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Preface 

The first contributions to mathematical systems and control theory date back 
as far as J. C. Maxwell's 1868 paper "On Governors." Still, it took another 
hundred years for systems and control to be recognized as a mathematical 
discipline in its own right. This is especially due to the pioneering work of 
R. E. Kalman. 

In the 1980s, J. C. Willems proposed an alternative approach to systems 
and control, based on studying the solution spaces rather than the equations 
that generate them, and on replacing the causal input-output or input-state- 
output framework by a setting in which all signals connected with a system 
are treated equally. This reflects the fact that in complex systems~ it may be 
hard or even impossible to decide what is cause and what is effect. Willems' 
behavioral approach postulates that the distinction between system variables 
that are free and system variables that are determined by others should be 
derived from the model, in contrast to being imposed on it a pr ior i .  Moreover, 
one interpretation may be just as legitimate as another, i .e. ,  there may be 
several admissible input-output interpretations for one and the same system. 

Dynamic systems evolve in time, that is, they depend on one free param- 
eter. The world, however, is not one-dimensional, and very soon there were 
attempts to develop a multidimensional generalization of systems theoretic 
concepts. Mathematically, the transition from one-dimensional to multidi- 
mensional systems corresponds to that from ordinary to partial differential 
or difference equations. The two-dimensional case, with its applications in 
image processing, is particularly interesting, and it has its own distinctive 
features. Local state space models for two-dimensional systems have been 
proposed by R. P. Roesser, S. Attasi, E. Fornasini and G. Marchesini, T. 
Kaczorek and others (this and the following lists of authors make no claim 
whatsoever to completeness). 

The behavioral approach has proved to be particularly fruitful for systems 
in more than one independent variable, and two-dimensional behaviors have 
been studied by E. Fornasini, P. Rocha, M. E. Valcher, J. C. Willems, ~nd 
S. Zampieri. For arbitrary multidimensional systems, the polynomial matrix 
approach has been initiated by N. K. Bose and D. C. Youla. The profound 
work of U. Oberst provides an algebraic framework for the study of multidi- 
mensional behaviors. 
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Organization and Summary 

In Chapter 1, we study the concept of controllability, which is the foundation 
of control theory. The classical notion is that by choosing a suitable input, 
it is possible to pass from any given initial state to any desired final state, 
in finite time. This notion seems to be very much related with input-state 
concepts, but  Willems showed that controllability is a built-in property of 
a system behavior that does, for instance, not depend on the distinction 
between input and states, a fact that is very far from engineering intuition. 
Even from classical results like the Hautus rank condition for controllability, it 
becomes apparent that the mathematical key to controllability is primeness of 
polynomial matrices. Subtle distinctions have to be made in the multivariate 
setting. 

The primeness notion developed in the first chapter is applied to the prob- 
lem of co-prime factorization of rational matrices in Chapter 2, and the kernel 
(image) representations associated to left (right) factorizations are discussed. 
The interpretation of multivariate rational matrices as transfer functions of 
multidimensional systems is not as obvious though as in the one-dimensional 
case, as the input-output relations are typically not given by a well-defined 
convolution. This is due to the fact that causality, a perfectly reasonable 
assumption in the one-dimensional setting ("future input values cannot in- 
fluence present output values"), becomes a rather unnatural requirement with 
systems that depend on several independent variables. 

As is well-known in the case of one-dimensional systems, the co-prime 
factorization approach provides a framework for the solution of a variety of 
control problems, for instance, controller synthesis by means of the Youla 
parameterization of all stabilizing controllers of a plant. In Chapter 3, we 
consider these questions in the multidimensional setting, i.e., we study co- 
primeness and factorization concepts over rings of stable transfer functions, 
and we apply the results to the problem of stabilizing a plant (represented 
by its multivariate rational transfer matrix) by dynamic output feedback. 

Chapter 4 defines a class of admissible systems of linear partial difference 
or differential equations for which a transfer function is well-defined. We 
study several equivalence relations for this system class, including a general- 
ization of H. H. Rosenbrock's classical concept of strict system equivalence, 
which can be characterized in terms of certain isomorphisms between the 
solution spaces. Several results by P. Fuhrmann and L. Pernebo have nice 
generalizations to the multidimensional setting. 

First order representations of multidimensional behaviors are studied in 
Chapter 5. The classical local state-space systems, like the Roesser or the 
Fornasini-Marchesini models, are only capable of representing causal transfer 
functions. Dropping the causality requirement, we consider general first order 
representations which involve manifest system variables (the ones we are 
interested in, e.g., "inputs and outputs") and latent variables (generalized 
"states" that occur in the modeling process, as well as with the reduction to 
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first order). This leads naturally to so-called output-nulling representations, 
consisting of a first order dynamic and a static relation between the manifest 
and latent variables. These representations have been studied, in the one- 
dimensional setting, by J. C. Willems, M. Kuijper, and S. Weiland. Deriving 
output-hulling from kernel representations, as well as the dual construction 
of driving-variable from image representations, is based on the representation 
of a polynomial matrix in terms of a linear fractional transformation. 

These linear fractional transformations are studied in more detail in Chap- 
ter 6, where a construction technique is given that can be interpreted as a re- 
alization algorithm for multidimensional finite-impulse-response filters. The 
size of such a linear fractional representation can be reduced by a transfor- 
mation to trim form. This reduction does not change the value of the linear 
fractional transformation, and thus can be seen as an exact model reduction 
method. We also describe an approximative model reduction that is based on 
an appropriate notion of balancing for a class of linear fractional represen- 
tations. Linear fractional transformations are prominent in robust control, 
and we point out some of the connections. In particular, we establish a re- 
sult on the stability radius of descriptor systems, with considerably relaxed 
assumptions compared to previously published results. As an example, an 
upper bound for the stability radius of an electrical circuit is computed. 

The final chapter collects some known facts from the mathematical theory 
of networks and circuits, and thus sheds some light on a phenomenon observed 
in the example of the previous chapter. 

A c k n o w l e d g e m e n t s  

I am grateful to Prof. Dr. Ulrich Oberst, who introduced me to the subject of 
multidimensional systems, and whose ground-breaking work has fundamental 
importance for everything I have done in this area. Further inspiration came 
from Prof. Dr. Jean-Francois Pommaret and Prof. Dr. Maria Elena Valcher. 
I thank Dr. Jeffrey Wood (co-author of Section 1.4 of this work) for fruitful 
discussions and cooperation. Special thanks go to Prof. Dr. Nirmal K. Bose, 
Prof. Dr. Panla Rocha, and Prof. Dr. Dieter Pr~itzel-Wolters. 
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1. Controllability of Multidimensional Systems 

Primeness and co-primeness concepts play an important role in the polyno- 
mial matrix approach to systems and control theory, which was initiated by 
Rosenbrock [63]. The notions of observability and controllability lie at the 
very heart of systems theory, and they are closely related to questions of 
primeness. 

In the behavioral approach to systems theory, introduced by Willems [79, 
80, 81], a dynamical system is a triple E = (T, W, B), where T is the time 
domain, W the signal space, and B C W T the behavior, that is, a family 
of trajectories evolving over T, taking their values in W, and satisfying the 
laws which govern the system. We will mainly consider the discrete time 
domain T = N (or T = N r in the multidimensional case) and the signal space 
W = Rq, where N and R denote the set of non-negative integers and the field 
of real numbers, respectively. Once the time domain and the signal space are 
fixed, systems and their behaviors may be identified. 

A discrete behavior that is linear, shift-invariant, and complete, admits 
an autoregressive representation. Thus, it can be written as the kernel of a 
difference operator which is represented by a polynomial matrix in which 
the indeterminate has been replaced by the left shift difference operator a, 
defined by (aw)(i)  = w( i+ l )  for w �9 W T. Thus the behavior B = ker(R(a)), 
or B = ker(R) for short, is the solution space of a linear system of difference 
equations with constant coefficients. 

In this framework, controllability can be defined as an intrinsic system 
property that does not depend on the choice of a particular representation./~ 
is called controllable if it admits a kernel representation with a left prime poly- 
nomial matrix R. Controllable behaviors have image representations, that is, 
they can be written as B = im(M(a)) - im(M), where M is a polynomial 
matrix, i.e., M ( a )  is another linear constant-coefficient difference operator. 

In a partition R l ( a ) w l  = R2(a)w2 of the system laws R ( a ) w  = O, w2 
is said to be observable from Wl if knowledge of Wl yields knowledge of w2, 
which reduces to the requirement that Wl = 0 implies w2 = 0 because of 
linearity. This can be shown to be equivalent to right primeness of R2. 

Rocha [59] generalized this notion of observability to 2D behaviors over 
T = Z 2. In a kernel representation of such a behavior, the entries of the repre- 
senting matrix are bivariate Laurent polynomials in which the two indetermi- 
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nates are identified with the invertible left and down shift difference operators 
al and ae, given by ( a l w ) ( i , j )  = w( i  + 1,j) and ( a 2 w ) ( i , j )  = w ( i , j  + 1). 
Hence, a 2D behavior B = ker(R(al, a2, a~ -1, a21)) = ker(R) is the solution 
set of a linear system of partial difference equations. 

Generalizing from the one-dimensional case, in a partition w = [w T, wT] T 
of the system variables with a corresponding decomposition R l w l  = R2w2 
of the system laws, w2 is called strongly observable from wl if it is uniquely 
determined by wl, which is equivalent to zero right primeness of R2. A weaker 
notion of observability is obtained in the case of a fac tor  right prime matrix 
R2, where wl determines w2 up to a finite-dimensional real vector space. 

Rocha and Willems [61] also introduced a notion of controllability for 
2D systems in the behavioral framework, which was shown to hold for 2D 
behaviors that admit a kernel representation/3 = ker(R) with a factor left 
prime matrix R. If the representing matrix R is even zero left prime, the 
behavior is called strongly controllable [60]. 

Various primeness concepts for multivariate polynomial matrices were also 
treated by Bose [3], Fornasini and Valcher [24], Youla and Gnavi [88] and, in 
the 2D case, Morf et al. [46] and Kung et al. [38]. 

Summing up, primeness of polynomial matrices is the mathematical key 
to controllability of linear systems. This is why we start, after presenting 
some preliminary material in Section 1.1, with a discussion of multivariate 
polynomial matrices and their primeness in Section 1.2. Algorithms for test- 
ing primeness properties are given; they are based on computer algebraic 
techniques, mainly, the theory of GrSbner bases. It is crucial to note that 
various characterizations of primeness of polynomial matrices that are mu- 
tually equivalent in the one-dimensional case of univariate polynomials, may 
lead to different primeness concepts in the multivariate situation. This fact 
will give rise to a more refined view to observability and controllability, and 
controllable-autonomous decompositions of multidimensional systems in Sec- 
tion 1.3. After intuitively giving the definition of controllability that seems 
to be most appropriate for multidimensional systems, it is then shown in 
Section 1.4 that this notion has an interpretation in terms of concatenability 
of trajectories, just as should be expected from a behavioral controllability 
notion. The question of existence of image representations is addressed in a 
slightly different setting in Section 1.5, where we discuss the "parameteriz- 
ability" of linear constant-coefficient partial differential equations. 

1.1 P r e l i m i n a r i e s  a n d  N o t a t i o n  

1.1.1 Gri ibner  Bases 

Let ~ = R[z] = R[zl , . . .  ,zr] denote the polynomial ring over R in r inde~ 
terminates zi. A Gr~ibner basis is a special set of generators of a non-zero 
ideal Z C T). Buchberger's algorithm [7] for computing GrSbner bases can be 



1.1 Preliminaries and Notation 3 

interpreted as a generalization of the Euclidean algorithm to the multivari- 
ate situation, and it is implemented in many customary computer  algebra 
systems. 

As a term order [2, p. 189] on the set of monic monomials or terms 

T - r  = = zr , n ( n l , . . . , n r )  e 

we will always consider (reverse-) l e x i c o g r a p h i e  orders, where for some 
permutat ion i of the indeterminates, z n < z "~ if there is a j E {1 , . . .  , r}  
such that  ni(k) = mi(k) for k > j and hi(j)  < r}2i(j). In particular, zi(1) < 
zi(2) < . . .  < zi(~), whence the indeterminates zi(1) and z~(~) are called the 
least and the greatest variable with respect to this order, respectively. Since 
any polynomial h E D admits a unique representation h = Y]~tET h(t)t with 
h(t) the real coefficients of h, a term order makes it possible to define the 
h e a d  t e r m  (h t )  of h r O, 

ht(h) = maxsupp(h) ,  

where supp(h) = {t E T, h(t) # 0} is a finite set. 
A finite subset G C 2: \ {0} is called a GrSbner basis of Z if for any non- 

zero h E 2: there exists a 9 E G such that  ht(g) divides ht(h).  There  is no loss 
of generality in assuming that  the GrSbner bases considered here are always 
reduced [2, p. 209]. Once a term order is fixed, the reduced GrSbner basis 
of a non-zero ideal is uniquely determined, and two ideals are equal iff their 
reduced GrSbner bases are equal. 

The theory can easily be generalized to polynomial modules. We will use 

znei  < zme j  ~ (z n < z Tr* lexicographically) or (n = m and i < j )  (1.1) 

as a term order on the set {znei ,  n E 1~, 1 < i < l}, where ei denotes the 
i-th s tandard basis vector. For a polynomial matr ix  R E D g• let cG(R) 
denote the column GrSbner matr ix  of R, i.e., a matr ix  whose columns are 
a reduced GrSbner basis of the column module CM(R) = RD q C_ D g. The 
column GrSbner matr ix  is unique up to a permutat ion of its columns. It al- 
lows one to decide equality of polynomial column modules, since for a fixed 
term order, two matrices generate the same column module iff their column 
GrSbner matrices are equal. When speaking of equality of Gr5bner  matri- 
ces, this is meant to signify "equality up to permutat ion of columns." The 
extended GrSbner basis algorithm also computes the transition matrices X 
and Y with R = cG(R)X and cG(R) = R Y .  

Analogously, the row GrSbner matr ix  rG(R) is defined as a matr ix  whose 
rows are a reduced GrSbner basis of the row module RM(R) = DI• C_ 
D1xq. 

1.1.2 Elementary Algebraic Geometry  

An algebraic set is the set of common zeros of a finite set of polynomi- 
als. By Hilbert 's  basis theorem [39, p. 10], any polynomial ideal Z C_ D = 
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R[zl . . . .  , zr] has a finite system of generators. Thus 

V ( Z ) = { ~ E C  ~, f ( ~ ) = 0 f o r a l l f E 2 7 }  

is an algebraic set, called the v a r i e t y  of 27. Conversely, an ideal 

J ( V )  = {f  e 79, f(~) = 0 for all ~ e V} 

is associated to any algebraic set V. It is easy to see that  1)(.) and ,7(-) are 
order-reversing mappings. Hilbert's Nullstellensatz [39, p. 18], which holds 
over any algebraically closed field (here: C), says that  

fl(V(27)) = Rad(z )  = { f  E 79, S I E N :  f t  E27}. 

The following weaker form of the Nullstellensatz [39, p. 16] is also useful: 
V(27) = 0 iff 1 E 27, that  is, 2: = D. 

The dimension of a non-empty algebraic set V is the maximal dimension 
of its irreducible components. By convention, dim(0) = -1 .  A non-constant 
polynomial h E :D defines the algebraic hyper-surface V(h) = {~ E C ~ , h(~) = 
0} of dimension r - 1. 

The dimension of a proper polynomial ideal 27 C 7:) is defined to be the 
Krull dimension [39, p. 40] of the ring D/27, and it is denoted by dim(Z). It 
can also be characterized as follows [2, p. 270]: The dimension of 2: is the 
maximal number k such that  there exist indeterminates z i (1 ) , . . . ,  zi(k) with 

27 A R[zi(1),- . . ,  zi(k)] = {0}. (1.2) 

This condition can be checked using a GrSbner basis technique [2, p. 257]: 
Choose a lexicographic term order with zi(x) < . . .  < zi(k) < . . .  < zi(r) and 
compute a GrSbner basis G of 27. Then G N l[~[zi(x),... , zi(k)] is a GrSbner 
basis of 2: N R[zio), �9 �9 �9 , zi(k)]. 

We set dim(:/:)) -- - 1 .  A fundamental fact of algebraic geometry [39, p. 40] 
is that  the dimension of an algebraic set V coincides with the dimension of its 
coordinate ring I ) / , J ( V ) ,  and thus with dim(if(V)) .  Furthermore, dim(Z) = 
dim(Rad(Z)), hence 

dim(V(z)) = dim(27). (1.3) 

1.2 Pr imeness  of  Mult ivar iate  P o l y n o m i a l  
Matr ices  

Right primeness properties hold whenever the corresponding left primeness 
assertions are true for the transposed matrix. We will therefore concentrate 
on the discussion of left primeness notions. 

Let 79 = ~[z] = R [ z l , . . . ,  zr] denote the polynomial ring over ~ in r 
indeterminates zi. Its quotient field, the field of rational functions, is denoted 
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by/C = N(z) = N(zx, . . .  , Zr). Let R be a matrix with entries in :D, R E 7) gxq, 
and g < q. Let m l , . . . ,  mk E T) be the g x g minors of R. The ideal generated 
by these minors is denoted by Z = ( m l , . . .  , ink) = Y~i T)mi C_ :D. In the 
following, we will simply write "minor," when referring to these full order 
sub-determinants of R. 

1 . 2 . 1  Z e r o  a n d  M i n o r  P r i m e n e s s  

D e f i n i t i o n  1 The matrix R is called 

1. z e r o  l e f t  p r i m e  ( Z L P )  if  its minors possess no common zero in C r, 
2. w e a k l y  ze ro  lef t  p r i m e  ( W L P )  i f  the minors have only a finite number 

of common zeros in CY, and 
3. m i n o r  l e f t  p r i m e  ( M L P )  if  the minors are devoid of a non-trivial 

common factor. 

If the rank of R as a matrix over the quotient field of rational functions is 
less than  9, then all the mi are identically zero, hence R does not  satisfy any 
of the above primeness conditions. We exclude this case for the time being. 
For a polynomial matrix R of full row rank define the algebraic variety of 
rank singularities 

);(R) = { ~ E C  r, rank(R(~)) < r a n k ( R ) }  
= e c m l f f )  = . . . .  " kff) = 0 }  = vcz). 

Since R is assumed to have full row rank, we have dim ))(R) _< r - 1. 

L e m m a  1.2.1. The matrix R is 

1. ZLP  iff l ) (R)  is empty (dimV(R) = -1 ) ,  
2. W L P  iff V(R) is finite (dim))(R) _< 0), and 
3. MLP iff V(R) contains no algebraic hyper-surface (dim V(R) <_ r - 2). 

Proof. The first two assertions are obvious from the definitions. We show tha t  
the existence of a non-constant common factor of the minors mi is equivalent 
to dim ] ; ( R )  = r - 1. Indeed, if the minors mi share a non-constant common 
factor, say h, we have 

V(h) c_ V(R) (1.4) 

and hence r - 1 = dim ])(h) _< dim V(R). The case tha t  dim V(R) = r is 
excluded by the rank condition on R. Conversely, if dim V(R) = r - 1, V(R) 
contains an irreducible hyper-sufface, tha t  is, some ])(h), where h is an ir- 
reducible polynomial. In particular, the principal ideal (h) is perfect, i.e., 
Rad((h)) = (h). But  (1.4) implies, by Hilbert 's Nullstellensatz, 

(h) = Rad((h))  = Y(V(h))  _Z Y(V(R))  = J ( V ( Z ) )  = Rad(Z) _Z Z. 

Thus any element of Z, in particular each minor mi,  is contained in (h), tha t  
is, it must be a multiple of h. El 
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From the lemma, it is easy to see tha t  in the univariate case (r = 1), 
ZLP and MLP are equivalent concepts, whereas WLP is always true. In the 
bivariate situation (r = 2), ZLP is stronger than WLP, and WLP is equivalent 
to MLP. For r > 3, the three primeness definitions are mutually inequivalent, 
but always 

ZLP ~ WLP =~ MLP. 

Now the following corollary is an immediate consequence of (1.3). 

C o r o l l a r y  1 The matrix R is 

1. Z L P  iff dim(Z) = - 1 ,  that is, Z =  19, or 

Z ~ I ,  

2. W L P  iff I is at most zero-dimensional, i.e., iff TP/Z is a finite-dimensional 
real vector space, or equivalently, 

27 9 di e R[zi] \ {0} for 1 < i < r, 

3. M L P  iff there is no proper principal ideal that contains Z, i.e., iff the 
dimension of 27 is less than r - 1 or 

27 9 ei E R [ Z l , . . . , z i - l , Z i + l , . . . Z r ]  \ {0} for 1 < i < r. 

In fact, it seems to be conceptually clearer to use the characterization of 
Corollary 1, which is in terms of the dimension of ideals rather than varieties, 
for the definition of ZLP, WLP and MLP. This allows to generalize these 
primeness notions to arbitrary coefficient fields (here: I~) without having to 
deal with their algebraic closures. 

The conditions of Corollary 1 can be checked via the GrSbner basis 
algorithm as follows: 27 = :D iff the reduced Gr6bner basis of 27 with re- 
spect to any term order is {1}. 27 is at most zero-dimensional iff for all 
i, the GrSbner basis of 27 with respect to a lexicographic term order with 
zi the least variable, contains an element di E R[zi]. The dimension of 2: 
is less than r - 1 iff for all i, the Gr6bner basis of 27 with respect to a 
lexicographic term order with z~ the greatest variable, contains an element 
e, e z , - a ,  zr] =: \ 

Instead of dealing with the ideal generated by the minors of R, it is 
sometimes more desirable to directly investigate the column module of R. 

L e m m a  1.2.2. The matrix R is Z L P  iff there is a matrix X E l )  q• that 
solves the Bdzout equation 

R X  = Ig, 

that is, iff CM(R) = 2) g. I t  is W L P  iff for 1 < i < r, there are matrices 
X i  E I) qxg such that 
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RXI  = diIg, 0 7k di E l~[zi], 

that is, iff Dg /CM(R)  is a finite-dimensional real vector space, and R is MLP 
iff for 1 < i < r there are matrices Xi  E D g • q such that 

R X i  = eilg, O ~ ei E R[z \ zi]. 

In terms of GrSbner matrices, R is ZLP iff cG(R) = Ig, WLP iff for all i, the 
column GrSbner matrix with respect to a lexicographic order with zi the least 
variable, contains a non-singular g • g sub-matrix depending only on zi, and 
MLP iff for all i, the column Gr6bner matrix with respect to a lexicographic 
order with zi the greatest variable, contains a non-singular g x 9 sub-matrix 
independent of zi. 

Proof. The conditions for zero and minor primeness were derived in [88]. 
Sufficiency follows from the Canchy-Binet theorem [27, p. 27], which says 
that det(RX) = ~~mjpj ,  where mj and pj are corresponding minors of R 
and X, respectively. The main idea for the proof of necessity consists in the 
construction of polynomial matrices Zj that isolate each individual minor mj 
of R in the form R Z j  = mjIg.  The construction in [88] is a bit cumbersome 
though. In fact, it suffices to note that for every minor mj,  there exists a 
permutation matrix Hj such that 

with a square matrix R~ 11 and det(R~ 11) = mj. Let adj (X) denote the adjoint 
of a square matrix X ,  that is, Xadj (X) = det(X)I.  Then 

R Z j  := RFIj [ adj(R~l)) ] 

If R is ZLP, we have 1 E 27, hence there exist polynomials pj such that 
mjpj  = 1. But then ~ RZjp j  = Ig. The conditions for weak zero and 

minor primeness can be proven analogously. [3 

For the characterization in terms of GrSbner matrices, the following fact 
is crucial (compare with the remark following (1.2)): If cG(R) is the GrSbner 
matrix of CM(R) with respect to a lexicographic order zi(1) < zi(z) < . . .  < 
zi(r), then the sub-matrix of cG(R) consisting of all columns that depend 
only on zi(1),... ,zi(k) is a GrSbner matrix of CM(R)N ~zi(x) , . . .  , zi(k)] 9. 
Note that this generalization to the module case depends on our particular 
choice of the term order (1.1). 

1.2.2 Factor Primeness 

Definition 2 A full row rank matrix R is factor left prime (FLP) if any 
square left factor is unimodular, that is, if the existence of a fuctorization 
R = DR1 with a square matrix D implies that det(D) is a non-zero constant. 
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A factorization R = DR1 with D square clearly implies that  the determinant 
of D divides all minors of R. Hence R is FLP if it is MLP. The converse, 
however, is only true for r < 2. Also, in contrast to zero and minor primeness, 
factor primeness cannot be decided by means of the variety I;(R) alone. This 
fact is illustrated by the following example. 

Example 1.2.1. The non-zero minors of both the matrices 

R_[ s 0 - z 2 ] 0  zl z3 and 0 z 2 0  0 -z3]0 

are z~, zlz2, and ZlZ3, hence ])(R) = 1)(/~). But  /~ admits a factorization 
with the left factor diag(1,Zl) of determinant zl, whereas R is FLP. Any 
factorization R = DR1 requires R1r = 0, where r = (z2,-z3,  zl) T. This 
implies that  all entries of R1 are polynomials whose constant coefficients are 
zero, that  is, they are contained in the maximal ideal J = (zl, z2, z3). But  
then the minors of R1 are elements of j 2 ,  from which it is evident that  none of 
the minors can have a linear head term. This excludes the case det(D) = zl. 
Thus det(D) has to be constant. 

For a systems theoretic interpretation of factor primeness, the case that  
R is not of full row rank may no longer be neglected for polynomial rings 
in more than two indeterminates (r > 2), consider e.g., the example given 
below. More precisely, the systems that  admit  a full row rank representation 
are those whose p r o j e c t i v e  d i m e n s i o n  is at  most one [48]. Consider the 
finitely generated module r = cok(R) = ~)lxq/~)lXgR, where D = ]~[z]. 
For any k _> 1, there is an exact sequence 

O--+ Mk--~...---~ M1 --~ Mo--~ M-1 : . / t~  ---~ 0 (1.5) 

with free modules Mo , . . .  , Mk-1. Such sequences can be constructed as fol- 
lows: For k = 1, we have the trivial exact sequence 

0 ~ :Dlxg R ~ ~)lxq _.~ .hd --}" O. 

Combining this with the exact sequence 

0 ~ ker(R) r ~ l x g  _ ~  DI• __~ 0, (1.6) 

we construct a sequence with k -- 2, 

0 -~ ker(R) ~-~ ~ l x g  ,R> ~ l x q  ~ ./~ ~ 0. (1.7) 

Next, a m i n i m a l  lef t  a n n i h i l a t o r  ( M L A )  of R is computed by means of a 
Gr6bner basis technique (see, for instance, [2, Section 10.5]). The algorithm 
has been implemented in various modern computer algebra systems, e.g., 
SINGULAR [28]. A :D-matrix Q is an MLA of R iff 
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1. Q is a left annihilator of R, tha t  is, Q R  = O, and 
2. any left annihilator of R is a multiple of Q, that  is, Q1R = 0 implies 

Q1 = X Q  for some 79-matrix X.  

In other words: The module ker(R) = {~ E 791• = 0} is generated by 
the rows of Q E 79re• that  is, 

ker(R) = 791XmQ. 

In particular, rank (Q) + rank (R) = g. But now we have an exact sequence 
like (1.6) for Q instead of R, and we can append it to the existing sequence 
(1.7) to obtain a sequence for k = 3, 

0 -+ ker(Q) r 791xrn Q> 791xg _ ~  791xq _+ A4 -~ 0. 

Iteratively, one proceeds with this computat ion of MLAs or, equivalently, 
syzygy modules, to obtain a sequence (1.5) of arbi t rary  length k. The mod- 
ule Mk in (1.5) is free for one such sequence iff it is free for all such sequences 
of the same length. In tha t  case, (1.5) is called a f in i te  f ree  r e s o l u t i o n  of 
A/l, and ~4 is said to have projective dimension at most k. By the projec- 
tive dimension of a behavior B = k e r ( R ( a l , . . .  , a t ) ) ,  we mean the projective 
dimension of the associated module ]vl = cok(R) as above. This notion is 
well-defined, as different kernel representations of B yield the same .h4 [48]. 
Hilbert 's syzygy theorem [39, p. 208] implies tha t  for 79 as above, the projec- 
tive dimension of a finitely genera ted / ) -module  cannot exceed r,  the number 
of variables in z = (Z l , . . .  ,zr) .  For r = 1, it is therefore clear tha t  the pro- 
jective dimension of Az[ is at most one, and for r -- 2, we have the desired 
result at least for those behaviors that  are minimal in their transfer class [48]; 
see Section 2.6. This is not t rue for r > 2, however, as can be seen from the 
following example. 

Example 1.2.2. Consider the behavior 

B = {w :N  3 --~ ll~ 3, 3l : N 3 --~ R such that  wi = a i l  for i = 1,2,3}.  

In detail, the defining equation for wl : 1~ --~ R reads 

w l ( n l , n 2 , n 3 )  = l(nl  + 1,n2,n3) for all (n l , n2 ,n3 )  e N 3. 

The elimination of latent variables (here: l) will be discussed several times 
later in this work. In the present example, it yields 

B ~-- {W : N 3 -'~ ~ 3 ,  0. 3 0 - -U  1 W 2 = 0} .  

-- i f2 O'1 0 W3 

This is nothing but  a discrete version of the fact tha t  a vector field w is 
derivable from a scalar potential  iff curl (w) = 0. For the continuous t ime 
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version, see Section 1.5. Although the rank of the kernel representation matrix 
is two (and this is an invariant of the behavior 13, i.e., independent of the 
particular choice of the kernel representation matrix), the behavior B cannot 
be expressed as the solution set of less than three equations. This discrepancy 
is due to the fact that the projective dimension of B is two. Note that this 
phenomenon occurs although B is indeed minimal in its transfer class (which 
is equivalent to B having an image representation, or controllability in a sense 
to be defined below). 

Due to these considerations, the concept of factor primeness has to be 
generalized as follows [48, p. 142]. 

Def in i t ion  3 A matrix R is called fac tor  left p r i m e  in the  genera l ized  
s e n s e  ( G F L P )  if the existence of a factorization R = DRx (19 not necessar- 
ily square.) with rank (R) = rank (R1) implies the existence of a polynomial 
matrix E such that R1 = E R .  

Note that this notion does not require full row rank. A test for GFLP is given 
by the following procedure. 

A l g o r i t h m  1 1. Solve the linear system of equations R~ = 0 over the poly- 
nomial ring, that is, find an integer m and a matrix M E z)q • whose 
columns generate the syzygy module of R ,  i.e., 

{ ~ e D  o , R ~ = 0 } = M T ?  m = C M ( M ) .  

In other words, construct a minimal right annihilator of R or, an exact 
sequence 

7)rn M ~ ~)q R ~ T)g " 

2. Now find a minimal left annihilator of M ,  that is, a matrix R c E l)goxq 
such that 

{77 e ~)lxq, ~M = 0} = RM(RC). 

We have two sequences 

~lxg  R 
Dlxq M Dlxrn 

D lxg, 

where the lower sequence is exact. The upper sequence is a complex 
( R M  = 0), but not necessarily exact. Note that the mappings ~ ~ M E 
and ~ ~-~ ~?M are both denoted by M ,  but they can always be distinguished 
by their domain and co-domain. 

3. Fix  a term order and compute the row GrSbner matrices of R and R e, 
rG(R) and rG(R c) to check whether the rows of the two matrices generate 
the same module. I f  yes, also the upper sequence in Step 2 above is exact, 
i.e., R is a minimal left annihilator of M .  
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In Step 1 above, it suffices to solve R~ -- 0 over the field K:, that is, the 
problem can be reduced to linear algebra: We merely compute a basis of the 
solution space of a system of linear equations over a field, i.e., 

{~ E ]~q, R~ = 0} : M]~ q-rank(R). 

Without loss of generality, we may assume that the entries of M are polyno- 
mials instead of rational functions; otherwise, each column can be multiplied 
by a common multiple of all denominator polynomials appearing in it. Step 2 
however depends crucially on the computation of MLAs, or syzygy modules 
over D. This is based on a computer algebraic technique, as mentioned above. 

L e m m a  1.2.3. The matrix R is GFLP iff the procedure described above 
yields equality of the row Gr~bner matrices rG(R) and rG(RC). 

Proof. From the algorithm, we have R M  = 0 and rank (R) = rank (Re). 
Since R c is a minimal left annihilator of M, there exists a polynomial matrix 
D such that R = D R  e. If R is GFLP, we also have R e = E R ,  hence RM(R) = 
RM(RC), which is equivalent to the equality of the row GrSbner matrices. 

Conversely, let R = DR1 be any factorization with rank (R) = rank (R1). 
Then R~ = 0 iff RI~ = 0 for ~ E ICq D :Dq. Thus R I M  = O. But R c is a 
minimal left annihilator of M, from which we conclude that  R1 = Y R  c for 
some polynomial matrix Y. On the other hand, from rG(R) = rG(R c) we 
have R e = Z R  for some polynomial matrix Z and hence R1 = Y Z R .  [] 

1.2 .3  R e l a t i o n s  B e t w e e n  t h e  V a r i o u s  P r i m e n e s s  N o t i o n s  

It is immediate that ZLP implies GFLP as R = DR1 with rank(R) = 
rank (R1) always implies the existence of a rational matrix E such that 
R1 = ER .  Now if R possesses a polynomial right inverse X, we conclude 
that E = R1X,  hence E is polynomial. 

Also note that GFLP implies FLP in the case of a full row rank matrix as 
it postulates the existence of a polynomial inverse E of D, thus unimodularity 
of D. Conversely, FLP in the classical sense does not necessarily imply GFLP, 
as can be seen from the following example. 

Example I.~.3. Consider again the matrix 

R = [  zlO zlO -Z2]z3 (1.8) 

whose factor left primeness was shown in an example above. Computing a 
minimal right annihilator yields 

M ~ -z3 
Zl 
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and an MLA of M is 

R c = 0 zl z3 
z3 z2 0 

whose row module is strictly greater than that of R itself. This shows that R 
is not GFLP. 

Wood et al. [83] proved that, despite appearances, GFLP is a generaliza- 
tion of minor primeness rather than of factor primeness, in the sense that 
MLP and GFLP coincide in the full row rank case. If the notion of minor 
primeness is generalized to representations with rank deficiencies, it is at least 
necessary for GFLP; see Theorem 2 below. 

Let R E D gxq. Let p denote the rank of R and consider the p x p minors 
of R. We define modified versions of zero, weak zero, and minor primeness by 
adapting Definition 1 to this situation (i.e., we consider the minors of order 
p instead of g). Note that the distinction between right and left primeness 
does not make sense in this new setting. Also, we no longer need to require 
that g < q. Let Z(R) be the ideal generated by the minors of R of order equal 
to the rank of R. Define Z(0) := (1) = D. The characterization of the three 
primeness notions in terms of the dimension of Z(R), given in Corollary 1, is 
still valid. In particular, R is minor prime iff codim(Z(R)) > 2, where we 
define codim(Z) = r - dim(Z) for proper ideals 

Z c D = ~ [ z l , . . . ,  z~], 

and by convention, codim(D) = cr Thus the co-dimension measures the 
"size" of a polynomial ideal in the sense that 

I1 C_ Z2 =~ codim(Z1) < codim(I2). 

The following criterion for exactness of a complex of finitely generated free 
modules over D is a special case of a theorem of Buchsbaum and Eisenbud [13] 
(see also [18, p. 500], [47, p. 193]). 

Theorem 1 [13] Let 

0 ----4 Mn F,~ M n - 1 - ' ~ . . .  ~M1 F1~ Mo (1.9) 

be a complex of finitely generated free D-modules, i.e., FiFi+t = 0 for 1 < 
i < n (put Fn+l := 0). The complex is exact iff, for 1 < i < n, 

1. rank(Fi+t) + rank (Fi) = rank(Mi); 
e. codim(Z(Fi)) > i. 

Condition 2 is formulated in terms of the depth (grade) of ideals in [18], [47], 
but for polynomial ideals, this quantity coincides with the co-dimension (this 
is true over any Cohen-Macaulay ring). 
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T h e o r e m  2 Let R E I) gXq. Then R is generalized/actor (left~right) prime 
only if it is minor prime, that is, only if codim(2:(R)) > 2, where Z(R) 
denotes the ideal generated by the minors of R of order equal to the rank 
o/R. 

Proof. Without  loss of generality, assume that  R is GFLP (if not, replace R 
by its transpose). Then there exists an exact sequence 

Let 

~lxg __.~Ixq M) ~Ixm 

0 ~ ...  ---). ~)ixg R) ~)Ixq ~ M = T)Ixq/~)IxgR --+ 0 

(I .10) 

Example 1.2.4. The matrix 

R =  

is minor prime, as rank (R) = 1 
dimension two. But an MRA of R 

M 

and a n M L A o f M i s R  c =  [ 1 1 

0-+ ... -'~ ~Ixg R) ~Ixq M) ~D1xm. 

Now Theorem 1 implies that  codim(2:(R)) _> 2, hence R is minor prime, n 

The converse of Theorem 2 does not hold, i.e., minor primeness is not 
sufficient for GFLP. This fact is illustrated by the following example. 

and 

Zl Zl ] 
Z2 Z2 

and Z(R) = (z,, z2) C R[z,, z2] has co- 
is 

1 

], hence R is not GFLP. 

Summing up, we have the following relations in the full row rank case: 

ZLP =~ WLP ~ . . .  =~ MLP (1.11) 

MLP r GFLP =~ FLP,  

(analogously for right primeness), whereas in the general case we only have 

zero prime =~ weakly zero prime =~ . . .  =~ minor prime (1.12) 

be a finite free resolution of ]*4, which exists due to Hilbert's syzygy theo- 
rem [39, p. 208]. Combining this with the exact sequence (1.10), we obtain 
an exact sequence of finitely generated free :D-modules 
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and 

zero prime =~ generalized factor (left/right) prime =~ minor prime. (1.13) 

The dots in (1.11) and (1.12) refer to the gap in the corresponding ideal di- 
mensions -1 ,  0 , . . . ,  r -  2, or co-dimensions co, r , . . . ,  2, respectively. Wood et  
al. [83] described the "missing links" in (1.11), that is, the various primeness 
degrees in between. The first implication in (1.13) remains to be shown; this 
will be done in the subsequent section. 

1.2.4 Module-theoret ic  Interpretation of  Primeness 

A polynomial matrix R G Dg• can be interpreted as the kernel representa- 
tion of a linear shift-invariant behavior 

B -- ker(R) - ker(R(cl,..., at)) = {w: l~ -~ R r R(al ..... ar)w = 0}, 

the action of R on w being given by the shifts a~. There are many different ker- 
nel representations of one and the same behavior, but according to Oberst's 
duality [48], they all generate the same row module. Thus the question 
arises naturally whether the primeness notions discussed above have module- 
theoretic interpretations in terms of .A4 = T)z x q / D l  X g R = T)l x q / R M  ( R ) -- 

cok(R), where R is interpreted as a mapping T) ~xg -+ :D lxq, r/~-~ 7/R (multi- 
plication from the left). 

We know that zero primeness of R corresponds to 2:(R) = (1) = D. 
A well-known lemma [13] implies that this is equivalent to the module f14 
being projective. By the Theorem of Quillen and Suslin (also known as Serre's 
conjecture [39, p. 116/117]) projective modules over the polynomial ring :/) are 
already free. We have the following correspondence between a representation 
matrix R and A4 = cok(R): 

R zero prime ~ f14 free. 

A full column rank matrix R is ZRP iff it has a polynomial left inverse 
(Bdzout relation Y R  = Iq),  hence RM(R) = D l X g R  = T )lxq, or A4 = 0. As 
a mapping, R is surjective. Thus 

R ZRP (zero prime and full column rank) ~ A4 = 0. 

On the other hand, GFLP has been characterized by Oberst [48, p. 142] as 
follows: 

R generalized factor left prime r A4 torsion-free. ( 1.14) 

As a free module is torsion-free, we obtain the implication 

zero prime =~ GFLP 

of (1.13) and the corresponding assertion for GFRP is obtained by transpo- 
sition. 
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1.3 C o n t r o l l a b i l i t y ,  O b s e r v a b i l i t y ,  a n d  A u t o n o m y  

Let A = ~{ N~ . The elements of A are r-fold indexed real sequences. As signals, 
we will consider vectors of such sequences, i.e., the signals will be in .4 q, where 
q _> 1 is an integer. In terms of Willems' original definition of a behavioral 
system, T = l~ is our "time domain," or rather "signal domain," as the 
interpretation as time usually makes sense only in the 1D setting. The signal 
value space is ~q and our signals w E .A q are functions 

w : l ~  ~ ~ q. 

Finally, the behavior  B C_ ~4q of the system is determined by certain system 
laws. In the linear and "time-invariant" (the term "shift-invariant" is more 
adequate in the multidimensional case), these will be constant-coefficient lin- 
ear partial difference equations. Thus, let 

B = ker(R) = {w e A q, R ( a ) w  := R ( a l , . . .  , a r ) w  = 0} 

be a behavior in kernel  r ep re sen t a t i on  with a polynomial matrix R E T)g• 
(not necessarily with g < q) in which the indeterminates zi are replaced by 
the shift operators al defined by 

( ~ w ) ( t l , . . . ,  tr) = w ( t l , . . . ,  t~_~, t~ + 1, t~+~, . . . ,  tr). 

For any m E 1~, we write a m for the compound shift a~ nl . . .  a ~  ", and thus 

( ~ - w ) ( n )  = (o~1 . . .  ~ y ' w ) ( n ~ , . . .  ,nr) = ~ ( n  + m )  

fo rn ,  m E N  r a n d w E . 4  q. 
We say that R is a minimal left annihilator (MLA) of M E T )q• iff 

{7 e :D l• ~M = 0) = RM(R). (1.15) 

The notion has already appeared in the algorithm for testing a matrix for 
the GFLP property. The so-called f u n d a m e n t a l  pr inciple  [48, p. 23] will 
be of central importance in the following: A linear system of inhomogeneous 
partial difference equations M ( a ) l  -- w,  where the right side is assumed to 
be given, is solvable iff R ( a ) w  = 0 for a minimal left annihilator R of M. In 
other words, (1.15) implies 

31: M ( a ) l  = w ~ R ( a ) w  = O. (1.16) 

Thus, if R is a MLA of M, we have 

B --- ker(R) = im(M) = ( w  e ,4 q, 3 1 e .Am such that w = M ( a ' ) l ) ,  

i.e., there exists an image  r ep re sen t a t i on  of B. Oberst's duality theo- 
rem [48] implies that (1.15) and (1.16) are in fact equivalent for the signal 
spaces considered here. Moreover, we have B1 = ker(R1) C_ B2 = ker(R2) iff 
RM(R1) _~ RM(R2), that is, iff R2 = X R 1  for some polynomial matrix X 
[48, p. 35]. 
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T h e o r e m  3 I f  R is GFLP, then there exists an image representation 

13 = im(M) = {w G A q, 3 l G .A m with w = M(~r)l}, 

where the polynomial matrix M is constructed by Algorithm 1. Conversely, i f  
B possesses an image representation, any kernel representation matrix  of B 
is GFLP. 

Proof. From Algorithm 1 and the lemma following it, we have RM(R) = 
RM(R c) and hence B = ker(R) = ker(R c) for a GFLP matrix R. From the 
construction of R c and M, and from the fundamental principle, it follows 
that  ker(R c) = im(M). 

Conversely, if/3 = im(M ~) = ker(R), then R is a minimal left annihilator 
of M ~, in particular, R M  ~ = 0 and M ~ = M X  for some polynomial matrix X,  
as M is a MRA of R. In order to show that  R is GFLP, we need to prove 
tha t  B = ker(RC), tha t  is, R c should be a minimal left annihilator of M' .  But  
RCM ~ = R c M X  = 0 and if Y M  t = O, then Y = Z R .  On the other hand, 
we always have R = D R  c for some polynomial matrix D, hence Y = Z D R  c 
follows. 0 

D ef in i t i on  4 The preceding theorem suggests calling a behavior con t ro l -  
lable  i f  it admits a kernel representation with a G F L P  matrix. 

A justification of this purely algebraic definition of controllability will be 
given in Section 1.4, where it will be characterized in terms of concatenability 
of system trajectories, as should be expected from a behavioral controllability 
notion. 

L e m m a  1.3.1. The matrix R ~ from the algorithm defines the controllable 
part of 13 = ker(R), that is, 13~ := ker(R c) C_ ker(R) is the largest controllable 
subsystem of 13. 

Proof. By the construction of R c and M, we clearly have RM(R) C_ RM(RC), 
hence 13c C_ B, and ker(R c) = im(M),  hence controllability of 13c. It remains 
to be shown that  13c is the largest subsystem of this type. Assume that  
B1 C_ B is controllable. Then B1 = im(M1) = ker(R1) C_ ker(R), particularly, 
RM1 = 0, hence M1 = M X  for some polynomial matrix X. If 71 E RM(RC), 
then riM = 0 and r/Ms = 0, thus r} G RM(R1). This proves 131 C_ 13% 0 

D e f i n i t i o n  5 A ew- idea l  is a non-empty subset I C_ N r that satisfies 

n E I ~ n + rn E I for all m E N r. 

A behavior E is called a u t o n o m o u s  i f  there exists a subset J C N r such 
that ~ \ J is a cw-ideal, and any trajectory w E I3 is uniquely determined by 
w l j  = ( w ( j ) ) ~ j ,  that is, 

w l j = 0  m w = 0 .  
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The dimension of 13 as a real vector space cannot exceed the cardinality of 
such a set J.  The behavior B is f i n i t e - d i m e n s i o n a l  (as a real vector space) if 
there exists a finite set J with these properties. For 1 < i < q, let ~ri : 13 ~ A 
denote the projection of 13 C A q onto the i-th component. The i-th variable 
of 13 is called f r e e  if  7ri is surjective. 

L e m m a  1.3.2.  The following assertions are equivalent: 

1. 13 is autonomous; 
2. 13 has no free variables; 
3. Any kernel representation matrix of 13 has full column rank. 

Proof. It is easy to see that  the existence of a free variable implies tha t  B is 
not autonomous.  If B = ker(R) and R does not have full column rank, then 
there exists a column of R that  can be writ ten as a rational combination of the 
remaining columns, say R_q = [ R - 1 . . .  R_(q-1)]X for some rational matr ix  
X.  Then the variable Wq is free, since R ( a ) w  = 0 is solvable whatever Wq E ,4 
due to the fact tha t  any minimal left annihilator of the matr ix  consisting 
of the first q - 1 columns also annihilates the last column. I f / 3  = ker(R) 
with a full column rank matr ix  R, then according to  Oberst  [48, p. 93] a 
decomposition 

.A = 7rib ~ R I(i) 

with a cw-ideal I( i )  can be constructed for 1 < i < q. Then I := N J ( i )  is 
again a cw-ideal, and with J := ~ \ I it follows tha t  B is autonomous.  [3 

L e m m a  1.3.3.  Let B = ker(R) be autonomous. Then B = (0} iff  R is zero 
right prime and 13 is finite-dimensional iff R is weakly zero right prime. 

Proof. B = {0} iff RM(R) = :D l• tha t  is, iff the B~zout equation Y R  = Iq 
is solvable./3 is finite-dimensional iff in the decomposition 

A q = 13 ~ 1-LR ~(~) 

the sets I( i)  are complements of finite sets. By duality, this is equivalent to 

"DlXq / R M ( R )  

being a finite-dimensional real vector space. [3 

D e f i n i t i o n  6 Let I be a subset of q = {1 , . . .  ,q} and for a trajectory w E B, 
let Wl := (wi)iel  and w2 := (wi)i~1. The sub-trajectory Wz is called s t r o n g l y  
o b s e r v a b l e  f r o m  w2 if wz = 0 implies wl = 0 and w e a k l y  o b s e r v a b l e  
f r o m  w2 if  there exists a finite-dimensional behavior BI such that w2 = 0 
implies wt  E 13x. 

C o r o l l a r y  2 Rewrite R ( a ) w  = 0 as Rx(a)wx = R2(a)w2. Then wx is 
strongly observable from w2 iff the polynomial matrix RI is zero right prime, 
and it is weakly observable from w2 iff R1 is weakly zero right prime. 
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1.3.1 C o n t r o l l a b l e - a u t o n o m o u s  D e c o m p o s i t i o n s  

It is well-known that  a 1D behavior B admits a direct sum decomposition [32] 

F = F c ~ ~ 

where B c denotes the controllable part  of B ("forced motion") and B a is 
autonomous ("free motion").  The following theorem treats  the general r- 
dimensional situation. It turns out that  control lable-autonomous decompo- 
sitions still exist for multidimensional systems (as they correspond to the 
torsion/torsion-free decomposition of the corresponding modules [84]), but  
they are, in general, not direct. For 2D systems, this has already been pointed 
out in [23]. Necessary and sufficient conditions for the existence of direct sum 
decompositions are given in Theorem 5. 

T h e o r e m  4 There exist subsystems B c and B a of B such that 

1. B ~ is controllable, 
~. B a is autonomous, and 
3. B=Bc +B a. 

Proof. Let B c = ker(R c) be the controllable part of B with R = DR c. Let ]-/ 
be a permutation matrix such that 

R~ Ri] 

with a matr ix R~ of full column rank and rank (R~) = rank (Re). Then R~ -- 
R ~ X  for some rational matr ix  X.  Without  loss of generality, assume that  

with R' = Y R  for some rational matr ix  Y. Hence with R I I  = D R ~ I I  = 
D[R~R~], the matr ix  R1 := DR~ has full column rank. Define 

which is autonomous and 
contained in B c + B a. Let 

W 

where v is a solution of 

[ 0]o_1o__0} E A q, 0 I 

contained in B. It remains to be proven that  B is 
w E B be given. Rewrite it as 

R[( tr )v  = RC(o')w. This system of equations is 
solvable, since a minimal left annihilator of R~ also annihilates R c. By the 
construction of v, the first summand of w is contained in B c, and the second 
summand is contained in B a, as R, (o ' ) v  = D(o')R~(o')v  = D(er)RC(o')w = 
R(er)w = O. D 
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Unlike the 1D case, BeN B ~ ~ {0} in general. It has been conjectured 
that 

13 = B c �9 B a (1.17) 

iff B e is even strongly controllable, i.e., iff R c is zero left prime. However, 
it has been pointed out by Valcher [75] that even for 2D systems, the zero 
left primeness of R e is sufficient, but not necessary for the existence of a 
direct sum decomposition (1.17). In order to derive necessary and sufficient 
conditions for (1.17), the following lemma is useful. 

L e m m a  1.3.4. Let R1, R2 be zero right co-prime, that is, the block matrix 
[ RT R~ IT is zero right prime. Then there exist polynomial matrices X 
and Y such that 

Rt - X  
R2 Y ] 

is unimodular. Let the polynomial matrices T, U, V, W be defined by 

[ R 1 - X  ]-I  [ T U J R 2  Y = - V  W (1.18) 

with the obvious partition O.e., R1T a square matrix). Then [ -V,  W ] is 

[ R1 ],and[ V, W, -VRI a MLA of [ R2 ] is a MLA o/ 
J 

Rt 0 ] 
M = 0 R2 �9 

I I 

Proof. The first statement follows from the Quillen-Suslin Theorem [89]. Let 

I - A ,  B ] b e a n y l e f t a n n i h i l a t ~ 1 7 6  R1 ] R 2  , then 

JR1  - X  ] [ - A  B ]  R2 r = [ 0  Z ]  

where Z = AX + BY. Then 

[ T U]=z[_vw] [ -A  B ] = [ 0  Z] -V W 

Finally, let [ A, B, - C  ] be a left annihilator of M, then C = ARI = 
BR2, hence A = ZV, B = ZW, and C --- ZVR1. [2 

Now the following theorem characterizes the sub-behaviors El of B that 
are direct summands of B. Note that no assumption is made on the primeness 
of R1. 
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T h e o r e m  5 Let B1 and B be behaviors, and let R1 E Dgl • be a kernel 
representation matrix of 131. 

The following are equivalent: 

1. 131 is a direct summand of 13, that is, B = B1 �9 132 for some behavior 132; 
2. There exists, for some integer g > 1, a polynomial matrix V E 7) g• 

such that 
a) 13 = ker(VR1) 
b) V and R1 are zero skew prime, that is, there exist polynomial matrices 

T E D q• and X E 7) g~ xg such that 

R1T  + X V  = I. (1.19) 

3. There exists, for some integer g > 1, a polynomial matrix V E :D gx~ 
such that 
a) B = ker(VR1) 
b) for some W E ~)g• R2 E ~)g2• where 92 = q + g - gl, we have 

VR1 = WR2 

with V ,  W zero left co-prime and R1, R2 zero right co-prime. 

Proof. "1 ~ 2": Let R2 be a kernel representation matrix of B2. By assump- 
tion, 

is zero right prime (i.e., B1 n B2 = {0}), and w E B iff w = 11 + 12 with 
11 E B1, 12 E/32. Hence 

[0] [R10] ,l I 
w E B  r 311,12: 0 = 0 R2 12 = : M  12 

w I I 
(1.20) 

Let [ V, W, - V R 1  ] be the MLA of M constructed in Lemma 1.3.4, then 
it follows by the fundamental principle [48], [o] 

w e t 3  r [ V W - V R 1  ] 0 = 0  r V R l w = O .  
w 

Hence B = ker(VR1). From (1.18), we have 

R1T + X V  = I. 

"2 =~ 3": By assumption, T and V are zero right co-prime. Let 0 and 1~r be 
such that  
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T 0 

is unimodular. Define the (q + g - gl) x q polynomial matr ix  R2 by 

and consider 

T /) -1 

R1 - X  T 0 I Z 

where Z = R1 U -  XI~ .  This implies tha t  the left-most matr ix  is unimodular,  
in particular, R1 and R2 are zero right co-prime, and 

jR1 x l l  [ T 0][, z]  [ 
R2 Y = - V  W 0 I = - V  W 

where U = U - T Z  and W = V Z  + I]V. Now VR1 = W R 2  and V, W are 
zero left co-prime._ _ 

"3 =v 1": Let X,  Y be such that  

and let T,  U be such that  

Then 

v R  + w ?  = x 

T R 1  + UR2 = I.  

- V  W R2 l~ = 0 I 

where Z -- - T X  + U] 7. Due to the assumption on g2, the matrices on the 
left are square. Thus 

- V  W = R2 Y 0 I = R~ Y 

where X = R 1 Z  + f (  and Y = ~" - R 2 Z .  According to Lemma 1.3.4, 
[ V, W, - V R 1  ] is a MLA of M, but  as B = ker(VR1), this implies 
(1.20) and hence B = B1 �9 B2, where B2 := ker(R2). D 

Note that  the existence of V with B -- ker(VR1) merely amounts  to the 
requirement Bt C_/~, but  V is essentially non-unique for systems of dimen- 
sion greater than  two (i.e., not "unique up to unimodular right factors").  
Theorem 5, when applied to the case B1 = B c, shows clearly tha t  zero left 
primeness of R c is sufficient, but  not necessary for B = B c @ B" (if R c is ZLP, 
condition (1.19) can be satisfied with X = 0). 
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1.4 Control labi l i ty  as Concatenabi l i ty  of 
Trajectories 1 

Controllability is a concept fundamental to any system-theoretic paradigm. 
The definition usually given for 1D systems seems to be closely related to 
state-space representations, to the concepts of "input" and "state." The be- 
havioral approach of Willems has introduced a new intuitive idea of control- 
lability in terms of the system trajectories [81]. 

The definition of behavioral controllability given by Rocha in [59] is an 
extension of the original 1D definition to discrete systems defined on Z 2, 
and generalizes directly to systems defined on Z ~. For such systems, it is a 
highly natural definition, and leads to a variety of useful characterizations of 
controllability [59, 84]. The definition given in [59, 84] also makes sense in 
the context of discrete systems defined on l~ ,  but  in this case, the charac- 
terizations fail. Also, we have undesirable phenomena such as the existence 
of non-trivial behaviors which are both autonomous and controllable. This 
suggests that  the definition is not suitable for systems on N r. F~rthermore,  
Rocha's definition causes these problems even when applied to 1D systems 
on N, which indicates tha t  great care needs to be taken in the formulation of 
the 1D definition. As discussed for example by Rosenthal, Schumacher and 
York [64], a change in the signal domain can affect many important  system- 
theoretic properties. 

In this section we propose a new definition of behavioral controllability, 
which works equally well in the cases of systems defined on Z ~ and on l~ .  The 
unified definition can also be applied to systems defined on "mixed" signal 
domains Z ~1 x N ~2 . The new definition is equivalent to Rocha's definition 
in the Z~-case, but  it admits the characterizations given in [84] for both  
classes of systems. In particular, this work establishes that  for any discrete 
rD behavior, controllability is equivalent to minimality (in the transfer class). 

1.4.1 Previous  Definit ions of  Control labil i ty 

In this section, we will consider a slightly more general notion of a discrete 
rD behavior than previously: first of all, we will admit  arbi t rary signal value 
fields F (up to now: l~). Note that  the presented results on multivariate 
polynomial matrix primeness, in particular, characterization (1.14), the fun- 
damental principle (1.16), and Theorem 3, hold for arbi t rary  coefficient fields. 
Moreover, we have considered T = l~ up to now, and we have mentioned 
the case T = Z ~ in several places. Mathematically, we deal with the ordi- 
nary polynomial ring, tha t  is, Y [Zl , . . .  , z~], in the former, and with the ring 
of Laurent  polynomials in the latter case, i.e., F [ z l , . . . ,  zr, z l - 1 , . . . ,  Zrl]. 
Observe that  the set of units of the ordinary polynomial ring is F \ {0}, 
whereas the units of the Laurent polynomial ring are all elements of the form 

1 The contents of this section are joint work with J. Wood [85]. 
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f z ~  1 . .  �9 z~a', where a~ E Z, and 0 7~ f E F. Primeness results can easily be 
translated to the Laurent polynomial case by observing that  [91] 

F[zI , . . .  ,Zr ,Zl l , . . .  ,Zr  1] ~ 1F[zI,... ,Zr,~l, . . .  ,~r] /(Zl~l-1, . . .  ,Zr~r-1) .  

Alternatively, one can argue that  the Laurent polynomial ring is the r ing  o f  
f r ac t i ons  of the polynomial ring with the multiplicatively closed denomina- 
tor set 

{ z ~ l  �9 �9 {1. �9 , N"} .  

It is again a Noetherian unique-factorization-domain [39, p. 81]; moreover, 
with the natural inclusion 

: =  V [ z l , . . .  c F [ z l , . . .  , z ;  1] = :  F [ z , z - 1 ] ,  

there is an injection of the set of Laurent polynomial ideals into the set of 
polynomial ideals, given by 

Z gF[z ,z  zn [z]. 

It preserves inclusions and takes prime ideals to prime ideals [18, p. 61]. 
Thus we can reduce the investigation of Laurent polynomial ideals, e.g., the 
computation of their dimension, to the study of ordinary polynomial ideals. 

With these generalizations, a behavior will be a subset of (Fq )  T,  where 
in the most general case T = 7/. r~ x N r2 , q is the number of components (e.g., 
inputs plus outputs) and IF is some field (normally ll~ or C). A trajectory 
w E ( F q )  T is a multi-indexed sequence taking its values in F q. We refer to 
the set T of multi-indices as the signal domain, and we always write r = rl  +r2 
(in much existing work either rl or r2 equals zero). Thus a behavior takes 
the form 

/7 = ke rR(a )  = ke rR(a1 , . . .  , a t )  = {w E (IFq)T, R((T)w -~ 0}. 

The matrix R is called a kernel representation matrix of /7. The module 
generated by its rows determines and is uniquely determined by /7, i .e. ,  it 
does not depend on the particular choice of the representation matrix [48, p. 
36]. Similarly, if 

B = imM(cr) = {w E (Fq) T, 31 E (Fro) T such that  w = M(a) I}  

for some polynomial q x m matrix M, we say that  B has an image represen- 
tation with image representation matrix M. 

The property of having an image representation is important  for many 
classes of systems [53, 59, 81, 84, 90] and it is equivalent to several other 
interesting properties. In particular, a behavior has an image representation 
iff it is minimal in its transfer class (combine [48, p. 142] with [84] or [90]). 
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Two behaviors are said to be t r a n s f e r  equ iva l en t  if the rows of their kernel 
representation matrices have the same span over the field of rational func- 
tions. The class [13] of all behaviors tha t  are transfer equivalent to 13 is called 
the t r a n s f e r  class of/3. There exists a unique minimal element 13c C_ 13 in 
[B], and B c has an image representation. We say that  13 itself is m i n i m a l  
in its transfer class if 13 = 13c. The behavior 13c is precisely the "controllable 
part" of 13 discussed earlier, but it is only now that  we give a justification of 
that  nomenclature. 

For systems defined on Z [81] or Z 2 [59], the existence of an image repre- 
sentation has also been characterized in terms of concatenability of system 
trajectories that  are specified on subsets of the signal domain that  are "suffi- 
ciently far apart".  This is a natural concept of controllability in the behavioral 
setting. 

As we have indicated, there are some subtleties in the original 1D defini- 
tion of controllability [81], which reveal themselves upon applying the defini- 
tion to the signal domain N. Due to these fine points, we will present several 
versions of Willems' original definition. Throughout this section, different 
definitions of controllability will be distinguished by indices. 

De f in i t i on  7 A 1D behavior B (defined on T = Z )  is said to be con t ro l -  
l a b l e ( l )  if there exists p E N such that for all w(U,w  (2) E 13, there exists 
w E 13 such that 

[ wr i f t  < o  w(t) (1.21) 
w (2) (t - p) ir t > p. 

The original definition of Willems [81] allows tha t  length p of the tran- 
sition period depends on the trajectories w (1), w (2) to be concatenated. For 
linear time-invariant behaviors however, p can be chosen uniformly for all 
trajectories. 

Controllability(l) is obviously unsuitable for systems defined on N, since 
it allows specification of the first t rajectory only for negative times. We can 
get around this problem by moving the region of transition, i.e., the time 
interval [0, p], to an arbitrary location: 

Definition 8 A 1D behavior B (defined on T = Z or T = N) is said to be 
con t ro l l ab l e (2 )  if  there exists p E N such that, for any w W , w  (2) E B, and 
any to E T ,  there exists w E B such that 

w (I) (t) if t < to (1 .22)  
w(t)  = w( 2)(t - (to + p)) i! t _> to + p. 

Clearly controllability(2) is equivalent to controllability(i) for systems 
with T - Z. In generalizing controllability(2) to T = Z 2 and thence to 
T = Z r, Rocha [59] observed that  for these systems the shift of w (2) in 
equation (1.22) is not important.  The existing rD definition [59, 84] requires 
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an arbitrary metric, but we will find it convenient to introduce the following 
specific one: 

d(T1,T2) = min{[tl - t2[, tl �9 Tl,t2 �9 T2}, 

where [a[ = E L 1  lail for a �9 Z r. 

De f in i t i on  9 An rD behavior I3 (defined on T = Z r' x N r2) is said to be 
con t ro l l ab l e (3 )  if there exists p > 0 such that, for any w(1),w (2) �9 13, and 
any regions T1, T2 C T with d(T1, T2) > p, there exists w �9 B such that 

_- f w(1)(t) if t �9 T1 
wit)  (1.23) [ w(2)(t) i l t  �9 T2. 

Controllability(3) is equivalent to the earlier definitions for T = Z. In the 
case T = Z r, we can prove [84]: 

T h e o r e m  6 A behavior 13 with signal domain Z r is controllable(3) if and 
only if it has an image representation. 

To see that  controllability(3) is inappropriate for systems defined on T = 
N "~, we need again the notion of autonomy. A set of free variables (inputs) 
[84, 90] of a behavior B C_ (Fq) T is a set of components of w which are 
collectively unrestricted by the system laws R(er)w = O. The maximum size 
of such a set is called the number of free variables of B, and it has been shown 
[48, p. 38] to equal q - r a n k  (R), where R is an arbitrary kernel representation 
matrix of B. An autonomous behavior is one that  is devoid of free variables, 
or equivalently, one whose kernel representation matrices have full column 
rank (compare Lemma 1.3.2). 

Example 1.4.1. Consider the following 1D examples: 

B1 = { w e l l  ~ , w ( t + l ) = 0 f o r a l l t � 9  

= k e r n l ( a ) ,  R1 = [z]. 

B2 = {W �9 (11~2) N, Wl(t-4-1) + W l ( t )  = w2(t), 
wl( t )  = w2(t) - w2( t+ l )  for all t �9 N} 

= kerR2(a),  R 2 =  [ z + l  - 1  ] 
1 z - 1  " 

B3 = {w E (R2) N, w l ( t+3 )  - w l ( t+2)  + w2(t+4) + w2(t+3) = 0 

for all t e N} 

= kerR3(a),  R3 = [ z 2 ( z - 1 )  z 3 ( z + l )  ] .  

B4 = {w �9 (I~3) N, wl(t) : w2(t), w2( t+ l )  = wa(t+2) for all t �9 N} [110] 
= ker R4 (a), R4 = 0 z " 
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B1 is zero everywhere except at time t = 0, when it can take any value. B2 is 
also zero except at t = 0, 1. These two behaviors are obviously autonomous,  
but are also controllable(3), since in this example the concatenation condi- 
tions of controllability(a) are trivial. Note also that  both  representations can 
be regarded as being in classical state-space form w(t  + 1) = Aw(t) ,  where 
A = 0 in the first example and 

A =  - 1  1 

in the second. As systems without inputs, they are certainly not state-point  
controllable in the classical sense. We see furthermore that  neither B1 nor 
B2 is minimal in its transfer class (the trivial behavior {0} is the minimal 
element in each case), so the characterization of Theorem 6 must fail for 
T = N  ~. 

The behaviors B3 and B4 are also controllable(3), which can be seen taking 
separation distances of p 5 = 7, P = ~ respectively. However they do not satisfy 
the conditions of controllability(4) to be defined below, and therefore as we 
will see they admit no image representations (alternatively, we can argue tha t  
R3 and R4 are not left prime). 

The existence in particular of autonomous controllable non-trivial be- 
haviors is counter-intuitive, and suggests a problem with the definition of 
controllability. Trajectories in a system with signal domain N r can behave in 
a different way close to the origin than arbitrarily far from it, and the con- 
trollability(a) definition does not require that  the concatenating t ra jec tory  
w exhibits this close-to-the-origin behavior of the t ra jec tory  w (*). Therefore,  
if the control problem requires the reproduction of an entire signal w (2), the 
controllability(a) condition will be insufficient. Essentially, this complication 
comes from the fact that  a~ is not an invertible operator  on (F q)T for T = l~ ,  
unlike in the Z r case. The definition of controllability needs to be adapted to 
take account of this. 

1.4.2 A N e w  D e f i n i t i o n  o f  C o n t r o l l a b i l i t y  

We will shortly present our new definition of behavioral controllability. This 
requires some preliminary notation. We will find it convenient to define the 
following obvious action of a shift on any subset T1 of T: 

o'aT1 := ( - a  + T1) N T  = {t E T, t + a  e T1}. 

The d i a m e t e r  of a bounded set T1 C T is 

p(T1) = max{it - t'l, t , t '  ~ T1}. 

Finally, given a polynomial matr ix M, its s u p p o r t  is defined as follows: For 
M -= ~aeN~ Maza'  with coefficient matrices Ma over F,  

supp(M) = {a e l~ ,  M~ # 0}. 
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Definit ion 10 Let  13 be an r D  behavior with signal domain T = Z ~ x N ~2 . 
Then 13 is said to be c o n t r o l l a b l e ( 4 )  i f  there exists p >_ 0 such that for  all 
T I ,T2  C T with d(T1,T2) > p, and for  all w(1),w (2) E 13, and all bt,b2 E T ,  
there exists w E 13 such that 

a b l w  = w (1) on abITx and erb2w = w (2) on r (1.24) 

w ( 1 ) ( t - b l )  i f t E T 1  a n d t - b l  E T  
i.e., w(t) (1.25) 

w (2)(t b2) i f t e T 2  a n d t - b 2 E T .  

In  that case, we also say that 13 is controllable(4) with s e p a r a t i o n  dis-  
t a n c e  p. 

The definitions of controllability which we have already presented are 
easily seen to be special cases of controllability(4). In particular, controllabil- 
ity(3), which works perfectly well for T = Z ~, is seen to be controllability(4) 
for bl = b2 = 0 (and it is easy to show that  these definitions are equivalent 
for such T).  For T = N, controllability(4) is in fact equivalent to controlla- 
bility(2). 

As commented above, to derive previous characterizations of controlla- 
bility in the case T = Z ~ for the general case, it is sufficient to prove the 
following: 

T h e o r e m  7 Let  13 be an r D  behavior with signal domain T = Z ~1 • 1~ 2 . 
The following are equivalent: 

1. 13 is controllable(l);  
2. 13 has an image representation.  

Moreover, i f  M is an image representat ion matr i x  for  13, then 13 is control- 
lable(4) with separation distance p(supp(M)).  

Proof. "1 :=~ 2": Let 13c denote the minimal element of the transfer class of/3. 
Then 13 c has an image representation. Let R and R c be kernel representation 
matrices of 13 and 13c, respectively; then there is a rational function matr ix  
X such that  R c = X R .  Write X = N / d  with a polynomial matr ix  N and a 
polynomial d. 

Suppose tha t  B is controllable(4) with separation distance p. We will prove 
that  13 = / 3  c, and hence that  B has an image representation, as required. If 
13c = (Fq)T ( that  is, R c = 0), or if d is a constant polynomial, this is trivial, 
so assume otherwise. Let w (1) denote the zero t ra jectory and let w (2) be an 
arbi t rary t ra jectory of 13. We will prove that  w (2) E 13 c. 

Next, let deg(d) denote the exponent in 1~ corresponding to the head 
term of d (with respect to an arbi t rary term order),  and define: 

T1 = {a + s, a e supp(RC), s E l~ \ (deg(d) + N~)} (1.26) 

T2 = 52 + 1 ~ ,  (1.27) 
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where b2 is chosen such tha t  the distance between T1 and T2 is greater  than  p. 
Although T1 and T2 are contained in N r , we consider them as subsets of T.  
Finally, let bl = 0. Apply the new definition of controllability; let w E B 
be a connecting trajectory.  Note tha t  R(tr)w = O, and so (dRC)(tr)w = 
(NR)( t r )w  = O. 

c a Let Re(z)  = ~ a  Raz  , where the summat ion  runs over all a E supp(RC). 
As w = w (U on T1 we have tha t  (RC(a)w)(s) = ~ R C w ( a  + s) = 0 for all 
s E N r \ (deg(d) + Nr). But  d(tr)(RC(tr)w) = O, hence Rc(a )w  = 0 on the 
whole of ~ C T. This is due to the fact that ,  for any monomial  ordering, 
a solution v of (d(a)v)( t)  = 0 for all t E N n, is uniquely determined by the 
values of v on the set N r \ (deg(d) + 1% ~). 

Since trb2T2 = N r ,  w (2) is equal to a shift a b2 of w on all of l ~ ,  and so 
(RCw(2))(t) = 0 for all t E N ~ �9 This argument  can be re-applied in each hyper-  
quadrant  of Z r~ x N TM , for appropr ia te  choices of T1, T2 and hence w, and so 
RCw (2) vanishes on the whole of T. Therefore w (2) E B c, and so B = B c. 

"2 ~ 1": Suppose tha t  M is an image representat ion matr ix  of Y. We will 
prove tha t  B is controllable(4) with separat ion distance p := p ( supp(M)) ,  
thus establishing the final claim also. This par t  of the proof  follows the lines 
of Rocha 's  original proof  [59]. Let w (U = M(a) / (1) ,  w (2) = M(o')/(2) be given, 
and let hi, b2 e T be arbitrary.  Let T1,T2 C T be such tha t  d(T1,7'2) > p. 
Now for any tl E Tl, t2 E T2 and any s ,s '  E supp(M) ,  we must  have 

It1 - t2[ > d(T1,T2) > p = p ( supp(M))  > I s - s'[. 

This yields tha t  

(T1 + supp(M))  N (T2 + supp(M))  = •, 

and now we see tha t  the following is well-defined: 

{ l ( U ( a - b l )  i f a E T ~ + s u p p ( M )  a n d a - b l  E T  
l(a) = l(2)(a - b2) if a q T2 + supp(M)  and a - b2 q T 

0 otherwise. 

Then w := M(tr)l  E B and 

w(s) = (M(tr)l)(s)  = E Mal(a + s). 
aEsupp(M) 

For t E t r  b~ T1, say t = s - bl, s E T1, we have 

(trb'w)(t) = w(s) = E Mal(a + s) 
aEsupp(M) 

= E Mal(1)(a + s - bl) = w(1)(s - bl) = w(1)(t), 

aEsupp(M) 

so trb~w = w (1) on trblT1, and similarly trb2w = w (2) on trb2T2. Thus  B is 
controllable(4). [] 
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Combining the new result of Theorem 7 with existing characterizations 
of behaviors with image representations [48, 84, 90], we obtain a further 
corollary; this requires a preliminary definition. A polynomial matrix R is 
general ized factor  left p r ime  (G FLP)  wi th  respect  to a r ing :D, where 

c :D c F[z,z -1] 

if the existence of a factorization R = DR1 with polynomial matrices D, R1 
and rank (R) = rank (R1), implies that there exists a :D-matrix E such that 
R1 = ER.  

Corol lary  3 The following are equivalent: 

1. B is controUable(~); 
2. E has an image representation; 
3. B is minimal in its transfer class, i.e., 13 = 13c; 
4. Any kernel representation matrix R of B is GFLP with respect to the ring 

7) that corresponds to the signal domain of 13, that is 

:D : ~[Zl , . - -  ,Z r l ,Z r l+ l , . . .  ,Zr, Z l l ,  . . .  , Z ~ I  1] 

for T = Z r~ x I~ ~ ; 
5. There is no proper sub-behavior of 13 with the same number of free vari- 

ables; 
6. 13 is divisible, i.e., for any p E :D \ {0} it must hold that 13 = p(a)B .  

Moreover, if 13 is controllable(4) and autonomous, then B = {0}. 

This result applies to all standard classes of discrete systems. For com- 
pleteness we mention that Pillai and Shankar [53] have established the equiv- 
alence of 1 and 2 for continuous systems, and in fact this is sufficient to 
establish Corollary 3 for all classes of systems considered in [48]. 

An obvious question to consider now is the relationship between con- 
trollability(3) and controllability(4). In fact, we can characterize this, which 
requires the following definition: 

Defini t ion 11 An rD behavior ]3 is said to be p e r m a n e n t  if  ai13 = 13 for 
i = 1 , . . .  ,r.  

Permanence coincides with shift-invariance in the case of behaviors defined 
on Z r, and is therefore trivial for behaviors with that signal domain. For 
behaviors over I~F however, shift-invariance implies only ai13 C_ 13, and per- 
manence is strictly stronger than that. For a 1D behavior 13 over N, with 
kernel representation matrix R, we mention without proof that permanence 
is equivalent to the condition that R does not lose rank at the origin. 

L e m m a  1.4.1. An rD behavior 13 is controllable(4) iff it is controllable(3) 
and permanent. 
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Proof. "if": Let B be controllable(3) with separation distance p. Let T1, T2 C 
T be such that  d(T1,T2) > p and let wO),w (2) E/3 and bl,b2 E T be given. 
By permanence, there exists v (0 E /3 such that  w (i) = (rb'v (i) for i = 1, 2. 
Let w E /3 be the connecting trajectory of v (U, v (2) with respect to T1,T2 
according to controllability(3). It is now easy to see that  w is also the desired 
connecting trajectory of w (1), w (2) with respect to 7"1,2"2 and bl, b2. 

"only if": Controllability(4) obviously implies controllability(3) (ba = 
b2 = 0) and, by Condition 6 of Corollary 7, we have that  controllability(4) 
implies 13 = a i •  for all i. [] 

The result of Lemma 1.4.1 should be compared to Staiger's [70] charac- 
terization of "remergeability," as discussed in [64]. Given this relationship 
between the two types of rD controllability, it is now natural to ask whether 
controllability(3) admits an algebraic or polynomial matrix characterization. 
Controllability(4) with T = N r is equivalent to the condition that  R is GFLP 
over F[z]. Given Lemma 1.4.1, it is tempting to conjecture that  the weaker 
notion of controllability(3) is equivalent to R being GFLP over F [z, z - l ] .  
This is supported by the examples of the previous section, where the repre- 
senting matrices are GFLP over F [z, z - l ] ,  but not over F [z]. But although 
controllability(3) does indeed imply generalized left factor primeness over the 
Laurent polynomial ring (see Lemma 1.4.2 below), the converse is not true 
in general: 

Example 1.4.2. Consider the 2D behavior 

]3 = {w E R N2, w(t l  + 1, t2) = O, w(tl ,  t2 + 1) = w(tl ,  t2) V tx, t2 �9 1~1} 

= k e r R ( a l , a 2 ) ,  R =  [ zx ] 
z2 - 1 " 

Its trajectories are constant along the t2-axis, and zero everywhere else. Thus 
B is not controllable(3) although R exhibits the property of being GFLP over 

 [zl, zi -1, z l], 

but not over R[zl, z2]. 

Thus controllability(3) of a behavior with signal domain T = N r corre- 
sponds to a property of its kernel representation matrices that  is weaker than 
"GFLP over F [z]" and stronger than "GFLP over F [z, z - t ]  '' . This supports 
our suggestion that  controllability(3) is not appropriate for systems defined 
on l~ at all. 

L e m m a  1.4.2. Let 13 be a n  r D  b e h a v i o r  with signal d o m a i n  T = Z rl • I~F 2 , 

I f  B = ker R(cr) is controllable(3), then R is GFLP with respect to F[z,  z - l ] .  

Proof. Let R c be a kernel representation matrix of/3 c. Then R c is G F L F  over 
F [z] (and thus over F [z, z - l ] ) .  Let g and g' denote the number of rows of 
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R and R c, respectively. A variant of the proof "1 ~ 2" in Theorem 7 shows 
that  if B is controllable(3), then there exists b E ~F such that  abB C_ B c, 
that  is, w E B =~ abw e B e C_ B. It follows that  ke rRe(a )  C k e r R ( a )  C 
ker o'bRc(a), or 

~'[~]'x~'~bn~ c_ ~[z]~X~R c_ F[~]~x~'R e. 

This implies that  the rows of R and R c generate the same module over 
F [ z , z - i ] ,  and so the behaviors on Z r represented by R and R c coincide. 
Since R e is GF LP  over F [z, z - i ] ,  R must also be. [] 

In the proof of Theorem 7, we used controllability(4) only with bl = 0 in 
order to prove that  B had an image representation. Thus controllability(4) is 
equivalent to the same property but  with the restriction bl = 0. For the signal 
domain T = Z r, we can take b2 = 0 as well, returning us to controllability(3). 
This is of course not possible for T = l~ ,  though in this case a different choice 
of b2 or of bx characterizing controllability(4) is possible, as we see following 
the next definition. 

Def in i t ion  12 For 0 ~ T1 C l~ ,  let the c w - i n f i m u m  of Ti,  denoted by 
a(Tx), be defined as the minimal element of the smallest (possibly infinite) 
interval of N r containing T1. 

C o r o l l a r y  4 Let T = N r . The behavior B is controllable(4) iff the following 
two equivalent conditions are satisfied: 

(a) There exists p > 0 such that for all T1, T2 C l~F with d(Tx, T2) > p and 
for all w (1), w (2) E B, there exists w E B such that 

a~(T1)w = w (1) on a~(TI)T1 and a~(T2)w = w (~) on a~(T2)T2, 

{ to(~)(t- ~(T~)) i f t  e T~ 
i.e., to(t) = w (2)(t n(T2)) if t E T2. 

(b) There exists p >_ 0 such that for all Ti ,T2 C I~F with d(T1,T2) > p and 
for all w (i) , w (z) E B, there exists w E B such that 

w = to (1) on T1 and a~(T2)w = w (2) on a~(T2)T2, 

j" w(~)(t) l i t  e T~ 
i.e., w(t) 

w(2)(t - ,~(T2)) l i t  e T2. 

Proof. Both conditions are special cases of the condition controllability(4). 
Conversely, if a behavior B is controllable(4), then by Theorem 7 it has an 
image representation. By applying a variant of the proof "2 ~ 1" of Theo- 
rem 7, we can easily establish t ha t / 3  satisfies (a) or (b). Note that  for T1, T2 
defined according to (1.26), (1.27), we have ~(T1) = bx = 0 and ~(T2) = b2. 

[] 
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Note how condition (b) coincides with controllability(2) in the 1D case 
(T = N) when we consider "past" T1 = {0 , . . .  ,t0 - 1} and "future" T2 = 
{to + p , . . .  }. Clearly, d(T1, T2) > p and ~(T2) = to + p. 

1.4.3 Behav iora l  and Classical  Def in i t ions  

Following Willems [81], we now describe the relationship between behavioral 
controllability and "state-point controllability", i.e., classical controllability 
(or reachability) in terms of the state  space. 

Let 13s,i denote the state-input behavior of a 1D classical state-space rep- 
resentation, i.e., 

13s , i=kerR(a)  with R =  [ z I - A ,  - B  ],  

where A and B are matrices over Y. In other words, Bs,, contains all pairs 
(x, u) that  satisfy x(t  + 1) = Ax(t)  + Bu(t)  for all t E T. The behavior 13s,i 
is said to be s t a t e  t r i m  if any state x0 occurs as an initial s tate  in the sense 
tha t  there exists (x, u) e Bs,i such that  x(0) = Xo. For T = N, Bs,i is always 
state trim, since for any state x0 we can simply set x(0) := Xo and allow the 
t rajectory w = (x, u) to evolve according to the system equations. 

Lernma 1.4.3.  

1. For T = Z,  ( A , B )  is state-point controllable iff  Bs,i is controllable(4) 
and state trim. 

2. For T = N, ( A, B) is state-point controllable iff Bs,, is controllable(4). 

Proof. The proof is essentially due to Willems [81]. For ease of exposition we 
consider only the cases F = R, C. Other fields can be dealt with in a similar 
way, or by using an alternative t ra jectory proof. 

In view of Theorem 7, we only need that  - in the 1D case - ]3s,i has an 
image representation iff R is left prime. In the case T = N, this signifies tha t  

R ( A ) =  [ A I - A ,  - B  ] 

has full row rank for all A E C, which is the classical Hautus condition for 
controllability of the matr ix pair (A, B). For T = Z, left primeness of R 
is equivalent to R(A) having full row rank for all 0 ~ A E C. So we need 
the additional requirement "[ A, B ] has full row rank," corresponding to 
A = 0. But this is precisely the condition for Bs,i to be state tr im [81]. 13 

For the case T = N, it is easy to see that  Lemma 1.4.3 does not apply to 
controllability(3). We can take the simple earlier example B = {w, w(t  + 1) = 
0, t >__ 0}, t reated as a state-space representation with no inputs and A = 0; 
this behavior is controllable(3) but  certainly not state-point  controllable. 
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1.5 Controllability as Parameterizabil i ty 

The problem of characterizing the linear shift-invariant multidimensional be- 
haviors that  possess an image representation, is equivalent to giving an alge- 
braic criterion for a system of linear, constant-coefficient partial differential 
equations to be "parameterizable," that  is, derivable from a potential, as in 

curl(w) = 0 r w = grad(C). 

The aim of this section is to provide some interesting examples of systems 
of partial differential equations tha t  admit  such parameterizations, e.g., the 
Maxwell equations, and to investigate the homogeneous systems of linearized 
Ricci, Einstein, and Riemann equations with regard to parameterizability in 
that  sense. 

1.5.1 The Parameterizability Criterion 

Consider the solution space of a linear system of partial differential equations 
with constant coefficients, 

B = {W E .4 q, R(01 , . . .  ,0r)W : 0}, (1.28) 

where A = C~176 the space of infinitely often differentiable functions 
ll~ ~ -~ C, or .4 = :D'(I~r), the space of distributions on ll~ r . In both cases, our 
signal domain is the continuous set ll~ r , and the signal space is the complex 
vector space A q, thus F = C. As usual, the kernel representation matrix R is 
a polynomial in r indeterminates si corresponding to the partial differential 
operators Oi, 

n e c[s] g• c[s] := c i s l , . . .  ,s,].  

We know that  B admits a kernel representation (1.28) with a GFLP matrix 
R iff there exists k >_ 1 and M E C[s] q• such that  the sequence 

R T 
c[s]g ctsiq (1.29) 

is exact. In other words, R is a minimal left annihilator (MLA) of M,  tha t  is, 
its rows generate {1/E C[s]lXq,~lM = 0}. But then, by a variant of Palam- 
odov's fundamental theorem [51, pp. 289-303], the inhomogeneous system of 
equations M(c91, . . .  ,Or)l = w is solvable iff R(c91,. . .  ,0r)w = 0. Thus we 
can write 

B = {w e A q, 3 1 : w  = M(COl , . . . ,Or) l } .  (1.30) 

Conversely, (1.28) and (1.30) imply exactness of (1.29) due to Oberst 's duality 
theorem [48], which applies also to the continuous signal spaces considered 
here. For convenience, we restate the test for the GFLP property: 
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1. Compute a minimal right annihilator (MRA) of R, call it M. In other 
words, construct an exact sequence 

C[s]k M C[s]q -% 

2. Compute an MLA of M, call it R e. We have 

~--~,T C[s] ~ M~ C[S] ~ 
C[s]g 

C[s]go > 

where the lower sequence is exact. 
3. Check whether the rows of R and R e generate the same module. If yes, R 

is GFLP; moreover, it is an MLA of M and/3 has an image representation. 

Recall that  this algorithm also constructs the desired parameterization (1.30) 
of/3 (if it exists). 

Using different techniques, Pommaret  and Quadrat  [55] also derived tests 
for a system of linear PDEs to be parameterizable. Their method applies also 
to the variable coefficient case. 

1.5.2 Examples 

Dive rgence ,  Cur l ,  a n d  G r a d i e n t .  Consider the set of divergence-less 
fields 

/3 = {w = (Wx,W2,W3) T, div(w) = V" w = 0}. 

Its kernel representation is 

An MRA is given by 

R =  [ s l s2 s3 ] .  

M = 
0 - s3  s2 ] 

s3 0 - s l  �9 
-Sz Sl 0 

Computing the first syzygy of the module generated by the rows of M yields 

R c =  [ S l s2 s3 ] .  

Obviously, R and R c coincide. We obtain the desired parameterization of/3: 

div(w) = 0 ~ 3l :w  = curl(1). 

The dual result concerns the set of conservative vector fields 

/3 : {W : (Wl,W2,W3) T, curl(w) : V x w = 0}. 
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Here, 

and an MRA is 

R = 
0 -83  82 ] 

s3 0 - s l  
- s 2  sl 0 

[81] 
M = s2 �9 

83 

But R is also an MLA of M,  thus we obtain, as expected, 

curl(w) = 0 r 3 r  w = grad(C) = Vr 

It  should be noted tha t  whenever one of the equations in curl(w) = 0 is 
dropped, the resulting system of PDEs  is not parameterizable,  a l though we 
know from a previous example tha t  the corresponding kernel representat ion 
matrix,  say 

/ t  = s3 0 - s l  

is even factor left pr ime in the classical sense ( that  is, in any factorization 
/~ = D/~I, the square matr ix  D is necessarily unimodular) .  

M a x w e l l  E q u a t i o n s .  The first set of Maxwell equations is given by 

OB 
O---t- + v  x E = 0 (1.31) 

V .  B = 0. (1.32) 

Let w = (B1, B2, B3, E l ,  E2, E3) T be the vector of unknowns, and let 

B = {w, w satisfies (1.31), (1.32)}. 

Identifying s4 --= 0t, a kernel representat ion is 

R = 

s4 0 0 0 - s 3  s2 
0 s4 0 s3 0 - s l  
0 0 s4 -82  81 0 
sl s2 s3 0 0 0 

Note tha t  rank (R) = 3. First we compute  a MRA of R, 

M = 

0 - s 3  s2 0 
s3 0 - s l  0 

- s 2  sl 0 0 
- s 4  0 0 - s l  

0 - s 4  0 - s 2  
0 0 - s 4  - s 3  
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and then we compute an MLA of M, which again turns out to be an identical 
copy of R itself. Thus, (1.31), (1.32) are parametrized by M, reproducing the 
well-known parameterization of E and B in terms of the magnetic vector 
potential A and the scalar electric potential ~b 

B = V x A  
OA 

E - Ot Vr 

For the second set of Maxwell equations, 

OD 
V x H  -- J +  0--t- (1.33) 

V . D  = p, (1.34) 

let w = (D1, D2, D3, H1,/-/2, H3, J1, J2, J3, p)T, and a kernel representation 
is given by 

R = 

s4 0 0 0 s3 -s2 1 0 0 0 
0 s4 0 -s3 0 sl 0 1 0 0 
0 0 s4 s2 - s l  0 0 0 1 0 
sl s2 s3 0 0 0 0 0 0 -1  

Unlike the first set of Maxwell equations, this system of equations has full 
rank, in fact, it even possesses a polynomial right inverse, in other words, the 
matrix R is zero left prime. 

1 
0 
0 
0 
0 

M =  
0 

--84 

0 
0 

81 

We compute its module 

0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 
0 0 0 - s s  

-s4 0 s3 0 
0 -s4 -s2 sl 

s2 ss 0 0 

of syzygies and obtain 

0 
0 
0 
0 
0 
1 

82 

--81 

0 
0 

Here, the parameterization yields nothing new, it just implies that D and H 
are free, and reproduces the parameterization of J and p in terms of D,  H 
that is already contained in the equations (1.33), (1.34) themselves. 

Ricci, E ins te in ,  and  R i e m a n n  Equa t ions .  The following problem was 
posed by Wheeler in 1970, and it was solved by Pommaret [56, 54] in 1995. 
Here we reproduce his result using our criterion. Wheeler's challenge was to 
find out whether or not the linearized Ricci equations in vacuum [8] 
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0 : Oij(J~ll + ~'~22 + J~33 -- ~'~44) 
nu(011 Jr" 022 q- 033 -- 044)~'~ij 
--(01iJ~1j "~- 02iJ~2j q- 03iJ~3j -- 04iJ"~4j) (1.35) 
--(Otj[~ll "~ 02j J'~21 -J- 03j~3i  -- ~4j~4i)  

where 1 < i < j _< 4, admit a potential in the sense of the previous examples. 
Here, f] denotes a symmetric tensor describing a small perturbation of the 
fiat Minkowski metric diag(1, 1, 1 , -1 ) .  In fact, the sign pattern in (1.35) is 
due to certain contractions with this metric. 

The answer to Wheeler's question is negative, which can be seen setting 

W = (~'~11, ~'~22, ~'~33, ~'~44, [~12, ~'~23, ~'~34, J~13, J'~24, ~'~14) T 

and rewriting (1.35) with the kernel representation matrix 

R = 

d + d  -82 83 83 
d d + d  -82 d 
d d 8~+8~-d 
d d d 
O 0 8182 

8283 0 0 
8384 8384 0 

0 8183 0 
8284 0 8284 

0 8184 8184 

-83 
-83 
-8~ 

83 + d + d 
--8182 
--8283 

0 
--8183 

0 
0 

-28182 0 0 -2SLS3 0 281s4 
--28182 --28283 0 0 28284 0 

0 -2s283 28384 -28183 0 0 
0 0 --28384 0 --28284 --28184 

8~ -- 82 --8183 0 --8283 8184 8284 
--8183 83 -- 82 8284 --3182 8384 0 

0 --8284 8~ q-8~ --8184 --8283 --8183 

--8283 --8182 8184 85 -- 82 0 8384 
--8184 --8384 --8283 0 8~ Jr --8182 
--8284 O --8183 --8384 --8182 83"~8 ~ 

An MRA of R is given by 
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0 
0 

283 
0 
0 

2sl 0 
0 282 
0 0 
0 0 

M = s2 Sl 
0 s3 
0 0 
s3 0 
0 s4 
s4 0 

M(O1, . . .  ,04)1 iff O 0 

82 
84 
81 
0 
0 

(1.36) 

0 
0 
0 

-2s4  
0 
0 

-83  
0 

- 8 2  
-81  

Oj~ + Off,, Note that  w = = that  is, iff ~2 is 
the Lie derivative of the fiat Minkowski metric along the vector field l = 
(11,12,13,-14). It turns out that  the syzygy of the module generated by the 
rows of M is strictly greater than the row module of R (in fact, the 20 x 10 
matr ix  R c corresponds precisely to the linearized Riemann operator ,  which 
is given in an appendix at the end of this section). This implies tha t  equa- 
tions (1.35) cannot be parametrized in the sense discussed above. For in- 
stance, 

[ 85 821 0 0 -2s i s2  0 0 0 0 0 ]  

is in the syzygy of M, but  the corresponding PDE 

022/211 + 011~22 - 2012ft12 = 0 

cannot be deduced from (1.35) alone. 
Finally, the Einstein tensor is the trace-reversed Ricci tensor. For the 

linearized Einstein equations, the first four rows of the matr ix  R from above 
have to be replaced by: 

o - d  + d - 4  + d 4 + sl 
- d  + d o -8~ + d d + d 
- d + d  - 4 + d  o d + d  
*~ + d s~ + d 4 + d 0 

0 28283 --28384 0 --28284 0 
0 0 --28384 28183 0 --28184 

28182 0 0 0 --28284 --28184 
--2SIS2 --282S3 0 --28183 0 0 

Pre-mult iplying the remaining six rows by the unimodular matr ix 

U = diag(2, 2, - 2 ,  2, - 2 ,  - 2 )  

yields a symmetric kernel representation R1 of rank 6. The  matrices R and R1 
have the same module of syzygies, tha t  is, the matr ix  M from (1.36) above is 
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an MRA also of Rx. I t  turns out tha t  the linearized Einstein equations are not 
parameter izable  for the same reasons as with the linearized Ricci equations. 
Therefore these systems of linear constant-coefficient PDEs  do not admit  a 
generic potential  like the Maxwell equations. 

As a by-product  however, we get tha t  the linearized Riemann equations 
(characterizing metrics tha t  are constant  in some coordinate system) can be 
parametr ized by M from (1.36), tha t  is, f2 is in the kernel of the linearized 
Riemann operator  iff it is the Lie derivative of the flat Minkowski metric 
along some vector field. 
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Appendix 

Linearized Riemann operator. 

8~ 8~ 
8~ 8~ 

8~ 8~ 
8~ 8~ 

8~ 81 
8~ 8~ 

8283 
8384 
8284 

8384 
8183 
8184 

8182 
8284 
8184 

-28182 
--28283 

--28384 
--28183 

--28284 
--28184 

--8183 8~ --8182 
8~ --8184 --8183 

--8184 8~ --8182 
--8284 8~ --8283 

--8283 --8182 82 
--8284 --8182 8~ 

8~ --8183 --8283 
--8384 --8283 8~ 

--8183 --8384 8~ 
8182 8~ --8184 --8284 
8283 8~ --8284 --8384 
8183 --8184 8~ --8384 

--8384 8 1 8 4  --8182 8283 
8184 --8284 --8183 8283 



2. Co-prime Factorizations of Mult ivariate  
Rational  Matrices  

Co-prime factorization is a well-known issue in one-dimensional systems the- 
ory, having many applications in realization theory, balancing, controller syn- 
thesis, etc. Generalization to systems in more than one independent variable 
is a delicate matter: First of all, there are several non-equivalent co-primeness 
notions for multivariate polynomial matrices: zero, minor, and factor co- 
primeness. Here, we adopt the generalized version of factor primeness dis- 
cussed in the previous chapter: A matrix is prime iff it is a minimal annihila- 
tor. After reformulating the sheer concept of a factorization, it is shown that 
every rational matrix possesses left and right co-prime factorizations that 
can be found by means of computer algebraic methods. Several properties of 
co-prime factorizations are given in terms of certain determinantal ideals. 

Matrix fraction descriptions of rational matrices are prominent in alge- 
braic systems theory, see for instance Kailath [35]. The idea is to express a 
rational matrix, usually interpreted as the transfer operator of a linear time- 
invariant system, as the "ratio" of two relatively prime polynomial matrices, 
just like in the scalar case, where any rational function can be represented as 
the quotient of two co-prime polynomials ("pole-zero cancellation" in systems 
theory's folklore). 

Of course, commutativity is lost when passing from the scalar to the 
multi-variable case. Thus, for a rational transfer matrix H, left and right 
factorizations have to be distinguished: 

H = D - 1 N  and H = N / : )  -1, 

the former corresponding to an input-output relation Dy = Nu,  the latter to 
a driving-variable description u = Dv, y = Nv. 

An irreducible matrix fraction description, or a co-prime factorization, 
is such that the numerator matrix N (N) and the denominator matrix D 
(/:)) are devoid of non-trivial common left (right) factors. The determinantal 
degree of such a (left or right) co-prime factorization is minimal among the 
determinantal degrees of all possible factorizations of a rational matrix. This 
fact is crucial for realization theory. 

The transfer matrices of multidimensional systems do not depend on one 
single variable (usually interpreted as frequency), but on several independent 
variables. The theory is far less developed. This is partially due to the an- 
noying (or: fascinating) diversity of multivariate primeness notions. Here, we 
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stick to the notion of generalized factor primeness which has proven to be 
adequate for multidimensional systems (we tacitly mean the case when r > 2, 
the 2D case has its own distinctive features, see Section 2.6). 

The chapter is organized as follows: After presenting the required concepts 
of multivariate factorizations in Section 2.1, co-primeness is characterized in 
Section 2.2, and a computat ional  primeness test is given. The short but  cru- 
cial Section 2.3 shows how to construct co-prime factorizations of arbi t rary  
multivariate rational matrices. Section 2.4 discusses some of the most im- 
por tan t  properties of co-prime factorizations. Finally, Section 2.5 provides 
further insight into the structure of co-prime factorizations, based on the 
theory of factorization ideals. The final section treats  the bivariate case. 

2.1 N o t i o n s  

As usual, let F be a field, and let ,4 be one of the following signal spaces: 
A = C~176 r) or ,4 = :D'(R r) (with F = R or F = C) in the continuous case, 

or .4 = F N" in the discrete case. L e t / )  = F [ s l , . . .  ,sr] and R E 7: )g• 
Now consider the behavior 

B = { w  e A q, R w  = 0}, 

the action of R on w being given by partial derivation or shifts, respectively. A 
special feature of the one-dimensional (1D) case is tha t  R can be chosen to be 
a full row rank matr ix  (essentially, this is due to the fact tha t  if r -- 1, then 7) 
is a principal ideal domain). This is not true when r > 1, and representations 
with rank deficiencies have to be considered. Now let 

[u] R=[N - D ]  and w =  Y 

be parti t ioned such tha t  D has p := rank (R) columns, N has m -- q - p 
columns, and rank (R) = rank (D) -- p. Note that  such a part i t ion can always 
be obtained if p < q, by a suitable permutat ion of the columns of R and 
correspondingly, of the components of w. Then the columns of N are rational 
combinations of the columns of D, hence 

D H = N  

for some rational matr ix  H.  Thus every left annihilator of D also annihi- 
lates N.  In view of the fundamental  principle, this implies tha t  u is free in 
the sense that  for all u E .A m, there exists y E .AP such that  Dy = Nu; 
moreover, none of the components of y is free due to the rank condition on 
D (compare with Lemma 1.3.2). In this situation, we call 
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a behavior with input-output structure, and it can be interpreted as the set 
of admissible input-output pairs corresponding to (D, N),  where D H  = N 
and D has full column rank. 

Now let a rational p x m matrix of r variables, 

H = H ( S l , . . .  ,s t)  E F (S l , . . .  ,s t )  pxm 

be given. We will consider the problem of constructing a co-prime factoriza- 
tion of H,  and our notion of a factorization is motivated by the considerations 
described above. 

Def in i t ion  13 A pair (D, N) of polynomial matrices with the same number 
of rows is said to be a left fac tor iza t ion  of H iff 

1. D H  = N ,  and 
2. D has full column rank. 

Similarly, a pair (D, N) of polynomial matrices with the same number of 
columns is called a r ight  fac tor iza t ion  of H iff (/)T, ~T)  is a left factor- 
ization of H T, where (.)T denotes transposition. 

Note that we do not restrict to square matrices D. For square matrices, we 
recover the familiar factorizations 

H = D - 1 N  and H = IVJD -1 .  

Defini t ion  14 Let (D, N) be a left factorization of H. The system of equa- 
tions 

D y  = N u  (2.1) 

is called an i n p u t - o u t p u t  (IO) rea l iza t ion  of H. The pair (u, y) E A m x ,4 p 
is said to be an i n p u t - o u t p u t  (IO) pai r  with respect to (D, N) iff (2.1) is 
satisfied. 

For a right factorization (/), N) of H, 

u = / ) v ,  y = / ~ v  (2.2) 

is called a dr iv ing-var iab le  (DV) rea l iza t ion  of H.  If there exists a v E A n 
such that (2.2) is satisfied, then (u, y) is said to be an IO pair with respect 
to (/9, .~). 

Equation (2.1) corresponds to a kernel representation of the set of input- 
output pairs with respect to (D, N): 

[ u ] - 0 .  IOpair [N -D]  Y 

Equation (2.2) yields an image representation of the set of IO pairs with 
respect to (/), N): 
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[~ (u,y) IOpair  r Sv: = y 29 v. 

It will turn out later on that all right factorizations of H generate the same 
set of IO pairs. This is not true for left factorizations, however. Next, we in- 
troduce the co-primeness concept that is suitable for factorizations according 
to Definition 13. 

2.2 Character izat ions  of  P r i m e n e s s  

Defini t ion 15 Two polynomial matrices D, N with the same number of 
rows are said to be left co-pr ime if the block matrix R = [ N - D  ] is left 
prime in the sense of Definition 3 (GFLP). A left  co-pr ime factorizat ion 
of a rational matrix H is a left factorization (D, N) of H with left co-prime 
matrices D, N. R igh t  co-pr imeness  and r ight  co-pr ime factorizat ions 
are defined by transposition. 

The following is implicit in the previous discussions of generalized factor 
primeness. We explicitly restate the observation as it will become crucial later 
o n .  

T h e o r e m  8 [83, 90] Two polynomial matrices D and N are left co-prime in 
the sense of Definition 15 iff the block matrix R -- [ N - D  ] is a minimal 
left annihilator, that is, iff there exist polynomial matrices L) and 29 such that 

1. N D  - D29 = O, and 
2. if N1D - D129 = O, we must have D1 = X D and N1 = X N for some 

polynomial matrix X .  

In other words, R is a minimal left annihilator of 

b 

Proof. We show that R is left prime iff it is a minimal left annihilator. 
"if": Let R be a minimal left annihilator, say of M, and let R = X R 1  

with rank (R) = rank (R1). Then there exists a rational matrix Y such that 
R1 = Y R ,  and hence R I M  = ~ ' R M  = O. But this implies R1 = Y R  for some 
polynomial matrix Y. 

"only if": Let R be left prime and let M be a matrix with R M  = 0 
and rank (R) + rank (M) = q, where q denotes the number of columns of R. 
Let R c be a minimal left annihilator of M. In particular, this implies that 
rank (R  c) + rank (M) = q. Moreover, we have im(R) C_ ker(M) -- im(RC), 
where image and kernel are defined for the operations from the left, e.g., 
M is interpreted as a mapping t/ ~ yM. This implies that there exists a 
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polynomial matrix X such that R = X R  c. Note that rank (R) = rank (Re), 
hence the left primeness of R implies that R c = Y R  for some polynomial 
matrix Y. But then im(R) = im(R c) = ker(M), and thus R is a minimal left 
annihilator of M. I"1 

In general (D and N not necessarily left co-prime), the row module of R c 
contains the row module of R, that is, R = X R  c for some polynomial matrix 
X. Partitioning R c = [ N c - D  c ], we have 

D = X D  c and N = X N  c 

with D c, N c left co-prime. The matrix X is a m a x i m a l  c o m m o n  left fac tor  
of D and N in this sense, but note that X is non-unique (even if R c is fixed). 
This is due to possible rank deficiencies of R c. Again, we think of the case 
r > 2. In the 2D case, it is justified to speak of greatest common divisors, as 
these are unique up to unimodularity. 

2.3 Constructing Co-prime Factorizations 

The preceding sections provide all the necessary prerequisites for constructing 
a co-prime factorization of a given rational matrix H E ]C pxm, where ]C = 
F (sx,. . .  , st). Here, we restrict to left co-prime factorizations, without loss 
of generality. We start with the following important observation. 

T h e o r e m  9 Let  (D,  IV) be an arbitrary right factorizat ion of  H .  Then  
( D , N )  is a left co-prime factorizat ion of  H iff  R = [ N - D  ] is a m in ima l  
left annihilator of  

b 

Proof. "if": Left co-primeness of (D, N) is a direct consequence of Theorem 8. 
It remains to be shown that (D, N) is indeed a left factorization of H. As 

ND - ON = 0, 

and H/ )  = N, we have ( N  - DH)[:)  = O. As b has full row rank, D H  = N 
follows. To see that D has full column rank, note that M has m + p  rows and 

[~ rank (M) = rank Nr = r a n k  = r a n k ( / ) ) = m .  

This implies that the rank of its minimal left annihilator equals p. Thus 

p - - r a n k [  N - D  ] = r a n k [  D H  - D  ] = r a n k ( D ) .  
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"only if": Let (D, N) be a left co-prime factorization of H,  then 

[ N  - D  ] M = O .  

As rank [ N - D  ] + r a n k ( M ) = p + m ,  t h e m a t r i x  [ N - n  ] is already 
a minimal left annihilator of M according to Lemma 2.3.1 below. [] 

L e m m a  2.3.1. Let R E 79g• be a minimal left annihilator. I f  R M  = 0 and 

rank (R) + rank (M) = q, 

then R is a minimal left annihilator of M.  

Proof. Let R be a minimal left annihilator of M1. Let ~/Mz -- 0 for some 
rational row vector ~/. There exists a polynomial d ~ 0 such tha t  dr/is poly- 
nomial, and d~M1 = O. Thus &/ -- ~R for some polynomial row vector 
and hence d~M = 0 and ~ M  --- O. Thus yM1 = 0 implies y M  -- 0. As 
rank (M) -- rank (M1), we conclude that  

~M -- 0 ~ riM1 = 0 for ?7 E K: lxq Z) :D lxq 

Thus the left kernels of M and M1 coincide, and R is a minimal left annihi- 
lator also of M. [] 

In order to obtain a left co-prime factorization of H,  we proceed as follows: 

A l g o r i t h m  2 Let a rational matrix H E IE pxm be given. 

1. Construct a right faetorization of H.  This can be achieved by taking a 
common multiple of all denominators appearing in H,  i.e., write 

fqo 
H = --~ for some lVo E 79vxm, O ~ d E 79. 

Setting Do := dim, we have found a right factorization (Do, No) of H 
(even in the classical sense, that is, H = No/)oX). 

2. Now compute a minimal left annihilator of 

M o : = [  D~ 

and partition it conformably as [ N - D  ]. 

The following corollary is an immediate consequence of Theorem 9. 

C o r o l l a r y  5 The matrix pair (D, N)  as constructed above is a left co-prime 
factorization of H.  
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2 . 4  P r o p e r t i e s  o f  C o - p r i m e  Factorizat ions  

First, we collect some facts on d e t e r m i n a n t a l  ideals  [47, p. 6] tha t  will be 
needed in the following sections. For a polynomial matrix R, and an integer 
v _> 0, let 

Zv(R) c Z) = F [sl , . . .  , st] 

denote the polynomial ideal generated by the v x v minors of R. By conven- 
tion, 7-o (R) = :D, and 3:~ (R) = 0 if v exceeds the number of rows or columns 
of R. Hence 

Zo(R) 3 ZI(R) 3 Z2(R) 2 . . .  

The largest u such that  Z~(R) ~ 0 is equal to the rank of R. Define 

Z(R) := Zr=k(R)(R). 

Recall that  for a polynomial ideal Z ~ T~, its c o - d i m e n s i o n  (height) co- 
incides with its grade (depth) [39, p. 187]. The co-dimension is an integer 
between zero and r, measuring the "size" of a polynomial ideal in the sense 
that  codim(0) = 0 and 

Z1 C_ 2:2 ==~ codim(Z1) _< codim(Z2). 

In the case when F = R or F = C, one can think of codim(Z) as the usual 
co-dimension in C r of the associated variety 

1)(Z) = {~ E C ~ , f(~) = 0 for all f E Z}. 

We set codim(/~) = oo and hence we have 

o0 = codim(Z0(R)) > codim(I~(R)) >__... >__ codim(Z(R)) > 1 

and codim(Zv(R)) = 0 for all u > rank (R). 

T h e o r e m  10 Let (D, N )  be a left co-prime factorization of H,  and let 
( D1 ,N1)  be an arbitrary left factorization of H.  Then there exists a poly- 
nomial matrix X such that 

DI = X D  and NI = X N .  

In particular, Z~,(D1) C_ Z~(D) for all r, >_ O, and Z(D1) C_ Z(D). 

Proof. According to Theorem 9, [ N - D  ] is a minimal left annihilator 
of Mo, which is defined as in Algorithm 2. In view of Theorem 8, all we 
need to show is, N1/)0 - D1/~r0 --  0. But this follows directly from D1H = 
D1NoDo 1 = N1. The statement on the determinantal ideals follows from [47, 
p. 7] 

Zu(D1)  = $, ,(XD) C Z~,(D) for all u _> O, 

and the fact that  rank (D) = rank (Dr). 12 
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Thus the determinantal ideal of D in a left co-prime factorization is max- 
imal among the determinantal ideals of denominator matrices in left factor- 
izations. This should be compared with the following classical result from 1D 
theory: If H = D - 1 N  is a left co-prime factorization, and H = D~IN1 an 
arbitrary left factorization, then det(D) divides det(D1). In other words, the 
principal ideal Z(D) = (det(D)) contains Z(D1) = (det(D1)). 

Due to Theorem 10, we can characterize the relation between two left 
co-prime factorizations of one and the same rational matrix as follows. 

Coro l l a ry  6 Let ( D , N )  and (Da,N1) be two left co-prime factorizations 
of H.  Then there exist polynomial matrices X and Y such that 

D1 = X D  and Ns = X N ,  D =  YD1 and N = YN1. 

In other words, the rows of [ N - D  ] and [ N1 -Da ] generate the same 
polynomial module. In particular, Z , (D)  = Z~(D1) for all v > 0 and Z(D) = 
Z(D1). 

Next, we turn to the sets of input-output pairs associated with left and 
right factorizations according to Definition 14. 

L e m m a  2.4.1. The set o / IO  pairs with respect to a left co-prime factoriza- 
tion o / H  equals the set of I 0  pairs with respect to any right factorization 
of H. 

Proof. Let (D, N) be a left co-prime factorization of H, and let (D,/~r) be an 
arbitrary right factorization of H. Then R = [ N - D  ] is a minimal left 

annihilator of M = [ /)T AT ]T, hence 

Dy = N u  r 3v : u = Dv, y = filv 

according to the fundamental principle. [] 

Coro l l a ry  7 Let (D, N)  be a left co-prime factorization of H, and let 
( D1, N1) be an arbitrary left factorization of H. Then 

Dy = N u  ~ Dly = Nlu,  (2.3) 

that is, an 10 pair with respect to (D, N)  is also an I 0  pair with respect to 
(D1, N1). Thus a left co-prime factorization generates the smallest set of I 0  
pairs associated with any left factorization of H.  Moreover, ( DI ,N1)  is left 
co-prime iff the converse of (~.3) holds. 

Proof. In view of Theorem 10, we only need to prove that if equivalence holds 
in (2.3), then also (D1, N1) is left co-prime. In view of the preceding lemma, 
let (/9, N) be an arbitrary right factorization of H,  then 

Dly = Nlu  r Dy = N u  ~ 3v : u = Dv, y = Nv.  

Oberst's duality theorem (i.e., the converse of the fundamental principle) 
implies that [ N1 -D1 ] is a minimal left annihilator, hence left co-prime. 

[] 
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The co-prime factorization is illustrated by the following example. 

Example 2.4.1. Consider 

H = Sa/Sl �9 ~ ( 8 1 , 8 2 ,  , 

Computing a minimal left annihilator of 

M 0 =  Is1] 
83 

, s 3  ooEslj 

yields the left co-prime factorization 

[~ I [ N I - D  ] =  s3 
--82 

--83 82 ] 
0 - s l  . 

Sl 0 

We have Z(D) = (82,8182, s183). Note that (Do,No) is already a right co- 
prime factorization of H and that Z(Do) = (Sl) ~ Z(D). 

This phenomenon was already observed by Lin [41] for classical factoriza- 
tions of rational matrices in r > 2 indeterminates. It signifies that another 
classical result fails to generalize to the multidimensional setting: For 1D 
systems, we have det(D) = det(/9) (up to non-zero constant factors) for a 
right co-prime factorization (D, N) and a left co-prime factorization (D, N) 
of H = D - 1 N  = N D  -1. It is known however [46] that the result still holds 
for 2D systems, and we will shortly recover this fact using different methods. 
It will turn out that even for dimensions r > 2, there are some interest- 
ing connections between the determinantal ideals associated to right and left 
co-prime factorizations. 

2 . 5  F a c t o r i z a t i o n  I d e a l s  

We start by quoting a fundamental result from the theory of factorization 
ideals as developed by Buchsbaum and Eisenbud [14]; see also Northcott [47, 
Ch. 7]. 

T h e o r e m  11 [14, 47] Let (D,N)  be a left co-prime factorization of H,  and 
let (D, IV) be an arbitrary right ]actorization of H. As usual, let 

[~ R = [ N - D ]  and M =  1~ " 

Then there exist ideals fro, `71, ,72 C_ D such that 
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1. Z ( M ) = :71:7o; 
e. z ( R )  = `75`71; 
3. codim(`7/) > i + 1 for  i = 0, 1, 2. 

Furthermore, if M has n columns and rank m, then ,70 can be generated by 

column rank (e.g., if M = Mo as in Algorithm 2). Then ,70 is a principal 
ideal, moreover, it is the smallest principal ideal containing Z(M).  

We only present a small ingredient of the proof of Theorem 11 tha t  is 
crucial for our derived results below: Let R be a minimal left annihilator of 
M,  then there exists a finite free resolution 

0 ~ Ft --+ . . .  --+ F2 : = / ) l x g  .__~R F1 :=  ~)lxq -M-~ F0 := ~r)lxn....~ cok(M) ~ 0 

of cok(M) = DlXn/DxxqM. Let M (m) denote the m- th  exterior power [47, 

p. 4] of M E Dq • n, tha t  is a q • matr ix  whose entries are the 
m m 

m x m minors of M.  Each row of M ('~) corresponds to a part icular  choice of 
m rows of M,  say those with row indices 

1 < il < . . .  < im < q. (2.4) 

For the sake of uniqueness, we assume tha t  these m-tuples  are ordered lexi- 
cographically; and analogously for the columns of M (m). As rank (M) = m,  

Z ( M )  = :T.m(M) -- Zl(M(m}). 

Similarly for R E 77 )g• with rank (R) = p = q - m, we have Z(R) = Zp(R) = 

Zl(R(pI) 'andR(P)has ( g )  r~ ( q )  = (  q ) p m 

the si tuation of Theorem 11, there exist column vectors U and W, and row 
vectors V, Z such tha t  

R (p) = UV and M (m) = WZ.  (2.5) 

Moreover, the entries of W and V are the same (up to non-zero constant  
factors), indeed the entry of W tha t  corresponds to the rows of M with row 
indices (2.4) equals (up to a non-zero constant  factor) the entry of V tha t  
corresponds to the p columns of R with column indices 

{1 , . . .  ,q} \ { i l , . . .  ,im}. 

In particular,  ZI(W) = ZI(V) =: `71. With  `70 := • l (Z) ,  `72 := ZI(U),  we 
have 

Z(M) = :[1 (WZ) = Z1 (W)Z1 (Z) = `71 ̀ 70, 

and similarly, Z(R) = ,.7"~J1. 
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Example 2.5.1. Consider once more 

[0....] is] R =  83 0 - s l  and M =  82 �9 
--82 81 0 83 

Factorizations according to (2.5) are given by 

[ . ,  ...3 s s3] [.3] 
a ~2)= -8=s3 87 -8182 = -82 [83 -82 ~1 ]  

8183 --8182 821 81 

and M (1) = M has the trivial factorization W = M,  Z = 1. Then `]o = 
l)  = ~[Sl,S2,83] and ,]1 = ,]2 = (81,82,83). Alternatively, one could find 
these ideals by looking at Z(R)  2 s 2 s 2) and Z ( M )  (81,8182,8183, 2,8283, 
(Sl, s2, s3), and using the characterizations given in Theorem 11. The  smallest  
principal ideal tha t  contains the zero-dimensional ideal Z ( M )  is the whole 
of :D. Thus ,:To = (1) = D, and ,]1 = ,]2 = Z ( M ) .  

C o r o l l a r y  8 Let (D, N) ,  (D, 1~), R, M ,  and ,70, ,]1, ,]2 be as in Theo- 
rem 11. Then there exists a principal ideal ,]1' C J1 such that 

1. z ( b )  = `]1',]o; 
2. Z ( D ) = ,]2 ,]1' . 

Moreover, `]1' is generated by the greatest common divisor of the p x p minors 
of D, that is, ,]1' is the smallest principal ideal containing Z(D) .  

Proof. The p-th exterior power of D is the last column of R (p). Similarly, 
/~(m) is the first row of M (m). In view of (2.5), 

D(m) : Wl Z , 

where Wl denotes the first component  of IV. Up to a non-zero constant  factor, 
Wl is also the last component  of V, hence 

D (v) = UWl (2.6) 

(up to non-zero constant  factors). Hence with J l '  := (Wl) c_ Z I ( W )  = J1,  
we obtain 

z O O )  = ; : , , , (D)  = z ~ ( b ( ' ) )  = ( w , ) ~ , ( Z )  = ` ] , ' ` ]o .  

Similarly, Z(D)  = fl2`]1'. Finally from (2.6), wl is certainly a common divisor 
of the entries of D (p). Suppose tha t  the entries of U possess a non-constant  
common factor, say h. Then ZI(U) C_ (h), and hence codim(Zl(U))  _< 
codim((h))  = 1. But  we know tha t  codim(~2) = codim(Zl(U))  > 3, and 
hence we conclude tha t  the entries of U are devoid of a non-constant  com- 
mon factor. Thus Wl is the greatest  common divisor of the p x p minors of D. 

[3 
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= (Sl,SlS2, sis3), hence Example 2.5.~. In Example 2.4.1, we have Z(D) 2 
J l '  = (Sl). Note that codim(ffl') = 1 (compare this with Statement 3 in 
Theorem 11). 

It is worth noting that in the situation of Theorem 11 and Corollary 8, 
the ideals Z(R), Z(D),  and thus also if1* are uniquely determined by H. 

2 . 6  T h e  B i v a r i a t e  C a s e  

Hilbert's syzygy theorem [39, p. 208] implies that for 7) = F [Sl, s2], F a field, 
any finitely generated :D-module .hd possesses a finite free resolution of length 
I _< 2. The following fact is implicit in [48, p. 148]. As it is crucial for the 
considerations below, we shortly restate it. 

T h e o r e m  12 [48] A minimal left (right) annihilator of a bivariate polyno- 
mial matrix is either zero or can be chosen to be a matrix with full row 
(column) rank. 

Proof. Let M E "D qxn be given. Let 

ker(M) = {17 E DlXq,r/M = O} and cok(M) = Dlxn/:DI• 

A polynomial matrix is a minimal left annihilator of M iff its rows generate 
ker(M). The sequence 

0 --r ker(M) r 7:) l• M) ~)l• __~ cok(M) --* 0 

is exact. As cok(M) is a finitely generated :D-module, there exists a finite free 
resolution of cok(M) of length _< 2. We conclude that ker(M) is free, which 
yields the desired result: Either ker(M) = 0, which corresponds to a full row 
rank matrix M, whose left annihilators are necessarily zero, or ker(M) r 0, 
in which case it can be spanned by a set of linearly independent row vectors. 
The assertion on minimal right annihilators follows by transposition. [] 

It is important to note that in spite of Theorem 12, it does not suffice 
to solve the linear system of equations r/M = 0 over the field/C = F (sl, s2) 
when searching a minimal left annihilator of M. This is true although we can 
choose every generator 7/of ker(M) such that the polynomials ~1,. . .  , rjq are 
co-prime. 

Example 2.6.I. The left kernel of 

M_-[ 
is generated (over/C) by 

s z + l  ] 
82 

8182 
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~ _ _ [  - s2  8 t + l  0 ] 
- s i s 2  0 sl + 1 " 

A minimal left annihilator of M is given by 

R :  I - s 2  s l + l  0 ]  
- s2  1 1 " 

Its row module is strictly greater than that of R. This is of course due to the 
fact that R is minor left prime, whereas/~ is not. 

Recall that any polynomial matrix R can be factored as R = X R  c with 
R c left prime. In view of Theorem 12, the matrix R c can be assumed to 
have full row rank in the bivariate situation. Then X is unique up to post- 
multiplication by a unimodular matrix. Thus it is justified to speak of the 
g rea te s t  left  fac tor  of a bivariate matrix. Similarly, two bivariate polyno- 
mial matrices D and N with the same number of rows possess a well-defined 
g rea t e s t  c o m m o n  left fac tor  (GCLF). 

Another consequence of Theorem 12 is that the minimal left annihilator 
of M0 in Algorithm 2 can be chosen to be a full row rank matrix. Then 
D is a square matrix, and the left factorization is H = D - 1 N .  This is the 
fundamental reason why it is justified to restrict to classical factorizations 
(with square denominator matrix), in the 2D just like in the 1D case. Many 
authors, including Morf et al. [46], have used classical matrix fraction descrip- 
tions for 2D transfer functions. This section aims at pointing out why this 
approach works nicely for 2D systems, but is bound to become inadequate in 
dimensions greater than two. 

The co-prime factorization is illustrated by the following example. 

Example  2.6.2. Consider 

H -  l [ sl  - s ts2 - 1 +  s2 - s~ - 2 8 2 ]  
s t - s 2 - 1  - s t  + s ts2 + s 2 + s 2  st + s2 + l 

and let 

1~0.._ [ S l - S l S 2 - 1 + 8 2 - 8 2 2  -2s2 ] D o = ( s l _ S 2 _ l ) [ 2 "  
- 8 1 +  sts2 + s~ + s2 st  + s2 + l ' 

Computing a minimal left annihilator of 

Mo = [ Do 

yields the left co-prime factorization 

R:CN,-O1:[-s2 I s2 Is2-1 -s2 ] 
s2 sl  + 1 - s l  -81  + 1 " 
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As the 2 x 2 minors of R generate the whole of 79 = l~[sl,s2], we have 
/ :(R) = 79. Note tha t  

/ : ( D )  = ( s ~  - s ~  - 1 ) .  

Furthermore (Do, fi/0) is not right co-prime a n d / : ( D o )  = ((sl - s2 - 1) 2) 7 ~ 
/ :(D).  The relation between these determinantal  ideals will be discussed be- 
low. 

This example is closely related to the one given in [4]. In fact, H = A-1B, 
where 

and 

A= [ 82+281S2"t-Sl S21--SlT28182--82] 
2SlS2 + Sl + S2 + 1 2SlS: 

Sl+S~ sT+sl+2sls2+s2 1 
B = s~ - sis2 + sl - s2 + 1 282(81 + 1) " 

Thus N and D can be seen as factors of A and B after extract ion of their 
greatest  common left factor, in fact 

[ sl Sl+S2 ]D and B =  [ Sl sl+s2 IN" 
A =  s l + l  s2 s l + l  s2 

Compar ing with the result given in [4], we find tha t  the GCLF given there, 
namely 

s2 - sl - 1 sl + 1 sl + 1 s 2 1 0 

differs from the one computed above only by a post-mult ipl icat ion by a uni- 
modular  matrix.  

The characterizations of co-prime factorizations in terms of determinanta l  
ideals that  were derived in the preceding sections have nice special versions 
in the bivariate situation. 

The co-dimension of an ideal Z C 79 = F Is1, s2] is either zero (corresponds 
to Z = 0), or one, or two (corresponds to a zero-dimensional Z, i.e., one for 
which 79/Z is finite-dimensional as an F-vector  space). The co-dimension of 
79 itself is set to be oc as usual. Obviously, codim(Z) > 3 already implies tha t  
5[=79.  

If  R has full row rank, the condition codim(Z(_R)) _> 2 is equivalent to 
minor (and thus classical factor [46]) left primeness of R. As mentioned in 
Chapter  1, Wood et al. [83] showed tha t  then the claim of Theorem 2 is 
actually an equivalence. This implies tha t  generalized factor left primeness 
coincides with minor and classical factor left primeness in the case of full row 
rank bivariate matrices.  



2.6 The Bivariate Case 55 

C o r o l l a r y  9 [14, 47] Let (D, N)  be a left co-prime ]actorization of H,  and 
let (D, N)  be an arbitrary right ]actorization oJ H. As usual, let 

[~ R =  [ N - D  ] and M =  1~ " 

Then there exists an ideal Jo C_ 7? such that 

Z (M)  = Z(R)Jo.  

Furthermore, if M has n columns and rank m, then Jo can be generated by 

( n )  e l e m e n t s ' A p a r t i c u l a r l y i n t e r e s t i n g s i t u a t i ~  

column rank (e.g., if M = Mo as in Algorithm 2). Then ,.70 is a principal 
ideal, moreover, it is the smallest principal ideal containing Z(M) .  

Example 2.6.3. Consider once more 

and 

R =  [ - s 2 + l  s2 - s 2 - 1  - s2  ] 
s2 sl + 1 - s l  - s l  + 1 

M o  = 

81 - 8 2  - 1 0 

0 81 - s2 - 1 
sl - sis2 - 1 + s2 - s 2 --282 

- s l  + sls2 + s 2 + s 2  sl + s2 + l 

from the previous example. Factorizations according to (2.5) are given by 

and 

1//0(2) = 

S l  - -  8 2  - -  l 

-2s2  
s 1 + 8 2 + 1  

s~+s l s2  - s2 - s l + l  
8 1  - -  8 2  - -  8 1 8 2  - -  8 5  

s l + l  - s2 - sis2 - s~ 

(sl - s2 - 1) 

_~(2)  = [81  -[- 1 - -  82  - -  8 1 8 2  - -  82  , - - ( 8 1  - -  82 - -  8 1 8 2  - -  S2)  , 

s 2 + s l s 2 - s 2 - s l + l ,  s l + s 2 + l ,  2s2, s l - s 2 - 1 ]  

which has the trivial factorization U = 1, V = R (2). Recall that  Z(R) = D. 
N o w  Z ( M o )  = S o  = ( s l  - 82 - 1 ) .  

C o r o l l a r y  10 Let (D, N) ,  (D, N) ,  R, M,  and Jo be as in Corollary 9. Then 
Z(D) is a principal ideal and 

Z(D) = Z(D)Jo.  
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Proof. The p-th exterior power of D is the last column of R (p) (up to the 
sign). Similarly, b (m) is the first row of M (m). In view of (2.5), 

/~(rn) ---- Wl Z, 

where wl denotes the first component of W. Up to a constant factor, wt is 
also the last component of V, hence 

D (v) = Uwl 

(up to constant factors). On the other hand, as codim(,Tz) -- codim(Z1 (U)) > 
3, the entries of U generate the whole of :D, thus Z(D) = Zp(D) = 171 (D (p)) = 
(Wl). Hence 

Z(b)  = Zm(D) = Z,(D (m)) = (Wl)Z,(Z) = Z(D)Jo. 

It remains to be noted that  Z(D) is generated by wl, which is the greatest 
common divisor of the p x p minors of D. O 

Example 2.6.4. In the example discussed above, we have Z(D) = Jo = (Sl - 
s2 - 1), and accordingly, I ( / ) )  = ( ( 8 1  - 8 2  - 1)2). 

Finally we turn to doubly co-prime factorizations and recover a result 
that  is well-known in the 1D setting, and has been proven to hold for classical 
factorizations in the 2D case [46]. 

C o r o l l a r y  1I  Let (D,N)  be a left co-prime factorization of H, and let 
(D, N) be a right co-prime factorization of H. Let R and M be defined as 
usual. Then 

Z(R) = Z(M) and Z(D) = Z(D). 

Proof. Double co-primeness means: R is a minimal left annihilator of M,  and 
M is a minimal right annihilator of R. Thus the sequences 

Dlxg R Dl• M) Dlxn and DI• M~ ,vlxq R T) ~lXg 

are exact and they can be extended as finite free resolutions of cok(M) 
and cok(RT), respectively. Consider the faetorizations according to (2.5), 
let R (p) = UV, M (m) = W Z  and, (MT) (r") = 0"9, (RT) (p) = f f ' Z  with 

•1 (W) = Z1 (V) and /71 (I~) = Z1 ('r 

Recall that  we must have Z1 (U) =/71 (0") = D. Now taking into account tha t  
(RT)(p) = (R(p)) T, 

Z(R) = Z 1 (U)Z 1 (V) = Z 1 (V) : Z 1 (W) = Z 1 (~r)Zl (2) 

and 

Z(M) = ZI(0")ZI(V) = ZI(V) = :Z1 (lYe ") = Zl(W)Zl(Z) ,  

hence Z(R) = Z(M)Zx (2) and Z(M) = Z(R)Z1 (Z). "We conclude that  Z(R) = 
Z(M) and the statement for the denominator matrices D and b follows. [3 
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A variety of design problems can be solved using the well-known parameter- 
ization of all stabilizing controllers of a plant. This parameterization, first 
introduced by Youla et al. [87] in 1976, is now a fundamental ingredient of 
almost every textbook on robust or optimal control. It is based on co-prime 
factorizations of the plant, which is represented by a rational transfer matrix, 
over the ring of stable rational functions. 

For one-dimensional (1D) systems, i.e., univariate rational functions, co- 
primeness admits a characterization in terms of B@zout relations, and these 
are essential for deriving the desired parameterization. In the presence of 
more than one independent variable, there are several notions of co-primeness: 
Zero co-primeness is a strong form which admits a "lD-like" B~zout relation. 
Minor co-primeness is a weaker form which gives rise to a generalized type of 
B@zout relation. However, the concept is still restrictive as there are rational 
matrices that do not possess a minor co-prime factorization (an example 
is given below). Therefore, we will use the alternative notion of a co-prime 
factorization developed in the previous chapter. It guarantees the existence 
of co-prime factorizations for arbitrary rational matrices. 

Within this framework, we give necessary and sufficient conditions for 
stabilizability. Analogously to the 1D case, the existence of a zero co-prime 
factorization of the plant is sufficient for stabilizability. This has been noted 
by various authors [82, 86]. In the one- and two-dimensional case, the condi- 
tion is also necessary. For 2D systems, this result was established by Guiver 
and Bose [30]. For rational matrices of more than two variables, however, we 
shall only be able to show that stabilizability is a property that lies "between" 
freeness and projectivity of certain modules associated to the plant. This re- 
sult is due to Sule [73] who obtains it within the very comprehensive setting 
of systems over commutative rings. Using different methods, Lin [41] derived 
another necessary and sufficient condition for stabilizability of n-dimensional 
systems. 

3.1 Co-primeness over Rings of Fractions 

Let F be a field, and let ~ := F [z] denote the polynomial ring in the inde- 
terminates z --- (zl . . . .  , zn). Let Q denote a multiplicatively closed subset of 
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:P, in particular, 1 E Q. For simplicity, we assume 0 r Q. Define the ring of 
fractions of P with denominator set Q by 

PQ: {P IpEP, qE Q}. 

By means of the canonical injection P -+ PQ, p ~+ 1 ~, we identify 7, as a 
sub-ring of PQ. Naturally, PQ is in turn a sub-ring of T~ := F (z), the field of 
rational functions of z. 

Example 3.1.1. 

1. Let Q denote the set of polynomials with a non-zero constant term. Then 
C := 7,Q is the ring of causal rational functions. 

2. Suppose that  F = 1r or F = C. Take Q to be 

where 

Q = {p 7, I p(r # o vr e 0"}, 

0 =  I1r < t}. 

Then 7,Q is the set of structurally (or internally) stable [30] functions. A 
weaker stability concept is obtained when 

Q = {p E 7, I p(O,... ,O,r ,O) # O VI < j < n, r E O}. 

The elements of :PQ are called practically BIBO (bounded input, bounded 
output) stable [1]. 

In the following, let $ denote a ring of fractions of 7,, with denominator 
set Q. Clearly, the set of units of 8 is 

U ( S ) = { q I p ,  q E Q } .  

Note that  8 is a factorial ring [39, p. 81], in fact, the irreducible factors of 
s = qa E S are precisely the irreducible factors of p over 7,. This is due to the 
fact that  s and p are associated, that  is, they differ only by a factor in U(S). 
Thus any two elements of 8 possess a well-defined greatest common divisor 
(gcd). Two elements of S are said to be co-prime if their gcd is in U(S). The 
greatest common divisor of two polynomials over 7, is denoted by gcdp. The 
following lemma summarizes these considerations. 

L e m m a  3.1.1. For i -- 1, 2, let si = ~ E 8. Then q, 

gcd(sl,  s2) = gcdp(pl,p2).  

In particular, sl and s2 are co-prime iff gcdp(pl,p2) E Q. 
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As usual, the concept of gcd can easily be extended to any finite number 
of elements of S, and we write gcd ( s l , . . .  , sk) for k >_ 1. Co-primeness can 
also be characterized in terms of generalized Bdzout relations. 

L e m m a  3.1.2. Two elements Sl,S2 E $ are co-prime if]for all 1 < j < n, 
there exist *(J) ~0) ~1 ,~ E S such that 

t~ j) s, + t~ 3) s2 = p(J) (3.1) 

where 0 # p(J) E P is independent of zj. 

We write z 0) := (z l , . .  �9 , z3-1, Z~+l,. �9 �9 , zn). The ring Y (z(J))[z3] of poly- 
nomials in the single indeterminate z j, with coefficients that  are rational 
functions of the remaining variables, is again a ring of fractions of 79, with 
denominator set F [z (j)] \ {0}. 

Proof. "only if": Let si = ~ and q := gcdp(pl,P2) E Q. A s  F(Z(J))[Zj] is a 

principal ideal domain, there exist el j) e 79 and bl j) E F [z(J)] \ {0} such tha t  

(5) a~J) 

Hence 

a(J)i ,(3) (3),(3) o2 ql P l +  a2 ol q2 p2 ~(J)~(3) 
. . . .  = V l  ~ 2  q ql q q~ 

which yields the desired representation. 
"if": By (3.1), gcd(sl ,s2) divides pO) for all j .  Then it also divides 

gcd(p(1),...  , p(n)). However, gcd~ (pO), . . .  , p(n)) = 1. [] 

The generalization of Lemma 3.1.2 to an arbitrary finite number of ele- 
ments of S is obvious. Next, we consider co-primeness of matrices over $. For 
convenience, we sometimes suppress the matrix dimensions and simply write 
M(S) for the set of matrices with entries in S (analogously for T~). By the 
rank of such a matrix, we mean its rank when considering it as an element 
of M ( ~ ) .  

De f in i t i on  16 A full column rank matrix M E 8 l• are said to be m i n o r  
r igh t  p r i m e  if its minors of order k are co-prime. Two matrices D, N E 
M($)  with the same number of columns are called m i n o r  r i gh t  c o - p r i m e  
if the block matrix IN T, DT] T is minor right prime. Left minor (co-)primeness 
is defined by transposition. 

We derive a generalized matrix B6zout equation for co-prime matrices 
over S. The transition from the scalar to the matrix case is analogous to the 
case of co-primeness over P (see [88]), however, we give the proof for the sake 
of completeness. 
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T h e o r e m  13 A full column rank matrix M E S t• is minor right prime iff 
there exists, for 1 < j < n, a matrix T(J) E S k• such that 

T(J) M = p(J) Ik 

where 0 ~ p(J) E 7 9 is independent of zj.  

Proof. "if": It follows from the Cauchy-Binet theorem [27] that 

det(T O)M) = ~ t~J)mi, 
i 

where mi are the k • k minors of M, and tl j) are those of T (j). On the other 
hand, det(T(J)M) = p(j)k. It follows from Lemma 3.1.2 that the minors of 
M must be co-prime. 

"only if": For each minor mi of M, there exists a permutation matrix/-/z 
such that H i M  = [ M T, MT] T with det(Ml~) = mi. Then [adj (Mli), O ] Hi M = 
mi I ,  where adj (-) denotes the adjoint of a matrix. We conclude that, for each 
minor mi, there exists Ni E S k• such that N i M  = mi I .  Hence, if there exist 
tl j) e S such that/-,ix-~ t(J)m~ i =  pO), then (~':~i t~J) Ni) M = p(J) I. [] 

Similarly, we have the following stronger co-primeness concept. 

Defini t ion 17 Two elements sl, s~ E S are called zero co-pr ime if there 
exist tl, t2 E S such that 

t l s l  q-tzs2 = 1, 

that is, if the ideal generated by st and s2 is all of S. A matrix M E S txk is 
said to be zero r ight  p r ime  if its minors of order k are zero co-prime, that 
is, if 

Zk (M)  = S, 

where 77k (M) denotes the ideal generated by the minors of M of order k. Two 
matrices D, N E M ( S )  with the same number of columns are called zero 
r ight  co-pr ime if the block matrix [N T, DT] T is zero right prime. Zero left 
(co-) primeness is defined by transposition. 

We give the following result without proof, as it is completely analogous 
to Theorem 13 above. 

Coro l la ry  12 A matrix M E S t• is zero right prime iff it possesses a left 
inverse over S,  that is, if  there exists a matrix T E S kxt such that 

T M = I k .  
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Definition 18 We say that  a rational matrix H �9 T~ pxm has a minor (zero) 
right co-prime factorization if there exists N �9 S p• and a non-singular 
D �9 S m• such that  

H = N D  -1 

and D, N are minor (zero) right co-prime. 

It turns out that  these notions are restrictive in the sense that  there are 
rational matrices that  do not even permit a minor co-prime factorization over 
S. 

Example 3.1.2. Let C be the ring of causal rational functions, and let 

H =  [ z_r ~ ]fill~(zx,z2 z3) 1• 
Z3 Z3 

Suppose that  H = N D  -1 with N �9 C 1• and D �9 C 2• Then we must have 

[ zl z2 ]D-=z3N .  

This implies that  all the entries of D must be multiples of z 3. But then the 
minors of [g T, DT] T of order 2 have z3 qt U(C) as a common factor. 

Our next goal is to get rid of the full rank requirement in Definition 16. We 
use the generalized notion of co-primeness from the previous chapter, which is 
such that  any rational matrix possesses right and left co-prime factorizations 
in this sense. 

Definition 19 A matrix M E M(3)  is said to be r i gh t  p r i m e  if, for any fac- 
torization M = M1X, where M1,X  �9 M(S) ,  and rank(M)  = rank (M1), we 
must have M1 = M Y  for some Y �9 M(3) .  Two matrices N, D �9 M(S)  with 
the same number of columns are called r i g h t  c o - p r i m e  if the block matrix 
IN T, DT] T is right prime. Left (co-)primeness is defined by transposition. 

Definition 20 A right factorization of H E M(7~) is a pair of matrices 
D, N E M ( $ )  such that  H D  = N and D has full row rank. A right c o - p r i m e  
factorization is one in which D and N are right co-prime. Left (co-prime) 
factorizations are defined by transposition. 

The following facts are known to hold for factorizations over P (see Theo- 
rem 8). Again, they translate straightforwardly to factorizations over $,  and 
we give proofs only for the sake of completeness. 

Lemma 3.1.3.  A matrix M E M(S )  is right prime iff it is a minimal right 
annihilator, that is, if there exists an R E M ( s  whose kernel is generated by 
the columns of M.  
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Proof. "only if": Let M E S t• be right prime, and let R E M(S) be a matrix 
such that R M  = 0 and rank (R) + rank (M) = I. Such a matrix results, for 
instance, from computing a basis of the kernel of M T over 7~ (without loss 
of generality, such a basis can be chosen with entries in S only). Now let M1 
be minimal right annihilator of R, then rank (M) = rank (M1) and 

ker(R) = im(M1) D im(M). (3.2) 

But then there exists X E M(S)  with M = M1X and, due to the right prime- 
ness of M, M1 = M Y  for some Y E M(S).  But then the three S-modules in 
(3.2) are all equal, implying that also M is a minimal right annihilator (of 
R). 

"if": Let M be a minimal right annihilator, say of R, and suppose that 
M = M1X for some X E M(S)  with rank (M) = rank (M1). Then 

ker(R) = im(M) C_ im(M1). 

Certainly, Mx = MY for some Y E M(T~). Thus RMI = 0, showing that 
the three modules are again equal. Hence we must have M1 -- M Y  for some 
Y �9 M(S).  0 

T h e o r e m  14 Any rational matrix possesses right and left co-prime factor- 
izations. 

Proof. Let H �9 7~ pxm be given. There exists a natural representation H = 
l~I/d with /V �9 S p• and 0 # d �9 S. Thus, with b := dip we have H = 
/~-l/~. Now define the block matrix R := [ -D,  N] and compute a minimal 
right annihilator of R, say M = [N T, DT] T with the suitable partition. Then 
D, N provides a right co-prime factorization of H, because N = D-11VD = 
H D and 

r a n k ( D ) = r a n k [ H D  ] = r a n k  [ N o] = p + m - r a n k  [ - / )  

D 

Note that if D, N and D1, N1 are two right co-prime factorizations of H, 
then 

3,4 := im D = i m  171 " 

Thus, the matrix H E ~pxm determines a finitely generated module 34 C 
S p+m. Conversely, any generating system M of 34 = ira(M) gives rise to 
right co-prime factorizations (by selecting m rows that are linearly indepen- 
dent over ~ and collecting them, possibly after a permutation of rows, in 
the "denominator" matrix D). Consider the module 14~ := SP+~/34 and its 
dual counterpart T (constructed from left rather than right co-prime factor- 
izations). 
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L e m m a  3.1.4.  [73] A rational matrix possesses a zero right and a zero left 
co-prime ]actorization iff the associated modules )42 and 7" as constructed 
above are free. 

Proof. Let D, N be a right co-prime factorization of H E ~pxm and let 

[ N ] S(P+m)xk 
M =  D E 

Suppose that  14; = cok(M) is free. Noting that  rank (M) = m, this implies 
that  

cok(M) = S V + m / i m ( M )  ~- S p. 

Then there exists K E S vx(v+m) such that  

sk  M) sp+m g Sp "~ 0 

is an exact sequence. This means that  M is a minimal right annihilator of K ,  
which is surjective, that  is, zero left prime. With the parti t ion K = I - D ,  N], 
where b E S pxv, 1~ E S vxm,  we have ( D P  - I~)Dp = 0, and since DR has 
full row r a n k , / g P  =/~ ' .  Finally, as rank (K) = p = rank (/3), we have P = 
/~-I /~ ,  which constitutes a zero left co-prime factorization of P.  Similarly, 
one shows that  H has a zero right co-prime factorization if 7- is free. 

For the converse, let H = l~ /d  be any factorization of H over S, with a 
scalar d. Let D, N be a right co-prime factorization of H,  then 

is a minimal right annihilator of 

w = [  di, ], 

tha t  is, ker(W) = im(M).  Consider the mapping 

W : S p+m ~ S p, x ~-~ Wx.  

Then 

14; = S P + m / i m ( M )  = $v+rn /ker (W)  -~ im(W) 

X Y A - Y  I ,  [o ,] 

by the homomorphism theorem. Now if H has zero left and right factoriza- 
tions, say H = A B  -1 = [3-1.4 with B6zout equations X A  + Y B  = I and 
A X  + B Y  = I ,  we have 
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The matr ix on the right hand side is unimodular (i.e., it possesses an in- 
verse in M(S) ) ,  and thus the matrices on the left hand side must also be 
unimodular. Thus 

[ d e , - ~ J  B ~ = [ 0 - z ] ,  

where Z = dY + /~ ' ) (  is a non-singular p • p matr ix  with im(W) = ira(Z).  
This shows that  YV is free. A similar argument applies to T.  [] 

The subsequent section gives sufficient and necessary conditions for stao 
bilizability of a rational matr ix in terms of the associated modules }4; and T.  

3.2 Feedback Stabilization 
As signals, we consider n-fold indexed sequences with values in F,  tha t  is, 
our signal space is .4 = F N" . A causal plant H E C p• has a formal power 
series representation 

o o  o o  

l,~ 
= Z :  ' Z :  h (z l , . . .  ,t ,)z~l . . .  z ,  

/1=0 /~----0 

where h(l l , . . .  ,ln) E F p• Hence, given an input signal u E .Am, we define 
the corresponding output  y = Hu by 

kl k,~ 

y(kl,... ,kn)= ~ . . .  ~ h(tl,... ,z,)~(kl- zl,... ,~ , -  z~) 
11=0 /,~----0 

where kj E N. Consider the following s tandard feedback configuration: 

U2 e2 
~ f  

Fig. 3.1. Feedback Loop. 

I C I_ el 
I 

Ul 

The  system equations are 

I 
I e2 Ul I "  U2 

(3.3) 
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D e f i n i t i o n  21 We call the feedback system we l l -posed  if the rational ma- 
trix appearing in (3.3) is non-singular, which is true iff P E 7~ p• and 
C E T~ m• are such that  de t ( I  - PC) # O. We say that  C is a s tab i l iz -  
ing  c o n t r o l l e r  for P (or, for short, C s tab i l izes  P) if 

I p ] - I  
H(P,C)  := C I E M(S).  (3.4) 

A plant P is called s t ab i l i zab l e  if it possesses a stabilizing controller C. 

Although an action of non-causal rational functions on signals has not 
been defined, we consider the stabilization problem for arbitrary rational 
matrices P and C. Of course, we might just as well restrict to the ring C of 
causal rational functions, requiring tha t  ~ C_ S C s C T~. 

Our next goal is to characterize the stabilization property (3.4) in terms 
of right co-prime factorizations of plant and controller, in a well-posed loop. 
For this, let P D p  = Np and C D c  = Nc  be right co-prime factorizations of 
P and C, respectively. Then we have 

[,  ][oc 0] [oc 
C I 0 Dp = Nc  Dp " 

Since Dc and Dp have full row rank, and since the leftmost matrix is non- 
singular, the matrix on the right hand side has full row rank. Hence 

is a right factorization of H(P, C). 

L e m m a  3.2.1. The factorization (3.5) is right co-prime. 

Proof. We need to show that  

Dc 
0 

Dc 
Nc 

0 
DR 
Np 
Dp 

I O 0 0 
0 I 0 0 
I O I O 
0 I O I 

Dc  0 
0 Dp 
0 Np 

We 0 

is right prime. However, this follows directly from the right co-primeness of 
De,  N c  and DR, Np,  respectively, n 

T h e o r e m  15 Let D, N E M ( 8 )  be a right co-prime factorization of H E 
M ( ~ ) .  We have H E M(8 )  iff there exists a right inverse D b e M ( s  of D. 

Proof. "if": We have H D  = N.  If DD b = I for some D b E M(8 ) ,  then 
H = N D  b e M(s  

"only if": Suppose tha t  H E ,.qp• then rank(D)  = m and 
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[N] 
D = Im D 

is a factorization of [N T, DT] T o v e r  S. We have 

rank [ N ]  =rank [ HDD ] = r a n k ( D ) = m = r a n k  [ H ] 
D Im " 

The right co-primeness of D and N implies that  there exists D b E M ( 8 )  such 
that  

H 
D JD,. 

[3 

C o r o l l a r y  13 Let P and C be such that I -  PC is non-singular. Let PDp = 
Np and CDc = Nc be right co-prime factorizations of P and C, respectively. 
Then C stabilizes P iff 

[ D c  N p ]  (3.6) 
R := Nc  DR 

possesses a right inverse over $, that is, if] R is zero left prime. 

A necessary condition for the existence of a stabilizing controller is now 
easily obtained: Suppose that  R from (3.6) is zero left prime, that  is, 

Zp+m(R) = S. (3.7) 

Consider the minors of R of order p + m, each corresponding to a selection 
of p + m columns of R = [Me, MR]. As rank (Mc) = p and rank (MR) = m, 
we must take precisely p columns of Mc and m columns of MR, in order 
to obtain a non-zero element of Ip+m (R). Using determinant  expansion by 
minors, this implies 

Zp+m(R) C_ Zp(Mc) M Zm(Mp). 

Combining this with (3.7) we get Zp(Mc) = ,5 = Zm(Mp) as a necessary 
condition for R = [Mc, MR] to be zero left prime. 

T h e o r e m  16 

1. If P admits zero right and left co-prime factorizations, that is, if the 
modules }/V and T are free, then P is stabilizable. 

2. If P is stabilizable, then Vt~ and 7- are projective. 

Proof. 1. If P admits zero right and left co-prime factorizations, the set of 
stabilizing controllers for P can be paxameterized like in the 1D case [87]; 
see also [76], and for the multidimensional case [82]. To see tha t  the set 
is indeed non-empty, one may employ an argument given by Vidyasagar 
in [76, p. 96]. 
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2. Let Dp, Np be a right co-prime factorization of P ,  that  is, 

Np ] 8(p+m)xk 
M = Dp E 

is a right prime matr ix with rank (M) -- m and PDp = Np. If there 
exists a stabilizing controller for P,  we must have Zm(M) = $ according 
to the remark following Corollary 13. Then ~/V = cok(M) is projective 
[13] and a similar argument applies to T.  

D 

The preceding theorem characterizes stabilizability as a proper ty  that  
is weaker than freeness, and stronger than projectivity, of certain S-modules 
associated to a given plant, where S denotes a ring of stable transfer functions. 
The question over which rings projective modules are already free, is one of 
the fundamental problems of algebra, see for instance Lam's monograph [40] 
on Serre's conjecture. 



4 .  S t r i c t  S y s t e m  E q u i v a l e n c e  

The notion of strict system equivalence was introduced by Rosenbrock [63] 
and was subsequently refined by Fuhrmann [25]. It describes the connection 
between all least order realizations of a transfer matrix in terms of a polyno- 
mial system 

T x  = U u  (4.1) 

y = V x +  W u .  (4.2) 

Pugh e t  al. [57] generalized the notion to two-dimensional systems. The aim 
of this chapter is to give an account of the general r-dimensional situation. 
As pointed out in the previous chapter, the main difficulty is that  the usual 
concept of a right co-prime factorization of a rational matrix, which is of the 
form G = N D  - 1  with a polynomial matrix N, and a square non-singular 
matrix D, is restrictive for systems of dimension r > 2. Non-square "de- 
nominator" matrices D have to be admitted, and consequently, rectangular 
T-matrices have to be considered in (4.1). 

Let F be an arbitrary field, and let G be a rational p x m matrix in r 
indeterminates, with coefficients in F, that is, 

G C F (sl , . . .  , st) p• 

As usual, the term "polynomial matrix" will refer to matrices with entries in 
the polynomial ring F Is1,.. �9 , Sr], and r denotes one of the usual continuous 
or discrete signal spaces. 

Let D, N be a right factorization of G, that is, D and N are polynomial 
matrices with G D  --- N, and D has full row rank. Then the system of linear 
constant-coefficient partial differential or difference equations, for u E .4 'n, 
x E A N, y E A p, 

Dx = u (4.3) 

y = N x  (4 .4 )  

is called a rea l iza t ion  of G. These are precisely the driving-variable realiza- 
tions discussed in Chapter 2. A more general version of (4.3), (4.4) is given 
by 
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T x  = U u  

y = V x  + W u  

where T, U, V, W are polynomial matrices of dimensions p • n, p • m, p x n, 
p x m, respectively, T has full row rank, and V = H T  for some rational 
matr ix  H.  The transfer function is G = H U  + W as 

G u  = ( H U  + W ) u  = H T x  + W u  = V x  + W u  = y. 

This constitutes the class of systems we are going to consider. 

D e f i n i t i o n  22 A n  a d m i s s i b l e  s y s t e m  

Z = ( T , U , V , W )  

is g iven by polynomial  matr ices  T,  U, V, W of  size p x n,  p x m ,  p x n ,  p x m ,  
respectively,  with the fo l lowing propert ies:  

1. T has fu l l  row rank; 
2. there exists  a rat ional  ma t r i x  H such that V = H T .  

The rat ional  ma t r i x  G = H U  + W is called the t r a n s f e r  f u n c t i o n  of  S ,  and 

Z is said to be a r e a l i z a t i o n  of  G. 

We will also use the associated system matr ix 

P = - V  W = - H T  W " 

As T has full row rank, there exists a rational matrix X such that  T X  = Ip. 
Hence V X  = H T X  = H and G = H U  + W = V X U  + W .  Note tha t  the 
existence of H with V = H T  has to be postulated in our definition of an 
admissible system ( H  = V T  -1 in the familiar case when T is square and 
non-singular), whereas the dual property, U = T K  for some rational matr ix  
K,  is already implied by the rank requirement on T (take K = X U ) .  

Example  4.0.1. Consider once more the second set of Maxwell equations 
(1.33), (1.34) 

O D  
= V x H - J  

Ot 
p = V . D .  

Recall tha t  this is a full row rank system of four equations for ten unknown 
functions. Thus there are six free variables, e.g., the pairs (D,  H )  or ( H ,  J )  
can be considered as free variables of the system (but not (D,  J ) ) .  Although 
this cause-effect interpretat ion may be counter-intuitive from a physicist 's 
point of view, it is mathematical ly justified, by the nature  of this set of 
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that is, T = [ curl, 
matrix is 

equations. We take u = ( H , J ) ,  x = D ,  and y = p, that  is, T = s413, 
U =  [ curl, - / 3  ] , V = d i v ,  W = 0 ,  where 

s c u r l =  0 and d i v =  [ sl s2 s3 ] .  
- s 2  sx 0 

It is easy to see that  this system is admissible with H = ~ d i v  and transfer 
function 

G = H U =  1 [ 0, div ] E• ( s l , s2 , s3 ,  s4) ax6 
84 

Another interpretation, which is even of type (4.3), (4.4), is indicated by 

OD 
V x H  - J 

Ot 
p = V . D ,  

-s413 ], U = I ,  V = [ 0, div ], W = 0 .  Its transfer 

G =  - l d i v  
84 

and T, V are even a right co-prime factorization of G, that  is, the system is 
canonical in a sense to be defined below. 

4 . 1  S y s t e m  E q u i v a l e n c e  

D e f i n i t i o n  23 Two admissible systems (Ti, Ui, Vi, Wi) are said to be s y s t e m  
e q u i v a l e n t  if there exist rational matrices Qt, Rt,  Qr, R~ of dimensions 
P2 • P l ,  P • P l ,  n2 • n l ,  n2  • m ,  respectively, such that 

[Q, 0][ [  ][Qr Rr] ,,5, 
Rt Iv - V1 W1 = - V2 W2 0 Im " 

T h e o r e m  17 Two admissible systems (T~,Ui, Vi = H,T~,W~) are realiza- 
tions of the same transfer function iff they are system equivalent. 

Proof. "if": The constituent equations of (4.5) are 

QIT1 = T2Qr (4.6) 

QtU1 = T2Rr + U2 (4.7) 

RIT1 - 1/1 = -V2Qr  (4.8) 

R~UI + W1 = - V 2 R r  + W2 (4.9) 
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Using (4.7), 

G2 = H2Us + W2 = Hs(Q,U~ - T s R r )  + Ws = H : Q ,  U1 - Y s R r  + Ws.  

With (4.9), it follows tha t  

G2 = H2Q, UI + R, UI + W1 = (H2Q, + R~)U1 + W~. 

It remains to be shown tha t  H2Q, + Rt = H i .  To see this, consider 

VsQr = H s T s Q r  = H2QIT1, (4.10) 

where the second equality holds due to (4.6). Finally, we use (4.8) to obtain 

V2Qr = -R,T~ + V~ = -RtT~ + H~T~. (4.11) 

Comparing (4.10) and (4.11) yields (H2Q, + Rt)TI = HITI. Using that TI 
has full row rank, we conclude that H2Qt + Rl = HI as desired. 

~only if': Suppose that GI -- HIUI + WI = HsU2 + W2 = G2. Let Xi be 
such that TiXi -- Ip~. Then ViXi -- Hi and 

HI - H2FH1 Ip -V~ W1 = 

[ t = - v 2  w2  o I ~  

holds for any rational P2 • P matrix F.  We prove the claimed equality com- 
ponentwise. For the first row, we use T s X s  = I ,  hence 

T2X2FV~ = FV~ = FH1T~ 

and 

T2X2(FH1U1 - U2) + U2 = FH1U1 - U2 + U2 = FH~U~.  

For the (2, 1)-entry, we have 

(I-1, - H2FH1)T~ - V~ = - H 2 F H 1 T 1  = - H 2 F V I  = - V 2 X 2 F V 1 .  

Finally, we use the equality of the transfer functions in 

(HI - HsFH~)U~ + WI  = H1UI - H2FH1U~ + W1 

= H2U2 - H2FH1U1 + Ws 

= - H 2 ( F H 1 U ~  - U2) + W2 

= - V 2 X s ( F H 1 U 1  - Us) + W2. 

I7 
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In particular, Theorem 17 implies tha t  system equivalence is indeed an 
equivalence relation on the set of admissible systems. Equat ion (4.5) with 
polynomial intertwining matrices defines a relation between the system ma- 
trices P1 and P2 which is reflexive and transitive. Additional constraints have 
to be imposed to make the relation symmetric.  Rosenbrock [63] proposed uni- 
modulari ty of Ql and Qr, but this requires the system matrices to be of the 
same size (pl = P2 and nl  = n2). Fuhrmann [25] demanded that  Qt, 72 be 
left co-prime and 7"1, Qr right co-prime. Even if we use the strongest multi- 
variate co-primeness notion, zero co-primeness, when adapting Fuhrmann 's  
notion to the multivariate case, we still need that  PI + n2 = P2 h- nl  to have 
symmetry  of the relation. 

Example 4.1.1. Consider [10] [10][ u][,1 u]10 
0 1 - v l - v 2  w = - v l  -v2  w 0 1 

where tl ,  t2, u, vl, v2, w are scalar polynomials. The converse relation takes 
the form 

rt I - - V l  - -V2 W - - V  I - - V  2 W 1 " 

As q, [ tl, t2 ] = (tl + t2 ) [  qrl, q~2 ], it follows tha t  the zero righi.co- 
primeness requirement on 7"1 = [ t l ,  t2 ] and Qr = [ qrx, qr2 ] ca'hnot 
be satisfied, as the two row vectors are rationally linearly dependent.  

Section 4.3 will yield an interpretat ion of the requirement Pl + n2 = 
p~ + nl .  The  trivial way to obtain an equivalence relation ~ from a reflexive 
and transitive relation .~ is to define 

P1 -~ P2 :r P1 "~ P2 and P2 "~ P1 

and we will use this in our definition of strict system equivalence below. 

4 . 2  S t r i c t  S y s t e m  E q u i v a l e n c e  

Definition 24 We say that two admissible systems Ei = (Ti, U i ,~  = 
HiTi, Wi) of the same size (Pl = P2, nl = n2) are s t r i c t l y  s y s t e m  equiv- 
alent in the Rosenbrock sense (RSSE)  if (~.5) is true with polynomial 
intertwining matrices and Qt, Qr being unimodular. 

For admissible systems with Pl + n2 = P2 + n t ,  we define strict s y s t e m  
equivalence in the Fuhrmann sense ( F S S E )  by equation (~.5) with poly- 
nomial matrices such that Qt, T2 are zero left co-prime and Tl, Qr are zero 
right co-prime. 



74 4. Strict System Equivalence 

Two admissible systems of arbitrary size are said to be strictly_ sys- 
t e m  equivalent (SSE) /f there are polynomial matrices Qt, Qr, Ql, Qr and 
Rl, Rr, Rt, Rr such that 

Rt Ip -Y~ W~ = -V2 W2 0 Im 

and 

Rt Ip -Y2 W~ = -Yl W1 0 Im 

The following facts can be proven analogously to the one-dimensional case. 
The first one also follows from Theorem 20 below. A special case of the second 
can be found in [57], and the proof given there translates straightforwardly to 
the present situation. For the sake of completeness, we give it in an appendix 
at the end of this chapter. 

1. FSSE is an equivalence relation. Thus clearly, RSSE ~ FSSE =~ SSE. 
2. Two admissible systems with Pl + n2 = P2 T nl are FSSE iff a trivial 

expansion of one system is RSSE to a trivial expansion of the other. By a 
trivial expansion of (T, U, V, W), we mean a system with system matrix 

[ I  0 0 ] 
0 T U . 
0 - V  W 

The size of the identity blocks is chosen such that the expanded systems 
have T-matrices of the same size (note that this is only possible if Pl + 
n2 = P2 + nl holds). 

3. As an immediate consequence, we have that FSSE preserves left (zero) 
co-primeness of the T-, U-matrices and right (zero) co-primeness of the 
T-, V-matrices. 

Definition 25 By the determinantal  ideal of an admissible system 

= (T ,U ,V ,W) ,  

we mean the determinantal ideal of T, that is, the ideal generated by the 
minors of T of maximal order O.e., of order p x p, recalling that T has full 
row rank). 

The following fact on determinantal ideals is fundamental [47, p. 7]: If two 
p x n matrices T1 and T2 are equivalent, i.e., if there exist unimodular matrices 
Ql, Qr such that QtTt = T2Qr, then we have Z(T1) = Z(T2). Moreover, 
a trivial expansion does not change the determinantal ideal. The following 
theorem is an immediate consequence. 
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T h e o r e m  18 Two systems that are FSSE give rise to the same transfer 
matrix and have the same determinantal ideal. 

This generalizes a theorem of Rosenbrock [63, p. 52]. For a square non- 
singular matrix T, 

Z(T) = (det(T)), 

the principal ideal generated by the determinant of T. Then equality of the 
determinantal ideals means nothing but equality of determinants (up to a 
non-zero constant factor). 

De f in i t i on  26 An admissible system ~ = (T, U, V, W)  is said to be s t r o n g l y  
con t ro l l ab l e  (SC) if T, U are zero left co-prime. An SC system is called 
canon ica l  if T and V are generalized factor right co-prime. 

For F = IR or F = C, strong controllability is closely related to Rosen- 
brock's input-decoupling zeros [63, p. 64]. In fact, zero left co-primeness of 
T, U is equivalent to 

rank [ T(/~) U(/3) ] = r a n k  [ T U ] = p  for a l l / ~ � 9  r. 

At first sight, the notion of a canonical system may seem restrictive, but recall 
from (4.3), (4.4) that  any transfer function possesses canonical realizations, 
since any rational matrix admits right co-prime factorizations. Canonical sys- 
tems are "minimal" in the following sense (see Corollary 14 below): If an SC 
system (T1, U1,V1, W1) and a canonical system (T,U,V, W)  give rise to the 
same transfer function, then 

Z(T1) C_ Z(T). 

The corresponding relation for square non-singular T-matrices is that  det(T) 
divides det(T1). Hence a canonical system is a system of least order [63] in 
that  sense (among the set of all SC realizations of a transfer function). 

T h e o r e m  19 An SC system E = (T, U, V = HT, W)  is FSSE to an admis- 
sible system of the form ~ = (T, I, V = GT, 0), where G = H U  + W.  

Proof. Let the size of T and U be p x n and p x m, respectively. As T, U 
are zero left co-prime, they can be incorporated into the first p rows of a 
unimodular matrix [89], tha t  is, there exist polynomial matrices Qr, Rr such 
that  

Qr Rr 

is unimodular. Thus there exist polynomial matrices Y, Z, Qz, T of dimensions 
n x p, n x ~, m x p, m x ~, respectively, where ~ := n + m - p, such tha t  
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[y z] 
Q, -T = Qr Rr (4.12) 

Hence 

[0 ,fly [0 ,] v - w  Q, - ~  Q~ Rr = v - w  

which yields, with Rl := V Y  - W Q t  and V := V Z  + W T ,  

R, ~ Qr R~ = V - W  " 

This can be rewritten as 

,]. 
Noting that the sizes of T and T are compatible for FSSE, this establishes 
the desired relation, since the left zero co-primeness of Qt, T and the right 
zero co-primeness of T, Qr are direct consequences of (4.12). It remains to be 
shown that ~ = (T, I, V, 0) is an admissible system. From (4.12), T Z  = UT,  
hence 

= V Z  + W T  = H T Z  + W T  = (HU + W ) T  = G T  

with G = H U  + W as desired. Finally, assume that the first p columns of T 
are linearly independent (otherwise, perform a suitable permutation). In view 
of (4.12), a Schur complement argument (see the appendix at the end of this 
chapter) shows that 

Z2 

must be invertible, where Z2 denotes the last n - p rows of Z. In particular, 
has full row rank. O 

Coro l la ry  14 I f  an SC system Z1 = (T1, UI , lit, Wl  ) and a canonical system 
E = (T, U, V, W )  give rise to the same transfer function, then 

ZCTI) c_ :r(T). 

In particular, two canonical realizations of a transfer matrix have the same 
determinantal ideal. 

Proof. By Theorem 19, the systems can bereduced b~ FSSE to the respec- 
tive forms El  = (T1, I ,  V1 = GT1,0) and ,U = (T, I, V = GT, 0). As FSSE 
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preserves the co-primeness o fT ,V,  it follows that T1, 111 and T, V are two 
right factorizations of G with T, V being even right co-prime. But this implies 
that there exists a polynomial matrix Y such that 

As rank (~) = rank (:rl) = m, we conclude [47, p. 7] tha t  Z(T1) = Z(TY)C_ 
Z(T). According to Theorem 18, we have Z(T) = Z(T) and Z(Tx) = Z(Tx). 
This yields the desired result. [3 

The following corollary should be compared to the corresponding result 
of Rosenbrock [63, p. 106]. 

Coro l la ry  15 Two canonical systems are SSE  iff they are realizations of the 
same transfer function. 

Proof. Necessity follows directly from Theorem 17. For sufficiency, let 

~ = (Ti,Vi,  Yi = H i T .  W d  

be canonical systems with G := H1U1 + Wx = H2U: + W2. ByTheorem 
19, they can be reduced by FSSE to the respective forms ~i  = (Ti, I ,  Vi = 
GTi, 0). As  FSSE preserves the co-primeness of Ti, Vi, it follows that T1, 
V1 and T2, V2 are two right co-prime factorizations of G. Hence there exist 
polynomial matrices Y and Z such that 

and 

-~'~ o = - e ~  o o I 

,]i z0] -~'~ o = - ~  o o z 

This establishes the SSE of ~x and ~2, and consequently, of ~71 and E2. U 

4.3 System Isomorphisms 

Let Ei = (Ti, Ui, Vi = HiTi, Wi) be two admissible systems. The sizes of the 
matrices are supposed to be Pi • hi, pi x m,  p • hi, p x m,  respectively. Define 
the behaviors 
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Defini t ion 27 An admiss ib le  s y s t e m  h o m o m o r p h i s m  from Z1 to Z2 is 
a mapping 

, ~ : =  (4.13) 
U U U f :  

such that 

[xi 1 Vlxl + Wlu  = V2x2 + W2u ]or all (xl ,u) := E B1, (4.14) 
U 

where Q~ and Rr are polynomial matrices o] dimensions n2 • nl ,  n2 • m, 
respectively. 

L e m m a  4.3.1. There exists an admissible system homomorphism from ~1 
to E2 if] (4.5) holds with polynomial intertwining matrices. 

Proof. The map (4.13) is well-defined iff (x2, u) E B2 for all (xl, u) E B1. But 
this is equivalent to 

TlXl = U1 u ~ T2x2 = T2(QrXl - Rru) : U2u 

o r  

This is true iff there exists a polynomial matrix Ql such that 

[ T2Qr , - T 2 R r - U 2  ] = Q l [  T1 , -U1 ]. 

This establishes (4.6) and (4.7). Furthermore, from (4.14), 

TlXl = Ulu ~ V l x ,  + WlU = V~(Qrx~ - Rru)  + W2u. 

This is equivalent to the existence of a polynomial matrix Rl with 

[ V~-V2Q~ , V 2 R ~ + W 1 - W 2  ] = R , [  T1 , -U1 ] 

hence (4.8) and (4.9). O 

We will shortly be able to characterize admissible system isomorphisms 
in terms of strict system equivalence in the Fuhrmann sense. First, we find 
conditions for an admissible system homomorphism to be injective and sur- 
jective. The following lemma should be compared to the corresponding result 
for one-dimensional systems [32, p. 793]. 

L e m m a  4.3.2. Let f be an admissible system homomorphism from ~1 tO 
Z2. Then 
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1. f is injective iff  T1, Q~ are zero right co-prime; 
2. f is surjective iff [ - Q t ,  T2 ] is a minimal left annihilator of 

M :=  Qr " 

In particular, this implies that Qt, T2 are generalized factor left co-prime 
and that pl + n2 = p~ + rank (M). 

3. l f  f is bijective, its inverse is again of the form (~.13), i.e., 

i 1  [x2]u ,[Xl]u _- Qrx  

for some polynomial matrices Qr and Rr.  

Proof. 

1. The homomorphism f is injective iff f ( x l ,  u) = (Qrxl  - Rru,  u) = (0, O) 
for some (Xl, u) E B1 implies that (xl, u) = (0, 0). This amounts to 

Q~ x l = 0  =~ x x = 0  

which holds iff 7'1, Q~ are zero right co-prime. 
2. First note that u is a vector of free variables in Bi, that is, for every 

u E A m, there exists xi E .4 TM such that Tixi -- Uiu, or equivalently, 
(xi ,u)  E ]3i. We have 

im( f )  = { [ x2 ] 3xl  such that  [ T1 ] [ 0  U1 ] [ x 2  ] }  
u ' Qr xl = I Rr u " 

(4 .15)  

Let [ - E ,  F ] be a minimal left annihilator of M, then 

,m( , )  {['"] 0} u ' [ F , F R r - E U 1  ] u 

Now im(f) = B2 iff the row modules of [ F, F R r - E U 1  ] and 
[ T2, -U2 ] coincide. If [ - Q , ,  T2 ] is a minimal left annihilator of 
M, we may choose E = Qt, F = T2, hence F R r  - EU1 = T2Rr - QtUl = 
-/-]2, hence f is surjective. Conversely, suppose that there exists a poly- 
nomial matrix Z such that 

[ ~ , F R r - ~ u ,  ] = z [  T2 , - u 2  ]. 
From (E - ZQt)T1 = ET1 - ZT2Qr = ET1 - FQr  = 0 and the fact that 
T1 has full row rank, it follows that E = ZQt.  Together with F = ZT2 
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from above, this implies that [ -Qz, T2 ] is a minimal left annihilator 
of M. 
Recall from Theorem 8 that a minimal left annihilator is generalized fac- 
tor left prime. If R is a minimal annihilator of M, we have that rank (R)+ 
rank (M) equals the number of rows of M, which is Pl + n2 in the present 
situation. Finally, note that rank [ -Q~, T~ ] = rank (T2) = P2- 

3. If f is injective, there exist polynomial matrices A and B that satisfy the 
B6zout equation 

AT1 + BQr = I. 

If ] is surjective, then for any (x2, u) E B2 there exists xl such that 

Q~ xl = I R~ u " 

Thus 

xl = Bx2 + (AU1 + BRr)u  

and the result follows with ~)r = B and R~ := -(AU1 + BR~). 
O 

T h e o r e m  20 There exists an admissible system isomorphism between E1 
and ~2 i~  ,~1 and 2Y2 are FSSE. 

Proof. Let f be a bijective admissible system homomorphism from ~U1 to E2. 
By Lemma 4.3.1, there exists a relation (4.5) with polynomial intertwining 
matrices. By Lemma 4.3.2, the injectivity of f implies that T1, Qr are zero 
right co-prime, in particular, rank (M) = nl. Then surjectivity of ] implies 
that Pl + n2 = P2 -}- nl. It remains to be shown that Ql, T2 are zero left 
co-prime. But according to Lemma 4.3.3 below, the minimal left annihilators 
of a zero right prime matrix are zero left prime provided that they have full 
row rank. 

Conversely, let 2Yl and ~2 be FSSE with (4.5) and define f via (4.13). 
By Lemma 4.3.2, the homomorphism ] is injective and the second part of 
Lemma 4.3.3 implies surjectivity. [7 

L e m m a  4.3 .3 .  

1. Let T1, Qr be zero right co-prime. Then there exist polynomial matrices 
C and D such that 

O~ 1) 

is unimodular. Let .4, B, Qt, and 7'2 be defined by 
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[ c]1 
- Q t  7"2 = Q~ D 

(4.16) 

- Q t  T2 Q, D Xp2 

where J = B D  - AC. The  matrices on the left are square, and hence 
unimodular,  due to the compatibil i ty constraint Px + n2 - P2 -t- n l .  Thus 
we have 

- Q ,  T2 = Qr b 0 x = Q,  D 

where C = T1J + C and D = D - QrJ,  and the result follows from the 
first part .  

O 

Finally, we turn to a generalization of a theorem of Pernebo [52, p. 34]. 

T h e o r e m  21 Let ~1 = (T1,U1,V1 = H1T1,W1) be an admissible system 
and 

t~x = {(xx, u) e A "1 x A "~, TlXl = VlU}.  

Let Qr and Rr be two polynomial matrices of appropriate size such that T1, Qr 
are zero right co-prime. Define a mapping 

with the obvious partition (x.e., AT1 a square matrix). Then [ -Q t ,  
is a minimal left annihilator (MLA) of 

Q~ 

and any full row rank MLA of M is zero left prime. 
2. Let Qt, TI, 7"2, Qr be polynomial matrices of dimensions P2 • Px, Pl x nl ,  

P2 x n2, n2 x nl respectively, where Pa + n2 = P2 + nl.  Suppose that 
QIT1 = T2Qr with Qt,T2 zero left co-prime and 7"1, Q,  zero right co- 
prime. Then [ -Qt ,  7"2 ] is a MLA of M.  

Proof. 

1. It follows from Lemma 1.3.4 that  [ -Qt ,  7"2 ] is a MLA of M.  As it 
can be incorporated row-wise into a unimodular  matr ix  (4.16), it is zero 
left prime. But two full row rank MLAs of M differ only by a unimodular  
left factor, hence they are all ZLP. 

2. Let AT1 + BQr = I and QIC + T2/9 = I be corresponding B~zout 
equations. Then 
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~ . 
U U 

Then there exists an admissible system 2,2 = (T2, U2, 1/'2, W2) such that 

im(.f) = B2 = {(x2,u) E A TM x A "n, T2x2 = U2u}, 

and f is a admissible system isomorphism, i.e., /71 and i:2 are FSSE. 

Proof. As in Lemma 4.3.3, let 

-Ql  

In particular, 

T2 = Qr D (4.17) 

QtT1 = T2Qr, 

in fact, we have seen in Lemma 4.3.3 that [ -Qt ,  
left annihilator of 

Qr " 

(4.18) 

T2 ] is even a minimal 

As in (4.15), we have 

i m ( f ) = { [ x 2 ]  3Xl such that [ T1 ] [ 0  U 1 ] [ x 2 ] }  u ' Q~ xl = I R~ u " 

As [ -Ql ,  T2 ] is a minimal left annihilator of M, we obtain 

i m ( ' f ) = { [  x2 ] u  , I T 2 , - Q t U I + T 2 R r  ] I x 2  ) = O } . u  

Define 

U2 := QtU1 - T2R~, 

Ri := 111 A, V2 := V1B and 

(4.19) 

W2 := RIU1 + V2Rr + W1. (4.20) 

Then according to (4.17), 

RIT1 + V2Qr = V1 (AT1 + BQr) = VI. (4.21) 

Equations (4.18) to (4.21) are precisely the constituent equations of (4.5) 
with polynomial intertwining matrices. It remains to be shown that I:2 = 
(T2,/-]2, V2, W~) is admissible, then f is an admissible system homomorphism. 
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As injectivity and surjectivity of f follow directly from the assumptions, this 
yields the desired result. 

Considering (4.17) and taking Schur complements, it follows that T2 has 
full row rank, similarly as in the proof of Theorem 19. Finally, from (4.17), 
we have T1B = CT2, and hence 

112 = V1B = H I T 1 B  = H:CT2 = H2T2 

where H2 := H: C. [2 

Appendix  

Schur complements. Let 

--1 

A =  A2: A22 = B~I B22 

where Ai, and B~i are square. Then B::  is invertible iff A22 is invertible, 
indeed, we have 

det(A) det(Bll)  = det(A22). 

Relation between F S S E  and RSSE.  Two admissible systems with Pl + n2 = 
P2 -b n: are FSSE iff a trivial expansion of one system is RSSE to a trivial 
expansion of the other. The proof is given along the lines of that in [57]. 

"if": Suppose that 

[Oll o12 0][, 0 0] 
Q:3 Q:4 0 0 TI U1 : 
R::  R12 I 0 -V1 W1 [, o o][o21 .1] 

0 T2 U2 Q23 Q24 R~2 
0 -V2 W2 0 0 I 

with unimodular matrices 

[ Q l l  Q12 1 
Ql= Q:3 Q14 

Then 

[Q1, 0][ 
R12 I -V1 

[Q:, 
Q,3 

and 

Q2: Q22 ] 
and Q~ : Q23 Q24 

w: -v.2 w2 o i 

Q1,]I, 0] [, 0][Q~, Q~2] 
Q14 0 T1 = 0 T2 Q23 Q24 
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As Q is unimodular, Qla = T2Q23 and Q14 are zero left co-prime, hence T2 
and Q14 are zero left co-prime. Similarly, it follows that T1 and Q24 are zero 
right co-prime. 

"only if": Suppose that 

o T1 U, _~ ~][o0~ ,]  
where Ql, T2 are zero left co-prime and T1,Qr are zero right co-prime. Let 
the corresponding B~zout relations be QtA + T2B = I and CT1 + DQr = I. 
Then 

where the matrices on the left hand side are square, and hence unimodular, 
due to the compatibility constraint Pl + n2 = P2 + nl.  Now 

T2Q, 0 TI UI 
-v2 R, o -Vl w, 

= T2 U2 | I Qr 
o -u2 w2 [ o o 

It remains to be shown that 

-D CT1 
I Q,. ] 

is unimodular. But this follows from 

[_o c~ , , , ~ ]  
~ 1 = [  -~ 

, :Qr] [ o 
, 0][0 



5. F i r s t  O r d e r  R e p r e s e n t a t i o n s  o f  

M u l t i d i m e n s i o n a l  S y s t e m s  

Several first order representations for multidimensional systems have been 
proposed in the literature, mostly in the two-dimensional case. The best- 
known model is probably the one introduced by Roesser [62]: 

xV( i , j  + 1) = A3 A4 xV(i , j )  + B2 

[ xh(i,J) ] 
y ( i , j )  = [ Cl C2 ] xV( i , j  ) + D u ( i , j ) .  

Here, x h denotes the horizontal, and x v the vertical local state vector. Input 
and output are denoted by u and y, respectively. All signals are defined 
on the two-dimensional lattice l~.  Another famous model is the Fornasini- 
Marchesini model [22] 

x(i  + 1, j  + 1) 

y ( i , j )  

= A l x ( i  + 1,j) + A2x ( i , j  + 1) + 

BlU(i  + 1,j) + B2u( i , j  + 1) 

: C x ( i , j )  + D u ( i , j ) ,  

which is usually defined over Z 2. These models and variants of them have been 
studied by several authors; for a survey see [33]. A serious drawback of these 
local state-space models is that they require quarter-plane causality, i.e., the 
corresponding input-output relation (assuming zero "initial" conditions) can 
be formally written as 

i j 

~(i, j) = ~ Z h(i - k, j - Z)u(k,l), 
k = - o o  l------co 

where h is a suitably defined impulse response. One way to get rid of the 
causality requirement is to admit singular systems: As is well-known for one- 
dimensional systems, only proper rational matrices admit a representation 
C ( s I  - A ) - I B  + D, but every rational matrix can be written in the form 
C ( s E  - A ) - I B  + D. An analogous fact holds for singular multidimensional 
Roesser models, which have been studied by Kaczorek [34] and Gatkowski 
[26]. 
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Here, we adopt another approach to first order representations, which is 
based on Willems' "state-space behaviors" [81, 58] in "dual pencil repre- 
sentation" [36]. A vector w of manifest system variables (e.g., "inputs and 
outputs") and a vector x of latent system variables (e.g., generalized "states" 
that  arise in modeling or with the reduction to first order) are supposed to 
be related via a first order dynamic equation and a static equation. In the 
1D case, this amounts to the model 

x(i + 1) = 

0 = 

Note that  even if we take w = [ u T 

Ax(i) + Bw(i)  (5.1) 

cx(i) + (5.2) 

yT ]T, this is more general than the 
usual input-state-output model, as the static equations need not be solvable 
for y. The continuous counterpart of these "output-nulling representations" 
has been studied by Weiland [78]. 

In the multidimensional setting, a generalization of state-space behaviors 
in dual pencil representation has been introduced by Miri and Aplevich [45]. 
Our model can be embedded into theirs, but the model class we consider 
is interesting by itself as it is large enough to comprise all "autoregressive" 
models, i.e., systems given by linear partial difference equations with constant 
coefficients. 

Moreover, the dynamic equation (5.1) of an ON representation is regular 
in the sense that  it is explicit for the updated "state" x(i + 1), and this 
advantage carries over to multidimensional systems. This makes it possible to 
evade several difficulties that  are inherent in singular (i.e., implicit) models. 

5 . 1  P r e l i m i n a r i e s  a n d  N o t a t i o n  

We will consider the discrete signal domain Z r. For finite subsets T C Z r, let 
V(T) E Z r denote the c o m p o n e n t - w i s e  (ew-) s u p r e m u m  of T, defined by 

V(T) ,=maxTr i (T)  for l < i < r ,  

where 7ri : Z r -~ Z , ( t l , . . .  , tr)  ~-~ ti, denotes the projection onto the i-th 
component. Similarly, the c w - i n f i m u m  is defined by 

A(T), = minTri(T) for 1 < i < r. 

The action of the shift operators crt = a~l . . .  art., where t = (tl,  �9 �9 �9 , tr) E 
Z r, is defined by 

(~rtw)(t ') = w(t + t') for all t '  E Z r (5.3) 

and for all sequences w : Z r -+ F q, where F is an arbitrary field. A linear 
shift-invariant difference b e h a v i o r  in kernel representation is given by 
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U = { w : Z r - - ~ F q ,  R ( a , ~ r - 1 ) w = O } ,  R e F [ s , s - I ]  g• (5.4) 

The Laurent  polynomial matrix R is called a k e r n e l  r e p r e s e n t a t i o n  of B. 
We may write 

R = ~ Rts  t, 
tEsupp(R) 

where supp(R) C 7/, r denotes the finite set of multi-indices t which appear  in 
the sum above with a non-zero coefficient matr ix Rt G F gxq 

A behavior has infinitely many different kernel representations, indeed, 
let B be represented by R according to (5.4). Then a matr ix R' with g' 
rows represents the same behavior iff its rows generate the same module over 
F [S, s--l], that  is, iff 

F[s , s -1] l xgR  = F[8, s-1]lXg'R'. 

This is t rue iff there exist Laurent  polynomial matrices X and Y such that  
R = X R  ~ and R ~ = Y R .  In particular, all matrices in the class 

{ UR ; U unimodular } 

represent the same behavior. Here, the term u n i m o d u l a r  refers to invert- 
ibility in F[s,s-1]  g• that  is, a square Laurent polynomial matr ix  U is 
unimodular iff 

d e t ( U ) = f s  t for s o m e f � 9 1 4 9  r. 

For instance, we can pre-multiply R by 

d i a g ( s - k ' , . . .  , S-kg), (5.5) 

where each ks denotes the cw-supremum of the support  of the i-th row of R, 

ki = V(supp(Ri_)) .  (5.6) 

Thus, the representing matr ix  R can be chosen such that  it contains only 
non-positive powers of the indeterminates s l , . . .  , st ,  tha t  is, without  loss of 
generality, we can assume that  

R = R ( s  -1) �9 F[8-1] gXq = F[811 . . . .  , s r l ]  gXq. 

Similarly, the exponents of the entries of R can be shifted into any of the 2 r 
hyper-quadrants  of Z ~ defined by a subset I C {1 , . . .  , r} and 

ti > O for i �9 I and ti < O for i ~ I. 

Chapter  6 shows that  R(s  -1) �9 F Is- l ]  gxq can be written in terms of a 
linear fractional t ransformation (LFT) 
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R(8 -1) = .T(A(8-1) ,M) 

= C A ( s - 1 ) ( I -  A A ( s - 1 ) ) - x B  + D  

= C ( A ( s )  - A ) - I B  + D ,  

where for some suitable integers n l , . . .  ,nr  > 0 and n := Y]~=l hi ,  

A ( s )  = d i a g ( s l I m , . . .  ,SrIn~),  A(s -a) = A(S) -1, and 

A B ] F(~+g)x(~+q ) (5.7) 
M =  C D E 

Since R is given in terms of n = (nx , . . .  , n~) and A, B, C, D, the following 
notation will be convenient: 

R = 9V(n; A, B, C, D). 

Moreover, the LFT construction of Chapter 6 will yield that  the matrix A is 
such that  

de t ( I  - A Z l ( 8 - 1 ) )  = 1. 

~r, This implies that  det(A(s)  - A) = d e t ( I -  AA(s-1) )  det(A(s))  = s~ 1 . . . s  r 
i.e., A ( s )  - A is invertible over the Laurent polynomial ring. 

T h e o r e m  22 Let  r > 1 and n = ( n l , . . . , n r )  E N r be given. Def ine  n := 
Y]~zr=l ni and A ( S )  = d i a g ( s l I m , . . .  , S r In . ) .  Let  A G F nxn be such that 
A ( s )  - A is invertible over the Laurent  polynomial  ring, i.e., 

det(A(s)  - A) = s n := S~' ' ' 'Srnr .  

Then, with the part i t ion corresponding to n ,  that is 

A l l  . . .  A i r  

A = " " , A i j  E F n, • 

the matrices Aii are nilpotent fo r  1 < i < r. 

Proof. The proof is by induction on r. For r = 1, d e t ( s l n  - A I I ) =  s n 
implies that  AI1 is nilpotent. Suppose that  the statement is true for r - 1. 
Let A ( s ' )  = d i a g ( s l l m , . . . ,  s r - l I n , _ l ) .  With the corresponding partit ion of 
A, 

A ( s )  _ A = [ A ( s ' )  - A '  -A(1,2) ] 
-A(2,1) s ~ I ~  - A~r 

and hence, assuming that  det(A(s)  - A) = s n,  
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I --1 s'~ 1 . . .  s~" = d e t ( A ( s ' )  - A ' ) d e t ( s r l n .  - Ar~ - A(2,1)( A ( s  ') - A ) A(1,2)). 
(5.s) 

Viewing (5.8) as an ident i ty  over  F ( s l , . . .  , s~_l)[s~], we m a y  c o m p a r e  the  
coefficients of  s~ ~ on b o t h  sides of  the  equa t ion  to get 

s~l . . .  Sr-ln~-~ = d e t ( A ( s ' )  -- A') .  

T h e  induct ive  hypothes i s  implies t h a t  Aii are  n i lpo ten t  for 1 < i < r - 1. 
Similarly, 

s'~ 1 . . . s  r'~" = de t ( s r ln .  . . . .  Ar t )  d e t ( A ( s ' )  A' A(1,2)(srlnr Arr ) - lA(2 ,1 ) )  

implies  t h a t  de t ( s r ln~  - A ~ )  = Srn~, hence Ar t  is n i lpotent .  [] 

5 . 2  O u t p u t - h u l l i n g  R e p r e s e n t a t i o n s  

A l inear f rac t ional  r ep resen ta t ion  of R ( s  -1)  E F I s - l ]  g• 

R ( s  -1 )  = C ( A ( s )  - A ) - I B  + D 

gives rise to  first o rder  r ep resen ta t ions  of  

B = {W : Z  r --~ F q, R ( a - 1 ) w  = 0} 

in the  following way: For a t r a j e c t o r y  w E B, let x : Z r -~ F n be  a solu t ion  
of 

A ( a ) x  = A x  + Bw.  (5.9) 

W i t h  a pa r t i t ion  of x t h a t  co r responds  to  n = ( n l , . . .  , n r ) ,  t h a t  is, x = 
( X l , . . .  , x~) T with  xi hav ing  ni componen t s ,  x solves the  following s y s t e m  of 
first o rder  pa r t i a l  difference equat ions:  

x l ( t l  + 1 , t 2 , . . .  , t r )  

x i ( t l , . . .  , t i  + 1 , . . .  , t r )  = A 

x ~ ( t l , . . .  , t r _ l , t ~  + 1) 

for all t = (t l  . . . .  , t r )  E Z r. T h e n  

Xl ( t l , . . .  , tr)  

x,( t l , . . .  

,tr) 

+ B W ( t l , . . .  , t r )  

A ( a ) x  = A x + B w  
0 = C x  + Dw.  

w E B  ~ 3 x : Z  r ~ F  n w i t h  (5.10) 
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Using that  ( A ( s ) -  A)-1 is a Laurent polynomial (rather than only a rational) 
matrix, one can rewrite (5.9) as 

x = (A(er) - A ) - I B w .  (5.11) 

Thus R ( a - 1 ) w  = Cx + Dw, which proves the equivalence. Note that  by 
(5.11), the solution x of (5.9) is uniquely determined by w, and that  (5.9) 
constitutes a f i n i t e - m e m o r y  s y s t e m  [20]. 

The right hand side of (5.10) provides an o u t p u t - n u l l i n g  (ON)  rep re -  
s e n t a t i o n  of B according to the subsequent definition. The following nota- 
tion will be used: For n E Z r, let Inl := :~-'~'~i~1 Inil �9 Define a set of matrix 
quadruples (A, B, C, D) of appropriate dimensions (according to (5.7)) by 

F ( n , g , q )  := F n• • F T M  • F g• • F g• 

Def in i t i on  28 Let (A, B, C, D) E F (n, g, q) be given and let n = (n l , .  �9 �9 , n~) 
in l~F be such that In[ = n. Define Al(s) = d i a g ( s l l m , . . .  ,s~In.) .  The equa- 
tions 

A(er)x = Ax  + B w  (5.12) 

0 = C x + D w  (5.13) 

are called an o u t p u t - n u l l i n g  (ON)  r e p r e s e n t a t i o n  of B if  

B = {w : Z ~ -+ F q, Sx : Z ~ -+ F n such that (5.12), (5.13) hold}. 

For simplicity, the data quintuple (n; A, B,  C, D) itself is referred to as an ON 
representation. The full  b e h a v i o r  associated with the ON representation is 

BON(n; A, B, C, D) = {(x, w) : Z ~ ~ F n x F q, x, w satisfy (5.12), (5.13)}. 

The notation B = ~rwBoN(n; A, B ,  C, D) will be used, where ww denotes the 
projection onto the second component. 

If (n; A, B, C, D) is an ON representation of B, then so is 

(n; T - I ( A  + LC)T ,  T - I ( B  + LD) ,  P C T ,  PD ) ,  (5.14) 

there T = diag(T1,. . .  , Tr), Ti E F n. x n, and P E F g x g are non-singular, and 
L is an arbitrary n • g matrix over F. 

Next, we introduce a notion of minimality for ON representations. As 
usual in multidimensional systems theory, it is hard to give necessary and 
sufficient conditions for minimality (in the "minimum number of equations" 
sense, which must not be confused with minimality in the transfer class). We 
have already encountered this problem when discussing kernel representations 
of a behavior B = ker(R) with a minimum number of equations (rows of R). 
Recall that  the behavior B and the module generated by the rows of its 
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representation matrix R are equivalent data. Thus, the question of finding 
gker(B), the smallest possible number of autoregressive equations defining 
B, is equivalent to finding the minimal number of generators for the module 
F [s, s - l ]  1XgR. The problem of efficient generation of modules over (Laurent) 
polynomial rings has been addressed by many authors (e.g., Mandal [44] or 
Kumar [37], who proved a famous conjecture of Eisenbud and Evans on an 
upper bound for gker(B)). 

On the other hand, it is clear that gker(B) _> rank(R), where rank(R) 
is an invariant of the behavior/3 (i.e., independent of the particular choice 
of the representation), usually referred to as the o u t p u t - d i m e n s i o n  of B 
[48]. In the case r = 1, there is no loss of generality in assuming that 
gker(B) = rank(R), and for r = 2, we have the desired result at least for 
behaviors that are minimal in their transfer class, i.e., controllable. This 
is not true for r > 2 however, as can be seen from the example in Sec- 
tion 1.2.2. Concerning the minimality problem (in the "minimum number 
of equations" sense) with multidimensional systems, one is usually content 
with easily testable necessary conditions that lead to constructive reduction 
techniques. 

An ON representation is said to be min ima l  iff the pair (n, g) E N 2 , 
where n denotes the dimension of the state space, and g denotes the number 
of output-nulling equations, is minimal with respect to the component-wise 
order on N 2 . In other words: 

Def ini t ion 29 An ON representation (n; A, B,  C, D) o r b  is called m i n i m a l  
il 

B = r w B o N ( n ' ,  A', B' ,  C', D ' ) / o r  some n '  �9 N ~ , ~ (5.15) 

( X , B ' , C ' , D ' )  �9 F(n ' , g ' , q ) ,  n' = In'l ] 

implies that n < n' or g < g~ or (n,g)  = (n ' ,g ' ) .  I f  the implication of (5.15) 
is even n < n ~ and g <_ g~, we say that the ON representation has least  
order .  

It is clear that every behavior possesses minimal ON representations, but 
a behavior does not necessarily have a least order representation, i.e., one 
in which n and g both attain their respective minimum. Take for instance, 
B = F z, which can be represented by the trivial equation 0w = 0 (n = 0, 
g = l ) , b u t a l s o b y 3 X : a l X = W ( n = l , g = 0 ) .  

When comparing two ON representation with the same number of output- 
nulling equations, s t a t e - m i n i m a l i t y  becomes the crucial concept: 

Def in i t ion  30 An ON representation (n; A, B,  C, D) of B is called s ta te-  
m in ima l  if (5.15) implies n <_ n'. We call n = Inl the d imens ion  of the 
O N  representation. 

We first give necessary conditions for state-minimality of an ON represen- 
tation. In 1D systems theory, an ON representation over Z is state-minimal 
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iff (C, A) is observable, 

im 0 C_ i m  C' D ' 

and im(C) _C ira(D) [81, p. 270]. Since we may assume, without loss of gener- 
ality, that [C, D] has full row rank, these conditions are equivalent to: (6', .4) 
is observable, and the matrices 

6" D 

and D both have full row rank. 

L e m m a  5.2.1.  Let (n; A, B,  C, D) be a state-minimal ON representation. 
Without loss of generality, assume that [C, D] has full row rank. With the 
partition induced by n ,  we write 

A = 

A l l  . . .  A l r  
: 

A~I . . .  A , r  

[.1] 
, B =  " , C =  [ Ct . . .  

Then we have , /or  1 < i < r, 

[ A i l  . . .  Air B, ] 
I. C1 . . .  Cr D has full row rank; 

�9 ' '  i - l , i  , + 1 , i  " ' "  Ar  i Ci T T A 

Proof. Without  loss of generality, let i = 1. Suppose that  there exist a row 
vector [(, 7] ~ 0 with 

Atl . . .  Air B1 ] 
7 ]  c l  . .  cr  D = 0  

If we pre-multiply the system equations 

alXt : A11xt + . . .  + A lrxr  + B1w 

0 : C l X l  + . . .  + Crxr + D w  

by [~,~?], we obtain that  ~alXl = O. Then ~Xl ~--- 0 .  Since [C,D] is assumed 
to have full row rank, ~ ~ 0. Thus Xl E V := {v E Fn l ,  ~v = 0}, and d := 
dim V < nl.  Let {e l , . . .  , e d }  be a basis of V, then there is an isomorphism 

F d ~ V, At ~ EA1 ,  E = [ el  . . .  ed ] E F n lxd .  

Any Xl E V has the form xl = EA1, and E,  being a full column rank matrix, 
possesses a left inverse E #,  that  is, E # E  = I. Then 
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UI~I = 

0"2X 2 : 

UrX  r -= 

0 = 

E # A l l E ) h  + E # A 1 2 x 2  -b . . .  q- E#Ax~xr + E # B l w  

A21EAx + A22x2 + . . .  -I- A2rxr  q- B2w 

ArlEA1 + Ar2x2 h- . . .  h- Arrxr h- Brw 

C1EA1 + C2x2 + . . .  + C~x~ + Dw 

represents the same behavior as the original ON representation, but has a 
strictly smaller state dimension. The second statement follows from a Kalman 
observability decomposition. [:3 

The condition im(C) C_ im(D) fails to generalize to the multidimensional 
setting. As we may assume [ C D ] to be a full row rank matrix, the 
condition im(C) C_ ira(D) amounts to D being a full row rank matrix. Unlike 
the 1D situation, this assumption is restrictive for multidimensional systems; 
see the definition of proper ON representations below. In fact, there even are 
least order ON representations in which D = 0. 

Example 5.2.1. Consider 

/ 3 = { w : Z  2--+R, ( a l + a 2 - 1 ) w = 0 } .  

An equivalent kernel representation is R = a~ -1 a21 - a~ -1 - a21 . Constructing 
an LFT representation according to Chapter 6 and reducing it according to 
Section 6.2 yields the ON representation 

[Ol [ 0 01[ 1] [1 ] 
0 a2 x2 - 1  0 x2 1 

o_-I  
W 

This representation of dimension two is state-minimal (any ON represen- 
tation of dimension one depends either on al  or on o2 alone, and thus is 
certainly incapable of representing/3) and even a least order representation, 
as there is one output-nulling equation (the only behavior that  possesses ON 
representations without output-nulling equations is the whole of ll~Z2). 

D e f i n i t i o n  31 An ON representation is called obse rvab l e  if knowledge of 
the external signal w yields knowledge of the internal signal x, i.e., iff w = 0 
implies x = O. 

L e m m a  5.2.2. Let (n; A, B, C, D) be an ON representation. Define the 
H a u t u s  m a t r i x  

H := C e F[s ,  s-a] (~+g)• 

The n x n minors (sub-determinants) of H are denoted by h i , . . .  , hk. The 
ON representation is observable iff the following equivalent conditions are 
satisfied: 
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1. ~3unob s : =  { X :  Z r --~ F n, H(er)x = 0} = { 0 } ;  

2. H is zero right prime, i.e., there exists a Laurent polynomial matrix L 
such that L H  = In; 

k 3. There exist Laurent polynomials l l , . . .  ,lk such that ~ = 1  lihi = 1. 

The proof is analogous to the known case over F [s], and can be found in [24]. 
Note that  observability is neither sufficient nor necessary for state- 

minimality. The ON representations constructed in Chapter 6 are always 
observable due to (5.11), but they are usually not state-minimal. On the 
other hand, an example below shows that  even least order ON representa- 
tions need not be observable. 

For discussing minimality with respect to the number of ON equations, 
we need the following prerequisite: We have seen how to derive an ON rep- 
resentation with g ON equations from a given kernel representation with g 
autoregressive equations. Conversely, let 

B =  w : Z  r - 4 F  q, ~ x : Z  r ~ F  n :  C x =  - D  w 

be given. In order to eliminate the latent variables x, we have to compute a 
minimal left annihilator X = [ X1 X2 ] of 

H =  C 

(over F [s, 8-1]) to obtain, by means of the fundamental principle, the kernel 
representation 

L3 = {w: Z r --> F q, (X1B - X2D)(cr,~r-1)w = 0}. (5.16) 

Observe that  X,  being a MLA of a full column rank (n + g) x n matrix, must 
have rank g. In particular, it has at least g rows. The case that  X can be 
chosen with precisely g rows can be characterized as follows. 

L e m m a  5.2.3. Let ( n ; A , B , C , D )  be an ON representation o r b  ~ (Fq) zr. 
The matrix H as defined above possesses a MLA of full row rank iff the 
projective dimension (pd) of 

cok(H) = F [8, 8--1] 1 xn/F [8, 8--1] lx(n+g)H 

does not exceed two. In particular, this is true for any ON representation of 
dimension r < 2, and for observable ON representations of arbitrary dimen- 
sion r. This implies that 

go(B) = gker(13), 

where go(13) denotes the minimal number of ON equations in any observable 
ON representation of 13, and gker(13) iS as discussed above. 
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Proof. Consider the exact sequence 

0 -+ ker(H)  ~ F[s,s-1] lx(n+g) f1> ~ [ 8 , 8 _ 1 1 1 x  n -'+ cok(H) --~ 0. 

The module ker(H) is free iff pd(cok(H))  _< 2. The case ker(H) = 0 cor- 

responds to B = (Fq) z~. This being excluded, ker(H) can be spanned by 
linearly independent row vectors. 

If r < 2, we get pd(cok(H))  < 2 from Hilbert 's syzygy theorem. If H 
is zero right prime, then cok(H) = 0, and hence its projective dimension is 
zero. Finally, as kernel representations yield observable ON representations 
with the same number of equations, 

gker(B) ~> go(B). 

Conversely, from an observable ON representation with g ON equations, we 
compute a full row rank MLA of the associated Hautus matr ix  and obtain a 
kernel representation (5.16) with g autoregressive equations. Hence gker(B) ~ 
go(B)- [] 

The first part  of the above lemma should be compared with Theorem 12, 
where a similar argument has been used. In the case of a non-observable ON 
representation, we have the following inequality (combine [18, p. 455] with 
[47, p. 59/60]) 

pd(cok(H)) _> codim(Z(H)), 

where Z(H) denotes the ideal generated by the n x n minors of H. Non- 
observability amounts to codim(Z(H))  < oo. 

Example 5.2.2. Consider 

H = 

Sl - 1 0 0 
0 s2 - 1 0 
0 0 s3 - 1 
1 1 1 
1 2 3 

(5.17) 

whose determinantal  ideal Z(H)  = (Sy - 1, s2 - 1, s3 - 1) has co-dimension 
three. Hence H does not possess a minimal left annihilator of full row rank. 

Now we turn to the announced example of a minimal ON representat ion 
that  is not observable. 

Example 5.2.3. Consider 

: {W : Z 2 - 4  ~ (Crl - -  1 ) ( a 2  --  1)w : 0}. 

An ON representation of dimension two is given by 
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[ol 01Ix1 ] = [1 l l l x l  ] 
0 a2 x2 0 1 x2 

0 ~--- X l  "~ 'X2 - -  W. 

This can be seen as follows: A minimal left annihilator of 

H = 

is given by X = [ - (s2  - 1), 

3 z  : Z 2 -~ ~2 : H ( a l ,  a2 )x  = 

S l - 1  1 ] 
0 s2 - 1 
1 1 

- ( s t - 2 ) ,  ( s l - 1 ) ( s 2 - 1 )  ] ,hence  

[!] w ~ ( a ~ - l ) ( a 2 - 1 ) w = 0 .  

(5.18) 

(5.19) 

The ON representation (5.18), (5.19) is certainly state-minimal and even of 
least order. On the other hand, H is not zero right prime as its rank drops 
at A = (2, 1), and thus the 2 x 2 minors of H have a common zero there, 
contradicting condition 3 in Lemma 5.2.2. 

Next, we turn to the question of reducibility of ON representations to 
standard Roesser-type input-state-output models. First, we introduce a suit- 
able notion of inputs and outputs. 

Defini t ion 32 [48] For a behavior/3 -- {w : Z r ~ F q, R ( c r , a - 1 ) w  = 0}, 
with R E F[s, s - l ]  g• an i n p u t - o u t p u t  s t r u c t u r e  is a partition 

R H =  [ - Q  P ] with P e F [ s , s - 1 ]  g• and r a n k ( F ) = r a n k ( R ) = p ,  

where H is a permutation matrix. Then there exists a uniquely determined 
rational matrix G E F (s) p• such that Q = P G .  I t  is called the t r a n s f e r  
m a t r i x  of/3 with respect to the partition 

o=o[;] 
Setting m := q - p, one can rewrite the behavior as 

Note that  every behavior possesses an input-output structure, since it is al- 
ways possible to select p = rank (R) linearly independent (over F (s)) columns 
of R. The notion "input" is justified by the fact that  u is a vector of free vari- 
ables in the sense that  for all u : Z r --~ F m, there exists y : N r ~ F p such 
that  [48] 
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Once u is chosen, none of the components of y is free (more precisely, the 
zero-input behavior is autonomous). 

Let R = X 1 B  - X2 D be a kernel representation derived from an ON 
representation according to (5.16). Let 

R u =  I x 1  ] - o  u =  [ x l  ] 

be an input-output structure of B = ker(R). Then with the corresponding 
partition 

I I - l w = : [  u ] y  

the ON representation takes the form 

A ( a ) x  = A x  + Buu + B~y 

0 = C x + D u u + D u y .  

In particular, any behavior with an input-output structure (5.20) can be 
represented by ON equations of this type. If the second equation can be 
solved for y, this gives rise to an input-state-output (ISO) representation of 
B, that is, 

[ u ]  E B  ~ ~ x w i t h  { A(cr)x = A x + / } u  
y y -= C x + D u .  

Defini t ion  33 Let ( A, B,  C, D ) e  F ( n, p, m)  be given and let n e N r be such 
that In I = n. Define A(s) = diag(sllnl , .  �9 �9 , srI ,~).  The data (n; A, B, C, D) 
or the equations 

Al(a)x  = Ax  + B u  (5.21) 

y = C x + D u  (5.22) 

are called an i n p u t - s t a t e - o u t p u t  ( ISO) r e p r e s e n t a t i o n  of B if there ex- 
ists a permutation matrix I I  such that 

: -+ F re+n, 3x : -~ such that (5.21), (5.22) hold . 
Y 

In analogy to the two-dimensional situation, the representation given by 
(5.21), (5.22) is called a R o e s s e r  m o d e l  [62]. The property of leading to 
such an ISO representation motivates the subsequent definition: 
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Def ini t ion 34 An ON representation (n; A, B, C, D) is said to be p r o p e r  
ff 

ira(C) C ira(D). 

L e m m a  5.2.4. 13 admits a proper ON representation iff 13 admits an ISO 
representation. 

Proof. An ISO representation (n; A, B, C, D) can be rewritten as 

0 

which is a proper ON representation (without loss of generality, let H = I ) .  
Conversely, let (n; A, B, C, D) be a proper ON representation. Without 

loss of generality, let [ C D ] be a full row rank matrix. Hence properness 
of the ON representation amounts to D having full row rank. Then there 
exists a permutation m a t r i x / / s u c h  that 

D H =  [ D~, Dy ] w i t h D ~ E F  gxg, d e t ( D y ) ~ 0 .  

Define 

[;] 1:-'" 
where the partitions correspond to that of DII.  Then 

0 = Cx + Dw = Cx + Duu + Dyy, 

can be solved for y and thus 

A(o')x = Ax + B u u  + Byy = ( A -  B~D~IC)x  + ( B ~ -  ByD~lD~,)u 

y = - D ~ I C x -  D~IDuu 

is an ISO representation of 13. [] 

As should be expected, an ISO representation of 13 gives rise to an input- 
output structure. Suppose (letting 17 = I) 

o 

Let X --- [ Xz 
then 

[ ,  0][;] 
3 x w i t h H ( c r ) x : =  C x =  - D  I " 

X2 ] be a minimal left annihilator (over F [s, s - l ] )  of H,  



5.2 Output-nulling Representations 99 

Set P := X2, and Q := - X 1 B  + X2D. From X1 + X 2 C ( A  - A) -1 = 0, we 
conclude that  the columns of X1 can be written as a linear combination (with 
rational coefficients) of the columns of X2, hence 

p = r a n k ( X )  = rank(X2)  = rank [ X 1 B  - X2D, X2 ] .  

As expected, the transfer matr ix  is 

G = C ( A  - A ) - I B  + D. 

The following definition should be compared with the corresponding one- 
dimensional notion [35, p. 384]. 

D e f i n i t i o n  35 Any Laurent polynomial matrix R E F [ s , s - 1 ]  gxq can be 
uniquely written as 

R(s ,  s - I )  = S(s ,  s-1)Rhr + L(s ,  s - l ) ,  

where 

S(s ,  s - I )  = d i a g ( sk ' , . . .  , s kg) G F [s, s - l]  g• ki = V(supp(Ri_))  �9 Z r, 

and Rhr �9 ~gxq. The matrix L contains the "lower order" terms, that is, for 
every ti �9 supp(Li_)  C Z r, we have 

(t,)j <_ (ki)j for l <<_ j < r and ti • ki. 

The matrix R is said to be r o w - p r o p e r  (or  r o w - r e d u c e d )  /f Rh~, the 
h i g h e s t - r o w - d e g r e e  coe f f i c i en t  m a t r i x  of R, is a full row rank matrix. 
Note that then also rank (R) = rank (Rhr) = g. 

We say that R is w e a k l y  r o w - p r o p e r  if 

1. rank (R) = rank (Rh,); 
2. Rhr contains no zero row, that is, each row of R is c w - u n i t a l  [48], or 

V(supp(Ri_))  �9 supp(R,_) .  

In this notion of row-properness, as well as in the type of ON representations 
considered here, the hyper-quadrant  N ~ of Z r plays a special role. It  should 
be kept in mind that  one can proceed like this with any of the 2 r hyper- 
quadrants of Z r. 

Comparing with (5.5), (5.6), it is easy to see that  a row-reduced matr ix  
R = SRhr + L and 

/~ := S - 1 R  = Rhr "t- S - 1 L  
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generate the same behavior, and h E F[s -1]  gxq with V(supp(/~i_)) = 0 for 
all i. Moreover, /~ admits a representation 

[l = Rhr + E R(-t)s-t '  R(-t) E F g• 
O#tEN- 

with a full row rank "highest coefficient matrix" Rat  =:/~(0).  Then we may 
write 

R ( s  -1) = C A ( s - a ) ( I  - A A ( s - 1 ) ) - I B  + Rhr. 

The following is an immediate consequence. 

C o r o l l a r y  16 I f  a behavior admits a kernel representation B = ker(R) with 
a row-proper matrix R,  then it possesses a proper ON and hence an 1S0  
representation. 

The converse is not true: A row-proper matrix has full row rank, but  a 
behavior with an ISO representation does not necessarily admit a full row 
rank representation. 

Example 5.2.4. Take n = (1, 1, 1), 

A = I 3 ,  B = I 3 ,  C =  [ I 1 1 ]  1 2 3 ' D = O .  

In view of (5.23), the kernel representations of the associated behavior are 
precisely the minimal left annihilators of H from (5.17). We have already 
noted that  although p -- 2, there is no MLA of H with only two rows. 

However, we have the following weaker result. 

T h e o r e m  23 I f  B possesses an ISO representation, then it admits an autore- 
gressive representation with a weakly row-proper kernel representation matrix. 

Proof. It is easy to check that 

2 := [ - C A - l a d j  ( I  - AA-1) ,  

is a left annihilator of 

:= H A  -1 = [ 
t 

de t ( I  - A A - 1 ) I p  ] E F [ s - t ]  px(n+p) 

I -  AA-1  ] 
CA_I ] e F[s-1] (n+p)• 

Let X ( s  -1) = [ Xl (S-1) ,  X2(s -1) ] be a MLA of H over F [ s - t ] .  Note 
that  then it is also a MLA of H (and thus of H)  over F[s ,  s - i ] .  There 
exists a polynomial matrix Z, with entries in F [s-I] ,  such that  X = Z X .  In 
particular, 
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det ( I  - AA(s -1 ) ) Ip  = Z ( s -1 )X2( s -1 ) .  

Thus Ip = Z(0)X2(0). We conclude that  rank (X2(0)) = p. In view of (5.23), 

R = [ X I ( s - 1 ) B -  X2(s-1)D,  X2(s -x) ] 

is a kernel representation of B. Without  loss of generality, X2(0) contains 
no zero row (this can be achieved by pre-multiplication of R by a suitable 
non-singular constant matrix) and thus V(supp(Ri_)) = 0 for all i. Hence 
Rhr = R(O) and R is weakly row-proper. D 

If X in the proof above can be chosen to be a full-row-rank matr ix (this 
is always true for systems of dimension less than three), we even obtain a 
row-proper kernel representation. 

5 . 3  D r i v i n g - v a r i a b l e  R e p r e s e n t a t i o n s  

Let B = {w : Z r ~ F q, 3v : Z r ~ F m : w = M(~r,~r-1)v} be a behavior in 
image representation. Recall tha t  such a behavior is necessarily controllable. 
We proceed with the matrix M E F[s,s-1] q• as with R before: first, we 
shift its support into the non-positive hyper-quadrant by post-multiplying 
it by d i a g ( s - k l , . . .  , s-k"~), where ki = V(supp(M_i)). Then we can write, 
without loss of generality, 

M = M(s  -1) = C(A(s )  - A ) - I B  + D, 

where A , B , C , D  are constant matrices, A(s) = d i a g ( s l l n l , . . .  ,S t int )  and 
A(S) -- A is invertible over the Laurent  polynomial ring. We define, for each 
v, 

x = (A(a )  - A ) - I B v ,  

then w = Cx + Dv and hence 

E B  ~=~ 3x, v w i t h  { A ( a ) x  = Ax + Bv  w 
w = Cx + Dr. 

D e f i n i t i o n  36 For n e 1~, n = [nl, define A(s) = d i a g ( s l l n , , . . .  , srln~). 
Let (A, B, C, D) �9 F (n, q, m) be given. The equations 

A ( a ) x  = Ax + Bv (5.24) 

w = C x + D v  (5.25) 

or equivalently, the data (n; A, B, C, D ) , are called a d r i v i n g - v a r i a b l e  (DV)  
representation of B if B = ~rwBDv(n; A, B, C, D), where 
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B D v ( n ; A , B , C , D )  = 

{(x ,w) : Z r ~ F n x Fq,3v : Z r --+ F m such that (5.24),(5.25) hold}. 

A D V  representation (n; A, B, C, D) of B as above is m i n i m a l  if 

]3 = 7rw/3Dv(n', A', B', C', D') for some n'  E l~,  
(5.26) 

f (A', B',  C', D') e F (n', q, m'), n' = I n ' l  

implies that n < n t or m < rn ~ 
(5.26) is even n < n' and m < 
have l eas t  o rde r .  We say that a D V  representation is s t a t e - m i n i m a l  if the 
implication of (5.26) is only n < n ~. 

If (n; A, B, C, D) is an DV representation of/3, then so is 

(n; T - a ( A  + BF)T ,  T -1BQ,  (C + DF)T ,  DQ), 

there T = diag(T1,. . .  ,Tr), Ti �9 F n'• and Q �9 F m• are non-singular, 
and F is an arbitrary m x n matrix over F. 

D e f i n i t i o n  37 A D V  representation (n; A, B, C, D) is called p r o p e r  if 

ker(D) C_ ker(B). 

T h e o r e m  24 The following are equivalent:/3 possesses 

1. a proper D V representation; 
2. a proper ON representation; 
3. an ISO representation. 

or (n, m) = (n', m').  I f  the implication of 
m ~, then the D V  representation is said to 

Define 

Proof. In view of Lemma 5.2.4, it remains to show the equivalence of Asser- 
tions 1 and 3. An ISO representation (n; A, B, C, D) can be written as 

Zl(a)x = Ax + Bv 

0 I 

which is a proper DV representation. 
Conversely, let (n; A, B, C, D) be a proper DV representation of B. With- 

out loss of generality, [ B r DT ] T has full column rank. Then D itself has 
full column rank, i.e., there exists a permutation m a t r i x / / s u c h  that  

I I D =  [ Du ] D r  w i t h D u E F  rn• d e t ( D u ) ~ 0 .  
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[,] [c.] 
:= Tiw and := TIC, 

y C~ 

where the parti t ions correspond to tha t  of I ID .  Pre-mult ip ly  w = C x  + Dv  
by TI to obtain 

u = C ~ x + D ~ , v  

y = C ~ x + D ~ v .  

Hence v = D~ 1 (u - Cux). Plugging in yields the desired ISO representat ion 
of B: 

A ( a ) x  = ( A -  B D ~ I C , , ) x  + B D ~ l u  

y = (C~ - D~D'~ICu)z  + D ~ D ~ l u .  

0 

It  is sometimes convenient to pass from a proper  ON to a proper  DV 
representat ion without  making the detour to ISO representations.  This  is 
accomplished as follows: 

Let (n; A, B,  C, D)  be a proper  ON representation.  Then there exists C '  6 
F q• such tha t  C = DC' .  Then the output-null ing equations take the form 
0 = D ( C ' x  + w). Setting v' := C ' x  + w, the ON representat ion is equivalent 
to 

A(o ' )x  = ( A -  B C ' ) x  + Bv ' ,  w = - C ' x  + v',  v' E ker(D).  

Let m := q -  r a n k ( D )  and let ker(D) C_ F q be generated by the columns 
of D' 6 F q• i.e., ker(D) = im(D ' )  for D '  : F m ~ F q. In other  words, 
D '  is a minimal right annihilator of D. We obtain the following proper  DV 
representat ion of B: 

A ( a ) x  = ( A -  B C ' ) x  + B D %  

w = -C'x+D'v. 

Conversely, in a proper DV representation, there exists B' such that B = 
B'D. Let D' be a minimal left annihilator (MLA) of D, then 

0 D '  i s a M L A o f  D " 

Thus a necessary and sufficient condition for the existence of v : Z r ~ F m 
with 

1 I w = D v 

is 

A+Bco,c w [~ 
which consti tutes a proper  ON representation.  
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Definit ion 38 A D V representation is called cont ro l lab le  if 

B z ~ = { ( z , v ) : Z  r ~ F  n x F  m, A ( a ) x = A x + B v }  

is controllable, i.e., if Bx~ possesses an image representation. 

Coro l l a ry  17 

1. Let (n; A, B, C, D) be a DV representation. Define the Hautus matrix 

H := [ A ( s ) - A ,  B ] E F[s,s-1] n• 

The DV representation is controllable iff H is GFLP over F[s,  8--1]. 
2. B is controllable iff it possesses a controllable D V representation. 

Proof. Assertion 1 follows from Chapter 1. If B possesses an image represen- 
tation, then the construction of a DV representation described above yields a 
matrix H that is zero left prime, hence GFLP. Conversely, let (n; A, B, C, D) 
be a controllable DV representation. Then for some integer k > 1, and some 
Laurent polynomial matrices N1, N2 of appropriate size, 

= : ~ F  n+'*, 3 I : Z r - ~ F ~ :  = ( a , a - 1 ) l  
v v N2 

and 

B -- {w : Z r --~ F q, 31 : Z r ~ F k, w = (CN1 + DN2)(a ,a-1) l} ,  

i.e., B possesses an image representation. [] 

In this chapter, a new class of first order representations of linear constant- 
coefficient systems of partial difference equations has been proposed: It re- 
sembles the Roesser model, but it does not require causality, which is an 
unnecessary restriction in the multivariate situation. Still, it features regular 
(i.e., explicit) updating equations, which are convenient for practical im- 
plementation. Minimality issues have been addressed, but are still far from 
being fully understood. The question of reducibility to a standard input-state- 
output setting has been discussed; necessary and sufficient conditions have 
been given. For the class of controllable systems, an alternative first order 
scheme is available, which is the dual counterpart of the above-mentioned 
representations. 



6. Linear Fract ional  Trans format ions  

A mapping of the form 

7 s + ~  F : C \ { s , , ~ s + ~ = O }  ~C, s, ~----~',~s+ 

where a, ~3, 7, $ G C and (a,/~) ~ (0, 0), is called a l inear  fract ional  trans-  
format ion  (LFT).  If j3 r 0, it can be rewritten as 

F :  C \ { s ,  1 - a s = 0 }  ~C, s l > d + c s ( 1 - a s )  -1, (6.1) 

where 

a = - ~ ,  c =  /~2 , d /~. 

Equation (6.1) motivates the following generalization to the matrix case: 

F :  C n x n \ { A , d e t ( I - A A ) = 0 } ~ E  gxq, A ~ D + C A ( I - A A ) - I B ,  

where A, B, C, D are complex matrices of dimensions n • n, n x q, g x n, g x q, 
respectively. Taking explicit account of the coefficient matrices, one writes 

F ( A )  = Y C ( A ; A , B , C , D )  = D + C A ( I  - A A ) - I B .  

The following interpretation in terms of a feedback loop is often useful. 

9 

w[ z 
u C D y 

Fig. 6.1. Feedback Interpretation of Linear Fractional Transformation. 
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The constituent equations of the loop are 

[z] [A 
= and w - ' A z .  

y C D u 

Hence ( I -  AA)z  = Bu. Assuming well-posedness of the loop, i.e., invertibility 
of I - AA, we can solve for z and hence 

y = (D + C A ( I -  A A ) - I B ) u ,  

that  is, the LFT can be seen as the "closed loop transfer function from u to 
y," 

Linear fractional transformations are prominent in Hoo and robust control 
[12, 97]. Let M be a proper real-rational and stable (1D) transfer matrix, i.e., 
the entries of M are of the form ~ with polynomials n, d and deg(n) _< deg(d), 
moreover, M has no poles in the closed right half of the complex plane. Then 
the Hoo norm of M is defined as 

[]MIloo := sup IIM(i~)II2- 
r 

The Sma l l  G a i n  T h e o r e m  [97, p. 217] says that ,  for a given proper and 
stable 

Ml l  M12 ] 
M =  M21 M22 ' 

the condition I[Mll Iloo < 7 is necessary and sufficient for the linear fractional 
transformation 

F(A)  = M22 + M21A(I - MllA)-IM12 (6.2) 

to exist and to be proper and stable for all complex matrices A with HA[12 < 
7 -1. This robust stability result has been refined by Packard and Doyle [11, 
50] in order to take account of additional information on the structure of A. 
Note that  

[[M(iw)[[2 = max{l[Al[~ ~, A ~ r215 de t ( I  - M(iw)A)  = 0}. 

Now this characterization can easily be translated to the situation where the 
uncertainty A is restricted to a certain subset of C n• Indeed, let 

A = {A = diag(51Inl , . . .  ,SrI,~,), 5i E C}. 

The structured singular value of M(iw) with respect to the structured 
set A is 

#,a(M(iw)) = max(llAIl~ 1, A e A, de t ( I  - M(iw)A)  ---- 0) 
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unless there is no such A E A,  in which case we set pzx(M(iw)) = 0. Then 
(6.2) exists and is proper and stable for all A E A with IIAI[2 _< 7 -1 iff 
sup~e R I~z~(M(iw)) < 7. 

For robust stability issues, it is therefore desirable to represent an uncero 
tain transfer matr ix  in terms of an LFT.  

E x t r a c t i o n  o f  p a r a m e t r i c  u n c e r t a i n t y :  Consider a transfer matr ix  P 
that  depends rationally on s and on several parametr ic  uncertainties 5i, 

P E R(s, ( ~ 1 , "  ' '  , r p• 

Suppose that  P is causa l  [30] with respect to 5 = (~1,.-.  ,(it), tha t  is, each 
entry takes the form 

~-~neN~ b(s, n)6  n 

with b(s, 0 , . . .  , 0) ~ 0. As the 5i usually model a variation of some parameter  

Pi = Vi A- mini  

around a nominal value vi, there is no loss of generality in this causality 
requirement, because a reasonably chosen nominal point will guarantee that  
P(s,  0 , . . .  , 0) is well-defined. Then P has a representation in terms of an 
L F T  

P = M22 "{- M 2 1 A ( I  - M l l  A ) - I M 1 2 ,  

where A = diag(6] I r a , . . .  , 5rI,~,) for some suitably chosen integers n l , .  �9 �9 , nr .  
The  matrices Mij are rational functions of s alone. The dependencies of P 
on s and ~ are thus separated from each other; the uncertainty (A) enters a 
nominal system (M) in terms of feedback loop as above. One says tha t  the 
uncertainty has been extracted.  

An impor tant  feature of linear fractional t ransformations is tha t  "the L F T  
of an L F T  is again an LFT."  This implies tha t  for parametr ized realizations 

sx = A(&)x + B(&)u 

y = C(&)x+D(&)u,  

it suffices to write the coefficient matr ix  

A(6) S (6 )  
C(5)  D(6)  ] 

as an LFT,  from which an L F T  representat ion of D + C( s I  - A ) - I B  = 
F ( s - l I )  is easily available. A similar argument holds for descriptor systems 
[72, 93] 
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E(6)sx = A(6)x+B(6)u 
y = C(5)z+D(6)u 

and general polynomial systems (Rosenbrock systems) [92] 

T(s,,~)z = U(s, 6)u 

y = V(s , ,~ ) z  + W(s , ,~)u .  

For details, see Section 6.4. 

6 . 1  L F T  C o n s t r u c t i o n  

We consider the problem of constructing an LFT representation of a polyno- 
mial matrix M(6) e R[6] g• where 6 = (J1,. . .  ,Jr) and R denotes an ar- 
bitrary commutative coefficient ring with unity. The main cases that should 
be thought of are R = R, R[s], I~[s, s -a ] and lR(s). 

Given M(~) E R[6] a• we wish to construct integers n l , . . .  ,nr > 0, 
n = ~-~ hi, and matrices M, .4 with 

such that 

A = diag(~z Ira, . . . ,  JrInr), 

Mll Mz~ ] R(n+a)x(n+q) 
M =  M2z M22 e 

M(~) = ~'(A; M) := M22 + M21A(I - M l l A ) - I M 1 2  �9 

First, consider the case q = 1. Then M(6) is merely a column vector of 
polynomials, 

M(6)z ] 

where ei denotes the i-th natural basis vector of Rg and ci(n) E R. Define 
the support of this polynomial column vector by 

N := supp(M(6)) = {n e N r, 3i with ci(n) ~ 0}, 

which is a finite subset of 1W, and let 6N={6 n, n E N}. It is assumed that 
M(6) ~ O, i.e., N ~ 0. As usual, let Inl = ~ = 1  ni for n E N r. Define a 
directed graph/"  with vertices in the set of monic monomials {6 ~', n E l~lr] 
in the following fashion: For each n E N, choose a directed path from 1 = 
tO 6 n, 
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1 :  v (n) ---} v~n) ---> v~n) -). . . .  .--r vlnnl)= 6 n (6.3) 

such that  for all 0 < i < Inl, there exists j i  E [r] := {1 , . . .  , r} with 

(6.4) 
: ~ 3 i ~ i _ l  . i 

The vertex set of /~  is 

V = U {Vo('~), ~ ('~)~ 
�9 " "  '" ln l  J' 

h E N  

and each pair (z,v) := (v~n_~,v~ n)) e V ~ according to (6.3), (6.4) above 
constitutes an edge of F with initial vertex z and terminal vertex v. The  
edge set is denoted by E. 

By construction, u := 6 ~ = 1 E V is a r o o t  of the graph F, i.e., there exist 
directed paths from u to all the remaining vertices of F.  In particular,  F is 
quasi-strongly connected, which implies tha t  it possesses a directed spanning 
tree [74, p. 106]. Without  loss of generality, assume that  F itself is a directed 
tree (otherwise, one can remove successively all the edges from F whose 
removal does not destroy the property of u being a root of F) .  

A systematic method for the direct construction of such a tree is the 
following: For each v = 6 n with n E N,  if m E N r is such tha t  

3 j E [ r ]  with m j < n j  and m i = ~  ni f o r i < j  
- k 0 for i > j,  

then 6 m E V. For agiven n = ( n l , . . .  , n r )  E N,  this means tha t  the following 
predecessors of n (with respect to the lexicographic order) are exponents of 
elements in V: 

( 0 , 0 , . . .  , 0 ) , ( 1 , 0 , . . .  , 0 ) , . . .  , ( n l , 0 , . . .  ,0),  
( n a , l , O , . . . , O ) , . . . , ( n l , n 2 , 0 , . . . , O ) , . . . ,  
(n l ,n2, . . .  , n r - x , X ) , . . .  , (n l ,n2 , . . .  ,nr). 

In a directed tree with root  u, there exists, for every v E V \ {u}, one 
and only one vertex z(v) E V such that  (z(v), v) E E. In other  words, with 
W := V \ {u}, the map 

w v, 

which assigns to each w E W its unique direct predecessor z(w) is well- 
defined. It gives rise to a decomposition of W into a disjoint union 

�9 p 

w = U i = t W i  with W i =  {wE W, w=S i z (w) } .  

The elements of W are labeled with integers from the set {1 , . . .  ,n},  n := 
IWI, such tha t  
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w i � 9 1 4 9  ~ i < k .  

Then by defining vectors w = ( w l , . . . , W n )  T and, correspondingly, z = 
(Z l , . . .  , Zn) T with zi = z(wi), one obtains w = A z  with 

A = d iag(~ l ln l , .  �9 �9 , 6tin,.), 

where ni = IWd. Moreover, since each zi �9 V = WU{u} ,  there exist matr ices 
Mlz �9 {0, 1} n• and M12 �9 {0, 1} TM such tha t  

Z : M l l W  -t- M12u. 

Since 6 N C V, where N = supp(M(6) ) ,  there exist matrices/1//21 �9 R 9xn 
and M22 �9 R 9x I with 

M ( 6 )  = M21'w + M22u. 

Altogether,  

w = Az  and [ z ] [Mll  12][o] 
M(6)  = M2z M22 u " 

Thus,  z = M l l w  + M12u = M n A z  + M12u. Using the fact tha t  I - M l l / t  
is invertible (see below), this yields z = ( I -  Ml lA) - IM12u and 

M(6) = M22u + M2zw 

---- M22u + M21 A z  

= M22u  -~- M 2 1 A ( I  - M l l A ) - I M 1 2  u.  

Taking into account tha t  u = 1, this yields the desired representat ion of M(~)  
in te rms  of an LFT,  namely 

[ Mll M12 ] R(n+,)• 
M(6)  = ~ ' (A;  M) ,  M -- M21 M22 �9 

The  case q > 1 can be reduced to the preceding construct ion me thod  for 
q = 1 by an idealization technique: Given M(6)  e R[6] 9• introduce a vec- 
tor  of q new indeterminates  u = (u l , . . .  , uq) T and consider the polynomial  
vector 

M(6)u e (R[6]Ul ( 9 . . .  $ R[6]Uq) g C R[6, u] g. 

Write 

q g 

hEN r j----I i----I 

with coefficients ci(n; j) E R, and define 
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N := supp(M($)u) = {(n;j)  E 1~ x [q],3i with ci(n;j) ~t 0). 

Define a directed graph F with vertex set V C {3'*uj, (n ; j )  E ~ 5< [q]} by 
choosing paths 

= voC" -  (6.5) 

from uj to Snuj for each (n ; j )  6 N such that for all i, 

The vertex set V of F consists of all v~ n) according to (6.5), (6.6), and 
, (n) (,~), V2 each pair tvi_l, v i ) E constitutes an edge of the graph. After possible 

removal of redundant edges,/~ becomes a directed forest with roots ul , . . .  , uq 
(assuming that M($) contains no zero column). Each component of the graph 
corresponds to a column of the matrix. Let U C_ V be the set of roots of F. 
The predecessor map 

W := V \ U -+ V, w ~ z(w)  

gives rise to a representation w = Az with 

= ( ~ i x . ~ , . . . ,  ~ d . ~ ) ,  

where 

n,  = I { ~  e w ,  w = $~zCw)} I, 

= i w i .  The  vectors ~ : =  ( ~ 1 , . . . ,  ~ , ) r  and ~ = ( ~ , . . . ,  zn) T with z~ : =  

z(wi) are supposed to be suitably sorted. Then 

z = MllW + M12u 

for some matrices Mll E {0, 1} nxn, M12 E {0, 1} nxq, and 

M(6)u = M21w + M22u 

for some matrices M21 E R axn and M22 E R axq. Altogether, since I - Ml lA 
is invertible according to the subsequent lemma, 

M(6)u = (M22 + M2I A(I - MllA)-IMt2)u  = ~'(A; M)u, 

where 

Mlz M12 ] R(n+g)x(n+q) 
M =  M21 M22 E 

This implies that M($) = ~'(A; M). The LFT construction is illustrated by 
the following example. 
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Example 6.1.1. (compare [72]): Consider 

M(~) = [ ~12 (~I (~2 ] ~ ~ + ~ e ~1,~,~]2• 

Introducing u = (ul, u2) T, the support of M(6)u is 

N = {(2,0,0; 1), (0, 1,2; 1), (1, 1,0;2), (0, 1,0;2) ,(0,0,2;2))  

corresponding to the vertices ~2ux, ~2~3~ul, ~1~2u2, ~2u2, ~2u2 of the graph to 
be constructed. 

A graph which satisfies the requirements above is represented in the fol- 
lowing figure. Lattice points which correspond to elements of V are marked 
by circles, the big disks indicate the elements of the support of M(6)u. 

&3 63 

rlv? 

W6 

62 

6: 

Fig. 6.2. The Two Components of the Graph. 

�9 w 9  

w8 

62 

The vertex set V consists of Wl, . . .  , W 9 and the two roots Ul, u2. The 
vertices wi and their corresponding direct predecessors zi are given by 

Wl : ~  ~1~1 Zl : Ul  

W2 : =  ~2Ul  ~--- ~ l W l  2;2 : Wl 

W 3 : =  ~1 (~2U2 = (~lW5 Z3 = W 5 

W4 : =  (~2Ul Z4 = 151 

WS : ' -  (~2U2 Z5 = ~2 

W6 : = (~2 ~3 ~ 1 =- {~3 W4 Z6 ~ W4 

W7 :w.~ ~2(~32UI = (~3W 6 Z7 : W6 

W8 :~--~ ~3152 Z8 = 152 

w9 := ~2u2 = ~3w8 zo = ws.  

The vertices have been labeled such that  

w1 = { ~ l , w 2 , w ~ } ,  w 2  = { ~ 4 , ~ 5 } ,  w 3  = { ~ 6 , ~ , w s , w g } ,  
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which gives rise to a partition of A as 

.4 = diag(~lI3, J212, ~3h)- 

The following equations yield the coefficient matrix M: 

Zl 

z2 

Z3 
Z4 

Z5 
Z6 

Z7 

Z8 

Z9 

~ u l  + ~1~2u2 
+ + 

0000 
0000 
0001 
0000 
0000 
0000 

o11oolooo 
00001010 

0 0 0 0  
0 0 0 0  
0 0 0 0  

0 0 0 0 0 1 0  
0 0 0 0 0 ~ 0 1  
0 0 0 0 0 0 0  
0 1 0 0 0 0 0  
0 0 0 0 0 0 1  
0 0 0 1 0 0 0  

i 0 0  
O i o o J l  

Wl 

W2 

W3 

W4 

W5 

W6 

W7 

W8 

W9 

Ul 

~2 

Single lines denote the partition that corresponds to the block structure of 
A, double lines separate the sub-matrices Mij. 

The graph-theoretic LFT construction above also yields a simple proof for 
the well-posedness of the resulting linear fractional transformations; compare 
[19]. 

T h e o r e m  25 In  an L F T  constructed as above, we have det(I  - Mll  A) = 1. 

Proof. In an acyclic directed graph with p vertices, there exists a topo log ica l  
sor t ing  [74, p. 117], that is, the vertices can be labeled with integers from 
the set {1, . . .  ,p} such that 

vi predecessor o fv j  =*, i < j. 

The vertex set o f / '  is V = U ( J W  with U C {Ul, . . .  ,Uq} (U -- {ul , . . .Uq} 
whenever M(5) contains no zero column). Let n = IWI and let /7 be a [~ permutation matrix which transforms the given vertex vector v -- u ' 

wi E W, uj E U, into a topologically sorted one by 

_-_r/v 

with 9 being topologically sorted. Note that since u l , . . . ,  Uq are vertices with 
zero in-degree (i.e., no edge ends in one of the ui), H can, without loss of 
generality, be assumed to be of the form 

/-/-- /I1 0 
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with an n • n permutat ion matr ix  111, i.e., 

[0 ,][w] [ o ] 
= 111 0 u I I lw  

Then with ~ = 11tz, ~v = 111w = 111Az = II1A11~-a~ and 

= 111 [ Mix M12 ] v  

= 111 [ Mll  M12 ]11-1~  

r = 111[ Ml l  M12 ] [ I 

= 111M12u + 111M111111w. 

If 5i = ~ j ,  i.e, if vertex ~ j  is the predecessor of vertex zbi, then j < i because 
of the topological sorting. Hence 

Mll  : :  /~1Mll/711 = 
I 0 �9176 0 

that  is, (5:/Xl)i3 = 0 for j > i. This implies that  

/'/1 (I  -- MI1 A)/ - /11  = I - ~/11 ( / /1  A / ~ I  1) : 

0 

1 0 

�9 1 

and hence de t ( I  - MlxA) = 1. [] 

6 . 2  R e d u c t i o n  t o  T r i m  F o r m  

D e f i n i t i o n  39 Let n = (n l , . . .  ,nr), n = [hi, and 

[ A B  ] F ( ' ~ + g ) •  D E 

be given, where F is an arbitrary field, and consider the LFT defined by 
( n ; A , B , C , D ) ,  that is, 

Y ( n ; A , B , C , D )  := D + C A ( I  - A A ) - I B ,  

where A = d iag(61Im, . . .  , 6r ln. ) . The number n is called s t a t e - d i m e n s i o n  
of the LFT representation and (n; A, B, C, D) is said to be m i n i m a l  if its 
state-dimension is minimal among all the LFT representations of a matrix, 
i.e., if 
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~'(n; A, B, C, D) = ~'(n'; A', B', C', D') =~ 

An LFT is called t r im  if, with the partitions 

A = " , A i -  E F n ' x n ,  B = 

A;- 
we have that for 1 < 
Dually, (n; A, B, C, D) 

Jr 

Inl < In'l. 

Bi  E F ni• 

i < r, each matrix [ Ai -  Bi ] has full row rank. 
is said to be co- t r im  iff, with 

A = [  A-1 . . .  A_,  ] ,  A _ i E F  n• 

C = [ e l  . . .  Cr ] ,  Ci e F g • 

A-i  ] has full column rank. each Ci 

Theorem 26 A minimal LFT is both trim and co-trim. Conversely, trim- 
ness and co-trimness are not sufficient for minimality. 

Proof. A procedure for reducing the state dimension of non-trim LFTs is 
given below. The result for co-trimness is dual. An example of an LFT that 
is both trim and co-trim, but not state-minimal will be given in Section 6.2.1. 

U 

An obvious necessary condition for minimality of (n; A, B, C, D) is that 
the matrix pairs 

( a i i , [  A l l  . . .  A i , i -1  a i , i+l  . . .  A ir  B i  ] ) ,  l < i < r ,  (6.7) 

are controllable. Otherwise, the LFT can be reduced via a Kalman de- 
composition. This should be compared with Lemma 5.2.1. The minimal- 
ity discussed there is based on a different equivalence concept, namely: 
(n; A, B, C, D) ~. (n'; A', B', C', D') iff they are ON representations of the 
same behavior. This corresponds to Kuijper's notion of "strong external 
equivalence" [36]. Note that this equivalence does not imply that 

Y := Y(n;  A, B, C, D) = Y(n';  A', B', C', D') =: ~-' 

which is the relevant equivalence definition in the present context. (However, 
it does imply that the rational matrices ~" and 5 r~ have the same row span; 
this amounts to "weak external equivalence" [36].) 

Via the Hautus test, one can see that trimness, that is 

rank [ Ai -  B, ] =h i  for a l l i  

is in turn necessary for controllability of (6.7). 
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If /% - A is invertible over the Lanrent polynomial ring, the matrices 
Aii are nilpotent according to Theorem 22. This implies that controllability 
of (6.7) is even equivalent to trimness of (n; A, B, C, D). A dual argument 
applies to co-trimness and observability. 

For 1 < i < r, let 

Mi:= [ Ai- Bi ] = [Ai l  . . .  Air Bi ] ,  P i : = r a n k ( M / )  

and define p := (pl , . . .  ,Pr), P := IPl. We will construct matrices 

F (p+0) • (p+q) such that 

5v(n; A, B, C, D) = ~'(p; ji,/}, r  

(6.8) 

The new LFT (p; A, B, C, D) is not necessarily trim, but by successively re- 
applying the reduction technique above, one obtains a sequence of representa- 
tions of decreasing state-dimension which eventually must become stationary. 

R e d u c t i o n  technique:  Compute a column-echelon form (cef) of each 
M/, that is (up to a permutation of rows) a matrix of the form 

Ti:=[  Z., 0 ] n - ' e F  "'• and x, eF"'x"'" 

Then 

I/p, 0 Xi 0 ] 
that can be obtained from Mi by elementary column operations. In other 
words, 

cef(Mi) = MiPi = IIi [ Ip'Xi 00] 

with a permutation matrix Hi and an invertible matrix Pi. Define 

7"iTiMi = M/. (6.10) 

Note that although Ti and Ti are defined in terms of the permutation Hi, 
they can be read off directly from the column-echelon form (e.g., Ti consists 
of the first Pi columns of cef(Mi)). Finally, define T := diag(Tz,.. .  ,Tr), 

= d iag(T, , . . . ,  Tr) and 

.ft := TAT 
JB := TB 

/) := D. 

(6.9) 
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L e m m a  6.2.1. The matrices A, 1~, C, D defined above satisfy (6.9). 

Proof. Let A = diag(61Inl,. �9 �9 , 6tint) and /~ = T`ST = diag(611pl . . . .  ,6rip.). 
Note that 

hence 

o r  

By (6.10), 

and thus 

T(Z1 - T A T )  = (,5 - :FTA)i" 

(,5 - T T A ) - I T  = T (A  - TAT)  -1. 

T T [ A  B ] = [ A  B ] ,  

C ( A  - A)-XB = 0 ( , 5 -  T T A ) - X T T B  

= CT(/~ - T A T ) - I T B  

= 0 ( A  - > i ) - l b ,  

Thus the reduction step yields R = ~'((1, 2); .4,/3, C, / ) )  with 

1 0 0 0 ]  
T =  0 0 1 0 ,  T =  

0 0 0 1  

1 0 0 
b/a 0 0 
0 1 0 
0 0 1 

We have p = (1, 2) and 

[0 0!0 01 ] 
[ A___II _I o o o o 
Lo---IV_5_ J = o o o 1 

1 0 0 0 

0 1 1  oll d 

which proves .T(n; A, B, C, D) -- ~(p;  .4,/}, C, / ) )  as required. [] 

The effectiveness of the reduction algorithm is illustrated by the following 
two examples. 

Example 6. ~. 1. Consider R(61,62) = a6162 + b61 + c62 + d, where a, b, c, d e R 
and a ~ 0. A direct representation is given by R = ~'((2, 2); A, B, C, D) with 
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0 0011a 
Lc-C- j = 1 0 0 c 

b/a 1 0 [ [ d  

which is in trim form. This example is considered by Cockburn and Morton 
[17] with a --- 15, b = 6, c = 5, d = 2. Despite appearances, the possibility 
of reducing the order to 3 is not due to the fact that R factors as R -- 
(1 + 351)(2 + 552). 

Example 6.2.2. In [16], Cheng and DeMoor give an LFT representation of 

R(51,52) = 

52 55152 
1 + - -  

1 + 251 1 + 65152 

55152 351 
1 + ~  

1 + 65152 1 + 452 

of order 12 with n = (6, 6). Reducing the given representation by the method 
described above, we obtain an LFT of order 8, namely 

R = ~ ( ( 4 , 4 ) ; A , B , C , D )  

with 

c--WVj = 

- 2 0 0 0  
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 0 0 
0 0 0 
0 0 - 6  
0 0 0 

0 0 0 0 0 0 0 
0 3 0 0 0 - 4  0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 

- 2 0 0 0  
0 3 0 0  

1 0 0 
0 - 4  5 

0 0 0 
0 0 1 
0 1 0 

- 6  0 1 
0 1 0 
0 0 0 
0 0 0 
0 0 0 

0 0 1 

that is, the number of states can be reduced by one third. 

6.2.1 F u r t h e r  T r a n s f o r m a t i o n s  

Sugie [72] suggests another transformation of the representing matrices of an 
LFT, by swapping certain rows and columns thut belong to different blocks. 
Although s.uch a permutation does not change the state space dimension, it 
may nevertheless yield a further possibility of reduction, as it may destroy the 
original representation's property of being both trim and co-trim (and then 
the reduction technique of the previous section can be re-applied). In other 
words, the given representation is first reduced to trim and co-trim form, say 
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(n; A, B, C, D). Then one searches for an appropriate pair of indices (~, 77) 
such that  

~ c ( n ; A , B , C , D )  : J:(n;HenAII~n,II~nB, CI-Ir (6.11) 

and the representation on the right hand side is either not trim or not co- 
trim, that  is, it is again reducible according to Section 6.2. Here,/7~n denotes 
the permutation matrix that  interchanges the ~-th and ~/-th row (or column, 
respectively). The crucial point is that  the ~-th and y-th row of A and B 
belong to different blocks Mi with respect to (6.8). O t h e r w i s e , / / ~  is just a 
transformation that  respects the block partition of AI, in particular, it does 
not affect trimness. Note that  the A-matrices that  are tacitly involved in 
(6.11) are the same, that  is, with A = d iag(~ l ln l , . . .  ,~rlnr),  the claim of 
(6.11) is 

C(AI - A ) - I B  -- CII~n(A - I-I~nAII~n)-III~nB (6.12) 

under suitable conditions on the index pair ((, ~]) and the matrices A, B, C. 
If ( ,T/belong to the same block, we have H~nAII~n = A and then (6.12) is 
trivially true. 

T h e o r e m  27 [72] Let (n; A, B, C, D) be given, and let n = Inl. Suppose that 
1 <_ ~,71 < n are such that 

and 

A~j = 0  ]or all j r ~? and Air = 0  ]or all i r 

B~j = 0  for all j and Cin = O ]or all i. 

Then equality (6.12) holds. 

Proof. We use the feedback interpretation of the LFT. Let 

o][o] 
W = , ~ Z .  

y C D u ' 

Then y = ( C A ( I  - AAI ) - IB  + D)u. By the assumption on A and B, we have 
z~ = A~nw n. We define vectors zl and Wl such that  w i t h / / : =  II~n , 

: W 1 : A Z l ,  
y C H  D u ' 

i.e., y = (CII  A ( I -  I I A I I  A ) - I  I I B  + D)u, which yields the desired result as 
u is arbitrary. Define 

zi i f i  ~ ~,~/ 
(zl)i = z n if i = 

Ar n i f i  = ~/ 
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and set 

w, i f i  r ( , r /  
(wl), := A i i ( z l ) ,  = A e e z .  i f / = (  

w e if i = 77, 

where the last equality follows from A,mAer  1 = AeeAr  7 = Ar162 = 
w e. Then (w - I l w l ) ,  = 0 for all i 7~ ,7 and hence C ( w  - H w l )  = 0 due to 
the assumption on C. As i i - 1  = / / ,  it remains to be shown that  

I l z l  = A I I w l  + B u .  

In case that  i ~ (,  we have ( I I z l ) i  = zi and ( A I I w l ) i  = ( A w ) i .  Finally, 

( I Iz l )~ = (Zl),7 = Aee Ae, 7z,1 = A07 (wl )e  = A07 ( I I w l ) ,  = ( A I I w l ) e  

concludes the proof. I-1 

Example  6.2.3. Consider the LFT  with n = (3, 1) given by 

0 0 0 0 1 O} 
0 0 0 0 0 1 
1 0 0 0 0 0 . 

0 1 0 0 0 0 
0 0 1  lllOO 

It  is both trim and co-trim, but  (~,,1) = (4, 2) is a pair according to Theo- 
rem 27. Swapping yields 

0 0 0 0 1 0 
0 0 0 1 0 0 
1 0 0 0 0 0 
0 0 0 0 0 1 

0 1 1 0 0 0 

which is not co-trim. This implies tha t  the L F T  can be reduced to p = (2, 1). 
The  result is 000}110 

1 0 1 0 0 
0 0 0 0 1 

0 1  ollo 0 

This example also demonstrates that  an L F T  that  is t r im and co-trim need 
not be minimal. 
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6 . 3  B a l a n c i n g  

Let  IK denote either the field of real or the field of complex numbers, and 
let A, P in K n• be given. As usual, p(A) denotes the spectral radius of A, 
and ~(A) =[[A[I 2 is its largest singular value. The notat ion P > 0 ( P  > 0) 
indicates tha t  P is Hermitian and positive definite (semi-definite). The  set of 
non-singular n x n matrices over K is denoted by Gln(K). 

The equivalence of the following assertions is well-known from 1D systems 
theory. 

1. A is discrete-time asymptotically stable, tha t  is, p(A) < 1; 
2. There exists an invertible matr ix  T such that  "~(T-1AT) < 1; 
3. There exists P > 0 such tha t  APA* - P < 0; 
4. For every Q >_ 0, there exists P > 0 such tha t  APA* - P + Q < O. 

In view of Condition 2 above, we recall the well-known fact tha t  similarity 
transforms 

(A ,B ,C)  ~ (T-1AT,  T -1B ,  CT) 

do not change the transfer function H(s) = C(sI  - A ) - I B  of a linear 1D 
system. For L F T  systems 

J:( A; A , B ,  C) := C( A -~ - A)-~ B = C A ( I  - A A) - I  B 

however, we only have 

2"(3;  A, B, C) = Y ( T - ~ A T ;  T-XAT,  T -1B ,  CT) 

since T - 1 A T  # A in general (unlike the 1D case, where A = s - l I ) .  Hence 
the admissible similarity t ransforms T �9 GI,(K) tha t  leave the L F T  invariant 
are those for which AT  = TA.  Let C denote the centralizer of A in Gln (K), 
tha t  is, the set of all non-singular matrices tha t  commute with A. It  consists 
of the matrices tha t  share the block s t ructure  of A = diag(6~Inl, �9 �9 �9  6rln.), 
i.e., 

C = {T e GIn(K),AT = TA}  = {T = diag(T1 . . . .  ,T r ) ,T i  �9 Gln,(K)}. 

This observation gives rise to the following definition of stability in the L F T  
setting: 

Defini t ion 40 Let n E I~F, n = Inl, and A E K n• be given. The matrix A 
is said to be n - s t a b l e  (i.e., stable with respect to the partition induced by n,  
or "Q-stable" in the nomenclature of[77]) if there ezists an invertible n-block 
matrix T, that is, 

T = d i a g ( T 1 , . . . ,  Tr) with Ti E Gl,, (K) for 1 < i < r, 

such that ~ (T-1AT)  < 1. 
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An n-stable matrix is discrete-time asymptotically stable. For Hermitian 
matrices A = A*, we have ~(A) = p(A), and hence the converse is also 
true. The set of non-negative matrices constitutes another interesting class 
of matrices for which p(A) < 1 already implies n-stability of A (for arbitrary 
block structures n). 

Defini t ion 41 A real matrix is said to be posi t ive (non-negat ive)  if all 
its entries are positive (non-negative). 

Stoer and Witzgall [71] considered the problem of minimizing the norm 
of a positive matrix by scaling. They showed that, for a positive matrix A, 

min IIDAD-11t = p(A), 
DED 

where D denotes the set of non-singular diagonal matrices. This result holds 
for a class of matrix norms including the H61der norms II �9 lip for 1 < p < c~. 
Here we consider the case p = 2. The minimizing D is unique (up to a 
non-zero factor). Indeed, if 7r(A) = p(A) denotes the Perron eigenvalue [27, 
Chapter 13] of A, let x and y be left and right Perron eigenvectors, i.e., 

then [66] 

xT A = rr(A)x T and Ay = 7r(A)y, 

D = d i a g  ~ , . . . , ~ ]  

minimizes HDAD -1 [12. 
Any non-negative matrix can be written as the limit of a sequence of 

positive matrices, and hence a continuity argument implies 

inf IIDAD-111 = p(A) (6.13) 
DED 

for non-negative matrices A. Note that the infimum may not be achieved, as 
can be seen from the following example. 

Example 6.3.1. Consider 

A =  O 0  

with p(A) = 0 and IIAll2 = 1. Let D = diag(dx,d2) E D be an arbitrary 
scaling matrix, then 

[ D A D  -1 
= [ 0 

and [IDAD -11[~ = ~ ~ 0 for all D E D. However, IIDAD -1 I]2 can obviously 
be made arbitrarily small by choice of dl, d2. 
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Still, we conclude from (6.13) that for non-negative matrices A with 
p(A) < 1, we can find a D E D such that 

IIDAD-XlI2 =-5(DAD -1) < 1, 

thus implying n-stability for arbitrary block structures n. 
Equation (6.13) does not hold in the general case of matrices with arbi- 

trary sign patterns. In fact, the value of infD HDAD-1H2 can be arbitrarily 
far away from p(A). 

Example 6.3.2. Consider 

1] 
A = ~  1 -1  

with p(A) = 0 and IIAII2 = ~3 
parametrized as 

> 0. The scaled versions of A can be 

o] 
A(c~)=~- a_  t - 1  , w h e r e a ~ 0 .  

As HA(a)II2 : ~ / 2  + ~2 + ~-2 takes its minimum at a = 1, it turns out that 
A is already optimally scaled, and infD IIDAD -1112 = f~, whereas p(A) = O. 

In the general case (A not necessarily Hermitian or non-negative), we can 
compute 

#(A) := inf HDAD-I[12 (6.14) 
DED 

only approximatively. In fact, the MATLAB g-Analysis and Synthesis Tool- 
box does precisely this job, it yields an estimate for #(A) as well as a diagonal 
scaling matrix D for which this estimate is achieved. 

For an arbitrary block structure n,  we are interested in 

#(A, n)  = inf{llT-1ATll2, T has n-block structure} < #(A). 

The computation of #(A, n)  and hence the decision problem "Is A n-stable?" 
can be reformulated in terms of a l inear m a t r i x  inequal i ty  (LMI)  using 
the subsequent lemma, which generalizes the equivalences given at the be- 
ginning of this section. 

L e m m a  6.3.1. Let n E N", n = Inl, and A E K n• be given. The following 
are equivalent: 

I. A is n-stable; 
2. There exists an invertible n-block matrix T such that ~ ( T - 1 A T )  < 1; 
3. There exists an n-block matrix P > 0 such that APA* - P < O; 
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4. For every Q > O, there exists an n-block matrix P > 0 such that 

APA* - P + Q < O. 

Proof. Conditions 1 and 2 are equivalent by definition, Condition 3 is an 
obvious special case of 4 (Q = 0). An equivalent formulation of Condition 2 
is 

( T - 1 A T ) ( T - 1 A T )  * 

This shows the equivalence of 2 and 3 by 
respectively. Then the block s t ructure  of T 

- I < 0 .  

put t ing P = TT* or T = P�89 
implies the block s t ructure  of P 

and vice versa. Finally, suppose that  there exists an n-block matr ix  P > 0 
such that  APA* - P =: QI < 0, and let Q _> 0 be given. Choose 

X* Qx 
A > p(QQ71) = max (6.15) x*(-Q1)x 

and define P1 := AP > 0. Then AP1A* - P1 + Q = AQ1 + Q < 0 by the 
choice of A, and P1 inherits the n-block s t ructure  of P.  D 

C o r o l l a r y  18 Let A be non-negative and let p(A) < 1. Then there exists, 
/or any Q > O, a diagonal matrix D > 0 such that 

ADA* - D + Q < O. 

Using the above lemma, we can reformulate the decision problem "Is A 
n-stable?" as follows: Let P1 , . . .  ,PN E K "• be an R-basis of the space of 
Hermitian n-block matrices. For instance, for a 2 x 2 block and K = ~ we 
might take 

[10] [001 
0 0 ' 0 1 ' 1 0 ' 

and if N = C, we admit  the additional generator  

0 i [_i o]. 
In general, N �89 r r 2 f o r K = C .  = ~i=1 hi(hi + 1) for K = ~ and N = Y~i=l ni 
Define 

F , = [ P ,  0 ] 
0 P i - A P i A *  

and consider the following s tandard form of an LMI [5] 

N 
F(x)  = f ( x l , . . .  ,xN)  = Z x ~ F / >  o. (6.16) 
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This problem is f eas ib le  if the convex set {x E RN, F(x)  > 0} is non-empty. 
If x0 is a solution ( that  is, if F(xo) > 0), then P := ~'~-i xiPi > 0 has n-block 
s tructure and APA* - P < 0 as desired. Infeasibility of (6.16) is equivalent 
to the existence of G > 0, G # 0 such that  [5] 

t race(GFi)  = 0 for i = 1 , . . .  , N. 

D e f i n i t i o n  42 Let A E K "xn,  B E K ~xq, and C E K gxn be given. The 
matrix triple ( A, B, C) is said to be b a l a n c e d  if there exists a real diagonal 
matrix 27 > 0 such that 

A 2 7 A * - E + B B *  < 0  and A * E A - 2 7 + C * C < O .  

It is a common fact that  if A is discrete-time asymptotically stable, every 
matr ix triple ( A, B, C) possesses an equivalent triple (T-1AT,  T - 1 B ,  CT)  
that  is balanced. Indeed, let P > 0 and Q > 0 be such that  APA* - P + B B *  < 
0 and A * Q A - Q + C * C  < 0, and define R := P�89189 > 0. Let U be 
the uni tary  matr ix tha t  transforms R into diagonal form, tha t  is, U*RU = 
A = diagCA1,... , An). Being the eigenvalues of the Hermitian matr ix  R, the 
diagonal entries of A have to be real. Then T = P�89188 has the desired 
property with 27 = A �89 Note that  neither T nor 27 are unique. The  following 
result on n-stable matrices is an immediate consequence: 

L e m m a  6.3.2.  Let A be n-stable. Then there exists an invertible n-block 
matrix T such that (T -1AT,  T - 1 B ,  CT)  is balanced. 

C o r o l l a r y  19 Let A be non-negative and let p(A) < 1. Then there exits a 
non-singular diagonal matrix D such that (DAD -1, D B, C D -1) is balanced. 

6.3.1 B a l a n c e d  T r u n c a t i o n  

Let (A, B,  C) be balanced with Gramian 27. Let n E IW be a given block 
s t ructure  with In[ = n, and let 27 = diag(271,.. .  , 27r) be the corresponding 
part i t ion of 27 with 

Rn~ • 9 Ei = diag(ail I n , ,  . . . , aii(i)In,oj) 

�9 X-"t(i) where a i l >  �9 > air(i). The  integers nij with z_.,j=i nij = ni are defined 
by the number of diagonal entries of ~71 equal to aij .  Now part i t ion each 

Ei  = diag(~7~ I) , ~7~ 2)) such tha t  

27~1) = diag(aillni, , . . . ,aik(Oin.~o)),  

E~ 2) = diag(aik(i)+lln.ko~+l, ' . .  ,(rit(i)In,,o~) 

for some 0 _< kCi ) < ICi ). Let vi denote the size of 27~ 1} and v = ( v l , . . .  , vr). 
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Consider the corresponding partitions of A, B, and C: 

A = 

Alz " "  Air 
: 

A~z "'" A ~  

[ A!I.) A!2) ] 
, K.~ xn~ 9 Aij = A~ ) A~)'-'J , AI~ ) 6 ]K ~ x,,j, 

B = 

Sl 
: , K'n~xq 9 B i =  [B~') ] B~') ~'• 

B~2) , 6 , 

c = [  c, ... c, ], K,'-, ~c ,= [  c~') 

Finally, let A = d iag(61I , , , . . .  , 6,.I~,.) and 

4 = 

41) . . .  41) 
: 

A~i ) . . .  A(,.x,) 

Then the balanced truncation 

/Y = B :z)i ' 

c~ 2, ], ~' ,~ ~,x.,. 

IIQII~ = sup I I Q ( 6 1 , . . .  , Z r ) l l 2 .  
16.d<_z 

Note tha t  the existence of IIQII~, that  is, the boundedness of IIQ(Z~,  �9 �9 � 9  zr)112 

on the closed multi-disk 

Dr = {6 = (61 , . . .  ,~r) e C , l Z ,  I ___ 1 for 1 < i < r} 

is a consequence of the n-stabili ty of A. This is proven in the following the- 
orem. 

Theorem 28 Let A be n-stable. Then for all 6 6 D r, we have de t ( I  - 
A A ( 6 ) )  # O, where ,4(6) = ( 6 1 I , , , . . .  ,6,.In.) e C n• 

where 

0 .= ~(,'i; .:i, & C) 

is an approximation of Q = jC(A; A, B, C) in the sense tha t  /i, is v-stable 
and [77] 

r t(0 

IIQ - C)ll,:,o _< 2 ~ ~ ~,~, 
i=l i=kC0+Z 
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Proof. First consider the case when ,5(6) is non-singular and suppose that 

det(,5(6) -1 - A) = 0. 

We need to prove that $ ~ Dr. There exists a complex vector z ~ 0 such that 
z*,5(6) -1 = z*A. On the other hand, there exists an n-block matrix P > 0 
such that A P A *  - P < 0. Hence z* (APA*  - P ) z  = z * ( , 5 ( 6 ) - l P A ( 6 )  -* - 
P ) z  < 0. Now 

`5(6) -1P,5(6)  -"  = ... 
1 

and we obtain, with the n-partitioning of z = ( z T , . . .  , zT) T, 

i=1 ~ - 1  z~ Pizi < O. 

Since z~Pizi > O, we must have I~il > 1 for at least one i. 
Now assume that A(5) is singular. The case `5(5) = 0 is trivial, so without 

loss of generality, we have 

` 5 ( 6 ) = [  `51(61)0 00] 

with a non-singular matrix ,51 (61) = diag(61Inl,. . .  , 6alnp). Let 

A = [ A x  A 2 ]  
Az A4 

be the corresponding partition of A and suppose that det(I  - AA(6)) = 0. 
Then det(I-A1`51(61)) = 0 and we are in the situation discussed above, if we 
can show that AI is v-stable, where ~ = (n l , . . .  ,np). We have A P A *  - P < 0 
for some P = diag(P1, Pz) > 0. Plugging in the conforming partitions of A 
and P,  

[ AxPIA~ + A 2 P 2 A ~ -  P1 A I P I A ;  + A2P2A~ ] 

L A" J AsP1 1 + AaP2A~ AzP1A~ + A4P2A~ - P2 < O. 

In particular, A1PIA~ - P1 s AIP1A~ + AzPzA~ - P1 < O. 13 

6.4 LFTs and Robust  S t a b i l i t y  

This section focuses on (1D) general linear constant differential systems in 
which the coefficients depend polynomially on several parameters. We will 



128 6. Linear Fractional Transformations 

see that the system matrix can be written in terms of a linear fractional 
transformation (LFT), which is a representation that extracts the parametric 
uncertainty. The LFT form yields lower bounds for the robust stability radius 
of the system via ?t-analysis tools. The method is applied to the linearized 
model of a transistor amplifier. 

One of the major problems with the robustness analysis of linear electrical 
circuits is the complexity of the symbolic transfer functions in the presence 
of several uncertain network parameters. The only compact description of 
such a circuit is usually a general linear constant differential system in the 
frequency domain 

T(s;p)~(s) = V(s;p)u(s) 
y(s)  = + W ( s ; v ) u ( s ) ,  

where u, ~ and y denote the Laplace transforms of input, state and out- 
put, respectively. The system matrices T, U, V, W depend polynomially on s 
and on the parameter vector p = (Pl , . - .  ,Pr) which contains the network 
elements such as resistances, capacitances etc. The system equations are gen- 
erated from the topological structure underlying the circuit (the associated 
network graph) and the current-voltage relations corresponding to the in- 
dividual network elements. Chapter 7 gives a brief overview on how to set 
up these equations. The main goal here consists in investigating the induced 
rational transfer function 

G(s; p) = Y(s; p)T(s; p)-I U(s; p) + W(s; p) 

without directly computing it, i.e., symbolic inversion of T(s; p) is avoided. 
This is due to the fact that even for small circuits (see Section 6.4.2 for an 
example), the complexity of the symbolic expression makes an evaluation 
virtually impossible. 

Chapter 6 provides a representation of G(s; p) in terms of a linear frac- 
tional transformation, that is, 

G(8; p) = G22(8) -I- 621(s)A(p)(I - Gll (s) A(p) )-lel2(8). 

The parameters p are thus "extracted," that is, they enter the system in 
a simple feedback form. The corresponding coefficient matrices Gij(s) are 
rational functions of s. Their determination involves only the inversion of 
T(s; v), where v E R r is a given numerical design point, a vector of nominal 
parameter values. 

The open right half of the complex plane wilt be denoted by C+ = {s E 
C, Re(s) > 0}, its closure by C+ = {s �9 C, Re(s) > 0}. A rational matrix is 
said to be stable iff it has no poles in C+. 

Let F denote the field of meromorphic functions on C+. Consider a 
parametrized linear system in polynomial form [63] 
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T(s;p)~(s) = U(s;p)u(s) (6.17) 

u(8) = (6.18) 

where u E F m, ~ E F v, y E F p, and p --- (P l , . . .  ,Pr) is a parameter vector. 
Assume that  the entries of T, U, V, W depend on p polynomially, tha t  is, e.g., 
for an entry Tij of T(s;p),  

Tij = Z t i j (s ;n)p  '~ 
h E N "  

= 

r~l ~... ~r~ ~.N 

with coefficients tij(s; n) E R[s] and a finite support 

supp(Tij) = {n  �9 1~, t i j (s;n) ~ 0}. 

Thus, with 7 9 := R[s][p] = R[s, p], the polynomial ring over R in r + 1 
indeterminates s and Px, . . .  ,Pr, the matrix T is in 79u• U �9 V �9 
79px,,, W �9 79vxm. 

Let the nominal value of each parameter Pi be given by vi �9 R, and 
let the uncertainty, scaled via mi �9 R, be denoted by 5i: One considers 
pi = vi + mig~ (mi = 1 corresponds to additive uncertainty, and mi = vi 
models a multiplicative uncertainty). Define 

v = ( V x , . . . , v r )  and 6 = ( 6 1 , . . . , 6 r ) .  

By expanding the binomials pi n` = (v~ + m~6i) n', elements of 79 = ~[s][p] 
can be interpreted as polynomials in 2) := lR[s][6] in a natural  way: 

For a = ~ ,  a(n)p r', let N := supp(a) C ~ denote the support of a, 
then 

7" 

h E N  i=1. 

,~e-~" ,=a j , :o  k J , ) " '  mi 

v i tt~ i u s 
j E J  h E N  i=1  ji 

= 

J E J  

where 

J := {j E N r,  3n  E N w i t h j i  < ni for i = 1 , . . .  , r} .  
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This shows that a = ~ a(n)p  n = ~ 5(j)5 j is a polynomial in the indeter- 
minates 5 l , . . - ,  5r, where the coefficients are related via 

h E N  i=1 ji vi "ll'i " 

In the following, it will be assumed that the entries of T, U, V, W are in 
D, i.e., one considers the polynomial system 

T(s;$)~(s) = U(s;$)u(s) (6.19) 

y(s) = Y(s;6)~(s)  + W(s;6)u(s )  (6.20) 

with nominal parameter point $ = 0. 
The following will be assumed throughout this section: The nominal sys- 

tem is stable in the sense that det(T(s; 0)) is a Hurwitz polynomial, i.e., it 
has no zeros in C+. The notation 

[ ] G =  - V  W 

will be used for the rational transfer function given by the corresponding 
polynomial system, i.e., 

G = V T - 1 U  + W. 

The problem of analyzing robust stability in the situation described above 
will be attacked in the following way: 

1. Define the coefficient matrix 

T(s;6)  
M(s; 6) = -V(s;  6) 

where g = v + p  and q = v + m .  

U(s; 6) ] Z~g"q, 
W(s;6) j e 

2. Write M(s; 5) in terms of a linear fractional transformation (LFT) 

U(s;5) = ~ ' ( A ; U ( s ) )  (6.21) 

= M22(s) + M21(s)A(I  - Mxl (s )A) - IM12(s ) ,  

where for some suitable non-negative integers n l , . . .  , nr and n := ~ ni, 

A = diag((il lm,. . .  ,6tin,.) and 

M(s)  = [ Mll(S) M12(s) ] •[s](n+g)x(n+q ) 
M21 (s) M22 (s) �9 

In this representation, M22(s) = M(s; 0) is the nominal coefficient ma- 
trix, i.e., writing To(s) := T(s;0) and so on, (6.21) takes the form 
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where 

M ( s ; 3 ) =  [ To(s) Uo(s) ] 
-Vo(s) Wo(s) + 

[ M~l(s) ]A(I--Mll(S)A) -1 M~2(s ) Mb2(s) 
Mbt(s) [ ] ,  

M21(s)=[ M~l(s) ] Mb(s) and M~2(s)= [ M~2(s) Mb2(s) ] 

are partitions that match the corresponding partitions of M(s; 6). 
3. Define 

and 

(6.22) 

A = {A = diag(~llm . . . .  ,~rIn~), ~i G C} C C "• 

For s E i ~  determine # a  (Gll(S)), which is defined by 

~,~(Gl,(s)) := max{llAl1-1, de t ( I -Gl l (S )A) - -O,  A e A )  

unless there is no A E A that makes I -  Gll (s)A singular, in which case 
~a(Gll(s)) := 0. Finally, let 

p := sup #~ (Gll (iw)). 
wGR 

T h e o r e m  29 In the situation described above, the system given by (6.19), 
(6.20) is robustly stable for all parameter variations with maxi [~i[ < p-1. 

Proof. Plugging the expressions for T(s;~) and U(s;6) from (6.22) into 
(6.19), one obtains 

To(s)~(s) = Uo(s)u(s) + M~I(S)A(I-  Mll(s)A) - l  . 
�9 (Mb2(s)u(s) -- M~2(s)~(s)). (6.24) 

Define 

z(8) : =  

w(s) . =  

then (6.24) reads 

(I - Mll  (s)A)-I  (Mlb2 (s)ttCs) -- M~2 (s){Cs)), 
Az(s), 

To(s){(s) = M~I (s)wCs) + UoCs)u(s). 

Similarly, using the LFTs for V(s; 6) and W(s; 6) from (6.22) in (6.20), 

G11(S)  : :  M I I ( 8 )  --  M~2(s)To(8)-IM~I(S) E R(S) n• (6 .23)  
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yCs) = Vo(s)~(s) + MblA( I - -  Mll(S)A) -1 .  

�9 (Mb2(s)u(s) - -  M~2(s)~(s)) + Wo(S)U(S) 

= Vo(s)~(s) + ib l ( s )w(s )  + Wo(s)u(s). 

Summing up, one obtains the following relations: w = Az, and 

To~ = M~l w + Uou 
z = -M~2~+ Mllw+Mb12u 
y = Vo~ + Mblw + Wou. 

The corresponding transfer function from (w, U) T to (z, y)T is 

[ ] [ 11 
G =  -M~2 To1[  M~ 1 Uo ] +  M2b Wo v0 

or, 

G = G21 G22 M~2 Mxl M~2 , 
-Vo Mb~ W0 

i.e., 

To 

and so on (compare with (6.23)). The stability of G follows from the assump- 
tion that det(T0(s)) is a Hurwitz polynomial. 

Thus by construction, the original transfer function from u to y as given 
by (6.19), (6.20) is also given by an LFT, namely 

G(s; 6) = V(s;6)T(s;6)- lU(s;6)  + W(s;6) 

= C22(s) + G21(s )A( I -  G11(s)A)-lG12(s) 

= 7 ( ~ ;  C(s)). 

Finally, assume that G(s; 6) is unstable for some Ao E ~ with HAoll < 
p- l .  Since the transfer matrices G=j are all stable, this implies that ( I -  
G~l(s)Ao)-I has an unstable pole. Thus, there exists an So E C+ such that 
det(I  - Gll (so)Ao) = 0. But this implies [97] 

sup#~(Gu(iw))  = sup pa(G11(s)) > p, 
~ER sET+ 

contradicting the definition of p. [] 

The given lower bound for the stability radius of G(s; 6) will, in general, 
only be useful in case that G11 is a proper rational function (this guarantees 
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that p < oo). Sufficient conditions for properness of Gll have been given in 
special cases of (6.19), (6.20), for instance, descriptor systems [90]; see the 
subsequent section. 

For robust stability issues, it is sufficient to consider the matrix T(s, 5) 
alone, rather than the whole coefficient matrix M(s, 5). For related tasks, 
such as investigating the influence of certain parameters on the transfer func- 
tion, an LFT representation of M(s, 5) may be advantageous. 

Note that this approach can be extended without difficulty to the case 
where T(s; 5) is a Laurent polynomial with respect to s (this will be the case 
in the example considered later). 

Instead of replacing Pi by 5~ a priori, one can, alternatively, extract first 
the parameters Pi themselves, and use the fact that the scaling 

P ' = v i + m i ~ = ' T @ i ; [  O1 rni ] ) v i  

is itself an LFT. Then common results on the composition of LFTs allow 
an adaptation of the coefficient matrices obtained for v = 0 to an arbitrary 
nominal point v. 

6.4.1 Descriptor Systems 

As a special case, let U, V, W be independent of s, and let T be affine linear 
in s, that is, 

T(s; 5) = E(5)s - A(5). 

In other words, consider a parametrized linear system in descriptor form 

E(p)sx = A(p)x + B(p)u (6.25) 

y = C(p)x +D(p)u,  (6.26) 

where with P := II~], the matrices E and A are in pv•  B e p~• 
C 6 ppx~, D 6 pvxm. 

As usual, we consider variations around a given nominal parameter point, 
i.e., we consider 

E(5)sx = A(5)x + B(5)u (6.27) 

y = C(5 )x+D(5)u  (6.28) 

with nominal parameter point $ = 0. The nominal system is supposed to be 
stable and of index one. Equivalently, det(sE(0) - A(0)) is assumed to be a 
Hurwitz polynomial whose degree equals the rank of E(0). In particular, the 
nominal transfer function 

G(O) = C(O)(sE(O) - A(0))-IB(0) + D(0) 
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is a proper rational matrix. A comprehensive treatment of singular systems 
can be found in [9]. 

Exploiting the structure of T, the procedure described in the previous 
section can be adapted to the present situation as follows: 

1. Define the augmented coefficient matrix 

M(6) = [ E(6) A(6) 
0 C(6) 

where 9 = v + p  and q = 2v + m. 

B(6) ] Og• 
0(6)  e 

2. Write M(6) in terms of a linear fractional transformation (LFT) 

M(6) = ~-(A;M) (6.29) 

= M22 + M21A(I-  MllA)-lM12, 

where for some suitable non-negative integers nl , . . .  , nr and n :-- ~ hi, 

A = diag((fllnl,. . .  , ~rIn.), 

M = M21 M22 E �9 

In this representation, M22 = M(0) is the nominal coefficient matrix, 
i.e., writing E0 := E(0) and so on, (6.29) takes the form 

M(6)= [Eo Ao Bo ] 
0 Co Do + 

(6.30) 

[ M~I ] A ( I - M l l A ) - l [  M~2 Mb2 Mf2 ] 
M~I 

whereM21=  [ M ~ I ]  a n d M b l  

M12= [ M~2 M~2 Mr2 ] 

are partitions that match the corresponding partitions of M(6). 
3. Define the rational n x n matrix Gxl(s) := 

(Mb2 -- sM~2)(sEo - Ao)-X M~I + Mll (6.31) 

and the set of uncertainties 

:= {A = diag(~xln,,. . .  ,6tint), ~i e C}. 

For s E ilR, determine the structured singular value I~a(Gax(s)), and let 

p := sup •a (Gll  (iw)). 
wER 
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Corollary 20 In the situation described above, the system given by (6.27), 
(6.~8) is robustly stable for all parameter variations with HAll < p-1. 

Proof. Plugging the expressions for E(5), A(6), and B(5) from (6.30) into 
(6.27), one obtains 

Eosx = Aox + M~IA(I - Ml lA)  -1" (6.32) 
�9 (Mbl2X + M~2u - M~2sx) + Bou. 

Define 

Z 

W 

then (6.32) reads 

:= (I  - M l l A ) - l ( M b 2 x  + M~2u - M~2sx), 

:~- AZ, 

Eosx = Aox + M~l w + Bou. 

Similarly, using the LFTs for C(5) and D((~) from (6.30) in (6.20) and taking 
into account that by (6.30), Mb21A(I - M n  A) - I  M~2 = O, 

y = Cox + MblA( I - -  MllA) -1 �9 

�9 (M~2x + M~2u - M~2sz ) + Dou 
= C o x + M ~ l w + D o u .  

Summing up, one obtains the following relations: w = Az, and 

Eosx = Aox + M~lW + Bou (6.33) 

z = Mb2x + M n w  + M~2u - M~2sx (6.34) 

y = Cox+ M~lw+Dou.  (6.35) 

The corresponding transfer function from (w, u) T to (z, y)T is 

G =  [ M ~ 2 - s M ~ 2  ] ( s E ~ 1 7 6  M ~ I C o  B0 ] 

[ Mll M~2 ] 
+ Mbl Do ' 

i.e., Gll as defined in (6.31) corresponds to the transfer from w to z. Thus 
by construction, the original transfer function from u to y as given by (6.27), 
(6.28) is 

G(5) = C(~)(sE(6) - A(6))-IB(~)  + 0(5)  

= G22 + G21A(I - Gl lA) - lG l~  

= G) .  

The rest follows from Theorem 29. [] 
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As previously remarked, the given lower bound for the stability radius of 
G(6) will, in general, only be useful in case that  G n ( s )  is a proper rational 
function. This can, for instance, be guaranteed if E(0) is non-singular, and 
only this case is considered in [72]. This requirement is unnecessarily restric- 
tive though, as it will turn out below that  we only need the nominal point 
to be generic in the sense that  the rank of E(6) as a polynomial matr ix does 
not drop at 6 = 0, that  is, 

rank (E(6)) = rank (E(0)). 

Note that  then without loss of generality, E(6) has the following form: 

E(6) = [ E1(6), 0 ] 

with a full column rank matrix E1 (6) and 

rank (El (6)) = rank (Ex (0)). 

T h e o r e m  30 Let E(6) E R[6] u• be a matrix of the followin 9 form: 

E(6) = [ E1(6), 0 ], 

with a full column rank matrix E1 (6) E R[6] ~• whose rank does not drop at 
6 = O, that is, rank (El (0)) = rank (El (6)) = vl. Then the LFT construction 
according to Chapter 6 yields 

3X E R nx" : Mx~ = XEo,  

where Eo = E(O) as usual. Thus one can write Gll  (8) = 

(Mb2 -- XAo)(sEo - Ao)-IM~I + Mll  - XM~I 

from which it is clear that Gll is proper rational due to the assumptions on 
the nominal system. 

Proof. By the special structure of E(6),  we have tha t  the rows of M~' 2 are 
either zero or equal to e T for some 1 < i < Vl, and each of these e T appears 
at least once. Thus M~2 can be transformed to reduced echelon form by 
elementary row transformations, say 

M ~  = P [ I~10 00] (6.36) 

for some non-singular matrix P. On the other hand, by our assumption on 
E0, there exists a permutation matrix H such that  

Exl 0 1 
/ IEo = E21 0 
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with an invertible vl x vl-matr ix  E11- Thus 

which, in combination with (6.36), yields the desired result. 

An analogous argument can be applied to the dual case, where 

with a full row rank matr ix E1 (~) and rank (El(6))  = rank (El (0)). 

0 

6 . 4 . 2  E x a m p l e  

The following matrices provide a linearized description of a common-emit ter  
transistor amplifier [69l. The 6 x 6 matr ix  T is given by 

T = 

+ P5 + Pa -P5 0 $ 

-P5 ~ +P5 + P r  - m  $ 8 

0 _ ~  m + P s  $ $ 

0 -P7  0 
0 0 PsPloPI1 
0 0 0 

0 0 0 
-P7  0 0 

0 0 0 
P-~ "}- P7 q- P9 _ m _ P9 0 8 $ 

--'Y'-'~ --P9 ~ q-P9 -l'- Pll  -kPl2 --PI2 $ 8 

0 - - P 1 2  pa _[_ P 1 2  -[- P 1 3  8 

and the other system matrices are 

U = [1 ,0 ,0 ,0 ,0 ,0]  T, Y -- [0, 0,0,0,0,p13],  W --- 0. 

The parameters  P l , . . .  ,P4 are reciprocal values of capacitances, PlO is a con- 
ductance that  appears in a voltage-controlled current source, and the remain- 
ing parameters  are resistances. The  nominal values of the 13 parameters  are 
given in the subsequent table. 

In spite of the low order of the system and its moderate  number of para- 
meters, the denominator  of the symbolic transfer function (a polynomial of 
degree 4 in s) has a support  of 225 elements, and it takes more than  two 
pages to print it! Thus,  it is hopeless to investigate robust stability at this 
level. 
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Table  6.1. Parameter Values. 

vl I v31v4 I 1.0E4 1.8El0 2.0E4 1.0E4 2.9E4 

1.0E3 5.0El 3.5E3 1.0E0 6 .8E-2  

E I q 3.4E4 7.7E3 1.0E3 

The uncertainty is modeled in a multiplicative way, i.e., Pi = vi(1 4- 6i). 
An LFT representation of the 7 x 7 coefficient matr ix  M(s;  5) is constructed 
with a 24 x 24 matr ix  A. The sizes of the repeated blocks corresponding to 
the uncertainties 5 = ((fz,.. .  , 513) are 

n = (1,2,2,  1,2, 1,2, 1 ,2 ,2 ,5 ,2 ,  1). 

A reduction technique described in Section 6.2 yields an L F T  of size 13 which 
is certainly minimal in the presence of 13 parameters.  Thus 

A-- - - -d iag (S1 , . . .  ,613 ) �9 

The coefficient matrices are 

1 
0 
0 
0 

- 1  
- 1  

M12 := 0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0 0 
1 - 1  0 0 0 0 
0 0 1 -1  0 0 
0 0 0 0 1 0 
1 0 0 0 0 0 
0 0 0 0 0 0 

-1  0 1 0 0 0 
0 -1  0 0 0 0 
0 0 -1  1 0 0 
0 -1  0 0 0 0 
0 --1 0 1 0 0 

~8~I0 
0 0 0 - 1  1 0 
0 0 0 0 - 1  0 

M 2 1  : ~  

0 0 0 - v 5  - v 6  $ 

0 ~ 0 0 v5 0 $ 

0 - ~  0 0 0 0 
0 SO ~ 0 0 0 

$ 

0 0 - ~  0 0 0 8 

0 0 0 ~ 0 0 
0 0 0 ~0 0 0 
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0 0 0 0 0 0 0 
-v7  0 0 0 0 0 0 

0 - v s  0 0 0 0 0 
v7 0 -v9  0 0 0 0 

0 - ~  v9 - ~  - ~  -vz2  0 
0 0 0 0 0 vz2 -v13 
0 0 0 0 0 0 v13 

where 9 := vsvlovzl .  The matrix Mlz is a 13 x 13 matrix with only 3 non-zero 
entries: 

M n ( 1 0 , 8 )  = M n ( l l , 8 )  = M n ( l l , 1 0 )  = 1. 

11 I I I ,  i I 

1E-1 lEO 1E1 1E2 1E3 1E4 

Fig. 6.3. Upper Bound for p as a Function of Frequency. 

It should be noted that  the LFT is purely symbolic, i.e., there is no error 
involved. The figure above shows an upper bound for 

= 
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as a function of the frequency w between 10 -1 and 105 rad / sec ,  as computed 
using MATLAB. 

Thus p < 2.35, which signifies that  0.42 is a lower bound for the stability 
radius, i.e., it is guaranteed that  the parameters  may vary by up to +42% 
without making the circuit unstable. 

Note that  we were able to find an LFT  representation whose dimension 
coincides with the number of uncertain parameters  involved, i.e., every (ii 
appears in a 1 • 1 block, or n = (1 , . . .  , 1). This is in fact an interesting feature 
of many commonly used mathematical  descriptions of electrical circuits. The  
subsequent chapter will collect some facts from network theory that  are useful 
for understanding this phenomenon. 



7 .  E l e c t r i c a l  N e t w o r k s  

7 . 1  G r a p h  T h e o r y  

This short presentation of basic facts from graph theory is essentially consis- 
tent with the nomenclature of Swamy and Thulasiraman [74]. 

A g r a p h  F = (V, E,  ~o) consists of a vertex set V and an edge set E ,  
together with an i n c i d e n c e  m a p  

~o: E -~ V 2, e ~ ~o(e) = ( ~ l ( e ) , ~ ( e ) ) .  

If ~o(e) = (vl,v2),  one calls vt the in i t i a l  v e r t e x ,  and v2 the t e r m i n a l  
v e r t e x  of e. Equivalently, edge e is said to be directed from Vl to v2. Note 
that  only such d i r e c t e d  graphs are considered here; moreover, we restrict 
to f in i te  graphs, tha t  is, both  V and E are supposed to be finite sets. A 
se l f - l oop  is an edge e with ~01 (e) = ~02 (e). It is useful to define the following 
sets of edges associated with a vertex v E V: Let 

E ( v , - )  = ~o-~l(v) = {e e E ,  ~ot(e) = v} and 
E ( - , v )  = ~021(v) = {e e E,  ~02(e) = v} 

denote the sets of all edges with initial or terminal vertex v, respectively. The  
cardinalities of these sets, 

dour(v) = I E ( v , - ) l  and din(v)  = [ E ( - , v ) l  

are called the o u t - d e g r e e  and i n - d e g r e e  of v E V, respectively. Finally, 
d(v)  = d~n(v) + dou~(v) is the total  number of edges incident on v, and it is 
called the d e g r e e  of v. 

For each edge e, define an additional edge - e  tha t  is directed from the 
terminal to the initial vertex of e, tha t  is, ~o(-e) := (r (e)) for e E E.  
Define JE = E( . J ( -E ) .  A p a t h  is a sequence 

~_ = ( W l , . . . ,  wr) e ~r  

of length r > 0, where for 1 < i < r - 1, 

~02 ('tOi) = ~01 (Wi-{-1) = :  Vk," 
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Vertex v~ o := ~l (wt)  is called the initial, vertex vkr : -  ~2(w~) is called the 
terminal vertex of w. Equivalently, w is said to be a path from Vko to vk.. An 
e l e m e n t a r y  path is one in which vk~,... ,vk. are distinct. A c i r cu i t  is an 
elementary path with vko = Vk~. Two vertices v, v' are said to be connected  
iff there exists a path from v to v'. The graph itself is called connected if any 
two vertices are connected. 

A s p a n n i n g  s u b g r a p h  of F = (V,E,~o) is a graph F '  --- (V,E ' ,~IE,) ,  
where E'  C E. Usually, it is the edge set E '  itself that  is referred to as 
spanning subgraph. A p r o p e r  spanning subgraph is one in which E ~ ~ E. 
A t r ee  is a minimally connected graph, i.e., it is connected without having 
any proper spanning subgraphs that  are connected. In a tree with vertex set 
V and edge set E, we must have that  

[E[ = I V [ -  1. 

A spanning subgraph E'  of F that  is a tree is called a s p a n n i n g  t r e e  of F.  
Its complement E \ E ~ is called co- t ree .  Every connected graph possesses a 
spanning tree. 

7 . 2  W e i g h t  F u n c t i o n s  

Let R be an arbitrary ring with unity. Vertex or edge we i g h t  f u n c t i o n s  are 
mappings V ~ R or E ~ R, respectively, i.e., they assign an element of R 
to each vertex or edge of the graph. The main cases that  should be thought  
of are R = Z (important for topological considerations), and R being a field, 
e.g., ~ or C. With electrical networks, R usually denotes the field of rational 
or, more generally, of meromorphic functions defined on the open right half 
of the complex plane. The b o u n d a r y  o p e r a t o r  [68] 

O : R E ~ R v, i ~ O(i) 

assigns a vertex weight function to each edge weight function i : E -~ R in 
the following fashion: 

O(i)(v)= E i c e ) -  E ice). 
e~E(~,-) e~(- ,v)  

In the case R - R, one may think of i as a flow, the value i(e) being the 
amount of a material that  is transported along the edge e, negative values 
corresponding to transport in reverse direction, i.e., along - e .  Then O(i)(v) 
is the net outflow of i at vertex v. The dual mapping 

O* : R v ~ HomR(R v, R) -~ Homa(R E, R) -~ R z ,  r ~+ 0"(r = r o O 

is given by 0*(r -- r (e)) - r that  is, 0*(~b) assigns to each edge 
the weight difference between its initial and terminal vertex. The map 0* is 
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also the adjoint of 0 with respect to the standard bilinear functions defined 
by 

( ' , ' )E  : R E  x R E --+ R,  

(', ")v : R v x R v --+ R 

That is, we have 

(a(i), r 

(i,j) ~ ( i , j ) E  := ~-~ i (e ) j (e )  
eEE 

(r162 ~ (r162 := ~ r162 
vEV 

= Y~( ~ i ( ~ ) - ~  i(~))r 
v~V e~'~ (v) e ~ ( v )  

= ~ i ( e l r  ~ i ( e ) r  = 
eEE eEE 

(i,o*(r 

for all i E R E and r E R V. 

7.3  K i r c h h o f f ' s  L a w s  

An electrical network is given by a connected graph and two edge weight 
functions i and u, interpreted as currents and voltages along the edges of 
the network. As we are going to consider the dynamics of the network in 
the frequency domain, the values of these edge weight functions are Laplace 
transforms of the time domain signals 

i,u: [ 0 , ~ )  --+ lI~ 

where K = ll~ or IK = C. A typical representative of the class of time domain 
signals considered here is the sinusoid 

a cos(wt) + b sin(wt) 

where a, b, w E R, with Laplace transform ~ .  In particular, the frequency 
domain signals are analytic in C+ = {s e C, Re(s) > 0}. Thus, one can 
think of the co-domain R of the edge weight functions i, u as the ring of 
analytic functions on C+. Later on, it will be more convenient to work with 
fields. It is well-known that the ring of analytic functions on ~ is an inte- 
gral domain. Therefore it can be embedded into its quotient field, the field 
of meromorphic functions on C+. If we restrict to sinusoidal time domain 
signals, it suffices to work with the field of rational functions. However, note 
that the considerations below apply to arbitrary rings R. 

Kirchhoff~s cu r ren t  law (KCL) says that the net current outflow van- 
ishes at any vertex of the graph, that is, O(i) =- O, or, 
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i E ker(0). 

According to  K i r c h h o f f ' s  v o l t a g e  law (KVL), voltages are potential  differ- 
ences, i.e., u can be derived from an electrical potential r E R v via u = 0"(r  
In other words, 

u e im(O*). 

An immediate consequence of KCL and KVL is known as T e l l e g e n ' s  t h e -  
o r e m  [10, 74]: It states orthogonali ty of current and voltage with respect to 
(', ")E. This is due to 

(i, u)E = (i, O*(r = (0(i),  r = (0, r = O. 

Let F be a connected graph. Then the following sequence is exact: 

O-~ ker(O) '--+ R E ~ R V  'Y ~ R--+ O, (7.1) 

where 7r : R y ~ R is defined by 

~(r = ~ r 
vEV 

One can show that  ker(0) is again a finite free R-module (this is clear when 
R is a principal ideal domain or even a field, but  holds over arbi t rary  rings 
as well). In particular, we have 

rank (0) = rank ( R  V) - rank ( r )  = IVI - 1 

and thus 

rank ker(0) = rank (R  E) - rank (0) = [El - [V[ + 1. 

In the following, let V = { v l , . . .  , vn}  and E = { e l , . . .  , e m } ,  and identify 
R E = R m, and R y = R n. The natural  matr ix  representation of 0 is given by 
A = (ai j )  with 

1 if ~ l (e j )  = vi and ~2(ej) ~ vi 
a O = - 1  if~o2(ej) = v i  and ~ l (e j )  ~ v i  

0 otherwise. 

This matr ix  is known as (all-vertex) i n c i d e n c e  m a t r i x  of T'. Due to the fact 
that  the sum of the rows of A yields zero, i.e., 

[1  ... 1 ] A = 0 ,  

there is no loss of information in deleting an arbitrari ly chosen row of A. In 
electrical engineering, it is usually the resulting reduced full row rank matr ix  
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that  is called incidence matrix, but we will not stick to this nomenclature 
here. 

A basis of ker(0) can be found by taking a spanning tree of F.  Then for 
every edge in the co-tree, say e with ~(e) = (Vl, v2), there exists one and only 
one elementary path from v2 to vl in the tree. Together with e, this constitutes 
a circuit. The circuits constructed like this are called f u n d a m e n t a l  c i r cu i t s  
with respect to the chosen spanning tree. An edge weight function b E R m is 
associated with each fundamental circuit w = ( w l , . . .  , wr) via 

1 i f 3 j : w ~  = e k  E E  
bk = --1 i f 3 j : w  3 = --ek E - E  

0 otherwise. 

As the spanning tree contains n - 1  edges, there are I := m - ( n - 1 )  fundamen- 
tal circuits. It can be shown that  the I edge weight functions defined above 
span ker(0). As rank ker(0) = l, they are indeed a basis of ker(0). Arranging 
these basis vectors column-wise in a matrix B T ,  one may identify R l --- ker0, 
x +-~ B T x .  The natural matrix representation of ~ is [ 1 . . .  1 ] E R lxn. 
Thus the exact sequence (7.1) can be replaced by its equivalent counterpart  

0- -+R ~ B ~ R  m A R n [ i : ~ I R _ + 0 .  

The incidence matrix A E R n x m ,  the circuit matrix B E R l• and the 
exactness of A B  T --- O, that  is, the fact that  

rank (A) + rank (B) -- m, 

give rise to the following equivalent formulations of KVL: 

1. A i  = O; 

2. There exists j E R l (c i rcu i t  c u r r e n t )  such that  i = B T j .  

Similarly, KVL can be expressed in two equivalent ways: 

1. There exists r E R n (node  p o t e n t i a l )  such that  u = A T e ;  

2. B u = O .  

7 . 4  L i n e a r  N e t w o r k s  

In an electrical network, the current i and the voltage u are not only subject 
to Kirchhoff's laws, but also to additional relations, which, in the linear case, 
can be put in the form 

P i  + Q u  = R i o  + S u o  (7.2) 

for some given coefficient matrices P, Q, R, S and given io, uo. Typical rela- 
tions are R i k  -- uk  = 0 (resistor), L s i k  -- Uk = 0 (inductor), ik -- C s u k  = 0 
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(capacitor), uk = uoj or ik = io3 (free voltage or current source). These 
network elements all lead to diagonal matrices P and Q, as they relate the 
current and voltage along one and the same edge of the graph. There are, 
however, also networks elements that destroy the diagonal structure of the 
coefficient matrices, for instance, voltage-controlled current sources (VCCS): 
ik - - g u j  = 0 with k ~ j ,  or current-controlled current sources (CCCS): 
ik -- ~i j  = O, k ~ j .  These controlled sources arise in the linearization of 
non-linear network elements such as transistors. Inductors and capacitors 
represent memory-possessing, dynamic/-u-relations; they are also called re- 
active elements. Networks without reactive elements are said to be resistive,  
although they are not necessarily composed solely of resistors. 

Recall that i, u belong to the field . ~  of meromorphic functions on C+. 
This applies also to the given right-hand-side signals, i0, u0. The base field 
of the coefficient matrices can be ]K -- R, C (resistive network with numeric 
parameter values), ]K(s) (general linear network with numeric parameter val- 
ues), or, in the most general situation, K(s ;p l , . . .  ,Pr) (symbolic parameter 
values), depending on the particular problem. The indeterminates P l , . . .  ,Pr 
correspond to (a subset of) the appearing network parameters such as resis- 
tances, admittances, capacitances, inductances, and so on. All of these base 
fields operate in the natural way on A4 or f14 (Pl , . . .  ,Pr), respectively. 

Summing up, the circuit equations can be written in the following form 
known as the sparse tableau:  

0 B = 0 0 . (7.3) 
p Q  u R S  uo 

Introducing the circuit current j and the node potential r according to Kirch- 
hoff's laws, we obtain the following compressed version of (7.3) with m + 1 
instead of 2m unknowns: 

It will be assumed throughout the following discussion that these equations 
are sufficient for determining i and u uniquely. The coefficient matrices P 
and Q are supposed to be square. Recalling that a row of A can be eliminated 
without loss of information, the assumption boils down to 

det 0 B 7~0, or de t [  P B  r Q A  'T ] ~r 0, 
P Q 

respectively, where A ~ denotes A after deletion of an arbitrarily chosen row. 
For a special class of circuits, namely RCL-networks with (free or voltage- 

controlled) current sources, the nodal  analysis  method makes it possible to 
reduce the system even further. For networks of this type, we have that  the 
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matrix P is invertible. (In fact, one can even assume P = I m  without loss of 
generality.) Then the equations Pi  + Qu = c, where c := Rio + Suo, can be 
put  in the form 

i + Y u  = d, 

where Y := p - 1 Q  denotes the a d m i t t a n c e  m a t r i x  and d := P - l c .  Multiply 
these equations by A from the left to obtain, using Ai = 0 and u = ATdp, 

A Y A T  r = Ad. (7.5) 

Note that  (7.5) contains the same information as the sparse tableau: Solv- 
ability of (7.5) is guaranteed by the fact tha t  

rank ( A Y A  T) = rank (A), (7.6) 

and thus i m ( A Y A  T) = im(A). From the nodal potential  r voltage and cur- 
rent can be reconstructed using u = A r c  and i = d - Y u .  To see that  (7.6) 
is true, consider 

Hence rank ( A ' Y A  'T) = rank (A') = n - 1. Thus A Y A  T contains a non- 
singular sub-matrix of dimension n - 1. On the other hand, as all the rows 
and columns of A Y A  T add up to zero, its rank can be at  most n - 1, hence 
rank ( A Y A  T) = n - 1 as desired. Equation (7.5) is under-determined in the 
sense that  r is unique up to an additive constant. Usually, a reference node 
potential  is set to be zero, thus replacing (7.4) or (7.5) by the regular systems 

respectively. For theoretical considerations however, the full set of equations 
(7.5) is preferable due to the s t ructure  of its coefficient matr ix  YIAM = A Y A  T, 
which is called i n d e f i n i t e  a d m i t t a n c e  m a t r i x  (IAM). The  entries of Y 
appear in YIAM in characteristic patterns:  Decompose Y = (Yij) as 

m 

Y = ~ yijeie~, 
i,j=l 

where ei denotes the i-th natural  basis vector. Then  

AYAT= ~-~YijAeieTAT= ~'~yijA_i(A_j) T 
i,j i,j 

where A - i  denotes the i- th column of A, which is of the form 
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A _ ,  = eIt,  - e . ,  

if the initial and terminal vertex of edge ei are vIt, and v~,, respectively. 
Assume without loss of generality/~i < vi (if Pi = vi, edge ei is a self-loop, 
and the i-th column of A is zero) and pj < v3, then yijA_iATj takes the 
following form: 

l.~j vj 

I I 

It, -- 

V ~  w 

Yi j  - - Y i j  

- -Y i )  Y i j  

and YIAM is a superposition of matrices with this structure. 
Furthermore, 1CLAM is an equ i - co fac to r  matrix, i.e., all its cofactors are 

equal. Let cofij (YIAM) denote the (i, j)-cofactor of YIAM, that  is ( -  1)/+j times 
the sub-determinant of ~rIAM after deletion of the i-th row and j - th  column. 
To see that  the cofactors are all equal, consider the system of equations 
YiAMX = b with given right hand side b = e ,  - e~. As the column sum of b is 
zero, i.e., b E ker[1,. . .  , 1] = im(A) = im(YIAM), this system of equations is 
solvable. Hence Cramer's rule 

n 

det(YiAM)Xj = ~ bicofi/(]/IAM) 
i----1 

is applicable, and it implies 

0 = cofitj (YIAM) -- cofvj (YIAM). 

This holds for all indices #, u, j ,  thus showing that  the cofactors are constant 
along the columns of YIAM. A similar argument can be applied to the rows. 
In particular, for any choice of the reference node potential, the cofactor of 
YIAM is 

cof(AYA T) = det(A'YA 'T) ~ O. 

If Y is a diagonal matrix, say Y = diag(Y1,.. .  , Ym) (this is true for RCL- 
networks with free current sources), the Canchy-Binet theorem [27] implies 
that  det(A'YA 'T) = 

de t (A ' ( i l , . . .  , in-1))Y/1"'" Yi~_l d e t ( A ' ( i l , . . . ,  ira-l)), 
il <...<in- 1 <rn 

where A' ( i l , . . .  , / n - l )  denotes the sub-matrix of A' which consists of the 
columns with these indices. Now these sub-determinants can only take the 
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values -1 ,0 ,  1. The case :kl corresponds to a spanning tree of the graph. 
Thus 

d e t ( A ' Y A  'T) = Y , . _ , ,  

i l  ,... , i n -  1 t ree  

where the summation runs over all spanning trees {e, , , . . .  ,e,._, } of the 
graph F. The number of spanning trees of F is given by det(A'A'T) .  

These nice features of the indefinite admittance matrix YIAM a r e  partially 
lost in the case where P in (7.2) is not invertible. Still one can perform 
the so-called modi f ied  noda l  analysis  ( M N A ) ,  a technique that covers 
a broad class of electrical networks. The MNA method is implemented in 
several program packages for circuit analysis, such as SPICE or ANALOG 
INSYDES. It is based on a splitting of the circuit equations (7.2) into a part 
that can be solved for i (as with the standard nodal analysis) and a part that 
can be solved for u. Indeed, suppose that (7.2) takes the form 

I P 1 2  ] = [ C l  
~ 2  C2 

With the corresponding partition, we obtain from Kirchhoff's laws, 

l U2 = A'2 T r 

This yields the MNA equations 

"'11 I'~ 11 "'11 -~-- ( 7 . 8 )  
Q21AII T + A'2 T P22 i2 c2 " 

Note that the system matrix takes the form 

[ Qll  P12 T 0 
Q21 P22 0 I + A'2 T 0 

or L X L T + K  with matrices L, K whose entries are in {-1 ,0 ,  1}, and a mixed 
admittance/impedance matrix 

X _  [ Qll  P12]  
Q21 P22 

(in terms of physical units, Qll  is an admittance, P22 is an impedance, and 
P12, Q21 are dimensionless). 

R e d u c t i o n  to  first o rder :  Consider the regular representations of the 
circuit equations given in (7.7) or (7.8). They can be put in the general form 

T(s;p)~(s)  = U(p)v(s) ,  (7.9) 
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where p = (p l , - . .  ,pr) is the vector of network parameters, ~(s) denotes the 
generalized state (e.g., ~ - r and u is the vector of inputs (free sources) 
that  enters the right hand sides of (7.7), (7.8) via some transformation U tha t  
is assumed to be independent of s. The matrix T is invertible over K(s;p) .  
Due to the structure of the admissible current-voltage-relations, T splits into 
three parts: 

T(s;p) = Tl(p)s + To(p) + T-I(p) 1. 
8 

Equation (7.9) can be reduced to first order by introducing the enlarged state 
vector 

x(s) = [ ] 

leading to the parametrized descriptor system [9, 72, 92] 

E ( p ) s x ( s )  = A ( p ) x ( s )  + B ( p ) u ( s )  (7.10) 

where 

[ , 0 ]  i 0  ' 1  I ~ ] E ( p )  = 0 T I ( p )  , A ( p )  = - T - I ( p )  - T o ( p )  , B ( p )  = U(p )  " 

7 .5  L F T  R e p r e s e n t a t i o n s  

Consider an electrical circuit whose system matrix - evaluated at a certain 
frequency s = iw, w E R - can be set up by a modified nodal analysis (MNA): 

P = L X L  T + K ,  (7.11) 

where L and K take their values in { -1 ,0 ,  1}. Admitt ing resistors, inductors, 
capacitors, and all types of free and controlled sources, there is no loss of 
generality in assuming tha t  X depends on the network parameters P l , - - -  , Pr 
as follows: 

X : Z e T (7.12) Pi o(i)e,.t(i). 
i=1 

Here ej denotes the j - th  natural basis vector, and for each i, p(i)  and ~,(i) 
denote the row and column index ofp i  in X,  respectively. 

Now let each parameter Pi = vi + mi6 i  be subject to uncertainty. Let 

T 

y T = viep(i) e,r(i), A = diag(51,. . .  ,St), M = d i a g ( m t , . . .  ,m~). 
i=l  



7.5 LFT Representations 151 

Define 

Then 

and thus 

NL = [ ep(1) ""  ep(r) ] and N n =  

e T 
"~C1) 

~r 

X = V + N L M A N R  

P = L X L  T + K = L V L  T + L N L M A N R L  T + K.  

Thus we have written P in LFT form, P = ~-(A; ,4,/3, ~ ,  D) with 

=0,  JB = N R L  T, C = L N L M ,  b =  L V L  T + K.  

A well-known matrix inversion formula (the Bartlett-Sherman-Morrison- 
Woodbury formula, see [31] for a historic account) yields 

p - X  = b - 1  _ b - l ~ , z l ( i  _ ( A  - bb 

Define 

A :=  A . - / 3 D - 1 C  " 

B := .bb  -1 

C := - b - X ~  
D := /~-1, 

then p - a  = ~-(A; A, B, C, D), that  is, we have found a representation of p - 1  
that  involves only the inversion of the nominal matrix PI6=o = D. Define 
A1 := N R L T ( L V L  T -t- K ) - I L N L ,  then 

A = - A I M  = - N R L T ( L V L  T + K ) - X L N L M ,  (7.13) 

and 

B = N R L T ( L V L  T + K )  -1 and C = - ( L V L  T + K ) - I L N L M .  (7.14) 

In particular, both P and its inverse can be represented through LFTs in 
which the block partition of A is n = (1 , . . .  , 1). This is due to the structure 
of X assumed in (7.12)�9 

Next, we take a closer look at the balancing notion of Section 6.3 applied 
to this special case: As A is a multiple of M according to (7.13), it can be 
made (1 . . . .  ,1)-stable by proper choice of M: Compute # ~ #(A1) (compare 
(6�9 and a diagonal matrix D such that  IIDAID-1112 = # (both can be 
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done using the MATLAB #-Analysis and Synthesis Toolbox). Then for any 
M with [[M[[2 < #-1 ,  we have 

[[DAD-Ill2 = [[DA1MD-I[[2 = I[DA1D-1M[[2 <_ [IDA1D-a[[~ [[M[[2 < 1. 

Then 

A D - 2 A  * - D -2 < 0  and A * D 2 A -  D 2 <0 .  

As in (6.15), let 

AB > p ( B B * ( D  -2 - A D - 2 A * )  -1) and he  > p(C*C(D 2 - A * D 2 A ) - I ) .  

Then the construction following Definition 42 yields ,U = Av/ABA~I. Of course, 
this Gramian is not very useful from the point of view of balancing. It just  re- 
flects the fact that  all the 1 x 1 blocks, each corresponding to one parameter ,  
are t reated equally. But  recall tha t  ,~ is not unique! In fact, we can divide 
the parameters into two disjoint subsets of parameters  "to-be-kept" and pa- 
rameters "to-be-eliminated," say without loss of generality, {P l , . . .  , P k }  and 
{Pk+l , . . .  ,pr}, respectively. Then our objective will be to find a solution to 
A P A *  - P + B B *  < 0 of the form 

P = diag(~rl, . . .  , 7rk, Zrk+l, �9 �9 �9 , zrr) 

such that  rk+l W . . .  -F ~'r ~ min. Similarly, we will look for a solution Q to 
A*QA - Q + C*C < 0 with block structure 

Q = d iag(q l , . . .  , qk, qk+l , . . .  , q~) 

such that  qk+l q- �9 �9 �9 q- q, -4 min. Problems like that  are solved by the MAT- 
LAB LMI Control Toolbox. If additionally, the first k diagonal entries of P 
and Q are required to be equal, the balanced truncation is nothing but  a 
t runcat ion of the original system, with Pk+l , . . .  ,Pr set to their  respective 
nominal values. 

To get an initial guess on which parameters  to eliminate, it is useful to 
consider the sensitivity of the nominal model with respect to each parameter:  
Let P = L X L T + K  and Q = p - 1 .  Define Qnom : =  Q [ p = v  = ( L V L T + K )  -1. 
We define the s e n s i t i v i t y  of Q with respect to the i-th parameter  by 

OQ Si ~ I = Q cgp _ OX 

Using X = r ~ i = l  T piep(,)e~( O, 

S i  T T =-QnomLep(oe~(oL  Qnom. (7.15) 

From the representation Q = D + C A ( I  - A A ) - I B  and Pi = v{ + m~6i, we 
obtain 
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si  = c eie~ B (7.16) 
m2 

as an alternative expression for the sensitivity of Q with respect to pi. Using 
the expressions for B and C derived in (7.14), it is easy to see that (7.15) 
and (7.16) coincide, noting that Q.om = D = ( L V L  T + K )  -1. 

Example 7.5.1. The network represented in the figure below consists of 4 
nodes and 7 edges; a reference node potential has been chosen as indicated. 
The equations depend on 5 parameters, denoted by G1, . . .  , G4 and gin, and 
they admit a standard nodal analysis. 

We have 

G1 
0 
0 

Y =  0 

0 
0 
0 

0 0 0 0 0 0 
G2 0 0 0 0 0 
0 G3 0 0 0 0 
0 0 G 4 0  0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 g i n  0 

= a, ,eT + . . .  + C4e44  + 

1 0 
0 1 
0 0 

N L =  0 0 
0 0 
0 0 

0 0 

0 0 0 
0 0 0 
1 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 1 

The reduced incidence matrix is 

1 0 0 
J =  0 0 1 

0 1 - 1  

This yields the admittance matrix 

G1 + G4 
p = j y j T  =_ gm -- G4 

--gm 

As an academic example, let 

V = 

N R =  

1 0 0  0 0  0 0  
0 1 0 0 0 0 0  
0 0 1 0 0 0 0 
0 0 0  1 0 0 0  
0 0 0 0  0 1 0 

1 - 1  1 0 ] 

J - 1  0 - 1  1 
0 0 0 - 1  

-G4  
G3 + G4 - gm 

g.~ - G3 

all 

1 0  O 0 0 0 0  

0 1  O 0 0 0 0  
0 0 1 0 0 0 0  
0 0 0 1 0 0 0  
0 0 0 0  0 0  0 
0 0 0 0  0 0 0  
0 0 0 0 0 1 0 

0] 
-G3  

G2 + (]3 

nominal values be equal to one, i.e., 
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As Y = V + N L M A N R ,  we have 

p = j y j T  = j v j T  + J N L M A N R j T  

and hence fi = O, B = N R J  T, C -~ J N L M ,  D = J V J  T. 

1 
At = N R J T ( J V J T ) - I J N L  = 

5 

2 1 1 0 1 
1 2 - i  0 - i  
0 0 3 -3  3 
1 - I  -1 3 -1 
1 - I  -1 3 -1 

We have p(A1) = 1 and []A1]]2 = ~. Using MATLAB, #(A1) ~ U = 2.1547 
and D = diag(1, 1.3149,0.7605, 1, 1) is such that  [[DA1D-I[12 = I~. In fact, 
an inspired guess yields the exact expressions #(A1) = ~v/-3 + 1 and D = 

diag(1,3�88188 Put  M = ~ I ,  this guarantees that  A = - A 1 M  is 
(1 , . . .  , 1)-stable. Thus, we are considering parameter uncertainties p, ~ 1 + 
0.16i, 16il < 1. In other words, we admit parameter variations of 10 percent. 
Next, we compute A = - A I M  and 

1 
B = N R J T ( J V J T )  - 1 , _ .  .=- 

2 2 1 
1 1 2 
0 3 0 
1 --2 --1 
1 --2 --1 

- 2  - 1  - 1  0 - 1  ] 
C = - - ( J V J T ) - I J N L M  = 1,.,v --1 --2 --2 3 --2 

--1 --2 1 0 1 

Suppose we wish to eliminate G4 and gin. Thus we look for a Gramian of 
the type ~ = (a l I3 ,a4 ,as)  with a4 + as as small as possible. For sim- 
plicity, we additionally require a4 = as. Using MATLAB, we find that  
Z: = diag(1.311213,0.178112) is a balanced Gramian. This suggests delet- 
ing the blocks belonging to 64 and 65, that  is, replacing G4 and gm by their 
nominal values. Of course, the symbolic inverse of P can easily be computed 
in this simplistic example, and we obtain 

Q = p - 1  = 1/(G1G2G3 + G1G2G4 + G1G3G4 - gmG1G2 + G~G3G4). 

G2G3 + G~G4 + G3G4 - groG2, G4(G2 + G3), G3G4 ] 
G~G4 + G3G4 - groG2, (G1 + G4)(G2 + G3), (Gx + G4)G3 ] 

G3G4, GIGs - groG1 + GAG4, GtGa + G1G4 - g,.~G1 + G3G4 

The symbolic approximate is 
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. _ _  

G1G2 + G1 + G2 

l + G 2  1 + ~-~3 1 
_q_z 1 (1 + G~)(1 + c3) G a + l  

1 G 1 -  ~-~3 +1  G I + I  

and the error bound is IIQ - 011oo _< 0.7124. Note that IIQII~ _ 2.2094 (take 
$1 . . . . .  $4 = 0.9 and $5 = 1.1). The relative error bound is not very 
convincing, but a numerical analysis shows that the true relative error is 
only 5.41%. 

/0 

E 
I 

oUo 

G4 

I 

G1 

G2 

I 

[ 
gmU 

Fig. 7.1. Electrical Network. 

Symbol ic  t r e a t m e n t  of  the  f requency  variable:  So far, we have assumed 
P to be evaluated at a certain frequency in order to study the parameter 
dependency alone. In order to take account of both the frequency and the 
parameters, consider the MSbius mapping 

1 - z  
z~s=~(z ) :=  l+z" 

This is another linear fractional transformation; it maps the open unit disk 
to the open right half of the complex plane and vice versa. Now let 

P E K ( s ; p x , . . . , p r )  p• d e t P ~ 0 ,  

be a non-singular matrix depending rationally on the frequency s and on the 
parameters p l , . . .  ,pr. Let f be the affine linear transformation 
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then  

f ( J 1 , . . . , & - )  = ( p l , . . .  ,P~), p, := v, + miJ , ,  

P(s ;p l , . . .  ,pr) = P(~(z); 1 ( 6 1 , . . .  , 6~)) =: P( z ;  61 , . . .  , 6~). 

Define z = :  (~o, t hen  P is a l inear  f r ac t iona l  t r a n s f o r m a t i o n  of  (~o,. �9 �9 , ~r. Th i s  
signifies t h a t  we can t r e a t  z l ike a n o t h e r  p a r a m e t e r  unce r t a in ty .  



List of Acronyms 

BIBO 
DV 
FLP 
FRP 
FSSE 
GCLF 
GCRF 
GFLP 
GFRP 
IAM 
IO 
ISO 
KCL 
KVL 
LFT 
LMI 
MLA 
MLP 
MNA 
MRA 
MRP 
ON 
PDE 
RCL 
RSSE 
SC 
SSE 
WLP 
WRP 
ZRP 
ZLP 

bounded input, bounded output 
driving variable 
factor left prime 
factor right prime 
strict system equivalence in the Fuhrmann sense 
greatest common left factor 
greatest common right factor 
generalized factor left prime 
generalized factor right prime 
indefinite admittance matrix 
input-output 
input-state-output 
Kirchhoff's current law 
Kirchhoff's voltage law 
linear fractional transformation 
linear matrix inequality 
minimal left annihilator 
minor left prime 
modified nodal analysis 
minimal right annihilator 
minor right prime 
output-nulling 
partial difference/differential equation 
resistance, capacitance, inductance 
strict system equivalence in the Rosenbrock sense 
strongly controllable 
strict system equivalence 
weakly zero left prime 
weakly zero right prime 
zero right prime 
zero left prime 
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