
Lecture Notes 
in Control and Information Sciences 260 

Editors: M. T h o m a  • M. Morar i  



Springer 
London 
Berlin 
Heidelberg 
New York 
Barcelona 
Hong Kong 
Milan 
Paris 
Singapore 
Tokyo 



Andreas Kugi 

Non-linear Control Based 
on Physical Models 
Electrical, Mechanical and Hydraulic Systems 

With 47 Figures 

~ Springer 



Series Advisory Board 
A. Bensoussan  • M.]. Gr imble  • P. Kokotovic  • A.B. Kurzhanski  • 
H. K w a k e m a a k  • ].L. Massey  

Author 
Andreas  Kugi, Dr  Techn,  DipIng  

D e p a r t m e n t  o f  Au toma t i c  Cont ro l  and  Cont ro l  Systems Technology,  
Ins t i tu te  for  Au toma t i c  Contro l  and  Electrical Drives, 
Johannes  Kepler  Univers i ty  o f  Linz, Altenbergerst r .  69, 4040 Linz, Austr ia  

ISBN 1-85233-329-4 Springer-Vedag London Berlin Heidelberg 

British Library Cataloguing in Publication Data 
Kugi, Andreas 

Non-linear control based on physical models : electrical, 
mechanical and hydraulic systems. - (Lecture notes in 
control and information sciences ; 260) 
1. Automatic control 2. Nonlinear control theory 
I. Title 
629.8'36 

ISBN 1852333294 

Library of Congress Cataloging-in-Publication Data 
Kugi, Andreas, 1967- 

Non-linear control based on physical models : dectrical, mechanical and hydraulic 
systems / Andreas Kugi. 

p. cm. - (Lecture notes in control and information sciences ; 260) 
Includes bibliographical references and index. 
ISBN 1-85233-329-4 (alk. paper) 
1. Automatic control. 2. Control theory. 3. Mechatronics. I. Tide. II. Series. 

TJ213 .K815 2000 
629.8'36--dc21 

00-063761 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the 
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued 
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be 
sent to the publishers. 

© Springer-Vedag London Limited 2001 
Printed in Great Britain 

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a 
specific statement, that such names are exempt from the relevant laws and regulations and therefore free 
for general use. 

The publisher makes no representation, express or implied, with regard to the accuracy of the 
information contained in this book and cannot accept any legal responsibility or liability for any errors 
or omissions that may be made. 

Typesetting: Camera ready by author 
Printed and bound at the Atheneeum Press Ltd., Gateshead, Tyne & Wear 
69/3830-543210 Printed on acid-free paper SPIN 10765767 



To 

Erika and Marianne 





Preface  

Non-linear control is undoubtedly one of the most active research areas in 
the fields of automatic control and control systems technology. The research 
effort on non-linear control is getting more and more important because of the 
demanding performance required in practical applications and because most 
of the physical systems are non-linear in nature. Apart from the advances 
in non-linear control theory there is an increasing availability of computer 
programs for numeric and symbolic computation. Furthermore, the power of 
the automation hardware being used in the industry enables the real-time 
execution of the sometimes rather complicated non-linear control laws. Only 
the progress in all these areas makes the practical use of the non-linear control 
concepts possible. 

Non-l inear  Contro l  and  Physical  Models:  All the electromagnetic, 
mechanical and hydraulic systems being considered in this work allow a strong 
analytic mathematical description, which is why, we focus our attention on 
so-called model-based non-linear control approaches. Now, the literature of- 
fers a variety of methods for the model-based non-linear controller design. 
The choice of the right control design strategy for a successful practical 
implementation depends strongly on the application, the demands on the 
closed loop, the restrictions and limitations of the plant itself and the ac- 
tuators, the measurable quantities and its accuracy, the limitation of the 
real-time hard- and software platform etc. and cannot be answered generally 
and without preceding detailed investigation of the plant to be controlled. 
However, all the model-based non-linear control approaches have one fact 
in common, namely that somehow the knowledge of the underlying physical 
structure helps to solve the design problems. In order to stress this argument 
let us mention some examples, such as the solution of the Hamilton-Jacobi- 
Bellman-Isaacs equation/inequality for the non-linear Hoo-design; the solu- 
tion of the Frobenius-type partial differential equations for the input-state 
or input-output exact linearization; the determination of the flat outputs 
within the flatness approach, or the suitable choice of the Lyapunov-like 
functions within the backstepping or composite Lyapunov design. This re- 
lation between non-linear control theory and physics is not new, it is rather 
rediscovered. Since the very beginning of the non-linear control theory cer- 
tain physical observations have served as a starting point for a generalized 
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mathematical  theory, e.g., the direct method of Lyapunov, LaSalle's invari- 
ance principle, the notion of passivity and dissipativity etc. More recently, 
the so-called passivity-based control concepts went a step further. They  do 
not only take advantage of certain physical properties, they even intend to 
design a non-linear controller in such a way that  the physical structure is 
preserved in the closed loop. 

D e r i v a t i o n  o f  P h y s i c a l  M o d e l s  a n d  N o n - l i n e a r  C o n t r o l :  Not only 
the mathematical models themselves but also their step-by-step derivation, 
starting with the basic laws of physics, bring about a deep understanding 
of the physical background. The detailed setting up of the mathematical  
models enables a strict differentiation between the balance equations (e.g., 
energy or mass balance etc.), which, in general, hold exactly and the so-called 
constitutive equations (e.g., friction, leakage etc.), which contain normally 
many unknown parameters. It does not seem to be necessary to derive in a 
first step the mathematical model of a physical system and to t ry  to explore 
its physical structure in a second step. This is why this work focuses on 
procedures where the mathematical model of a physical system is set up in 
a form which reveals directly the underlying physical structure as is the case 
for a port-controlled Hamiltonian system with and/or  without dissipation, 
or PCH-/PCHD-sys tem for short. Furthermore, it is absolutely necessary 
to point out clearly whenever a simplification of a mathematical model is 
performed or certain physical effects are neglected because such steps may 
destroy partially the physical structure. 

N o n - l i n e a r  C o n t r o l  in t h e  I n d u s t r i a l  E n v i r o n m e n t :  Despite all the 
advances in non-linear control, the number of realizations of non-linear con-  
trollers in the industrial environment is not as widespread as one might expect 
from the well established non-linear control theory. One possible explanation 
for this is that  a straightforward application of the non-linear control meth- 
ods often results in a closed loop system which is very sensitive to parameter  
variations and/or  transducer and quantization noise. The control task is get- 
ting even more difficult since in general not all quantities are measurable. 
Furthermore, in contrast to linear systems, the separation property of an 
observer-controller based control design procedure is no longer valid in the 
non-linear case. Of course, also this work will not give a general solution to all 
these problems. But  it will be shown for certain classes of applications, how 
a modified control approach, which takes into account the special features of 
the plant, can be successful. A prerequisite for a control concept to be prac- 
tically feasible is that  it is tested in advance on a simulator. The simulator 
must contain a much more detailed model than the model which serves as 
a basis for the controller design. In the simulator all the "dirty" effects, like 
the unmodelled dynamics of the sensors and actuators, the quantization, the 
transducer noise, the sampling process, stick-slip friction effects, leakage ef- 
fects, parameter inaccuracies, aging induced changes of the system dynamics 
etc. have to be included. From our experience, a controller which can cope 
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with all these "dirty" effects in the simulator, has a good chance to meet the 
requirements of the rough industriM environment. 

Goal  of the  Work: The main purpose of this work is to elaborate the 
link between modelling and non-linear control, in particular for electromag- 
netic systems in Chapter 3, finite- and infinite-dimensional mechanical PCH- 
systems in Chapter 4 and hydraulic drive systems in Chapter 5. A great store 
is set by giving a unique mathematical formulation of the different disciplines 
involved, namely electrical, mechanical and hydraulic engineering. We always 
try to point out the common mathematical structure of the different physical 
models and this also makes it possible to make use of synergetic effects, like 
applying reliable control strategies from one discipline to the other. The work 
will also demonstrate, how the physics behind a mathematical model can con- 
tribute to the success of a certain control strategy. Furthermore, the practical 
relevance of the applications contained in this work in combination with a 
profound theory should protect from the reproach that non-linear control is 
solely of theoretical interest. 

Organiza t ion  of  the  Work: The first chapter is devoted to some basics 
of Lyapunov's theory, dissipativity, passivity, positive realness and absolute 
stability. Special emphasis is laid on elaborating the physical idea behind 
these concepts. In the last part of this chapter the basic structure of port- 
controlled Hamiltonian systems with and without dissipation, PCHD- and 
PCH-systems for short, will be discussed. 

Chapter 2 summarizes the essential results of those non-linear model- 
based control approaches which will be used in the applications of this work 
and which have a more or less strong relation to the dissipativity and passivity 
concept. In particular, these are the non-linear state feedback H2-design for 
affine-input systems, the non-linear state feedback H~-design for affine input 
systems and the passivity-based control concept. For a special type of affine- 
input systems the non-linear state feedback H2-design is extended in such a 
way that an integrM part can be systematically included in the controller. 

In Chapter 3 a theory for an energy-based description of electric net- 
works, which can be regarded as an extension of the well-known theory of 
Brayton-Moser, is formulated. A combination of this approach with graph 
theory allows us to set up the network equations directly in the form of 
a PCHD-system. The method being presented is applicable for non-linear 
two- and three-phase systems with and without dependent sets of induc- 
tor currents and/or capacitor voltages. The big advantage of this approach, 
in particular for three-phase systems, is that it does neither require a lin- 
ear magnetic characteristic nor any assumption for the spatial distribution 
of the coupling inductors or capacitors. Furthermore, this technique is used 
for the calculation of the average model of PWM (pulse-width-modulation)- 
controlled electric circuits with bipolar switching, where the duty ratio is the 
control input. Depending on the location of the switch(es), different energy 
flows of the PWM-controlled system can be influenced by changing the duty 



ratio. Among other examples, it is shown by means of the laboratory model 
of a special dc-to-dc converter, namely the Cuk-converter, how the presented 
theory can contribute to the solution of the non-linear H2-control design with 
and without integral term. In the last part of Chapter 3, the co-energy con- 
cept is introduced to calculate the magnetic and electric coupling forces of 
electromech~nic~l systems. 

Chapter 4 describes finite- and infinite-dimensional mechanical systems 
which have the structure of a PCH-system. In order to obtain a uniform de- 
scription of the finite- and infinite-dimensional case, the mathematical models 
are founded on the Poisson-bracket form of the equations of motion. It turns 
out that the Hamiltonian structure offers some pleasing properties which can 
be advantageously used for the controller design. In particular, the non-linear 
//2-, the non-linear Hoo-design, the PD-(proportional differential) controller 
design and the idea of disturbance compensation will be adapted for finite- 
and infinite-dimensional PCH-systems. The different control strategies devel- 
oped so far for PCH-systems will be applied to an infinite-dimensional piezo- 
electric composite beam structure. The feasibility of these control concepts 
relies on the fact that the piezoelectric structures allow a spatial distribution 
of the piezoelectric sensor and actuator layers. The design of the spatial pat- 
tern of the sensor and actuator electrodes is an additional degree of freedom 
and can be regarded as a part of the control synthesis task. In this way, we 
are able to design the sensor and actuator layers such that they are collocated 
and hence the well known effects of observation/actuation spillover can be 
prevented. 

In Chapter 5 two special types of hydraulic drive systems, namely a valve- 
controlled piston actuator and a pump-displacement controlled rotational pis- 
ton actuator, are discussed. The underlying physical structure is again elab- 
orated carefully and this knowledge is advantageously used for the controller 
design. The mathematical model being considered for the valve-controlled pis- 
ton actuator has the pleasing property that it is exact input-state linearizable. 
But in some industrial applications, it turns out that those controllers, which 
have to rely on the knowledge of the piston velocity, have problems in the 
case of noisy measurements and/or parameter variations. This is also why we 
propose a non-linear controller based on the input-output linearization which 
requires only measurable quantities. The feasibility of thi~ non-linear control 
concept will be demonstrated by means of the HGC (hydraulic gap control), 
which is the innermost control loop of the thickness control concept in rolling 
mills. Irregularities in the mill rolls and/or roll bearings may cause so-called 
roll eccentricities which appear as periodic disturbances in the strip exit thick- 
ness. In general, these disturbances cannot be eliminated by means of the con- 
ventional thickness control concepts, like the HGC. Therefore, an adaptive 
controller is developed to compensate periodic disturbances with a known 
period but an unknown phase and amplitude. A passivity based argument is 
used to prove the stability. The second part of this chapter is concerned with 
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a closed-coupled hydrostatic drive unit consisting of a variable-displacement 
axial-piston pump and a fixed-displacement axial-piston motor. It will be 
shown that the mathematical model of the hydrostatic drive unit has the 
same mathematical structure as certain types of PWM-controlled dc-to-dc 
convert'ers. A detailed mathematical model of the swash-plate mechanism of 
the variable-displacement pump is derived. The complexity of this model is 
gradually reduced on the basis of physical considerations. The so-obtained 
simpler model is used to design an on-line discrete open-loop observer for 
the swash-plate angle. Finally, comparative results of the measured and the 
estimated swash-plate angle for an industrial drive box are presented. 
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1. Fundamenta ls  

In this chaptcr, wc bricfly discuss some basics of Lyapunov's theory, dissi- 
pativity, passivity, positive realness and absolute stability. Thcreby, special 
emphasis is laid on examining more closely the physical background and on 
elaborating thc conncctions between these concepts. It should be mentioned 
that  the intention of this chapter is not to present a complete thcory; it 
rather summarizes those theoretical concepts which will be required in the 
subsequent chapters. In this sense some results are stated without proof, but 
throughout  the whole chapter thc rcadcr is always referrcd to the corrcspond- 
ing literature for more dctails and information. 

1.1 Stability of Equilibria 

The  stability of equilibrium points is csscntially characterized in the scnsc of 
Lyapunov's theory. Consider a timc-invariant autonomous system 

d 
- - x  = f (x) (1.1) 
dt 

where x E R n and f is a continuous vector field. Let us assume that  (1.1) 
has a unique solution for any initial condition x0 = x (to) and for all t _> to. 
This can be guaranteed if f satisfies a global Lipschitz condition [59], [144]. 
Without  restriction of generality we assume that  the origin 2 = 0 is the 
equilibrium of (1.1), i.e. f (~) = 0, whose stability has to bc investigated. 
In the casc 2 ~ 0 we can always pcrform a suitable changc of coordinates 
Z - ~  X - - X .  

D e f i n i t i o n  1.1. Let ~{ (x) denote the flow of (1.1) then the equilibrium is 
stable in the sense of Lyapunov if and only if, for each ~ > O, there is a 
6 (s) > 0 such that 

(1.2) 

for all t >_ to. I f  in addition a ~ > 0 can be found such that 

tlx01! < C ==~ lim ~[  (x0) = 0 (1.3) 
L ---* O<) 
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holds then the equilibrium is said to be asymptotically stable in the sense of 
Lyapunov. 

Here it is worth mentioning that  the norm II II in (1.2) and (1.3) is arbi- 
t rary since all norms on R '~ are topologically equivalent. It is quite clear that  
the above stability definitions are not suitable for determining the stability 
character of an equilibrium. But this is precisely the genius of Lyapunov's the- 
ory: that  it offers a possibility to investigate the stability without calculating 
the trajectories of the system (1.1). This leads us to the well known direct 
or second method of Lyapunov. Before giving a formulation of Lyapunov's 
direct method wc will look at the underlying physical idea. 

1.1.1 Physical  Observation I 

The basic idea of Lyapunov's direct method comes from the physical observa- 
tion that  thc total stored energy of a mechanical or clcctrical system without 
external inputs is non-increasing in time. Furthermore, if the system contains 
dissipative elements, the total stored energy is monotonically decreased and 
hence even goes to zero. Let us consider the very simple electric circuit of 
Fig. 1.1 with the inductor L, the capacitor C and the rc~istances RI and R2. 
The network equations read as 

R2 

1- 1 
.I. 

Fig. 1.1. Simplc electric circuit. 

d 
( - u c  - RilL) 

1 
iL = 7 

d 1 (  u c )  (1.4) 

with the inductor current iL and the capacitor voltage uc  ms the state vari- 
ables x T = [iL,uC]. Obviously, 2 = 0 is the only equilibrium of (1.4). The 
positive definite energy stored in the inductor and capacitor is given by 

V ~- ~L~ L q- 2 
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and the change of the stored energy V due to the motion of the system (1.4) 
takes the form 

d V = _ R l i  2 _  1 2 
dt R--~ uC 

(1.6) 

and is, in fact, negative definite. Thus, we may deduce from (1.5) and (1.6) 
that the equilibrium 2 = 0 is asymptotically stable in the sense of Definition 
1.1. 

1.1.2 Mathemat i ca l  Formulat ion  I: Lyapunov's  Direct  M e t h o d  

A generalization of this approach to the class of time-invariant autonomous 
systems (1.1) is known as the direct or second method of Lyapunov. 

T h e o r e m  1.1. The equilibrium ~ = 0 of (1.1) is stable in the sense of Lya- 
punov if there exists a continuously differentiable positive definite function 
V (x) on a neighborhood X c R n of 0 such that the relation 

d v  (x) -- L f V  (x) < 0 (1.7) 

holds for all x C X with L / V  as the Lie derivative of V along the vector field 
f .  Moreover, if  

d 
- ~ V  (x) = L z V  (x) < 0 (1.8) 

for all x E 2( - {0} the equilibrium is asymptotically stable. The function 
V (x) is commonly referred to as a Lyapunov .function. 

In this sense the Lyapunov function can be regarded as an extension of 
the total stored energy of physical systems to a more general class. Therefore, 
it is obvious that within the controller design for physical systems the total 
stored energy serves as an appropriate Lyapunov function candidate. This 
is also why an energy based formulation of physical systems, like the Euler- 
Lagrange formulation of electromechanical systems, is so popular within the 
control community. We will emphasize this aspect in Chapters 3, 4 and 5 for 
electrical, electromechanical, mechanical and hydraulic systems. 

1.1.3 Phys ica l  Observat ion II 

In many physical applications, however, it turns out that the equilibrium ~ is 
asymptotically stable although; the time derivative of V (x) in Theorem 1.1 
is only negative semi-definite. As an example we will investigate the simple 
spring-mass-damper system of Fig. 1.2. Suppose the spring has the non-linear 
restoring force Fc = e g  (z) where the function ~F (Z) satisfies the sector 
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/ /  F z lz t 

"///////////////I'///////Y/Y/Y/y/ 

~ Z  

Fig. 1.2. Simple mechanical system. 

condition klZ 2 ~ ~)F (Z)Z _~ k2 z2 with 0 < kl < k2. The damping force is 
assumed to be proportional to the velocity, Fd = d d z  (t), with the damping 
coefficient d > 0. Then the equations of motion are given by 

d 

d 1 (1.9) 
~-~v= m ( r  

with the state x T = [z, v] and 2 = 0 as the only equilibrium. The kinetic and 
potential cnergy stored in the system 

// V = 1 m y 2  +- CF (w) dw (1.10) 
2 

is again a suitable Lyapunov function candidate. Taking the time derivative 
of V along an integral curve of (1.9), we see that  

d 
- - V  = - d v  2 (1.11) 
dt 

is only negative semi-definite. Following Theorem 1.1, we may deduce that  
the origin is stable but not asymptotically stable. But the stored energy V is 
decreasing everywhere except when d V = 0, that  is for v = 0 and z arbitrary. 
But from (1.9) one can easily conclude that the trajectory cannot bc confined 
to the set of points described by d V = 0, unless z = 0. In other words, the 
energy stored in the system will be dissipated until it is zero. This allows the 
conclusion that  the origin is asymptotically stable. The exact mathematical 
explanation of this physical observation is given by the famous invariance 
principle of LaSallc. 

1.1.4 Mathematical  Formulation II: LaSalle's Invariance Principle 

The invariance principle of LaSalle uses the concept of invariant sets. A set 
is called a positively (negatively) invariant set of (1.1) if for each initial 

condition x0 = x (to) E/2 ~ ~[  (x0) �9 V for all t _> to (t < to). 
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T h e o r e m  1.2. Let 2( C R n be a compact, positively invariant set o.f (1.1) 
and suppose V (x) : 2( --+ R is a continuously differentiable function with 
-~ V (x) < 0 in 2(. Further, let ~2 be the largest positively invariant set of W = 

{ x �9 X I --dVdt (x) = O} then, every solution of (1.1) starting in 2( approaches 
12 as t -~ cx~. 

Since the level set Xc = {x E X[ V (x) < c} of a positive definite function 
V (x) with the property ~ V  (x) _< 0 is positively invariant and compact 
for a sufficiently small positive constant c, Theorem 1.2 can be extended in 
accordance with Theorem 1.1 in the form of the following corollary. 

C o r o l l a r y  1.1. The equilibrium 2 = 0 of (1.1) is asymptotically stable in 
the sense of Lyapunov if there exists a continuously differentiable positive 
de.finite .function V (x) on a neighborhood X c R ~ of 0 such that the relation 

~V (x) = LIV (x) _< 0 (1.12) 

holds for all x r X and the largest positively invariant set l~ of 142 = 
{ x E X[ d V (x) = O} contains only the equilibrium O, i.e., ]2 = {0}. 

The next remarks briefly deal with the global stability property, Lya- 
punov's theory for time-varying systems and with Lyapunov's theory for the 
infinite-dimensional case. 

Remark 1.1. The stability concepts introduced so far are of a local nature 
only. In order to get global stability properties the function V (x) in Theorem 
1.1 and Corollary 1.1 must satisfy an extra condition, namely V (x) must be 
radially unbounded. This means that  V (x) ~ cc as [[x[[ --~ c~. 

Remark 1.2. The basic results of Lyapunov's theory can also be extended to 
time-varying systems of the form 

d 
- - x  = f (t, x) (1.13) 
dt 

but this is not intended within this work. The reader is asked to refer to, e.g., 
[59], [135], [1441. 

Remark 1.3. In order to use Lyapunov's theory for infinite-dimensional sys- 
tems, some new aspects have to be taken into account and its application 
may involve some rather delicate mathematical technicalities. The main rea- 
son for this is that  in contrast to finite-dimensionM systems in the infinite- 
dimensional case, the compactness of the level sets of the Lyapunov function 
is no longer automatically ensured. This property must be checked separately. 
For more information on this topic it is advisable to consult, e.g., [1], [82], 
[92]. 



6 1. Fundamentals 

1.1.5 E x p o n e n t i a l  Stability 

Apart from stability in the sense of Lyapunov we will also need the notion 
of exponential stability, but now formulated for the non-linear time-varying 
case (1.13). Again, without loss of generality, let the origin ~ = 0 be an 
equilibrium of (1.13), i.e. f (t, 0) = 0 for all t > 0. Then the equilibrium is 
said to be exponentially stable if there exist positive constants a l  and a2 
such that  

~ t o  (xo) _< a l  ]]xo]] exp (-o~2t) (1.14) 

holds for all times t > to and all initial conditions x0 = x (to) E X' = { x E R n ] 
]]x]] < r} where to ~ 0 and r is a suitable positive constant. Further, the 

equilibrium is globally exponentially stable if X' = R n. 

Theorem 1.3. The equilibrium ~ = 0 of (1.13) is exponentially stable if 
there exist a continuously differentiable function V (t, x) : R+ • X --~ R and 
positive constants ~1, ~2, fi3 and p > 1 such that the relations 

Ilxll V (t, x) 92 Ilxll p 

d v  (t, x) _< flxll (1.15) 

are satisfied for all t > 0 in a neighborhood X of O. Moreover, if  2g -= R "~ the 
equilibrium is even globally exponentially stable. 

For a proof, see e.g., [59], [144]. 

1.2 Dissipativity,  Passivity and Posit ive Realness 

1.2.1 P h y s i c a l  O b s e r v a t i o n  I I I  

From the first law of thermodynamics it is known that  energy is neither 
"created" nor "destroyed", but only changes its form and all energy changes 
must cancel each other out at any instant in time. Next we will apply this 
very general energy balance principle to two specific cases, namely to a class 
of heat transfer systems and to electromechanical systems. 

Heat T r a ns f e r  Sys t ems .  At first let us consider a heat transfer system 
where the electromechanical effects may be neglected and hence the changes 
in the energy storage are solely due to changes in the internal thermal energy. 
From the energy conservation requirement the change in the thermal energy 
storage V follows the relation 

d 
--~V = P~n - Pout (1.16) 
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I ..... 

y/~,~/////////////Y/Y///// 

metal specimen 5(T), c(T) %~___., , ~/  

l 

Fig. 1.3. Annealing of metal specimen. 

with pin and Po~t as the energy flows which enter and leave the system. 
As a typical application example we will investigate the annealing of a 

metal sheet specimen by means of conductive heating and forced convection 
as presented in Fig. 1.3 (see also [63] for details). By passing an electric 
current with the rms-value I rm  s through the specimen thermal energy is 
generated duc to Ohmic heating. Either a fan or compressed air is used 
to provide forced convection air cooling. We assume that at any time t the 
temperature T in the metal sheet specimen is uniform and that the surface of 
the surrounding walls is large in comparison to the specimen surface. Further, 
we will ignore the effect of heat conduction. 

The internal thermal energy V of the specimen is given by 

V (T )  = c (T )  m T  (1.17) 

with the constant mass m and the specific heat c (T) as a strictly increasing 
function of the temperature T. Following Ohm's law, wc get the energy flow 
due to electric resistance heating in the form 

2 = rrms5 (T) (1.1S) 

with the specific resistance 5 (T), the length of the specimen l and the cross 
section Ac. The energy flows caused by forced convection and radiation are 
given by 

Pod, t,1 = a (X) A s  ( T  - 7'~,air) (1.19) 

and 

Pout,2 co'As (T 4 4 = _ Ts,waii ) (1.20) 

with the surface area As of the specimen, the temperature of the surrounding 
air and surrounding walls, Ts,a~,- and Ts,wau, respectively, the emissivity ~, the 
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Stefan-Boltzmann constant a = 5, 67- 10 - s  W m - 2 K  -4 and the convection 
heat transfer coefficient a (X). Thereby, X stands for the angular velocity 
of the fan or the pressure of the compressed air depending on the cooling 
equipment used. If we only have free convection the heat transfer coefficient 
a (X) is constant and lies within the range 2 - 25 W m - 2 K  -1 (see, e.g., [48]). 

The  dynamic system equation can be directly obtained by inserting (1.17)- 
(1.20) in (1.16) with the temperature T of t h e  specimen as the state and 
the input u T = [Irma, x,T~,air,Ts,~,au]. Thus for a given input u the energy 
balance of (1.16) integrated from time to to t along the integral curve of the 
system with the initial temperature  T (to) results in 

J2 V (T (t)) - V (T (to)) = s (Irma, X, T~,ai,., T~,waU, T) aT (1.21) 

with 

s (I~m~, X, T~,ai~, T~,wau, T) = 

l i2ms~(T)_~c _OL(x)As(T_Ts,alr)_go.As(T4_Ts4wall) . (1.22) 

Equation (1.21) says that  the thermal energy stored in the specimen V at 
t ime t equals the stored energy at t ime to plus the energy supplied or taken 
from the specimen with the so-called supply rate s (Irms, X, T~,ai~, T~,~aU, T ) .  

E l e e t r o m e c h a n i c a l  S y s t e m s .  In the second case we consider electrome- 
chanical systems where the changes in the internal thermal energy are ne- 
glected. Here the rate of change of the energy V stored in the electromechan- 
ical system can be writ ten in the form 

d 
- - V  = Pin -- Pout -- Pdiss (1.23) 
dt  

where pin and Pout denote the energy flows which enter and leave the system 
across its boundaries and Pdiss is the energy flow which is dissipated into 
heat. As an example let us consider the electromagnetic valve of Fig. 1.4 
which consists of a cylindrical core and a cylindrical plunger with mass m 
and diameter D moving in a guide ring. The coil, which has N turns with the 
total  internal resistance R, is supplied by the voltage source U0. Let us assume 
that  the material of the core and plunger is infinitely permeable whereas the 
permeability of the guide ring is the same as that  of air. Yhrther, we assume 
that  h ~< D and 6 <~ h and hence we will neglect all leakage effects. Then the 
energy stored in the magnetic circuit ~0 L (Z, i i )  as a function of the plunger 
position z and the coil current iL can be calculated in the form 

~L = 1 L  (z) i~ (1.24) 
2 

with the inductance of the magnetic circuit 
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Fig. 1.4. Schematic diagram of an electromagnetic valve. 

#oN2D2~r (D + 5) 1rb (1.25) 
g (z) = 4 (h - z) (D + 5) 7rb + 6D27r 

and #o = 47r-10 -7 VsA-lm -1 as the permeability of air. Since in this example 
the energy ~bL and the co-energy WL of the magnetic circuit are equal the 
magnetic force is given by the relation 

0 1 0 L  (z) 
Fm~g = ~z(VL -- 2 0 z  i2L " (1.26) 

A detailed treatment of the energy/co-energy concept for electromechanical 
systems is presented in Section 3.6. The friction between the plunger and the 
guide ring is assumed to be proportional to the plunger velocity and it is 
supposed to be contained in the damping coefficient d > 0 of the damping 
force Fd = d d z  (t). In addition to the magnetic force and the damping force, 
an external load force Fext and a restoring force Fc due to a spring with the 
spring constant c > 0 act on the plunger. Hence, the system equations are of 
the form 

d 
~ 2  = V  
dt 

d 1 ( l O L ( z ) i 2 L _ C Z _ d v + F e x t )  (1.27) 
~ v  = -~ Oz 

d . 1 ( OL(Z) iLv ) 
-~*n -- L (z) Uo - RiL Oz 

where x T = [z, v, iLl is the state, u T = [U0, Fe~t] the input and L (z) the 
inductance from (1.25). The total energy V stored in the system is the sum 
of the magnetic energy ~OL of (1.24), the kinetic energy of the plunger mass 
and the potential energy of the spring 

V=-~l (L(z )  i2L + m y  2 + cz 2) . (1.28) 
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The change of the stored energy V due to the motion of the system reads as 

d 

Pin--Po~tt  Pdlss  

Integrating (1.29) for given input u from time to to t along the integral curve 
of (1.27) with the initial value x (to), we get 

V (x (t)) - V (x (to)) <_ s (Uo, Fe,~t, iL, v) dT (1.30) 

with the supply rate 

s (No, Rex, iL, v) = So i l  + F xtv. (1.31) 

1.2.2 Mathematical  Formulation III: The Not ion  of Diss ipativity  

This physical observation of energy balance can now be embedded in the more 
general mathematical concept of dissipativity (see, e.g., [126], [143], [145]). 
Consider a dynamic state-space system of the form 

d 
- -X ---- f (x, u) dt (1.32) 

y ----- h ( x , u )  

with the state x E X C R ~, the control input u C H C R m and the output  
y C Y C R ' .  We will denote all those input functions u (t) that  determine 
the state x (t) unambiguously for any initial value x (to) = x0 and all t > to 
as admissible. Let us define a real-valued function s (u, y) : H • Y ~ R, the 

so-called supply rate, such that  ftto I s (u ,y )[dT < c~ for any xo E X, any 
admissible input u and all t > to. 

Definit ion 1.2. The system (1.32) is said to be dissipative with supply rate s 
i.f there exists a non-negative function V (x) : X ~ R such that the inequality 

J2 V (x (t)) - V (x (to)) <_ s (u ( r ) ,  y (~-)) d~- (1.33) 

holds .for all admissible u, all initial values xo E X and all t >_ to. The 
.function V (x) is also called a storage function and the inequality (1.33) is 
o.~en referred to as dissipation inequality. I f  (1.33) holds with equality, the 
system (1.32) is said to be lossless with respect to the supply rate s. 

At this point it should be emphasized that  here and henceforth with x (t) 
and y (t) we mean x (t) = ~p (t, xo, u (t)) and y (t) = h (~ (t, xo, u (t)) ,u  (t)) 
where ~ (t, :co, u (t)) is the solution of (1.32) corresponding to the initial con- 
dition x (to) = xo and to the input u (t), evaluated at time t. 
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Remark 1.4. In the sensc of Definition 1.2 the heat transfer system of Fig. 
1.3 is lossless with respect to the supply ratc (1.22) and the clcctromechanical 
system (1.27) of Fig. 1.4 is dissipative with supply rate (1.31). 

Among all possible storage functions V (x) we shall be interested in the 
so-called available storage V~ (x), defined by 

( f )  V~ (x) = sup - s (u (r) ,  y (T)) dT with x (to) = x .  (1.34) 
uElg, t>_to 

In [145] (see also [171, [143]) it is shown that  the system (1.32) is dissipative 
with supply rate s if and only if V~ (x) is finite for all x E X. If this is the 
case, the available storage V~ (x) can be interpreted as the lower bound of all 
possible storage functions V (x), i.e. 

0 < yo (z) < v (x) (1.35) 

for all x E A'. A physical interpretation of Va (x) is that  it gives the maximum 
amount of energy that  can be extracted from the system with the initial 
condition x (to) = x. 

Remark 1.5. If the storage function V (x) is continuously diffcrentiablc in 
x then wc can calculate the change of V (x) along the trajectories of the 
system (1.32). Thus we obtain the so-called diffcrcntial dissipation inequality 
associated to (1.33) in the form 

d 
~ Y  (x) < s (~, ( t ) ,y  ( t ) ) .  (1.36) 

This representation is uscful in many situations, especially those concerning 
stability investigations. 

Remark 1.6. Dissipativity is strongly related to the input-output stability 
of dynamic systems. In particular, the system (1.32) has L2-gain less equal 
7 > 0 if it is dissipative with supply rate s (u,y) -- 3' Ilull 2 -IlYll 2 where II I] 
is the Euclidean norm. For a comprehensive presentation of the connections 
between input-output stability and dissipativity the reader is rcfcrred to a 
very recent book [143]. 

1 . 2 . 3  Pass iv i t y  

Originally, the notion of passivity comes from the theory of electrical net- 
works. In this respect, an electrical network is said to be passive if and only 
if it is composed entirely of positive rcsistors, inductors and capacitors (see, 
e.g., [19]). However, within the area of control and systems theory a passivity 
formulation for a much more general class of dynamic systems was devel- 
oped. Subsequently, we will recapitulate some of the fundamcntal results of 
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the passivity concept, which will be of importance for the next chapters. For 
this purpose, let us consider a dynamic system (1.32) with the number of in- 
puts m being equal to the number of outputs p. Then we can define a special 
bilinear supply rate of the form s (u, y) = (y, u> = yTu and this leads us to 
the definition of passivity. 

D e f i n i t i o n  1.3. The system (1.32) with m = p is said to be passive i f  it 
is dissipative with supply rate s (u, y) = (y, u}. Furthermore, we say that 
(1.32) is strictly input (output) passive i.f it is dissipative with supply rate 
s (u, y) = (y, u> - (~ ]lull 2 (s (u, y) = (y, u) - ~ Ilyll 2 ) / o r  a suitable (~, ~ > O. 
A passive system that is lossless is also called conservative. 

Taking for the electromechanical system (1.27) of Fig. 1.4 u T = [V0, Fext] 
as the plant input and yT = [iL,V] as the plant output, we immediately 
see from (1.30) that  the system (1.27) is passive. Moreover, since Pai8~ = 
d v 2 +  Ri  2 >_ ~llyll 2 with 0 < ~ < min(d ,R) ,  (1.27) is also strictly output  
passive. 

Remark 1.7. From the definition of passivity one can immediately see the 
connection between passivity and Lyapunov stability. Let us assume that  
(1.32) has an equilibrium at the origin, i.e., f (0, 0) = 0 and h (0, 0) = 0. 
Then, if (1.32) is passive with a positive definite C ~ storage function V (x), 
V (0) = 0, the equilibrium 2 = 0 of the free system, i.e. for u = 0, is stable 
in the sense of Lyapunov due to (1.36) and Theorem 1.1. 

Passive systems have the pleasing property that  the parallel and feedback 
interconnection of passive systems as shown in Fig. 1.5 is again passive. Sup- 
pose two passive systems of the form (1.32) with the states xl,  x2, the inputs 
ul ,  us and the outputs Yl, y2. Then there exist two storage functions V1 (xl) 
and V2 (x2) such that  

Vx (x l  (t)) - Yl (to)) 
to 

v2 (t)) - v2 (52 (to)) <_ 
to 

<Yl, Ul >dT 

<Y2, u2> d~- . 

(1.37) 

Substituting ul = u2 = u and y = yl -{- y2 for the parallel connection, we get 

V (x (t)) - V (x (to)) _< (y, u) d7 (1.38) 

with V -- V1 + V2 as the storage function of the parallel interconnected system 
and x T = [x T, xT]. In this way, by inserting the connection conditions for 
the feedback connection us = et - Y2 and u2 = Yl + e2 into (1.37), we obtain 
the inequality 
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V (x (t)) - V (x (to)) <~ (Yl, el) -[- (y2, e2) d~-. (1.39) 

This shows the passivity of the closed-loop system with the input @1, e2), the 
output  (Yl, Y2), the state x T = [x T, x T] and the closed-loop storage function 
v = vl + v2. 

1,l 

u~J passive 
system 

"t (x'u'Yl) 

passive 
u2> system 

(xvuvy2) 

y~ e I A u ~ ]  passive 
system 

(Xl,/~l,Yl) 

Y 

ty passive 
2 system 

(x2,u2,Y2) 

Yl 

1 
Fig. 1.5. Parallel and feedback interconnection of passive systems. 

Subsequently, we will give necessary conditions for a non-linear system to 
be passive. For the sake of simplicity we will restrict our considerations to 
a special class of non-linear systems, which are affine in the input without 
feedthrough term 

d 
--~x = f (x) + ~j"~, gj (x) uj (1.40) 

y = h ( x )  

with the smooth vector fields f ,  g l , . . .  , gin, the smooth functions h i , . . .  , hm, 
the state x E 2( C R n, the control input u E b/ C R m and the output 
y E Y C R m. Let us further assume that  the origin is an equilibrium of' 
(1.40), i.e., f (0) -- 0 and h (0) -- 0. Following [17] (see also [126]), we may 
state the following theorem without proof. 

T h e o r e m  1.4. The necessary conditions for the system (1.40) to be passive 
with a C 2 storage .function V (x), V (0) = O, are that the system (1.40) 

(1) has relative degree {1, . . .  , 1} at x = 0 and 
(2) is weakly minimum phase. 

Remember that  the system (1.40) has relative degree { r l , . . .  ,rm} at the 
point �9 if the following two conditions 

(1) LgjL~hi (x )  = 0 for all 1 _< j , i  < m, all 0 < k < rl - 1 and all x in a 
neighborhood of 2 and 
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(2) the so-called decoupling matrix [LgjL}~-lhi(x)], 1 <_ j , i  <_ m is non- 
L J 

singular at x = 

are satisfied. If the system (1.40) has relative degree {1, . . .  , 1} at x = 0 
and the distribution spanned by the vector fields {gl ( x ) , . . . ,  gm (x)} is in- 
volutive, it is always possible to find a local coordinate transformation in a 
neighborhood of x = 0 with the new coordinates (y, z) such that  (1.40) takes 
the form 

d 
-~Y = f l  (Y, z) + Ejm=l gl,j (Y, Z) Uj 
d (1.41) 

~--~z = f2 (Y, z) . 

Recall that  the so-called zero dynamics of (1.40) represent the internal dy- 
namics of (1.40), when the output y --= h (x) is constrained to be identically 
zero. In the transformed system (1.41) the zero dynamics are given by the 
differential equation 

d 
- - z  = f2 (0, z) = f ( z )  . (1.42) 
dt 

Now, the system (1.40) is said to be weakly minimum phase if for the zero 
dynamics (1.42) there exists a positive definite C 2 function W (z), W (0) = 0, 
such that  L f W  < 0 for all z in a neighborhood of z = 0. Concerning the 
notions of zero dynamics and relative degree the reader is referred to e.g., 
[52], [103], [144]. 

Remark 1.8. For linear SISO-systems without feedthrough term the condi- 
tions (1) and (2) of Theorem 1.4 can be easily checked by means of the 
associated transfer function. That  is (1) the difference between the degree 
of the denominator and numerator of the transfer function is 1 and (2) the 
roots of the numerator have non-positive real parts and every root having a 
zero real part is simple. 

Remark 1.9. The conditions (1) and (2) of Theorem 1.4 are even necessary 
and sufficient for the system (1.40) to be feedback equivalent to a passive 
system [17]. Thereby, the system (1.40) is said to be feedback equivalent to 
a passive system if there exists a state feedback law for (1.40) such that  the 
closed-loop is passive. For more details on this topic, see [17], [126], [143]. 

1 .2 .4  P o s i t i v e  R e a l n e s s  

In this subsection, we will present the famous Kalman-Yakubovich-Popov 
lemma which gives a connection of the passivity property of a linear system 
with the existence of a solution of a set of algebraic equations containing 
the Lyapunov equation. However, before formulating this lemma for linear 
systems, we will derive an algebraic criterion due to [42] and [100], which can 
be understood as an extension of the Kalman-Yakubovich-Popov conditions 
to non-linear affine-input systems. 
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N o n - l i n e a r  Af f ine - inpu t  S y s t e m s .  Let us at first concentrate on non- 
linear affine-input systems (1.40) but now with a throughput term J (x) 

d r n  

- x  = f (x) + E j = l  (x) u; 
dt 
y = h(x)  + J ( x )  u .  

(1.43) 

We impose the assumption on all storage functions V (x) including the avail- 
able storage Va (x) that, whenever they exist, they are continuously differen- 
tiable. Hence we may apply Remark 1.5. 

De f in i t i on  1.4. The system (1.43) is said to be positive real i f  for  all ad- 
missible u and all t >_ to the inequality 

f t i ( y  u} dT _> 0 (1.44) 

is satisfied .for x (to) = O. 

In the case where (y, u} is the power which is externally supplied to the 
system (e.g., associated voltages and currents in an electrical network or 
associated generalized forces and velocities in a mechanical system), we see 
that  the inequality condition (1.44) states that  from the time to more energy 
is flowing into the system than out of the system for all times t > to. 

Remark  1.10. The positive real condition of (1.44) coincides with the defini- 
tion of the passivity of an input-output system with zero-bias (see, e.g., [143], 
[144]). 

It is apparent that  there is a strong relation between positive real and 
passive systems. Before formulating a lemma due to [145] (see also [17], [143]), 
which clarifies this relation, we need the following definition. 

De f in i t i on  1.5. The system (1.32) is said to be reachable .from x (to) = 0 i f  
.for every state x E X there exists a t ime t > 0 and an admissible input  u ELt  
such that x = ~ ( t, O, u ( t ) ) . 

L e m m a  1.1. [145] Assume  the system (1.43) is reachable .from x (to) = O. 
Then the system is passive if  and only i.f it is positive real. Furthermore, the 
available storage Va (x) satisfies the relation Va (0) = O. 

The proof is omitted here but  can be found in [145] or a newer version in 
[143]. 

In [42] and [100] an algebraic criterion, which is the generalization of the 
well-known Kalman-Yakubovieh-Popov conditions to non-linear affine-input 
systems (1.43), is presented. At first let us recall the definition of a system 
being zero-state observable. 
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Def in i t i on  1.6. The system (1.32) is said to be zero-state observable i.f for 
any trajectory with u (t) = 0 and y (t) = 0 .for all t > to implies x (t) = 0 for 
all t >_ to. 

T h e o r e m  1.5. [42], [100] Let the system (1.43) be reachable from 0 and 
zero-state observable. Then the system (1.43) is positive real i.f and only i f  
there exist real-valued functions l (x), W (x) and a positive definite function 
V (x) such that the following relations 

L / V  (x) = - I  T (x) l (x) 

1 [ L m V ( x  ) ,Lg.~V(x)] = h T ( x ) - l T ( x ) W ( x )  

W T (x) W (x) = j T  (x) + J (x) 

(1.45) 

hold. 

Proof. (if): We claim that  suitable real-valued functions l(x) ,  W (x) and a 
positive definite function V (x) satisfy (1.45). Then the change of V (x) along 
a trajectory of (1.43) is given by 

d m 

- ~ V  = L / V  (x) + E Lgj V (x) uj (1.46) 
j=l 

or after inserting the relations (1.45) into (1.46) 

d 
= v  = - (l (x) + w (x) u) T (1 (x) + w (x) u) + 2 (y, u) 
dt 

(1.47) 

Obviously, 

l d  
d-iV _< (y, u) (1.48) 

and hence for all admissible u, all initial values x (to) and all t _> to we have 

f ~V1 (x (t)) - ~V1 (x (to)) < (y,u) dt, (1.49) 

which proves the passivity and due to Lemma 1.1 also positive realness. 
(only if): We claim that  (1.43) is positive real. Since (1.43) is assumed to 

be reachable from x (to) = 0, we may conclude from Lemma 1.1 that (1.43) is 
passive and the available storage V~ (x) satisfies the relation Va (x (to)) = 0. 
Therefore, 

0 _< Va (x (t)) - Va (x (to)) ~ 2 (y, u) dt (1.50) 

and due to our assumption that  all storage functions are continuously differ- 
enviable, we get 
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d 
0 < 2 ( y , u ) - -  -~Va (1.51) 

d 
d ( x ,  = - > 0 (1.52) 

with a positive semi-definite d (x, u). It is worth mentioning that the factor 
2 in (1.50) is introduced to obtain the equations in a form which fit the well- 
known Kalman-Yakubov ich-Popov  conditions in the linear case. The evalua- 
tion of ~Va along an integral curve of (1.43) yields 

d (x, u) -- 2h r (x) u + 2 u T g  T (x) u - L]Va (x) - f i  L~j Va (x) uj .  (1.53) 
j = l  

Obviously, the quadratic term in u must be positive semi-definite and hence 
we may factor j T  (x) + J (x) = W T (x)IV (x). By completing the squares, 
which is, of course, far from being unique, we choose d (x, u) in the form 

d (x, u) = (l (x) + W (x)~t~) T (l (X) -~- W (x) u) :> O. (1.54) 

Equation (1.53) together with (1.54) immediately brings the result (1.45). 
Moreover, since (1.43) is zero-state observable all solutions V (x) of (1.45) 

are positive definite (see, e.g., [42] or [143]). �9 

L i n e a r  S y s t e m s .  Consider a linear time-invariant state-space system 

d 
- - x  = A x  -~ B u  
dt  

y = C x  -~ D u  
( 1 . 5 5 )  

with (A, B) reachable and (C, A) observable. From Theorem 1.5 we know 
that if (1.55) is positive real we find a positive definite solution V (x) = x r p x ,  
P > 0 and matrices L and W such that (1.45) is fulfilled. This leads to the 
well-known Kalman-Yakubovich-Popov conditions in the linear case 

P A  + A T  p = - L T  L 

P B  = C T - L T w  (1.56) 

W T W  = D r + D .  

The positive realness of the linear system (1.55) can also be formulated in 
the frequency domain as a property of the a.ssociatcd transfer function (see, 
e.g., [591, [1451) 

Z (s) = C ( s I -  A)  -1 B + D . (1.57) 
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De f in i t i on  1.7. A quadratic matrix Z (s) of flmctions in a complex variable 
s is called positive real if.for Re (s) > 0 the .following conditions 

(1) all elements of Z (s) are analytic, 
(2) Z (s*) = Z* (s) and 
(3) Z T (s*) + Z (s) is positive semi-definite 

hold, where * denotes the complex conjugation. Moreover, we say Z (s) is 
strictly positive real if  Z (s - e) is positive real for some suitable r > O. 

For a transfer function Z (s) with the property det (D) ~ 0 we have the 
following lcmma for characterizing strict positive realness [59], [144]. 

L e m m a  1.2. The transfer.function Z (s) of (1.57) is strictly positive real i.f 
and only i / the  conditions 

(1) A is Hurwitz and 
(2) inf~eR Ami, (Z (jw) + Z T ( - j w ) )  > 0 with Amin as the smallest eigen- 

value of Z + Z T 

hold. 

Remark 1.11. For the single-input single-output case, condition (2) of Lcmma 
1.2 simplifies to Re (Z (jw)) > 0 for all w and hence can be easily graphically 
checked by means of the Nyquist plot. 

Furthermore, if Z (s) is strictly positive real it is always possible to find an 
e > 0 small enough such that Z (s - ~) = C (sI - Ae) -1 B + D  is positive real 

and A~ = A+-~I  is thrwitz .  Then the Kalman-Yakubovich-Popov conditions 

(1.56) can be rewritten for As and the first equation of (1.56) becomes 

P A  + A T p  = - L T L -  e P .  (1.5s) 

Now, Theorem 1.5 together with (1.56) and (1.58) directly leads us to the 
celebrated Kalman-Yakubovich-Popov lemma (see, e.g., [59], [144]). 

T h e o r e m  1.6. Consider the linear system (1.55) where the pair (A, B) is 
reachable and the pair (C, A) is observable. Then Z (s) of (1.57) is strictly 
positive real if and only if there exist matrices L, W,  a positive definite matrix 
P and an e > 0 such that the .following relations 

P A  + A T p  = - L T L -  cP 

P B  = C T - -  L T w  (1.59) 

w T w  : D T + D . 

hold. 
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1.3 Absolute  Stability and the Popov Criterion 

1.3.1 P h y s i c a l  O b s e r v a t i o n  IV 

Let us consider again the simple mechanical system (1.9) of Fig. 1.2. We have 
already shown in Subsection 1.1.3 that  the equilibrium ~ = 0 is asymptoti- 
cally stable. It is remarkable that  in this example the stability does not rely 
on the particular form of the restoring force Fc = CF (z), it rather depends on 
the property that  CF (z) satisfies the sector condition k l  z 2 < ~' F ( z ) z < k2 z 2 

with 0 < hi < k2. 
A closer view shows that  the mechanical system (1.9) can be represented 

as a feedback interconnection of a linear subsystem 

d 
-'~Z : V  

d 1 1 (1.60) 
- - V  : - - - -  ( k l Z  "q- d~)) q- - - u  
dt m m 
y : z  

and a static non-linearity r (z)  = C g  (z) -- k l z ,  as shown in Fig. 1.6. Now, it 
is appropriate to pose the question under which conditions the equilibrium 
of such a feedback connected system according to Fig. 1.6 is asymptotically 
stable, if only the sector condition of the non-linearity is given, but not the 
non-linearity itself. The answer to this question leads to the notion of absolute 
stability. 

Linear System 
( .t = Ax+Bu 

y = C x  

Y 

Static 
Non-linearity 

Fig. 1.6. Feedback interconnection of a linear system and a static non-linearity. 

1.3.2 M a t h e m a t i c a l  F o r m u l a t i o n  IV: T h e  N o t i o n  of  A b s o l u t e  
S t a b i l i t y  a n d  t h e  P o p o v  Criterion 

Given a feedback connected system, as shown in Fig. 1.6, where the linear 
time-invariant subsystem is described by 
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d 
- - x  = Ax  + Bu  
dt (1.61) 
y = Cx  

with the state x E R n, the input u C R m and the output y E R m. The 
non-linearity in the feedback path 

u = - r  (1.62) 

is assumed to be memoryless, time-invariant and decentral, that  is r (Y) only 
depends on Yl, i = 1 , . . .  , m. Further, the non-linearity is required to satisfy 
the sector condition 

0 ~ eT (y) Y ~ y T K y  (1.63) 

with K = diag (ki,i = 1 , . . .  ,m), k~ > 0. Note that  the lower bound 0 of the 
sector condition (1.63) can always be obtained by a suitable sector transfor- 
mation. 

Def in i t i on  1.8. The .feedback connected system (1.61) and (1.62) with a 
given sector condition (I.63) is said to be absolutely stable if  the origin is 
globally asymptotically stable for any non-linearity belonging to the sector 
(1.63). 

The multivariable Popov criterion, stated in the next theorem, gives suf- 
ficient conditions for the absolute stability formulated as a strict positive 
realness property of a certain transfer matrix in the frequency domain (see, 
e.g., [59], [144] for further details). 

T h e o r e m  1.7. Consider the .feedback connected system (1.61) and (1.62), 
where A is Hurwitz, the pair (A, B) is reachable and the pair (C, A) is ob- 
servable. Then the system is absolutely stable if  there exists an ~? > 0 such 
that the transfer matrix 

Zp (s) = I + (1 + ~s) K C  (sI  - A) -1 B (1.64) 

is strictly positive real. Thereby, - ~  is assumed not to coincide with an eigen- 
value of A. 

Proof. The main purpose of this proof is to point out the relation between 
the Popov criterion and the interconnection of passive systems (see also [143], 
[145]). Generally~ the linear subsystem (1.61) is not passive. As one can see 
this is not even the case for the simple mechanical system (1.60). The under- 
lying idea of the Popov criterion is that  the system of Fig. 1.6, consisting of a 
linear subsystem and a sector non-linearity, can be represented as a feedback 
interconnection of two passive systems, as depicted in Fig. 1.7, with positive 
definite continuously differentiable storage functions. 
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Y2 

Linear System ~ (rls+l)K 2 = A x + B u  

y=Cx 

Static 
Non-linearity 

~,(y) 
K- 1 ('q s + 1)-1~~)~ 

Yl 

U 2 

Fig. 1.7. The system of Fig. 1.6 redrawn as a feedback interconnection of two 
passive systems. 

The transfer matrix of the system in the feedforward path of Fig. 1.7 with 
the input ul and the output  Yl is given by Zp (s) of (1.64) or equivalently, 
we may write [59] 

Zp (s) : (I + ~IKCB) + (KC + uKCA) (sI - A) -1 B .  (1.65) 

Thus the system 

d 
"~xl = Axl + Bul 

Yl = (KC + uKCA) xx + (I + ~IKCB) Ul 
(1.66) 

is a state-space representation of (1.65). From the fact that  (C, A) is as- 
l is not an eigenvalue of A, we can deduce sumed to be observable and 

that  (KC + 71KCA, A) is also observable. Since (A, B) is reachable, (KC 
+~IKCA, A) is observable and Zp (s) is strictly positive real, we may apply 
the Kalman-Yakubovich-Popov lemma of Theorem 1.6. With it, we find a 
positive definite storage function V1 (Xl) = �89 P > 0 such that  

1 T 1 (LXl ~- WUl)  T (Lxl  + W u l )  < (Yl u l ) ,  d y l  = (yl ,Ul)  - ~ex  1 P x l  - -~ _ , 

(1.67) 

which, of course, also says that  the system (1.66) is passive. 
The state-space representation of the system in the feedback path of Fig. 

1.7 with the input u2 and the output  Y2 reads as 
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d 
7/~-~x2 = --x2 + K -1 (u2 -+- ~b (x2)) 

y2  = r ( x 2 )  . 

(1.68) 

By means of the positive definite Lur'c type storage function 

m f0~ 
J ' . i  

V2 (x'2) = ~ E ki 0i (w) dw (1.69) 
i=1 

and the sector condition (1.63), wc immediately see with 

d w 2  = (y2,u2) - ~T(x2)  (Kx2 _ ~(x2)  ) ~ (y2,u2) (1.70) 

that  (1.68) is passive. Thus, we have shown that  Fig. 1.7 is in fact the in- 
terconnection of two passive systems. Thus, from Subsection 1.2.3 we also 
know that  the closed-loop is passive with the positive definite storage func- 
tion V = V1 + V2. Inserting the connection constraints ul = -Y2 and u2 = Yl 
into d V, we obtain 

d v  = - ~ e x ~ P x l  1 dt - ~ (Lxs - W e  (x2)) r (Lxl  - W e  (x2)) 

_ r  (x2) (gx2 - r (x2)) 
(1.71) 

which is clearly negative definite. This brings along the asymptotic stability 
of the origin. �9 

Remark 1.12. In the single-input single-output case the test of the strict pos- 
itive realness of Zv (s) from (1.64) simplifies to 

1 
Re (Z  (jw)) - 71w Im (Z (jw)) > -~.  for all w �9 R (1.72) 

with Z (s) = c T (sI  - A) -1 b. Note that  here the non-linearity ~ (y) satisfies 
the sector condition 0 <_ ~ (y )y  <_ ky 2, k > 0. The condition (1.72) can be 
easily graphically investigated by means of the so-called Popov plot, where 
Re (Z (jw)) is plot versus wire (Z (j~)). 

Remark 1.13. In connection with absolute stability we find, apart from the 
Popov criterion, the so-called circle criterion, which is also applicable for 
time-varying and non-decentral non-linearities. However, in principle these 
two criteria apply to two different classes of systems and therefore, a direct 
comparison is not necessarily meaningful. For more information and details 
the reader is referred to e.g., [59], [144]. 
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1 .4  P C H - s y s t e m s  a n d  P C H D - s y s t e m s  

Undoubtedly, the energy balance of a physical system with the change in 
the energy storage, together with the energy in- and outflows plays a crucial 
role in t he  stability considerations. This is also reflected in the fact that 
the energy stored in a physical system is always Suggested as an appropriate 
Lyapunov function candidate. Moreover, in recent decades the energy concept 
has again gained in importance since it turned out that it also serves as a basis 
for the design of non-linear controllers and not only as a tool for analyzing 
the stability. Today, the available design strategies based on dissipativity and 
passivity considerations are manifold and can be found in the literature under 
the headings non-linear Hoo-control, passivity-based control, energy shaping, 
damping injection etc.. A full overview of this approach can be found e.g., in 
[107], [126], [143] and the literature cited therein. 

Due to this development it is understandable that we endeavour to formu- 
late a generalized canonical description of passive systems which will give a 
clear insight into the energy situation of a passive system. We wilt henceforth 
confine the considered class of non-linear systems to the case with affine in- 
put. Then, we say a system is in passive canonical form if it can be expressed 
a s  

d {ov  
= ( j  (x) - s (x)) \ Ox / + Ge (x) e (1.73) 

with the state x E X C R n, the external inputs e T -= [u T, dT], consisting of 
the control input u ELl  C R m and the exogenous inputs (disturbances and 
reference inputs) d E :D C R p, the C 1 positive definite storage function V (x), 
V(0) = 0, the matrices Ge (x), J (x) = _ j T  (x) and S(x) = S T (x) >_ 0 
whose entries are smoothly depending on x. By choosing the output y C Y C 
R m+p in the form 

{ OV'~ T (1.74) 
v = (x) \ ox  / ' 

one can immediately convince oneself that the system (1.73) and (1.74) is 
passive with the storage function V (x), since the differential dissipation in- 
equality is given by 

dt = ( y ' e } -  -~x S(x) ~ x  -< (y'e) . (1.75) 

However, the representation of (1.73) and (1.74) is exactly what in [143] is 
cMled a port-controlled Hamiltonian system with dissipation (PCHD-system) 
or in [22], [103] a system in extended Hamiltonian canonical form. In order to 
be consistent with the literature, we will henceforth follow the terminology 
of [143] and call (1.73) and (1.74) a PCHD-system. Thereby, J (x) represents 
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the internal energy-preserving interconnection, S (x) covers the dissipative 
effects and Gc (x) describes the energy flows with the system environment 
via the system ports. 

Throughout this work, we will be confronted with two special cases of 
(1.73). At first, if S (x) = 0, then (1.75) holds with equality and, follow- 
ing Definition 1.3, the system (1.73) is said to be lossless with respect to 
the supply rate (y,e), or conservative. Then, the system will be called a 
port-controlled Hamiltonian system or PCH-system for short [143]. Typical 
representatives of this class of system are well known from classical mechan- 
ics, namely the Hamiltonian systems, and they will be discussed later on in 
Chapter 4. The second case covers the situation where oy (-~-~) G~ (x) is gener- 
ically zero with Ge (x) e = G~ (x) u + Gd (x) d. In the single-input single- 

( ~ with output  case G~ (x) can be expressed in the form Gu (x) = Ju (x) ~ o5 / 
Ju (x) = _ j T  (x). Consequently, (1.73) can be written as 

~--/x = ( J  (x) + J~ (x) u - S (x)) \-~-x ] + Gd (x) d .  (1.76) 

The physical interpretation of this case is that  the control input u only in- 
fluences the internal energy flow and thus does not change the total amount 
of energy stored in the system. It is quite obvious that  in this connection 
the output, as defined in (1.74), is only meaningful for G~ (x) = Gd (x). We 
will see in Chapters 3 and 5 that  the Cuk-converter, a special dc-to-dc power 
converter, and the pump-displacement-controlled rotational piston actuator 
are typical applications of the system (1.76). 

It is worth mentioning that  henceforth we do not intend to answer the 
question under which conditions a general mathematical model can be trans- 
formed into the form of a PCHD-system (1.73) and (1.74). But we have 
already seen in Theorem 1.4 of Subsection 1.2.3 that  for a mathematical 
model with given output functions the necessary conditions for a system be- 
ing passive are rather restrictive. Furthermore, in [17] it is proven that  these 
conditions are even necessary and sufficient for the system being feedback 
equivalent to a passive system (see also Remark 1.9). Thus the reader is 
referred to e.g., [17], [126] and [143] to find an answer to this question. 

Moreover, we claim that  a physical system which is passive and which 
may be described by an explicit system of non-linear differential equations 
automatically induces a system description according to the passive canonical 
form of (1.73) and (1.74). It does not seem to be necessary to derive in a first 
step the mathematical model of a physical system and try to find the passivity 
structure in a second step. This is why, we focus our attention in the next 
chapters on the procedure: how the mathematical model of a physical system 
must be set up in order to directly obtain the associated passive canonical 
form. 

Remark 1.14. In [133] a slightly different version of (1.73) is suggested as a 
passivity based control canonical form where the system is further extended 
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by so-called locally destabilizing effects, which are taken into account by an 
additional symmetric, but positive scmi-definitc matrix Sp (x). 

Remark 1.15. To a certain extent it is also possible to generalize the passive 
canonical form of (1.73) and (1.74) to the infinite dimensional ca~e. Here, 
J (x) and S (x) have to be replaced by a skcw-adjoint and a self-adjoint non- 
negative differential operator, respectively and instead of the energy storage 
function an energy functional must be used. The generalization of this topic is 
beyond the scope of this work, although Chapter 4 presents some analogies of 
finite and infinite-dimensional mechanical systems with application to smart 
structures. More details concerning the theoretical background of the passive 
canonical form in the imeinite-dimcnsional case can bc found, e.g. in [82]. 





2. Some Non-linear Control Design Strategies 

During the last decades there have been some significant advances in the area 
of non-linear control system design from both the theoretical and the practical 
point of view. The research effort on non-linear control is important because 
of the more demanding performance required in practical applications and 
because most of the physical systems are non-linear in nature. Moreover, 
the increasing availability of low cost digital processors and the increasing 
power of computer programs for numeric and symbolic computation make 
the practical use of these non-linear control strategies possible. 

In this chapter we briefly summarize the results of those non-linear model- 
based control approaches which, on the one hand will be used in the subse- 
quent chapters and which, on the other hand have a more or less strong 
relation to the dissipativity and passivity concept. Essentially, these are the 
non-linear state feedback H2-design for affine-input systems with and without 
integral term (see, e.g., [126], [143]), the non-linear state feedback Ho~-design 
for affine input systems (see, e.g., [53], [58], [143]) and the passivity-based con- 
trol concept (see, e.g., [107], [143]). As the reader may rightly notice, these 
three control synthesis tools discussed within this chapter are just a very 
small part of the full range available in literature. This should not give the 
impression to the reader that these non-linear control strategies are always 
our first choice for practical applications. The main intention of the work is 
rather to elaborate the physical structure of electrical, electromechanical, me- 
chanical and hydraulic systems, which will be done in detail in Chapters 3, 4 
and 5. The choice of the right control design strategy for a successful practical 
implementation depends strongly on the considered application, the demands 
on the closed-loop, the restrictions and limitations of the plant itself and the 
actuators, the measurable quantities and their accuracy, the limitation of the 
real-time hard- and software platform etc. and cannot be answered generally 
and without preceding detailed investigation of the plant to be controlled. 
Without laying claim to completeness, the reader is referred to the follow- 
ing excellent textbooks and contributions to get a more complete idea of the 
different non-linear control design strategies, that are e.g., [52], [91], [103], 
[144] for differential geometric methods, e.g., [60], [91], [126] for backstep- 
ping and adaptive non-linear design strategies, e.g., [58], [143], for non-linear 
Ho~-design, e.g., [115] for the differential algebraic approach, e.g., [28] for 
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the flatness concept and e.g., [107], [126], [143] for passivity-based control. 
However, all the model-based non-linear control approaches have one fact 
in common, namely that  somehow the knowledge of the underlying physical 
structure helps to solve the design problems. In order to stress this argument 
let us mention as examples the solution of the Hami]ton-Jacobi-Bellman- 
Isaacs equation or inequality for the non-linear H~-design; the solution of 
the Frobenius-cype partial differential equations for the input-state or input- 
output  exact linearization; the determination of the flat outputs within the 
flatness approach, or the suitable choice of the Lyapunov-like function within 
the backstepping or composite Lyapunov design. 

2.1 Non- l inear  State  Feedback H2-des ign 

Consider an affine-input system 

d 
~/x = f (5) + E~%1 a (x) ~j 
y = h ( 5 )  

(2.1) 

with the smooth vector fields f,  gl, �9 �9 - , gin, the smooth functions h i , .  �9 �9 , hq, 
the state x E X C R '~, the control input u E U C R m and the output  
y E Y C R q. Let us assume without restriction of generality that  the origin 
is an equilibrium of (2.]) for u = 0, i.e., f (0) -- 0 and h (0) = 0. 

Now, the goal of the non-linear H2-dcsign is to find a control law 

u = u ( x ) ,  . ( 0 )  = 0 (2.2) 

such that  the origin is rendered asymptotically stable and the objective func- 
tion 

~0 CX3 J2 = inf A2 (x, u) dt (2.3) 
ue L~'~[0,oo) 

with 

i( ) 
Az (x, u) = ~ /3 [lYll 2 + 11~1[ ~ , ~ > 0 (2.4) 

is minimized with respect to u. Here and subsequently the integral is always 
evaluated along a solution of (2.1). It is worth mentioning that  A2 (x, u (x)) is 
in any case a positive semi-definite function of x and if, furthermore, a certain 
observability condition is satisfied, A2 (x, u (x)) is even positive definite. Let 
us assume there exists a real-valued C 1 function V (x), such that  the relation 

f 
C<3 

V ( x ) = i n f  A2(x,u)  d T ,  x = x ( t o )  (2.5) 
u , / t o  
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is met. From the principle of optimality (see, e.g., [5], [20]) we know that  
(2.5) is equivalent to 

o r  

(fl ) V (x (to)) = inf A2 (x, u) d r  + inf A2 (x, ~) dv 
u 

(2.6) 

V (x (to)) = inf A2 (x, u) aT + V (x (t)) (2.7) 

Thus, from (2.7) it follows that V must satisfy the well known Hamilton- 
Jacobi-Bcllman equation (HJBe) 

By substituting A2 (x, u) from (2.4) into (2.8), we get the optimal choice u* 
of u 

u] : - L g j V  , ] :  l , . . .  , m .  (2.9) 

Equation (2.8) together with (2.9) yields the HJBe in the form 

L I V + - ~  ~]]yl] 2 -  (LgjV) 2 = 0 .  (2.10) 
j = l  

Generally, for practical applications it is difficult, if not impossible, to find 
a solution of the HJBc (2.10), see also Remark 2.1. Therefore, we are often 
satisfied to solvc the so-called Hamilton-Jacobi-Bellman inequality (HJBi) 

LfV +-~  llyll 2 -  (L jV) 2 <0 ,  (2.11) 
j = l  

which, of course, only leads to a suboptimal solution of the non-linear //2- 
design problem. 

T h e o r e m  2.1. Given the affine-input system (2.1) and suppose V (x), V (0) = 
O, is a C 1 positive definite solution of the HJBe (2.10). Then, i.f the system 

d 
~-~x = f (x) (2.12) 

~T = [h l , . . .  , hq, L�, V,. . .  , Lg,, V] 

is zero-state observable, the state ]eedback (2.9) solves the optimal non-linear 
H2-design problem. Furthermore, i f Y  (x), Y (0) = O, is a C x positive definite 
solution of the HJBi (2.11), the state feedback (2.9) is only suboptimal. 
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Proof. The closed-loop of (2.1) and (2.9) reads as 

d m - - x  = f (x) - Ej--1 gJ (x) Lgj V (x) 
dt 
y = h (x) . 

(2.13) 

Obviously, V (x) as the positive definite solution of the HJBe (2.10) or HJBi 
(2.11) serves as an appropriate Lyapunov function candidate. By calculating 
the change of V along an integral curve of (2.13), we get with (2.10) (with 
(2.11)) 

d V = L f V -  (LgjV)2 (_<) 2 Zllhll2+ (LgjV) 2 < 0 .  
dt j =~ j =1 

(2.14) 

Since d V is negative semi-definite we may conclude that  the origin is stable in 
the sense of Lyapunov. But the zero-state observability of (2.12) says that  for 
any trajectory, Yi (t) = 0, i = 1 , . . .  , q+m for all t _> to implies x (t) = 0 for all 
t > to (see Definition 1.6). Hence, by means of LaSalle's invariance principle 
of Theorem 1.2 the origin is asymptotically stable and l i m t ~  x (t) = 0. 

In the next step, we will show that  if V is a solution of the HJBe (2.10) 
the state feedback (2.9) in fact minimizes the objective function (2.3). We 
will prove this by contradiction as it is done in [126]. Let us assume that  (2.9) 
is not the optimizing control law, instead the optimal state feedback reads as 

u ; = - L g j V + v j ,  j =  l , . . .  , m  (2.15) 

for some suitable v s. Then, by inserting (2.15) into the objective function 
(2.3), we get 

fo ~ 1 (LgjV) 2 -2Ev jLg~V+  Ilvll2+Zllyll dt J2 = -~ 
j = l  j = l  

(2.16) 

or with (2.10) 

J2-- fo V(vJ--L.,V)+ IH2)dt 

= - limt--.oo V (x (t)) + V (x (0)) + �89 f o  Ilvll 2 d t .  

(2.17) 

Since the origin is asymptotically stable, it follows that  limt-.oo V (x (t)) = 0 
and hence J2 is obviously minimal if v is identically zero. This contradicts 
the assumption that  (2.9) is not the optimizing control law. �9 
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For linear systems 

d 
-~x = Ax + Bu 

y = Cx 
(2.18) 

the HJBe (2.10) simplifies for ~ = 1 with V = �89 P > 0, to the well 
known algebraic Riccati equation 

x T (PA + ATp + c T c  - PBBTp)  x = 0, (2.19) 

which has indeed a unique positive definite solution P if the pair (A, B) is 
reachable and the pair (C, A) observable. Note that the observability corn 
dition of the system (2.12) in Theorem 2.1 also implies the teachability of 
(A, B) and the observability of (C,A). Consequently, the HJBi (2.11) for 
linear systems yields 

x T (PA + A T p  + c T c -  PBBTp)  x < 0.  (2.20) 

Remark 2.1. It is worth mentioning that in the literature also procedures for 
obtaining an approximate solution of the HJBe (2.10) are suggested, see, e.g., 
[142]. Thereby, the solution V of the HJBe (2.10) is gradually constructed, 
starting with a solution of the algebraic Riccati equation (2.19) of the associ- 
ated linearized system. The drawback of these approximate solutions is that 
they are only valid in a small neighborhood of the equilibrium. 

Next, let us consider a PCHD-system (see (L73), (1.74) of Chapter 1) 

d 
dt \ Ox ] 

= ( x )  

+ (x) u 

(2.21) 

Then it is easy to see that the storage function V (x) is a solution of the HJBi 
(2.11) for ~ = 1, because 

- 57x _<0.  (2.22) 

Furthermore, in the special case of a lossless system, i.e. S (x) = 0, the 
storage function Y (x) even solves the HJBe (2.10), see also [143] and for a 
detailed investigation for infinite-dimensional Hamiltonian systems Chapter 
4, in particular, Proposition 4.1. Another pleasing result can be obtained for 
the case, when the control input u only influences the internal energy flow 
(compare also with (1.76) of Chapter 1). Then the associated PCHD-likc 
system reads as 
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d - - x = ( J ( x ) + J ~ , ( x ) u - S ( x ) )  OV T 
dt 

{ Ov,~ T (2.23) 
y 

We can immediately observe that  with the storage function V (x) the HJBi 
(2.11) for 13 = 1 takes the form 

- 5Zx _ < 0 .  (2.24) 

Clearly, u = 0 solves the suboptimal non-linear H2-design problem if S (x) - 
1 T ~Gy (x) Gy (x) > 0 and if the associated observability condition is fulfilled. 

Remark 2.2. In [126] a more general objective function (2.3) of the form 

3"2 = inf foo (l (x) + .uTR (x) u) dt (2.25) 
uCL'~ [0,oo) J 0  

with l(x) _>_ 0 and R (x) > 0 is used for designing a feedback controller. 
ttowcver, the modifications of the HJBc (2.10), the HJBi (2.11) as well as of 
the optimal control law (2.9) can bc obtained in a straightforward manner. 
The reader is referred to [126] for more details and many other aspects. 

2 . 2  N o n - l i n e a r  S t a t e  F e e d b a c k  H 2 - d e s i g n  w i t h  I n t e g r a l  

T e r m  

In many applications it is desirable that  the controller contains an integral 
term in order to make the stationary error in the plant output zero and to 
compensate for parainetcr variations. But in general an integrator in the con- 
troller partially destroys the physical structure and hence makes a systematic 
controller design far more difficult. In the following we will restrict ourselves 
to a special type of non-linear SISO-systems of the form 

d 
(2.26) 

y ~ c T x  

with the plant input u and the plant output y. Further let us assume that  
the matrix A is Hurwitz and the pair (A, c) is observable. 

Typical representatives of this class of system are systems of the type 
(1.76) where the skew-symmetric matrices J and Y~,, the positive semi-definite 
matrix S and the matrix Ga have constant entries and the storage function 
V (x) is quadratic, i.e. V (x) = lxTpyx,  with the positive definite matrix 
Pv. Under these conditions (1.76) reads as 
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d 
- - x  = (J  - S + Juu) P y x  + Gdd 
dt 
y ~--- cTx~ 

(2.27) 

with the plant input u, the plant output y and the exogenous inputs d, 
which are assumcd to bc constant but unknown. Now, if for a given constant 
plant input u = ~ the matrix (J - S + Ju'5) is Hurwitz, the operating point 
~: = _ p ~ l  ( j _  S + j~,fi)-I Gdd is determined unambiguously by ~ and d. 
Then, by mcans of a simple change of coordinates x -- ~ + A x  and u = ~ + A u  
the operating point is shifted to the origin and the systcm (2.27) can be 
rewritten in the form 

d 
- - A x  = (J - S + J~,5) P v A x  + J=Pv (~ + Ax)  Au 
dt 
Ay  = cT A x  . 

(2.28) 

Obviously, (2.28) has the same structure as (2.26). We will see in Chap- 
ters 3 and 5 that  the Cuk-converter and the pump-displacement-controlled 
hydraulic rotational piston actuator are typical applications of thc system 
(2.26). 

Now, we are ready to formulate a proposition for the non-linear state 
feedback H2-design with integral term: 

P r o p o s i t i o n  2.1. Given the system (2.26) and suppose the matrix A is Hur- 
witz, the pair (A, c) is observable and the condition cTA- lb  (0) ~ 0 is satis- 
fied. Then the non-linear state .feedback controller with integral term 

d 
-~XI ~ cTx 

U = --xT (Pl ,  ~- (A-1)TccTA- lp22)  b(x) -~- P22cTA-lb(x)xI ,  

(2.29) 

with Pll  as the unique positive definite solution of the Lyapunov equation 

P11A + AT pll + ~cc T -= 0 (2.30) 

solves the suboptimal non-linear 1t2-design problem for the controller param- 
eters/3, P22 > 0. Furthermore, the parameters/3 and P'22 can be used to adjust 
tile closed-loop performance. 

Proof. At first it is worth mentioning that  the Lyapunov equation (2.30) has 
a unique positive definite solution since A is Hurwitz and the pair (A, c) 
observable, scc, e.g., [144]. Next we will show that  the C 1 positive definite 
function 

(2.31) 
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is a solution of the Hamilton-Jacobi-Bellman inequality (2.11) of the aug- 
mcnted system (2.26) 

d x x 

The associated optimal choice of the state feedback law (2.9) reads as 

_ovb  = (x)  = -xTPli ( ) -p 2 ( e T A - i x  - c T A - i b ( x )  

~" - -xT (Pll Jr- ( A - 1 ) T c c T A - l p 2 2 )  b(x)  + P 2 2 c T A - l b ( x ) x i  . 
% 

(2.33) 

By inserting V (x) from (2.31) into the HJBi (2.11) and by using (2.30), we 
get 

l xT  (PllA + A T /~ x -}- p22 ( e T A - i x  - x l )  ( cT - cT)x ~- 1~ []yl[2 
1 (~xVb(x))2 _1 (OVb(x ) )  2 1 2 . . . .  ~u (x, x l )  < 0 

(2.34) 

Thus the HJBi is obviously satisfied. It remains to show that  the system 

d x x 

= x l ) ]  

with u (x, xi) from (2.33) is zero-state observable. From cTx = 0 we can 
conclude that  x = 0 since (A, c) is observable. Furthermore, from u (0, xl) -- 
p22cTA-1b (0)xi = 0 it follows directly that xs = 0 due to the assumption 
that  cTA-lb (0) ~ 0. Hence the system (2.35) is indeed zero-state observable. 
Now, by Theorem 2.1 the state feedback law (2.33) solves the suboptimal non- 
linear H2-dcsign problem for the augmented system (2.32). This completes 
thc proof. �9 

Remark 2.3. It is clear that  the Lyapunov equation (2.30) of Proposition 
2.1 has for every positive semi-definite matrix Q = -FT/" a unique positive 
definite solution Pll  

PllA -~- ATpll  + Q =- 0 (2.36) 

if the pair (A, F) is observable. This allows us to take into consideration 
other objective functions than (2.3). Furthermore, Proposition 2.1 can also 
be extended to the MIMO-case in a straightforward way when the number 
of control inputs u equals the number of outputs y. 
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2.3 Non-l inear State Feedback H ~ - d e s i g n  

For the non-linear Hoo-design the affine-input system (2.1) is extended by 
the exogenous inputs (disturbances and reference inputs) d E D C R p 

d 
~ x  = f (x) + Ej~=I 9j (x) uj + ~],P=-I ki (x) di 

y = h ( x )  
(2.37) 

with the smooth vector fields f,  ga, . . -  , gm, k l , . . .  , kp, the smooth functions 
h i , . . .  ,hq, the state x E X C R ~, the control input u E /g  C R m and the 
output  y c Y c R q. Let us again assume without restriction of generality 
that  the origin is an equilibrium of (2.37) for u = 0 and d = 0, i.e., f (0) = 0 
andh(O)  = 0 .  

The goal of the non-linear H~-design is to find a control law 

u = u(x) , u(0) = 0 (2.38) 

such that  the objective function 

J ~  = sup !nf Ao~ (x, u, d) dt 
dELP [0,oo) u6L~" [O,c~) 

(2.39) 

with 

1( ) 
A ~ ( x , u , d ) = ~  /31]yiI 2+I[ui] 2 -7I id i I  2 , [ 3 > o  (2.40) 

is minimized with respect to u and maximized with respect to d, whereas the 
so-called disturbance attenuation level 3' > 0 must be chosen such that  the 
problem is solvable. In a second step, wc also try to find the minimum value 
of 7. From the theory of differential games (see, e.g., [10], [80]) it follows that  
one has to look for a positive (scmi)-dcfinite solution V (x) of the Hamilton- 
Jacobi-Bcllman-Isaacs equation (HJBIe) 

maxminH'~ (X' ,, = 0  (2.41) 

with the associated Hainiltonian flmction 

= E Lk~ V + ~I~ x, ax ,u ,d  r s V ( x  ) + L ~ j V ( ~ ) . j  + (x)d~ A~.  
j = l  i= l  

(2.42) 

Now, in our case H~ has a unique global saddle point with the property (see, 
e.g., [581, [1411) 
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HT(x,  OV,  u*,d) <_IIT(x, OV,  u*,d *) <_HT(x, O v ,  u,d*), 

( 2 . 4 3 )  

where u* and d* are determined respectively by 

* =-LgjV, j = l ,  m and d* 1Lk, V, i  1, (2.44) u j  . . . ,  = = . . .  , p .  
7 

Thus, by inserting (2.44) into (2.41) the HJBIe reads as 

1 1 ~ (Lk, V) 2 L f V + ~  ~llyN 2 -  (LgjV)2 + ~ = 0 .  (2.45) 
j = l  i= l  

Analogous to the HJBe (2.]0) the HJBIe is also rather difficult to solve and 
hence we arc usually content with a solution of the Hamilton-Jacobi-Bellman- 
Isaacs inequality (HJBIi) 

fl [lyll 2 -  (Lg, V)2+-~ (Lk, V) 2 <_0. (2.46) LfV +-~ 
j=l  

T h e o r e m  2.2. [141] Given the a]fine-input system (2.37). Then, if V (x), 
V (0) = O, is a positive semi-definite solution of the HJBIe (2.45) or the 
HJBIi (2.46), the state feedback 

u~ = -LgjV, j = 1,...  ,m (2.47) 

renders the closed-loop dissipative with the supply rate 

! (7  IIdlr 2 - Ilu*ll 2 - Z Jlyll ~) (248)  
2 

or equivalently the closed-loop has L~-gain less equal 7 from the input d to the 
z T = [v~yT,(u*)T]. We then say (2.47) solves the suboptimal non- output 

L .3 

linear Hoo-design problem. If, furthermore, we find the smallest 7" -> 0 such 
that for all 7 > 7" the state feedback (2.47) makes the closed-loop having L2- 
gain less equal 7, then the non-linear Hoo-design problem is solved optimally. 

Proof. [141] The closed-loop of (2.37) with the control law (2.47) takes the 
form 

d r n  

- - X  -~ f (X) -- E j = I  gJ (X) Lgj Y (x)  + ~-~iP=l ki (x )  di dt (2.49) 
y = h ( x )  . 
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Suppose V (x), V (0) = 0, is a positive semi-definite solution of the HJ- 
BIe (2.45) or the nJBI i  (2.46). Thcn, by adding the expression - �89  Nu*][ 2 + 
~-:~=1 Lk, Vd~ to the left and right hand side of the HJBIc (2.45) (or the HJBIi 
(2.46)), wc get 

m = 1 (~  ildll~ _ II~*g - ~ Ilyll ~) LIV - Ej=, (Lg, V) 2 + E i P l  Lk, Vd, (<) 

1 
-'~ E~P=I Lk, V - v/'~d, . 

(2.50) 

Obviously, the left hand side of (2.50) is the timc derivativc of V along a 
solution of (2.49) and hence with V as the storage function the dissipativity 
with respect to (2.48) is shown. �9 

Remark 2.4. For d = 0 we see that  the closed-loop (2.49) coincides with 
(2.13). Hence the origin of (2.49) is asymptotically stable if the zero-state 
observability of (2.12) from Theorem 2.1 is satisfied. 

Again wc obtain a pleasing result for linear systems of the type 

d 
-~x = Ax + Bu + gd (2.51) 

y =Cx ,  

since the special choice V = lxTpx, P > 0, simplifies thc HJBIe (2.45) for 
j3 = 1 to the algebraic Riccati equation 

xT (pA + AT p + c T c -  P (BBT - 1 K K T )  p)  x = O (2.52) 

or the HJBIc (2.46) to the inequality 

X T ( P A + A T p + c T c - p  (BB T -  1 K K T ) P ) x < O ,  (2.53) 

respectively. 
Next, wc will again investigate systems of the PCHD-type  (see (1.73), 

(1.74) of Chapter 1) 

d (OV  
-~x  = (J (x) - S (x)) \ ~ x ]  + G,, (x) u + Gd (x) d 

, = c ,  (x) (a-~-Y) ~ 
(2.54) 
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If the disturbance input d acts in the same way on the system as the control 
input u, i.e. Gd (x) = x/~G~ (x), 6 > 0, then with the storagc function pV (x), 
p > 0, the HJBIi (2.46) takes the form 

- 5-;  _p2+ \ O z J  < o .  
(2.55) 

From (2.55) it is clear that  the control law 

uj = -pLg~V, j = 1,...  ,m (2.56) 

solves the suboptimal non-linear Hoo-design problem for a disturbance atten- 
uation level ~, > 5, provided thas the inequality condition 

is satisfied. Moreover, if (2.54) is lossless, i.e. S (x) = 0 and (2.57) holds with 
equality, the storage function pV (x) even solves the HJBIc (2.45), scc also 
[143] and for a detailed investigation for infinite-dimensional Hamiltonian 
systems Chapter 4, in particular, Proposition 4.2. 

Remark 2.5. As was already mentioned at the bcginning of this chapter, the 
non-linear H~-approach presented here is just what we need in the subse- 
quent chapters for the controller design. For other aspects like the non-linear 
H~-control with dynamic measurement fecdback, the reader is referred to 
e.g., [8], [53], [142], [143], the robust stabilization of perturbed plants, sec, 
e.g., [47], [143] and for the adaptive non-linear H~-design, see, c.g., [84]. 

2 . 4  P a s s i v i t y - b a s e d  C o n t r o l  ( P B C )  

In recent years, passivity-based control has been, and is still, a field of ex- 
tensive research and it goes without saying that  we can only present a small 
part of the whole theory. In particular, in this subsection we will refer to 
that  thcoretical background material of passivity-based control which will be 
required in the next chapters. Thc reader should consult the very important 
books [107] and [143] and the referenccs cited thcre for a full overview of this 
theory and its many interesting applications. 

Let us consider a PCHD-system of the form 

d (ov  (2.58) 
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with the state x E 2( C R n, the control input u E bl C R m, the C 1 positive 
definite storage function Y ix), Y (0) = 0 and the matrices G~, ix), J (x) = 
_ j T  (x) and S (x) = S T (x) > 0 whose entries are smoothly depending on x. 

The objective of the PBC-concept,  which will be considered here (see 
[143]), is to find a state feedback u -- u (x) such that  

�9 the closed-loop takes the form 

d 
-~x  = ( J (x) - S ix)) \ Ox ] (2.59) 

with the modified storage function of the closed-loop V~ -- V + Va, where 
Va is the contribution of the control input and 

�9 the desired equilibrium x = Xd is stable in the sense of Lyapunov. 

Clearly, in order to obtain a closed-loop of the form (2.59) the control law 
must satisfy the relation 

{ OVa'  i2.6o) c ~  (x) ~ = (J (x) - s (~)) \ -~x  ] �9 

If Vc (x) has a strict minimum at Xd, that  means V~ (x) > Vc (Xd) for all 
OV~ 02Vc 

x # Xd, ~ (Xd) = 0 and ~ (Xd) > 0, then Ve (x) - Vc (Xd) is positive 

definite and serves as an appropriate Lyapunov function for the closed-loop 
(2.59). The t ime derivative of V~ (x) -V~ (Xd) along an integral curve of (2.59) 

~ y ~  = - \ a~ ] \ ox ] -< 0 (2.61) 

is obviously negative semi-definite and this guarantees the stability of Xd. 
Moreover, in some cases we may even show by means of LaSMle's invariance 
principle that  Xd is asymptotically stable. 

A further possible way to achieve asymptotic stability is given by the so- 
called damping injection method [107], [143]. Thereby, the control law u is 
extended by an additional control input Ud and the relation (2.60) changes 
to 

G~ (x) ~ = (Z (~) - S (x)) \ 0x ] + a~  (x) ~d.  (2.62) 

{ o_Lv ~ T 
Let us assume that  we can measure the output  y = G T (x) t 0~ ] , see also 
il .74) of Chapter 1. Then by substituting i2.62) into (2.58), we obtain the 
system 

d : ( J ( x )  - S ( x ) )  (ova) ~ 

{ (2.63) 

y : G~ (x) \-ST~] 



40 2. Some Non-linear Control Design Strategies 

with Vc = V + Va. The control law 

Ud = --Sd (x) O T (x) \ Ox ) (2.64) 

with a suitable positive semi-definite matrix Sd (x) is commonly referred to 
as the damping injection controller. The time derivative of Vc along a solution 
of the closed-loop (2.63) and (2.64) reads as 

(2.65) 

Clearly, if Sc (x) is positive definite, then X d is asymptotically stable. A nec- 
essary condition for the existence of an asymptotically stabilizing control taw 
for the system (2.58) can be found in e.g., [143], Proposition 4.2.14. 

Remark 2. 6. Apart from this rather simple approach of PBC dynamic con- 
trollers with output feedback and controllers for interconnected systems based 
on the idea of energy-shaping and damping injection are also reported in lit- 
erature. The latest results in this field are very promising for getting a tool 
for the design of dynamic non-linear controllers for a large class of physi- 
cal systems. The interested reader is referred to the very recent publications 
[108], [109], [143]. 
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In this chapter, we concentrate on an energy-based description of electrical 
systems. Thus, an extension of the well-known theory of Brayton-Moser will 
serve as a basis for setting up the network equations by means of the so-called 
mixed potentials. It turns out that the combination of this energy-based con- 
cept with graph theory allows us to derive the mathematical model of an 
electrical network directly in the form of a PCHD-system (port-controlled 
Hamiltonian systcm with dissipation, see Chapter 1 for details). However, 
this method is applicable for non-linear two- and three-phase systems with 
and without dcpendcnt sets of inductor currents and/or capacitor voltages. 
The big advantage of this approach is that it makes available a tool for the 
systematic derivation of the network equations in the form of a PCHD-system 
by means of e.g., computer algebra programs. Thus, it is also particularly suit- 
able for larger interconnected networks. Moreover, a very important feature 
of the proposed concept is that it enables us to take into account saturation 
effects of the magnetic fieh] and non-sinusoidal flux distributions in three- 
phase machine applications. The modelling process will be demonstratcd by 
means of a simple terminal model of a power generator and a three-phase 
application. Furthermore, we will use this technique for the calculation of the 
average model of PWM (pulse-width-modulation)-controlled electric circuits 
with bipolar switching, where the duty ratio is the control input. We will see 
that, depending on the location of the switch(cs), different energy flows of 
tile PWM-controlled system can be influenced by changing the duty ratio. 
Finally, for a laboratory model of a special dc-to-dc convcrtcr, namely the 
Cuk-convcrter, we will also show how the presented theory can contribute to 
the design of a non-linear H2-controller with and without integral term. 

3.1 Basic  Circuit Relat ions  

Throughout this section, we consider electric circuits that are interconnec- 
tions of lumped dynamic (inductors, capacitors) and static (resistors, voltage 
and current sources) circuit elements. The topological relationship can best 
be exhibited by means of a digraph G -- (N, B), where N specifies the set 
of nodes with cardinality n and B denotes the set of branches with cardi- 
nality b. A branch has exactly two end points which must be nodes. The 
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orientation of the branches of the digraph corresponds with the associated 
reference direction of the current flows. Subsequently, we assume that  the 
circuits are connected, i.e. any node can be reached from any other node 
by a path through the circuit elements. To each branch j a voltage u j and 
a current ij is assigned and due to the connectedness assumption, they are 
well-defined [19]. Analogously, an electric potential v k is assigned to each 
node k. Here, the electrical potential of one arbitrary node has to be chosen 
as a reference. 

Now, Kirchhoff's current law (KCL) says that  for lumped circuits the 
algebraic sum of currents flowing into any node is equal to zero for all times 
t or 

E d { i j = O  fora l l  k c N .  (3.1) 
J 

Kirchhoff's voltage law (KVL) states that  in a lumped circuit for any branch j 
connected with the nodes k and I the voltage drop uJ is equal to the difference 
between the potentials v k and v z for all times t or 

vkd~ + vld~ = u j (3.2) 

with 

�9 f +1 if branch j touches node k and i s leaves k 
dR = / - 1  if branch j touches node k and ij enters k 

0 if branch j does not touch node k .  

A current i T -- ( / l , i 2 , . . .  ,ib) C R b and a voltage u = (u 1, u 2 , . . . ,  u b) E 

(Rb) * with (Rb) * as the dual space of R b are said to be admissible if and only 
if they obey KCL or KVL, respectively. Note that  subsequently, in the vector 
notation, a current is always a column vector and a voltage a row vector. 
The choice of this notation is motivated by the fact that  the voltages are 
defined in the dual space of the currents or vice versa. A direct consequence 
of Kirchhoff's laws is Tellegen's theorem (e.g., [19], [44]): 

T h e o r e m  3.1. For any admissible current i and any admissible voltage u of 
an electric circuit with the digraph G = (N, B) the relation 

p = E u J i j  = 0 (3.3) 
J 

holds. 

Proof. By substituting (3.2) into (3.3), we get 

vk E dJkiJ + vl Y~- d~ij (3.4) 
J d 

and this is obviously zero due to (3.1). m 
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Remark 3.1. Equation (3.3) is far more than the conservation of energy in 
an electric circuit. One can easily convince oneself that  (3.3) also implies the 
relations 

E uj (tl)ij(t2) : E uj ( t l ) (d i j )  (t2) = E (dttj) (tl)ij(t2)-~-0 
J J J 

(3.5) 

for different times t l  and t2. 

Using the map D : R b -~ R ~ with the induced dual map D* : (R") * 
(R  b)*, we can see that  the current i and the voltage u are admissible, if and 
only if i E Ker (D) and u E I m  (D*). It is worth mentioning that,  since D is 
a linear matrix operator, D* is simply D T. Let the column vectors of D1 and 
Du be the bases of Ker (D) and Im (D*), respectively. Then the following 
relations 

i = D i i x  and u - - u y D  T (3.6) 

are met for some suitable i x  and uy.  Combining (3.6) with Tellegen's theo- 
rem, we get 

u D i = O  and D T i = o .  (3.7) 

Now, it is well known that  D1 and D T can be constructed from a tree 
T = (N, BT) with BT C B. A tree T of a graph G is a connected subgraph 
which has no loops and contains all nodes (see, e.g., [21]). The total number 
P (G) of branches in a spanning tree T of the connected graph G, also called 
co-cyclomatic number, is given by the relation 

p (G) = n - 1 (3.8) 

with n as the number of nodes. The physical interpretation of the co- 
cyclomatic number p (G) in an electrical network is that  it gives the largest 
number of independent potential differences between all the nodes of the 
network. Analogously, the so-called cyclomatic number 

~(G) --- b -  PiG) = b - n + 1  (3.9) 

is the largest number of independent currents flowing in the network (see, e.g., 
[21]). Thus, the graph G can be partitioned into two disjoint sets of branches, 
one containing all branches belonging to the tree, the so-called tree branches 
BT C B with cardinality p (G) and the other containing all branches which do 
not belong to the tree, the so-called cotree branches B c  C B with cardinality 
u (~). For simplification of the notation we will henceforth drop the explicit 
specification of the associated graph ~ in the cyclomatic and co-cyclomatic 
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number v and p. Further, let us combine the voltages and currents of the tree 
and cotree branches in UT, u c  and iT, i v ,  respectively. 

Consider an electric circuit with associated graph G and a picked out tree 
7-. If we take i x  = i v  and u y  = UT in (3.6), then D1 and D T are  well 
known from literature as the fundamental loop matrix associated with the 
tree T and the fundamental cut-set matrix associated with the tree T (see, 
e.g., [19]). Substituting i = D I i c  and u = u T D  T into (3.7), we obtain 

u T D T D I = O  and D T D l i c = O  (3.10) 

and since (3.10) must be valid for all UT and i v ,  we can deduce 

D ~ D i  = O . (3.11) 

If the first p branches are the tree branches, then D1 and D T can be parti- 
tioned in the form 

[De,T]  D T =  [Ip,p,DT, c] (3.12) 
D I --= Iv ,v ' 

with I as the identity matrix and condition (3.11) can be replaced by 

D T D (3.13) DI,T : - -  U,C = �9 

Summarizing (3.6), (3.12) and (3.13), we get 

iT : D i e  and uc  = --UT[9 . (3.14) 

3 . 2  E n e r g y  B a s e d  D e s c r i p t i o n  

In this section an energy-based formulation for the state-space equations of 
electric circuits will be presented. For this purpose, let us consider an electric 
circuit with associated digraph G = (N, B). At first, the set of branches B 
is subdivided into three disjoint sets L, C and S of inductors, capacitors 
and static terminals, respectively. Clearly, B = L t2 C t2 S. According to the 
notation we use ik or u k, k �9 L, C or S to define the current or voltage of 
an inductor, capacitor or static terminal, respectively. 

The space of unrestricted states (i, u) of the circuit is a manifold A/~ = 
R b • (R  b)*. If the currents and voltages are admissible, or equivalently if they 
satisfy KCL and KVL, then the states of the electric circuit are confined to 
a submanifold .hf = { (i, u) �9 A/'~ I u D i  = O, DTi  = 0} [44]. 

3.2.1 I n d e p e n d e n t  Set  of  I n d u c t o r  C u r r e n t s  a n d  C a p a c i t o r  
Vol tages  

We assume that  the inductor currents ik, k E L and the capacitor voltages 
u z, l e C together with the coordinate function z :  (ik, u l) --* (ij, uJ), k �9 L, 
l �9 C, j �9 B form a chart of A/. 
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The differential equations of the dynamic elements inductor and capacitor 
are given by 

d j (... 

d 
( . . . ,  uk , . . . )  = ij 

with j ,  k E L 
(3.15) 

with j, k E C, 

where ~b j denotes the flux linkage of the inductor j E L and qj is the charge 
linkage of the capacitor j E C. The energies WL and @c stored in the induc- 
tors and capacitors can be calculated in the form 

CVL=~EijdCJ and ~ c = ~ E u J d q j  (3.16) 
jEL jEC 

with 7 (t) as a solution curve of the electric circuit. The total energy ~b 
stored in the electric circuit reads as ~ = WL -}- we .  For the subsequent 
considerations we assume that  the integrals in (3.16) are path independent 
or equivalently the 1-forms ~ j ~ L  i jd r  j and ~j~c uJdqj are exact. Follow- 
ing Poincare's lemma, which states that  in a star-shaped region every closed 
1-form is exact, we may deduce that  the relations 

d(Eijd~bJ I =0 and d ( E u J d q j  I = 0  (3.17) 
V eL / Ve  c / 

have to be met for the path independence, see, e.g., [16]. Furthermore, the 
energies WL and ~ c  stored in the inductors and capacitors are always sup- 
posed to be positive definite functions of the inductor currents ik, k E L and 
the capacitor voltages u z, l E C respectively. Note that  this is always the case 
when the inductor and the capacitor configuration contains magnetic and 
electrostatic leakage effects, i.e. the inductor and capacitor configurations do 
not describe ideal transformers. 

The static elements in our case resistors, current and voltage sources can 
be described by the following type of equations 

f j ( . . . , i k , . . . ,uk , . . . )=O with j, k e S .  (3.18) 

The flow of power into a terminM j E S is given by Ps5 = Ps, j + ~s,j with 

~s,j = uJd~j and ~s,j = i jdg j �9 (3.19) 

Also here the assumption of the path independence yields the conditions 
d (uJdij) = 0  and d(ijdu j) =0. 

Remark 3.2. One can easily conclude that  for a voltage source Ps,j = 0, for 
a current source Ps,j = 0 and for a linear resistor ~s,j = Ps,j. 
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By introducing the expressions 

= a n d  p c  = ( 3 . 2 0 )  

jEL jEC 

we are ready to give a formulation of an extension of Brayton-Moser's well- 
known theorem which can be found in [120]: 

T h e o r e m  3.2. Given an electric circuit with associated digraph G = ( N, B),  
B = L U C U S .  Let the inductor currents ik, k E L and the capacitor 
voltages u t, l E C together with the coordinate .function z : ( ik,u l) --~ 
( i j ,uJ),  k E L, l e C, j E B be a chart of the configuration manifold 

Af = { (i,u) E R b • (Rb) * uDi  = 0 ,  D~i = 0} ofthe circuit. Let us further 

suppose that the functions ~VL, @C (3.16) and Ps, Ps (3.19) are well de.fined. 
Then each trajectory of the electric circuit is a solution curve of 

d j 0 
- ~ r  - ~ j  (Pc + Ps) for j �9 L 
d 0 (3.21) 

-~qJ - OuJ (PL + PS) for j �9 C . 

Furthermore, the relation 

d 
--~b = - (Ps + Ps) (3.22) 
dt 

is .fu!fiUed for any solution of (3.21). We will call P8, ~s, Pc and PL the 
mixed potentials of the electric circuit. 

Proof. Written in the coordinates (ik, ut), k �9 L, l �9 C, Tellegen's theorem 
(see (3.3)) reads a~ 

z* ( E  ijuJ I = 0  (3.23) 
\5eB / 

with z* as the pullback of z :  (ik,u z) ~ (ij ,uJ), k �9 L, l E C, j �9 B. Of 
course, (3.23) also implies that  

z 

\ jeB / 

and since the forms du j and dij are linearly independent, we have 

= 0  
\ jeB J \ jeB / 

(3.24) 

(3.25) 
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The first part of (3.25) may be rewritten in the form 

z* ( E  ijduJ + E ijduJ + E ijduJ I = 0  (3.26) 
\jEL jeC j6S / 

and by applying Leibniz' rule to ~ y e n  and using (3.19) and (3.20), we get 

z* (d (pL + #S) - E uJdij + E ijduJ I = 0  (3.27) 
jen jEC / 

o r  

jeL tee ~ (PC + PS) + ij du j = O. 

(3.28) 

Since the 1-forms dij, j 6 L and du j, j 6 C are linearly independent, the 
terms in the brackets must vanish identically and hence we get 

Z* z* (uJ) = -~j (PL + PS) for j 6 L 

0 
= -  z* (pL + PS) for j E C .  z* (ij) Out 

(3.29) 

Now, the first part (3.21) of the theorem follows directly from the pullback 
of (3.15) 

d j z* = , -~r = (uJ) , j 6 n and dqj  z* (ij) j e C (3.30) 

and Tellegen's theorem (3.23), which says that 

z* (pL + ~s) = - z *  (pc + ~s) . (3.31) 

For the sake of convenience we will subsequently drop the pullback operation 
z* in the equations. 

Combining (3.16) and (3.31), we get the second relation (3.22) of the 
theorem in the form 

d @ = d  
~ (~L + ~c) = pL + pc = - (~s + ~s) �9 (3.32) 
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3.2.2 Dependent Set of Inductor Currents and Capacitor Voltages 

Theorem 3.2 is only valid if all inductor currents ij, j �9 L and all capacitor 
voltages u j, j �9 C are linearly independent. Particularly in multi-phase power 
systems, where we have to deal with II- and A-connected circuits of inductors 
and capacitors, this is no longer the case. Generally, multi-phase systems are 
DAEs (differential algebraic equations) but henceforth we will only deal with 
such systems which allow a description in an explicit form of differential 
equations. It is worth mentioning that to a certain extent many ideas and 
concepts, well established in the field of non-linear control for systems of 
explicit differential equations, can be extended to DAEs, see, e.g., [121], [124]. 
Subsequently, we will formulate Theorem 3.2 for electric circuits with linear 
dependent inductors and capacitors. For this purpose we split each of the sets 
of inductor and capacitor branches L = Li U Ld and C = Ci U Cd into a set 
containing all independent elements L~, C~ and a set containing all dependent 
elements Ld arid Cd, respectively. Note that in general this task is, of course, 
not unique. Let us assume that the currents ik, k �9 Ld and the voltages u m, 
m �9 Cd can be expressed by 

i k  ~ 7kj �9 U m - = dLLZ j and = ~ d ~ u '  (3.33) 
j E L l  IEC~ 

with ~LJL, d-~ �9 {0,1,-1) .  Here the inductor currents iy, j E Li and 
the capacitor voltages u l, l �9 Ci together with the coordinate function 
z : ( ik ,u  ~) --~ ( i j ,uJ) ,  k �9 Li, l �9 Ci, j �9 B form a chart of the elec- 
tric circuit. The differential equations of the dynamic elements, inductor and 
capacitor, differ slightly from (3.15) 

d j 
- ~ r  ( . . .  , i k , . . .  ) = u j with j � 9 1 4 9  

d 
~-~qj ( . . . ,uk , . . . )  = i j  with j � 9 1 4 9  

(3.34) 

because now the flux linkage CJ of the inductor j �9 L and the charge linkage 
qj of the capacitor j �9 C depend only on the independent inductor currents 
ik, k �9 Li and capacitor voltages u k, k �9 Ci. Note that analogous to the 
previous subsection we also assume here that the energies ~)L and ~c  stored 
in the inductors and capacitors are positive definite functions of i j, j E L i  
and u l, l �9 Ci respectively. Now, we are able to extend Theorem 3.2 for 
dependent sets of inductor currents and capacitor voltages. 

T h e o r e m  3.3. Given an electric circuit with associated digraph G = (N, B),  
B -= Li U Ld U Ci U C d  U S. Let the inductor currents ik, k E L i  and 
the capacitor voltages u z, l C Ci together with the coordinate function 
z : (ik,u l) ~ ( i j ,uJ) ,  k �9 ni ,  l c Ci, j �9 B be a chart of the configura- 

tio~ manifold Af = ~ (i ,u) �9 Rb • (Rb)*l uDi  = O, DTi  ---- O~ of the circuit. 
) 
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Let us further suppose that the dependent inductor currents ik, k E Ld and 
capacitor voltages u t, 1 E Cd can be expressed in the form of (3.33) and that 
the .functions ~VL, ~vc (3.16) and Ps, Ps (3.19) are well defined. Then each 
trajectory of the electric circuit is a solution curve of 

d - j  0 
- ~ r  = - O i j  (Pc + Ps) for j E Li 

(3.35) 
d 0 
~q~ - o~J (PL + ~s) .for j E C~ 

2jk ~/,k and ~j qJ + ~meC~ dJc~cq m, provided that with (~J = eJ + EkeLa ~LL'V : . 

the initial conditions are consistent with the algebraic constraints (3.33). Fur- 
thermore, the relation 

d 
- - ~  = - (i6s + 15s) (3.36) 
dt 

is .fulfilled for any solution o.f (3.21). Again, we will call ~s, ~s, Pc and PL 
the mixed potentials of the electric circuit. 

Proof. The proof is quite easy and similar to the one of Theorem 3.2. We 
just have to rewrite (3.27) in the form 

z* ( d ( p / +  P S ) -  2 j e L ,  UJdij -- ~kELeUkdik)  + 
(3.37) 

z* ( ~ l e c ,  ildut + ~meCa i m d u m )  = 0 

with z* as the pullback of z :  (ik, u l) --* (ij, uJ), k E Li, l E Ci, j E B. By 
substituting relation (3.33) into (3.37), we get 

o r  

~mdcc du I = 0 
mECa 

jEL~ kELd 

(Oz, ~ (PL+#S)+z* ix+ ~ ~mdcc 
1ECi mECd " ] 

+ 

(3.38) 

d/ j+ 

d u  I = 0 . 

(3.39) 

Since the 1-forms dij, j E L i  and du t, l E Ci are linearly independent, the 
terms in the brackets must vanish identically. Combining (3.39) with (3.31) 
and dropping the pullback operation z*, we obtain directly the result (3.35). 
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3 . 3  E n e r g y  B a s e d  D e s c r i p t i o n  w i t h  F u l l  Topological 
I n f o r m a t i o n  

3.3.1 D i s s i p a t i v e  E l ec t r i c a l  S y s t e m s  in t h e  F o r m  o f  a 
P C H D - s y s t e m  

Theorems 3.2 and 3.3 were derived without using the full topological infor- 
mation. In this section, we additionally take advantage of the topology of the 
electric circuit and this will lead to some pleasing results. Let us consider an 
electric circuit with associated graph ~ and a picked out tree T.  It is quite 
clear tha t  the choice of the tree T is not unique. Therefore, we are looking for 
a tree tha t  optimally fits the state-space representation of the electric circuit. 
Here, we follow the so-called state-tree formulation of [85]. Thereby, the tree 
is chosen in such a way that  the maximum number of capacitors is included in 
the tree and the maximum number of inductor branches is put  in the cotree. 
The only situation in which all of the capacitors cannot be included in the 
tree arises from a capacitor-only loop. Similarly, the only reason for an in- 
ductor to be placed in the tree is an inductor-only cut-set. If the situation of 
a capacitor-only loop or of an inductor-only cut-set occurs, then an indepen- 
dent set of capacitors or inductors can always be found for the tree or cotree. 
The so-called "excess" capacitors or inductors are correspondingly included 
in the cotree or tree (see, [85] or [94]). Utilizing the state-tree representation, 
(3.14) can be expanded in the form 

*T,L J L DLL 0 L,c,c_l 
(3.40) 

and 

[bcL bcs. b c,] 
 c,s = u ,L] I bsL 

l DLL 0 

(3.41) 

where iT, C and UT, C are the currents and voltages of the tree capacitors; 
iT, S and UT, Z denote the currents and voltages of the static tree elements 
(resistors, uncontrolled sources); iT,L and UT, L are the currents and voltages 
of the "excess" tree inductors; ic, L and UC, L are the currents and voltages of 
the cotree inductors; i c , s  and u c , s  denote the currents and voltages of the 
static cotree elements (resistors, uncontrolled sources); and ic,  c and u c , e  are 
the currents and voltages of the "excess" cotree capacitors. Furthermore, we 
assume that  all voltage and current sources are placed in the tree and cotree. 
The only situation in which this assumption cannot be fulfilled is a loop 
consisting entirely of capacitors and voltage sources, or a cut-set consisting 
entirely of inductors and current sources. In such a situation a unit step func- 
tion generated by the voltage or current source would cause a n  unbounded 
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capacitor current or inductor voltage, respectively. Hence, this assumption is 
no restriction of generality at all. For the static tree and cotree elements two 
further assumptions are made, namely 

�9 the resistors arc linear and 
�9 only uncontrolled voltage and current sources are allowed. 

Under these conditions we may parti t ion the voltages of the static tree ele- 
ments UT,S and the currents of the static cotree elements ic ,s  in such a way 
that  they possess the following functional form 

[0 00] io] [0 00]  [0] T,S : i T ,  S + , ic ,s  = Uc,s + Io " 

R G 

Hcrc U0 and -To combine the voltages and currents of the uncontrolled voltage 
and current sources and/~ and G are positive semi-definite diagonal matrice~ 
containing the resistors and conductances of the tree and cotree, respectively. 
At this point it should bc emphasized that  in general an electric network 
consisting of arbitrary non-linear static and dynamic elements is described 
by DAEs (differential algebraic equations) and cannot be transformed into 
an explicit form. Note again that in our notation, currents and charges are 
always arranged in column vectors and voltages and fluxes in row vectors. 
For electric circuits satisfying the above properties, we are able to formulate 
the following proposition: 

P r o p o s i t i o n  3.1. Given an electric circuit with digraph ~ = (N, B) ,  B = 
L [J C U S, let each trajectory o.f the electric circuit be a solution curve o.f 
(3.35) and let all initial conditions be consistent with the algebraic constraints 
(3.33). Let us further suppose, we have picked out a tree T of G with the state- 
tree representation o.f (3.40) and (3.41) and the voltages and currents of the 
static tree and cotree elements possess the functional form of (3.42). Then the 
network equations cnn be directly expressed in the form of a PCHD-system 
(see (1.73) of Chapter 1) 

- ~ x  = (J - S) \ -~x ] + GU~ Uo T + G~o Io 

T]- with the state x T C,L, qT, C , r = r + r qT,C = qr,c - 

D c c q c , c ,  the total energy ~b = ~Vc + ~ c  stored in the inductors and capacitors 
and 

J = - A  r ' $2 ' 
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--D~LII1 ] ] 
CUo = _ b c M - & a b ~ , s ] ,  C,-o = [ bcsl-& J' 

where 

A _DTL -T  - T - r  = + DsLRDssGII~ Dcs)  
S 1 = DTLI~I R D s L  

$2 = DcsI I2Gb~s  (3.46) 

rI1 = (I + RDssGDTs) - I  

112 = ( I  + GDTsRDss) -~ 

and 

R =  0 0 '  G =  . (3.47) 

Obviously, the matrices $1, $2, R and G are positive semi-definite. 

Proof. The basis of the proof is Theorem 3.3. Here, the independent inductor 
currents ik, k 6 Li are combined in iC,L and the independent capacitor 
voltages u Z, l e Ci in UT, C. Using the state-tree representation (3.40) and 
(3.41), Pc and PL from (3.20) take the form 

PC = UT, CiT, C + Uc, c i c , c  -= UT,C (DcLiC,  L + Dcsic,s)  (3.48) 

PL ---- UC,LiC,L + UT, LiT, L = -- (UT, c D c L  + UT,SL)SL) iC, L �9 

The expressions 15s and :hs can be written as 

-Io / ~ s = ~ U ~  and ~ s - - P s  + P ~ ,  (3.49) 

where 15 U~ and rio Ps are the parts due to the independent voltage and current 
sources and :5s ~,/hs R represent the resistors of the tree and cotree, respectively. 
By (3.42) we may deduce 

1 .  T . 1 T 
~ = p~ = ~ , s R ~ , s  + ~uc ,scuc ,s  . (3.50) 

Now, in a first step we calculate Op______c_c and Op.____..~L Using (3.48) in com- 
OiC, L OUT,C" 

bination with (3.40) and (3.41), we get 

Opc ( DcsO!c,s ~ 
OiC, L -- UT'C DCL + OZC,L / 

with 

~. Oic, s 

(3.51) 

(3.52) 
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o r  

Oic, s 
OiC, L 

a.nd hence 

with 

- -  - (I + a D T s R b s s ) - i  a b ~ s R b s L  (3.53) 

Opc AuT, C (3.54) 
T 

A (bTL DTLRDSSG(I+ -T - -1 = _ DssRDssG ) DTs) 

and 

[0R001 
In this way, we also get 

OpL 

(3.55) 

[i00] 

OUT, C 

with 

OuT,s 

- ~ a,~g,s '~ - -  - i F b ~  + D s L - z - - - /  C,L (JUT.C/ 
(3.57) 

OUT,~ -- (z + RbssCb~s) -1 RbzzCb~s (3.58) 

and hence 

o-:~,~ ] = Bit, L, (3.59) 

where 

B = ( -bc , j  + bcsCb~sR (Z + bssGb~sR)- '  bsL) �9 (3.60) 

Next, we show that  A = -A  and B = A T. Obviously, this is the fact if 

(I + GDTsRDss) -~ GDTsR = GDTs R (I + DssGDTsR) -~ (3.61) 

Multiplying with (I + GDTsRDss) from the left and fl'om the right with 
(I + DssGDTsR), wc directly obtain the identity 

GDTs R (I + DssGDTsR) = (I + GDTsRDss) GDTsR . (3.62) 

Up to now, the energy preserving part of the system was derived. In a 
O~s O#s 

second step, we shall determine ~ and 0---~T,C" From (3.49), it follows 
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o')f is_ 0,'5 u~ ~ and O~s O~ I~ c9~.~.~_~ (3.63) 
OiC, L OiC,L + ()iC, L OUT,C -- OUT,C + OUT,C 

and by using (3.50) and (3.42), we get 

) --- \OiC, L]  Uo T 

and 

~Io T (o ;o 

= b~'z, ( I  + RbssCbffs)-~[ OUo T ] 
(3.64) 

= - b c s  (I + GbTsRbss)-~ [ O ] 
I o  " 

(3.65) 

o~,~ (3.70) 
OIIT,C 

the result reads as 

0UT, C ] 
(3.71) 

01: 

With (3.50) thc second part of (3.63) reads as 

0uT, s OP R .7" ~ OiT, S q- Uc, s G ~  (3.66) 
Oic, L -- r tt ~ic----~ ~)ic, L 

or after some simplifications duc to (3.40) and (3.41) 

0 ~  OiT, S 
-- z c ' L D s L R )  OiC, L Oic, n ([0, I0 T] DTs R + .T -T . (3.67) 

Finally, wc have 

0 

(3.68) 

Analogously, with 

0 ~  .T ,-~ OiT,S OuT,s (3.69) 
OltT,C -- ZT, SI$ ~)ItT------- ~ + uc, SG OuT, c 
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Substituting (3.54), (3.59), (3.64), (3.65), (3.68) and (3.71)into (3.35), we 
immediately get (3.43). The only thing that remains to be shown is ( -~)  = 

~T [i~, L, UT, C] with x T = [(bC,L,qT,C], (be, L = r + r LDLL, (TT, C = qT, C-- 

Dccqc ic .  By means of the state-tree representation of (3.40) and (3.41) we 
get from (3.16) the energy stored in the inductors 

�9 T ~T  
= f~ ~c,Ldr 

(3.72) 

and in the capacitors 

eve = f~ (uT, CdqT,C + uc,cdqc,c)  = f~ UT, cd  (qT, C -- Dccqc ,c )  

= f.y UT,cd~T,C. 
(3.73) 

From (3.72) and (3.73), we can conclude that 

0 / ~ L  .T a n d  OCvc 
- r  - ~c ,L O(~T------~ --  UT, C (3.74) 

O r  

and this completes the proof. 

It is worth mentioning that by means of suitable algorithms from graph 
theory, like the search method depth-first (see, e.g., [21]), the state-tree rep- 
resentation of (3.40) and (3.41) can be easily obtained in a systematic way. 
Within the scope of a controller design, not only the numeric simulation of the 
electric circuit, but also the symbolic calculation of the circuit equations is of 
importance. The proposed methods are especially useful for computer algebra 
implementation, and in combination with object oriented programming even 
electrical networks of up to fifty branches are symbolically calculable [61]. 

3.3.2 Application: Simple Electric Circuit 

Let us at first demonstrate this procedure by means of the simple electric 
circuit of Fig. 3.1 which represents a simple terminal model for a power 
generator with mutual phase coupling and a voltage applied between one 
phase and the ground [37]. Fig. 3.2 depicts the associated digraph G = (N, B) 
and the tree T, indicated by the dotted lines, for the state-tree representation. 
The orientation of the branches corresponds with the associated reference 
direction of the current flows. Utilizing the state-tree of Fig. 3.2, we can 
write (3.40) and R, G and U T from (3.42) for this simple electric circuit in 
the form 
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~ L~ N R3 N~ C~ 
( 

Rl R 2 Lt * 
N N 2 N 3 

I " L~r R, N. C~ 
: ~ l u .  .t.. c. \ ~ "_'7 ^^ :"  ,, 

I No 

Fig. 3.1. Simple electric circuit. 

N 1 

l l]~ 

No. 

iL, 2 N 5 i,~,3 N~ ic 2 

iR., Nz ia~ N3 ill I N 
> ? , - - - ) - - ' - - - - - - - ~ - - - - ?  4 

| :  I �9 - :  . . . .  . _ _ ~  . . . .  : _ _ _: 

Fig. 3.2. Digraph and state-tree for Fig. 3.1. 

. 1110 ~176 ic,2 1 0 0 R3 0 
ic,3 01  0 [ !  ] R =  OR4 

= ~ , ~  ~nd 0 0 (3.75) 
iR,3 1 0 0 i -  ! 

JR,4 0 1 0 L~R'x J 
~.,. oo1 ~= [~], ~o~-- ~-~ �9 

_iL 1 1 1 0 

The matrices DCL, Des, DSL, Dss and DLL can bc directly obtained by a 
suitable partitioning of (3.75). Applying Proposition 3.1, we get the circuit 
equations 

with the state x r = L,2, ~L,3, qc,1, qc,2, qc,3 , 
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@L,2 = (L1 + L2 + 2L12) iL,2 3- (L1 + L12 q- L13 q- L23) iL,3 

r = (L1 + L12 + L13 + L23) iL,2 q- (L1 q- L3 + 2L13) iL,3 

qc,~ = C~uc#, i = 1 , 2 , 3 ,  

and the total stored energy 

@ =  ( L 1 + L 2 + 2 L 1 2 ) i  
2 ~,2 + 

q- (L1 ~- L 1 2  -t- L13 + L23) iL,2iL,3 �9 

(L1 q- L3 + 2Lla) i2 E 3 Ci 2 
2 L,3 + ~=1 -~ uC# 

(3.77) 

The matrices A, 81, '-q2 and Ge,c are given by 

A =  0 -1  ' [ R2 R 2 + R 4  ' 

(3.78) 

(3X9) 

= 0 and G~,c= 

0 0 

(3.80) 

3.3.3 Application: Three-phase Power System 

For the steady-state analysis of balanced and unbalanced three-phase power 
systems, the method of symmetrical components is the first choice (see, e.g., 
[II]). However, if we are interested in a transient description of three-phase 
power systems then the use of the symmetrical components is no longer valid. 
In this case, the energy-based description of electrical systems introduced so 
far seems to be an appropriate method for the derivation of the mathemat- 
ical model, in particular for control purposes. The energy-based description 
enables a good insight into the energy situation of the system and hence also 
supports the understanding of the system dynamics. Due to its systematic 
nature the proposed graph-theoretic approach can also be applied to large- 
scale power transmission and multi-machine systems. Moreover, the resulting 
energy-based formulation may serve as a basis for the stability analysis of 
power systems. A very important feature of the proposed concept is that we 
are able to take into account saturation effects of the magnetic field and non- 
sinusoidal flux distributions. It is worth mentioning that the transient models 
of three-phase machine applications with linear magnetic characteristics are 
often based on the so-called Blondel-Park transformation. Here the mathe- 
matical model is transformed into a simple form such that the rotor position 
dependence disappears in the equations. See [83], under which necessary and 
sufficient conditions this transformation is possible. In general, these condi- 
tions are not satisfied in the case of a non-sinusoidal flux distribution or if the 
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magnetic characteristic is non-linear. However, here the energy-based descrip- 
tion discussed so far offers new ways for designing energy-based non-linear 
controllers which can capture also these effects. Next, we want to give a sim- 
ple example of such a three-phase power system and its associated state-tree. 
Fig. 3.3 represents the electric circuit of a stand-alone self-excited induction 
generator with A-connected excitation capacitors and a balanced load con- 
sisting of inductors and resistors. Self-excited induction generators with an 
excitation control can be often found in combination with wind turbines be- 
cause they are able to generate power at constant voltage and frequency even 
with varying wind speed and changing load conditions (see, e.g., [114]). 

Fig. 3.3. Electric circuit of a stand alone self-excited induction generator with a 
balanced load. 

The s tator  and rotor of the induction generator are magnetically coupled 
via the flux linkages. Therefore, we will a p r i o r i  get an unconnected associ- 
ated digraph which consists of two components, one for the stator  and one 
for the rotor. But without changing the circuit behavior in our case, we arc 
allowed to tie together the neutrals N s  -- N R  = No  of the stator  and rotor, 
respectively. The resulting connected graph is called a hinged graph (see, e.g., 
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[19]). As shown in Fig. 3.3 the hinged digraph 6 = (N, B) has n : 15 nodes, 
b = 21 branches and due to (3.9) the cyclomatic number u (6) = 7. The 
dotted line in Fig. 3.3 marks a possible tree for the state-tree representation 
(3.40) and (3.41). As one can see, we have three access inductors (inductors in 
the tree) and one excess capacitor (capacitor in the cotree). Before applying 
Proposition 3.1, we have to define the flux and charge linkages of the induc- 
tors and capacitors respectively. The load inductors and the self-excitation 
capacitors are assumed not to be mutually coupled. Note that  the only re- 
striction of the functional dependence of the stator and rotor fltax linkages 
r  ~--- [~)S,1, r ~)S,3] and Cn = [r ~bR,3] on the stator and rotor 
currents i T = [is, l,is,2,is,3] and i T = [iR,I,iR,2,iR,3] and on the angle of 
rotation of the rotor 0 (measured in the stator frame of coordinates) is given 
by (3.17), i.e. 

_ _  OC n, j  OC s, i O~Ps'i - OCs# O~PR'i -- OCR# and ~ - (3.81) 
Ois,i Ois,i ' OiR,i OiR,i Ois# OiR,i 

for i # j = 1, 2, 3. Note that  the exterior derivative d in (3.17) only operates 
in the variables ( ik ,u0,  k c L~, l E Ci and has no effect on 0. Thus, with 
the proposed method we are even able to take into account saturation of 
the magnetic field and non-sinusoidal flux distributions. We do not intend 
to derive the mathematical model in detail here because with the state-tree 
shown in Fig. 3.3 (dotted line) and Proposition 3.1 it is a straightforward 
task. 

It is worth mentioning that  normally for control purposes the induction 
generator (motor) is considered to be magnetic linear and therefore, the stator 
and rotor flux linkages can be expressed as 

r = Lssis + LSR (0) i R 
(3.82) 

Ca = LRS (0) is + LRRiR 

with the symmetric self inductance matrices Lss and LRR of the stator 
and rotor respectively az~d the stator-to-rotor mutual inductance matrix 
LSR (0) = LTs (0). If furthermore, the induction generator has a symmetrical 
three phase winding and the mutual stator-to-rotor inductance is a harmonic 
function of the angle 0, then Lss, LRR and Lsa (0) take the simple form 

LKK = 

and 

L L 
L + LaK ---- 

2 2 
L L 

- - -  L + LoI~ 
2 2 
L L 

L + LaK 
2 2 

with K ~ IS, R} (3.83) 
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LsR (0) = 
I Lcos(0) Lcos (0+7)  L c o s ( 0 - 7 )  

Lcos (0 -V)  Lcos(0) Lcos(0+ff)  

L c o s ( 0 + ~ ) L c o s ( 0 - ~ )  Lcos(0) 

(3.84) 

27~ with ~/= -y, the main inductance L and the leakage inductances of the stator 
and rotor L~s and LaR. In the case when these symmetry conditions are 
satisfied, the Blondel-Park transformation can be performed (see, e.g., [83]). 
However, these simplifications, although they arc not an essential restriction 
for many applications, are not necessary for the applicability of the energy- 
based formulation of Proposition 3.1. 

3 . 4  P W M - c o n t r o l l e d  E l e c t r i c a l  S y s t e m s  

3.4.1 E n e r g y  Based  Description 

Let us consider a PWM (pulsc-width-modulation)-controlled electric circuit 
with s switches {T1,... ,T~} and each switch Ti, i = 1, . . .  ,s has two posi- 
tions: an on-position denoted by A and an off-position denoted by B. It is 
assumed that the s-switch tuple {T1,... , T~} is turned on and off simultane- 
ously. For example, in the case of a full-bridge de-to-de converter (see, e.g., 
[57], [99]) the four switches are treated as one switch tuple, which is either 
in position A or B. In this case the PWM strategy is also called PWM with 
bipolar voltage switching [99]. 

Suppose that the associated digraph of the PWM-controllcd circuit is con- 
nected for both switch positions, A and B. Let us further assume throughout 
the whole section that the same inductor currents ik, k E Li and capaci- 
tor voltages u z, l E Ci together with the coordinate function z : (ij,~ j) 
(ik, ut), j C B, k ELi ,  l E Ci form a chart of the PWM-controlled network in 
both switch positions, A and B. Moreover, the functional dependence of the 
dependent inductor currents ik, k ~ Ld and capacitor voltages u m, m E Cd 
due to (3.33) is supposed not to change with the switch position. One can 
easily convince oneself using practical examples, that these assumptions arc 
not very restrictive. Then, the considered PWM-controllcd circuits can be 
described by two systems of differential equations in the form 

d 
-~x : fA (x) t E (iT, (i + dA)T] {TI,. . .  ,Ts} in A 

d 
-~X : fB(X) t C ( ( i -~da)T, ( i~-d  A ~-KB)T ] {Yl,... ,Ts} i n B  

(3.85) 

for i = 0, 1, . . .  with the smooth vector fields fA, fB and dA +dB --- 1. Here, 
dA, 0 ~ dA < 1 denotes the so-called duty ratio, which specifies the ratio 
of the duration of the s-switch tuple (T1,...  ,/'8} in position A to the fixed 
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modulation period T. Now we know that  the state x of (3.85) is continuous 
because the theory of differential equations says that  the state x of a system 
~ x  -- f (x, u) with piecewise continuous inputs u are continuous [44], [144]. 

Under the assumption that  the modulation frequency is much higher than 
the natural frequencies of the converter system and the switches are realized 
with common power semiconductor devices, we can derive the so-called av- 
erage model for the PWM-controlled electric circuit (3.85), see, e.g., [57], 
[127]. Let ~ot/A (x) denote the flow of the electric circuit for the s-switch tuple 
{T1,.. .  , T~} in position A and Wt/B (x) in position B. Then a solution 7 (t) of 
the PWM-controlled electric circuit for t = iT, i = 0, 1 , . . .  meets the relation 

7 ((i + 1) T) fA f~ = ~dAT o ~Ods T (~ / ( iT) )  , dA + ds = 1 . (3.86) 

The average model 

d 
-~xa = (dAfA + ds]s)  (xa) (3.87) 

is nothing else than the first order approximation of 7 (t) by % (t) [116] 

d (iT) lim OT~I~A.. I ,  : O~dBT(%(iT)) t = i T ,  i=O, 1,. . . .  (3.88) ~-~Ta T~0  ~A~ 

Remark 3.3. By bending the rules of notation we will use the same symbol 
x for the state variables of (3.85) and for the approximated average model 
(3.87). Thus, we will subsequently drop the index a. 

The energy-based description of Theorem 3.2 and 3.3 can also be ap- 
plied to derive the average model of a PWM-controlled electric circuit in a 

straightforward manner. Since it is assumed that  4) j,  j E L i  and ~j, j C C~ 
from (3.35) do not depend on the switch position, we may write the average 
model in the form 

d ~ j  0 
-~r = -Oi--~ ~ (pK + #K) dK for j � 9  

K6{A ,B}  
d 0 (3.89) 

- Z (pf for j �9 C, 
K6{A ,B}  

with dA + ds 1. Note that  K A or K = B for K *K ~- = PC, PS, pK and 16 K refer 
to the corresponding quantity for the s-switch tuple {T1,. �9 �9 , Ts} in position 
A or B respectively. 

3.4.2 Energy Based Description with Full Topological Information 

Consider a PWM-controlled circuit with bipolar voltage switching as dis- 
cussed in the previous subsection. Let us assume that  for both switch po- 
sitions A and B of the PWM-controlled circuit the requirements for the 
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application of Proposition 3.1 are met. Since, in general, for the two switch 
positions A and B the state-tree representation (3.40) and (3.41) is different, 
an upper index A or B will subsequently always refer to the corresponding 
quantity of the PWM-controlled circuit for the s-switch tuple {T1,... , T~} 
in position A or B, respectively. Since we assumed in the previous subsection 

that the expressions for ~3, j ELi  and ~j, j E Ci from (3.35) do not depend 
on the switch position, we may deduce that in (3.40) and (3.41) the relations 
DAL = DBL = DLL and DAc = DBc = Dec  hold. This assumption also 
implies that the expression of the total stored energy in the inductors and 
capacitors tb = WL -[- ?lJC is independent of the switch position. 

Based on (3.89), we may apply Proposition 3.1 to the PWM-controlled 
circuit and the average model can be written as 

-~x=(JB--sB+((JA--jB)--(sA--s')) eA) ~ + 
(3.90) [o] [0] 

(a~o + (a~o- a~'o)~A) Vo ~ + (a~ + (a~ - a ~ ) d ~ )  ~o 

with  the  s ta te  (see Remark  3 . 3 ) x  r = [(~c,L,g,c], (~c,c = r +r 
qT, C = qT, C -- [gccqc, c, the duty ratio dA and jA,  jB,  S A, S B, GAo, GBuo, 
G A and G B from (3.44) and (3.45) for the s-switch tuple in position A or B Io I0 
respectively. As one can see from (3.90), depending on the topological location 
of the s-switch tuple, the duty ratio dA as the control input has an effect on 
the internal energy-preserving interconnection part J, the dissipative part S, 
as well as on the energy flow with the system environment via the independent 
voltage and current sources, described by Guo and Gx0 respectively. But in 
general, the duty ratio dA does not influence all these parts simultaneously, 
and therefore we will go on to discuss three special cases. 

Case I: Influence on the  Energy-preserv ing  Par t .  If the power flow of 
the static elements remains unchanged from one switch position to the other, 
then in (3.89) the relations i5 A = 15~ = 15s and 15 A -- i5~ = 15s hold. Following 
(3.54) and (3.59) of the proof of Proposition 3.1, we immediately see that 
in this case the duty ratio dA influences only the internal energy-preserving 
interconnection part, given by J (compare also with (1.76) of Chapter 1). 
Consequently, (3.90) simplifies to 

d []  [] ~ x  = (J" + (JA- J')  d~ -  s) ( o ~  ~ o o 
~ OX ] q-aUo US -.F-aio ir 0 . 

(3.91) 

A representative of this group is the so-called Cuk-converter [97], an in- 
direct high-frequency switch-mode dc-to-dc converter. Since the next section 
is devoted to the design of a non-linear H2-controller with and without inte- 
grai term for the Cuk-converter, we will subsequently derive the mathematical 
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model in more detail. Fig. 3.4 depicts the circuit scheme of the Cuk-converter 
with the supply voltage U0, the internal resistances R1 and R2 of the inductors 
L1 and L2, the capacitors C1, C2 and the load conductance GL. Variations 
of the load will be considered in the sense of a Norton equivalent circuit [57] 
in the form of changes in the output current Zlio. Fluctuations of the input 
voltage will be denoted by AU0. The 0uk-converter has one switch T1 with 
the on-position A and the off-position B. It is assumed that the switch T1 
has ideal characteristics, that means no losses and zero turn-on and turn-off 
times. One can easily see that for the Cuk-converter in fact ihs and/hs are 

N3 No 
g, N~ (No) Uc , (g3) N, g~ 

PC o 

a~ 

Fig. 3.4. Circuit scheme of the Cuk-converter. 

independent of the switch position A and B, namely 

1 
~A = )B  = PS = -~ (Rli2L,1 + R2i2L,2 + u2,2GL) -- UoiL,1 

1 
~ = ~ = ~s = ~ (RliL1 + R2iL2 + ~ ,2aL)  

(3.92) 

Fig. 3.5 shows the digraph associated with the 0uk-converter for the switch 
T1 in position B and a tree indicated by the dotted lines for the state-tree 
representation. The orientation of the branches corresponds with the associ- 
ated reference direction of the current flows. Using the state-tree of Fig. 3.5, 
we can write (3.40), for the 0uk-converter with the switch T1 in position B, 
in the form 

•a,2 
ZU, O Ii~176176 lFll 0 1 - 1 - 1  /?~'~/ 

= 1 0 0  0 

1 0 0 [nioj 
o o o 

(3.93) 
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N~ 
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Ic, 2 lG, L 

Fig. 3.5. Digraph and state-tree for Fig. 3.4 with switch "/'1 in position B. 

By means of a suitable partitioning of (3.93) Proposition 3.1 leads to the 
mathematical model of the (~uk-convcrter for the switch T1 in position B 

d 0] 0 
T Aio J 

(3.94) 

with the state x T = [LIiL,1, L2iL,2, ClUe, l, C2uc,2], the total energy stored 
in the inductors and capacitors 

1 
= ~ (L~i~,l + L2i~,~ + C,u~,, + C~,~,2) (3.95) 

and the matrices 

[i ~ = ' R 2  ' G L  ' 0 

As discussed before the mathematical model of the Cuk-convcrtcr for the 
switch T1 in position A differs from (3.94) only in the enefgy-preserving part, 
i.e. A B has to bc replaced by A A, 

Thus, following (3.91), we can write the average model of the Cuk-eonverter 
in the form 

d _ j l~ )  S) (-~-x) + G ~ [  U~ (3.98) ~ x =  (jB + (jA ~A_ 0~ ~ + aUo] 
- aio j 
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with the state (see Remark 3.3) X T - ~  [LliL,1, L2iL,2, Cluc,1,62uc,2], the 
duty ratio dA, the total energy stored in the system due to (3.95) and 

jB Ii~ 
o 

0 0 -1 
0 0 0 
1 0 0 

, jA _= i 0  0 0 0 -1  - 1  
1 0 0 
1 0 0 

, S =  

R~ 0 0  0 
R20 0 
0 0 0  
0 0GL 

, (3.99) 

Case  II: Diss ipat ive  Breaking .  Remember that from (3.49) we can subdi- 
vide ~hs and ~5s into parts due to the independent voltage and current sources, 
^Uo -Io AUo PS and Ps, and into parts due to the resistors,/~s R and/5~, i.e./~s = / ~  +Ps  

-Io Let us consider PWM-controllcd electric circuits where and ~hs = ~5~ + Ps" 
in (3.89) only the expressions of ~5~ and ~5s R change with the switch position. 
Then, following (3.68) and (3.71) of the proof of Proposition 3.1, we can 
immediately scc that (3.90) simplifies to 

+ [(ago,C + auo,L [~ ] 
+ ( 1o,L- 1o,L) 0 +[ (GIB~ GAGIo,C GB dA)] [10] 

with Guo and Gj o from (3.45). In this case, when the duty ratio dA influences 
the dissipative part, the system is also called PWM-eontrolled with dissipative 
breaking. Fig. 3.6 shows a very simple representative of this group, with 
RL,1 ~ RE,2. 

[ i L ~  A 

i 

~ R~2 

Fig. 3.6. Simple PWM-controllcd circuit with dissipative breaking. 
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The associated mathematical model reads as 

d ___(j s" ( ~  ~ u  - - (s  A - s ' )  ~ )  \ Ox; + a~Uo (3.102) 

with the state x T = [LiL, Cuc], the duty ratio dA, the energy stored in the 
system ~ = 1 .2 1 2 ~Lz L + ~Cu C and 

I::l [:10  
Case III:  Inf luence on the  E n e r g y  Flow wi th  t he  Sys t em Environ-  
ment .  Here, we consider PWM-controlled electric circuits where in (3.89) 

40 change with the switch position. Follow- only the expressions of/~o and Ps 
ing (3.64) and (3.65) of the proof of Proposition 3.1, we can write (3.90) in 
the form 

( ,o,L + (a~o,L- a~o,~) aA) 0 
u  = (J - s) \ o5 ] + a~o,C uS 

GA IO , L 
+ [(GIBo,c-[ - (GIo,C--GBIo,c) dA)] [O0] 

(3.104) 

with Gtr o and GIo from (3.45). As an example, in Fig. 3.7 a simple dc-to-dc 
converter with a 4-switch tuple {T1, T2, T3, T4} is presented. 

A B 
Vo 

B ~ A  A 

iL . - f ~  

L 

A 

w 

Fig. 3.7. Simple dc-to-dc converter with four switches. 
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The mathematical model takes the form 

d 
v0 (a. o5) = (J - s) \ Ox / avo,C 

with the state x T = [LiL, C u e ] ,  the duty ratio dA, the energy stored in the 
system & = 1 .2 1 2 ~Lz L -5 -~Cu C and 

J = , S = , GVo,L = --1, GVo,L = 1. (3.106) 

3 .5  Application: Non-linear C o n t r o l  o f  a ( ~ u k - c o n v e r t e r  

The ~uk-converter is an indirect high-frequency switch-mode dc-to-dc con- 
verter. Generally, dc-to-dc converters are used as interfaces between dc sys- 
tems of different voltage levels in regulated power supplies for different types 
of electronic equipment and in dc-motor drive applications (see, e.g., [57], 
[99]). By means of feedback control the average dc-output voltage of the dc- 
to-dc converter must be controlled to a desired level and the dc-output must 
be kept at this level if there are any variations of the load or fluctuations 
in the input voltage. In so-called high-frequency switch-mode converters the 
average output voltage is controlled by adjusting the on- and off-durations 
of a semiconductor device, switching at a rate that is fast compared to the 
changes of the input and output signals. In the PWM-case this switching 
frequency is constant and here the ratio of the on-duration of the switch 
to the fixed switching time period, also denoted as the duty ratio, is used 
for controlling the system. Within the high-frequency switch-mode dc-to-dc 
converters, there is an additional classification, namely the direct and the 
indirect converters [57]. Direct converters have a direct dc path between the 
input and output port. They are known as either a down (buck) converter 
or an up (boost) converter, depending on the direction of power flow. The 
indirect converter topologies have no direct dc path between the input and 
output ports in any switch state. The best-known examples are the up/down 
(buck/boost) converter and the Cuk-converter [97]. These converter types 
have the following properties: the input and output voltages are of opposite 
signs and the output can be either higher or lower than the input for both the 
voltage and the current. The Cuk-converter uses two inductors at the input 
and output port with the advantage that the switching frequency ripple in 
the input and output current is reduced to an acceptable level. 

The modeling and control of dc-to-dc power converters have been studied 
for many years and the results are reported in various textbooks and jour- 
nals. Beside the traditionally used linear approaches (e.g., [57], [79]), which 
suffer from the lack of a stability proof, different non-linear design methods 
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are presented in [128]- [1311 and the references cited there. In [128] and [1301 
a non-linear PI (proportional integral) controller is designed on the basis of 
extended linearization techniques, using a family of linearized plant mod- 
els parametrized by equilibrium points. Differential geometric methods for 
output regulation, like the input-output linearization (see, e.g., [52], [103], 
[144]), cannot be applied in a straightforward way to indirect converter types 
like the ~uk-converter due to the unstable zero-dynamics. In order to avoid 
stability problems, output regulation can be achieved only indirectly by reg- 
ulation of other state variables, for example the input current (see, e.g., [129], 
[131]). Since the output voltage is controlled only indirectly by such a strategy 
however, it requires additional effort to take variations of the load into consid- 
eration. Besides the classical PWM techniques the theory of VSS (Variable 
Structure Systems) with its associated sliding regimes has been proposed 
as a means of designing the controller for dc-to-dc power converters (see, 
e.g., [113]). The reader is also encouraged to read a very important recent 
book [107], where a Lagrangian and Hamiltonian dynamics approach (see, 
also [26], [132]) is used to model switched dc-to-dc power converters. Here, 
also, the physical properties of these models are used to advantage to design 
passivity-based feedback controllers. The importance of this passivity-based 
concept is the fact that the controller design philosophy is not only mathe- 
matically motivated, it also takes advantage of the physical structure of the 
system to be controlled. Subsequently, the presented controller design for 
the ~uk-converter is based on the non-linear state feedback H~-design with 
and without integral term of Section 2.1 and 2.2 (see, also [66], [72] for a 
non-linear Hoo-approach). 

3.5.1 M a t h e m a t i c a l  Model  

Consider the ~uk-converter of Fig. 3.4 with the average model (3.98) - 
(3.100). Let us at first assume that there are no load variations and no fluc- 
tuations in the input voltage, i.e. Aio = 0 and AU0 = 0. Further, suppose 
that dA determines the operating point 2 T = [LI~L,1, L2~L,2, ClfLC, i, C~gc, eJ 
of the Cuk-converter with 

~L,2 = 

f tC ,  1 = 

~ C , 2  = 

a~UoG 
(1 + R2GL) (1 - &)2  + ~aGLR, 

--GLUo& (1-- dA) 
(1 + R2GL) (1 - dA) 2 + d2AGLR, 

Uo (1 + a~R~) (1 - ~A) 
(1 + R~C~)(1 - d~)~ + ~ C ~ R ~  

-Uo~A (1- ~) 
(1 + R~.CL) (1 - &)~ + ~ C L R ,  

(3.107) 
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Then, by means of a simple change of coordinates x = Ax + 2 this operating 
point is shifted to the origin and with dA = AdA+ dA the system (3.98) can 
be rewritten in the form 

 Ax: ( j  /0 A 
\ O A x ]  + ( jA _ jB)  \ O A x  + -~x (~) AdA, 

(3.108) 

where J = j B  + ( jA _ jB )  dA and ~bza is the shifted energy function 

~zx = ~1 (LxAi2,x + L2Ai2L 2' +CIAu2,1 + C2Au2 2), . (3.109) 

At this point it is worth mentioning that  (3.108) can also be obtained by 
means of the mixed potentials of the shifted system PC, A,K PS, z~,^K PL,zaK and 
v K  ^ K  v K  PS, A, K = A, B (see Theorem 3.2 and 3.3). But now Ps, za and Ps,za arc no 
longer independent of AdA and the change of the shifted energy function ~bza 
meets the relation 

d 
= ( S,A + -- PS, A) AdA - + - ^ .  

-- Ps, A Ps,za 

= -- \OZlx]  S \(gZIxJ q- ~,OAx] ( jA _ jB )  ~x  (~) AdA .  

(3.110) 

From (3.110) and LaSalle's invariance principlc we can immediately see that  
the equilibrium Ax ---- 0 of the free system (3.108), i.e. A d A =  0, is asymp- 
totically stable in the sense of Lyapunov and the shiftcd energy function ~bza 
from (3.109) serves as an appropriate Lyapunov function. 

3.5.2 Non-linear State Feedback H~-design 

Let us consider the mathematical model of the Cuk-converter (3.108) with 
the plant output y = Auc,2. Following Section 2.1, we are looking for a 
control law AdA --- AdA (Ax), AdA (0) = 0 such that  the origin is rendered 
asymptotically stable and the objective function 

/? J2 • inf 1 (GLAu2c,2 + Ad~) dt (3.111) 
AdAEL2[O,oo) -2 

is minimized with respect to AdA. Note that  we have chosen the nominal load 
conductance GL as the weighting factor/3 for the output function (compare 
with (2.4)). Following Theorem 2.1, we have to find a C 1 positive definite 
solution Y (Az) of the associated HJBi (2.11). As a candidate for V (Ax) we 
take the shifted energy function z~za of (3.109) and the HJBi becomes 

(O ~ A~  (OCVA'~ T 1 2 1 (Ad~t)2 < 0  (3.112) 
- \ a A x ]  S \ O a x ]  +  aLauc,2 - 



70 3. Electromagnetic Systems 

w i t h / i d ~  as the optimal control law due to (2.9) 

- \ O / i x ]  ( j A _ j B )  ~ ( ~ )  

= - ( A u c , ~  (~L,2  - ~ L , ~ )  - ~ c , ~  ( / i i L , 2  - A i L , ~ ) ) .  

(3.113) 

By substituting S from (3.99) into (3.112), we get 

_R1Ai2L, 1 _ R2/ii2L, 2 _ _~GL/iuc,21 2 _ 21 (/id.4)2 _< 0 (3.114) 

and hence the HJBi is, in fact, satisfied. Furthermore, it is easy to check that  
the system 

, 4  / T 

tO~ix) 

/iuc,2, ,O/ix j (JA - J . )  

(3.115) 

is zero-state observable. Thus, from Theorem 2.1, we may conclude that  the 
control law (3.113) solves the suboptimal non-linear H2-design problem with 
respect to the objective function (3.111) for the C:uk-converter model (3.108) 
and the output y = / i uc ,2 .  

3.5.3 Non-l inear State Feedback H2-design with  Integral Term 

The non-linear H2-controller (3.113) does not show a satisfactory perfor- 
mance in the case when there are changes of the operating point due to load 
variations or fluctuations in the supply voltage. To overcome these deficien- 
cies we want to add an integral term to the H2-controller. This can be done 
by applying Proposition 2.1 to the Cuk-converter model. Therefore, in a first 
step, we rewrite the mathematical model of the Cuk-converter (3.108) and 
(3.109) according to (2.26) in the form 

d 
- - x  = A x  + b(x)  u 
dt 
y = cTx 

(3.116) 

with the state x T = [AiL,1,AiL,2, Auc,1,/iuc,2] , the plant input u - - -  /idA, 
the plant output y, the vectors c T = [0, 0, 0, 1], 

[ f u c , 1  + ~tC,1 --Z~UC, l -- ~tC,1 /IiL,2 ~- ~L,2 -- A iL , I  -- ~L,1 ] 
b T (x) = L Z7 ' T~ ' ~1 ,0 

J 

(3.117) 

and the matrix 
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A = 

R1 
L1 

0 

1--dA 
C1 C1 

1 
0 

C2 

dA-- 1 
0 0 

L1 
-R2 --dA --1 
L2 L2 L2 
dA 

0 0 

--GL 
0 

C2 

(3.~1s) 

It can bc easily seen that for 0 < dA < 1 the matrix A is Hurwitz and the pair 
(A, c) is observable. Fk~rthermore, the condition cTA-~b  (0) r 0 is satisfied 
for all dA except for the duty ratio 

1 - 2 R 2 G L  - 2 + 2x/R2G2LR1 + GLR1 (3.119) 
dA : ~ - R 2 G L  + GLR1 - 1 

Notice that the stationary duty ratio of (3.119) is exact that value where the 
stationary output voltage fie,2 of (3.107) reaches its maximum for given pa- 
rameters R1. R2, GL and U0. Due to reasons of efficiency all operating points 
with a stationary duty ratio dA greater or equal than the value of (3.119) 
are not feasible (see also the discussion at the beginning of the next subsec- 
tion, in particular Fig. 3.9). Hence, all the requirements for the application of 
Proposition 2.1 are met. Thus, the non-linear state feedback controller with 
integral term can be obtained directly from (2.29) and (2.30) of Proposition 
2.1. 

Since the symbolic expressions of this control law are too big to be pre- 
sented here, we will set the internal resistances R1 and R2 of the inductors 
L1 and L2 to zero. This simplification does not change anything for the con- 
troller design, it just makes the expressions of the non-linear controller more 
readable. Then the unique positive definite solution Pn  of the Lyapunov 
equation (2.30) is given by the shifted energy function (3.109) 

~ L  L2Ai~L'2 + C1Au2 ' I  +C2Au2c'2)  
1 f3 

P u  = w'~ = -2-~L (L'Ai2L'I + 

(3.120) 

Consequently, the non-linear H2-controller with integral term due to (2.29) 
reads as 

d 
~x~ = Auc,2 

Z 
u - 2G----~. (Auc,1 (iL,2 -- ~L,1) -- eC,1 (AiL,2 -- AiL,1)) -- 

P22 (~c'--d~ + Auc,~)  
(1 -- 

(3.m) 
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with the controller parameters ;3, P22 • 0. Notice that the part of the con- 
troller (3.121) weighted with j3 is identical with the pure non-linear H2- 
controller (3.113). The controller parameters ;3 and 1922 are used to adjust 
the performance of the closed-loop, where the choice of these parameters re- 
suits from the following heuristic considerations. The parameter P22 has a 
direct influence on the integral action and by means of an increasing/5 more 
damping is injected into the system. 

3.5.4 The Experimental Setup 

Fig. 3.8 shows the laboratory model for performing the Cuk-converter exper- 
iments with the parameter values L1 = L2 = 10.9 .10 -3 H, R1 = R~ = 1.3 
Y2, C1 = 22 .0 .10  -6 F, C2 = 22.9-10 -6 F and U0 = 12 V ( [2], [45]). The 
capacitor C1 is located in an external pin base and can also be exchanged as 
required by the experiments. The load can be chosen to be either a resistor 
with a fixed conductance GL =- 1/22.36 S, or the load conductance can be 

Fig. 3.8. Block diagram for the experimental setup: 
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set to an arbitrary value in a range GL <_ 1/6.4 S via a programmable load 
simulator. The value of the programmable load simulator can be defined by 
a control voltage Uload. 

Fig. 3.9, left hand side, shows the achievable stat ionary output  voltage 
~c,2 as a function of the stationary duty ratio dA and the load conductance 
GL. As one can see for a fixed load resistor GL 1, two different values of the 
duty  ratio dA exist to obtain a certain output  voltage ~2c,2. Due to reasons of 
efficiency the duty ratio dA with the lower value is only feasible. This is why 
the stat ionary duty ratio is restricted to an upper bound which depends on 
the load conductance GL. Fig. 3.9, right hand side, presents the maximum 
possible stationary duty ratio dA,m~ as a function of the load resistor GL 1. 
It is worth mentioning that  the effect presented in Fig. 3.9 vanishes if the 

0.95 

.=- 0.9 

Uc, ~ [X I'" !,~ 0.85 
O- o 

-lo- ~ 0.8 
-20- ~;~ 

-30- -~ 0.75 

-40- 5 E 
-50- . .  0.7 

[~l 
E 0.65 

u.u 0.4 0.2 0 
~ [ 1 ]  

10 30 50 70 90 

load resistor Gs ~ in [~] 

Fig. 3.9. Left hand side: Stationary output voltage fie,2 as a function of the duty 
ratio dA and the load resistor GL 1. Right hand side: Maximum possible stationary 
duty ratio dA . . . .  as a function of the load resistor GL 1. 

internal resistances Rt and R2 are zero. This can be easily seen because then 
the stationary output  voltage ~c,2 as a function of dA reads as 

-&Uo 
u c , 2  = (1 - dA)  " ( 3 . 1 2 2 )  

The switch S is realized with a standard MOSFET (BUZ11) in combina- 
tion with the MOSFET-drive-IC SI9910DJ and a Shottky Diode (MBR1060) 
with a low forward voltage drop. An active turn-off snubber is used to provide 
a zero voltage across the MOSFET,  while the current turns off and thus guar- 
antees that  the MOSFET is operating within the SOA (safe operating area). 
In contrast to R-C-D-snubbers, this implemented active snubber does not 
create additional losses in the system [25]. The modulation frequency for the 
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PWM actuator (either IC SG3524 or internal PWM of the DSP-unit) is cho- 
sen as 25 kHz in order to keep the total losses in the converter to a minimum. 
The two inductor currents iL, 1 and iL, 2 are measured by means of 0.1 J2 shunt 
resistors and instrumentation amplifier ICs (Burr Brown INA2128/2) with 
low offset and drift. The capacitor voltages uc,1 and uc,2 are also directly 
measured by means of the instrumentation amplifier ICs. All the measure- 
ment signals are filtered with fourth order analog Bessel low-pass filters with 
a cutoff frequency of 10 kHz. The Cuk-converter experiment operates to- 
gether with a DSP (digital signal processor)-system (dSpace) integrated in a 
PC with the operating system WINDOWS NT which enables us to use the 
MATLAB//SIMULINK environment directly to test the controllers. This hard- 
and software configuration allows sampling times down to 1-10 -4 s. Fig. 3.10 
depicts the stationary behavior of the state variables as a function of the 
duty ratio. The difference between the calculated anti the measured curve, 
especially in the case of uc,1, is due to the forward voltage drop of the diode, 
which is not taken into consideration in the model. For analyzing small-signal 
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Fig. 3.10. Stationary behavior of the Cuk-converter. 
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Fig. 3.11. Zeros of the transfer function Z (s, dn) as a function of the stationary 
duty ratio dA. 

dynamics,  the Cuk-convcrter system (3.98) with AU0 = Alio = 0 is linearized 
around an operat ing point [~L,I,$L,2, fie,l, fie,2] (see (3.107)) and we obtain 
the mathemat ica l  model in terms of small deviations 8 around the equilibrium 
point. Taking ~d A as the plant input and 8uc,2 as the plant output,  we can 
compute  the transfcr function Z (s, dA) with the Laplace variable s and the 
duty ratio dA as a parameter.  Now, it is possible to calculate the poles and 
zeros of the transfer function as a function of dA. For the laboratory model 
the zeros are depicted in Fig. 3.11 and the poles in Fig. 3.12, respectively, 
whereby the square indicates the point dA = 0 and the circles represent the 
results for dA in 0.1 steps from dA ---- 0 to dA = 1. An important  feature 
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Fig. 3.12. Poles of the transfer function Z (s, dA) as a function of the stationary 
duty ratio flA. 
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of the Cuk-converter is the fact that  from dA ---- 0.227 upwards the zeros of 
the transfer function lie in the closed right half s-plane. In other words the 
(~uk-converter shows a bifurcation of the zero dynamics. This fact can also be 
seen in Fig. 3.13, where the measured and simulated transient responses of the 
non-lineax model for a step input of the duty ratio ~dA = 0.2a (t - 5- 10-3), 
for two operating points dA = 0 and dA ---- 0.5 are illustrated. In the case of 
dA = 0.5 the step response of iL, 2 and ue,2 show the typical non-minimum 
phase behavior. Fig. 3.14 demonstrates the transient responses of the Cuk- 
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Fig. 3.13. Step responses at two different operating points 0TA = 0 and dA = 0.5. 

converter in the case of large deviations from the nominal point for a step 
input of the duty ratio dA = 0.5or (t -- 5 .10-  3). The difference in the damp- 
ing behavior between simulation and measurement can be explained by the 
fact that  in the model, the switch (transistor in combination with the diode) 
is assumed to be ideal, i.e. there axe no losses and hence the measured step 
responses are more damped than the simulated ones. 
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3.5.5 Measurement  and Simulation Results  of  the Closed-loop 

This subsection is devoted to the comparat ive results of the measured 
and simulated closed-loop behavior with the non-linear state feedback //2- 
controller with integral term from (3.121). The operating point of the duty 
rat io is fixed at dA = 0.485 and from this with U0 = 12 V and GL = 1/22.36 
S, we get [~L,1, ~L,2, fie, l, fie,2] = [0.44, 22.01, --0.45, --10.0]. The parameters  
of the controller (3.121) are chosen as ~ = 0.001 and 1922 = 0.2 and a sam- 
pling time of 2 - 10 -4 s is used. Fig. 3.15 shows the simulated and measured 
output  voltage uc,2 and the corresponding duty ratio dA for the reference 
input uc,2,ref = - 1 0  + Auc,2,rey in V with 

Auc,2,rey --- 9a  ( t -  2" 10 -2 ) - 19a ( t -  7" 10 -2 ) + 10o" (t - 12" 10 -2 ) . 
(3.123) 

Here cr (t) denotes the unit step. Fig. 3.16 depicts the simulated and measured 
transient responses of the output  voltage uc,2 and of the corresponding duty 
rat io dA, when the converter is subjected to a load variation GL ---- 1/22.36 + 
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AGL in S with 

c r ( t - 2 - 1 0 - 2 ) - ( ~ 6 0 - ~ ) a ( t - 6 - 1 0 - 2 )  �9 

(3.124) 

I t  is easy to  see tha t  the proposed controller has excellent t racking as well 
as d is turbance  rejection behavior  and tha t  the du ty  rat io d A remains within 
the admissible boundaries.  
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t 1 [  me oremont 
-81 I/ 

-20 ~ 

measurement d A 
simulation d~ 

0.8 

,~0.6 

-~0,4 

0.2 

0 0.04 
time in s 

0 
time in s 

0 0.08 0.12 0.16 - 0.04 0.08 0.12 0.16 

Fig.  3.15. Measurement and simulation results of the closed-loop system for the 
tracking behavior. 
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Fig.  3.16. Measurement and simulation results of the closed-loop system in the 
case of load variations. 
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3 . 6  E l e c t r o m e c h a n i c a l  S y s t e m :  T h e  E n e r g y / C o - e n e r g y  

C o n c e p t  

In electromechanical systems there is an energy conversion process between 
the mechanical and the electrical part via the electric and magnetic coupling 
fields. Throughout  this section we will assume that  the electromechanical 
energy conversion itself is lossless and that  the losses, such as ohmic losses 
or friction, can be separated from the energy storage mechanism and can be 
represented in the form of external loss terminals, like resistors or dampers 
etc. Let us assume that the electromechanical energy conversion occurs solely 
via the magnetic and electric coupling fields of the inductors and capacitors 
respectively. 

Without  restriction of generality and for the sake of clarity, we will con- 
sider electric networks where the set of inductor currents ik, k �9 L and 
capacitor voltages u z, l �9 C are linearly independent (see, Subsection 3.2.1). 
With slight modifications tim whole theory can be extended to the case of de- 
pendent sets of inductor currents and capacitor voltages of Subsection 3.2.2. 
Remember that  in Subsection 3.2.1 the states of the electric network are con- 
fined to a submanifold A/" = { (i, u) �9 A/'~ I u D l  = O,DTi = 0} of the space 
of unrestricted states Aft, where the currents i and voltages u satisfy KCL 
and KVL. Let us consider that  the mechanical part of the electromechanical 
system has n degrees of freedom and is represented by the generalized coor- 
dinates x = ( x l , . . .  , xn) �9 R n. Naturally, the generalized velocities v = d x  
are elements of the tangent space 7-R '~ of R n. Thus, the configuration space 
of the electromechanical system takes the form Af~m = .N" • R '~ • T R ' L  Let the 
inductor currents ik, k �9 L, the capacitor voltages u z, l �9 C, the generalized 
coordinates x and the generalized velocities v together with the coordinate 
function z :  ( i j , u  j , x , v )  ---* ( i k ,u  z , x , v ) ,  j �9 B,  k �9 L, l �9 C be a chart of 
the configuration space Af~m. Fhrther, M denotes the set of all inductors and 
capacitors where an energy conversion takes place and whose flux and charge 
linkages, ~J and qj, depend on x. Subsequently, xk, k �9 M means that  the 
generalized coordinate Xk is linked with an inductor or capacitor. Then the 
differential equations of the dynamic elements inductor and capacitor due to 
(3.15) can be generalized in the form 

d j 
- ~ r  ( . . .  , Q , . . .  , x k , . . .  ) = u j with j ,  l e L, k E M 

d 
- ~ q j ( . . . , u Z , . . . , x k , . . . )  = i j  with j , l � 9  k � 9  

(3.125) 

Analogous to (3.16) the energies WL and we stored in the inductors and 
capacitors are given by 

WL = L .~-ijcle'+J and wc--- i E u'deqj (3.126) 
"~ 3 E L  J'~ j E C  
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with "y (t) as a solution curve of the electromechanical system and de as the 
exterior derivative operating in the variables (il,~uJ), I E L, j e C, i.e. 

- -  OY d~, '~" OY duJ (3.127) 
j E L  3 j e C  

Let us also assume that the integrals in (3.126) are path independent, i.e. the 
relations 

de(~-~ijder ] = 0  and de(j~ecUJdeqj) =0 (3.128) 

are satisfied. 
Due to the assumption that the energy conversion is losstess the energy 

balance principle states that the increase in the energy stored in the inductors 
and capacitors ~ = ~bg + ~c  equals the energy input from the electrical 
souices minus the mechanical energy output. By taking F k, k E M, as the 
generalized coupling force associated with the generalized coordinate xk, k E 
M, we get the relation 

z* ( d ~ -  ~ ijuJdt+~-~vkFkdtl =0 (3.129) 
jE{L,C} kEU ] 

or equivalently 

with z* as the pullback of the function z: (ij, uJ,x, v) ~ (ik, ul,x, v), j e B, 
k E L, l E C'. Note that the exterior derivative d operates in all variables 
(ik, u l, x, v), k E L, l C C, i.e., 

~ Of dij Of du j n Of dx j dvj d I = .  + . (3.131) 
jEC j = l  OXj 3 = 

In order to determine an explicit expression of the generalized coupling forces 
F k (see also [120]), we calculate in a first step d~b = dwL + dwc with WL and 
~ c  from (3.126) 

:  i3dd + 
jEL  jEC 

~Xk ~ ~ ijde~j + ~ ~ uJdeqj dxk . 
kEM j E L  jEC 
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By applying Leibniz' rule we can rewrite (3.132) in the form 

d~v = E ijdeCJ + E uJdeqj+ 
jEL jEC o( ) 
E ~ f'TE(d~(ijCJ)-~Jdij) dxk+ 

kEM j E L  o( ) ~ ~ f~}--~(de(u~qj)-qjdu') dxk 
kEM j E C  

(3.133) 

or  

d~-- E ijd*J + E uJdqj- 
j E L  jEC 

+ L E ~d~/d~. 
j~c / 

(3.134) 

Substituting (3.134) into (3.130), we end up with 

Ez,-~ 
kEM "7 j E L  jEC 

+ F k) dxk = 0. 

(3.135) 

Since all dxk are linearly independent, the expressaon in the bracket of (3.135) 
must vanish identically for all k E M and hence F k takes the form 

j E L  jEC / 

For the sake of convenience we will henceforth drop the pullback operation 
Z*. 

If the generalized coordinate xk is associated only with either an inductor 
or a capacitor, the generalized coupling force F k simplifies to 

Oxk CJdij or F k =  E qjduJ. (&137) 
j Oxk j~c 

It can be immediately seen that the integrability conditions (3.128) imply 

0 
V c  C / 

(3.138) 
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Hence we may define the functions 

WL:~'~-r and (vc=lEqduJ~j~c ~ (3.139) 

as the so-called co-energy functions of the inductors and capacitors respec- 
tively. 

Remark 3.4. In the case of an electromechanical system with a linear mag- 
netic or electrostatic characteristic the flux and charge linkage can be ex- 
pressed in the form 

C J = E C J ( x ) i ,  or qj=Eqjl ,x(x)u l. (3.140) 
lcL IcC 

By means of the integrability conditions (3.128) or (3.138), we have C jr (x) = 
r  (x) and qjt,~ (x) = qzj,x (x) and thus, we may immediately conclude that  
in the linear case the expressions for the energy functions ~L and ~ c  from 
(3.126) and the co-energy functions ~L and ~ c  from (3.139) are equal. 

3.6.1 Simple Application: Specific Influence on the 
Electrostatic/Electromagnetic Coupling Force 

The energy conversion mechanism of electromechanical systems is often ad- 
vantageously used in sensor and actuator applications, such as condenser 
microphones, capacitive acceleration sensors, electromagnetic valves, electro- 
dynamic shakers etc. In general the coupling force F k due to (3.137) is a 
non-linear function of the generalized coordinate xk, but  in many applica- 
tions this non-linear dependence is undesirable. 

Let us take as an example a silicon micro-machined electrostatic trans- 
ducer with a moving membrane electrode and a rigid backplate electrode as 
shown in Fig. 3.17. The supply voltage applied between the two electrodes 
causes an electrostatic coupling force acting on the moving electrode. The 
designer of such an electrostatic transducer has to cope with two contradic- 
tory demands, namely the sensitivity should be as high as possible and the 
non-linear distortion factor as low as  possible. An increase in sensitivity can 
be achieved by a reduced distance do between the electrodes, a bigger effec- 
t i re  electrode area R~rr or by a higher supply voltage. But all these design 
changes cause the electrostatic coupling force to become a stronger influenc- 
lag factor. Hence, according to the non-linear nature of the electrostatic force, 
the non-linear distortion factor is getting bigger. Furthermore, an increase in 
the electrostatic force level may even cause the membrane and the backplate 
electrode to stick. The reader should refer to e.g., [69] for a more detailed 
t reatment  of this topic. 

Other examples are electromagnetic valves, where the air-gap configura- 
tion is often constructed in such a way that there is a linear (affine) stat ionary 
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Fig. 3.17. Schematic diagram of a silicon micro-machined electrostatic transducer. 

characteristic between the magnetic coupling force acting on the plunger and 
the piston position (see, e.g., [56]). Apart from the constructional influence 
on the system's behavior it is also possible to control the system so that  the 
closed-loop meets the designer's requirements. In the latter case, the remain- 
ing design freedom may be even used to optimize the system from a point of 
view which cannot be addressed by control. In particular, the pleasing phys- 
ical structure of the coupling mechanism of electromechanical systems offers 
a variety of methods for a physically based controller design. Let us take as 
an example the simple electromagnetic valve of Fig. 1.4 from Chapter 1 with 
Fext = 0 and let us assume an ideal coil current controller such that  the coil 
current iL serves as a control input. Then the mathematical model of the 
electromagnetic valve of Fig. 1.4 written as a PCHD-system reads as 

~ x  = (J  (x) - S (x)) ~ + g (x)i~ (3.141) 

with the state x T = [z, my!, the storage flmction 

1 (  1 ~ )  
V(x)  = -~ cx 2 + x (3.142) 

and 

J ( x ) =  [ ? l l o ] , S ( x ) =  [O00] ,g(x)= 
0 

l OL(xl) , 
2 Oxl 

where L (a~) is the inductance of the magnetic circuit due to (1.25) 

#0N2D27r (D + 5) 7rb 
L(x , )  = 4(h - xl) (D +5)Trb+~D27r " 

(3.143) 

(3.144) 
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If we want the electromagnetic valve to behave like a linear spring-mass- 
damper system, with a spring constant 5 and an initial position Xd T ---- [Xl,d, 0], 
then the storage function of the closed-loop has to take the form 

1( 1) 
= 5  e(xl-xl 'd)  2+ x~ . (3.145) 

Clearly, the storage function of the closed-loop V~ has a strict minimum at X d 

and V~ (x) - V~ (Xd) is positive definite. Following the passivity-based control 
concept of Section 2.4 the control law must satisfy the relation (see (2.60)) 

(ovo  
g (x) i~ = ( j  (x) - s (~)) \ Ox ] (3.146) 

with Va = V~ - V. A short calculation leads to the control law 

/ 2  (cxl - ~ (xl - Xl,d) ) 
iL 

V 
(3.147) 

where ~ and Xl,  d must be chosen such that  the expression under the square 
root is always positive. 

By means of the so-called damping injection method we can also easily 
change the damping coefficient of the closed-loop linear spring-mass-damper 
system from d to d. Following (2.62) and (2.64) from Section 2.4 with Sd (x) = 
( ~ _  d) [10L(x~)'~ -2 ~,'~ 0xl ] , we immediately get the modified control law 

iL = OL (xl) /OXl (3.148) 

Remark 3. 5. This method is not restricted to electromechanical systems with 
a linear magnetic or electrostatic characteristic. We can replace the left 
hand side of (3.146) by __o_o ~0x~ L with WL as the co-energy function due to 
(3.139). The only difference is that  in general we no longer get an explicit 
expression for the control law as it is the case in (3.147) or (3.148). But  if (o(o)) -~-~x~.WL (Xk,iL) ~ 0, we may apply the implicit function theorem 

(e.g., [59]) and we locally get a unique solution for iL. 

To summarize, we see that  by means of control, we can specifically influ- 
ence the dynamic and stationary behavior of electromechanical sensors and 
actuators and in this way we are able to improve their quality. 



4. Mechanical PCH-systems 

This chapter deals with finite- and infinite-dimensional mechanical systems 
which have the representation of a PCH-(port-controlled Hamiltonian) sys- 
tem as defined in Section 1.4. Although this class of mechanical systems 
contains no dissipative forces, as they are always present in the form of nat- 
ural damping in every realistic application, the controllers designed on the 
basis of these systems are of practical importance. The reason is that  the un- 
damped model is something like the "worst case according to damping" for 
a controller design which is essentially based on damping injection. In many 
mechanical systems with weak damping, as is the case for flexible structures, 
the resulting controllers show sufficient robustness against parameter inaccu- 
racies, in particular concerning the damping behavior. 

In view of the application of this chapter, namely control of infinite- 
dimensional smart beam structures, we are interested in a mathematical 
framework for a uniform description of the finite- and infinite-dimensional 
case. In literature, symplectic or Poisson manifolds serve as a natural geo~ 
metric oriented formulation of Hamiltonian systems, see, e.g., [1], [16], [18], 
[93], [106]. In this chapter, we will briefly summarize some essential results 
of the Poisson bracket approach which are important for the control appli- 
cations being considered. We will also assume that  the PCH-systems con- 
sidered are described in a suitable vector space with a well-defined Poisson 
bracket. On this basis we will formulate the non-linear H2-design (see Sec- 
tion 2.1), the non-linear Ha-design (see Section 2.3), the PD-(proportional 
differential) controller design and the idea of disturbance compensation for 
finite- and infinite-dimensional PCH-systems. The stability investigations of 
infinite-dimensional systems is much more complicated than in the finite~ 
dimensional case because the compactness of the level sets of the Lyapunov 
functions are no longer automatically ensured. We will not address this prob- 
lem here, but the reader is referred to e.g., [1], [18], [92] and the references 
cited there for more details. 

By means of an infinite-dimensional piezoelectric composite beam struc- 
ture we will apply the different control strategies developed so far for PCH- 
systems. The feasibility of these control concepts essentially relies on the 
fact that  the piezoelectric structures allow a spatial distribution of the piezo- 
electric sensor and actuator layers. The design of the spatial pattern of the 
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sensor and actuator electrodes is an additional degree of freedom and can be 
regarded as a part  of the control synthesis task. In this way, we are able to 
design the sensor and actuator layers in such a way that  they are collocated 
and hence the well known effects of observation/actuation spillover can be 
prevented. 

4 . 1  F u n d a m e n t a l s  o f  L a g r a n g i a n  a n d  H a m i l t o n i a n  

S y s t e m s  

4.1.1 T h e  F i n i t e - d i m e n s i o n a l  Case  

Let us consider a mechanical system with no external and dissipative forces 
which can be locally described by the coordinates x = (Xl , . . .  ,Xn) of the 
configuration manifold A/~. The Lagrangian L (x, v) can be regarded as a 
function from the tangent bundle Tfl4 of ~/t to R with the system velocities 
v~ = ~x~,d i ---- 1, .. . , n. Usually, the Lagrangian is the kinetic minus the po- 
tential energy, but  this is not always the case, e.g., if we calculate Lagrange's 
equations with electromagnetism, see, e.g., [32]. From Hamilton's variational 

principle, which states that  the action integral f:$ L (x, v) dt is extremized for 
curves x (t) connecting two fixed endpoints x (tl) and x (t2), we can derive 
the well-known Euler-Lagrange equations [36], [93] 

d OL OL 
- - 0  for i = l , . . . , n .  (4.1) 

dt Ovi Oxi 

Now, by means of the Legendre transform (x, v) --~ (x, p) with the conjugate 
a L  momenta p~ = ~-~,~, i = 1 , . . .  ,n ,  the Euler-Lagrange equations (4.1) can be 

transformed into the equivalent Hamilton's equations 

with the identity matrix i and the associated Hamiltonian function or energy 
function 

n 

H (p, x) = ~ v~p i - L (x, v) . (4.3) 
i = 1  

In order to express v in (4.3) as a function of p and x, we assume that  the 
0 2 

( x , v )  ~ (x ,p) i s  invertible. Obviously, i f the  matr ix [ ~ L ]  transformation 

is regular the implicit flmction theorem guarantees that  the transformation 
is locally invertible. In this case, the Lagrangian L is said to be regular or 
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non-degenerate, see, e.g., [93]. I~ more general terms, the Legendre transform 
is a fiber derivative which defines a map from the tangent bundle T .M to the 
cotangent bundle T*A/[ of the configuration manifold A/[ [1], [93]. It  is easy 
to see that  (4.2) is a PCH-system as shown in Section 1.4. 

Remark 4.1. If we assume a mechanical system with a Lagrangian of the 
form L ( x, v) = wk (x, v) - w p  ix), with the potential energy wp and the 
kinetic energy wk = l v T M  i x) v, where M (x) denotes the positive definite 
generalized inertia matrix, then it is quite clear that  the energy function H 
of (4.3) is equivalent to the sum of kinetic and potential energy. 

Remark 4.2. Let us consider an electromechanical system as presented in 
Section 3.6 where the inductor currents ik, k c L, the capacitor voltages 
u t, l E C, the generalized coordinates x and the generalized velocities v 
together with the coordinate function z:  (ij, uJ,x, v) --* (ik, ut ,x,  v), j E B, 
k E L, I E C form a chart of the configuration space. Remember that  with 
i j ,  uJ, j E B we mean the currents and voltages of all branches of the electric 
network. Further, let x~, k E M denote those generalized coordinates x which 
are linked with an inductor or capacitor. The electrical part  of the system 
equations of an electromechanical system is given by (3.125) 

d j 
(. . .  , i l , . . .  , z k , . . . ) = u J  

d (. . . ,  xk , . . . )  -- ij 

, j ,  I E L ,  k E M  

, j ,  I E C ,  k E M ,  
(4.4) 

with the flux and charge linkages CJ and qj. Provided that  the existence of 
the co-energy functions ?~L and ~ c  for the inductors and capacitors from 
i3.139) can be ensured, the mechanical par t  of the equations of motion can 
be easily derived by means of the Euler-Lagrange equations (4.1). We just 
have to extend the Lagrangian L in the form L = L + ~)L ~- ?~C with 

(4.5) 

where z* denotes the pullback of the coordinate function z. 

In the literature, symplectic or Poisson manifolds are used for a natural  
geometric oriented formulation of Hamiltonian systems [1], [16], [18], [93], 
[106]. Here, we will just briefly summarize some essential results of the Pois- 
son bracket approach which are important  for the subsequent considerations. 
We are particularly interested in a mathematical framework for a uniform 
description of finite- and infinite-dimensional Hamiltonian systems, see also 
[125]. 

A Poisson manifold 7 ) is a manifold with a Poisson bracket {.,-}. The 
Poisson bracket assigns to two smooth real-valued functions F ,  G : P 
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R another smooth real-valued function {F, G} which is bilinear and skew- 
symmetric. Furthermore, the Poisson bracket satisfies the Jacobi-identity 

{{F, G},  H} = {{F, H } ,  G} + {F, {G, H}} (4.6) 

and Leibniz' rule 

{F ,HG}  = {F ,H}  G + H {F,G} (4.7) 

with the smooth real-valued functions F,  H,  G. 
Let 7) be a Poisson manifold with a smooth function H : 7) ~ R. Then 

there exists a unique vector field XH E TT), with TT) as the tangent bundle 
of 7), such that  the relation 

L x u F  = {F ,H}  (4.8) 

holds for all smooth functions F : 7 ) ~ R with LxH F as the Lie-derivative 
of F along XH, see, e.g., [93], [106]. The vector field XH is then called a 
Hamiltonian vector field associated with the Hasniltonian function H. Con- 
sequently, the rate of change of a function F along the integral curve of XH 
is given by 

d 
- - F  = {F ,H}  . (4.9) 
dt 

Equation (4.9) is often called the Poisson bracket form of the equations of 
motion [93]. Now, it is easy to classify a constant of motion, namely a function 
F on 7) is a constant of motion if and only if {F, H} = 0. Thus, due to the 
skew-symmetry of the Poisson bracket it follows directly that  the Hamiltonian 
function H is a constant of motion. In other words the total energy H is 
conserved along the integral curves of the system. 

Let us consider a Poisson manifold 7) with local coordinates (t, uZ), 
/3 = 1 , . . .  ,s,  where t denotes the independent variable and u represents 
the dependent variables. In the following we will assume that  the functions 
F and H on 7) do not depend explicitly on t, but this is no restriction of gen- 
erality, see, e.g., [106]. Thus, in the local coordinates u the Poisson bracket 
reads as 

~ OF OH 

/3=1 "~=1 
(4.10) 

with J/3"~ (u) = {u/3,u "~ } as the so-called structure functions of the Poisson 
manifold 7 ). To show the relation (4.10), at first, we write the Hamiltonian 

s /3 vector field XH in the local coordinates u in the form XH = ~ = 1  a (u) 0 
with the coordinate functions a/3 (u), see [106]. Then by (4.8) we have 
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{uZ,H} =a~(u)=-{H,u  ~} (4.11) 

and hence {F,H} can be written in the form 

a~ ( ) OF _ ~ {H,u~} OF (4.12) 
{ }_F,H = _u_ Ou~ Ou~ " 

~=1 ~=1 

Replacing F by H and H by u z in (4.12), we get the relation 

{H,u~} = _ ~-~ {uZ,u.y } OH (4.13) 
~) ~t ~ 

and this leads us directly to the result 

Ou~ OuT 

Thus, in local coordinates u the Hamiltonian vector field takes the form 

~-~ ~ OH 0 (4.15) 
XH =- E J~7 (u) Ou7 0u~ 

B=I ~=I 

and the Hamilton's equations read as 

d ~ 0 H  (4.16) u~= {u~,H} = JZ'~ (u) Ou'~ 

Moreover, if P is a Poisson manifold then there exists a unique linear map 
$2 # : T*T ~ --* T P ,  coming from a bi-vector, such that the relation 

d = y2# - - u  (dH (u)) = XH (u) (4.17) 
dt 

holds for all smooth functions H with u E P,  d H  E T ' P ,  the cotangent 
bundle of P ,  and XH C TP, the tangent bundle of P.  The rank of the 
Poisson manifold at u is then defined by the rank of the linear map ~ #  at 
u, see, e.g., [106]. In local coordinates u the rank of the Poisson manifold 
equals the rank of the so-called structure matrix J (u) = [ J ~  (u)]. Clearly, 
J (u) is a skew-symmetric matrix. Now, by Darboux' Theorem (for bi-vectors) 
we can always find local canonical coordinates u ~ = (x~,p~), a -- 1 , . . .  ,s, 
i = 1 , . . .  ,n, s = 2n, for a Poisson manifold P with constant rank such that  
the Poisson bracket takes the form 

{F,G}= ~-~(OF OG OF OG) (4.18) 
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From (4.15) we see also that the Hamiltonian vector field XH in canonical 
coordinates u = (x, p) is given by 

XH = Ox~ Op ~ + - -  " (4.19) 
i-~l ~)pi OX i 

Clearly, (xi ( t) ,  pi (t)) is an integral curve of XH if and only if Hamilton's 
equations (4.16) hold. Moreover, the structure matrix J (u) in canonical co- 
ordinates (x, p) has the simple form 

with the identity matrix I. 

Remark 4- 3. A Poisson manifold P is called symplectic if the associated Pois- 
son bracket is nondegenerate i.e., the Poisson manifold P has maximal rank 
everywhere, see, e.g., [18], [93], [106] for more details. 

4 .1 .2  T h e  I n f i n i t e - d i m e n s i o n a l  Case  

To begin with it should be emphasized that an exact  mathematical  formu- 
lation of the infinite-dimensional case requires many difficult technicalities. 
This is beyond the scope of this work. For details the interested reader is 
referred to [1], [18] and in particular [106]. Here, we intend only to point 
out the parallels to the finite-dimensional case. One of the main problems 
with evolutionary equations is that  Darboux' Theorem is no longer valid. 
Nevertheless, the Poisson bracket approach of the previous subsection can be 
extended to infinite-dimensional Hamiltonian systems. 

Firstly, let us introduce some useful notation. Consider a (1 + r + s)- 
dimensional smooth space :P = R x :D x .h4 with local coordinates (t, z ~, uZ), 
a = 1 , . . .  , r and ~ = 1 , . . .  , s. Here, the time t and the spatial coordinates 
z denote the independent variables and u is used to denote the dependent 
variables. The space 7 )('~) = R z 7:) • .h4(n), whose coordinates represent the 
independent variables, the dependent variables and all derivatives of the de- 
pendent variables up to the order n is called the n-th order jet  space of P,  
see [106]. A smooth real-valued function f (t, z l , . . . ,  z r) of (r + 1) indepen- 

dent variables has ( r + k )  different k-th order partial derivatives. Therefore, 
/ 

in order to make the notation clearer, it makes sense to use the symmetric 
multi-index notation 

0k 
OzJlOzJ2...OzJ~ f = fJ '  fo = f (4.21) 

with z ~ = t. In this notation J = ( j l , . . .  , jk) is an unordered symmetric 
multi-index, with 0 < ji  _< r, i -- 1 , . . .  , k indicating the derivatives being 
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taken and # J  = k is the orde# of J.  In the following u (~) alwa~zs refers to 
an element of AA(n) and hence its components are of the type u~, with/3 = 
1 , . . .  , s and J running over all symmetric multi-indices (4.21) for 0 < k < n. 
Henceforth, in order to simplify the notation, we will write X ( f )  instead of 
Lx  f for the Lie derivative of a functional f along a vector field X. 

In the infinite-dimensional case the Hamiltonian function has to be re- 
placed by a functional of the form 

Let us assume that  the density h is well defined o n / 9  for all times t > 0. 
Further, we have to add suitable conditions for u ('~) on the boundary 07) of 7). 
For the sake of simplicity the boundary conditions will be specified only in the 
applications, because they are not relevant for the following considerations. 
Let ~r  be a one parameter group (t,~,~('~))(T) = ~r  ( t ,z ,u ('~)) which acts 

on P(~) such that  the relations t(T) = t and ~ (T) = z are met. Then the 
infinitesimal generator ) (  e T (P(~)) of ~ takes the form )~ = pr(n)X with 
the evolutionary field X -- ~-~3=1 a3 (t, z, u (n)) a o~-'~, X e T (7)). Here pr('~)X 
denotes the n-th prolongation of X given by [106] 

d d 
pr(~)X -- ~_.~ ~ . .D3a3- -~ ,  Dj  = ... (4.23) 

t3=1 J Oltj dzJ~ dzJk 

with the symmetric multi-index J = ( j l , . . .  , Jk) and the total derivatives 

O u ~ O  ' 
d _ 0 + E E O z _ _ N  JOu----~j i = O , . . . , r .  (4.24) dzi Oz~ ~=1 J 

The sum ~ j  in (4.23) and (4.24) is taken over all symmetric multi-indices 
J up to the order n, i.e. 0 < # J  < n. The functional (4.22) is invariant with 
respect to ~T, if and only if the relation 

$ 

/3=1 

is met, with the Euler operators 

E~-- E (-1)#J Dj O~ J ~, /3-- 1,... ,s. (4.26) 

The third term of (4.25) is obtained by simple integration by parts and the 
fact that  due to the imposed boundary conditions the terms on the boundary 
07) vanish. 

Let J denote a skew-adjoint differential operator, then the choice 
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8 

an = E jn'~ (E,y (h)) (4.27) 
")'=1 

guarantees that (4.25) holds. Recall that  a differential operator J is called 
skew-adjoint if the following relation 

J ; 1  W;I 

is fulfilled. Now, we are ready to define the bracket operation 

s 8 

(4..,, 

for the functionals F =- f , f  (z,u("))wv and H = foh(z,u('~))w,. Obvi- 
ously, the bracket is bilinear and skew-symmetric by its definition. Further- 
more, if and only if (4.29) satisfies the Jacobi-identity (4.6) then the bracket 
defined by (4.29) corresponds with the Poisson bracket, see, e.g., [106]. In 
this case the differential operator J is called Hamiltonian. The Leibniz rule 
(4.7) has no counterpart for infinite-dimensional Hamiltonian systems since 
there exists no well defined multiplication of functionals. 

Let J be a Hamiltonian operator with a Poisson bracket as defined in 
(4.29). Analogous to (4.8) there exists a unique vector field XH to the func- 
tional g = fz)h (z, u (n)) wv such that the relation 

d 
- - F  = pr( '0XH (F) = {F,H} (4.30) 
dt 

is satisfied for all functionals F = fz) f (z, u(~)) wv, see [106]. The vector field 
XH, given by 

0 XH = jn'~ (E,~ (h)) Oun' 
n = l  "y=l 

is then called Hamiltonian vector field associated with the Hamiltonian func- 
tional H = fz~ h (z, u ('~)) w~. Accordingly, the Hamilton's equations in the 
infinite-dimensional case read as 

0 .  
N~ = { ~ n , H }  = pr(~)X~ ( ~ )  = jn , (E~  ( h ) ) ,  ~ = 1 , . . .  ,~. 

3,=1 
(4.32) 

4 . 2  C o n t r o l l e r  D e s i g n  S t r a t e g i e s  

4.2.1 P r e l i m i n a r i e s  

For the controller design it is necessary to generalize the Hamilton's equa- 
tions of (4.16), (4.32) for mechanical systems with external forces. Generally, 
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these external forces represent the action of control, disturbance, dissipation 
or the interaction to the system environment. Here, the Lagrange-d'Alembert 
principle offers an effective way to describe the motion of a mechanical sys- 
tern subject to an external force field. This also optimally fits the geometric 
formuls of the Euler-Lagrange equations [93]. For the controller design of 
generalized finite-dimensional Euler-Lagrange systems the reader is encour- 
aged to consult a very recent and important book [107]. 

From now on, we will focus on finite- and infinite-dimensional PCH- 
systems with external inputs ej, j = 1 , . . .  , m', consisting of control inputs 
and disturbances. In the finite-dimensional case the associated Hamiltonian 
function reads as 

m ! 

H = H o -  E H j e j '  
j=l 

(4.33) 

where He denotes the Hamiltonian function of the free system and Hi, j = 
1 , . . .  , rn ~ are the so-called interaction Hamiltonian functions, see, e.g., [103], 
[143]. For infinite-dimensional PCH-systems with external inputs the Hamil- 
tonian function (4.33) has to be replaced by a functional H, with the Hamilto- 
nian functional of the free system H0 = fz) h0 (z, u (n)) wv (see (4.22)) and the 
interaction Hamiltonian functionals Hj = fz) hj (z, u (n)) wv, j = 1 , . . . ,  m'. 
Here, we always assume that  the external inputs ej, j = 1 , . . .  , m'  act in such 
a way on the system that  the Hamiltonian functional has a representation 
of (4.33). Of course, this formulation also contains situations where the ex- 
ternal inputs appear in the boundary conditions. Inserting H of (4.33) or its 
associated density h into (4.15) or (4.31), respectively, we can see that  the 
external inputs ej appear affine in the Hamiltonian vector field XH, i.e. XH 
has the form 

m p 

XH ~" XH~ -- E ejXHj" 
j = l  

(4.34) 

Analogous to the Poisson bracket form of the equations of motion (4.9) and 
(4.30) the change of a function F due to the motion of the PCH-system with 
the external inputs ej is given by 

m s 

d F  = {F,H0} - E {F,Hj} e j .  (4.35) 
dt 

j--1 

The special choice yj -- Hi, j = 1 , . . . , m  ~ for the output functions of a 
PCH-system is called the natural output [103]. The importance of this choice 
can be seen by calculating the time derivative of the Hamiltonian function 
(functional) H0 of the free system along a solution of the PCH-system 
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m I m ! 

dH0 = {H0,H} = E {Hi,H} ej = E dyj e 
dt dt J" 

j = l  j = l  

(4.36) 

Equation (4.36) is exactly what we know as the energy balance equation and 
it states that  the change of the internal (stored) energy H0 of the PCH-system 
equals the flow of power into the system caused by the external inputs ej. 
This configuration of inputs and outputs is also called the case of collocated 
sensors and actuators (e.g., [103]). For example, an att i tude sensor is located 
at the same point as a torque actuator, or a displacement sensor is collocated 
with the corresponding compatible force actuator. A perfect sensor/actuator 
collocation has the big advantage that it usually provides a stable perfor- 
mance in the closed-loop feedback control, provided that the free system, i.e. 
no external inputs, is stable (e.g., [55]). In the case of infinite-dimensional 
mechanical systems with distributed sensors and actuators, such as smart 
structures with piezoelectric sensor and actuator layers, one can achieve a 
collocated sensor/actuator pairing by the additional degree of freedom of 
spatial shaping of the sensors and actuators (see, e.g., [50], [51], [68], [76], 
[118], [123]). Here, the design of the sensors and actuators becomes a part of 
the controller design. 

Remark ~.~. Although dissipative forces, like e.g. the natural damping of 
flexible structures, are disregarded within the considered class of mechanical 
systems, the controllers designed on the basis of these systems are of prac- 
tical importance. The reason is that  the undamped model is something like 
the "worst case according to damping" for a controller design which is essen- 
tially based on damping injection. The resulting controllers show sufficient 
robustness against parameter inaccuracies of real-world applications, in par- 
ticular concerning the damping behavior. At this point it is worth mentioning 
that  in the literature a variety of models (Kelvin-Voigt, viscous, structural 
damping etc.) is available to add damping to flexible structures (see, e.g., [9] 
and the references therein). Generally, the damping parameters for a specific 
application can only be determined by means of experiments. In particular 
for non-linear systems this is rather a difficult task. 

Next, we will present some essential results for the control of finite- and 
infinite-dimensional PCH-systems. It is noticeable that  these design strategies 
do not depend on the specific structure of the Hamilton's equations but they 
require only the collocation of the sensors and actuators. Therefore, we do 
not need to distinguish between linear and non-linear or finite- and infinite- 
dimensional PCH-systems. Before starting with the controller design, we will 
briefly comment on the stability of infinite-dimensional systems. 
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4.2.2 Some Remarks  Concerning the  Stabi l i ty  of 
Inf in i te -d imensional  Sys tems 

A well-known method to investigate the stability of an equilibrium is given 
by Lyapunov's theory. But in the case of infinite-dimensional systems some 
additional aspects have to be taken into account, see, e.g., [1]. For finite- 
dimensional systems the compactness of the level sets of the Lyapunov func- 
tion is automatically met [1]. The proof of this part in the infinite-dimensional 
case can be rather delicate. From the literature it is known that Lyapunov's 
stability is directly involved with the energy criterion for infinite-dimensional 
systems and with the so-called potential-well hypothesis. For this the reader 
is referred to [92] where interesting applications in the field of non-linear 
elasticity can also be found. Henceforth, our stability investigations of the 
infinite-dimensional PCH-systems under consideration are based on the fol- 
lowing stability hypothesis: Let the Hamiltonian functional of the free sys- 
tem H0 be a positive definite functional. Then, we assume that the condition 
d H 0  = (H0, H} < 0 implies the stability of the infinite-dimensional PCH- 
system. 

Another peculiarity of infinite-dimensional systems, not known from the 
finite-dimensional case, is the so-called observation/actuation spillover [7]. 
This spillover effect may occur if the mathematical model for the controller 
design is based on a finite approximation of the infinite-dimensional system. 
The problem is that the control input can cause an unintentional excitation 
of the truncated modes and vice versa the truncated modes may have an 
undesired contribution to the sensor output. In both cases the performance 
of the closed-loop can be degraded, or in the worst case the system can 
even be destabilized. Similar effects can be observed by sensors/actuators, 
which are located at discrete points only and thus cannot sense/actuate those 
modes having a node at these points. However, this is why we will direct 
our attention to control strategies which a priori prevent spillover effects. 
The subsequent control strategies are applicable to both, finite- and infinite- 
dimensional systems. 

4.2.3 Non-l inear  H2-design for P C H - s y s t e m s  

Let us consider a PCH-system with the Hamiltonian function 

m 

H = Ho - ~ Hjuc ,y ,  (4.37) 
j = l  

where H0 is the Hamiltonian function of the free system and uc , j ,  j -- 

1, . . .  ,m are the control inputs. Further, let us assume a perfect sen- 
sor/actuator collocation with the output functions 

y j = H j ,  j - - - 1 , . . . , m .  (4.38) 
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Then the non-linear H2-control problem from Section 2.1 is to find a control 
law uc,j,  j = 1 , . . .  , m such that the objective function 

) ,,c~L',"to,o~) "2 -~Y + IluCII2 dt (4.39) 

with II II as the square norm is minimized with respect to uc. 

Propos i t ion  4.1. Given a PCH-system with the Hamiltonian function (4.37) 
and the natural outputs (4.38). Let us assume that {Hi,  Hi} = 0 holds for all 
i, j = 1 , . . .  , m  and the zero-state observability condition of Theorem 2.1 is 
satisfied. Then the control law 

d 
uc5 = - ' ~ y j ,  J = 1, . . .  ,m  (4.40) 

solves the optimal non-linear H2-control problem with respect to the objective 
function (5.39) [123]. 

Proof. For infinite-dimensional PCH-systems recall the stability hypothesis 
of Subsection 4.2.2. Following Section 2.1, the non-linear H2-control problem 
is solved by finding a positive definite solution V of the associated HJBi (2.11) 

inf (d l(d )) ~c~L~"to,~) ~ v + ~  ~ y  +lluclr 2 <o (4.41) 

or of the equivalent Poisson bracket representation 

inf ({V, H0} 
ucEL~[0,oo) 

<0.  
(4.42) 

From (4.42) one can immediately see that the optimal choice u~,j for uch,  
j -- 1,. . .  ,m is given by (compare with (2.9)) 

u~,j = {V, Hi}. (4.43) 

The energy function of the free system H0 serves as a suitable candidate for 
solving (4.42), namely V = pHo, p > 0. Inserting V and u~,j into (4.42), we 
get the inequality 

1_p2  m 
E {Ho, Hi} 2 < 0, (4.44) 
j=l 
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which is obviously satisfied for p >_ 1. Furthermore, p = 1 even solves the 
associated HJBe (2.10) and hence together with the assumption for the zero- 
state observability it is proved that  

d 
uc,d = - {Hi ,H0} = - ~ y j ,  j = 1 , . . .  ,m  (4.45) 

solves the optimal non-linear H2-control problem. 

4.2.4 Non-linear Hoo-design for PCH-systems 

For the non-linear H~-design we consider a PCH-system with the Hamilto- 
nian function 

?D, m 

H = Ho - E Hu,juc,j  - E Hd,jdj, (4.46) 
j=l d=l 

where the number of disturbance inputs dj equals the number of control 
inputs uc,j ,  j = 1 , . . .  ,m. Again a perfect sensor/actuator collocation is 
taken for granted, i.e. the output  functions read as 

yj = Hu,j, j = 1 , . . .  , m .  (4.47) 

As already discussed in detail in Section 2.3, within the scope of the non- 
linear H~-design,  we are looking for an optimal solution u~ and d* of an 
optimization problem with the objective function 

J ~  = inf 1/o (Jld I 
dcL~'~[0,~) ucEL'2n[O,oo) -2 "~Y 

+ I[~cll 2 - 7 [Id[I 2) dt 

(4.48) 

for the disturbance attenuation level 7 > 0. In a second step, we also try to 
find the minimum value of 7. 

P r o p o s i t i o n  4.2.  Let us assume a PCH-system with the Hamiltonian func- 
tion (4.46) and the associated natural outputs (4.4 7). Suppose that the control 
inputs act in the same way on the structure as the disturbance inputs, i.e. 
H~,j = Hd,j = Hi,  j = 1 , . . .  , m and that the relation {Hi,  Hi} -- 0 holds for 
all i, j = 1 , . . .  , m. Then the control law 

uc,j  = - y9, j ---- 1 , . . .  ,m  (4.49) 

solves .for "y > 1 the optimal non-linear Hoo-control problem with respect to 
the objective function (4.48) [118], [122], [123]. 
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Proof. For in.finite-dimensional PCH-systems recall the stability hypothesis of 
Sub~ction 4.2.2. Following Theorem 2.2 the non-linear H~-control problem 
is solved by finding a positive (semi)-definite solution V of the ,associated 
HJBIi (2.46) 

deLr[0,oo)~'ceL~"[0,~176 dt + 2 \ l ldt  II _< 0 .  
(4.50) 

Taking into account the assumption H,~,j = Hd,j = Hi,  j ---- 1, . . .  , m, we can 
rewrite (4.50) in the Poisson bracket form 

sup inf {V, Ho} - E {V, Hi}  (uc,j  + dj) + 

j•l (4.51) 
1 

With the optimal solutions uSd and d~, j :: 1, . . .  , m (see also (2.44)) 

. . 1 {Y, Hi} (4.52) Uc5 ={V, Hj} and d ~ - - -  

and the suitable candidate for the solution of the HJBIi V = pHo, p > 0, we 
get 

~ 1 (  p2 ( ~ _ _ 1 ) )  (4.53) 
j= l  ~ 1 - { H 0 , H j }  2 _< 0 .  

Clearly, for ~ > 1 and p > 1 ~//-~-1 the inequality (4.53) is fulfilled. Further- 

by setting p = ~]--1,  we can even solve the associated HJBIe (2.45) more, 

and hence (4.52) becomes 

~---L-~_ 1 {H0, Hj } = - ~ _  1 d uc,j  = -~y j  . (4.54) 

This completes the proof. �9 

4 . 2 . 5  P D - d e s i g n  for  P C H - s y s t e m s  

Again, a PCH-system with the Hamiltonian function 

m 

H = Ho - F_, Hj~,c,i 
j=l 

(4.55) 
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and the associated natural outputs yj = Hi, j = 1,. . .  ,m form the basis 
of our investigations. Without restriction of generality, let the origin be an 
equilibrium of the free system. If we succeed in finding a control law which 
is derived from a potential function Vu via 

m 

E u c h d H j  = - d Y , ,  (4.56) 
j = l  

then the closed-loop can be considered as a free PCH-system with the new 
corresponding Hamiltonian function/40 = H0 + Vu [103], [119]. A well known 
controller, which fits this framework, is a P(proportional)-controller 

m 

~c,j = - ~ ej,y~ (4.57) 
i = 1  

with the positive (semi)-definite matrix P and the associated potential func- 
tion 

V,, = -~ Pj,y~yj . (4.58) 
j = l  i = 1  

In the sense of the previous subsections the control law (4.57) can be extended 
by a D(differential)-controller of the form 

'~ d 
,~c.j = - ~ Dj~-giy, (4.59) 

i = 1  

with a positive (semi)-definite matrix D. Then the change of the extended 
Hamiltonian function/~0 due to the motion of the system is given by 

m 
d .0  d d d 
d t - { / ~ 0 ,  H } - - -  {Hj,H} D j I ~ Y i = - ~ E  j i~Yj -~Yi ,  

j = l  i = l  j = l  i = 1  

(4.60) 

which is obviously less equal zero. Fhrthermore, if/~0 is a positive definite 
functional in the infinite-dimensional case, then the stability hypothesis of 
Subsection 4.2.2 together with (4.60) implies the stability of the closed-loop 
system. 

4.2.6 Disturbance Compensat ion for PCH-systems 

In general, disturbance signals are considered to be signals that  cannot be 
measured. In many cases we simply make some assumptions about the dis- 
turbance, as e.g., in the non-linear H~-control,  where the disturbance d has 
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to meet the requirements d E L2 [0, c~). But if we find a way to measure 
directly or indirectly the disturbance, we will, of course, use this information 
to design the controller. Let us assume a PCH-system with the Hamiltonian 
function (4.46) and the corresponding Hamiltonian vector field XH analogous 
to (4.34) 

m m 

XH = XHo -- E ucsXH~',J -- E djXH~,j, (4.61) 
j = l  j = l  

where the number of control inputs u c j  is equal to the number of disturbance 
inputs dj, j = 1 , . . .  , m. In some situations it is possible to design the sensor 
layers in such a way that  the measured quantities yj satisfy the relation 

Eo~jyjXH,~. ~ = djXHd.~ + , a j  C R, j = 1 , . . .  ,m, 
j=l j=l 

(4.62) 

m so that  X[I =- XHo + ~'~j=l f(J is still a Hamiltonian vector field with the 

associated Hamiltonian H.  Obviously, X ~  a n d / 7  are the evolutionary vector 
field and the Hamiltonian of the closed-loop, if the control law 

uc5 = - w j y j ,  j = 1, . . .  ,m  (4.63) 

is used. From now on we will refer to this control strategy as the so-called dis- 
turbance compensation scheme. A very interesting application of this method 
in the infinite-dimensional case for a simply supported composite piezoelec- 
tric beam under the action of an axial support motion will be presented in 
Subsection 4.3.7. 

4.3 Applicat ion:  Control  of  Smart Piezoelectr ic  B e a m  
Structures  

In this section, the main aim is to show the application of the previously for- 
mulated control strategies by means of an infinite-dimensional PCH-system, 
namely a piezoelectric composite beam structure. It is a fairly straightfor- 
ward mat ter  to extend the theory to cover plates, see, e.g., [123]. Further, 
we intend to make it clear that for infinite-dimensional systems the choice of 
the actuators and sensors can contribute quite a lot to the controller design 
and hence should be regarded as an integral part of the control task. In this 
way, it will be possible to measure those integral quantities by means of the 
sensors that  are required for the realization of the distributed feedback laws. 
The actuators will provide the correctly distributed control input. In recent 
years, many control techniques which take into account the distributed na- 
ture of structural systems have been reported. We will not consider control 
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concepts based on a finite approximation of the infinite-dimensional system. 
It should be emphasized that  the distributed nature of the sensors and actu- 
ators is the fundamental idea behind all the considerations. Nevertheless, the 
literature contains many theoretical and/or  application-driven contributions 
dealing with finite-dimensional approximative models which are more or less 
successful. To our knowledge, in [6], was the first time a Lyapunov controller 
for a cantilever beam, using a spatially uniform distributed actuator, was 
introduced. Since then other controllers based on Lyapunov's theory have 
been developed. Examples are the modal-filtering concept in space of [95] 
and different modal sensors/actuators with non-uniform spatial distributions 
for certain beams and plates [9], [75], [98], [139], [140]. 

4.3.1 P r e l i m i n a r i e s  

The field of smart structures is manifold. It ranges from aerospace applica- 
tions to structural acoustics to micro-mechanical devices. In literature one 
can find various formulations of what smart structures are. Here we follow 
the definition of [4]: Smar t  structures are structures or structural compo- 
nents  on which are attached or in which are embe~lded sensors and actuators 
whose actions are coordinated through a control sys tem imbuing the structure 
in proportion to their magnitudes to compensate for  undesired effects or to 
enhance desired effects. Apart from the piezoelectric material, which will be 
discussed in the following pages, other materials such as shape memory alloys 
(SMAs), electrorheological, electro- and magnetostrictive materials are used 
in smart structures. The choice of smart material for a specific application 
depends on many considerations, like stiffness, weight, brittleness, specific 
energy, temperature sensitivity, integrability, constructive flexibility etc.. It 
is not determined exclusively by the demands on the controller design. The 
direct piezoelectric effect is the phenomenon which in response to mechanical 
strain the piezoelectric material produces dielectric polarization. This effect 
is responsible for the sensor capabilities of the piezoelectric structures. Con- 
versely, the actuating capabilities are due to the converse piezoelectric effect, 
which says that  an electric field applied to the piezoelectric material induces 
a mechanical stress in the material. The most frequently used piezoelectric 
materials are piezoceramics (e.g., PZT's) and piezopolymers (e.g., PVDF's). 
Where generally piezoceramics suffer from inherent brittleness, piezopoly- 
mers have a weaker electromechanical coupling coefficient [9]. From the con- 
trol point of view piezoelectric materials have the big advantage of making 
it easy to adjust the sensors and actuators to the special application of the 
structure that  is to be controlled. For instance, this can be achieved by shap- 
ing the surface electrode of the piezoelectric material in the spatial domain 
[50], [51], [76]. 

It is well known that  at higher electric field strengths the polarization 
of the piezoelectric material saturates and hence a significant hysteresis and 
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strain-based non-linearities appear. A tracking control strategy for a piezoce- 
ramic actuator with hysteresis can be found, e.g. in [34]. However, in context 
with the piezoelectric structures which are being considered the mathemati-  
cal model is restricted to the fundamental relations of linear piezoelectricity 
with the constitutive equations 

crij = E cijkl~kl -- ~ akijDk 
kl k (4.64) 

Ei = - E aiklCk~ + E dikDk , 
kl k 

where a denotes the stress, ~ the strain, D the electric flux density and E 
the electric field strength [105]. The integrability conditions 

Cijk l  : Cj ik l  : C l j l k  ~- C k l i j ,  a k i j  : a k j i ,  d i j  -~ d j i  (4.65) 

guarantee the existence of an energy function wp 

Wp : O'ij-~ij + Ei Di wvdt (4.66) 

0 V 

o r  

wp = 5 ~ Cijktr162 -- 2 E aiklckID' + E dikVkDi wv (4.67) 
V i j k l  ikl  i k  

with V as the volume of the structure and w, = dzldz2dz3 as the related 
volume element. Here, we assume that no energy is stored in the structure at 
time t = 0, i.e. initially Wp = 0. Many piezoelectric materials are relatively 
insensitive to temperature variations [9]. For this reason we shall also ignore 
the coupling with the thermal field in the constitutive equations (4.64). A 
mathematical  model of piezoelectric sensors and actuators, which takes all 
the effects of the interaction of mechanical, electrical and thermal fields into 
account, is presented in [49]. Inside the piezoelectric lamina, the free volume 
charge density is zero and hence Maxwell's equation for D reads as 

E = 0 (4.68) 
i 

In an electrostatic field the electric potential Pet completely describes the 
electric field strength E by 

0 
Ei - 9z~ Pel (4.69) 

and since the metallic electrodes define equipotential surfaces, the electric 
field strength E is perpendicular to the electrodes. 
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4.3.2 B e a m  Structure  under  Cons iderat ion  

Generally, a piezoelectric beam consists of a large number of thin layers of 
laminae with and without piezoelectric properties. The different piezoelectric 
layers are supposed to be perfectly bonded to the substrate and they can 
be either used as actuators or sensors. Henceforth, all our considerations are 
based on a simply supported piezoelectric composite beam shown in Fig. 4.1. 
The ttexural vibrations due to different disturbances, namely lateral loadings 
and axial support motions, are studied in the (Zl, z3)-plane, where zl is the 
axial and z3 the lateral coordinate. The longitudinal displacement will be 
denoted by Ul and the normal displacement by u3. 

piezo /substrate  : 
layers 

f',A  - I I u II J Y J  

Z 3 Ul 

Fig. 4.1. Simply supported composite piezoelectric beam. 

For the derivation of the mathematical model let us assume that  the 
stresses aij = 0 for i + j > 2 and the electric flux density Di = 0 for i -- 1, 2. 
Since (4.68) must hold, it follows that the component D3 of the electric flux 
density is a function of zl and z2. In the literature one can find other ap- 
proaches where assumptions on the components of the electric field strength 
E are made. Essentially, this approach leads to the same structure of the 
mathematical  model and hence does not change anything for the controller 
design. Inserting these simplifying assumptions into (4.64), we obtain the 
constitutive equations of the beam in the form 

0"11 ---- C * g ' l l  - -  a'D3 (4.70) 

and 

E3 = - a ' e l l  + d'D3 (4.71) 
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with the effective material parameters a*, c* and d*. The longitudinal strain 
el l  is related to the beam's curvature by means of the Bernoulli-Euler as- 
sumption 

0 ~ 
e l l  = ~11 --  Z30Z--~lU3 , (4.72) 

where ~11 is the strain in the axis z3 = 0 (e.g., [147]). In the sense of v. 
Karman a non-linear formulation is used for e11, i.e. 

0 
~11 ---- ~ z l U l  -1- ~ ~lZlU3 �9 (4 .73)  

Thus, the potential energy (4.67) for the beam being considered takes the 
form 

,/ w p =  ~ (c*e2,-2a*ellD3+d*D])w,= 

V 

z3-o~zzl U3 ) 193 + o, _ 

(4.74) 

By neglecting longitudinal and rotational inertia, the kinetic energy wk is 
given by 

L 

i (o) ' wk= -~ -~u3 dz, (4.75) 

0 

with # = fa pwa, the mass density p, the cross section of the beam A lying 
in the plane zl = const, and the related area element wa = dz2dz3. 

4.3.3 Actuator and Sensor Design 

Following the discussion in Subsection 4.3.1, the piezoelectric structures allow 
a spatial shaping of the piezoelectric layers, which carl be used as an additional 
degree of freedom for the controller design. Before starting with the actual 
actuator  and sensor design, we will summarize the contributions, which a 
suitable choice for the actuators and sensors can make to the controller design, 
in the following remark. 

Remark 4.5. For this purpose let us assume that  the piezoelectric structure 
is an infinite-dimensional PCH-system with the Hamiltonian functional (see 
(4.46)) 

m l 

H = Ho - Z H~juc,j - y ~  Hdjdj .  (4.76) 
j=x j=l  
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�9 At first, let the disturbance inputs dj, j = 1, . . .  ,l be zero. If we succeed 
in designing the piezoelectric sensor and actuator  layers in such a way that  
the associated natural  outputs yj = H~,,j, j = 1, . . .  ,m,  are measured, 
then the non-linear H2-design of Subsection 4.2.3 and the PD-controller 
design of Subsection 4.2.5 can be solved. 

�9 In the case of nonvanishing disturbances, if it is possible to design l = m 
piezoelectric actuator layers such that  the relation H~ 5 = Hd,j = Hi, j = 
1 , . . .  , m, holds and the corresponding sensor layers measure the natural  
outputs  Hi,  j = 1 , . . .  ,m, then we can find a solution for the non-linear 
Hoo-design of Subsection 4.2.4. The condition H,, 5 = Hd5 says that  the 
plant input uj (in our case the voltage applied to the j ' t h  actuator  layer) 
acts in the same way on the structure as the disturbance dj, with the spatial 
distribution Hd,j. Therefore, if dj is known, its influence on the system cazl 
be exactly eliminated [50], [51]. 

�9 In some cases the design of the piezoelectric actuator and sensor layers 
enables a disturbance compensation in the sense of Subsection 4.2.6. 

Without  going into the details of the special realization, we will subse- 
quently elaborate the fundamental possibilities of designing a spatially dis- 
t r ibuted piezoelectric actuator  and sensor layer. The actuator  design is based 
on the constitutive equation (4.71) where we neglect the influence of el l  on 
/?:3. This simplification is admissible, since the self-generated voltage due to 
the direct piezoelectric effect is insignificant compared with the applied elec- 
tric field (see e.g., [137]). The integration along the electric field strength E3 
from one electrode of the j ' t h  piezoelectric layer to the other leads to the 
result 

h.2,j (zl) 

/ E3dz3 = d* (h2,j(Zl) - -  hl,j(Zl) ) D3 -- d*Tj (Zl) D3 -- Uj (4.77) 

o r  

D3 = Uj 
d*Tj(zl)  (4.78) 

with the height of the piezoelectric lamina Tj (zl) and the applied voltage 
Uj. Now we assume that  the beam is built up synmmtrically with respect to 
the mid-plane z3 = 0. But the voltage Uj and hence the poling field applied 
to the two piezoelectric layers of the j ' t h  layer couple can be chosen to be 
symmetric or antisymmetric with respect to z3 -- 0. Thus, let us consider 
a piezoelectric beam with 2m layers, where ma layer couples are supplied 
antisymmetrically by a voltage U~, j = 1 , . . .  , ma and m8 layer couples are 
supplied symmetrically by a voltage U], j = 1 , . . .  , ms. From now on, the 
symbol s stands for symmetric and a for antisymmetric. Apart  from supplying 
the two piezoelectric layers of the j ' t h  layer couple with an antisymmetric 
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voltage U~, one can obtain the same results by varying the poling direction 
of the piezoelectric lamina accordingly. 

Under the assumption that the voltage sources for the supply voltages U~ 
and U~ are ideal we can neglect the term d*D 2 in (4.74). Consequently, taking 
into account (4.78) and the symmetry of the effective material parameters 
a*, c* and d* with respect to z3 = 0, we obtain the potential energy (4.74) 
of the beam in the form 

L 1 ( ( ~ z l  1 ( ~ Z l ) 2 ) 2  ( 02 ) 2 )  
wv = fo "~ A1 Ul + -~ u3 + A2 -d'~z21U3 dz l -  

A i (z i )  "tt I -~- ~ ~lZl u3 Ufdzl--k 
0 j=l  
L 

~0 j~lll~(Zl) (~Z~'3) U; dzl 
(4.79) 

with 

2m 2m 

",:El';.~ , ..=Ef.z'-~ 
j= l  Aj j=l  A~ 

(4.80) 

and 

h,~j(zl) b],j(zl) 

h~,i (Zl) b~ ,j (z t ) 

h~,,(=~) b~.j(=~) 

d;Tfl.(Zl) Wa = 
h?,j(zl) bT,j(zl ) 

a; (h~,j(Zl) + h?,j(zl)) B~ (zl) 

(4.81) 

Aj denotes the cross section of the j ' th  layer and wa --= dz2dz3 is the related 
area element. Here, A~(zl) and A~(zl) serve as shaping functions which can 
be adjusted according to the requirements of the controller design [68]. At 
the edges of the electrodes b~,j(Zl), b~j(Zl), b?,j(zl) and b~,j(Zl) the electric 
field is assumed to be homogenous and no edge effects are taken into account. 
Hence, inside the structural lamina (from h~,j (zl) to h~,j (Zl) or from h~,j (Zl) 
to h'~5(Zl) ) and outside the area of the piezoelectric lamina not covered by 
tile electrodes, the voltages Uf and U] are zero. Fig. 4.2 sketches a possibility 
of creating a specified spatial distribution of A~(zl) and A~(zl) by means of 
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shaping the corresponding electrodes. At this point it should be explained 
that  the poling direction in the piezoelectric layer can only be up or down, 
due to polarity. The voltage supplied, Uj, is either positive or negative. Fig. 
4.2 shows all different possible combinations for creating a symmetrically or 
antisymmetricatly supplied piezoelectric layer couple. Fig. 4.3 shows a second 
possibility for A~(zl), where the thickness of the piezoelectric lamina varies 
over the length of the layer. Of course, a combination of these methods is 
also possible. It should be emphasized that  Figs. 4.2 and 4.3 depict only the 

_+Uj plane 

[ 

] poling 
directions 

Fig. 4.2. Principle of surface shaping of the electrode for an actuator layer couple. 

7 

_+L plane 

h 
] ~  

_+~ 

piezo lamina 

Fig. 4.3. Principle of shaping the piezoelectric lamina for an actuator layer couple. 
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ideas relating to the design of a specified shaping function in principle [68]. 
In a practical application one will use more sophisticated surface patterns 
of the electrodes for achieving the shaping functions (see e.g., [75] and the 
references cited there). 

Analogous to the actuator design, the constitutive equation (4.71) also 
serves as a basis for the derivation of the sensor equations. But here we 
assume that the electrodes of a piezoelectric sensor layer are short circuited, 
i.e. 

- - a ' e l l  A- d ' D 3  = 0 , (4.82) 

and in addition they are assumed to have an identical surface pattern. By 
integration over the effective metallic surface of the electrodes of the j ' th  
sensor layer we get the electric charge Qj in the form [75] 

L b2d (zl) L 

J J  / a *  
Qj = Dadz2dzl = -5 B (zl) v11dzl 

o b~j(zl) o 
(4.83) 

or 

L a*" (~___~ 1 (  0 ) 2 02 ) 
Q j = / - ~ B j ( z l )  U l + ~  ~-~zlU3 -z3-~1z21U3 dZl 

0 

(4.84) 

with ~'3 as the distance from the mid-plane to the middle of the j ' th  sensor 
layer (see Fig. 4.4). Since the layers of the piezoelectric beam are arranged 
symmetrically with respect to the mid-plane, we again have two possibilities 
for measuring the charge. On the one hand we can take the sum of the charge 
of the two corresponding layers of a sensor layer couple and we get 

s 1 
Q j  ---- Fj  s (Zl) 721 "~ ~ ~lZl u3 dZl 

0 

(4.85) 

with the shaping function 

2a; 
F~ (zl) = --22-, Bj (zl) �9 (4.86) 

On the other hand, by taking the difference of the charge, we directly obtain 
the result 

L 

Q; = r ;  (zl) g 4u3dzl 
o 

(4.87) 

with the shaping function 
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/~; (Zl) --__ 2ff,3a~ Bj (Zl) . (4.88) 
d; 

By means of these shaping functions it is possible to measure specified spa- 
tially distributed quantities [68]. The principle of shaping the sensor layers is 
shown in Fig. 4.4. Here also the right choice of the polarization profile within 
each layer of one sensor layer couple offers an additional possibility to create 
the shaping functions (4.86) and (4.88). 

dane 

7_ 

directions 

Fig. 4.4. Principle of surface shaping of the electrode for a sensor layer couple. 

4.3.4 M a t h e m a t i c a l  M o d e l  for t h e  B e a m  w i t h  L a t e r a l  Load ings  

Fig. 4.5 depicts the piezoelectric beam of Fig. 4.1 under the action of two 
lateral loadings, one of which is assumed to be constant spatially XI (zx, t) = 
dl (t). The other is linear X2 (zl, t) = d2 (t) z l / L  with L as the total length of 
the beam [68]. By running through the Hamilton formalism with the kinetic 
energy of (4.75) and the potential energy of (4.79), we obtain the equations 
of motion in the form 

1 0 2 

and 

31 Ul q- ~ ~ZlU3 -- OZl 3 (Zl) Vj = O. 

(4.89) 

(4.90) 
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X2(Zl,t) 

Z3 

\ 

Fig. 4.5. Simply supported composite piezoelectric beam under the action of lateral 
loadings. 

Here, X = dl (t) + d2 (t) Z l /L  denotes the lateral loading as shown in Fig. 4.5. 
The flexural boundary conditions for tile beam, which is simply supported at 
zl = 0 a n d z l  = L ,  are 

C~ 2 rn  a 

u 3 = 0  and A2-d:y_2u3+~-]Ay(zl)U~=O (4.91) 
OZl j =1 

and the longitudinal boundary conditions are given by 

ul (0, t) = ul (L,t) = 0 .  (4.92) 

Remark d. 6. At this point it is worth mentioning that the theory being pre- 
sented also comprises beams with other boundary conditions, like e.g. a can- 
tilever beam. All subsequent considerations remain valid and can be applied 
without additional effort (see, e.g., [40], [123]). 

The evahmtion of the integral (see (4.90)) 

A1 u l + ~  ~1zlu3 -~[ [ ]Aj (z l )U~ dzx=  
0 j = l  

Ax Ul+  7 u3 - ~ ' ] A ~ ( z l ) U j  ~ L =  
j = l  
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= -~zlU3 - ~ A; (zl) U; dzl + A1 (ul (L, t) - ul (0, t)) 
0 j = l  

(4.93) 

together with (4.92) leads to a simplification of (4.89) in the following form 

02 04 m,~ 02 
. - ~ u 3  + A2-~z~ua + ~_, -~z~ A~(zl)U; - @1 (t) + d 2 ( t ) L )  - 

j=l 
(4.94) 

"~zIU3 -~-'~A~(zl)U~ dZl ~2Z12 U3 ~" 0 �9 

0 j=l  

For the sake of simplicity of the notation the problem-oriented scaling with 
respect to the total height T of the beam 

_ zl tia ua f t ,/-A-2" 
, , L  2 L T '  V ,  

f~ A1 T2 "~,~ a,~ L 
- A 2 '  A3 (Z)--A3 (Zl) , Ul -~--Ul'~, 

L4 L4 fis L2 
dl = d l~2T ,  d2 = d2 A2T' c,j = U~ A1T2, 

(4.95) 

0 04 mo 02 
+ ~z4U3 + ~ -~-~2A~(z)u~,j - (dl (t) + d2 (t) z) - 

j=:l  

k ~zU3 - ~ A ~ ( z )  ub, j dz 0-~z2U3=0 
0 j=l  

with the boundary conditions 

(4.96) 

02 m~ 
u3=o and  z2U3+ A (z)%j=O for ze{0,1}.  (4.9;) 

j = l  

In fact, (4.96) is an infinite-dimensional PCH-system with the Hamiltonian 
functional 

m a  TP~8 2 

H = Ho - ~_. H:,ju~,j - ~ H:,ju~,j - ~ Hdsd j ,  
j=l  j=l  j=l 

(4.98) 

L 2 

(LS, j = U~ A2T 

is introduced, where a tilde refers to a non-dimensional quantity. Henceforth, 
we will ignore the tilde-symbol. Thus, with the abbreviation p = ~  3 the 
equations of motion take the form 
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where the Hamiltonian functional of the free system H0 is given by 

1 
H o = ~ /  p2 + (~z2u3)  d z + ~  

0 

and the interaction Hamiltonian functionals read as 

1 

H a . = - A ~ ( z ) - - g - - 4 u 3 d z  , j = 1 , . . .  , m a  
u,3 j ~ OZ ~ 

0 

H 8  ~'~ k A ~ ( z ) d z  u 3 d z  j 1,. (4.100) : ~ .  ' : . .  , T n 8  

0 

1 

H d , j  = f u 3 z ( J - 1 ) d z  , j = 1,2.  

o 

Consequently, we can also formulate the measure~t charges of (4.85) and (4.87) 
in the scaled version with 

/~; (z) = F;  (Zl), (~; = Q ~ - -  (4.101) 
aL 

~2 (z) = r r  (z,)  , ~ = Qj ~ . 

By neglecting the tilde again, we obtain 

1 1( /2 ) 
Qj = F~(z) ~zzUl+~ ~zzU3 dz 

0 

and 

(4.102) 

1 

a / 0~ 
Qj = r ?  (z) -~z~ ~ d z  . 

o 

(4.103) 

4.3.5 Control ler  Design for the  Beam wi th  Latera l  Loadings 

In Remark 4.5 we have pointed out that the design of the sensors and ac- 
tuators for infinite-dimensional PCH-systems can be regarded as a part of 
the controller synthesis. We have further shown that the application of the 
non-linear H~-controller design of Proposition 4.2 is only possible if for the 
underlying PCH-system the control inputs act in the same way on the struc- 
ture as the disturbance inputs, i.e. H ~ , j  = H d , j  := H i ,  j = 1 , . . .  , m ,  and the 
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sensors measure the natural outputs, i.e. yj = Hi,  j = 1 , . . .  ,m. In order 
to meet these requirements for the mathematical model (4.96) - (4.100), we 
choose two antisymmetrically supplied piezoelectric actuator layer couples 
(ma = 2, rn~ = 0) with the shaping functions 

z z (4.104) A~(z) = ( 1 -  z) ~ and A~(z) = ( 1 -  z 2 ) ~ .  

Inserting (4.104) into the interaction Hamiltonian functionals H~,j, j = 1, 2 
of (4.100), we can immediately see by simple integration by parts 

02 0 11 0 11 
H a ,*,s = - J A~(z)-ffiz2 U3dz = -A~(z)--a-ual + -~-A~(z)u31 

�9 _ oz Io ,oz Io 

=0 =0 (4.105) 
1 

02 
- j ~ A ~ ( z ) u 3 d z  

0 

that  the condition It~,j = Ha,j = Hj for j = 1, 2 is satisfied. Thus, with the 
shaping functions (4.104) the equations of motion (4.96) are simplified to 

( d 2 ( t ) + u ~ , 2 ) z = O  
(4.106) 

with the boundary conditions 

02 
u3 = 0  and O---fiz2Ua = 0  for z ~ {0,1}. (4.107) 

Furthermore, we have to design two piezoelectric sensor layer couples to mea- 
sure the required natural outputs H,~,j, j = 1, 2. Comparing (4.103) with 
(4.105), we can directly deduce that  by means of the shaping functions 

F;  (z) = -A~(z )  , j = l , 2  (4.108) 

H ~ �9 j = 1, 2 are measured. the natural outputs Q~ = uo, 

S i m u l a t i o n  M ode l .  For the purpose of simulation the deflection u3 is ap- 
proximated by the finite series 

l 

u3 (z, t) = E Xi (t) sin (i~rz) , 0 < l < c~ (4:109) 
i = l  

and this approximation is inserted in the equations of motion (4.106). The re- 
sulting error is interpreted as a transverse loading and following the principle 



114 4. Mechanical PCH-systems 

of Galerkin, the weighted erroneous system has to form an equilibrium system 
(e.g., [147]). This procedure leads to a set of non-linear ordinary differential 
equations 

dX~ 
dt 

dV~ 
dt 

=y~ 

( ) - X~(i~) 2 ( i n ) 2 + - ~ ( j ~ ) ~ X y  + (4.110) 
j = l  

2 2 
U a _ d l ) -  cos(in)(c, +d ) (1 - c o s  ( c ,1  + - 

~7~ 

for i --- 1 , . . .  , I. The finite model (4.110) is a member of a special class of 
finite-dimensional non-linear systems, namely the so-called AI(affine-input)- 
systems [52], [103], [144]. A non-linear controller design based on the theory 
of exact input-to-output linearization for this fiifite model can be found in 
[117]. 

N o n - l i n e a r  H~o-des ign for t h e  B e a m  w i t h  L a t e r a l  Load ings .  Since 
by the actuator and sensor design of (4.104) and (4.108) the conditions for the 
non-linear Ha-controller design are fulfilled, we are able to apply Proposition 
4.2 to the PCH-system (4.106). Hence the optimal control law reads as 

u~,j = -a~-~Qj with a = , j = 1,2 (4.111) 

for a given 7 > 1. Fig. 4.6 shows the simulation results for l = 6, the scaled 
material parameter k = 12 and the lateral loadings dl (t) = 0 and d2 (t) 
is the sawtooth in Fig. 4.6 a.). The deflection in the middle of the beam 
u3 (0.5, t) for the uncontrolled case c~ = 0 and for the controlled case with the 
controller parameters a = 10 and c~ = 100 is illustrated in Fig. 4.6 b.). The 
corresponding voltages u a and u ~ c,1 c,2 are demonstrated in Figs. 4.6 c.) and 
d.), respectively [68]. One can see that, depending on the maximum voltage 
supply allowed, a better suppression of the vibrations can be achieved. Fig. 
4.7 depicts the simulation results of the piezoelectric beam under the action 
of step changes of the lateral loadings in the form 

dl (t) = 50 (t) and d ~ ( t ) = 1 0 0 ( t - 3 ) ,  (4.112) 

whereby o (t) denotes the unit step. Since the controller (4.111) does not have 
an integral action, the stationary deflection caused by the step changes of the 
lateral loadings is not eliminated. This is why we shall apply a PD-control 
law to the piezoelectric beam in the next subsection. 

Remark 4.7. In the configuration oftwo collocated piezoelectric actuator/sen- 
sot layer couples with the shaping functions (4.104) and (4.108), the vibra- 
tions caused by any lateral loading, independently of its spatial distribution, 
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d2(t) u~(O.5,t) 
10 0.2 

i without control 

86 / 0'15 ~ ~ ~ A  i i ~ 0 ~ l : 0 . 1  

ii -0.05 

- | - 0 . 2  , , , , , 6 1 2 3 4 5 t 6 
a )  u a a=lO b.) a=lO0 3. c,2 . / /  ",~ 

i 

_ -51 . . . .  0 1 2 3 5 t 0 1 2 4 5 t 6 
c.) d. 

Fig. 4.6. Simulation results for the non-linear H~-design for the beam with time- 
harmonic lateral loadings. 

can be suppressed. The reason is that  one actuator  layer couple, which acts as 
a spatially constant load on the structure, cancels all even vibration modes. 
The other actuator  layer couple, which imitates a spatially linear load, rejects 
all odd modes. This fact can be easily observed in the finite approximation 
(4.110). 

P D - d e s i g n  for  t h e  B e a m  w i t h  L a t e r a l  L o a d i n g s .  The ac tua to r  and 
sensor design of the previous subsection with its inherent sensor /actuator  
collocation also allows us to perform a PD-controller design due to Subsection 
4.2.5. Here, we restrict the general PD-feedback of (4.57) and (4.59) to 

[ ~ta ] [0 Pll ] [Q~] [D 0 ] d a c,1 _ _ 0 _ 11 [d--tQ1] 
(4.113) 

with the positive constants Pll and Dl l  and the scaled measured charges 
Q~ = H~,,j, j = 1, 2. For the investigation with a sawtooth excitation (Fig. 
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Fig. 4.7. Simulation results for the non-linear H~-design for the beam with step 
changes of the lateral loading. 

4.6 a.)) we get simulation results similar to the ones of Figs. 4.6 b.)-d.). 
In contrast to this the PD-feedback (4.113) shows different results from the 
non-linear H~-control ler  for the step changes of the lateral loadings (4.112). 
Now, by means of the P-controller part, it is also possible to decrease the 
stationary error of the deflection u3 (0.5, t). Fig. 4.8 depicts the simulation 
results for two different parameter sets, namely Pl l  = 100 and Dl l  = 20 in 
the first and Pl l  = 1000 with Dl l  = 50 in the second case. These simulations 
should further demonstrate that  by adjusting the controller parameters P11 
and Dl l  a certain performance of the closed-loop can be obtained, provided 
that  the required voltages are within the possible voltage range. 

Remark 4.8. However, with an integral part in the controller, the stationary 
error can be made zero. But an integrator in the controller not only does not 
fit the framework of Hamiltonian systems, it also partially destroys the Hamil- 
tonian structure. Hence, to the best knowledge of the author, further research 
work is necessary to overcome these problems in the infinite-dimensional case. 
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Fig. 4.8. Simulation results for the PD-design for the beam with step changes of 
the lateral loading. 

4 .3 .6  M a t h e m a t i c a l  M o d e l  for t h e  B e a m  w i t h  an  Ax ia l  S u p p o r t  
M o t i o n  

Now, we will discuss the simply supported composite piezoelectric beam of 
Fig. 4.1 under the action of an axial support motion d3 (t) (see Fig. 4.9). 

Except for the longitudinal boundary conditions (4.92), which change to 

u l ( O , t ) = O  and u a ( L , t ) = d 3 ( t )  , (4.114) 

the mathematical model of Subsection 4.3.4 remains the same. Since the 
lateral loadings are zero, i.e. dl = d2 -~ O, the adapted equations of motion 
(4.96) and (4.97) read as 
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Z3 U 

Fig. 4.9. Simply supported composite piezoelectric beam under the action of an 
axial support motion. 

0 0 4 ' ~  0 2 0 2 
-~ P + -~-Sz 4 u 3 + E-~-ffz2A~(z)u~# - k u l (1,t)-fffiz2 ua - 

i = 1  

k u3 - A~(z)  ub, ~ dz-~z2U3 = 0  

o 

(4.115) 

with the boundary conditions 

02 ~a 
u 3 = O  and - - ~ z 2 U 3 + E m a ( z ) u ~ , i = O  for z e { O ,  1}. (4.116) 

i = 1  

The change in the longitudinal boundary conditions also brings about that  
the measured scaled electric charge of (4.102), after a single integration by 
parts, takes the form 

Q; = Y; (1) ul (1, t) § Oz 3 (Z) U 1 § T ~ u3 d z .  

o 

(4.117) 

4.3.7 C o n t r o l l e r  Des ign  for t h e  B e a m  w i t h  an  Axia l  S u p p o r t  
M o t i o n  

Comparing (4.115) with (4.117), we can see that  one symmetrically supplied 
piezoelectric actuator and sensor layer couple (ms = 1) with the shaping 
function A~ (z) = F~ (z) -- 1 together with the control law 

U8 S c,1 = Q1 (4.118) 
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cancels the effect of the axial disturbance ul (1, t) in the sense of the distur- 
bance compensation of Subsection 4.2.6 [62]. Thus, the equations of motion 
(4.115) and (4.116) result in 

CQ 4 rn~ 2 

+ + Z = o 
j = l  

(4.119) 

with the boundary conditions 

(92 ma 
u 3 = 0  and -~z2U3+EA~(z)u~j=O for z E { 0 , 1 } .  (4.120) 

j = l  

In order to suppress vibrations due to an initial deflection or a lateral loading, 
an additional non-linear Hoo- or PD-controller for the system (4.119) can be 
designed. As already mentioned in the Remark 4.7 the two collocated actuator 
and sensor layer couples with the shaping functions (4.104) and (4.108) in 
combination with the control laws (4.111) or (4.113) will suppress all even 
and odd excited deflection modes. 





5. Hydraulic Drive Systems 

In this chapter, we discuss two types of hydraulic drive systems, namely 
a valve-controUed translational piston actuator and a pump-displacement- 
controlled rotational piston actuator, with particular emphasis on the aspect 
of control. In [13] these two hydraulic drive types are classified a.s the two 
basic ways to control the flow of fluid power to a load. Generally, hydraulic 
actuators are used to convert hydraulic energy to mechanical energy and vice 
versa. The main advantages of hydraulic power transmission are the light 
weight and the relatively small volume of the hydrauhc components. In con- 
trast to this, the whole equipment for a hydraulic power system is rather 
expensive and power transmission over a longer distance is nearly impossi- 
ble. In the sense of the spirit of this book, a strong analytic mathematical 
description of the considered hydraulic drives is also presented here. The 
model simplifications and the simplifying assumptions for the controller de- 
sign are always clearly pointed out to the reader. Furthermore, this chapter 
contains two industrial applications, namely the hydraulic gap control with 
eccentricity compensation for rolling mills and the swash-plate mechanism of 
a hydrostatic drive unit. 

5 . 1  V a l v e - c o n t r o l l e d  T r a n s l a t i o n a l  P i s t o n  Actuator  

Let us consider the basic configuration of a valve-controlled translational 
piston actuator  as it is presented in Fig. 5.1. Here, V0,~ and V0,2 denote the 
volumes of the forward and return chamber for xk = 0, A1 and A2 are the 
effective piston areas, xk is the displacement of the piston, mk is the sum of 
the piston mass and all masses rigidly connected to the piston, qj is the flow 
from the valve to the forward chamber, q2 denotes the flow from the return 
chamber to the valve, qint is the internal leakage flow and the external leakage 
flows axe qext,1 and qext,2. Since for all subsequent considerations the volumes 
Vo,1 and Vo,2 and the piston areas A1 and A2 are constant, but arbitrary, 
the theory as presented covers all the different configurations of single- and 
double-ended as well as single- and double-acting hydraulic actuators. For 
construction details for these configurations see e.g., [13], [96], [101]. 
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ql 

Fig. 5.1. Schematic diagram of a translational hydraulic piston actuator. 

5.1.1 M a t h e m a t i c a l  M o d e l  

Before starting with the derivation of the mathematical model for the valve- 
controlled translational piston actuator of Fig. 5.1, we have to define the 
constitutive law of the liquid, in our case oil. It is well known that  the mass 
density of oil Polz changes with both pressure p and temperature T. To start  
with, we add the hypothesis that  the density is independent of the temper- 
ature. Furthermore, since changes in density due to pressure are relatively 
small, it is usual to use a linearized constitutive law. However, in the litera- 
ture one can find various definitions for the so-called isothermal bulk modulus 
/3 T of oil. Here, we follow the definition of [13], [81] or recently [88] 

1 1 (0pV)  (5.1) 

t3T Y T = const. 

with the total  volume V and the pressure p. If the mass in the considered 
volume V is assumed to be constant, (5.1) is equivalent to 

1 _ 1 (Opo~l '~ (5.2) 

Zr po~ \ Op ]r  = c o , , s t  

From Fig. 5.1 the continuity equations for the two chambers read as 

d 
d--7 (Poiz (Pl) (V0,l + Alxk)) = Po~z (Pl)  (q,  - qlnt - qext,1) 

( 5 . 3 )  
d 
d-~ (p~ (p2) (Vo,~ - & x k ) )  = p o .  (p2) (q~n~ - q ~ , ~  - q2 ) ,  
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provided that  the oil temperature T remains constant and the oil is isotropic. 
Inserting (5.2) into (5.3) and using the fact that  the leakage flows are laminar, 
we get 

d f iT  
-~Pl = (Vo,I + A lXk )  (ql - Aavk - Gist (Pa - P2) - Ce~t,lPl) 

d /~T (-q2 + A2vk + Ci~t (Pl - P2) - C~t  2P2) 
~-~P2 = (Vo,2 - A2xk) 

(5.4) 

with vk = dxk /d t  and the leakage coefficients Ci~t, C~xt,x and Cr Suppose 
that  the servo valve is an ideal critical center valve and that  it is rigidly 
connected to a constant pressure pump. The flows from and to the valve, ql 
and q2, can then be calculated by 

ql = ~ : v , l v ~ -  p~ sg ( ~ )  - n~,2 vg~  - p~ sg ( - x ~ )  

q2 = K , , , 2 v / ~  - P T  sg ( x v )  - -  K . , 1 v ~  - P2 sg ( - X v )  
(5.5) 

with the supply and the tank pressure Ps and PT, the valve displacement 
xv, the function sg (xv) = x~ for x ,  > 0 and sg (x~) = 0 for x ,  < 0 and the 
coefficients Kv,i = C d A v , i ~ ,  i = 1, 2, where Av# is the orifice area and 
Cd is the discharge coefficient (see, e.g., [96], [101]). Often the dynamics of 
the servo valve are much faster than the other components of the hydraulic 
adjustment system, and therefore, we will ignore the servo valve dynamics 
and consider the valve displacement x~ to be the plant input to the system. 

For the later considerations let us take a three-land-four-way spool valve 
as it is shown in Fig. 5.2. After the spool valve has been in operation for 

Ps PT Ps 

Fig. 5.2. Schematic diagram of a three-land-four-way spool valve. 
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a while, the orifice edges of a critical center valve are eroded by abrasive 
material in the oil and hence the leakage flows of the valve are increasing. 
If such a worn critical center valve is in its centered position, it b eh av es  
somewhat like an open center valve. Let ul,  u2, u3 and ua denote the underlap 
lengths of the four orifice edges in the case when the valve is centered (dotted 
valve piston in Fig. 5.2), then (5.5) changes to 

ql = / (v ,1  v / ~  - Pl sg (xv  + Ul)  - -f~,,2x/-~z - PT sg ( - - x v  + u2) 

q2 = -Kv,2V/~2 -- PT sg (xv  + u3) - / ~ v , l ~ s g  ( - -Xv q- Zt4) 
(5.6) 

with the modified valve coefficients/~v,i and/<v,i, i = 1, 2 due to the varying 
discharge coefficients. The leakage flows of the valve and the piston them- 
selves do not have much influence on the dynamic behavior of the hydraulic 
adjustment system and therefore, for the purpose of a controller design, they 
may be neglected. But the leakage flows of the valve may cause pressures pl 
and P2 in the forward and return chamber, with a considerable offset value 
P o l l  from symmetrical pressure conditions, and this effect is no longer neg- 
ligible. In order to clarify this statement, one can easily see that  the same 
piston force Fh can be obtained under totally different pressure conditions 

( A1 ) 
Fh = A l p 1  - A2p2 = A1 (Pl + Poy f )  - A2 P2 + -~2Pol f  (5.7) 

with P o l l  arbitrary, but restricted within certain boundaries, namely PT -- 

Pl  < P o l l  < P s  - Pl  and PT -- P2 < "~oPol.f < PS -- P2. The problem with 
this offset pressure is that  it causes a different dynamic behavior for positive 
and negative movements of the piston, because the flows from and to the 
valve are driven by asymmetric pressure differences. In the closed-loop the 
abrasion induced truncation of the orifice edges, described by the underlap 
lengths ui, i = 1 , . . .  , 4, causes also a resulting stationary offset x v , o l l  of the 
valve position from its original centered position. In general, X~,ol f depends 
on the stationary pressures in the two chambers. To give an explanation, let 
us consider the stationary case where the piston force Fh is held at a pre- 
defined value Fh,d by an underlying ideal force controller. Then, by ignoring 
the leakage flows in (5.4), we see that  the flows from and to each chamber 
must be stationary equal, i.e., ql = q2 = 0. Thus, for a given worn critical 
center valve lsee (5.6)~ with fixed underlap lengths ui ,  i -- 1 , . . .  , 4 and valve 
coefficients K~,,i and K~,i, i = 1, 2, we have three equations for characteriz- 
ing the stationary values of the chamber pressures Pl,8, P2,s and of the valve 
displacement x,,s, that  are 

Fh,d = AzP l , s  - A2p2,s 

~v,iv~ --~,~sg (x.,~ + u~) = Kv , :~ /p l ,~  - p ~  sg ( -x , , ,~  + u : )  

/ ~ , : ~ / p 2 , ~  - p:r  sg (x~,~ + ~ )  = Z~v,i J p s  - p:,~ sg (-x~,,~ + u4) . 

(5.8) 
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The offset pressure Poff and the valve position offset x,,,~ff result directly 
from the stationary values Pl,s, P2,s and x.,~. It is quite clear that  the underlap 

lengths u~, i = 1 , . , .  ,4 and the valve coefficients/~v# and/~v#,  i = 1,2 of 
the worn critical center valve are not known. But for the controller design it 
suffices to take into account the main sources for the non-linear behavior of 
the hydraulic adjustment system, that  are 

�9 the cha.nge of the oil volumes of the chambers, V0~I and V~2 , with the 
piston position zk, which causes a position dependent stiffness, 

�9 the non-linear dependence of the flows ql and q2 from (5.5) on the chamber 
pressures Pl, P2 and the valve displacement xv, 

�9 the offset pressure Poll in the cylinder chambers and 
�9 the stationary valve offset X~,off of the valve position. 

By neglecting the leakage flows and inserting (5.4) into Fh -~ Alp1 -A2P2,  
we get Che following differenr equation for the piston force 

d /STA1 (ql -- Alvk)  /3TA2 (--q2 + A2vk) 
Fh = (V0,1 + Alxk )  - (V0,2 - A2xk) 

( 5 . 9 )  

Since in general the stationary valve offset x~,oH as a function of the station- 
ary chamber pressures, Pl,~ and P2,~, is not available, an average value of the 
valve offset 2~,off will be used. This value can be obtained mostly within a 
calibration process. Thus, we modify the relations for the flows from and to 
the valve, ql and q2, due to (5.5) in the form 

ql : K v , I V ~  ~ Pl sg (5:v) -- Kv,2VfPl -- PT sg (--Xv) 
(5.10) 

q2 - -  K ,2v - s g  - - p2  s g  

with 2~ = x~ -2~,ofs .  In fact, the mathematical model described by (5.9) and 
(5.10) contains all the main non-linearities as mentioned above and therefore, 
it will subsequently serve as a basis for the controller design. 

The equations of motion for the piston are considered to be of the type 

d 

" • X  k ---- V k 

d 1 (5.11) 
- -  ( F h  - d k v k  - -  Fload)  "~Vk ---- mk 

with the hydraulic force Fh due to (5,7), the damping coefficient d~ and the 
exteraa.~ toad force Fload oa  the piston, which is assumed ~o be constant but 
unknown. For clearer understanding, the terminology used is summarized in 
Table 5.1. 

5.1.2 Controller Design 

In the field of control of hydraulic actuators numerous textbooks and many 
papers have been published in recent years. It  is neither within the scope of 
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Table 5.1. Nomenclature for the valve-controlled translational piston actuator. 

A1,A2 

A,,,1, A,m 

Cd 

Fload 

dk 

K,~,i,I~v,i,K,~,i, i -- 1,2 

m k  

Pl,p2, (pl,s,P2,~) 

Pof  f 

PS ,  PT 

ql 
q2 

qe=t,1, qe=~,2 

qint 

T 

ui, i = 1,2,3,4 

Vo,~, Vo,2 
"Uk ~ Xlr 

2Cv , ~-,v , ( X v , s  ) 

XoI I , Xof  f 

Poil 

effective piston areas 

orifice areas 

external laminar leakage coefficients 

discharge coefficient 

internal laminar leakage coefficient 

external load force 

hydraulic force (desired) 

damping coefficient 

valve coefficients 

sum of rigidly connected piston masses 

chamber pressures (stationary) 

offset pressure in the chambers 

supply pressure, tank pressure 

flow from the valve to the forward chamber 

flow from the return chamber to the valve 

external leakage flows 

internal leakage flow 

temperature 

underlap lengths 

volumes of the two chambers for xk = 0 

piston velocity, piston position 

valve displacement (stationary) 

offset of the valve displacement 

isothermal bulk modulus of oil 

density of oil 

this section nor our intention to go into the details of all these different ap- 
proaches. The classical methods of hydraulic control are based on a linearized 
description of the plant around a fixed reference position (see, e.g., [96]). In 
many practical applications, however, these linear controllers are sufficient in 
terms of accuracy and dynamic performance and hence are still very com- 
mon in industry. But as we have seen so far, the hydraulic plant exhibits 
significant non-linearities and therefore, an increase in the performance of 
the closed-loop can only be achieved by controllers that  take into account 
the non-linear nature of the system. In the literature, linear controllers either 
with an adaptation mechanism (e.g., [15], [111], [136]) or robustly designed 
(e.g., [27]) are often suggested as a means of coping with the non-linearities. 



5.1 Valve-controlled TranslationM Piston Actuator 127 

But all these approaches assume a linear nominal model of the hydraulic 
system and so they mostly suffer from the lack of a stability proof. 

The mathematical model (5.9), (5.10) and (5.11) has a very pleasing struc- 
ture. It is member of a special class of non-linear systems where the control 
input, in our case xv, appears affine on the right hand side of the state space 
representation for xv > ~ , o f f  and xv < ~v,off respectively. This type of non- 
linear control systems is known as the so-called AI- (affine input) system, see, 
e.g., [52], [103], [135], [144]. Now, for AI-systems the literature offers a variety 
of methods for solving the analysis and control synthesis tasks. Without going 
into the details here, the reader who is familiar with AI-systems can easily see 
that  the mathematical model (5.9), (5.10) and (5.11) with the control input 
xv > ~ , o f f  (x~ <. ~v,off) is exact input-state linearizable. For an efficient 
tool for the analysis and synthesis of AI-systems, the reader is referred to 
the computer algebra package AIsys, which can be obtained free of charge 
from the webpage of the Maple Application Center [70]. The knowledge that  
the system is exact input-state linearizable greatly simplifies the non-linear 
controller design. In the recent literature one can find various papers, which 
take more or less advantage of this property. See, e.g., [77] for a differential 
geometric approach or [12] for the application of the theory of flat systems. 
Another very interesting approach, based on the singular perturbation analy- 
sis in combination with exact feedback linearization, especially developed for 
oscillation drives, is presented in [86]. In fact, it turns out that  if the nominal 
model parameters match with the reality and the measured signals are not 
very much corrupted by noise, the performance of the closed-loop is excel- 
lent throughout the operating range and the deficiencies of the linear control 
strategies can be overcome. But in some applications, those controllers, which 
have to rely on the knowledge of the piston velocity, have problems in the 
case of noisy measurements and/or  parameter variations. The parameter vari- 
ations may typically occur e.g., with a change in the friction, or if the exact 
value of the bulk modulus of oil/3 T in (5.9) differs from the nominal value be- 
cause of entrapped air and/or  mechanical compliance. This is also why some 
of the proposed non-linear controllers are hardly used in the rough industrial 
environment. 

However, one of the key observations is that  the non-linear controller must 
not contain a velocity signal vk, because in many applications the velocity 
vk can only be obtained by approximate differentiation of the position signal 
xk, which is known to be very sensitive to noise. The differentiation process 
would not cause any problems, if high-precision position sensors in combi- 
nation with a very high sampling time are used, but this is not the normal 
situation in the industry. Therefore, following [67], we will subsequently pro- 
pose a non-linear controller for the hydraulic system (5.9), (5.10) and (5.11), 
where only the pressures Pl and P2 of the two chambers of the hydraulic 
cylinder and the displacement of the hydraulic piston xk are assumed to 
be directly available through measurement. The idea is to perform an ex- 
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act input-output linearization (see again e.g., [52], [103], [1351, [144] for the 
theoretical background on this topic) for the output  

Z = Fh -t- ~T ln  (Wo,1 -]- mlxk)  A1 
(Vo,2 - A2xk) A2 " 

(5.12) 

Clearly, z is nothing else than the piston force Fh due to the pressures Pl and 
P2 extended by the deviation of the force due to the change of the chamber 
volumes. One can immediately see by calculating 

d f lTAlql  13TA2q 2 + (5.13) 
~--~Z -- V0,1 -]- A l x k  V0,2 - A2xk 

that  z remains constant as long as the flows from and to the valve, ql and q2, 
are zero. Summarizing, we can write the mathematical model of the hydraulic 
system (5.9), (5.10) and (5.11) in the new state variables z, xk and vk in the 
form 

d flTA1 ~TA2 
~--~z -- Vo,1 -t-AlXk ql + Vo,2- A2xk q: 

d 
" ~ X k  ~ Yk 

d 1 ( ) (5.14) 
- -  z -- dkvk -- flTln (V0,1 q- AlXk)  At _ Fload 

"~Vk = mk (V0,2 - A2zk)  A2 

with ql and q2 from (5.10). 

P r o p o s i t i o n  5.1. Given a hydraulic system described by (5.14). Let us as- 
sume that the position xk,~ef and the unknoum, but constant load force FZoad 
determine an admissible stationary point of the system. Then the control law 

A 1  K v , l v / - ~ _ p l  + 
xv -- 2~,off + V0,1 + ~ilxk 

(5.15) 

f o r  x v > X v , o f f  and 

A1 
Xv = X v , o f f  --  VO,1 + A l x k K , , 2 x / ~ - p T +  

Vo,2 -- 'A2zk  v'lvps - P2J v 

(5.16) 

for  x ,  < X v , o f f  with 
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((gO,l_~AlXk,ref~A1 ( Yo,2__A2xk ~A2~ 
v : ( ~ l l n  (5.17) 

\ Vo,2 - A2xk,~f I ] 

guarantees that the stationary point is asymptotically stable throughout the 
operating domain for all possible values of the bulk modulus of oil ~T > 
~T, min, provided that the inequality conditions 

with 

dk 5k/~T'min ~ (5 .18)  0 < 0ll < rain ~k' ~k ) 

A1A2 (v/-~l + v/~2)2 (5.19) 
c~ = (A1V0,2 + A2V0,1) 

are satisfied. By means of the control parameter al the dynamics of the closed- 
loop can easily be adjusted. 

Proof. Substituting the control law (5.15) and (5.16) into (5.10) and after- 
wards into (5.14), we obtain the closed-loop system written in deviations A 
around the stationary point, determined by Xk,re f and Fload, by 

d 
~ z  = - ~ l f  (z~xk) 

d 
-~ Axk = Ark (5.20) 

d ( ~ z  - d~Avk  - f ( ~ x ~ ) )  
1 

Avk -= m'---~ 

with 

f ('l~xk ) = ~T ln ( ( I/'~ +-Al (-A~x--~k + x'----k'ref ) ~ + Al xk,r~f ] 

- A 2 ( ~  +x~,r~s)) ) 

One of the key observations here is that the non-linear function f (Axk) 
satisfies the sector condition 

0 <_ 13TCkAx ~ <_ f (Axe)Axk < oo (5.22) 

with 

ck = (A1Y0,2 + A2Y0,1) (5.23) 
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for Z~Xk,mi n < A x  k < Z~Xk,rnax w i t h  nxk ,mi  n = -Vo,1/Al-xk,r~f a n d  Axk,m~x 
---- VO,2/A2 --Xk,ref .  

Now, the mathematical model (5.20) and (5.21) can be represented as a 
feedback interconnection of a reachable and observable linear subsystem with 
the transfer function 

S -I- O/1 (5.24) 
Z (s) = inks3 + dks2 + flTCk s +/~TCkOL1 

and a static non-hnearity 

r (Zlxk) = I (Zlzk) - ZrCkAXk (5.e~) 

with f (Axk) from (5.21). Compare this with Fig. 1.6 of Chapter 1. It can 
be immediately seen that  the transfer function Z (s) is Hurwitz, if and only 
if for a l  the condition 

dk 
0 < a l  < (5.26) 

m k  

holds. Thus, we may apply the well known Popov criterion (see Theorem 1.7 
and Remark 1.12 of Chapter 1 or e.g., [59], [144]), which says that  the system 
(5.24) with the non-linearity (5.25) satisfying the sector condition 

0 < r ( A z k ) a x k  < cr (5.27) 

for AXk,min < Axk < AXk,max with AXk,min = -Vo,1/Al-Xk,ref and AXk,m~,, 
= Vo,2/A2 --Xk,ref is absolutely stable if there exists an 7/> 0, such that  

Re (Z (jw)) - ~wlm (Z (jw)) > 0 (5.28) 

for all w E R. Choosing ~/ = ink~ (dk-  Clink) > 0 and performing some 
computer algebra calculations, we obtain the result that  (5.28) is fulfilled for 

a l  < Ckfl.....~T (5.29) 
dk 

The inequality conditions (5.26) and (5.29) can be combined to 

0 < a l  < r a i n (  d---~k , ckt3T'mln ) 
\ rnk dk 

(5.30) 

with flT, min as the lower bound for the bulk modulus of oil fiT" Note that  c~1 
can always be chosen such that  - 1 / ~  is not a pole of Z (s) from (5.24). 

At first sight this result seems to be a local one because the sector condi- 
tion (5.27) holds only in a finite domain Axk,min < Axk < Axk,m~,. But in 
the next step we will show that  the set Y2 = {Az, Axk, Avk C R I Axk,min < 
Axk < Axk,m~x} is positively invariant, that means, every trajectory starting 
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in 12 stays for all future time in /2 .  Therefore, we can deduce that  every ad- 
missible stationary point defined by xk,ref and Fzoad is asymptotically stable 
in Y2. For this purpose let us rewrite (5.20) in the original state variables 

d O 
-~ Z3Fh = --oq f ( A x k  ) -- Oz~x------~ f ( Axk  ) Avk 

d 
-~ Azk = Z~vk 

d 1 
= - -  (AFh - dkAvk)  . -~ zavk mk 

(5.31) 

Investigating the limit A x k  - - *  AXk,max, we obtain lima~k-.a~k ..... f (Axk) = 
cx~. Since now in (5.31) IdAFh/dt l  --* c~, the system (5.31) can be decomposed 
in a fast and in a slow manifold [59]. The trajectories in the fast manifold 
rapidly descend to the manifold 

c~lf (Axk) (5.32) Avk  = O 

cgAx--~ f (Axk )  

and since Axk --* Axk ,~x  it follows that  Ark < 0. The same holds for 
Axk --* Axk,min then Avk > 0. So we see that  the trajectories do not cross 
the boundary of Y2. And this completes the proof. �9 

5.2 Application: Hydraulic Gap Control (HGC) in 
Rolling Mills 

5.2.1 S y s t e m  Description 

Fig. 5.3 presents the schematic diagram of a four-high mill stand with the 
hydraulic adjustment system acting on the upper backup roll. The work rolls 
are effectively used for the strip deformation whereas the backup rolls serve 
to support  the work rolls in order to prevent them from bending too much. 
The rolls are running in so-called chocks, which can move vertically in the 
mill housing to enable a change of the roll gap. The thickness of the rolled 
strip is predominantly determined by the gap between the two work rolls 
which is initially set by a pass-line adjustment mechanism. The hydraulic 
positioning system is then used for an exact and fast-acting position control. 
This is necessary since the required tolerances of the final strip product  are 
very tight. Subsequently, we assume without restriction of generality that  the 
hydraulic adjustment system consists of either a single- or a double-acting 
hydraulic ram which can be described by a mathematical  model of the form 
(5.9) and (5.10). 
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5.2.2 Mill  Stand Model  

In general, the mathematical models of the mill stand used by the rolling 
mill's design engineers are highly complex and based on a finite element 
calculation. The problem is that these models are not useful for the purpose 
of designing a controller. Depending on the application, one can find various 
simpler dynamic models in the literature, which are composed of discrete 
masses, springs and dampers. So, for instance, in [3] the stand model was 
specifically derived for the identification of the mill stretch coefficient and 
the deformation resistance. A simple mill stand model of this category, where 
the effect of the roll eccentricities of the work and backup rolls and the 
friction between the chocks and the mill housing are also taken into account, 
is depicted in Fig. 5.4. The mill stand is modeled in the form of the discrete 
masses ml (mill housing), m2 (upper backup roll + chock + piston), m3 
(upper work roll + chock), the dampers dl, d2 and the springs Cl, c2 with the 
constant lengths 11, 12 and 13. The pass-line is ideally supposed to be kept at 
a constant position and to coincide with the inertial frame. 

connection bloc t- 

hydraulic pisto: 

hydraulic rat 

mill housin 

upper backup roll choc] 

upper backup ro] 

upper work ro] 

[strip entry] 

lower work ro] 

lower backup ro] 

lower backup roll choc] 

pass-line adjustmet 

foundatio: 

~P . rv~  v ~ ]  VP~ 

Fig. 5.3. Schematic diagram of a four-high mill stand. 
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Then  the equations of motion take the following form 

d 
-~xi  = vi , i = 1 , . . . , 3  

d 
m l - ~ V l  = - c l  (xl - / 1 )  - dlvl  + Fh -- rely -- F]r~c,1 - FIric,2 

d 
m2-~v2 = --Fh -- m2g -k Flric,1 - d2 (v2 - v3 - Ve,B -[- re,W) -- 

d c2 (x2 - x3 - 12 q- 13 - -  Xe,B 3c Xe,W) (5.33) 

m3-~v3 = F~ - m3g + F/~ic,2 + d2 (v2 - v3 - Ve,B + ve,w) + 

c2 (x2 -- x 3 -- 12 -[- 13 -- Xe, B -[- xe,w) 
d 
-~Xe,B ~ re, B 

d 
-~Xe,W ~ Ve, W 

with the gravitational constant g, the piston force Fh due to (5.7), the roll 
force F~, the friction forces FIri~,I and FI~ic,2 between the work and backup 
roll chocks and the mill housing and the axial deviations xe,w (t) and x~,B (t) 
between the roll barrel and the roll neck of the work and backup rolls, re- 
spectively. These axial deviations may arise for different reasons, such as, 
inexact roll grinding, non-uniform thermal  expansion of the rolls, roll wear 
or irregularities in the roll bearings. It  is important  to take this effect into 
consideration because these disturbances appear  as periodic deviations in the 
strip exit thickness and they are known as roll eccentricities. The  reader is 
encouraged to consult [35] for further details of causes and effects of roll ec- 

xp ~ dl 

pass-line / F  

Fig. 5.4. Model of the four-high mill stand. 
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centricity. For the friction forces Ffric,1 and Ffric,2 a special bristle-based 
dynamic model, the so-called LuGre model, which captures most of the fric- 
tion phenomena, is used. Following [23], the friction forces Ffri~#, i = 1, 2 
read as 

d 
Ffric,i  -~ O'O,iZi -b O'l, i-~zi -[- r (Vl  - V l + i )  (5.34) 

where z~ represents the average deflection of t he  bristles with 

d 
-~Z  i : (V 1 - -  Vl+i) -- (rO'i abs (Vl - Vl-ki ) zi ( 5 . 3 5 )  

X 

and 

(5.36) 

Here Fc,~ denotes the Coulomb friction level, Fs# is the stiction force level, 
v~,i is the Stribeck velocity and the coefficients ~r0#, al,i and or2# allow us to 
parametrize the friction model. As is shown in [107], the friction model (5.34), 
(5.35) and (5.36) has the pleasing property of defining a passive operator from 
the relative velocity (vl - vl+i) to the friction force Ff~i~,i, if and only if the 
following condition 

_ (Fs# _1 )  >0 Cr2,i ~71,i \Fc'~i  (5.37) 

is satisfied. The strip exit thickness hex and the displacement of the hydraulic 
piston xk, as functions of the state variables of the mill stand, are given by 

h e x = x 3 - 1 3 + x e , w  and x k = x l - l l - X 2 + 1 2 .  (5.38) 

In fact, the mill stand model of Fig. 5.4 allows us to investigate all the essential 
dynamic effects in a qualitative manner and therefore, it will subsequently be 
implemented in the mill simulator to test the feasibility of the proposed con- 
trol concepts. The drawback is that  most of the parameters like the damping 
coefficients, the spring constants and the friction parameters are only known 
rather inaccurately. 

5 .2 .3  M a t e r i a l  D e f o r m a t i o n  M o d e l  

Next, we want to say a few words about the material deformation model of 
the strip. As long as no spatial distribution of the roll load and no dynamic 
effects of the deformation process are taken into account, the deformation 
model can be reduced to a system of implicit non-linear equations of the 
form 
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fro. (F~, h ~ ,  h ~ ,  a ~ ,  a~n, W~o., Tst) = 0 (5.39) 

with the roll force Fr, the exit and entry thickness he~ and h~,~, the spe- 
cific exit and entry tension a ~  and a~n, the angular velocity of the work or 
backup roll W,.otl and the strip temperature Tst. However, the setting up of 
these deformation models consists of solving various differential and integral 
equations as well as the definitions of many constitutive parameters, like the 
friction coefficient # between the work rolls and the strip and the yield stress 
o" F as a function of the strip reduction. We do not intend to go into the 
details here, but the interested reader is referred to the literature, e.g., [14], 
[30], [31], [41] or a more recent contribution [29]. 

5.2.4 H G C  w i t h  a D o u b l e - a c t i n g  H y d r a u l i c  R a m  

In most cases, the conventional strip thickness control concepts in rolling 
mills are based on a cascaded structure with several linear SISO- (single- 
input single-output) controllers. In the case when the roll gap is adjusted by 
means of a hydraulic positioning system, the innermost control loop controls 
the hydraulic piston position and is often referred to as the hydraulic gap 
control (HGC). It is well known that  the underlying physical structure of 
a rolling mill is a highly complex non-linear coupled process. Since in the 
classical linear SISO-control approach the inherent non-linearities and the 
coupling effects are not considered, the performance of the overall closed-loop 
system is not always satisfactory. However, the literature contains many suc- 
cessful applications of linear MIMO- (multi-input multi-output) controllers 
to multi-stand rolling mills, which, in fact, overcome the deficiencies of the 
classical single-loop control concepts (see, e.g., [38], [39], [102]). Nevertheless, 
all these approaches assume that  the process can be described by a linear 
nominal MIMO-model and the non-linearities of the process are only taken 
into account by means of uncertainty models. These are supposed to satisfy 
certain conditions depending on the control design strategy used. This is why 
in the literature, the proposed controllers are based either on a linear robust 
approach, e.g., the linear multivariable Hoe-design (see, e.g., [39] and the 
references cited therein), or on linear self-tuning concepts as presented e.g., 
in [24]. In many situations the assumptions underlying these models pose 
no essential restriction, particularly, if the rolling mill is operating around a 
predefined pass schedule. But if the operating point is changing in a wider 
range, then the essential non-linearities of the plant to be controlled can no 
longer be neglected. 

Let us assume that  the hydraulic adjustment system consists either of a 
single- or a double-acting hydraulic ram which can be described by a mathe- 
matical model of the form (5.9) and (5.10). It is quite apparent that  the HGC 
as the innermost control loop is an essential part of the thickness control con- 
cept. We should be therefore aware of the fact that  the outer control loops 
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cannot make up for performance deficiencies in the HGC. Thus, we intend to 
design an HGC such that  the following conditions hold: 

�9 The stability of the closed-loop HGC is guaranteed throughout  the whole 
operating range, 

�9 the dynamic behavior remains the same regardless of the initial piston 
position and 

�9 the dynamic behavior does not change with the aging of the system (offsets 
in the chamber pressures and the valve position or variation of the exact 
value of the bulk modulus f iT  because of entrapped air, see Subsection 
5.1.1 for details). 

For a successful practical implementation of the control concept in a rough 
industrial environment we additionally make the following demands on the 
HGC: 

�9 Only the pressures p l ,  p2 of the two chambers of the hydraulic cylinder 
and the displacement of the hydraulic piston xk are directly measurable, 

�9 the controller should be insensitive to transducer and quantization noise, 
�9 the HGC should cope with parameter inaccuracies in e.g., the damping 

coefficients, the bulk modulus (entrapped air, mechanical compliance), the 
friction parameters etc., 

�9 it should be easy for the commissioning engineer and the maintenance staff 
to adjust the dynamics of the HGC, 

�9 the HGC must be implemented on a hardware platform with a predefined 
sampling time and 

�9 the HGC should fit the conventional thickness control concepts for AGC 
(Automatic Gauge Control)-systems (see, e.g., [24], [112]). 

In order to motivate the non-linear controller design for the HGC, we first 
show in Fig. 5.5 the simulation results of a conventional HGC with a simple 
P-(proportional) controller, usually used in industry, for four different cases 
of offset pressures P o l l  and initial piston positions xk,0, that  are 

case  A: P o f f =  70.105 Pa , xk,0 = 90 .10  -3 m (bot tom edge) 

case  B: pof . f  = O. 105 Pa , xk,o = 90- 10 -3 m (bot tom edge) 

case  12: P o f f =  70- 105 Pa , Xk,o = O. 10 -3 m (middle) 

case  D: P o f f  = 70.105 Pa , xk,O = --90- 10 -3 m (top edge) 

For all four cases the deviation of the piston position Xk -- xk,o and the 
spool valve displacement x~ for a tracking signal xk , rr  = xk,o + 100- 
10-6a (t -- 0.5) -- 100- 10-6a (t -- 1) in m and for a step disturbance in the 
entry thickness of 4 0 0 . 1 0  -6 m after 1.5 s at a nominal entry thickness of 
3.3.10 -3 m is presented. However, one can easily see that  the closed-loop dy- 
namics are varying over a wide range and is even different, though the same 
offset pressure p o f f  and initial piston position xk,0, for positive and negative 



5.2 Application: Hydraulic Gap Control (HGC) in Rolling Mills 137 

x10-5 
12 , 

X t  t -X~o 

case A 
.~ 8 case 
~ 6 case 
"~o 4 case 

"~ 2 
Q 

:4 0 

Q N-4 

�9 r, -6 
i i i i 

-80 014 028 1.2 
time in s 

1.6 2 

'51, l . . . . . . .  

10l [~ / case A 
] I~ J j c a s e  B 
/ I 1~,// ,, case C , 

15 ' 0.4' ' 0'8 ' 1'2 ' 1'6 ' . . .  
time in s 

tt 
2 

Fig. 5.5. Simulation results of HGC with a conventional linear P-controller: Devi- 
ation of the piston position xk - xk,0 and the valve displacement x,.  

reference steps. These simulation results are performed for a hydraulic adjust-  
ment  system consisting of a double-acting hydraulic r am with the effective 
piston areas A1 -- A2 = 0.68 m 2, the volumes V0,1 = V0,2 = 0.072 m 3 and a 
three-land-four-way spool valve with a rated flow of 150 1/min. The  supply 
pressure Ps = 270- 105 Pa  and the tank pressure pT = 0 Pa. The  parameters  
of the mill s tand (5.33) were extracted from a finite element model and the 
roll eccentricities of the work and backup rolls xe ,w and Xe,B are set to zero. 
The friction coefficients for the LuGre model (5.34), (5.35) and (5.36) can be 
par t ly  determined from measurements and part ly from fitting the simulation 
results the reality. For the deformation process the model of [14], [30] and [31] 
for cold rolling is used, where the friction coefficient is fixed as # = 0.05 and 
the average yield stress (YF = 567- 106 Nm -2. In order to get realistic simu- 
lation results, a quantization of the piston position of 5 �9 10 -6 m is included 
in the simulator and the transducer noise for the pressures in the chambers 
is modeled as a band-limited white noise. 

In some applications the simple P-controller is extended by a servo com- 
pensation. Depending on the quality of the servo compensation the influence 
of the offset pressure Pof/  on the dynamics of the closed-loop can be more 
or less decreased, but the dependence on the initial piston position xk,0 still 
remains. For the non-linear controller design of the HGC the dynamics of 
the mill s tand and the mill stretch effect will be neglected and hence we 
may directly apply Proposit ion 5.1 (see also Remark  5.1). For the purpose 
of comparabil i ty  Fig. 5.6 demonstrates  the simulation results for the closed- 
loop HGC with the non-linear controller (5.15) - (5.17) for the identical data, 
reference and disturbance inputs as in Fig. 5.5. The control parameter  a l  of 
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Fig. 5.6. Simulation results of HGC with non-linear controller: Deviation of the 
piston position Xk -- Xk,o and the valve displacement x~. 

(5.17) was chosen in such a way tha t  the step responses for the case  A of 
the linear and the non-linear controller show a good correspondence. One can 
easily see tha t  with the non-linear HGC the dynamics of the closed-loop are 
pre t ty  well the same for all different cases. Further simulation studies allow 
us to conclude tha t  the non-linear controller has the ability to cope with the 
essential non-linearities of the system as well as with aging-induced changes 
of the dynamic behavior. These properties ensure tha t  the outer control loops 
in a cascaded system can rely on the fact tha t  the dynamics of the inner con- 
trol loop always remain the same. This prevents unexpected problems, such 
as unwanted vibrations induced by the piston if it goes to one of the edges 
of the cylinder: a common problem in industrial operations. 

5.2.5 H G C  w i t h  a S i n g l e - a c t i n g  H y d r a u l i c  R a m  

Apar t  from simulation results field tests were also performed at a reversing 
hot strip mill in the Czech Republic by VOEST-ALPINE Industrieanlagen- 
bau GmbH,  but  this t ime for a single-acting piston configuration (see [104] 
for details of the plant). In order to get an impression of the size of this 
mill, we will give a brief description of the hydraulic adjustment  system. The  
head side of the single-acting piston is connected via rigid steel pipes with 
two three-stage servo-valves. Because the piston is so large, with an effective 
piston area of 1.13m 2 and a max imum piston displacement is 0.07 m, two 
valves with a rated flow of 8001/min are driven synchronously to make the 
required oil flow available. The rod side of the piston is filled with nitro- 
gen at a constant pressure of 3 �9 105 Pa  and the volume of the connection 
lines is 0.02 m 3. Without  going into the details here the non-linear controller 
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of Proposit ion 5.1 can also be applied to single-acting piston configurations 
with some slight but  rather easy modifications (see [104]). Fig. 5.7 depicts 
the measured deviation of the piston displacement and the associated servo- 
valve position for reference step inputs of 50- 10 -6 m around an operating 
point of approximately 7.8 �9 10 - a  m and no load in the roll gap, with a tra- 
ditional linear controller and with the non-linear controller of Proposit ion 
5.1. To enable comparison with the results of the linear controller, and for 
testing the controller under extreme dynamic situations, the parameter  a l  
of the non-hnear controller of Proposition 5.1 was adjusted in such a way 
tha t  the step responses of Fig. 5.7 show an overshoot of approximately 15%. 
As one can immediately see, in contrast to the non-linear control concept, 
the traditional linear controller has a different dynamic behavior for steps in 
the positive and the negative direction. This fact may, particularly limit the 
achievable thickness tolerances and it badly influences the dynamics of the 
outer control loops in a cascaded thickness control concept. Of course, for 
the nominal operation of the plant a l  is decreased such that  the overshoot 
of the step response vanishes. 
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Fig. 5.7. Comparison results of the step responses of the closed-loop HGC with 
a traditional linear controller and with the non-linear controller of Proposition 5.1 
for a single-acting piston configuration measured in a reversing hot strip mill in the 
Czech Republic by VOEST-ALPINE Industrieanlagenbau GmbH. 

Remark 5.1. Ignoring the dynaraics of the mill stand (5.33) for the controller 
design of the HGC is no restriction of the control concept. However, the 
stabili ty proof of Proposition 5.1 holds with slight modifications, if addition- 
ally the mill stretch effect of the stand frame and the roll stack has to be 
considered. Thereby, it suffices to model the upper rolls, the chocks and the 
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piston as a single rigid mass ram. The mill stretch effect is taken into ac- 
count by means of a quasi-stationary measured mill stretch calibration curve 
xk,st,- --- f s t r  (Fh)  [110]. Generally, f s t , - (Fh )  can be fairly closely approxi- 
mated by a linear function f~t~- (Fh)  = Fh/c~t, .  with c~t~ as the so-called mill 
stretch coefficient. Figure 5.8 shows the scheme of the simple mill stand 

hydraulic ram 

Fig. 5.8. Simple mill stand model with a schematic representation of the mill 
stretch. 

model and the associated equations of motion read as 

d ~hex =v~ 
d 

m m - ~ V e x  = - -Fh  -- dmvex  + Fr - m m g  

(5.40) 

with the strip exit thickness h~x, the piston force Fh, the damping coefficient 
dm, the gravitational constant g, the total mass of all moving parts m m and 
the roll force Ft.  In the operating range of practical interest, the roll force Fr 
can be fairly closely approximated by Fr = Fr,o - cmhex  with the parameter  
F~,0 > 0 and the so-called material deformation resistance Cm > 0. The 
displacement of the piston xk is then given by 

Fh 
xk = - h~x �9 (5.41) 

Cstr 

Consequently, the mathematical  model (5.14) must be replaced by 
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d ( F h _ b ~ T l n ( V O , I + A l x k ) A 1 )  ~T A1 ~TA2 
d-t (Vo,2 -- A2xk) A'~ - I/0,1 + A l xk  ql + 1/0,2 - A2xk q2 

d 
-~h~.~ = v ~  

d 
m m ~ v e ~  = --Fh -- drnve~ + Fr,0 - cmhe~ - mmg 

(5.42) 

with ql and q2 from (5.10) and xk from (5.41). Substituting the control law 
(5.15) and (5.16) into (5.10) and afterwards into (5.42), we obtain the closed- 
loop system written in deviations A from the stationary point, determined 
by xk ,~ t  and Fr,0, by 

d d 

d 
~-~z3h~ = Avex (5.43) 

d 1 d---iAve,~ = (--AFh -- dmAv~. - c~Ah~.)  
mrn 

with f (Axk) from (5.21) satisfying the sector condition (5.22) and Axk = 
AFh/c~t~ - Ah~..  The system (5.43) can now again be decomposed as a 
feedback interconnection of a reachable and observable linear subsystem with 
the transfer function Z (s) = -z221 ~z(~) ' 

n z (S) = (8 Jr- O~1) (?Ttm 82 -t- din8 -~- Cm q- Cstr) 

dz (s) = mm (cs,r + ~Tck) S 3 + (~T':kmm~l + (r + ~rCk) d~) s2+ 
( ~ e ~  (dm~ + Cm + e,,~) + c,,~c~) ~ + ~rCk~l (Cm + c,,~), 

(5.44) 

which is for a suitable (~, 0 < a~ < al,~o.~, BIBO-stable and a static non- 
linearity 

r ( ~ k )  = I (z~k) - ~rc~z~k (5.45) 

with f (Axk) from (5.21) and ck from (5.23). On mild conditions concerning 
the system parameters the exponential stability can be shown by means of 
the circle criterion [59], [144]. To obtain these results some tedious lengthy 
computer algebra calculations have to be performed and we do not intend to 
demonstrate them here in detail. 

Remark 5.2. The non-linear HGC so presented also serves as a key element 
for new non-linear MIMO-thickness control concepts in rolling mills which 
follow the trend of modern rolling mills towards tighter thickness tolerances, 
thinner final strip thicknesses, faster production rates and shorter off-gauge 
lengths, see, e.g., [74]. 
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5.3 Rejection of Periodic Disturbances (Eccentricity 
Compensation) 

As already mentioned, there is a strong tendency in rolling mills to improve 
the quality of the rolled product, especially in relation to the thickness tol- 
erances. One problem that may define the limit of the achievable thickness 
tolerances and which is not eliminated by means of the conventional thick- 
ness control concepts like the HGC, is periodic disturbances in the strip exit 
thickness. Here the frequencies are proportional to the angular velocity of 
the work and backup rolls, respectively. As was mentioned in Section 5.2.1, 
these disturbances are said to be caused by so-called roll eccentricities. Typ- 
ical values of the contribution of the roll eccentricity in the final thickness in 
hot rolling mills can be about 40- 10 -6 m and more. The roll eccentricities 
arise from axial deviations between the roll barrel and the roll necks, due 
to irregularities in the mill rolls and/or roll bearings [35]. Several patents 
and papers have been published concerning the active and passive compen- 
sation of these eccentricity-induced disturbances. An excellent overview of 
the results along the more application oriented branch can be found in [35]. 
Passive compensation methods try only to avoid the gain effect of the roll 
eccentricity in a mill stretch compensation loop (AGC). Whereas an active 
eccentricity compensation generates a supplementary signal in the position or 
force control loop of the hydraulic adjustment system in order to suppress the 
periodic disturbances in the strip. Some of the proposed active approaches 
operate in two stages. First, the contribution of the eccentricity is identi- 
fied directly from the measured force and/or thickness by using FFT (Fast 
Fourier Transform)-based algorithms, neural networks or least squares meth- 
ods. Secondly, the resulting amplitude and phase of the eccentricity signal are 
then fed to a PI (Proportional Integral)-controller or are used for disturbance 
feedforward compensation (see, e.g., [64]). Othermethods, like the repetitive 
control concept (see, e.g., [33]) or the adaptive disturbance rejection (see, e.g., 
[65], [73]) do not distinguish between an identification and a compensation 
element. 

Later, we will focus our attention on the latter strategy. The main goal 
of the eccentricity compensator is to eliminate the eccentricity induced dis- 
turbances in the strip exit thickness. But since the thickness gauge is located 
some distance behind the roll gap, the strip exit thickness signal hex has 
a significant time delay which depends on the strip exit velocity. This fact 
causes great problems in the development of a fast eccentricity compensa- 
tion concept based on the strip exit thickness. Hence, we decided to use an 
indirect approach by suppressing the periodic vibrations in the piston force 
Fh = A l P 1  - A2p2 .  If the deformation resistance of the strip material is 
sufficiently large, then this strategy also significantly decreases the periodic 
disturbances in the strip exit thickness. A very important fact for the commis- 
sioning engineer as well as for the maintenance staff is that the eccentricity 
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compensator can be operated together with the conventional control concepts 
for HGC-systems and that it can be easily adjusted. 

To design the eccentricity compensator, let us at first replace v by v + 
13TU with the supplementary plant input u in the non-linear HGC controller 
(5.15) and (5.16) of Proposition 5.1. Then by ignoring the dynamics of the 
mill stand, the closed-loop HGC-system written in deviations A around the 
stationary point (compare with (5.20)), now formulated in the state variables 
AFh, z~xk and Avk, reads as 

0 
d AFh = - a l f  (zazk) Ozazk 

d 
-~ A z k  = Ark  

d 1 (AFh -- dkAvk + d) --~ Avk = m k  

-- - - f  (AXk)  Ark  -~ ~T'tt 

(5.46) 

y ~ X l  

with 

A2 + A2 (5.48) 
ck = VoA + Alxk,ref  1/0,2 - A2xk,ref 

and a lower bound for ~k given by (5.19). Now, condition (5.18) from Propo- 
sition 5.1 ensures that (5.47) is Hurwitz and even strictly positive real from u 
to y. These properties will subsequently help us to construct the eccentricity 
compensator. 

In [73] a discrete version of the eccentricity compensator based on the pro- 
jection theorem in a Hilbert space is presented. Here, we will use a passivity 
based argument for the time continuous case in order to prove the stability 
of the closed-loop. The main result for the adaptive cancellation of periodic 
disturbances with a known period but an unknown phase and amplitude is 
contained in the following proposition. 

0] 
U+ 0 d (5.47) 

[0 1 
d-t = 0 0 -dk x + 

0 "ink J 

with d as a periodic disturbance, with known period T summarizing the work 
and backup roll eccentricities, the moving mass m k =  m2 + m3 from Fig. 5.4 
and the damping factor dk. Since the deviations from the stationary point due 
to the roll eccentricities are very small, it is enough to consider the linearized 
system of (5.46) for the design of the eccentricity compensator. The system 
(5.46) linearized around z~x T = [z~Fh, AXk, z~vk] : 0 yields to 



144 5. Hydraulic Drive Systems 

Proposition 5.2. Consider a linear t ime-invariant  sys t em of  the f o r m  

d 
- - x  = A x  + bu + kd  
dt  
y ~ cTx  

(5.49) 

where x E R n is the state, u E R the input, y E R the measurable output  
and d a t ime-harmonic  disturbance d = Dl , j s in  ( j ~ t )  + D 2 , j c o s ( j ~ t ) ,  
j = 1 , . . .  , s with known period T and constant, but unknown  D15,  D2,j E R .  
Let us assume that A is Hurwitz,  (A, b) reachable, (A, c) observable and the 

corresponding transfer func t ion  Z (s) = c T ( s I  - A)  -1 b is strictly positive 
real. Then  the adaptive control law 

u = Ul,jsin y-~-t +U2, jcos  j t 
j=l 

(5.50) 

with 

d - # j s i n ( j ~ t )  y = 

d 
~-~U2,j -- - # j  cos ( j ~ t )  y 

(5.51) 

guarantees for  #j > 0, j = 1 , . . .  , s  that y (t) exponentially decays to zero. 
The weights # j  are used to adjust the convergence rate of  the suppression of  
the various higher harmonics  of  the disturbance d. 

Proof. Let u* = E~=l  ( U { j s i n ( j ~ t )  + U ~ , j c o s ( j ~ t ) ) ,  U;, j ,U~,j  E R de- 

note the stationary input such that the stationary output y* -- cTx  * = O. 
Then the system (5.49) can be rewritten around the stationary solution 
(u*, x*) in the form 

d 
-:- (x  - x*) = A (x - x*) + b (u - u*) 
dt  
y - y* = c T (X -- X*) .  

(5.52) 

Since A is Hurwitz, (A, b) reachable, (A, c) observable and the transfer func- 
tion Z (s) = c T ( s I - A ) - l b  is supposed to be strictly positive real, the 
Kalman-Yakubovich-Popov lemma (see Theorem 1.6 of Chapter 1 or e.g., 
[59], [144]) says that  there exists a positive definite matrix P,  a matrix L and 
an e > 0 such that the relations 

P A  + A T  p = - L T  L - eP  (5.53) 
Pb = c 

hold. The closed-loop system (5.52) together with (5.50) and (5.51) in devi- 
ations from the stationary solution (u*, x*) reads as 
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8 

d ( x _ x . )  = = A ( x - x * ) + b  E ( U l , j - U ~ , j ) s i n ( j ~ t ) +  
dt ~=~ 

j = l  ) 

_d (u~,j - u~,j) = - , j  sin ( j y t )  e~ (~ - ~*) 
at 
d (g~,~ _ U ; j )  d--t - -  - # j  cos ( j ~ t )  c T (x - x*) 

(5.54) 

for j = 1 , . . .  , s. Clearly, (5.54) is a linear time-varying system and in order 
to prove the exponential stability of the stationary solution (U~,j, U~,j, x*) 
with y* := cTx * = 0, we make use of Theorem 1.3 of Chapter 1. We choose 

s 2 

d = l  2 # j  i=1 

(5.55) 

with kl > 0 and by calculating the time-derivative of V and taking into 
account the relations (5.53), we get 

d v = l  dt -~kl (x-- x*) T (PA + ATp) (x - x*) + kl (x - x*) T (Pb - c) 

~ (UI, j-U~,j)sin ( j -~ t )+  ~ (U2,j-U~*,j)cos (j2=~t)~. 
( j=l j=] ) 

= -~kll (x -- x*) T (LTL q- eP) (z - x*) <. 0 . 

(.5.56) 

U ~  ~, Thus, from Theorem 1.3 of Chapter 1 it follows that  ( 1,j, U~,j, x*) is expo- 
nentially stable and hence y exponentially decays to zero. �9 

Remark 5.3. The result of the disturbance compensation concept of Proposi- 
tion 5.2 remains valid even if the period T of the periodic disturbance changes 
to another stationary value. Fhrthermore, it turns out that  if the variation 
of the period is sufficiently slow in comparison with the natural frequencies 
of the system, the disturbance compensation also shows good results in the 
transient case. Another important feature of the proposed concept is the fact 
that  the disturbance controller (5.50) and (5.51) does not rely on the specific 
knowledge of the plant. It is enough for the plant to satisfy certain structural 
properties, namely stability and strict positive realness, which, in general, are 
not lost in the case of parameter variations. 

Since (5.47) and (5.48) meet all the necessary requirements, Proposition 
5.2 can be directly applied to design the eccentricity compensator. Fig. 5.9 
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Fig. 5.9. Schematic diagram of the hydraulic position control concept in combina- 
tion with the eccentricity compensator. 

depicts the schematic diagram of the position control concept (HGC) from 
Proposition 5.1 with the plug-in eccentricity compensator of Proposition 5.2. 
Since the diameters of the backup and work rolls are known accurately it 
is possible to calculate the period of the backup and work roll eccentricities 
by measuring the angular velocity wrou of at least one of the rolls, usually a 
work roll. Of course, this takes for granted that  there is no slipping between 
the work and backup rolls. To test the control concept with the eccentric- 
ity compensation, the same mill simulator as described in Subsection 5.2.4 
is used. The reference input for the position control is chosen as xk,r~y = 
100 .10 -6a  ( t -  1) and in addition to Subsection 5.2.4 the backup and the 
work roll eccentricities of (5.33) are set to x~,u (t) = 30-10 -6 sin (17. i t  + ~r/4) 
and x~,w (t) = 25 .10  -6 sin (31.75t + ~r/2). One can see from Fig. 5.10 that  
the eccentricity induced periodic disturbances in the deviation of the strip 
exit thickness Ahe~ (see (5.38)) are significantly reduced by the eccentricity 
compensator. Various other simulations and field tests [73] prove that  the 
strategy of eliminating the periodic disturbances in the hydraulic force re- 
ally does lead to an improvement in the strip exit thickness deviation. The 
simulation results of the spool valve displacement xv and the deviation of 
the displacement of the hydraulic piston Axk (see (5.38)) in Fig. 5.10 should 
demonstrate the effect of the eccentricity compensator on the hydraulic ad- 
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jus tment  system. Note tha t  in this connection ~ A before a quantity always 
refers to the deviation of this quantity from the nominal operat ing point. 

xlO-S xlO ~ 
5 . . . .  , , . .  �9 , 

" , without ecc. comp. 11 

. Ls L 

VV A 

o 024 o'.s " L2 i ' , 6 - -  -2 -Ls, . . . .  0.4 o.8 L2 ~.6 

xlO-3 
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~ 0.5; 
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~ -1.5 
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time in s 

Fig. 5.10. Simulation of the exit thickness, the hydraulic force, the spool valve 
position and the piston displacement with and without eccentricity compensation. 

Remark 5.4. There are many  different techniques presented in the li terature 
for the active suppression and re]ection of periodic disturbances. Essentially, 
these approaches differ from the assumptions on the structural  information of 
the sys tem and o~ the stochastic information of the disturbance. Nevertheless, 
there are, of course, essential similarities between the different algorithms, as 
is shown in [134]. An adaptive digital plug-in algorithm for r~ect ing periodic 
disturbances with known freqnency and its application to a magnet  disc drive 
experiment is considered in [4@ Here, the reference signal is assumed to be 
periodic with the same period as the disturbance. The  LMS (Least Mean 
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Squares) adaptive algorithm used is driven by an error signal coming from a 
moving average filter. Another interesting approach for adaptive disturbance 
rejection, extended by the factorization approach over the set of BIBO-stable 
transfer functions, is presented in [43] and it is also worth consulting the 
references cited there. 

5.4 Pump-displacement-controlled Rotational Piston 
Actuator 

Fig. 5.11 illustrates the cross section of a hydrostatic unit with a variable- 
displacement axial-piston pump and a fixed-displacement axial-piston motor. 
Typical applications for this type of hydrostatic drives are ship steering sys- 

swash-plate housing swash-plate 
at fixed angle piston with variable angle 

\ 
/f~\\\\~\\\\\\\\\\~ z / / / / ~ . \ \ \ ' ~  ~//~/////////~//////~ ~ v -  

] 2_ q ~  ~ ~_ ~ '  _ ~ \ ~  shaft 

shoe rotating cylinder barrel 
and drive shaft 

fixed-displacement motor variable-displacement pump 

Fig. 5.11. Cross section of a hydrostatic unit consisting of a variable-displacement 
pump and a fixed-displacement motor. 

tems, antenna drives or vehicle drive systems (see, e.g., I78D. In these sys- 
tems, the pump converts mechanical energy into fluid energy and the motor 
converts the fluid energy back into mechanical energy. Since the swash-plate 
angle of the pump is adjustable both in the positive as well as in the nega- 
tive direction the hydraulic transmission offers continuously variable output  
speed in all four quadrants. Therefore, the differentiation between motor and 
pump is arbitrary and does not necessarily match with the real operating 
conditions. The transmission lines which connect the pump and the motor 
are assumed to be short and we assume that the low- and high-pressure side 
(transmission line + chambers in the pump or motor + connecting passages) 
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can be represented by one pressure value each. Also here, the operating condi- 
tions determine which side has high and which side has low pressure. There 
are two main sources of losses in the hydrostatic drive unit, namely losses 
due to internal and external leakage flows and losses due to friction. The 
friction losses cause the oil to heat up and so the oil temperature rises. To 
counteract this effect a flush valve drains oil from the low pressure side. A 
so-called replenishing system consisting of a replenishing pump and two check 
valves supplies the low-pressure side with cooled, filtered oil and makes up 
for the leakage flows and the flush flow. The check valves prevent the pressure 
on both  sides from falling below the replenishing pressure PR. Fhrthermorc, 
safety relief valves are used to restrict the pressure values in both sides to a 
predefined maximum. 

5.4.1 Mathematical  Model  of  the Pump-motor-uni t  

For the derivation of the mathematical model of the hydrostatic drive unit, 
some simplifying assumptions will be made, which constitute no essential 
restriction for the controller design: 

�9 In view of the application to be considered we assume that  the pump-motor 
configuration is close coupled, i.e. the transmission lines between the pump 
and the motor are rather short. Therefore, we may ignore the dynamics 
caused by the transport  of the oil via the transmission lines from the pump 
to the motor and vice versa. 

�9 The pressures, Pl and P2, of the two pressure sides are supposed not to 
exceed the maximum value defined by the safety relief valves. 

�9 It is assumed that  the replenishing pump perfectly compensates for the 
drained oil from the flush valve. At this point it is worth mentioning that  in 
reality the flush valve and the check valves of the replenishing system have a 
non-linear opening characteristics and a non-negligible dynamics. However, 
if the dynamics are sufficiently fast they may be ignored in the controller 
design. Of course, in the simulation model for testing the controllers all 
these effects should be included. 

In order to get a better  understanding, the required quantities for the 
mathematical  model of the motor are shown in Fig. 5.12. Henceforth, an 
index p or m always refers to the corresponding quantity of the pump or 
motor,  respectively. Since hydrostatic pumps (motors) are designed by a finite 
number Np (Nm) of pistons, the flow from the pump to the transmission line 
(from the transmission line to the motor) depends on the angle of rotation. 
These fluctuations in the flow also cause torque ripples, which have, e.g. in the 
case Np = 9, an amplitude of approximately 1.5 7o of the normalized torque 
[90]. For further details of the range of constructions and the corresponding 
acting forces and torques of hydrostatic pumps and motors, the reader is also 
referred to [54]. Subsequently, we will use an average pump and motor flow 
qp and qm of the form 
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Fig. 5.12. Schematic diagram of the fixed-displacement axial-piston motor. 

qp= -~-~ApDptan(ap)Wp and q,,~= ~-~A,~Dmtan(a ,~)wm (5.57) 

with the angular velocity w, the maximum geometric displacement D, the 
effective piston area A and the stroke angle a,  The generated pump and 
motor  torque My and ]llm are calculated by considering an ideal pump or 
motor,  which means a lossless energy conversion. Thus, we obtain an average 
torque by 

_~lj = ~-~AjDj tan (aj) (Pl - P2) with j E {p ,m}.  (5.58) 

From Fig. 5.12 we see that  the average motor  flow qm due to (5.57) is asso- 
ciated with the flow from the transmission line to the motor,  qm,1, and the 
flow from the motor  to the transmission line, qm,2, in the form 

q m , 1  = q m  + q i , m  + q e , m , 1  (5.59) 
q m , 2  = q m  + q i , m  --  qe,m,2, 

with the internal and external leakage flows of the motor  qi,m, qe .... 1 and 
qe .... 2. Analogous to (5.58) the average pump flow qp is given by 

qp,1 = qp - q i ,p  - qe,p,1 (5.60) 
qp,2 = qp - qi,p + qe,p,2, 

with qp,1 as the flow from the pump to the transmission line, qp,2 as the flow 
from the transmission line to the pump and the internal and external leakage 
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flows of the pump qi,p, qe,p,1 and qe,p,2. In contrast to the valve-controlled 
translational piston actuator of Section 5.1, here the heating of the oil and 
hence the dependence on the temperature T will be taken into account. Thus, 
by assuming rigid connection lines, we get the continuity equations for the 
two pressure sides in the form 

d 
d"-t (Poit (Pl, T) V) = P o i l  (Pl, T)(qp,1 - qm,1) 

d 
d"-t (Po,t (192, T) V) = Poil (P2, T) (qm,2 - qp,2), 

(5.61) 

where V denotes the total volume (transmission line + chambers + connect- 
ing passages) of each pressure side and qv,1, qm,1, qv,2, qm,2 are given by (5.59) 
and (5.60), see, e.g., [13], [96]. The equations of motion for the pump and the 
motor read as 

d 
~9v-~wp = M,~,.i.~ - Mp - M/,-ic,p 

d 
(gm-~Wm = m m  - Mtoad -- Mf,.i~,m, 

(5.62) 

with the angular velocity w, the friction torque Mf~ic, the drive torque of 
the pump Mdrive, the load torque of the motor Mtoad and the moment of 
inertia 69 of the pump or motor plus all parts rigidly connected to the pump 
or motor shaft, respectively [13], [96]. 

The leakage flows and the friction torques have an essential influence on 
the efficiency of the hydrostatic drive unit. One can find many models in the 
literature. For a comparison of three different models, see, e.g., [138]. Due to 
the geometry of the leakage paths, the internal and external leakage flows of 
(5.59) and (5.60) have basically the same laminar characteristic and hence 
are linear functions of the pressure difference or pressure 

qi,m = (Pl - P2), qe,m,1 --- Pl, u (T) 
C~,p C~ v 

qi,p = /.t ( T ) ( P l -  P'2), qe,p,1 -= # ( ~ ) P l ,  

q ,m,2=Ci'T")p2 
C~p 

qe,p,2 --~ ~ P 2 ,  

(5.63) 

with the positive leakage coefficients Ci,,,, Ci,p, C~,m, C~,p and the dynamic 
viscosity # (T). The dynamic viscosity # (T) changes markedly with the tem- 
perature T and can be fairly closely approximated by 

# (T) -- it0 exp (-A1 (T - To)), (5.64) 

where #0 is the viscosity at the reference temperature To and Ax is a char- 
acteristic constant of the type of oil used [13], [96]. In general, the friction 
torque M/,.ic is assumed to consist of two different parts, namely 
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Mfric,j = kd, j#(T)  oJj ~- kp,j (Pl -I-p2) sigD-(0-)j) , j e {p ,m}  (5 .65)  

with the positive friction coefficients kd,j and kp,y depending on the geome- 
t ry and the specific construction. The first part, which is proportional to the 
angular velocity w and the dynamic viscosity # (T), is mainly caused by the 
shearing of the fluid in the small clearances and the second part is a conse- 
quence of the forces acting on the swash-plate [54], [146]. In some literature 
the friction coefficient kp is not supposed to be constant, as in (5.65), but 
is assumed to be proportional to the stroke angle a of the swash-plate (e.g., 
[96]). However, no friction model optimally fits reality and the parameters 
have to be adjusted to the measurements in each individual case. For the 
purpose of a controller design, henceforth, we will neglect the second part of 
the friction torque, i.e. kp,p -- kp,m z O. Of course, in order to get realistic 
simulation results, the whole friction model of (5.65) extended by the well 
known stiction phenomenon should be included in the simulation model. 

Summarizing (5.57) - (5.65) and taking into account that  the change of 
temperature T is negligible in comparison to all other dynamic parts of the 
system, i.e. d T =  0, we are able to formulate the mathematical model of the 
hydrostatic drive unit of Fig. 5.11 in the form 

3T (T) -~Pl = ApDp tan (OLp) ~dp - AmDm t a n  (am) w m -  

Vi ( P l - - P 2 ) - -  Ce 

V2 d N m .  D Np -~P2 ~ Wm ~-~ ApDp tan (O~p) 0.)p-[- ~T (T) - ~ A ~  m tan (am) - -  

(p l -p2) -  ce 
# (T) 7CT~ p2 

(~p-~Wp -~ Mdrive ApDp tan (ap) (Pl  -- P2) - kd,p# (T) Wp 

d Nm 
~ m - ~  wm ~-- 27r AmDm tan (Olm) (Pl -- P2) -- Mload -- kd,m# (T) o2 m 

(5.66) 

where C~ = C~,v + C~,m, Ci = Ci,p + Ci,m and f i t  (T) is the bulk modulus of 
oil (see (5.2)), with the temperature T as a parameter. In the temperature 
range which is practically relevant the compressibility/3 T (T) as a function 
of the temperature T can be approximated by 

13 T (T) = j3T, 0 + AS (T - To), (5.67) 

where t3T, 0 is the bulk modulus at the reference temperature  To and A2 is a 
characteristic constant of the type of oil used [96], [101]. All other quantities 
of (5.66) have been explained in the equations above. 

As already mentioned before, the replenishing system prevents the pres- 
sure on both sides, Pl and P2, from falling below the replenishing pressure 



5.4 Pump-displacement-controlled Rotational Piston Actuator 153 

PR. Therefore, we have to distinguish between three different operat ing situ- 
ations: 
C a s e  I: The pressure P2 is held at the constant value of PR, i.e. d p 2  ----- 0, 
and the load changes are performed only by the pressure Pl. Since in general 
PR is very small, we may set PR to zero and hence we have Ap = Pl - P 2  -~ Pl. 
Thus,  the continuity equation for the pressure side Pl wri t ten in the pressure 
difference Ap read as 

V d N~ N _  
"'"'AmD,~ tan (am) wm ~ T ( T  ) -~Ap = ~-~ApDp tan  (C~p) wp - 2~ 

c~ + ce  A (5.68) 

C a s e  I I :  Analogous to the first case, the pressure Pl = PR ~ 0 and only the 
pressure P2 is varying. Then the continuity equation for the pressure side P2 
wri t ten in the pressure difference Ap = Pl - P2 ~ -P2  yields to 

V d Np -~AmUm tan ("m) ~.~ ~T (T) -~ Ap = - ~  Apnp tan (ap) wp - 

C~ + Ce A (5.69) 

C a s e  I I I :  The third case covers the situation where both  pressures, Pl and 
P2, are varying simultaneously. This can happen only, if there is a change 
from case I to case I I  or vice versa. By subtracting the continuity equations 
for the two pressure sides, we get 

V d Np Arm 
2fiT ( T ) ~ A p  = 27r ApDp tan (ap) Wp - -~-~ AmDm tan (am) w,~ 

C~ + C~/2 ~ (5.70) 

with Ap = Pl - P2. 

Thus,  from (5.68) - (5.70) together with (5.66) it can be easily seen t h a t  
the mathemat ica l  model of the hydrostatic drive unit, which covers all three 
operat ing situations, can be writ ten as a PCHD-sys tem (see Chapter  (1)) 

d i O V ~  T 
-~x = (J (x) + J~ (x) u - S (x)) \ ~ x  ] + Gd (x) d (5.71) 

with the s ta te  x T = ~--~T~AP, OpWp, O~wm , the exogenous input d r = 

[M~o~a, Ma~ve], the plant input u = tan (C~p), the positive definite storage 
function V (x) 

) v (x) = ~ ~p2 + 0 ~  + Om~m , (5.72) 
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the positive definite, symmetric matrix 

s ( = )  = 

0 0 
# (T) 

0 kd,ptt(T) 0 

o o kd,m  (T) 

the skew symmetric matrices 

[i0o 1] [ 1i] "-~ AmDm tan (am) 0 , J~ (x) = ApDp 1 0 
0 0 0 

(5.73) 

(5.74) 

and the matrix for the exogenous inputs 

For the cases I and II, (5.68) and (5.69), l)" = V and C' = Ci + Ce, and for 
case III (5.70) l? = -~ and C = C~ + -~. 

Remark 5.5. The model of the hydrostatic drive unit of Fig. 5.11 has the 
same mathematical structure as the ~uk-converter of Subsection 3.4.2. Here 
also, the control input tan(c~p), with C~p as the stroke angle of the pump, 
influences only the internal energy flow and thus does not change the total 
amount of energy stored in the system. 

The next table, Table 5.2, summarizes the nomenclature used for the 
pump-motor-unit, where an index p or m always refers to the corresponding 
quantity of the pump or motor, respectively. 

In vehicular drive systems a typical control application for the hydrostatic 
drive unit is to track a desired trajectory of the angular velocity of the motor 
wm in the presence of load and/or  drive torque variations. Beside the clas- 
sical control approaches (see, e.g., [78] and the literature cited there), it is 
obvious that  we may fall back on all the results known frotn literature for the 
de-to-de converters with the same mathematical structure. For this purpose, 
the reader is referred to Sections 2.2, 3.5 and the literature cited in it, espe- 
cially [26], [107], [132]. In the following, we do not go into the details of the 
controller design for hydrostatic drive units more closely, but will focus on 
another problem. Usually, the variable stroke angle C~p of the pump-swash- 
plate is considered as the plant input, as it is in (5.71), and the dynamics of 
the swash-plate and the corresponding control unit are neglected. However, 
this simplification is admissible if the dynamics of the swash-plate are fast 
in relation to the pump-motor dynamics. On condition that  c~p is measur- 
able, this can possibly be achieved by means of a fast acting inner control 
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Table 5.2. Nomenclature for the pump-motor-unit. 

A m ,  Ap 

C~,p,C . . . .  C~ 
C~,p, Ci,m, C~ 

Din, Dp 

kd,m , kd,p 

kp,m, kp,p 

Mdrive 

Msric ,p ,  M.fr ic ,m 

Mload 

M,~, Mp 
Nm,Np 

p l  , P2 

qm , qp 

qe,p,1 ~ qe,p,2 ~ qe,m, 1, qe,m,2 

qi,p~ ql,m 

T 

To 
v,f/ 
f2 m , OLp 

fiT (T) 

~T,O 

~)m, Op 
A1, )~2 

tt (T) 

#0 

Poil 

02rn ~ ~dp 

effective piston areas 

external laminar leakage coefficients 

internal laminar leakage coefficients 

laminar leakage coefficient 

maximum geometric displacement 

viscous friction coefficients 

friction coefficients 

drive torque of pump 

friction torques 

load torque of motor 

average torques of pump/motor 

number of pistons 

pressures of the two pressure sides 

average flows of pump/motor 

external leakage flows 

internal leakage flows 

oil temperature 

reference temperature 

volumes of the two pressure sides 

stroke angle of swash-plates 

bulk modulus of oil at temperature T 

bulk modulus of oil at temperature To 

sum of rigidly connected moments of inertia 

characteristic oil coefficients 

dynamic viscosity of oil at temperature T 

dynamic viscosity of oil at temperature To 

density of oil 

angular velocities 

loop for c~p. Otherwise the mathematical model of the swash-plate has to be 
taken into account. For reasons of reliability, in many industrial applications 
no measurement device is planned for the swash-plate angle. Therefore, the 
information about the swash-plate angle has to be obtained otherwise, e.g. 
by means of an observer. This topic will be treated in more detail in the 
following section. 
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5.5 Discrete Open-loop Observer for the Swash-plate 
Angle 

Fig. 5.13 depicts the schematic diagram of the swash-plate mechanism of a 
variable-displacement pump. By means of the two piston forces FA = AAPA 

and FB = ABPB of the two actuators A and B and the spring force Fs  the 
swash-plate angle C~p can be controlled in a range -ap,m~• _< ap _< C~p,max. A 
hydro-mechanical feedback mechanism opens the valve of the corresponding 
actuator  with an orifice area Ao (Ao@ and connects the chamber either with 
the tank at pressure PT or with the supply pressure Ps. This is done in such 
a way that  the error A s p  = O~p - Otp, d between the actual and the desired 
swash-plate angle ap and OLp, d is eliminated. 

plate 

co p'  

-t 
M,A 

qB 

x S~ cS' ~pre 
actuator B 

Fig. 5.13. Schematic diagram of the swash-plate mechanism of the variable- 
displacement pump. 
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5.5.1 M a t h e m a t i c a l  M o d e l  of  a Swash-plate  M e c h a n i s m  

An excellent description of the closed-form equations of a variable-displace- 
ment pump can be found in [87] and [89]. Here, the attention is mainly 
directed to the construction of the swash-plate mechanism and the influence 
of parameter variations on its dynamic behavior. The objective of this sub- 
section is the derivation of a detailed mathematical model that captures all 
the essential dynamic properties of the system and that serves as a basis for 
the observer design for the swash-plate angle ap [71]. 

Mechanica l  Par t .  Calculating the rate of change of the angular momentum 
around the swash-plate pivot, we get 

d 
= v p  

d (5.76) 
Os-~Vp = (Fs,A -- FS,B -- Fs)  Rs , , I I  cos (ap) - Ms, fric + M s  

with the moment of inertia of the swash-plate Os, the effective distance of 
the acting forces and the swash-plate pivot Rs, eff ,  the forces FS, A and Fs,• 
from the actuator A and B given by 

d 2 
FS,A -~ --rrts, a " ~  ( Rs,ef f sin (ap)) + FA 

(5.77) d 2 
FS, B = mS,B-~ff (RS, ef f  sin (~p)) + FB, 

the spring force 

Fs = Fpre + csRs,~II (sin (c~p) + sin (ap,ma~)), (5.78) 

the friction torque Ms,f~ic and the so-called swivel torque Ms, which is nat- 
urally induced by the pump [87], [89]. In (5.77) mS,A and ms, B denote the 
sum of the masses of the piston and the piston rod of the two actuators A 
and B, respectively, and in (5.78) Fp~ stands for the prestress-force of the 
spring and cs is the spring coefficient. Thus, the equations of motion can be 
summarized in the form 

A.) lend stop OLp,max: ] 

If FA - FB > Fpre + 2csRs,  ef f  sin (Olp,max) then 

OLp = OZp,ma x and ~p = 0 

B.) [end stop -C~p,m~x: I 

If F A  - -  FB < Fp~ then 

@p = - - ~ p , m a x  and Up = 0 
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C.) [ o p e r a t i n g ' l  region --av,ma~ _< ap _< Sp,max: '] 
If -Sv,m~• < av < ap,m~ then 

d 
~-~O:p ~- Up 

d Rs,e f f  cos (Sp) (FA -- FB -- Fs) - Ms, frie + Ms  

(5.79) 
\ - / 

2 (mS,A + ms, B) R2,~ff sin (sp) cos (sv) Up 

with Fs from (5.78). 

H y d r a u l i c  P a r t .  The actuators A and B of Fig. 5.13 are single-ended, 
single-acting hydraulic rams. Under the assumption that  the change of the 
temperature T is slow in comparison to the dynamics of the hydro-mechanical 
part, i.e. ~ T  = 0, the continuity equations for the two chambers read as 

(Vo,A + AARs,~f f  sin (sp)) d 
f iT  (T )  diPA = qA -- AA Rs, eI f cos (Sp) Up -- qext,A 

(Vo,B -- ABRs,  ef f  sin (Sp)) d 
fiT (T) diPB = qB q- A B R s , e f  f COS (Sp)  Up -- qext,B 

(5.80) 
with the pressures PA and PB in the two chambers, the effective piston areas 
AA and AB, the volumes VO,A and VO,B for Sp = 0, the bulk modulus fiT (T) 
with the temperature T as a parameter from (5.67) and the laminar external 
leakage flows 

Cext ,A ~ B . p B .  ( 5 . 8 1 )  qext,A = # (T) PA a n d  qext,B - 

Here, C~xt,A and C~xt,B denote the laminar leakage coefficients and # (T) is 
the dynamic viscosity as a function of the temperature T due to (5.64). The 
flows from and to the valves of the two chambers, qA and qB, are determined 
by a hydro-mechanical feedback mechanism in such a way that  the error 
A S p  = Sp -- Sp, d between the actual and the desired swash-plate angle Sp 
and Sp, d becomes zero. This is achieved by connecting the corresponding 
chamber with an orifice area Ao (Aap) with the tank or supply pressure. 
Thus, the flows are given by 

A.) Aav > O: 

qA = Cd Ao (Asp) pA 

qB = -Cd  ~ / 2---~ Ao (Asp) ~ - PT 
y tl oil ( -L } 

(5.82) 
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B.) [ A o l p < 0 : ]  

qA = - - C d ~ ~ A o  ( Aap) v / ~  -- PT 
y t" oil k ~ J (5.83) 

where PT and Ps denote the tank and supply pressure, respectively, Cd is the 
discharge coefficient and Poiz (T) is the density of oil, now with the temper- 
ature T as a parameter. Similar to the bulk modulus f i t  (T), the density of 
oil Poil (T) can be fairly closely approximated by an affine relationship 

(T)  = Po  ,o + ha (T  - To), (5.84) 

where Po~z,o is the density at the reference temperature To and )~3 is a charac- 
teristic constant of the type of oil used [96], [101]. For slit-type sharp-edged 
orifices the discharge coefficient may be set Cd .~ 0.6, regardless of the par- 
ticular geometry [96], [101]. 

5.5.2 Mode l  Simplification Based on Physical  Considerations 

Now, for certain types of applications it is possible to simplify the complex- 
ity of the mathematical model of the swash-plate mechanism in such a way 
that  the resulting model still contains all the essential dynamic effects. In a 
first step, let us assume that the two actuators A and B have the identical 
geometry, i.e. AA = AB = A and VO,A = VO,B = Vo. F~rther, if we neglect 
the external leakage flows qext,A --~ qext,B -= 0, then the flows qA and qB from 
(5.82) and (5.83) follow the relation qA = --qB" Thus, with the assumption 
PT = 0, we get PA -I- PB ---- PS and we are able to formulate (5.82) and (5.83) 
as functions of the load pressure Ap = PA -- PB by 

A.) [Ac~; > 0:1 

q A = - - q B = C d ~ ~ A o ( A a p )  IPs'--AP-~ (5.85) 

B.) I A a p < O :  

qA = --qB = - - C d ~ ~  Ao ( Aap) IP-S 2 A P  (5.86) 

Additional investigations have shown that a Taylor series approximation up to 
the first order of (5.85) and (5.86) around Ap _-- 0 suffices for the description 
of the dynamics of the system. Thus we get 
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qA = --qB = 

I 
qA = - - q B  = 

Cd Ao(AC~p) ( v / ~  2~psAP ) (5.87) 

Cd .Ao ( A~p) (v/-~ + 2_~sAp ) (5.88) 

Since in (5.80) the expressions on the left hand side are very small due to 
1/~ T (T), we can replace the dynamic equations (5.80) by their quasi-steady- 
state representation in the sense of the singular perturbation theory (see, e.g., 
[59]). Thus, the differential equations (5.80) degenerate into equations and 
by inserting (5.87) and (5.88) into these equations, we obtain an expression 
for the load pressure Ap of the form 

Ap = 2V/Poit (T)psARs, eIf 
CdAo (Asp) cos (ap) vp + 2ps sign (Asp) . (5.89) 

In a second step, our analysis shows that in (5.79) the masses ms, A and 
ms, s of the piston and the piston rod of the two actuators A and B, as well 
as the friction and the swivel torque Ms,yric and Ms, make only a minor 
contribution to the torque balance. Furthermore, in the considered operat- 
ing range of the swash-plate angle, in our case -21.51-~0 < C~p < 21.5]~0, 
all expressions in C~p may be linearized around ap = 0, i.e. cos (C~p) --- 1, 
sin (c~p) TM ap and sin (ap,ma• ~- ap,m~- With these simplifications (5.79) 
together with (5.78) becomes 

d 
~-~ O~p ~ /tip 

(5.90) 
d 

Os-~p  = Rs,~j! (AAp - Fpre - csRs, eyI (ap + ap,m~x)) �9 

Using the same procedure as for the hydraulic part, we will regard the moment 
of inertia of the swash-plate 698 in (5.90) as a perturbatiori parameter. In [89] 
and in the literature cited there it is also considered that  the inertia of the 
swash-plate is negligible to the stiffness of the  servo-system. Substituting 
(5.89) in the quasi-steady-state representation of (5.90), we end up with 

d CdAo (Asp) 
-~ap = 2V/Poi t (T)psA2Rs, eyl (-csRs'eHc~P + 2Aps sign (Asp) 

- - F p r e  - -  c s R s ,  e f  fCtp,max)  �9 

(5.91) 

Due to the fact that in general in (5.91) the expression 2Aps is much bigger 
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than  -Fp~e - csRs,  effap,max, another simplification, but  now the last one, 
is possible 

CdAo ( Aap) cs CdAo ( Aap) PP/---~----s----s �9 
c~p + ~ - -  s l gn (Aap) .  

2A2 X/po~ (T) p~ , ARs,~I 

(5.92) 

The next table, Table 5.3, summarizes the nomenclature used for the swash- 
plate mechanism, where an index A or B always refers to the corresponding 
hydraulic actuator  A or B, respectively. 

Table  5.3. Nomenclature for the swash-plate mechanism. 

Ao ( Alap ) 

AA,AB,A  

C ~ , A  , C~t,B 

FA, FB 

Fs, Fp~, cs 

Fs,a, Fs,B 

Ms, f~ic, Ms 

m s , A ,  m S , B  

p A , p B ,  A p  

PT,  PS 

qA ~ qB 

qext,A , qext,B 

Rs,~ff 
T, To 
Vo,a, Vo,~, Vo 
Olp, Olp, d 

"4-O/p,ma x 

Z~ap 

f i t  (T) 

A3 

Os 

tt (T) 
Vp 

Po~l (T) , Po~z,o 

orifice area 

effective piston areas 

external laminar leakage coefficients 

actuator forces 

spring force, prestress-force, spring coefficient 

forces of free-body-system 

friction torque, swivel torque 

masses of piston and piston rod 

pressures in the actuator chambers, load pressure 

tank pressure, supply pressure 

flows from and to the chambers 

external laminar leakage flows 

effective radius from the swash-plate pivot to the forces 

oil temperature, reference temperature 

chamber volumes for (~p -- 0 

swash-plate angle, desired swash-plate angle 

maximum/minimum swash-plate angle (end stops) 

swash-plate angle error 

bulk modulus of oil at temperature T 

characteristic oil coefficient 

moment of inertia of swash-plate 

dynamic viscosity of oil at temperature T 

angular velocity of swash-plate 

density of oil at temperature T, To 
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5 . 5 . 3  D i s c r e t e  O p e n - l o o p  O b s e r v e r  a n d  M e a s u r e m e n t  R e s u l t s  

The  continuous mathemat ica l  model (5.92) serves as a basis for a discrete 
open-loop observer for the swash-plate angle ap. Let us assume tha t  the 
quantities supply pressure PB, tempera ture  T and orifice area Ao (Aap) are 
constant  during the sampling intervals with the sampling t ime Ta, i.e., Ps  -- 
Ps, k, T = Tk and Ao (Ao~p) = Ao (Ao~p,k) for kTa < t < (k+ 1) T~, k = 
0, 1, 2 , . . . .  Then it is possible to calculate the corresponding exact discrete 
model  to (5.92) in the form 

OLp,k+ 1 = exp (r k + r (exp ( r  1) 
r sign ( Aap,k ) . 

(5.93) 

The open-loop observer (5.93) was implemented in a drive box for vehicular 
drive systems developed by STEYR Antriebstechnik GmbH &CO OHG [71]. 
Fig. 5.14 presents the comparat ive results of the measured and the est imated 
swash-plate angle due to (5.93) for a calibration test  and for a rapid swash- 
plate turn  with an initial error of 5 ~ in the swash-plate angle for a supply 
pressure Ps  -- 28.  105 Nm -2, an average tempera ture  T -- 60 ~ and a 
sampling t ime T~ -- 10- 10 -3 s. The orifice area as a function of the swash- 
plate angle error Ao (Ac~p) was made available by the manufacturer  of the 
swash-plate mechanism. 
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Fig. 5.14. Comparison of the measured and the observed swash-plate angle for a 
calibration process and a rapid swash-plate turn. 
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