantly less ma-
ture than these for for their continuous-time counterparts. Indeed, there are few
papers only [22, 172] dealing with discrete-time observers. The authors of the
above works propose different parameterisations of the observer, but the com-
mon disadvantage of these approaches is that a trial-and-error procedure has to
be employed that boils down to solving a large number of Lyapunov equations.
Moreover, the authors do not provide convergence conditions similar to those
for continuous-time observers [155, 166].

To tackle the above-mentioned difficulties, convergence criteria and the cor-
responding effective design procedures are presented in the subsequent part of
this section. Finally, it should be pointed out that the research results portrayed
in this section were originally presented in [184, 186].

4.3.1 Convergence Analysis

Let us consider Lipschitz systems that can be described as follows:

xk+1 = Axk + Buk + h(yk, uk) + g (xk, uk) , (4.133)
yk+1 = Cxk+1, (4.134)

where g (·) satisfies

‖g (x1, u) − g (x2, u) ‖2 ≤ γ‖x1 − x2‖2, ∀x1, x2, u, (4.135)

and γ > 0 stands for the Lipschitz constant.
Let us consider an observer for the system (4.133)–(4.134) described by the

following equation:

x̂k+1 =Ax̂k+Buk+ h(yk, uk) +g (x̂k, uk)+K(yk−Cx̂k), (4.136)

while K stands for the gain matrix. The subsequent part of this section shows
three theorems that present three different convergence conditions of (4.136).
Following Thau [166] and other researchers, let us assume that the pair (A, C)
is observable. Let P = P T , P > 0 be a solution of the following Lyapunov
equation:

Q = P − AT
0 PA0, A0 = A − KC, (4.137)

with A0 being a stable matrix, i.e., ρ(A0) < 1, and Q = QT , Q > 0.

Theorem 4.5. Let us consider an observer (4.136) for the systems described by
(4.133)–(4.134). If the Lipschitz constant γ (cf. (4.135)) satisfies

γ <

√

σ
(
Q − 1

2P
)

σ̄ (P )
, Q − 1

2
P � 0 (4.138)

then the observer (4.136) is asymptotically convergent.
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Proof. Let us define the state estimation error for (4.136):

ek = xk − x̂k, (4.139)

and
sk = g (xk, uk) − g (x̂k, uk) . (4.140)

Substituting (4.133)–(4.134), (4.136) and (4.140) into (4.139) gives

ek+1 = A0ek + sk. (4.141)

Let us define the following Lyapunov function:

Vk+1 = eT
k+1Pek+1, (4.142)

and then by inserting (4.141) one can get

Vk+1 = eT
k AT

0 PA0ek + 2eT
k AT

0 Psk + sT
k P sk. (4.143)

According to the Lyapunov theorem, the observer (4.136) is asymptotically con-
vergent iff

ΔV = Vk+1 − Vk < 0. (4.144)

Substituting (4.142) and (4.143) into (4.144) yields

ΔV = eT
k

[
AT

0 PA0 − P
]
ek + 2eT

k AT
0 Psk + sT

k Psk < 0. (4.145)

Knowing that
(
P

1
2 A0sk − P

1
2 sk

)T (
P

1
2 A0sk − P

1
2 sk

)
≥ 0,

one can obtain
2eT

k AT
0 Psk ≤ eT

k AT
0 P A0ek + sT

k Psk. (4.146)

Inserting (4.146) into (4.145) yields

ΔV ≤ 2eT
k

[

AT
0 PA0 − 1

2
P

]

ek + 2sT
k Psk < 0. (4.147)

Using (4.135) it can be shown that

sT
k P sk ≤ γ2σ̄ (P )eT

k ek. (4.148)

Substituting (4.148) into (4.147) gives

ΔV ≤ 2eT
k

[

γ2σ̄ (P ) I −
[

Q − 1
2
P

]]

ek < 0. (4.149)

The condition (4.149) is equivalent to

γ <

√

1
σ̄ (P )

eT
k

[
Q − 1

2P
]
ek

eT
k ek

. (4.150)

Using the bound of the Rayleigh quotient, i.e.,
eT

k [Q− 1
2 P ]ek

eT
k ek

≥ σ
(
Q − 1

2P
)
, it is

possible to obtain (4.138), which completes the proof.
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Theorem 4.6. Let us consider an observer (4.136) for the systems described by
(4.133)–(4.134). If the Lipschitz constant γ (cf. (4.135)) satisfies

γ <

√
√
√
√σ

(
Q − AT

0 P PA0

)

σ̄ (P ) + 1
, Q − AT

0 PPA0 � 0, (4.151)

then the observer (4.136) is asymptotically convergent.

Proof. Using (4.135) and the Cauchy-Schwartz inequality, it can be shown that

2eT
k AT

0 Psk ≤ 2γ‖PA0ek‖2‖ek‖2. (4.152)

Applying the identity

(‖PA0ek‖2 − γ‖ek‖2)
2 ≥ 0,

to (4.152) yields

2eT
k AT

0 P sk ≤ eT
k AT

0 PP A0ek + γ2eT
k ek. (4.153)

Substituting (4.153) into (4.145) and then applying (4.148) leads to

ΔV ≤ eT
k

[
γ2(σ̄ (P ) + 1)I −

[
Q − AT

0 PPA0

]]
ek < 0. (4.154)

Finally, it is straightforward to show that (4.154) is equivalent to (4.151), which
completes the proof.

Theorem 4.7. Let us consider an observer (4.136) for the systems described by
(4.133)–(4.134). If the Lipschitz constant γ (cf. (4.135)) satisfies

γ <
σ
(
Q

1
2

)

√

σ̄
(
Q− 1

2 AT
0 P

)2
+ σ̄ (P ) + σ̄

(
Q− 1

2 AT
0 P

) , (4.155)

then the observer (4.136) is asymptotically convergent.

Proof. Using (4.145), (4.137) and (4.148), it can be shown that the convergence
condition is

ΔV ≤ eT
k

[
γ2σ̄ (P ) I − Q

]
ek + 2eT

k AT
0 Psk < 0. (4.156)

and hence
2eT

k AT
0 P sk < eT

k

[
Q − γ2σ̄ (P ) I

]
ek,

which is equivalent to

2sT
k PA0ek < eT

k

[
Q − γ2σ̄ (P ) I

]
ek. (4.157)
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The inequality (4.157) can be written as follows (cf. [26]):

2
(
Q− 1

2 AT
0 Psk

)T (
Q

1
2 ek

)
<
(
Q

1
2 ek

)T (
Q

1
2 ek

)
− γ2σ̄ (P )eT

k ek, (4.158)

and, hence, the convergence condition is

2
∥
∥
∥Q− 1

2 AT
0 Psk

∥
∥
∥

2
<
∥
∥
∥Q

1
2 ek

∥
∥
∥

2
− γ2σ̄ (P )

‖ek‖2
2∥

∥
∥Q

1
2 ek

∥
∥
∥

2

. (4.159)

Using (4.148), it can be shown that
∥
∥
∥Q− 1

2 AT
0 Psk

∥
∥
∥

2
≤ γσ̄

(
Q− 1

2 AT
0 P

)
‖ek‖2. (4.160)

Then, knowing that ∥
∥
∥Q

1
2 ek

∥
∥
∥

2
≥ σ

(
Q− 1

2

)
‖ek‖2

and
‖ek‖2∥

∥
∥Q

1
2 ek

∥
∥
∥

2

≤ 1

σ
(
Q

1
2

) ,

the inequality (4.159) can be written as follows:

σ̄ (P )

σ
(
Q

1
2

)γ2 + 2γσ̄
(
Q− 1

2 AT
0 P

)
− σ

(
Q

1
2

)
< 0. (4.161)

Since (4.161) contains a quadratic function, then it is clear that

γ <

(√

σ̄
(
Q− 1

2 AT
0 P

)2
+ σ̄ (P ) − σ̄

(
Q− 1

2 AT
0 P

)
)

σ
(
Q

1
2

)

σ̄ (P )
. (4.162)

Finally, using the identity
(√

σ̄
(
Q− 1

2 AT
0 P

)2
+ σ̄ (P ) − σ̄

(
Q− 1

2 AT
0 P

)
)

·

·
(√

σ̄
(
Q− 1

2 AT
0 P

)2
+ σ̄ (P ) + σ̄

(
Q− 1

2 AT
0 P

)
)

= σ̄ (P ) ,

the inequality (4.162) can be transformed into (4.155), which completes the
proof.

Remark 4.8. The convergence criteria described by the above theorems are ob-
tained by eliminating the term

2eT
k AT

0 Psk

from (4.145) in three distinct ways. This means that the obtained criteria are
relatively conservative and the scale of this conservatism is strongly related to
the inaccuracy of a given elimination technique.
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Remark 4.9. There is no doubt that there are particular choices of Q which will
bring forth the least conservative bounds (4.138), (4.151) and (4.155). Unfortu-
nately, the structural relation between P and Q of (4.137) cannot be resolved
without first solving the Lyapunov equation. This is the main reason why it is
impossible to chose one criterion that gives the least conservative bound of γ for
an arbitrary matrix Q.

Remark 4.10. Unfortunately, (4.138), (4.151) and (4.155) may merely serve as
methods of checking the convergence, but the gain matrix K has to be deter-
mined beforehand. This means that the design procedure boils down to selecting
various gain matrices K, solving the Lyapunov equation (4.137), and then check-
ing the convergence conditions (4.138), (4.151) and (4.155). There is no doubt
that this is an ineffective and inconvenient approach.

Taking into account the above remarks, the objective of the subsequent section
is to develop three different design procedures that are based on (4.138), (4.151)
and (4.155).

4.3.2 Design Procedures

Design procedure I

It can easily be shown that (4.149) is equivalent to

γ2σ̄ (P ) I + AT
0 P A0 − 1

2
P ≺ 0. (4.163)

Assuming that σ̄ (P ) < β, β > 0, and knowing that σ̄ (P ) < β is equivalent to
β − β−1PP � 0, which can be written in the following LMI form:

[
βI P
P βI

]

� 0, β > 0, P � 0, (4.164)

(4.163) can be transformed into a set of inequalities:

γ2βI + AT
0 PA0 − 1

2
P ≺ 0, (4.165)

and (4.164). The inequality (4.165) can be written in the following form:
[ 1

2P − γ2βI AT
0

A0 P−1

]

� 0, (4.166)

which is equivalent to
[

I 0
0 P

] [ 1
2P − γ2βI AT

0
A0 P−1

] [
I 0
0 P

]

� 0. (4.167)

Finally, (4.167) can be written in the following form:
[

1
2P − γ2βI AT

0 P
PA0 P

]

� 0. (4.168)
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Substituting K = P−1L into (4.168) yields the following LMI:
[

1
2P − γ2βI AT P − CT LT

P A − LC P

]

� 0. (4.169)

Thus, the design procedure can be summarised as follows:

Step 1: Obtain γ for (4.133)–(4.134).
Step 2: Solve a set of LMIs: (4.164) and (4.169).
Step 3: Obtain the gain matrix K = P−1L.

In spite of the simplicity and effectiveness of the proposed approach, it cannot
be directly applied to determine K maximising γ for which the observer (4.136)
is convergent. The objective of the subsequent part of this section is to tackle
the above-defined task. It can be observed that (4.169) can be transformed into
the following form:

[
− 1

2P CT LT − AT P
LC − PA −P

]

≺ λ

[
βI 0
0 0

]

(4.170)

where λ = −γ2. Thus, the task can be reduced to a generalised eigenvalue
minimisation problem [20, 62] that can be formulated as follows:

min
P ,L,β

λ,

under the LMI constraints (4.164) and (4.170). As can be observed, the right
hand side of (4.170) is semi-positive definite. The positivity of the right hand
side of (4.170) is usually required for the well-posedness of the task and the
applicability of the polynomial-time interior point methods [62]. For a simple
remedy to this problem, the reader is referred to [62, p. 8-41] (see also Appendix).

It should be also strongly underlined that when the optimisation problem
described by Steps I–III (or in the form of the generalised eigenvalue minimi-
sation problem) cannot be solved due to its infeasibility, then the only way out
is to transform the original description of the system into an equivalent one
with a smaller Lipschitz constant. Some guidance regarding such a strategy is
given in [1, 150]. Thus, due the the observability assumption, the algorithm is
guaranteed to converge as γ → 0. This is, of course, a common drawback of the
existing approaches to the design of observers for non-linear Lipschitz systems
(cf. [1, 142, 150]).

Design procedure II

It can easily be shown that (4.154) is equivalent to

γ2(σ̄ (P ) + 1)I + AT
0 PA0 + AT

0 PPA0 − P ≺ 0, (4.171)

Assuming that σ̄ (P ) < β, β > 0 and AT
0 P PA0 ≺ X, X = XT , which can be

expressed as [
X AT

0 P
PA0 I

]

� 0, (4.172)
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the inequality (4.171) can be written as follows:
[

P − γ2(β + 1)I − X AT
0 P

PA0 P

]

� 0. (4.173)

Substituting K = P−1L into (4.172) and (4.173) yields the following set of
LMIs: [

X AT P − CT LT

P A − LC I

]

� 0, (4.174)

and [
P − γ2(β + 1)I − X AT P − CT LT

P A − LC P

]

� 0. (4.175)

Thus, the new design procedure can be summarised as follows:

Step 1: Obtain γ for (4.133)–(4.134).
Step 2: Solve a set of LMIs: (4.164), (4.174), and (4.175).
Step 3: Obtain the gain matrix K = P−1L.

Similarly as for the design procedure I, the selection of K maximising γ for
which the observer (4.136) is convergent can be formulated as the generalised
eigenvalue minimisation problem:

min
P ,L,X,β

λ,

under the LMI constraints (4.164), (4.174), and
[

X − P CT LT − AT P
LC − PA −P

]

≺ λ

[
(β + 1)I 0

0 0

]

, (4.176)

where (4.176) is obtained by suitably rearranging (4.175), and λ = −γ2.

Design procedure III

The inequality (4.161) can be transformed into an equivalent form:

σ̄ (P ) γ2 + 2γσ
(
Q

1
2

)
σ̄
(
Q− 1

2 AT
0 P

)
− σ (Q) < 0. (4.177)

Knowing that
σ
(
Q

1
2

)
σ̄
(
Q− 1

2 AT
0 P

)
≤ σ̄

(
AT

0 P
)

, (4.178)

the inequality (4.177) can be written as:

σ̄ (P ) γ2 + 2γσ̄
(
AT

0 P
)

− σ (Q) < 0. (4.179)

Assuming that σ̄ (P ) < β, β > 0 and σ̄
(
AT

0 P
)

< δ, δ > 0, which can be
expressed as [

δ AT
0 P

PA0 δ

]

� 0, δ > 0, (4.180)
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now it is straightforward to show that (4.179) can be represented by

P − AT
0 P A0 − γ2βI − 2γδI � 0. (4.181)

Thus, the inequality (4.181) can be written as follows:
[

P − γ2βI − 2γδI AT
0 P

PA0 P

]

� 0. (4.182)

Substituting K = P−1L into (4.180) and (4.182) yields the following set of
LMIs: [

δ AT P − CT LT

P A − LC δ

]

� 0, δ > 0, (4.183)

and [
P − γ2βI − 2γδI AT P − CT LT

P A − LC P

]

� 0. (4.184)

Thus, the third design procedure can be summarised as follows:

Step 1: Obtain γ for (4.133)–(4.134).
Step 2: Solve a set of LMIs: (4.164), (4.183), and (4.184).
Step 3: Obtain the gain matrix K = P−1L.

Similarly as for the first and second design procedures, the selection of K max-
imising γ for which the observer (4.136) is convergent can be formulated as the
generalised eigenvalue minimisation problem. First, let us assume that

−X ≺ λβI , X � 0, (4.185)

where X = XT , λ = −γ. Thus, the inequality (4.184) can be expressed as
[

−P CT LT −AT P
LC−PA −P

]

≺λ

[
X+2δI 0

0 0

]

. (4.186)

Finally, the generalised eigenvalue minimisation problem boils down to

min
P ,L,X,β,δ

λ,

under the LMI constraints (4.164), (4.183), (4.185)–(4.186).

4.3.3 Design of an Unknown Input Observer

The purpose of the subsequent part of this section is to present a straightforward
approach for extending the techniques proposed in the preceding sections to
discrete-time Lipschitz systems with unknown inputs, which can be described as
follows:

xk+1 = Axk + Buk + h(yk, uk) + g (xk, uk) + Edk, (4.187)
yk+1 = Cxk+1. (4.188)
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In order to use the techniques described in the preceding sections for state esti-
mation of the system (4.187)–(4.188), it is necessary to introduce some modifi-
cations concerning the unknown input.

The derivation presented in the subsequent part of this section is based on
the selected results presented in Section 4.2. Similarly as in Sections 4.1 and 4.2,
let us assume that

rank(CE) = rank(E) = q, (4.189)

(see [27, p. 72, Lemma 3.1] for a comprehensive explanation). If the
condition (4.189) is satisfied, then it is possible to calculate H = (CE)+ =
[
(CE)T CE

]−1 (CE)T , where (·)+ stands for the pseudo-inverse of its argu-
ment. Thus, let us use the first of the above mentioned techniques for designing
UIOs [91]. By multiplying (4.188) by H and then inserting (4.187), it is straight-
forward to show that

dk = H
[
yk+1 − C [Axk + Buk + h(yk, uk) + g (xk, uk)]

]
. (4.190)

Substituting (4.190) into (4.187) gives

xk+1 = Āxk + B̄uk + h̄ (uk, yk) + ḡ (xk, uk) + Ēyk+1, (4.191)

where

Ā = ḠA, B̄ = ḠB, ḡ (·) = Ḡg (·) , h̄ (·) = Ḡh(·)
Ḡ = I − EHC, Ē = EH.

Thus, the unknown input observer for (4.187)–(4.188) is given as follows:

x̂k+1 =Āx̂k + B̄uk + h̄ (uk, yk) + ḡ (xk, uk)+
+ Ēyk+1 + K(yk − Cx̂k). (4.192)

Now, let us consider the first of the above-mentioned approaches, which can be
used for designing the UIO [27]. For the sake of notational simplicity, let us start
with the UIO for linear discrete-time systems:

xk+1 = Axk + Buk + Edk,

yk+1 = Cxk+1, (4.193)

which can be described as follows:

sk+1 = Fsk + TBuk + K1yk, (4.194)
x̂k+1 = sk+1 + H1yk+1, (4.195)

with

K1 = K + K2, (4.196)
E = H1CE, (4.197)
T = I − H1C, (4.198)
F = TA − KC, (4.199)

K2 = FH1. (4.200)
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By substituting (4.195) into (4.194) and then using (4.198), (4.199) and (4.200),
it can be shown that:

x̂k+1 =Ax̂k + Buk − H1C[Ax̂k + Buk] − KCx̂k − FH1yk+
+ [K + FH1]yk + H1yk+1, (4.201)

or, equivalently,

x̂k+1 = x̂k+1/k + H1(yk+1 − Cx̂k+1/k) + K(yk − Cx̂k), (4.202)

where

x̂k+1/k = Ax̂k + Buk. (4.203)

Substituting the solution of (4.197), i.e., H1 = EH into (4.202) yields:

x̂k+1 = [I − EHC]x̂k+1/k + EHyk+1 + K(yk − Cx̂k). (4.204)

Thus, in order to use (4.204) for (4.187)–(4.188) it is necessary to replace (4.203)
by

x̂k+1/k = Ax̂k + Buk + h(yk, uk) + g (x̂k, uk) . (4.205)

Similarly as was the case in Section 4.2, by substituting (4.205) into (4.204) and
then comparing it with (4.192) it can be seen that the observer structures being
considered are identical. On the other hand, it should be clearly pointed out that
they were designed in a significantly different way.

Since the observer structure is established, then it is possible to describe its
design procedure.

A simple comparison of (4.133) and (4.191) leads to the conclusion that the
observer (4.192) can be designed with one of the techniques proposed in Sec-
tion 4.3.2, taking into account the fact that (cf. (4.135)):

‖ḡ (x1, u) − ḡ (x2, u) ‖2 ≤ γ̄‖x1 − x2‖2, ∀x1, x2, u, (4.206)

and assuming that the pair (Ā, C) is observable.

4.3.4 Experimental Results

Observer design and state estimation

The main objective of the present section is to compare the performance of the
three different design procedures (proposed in Section 4.3.2).

First, the problem is to obtain the gain matrix K maximising γ (for which
the observer (4.136) is convergent) for the systems given by

A =
[

0.2 0.01
0.1 0.2

]

, C = [1 0], (4.207)
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and

A =

⎡

⎣
0.137 0.199 0.284
0.0118 0.299 0.47
0.894 0.661 0.065

⎤

⎦ , C =
[

1 0 0
0 1 0

]

. (4.208)

To tackle this problem the approaches presented in Section 4.3.2 were imple-
mented with MATLAB�. One of the functions that implements the design pro-
cedure II is presented and carefully discussed in Appendix.

Table 4.1. Maximum γ for (4.207) and (4.208)

Design procedure γ for (4.207) γ for (4.208)
I 0.6765 0.5563
II 0.7998 0.6429
III 0.7916 0.5422

The obtained results are presented in Tab. 4.1. It can be observed that the
maximum difference between the maximum Lipschitz constant obtained with the
proposed design procedures is greater than 15%. Apart from the fact that the
second design procedure gave the best results, it is probably impossible to prove
that this is the best choice for all systems. The above results confirm Remark 4.9,
i.e., it is very hard to chose a priori a criterion that gives the least conservative
bound of γ. It is also worth noting that, contrary to the approaches presented
in the literature (see, e.g., [1, 149, 150, 172]), the proposed procedures provide
the gain matrix K that is a global solution of the γ maximisation problem.

Now let us consider a one-link manipulator with revolute joints actuated by
a DC motor [150] described by the continuous counterpart of (4.133)–(4.134)
with the following parameters:

A =

⎡

⎢
⎢
⎣

0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 10
1.95 0 −1.95 0

⎤

⎥
⎥
⎦ ,

B = [0 21.6 0 0]T , C =
[

1 0 0 0
0 1 0 0

]

,

g (x(t), u(t)) = [0 0 0 − 0.333 sin(x3)], h(y(t), u(t)) = 0, (4.209)

where x1(t) stands for the angular rotation of the motor, x2(t) is the angular
velocity of the motor, x3(t) is the angular position of the link, and x4(t) is the
angular velocity of the link.

The discrete-time counterpart (4.133)–(4.134) of (4.209) was obtained by us-
ing the Euler discretisation of a step size τ = 0.01. The input signal was given
by uk = sin(2πτk), while the initial condition for the observer and the system
were x̂0 = 1 and x0 = 0, respectively.

The first objective was to compare the performance of the three different
design procedures (proposed in Section 4.3.2). In particular, the problem was to
obtain the gain matrix K maximising γ.
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As can be easily observed, the Lipschitz constant γ = τ0.333. The following
maximum values of γ were obtained for the consecutive design procedures (i.e.,
I, II, III): γ = 0.0329, γ = 0.0802, γ = 0.0392. This means that acceptable γ
(provided by the second design procedure) is more than 24 times larger than
actual γ = 0.00333. Similarly as in the preceding examples, the best results were
achieved for the second design procedure. The resulting gain matrix K is

K =

⎡

⎢
⎢
⎣

1.0000 0.0100
−0.4860 1.7926

0 1.9822
0.0195 3.2371

⎤

⎥
⎥
⎦ . (4.210)

For the purpose of comparison, a continuous-time observer

˙̂x(t) = Ax̂(t) + Bu(t) + g (x̂(t), u(t)) + K(y(t) − Cx̂(t)) (4.211)

designed by Rajamani and Cho [150] was employed. They obtained the following
gain matrix K for (4.209):

K =

⎡

⎢
⎢
⎣

0.8307 0.4514
0.4514 6.2310
0.8238 1.3072
0.0706 0.2574

⎤

⎥
⎥
⎦ , (4.212)

which is also utilised in this section.
Figures 4.3–4.6 show the results of state estimation. As can be observed, the

state estimates obtained with the proposed observer converge rapidly to the
corresponding true values (compare especially the estimates for k = 0, . . . , 40
exposed by the plots on the right in Figs. 4.3–4.6). Indeed, it can be easily
seen that the proposed observer is superior to the one designed with the design
procedure proposed in [150]. This superiority can be clearly seen in Fig. 4.7,
which exposes the evolution of the norm of the state estimation error.
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Fig. 4.3. Angular rotation of the motor x1 and its estimates for the entire simulation
(a) and first 41 samples (b)
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Fig. 4.4. Angular velocity of the motor x2 and its estimates for the entire simulation
(a) and first 41 samples (b)

Design of the UIO and fault detection

Let us consider the following non-linear system:

xk+1 = Axk + B (uk + fk) + g (xk) + Edk,

yk+1 = Cxk+1,

where

A =

⎡

⎣
0.137 0.199 0.284
0.0118 0.299 0.47
0.894 0.661 0.065

⎤

⎦ , B = [0.25 0.6 0.1]T ,

C =
[

1 0 0
0 1 0

]

, E =

⎡

⎣
0
1
0

⎤

⎦ ,

g (xk) =

[

0.6
cos(12x2,k)
x2

2,k + 10
0 − 0.333 sin(x3,k)

]T

,

and fk stands for the actuator fault, which is given as follows:

fk =
{

−0.1uk, 50 ≤ k ≤ 150
0, otherwise .

The initial conditions for the system and the observer were x0 = [3 2 1]T and
x̂0 = 0, respectively. Moreover, the input and the unknown input were given by
uk = sin(0.02πk) and dk = 0.3 sin(0.1k) cos(0.2k), respectively.

Applying the approach presented in Section 4.3.3, it can be observed that γ̄ =
γ. Following the general approach for estimating the Lipschitz constant [155],
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Fig. 4.5. Angular position of the link x3 and its estimates for the entire simulation
(a) and first 41 samples (b)
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Fig. 4.6. Angular velocity of the link x4 and its estimates for the entire simulation (a)
and first 41 samples (b)

one can show that γ̄ = γ = 0.719. Knowing the Lipschitz constant, it is possible
to use the procedures presented in Section 4.3.2 to design the UIO. Maximum
allowable γ for the consecutive (I, II and III) design procedures were 0.65, 0.772
and 0.722, respectively. This means that the observer (the gain matrix K) ob-
tained with the first procedure cannot be employed because maximum γ̄ for
which the observer is convergent is γ̄ = 0.65. Indeed, it is smaller than the
actual value γ̄ = 0.719.

Thus, it can be seen that the second design procedure is less restrictive for
the system being considered. A similar property has been observed for a large
number of numerical examples. For the purpose of comparison, a conventional
observer was designed with the use of the second procedure, i.e., the effect of
an unknown input was neglected during the design. Figures 4.8–4.9 present the
residual for the UIO and the conventional observer. As can be observed, it is
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impossible to detect the actuator fault with the conventional observer and the
fixed threshold (presented in the figure). Contrarily, it is straightforward to as-
sign a fixed threshold for the residual generated with the UIO, and then to detect
the actuator fault with z1,k = y1,k − ŷ1,k (Fig. 4.8).

4.4 Concluding Remarks

The main objective of this chapter was to present three different approaches
that can be used for designing unknown input observers for non-linear discrete-
time systems. In particular, Section 4.1 introduced the concept of an extended
unknown input observer. It was shown, with the help of the Lyapunov method,
that such a linerarisation-based technique is convergent under certain condi-
tions. However, it was pointed out that these conditions were obtained under
a very restrictive assumption. To tackle this task, a novel structure and design
procedure of the EUIO were proposed in Section 4.2. As a result, convergence
conditions were obtained which do not require restrictive assumptions, as was
the case in Section 4.1. It was also shown that the achieved convergence condition
is less restrictive than the one resulting from the approach described in [19]. The
common advantage of the approaches presented in Sections 4.1 and 4.2 is related
to their implementation simplicity. Indeed, the design procedures are almost as
straightforward as their counterparts for linear systems. Minor modifications
that significantly improve the convergence and the convergence rate are also
very easy to implement.

The third observer structure presented in this chapter (see Section 4.3) was
dedicated to the discrete-time Lipschitz system. In particular, the main objective
was to develop efficient approaches to designing observers for discrete-time Lip-
schitz non-linear systems. In particular, with the use of the Lyapunov method,
three different convergence criteria were developed. The difference between these
criteria lies in the way the Lyapunov function is calculated. All these techniques
introduce a level of conservatism related to the relative inaccuracy of a given
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Fig. 4.8. Residual z1,k = y1,k − ŷ1,k obtained with the UIO (dashed line) and the
conventional observer
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technique. Based on the achieved results, three different design procedures were
proposed. These procedures were developed in such a way that the design prob-
lem boils down to solving a set of linear matrix inequalities or solving the gen-
eralised eigenvalue minimisation problem under LMI constraints. Experimental
results confirm the effectiveness of the proposed design procedures. In particular,
it was shown that the proposed approach can be effectively applied to design
an observer for a flexible link robot, which is a frequently used benchmark for
observers for Lipschitz systems. Moreover, the convergence rate provided by the
proposed observer is significantly higher than the one obtained with the tech-
niques present in the literature.
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Another objective was to show how to apply the proposed techniques to sys-
tems with unknown inputs. This was realised with the use of a suitable system
transformation that converts system description with an unknown input into
a system description without it. Experimental results confirm the effectiveness
of the proposed design procedures and show the potential profits that can be
achieved while applying the proposed approach to the FDI scheme.



5. Parameter Estimation-Based FDI

The approaches presented in the preceding part of this book do not employ an
additional design freedom that can be achieved by suitably scheduling input sig-
nals. Thus, from this point of view the presented approaches can be perceived
as Passive Fault Diagnosis (PFD) tools. There is no doubt that it is profitable
to design the input signal in such a way as to improve FDI in some sense and to
achieve the control goal at the same time. The design of such an input signal is
usually based on the minimisation of an additional criterion (e.g., the minimisa-
tion of fault detection delay). An important question is how to apply this input
signal to the observed system. Some extra inputs which are not used for control
can be utilised to excite the system [196]. This is not a common case, and an
input signal is more often applied through the standard inputs in the so-called
test period [24, 40]. The test period must be short and wisely chosen because
no control is generated. This problem can be solved using an input signal which
fulfils two opposed aims: excitation and control.

The area of Active Fault Diagnosis (AFD) has received considerable attention
during the recent years. AFD has been considered in a number of papers (see,
e.g., [24, 124] and the reference therein). AFD will, in general, result in a faster
fault detection than the one obtained with PFD.

Unfortunately, the main drawback of the above-mentioned approaches is the
fact that they are designed for linear systems and it is extremely difficult to
use them for non-linear ones. Thus, the only feasible way is to use an off-line
input design procedure that can be used for non-linear systems [7, 50, 167, 170].
The above mentioned procedure is primarily employed for parameter estimation
but its incontestable appeal is that it reduces the resulting model uncertainty.
This feature will be exploited in the subsequent part of this chapter. Apart from
designing an optimal input sequence, the above-described experimental design
strategy [7, 50, 167, 170] can also be used for determining the optimal values
of all variables having some influence on the parameter estimation process (this
feature will be clearly illustrated in Section 5.2).

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 85–101, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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At this point, it should by pointed out that the approaches presented in
this chapter are restricted to static non-linear systems. Experimental design for
dynamic non-linear systems is extremely complicated and there is no general
solution that can be applied to a wide class of non-linear systems. For a com-
prehensive treatment regarding this subject the reader is referred to [167].

The chapter is organised as follows: Section 5.1 present an elementary back-
ground regarding experimental design for non-linear systems, while Section 5.2
presents a comprehensive case study regarding impedance measurement and
fault detection with experimental design strategies. It should be pointed out that
some of the results presented in Section 5.2 were originally presented in [180].

5.1 Experimental Design

It is well known that data collection requires some effort that can be expressed in
the form of time, financial means, or other material resources. On the other hand,
a proper design makes it possible to exploit the available resources in the most
efficient way. The purpose of experimental design is to determine experimental
conditions that make it possible to determine the model parameters as accurately
as possible, i.e., with a possibly small model uncertainty. As was mentioned in
Section 2.3, the measurements used for parameter estimation are corrupted by
noise and disturbances, which contribute directly to parameter uncertainty. As
a result, there is no unique p̂ that is consistent with a given set of measurements,
but there is a parameter set P that satisfies this requirements. Thus, the main
objective is to design an experiment in such a way as to minimise the confidence
region P. It is an obvious fact that the smaller the confidence region, the more
sensitive the fault diagnosis scheme. This means that experimental design is of
paramount importance for parameter estimation-based FDI.

To explain this in a more formal way [170], let us assume that the ith output
observation is y(ξi), where ξi is a vector describing the experimental conditions
(e.g., measurement time, the shape and value of inputs, etc.) under which the
ith measurement is to be collected. When nt observations are collected, then
the concatenation of ξi, i = 1, . . . , nt gives ξ = [(ξ1)T , . . . , (ξnt)T ]T , which
characterises all experimental conditions to be optimised. Let X denote the set of
all feasible values of ξ. Then the optimal experimental design can be formulated
as a constrained optimisation problem of the form

ξ∗ = arg min
ξ∈X

Φ(ξ), (5.1)

where Φ(·) stands for the scalar cost function, which can be defined in many
different ways [7, 50, 167, 170]. However, the most common approach is to
use Φ(·), which is related to the so-called Fisher Information Matrix (FIM) [7,
50, 167, 170]. A valuable property of the FIM is that its inverse constitutes
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an approximation of the covariance matrix for the estimates of the system pa-
rameters p [66].

To express this in a more formal way, let us start with a simple linear system
described by

yk = rT
k p + vk, (5.2)

where rk depends on the kth experimental condition ξk, and v stands for the
zero-mean, uncorrelated, Gaussian noise sequence. Thus, for a set of nt observa-
tions the FIM can be expressed by

P−1 =
nt∑

k=1

rkrT
k . (5.3)

Since the FIM is given, then it is possible to describe the most frequently used
cost functions Φ(·) that can be used for solving (5.1). These cost functions are
usually related to the following criteria [7, 50, 167, 170]:

• D-optimality criterion:

Φ(ξ) = detP ; (5.4)

• E-optimality criterion (λmax(·) stands for the maximum eigenvalue of its
argument):

Φ(ξ) = λmax (P ) ; (5.5)

• A-optimality criterion:

Φ(ξ) = trace P . (5.6)

Thus, a D-optimum design minimises the volume of the confidence ellipsoid
describing the feasible parameter set P (see, e.g., [7, Sec. 6.2] for further ex-
planations). An E-optimum design minimises the length of the largest axis of
the same ellipsoid. An A-optimum design suppresses the average variance of
parameter estimates.

It is clear that a direct optimisation of (5.1) is possible in relatively simple
cases only. Such a design study is to be considered in Section 5.2. In other
situations, specialised algorithms such as the Wynn-Fedorov algorithm [7, 50,
167, 170] have to be applied. Such an algorithm is to be employed in Section 7.1.

Another problem is related to non-linear systems which can be described by

yk = g(ξk, p) + vk. (5.7)



88 5. Parameter Estimation-Based FDI

In this case, the FIM is given by (5.3) with

rk =
∂g(ξk, p)

∂p
. (5.8)

It is important to note that (5.8) depends on the values of the unknown para-
meters p. Thus, in most practical situations some estimates of p are used for
calculating the FIM, i.e., it is given by (5.3) with

rk =
∂g(ξk, p)

∂p

∣
∣
∣
∣
∣
p=p̂

. (5.9)

Thus, the more accurate estimates, the better the obtained experimental design.
Since all elementary background on experimental design is given, then it is

possible to show all the advantages that can be gained while using it for devel-
oping FDI schemes. To tackle this problem, an example regarding impedance
measurement and diagnosis is to be employed and detailed in Section 5.2.

5.2 Impedance Measurement and Diagnosis

Various physical quantities like, e.g., force, pressure, flow and displacement can
be transformed into an impedance through different transducers. The measure-
ments collected in such a way constitute the basic source of knowledge regarding
any industrial system being controlled or diagnosed [96, 179]. Many different
techniques and equipment have been developed over the past years so as to
meet demands on different operational ranges, accuracies, measurement rates,
specific application targets, and costs. So far, there has been no doubt that
high-accuracy measurements can be achieved by using AC bridges that are bal-
anced either manually or iteratively. Unfortunately, such a balancing technique
excludes fast measurement rates that are required by modern control and fault
diagnosis systems [96, 179]. In order to settle such a challenging problem, many
different computer-based AC bridges have been developed over the last fifteen
years. Dutta et al. [44] introduced the idea of a “virtual AC bridge” with a virtual
arm implemented with the help of a microcomputer. Awad et al. [8] made an im-
portant contribution to this approach with respect to its convergence. Recently,
Dutta et al. [45] proposed another modification of this impedance measurement
technique. In all of the above papers, the authors formulated the impedance
measurement problem as the non-linear-in-parameter estimation [170] one. To
solve such a problem, they employed the gradient descent algorithm [170], which
made the required measurement rate difficult to attain. To settle this prob-
lem, Kaczmarek et al. [87] employed the so-called bounded-error parameter es-
timation technique [170]. In spite of the high convergence rate, the technique
does not make it possible to attain accuracy comparable with [8, 45]. A slightly
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different approach was proposed by Angrisani et al. [5]. This technique is based
on a bridge-balance loop comprising two internal loops. The first one is used
for tuning the capacitive (inductive) part of the impedance, while the second
one for arranging the resistive part. The main drawback of this approach is
that fast convergence seems very hard to attain. A fast balancing bridge was
proposed by Zhang et al. [195], and it seems suitable for a wide range of industrial
applications.

Unfortunately, the researchers have not considered the relation between ex-
perimental conditions [167, 170] and the accuracy of the measurements. In this
work, experimental conditions are related to optimum selection of the reference
resistance of the bridge and the sampling time. Angrisani et al. [5] and Zhang
et al. [195] discovered, by numerous simulations, that the closer the selected ref-
erence resistance is to the measured impedance, the more precise measurement
results can be obtained. However, they did not provide any explicit formulae
determining the reference resistance.

In this section, the answer to the challenging problem of optimum experimen-
tal conditions is provided, i.e., explicit formulae for the reference resistance and
the sampling time are developed. The subsequent part of this section is organ-
ised as follows: Section 5.2.1 shows the formulation of the problem and the pro-
posed measurement technique. In Section 5.2.2, the results regarding optimum
experimental conditions are provided. Section 5.2.3 shows a way of extending
the proposed approach to inductive impedances. Section 5.2.4 is devoted to ro-
bustness problems, which are very important in practical applications. Finally,
section 5.2.5 presents experimental results that confirm the effectiveness of the
proposed approach.

5.2.1 Problem Formulation

The objective of this section is to propose a new impedance measurement scheme.
This work is motivated by the approach presented in [87]. The virtual bridge is
composed of two arms, namely, a real (hardware) arm, as shown in Fig. 5.1,
and a virtual arm, implemented with the help of a computer. As has already
been mentioned, there is no literature providing any analytical rules that can be
used for obtaining the reference resistance Rr and the sampling time. Another
question that arises while analysing [8, 44] is as follows: Is it really necessary to
use non-linear parameter estimation techniques for estimating R and C? First,
let us observe that for the scheme presented in Fig. 5.1 the following current
equality can be established:

C
dyM (t)

dt
+

yM (t)
R

=
u(t) − yM (t)

Rr
. (5.10)

Assuming that u(t) = U
√

2 sin(ωt), the steady-state solution of (5.10) can be
written as

yM (t) = ρU
√

2R((R + Rr) sin(ωt) − RrRCω cos(ωt)), (5.11)
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Fig. 5.1. Impedance measurement scheme

where ρ =
(
R2 + 2RrR + R2

r(1 + ω2R2C2)
)−1. The equation (5.11) can be trans-

formed into a discrete-time form and written as follows:

yM,k = p1u1,k + p2u2,k, (5.12)

with

p1 = ρR(R + Rr), p2 = ρRrCωR2, (5.13)

and u1,k = U
√

2 sin(ωkτ), u2,k = U
√

2 cos(ωkτ), where τ stands for the sampling
time. In this work, it is assumed that u1,k and u2,k are available. This is a mild
assumption since it is not difficult to design hardware providing such signals.
Another important fact that can be observed while analysing (5.12) is that it can
be perceived as a linear-in-parameter model with respect to p1 and p2. Contrary
to [8, 44], where non-linear parameter estimation techniques were employed for
obtaining R and C, it is proposed to use the classic Recursive Least-Square
(RLS) algorithm [170] for theestimation of p1 and p2. Such an algorithm can be
written as follows:

p̂k = p̂k−1 + kkεk, (5.14)

kk = P k−1rk

(
1 + rT

k P k−1rk

)−1
, (5.15)

εk = yk − g(p̂k−1, uk), (5.16)

P k =
[
Inp − kkrT

k

]
P k−1, (5.17)

g(p̂k, uk+1) = p̂1,ku1,k+1+ p̂2,ku2,k+1, rk = [u1,k, u2,k]T , p̂k = [p̂1,k, p̂2,k]T ∈ R
np

denotes the kth estimate of p, and k = 1, . . . , nt. Thus, knowing p̂ it is possible
to obtain the estimates of R and C according to the following equations:
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R̂ = − Rr(p̂2
1 + p̂2

2)
p̂2
1 + p̂2

2 − p̂1
, (5.18)

Ĉ = − p̂2

Rrω(p̂2
1 + p̂2

2)
, (5.19)

obtained by solving (5.13) with respect to R and C. It should also be pointed
out that when there is no need for on-line estimation of the impedance, then the
classic, non-recursive least-square algorithm can be employed. The well-known
advantage of this algorithm, comparing with its recursive counterpart, is that
the highest estimation accuracy can be attained with smaller nt. In this case,
the estimates of p1 and p2 can be computed as follows:

p̂1 =
γ2η − β2γ1

η2 − β1β2
, p̂2 =

γ1η − β1γ2

η2 − β1β2
, (5.20)

where

γi =
nt∑

k=1

ui,kyk, η =
nt∑

k=1

u1,ku2,k, βi =
nt∑

k=1

u2
i,k. (5.21)

As can be found in the literature [170] regarding the RLS algorithm, the initial
matrix P k, i.e., P 0 should be set as P 0 = γI, where γ stands for a sufficiently
large positive constant (usually 103–1020). When some rough values of R and C
are known then p̂0 should be initialised according to (5.13). Otherwise, it can
be observed from (5.18) that p̂2

1 + p̂2
2 − p̂1 < 0 and hence

1
2

− 1
2

√

1 − 4p̂2
2 < p̂1 <

1
2

+
1
2

√

1 − 4p̂2
2. (5.22)

Since p̂2 should satisfy 1 − 4p̂2
2 > 0 and (5.19) indicates that p̂2 < 0, then it is

clear that
−1

2
< p̂2 < 0. (5.23)

Thus, when no knowledge is available about R and C, then p̂0 should be set so
as to satisfy (5.22)–(5.23).

5.2.2 Experimental Design

One objective of this section is to provide rules for computing the accuracy of the
measured impedance, i.e., a set of all R and C that are consistent with the mea-
surements of u and y. The main objective is to provide optimum experimental
conditions, i.e., explicit formulae for the reference resistance and the sampling
time are developed that make it possible to increase measurement accuracy. The
proposed solution is based on the following assumption:

yk = yM,k + vk, (5.24)

while v stands for the zero-mean, uncorrelated, Gaussian noise sequence. In other
words, vk represents the difference between the output of the model (5.12) and
yk (cf. Fig. 5.1).
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Confidence region and fault detection

Since estimates of R and C can be obtained according to (5.18)–(5.19), the
next problem being considered is to obtain a set of all possible R and C that are
consistent with the measurements of u and y. Such a set can be obtained with
the use of the (1−α)100% confidence region [170] for p and the equations (5.13),
where α stands for the significance level. As a result, the following inequality is
given:

sT
k P−1

k sk ≤ 2σ̂2
kFα,2,k−2 (5.25)

where
sk = p̂k − ρ

[
R(R + Rr), RrCωR2]T

, (5.26)

and Fα,2,k−2 stands for the F-Snedecor distribution quantile with 2 and k − 2
degrees of freedom, and σ̂ is the estimate of the standard deviation of v. The
inequality (5.25) is very important from the point of view of fault detection and
control of industrial systems [96, 179]. Indeed, it can be used for checking that
the measured impedance satisfies the predefined bounds. On the other hand,
the problem of fault detection can be transformed into the task of hypotheses
testing. This means that, at the α-level, the hypothesis

H0 : (R, C) = (R0, C0)
vs.
H1 : (R, C) �= (R0, C0), (5.27)

whereas R0, C0 are the required (nominal) values of R and C, is rejected when
the inequality (5.25) is violated. The acceptance of the hypothesis H1 denotes
faulty behavior of the impedance.

Optimum experimental conditions

As can be seen from (5.25), the size of the confidence region depends on the
FIM, P−1. Thus, optimal experimental conditions can be obtained by optimis-
ing some scalar function Φ(P−1). As has already been mentioned, such a function
can be defined in several different ways [167, 170]. In this section, the so-called
D-optimality criterion is used. This means that an appropriate selection of ex-
perimental conditions will make it possible to obtain a more reliable fault di-
agnosis system (through more accurate measurements of the impedance) than
those designed without it [40]. It should also be pointed out that experimental
conditions are developed for R and C but not for p1 and p2. This means that
all dependencies among Rr, ω, τ , R, and C that provide an additional source of
knowledge are exploited. First, let us define the FIM:

P−1 =
nt∑

k=1

rkrT
k , rk =

[
∂yM,k

∂R
,
∂yM,k

∂C

]T

. (5.28)

The purpose of further deliberations is to obtain D-optimum values of Rr and
τ , i.e., Rr and τ that maximise det

(
P−1

k

)
.
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It can be observed that

rk =P 1r1,k, P 1 =
√

2URrρ
2diag(1, ωR2),

r1,k =[a sin(ωkτ) + b cos(ωkτ), b sin(ωkτ) − a cos(ωkτ)],

a =R2 + 2RrR + R2
r(1 − ω2R2C2), b = −2Cω(RrR

2 + RR2
r).

Bearing in mind that the fact that
√

a2 + b2 sin(ωkτ + arctan(a/b)) = a sin(ωkτ) + b cos(ωkτ),
√

a2 + b2 = ρ−1, (5.29)

it is possible to write:

rk =P 2r2,k, P 2 =
√

2URrρdiag(1, ωR2),

r2,k = [sin(ωkτ + arctan(a/b)), sin(ωkτ + arctan(−b/a))]T . (5.30)

Using the equations (5.30), the FIM can be given as follows:

P−1 = P 2

nt∑

k=1

r2,krT
2,kP 2. (5.31)

The main difficulty associated with further deliberations is concerned with the
selection of the number of measurements nt. Indeed, it is very difficult to give
nt a priori. In order to perform further derivations, two relatively non-restrictive
assumptions are formulated:

Assumption 5.1. Sampling starts exactly at the beginning of the period of
u(t).

Assumption 5.2. The ratio between the period of u(t) and the sampling inter-
val is a rational number.

Under the above assumptions and due to the nature of sin(ωkτ), it is easy to see
that experimental conditions are cyclically repeated. When some experiments
are repeated, then the number ne of distinct experimental conditions is smaller
than the total number of observations nt. The design resulting from this approach
is called the continuous experimental design [167, 170]. The FIM can then be
defined as

P−1 = P 2

ne∑

k=1

μkr2,krT
2,kP 2. (5.32)

μ1, . . . , μne , μk ∈ [0, 1] are perceived as weights associated with the k = 1, . . . , ne

experimental conditions, which satisfy
∑ne

k=1 μk = 1. Caratheodory’s theorem
then indicates that (5.32) can be written with a linear combination of at most
ne = np(np + 1)/2+ 1 (ne = 4 since we have two parameters R and C) matrices
r2,krT

2,k. In the sequel, the setting ne = 4 is employed.
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Using (5.32), it can be shown that

det
(
P−1) = det (P 2)

2 det

(
ne∑

k=1

μkr2,krT
2,k

)

.

After some relatively easy but lengthy calculations, it can be shown that

det

(
ne∑

k=1

μkr2,krT
2,k

)

= sin(ωτ)2
(
16μ1μ4 cos(ωτ)4

+4(μ1μ3 + μ2μ4 − 2μ1μ4) cos(ωτ)2 + μ1μ4 + μ1μ2 + μ2μ3 + μ3μ4
)

(5.33)

It can be observed that (5.33) is independent of R, C and Rr. On the other hand,
P 2 does not depend on τ . This means that the maximisation of the determinant
of the FIM (or the minimization of its inverse) with respect to τ is equivalent to

τ∗ = arg max
τ>0,μi,i=1,...,ne

det

(
ne∑

k=1

μkr2,krT
2,k

)

, (5.34)

while the maximisation of the determinant of the FIM with respect to Rr is
equivalent to

R∗
r = arg max

Rr>0
det(P 2) = arg max

Rr>0
2ρ2ωU2R2R2

r . (5.35)

The solution of (5.34) is given as follows:

τ∗ =
π(1 + i)

2ω
, i = 0, (5.36)

with μk = 1/4, k = 1, . . . , ne = 4. Note that i is not greater than zero, which
corresponds to the sampling frequency more than two times larger than the
frequency of the input signal. Finally, the D-optimum value of the reference
resistance R∗

r (being the solution of (5.35)) can be written according to

R∗
r =

R√
1 + ω2R2C2

. (5.37)

Other properties

The objective of this section is to investigate the influence of the experimental
conditions (5.36) and (5.37) on the estimation accuracy of p. First, let us define
the FIM for p:

P−1 =
nt∑

k=1

rkrT
k ,

rk =
[
∂yM,k

∂p1
,
∂yM,k

∂p2

]T

= U
√

2 [sin(ωτk), cos(ωτk)]T . (5.38)
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Similarly as in Section 5.2.2, the FIM for continuous design can be defined as

P−1 =
ne=4∑

k=1

μkrkrT
k . (5.39)

Substituting (5.36) into (5.39), it can be shown that

P−1 = 2U2diag(μ1 + μ3, μ2 + μ4). (5.40)

From (5.40), it can be observed that the FIM is diagonal. A design satisfying
this property is called the orthogonal design. Its appealing property is that the
covariance between the parameters p1 and p2 equals zero, which means that they
are estimated independently. The remaining task is to check if the experimental
conditions (5.36)–(5.37) are D-optimum for p. In order to do that, the following
useful criterion can be used [167, 170]:

rT
k P rk ≤ np (5.41)

when the equality holds for rk satisfying the experimental conditions (5.36) and
(5.37). Substituting np = 2 and then (5.40) into (5.41), it can be shown that

sin(1
2πk)2

μ1 + μ3
+

cos(1
2πk)2

μ2 + μ4
≤ 2. (5.42)

Setting μk = 1/4, k = 1, . . . , ne = 4 in (5.42) implies that the experimental de-
sign (5.36)–(5.37) is D-optimum and orthogonal for p, i.e., the FIM is a diagonal
matrix.

5.2.3 Inductive Impedance

The main objective of this section is to derive D-optimum experimental condi-
tions for an inductive impedance. This sections presents the main results only
that are obtained according to the derivation presented in the preceding sec-
tions. First, let us observe that for an inductive impedance the following current
equality can be established:

yM (t)
R

+
1
L

∫ t

0
yM (t)dt =

u(t) − yM (t)
Rr

. (5.43)

The discrete-time steady-state solution of (5.43) can be written as

yM,k = p1u1,k + p2u2,k, (5.44)

where
p1 = ρL2ω2(Rr + R)R, p2 = ρLωRrR

2, (5.45)
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where ρ =
(
(R + Rr)2ω2L2 + R2R2

r

)−1. Knowing p̂, it is possible to obtain the
estimates of R and L according to the following equations:

R̂ = − Rr(p̂2
1 + p̂2

2)
p̂2
1 + p̂2

2 − p̂1
, (5.46)

L̂ =
Rr(p̂2

2 + p̂2
1)

p̂2ω
, (5.47)

obtained by solving (5.45) with respect to R and L. Finally, the D-optimum
sampling time is given by (5.36) while the D-optimum reference resistance is

R∗
r =

RLω√
R2 + ω2L2

. (5.48)

Moreover, the confidence region (5.25) can be computed by using

sk = p̂k − ρ
[
L2ω2R(R + Rr), LωRrωR2]T

. (5.49)

Similarly as in Section 5.2.1, the initial values of the parameters p1 and p2 should
satisfy

1
2

− 1
2

√

1 − 4p̂2
2 < p̂1 <

1
2

+
1
2

√

1 − 4p̂2
2, (5.50)

and
0 < p̂2 <

1
2
. (5.51)

Another important property is that the optimality conditions for p1 and p2 are
valid for inductive impedances as well.

5.2.4 Towards Robustness

It is clear from (5.37) (and (5.48)) that the D-optimum value of the reference
resistance Rr depends on the values of the unknown parameters R and C(L).
Indeed, it is well known from the literature [167, 170] that the dependence on the
parameters that enter non-linearly into the model is an unappealing property
of the non-linear optimum experimental design. One way out of this problem is
to use the so-called sequential design [167, 170]. When some rough estimates of
R and C(L), then Rr can be calculated according to (5.37) (or (5.48)) and the
impedance measurement procedure can be started. As a result, a more accurate
impedance estimate can be obtained which can be employed to find new Rr. This
two-step sequential procedure can be repeated several times until satisfactory
results are obtained, i.e., a suitable measurement accuracy is accomplished. On
the other hand, when some prior bounds for R and C(L) are given, i.e., R ∈
[Rmin, Rmax] and C(L) ∈ [C(L)min, C(L)max], then it is possible to use (5.37)
(or (5.48)) to compute Rr for the average values of R and C(L) defined as
C̄(L̄) = 0.5(C(L)min + C(L)max), R̄ = 0.5(Rmin + Rmax) (see [167, 170] for
further comments about average D-optimality).
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5.2.5 Simulation Results

The main objective of this section is to perform a computer simulation-based
analysis of the impedance measurement technique presented in the preceding sec-
tions. Only the results for capacitive impedances are presented (many computer
simulations show that similar results can be achieved for inductive impedances
measured according to the approach presented in Section 5.2.3).

In all numerical experiments, measured yk was generated according to

yk = yM,k + vk, (5.52)

and vk ∼ U(−2δq, 2δq), where U stands for the uniform distribution, and δq is
the quantisation error of the 12-bit ADC defined as

δq =
1
2

U

212 − 1
, (5.53)

where U = 2.5[V]. In all experiments, the input signal frequency was 1[kHz], the
sampling time τ was selected according to (5.36), p0 = [−0.1, −0.1]T , and the
number of measurements of yk was nt = 4000.

Reference resistance, confidence region and fault detection

Let us consider a numerical simulation example for the following parameters: R =
10[kΩ], C = 540[pF]. Two different experiments were performed for two different
values of Rr, i.e., Rr = R∗

r (cf. (5.37)) and Rr = 1[kΩ]. Each of the above
experiments was repeated 500 times. Figures 5.2 and 5.3 show the histograms of
the relative measurements errors:

δR =
R − R̂

R
100[%], δC =

C − Ĉ

C
100[%], (5.54)

for Rr = R∗
r and Rr = 1[kΩ], respectively. From these results, it can be seen

that a considerable increase in measurement accuracy can be achieved with D-
optimum experimental conditions.

The purpose of the subsequent example is to use the approach developed in
Section 5.2.2 for fault detection of an impedance. Let us consider the following
parameter set: R = 500[Ω], C = 0.75[nF]. Two different experiments were per-
formed for two different values of Rr, i.e., Rr = R∗

r (cf. (5.37)) and Rr = 5[kΩ].
Let us assume that non-faulty R and C are R = 500.03[Ω] and C = 0.76[nF].
Thus, the problem of fault detection boils down to the task of testing

H0 : (R, C) = (500.03[Ω], 0.76[nF]),
vs.
H1 : (R, C) �= (500.03[Ω], 0.76[nF]). (5.55)

Figure 5.4 shows the confidence region (5.25) of R and C for Rr = 5[kΩ] (larger)
and Rr = R∗

r , respectively (assuming α = 0.01, i.e., the 99% confidence region).
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It can be observed from Fig. 5.4 and the inequality (5.25) that the hypothesis H0
is rejected when Rr = R∗

r , which means that a fault occurs. On the contrary, the
hypothesis H0 is accepted when Rr = 5[kΩ], which means that there is no fault.
These results clearly indicate that the application of D-optimum experimental
conditions increases fault sensitivity, i.e., it makes the proposed fault diagnosis
scheme more reliable.

Accuracy analysis

The main objective of this section is to estimate the measurement accuracy pro-
vided by the approach considered. For that purpose, a set of different impedances
were selected (similar to that of [5]). Each measurement was repeated 50 times,
and then the mean measured values R̄ and C̄ were calculated and for each of
them a coefficient of variation σ̄ was computed:

σ̄ =
σR

R̄
100[%], or σ̄ =

σC

C̄
100[%], (5.56)

where σC (or σR) stands for the standard deviation of 50 measurements.
Table 5.1 shows the achieved results. From this it is clear that the proposed
approach provides a high measurement accuracy. It should also be pointed out
that these measurements were achieved for nt = 4000, which implies that the
measurement time was 1[s]. Figure 5.5 shows the evolution of the relative errors
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Fig. 5.5. Relative errors in the consecutive iterations of the proposed algorithm

(5.54) (for R = 500[Ω], C = 0.75[nF], and Rr = R∗
r) in the consecutive iterations

of the proposed algorithm. From these results it is clear that relatively high mea-
surement accuracies can be achieved after a few hundred iterations only. This
corresponds to the measurement time less than 0.25[s].
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Table 5.1. Simulation results

True value Mean measured σ̄[%]
value

C 0.75[nF] 0.7502[nF] 0.41
R 500[Ω] 499.9997[Ω] 9.2252 · 10−4

C 150[nF] 150[nF] 0.0018
R 570[Ω] 569.999[Ω] 9.3179 · 10−4

C 320[nF] 320[nF] 4.6464 · 10−4

R 48[kΩ] 4.7999[kΩ] 0.0425
C 1[nF] 0.9998[nF] 0.1441
R 1[kΩ] 999.99[Ω] 0.0010
C 50[nF] 50[nF] 0.0028
R 1.1[kΩ] 1.1[kΩ] 8.7803 · 10−4

C 160[nF] 160[nF] 5.1671 · 10−4

R 97[kΩ] 96.986[kΩ] 0.0391
C 840[pF] 840[pF] 0.0313
R 5[kΩ] 5[kΩ] 8.6657 · 10−4

C 15[nF] 15[nF] 0.0018
R 5.7[kΩ] 5.7[kΩ] 9.1961 · 10−4

C 32[nF] 32[nF] 4.5223 · 10−4

R 296[kΩ] 296[kΩ] 0.0301
C 540[pF] 540[pF] 0.0220
R 10[kΩ] 10[kΩ] 8.8802 · 10−4

C 13[nF] 13[nF] 8.8790 · 10−4

R 17[kΩ] 17[kΩ] 0.0012
C 16[nF] 16[nF] 5.3046 · 10−4

R 495[kΩ] 495.01[kΩ] 0.0245

5.3 Concluding Remarks

The main objective of this chapter was to show how to increase the sensitivity
and reliability of parameter estimation-based FDI with the help of experimental
design theory. In particular, a brief introduction to the problem of experimental
design was presented and its application to FDI was discussed. All the theoretical
aspects were carefully investigated based on a comprehensive case study regard-
ing impedance measurement. Starting from a general problem, it was shown
how to construct the so-called virtual bridge. Subsequently, it was shown that
the impedance measurement problem can be formulated as a non-linear para-
meter estimation task. This task can then be reduced to a linear parameter
estimation problem without any linearisation. It was also shown how to obtain
parameter confidence region that can be used for FDI. Based on the achieved
results, it was shown how to determine optimum experimental conditions. The
experimental results clearly show the benefits that can be gained while using
the experimental design both from the parameter estimation and fault diagnosis
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viewpoints. The final conclusion that can be drawn is that works dealing with
experimental design for FDI are relatively scarce. Indeed, the optimisation of the
data acquisition process, which, undoubtedly, increases the reliability of fault di-
agnosis, is most often neglected. This is especially the case for non-linear dynamic
systems.



6. Evolutionary Algorithms

As was mentioned in Section 3.2, evolutionary algorithms are powerful optimi-
sation tools which can be applied to various challenging problems for which the
classic optimisation techniques cannot be employed or do not give satisfactory
results. Section 3.2.2 presents a large spectrum of FDI problems that can be
solved with EAs. This bibliographic review clearly shows that there are two
general approaches that deserve particular attention, i.e., the integration of an-
alytical and soft computing FDI techniques and robust soft computing-based
FDI. In this chapter, the attention is drawn to the first aspect.

As was indicated in Chapter 2, observers are immensely popular as residual
generators for fault detection (and, consequently, for fault isolation) of both lin-
ear and non-linear dynamic systems. Their popularity lies in the fact that they
can also be employed for control purposes. There are, of course, many different
observers which can be applied to non-linear and especially non-linear determin-
istic systems, and the best known of them were briefly reviewed in Section 2.2.3.
Logically, the number of “real world” applications of observers (not only simu-
lated examples) should proliferate, yet this is not the case. It seems that there
are two main reasons why strong formal methods are not accepted in engineering
practice. First, the application of observers is limited by the need for non-linear
state-space models of the system being considered, which is usually a serious
problem in complex industrial systems. This explains why most of the examples
considered in the literature are devoted to simulated or laboratory systems, e.g.,
the celebrated three- (two- or even four-) tank system, an inverted pendulum,
a traveling crane, etc. Thus, one possible application of evolutionary algorithms
is to use them for model design. Such an interesting approach [183, 187] was
briefly described in Section 3.2.2. Another reason is that the design complex-
ity of most observers for non-linear systems does not encourage engineers to
apply them in practice. To tackle this problem, Chapter 4 provides three un-
known input observer structures with relatively simple design procedures. The
first two observers are based on the general idea of an extended unknown input
observer [187]. Thus, the main design objective is to improve their convergence
rate. Sections 4.1 and 4.2 show analytical solutions to this challenging task.

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 105–132, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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However, as was indicated in Section 3.2.2 it is possible to increase the conver-
gence rate further with the help of evolutionary algorithms.

Taking into account the above discussion, the chapter is organised as follows:
Section 6.1 presents a genetic programming approach that can be used for de-
signing models of non-linear systems. In Section 6.2, genetic programming is used
to improve the convergence rate of the EUIO described in Section 4.1. Similarly,
Section 6.3 presents the application of the ESSS algorithm [63] and a stochastic
robustness technique for improving the convergence rate of the EUIO described
in Section 4.2. Finally, Section 6.4 presents selected experimental results obtained
with the above-described techniques.

6.1 Model Design with Genetic Programming

Generally, the model determination process can be realised as follows:

Step 0: Select a set of possible model structures M.
Step 1: Estimate the parameters of each of the models Mi, i = 1, . . . , nm.
Step 2: Select the model which is best suited in terms of the selected criterion.
Step 3: If the selected model does not satisfy the prespecified requirements, then

go to Step 0.

The above four-step procedure is usually very complex and requires advanced
experience regarding the system being modelled. The subsequent part of this
section shows how to automate the above procedure with genetic program-
ming [183, 187].

The characterisation of a set of possible candidate models M from which the
system model will be obtained constitutes an important preliminary task in any
system identification procedure. Knowing that the system exhibits a non-linear
characteristic, a choice of a non-linear model set must be made. Let a non-linear
input-output MIMO model have the following form:

yM,i,k =gi(yM,1,k−1, . . . , yM,1,k−n1,y , . . . , yM,m,k−1, . . . , yM,m,k−nm,y ,

u1,k−1, . . . , u1,k−n1,u , . . . , ur,k−1, . . . , ur,k−nr,u , pi),
i = 1, . . . , m. (6.1)

Thus the system output is given by

yk = yM,k + εk, (6.2)

where εk consists of a structural deterministic error caused by the model-reality
mismatch and the stochastic error caused by the measurement noise vk. The
problem is to determine the unknown function g (·) = (g1(·), . . . gm(·)) and to
estimate the corresponding parameter vector p = [pT

1 , . . . , pT
m]T .

One possible solution to this problem is the GP approach. As has already
been mentioned, the main ingredient underlying the GP algorithm is a tree.
In order to adapt GP to system identification, it is necessary to represent the
model (6.1) either as a tree or as a set of trees. Indeed, as is shown in Fig. 6.1,
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yM,k−1 uk−1 yM,k−2 uk−2

/

+

∗

Fig. 6.1. Exemplary GP tree representing the model yM,k = yM,k−1uk−1 +
yM,k−2/uk−2

the MISO model can be easily put in the form of a tree, and hence to build the
MIMO model (6.1) it is necessary to use m trees. In such a tree (see Fig. 6.1),
two sets can be distinguished, namely, the terminal set T and the function set
F (e.g., T = {uk−1, uk−2, yM,k−1, yM,k−2}, F = {+, ∗, /}). The language of the
trees in GP is formed by a user-defined function F set and a terminal T set, which
form the nodes of the trees. The functions should be chosen so as to be a priori
useful in solving the problem, i.e., any knowledge concerning the system under
consideration should be included in the function set. This function set is very
important and should be universal enough to be capable of representing a wide
range of non-linear systems. The terminals are usually variables or constants.
Thus, the searching space consists of all the possible compositions that can be
recursively formed from the elements of F and T. The selection of variables does
not cause any problems, but the handling of numerical parameters (constants)
seems very difficult. Even though there are no constant numerical values in the
terminal set T, they can be implicitly generated, e.g., the number 0.5 can be
expressed as x/(x + x). Unfortunately, such an approach leads to an increase in
both the computational burden and evolution time. Another way is to introduce
a number of random constants into the terminal set, but this is also an inefficient
approach. An alternative way of handling numerical parameters which seems to
be more suitable is called node gains [47]. A node gain is a numerical parameter
associated with the node whose output it multiplies (see Fig. 6.2). Although
this technique is straightforward, it leads to an excessive number of parameters,
i.e., there are parameters which are not identifiable. Thus, it is necessary to
develop a mechanism which prevents such situations from happening. First, let
us define the function set F = {+, ∗, /, ξ1(·), . . . , ξl(·)}, where ξk(·) is a non-linear
univariate function. To tackle the parameter reduction problem, several simple
rules can be established [183, 187]:

∗, /: A node of type either ∗ or / always has parameters set to unity on the side
of its successors. If a node of the above type is a root node of a tree, then
the parameter associated with it should be estimated.

+: A parameter associated with a node of type + is always equal to unity. If
its successor is not of type +, then the parameter of the successor should
be estimated.
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Fig. 6.2. Exemplary parameterised tree

ξ: If a successor of a node of type ξ is a leaf of a tree or is of type ∗ or /, then
the parameter of the successor should be estimated. If a node of type ξ is
a root of a tree, then the associated parameter should be estimated.

As an example, consider the tree shown in Fig. 6.2. Following the above rules, the
resulting parameter vector has only five elements p = (p3, p8, p9, p10, p11), and
the resulting model is yM,k = (p11+p8)yM,k−1+(p10+p9)uk−1+p3y

2
M,k−1/u2

k−1.
It is obvious that although these rules are not optimal in the sense of parame-
ter identifiability, their application significantly reduces the dimension of the
parameter vector, thus making the parameter estimation process much easier.
Moreover, the introduction of parameterised trees reduces the terminal set to
variables only, i.e., constants are no longer necessary, and hence the terminal set
is given by

T = {yM,1,k−1, . . . , yM,1,k−n1,y , . . . , yM,m,k−1, . . . , yM,m,k−nm,y ,

u1,k−1, . . . , u1,k−n1,u , . . . , ur,k−1, . . . , ur,k−nr,u}. (6.3)

The remaining problem is to select appropriate lags in the input and output
signals of the model. Assuming that nmax

y i nmax
u are maximum lags in the output

and input signals, the problem boils down to checking nmax
y × nmax

u possible
configurations, which is an extremely time-consuming process. With a slight loss
of generality, it is possible to assume that each ny = nu = n. Thus the problem
reduces to finding, throughout experiments, such n for which the model is the
best replica of the system. It should also be pointed out that the true parameter
vector p is unknown and hence it should replaced by its current estimate p̂.
Consequently, instead of using yM in the terminal set T the output estimate ŷ
should be employed, which can easily be calculated with (6.1) and p̂.

6.1.1 Model Structure Determination Using GP

If the terminal and function sets are given, populations of GP individuals (trees)
can be generated, i.e., the set M of possible model structures is created. An out-
line of the GP algorithm is shown in Tab. 6.1. The algorithm works on a set
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Table 6.1. Outline of the GP algorithm

I. Initiation

A. Random generation P(0) =
�
Pi(0) | i = 1, . . . , npop

�
.

B. Fitness calculation Φ
�
P(0)

�
=
�
Φ
�
Pi(0)

�
| i = 1, . . . , npop

�
.

C. t = 1.

II. While
�
ι
�
P(t)

�
= true

�
do

A. Selection P
′(t) =

�
P ′

i (t) = sns

�
Pi(t)

�
| i = 1, . . . , npop

�
.

B. Crossover P
′′(t) =

�
P ′′

i (t) = rPcross

�
P ′

i (t)
�

| i = 1, . . . , npop
�
.

C. Mutation P
′′′(t) =

�
P ′′′

i (t) = mPmut

�
P ′′

i (t)
�

| i = 1, . . . , npop
�
.

D. Fitness calculation Φ
�
P

′′′(t)
�

=
�
Φ
�
P ′′′

i (t)
�

| i = 1, . . . , npop
�
.

E. New generation P(t + 1) =
�
Pi(t + 1) = P ′′′

i (t) | i = 1, . . . , npop
�
.

F. t = t + 1.

of populations P =
{
Pi | i = 1, . . . , npop

}
, and the number of populations npop

depends on the application, e.g., in the case of the model (6.1), the number of
populations is equal to the dimension m of the output vector yk, i.e., npop = m.
Each of the above populations Pi =

{
bi,j | j = 1, . . . , nm

}
is composed of a set of

nm trees bi,j . Since the number of populations is given, the GP algorithm can be
started (initiation) by randomly generating individuals, i.e., nm individuals are
created in each population whose trees are of a desired depth nd. The tree gen-
erating process can be performed in several different ways, resulting in trees of
different shapes. The basic approaches are the “full” and “grow” methods [103].
The “full” method generates trees for which the length of every non-backtracking
path from the root to an endpoint is equal to the prespecified depth nd. The
“grow” method generates trees of various shapes. The length of a path between
the root and an endpoint is not greater than the prespecified depth nd. Because of
the fact that, in general, the shape of the true solution is unknown, it seems desir-
able to combine both of the above methods. Such a combination is called ramped
half-and-half . Moreover, it is assumed that the parameters p = [pT

1 , . . . , pT
m]T of

each tree are initially set to unity (although it is possible to set the parameters
randomly). In the first step (fitness calculation), the estimation of the para-
meter vector p of each individual is performed, according to some predefined
criterion, e.g., the Akaike Information Criterion (AIC) [170], which is related
to the fitness function Φ(·). In the case of parameter estimation, many algo-
rithms can be employed; more precisely, as GP models are usually non-linear in
their parameters, the choice reduces to one of non-linear optimisation techniques.
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Unfortunately, because models are randomly generated, they can contain linearly
dependent parameters (even after the application of parameter reduction rules)
and parameters which have very little influence on the model output. In many
cases, this may lead to a very pure performance of gradient-based algorithms.
Owing to the above-mentioned problems, the spectrum of possible non-linear
optimisation techniques reduces to gradient-free techniques, which usually re-
quire a large number of cost evaluations. On the other hand, the application of
stochastic gradient-free algorithms, apart from the simplicity of the approach,
decreases the chance to get stuck in a local optimum, and hence it may give
more suitable parameter estimates. Based on numerous computer experiments,
it has been found that the extremely simple Adaptive Random Search (ARS)
algorithm [170] is especially well suited for that purpose. The routine chooses
the initial parameter vector p0, e.g., p0 = 1. After q iterations, given the current
best estimate pq, a random displacement vector Δp is generated and the trial
point

p∗ = pq + Δp (6.4)

is checked, with Δp following the normal distribution with zero-mean and co-
variance

Σ = diag[σ1, . . . , σdim p]. (6.5)

If Φ(bi,j(p∗)) > Φ(bi,j(pq)), then p∗ is rejected and, consequently, pq+1 = pq is
set; otherwise, pq+1 = p∗ The adaptive strategy consists in repeatedly alternat-
ing two phases. During the first one (variance selection), Σ is selected from the
sequence 1σ, . . . ,5σ, where 1σ is set by the user in such a way as to allow an easy
exploration of the parameter space, and

iσ =i−1 σ/10, i = 2, . . . , 5. (6.6)

In order to allow a comparison to be drawn, all the possible iσs are used 100/i
times, starting from the same initial value of p. The largest iσs, designed to
escape the local minimum, are therefore used more often than the smaller ones.
During the second (exploration) phase, the most successful iσ is used to perform
100 random trials starting from the best p obtained so far.

In the next step, the fitness of each model is obtained and the best-suited
model is selected. If the selected model satisfies the prespecified requirements,
then the algorithm is stopped. In the second step, the selection process is applied
to create a new intermediate population of parent individuals. For that purpose,
various approaches can be employed, e.g., proportional selection, rank selection,
tournament selection [103, 115]. The selection method used in the present book
is tournament selection, and it works as follows: select randomly ns models, i.e.,
trees which represent the models, and copy the best of them into the intermediate
set of models (intermediate populations). The above procedure is repeated nm

times.
The individuals for the new population (the next generation) are produced

through the application of crossover and mutation. To apply crossover rPcross ,
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Fig. 6.3. Exemplary crossover operation
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Fig. 6.4. Exemplary mutation operation

random couples of individuals which have the same position in each population
are formed. Then, with a probability Pcross, each couple undergoes crossover,
i.e., a random crossover point (a node) is selected and then the corresponding
sub-trees are exchanged (Fig. 6.3). Mutation mPmut (Fig. 6.4) is implemented
in such a way that for each entry of each individual a sub-tree at a selected
point is removed with probability Pmut and replaced with a randomly generated
tree. The parameter vectors of individuals which have been modified by means
of either crossover or mutation are set to unity (although a different choice is
possible), while the parameters of the remaining individuals are unchanged. The
GP algorithm is repeated until the best-suited model satisfies the prespecified
requirements ι

(
P(t)

)
, or until the number of maximum admissible iterations

has been exceeded. It should also be pointed out that the simulation programme
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must ensure robustness to unstable models. This can easily be attained when the
fitness function is bounded by a certain maximum admissible value. This means
that each individual which exceeds the above bound is penalised by stopping the
calculation of its fitness, and then Φ(bi,j) is set to a sufficiently large positive
number. This problem is especially important in the case of input-output rep-
resentation of the system. Unfortunately, the stability of models resulting from
this approach is very difficult to prove. However, this is a common problem with
non-linear input-output dynamic models. To overcome it, an alternative model
structure is presented in the subsequent section.

6.1.2 State-Space Representation of the System

Let us consider the following class of non-linear discrete-time systems:

xk+1 = g (xk, uk) + wk, (6.7)
yk+1 = Cxk+1 + vk. (6.8)

Assume that the function g (·) has the form

g (xk, uk) = A(xk)xk + h(uk). (6.9)

The choice of the structure (6.9) is caused by the fact that the resulting model
is to be used in FDI systems. The algorithm presented below though can also,
with minor modifications, be applied to the following structures of g (·):

g (xk, uk) = A(xk, uk)xk, (6.10)
g (xk, uk) = A(xk, uk)xk + h(uk), (6.11)
g (xk, uk) = A(xk, uk)xk + B(xk)uk, (6.12)
g (xk, uk) = A(xk)xk + B(xk)uk. (6.13)

The state-space model of the system (6.7)–(6.8) can be expressed as

xk+1 = A(xk)xk + h(uk), (6.14)
yM,k+1 = Cxk+1. (6.15)

The problem is to determine the matrices A(·), C and the vector h(·), given
the set of input-output measurements {(uk, yk)}nt−1

k=0 . Moreover, it is assumed
that the true state vector xk is, in particular, unknown. This means that its
estimate x̂k (obtained for a given model) should be used instead. Without loss
of generality, it is possible to assume that

A(xk) = diag[a1,1(xk), a2,2(xk), . . . , an,n(xk)]. (6.16)

Thus, the problem reduces to identifying the non-linear functions ai,i(xk), hi(uk),
i = 1, . . . , n, and the matrix C. Now it is possible to establish the conditions
under which the model (6.14)–(6.15) is globally asymptotically stable.
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Theorem 6.1. If, for h(uk) = 0,

∀k ≥ 0, ∀xk ∈ R
n, max

i=1,...,n
|ai,i(xk)| < 1, (6.17)

then the model (6.14)–(6.15) is globally asymptotically stable, i.e., xk converges
to the equilibrium point x∗ for any x0.

Proof. Since the matrix A(xk) is a diagonal one,

‖A(xk)‖ = max
i=1,...,n

|λi(A(xk))| = max
i=1,...,n

|ai,i(xk)|, (6.18)

where the norm ‖A(·)‖ may have one of the following forms:

‖A(·)‖2 =
√

λmax(A(·)T A(·)), (6.19)

‖A(·)‖1 = max
1≤i≤n

n∑

j=1

|ai,j(·)|, (6.20)

‖A(·)‖∞ = max
1≤j≤n

n∑

i=1

|ai,j(·)|. (6.21)

Finally, using [21, Proof of Theorem 1] yields the condition (6.17).

Since the stability conditions are established, it is possible to give a general
framework for the identification of (6.14)–(6.15). Since ai,i(xk), hi(uk), i =
1, . . . , n are assumed to be non-linear (in general) functions, it is necessary to
use n populations to represent ai,i(xk), i = 1, . . . , n, and another n populations
to represent hi(uk), i = 1, . . . , n. Thus the number of populations is npop =
2n. The terminal sets for these two kinds of populations are different, i.e., the
first terminal set is defined as TA = {x1,k, . . . , xn,k}, and the second one as
Th = {u1,k, . . . , ur,k}. The parameter vector p consists of the parameters of
both ai,i(xk) and hi(uk). Unfortunately, the estimation of p is not as simple
as in the input-output representation case. This means that checking the trial
point in the ARS algorithm (see Section 6.1.1) involves the computation of C,
which is necessary to obtain the output error εk and, consequently, the value of
the fitness function. To tackle this problem, for each trial point p it is necessary
to first set an initial state estimate x̂0, and then to obtain the state estimate
x̂k, k = 1, . . . , nt − 1. Knowing the state estimate and using the least-square
method, it is possible to obtain C by solving the following equation:

C

nt−1∑

k=0

x̂kx̂T
k =

nt−1∑

k=0

ykx̂T
k , (6.22)

or, equivalently, by using

C =
nt−1∑

k=0

ykx̂T
k

[
nt−1∑

k=0

x̂kx̂T
k

]−1

. (6.23)
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Since the identification procedure of (6.14)–(6.15) is given, it is possible to estab-
lish the structure of A(·), which guarantees that the condition of Theorem 6.1 is
always satisfied, i.e., maxi=1,...,n |ai,i(xk)| < 1. This can easily be achieved with
the following structure of ai,i(xk):

ai,i(xk) = tanh(si,i(xk)), i = 1, . . . , n, (6.24)

where tanh(·) is a hyperbolic tangent function, and si,i(xk) is a function rep-
resented by the GP tree. It should also be pointed out that the order n of the
model is in general unknown, and hence it should be determined throughout
experiments.

6.2 Robustifying the EUIO with Genetic Programming

Although the approach to improving the convergence rate of the EUIO presented
in Section 4.1 is very simple, it is possible to increase the convergence rate further.
Indeed, the structure (4.59) is probably not the best solution for setting Qk and
Rk in all potential applications. A more general approach is to set the instrumen-
tal matrices as follows:

Qk−1 = q2(εk−1)I + δ1I, Rk = r2(εk)I + δ2I, (6.25)

while q(εk−1) and r(εk) are non-linear functions of the output error εk (the
squares are used to ensure the positive definiteness of Qk−1 and Rk). Thus, the
problem reduces to identifying the above functions. To tackle it, genetic program-
ming can be employed. The unknown functions q(εk−1) and r(εk) can be ex-
pressed as trees, as shown in Fig. 6.5. Thus, in the case of q(·) and r(·), the termi-
nal sets are TQ = {ε1,k−1, . . . , εm,k−1} and TR = {ε1,k, . . . , εm,k}, respectively.
In both cases, the function set can be defined as F = {+, ∗, /, ξ1(·), . . . , ξl(·)},
where ξk(·) is a non-linear univariate function and, consequently, the number
of populations is npop = 2. Since the terminal and function sets are given, the
approach described in Section 6.1 can easily be adapted for the identification

ε1,kε1,kε1,kε1,k ε2,kε2,kε2,kε2,k

++

+

+

∗∗

/

p11

p1

p2 p3

p4 p5 p6 p7

p8 p9 p10 p12 p13 p14 p15

Fig. 6.5. Exemplary tree representing r(εk)
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purpose of q(·) and r(·). First, let us define the identification criterion constitut-
ing a necessary ingredient of the Qk−1 and Rk selection process.

Since the instrumental matrices should be chosen so as to satisfy (4.35)–(4.36),
the selection of Qk−1 and Rk can be performed according to

(
Qk−1, Rk

)
= arg max

q(εk−1),r(εk)
jobs,1(q(εk−1), r(εk)), (6.26)

where

jobs,1(q(εk−1), r(εk)) =
nt−1∑

k=0

traceP k. (6.27)

On the other hand, owing to FDI requirements, it is clear that the output error
should be near zero in the fault-free mode. In this case, one can define another
identification criterion:

(
Qk−1, Rk

)
= arg min

q(εk−1),r(εk)
jobs,2(q(εk−1), r(εk)), (6.28)

and

jobs,2(q(εk−1), r(εk)) =
nt−1∑

k=0

εT
k εk. (6.29)

Therefore, in order to join (6.26) and (6.28), the following identification criterion
is employed:

(
Qk−1, Rk

)
= arg min

q(εk−1),r(εk)
jobs,3(q(εk−1), r(εk)), (6.30)

where

jobs,3(q(εk−1), r(εk)) =
jobs,2(q(εk−1), r(εk))
jobs,1(q(εk−1), r(εk))

. (6.31)

Since the identification criterion is established, it is straightforward to use the
GP algorithm detailed in Section 6.1.

6.3 Robustifying the EUIO with the ESSS Algorithm

Although the settings of Qk and Rk determined by (4.127) and (4.131) are very
straightforward and easy to implement, it is possible to increase the convergence
rate further. As was shown in Section 6.2, the form of the instrumental matrices
Qk and Rk can be determined with the genetic programming approach.

A completely different approach was proposed in [72]. In particular, the au-
thors proposed to use a neural network-based strategy for the estimation of an
initial condition of the system.
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In both cases ([72] and Section 6.2), the authors demonstrated significant
advantages that can be gained by using the proposed strategies. However, both
of these approaches inherit a common drawback, namely, they are designed for
a particular setting of the initial condition of the system. This means that there
is no guarantee that the proposed strategies will have the same performance
when the initial condition is significantly different than the one used for the
design purposes.

The main objective of this section is to present an alternative solution which
overcomes the above-mentioned drawbacks. Following the approach described in
Section 6.2, let us assume that

Qk = q(εk)I + δ1I, (6.32)

but Rk is determined by (4.131) and q(εk) is a positive definite function. Con-
trary to [187], to approximate q(εk), it is suggested to use spline functions [39]
instead of genetic programming. Such a choice is not accidental and it is dic-
tated by the computational complexity related to the proposed design procedure,
which will be carefully described in the subsequent part of this section. Indeed,
many researchers working with genetic programming clearly indicate that its
main drawback is related to its computational burden. Similarly, the application
of neural networks [96] reduces to the non-linear parameter estimation task,
which usually involves a high computational burden. Contrary to neural net-
works and genetic programming, the suggested spline approximation technique
is computationally less demanding.

The solution presented in the subsequent part of this section is based on the
general idea of stochastic robustness method originally used by Marrison and
Stengel [112] for designing robust control systems. In other words, stochastic
robustness analysis is a practical method of quantifying the robustness of control
systems.

In this work, a stochastic robustness metric characterises an EUIO (denoted by
O) with the probability that the observer will have an unacceptable performance
in the presence of possible variations of the initial condition of the system x0 ∈
X ⊂ R

n. The probability P can be defined as the integral of an indicator function
over the space of expected variations of the initial condition:

P (p) =
∫

X

I[S(x0), O(p)]pr(x0)dx0, (6.33)

where S stands for the system structure, p denotes the design parameter vector
of the observer O, i.e., the parameter vector of q(εk) in (6.32), and pr(x0) is the
probability density function. Moreover, the binary indicator function is defined
as follows:

I[S(x0), O(p)] =

⎧
⎨

⎩

0 ‖eT ‖2 ≤ η‖e0‖2,

1 otherwise,
(6.34)

with ek = xk − x̂k, while T > 0 and 0 < η < 1 are the parameters set by the
designer. Thus, by considering (6.34), it can be seen that performance of the
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observer O for x0 is acceptable when ‖ek‖2, k = 0, . . . , T , decreases in the time
T such that ‖eT ‖2

‖e0‖2
≤ η.

Unfortunately, (6.33) cannot be integrated analytically. A practical alternative
is to use the Monte Carlo Evaluation (MCE) with pr(x0) shaping the random
values of x0 denoted by xi

0. When N random xi
0, i = 1, . . . , N are generated,

then the estimate of P can be given as

P̂ (p) =
1
N

N∑

i=1

I[S(xi
0), O(p)], (6.35)

while P̂ approaches P in the limit as N → ∞. Moreover, it should be pointed out
that the initial condition of the observer remains fixed for all xi

0, i = 1, . . . , N ,
and it should be set by the designer.

It is obvious that it is impossible to set N = ∞. Thus, the problem is to select
N in such a way as to obtain P̂ (which is a random variable) with the standard
deviation σP̂ less than a predefined threshold. Since the stochastic metric (6.34)
is binary, then it is clear that P̂ has the binomial distribution with

σP̂ =

√
P (p) − P (p)2

N
. (6.36)

Since P is unknown, then the only feasible way is to calculate the upper bound
of (6.36), which gives

σP̂ ≤ 1
2

1√
N

. (6.37)

Using (6.37), it can be shown that N can be calculated as follows:

N =
⌈

1
4
σ−2

P̂

⌉

, (6.38)

where �· is a rounding operator returning an integer value that is not smaller
than its argument. Since all the ingredients of the algorithm are given, then its
outline can be presented:

Step 1: Select T , η, x̂0 and σP̂ .
Step 2: Calculate N according to (6.38).
Step 3: Determine q(εk) (by estimating p) in (6.32) in such a way as to minimise

the cost function (6.35).

In the literature, there are two commonly used ways to represent a poly-
nomial spline: the piecewise polynomial function (pp-form) and its irredundant
representation, the so-called basis-splines (B-form) [39]. Given the knot sequence
tx = {t1, t2, . . . , tn}, the B-form that describes an univariate spline f(x) can be
expressed as a weighted sum:

f(x) =
n∑

i=1

ciBi,k(x), (6.39)
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where Bi,k(x) is a non-negative piecewise-polynomial function of the degree k,
which is non-zero only on the interval [ti, ti+k]. The simplest method of obtain-
ing multivariate interpolation and approximation routines is to take univariate
methods and form a multivariate method via tensor products [39]:

f(x) =
N1∑

i1=1

N2∑

i2=1

. . .

Nn∑

in=1

ci1,i2,...,inBi1,k1,t1(x1)Bi2,k2,t2(x2) . . .

. . . Bin,kn,tn(xn), (6.40)

and each variable xi possesses its own knot sequence ti of the length Ni and
order ki. The problem of determining the coefficients ci1,i2,...,in can be solved
efficiently by repeatedly solving univariate interpolation problems, as described
in [39]. Thus, (6.40) is used to represent q(εk) in (6.32), i.e., q(εk) = f(εk), and
the parameter vector p of q(·) consists of all coefficients ci1,i2,...,in , i1 = 1, . . . , N1,
. . . , in = 1, . . . , Nn.

Unfortunately, (6.35) cannot be differentiated with respect to p and hence the
gradient-based algorithm cannot be employed. Indeed, the calculation of (6.35)
involves N runs of the algorithm (4.97)–(4.101). Moreover, the cost function
(6.35) can be even multi-modal and hence global optimisation techniques should
be preferred rather than local optimisation tools. In this work, it is proposed
to use the Evolutionary Search with Soft Selection (ESSS) algorithm [63]. The
ESSS algorithm is based on probably the simplest selection-mutation model
of the Darwinian’s evolution [63, 88, 127]. It should be stressed here that the
original algorithm is improved by applying a directional mutation [145], and
hence the abbreviation ESSSα −DM is employed in the subsequent part of the
work.

As can be noticed in many excellent monographs on evolutionary algorithms
(see, e.g., [103, 115]), evolution is a motion of individuals in the phenotype space,
called also the adaptation landscape. This motion is caused by the selection and
mutation processes. Selection leads to the concentration of individuals around
the best ones, but mutation introduces the diversity of phenes and disperses the
population in the landscape. The directional distribution [41, 111], introduced
in the mutation operator, is used to produce new candidate solutions according
to the formula

pk+1 = pk + r dk, (6.41)

where pk is the estimate of the parameter vector p in the kth iteration of the
ESSSα − DM algorithm, r denotes symmetric α-stable variate r ∼ χα,γ

d=
|SαS(γ)|, and dk ∼ M(μk, κ) denotes pseudo-random vector from the direc-
tional distribution. The choice of the symmetric α-stable distribution is not an
accidental one. In the recent years, the class of SαS(γ) distributions has received
an increasing interest of the evolutionary computation community [74, 127, 107].
The family of the symmetric stable distribution SαS(γ) is characterised by two
parameters: the stable index α, which defines the shape of its p.d.f., and the
scale γ. Bearing in mind the fact that evolutionary algorithms are not conver-
gent to the exact optimal solution but to a close area around it [88], the class of
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the SαS(γ) distribution allows establishing a well-balanced compromise between
two mutually exclusive properties: the accuracy of locating potential solution and
the ability of escaping from the local optima – two most challenging problems
of stochastic optimisation [74, 127].

The directional distribution [41, 111] is determined on the surface of an n-
dimensional ball; therefore, it is responsible for choosing the direction of muta-
tion. Moreover, M(μk, κ) distributions are parameterised by the pair: the mean
direction μ, which defines the most frequently chosen direction, and the concen-
tration parameter κ, which controls the degree of dispersion around the vector
μ. It should be stressed that the value of the concentration parameter strongly
depends on the dimension of the search space and becomes constant during the
evolution. In order to estimate the vector μ, which aims at increasing the con-
vergence rate of the algorithm, the approach proposed by Obuchowicz [125] is
utilised:

μt =
〈pt〉 − 〈pt−1〉

‖〈pt〉 − 〈pt−1〉‖ , where 〈pt〉 =
1
η

η∑

k=1

pt
k. (6.42)

To meet the requirement for positive definiteness of the function q(εk), the evo-
lutionary algorithm is supplied with an auxiliary correction algorithm. Let us
notice that the function (6.40) used to approximate q(εk) is positive if all spline
coefficients ci1,i2,...,in are non-negative. Therefore, the purpose of the correction
procedure is to maintain each individual p in a feasible set. In the theory of
evolutionary computation, many techniques for dealing with constraints can be
found [115], while in this work a simple reflection procedure is applied:

pi,new = |pi,k+1|, i = 1, . . . , np, (6.43)

where pk+1 is a new candidate solution obtained as a result of the mutation
procedure (6.41). The complete ESSSα − DM algorithm is given in Tab. 6.2.

6.4 Experimental Result

The objective of this section is to determine the effectiveness of the approaches
described in Sections 6.1, 6.2 and 6.3 based on experimental results. In particular,
two non-linear systems are considered, namely, the induction motor presented
in Section 4.1.3 and the valve actuator [12].

6.4.1 State Estimation and Fault Diagnosis

Let us reconsider the example with the induction motor presented in Section 4.1.3.
Using the same parameters and settings, the following three cases concerning the
selection of Qk−1 and Rk in the EUIO algorithm described in Section 4.1 were
considered:

Case 1: Classic approach (constant values), i.e., Qk−1 = 0.1I, Rk = 0.1I,
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Table 6.2. Description of the ESSSα − DM algorithm

Input data

nm – population size;

tmax – maximum number of iterations (epochs);

γ, α, κ – parameters of mutation: scale, stable index and concentration;

P̂ : R
n → R+ – fitness function defined by (6.35);

p̂0
0 – initial estimate.

Algorithm

1. Initialise

G(0) =
�
p̂0

1, p̂
0
2, . . . , p̂

0
nm

�
, p̂0

k = p̂0
0 + s,

where s ∼ N (0, γIn), k = 1, 2, . . . , nm

2. Repeat

(a) Estimation

Φ
�
G(t)

�
=
�
φt

1, φ
t
2, . . . , φ

t
nm

�
, where φt

k = P̂
�
p̂t

k

�
, k = 1, 2, . . . , nm.

(b) Proportional selection

G(t) −→ G(t)′ =
�
p̂t

h1
, p̂t

h2
, . . . , p̂t

hnm

�
,

�
h1, h2, . . . , hnm

�
, where hk = min

�
h :

�h
l=1 φt

l�nm
l=1 φt

l

> ζk

�

and {ζk}nm
k=1 are random numbers uniformly distributed in [0, 1).

(c) Estimation of the most promising direction of mutation

μ(t) = 〈p̂t〉−〈p̂t−1〉
‖〈p̂t〉−〈p̂t−1〉‖ , where 〈p̂t〉 = 1

nm

�nm
k=1 p̂t

hk

(d) Mutation

G(t)′ −→ G(t)′′;

p̂t+1
k = p̂t

hk
+ χα,γu(n), u(n) ∼ M(μ(t), κ), k = 1, 2, . . . , nm.

(e) Correction algorithm

G(t)′′ −→ G(t + 1);

Until t > tmax.

Case 2: Selection according to (4.59), i.e.

Qk−1 = 103εT
k−1εk−1I + 0.01I, Rk = 10εT

k εkI + 0.01I, (6.44)

Case 3: GP-based approach presented in Section 6.2.
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It should be pointed out that in all the cases the unknown input-free mode (i.e.,
dk = 0) is considered. This is because the main purpose of this example is to
show the importance of an appropriate selection of instrumental matrices but
not the abilities of disturbance decoupling.

In order to obtain the matrices Qk−1 and Rk using the GP-based approach
(Case 3), a set of nt = 300 input-output measurements was generated according
to (4.60)–(4.65), and then the approach from Section 6.2 was applied. As a result,
the following form of instrumental matrices was obtained:

Qk =
(
102ε2

1,kε2
2,k + 1012ε1,k + 103.45ε1,k + 0.01

)2
I, (6.45)

Rk =
(
112ε2

1,k + 0.1ε1,kε2,k + 0.12
)2

I. (6.46)

The parameters used in the GP algorithm presented in Section 6.2 were nm =
200, nd = 10, ns = 10, F = {+, ∗, /}. It should also be pointed out that the
above matrices (6.45)–(6.46) are formed by simple polynomials. This, however,
may not be the case for other applications.

The simulation results (for all the cases) are shown in Fig. 6.6. The numerical
values of the optimisation index (6.31) are as follows: Case 1 jobs,3 = 1.49 · 105,
Case 2 jobs,3 = 1.55, Case 3 jobs,3 = 1.2 · 10−16. Both the above results and the
plots shown in Fig. 6.6 confirm the relevance of an appropriate selection of the
instrumental matrices. Indeed, as can be seen, the proposed approach is superior
to the classic technique of selecting the instrumental matrices Qk−1 and Rk.

Let us reconsider the example with an induction motor presented in Sec-
tion 4.1.3. This time, the EUIO described in Section 4.2 is employed and its
convergence is enhanced with the approach described in Section 6.3.

Let X be a bounded hypercube denoting the space of the possible variations
of the initial condition x0:

X = {[−276, 279] × [−243, 369] × [−15, 38] × [−11, 52] × [−11, 56]} ⊂ R
5. (6.47)

Let us assume that each initial condition of the system x0 is equally probable,
i.e.,

pr(x0) =

⎧
⎨

⎩

1
m(X) forx0 ∈ X

0 otherwise
,

where m(A) is the Lebesgue measure of the set A.
First, let us start with the unknown input-free case, i.e., Ek = 0. In order

to completely define the indicator function (6.34), the following values of its
parameters were chosen: T = 30 and η = 0.001. This means that the main
objective is to obtain the design parameter vector p in such a way as to minimise
the probability (estimated by (6.35)) that the observer O will not converge in
such a way that ‖e30‖2

‖e0‖2
≤ 0.001 for any initial condition x0 ∈ X, where the initial

condition for the observer is given by x̂0 = [1.5, 63, 11.5, 20.5, 22.5]T, which is
the centre of X.

The standard deviation of P̂ (p) was selected as σP̂ = 0.005 and hence, accord-
ing to (6.38), N = 10000. As can be observed from (4.65), the dimension of εk
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Fig. 6.6. State estimation error norm ‖ek‖2 for Case 1, Case 2 and Case 3

is m = 2. Thus, the two-dimensional spline function of the degree kx1 = kx2 = 3
used in the experiment to approximate q(εk) is defined by the knot sequence
tx1 = tx2 = {−200 + (i − 1)400

19 }20
i=1; consequently, N1 = N2 = 20.

The parameters related to the ESSSα − DM algorithm were selected as fol-
lows: the initial parameter vector p̂0

0 was randomly generated, the population
size was nm = 50, the maximum number of iterations tmax = 1000, γ = 0.1,
α = 1.5, and κ = 0.01. Finally, the instrumental matrix Rk was Rk = 10−3I.

As a result of using the ESSSα −DM algorithm for the minimisation of (6.35)
with respect to the design parameter vector p, it was determined that P̂ = 0.0819.

The shape of the resulting function q(εk) is presented in Fig. 6.7. In partic-
ular, Fig. 6.7b presents its shape in the whole domain of εk being considered,
while Fig. 6.7a exhibits its small part around εk = 0. It can be observed in
Fig. 6.7a that the value of q(εk) increases rapidly when εk starts to diverge from
0, which is consistent with the theoretical analysis performed in Section 4.2.
For the sake of comparison, the selection strategy of Qk proposed in [19] was
employed, i.e., Qk = 103εT

k εkI + 10−3I. As a result, it was figured out that
P̂ = 0.8858. This means that for the total number of N = 10000 initial con-
ditions, the observer considered cannot provide an acceptable performance for
8858 cases. In the case of the proposed observer there are 819 unacceptable
cases, which is definitely a better result. This situation is clearly exhibited
in Fig. 6.8 (successful runs are denoted by the dark colour), which shows the
trajectories of ‖ek‖2 (for all N = 10000 cases) for the proposed observer
(Fig. 6.8a) and the observer described in [19] (Fig. 6.8b).

Unknown input decoupling and fault detection

The objective of presenting the next example is to show the abilities of unknown
input decoupling. First, let us assume that the unknown input distribution matrix
is

E = [1.2, 0.2, 2.4, 1, −1.6]T . (6.48)
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Fig. 6.7. Shape of the obtained q(εk) (a) and its small part around εk = 0 (b)
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Fig. 6.8. Trajectories of ‖ek‖2 for the proposed observer (a) and the observer described
in [19] (b)

Thus, the system (4.69)–(4.70) is described using (4.60)–(4.65) and (6.48). Since
the system description is given, then it is possible to design the extended un-
known input observer in the same way and with the same parameter values as
in Section 4.1. Because dk is unknown it is impossible to use it in the design
procedure. On the other hand, only the knowledge regarding (6.48) is necessary
and hence any form of dk can be used for design purposes. In this section, the
following setting is used: dk = 0.

As a result of using the proposed approach, the function q(εk) was obtained
for which P̂ = 0.0834. Since the observer is designed, it is possible to check its
performance with respect to unknown input decoupling. For that purpose, let
us assume that the unknown input is given by

dk = 3.0 sin(0.5πk) cos(0.03πk). (6.49)

Figure 6.9 presents the residual zk for the observer designed in Section 4.2.
From this figure, it is clear that the unknown input influences the residual signal
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Fig. 6.9. Residuals for an observer without unknown input decoupling
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Fig. 6.10. Residuals for an observer with unknown input decoupling

and hence it may cause an unreliable fault detection (and, consequently, fault
isolation). On the contrary, Fig. 6.10 shows the residual with unknown input de-
coupling. In this case the residual is almost zero, which confirms the importance
of unknown input decoupling. The objective of presenting the next example is
to show the effectiveness of the proposed observer as a residual generator in the
presence of an unknown input. For that purpose, the following fault scenarios
were considered:

Case 1: Abrupt fault of the y1,k sensor:

f1,k =
{

0, 500 < k < 140,
−0.1y1,k, otherwise, , (6.50)

and f2,k = 0.
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Case 2: Abrupt fault of the u1,k actuator:

f2,k =
{

0, 500 < k < 140,
−0.2u1,k, otherwise. , (6.51)

and f1,k = 0.

Thus, the system is now described by (4.24)–(4.25) with (4.60)–(4.65), (6.48),
fk = [f1,k, f2,k]T , and

L1,k =
[ 1

σLs
0 0 0 0

0 0 0 0 0

]T

, (6.52)

L2,k =
[

1 0
0 0

]

. (6.53)

From Figs. 6.11 and 6.12, it can be observed that the residual signal is sensitive
to the faults under consideration. This, together with unknown input decoupling,
implies that the process of fault detection becomes a relatively easy task.
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Fig. 6.11. Residuals for a sensor fault

6.4.2 Industrial Application

This section presents an industrial application study regarding the techniques
presented in Sections 6.1 and 6.2. In particular, the presented example con-
cerns fault detection of a valve actuator with state-space models designed with
GP and the EUIO. The problem regarding FDI of this actuator was attacked
from different angles in the EU DAMADICS project (see, e.g., the examples of
Chapter 7). DAMADICS (Development and Application of Methods for Actu-
ator Diagnosis in Industrial Control Systems) was a research project focused
on drawing together wide-ranging techniques and fault diagnosis within the
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Fig. 6.12. Residuals for an actuator fault

framework of a real application to on-line diagnosis of a 5-stage evaporisation
plant of the sugar factory in Lublin, Poland. The project was focused on the
diagnosis of valve (cf. Fig. 6.13) plant actuators and looked towards real im-
plementation methods for new actuator systems. The sugar factory was a sub-
contractor (under the Warsaw University of Technology) providing real process
data and the evaluation of trials of fault diagnosis methods.

The control valve is a mean used to prevent, permit and/or limit the flow
of sugar juice through the control system (a detailed description of this actu-
ator can be found in [36]). As can be seen in Fig. 6.13, the following process
variables can be measured: CV is the control signal, P1 is the pressure at the
inlet of the valve, P2 is the pressure at the outlet of the valve, T 1 is the juice
temperature at the inlet of the valve, X is the servomotor rod displacement, F
is the juice flow at the outlet of the valve. Thus, the output is y = (F, X), while
the input is given by u = (CV, P1, P2, T ). In Fig. 6.13, three additional bypass
valves (denoted by z1, z2, and z3) can be seen. The state of these valves can be
controlled manually by the operator. They are introduced for manual process
operation, actuator maintenance and safety purposes. The data gathered from
the real plant can be found on the DAMADICS website [36]. Although a large
amount of real data is available, they do not cover all faulty situations, while
the simulator is able to generate a set of 19 faults (see Tab. 6.3) Moreover, due
to a strict production regime, operators do not allow changing plant inputs, i.e.,
they are set up by control systems. Thus, an actuator simulator was developed
with MATLAB Simulink (available on [36]). Apart from experimental design
purposes, the main reason for using the data from the simulator is the fact that
the achieved results can be easily compared with the results achieved with differ-
ent approaches, e.g., [114, 128, 183]. The objective of this section is to design the
state-space model of the actuator being considered according to the approach
described in Section 6.1.2. The parameters used during the identification process
were nm = 200, nd = 10, ns = 10, F = {+, ∗, /}. For the sake of comparison,
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the linear state-space model was obtained with the use of the MATLAB System
Identification Toolbox. In both the linear and non-linear cases, the order of the
model was tested between n = 2, . . . , 8. Unfortunately, the relation between the
input uk and the juice flow y1,k cannot be modelled by a linear state-space
model. Indeed, the modelling error was approximately 35%, thus making the
linear model unacceptable. On the other hand, the relation between the input
uk and the rod displacement y2,k can be modelled, with very good results, by
the linear state-space model. Bearing this in mind, the identification process was
decomposed into two phases, i.e.,

1. Derivation of a relation between the rod displacement and the input with
a linear state-space model.

2. Derivation of a relation between the juice flow and the input with a non-
linear state-space model designed by GP.

Experimental results showed that the best-suited linear model is of order n = 2.
After 50 runs of the GP algorithm performed for each model order, it was found
that the order of the model which provides the best approximation quality is
n = 2. Thus, as a result of combining both the linear and non-linear models, the
following model structure of an actuator was obtained:

xk+1 =
[

AF (xk) 0
0 AX

]

xk +
[

h(uk)
BXuk

]

, (6.54)

yM,k+1 = Cxk+1, (6.55)
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where

AF (xk) =diag
[

0.3tanh
(

10x2
1,k + 23x1,kx2,k +

26x1,k

x2,k + 0.01

)

,

0.15tanh

(
5x2

2,k + 1.5x1,k

x2
1,k + 0.01

)]

,

AX =
[

0.78786 −0.28319
0.41252 −0.84448

]

,

BX =
[

2.3695 −1.3587 −0.29929 1.1361
12.269 −10.042 2.516 0.83162

]

,

h(uk) =

⎡

⎢
⎢
⎣

−1.087u2
1,k + 0.0629u2

2,k − 0.5019u2
3,k − 3.0108u2

4,k

+0.9491(u1,ku2,k − u1,ku3,k) − 0.5409 u1,ku4,k

u2,ku3,k+0.01 + 0.9783
−0.292u2

1,k + 0.0162u2
2,k − 0.1289u2

3,k − 0.7733u2
4,k

+0.2438(u1,ku2,k − u1,ku3,k) − 0.1389 u1,ku4,k

u2,ku3,k+0.01 + 0.2513

⎤

⎥
⎥
⎦ ,

C =
[

1 1 0 0
0 0 0.79 −0.047

]

.

The mean-squared output error for the model (6.54)–(6.55) was 0.0079. The re-
sponse of the model obtained for the validation data set is given in Fig. 6.14. From
these results, it can be seen that the proposed non-linear state-space model identi-
fication approach can effectively be applied to various system identification tasks.
The main differences between the behaviour of the model and the system can be
observed (cf. Fig. 6.14) for the non-linear model (juice flow) during the saturation
of the system. This inaccuracy constitutes the main part of modelling uncertainty.

The main drawback to the GP-based identification algorithm concerns its
convergence abilities. Indeed, it seems very difficult to establish conditions which
can guarantee the convergence of the proposed algorithm. On the other hand,
many examples treated in the literature, cf. [47, 69, 103] and the references
therein, as well as the author’s experience with GP [114, 183, 187] confirm its
particular usefulness, in spite of the lack of the convergence proof. Based on the
fitness attained by each of the 50 models resulting from the 50 runs, it is possible
to obtain a histogram representing the achieved fitness values (Fig. 6.15) as well
as the fitness confidence region. Let α = 0.99 denote the confidence level. Then
the corresponding confidence region can be defined as

J̄m ∈ [j̄m − tα
s√
50

, j̄m + tα
s√
50

], (6.56)

where j̄m = 0.0097 and s = 0.0016 denote the arithmetic mean and standard
deviation of the fitness of the 50 models, respectively, while tα = 2.58 is the
normal distribution quantile. According to (6.56), the fitness confidence region
is J̄m ∈ [0.0093, 0.0105], which means that the probability that the true mean
fitness J̄m belongs to this region is 99%. These results confirm that the proposed
approach can effectively be used for designing non-linear state-space models,



6.4 Experimental Result 129

Table 6.3. Set of faults considered for the benchmark (abrupt faults: S – small, M –
medium, B – big, I – incipient faults)

Fault Description S M B I
f1 Valve clogging x x x
f2 Valve plug or valve seat sedimentation x x
f3 Valve plug or valve seat erosion x
f4 Increased valve or busing friction x
f5 External leakage x
f6 Internal leakage (valve tightness) x
f7 Medium evaporation or critical flow x x x x
f8 Twisted servomotor’s piston rod x x x
f9 Servomotor housing or terminal tightness x
f10 Servomotor’s diaphragm perforation x x x
f11 Servomotor’s spring fault x
f12 Electro-pneumatic transducer fault x x x
f13 Rod displacement sensor fault x x x x
f14 Pressure sensor fault x x x
f15 Positioner feedback fault x
f16 Positioner supply pressure drop x x x
f17 Unexpected pressure change across the valve x x
f18 Fully or partly opened bypass valves x x x x
f19 Flow rate sensor fault x x x
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Fig. 6.14. System (dotted) and model (solid) outputs (juice flow – left, rod displace-
ment – right) for the validation data set

even without the convergence proof. As the state-space model (6.54)–(6.55) is
available, it is possible to determine the unknown input distribution matrix Ek

and, consequently, the matrix Hk, which is necessary to design the EUIO de-
scribed in Section 4.1. The details regarding the derivation of the above matrices
can be found in [183]. The resulting matrix Hk has the following form:

Hk =
[

0.2074 0 0 0
0.3926 0 0 0

]

. (6.57)
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Since the matrix Hk is known, the instrumental matrices Qk−1 and Rk can be
determined. In order to obtain the matrices Qk−1 and Rk using the GP-based
approach, a set of nt = 1000 input-output measurements was utilised, and then
the approach from Section 6.2 was applied. As a result, the following form of the
instrumental matrices was obtained:

Qk−1 =
(
103ε2

1,k−1ε
2
2,k−1 + 12ε1,k−1 + 4.32ε1,k−1 + 0.02

)2
I, (6.58)

Rk =
(
112ε2

1,k + 0.01ε1,kε2,k + 0.02
)2

I. (6.59)

The parameters used in the GP algorithm presented in Section 6.2 were nm =
300, nd = 10, ns = 10, F = {+, ∗, /}. It should also be pointed out that the
above matrices (6.58)–(6.59) are formed by simple polynomials. This, however,
may not be the case for other applications where more sophisticated structures
may be required, although it should be pointed out that the matrices (6.58)–
(6.59) have a very similar form to that obtained for an example presented in [187]
(see (6.45)–6.46)).

As a result of introducing unknown input decoupling as well as selecting an
appropriate form of the instrumental matrices Qk−1 and Rk for the EUIO, the
mean-squared output error was reduced from 0.0079 to 0.0022. As can be seen
from Figs. 6.14 and 6.16, all these efforts help to achieve a better modelling
quality and lead to more reliable residual generation. Since the EUIO-based
residual generator is available, then threshold determination and fault diagnosis
can be performed. A detailed description of the above tasks can be found in [183].
In this section, only the final results are presented.

In order to test the designed fault detection scheme, data sets with faults were
generated. It should be pointed out that only abrupt faults were considered (cf.
Tab. 6.3). Table 6.4 shows the results of fault detection and provides a compar-
ative study between the results achieved by the proposed fault detection scheme
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Fig. 6.16. System (dotted) and EUIO (solid) outputs (juice flow – left, rod displace-
ment – right)

Table 6.4. Results of fault detection (D – detectable, N – not detectable, PD – possible
but hard to detect)

Fault Description S M B
f1 Valve clogging D D(D) D(D)
f2 Valve plug or valve seat sedimentation D(D)
f7 Medium evaporation or critical flow D D(PD) D(D)
f8 Twisted servomotor’s piston rod N N(N) N(N)
f10 Servomotor’s diaphragm perforation D D(PD) D(D)
f11 Servomotor’s spring fault D(PD)
f12 Electro-pneumatic transducer fault N N(PD) D(PD)
f13 Rod displacement sensor fault D D(D) D(D)
f15 Positioner feedback fault D(N)
f16 Positioner supply pressure drop N N(PD) D(D)
f17 Unexpected pressure change across the valve D(PD)
f18 Fully or partly opened bypass valves D D(D) D(D)
f19 Flow rate sensor fault D D(PD) D(D)

and the results provided by [163] concerning the qualitative approach to fault
detection. The notation given in Tab. 6.4 can be explained as follows: D means
that we are 100% that a fault has occurred, N means that it is impossible to
detect a given fault, PD means that the fault detection system does not provide
enough information to be 100% sure that a fault has occurred.

From Tab. 6.4 it can be seen that it is impossible to detect the fault f8. Indeed,
the effect of this fault is exactly at the same level as the effect of noise. The
residual is the same as that the for fault-free case, and hence it is impossible to
detect this fault. There are also some problems with a few small and/or medium
faults; however, it should be pointed out that all faults (except for f8) which are
considered as big can be detected.
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6.5 Concluding Remarks

The main objective of this chapter was to show selected EA-based solutions to
the modelling and estimation problems encountered in modern fault diagnosis.
In particular, it was shown (see Section 6.1) how to represent various model
structures as parameterised trees, i.e., as individuals in the genetic program-
ming algorithm. It was also shown how to identify their structure as well as
estimate their parameters. In particular, state-space model structures were pre-
sented which can be used for observer design purposes. Moreover, it was proven
that the proposed state-space model designing procedures provide asymptoti-
cally stable models. The presented experimental results clearly show advantages
that can be gained while using the presented approach.

The main drawback of this approach is its computational cost resulting in
a relatively long identification time. However, as usual, the model construction
procedure is realised off-line, and hence identification time is not very important.
Another drawback is that the model order has to be determined by a time-
consuming trial-and-error process. This is, however, a problem with all non-linear
schemes. There are, of course, some approaches [123] which can be applied to
estimate such a model order implicitly.

Sections 6.2 and 6.3 present two different approaches that can be used for in-
creasing the convergence rate of the EUIOs described in Sections 4.1 and 4.2, re-
spectively. It was revealed in Section 4.1 that an appropriate selection of the in-
strumental matrices Qk−1 and Rk strongly influences the convergence properties
of the observer. To tackle the instrumental matrices selection problem, a genetic
programming-based approach was proposed in Section 6.2. However, it should be
pointed out that the proposed technique does not provide a general solution to all
problems. Indeed, it makes it possible to obtain a particular form of the instru-
mental matrices Qk−1 and Rk which is only appropriate for the problem being
considered. This is, in fact, the main drawback of the proposed approach.

A more general solution was proposed in Section 6.3. To improve the conver-
gence of the EUIO described in Section 4.2, the stochastic robustness technique
was utilised to form a stochastic robustness metric describing an unacceptable
performance of the EUIO. This section proposes and describes a design proce-
dure that can be used for minimising the probability of such an unacceptable
performance. In particular, it was shown that observer performance can be sig-
nificantly improved with an appropriate selection of the instrumental matrix
Qk. For that purpose, the B-spline approximation technique and evolutionary
algorithms were utilised.

The main advantage of the proposed EUIO is that its convergence rate is max-
imised for the whole set of possible initial conditions X and not only for a single
and fixed initial condition as was the case in [19, 187] and in Section 6.2. This
superiority was clearly presented with the example regarding state estimation of
an induction motor.

Irrespective of the above superiority, the experimental results for the
DAMADICS benchmark clearly show that the EUIO described in Section 4.1
is also a valuable FDI tool.
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In Chapter 4, three different unknown input observer structures were proposed
and their design procedures were described in detail. The main assumption un-
derlying the above design procedures was that they should be simple enough
to becom useful for engineering applications. Moreover, in Chapter 6 a number
of solutions that can be used for increasing the performance of UIO-based FDI
schemes were proposed and carefully described.

Apart from the unquestionable effectiveness of the above-mentioned
approaches, there are examples for which fault directions are very similar to
that of an unknown input. This may lead to a situation in which the effect of
some faults is minimised and hence they may be impossible to detect. Other
approaches that make use of the idea of an unknown input also inherit these
drawbacks, e.g., robust parity relations approaches [27]. An obvious approach
to tackle such a challenging problem is to use a different description of model
uncertainty. Such a description was discussed in Section 2.3. Instead of decou-
pling model uncertainty, the knowledge about it is used to form the so-called
system output confidence interval (2.47), which can then be used for robust fault
diagnosis. It is important to note that the parameters of the model underlying
such a fault detection scheme do not necessarily have to have physical meaning.
This extends considerably the spectrum of candidate models that can be used
for design purposes. The main objective of this chapter is to show how to use
artificial neural networks in such a robust fault detection scheme. Contrary to
the industrial applications of neural networks that are presented in the litera-
ture [27, 71, 89, 152], the task of designing a neural network is defined in this
chapter in such a way as to obtain a model with a possibly small uncertainty.
Indeed, the approaches presented in the literature try to obtain a model that is
best suited to a particular data set. This may result in a model with a relatively
large uncertainty. A degraded performance of fault diagnosis constitutes a direct
consequence of using such models.

Taking into account the above discussion, the chapter is organised as follows:
Section 7.1 extends the general ideas of the experimental design described in
Chapter 5 to neural networks. In particular, one objective of this section is to

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 133–183, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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show how to describe model uncertainty of a neural network using the statistical
framework. Another objective is to propose algorithms that can be used for
developing an optimal experimental design which makes it possible to obtain
a neural network with a possibly small uncertainty. The final objective is to show
how to use the obtained knowledge about model uncertainty for robust fault
diagnosis. The approach presented in this section is based on a static neural
network, i.e., the multi-layer perceptron (see Section 3.1.1). It should also be
pointed out that the results described in this section were originally presented
in [182, 188].

An approach that can utilise either a static or a dynamic model structure is de-
scribed in Section 7.2. This strategy is based on a similar idea as that of Section 7.1,
but instead of using a statistical description of model uncertainty a deterministic
bounded-error [116, 170] approach is employed. In particular, one objective is to
show how to describe model uncertainty of the so-called GMDH (Group Method
of Data Handling) neural network. Another objective is to show how to use the
obtained knowledge about model uncertainty for robust fault diagnosis. Finally,
it should be pointed out that the presented results are based on [185].

7.1 Robust Fault Detection with the Multi-layer
Perceptron

Let us consider a feed-forward neural network given by the following equation:

yM,k = P (l)g
(
P (n)uk

)
, (7.1)

while g(·) = [g1(·), . . . , gnh
(·), 1]T , while gi(·) = g(·) is a non-linear differentiable

activation function,

P (l) =

⎡

⎢
⎣

p(l)(1)T

...
p(l)(m)T

⎤

⎥
⎦ , P (n) =

⎡

⎢
⎣

p(n)(1)T

...
p(n)(nh)T

⎤

⎥
⎦ , (7.2)

are matrices representing the parameters (weights) of the model, nh is the num-
ber of neurons in the hidden layer. Moreover, uk ∈ R

r=nr+1, uk = [u1,k, . . . ,
unr,k, 1]T , where ui,k, i = 1, . . . , nr are system inputs. For the sake of notational
simplicity, let us define the following parameter vector:

p =
[
p(l)(1)T , . . . , p(l)(m)T , p(n)(1)T , . . . , p(n)(nh)T

]T

,

where np = m(nh + 1) + nh(nr + 1). Consequently, the equation (7.1) can be
written in a more compact form:

yM,k = h (p, uk) , (7.3)

where h (·) is a non-linear function representing the structure of a neural-network.
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Let us assume that the system output satisfies the following equality:

yk = yM,k + vk = h (p, uk) + vk, (7.4)

where the noise v is zero-mean, Gaussian and uncorrelated in k, i.e., its statistics
are

E(vk) = 0, E(viv
T
k ) = δi,kC, (7.5)

where C ∈ R
m×m is a known positive-definite matrix of the form C = σ2Im,

while σ2 and δi,k stand for the variance and Kronecker’s delta symbol, respec-
tively. Under such an assumption, the theory of experimental design [7, 170]
can be exploited to develop a suitable training data set that allows obtaining
a neural network with a considerably smaller uncertainty than those designed
without it. First, let us define the so-called Fisher information matrix (see also
Section 5.1) that constitutes a measure of parametric uncertainty of (7.1):

P−1 =
nt∑

k=1

RkRT
k , (7.6)

Rk =
(

∂h (p, uk)
∂p

)T

p=p̂

, (7.7)

and

∂h (p, uk)
∂p

=

⎡

⎢
⎢
⎢
⎢
⎣

g
(
P (n)uk

)T

0T
(m−1)(nh+1) pl

1(1)g′
(
uT

k pn(1)
)
uT

k . . .

...
...

...
...

0T
(m−1)(nh+1) g

(
P (n)uk

)T

pl
1(m)g′

(
uT

k pn(1)
)
uT

k . . .

. . . pl
nh

(1)g′
(
uT

k pn(nh)
)
uT

k
...

...
. . . pl

nh
(m)g′

(
uT

k pn(nh)
)
uT

k

⎤

⎥
⎦ , (7.8)

where g′(t) =
dg(t)
dt

, p̂ is a least-square estimate of p. It is easy to observe that

the FIM (7.6) depends on the experimental conditions ξ = [u1, . . . , unt ]. Thus,
optimal experimental conditions can be found by choosing uk, k = 1, . . . , nt, so
as to minimise some scalar function of (7.6). As was mentioned in Section 5.1,
such a function can be defined in several different ways [61, 167]:

• D-optimality criterion:

Φ(ξ) = detP , (7.9)

• E-optimality criterion (λmax(·) stands for the maximum eigenvalue of its
argument):

Φ(ξ) = λmax (P ) ; (7.10)
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• A-optimality criterion:

Φ(ξ) = trace P ; (7.11)

• The G-optimality criterion:

Φ(ξ) = max
uk∈U

φ(ξ, uk), (7.12)

and U stands for a set of admissible uk that can be used for a system being
considered (the design space), and

φ(ξ, uk) = trace
(
RT

k PRk

)
=

m∑

i=1

ri,kP rT
i,k, (7.13)

while ri,k stands for the ith row of RT
k ;

• Q-optimality criterion:

Φ(ξ) = trace
(
P−1

Q P
)

, (7.14)

where P−1
Q =

∫
R(u)R(u)T dQ(u), R(u) =

(
∂h(p,u)

∂p

)T

p=p̂
, and Q stands for

the so-called environmental probability, which gives independent input vec-
tors in the actual environment where a trained network is to be exploited [61].

As has already been mentioned, a valuable property of the FIM is that its inverse
constitutes an approximation of the covariance matrix for p̂ [66], i.e., it is a lower
bound of this covariance matrix that is established by the so-called Cramér-Rao
inequality [66]:

cov(p̂) � P . (7.15)

Thus, a D-optimum design minimises the volume of the confidence ellipsoid ap-
proximating the feasible parameter set of (7.1) (see, e.g., [7][Section 6.2] for
further explanations). An E-optimum design minimises the length of the largest
axis of the same ellipsoid. An A-optimum design suppresses the average variance
of parameter estimates. A G-optimum design minimises the variance of the esti-
mated response of (7.1). Finally, a Q-optimum design minimises the expectation
of the generalisation error E(εgen) defined by [61]:

εgen =
∫

‖h(p, u) − h(p̂, u)‖2dQ(u). (7.16)

Among the above-listed optimality criteria, the D-optimality criterion, due to its
simple updating formula (that is to be discussed in Section 7.1.2), has been em-
ployed by many authors in the development of computer algorithms for calculat-
ing optimal experimental design. Another important property is that D-optimum
design is invariant to non-degenerate linear transformation of the model. This
property is to be exploited and suitably discussed in Section 7.1.2. It is also im-
portant to underline that, from the practical point of view, D-optimum designs
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often perform well according to other criteria (see [7] and the references therein
for more details). For further explanations regarding D-optimality criteria, the
reader is referred to the excellent textbooks [7, 50, 170, 167]. Since the research
results presented in this section are motivated by fault diagnosis applications of
neural networks, the main objective is to use such a design criterion which makes
it possible to obtain accurate bounds of the system output (cf. Fig. 7.1). Indeed,
it is rather vain to assume that it is possible to develop a neural network with
an arbitrarily small uncertainty, i.e., to obtain a perfect model of the system. A
more realistic task is to design a model that will provide a reliable knowledge
about the bounds of the system output that reflect the expected behaviuor of
the system. As wasindicated in Section 2.3, this is especially important from the
point of view of robust fault diagnosis. The design methodology of such robust
techniques relies on the idea that fault diagnosis and control schemes should per-
form reliably for any system behaviour that is consistent with output bounds.
This is in contradiction with the conventional approaches, where fault diagnosis
and control schemes are designed to be optimal for one single model. The bounds
presented in Fig. 7.1 can be described as follows:

yi

yM
i

yN
i

yi

Discrete time

Fig. 7.1. ith output of the system and its bounds obtained with a neural network

yN
i,k ≤ yi,k ≤ yM

i,k, i = 1, . . . , m. (7.17)

In [32], the authors developed an approach that can be used for determining
(7.17) (that forms the 100(1 − α) confidence interval of yi,k) for single output
(m = 1) neural networks. In [182], the approach of [32] was extended to multi-
output models. If the neural model gives a good prediction of the actual system
behaviuor, then p̂ is close to the optimal parameter vector and the following
first-order Taylor expansion of (7.4) can be exploited:

yk ≈ ŷk + RT
k (p − p̂) + vk, ŷk = h (p̂, uk) . (7.18)

Thus, assuming that E(p̂) = p, we get

E(yk − ŷk) ≈ RT
k (p − E(p̂)) + E(vk) ≈ 0. (7.19)
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Using a similar approach, the covariance matrix is given by

cov(yk − ŷk) =E
(
(yk − ŷk)(yk − ŷk)T

)
≈

≈ RT
k E

(
(p − p̂)(p − p̂)T

)
Rk + σ2Im. (7.20)

Using the classic results regarding E
(
(p − p̂)(p − p̂)T

)
[7, 167, 170], i.e.,

E
(
(p − p̂)(p − p̂)T

)
= σ2P , (7.21)

the equation (7.20) can be expressed as

cov(yk − ŷk) ≈ σ2
(
RT

k PRk + Im

)
. (7.22)

Subsequently, using (7.22), the standard deviation of yi,k − ŷi,k is given by

σyi,k−ŷi,k
= σ

(
1 + ri,kP rT

i,k

)1/2
, i = 1, . . . , m. (7.23)

Using (7.23) and the result of [32], it can be shown that yN
i,k and yM

i,k (that form
the 100(1 − α) confidence interval of yi,k) can be approximated as follows:

yN
i,k = ŷi,k − t

α/2
nt−np

σ̂
(
1 + ri,kPrT

i,k

)1/2
, i = 1, . . . , m, (7.24)

yM
i,k = ŷi,k + t

α/2
nt−np

σ̂
(
1 + ri,kPrT

i,k

)1/2
, i = 1, . . . , m, (7.25)

where t
α/2
nt−np

is the t-Student distribution quantile, and σ̂ is the standard devi-
ation estimate. Bearing in mind the fact that the primary purpose is to develop
reliable bounds of the system output, it is clear from (7.17), (7.24), and (7.25)
that the G-optimality criterion should be selected.

As was indicated in Section 5.2, when some experiments are repeated then the
number ne of distinct uks is smaller than the total number of observations nt.
The design resulting from this approach is called the continuous experimental
design and it can be described as follows:

ξ =
{

u1 u2 . . . une

μ1 μ2 . . . μne

}

, (7.26)

where uks are said to be the support points , and μ1, . . . , μne , μk ∈ [0, 1] are
called their weights, which satisfy

∑ne

k=1 μk = 1. Thus, when the design (7.26)
is optimal (with respect to one of the above-defined criteria), then the support
points can also be called optimal inputs . Thus, the Fisher information matrix
can now be defined as follows:

P−1 =
ne∑

k=1

μkRkRT
k . (7.27)
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The fundamental property of continuous experimental design is the fact that
the optimum designs resulting from the D-optimality and G-optimality criteria
are the same (the Kiefer-Wolfowitz equivalence theorem [7, 170, 167]). Another
reason for using D-optimum design is the fact that it is probably the most pop-
ular criterion. Indeed, most of the algorithms presented in the literature are
developed for D-optimum design. Bearing in mind all of the above-mentioned
circumstances, the subsequent part of this section is devoted to D-optimum ex-
perimental design. The next section shows an illustrative example whose results
clearly show profits that can be gained while applying D-OED to neural net-
works.

7.1.1 Illustrative Example

Let us consider a neuron model with the logistic activation function [182]:

yM,k =
p1

1 + e−p2uk−p3
. (7.28)

It is obvious that the continuous experimental design for the model (7.28) should
have at least three different support points (np = 3 for (7.28)). For a three-point
design, the determinant of the FIM (7.27) is

detP−1 =
p4
1

p2
2
μ1μ2μ3e

2x1e2x2e2x3 ·

· ((ex2 − ex1)x3 + (ex3 − ex2)x1 + (ex1 − ex3)x2)2

(ex1 + 1)4(ex2 + 1)4(ex3 + 1)4
, (7.29)

where xi = p2ui + p3. Bearing in mind the fact that the minimisation of (7.9)
is equivalent to the maximisation of (7.29), a numerical solution regarding the
D-optimum continuous experimental design can be written as

ξ =
{

u1 u2 u3
μ1 μ2 μ3

}

=

{(
1.041−p3

p2
, 1
) (

−1.041−p3
p2

, 1
) (

x3−p3
p2

, 1
)

1
3

1
3

1
3

}

, (7.30)

whereas x3 is an arbitrary constant satisfying x3 ≥ ζ, ζ ≈ 12. In order to
check if the design (7.30) is really D-optimum, the Kiefer-Wolfowitz equivalence
theorem [7, 170] can be employed. In the light of this theorem, the design (7.30)
is D-optimum when

φ(ξ, uk) = trace
(
RT

k P Rk

)
≤ np, (7.31)

where the equality holds for measurements described by (7.30). It can be seen
from Fig. 7.2 that the design (7.30) satisfies (7.31). This figure justifies also the
role of the constant ζ, which is a lower bound of x3 in the third support point
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Fig. 7.2. Variance function for (7.30) and x3 = 20
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Fig. 7.3. Feasible parameter set obtained for (7.30) (smaller) and for a set of randomly
generated points

of (7.30). Indeed, it can be observed that the design (7.30) is D-optimum (the
variance function is np = 3) when the third support point is larger than some
constant value, which is equivalent to x3 ≥ ζ.

In order to justify the effectiveness of (7.30), let us assume that the nominal
parameter vector is p = [2, 0.5, 0.6]T . It is also assumed that nt = 9. This means
that each of the measurements consistent with (7.30) should be repeated 3 times.
For the purpose of comparison, a set of nt points was generated according to the
uniform distribution U(−4, 40). It should also be pointed out that v was gener-
ated according to N (0, 0.12). Fig. 7.3 presents feasible parameter sets obtained
with the strategies considered. These sets are defined according to the following
formula [170]:



7.1 Robust Fault Detection with the Multi-layer Perceptron 141

P =

{

p ∈ R
np
∣
∣

nt∑

k=1

(yk − f(p, uk))2 ≤ σ2χ2
α,nt

}

, (7.32)

where χ2
α,nt

is the Chi-square distribution quantile. From Fig. 7.3, it is clear
that the application of D-OED results in a model with a considerably smaller
uncertainty than the one designed without it. These results also imply that the
system bounds (7.17) will be more accurate.

7.1.2 Algorithms and Properties of D-OED for Neural Networks

Regularity of the FIM

The Fisher information matrix P−1 of (7.1) may be singular for some parameter
configurations, and in such cases it is impossible to obtain its inverse P necessary
to calculate (7.17), as well as to utilise specialised algorithms for obtaining D-
optimum experimental design [7, 170]. Fukumizu [60] established the conditions
under which P−1 is singular. These conditions can be formulated as follows:

Theorem 7.1. [60] The Fisher information matrix P−1 of (7.1) is singular iff
at least one of the following conditions holds true:

1. There exists j such that [p(n)
j,1 , . . . , p

(n)
j,nr

]T = 0;

2. There exists j such that [p(l)
1,j , . . . , p

(l)
m,j ]

T = 0;
3. There exist different j1 and j2 such that p(n)(j1) = ±p(n)(j2).

A direct consequence of the above theorem is that a network with singular P−1

can be reduced to one with positive definite P−1 by removing redundant hidden
neurons. Based on this property, it is possible to develop a procedure that can
be used for removing the redundant neurons without performing the retraining
of a network [59].

If the conditions of Theorem 7.1 indicate that P−1 is not singular, then the
strategy of collecting measurements according to the theory of D-optimum ex-
perimental design (the maximisation of the determinant of P−1) guarantees that
the Fisher information matrix is positive definite. This permits approximating
an exact feasible parameter set (7.32) with an ellipsoid (cf. Fig. 7.3 to see the
similarity to an ellipsoid). Unfortunately, the conditions of Theorem 7.1 have
strictly theoretical meaning as in most practical situations the FIM would be
close to singular but not singular in an exact sense. This makes the process of
eliminating redundant hidden neurons far more difficult, and there is no really
efficient algorithm that could be employed to settle this problem. Indeed, the
approach presented in [61] is merely sub-optimal. On the other hand, if such
an algorithm does not give satisfactory results, i.e., the FIM is still close to the
singular matrix, then the FIM should be regularised in the following way [7, p.
110]:

P−1
κ = P−1 + κI, (7.33)

for κ > 0 small but large enough to permit the inversion of P−1
κ .
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Relation between non-linear parameters and D-OED

Dependence on parameters that enter non-linearly ((7.30) depends on p2 and p3
but does not depend on p1) into the model is an unappealing characteristic of
non-linear optimum experimental design. As has already been mentioned, there
is a number of works dealing with D-OED for neural networks but none of them
has exploited this important property. In [182], it was shown that experimental
design for a general structure (7.1) is independent of parameters that enter
linearly into (7.1). Indeed, it can be shown that (7.8) can be transformed into
an equivalent form:

∂h (p, uk)
∂p

= L
(
P (n), uk

)
Z
(
P (l)

)
, (7.34)

and

L
(
P (n), uk

)
=

=

⎡

⎢
⎢
⎢
⎢
⎣

g
(
P (n)uk

)T

0(m−1)(nh+1)

(
g′
(
P (n)uk

)
⊗ uk

)T

...
...

...

0(m−1)(nh+1) g
(
P (n)uk

)T (
g′
(
P (n)uk

)
⊗ uk

)T

⎤

⎥
⎥
⎥
⎥
⎦

, (7.35)

Z
(
P (l)

)
=

⎡

⎢
⎢
⎢
⎢
⎣

1nh+1 . . . x(m−1)(nh+1)
x(m−1)(nh+1) . . . 1nh+1
p
(l)
1 (1)1nr+1 . . . p

(l)
1 (m)1nr+1

...
...

...
p
(l)
nh+1(1)1nr+1 . . . p

(l)
nh+1(m)1nr+1

⎤

⎥
⎥
⎥
⎥
⎦

, (7.36)

where ⊗ denotes the Kronecker product, xt stands for an arbitrary t-dimensional
vector, and

g′(t) = [g′(t1), . . . , g′(tnh
)]T . (7.37)

Thus, Rk can be written in the following form:

Rk = P 1R1,k, (7.38)

where
P 1 =

(
Z
(
P (l)

))T

p=p̂
(7.39)

and

R1,k =
(
L
(
P (n), uk

))T

p=p̂
. (7.40)

The Fisher information matrix is now given by

P−1 =
nt∑

k=1

RkRT
k = P 1

[
nt∑

k=1

R1,kRT
1,k

]

P T
1 . (7.41)
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Thus, the determinant of P−1 is given by

det
(
P−1) =det (P 1)

2 det

(
nt∑

k=1

R1,kRT
1,k

)

. (7.42)

From (7.42) it is clear that the process of minimising the determinant of P−1

with respect to uks is independent of the linear parameters pl. This means that
at least a rough estimate of P (n) is required to solve the experimental design
problem. Such estimates can be obtained with any training method for feed-
forward neural networks [73]. A particularly interesting approach was recently
developed in [46]. The authors proposed a novel method of backpropagating the
desired response through the layers of the MLP in such a way as to minimise the
mean-square error. Thus, the obtained solution may constitute a good starting
point for experimental design.

Indeed, it is rather vain to expect that it is possible to obtain a design that is
to be appropriate for all networks of a given structure. It is very easy to imagine
two neural networks of the same structure that may represent two completely
different systems. If some rough estimates are given, then specialised algorithms
for D-optimum experimental design can be applied [7, 170].

σ-equivalence theorem for the D-OED

Undoubtedly, the most popular activation functions g(·) that are commonly em-
ployed for designing neural networks are gσ(t) = 1

1+exp(−t) and gtg(t) = tanh(t).
It is well known that these functions are very similar, and this similarity is
expressed by the following relationship:

gσ(t) =
1
2

+
1
2
gtg

(
1
2
t

)

. (7.43)

Thus, the problem is to show how to use a D-optimum design obtained for
a network with the activation functions gσ(·) to obtain a D-optimum design for
a network with the activation functions gtg(·). In this work, the above problem
is solved as follows:

Theorem 7.2. Let

ξσ =
{

u1 . . . uneμ1 . . . μne

}
(7.44)

denote a D-optimum design for the network

yM,k = P (l)gtg

(
P (n)uk

)
. (7.45)

Then the design (7.44) is D-optimum for the following network:

yM,k = P (l)
σ gσ

(
P (n)uσ

k

)
, (7.46)

where uσ
k = 2uk, and P (l)

σ is an arbitrary (non-zero) matrix.
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Proof. It is straightforward to observe that

P (l)
σ gσ

(
2P (n)uk

)
= P

(l)
tg gtg

(
P (n)uk

)
, (7.47)

where

P
(l)
tg =

1
2
P (l)

σ +
[

0m×nh
,
1
2
P (l)

σ 1nh+1

]

. (7.48)

Thus, using (7.42), the determinant of the FIM for (7.45) is

det
(
P−1) = det

((
Z
(
P (l)

))T

p=p̂

)2

det

(
nt∑

k=1

R1,kRT
1,k

)

(7.49)

while using (7.42), (7.47), and (7.48), the determinant of the Fisher information
matrix for (7.46) is

det
(
P−1) = det

((
Z
(
P

(l)
tg

))T

p=p̂

)2

det

(
nt∑

k=1

R1,kRT
1,k

)

, (7.50)

and R1,k in (7.49) and (7.50) is calculated by substituting

L
(
P (n), uk

)
=

=

⎡

⎢
⎢
⎢
⎢
⎣

gtg

(
P (n)uk

)T

0(m−1)(nh+1)

(
g′

tg

(
P (n)uk

)
⊗ uk

)T

...
...

...

0(m−1)(nh+1) gtg

(
P (n)uk

)T (
g′

tg

(
P (n)uk

)
⊗ uk

)T

⎤

⎥
⎥
⎥
⎥
⎦

, (7.51)

and
g′

tg(t) = [g′tg(t1), . . . , g
′
tg(tnh

)]T , (7.52)

into (7.40).
From (7.49) and (7.50), it is clear that the D-optimum design obtained with

either (7.49) or (7.50) is identical, which completes the proof.

Based on the above results, the following remark can be formulated:

Remark 7.1. Theorem 7.2 and the Kiefer-Wolfowitz theorem [7, 170] imply that
the D-optimum design (7.44) for (7.45) is also G-optimum for this model struc-
ture and, hence, it is G-optimum for (7.46).

Illustrative example

Let us reconsider the example presented in Section 7.1.1. The purpose of this
example was to obtain D-optimum experimental design for the model (7.28). As
a result, the design (7.30) was determined. The purpose of further deliberations
is to apply the design (7.30) to the following model:

yM,k = p1 tanh(2(p2uk + p3)), (7.53)
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Fig. 7.4. Variance function for (7.30) (x3 = 20) and model (7.53)

and to check if it is D-optimum for (7.53). Figure 7.4 presents the variance
function (7.12) for the model (7.53). From this figure it is clear that the variance
function satisfies the D-optimality condition (7.31).

Wynn–Fedorov algorithm for the MLP

The preceding part of Section 7.1.2 presents important properties of D-OED
for neural networks. In this section, these properties are exploited to develop an
effective algorithm for calculating D-OED for neural networks. In a numerical ex-
ample of Section 7.1.1, it is shown how to calculate D-OED for a neural network
composed of one neuron only. In particular, the algorithm was reduced to a direct
optimisation of the determinant of the FIM with respect to experimental condi-
tions. This means that non-linear programming techniques have to be employed
to settle this problem. Unfortunately, it should be strongly underlined that such
an approach is impractical when larger neural networks are investigated. Fortu-
nately, the Kiefer-Wolfowitz equivalence theorem [7, 170, 167] (see also (7.31))
provides some guidance useful in construction of a suitable numerical algorithm.
The underlying reasoning boils down to a correction of a non-optimum design ξk

(obtained after k iterations) by a convex combination with another design [50,
p. 27], which hopefully improves the current solution, i.e.,

ξk+1 = (1 − αk)ξk + αkξ(uk) (7.54)

for some convenient 0 < αk < 1, where

ξk =
{

u1 u2 . . . une

μ1 μ2 . . . μne

}

, ξ(uk) =
{

uk

1

}

, (7.55)
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while the convex combination (7.54) is realised as follows:
If uk 	= ui, i = 1, . . . , ne, then

ξk+1 =
{

u1 u2 . . . une uk

(1 − αk)μ1 (1 − αk)μ2 . . . (1 − αk)μne αk

}

, (7.56)

else

ξk+1 =
{

u1 u2 . . . ui . . . une

(1 − αk)μ1 (1 − αk)μ2 . . . (1 − αk)μi + αk . . . (1 − αk)μne

}

.

In this way, the experimental effort related to ξk is reduced and measurements
corresponding to ξ(uk) are favored instead. Hence, the problem is to select ξ(uk)
so as to get a better value of the optimality criterion. A solution to this problem
can be found with the help of the Kiefer-Wolfowitz equivalence theorem [7, 170,
167]. Indeed, the support points of the optimum design ξ∗ coincide with the
maxima of the variance function φ(ξ∗, uk) (see Section 7.1.1 for an illustrative
example). Thus, by the addition of ξ(uk) for which the maximum of φ(ξk, uk) is
attained, an improvement in the current design can be expected (see [170, 167]
for more details).

The above-outlined approach forms the base of the celebrated Wynn-Fedorov
algorithm [7, 170]. In this section, the results developed in Section (7.1.2) and
the one of Theorem 7.1 are utilised to adapt the Wynn-Fedorov algorithm in
order to develop D-OED for neural networks.

First, let us start with a slight modification of the Wynn-Fedorov algorithm that
boils down to reducing the necessity of using the linear parameters of (7.1) in
the computational procedure.

Since, according to (7.38),

Rk = P 1R1,k , (7.57)

then (7.12) can be written as follows:

Φ(ξ) = max
uk∈U

trace
(
RT

1,kP T
1 PP 1R1,k

)
. (7.58)

Using (7.41) and the notation of continuous experimental design, the matrix P
can be expressed as follows:

P =
(
P T

1

)−1
[

ne∑

k=1

μkR1,kRT
1,k

]−1

P−1
1 . (7.59)

It is easy to observe that if Condition 2 of Theorem 7.1 is not satisfied, then it is
possible to compute the inverse of P 1 (cf. (7.39)). Similarly, if both Conditions
1 and 3 are not satisfied, then the matrix

P 2 =

[
ne∑

k=1

μkR1,kRT
1,k

]−1

(7.60)
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in (7.59) can be calculated. Now, (7.58) can be expressed in the following form:

Φ(ξ) = max
uk∈U

φ(ξ, uk), (7.61)

where
φ(ξ, uk) = trace

(
RT

1,kP 2R1,k

)
. (7.62)

Note that the computation of (7.61) does not require any knowledge about the
parameter matrix P (l), which enters linearly into (7.1). Another advantage is
that it is not necessary to form the matrix P 1 ∈ R

np×np , which then has to be
multiplied by R1,k to form (7.57). This implies a reduction of the computational
burden.

The equation (7.61) can be perceived as the main step of the Wynn-Fedorov
algorithm, which can now be described as follows:

Step 0: Obtain an initial estimate of P (n), i.e., the parameter matrix that enters
non-linearly into (7.1), with any method for training the MLP [73]. Set k = 1,
choose a non-degenerate (det(P−1) 	= 0, it is satisfied when no conditions of
Theorem 7.1 are fulfilled) design ξk, set the maximum number of iterations
nmax.

Step 1: Calculate

uk = arg max
uk∈U

trace
(
RT

1,kP 2R1,k

)
. (7.63)

Step 2: If φ(ξk, uk)/np < 1 + ε, where ε > 0, is sufficiently small, then STOP,
else go to Step 3.

Step 3: Calculate a weight associated with a new support point uk according
to

αk = arg max
0<α<1

det
(
(1 − α)P 2 + αR1,kRT

1,k

)
, (7.64)

which for single-output systems (m = 1) is given by

αk =
φ(ξk, uk) − np

(φ(ξk, uk) − 1)np
, (7.65)

and go to Step 4.
Step 4: Obtain a new design ξk+1 being a convex combination [50, p. 27] of the

form
ξk+1 = (1 − αk)ξk + αkξ(uk). (7.66)

If k = nmax, then STOP, else set k = k + 1 and go to Step 1.

Step 1 is a crucial step of the presented algorithm. Indeed, the first problem
is the fact that the calculation of (7.60) involves matrix inversions. Since the
dimension of this matrix equals np, then, even for simple networks, the number
of parameters is a dozen or so. Subsequently, it is shown that effective recursive
formulae can be established for calculating P k

2 , i.e., the matrix P 2 in the kth
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iteration of the Wynn-Fedorov algorithm. It can be seen from the inverse of
(7.60) and (7.56) that

(
P k+1

2

)−1
= (1 − αk)

(
P k

2

)−1
+ αkR1,kRT

1,k. (7.67)

Using the matrix inversion lemma and (7.67), the following recursive relation
can be established:

P k+1
2 =

1
1 − αk

·

·
[

P k
2 − P k

2R1,k

[
1 − αk

αk
Im + RT

1,kP k
2R1,k

]−1

RT
1,kP k

2

]

. (7.68)

Note that the calculation of (7.68) requires an inversion of an m-dimensional
matrix instead of an np-dimensional one.

The second problem concerning Step 1 is the fact that the variance func-
tion (7.63) is multi-modal and hence conventional optimisation routines cannot
be applied to settle (7.61). For further explanations concerning the problem
(7.61), the reader is referred to [17]. Based on numerous computer experiments,
it has been found that the extremely simple Adaptive Random Search (ARS)
algorithm [170] is especially well suited for the purpose of optimising (7.61), al-
though other techniques such as evolutionary algorithms [96] can successfully be
applied as well.

It is important to note that the above algorithm makes use of information
about the gradient of the performance index only, and the rule (7.64) results in
the steepest-descent algorithm. As a result, the convergence rate of the algorithm
is comparable with its gradient counterparts from mathematical non-linear pro-
gramming. This implies a significant decrease in the performance index in the
first few iterations, but then a serious moderation of the convergence rate occurs
as the optimum is approached. There are some second-order counterparts of the
algorithm being considered, but they require a significantly higher implementa-
tion complexity. However, it should be pointed out that they may improve the
design weight rather than the support points, and in this context the features
of the presented algorithm are satisfactory. Indeed, many computer experiments
show that the most significant support points are found in just several iterations.

Numerical example

The problem is to approximate the function

yk = exp(− sin(uk)) + vk,

where v ∼ N (0, 0.022), uk ∈ [0.1, 10], with a neural network containing nh = 4
hidden neurons with hyperbolic tangent activation functions. Thus, the num-
ber of parameters to be estimated is np = 13. In the preliminary experiment
uk, k = 1, . . . , nt = 15 were obtained in such a way as to equally divide the
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design space U ∈ [0.1, 10]. Then the Levenberg-Marquardt algorithm [170] was
employed for parameter estimation. Based on the obtained parameter estimates,
the Wynn-Fedorov algorithm was utilised to obtain D-OED, and then the para-
meter estimation process was repeated once again. Figure 7.5 shows the variance
function and D-optimum inputs (support points). Note that the number of sup-
port points is np while μk = 1/13, k = 1, . . . , 13. Based on the obtained design,
nt = 13 measurements were taken, each corresponding to the subsequent support
points. Figure 7.6 presents the output bounds (7.17) for the network obtained
with the application of OED (the 2nd net) and the one obtained without it
(the 1st net), while the true output represents the shape of the approximated
function. It can be observed that the use of OED results in a network with
a significantly smaller uncertainty than the one designed without it.
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Special case

A special case that deserves particular attention is when the design consists of
ne = np/m support points, i.e., the number of distinct support points equals
the number of parameters to be estimated. An example of such a design is
presented in Section 7.1.2. The analysis of this example indicates that the weights
associated with the support points are the same and equal 1/np. This can easily
be explained by transforming (7.41) into the following form:

P−1 = RT WR, (7.69)

where

R =

⎡

⎢
⎣

RT
1
...

RT
ne

⎤

⎥
⎦ , (7.70)

and W = diag(μ11m, . . . , μne1m).
It can be observed from (7.70) that R is a square matrix when np = mne. To

achieve this, the number of support points should be

ne =
np

m
= (nh + 1) +

nh(nr + 1)
m

(7.71)

As can be seen from (7.71), the number of hidden neurons should be suitably
selected to guarantee that ne is a positive integer number. Thus, the determinant
of (7.69) is

det
(
P−1) =

(
ne∏

k=1

μk

)m

det (R)2 . (7.72)

From (7.72), it is clear that μk, k = 1, . . . , np/m maximising det
(
P−1) are the

same and equal m/np.
Unfortunately, it is impossible to expect a priori how many support points

should be used to form a D-optimum design for a given neural model. Indeed,
the equation (7.71) indicates the minimum number of support points, while the
maximum number can be determined with the help of Caratheodory’s theo-
rem [7, 170, 167] and is equal to ne = np(np + 1)/2 + 1.

Now let us consider a single output neural model for which ne = np. The
parameter vector of (7.1) is estimated with the least-square method as follows:

p̂ = arg min
p∈R

np

nt∑

k=1

(yk − h(p, uk))2. (7.73)

Another appealing characteristic of the design being considered can be expressed
by the following theorem, which is based on the results presented in [147]:
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Theorem 7.3. Assume that

ξ =
{

u1 . . . unp
1

np
. . . 1

np

}

,

and the number of observations for different uks is nx = nt

np
(it is assumed that

it is a positive integer number). Assume also that for all β ∈ R
np , there exists

p ∈ R
np such that β = [h(p, u1), . . . , h(p, unp)]T and p does not satisfy the

conditions of Theorem 7.1. Then the cost function of (7.73) has a unique global
minimiser p̂ and no other global minimisers.

Proof. See the proof of Theorem 1 in [147].

Since the weights associated with support points are the same, then it is natural
to assume that the number of observations for different uks is the same. The-
orem 7.3 can be relatively easily interpreted because the optimisation problem
(7.73) can be expressed (under the assumptions of Theorem 7.3) as

min
p∈R

np

np∑

k=1

(ȳk − h(p, uk))2 = 0, (7.74)

and

ȳk =
1
nx

nx∑

i=1

yi
k, (7.75)

where yi
k stands for the ith observation under uk. Thus, the solution p̂ of (7.74)

should satisfy
ȳk − h(p̂, uk) = 0, k = 1, . . . , np. (7.76)

Indeed, the fact that p̂ does not satisfy the conditions of Theorem 7.1 implies
that (7.1) is uniquely determined by its input-output map, up to a finite group of
symmetries (permutations of hidden neurons and changing the sign of all weights
associated with a particular hidden neuron) [164]. This means that p̂ is a unique
solution of (7.76).

Towards robustness – sequential design

As was shown in Section 7.1.2, the unappealing characteristic of experimental
design for the MLP is the fact that the FIM depends on the non-linear parame-
ters P (n) only. It is obvious that the true value of P (n) is unknown and hence its
estimate should be utilised instead. As was mentioned in Section 7.1.2, if some
rough estimates are given, i.e., they can be obtained with any training method for
feed-forward neural networks [73], then the so-called sequential design [167, 170]
can be applied. Such a strategy is usually applied off-line, i.e., the first step is
parameter estimation while the second one is to use some specialised algorithms,
e.g., the Wynn-Federov algorithm detailed in Section 7.1.2, to obtain a design
of the form (7.26). In spite of the simplicity of such a sequential approach, some
non-trivial problems arise which can be described as follows:
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• Determination of the number of stages of experimentation-estimation re-
quired to attain the prescribed accuracy;

• Dependence of the final design upon the initial parameter estimates;
• Unique parametrisation of (7.1). This is the necessary condition to ensure

the convergence of the sequential algorithm;
• Management of data collected in the consecutive experiments in order to

guarantee the convergence of p̂ to the true value of parameters p.

Some existing results being partial solutions to the first two questions can be
found in [49, 55, 170]. Sussman [164] proved that, under some conditions, a net-
work of the structure (7.1) with the hyperbolic tangent activation function is
uniquely determined by its input-output map, up to a finite group of symmetries
(permutations of hidden neurons and changing the sign of all weights associated
with a particular hidden neuron). Fukumizu [60] extended the results of [164] to
the structure (7.1) with the logistic activation function. The solution to the last
problem seems to be well developed and can be formulated as follows [170]: in
order to guarantee the convergence of p̂ to p, the estimation of p̂k (the estimate
of p in the kth iteration of the sequential algorithm) should make use of all
previous observations collected during the preceding iterations of the sequential
algorithm. Fukumizu [61] employed this strategy for OED for the MLP. The
routine employed in [61] adds one single measurement to the measurement set
collected in the preceding iterations of the algorithm. This new support point is
obtained in such a way as to obtain an optimum design for the new parameter
estimate. In Section 7.1.3, this idea is exploited in designing a new sequential
algorithm that can be used for both training and data development for the MLP.
Another approach [170] is to obtain a design for a new parameter estimate in
a classic way, e.g., with the Wynn-Fedorov algorithm, while parameter estima-
tion should make use of all the previous observations that where collected during
the preceding iterations of the sequential algorithm. This strategy is employed
in the numerical example presented in the subsequent section.

Numerical example

Let us reconsider the example presented in Section 7.1.1. It is assumed that
an initial parameter estimate is p̂ = [1.8, 0.45, 0.54]T . The sequential algorithm
utilises (7.30) to obtain OED in the consecutive iterations of the algorithm. The
measurements y were generated by disturbing the data obtained with (7.28) by
the normally distributed random noise N (0, 0.12). The Levenberg-Marquardt
algorithm [170] was employed for parameter estimation. In order to show the
reliability of the sequential algorithm, consisting of 250 cycles of estimation and
experimentation, it was repeated 100 times. This means that in each cycle, 9 ×
250 measurements were collected, i.e., in each iteration the measurements were
repeated three times for each support point of (7.30).

Figure 7.7 shows an average norm of the parameter estimation error ‖p− p̂‖2
in the consecutive iterations of the sequential algorithm. From this result it
can be seen that the parameter estimate converges (on average) to the true
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parameter vector p. This implies that the designed experiment tends to the
optimal experiment for p.

7.1.3 Locally D-Optimum On-Line Sequential Design

An alternative sequential design approach, different than that proposed in Sec-
tion 7.1.2, presented in [146] consists in modifying a recursive parameter estima-
tion technique in such a way as to develop an algorithm that can be used for both
obtaining a one-step-ahead D-optimum input and estimating the parameters of
the model. In general, however, this policy is not globally optimal and that is
why it should be called the locally D-optimum sequential design. Unfortunately,
the algorithm developed by [146] belongs to the class of the so-called bounded-
error estimation techniques [170], and it can be used for parameter estimation
of linear-in-parameter models only. Thus, it seems especially attractive to adapt
this approach to least-square parameter estimation and experimental design for
neural networks. The purpose of the subsequent section is to propose an algo-
rithm that tackles such a challenging problem. It should be strongly underlined
that the algorithm developed in the subsequent part of this work can be applied
to single-output systems (m = 1) only. However, in the final part of this section
a possible extension for multi-output systems is discussed.

Development of the algorithm

For the purpose of further deliberations, a recursive technique that permits pa-
rameter estimation in a least-square sense is required. Thus, the recursive least-
square [73, 170] algorithm seems to be a good choice. Indeed, some authors
(see [73] and the references therein) recommend to use this technique for para-
meter estimation of neural networks.
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One of the objectives of the subsequent part of this section is to modify
RLS for the purpose of sequential experimental design as well as to perform
a comprehensive convergence analysis of such an algorithm. Another objective
is to propose a minor modification of the developed algorithm that significantly
increases its performance.

Let us consider the RLS algorithm given by

p̂k+1 = p̂k + kk+1εk+1, (7.77)

kk+1 = P krk+1
(
λk + rT

k+1P krk+1
)−1

, (7.78)
εk+1 = yk+1 − h(p̂k, uk+1), (7.79)

P k+1 =
1
λk

[
Inp − kk+1r

T
k+1

]
P k, (7.80)

where rk+1 = ∂h(p,uk+1)
∂p

∣
∣
∣
p=p̂k

, λk stands for the so-called forgetting factor. As

has already been mentioned, the problem consists in obtaining a sequence of uks
(note that rk depends on uk) minimising the determinant of P k+1. From (7.80),
it can be seen that

det (P k+1) = det
(

1
λk

P k

)

det

(

Inp −
P krk+1r

T
k+1

λk + rT
k+1P krk+1

)

. (7.81)

Bearing in mind the fact that det(I + abT ) = 1 + bT a, the equation (7.81) can
be written as

det (P k+1) =
λ
−np

k

1 + λ−1
k rT

k+1P krk+1
det (P k) . (7.82)

Thus uk+1 minimising det (P k+1) should be given as

u∗
k+1 = arg max

uk+1∈U

rT
k+1P krk+1, (7.83)

and U stands for a set of admissible uk+1 that can be applied to the system
being considered (the design space). As can be seen from (7.82), λk can also be
used for controlling det (P k+1). In order to make the subsequent presentation
more intelligible, let us provide a detailed description of the proposed algorithm:

Step 0: Set k = 0, obtain an initial parameter estimate p̂0 with any method for
training the MLP [73], set P 0 = �I, where � is a sufficiently large positive
constant;

Step 1: Obtain uk+1 = u∗
k+1 according to (7.83), and measure the system

output yk+1 for such an input;
Step 2: Calculate p̂k+1 according to (7.77)–(7.80). If k = nt (nt being a prede-

fined number of input-output measurements), then STOP, else set k = k +1
and go to Step 1.
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It should be clearly pointed out that Step 1 involves the global optimisation
task of rT

k+1P krk+1. Similarly as in Section 7.1.2, this problem can be solved
with the ARS algorithm [170]. Another important conclusion that can be drawn
while analysing (7.77)–(7.80) is that the matrix P−1

k cannot be decomposed in
the way described by (7.41) since the matrix P1,k varies in k, as it depends on
the kth parameter estimate p̂k.

Development of the algorithm

Since the rule of obtaining locally D-optimum uk+1 is given, let us consider the
convergence of such an algorithm. For that purpose, the Lyapunov approach is
employed. The approach presented here is similar to that described in [18], which
was employed for the convergence analysis of Kalman filter-based estimators (see
also Sections 4.1 and 4.2).

The approach has proven to be useful for unknown input observers as well [179,
183]. The main objective is to determine conditions under which the sequence
{Vk}∞k=1, defined by the Lyapunov candidate function

Vk+1 = eT
k+1P

−1
k+1ek+1 (7.84)

is decreasing, where

ek+1 = p − p̂k+1. (7.85)

First, let us derive an alternative form of (7.78) and P−1
k+1. Substituting (7.78)

into (7.80) and then using the matrix inversion lemma, P−1
k+1 can be written as

P−1
k+1 = λkP−1

k + rk+1r
T
k+1. (7.86)

Similarly, applying the matrix inversion lemma to (7.78),

kk+1 = P k+1rk+1. (7.87)

the application of the classic approximation yields

εk+1 ≈ rT
k+1ek. (7.88)

In order to avoid the above approximation, it is proposed to introduce an
unknown scalar αk+1. This makes it possible to establish the following exact
equality:

εk+1αk+1 = rT
k+1ek. (7.89)

Substituting (7.77) into (7.85) leads to

ek+1 = ek − kk+1εk+1. (7.90)

Using (7.87), (7.90) and (7.84), the Lyapunov candidate function becomes

Vk+1 = eT
k P−1

k+1ek − 2εk+1r
T
k+1ek + ε2

k+1r
T
k+1kk+1. (7.91)



156 7. Neural Networks

Substituting (7.89), (7.86) and then (7.78) into (7.91) gives

Vk+1 = λkeT
k P−1

k ek + ε2
k+1

(

α2
k+1 − 2αk+1 +

rT
k+1P krk+1

λk + rT
k+1P krk+1

)

. (7.92)

The sequence {Vk}∞k=1 is decreasing when there exists a scalar ζ, 0 < ζ < 1 such
that

Vk+1 − (1 − ζ)Vk ≤ 0, (7.93)

and hence

(λk − 1 + ζ)eT
k P−1

k ek+

+ ε2
k+1

(

α2
k+1 − 2αk+1 +

rT
k+1P krk+1

λk + rT
k+1P krk+1

)

≤ 0. (7.94)

It is easy to see that (7.94) is equivalent to the following set of inequalities:

λk ≤ 1 − ζ, (7.95)

α2
k+1 − 2αk+1 +

rT
k+1P krk+1

λk + rT
k+1P krk+1

≤ 0. (7.96)

Bearing in mind the fact that the left-hand-side of (7.96) is a quadratic function,
it can be shown that (7.96) is equivalent to

1 −
√

Δk+1 ≤ αk+1 ≤ 1 +
√

Δk+1, (7.97)

where

Δk+1 =
1

1 + λ−1
k rT

k+1P krk+1
. (7.98)

Thus, Δk+1 should be designed in such a way as to maximise the bounds (7.97)
and hence enlarge the domain of attraction. Unfortunately, from (7.98) it is
evident that selecting uk+1 according to (7.83) leads to a decrease in Δk+1, i.e.,
it may lead to the divergence of the RLS algorithm. Another difficulty arises from
the fact that λk ≤ 1 (cf. (7.95)) and hence it cannot compensate for rT

k+1P krk+1.
A direct consequence of the above circumstances is that the algorithm (7.77)–
(7.80) cannot be used for the purpose of sequential design, unless the parameter
estimate p̂k is very close to its optimum.

Improved version of the algorithm

In order to overcome the above difficulties, an alternative algorithm is proposed
that is given by
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p̂k+1 = p̂k + kk+1εk+1, (7.99)

kk+1 = P k+1/krk+1
(
λk + rT

k+1P k+1/krk+1
)−1

, (7.100)
εk+1 = yk+1 − h(p̂k, uk+1), (7.101)

P k+1 =
1
γk

[
Inp − kk+1r

T
k+1

]
P k+1/k, (7.102)

P k+1/k = P k + Qk, (7.103)

where Qk stands for a symmetric positive-definite matrix and γk denotes an
arbitrary positive constant. Taking into account the result (7.95), the matrix
Qk is introduced to enhance the convergence of the algorithm, i.e., it should be
designed in such a way as to prevent the divergence of the proposed approach. It
should be stressed that the algorithm presented here is largely inspired by [18]
except for the additional parameter γk.

For the algorithm (7.99)–(7.103), the determinant of P k+1 is

det (P k+1) =
γ
−np

k

1 + λ−1
k rT

k+1P k+1/krk+1
det

(
P k+1/k

)
. (7.104)

Thus, uk+1 minimising det (P k+1) should be given as

u∗
k+1 = arg max

uk+1∈U

rT
k+1P k+1/krk+1, (7.105)

while the convergence conditions equivalent to (7.95)–(7.96) are

γk(P k + Qk)−1 − (1 − ζ)P−1
k � 0, (7.106)

α2
k+1 − 2αk+1 +

rT
k+1P k+1/krk+1

λk + rT
k+1P k+1/krk+1

≤ 0, (7.107)

where
P−1

k+1 = γkP−1
k+1/k +

γk

λk
rk+1r

T
k+1. (7.108)

Since (7.106) is equivalent to

(γ−1
k P k + γ−1

k Qk)−1 −
(

γ−1
k P k +

(1 − (1 − ζ)γ−1
k )

1 − ζ
P k

)−1

� 0, (7.109)

then it is clear that the convergence conditions are
(

γk

1 − ζ
− 1

)

P k � Qk, (7.110)

and

1 −
√

Δk+1 ≤ αk+1 ≤ 1 +
√

Δk+1, (7.111)
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with

Δk+1 =
1

1 + λ−1
k rT

k+1P k+1/krk+1
. (7.112)

Finally, to complete the convergence analysis, it is necessary to show that the
FIM is bounded [18], i.e., that there exist positive scalars θ̄ and θ such that

0 ≺ θInp � P−1
k � θ̄Inp . (7.113)

The relation (7.113) is associated with the so-called persistency of excitation (or
local persistency of excitation since linearisation around a parameter estimate
is employed) condition [18, 38, 67]. This condition is satisfied if the input signal
uk provides enough information to estimate p. First, let us assume that the
parameter estimate p̂ does not satisfy the conditions of Theorem 7.1. In the
general framework proposed in Section 7.1.3, the input sequence is uniquely
determined in Step 1 by (7.105). Such an input selection guarantees that the
determinant of P−1

k is maximised in each iteration and, hence, the FIM is far
from being a singular matrix. This implies that there exists a positive scalar
θ > 0 such that P−1

k � θInp . On the other hand, since the input uk is bounded,
i.e., uk ∈ U, then P−1

k � θ̄Inp is also satisfied (cf. (7.108)). Following the results
of [18], it can be deduced from (7.84), (7.93) and (7.113) that

0 ≤ θ‖ek‖2
2 ≤ Vk ≤ (1 − ζ)kV0 ≤ θ̄‖ek‖2

2 (7.114)

and, therefore, ‖ek‖2
2 decreases. This implies that the developed algorithm is

locally asymptotically convergent.
If the convergence of the algorithm is proven, then it is possible to provide

some details regarding its implementation. In this work, the following setting of
λk, γk, and Qk is proposed:

λk = βkrT
k+1P k+1/krk+1, (7.115)

γk = δkrT
k+1P k+1/krk+1, (7.116)

Qk = ηkε2
kInp , (7.117)

where βk, δk, and ηk are positive constants. Substituting (7.115) and (7.116)
into (7.104) leads to

det (P k+1) =
βk

1 + βk

1
(
δkrT

k+1P k+1/krk+1
)np

det
(
P k+1/k

)
, (7.118)

while inserting (7.115) into (113) gives

Δk+1 =
βk

1 + βk
. (7.119)
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It can be seen from (7.119) that βk should be large when p̂k is far from its
optimum. On the contrary, when p̂k is near to its optimum then βk should
be small so as to minimise (7.118). Moreover, as the quality of estimates is
improving, δk should converge to βk so that γk ≤ 1. If γk ≤ 1 then it can be
seen from (7.110) and (7.117) that ηk = 0. Following the above rules, it can be
observed that the algorithm (7.99)–(7.103) is reduced to the algorithm described
by (7.77)–(7.80). This is very important from the point of view of (7.17), where
P k should be described in a proper way. Indeed, the modification performed in
the proposed algorithm changes the primary role of P k.

If the convergence analysis is suitably performed and the necessary imple-
mentation details are provided, then it is possible to discuss a possible extension
of the above algorithm for multi-output (m > 1) systems. Many researchers
(see [73] and the references therein) employ the so-called extended Kalman filter
for training multi-output feed-forward neural networks. Such an algorithm can
be perceived as a multidimensional extension of the one presented in this section.
Using ideas similar to those presented in this work and in [18], the authors of
[19] developed convergence conditions for the extended Kalman filter (see also
Sections 4.1 and 4.2). Thus, this result can also be used for convergence analysis
of a multi-output counterpart of the proposed algorithm. This implies that the
approach presented in this section can be extended to multi-output systems.

Numerical example

Let us reconsider the example presented in Section 7.1.2. The preliminary steps
were realised in the same way as in Section 7.1.2. Based on the obtained para-
meter estimates, the algorithm proposed in Section 7.1.3 was utilised to obtain
the locally D-optimum input sequence and to estimate the parameters of the
network. The settings of the algorithm were as follows:

λk = max
[
0.6rT

k+1P k+1/krk+1, 1
]
, (7.120)

γk = max
[
0.005rT

k+1P k+1/krk+1, 1
]
, (7.121)

Qk =
{

0 λk = 1
10ε2

kInp otherwise . (7.122)

Figure 7.8 shows the obtained locally D-optimum input sequence, while Fig. 7.9
depicts the output bounds (7.17) for the network obtained with the proposed
algorithm (the 2nd net) and the network obtained without it (the 1st net),
whereas the true output represents the shape of the approximated function. From
this it is clear that the application of the algorithm of Section 7.1.3 results in
a network designed with a significantly smaller uncertainty than the one designed
without it. Comparing Figs. 7.9 and 7.6, it can be observed that the output
bounds obtained with the Wynn-Fedorov algorithm and those found with the
approach of Section 7.1.3 are very similar. On the other hand, the support points
determined by these techniques are different.
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Fig. 7.8. Input sequence obtained with the proposed algorithm
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Fig. 7.9. Output of the system and its bounds obtained with a neural network

7.1.4 Industrial Application

The main objective of the subsequent part of this section is to develop a neural
network that can be used for fault detection of the industrial valve actuator
described in Section 6.4.2. The above task can be divided into the following
steps:

Step 1: Training of a network based on the nominal data set;
Step 2: Design of the experiment with the Wynn-Fedorov algorithm described

in Section 7.1.2 based on the network obtained in Step 1 ;
Step 3: Training of a network based on the data obtained with experimental

design.
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Based on the experience with the industrial valve actuator, it was observed that
the following subset of the measured variables is sufficient for fault detection
purposes: u = (CV, P1, 1), y = F .

In Step 1, a number of experiments (the training of a neural network with the
Levenberg-Marquardt algorithm [170]) were performed in order to find a suitable
number of hidden neurons nh (cf. (7.1)). For that purpose, nt = 100 data points
were generated for which inputs were uniformly spread within the design region
U, where 0.25 < u1 < 0.75 and 0.6625 < u2 < 0.8375. As a result, a neural
model consisting of nh = 5 hidden neurons was obtained. The main objective
of Step 2 was to utilise the above model and the Wynn-Fedorov algorithm in
order to obtain D-optimum experimental conditions. First, an initial experiment
was generated in such a way as to equally divide the design space of u. Finally,
the Wynn-Fedorov algorithm was applied. Figure 7.10 shows the support points
(ne = 45) and the variance function for the obtained D-optimum design. Based
on the obtained continuous design, a set consisting of nt = 100 points was found
and used for data generation. The number of repetitions of each optimal input
uk was calculated by suitably rounding the numbers μknt, k = 1, . . . , ne [7, 170].
It should be strongly stressed that the data were collected in the steady-state
of the valve because the utilised model (7.1) was static. Finally, the new data
set was used for training the network with the Levenberg-Marquardt algorithm.
As was mentioned at the beginning of this section, the research directions of
the DAMADICS project were oriented towards fault diagnosis and, in partic-
ular, fault detection of the valve actuator. Under the assumption of a perfect
mathematical description of the systems being considered, a perfect residual
generation should provide a residual that is zero during the normal operation
of the system and considerably different than zero otherwise. This means that
the residual should ideally carry information regarding a fault only. Under such
assumptions, faults can be easily detected. Unfortunately, this is impossible to
attain in practice since residuals are normally uncertain, corrupted by noise, dis-
turbances and modelling uncertainty. That is why in order to avoid false alarms
it is necessary to assign a threshold to the residual that is significantly larger
than zero. The most common approach is to use a fixed threshold [96, 179]. The
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Table 7.1. Results of fault detection (D – detected, N – not detected, X – not specified
for the benchmark)

Fault Description S M B
f1 Valve clogging D D D
f2 Valve plug or valve seat sedimentation X X D
f7 Medium evaporation or critical flow D D D
f8 Twisted servomotor’s piston rod N N N
f10 Servomotor’s diaphragm perforation D D D
f12 Electro-pneumatic transducer fault X X D
f13 Rod displacement sensor fault D D D
f15 Positioner feedback fault X X D
f16 Positioner supply pressure drop N N D
f17 Unexpected pressure change across valve X X D
f18 Fully or partly opened bypass valves D D D
f19 Flow rate sensor fault D D D

main difficulty with this kind of thresholds is the fact that they may cause many
serious problems regarding false alarms as well as undetected faults. In other
words, it is very difficult to fix such a threshold and there is no optimal solution
that can be applied to settle such a task. Fortunately, using (7.17), (7.24) and
(7.25) it is possible to develop an adaptive threshold that can be described as
follows:

|zi,k| ≤ t
α/2
nt−np

σ̂
(
1 + ri,kPrT

i,k

)1/2
, i = 1, . . . , m. (7.123)

Consequently, the decision logic can be realised as follows:
If the residual zk satisfies (7.123), then there is no fault symptom, else (7.123)
indicates that a fault symptom has occurred.
The objective of the subsequent part of this section is to use the obtained network
for fault detection, as well as to compare its performance with that of a network
obtained for a nominal data set. Table 7.1 shows the results of fault detection
for a set of faults being specified for the benchmark (the symbols S – Small,
M – Medium, and B – Big denote the magnitude of the faults). All faults were
generated with the same scenario, i.e., the first 200 samples correspond to the
normal operating mode of the system while the remaining ones were generated
under faulty conditions. Figure 7.11 presents the residual signal obtained with
a network trained with the D-optimum data set as well as an adaptive threshold
provided by this network (the 2nd network). This figure also presents an adaptive
threshold provided by a network (the 1st network) trained with the data set
generated by equally dividing the design space. It can be observed that the
neural network obtained with the use of D-optimum experimental design makes
it possible to obtain more accurate bounds than those obtained with a neural
network trained otherwise. Indeed, as can be seen in Fig. 7.11b, the fault f1 –
small (which in the light of its nature is hard to detect) can be detected with
the help of the 2nd network while it is impossible to detect it with the use of the
1st one. It should be strongly underlined that the situation is even worse when
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Fig. 7.12. Residual and adaptive thresholds for the fault f18 – small (a) and f19 – small
(b), respectively

the 1st network is used for residual generation, i.e., in the presented example it
was used for adaptive threshold generation only. As can be observed in Tab. 7.1,
almost all the faults specified for the benchmark can be detected. The main
reason why the faults f8 and f16 (small and medium) cannot be detected is
because their effect is exactly at the same level as that of noise. However, it
should be pointed out that this was the case for other techniques [128, 183]
tested with the DAMADICS benchmark. Finally, Fig. 7.12 presents exemplary
residuals for the faults f18 – small and f19 – small, respectively.

7.2 Robust Fault Detection with GMDH Neural
Networks

The synthesis process of the GMDH neural network [185] is based on the itera-
tive processing of a sequence of operations. This process leads to the evolution
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of the resulting model structure in such a way as to obtain the best quality ap-
proximation of the real system. The quality of the model can be measured with
the application of various criteria [121]. The resulting GMDH neural network is
constructed through the connection of a given number of neurons, as shown in
Fig. 7.13. The neuron has the following structure:
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Fig. 7.13. Principle of the GMDH algorithm

y
(l)
n,k = ξ

((
r

(l)
n,k

)T

p(l)
n

)

, (7.124)

where y
(l)
n,k stands for the neuron output (l is the layer number, n is the neu-

ron number in the lth layer), whilst ξ(·) denotes a non-linear invertible ac-
tivation function, i.e., there exists ξ−1(·). Moreover, r

(l)
n,k = g

(
[u(l)

i,k, u
(l)
j,k]T

)
,

i, j = 1, . . . , r and p
(l)
n ∈ R

np are the regressor and the parameter vectors,
respectively, and g(·) is an arbitrary bivariate vector function, e.g., g(x) =
[x2

1, x
2
2, x1x2, x1, x2, 1]T that corresponding to the bivariate polynomial of the

second degree.
An outline of the GMDH algorithm can be as follows [143, 185]:

Step 1 : Determine all neurons (estimate their parameter vectors p
(l)
n with the

training data set T ) whose inputs consist of all possible couples of input
variables, i.e., (r − 1)r/2 couples (neurons);

Step 2 : Using a validation data set V , not employed during the parameter es-
timation phase, select several neurons which are best fitted in terms of the
chosen criterion;

Step 3 : If the termination condition is fulfilled (either the network fits the data
with desired a accuracy, or the introduction of new neurons did not induce
a significant increase in the approximation abilities of the neural network),
then STOP, otherwise use the outputs of the best-fitted neurons (selected in
Step 2 ) to form the input vector for the next layer (see Fig. 7.13), and then
go to Step 1.
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Fig. 7.14. Final structure of the GMDH neural network

To obtain the final structure of the network (Fig. 7.14), all unnecessary neu-
rons are removed, leaving only those which are relevant to the computation of
the model output. The procedure of removing the unnecessary neurons is the
last stage of the synthesis of the GMDH neural network. The feature of the
above algorithm is that the techniques for parameter estimation of linear-in-
parameter models can be used during the realisation of Step 1. Indeed, since
ξ(·) is invertible, the neuron (7.124) can relatively easily be transformed into
a linear-in-parameter one.

7.2.1 Model Uncertainty in the GMDH Neural Network

The objective of system identification is to obtain a mathematical description of
a real system based on input-output measurements. Irrespective of the identifi-
cation method used, there is always the problem of model uncertainty, i.e., the
model-reality mismatch. Even though the application of the GMDH approach
to model structure selection can improve the quality of the model, the resulting
structure is not the same as that of the system. It can be shown [119] that the
application of the classic evaluation criteria like the Akaike Information Criterion
(AIC) and the Final Prediction Error (FPE) [85, 121] can lead to the selection
of inappropriate neurons and, consequently, to unnecessary structural errors.

Apart from the model structure selection stage, inaccuracy in parameter es-
timates also contributes to modelling uncertainty. Indeed, while applying the
least-square method to parameter estimation of neurons (7.124), a set of re-
strictive assumptions has to be satisfied. The first, and the most controversial,
assumption is that the structure of the neuron is the same as that of the system
(no structural errors). In the case of the GMDH neural network, this condition
is extremely difficult to satisfy. Indeed, neurons are created based on two input
variables selected from u and hence it is impossible to eliminate the structural
error. Another assumption concerns the transformation with ξ−1(·). Let us con-
sider the following system output signal:

yk = ξ

((
r

(l)
n,k

)T

p(l)
n

)

+ v
(l)
n,k. (7.125)
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The use of linear-in-parameter estimation methods for the model (7.124), e.g.,
Least-Square Method (LSM) [161] requires transforming the output of the sys-
tem (7.125) as follows:

(
r

(l)
n,k

)T

p(l)
n = ξ−1 (yk) − v

(l)
n,k. (7.126)

Unfortunately, the transformation of (7.125) with ξ−1(·) results in

(
r

(l)
n,k

)T

p(l)
n = ξ−1

(
yk − v

(l)
n,k

)
. (7.127)

Thus, good results can only be expected when the noise v
(l)
n,k magnitude is rela-

tively small. The other assumptions are directly connected with the properties
of the LSM, i.e., in order to attain an estimator p̂

(l)
n,k of p

(l)
n,k for (7.124) which

is unbiased and minimum variance [7] it is assumed that

E
[
v(l)

n

]
= 0, (7.128)

cov
[
v(l)

n

]
=

(
σ(l)

n

)2
I. (7.129)

The assumption (7.128) means that there are no structural errors (deterministic
disturbances) and model uncertainty is described in a purely stochastic way
(uncorrelated noise, cf. (7.129)). It must be pointed out that it is rather difficult
to satisfy this condition in practice.

Let us suppose that, in some case, the conditions (7.128) and (7.129) are
satisfied. Then it can be shown that p̂

(1)
n,k (the parameter estimate vector for

a neuron of the first layer) is unbiased and minimum variance [7]. Consequently,
the neuron output in the first layer becomes the input to other neurons in the
second layer. The system output estimate can be described by

ŷ(l)
n = R(l)

n

[(
R(l)

n

)T

R(l)
n

]−1 (
R(l)

n

)T

y, (7.130)

where R(l)
n = [r(l)

n,1, . . . , r
(l)
n,nt ]T , y = [y1, . . . , ynt ]T , and ŷ(l)

n = [ŷ(l)
n,1, . . . , ŷ

(l)
n,nt ]T

represent the system output vector and its estimate. Apart from the situation
in the first layer (l = 1), where the matrix R(l)

n depends on u, in the subsequent
layers R(l+1)

n depends on (7.130) and hence

E
[[(

R(l+1)
n

)T

R(l+1)
n

]−1 (
R(l+1)

n

)T

v(l+1)
n

]

	= 0. (7.131)

That is why the parameter estimator in the next layers is biased and no minimum
variance, i.e.,
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E
[
p̂(l+1)

n

]
= E

[[(
R(l+1)

n

)T

R(l+1)
n

]−1 (
R(l+1)

n

)T

y

]

= E
[[(

R(l+1)
n

)T

R(l+1)
n

]−1 (
R(l+1)

n

)T (
R(l+1)

n p(l+1)
n + v(l+1)

n

)
]

= p(l+1)
n + E

[[(
R(l+1)

n

)T

R(l+1)
n

]−1 (
R(l+1)

n

)T

v(l+1)
n

]

. (7.132)

To settle this problem, the instrumental variable method or other methods listed
in [170] can be employed. On the other hand, these methods provide only as-
ymptotic convergence, and hence a large data set is usually required to obtain
an unbiased parameter estimate.

7.2.2 Bounded-Error Approach

The problems detailed in the previous section clearly show that there is a need for
the application of a parameter estimation method different than the LSM. Such
a method should also be easily adaptable to the case of an uncertain regressor and
it should overcome all of the remaining difficulties mentioned in Section 7.2.1.
The subsequent part of this section gives an outline of such a method called the
Bounded-Error Approach (BEA).

Bounded noise/disturbances

The usual statistical parameter estimation framework assumes that data are cor-
rupted by errors which can be modelled as realisations of independent random
variables, with a known or parameterised distribution. A more realistic approach
is to assume that the errors lie between given prior bounds. This is the case, for
example, for data collected with an analogue-to-digital converter or for measure-
ments performed with a sensor of a given type. Such reasoning leads directly to
the bounded-error approach [116, 170]. Let us consider the following system:

yk =
(
r

(l)
n,k

)T

p(l)
n + v

(l)
n,k. (7.133)

The problem is to obtain the parameter estimate p̂(l)
n as well as an associated

parameter uncertainty required to design a robust fault detection system. In
order to simplify the notation, the index (l)

n is omitted. The knowledge regarding
the set of admissible parameter values allows obtaining the confidence interval
of the model output which satisfies

yN
k ≤ yk ≤ yM

k , (7.134)

where yN
k and yM

k are respectively the minimum and maximum admissible values
of the model output that are consistent with the input-output measurements of
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the system. Under the assumptions detailed in Section 7.2.1, the uncertainty of
the neural network can be obtained according to [133].

In this work, it is assumed that vk is bounded as follows:

vN
k ≤ vk ≤ vM

k , (7.135)

while the bounds vN
k and vM

k (vN
k 	= vM

k ) are known a priori. The idea underlying
the bounded-error approach is to obtain a feasible parameter set [116]. This set
can be defined as

P =
{
p ∈ R

np | yk − vM
k ≤ rT

k p ≤ yk − vN
k , k = 1, . . . , nt

}
. (7.136)

This set can be perceived as a region of the parameter space that is determined
by nt pairs of hyperplanes:

P =
nt⋂

k

Sk, (7.137)

where each pair defines the parameter strip

Sk =
{
p ∈ R

np | yk − vM
k ≤ rT

k p ≤ yk − vN
k

}
. (7.138)

Any parameter vector contained in P is a valid estimate of p. In practice, the
centre (in some geometrical sense) of P (cf. Fig. 7.15 for np = 2) is chosen as the
parameter estimate p̂, e.g.,

p̂i =
pmin

i + pmax
i

2
, i = 1, . . . , np, (7.139)

with
pmin

i = argmin
p∈P

pi, i = 1, . . . , np, (7.140)

pmax
i = arg max

p∈P

pi, i = 1, . . . , np. (7.141)

This is, of course, important when the task is to develop a neural network for
which the knowledge regarding parameter uncertainty is not useful. In the pre-
sented approach, the nominal model is obtained in such a way that the knowledge
regarding parameter uncertainty is used for fault detection purposes.

The problems (7.140) and (7.141) can be solved with the well-known lin-
ear programming techniques [116, 156], but when nt and/or np are large, the
computational cost may be significant. This constitutes the main drawback of
the approach. One way out of this problem is to apply a technique where con-
straints are executed separately one after another [118], although this approach
does not constitute a perfect remedy for the computational problem being con-
sidered. This means that the described BEA can be employed for tasks with
a relatively small dimension, as is the case for GMDH neurons. In spite of the
above-mentioned computational problems, the technique described in [118] was
implemented and used in this work. The main difficulty associated with the BEA
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concerns a priori knowledge regarding the error bounds vN
k and vM

k . However,
these bounds can also be estimated [116] by assuming that vN

k = vN , vM
k = vM ,

and then suitably extending the unknown parameter vector p by vN and vM .
Determining the bounds can now be formulated as follows:

(vN , vM ) = arg min
vM≥0, vN≤0

vM − vN , (7.142)

with respect to the following constraints:

yk − vM ≤ rT
k p ≤ yk − vN , k = 1, . . . , nt. (7.143)

In this section, the well-known simplex method was utilised to solve the prob-
lem (7.142). Then, knowing vN and vM , the strategy described in [118] was
employed.

Model output uncertainty

The methodology described in Section 7.2.2 makes it possible to obtain the
parameter estimate p̂ and the associated feasible parameter set P. However,
from a practical point of view, it is more convenient to obtain the system output
confidence interval, i.e., the interval in which the “true” model output y(k)
can be found. This kind of knowledge makes it possible to obtain an adaptive
threshold [57], and hence to develop a fault diagnosis scheme that is robust to
model uncertainty.

Let V be the set of all vertices pi, i = 1, . . . , nv, describing the feasible
parameter set P (cf. (7.137)). If there is no error in the regressor, then the
problem of determining the model output confidence interval can be solved as
follows:

yN
M,k = rT

k pN
k ≤ rT

k p ≤ rT
k pM

k = yM
M,k, (7.144)
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where
pN

k = arg min
p∈V

rT
k p, (7.145)

pM
k = argmax

p∈V

rT
k p. (7.146)

The computation of (7.145) and (7.146) is realised by multiplying the parameter
vectors corresponding to all vertices belonging to V by rT

k .
Since (7.144) describes a neuron output confidence interval, the system output

will satisfy
rT

k pN
k + vN

k ≤ yk ≤ rT
k pM

k + vM
k . (7.147)

A more general case of (7.147) for neurons with a non-linear activation function
will be considered in Section 7.2.3. The neuron output confidence interval defined
by (7.144) and the corresponding system output confidence interval (7.147) are
presented in Figs. 7.16 and 7.17, respectively. As has already been mentioned,

M
od

el
ou

tp
ut

co
nfi

de
nc

e
in

te
rv

al

Discrete time

rT
k pN

k

rT
k pM

k

rT
k p

Fig. 7.16. Model output confidence interval for the error-free regressor

the neurons in the lth (l > 1) layer are fed with the outputs of the neurons
from the (l − 1)th layer. Since (7.144) describes the model output confidence
interval, the parameters of the neurons in the layers have to be obtained with
an approach that solves the problem of an uncertain regressor [116].

In order to modify the approach presented in Section 7.2.2, let us denote an
unknown “true” value of the regressor rn,k by a difference between a known
(measured) value of the regressor rk and the error in the regressor ek:

rn,k = rk − ek, (7.148)

where it is assumed that the error ek is bounded as follows:

eN
i,k ≤ ei,k ≤ eM

i,k, i = 1, . . . , np. (7.149)

Using (7.133) and substituting (7.148) into (7.149), one can define the region
containing parameter estimates:

vN
k − eT

k p ≤ yk − rT
k p ≤ vM

k − eT
k p. (7.150)
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Fig. 7.17. System output confidence interval for the error-free regressor

Unfortunately, for the purpose of parameter estimation it is not enough to intro-
duce (7.148) into (7.149). Indeed, the bounds of (7.150) depend also on the sign
of each pi. It is possible to directly obtain these signs only for models whose para-
meters have physical meaning [33]. For models such as GMDH neural networks
this is rather impossible. In [116, Chapters 17 and 18], the authors proposed
some heuristic techniques, but these drastically complicate the problem (7.150)
and do not seem to guarantee that these signs will be obtained properly. Bearing
in mind the fact that the neuron (7.124) contains only a few parameters, it is
possible to replace them by

pi = p′i − p′′i , p′i, p
′′
i ≥ 0, i = 1, . . . , np. (7.151)

Although the above solution is very simple, it doubles the number of parame-
ters, i.e., instead of estimating np parameters it is necessary to do so for 2np

parameters. In spite of that, this technique is very popular and widely used in
the literature [52, 116]. Due to the above solution, (7.150) can be modified as
follows:

vN
k −

(
eM

k

)T
p′ +

(
eN

k

)T
p′′

≤ yk − rT
k (p′ − p′′) ≤ (7.152)

vM
k −

(
eN

k

)T
p′ +

(
eM

k

)T
p′′.

This transformation makes it possible to employ, with a minor modification,
the approach described in Section 7.2.2. The difference is that the algorithm
processes each constraint (associated with a pair of hyperplanes defined with
(7.152)) separately. The reason for such a modification is that the hyperplanes
are not parallel [34].

The proposed modification of the BEA makes it possible to estimate the
parameter vectors of the neurons from the lth, l > 1, layer. In the case of an
error in the regressor, using (7.152) it can be shown that the model output
confidence interval has the following form:

yN
M,k(p′N

k , p′′N
k ) ≤ rT

np ≤ yM
M,k(p′M

k , p′′M
k ), (7.153)
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where

yN
M,k(p′N

k , p′′N
k ) =

(
rk − eM

k

)T
p′N

k +
(
eN

k − rk

)T
p′′N

k , (7.154)

yM
M,k(p′M

k , p′′M
k ) =

(
rk − eN

k

)T
p′M

k +
(
eM

k − rk

)T
p′′M

k , (7.155)

and (
p′N

k , p′′N
k

)
= arg min

(p′
k
,p′′

k
)∈V

yN
M,k(p′

k, p′′
k), (7.156)

(
p′M

k , p′′M
k

)
= arg max

(p′
k,p′′

k )∈V

yM
M,k(p′

k, p′′
k). (7.157)

Using (7.153), it is possible to obtain the system output confidence interval:

yN
M,k(p′N

k , p′′N
k ) + vN

k ≤ yk ≤ yM
M,k(p′M

k , p′′M
k ) + vM

k . (7.158)

7.2.3 Synthesis of the GMDH Neural Network Via the BEA

In order to adapt the approach of Section 7.2.2 to parameter estimation of
(7.124), it is necessary to transform the relation

vN
k ≤ yk − ξ

((
r

(l)
n,k

)T

p(l)
n

)

≤ vM
k (7.159)

in such a way as to avoid the problems detailed in Section 7.2.1. In this case, it
is necessary to assume that

1. ξ(·) is continuous and bounded, i.e.,

∀ x ∈ R : a < ξ(x) < b; (7.160)

2. ξ(·) is monotonically increasing, i.e.,

∀ x, y ∈ R : x ≤ y iff ξ(x) ≤ ξ(y). (7.161)

Now it is easy to show that

yk − vM
k ≤ ξ

((
r

(l)
n,k

)T

p(l)
n

)

≤ yk − vN
k , (7.162)

and then
ξ−1 (yk − vM

k

)
≤
(
r

(l)
n,k

)T

p(l)
n ≤ ξ−1 (yk − vN

k

)
. (7.163)

As was pointed out in Section 7.2.2, an error in the regressor must be taken
into account during the design procedure of the neurons from the second and
subsequent layers. Indeed, by using (7.144) in the first layer and (7.153) in the
subsequent ones it is possible to obtain the bounds of the output (7.124) and the
bounds of the regressor error (7.135), whilst the known value of the regressor
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u1

u2

u3

ŷ

Fig. 7.18. Propagation of model uncertainty (dotted lines), model response (continu-
ous line)

Fig. 7.19. Problem of an incorrect selection of a neuron

should be computed by using the parameter estimates p̂(l)
n . Note that the process-

ing errors of the neurons, which are described by the model output confidence
interval (7.153), can be propagated and accumulated during the introduction of
new layers (Fig. 7.18). This unfavourable phenomenon can be reduced by the ap-
plication of an appropriate selection method [136]. Selection methods in GMDH
neural networks play the role of a mechanism of structural optimisation at the
stage of constructing a new layer of neurons. Only well-performing neurons are
preserved to build a new layer. During the selection, neurons which have too
large a value of the defined evaluation criteria [85, 121, 136] are rejected based
on chosen selection methods. Unfortunately, as was mentioned in Section 7.2.1,
the application of the classic evaluation criteria like the Akaike Information Cri-
terion (AIC) and the Final Prediction Error (FPE) [85, 121] during network
synthesis may lead to the selection of an inappropriate structure of the GMDH
neural network. This follows from the fact that the above criteria do not take
into account modelling uncertainty. In this way, neurons with small values of the
classic quality indexes QV but with large uncertainty (Fig. 7.19) can be obtained.
In order to overcome this difficulty, a new evaluation criterion of the neurons
has been introduced in [185], i.e.,

QV =
1

nV

nv∑

k=1

∣
∣
(
yM

M,k + vM
k

)
−
(
yN

M,k + vN
k

)∣
∣ , (7.164)
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where nV is the number of input-output measurements for the validation data
set, yM

k and yN
k are calculated with (7.144) for the first layer or with (7.154)–

(7.155) for the subsequent ones. Finally, the neuron in the last layer that gives
the smallest processing error (7.164) constitutes the output of the GMDH neural
network, while model uncertainty of this neuron is used for the calculation of the
system output confidence interval. It is therefore possible to design the so-called
adaptive threshold [57], which can be employed for robust fault detection.

Further improvement of model quality

One of the main advantages of GMDH neural networks is the fact that the BEA
for linear systems can be applied to estimate the parameters of each neuron.
This is possible because the parameter vectors of the neurons are estimated
independently. The application of this technique implies that the parameter
vectors are obtained in an optimal way, i.e., there is no linearisation. However,
optimality should be perceived as a local one. This means that the parameter
vector associated with a neuron is optimal for this particular neuron only. On
the other hand, this parameter vector may not be optimal from the point of view
of the entire network. Such circumstances rise the need for the retraining of the
GMDH neural network after automatic selection of the model structure.

Assume that the GMDH neural network can be written in the following form:

yM = g
(
p

(1)
1 , . . .p(1)

n1y
, . . .p

(L)
1 , . . .p(L)

nLy
, u

)
, (7.165)

and g(·) stands for the neural network structure obtained with the GMDH ap-
proach, L is the number of layers, niy is the number of neurons in the ith layer.
After the procedure of designing the GMDH neural network, described in Sec-
tion 7.2.3, the following sequence of estimates is obtained: p̂

(1)
1 , . . . , p̂(1)

ny
, . . . , p̂

(L)
1 ,

. . . , p̂(L)
ny

. With each of these estimates, a feasible parameter set is associated,
i.e.,

Ai,jp
(j)
i ≤ bi,j , i = 1, . . . , njy, j = 1, . . . , L, (7.166)

where the matrix Ai,j and the vector bi,j are used for describing the feasible pa-
rameter sets of each neuron of (7.165). These feasible parameter sets are known
after automatic selection of the model structure and the estimation of its pa-
rameters. This makes it possible to formulate the parameter estimation task in
a global sense. Indeed, it can be defined as a constrained optimisation problem of

QT =
1
nt

nt∑

k=1

|yk − ŷk| , (7.167)

while
ŷk = g

(
p̂

(1)
1 , . . . p̂(1)

ny
, . . . p̂

(L)
1 , . . . p̂(L)

ny
, uk

)
, (7.168)

while the constraints are given by (7.166). The choice of the l1-norm in (7.167)
is motivated by the fact that the properties of the l1 estimator are very similar
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to these of the bounded error approach [170]. However, it should be pointed out
that other criteria may successfully be implemented as well.

The solution of (7.167) can be obtained with optimisation techniques related
to non-linear l1 optimisation [170] as well as with specialised evolutionary algo-
rithms [11]. The choice of the optimisation routine should be motivated by the
fact that the global optimisation problem (7.167) has to be solved. This means
that the application of the classic methods boils down to the trial-and-error pro-
cedure, which is ineffective. Based on numerous computer experiments, it has
been found that the extremely simple ARS algorithm [170] is especially well
suited for that purpose. Apart from its simplicity, the algorithm decreases the
chance to get stuck in a local optimum and hence it may give a global minimum
of (7.167).

7.2.4 Robust Fault Detection with the GMDH Model

The purpose of this section is to show how to develop an adaptive threshold
with the GMDH model and some knowledge regarding its uncertainty. Since the
residual is

zk = yk − ŷk, (7.169)

then, as a result of substituting (7.169) into (7.158), the adaptive threshold can
be written as

yN
M,k(p′N

k , p′′N
k ) − yk + vN

k ≤ zk ≤ yM
M,k(p′M

k , p′′M
k ) − yk + vM

k . (7.170)

The principle of fault detection with the developed adaptive threshold is shown
in Fig. 7.20.
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Fig. 7.20. Fault detection with an adaptive threshold developed with the proposed
approach
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7.2.5 Industrial Application

The purpose of the present section is to show the effectiveness of the proposed
approach in the context of system identification and fault detection with the
DAMADICS benchmark introduced in Section 6.4.2. Based on the actuator
benchmark definition [12, 36], two GMDH models were designed. These models
describe the behaviour of the valve actuator and can be labelled as the juice
flow model F = rF (X, P1, P2, T1) and the servomotor rod displacement model
X = rX(CV , P1, P2, T1), where rF and rX stand for the modelled relation be-
tween the inputs F, X and the outputs CV , X, P1, P2, T1.

The real data used for system identification and the fault detection procedure
were collected on 17th November 2001. A detailed description regarding the data
and the artificially introduced faults can be found in Tab. 7.2.

Table 7.2. List of data sets

Fault Range (samples) Fault/data description
No fault 1–10000 Training data set
No fault 10001–20000 Validation data set

f16 57475–57530 Positioner supply pressure drop
f17 53780–53794 Unexpected pressure drop across valve
f18 54600–54700 Fully or partly opened bypass valves
f19 55977–56015 Flow rate sensor fault

Unfortunately, the data turned out to be sampled too fast. Thus, every 10th
value was picked, resulting in the nt = 1000 training and nV = 1000 validation
data sets. Moreover, the output data should be transformed taking into account
the response range of the neuron output. In this section, hyperbolic tangent
activation functions were employed and hence this range is [−1, 1]. To avoid
the saturation of the activation function, this range was further decreased to
[−0.8, 0.8]. In order to perform data transformation, linear scaling was used.
The choice of the neuron structure and the selection method of the neurons in
the GMDH network are other important problems of the proposed technique. For
that purpose, dynamic neurons [120] and the so-called soft selection method [136]
were employed. The dynamics in this neuron are realised by the introduction of
a linear dynamic system – an Infinite Impulse Response (IIR) filter. As has
previously been mentioned, the quality index of a neuron for the validation data
set was defined as

QV =
1
nv

nv∑

k=1

∣
∣
(
yM

M,k + vM
k

)
−
(
yN

M,k + vN
k

)∣
∣ , (7.171)

where yM
M,k and yN

M,k are calculated with (7.144) for the first layer or with
(7.154)–(7.155) for the subsequent ones. Table 7.3 presents the evolution of
(7.171) for the subsequent layers, i.e., these values are obtained for the best
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Table 7.3. Evolution of QV and BV for the subsequent layers

rF (·) rF (·) rX(·) rX(·)
Layer QV BV QV BV

1 1.5549 0.3925 0.5198 0.0768
2 1.5277 0.3681 0.4914 0.0757
3 1.5047 0.3514 0.4904 0.0762
4 1.4544 0.3334 0.4898 0.0750
5 1.4599 0.3587 0.4909 0.0748

performing neurons in a particular layer. Additionally, for the sake of compari-
son, the results based on the classic quality index [121],

BV =
1
nv

nv∑

k=1

|yk − ŷk| , (7.172)

are presented as well.
The results presented in Tab. 7.3 clearly show that the gradual decrease QV

occurs when a new layer is introduced. This follows from the fact that the in-
troduction of a new neuron increases the complexity of the model as well as
its modelling abilities. On the other hand, if the model is too complex, then
the quality index QV increases. This situation occurs, for both F = rF (·) and
X = rX(·), when the 5th layer is introduced. This means that GMDH neural
networks corresponding to F = rF (·) and X = rX(·) should have 4 layers. From
Tab. 7.3, it can be also seen that the application of the quality index BV gives
similar results for F = rF (·), i.e., the same number of layers was selected, whilst
for X = rX(·) it leads to the selection of too simple a structure, i.e., a neural
network with only two layers is selected. This implies that the quality index
QV makes it possible to obtain a model with a smaller uncertainty. In order to
achieve the final structure of F = rF (·) and X = rX(·), all unnecessary neurons
were removed, leaving only those that are relevant for the computation of the
model output. The final structures of GMDH neural networks are presented in
Figs. 7.21 and 7.22. From Fig. 7.22, it can be seen that the input variable P2,
was removed during the model development procedure. Nevertheless, the qual-
ity index QV achieved a relatively low level. It can be concluded that P2 has a

X

P1

P2

T

F

Fig. 7.21. Final structure of F = rF (·)
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Fig. 7.22. Final structure of X = rX(·)
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Fig. 7.23. Model and system output as well as the corresponding system output
confidence interval for F = rF (·)

relatively small influence on the servomotor rod displacement X . This is an ex-
ample of structural errors that may occur during the selection of neurons in the
layer of the GMDH network. On the other hand, the proposed fault detection
scheme is robust to such errors. This is because they are taken into account
during the calculation of a model output confidence interval.

Figs. 7.23 and 7.24 present the modelling abilities of the obtained models
F = rF (·) and X = rX(·) as well as the corresponding system output confidence
interval obtained with the proposed approach for the validation data set.

For the reader’s convenience, Fig. 7.25 presents a selected part of Fig. 7.23 for
k = 400 − 500 samples. The thick solid line represents the real system output,
the thin solid lines correspond to the system output confidence interval, and the
dashed line is the model output. From Figs. 7.23 and 7.24, it is clear that the
system response is contained within system output bounds generated according
to the proposed approach. It should be pointed out that these system bounds
are designed with the estimated output error bounds. The above estimates were
vN

nt
= −0.8631 and vM

nt
= 0.5843 for F = rF (·), while vN

nt
= −0.2523 and

vM
nt

= 0.2331 for X = rX(·).
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Fig. 7.24. Model and system output as well as the corresponding system output
confidence interval for X = rX(·)
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Fig. 7.25. Selected part of Fig. 7.23

As has already been mentioned, the quality of the GMDH model can be
further improved with the application of the technique described in Section 7.2.3.
This technique can be perceived as the retraining method for the network. For
the valve actuator being considered, it was profitable to utilise the retraining
technique for the model F = rF (·). As a result, the quality index (7.172) was
decreased from 0.3334 to 0.2160 (cf. Tab. 7.3). These results as well as the
comparison of Figs. 7.25 and 7.26 justify the need for the retraining technique
proposed in Section 7.2.3.

The main objective of this application study was to develop a fault detection
scheme for the valve actuator being considered. Since both F = rF (·) and X =
rX(·) were designed with the approach proposed in Section 7.2.3, it is possible
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Fig. 7.26. Response of F = rF (·) after retraining
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Fig. 7.27. Residual for the fault f16

to employ them for robust fault detection. This task can be realised according
to the rules described in Section 7.2.4. Figs. 7.27-7.30 present the residuals and
their bounds for the faulty data.

From these results it can be seen that it is possible to detect all four faults,
although the fault f18 was detected 18 s after its occurrence. This is caused
by the relative insensitivity of the obtained model to this particular fault. The
results presented so far were obtained with data from a real system. It should
also be pointed out that, within the framework of the actuator benchmark [12],
data for only four general faults f16 − f19 were available.

In order to provide a more comprehensive and detailed application study of the
proposed fault diagnosis scheme, a MATLAB SIMULINK actuator model was
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Fig. 7.28. Residual for the fault f17
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Fig. 7.29. Residual for the fault f18

employed. This tool makes it possible to generate data for 19 different faults.
Table 7.4 shows the results of fault detection. It should be pointed out that both
abrupt and incipient faults were considered. As can be seen, the abrupt faults
presented in Tab. 7.4 can be regarded as small, medium and big according to
the benchmark description [12]. The notation given in Tab. 7.4 can be explained
as follows: ND means that it is impossible to detect a given fault, D means that
it is possible to detect a fault. From the results presented in Tab. 7.4, it can be
seen that it is impossible to detect the faults f5, f9, and f14. Moreover, some
small and medium faults cannot be detected, i.e., f8 and f12. This situation can
be explained by the fact that the effect of these faults is at the same level as the
effect of noise.
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Fig. 7.30. Residual for the fault f19

Table 7.4. Results of fault detection (S – small, M – medium, B – big, I – incipient)

F S M B I
f1 D D D
f2 D D
f3 D
f4 D
f5 ND
f6 D
f7 D D D

f8 ND ND D
f9 ND
f10 D D D
f11 D D

f12 ND ND DX

f13 D D D D
f14 ND ND ND
f15 D

f16 D D D
f17 D D
f18 D D D D
f19 D D D

7.3 Concluding Remarks

The present chapter presents two complete design procedures concerning the
application of neural networks to robust fault detection. Section 7.1 shows how
to settle such a challenging task with a multi-layer perceptron. In particular,
it was shown how to describe model uncertainty of the MLP with statistical
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techniques. Subsequently, two algorithms that can be used for decreasing such
a model uncertainty with the use of experimental design theory were presented
and described in detail. It was also shown how to use the resulting knowledge
about model uncertainty for robust fault detection with the so-called adaptive
threshold. This section presents numerical examples that show all profits that
can be gained while using the proposed algorithms. An industrial application
case study concerning the DAMADICS benchmark was also presented in this
section. In particular, it was shown how to design an experiment for the MLP
being the model of the valve actuator. It was also shown how to use the resulting
model and the knowledge about its uncertainty for a robust fault detection study
based on a set of select faults.

A similar task was realised in Section 7.2. Starting from a set of input-output
measurements of the system, it was shown how to estimate the parameters and
the corresponding uncertainty of a neuron via the BEA. The methodology de-
veloped for parameter and uncertainty estimation of a neuron makes it possible
to formulate an algorithm that allows obtaining a neural network with a rela-
tively small modelling uncertainty. Subsequently, a complete design procedure
of a neural network was proposed and carefully described. All the hard com-
putation regarding the design of the GMDH neural network are performed off-
line and hence the problem regarding the time–consuming calculations is not
of paramount importance. Based on the GMDH neural network, a novel robust
fault detection scheme was proposed which supports diagnostic decisions. Simi-
larly as in Section 7.1, the presented approach was tested with the DAMADICS
benchmark.

The experimental results presented in this chapter clearly show all profits that
can be gained while using the proposed neural network-based fault detection
schemes. It is worth noting that they can be successfully employed instead of
the classic techniques, e.g., the unknown input observers described in Chapter 4.
Indeed, the robustness of the presented fault detection tools makes them useful
for solving challenging design problems that arise in engineering practice.
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From the point of view of engineering, it is clear that providing fast and reliable
fault detection and isolation is an integral part of control design, particularly as
far as the control of complex industrial systems is considered.

Unfortunately, most of such systems exhibit non-linear behaviour, which
makes it impossible to use the well-developed techniques for linear systems. If
it is assumed that the system is linear, which is not true in general, and even if
robust techniques for linear systems are used (e.g., unknown input observers), it
is clear that such an approximation may lead to unreliable fault detection and,
consequently, early indication of faults which are developing is rather impossi-
ble. Such a situation increases the probability of the occurrence of faults, which
can be extremely serious in terms of economic losses, environmental impact, or
even human mortality. Indeed, robust techniques are able to tolerate a certain
degree of model uncertainty. In other words, they are not robust to everything,
i.e., are robust to an arbitrary degree of model uncertainty. This real world de-
velopment pressure creates the need for new techniques which are able to tackle
fault diagnosis of non-linear systems. In spite of the fact that the problem has
been attacked from various angles by many authors and a number of relevant
results have already been reported in the literature, there is no general frame-
work which can be simply and conveniently applied to maintain fault diagnosis
for non-linear systems.

As was indicated in Part I, there are two general fault diagnosis frameworks,
which divide the existing approaches into two distinct categories, i.e.,

• Analytical techniques (Chapter 2);
• Soft computing techniques (Chapter 3).

Moreover, within the first category, the three main approaches can be distin-
guished:

• Parameter estimation;
• Parity relation;
• Observers.

M. Witczak: Model. and Estim. Strat. for Fault Diagn. of Non-Linear Syst. LNCIS 354, pp. 185–190, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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As was underlined in Chapter 2, observers are immensely popular as residual
generators for fault detection (and, consequently, for fault isolation) of both lin-
ear and non-linear dynamic systems. Their popularity lies in the fact that they
can also be employed for control purposes. There are, of course, many different
observers which can be applied to non-linear, and especially non-linear determin-
istic systems, and the best known of them were briefly reviewed in Section 2.2.3.
Logically, the number of “real world” applications (not only simulated examples)
should proliferate, yet this is not the case. It seems that there are two main rea-
sons why strong formal methods are not accepted in engineering practice. First,
the design complexity of most observers for non-linear systems does not encour-
age engineers to apply them in practice. Second, the application of observers is
limited by the need for non-linear state-space models of the system being con-
sidered, which is usually a serious problem in complex industrial systems. This
explains why most of the examples considered in the literature are devoted to
simulated or laboratory systems, e.g., the celebrated three- (two- or even four-)
tank system, an inverted pendulum, a travelling crane, etc. The above discussion
clearly justifies the need for simpler observer structures, which can be obtained
by solving the following problems (see Section 2.4):

Problem 1: Improvement of the convergence of linearisation-based observers;
Problem 2: Simplification of linearisation-free observers.

These two problems have to be solved under an additional robustness condition,
i.e., the observers being designed have to ensure robustness to model uncertainty.

The remaining task concerns non-linear state-space model design for observer-
based fault diagnosis and can be formulated as follows:

Problem 3: Development of a design technique for non-linear state-space models.

As was mentioned in Chapter 3, challenging design problems arise regularly in
modern fault diagnosis systems. Unfortunately, the classic analytical techniques
often cannot provide acceptable solutions to such difficult tasks. If this is the case,
one possible approach is to use soft computing-based fault diagnosis approaches,
which can be divided into three categories:

• Neural networks;
• Fuzzy logic-based techniques;
• Evolutionary algorithms.

Apart from the unquestionable appeal of soft computing approaches, there is
a number of design issues that can be described by (see Section 3.3):

Problem 4 : Integration of analytical and soft computing FDI techniques;
Problem 5 : Development of robust soft computing-based FDI techniques.

Finally, the last problem was exposed in Chapter 5 and can be formulated as
follows:

Problem 6 : Need for the development of active fault diagnosis for non-linear
systems.
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Although partial solutions to Problems 1-6 are scattered over many papers and
a number of book chapters, there is no work that summarises all of these results
in a unified framework.

Thus, one original objective of this book was to present selected modelling
and estimation strategies for solving the challenging Problems 1-6 in a unified
framework.

Other objectives, perceived as solutions to Problems 1-6, are presented in the
form of a concise summary of the contributions provided by this book to the
state-of-the-art of modern model-based fault diagnosis for non-linear systems:

Solutions to Problem 1
• Application of the unknown input observer for linear stochastic systems

to form an Extended Unknown Input Observer (EUIO) (Section 4.1) for
non-linear deterministic systems. A comprehensive convergence analy-
sis with the Lyapunov approach was performed, resulting in conver-
gence conditions for the EUIO. The obtained convergence conditions were
utilised to improve the convergence properties of the EUIO.

• Development of an alternative EUIO structure (Section 4.2). A com-
prehensive convergence analysis was performed under less restrictive as-
sumptions than those imposed in Section 4.1. The resulting convergence
condition was employed to improve the convergence properties of the
EUIO. It was also empirically verified that the EUIO of Section 4.2 is
superior to the one of Section 4.1.

Solution to Problem 2
• Development of observers for Lipschitz non-linear systems (Section 4.3).

Three different convergence criteria were developed with the Lyapunov
method. Based on the achieved results, three different design procedures
were proposed. These procedures were developed in such a way that
the design problem was boiled down to solving a set of linear matrix
inequalities or solving the generalised eigenvalue minimisation problem
under LMI constraints, respectively.

Solution to Problem 3
• Adaptation of the genetic programming technique to discrete-time model

construction and, especially, introduction of parameterised trees together
with rules reducing an excessive number of parameters. In particular, ef-
fective genetic programming-based algorithms for designing both input-
output and state-space models were developed. It was proven that the
state-space models resulting from the above algorithms are asymptoti-
cally stable.

Solutions to Problem 4
• Application of the genetic programming technique to designing the EUIO.

The problem of observer design was formulated as a global structure
and parameter determination task with respect to instrumental matri-
ces. To tackle the instrumental matrices selection problem, a genetic
programming-based approach was proposed in Section 6.2.
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• Application of the ESSS algorithm to designing the EUIO. To improve
the convergence of the EUIO described in Section 4.2, the stochastic
robustness technique was utilised to form a stochastic robustness metric
describing unacceptable performance of the EUIO. In particular, it was
shown that observer performance can be significantly improved with an
appropriate selection of the instrumental matrix Qk. For that purpose,
the B-spline approximation technique and evolutionary algorithms were
utilised (Section 6.3).

These two approaches should also be perceived as solutions to the Problem
1. Indeed, apart from integrating evolutionary algorithms with extended un-
known input observers, they significantly improve the convergence of such
linearisation-based observers.

Solutions to Problem 5
• Development of robust neural network-based fault detection scheme with a

multi-layer perceptron (Section 7.1). It was shown how to describe model
uncertainty of the MLP with statistical techniques. Subsequently, two al-
gorithms that can be used for decreasing such a model uncertainty with the
use of experimental design theory were presented and described in detail.
It was also shown how to use the resulting knowledge about model uncer-
tainty for robust fault detection with the so-called adaptive threshold.

• Development of a robust neural network-based fault detection scheme
with GMDH neural networks (Section 7.2). Starting from a set of input-
output measurements of the system, it was shown how to estimate the
parameters and the corresponding uncertainty of a neuron via the BEA.
Subsequently, a complete design procedure of a neural network was pro-
posed and carefully described. Based on the GMDH neural network,
a novel robust fault detection scheme was proposed which supports di-
agnostic decisions.

Solutions to Problem 6
• It was revealed (Chapter 5) that appropriate scheduling of input signals

significantly increases the performance of fault diagnosis through more
accurate parameter estimation. It was also shown that active fault di-
agnosis for non-linear systems causes many difficult design problems. To
tackle such challenging problems, it was proposed to employ experimental
design theory. To show the effectiveness of such an approach, a complete
development study was presented in Section 5.2. An experimental design
theory-based approach to increasing the reliability of neural network-
based FDI was also proposed and carefully described in Section 7.1.

The book also presents a number of practical implementations of the pro-
posed approaches, which can be summarised as follows:

• Genetic programming-based design of an observer for a two-phase induc-
tion motor;

• ESSS algorithm-based design of an observer for a two-phase induction
motor;
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• State estimation and sensor, actuator fault diagnosis of a two-phase in-
duction motor;

• State estimation of a one-link manipulator with revolute joints actuated
by a DC motor;

• Experimental design for impedance measurement;
• Estimation and fault diagnosis of an impedance;
• State-space model design of a valve actuator with genetic programming;
• EUIO-based robust fault detection of a valve actuator;
• Experimental design for a neural model of a valve actuator;
• MLP-model design of a valve actuator;
• MLP-based robust fault detection of a valve actuator;
• GMDH neural network-based model design of a valve actuator;
• GMDH neural network-based robust fault detection of a valve actuator.

The advantage of general framework presented in this monograph is the fact
that it is independent of a particular form of the system being diagnosed.
Indeed, when the non-linear state-space model is available, then effective
observer-based approaches can be employed. If this is not the case, then one
can design such models with the proposed genetic programming approach.
An alternative solution is to use the proposed robust neural network-based
techniques. Finally, when the fault can be expressed in the form of changes
in the physical parameters of the system, then parameter estimation-based
strategies can be employed, as was the case for the impedance measurement
problem.

Irrespective of the above advantage, there still remain open problems re-
garding some important design issues. What follows is a discussion of the
areas proposed for further investigations.

Integration of fault diagnosis and fault-tolerant control. Most fault diagno-
sis techniques are developed as diagnostic or monitoring tools rather
than an integral part of FTC systems. In other words, some existing
FDI methods may not satisfy the requirements of controller reconfigu-
ration. On the other hand, most reconfigurable controls are carried out
under the assumption of possessing perfect information from the fault
diagnosis system. To settle such challenging tasks in an efficient way, the
following preliminary problems have to be solved:
• Providing clear and concise requirements regarding the fault diagno-

sis system in the FTC scheme,
• Providing analysis tools regarding interactions between the fault di-

agnosis system and reconfigurable control in an integrated frame-
work.

Development of active fault diagnosis for non-linear systems. Most FDI
schemes do not employ an additional design freedom that can be achieved
by suitably scheduling input signals. Although there is a number of ap-
proaches that can be employed to solve this problem for linear system,
there is no systematic approach that can be used for a general class of
non-linear systems.
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Experimental design for dynamic neural networks. It was clearly demon-
strated in Section 7.1 that the application of experimental design to sta-
tic neural networks results in neural models with a significantly smaller
model uncertainty than those designed without it. This makes the re-
sulting fault diagnosis system more reliable and effective. In spite of the
incontestable appeal of such an approach, there are no effective exper-
imental strategies that can be applied to dynamic neural networks. In-
deed, the main limitation regarding the application of locally D-optimum
on-line sequential design (Section 7.1.3) is the fact that the computation
of D-optimal inputs involves an on-line global optimisation problem. Un-
fortunately, this task seems to be very difficult to solve on-line, which is
required for dynamic neural networks.

Relaxing the existence conditions of observers for Lipschitz systems. As has
been mentioned, many non-linear systems satisfy Lipschitz conditions.
On the other hand, the Lipschitz constant for such systems may have
relatively large values. This can make the usage of the observer design
procedures described in Section 4.3 impossible. Apart from the simplic-
ity of these procedures, the main reason for such a situation is the fact
that the procedures are based on conservative transformation techniques.
Thus, the development of less conservative transformation techniques
constitutes one of the future research directions.
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